Chapter 12

Alternating Multilinear Forms

In order to define the notion of differential forms (and to learn how to
integrate them), we need concepts from linear algebra. In this chapter, £
is a finite dimensional vector space over R (i.e, dim(E) = n — E ~ R").

12.1 Linear Algebra Notions

A (linear) 1—form over F is alinear map f : £ — R; a (linear) p—form over E is a linear
map f: EP = E x --- x EE— R which is linear in each of its arguments.

Examples
1. The projection map f; : R" — R, defined by f1(x) = fi(z1,...,2,) = 1 isa
1—form over R™. Generally, the projection f; : R” — R defined by f;(x) = x;
isal—formover R" foralli =1,...,n.
If B={ey,...,e,}isabasis of F, then for any x € E we can write
X=1x1€ + - +11€
and the projection f? : E — R defined by f?(x) = x; isa 1—form over E. [J

2. The inner product (- | -) : R* x R®™ — R"™ defined by

x|y)= (1, 2n) | W15+, Yn)) :leyz

is a (bilinear) 2—form over R".

If(x|y)=(y|x)forallx,y € F, the 2—form is symmetric. O
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12.1. LINEAR ALGEBRA NOTIONS

3. The 2—determinant det : R? x R? — R defined by

det(x,y) = det (xl xz) = T1Y2 — T2l
Y1 Y2
is a bilinear form over R?, but it is not symmetric since det(x,y) = — det(y, x)
for all x,y € R% Note as well that det(x, x) = 0 for all x € R?. O
A p—form f over E is alternating if f(x,,...,x,) = 0 whenever x; = X, for some i < j.

Example: det : R? x R? — R is an alternating bilinear form. More generally,

det: R" x---xR*" =R
—————

n times

is an alternating linear n—form. O

Let f : R? x R? — R be an alternating bilinear form on R?. If {e,, e,} is a basis of R?, then f
is completely determined by the value taken by f(e;, e;). Indeed, let x,y € R?, Then

f(x,y) = f(z1e1 + z2e0,y1€1 + yo€3) = 1 f(e1, Y181 + y2€2) + 22 f(e2, y1€1 + yoes)
=11y f(er,e)) +riyaf(er, ) + xayr f(er, e1) +way2 f(e2, €2)

—— —— ~——
=0 =—f(e1,e2) =0
T T
= (T1y2 — w211) f (€1, €2) = det ( ' 2) f(er,eq).
Y1 Y2

Let {e;,...,e,} beabasisof E = R" and let {xy,...,X,} C E =R" For1 <i < n, Write

n

X, = E sm-ej.

j=1
If f: E™ — Ris an alternating (linear) n—form, then
11 - Tin
f(Xi,...,x,)=det| . i | fle,...,e,) =det(x; --- xn)Tf(el,...,en).
Tn1 - Tnn

Let f1,..., f, be plinear 1—forms over E.* Define f : E? — R by
fXa, %) = fi(X) - fp(Xp)

Then f is the tensor product of the f;; it is a linear p—form over F, which we usually denote
by f=fi® - ®f
'We can also write this as fi, ..., f, € E*, where E* = {f : E — R | f linear} is the dual space of E.
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CHAPTER 12. ALTERNATING MULTILINEAR FORMS
If B = {eq,...,e,} is abasis of F, then for 1 < i < n, we define the linear functionals
e; € I by

e (x) =e(r1e;+---+x,e,) =11€(€) + -+ z,e/(e,) =x,8/(e;) =14

(2

forallx = (z1,...,2,) € E. In that case, the set
{ef ®--®e; |i;€{l,....n}}

forms a basis of the vector space of p—forms over F, and dim({p — forms over E}) = n?.

12.2 Anti-Symmetric Forms

In introductory linear algebra and group theory courses, we learn thatif A = (a; ;) C M,,(R),
then we can write the determinant of A using the Laplace expansion:

det(A) = > €(0)aro(1) - Anom),

O’GSn

where S, is the permutation group on {1,...,n} (whence |S,,| = n!)and e : S, - {£1}is
the signature of a permutation o (more on this in the first footnote of Section 12.3).

Proposition 166
Let f be a linear p—form over E. If g : E? — R is defined by

g1 %) = ) €(0) f(Xo(1)s - - > Xop),

then g is an alternating p—form.

Proof: we only prove the statement for p = 2. The proof for p > 3 is left as
an exercise.

Letp = 2. Then S, = {id,c = (1 2)} and we have ¢(id) = 1 and (o) = —1.
Therefore,
9(X1,Xp) = f(X1, %) — f(X2,X1).

Clearly g(x,x) = 0, and so g is alternating. [ |

The alternating p—form g in Proposition 166 is the anti-symmetric form built from f.

Let fi, ..., f, belinear 1—forms over E. The anti-symmetric form built from the tensor prod-
uct f; ® -+ ® f, is the wedge product of f, ..., f,, denoted by (f; A--- A f,).2

2Formally, we should be using the brackets around the wedge product (and the tensor product) of linear
forms, but we will often omit them to simplify the notation.
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12.2. ANTI-SYMMETRIC FORMS

By definition, then, we have

(LA A L) %) = Y @) (L@ @ o) (Xo(r), - Xo(r)

oESy
fix1) - fi(xp)
o Z 0(1) fp(XO'(p)) = det
oES) fp (Xl) o fp(Xp)

A few examples will help to illustrate the concept.

Examples: consider the case p = 2; let fi, f> be linear 1—form over £ = R? and
X1,Xo € E. Then:

L fi A fo(X1,%2) = fi(X1) fa(X2) — f1(X2) fo(X1).
2. fo N fi(X1,%2) = fo(X1) f1(X2) — fa(X2) f1(X1) = —f1 A fa(X1, X2).
3. i fi(X1,X2) = fa A fo(X1,X2) = 0. ]

Generally, if f; = f; for some i =# j, then f; A--- A f, = 0. Furthermore, if 0 € S,, then

oy Ao A foy = €(@) fi Ao A f.

Example: let B = {e;,e;, e;} be a basis of £ (i.e, n = dim(£) = 3) and let g :
E x E — R be abilinear alternating form (i.e., p = 2). Then

3 3 3
g(x,y) =g <Z i€, Z?Jj%) = ziyig(ese)).
i=1 j=1 ij=1
Since g is alternating, we must have:
g(e;,e;) =—g(e;,e;), g(e;,e)=0, foralli,j=1,...,3.
Thus,

g(X, Y) = $1y29(917 92) + I1y39(91, 93) + $2y39(e2, 93)
— iUleg(el, 82) — 1’3y19(e1, ea) - $3y29(e2, 93)
= (z1y2 — x2y1)g(e1, €2) + (21y3 — z3y1)g(€1, €3) + (T2y3 — T3Y2)g(€2, €3).
But note that for i < j, we have

* *

e; \ej(x,y) = e;(x)ej(y) — e;(y)ej(x) = ziy; — z;y;.
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CHAPTER 12. ALTERNATING MULTILINEAR FORMS
Combining the last two results, we have

g(x,y) = g(e1, ex)e] A€} + g(er, es)e] A e; + g(er, e3)e; A ej.

Consequently, g is a linear combination of the wedge products {e; A e} | i < j}.
Furthermore, {e] A €}, e} A e}, e; A e}} are linearly independent.

Indeed, suppose that
(dio€] Ney+dise] Ne;+dyses Ney)(x,y) =0 forallx,y.
In particular, this would hold for (x,y) = (e;, e;), and so

0 =diqe] Nes(er,ey) + disel Aes(er, es) + dases Aes(es, es)
= dip(ej(er)e;(ez) —ej(ez)es(er)) + dis((ef(er)es(ez) — ej(er)es(er))
+ da((e3(e1)ez(ez) — ex(ez)ez(er))
—dia(1-1—0-0)+dia(1-0—0-0)+dos(0-0—0-0)=dys = dyo=0.

Similarly, using (x,y) = (e, e3) and (X,y) = (eq, e3) yields dy 3 = da 3 = 0.

Thus {e} A e;, e} A e}, e5 A e}} forms a basis for the space of alternating bi-
linear (2—)forms over F. |

The space of alternating p—forms over £/ ~ R" will constantly be appearing in what fol-
lows; to lighten the text, we denote it by AP(E).

Theorem 167
Let{e,,...,e,} beabasisof E ~ R"and {ej}, ..., e’} be the dual basis of E*. Then

{ei, Ao Aep | <o <ip}

is a basis of AP(E).

Proof: left as an exercise. [ |

Corollary 168
Let E ~R™ If1 < p <mn,then

dim(AP(E))

Il
VN
=_NO3
N———

I
~

NE
S

ifp > n, then dim(AP(E)) = 0.

Proof: left as an exercise. [ |
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12.3. WEDGE PRODUCT OF ALTERNATING FORMS

12.3 Wedge Product of Alternating Forms

If f € AP(E) and g € AY(FE), is there a natural way to build a form f A g € APT9(E)? It turns
out that it can be done, with a small group theory detour.

Let S,,, be the permutation group on {1, ...,p + ¢}, and set
A={o0€Spylo(l)<--<o(p) and o(p+1)<-<a(p+q)}
Examples
1. Ifp=1and ¢ =2,then A = {0 € S3| 0(2) < o(3)}. But
Sy={id, (1 2),(1 3),(2 3),(1 2 3),(1 3 2)},

so that
A={id, (1 2),(1 3 2)}.

2. Ifp=2andqg=2thenA={ce€ S, |0(l) <o(2) and o(3) <o(4)}; S4
has 4! = 24 permutations, and we can show that

A={id,(2 3),(2 4 3),(1 2 3),(1 2 4 3),(1 3)(2 4}

Permutation calculations can quickly become cumbersome! 0J

If f € AP(E)and g € AY(F), the wedge product of f and g is given by

f A g(Xl, e X, X1, 7xp+q) = ZG(O’)f(XU(l), cee 7XU(p))g(XU(p+1)7 cee uXU(p-i-q))'
geA

As f A g depends linearly on each of x4, ..., X, thenitisalinear (p + ¢)—form on E. Is it
alternating?

Example: if p = 1 and ¢ = 3, then
A={oeSi|o(2) <o) <o®)}={id (1 2),(1 3 2),(1 4 3 2)}k

the corresponding signaturesare 1, —1, 1, —1. Ifall we know of f, gisthat f € A'(E)
and g € AY(FE), then we must have:

A permutation o € S,, is a bijection o : {1,...,n} — {1,...,n}. We can also write o in cycle notation, as
illustrated as follows: suppose that o acts on {1,2,3,4,5} accordingto o(1) = 2,0(2) =5,0(5) = 1,0(3) = 3,
and 0(4) = 4. Thenwe writecas (1 2 5) (3) (4), orusuallyas (1 2 5) since 3,4 are left unchanged by o.
The signature €(o) of a permutation o is determined as follows. We write o as a product of disjoint cycles (as
above); the signature is —1 if and only if the factorization contains an odd number of even-length cycles. As
o= (1 2 5) contains no even-length cycle, e(c) = 1.
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CHAPTER 12. ALTERNATING MULTILINEAR FORMS

A g(X1, X2, X3,Xy) = f(X1)g(Xo, X3, X4) — f(X2)g(X1,X3,Xy)
+ f(X3)g9(X1, X2, X4) — f(X4)g(X1, X2, X3).
Ifx; = X5, X; = X3, X] = Xy, Xo = X3, Xy = Xy, O X3 = Xy, the g components of f A g
are either 0 because they are alternating and contain a repeated argument, or they
cancel one another out (try it!); thus f A g is alternating. U

The wedge product has the right kinds of properties: if f, f1, fo € AP(E), g,91,92 € A(E),
and « € R, then

(it fo)Ng=fing+ fang,
AL +92)=fAg+ fAge,
(af)Ng=a(fAg)=fA(ag)

This leads us to the following crucial result.

Lemma 169
Letf, € EX,1<i<p+q Then f = fiN---Nf, € AP(E), g = gpr1/\- - NGptq € NI(E)
and
f/\g:fl/\"'/\fp+q-
Proof: by definition,

FIN - A Xy %) = Y (o) fiXoq) -+ folXom),

oSy

Sort N AN fpig(Rpits - Xprg) = Z €(T) fpi1(Krprn)) -+ fprg(Xe(prg))-

TESy

It is easy to see that
Sp={o€Spqlo(j)=4p+1<j<p+q} and S, ~{reS,,|7(j)=741<j<p}

In Lemma 171, we will see thatevery ¢ € S,., can be written uniquelyas 5 = co’0”,
witho € A4,0' € §,,and ¢” € S,. Then

JuN A fprg(Xi, o Xpyg) = Z €(0) i) - fora(Xo(pra))

5€Sp+q
= Y 000" o) - Fyra(Rowrarprn)
= Z e(0)e(0”)e(0”) fi(Xoor(1)  + + fo (Koo' () i1 Koo (pr1) * * Fora(Xoor(pr))
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so that

fl /\"'/\fp+q(xlw--7xp+q)

_ Z ( Z ") f1(X, )-ufp(xwl(p)))( Z €(0") fpa1(x Xoo(p+1)) *** fp+a(X 00”(p+Q))>

oc€A o’'eSp o"eSy
_Zf o(1)s -+ ))g< (p+1)7"'7xo(p+q)) = f/\g(xcr(p)a'--7xa(p+q))'
oc€A
That this (p + ¢q)—form is alternating is left as an exercise. [

This leads us to the main result of this section.

Theorem 170
Let f € A’(E)and g € N1(E). Then f A g € APTI(E).

Proof: according to Theorem 167, f is a linear combination of wedge prod-
ucts of p—forms over £ of the formej A---Aej ; similarly, g is a linear combination
of wedge products of g—forms over E of the formej A---Aej .
According to Lemma 169, expressions of the form

(e, A---Nej)N(e N---Nej) (12.1)

are alternating (p + ¢)—forms.

Thus f A g is a linear combination of alternating (p + ¢)—forms as in (12.1);
since AP"1(E) is a vector space over FE (see Corollary 168), f A g is alternating. W

The wedge product of alternating forms is thus well-defined, and it has a set of useful prop-
erties. Let f € AP(E),g € A1(E),h € A"(E). Then:

1. fA(gAh)=(fAg)Ah (the wedge product is associative);
2. fAg=(=1)Pg A f (itis not commutative), and

3. ifu: E — Fisalinear transformation, f € A?(F),and g € AY(F), then u(f) € AP(E),
where

u(f)(xla s 7Xp) = f(u(X1), s ,U(Xp));
u(g) € A1(E), where

w(g)(Xe, .., Xp) = g(u(Xqy),. .., u(Xy)),

and u(f A g) = u(f) ANu(g) € APTI(E) (the proof is left as an exercise).
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We finish this section with the promised lemma.

Lemma 171
If6 € Syi, thereis a unique triplet o € A, o' € S, and 0" € S, such that = oo'c”.

Proof: let A’ = {6(1),...,a(p)} € {l,...,p + q}. List the integers in A’ in
increasing order, and define ¢’ by ¢’(j) =rank of 5(j) in A, for 1 < 5 < p.

Similarly, define o” by 0”(j) =rank of (i) in A” = ordered{c(p+1),...,6(p+q)},
forp+1<i1<p+gq.

If we write A’ = {i; < --- < ip}and A” = {ip11 < -+ < ipyq}, we can then
defineo by o(j) =1i;,1 < j<p+gq.Thené = oo'c". [ |

12.4 Solved Problems

1. Let E be a finite-dimensional vector space over R, with dim(£) = 3. Ifx,y,z € F are
linearly dependent, show that f(x,y,z) = 0 for any alternating linear 3—form f.

Proof: let {e;,e2, e3} be the canonical basis of E. Since x,y,z € E are linearly
dependent, (at least) one of them may be expressed as a linear combination of the
other two. Without loss of generality, say x = ay + bz, with a,b € R. Then

fxy,z) = f(ay +bz,y,2) = af(y,y,2) + bf(2,y,2) =a-0+b-0=0,
since f is alternating. |

2. Let F be a finite-dimensional vector space over R, with dim(E) = 3. Ifx,y,z € FE are linearly
independent, show that f(x,y, z) # 0 for any alternating linear 3—form f # 0.

Proof: let {e|, es, e3} be the canonical basis of E. Since f # 0, f(e1, ez, e3) # 0.
Write

X = x1€1 + xg€s + x3€3
y = y1€e1 + y2e2 + yses

Z = z1€1 + 29€9 + 23€3

Since {X,y, z} are linearly independent,

I Yy z1
det [ z2 y2 22| #0.
T3 Y3 23
Then
I Yyr 2
fxy,z)= Y wmyzfler,exey) =det|za yo 2 |- fler,es,e3)#0. W
i#] T3 Y3 Z3
itk
jFk
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3. Show that the inner product (- | |-) : R” x R™ — R s a bilinear form.

Proof: the inner product (- | -) : R" x R" — R is defined by

X |y szyz

In order to show it is bilinear, we need to show that for all x,y,z € R", a,b € R, we
have

* (ax+by | z) = a(x|z) + b(y | z)
» (x|ay+bz)=a(x|y)+b(x]z)
But

(ax+ by | z) = Z(azi +byi)zi = aZ:cizi + beizi =a(x|z)+0b(y|z)

i=1 =1 =1

and
(x|ay+bz) = wmi(ayi +bz) =aY @y +bY  ziz =a(x|y) +b(x | z)
=1 =1 =1

so that the inner product is indeed bilinear. It is not alternating, however, since we
would need (x | x) = 0 forallx € R” but (e; | e;) = 1. |

4. Show thatdet: R™ x --- x R™ — Ris a bilinear form.
Proof: that this form is both multilinear and alternating is immediate due to the

properties of the determinant that you have seen/will see in your linear algebra
courses:

» Firstly, det (x1,...,a1y1 + a2y2,...,X,) = Zaj det(x1,...,yj,...,Xp)

= Secondly, det (x1,...,X,) = 0if x; = x; for some i # j.

5. Show that {e] ® e}, ®---e} :1 <4; <n}forms abasis of the vector space of linear p—forms
over F. What is the dimension of that vector space?

Proof: recall that e} : £ — Ris the linear functional such that e} (e;) = J; ;.
Let us first assume that the set in question is indeed a basis of the space of all lin-
ear (but not necessarily alternating) p—forms. There are n possible choices for each

1—form e; appearmg in the tensor product. Since there are p such forms, there is a
total of n? tensor products. Hence, dim({space of p—linear forms over E'}) = n?.
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We now show that the set is such a basis. First, note that for any choice of indices i;,
1<j<pe; @ e;‘p is a p—linear form over F; indeed,
e;-k1®---®e;kj ®~--®efp(x1,...,ay1—i—byg,...,xp)

=ej (x1) - e (ay1 + by2) -~ - €] (Xp)

= ae;, (x1) - (y1) -~ (Xp) + bej, (x1) -~ € (y2) - - €, (Xp)

:ae;kl®---®e;‘j®---®e;*p(x1,...,y1,...,xp)—|—be;*1®---®e;‘j®---®e;‘p(x1,...,y2,...

since e;_is linear. Hence,
Span{e; @e;, ®---e; :1<4i; <n} C {space of p—linear forms over £}

Now, let f be a p—linear form, and suppose {ey, ..., e,} be the canonical basis of E.
For 1 < j < p, write

n
X; = E Z;i€;.
i=1

Then

n

Fin X)) = Y g f (e e,)
jlv"'ujp:l
n

- Z ejl(xl)"'e;p(xp)f(ejla-“vejp)

jlv"'7jP:1
n
= Z f(eju---,ejp)ejl®~-®e§p(x1,...,xp)
jl:"'7jp:]-
andso f € Span{e} ®ej, @---e] :1<i; <n}. Consequently,

Span{e; @e;, ®---e; :1<4i; <n}= {space of p—linear forms over £}

[t remains only to show that the tensor products are linearly independent. To do so,

suppose that
n
* *
§ , Ajppennsjp €y @000 @ €, = 0
G15eenip=1
Then
n
* * .
E @jy,..jp €5y & .- ®ejp(x1,...,xp) =0
jlv"'njp:]-
forall (x1,...,%Xp) € EP. Fixjj,...,j,. Then (e;:,...,e;:) € EP and so
n
* * _
E ajh,,.Jpejl ®~-®ejp(ej;,...,ej;) =0
j17"'7jP:1
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But
n
* *
Z Ajy,....5p €5 & @ ejp(ejf7 . -,ej;;) = Q5,55
Jisesdp=1
so thataz, iz = 0. Butj7,. .., j, werearbitrary, so that we indeed have a;, _;, =0
foralll < ]1, ..., Jp < n, and the tensor products are linearly independent. [ |

6. Let f1, fa,..., fp belinear 1—forms over F and o € S),. Show that

foy N AN foy = (@) fr Ao A fp.

Proof: by definition, we have

foy(X1) -+ fo)(Xp)
oy N A fop) (X1, -+, Xp) = det : :
foX1) o fom)(Xp)
fix1) oo fi(xp)
= ¢(o) det : :
fo(x1) o fp(Xp)
=e(o)fi N A fp(X1,...,Xp)

7. Let f1, fa,..., fp belinear 1—forms over F such that f; = f; for some ¢ # j. Show that f; A---A
fp=0.

Proof: by definition, we have
hxa) - fi(xp)

fin A fp(Xe, .. %) = det : :
fo(x1) o fp(Xp)

If f; = f; fori # j, two of the rows in the above matrix are identical; as a result, the
determinant is 0. |

8. Provide a proof of Corollary 168.

Proof: you should be able to make an informal argument for this one. In essence, the
proof runs as follows:

a) AP(FE) is a subspace of the space of linear p—forms over E.
b) ej /\---/\efp € AP(E)forall1 <iy,...,i, < n,sothat
Span{e;, A---Aej :1<iy,...,ip <n} CAP(E).

ip

c) Any f € AP(FE) can be written as

= > flei,....e e}, A Ne

i< - <Zp
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so that
AP(E) C Span{e;, A---Aej 11 <iy,... ip <n}.
Consequently,
AP(E) = Span{ej, A---Aej 11 <iy,....ip <n}.
d) For each fixed choice of i1, .. ., 7, there are two possibilities:

i. if the indices are all distinct, let

Ail,...,ip = {0‘ S Sp : U({’il,. . .,ip}) C {il, ... ,’ip}}.

-----
*

sequently, all wedge products containing e; ,... ,e;f‘p are linearly depen-
dent. Remove all of them except the canonical one, i.e. the one for which
i1 < ... < iy (this can be done since all indices are distinct);

ii. if some of the indices repeat, then e} A --- A e;‘p = 0 (see exercise 8). Con-
sequently, all such wedge products are linearly dependent. Remove all of
them.

e) The remaining wedge products {ej A---Aej :i1 < --- < i} span AP(E).
One can show that they are linearly independent just as was done at the end of
exercise 6. Thus

{ej N---nef tip <. <ip}

i1 »
is a basis of AP(E).
f) If n < p, there are (Z) ways of selecting p distinct indices from a set of n indices,
and so dim(A?(E)) = (7).
g) In the event where p > n, there is no way of selecting p distinct indices from a

set of n indices, and so AP(E) = {0}. |

9. Let f = fi A foand g = g1 A g2 be alternating p—forms over . Work out the details and express
f A ginterms of f and g, and show that f A g is alternating.

Proof: we have

A={o€Sio(l) <o(2)ando(3) < o(4)}
={id, (23),(243),(123),(1243),(13)(24)}

Consequently,

fAg(x1,X9,X3,Xa) = Y €(0)f (Xo(1): Xo(2))9 (Xo(3): Xo(1))
o€A

= f(x1,X2)g(x3,%4) — f(X1,X3)g(X2, X4) + f(X1,X2)g(X3,Xs)
+ f(X2,X3)g(X1,X4) — f(X2,X4)g(X1,X3) + f(X3,X4)g(X1,X2)

We can easily verify that f A g is alternating, using the fact that both f and ¢ are
alternating. |
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12.5. EXERCISES

12.5 Exercises

A

10.

310

. Prepare a 2-page summary of this chapter, with important definitions and results.

Prove Proposition 166 for p > 3.

Let f1,..., f, € E*. Show thatif f; = f; for some 7 # j,then fy A--- A f, = 0.
Prove Theorem 167.

Show that if p = ¢ = 2, the set A C S, contains only 6 permutations.

Let f, f1, fo be alternating p—forms over F, g, g1, g» be alternating ¢—forms over F, and
a € R. Show that

a) (i+f)ANg=fingt farg
b) fA(gL+g)=FfAg+fAg
o (af)yng=a(fAg)=fA(ag)

Complete the proof of Lemma 169.

Letf € AP(E),g € AY(F),and h € A"(E). Showthat fA(gAh) = (fAg)Ah € APTIHT(E)
and that f A g = (—=1)Pg A f.

Prove property 3 on p. 304.

Let k be odd and w € A¥(R™). Show thatw A w = 0. Is the condition on k necessary,
sufficient, or both?
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