Chapter 11

Sequences of Functions in Metric Spaces

In this chapter, we study properties of sequences and series of functions,
extending Chapters 5 and 6 to general metric spaces and provide impor-
tant Fourier analysis results.

The symbol K is used to denote either R or C; C‘(X, K) represents the K—vector space of /
times continuously differentiable functions X — K; F(X, K), the K—vector space of func-
tions X — K; R(X, K), the K—vector space of Riemann-integrable functions X — K, C.(R, C)
is the set of continuous functions R — C with compact support,* and B(X, K), the K—vector
space of bounded functions X — K.

11.1 Uniform Convergence

Let X be a set and let (F, d) be a metric space. A sequence ( f,,),en of functions f,, : X — E
is said to converge pointwise to a function f : X — F (denoted by f,, — f on X) if
fu(x) = f(x) forallx € X.
Symbolically, f,, — f on X if
Ve > 0,Vx € X,3IN = N.xsuchthatn > N = d(f.(x), f(X)) <¢
(note the explicit dependence of N on x).
As we have discussed in Chapters 5 and 6, pointwise convergence is quite often not strong
enough of a property for our needs. Consequently, we introduce a second kind of conver-
gence: the sequence (f,) is said to converge uniformly to a function f : X — FE (denoted
by f, = f on X) if we can remove the explicit dependence of NV on x.
Symbolically, f,, = f on X if
Ve > 0,3dN = N.suchthatn > N = sup{d(f.(x), f(x))} <e.
xeX

That is, functions taking on the value 0 outside of some compact subset K C R.
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11.1. UNIFORM CONVERGENCE

Examples

1. Let (E,d) = (R,|-]), X = [0,1] and f,, : X — E be defined by f,(z) = z™
Then f, — fon X, where f : X — Fisgiven by f(z) = 0ifz # 1and
f(1) = 1. Note that f is not continuous on X, even though each of the f,, is
continuous.

05r-

_05 1 1
-0.5 0 0.5 1 15

The sequence ( f,,) in black, the limit f in red.
2. With the definitions as in the last example, f,, 2 f on X. Indeed,

sup {d(fn(z), f(x))} = Sup]{|$”|} =1"=1,

z€(0,1] z€[0,1

which can never be smaller thanany 1 > ¢ > 0.

However, f,, = fon [0,a| forall a € [0,1) (see Chapter 5).

Theorem 66 generalizes to metric spaces as one would expect.
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Proposition 147 (CAUCHY'S CRITERION FOR SEQUENCES OF FUNCTIONS)
Let (E, d) be a complete metric space and ( f,,) be a sequence of functions f,, : X — E.
Then, f, = f on X if and only if

Ve > 0,dIN =N, >0st.n,m >N = sup{d(f.(X), fm(X))} <e.

xeX
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CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES
Proof: suppose that f,, =% f on X and let ¢ > 0. By hypothesis, 3Ny, N5 such that

sup{d(fu(x). f(x))} < 5, sup{d(fu(x). f(x))} < 5

xeX xeX

whenever n > Nj and n > Nj. Set N = max{ Ny, N, }.

Then, whenever n, m > N, we have

sup{d(fn(X), fm(x))} < sup{d(fu(x), f(x)) + d(fm(x), f(x))}

< ig{d(fn(x% fx)}+ ilel)lg{d(fm(xh X)) <e.

Conversely, suppose that the e —statement holds. Then, for any x € X, (f.(x)) is
a Cauchy sequence in £ and thus converges to a f(x) € E, as F is complete. As a
result, f, — f on X. It remains to show that f,, = f on X.

Let ¢ > 0. By hypothesis, IV > 0 such that sup,.{d(f.(X), fm(X))} < 5
whenever n, m > N. Now, fixn > NN and let

am(X) = d(fn(X), fm(x)) and a(x) = d(f,(x), f(x)).

Then a,,(x) — a(x) Since a,,(x) < § forallx € X, thena(x) < § forallx € X.

Hence, -
sup{d( fu(x), (%))} < sup{a(x)} < 5 < <.
xeX xeX
As such, f, = fon X. |

Series of Functions

Similar notions exist for series of functions. Let (£, d) be a metric space and let (u,) be a
sequence of functions u,, : X — E. For any m € N, define the partial sum f,, : X — E by

Jn(X) = wr(X) + -+ (%) = Y ().

The sequence ( f,,) is the series generated by (u,,), and it is usually denoted by Z U,

neN
If f,, — f on X, we say that the series converges (pointwise) on X; if f,, = f on X,
we say that the series converges uniformly on X. In both cases, f is said to be the sum of
the series. If (f,,) does not converge, we say that the series diverges.

Finally, let E be a Banach space and let (g,,) be a sequence of functions g, € B(X, E). The
series > g, converges absolutely on X if >_ ||g, |- converges.?

“There is no need to stipulate the type of convergence in the latter case, since that is a numerical series.
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11.1. UNIFORM CONVERGENCE

Proposition 148
If > g, converges absolutely on X, then  g,, converges uniformly on X.

Proof: according to the Cauchy criterion, it suffices to show that Ve > 0,

dN € N such that .
IS5, <=
k=n o

But according to the triangle inequality,

N
k=n k=n

Since ) | g, converges absolutely, Ve > 0, 3N > 0 such that

m
D ligrlloo <
k=n

whenever n > N. |

11.1.1 Properties

The two main types of convergence are not created equal, however. We establish the superi-
ority of uniform convergence over pointwise convergence in a series of well-known theorems
(which all have counterparts in Chapter 5).

Theorem 149
Let (E,d) and (F,d) be metric spaces. If (f,) € C(E, F) is such that f, = fonE,
then f € C(E, F).

Proof: letc > 0and x( € E.

Since f, = f on E, then In > N for which sup, . {d(f.(x), f(xX))} <
Furthermore, since f,, is continuous at Xy, 360 > 0 such that

£
3

d(fa(X), fa(Xo)) < % whenever d(x, x,) < 6.
Then
d(f (%), f(x)) = Z(f(§)7fi5X))+—d(fh(X)7fﬁ(Xo))+—d(fn(Xo),f(X))
<ztzt3=c
whenever d(x, X,) < 6, hence  is continuous at X;. n

We have already seen an example showing that this may not hold for pointwise convergence.
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CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

Theorem 150 (LIMIT INTERCHANGE; RIEMANN-INTEGRABLE FUNCTIONS)
Let (E,|| - ||) be a Banach space. If (f.) € F([a,b], E) is such that f, = f on [a,b],
and if f, is Riemann- integrable over [a, b] for all n, then f is Riemann-integrable and

ffn d:v—>ff

Proof: left as an exercise (see Chapter 5). |

Although, the fact that the limit interchange is not necessarily valid if f, — f instead of
fn = f on [a,b] could be seen as an indictment of the Riemann integral rather than as an
indictment of pointwise convergence. In chapter 21, we will take the former position and in-
troduce the Lebesgue (Borel) integral to circumvent this difficulty.

The next result is a companion to Theorem 150.

Theorem 151 (LIMIT INTERCHANGE; FUNDAMENTAL THEOREM)

Let (E,|| - ||) be a Banach space. If (f.) € F([a,b], E) is such that f, = f on [a,b],
and if f, is Riemann-integrable over [a,b] for all n, then f is Riemann -integrable
according to Theorem 150. Define F,, F : [a,b] — E by F,(z) = [ f,(t)dt and
F(x)= [T f(t)dt. Then F, = F on [a,b].

Proof: let > 0.

Since f, = f on [a,b], IN € N such that [|f — fulls < 55—; whenever
n > N. Now,

1B — Fooll = | [ () - dt” /Ilfn ) de

9 €
S/a 1 = flloo dt < 2(b—a)(b_a):_

(z—a) <

2(b —a)

Since this is true for all 2 € [a, b], then || [}, — F|| < § < e. By the Cauchy criterion,
F, = Fon/a,b|. |

Theorem 151 has an interesting corollary when applied to series, which is often assumed to
hold (without proof) when solving differential equations.

Theorem 152 Let (E, || - ||) be a Banach space and let ) g,, be a series of functions
in R([a,b], E). If Y g,, is uniformly convergent, then

[ (Zoo) -5 ([ w0)

neN neN

Proof: this is a direct consequence of Theorem 151. [
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11.1. UNIFORM CONVERGENCE

We have not defined differentiability of functions R — F in a general normed vector space
FE, but we can use functions R — K" as a template: a function f : R — K" is differentiable

at ¢ if

ft+h) - f()
h

7'(t) = lim

exists; it is differentiable over R if it is differentiable at all ¢ € R. Differentiability is also the
subject of a limit interchange theorem.

Theorem 153 (LIMIT INTERCHANGE; DIFFERENTIABLE FUNCTIONS)

Let (E,| - ||) be a Banach space. If (f,,) C C([a,b], F) is such that f,(zo) — f(z0)
for some zy € [a,b] and if 39 € C([a,b], E) such that f;, =2 g on [a,b], then
3f € C'([a,b], E) such that f,, = fon [a,b] and f' = g.

Proof: according to the fundamental theorem of calculus, for all n € N we
have f, () = [ f1(t)dt. Since f, = g, then

fal( /f dt:;/ t)dt on|a,b],

according to Theorem 150. In particular, the sequence (f,,(z9) — f(a)), converges,
which implies that (f,,(a)),, converges to some ¢ € E. Itis easy to show that f,, = f,
where f : [a,b] — F is defined by

fla)=(+ /xg(t) dt.

Since all the f,, are continuous and the convergence is uniform, then f is continu-
ous. It is also differentiable, and its derivative is continuous as f’ = g € C([a, b], E)
(again, according to the fundamental theorem of calculus). |

We can use these theorems to compute various quantities that would be difficult to compute

directly.

272

Examples
1.2
1. Compute [} f(z) dz, where f(z) = FTICOESE
Solution: consider (g,) C C(R*,RT) defined by g,(z) = exp(—nz)z?
for all n € N*. Then }_ g,, converges pointwise to f : Rt — R™,
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CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

Indeed,

Y galz) =27 (Z exp(—%)) =2’ (Z (exp(—l’))">

n=1
_ 2 exp(—x) — exp(—(m + 1)z) < f(a),
1 —exp(—x)
since exp(—z) < 1 forall z € R™.
Then,
L fexp(—x) — exp(—(m + L)a)
S i) = Jim Yon(e) = fim o* (ST
neNX n=1
~exp(z) -1

Furthermore, > g,, converges absolutely to f on [a,b] C (0, c0).

Indeed, for all = € [a, b], we have |g, ()| < exp(—na)b?. Note that
b2
Z exp(—na)b® = b* Z (exp(—a))" = ————, sincea > 0.

neENx neNx - exp(a) — 17

Hence >y« exp(—na)b® converges and so, according to Exercise 1,
> gn is absolutely convergent.

Since [;° f(t)dt converges (use the Comparison Theorem with exp(—/z),
for instance), then, according to Theorem 152,

/Ooof(t)dtz/ooo (Z gn(t)> dt =Y </Ooogn(t)dt)

neNX neNX
Repeated integration by parts shows that [ ¢,,(¢) dt = 3, so that
> x? 1
dr=23" = =2¢(3).
/0 exp(z) — 1 ng\;x
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11.1. UNIFORM CONVERGENCE

2. Show that uniform convergence is not equivalent to absolute convergence.

Proof: it will be sufficient to exhibit a series which is uniformly conver-
gent but not absolutely convergent. Consider (u;) a series of constant

functions from an interval / to R defined by uy(x) = % forallz € I.

Since ||ugllc = +, and since ) diverges (it is the harmonic series,
after all), then > u; is not absolutely convergent. However,

Zuk :Z A §5—>0 as n,m — oo,
k=n ) k=n
so that > uy, is uniformly convergent. [

11.1.2 Abel’s Criterion

In calculus courses and in Chapters 5 and 6, we have seen a number of tests can be used to
gauge the convergence of series (whether numerical series or series of functions):

= p—test,;

= comparison test;

= alternating series test;

» integral test;

d’Alembert test (also known as the ratio test), or
Cauchy test (also known as the root test).

In this section, we present a new test.

Proposition 154 (ABEL'S CRITERION)
Let (a,) C E, where E is a Banach space over R. If we can write a,, = €,b,, with

1. e, \(0asequenceinR, and
2. Jo € Rsuchthat ||}, byl < oforall N € N.
Then ) a, is pointwise convergentand || ), -y a,|| < 20¢ey forall N € N,

Proof: for any ¢ > p,let S = b, ; +--- + b,. Since S = anq b, — anp b,,, we
have ||5¢|| < 20. If we write

— gptl — Qpt2 p+1 — 99 q—1
bp-‘rl_Sp 7bp+2_Sp _Sp a"'7bq_Sp_Sp )
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CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

then

€p+1bp+1 +...+5qbq — 5p+155+1 +€p+2 (554—2 i S£+1) +...+5q (Sg _ 53_1)

== Sg“ (Ept1 — Epya) + -+ Sgil (eq-1 —&¢) + €45},

whence

q
H Z ak” = [lepribpir + - +egby |

k=p+1
<[5 Heprr — epral + -+ [|SE7H[ leg-1 — eql + legl | S5
<20 (epy1 — Epy2) + - + 20 (6401 — &¢) + 20¢,
= 20epy1 — 0 asp,q — o©
Hence, ) | a; converges by the Cauchy Criterion. |

We can easily generalize this result to sequences of functions.

Proposition 155 (ABEL'S CRITERION (REPRISE))
Let )" f. be such that f,, = c,9, € F([a,b], E), where E is a Banach space over R. If

1. en(z) \ O forall z € [a,b);
2. Jo € Rsuchthat ||}, o gn()|| < o forall N € Nandall z € [a,b], and
3. |lenlloc — 0.

Then > f,, is uniformly convergent on [a, b].

Proof: left as an exercise. [ |

The three conditions are in fact independent (see Exercise 7). For the next example (and the
rest of the chapter), we assume some familiarity with complex numbers (see Chapter 22 if
necessary).

Example: consider the series Y,  cxbi(z), where by (z) = ", 2 € Rand ¢; \, 0.
Show that the series converges (pointwise) for any = € (0, 27) and that it converges
uniformly on [§, 2 — §] for any 6 € (0, 7).

Proof: since || = 1, then ), ycre™™® is absolutely convergent whenever
Y ren lck| < oo.If x # 2km, k € N, then

1 — 6i(n+1):v

L4 e 4o e = :
1—e®

Y
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11.2. FOURIER SERIES

whence

) . 2
:|1+€zz+”_+eznz|g|1—.:

T Op-

> bi(x)
k=1

According to Abel’s criterion for numerical series, .,y cke’™* thus converges
pointwise for any z € (0, 27).

Now,letm > § > 0and z € [§, 27 — d]. Then

/2 _ efix/Q

2

11— €| = |2 (e7/? — e/?)| =2 ‘ = 2| sin(z/2)| > siné,

from which we can conclude that

< = 0.
- smé

Consequently, again according to Abel’s criterion applied to series of functions,
> ren Cre™ converges uniformly for any on [§, 27 — 6] for any = > ¢ > 0. [

11.2 Fourier Series

The series >, y cke™™” in the previous example is continuous on (0, 27) even though it fails
to converge uniformly on (0, 27). It is an example of a Fourier Series, a monumental idea
in the development of modern mathematics. They were first proposed as solutions to the
heat equation, in which we seek functions v : U Cp R? x (a,b) — R satisfying the partial

differential equation

ou Ay — Pu  Pu  u

% T o T oy T o
Since the Fourier series approach gave rise to already-known solutions of the heat equation,
the process with which they were formed was accepted as valid, even though a number of
mathematicians had objections concerning the use of infinity and (possibly divergent) series.

The importance of rigour in mathematics was just starting to be understood by some of
the best mathematical minds; while these objections may sound a bit odd nowadays, it is im-
portant to remember that the current definitions of the concepts that made some of our pre-
decessors queasy have been distilled of all offending material after years of polishing, which
was driven by the very objections that they brought up.

[t is no exaggeration to say that analysis would not be what it is today without this partic-
ular episode; while it remains in fashion amongst some mathematicians to deride engineers
and physicists for “playing with tools beyond their understanding”, let us keep in mind that
analytical advances mostly arise from the application of mathematics to so-called ‘real-world’
problems, in the grand tradition of Archimedes and Newton.

In this section, we introduce and discuss the convergence of Fourier Series.
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CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

11.2.1 Trigonometric Series and Periodic Functions

A trigo

nometric polynomial is any (finite) linear combination of positive powers of sines

and cosines:

Since

we can

with

or

p(t) = ag + Z (ay cos(kt) + by sin(kt)), where ay, by € C.
k=1
it —it it —it
cost = i, sint = i7
2 2
write

p(t) = ap+ i (ay, cos(kt) + by sin(kt)) = i et

k=1 k=—n

ag = ¢y, ax=cp+c_, and by =i(cy —c_p),

Q. — Zbk ar + Zbk;
Co = Qo, Cr = T; and C—k = Ta

foralll <k <n.

A trigo

We say

nometric series is a formal expression of the form
Z cre™ = ag + Z (a cos(kt) + by sin(kt)) .
keZ keN

that a series indexed by Z converges if both the series indexed by the positive integers

and the series indexed by the negative integers converges.

These i

Proposition 156
If Y"1z cre™ converges absolutely for some t, then Y, _, |cx| < oo. Furthermore, if
> ez k| < oo, then 3f € C(R, C) such that Y, _, ce™ =t fonR.

Proof: left as an exercise. |
deas will become more clear with a concrete example.

Example: Letb € (—1,1). Consider the trigonometric series ., _ b" sin(kt). What
is its complex form? Does it converge anywhere? If so, what to?

Solution: according to the previous formulas, we formally have

0 0—idb® b nd 0+ ¥ bk
Chn = Cr = = — C_ = = — —
o 2 2i " 2 2

fork > 1.
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We also have
_ = zkt k zkt
Zb sin(kt) = Zb +QZZb
k=1 k—fn
so that, formally,
b ]{?t b zkt bk zkt

The series converges absolutely (and thus at least pointwise), as

D 6 sin(kt) ||l = > [b* = |b| < oo, since |b| < 1.

k>1 k>1

According to Proposition 148, 3f € C(R, C) to which the series converges uniformly
on R. We can re-write the convergent series as

00 . _l 00 . k_ 0 ik _l beit B be—it
Z;bm“@_m 2 (be") E:Wf)]_m(kww 1 — be-it

k=1 k=1

b it _ it ., it _ it 1

T2 1 —bleit Le-it)y Lp2 2% ’ it | —it

=SsIin
——
=cost
Thus the series converges uniformly to f : ¢ — 252 on R. |
1 1
0.5 0.5
> 7 é > 3 8

0.5 -0.5
-1 -1
b=—1/2,k=1 b= —1/2,k=1,2

Analysis and Topology Course Notes



CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

1 1
0.5 0.5
2 4 6 2 4 6

-0.5 -0.5
-1 -1
b=—1/2,k=1,2,3 b=-1/2k=1,...,6

1

0.5

2 4 6

-0.5

b=—1/2,f(t) = 1—222?11;%2

11.2.2 Again, Abel’s Criterion

Proposition 157

Let Zkez cxe** be such that ¢, > 0 and ¢;, \, 0 both as k — oo and as k — —oo.
Then Y, _, cke'™ converges uniformly on [, 2r — 6] for any § € (0, 7). Consequently,
the sum f(t) = >, , cke™ is continuous on (0, 27).
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11.2. FOURIER SERIES

Proof: it suffices to show that

E cpe™  and E ettt

k>0 k<-1

both converge uniformly on [§, 2 — 6] for all0 < § < 7, and to apply Abel’s criterion
for each of the series.

Let§ € (0, 7). Since

n ) ) _ i(n+1)t
§ GZkt:‘l—f—"-—l—emt‘:'l e

k=0 1
-1

Z ekt — ‘e—int_’_”'_’_e—it‘ _ ‘e—int‘ ‘1_’_”.+€i(n—1)t{

2 2
— <
~ |1 =€ T siné

__eﬁ

k=—n
4 1—e™ 2 2
-1 . i(n—1)t _ : <
[T+ te | ’1—6” ~ |1 —e¢* T sind
forall ¢ € [0, 2m — §], the series converge uniformly on [, 27 — J]. |

Abel’s criterion could also be used even in circumstances where ¢, is not always positive.

For instance, let _, _,(—1)"c,e™™ where the coefficient c,, are as in the statement of Proposi-
tion 157. What does the fact that

Z(_1>k€ikt

kEZ

2
< -
— |1+ et

B 14+ (_1)n+16i(n+l)t
B 1 —et

tell you? These results also apply to the real part and the imaginary partof ), _, cpe*t, ie. to
the series
ap + Z ar cos(kt) and Z b sin(kt).
k>1 k>1
For instance, ) _; -, &k’“t) converges uniformly on [§, 27 — §] forany 0 > 0. As a result, the sum

is continuous on (0, 27). However, even though }_, ., sink) converges for t = 0 and ¢ = 2,

k
the function is not continuous on [0, 27| (see Exercise 9).

Let 7" > 0. A function f : R — Cis T—periodic if f(t + T) = f(t) forallt € R. The
smallest positive 7" for which this holds is the period of the function. Periodic functions play
an important role in Fourier analysis.

Examples
1. The functions cos and sin are 27 —periodic.

2. The function tan is 7—periodic.
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3. The function defined by ¢*** is 2Z —periodic for any k € Z. O
4. The function defined by e’*“!, where w = 2% and k € Z, is T'—periodic. O

5. Let f € C.(R,C), with compact support K (thatis, f(t) = 0 whent ¢ K).
Show that p; : t — >, f(t — k) is 1—periodic.

Proof: this series converges for all ¢ since there is only a finite set of
integers k for whicht — k € K (because K is compact). Then

pt+1) =D flt+1-k) =) [(t—k) =),

k€EZ keZ

S0 ¢ is 1—periodic. |

If f € C(R,C) is a T—periodic function, then f is bounded on the interval [0, 7], with
1 T
0

The complex number ¢, is the mean value of f, also given by

wh) =7 [ foa

Ifw= 2?” and k # 0, the function g : t — e?**! is T—periodic. Then

1 [T 1 [etkwt]T
colg) = T/o et dt = T [zkw} = 0.
0

Hence, if f(t) = >, o, cke’™" is uniformly convergent on [0, 7] and 7'—periodic, then

T T T
col(f) = %/0 f(t)dt = %/0 (Z Ckeikwt) dt — Z %k/o Mt gt — ¢

keZ keZ

The sum and the integral can be interchanged because the series converges uniformly on
[0,T]. If f € C(R, C) is T—periodic, the sequence (c¢x(f)), where

. 1 [T .
ce(f) = co (fe ™) = ?/ fe ™tat, ke,
0

is the sequence of Fourier coefficients of f. Clearly, if w = 2% and f(t) = Y, ., cre™" is
uniformly convergent on [0, 7], then ¢, (f) = ¢.
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Proposition 158
The mapping f +— (cx(f))kez is a linear map from the vector space of continuous
T —periodic functions to the space of bounded sequences indexed by 7. More precisely,

igg{lck(f)\} <l < 1 lloe < 00,

where || f| = % [; |/ (t)] dt.

Proof: left as an exercise. [ |

We can improve on Proposition 158 once we show that

1/2
[ fll2 = (Z ’Ck(f)‘2> :

kEZ
Proposition 159 Let f be a 2r—periodic function such that f € C",n > 0. Then

(f) = e (0

In particular,

(n)
e(f)] < ”f,,%

and so |cx(f)| — Oas |k| — oc.

Proof: this is easily shown by induction on n. If n = 1, we have

1 . 1| fe)e ™" 1 P 4
—— t —ikt dt - = ! t —ikt dt
W) =g [ S0 = o [—_ik St T
1 /
= %Ck(f )-
A sequence of integrations by parts yields the result for general n. |

As a corollary, if f € C? is 2r—periodic, then )", , cr(f)e*t converges absolutely (and so
uniformly) on R.

All that precedes leads us to the crucial definition: the Fourier series of a 2r—periodic func-

tion f is the series Y, _, cx(f)e’*’; in that case, we write f(t) ~ >, ., ck(f)e™™. Note that it is
possible for f not to equal its Fourier series.
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11.2.3 Convergence of Fourier Series

The next results discuss the convergence of Fourier series.

Theorem 160
Let f be 2n—periodic. If f € C?, then the Fourier series y_, , cr(f)e*t converges
absolutely (and so uniformly) to f on R.

Proof: according to the corollary to Proposition 159, the Fourier series
g(t) = Y ez ck(f)e™ converges absolutely on R, and thus g is continuous
and 27 —periodic. We want to show that ¢ = f.

Let h = f — g. Then h is continuous and 27 —periodic. We also have

c(h) = ex(f) — er(g) =0,

so that ¢ (f) = ¢x(g) forall k € Z.

It remains only to show that when £ is continuous, 2r—periodic, and ¢, (h) = 0 for
all £ € Z, then h = 0. According to a corollary of the Stone-Weierstrass theorem
(see Chapter 23), 3(p,)nen such that p,(t) = Y, ., ax(n)e™™ and p, = h. Note that
for a fixed k, we must have a(n) — 0 when n — oc.

Then
! 27r|h(t)|2dt— ! / %h(t)h(t)dtthm—lf’o lim — / Zﬁh(t) (t) dt

thm 152 Z (nh_g)lo ak(n)% /02 h(t)e™ dt> = ; (nll_)n;lo ak(n)c,k(h)> =0.

kEZ

Since |h(t)|* is continuous, |h(t)|> = 0 for all ¢ € [0, 2], so that h(t) = 0 for all
t € [0, 2. n

The next result provides a sufficient condition for a function to be equal to its Fourier series.

Theorem 161

Let f be a continuous 2w —periodic function such that
D le(f)l = M < oo.
kEZ

Then the Fourier series of | converges absolutely to f on R and is equal to f on R.

Proof: left as an exercise. [ |
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Let us take a look at an example.

284

Example: fix a € R and let f,(t) = cos(at), |t| < . Extend f, to R by periodicity.
What is the Fourier series of f,? Is it equal to f, on R? Solution: if a ¢ Z, f, is not
differentiable (see example below).

T

08
06
04r

0.2

TV

0.4k

-06

-0.81

Y -

If a € Z then cos(at) is already a trigonometric polynomial so the Fourier series of
fa is simply cos(at). So assume that a ¢ Z.

Let £k € Z. Then

1 [7 i 1 [T elat — et . a(—1)*sin(ra)
Ck(fa) = %/ COS(a/t)G Kt dt = %/_ Te kt dt = 7T(a,2 — ]{}2)

—T

Using the comparison test with |c;(f)| ~ 5, we see that >, _ |cx(f)| < co. Accord-

ing to Theorem 161,

a(—1)*sin(ra) |
falt) = <7r(1a)2 i k:(Z) )elkt

converges absolutely on R. |

FALAA AL

0.4

0.2

S/ R

041

-06

-0.81
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11.2.4 Dirichlet’s Convergence Theorem

Let f : R — C be a 2r—periodic Riemann-integrable function. For k € Z, set

ex(t) = e = ()" = (e ().

Let N € N. Define
N

Sn()() = D al(fet);

k=—N

Sx(f) is the partial sum of degree N for the Fourier series of f.> We can write these partial
sums as convolutions: indeed, we have

Sx(NB = 3 alhet) = 3 enld) / F)er(—y) dy
-/ f<y>{ 3 ek<t>ek<—y>} dy

:/f(y){ > ek<t—y>} dy
— /f(y)KN(t—y) dy := (Dy * f)(t),

where the Dirichlet kernel of order N is, formally,

N N e—iNt _ Gi(N+1)t
K= 3 el = 3 o= T
k=—N k=—N
1 [1— N+t sin((N + 1/2)t)
= — . = hent & 2nZ.
eth( 1—e ) sin(¢/2) whent ¢ 2m

Proposition 162
The Dirichlet kernel is even, 2m—periodic, co(Ky) = 1, [ Kn(t) dt = m, and

Kn(0) = lim Ky (t) = 2N + 1.

t—

Proof: left as an exercise. [ |

The next result is substantially more difficult to prove.

L [“**T forany a € R.

3In what follows, we will write [ := ;- j;)% =+
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Lemma 163 (RIEMANN-LEBESGUE LEMMA)
Let f : [a,b] — C be integrable over [a,b]. Then lim,,_,, fab f(t)e™t dt = 0.

Proof: left as a (difficult) exercise. [ |

We can now state and prove this section’s main result.

286

Theorem 164 (DIRICHLET'S CONVERGENCE THEOREM)
Let f : R — C be piecewise (with a finite number of discontinuities) and 27 —periodic.
If the following one-sided limits exist Vx € R:

flzth) - f(x)

FE) = lim = n), ) = lim T,
then N
Sw(P@ = 3 et » LTI oy oo

k=—N

Proof: without loss of generality, we can assume that x = 0 by translating the vari-
able x to the origin as needed. Consider the sequence of partial sums

sv = Sn()0) = > alHe(0) = > alf).

For N € N, we have

sv= Y / F(t)eikt df — / FO K (t) dt.

|k|<N

Since K y(t) is even, then

/_ fO)Ky(t)dt = /07r f(=t)Kn(t)dt,

whence (remember the notation convention for integrals)

sx =5 [ 10 + F0}Ex(t) .

Write

uy = sy — LEOHO),
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Then
=—/{f )+ FO}R(t) de = 2010 2 [ ) a
/ LF() + (=) = F(07) = F(07)}Ew(0)
— 57 | osin(v + 1/ d
where FO =50+ 0 =50 o
o(t) = sin(t/2)
0, otherwise

By construction, g is clearly piecewise continuous on (0, 7|. It is necessarily bounded
in a neighbourhood of t = 0 according to de 'Hopital’s Rule:

. - 2(/'(t) — f'(=t))
11\rgg(t) - 11\rr(1) cos(t/2)

=2(f'(07) + f'(07)) < o0.

The function ¢ is thus nicely-behaved: it is bounded and piecewise continuous
(with at most a finite number of discontinuities) over [0, 7] and so is integrable on
every continuous piece of [0, 7], using an easy generalization of Theorem 54 (see
Chapter 4).

According to the Riemann-Lebesgue lemma 155,

lim g(t)e™ dt = 0.

n—o0 0

The relation still holds with the change of variable n = N + 1/2.

Since 27uy is the imaginary part of [ g(t)e'™*!/2"dt, then 2ruy — 0 and
SOD)+£(07)
2

SN — when N — oo. [ |

In other words, if a periodic function f is “nice enough” (piecewise C!), then it is equal to
its Fourier series wherever f is continuous. At discontinuities of f, the Fourier series con-
verges to the mean of the one-sided limits.*

Example: let f : [0,27] — R be defined by f(¢) = t*. Extend f to R by periodicity.
What is the Fourier series of f. Isitequal to f on R?

“Be careful: some piecewise C° periodic functions have divergent Fourier series.
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Solution: the Fourier coefficients of f are

i
3

bl

According to Dirichlet’s convergence theorem,

k€EZ keZ*

since f is piecewise C'.

/

/

. /
’ l/% \ ///\\ ///\
| V

v
¥y

SZO(f)

EL
L

Ss(f)

keeping with Theorem 164.

cr(fa) = ;/QW 12kt dt = {[Cj;%(”’f +1),

)

converges (at least pointwise) to t2 for t ¢ 277, and to fem+/0)

2

11.2. FOURIER SERIES

k#0
k=0

- 472 2
ik ik
E cr(f)e™t = = + E 2 —(iTk + 1)e™

©) — 9272 fort € 27,

The convergence turns out to be uniform on [27¢ + §, 2w (¢ + 1)
¢ € Z (more on this in the next section), but only pointwise over R as a whole, in

L3

SQOO(f)

—¢],forallé € (0,m),

Notice the overshooting of the partial sumsast — 27/, ¢ € Z, which does not seem to dampen
when N — oo. This “universal” behaviour at discontinuities is termed Gibbs’ Phenomenon
(contrast the behaviour of the Fourier series of t* with that of cos(at) discussed earlier).

The explanation of the problem is linked with the lim sup and liminf of the partial sums
Sn(f)(zn) at points x5 that approach a discontinuity at z,, but we will not discuss this any

further.
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11.2.5 Quadratic Mean Convergence

The set of 2r—periodic piecewise continuous functions from R to C is an inner product

space together with

F1o)=5 |

with associated norm || f| = /(f | f)-

" f(t)a(®) dt

Note that for p, v € Z, we have

1 2w ) ) 1 2 ‘ 0
(€M | ey) — _/ ez,ute—’wt dt = — ez(,u—y)t dt = 6uy _ y M 7£ v
2m Jo 21 Jo ’ I, pu=v

For a given N € N and a function f in the inner product space of the previous page, con-
sider the partial sum

Sn(f) =Y axlHexlt).

[k|<N

For any |k| < N, we must have

a(f) =5 [ Fe = (f ] e

But

(Sn(f) 1 ew) = > el el en) = > el ok = cilf).

<N <N

Thus, (f — Sy(f) | ex) = 0 forall |k| < N and we can write

f=5n(f)+(f = Sn(f)),
with Sy(f) € Py = Span{e, | —N <k < N}and f — Sy(f) € Px.

Note furthermore that since (Sy | f — Sy (f)) = 0, then

LA = (F 1 F) = (Sw(f) + (f = Sn(f)) | Sn(f) + (f = Sn(f)))
= (Sn(f) ['Sn(f) +2Re (Sw(f) [ f = Sn(f)) +(f = Sn(f) | f = Sn(f))

N J/

~~
=0

= [Sn(DIz+IIf = S (I3

For any other function g € Py, we see that

1F =gl =11 f = Sn(f)+5w(h) — g1

-~

~
EPx €PN

= If = SN2+ 1Sx(f) = gllz = If = Sw ()]
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Since g was arbitrary,

Jnf Il - gllz = I1f = Sn(HIz = 1£1Iz = 1Sx (Hll2- (11.1)

The partial sum Sy (f) is thus the nearest trigonometric polynomial to f in Py, in the sense
of the quadratic mean.

290

Theorem 165 (PARSEVAL'S IDENTITY)
Let f be a 2m—periodic piecewise continuous function from R to C. Then

1 27r

2
— dt = E
2m Jo | |ck

k=—o00

Proof: as | f|* is Riemann-integrable on [0, 27|, the convergence of the series will be
assured once the equality is established. By construction,

ISn(OIE = [ D (D™D alf)e | = D clf)e(f)lex | er)
|k|<N l¢|<N kf=—N
= Z ce(f)ee(f)ore = Z lex ()]

The sequence of infimums given in (11.1) by
I 2
(o) = (int €17 - 912}
is bounded below by 0.

Let N € N. Clearly, ||Sx (/)13 < [|Sy11(f)]|3 and so

oy =1 = Sv(Hlz = IF12 = ISn(AIE = I1£12 = [Sx+1 (Nl = x4

Thus (zy) is a decreasing and bounded sequence; as such, it converges to
0 <z, = inf{zy | N € N} by the bounded monotone convergence theorem.

In particular, this means that

1 2 0
I _ 2 : 2 _ 2 2
v = Jim oy = 15 = Jim ISvDIE= 5= [ IR = 3 laln)P,

k=—o00

which guarantees the convergence of the series, as | f|? is Riemann-integrable over
[0, 27] (being continuous).
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Write P = |Jy ey Pn- Since Py C P forall N € N, we have

inf [|f — g[|2 < inf ||f — g|2 = for all N
infllf —glz < inf |If gl =2y, foralNeN,

which implies that
0 < inf||f — g[? < =..
_;gp\lf gl <=

Conversely, z. < ||f — g||3forallg € Py, N € N. Thus z, < ||f — g||3 forall g € P,
so that

. < inf ||f — g2
Lo = glgpllf gll3
Combining these, we obtain

: 2 1 o 2 - 2
inflf = glf =5 [ UOFa= 3

k=—o00

Lete > 0. As f is a 2r—periodic piecewise continuous function, we can find a
2m—periodic continuous function f, such that

I|f — f.lla < Ke, forsome K > 0.

If f is constant, simply set f. = f; we do the same if f is continuous.

Otherwise, assume that f admits m discontinuities at
T <...<xpy € (6,21 +6), forsomed >0,
and denote the closed > —neighbourhood around z,, by
Baer = [Yaers Yarer + 267,

for a = 1,...,m, and their union by B.: (restrict ¢ as needed to ensure that the
B2 = [Yarc2, Yoz + 2¢%] do not overlap).

Outside of B.2 but in [§, 27 + |, define f. = f. In each of the B, .» N [6, 27 + 4], let
f. be the linear function joining the points

(ya,52> f(ya,52)) and (ya,z-:? + 2527 f(ya,sz + 282))~

The function f, : [§,27 + §] — C is “clearly” continuous, and can be extended to a
2m—periodic continuous function over R.

In particular, |f — f.|* is real-valued and continuous over [0,27 + 4]. Conse-
quently, the latter reaches its maximum A > 0 somewhere on [§, 27 + ¢], by the
max/min theorem.
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Thus, for any § > 0,

1 27T+5 2 2
I = £l = 5= [ 150 = fo)Par = Z / 10~ P
1 mM
< — M dt = = e? = K22
< o Z /B Zzg M= K2
a=1 o,e2 \\/—/

>0

According to the Stone-Weierstrass theorem (see Chapter 23), the set of
2m—periodic trigonometric polynomials P is dense in the set of 2w —periodic
continuous functions w.r.t. to || - |2, and so 3g € P with || f. — g||2 < e.

Putting this together, we see that
1f=gllo <IIf = fello+ I fe — glls < Ke +e = (K + 1)e.
Thus

glgg lf —glls < (K +1)e foralle = glgg |f—gllz2=0. ]

Parseval’s identity remains valid for locally Riemann-integrable functions ( [,. | f| dt < oo for
all K Ck [0, 27]), instead of piecewise continuous, with multiple consequences: the series

> eI

kEZ

converges, which shows that |c;(f)|> — 0, and thus ¢, (f) — 0 as k — +oo (by the Riemann-
Lebesgue lemma). It can also be used to show that any 27 —periodic continuous function
f + R — C whose Fourier series converges uniformly on R must be equal to said series
(compare with Dirichlet’s convergence theorem).

11.3 Exercises

292

1. Let (g,) be a sequence of functions. Show that }_ g, converges absolutely if and only

if 3(a,,) € R* such that ) a,, converges and ||g,||oc < a, for all n. Use that result to

show that the series of functions } | g,, where g, : [0,1] — R is defined by g,.(z) = %,
is absolutely convergent on [0, 1].

. For each of the theorems of Section 11.1.1 (save for Theorem 152), find an example

showing that the result does not hold if uniform convergence is replaced by pointwise
convergence.

3. Prove Theorems 152, 153, and 161, as well as Propositions 156 and 158.
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10.

11.
12.

13.
14.

15.

16.

Find some examples showing that the result of Theorem 152 does not hold in general
if absolute convergence is replaced by a weaker type of convergence.

Let g, : R — Rbe defined by g, (z) = ; for eachn € N. Show that each of the following
series of functions converges absolutely on R.

a) S=>(-1)" g1
b) C'=3(-1)"g2
) E=3gn

Let S, C, E be as in the previous question. Using the appropriate theorems, show that
for any = € R show that S’(z) = C(z), C'(x) = —S(x),and E'(z) = E(z).

Find examples showing that the three conditions in the statement of Proposition 155
are independent from one another.

Improve the bound in Proposition 158 by showing that

1/2
| fll2 = (Z|Ck(f)|2> :

kEZ

Show that the function f : [0,27] — R defined by f(¢) = >_,-, Si“likt) is not continuous
on [0, 27]. -

Using the Fourier series of the cosine, show that 7 cot(an) = ), ., %5 foralla ¢ Z
(also known as Euler’s Formula).

Prove the properties of the Dirichlet kernel (Proposition 11.2.4).

Show that (f | g) (see page 289) defines an inner product on the set of 2r—periodic
piecewise continuous functions from R to C.

Prove the Riemann-Lebesgue lemma without using Parseval’s identity.

Show that any 27 —periodic continuous function f : R — C whose Fourier coefficients
are all 0 must be the zero function.

Let (a,) C C be such thata,, — ¢and let (¢,) C R" be a divergent sequence. Define a
sequence (b,) C C by

p — Dozt Ui

D S

Show that b,, — /.

a) Let (f,,) be the sequence of functions defined by

foiRE SR, fulx) = {(()1 -3 iifn]

Show that f, = f on R, where f : Rf — Ris defined by f(z) = e~2.
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17.

18.

19.

20.

21.

22.

23.
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b) Let U Cx Cand let (f,,) be the sequence of functions defined by

z

f:CoC, ()= (HE) .
Show that f,, = f on K, where f : C — Cis defined by f(z) = e*.
For any n € N*, letu,, : Rf — R be defined by u(z) =

el

a) Show that}_ u, — f forsome f € C(Rj,R), butthat u, 7 fonR{.

b) Show that Y (—1)"u, = gonR{ for some g € C(RJ,R), butthat Y (—1)"u, is not

absolutely convergent on R .

What can you say about a function f : R — R which is the uniform limit of a sequence
of polynomials (P,)?
Consider the sequence of functions ( f,,) C C([0, 7/2], R) defined by f,,(x) = cos™ z sinz
foralln € N.

a) Let O : [0,7/2] — R be the zero function. Show that f,, = O on [0, 7/2].

b) Consider the sequence of functions (g,,) defined by g, = (n+1) f,,. Letd > 0. Show
that g, = O on [§, 7/2] but that

/2
/0 gu(t) dt 5 0.

Theses results are due to Dini.

a) Let (f,,) € C([a,b],R) be an increasing sequence of functions (i.e. for all z € [a, D]
and for all n € N, we have f,(z) < fo1(x)). If f, — f on [a,b] where f €
C([a,b],R), show that f,, = f on [a, b].

b) Let (f,) € C([a,b],R) be a sequence of increasing functions (i.e. forallz > y €
la,b] and for all n € N, we have f,(x) > f.(y)). If f, — f on [a,b] where f €
C([a,b],R), show that f,, =% f on [a, b].

Determine whether > x,, converges in (R?, || - ||2), where

(sinn)™ 1
X, = ( 2 , ﬁ .

If so, does ) x,, converge absolutely?

Compute the values of the following convergent series

=1 > 1 =1
;ﬁ’ ;(271—1)2’ nzlﬁ’

using the 27 —periodic function defined by f(z) = 1 — z/7? over the interval [—7, 7].

Prepare a 2-page summary of this chapter, with important definitions and results.
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