
Chapter 11

Sequences of Functions in Metric Spaces

In this chapter, we study properties of sequences and series of functions,
extending Chapters 5 and 6 to general metric spaces and provide impor-
tant Fourier analysis results.

The symbol K is used to denote either R or C; Cℓ(X,K) represents the K−vector space of ℓ
times continuously differentiable functions X → K; F(X,K), the K−vector space of func-
tionsX → K;R(X,K), theK−vector spaceofRiemann-integrable functionsX → K, Cc(R,C)
is the set of continuous functionsR→ Cwith compact support,¹ andB(X,K), theK−vector
space of bounded functionsX → K.

11.1 Uniform Convergence
LetX be a set and let (E, d) be a metric space. A sequence (fn)n∈N of functions fn : X → E
is said to converge pointwise to a function f : X → E (denoted by fn → f on X) if
fn(x)→ f(x) for all x ∈ X .

Symbolically, fn → f onX if
∀ε > 0,∀x ∈ X, ∃N = Nε,x such that n > N =⇒ d(fn(x), f(x)) < ε

(note the explicit dependence ofN on x).

As we have discussed in Chapters 5 and 6, pointwise convergence is quite often not strong
enough of a property for our needs. Consequently, we introduce a second kind of conver-
gence: the sequence (fn) is said to converge uniformly to a function f : X → E (denoted
by fn ⇒ f onX) if we can remove the explicit dependence ofN on x.

Symbolically, fn ⇒ f onX if
∀ε > 0,∃N = Nε such that n > N =⇒ sup

x∈X
{d(fn(x), f(x))} < ε.

¹That is, functions taking on the value 0 outside of some compact subsetK ⊆ R.
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Examples

1. Let (E, d) = (R, | · |), X = [0, 1] and fn : X → E be de ined by fn(x) = xn.
Then fn → f on X , where f : X → E is given by f(x) = 0 if x ̸= 1 and
f(1) = 1. Note that f is not continuous on X , even though each of the fn is
continuous.

The sequence (fn) in black, the limit f in red.

2. With the de initions as in the last example, fn ̸⇒ f onX . Indeed,

sup
x∈[0,1]

{d(fn(x), f(x))} = sup
x∈[0,1]

{|xn|} = 1n = 1,

which can never be smaller than any 1 > ε > 0.

However, fn ⇒ f on [0, a] for all a ∈ [0, 1) (see Chapter 5).

Theorem 66 generalizes to metric spaces as one would expect.

aaaaaa

Proposition 147 (C ' C S F )
Let (E, d) be a complete metric space and (fn) be a sequence of functions fn : X → E.
Then, fn ⇒ f onX if and only if

∀ε > 0,∃N = Nε > 0 s.t. n,m > N =⇒ sup
x∈X
{d(fn(x), fm(x))} < ε.

268 Analysis and Topology Course Notes



CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

aaaaaa

Proof: suppose that fn ⇒ f onX and let ε > 0. By hypothesis, ∃N1, N2 such that

sup
x∈X
{d(fn(x), f(x))} <

ε

2
, sup

x∈X
{d(fm(x), f(x))} <

ε

2

whenever n > N1 and n > N2. SetN = max{N1, N2}.

Then, whenever n,m > N , we have

sup
x∈X
{d(fn(x), fm(x))} ≤ sup

x∈X
{d(fn(x), f(x)) + d(fm(x), f(x))}

≤ sup
x∈X
{d(fn(x), f(x))}+ sup

x∈X
{d(fm(x), f(x))} < ε.

Conversely, suppose that the ε−statement holds. Then, for any x ∈ X , (fn(x)) is
a Cauchy sequence in E and thus converges to a f(x) ∈ E, as E is complete. As a
result, fn → f onX . It remains to show that fn ⇒ f onX .

Let ε > 0. By hypothesis, ∃N > 0 such that supx∈X{d(fn(x), fm(x))} < ε
2

whenever n,m > N . Now, ix n > N and let

am(x) = d(fn(x), fm(x)) and a(x) = d(fn(x), f(x)).

Then am(x) → a(x) Since am(x) < ε
2
for all x ∈ X , then a(x) ≤ ε

2
for all x ∈ X .

Hence,
sup
x∈X
{d(fn(x), f(x))} ≤ sup

x∈X
{a(x)} ≤ ε

2
< ε.

As such, fn ⇒ f onX . ■

Series of Functions

Similar notions exist for series of functions. Let (E, d) be a metric space and let (un) be a
sequence of functions un : X → E. For anym ∈ N, de ine the partial sum fm : X → E by

fm(x) = u1(x) + · · ·+ um(x) =
m∑

n=1

un(x).

The sequence (fm) is the series generated by (un), and it is usually denoted by
∑
n∈N

un.

If fm → f on X , we say that the series converges (pointwise) on X; if fm ⇒ f on X ,
we say that the series converges uniformly on X . In both cases, f is said to be the sum of
the series. If (fm) does not converge, we say that the series diverges.

Finally, let E be a Banach space and let (gn) be a sequence of functions gn ∈ B(X,E). The
series∑ gn converges absolutely onX if∑ ∥gn∥∞ converges.²

²There is no need to stipulate the type of convergence in the latter case, since that is a numerical series.
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Proposition 148
If
∑
gn converges absolutely onX , then

∑
gn converges uniformly onX .

Proof: according to the Cauchy criterion, it suf ices to show that ∀ε > 0,
∃N ∈ N such that ∥∥∥ m∑

k=n

gk

∥∥∥
∞
< ε.

But according to the triangle inequality,∥∥∥ m∑
k=n

gk

∥∥∥
∞
≤

m∑
k=n

∥gk∥∞.

Since∑ gk converges absolutely, ∀ε > 0, ∃N > 0 such that
m∑

k=n

∥gk∥∞ < ε

whenever n > N . ■

11.1.1 Properties
The two main types of convergence are not created equal, however. We establish the superi-
ority of uniform convergence over pointwise convergence in a series ofwell-known theorems
(which all have counterparts in Chapter 5).

aaaaaa

Theorem 149
Let (E, d) and (F, d̃) be metric spaces. If (fn) ⊆ C(E,F ) is such that fn ⇒ f on E,
then f ∈ C(E,F ).

Proof: let ε > 0 and x0 ∈ E.

Since fn ⇒ f on E, then ∃n > N for which supx∈E{d(fn(x), f(x))} < ε
3
.

Furthermore, since fn is continuous at x0, ∃δ > 0 such that

d̃(fn(x), fn(x0)) <
ε

3
whenever d(x, x0) < δ.

Then

d̃(f(x), f(x0)) = d̃(f(x), fn(x)) + d̃(fn(x), fn(x0)) + d̃(fn(x0), f(x))

<
ε

3
+
ε

3
+
ε

3
= ε

whenever d(x, x0) < δ, hence f is continuous at x0. ■
We have already seen an example showing that this may not hold for pointwise convergence.
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Theorem 150 (L I ; R -I F )
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f on [a, b],
and if fn is Riemann-integrable over [a, b] for all n, then f is Riemann-integrable and∫ b

a
fn(x) dx→

∫ b

a
f(x) dx.

Proof: left as an exercise (see Chapter 5). ■

Although, the fact that the limit interchange is not necessarily valid if fn → f instead of
fn ⇒ f on [a, b] could be seen as an indictment of the Riemann integral rather than as an
indictment of pointwise convergence. In chapter 21, we will take the former position and in-
troduce the Lebesgue (Borel) integral to circumvent this dif iculty.

The next result is a companion to Theorem 150.

aaaaaa

Theorem 151 (L I ; F T )
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f on [a, b],
and if fn is Riemann-integrable over [a, b] for all n, then f is Riemann-integrable
according to Theorem 150. De ine Fn, F : [a, b] → E by Fn(x) =

∫ x

a
fn(t) dt and

F (x) =
∫ x

a
f(t) dt. Then Fn ⇒ F on [a, b].

Proof: let ε > 0.

Since fn ⇒ f on [a, b], ∃N ∈ N such that ∥f − fn∥∞ < ε
2(b−a)

whenever
n > N . Now,

∥Fn(x)− F (x)∥ =
∥∥∥∥∫ x

a

(fn(t)− f(t)) dt
∥∥∥∥ ≤ ∫ x

a

∥fn(t)− f(t)∥ dt

≤
∫ x

a

∥fn − f∥∞ dt <
ε

2(b− a)
(x− a) ≤ ε

2(b− a)
(b− a) = ε

2
.

Since this is true for all x ∈ [a, b], then ∥Fn−F∥∞ ≤ ε
2
< ε. By the Cauchy criterion,

Fn ⇒ F on [a, b]. ■

Theorem 151 has an interesting corollary when applied to series, which is often assumed to
hold (without proof) when solving differential equations.

aaaaaa

Theorem 152 Let (E, ∥ · ∥) be a Banach space and let∑ gn be a series of functions
inR([a, b], E). If∑ gn is uniformly convergent, then∫ b

a

(∑
n∈N

gn(t)

)
dt =

∑
n∈N

(∫ b

a

gn(t) dt

)
.

Proof: this is a direct consequence of Theorem 151. ■
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We have not de ined differentiability of functions R → E in a general normed vector space
E, but we can use functions R → Kn as a template: a function f : R → Kn is differentiable
at t if

f ′(t) = lim
h→0

f(t+ h)− f(t)
h

exists; it is differentiable overR if it is differentiable at all t ∈ R. Differentiability is also the
subject of a limit interchange theorem.

aaaaaa

Theorem 153 (L I ; D F )
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ C1([a, b], E) is such that fn(x0) → f(x0)
for some x0 ∈ [a, b] and if ∃g ∈ C([a, b], E) such that f ′

n ⇒ g on [a, b], then
∃f ∈ C1([a, b], E) such that fn ⇒ f on [a, b] and f ′ = g.

Proof: according to the fundamental theorem of calculus, for all n ∈ N we
have fn(x)− fn(a) =

∫ x

a
f ′
n(t) dt. Since f ′

n ⇒ g, then

fn(x)− fn(a) =
∫ x

a

f ′
n(t) dt⇒

∫ x

a

g(t) dt on [a, b],

according to Theorem 150. In particular, the sequence (fn(x0) − f(a))n converges,
which implies that (fn(a))n converges to some ℓ ∈ E. It is easy to show that fn ⇒ f ,
where f : [a, b]→ E is de ined by

f(x) = ℓ+

∫ x

a

g(t) dt.

Since all the fn are continuous and the convergence is uniform, then f is continu-
ous. It is also differentiable, and its derivative is continuous as f ′ = g ∈ C([a, b], E)
(again, according to the fundamental theorem of calculus). ■

We can use these theorems to compute various quantities that would be dif icult to compute
directly.

aaaaaa

Examples

1. Compute
∫∞
0
f(x) dx, where f(x) = x2

exp(x)−1
.

Solution: consider (gn) ⊆ C(R+,R+) de ined by gn(x) = exp(−nx)x2
for all n ∈ N×. Then∑ gn converges pointwise to f : R+ → R+.
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Indeed,
m∑

n=1

gn(x) = x2

(
m∑

n=1

exp(−nx)
)

= x2

(
m∑

n=1

(exp(−x))n
)

= x2
(exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)
≤ f(x),

since exp(−x) < 1 for all x ∈ R+.

Then,
∑
n∈N×

gn(x) = lim
m→∞

m∑
n=1

gn(x) = lim
m→∞

x2
(exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)
=

x2

exp(x)− 1
.

Furthermore,∑ gn converges absolutely to f on [a, b] ⊆ (0,∞).

Indeed, for all x ∈ [a, b], we have |gn(x)| ≤ exp(−na)b2. Note that∑
n∈N×

exp(−na)b2 = b2
∑
n∈N×

(exp(−a))n =
b2

exp(a)− 1
, since a > 0.

Hence ∑
n∈N× exp(−na)b2 converges and so, according to Exercise 1,∑

gn is absolutely convergent.

Since
∫∞
0
f(t) dt converges (use the Comparison Theorem with exp(−√x),

for instance), then, according to Theorem 152,∫ ∞

0

f(t) dt =

∫ ∞

0

(∑
n∈N×

gn(t)

)
dt =

∑
n∈N×

(∫ ∞

0

gn(t) dt

)

Repeated integration by parts shows that
∫∞
0
gn(t) dt =

2
n3 , so that∫ ∞

0

x2

exp(x)− 1
dx = 2

∑
n∈N×

1

n3
= 2ζ(3). ■
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2. Show that uniform convergence is not equivalent to absolute convergence.

Proof: it will be suf icient to exhibit a series which is uniformly conver-
gent but not absolutely convergent. Consider (uk) a series of constant
functions from an interval I to R de ined by uk(x) = (−1)k

k
for all x ∈ I .

Since ∥uk∥∞ = 1
k
, and since ∑ 1

k
diverges (it is the harmonic series,

after all), then∑uk is not absolutely convergent. However,∥∥∥∥∥
m∑

k=n

uk

∥∥∥∥∥
∞

=

∣∣∣∣∣
m∑

k=n

(−1)k

k

∣∣∣∣∣ ≤ 1

n
→ 0 as n,m→∞,

so that∑uk is uniformly convergent. ■

11.1.2 Abel’s Criterion
In calculus courses and in Chapters 5 and 6, we have seen a number of tests can be used to
gauge the convergence of series (whether numerical series or series of functions):

p−test;
comparison test;
alternating series test;
integral test;
d’Alembert test (also known as the ratio test), or
Cauchy test (also known as the root test).

In this section, we present a new test.

aaaaaa

Proposition 154 (A ' C )
Let (an) ⊆ E, where E is a Banach space over R. If we can write an = εnbn with

1. εn ↘ 0 a sequence in R, and

2. ∃σ ∈ R such that ∥
∑

n≤N bn∥ ≤ σ for allN ∈ N.

Then
∑

an is pointwise convergent and ∥
∑

n≥N an∥ ≤ 2σεN for allN ∈ N.

Proof: for any q > p, let Sq
p = bp+1 + · · · + bq . Since Sq

p =
∑

n≤q bn −
∑

n≤p bn, we
have

∥∥Sq
p

∥∥ ≤ 2σ. If we write

bp+1 = Sp+1
p , bp+2 = Sp+2

p − Sp+1
p , · · · , bq = Sq

p − Sq−1
p ,
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then
εp+1bp+1 + · · ·+ εqbq = εp+1S

p+1
p + εp+2

(
Sp+2
p − Sp+1

p

)
+ · · ·+ εq

(
Sq
p − Sq−1

p

)
= Sp+1

p (εp+1 − εp+2) + · · ·+ Sq−1
p (εq−1 − εq) + εqS

q
p ,

whence∥∥∥ q∑
k=p+1

ak
∥∥∥ = ∥εp+1bp+1 + · · ·+ εqbq∥

≤
∥∥Sp+1

p

∥∥ |εp+1 − εp+2|+ · · ·+
∥∥Sq−1

p

∥∥ |εq−1 − εq|+ |εq|
∥∥Sq

p

∥∥
≤ 2σ (εp+1 − εp+2) + · · ·+ 2σ (εq−1 − εq) + 2σεq

= 2σεp+1 → 0 as p, q →∞

Hence,∑ ak converges by the Cauchy Criterion. ■

We can easily generalize this result to sequences of functions.

aaaaaa

Proposition 155 (A ' C (R ))
Let
∑
fn be such that fn = εngn ∈ F([a, b], E), where E is a Banach space over R. If

1. εn(x)↘ 0 for all x ∈ [a, b];

2. ∃σ ∈ R such that ∥
∑

n≤N gn(x)∥ ≤ σ for allN ∈ N and all x ∈ [a, b], and

3. ∥εn∥∞ → 0.

Then
∑
fn is uniformly convergent on [a, b].

Proof: left as an exercise. ■

The three conditions are in fact independent (see Exercise 7). For the next example (and the
rest of the chapter), we assume some familiarity with complex numbers (see Chapter 22 if
necessary).

aaaaaa

Example: consider the series∑k∈N ckbk(x), where bk(x) = eikx, x ∈ R and ck ↘ 0.
Show that the series converges (pointwise) for any x ∈ (0, 2π) and that it converges
uniformly on [δ, 2π − δ] for any δ ∈ (0, π).

Proof: since |eikx| = 1, then ∑k∈N cke
ikx is absolutely convergent whenever∑

k∈N |ck| <∞. If x ̸= 2kπ, k ∈ N, then

1 + eix + · · ·+ einx =
1− ei(n+1)x

1− eix
,
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whence ∣∣∣∣∣
n∑

k=1

bk(x)

∣∣∣∣∣ = |1 + eix + · · ·+ einx| ≤ 2

|1− eix|
:= σx.

According to Abel’s criterion for numerical series, ∑k∈N cke
ikx thus converges

pointwise for any x ∈ (0, 2π).

Now, let π > δ > 0 and x ∈ [δ, 2π − δ]. Then

|1− eix| =
∣∣eix/2(e−ix/2 − eix/2)

∣∣ = 2

∣∣∣∣eix/2 − e−ix/2

2i

∣∣∣∣ = 2| sin(x/2)| > sin δ,

from which we can conclude that∣∣∣∣∣
n∑

k=1

bk(x)

∣∣∣∣∣ ≤ 2

sin δ := σ.

Consequently, again according to Abel’s criterion applied to series of functions,∑
k∈N cke

ikx converges uniformly for any on [δ, 2π − δ] for any π > δ > 0. ■

11.2 Fourier Series
The series∑k∈N cke

ikx in the previous example is continuous on (0, 2π) even though it fails
to converge uniformly on (0, 2π). It is an example of a Fourier Series, a monumental idea
in the development of modern mathematics. They were irst proposed as solutions to the
heat equation, in which we seek functions u : U ⊆O R2 × (a, b) → R satisfying the partial
differential equation

∂u

∂t
= ∆u =

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

Since the Fourier series approach gave rise toalready-knownsolutions of the heat equation,
the process with which they were formed was accepted as valid, even though a number of
mathematicians had objections concerning the use of in inity and (possibly divergent) series.

The importance of rigour in mathematics was just starting to be understood by some of
the best mathematical minds; while these objections may sound a bit odd nowadays, it is im-
portant to remember that the current de initions of the concepts that made some of our pre-
decessors queasy have been distilled of all offending material after years of polishing, which
was driven by the very objections that they brought up.

It is no exaggeration to say that analysis would not be what it is today without this partic-
ular episode; while it remains in fashion amongst some mathematicians to deride engineers
and physicists for “playing with tools beyond their understanding”, let us keep in mind that
analytical advancesmostly arise from the application ofmathematics to so-called ‘real-world’
problems, in the grand tradition of Archimedes and Newton.

In this section, we introduce and discuss the convergence of Fourier Series.
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11.2.1 Trigonometric Series and Periodic Functions
A trigonometric polynomial is any ( inite) linear combination of positive powers of sines
and cosines:

p(t) = a0 +
n∑

k=1

(ak cos(kt) + bk sin(kt)) , where ak, bk ∈ C.

Since
cos t = eit + e−it

2
, sin t = eit − e−it

2i
,

we can write
p(t) = a0 +

n∑
k=1

(ak cos(kt) + bk sin(kt)) =
n∑

k=−n

cke
ikt,

with
a0 = c0, ak = ck + c−k, and bk = i(ck − c−k),

or
c0 = a0, ck =

ak − ibk
2

, and c−k =
ak + ibk

2
,

for all 1 ≤ k ≤ n.

A trigonometric series is a formal expression of the form∑
k∈Z

cke
ikt = a0 +

∑
k∈N

(ak cos(kt) + bk sin(kt)) .

Wesay that a series indexed byZ converges if both the series indexed by the positive integers
and the series indexed by the negative integers converges.

aaaaaa

Proposition 156
If
∑

k∈Z cke
ikt converges absolutely for some t, then

∑
k∈Z |ck| < ∞. Furthermore, if∑

k∈Z |ck| <∞, then ∃f ∈ C(R,C) such that
∑

k∈Z cke
ikt ⇒ f on R.

Proof: left as an exercise. ■
These ideas will become more clear with a concrete example.

aaaaaa

Example: Let b ∈ (−1, 1). Consider the trigonometric series∑k∈N b
k sin(kt). What

is its complex form? Does it converge anywhere? If so, what to?

Solution: according to the previous formulas, we formally have

c0 = 0, ck =
0− ibk

2
=
bk

2i
and c−k =

0 + ibk

2
= −b

k

2i
,

for k ≥ 1.
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We also have
n∑

k=1

bk sin(kt) = − 1

2i

−1∑
k=−n

b−keikt +
1

2i

n∑
k=1

bkeikt,

so that, formally,
∞∑
k=1

bk sin(kt) = − 1

2i

−1∑
k=−∞

b−keikt +
1

2i

∞∑
k=1

bkeikt.

The series converges absolutely (and thus at least pointwise), as∑
k≥1

∥bk sin(kt)∥∞ =
∑
k≥1

|b|k = |b|
1− |b|

<∞, since |b| < 1.

According to Proposition 148, ∃f ∈ C(R,C) towhich the series converges uniformly
on R. We can re-write the convergent series as

∞∑
k=1

bk sin(kt) = 1

2i

[
∞∑
k=1

(
beit
)k − ∞∑

k=1

(
be−it

)k]
=

1

2i

(
beit

1− beit
− be−it

1− be−it

)
=

b

2i
· eit − e−it

1− b(eit + e−it) + b2
= b · e

it − e−it

2i︸ ︷︷ ︸
=sin t

· 1

1− 2b
eit + e−it

2︸ ︷︷ ︸
=cos t

+b2
.

Thus the series converges uniformly to f : t 7→ b sin t
1−2b sin t+b2

on R. ■

b = −1/2, k = 1 b = −1/2, k = 1, 2
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aaaaaa b = −1/2, k = 1, 2, 3 b = −1/2, k = 1, . . . , 6

b = −1/2, f(t) = b sin t
1−2b sin t+b2

11.2.2 Again, Abel’s Criterion

aaaaaa
Proposition 157
Let

∑
k∈Z cke

ikt be such that ck ≥ 0 and ck ↘ 0 both as k → ∞ and as k → −∞.
Then

∑
k∈Z cke

ikt converges uniformly on [δ, 2π − δ] for any δ ∈ (0, π). Consequently,
the sum f(t) =

∑
k∈Z cke

ikt is continuous on (0, 2π).
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Proof: it suf ices to show that∑
k≥0

cke
ikt and

∑
k≤−1

cke
ikt

both converge uniformly on [δ, 2π−δ] for all 0 < δ < π, and to apply Abel’s criterion
for each of the series.

Let δ ∈ (0, π). Since∣∣∣∣∣
n∑

k=0

eikt

∣∣∣∣∣ = ∣∣1 + · · ·+ eint
∣∣ = ∣∣∣∣1− ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ∣∣∣∣∣
−1∑

k=−n

eikt

∣∣∣∣∣ = ∣∣e−int + · · ·+ e−it
∣∣ = ∣∣e−int

∣∣ ∣∣1 + · · ·+ ei(n−1)t
∣∣

=
∣∣1 + · · ·+ ei(n−1)t

∣∣ = ∣∣∣∣1− eint1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ

for all t ∈ [δ, 2π − δ], the series converge uniformly on [δ, 2π − δ]. ■

Abel’s criterion could also be used even in circumstances where ck is not always positive.
For instance, let∑k∈Z(−1)kckeikt where the coef icient ck are as in the statement of Proposi-
tion 157. What does the fact that∣∣∣∣∣∑

k∈Z

(−1)keikt
∣∣∣∣∣ =

∣∣∣∣1 + (−1)n+1ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1 + eit|

tell you? These results also apply to the real part and the imaginary part of∑k∈Z cke
ikt, i.e. to

the series
a0 +

∑
k≥1

ak cos(kt) and
∑
k≥1

bk sin(kt).

For instance,∑k≥1
sin(kt)

k
converges uniformly on [δ, 2π− δ] for any δ > 0. As a result, the sum

is continuous on (0, 2π). However, even though∑k≥1
sin(kt)

k
converges for t = 0 and t = 2π,

the function is not continuous on [0, 2π] (see Exercise 9).

Let T > 0. A function f : R → C is T−periodic if f(t + T ) = f(t) for all t ∈ R. The
smallest positive T for which this holds is the period of the function. Periodic functions play
an important role in Fourier analysis.

aaaaaa

Examples

1. The functions cos and sin are 2π−periodic. □

2. The function tan is π−periodic. □
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aaaaaa

3. The function de ined by eikt is 2π
k
−periodic for any k ∈ Z. □

4. The function de ined by eikwt, where w = 2π
T

and k ∈ Z, is T−periodic. □

5. Let f ∈ Cc(R,C), with compact support K (that is, f(t) = 0 when t ̸∈ K).
Show that φf : t 7→

∑
k∈Z f(t− k) is 1−periodic.

Proof: this series converges for all t since there is only a inite set of
integers k for which t− k ∈ K (becauseK is compact). Then

φ(t+ 1) =
∑
k∈Z

f(t+ 1− k) =
∑
k∈Z

f(t− k) = φf (t),

so φf is 1−periodic. ■

If f ∈ C(R,C) is a T−periodic function, then f is bounded on the interval [0, T ], with

c0(f) =
1

T

∫ T

0

f(t) dt <∞.

The complex number c0 is themean value of f , also given by

c0(f) =
1

T

∫ T

0

f(t) dt.

If w = 2π
T

and k ̸= 0, the function g : t 7→ eikwt is T−periodic. Then

c0(g) =
1

T

∫ T

0

eikwt dt =
1

T

[
eikwt

ikw

]T
0

= 0.

Hence, if f(t) =∑k∈Z cke
ikwt is uniformly convergent on [0, T ] and T−periodic, then

c0(f) =
1

T

∫ T

0

f(t) dt =
1

T

∫ T

0

(∑
k∈Z

cke
ikwt

)
dt =

∑
k∈Z

ck
T

∫ T

0

eikwt dt = c0

The sum and the integral can be interchanged because the series converges uniformly on
[0, T ]. If f ∈ C(R,C) is T−periodic, the sequence (ck(f)), where

ck(f) = c0
(
fe−ikwt

)
=

1

T

∫ T

0

f(t)e−ikwt dt, k ∈ Z,

is the sequence of Fourier coef icients of f . Clearly, if w = 2π
T

and f(t) =
∑

k∈Z cke
ikwt is

uniformly convergent on [0, T ], then ck(f) = ck.
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Proposition 158
The mapping f 7→ (ck(f))k∈Z is a linear map from the vector space of continuous
T−periodic functions to the space of bounded sequences indexed byZ. More precisely,

sup
k∈Z
{|ck(f)|} ≤ ∥f∥1 ≤ ∥f∥∞ <∞,

where ∥f∥1 = 1
T

∫ T

0
|f(t)| dt.

Proof: left as an exercise. ■

We can improve on Proposition 158 once we show that

∥f∥2 =

(∑
k∈Z

|ck(f)|2
)1/2

.

aaaaaa

Proposition 159 Let f be a 2π−periodic function such that f ∈ Cn, n > 0. Then

ck(f) =
1

(ik)n
ck
(
f (n)

)
, k ̸= 0.

In particular,
|ck(f)| ≤

∥f (n)∥∞
|k|n

and so |ck(f)| → 0 as |k| → ∞.

Proof: this is easily shown by induction on n. If n = 1, we have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt =
1

2π

[
f(t)e−ikt

−ik

∣∣∣∣2π
0

+
1

ik

∫ 2π

0

f ′(t)e−ikt dt

]
=

1

ik
ck(f

′).

A sequence of integrations by parts yields the result for general n. ■

As a corollary, if f ∈ C2 is 2π−periodic, then∑k∈Z ck(f)e
ikt converges absolutely (and so

uniformly) on R.

All that precedes leads us to the crucial de inition: the Fourier series of a 2π−periodic func-
tion f is the series∑k∈Z ck(f)e

ikt; in that case, we write f(t) ∼∑k∈Z ck(f)e
ikt. Note that it is

possible for f not to equal its Fourier series.
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11.2.3 Convergence of Fourier Series
The next results discuss the convergence of Fourier series.

aaaaaa

Theorem 160
Let f be 2π−periodic. If f ∈ C2, then the Fourier series

∑
k∈Z ck(f)e

ikt converges
absolutely (and so uniformly) to f on R.

Proof: according to the corollary to Proposition 159, the Fourier series
g(t) =

∑
k∈Z ck(f)e

ikt converges absolutely on R, and thus g is continuous
and 2π−periodic. We want to show that g = f .

Let h = f − g. Then h is continuous and 2π−periodic. We also have

ck(h) = ck(f)− ck(g) = 0,

so that ck(f) = ck(g) for all k ∈ Z.

It remains only to show that when h is continuous, 2π−periodic, and ck(h) = 0 for
all k ∈ Z, then h ≡ 0. According to a corollary of the Stone-Weierstrass theorem
(see Chapter 23), ∃(pn)n∈N such that pn(t) =

∑
k∈Z ak(n)e

ikt and pn ⇒ h. Note that
for a ixed k, we must have ak(n)→ 0when n→∞.

Then
1

2π

∫ 2π

0

|h(t)|2 dt = 1

2π

∫ 2π

0

h(t)h(t) dt
thm 150
= lim

n→∞

1

2π

∫ 2π

0

h(t)pn(t) dt

thm 152
=

∑
k∈Z

(
lim
n→∞

ak(n)
1

2π

∫ 2π

0

h(t)eikt dt

)
=
∑
k∈Z

(
lim
n→∞

ak(n)c−k(h)
)
= 0.

Since |h(t)|2 is continuous, |h(t)|2 = 0 for all t ∈ [0, 2π], so that h(t) = 0 for all
t ∈ [0, 2π]. ■

The next result provides a suf icient condition for a function to be equal to its Fourier series.

aaaaaa

Theorem 161
Let f be a continuous 2π−periodic function such that∑

k∈Z

|ck(f)| =M <∞.

Then the Fourier series of f converges absolutely to f on R and is equal to f on R.

Proof: left as an exercise. ■
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Let us take a look at an example.

aaaaaa

Example: ix a ∈ R and let fa(t) = cos(at), |t| ≤ π. Extend fa to R by periodicity.
What is the Fourier series of fa? Is it equal to fa on R? Solution: if a ̸∈ Z, fa is not
differentiable (see example below).

If a ∈ Z then cos(at) is already a trigonometric polynomial so the Fourier series of
fa is simply cos(at). So assume that a ̸∈ Z.

Let k ∈ Z. Then

ck(fa) =
1

2π

∫ π

−π

cos(at)e−ikt dt =
1

2π

∫ π

−π

eiat − e−iat

2
e−ikt dt =

a(−1)k sin(πa)
π(a2 − k2)

Using the comparison test with |ck(f)| ∼ 1
k2

, we see that∑k∈Z |ck(f)| <∞. Accord-
ing to Theorem 161,

fa(t) =
∑
k∈Z

a(−1)k sin(πa)
π(a2 − k2)

eikt

converges absolutely on R. ■

284 Analysis and Topology Course Notes



CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

11.2.4 Dirichlet’s Convergence Theorem
Let f : R→ C be a 2π−periodic Riemann-integrable function. For k ∈ Z, set

ek(t) = eikt =
(
eit
)k

= (e1(t))
k.

LetN ∈ N. De ine
SN(f)(t) :=

N∑
k=−N

ck(f)ek(t);

SN(f) is the partial sum of degreeN for the Fourier series of f .³ We can write these partial
sums as convolutions: indeed, we have

SN(f)(t) :=
N∑

k=−N

ck(f)ek(t) =
N∑

k=−N

ek(t)

∫
f(y)ek(−y) dy

=

∫
f(y)

{
N∑

k=−N

ek(t)ek(−y)

}
dy

=

∫
f(y)

{
N∑

k=−N

ek(t− y)

}
dy

=

∫
f(y)KN(t− y) dy := (D̂N ∗ f)(t),

where the Dirichlet kernel of orderN is, formally,

KN(t) =
N∑

k=−N

ek(t) =
N∑

k=−N

eikt =
e−iNt − ei(N+1)t

1− eit

=
1

eiNt

(
1− ei(2N+1)t

1− eit

)
=

sin((N + 1/2)t)

sin(t/2) , when t ̸∈ 2πZ.

aaaaaa

Proposition 162
The Dirichlet kernel is even, 2π−periodic, c0(KN) = 1,

∫ π

0
KN(t) dt = π, and

KN(0) = lim
t→

KN(t) = 2N + 1.

Proof: left as an exercise. ■

The next result is substantially more dif icult to prove.

³In what follows, we will write
∫
:= 1

2π

∫ 2π

0
= 1

2π

∫ a+2π

a
for any a ∈ R.
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aaaaaa
Lemma 163 (R -L L )
Let f : [a, b]→ C be integrable over [a, b]. Then limn→∞

∫ b

a
f(t)eint dt = 0.

Proof: left as a (dif icult) exercise. ■

We can now state and prove this section’s main result.

aaaaaa

Theorem 164 (D ' C T )
Let f : R→ C be piecewise (with a inite number of discontinuities) and 2π−periodic.
If the following one-sided limits exist ∀x ∈ R:

f(x±) = lim
h↘0

f(x± h), f ′(x±) = lim
h↘0

f(x± h)− f(x)
h

,

then

SN(f)(x) =
N∑

k=−N

ck(f)ek(x)→
f(x+) + f(x−)

2
, asN →∞.

Proof: without loss of generality, we can assume that x = 0 by translating the vari-
able x to the origin as needed. Consider the sequence of partial sums

sN := SN(f)(0) =
N∑

k=−N

ck(f)ek(0) =
N∑

k=−N

ck(f).

ForN ∈ N, we have

sN =
∑
|k|≤N

∫
f(t)e−ikt dt =

∫
f(t)KN(t) dt.

SinceKN(t) is even, then∫ 0

−π

f(t)KN(t) dt =

∫ π

0

f(−t)KN(t) dt,

whence (remember the notation convention for integrals)

sN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt.

Write
uN = sN − f(0+)+f(0−)

2
.

286 Analysis and Topology Course Notes



CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

aaaaaa

Then

uN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt− f(0+)+f(0−)
2

· 1
π

∫ π

0

KN(t) dt

=
1

2π

∫ π

0

{f(t) + f(−t)− f(0+)− f(0−)}KN(t) dt

=
1

2π

∫ π

0

g(t) sin((N + 1/2)t) dt,

where

g(t) =


f(t)− f(0+) + f(−t)− f(0−)

sin(t/2) , if t ∈ (0, π]

0, otherwise
By construction, g is clearly piecewise continuous on (0, π]. It is necessarily bounded
in a neighbourhood of t = 0 according to de l’Hôpital’s Rule:

lim
t↘0

g(t) = lim
t↘0

2(f ′(t)− f ′(−t))
cos(t/2) = 2(f ′(0+) + f ′(0−)) <∞.

The function g is thus nicely-behaved: it is bounded and piecewise continuous
(with at most a inite number of discontinuities) over [0, π] and so is integrable on
every continuous piece of [0, π], using an easy generalization of Theorem 54 (see
Chapter 4).

According to the Riemann-Lebesgue lemma 155,

lim
n→∞

∫ π

0

g(t)eint dt = 0.

The relation still holds with the change of variable n = N + 1/2.

Since 2πuN is the imaginary part of
∫ π

0
g(t)ei(N+1/2)t dt, then 2πuN → 0 and

sN → f(0+)+f(0−)
2

whenN →∞. ■

In other words, if a periodic function f is “nice enough” (piecewise C1), then it is equal to
its Fourier series wherever f is continuous. At discontinuities of f , the Fourier series con-
verges to themean of the one-sided limits.⁴

aaaaaa Example: let f : [0, 2π] → R be de ined by f(t) = t2. Extend f to R by periodicity.
What is the Fourier series of f . Is it equal to f on R?

⁴Be careful: some piecewise C0 periodic functions have divergent Fourier series.
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aaaaaa

Solution: the Fourier coef icients of f are

ck(fa) =
1

2π

∫ 2π

0

t2e−ikt dt =

{
[c] 2

n2 (iπk + 1), k ̸= 0
4π2

3
, k = 0

According to Dirichlet’s convergence theorem,∑
k∈Z

ck(f)e
ikt =

4π2

3
+
∑
k∈Z×

2

k2
(iπk + 1)eikt

converges (at least pointwise) to t2 for t ̸∈ 2πZ, and to f(2π)+f(0)
2

= 2π2 for t ∈ 2πZ,
since f is piecewise C1.

S1(f) S2(f) S3(f)

S8(f) S20(f) S200(f)

The convergence turns out to be uniform on [2πℓ+ δ, 2π(ℓ+1)− δ], for all δ ∈ (0, π),
ℓ ∈ Z (more on this in the next section), but only pointwise over R as a whole, in
keeping with Theorem 164. ■

Notice the overshooting of the partial sums as t→ 2πℓ, ℓ ∈ Z, which does not seem todampen
whenN →∞. This “universal” behaviour at discontinuities is termed Gibbs’ Phenomenon
(contrast the behaviour of the Fourier series of t2 with that of cos(at) discussed earlier).

The explanation of the problem is linked with the lim sup and lim inf of the partial sums
Sn(f)(xN) at points xN that approach a discontinuity at x0, but we will not discuss this any
further.
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11.2.5 Quadratic Mean Convergence
The set of 2π−periodic piecewise continuous functions from R to C is an inner product
space together with

(f | g) = 1

2π

∫ 2π

0

f(t)g(t) dt,

with associated norm ∥f∥2 =
√

(f | f).

Note that for µ, ν ∈ Z, we have

(eµ | eν) =
1

2π

∫ 2π

0

eiµte−iνt dt =
1

2π

∫ 2π

0

ei(µ−ν)t dt = δµ,ν =

{
0, µ ̸= ν

1, µ = ν

For a given N ∈ N and a function f in the inner product space of the previous page, con-
sider the partial sum

SN(f) =
∑
|k|≤N

ck(f)ek(t).

For any |k| ≤ N , we must have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt = (f | ek).

But
(SN(f) | ek) =

∑
|ℓ|≤N

cℓ(f)(eℓ | ek) =
∑
|ℓ|≤N

cℓ(f)δℓ,k = ck(f).

Thus, (f − SN(f) | ek) = 0 for all |k| ≤ N and we can write
f = SN(f) + (f − SN(f)),

with SN(f) ∈ PN = Span{ek | −N ≤ k ≤ N} and f − SN(f) ∈ P⊥
N .

Note furthermore that since (SN | f − SN(f)) = 0, then
∥f∥22 = (f | f) = (SN(f) + (f − SN(f)) | SN(f) + (f − SN(f)))

= (SN(f) | SN(f)) + 2Re (SN(f) | f − SN(f))︸ ︷︷ ︸
=0

+(f − SN(f) | f − SN(f))

= ∥SN(f)∥22 + ∥f − SN(f)∥22.

For any other function g ∈ PN , we see that
∥f − g∥2 = ∥ f − SN(f)︸ ︷︷ ︸

∈P⊥
N

+SN(f)− g︸ ︷︷ ︸
∈PN

∥22

= ∥f − SN(f)∥22 + ∥SN(f)− g∥22 ≥ ∥f − SN(f)∥22.
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Since g was arbitrary,

inf
g∈PN

∥f − g∥22 = ∥f − SN(f)∥22 = ∥f∥22 − ∥SN(f)∥22. (11.1)

The partial sum SN(f) is thus the nearest trigonometric polynomial to f in PN , in the sense
of the quadratic mean.

aaaaaa

Theorem 165 (P ' I )
Let f be a 2π−periodic piecewise continuous function from R to C. Then

1

2π

∫ 2π

0

|f(t)|2 dt =
∞∑

k=−∞

|ck(f)|2.

Proof: as |f |2 is Riemann-integrable on [0, 2π], the convergence of the series will be
assured once the equality is established. By construction,

∥SN(f)∥22 =

∑
|k|≤N

ck(f)e
ikt

∣∣∣∣∣∣
∑
|ℓ|≤N

cℓ(f)e
iℓt

 =
N∑

k,ℓ=−N

ck(f)cℓ(f)(ek | eℓ)

=
N∑

k,ℓ=−N

ck(f)cℓ(f)δk,ℓ =
N∑

k=−N

|ck(f)|2.

The sequence of in imums given in (11.1) by

(xN) =

(
inf

g∈PN

{∥f − g∥22}
)

is bounded below by 0.

LetN ∈ N. Clearly, ∥SN(f)∥22 ≤ ∥SN+1(f)∥22, and so

xN = ∥f − SN(f)∥22 = ∥f∥22 − ∥SN(f)∥22 ≥ ∥f∥22 − ∥SN+1(f)∥22 = xN+1.

Thus (xN) is a decreasing and bounded sequence; as such, it converges to
0 ≤ x∗ = inf{xN | N ∈ N} by the bounded monotone convergence theorem.

In particular, this means that

x∗ = lim
N→∞

xN = ∥f∥22 − lim
N→∞

∥SN(f)∥22 =
1

2π

∫ 2π

0

|f(t)|2 dt −
∞∑

k=−∞

|ck(f)|2,

which guarantees the convergence of the series, as |f |2 is Riemann-integrable over
[0, 2π] (being continuous).
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Write P =
∪

N∈NPN . Since PN ⊆ P for allN ∈ N, we have

inf
g∈P
∥f − g∥22 ≤ inf

g∈PN

∥f − g∥22 = xN , for allN ∈ N,

which implies that
0 ≤ inf

g∈P
∥f − g∥22 ≤ x∗.

Conversely, x∗ ≤ ∥f − g∥22 for all g ∈ PN ,N ∈ N. Thus x∗ ≤ ∥f − g∥22 for all g ∈ P ,
so that

x∗ ≤ inf
g∈P
∥f − g∥22.

Combining these, we obtain

inf
g∈P
∥f − g∥22 =

1

2π

∫ 2π

0

|f(t)|2 dt−
∞∑

k=−∞

|ck(f)|2.

Let ε > 0. As f is a 2π−periodic piecewise continuous function, we can ind a
2π−periodic continuous function fc such that

∥f − fc∥2 < Kε, for someK > 0.

If f is constant, simply set fc = f ; we do the same if f is continuous.

Otherwise, assume that f admitsm discontinuities at

x1 < . . . < xm ∈ (δ, 2π + δ), for some δ > 0,

and denote the closed ε2−neighbourhood around xα by

Bα,ε2 = [yα,ε2 , yα,ε2 + 2ε2],

for α = 1, . . . ,m, and their union by Bε2 (restrict ε as needed to ensure that the
Bα,ε2 = [yα,ε2 , yα,ε2 + 2ε2] do not overlap).

Outside of Bε2 but in [δ, 2π + δ], de ine fc ≡ f . In each of the Bα,ε2 ∩ [δ, 2π + δ], let
fc be the linear function joining the points

(yα,ε2 , f(yα,ε2)) and (yα,ε2 + 2ε2, f(yα,ε2 + 2ε2)).

The function fc : [δ, 2π + δ] → C is “clearly” continuous, and can be extended to a
2π−periodic continuous function over R.

In particular, |f − fc|2 is real-valued and continuous over [δ, 2π + δ]. Conse-
quently, the latter reaches its maximum M > 0 somewhere on [δ, 2π + δ], by the
max/min theorem.
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Thus, for any δ > 0,

∥f − fc∥22 =
1

2π

∫ 2π+δ

δ

|f(t)− fc(t)|2 dt =
1

2π

m∑
α=1

∫
Bα,ε2

|f(t)− fc(t)|2 dt

≤ 1

2π

m∑
α=1

∫
Bα,ε2

M dt =
1

2π

m∑
α=1

2ε2 ·M =
mM

π︸ ︷︷ ︸
>0

ε2 := K2ε2

According to the Stone-Weierstrass theorem (see Chapter 23), the set of
2π−periodic trigonometric polynomials P is dense in the set of 2π−periodic
continuous functions w.r.t. to ∥ · ∥2, and so ∃g ∈ P with ∥fc − g∥2 < ε.

Putting this together, we see that

∥f − g∥2 ≤ ∥f − fc∥2 + ∥fc − g∥2 < Kε+ ε = (K + 1)ε.

Thus

inf
g∈P
∥f − g∥2 < (K + 1)ε for all ε =⇒ inf

g∈P
∥f − g∥2 = 0. ■

Parseval’s identity remains valid for locally Riemann-integrable functions (
∫
K
|f | dt <∞ for

allK ⊆K [0, 2π]), instead of piecewise continuous, with multiple consequences: the series∑
k∈Z

|ck(f)|2

converges, which shows that |ck(f)|2 → 0, and thus ck(f)→ 0 as k → ±∞ (by the Riemann-
Lebesgue lemma). It can also be used to show that any 2π−periodic continuous function
f : R → C whose Fourier series converges uniformly on R must be equal to said series
(compare with Dirichlet’s convergence theorem).

11.3 Exercises
1. Let (gn) be a sequence of functions. Show that∑ gn converges absolutely if and only

if ∃(an) ⊆ R+ such that∑ an converges and ∥gn∥∞ ≤ an for all n. Use that result to
show that the series of functions∑ gn, where gn : [0, 1] → R is de ined by gn(x) = xn

n2 ,
is absolutely convergent on [0, 1].

2. For each of the theorems of Section 11.1.1 (save for Theorem 152), ind an example
showing that the result does not hold if uniform convergence is replaced by pointwise
convergence.

3. Prove Theorems 152, 153, and 161, as well as Propositions 156 and 158.
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4. Find some examples showing that the result of Theorem 152 does not hold in general
if absolute convergence is replaced by a weaker type of convergence.

5. Let gn : R→ R be de ined by gn(x) = xn

n!
for eachn ∈ N. Show that each of the following

series of functions converges absolutely on R.
a) S =

∑
(−1)n+1g2n+1

b) C =
∑

(−1)ng2n
c) E =

∑
gn

6. Let S,C,E be as in the previous question. Using the appropriate theorems, show that
for any x ∈ R show that S ′(x) = C(x), C ′(x) = −S(x), and E ′(x) = E(x).

7. Find examples showing that the three conditions in the statement of Proposition 155
are independent from one another.

8. Improve the bound in Proposition 158 by showing that

∥f∥2 =

(∑
k∈Z

|ck(f)|2
)1/2

.

9. Show that the function f : [0, 2π]→ R de ined by f(t) =∑k≥1
sin(kt)

k
is not continuous

on [0, 2π].
10. Using the Fourier series of the cosine, show that π cot(aπ) = ∑

k∈Z
a

a2−k2
for all a ̸∈ Z

(also known as Euler’s Formula).
11. Prove the properties of the Dirichlet kernel (Proposition 11.2.4).
12. Show that (f | g) (see page 289) de ines an inner product on the set of 2π−periodic

piecewise continuous functions from R to C.
13. Prove the Riemann-Lebesgue lemma without using Parseval’s identity.
14. Show that any 2π−periodic continuous function f : R→ Cwhose Fourier coef icients

are all 0must be the zero function.
15. Let (an) ⊆ C be such that an → ℓ and let (εn) ⊆ R+ be a divergent sequence. De ine a

sequence (bn) ⊆ C by
bn =

∑n
i=1 aiεi∑n
i=1 εi

.

Show that bn → ℓ.
16. a) Let (fn) be the sequence of functions de ined by

fn : R+
0 → R, fn(x) =

{(
1− x

n

)n
x ∈ [0, n]

0 x > n

Show that fn ⇒ f on R+
0 , where f : R+

0 → R is de ined by f(x) = e−x.
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b) Let U ⊆K C and let (fn) be the sequence of functions de ined by

f : C→ C, f(z) =
(
1 +

z

n

)n
.

Show that fn ⇒ f onK , where f : C→ C is de ined by f(z) = ez .
17. For any n ∈ N×, let un : R+

0 → R be de ined by u(x) = x
n2+x2 .

a) Show that∑un → f for some f ∈ C(R+
0 ,R), but that

∑
un ̸⇒ f on R+

0 .
b) Show that∑(−1)nun ⇒ g onR+

0 for some g ∈ C(R+
0 ,R), but that

∑
(−1)nun is not

absolutely convergent on R+
0 .

18. What can you say about a function f : R→ Rwhich is the uniform limit of a sequence
of polynomials (Pn)?

19. Consider the sequence of functions (fn) ⊆ C([0, π/2],R) de ined by fn(x) = cosn x sinx
for all n ∈ N.
a) LetO : [0, π/2]→ R be the zero function. Show that fn ⇒ O on [0, π/2].
b) Consider the sequence of functions (gn) de ined by gn = (n+1)fn. Let δ > 0. Show

that gn ⇒ O on [δ, π/2] but that∫ π/2

0

gn(t) dt ̸→ 0.

20. Theses results are due to Dini.
a) Let (fn) ∈ C([a, b],R) be an increasing sequence of functions (i.e. for all x ∈ [a, b]

and for all n ∈ N, we have fn(x) ≤ fn+1(x)). If fn → f on [a, b] where f ∈
C([a, b],R), show that fn ⇒ f on [a, b].

b) Let (fn) ∈ C([a, b],R) be a sequence of increasing functions (i.e. for all x ≥ y ∈
[a, b] and for all n ∈ N, we have fn(x) ≥ fn(y)). If fn → f on [a, b] where f ∈
C([a, b],R), show that fn ⇒ f on [a, b].

21. Determine whether∑ xn converges in (R2, ∥ · ∥2), where

xn =

(
(sinn)n
n2

,
1

n2

)
.

If so, does∑ xn converge absolutely?
22. Compute the values of the following convergent series

∞∑
n=1

1

n2
,

∞∑
n=1

1

(2n− 1)2
,

∞∑
n=1

1

n4
,

using the 2π−periodic function de ined by f(x) = 1− x2/π2 over the interval [−π, π].
23. Prepare a 2-page summary of this chapter, with important de initions and results.
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