
Chapter 10

Normed Vector Spaces

The main objective of this chapter is to show that linear transformations
of inite-dimensional normed vector spaces overK are continuous.

Normswere introduced in chapter 8; we provided a family of examples, the p−norms onKn.
Let p ≥ 1 andA ∈Mm,n(K), the setMm,n(K) of matrices of sizem× nwith entries inK. The
induced p−norm onMm,n(K) is given by

∥A∥p = sup
∥x∥p≤1

{∥Ax∥p} .

It is easy to show that:

∥A∥∞ = max
1≤i≤m

{ n∑
j=1

|aij|
}
, ∥A∥1 = max

1≤j≤n

{ m∑
i=1

|aij|
}
, ∥A∥2 = largest singular value of A.

Anormed vector space (E, ∥·∥E) is a vector space (E,+, ·,0E) overK endowedwith a norm
∥ · ∥E; with matrix addition and multiplication by a scalar, the set Mm,n(K) is such a space
for any of the induced p−norms. A normed vector space’s operations behave as well as they
could be hoped to, under the circumstances.

aaaaaa

Proposition 139
LetE be a normed vector space overK. The maps+ : E×E → E and · : K×E → E
are continuous.

Proof: left as an exercise. ■

Inwhat follows, let (E, ∥·∥E) and (F, ∥·∥F )benormedvector spaces overK. AmapT : E → F
is linear if

T (0E) = 0F and T (ax+ by) = aT (x) + bT (y), ∀a, b ∈ K, x, y ∈ E.

The set of all linear maps from E to F is denoted by L(E,F ). For instance, if E = Kn and
F = Km, then L(E,F ) ≃Mm,n(K).
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Theorem 140
Let (E, ∥ ·∥E) and (F, ∥ ·∥F ) be two normed vector spaces overK and let f ∈ L(E,F ).
The following conditions are equivalent:

1. f is continuous over E

2. f is continuous at 0 ∈ E

3. f is bounded overB(0, 1)

4. f is bounded over S(0, 1)

5. ∃M > 0 such that ∥f(x)∥F ≤M∥x∥E for all x ∈ E.

6. f is Lipschitz continuous

7. f is uniformly continuous

Proof: the implications 1. =⇒ 2., 3. =⇒ 4., 5. =⇒ 6. =⇒ 7. =⇒ 1. are clear.

2. =⇒ 3.: Let ε = 1. By continuity at 0, ∃δ > 0 such that

∥f(x)− f(0)∥F = ∥f(x)∥F ≤ 1

whenever ∥x− 0∥E = ∥x∥E ≤ δ. Now, let y ∈ B(0, 1). Since f is linear, we have

∥f(y)∥F = ∥f(1
δ
δy)∥F = 1

δ
∥f(δy)∥F .

Since ∥δy∥E ≤ δ∥y∥E ≤ δ. Consequently, ∥f(δy)∥F ≤ 1 and

∥f(y)∥F = 1
δ
∥f(δy)∥F ≤ 1

δ
.

But y ∈ B(0, 1) is arbitrary, so that f is bounded by 1
δ
overB(0, 1).

4. =⇒ 5.: Since f is bounded over S(0, 1), ∃N > 0 such that ∥f(x)∥F ≤ N
whenever ∥x∥E = 1. Suppose y ̸= 0E ∈ E. Then, since f is linear we have

∥f(y)∥F =
∥∥∥f (∥y∥E y

∥y∥E

)∥∥∥
F
= ∥y∥E

∥∥∥f ( y
∥y∥E

)∥∥∥
F
. (10.1)

However,
∥∥∥ y
∥y∥E

∥∥∥
E
= 1 so that

∥∥∥f ( y
∥y∥E

)∥∥∥
F
≤ N .

Substituting this last result in (10.1), we get that ∥f(y)∥F ≤ N∥y∥E for all
0 ̸= y ∈ E. When y = 0, the inequality remains valid since f(0E) = 0F and
0 = ∥0F∥F ≤ N∥0E∥E = 0. This completes the proof. ■
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If f ∈ L(E,F ) is also continuous (that is, if f ∈ Lc(E,F )), it then makes sense to de ine
∥f∥ = sup

∥x∥E=1

{∥f(x)∥F} = sup
∥x∥E≤1

{∥f(x)∥F} .

With this de inition, (Lc(E,F ), ∥ · ∥) is a normed vector space. Furthermore, if f ∈ Lc(E,F )
and g ∈ Lc(F,G) then g ◦ f ∈ Lc(E,G) and we have

∥(g ◦ f)(x)∥ = ∥g(f(x))∥ ≤ ∥g∥∥f(x)∥ ≤ ∥g∥∥f∥∥x∥ ≤M∥x∥
for some M > 0 and for all x ∈ E. In particular, ∥f ◦ g∥ ≤ ∥f∥∥g∥. The composition thus
de ines a kind of multiplication on Lc(E,E); together with this multiplication, Lc(E,E) is a
normed algebra.

aaaaaa

Theorem 141
If F is a Banach space overK, then so is Lc(E,F ).

Proof: let (fn)n∈N be a Cauchy sequence in Lc(E,F ). For all x ∈ E, (fn(x))n∈N is a
sequence in F . Fix such an x. Thus, for all p, q ∈ N,

∥fp(x)− fq(x)∥F = ∥(fp − fq)(x)∥F ≤ ∥fp − fq∥∥x∥E.

Let ε > 0. Since (fn) is a Cauchy sequence in Lc(E,F ), ∃M ∈ N such that
∥fp−fq∥F ≤ εwhenever p, q > M . As a result, ∥fp(x)−fq(x)∥F < ε∥x∥E whenever
p, q > M , so that (fn(x))n∈N is a Cauchy sequence in F .

But F is complete so that fn(x) → f(x) ∈ F for all x ∈ E, which de ines a
map f : E → F . It remains only to show that f ∈ Lc(E,F ) and that fn → f in
(Lc(E,F ), ∥ · ∥). The map f is linear as

f(ax+ by) = lim
n→∞

fn(ax+ by) = lim
n→∞

[afn(x) + bfn(y)] = af(x) + bf(y)

for all x, y ∈ E, a, b ∈ K. Furthermore, f is continuous since, as the Cauchy
sequence (fn) is necessarily bounded, ∃N > 0 such that ∥fn∥ ≤ N . Fix x ∈ E to get
∥fn(x)∥F ≤ N∥x∥E for all n. As n→∞, we see that ∥f(x)∥F ≤ N∥x∥E .

Finally, we need to show that fn → f in Lc(E,F ). Let ε > 0. Since (fn) is a
Cauchy sequence in Lc(E,F ), ∃K > 0 such that ∥fp − fq∥ < ε whenever p, q > K .
Now, ix x ∈ E. Then,

∥fp(x)− fq(x)∥F ≤ ∥fp − fq∥∥x∥E < ε∥x∥E

whenever p, q > N . If we ix p and let q →∞, then we have

∥fp(x)− f(x)∥F < ε∥x∥E

whenever p > N . Since this holds for all x ∈ E, we have ∥fp − f∥ ≤ ε for all p > N ,
i.e. fn → f in Lc(E,F ). ■
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We have seen that the metrics dp are equivalent inKn, for p ≥ 1. Can the same be said about
the norms? In fact, we can say evenmore: not only are the p−norms equivalent, but all norms
onKn are equivalent.

aaaaaa

Proposition 142
Let E be a inite dimensional vector space overK. All norms on E are equivalent.

Proof: suppose dimK(E) = n < ∞. If {e1, . . . , en} is a basis of E, any x ∈ E can
be written uniquely as a linear combination x =

∑n
i=1 xiei. It is easy to see that the

functionN0 : E → R, where

N0(x) = ∥φ(x)∥∞ = ∥(x1, . . . , xn)∥∞ = sup{|xi| | i = 1, . . . , n},

de ines a norm on E. LetN : E → R be any norm on E and set a =
∑n

i=1N(ei). If
x ∈ E, we have:

N(x) = N

(
n∑

i=1

xiei

)
≤

n∑
i=1

N(xiei) ≤
n∑

i=1

|xi|N(ei) ≤ sup
i=1,...,n

{|xi|}
n∑

i=1

N(ei) = N0(x) · a

so thatN(x) ≤ aN0(x) for all x ∈ E.

But the map φ : (E,N0) → (Kn, ∥ · ∥∞) is an isometry since N0(x) = ∥x∥∞
for all x ∈ E, which means that it must be continuous (why?). Since

S̃ = {(x1, . . . , xn) ∈ Kn | ∥(x1, . . . , xn)∥∞ = 1} ⊆K Kn,

then S = φ−1(S̃) = {x ∈ E|N0(x) = 1} ⊆K E; the norm N : (E,N0) → (R, | · |)
is also a continuous function – according to the max/min theorem, ∃x∗ ∈ S such
that N(x∗) = infx∈S{N(x)}. Clearly, N(x∗) ̸= 0; otherwise we have x∗ = 0, which
contradicts the fact that x ∈ S asN0(x∗) = N0(0) = 0 ̸= 1. Hence infx∈S{N(x)} > 0.

Write infx∈S{N(x)} = 1/b for the appropriate b > 0. If x = 0 ∈ E, then

N(x) = N(0) = 0 ≥ 0 =
1

b
N0(0) =

1

b
N0(x).

If x ̸= 0 ∈ E, then x
N0(x) ∈ S and

N(x) = N

(
N0(x)

x
N0(x)

)
= N0(x)N

(
x

N0(x)

)
≥ N0(x) ·

1

b
.

In both cases,N0(x) ≤ bN(x) for all x ∈ E, and so any normN onE is equivalent to
the normN0. By transitivity, any such norms are then equivalent to one another. ■

In general, this result is not valid if E is in inite-dimensional.
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aaaaaa

Corollary 143
Let E be a inite-dimensional vector space over K and let (F, ∥ · ∥F ) be any normed
vector space overK. If f : E → F is a linear mapping, then f is continuous.

Proof: Let {e1, . . . , en} be a basis of E. For any x ∈ E, we have

∥f(x)∥F = ∥f (
∑
xiei)∥F = ∥

∑
xif(ei)∥F

≤
∑
|xi|∥f(ei)∥F ≤ N0(x) ·

∑
∥f(ei)∥F := aN0(x).

Then for any ε > 0, ∃δ = ε
a
such that

∥f(x)− f(y)∥F = ∥f(x− y)∥F ≤ aN0(x− y) < aδ = ε

wheneverN0(x− y) < δ, and so f is continuous. ■

This leads to a series of useful results.

aaaaaa

Corollary 144
Any inite-dimensional vector space overK is a Banach space.

Proof: this is an easy consequence of the facts that the map

φ : (E,N0)→ (Kn, ∥ · ∥∞)

is an isometry and that (Kn, ∥ · ∥∞) is a Banach space. ■

aaaaaa Corollary 145
Any inite-dimensional subspace of a normed vector space overK is closed.

aaaaaa
Corollary 146
The compact subsets of a inite-dimensional normed vector are the subsets that are
both closed and bounded under the norm.

10.1 Solved Problems
1. Let E be a normed vector space over R and A,B ⊆ E. Denote

A+B = {a+ b | (a,b) ∈ A×B}.

a) IfA ⊆O E, show that A+B ⊆O E.
b) If A ⊆K E and B ⊆C E, show that A+ B ⊆C E. Is the result still true if A is only

assumed to be closed in E?

P. Boily (uOttawa) 263



10.1. SOLVED PROBLEMS

Proof:

a) We can write
A+B =

∪
b∈B

(A+ {b}).

IfA ⊆O E, we obviously haveA+ {b} ⊆O E for any b ∈ B.

Indeed, if B(x, ρ) ⊆ A, then B(x + b, ρ) ⊆ A + {b}. Thus A + B is a union
of open sets: as a result,A+B ⊆O E.

b) Let (zn) = (xn+yn) ⊆ A+B be such that zn → zwhere (xn) ⊆ A and (yn) ⊆ B.
SinceA ⊆K E, there is a convergent subsequence (xφ(n))with xφ(n) → x ∈ A.

Since (zφ(n)) converges to z, the sequence (yφ(n)) ⊆ B converges to y = z − x.
ButB ⊆C E so that y ∈ B. Thus, z = x+ y ∈ A+B, which proves the desired
result. If A is only closed (and not compact), the result is false in general. Let
E = R2, A = {(x, ex) | x ∈ R} and B = R × {0}. Both A,B ⊆C R2 but
A+B = R× (0,∞) is not closed in R2. ■ ■

2. Let E be a normed vector space over R and φ : E → R be a linear functional on E.

a) Show directly that φ is continuous on E if and only if kerφ ⊆C E.
b) i. Let F be a subspace of E. Show that the mapN : E/F → R de ined by

N([x]) = inf
y∈[x]
{∥y∥}

is a semi-norm on the quotient space E/F . What can you say if F ⊆C E?
ii. Show part a) again, this time using part b)i.

Proof:

a) If φ is continuous, then kerφ = φ−1({0}) ⊆C E since {0} ⊆C R.

Conversely, suppose that kerφ ⊆C E. If φ is not continuous, φ is unbounded
on the unit sphere S(0, 1). Thus, ∃(xn) ⊆ E such that ∥xn∥ = 1 for all n ∈ N
and for which |φ(xn)| → ∞. Let u ∈ E be such that φ(u) = 1: such a u ∈ E
necessarily exists because φ is linear. Indeed, if 0 ̸= φ(w) = r ∈ R, thenw ̸= 0.
Set u = w

φ(w) . Then

φ(u) = φ

(
w

φ(w)

)
=

1

φ(w)
φ(w) = 1.

For any n ∈ N, set un = u− xn
φ(xn) . Then

φ(un) = φ(u)− φ
(

xn
φ(xn)

)
= φ(u)− φ(xn)

φ(xn)
= φ(un)− 1 = 0,
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whence un ∈ kerφ for all n ∈ N. Note that un = u − xn
φ(xn) → u since

|φ(xn)| → ∞ and ∥xn∥ = 1 for all n. Since kerφ, the limit u ∈ kerφ, i.e.
φ(u) = 0. But this contradicts the fact that φ(u) = 1. Hence φ is continuous.

b) i. Let x ∈ E and λ ∈ R. Recall that [x] = x+ F . Since [λx] = λ[x], we have

N(λ[x]) = |λ|N([x]).

It remains only to show thatN satis ies the triangle inequality.
Let x, y ∈ E. For any u, v ∈ F , we have

N([x+ y]) ≤ ∥(x+ y) + (u+ v)∥ ≤ ∥x+ u∥+ ∥y+ v∥.

Thus

N([x+ y]) ≤ inf
u,v∈F

{∥x+ u∥+ ∥y+ v∥}

≤ inf
u∈F
{∥x+ u∥}+ inf

v∈F
{∥y+ v∥} = N([x]) +N([y]).

As such,N is a semi-normonE/F . Since [x] = x+F for all x ∈ E,N([x]) =
infy∈F {∥x− y∥} = d(x, F ). As a result, if F ⊆C E,N([x]) = 0 if and only if
x ∈ F , i.e. [x] = 0. Consequently, if F ⊆C E,N is a norm onE/F .

ii. Let φ : E → R be a linear functional for which kerφ ⊆C E. If φ ≡ 0, φ is
clearly continuous. Otherwise,φ(E) = R. Indeed, let x ∈ R. Ifφ(u) = 1 for
some u ∈ E, then xu ∈ E, φ(xu) = x and φ is onto. Let η : E → E/ kerφ
be the canonical surjection η(u) = u+kerφ. By the IsomorphismTheorem
for vector spaces, it is possible to factorφ = ψ ◦ η, where ψ : E/ kerφ→ R
is linear.

According to Corollary 143, ψ is thus continuous, being linear. If N is the
norm de ined in (b)i. with F = kerφ, we have

N([x]− [y]) = N([x− y]) ≤ ∥x− y∥ ∀x, y ∈ E

and so η is continuous Thus, ϕ is continuous being the composition of two
continuous functions. ■

3. If x = (x1, . . . , xn) ∈ Rn, de ine ∥x∥∞ = sup{|x1|, . . . , |xn|}. Show that x 7→ ∥x∥∞
de ines a norm on Rn.

Proof: There are 4 conditions to verify:
a) ∥x∥∞ = sup{|x1|, . . . , |xn|} ≥ 0 is clear since |xi| ≥ 0 for all i.
b) ∥x∥∞ = 0⇐⇒ sup{|x1|, . . . , |xn|} = 0⇐⇒ |xi| = 0, ∀i⇐⇒

xi = 0, ∀i⇐⇒ x = 0.
c) If a ∈ R, then

∥ax∥∞ = sup{|ax1|, . . . , |axn|} = |a| sup{|x1|, . . . , |xn|} = |a|∥x∥∞.
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d) Let x, y ∈ Rn. Then
∥x+ y∥∞ = sup{|x1 + y1|, . . . , |xn + yn|} ≤ sup{|x1|+ |y1|, . . . , |xn|+ |yn|}

≤ sup{|x1|, . . . , |xn|}+ sup{|y1|, . . . , |yn|} = ∥x∥∞ + ∥y∥∞.

Thus, x→ ∥x∥∞ de ines a norm on Rn. ■

4. Let x, y ∈ Rn and de ine the inner product (x | y) = x1y1 + · · · + xnyn. As seen in
the notes, this inner product de ines a norm ∥x∥ =

√
(x | x). Show the Parallelogram

Identity: ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2), ∀x, y ∈ Rn.

Proof: We have
∥x+ y∥2 + ∥x− y∥2 = (x+ y | x+ y) + (x− y | x− y)

= (x | x) + 2(x | y) + (y | y) + (x | x)− 2(x | y) + (y | y)
= 2(x | x) + 2(y | y) = 2(∥x∥2 + ∥y∥2)

Now, consider a parallelogram with vertices 0, x, y, x + y. Then the sum of squares
of the lengths of the four sides is 2(∥x∥2 + ∥y∥2), while the sum of squares of the
diagonals is ∥x+ y∥2 + ∥x− y∥2. ■

5. Let x, y ∈ Rn. Is it true that ∥x+ y∥∞ = ∥x∥∞ + ∥y∥∞ if and only if x = cy or y = cx for
some c ≥ 0?

Proof: No. Consider the following example in R2: let x = (1, 0) and y = (1, 1). Then
x+ y = (2, 1) and ∥x∥∞ + ∥y∥∞ = ∥x+ y∥∞ = 2, but x ̸= cy for any c ∈ R. ■

10.2 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.
2. Show that ∥A∥∞, ∥A∥1, and ∥A∥2 (from the irst page of this chapter) de ine norms over
Mm,n(K).

3. Show that the induced p−norm is a norm onMm,n(K) for all p ≥ 1.
4. Prove Proposition 139.
5. Show that all isometries are continuous.
6. Prove Corollary 145.
7. Prove Corollary 146.
8. Let E be a normed vector space with a countably in inite basis. Show that E cannot be

complete.
9. LetE be an in inite-dimensional normed vector space overR. Show thatD(0, 1) is not

compact in E by showing that it is not pre-compact in E (by what name is this result
usually known?).
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