
Chapter 14

Integrating Differential Forms

The integral of a differential form generalizes the concept of the integral of
a function of a single variable (see Chapter 21 for another). In this chap-
ter, we formalize the concepts of the line, surface, and lux integral, and
present Stokes’ Theorem, a deep unifying result of vector analysis.

14.1 Line Integral of a Differential 1−Form
Let U ⊆O Rn. Assume that γ is a differentiable path in U and that ω ∈ Ω1(U). This section’s
objective is to de ine

∫
γ
ωmeaningfully. A path in U is a continuous function γ : [a, b]→ U ;

γ(a) is the starting point while γ(b) is the path’s inishing point.

aaaaaa

Examples

1. Let u, v ∈ Rn. The path γ : [0, 1] → Rn de ined by γ(t) = tv + (1 − t)u is the
(oriented) line segment joining u and v. □

2. Let γ : [0, 2π] → R2 be de ined by γ(t) = (cos t, sin t). Then γ([0, 2π]) is
the unit circle in R2, starting at γ(0) = (1, 0) and ending at γ(2π) = (1, 0),
travelling counter-clockwise. □

In that last example, γ is a closed, simple curve, which is to say that
γ(0) = γ(2π) and γ(t) ̸= γ(s) for all t ̸= s ∈ (0, 2π).

Apathγ is continuouslydifferentiable (denoted C1) if its derivativeγ ′ : [a, b]→ End(R,Rn)
varies continuously with t; the derivative is one-sided at the endpoints a and b. In that case,

γ ′(t) : R→ Rn, x 7→ γ ′(t)x = ∇γ(t)x = (γ′1(t), . . . , γ
′
n(t))x.
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14.1. LINE INTEGRAL OF A DIFFERENTIAL 1−FORM

aaaaaa

Examples

1. In the line segment example above, γ ′(t) = v− u ∈ Rn. □

2. In the circle example above, ∇γ(t) = (− sin t, cos t). Note that γ(t) ⊥ ∇γ(t)
for all t. □

If γ : [a, b] → U ⊆O Rn represents the position of a particle at time t, then γ ′(t) represents
the velocity vector of the particle at time t; γ ′(t0) is necessarily tangent to the pathγ at t = t0.

A path γ is piecewise differentiable if a = t0 < t1 < · · · < tn = b and γ|[ti,ti+1]
is C1 for all i.

Now we come to the section’s important de inition. Let γ be a C1 path in U ⊆O Rn and

ω =
n∑

i=1

Pi(x) dxi ∈ Ω1(U).

The line integral of ω along γ is given by∫
γ

ω =

∫
γ

n∑
i=1

Pi(x) dxi :=
∫
[a,b]

n∑
i=1

Pi(γ(t))γi(t) dt,

where γ(t) = (γ1(t), . . . , γn(t)), γ ′(t) = (γ′1(t), . . . , γ
′
n(t)), and γ : [a, b]→ U ⊆O Rn.
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aaaaaa

Example: if γ : [−1, 1]→ R2 is γ(t) = (t, t2) and ω = −y dx + x dy ∈ Ω1(R2), then
γ ′(t) = (1, 2t), P1(x, y) = −y, P2(x, y) = x, and∫

γ

ω =

∫ 1

−1

(P1(γ(t))γ
′
1(t) + P2(γ(t))γ

′
2(t)) dt

=

∫ 1

−1

(P1(t, t
2)(1) + P2(t, t

2)(2t)) dt

=

∫ 1

−1

(−t2 + t(2t)) dt =
∫ 1

−1

t2 dt =
[
t3

3

]1
−1

=
2

3
,

using the regular rules of integration. □

But we could also approach the problem from a different (but ultimately equivalent) angle:
the pullback of ω by γ is

γ∗(ω) = γ∗(−y dx+x dy) = P1(γ(t))
∂γ1
∂t

dt+P2(γ(t))
∂γ1
∂t

dt = (−γ2(t)γ′1(t)+γ1(t)γ′2(t)) dt ∈ Ω1(R),

so that
∫
γ
ω =

∫ 1

−1
γ∗(ω).

In general, if γ : [a, b]→ U ⊆O Rn and ω =
∑n

i=1 Pi dxi ∈ Ω1(U), then∫
γ

ω =

∫
[a,b]

γ∗(ω) =

∫
[a,b]

n∑
i=1

Pi(γ(t)) dγi =
∫
[a,b]

n∑
i=1

Pi(γ(t))γi(t) dt.

aaaaaa

Example: consider ω = −y dx + x dy ∈ Ω1(R2) and two paths from (1, 0) to (0, 1),
γ : [0, π/2] → R2 (a circle arc) and η : [0, 1] → R2 (a line segment), de ined by
γ(t) = (cos t, sin t) and η(t) = (1− t, t). Then∫

γ

ω =

∫ π/2

0

γ∗(ω) =

∫ π/2

0

[
(− sin t)(sin t) + (cos t)(cos t)

]
dt =

∫ π/2

0

1 dt = [t]
π/2
0 =

π

2
,∫

η

ω =

∫ 1

0

η∗(ω) =

∫ 1

0

[
(−t)(−1) + (1− t)(1)

]
dt =

∫ 1

0

1 dt = [t]10 = 1.

Evidently, the value of the line integral depends on the path and the endpoints. □

If P : U → Rn is the vector ield corresponding to ω ∈ Ω1(U), then
n∑

i=1

Pi(γ(t))γ
′
i(t) = P(γ(t)) · γ ′(t) = (P(γ(t)) | γ ′(t)) ,

we sometimes write ∫
γ

ω =

∫
[a,b]

P(γ(t)) · γ ′(t) dt =
∫
γ

P · dr,

where r is a parameterization of γ (i.e., dr(t) = γ ′(t)dt).
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14.1. LINE INTEGRAL OF A DIFFERENTIAL 1−FORM

Let φ : [a′, b′] → [a, b] be a C1 diffeomorphism;¹ this entails that φ′(t) ̸= 0 for all t ∈ [a′, b′].
Since φ′ is continuous, there are 2 possibilities:

1. φ′(t) > 0 =⇒ φ(a′) = a and φ(b′) = b, in which case φ preserves the orientation;

2. φ′(t) < 0 =⇒ φ(a′) = b and φ(b′) = a, in which case φ reverses the orientation.

aaaaaa
Examples: φ : [1, 2] → [1, 4] de ined by φ(t) = t2 preserves the orientation as
φ′(t) = 2t > 0 on [1, 2]; but φ : [−2,−1] → [1, 4] de ined by φ(t) = t2 reverses the
orientation as φ′(t) = 2t < 0 on [−2,−1]. □

The distinction comes in at the following level.

aaaaaa

Proposition 188
Let ω =

∑n
i=1 Pi(x) dxi ∈ Ω1(U), γ : [a, b] → U , γ ∈ C1. If φ : [a′, b′] → [a, b] is a C1

diffeomorphism, then

1.
∫
γ◦φ ω =

∫
γ
ω if φ is orientation-preserving;

2.
∫
γ◦φ ω = −

∫
γ
ω if φ is orientation-reversing.

Proof:

1. By construction, γ ◦ φ : [a′, b′]→ U is a C1 path and γ ′(φ(t))φ′(t) exists for all
t ∈ [a′, b′]. If we write t = φ(s), then dt = φ′(s) ds, a = φ(a′), and b = φ(b′),
and so∫

γ

ω =

∫ t=b

t=a

∑
i=1

(Pi ◦ γ(t))γ′i(t) dt =
∫ s=b′

s=a′

n∑
i=1

(Pi ◦ γ(φ(s)))γ′i(φ(s))φ′(s) ds

=

∫ b′

a′

n∑
i=1

[
Pi ◦ (γ ◦ φ)(s)

]
(γ ◦ φ)′i(s) ds =

∫
γ◦φ

ω.

2. The proof is similar, except that the change of variable is t = φ(s), then dt =
φ′(s) ds, a = φ(b′), and b = φ(a′), and so∫

γ

ω =

∫ s=a′

s=b′

n∑
i=1

(Pi ◦ γ(φ(s)))γ′i(φ(s))φ′(s) ds = −
∫ s=b′

s=a′
· · · = −

∫
γ◦φ

ω. ■

The line integral has two properties that are the counterparts of Theorems 55.1 and 56.

¹That is, both φ and φ−1 are C1.
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aaaaaa

Proposition 189
Let U ⊆O Rn, ω, ω1, ω2 ∈ Ω1(U), and γ,η be C1 paths in U such that the inishing
point of γ is the starting point of η. The concatenation γ + η is piecewise C1. Then:

1. the line integral is linear in the sum (concatenation) of paths:∫
γ+η

ω =

∫
γ

ω +

∫
η

ω;

2. the line integral is linear in the sum of differential forms:∫
γ

(ω1 + ω2) =

∫
γ

ω1 +

∫
γ

ω2.

Proof: left as an exercise. ■

Proposition 189, together with the next property, justi ies the naming of the line integral: if
it looks like an integral and it behaves like an integral...

aaaaaa

Theorem 190 (F T L I )
Let γ : [a, b] → R be a piecewise C1 path and ω = df ∈ Ω1(U) for some vector ield
f ∈ C∞(U,R). Then ∫

γ

ω =

∫
γ

df = f(γ(b))− f(γ(a)).

Proof: according to Proposition 189.1, it is suf icient to show the result for C1 paths
γ; according to Proposition 184, we know that d(γ∗(f)) = γ∗(df). Then∫

γ

ω =

∫
γ

df =

∫
[a,b]

γ∗(f)(df) =
∫ b

a

d(γ∗(f)) =

∫ b

a

d(f ◦ γ) =
∫ b

a

(f ◦ γ)′(t) dt

= [f ◦ γ(t)]ba = f(γ(b))− f(γ(a)),

which completes the proof. ■

In the example on page 335, we have
∫
γ
−y dx+x dx ̸=

∫
η
−y dx+x dx, even though γ and η

have the same starting points and inishing points, and so Theorem 190 does not apply. What
is the problem?

aaaaaa
Corollary 191
If ω = dg ∈ Ω1(U) and γ is a C1 path in U , then

∫
γ
ω =

∫
γ
dg depends only on the

endpoints of γ . Proof: immediately follows from Theorem 190. ■
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14.1. LINE INTEGRAL OF A DIFFERENTIAL 1−FORM

An open subset U ⊆O Rn is path-connected if for all u, v ∈ U , there is a path γ : [a, b] → U
such that γ(a) = u and γ(b) = v; open balls and open annulii/torii are path-connected in
R2/R3, but a set made up of disjoint open balls isn’t.

A loop γ is a path γ : [a, b] → U for which γ(a) = γ(b); the path γ : [0, 2π] → R2 ≃ C
de ined by γ(t) = (cos t, sin t) ≃ eit is a loop.

aaaaaa

Theorem 192
Let U ⊆O Rn be path-connected. For a continuous differential form ω ∈ Ω1(U), the
following are equivalent:

1. ω is exact in U ;

2.
∫
γ
ω = 0 for any loop γ : [a, b]→ U ;

3. if γ is any path in U ,
∫
γ
ω only depends on the endpoints of γ .

Proof: 1. =⇒ 2. follows from Theorem 190 since γ(a) = γ(b) for any loop
γ : [a, b]→ U .

For 2. =⇒ 3. , let γ,η be two paths in U with the same endopoints. Then
γ − η is a loop in U , and

0 =

∫
γ−η

ω =

∫
γ

ω +

∫
−η

ω =

∫
γ

ω −
∫
η

ω =⇒
∫
γ

ω =

∫
η

ω.

For 3. =⇒ 1. , let x0 ∈ U be ixed. For any x ∈ U , let γx be a path in U from x0 to x.
De ine f : U → R by f(x) =

∫
γx
ω. By assumption, if γ̃x is any other path in U from

x0 to x, then γx − γ̃x is a loop in U and

0 =

∫
γx−γ̃x

ω =

∫
γx

ω −
∫
γ̃x

ω =⇒ f(x) =
∫
γx

ω =

∫
γ̃x

ω,

no matter which path γx we use. Hence, f is well-de ined.

It remains to see that df = ω. Since

df =
n∑

i=1

∂f

∂xi
dxi and ω =

n∑
i=1

Pi dxi,

we need to show that ∂f
∂xi

= Pi, 1 ≤ i ≤ n. We know that

∂f

∂xi
= lim

t→0

f(x+ tei)− f(x)
t

,

for 1 ≤ i ≤ n if the limit exists. Since U is open, x + tei ∈ U for all i if t is small
enough.
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aaaaaa

For each i, we have

1

t
(f(x+ tei)− f(x)) =

1

t

[∫
γx+tei

ω −
∫
γx

ω

]
=

1

t

∫
γt
i

ω,

where γt
i is the straight line path from x to x + tei (which is possible, again, if t is

small enough), that is γt
i : [0, 1]→ U de ined by

γt
i (s) = s(x+ tei) + (1− s)x = x+ stei;

then (γt
i )

′(s) = tei. In particular, for 1 ≤ j ≤ nwe have

d(γt
i )j =

n∑
j=1

∂(γt
i )j

∂s
ds =

{
0 if i ̸= j

t ds if i = j

so that the pullback of ω by γt
i is

(γt
i )

∗(ω) =
n∑

j=1

(
Pj ◦ γt

i

)
d(γt

i )j

and so

1

t

∫
γt
i

ω =
1

t

∫ 1

0

(γt
i )

∗(ω) =
1

t

∫ 1

0

n∑
j=1

Pj ◦ γt
i (s) d(γt

i )j =
1

t

∫ 1

0

Pi(γ
t
i (s))t ds

=

∫ 1

0

Pi(x+ stei) ds =
∫ 1

0

(Pi(x) + Pi(x+ stei)− Pi(x)) ds

= Pi(x) +
∫ 1

0

(Pi(x+ stei)− Pi(x)) ds.

Hence,
∂f

∂xi
= lim

t→0

[
Pi(x+

∫ 1

0

(Pi(x+ stei)− Pi(x)) ds
]

= Pi(x) +
∫ 1

0

lim
t→0

(
Pi(x+ stei)− Pi(x)

)
︸ ︷︷ ︸

=0 since ω is C0

ds = Pi(x),

which completes the proof. ■

We extract a speci ic implication from this result, for future ease of access.

aaaaaa
Corollary 193
With the same hypotheses as in Theorem 192, if

∫
γ
ω = 0 for any loop γ in U , then ω

is exact.
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Finally, we show how to build an antiderivative for ω ∈ Ω1(U).

aaaaaa

Example: consider the differential form

ω = P1(x, y) dx+ P2(x, y) dy = (ex + 2xy) dx+ (x2 + cos y) dy ∈ Ω1(R2).

Since
dω =

(
∂P2

∂x
− ∂P1

∂y

)
dx ∧ dy = (2x− 2x) dx ∧ dy = 0,

then ω is closed. According to Poincaré’s lemma, since R2 is star-shaped (and thus
path-connected), then ω is exact, so it has an antiderivative f : R2 → R. We will
compute f in two ways, exploiting Theorem 192.

1. Let z0 = (x0, y0) ∈ U be ixed and consider the path γ : [0, 1] → R2 given by
γ(t) = tz0 (γ is the line segment joining the origin to z0). Then γ ′(t) = z0. Set

f(z0) =
∫
γ

ω =

∫ 1

0

γ∗(ω) =

∫ 1

0

P1(γ(t))γ
′
1(t) dt+ P2(γ(t))γ

′
2(t) dt

=

∫ 1

0

P1(tx0, ty0)x0 dt+ P2(tx0, ty0)y0 dt

=

∫ 1

0

(
etx0 + 2(tx0)(ty0)x0

)
dt+

∫ 1

0

(
(tx0)

2 + cos(ty0)y0
)
dt

=

[
etx0 +

2

3
t3x20y0 +

1

3
t3x20y0 + sin(ty0)

]1
0

= ex0 + x20y0 + sin y0 − 1.

2. If instead we join the origin to z0 = (x0, y0) by irst travelling horizontally to
(x0, 0) along γ1, then travelling vertically to (x0, y0) along γ2, we have

γ1 : [0, x0]→ R2, t 7→ (t, 0), γ2 : [0, y0]→ R2, t 7→ (x0, t),

and γ ′
1(t) = (1, 0), γ ′

2(t) = (0, 1), so that

f(z0) =
∫
γ1

ω +

∫
γ2

ω =

∫
γ1

ω +

∫
γ2

ω

=

∫ x0

0

et dt+
∫ y0

0

(x20 + cos t) dt = ex0 − 1 + [x20t+ sin t]y00
= ex0 − 1 + x20y0 + sin y0.

No surprise there: they’re the same! □

Interpretation of the Line Integral Suppose a point particle proceeds along the path γ
and is subjected to the effects of a vector ield F. Then the work done by the particle on its
journey is given by

∫
γ
Φ1 ◦ F =

∫
γ
ωF.
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14.2 Integral of a Differential p−Form
Let U ⊆O Rn. Given a differential form ω ∈ Ω1(U) and a C1 function γ : V = [a, b] ⊆ R1 → U ,
we have seen how we could de ine a quantity, the line integral

∫
γ
ω, that behaves in many

ways like the Riemann integral.

If we remember that dim(Λ1(R1)) = 1, we can de ine an vector space isomorphism

Φ̃1 : R1 → Λ

by Φ̃1(a) = a dt and thus re-write the line integral formulation as∫
γ

ω =

∫
V

γ∗(ω) :=

∫
V

Φ̃−1
1 (γ∗(ω)) dm =

∫
[a,b]

Φ̃−1
1 (γ∗(ω)) dm,

wherem is the Borel-Lebesgue measure on R (see Chapter 21).²

We can generalize this de inition to differential p−forms. Let V ⊆ Rp and consider a C1
function σ : V → U and a differential form φ ∈ Ωp(U) ⊆ Ωp(Rn). The pullback of φ by σ is
itself a differential formσ∗(φ) ∈ Ω1(V ) ⊆ Ωp(Rp). Since dimΛp(Rp) = 1, we there is a vector
space isomorphism

Φ̃p : R1 → Λp(Rp)

given by Φ̃p(a) = a dt1 ∧ · · · ∧ dtp. Suppose thatσ is orientable (more on this later), then we
de ine the ”surface” integral of φ on V by∫

σ

φ =

∫
V

σ∗(φ) :=

∫
V

Φ̃−1
p (γ∗(φ)) dm.

aaaaaa

Example: consider σ : [0, 1]2 → R3, which is de ined by σ(s, t) = (s, t, s2 + t2), and
φ = dx ∧ dz − dx ∧ dy ∈ Ω2(R3). Then

σ∗(φ) = σ(dx ∧ dz)− σ∗(dx ∧ dy) = dσ1 ∧ dσ3 − dσ1 ∧ dσ2

=

(
∂σ1
∂s

ds+ ∂σ1
∂t

dt
)
∧
(
∂σ3
∂s

ds+ ∂σ3
∂t

dt
)
−
(
∂σ1
∂s

ds+ ∂σ1
∂t

dt
)
∧
(
∂σ2
∂s

ds+ ∂σ2
∂t

dt
)

= (1 · ds+ 0 · dt) ∧ (2s ds+ 2t dt)− (1 · ds+ 0 · dt) ∧ (0 · ds+ 1 · dt) = (2t− 1) ds ∧ dt.

Hence Φ̃−1
2 (σ∗(φ)) = 2t− 1 and∫

σ

φ =

∫
[0,1]2

=

∫ 1

0

∫ 1

0

(2t− 1) ds dt =
∫ 1

0

(2t− 1) dt = 0,

assuming that the reader knows how to compute multivariate integrals. □

²Note that Φ̃1 and Φ1 de ined in the previous section are different functions.
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We have seen in Chapter 13 that

φ = φF = P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy ∈ Ω2(R3)

corresponds to the vector ield F : R3 → R3 de ined by

F(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)).

If we set dA = (dy ∧ dz, dz ∧ dx, dx ∧ dy), then we often write∫
σ

φ =

∫
σ

F · dA =

∫∫
S

F · dA,

where S = σ(V ) = {σ(s, t) | (s, t) ∈ V } is orientable. In that case, the surface integral
(also known as the lux integral) of φ over σ is∫

σ

φ =

∫
V

σ∗(φ) = ±
∫
V

F(σ) ·
[
∂σ

∂s
× ∂σ

∂t

]
dm

(the± comes from the surface orientation).

Interpretationof theSurface Integral Supposea surfaceS parameterizedbyσ is “dropped”
into a luid whose low is governed by the vector ield F. Then the lux of the luid through S
is given by

∫
σ
Φ2 ◦ F =

∫
σ
φF.

14.3 Green’s Theorem
Consider a rectangleR = [a, b]× [c, d] ⊆ R2 and let ∂R be its boundary:

∂R = ([a, b]× {c}) ∪ ({b} × [c, d]) ∪ ([a, b]× {d}) ∪ ({a} × [c, d]),

together with the induced orientation, chosen so that as we travel ∂R, along the direction
given by the orientation, the surfaceR falls to the left, as shown below.
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aaaaaa

Theorem 194 (G ' T R )
Let R = [a, b] × [c, d] ⊆ R2 (with the induced orientation) and ω ∈ Ω1(U), where
R ⊆ U ⊆O R2. Then ∫

R
dω =

∫
∂R
ω,

where R : R→ U and ∂R : ∂R→ U are the identity functions.

Proof: write ω = P (x, y) dx+Q(x, y) dy ∈ Ω1(U). We have seen that

dω =

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dx ∧ dy

and∫
R
dω =

∫
R

R∗(dω) =
∫
R

Φ̃−1
2 (R∗(dω)) dm =

∫
R

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dm

=

∫ b

a

∫ d

c

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dy dx =

∫ b

a

∫ d

c

∂Q(x, y)

∂y
dy dx−

∫ b

a

∫ d

c

∂P (x, y)

∂x
dy dx

=

∫ d

c

∫ b

a

∂Q(x, y)

∂y
dx dy −

∫ b

a

∫ d

c

∂P (x, y)

∂x
dy dx, by Fubini’s theorem (see Chapter 21)

=

∫ d

c

(Q(b, y)−Q(a, y)) dy −
∫ b

a

(P (x, d)− P (x, c)) dx

=

∫ b

a

P (x, c) dx+
∫ d

c

Q(b, y) dy +
∫ a

b

P (x, d) dx+
∫ c

d

Q(a, y) dy

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (t, d) dm−
∫
[c,d]

Q(a, t) dm.

Now write ∂R = C1 + C2 + C3 + C4, where

C1 : [a, b]→ R2, C1(t) = (t, c); C3 : [a, b]→ R2, C3(t) = (b+ a− t, d);
C2 : [c, d]→ R2, C2(t) = (b, t); C4 : [c, d]→ R2, C4(t) = (a, d+ c− t).

According to Proposition 189,∫
∂R
ω =

∫
C1
ω +

∫
C2
ω +

∫
C3
ω +

∫
C4
ω

=

∫
[a,b]

Φ̃−1
1 (C∗

1(ω)) +

∫
[c,d]

Φ̃−1
1 (C∗

2(ω)) +

∫
[a,b]

Φ̃−1
1 (C∗

3(ω)) +

∫
[c,d]

Φ̃−1
1 (C∗

4(ω)),

=

∫
[a,b]

[
P (t, c) · 1 +Q(t, c) · 0

]
dm+

∫
[a,b]

[
P (b+ a− t, d) · (−1) +Q(b+ a− t, d) · 0

]
dm

+

∫
[c,d]

[
P (b, t) · 0 +Q(b, t) · 1

]
dm+

∫
[c,d]

[
P (a, d+ c− t) · 0 +Q(a, d+ c− t) · (−1)

]
dm
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so∫
∂R
ω =

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (b+ a− t, d) dm−
∫
[c,d]

Q(a, d+ c− t) dm

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm+

∫
[b,a]

P (s, d) dm+

∫
[d,c]

Q(a, s) dm

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (t, d) dm−
∫
[c,d]

Q(a, t) dm

,

which completes the proof. ■

This is a remarkable result: integrating a derivative on a rectangle is equivalent to integrating
the antiderivative on the rectangle’s boundary. As it happens, it is not speci ic to rectangles.³

aaaaaa

Theorem 195 (G ' T )
LetK ⊆K R2, and assume that ∂K can be given the induced orientation. If

ω = P (x, y) dx+Q(x, y) dy ∈ Ω1(U)

forK ⊆ U ⊆O R2, then ∫
K
dω =

∫
∂K
ω,

where K : K → R2 and ∂K : ∂K → R2 are identity functions.

Proof: we only provide a sketch. Green’s theorem for a rectangle can be shown
to apply to unions of rectangles where each pair shares at most an edge: if the
rectangles do not share edges, then the result is obvious – if they do share edges,
then the induced orientation ensures that the shared edges are traversed one way
for one rectangle, and the other way for another, meaning that their contribution to
the integral will cancel out and only the outside boundary counts.

We can write any compact set K as a (potentially in inite) union of such rect-
angles {Rn}; Green’s theorem holds in the limit. ■

³It’s not even speci ic to R2, as we shall see shortly.
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The classical version of Green’s theorem is∫∫
K

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
∂K

P dx+Q dy.

LetK ⊆K R2 have a boundary with the induced orientation. By de inition, we have

d(x dy) = dx ∧ dy = d(−y dx) =⇒ dx ∧ dy = d
(
1

2
(−y dx+ dy)

)
:= dω.

Thus, according to Green’s theorem,

Area(K) =

∫∫
K

dA =

∫
K

1 · dm =

∫
K
dω =

∫
∂K
ω =

1

2

∫
∂K
−y dx+ x dy.

aaaaaa

Example: what is the area of the ellipse

K =

{
(x, y) ∈ R2

∣∣∣∣ x2a2 +
y2

b2
≤ 1

}
, a, b > 0?

Solution: let γ : [0, 2π] → R2 be de ined by γ(t) = (a cos t, b sin t); then γ is a
parameterization of ∂K = γ([0, 2π]), and so

Area(K) =
1

2

∫
∂K
−y dx+ x dy =

1

2

∫
[0,2π]

Φ̃−1
1 (γ∗(ω))

=
1

2

∫
[0,2π]

P (γ(t))γ′1(t) dt+Q(γ(t))γ′2(t) dt

=
1

2

∫
[0,2π]

P (a cos t, b sin t)(−a sin t) dt+Q(a cos t, b sin t)(b cos t) dt

=
1

2

∫ 2π

0

[
(−b sin t)(a sin t) + (a cos t)(b cos t)

]
dt = 1

2

∫ 2π

0

ab dt = πab,

which we could have derived by viewing ellipses as generalized circles, but it’s nice
to be able to do it analytically. □

A subsetX ⊆ Rn is simply connected, denoted π1(X) ≃ 1, ifX is connected and if each loop
in X is homotopic to a single point, which is to say that each loop in X can be deformed
continuously to a single point (see Chapter 20 for more on this topic).⁴

aaaaaa Example: the connected component bounded by γ2 in the image on the previous
page is simply connected; the connected component bounded by γ1 ∪ γ3 ∪ γ4 isn’t.

⁴Roughly speaking,X is simply connected if its interior contains no “hole”.
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Corollary 196
Let U ⊆O R2 be simply connected. If ω ∈ Ω1(U) is closed, then ω is exact.

Proof: according to Theorem 194, for any rectangleR ⊆ U , we have∫
∂R
ω =

∫
R
dω;

since ω is closed, then dω = 0, so that
∫
∂R ω = 0.

For a ixed x0 ∈ U and for all x ∈ U , there is a piecewise C1 path γx connect-
ing x0 to x that is made up of horizontal and vertical segments in U .

We would like to de ine f(x) =
∫
γx
ω, so that df = ω (as in the proof of The-

orem 192). But this is only possible if f is well-de ined, meaning that f(x) takes
on the same value independently of the piecewise C1 path γx taken from x0 to x, as
long as it is a path of horizontal and vertical segments.

If γ1 and γ2 are two such paths, then γ1 − γ2 enclose a region made up of
contiguous rectangles, say R1 ∪ · · · ∪ Rk. According to Green’s theorem for
rectangles,∫
R1∪···∪Rk

dω =

∫
R1

dω+· · ·+
∫
Rk

dω =

∫
∂R1

ω+· · ·+
∫
∂Rk

ω =

∫
γ1−γ2

ω =

∫
γ1

ω−
∫
γ2

ω.

Since ω is closed in U , the left hand-side of that string of equations is 0, so that∫
γ1
ω =

∫
γ2
ω. Thus f is well-de ined and the proof is complete. ■

The condition that U be simply connected is necessary: if

ω =
−y

x2 + y2
dx+ x

x2 + y2
dy ∈ Ω1(U = R2 \ {0}),

then we have

dω =

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
dx∧dy =

(
−x2 + y2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

)
dx∧dy = 0.

If γ : [0, 2π]→ R2 de ined by γ(t) = (cos t, sin t) ∈ U is a parameterization of the unit circle,
we have ∫

γ

ω =

∫
[0,2π]

Φ̃−1
1 (γ∗(ω)) =

∫ 2π

0

dt = 2π ̸= 0 =

∫
B1

dω,

and so ω cannot be exact in U since the 3rd statement in Theorem 192.3 does not hold. The
only ly in the ointment is that U = R2 \ {0} is not simply connected.
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14.4 Surfaces and Orientable Surfaces in R3

It is fairly easy (?) to parameterize areas in R2, but the addition of a 3rd dimension can com-
plicate matters to some extent (especially when it comes to their boundaries).

There are 3 classical ways to describe a plane S ⊆ R3.

The implicit approach requires a normal vector n to S and a point P0 ∈ S:

S = {v ∈ R3 | (v− P0) · n = 0} = {(x, y, z) | ax+ by + cz︸ ︷︷ ︸
=F (x,y,z)

− (ax0 + by0 + cz0)︸ ︷︷ ︸
=d

= 0}.

The explicit approach views the plane as the graph of a function: as n = (a, b, c) ̸= 0,
we may assume that c ̸= 0.⁵ Then we have cz = d− ax− by, so that

z =
d− ax− by

c
= f(x, y), f : R2 → R2,

and we have F (x, y, f(x, y)) = 0 and S = {(x, y, f(x, y)) | (x, y) ∈ R2}.

Finally, in the parametric approach, let v1, v2 ∈ S0 be linearly independent, where

S0 = {(x, y, z) | F (x, y, z) = ax+ by + cz = 0};

hence S0 = Span{v1, v2}. If v0 ∈ S, we have S = v0 + S0. Let g : R2 → R3, de ined by
g(s, t) = v0 + sv1 + tv2; then g(R2) = S and so g is a parameterization of S.

These approaches generalize to non-planar surfaces. A subset S ⊆ R is a surface inR3 if one
of the three following equivalent conditions hold.⁶

Explicit description: ∀p ∈ S, ∃Wp ⊆0 R3 and f : πx,y(Wp) ⊆ R2 → R smooth such
that S ∩Wp = Graph(f).

Implicit description: ∀p ∈ S, ∃Wp ⊆0 R3 and F : Wp → R3 smooth such that

S ∩Wp = F−1(0) = {w ∈ Wp | F(w) = 0}

and det(DF) ̸= 0 on S ∩Wp.

Parametric description: ∀p ∈ S, ∃Wp ⊆0 R3 and a smooth injection g : U ⊆ R2 → R3

such that rank(Dg(x)) = 2 for all x ∈ U and such that g−1 : S ∩Wp → U is continuous.
In that case, we say that g is a local parameterization of S.

In the latter case, the challenge is usually to ind the “right” g.

⁵Change the variable representation, if necessary.
⁶The equivalence of the conditions is a consequence of the implicit function theorem.
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aaaaaa

Examples

1. Consider the unit sphere S ⊆ R3.

Implicit descriptions: S = {(x, y, z) | x2 + y2 + z2 = 1}
Explicit description:
a) IfW+

1 = {(x, y, z) | z > 0}, V1 = πx,y(W
+
1 ) = {(x, y) | x2 + y2 < 1},

and f+
1 : V1 → R is given by f+

1 (x, y) =
√

1− x2 − y2 = z, then
S ∩W+

1 is the northern hemisphere.
b) IfW−

1 = {(x, y, z) | z < 0}, V1 = πx,y(W
−
1 ) = {(x, y) | x2 + y2 < 1},

and f−
1 : V1 → R is given by f−

1 (x, y) = −
√

1− x2 − y2 = z, then
S ∩W−

1 is the southern hemisphere.
c) IfW+

2 = {(x, y, z) | y > 0}, V2 = πx,z(W
+
2 ) = {(x, z) | x2 + z2 < 1},

and f+
2 : V2 → R is given by f+

2 (x, z) =
√
1− x2 − z2 = y, and so on.

Parameteric description: consider g : (0, π) × (−π, π) → R3 de ined
by

g(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) = (x, y, z).

Then

Dg(θ, φ) =

cos θ cosφ − sin θ sinφ
cos θ sinφ sin θ cosφ
− sin θ 0

 .

It is an exercise to show that rank(Dg(θ, φ)) = 2 for all (θ, φ). Further-
more, g is injective overU = (0, π)×(−π, π). Indeed, if (θ, φ), (θ′, φ′) ∈ U
and g(θ, φ) = g(θ′, φ′), then:
– cos θ = cos θ′ =⇒ θ = θ′;
– sin θ cosφ = sin θ cosφ =⇒ cosφ = cosφ′;
– sin θ sinφ = sin θ sinφ =⇒ sinφ = sinφ′.
– the last two equations yield φ = φ′ over (−π, π).

Finally, we show that that g−1 : g(U) → U de ined by g(x, y, z) = (θ, φ)
is continuous. Since z = cos θ< then θ = arccos z, which is continuous.
Since−π/2 < φ/2 < π/2, we have cos(φ/2) ̸= 0, and we can write

tan φ
2
=

sin θ sinφ
sin θ + sin θ cosφ =

y√
1− z2 + x

,

whence
φ = 2 arctan

(
y√

1− z2 + x

)
,

which is also continuous.

But C = {(x, 0, z) | x2 + z2 = 1, x ≤ 0} ⊆ S, so we have g(U) = S \ C , and so
g is a local parametrization of S – it is impossible to get all of S with g.
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aaaaaa

2. Consider the in inite cone S : z2 = x2 + y2, z ≥ 0.

Implicit description: S = {(x, y, z) | |x2 + y2 − z2 = 0}
Explicit description: If f : R2 → R is given by f(x, y) = x2 + y2, then
S = {(x, y, f(x, y)) | (x, y) ∈ R2}
Parameteric description: consider g : U = (0, 2π) × (0, a) → R3 de-
ined by

g(φ, r) = (r cosφ, r sinφ, r).
We can show that Dg is of full rank on U , that g is injective on U , and
that g−1 is continuous on U (see exercises).

Finally, if C0 = {(x, 0, z) | a > x− z ≥ 0}, then

g(U) = {(x, y, z) | x2 + y2 = z2 < a2} \ C0;

the parameterization is local. □

In both examples, the local parameterization covers the surface entirely, except for a set of
measure (area) zero (see Chapter 21) – themissing pieces do not contribute to the integrals.

A subset S ⊆ R3 is a surface with a boundary inR3 if for at least some point p ∈ S, there is
aWp ⊆O R3 and a parameterization g : U → R3 such that g(U) = V = Wp ∩S and U ⊆0 R2

+.
We write p ∈ ∂S if p = g(u) for some u ∈ ∂R2

+ = {(x, y) | y = 0}.

aaaaaa

Examples

1. Consider the surface S which is the northern hemisphere of the unit sphere in
R3. Let p be a point of S which is not on the equator: ∃0 ∈ U ⊆O R2 and a
local parameterization g : U → R3 such that g(0) = p and g(U) ⊆ S. For a
pointp on the equator, we can ind0 ∈ U ′ ⊆O R2

+ and a local parameterization
g′ : U ′ → R3 such that g′(0) = p and g′(U ′) ⊆ S. Thus ∂S is the equator.

2. A pair of trousers S is a “surface” inR3; the boundary ∂S consists of the top of
the waistband and the bottom of the two leg openings.

3. The ellipsoid
S =

{
(x, y, z) ∈ R3

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
= 1

}
is a surface without a boundary. □
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In the last example, there is a sense in which the volume

V =

{
(x, y, z) ∈ R3

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
≤ 1

}
(which is not the same as the surface S) DOES have a “boundary”, namely ∂V = S. In general,
if S is am−dimensional object, its boundary should be am− 1−dimensional object.

14.5 Integral of a Form on an Orientable Surface
We have seen that we can induce an orientation on the boundary of planar regions; can we
orient surfaces as well? Let E = {e1, . . . , en} and E = {f1, . . . , fn} be two bases of Rn, and let
P be the change of basis matrix from E to F . We say that E and F have the same orienta-
tion if det(P ) > 0 and that they have opposite orientation if det(P ) < 0.

aaaaaa

Examples

1. In R2, if E = {(1, 0), (0, 1)} and Fα = {(cosα, sinα), (− sinα, cosα)}, the
change of basis matrix is P =

(
cosα − sinα
sinα cosα

)
and detP = 1, so E and Fα

have the same orientation. □

2. In R2, if E = {(1, 0), (0, 1)} and F = {(1, 0), (0,−1)}, then P =

(
1 0
0 −1

)
and

detP = −1, so E and F have opposite orientations. □

By convention, the orientation of the canonical basis of Rn is taken to be positive.

Let S ⊆ R3 be a surface. For all p, let Tp(S) ⊆ R3 denote the tangent plane to S at p.
By de inition, Tp(S) ≃ R2 = Span(up, vp), n ⊥ Tp(S), as below. We say that S is orientable if
it is possible to continuously select a basis {up, vp} of Tp(S) as p ∈ S varies continuously.⁷

⁷Importantly, not every surface is orientable (such as a Möbius strip or a Klein bottle, for instance).
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Let S ⊆ R3 be a compact surface with boundary ∂S. Let q ∈ ∂S and de ine Tq(∂S) ⊆ Tq(S)
to be the 1−dimensional line tangent to ∂S at p. Pick α > 0 and let γ : [0, t) → S be a C1
path on S with γ(0) = q. Pick a zq ∈ Tq(S) such that zq ⊥ Tq(∂S) and the angle between
zq and γ ′(0) ∈ Tq(S) is greater than a right angle. We say that zq points to the exterior of S,
whereas−zq points to the interior of S.

The boundary ∂S is orientable when for all q ∈ ∂S, the orientation of Tq(∂S) is given by a
vector v such that the orientation of Tq(S) is given by the basis {n, v}, where n is normal to
Tq(∂S) and points towards the exterior of S.

At any point of the boundary, the cross-product n× v (in that order) points towards the pos-
itive orientation of the surface S (the direction given by the right-hand rule).
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Recall that if U ⊆0 R2 and ω = P (x, y) dx ∧ dy ∈ Ω2(R2) where P is integrable over U (see
Chapter 21 for details), then∫

U
ω =

∫
U

P dm, where U : U → R2 ≡ identity on U.

Let W ⊆O R3, U a Borel⁸ subset of R2, U ⊆O U , U ⊆O R2 with Area(U − U0) = 0 and let
φ : U → W be such thatφ|U0 = φ0 : U0 → W is C1. If ω ∈ Ω2(W ), then∫

φ

ω =

∫
φ0

ω.

This iswell-de ined, aswecan seebelow. LetU ′
0,φ

′
0 beobjects that satisfy the sameproperties

asU0,φ
′
0. Denoteφ∗

0(ω) = P0(x, y) dx∧dy andφ′∗
0(ω) = P ′

0(x, y) dx∧dy. Wemust show that∫
U

P dm =

∫
U ′
P ′ dm.

Write U ′′
0 = U0 ∩ U ′

0; we have P0 = P ′
0 on U ′′

0 and

U0 \ U ′′
0 = U0 ∩ (U ′

0)
c ⊆ U ∩ (U ′

0)
c = U \ U ′

0.

Thus,
Area(U0 \ U ′′

0 ) ≤ Area(U0 \ U ′
0) = 0.

Similarly, Area(U ′
0 \ U ′′

0 ) = 0, and so∫
U0

P0 dm =

∫
U ′′
0

P0 dm =

∫
U ′′
0

P ′
0 dm =

∫
U ′
0

P ′
0 dm.

aaaaaa

Example: let ω = xz2 dy ∧ dz + yx2 dx ∧ dy + zy2 dx ∧ dy ∈ Ω2(R3) and set a > 0.
We consider the functionΦ : [0, π]× [0, 2π)→ R3 de ined by

(θ, φ) 7→ a(sin θ cosφ, sin θ sinφ, cos θ);

Φ is a parameterization in spherical coordinates of the surface

Sa = {(x, y, z) | x2 + y2 + z2 = a2}.

Let U = [0, π] × [0, 2π) and U0 = (0, π) × (0, 2π); then Φ0 = Φ|U0 is C1. Since
Area(U \ U0) = 0, we have ∫

Φ

ω =

∫
U0

Φ∗(ω).

⁸For all intents and purposes, U is suf iciently “nice” (see Chapter 21).
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aaaaaa

We can show that

Φ∗(ω) = a5(sin3 θ cos2 θ + sin5 θ cos2 φ sin2 φ) dθ ∧ dφ,

and so ∫
Φ

ω =

∫ π

0

∫ 2π

0

a5(sin3 θ cos2 θ + sin5 θ cos2 φ sin2 φ) dθ dφ =
4

5
πa5.

For any (θ, φ), the basis {∂Φ
∂θ
, ∂Φ
∂φ
} de ines the positive orientation onSa via the right-

hand rule;Φ0 then de ines a local parameterization of Sa up to a set of area 0. □

If S is orientable in R3 andΦ : U → R3, Ψ : V → R3 are two orientation-preserving param-
eterizations of S, let η : U → V be the unique bijection such that Φ = Ψ ◦ η. Then η is a
diffeomorphism and ∀u ∈ U ,

DΦ(u) = DΨ(η(u))Dη(u).

Since {∂Φ(u)
∂u1

, ∂Φ(u)
∂u2
} is a positive basis ofTΦ(u)(S) and since {∂Ψ(η(u))

∂v1
, ∂Ψ(η(u))

∂v2
} is a positive ba-

sis ofTΦ(η(u))(S), bothDΦ(u) andDΨ(η(u)) transform the canonical basis ofR2 intopositive-
orientation bases of TΦ(u)(S).

In that case,Dη(u) preserves the orientation of R2 and det(Dη(u)) > 0 for all u.

If ω ∈ Ω2(R3), we haveΦ∗(ω) = a(u1, u2) du1∧du2,Ψ∗(ω) = b(v1, v2) dv1∧dv2 for a ∈ Ω0(U)
and b ∈ Ω0(V ). SinceΦ = Ψ ◦ η, we have

Φ∗(ω) = a du1 ∧ du2 = η∗(Ψ∗(ω)) = η∗(b dv1 ∧ dv2) = (b ◦ η) det(Dη) du1 ∧ du2.

Thus, according to the change of variable theorem (see Chapter 21), we have∫
U

Φ∗(ω) =

∫
Φ

ω =

∫
U

a du1 du2 =
∫
U

(b ◦ η) det(Dη) du1 du2 =
∫
U

(b ◦ η)| det(Dη)| du1 du2

=

∫
V

b dv1 dv2 =
∫
V

Ψ∗(ω) =

∫
Ψ

ω.

We have then proven the following result.

aaaaaa
Theorem 197
Under the hypotheses outlined above, the integrability of ω with respect toΦ and the
value of

∫
Φ
ω depend only on ω and the surface S = Φ(U).

We say that ω ∈ Ω2(R3) is integrable over S ⊆ R3 if ω is integrable with respect to a parame-
terizationΦ of S and we write

∫
S
ω =

∫
Φ
ω.
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14.6 Area of a Surface and Flux Integral
In an exercise from the previous chapter, we saw that if u, v,n ∈ R3 are such that u and v are
not parallel, n ⊥ u, vwith ∥n∥ = 1 and

φ = n1 dy ∧ dx+ n2 dz ∧ dx+ n3 dx ∧ dy ∈ Λ2(R3),

then φ(u, v) represents the signed area of the parallelogram bound by u and v. Thus:
if n = u×v

∥u×v∥ , then Area = φ(u, v);

if n = − u×v
∥u×v∥ , then Area = −φ(u, v).

Let S ⊆ R3 be an orientable surface, and let n : S → R3 be the vector ield of unit vectors
normal to S, pointing towards the exterior of S.⁹

aaaaaa

Example: consider the sphere of radius a > 0 centered at the origin:

Sa = {(x, y, z) ∈ R3 | x2 + y2 + z2 − a2 = F (x, y, z) = 0}.

Then ∇F (x, y, z) = (2x, 2y, 2z) ⊥ Sa and points towards the exterior of Sa for all
(x, y, z) ∈ Sa, so we could pick

n(x, y, z) =
∇F (x, y, z)
∥∇F (x, y, z)∥

. □

The area differential σ = n1 dy ∧ dx + n2 dz ∧ dx + n3 dx ∧ dy ∈ Ω2(R3) is such that
σ : R3 → Λ2(R3). According to the preceding discussion, for all s ∈ S ⊆ R3, and for all
u, v ∈ Ts(S), we have

σ(s)(u, v) = signed area of parallelogram bound by u and v.

Using the above notation, we then have the following result.

aaaaaa
Proposition 198
For an orientable surface S ⊆ R3, let σ ∈ Ω2(R3) be the area differential of S. Then
the signed area of S is given by

∫
S
ω.

We sometimes used the following formulation:

Signed Area(S) =
∫∫

U0

∥∥∥∥∂σ∂s × ∂σ

∂t

∥∥∥∥ ds dt,

whereΦ : U0 → R3 is a parameterization of S.
⁹In other words, we can ind a continuous mapping s ∈ S 7→ {u(s), v(s)}, where {u(s), v(s)} ∈ Ts(S)

de ines the orientation of S, so that {n(s),u(s), v(s)} forms a basis of R3 with positive orientation.
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aaaaaa

Example: consider the unit sphere

S = {(x, y, z) ∈ R3 | x2 + y2 + z2 − 1 = F (x, y, z) = 0}.

The outward normal vector ield n : S → R3 is given by

n(x, y, z) =
∇F (x, y, z)
∥∇F (x, y, z)∥

= (x, y, z) ⊥ S.

The area differential of S is thus σ = x dy ∧ dx + y dz ∧ dx + z dx ∧ dy ∈ Ω2(R3).
In order to calculate

∫
S
σ, we use the following parameterization of S:

Φ : U0 = [0, π]× [0, 2π)→ R3, where Φ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ),

and ∫
S

σ =

∫
Φ

σ =

∫
U0

Φ∗(σ).

ButΦ∗(σ) = (sin3 θ + cos2 θ sin θ) dθ ∧ dφ, so that∫
U0

Φ∗(σ) =

∫ π

0

∫ 2π

0

(sin3 θ + cos2 θ sin θ) dθ dφ = 4π. □

14.7 Stokes’ Theorem
We inish this chapter (and this part of the course notes) with a generalization of Green’s the-
orem, which we unfortunately present without proof.

aaaaaa
Theorem 199 (S ' T )
LetM ⊆ W ⊆O Rn be a compact orientable manifold with orientable boundary ∂M
such that dim(M) = p. If ω ∈ Ωp−1(W ), then

∫
∂M

ω =
∫
M
dω.

WhenM = S ⊆ R3 and p = dim(M) = 2, then we usually write Stokes’ theorem as∫
S

(∇× F) · dA =

∮
∂S

F · dr.

aaaaaa

Corollary 200
Let ∂M = ∅ in Theorem 199. If ϕ ∈ Ωp(W ) is exact, then

∫
M
ϕ = 0.

Proof: since φ is exact, ∃η ∈ Ωp−1(W ) such that dη = φ, so that∫
M

φ =

∫
M

dη =

∫
∂M

η = 0. ■
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14.8 Solved Problems
Let’s do some vector calculus!

1. Let F(x, y) = (xy, x − y) and C be the boundary of the triangle with vertices (1, 0),
(−1, 0) and (0, 1). Compute the line integral

∫
C
F · dr.

Solution: the triangle is parameterized by

C1 :(t, 0), −1 ≤ t ≤ 1, C2 : (1− t, t), 0 ≤ t ≤ 1, C3 : (−t, 1− t), 0 ≤ t ≤ 1.

Thus, the line integral of interest is

I =

∮
C
F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr

=

∫ 1

−1
(t2, t) · (1, 0) dt+

∫ 1

0
(t− t2, 1− 2t) · (−1, 1) dt+

∫ 1

0
(t2 − t,−1) · (−1,−1) dt = 1.

Under the other orientation, the answer is−1. □

2. Let F(x, y) = (2xex
2 sin y, ex2 cos y) and C be the path de ined by x(t) = t, y(t) = π

2
t,

0 ≤ t ≤ 1.
a) Compute

∫
C
F · dr directly.

b) Compute
∫
C
F · dr using the fundamental theorem of line integrals.

Solution:
a) We have

I =

∫
C
F · dr =

∫ 1

0
(2tet

2 sin(πt/2), et2 cos(πt/2)) · (1, π/2) dt

=

∫ 1

0
et

2
(2t sin(πt/2) + π/2 cos(πt/2)) dt =

[
et

2 sin(πt/2)
]1
0
= e.

b) Let f(x, y) = ex
2 sin y. Then F = ∇f and∫

C
F · dr = f(1, π/2)− f(0, 0) = e− 0 = e,

according to the fundamental theorem of line integrals. □

3. Compute
∫
C
F · dr, if F(x, y) = (x2y,−xy) and C = {r(t) = (t3, t4) | 0 ≤ t ≤ 1}.

Solution: we have r′(t) = (3t2, 4t3). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t3, t4

)
· (3t2, 4t3) dt

=

∫ 1

0

(
t10,−t7

)
· (3t2, 4t3) dt =

∫ 1

0

(
3t12 − 4t10

)
dt

=

[
3t13

13
− 4t11

11

]1
0

= − 19

143
. □
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4. Compute
∫
C
F · dr, where F(x, y, z) = (y + z,−x2,−4y2) and

C = {r(t) = (t, t2, t4) | 0 ≤ t ≤ 1}.

Solution: in this case, we have r′(t) = (1, 2t, 4t3). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t, t2, t4

)
· (1, 2t, 4t3) dt

=

∫ 1

0

(
t2 + t4,−t2,−4t4

)
· (1, 2t, 4t3) dt =

∫ 1

0

(
t2 − 2t3 + t4 − 16t7

)
dt

=

[
t3

3
− t4

2
+
t5

5
− 2t8

]1
0

= −59

30
. □

5. Compute
∫
C
F · dr if F(x, y, z) = (sinx, cos y, xz) and

C = {r(t) = (t3,−t2, t) | 0 ≤ t ≤ 1}.

Solution: in this case, we have r′(t) = (3t2,−2t, 1). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t3,−t2, t

)
· (3t2,−2t, 1) dt

=

∫ 1

0

(
sin(t3), cos(−t2), t4

)
· (3t2,−2t, 1) dt =

∫ 1

0

(
3t2 sin(t3)− 2t cos(−t2) + t4

)
dt

=

[
− cos(t3)− sin(t2) + t5

5

]1
0

=
6

5
− cos(1)− sin(1). □

6. Are F(x, y) = (yex + sin y, ex + x cos y) and F(x, y) = (yexy + 4x3y, xexy + x4) a conser-
vative vector ields? If so, ind their potential.

Solution: the vector ield F is conservative if and only if
∂F1

∂y
=
∂F2

∂x
.

Since
∂F1

∂y
=

∂

∂y
(yex + sin y) = ex + cos y

∂F2

∂x
=

∂

∂x
(ex + x cos y) = ex + cos y

the ield is conservative. In this case, the potential f satis ies∇f = F, that is

fx(x, y) = F1(x, y) = yex + sin y
fy(x, y) = F2(x, y) = ex + x cos y

whence

f(x, y) =

∫
fx(x, y)dx =

∫
(yex + sin y) dx = yex + x sin y + k(y),
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where k(y) is a function of y. Substituting this function f in the equation for fy , we
have

fy(x, y) = ex + x cos y + k′(y) = ex + x cos y;
the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for F is f(x, y) = yex + x sin y + k, k ∈ R.

Since
∂F1

∂y
=

∂

∂y

(
yexy + 4x3y

)
= exy + xyexy + 4x3

∂F2

∂x
=

∂

∂x

(
xexy + x4

)
= exy + xyexy + 4x3

the second ield is conservative. In this case, the potential f satis ies∇f = F, that is
fx(x, y) = F1(x, y) = yexy + 4x3y

fy(x, y) = F2(x, y) = xexy + x4

whence

f(x, y) =

∫
fx(x, y)dx =

∫ (
yexy + 4x3y

)
dx = exy + x4y + k(y),

where k(y) is a function of y. Substituting this function f in the equation for fy , we
have

fy(x, y) = xexy + x4 + k′(y) = xexy + x4;

the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for F is f(x, y) = exy + x4y + k, k ∈ R. □

7. Find a potential for these vector ields, if one exists.
a) F(x, y) = (2xy3, 3x2y + x);
b) F(x, y) = (2xy3 + y, 3x2y + x);
c) F(x, y) = (2xy, x2 + 8y).

Solution: a) and b) do not have potential functions, but f(x, y) = x2y + 4y2 is a
potential function for c). □

8. Using the direct approach andGreen’s theorem, compute
∫
C
F·dr, whereC is the square

with vertices (0, 0), (1, 0), (1, 1), (0, 1), and F(x, y) = (x2y, xy3).
Solution: the region is shown below.
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Let C1 be the segment from (0, 0) to (1, 0); C2 the segment from (1, 0) to (1, 1); C3

the segment from (1, 1) to (0, 1), and C4 the segment from (0, 1) to (0, 0). Thus

C1 = {r(t) = (t, 0) | 0 ≤ t ≤ 1}
C2 = {r(t) = (1, t) | 0 ≤ t ≤ 1}
C3 = {r(t) = (1− t, 1) | 0 ≤ t ≤ 1}
C4 = {r(t) = (0, 1− t) | 0 ≤ t ≤ 1}

and ∫
C
F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr+
∫
C4

F · dr.

We can show with ease that∫
C1

F · dr =
∫ 1

0
(t2(0), t(0)3) · (1, 0) dt = 0∫

C2

F · dr =
∫ 1

0
(12(t), 1t3) · (0, 1) dt =

∫ 1

0
t3 dt = 1

4∫
C3

F · dr =
∫ 1

0
((1− t)2(1), (1− t)(1)3) · (−1, 0) dt =

∫ 1

0
−(1− t)2 dt = −1

3∫
C4

F · dr =
∫ 1

0
(02(1− t), 0(1− t)3) · (0,−1) dt = 0

so that ∫
C
F · dr = 0 +

1

4
− 1

3
+ 0 = − 1

12
.

Using Green’s theorem instead, we have∫
C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y3 − x2

)
dA,

where the region of integrationD (in red) is bounded by the curveC , with the posi-
tive orientation. SinceD = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, we have∫∫

D

(
y3 − x2

)
dA =

∫ 1

0

∫ 1

0
(y3 − x2) dy dx =

∫ 1

0

[
y4

4
− x2y

]y=1

y=0

dx

=

∫ 1

0

(
1

4
− x2

)
dx =

[
x

4
− x3

3

]1
0

=
1

4
− 1

3
= − 1

12
.

This completes the computations. □

9. Compute
∫
C
F · dr, where C is the circle x2 + y2 = 4 from (2, 0) to (

√
2,
√
2), then along

the segment from (
√
2,
√
2) to the origin and inally along the segment from the origin

to (2, 0) (with the positive orientation), for F(x, y) = (y2 − x2y, xy2).
Solution: according to Green’s theorem,∫

C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y2 − 2y + x2

)
dA,
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where the regionD is bounded by the curve C , oriented positively. In polar coordi-
nates,

D(r,θ) = {(r, θ) | 0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
},

and y2 − 2y + x2 = r2 − 2r sin θ, whence∫∫
D

(
y2 − 2y + x2

)
dA =

∫ π/4

0

∫ 2

0
(r2 − 2r sin θ)r dr dθ =

∫ π/4

0

[
4− 16

3
sin θ

]
dθ

=

[
4θ +

16

3
cos θ

]π/4
0

= π +
8

3
(
√
2− 2).

□

10. What is thework accomplished by the vector ield F(x, y) = (x(x+y), xy2) on a particle
traveling along the x−axis from the origin to (1, 0), then from (1, 0) to (0, 1) along a
straight line, and inally back to the origin along the y−axis?

Solution: the work in question is given by

W =

∫
C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y2 − x

)
dA,

where the regionD (in red) is bounded by the curve C , oriented positively.

SinceD = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x},

W =

∫∫
D

(
y2 − x

)
dA =

∫ 1

0

∫ 1−x

0
(y2 − x) dy dx =

∫ 1

0

[
y3

3
− xy

]y=1−x

y=0

dx

=

∫ 1

0

(
(x− 1)3

3
− x(1− x)

)
dx =

[
− 1

12
(1− x)4 − x2

2
+
x3

3

]1
0

= − 1

12
. □
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11. Let F(x, y, z) = ( z
2
, y, 2x) and S be the rectangle with vertices (2, 0, 4), (2, 3, 4), (0, 0, 4)

et (0, 3, 4). Compute the surface integral
∫∫

S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) = 4, (s, t) ∈ D : 0 ≤ s ≤ 2, 0 ≤ t ≤ 3

Thus, vs = (1, 0, 0), vt = (0, 1, 0) and

vs × vt = (0, 0, 1).

Restricted to S, the vector ield takes the form

F(x(s, t), y(s, t), z(s, t)) = (2, t, 2s).

The positive orientation of the surface S was not speci ied, so we select the upwards
orientation as the positive orientation. Since vs × vt = (0, 0, 1) points upwards,

I =

∫∫
S
F · dA =

∫∫
D
(2, t, 2s) · (0, 0, 1) ds dt =

∫ 3

0

∫ 2

0
2s ds dt = 12. □

12. Let F(x, y, z) = (x, y, z) and S be the surface de ined by z = −2x − 4y + 1 in the irst
octant. Compute the surface integral

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) = −2s− 4t+ 1, (s, t) ∈ D : 0 ≤ t ≤ 1/4, 0 ≤ s ≤ 1/2− 2t

Thus, vs = (1, 0,−2), vt = (0, 1,−4) and

vs × vt = (2, 4, 1).

Restricted to S, the vector ield becomes

F(x(s, t), y(s, t), z(s, t)) = (s, t,−2s− 4t+ 1).

The positive orientation of S is still not speci ied, so we select the upwards orienta-
tion. Since vs × vt = (2, 4, 1) points upwards, we have

I =

∫∫
S
F · dA =

∫∫
D
(s, t,−2s− 4t+ 1) · (2, 4, 1) ds dt

=

∫ 1/4

0

∫ 1/2−2t

0
1 ds dt =

∫ 1/4

0
(1/2− 2t) dt = 1

16
. □

13. Let F(x, y, z) = (−xz,−yz, z2) and S be the surface z2 = x2 + y2 lying above the plane
z = 0 and below the plane z = 1. Compute

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) =
√
s2 + t2, (s, t) ∈ D : s2 + t2 ≤ 1.
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Thus, vs = (1, 0, s√
s2+t2

), vt = (0, t, t√
s2+t2

) and

vs × vt = (−s(s2 + t2)−1/2,−t(s2 + t2)−1/2, 1).

Restricted to S, the vector ield becomes

F(x(s, t), y(s, t), z(s, t)) = (−s
√
s2 + t2,−t

√
s2 + t2, s2 + t2).

The positive orientation ofS is once again not speci ied, we again select the upwards
orientation as the positive one. Since vs × vt points upwards, we have

I =

∫∫
S
F · dA =

∫∫
D
(−s

√
s2 + t2,−t

√
s2 + t2, s2 + t2) · ( −s√

s2 + t2
,
−t√
s2 + t2

, 1) ds dt

= 2

∫∫
D
(s2 + t2) ds dt.

In polar coordinates, this last integral is easy to evaluate: s = r cos θ, t = r sin θ,
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π:

I = 2

∫∫
D
(s2 + t2) ds dt = 2

∫ 1

0

∫ 2π

0
(r2 cos2 θ + r2 sin2 θ)r dθ dr = 2

∫ 1

0

∫ 2π

0
r3 dθ dr = π. □

14. Let F(x, y, z) = (y, x, 0) and S be the surface de ined by x2 + y2 = 9, 0 ≤ x ≤ 3,
−3 ≤ y ≤ 3, 1 ≤ z ≤ 2. Compute the surface integral

∫∫
S
F · dA.

Solution: without a single computation, it is possible to determine that the luxmust
be zero. Why is that? □

15. LetF(x, y, z) = (x, 0, 0) and letS be the surfaceparameterizedbyx = ep, y = cos 3q, z =
6p, 0 ≤ p ≤ 4, 0 ≤ q ≤ π

6
. Compute the surface integral

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(p, q) = ep, y(p, q) = cos(3q), z(p, q) = 6p, (s, t) ∈ D : 0 ≤ p ≤ 4, 0 ≤ q ≤ π

6
.

Thus, vp = (ep, 0, 6), vq = (0,−3 sin 3q, 0) and

vp × vq = (18 sin(3q), 0,−3ep sin(3q)).

Restricted to S, the vector ield becomes

F(x(p, q), y(p, q), z(p, q)) = (ep, 0, 0).

Guess what, the surface orientation has not been speci ied, so we select the positive
x−axis as a positive orientation. Since the irst component of vp×vq is positivewhen
0 ≤ q ≤ π

6 , we have

I =

∫∫
S
F · dA =

∫∫
D
(ep, 0, 0) · (18 sin(3q), 0,−3ep sin(3q)) dp dq

= 18

∫ π/6

0

∫ 4

0
ep sin(3q) dp dq = 6(e4 − 1). □
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16. What is the area of the piece S of the cylinder x2 + z2 = a2 bounded by the surface of
the cylinder x2 + y2 = a2, where a > 0?

Solution: in the image below, the situation is illustrated in the irst octant, for a = 1:
the cylinder x2 + z2 = a2 appears in grey, the cylinder x2 + y2 = a2 in red. The part
of S in the irst octant shows up in blue.

The surface S is parameterized by
x = p, y = q, z =

√
a2 − p2, (p, q) ∈ Ω

where Ω is the region of the xy−plane bounded by the green curve. Accordingly,

A(S) = 8

∫∫
Ω
∥vp × vq∥ dq dp,

where
vp =

(
1, 0,− p√

a2 − p2

)
, vq = (0, 1, 0)

and
vp × vq =

(
p√

a2 − p2
, 0, 1

)
,

whence
∥vp × vq∥ =

a√
a2 − p2

.

Thus,

A(S) = 8

∫∫
Ω
∥vp × vq∥ dp dq = 8

∫∫
Ω

a√
a2 − p2

dq dp = 8

∫ a

0

∫ √a2−p2

0

a√
a2 − p2

dq dp

= 8

∫ a

0

[
a√

a2 − p2
q

]√a2−p2

0

dp = 8a

∫ a

0
dp = 8a2. □
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17. What is the area of the piece S of the sphere x2 + y2 + z2 = a2 bounded by the surface
of the cylinder x2 + y2 = ax, where a > 0?

Solution: in the image below, the situation is illustrated in the irst octant, for a = 1:
the cylinder x2 + y2 = ax appears in grey, the sphere x2 + y2 + z2 = a2 in red. The
part of S in the irst octant shows up in blue.

The surface S is parameterized by
x = p, y = q, z =

√
a2 − p2 − q2, (p, q) ∈ Ω

where Ω is the region of the xy−plane bounded by the green curve. Accordingly,

A(S) = 4

∫∫
Ω
∥vp × vq∥ dq dp,

where

vp =

(
1, 0,− p√

a2 − p2 − q2

)
, vq =

(
0, 1,− q√

a2 − p2 − q2

)
and

vp×vq =

(
p√

a2 − p2 − q2
,

q√
a2 − p2 − q2

, 1

)
, whence ∥vp×vq∥ =

a√
a2 − p2 − q2

.

Thus,

A(S) = 4

∫∫
Ω
∥vp × vq∥ dp dq = 4

∫∫
Ω

a√
a2 − p2 − q2

dq dp = 4

∫ a

0

∫ √ap−p2

0

a√
a2 − p2 − q2

dq dp

= 4

∫ a

0

[
a arctan

(
q√

a2 − p2 − q2

)]√ap−p2

0

dp = 4a

∫ a

0
arctan

(√
p

a

)
dp

= 4a

[
(p+ a) arctan

(√
p

a

)
−√ap

]a
0

= 2a2(π − 2). □
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18. Let F(x, y, z) = (2x − y, x + 4y, 0). Compute the line integral
∫
C
F · dr using Stokes’

theorem, when C is a circle of radius 10 centered at the origin

a) in the plane z = 0;
b) in the plane x = 0.

Solution: Since curl F(x, y, z) = (0, 0, 2), if C is oriented positively, we have∫
C
F · dr =

∫∫
S
curl F · dA

according to Stokes’ Theorem.
a) We select the xy−plane region S parameterized by

x = r cos θ, y = r sin θ, z = 0,

(s, t) ∈ D = {0 ≤ r ≤ 10, 0 ≤ θ ≤ 2π}.

Thus, vr = (cos θ, sin θ, 0),

vθ = (−r sin θ, r cos θ, 0)

and vr × vθ = (0, 0, r). The positive orientation has to be the upwards orienta-
tion. Since vr × vθ points upwards when r ≥ 0,

I =

∫∫
S
curl F · dA

=

∫∫
S
(0, 0, 2) · (0, 0, r) dr dθ

=

∫∫
D
2r dr dθ = 2

∫ 2π

0

∫ 10

0
r dr dθ = 200π.

b) We select the yz−plane region S parameterized by

x = 0, y = r cos θ, z = r sin θ, (r, θ) ∈ D : 0 ≤ r ≤ 10, 0 ≤ θ ≤ 2π.

Thus, vr = (0, cos θ, sin θ),

vθ = (0,−r sin θ, r cos θ)

and vr × vθ = (r, 0, 0). Independently of the orientation of S, we have

I =

∫∫
S
curl F · dA

=

∫∫
D
(0, 0, 2) · (r, 0, 0) dr dθ =

∫∫
S
0 dr dθ = 0.□
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14.9. EXERCISES

14.9 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.
2. Translate all of the solved problems of this section (and their solutions) into the lan-

guage of differential forms.
3. If φ : [a, b]→ [c, d] is a C1 diffeomorphism, show that φ′(t) ̸= 0 for all t ∈ [a, b].
4. Prove Proposition 189.
5. Flesh out the details in the proof of Green’s theorem.
6. For the parametric description of the unit sphereS ⊆ R3, show that rank(Dg(θ, φ)) = 2

for all (θ, φ).
7. For the parametric description of the cone S ⊆ R3, show that rank(Dg(φ, r)) = 2 for

all (φ, r), that g is injective, and that g−1 is continuous.
8. Complete the calculations of the example on pp. 352-352.
9. Complete the calculations of the example on p. 355.

10. Consider the following classical mathematical results.
Fundamental Theorem of Calculus: Let f : [a, b] → R be R-int and F : [a, b] → R be

such that F is continuous on [a, b], differentiable on (a, b) and F ′(x) = f(x) for all
x ∈ (a, b). Then

∫ b

a
f = F (b)− F (a).

Fundamental Theorem of Line Integrals: Let U ⊆O Rn, ϕ : U → R be C1 and L be a
piecewise-C1 path fromA toB in U . Then

∫
L
∇ϕ(r) · dr = ϕ(B)− ϕ(A).

Green’s Theorem: Let C be a positively oriented, piecewise smooth, simple closed
curve in R2 and letD be the region bounded by C . If L andM are C1 on an open
region containingD, then∮

C

(L dx+M dy) =
∫∫

D

(
∂M

∂x
− ∂L

∂y

)
dA.

Classical Stokes’ Theorem: LetS ⊆ R3 bea compact surfacewith apiecewise-smooth
boundary C . If F : S → R3 is C1, then∫

S

curl F · dA =

∮
C

F · dr.

Divergence Theorem: LetW ⊆ R3 bea compact solidwith apiecewise-smoothbound-
ary ∂W . If F : W → R3 is C1, then∫∫∫

W

div F dV =

∫
∂W

F · dA.

Using the language of differential forms, explain why these ive results are special in-
stances of the same result.
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