Chapter 10

Normed Vector Spaces

The main objective of this chapter is to show that linear transformations of **finite-dimensional** normed vector spaces over \mathbb{K} are **continuous**.

Norms were introduced in chapter 8; we provided a family of examples, the p-norms on \mathbb{K}^n . Let $p \ge 1$ and $A \in \mathbb{M}_{m,n}(\mathbb{K})$, the set $\mathbb{M}_{m,n}(\mathbb{K})$ of matrices of size $m \times n$ with entries in \mathbb{K} . The **induced** p-**norm on** $\mathbb{M}_{m,n}(\mathbb{K})$ is given by

$$||A||_p = \sup_{\|\mathbf{x}\|_p \le 1} \{ ||A\mathbf{x}||_p \}.$$

It is easy to show that:

$$\|A\|_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}, \quad \|A\|_{1} = \max_{1 \le j \le n} \left\{ \sum_{i=1}^{m} |a_{ij}| \right\}, \quad \|A\|_{2} = \text{ largest singular value of } A.$$

A normed vector space $(E, \|\cdot\|_E)$ is a vector space $(E, +, \cdot, \mathbf{0}_E)$ over \mathbb{K} endowed with a norm $\|\cdot\|_E$; with matrix addition and multiplication by a scalar, the set $\mathbb{M}_{m,n}(\mathbb{K})$ is such a space for any of the induced p-norms. A normed vector space's operations behave as well as they could be hoped to, under the circumstances.

Proposition 139

Let *E* be a normed vector space over \mathbb{K} . The maps $+ : E \times E \rightarrow E$ and $\cdot : \mathbb{K} \times E \rightarrow E$ are continuous.

Proof: left as an exercise.

In what follows, let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be normed vector spaces over \mathbb{K} . A map $T : E \to F$ is **linear** if

$$T(\mathbf{0}_E) = \mathbf{0}_F$$
 and $T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}), \quad \forall a, b \in \mathbb{K}, \mathbf{x}, \mathbf{y} \in E.$

The set of **all linear maps from** *E* to *F* is denoted by L(E, F). For instance, if $E = \mathbb{K}^n$ and $F = \mathbb{K}^m$, then $L(E, F) \simeq \mathbb{M}_{m,n}(\mathbb{K})$.

Theorem 140

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be two normed vector spaces over \mathbb{K} and let $f \in L(E, F)$. The following conditions are equivalent:

- 1. f is continuous over E
- *2.* f is continuous at $\mathbf{0} \in E$
- *3.* f is bounded over $\overline{B(\mathbf{0},1)}$
- 4. f is bounded over $S(\mathbf{0}, 1)$
- 5. $\exists M > 0$ such that $\|f(\mathbf{x})\|_F \leq M \|\mathbf{x}\|_E$ for all $\mathbf{x} \in E$.
- 6. f is Lipschitz continuous
- 7. f is uniformly continuous

Proof: the implications $1. \Longrightarrow 2., 3. \Longrightarrow 4., 5. \Longrightarrow 6. \Longrightarrow 7. \Longrightarrow 1.$ are clear.

 $2. \Longrightarrow 3.:$ Let $\varepsilon = 1$. By continuity at **0**, $\exists \delta > 0$ such that

$$||f(\mathbf{x}) - f(\mathbf{0})||_F = ||f(\mathbf{x})||_F \le 1$$

whenever $\|\mathbf{x} - \mathbf{0}\|_E = \|\mathbf{x}\|_E \le \delta$. Now, let $\mathbf{y} \in \overline{B(\mathbf{0}, 1)}$. Since f is linear, we have

$$\|f(\mathbf{y})\|_F = \|f(\frac{1}{\delta}\delta\mathbf{y})\|_F = \frac{1}{\delta}\|f(\delta\mathbf{y})\|_F.$$

Since $\|\delta \mathbf{y}\|_E \leq \delta \|\mathbf{y}\|_E \leq \delta$. Consequently, $\|f(\delta \mathbf{y})\|_F \leq 1$ and

$$\|f(\mathbf{y})\|_F = \frac{1}{\delta} \|f(\delta \mathbf{y})\|_F \le \frac{1}{\delta}.$$

But $\mathbf{y} \in \overline{B(\mathbf{0},1)}$ is arbitrary, so that f is bounded by $\frac{1}{\delta}$ over $\overline{B(\mathbf{0},1)}$.

4. \implies 5.: Since f is bounded over $S(\mathbf{0}, 1)$, $\exists N > 0$ such that $||f(\mathbf{x})||_F \leq N$ whenever $||\mathbf{x}||_E = 1$. Suppose $\mathbf{y} \neq 0_E \in E$. Then, since f is linear we have

$$\|f(\mathbf{y})\|_{F} = \left\|f\left(\|\mathbf{y}\|_{E}\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F} = \|\mathbf{y}\|_{E}\left\|f\left(\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F}.$$
(10.1)

However, $\left\|\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right\|_{E} = 1$ so that $\left\|f\left(\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F} \leq N$.

Substituting this last result in (10.1), we get that $||f(\mathbf{y})||_F \leq N||\mathbf{y}||_E$ for all $\mathbf{0} \neq \mathbf{y} \in E$. When $\mathbf{y} = 0$, the inequality remains valid since $f(\mathbf{0}_E) = \mathbf{0}_F$ and $0 = ||\mathbf{0}_F||_F \leq N||\mathbf{0}_E||_E = 0$. This completes the proof.

If $f \in L(E, F)$ is also **continuous** (that is, if $f \in L_c(E, F)$), it then makes sense to define

$$||f|| = \sup_{\|\mathbf{x}\|_E = 1} \{ ||f(\mathbf{x})||_F \} = \sup_{\|\mathbf{x}\|_E \le 1} \{ ||f(\mathbf{x})||_F \}.$$

With this definition, $(L_c(E, F), \|\cdot\|)$ is a normed vector space. Furthermore, if $f \in L_c(E, F)$ and $g \in L_c(F, G)$ then $g \circ f \in L_c(E, G)$ and we have

$$||(g \circ f)(\mathbf{x})|| = ||g(f(\mathbf{x}))|| \le ||g|| ||f(\mathbf{x})|| \le ||g|| ||f|| ||\mathbf{x}|| \le M ||\mathbf{x}||$$

for some M > 0 and for all $\mathbf{x} \in E$. In particular, $||f \circ g|| \le ||f|| ||g||$. The composition thus defines a kind of multiplication on $L_c(E, E)$; together with this multiplication, $L_c(E, E)$ is a **normed algebra**.

Theorem 141

If F is a Banach space over \mathbb{K} , then so is $L_c(E, F)$.

Proof: let $(f_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in $L_c(E, F)$. For all $\mathbf{x} \in E$, $(f_n(\mathbf{x}))_{n \in \mathbb{N}}$ is a sequence in F. Fix such an \mathbf{x} . Thus, for all $p, q \in \mathbb{N}$,

$$||f_p(\mathbf{x}) - f_q(\mathbf{x})||_F = ||(f_p - f_q)(\mathbf{x})||_F \le ||f_p - f_q|| ||\mathbf{x}||_E.$$

Let $\varepsilon > 0$. Since (f_n) is a Cauchy sequence in $L_c(E, F)$, $\exists M \in \mathbb{N}$ such that $\|f_p - f_q\|_F \le \varepsilon$ whenever p, q > M. As a result, $\|f_p(\mathbf{x}) - f_q(\mathbf{x})\|_F < \varepsilon \|\mathbf{x}\|_E$ whenever p, q > M, so that $(f_n(\mathbf{x}))_{n \in \mathbb{N}}$ is a Cauchy sequence in F.

But *F* is complete so that $f_n(\mathbf{x}) \to f(\mathbf{x}) \in F$ for all $\mathbf{x} \in E$, which defines a map $f : E \to F$. It remains only to show that $f \in L_c(E, F)$ and that $f_n \to f$ in $(L_c(E, F), \|\cdot\|)$. The map *f* is linear as

$$f(a\mathbf{x} + b\mathbf{y}) = \lim_{n \to \infty} f_n(a\mathbf{x} + b\mathbf{y}) = \lim_{n \to \infty} [af_n(\mathbf{x}) + bf_n(\mathbf{y})] = af(\mathbf{x}) + bf(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in E$, $a, b \in \mathbb{K}$. Furthermore, f is continuous since, as the Cauchy sequence (f_n) is necessarily bounded, $\exists N > 0$ such that $||f_n|| \leq N$. Fix $\mathbf{x} \in E$ to get $||f_n(\mathbf{x})||_F \leq N ||\mathbf{x}||_E$ for all n. As $n \to \infty$, we see that $||f(\mathbf{x})||_F \leq N ||\mathbf{x}||_E$.

Finally, we need to show that $f_n \to f$ in $L_c(E, F)$. Let $\varepsilon > 0$. Since (f_n) is a Cauchy sequence in $L_c(E, F)$, $\exists K > 0$ such that $||f_p - f_q|| < \varepsilon$ whenever p, q > K. Now, fix $\mathbf{x} \in E$. Then,

$$\|f_p(\mathbf{x}) - f_q(\mathbf{x})\|_F \le \|f_p - f_q\| \|\mathbf{x}\|_E < \varepsilon \|\mathbf{x}\|_E$$

whenever p, q > N. If we fix p and let $q \to \infty$, then we have

$$\|f_p(\mathbf{x}) - f(\mathbf{x})\|_F < \varepsilon \|\mathbf{x}\|_E$$

whenever p > N. Since this holds for all $\mathbf{x} \in E$, we have $||f_p - f|| \le \varepsilon$ for all p > N, i.e. $f_n \to f$ in $L_c(E, F)$.

We have seen that the metrics d_p are equivalent in \mathbb{K}^n , for $p \ge 1$. Can the same be said about the norms? In fact, we can say even more: not only are the p-norms equivalent, but *all* norms on \mathbb{K}^n are equivalent.

Proposition 142

Let *E* be a finite dimensional vector space over \mathbb{K} . All norms on *E* are equivalent.

Proof: suppose dim_K(*E*) = $n < \infty$. If $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is a basis of *E*, any $\mathbf{x} \in E$ can be written uniquely as a linear combination $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i$. It is easy to see that the function $N_0 : E \to \mathbb{R}$, where

$$N_0(\mathbf{x}) = \|\varphi(\mathbf{x})\|_{\infty} = \|(x_1, \dots, x_n)\|_{\infty} = \sup\{|x_i| \mid i = 1, \dots, n\}$$

defines a norm on E. Let $N : E \to \mathbb{R}$ be any norm on E and set $a = \sum_{i=1}^{n} N(\mathbf{e}_i)$. If $\mathbf{x} \in E$, we have:

$$N(\mathbf{x}) = N\left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) \le \sum_{i=1}^{n} N(x_i \mathbf{e}_i) \le \sum_{i=1}^{n} |x_i| N(\mathbf{e}_i) \le \sup_{i=1,\dots,n} \{|x_i|\} \sum_{i=1}^{n} N(\mathbf{e}_i) = N_0(\mathbf{x}) \cdot a$$

so that $N(\mathbf{x}) \leq aN_0(\mathbf{x})$ for all $\mathbf{x} \in E$.

But the map $\varphi : (E, N_0) \to (\mathbb{K}^n, \| \cdot \|_{\infty})$ is an **isometry** since $N_0(\mathbf{x}) = \|\mathbf{x}\|_{\infty}$ for all $\mathbf{x} \in E$, which means that it must be continuous (why?). Since

$$\tilde{S} = \{(x_1, \dots, x_n) \in \mathbb{K}^n \mid ||(x_1, \dots, x_n)||_{\infty} = 1\} \subseteq_K \mathbb{K}^n,$$

then $S = \varphi^{-1}(\tilde{S}) = \{\mathbf{x} \in E | N_0(\mathbf{x}) = 1\} \subseteq_K E$; the norm $N : (E, N_0) \to (\mathbb{R}, |\cdot|)$ is also a continuous function – according to the max/min theorem, $\exists \mathbf{x}^* \in S$ such that $N(\mathbf{x}^*) = \inf_{\mathbf{x} \in S} \{N(\mathbf{x})\}$. Clearly, $N(\mathbf{x}^*) \neq 0$; otherwise we have $\mathbf{x}^* = \mathbf{0}$, which contradicts the fact that $\mathbf{x} \in S$ as $N_0(\mathbf{x}^*) = N_0(\mathbf{0}) = 0 \neq 1$. Hence $\inf_{\mathbf{x} \in S} \{N(\mathbf{x})\} > 0$.

Write $\inf_{\mathbf{x}\in S} \{N(\mathbf{x})\} = 1/b$ for the appropriate b > 0. If $\mathbf{x} = \mathbf{0} \in E$, then

$$N(\mathbf{x}) = N(\mathbf{0}) = 0 \ge 0 = \frac{1}{b}N_0(\mathbf{0}) = \frac{1}{b}N_0(\mathbf{x}).$$

If $\mathbf{x} \neq \mathbf{0} \in E$, then $\frac{\mathbf{x}}{N_0(\mathbf{x})} \in S$ and

$$N(\mathbf{x}) = N\left(N_0(\mathbf{x})\frac{\mathbf{x}}{N_0(\mathbf{x})}\right) = N_0(\mathbf{x})N\left(\frac{\mathbf{x}}{N_0(\mathbf{x})}\right) \ge N_0(\mathbf{x}) \cdot \frac{1}{b}.$$

In both cases, $N_0(\mathbf{x}) \leq bN(\mathbf{x})$ for all $\mathbf{x} \in E$, and so any norm N on E is equivalent to the norm N_0 . By transitivity, any such norms are then equivalent to one another. \blacksquare In general, this result is not valid if E is infinite-dimensional.

Corollary 143

Let *E* be a finite-dimensional vector space over \mathbb{K} and let $(F, \|\cdot\|_F)$ be any normed vector space over \mathbb{K} . If $f : E \to F$ is a linear mapping, then *f* is continuous.

Proof: Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis of *E*. For any $\mathbf{x} \in E$, we have

$$\begin{aligned} \|f(\mathbf{x})\|_{F} &= \|f(\sum x_{i}\mathbf{e}_{i})\|_{F} = \|\sum x_{i}f(\mathbf{e}_{i})\|_{F} \\ &\leq \sum \|x_{i}\|\|f(\mathbf{e}_{i})\|_{F} \leq N_{0}(\mathbf{x}) \cdot \sum \|f(\mathbf{e}_{i})\|_{F} := aN_{0}(\mathbf{x}). \end{aligned}$$

Then for any $\varepsilon > 0$, $\exists \delta = \frac{\varepsilon}{a}$ such that

 $\|f(\mathbf{x}) - f(\mathbf{y})\|_F = \|f(\mathbf{x} - \mathbf{y})\|_F \le aN_0(\mathbf{x} - \mathbf{y}) < a\delta = \varepsilon$

whenever $N_0(\mathbf{x} - \mathbf{y}) < \delta$, and so f is continuous.

This leads to a series of useful results.

Corollary 144

Any finite-dimensional vector space over $\mathbb K$ is a Banach space.

Proof: this is an easy consequence of the facts that the map

$$\varphi: (E, N_0) \to (\mathbb{K}^n, \|\cdot\|_{\infty})$$

is an isometry and that $(\mathbb{K}^n, \|\cdot\|_{\infty})$ is a Banach space.

Corollary 145

Any finite-dimensional subspace of a normed vector space over \mathbb{K} is closed.

Corollary 146

The compact subsets of a finite-dimensional normed vector are the subsets that are both closed and bounded under the norm.

10.1 Solved Problems

1. Let *E* be a normed vector space over \mathbb{R} and *A*, *B* \subseteq *E*. Denote

$$A + B = \{\mathbf{a} + \mathbf{b} \mid (\mathbf{a}, \mathbf{b}) \in A \times B\}$$

- a) If $A \subseteq_O E$, show that $A + B \subseteq_O E$.
- b) If $A \subseteq_K E$ and $B \subseteq_C E$, show that $A + B \subseteq_C E$. Is the result still true if A is only assumed to be closed in E?

Proof:

a) We can write

$$A + B = \bigcup_{\mathbf{b} \in B} (A + \{\mathbf{b}\}).$$

If $A \subseteq_O E$, we obviously have $A + \{\mathbf{b}\} \subseteq_O E$ for any $\mathbf{b} \in B$.

£

Indeed, if $B(\mathbf{x}, \rho) \subseteq A$, then $B(\mathbf{x} + \mathbf{b}, \rho) \subseteq A + \{\mathbf{b}\}$. Thus A + B is a union of open sets: as a result, $A + B \subseteq_O E$.

b) Let $(\mathbf{z}_n) = (\mathbf{x}_n + \mathbf{y}_n) \subseteq A + B$ be such that $\mathbf{z}_n \to \mathbf{z}$ where $(\mathbf{x}_n) \subseteq A$ and $(\mathbf{y}_n) \subseteq B$. Since $A \subseteq_K E$, there is a convergent subsequence $(\mathbf{x}_{\varphi(n)})$ with $\mathbf{x}_{\varphi(n)} \to \mathbf{x} \in A$.

Since $(\mathbf{z}_{\varphi(n)})$ converges to \mathbf{z} , the sequence $(\mathbf{y}_{\varphi(n)}) \subseteq B$ converges to $\mathbf{y} = \mathbf{z} - \mathbf{x}$. But $B \subseteq_C E$ so that $\mathbf{y} \in B$. Thus, $\mathbf{z} = \mathbf{x} + \mathbf{y} \in A + B$, which proves the desired result. If A is only closed (and not compact), the result is false in general. Let $E = \mathbb{R}^2$, $A = \{(x, e^x) \mid x \in \mathbb{R}\}$ and $B = \mathbb{R} \times \{0\}$. Both $A, B \subseteq_C \mathbb{R}^2$ but $A + B = \mathbb{R} \times (0, \infty)$ is not closed in \mathbb{R}^2 .

- **2**. Let *E* be a normed vector space over \mathbb{R} and $\varphi : E \to \mathbb{R}$ be a linear functional on *E*.
 - a) Show directly that φ is continuous on *E* if and only if ker $\varphi \subseteq_C E$.
 - b) i. Let *F* be a subspace of *E*. Show that the map $N : E/F \to \mathbb{R}$ defined by

$$N([\mathbf{x}]) = \inf_{\mathbf{y} \in [\mathbf{x}]} \{ \|\mathbf{y}\| \}$$

is a **semi-norm** on the quotient space E/F. What can you say if $F \subseteq_C E$? ii. Show part a) again, this time using part b)i.

Proof:

a) If φ is continuous, then ker $\varphi = \varphi^{-1}(\{0\}) \subseteq_C E$ since $\{0\} \subseteq_C \mathbb{R}$.

Conversely, suppose that ker $\varphi \subseteq_C E$. If φ is not continuous, φ is unbounded on the unit sphere $S(\mathbf{0}, 1)$. Thus, $\exists (\mathbf{x}_n) \subseteq E$ such that $\|\mathbf{x}_n\| = 1$ for all $n \in \mathbb{N}$ and for which $|\varphi(\mathbf{x}_n)| \to \infty$. Let $\mathbf{u} \in E$ be such that $\varphi(\mathbf{u}) = 1$: such a $\mathbf{u} \in E$ necessarily exists because φ is linear. Indeed, if $0 \neq \varphi(\mathbf{w}) = r \in \mathbb{R}$, then $\mathbf{w} \neq \mathbf{0}$. Set $\mathbf{u} = \frac{\mathbf{w}}{\varphi(\mathbf{w})}$. Then

$$\varphi(\mathbf{u}) = \varphi\left(\frac{\mathbf{w}}{\varphi(\mathbf{w})}\right) = \frac{1}{\varphi(\mathbf{w})}\varphi(\mathbf{w}) = 1.$$

For any $n \in \mathbb{N}$, set $\mathbf{u}_n = \mathbf{u} - \frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)}$. Then

$$\varphi(\mathbf{u}_n) = \varphi(\mathbf{u}) - \varphi\left(\frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)}\right) = \varphi(\mathbf{u}) - \frac{\varphi(\mathbf{x}_n)}{\varphi(\mathbf{x}_n)} = \varphi(\mathbf{u}_n) - 1 = 0,$$

whence $\mathbf{u}_n \in \ker \varphi$ for all $n \in \mathbb{N}$. Note that $\mathbf{u}_n = \mathbf{u} - \frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)} \to \mathbf{u}$ since $|\varphi(\mathbf{x}_n)| \to \infty$ and $||\mathbf{x}_n|| = 1$ for all n. Since ker φ , the limit $\mathbf{u} \in \ker \varphi$, *i.e.* $\varphi(\mathbf{u}) = 0$. But this contradicts the fact that $\varphi(\mathbf{u}) = 1$. Hence φ is continuous.

b) i. Let $\mathbf{x} \in E$ and $\lambda \in \mathbb{R}$. Recall that $[\mathbf{x}] = \mathbf{x} + F$. Since $[\lambda \mathbf{x}] = \lambda[\mathbf{x}]$, we have

 $N(\lambda[\mathbf{x}]) = |\lambda| N([\mathbf{x}]).$

It remains only to show that N satisfies the triangle inequality. Let $\mathbf{x}, \mathbf{y} \in E$. For any $\mathbf{u}, \mathbf{v} \in F$, we have

$$N([\mathbf{x} + \mathbf{y}]) \le \|(\mathbf{x} + \mathbf{y}) + (\mathbf{u} + \mathbf{v})\| \le \|\mathbf{x} + \mathbf{u}\| + \|\mathbf{y} + \mathbf{v}\|.$$

Thus

$$\begin{split} N([\mathbf{x} + \mathbf{y}]) &\leq \inf_{\mathbf{u}, \mathbf{v} \in F} \{ \|\mathbf{x} + \mathbf{u}\| + \|\mathbf{y} + \mathbf{v}\| \} \\ &\leq \inf_{\mathbf{u} \in F} \{ \|\mathbf{x} + \mathbf{u}\| \} + \inf_{\mathbf{v} \in F} \{ \|\mathbf{y} + \mathbf{v}\| \} = N([\mathbf{x}]) + N([\mathbf{y}]). \end{split}$$

As such, *N* is a semi-norm on E/F. Since $[\mathbf{x}] = \mathbf{x} + F$ for all $\mathbf{x} \in E$, $N([\mathbf{x}]) = \inf_{\mathbf{y} \in F} \{ \|\mathbf{x} - \mathbf{y}\| \} = d(\mathbf{x}, F)$. As a result, if $F \subseteq_C E$, $N([\mathbf{x}]) = 0$ if and only if $\mathbf{x} \in F$, i.e. $[\mathbf{x}] = \mathbf{0}$. Consequently, if $F \subseteq_C E$, *N* is a norm on E/F.

ii. Let $\varphi : E \to \mathbb{R}$ be a linear functional for which ker $\varphi \subseteq_C E$. If $\varphi \equiv 0, \varphi$ is clearly continuous. Otherwise, $\varphi(E) = \mathbb{R}$. Indeed, let $x \in \mathbb{R}$. If $\varphi(\mathbf{u}) = 1$ for some $\mathbf{u} \in E$, then $x\mathbf{u} \in E, \varphi(x\mathbf{u}) = x$ and φ is onto. Let $\eta : E \to E/\ker \varphi$ be the canonical surjection $\eta(\mathbf{u}) = \mathbf{u} + \ker \varphi$. By the Isomorphism Theorem for vector spaces, it is possible to factor $\varphi = \psi \circ \eta$, where $\psi : E/\ker \varphi \to \mathbb{R}$ is linear.

According to Corollary 143, ψ is thus continuous, being linear. If N is the norm defined in (b)i. with $F = \ker \varphi$, we have

$$N([\mathbf{x}] - [\mathbf{y}]) = N([\mathbf{x} - \mathbf{y}]) \le ||\mathbf{x} - \mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in E$$

and so η is continuous Thus, ϕ is continuous being the composition of two continuous functions.

3. If $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define $\|\mathbf{x}\|_{\infty} = \sup\{|x_1|, \ldots, |x_n|\}$. Show that $\mathbf{x} \mapsto \|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^n .

Proof: There are 4 conditions to verify:

- a) $\|\mathbf{x}\|_{\infty} = \sup\{|x_1|, \dots, |x_n|\} \ge 0$ is clear since $|x_i| \ge 0$ for all *i*.
- b) $\|\mathbf{x}\|_{\infty} = 0 \iff \sup\{|x_1|, \dots, |x_n|\} = 0 \iff |x_i| = 0, \forall i \iff x_i = 0, \forall i \iff \mathbf{x} = \mathbf{0}.$
- c) If $a \in \mathbb{R}$, then

$$||a\mathbf{x}||_{\infty} = \sup\{|ax_1|, \dots, |ax_n|\} = |a| \sup\{|x_1|, \dots, |x_n|\} = |a| ||\mathbf{x}||_{\infty}.$$

d) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|_{\infty} &= \sup\{|x_1 + y_1|, \dots, |x_n + y_n|\} \le \sup\{|x_1| + |y_1|, \dots, |x_n| + |y_n|\} \\ &\le \sup\{|x_1|, \dots, |x_n|\} + \sup\{|y_1|, \dots, |y_n|\} = \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}. \end{aligned}$$

Thus, $\mathbf{x} \to \|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^n .

4. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and define the inner product $(\mathbf{x} | \mathbf{y}) = x_1 y_1 + \cdots + x_n y_n$. As seen in the notes, this inner product defines a norm $\|\mathbf{x}\| = \sqrt{(\mathbf{x} | \mathbf{x})}$. Show the **Parallelogram Identity**: $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Proof: We have

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 &= (\mathbf{x} + \mathbf{y} \mid \mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y} \mid \mathbf{x} - \mathbf{y}) \\ &= (\mathbf{x} \mid \mathbf{x}) + 2(\mathbf{x} \mid \mathbf{y}) + (\mathbf{y} \mid \mathbf{y}) + (\mathbf{x} \mid \mathbf{x}) - 2(\mathbf{x} \mid \mathbf{y}) + (\mathbf{y} \mid \mathbf{y}) \\ &= 2(\mathbf{x} \mid \mathbf{x}) + 2(\mathbf{y} \mid \mathbf{y}) = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2) \end{aligned}$$

Now, consider a parallelogram with vertices $\mathbf{0}, \mathbf{x}, \mathbf{y}, \mathbf{x} + \mathbf{y}$. Then the sum of squares of the lengths of the four sides is $2(||\mathbf{x}||^2 + ||\mathbf{y}||^2)$, while the sum of squares of the diagonals is $||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2$.

5. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Is it true that $\|\mathbf{x} + \mathbf{y}\|_{\infty} = \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$ if and only if $\mathbf{x} = c\mathbf{y}$ or $\mathbf{y} = c\mathbf{x}$ for some $c \ge 0$?

Proof: No. Consider the following example in \mathbb{R}^2 : let $\mathbf{x} = (1,0)$ and $\mathbf{y} = (1,1)$. Then $\mathbf{x} + \mathbf{y} = (2,1)$ and $\|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty} = \|\mathbf{x} + \mathbf{y}\|_{\infty} = 2$, but $\mathbf{x} \neq c\mathbf{y}$ for any $c \in \mathbb{R}$.

10.2 Exercises

- 1. Prepare a 2-page summary of this chapter, with important definitions and results.
- 2. Show that $||A||_{\infty}$, $||A||_1$, and $||A||_2$ (from the first page of this chapter) define norms over $\mathbb{M}_{m,n}(\mathbb{K})$.
- 3. Show that the induced p-norm is a norm on $\mathbb{M}_{m,n}(\mathbb{K})$ for all $p \geq 1$.
- 4. Prove Proposition 139.
- 5. Show that all isometries are continuous.
- 6. Prove Corollary 145.
- 7. Prove Corollary 146.
- 8. Let E be a normed vector space with a countably infinite basis. Show that E cannot be complete.
- 9. Let *E* be an infinite-dimensional normed vector space over \mathbb{R} . Show that $D(\mathbf{0}, 1)$ is not compact in *E* by showing that it is not pre-compact in *E* (by what name is this result usually known?).