
Chapter 12

Alternating Multilinear Forms

In order to de ine the notion of differential forms (and to learn how to
integrate them), we need concepts from linear algebra. In this chapter, E
is a inite dimensional vector space overR (i.e., dim(E) = n =⇒ E ≃ Rn).

12.1 Linear Algebra Notions
A (linear) 1−form over E is a linear map f : E → R; a (linear) p−form over E is a linear
map f : Ep = E × · · · × E → Rwhich is linear in each of its arguments.

aaaaaa

Examples

1. The projection map f1 : Rn → R, de ined by f1(x) = f1(x1, . . . , xn) = x1 is a
1−form over Rn. Generally, the projection fi : Rn → R de ined by fi(x) = xi
is a 1−form over Rn for all i = 1, . . . , n.

If B = {e1, . . . , en} is a basis of E, then for any x ∈ E we can write

x = x1e1 + · · ·+ x1e1

and the projection fB
i : E → R de ined by fB

i (x) = xi is a 1−form over E. □

2. The inner product (· | ·) : Rn × Rn → Rn de ined by

(x | y) = ((x1, . . . , xn) | (y1, . . . , yn)) =
n∑

i=1

xiyi

is a (bilinear) 2−form over Rn.

If (x | y) = (y | x) for all x, y ∈ E, the 2−form is symmetric. □
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aaaaaa

3. The 2−determinant det : R2 × R2 → R de ined by

det(x, y) = det
(
x1 x2
y1 y2

)
= x1y2 − x2y1

is a bilinear form overR2, but it is not symmetric since det(x, y) = − det(y, x)
for all x, y ∈ R2. Note as well that det(x, x) = 0 for all x ∈ R2. □

A p−form f over E is alternating if f(x1, . . . , xp) = 0whenever xi = xj for some i < j.

aaaaaa

Example: det : R2 × R2 → R is an alternating bilinear form. More generally,

det : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

is an alternating linear n−form. □

Let f : R2 × R2 → R be an alternating bilinear form on R2. If {e1, e2} is a basis of R2, then f
is completely determined by the value taken by f(e1, e2). Indeed, let x, y ∈ R2, Then

f(x, y) = f(x1e1 + x2e2, y1e1 + y2e2) = x1f(e1, y1e1 + y2e2) + x2f(e2, y1e1 + y2e2)
= x1y1 f(e1, e1)︸ ︷︷ ︸

=0

+x1y2f(e1, e2) + x2y1 f(e2, e1)︸ ︷︷ ︸
=−f(e1,e2)

+x2y2 f(e2, e2)︸ ︷︷ ︸
=0

= (x1y2 − x2y1)f(e1, e2) = det
(
x1 x2
y1 y2

)
f(e1, e2).

Let {e1, . . . , en} be a basis of E = Rn and let {x1, . . . , xn} ⊆ E = Rn. For 1 ≤ i ≤ n, Write

xi =
n∑

j=1

si,jej.

If f : En → R is an alternating (linear) n−form, then

f(x1, . . . , xn) = det

x1,1 · · · x1,n
... . . . ...

xn,1 · · · xn,n

 f(e1, . . . , en) = det
(
x1 · · · xn

)⊤
f(e1, . . . , en).

Let f1, . . . , fp be p linear 1−forms over E.¹ De ine f : Ep → R by
f(x1, . . . , xp) = f1(x1) · · · fp(xp).

Then f is the tensor product of the fi; it is a linear p−form overE, which we usually denote
by f = f1 ⊗ · · · ⊗ fp.

¹We can also write this as f1, . . . , fp ∈ E∗, whereE∗ = {f : E → R | f linear} is the dual space ofE.
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If B = {e1, . . . , en} is a basis of E, then for 1 ≤ i ≤ n, we de ine the linear functionals
e∗i ∈ E∗ by

e∗i (x) = e∗i (x1e1 + · · ·+ xnen) = x1e∗i (e1) + · · ·+ xne∗i (en) = xie∗i (ei) = xi

for all x = (x1, . . . , xn) ∈ E. In that case, the set{
e∗i1 ⊗ · · · ⊗ e∗ip | ij ∈ {1, . . . , n}

}
forms a basis of the vector space of p−forms over E, and dim({p− forms over E}) = np.

12.2 Anti-Symmetric Forms
In introductory linear algebra and group theory courses, we learn that ifA = (ai,j) ⊆Mn(R),
then we can write the determinant ofA using the Laplace expansion:

det(A) =
∑
σ∈Sn

ϵ(σ)a1,σ(1) · · · an,σ(n),

where Sn is the permutation group on {1, . . . , n} (whence |Sn| = n!) and ϵ : Sn → {±1} is
the signature of a permutation σ (more on this in the irst footnote of Section 12.3).

aaaaaa

Proposition 166
Let f be a linear p−form over E. If g : Ep → R is de ined by

g(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)f(xσ(1), . . . , xσ(p)),

then g is an alternating p−form.

Proof: we only prove the statement for p = 2. The proof for p ≥ 3 is left as
an exercise.

Let p = 2. Then S2 = {id, σ =
(
1 2

)
} and we have ϵ(id) = 1 and ϵ(σ) = −1.

Therefore,
g(x1, x2) = f(x1, x2)− f(x2, x1).

Clearly g(x, x) = 0, and so g is alternating. ■

The alternating p−form g in Proposition 166 is the anti-symmetric form built from f .

Let f1, . . . , fp be linear 1−forms overE. The anti-symmetric form built from the tensor prod-
uct f1 ⊗ · · · ⊗ fp is thewedge product of f1, . . . , fp, denoted by (f1 ∧ · · · ∧ fp).²

²Formally, we should be using the brackets around the wedge product (and the tensor product) of linear
forms, but we will often omit them to simplify the notation.
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By de inition, then, we have

(f1 ∧ · · · ∧ fp)(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)(f1 ⊗ · · · ⊗ fp)(xσ(1), . . . , xσ(p))

=
∑
σ∈Sp

ϵ(σ)f1(xσ(1)) · · · fp(xσ(p)) = det

f1(x1) · · · f1(xp)
... . . . ...

fp(x1) · · · fp(xp)

 .

A few examples will help to illustrate the concept.

aaaaaa

Examples: consider the case p = 2; let f1, f2 be linear 1−form over E = R2 and
x1, x2 ∈ E. Then:

1. f1 ∧ f2(x1, x2) = f1(x1)f2(x2)− f1(x2)f2(x1).

2. f2 ∧ f1(x1, x2) = f2(x1)f1(x2)− f2(x2)f1(x1) = −f1 ∧ f2(x1, x2).

3. f1 ∧ f1(x1, x2) = f2 ∧ f2(x1, x2) = 0. □

Generally, if fi = fj for some i ≠= j, then f1 ∧ · · · ∧ fp = 0. Furthermore, if σ ∈ Sp, then

fσ(1) ∧ · · · ∧ fσ(p) = ϵ(σ)f1 ∧ · · · ∧ fp.

aaaaaa

Example: let B = {e1, e2, e3} be a basis of E (i.e., n = dim(E) = 3) and let g :
E × E → R be a bilinear alternating form (i.e., p = 2). Then

g(x, y) = g

(
3∑

i=1

xiei,
3∑

j=1

yjej

)
=

3∑
i,j=1

xiyjg(ei, ej).

Since g is alternating, we must have:

g(ei, ej) = −g(ej, ei), g(ei, ei) = 0, for all i, j = 1, . . . , 3.

Thus,

g(x, y) = x1y2g(e1, e2) + x1y3g(e1, e3) + x2y3g(e2, e3)
− x2y1g(e1, e2)− x3y1g(e1, e3)− x3y2g(e2, e3)
= (x1y2 − x2y1)g(e1, e2) + (x1y3 − x3y1)g(e1, e3) + (x2y3 − x3y2)g(e2, e3).

But note that for i < j, we have

e∗i ∧ e∗j(x, y) = e∗i (x)e∗j(y)− e∗i (y)e∗j(x) = xiyj − xjyi.
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aaaaaa

Combining the last two results, we have

g(x, y) = g(e1, e2)e∗1 ∧ e∗2 + g(e1, e3)e∗1 ∧ e∗3 + g(e2, e3)e∗2 ∧ e∗3.

Consequently, g is a linear combination of the wedge products {e∗2 ∧ e∗3 | i < j}.
Furthermore, {e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} are linearly independent.

Indeed, suppose that

(d1,2e∗1 ∧ e∗2 + d1,3e∗1 ∧ e∗3 + d2,3e∗2 ∧ e∗3)(x, y) = 0 for all x, y.

In particular, this would hold for (x, y) = (e1, e2), and so

0 = d1,2e∗1 ∧ e∗2(e1, e2) + d1,3e∗1 ∧ e∗3(e1, e3) + d2,3e∗2 ∧ e∗3(e2, e3)
= d1,2(e∗1(e1)e∗2(e2)− e∗1(e2)e∗2(e1)) + d1,3((e∗1(e1)e∗3(e2)− e∗1(e2)e∗3(e1))

+ d2,3((e∗2(e1)e∗3(e2)− e∗2(e2)e∗3(e1))
= d1,2(1 · 1− 0 · 0) + d1,3(1 · 0− 0 · 0) + d2,3(0 · 0− 0 · 0) = d1,2 =⇒ d1,2 = 0.

Similarly, using (x, y) = (e1, e3) and (x, y) = (e2, e3) yields d1,3 = d2,3 = 0.

Thus {e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} forms a basis for the space of alternating bi-
linear (2−)forms over E. ■

The space of alternating p−forms over E ≃ Rn will constantly be appearing in what fol-
lows; to lighten the text, we denote it by Λp(E).

aaaaaa

Theorem 167
Let {e1, . . . , en} be a basis of E ≃ Rn and {e∗1, . . . , e∗n} be the dual basis of E∗. Then

{e∗i1 ∧ · · · ∧ e
∗
ip | i1 < · · · < ip}

is a basis of Λp(E).

Proof: left as an exercise. ■

aaaaaa

Corollary 168
Let E ≃ Rn. If 1 ≤ p ≤ n, then

dim(Λp(E)) =

(
n

p

)
=

n!

p!(n− p)!
;

if p > n, then dim(Λp(E)) = 0.

Proof: left as an exercise. ■
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12.3 Wedge Product of Alternating Forms
If f ∈ Λp(E) and g ∈ Λq(E), is there a natural way to build a form f ∧ g ∈ Λp+q(E)? It turns
out that it can be done, with a small group theory detour.

Let Sp+q be the permutation group on {1, . . . , p+ q},³ and set

A = {σ ∈ Sp+q | σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q)}.

aaaaaa

Examples

1. If p = 1 and q = 2, then A = {σ ∈ S3 | σ(2) < σ(3)}. But

S3 = {id,
(
1 2

)
,
(
1 3

)
,
(
2 3

)
,
(
1 2 3

)
,
(
1 3 2

)
},

so that
A = {id,

(
1 2

)
,
(
1 3 2

)
}.

2. If p = 2 and q = 2, then A = {σ ∈ S4 | σ(1) < σ(2) and σ(3) < σ(4)}; S4

has 4! = 24 permutations, and we can show that

A = {id,
(
2 3

)
,
(
2 4 3

)
,
(
1 2 3

)
,
(
1 2 4 3

)
,
(
1 3

) (
2 4

)
}.

Permutation calculations can quickly become cumbersome! □

If f ∈ Λp(E) and g ∈ Λq(E), thewedge product of f and g is given by

f ∧ g(x1, . . . , xp, xp+1, . . . , xp+q) =
∑
σ∈A

ϵ(σ)f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)).

As f ∧ g depends linearly on each of x1, . . . , xp+q , then it is a linear (p + q)−form on E. Is it
alternating?

aaaaaa

Example: if p = 1 and q = 3, then

A = {σ ∈ S4 | σ(2) < σ(3) < σ(4)} = {id,
(
1 2

)
,
(
1 3 2

)
,
(
1 4 3 2

)
};

the corresponding signatures are 1,−1, 1,−1. If all we knowof f, g is that f ∈ Λ1(E)
and g ∈ Λq(E), then we must have:

³A permutation σ ∈ Sn is a bijection σ : {1, . . . , n} → {1, . . . , n}. We can also write σ in cycle notation, as
illustrated as follows: suppose that σ acts on {1, 2, 3, 4, 5} according to σ(1) = 2, σ(2) = 5, σ(5) = 1, σ(3) = 3,
and σ(4) = 4. Then we write σ as

(
1 2 5

) (
3
) (

4
)
, or usually as

(
1 2 5

)
since 3, 4 are left unchanged by σ.

The signature ϵ(σ) of a permutation σ is determined as follows. We write σ as a product of disjoint cycles (as
above); the signature is −1 if and only if the factorization contains an odd number of even-length cycles. As
σ =

(
1 2 5

)
contains no even-length cycle, ϵ(σ) = 1.
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aaaaaa

f ∧ g(x1, x2, x3, x4) = f(x1)g(x2, x3, x4)− f(x2)g(x1, x3, x4)
+ f(x3)g(x1, x2, x4)− f(x4)g(x1, x2, x3).

If x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4, or x3 = x4, the g components of f ∧ g
are either 0 because they are alternating and contain a repeated argument, or they
cancel one another out (try it!); thus f ∧ g is alternating. □

The wedge product has the right kinds of properties: if f, f1, f2 ∈ Λp(E), g, g1, g2 ∈ Λq(E),
and α ∈ R, then

(f1 + f2) ∧ g = f1 ∧ g + f2 ∧ g,
f ∧ (g1 + g2) = f ∧ g1 + f ∧ g2,

(αf) ∧ g = α(f ∧ g) = f ∧ (αg).

This leads us to the following crucial result.

aaaaaa

Lemma 169
Let fi ∈ E∗, 1 ≤ i ≤ p+q. Then f = f1∧· · ·∧fp ∈ Λp(E), g = gp+1∧· · ·∧gp+q ∈ Λq(E)
and

f ∧ g = f1 ∧ · · · ∧ fp+q.

Proof: by de inition,

f1 ∧ · · · ∧ fp(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)f1(xσ(1)) · · · fp(xσ(p)),

fp+1 ∧ · · · ∧ fp+q(xp+1, . . . , xp+q) =
∑
τ∈Sq

ϵ(τ)fp+1(xτ(p+1)) · · · fp+q(xτ(p+q)).

It is easy to see that

Sp ≃ {σ ∈ Sp+q | σ(j) = j, p+ 1 ≤ j ≤ p+ q} and Sq ≃ {τ ∈ Sp+q | τ(j) = j, 1 ≤ j ≤ p}.

In Lemma171, wewill see that every σ̃ ∈ Sp+q can bewritten uniquely as σ̃ = σσ′σ′′,
with σ ∈ A, σ′ ∈ Sp, and σ′′ ∈ Sq . Then

f1 ∧ · · · ∧ fp+q(x1, . . . , xp+q) =
∑

σ̃∈Sp+q

ϵ(σ̃)f1(xσ̃(1)) · · · fp+q(xσ̃(p+q))

=
∑

σ,σ′,σ′′

ϵ(σσ′σ′′)f1(xσσ′σ′′(1)) · · · fp+q(xσσ′σ′′(p+q))

=
∑

σ,σ′,σ′′

ϵ(σ)ϵ(σ′)ϵ(σ′′)f1(xσσ′(1)) · · · fp(xσσ′(p))fp+1(xσσ′′(p+1)) · · · fp+q(xσσ′′(p+q))
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aaaaaa

so that
f1 ∧ · · · ∧ fp+q(x1, . . . , xp+q)

=
∑
σ∈A

ϵ(σ)
( ∑

σ′∈Sp

ϵ(σ′′)f1(xσσ′(1)) · · · fp(xσσ′(p))
)( ∑

σ′′∈Sq

ϵ(σ′′)fp+1(xσσ′′(p+1)) · · · fp+q(xσσ′′(p+q))
)

=
∑
σ∈A

f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)) = f ∧ g(xσ(p), . . . , xσ(p+q)).

That this (p+ q)−form is alternating is left as an exercise. ■

This leads us to the main result of this section.

aaaaaa

Theorem 170
Let f ∈ Λp(E) and g ∈ Λq(E). Then f ∧ g ∈ Λp+q(E).

Proof: according to Theorem 167, f is a linear combination of wedge prod-
ucts of p−forms overE of the form e∗i1 ∧ · · ·∧e

∗
ip ; similarly, g is a linear combination

of wedge products of q−forms over E of the form e∗j1 ∧ · · · ∧ e
∗
jq .

According to Lemma 169, expressions of the form

(e∗i1 ∧ · · · ∧ e
∗
ip) ∧ (e∗j1 ∧ · · · ∧ e

∗
jq) (12.1)

are alternating (p+ q)−forms.

Thus f ∧ g is a linear combination of alternating (p + q)−forms as in (12.1);
since Λp+q(E) is a vector space over E (see Corollary 168), f ∧ g is alternating. ■

The wedge product of alternating forms is thus well-de ined, and it has a set of useful prop-
erties. Let f ∈ Λp(E), g ∈ Λq(E), h ∈ Λr(E). Then:

1. f ∧ (g ∧ h) = (f ∧ g) ∧ h (the wedge product is associative);

2. f ∧ g = (−1)pqg ∧ f (it is not commutative), and

3. if u : E → F is a linear transformation, f ∈ Λp(E), and g ∈ Λq(F ), then u(f) ∈ Λp(E),
where

u(f)(x1, . . . , xp) = f(u(x1), . . . , u(xp));

u(g) ∈ Λq(E), where

u(g)(x1, . . . , xp) = g(u(x1), . . . , u(xq)),

and u(f ∧ g) = u(f) ∧ u(g) ∈ Λp+q(E) (the proof is left as an exercise).
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We inish this section with the promised lemma.

aaaaaa

Lemma 171
If σ̃ ∈ Sp+q , there is a unique triplet σ ∈ A, σ′ ∈ Sp, and σ′′ ∈ Sq such that σ̃ = σσ′σ′′.

Proof: let A′ = {σ̃(1), . . . , σ̃(p)} ⊆ {1, . . . , p + q}. List the integers in A′ in
increasing order, and de ine σ′ by σ′(j) =rank of σ̃(j) inA′, for 1 ≤ j ≤ p.

Similarly, de ine σ′′ by σ′′(j) =rank of σ̃(i) inA′′ = ordered{σ̃(p+ 1), . . . , σ̃(p+ q)},
for p+ 1 ≤ i ≤ p+ q.

If we write A′ = {i1 < · · · < ip} and A′′ = {ip+1 < · · · < ip+q}, we can then
de ine σ by σ(j) = ij , 1 ≤ j ≤ p+ q. Then σ̃ = σσ′σ′′. ■

12.4 Solved Problems
1. Let E be a inite-dimensional vector space over R, with dim(E) = 3. If x, y, z ∈ E are

linearly dependent, show that f(x, y, z) = 0 for any alternating linear 3−form f .
Proof: let {e1, e2, e3} be the canonical basis of E. Since x, y, z ∈ E are linearly
dependent, (at least) one of them may be expressed as a linear combination of the
other two. Without loss of generality, say x = ay+ bz, with a, b ∈ R. Then

f(x, y, z) = f(ay+ bz, y, z) = af(y, y, z) + bf(z, y, z) = a · 0 + b · 0 = 0,

since f is alternating. ■

2. Let E be a inite-dimensional vector space over R, with dim(E) = 3. If x, y, z ∈ E are linearly
independent, show that f(x, y, z) ̸= 0 for any alternating linear 3−form f ̸= 0.

Proof: let {e1, e2, e3} be the canonical basis of E. Since f ≠ 0, f(e1, e2, e3) ̸= 0.
Write

x = x1e1 + x2e2 + x3e3
y = y1e1 + y2e2 + y3e3
z = z1e1 + z2e2 + z3e3

Since {x, y, z} are linearly independent,

det

x1 y1 z1
x2 y2 z2
x3 y3 z3

 ̸= 0.

Then

f(x, y, z) =
∑
i ̸= j
i ̸= k
j ̸= k

xiyjzkf(e1, e2, e3) = det

x1 y1 z1
x2 y2 z2
x3 y3 z3

 · f(e1, e2, e3) ̸= 0. ■
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3. Show that the inner product (· | |·) : Rn × Rn → R is a bilinear form.

Proof: the inner product (· | ·) : Rn × Rn → R is de ined by

(x | y) =
n∑

i=1

xiyi.

In order to show it is bilinear, we need to show that for all x, y, z ∈ Rn, a, b ∈ R, we
have

(ax+ by | z) = a(x|z) + b(y | z)
(x | ay+ bz) = a(x | y) + b(x | z)

But

(ax+ by | z) =
n∑

i=1

(axi + byi)zi = a
n∑

i=1

xizi + b
n∑

i=1

yizi = a(x | z) + b(y | z)

and

(x | ay+ bz) =
n∑

i=1

xi(ayi + bzi) = a
n∑

i=1

xiyi + b
n∑

i=1

xizi = a(x | y) + b(x | z)

so that the inner product is indeed bilinear. It is not alternating, however, since we
would need (x | x) = 0 for all x ∈ Rn but (e1 | e1) = 1. ■

4. Show that det : Rn × · · · × Rn → R is a bilinear form.

Proof: that this form is both multilinear and alternating is immediate due to the
properties of the determinant that you have seen/will see in your linear algebra
courses:

Firstly, det (x1, . . . , a1y1 + a2y2, . . . , xn) =
2∑

j=1

aj det (x1, . . . , yj , . . . , xn)

Secondly, det (x1, . . . , xn) = 0 if xi = xj for some i ̸= j.
■

5. Show that {e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip
: 1 ≤ ij ≤ n} forms a basis of the vector space of linear p−forms

overE. What is the dimension of that vector space?

Proof: recall that e∗i : E → R is the linear functional such that e∗i (ej) = δi,j .

Let us irst assume that the set in question is indeed a basis of the space of all lin-
ear (but not necessarily alternating) p−forms. There are n possible choices for each
1−form e∗ij appearing in the tensor product. Since there are p such forms, there is a
total of np tensor products. Hence, dim({space of p−linear forms overE}) = np.
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We now show that the set is such a basis. First, note that for any choice of indices ij ,
1 ≤ j ≤ p, e∗i1 ⊗ · · · e∗ip is a p−linear form overE; indeed,

e∗i1⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , ay1 + by2, . . . , xp)

= e∗i1(x1) · · · e
∗
ij (ay1 + by2) · · · e∗ip(xp)

= ae∗i1(x1) · · · e
∗
ij (y1) · · · e

∗
ip(xp) + be∗i1(x1) · · · e

∗
ij (y2) · · · e

∗
ip(xp)

= ae∗i1 ⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , y1, . . . , xp) + be∗i1 ⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , y2, . . . , xp)

since e∗ij is linear. Hence,

Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip : 1 ≤ ij ≤ n} ⊆ {space of p−linear forms overE}

Now, let f be a p−linear form, and suppose {e1, . . . , en} be the canonical basis ofE.
For 1 ≤ j ≤ p, write

xj =
n∑

i=1

xj,iei.

Then

f(x1, . . . , xp) =
n∑

j1,...,jp=1

xj1,1 · · ·xjp,1f(ej1 , . . . , ejp)

=
n∑

j1,...,jp=1

e∗j1(x1) · · · e
∗
jp(xp)f(ej1 , . . . , ejp)

=

n∑
j1,...,jp=1

f(ej1 , . . . , ejp)e∗j1 ⊗ · · · ⊗ e∗jp(x1, . . . , xp)

and so f ∈ Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip
: 1 ≤ ij ≤ n}. Consequently,

Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip : 1 ≤ ij ≤ n} = {space of p−linear forms overE}

It remains only to show that the tensor products are linearly independent. To do so,
suppose that

n∑
j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp = 0

Then
n∑

j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(x1, . . . , xp) = 0

for all (x1, . . . , xp) ∈ Ep. Fix j∗1 , . . . , j∗p . Then (ej∗1 , . . . , ej∗p ) ∈ E
p and so

n∑
j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(ej∗1 , . . . , ej∗p ) = 0
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But
n∑

j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(ej∗1 , . . . , ej∗p ) = aj∗1 ,...,j∗p

so that aj∗1 ,...,j∗p = 0. But j∗1 , . . . , j∗p were arbitrary, so thatwe indeed have aj1,...,jp = 0
for all 1 ≤ j1, . . . , jp ≤ n, and the tensor products are linearly independent. ■

6. Let f1, f2, . . . , fp be linear 1−forms overE and σ ∈ Sp. Show that

fσ(1) ∧ · · · ∧ fσ(p) = ε(σ)f1 ∧ · · · ∧ fp.

Proof: by de inition, we have

fσ(1) ∧ · · · ∧ fσ(p)(x1, . . . , xp) = det

fσ(1)(x1) · · · fσ(1)(xp)
... ...

fσ(p)(x1) · · · fσ(p)(xp)


= ϵ(σ) det

f1(x1) · · · f1(xp)
... ...

fp(x1) · · · fp(xp)


= ϵ(σ)f1 ∧ · · · ∧ fp(x1, . . . , xp)

■

7. Let f1, f2, . . . , fp be linear 1−forms overE such that fi = fj for some i ̸= j. Show that f1∧· · ·∧
fp = 0.

Proof: by de inition, we have

f1 ∧ · · · ∧ fp(x1, . . . , xp) = det

f1(x1) · · · f1(xp)
... ...

fp(x1) · · · fp(xp)


If fi = fj for i ̸= j, two of the rows in the above matrix are identical; as a result, the
determinant is 0. ■

8. Provide a proof of Corollary 168.

Proof: you should be able tomake an informal argument for this one. In essence, the
proof runs as follows:
a) Λp(E) is a subspace of the space of linear p−forms overE.
b) e∗i1 ∧ · · · ∧ e

∗
ip
∈ Λp(E) for all 1 ≤ i1, . . . , ip ≤ n, so that

Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n} ⊆ Λp(E).

c) Any f ∈ Λp(E) can be written as

f =
∑

i1<···<ip

f(ei1 , . . . , eip)e∗i1 ∧ · · · ∧ e
∗
ip
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so that
Λp(E) ⊆ Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n}.

Consequently,

Λp(E) = Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n}.

d) For each ixed choice of i1, . . . , ip there are two possibilities:
i. if the indices are all distinct, let

Ai1,...,ip =
{
σ ∈ Sp : σ({i1, . . . , ip}) ⊆ {i1, . . . , ip}

}
.

Then e∗i1 ∧ · · · ∧ e∗ip = ϵ(σ)e∗σ(i1) ∧ · · · ∧ e∗σ(ip) for each σ ∈ Ai1,...,ip . Con-
sequently, all wedge products containing e∗i1 , . . . , e

∗
ip

are linearly depen-
dent. Remove all of them except the canonical one, i.e. the one for which
i1 < . . . < ip (this can be done since all indices are distinct);

ii. if some of the indices repeat, then e∗i1 ∧ · · · ∧ e
∗
ip
= 0 (see exercise 8). Con-

sequently, all such wedge products are linearly dependent. Remove all of
them.

e) The remaining wedge products {e∗i1 ∧ · · · ∧ e∗ip : i1 < · · · < ip} span Λp(E).
One can show that they are linearly independent just as was done at the end of
exercise 6. Thus

{e∗i1 ∧ · · · ∧ e
∗
ip : i1 < · · · < ip}

is a basis of Λp(E).
f) If n ≤ p, there are

(
n
p

)
ways of selecting p distinct indices from a set of n indices,

and so dim(Λp(E)) =
(
n
p

)
.

g) In the event where p > n, there is no way of selecting p distinct indices from a
set of n indices, and so Λp(E) = {0}. ■

9. Let f = f1∧f2 and g = g1∧g2 be alternating p−forms overE. Work out the details and express
f ∧ g in terms of f and g, and show that f ∧ g is alternating.

Proof: we have

A = {σ ∈ S4|σ(1) < σ(2) and σ(3) < σ(4)}
= {id, (2 3), (2 4 3), (1 2 3), (1 2 4 3), (1 3)(2 4)}

Consequently,

f ∧ g(x1, x2, x3, x4) =
∑
σ∈A

ϵ(σ)f(xσ(1), xσ(2))g(xσ(3), xσ(4))

= f(x1, x2)g(x3, x4)− f(x1, x3)g(x2, x4) + f(x1, x2)g(x3, x4)
+ f(x2, x3)g(x1, x4)− f(x2, x4)g(x1, x3) + f(x3, x4)g(x1, x2)

We can easily verify that f ∧ g is alternating, using the fact that both f and g are
alternating. ■
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12.5 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. Prove Proposition 166 for p ≥ 3.

3. Let f1, . . . , fp ∈ E∗. Show that if fi = fj for some i ̸= j, then f1 ∧ · · · ∧ fp = 0.

4. Prove Theorem 167.

5. Show that if p = q = 2, the set A ⊆ S4 contains only 6 permutations.

6. Let f, f1, f2 be alternating p−forms overE, g, g1, g2 be alternating q−forms overE, and
α ∈ R. Show that

a) (f1 + f2) ∧ g = f1 ∧ g + f2 ∧ g
b) f ∧ (g1 + g2) = f ∧ g1 + f ∧ g2
c) (αf) ∧ g = α(f ∧ g) = f ∧ (αg)

7. Complete the proof of Lemma 169.

8. Let f ∈ Λp(E), g ∈ Λq(E), andh ∈ Λr(E). Show that f∧(g∧h) = (f∧g)∧h ∈ Λp+q+r(E)
and that f ∧ g = (−1)pqg ∧ f .

9. Prove property 3 on p. 304.

10. Let k be odd and ω ∈ Λk(Rn). Show that ω ∧ ω = 0. Is the condition on k necessary,
suf icient, or both?
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