Chapter 13

Differential Forms

Abstract

In this chapter, we introduce the notion of differential p-forms over \mathbb{R}^{n}, which are derivatives of alternating linear p-forms over \mathbb{R}^{n}. This new notion is a generalization of the differential of a function and admits a number of applications in mathematical physics (Grand Unified Theories, YangMills theory, superstring theory, etc.)

13.1 Differential p-Forms

We start by discussing the situation for $n=3$. Let $U \subseteq_{o} \mathbb{R}^{3}$. A differential 1 -form over U is a function $U \rightarrow\left(\mathbb{R}^{3}\right)^{*}$; the set of all such differential forms is denoted $\Omega^{1}(U)$.

If $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the canonical basis of \mathbb{R}^{3}, then for any $\mathbf{w} \in \mathbb{R}^{3}$ we have

$$
\mathbf{w}=w_{1} \mathbf{e}_{1}+w_{2} \mathbf{e}_{2}+w_{3} \mathbf{e}_{3} .
$$

We denote the dual basis of $\left(\mathbb{R}^{3}\right)^{*}$ by $\{\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z\}$, which is to say that
$\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad$ and $\quad \mathrm{d} x(\mathbf{w})=w_{1}, \mathrm{~d} y(\mathbf{w})=w_{2}, \mathrm{~d} z(\mathbf{w})=w_{3} \quad$ for all $\mathbf{w} \in \mathbb{R}^{3}$.
Then, if $\alpha \in\left(\mathbb{R}^{3}\right)^{*}$, there are unique $P, Q, R \in R$ such that

$$
\alpha=P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z .
$$

In general, if $\omega \in \Omega^{1}(U), \exists!P, Q, R: U \rightarrow \mathbb{R}$ such that

$$
\omega(\mathbf{u})=P(\mathbf{u}) \mathrm{d} x+Q(\mathbf{u}) \mathrm{d} y+R(\mathbf{u}) \mathrm{d} z, \quad \text { for all } \mathbf{u} \in U .
$$

Let $f: U \rightarrow \mathbb{R}$ be differentiable on U; the differential of f is $\mathrm{d} f \in \Omega^{1}(U)$, where

$$
\mathrm{d} f(\mathbf{u})=\frac{\partial f}{\partial x}(\mathbf{u}) \mathrm{d} x+\frac{\partial f}{\partial y}(\mathbf{u}) \mathrm{d} y+\frac{\partial f}{\partial z}(\mathbf{u}) \mathrm{d} z, \quad \text { for all } \mathbf{u} \in U .
$$

Let $\omega \in \Omega^{1}(U)$. If the constituents $P, Q, R: U \rightarrow \mathbb{R}$ are continuous on U (respectively \mathcal{C}^{1} or \mathcal{C}^{∞}), then ω is continuous U (respectively \mathcal{C}^{1} or \mathcal{C}^{∞}). ${ }^{1}$

[^0]
Proposition 172

$\Omega^{1}(U)$ is an infinite-dimensional vector space over \mathbb{R}.
Proof: left as an exercise.

If $U \subseteq \subseteq_{O} \mathbb{R}^{n}, f: U \rightarrow \mathbb{R}$ is \mathcal{C}^{0} (respectively \mathcal{C}^{1} or \mathcal{C}^{∞}) and ω is a \mathcal{C}^{0} (respectively \mathcal{C}^{1} or \mathcal{C}^{∞}) differential 1-form over U, then $f \omega \in \Omega^{1}(U)$, where

$$
f \omega(\mathbf{u})=f(\mathbf{u}) P(\mathbf{u}) \mathrm{d} x+f(\mathbf{u}) Q(\mathbf{u}) \mathrm{d} y+f(\mathbf{u}) R(\mathbf{u}) \mathrm{d} z, \quad \forall \mathbf{u} \in U .
$$

A differential p-form ω over U is a map $\omega: U \rightarrow \Lambda^{p}\left(\mathbb{R}^{n}\right)$; the set of all such differential forms is denoted by $\Omega^{p}(U)$. If $p=0, \Omega^{0}(U)=\mathbf{C}^{k}(U, \mathbb{R})$, where $k \in\{0,1, \infty\}$; Corollary 168 shows that $\Omega^{p}(U)=\{0\}$ when $p>n$.

Proposition 173

$\Omega^{p}(U)$ is an infinite-dimensional vector space over \mathbb{R} and $a \mathbf{C}^{k}(U)$-module (i.e., if $f \in \mathbf{C}^{k}(U, \mathbb{R})$ and $\omega \in \Omega^{p}(U)$, then $f \omega \in \Omega^{p}(U)$ for $k \in\{0,1, \infty\}$.

Proof: left as an exercise.

Let $\omega_{1} \in \Omega^{p_{1}}(U)$ and $\omega_{2} \in \Omega^{p_{2}}(U)$. By definition, $\omega_{i}(\mathbf{u}) \in \Lambda^{p_{i}}(U)$ for all $\mathbf{u} \in U$, for $i=1,2$; according to Theorem 170, we must have

$$
\omega_{1}(\mathbf{u}) \wedge \omega_{2}(\mathbf{u}) \in \Lambda^{p_{1}+p_{2}}(U)
$$

and so the function $\omega_{1} \wedge \omega_{2}: U \rightarrow \Lambda^{p_{1}+p_{2}}(U)$ defined by

$$
\left(\omega_{1} \wedge \omega_{2}\right)(\mathbf{u})=\omega_{1}(\mathbf{u}) \wedge \omega_{2}(\mathbf{u}), \quad \text { for all } \mathbf{u} \in U
$$

is a differential $\left(p_{1}+p_{2}\right)$-form over U, which is to say that $\omega_{1} \wedge \omega_{2} \in \Omega^{p_{1}+p_{2}}(U)$. This differential form is called the we dge (or exterior) product of ω_{1} and $\omega_{2} .{ }^{2}$

Example: if $n=3$, we have

- $\Omega^{0}(U)=\left\{\omega=f \mid f \in \mathbf{C}^{k}(U, \mathbb{R})\right\} ;$
- $\Omega^{1}(U)=\left\{\omega=f \mathrm{~d} x+g \mathrm{~d} y+h \mathrm{~d} z \mid f, g, h \in \mathbf{C}^{k}(U, \mathbb{R})\right\} ;$
- $\Omega^{2}(U)=\left\{\omega=f \mathrm{~d} x \wedge \mathrm{~d} y+g \mathrm{~d} x \wedge \mathrm{~d} z+h \mathrm{~d} y \wedge \mathrm{~d} z \mid f, g, h \in \mathbf{C}^{k}(U, \mathbb{R})\right\} ;$
- $\Omega^{3}(U)=\left\{\omega=f \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \mid f \in \mathbf{C}^{k}(U, \mathbb{R})\right\}$, and
- $\Omega^{p}(U)=\{0\}$, when $p>3$.

[^1]
Theorem 174

1. For $i=1,2$, let $\omega_{i}, \omega_{i}^{\prime} \in \Omega^{p_{i}}(U)$ and $f: U \rightarrow \mathbb{R}$. Then:

- $\left(\omega_{1}+\omega_{1}^{\prime}\right) \wedge \omega_{2}=\omega_{1} \wedge \omega_{2}+\omega_{1}^{\prime} \wedge \omega_{2} ;$
- $\omega_{1} \wedge\left(\omega_{2}+\omega_{2}^{\prime}\right)=\omega_{1} \wedge \omega_{2}+\omega_{1} \wedge \omega_{2}^{\prime}$, and
- $\left(f \omega_{1}\right) \wedge \omega_{2}=f\left(\omega_{1} \wedge \omega_{2}\right)=\omega_{1} \wedge\left(f \omega_{2}\right)$.

2. If $\omega_{1}, \ldots, \omega_{q} \in \Omega^{1}(U)$, then

- when $\omega_{i}=\omega_{j}$ for some $i \neq j$, we have $\omega_{1} \wedge \cdots \wedge \omega_{q}=0$;
- for $\sigma \in S_{q}, \omega_{\sigma(1)} \wedge \cdots \wedge \omega_{\sigma(q)}=\epsilon(\sigma) \omega_{1} \wedge \cdots \wedge \omega_{q}$.

3. For $i=1,2,3$, let $\omega_{i} \in \Omega^{p_{i}}(U)$. Then:

- $\omega_{1} \wedge\left(\omega_{2} \wedge \omega_{3}\right)=\left(\omega_{1} \wedge \omega_{2}\right) \wedge \omega_{3}$, and
- $\omega_{1} \wedge \omega_{2}=(-1)^{p_{1} p_{2}} \omega_{2} \wedge \omega_{1}$.

Proof: left as an exercise.

A few examples will help illustrate the main principles.
Examples: let $n=3, f: U \rightarrow \mathbb{R}$, and set

$$
\omega_{1}=\mathrm{d} x_{1}=\mathbf{e}_{1}^{*}, \quad \omega_{2}=\mathrm{d} x_{2}=\mathbf{e}_{3}^{*}, \quad \omega_{3}=\mathrm{d} x_{3}=\mathbf{e}_{3}^{*} \in \Omega^{1}(U)
$$

- $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}=(-1)^{1 \cdot 1} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{1} ;$
- $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}=\mathrm{d} x_{3} \wedge \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}=-\mathrm{d} x_{1} \wedge \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{2}$;
- $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{1}=\mathrm{d} x_{2} \wedge \mathrm{~d} x_{2}=\mathrm{d} x_{3} \wedge \mathrm{~d} x_{3}=0$, and
- $\left(f \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}\right) \wedge \mathrm{d} x_{3}=(-1)^{2 \cdot 1} \mathrm{~d} x_{3} \wedge\left(f \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}\right)$.

This section's final result will set the stage for the rest of the chapter and the next one.
Theorem 175
Let $\omega \in \Omega^{p}(U)$. We can uniquely write

$$
\omega=\sum P_{i_{1}, \cdots, i_{p}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}
$$

where $P_{i_{1}, \cdots, i_{p}}: U \rightarrow \mathbb{R}$ for $i_{1}<\cdot<i_{p}$.
Proof: left as an exercise.

13.2 Exterior Derivative

In what follows, we fix $k=\infty$ so that $\Omega^{p}(U)$ represents the vector space of \mathcal{C}^{∞} (smooth) differential p-forms over $U \subseteq_{O} \mathbb{R}^{n}$.

The exterior derivative (or differential) of $\omega \in \Omega^{p}(U)$ is defined recursively.

1. If $f \in \Omega^{0}(U)$ (that is, $f: U \rightarrow \mathbb{R}$ is smooth), then its exterior derivative is

$$
\mathrm{d} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i} \in \Omega^{1}(U) .
$$

2. If $\omega=\sum_{i=1}^{n} P_{i} \mathrm{~d} x_{i} \in \Omega^{1}(U), P_{i} \in \mathcal{C}^{\infty}(U, \mathbb{R})$ for $1 \leq i \leq n$, then its exterior derivative is

$$
\mathrm{d} \omega=\sum_{i=1}^{n} \mathrm{~d} P_{i} \wedge \mathrm{~d} x_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial P_{i}}{\partial x_{j}} \mathrm{~d} x_{j}\right) \wedge \mathrm{d} x_{i}=\sum_{i<j}\left(\frac{\partial P_{j}}{\partial x_{i}}-\frac{\partial P_{i}}{\partial x_{j}}\right) \mathrm{d} x_{i} \wedge \mathrm{~d} x_{j} \in \Omega^{2}(U)
$$

p. In general, if

$$
\omega=\sum_{i_{1}<\cdots<i_{p}} P_{i_{1}, \cdots, i_{p}} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \in \Omega^{p}(U)
$$

then its exterior derivative is

$$
\mathrm{d} \omega=\sum_{i_{1}<\cdots<i_{p}} \mathrm{~d} P_{i_{1}, \cdots, i_{p}} \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \in \Omega^{p+1}(U) .
$$

As we shall see after the next examples, the exterior derivative behaves as a regular derivative with respect to the sum of differential forms and to the product of functions, but there is a twist for a general product of differential forms.

Examples: throughout, let $f, g, h \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ for an appropriate n.

1. In \mathbb{R}^{2}, let $\omega=f \mathrm{~d} x+g \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$. Then

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d} f \wedge \mathrm{~d} x+\mathrm{d} g \wedge \mathrm{~d} y=\left(\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} x+\left(\frac{\partial g}{\partial x} \mathrm{~d} x+\frac{\partial g}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} y \\
& =\frac{\partial f}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} x+\frac{\partial g}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial g}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} y \\
& =\frac{\partial f}{\partial x} \cdot 0-\frac{\partial f}{\partial y} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial g}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial g}{\partial y} \cdot 0=\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y \in \Omega^{2}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

2. In \mathbb{R}^{3}, let $\omega=f \mathrm{~d} x+g \mathrm{~d} y+h \mathrm{~d} z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$. Then

$$
\begin{aligned}
\mathrm{d} \omega= & \mathrm{d} f \wedge \mathrm{~d} x+\mathrm{d} g \wedge \mathrm{~d} y+\mathrm{d} h \wedge \mathrm{~d} z \\
= & \left(\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y+\frac{\partial f}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x+\left(\frac{\partial g}{\partial x} \mathrm{~d} x+\frac{\partial g}{\partial y} \mathrm{~d} y+\frac{\partial g}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y+ \\
& =\left(\frac{\partial h}{\partial x} \mathrm{~d} x+\frac{\partial h}{\partial y} \mathrm{~d} y+\frac{\partial h}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} z \\
= & \left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y-\left(\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}\right) \mathrm{d} x \wedge \mathrm{~d} z+\left(\frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}\right) \mathrm{d} y \wedge \mathrm{~d} z \in \Omega^{2}\left(\mathbb{R}^{3}\right) .
\end{aligned}
$$

3. In \mathbb{R}^{3}, let $\omega=f \mathrm{~d} x \wedge \mathrm{~d} y+g \mathrm{~d} x \wedge \mathrm{~d} z+h \mathrm{~d} y \wedge \mathrm{~d} z \in \Omega^{2}\left(\mathbb{R}^{3}\right)$. Then

$$
\begin{aligned}
\mathrm{d} \omega= & \mathrm{d} f \wedge \mathrm{~d} x \wedge d_{y}+\mathrm{d} g \wedge \mathrm{~d} x \wedge \mathrm{~d} z+\mathrm{d} h \wedge \mathrm{~d} y \wedge \mathrm{~d} z \\
= & \left(\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y+\frac{\partial f}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x \wedge \mathrm{~d} y+\left(\frac{\partial g}{\partial x} \mathrm{~d} x+\frac{\partial g}{\partial y} \mathrm{~d} y+\frac{\partial g}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x \wedge \mathrm{~d} z+ \\
& =\left(\frac{\partial h}{\partial x} \mathrm{~d} x+\frac{\partial h}{\partial y} \mathrm{~d} y+\frac{\partial h}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y \wedge \mathrm{~d} z \\
= & \frac{\partial f}{\partial z} \mathrm{~d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial g}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} x \wedge \mathrm{~d} z+\frac{\partial h}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \\
= & \left(\frac{\partial f}{\partial z}-\frac{\partial g}{\partial y}+\frac{\partial h}{\partial x}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \in \Omega^{3}\left(\mathbb{R}^{3}\right) .
\end{aligned}
$$

Theorem 176

Let $\omega_{1}, \omega_{2} \in \Omega^{p}(U)$. Then $d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$.
Proof: left as an exercise.

Lemma 177

If $f, g \in \Omega^{0}\left(\mathbb{R}^{n}\right)$, then $d(f g)=(d f) g+f(d g)$.
Proof: the product $f g \in \Omega^{0}\left(\mathbb{R}^{n}\right)$ is itself a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$. By definition,

$$
\begin{aligned}
\mathrm{d}(f g) & =\sum_{i=1}^{n} \frac{\partial(f g)}{\partial x_{i}} \mathrm{~d} x_{i}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} g+f \frac{\partial g}{\partial x_{i}}\right) \mathrm{d} x_{i} \\
& =\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}\right) g+f\left(\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \mathrm{~d} x_{i}\right)=(\mathrm{d} f) g+f(\mathrm{~d} g) .
\end{aligned}
$$

Lemma 177 is a special case (with $p=0$) of the more general rule for the derivative of the product of differential forms.

Theorem 178

Let $\omega \in \Omega^{p}(U), \omega^{\prime} \in \Omega^{q}(U)$. Then $d\left(\omega \wedge \omega^{\prime}\right)=d \omega \wedge \omega^{\prime}+(-1)^{p} \omega \wedge d \omega^{\prime}$.
Proof: if $\left\{i_{1}, \ldots, i_{\ell}\right\} \subseteq\{1, \ldots, n\}$ (in increasing order) and $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$, then

$$
\mathrm{d}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{\ell}}\right)=\mathrm{d} f \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{\ell}}
$$

Since $d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$, we only need to verify the conclusion for

$$
\begin{aligned}
\omega & =f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}, & i_{1}<\cdots<i_{p} \\
\omega^{\prime} & =g \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}}, & j_{1}<\cdots<j_{q}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{d}\left(\omega \wedge \omega^{\prime}\right)= & \mathrm{d}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge g \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}}\right) \\
\text { thm 174.1 }= & \mathrm{d}\left(f g \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}}\right) \\
= & \mathrm{d}(f g) \wedge \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}} \\
\text { lemma 177 }= & {[(\mathrm{d} f) g+f(\mathrm{~d} g)] \wedge \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}} } \\
= & (\mathrm{d} f) g \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}} \\
& +f(\mathrm{~d} g) \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}} \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}} \\
= & \underbrace{\mathrm{d} f \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}}_{=\mathrm{d} \omega} \wedge \underbrace{g \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}}}_{=\omega^{\prime}} \\
& +(-1)^{p} \underbrace{f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}}_{=\omega} \wedge \underbrace{\mathrm{d} g \wedge \mathrm{~d} x_{j_{1}} \wedge \cdots \wedge \mathrm{~d} x_{j_{q}}}_{=\mathrm{d} \omega^{\prime}} \\
= & \mathrm{d} \omega \wedge \omega^{\prime}+(-1)^{p} \omega \wedge \mathrm{~d} \omega^{\prime} .
\end{aligned}
$$

We illustrate this in the case where $\omega=\sum_{i=1}^{n} f_{i} \mathrm{~d} x_{i} \in \Omega^{1}\left(\mathbb{R}^{n}\right)$ and $\omega^{\prime}=h \in \Omega^{0}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{aligned}
\omega \wedge \omega^{\prime}=\sum_{i=1}^{n} f_{i} h \mathrm{~d} x_{i} \quad \text { and } \quad \mathrm{d}\left(\omega \wedge \omega^{\prime}\right) & =\mathrm{d}\left(\sum_{i=1}^{n} f_{i} h \mathrm{~d} x_{i}\right)=\sum_{i=1}^{n} \mathrm{~d}\left(f_{i} h \mathrm{~d} x_{i}\right)=\sum_{i=1}^{n} \mathrm{~d}\left(f_{i} h\right) \wedge \mathrm{d} x_{i} \\
& =\sum_{i=1}^{n}\left[\left(\mathrm{~d} f_{i}\right) h+f_{i}(\mathrm{~d} h)\right] \wedge \mathrm{d} x_{i}=\sum_{i=1}^{n}\left(\mathrm{~d} f_{i} \wedge \mathrm{~d} x_{i}\right) h+\sum_{i=1}^{n} f_{i} \mathrm{~d} h \wedge \mathrm{~d} x_{i} \\
& =\mathrm{d} \omega \wedge \omega^{\prime}+\sum_{i=1}^{n} f_{i}\left(-\mathrm{d} x_{i} \wedge \mathrm{~d} h\right)=\mathrm{d} \omega \wedge \omega^{\prime}-\omega \wedge \mathrm{d} \omega^{\prime} \\
& =\mathrm{d} \omega \wedge \omega^{\prime}+(-1)^{1} \omega \wedge \mathrm{~d} \omega^{\prime}
\end{aligned}
$$

The next result showcases a crucial property of exterior derivatives.

Theorem 179

Let $\omega \in \Omega^{p}(U)$. Then $d(d \omega)=0$.
Proof: if $f \in \mathcal{C}^{\infty}(U, \mathbb{R})=\Omega^{0}(U)$, then $\mathrm{d} f \in \Omega^{1}(U)$ and

$$
\mathrm{d}(\mathrm{~d} f)=\mathrm{d}\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}\right)=\sum_{i=1}^{n} \mathrm{~d}\left(\frac{\partial f}{\partial x_{i}}\right) \wedge \mathrm{d} x_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \mathrm{~d} x_{j}\right) \wedge \mathrm{d} x_{i} .
$$

When $i=j, \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}=0$; when $i>j, \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}=-\mathrm{d} x_{j} \wedge \mathrm{~d} x_{i}$, so that

$$
\mathrm{d}^{2} f=\sum_{i<j} \underbrace{\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)}_{=0 \text { since } f \in \mathcal{C}^{\infty}(U, \mathbb{R})} \mathrm{d} x_{i} \wedge \mathrm{~d} x_{j}=0 .
$$

Furthermore,

$$
\mathrm{d}\left(\mathrm{~d} x_{i}\right)=\mathrm{d}\left(1 \cdot \mathrm{~d} x_{i}\right)=d(1) \wedge \mathrm{d} x_{i}=0 \wedge \mathrm{~d} x_{i}=0
$$

Since $\mathrm{d}\left(\omega+\omega^{\prime}\right)=\mathrm{d} \omega+\mathrm{d} \omega^{\prime}$, it is sufficient to show that $\mathrm{d}^{2}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}\right)=0$, where $\left\{i_{1}<\ldots<i_{p}\right\} \subseteq\{1, \ldots, n\}$ and f is as above. As

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{~d}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}\right)\right) & =\mathrm{d}\left(\mathrm{~d} f \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}\right) \\
& =\mathrm{d}(\mathrm{~d} f) \wedge \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}+(-1)^{0+1} \mathrm{~d} f \wedge \mathrm{~d}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}\right) \\
& =0 \wedge \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{p}}-\mathrm{d} f \wedge 0=0 .
\end{aligned}
$$

A differential form $\omega \in \Omega^{p}(U)$ is closed if $\mathrm{d} \omega=0$.
Example: let $n=1$ and $\omega \in \Omega^{1}\left(\mathbb{R}^{1}\right)$. Then $\mathrm{d} \omega \in \Omega^{2}\left(\mathbb{R}^{1}\right)$; since $\Omega^{2}\left(\mathbb{R}^{1}\right)=\{0\}, \omega$ is automatically closed.

13.3 Antiderivative

Let $p>1, U \subseteq_{O} \mathbb{R}^{n}$ and $\omega \in \Omega^{p}(U)$; ω is exact if $\exists \eta \in \Omega^{p-1}(U)$ such that $\mathrm{d} \eta=\omega$. The differential form η is an antiderivative of ω. If ω is exact, then $\mathrm{d} \omega=\mathrm{d}^{2} \eta=0$ and so every exact form is also closed.

If $n=1$, let $f \in \Omega^{0}(\mathbb{R})$. Then $\Omega^{1}(\mathbb{R})=\left\{g \mathrm{~d} x \mid g \in \Omega^{0}(\mathbb{R})\right\}$. If $F: \mathbb{R} \rightarrow \mathbb{R}$ is such that $F^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$, then $F \in \Omega^{0}(\mathbb{R})$ and

$$
d F=\frac{\partial F}{\partial x} \mathrm{~d} x=f \mathrm{~d} x
$$

Such an F exists by Theorem 60 since f is continuous on \mathbb{R}. Hence, every $\omega \in \Omega^{1}(\mathbb{R})$ is exact.

Examples

1. Let $\omega=P_{1}(x, y) \mathrm{d} x+P_{2}(x, y) \mathrm{d} y=y \mathrm{~d} x-x \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$. Since

$$
\mathrm{d} \omega=\left(\frac{\partial P_{2}}{\partial x}-\frac{\partial P_{1}}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y=(-1-1) \mathrm{d} x \wedge \mathrm{~d} y=-2 \mathrm{~d} x \wedge \mathrm{~d} y \neq 0
$$

since ω is not closed, it cannot be exact.
2. Let $\omega=f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y=\left(3 x^{2}+2 x y+y^{2}\right) \mathrm{d} x+\left(x^{2}+2 x y+3 y^{2}\right) \mathrm{d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$. Since

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d} f \wedge \mathrm{~d} x+\mathrm{d} g \wedge \mathrm{~d} y \\
& =\left(\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} x+\left(\frac{\partial g}{\partial x} \mathrm{~d} x+\frac{\partial g}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} y \\
& =\frac{\partial f}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} x+\frac{\partial g}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y=\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y
\end{aligned}
$$

But

$$
\frac{\partial g}{\partial x}=2 x+2 y=\frac{\partial f}{\partial y}
$$

in this specific case, so $d \omega=0$, which means that ω is closed.
We can show that this particular closed form is also exact, which is to say that $\exists F \in \Omega^{0}\left(\mathbb{R}^{2}\right)=\mathcal{C}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ such that $\mathrm{d} F=\omega$. If such a F exists,

$$
\mathrm{d} F=\frac{\partial F}{\partial x} \mathrm{~d} x+\frac{\partial F}{\partial y} \mathrm{~d} y=f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y
$$

and we must have

$$
\frac{\partial F}{\partial x}=f(x, y)=3 x^{2}+2 x y+y^{2} \quad \text { and } \quad \frac{\partial F}{\partial y}=g(x, y)=x^{2}+2 x y+3 y^{2}
$$

Integrating the first of these with respect to x yields

$$
F(x, y)=x^{3}+x^{2} y+y^{2} x+\varphi(y)
$$

Differentiating with respect to y yields

$$
\frac{\partial F}{\partial y}=x^{3}+2 x y+\varphi^{\prime}(y)=x^{2}+2 x y+3 y^{2}
$$

so that $\varphi^{\prime}(y)=3 y^{2}$, and so $\varphi(y)=y^{3}+C$. Thus the antiderivatives of ω take the form

$$
F(x, y)=x^{3}+x^{2} y+x y^{2}+y^{3}+C
$$

where $C \in \mathbb{R}$.

Exact forms are necessarily closed; the converse is valid when $U \subseteq_{O} \mathbb{R}^{n}$ has an additional property. A set $U \subseteq \mathbb{R}$ is star-shaped if $\exists \mathbf{a} \in U$ such that $\forall \mathbf{y} \in U$ we have

$$
[\mathbf{a}, \mathbf{y}]=\{(1-t) \mathbf{a}+t \mathbf{y} \mid 0 \leq t \leq 1\}=\{\mathbf{a}+t(\mathbf{y}-\mathbf{a}) \mid 0 \leq t \leq 1\} \subseteq U
$$

In \mathbb{R}^{2}, for instance, U_{1} (on the left) is star-shaped, whereas U_{2} (on the right) is not.

We now present a highly technical lemma that will allow us to prove the desired result.

Theorem 180

Let $U \subseteq \subseteq_{O} \mathbb{R}^{n}, I=[0,1]$, and $\varphi: U \times I \rightarrow \mathbb{R}$ a continuous function in the Euclidean metric. Then the function $\psi: U \rightarrow \mathbb{R}$ defined by

$$
\psi\left(\mathbf{x}=\int_{0}^{1} \varphi(\mathbf{x}, t) d t\right.
$$

is continuous.
Furthermore, if $D_{\mathbf{x}} \varphi: U \times I \rightarrow \operatorname{End}\left(\mathbb{R}^{n}, \mathbb{R}\right) \simeq\left(\mathbb{R}^{n}\right)^{*}$ exists and is continuous, then ψ is \mathcal{C}^{1} and

$$
D_{\mathbf{x}} \psi(\mathbf{x})=\int_{0}^{1} D_{\mathbf{x}} \varphi(\mathbf{x}, t) d t
$$

Proof: we start by proving the continuity of ψ. We want to show that $\forall \varepsilon>0, \exists \delta_{\varepsilon}>0$ such that

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|<\delta_{\varepsilon} \Longrightarrow\left|\psi(\mathbf{x})-\psi\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon .
$$

For $\mathbf{x}, \mathbf{x}^{\prime} \in U$, we have

$$
\left|\psi(\mathbf{x})-\psi\left(\mathbf{x}^{\prime}\right)\right|=\left|\int_{0}^{1}\left(\varphi(\mathbf{x}, t)-\varphi\left(\mathbf{x}^{\prime}, t\right)\right) d t\right| \leq \int_{0}^{1}\left|\varphi(\mathbf{x}, t)-\varphi\left(\mathbf{x}^{\prime}, t\right)\right| d t
$$

Let $\varepsilon>0$ and $(\mathbf{x}, t) \in U \times I$. Since φ is continuous, $\exists \delta_{\varepsilon}=\delta_{\varepsilon}(\mathbf{x}, t)$ such that

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|,\left|t-t^{\prime}\right|<\delta_{\varepsilon} \Longrightarrow\left|\varphi(\mathbf{x}, t)-\varphi\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right|<\varepsilon / 12 .
$$

In particular,

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|<\delta_{\varepsilon} \Longrightarrow\left|\varphi\left(\mathbf{x}, t^{\prime}\right)-\varphi\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right|<\varepsilon / 6 .
$$

For a \mathbf{x} fixed, define $V_{t}=\left\{t^{\prime} \in \mathbb{R}| | t-t^{\prime} \mid<\delta_{\varepsilon}(\mathbf{x}, t)\right\} \cap I$; then $\left\{V_{t}\right\}_{t \in I}$ is an open cover of the subspace $I \subseteq \mathbb{R}$. But I is a compact subspace of \mathbb{R} in the Euclidean topology, and so there is a finite subcover $\left\{V_{t_{1}}, \ldots, V_{t_{K}}\right\}$ of I with

$$
\bigcup_{i=1}^{K} V_{t_{i}}=I
$$

Let $\delta_{\varepsilon}(\mathbf{x})=\min \left\{\delta\left(\mathbf{x}, t_{i}\right) \mid i=1, \ldots, K\right\}$. Thus for any $t^{\prime} \in I$, we can find a $t_{i} \in I$ such that $\left|t_{i}-t^{\prime}\right|<\delta_{\varepsilon}\left(\mathbf{x}, t_{i}\right)$. If we also have $\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|<\delta_{\varepsilon}(\mathbf{x})$, then

$$
\begin{aligned}
\left|\varphi\left(\mathbf{x}, t^{\prime}\right)-\varphi\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right| & \leq\left|\varphi\left(\mathbf{x}, t^{\prime}\right)-\varphi\left(\mathbf{x}, t_{i}\right)\right|+\left|\varphi\left(\mathbf{x}, t_{i}\right)-\varphi\left(\mathbf{x}^{\prime}, t_{i}\right)\right|+\left|\varphi\left(\mathbf{x}^{\prime}, t_{i}\right)-\varphi\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right| \\
& <\varepsilon / 6+\varepsilon / 6+\varepsilon / 6=\varepsilon / 2
\end{aligned}
$$

Set $\delta_{\varepsilon}=\delta_{\varepsilon}(\mathbf{x})$. Then for all $\mathbf{x}, \mathbf{x}^{\prime} \in U$ we have

$$
\left|\psi(\mathbf{x})-\psi\left(\mathbf{x}^{\prime}\right)\right| \leq \int_{0}^{1} \frac{\varepsilon}{2} d t=\frac{\varepsilon}{2}<\varepsilon
$$

We now tackle the differentiability of ψ. Since $D_{\mathbf{x}} \varphi$ is continuous by assumption, the same argument as above shows that the function

$$
\mathbf{x} \in U \mapsto \lambda(\mathbf{x})=\int_{0}^{1} D_{\mathbf{x}} \varphi(\mathbf{x}, t) d t
$$

is continuous. It remains only to show that $\lambda(x)=D_{\mathbf{x}} \psi(\mathbf{x})$, that is, $\forall \varepsilon>0, \exists \delta_{\varepsilon}>0$ such that

$$
\|\mathbf{h}\|<\delta_{\varepsilon} \Longrightarrow|\psi(\mathbf{x}+\mathbf{h})-\psi(\mathbf{x})-\lambda(\mathbf{x}) \mathbf{h}|<\varepsilon \cdot\|\mathbf{h}\| .
$$

But

$$
|\psi(\mathbf{x}+\mathbf{h})-\psi(\mathbf{x})-\lambda(\mathbf{x}) \mathbf{h}|=\left|\int_{0}^{1}(\varphi(\mathbf{x}+\mathbf{h}, t)-\varphi(\mathbf{x}, t)) d t-\int_{0}^{1} D_{\mathbf{x}} \varphi(\mathbf{x}, t) \mathbf{h} d t\right|
$$

$$
\begin{aligned}
& \left.\leq \int_{0}^{1} \mid \varphi(\mathbf{x}+\mathbf{h}, t)-\varphi(\mathbf{x}, t)\right)-D_{\mathbf{x}} \varphi(\mathbf{x}, t) \mathbf{h} \mid d t \\
\text { Taylor's thm } & =\int_{0}^{1}\left|D_{\mathbf{x}} \varphi(\mathbf{x}+\boldsymbol{\theta}, t)-D_{\mathbf{x}} \varphi(\mathbf{x}, t)\right| d t,
\end{aligned}
$$

for $\boldsymbol{\theta} \in[\mathbf{0}, \mathbf{h}]$. But $D_{\mathbf{x}} \varphi$ is continuous so $\forall \varepsilon>0, \exists \delta_{\varepsilon}>0$ such that

$$
\|\boldsymbol{\theta}\| \leq\|\mathbf{h}\|<\delta_{\varepsilon} \Longrightarrow\left|D_{\mathbf{x}} \varphi(\mathbf{x}+\boldsymbol{\theta}, t)-D_{\mathbf{x}} \varphi(\mathbf{x}, t)\right|<\varepsilon
$$

Hence

$$
|\psi(\mathbf{x}+\mathbf{h})-\psi(\mathbf{x})-\lambda(\mathbf{x}) \mathbf{h}|<\int_{0}^{1} \varepsilon\|\mathbf{h}\| d t=\varepsilon\|\mathbf{h}\|
$$

which completes the proof.

And now, the pièce de résistance.

Theorem 181 (Poincaré's LEMMA)

Let $U \subseteq \mathbb{R}^{n}$ be star-shaped and containing $\mathbf{0}$. If $\omega \in \Omega^{p}(U)$ is closed, then it is exact.
Proof: we start by proving the result for $n=1, p=1$. Let $\omega \in \Omega^{1}(U)$. Then $\omega=f \mathrm{~d} x$, with $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$. Since $\Omega^{2}(U)=\{0\}$, we have $\mathrm{d} \omega=0 \in \Omega^{2}(U)$. We show that $\exists F \in \Omega^{0}(U)$ such that $\mathrm{d} F=\omega$.

Recall that

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{1} f(x s) x d s=\int_{0}^{1} g(x, s) d s
$$

According to Lemma 180,

$$
\begin{aligned}
F^{\prime}(x) & =\int_{0}^{1} \frac{\partial g}{\partial x}(x, s) d s=\int_{0}^{1}\left(f(x s)+s f^{\prime}(x s)\right) d s \\
& =\int_{0}^{1} \frac{d}{d s}[s f(x, s)] d s=1 \cdot f(x, 1)-0 \cdot f(x, 0)=f(x)
\end{aligned}
$$

Hence $\mathrm{d} F=\frac{\partial F}{\partial x} \mathrm{~d} x=F^{\prime}(x) \mathrm{d} x=f(x) \mathrm{d} x=\omega$.
Now suppose that $n>1, p=1$. Let $\omega \in \Omega^{1}(U)$ with $\mathrm{d} \omega=0$. We want to show $\exists \eta=F \in \Omega^{0}(U)=\mathcal{C}^{\infty}(U, \mathbb{R})$ such that $\mathrm{d} \eta=\omega$. By hypothesis,

$$
\omega=\sum_{i=1}^{n} f_{i} \mathrm{~d} x_{i}, \quad \text { with } f_{i} \in \mathcal{C}^{\infty}(U, \mathbb{R})
$$

and

$$
\mathrm{d} \omega=\sum_{i=1}^{n} \mathrm{~d} f_{i} \wedge \mathrm{~d} x_{i}=\sum_{i, j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}=\sum_{i<j}\left(\frac{\partial f_{i}}{\partial x_{j}}-\frac{\partial f_{j}}{\partial x_{i}}\right) \mathrm{d} x_{i} \wedge \mathrm{~d} x_{j}=0
$$

and so

$$
\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}}, \quad \text { for all } 1 \leq i<j \leq n
$$

Let

$$
F(\mathbf{x})=F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}(\mathbf{x} s) x_{i} d s=\sum_{i=1}^{n} \underbrace{f_{i}\left(x_{1} s, \ldots, x_{n} s\right) x_{i}}_{=g_{i}(\mathbf{x}, s)} d s
$$

We show that $\mathrm{d} F=\omega$:

$$
\begin{aligned}
\frac{\partial F}{\partial x_{1}}(\mathbf{x}) & =\sum_{i=1}^{n} \frac{\partial}{\partial x_{1}} \int_{0}^{1} g_{i}(\mathbf{x}, s) d s=\sum_{i=1}^{n} \int_{0}^{1} \frac{\partial}{\partial x_{1}} g_{i}(\mathbf{x}, s) d s \\
& =\int_{0}^{1}\left[f_{1}(\mathbf{x} s)+x_{1} s \frac{\partial}{\partial x_{1}} f(\mathbf{x} s)\right] d s+\sum_{j=2}^{n} \int_{0}^{1} x_{j} s \frac{\partial}{\partial x_{1}} f_{j}(\mathbf{x} s) d s \\
& =\int_{0}^{1}\left[f_{1}(\mathbf{x} s)+\sum_{j=1}^{n} x_{j} s \frac{\partial}{\partial x_{j}} f_{1}(\mathbf{x} s)\right] d s
\end{aligned}
$$

by the equality of partial derivatives above. Set $k_{1}(s)=s f_{1}(\mathbf{x} s)$. Then

$$
k_{1}^{\prime}(s)=f_{1}(\mathbf{x} s)+\sum_{j=1}^{n} x_{j} s \frac{\partial}{\partial x_{j}} f_{1}(\mathbf{x} s)
$$

so that

$$
\frac{\partial F}{\partial x_{1}}(\mathbf{x})=\int_{0}^{1} k^{\prime}(s) d s=k(1)-k(0)=f_{1}(\mathbf{x}) .
$$

In a similar fashion, we can see that

$$
\frac{\partial F}{\partial x_{i}}(\mathbf{x})=f_{i}(\mathbf{x}), \quad \text { for all } 1 \leq j \leq n
$$

and so

$$
\mathrm{d} F=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} \mathrm{~d} x_{i}=\sum_{i=1}^{n} f_{i} \mathrm{~d} x_{i}=\omega
$$

We will not be providing the proof for $p>1$.

Where exactly was the hypothesis that U is star-shaped used $?^{3}$

[^2]In a nutshell, we have shown the following result.
Proposition 182
Let $U \subseteq_{o} \mathbb{R}$ and $\omega=\sum_{i=1}^{n} f_{i} d x_{i} \in \Omega^{1}(U)$. Consider the following conditions:

1. ω is exact in U;
2. ω is closed in U;
3. $\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}}$ for all i, j.

Then $1 . \Longrightarrow 2 . \Longleftrightarrow 3$. Furthermore, if U is star-shaped, then the three conditions are equivalent.

13.4 Pullback of a Differential Form

Let $U \subseteq_{O} \mathbb{R}^{m}, V \subseteq_{O} \mathbb{R}^{n}, \mathbf{g} \in \mathcal{C}^{\infty}(U, V) .{ }^{4}$ The pullback function $\mathbf{g}^{*}: \Omega^{k}(V) \rightarrow \Omega^{k}(U)$ satisfies

$$
\mathbf{g}^{*}\left(\bigwedge_{i} \omega_{i}\right)=\bigwedge_{i} \mathbf{g}^{*}\left(\omega_{i}\right) .
$$

We define it as follows.
Case $k=0: \quad$ if $f \in \mathcal{C}^{\infty}(V, \mathbb{R})=\Omega^{0}(V)$, the pullback is

$$
\mathbf{g}^{*}(f)=f \circ \mathbf{g}: U \rightarrow \mathbb{R} \in \mathcal{C}^{\infty}(U, V)=\Omega^{0}(U)
$$

Case $k=1$: if a smooth $\mathbf{g}: U \subseteq_{o} \mathbb{R}^{m} \rightarrow V \subseteq_{o} \mathbb{R}^{n}$ maps

$$
\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \in U \mapsto \mathbf{v}=\mathbf{g}(\mathbf{u})=\left(g_{1}(\mathbf{u}), \ldots, g_{n}(\mathbf{u})\right) \in V
$$

and $\omega \in \Omega^{1}(V)$, then $\omega=\sum_{i=1}^{n} f_{i} \mathrm{~d} x_{i}$ and the pullback is

$$
\mathbf{g}^{*}(\omega)=\sum_{i=1}^{n} \mathbf{g}^{*}\left(f_{i}\right) \mathbf{g}^{*}\left(\mathrm{~d} x_{i}\right)=\sum_{i=1}^{n}\left(f_{i} \circ \mathbf{g}\right) \mathrm{d} g_{i}=\sum_{i=1}^{n}\left(f_{i} \circ \mathbf{g}\right)\left(\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial u_{j}} \mathrm{~d} u_{j}\right) .
$$

Let us take a look at some examples.

Examples

1. Let $\mathbf{g}: U=\mathbb{R} \rightarrow V=\mathbb{R}$ and consider $\omega=f \mathrm{~d} x \in \Omega^{1}(V)$. Then the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{1}(U)$ is given by

$$
\mathbf{g}^{*}(\omega)(u)=(f \circ g) \mathbf{g}^{*}(\mathrm{~d} x)(u)=f(\mathbf{g}(u)) \cdot \mathbf{g}^{\prime}(u) \mathrm{d} u
$$

[^3]2. Let $\mathbf{g}: U=\mathbb{R} \rightarrow V=\mathbb{R}^{2}$ be defined by
$$
\mathbf{g}(t)=(\cos t, \sin t)
$$
and $\omega=-y \mathrm{~d} x+x \mathrm{~d} y \in \Omega^{1}(V)$. Then
$$
\mathbf{g}^{*}(\mathrm{~d} x)(t)=\left(\mathrm{d} g_{1}\right)(t)=-\sin t \mathrm{~d} t, \quad \mathbf{g}^{*}(\mathrm{~d} y)(t)=\left(\mathrm{d} g_{2}\right)(t)=\cos t \mathrm{~d} t
$$
and the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{1}(U)$ is given by
\[

$$
\begin{aligned}
\mathbf{g}^{*}(\omega)(t) & =f_{1}(\mathbf{g}(t))\left(\mathrm{d} g_{1}\right)(t)+f_{2}(\mathbf{g}(t))\left(\mathrm{d} g_{2}\right)(t) \\
& =(-\sin t)(-\sin t \mathrm{~d} t)+(\cos t)(\cos t \mathrm{~d} t)=\left(\sin ^{2} t+\cos ^{2} t\right) \mathrm{d} t=\mathrm{d} t
\end{aligned}
$$
\]

3. Let $\mathbf{g}: U=\mathbb{R}^{2} \rightarrow V=\mathbb{R}^{2}$ be defined by

$$
\mathbf{g}(\mathbf{u})=\left(g_{1}\left(u_{1}, u_{2}\right), g_{2}\left(u_{1}, u_{2}\right)\right)=\left(u_{1} \cos u_{2}, u_{1} \sin u_{2}\right)
$$

and $\omega=f_{1}\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}+f_{2}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}=x_{1} \mathrm{~d} x_{1}+x_{2} \mathrm{~d} x_{2} \in \Omega^{1}(V)$. Then

$$
\begin{aligned}
\mathbf{g}^{*}\left(\mathbf{d} x_{1}\right)\left(u_{1}, u_{2}\right) & =\left(\mathbf{d} g_{1}\right)\left(u_{1}, u_{2}\right)=\frac{\partial g_{1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} \mathbf{d} u_{1}+\frac{\partial g_{1}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \mathbf{d} u_{2} \\
& =\cos u_{2} \mathbf{d} u_{1}-u_{1} \sin u_{2} \mathbf{d} u_{2} \\
\mathbf{g}^{*}\left(\mathbf{d} x_{2}\right)\left(u_{1}, u_{2}\right) & =\left(\mathbf{d} g_{2}\right)\left(u_{1}, u_{2}\right)=\frac{\partial g_{2}\left(u_{1}, u_{2}\right)}{\partial u_{1}} \mathbf{d} u_{1}+\frac{\partial g_{2}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \mathbf{d} u_{2} \\
& =\sin u_{2} \mathbf{d} u_{1}+u_{1} \cos u_{2} \mathbf{d} u_{2}
\end{aligned}
$$

and the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{1}(U)$ is given by

$$
\begin{aligned}
\mathbf{g}^{*}(\omega)\left(u_{1}, u_{2}\right) & =f_{1}\left(\mathbf{g}\left(u_{1}, u_{2}\right)\right)\left(\mathbf{d} g_{1}\right)\left(u_{1}, u_{2}\right)+f_{2}\left(\mathbf{g}\left(u_{1}, u_{2}\right)\right)\left(\mathrm{d} g_{2}\right)\left(u_{1}, u_{2}\right) \\
& =u_{1} \cos u_{2}\left(\cos u_{2} \mathrm{~d} u_{1}-u_{1} \sin u_{2} \mathbf{d} u_{2}\right)+u_{1} \sin u_{2}\left(\sin u_{2} \mathrm{~d} u_{1}+u_{1} \cos u_{2} \mathrm{~d} u_{2}\right) \\
& =u_{1}\left(\cos ^{2} u_{2}+\sin ^{2} u_{2}\right), \mathbf{d} u=u_{1} \mathbf{d} u_{1} .
\end{aligned}
$$

Case $k>1$: if $\mathbf{g}: U \subseteq \subseteq_{O} \mathbb{R}^{m} \rightarrow V \subseteq_{O} \mathbb{R}^{n}$ is smooth and $\omega=\mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}} \in \Omega^{k}(V)$, we define the pullback

$$
\mathbf{g}^{*}(\omega)=\mathbf{g}^{*}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)=\mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}} \in \Omega^{k}(U)
$$

If

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} P_{i_{1}, \cdots, i_{k}} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}} \in \Omega^{k}(V)
$$

then the pullback is
$\mathbf{g}^{*}(\omega)=\sum_{i_{1}<\cdots<i_{k}} \mathbf{g}^{*}\left(P_{i_{1}, \cdots, i_{k}}\right) \mathbf{g}^{*}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)=\sum_{i_{1}<\cdots<i_{k}}\left(P_{i_{1}, \cdots, i_{k}} \circ \mathbf{g}\right) \mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}} \in \Omega^{k}(U)$.

Example: let $\mathbf{g}: U=\mathbb{R}^{2} \rightarrow V=\mathbb{R}^{2}$ be defined by

$$
\mathbf{g}(\mathbf{u})=\left(g_{1}\left(u_{1}, u_{2}\right), g_{2}\left(u_{1}, u_{2}\right)\right)=\left(u_{1} \cos u_{2}, u_{1} \sin u_{2}\right)
$$

and $\omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \in \Omega^{2}(V)$. Then

$$
\left(\mathrm{d} g_{1}\right)\left(u_{1}, u_{2}\right)=\cos u_{2} \mathrm{~d} u_{1}-u_{1} \sin u_{2} \mathrm{~d} u_{2}, \quad\left(\mathrm{~d} g_{2}\right)\left(u_{1}, u_{2}\right)=\sin u_{2} \mathrm{~d} u_{1}+u_{1} \cos u_{2} \mathrm{~d} u_{2}
$$

and the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{2}(U)$ is given by

$$
\begin{aligned}
\mathbf{g}^{*}(\omega)\left(u_{1}, u_{2}\right) & =\mathbf{g}^{*}\left(\mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}\right)\left(u_{1}, u_{2}\right)=\left(\mathrm{d} g_{1}\right)\left(u_{1}, u_{2}\right) \wedge\left(\mathrm{d} g_{2}\right)\left(u_{1}, u_{2}\right) \\
& =\left(\cos u_{2} \mathrm{~d} u_{1}-u_{1} \sin u_{2} \mathrm{~d} u_{2}\right) \wedge\left(\sin u_{2} \mathrm{~d} u_{1}+u_{1} \cos u_{2} \mathrm{~d} u_{2}\right) \\
& =u_{1} \cos ^{2} u_{2} \mathrm{~d} u_{1} \wedge \mathrm{~d} u_{2}-u_{1} \sin ^{2} u_{2} \mathrm{~d} u_{2} \wedge \mathrm{~d} u_{1} \\
& =u_{1}\left(\cos ^{2} u_{2}+\sin ^{2} u_{2}\right) \mathrm{d} u_{1} \wedge \mathrm{~d} u_{2}=u_{1} \mathrm{~d} u_{1} \wedge \mathrm{~d} u_{2}
\end{aligned}
$$

While none of the computations are particularly difficult to perform (although they can be tedious), there is a simpler way to express pullbacks, as the following discussion illustrates.

If $\mathbf{g}: U=\mathbb{R}^{2} \rightarrow V=\mathbb{R}^{2}$ is smooth, then the pullback of $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \in \Omega^{2}(V)$ by \mathbf{g} is

$$
\begin{aligned}
\mathbf{g}^{*}\left(\mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}\right) & =\mathrm{d} g_{1} \wedge \mathrm{~d} g_{2}=\left(\frac{\partial g_{1}}{\partial u_{1}} \mathrm{~d} u_{1}+\frac{\partial g_{1}}{\partial u_{2}} \mathrm{~d} u_{2}\right) \wedge\left(\frac{\partial g_{2}}{\partial u_{1}} \mathrm{~d} u_{1}+\frac{\partial g_{2}}{\partial u_{2}} \mathrm{~d} u_{2}\right) \\
& =\left(\frac{\partial g_{1}}{\partial u_{1}} \frac{\partial g_{2}}{\partial u_{2}}-\frac{\partial g_{1}}{\partial u_{2}} \frac{\partial g_{2}}{\partial u_{1}}\right) \mathrm{d} u_{1} \wedge \mathrm{~d} u_{2}=\operatorname{det}(D \mathbf{g}) \mathrm{d} u_{1} \wedge \mathrm{~d} u_{2} \in \Omega^{2}(U)
\end{aligned}
$$

where $D \mathbf{g}$ is the Jacobian matrix of \mathbf{g} (see Section 21.7).
Generally, if $\mathbf{g}: U \subseteq \subseteq_{O} \mathbb{R}^{m} \rightarrow V \subseteq \subseteq_{O} \mathbb{R}^{m}$ is smooth, then the pullback of $\mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}} \in \Omega^{k}(V)$ by \mathbf{g} is

$$
\begin{aligned}
\mathbf{g}^{*}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right) & =\mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}}=\left(\sum_{j=1}^{m} \frac{\partial g_{i_{1}}}{\partial u_{j}} \mathrm{~d} u_{j}\right) \wedge \cdots \wedge\left(\sum_{j=1}^{m} \frac{\partial g_{i_{k}}}{\partial u_{j}} \mathrm{~d} u_{j}\right) \\
& =\sum_{j_{1}<\cdots<j_{k}} \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial g_{i_{1}}}{\partial u_{j_{1}}} & \cdots & \frac{\partial g_{i_{1}}}{\partial u_{j_{k}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{i_{k}}}{\partial u_{j_{1}}} & \cdots & \frac{\partial g_{i_{k}}}{\partial u_{j_{k}}}
\end{array}\right) \mathrm{d} u_{j_{1}} \wedge \cdots \wedge \mathrm{~d} u_{j_{k}} \in \Omega^{k}(U) .
\end{aligned}
$$

If $U, V \subseteq \subseteq_{0} \mathbb{R}^{n}, g: U \rightarrow V$ smooth, $f \in \mathcal{C}^{\infty}(V, \mathbb{R})$, and $\omega=f \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \in \Omega^{n}(V)$, then the pullback of ω by \mathbf{g} is

$$
\mathbf{g}^{*}(\omega)=(f \circ \mathbf{g}) \mathrm{d} g_{1} \wedge \cdots \wedge \mathrm{~d} g_{n}=\mathbf{g}^{*}(f) \operatorname{det}(D \mathbf{g}) \mathrm{d} u_{1} \wedge \cdots \wedge \mathrm{~d} u_{n} \in \Omega^{n}(U)
$$

The pullback commutes with the exterior derivative for 0 -differential forms.

Lemma 183

With the usual assumptions of this section, if $f \in \Omega^{0}(V)$, then $d\left(\mathbf{g}^{*}(f)\right)=\mathbf{g}^{*}(d f)$.
Proof: we use the definition and see that

$$
\begin{aligned}
\mathrm{d}\left(\mathbf{g}^{*}(f)\right) & =\mathrm{d}(f \circ \mathbf{g})=\sum_{j=1}^{m} \frac{\partial(f \circ \mathbf{g})}{\partial u_{j}} \mathrm{~d} u_{j}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \circ \mathbf{g}\right) \frac{\partial g_{i}}{\partial u_{j}}\right) \mathrm{d} u_{j} \\
& =\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \circ \mathbf{g}\right)\left(\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial u_{j}} \mathrm{~d} u_{j}\right)=\mathbf{g}^{*}\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}\right)=\mathbf{g}^{*}(\mathrm{~d} f),
\end{aligned}
$$

which completes the proof.

But this result does not apply solely to $\Omega^{0}(V)$.

Proposition 184

Let $\mathbf{g}: U \subseteq \subseteq_{O} \mathbb{R}^{m} \rightarrow V \subseteq_{O} \mathbb{R}^{m}$ be smooth. If $\omega \in \Omega^{0}(V)$, then $d\left(\mathbf{g}^{*}(\omega)\right)=\mathbf{g}^{*}(d \omega)$.
Proof: the case $k=0$ was proven in Lemma 183. For $k>0$, since $\mathrm{d}\left(\omega_{1}+\omega_{2}\right)=\mathrm{d} \omega_{1}+\mathrm{d} \omega_{2}$ and

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}}, \quad f_{i_{1}, \ldots, i_{k}} \in \Omega^{0}(V),
$$

it is sufficient to show that

$$
\mathbf{g}^{*}\left(\mathrm{~d}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)\right)=\mathrm{d}\left(\mathbf{g}^{*}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)\right) .
$$

But the left side of this equation reduces to

$$
\begin{aligned}
\mathbf{g}^{*}\left(\mathrm{~d}\left(f \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)\right) & =\mathbf{g}^{*}(\mathrm{~d} f) \wedge \mathbf{g}^{*}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right) \\
\text { lemma } 183 & =\mathrm{d}\left(\mathbf{g}^{*}(f)\right) \wedge \mathbf{g}^{*}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right) \\
& =\mathrm{d}\left(\mathbf{g}^{*}(f)\right) \wedge\left(\mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}}\right)
\end{aligned}
$$

Thanks to repeated use of Theorem 177, the right side, on the other hand, reduces to

$$
\begin{aligned}
\mathrm{d}\left(f \circ \mathbf{g} \mathrm{~d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}}\right) & =\mathrm{d}(f \circ \mathbf{g}) \wedge \mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}}+(-1)^{0}(f \circ \mathbf{g}) \underbrace{\mathrm{d}\left(\mathrm{~d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}}\right)}_{=0} \\
& =\mathrm{d}(f \circ \mathbf{g}) \wedge \mathrm{d} g_{i_{1}} \wedge \cdots \wedge \mathrm{~d} g_{i_{k}} .
\end{aligned}
$$

The machinery we have developed up to now may seem hopelessly formal and mechanical; its practical value comes through once we identify differential forms with vector fields.

13.5 Vector Fields

Let $U \subseteq O \mathbb{R}^{n}$. A vector field is a function $\mathbf{F}: U \rightarrow \mathbb{R}^{n}$; it is of class \mathbf{C}^{k} if $\mathbf{F} \in \mathcal{C}^{k}\left(U, \mathbb{R}^{n}\right)$. A function $f: U \rightarrow \mathbb{R}$ is called a scalar field.

Example: let $f: U \rightarrow \mathbb{R}$ be continuously differentiable and consider $\nabla f: U \rightarrow \mathbb{R}^{n}$ defined by

$$
\nabla f(\mathbf{u})=\left(\frac{\partial f(\mathbf{u})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{u})}{\partial x_{n}}\right)
$$

Then f is a scalar field and ∇f is a vector field.

We can associate to any vector field $\mathbf{F}: U \rightarrow \mathbb{R}^{n}$, defined by $\mathbf{F}(\mathbf{x})=\left(F_{1}(\mathbf{x}), \ldots, F_{n}(\mathbf{x})\right)$ a unique differential form $\omega_{\mathbf{F}} \in \Omega^{1}(U)$ defined by

$$
\omega_{\mathbf{F}}=F_{1} \mathrm{~d} x_{1}+\cdots+F_{n} \mathrm{~d} x_{n} .
$$

In particular, if $f: U \rightarrow \mathbb{R}$ is smooth, the differential form associated to ∇f is

$$
\omega_{\nabla f}=\frac{\partial f}{\partial x_{1}} \mathbf{d} x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} \mathbf{d} x_{n}=\mathrm{d} f \in \Omega^{1}(U)
$$

Theorem 185

Let $U \subseteq_{O} \mathbb{R}^{n}$ and $\mathbf{F}: U \rightarrow \mathbb{R}^{n}$ be smooth. Consider the following conditions:

1. $\mathbf{F}=\nabla f$ for some $f: U \rightarrow \mathbb{R}$ smooth;
2. $\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}$ for all i, j.

Then $1 . \Longrightarrow 2$. If U is star-shaped then, the conditions are equivalent.
Proof: if $\mathbf{F}=\nabla f$, then $\omega_{\mathbf{F}}=\omega_{\nabla f}=\mathrm{d} f \in \Omega^{1}(U)$ is exact and so condition 2 . holds according to Proposition 182.

If U is star-shaped and $\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}$ for all i, j, then $\omega_{\mathbf{F}}=F_{1} \mathrm{~d} x_{1}+\cdots+\mathrm{d} x_{n}$ is exact (again, by Theorem 182), so that

$$
\omega_{\mathbf{F}}=\mathrm{d} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}
$$

for some $f: U \rightarrow \mathbb{R} \in \Omega^{0}(U)$. By unicity of $\omega_{\mathbf{F}}$, we must have $F_{i}=\frac{\partial f}{\partial x_{i}}$ for all i, which is to say that $\mathbf{F}=\nabla f$.

When $\mathbf{F}=\nabla f$, we say that \mathbf{F} is a conservative vector field (or a gradient field) and that f is a scalar potential for \mathbf{F}.

Until the end of the chapter, we work with vector fields $\mathbf{F}: U \subseteq_{O} \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Recall that, seen as a vector field over \mathbb{R},

$$
\operatorname{dim}\left(\Lambda^{p}\left(\mathbb{R}^{n}\right)\right)=\binom{n}{p}
$$

according to Corollary 168; in that case, we have

$$
\operatorname{dim}\left(\Lambda^{1}\left(\mathbb{R}^{3}\right)\right)=\operatorname{dim}\left(\Lambda^{2}\left(\mathbb{R}^{3}\right)\right), \quad \operatorname{dim}\left(\Lambda^{0}\left(\mathbb{R}^{3}\right)\right)=\operatorname{dim}\left(\Lambda^{3}\left(\mathbb{R}^{3}\right)\right)=1
$$

Consider the vector space isomorphism $\Phi_{1}: \mathbb{R}^{3} \rightarrow \Lambda^{1}\left(\mathbb{R}^{3}\right)$ defined by

$$
\Phi_{1}(\mathbf{a})=\Phi_{1}\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \mathrm{~d} x_{1}+a_{2} \mathrm{~d} x_{2}+a_{3} \mathrm{~d} x_{3} .
$$

If we "multiply" two vectors in \mathbb{R}^{3}, we should get the same "result" as if we "multiply" two 1 -forms over \mathbb{R}^{3}; the problem is that we while the wedge product can play the role of a multiplication, the wedge product of two 1 -forms over \mathbb{R}^{3} is a 2 -form over \mathbb{R}^{3}.

Over other spaces this would be a deal-breaker, but over \mathbb{R}^{3} the problem evaporates once we introduce a second vector space isomorphism $\Phi_{2}: \mathbb{R}^{3} \rightarrow \Lambda^{2}\left(\mathbb{R}^{3}\right)$, defined by

$$
\Phi_{2}(\mathbf{a})=\Phi_{2}\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}+a_{2} \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{1}+a_{3} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2},
$$

and define the cross-product over \mathbb{R}^{3} by

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right) \\
& \simeq \Phi_{1}\left(a_{1}, a_{2}, a_{3}\right) \wedge \Phi_{1}\left(b_{1}, b_{2}, b_{3}\right) \\
& =\left(a_{1} \mathrm{~d} x_{1}+a_{2} \mathrm{~d} x_{2}+a_{3} \mathrm{~d} x_{3}\right) \wedge\left(b_{1} \mathrm{~d} x_{1}+b_{2} \mathrm{~d} x_{2}+b_{3} \mathrm{~d} x_{3}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{3}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \\
& \simeq \Phi_{2}^{-1}\left(\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{3}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

which should go some way towards elucidating the mystery of where the apparently random definition of the cross-product come from when it is first introduced in linear algebra courses.

In applications, it is typical to use $x=x_{1}, y=x_{2}$, and $z=x_{3}$. In that case, we could also write the vector field $\mathbf{F}: U \rightarrow \mathbb{R}^{3}$ as

$$
\mathbf{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

the composition

$$
\Phi_{1} \circ \mathbf{F}=\omega_{\mathbf{F}}=P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z \in \Omega^{1}(U)
$$

is the corresponding differential 1 -form over U.

Then, we have:

$$
\begin{aligned}
\mathrm{d} \omega_{\mathbf{F}}= & \mathrm{d} P \wedge \mathrm{~d} x+\mathrm{d} Q \wedge \mathrm{~d} y+\mathrm{d} R \wedge \mathrm{~d} z \\
= & \left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y+\frac{\partial P}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x+\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y+\frac{\partial Q}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y \\
& +\left(\frac{\partial R}{\partial x} \mathrm{~d} x+\frac{\partial R}{\partial y} \mathrm{~d} y+\frac{\partial R}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} z \\
= & \left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathrm{d} y \wedge \mathrm{~d} z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathrm{d} z \wedge \mathrm{~d} x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y \in \Omega^{2}(U) .
\end{aligned}
$$

The vector field $\Phi_{2}^{-1}\left(\mathrm{~d} \omega_{\mathbf{F}}\right)=\Phi_{2}^{-1}\left(\Phi_{1}(\mathbf{F})\right)$ associated with $\mathrm{d} \omega_{\mathbf{F}}$ is the curl of \mathbf{F} and is denoted by $\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}: U \rightarrow \mathbb{R}^{3}$ and

$$
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

Theorem 186

Let $U=\subseteq_{O} \mathbb{R}^{3}$ and $\mathbf{F}: U \rightarrow \mathbb{R}^{3}$ be smooth. Consider the following conditions:

1. $\mathbf{F}=\nabla f$ for some smooth $f: U \rightarrow \mathbb{R}$;
2. $\nabla \times \mathbf{F}=\mathbf{0}$.

Then $1 . \Longrightarrow 2$. If U is star-shaped then, the conditions are equivalent.
Proof: direct application of Theorem 185.

If instead we consider the composition

$$
\Phi_{2} \circ \mathbf{F}=\varphi_{\mathbf{F}}=P \mathrm{~d} y \wedge \mathrm{~d} x+Q \mathrm{~d} z \wedge \mathrm{~d} x+R \mathrm{~d} x \wedge \mathrm{~d} z \in \Omega^{2}(U)
$$

then we have

$$
\begin{aligned}
\mathrm{d} \varphi_{\mathbf{F}}= & \mathrm{d} P \wedge \mathrm{~d} y \wedge \mathrm{~d} z+\mathrm{d} Q \wedge \mathrm{~d} z \wedge \mathrm{~d} x+\mathrm{d} R \wedge \mathrm{~d} x \wedge \mathrm{~d} y \\
= & \left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y+\frac{\partial P}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y \wedge \mathrm{~d} z+\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y+\frac{\partial Q}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} z \wedge \mathrm{~d} x \\
& +\left(\frac{\partial R}{\partial x} \mathrm{~d} x+\frac{\partial R}{\partial y} \mathrm{~d} y+\frac{\partial R}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x \wedge \mathrm{~d} y \\
= & \frac{\partial P}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z+\frac{\partial Q}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} z \wedge \mathrm{~d} x+\frac{\partial R}{\partial z} \mathrm{~d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y \\
= & \left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \in \Omega^{3}(U) .
\end{aligned}
$$

The scalar field associated with $\mathbf{d} \varphi_{\mathbf{F}}$ is the divergence of \mathbf{F} and is denoted by $\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}$: $U \rightarrow \mathbb{R}$ and

$$
\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

As a consequence of Poincaré's lemma, we obtain the following result.
Theorem 187
Let $U=\subseteq_{O} \mathbb{R}^{3}$ and $\mathbf{F}: U \rightarrow \mathbb{R}^{3}$ be smooth. If there is a vector field $\mathbf{G}: U \rightarrow \mathbb{R}^{3}$ such that $\operatorname{curl}(\mathbf{G})=\nabla \times \mathbf{G}=\mathbf{F}$, then $\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=0$. If U is star-shaped and $\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=0$, then there is $a \mathbf{G}: U \rightarrow \mathbb{R}^{3}$ such that $\operatorname{curl}(\mathbf{G})=\nabla \times \mathbf{G}=\mathbf{F}$.

Proof: let $\omega_{\mathbf{G}} \in \Omega^{1}(U)$ and $\varphi_{\mathbf{F}} \in \Omega^{2}(U)$ be the associated differential forms. If $\operatorname{curl}(\mathbf{G})=\mathbf{F}$, then $\mathrm{d} \omega_{\mathbf{G}}=\varphi_{\mathbf{F}}$, so that $\mathrm{d} \varphi_{\mathbf{F}}=\mathrm{d}\left(\mathrm{d} \omega_{\mathbf{G}}\right)=0$, and thus $\operatorname{div}(\mathbf{F})=0$.

If U is star-shaped and $\operatorname{div}(\mathbf{F})=0$, then $\mathrm{d} \varphi_{\mathbf{F}}=0$, and so $\varphi_{\mathbf{F}}$ is closed. According to Poincaré's lemma, $\varphi_{\mathbf{F}}$ is exact, which is to say that $\exists \omega \in \Omega^{1}(U)$ such that $\mathrm{d} \omega=\varphi_{\mathbf{F}}$. If \mathbf{G} is the vector field corresponding to ω, then we have $\operatorname{curl}(\mathbf{G})=\mathbf{F}$.

When $\mathbf{F}=\operatorname{curl}(\mathbf{G})$ for some $\mathbf{G}: U \rightarrow G R^{3}$, the vector field \mathbf{G} is a vector potential for \mathbf{F}. Such a vector potential is not unique; indeed if $f: U \rightarrow \mathbb{R}$ is smooth, then $\operatorname{curl}(\mathbf{G}+\nabla f)=\operatorname{curl}(\mathbf{G})$, as we can see below: if

$$
\mathbf{G} \leadsto \omega_{\mathbf{G}} \in \Omega^{1}(U), \quad \operatorname{curl}(\mathbf{G}) \nVdash \mathrm{d} \omega_{\mathbf{G}} \in \Omega^{2}(U), \quad \nabla f \leadsto \mathrm{~d} f \in \Omega^{1}(U),
$$

then

$$
\operatorname{curl}(\mathbf{G}+\nabla f) \longleftrightarrow \mathrm{d}\left(\omega_{\mathbf{G}}+\mathrm{d} f\right)=\mathrm{d} \omega_{\mathbf{G}} \longleftrightarrow \operatorname{curl}(\mathbf{G}) .
$$

In short, differential forms provide a tool to work with vector fields, which are the objects of interests in applications; the correspondence is diagrammed below.

13.6 Solved Problems

1. Are the following 1 -forms exact?
a) $\omega=2 x y \mathrm{~d} x+x^{2} \mathrm{~d} y$
b) $\omega=\left(x^{2}+y z\right) \mathrm{d} x+(x z+\cos y) \mathrm{d} y+(z+x y) \mathrm{d} z$
c) $\omega=y \mathrm{~d} x+z \mathrm{~d} y+x \mathrm{~d} z$
d) $\omega=\frac{x}{x^{2}+y^{2}} \mathbf{d} x+\frac{y}{x^{2}+y^{2}} \mathbf{d} y$

Solution:

a) We have $\omega=2 x y \mathrm{~d} x+x^{2} \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$, where \mathbb{R}^{2} is star-shaped. Since

$$
\mathrm{d} \omega=2[(\mathrm{~d} x) y+x(\mathrm{~d} y)] \wedge \mathrm{d} x+(2 x \mathrm{~d} x) \wedge \mathrm{d} y=2 x[\mathrm{~d} y \wedge \mathrm{~d} x+\mathrm{d} x \wedge \mathrm{~d} y]=0
$$

ω is closed. According to Poincaré's lemma, ω is also exact. In fact, $\eta=x^{2} y$ is an anti-derivative of ω (i.e. $\mathrm{d} \eta=\omega$).
b) We have $\omega=\left(x^{2}+y z\right) \mathrm{d} x+(x z+\cos y) \mathrm{d} y+(z+x y) \mathrm{d} z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$, where \mathbb{R}^{3} is star-shaped. Since
$\mathrm{d} \omega=z \mathrm{~d} y \wedge \mathrm{~d} x+y \mathrm{~d} z \wedge \mathrm{~d} x+x \mathrm{~d} z \wedge \mathrm{~d} y+z \mathrm{~d} x \wedge \mathrm{~d} y+x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} x \wedge \mathrm{~d} z=0$, ω is closed. According to Poincaré's lemma, ω is also exact. In fact,

$$
\eta=\frac{x^{3}}{3}+x y z+\sin y+\frac{z^{2}}{2}
$$

is an anti-derivative of ω (i.e. $\mathrm{d} \eta=\omega$).
c) Since $\mathrm{d} \omega=\mathrm{d} y \wedge \mathrm{~d} x+\mathrm{d} z \wedge \mathrm{~d} y+\mathrm{d} x \wedge \mathrm{~d} z \neq 0, \omega$ is not closed. Consequently, ω is not exact (remember, this has nothing to do with Poincarés lemma).
d) We have $\omega=\frac{x}{x^{2}+y^{2}} \mathrm{~d} x+\frac{y}{x^{2}+y^{2}} \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}-\{(0,0)\}\right)$. Note that $U=\mathbb{R}^{2}-$ $\{(0,0)\}$ is NOT star-shaped, and so we cannot use Poincaré's lemma to determine whether ω is exact or not. If ω is not closed, then it will necessarily not be exact, by contraposition. However,

$$
\mathrm{d} \omega=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} y \wedge \mathrm{~d} x-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} x \wedge \mathrm{~d} y=0
$$

and so ω is closed and we cannot use this approach. We are left with no other option than to try to find an anti-derivative. The brute force method yields $\eta=$ $\ln \left(\sqrt{x^{2}+y^{2}}\right)$ as an anti-derivative of ω (i.e. $\mathrm{d} \eta=\omega$).
2. Are the following 2 -forms exact?
a) $\omega=\mathrm{d} x \wedge \mathrm{~d} y$
b) $\omega=z \mathrm{~d} x \wedge \mathrm{~d} y+y \mathrm{~d} x \wedge \mathrm{~d} z+z \mathrm{~d} y \wedge \mathrm{~d} z$

Solution:

a) We have $\omega=\mathrm{d} x \wedge \mathrm{~d} y \in \Omega^{2}\left(\mathbb{R}^{2}\right)$, where \mathbb{R}^{2} is star-shaped. Since

$$
\mathrm{d} \omega=d(\mathrm{~d} x \wedge \mathrm{~d} y)=d^{2} x \wedge \mathrm{~d} y-\mathrm{d} x \wedge \mathrm{~d} y^{2}=0-0=0
$$

ω is closed. According to Poincaré's lemma, ω is also exact.
b) We have

$$
\omega=z \mathrm{~d} x \wedge \mathrm{~d} y+y \mathrm{~d} x \wedge \mathrm{~d} z+z \mathrm{~d} y \wedge \mathrm{~d} z \in \Omega^{2}\left(\mathbb{R}^{3}\right)
$$

where \mathbb{R}^{3} is star-shaped. Since

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y+\mathrm{d} y \wedge \mathrm{~d} x \wedge \mathrm{~d} z+\mathrm{d} z \wedge \mathrm{~d} y \wedge \mathrm{~d} z \\
& =\mathrm{d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y-\mathrm{d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y+0=0
\end{aligned}
$$

ω is closed. According to Poincaré's lemma, ω is also exact. In fact, $\eta=x z \mathrm{~d} y+$ $x y \mathrm{~d} z$ is an anti-derivative of ω (i.e. $\mathrm{d} \eta=\omega$).

13.7 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.
2. Prove results $172,173,174,175,176,180$ (try, at least), and 184.
3. If $f \in \Omega^{0}(U)$ and $\omega \in \Omega^{p}(U)$, show that $f \wedge \omega=f \omega$.
4. Show that if ω and φ are two closed differential forms, then so is $\omega \wedge \varphi$. Show that if ω is also exact, then $\omega \wedge \varphi$ is exact.
5. What is the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{1}(\mathbb{R})$ if $\mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is defined by $\mathbf{g}(v)=(3 \cos 2 v, 3 \sin 2 v)$ and $\omega=-y \mathrm{~d} x+x \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$? Simplify your answer as much as possible.
6. What is the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{1}\left(\mathbb{R}^{2}\right)$ if $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by $\mathbf{g}(u, v)=(\cos u, \sin u, v)$ and $\omega=z \mathrm{~d} x+x \mathrm{~d} y+y \mathrm{~d} z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$? Simplify your answer as much as possible.
7. What is the pullback $\mathbf{g}^{*}(\omega) \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ if $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by $\mathbf{g}(u, v)=(\cos u, \sin u, v)$ and $\omega=z \mathrm{~d} x \wedge \mathrm{~d} y+y \mathrm{~d} z \wedge \mathrm{~d} x \in \Omega^{2}\left(\mathbb{R}^{3}\right)$? Simplify your answer as much as possible.
8. For each of the three previous exercises, compute $\mathbf{g}^{*}(\mathbf{d} \omega)$ and $d\left(\mathbf{g}^{*} \omega\right)$.
9. Let $\mathbf{g}:(0, \infty) \times(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ the map defining the spherical coordinates in \mathbb{R}^{3}. Compute $g^{*}(\mathbf{d} x \wedge \mathbf{d} y \wedge \mathbf{d} z)$.
10. Let $\mathbf{F}, \mathbf{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be smooth mappings and \cdot and \times represent the inner product and cross product in \mathbb{R}^{3}, respectively. Show that
a) $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div}(\mathbf{F})+\operatorname{div}(\mathbf{G})$
b) $\operatorname{div}(f \mathbf{F})=f \operatorname{div}(\mathbf{F})+\mathbf{F} \cdot \nabla f$
c) $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
d) $\operatorname{curl}(f \mathbf{F})=f \operatorname{curl}(\mathbf{F})+(\nabla f) \times \mathbf{F}$
e) $\operatorname{div}(f \nabla f)=|\nabla f|^{2}$
11. Let $U \subseteq o \mathbb{R}^{n}$ and $p \geq 0$. Show that $\Omega^{p}(U)$ is a vector space over \mathbb{R}.
12. Let $U \subseteq_{O} \mathbb{R}^{n}, p \geq 0$ and $\omega_{1}, \omega_{2} \in \Omega^{p}(U)$. Show that $d\left(\omega_{1}+\omega_{2}\right)=\mathrm{d} \omega_{1}+\mathrm{d} \omega_{2}$.

[^0]: ${ }^{1}$ These restrictions on P, Q, R make $\Omega^{1}(U)$ a $\mathcal{C}^{0}(U, \mathbb{R})-$ module (respectively, $\mathcal{C}^{1}(U, \mathbb{R})$ or $\mathcal{C}^{\infty}(U, \mathbb{R})$).

[^1]: ${ }^{2}$ It is also sometimes denoted by $\omega_{1} \omega_{2}$.

[^2]: ${ }^{3}$ Hint: look at the definition of $F(x)$ (in the case $n=1$) and $F(\mathbf{x})$ (in the case $n>1$).

[^3]: ${ }^{4}$ We will encounter such functions when we discuss vector fields in Section 13.5.

