Chapter 13
Differential Forms

In this chapter, we introduce the notion of differential p—forms over R",
which are derivatives of alternating linear p—forms over R™. This new no-
tion is a generalization of the differential of a function and admits a num-
ber of applications in mathematical physics (Grand Unified Theories, Yang-
Mills theory, superstring theory, etc.)

13.1 Differential p—Forms

We start by discussing the situation for n = 3. Let U Cp R3. A differential 1—form over U
is a function U — (IR3)*; the set of all such differential forms is denoted Q' (U).
If {e;, 5, €3} is the canonical basis of R?, then for any w € R* we have

W = wi€; + weey + wses.
We denote the dual basis of (R*)* by { dz, dy, dz}, which is to say that

dr,dy, dz:R* = R and dz(w)=w;, dy(w) = w,, dz(w)=ws; forallw e R

Then, if o € (R3)*, there are unique P, Q, R € R such that

a=Pdr+ Qdy + Rdz.
In general, if w € QY(U), 3P, Q, R : U — R such that

w(u) = P(u)dz + Q(u)dy + R(u)dz, forallue U.

Let f : U — R be differentiable on U; the differential of f is df € Q!(U), where

df(u) = g—i(u) dx + g—‘g};(u) dy + %(u) dz, forallue U.
Letw € QY(U). If the constituents P,Q, R : U — R are continuous on U (respectively C' or

C*), then w is continuous U (respectively C* or C*).!

'These restrictions on P, Q, R make Q' (U) a C°(U, R)— module (respectively, C* (U, R) or C*° (U, R)).
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13.1. DIFFERENTIAL P—FORMS

Proposition 172
QY (U) is an infinite-dimensional vector space over R.

Proof: left as an exercise. [ |

IfU Co R, f : U — Ris C° (respectively C! or C*) and w is a C° (respectively C! or C®)
differential 1—form over U, then fw € Q!(U), where

fw() = f(u)P(u)dz + f(u)Q(u)dy + f(u)R(u)dz, VuelU.

A differential p—form w over U is amap w : U — AP(R"); the set of all such differential
forms is denoted by QP (U). If p = 0, Q°(U) = C*(U,R), where k € {0, 1, 00}; Corollary 168
shows that Q?(U) = {0} when p > n.

Proposition 173
QOP(U) is an infinite-dimensional vector space over R and a C*(U)—module (ie., if
f € CHU,R) andw € QP(U), then fw € QP(U) fork € {0,1, 0}

Proof: left as an exercise. [ |

Letw; € QP (U) and wy € QF2(U). By definition, w;(u) € APi(U) forallu € U, fori = 1,2;
according to Theorem 170, we must have

w1 (U) A wg(u) € Ap1+p2(U)7
and so the function w; A wy : U — AP**P2(U) defined by
(w1 Aws)(u) = wi(u) Aws(u), forallueU

is a differential (p; + p2)—form over U, which is to say that w; A we € QP**72(U). This differ-
ential form is called the we dge (or exterior) product of w; and w,.?

Example: if n = 3, we have

I
P
)
e
g
=
D
=
=
V
@0
U

%It is also sometimes denoted by w;ws.
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CHAPTER 13. DIFFERENTIAL FORMS

Theorem 174

1. Fori=1,2 letw;,w; € QP (U)and f : U — R. Then:
" (W W) Awy = wy Aws + Wi Aws;
" wi A (wo + wh) = wi Aws + wy Aw), and
" (fwi) Awe = f(wr Aws) = wi A (fwa).

2. Ifwy, ... ,w, € QYU), then
* when w; = wj for somei # j, we have w; N\ -+ - A wy = 0;
» foro € Sy, wo) A ANwg(g) = €(0)wi A+ A wg.

3. Fori=1,2,3 letw; € Q" (U). Then:
" wp A (we Aws) = (w1 A ws) Aws, and

" Wy Awy = (=1)PP2wy A wy.

Proof: left as an exercise.

A few examples will help illustrate the main principles.
Examples: letn = 3, f : U — R, and set
wy =dry =e], wr=dry=e; wz=drz=e]e€ QLU).
» dzy Adry = (—1)" day A dag;
= dzy Aday Adas = des Adey Adeg = —day Adas A das;
= dr; Adxy = dag Adzy = das A des =0, and

_ 2.1
1 = (- .
» (fdxy Adag) Adag = (—1)*" das A (f dzy A dag)

This section’s final result will set the stage for the rest of the chapter and the next one.

Theorem 175
Letw € QP(U). We can uniquely write

W = ZP7;17"'7’£P dZUil VANERIVAY dl'ip,
where Py, .. ;. - U — R fori; < - <,

Proof: left as an exercise.
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13.2. EXTERIOR DERIVATIVE

13.2 Exterior Derivative

In what follows, we fix £ = oo so that QP(U) represents the vector space of C*° (smooth) dif-
ferential p—forms over U Cp R™.

The exterior derivative (or differential) of w € (2’(U) is defined recursively.

1. If f € Q%U) (thatis, f : U — R is smooth), then its exterior derivative is

df—zgg dz; € QYU).

=1

2. fw=>" Pdx; € Q(U), P, € C>*(U,R) for 1 <i < n, then its exterior derivative is

dw:idﬂmxi:zﬂ:<28
i=1 \j=1

=1

> ANdz; = Z (GP] - api) dz; A dz; € Q*(U).

or; 0x;
1<J ¢ J

p. In general, if
Z Pil,---,ip dl’il VANRREIVAY dl'ip € Qp(U),

i1 < <ip

then its exterior derivative is

Z dPil,m,ip VAN d(L’z‘l VANRRIVAY dZEip c Qp+1(U).

i1 <<

As we shall see after the next examples, the exterior derivative behaves as a regular deriva-
tive with respect to the sum of differential forms and to the product of functions, but there is
a twist for a general product of differential forms.

Examples: throughout, let f, g, h € C*°(R", R) for an appropriate n.

1. InR?, letw = fdz + gdy € Q(R?). Then

do=df Ade +dgAdy = (gdx—%gdy)/\dx—l—(%dx—kﬁdy) A dy

0 0 Jy
of of dyg dyg
8xd /\dm—i—a—d /\dx—l—a—d /\dy—ira—dy/\dy
_of g9 %9 99 o (99 91 2(R2
=5 -0 Dy dz A dy 8xdx/\dy+8y O_(ﬁx 3y dz A dy € Q°(R?).
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CHAPTER 13. DIFFERENTIAL FORMS

2. InR3 letw = fdx + gdy + hdz € Q(R?). Then

dv=df Ade +dg Ady + dh Adz

0 0 0 0
Oh Oh Oh

= (8_(1 +(9_yd —i—a—dz)/\dz

dg Of af oh oh  0Og 9 /133
— (Y9 (Y Y e, O2(R3).
<8x 8@/) dz A dy (82 8x> dr A dz (ay 8,2) dy Adz € Q(R?)

(afd —I—afdy+—fdz)Adx+(ggda:+a—d +a—dz)/\dy—|—

3. nR3 letw = fdr Ady + gdr Adz + hdy A dz € Q*(R3). Then

dw =df ANdz Ady +dg ANdx Adz +dh Ady Adz

of of of dg dg dg
(8 dx +8 dy +8 dz)AdxAdy+<axdx+a dy +a dz | Adx Adz+
oh oh oh
gfdz/\dx/\dy+g—dy/\dm/\dzjtgda:/\dy/\dz
of 0g Oh 33
== -= dzx Ady Adz € Q°(R O
<82 8y+8x) Ady A dz e DRY).
Theorem 176

Let wy,wy € QP(U). Then d(wy + wy) = dwy + dws.

Proof: left as an exercise. [ |

Lemma 177
Iff,g € Q°(R"), thend(fg) = (df)g + f(dg).

Proof: the product fg € Q°(R") is itself a function R™ — R. By definition,

d(fg) = %dng (gf )

:< o >g+f<zgfdwz):(df)g+f(dg)- .
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13.2. EXTERIOR DERIVATIVE

Lemma 177 is a special case (with p = 0) of the more general rule for the derivative of the
product of differential forms.

Theorem 178
Letw € QP(U),w' € QUU). Thend(w A W') = dw Aw' + (—1)Pw A dw'.

Proof: if {iy,...,4} C {1,...,n} (in increasing order) and f € C*>(U,R),
then
d(fdxy A---Adz;,) =df Adz, A--- Aday,.

Since d(w; + wy) = dw; + dws, we only need to verify the conclusion for

w= fdry N ANdwg,, i <<
w'=gdz; A---ANdzj, G1 << Jg

Then
dwAw) = d(fdz;, A--- Ada, Agda;, A--- Adz;,)
(fgdxi, A~ ANda;, Aday, A+ Adaj,)
(

thm 174.1 | =
d(fg) Adx, A--- ANdxy, Adxj, A--- Aday,

lemma 177] = [(df)g + f(dg)] Adzsy A--- Aday, Aday, A--- Aday,
= (df)g Adxy A--- Ada, Adxy, A--- Aday,

+ f(dg)dx;, A--- Adwy, Adxj A--- Aday,
=df ANdx;, A Adx, Agdxy, A Aday,

Q. o

v '
=dw =w’

+ (=1)? fdwy A--- Ada, Adg Adxj, A--- Aday,

Ve Vv
—w =dw’

=dw AW + (—1)’w A dw'. |

We illustrate this in the case wherew = Y7 | f;dz; € Q(R") andw’ = h € Q°(R"). Then

wAwW =Y fihdr; and dwAw)=d (Z fih dx,) = d(fihdz;) =) d(fih) Adz;
=1 1=1 =1 =1

Zn:[(dﬁ)h + fi(dh)] Adz; =Y (dfi Adai)h + z": fidh A dw;
=1 =1

=1

:dw/\w'+2f¢(—dxi/\dh):dw/\w/—w/\dw/
i=1

=dwAw + (-D'wAd.
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CHAPTER 13. DIFFERENTIAL FORMS

The next result showcases a crucial property of exterior derivatives.

Theorem 179
Letw € QP(U). Then d(dw) = 0.

Proof: if f € C®*(U,R) = Q°(U), thendf € Q}(U) and

(Z Oz ) Z ‘ (3%) Z (i dr:dx,; dxi) A ;.

When ¢ = j, dz; A dz; = 0; when i > j,dx; A dz; = —dz; A dz;, so that

0% f
2 . . =
d*f = Z ( Srow, B, 8%) dz; Adz; = 0.

=0 since fEC°° (UR)

Furthermore,

Since d(w + w’) = dw + du’, it is sufficient to show that d*(f da;, A -+ Adz;,) =0,
where {i; < ... <i,} C{l,...,n}and f is as above. As

d(d(fda;, A---Adwy,)) =d(df Ada;, A--- Ada,)

:0/\d:v21/\/\dxlp—df/\0:() [ |

A differential form w € QF(U) is closed if dw = 0.

Example: letn = 1 and w € Q'(R!). Then dw € Q*(RY); since Q*(R') = {0}, wis
automatically closed. O

13.3 Antiderivative

Letp > 1, U Cp R*and w € QF(U); wis exact if Ip € QP~1(U) such that dy = w. The
differential form 7 is an antiderivative of w. If w is exact, then dw = d*; = 0 and so every
exact form is also closed.
Ifn =1,let f € Q°(R). Then Q'(R) = {gdz | g € Q°(R)}. If F : R — R is such that
F'(z) = f(x)forallz € R, then F € Q°(R) and
dF = z—F dr = fdz.

Such an F exists by Theorem 60 since f is continuous on R. Hence, every w € Q!(R) is exact.
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Examples

1. Letw = Pi(z,y)dx + Py(z,y) dy = ydz — zdy € Q' (R?). Since

oP, 0P,
do=(=2—-="2)deAady= (=1 —=1)dx Ady = —2dx A dy # 0;
ox oy
since w is not closed, it cannot be exact. OJ

2. Letw = f(x,y)dz + g(x,y) dy = (322 + 22y + 9°) do + (22 + 22y + 3y?) dy € QH(R?).

Since
dw=df Adz +dgAdy
_(9f of 9g dg
—(axdx—l—aydy)/\da:+<axdx—|—aydy A dy
of 9y g 0Of
= —dyAd —dzAdy=|—==— =) dxAdy.
dy Y w+8x ey <8x oy ey
But o/
g— —_ -
ax—Za:—l—Zy—ay

in this specific case, so dw = 0, which means that w is closed.

We can show that this particular closed form is also exact, which is to
say that 3F € Q°(R?) = C>°(R?,R) such that dF = w. If such a F exists,

and we must have

OF

oF
= flz,y) =32 + 2zy +vy* and — = g(v,y) = 2° + 22y + 3y°.

dy
Integrating the first of these with respect to x yields
F(z,y) = 2° + 2%y + y’x + ¢(y).

Differentiating with respect to y yields

OF
e 2 + 20y + ¢ (y) = 2% + 2zy + 3y,
so that ¢/(y) = 3y? and so ¢(y) = y* + C. Thus the antiderivatives of w take
the form
F(z,y) =2’ + 2’y + 2y’ +y* + C,
where C' € R. O
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CHAPTER 13. DIFFERENTIAL FORMS

Exact forms are necessarily closed; the converse is valid when U C, R™ has an additional
property. Aset U C R is star-shaped if dJa € U such that Vy € U we have
ay|={(1—-ta+ty|0<t<l1}={a+tly—a)|0<t<1} CU.

In R?, for instance, U, (on the left) is star-shaped, whereas U, (on the right) is not.

Uy

We now present a highly technical lemma that will allow us to prove the desired result.

Theorem 180
LetU Co R", I =1[0,1], and ¢ : U x I — R a continuous function in the Euclidean

metric. Then the function ¢ : U — R defined by

1
vix= [ gt
0
Is continuous.

Furthermore, if Dyp : U x I — End(R",R) ~ (R")* exists and is continuous,
then ¢ is C' and

Dyp(x) = /01 Dyp(x,t)dt.
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Proof: we start by proving the continuity of ). We want to show thatVe > 0, 3. > 0
such that
Ix = x| < de = [¢(x) — ¥ (X)] <.

/0(( t) — Xtdt' /\gp o(X',t)|dt.

Lete > 0and (x,t) € U x I. Since ¢ is continuous, 35. = 6.(x, t) such that

Forx,x' € U, we have

[ (%) = (x)| =

Ik = X[t = ] < 6. = [p(x,1) — (X, )] < £/12.
In particular,
[x —X|| < 0. = |p(x,t") — (X, )| < /6.

Foraxfixed, define V; = {t' € R | [t—t'| < 0-(x,t)}NI; then {V,},csis an open cover
of the subspace I/ C R. But [ is a compact subspace of R in the Euclidean topology,
and so there is a finite subcover {V;,, ..., V;, } of I with

K

Let 6.(x) = min{0(x, ;)
such that |t; — /| < J.(x,

i = ,K}. Thus forany ¢’ € I, wecanfindat; € [
ti). 1 fwe also have ||x — X|| < 0.(x), then

o(x,t) — (X, 1) < (X, 1) — (X, )| + [o(%, 1) — (X', 1:)] + (X', 1) — (X', 1')]
<e/6+¢e/6+¢c/6=c¢/2.

Set d. = 6.(x). Then for all x,x’ € U we have

1
(%) — (X)) s/o “ar=f <.

We now tackle the differentiability of ¢). Since Dy is continuous by assumption, the
same argument as above shows that the function

1
xelUwmr \x) = / Dyp(x,t)dt
0

is continuous. It remains only to show that A(z) = Dy (x), thatis, Ve > 0,35. > 0
such that
Ih[| < d0c = |1h(x +h) —(x) = A()h| < e [[h]].

But

[(x +h) — (%) — ()| = / (x4, 1) — p(x, £))dt — / Dmx,t)hdt'
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CHAPTER 13. DIFFERENTIAL FORMS

< [+ ) = )~ Dt bt
-/ Dyo(x + 6.1) — Dyp(x.)|dt.
0
for @ € [0, h]. But Dy is continuous so Ve > 0, 35. > 0 such that
18] <[] < 6. = [Dxp(x+ 0,1) — Dxp(x, )] <&

Hence 1
[¥(x+h) —(x) = A(x)h| < /O ¢|[hfldt = <[[h],

which completes the proof. [}

And now, the piece de résistance.

Theorem 181 (POINCARE'S LEMMA)
Let U C R" be star-shaped and containing 0. If w € QP(U) is closed, then it is exact.

Proof: we start by proving the result forn = 1, p = 1. Letw € QY(U). Then
w = fdz, with f € C®(U,R). Since Q*(U) = {0}, we have dw = 0 € Q*(U). We
show that 3F € Q°(U) such that dF = w.

Recall that . . .
F(:c):/o f(t)dt:/o f(:cs)a:ds:/o g(x, s)ds.

According to Lemma 180,

F'(x) :/0 %(z,s)ds :/0 (f(zs)+ sf'(xs))ds
= [ st slds =1 @) = 0- £(2.0) = Flo)
Hence dF = 2 dx = F'(z) dz = f(z)dz = w.

Now suppose thatn > 1,p = 1. Letw € Q}U) with dw = 0. We want to
show dn = F € Q°(U) = C>°(U, R) such that d = w. By hypothesis,

w=Y_ fidr; withf; €C*(UR)

=1

P. Boily (uOttawa) 321



13.3. ANTIDERIVATIVE

and
- ~ 0f; afi  0f;
dw = dei/\dxi = Z o) do; Adzj = Z (axj ~ % dz; Adz; =0,
=1 i,7=1 1<)
and so 5 P
Ji = f‘j, foralll << j <n.
8xj ZT;
Let

F(x)=F(zy,...,x,) = Z fi(xs)x;ds = Z filzys, ... xp8)x; ds.
i=1 =1 ~ d
:gi(xvs)

We show that d/' = w:

:/0 _f (xs)—i—xls—f(xs]ds—i—Z/ 25 a —F(xs)ds

:/0 fl(xs)—I—j;xjsa—]fl(xs)

by the equality of partial derivatives above. Set k;(s) = sf1(Xs). Then

= fl(XS) + jz:;l’jSaixjfl(XS),

ds,

so that
OF t
S(x) = [ K(s)ds = k(1) = k(0) = (%)
XT1 0
In a similar fashion, we can see that

gj (x) = fi(x), foralll <j<mn,

and so
dF = Z Z fidz; = w.
i=1
We will not be providing the proof for p > 1. |

Where exactly was the hypothesis that U is star-shaped used??

3Hint: look at the definition of F'(z) (in the case n = 1) and F(x) (in the case n > 1).
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In a nutshell, we have shown the following result.

Proposition 182
LetU CoRandw ="}, f;dx; € QY(U). Consider the following conditions:

1. wisexactinU;

2. wisclosed in U;

3. gj:; = g—gfor all i, j.

Then 1. = 2. <= 3. Furthermore, if U is star-shaped, then the three conditions
are equivalent.

13.4 Pullback of a Differential Form

LetU Co R™, V Cp R, g € C®(U,V).* The pullback function g* : Q*(V) — QF(U) satisfies
g (N\w) = \g'w)

We define it as follows.
Casek = 0: if f € C*(V,R) = Q°V), the pullback is
g (f)=fog:U—=RecCUV)=QU).
Casek =1: ifasmoothg: U C, R™ — V Cp R" maps
u= (up,...,uy) EU—v=gu)= (g (u),...,g,(u)) €V,

andw € Q'(V),thenw = > | f; dz; and the pullback is

n n

g (w) = Zg*(fi)g*(d%) => (ficg)dg;i=> (fiog) (Z gjl d“j) :

i=1 i=1 J

Let us take a look at some examples.
Examples

1. Letg: U =R — V = R and consider w = fdx € Q'(V). Then the pullback
g*(w) € QY(U) is given by

g (w)(u) = (f o g)g"(dr)(u) = f(g(w)) - g(u)du. O

“We will encounter such functions when we discuss vector fields in Section 13.5.
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2. Letg: U =R — V = R? be defined by
g(t) = (cost,sint)
andw = —ydz +zdy € Q' (V). Then
g'(do)(t) = (dgi)(t) = —sintdt, g'(dy)(t) — (dgs)(t) = costdt,
and the pullback g*(w) € Q!(U) is given by

g (w)(t) = f1(8(t))(dg1)(t) + fo(g(t))(dg2)(t)
= (—sint)(—sintdt) + (cost)(costdt) = (sin®t 4 cos®t) dt = dt.

3. Letg: U = R? — V = R? be defined by
g(u) = (g1(u1, uz), galu, ug)) = (uy coOS Uy, uy Sinuy)

and w = fi(xy, 22) dxy + folz1, 10) dovg = 21 doy + 25 dze € QY(V). Then

og (Ul, U2) o (Ub UQ)
g (dxy)(u, ug) = (dga) (w1, uz) o, uy + s Us
= COS Uy du1 — U1 sin U2 dUQ
0ga(u1,u 0ga(u1,u
g (dwo)(u1, uz) = (dga)(ur, uz) = % duy + 0921, uz) duy
(51 8u2

= sinuy du; + uq cos us dusg,
and the pullback g*(w) € Q!(U) is given by

8" (w)(u1,uz) = fi(g(ur, u2))(dgr)(ur, u2) + fo(g(u, us))(dga)(u1, us)

= uy(cos? uy + sin® uy), du = u; du. O

Casek > 1: ifg:U Co R™ — V Cp R"is smooth and w = dx;, A--- Adx;, € Q¥(V), we
define the pullback

g'(w)=g"(dzy A---ANdzy,) =dgi, N---ANdg;, € Qk(U)

If
w = Z Pil,“',ikdxil VANRIERIVAN dl‘lk € Qk(V),
i1 < <y
then the pullback is
g*(w) = Z g (le,,lk)g*<dx21 A /\dxlk) = Z (Pil,---,ik Og)dgil AN '/\dgik S Qk<U)
i1 <---<ig 11 <<l
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CHAPTER 13. DIFFERENTIAL FORMS
Example: letg : U = R? — V = R? be defined by

g(u) = (g1(u1,uz), go(u1, uz)) = (ug €OS Uz, uy Sinuy)
and w = dz; A dzy € Q*(V). Then
(dg1)(u1,us) = cosus duy — ug sinug dug,  (dge)(ur, ug) = sinus duy + ug cos up dus,
and the pullback g*(w) € Q%(U) is given by

8" (w)(u1,uz) = g"(dzy A dxa)(ur, ug) = (dg1)(ur, u2) A (dg2)(us, uz)
= (cos ug duy — uy sinug dug) A (sinug duy + uy cos ug dusg)
= U7 COS2 U9 du1 VAN dU,Q — U Sin2 U9 d’lLQ VAN du1

= UI(COS2 Uy + Sin2 UQ) du1 A dUg = Uz du1 A dUQ. O

While none of the computations are particularly difficult to perform (although they can be
tedious), there is a simpler way to express pullbacks, as the following discussion illustrates.

Ifg: U =R?— V = R?is smooth, then the pullback of dz; A dz, € Q*(V) by gis

0 9, 9, 0
g (dzy Adxy) = dgi Adgs = gld1+ﬂd A S22 qu 1—|—ﬁdu2
a1 82 (91 (92

dg1 0ga 091 0go )
(8161 Ouy  Oug Ouy duy A dup = det(Dg) duy A dup € Q5(U),

where Dg is the Jacobian matrix of g (see Section 21.7).

Generally,ifg : U Co R™ — V Cp R™issmooth, then the pullback of dz;, A- - -Adz;, € QF(V)
by g is

g*(dxhA--~Adxik)=dgmA“‘Adgik:(Z ai“d ) (Z%Z%d >
5 J

891'1 . agzl
Buh 8ujk
1< <Jn 99y, 99y
Oujy Buj-k

IfUV CoR" g:U — Vsmooth, f € C*°(V,R),andw = fdz; A--- Adx, € Q*(V), then
the pullback of w by g is

g8 (w)=(fog)dgi A---Adg, = g'(f)det(Dg)dus A --- A du, € Q*(U).

The pullback commutes with the exterior derivative for 0—differential forms.
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Lemma 183
With the usual assumptions of this section, if f € Q°(V), then d(g*(f)) = g*(df).

Proof: we use the definition and see that

d(g (/) =d(fog) = fogduj Z(

S0 () e

which completes the proof. [ |

But this result does not apply solely to Q°(V).

Proposition 184
Letg: U Co R™ — V Cp R™ be smooth. If w € Q°(V), then d(g*(w)) = g*(dw).

Proof: the case £ = 0 was proven in Lemma 183. For £ > 0, since
d(w1 + WQ) = dw1 + dCUQ and

it is sufficient to show that

g (d(fdwiy A---Aday)) = d (g (fdwiy A--- Aday))

But the left side of this equation reduces to

= d(g'(f)) A g (dzi, A+ Aday,)
( *(f))/\(dgu /\dgzk)

Thanks to repeated use of Theorem 177, the right side, on the other hand, reduces
to

d(f ogdgi, A---Adgi) = d(fog) Adg, A+ Adgi, + (=1)"(f o g) d(dgi, A -+ Adg,)

g

=0

=d(fog)Adg, A---ANdg,. [ |

The machinery we have developed up to now may seem hopelessly formal and mechanical;
its practical value comes through once we identify differential forms with vector fields.
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13.5 Vector Fields

Let U Co R”. A vector field is a function F : U — R™; it is of class C* if F € C’“(U, R™). A
function f : U — Ris called a scalar field.

Example: let f : U — R be continuously differentiable and consider Vf : U — R"

defined b
Y ofw) 9w
Vi) = (8—x1""’ . )

Then f is a scalar field and V f is a vector field.

We can associate to any vector field F : U — R”, defined by F(x) = (Fi(x),...,F,.(x)) a
unique differential form wg € Q!(U) defined by

wF:F1d$1++FndIn

In particular, if f : U — R is smooth, the differential form associated to V f is

0 0
wvfza—fdl'1+"‘+ f

1 oz,

dz, = df € QY(U).

Theorem 185
LetU Cp R"and F : U — R"™ be smooth. Consider the following conditions:

1. F=Vf forsome f : U — R smooth;

OF;
2. o

= g—gfor all v, j.
Then 1. = 2. If U is star-shaped then, the conditions are equivalent.

Proof: if F = Vf, then wp = wy; = df € QY(U) is exact and so condition 2.
holds according to Proposition 182.

If U is star-shaped and gf; = g—g for all 4, j, then wg = Fydx; + --- + dx, is
exact (again, by Theorem 182), so that

wp=df=>_ of dz;
=1

— 8%

forsome f : U — R € Q°(U). By unicity of wg, we must have F; = % for all ¢, which
is to say that F = V f. [ |

When F = V f, we say that F is a conservative vector field (or a gradient field) and that f
is a scalar potential for F.
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Until the end of the chapter, we work with vector fields F : U Cy, R?® — R3. Recall that, seen
as a vector field over R,

p

dim (AP(R")) = (”) ,
according to Corollary 168; in that case, we have
dim(A'(R?)) = dim(A*(R?)), dim(A°(R?)) = dim(A*(R?)) = 1.
Consider the vector space isomorphism @, : R* — A'(R3) defined by
®i(a) = y(ay,a9,a3) = ay dzy + ay dzy + az dzs.

If we “multiply” two vectors in R3, we should get the same “result” as if we “multiply” two
1—forms over R?; the problem is that we while the wedge product can play the role of a mul-
tiplication, the wedge product of two 1—forms over R? is a 2—form over R?.

Over other spaces this would be a deal-breaker, but over R? the problem evaporates once
we introduce a second vector space isomorphism @, : R? — A?(R?), defined by

®y(a) = Dy(ay, as, a3) = a; deg A dzs + ag das A dzy + ag dzy A das,
and define the cross-product over R? by

axb=(ay,as a3) x (by, by, b3)
~ Oy (ay, as,az) A P1(by, b, bs)
= (a1 dxy + ag dxs + agdas) A (by dxy + by dag + by das)
= (agbs — agby) dxs A dzs + (agby — a1b3) dzy A dxs + (a1bs — ashy) dxy A day
~ &, ((aghs — asby) dag A das + (asby — arbs) doy A dwg + (a1bs — aghy) dzy A da)

= (a2b3 — agby, agby — a1b3, a102 — ale),

which should go some way towards elucidating the mystery of where the apparently random
definition of the cross-product come from when it is first introduced in linear algebra courses.

In applications, it is typical to use © = x1, y = w9, and z = x3. In that case, we could also
write the vector field F : U — R? as

F(x’ y? Z) - (P(x7 y’ Z)? Q(:E, y? Z)’ R(‘T’ y? Z))’

the composition
®,0F =wp = Pdz + Qdy + Rdz € Q'(U)

is the corresponding differential 1—form over U.
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Then, we have:

dwg =dP Adx +dQ ANdy +dR A dz

— (%dx+a—de+a—sz) A dx + <2—de+@dy+@dz) A dy
x

ox dy 0z dy 0z
OR OR OR
_(OR  0Q oP OR oQ 0P 9
_<8y 8z)dy/\dz+<8z 83:) dZAdx+(8a: ay)dac/\dyEQ(U).

The vector field ®, ' (dwg) = ®,*(®,(F)) associated with dwy is the curl of F and is denoted
by curl(F) =V x F: U — R3 and

CMMU:VXF—(aR 9Q OP AR 9Q ap).

Theorem 186
LetU =Cp R3and F : U — R3 be smooth. Consider the following conditions:

1. F =V f for some smooth f : U — R;
2. VxF=0.

Then 1. = 2. If U is star-shaped then, the conditions are equivalent.

Proof: direct application of Theorem 185. [ |

If instead we consider the composition

PyoF =g = PdyAdr +Qdz Adz + Rdx Adz € Q*(U),

then we have

derp =dP ANdy Adz+dQ ANdz Adx +dR Adx Ady

_ [(oP oP oP Q oQ oQ
= (ax dx + 3y dy + 5, dz)AdyAdz+<ax dx + 3y dy + 5, dz)/\dz/\dx

OR OR OR

—dr+ —dy+ —d dz Ad
+(0$ $+6y y+82 Z)/\ TGy
P

:_8 da:/\dy/\dz+—any/\dz/\dx~|——aRd2/\dx/\dy
ox oy 0z

(0P 0Q OR 3
_(8x+6y+0z)dx/\dyAdZEQ(U)'

The scalar field associated with der is the divergence of F and is denoted by div(F) = V - F :

U — Rand

_ oP  9Q OR
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As a consequence of Poincaré’s lemma, we obtain the following result.

Theorem 187

Let U =Cp R3and F : U — R3 be smooth. If there is a vector field G : U — R?
such that curl(G) = V x G = F, then div(F) = V - F = 0. If U is star-shaped and
div(F) =V - F = 0, then thereisa G : U — R? such that curl(G) = V x G = F.

Proof: let wg € QYU) and ¢ € Q*(U) be the associated differential forms.
If curl(G) = F, then dwg = ¢, so that dgr = d(dwg) = 0, and thus div(F) = 0.

If U is star-shaped and div(F) = 0, then dgr = 0, and so yf is closed. Ac-
cording to Poincaré’s lemma, ¢f is exact, which is to say that 3w € Q!(U) such that
dw = ¢F. If G is the vector field corresponding to w, then we have curl(G) =F. W

When F = curl(G) for some G : U — GR3, the vector field G is a vector potential for F. Such
a vector potential is not unique; indeed if f : U — R is smooth, then curl(G + V f) = curl(G),
as we can see below: if

G ~~ wg € QYU), curl(G) e dwg € D*(U), Vf e df € QYU),

then
curl(G + Vf) e~ d(wg + df) = dwg «~ curl(G).

In short, differential forms provide a tool to work with vector fields, which are the objects of
interests in applications; the correspondence is diagrammed below.

Differential Forms Vector Fields
Q%) = ~scalar fields
d v
} o,
=0 |,0N0) ~vector fields | curl®) =0
d curl
@2=0 | Q%) > ~vector fields#| div(curl) =0
| d o div
Q3() : ~scalar fields
+,A >+, X
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13.6 Solved Problems

1. Are the following 1—forms exact?

aA)w=2zydr+22dy  b)w = (2?+yz)dz+ (rz+cosy)dy + (2 + zy) dz

Quw=ydr+zdy +xdz d)wzxgiyzdx‘i‘zziyzdy

Solution:
a) We have w = 2zy dx + 22 dy € Q' (R?), where R? is star-shaped. Since

dw = 2[(dz)y + z(dy)] Adz + (2zdz) Ady = 22[dy A dz + dz Ady] =0,

w is closed. According to Poincaré’s lemma, w is also exact. In fact, = z?y is an
anti-derivative of w (i.e. dn = w).

b) We have w = (2% + yz) dz + (22 + cos y) dy + (z + zy) dz € Q(R3), where R?
is star-shaped. Since

dw =zdyAdz+ydzAde+zdzAdy+2dr Ady+axdyAndz+ydeAdz =0,

w is closed. According to Poincaré’s lemma, w is also exact. In fact,

1‘3 2

?7=§+a:yz+siny+%

is an anti-derivative of w (i.e. dn = w).

c) Since dw = dy A dz 4+ dz A dy + dx A dz # 0, w is not closed. Consequently, w
is not exact (remember, this has nothing to do with Poincaré’s lemma).

d) Wehavew = 7o de+ i, dy € QY(R? — {(0,0)}). Note that U = R? —
{(0,0)} is NOT star-shaped, and so we cannot use Poincaré’s lemma to deter-

mine whether w is exact or not. If w is not closed, then it will necessarily not be
exact, by contraposition. However,

—2xy
(22 + y2)2

and so w is closed and we cannot use this approach. We are left with no other
option than to try to find an anti-derivative. The brute force method yields n =
In(y/22 + y?) as an anti-derivative of w (i.e. dn = w). O

dw = dy A dx — 5 dz Ady =0,

2xy
(2% +y?)

2. Are the following 2—forms exact?
a) w=dx Ady
b) w=zdrx Ady+ydr Adz+ zdy Adz

Solution:
a) We have w = dz A dy € Q%(R?), where R? is star-shaped. Since

dw=d(dz Ady) = d’z Ady — dzAdy? =0—0=0,

w is closed. According to Poincaré’s lemma, w is also exact.
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b) We have
w=zdz Ady+ydz Adz + zdy A dz € Q2(R?),

where R3 is star-shaped. Since

dw=dzAdeAdy+dyAdeAdz+dzAdy Adz
=dzAdxAdy — dzAde Ady+0=0,

w is closed. According to Poincaré’s lemma, w is also exact. In fact, n = zz dy +
2y dz is an anti-derivative of w (i.e. dn = w). g

13.7 Exercises

=W N

10.

11.
12.

332

Prepare a 2-page summary of this chapter, with important definitions and results.
Prove results 172,173,174, 175, 176, 180 (try, at least), and 184.
If f € Q°(U)and w € QP(U), show that f Aw = fw.

Show that if w and ¢ are two closed differential forms, then so is w A ¢. Show that if w
is also exact, then w A ¢ is exact.

What s the pullback g*(w) € Q!(R)ifg : R — R?is defined by g(v) = (3 cos 2v, 3 sin 2v)
and w = —ydz + xr dy € Q' (R?)? Simplify your answer as much as possible.

Whatis the pullback g*(w) € Q'(R?)ifg : R? — R3isdefined by g(u, v) = (cosu, sinu, v)
and w = zdx + x dy + y dz € Q' (R?)? Simplify your answer as much as possible.

Whatis the pullback g*(w) € Q*(R?)ifg : R? — R?is defined by g(u,v) = (cosu, sinu,v)
and w = zdx A dy + ydz A dz € Q*(R?)? Simplify your answer as much as possible.

For each of the three previous exercises, compute g*(dw) and d(g*w).

Letg: (0,00) x (0,7) x (0,27) — R3 the map defining the spherical coordinates in R?.
Compute g*(dz A dy A dz).

LetF,G : R? — R3, f : R®> — R be smooth mappings and - and x represent the inner
product and cross product in R?, respectively. Show that

a) div(F + G) = div(F) + div(G)
b) div(fF) = fdiv(F)+F-Vf
c) div(F x G) = G- curlF — F - curl G
d) curl(fF) = fcurl(F) + (Vf) x F
e) div(fVf) =|Vf]
Let U Cp R™ and p > 0. Show that Q?(U) is a vector space over R.

LetU Co R", p > 0and wy,wy € QP(U). Show that d(w; + wy) = dw; + dws.
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