Chapter 13

Differential Forms

In this chapter, we introduce the notion of **differential** p-**forms over** \mathbb{R}^n , which are derivatives of alternating linear p-forms over \mathbb{R}^n . This new notion is a generalization of the **differential** of a function and admits a number of applications in mathematical physics (Grand Unified Theories, Yang-Mills theory, superstring theory, etc.)

13.1 Differential *p*–Forms

We start by discussing the situation for n = 3. Let $U \subseteq_O \mathbb{R}^3$. A **differential** 1-**form over** U is a function $U \to (\mathbb{R}^3)^*$; the set of all such differential forms is denoted $\Omega^1(U)$.

If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the **canonical basis** of \mathbb{R}^3 , then for any $\mathbf{w} \in \mathbb{R}^3$ we have

$$\mathbf{w} = w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2 + w_3 \mathbf{e}_3$$

We denote the **dual basis** of $(\mathbb{R}^3)^*$ by { dx, dy, dz}, which is to say that

 $dx, dy, dz : \mathbb{R}^3 \to \mathbb{R}$ and $dx(\mathbf{w}) = w_1, dy(\mathbf{w}) = w_2, dz(\mathbf{w}) = w_3$ for all $\mathbf{w} \in \mathbb{R}^3$.

Then, if $\alpha \in (\mathbb{R}^3)^*$, there are unique $P,Q,R \in R$ such that

$$\alpha = P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

In general, if $\omega \in \Omega^1(U)$, $\exists ! P, Q, R : U \to \mathbb{R}$ such that

$$\omega(\mathbf{u}) = P(\mathbf{u}) \, \mathrm{d}x + Q(\mathbf{u}) \, \mathrm{d}y + R(\mathbf{u}) \, \mathrm{d}z, \quad \text{for all } \mathbf{u} \in U.$$

Let $f: U \to \mathbb{R}$ be differentiable on U; the **differential of** f is $df \in \Omega^1(U)$, where

$$df(\mathbf{u}) = \frac{\partial f}{\partial x}(\mathbf{u}) dx + \frac{\partial f}{\partial y}(\mathbf{u}) dy + \frac{\partial f}{\partial z}(\mathbf{u}) dz, \text{ for all } \mathbf{u} \in U.$$

Let $\omega \in \Omega^1(U)$. If the constituents $P, Q, R : U \to \mathbb{R}$ are continuous on U (respectively \mathcal{C}^1 or \mathcal{C}^{∞}), then ω is continuous U (respectively \mathcal{C}^1 or \mathcal{C}^{∞}).¹

¹These restrictions on P, Q, R make $\Omega^1(U)$ a $\mathcal{C}^0(U, \mathbb{R})$ – **module** (respectively, $\mathcal{C}^1(U, \mathbb{R})$ or $\mathcal{C}^\infty(U, \mathbb{R})$).

Proposition 172 $\Omega^1(U)$ is an infinite-dimensional vector space over \mathbb{R} .

Proof: left as an exercise.

If $U \subseteq_O \mathbb{R}^n$, $f : U \to \mathbb{R}$ is \mathcal{C}^0 (respectively \mathcal{C}^1 or \mathcal{C}^∞) and ω is a \mathcal{C}^0 (respectively \mathcal{C}^1 or \mathcal{C}^∞) differential 1-form over U, then $f\omega \in \Omega^1(U)$, where

 $f\omega(\mathbf{u}) = f(\mathbf{u})P(\mathbf{u})\,\mathrm{d}x + f(\mathbf{u})Q(\mathbf{u})\,\mathrm{d}y + f(\mathbf{u})R(\mathbf{u})\,\mathrm{d}z, \quad \forall \mathbf{u} \in U.$

A differential p-form ω over U is a map $\omega : U \to \Lambda^p(\mathbb{R}^n)$; the set of all such differential forms is denoted by $\Omega^p(U)$. If p = 0, $\Omega^0(U) = \mathbb{C}^k(U, \mathbb{R})$, where $k \in \{0, 1, \infty\}$; Corollary 168 shows that $\Omega^p(U) = \{0\}$ when p > n.

Proposition 173

 $\Omega^p(U)$ is an infinite-dimensional vector space over \mathbb{R} and a $\mathbf{C}^k(U)$ -module (i.e., if $f \in \mathbf{C}^k(U, \mathbb{R})$ and $\omega \in \Omega^p(U)$, then $f \omega \in \Omega^p(U)$ for $k \in \{0, 1, \infty\}$.

Proof: left as an exercise.

Let $\omega_1 \in \Omega^{p_1}(U)$ and $\omega_2 \in \Omega^{p_2}(U)$. By definition, $\omega_i(\mathbf{u}) \in \Lambda^{p_i}(U)$ for all $\mathbf{u} \in U$, for i = 1, 2; according to Theorem 170, we must have

$$\omega_1(\mathbf{u}) \wedge \omega_2(\mathbf{u}) \in \Lambda^{p_1+p_2}(U),$$

and so the function $\omega_1 \wedge \omega_2 : U \to \Lambda^{p_1+p_2}(U)$ defined by

$$(\omega_1 \wedge \omega_2)(\mathbf{u}) = \omega_1(\mathbf{u}) \wedge \omega_2(\mathbf{u}), \text{ for all } \mathbf{u} \in U$$

is a differential $(p_1 + p_2)$ -form over U, which is to say that $\omega_1 \wedge \omega_2 \in \Omega^{p_1+p_2}(U)$. This differential form is called the **we dge (or exterior) product of** ω_1 and ω_2 .²

Example: if n = 3, we have • $\Omega^0(U) = \{\omega = f \mid f \in \mathbf{C}^k(U, \mathbb{R})\};$ • $\Omega^1(U) = \{\omega = f \, dx + g \, dy + h \, dz \mid f, g, h \in \mathbf{C}^k(U, \mathbb{R})\};$ • $\Omega^2(U) = \{\omega = f \, dx \wedge dy + g \, dx \wedge dz + h \, dy \wedge dz \mid f, g, h \in \mathbf{C}^k(U, \mathbb{R})\};$ • $\Omega^3(U) = \{\omega = f \, dx \wedge dy \wedge dz \mid f \in \mathbf{C}^k(U, \mathbb{R})\},$ and • $\Omega^p(U) = \{0\},$ when p > 3.

 \Box

²It is also sometimes denoted by $\omega_1 \omega_2$.

Theorem 174

1. For i = 1, 2, let $\omega_i, \omega'_i \in \Omega^{p_i}(U)$ and $f: U \to \mathbb{R}$. Then: • $(\omega_1 + \omega'_1) \land \omega_2 = \omega_1 \land \omega_2 + \omega'_1 \land \omega_2;$ • $\omega_1 \land (\omega_2 + \omega'_2) = \omega_1 \land \omega_2 + \omega_1 \land \omega'_2$, and • $(f\omega_1) \land \omega_2 = f(\omega_1 \land \omega_2) = \omega_1 \land (f\omega_2).$ 2. If $\omega_1, \dots, \omega_q \in \Omega^1(U)$, then • when $\omega_i = \omega_j$ for some $i \neq j$, we have $\omega_1 \land \dots \land \omega_q = 0;$ • for $\sigma \in S_q, \omega_{\sigma(1)} \land \dots \land \omega_{\sigma(q)} = \epsilon(\sigma)\omega_1 \land \dots \land \omega_q.$ 3. For i = 1, 2, 3, let $\omega_i \in \Omega^{p_i}(U)$. Then: • $\omega_1 \land (\omega_2 \land \omega_3) = (\omega_1 \land \omega_2) \land \omega_3$, and • $\omega_1 \land \omega_2 = (-1)^{p_1 p_2} \omega_2 \land \omega_1.$ Proof: left as an exercise.

A few examples will help illustrate the main principles.

Examples: let $n = 3, f : U \to \mathbb{R}$, and set $\omega_1 = dx_1 = e_1^*, \quad \omega_2 = dx_2 = e_3^*, \quad \omega_3 = dx_3 = e_3^* \in \Omega^1(U).$ • $dx_1 \wedge dx_2 = (-1)^{1\cdot 1} dx_2 \wedge dx_1;$ • $dx_1 \wedge dx_2 \wedge dx_3 = dx_3 \wedge dx_1 \wedge dx_2 = -dx_1 \wedge dx_3 \wedge dx_2;$ • $dx_1 \wedge dx_1 = dx_2 \wedge dx_2 = dx_3 \wedge dx_3 = 0, \text{ and}$ • $(f dx_1 \wedge dx_2) \wedge dx_3 = (-1)^{2\cdot 1} dx_3 \wedge (f dx_1 \wedge dx_2).$

This section's final result will set the stage for the rest of the chapter and the next one.

Theorem 175 Let $\omega \in \Omega^p(U)$. We can uniquely write $\omega = \sum P_{i_1, \dots, i_p} dx_{i_1} \wedge \dots \wedge dx_{i_p},$ where $P_{i_1, \dots, i_p} : U \to \mathbb{R}$ for $i_1 < \dots < i_p$. **Proof:** left as an exercise.

P. Boily (uOttawa)

13.2 Exterior Derivative

In what follows, we fix $k = \infty$ so that $\Omega^p(U)$ represents the vector space of \mathcal{C}^∞ (smooth) differential p-forms over $U \subseteq_O \mathbb{R}^n$.

The exterior derivative (or differential) of $\omega \in \Omega^p(U)$ is defined recursively.

1. If $f \in \Omega^0(U)$ (that is, $f: U \to \mathbb{R}$ is smooth), then its exterior derivative is

$$\mathbf{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \, \mathbf{d}x_i \in \Omega^1(U).$$

2. If $\omega = \sum_{i=1}^n P_i \, \mathrm{d} x_i \in \Omega^1(U)$, $P_i \in \mathcal{C}^\infty(U, \mathbb{R})$ for $1 \le i \le n$, then its exterior derivative is

$$\mathbf{d}\omega = \sum_{i=1}^{n} \mathbf{d}P_{i} \wedge \mathbf{d}x_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial P_{i}}{\partial x_{j}} \, \mathbf{d}x_{j} \right) \wedge \mathbf{d}x_{i} = \sum_{i < j} \left(\frac{\partial P_{j}}{\partial x_{i}} - \frac{\partial P_{i}}{\partial x_{j}} \right) \, \mathbf{d}x_{i} \wedge \mathbf{d}x_{j} \in \Omega^{2}(U).$$

•••

 $p.\;$ In general, if

$$\omega = \sum_{i_1 < \cdots < i_p} P_{i_1, \cdots, i_p} \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_p} \in \Omega^p(U),$$

then its exterior derivative is

$$\mathbf{d}\omega = \sum_{i_1 < \cdots < i_p} \mathbf{d}P_{i_1, \cdots, i_p} \wedge \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_p} \in \Omega^{p+1}(U).$$

As we shall see after the next examples, the exterior derivative behaves as a regular derivative with respect to the sum of differential forms and to the product of functions, but there is a twist for a general product of differential forms.

Examples: throughout, let $f, g, h \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ for an appropriate n.

1. In
$$\mathbb{R}^2$$
, let $\omega = f \, dx + g \, dy \in \Omega^1(\mathbb{R}^2)$. Then

$$d\omega = df \wedge dx + dg \wedge dy = \left(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy\right) \wedge dx + \left(\frac{\partial g}{\partial x} \, dx + \frac{\partial g}{\partial y} \, dy\right) \wedge dy$$

$$= \frac{\partial f}{\partial x} \, dx \wedge dx + \frac{\partial f}{\partial y} \, dy \wedge dx + \frac{\partial g}{\partial x} \, dx \wedge dy + \frac{\partial g}{\partial y} \, dy \wedge dy$$

$$= \frac{\partial f}{\partial x} \cdot 0 - \frac{\partial f}{\partial y} \, dx \wedge dy + \frac{\partial g}{\partial x} \, dx \wedge dy + \frac{\partial g}{\partial y} \cdot 0 = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) \, dx \wedge dy \in \Omega^2(\mathbb{R}^2)$$

2. In
$$\mathbb{R}^3$$
, let $\omega = f \, dx + g \, dy + h \, dz \in \Omega^1(\mathbb{R}^3)$. Then

$$d\omega = df \wedge dx + dg \wedge dy + dh \wedge dz$$

$$= \left(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy + \frac{\partial f}{\partial z} \, dz\right) \wedge dx + \left(\frac{\partial g}{\partial x} \, dx + \frac{\partial g}{\partial y} \, dy + \frac{\partial g}{\partial z} \, dz\right) \wedge dy +$$

$$= \left(\frac{\partial h}{\partial x} \, dx + \frac{\partial h}{\partial y} \, dy + \frac{\partial h}{\partial z} \, dz\right) \wedge dz$$

$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) \, dx \wedge dy - \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x}\right) \, dx \wedge dz + \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}\right) \, dy \wedge dz \in \Omega^2(\mathbb{R}^3).$$
3. In \mathbb{R}^3 , let $\omega = f \, dx \wedge dy + g \, dx \wedge dz + h \, dy \wedge dz \in \Omega^2(\mathbb{R}^3)$. Then

$$d\omega = df \wedge dx \wedge d_y + dg \wedge dx \wedge dz + dh \wedge dy \wedge dz$$

$$= \left(\frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy + \frac{\partial f}{\partial z} \, dz\right) \wedge dx \wedge dy + \left(\frac{\partial g}{\partial x} \, dx + \frac{\partial g}{\partial y} \, dy + \frac{\partial g}{\partial z} \, dz\right) \wedge dx \wedge dz +$$

$$= \left(\frac{\partial h}{\partial x} \, dx + \frac{\partial h}{\partial y} \, dy + \frac{\partial h}{\partial z} \, dz\right) \wedge dy \wedge dz$$

$$= \frac{\partial f}{\partial z} \, dz \wedge dx \wedge dy + \frac{\partial g}{\partial y} \, dy \wedge dz + \frac{\partial h}{\partial x} \, dx \wedge dy \wedge dz$$

$$= \left(\frac{\partial f}{\partial z} - \frac{\partial g}{\partial y} + \frac{\partial h}{\partial x}\right) \, dx \wedge dz + \frac{\partial h}{\partial x} \, dx \wedge dy \wedge dz$$

Theorem 176 Let $\omega_1, \omega_2 \in \Omega^p(U)$. Then $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$.

Proof: left as an exercise.

Lemma 177 If $f, g \in \Omega^0(\mathbb{R}^n)$, then d(fg) = (df)g + f(dg).

Proof: the product $fg \in \Omega^0(\mathbb{R}^n)$ is itself a function $\mathbb{R}^n \to \mathbb{R}$. By definition,

$$\mathbf{d}(fg) = \sum_{i=1}^{n} \frac{\partial (fg)}{\partial x_i} \, \mathbf{d}x_i = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} g + f \frac{\partial g}{\partial x_i} \right) \, \mathbf{d}x_i$$
$$= \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \, \mathbf{d}x_i \right) g + f \left(\sum_{i=1}^{n} \frac{\partial g}{\partial x_i} \, \mathbf{d}x_i \right) = (\mathbf{d}f)g + f(\mathbf{d}g).$$

Lemma 177 is a special case (with p = 0) of the more general rule for the derivative of the product of differential forms.

Theorem 178 Let $\omega \in \Omega^p(U), \omega' \in \Omega^q(U)$. Then $d(\omega \wedge \omega') = d\omega \wedge \omega' + (-1)^p \omega \wedge d\omega'$. **Proof:** if $\{i_1, \ldots, i_\ell\} \subseteq \{1, \ldots, n\}$ (in increasing order) and $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$, then $\mathbf{d}(f \, \mathbf{d} x_{i_1} \wedge \cdots \wedge \mathbf{d} x_{i_\ell}) = \mathbf{d} f \wedge \mathbf{d} x_{i_1} \wedge \cdots \wedge \mathbf{d} x_{i_\ell}.$ Since $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$, we only need to verify the conclusion for $\omega = f \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_n}, \quad i_1 < \cdots < i_p$ $\omega' = g \, \mathrm{d} x_{j_1} \wedge \dots \wedge \mathrm{d} x_{j_a}, \quad j_1 < \dots < j_q.$ Then $\mathbf{d}(\omega \wedge \omega') = \mathbf{d}(f \, \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_n} \wedge g \, \mathbf{d}x_{j_1} \wedge \cdots \wedge \mathbf{d}x_{j_n})$ thm 174.1 = d(fg dx_{i_1} \land \cdots \land dx_{i_n} \land dx_{j_1} \land \cdots \land dx_{j_a}) $= \mathbf{d}(fg) \wedge \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_p} \wedge \mathbf{d}x_{j_1} \wedge \cdots \wedge \mathbf{d}x_{j_q}$ lemma 177 = $[(\mathbf{d}f)g + f(\mathbf{d}g)] \wedge \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_n} \wedge \mathbf{d}x_{j_1} \wedge \cdots \wedge \mathbf{d}x_{j_n}$ $= (\mathbf{d}f)g \wedge \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_p} \wedge \mathbf{d}x_{j_1} \wedge \cdots \wedge \mathbf{d}x_{j_q}$ + $f(\mathbf{d}g) \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_p} \wedge \mathbf{d}x_{j_1} \wedge \cdots \wedge \mathbf{d}x_{j_q}$ $=\underbrace{\mathrm{d}f\wedge\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_p}}_{=\mathrm{d}_{i_1}}\wedge\underbrace{g\,\mathrm{d}x_{j_1}\wedge\cdots\wedge\mathrm{d}x_{j_q}}_{=\mathrm{d}_{i_1}}$ $+ (-1)^{p} \underbrace{f}_{=\omega} \underbrace{dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}}_{=\omega} \wedge \underbrace{dg \wedge dx_{j_{1}} \wedge \cdots \wedge dx_{j_{q}}}_{=d\omega'}$ $= \mathbf{d}\omega \wedge \omega' + (-1)^p \omega \wedge \mathbf{d}\omega'.$

We illustrate this in the case where $\omega = \sum_{i=1}^{n} f_i \, dx_i \in \Omega^1(\mathbb{R}^n)$ and $\omega' = h \in \Omega^0(\mathbb{R}^n)$. Then

$$\begin{split} \omega \wedge \omega' &= \sum_{i=1}^{n} f_i h \, \mathrm{d} x_i \quad \text{and} \quad \mathrm{d}(\omega \wedge \omega') = \mathrm{d}\left(\sum_{i=1}^{n} f_i h \, \mathrm{d} x_i\right) = \sum_{i=1}^{n} \mathrm{d}(f_i h \, \mathrm{d} x_i) = \sum_{i=1}^{n} \mathrm{d}(f_i h) \wedge \mathrm{d} x_i \\ &= \sum_{i=1}^{n} [(\mathrm{d} f_i) h + f_i(\mathrm{d} h)] \wedge \mathrm{d} x_i = \sum_{i=1}^{n} (\mathrm{d} f_i \wedge \mathrm{d} x_i) h + \sum_{i=1}^{n} f_i \, \mathrm{d} h \wedge \mathrm{d} x_i \\ &= \mathrm{d} \omega \wedge \omega' + \sum_{i=1}^{n} f_i (-\mathrm{d} x_i \wedge \mathrm{d} h) = \mathrm{d} \omega \wedge \omega' - \omega \wedge \mathrm{d} \omega' \\ &= \mathrm{d} \omega \wedge \omega' + (-1)^1 \omega \wedge \mathrm{d} \omega'. \end{split}$$

The next result showcases a crucial property of exterior derivatives.

Theorem 179 Let $\omega \in \Omega^p(U)$. Then $d(d\omega) = 0$. Proof: if $f \in C^{\infty}(U, \mathbb{R}) = \Omega^0(U)$, then $df \in \Omega^1(U)$ and $d(df) = d\left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i\right) = \sum_{i=1}^n d\left(\frac{\partial f}{\partial x_i}\right) \wedge dx_i = \sum_{i=1}^n \left(\sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j\right) \wedge dx_i$. When i = j, $dx_i \wedge dx_j = 0$; when i > j, $dx_i \wedge dx_j = -dx_j \wedge dx_i$, so that $d^2 f = \sum_{i < j} \underbrace{\left(\frac{\partial^2 f}{\partial x_i \partial x_j} - \frac{\partial^2 f}{\partial x_j \partial x_i}\right)}_{=0 \text{ since } f \in C^{\infty}(U, \mathbb{R})} dx_i \wedge dx_j = 0$. Furthermore, $d(dx_i) = d(1 \cdot dx_i) = d(1) \wedge dx_i = 0 \wedge dx_i = 0$.

Since $d(\omega + \omega') = d\omega + d\omega'$, it is sufficient to show that $d^2(f dx_{i_1} \wedge \cdots \wedge dx_{i_p}) = 0$, where $\{i_1 < \ldots < i_p\} \subseteq \{1, \ldots, n\}$ and f is as above. As

$$\begin{aligned} \mathsf{d}(\mathsf{d}(f\,\mathsf{d} x_{i_1}\wedge\cdots\wedge\mathsf{d} x_{i_p})) &= \mathsf{d}(\mathsf{d} f\wedge\mathsf{d} x_{i_1}\wedge\cdots\wedge\mathsf{d} x_{i_p}) \\ &= \mathsf{d}(\mathsf{d} f)\wedge\mathsf{d} x_{i_1}\wedge\cdots\wedge\mathsf{d} x_{i_p} + (-1)^{0+1}\mathsf{d} f\wedge\mathsf{d}(\mathsf{d} x_{i_1}\wedge\cdots\wedge\mathsf{d} x_{i_p}) \\ &= 0\wedge\mathsf{d} x_{i_1}\wedge\cdots\wedge\mathsf{d} x_{i_p} - \mathsf{d} f\wedge 0 = 0. \end{aligned}$$

A differential form $\omega \in \Omega^p(U)$ is **closed** if $d\omega = 0$.

Example: let n = 1 and $\omega \in \Omega^1(\mathbb{R}^1)$. Then $d\omega \in \Omega^2(\mathbb{R}^1)$; since $\Omega^2(\mathbb{R}^1) = \{0\}$, ω is automatically closed.

13.3 Antiderivative

Let p > 1, $U \subseteq_O \mathbb{R}^n$ and $\omega \in \Omega^p(U)$; ω is **exact** if $\exists \eta \in \Omega^{p-1}(U)$ such that $d\eta = \omega$. The differential form η is an **antiderivative of** ω . If ω is exact, then $d\omega = d^2\eta = 0$ and so every exact form is also closed.

If n = 1, let $f \in \Omega^0(\mathbb{R})$. Then $\Omega^1(\mathbb{R}) = \{g \, dx \mid g \in \Omega^0(\mathbb{R})\}$. If $F : \mathbb{R} \to \mathbb{R}$ is such that F'(x) = f(x) for all $x \in \mathbb{R}$, then $F \in \Omega^0(\mathbb{R})$ and

$$dF = \frac{\partial F}{\partial x} \, \mathrm{d}x = f \, \mathrm{d}x.$$

Such an *F* exists by Theorem 60 since *f* is continuous on \mathbb{R} . Hence, every $\omega \in \Omega^1(\mathbb{R})$ is exact.

Examples

1. Let $\omega = P_1(x, y) \, \mathrm{d}x + P_2(x, y) \, \mathrm{d}y = y \, \mathrm{d}x - x \, \mathrm{d}y \in \Omega^1(\mathbb{R}^2)$. Since $\mathrm{d}\omega = \left(\frac{\partial P_2}{\partial x} - \frac{\partial P_1}{\partial y}\right) \, \mathrm{d}x \wedge \mathrm{d}y = (-1 - 1) \, \mathrm{d}x \wedge \mathrm{d}y = -2 \, \mathrm{d}x \wedge \mathrm{d}y \neq 0;$

since ω is not closed, it cannot be exact.

2. Let $\omega = f(x, y) dx + g(x, y) dy = (3x^2 + 2xy + y^2) dx + (x^2 + 2xy + 3y^2) dy \in \Omega^1(\mathbb{R}^2).$ Since $d\omega = df \wedge dx + dq \wedge dy$

$$\begin{aligned} &= \mathrm{d}f \wedge \mathrm{d}x + \mathrm{d}g \wedge \mathrm{d}y \\ &= \left(\frac{\partial f}{\partial x}\,\mathrm{d}x + \frac{\partial f}{\partial y}\,\mathrm{d}y\right) \wedge \mathrm{d}x + \left(\frac{\partial g}{\partial x}\,\mathrm{d}x + \frac{\partial g}{\partial y}\,\mathrm{d}y\right) \wedge \mathrm{d}y \\ &= \frac{\partial f}{\partial y}\,\mathrm{d}y \wedge \mathrm{d}x + \frac{\partial g}{\partial x}\,\mathrm{d}x \wedge \mathrm{d}y = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right)\,\mathrm{d}x \wedge \mathrm{d}y. \end{aligned}$$

But

$$\frac{\partial g}{\partial x} = 2x + 2y = \frac{\partial f}{\partial y}$$

in this specific case, so $d\omega = 0$, which means that ω is closed.

We can show that this particular closed form is also exact, which is to say that $\exists F \in \Omega^0(\mathbb{R}^2) = \mathcal{C}^\infty(\mathbb{R}^2, \mathbb{R})$ such that $dF = \omega$. If such a *F* exists,

$$\mathrm{d}F = \frac{\partial F}{\partial x} \,\mathrm{d}x + \frac{\partial F}{\partial y} \,\mathrm{d}y = f(x, y) \,\mathrm{d}x + g(x, y) \,\mathrm{d}y,$$

and we must have

$$\frac{\partial F}{\partial x} = f(x,y) = 3x^2 + 2xy + y^2 \text{ and } \frac{\partial F}{\partial y} = g(x,y) = x^2 + 2xy + 3y^2.$$

Integrating the first of these with respect to *x* yields

$$F(x,y) = x^3 + x^2y + y^2x + \varphi(y)$$

Differentiating with respect to y yields

$$\frac{\partial F}{\partial y} = x^3 + 2xy + \varphi'(y) = x^2 + 2xy + 3y^2,$$

so that $\varphi'(y)=3y^2$, and so $\varphi(y)=y^3+C.$ Thus the antiderivatives of ω take the form

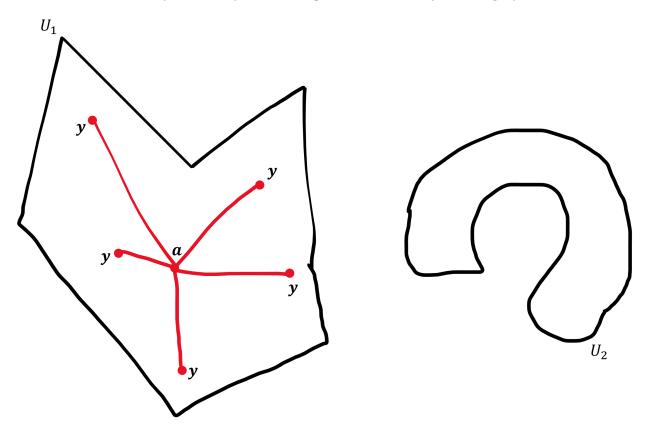
$$F(x,y) = x^3 + x^2y + xy^2 + y^3 + C$$

where $C \in \mathbb{R}$.

Exact forms are necessarily closed; the converse is valid when $U \subseteq_O \mathbb{R}^n$ has an additional property. A set $U \subseteq \mathbb{R}$ is **star-shaped** if $\exists \mathbf{a} \in U$ such that $\forall \mathbf{y} \in U$ we have

$$[\mathbf{a}, \mathbf{y}] = \{(1-t)\mathbf{a} + t\mathbf{y} \mid 0 \le t \le 1\} = \{\mathbf{a} + t(\mathbf{y} - \mathbf{a}) \mid 0 \le t \le 1\} \subseteq U.$$

In \mathbb{R}^2 , for instance, U_1 (on the left) is star-shaped, whereas U_2 (on the right) is not.



We now present a highly technical lemma that will allow us to prove the desired result.

Theorem 180

Let $U \subseteq_O \mathbb{R}^n$, I = [0, 1], and $\varphi : U \times I \to \mathbb{R}$ a continuous function in the Euclidean metric. Then the function $\psi : U \to \mathbb{R}$ defined by

$$\psi(\mathbf{x} = \int_0^1 \varphi(\mathbf{x}, t) dt$$

is continuous.

Furthermore, if $D_{\mathbf{x}}\varphi : U \times I \to End(\mathbb{R}^n, \mathbb{R}) \simeq (\mathbb{R}^n)^*$ exists and is continuous, then ψ is C^1 and

$$D_{\mathbf{x}}\psi(\mathbf{x}) = \int_0^1 D_{\mathbf{x}}\varphi(\mathbf{x},t)dt.$$

Proof: we start by proving the continuity of ψ . We want to show that $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ such that

$$\|\mathbf{x} - \mathbf{x}'\| < \delta_{\varepsilon} \Longrightarrow |\psi(\mathbf{x}) - \psi(\mathbf{x}')| < \varepsilon.$$

For $\mathbf{x}, \mathbf{x}' \in U$, we have

$$|\psi(\mathbf{x}) - \psi(\mathbf{x}')| = \left| \int_0^1 (\varphi(\mathbf{x}, t) - \varphi(\mathbf{x}', t)) dt \right| \le \int_0^1 |\varphi(\mathbf{x}, t) - \varphi(\mathbf{x}', t)| dt.$$

Let $\varepsilon > 0$ and $(\mathbf{x}, t) \in U \times I$. Since φ is continuous, $\exists \delta_{\varepsilon} = \delta_{\varepsilon}(\mathbf{x}, t)$ such that

$$\|\mathbf{x} - \mathbf{x}'\|, |t - t'| < \delta_{\varepsilon} \Longrightarrow |\varphi(\mathbf{x}, t) - \varphi(\mathbf{x}', t')| < \varepsilon/12.$$

In particular,

$$\|\mathbf{x} - \mathbf{x}'\| < \delta_{\varepsilon} \Longrightarrow |\varphi(\mathbf{x}, t') - \varphi(\mathbf{x}', t')| < \varepsilon/6.$$

For a **x** fixed, define $V_t = \{t' \in \mathbb{R} \mid |t-t'| < \delta_{\varepsilon}(\mathbf{x}, t)\} \cap I$; then $\{V_t\}_{t \in I}$ is an open cover of the subspace $I \subseteq \mathbb{R}$. But I is a compact subspace of \mathbb{R} in the Euclidean topology, and so there is a finite subcover $\{V_{t_1}, \ldots, V_{t_K}\}$ of I with

$$\bigcup_{i=1}^{K} V_{t_i} = I$$

Let $\delta_{\varepsilon}(\mathbf{x}) = \min\{\delta(\mathbf{x}, t_i) \mid i = 1, ..., K\}$. Thus for any $t' \in I$, we can find a $t_i \in I$ such that $|t_i - t'| < \delta_{\varepsilon}(\mathbf{x}, t_i)$. If we also have $||\mathbf{x} - \mathbf{x}'|| < \delta_{\varepsilon}(\mathbf{x})$, then

$$\begin{aligned} |\varphi(\mathbf{x},t') - \varphi(\mathbf{x}',t')| &\leq |\varphi(\mathbf{x},t') - \varphi(\mathbf{x},t_i)| + |\varphi(\mathbf{x},t_i) - \varphi(\mathbf{x}',t_i)| + |\varphi(\mathbf{x}',t_i) - \varphi(\mathbf{x}',t')| \\ &< \varepsilon/6 + \varepsilon/6 + \varepsilon/6 = \varepsilon/2. \end{aligned}$$

Set $\delta_{\varepsilon} = \delta_{\varepsilon}(\mathbf{x})$. Then for all $\mathbf{x}, \mathbf{x}' \in U$ we have

$$|\psi(\mathbf{x}) - \psi(\mathbf{x}')| \le \int_0^1 \frac{\varepsilon}{2} dt = \frac{\varepsilon}{2} < \varepsilon.$$

We now tackle the differentiability of ψ . Since $D_{\mathbf{x}}\varphi$ is continuous by assumption, the same argument as above shows that the function

$$\mathbf{x} \in U \mapsto \lambda(\mathbf{x}) = \int_0^1 D_{\mathbf{x}} \varphi(\mathbf{x}, t) dt$$

is continuous. It remains only to show that $\lambda(x) = D_{\mathbf{x}}\psi(\mathbf{x})$, that is, $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ such that

$$\|\mathbf{h}\| < \delta_{\varepsilon} \Longrightarrow |\psi(\mathbf{x} + \mathbf{h}) - \psi(\mathbf{x}) - \lambda(\mathbf{x})\mathbf{h}| < \varepsilon \cdot \|\mathbf{h}\|$$

But

$$|\psi(\mathbf{x}+\mathbf{h})-\psi(\mathbf{x})-\lambda(\mathbf{x})\mathbf{h}| = \left|\int_0^1 (\varphi(\mathbf{x}+\mathbf{h},t)-\varphi(\mathbf{x},t))dt - \int_0^1 D_{\mathbf{x}}\varphi(\mathbf{x},t)\mathbf{h}dt\right|$$

$$\leq \int_0^1 |\varphi(\mathbf{x} + \mathbf{h}, t) - \varphi(\mathbf{x}, t)) - D_{\mathbf{x}}\varphi(\mathbf{x}, t)\mathbf{h}|dt$$

Taylor's thm =
$$\int_0^1 |D_{\mathbf{x}}\varphi(\mathbf{x} + \boldsymbol{\theta}, t) - D_{\mathbf{x}}\varphi(\mathbf{x}, t)|dt,$$

for $\theta \in [0, h]$. But $D_{\mathbf{x}} \varphi$ is continuous so $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ such that

$$\|\boldsymbol{\theta}\| \leq \|\mathbf{h}\| < \delta_{\varepsilon} \Longrightarrow |D_{\mathbf{x}}\varphi(\mathbf{x}+\boldsymbol{\theta},t) - D_{\mathbf{x}}\varphi(\mathbf{x},t)| < \varepsilon.$$

Hence

$$|\psi(\mathbf{x} + \mathbf{h}) - \psi(\mathbf{x}) - \lambda(\mathbf{x})\mathbf{h}| < \int_0^1 \varepsilon \|\mathbf{h}\| dt = \varepsilon \|\mathbf{h}\|,$$

which completes the proof.

And now, the *pièce de résistance*.

Theorem 181 (POINCARÉ'S LEMMA) Let $U \subseteq \mathbb{R}^n$ be star-shaped and containing **0**. If $\omega \in \Omega^p(U)$ is closed, then it is exact.

Proof: we start by proving the result for n = 1, p = 1. Let $\omega \in \Omega^1(U)$. Then $\omega = f \, dx$, with $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$. Since $\Omega^2(U) = \{0\}$, we have $d\omega = 0 \in \Omega^2(U)$. We show that $\exists F \in \Omega^0(U)$ such that $dF = \omega$.

Recall that

$$F(x) = \int_0^x f(t)dt = \int_0^1 f(xs)xds = \int_0^1 g(x,s)ds.$$

According to Lemma 180,

$$F'(x) = \int_0^1 \frac{\partial g}{\partial x}(x, s)ds = \int_0^1 (f(xs) + sf'(xs))ds$$

=
$$\int_0^1 \frac{d}{ds}[sf(x, s)]ds = 1 \cdot f(x, 1) - 0 \cdot f(x, 0) = f(x)$$

Hence $dF = \frac{\partial F}{\partial x} dx = F'(x) dx = f(x) dx = \omega$.

Now suppose that n > 1, p = 1. Let $\omega \in \Omega^1(U)$ with $d\omega = 0$. We want to show $\exists \eta = F \in \Omega^0(U) = \mathcal{C}^\infty(U, \mathbb{R})$ such that $d\eta = \omega$. By hypothesis,

$$\omega = \sum_{i=1}^{n} f_i \, \mathrm{d} x_i, \quad \text{with } f_i \in \mathcal{C}^{\infty}(U, \mathbb{R})$$

.

and

$$\mathbf{d}\omega = \sum_{i=1}^{n} \mathbf{d}f_{i} \wedge \mathbf{d}x_{i} = \sum_{i,j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \, \mathbf{d}x_{i} \wedge \mathbf{d}x_{j} = \sum_{i < j} \left(\frac{\partial f_{i}}{\partial x_{j}} - \frac{\partial f_{j}}{\partial x_{i}} \right) \, \mathbf{d}x_{i} \wedge \mathbf{d}x_{j} = 0,$$

and so

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}, \quad \text{for all } 1 \le i < j \le n.$$

Let

$$F(\mathbf{x}) = F(x_1, \dots, x_n) = \sum_{i=1}^n f_i(\mathbf{x}s) x_i ds = \sum_{i=1}^n \underbrace{f_i(x_1s, \dots, x_ns) x_i}_{=g_i(\mathbf{x},s)} ds.$$

We show that $dF = \omega$:

$$\begin{split} \frac{\partial F}{\partial x_1}(\mathbf{x}) &= \sum_{i=1}^n \frac{\partial}{\partial x_1} \int_0^1 g_i(\mathbf{x}, s) ds = \sum_{i=1}^n \int_0^1 \frac{\partial}{\partial x_1} g_i(\mathbf{x}, s) ds \\ &= \int_0^1 \left[f_1(\mathbf{x}s) + x_1 s \frac{\partial}{\partial x_1} f(\mathbf{x}s) \right] ds + \sum_{j=2}^n \int_0^1 x_j s \frac{\partial}{\partial x_1} f_j(\mathbf{x}s) ds \\ &= \int_0^1 \left[f_1(\mathbf{x}s) + \sum_{j=1}^n x_j s \frac{\partial}{\partial x_j} f_1(\mathbf{x}s) \right] ds, \end{split}$$

by the equality of partial derivatives above. Set $k_1(s) = sf_1(\mathbf{x}s)$. Then

$$k_1'(s) = f_1(\mathbf{x}s) + \sum_{j=1}^n x_j s \frac{\partial}{\partial x_j} f_1(\mathbf{x}s),$$

so that

$$\frac{\partial F}{\partial x_1}(\mathbf{x}) = \int_0^1 k'(s)ds = k(1) - k(0) = f_1(\mathbf{x}).$$

In a similar fashion, we can see that

$$\frac{\partial F}{\partial x_i}(\mathbf{x}) = f_i(\mathbf{x}), \quad \text{for all } 1 \le j \le n,$$

and so

$$\mathbf{d}F = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i} \, \mathbf{d}x_i = \sum_{i=1}^{n} f_i \, \mathbf{d}x_i = \omega.$$

We will not be providing the proof for p > 1.

Where exactly was the hypothesis that U is star-shaped used? $^{\rm 3}$

³Hint: look at the definition of F(x) (in the case n = 1) and $F(\mathbf{x})$ (in the case n > 1).

In a nutshell, we have shown the following result.

Proposition 182 Let $U \subseteq_O \mathbb{R}$ and $\omega = \sum_{i=1}^n f_i \, dx_i \in \Omega^1(U)$. Consider the following conditions: 1. ω is exact in U; 2. ω is closed in U; 3. $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$ for all i, j.

Then $1. \implies 2. \iff 3$. Furthermore, if U is star-shaped, then the three conditions are equivalent.

13.4 Pullback of a Differential Form

Let $U \subseteq_O \mathbb{R}^m$, $V \subseteq_O \mathbb{R}^n$, $\mathbf{g} \in \mathcal{C}^{\infty}(U, V)$.⁴ The **pullback** function $\mathbf{g}^* : \Omega^k(V) \to \Omega^k(U)$ satisfies

$$\mathbf{g}^*(\bigwedge_i \omega_i) = \bigwedge_i \mathbf{g}^*(\omega_i).$$

We define it as follows.

Case k = 0: if $f \in \mathcal{C}^{\infty}(V, \mathbb{R}) = \Omega^0(V)$, the pullback is

$$\mathbf{g}^*(f) = f \circ \mathbf{g} : U \to \mathbb{R} \in \mathcal{C}^\infty(U, V) = \Omega^0(U).$$

Case k = 1: if a smooth $\mathbf{g} : U \subseteq_o \mathbb{R}^m \to V \subseteq_O \mathbb{R}^n$ maps

$$\mathbf{u} = (u_1, \ldots, u_m) \in U \mapsto \mathbf{v} = \mathbf{g}(\mathbf{u}) = (g_1(\mathbf{u}), \ldots, g_n(\mathbf{u})) \in V,$$

and $\omega\in\Omega^1(V)$, then $\omega=\sum_{i=1}^n f_i\,\mathrm{d} x_i$ and the pullback is

$$\mathbf{g}^*(\omega) = \sum_{i=1}^n \mathbf{g}^*(f_i) \mathbf{g}^*(\mathrm{d}x_i) = \sum_{i=1}^n (f_i \circ \mathbf{g}) \, \mathrm{d}g_i = \sum_{i=1}^n (f_i \circ \mathbf{g}) \left(\sum_{j=1}^m \frac{\partial g_i}{\partial u_j} \, \mathrm{d}u_j \right).$$

Let us take a look at some examples.

Examples

1. Let $\mathbf{g}: U = \mathbb{R} \to V = \mathbb{R}$ and consider $\omega = f \, \mathrm{d}x \in \Omega^1(V)$. Then the pullback $\mathbf{g}^*(\omega) \in \Omega^1(U)$ is given by

$$\mathbf{g}^*(\omega)(u) = (f \circ g)\mathbf{g}^*(\mathbf{d}x)(u) = f(\mathbf{g}(u)) \cdot \mathbf{g}'(u) \, \mathbf{d}u. \qquad \Box$$

⁴We will encounter such functions when we discuss vector fields in Section 13.5.

2. Let $\mathbf{g}: U = \mathbb{R} \to V = \mathbb{R}^2$ be defined by

$$\mathbf{g}(t) = (\cos t, \sin t)$$

and $\omega = -y \, \mathrm{d} x + x \, \mathrm{d} y \in \Omega^1(V).$ Then

$$\mathbf{g}^*(\mathbf{d}x)(t) = (\mathbf{d}g_1)(t) = -\sin t \, \mathbf{d}t, \quad \mathbf{g}^*(\mathbf{d}y)(t) = (\mathbf{d}g_2)(t) = \cos t \, \mathbf{d}t,$$

and the pullback $\mathbf{g}^*(\omega)\in \Omega^1(U)$ is given by

$$\begin{aligned} \mathbf{g}^*(\omega)(t) &= f_1(\mathbf{g}(t))(\mathrm{d}g_1)(t) + f_2(\mathbf{g}(t))(\mathrm{d}g_2)(t) \\ &= (-\sin t)(-\sin t \,\mathrm{d}t) + (\cos t)(\cos t \,\mathrm{d}t) = (\sin^2 t + \cos^2 t) \,\mathrm{d}t = \mathrm{d}t. \end{aligned}$$

3. Let $\mathbf{g}: U = \mathbb{R}^2 \to V = \mathbb{R}^2$ be defined by

 $\mathbf{g}(\mathbf{u}) = (g_1(u_1, u_2), g_2(u_1, u_2)) = (u_1 \cos u_2, u_1 \sin u_2)$

and $\omega = f_1(x_1,x_2) \, \mathrm{d} x_1 + f_2(x_1,x_2) \, \mathrm{d} x_2 = x_1 \, \mathrm{d} x_1 + x_2 \, \mathrm{d} x_2 \in \Omega^1(V).$ Then

$$\begin{aligned} \mathbf{g}^*(\mathrm{d}x_1)(u_1, u_2) &= (\mathrm{d}g_1)(u_1, u_2) = \frac{\partial g_1(u_1, u_2)}{\partial u_1} \,\mathrm{d}u_1 + \frac{\partial g_1(u_1, u_2)}{\partial u_2} \,\mathrm{d}u_2 \\ &= \cos u_2 \,\mathrm{d}u_1 - u_1 \sin u_2 \,\mathrm{d}u_2 \\ \mathbf{g}^*(\mathrm{d}x_2)(u_1, u_2) &= (\mathrm{d}g_2)(u_1, u_2) = \frac{\partial g_2(u_1, u_2)}{\partial u_1} \,\mathrm{d}u_1 + \frac{\partial g_2(u_1, u_2)}{\partial u_2} \,\mathrm{d}u_2 \\ &= \sin u_2 \,\mathrm{d}u_1 + u_1 \cos u_2 \,\mathrm{d}u_2, \end{aligned}$$

and the pullback $\mathbf{g}^*(\omega)\in \Omega^1(U)$ is given by

$$\begin{aligned} \mathbf{g}^*(\omega)(u_1, u_2) &= f_1(\mathbf{g}(u_1, u_2))(\mathrm{d}g_1)(u_1, u_2) + f_2(\mathbf{g}(u_1, u_2))(\mathrm{d}g_2)(u_1, u_2) \\ &= u_1 \cos u_2(\cos u_2 \,\mathrm{d}u_1 - u_1 \sin u_2 \,\mathrm{d}u_2) + u_1 \sin u_2(\sin u_2 \,\mathrm{d}u_1 + u_1 \cos u_2 \,\mathrm{d}u_2) \\ &= u_1(\cos^2 u_2 + \sin^2 u_2), \mathrm{d}u = u_1 \,\mathrm{d}u_1. \end{aligned}$$

Case k > 1: if $\mathbf{g} : U \subseteq_O \mathbb{R}^m \to V \subseteq_O \mathbb{R}^n$ is smooth and $\omega = \mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_k} \in \Omega^k(V)$, we define the pullback

$$\mathbf{g}^*(\omega) = \mathbf{g}^*(\mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_k}) = \mathbf{d}g_{i_1} \wedge \cdots \wedge \mathbf{d}g_{i_k} \in \Omega^k(U).$$

If

$$\omega = \sum_{i_1 < \cdots < i_k} P_{i_1, \cdots, i_k} \mathbf{d} x_{i_1} \wedge \cdots \wedge \mathbf{d} x_{i_k} \in \Omega^k(V),$$

then the pullback is

$$\mathbf{g}^*(\omega) = \sum_{i_1 < \cdots < i_k} \mathbf{g}^*(P_{i_1, \cdots, i_k}) \mathbf{g}^*(\mathbf{d}x_{i_1} \wedge \cdots \wedge \mathbf{d}x_{i_k}) = \sum_{i_1 < \cdots < i_k} (P_{i_1, \cdots, i_k} \circ \mathbf{g}) \mathbf{d}g_{i_1} \wedge \cdots \wedge \mathbf{d}g_{i_k} \in \Omega^k(U).$$

Example: let $\mathbf{g} : U = \mathbb{R}^2 \to V = \mathbb{R}^2$ be defined by $\mathbf{g}(\mathbf{u}) = (g_1(u_1, u_2), g_2(u_1, u_2)) = (u_1 \cos u_2, u_1 \sin u_2)$ and $\omega = dx_1 \wedge dx_2 \in \Omega^2(V)$. Then $(dg_1)(u_1, u_2) = \cos u_2 du_1 - u_1 \sin u_2 du_2, \quad (dg_2)(u_1, u_2) = \sin u_2 du_1 + u_1 \cos u_2 du_2,$ and the pullback $\mathbf{g}^*(\omega) \in \Omega^2(U)$ is given by $\mathbf{g}^*(\omega)(u_1, u_2) = \mathbf{g}^*(dx_1 \wedge dx_2)(u_1, u_2) = (dg_1)(u_1, u_2) \wedge (dg_2)(u_1, u_2)$ $= (\cos u_2 du_1 - u_1 \sin u_2 du_2) \wedge (\sin u_2 du_1 + u_1 \cos u_2 du_2)$ $= u_1 \cos^2 u_2 du_1 \wedge du_2 - u_1 \sin^2 u_2 du_2 \wedge du_1$ $= u_1(\cos^2 u_2 + \sin^2 u_2) du_1 \wedge du_2 = u_1 du_1 \wedge du_2.$

While none of the computations are particularly difficult to perform (although they can be tedious), there is a simpler way to express pullbacks, as the following discussion illustrates.

If $\mathbf{g}: U = \mathbb{R}^2 \to V = \mathbb{R}^2$ is smooth, then the pullback of $dx_1 \wedge dx_2 \in \Omega^2(V)$ by \mathbf{g} is

$$\begin{split} \mathbf{g}^*(\mathrm{d}x_1 \wedge \mathrm{d}x_2) &= \mathrm{d}g_1 \wedge \mathrm{d}g_2 = \left(\frac{\partial g_1}{\partial u_1} \,\mathrm{d}u_1 + \frac{\partial g_1}{\partial u_2} \,\mathrm{d}u_2\right) \wedge \left(\frac{\partial g_2}{\partial u_1} \,\mathrm{d}u_1 + \frac{\partial g_2}{\partial u_2} \,\mathrm{d}u_2\right) \\ &= \left(\frac{\partial g_1}{\partial u_1} \frac{\partial g_2}{\partial u_2} - \frac{\partial g_1}{\partial u_2} \frac{\partial g_2}{\partial u_1}\right) \,\mathrm{d}u_1 \wedge \mathrm{d}u_2 = \det(D\mathbf{g}) \,\mathrm{d}u_1 \wedge \mathrm{d}u_2 \in \Omega^2(U), \end{split}$$

where *D***g** is the Jacobian matrix of g (see Section 21.7).

Generally, if $\mathbf{g} : U \subseteq_O \mathbb{R}^m \to V \subseteq_O \mathbb{R}^m$ is smooth, then the pullback of $dx_{i_1} \land \cdots \land dx_{i_k} \in \Omega^k(V)$ by \mathbf{g} is

$$\begin{split} \mathbf{g}^*(\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}) &= \mathrm{d}g_{i_1}\wedge\cdots\wedge\mathrm{d}g_{i_k} = \left(\sum_{j=1}^m \frac{\partial g_{i_1}}{\partial u_j}\,\mathrm{d}u_j\right)\wedge\cdots\wedge\left(\sum_{j=1}^m \frac{\partial g_{i_k}}{\partial u_j}\,\mathrm{d}u_j\right) \\ &= \sum_{j_1<\cdots< j_k} \det \begin{pmatrix} \frac{\partial g_{i_1}}{\partial u_{j_1}}&\cdots&\frac{\partial g_{i_1}}{\partial u_{j_k}}\\ \vdots&\ddots&\vdots\\ \frac{\partial g_{i_k}}{\partial u_{j_1}}&\cdots&\frac{\partial g_{i_k}}{\partial u_{j_k}} \end{pmatrix} \,\mathrm{d}u_{j_1}\wedge\cdots\wedge\mathrm{d}u_{j_k}\in\Omega^k(U). \end{split}$$

If $U, V \subseteq_O \mathbb{R}^n$, $g : U \to V$ smooth, $f \in \mathcal{C}^{\infty}(V, \mathbb{R})$, and $\omega = f \, \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n \in \Omega^n(V)$, then the pullback of ω by **g** is

$$\mathbf{g}^*(\omega) = (f \circ \mathbf{g}) \, \mathrm{d}g_1 \wedge \cdots \wedge \mathrm{d}g_n = \mathbf{g}^*(f) \, \mathrm{det}(D\mathbf{g}) \, \mathrm{d}u_1 \wedge \cdots \wedge \mathrm{d}u_n \in \Omega^n(U).$$

The pullback commutes with the exterior derivative for 0-differential forms.

Lemma 183

With the usual assumptions of this section, if $f \in \Omega^0(V)$, then $d(\mathbf{g}^*(f)) = \mathbf{g}^*(df)$.

Proof: we use the definition and see that

$$\mathbf{d}(\mathbf{g}^*(f)) = \mathbf{d}(f \circ \mathbf{g}) = \sum_{j=1}^m \frac{\partial (f \circ \mathbf{g})}{\partial u_j} \, \mathbf{d}u_j = \sum_{j=1}^m \left(\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \circ \mathbf{g}\right) \frac{\partial g_i}{\partial u_j}\right) \, \mathbf{d}u_j$$
$$= \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \circ \mathbf{g}\right) \left(\sum_{j=1}^m \frac{\partial g_i}{\partial u_j} \, \mathbf{d}u_j\right) = \mathbf{g}^* \left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} \, \mathbf{d}x_i\right) = \mathbf{g}^*(\mathbf{d}f),$$

which completes the proof.

But this result does not apply solely to $\Omega^0(V)$.

Proposition 184

 $\text{Let } \mathbf{\bar{g}}: U \subseteq_O \mathbb{R}^m \to V \subseteq_O \mathbb{R}^m \text{ be smooth. If } \omega \in \Omega^0(V) \text{, then } d(\mathbf{g}^*(\omega)) = \mathbf{g}^*(\mathbf{d}\omega).$

Proof: the case k=0 was proven in Lemma 183. For k>0, since $d(\omega_1+\omega_2)=d\omega_1+d\omega_2$ and

$$\omega = \sum_{i_1 < \cdots < i_k} f_{i_1, \dots, i_k} \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_l}, \quad f_{i_1, \dots, i_k} \in \Omega^0(V),$$

it is sufficient to show that

$$\mathbf{g}^*(\mathbf{d}(f\,\mathbf{d}x_{i_1}\wedge\cdots\wedge\mathbf{d}x_{i_k}))=\mathbf{d}\left(\mathbf{g}^*(f\,\mathbf{d}x_{i_1}\wedge\cdots\wedge\mathbf{d}x_{i_k})\right).$$

But the left side of this equation reduces to

$$\mathbf{g}^*(\mathbf{d}(f \, \mathbf{d}x_{i_1} \wedge \dots \wedge \mathbf{d}x_{i_k})) = \mathbf{g}^*(\mathbf{d}f) \wedge \mathbf{g}^*(\mathbf{d}x_{i_1} \wedge \dots \wedge \mathbf{d}x_{i_k})$$

$$\boxed{\mathbf{lemma 183}} = \mathbf{d}(\mathbf{g}^*(f)) \wedge \mathbf{g}^*(\mathbf{d}x_{i_1} \wedge \dots \wedge \mathbf{d}x_{i_k})$$

$$= \mathbf{d}(\mathbf{g}^*(f)) \wedge (\mathbf{d}g_{i_1} \wedge \dots \wedge \mathbf{d}g_{i_k}).$$

Thanks to repeated use of Theorem 177, the right side, on the other hand, reduces to

$$\begin{aligned} \mathsf{d}(f \circ \mathbf{g} \, \mathsf{d}g_{i_1} \wedge \dots \wedge \mathsf{d}g_{i_k}) &= \mathsf{d}(f \circ \mathbf{g}) \wedge \mathsf{d}g_{i_1} \wedge \dots \wedge \mathsf{d}g_{i_k} + (-1)^0 (f \circ \mathbf{g}) \underbrace{\mathsf{d}(\mathsf{d}g_{i_1} \wedge \dots \wedge \mathsf{d}g_{i_k})}_{=0} \\ &= \mathsf{d}(f \circ \mathbf{g}) \wedge \mathsf{d}g_{i_1} \wedge \dots \wedge \mathsf{d}g_{i_k}. \end{aligned}$$

The machinery we have developed up to now may seem hopelessly formal and mechanical; its practical value comes through once we identify differential forms with vector fields.

13.5 Vector Fields

Let $U \subseteq_O \mathbb{R}^n$. A vector field is a function $\mathbf{F} : U \to \mathbb{R}^n$; it is of class \mathbf{C}^k if $\mathbf{F} \in \mathcal{C}^k(U, \mathbb{R}^n)$. A function $f : U \to \mathbb{R}$ is called a scalar field.

Example: let $f: U \to \mathbb{R}$ be continuously differentiable and consider $\nabla f: U \to \mathbb{R}^n$ defined by

$$\nabla f(\mathbf{u}) = \left(\frac{\partial f(\mathbf{u})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{u})}{\partial x_n}\right).$$

Then f is a scalar field and ∇f is a vector field.

We can associate to any vector field $\mathbf{F} : U \to \mathbb{R}^n$, defined by $\mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), \dots, F_n(\mathbf{x}))$ a unique differential form $\omega_{\mathbf{F}} \in \Omega^1(U)$ defined by

$$\omega_{\mathbf{F}} = F_1 \, \mathbf{d} x_1 + \dots + F_n \, \mathbf{d} x_n.$$

In particular, if $f: U \to \mathbb{R}$ is smooth, the differential form associated to ∇f is

$$\omega_{\nabla f} = \frac{\partial f}{\partial x_1} \, \mathrm{d}x_1 + \dots + \frac{\partial f}{\partial x_n} \, \mathrm{d}x_n = \mathrm{d}f \in \Omega^1(U).$$

Theorem 185

Let $U \subseteq_O \mathbb{R}^n$ and $\mathbf{F} : U \to \mathbb{R}^n$ be smooth. Consider the following conditions:

1. $\mathbf{F} = \nabla f$ for some $f : U \to \mathbb{R}$ smooth;

2.
$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$$
 for all i, j .

Then $1 \implies 2$. If U is star-shaped then, the conditions are equivalent.

Proof: if $\mathbf{F} = \nabla f$, then $\omega_{\mathbf{F}} = \omega_{\nabla f} = \mathbf{d}f \in \Omega^1(U)$ is exact and so condition 2. holds according to Proposition 182.

If U is star-shaped and $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ for all i, j, then $\omega_{\mathbf{F}} = F_1 dx_1 + \cdots + dx_n$ is exact (again, by Theorem 182), so that

$$\omega_{\mathbf{F}} = \mathbf{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \, \mathbf{d}x_i$$

for some $f: U \to \mathbb{R} \in \Omega^0(U)$. By unicity of $\omega_{\mathbf{F}}$, we must have $F_i = \frac{\partial f}{\partial x_i}$ for all *i*, which is to say that $\mathbf{F} = \nabla f$.

When $\mathbf{F} = \nabla f$, we say that \mathbf{F} is a **conservative vector field** (or a **gradient field**) and that f is a **scalar potential** for \mathbf{F} .

Until the end of the chapter, we work with vector fields $\mathbf{F} : U \subseteq_O \mathbb{R}^3 \to \mathbb{R}^3$. Recall that, seen as a vector field over \mathbb{R} ,

$$\dim\left(\Lambda^p(\mathbb{R}^n)\right) = \binom{n}{p},$$

according to Corollary 168; in that case, we have

$$\dim(\Lambda^1(\mathbb{R}^3)) = \dim(\Lambda^2(\mathbb{R}^3)), \quad \dim(\Lambda^0(\mathbb{R}^3)) = \dim(\Lambda^3(\mathbb{R}^3)) = 1.$$

Consider the vector space isomorphism $\Phi_1 : \mathbb{R}^3 \to \Lambda^1(\mathbb{R}^3)$ defined by

$$\Phi_1(\mathbf{a}) = \Phi_1(a_1, a_2, a_3) = a_1 \, \mathrm{d} x_1 + a_2 \, \mathrm{d} x_2 + a_3 \, \mathrm{d} x_3.$$

If we "multiply" two vectors in \mathbb{R}^3 , we should get the same "result" as if we "multiply" two 1-forms over \mathbb{R}^3 ; the problem is that we while the wedge product can play the role of a multiplication, the wedge product of two 1-forms over \mathbb{R}^3 is a 2-form over \mathbb{R}^3 .

Over other spaces this would be a deal-breaker, but over \mathbb{R}^3 the problem evaporates once we introduce a second vector space isomorphism $\Phi_2 : \mathbb{R}^3 \to \Lambda^2(\mathbb{R}^3)$, defined by

$$\Phi_2(\mathbf{a}) = \Phi_2(a_1, a_2, a_3) = a_1 \operatorname{d} x_2 \wedge \operatorname{d} x_3 + a_2 \operatorname{d} x_3 \wedge \operatorname{d} x_1 + a_3 \operatorname{d} x_1 \wedge \operatorname{d} x_2,$$

and define the **cross-product** over \mathbb{R}^3 by

$$\begin{aligned} \mathbf{a} \times \mathbf{b} &= (a_1, a_2, a_3) \times (b_1, b_2, b_3) \\ &\simeq \Phi_1(a_1, a_2, a_3) \wedge \Phi_1(b_1, b_2, b_3) \\ &= (a_1 \, \mathbf{d} x_1 + a_2 \, \mathbf{d} x_2 + a_3 \, \mathbf{d} x_3) \wedge (b_1 \, \mathbf{d} x_1 + b_2 \, \mathbf{d} x_2 + b_3 \, \mathbf{d} x_3) \\ &= (a_2 b_3 - a_3 b_2) \, \mathbf{d} x_2 \wedge \mathbf{d} x_3 + (a_3 b_1 - a_1 b_3) \, \mathbf{d} x_1 \wedge \mathbf{d} x_2 + (a_1 b_2 - a_2 b_1) \, \mathbf{d} x_1 \wedge \mathbf{d} x_2 \\ &\simeq \Phi_2^{-1}((a_2 b_3 - a_3 b_2) \, \mathbf{d} x_2 \wedge \mathbf{d} x_3 + (a_3 b_1 - a_1 b_3) \, \mathbf{d} x_1 \wedge \mathbf{d} x_2 + (a_1 b_2 - a_2 b_1) \, \mathbf{d} x_1 \wedge \mathbf{d} x_2) \\ &= (a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1), \end{aligned}$$

which should go some way towards elucidating the mystery of where the apparently random definition of the cross-product come from when it is first introduced in linear algebra courses.

In applications, it is typical to use $x = x_1$, $y = x_2$, and $z = x_3$. In that case, we could also write the vector field $\mathbf{F} : U \to \mathbb{R}^3$ as

$$\mathbf{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z));$$

the composition

 $\Phi_1 \circ \mathbf{F} = \omega_{\mathbf{F}} = P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z \in \Omega^1(U)$

is the corresponding differential 1- form over U.

Then, we have:

$$\begin{split} \mathbf{d}\omega_{\mathbf{F}} &= \mathbf{d}P \wedge \mathbf{d}x + \mathbf{d}Q \wedge \mathbf{d}y + \mathbf{d}R \wedge \mathbf{d}z \\ &= \left(\frac{\partial P}{\partial x} \, \mathbf{d}x + \frac{\partial P}{\partial y} \, \mathbf{d}y + \frac{\partial P}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}x + \left(\frac{\partial Q}{\partial x} \, \mathbf{d}x + \frac{\partial Q}{\partial y} \, \mathbf{d}y + \frac{\partial Q}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}y \\ &+ \left(\frac{\partial R}{\partial x} \, \mathbf{d}x + \frac{\partial R}{\partial y} \, \mathbf{d}y + \frac{\partial R}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}z \\ &= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \, \mathbf{d}y \wedge \mathbf{d}z + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \, \mathbf{d}z \wedge \mathbf{d}x + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, \mathbf{d}x \wedge \mathbf{d}y \in \Omega^2(U). \end{split}$$

The vector field $\Phi_2^{-1}(\mathbf{d}\omega_{\mathbf{F}}) = \Phi_2^{-1}(\Phi_1(\mathbf{F}))$ associated with $\mathbf{d}\omega_{\mathbf{F}}$ is the **curl of F** and is denoted by $\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} : U \to \mathbb{R}^3$ and

$$\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

Theorem 186

Let $U = \subseteq_O \mathbb{R}^3$ and $\mathbf{F} : U \to \mathbb{R}^3$ be smooth. Consider the following conditions:

- 1. $\mathbf{F} = \nabla f$ for some smooth $f : U \to \mathbb{R}$;
- *2.* $\nabla \times \mathbf{F} = \mathbf{0}$.

Then $1 \implies 2$. If U is star-shaped then, the conditions are equivalent.

Proof: direct application of Theorem 185.

If instead we consider the composition

$$\Phi_2 \circ \mathbf{F} = \varphi_{\mathbf{F}} = P \, \mathrm{d}y \wedge \mathrm{d}x + Q \, \mathrm{d}z \wedge \mathrm{d}x + R \, \mathrm{d}x \wedge \mathrm{d}z \in \Omega^2(U),$$

then we have

$$\begin{split} \mathbf{d}\varphi_{\mathbf{F}} &= \mathbf{d}P \wedge \mathbf{d}y \wedge \mathbf{d}z + \mathbf{d}Q \wedge \mathbf{d}z \wedge \mathbf{d}x + \mathbf{d}R \wedge \mathbf{d}x \wedge \mathbf{d}y \\ &= \left(\frac{\partial P}{\partial x} \, \mathbf{d}x + \frac{\partial P}{\partial y} \, \mathbf{d}y + \frac{\partial P}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}y \wedge \mathbf{d}z + \left(\frac{\partial Q}{\partial x} \, \mathbf{d}x + \frac{\partial Q}{\partial y} \, \mathbf{d}y + \frac{\partial Q}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}z \wedge \mathbf{d}x \\ &+ \left(\frac{\partial R}{\partial x} \, \mathbf{d}x + \frac{\partial R}{\partial y} \, \mathbf{d}y + \frac{\partial R}{\partial z} \, \mathbf{d}z\right) \wedge \mathbf{d}x \wedge \mathbf{d}y \\ &= \frac{\partial P}{\partial x} \, \mathbf{d}x \wedge \mathbf{d}y \wedge \mathbf{d}z + \frac{\partial Q}{\partial y} \, \mathbf{d}y \wedge \mathbf{d}z \wedge \mathbf{d}x + \frac{\partial R}{\partial z} \, \mathbf{d}z \wedge \mathbf{d}x \wedge \mathbf{d}y \\ &= \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) \, \mathbf{d}x \wedge \mathbf{d}y \wedge \mathbf{d}z \in \Omega^{3}(U). \end{split}$$

The scalar field associated with $d\varphi_{\mathbf{F}}$ is the **divergence of F** and is denoted by $\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} : U \to \mathbb{R}$ and

$$\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

As a consequence of Poincaré's lemma, we obtain the following result.

Theorem 187

Let $U = \subseteq_O \mathbb{R}^3$ and $\mathbf{F} : U \to \mathbb{R}^3$ be smooth. If there is a vector field $\mathbf{G} : U \to \mathbb{R}^3$ such that $curl(\mathbf{G}) = \nabla \times \mathbf{G} = \mathbf{F}$, then $div(\mathbf{F}) = \nabla \cdot \mathbf{F} = 0$. If U is star-shaped and $div(\mathbf{F}) = \nabla \cdot \mathbf{F} = 0$, then there is a $\mathbf{G} : U \to \mathbb{R}^3$ such that $curl(\mathbf{G}) = \nabla \times \mathbf{G} = \mathbf{F}$.

Proof: let $\omega_{\mathbf{G}} \in \Omega^1(U)$ and $\varphi_{\mathbf{F}} \in \Omega^2(U)$ be the associated differential forms. If $\operatorname{curl}(\mathbf{G}) = \mathbf{F}$, then $d\omega_{\mathbf{G}} = \varphi_{\mathbf{F}}$, so that $d\varphi_{\mathbf{F}} = d(d\omega_{\mathbf{G}}) = 0$, and thus $\operatorname{div}(\mathbf{F}) = 0$.

If U is star-shaped and $\operatorname{div}(\mathbf{F}) = 0$, then $d\varphi_{\mathbf{F}} = 0$, and so $\varphi_{\mathbf{F}}$ is closed. According to Poincaré's lemma, $\varphi_{\mathbf{F}}$ is exact, which is to say that $\exists \omega \in \Omega^1(U)$ such that $d\omega = \varphi_{\mathbf{F}}$. If **G** is the vector field corresponding to ω , then we have $\operatorname{curl}(\mathbf{G}) = \mathbf{F}$.

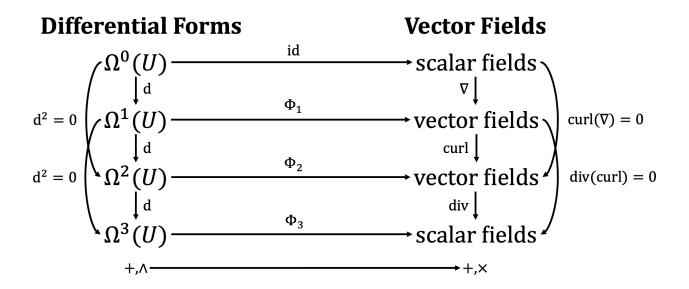
When $\mathbf{F} = \operatorname{curl}(\mathbf{G})$ for some $\mathbf{G} : U \to GR^3$, the vector field \mathbf{G} is a **vector potential** for \mathbf{F} . Such a vector potential is not unique; indeed if $f : U \to \mathbb{R}$ is smooth, then $\operatorname{curl}(\mathbf{G} + \nabla f) = \operatorname{curl}(\mathbf{G})$, as we can see below: if

$$\mathbf{G} \longleftrightarrow \omega_{\mathbf{G}} \in \Omega^{1}(U), \quad \operatorname{curl}(\mathbf{G}) \Longleftrightarrow \operatorname{d} \omega_{\mathbf{G}} \in \Omega^{2}(U), \quad \nabla f \Longleftrightarrow \operatorname{d} f \in \Omega^{1}(U),$$

then

$$\operatorname{curl}(\mathbf{G} + \nabla f) \iff \operatorname{d}(\omega_{\mathbf{G}} + \operatorname{d} f) = \operatorname{d}\omega_{\mathbf{G}} \iff \operatorname{curl}(\mathbf{G}).$$

In short, differential forms provide a tool to work with vector fields, which are the objects of interests in applications; the correspondence is diagrammed below.



13.6 Solved Problems

1. Are the following 1–forms exact?

a)
$$\omega = 2xy \, dx + x^2 \, dy$$

b) $\omega = (x^2 + yz) \, dx + (xz + \cos y) \, dy + (z + xy) \, dz$
c) $\omega = y \, dx + z \, dy + x \, dz$
d) $\omega = \frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy$

Solution:

a) We have $\omega = 2xy \, dx + x^2 \, dy \in \Omega^1(\mathbb{R}^2)$, where \mathbb{R}^2 is star-shaped. Since

$$d\omega = 2[(dx)y + x(dy)] \wedge dx + (2x dx) \wedge dy = 2x[dy \wedge dx + dx \wedge dy] = 0,$$

 ω is closed. According to Poincaré's lemma, ω is also exact. In fact, $\eta = x^2 y$ is an anti-derivative of ω (i.e. $d\eta = \omega$).

b) We have $\omega = (x^2 + yz) dx + (xz + \cos y) dy + (z + xy) dz \in \Omega^1(\mathbb{R}^3)$, where \mathbb{R}^3 is star-shaped. Since

$$d\omega = z \, dy \wedge dx + y \, dz \wedge dx + x \, dz \wedge dy + z \, dx \wedge dy + x \, dy \wedge dz + y \, dx \wedge dz = 0.$$

 ω is closed. According to Poincaré's lemma, ω is also exact. In fact,

$$\eta = \frac{x^3}{3} + xyz + \sin y + \frac{z^2}{2}$$

is an anti-derivative of ω (i.e. $d\eta = \omega$).

- c) Since $d\omega = dy \wedge dx + dz \wedge dy + dx \wedge dz \neq 0$, ω is not closed. Consequently, ω is not exact (remember, this has nothing to do with Poincaré's lemma).
- d) We have $\omega = \frac{x}{x^2+y^2} dx + \frac{y}{x^2+y^2} dy \in \Omega^1(\mathbb{R}^2 \{(0,0)\})$. Note that $U = \mathbb{R}^2 \{(0,0)\}$ is NOT star-shaped, and so we cannot use Poincaré's lemma to determine whether ω is exact or not. If ω is not closed, then it will necessarily not be exact, by contraposition. However,

$$\mathrm{d}\omega = \frac{-2xy}{(x^2 + y^2)^2} \,\mathrm{d}y \wedge \mathrm{d}x - \frac{2xy}{(x^2 + y^2)^2} \,\mathrm{d}x \wedge \mathrm{d}y = 0,$$

and so ω is closed and we cannot use this approach. We are left with no other option than to try to find an anti-derivative. The brute force method yields $\eta = \ln(\sqrt{x^2 + y^2})$ as an anti-derivative of ω (i.e. $d\eta = \omega$).

- 2. Are the following 2-forms exact?
 - a) $\omega = \mathbf{d}x \wedge \mathbf{d}y$
 - b) $\omega = z \, \mathrm{d}x \wedge \mathrm{d}y + y \, \mathrm{d}x \wedge \mathrm{d}z + z \, \mathrm{d}y \wedge \mathrm{d}z$

Solution:

a) We have $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^2)$, where \mathbb{R}^2 is star-shaped. Since

$$\mathrm{d}\omega = d(\mathrm{d}x\wedge\mathrm{d}y) = d^2x\wedge\mathrm{d}y - \mathrm{d}x\wedge\mathrm{d}y^2 = 0 - 0 = 0,$$

 ω is closed. According to Poincaré's lemma, ω is also exact.

b) We have

$$\omega = z \, \mathrm{d}x \wedge \mathrm{d}y + y \, \mathrm{d}x \wedge \mathrm{d}z + z \, \mathrm{d}y \wedge \mathrm{d}z \in \Omega^2(\mathbb{R}^3),$$

where \mathbb{R}^3 is star-shaped. Since

$$d\omega = dz \wedge dx \wedge dy + dy \wedge dx \wedge dz + dz \wedge dy \wedge dz$$

= $dz \wedge dx \wedge dy - dz \wedge dx \wedge dy + 0 = 0$,

ω is closed. According to Poincaré's lemma, ω is also exact. In fact, $η = xz \, dy + xy \, dz$ is an anti-derivative of ω (i.e. dη = ω).

13.7 Exercises

- 1. Prepare a 2-page summary of this chapter, with important definitions and results.
- 2. Prove results 172, 173, 174, 175, 176, 180 (try, at least), and 184.
- 3. If $f \in \Omega^0(U)$ and $\omega \in \Omega^p(U)$, show that $f \wedge \omega = f\omega$.
- 4. Show that if ω and φ are two closed differential forms, then so is $\omega \wedge \varphi$. Show that if ω is also exact, then $\omega \wedge \varphi$ is exact.
- 5. What is the pullback $\mathbf{g}^*(\omega) \in \Omega^1(\mathbb{R})$ if $\mathbf{g} : \mathbb{R} \to \mathbb{R}^2$ is defined by $\mathbf{g}(v) = (3 \cos 2v, 3 \sin 2v)$ and $\omega = -y \, \mathrm{d}x + x \, \mathrm{d}y \in \Omega^1(\mathbb{R}^2)$? Simplify your answer as much as possible.
- 6. What is the pullback $\mathbf{g}^*(\omega) \in \Omega^1(\mathbb{R}^2)$ if $g : \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $\mathbf{g}(u, v) = (\cos u, \sin u, v)$ and $\omega = z \, \mathrm{d}x + x \, \mathrm{d}y + y \, \mathrm{d}z \in \Omega^1(\mathbb{R}^3)$? Simplify your answer as much as possible.
- 7. What is the pullback $\mathbf{g}^*(\omega) \in \Omega^2(\mathbb{R}^2)$ if $g : \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $\mathbf{g}(u, v) = (\cos u, \sin u, v)$ and $\omega = z \, \mathrm{d}x \wedge \mathrm{d}y + y \, \mathrm{d}z \wedge \mathrm{d}x \in \Omega^2(\mathbb{R}^3)$? Simplify your answer as much as possible.
- 8. For each of the three previous exercises, compute $\mathbf{g}^*(\mathbf{d}\omega)$ and $d(\mathbf{g}^*\omega)$.
- 9. Let $\mathbf{g}: (0, \infty) \times (0, \pi) \times (0, 2\pi) \to \mathbb{R}^3$ the map defining the spherical coordinates in \mathbb{R}^3 . Compute $g^*(\mathbf{d}x \wedge \mathbf{d}y \wedge \mathbf{d}z)$.
- 10. Let $\mathbf{F}, \mathbf{G} : \mathbb{R}^3 \to \mathbb{R}^3$, $f : \mathbb{R}^3 \to \mathbb{R}$ be smooth mappings and \cdot and \times represent the inner product and cross product in \mathbb{R}^3 , respectively. Show that
 - a) $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div}(\mathbf{F}) + \operatorname{div}(\mathbf{G})$
 - b) $\operatorname{div}(f\mathbf{F}) = f\operatorname{div}(\mathbf{F}) + \mathbf{F} \cdot \nabla f$
 - c) $div(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot curl \mathbf{F} \mathbf{F} \cdot curl \mathbf{G}$
 - d) $\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl}(\mathbf{F}) + (\nabla f) \times \mathbf{F}$
 - e) div $(f\nabla f) = |\nabla f|^2$
- 11. Let $U \subseteq_O \mathbb{R}^n$ and $p \ge 0$. Show that $\Omega^p(U)$ is a vector space over \mathbb{R} .
- 12. Let $U \subseteq_O \mathbb{R}^n$, $p \ge 0$ and $\omega_1, \omega_2 \in \Omega^p(U)$. Show that $d(\omega_1 + \omega_2) = \mathbf{d}\omega_1 + \mathbf{d}\omega_2$.