
Chapter 1

The Real Numbers

In real analysis, the fundamental object of study is the set of real numbers,
R. In this chapter, we introduce R and some of its important properties,
discuss the cardinality of sets, and provide a ϐirst analytical result, whose
proof will serve as an introduction to the discipline.

1.1 Hierarchy of Number Systems
At a basic level, analysis is a theory on the real numbersR, that is, the objects with which we
work are real numbers, real sets, and real functions. We will see at a later stage that we
can conduct analysis on anymetric space (such as Rn and C, for instance).

There is a natural hierarchy amongst number sets, which you have no doubt encountered
in your courses:

N× ⊊ N ⊊ Z ⊊ Q ⊊ A ⊊ R ⊊ C.

The positive integersN× are the counting numbers; zero is added toN× to formN, in which
all equations x + a = b, b ≥ a ∈ N× have a solution. Similarly, the integers Z are built by
adding new numbers to N in order for all equations of the form x + a = b, a, b ∈ N to have
solutions. For the rational numbersQ, the equations in question have the form ax+ b = 0,
a, b ∈ Z, b ̸= 0. For the algebraic numbers A, we are looking at equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ Q,

and for complex numbers C, equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ R.

In other words, number sets are generally easy to construct once we have the right building
blocks... except when it comes to the real numbers R. In this chapter and the next, we will
introduce concepts that will allow us to “formally” deϐine R.
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1.1. HIERARCHY OF NUMBER SYSTEMS

In what follows, we will make use of the following axiom about the set N.

aaaaaa Axiom (WĊđđ-OėĉĊėĎēČ PėĎēĈĎĕđĊ)
Any non-empty subset of N has a smallest element.

We will deϐine the “smallest” element of a set momentarily. We shall also discuss how to
measure the “size” of a set in Section 1.2; for the moment, we remark only that while Q is
inϐinite, it contains inϐinitely more holes than it does elements.

Field and Order Properties of R
A ϐield F is a set endowed with two binary operations: an addition+ : F × F → F , deϐined
by+(a, b) = a+ b, and amultiplication · : F ×F → F , deϐined by ·(a, b) = ab,which satisfy
the 9 ϐield properties:

(A1) commutativity of+: ∀a, b ∈ F , a+ b = b+ a;
(A2) associativity of+: ∀a, b, c ∈ F , (a+ b) + c = a+ (b+ c);
(A3) existence of neutral element for+: ∃0 ∈ F , ∀a ∈ F , a+ 0 = a;
(A4) inverse with respect to+: ∀a ∈ F , ∃!b ∈ F , a+ b = 0;
(M1) commutativity of ·: ∀a, b ∈ F , ab = ba
(M2) associativity of ·: ∀a, b, c ∈ F , (ab)c = a(bc)
(M3) existence of neutral element for ·: ∃1 ∈ F , ∀a ∈ F , 1a = a
(M4) inverse with respect to ·: ∀a ∈ F×, ∃!b ∈ F , ab = 1
(D1) distributivity of · over+: ∀a, b, c ∈ F , a(b+ c) = ab+ ac

aaaaaa Examples: Q is a ϐield; N is not a ϐield since (A4) is not satisϐied for x = 1 ∈ N, say;
Z is not a ϐield since (M4) is not satisϐied for x = 2, say. □

An order on a set F is a binary relation “<” satisfying the order properties:

(O1) trichotomy: ∀a, b, c ∈ F , a < b or a = b or b < a;
(O2) transitivity: ∀a, b, c ∈ F , if a < b and b < c, then a < c.
(O3) ∀a, b, c ∈ F , if a < b, then a+ c < b+ c.
(O4) (speciϐic to R): ∀a, b, c ∈ R, if a < b and c > 0, then ac < bc.

aaaaaa

Examples

1. The relation “is born before” is an order relation on the set of human beings
(with reasonable assumptions about birth);

2. the relation “is smaller than” is an order relation on N,Z,Q;
3. the relation “is a subset of” is not an order on ℘(N) since we have neither
{1, 2} ̸⊆ {1, 3}, {1, 2} ̸= {1, 3}, nor {1, 3} ̸⊆ {1, 2}. □
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CHAPTER 1. THE REAL NUMBERS

Let (F,<) be an ordered set and S ⊆ F . If a < b or a = b, we write a ≤ b. The element u ∈ F
is an upper bound of S if s ≤ u for all s ∈ S. In that case, we say that S is bounded above. If
u is the smallest upper bound of S, we say that it is the supremum of S, denoted u = supS.

The element v ∈ F is a lower bound of S if v ≤ s for all s ∈ S. In that case, we say that
S is bounded below. If v is the largest lower bound of S, we say that it is the inϐimum of S,
denoted u = infS. If the set S is bounded both above and below, we say that it is bounded.

aaaaaa

Example: if S = {x ∈ Q | 2 < x < 3}, then infS = 2.

Proof: the rational number v = 2 is a lower bound of S since 2 = v < x for all x ∈ S
(but so are v = −1 and v = 1.5). Hence infS ≥ 2.

To show that 2 is indeed the greatest lower bound, we suppose that u = infS > 2
and derive a contradiction. As we already know that infS ≥ 2, this will only leave
one possibility: infS = 2.

By assumption, there exists 0 < ε < 1 in Q such that u = 2 + ε. Find a rational
number u∗ ∈ (2, u). By deϐinition, u∗ ∈ S, since 3 > u∗ > 2. But u > u∗, and so u
cannot be a lower bound of S, which contradicts the hypothesis that u = infS. Thus
infS ̸> 2 and infS = 2. ■

This “proof” rests on thin ice, however: it assumes that the inϐimum exists in the ϐirst place;
that if the inϐimum exists, it is a rational number, and that a rational number can be found
between any two distinct rationals. These assumptions are valid in this speciϐic case, but
not so in general – more on this later.

aaaaaa

Example: show that if S = N, then infS = 1.

Proof: the integer v = 1 is a lower bound since 1 = v ≤ n for all n ∈ N, so infN ≥ 1.
But any number above 1 cannot be a lower bound ofN since it would not be smaller
than 1. Thus, infS = 1. ■

Completeness of R
A set (F,<) is complete if every non-empty bounded subset S ⊆ F has a supremum and an
inϐimum.

aaaaaa

Example: show thatQ is not complete.

Proof: consider the subset S = {x ∈ Q+ | 2 < x2 < 3}. Since 1.5 ∈ Q+, then
1.52 = 2.25 ∈ Q+. We have 2 < 1.52 = 2.25 < 3, so 1.5 ∈ S, and thus S ̸= ∅.
Furthermore, S is bounded above by 3 since 32 > 3 and bounded below by 1 since
12 < 1, so S is bounded.
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aaaaaa We will see shortly that S has no supremum/inϐimum in Q (since no rational x is
such that x2 = 2 or x2 = 3). ThusQ is not complete. ■

The set R of real numbers is the smallest complete ordered ϐield containing N, with order
a < b⇐⇒ b− a > 0.

Archimedean Property
Classically, R is constructed using Dedekind cuts or Cauchy sequences: in effect, R is con-
structedby “ϐilling theholes” ofQ. Wewill discuss Cauchy sequences in Chapter 2 andprovide
the outline of R’s construction in Chapter 7. For now, we assume that R is available and that
is satisϐies the properties mentioned previously, as well as the next “obvious” result.

aaaaaa

Theorem 1 (AėĈčĎĒĊĉĊĆē PėĔĕĊėęĞ Ĕċ R)
Let x ∈ R. Then ∃nx ∈ N× such that x < nx.

Proof: suppose that there is no such integer. Then x ≥ n ∀n ∈ N. Consequently, x
is an upper bound of N×. But N× is a non-empty subset of R. Since R is complete,
α = supN× exists.

By deϐinition of the supremum (the smallest upper bound), α − 1 is not an upper
bound of N× (otherwise α would not be the smallest upper bound, as α − 1 < α
would be a smaller upper bound).

Since α − 1 is not an upper bound of N×, ∃m ∈ N× such that α − 1 < m. Using the
properties ofR, wemust then haveα < m+1 ∈ N×; that is, α is not an upper bound
of N×.

This contradicts the fact that α = supN×, and so, since N× ̸= ∅, x cannot be an
upper bound of N×. Thus ∃nx ∈ N× such that x < nx. ■

TheArchimedeanproperty ofR is a fundamental construct; it used (often implicitly) in nearly
all analytical proofs.

aaaaaa

Theorem 2 (VĆėĎĆēęĘ Ĕċ ęčĊ AėĈčĎĒĊĉĊĆē PėĔĕĊėęĞ)
Let x, y ∈ R+. Then ∃n1, n2, n3 ≥ 1 such that

1. x < n1y;

2. 0 < 1
n2
< y, and

3. n3 − 1 ≤ x < n3.
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aaaaaa

Proof:

1. Let z = x
y
> 0. By the Archimedean property, ∃n1 ≥ 1 such that z = x

y
< n1.

Then x < n1y.

2. If x = 1, then part 1 implies ∃n2 ≥ 1 such that 0 < 1 < n2y. Then 0 < 1
n2
< y.

3. Let L = {m ∈ N× : x < m}. By the Archimedean property, L ̸= ∅. Indeed,
there is at least one n ≥ 1 such that x < n. By the well-ordering principle, L
has a smallest element, saym = n3. Then n3− 1 ̸∈ L (otherwise, n3− 1would
be the least element of L, which it is not) and so n3 − 1 ≤ x < n3.

There are other variants, but these are the ones we will use the most. ■

Let’s look at a basic result which highlights how to use the Archimedean property.

aaaaaa

Example: show that inf{ 1
n
| n ∈ N×} = 0.

Proof: since 0 ≤ 1
n
for all n ∈ N×, 0 is a lower bound of the set. Suppose that ε > 0

is also a lower bound. Then ε ≤ 1
n

for all n ∈ N×, which means that n ≤ 1
ε
for

all n ∈ N×. This contradicts the Archimedean Property, so 0 is the smallest lower
bound of the set. ■

It is thus always possible to ϐind an integer greater than any speciϐied real number. This result
is extremely useful – we use it next to show the existence of irrational numbers.

aaaaaa

Corollary
The positive root of x2 = 2 lies in R but not inQ.

Proof: we ϐirst show that any solution of x2 = 2 cannot be rational. Suppose the
equation x2 = 2 has a rational positive root r = p/q, with gcd(p, q) = 1. Then
p2/q2 = 2, or p2 = 2q2. Hence p2 is even, and so p is also even. Indeed, if p = 2k + 1
is odd, then so is p2 = 2(2k2 + 2k) + 1.

Set p = 2m. Then (2m)2 = 2q2, or 2m2 = q2. Thus q2 and q are even. Consequently,
both p and q are even, which contradicts the hypothesis gcd(p, q) = 1. The equation
r2 = 2 cannot thenhave a solution inQ. Butwehave not yet shown that the equation
has a solution in R.

Consider the set S = {s ∈ R+ : s2 < 2}, where R+ denotes the set of positive real
numbers. This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 2.
Indeed, if t ≥ 2, then t2 ≥ 4 > 2, whence t ̸∈ S.

By completeness ofR, u = supS ≥ 1 exists. It is enough to show that neither u2 < 2
and u2 > 2 can hold. The only remaining possibility is that u2 = 2.
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aaaaaa

If u2 < 2, then 2u+1
2−u2 > 0. By the Archimedean property, ∃n > 0 such that

2u+1
2−u2 < n. By re-arranging the terms, we get

0 <
1

n
(2u+ 1) < 2− u2.

Then(
u+

1

n

)2

= u2 +
2u

n
+

1

n2
≤ u2 +

2u

n
+

1

n

= u2 +
1

n
(2u+ 1) < u2 + 2− u2 = 2.

Since (u+ 1
n
)2 < 2, u+ 1

n
∈ S. But u < u+ 1

n
; u is then not an upper bound of

S, which contradicts the fact that u = supS. Thus u2 ̸< 2.

If u2 > 3, then 2u
u2−2

> 0. By the Archimedean property, ∃n > 0 such that
2u

u2−3
< n. By re-arranging the terms, we get

0 > −2u

n
> 2− u2.

Then (
u− 1

n

)2

= u2 − 2u

n
+

1

n2
> u2 − 2u

n
> u2 + 2− u2 = 2.

Since (u − 1
n
)2 > 2, u − 1

n
is an upper bound of S. But u > u − 1

n
; u can not

then be the supremum of S, which is a contradiction. Thus u2 ̸> 2.

That leaves only one alternative (since u ∈ R): u2 = 2, and u =
√
2 ∈ R. ■

From this point on, when we mention the Archimedean Property, we mean one of the four
variants from Theorems 1 and 2.

Absolute Value and Useful Inequalities
The real numbers enjoy another collection of useful and interesting properties.

aaaaaa
Theorem 3 (BĊėēĔĚđđĎ'Ę IēĊĖĚĆđĎęĞ)
Let x ≥ −1. Then (1 + x)n ≥ 1 + nx, ∀n ∈ N.

Proof: we prove the result by induction on n.
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aaaaaa

If n = 1, then (1 + x)1 = 1 + x ≥ 1 + 1x.

Suppose that the result is true for n = k, that is (1 + x)k ≥ 1 + kx. We have to
show that it is also true for n = k + 1. But

(1+x)k+1 = (1+x)k(1+x)≥ (1 + kx)(1 + x)︸ ︷︷ ︸
Ind. Hyp.

= 1+(k+1)x+kx2 ≥ 1+(k+1)x,

which completes the proof. ■

The assumption x ≥ −1 is essential – if 1 + x < 0, the use of the induction hypothesis in
the string of inequalities cannot be justiϐied (it would, in fact, be invalid).

aaaaaa

Theorem 4 (CĆĚĈčĞ'Ę IēĊĖĚĆđĎęĞ)
If a1, . . . , an and b1, . . . , bn are real numbers, then(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Furthermore, if bj ̸= 0 for one of 1 ≤ j ≤ n, then equality holds if and only if ∃s ∈ R
such that ai = sbi for all i = 1, . . . , n.

Proof: for any t ∈ R,

0 ≤
n∑

i=1

(ai + tbi)
2 =

n∑
i=1

a2i + 2t
n∑

i=1

aibi + t2
n∑

i=1

b2i .

The right-hand side of this inequality is a polynomial of degree 2 in t. As it is non-
negative, it has at most 1 real root. Thus, its discriminant(

2
n∑

i=1

aibi

)2

− 4

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
≤ 0,

and so (
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

If all the bi are 0, the equality holds trivially, as both the left and right side of the
Cauchy inequality are 0. So suppose bi ̸= 0 for at least one of the values j between 1
and n.
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aaaaaa

If ai = sbi for all i = 1, . . . , n and s ∈ R is ϐixed then(
n∑

i=1

aibi

)2

=

(
n∑

i=1

sb2i

)2

= s2

(
n∑

i=1

b2i

)2

= s2

(
n∑

i=1

b2i

)(
n∑

i=1

b2i

)

=

(
n∑

i=1

s2b2i

)(
n∑

i=1

b2i

)
=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

On the other hand, if(
n∑

i=1

aibi

)2

=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
then 4

(
n∑

i=1

aibi

)2

−4

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
= 0.

But the left-hand side of this expression is the discriminant of the following polyno-
mial of degree 2 in t:

n∑
i=1

(ai + tbi)
2 =

n∑
i=1

a2i + 2t
n∑

i=1

aibi + t2
n∑

i=1

b2i .

Since the discriminant is 0, the polynomial has a unique root, say t = −s, therefore
n∑

i=1

(ai − sbi)2 = 0.

Since (ai − sbi)2 ≥ 0 for all i = 1, . . . , n, then

(ai − sbi)2 = 0 =⇒ ai − sbi = 0 =⇒ ai = sbi for all i = 1, . . . , n,

which completes the proof. ■

The next result is used extensively in analytical arguments.

aaaaaa

Theorem 5 (TėĎĆēČđĊ IēĊĖĚĆđĎęĞ)
If a1, . . . , an, b1, . . . , bn ∈ R,(

n∑
i=1

(ai + bi)
2

)1/2

≤

(
n∑

i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

.

Furthermore, if bj ̸= 0 for one of 1 ≤ j ≤ n, then equality holds if and only if ∃s ∈ R
such that ai = sbi for all i = 1, . . . , n.
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aaaaaa

Proof: taking the square root on both sides of the inequality below yields the de-
sired result:

n∑
i=1

(ai + bi)
2 =

n∑
i=1

a2i + 2
n∑

i=1

aibi +
n∑

i=1

b2i

Cauchy Inequality ≤
n∑

i=1

a2i + 2

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

+
n∑

i=1

b2i

=

( n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2
2

.

If all the bi are 0, the equality holds trivially, as both the left and right side of the
Triangle Inequality are (∑n

i=1 a
2
i )

1/2
. So suppose bi ̸= 0 for at least one of the values

j between 1 and n.

If ai = sbi for all i = 1, . . . , n and s ∈ R is ϐixed, then equality holds since(
n∑

i=1

(ai + bi)
2

)1/2

=

(
n∑

i=1

(sbi + bi)
2

)1/2

=

(
n∑

i=1

(s+ 1)2b2i

)1/2

=

(
(s+ 1)2

n∑
i=1

b2i

)1/2

= (s+ 1)

(
n∑

i=1

b2i

)1/2

and
(

n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

=

(
n∑

i=1

s2b2i

)1/2

+

(
n∑

i=1

b2i

)1/2

= s

(
n∑

i=1

b2i

)1/2

+

(
n∑

i=1

b2i

)1/2

= (s+ 1)

(
n∑

i=1

b2i

)1/2

.

Conversely, if (
n∑

i=1

(ai + bi)
2

)1/2

=

(
n∑

i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

then
n∑

i=1

(ai + bi)
2 =

( n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2
2

.

Developing both sides of this expression yields

n∑
i=1

a2i + 2
n∑

i=1

aibi +
n∑

i=1

b2i =
n∑

i=1

a2i + 2

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

+
n∑

i=1

b2i ,
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aaaaaa

or simply
n∑

i=1

aibi =

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

.

Elevating both sides to the second power yields(
n∑

i=1

aibi

)2

=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

By Cauchy’s Inequality, ∃s ∈ R such that ai = sbi for all i = 1, . . . , n. ■

In the triangle inequality, if we set n = 1, we obtain the very useful inequality:√
(a+ b)2 ≤

√
a2 +

√
b2,

which we usually write as

|a+ b| ≤ |a|+ |b|, for all a, b ∈ R.

The function | · | : R → R is the absolute value, which represents the distance between a
real number and the origin. It is deϐined by

|x| =

{
x, x ≥ 0

x, x ≤ 0

Equipped with this function, R is an example of a normed space. Normed space will be dis-
cussed in Chapter 8.

aaaaaa

Theorem 6 (PėĔĕĊėęĎĊĘ Ĕċ ęčĊ AćĘĔđĚęĊ VĆđĚĊ)
If x, y ∈ R, then

1. |x| =
√
x2

2. −|x| ≤ x ≤ |x|
3. |xy| = |x||y|
4. |x+ y| ≤ |x|+ |y|

5. |x− y| ≤ |x|+ |y|
6. ||x| − |y|| ≤ |x− y|

Remark: the following inequality will play a central role in the chapters to come:

|x− a| < ε⇐⇒ a− ε < x < a+ ε.

12 Analysis and Topology Course Notes



CHAPTER 1. THE REAL NUMBERS

Density ofQ

We ϐinish this section with an intriguing result about the distribution of rationals and irra-
tionals among the reals.

aaaaaa

Theorem 7 (DĊēĘĎęĞ Ĕċ Q)
Let x, y ∈ R be such that x < y. Then, ∃r ∈ Q such that x < r < y.

Proof: there are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If 0 ≤ x < y, then y − x > 0 and 1
y−x

> 0. By the Archimedean property,
∃n ≥ 1 such that

n >
1

y − x
> 0.

By that same property, ∃m ≥ 1 such thatm−1 ≤ nx < m. Since n(y−x) > 1,
then ny − 1 > nx and nx ≥ m − 1. By the transitivity of the order < on R,
we have ny − 1 > m − 1, and so ny > m. Butm > nx, so ny > m > nx and
y > m

n
> x. Select r = m

n
.

3. If x < y ≤ 0, then y − x > 0 and 1
y−x

> 0. By the Archimedean property,
∃n ≥ 1 such that

n >
1

y − x
> 0.

Note that−nx > 0. By that sameproperty,∃m ≥ 0 such thatm < −nx ≤ m+1
or −m − 1 ≤ nx < −m. Since n(y − x) > 1, then ny − 1 > nx ≥ −m − 1,
that is ny > −m. But −m > nx, so ny > −m > nx and y > −m

n
> x. Select

r = −m
n
. ■

Theorem 7 has a twin: the set of irrational numbers is also dense in R.

aaaaaa

Corollary (DĊēĘĎęĞ Ĕċ R \Q)
Let x, y ∈ R with x < y. Then, ∃z ̸∈ Q such that x < z < y.

Proof: we will prove the case x, y > 0, the other cases are left as an exercise. Ac-
cording to Theorem 7, ∃r ̸= 0 ∈ Q such that x√

2
< r < y√

2
.

Hence x < r
√
2 < y. Set z = r

√
2. Then z ̸∈ Q – indeed, if z = r

√
2 = p

q
∈ Q, then√

2 = p
qr
∈ Q, a contradiction. ■

It is thus possible to ϐind rationals and irrationals between any two real numbers x < y.
In spite of this, however,Q is in fact much “smaller” than R \Q, as we shall presently see.
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1.2 Cardinality of Sets
For all n ∈ N×, deϐine Nn = {1, 2, . . . , n}. A set S is ϐinite if S = ∅ or if there exists a
bijection f : Nn → S for some n ∈ N×. If S is not ϐinite, it is inϐinite. If S is inϐinite and
there exists a bijection f : N→ S, then S is countable and we write |S| = ω. Otherwise, it is
uncountable.¹

Consider two sets Sn and Tn, both with n distinct elements:

Sn = {s1, . . . , sn}, Tn = {t1, . . . , tn}.

These two ϐinite sets have the same size: there is a bijection f : Sn → Tn, f(si) = ti for
1 ≤ i ≤ n (it is not the only such bijection).

In general, two sets S, T are said to have the same cardinality, denoted |S| = |T |, if there
exists a bijection f : S → T . If S, T are ϐinite, |S| = |T | means that the two sets have the
same number of elements: |S| = |T | = |Nn| = n for some n ∈ N. If S, T are inϐinite, the
“number of elements” is not a well-deϐined, which can lead to counter-intuitive results.

aaaaaa

Examples

1. The set 2N = {2, 4, . . .} is countable because f : N→ 2N, with f(n) = 2n, is a
bijection. We would then write |N| = |2N| = ω.

2. The set Z = {. . . ,−2,−1, 0, 1, 2, . . .} is countable since f : Z→ Nwith

f(z) =

{
2z, z ≥ 0

−2z − 1, z < 0

is a bijection. Thus |Z| = |N| = ω. □

So two sets can have equal cardinality even when one is strictly contained in the other – but
this can only happen with inϐinite sets, however.

aaaaaa

Theorem 8
If S is an inϔinite subset of a countable set A, then S is countable.

Proof: asA is countable,we can list all its elements: A = {a1, a2, . . . , }.Letn1, n2, . . .
be integers obtained by the following algorithm:

SetK1 = {n ∈ N | an ∈ S}. According to the well-ordering principle, ∃n1 ∈
K1 which is minimal. Then an1 ∈ S and am ̸∈ S for allm < n1.

¹Finite sets may also be called ϐinitely countable sets, and countable sets, inϐinitely countable sets.
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aaaaaa

Set K2 = K1 \ K1. According to the WOP, ∃n2 ∈ K2 which is minimal, with
n1 < n2. Then an2 ∈ S and am ̸∈ S for allm < n1 withm ̸= n1; etc.

Repeating this process, we obtain the set S ′ = {an1 , an2 , . . .}. But every element of
S must be in S ′ (why?), so S = S ′. The function f : N → S deϐined by k 7→ ank

is
thus a bijection, and so S is countable. ■

General Remark: when a proof is difϐicult to follow, it is never a bad idea to try the reasoning
it with speciϐic examples satisfying the hypotheses. If we have to provide a proof, remember
that an example only works if we are trying to show that some statement is false. A direct
proof never uses examples.

The contrapositive of Theorem 8 gives a useful way to show that a set is uncountable: if
S ⊆ A is uncountable, then A is uncountable.

Cardinality ofQ
Another way to think of countable sets is that they could be enumerated, at least conceptu-
ally, in an inϐinite list.

aaaaaa

Theorem 9
The setQ is countable.

Proof: WriteQ = Q− ∪ {0} ∪Q+, with the obvious notation. As there is a bijection
f : Q+ → Q−, with f(r) = −r, we must have |Q+| = |Q−|. It is then sufϐicient to
show that |Q+| = ω.

Indeed, if we can enumerate the elements of Q+, then we can enumerate the ele-
ments of Q by starting with 0, and alternating from Q− to Q+. But note that every
positive rational takes the form m

n
, with m,n ∈ N×. We can thus arrange all such

fractions in an inϐinite array:

There is a bijection between N× and the set F = {1
1
, 1
2
, 2
1
, 3
1
, 2
2
, . . .}, so |F | = ω. But

Q+ ⊆ F , so Q+ is countable since it is inϐinite (indeed, N× ⊆ Q+). According to
Theorem 8, we must have |Q+| = ω. This completes the proof. ■
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Cardinality of R
We now show that a set which would seem to be much smaller than Q at a ϐirst glance is in
fact much larger thanQ from a cardinality perspective, using a celebrated argument.

aaaaaa

Theorem 10 (CĆēęĔė'Ę DĎĆČĔēĆđ AėČĚĒĊēę)
The set I = [0, 1] is uncountable.

Proof: every number x ∈ I has a (not necessarily unique) decimal representation
of the form

x = 0.a1a2a3 · · · , ai ∈ {0, . . . , 9}.

By convention, we write 1 = .0.999999 and 0 = 0.000000. When numbers have two
decimal representations, such as 0.40000 = 0.39999, we only consider the represen-
tation with a tail of repeating 9s.

Assume that I is countable. Then it is possible to enumerate its elements:

I = {x1, x2, . . .}.

Each of the xi ∈ I has a unique decimal representation (with the convention given
earlier):

x1 = 0.a1,1a1,2a1,3 · · · a1,n · · ·
x2 = 0.a2,1a2,2a2,3 · · · a2,n · · ·

...
xn = 0.an,1an,2an,3 · · · an,n · · ·

...
where ai,j ∈ {0, . . . , 9} for all i, j ∈ N×. Deϐine the real number y = 0.y1y2y3 · · · ,
where

yi =

{
2 if ai,i ≥ 5

6 if ai,i ≤ 4
for i ∈ N×.

As 0 ≤ y ≤ 1, we have y ∈ I . But for all i ∈ N×, we also have y ̸= xi in the list
because yi ̸= ai,i. Thus y ̸∈ I , a contradiction. Consequently, the assumption that I
is countable is not valid. ■

Since [0, 1] ⊆ R, then R is also uncountable. What about R \ Q? In general, is it possible
for the union of two countable sets to be uncountable? Is the intersection of two uncountable
sets uncountable?
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1.3 Nested Intervals Theorem
We end this initial chapter with an important result concerning nested intervals, which we
will use shortly. In style and rigour, its proof is representative of analytical reasoning.

aaaaaa

Theorem 11 (NĊĘęĊĉ IēęĊėěĆđĘ)
For every integer n ≥ 1, let [an, bn] = In be such that

I1 ⊇ I2 ⊇ · · · In ⊇ In+1 ⊇ · · ·

Then there exists ψ, η ∈ R such that ψ ≤ η and
∩

n≥1 In = [ψ, η]. Furthermore, if
inf{bn − an | n ∈ N} = 0, then ψ = η.

Proof: since In ⊆ I1 for all n ≥ 1, the set S = {a1, . . . , an} is bounded above by b1.
But S ̸= ∅, so ψ = supS exists by completeness of R, and thus

an ≤ ψ, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and ak ≤ bk ≤ bn;

if k < n, then In ⊆ Ik and ak ≤ an ≤ bn.

In both cases, ak ≤ bn for all k ≥ 1. Thus bn is an upper bound of S for all n ≥ 1. As
ψ = supS, ψ ≤ bn for all n ≥ 1. Combining these results, we have an ≤ ψ ≤ bn, for
all n ≥ 1.

Since In ⊆ I1 for all n ≥ 1, the set T = {b1, . . . , bn} is bounded below by a1. But
T ̸= ∅, so η = infT exists by completeness of R, and thus

bn ≥ η, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and an ≤ ak ≤ bk;

if k < n, then In ⊆ Ik and an ≤ bn ≤ bk.

In both cases, an ≤ bk for all k ≥ 1. Thus an is an lower bound of T for all n ≥ 1. As
η = infT , η ≥ an for all n ≥ 1. Combining these results, we have an ≤ η ≤ bn, for all
n ≥ 1.

Since ψ ≤ bn for all n ≥ 1, ψ is a lower bound of T . As η is the largest such lower
bound, ψ ≤ η, which is to say: an ≤ ψ ≤ η ≤ bn, for all n ≥ 1, and so [ψ, η] ⊆ In for
all n ≥ 1.
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aaaaaa

Consequently,
[ψ, η] ⊆

∩
n≥1

In.

Now, suppose that γ ∈ In for all n ≥ 1. Then an ≤ γ ≤ bn for all n ≥ 1, and so γ is
an upper bound of S and a lower bound of T .

But ψ is the smallest upper bound of S, so ψ = supS ≤ γ, and η is the largest lower
bound of T , so γ ≤ infT ≤ η, and so γ ∈ [ψ, η]. Thus∩

n≥1

In ⊆ [ψ, η] =⇒
∩
n≥1

In = [ψ, η].

Finally, suppose that inf{bn − an | n ≥ 1} = 0. Let ε > 0. By deϐinition, ∃k ≥ 1
such that 0 ≤ bk−ak < ε, otherwise ε > 0would be a lower bound of the set, which
would contradict the assumption that 0 is the largest such upper bound.

We have seen that bk ≥ η and that ak ≤ ψ, so

ε > bk − ak ≥ η − ψ ≥ 0.

Thus, for all ε > 0, we have 0 ≤ η − ψ < ε, which is to say η − ψ = 0. ■

Proof note: from this point on, wewill avoid repeating nearly identical proof segments, using
generic statements like “Similarly, we can show that an ≤ inf{bi | i ≥ 1} ≤ bn, for all n ≥ 1”
while leaving the details to be worked out by the reader.

Why canwe conclude that η−ψ = 0 if 0 ≤ η−ψ < ε for all ε > 0? In general, if a ≤ x < a+ ε
for all ε > 0, then x = a. Indeed, if x ̸= a, ∃δ > 0 such that x = a+ δ. Thus, if ε = δ (which is
possible since ε can take on any positive value) we would have δ = x − a < ε = δ, a contra-
diction.

aaaaaa

Example: if In = [1 − 1
n
, 1 + 1

n
] for n ≥ 1, then the conditions of Theorem 11 are

satisϐied, and so∩n≥1 In = [ψ, η]. As inf{bn − an | n ≥ 1} = inf{ 2
n
| n ≥ 1} = 0, we

have:
ψ = sup{1− 1

n
} = 1 = inf{1 + 1

n
} = η,=⇒ [ψ, η] = {1},

which concludes the example. □

Warning: we can only use a theorem if the hypotheses are satisϐied (even though the con-
clusion may hold nonetheless). The intervals In = (1 − 1

n
, 1 + 1

n
), n ≥ 1 are such that their

intersection is {1}, but not because of the Theorem 11.
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1.4 Solved Problems

1. Let a, b ∈ R and suppose that a ≤ b+ ε for all ε > 0. Show that a ≤ b.
Proof: suppose that a > b. Let ε0 = a−b

2 > 0. Then

a > b =⇒ a+ a > a+ b (by O3) =⇒ a =
a+ a

2
>
a+ b

2
= b+ ε0 (by O4).

Hence, a > b + ε0, which contradicts the hypothesis that a ≤ b + ε for all ε > 0.
Consequently, the assumption a > b is false, that is, a ≯ b or a ≤ b by trichotomy of
the order on R. ■

2. Let c > 0 be a real number.

a) If c > 1, show that cn ≥ c for all n ∈ N and that cn > 1 if n > 1.
b) If 0 < c < 1, show that cn ≤ c for all n ∈ N and that cn < 1 if n > 1.

Proof: the statements are clearly not true if n = 0: as a result, we must interpret
N to stand for the set N = {1, 2, 3, . . .}, without the 0. Generally, we use whatever
“version” of N is appropriate.
a) If c > 1, ∃x ∈ R such that x > 0 and c = 1 + x. Let n ∈ N. First note that

n− 1 ≥ 0 and so (n− 1)x > 0.

Then, by Bernoulli’s inequality,

cn = (1 + x)n ≥ 1 + nx = 1 + x+ (n− 1)x ≥ 1 + x = c.

Furthermore, n − 1 > 0 and (n − 1)x > 0 if n > 1. Consequently, the last
inequality above is strict and so cn > c > 1, which implies cn > 1 (by transitivity
of the order>).

b) If 0 < c < 1, there exists b > 1 such that c = 1
b . Indeed, 1c is such that c · 1c = 1.

As c > 0, then 1
c > 0 since the product c · 1c = 1 is positive.

But c < 1, so that 1 = c · 1c <
1
c .

In particular, if we let b = 1
c , then b > 1 and so we can apply part (a) of this

question to get bn ≥ b for all n ∈ N and bn > 1 if n > 1.

Let n ∈ N. Then
1

cn
= bn ≥ b = 1

c

so that c ≥ cn and
1

cn
= bn > 1

so that 1 > cn if n > 1. ■
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3. Let c > 0 be a real number.

a) If c > 1 andm,n ∈ N, show that cm > cn if and only ifm > n.
b) If 0 < c < 1 andm,n ∈ N, show that cm > cn if and only ifm < n.

Proof:
a) It is sufϐicient to show that ifm ≥ n, then cm ≥ cn. Ifm = n, the result is clear,

so we assumem > n. In that case, ∃k ≥ 1 such thatm = n+ k. An easy induc-
tion exercise shows that cn+k = cnck for for all integers n and k.

In particular, using the previous problem,

cm = cn+k = cnck ≥ cn · c > cn · 1 = cn

and so cm > cn.
b) This can be shown from a) using the technique from the previous question. ■

4. Let S = {x ∈ R | x > 0}. Does S have lower bounds? Does S have upper bounds? Does
infS exist? Does supS exist? Prove your statements.

Does S have lower bounds? Yes.
By deϐinition, any negative real number is a lower bound (so is 0).

Does S have upper bounds? No.
Assume that it does. By the completeness of R, α = supR exists. In particular,
α ≥ n for all n ∈ N, which contradicts the Archimedean Property ofR. Hence S
has no upper bound.

Does infS exist? Yes.
Consider the set−S = {x ∈ R | −x ∈ S} = {x ∈ R | x < 0}. By construction,
0 is an upper bound of−S. Note furthermore that neither S nor−S are empty.

By completeness of R, sup(−S) exists. Right? The deϐinition of completeness
we use is that any non-empty bounded subset of R has a supremum. But−S is
only bounded above, not below. How can we conclude that sup(−S) exists?

That deϐinition is one particular version of the Completeness Property of R.
An equivalent way of stating it is: The ordered set F is complete if for any
∅ ̸= S ⊂ F , S has a supremum in F whenever S is bounded above and an in-
ϔimum in F whenever S is bounded below.

But sup(−S) = − infS. Indeed, let u = sup(−S). Then u ≥ −x for all−x ∈ −S
and if v is another upper bound of −S then u ≤ v. Note that if v is an upper
bound of−S, then v ≥ −x for all−x ∈ −S, i.e. −v ≤ x for all x ∈ S: as a result,
−v is a lower bound of S.

Similarly, if−v is a lower bound of S, v is automatically an upper bound of−S.
Then any lower bound of S is of the form−v, where v is an upper bound of−S.
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Then, −u ≤ x for all x ∈ S and −v ≤ −u whenever −v is a lower bound of
S. Hence−u = infS and so u = − infS.

As sup(−S) = − infS exists, so does infS.
Does supS exist? No.

See second item. ■

5. Let S =
{
1− (−1)n

n
| n ∈ N

}
. Find infS and supS.

Proof: the ϐirst few elements of S are:

2,
1

2
,
4

3
,
3

4
,
6

5
,
5

6
, · · · .

This suggests that S is bounded above by 2 and below by 1
2 . To show that this is

indeed the case, note that (−1)n only takes on the values−1 and 1, whatever the in-
teger n.

Technically, this also has to be shown. One proceeds by induction.

The base case is clear: when n = 1, (−1)1 = −1 ∈ {1,−1}.

Now, on to the induction step: suppose (−1)k ∈ {1,−1}. Then

(−1)k+1 = (−1)k(−1) =

{
1(−1) = −1
(−1)(−1) = 1

.

Hence (−1)k+1 ∈ {1,−1}.

By induction, (−1)n ∈ {−1, 1} for all n ∈ N.

Thus −1 ≤ (−1)n ≤ 1 for all n ≥ 1. (In practice, we need only show it once and
refer to the result if we need it in the future.)

For any n ≥ 2, we then have−n ≤ −1 ≤ (−1)n and n
2 ≥ 1 ≥ (−1)n, that is

−n ≤ (−1)n ≤ n

2
.

A quick check shows the inequalities also hold for n = 1. Then, for n ≥ 1, we have

−n ≤ (−1)n ≤ n

2

∴ −1 ≤ (−1)n

n
≤ 1

2

∴ 1 ≥ −(−1)n

n
≥ −1

2

∴ 2 ≥ 1− (−1)n

n
≥ 1

2
.
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Hence 2 ≥ s ≥ 1
2 for all s ∈ S, i.e. 2 is an upper bound and 1

2 is a lower bound of S.

By completeness, S ⊆ R has a supremum and an inϐimum in R. If u = supS < 2,
there is a contradiction as u ̸≥ s for all s ∈ S (it “misses” the element 2 in S).

Thus, supS ≥ 2. But 2 is already an upper bound so supS ≤ 2. Consequently
supS = 2. Similarly, infS = 1

2 . ■

6. Let S ⊆ R be non-empty. Show that if u = supS exists, then for every number n ∈ N
the number u− 1

n
is not an upper bound of S, but the number u+ 1

n
is.

Proof: let n ≥ 1. Then 1
n > 0 and u < u+ 1

n . Since s ≤ u for all s ∈ S, s < u+ 1
n for

all s ∈ S by transitivity of<. Consequently, u+ 1
n is an upper bound of S.

Furthermore, u − 1
n < u. Since u is the least upper bound, u − 1

n cannot be an
upper bound (as it would then be lesser upper bound than u, a contradiction). This
completes the proof. Or does it?

We haven’t used the hypothesis S ̸= ∅. Where does it ϐit? Does it even ϐit? The
deϐinition of an upper bound implies that every real number is an upper bound of
the empty set. Indeed, if v ∈ R, then v ≥ s for all s ∈ ∅ automatically as there is no
s ∈ ∅.
The proof rests on the fact that u = supS. But sup∅ does not exist, as discussed. ■

7. If S =
{

1
n
− 1

m
| m,n ∈ N

}
, ϐind infS and supS.

Proof: the set S =
{

1
n −

1
m | n,m ∈ N

}
is bounded above by 1 and below by −1

since
1

n
≤ 1 ≤ 1 +

1

m
and 1

m
≤ 1 ≤ 1 +

1

n
=⇒ −1 ≤ 1

n
− 1

m
≤ 1, ∀m,n ∈ N.

Note that S is not empty as 0 = 1
2 −

1
2 is in S, say.

By completeness, S has a supremum and an inϐimum. By deϐinition, s∗ = supS ≤ 1.
Suppose that s∗ < 1. Then ∃ε > 0 such that s∗ = 1− ε. Furthermore,

1

n
− 1

m
≤ 1− ε, ∀m,n ∈ N.

In particular, if n = 1, then

1− 1

m
≤ 1− ε, ∀m ∈ N.

Equivalently, ε ≤ 1
m for all integersm so that 1

ε is an upper bound forN. This contra-
dicts the Archimedean Property of R. Hence s∗ ≮ 1 and so s∗ = 1.

To prove that infS = −1, proceed along the same lines (inf ↭ sup, etc.). ■
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8. LetX be a non-empty set and let f : X → R have bounded range in R. If a ∈ R, show
that

sup{a+ f(x) : x ∈ X} = a+ sup{f(x) : x ∈ X}
inf{a+ f(x) : x ∈ X} = a+ inf{f(x) : x ∈ X}.

Proof: let f(X) = {f(x) | x ∈ X}. By hypothesis, f(X) is bounded and not empty
and so has a supremum inR, sayu∗. We need to show sup{a+f(x);x ∈ X} = a+u∗.

To do so, ϐirst note that a + u∗ is an upper bound of sup{a + f(x) | x ∈ X} since
u∗ ≥ f(x) for all x ∈ X; as a result a + u∗ ≥ a + f(x) for all x ∈ X (we know that
sup{a+ f(x) | x ∈ X} indeed has a supremum by completeness of R).

Next, we need to show that a+u∗ is the smallest upper bound of {a+f(x) | x ∈ X}.
Suppose v is another upper bound of {a+ f(x) | x ∈ X}. Then v ≥ a+ f(x) for all
x ∈ X; in particular, v − a is an upper bound of f(X).

By hypothesis, v − a ≥ u∗, hence v ≥ a + u∗. Consequently, a + u∗ is the least
upper bound of {a+ f(x) | x ∈ X}, i.e.

sup{a+ f(x) | x ∈ X} = a+ u∗.

The proof for the other equality proceeds in a similar manner. ■

9. LetA andB be bounded non-empty subsets of R, and let
A+B = {a+ b | a ∈ A, b ∈ B}.

Prove that sup(A+B) = supA+ supB and inf(A+B) = infA+ infB.
Proof: A andB are bounded and non-empty. By completeness, they have inϐimums
(in R), say a∗ and b∗, respectively. Then a∗ ≤ a and b∗ ≤ b for all a ∈ A, b ∈ B.

The real number a∗ + b∗ is a lower bound of A + B since a∗ + b∗ ≤ a + b for all
a ∈ A, b ∈ B. By completeness of R, A + B has an inϐimum as it is also not empty.
We show that this inϐimum is indeed a∗ + b∗.

Let w be a lower bound of A + B. Then, w ≤ a + b for all a ∈ A and b ∈ B, or
w − b ≤ a for all a ∈ A and b ∈ B.

Thus, w − b is a lower bound of A for all b ∈ B, i.e. w − b ≤ a∗ for all b ∈ B =⇒
w − a∗ ≤ b for all b ∈ B, so w − a∗ is a lower bound ofB.

Hence w − a∗ ≤ b∗. As a result, w ≤ a∗ + b∗, which concludes the proof. The other
equality is shown in the same manner. ■

10. LetX be a non-empty set and let f, g : X → R have bounded range in R. Show that
sup{f(x) + g(x) | x ∈ X} ≤ sup{f(x) | x ∈ X}+ sup{g(x) | x ∈ X}

inf{f(x) | x ∈ X}+ inf{g(x) | x ∈ X} ≤ inf{f(x) + g(x) | x ∈ X}.
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Proof: let f(X) = {f(x) | x ∈ X} and g(X) = {g(x) | x ∈ X}. By hypothesis,
f(X) and g(X) are both bounded and not empty, so they each have a supremum in
R, say u∗ and v∗ respectively.

Since f(x) ≤ u∗ and g(x) ≤ v∗ for all x ∈ X , then f(x) + g(x) ≤ u∗ + v∗ for all
x ∈ X . Hence, {f(x) + g(x) | x ∈ X} has a supremum in R, as it is a bounded
non-empty subset of R. Let w∗ be that supremum, i.e. the smallest upper bound of
{f(x) + g(x) | x ∈ X}.

Since u∗ + v∗ is also an upper bound of that set, it’s automatically larger than w∗.

Note that we can not say more: it is not true, in general, that w∗ = u∗ + v∗. Indeed,
takeX = [1, 2] and let f and g be deϐined by

f(x) =
1

x
and g(x) = −1

x
, ∀x ∈ X.

Then f(X) = { 1x | x ∈ X}, g(X) = {− 1
x | x ∈ X} and u∗ = 1, v∗ = −1

2 and w∗ = 0
(you should show these results!), and w∗ ≤ u∗ + v∗ but w∗ ̸= u∗ + v∗.²

The other inequality is tackled in a similar manner. ■

11. LetX and Y be non-empty sets and let h : X × Y → R have bounded range in R. Let
F : X → R andG : Y → R be deϐined by

F (x) = sup{h(x, y) | y ∈ Y } and G(y) = sup{h(x, y) | x ∈ X}.

Show that

sup{h(x, y) | (x, y) ∈ X × Y } = sup{F (x) | x ∈ X} = sup{G(y) | y ∈ Y }.

Proof: let h(X,Y ) = {h(x, y) | (x, y) ∈ X × Y } ⊆ R. By deϐinition, h(X,Y ) is
bounded and not empty, so it has a supremum in R, and F andG are well-deϐined.

Let α = suph(X,Y ). Then α ≥ h(x, y) for all x ∈ X and y ∈ Y . In particular,
if x ∈ X is ϐixed, α ≥ h(x, y) for all y ∈ Y . But F (x) is the smallest upper bound of
{h(x, y) | y ∈ Y }, so α ≥ F (x).

But x was arbitrary, so α ≥ F (x) for all x ∈ X . Hence α is an upper bound of
{F (x) | x ∈ X}; by completeness, {F (x) | x ∈ X} has a supremum in R, say β.
Then α ≥ β, by deϐinition of the supremum.

Again, ϐix x ∈ X . Then β ≥ F (x) ≥ h(x, y) for all y ∈ Y . Hence, for any x ∈ X ,
β ≥ h(x, y) for all y ∈ Y . As a result, β is an upper bound of h(X,Y ). Then β ≥ α,
by deϐinition of the supremum.

Combining these two results yields α = β (now do the other). ■
²Compare this result with the one from the previous question; what is the difference?
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12. Show there exists a positive real number u such that u2 = 3.
Proof: we ϐirst show that u is not rational.³

Suppose the equation r2 = 3has a positive root r inQ. Let r = p/qwith gcd(p, q) = 1
be that solution. Then p2/q2 = 3, or p2 = 3q2. Hence p2 is a multiple of 3, and so p is
also a multiple of 3.⁴

Set p = 3m. Then (3m)2 = 3q2, which is the same as 3m2 = q2. Then q2 is a multiple
of 3, and so q is also a multiple of 3. Consequently, p and q are both divisible by 3,
which contradicts the hypothesis gcd(p, q) = 1. The equation r2 = 3 cannot then
have a solution inQ.

But we haven’t shown yet that the equation has a solution in R. Consider the set
S = {s ∈ R+ : s2 < 3},where R+ denotes the set of positive real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 3. (Indeed,
if t ≥ 3, then t2 ≥ 9 > 3, whence t ̸∈ S.) By completeness of R, x = supS ≥ 1
exists. It will be enough to show that neither x2 < 3 and x2 > 3 can hold. The only
remaining possibility is that x =

√
3.

If x2 < 3, then 2x+1
3−x2 > 0. By the Archimedean property, ∃n > 0 such that

2x+1
3−x2 < n. By re-arranging the terms, we get

0 <
1

n
(2x+ 1) < 3− x2.

Then(
x+

1

n

)2

= x2 +
2x

n
+

1

n2
≤ x2 +

2x

n
+

1

n

= x2 +
1

n
(2x+ 1) < x2 + 3− x2 = 3.

Since (x+ 1
n)

2 < 3, x+ 1
n ∈ S. But x < x+ 1

n ; x is then not an upper bound of
S, which contradicts the fact that x = supS. Thus x2 ̸< 3.
If x2 > 3, then 2x

x2−3
> 0. By the Archimedean property, ∃n > 0 such that

2x
x2−3

< n. By re-arranging the terms, we get

0 > −2x

n
> 3− x2.

Then (
x− 1

n

)2

= x2 − 2x

n
+

1

n2
> x2 − 2x

n
> x2 + 3− x2 = 3.

Since (x− 1
n)

2 > 3, x− 1
n is an upper bound of S. But x > x− 1

n ; then x cannot
be the supremum of S, which is a contradiction. Thus x2 ̸> 3.

³Even though that wasn’t part of the question, it will be informative.
⁴Indeed, if p is not amultiple of 3, then neither is p2. Let p = 3k+1 or p = 3k+2. Then p2 = 3(3k2+2k)+1

or p2 = 3(3k2 + 4k + 1) + 1, neither of which is a multiple of 3.
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That leaves only one alternative (since we know that x ∈ R): x2 = 3, whence x =
u =
√
3 > 0. ■

13. Show there exists a positive real number u such that u3 = 2.

Proof: consider the setS = {s ∈ R+ : s3 < 2},whereR+ denotes the set of positive
real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 2.⁵ By com-
pleteness of R, x = supS ≥ 1 exists. It will be enough to show that neither x3 < 2
and x3 > 2 can hold. The only remaining possibility is that x = 3

√
2.

If x3 < 2, then 3x2+3x+1
2−x3 > 0. By the Archimedean property, ∃n > 0 such that

3x2+3x+1
2−x3 < n. By re-arranging the terms, we get

0 <
1

n
(3x2 + 3x+ 1) < 2− x3.

Then (
x+

1

n

)3

= x3 +
3x2

n
+

3x

n2
+

1

n3

≤ x3 + 3x2

n
+

3x

n
+

1

n

= x3 +
1

n
(3x2 + 3x+ 1) < x3 + 2− x3 = 2.

Since (x+ 1
n)

3 < 2, x+ 1
n ∈ S. But x < x+ 1

n ; x is then not an upper bound of
S, which contradicts the fact that x = supS. Thus x3 ̸< 2.
If x3 > 2, then 3x2+1

x3−2
> 0. By the Archimedean property, ∃n > 0 such that

3x2+1
x3−2

< n. By re-arranging the terms, we get

0 > −(3x2 + 1)

n
> 2− x3.

Then (
x− 1

n

)3

= x3 − 3x2

n
+

3x

n2
− 1

n3

≥ x3 − 3x2

n
− 1

n3
≥ x3 − 3x2

n
− 1

n

= x3 − 1

n
(3x2 + 1) > x3 + 2− x3 = 2.

Since (x− 1
n)

3 > 2, x− 1
n is an upper bound of S. But x > x− 1

n ; x can not then
be the supremum of S, which is a contradiction. Thus x3 ̸> 2.

That leaves only one alternative (since we know x ∈ R): x3 = 2 or, equivalently,
x = u = 3

√
2 > 0.⁶ ■

⁵Indeed, if t ≥ 2, then t3 ≥ 8 > 2, whence t ̸∈ S.
⁶We could also show it is irrational, but we’ll leave it as an exercise.
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14. LetS ⊆ R and suppose that s∗ = supS belongs toS. If u ̸∈ S, show that sup(S∪{u}) =
sup{s∗, u}.

Proof: in this case, we do not need to verify if s∗ exists, as that is one of the hypothe-
ses. Set v = sup{s∗, u}. Then, v is an upper bound of S ∪ {u} since v ≥ u and
v ≥ s∗ ≥ s for all s ∈ S.

Furthermore, v ∈ S ∪ {u}.
Hence, any upper bound of S ∪ {u} must be ≥ v: consequently, v is the smallest
upper bound of sup(S ∪ {u}). ■

15. Show that a non-empty ϐinite set S ⊆ R contains its supremum.

Proof: we use induction on the cardinality of S to prove the statement.
Base case: if |S| = 1, then S = {s1} for some s1 ∈ R. Clearly, s1 = supS ∈ S.
Induction step: Suppose that the result holds for any setwhose cardinality isn = k.

Let S be any set with |S| = k + 1, say

S = {s1, . . . , sk, sk+1}.

Write S = T ∪ {sk+1}, with T = {s1, . . . , sk}. Note that we can assume that
sk+1 ̸∈ T (otherwise |S| = k).

Then T is non-empty and bounded since it is ϐinite (exercise: a ϐinite set is
bounded); by completeness, t∗ = supT exists. However, |T | = k. By the in-
duction hypothesis, then, supT ∈ T , i.e. t∗ = sj for some j ∈ {1, . . . , k}.

According to the preceding problem,

supS = sup(T ∪ {sk+1}) = sup{t∗, sk+1} ∈ T ∪ {sk+1} = S.

By induction, any non-empty ϐinite set then contains its supremum.⁷ ■

16. If S ⊆ R is a non-empty bounded set and IS = [infS, supS], show that S ⊆ IS . More-
over, if J is any closed bounded interval of R such that S ⊆ J , show that IS ⊆ J .

Proof: as S is non-empty and bounded, supS and infS exist by the completeness
of R. Since infS ≤ s ≤ supS for all s ∈ S, then infS ≤ supS and so the interval
IS = [infS, supS] is well-deϐined. Furthermore, the string of inequalities above also
shows that S ⊆ IS .

Now, let J = [a, b] be a closed interval containing S. Then a ≤ s ≤ b for all s ∈ S.
Thus, a is a lower bound and b is an upper bound of S. By deϐinition,

a ≤ infS ≤ supS ≤ b,

and so IS = [infS, supS] ⊆ [a, b] = J . ■

⁷And its inϐimum too – it’s the same idea.
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17. Prove that ifKn = (n,∞) for n ∈ N, then
∩
n∈N

Kn = ∅.

Proof: suppose x ∈ ∩Kn. Then x ∈ Kn for all n, i.e. x > n for all n ∈ N. This im-
plies x is an upper bound ofN, which contradicts the Archimedean property. Hence,∩
Kn = ∅.⁸ ■

18. If S is ϐinite and s∗ ̸∈ S, show S ∪ {s∗} is ϐinite.

Proof: If S = ∅, then S ∪{s∗} = {s∗} is ϐinite as the function f : N1 → {s∗} deϐined
by f(1) = s∗ is a bijection.

Now, suppose S ̸= ∅. As S is ϐinite, there exist an integer k and a bijection f :
Nk → S.
Deϐine the associated function f̃ : Nk+1 → S ∪ {s∗} by

f̃(i) =

{
f(i) if 1 ≤ i ≤ k
s∗ if i = k + 1

.

As s∗ ̸∈ S, f̃ is a bijection. Hence S ∪ {s∗} is ϐinite. ■

19. Show directly that there exists a bijection between Z andQ.

Proof: write
Q =

{m
n
| m,n ∈ Z, n > 0, gcd(m,n) = 1

}
,

where gcd(m,n) is the greatest common divisor ofm,n. Deϐine the map f : Q→ Z
by f(mn ) = m. To see that f is surjective, note that for all m ∈ Z, m

1 ∈ Q and
f(m1 ) = m.

Next, we deϐine the map g : Z → Q according to three cases: for numbers of the
form
a) 2a3b with a, b ∈ {0, 1, 2, . . .}, set g(2a3b) = a

b .
b) −2a3b with a, b ∈ {0, 1, 2, . . .}, set g(−2a3b) = −a

b .
c) every other type n, set g(n) = 0.

We need to check that g is well-deϐined, and then that it is surjective. To see that it is
well-deϐined, we note that integers have unique prime decompositions, and 2, 3 are
prime.

This means that every number can have at most one decomposition of the form
±2a3b, so every number is in at most one case. But every number n must be in at
least one case. Thus, every number belongs to exactly one case, so it is well-deϐined.

⁸If you do not like contradiction proofs, here is the same proof, but presented as a direct argument.
Let x ∈ R. Wewill show that x ̸∈ ∩Kn; as x is arbitrary, this implies∩Kn = ∅. By the Archimedean
property, there is a positive integerN such thatN > x. Hence x ̸∈ Kn for all n ≥ N . The conclusion
follows. ■
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To check that g is surjective, we consider some m
n ∈ Q and again consider three

cases:
a) m

n > 0: g(2m3n) = m
n .

b) m
n < 0: g(−2m3n) = m

n .
c) m

n = 0: g(5) = m
n .

This completes the proof.⁹ ■

20. Using only the ϐield axioms of R, show that the multiplicative identity of R is unique.
Proof: let a, b be two multiplicative identities in a ϐield. Since a is a multiplicative
identity, ab = b. Since b is a multiplicative identity, ab = a. Combining these two
equations, we have b = ab = a. This completes the proof. ■

21. Using only the ϐield axioms of R, show that (2x− 1)(2x+ 1) = 4x2 − 1.
Proof: each equality is labeled with the ϐield axiom used:

(2x− 1)(2x+ 1)
D1
= 2x(2x+ 1) + (−1)(2x+ 1)

D1
= (2x)(2x) + (1)2x+ (−1)(2x) + (−1)(1)
D1
= (2x)(2x) + (1 + (−1))2x+ (−1)(1)
A4
= (2x)(2x) + (−1)(1) A3

= (2x)(2x)− 1

M1
= ((2)(2))(x2)− 1 = ((1 + 1)(1 + 1))(x2)− 1

D1
= (1(1 + 1) + 1(1 + 1))x2 − 1

M3
= 4x2 − 1.

This completes the proof. ■

22. Using only the order axioms, usual arithmetic manipulations, and inequalities between
concrete numbers, prove that if x ∈ R satisϐies x < ε for all ε > 0, then x ≤ 0.

Proof: assume ϐirst that x > 0. By O4 (and the fact that 0 < 1
2 < 1), we have(

1

2

)
x >

(
1

2

)
· 0 = 0

as well. By O3, since x
2 > 0, we have

x

2
<
x

2
+
x

2
= x.

Putting together these two sequences of inequalities, we have

0 <
x

2
< x.

But then we have found some number ε = x
2 > 0 so that x > ε; this contradicts the

original assumption. Thus, we conclude that our original assumption x > 0 is false;
by O1, we conclude x ≤ 0. ■

⁹Note that other bijections could also be exhibited.
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23. Show that there exists some x ∈ R satisfying x2 + x = 5.
Proof: consider the interval I = [0, 10], deϐine S = {x ∈ I | x2 + x < 5}, and deϐine
A = supS. Note that for x ∈ [0, 1],

x2 + x− 5 ≤ 12 + 1− 5 = −3 < 0,

soA ≥ 1. Similarly, for x ∈ [9, 10],

x2 + x− 5 ≥ 92 + 9− 5 > 0,

soA ≤ 9.

Claim: A2 + A = 5. This is shown in two parts: ϐirst we show that A2 + A ≤ 5,
then we show thatA2 +A ≥ 5.

We show that A2 + A ≤ 5 by contradiction. Let us assume A2 + A > 5. Then,
by a previous exercise, there exists some 0 < ε < 1 so thatA2 +A > 5+ ε. But then
for all 0 < δ < ε

100 , we have

(A− δ)2 + (A− δ) = A2 − 2Aδ + δ2 +A− δ
≥ A2 − (2)(10)(δ) +A− δ
≥ A2 +A− 21δ

> A2 +A− ε > 5.

Furthermore, since A ≥ 1 and δ ≤ 0.01, we know that A − δ ∈ I. Thus, in this case
A− ε

100 < A is also an upper bound on S, contradicting the fact thatA is deϐined to
be the least upper bound on S. We conclude thatA2 +A ≤ 5.

Next, we show that A2 + A ≥ 5 by contradiction. Let us assume A2 + A < 5. Then,
by a previous exercise, there exists some 0 < ε < 1 so thatA2 +A < 5− ε. But then
for all 0 < δ < ε

100 , we have

(A+ δ)2 + (A+ δ) = A2 +A+ (2A+ 1 + δ)δ

≤ A2 +A+ 22δ

< A2 +A− ε < 5.

Furthermore, since A ≤ 9 and δ ≤ 0.01, we know that A + δ ∈ I. Thus, in this case
A+ ε

100 ∈ S andA+ ε
100 > A, contradicting the fact thatA is deϐined to be an upper

bound on S. We conclude thatA2 +A ≤ 5.

SinceA2 +A ≤ 5 andA2 +A ≥ 5, we conclude thatA2 +A = 5. ■

24. Consider a set S with 0 ≤ supS = A < ∞ and A /∈ S. Show that for all ε > 0,
S ∩ [A− ε, A] ̸= ∅. Using this fact, conclude that S ∩ [A− ε, A] is inϐinite.

Proof: we prove the ϐirst claim by contradiction.
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Assume there is some ε > 0 such that S ∩ [A − ε,A] is empty. Since A is an up-
per bound for S, we also know that S ∩ (A,∞) is empty. Thus, S ∩ [A − ε,∞) is
empty. But this means thatA− ε < A is an upper bound for s, contradicting the fact
that A is the least upper bound for S. We conclude that in fact S ∩ [A − ε,A] is not
empty.

We also prove the second part by contradiction. Assume there is some ε > 0 such
that S ∩ [A − ε,A] is ϐinite. Then we can enumerate its elements, {b1, . . . , bn}. Let
B = max(b1, . . . , bn}.

Since A /∈ S, we know that b1, . . . , bn < A. Since B is a maximum of ϐinitely many
elements, we must haveB < A as well.

But then A > A − A−B
2 > B, so [A − A−B

2 , A] ∩ S is empty. This, however, is
impossible according to the ϐirst part of the question.

This completes the proof. ■

25. Somebody walks up to you with a proof by induction of the statement “For any integer
N ∈ N, all collections ofN sheep are the same colour,” as follows:

Notation: Let x1, x2, . . . , be the colours of all sheep in the world, in some order.
Base Case: Obviously the ϐirst sheep is a single colour, x1.
Induction Step: Assume that the statement is true up to some integer n.

By the induction hypothesis, the collection of the ϐirst n sheep {x1, . . . , xn} are one
colour (label this “colour 1’), and the collection of the last n sheep {x2, . . . , xn+1}
are also one colour (label this “colour 2” - note that we haven’t yet shown it is the
same colour as the ϐirst collection).

Since {x2, . . . , xn} are in both sets, we must have that “colour 1” and “colour 2”
are the same, and so {x1, . . . , xn+1} are all one colour.

Explain why this “proof” fails by identifying/explaining a (signiϐicant) false statement.
Solution: the critical error is in the following part of the argument, in the casen = 1:

“the collection of the ϐirst n sheep {x1, . . . , xn} are one colour, and the col-
lection of the last n sheep {x2, . . . , xn+1} are also one (possibly different)
colour. Since {x2, . . . , xn} are in both sets, both sets must in fact be the
same colour, and so {x1, . . . , xn+1} are all one colour.”

Consider the case n = 1. Then the collection {x2, . . . , xn} is actually empty, and so
we cannot conclude that the two sets {x1}, {x2} share any sheep, and so we cannot
conclude that they are the same colour. □
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1.5. EXERCISES

1.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Complete the proof of the corollary on the density of R \Q.

3. Can the union of two countable sets be uncountable? IsR\Q countable or uncountable?

4. Is the intersection of two uncountable sets uncountable or countable?

5. Complete the proof of solved problem 11.
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