Chapter 10

Normed Vector Spaces

The main objective of this chapter is to show that linear transformations of finite-dimensional normed vector spaces over \mathbb{K} are continuous.

Norms were introduced in chapter 8; we provided a family of examples, the p-norms on \mathbb{K}^{n}. Let $p \geq 1$ and $A \in \mathbb{M}_{m, n}(\mathbb{K})$, the set $\mathbb{M}_{m, n}(\mathbb{K})$ of matrices of size $m \times n$ with entries in \mathbb{K}. The induced $p-$ norm on $\mathbb{M}_{m, n}(\mathbb{K})$ is given by

$$
\|A\|_{p}=\sup _{\|\mathbf{x}\|_{p} \leq 1}\left\{\|A \mathbf{x}\|_{p}\right\}
$$

It is easy to show that:
$\|A\|_{\infty}=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}, \quad\|A\|_{1}=\max _{1 \leq j \leq n}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}, \quad\|A\|_{2}=$ largest singular value of A.
A normed vector space $\left(E,\|\cdot\|_{E}\right)$ is a vector space $\left(E,+, \cdot, \mathbf{0}_{E}\right)$ over \mathbb{K} endowed with a norm $\|\cdot\|_{E}$; with matrix addition and multiplication by a scalar, the set $\mathbb{M}_{m, n}(\mathbb{K})$ is such a space for any of the induced p-norms. A normed vector space's operations behave as well as they could be hoped to, under the circumstances.

Proposition 139

Let E be a normed vector space over \mathbb{K}. The maps $+: E \times E \rightarrow E$ and $\cdot: \mathbb{K} \times E \rightarrow E$ are continuous.

Proof: left as an exercise.

In what follows, let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be normed vector spaces over \mathbb{K}. A map $T: E \rightarrow F$ is linear if

$$
T\left(\mathbf{0}_{E}\right)=\mathbf{0}_{F} \quad \text { and } \quad T(a \mathbf{x}+b \mathbf{y})=a T(\mathbf{x})+b T(\mathbf{y}), \quad \forall a, b \in \mathbb{K}, \mathbf{x}, \mathbf{y} \in E
$$

The set of all linear maps from E to F is denoted by $L(E, F)$. For instance, if $E=\mathbb{K}^{n}$ and $F=\mathbb{K}^{m}$, then $L(E, F) \simeq \mathbb{M}_{m, n}(\mathbb{K})$.

Theorem 140

Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be two normed vector spaces over \mathbb{K} and let $f \in L(E, F)$. The following conditions are equivalent:

1. f is continuous over E
2. f is continuous at $\mathbf{0} \in E$
3. f is bounded over $\overline{B(\mathbf{0}, 1)}$
4. f is bounded over $S(\mathbf{0}, 1)$
5. $\exists M>0$ such that $\|f(\mathbf{x})\|_{F} \leq M\|\mathbf{x}\|_{E}$ for all $\mathbf{x} \in E$.
6. f is Lipschitz continuous
7. f is uniformly continuous

Proof: the implications $1 . \Longrightarrow 2 ., 3 . \Longrightarrow 4 ., 5 . \Longrightarrow 6 . \Longrightarrow 7 . \Longrightarrow 1$. are clear.
$2 . \Longrightarrow 3$.: Let $\varepsilon=1$. By continuity at $\mathbf{0}, \exists \delta>0$ such that

$$
\|f(\mathbf{x})-f(\mathbf{0})\|_{F}=\|f(\mathbf{x})\|_{F} \leq 1
$$

whenever $\|\mathbf{x}-\mathbf{0}\|_{E}=\|\mathbf{x}\|_{E} \leq \delta$. Now, let $\mathbf{y} \in \overline{B(\mathbf{0}, 1)}$. Since f is linear, we have

$$
\|f(\mathbf{y})\|_{F}=\left\|f\left(\frac{1}{\delta} \delta \mathbf{y}\right)\right\|_{F}=\frac{1}{\delta}\|f(\delta \mathbf{y})\|_{F}
$$

Since $\|\delta \mathbf{y}\|_{E} \leq \delta\|\mathbf{y}\|_{E} \leq \delta$. Consequently, $\|f(\delta \mathbf{y})\|_{F} \leq 1$ and

$$
\|f(\mathbf{y})\|_{F}=\frac{1}{\delta}\|f(\delta \mathbf{y})\|_{F} \leq \frac{1}{\delta}
$$

But $\mathbf{y} \in \overline{B(\mathbf{0}, 1)}$ is arbitrary, so that f is bounded by $\frac{1}{\delta}$ over $\overline{B(\mathbf{0}, 1)}$.
4. $\Longrightarrow 5$.: Since f is bounded over $S(\mathbf{0}, 1), \exists N>0$ such that $\|f(\mathbf{x})\|_{F} \leq N$ whenever $\|\mathbf{x}\|_{E}=1$. Suppose $\mathbf{y} \neq 0_{E} \in E$. Then, since f is linear we have

$$
\begin{equation*}
\|f(\mathbf{y})\|_{F}=\left\|f\left(\|\mathbf{y}\|_{E} \frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F}=\|\mathbf{y}\|_{E}\left\|f\left(\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F} . \tag{10.1}
\end{equation*}
$$

However, $\left\|\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right\|_{E}=1$ so that $\left\|f\left(\frac{\mathbf{y}}{\|\mathbf{y}\|_{E}}\right)\right\|_{F} \leq N$.
Substituting this last result in (10.1), we get that $\|f(\mathbf{y})\|_{F} \leq N\|\mathbf{y}\|_{E}$ for all $\mathbf{0} \neq \mathbf{y} \in E$. When $\mathbf{y}=0$, the inequality remains valid since $f\left(\mathbf{0}_{E}\right)=\mathbf{0}_{F}$ and $0=\left\|\mathbf{0}_{F}\right\|_{F} \leq N\left\|\mathbf{0}_{E}\right\|_{E}=0$. This completes the proof.

If $f \in L(E, F)$ is also continuous (that is, if $f \in L_{c}(E, F)$), it then makes sense to define

$$
\|f\|=\sup _{\|\mathbf{x}\|_{E}=1}\left\{\|f(\mathbf{x})\|_{F}\right\}=\sup _{\|\mathbf{x}\|_{E} \leq 1}\left\{\|f(\mathbf{x})\|_{F}\right\}
$$

With this definition, $\left(L_{c}(E, F),\|\cdot\|\right)$ is a normed vector space. Furthermore, if $f \in L_{c}(E, F)$ and $g \in L_{c}(F, G)$ then $g \circ f \in L_{c}(E, G)$ and we have

$$
\|(g \circ f)(\mathbf{x})\|=\|g(f(\mathbf{x}))\| \leq\|g\|\|f(\mathbf{x})\| \leq\|g\|\|f\|\|\mathbf{x}\| \leq M\|\mathbf{x}\|
$$

for some $M>0$ and for all $\mathbf{x} \in E$. In particular, $\|f \circ g\| \leq\|f\|\|g\|$. The composition thus defines a kind of multiplication on $L_{c}(E, E)$; together with this multiplication, $L_{c}(E, E)$ is a normed algebra.

Theorem 141

If F is a Banach space over \mathbb{K}, then so is $L_{c}(E, F)$.
Proof: let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $L_{c}(E, F)$. For all $\mathbf{x} \in E,\left(f_{n}(\mathbf{x})\right)_{n \in \mathbb{N}}$ is a sequence in F. Fix such an \mathbf{x}. Thus, for all $p, q \in \mathbb{N}$,

$$
\left\|f_{p}(\mathbf{x})-f_{q}(\mathbf{x})\right\|_{F}=\left\|\left(f_{p}-f_{q}\right)(\mathbf{x})\right\|_{F} \leq\left\|f_{p}-f_{q}\right\|\|\mathbf{x}\|_{E}
$$

Let $\varepsilon>0$. Since $\left(f_{n}\right)$ is a Cauchy sequence in $L_{c}(E, F), \exists M \in \mathbb{N}$ such that $\left\|f_{p}-f_{q}\right\|_{F} \leq \varepsilon$ whenever $p, q>M$. As a result, $\left\|f_{p}(\mathbf{x})-f_{q}(\mathbf{x})\right\|_{F}<\varepsilon\|\mathbf{x}\|_{E}$ whenever $p, q>M$, so that $\left(f_{n}(\mathbf{x})\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in F.

But F is complete so that $f_{n}(\mathbf{x}) \rightarrow f(\mathbf{x}) \in F$ for all $\mathbf{x} \in E$, which defines a map $f: E \rightarrow F$. It remains only to show that $f \in L_{c}(E, F)$ and that $f_{n} \rightarrow f$ in $\left(L_{c}(E, F),\|\cdot\|\right)$. The map f is linear as

$$
f(a \mathbf{x}+b \mathbf{y})=\lim _{n \rightarrow \infty} f_{n}(a \mathbf{x}+b \mathbf{y})=\lim _{n \rightarrow \infty}\left[a f_{n}(\mathbf{x})+b f_{n}(\mathbf{y})\right]=a f(\mathbf{x})+b f(\mathbf{y})
$$

for all $\mathbf{x}, \mathbf{y} \in E, a, b \in \mathbb{K}$. Furthermore, f is continuous since, as the Cauchy sequence $\left(f_{n}\right)$ is necessarily bounded, $\exists N>0$ such that $\left\|f_{n}\right\| \leq N$. Fix $\mathbf{x} \in E$ to get $\left\|f_{n}(\mathbf{x})\right\|_{F} \leq N\|\mathbf{x}\|_{E}$ for all n. As $n \rightarrow \infty$, we see that $\|f(\mathbf{x})\|_{F} \leq N\|\mathbf{x}\|_{E}$.

Finally, we need to show that $f_{n} \rightarrow f$ in $L_{c}(E, F)$. Let $\varepsilon>0$. Since $\left(f_{n}\right)$ is a Cauchy sequence in $L_{c}(E, F), \exists K>0$ such that $\left\|f_{p}-f_{q}\right\|<\varepsilon$ whenever $p, q>K$. Now, fix $\mathbf{x} \in E$. Then,

$$
\left\|f_{p}(\mathbf{x})-f_{q}(\mathbf{x})\right\|_{F} \leq\left\|f_{p}-f_{q}\right\|\|\mathbf{x}\|_{E}<\varepsilon\|\mathbf{x}\|_{E}
$$

whenever $p, q>N$. If we fix p and let $q \rightarrow \infty$, then we have

$$
\left\|f_{p}(\mathbf{x})-f(\mathbf{x})\right\|_{F}<\varepsilon\|\mathbf{x}\|_{E}
$$

whenever $p>N$. Since this holds for all $\mathbf{x} \in E$, we have $\left\|f_{p}-f\right\| \leq \varepsilon$ for all $p>N$, i.e. $f_{n} \rightarrow f$ in $L_{c}(E, F)$.

We have seen that the metrics d_{p} are equivalent in \mathbb{K}^{n}, for $p \geq 1$. Can the same be said about the norms? In fact, we can say even more: not only are the p-norms equivalent, but all norms on \mathbb{K}^{n} are equivalent.

Proposition 142

Let E be a finite dimensional vector space over \mathbb{K}. All norms on E are equivalent.
Proof: suppose $\operatorname{dim}_{\mathbb{K}}(E)=n<\infty$. If $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of E, any $\mathbf{x} \in E$ can be written uniquely as a linear combination $\mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}$. It is easy to see that the function $N_{0}: E \rightarrow \mathbb{R}$, where

$$
N_{0}(\mathbf{x})=\|\varphi(\mathbf{x})\|_{\infty}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\sup \left\{\left|x_{i}\right| \mid i=1, \ldots, n\right\}
$$

defines a norm on E. Let $N: E \rightarrow \mathbb{R}$ be any norm on E and set $a=\sum_{i=1}^{n} N\left(\mathbf{e}_{i}\right)$. If $\mathbf{x} \in E$, we have:
$N(\mathbf{x})=N\left(\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}\right) \leq \sum_{i=1}^{n} N\left(x_{i} \mathbf{e}_{i}\right) \leq \sum_{i=1}^{n}\left|x_{i}\right| N\left(\mathbf{e}_{i}\right) \leq \sup _{i=1, \ldots, n}\left\{\left|x_{i}\right|\right\} \sum_{i=1}^{n} N\left(\mathbf{e}_{i}\right)=N_{0}(\mathbf{x}) \cdot a$
so that $N(\mathbf{x}) \leq a N_{0}(\mathbf{x})$ for all $\mathbf{x} \in E$.
But the $\operatorname{map} \varphi:\left(E, N_{0}\right) \rightarrow\left(\mathbb{K}^{n},\|\cdot\|_{\infty}\right)$ is an isometry since $N_{0}(\mathbf{x})=\|\mathbf{x}\|_{\infty}$ for all $\mathbf{x} \in E$, which means that it must be continuous (why?). Since

$$
\tilde{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=1\right\} \subseteq_{K} \mathbb{K}^{n}
$$

then $S=\varphi^{-1}(\tilde{S})=\left\{\mathbf{x} \in E \mid N_{0}(\mathbf{x})=1\right\} \subseteq_{K} E$; the norm $N:\left(E, N_{0}\right) \rightarrow(\mathbb{R},|\cdot|)$ is also a continuous function - according to the max/min theorem, $\exists \mathbf{x}^{*} \in S$ such that $N\left(\mathbf{x}^{*}\right)=\inf _{\mathbf{x} \in S}\{N(\mathbf{x})\}$. Clearly, $N\left(\mathbf{x}^{*}\right) \neq 0$; otherwise we have $\mathbf{x}^{*}=\mathbf{0}$, which contradicts the fact that $\mathbf{x} \in S$ as $N_{0}\left(\mathbf{x}^{*}\right)=N_{0}(\mathbf{0})=0 \neq 1$. Hence $\inf _{\mathbf{x} \in S}\{N(\mathbf{x})\}>0$.

Write $\inf _{\mathbf{x} \in S}\{N(\mathbf{x})\}=1 / b$ for the appropriate $b>0$. If $\mathbf{x}=\mathbf{0} \in E$, then

$$
N(\mathbf{x})=N(\mathbf{0})=0 \geq 0=\frac{1}{b} N_{0}(\mathbf{0})=\frac{1}{b} N_{0}(\mathbf{x}) .
$$

If $\mathbf{x} \neq \mathbf{0} \in E$, then $\frac{\mathbf{x}}{N_{0}(\mathbf{x})} \in S$ and

$$
N(\mathbf{x})=N\left(N_{0}(\mathbf{x}) \frac{\mathbf{x}}{N_{0}(\mathbf{x})}\right)=N_{0}(\mathbf{x}) N\left(\frac{\mathbf{x}}{N_{0}(\mathbf{x})}\right) \geq N_{0}(\mathbf{x}) \cdot \frac{1}{b} .
$$

In both cases, $N_{0}(\mathbf{x}) \leq b N(\mathbf{x})$ for all $\mathbf{x} \in E$, and so any norm N on E is equivalent to the norm N_{0}. By transitivity, any such norms are then equivalent to one another. In general, this result is not valid if E is infinite-dimensional.

Corollary 143

Let E be a finite-dimensional vector space over \mathbb{K} and let $\left(F,\|\cdot\|_{F}\right)$ be any normed vector space over \mathbb{K}. If $f: E \rightarrow F$ is a linear mapping, then f is continuous.

Proof: Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be a basis of E. For any $\mathbf{x} \in E$, we have

$$
\begin{aligned}
\|f(\mathbf{x})\|_{F} & =\left\|f\left(\sum x_{i} \mathbf{e}_{i}\right)\right\|_{F}=\left\|\sum x_{i} f\left(\mathbf{e}_{i}\right)\right\|_{F} \\
& \leq \sum\left|x_{i}\right|\left\|f\left(\mathbf{e}_{i}\right)\right\|_{F} \leq N_{0}(\mathbf{x}) \cdot \sum\left\|f\left(\mathbf{e}_{i}\right)\right\|_{F}:=a N_{0}(\mathbf{x}) .
\end{aligned}
$$

Then for any $\varepsilon>0, \exists \delta=\frac{\varepsilon}{a}$ such that

$$
\|f(\mathbf{x})-f(\mathbf{y})\|_{F}=\|f(\mathbf{x}-\mathbf{y})\|_{F} \leq a N_{0}(\mathbf{x}-\mathbf{y})<a \delta=\varepsilon
$$

whenever $N_{0}(\mathbf{x}-\mathbf{y})<\delta$, and so f is continuous.

This leads to a series of useful results.

Corollary 144

Any finite-dimensional vector space over \mathbb{K} is a Banach space.
Proof: this is an easy consequence of the facts that the map

$$
\varphi:\left(E, N_{0}\right) \rightarrow\left(\mathbb{K}^{n},\|\cdot\|_{\infty}\right)
$$

is an isometry and that $\left(\mathbb{K}^{n},\|\cdot\|_{\infty}\right)$ is a Banach space.

Corollary 145

Any finite-dimensional subspace of a normed vector space over \mathbb{K} is closed.

Corollary 146

The compact subsets of a finite-dimensional normed vector are the subsets that are both closed and bounded under the norm.

10.1 Solved Problems

1. Let E be a normed vector space over \mathbb{R} and $A, B \subseteq E$. Denote

$$
A+B=\{\mathbf{a}+\mathbf{b} \mid(\mathbf{a}, \mathbf{b}) \in A \times B\}
$$

a) If $A \subseteq_{O} E$, show that $A+B \subseteq_{O} E$.
b) If $A \subseteq_{K} E$ and $B \subseteq_{C} E$, show that $A+B \subseteq_{C} E$. Is the result still true if A is only assumed to be closed in E ?

Proof:

a) We can write

$$
A+B=\bigcup_{\mathbf{b} \in B}(A+\{\mathbf{b}\}) .
$$

If $A \subseteq_{O} E$, we obviously have $A+\{\mathbf{b}\} \subseteq_{O} E$ for any $\mathbf{b} \in B$.
Indeed, if $B(\mathbf{x}, \rho) \subseteq A$, then $B(\mathbf{x}+\mathbf{b}, \rho) \subseteq A+\{\mathbf{b}\}$. Thus $A+B$ is a union of open sets: as a result, $A+B \subseteq_{O} E$.
b) Let $\left(\mathbf{z}_{n}\right)=\left(\mathbf{x}_{n}+\mathbf{y}_{n}\right) \subseteq A+B$ be such that $\mathbf{z}_{n} \rightarrow \mathbf{z}$ where $\left(\mathbf{x}_{n}\right) \subseteq A$ and $\left(\mathbf{y}_{n}\right) \subseteq B$. Since $A \subseteq_{K} E$, there is a convergent subsequence $\left(\mathbf{x}_{\varphi(n)}\right)$ with $\mathbf{x}_{\varphi(n)} \rightarrow \mathbf{x} \in A$.

Since $\left(\mathbf{z}_{\varphi(n)}\right)$ converges to \mathbf{z}, the sequence $\left(\mathbf{y}_{\varphi(n)}\right) \subseteq B$ converges to $\mathbf{y}=\mathbf{z}-\mathbf{x}$. But $B \subseteq_{C} E$ so that $\mathbf{y} \in B$. Thus, $\mathbf{z}=\mathbf{x}+\mathbf{y} \in A+B$, which proves the desired result. If A is only closed (and not compact), the result is false in general. Let $E=\mathbb{R}^{2}, A=\left\{\left(x, e^{x}\right) \mid x \in \mathbb{R}\right\}$ and $B=\mathbb{R} \times\{0\}$. Both $A, B \subseteq_{C} \mathbb{R}^{2}$ but $A+B=\mathbb{R} \times(0, \infty)$ is not closed in \mathbb{R}^{2}.
2. Let E be a normed vector space over \mathbb{R} and $\varphi: E \rightarrow \mathbb{R}$ be a linear functional on E.
a) Show directly that φ is continuous on E if and only if $\operatorname{ker} \varphi \subseteq_{C} E$.
b) i. Let F be a subspace of E. Show that the map $N: E / F \rightarrow \mathbb{R}$ defined by

$$
N([\mathbf{x}])=\inf _{\mathbf{y} \in[\mathbf{x}]}\{\|\mathbf{y}\|\}
$$

is a semi-norm on the quotient space E / F. What can you say if $F \subseteq_{C} E$?
ii. Show part a) again, this time using part b)i.

Proof:

a) If φ is continuous, then $\operatorname{ker} \varphi=\varphi^{-1}(\{0\}) \subseteq_{C} E$ since $\{0\} \subseteq_{C} \mathbb{R}$.

Conversely, suppose that $\operatorname{ker} \varphi \subseteq_{C} E$. If φ is not continuous, φ is unbounded on the unit sphere $S(\mathbf{0}, 1)$. Thus, $\exists\left(\mathbf{x}_{n}\right) \subseteq E$ such that $\left\|\mathbf{x}_{n}\right\|=1$ for all $n \in \mathbb{N}$ and for which $\left|\varphi\left(\mathbf{x}_{n}\right)\right| \rightarrow \infty$. Let $\mathbf{u} \in E$ be such that $\varphi(\mathbf{u})=1$: such a $\mathbf{u} \in E$ necessarily exists because φ is linear. Indeed, if $0 \neq \varphi(\mathbf{w})=r \in \mathbb{R}$, then $\mathbf{w} \neq \mathbf{0}$. Set $\mathbf{u}=\frac{\mathbf{w}}{\varphi(\mathbf{w})}$. Then

$$
\varphi(\mathbf{u})=\varphi\left(\frac{\mathbf{w}}{\varphi(\mathbf{w})}\right)=\frac{1}{\varphi(\mathbf{w})} \varphi(\mathbf{w})=1
$$

For any $n \in \mathbb{N}$, set $\mathbf{u}_{n}=\mathbf{u}-\frac{\mathbf{x}_{n}}{\varphi\left(\mathbf{x}_{n}\right)}$. Then

$$
\varphi\left(\mathbf{u}_{n}\right)=\varphi(\mathbf{u})-\varphi\left(\frac{\mathbf{x}_{n}}{\varphi\left(\mathbf{x}_{n}\right)}\right)=\varphi(\mathbf{u})-\frac{\varphi\left(\mathbf{x}_{n}\right)}{\varphi\left(\mathbf{x}_{n}\right)}=\varphi\left(\mathbf{u}_{n}\right)-1=0,
$$

whence $\mathbf{u}_{n} \in \operatorname{ker} \varphi$ for all $n \in \mathbb{N}$. Note that $\mathbf{u}_{n}=\mathbf{u}-\frac{\mathbf{x}_{n}}{\varphi\left(\mathbf{x}_{n}\right)} \rightarrow \mathbf{u}$ since $\left|\varphi\left(\mathbf{x}_{n}\right)\right| \rightarrow \infty$ and $\left\|\mathbf{x}_{n}\right\|=1$ for all n. Since $\operatorname{ker} \varphi$, the limit $\mathbf{u} \in \operatorname{ker} \varphi$, i.e. $\varphi(\mathbf{u})=0$. But this contradicts the fact that $\varphi(\mathbf{u})=1$. Hence φ is continuous.
b) i. Let $\mathbf{x} \in E$ and $\lambda \in \mathbb{R}$. Recall that $[\mathbf{x}]=\mathbf{x}+F$. Since $[\lambda \mathbf{x}]=\lambda[\mathbf{x}]$, we have

$$
N(\lambda[\mathbf{x}])=|\lambda| N([\mathbf{x}]) .
$$

It remains only to show that N satisfies the triangle inequality. Let $\mathbf{x}, \mathbf{y} \in E$. For any $\mathbf{u}, \mathbf{v} \in F$, we have

$$
N([\mathbf{x}+\mathbf{y}]) \leq\|(\mathbf{x}+\mathbf{y})+(\mathbf{u}+\mathbf{v})\| \leq\|\mathbf{x}+\mathbf{u}\|+\|\mathbf{y}+\mathbf{v}\| .
$$

Thus

$$
\begin{aligned}
N([\mathbf{x}+\mathbf{y}]) & \leq \inf _{\mathbf{u}, \mathbf{v} \in F}\{\|\mathbf{x}+\mathbf{u}\|+\|\mathbf{y}+\mathbf{v}\|\} \\
& \leq \inf _{\mathbf{u} \in F}\{\|\mathbf{x}+\mathbf{u}\|\}+\inf _{\mathbf{v} \in F}\{\|\mathbf{y}+\mathbf{v}\|\}=N([\mathbf{x}])+N([\mathbf{y}]) .
\end{aligned}
$$

As such, N is a semi-norm on E / F. Since $[\mathbf{x}]=\mathbf{x}+F$ for all $\mathbf{x} \in E, N([\mathbf{x}])=$ $\inf _{\mathbf{y} \in F}\{\|\mathbf{x}-\mathbf{y}\|\}=d(\mathbf{x}, F)$. As a result, if $F \subseteq_{C} E, N([\mathbf{x}])=0$ if and only if $\mathbf{x} \in F$, i.e. $[\mathbf{x}]=\mathbf{0}$. Consequently, if $F \subseteq_{C} E, N$ is a norm on E / F.
ii. Let $\varphi: E \rightarrow \mathbb{R}$ be a linear functional for which $\operatorname{ker} \varphi \subseteq_{C} E$. If $\varphi \equiv 0, \varphi$ is clearly continuous. Otherwise, $\varphi(E)=\mathbb{R}$. Indeed, let $x \in \mathbb{R}$. If $\varphi(\mathbf{u})=1$ for some $\mathbf{u} \in E$, then $x \mathbf{u} \in E, \varphi(x \mathbf{u})=x$ and φ is onto. Let $\eta: E \rightarrow E / \operatorname{ker} \varphi$ be the canonical surjection $\eta(\mathbf{u})=\mathbf{u}+\operatorname{ker} \varphi$. By the Isomorphism Theorem for vector spaces, it is possible to factor $\varphi=\psi \circ \eta$, where $\psi: E / \operatorname{ker} \varphi \rightarrow \mathbb{R}$ is linear.

According to Corollary $143, \psi$ is thus continuous, being linear. If N is the norm defined in (b)i. with $F=\operatorname{ker} \varphi$, we have

$$
N([\mathbf{x}]-[\mathbf{y}])=N([\mathbf{x}-\mathbf{y}]) \leq\|\mathbf{x}-\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in E
$$

and so η is continuous Thus, ϕ is continuous being the composition of two continuous functions.
3. If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define $\|\mathbf{x}\|_{\infty}=\sup \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$. Show that $\mathbf{x} \mapsto\|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^{n}.

Proof: There are 4 conditions to verify:
a) $\|\mathbf{x}\|_{\infty}=\sup \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} \geq 0$ is clear since $\left|x_{i}\right| \geq 0$ for all i.
b) $\|\mathbf{x}\|_{\infty}=0 \Longleftrightarrow \sup \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}=0 \Longleftrightarrow\left|x_{i}\right|=0, \forall i \Longleftrightarrow$ $x_{i}=0, \forall i \Longleftrightarrow \mathbf{x}=\mathbf{0}$.
c) If $a \in \mathbb{R}$, then

$$
\|a \mathbf{x}\|_{\infty}=\sup \left\{\left|a x_{1}\right|, \ldots,\left|a x_{n}\right|\right\}=|a| \sup \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}=|a|\|\mathbf{x}\|_{\infty}
$$

d) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|_{\infty} & =\sup \left\{\left|x_{1}+y_{1}\right|, \ldots,\left|x_{n}+y_{n}\right|\right\} \leq \sup \left\{\left|x_{1}\right|+\left|y_{1}\right|, \ldots,\left|x_{n}\right|+\left|y_{n}\right|\right\} \\
& \leq \sup \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}+\sup \left\{\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right\}=\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty}
\end{aligned}
$$

Thus, $\mathbf{x} \rightarrow\|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^{n}.
4. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and define the inner product $(\mathbf{x} \mid \mathbf{y})=x_{1} y_{1}+\cdots+x_{n} y_{n}$. As seen in the notes, this inner product defines a norm $\|\mathbf{x}\|=\sqrt{(\mathbf{x} \mid \mathbf{x})}$. Show the Parallelogram Identity: $\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=2\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Proof: We have

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2} & =(\mathbf{x}+\mathbf{y} \mid \mathbf{x}+\mathbf{y})+(\mathbf{x}-\mathbf{y} \mid \mathbf{x}-\mathbf{y}) \\
& =(\mathbf{x} \mid \mathbf{x})+2(\mathbf{x} \mid \mathbf{y})+(\mathbf{y} \mid \mathbf{y})+(\mathbf{x} \mid \mathbf{x})-2(\mathbf{x} \mid \mathbf{y})+(\mathbf{y} \mid \mathbf{y}) \\
& =2(\mathbf{x} \mid \mathbf{x})+2(\mathbf{y} \mid \mathbf{y})=2\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)
\end{aligned}
$$

Now, consider a parallelogram with vertices $\mathbf{0}, \mathbf{x}, \mathbf{y}, \mathbf{x}+\mathbf{y}$. Then the sum of squares of the lengths of the four sides is $2\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$, while the sum of squares of the diagonals is $\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}$.
5. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Is it true that $\|\mathbf{x}+\mathbf{y}\|_{\infty}=\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty}$ if and only if $\mathbf{x}=c \mathbf{y}$ or $\mathbf{y}=c \mathbf{x}$ for some $c \geq 0$?

Proof: No. Consider the following example in \mathbb{R}^{2} : let $\mathbf{x}=(1,0)$ and $\mathbf{y}=(1,1)$. Then $\mathbf{x}+\mathbf{y}=(2,1)$ and $\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty}=\|\mathbf{x}+\mathbf{y}\|_{\infty}=2$, but $\mathbf{x} \neq c \mathbf{y}$ for any $c \in \mathbb{R}$.

10.2 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.
2. Show that $\|A\|_{\infty},\|A\|_{1}$, and $\|A\|_{2}$ (from the first page of this chapter) define norms over $\mathbb{M}_{m, n}(\mathbb{K})$.
3. Show that the induced p-norm is a norm on $\mathbb{M}_{m, n}(\mathbb{K})$ for all $p \geq 1$.
4. Prove Proposition 139.
5. Show that all isometries are continuous.
6. Prove Corollary 145.
7. Prove Corollary 146.
8. Let E be a normed vector space with a countably infinite basis. Show that E cannot be complete.
9. Let E be an infinite-dimensional normed vector space over \mathbb{R}. Show that $D(\mathbf{0}, 1)$ is not compact in E by showing that it is not pre-compact in E (by what name is this result usually known?).
