Chapter 10

Normed Vector Spaces

The main objective of this chapter is to show that linear transformations
of finite-dimensional normed vector spaces over K are continuous.

Norms were introduced in chapter 8; we provided a family of examples, the p—norms on K".
Letp > 1and A € M, ,,(K), the set M,,,, ,(K) of matrices of size m x n with entries in K. The
induced p—norm on M, ,,(K) is given by

[A[l, = sup {[|Ax][,} .

[xl[p<1

It is easy to show that:

n m
|A]|l e = Jax { ; |aij|}, AL = 1?%); { ; |aij|}, ||A|l2 = largest singular value of A.
Anormed vector space (F, ||- || g) is a vector space (F, +, -, 0z) over K endowed with anorm

| - || z; with matrix addition and multiplication by a scalar, the set M,, ,,(K) is such a space
for any of the induced p—norms. A normed vector space’s operations behave as well as they
could be hoped to, under the circumstances.

Proposition 139
Let E be a normed vector space over K. Themaps+ : ExXE — Fand-: Kx FE — FE
are continuous.

Proof: left as an exercise. [ |

In what follows, let (E, ||-||z) and (F} ||-|| ) be normed vector spacesover K. Amap 7' : £ — F
is linear if

T(0g)=0pr and T(ax+0by)=aT(x)+0T(y), Va,beKxye€E.

The set of all linear maps from F to F'is denoted by L(F, F'). For instance, if £ = K" and
F = K™, then L(E, F) ~ M,, ,(K).
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Theorem 140
Let (E,||-||g) and (F, | -||r) be two normed vector spaces over K andlet f € L(E, F).
The following conditions are equivalent:

1. f is continuous over £

fis continuousat0 € E

f is bounded over B(0,1)

f is bounded over S(0,1)

M > O such that || f(X)||r < M||x||g forall x € E.

f is Lipschitz continuous

N & oA W N

f is uniformly continuous

Proof: the implications 1. — 2,,3. = 4.,5. = 6. = 7. = 1. are clear.
2. = 3.: Lete = 1. By continuity at 0, 36 > 0 such that

1f(x) = fO)lr =/ X)]r <1

whenever ||x — 0|z = ||x||z < J. Now, lety € B(0, 1). Since f is linear, we have

LF )l =11 (5wl = 51/ (0y)] .
Since ||dy||g < J|ly||r < 6. Consequently, || f(dy)||r < 1 and

Lf Wl = 31 0Y)llr < 5.

Buty € B(0,1) is arbitrary, so that f is bounded by ; over B(0, 1).

4. = 5.: Since f is bounded over S(0,1), 3N > 0 such that ||f(x)||r < N
whenever ||X||z = 1. Supposey # Og € E. Then, since f is linear we have

s e = |7 (wlerz )| = Ivle |7 (55)] (10.1)

However,

y _ y
WHE = 1 so that Hf (W)HF SN

Substituting this last result in (10.1), we get that ||f(y)||r < N||y||z for all
0 #y € E. Wheny = 0, the inequality remains valid since f(0z) = Op and

0= ||0p||r < N||0g| g = 0. This completes the proof. |
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If f € L(E, F) is also continuous (that is, if f € L.(E, F')), it then makes sense to define

IfIl= sup {[lfX)r} = sup {|f(X)Fr}.

lIxllz=1 Ixllp<1
With this definition, (L.(E, F'),|| - ||) is a normed vector space. Furthermore, if f € L.(E, F)
andg € L.(F,G)thengo f € L.(F,G) and we have
(g o N = llg(fENI < Mgl Gl < llglAAIxI < Mlx]]

for some M > 0 and for all x € E. In particular, ||f o g|| < ||f|lllg||- The composition thus
defines a kind of multiplication on L.(F, E'); together with this multiplication, L.(E, E) is a
normed algebra.

Theorem 141
If F' is a Banach space over K, then so is L.(E, V).

Proof: let (f,),cn be a Cauchy sequence in L.(F, F). Forallx € E, (f,(X))nen is a
sequence in F'. Fix such an x. Thus, forall p,q € N,

1> (%) = foX) e = [[(fo = fo) ®) e < NI fp = falllIX| -

Let ¢ > 0. Since (f,) is a Cauchy sequence in L.(E,F), 3M € N such that
|| fp— fqllF < e whenever p, ¢ > M. Asaresult, || f,(x) — f,(X)||r < €||X||r whenever
p,q > M, so that (f,,(X))nen is a Cauchy sequence in F.

But F' is complete so that f,(x) — f(x) € F for all x € E, which defines a
map f : E — F. It remains only to show that f € L.(E, F) and that f,, — fin
(L(E,F),| - |I)- The map f is linear as

flax+by) = lim f(ax +by) = lim [afu(X) +0fu(y)] = af(x) +0f(y)

for all x,y € FE, a,b € K. Furthermore, f is continuous since, as the Cauchy
sequence ( f,,) is necessarily bounded, 3N > 0 such that || f,,|| < N. Fixx € FE to get
lfn(X)||r < N|X||g for all n. As n — oo, we see that || f(X)||r < N||x||£-

Finally, we need to show that f,, — fin L.(F,F). Lete > 0. Since (f,) is a
Cauchy sequence in L.(E, F'), 3K > 0 such that || f, — f,|| < € whenever p,q > K.
Now, fixx € E. Then,

1fp(x) = fa®)lr < [[fp = fallIxllz < ellx][e
whenever p, g > N. If we fix p and let ¢ — oo, then we have
1fp(x) = fX)||lr <ellx]z

whenever p > N. Since this holds for all x € E, we have || f, — f|| < eforallp > N,
ie. f, = fin L.(E, F). [

P. Boily (uOttawa) 261



We have seen that the metrics d, are equivalent in K", for p > 1. Can the same be said about
the norms? In fact, we can say even more: not only are the p—norms equivalent, but all norms
on K" are equivalent.

Proposition 142
Let F be a finite dimensional vector space over K. All norms on E are equivalent.

Proof: suppose dimg(F) = n < oo. If {ey,...,e,} is a basis of £, any x € E can
be written uniquely as a linear combinationx = )" | x;e;,. Itis easy to see that the
function Ny : £ — R, where

No(X) = lle(®)lloo = (21, -, @n)lloo = sup{las| [ i = 1,...,n},

definesanormon E. Let N : E — Rbe any normon E andseta =Y . | N(e;). If
X € F, we have:

-----

so that N(x) < aNy(x) forallx € E.

But the map ¢ : (E,Ny) — (K", | - ||s) is an isometry since Ny(X) = |[|X|/c
for all x € F, which means that it must be continuous (why?). Since

S={(1,...,za) €K" | (21, 20)llo = 1} Sk K",

then S = ¢ 71(S) = {x € E|Ny(x) = 1} Cx E;thenorm N : (E, Ny) — (R,|-])
is also a continuous function - according to the max/min theorem, 3x* € S such
that N(x*) = infyes{N(x)}. Clearly, N(x*) # 0; otherwise we have x* = 0, which
contradicts the fact thatx € S as Ny(x*) = Ny(0) = 0 # 1. Hence infycs{ N(x)} > 0.

Write infyes{N(x)} = 1/b for the appropriate b > 0. If x = 0 € E, then
1 1

Ifx%OEE,thenﬁ(X) € Sand

X

N(x) =N (No(x)m> — No(x)N (ﬁ(x)) > No(x) - %

In both cases, Ny(x) < bN(x) forall x € £, and so any norm N on E is equivalent to
the norm /N,. By transitivity, any such norms are then equivalent to one another. B
In general, this result is not valid if £ is infinite-dimensional.
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Corollary 143
Let E be a finite-dimensional vector space over K and let (F\ || - ||r) be any normed
vector space over K. If f : E — F'is a linear mapping, then f is continuous.

Proof: Let{e;,...,e,} beabasisof E. For any x € E, we have

If &) e = L Qe = 1222 (el
< 2 lzilllf(e)llr < No(x) - 211 f (€| r := aNo(x).

Then forany ¢ > 0, 30 = % such that

1f ) = fW)llr = /X =Y)llr < aNo(x—y) <ad =&

whenever Ny(X —y) < 6, and so f is continuous. [

This leads to a series of useful results.

Corollary 144
Any finite-dimensional vector space over K is a Banach space.

Proof: this is an easy consequence of the facts that the map
(B, No) = (K" [ - [l)

is an isometry and that (K", || - ||~ ) is @ Banach space. |

Corollary 145
Any finite-dimensional subspace of a normed vector space over K is closed.

Corollary 146
The compact subsets of a finite-dimensional normed vector are the subsets that are
both closed and bounded under the norm.

10.1 Solved Problems
1. Let E' be a normed vector space over R and A, B C E. Denote
A+B={a+b|(a,b) € Ax B}.

a) If A Cp E,showthat A+ B Cp F.

b) If ACkx Fand B C¢ E,show that A + B C FE. Is the result still true if A is only
assumed to be closed in E?
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10.1. SOLVED PROBLEMS

Proof:

a) We can write

b)

L.

ii.

a)

A+B=]J(A+{b}).
beB

If A Cp E, we obviously have A + {b} Cp E foranyb € B.

Indeed, if B(x,p) C A, then B(x+ b,p) C A+ {b}. Thus A + B is a union
of open sets: asaresult, A+ B Cp E.

Let(z,) = (x,+Yyn) € A+ Bbesuchthatz, — zwhere (x,,) C Aand (y,) C B.
Since A Ck F, there is a convergent subsequence (X)) with X,y — X € A.

Since (z,(,,)) converges to z, the sequence (y,(,)) C B convergestoy = z — X.
But B Co E'sothaty € B. Thus,z =x+y € A + B, which proves the desired
result. If A is only closed (and not compact), the result is false in general. Let
E =R% A= {(z,6*) | 2 € R}and B = R x {0}. Both A,B Cc R? but
A+ B =R x (0,00) is not closed in R?. | |

2. Let I be a normed vector space over R and ¢ : £ — R be a linear functional on F.

a) Show directly that ¢ is continuous on £ if and only if ker ¢ C E.

Let I’ be a subspace of E. Show that the map N : E/F — R defined by
N([x]) = inf {[lyl[}
yE(X]

is a semi-norm on the quotient space £/ F. What can you say if ' C E?
Show part a) again, this time using part b)i.

Proof:

If  is continuous, then ker ¢ = 1 ({0}) C¢ E since {0} C¢ R.

Conversely, suppose that ker ¢ C E. If ¢ is not continuous, ¢ is unbounded
on the unit sphere S(0,1). Thus, 3(x,) C E such that ||x,|| = 1foralln € N
and for which |¢(x,,)| — co. Letu € E be such that p(u) = 1: suchau € FE
necessarily exists because ¢ is linear. Indeed, if 0 # ¢(w) = r € R, then w # 0.

W
Setu = W) Then

p(u) = (JL)) - )sO(W) =1

— _ Xn
Foranyn € N, setu, =u ECME Then

() = p(u) — (
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Xn

whence u,, € kerp for alln € N. Note thatu, = u — (%)

lo(xn)] — oo and ||x,|| = 1 for all n. Since ker ¢, the limit u € kery, ie.
©(u) = 0. But this contradicts the fact that ¢(u) = 1. Hence ¢ is continuous.

— u since

b) i Letx € Eand X € R. Recall that [x] = x + F. Since [AX] = A[x], we have
NARX]) = [AIN([x]).

It remains only to show that N satisfies the triangle inequality.
Letx,y € E. Forany u,v € F, we have

N(x+y) <|[(x+y)+@+v)|] <[x+u]+y+v]
Thus

N(x+y]) < inf {[x+ul + [y + v[}
u,velF

< Inf {|lx +ul[} + inf{lly + v|} = N([x]) + N([y])-

As such, N isasemi-normon E//F'. Since [x] = x+ F forallx € E, N([x]) =
infyep{||x —y||} = d(x, F'). Asaresult, if F Cc E, N([x]) = 0 ifand only if
x € F,ie.[x] = 0. Consequently, if ¥ Co E, Nisanormon E/F.

ii. Let v : E — R be alinear functional for which kerp Co E. If o =0, @ is
clearly continuous. Otherwise, ¢(E) = R. Indeed, letz € R. If p(u) = 1 for
someu € F, thenzu € F, p(zu) = z and p is onto. Letn : £ — E/kerg
be the canonical surjection n7(u) = u+Kker ¢. By the Isomorphism Theorem
for vector spaces, it is possible to factor ¢ = ¢ on, where vy : E/kerp — R
is linear.

According to Corollary 143, ¢ is thus continuous, being linear. If V is the
norm defined in (b)i. with F' = ker , we have

N(x]—[y]) = N(x-y]) < [x-yl VxyekE

and so 7 is continuous Thus, ¢ is continuous being the composition of two
continuous functions. |

3. If x = (x1,...,2,) € R", define ||X|| = sup{|zi],...,|z,|}. Show that x — ||X|~
defines a norm on R™.
Proof: There are 4 conditions to verify:
a) ||x||cc = sup{|z1],...,|zn|} > 0is clear since |z;| > 0 for all 4.
b) [X||cc = 0 <> sup{|z1],...,|zn|]} =0 <= |2;| =0, Vi <=
r; =0, Vi<=x=0.
c) Ifa € R, then

laxljco = sup{laz1],. .., |aza|} = [a| sup{|a1], ..., [zn]} = |af[|x]|co-
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d) Letx,y € R". Then

X + ¥lloo = sup{lz1 +y1l, - [2n + yal} < sup{lza| + [l |2n] + [ynl}
<sup{faf, ..., [zal} +sup{lyil, -, [ynl} = [Xlloo + [1¥]]oo-
Thus, X — ||X||o defines a norm on R™. [ |

4. Let X,y € R" and define the inner product (x | y) = x1y1 + -+ + Z,Yn. As seen in
the notes, this inner product defines a norm ||x|| = y/(x | x). Show the Parallelogram
Identity: [[x +yl|* + [[x — y[I = 2([|x||* + [ly[|*), Vx,y € R™.

Proof: We have

Ix+yl*+lx—yl|* = (x+y|x+y)+(x—y|[x—y)
=x[x)+2x[y)+ ¥ |y)+x[x)-2x[y)+(y]y)
=2(x| x)+2(y | y) = 2()x|* + [lyll*)

Now, consider a parallelogram with vertices 0, x,y, x + y. Then the sum of squares
of the lengths of the four sides is 2(||x||? + ||y||?), while the sum of squares of the
diagonals is [|x + y||% + ||x — y||?. |

5. Letx,y € R™ Isittrue that | X+ y||« = ||X||x + ||¥|l« if and only if X = cy ory = cx for
some ¢ > 07

Proof: No. Consider the following example in R?: letx = (1,0) andy = (1,1). Then
Xx+y=(2,1) and ||X|loc + [|¥|lcc = ||X + ¥|lcc = 2, butx # cy for any ¢ € R. |

10.2 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.

2. Show that || A/, || A||1, and || A2 (from the first page of this chapter) define norms over
M, (K).

Show that the induced p—norm is a norm on M,,, ,,(K) for allp > 1.
Prove Proposition 139.

Show that all isometries are continuous.

Prove Corollary 145.

Prove Corollary 146.

® N o s W

Let £ be a normed vector space with a countably infinite basis. Show that £ cannot be
complete.

9. Let E be an infinite-dimensional normed vector space over R. Show that D(0, 1) is not
compact in F by showing that it is not pre-compact in £ (by what name is this result
usually known?).
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