
Chapter 13

Differential Forms

In this chapter, we introduce the notion of differential p−forms overRn,
which are derivatives of alternating linear p−forms overRn. This new no-
tion is a generalization of the differential of a function and admits a num-
ber of applications inmathematical physics (GrandUniϐied Theories, Yang-
Mills theory, superstring theory, etc.)

13.1 Differential p−Forms
We start by discussing the situation for n = 3. Let U ⊆O R3. A differential 1−form over U
is a function U → (R3)∗; the set of all such differential forms is denoted Ω1(U).

If {e1, e2, e3} is the canonical basis of R3, then for anyw ∈ R3 we have
w = w1e1 + w2e2 + w3e3.

We denote the dual basis of (R3)∗ by { dx, dy, dz}, which is to say that
dx, dy, dz : R3 → R and dx(w) = w1, dy(w) = w2, dz(w) = w3 for allw ∈ R3.

Then, if α ∈ (R3)∗, there are unique P,Q,R ∈ R such that
α = P dx+Q dy +R dz.

In general, if ω ∈ Ω1(U), ∃!P,Q,R : U → R such that
ω(u) = P (u) dx+Q(u) dy +R(u) dz, for all u ∈ U.

Let f : U → R be differentiable on U ; the differential of f is df ∈ Ω1(U), where

df(u) = ∂f

∂x
(u) dx+ ∂f

∂y
(u) dy + ∂f

∂z
(u) dz, for all u ∈ U.

Let ω ∈ Ω1(U). If the constituents P,Q,R : U → R are continuous on U (respectively C1 or
C∞), then ω is continuous U (respectively C1 or C∞).¹

¹These restrictions on P,Q,Rmake Ω1(U) a C0(U,R)−module (respectively, C1(U,R) or C∞(U,R)).
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aaaaaa
Proposition 172
Ω1(U) is an inϔinite-dimensional vector space over R.

Proof: left as an exercise. ■

If U ⊆O Rn, f : U → R is C0 (respectively C1 or C∞) and ω is a C0 (respectively C1 or C∞)
differential 1−form over U , then fω ∈ Ω1(U), where

fω(u) = f(u)P (u) dx+ f(u)Q(u) dy + f(u)R(u) dz, ∀u ∈ U.

A differential p−form ω over U is a map ω : U → Λp(Rn); the set of all such differential
forms is denoted by Ωp(U). If p = 0, Ω0(U) = Ck(U,R), where k ∈ {0, 1,∞}; Corollary 168
shows that Ωp(U) = {0}when p > n.

aaaaaa

Proposition 173
Ωp(U) is an inϔinite-dimensional vector space over R and a Ck(U)−module (i.e., if
f ∈ Ck(U,R) and ω ∈ Ωp(U), then fω ∈ Ωp(U) for k ∈ {0, 1,∞}.

Proof: left as an exercise. ■

Let ω1 ∈ Ωp1(U) and ω2 ∈ Ωp2(U). By deϐinition, ωi(u) ∈ Λpi(U) for all u ∈ U , for i = 1, 2;
according to Theorem 170, we must have

ω1(u) ∧ ω2(u) ∈ Λp1+p2(U),

and so the function ω1 ∧ ω2 : U → Λp1+p2(U) deϐined by

(ω1 ∧ ω2)(u) = ω1(u) ∧ ω2(u), for all u ∈ U

is a differential (p1 + p2)−form over U , which is to say that ω1 ∧ ω2 ∈ Ωp1+p2(U). This differ-
ential form is called thewe dge (or exterior) product of ω1 and ω2.²

aaaaaa

Example: if n = 3, we have

Ω0(U) = {ω = f | f ∈ Ck(U,R)};

Ω1(U) = {ω = f dx+ g dy + h dz | f, g, h ∈ Ck(U,R)};

Ω2(U) = {ω = f dx ∧ dy + g dx ∧ dz + h dy ∧ dz | f, g, h ∈ Ck(U,R)};

Ω3(U) = {ω = f dx ∧ dy ∧ dz | f ∈ Ck(U,R)}, and

Ωp(U) = {0}, when p > 3. □

²It is also sometimes denoted by ω1ω2.
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Theorem 174

1. For i = 1, 2, let ωi, ω
′
i ∈ Ωpi(U) and f : U → R. Then:

(ω1 + ω′
1) ∧ ω2 = ω1 ∧ ω2 + ω′

1 ∧ ω2;
ω1 ∧ (ω2 + ω′

2) = ω1 ∧ ω2 + ω1 ∧ ω′
2, and

(fω1) ∧ ω2 = f(ω1 ∧ ω2) = ω1 ∧ (fω2).

2. If ω1, . . . , ωq ∈ Ω1(U), then

when ωi = ωj for some i ̸= j, we have ω1 ∧ · · · ∧ ωq = 0;

for σ ∈ Sq , ωσ(1) ∧ · · · ∧ ωσ(q) = ϵ(σ)ω1 ∧ · · · ∧ ωq.

3. For i = 1, 2, 3, let ωi ∈ Ωpi(U). Then:

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3, and
ω1 ∧ ω2 = (−1)p1p2ω2 ∧ ω1.

Proof: left as an exercise. ■

A few examples will help illustrate the main principles.

aaaaaa

Examples: let n = 3, f : U → R, and set

ω1 = dx1 = e∗1, ω2 = dx2 = e∗3, ω3 = dx3 = e∗3 ∈ Ω1(U).

dx1 ∧ dx2 = (−1)1·1 dx2 ∧ dx1;

dx1 ∧ dx2 ∧ dx3 = dx3 ∧ dx1 ∧ dx2 = − dx1 ∧ dx3 ∧ dx2;

dx1 ∧ dx1 = dx2 ∧ dx2 = dx3 ∧ dx3 = 0, and

(f dx1 ∧ dx2) ∧ dx3 = (−1)2·1 dx3 ∧ (f dx1 ∧ dx2). □

This section’s ϐinal result will set the stage for the rest of the chapter and the next one.

aaaaaa

Theorem 175
Let ω ∈ Ωp(U). We can uniquely write

ω =
∑

Pi1,··· ,ip dxi1 ∧ · · · ∧ dxip ,

where Pi1,··· ,ip : U → R for i1 < · < ip.

Proof: left as an exercise. ■
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13.2 Exterior Derivative
In what follows, we ϐix k =∞ so that Ωp(U) represents the vector space of C∞ (smooth) dif-
ferential p−forms over U ⊆O Rn.

The exterior derivative (or differential) of ω ∈ Ωp(U) is deϐined recursively.

1. If f ∈ Ω0(U) (that is, f : U → R is smooth), then its exterior derivative is

df =
n∑

i=1

∂f

∂xi
dxi ∈ Ω1(U).

2. If ω =
∑n

i=1 Pi dxi ∈ Ω1(U), Pi ∈ C∞(U,R) for 1 ≤ i ≤ n, then its exterior derivative is

dω =
n∑

i=1

dPi ∧ dxi =
n∑

i=1

(
n∑

j=1

∂Pi

∂xj
dxj
)
∧ dxi =

∑
i<j

(
∂Pj

∂xi
− ∂Pi

∂xj

)
dxi ∧ dxj ∈ Ω2(U).

...

p. In general, if
ω =

∑
i1<···<ip

Pi1,··· ,ip dxi1 ∧ · · · ∧ dxip ∈ Ωp(U),

then its exterior derivative is

dω =
∑

i1<···<ip

dPi1,··· ,ip ∧ dxi1 ∧ · · · ∧ dxip ∈ Ωp+1(U).

As we shall see after the next examples, the exterior derivative behaves as a regular deriva-
tive with respect to the sum of differential forms and to the product of functions, but there is
a twist for a general product of differential forms.

aaaaaa

Examples: throughout, let f, g, h ∈ C∞(Rn,R) for an appropriate n.

1. In R2, let ω = f dx+ g dy ∈ Ω1(R2). Then

dω = df ∧ dx+ dg ∧ dy =

(
∂f

∂x
dx+ ∂f

∂y
dy
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy
)
∧ dy

=
∂f

∂x
dx ∧ dx+ ∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dy + ∂g

∂y
dy ∧ dy

=
∂f

∂x
· 0− ∂f

∂y
dx ∧ dy + ∂g

∂x
dx ∧ dy + ∂g

∂y
· 0 =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy ∈ Ω2(R2).
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aaaaaa

2. In R3, let ω = f dx+ g dy + h dz ∈ Ω1(R3). Then

dω = df ∧ dx+ dg ∧ dy + dh ∧ dz

=

(
∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy + ∂g

∂z
dz
)
∧ dy+

=

(
∂h

∂x
dx+ ∂h

∂y
dy + ∂h

∂z
dz
)
∧ dz

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy −

(
∂f

∂z
− ∂h

∂x

)
dx ∧ dz +

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz ∈ Ω2(R3).

3. In R3, let ω = f dx ∧ dy + g dx ∧ dz + h dy ∧ dz ∈ Ω2(R3). Then

dω = df ∧ dx ∧ dy + dg ∧ dx ∧ dz + dh ∧ dy ∧ dz

=

(
∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz
)
∧ dx ∧ dy +

(
∂g

∂x
dx+ ∂g

∂y
dy + ∂g

∂z
dz
)
∧ dx ∧ dz+

=

(
∂h

∂x
dx+ ∂h

∂y
dy + ∂h

∂z
dz
)
∧ dy ∧ dz

=
∂f

∂z
dz ∧ dx ∧ dy + ∂g

∂y
dy ∧ dx ∧ dz + ∂h

∂x
dx ∧ dy ∧ dz

=

(
∂f

∂z
− ∂g

∂y
+
∂h

∂x

)
dx ∧ dy ∧ dz ∈ Ω3(R3). □

aaaaaa
Theorem 176
Let ω1, ω2 ∈ Ωp(U). Then d(ω1 + ω2) = dω1 + dω2.

Proof: left as an exercise. ■

aaaaaa

Lemma 177
If f, g ∈ Ω0(Rn), then d(fg) = (df)g + f(dg).

Proof: the product fg ∈ Ω0(Rn) is itself a function Rn → R. By deϐinition,

d(fg) =
n∑

i=1

∂(fg)

∂xi
dxi =

n∑
i=1

(
∂f

∂xi
g + f

∂g

∂xi

)
dxi

=

(
n∑

i=1

∂f

∂xi
dxi
)
g + f

(
n∑

i=1

∂g

∂xi
dxi
)

= (df)g + f(dg). ■
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Lemma 177 is a special case (with p = 0) of the more general rule for the derivative of the
product of differential forms.

aaaaaa

Theorem 178
Let ω ∈ Ωp(U), ω′ ∈ Ωq(U). Then d(ω ∧ ω′) = dω ∧ ω′ + (−1)pω ∧ dω′.

Proof: if {i1, . . . , iℓ} ⊆ {1, . . . , n} (in increasing order) and f ∈ C∞(U,R),
then

d(f dxi1 ∧ · · · ∧ dxiℓ) = df ∧ dxi1 ∧ · · · ∧ dxiℓ .
Since d(ω1 + ω2) = dω1 + dω2, we only need to verify the conclusion for

ω = f dxi1 ∧ · · · ∧ dxip , i1 < · · · < ip

ω′ = g dxj1 ∧ · · · ∧ dxjq , j1 < · · · < jq.

Then
d(ω ∧ ω′) = d(f dxi1 ∧ · · · ∧ dxip ∧ g dxj1 ∧ · · · ∧ dxjq)

thm 174.1 = d(fg dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq)
= d(fg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

lemma 177 = [(df)g + f(dg)] ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq
= (df)g ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

+ f(dg) dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq
= df ∧ dxi1 ∧ · · · ∧ dxip︸ ︷︷ ︸

=dω

∧ g dxj1 ∧ · · · ∧ dxjq︸ ︷︷ ︸
=ω′

+ (−1)p f dxi1 ∧ · · · ∧ dxip︸ ︷︷ ︸
=ω

∧ dg ∧ dxj1 ∧ · · · ∧ dxjq︸ ︷︷ ︸
=dω′

= dω ∧ ω′ + (−1)pω ∧ dω′. ■

We illustrate this in the case where ω =
∑n

i=1 fi dxi ∈ Ω1(Rn) and ω′ = h ∈ Ω0(Rn). Then

ω ∧ ω′ =
n∑

i=1

fih dxi and d(ω ∧ ω′) = d
(

n∑
i=1

fih dxi
)

=
n∑

i=1

d(fih dxi) =
n∑

i=1

d(fih) ∧ dxi

=
n∑

i=1

[(dfi)h+ fi(dh)] ∧ dxi =
n∑

i=1

(dfi ∧ dxi)h+
n∑

i=1

fi dh ∧ dxi

= dω ∧ ω′ +
n∑

i=1

fi(− dxi ∧ dh) = dω ∧ ω′ − ω ∧ dω′

= dω ∧ ω′ + (−1)1ω ∧ dω′.
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The next result showcases a crucial property of exterior derivatives.

aaaaaa

Theorem 179
Let ω ∈ Ωp(U). Then d(dω) = 0.

Proof: if f ∈ C∞(U,R) = Ω0(U), then df ∈ Ω1(U) and

d(df) = d
(

n∑
i=1

∂f

∂xi
dxi
)

=
n∑

i=1

d
(
∂f

∂xi

)
∧ dxi =

n∑
i=1

(
n∑

j=1

∂2f

∂xi∂xj
dxj
)
∧ dxi.

When i = j, dxi ∧ dxj = 0; when i > j, dxi ∧ dxj = − dxj ∧ dxi, so that

d2f =
∑
i<j

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
︸ ︷︷ ︸

=0 since f∈C∞(U,R)

dxi ∧ dxj = 0.

Furthermore,

d(dxi) = d(1 · dxi) = d(1) ∧ dxi = 0 ∧ dxi = 0.

Since d(ω + ω′) = dω + dω′, it is sufϐicient to show that d2(f dxi1 ∧ · · · ∧ dxip) = 0,
where {i1 < . . . < ip} ⊆ {1, . . . , n} and f is as above. As

d(d(f dxi1 ∧ · · · ∧ dxip)) = d(df ∧ dxi1 ∧ · · · ∧ dxip)
= d(df) ∧ dxi1 ∧ · · · ∧ dxip + (−1)0+1df ∧ d(dxi1 ∧ · · · ∧ dxip)
= 0 ∧ dxi1 ∧ · · · ∧ dxip − df ∧ 0 = 0. ■

A differential form ω ∈ Ωp(U) is closed if dω = 0.

aaaaaa Example: let n = 1 and ω ∈ Ω1(R1). Then dω ∈ Ω2(R1); since Ω2(R1) = {0}, ω is
automatically closed. □

13.3 Antiderivative
Let p > 1, U ⊆O Rn and ω ∈ Ωp(U); ω is exact if ∃η ∈ Ωp−1(U) such that dη = ω. The
differential form η is an antiderivative of ω. If ω is exact, then dω = d2η = 0 and so every
exact form is also closed.

If n = 1, let f ∈ Ω0(R). Then Ω1(R) = {g dx | g ∈ Ω0(R)}. If F : R → R is such that
F ′(x) = f(x) for all x ∈ R, then F ∈ Ω0(R) and

dF =
∂F

∂x
dx = f dx.

Such an F exists by Theorem 60 since f is continuous onR. Hence, every ω ∈ Ω1(R) is exact.
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aaaaaa

Examples

1. Let ω = P1(x, y) dx+ P2(x, y) dy = y dx− x dy ∈ Ω1(R2). Since

dω =

(
∂P2

∂x
− ∂P1

∂y

)
dx ∧ dy = (−1− 1) dx ∧ dy = −2 dx ∧ dy ̸= 0;

since ω is not closed, it cannot be exact. □

2. Letω = f(x, y) dx+ g(x, y) dy = (3x2 + 2xy + y2) dx+ (x2 + 2xy + 3y2) dy ∈ Ω1(R2).
Since

dω = df ∧ dx+ dg ∧ dy

=

(
∂f

∂x
dx+ ∂f

∂y
dy
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy
)
∧ dy

=
∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dy =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

But
∂g

∂x
= 2x+ 2y =

∂f

∂y

in this speciϐic case, so dω = 0, which means that ω is closed.

We can show that this particular closed form is also exact, which is to
say that ∃F ∈ Ω0(R2) = C∞(R2,R) such that dF = ω. If such a F exists,

dF =
∂F

∂x
dx+ ∂F

∂y
dy = f(x, y) dx+ g(x, y) dy,

and we must have
∂F

∂x
= f(x, y) = 3x2 + 2xy + y2 and ∂F

∂y
= g(x, y) = x2 + 2xy + 3y2.

Integrating the ϐirst of these with respect to x yields

F (x, y) = x3 + x2y + y2x+ φ(y).

Differentiating with respect to y yields

∂F

∂y
= x3 + 2xy + φ′(y) = x2 + 2xy + 3y2,

so that φ′(y) = 3y2, and so φ(y) = y3 + C . Thus the antiderivatives of ω take
the form

F (x, y) = x3 + x2y + xy2 + y3 + C,

where C ∈ R. □
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Exact forms are necessarily closed; the converse is valid when U ⊆O Rn has an additional
property. A set U ⊆ R is star-shaped if ∃a ∈ U such that ∀y ∈ U we have

[a, y] = {(1− t)a+ ty | 0 ≤ t ≤ 1} = {a+ t(y− a) | 0 ≤ t ≤ 1} ⊆ U.

In R2, for instance, U1 (on the left) is star-shaped, whereas U2 (on the right) is not.

We now present a highly technical lemma that will allow us to prove the desired result.

aaaaaa

Theorem 180
Let U ⊆O Rn, I = [0, 1], and φ : U × I → R a continuous function in the Euclidean
metric. Then the function ψ : U → R deϔined by

ψ(x =

∫ 1

0

φ(x, t)dt

is continuous.

Furthermore, if Dxφ : U × I → End(Rn,R) ≃ (Rn)∗ exists and is continuous,
then ψ is C1 and

Dxψ(x) =
∫ 1

0

Dxφ(x, t)dt.
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aaaaaa

Proof: we start by proving the continuity ofψ. Wewant to show that ∀ε > 0, ∃δε > 0
such that

∥x− x′∥ < δε =⇒ |ψ(x)− ψ(x′)| < ε.

For x, x′ ∈ U , we have

|ψ(x)− ψ(x′)| =
∣∣∣∣∫ 1

0

(φ(x, t)− φ(x′, t))dt
∣∣∣∣ ≤ ∫ 1

0

|φ(x, t)− φ(x′, t)|dt.

Let ε > 0 and (x, t) ∈ U × I . Since φ is continuous, ∃δε = δε(x, t) such that

∥x− x′∥, |t− t′| < δε =⇒ |φ(x, t)− φ(x′, t′)| < ε/12.

In particular,
∥x− x′∥ < δε =⇒ |φ(x, t′)− φ(x′, t′)| < ε/6.

For a x ϐixed, deϐineVt = {t′ ∈ R | |t−t′| < δε(x, t)}∩I; then {Vt}t∈I is an open cover
of the subspace I ⊆ R. But I is a compact subspace of R in the Euclidean topology,
and so there is a ϐinite subcover {Vt1 , . . . , VtK} of I with

K∪
i=1

Vti = I.

Let δε(x) = min{δ(x, ti) | i = 1, . . . , K}. Thus for any t′ ∈ I , we can ϐind a ti ∈ I
such that |ti − t′| < δε(x, ti). If we also have ∥x− x′∥ < δε(x), then

|φ(x, t′)− φ(x′, t′)| ≤ |φ(x, t′)− φ(x, ti)|+ |φ(x, ti)− φ(x′, ti)|+ |φ(x′, ti)− φ(x′, t′)|
< ε/6 + ε/6 + ε/6 = ε/2.

Set δε = δε(x). Then for all x, x′ ∈ U we have

|ψ(x)− ψ(x′)| ≤
∫ 1

0

ε

2
dt =

ε

2
< ε.

Wenow tackle the differentiability ofψ. SinceDxφ is continuous by assumption, the
same argument as above shows that the function

x ∈ U 7→ λ(x) =
∫ 1

0

Dxφ(x, t)dt

is continuous. It remains only to show that λ(x) = Dxψ(x), that is, ∀ε > 0, ∃δε > 0
such that

∥h∥ < δε =⇒ |ψ(x+ h)− ψ(x)− λ(x)h| < ε · ∥h∥.

But

|ψ(x+ h)− ψ(x)− λ(x)h| =
∣∣∣∣∫ 1

0

(φ(x+ h, t)− φ(x, t))dt−
∫ 1

0

Dxφ(x, t)hdt
∣∣∣∣
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aaaaaa

≤
∫ 1

0

|φ(x+ h, t)− φ(x, t))−Dxφ(x, t)h|dt

Taylor’s thm =

∫ 1

0

|Dxφ(x+ θ, t)−Dxφ(x, t)|dt,

for θ ∈ [0,h]. ButDxφ is continuous so ∀ε > 0, ∃δε > 0 such that

∥θ∥ ≤ ∥h∥ < δε =⇒ |Dxφ(x+ θ, t)−Dxφ(x, t)| < ε.

Hence
|ψ(x+ h)− ψ(x)− λ(x)h| <

∫ 1

0

ε∥h∥dt = ε∥h∥,

which completes the proof. ■.

And now, the pièce de résistance.

aaaaaa

Theorem 181 (PĔĎēĈĆėĊ́'Ę LĊĒĒĆ)
Let U ⊆ Rn be star-shaped and containing 0. If ω ∈ Ωp(U) is closed, then it is exact.

Proof: we start by proving the result for n = 1, p = 1. Let ω ∈ Ω1(U). Then
ω = f dx, with f ∈ C∞(U,R). Since Ω2(U) = {0}, we have dω = 0 ∈ Ω2(U). We
show that ∃F ∈ Ω0(U) such that dF = ω.

Recall that
F (x) =

∫ x

0

f(t)dt =

∫ 1

0

f(xs)xds =

∫ 1

0

g(x, s)ds.

According to Lemma 180,

F ′(x) =

∫ 1

0

∂g

∂x
(x, s)ds =

∫ 1

0

(f(xs) + sf ′(xs))ds

=

∫ 1

0

d

ds
[sf(x, s)]ds = 1 · f(x, 1)− 0 · f(x, 0) = f(x).

Hence dF = ∂F
∂x

dx = F ′(x) dx = f(x) dx = ω.

Now suppose that n > 1, p = 1. Let ω ∈ Ω1(U) with dω = 0. We want to
show ∃η = F ∈ Ω0(U) = C∞(U,R) such that dη = ω. By hypothesis,

ω =
n∑

i=1

fi dxi, with fi ∈ C∞(U,R)
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and

dω =
n∑

i=1

dfi ∧ dxi =
n∑

i,j=1

∂fi
∂xj

dxi ∧ dxj =
∑
i<j

(
∂fi
∂xj
− ∂fj
∂xi

)
dxi ∧ dxj = 0,

and so
∂fi
∂xj

=
∂fj
∂xi

, for all 1 ≤ i < j ≤ n.

Let
F (x) = F (x1, . . . , xn) =

n∑
i=1

fi(xs)xids =
n∑

i=1

fi(x1s, . . . , xns)xi︸ ︷︷ ︸
=gi(x,s)

ds.

We show that dF = ω:

∂F

∂x1
(x) =

n∑
i=1

∂

∂x1

∫ 1

0

gi(x, s)ds =
n∑

i=1

∫ 1

0

∂

∂x1
gi(x, s)ds

=

∫ 1

0

[
f1(xs) + x1s

∂

∂x1
f(xs)

]
ds+

n∑
j=2

∫ 1

0

xjs
∂

∂x1
fj(xs)ds

=

∫ 1

0

[
f1(xs) +

n∑
j=1

xjs
∂

∂xj
f1(xs)

]
ds,

by the equality of partial derivatives above. Set k1(s) = sf1(xs). Then

k′1(s) = f1(xs) +
n∑

j=1

xjs
∂

∂xj
f1(xs),

so that
∂F

∂x1
(x) =

∫ 1

0

k′(s)ds = k(1)− k(0) = f1(x).

In a similar fashion, we can see that
∂F

∂xi
(x) = fi(x), for all 1 ≤ j ≤ n,

and so
dF =

n∑
i=1

∂F

∂xi
dxi =

n∑
i=1

fi dxi = ω.

We will not be providing the proof for p > 1. ■

Where exactly was the hypothesis that U is star-shaped used?³

³Hint: look at the deϐinition of F (x) (in the case n = 1) and F (x) (in the case n > 1).
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In a nutshell, we have shown the following result.

aaaaaa

Proposition 182
Let U ⊆O R and ω =

∑n
i=1 fi dxi ∈ Ω1(U). Consider the following conditions:

1. ω is exact in U ;

2. ω is closed in U ;

3. ∂fi
∂xj

=
∂fj
∂xi

for all i, j.

Then 1. =⇒ 2. ⇐⇒ 3. Furthermore, if U is star-shaped, then the three conditions
are equivalent.

13.4 Pullback of a Differential Form
LetU ⊆O Rm, V ⊆O Rn, g ∈ C∞(U, V ).⁴ The pullback function g∗ : Ωk(V )→ Ωk(U) satisϐies

g∗(
∧
i

ωi) =
∧
i

g∗(ωi).

We deϐine it as follows.

Case k = 0: if f ∈ C∞(V,R) = Ω0(V ), the pullback is

g∗(f) = f ◦ g : U → R ∈ C∞(U, V ) = Ω0(U).

Case k = 1: if a smooth g : U ⊆o Rm → V ⊆O Rn maps

u = (u1, . . . , um) ∈ U 7→ v = g(u) = (g1(u), . . . , gn(u)) ∈ V,

and ω ∈ Ω1(V ), then ω =
∑n

i=1 fi dxi and the pullback is

g∗(ω) =
n∑

i=1

g∗(fi)g∗(dxi) =
n∑

i=1

(fi ◦ g) dgi =
n∑

i=1

(fi ◦ g)

(
m∑
j=1

∂gi
∂uj

duj
)
.

Let us take a look at some examples.

aaaaaa

Examples

1. Let g : U = R → V = R and consider ω = f dx ∈ Ω1(V ). Then the pullback
g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(u) = (f ◦ g)g∗(dx)(u) = f(g(u)) · g′(u) du. □

⁴We will encounter such functions when we discuss vector ϐields in Section 13.5.
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2. Let g : U = R→ V = R2 be deϐined by

g(t) = (cos t, sin t)

and ω = −y dx+ x dy ∈ Ω1(V ). Then

g∗(dx)(t) = (dg1)(t) = − sin t dt, g∗(dy)(t) = (dg2)(t) = cos t dt,

and the pullback g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(t) = f1(g(t))(dg1)(t) + f2(g(t))(dg2)(t)
= (− sin t)(− sin t dt) + (cos t)(cos t dt) = (sin2 t+ cos2 t) dt = dt. □

3. Let g : U = R2 → V = R2 be deϐined by

g(u) = (g1(u1, u2), g2(u1, u2)) = (u1 cosu2, u1 sinu2)

and ω = f1(x1, x2) dx1 + f2(x1, x2) dx2 = x1 dx1 + x2 dx2 ∈ Ω1(V ). Then

g∗(dx1)(u1, u2) = (dg1)(u1, u2) =
∂g1(u1, u2)

∂u1
du1 +

∂g1(u1, u2)

∂u2
du2

= cosu2 du1 − u1 sinu2 du2

g∗(dx2)(u1, u2) = (dg2)(u1, u2) =
∂g2(u1, u2)

∂u1
du1 +

∂g2(u1, u2)

∂u2
du2

= sinu2 du1 + u1 cosu2 du2,

and the pullback g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(u1, u2) = f1(g(u1, u2))(dg1)(u1, u2) + f2(g(u1, u2))(dg2)(u1, u2)
= u1 cosu2(cosu2 du1 − u1 sinu2 du2) + u1 sinu2(sinu2 du1 + u1 cosu2 du2)
= u1(cos2 u2 + sin2 u2), du = u1 du1. □

Case k > 1: if g : U ⊆O Rm → V ⊆O Rn is smooth and ω = dxi1 ∧ · · · ∧ dxik ∈ Ωk(V ), we
deϐine the pullback

g∗(ω) = g∗(dxi1 ∧ · · · ∧ dxik) = dgi1 ∧ · · · ∧ dgik ∈ Ωk(U).

If
ω =

∑
i1<···<ik

Pi1,··· ,ikdxi1 ∧ · · · ∧ dxik ∈ Ωk(V ),

then the pullback is
g∗(ω) =

∑
i1<···<ik

g∗(Pi1,··· ,ik)g
∗(dxi1∧· · ·∧dxik) =

∑
i1<···<ik

(Pi1,··· ,ik ◦g)dgi1∧· · ·∧dgik ∈ Ωk(U).
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Example: let g : U = R2 → V = R2 be deϐined by

g(u) = (g1(u1, u2), g2(u1, u2)) = (u1 cosu2, u1 sinu2)

and ω = dx1 ∧ dx2 ∈ Ω2(V ). Then

(dg1)(u1, u2) = cosu2 du1 − u1 sinu2 du2, (dg2)(u1, u2) = sinu2 du1 + u1 cosu2 du2,

and the pullback g∗(ω) ∈ Ω2(U) is given by

g∗(ω)(u1, u2) = g∗(dx1 ∧ dx2)(u1, u2) = (dg1)(u1, u2) ∧ (dg2)(u1, u2)
= (cosu2 du1 − u1 sinu2 du2) ∧ (sinu2 du1 + u1 cosu2 du2)
= u1 cos2 u2 du1 ∧ du2 − u1 sin2 u2 du2 ∧ du1
= u1(cos2 u2 + sin2 u2) du1 ∧ du2 = u1 du1 ∧ du2. □

While none of the computations are particularly difϐicult to perform (although they can be
tedious), there is a simpler way to express pullbacks, as the following discussion illustrates.

If g : U = R2 → V = R2 is smooth, then the pullback of dx1 ∧ dx2 ∈ Ω2(V ) by g is

g∗(dx1 ∧ dx2) = dg1 ∧ dg2 =
(
∂g1
∂u1

du1 +
∂g1
∂u2

du2
)
∧
(
∂g2
∂u1

du1 +
∂g2
∂u2

du2
)

=

(
∂g1
∂u1

∂g2
∂u2
− ∂g1
∂u2

∂g2
∂u1

)
du1 ∧ du2 = det(Dg) du1 ∧ du2 ∈ Ω2(U),

whereDg is the Jacobian matrix of g (see Section 21.7).

Generally, ifg : U ⊆O Rm → V ⊆O Rm is smooth, then thepullbackof dxi1∧· · ·∧dxik ∈ Ωk(V )
by g is

g∗(dxi1 ∧ · · · ∧ dxik) = dgi1 ∧ · · · ∧ dgik =

(
m∑
j=1

∂gi1
∂uj

duj
)
∧ · · · ∧

(
m∑
j=1

∂gik
∂uj

duj
)

=
∑

j1<···<jk

det


∂gi1
∂uj1

· · · ∂gi1
∂ujk... . . . ...

∂gik
∂uj1

· · · ∂gik
∂ujk

 duj1 ∧ · · · ∧ dujk ∈ Ωk(U).

If U, V ⊆O Rn, g : U → V smooth, f ∈ C∞(V,R), and ω = f dx1 ∧ · · · ∧ dxn ∈ Ωn(V ), then
the pullback of ω by g is

g∗(ω) = (f ◦ g) dg1 ∧ · · · ∧ dgn = g∗(f) det(Dg) du1 ∧ · · · ∧ dun ∈ Ωn(U).

The pullback commutes with the exterior derivative for 0−differential forms.
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Lemma 183
With the usual assumptions of this section, if f ∈ Ω0(V ), then d(g∗(f)) = g∗(df).

Proof: we use the deϐinition and see that

d(g∗(f)) = d(f ◦ g) =
m∑
j=1

∂(f ◦ g)
∂uj

duj =
m∑
j=1

(
n∑

i=1

(
∂f

∂xi
◦ g
)
∂gi
∂uj

)
duj

=
n∑

i=1

(
∂f

∂xi
◦ g
)( m∑

j=1

∂gi
∂uj

duj
)

= g∗
(

n∑
i=1

∂f

∂xi
dxi
)

= g∗(df),

which completes the proof. ■

But this result does not apply solely to Ω0(V ).
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Proposition 184
Let g : U ⊆O Rm → V ⊆O Rm be smooth. If ω ∈ Ω0(V ), then d(g∗(ω)) = g∗(dω).

Proof: the case k = 0 was proven in Lemma 183. For k > 0, since
d(ω1 + ω2) = dω1 + dω2 and

ω =
∑

i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxil , fi1,...,ik ∈ Ω0(V ),

it is sufϐicient to show that

g∗(d(f dxi1 ∧ · · · ∧ dxik)) = d (g∗(f dxi1 ∧ · · · ∧ dxik)) .

But the left side of this equation reduces to

g∗(d(f dxi1 ∧ · · · ∧ dxik)) = g∗(df) ∧ g∗(dxi1 ∧ · · · ∧ dxik)
lemma 183 = d(g∗(f)) ∧ g∗(dxi1 ∧ · · · ∧ dxik)

= d(g∗(f)) ∧ (dgi1 ∧ · · · ∧ dgik).

Thanks to repeated use of Theorem 177, the right side, on the other hand, reduces
to
d(f ◦ g dgi1 ∧ · · · ∧ dgik) = d(f ◦ g) ∧ dgi1 ∧ · · · ∧ dgik + (−1)0(f ◦ g) d(dgi1 ∧ · · · ∧ dgik)︸ ︷︷ ︸

=0

= d(f ◦ g) ∧ dgi1 ∧ · · · ∧ dgik . ■

The machinery we have developed up to now may seem hopelessly formal and mechanical;
its practical value comes through once we identify differential forms with vector ϐields.
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13.5 Vector Fields
Let U ⊆O Rn. A vector ϐield is a function F : U → Rn; it is of class Ck if F ∈ Ck(U,Rn). A
function f : U → R is called a scalar ϐield.

aaaaaa

Example: let f : U → R be continuously differentiable and consider∇f : U → Rn

deϐined by
∇f(u) =

(
∂f(u)
∂x1

, . . . ,
∂f(u)
∂xn

)
.

Then f is a scalar ϐield and∇f is a vector ϐield.

We can associate to any vector ϐield F : U → Rn, deϐined by F(x) = (F1(x), . . . , Fn(x)) a
unique differential form ωF ∈ Ω1(U) deϐined by

ωF = F1 dx1 + · · ·+ Fn dxn.

In particular, if f : U → R is smooth, the differential form associated to∇f is

ω∇f =
∂f

∂x1
dx1 + · · ·+

∂f

∂xn
dxn = df ∈ Ω1(U).

aaaaaa

Theorem 185
Let U ⊆O Rn and F : U → Rn be smooth. Consider the following conditions:

1. F = ∇f for some f : U → R smooth;

2. ∂Fi

∂xj
=

∂Fj

∂xi
for all i, j.

Then 1. =⇒ 2. If U is star-shaped then, the conditions are equivalent.

Proof: if F = ∇f , then ωF = ω∇f = df ∈ Ω1(U) is exact and so condition 2.
holds according to Proposition 182.

If U is star-shaped and ∂Fi

∂xj
=

∂Fj

∂xi
for all i, j, then ωF = F1 dx1 + · · · + dxn is

exact (again, by Theorem 182), so that

ωF = df =
n∑

i=1

∂f

∂xi
dxi

for some f : U → R ∈ Ω0(U). By unicity of ωF, wemust haveFi =
∂f
∂xi

for all i, which
is to say that F = ∇f . ■

When F = ∇f , we say that F is a conservative vector ϐield (or a gradient ϐield) and that f
is a scalar potential for F.
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Until the end of the chapter, we work with vector ϐields F : U ⊆O R3 → R3. Recall that, seen
as a vector ϐield over R,

dim (Λp(Rn)) =

(
n

p

)
,

according to Corollary 168; in that case, we have

dim(Λ1(R3)) = dim(Λ2(R3)), dim(Λ0(R3)) = dim(Λ3(R3)) = 1.

Consider the vector space isomorphism Φ1 : R3 → Λ1(R3) deϐined by

Φ1(a) = Φ1(a1, a2, a3) = a1 dx1 + a2 dx2 + a3 dx3.

If we “multiply” two vectors in R3, we should get the same “result” as if we “multiply” two
1−forms overR3; the problem is that we while the wedge product can play the role of a mul-
tiplication, the wedge product of two 1−forms over R3 is a 2−form over R3.

Over other spaces this would be a deal-breaker, but overR3 the problem evaporates once
we introduce a second vector space isomorphism Φ2 : R3 → Λ2(R3), deϐined by

Φ2(a) = Φ2(a1, a2, a3) = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2,

and deϐine the cross-product over R3 by

a× b = (a1, a2, a3)× (b1, b2, b3)

≃ Φ1(a1, a2, a3) ∧ Φ1(b1, b2, b3)

= (a1 dx1 + a2 dx2 + a3 dx3) ∧ (b1 dx1 + b2 dx2 + b3 dx3)
= (a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx1 ∧ dx2 + (a1b2 − a2b1) dx1 ∧ dx2
≃ Φ−1

2 ((a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx1 ∧ dx2 + (a1b2 − a2b1) dx1 ∧ dx2)
= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

which should go someway towards elucidating the mystery of where the apparently random
deϐinition of the cross-product come fromwhen it is ϐirst introduced in linear algebra courses.

In applications, it is typical to use x = x1, y = x2, and z = x3. In that case, we could also
write the vector ϐield F : U → R3 as

F(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z));

the composition
Φ1 ◦ F = ωF = P dx+Q dy +R dz ∈ Ω1(U)

is the corresponding differential 1−form over U .
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Then, we have:
dωF = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

=

(
∂P

∂x
dx+ ∂P

∂y
dy + ∂P

∂z
dz
)
∧ dx+

(
∂Q

∂x
dx+ ∂Q

∂y
dy + ∂Q

∂z
dz
)
∧ dy

+

(
∂R

∂x
dx+ ∂R

∂y
dy + ∂R

∂z
dz
)
∧ dz

=

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy ∈ Ω2(U).

The vector ϐield Φ−1
2 (dωF) = Φ−1

2 (Φ1(F)) associated with dωF is the curl of F and is denoted
by curl(F) = ∇× F : U → R3 and

curl(F) = ∇× F =

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

aaaaaa

Theorem 186
Let U =⊆O R3 and F : U → R3 be smooth. Consider the following conditions:

1. F = ∇f for some smooth f : U → R;

2. ∇× F = 0.

Then 1. =⇒ 2. If U is star-shaped then, the conditions are equivalent.

Proof: direct application of Theorem 185. ■

If instead we consider the composition
Φ2 ◦ F = φF = P dy ∧ dx+Q dz ∧ dx+R dx ∧ dz ∈ Ω2(U),

then we have
dφF = dP ∧ dy ∧ dz + dQ ∧ dz ∧ dx+ dR ∧ dx ∧ dy

=

(
∂P

∂x
dx+ ∂P

∂y
dy + ∂P

∂z
dz
)
∧ dy ∧ dz +

(
∂Q

∂x
dx+ ∂Q

∂y
dy + ∂Q

∂z
dz
)
∧ dz ∧ dx

+

(
∂R

∂x
dx+ ∂R

∂y
dy + ∂R

∂z
dz
)
∧ dx ∧ dy

=
∂P

∂x
dx ∧ dy ∧ dz + ∂Q

∂y
dy ∧ dz ∧ dx+ ∂R

∂z
dz ∧ dx ∧ dy

=

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz ∈ Ω3(U).

The scalar ϐield associated with dφF is the divergence of F and is denoted by div(F) = ∇ · F :
U → R and

div(F) = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.
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As a consequence of Poincaré’s lemma, we obtain the following result.
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Theorem 187
Let U =⊆O R3 and F : U → R3 be smooth. If there is a vector ϔield G : U → R3

such that curl(G) = ∇ × G = F, then div(F) = ∇ · F = 0. If U is star-shaped and
div(F) = ∇ · F = 0, then there is a G : U → R3 such that curl(G) = ∇× G = F.

Proof: let ωG ∈ Ω1(U) and φF ∈ Ω2(U) be the associated differential forms.
If curl(G) = F, then dωG = φF, so that dφF = d(dωG) = 0, and thus div(F) = 0.

If U is star-shaped and div(F) = 0, then dφF = 0, and so φF is closed. Ac-
cording to Poincaré’s lemma, φF is exact, which is to say that ∃ω ∈ Ω1(U) such that
dω = φF. If G is the vector ϐield corresponding to ω, then we have curl(G) = F. ■

When F = curl(G) for some G : U → GR3, the vector ϐield G is a vector potential for F. Such
a vector potential is not unique; indeed if f : U → R is smooth, then curl(G+∇f) = curl(G),
as we can see below: if

G ↭ ωG ∈ Ω1(U), curl(G) ↭ dωG ∈ Ω2(U), ∇f ↭ df ∈ Ω1(U),

then
curl(G+∇f) ↭ d(ωG + df) = dωG ↭ curl(G).

In short, differential forms provide a tool to work with vector ϐields, which are the objects of
interests in applications; the correspondence is diagrammed below.
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13.6 Solved Problems
1. Are the following 1−forms exact?

a) ω = 2xy dx+x2 dy b) ω = (x2+ yz) dx+(xz+ cos y) dy+(z+xy) dz
c) ω = y dx+ z dy + x dz d) ω = x

x2+y2
dx+ y

x2+y2
dy

Solution:
a) We have ω = 2xy dx+ x2 dy ∈ Ω1(R2), where R2 is star-shaped. Since

dω = 2
[
(dx)y + x(dy)

]
∧ dx+ (2x dx) ∧ dy = 2x

[
dy ∧ dx+ dx ∧ dy

]
= 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact, η = x2y is an
anti-derivative of ω (i.e. dη = ω).

b) We have ω = (x2 + yz) dx+ (xz + cos y) dy + (z + xy) dz ∈ Ω1(R3),whereR3

is star-shaped. Since

dω = z dy∧dx+ y dz ∧dx+x dz ∧dy+ z dx∧dy+x dy∧dz+ y dx∧dz = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact,

η =
x3

3
+ xyz + sin y + z2

2

is an anti-derivative of ω (i.e. dη = ω).
c) Since dω = dy ∧ dx + dz ∧ dy + dx ∧ dz ̸= 0, ω is not closed. Consequently, ω

is not exact (remember, this has nothing to do with Poincaré’s lemma).
d) We have ω = x

x2+y2
dx + y

x2+y2
dy ∈ Ω1(R2 − {(0, 0)}). Note that U = R2 −

{(0, 0)} is NOT star-shaped, and so we cannot use Poincaré’s lemma to deter-
mine whether ω is exact or not. If ω is not closed, then it will necessarily not be
exact, by contraposition. However,

dω =
−2xy

(x2 + y2)2
dy ∧ dx− 2xy

(x2 + y2)2
dx ∧ dy = 0,

and so ω is closed and we cannot use this approach. We are left with no other
option than to try to ϐind an anti-derivative. The brute force method yields η =
ln(
√
x2 + y2) as an anti-derivative of ω (i.e. dη = ω). □

2. Are the following 2−forms exact?

a) ω = dx ∧ dy
b) ω = z dx ∧ dy + y dx ∧ dz + z dy ∧ dz

Solution:
a) We have ω = dx ∧ dy ∈ Ω2(R2), where R2 is star-shaped. Since

dω = d(dx ∧ dy) = d2x ∧ dy − dx ∧ dy2 = 0− 0 = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact.
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b) We have
ω = z dx ∧ dy + y dx ∧ dz + z dy ∧ dz ∈ Ω2(R3),

where R3 is star-shaped. Since

dω = dz ∧ dx ∧ dy + dy ∧ dx ∧ dz + dz ∧ dy ∧ dz
= dz ∧ dx ∧ dy − dz ∧ dx ∧ dy + 0 = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact, η = xz dy +
xy dz is an anti-derivative of ω (i.e. dη = ω). □

13.7 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.
2. Prove results 172, 173, 174, 175, 176, 180 (try, at least), and 184.
3. If f ∈ Ω0(U) and ω ∈ Ωp(U), show that f ∧ ω = fω.
4. Show that if ω and φ are two closed differential forms, then so is ω ∧ φ. Show that if ω

is also exact, then ω ∧ φ is exact.
5. What is the pullback g∗(ω) ∈ Ω1(R) ifg : R→ R2 is deϐinedbyg(v) = (3 cos 2v, 3 sin 2v)

and ω = −y dx+ x dy ∈ Ω1(R2)? Simplify your answer as much as possible.
6. What is thepullbackg∗(ω) ∈ Ω1(R2) if g : R2 → R3 is deϐinedbyg(u, v) = (cosu, sinu, v)

and ω = z dx+ x dy + y dz ∈ Ω1(R3)? Simplify your answer as much as possible.
7. What is thepullbackg∗(ω) ∈ Ω2(R2) if g : R2 → R3 is deϐinedbyg(u, v) = (cosu, sinu, v)

and ω = z dx ∧ dy + y dz ∧ dx ∈ Ω2(R3)? Simplify your answer as much as possible.
8. For each of the three previous exercises, compute g∗(dω) and d(g∗ω).
9. Let g : (0,∞)× (0, π)× (0, 2π)→ R3 the map deϐining the spherical coordinates inR3.

Compute g∗(dx ∧ dy ∧ dz).
10. Let F,G : R3 → R3, f : R3 → R be smooth mappings and · and × represent the inner

product and cross product in R3, respectively. Show that
a) div(F+ G) = div(F) + div(G)
b) div(fF) = fdiv(F) + F · ∇f
c) div(F× G) = G · curl F− F · curlG
d) curl(fF) = f curl(F) + (∇f)× F
e) div(f∇f) = |∇f |2

11. Let U ⊆O Rn and p ≥ 0. Show that Ωp(U) is a vector space over R.
12. Let U ⊆O Rn, p ≥ 0 and ω1, ω2 ∈ Ωp(U). Show that d(ω1 + ω2) = dω1 + dω2.
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