Chapter 12

Alternating Multilinear Forms

In order to define the notion of differential forms (and to learn how to integrate them), we need concepts from linear algebra. In this chapter, E is a finite dimensional vector space over \mathbb{R} (i.e., $\operatorname{dim}(E)=n \Longrightarrow E \simeq \mathbb{R}^{n}$).

12.1 Linear Algebra Notions

A (linear) 1 -form over E is a linear map $f: E \rightarrow \mathbb{R}$; a (linear) p-form over E is a linear $\operatorname{map} f: E^{p}=E \times \cdots \times E \rightarrow \mathbb{R}$ which is linear in each of its arguments.

Examples

1. The projection map $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined by $f_{1}(\mathbf{x})=f_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}$ is a 1 -form over \mathbb{R}^{n}. Generally, the projection $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{i}(\mathbf{x})=x_{i}$ is a 1 -form over \mathbb{R}^{n} for all $i=1, \ldots, n$.

If $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of E, then for any $\mathbf{x} \in E$ we can write

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{1} \mathbf{e}_{1}
$$

and the projection $f_{i}^{B}: E \rightarrow \mathbb{R}$ defined by $f_{i}^{B}(\mathbf{x})=x_{i}$ is a 1 -form over E.
2. The inner product $(\cdot \mid \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
(\mathbf{x} \mid \mathbf{y})=\left(\left(x_{1}, \ldots, x_{n}\right) \mid\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{i=1}^{n} x_{i} y_{i}
$$

is a (bilinear) 2 -form over \mathbb{R}^{n}.
If $(\mathbf{x} \mid \mathbf{y})=(\mathbf{y} \mid \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in E$, the 2 -form is symmetric.
3. The 2 -determinant det : $\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{det}(\mathbf{x}, \mathbf{y})=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}
$$

is a bilinear form over \mathbb{R}^{2}, but it is not symmetric $\operatorname{since} \operatorname{det}(\mathbf{x}, \mathbf{y})=-\operatorname{det}(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Note as well that $\operatorname{det}(\mathbf{x}, \mathbf{x})=0$ for all $\mathbf{x} \in \mathbb{R}^{2}$.

A p-form f over E is alternating if $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=0$ whenever $\mathbf{x}_{i}=\mathbf{x}_{j}$ for some $i<j$.
Example: det : $\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is an alternating bilinear form. More generally,

is an alternating linear n-form.

Let $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an alternating bilinear form on \mathbb{R}^{2}. If $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis of \mathbb{R}^{2}, then f is completely determined by the value taken by $f\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$. Indeed, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$, Then

$$
\begin{aligned}
f(\mathbf{x}, \mathbf{y}) & =f\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}, y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}\right)=x_{1} f\left(\mathbf{e}_{1}, y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}\right)+x_{2} f\left(\mathbf{e}_{2}, y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}\right) \\
& =x_{1} y_{1} \underbrace{f\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)}_{=0}+x_{1} y_{2} f\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+x_{2} y_{1} \underbrace{f\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right)}_{=-f\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}+x_{2} y_{2} \underbrace{f\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)}_{=0} \\
& =\left(x_{1} y_{2}-x_{2} y_{1}\right) f\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right) f\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) .
\end{aligned}
$$

Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be a basis of $E=\mathbb{R}^{n}$ and let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq E=\mathbb{R}^{n}$. For $1 \leq i \leq n$, Write

$$
\mathbf{x}_{i}=\sum_{j=1}^{n} s_{i, j} \mathbf{e}_{j} .
$$

If $f: E^{n} \rightarrow \mathbb{R}$ is an alternating (linear) n-form, then

$$
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, n}
\end{array}\right) f\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)=\operatorname{det}\left(\begin{array}{lll}
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}
\end{array}\right)^{\top} f\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) .
$$

Let f_{1}, \ldots, f_{p} be p linear 1 -forms over $E .{ }^{1}$ Define $f: E^{p} \rightarrow \mathbb{R}$ by

$$
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=f_{1}\left(\mathbf{x}_{1}\right) \cdots f_{p}\left(\mathbf{x}_{p}\right)
$$

Then f is the tensor product of the f_{i}; it is a linear p-form over E, which we usually denote by $f=f_{1} \otimes \cdots \otimes f_{p}$.

[^0]If $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of E, then for $1 \leq i \leq n$, we define the linear functionals $\mathbf{e}_{i}^{*} \in E^{*}$ by

$$
\mathbf{e}_{i}^{*}(\mathbf{x})=\mathbf{e}_{i}^{*}\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right)=x_{1} \mathbf{e}_{i}^{*}\left(\mathbf{e}_{1}\right)+\cdots+x_{n} \mathbf{e}_{i}^{*}\left(\mathbf{e}_{n}\right)=x_{i} \mathbf{e}_{i}^{*}\left(\mathbf{e}_{i}\right)=x_{i}
$$

for all $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in E$. In that case, the set

$$
\left\{\mathbf{e}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{p}}^{*} \mid i_{j} \in\{1, \ldots, n\}\right\}
$$

forms a basis of the vector space of $p-$ forms over E, and $\operatorname{dim}(\{p-$ forms over $E\})=n^{p}$.

12.2 Anti-Symmetric Forms

In introductory linear algebra and group theory courses, we learn that if $A=\left(a_{i, j}\right) \subseteq \mathbb{M}_{n}(\mathbb{R})$, then we can write the determinant of A using the Laplace expansion:

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \epsilon(\sigma) a_{1, \sigma(1)} \cdots a_{n, \sigma(n)},
$$

where S_{n} is the permutation group on $\{1, \ldots, n\}$ (whence $\left|S_{n}\right|=n$!) and $\epsilon: S_{n} \rightarrow\{ \pm 1\}$ is the signature of a permutation σ (more on this in the first footnote of Section 12.3).

Proposition 166

Let f be a linear $p-$ form over E. If $g: E^{p} \rightarrow \mathbb{R}$ is defined by

$$
g\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=\sum_{\sigma \in S_{p}} \epsilon(\sigma) f\left(\mathbf{x}_{\sigma(1)}, \ldots, \mathbf{x}_{\sigma(p)}\right),
$$

then g is an alternating p-form.
Proof: we only prove the statement for $p=2$. The proof for $p \geq 3$ is left as an exercise.

Let $p=2$. Then $S_{2}=\left\{\mathrm{id}, \sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$ and we have $\epsilon(\mathrm{id})=1$ and $\epsilon(\sigma)=-1$. Therefore,

$$
g\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-f\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) .
$$

Clearly $g(\mathbf{x}, \mathbf{x})=0$, and so g is alternating.

The alternating p-form g in Proposition 166 is the anti-symmetric form built from f.
Let f_{1}, \ldots, f_{p} be linear 1 -forms over E. The anti-symmetric form built from the tensor product $f_{1} \otimes \cdots \otimes f_{p}$ is the wedge product of f_{1}, \ldots, f_{p}, denoted by $\left(f_{1} \wedge \cdots \wedge f_{p}\right){ }^{2}$

[^1]By definition, then, we have

$$
\begin{aligned}
\left(f_{1} \wedge \cdots \wedge f_{p}\right)\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right) & =\sum_{\sigma \in S_{p}} \epsilon(\sigma)\left(f_{1} \otimes \cdots \otimes f_{p}\right)\left(\mathbf{x}_{\sigma(1)}, \ldots, \mathbf{x}_{\sigma(p)}\right) \\
& =\sum_{\sigma \in S_{p}} \epsilon(\sigma) f_{1}\left(\mathbf{x}_{\sigma(1)}\right) \cdots f_{p}\left(\mathbf{x}_{\sigma(p)}\right)=\operatorname{det}\left(\begin{array}{ccc}
f_{1}\left(\mathbf{x}_{1}\right) & \cdots & f_{1}\left(\mathbf{x}_{p}\right) \\
\vdots & \ddots & \vdots \\
f_{p}\left(\mathbf{x}_{1}\right) & \cdots & f_{p}\left(\mathbf{x}_{p}\right)
\end{array}\right) .
\end{aligned}
$$

A few examples will help to illustrate the concept.
Examples: consider the case $p=2$; let f_{1}, f_{2} be linear 1 -form over $E=\mathbb{R}^{2}$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in E$. Then:

1. $f_{1} \wedge f_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=f_{1}\left(\mathbf{x}_{1}\right) f_{2}\left(\mathbf{x}_{2}\right)-f_{1}\left(\mathbf{x}_{2}\right) f_{2}\left(\mathbf{x}_{1}\right)$.
2. $f_{2} \wedge f_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=f_{2}\left(\mathbf{x}_{1}\right) f_{1}\left(\mathbf{x}_{2}\right)-f_{2}\left(\mathbf{x}_{2}\right) f_{1}\left(\mathbf{x}_{1}\right)=-f_{1} \wedge f_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$.
3. $f_{1} \wedge f_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=f_{2} \wedge f_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=0$.

Generally, if $f_{i}=f_{j}$ for some $i=\neq j$, then $f_{1} \wedge \cdots \wedge f_{p}=0$. Furthermore, if $\sigma \in S_{p}$, then

$$
f_{\sigma(1)} \wedge \cdots \wedge f_{\sigma(p)}=\epsilon(\sigma) f_{1} \wedge \cdots \wedge f_{p}
$$

Example: let $\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be a basis of E (i.e., $n=\operatorname{dim}(E)=3$) and let g : $E \times E \rightarrow \mathbb{R}$ be a bilinear alternating form (i.e., $p=2$). Then

$$
g(\mathbf{x}, \mathbf{y})=g\left(\sum_{i=1}^{3} x_{i} \mathbf{e}_{i}, \sum_{j=1}^{3} y_{j} \mathbf{e}_{j}\right)=\sum_{i, j=1}^{3} x_{i} y_{j} g\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) .
$$

Since g is alternating, we must have:

$$
g\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=-g\left(\mathbf{e}_{j}, \mathbf{e}_{i}\right), \quad g\left(\mathbf{e}_{i}, \mathbf{e}_{i}\right)=0, \quad \text { for all } i, j=1, \ldots, 3
$$

Thus,

$$
\begin{aligned}
g(\mathbf{x}, \mathbf{y}) & =x_{1} y_{2} g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+x_{1} y_{3} g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)+x_{2} y_{3} g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right) \\
& -x_{2} y_{1} g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)-x_{3} y_{1} g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)-x_{3} y_{2} g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right) \\
& =\left(x_{1} y_{2}-x_{2} y_{1}\right) g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+\left(x_{1} y_{3}-x_{3} y_{1}\right) g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right) g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right) .
\end{aligned}
$$

But note that for $i<j$, we have

$$
\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{j}^{*}(\mathbf{x}, \mathbf{y})=\mathbf{e}_{i}^{*}(\mathbf{x}) \mathbf{e}_{j}^{*}(\mathbf{y})-\mathbf{e}_{i}^{*}(\mathbf{y}) \mathbf{e}_{j}^{*}(\mathbf{x})=x_{i} y_{j}-x_{j} y_{i} .
$$

Combining the last two results, we have

$$
g(\mathbf{x}, \mathbf{y})=g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}+g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right) \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{3}^{*}+g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right) \mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*} .
$$

Consequently, g is a linear combination of the wedge products $\left\{\mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*} \mid i<j\right\}$. Furthermore, $\left\{\mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}, \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{3}^{*}, \mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*}\right\}$ are linearly independent.

Indeed, suppose that

$$
\left(d_{1,2} \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}+d_{1,3} \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{3}^{*}+d_{2,3} \mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*}\right)(\mathbf{x}, \mathbf{y})=0 \quad \text { for all } \mathbf{x}, \mathbf{y} .
$$

In particular, this would hold for $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$, and so

$$
\begin{aligned}
0= & d_{1,2} \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+d_{1,3} \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{3}^{*}\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)+d_{2,3} \mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*}\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right) \\
= & d_{1,2}\left(\mathbf{e}_{1}^{*}\left(\mathbf{e}_{1}\right) \mathbf{e}_{2}^{*}\left(\mathbf{e}_{2}\right)-\mathbf{e}_{1}^{*}\left(\mathbf{e}_{2}\right) \mathbf{e}_{2}^{*}\left(\mathbf{e}_{1}\right)\right)+d_{1,3}\left(\left(\mathbf{e}_{1}^{*}\left(\mathbf{e}_{1}\right) \mathbf{e}_{3}^{*}\left(\mathbf{e}_{2}\right)-\mathbf{e}_{1}^{*}\left(\mathbf{e}_{2}\right) \mathbf{e}_{3}^{*}\left(\mathbf{e}_{1}\right)\right)\right. \\
& \quad+d_{2,3}\left(\left(\mathbf{e}_{2}^{*}\left(\mathbf{e}_{1}\right) \mathbf{e}_{3}^{*}\left(\mathbf{e}_{2}\right)-\mathbf{e}_{2}^{*}\left(\mathbf{e}_{2}\right) \mathbf{e}_{3}^{*}\left(\mathbf{e}_{1}\right)\right)\right. \\
= & d_{1,2}(1 \cdot 1-0 \cdot 0)+d_{1,3}(1 \cdot 0-0 \cdot 0)+d_{2,3}(0 \cdot 0-0 \cdot 0)=d_{1,2} \Longrightarrow d_{1,2}=0 .
\end{aligned}
$$

Similarly, using $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)$ and $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)$ yields $d_{1,3}=d_{2,3}=0$.
Thus $\left\{\mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}, \mathbf{e}_{1}^{*} \wedge \mathbf{e}_{3}^{*}, \mathbf{e}_{2}^{*} \wedge \mathbf{e}_{3}^{*}\right\}$ forms a basis for the space of alternating bilinear (2-)forms over E.

The space of alternating p-forms over $E \simeq \mathbb{R}^{n}$ will constantly be appearing in what follows; to lighten the text, we denote it by $\Lambda^{p}(E)$.

Theorem 167

Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be a basis of $E \simeq \mathbb{R}^{n}$ and $\left\{\mathbf{e}_{1}^{*}, \ldots, \mathbf{e}_{n}^{*}\right\}$ be the dual basis of E^{*}. Then

$$
\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*} \mid i_{1}<\cdots<i_{p}\right\}
$$

is a basis of $\Lambda^{p}(E)$.
Proof: left as an exercise.

Corollary 168

Let $E \simeq \mathbb{R}^{n}$. If $1 \leq p \leq n$, then

$$
\operatorname{dim}\left(\Lambda^{p}(E)\right)=\binom{n}{p}=\frac{n!}{p!(n-p)!}
$$

if $p>n$, then $\operatorname{dim}\left(\Lambda^{p}(E)\right)=0$.
Proof: left as an exercise.

12.3 Wedge Product of Alternating Forms

If $f \in \Lambda^{p}(E)$ and $g \in \Lambda^{q}(E)$, is there a natural way to build a form $f \wedge g \in \Lambda^{p+q}(E)$? It turns out that it can be done, with a small group theory detour.

Let S_{p+q} be the permutation group on $\{1, \ldots, p+q\},{ }^{3}$ and set

$$
A=\left\{\sigma \in S_{p+q} \mid \sigma(1)<\cdots<\sigma(p) \quad \text { and } \quad \sigma(p+1)<\cdots<\sigma(p+q)\right\} .
$$

Examples

1. If $p=1$ and $q=2$, then $A=\left\{\sigma \in S_{3} \mid \sigma(2)<\sigma(3)\right\}$. But

$$
S_{3}=\left\{\mathrm{id},\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\},
$$

so that

$$
A=\left\{\operatorname{id},\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} .
$$

2. If $p=2$ and $q=2$, then $A=\left\{\sigma \in S_{4} \mid \sigma(1)<\sigma(2) \quad\right.$ and $\left.\quad \sigma(3)<\sigma(4)\right\} ; S_{4}$ has $4!=24$ permutations, and we can show that

$$
A=\left\{\mathrm{id},\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
2 & 4 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\right\} .
$$

Permutation calculations can quickly become cumbersome!

If $f \in \Lambda^{p}(E)$ and $g \in \Lambda^{q}(E)$, the wedge product of f and g is given by

$$
f \wedge g\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}, \mathbf{x}_{p+1}, \ldots, \mathbf{x}_{p+q}\right)=\sum_{\sigma \in A} \epsilon(\sigma) f\left(\mathbf{x}_{\sigma(1)}, \ldots, \mathbf{x}_{\sigma(p)}\right) g\left(\mathbf{x}_{\sigma(p+1)}, \ldots, \mathbf{x}_{\sigma(p+q)}\right) .
$$

As $f \wedge g$ depends linearly on each of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p+q}$, then it is a linear $(p+q)$-form on E. Is it alternating?

Example: if $p=1$ and $q=3$, then

$$
A=\left\{\sigma \in S_{4} \mid \sigma(2)<\sigma(3)<\sigma(4)\right\}=\left\{\mathrm{id},\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 4 & 3 & 2
\end{array}\right)\right\}
$$

the corresponding signatures are $1,-1,1,-1$. If all we know of f, g is that $f \in \Lambda^{1}(E)$ and $g \in \Lambda^{q}(E)$, then we must have:

[^2]\[

$$
\begin{array}{rl}
f \wedge g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=f & f\left(\mathbf{x}_{1}\right) g\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)-f\left(\mathbf{x}_{2}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \\
& +f\left(\mathbf{x}_{3}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{4}\right)-f\left(\mathbf{x}_{4}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)
\end{array}
$$
\]

If $\mathbf{x}_{1}=\mathbf{x}_{2}, \mathbf{x}_{1}=\mathbf{x}_{3}, \mathbf{x}_{1}=\mathbf{x}_{4}, \mathbf{x}_{2}=\mathbf{x}_{3}, \mathbf{x}_{2}=\mathbf{x}_{4}$, or $\mathbf{x}_{3}=\mathbf{x}_{4}$, the g components of $f \wedge g$ are either 0 because they are alternating and contain a repeated argument, or they cancel one another out (try it!); thus $f \wedge g$ is alternating.

The wedge product has the right kinds of properties: if $f, f_{1}, f_{2} \in \Lambda^{p}(E), g, g_{1}, g_{2} \in \Lambda^{q}(E)$, and $\alpha \in \mathbb{R}$, then

$$
\begin{aligned}
\left(f_{1}+f_{2}\right) \wedge g & =f_{1} \wedge g+f_{2} \wedge g \\
f \wedge\left(g_{1}+g_{2}\right) & =f \wedge g_{1}+f \wedge g_{2} \\
(\alpha f) \wedge g & =\alpha(f \wedge g)=f \wedge(\alpha g)
\end{aligned}
$$

This leads us to the following crucial result.

Lemma 169

Let $f_{i} \in E^{*}, 1 \leq i \leq p+q$. Then $f=f_{1} \wedge \cdots \wedge f_{p} \in \Lambda^{p}(E), g=g_{p+1} \wedge \cdots \wedge g_{p+q} \in \Lambda^{q}(E)$ and

$$
f \wedge g=f_{1} \wedge \cdots \wedge f_{p+q}
$$

Proof: by definition,

$$
\begin{aligned}
f_{1} & \cdots \wedge f_{p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)
\end{aligned}=\sum_{\sigma \in S_{p}} \epsilon(\sigma) f_{1}\left(\mathbf{x}_{\sigma(1)}\right) \cdots f_{p}\left(\mathbf{x}_{\sigma(p)}\right), ~=\mathbf{x}_{\tau \in S_{q}} \epsilon(\tau) f_{p+1}\left(\mathbf{x}_{\tau(p+1)}\right) \cdots f_{p+q}\left(\mathbf{x}_{\tau(p+q)}\right) .
$$

It is easy to see that
$S_{p} \simeq\left\{\sigma \in S_{p+q} \mid \sigma(j)=j, p+1 \leq j \leq p+q\right\} \quad$ and $\quad S_{q} \simeq\left\{\tau \in S_{p+q} \mid \tau(j)=j, 1 \leq j \leq p\right\}$.
In Lemma 171, we will see that every $\tilde{\sigma} \in S_{p+q}$ can be written uniquely as $\tilde{\sigma}=\sigma \sigma^{\prime} \sigma^{\prime \prime}$, with $\sigma \in A, \sigma^{\prime} \in S_{p}$, and $\sigma^{\prime \prime} \in S_{q}$. Then

$$
\begin{aligned}
f_{1} \wedge \cdots \wedge f_{p+q} & \left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p+q}\right)=\sum_{\tilde{\sigma} \in S_{p+q}} \epsilon(\tilde{\sigma}) f_{1}\left(\mathbf{x}_{\tilde{\sigma}(1)}\right) \cdots f_{p+q}\left(\mathbf{x}_{\tilde{\sigma}(p+q)}\right) \\
& =\sum_{\sigma, \sigma^{\prime}, \sigma^{\prime \prime}} \epsilon\left(\sigma \sigma^{\prime} \sigma^{\prime \prime}\right) f_{1}\left(\mathbf{x}_{\sigma \sigma^{\prime} \sigma^{\prime \prime}(1)}\right) \cdots f_{p+q}\left(\mathbf{x}_{\sigma \sigma^{\prime} \sigma^{\prime \prime}(p+q)}\right) \\
& =\sum_{\sigma, \sigma^{\prime}, \sigma^{\prime \prime}} \epsilon(\sigma) \epsilon\left(\sigma^{\prime}\right) \epsilon\left(\sigma^{\prime \prime}\right) f_{1}\left(\mathbf{x}_{\sigma \sigma^{\prime}(1)}\right) \cdots f_{p}\left(\mathbf{x}_{\sigma \sigma^{\prime}(p)}\right) f_{p+1}\left(\mathbf{x}_{\sigma \sigma^{\prime \prime}(p+1)}\right) \cdots f_{p+q}\left(\mathbf{x}_{\sigma \sigma^{\prime \prime}(p+q)}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& f_{1} \wedge \cdots \wedge f_{p+q}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p+q}\right) \\
& =\sum_{\sigma \in A} \epsilon(\sigma)\left(\sum_{\sigma^{\prime} \in S_{p}} \epsilon\left(\sigma^{\prime \prime}\right) f_{1}\left(\mathbf{x}_{\sigma \sigma^{\prime}(1)}\right) \cdots f_{p}\left(\mathbf{x}_{\sigma \sigma^{\prime}(p)}\right)\right)\left(\sum_{\sigma^{\prime \prime} \in S_{q}} \epsilon\left(\sigma^{\prime \prime}\right) f_{p+1}\left(\mathbf{x}_{\sigma \sigma^{\prime \prime}(p+1)}\right) \cdots f_{p+q}\left(\mathbf{x}_{\sigma \sigma^{\prime \prime}(p+q)}\right)\right) \\
& =\sum_{\sigma \in A} f\left(\mathbf{x}_{\sigma(1)}, \ldots, \mathbf{x}_{\sigma(p)}\right) g\left(\mathbf{x}_{\sigma(p+1)}, \ldots, \mathbf{x}_{\sigma(p+q)}\right)=f \wedge g\left(\mathbf{x}_{\sigma(p)}, \ldots, \mathbf{x}_{\sigma(p+q)}\right) .
\end{aligned}
$$

That this $(p+q)-$ form is alternating is left as an exercise.

This leads us to the main result of this section.

Theorem 170

Let $f \in \Lambda^{p}(E)$ and $g \in \Lambda^{q}(E)$. Then $f \wedge g \in \Lambda^{p+q}(E)$.
Proof: according to Theorem 167, f is a linear combination of wedge products of p-forms over E of the form $\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}$; similarly, g is a linear combination of wedge products of q-forms over E of the form $\mathbf{e}_{j_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{j_{q}}^{*}$.

According to Lemma 169, expressions of the form

$$
\begin{equation*}
\left(\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}\right) \wedge\left(\mathbf{e}_{j_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{j_{q}}^{*}\right) \tag{12.1}
\end{equation*}
$$

are alternating $(p+q)-$ forms.
Thus $f \wedge g$ is a linear combination of alternating $(p+q)$-forms as in (12.1); since $\Lambda^{p+q}(E)$ is a vector space over E (see Corollary 168), $f \wedge g$ is alternating.

The wedge product of alternating forms is thus well-defined, and it has a set of useful properties. Let $f \in \Lambda^{p}(E), g \in \Lambda^{q}(E), h \in \Lambda^{r}(E)$. Then:

1. $f \wedge(g \wedge h)=(f \wedge g) \wedge h$ (the wedge product is associative);
2. $f \wedge g=(-1)^{p q} g \wedge f$ (it is not commutative), and
3. if $u: E \rightarrow F$ is a linear transformation, $f \in \Lambda^{p}(E)$, and $g \in \Lambda^{q}(F)$, then $u(f) \in \Lambda^{p}(E)$, where

$$
u(f)\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=f\left(u\left(\mathbf{x}_{1}\right), \ldots, u\left(\mathbf{x}_{p}\right)\right) ;
$$

$u(g) \in \Lambda^{q}(E)$, where

$$
u(g)\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=g\left(u\left(\mathbf{x}_{1}\right), \ldots, u\left(\mathbf{x}_{q}\right)\right)
$$

and $u(f \wedge g)=u(f) \wedge u(g) \in \Lambda^{p+q}(E)$ (the proof is left as an exercise).

We finish this section with the promised lemma.

Lemma 171

If $\tilde{\sigma} \in S_{p+q}$, there is a unique triplet $\sigma \in A, \sigma^{\prime} \in S_{p}$, and $\sigma^{\prime \prime} \in S_{q}$ such that $\tilde{\sigma}=\sigma \sigma^{\prime} \sigma^{\prime \prime}$.
Proof: let $A^{\prime}=\{\tilde{\sigma}(1), \ldots, \tilde{\sigma}(p)\} \subseteq\{1, \ldots, p+q\}$. List the integers in A^{\prime} in increasing order, and define σ^{\prime} by $\sigma^{\prime}(j)=\operatorname{rank}$ of $\tilde{\sigma}(j)$ in A^{\prime}, for $1 \leq j \leq p$.

Similarly, define $\sigma^{\prime \prime}$ by $\sigma^{\prime \prime}(j)=\operatorname{rank}$ of $\tilde{\sigma}(i)$ in $A^{\prime \prime}=\operatorname{ordered}\{\tilde{\sigma}(p+1), \ldots, \tilde{\sigma}(p+q)\}$, for $p+1 \leq i \leq p+q$.

If we write $A^{\prime}=\left\{i_{1}<\cdots<i_{p}\right\}$ and $A^{\prime \prime}=\left\{i_{p+1}<\cdots<i_{p+q}\right\}$, we can then define σ by $\sigma(j)=i_{j}, 1 \leq j \leq p+q$. Then $\tilde{\sigma}=\sigma \sigma^{\prime} \sigma^{\prime \prime}$.

12.4 Solved Problems

1. Let E be a finite-dimensional vector space over \mathbb{R}, with $\operatorname{dim}(E)=3$. If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ are linearly dependent, show that $f(\mathbf{x}, \mathbf{y}, \mathbf{z})=0$ for any alternating linear 3-form f.

Proof: let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the canonical basis of E. Since $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ are linearly dependent, (at least) one of them may be expressed as a linear combination of the other two. Without loss of generality, say $\mathbf{x}=a \mathbf{y}+b \mathbf{z}$, with $a, b \in \mathbb{R}$. Then

$$
f(\mathbf{x}, \mathbf{y}, \mathbf{z})=f(a \mathbf{y}+b \mathbf{z}, \mathbf{y}, \mathbf{z})=a f(\mathbf{y}, \mathbf{y}, \mathbf{z})+b f(\mathbf{z}, \mathbf{y}, \mathbf{z})=a \cdot 0+b \cdot 0=0,
$$

since f is alternating.
2. Let E be a finite-dimensional vector space over \mathbb{R}, with $\operatorname{dim}(E)=3$. If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ are linearly independent, show that $f(\mathbf{x}, \mathbf{y}, \mathbf{z}) \neq 0$ for any alternating linear 3 -form $f \neq 0$.

Proof: let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the canonical basis of E. Since $f \neq 0, f\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right) \neq 0$. Write

$$
\begin{aligned}
& \mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3} \\
& \mathbf{y}=y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}+y_{3} \mathbf{e}_{3} \\
& \mathbf{z}=z_{1} \mathbf{e}_{1}+z_{2} \mathbf{e}_{2}+z_{3} \mathbf{e}_{3}
\end{aligned}
$$

Since $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ are linearly independent,

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right) \neq 0 .
$$

Then

$$
f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{\substack{i \neq j \\
i \neq k \\
j \neq k}} x_{i} y_{j} z_{k} f\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)=\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right) \cdot f\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right) \neq 0 .
$$

3. Show that the inner product $\left(\cdot|\mid \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ is a bilinear form.

Proof: the inner product $(\cdot \mid \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
(\mathbf{x} \mid \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}
$$

In order to show it is bilinear, we need to show that for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}, a, b \in \mathbb{R}$, we have

$$
\begin{aligned}
& \text { - }(a \mathbf{x}+b \mathbf{y} \mid \mathbf{z})=a(\mathbf{x} \mid \mathbf{z})+b(\mathbf{y} \mid \mathbf{z}) \\
& =(\mathbf{x} \mid a \mathbf{y}+b \mathbf{z})=a(\mathbf{x} \mid \mathbf{y})+b(\mathbf{x} \mid \mathbf{z})
\end{aligned}
$$

But

$$
(a \mathbf{x}+b \mathbf{y} \mid \mathbf{z})=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}\right) z_{i}=a \sum_{i=1}^{n} x_{i} z_{i}+b \sum_{i=1}^{n} y_{i} z_{i}=a(\mathbf{x} \mid \mathbf{z})+b(\mathbf{y} \mid \mathbf{z})
$$

and

$$
(\mathbf{x} \mid a \mathbf{y}+b \mathbf{z})=\sum_{i=1}^{n} x_{i}\left(a y_{i}+b z_{i}\right)=a \sum_{i=1}^{n} x_{i} y_{i}+b \sum_{i=1}^{n} x_{i} z_{i}=a(\mathbf{x} \mid \mathbf{y})+b(\mathbf{x} \mid \mathbf{z})
$$

so that the inner product is indeed bilinear. It is not alternating, however, since we would need $(\mathbf{x} \mid \mathbf{x})=0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ but $\left(\mathbf{e}_{1} \mid \mathbf{e}_{1}\right)=1$.
4. Show that det : $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a bilinear form.

Proof: that this form is both multilinear and alternating is immediate due to the properties of the determinant that you have seen/will see in your linear algebra courses:

- Firstly, $\operatorname{det}\left(\mathbf{x}_{1}, \ldots, a_{1} \mathbf{y}_{1}+a_{2} \mathbf{y}_{2}, \ldots, \mathbf{x}_{n}\right)=\sum_{j=1}^{2} a_{j} \operatorname{det}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{j}, \ldots, \mathbf{x}_{n}\right)$
- Secondly, $\operatorname{det}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=0$ if $x_{i}=x_{j}$ for some $i \neq j$.

5. Show that $\left\{\mathbf{e}_{i_{1}}^{*} \otimes \mathbf{e}_{i_{2}}^{*} \otimes \cdots \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{j} \leq n\right\}$ forms a basis of the vector space of linear p-forms over E. What is the dimension of that vector space?

Proof: recall that $\mathbf{e}_{i}^{*}: E \rightarrow \mathbb{R}$ is the linear functional such that $\mathbf{e}_{i}^{*}\left(\mathbf{e}_{j}\right)=\delta_{i, j}$.
Let us first assume that the set in question is indeed a basis of the space of all linear (but not necessarily alternating) p-forms. There are n possible choices for each 1 -form $\mathbf{e}_{i_{j}}^{*}$ appearing in the tensor product. Since there are p such forms, there is a total of n^{p} tensor products. Hence, $\operatorname{dim}(\{$ space of p-linear forms over $E\})=n^{p}$.

We now show that the set is such a basis. First, note that for any choice of indices i_{j}, $1 \leq j \leq p, \mathbf{e}_{i_{1}}^{*} \otimes \cdots \mathbf{e}_{i_{p}}^{*}$ is a p-linear form over E; indeed,

$$
\begin{aligned}
\mathbf{e}_{i_{1}}^{*} \otimes & \cdots \otimes \mathbf{e}_{i_{j}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{1}, \ldots, a \mathbf{y}_{1}+b \mathbf{y}_{2}, \ldots, \mathbf{x}_{p}\right) \\
& =\mathbf{e}_{i_{1}}^{*}\left(\mathbf{x}_{1}\right) \cdots \mathbf{e}_{i_{j}}^{*}\left(a \mathbf{y}_{1}+b \mathbf{y}_{2}\right) \cdots \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{p}\right) \\
& =a \mathbf{e}_{i_{1}}^{*}\left(\mathbf{x}_{1}\right) \cdots \mathbf{e}_{i_{j}}^{*}\left(\mathbf{y}_{1}\right) \cdots \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{p}\right)+b \mathbf{e}_{i_{1}}^{*}\left(\mathbf{x}_{1}\right) \cdots \mathbf{e}_{i_{j}}^{*}\left(\mathbf{y}_{2}\right) \cdots \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{p}\right) \\
& =a \mathbf{e}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{j}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{1}, \ldots, \mathbf{x}_{p}\right)+b \mathbf{e}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{j}}^{*} \otimes \cdots \otimes \mathbf{e}_{i_{p}}^{*}\left(\mathbf{x}_{1}, \ldots, \mathbf{y}_{2}, \ldots, \mathbf{x}_{p}\right)
\end{aligned}
$$

since $\mathbf{e}_{i_{j}}^{*}$ is linear. Hence,

$$
\operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \otimes \mathbf{e}_{i_{2}}^{*} \otimes \cdots \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{j} \leq n\right\} \subseteq\{\text { space of } p \text {-linear forms over } E\}
$$

Now, let f be a p-linear form, and suppose $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be the canonical basis of E. For $1 \leq j \leq p$, write

$$
\mathbf{x}_{j}=\sum_{i=1}^{n} x_{j, i} \mathbf{e}_{i} .
$$

Then

$$
\begin{aligned}
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right) & =\sum_{j_{1}, \ldots, j_{p}=1}^{n} x_{j_{1}, 1} \cdots x_{j_{p}, 1} f\left(\mathbf{e}_{j_{1}}, \ldots, \mathbf{e}_{j_{p}}\right) \\
& =\sum_{j_{1}, \ldots, j_{p}=1}^{n} \mathbf{e}_{j_{1}}^{*}\left(\mathbf{x}_{1}\right) \cdots \mathbf{e}_{j_{p}}^{*}\left(\mathbf{x}_{p}\right) f\left(\mathbf{e}_{j_{1}}, \ldots, \mathbf{e}_{j_{p}}\right) \\
& =\sum_{j_{1}, \ldots, j_{p}=1}^{n} f\left(\mathbf{e}_{j_{1}}, \ldots, \mathbf{e}_{j_{p}}\right) \mathbf{e}_{j_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{j_{p}}^{*}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)
\end{aligned}
$$

and so $f \in \operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \otimes \mathbf{e}_{i_{2}}^{*} \otimes \cdots \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{j} \leq n\right\}$. Consequently,
$\operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \otimes \mathbf{e}_{i_{2}}^{*} \otimes \cdots \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{j} \leq n\right\}=\{$ space of p-linear forms over $E\}$
It remains only to show that the tensor products are linearly independent. To do so, suppose that

$$
\sum_{j_{1}, \ldots, j_{p}=1}^{n} a_{j_{1}, \ldots, j_{p}} \mathbf{e}_{j_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{j_{p}}^{*}=0
$$

Then

$$
\sum_{j_{1}, \ldots, j_{p}=1}^{n} a_{j_{1}, \ldots, j_{p}} \mathbf{e}_{j_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{j_{p}}^{*}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=0
$$

for all $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right) \in E^{p}$. Fix $j_{1}^{*}, \ldots, j_{p}^{*}$. Then $\left(\mathbf{e}_{j_{1}^{*}}, \ldots, \mathbf{e}_{j_{p}^{*}}\right) \in E^{p}$ and so

$$
\sum_{j_{1}, \ldots, j_{p}=1}^{n} a_{j_{1}, \ldots, j_{p}} \mathbf{e}_{j_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{j_{p}}^{*}\left(\mathbf{e}_{j_{1}^{*}}, \ldots, \mathbf{e}_{j_{p}^{*}}\right)=0
$$

But

$$
\sum_{j_{1}, \ldots, j_{p}=1}^{n} a_{j_{1}, \ldots, j_{p}} \mathbf{e}_{j_{1}}^{*} \otimes \cdots \otimes \mathbf{e}_{j_{p}}^{*}\left(\mathbf{e}_{j_{1}^{*}}, \ldots, \mathbf{e}_{j_{p}^{*}}\right)=a_{j_{1}^{*}, \ldots, j_{p}^{*}}
$$

so that $a_{j_{1}^{*}, \ldots, j_{p}^{*}}=0$. But $j_{1}^{*}, \ldots, j_{p}^{*}$ were arbitrary, so that we indeed have $a_{j_{1}, \ldots, j_{p}}=0$ for all $1 \leq j_{1}, \ldots, j_{p} \leq n$, and the tensor products are linearly independent.
6. Let $f_{1}, f_{2}, \ldots, f_{p}$ be linear 1 -forms over E and $\sigma \in S_{p}$. Show that

$$
f_{\sigma(1)} \wedge \cdots \wedge f_{\sigma(p)}=\varepsilon(\sigma) f_{1} \wedge \cdots \wedge f_{p} .
$$

Proof: by definition, we have

$$
\begin{aligned}
f_{\sigma(1)} \wedge \cdots \wedge f_{\sigma(p)}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right) & =\operatorname{det}\left(\begin{array}{ccc}
f_{\sigma(1)}\left(\mathbf{x}_{1}\right) & \cdots & f_{\sigma(1)}\left(\mathbf{x}_{p}\right) \\
\vdots & & \vdots \\
f_{\sigma(p)}\left(\mathbf{x}_{1}\right) & \cdots & f_{\sigma(p)}\left(\mathbf{x}_{p}\right)
\end{array}\right) \\
& =\epsilon(\sigma) \operatorname{det}\left(\begin{array}{ccc}
f_{1}\left(\mathbf{x}_{1}\right) & \cdots & f_{1}\left(\mathbf{x}_{p}\right) \\
\vdots & & \vdots \\
f_{p}\left(\mathbf{x}_{1}\right) & \cdots & f_{p}\left(\mathbf{x}_{p}\right)
\end{array}\right) \\
& =\epsilon(\sigma) f_{1} \wedge \cdots \wedge f_{p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)
\end{aligned}
$$

7. Let $f_{1}, f_{2}, \ldots, f_{p}$ be linear 1 -forms over E such that $f_{i}=f_{j}$ for some $i \neq j$. Show that $f_{1} \wedge \cdots \wedge$ $f_{p}=0$.

Proof: by definition, we have

$$
f_{1} \wedge \cdots \wedge f_{p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=\operatorname{det}\left(\begin{array}{ccc}
f_{1}\left(\mathbf{x}_{1}\right) & \cdots & f_{1}\left(\mathbf{x}_{p}\right) \\
\vdots & & \vdots \\
f_{p}\left(\mathbf{x}_{1}\right) & \cdots & f_{p}\left(\mathbf{x}_{p}\right)
\end{array}\right)
$$

If $f_{i}=f_{j}$ for $i \neq j$, two of the rows in the above matrix are identical; as a result, the determinant is 0 .
8. Provide a proof of Corollary 168.

Proof: you should be able to make an informal argument for this one. In essence, the proof runs as follows:
a) $\Lambda^{p}(E)$ is a subspace of the space of linear p-forms over E.
b) $\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*} \in \Lambda^{p}(E)$ for all $1 \leq i_{1}, \ldots, i_{p} \leq n$, so that

$$
\operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{1}, \ldots, i_{p} \leq n\right\} \subseteq \Lambda^{p}(E) .
$$

c) Any $f \in \Lambda^{p}(E)$ can be written as

$$
f=\sum_{i_{1}<\cdots<i_{p}} f\left(\mathbf{e}_{i_{1}}, \ldots, \mathbf{e}_{i_{p}}\right) \mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}
$$

so that

$$
\Lambda^{p}(E) \subseteq \operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{1}, \ldots, i_{p} \leq n\right\} .
$$

Consequently,

$$
\Lambda^{p}(E)=\operatorname{Span}\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}: 1 \leq i_{1}, \ldots, i_{p} \leq n\right\} .
$$

d) For each fixed choice of i_{1}, \ldots, i_{p} there are two possibilities:
i. if the indices are all distinct, let

$$
A_{i_{1}, \ldots, i_{p}}=\left\{\sigma \in S_{p}: \sigma\left(\left\{i_{1}, \ldots, i_{p}\right\}\right) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}\right\}
$$

Then $\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}=\epsilon(\sigma) \mathbf{e}_{\sigma\left(i_{1}\right)}^{*} \wedge \cdots \wedge \mathbf{e}_{\sigma\left(i_{p}\right)}^{*}$ for each $\sigma \in A_{i_{1}, \ldots, i_{p}}$. Consequently, all wedge products containing $\mathbf{e}_{i_{1}}^{*}, \ldots, \mathbf{e}_{i_{p}}^{*}$ are linearly dependent. Remove all of them except the canonical one, i.e. the one for which $i_{1}<\ldots<i_{p}$ (this can be done since all indices are distinct);
ii. if some of the indices repeat, then $\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}=0$ (see exercise 8). Consequently, all such wedge products are linearly dependent. Remove all of them.
e) The remaining wedge products $\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}: i_{1}<\cdots<i_{p}\right\} \operatorname{span} \Lambda^{p}(E)$. One can show that they are linearly independent just as was done at the end of exercise 6. Thus

$$
\left\{\mathbf{e}_{i_{1}}^{*} \wedge \cdots \wedge \mathbf{e}_{i_{p}}^{*}: i_{1}<\cdots<i_{p}\right\}
$$

is a basis of $\Lambda^{p}(E)$.
f) If $n \leq p$, there are $\binom{n}{p}$ ways of selecting p distinct indices from a set of n indices, and so $\operatorname{dim}\left(\Lambda^{p}(E)\right)=\binom{n}{p}$.
g) In the event where $p>n$, there is no way of selecting p distinct indices from a set of n indices, and so $\Lambda^{p}(E)=\{0\}$.
9. Let $f=f_{1} \wedge f_{2}$ and $g=g_{1} \wedge g_{2}$ be alternating p-forms over E. Work out the details and express $f \wedge g$ in terms of f and g, and show that $f \wedge g$ is alternating.

Proof: we have

$$
\begin{aligned}
A & =\left\{\sigma \in S_{4} \mid \sigma(1)<\sigma(2) \text { and } \sigma(3)<\sigma(4)\right\} \\
& =\{\operatorname{id},(23),(243),(123),(1243),(13)(24)\}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
f \wedge g\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)= & \sum_{\sigma \in A} \epsilon(\sigma) f\left(\mathbf{x}_{\sigma(1)}, \mathbf{x}_{\sigma(2)}\right) g\left(\mathbf{x}_{\sigma(3)}, \mathbf{x}_{\sigma(4)}\right) \\
= & f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) g\left(\mathbf{x}_{3}, \mathbf{x}_{4}\right)-f\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) g\left(\mathbf{x}_{2}, \mathbf{x}_{4}\right)+f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) g\left(\mathbf{x}_{3}, \mathbf{x}_{4}\right) \\
& +f\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{4}\right)-f\left(\mathbf{x}_{2}, \mathbf{x}_{4}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)+f\left(\mathbf{x}_{3}, \mathbf{x}_{4}\right) g\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{aligned}
$$

We can easily verify that $f \wedge g$ is alternating, using the fact that both f and g are alternating.

12.5 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.
2. Prove Proposition 166 for $p \geq 3$.
3. Let $f_{1}, \ldots, f_{p} \in E^{*}$. Show that if $f_{i}=f_{j}$ for some $i \neq j$, then $f_{1} \wedge \cdots \wedge f_{p}=0$.
4. Prove Theorem 167.
5. Show that if $p=q=2$, the set $A \subseteq S_{4}$ contains only 6 permutations.
6. Let f, f_{1}, f_{2} be alternating p-forms over E, g, g_{1}, g_{2} be alternating q-forms over E, and $\alpha \in \mathbb{R}$. Show that
a) $\left(f_{1}+f_{2}\right) \wedge g=f_{1} \wedge g+f_{2} \wedge g$
b) $f \wedge\left(g_{1}+g_{2}\right)=f \wedge g_{1}+f \wedge g_{2}$
c) $(\alpha f) \wedge g=\alpha(f \wedge g)=f \wedge(\alpha g)$
7. Complete the proof of Lemma 169.
8. Let $f \in \Lambda^{p}(E), g \in \Lambda^{q}(E)$, and $h \in \Lambda^{r}(E)$. Show that $f \wedge(g \wedge h)=(f \wedge g) \wedge h \in \Lambda^{p+q+r}(E)$ and that $f \wedge g=(-1)^{p q} g \wedge f$.
9. Prove property 3 on p. 304.
10. Let k be odd and $\omega \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$. Show that $\omega \wedge \omega=0$. Is the condition on k necessary, sufficient, or both?

[^0]: ${ }^{1}$ We can also write this as $f_{1}, \ldots, f_{p} \in E^{*}$, where $E^{*}=\{f: E \rightarrow \mathbb{R} \mid f$ linear $\}$ is the dual space of E.

[^1]: ${ }^{2}$ Formally, we should be using the brackets around the wedge product (and the tensor product) of linear forms, but we will often omit them to simplify the notation.

[^2]: ${ }^{3}$ A permutation $\sigma \in S_{n}$ is a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. We can also write σ in cycle notation, as illustrated as follows: suppose that σ acts on $\{1,2,3,4,5\}$ according to $\sigma(1)=2, \sigma(2)=5, \sigma(5)=1, \sigma(3)=3$, and $\sigma(4)=4$. Then we write σ as $\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)(3)(4)$, or usually as $\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)$ since 3,4 are left unchanged by σ. The signature $\epsilon(\sigma)$ of a permutation σ is determined as follows. We write σ as a product of disjoint cycles (as above); the signature is -1 if and only if the factorization contains an odd number of even-length cycles. As $\sigma=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)$ contains no even-length cycle, $\epsilon(\sigma)=1$.

