Chapter 14

Integrating Differential Forms

The integral of a differential form generalizes the concept of the integral of
a function of a single variable (see Chapter 21 for another). In this chap-
ter, we formalize the concepts of the line, surface, and flux integral, and
present Stokes’ Theorem, a deep unifying result of vector analysis.

14.1 Line Integral of a Differential 1 —Form

Let U Cp R". Assume that ~ is a differentiable path in U and that w € Q!(U). This section’s
objective is to define f7 w meaningfully. A path in U is a continuous function ~ : [a,b] — U;
~(a) is the starting point while ~(b) is the path’s finishing point.

Examples

1. Letu,v € R". The path~ : [0, 1] — R"™ defined by v(¢) = tv + (1 — t)u is the
(oriented) line segment joining u and v. 0

2. Let~ : [0,27r] — R? be defined by ~(t) = (cost,sint). Then ~([0,27]) is
the unit circle in R?, starting at v(0) = (1,0) and ending at v(27) = (1,0),
travelling counter-clockwise. 0J

In that last example, = is a closed, simple curve, which is to say that

~(0) =~(27) and ~(t) #~(s)forallt # s € (0,27).

A path ~ is continuously differentiable (denoted C') if its derivative v’ : [a, b] — End(R, R")
varies continuously with ¢; the derivative is one-sided at the endpoints a and b. In that case,

Y(#):R—=R", x—~t)x=Vyt)x=(yt),...,7 ).



14.1. LINE INTEGRAL OF A DIFFERENTIAL 1-FORM

Examples
1. In the line segment example above, v/(t) = v — u € R™. O

2. In the circle example above, V~(t) = (—sint, cost). Note that y(¢) L V~(t)
for all £. O

Ifv : [a,b] - U Cp R™ represents the position of a particle at time ¢, then +/(¢) represents
the velocity vector of the particle at time ¢; /(%) is necessarily tangent to the path vy at¢ = .

A path ~ is piecewise differentiable ifa =ty <t; < --- <t, =band 7|[ti,ti+1] is C* for all 4.

y(a) = y(ty)

y(b) = y(ts)

Now we come to the section’s important definition. Let v be a C! path in U Cp R™ and
w= ZB(X) dz; € QY(U).

The line integral of w along « is given by

/w—/ZP x) dz; == /[ab]ll ~;(t) dt,

where ¥(t) = (1 (), . 3B, ¥/ ()) = (Vi(8); . 7(8)), and v : [a,5] = U Co R,
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CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS

Example: ifv : [-1,1] —» R?is~v(t) = (¢,t?) and w = —ydz + xdy € Q(R?), then
¥'(t) = (1,2t), Pi(z,y) = —y, Py(z,y) = z,and

w= [ (Pu(y()7(t) + Pa(v(t))ys(t)) dt
_ /1 (Pi(t,£2)(1) + Po(t, £2)(24)) dt

1 1 311 9
:/ (—t2+t(2t))dt:/ t2dt = {_] ==
-1 -1 31, 3

using the regular rules of integration. 0J

But we could also approach the problem from a different (but ultimately equivalent) angle:
the pullback of w by ~ is

7 () = 7 (~y e dy) = Py(0) T2 di+ Py (1) T dt = (~n(t)of (1) (74(0)) df € O (),

sothat [ w = fj1 v (w)

In general, if vy : [a,0] = U Co R"andw = ), P;dz; € Ql(U), then

/w :/ / ))dvy; = / )i (t) dt.
vy [avb} ab] =1 ab] =1

Example: consider w = —ydz + z dy € Q!(R?) and two paths from (1,0) to (0, 1),
~ : [0,7/2] — R? (acircle arc) and i : [0,1] — R? (a line segment), defined by
~(t) = (cost,sint) and n(t) = (1 —¢,t). Then

/2

[rw _ /0”/2 v (w) = /0”/2 [(—sint)(sint) + (cost)(cost)] dt = / 1dt = [f]F/* = g’

0

[o= [ = [ eoena-oma= [1a-p-

Evidently, the value of the line integral depends on the path and the endpoints. [

IfP : U — R is the vector field corresponding to w € Q' (U), then

Z Ei(y(0))yi(t) = P(v(1)) - () = (P(v (1)) | ¥'(1)),

szﬁwmwm~ﬂwmzlpdn

where r is a parameterization of v (i.e., dr(t) = ~/(¢)dt).

we sometimes write
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14.1. LINE INTEGRAL OF A DIFFERENTIAL 1-FORM

Letp : [a’, 0] — [a,b] be a C' diffeomorphism;" this entails that ¢'(¢) # 0 for all ¢ € [d/, V]
Since ¢’ is continuous, there are 2 possibilities:

1. ¢'(t) > 0 = ¢(a') = aand ¢(b') = b, in which case ¢ preserves the orientation;
2. ¢'(t) < 0= ¢(d’) = band ¢(b') = q, in which case ¢ reverses the orientation.

Examples: ¢ : [1,2] — [1,4] defined by p(t) = ¢ preserves the orientation as
¢'(t) =2t > 0on[1,2]; but p : [—2,—1] — [1,4] defined by ©(t) = ¢* reverses the
orientation as ¢'(t) = 2t < 0 on [—2, —1]. O

The distinction comes in at the following level.

Proposition 188
Letw =>""  P(x)dx; € QY U), v : [a,b] = U,y € CL Ifp:[d, V] = [a,b]isaC’
diffeomorphism, then

1. f"/O‘P w= f,y w If @ is orientation-preserving;
2. f’YOQO w=— f7 w If @ is orientation-reversing.
Proof:

1. By construction, vy o ¢ : [@/,b'] — U isaC' path and v/(p(t))¢'(t) exists for all
t € [d,0]. If we write t = p(s), thendt = ¢'(s)ds, a = p(da’),and b = ¢(b'),
and so

s=b N

/ o= / D (Pt dt= [ 3 (Proylp(s))ile(s)e/(s)ds

_ / Z [Proro@)]rogias = [ w

2. The proof is similar, except that the change of variable is t = (s), then dt =
¢'(s)ds,a = ('), and b = p(a’), and so

L o= [ ;n;(ﬂ- AP (5)ds == [ T / vom

=a

The line integral has two properties that are the counterparts of Theorems 55.1 and 56.

'That is, both ¢ and ! are C*.
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CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS
Proposition 189

Let U Co R™, w,wy,wy € QYU), and ~,n be C* paths in U such that the finishing
point of v is the starting point of . The concatenation ~ + n is piecewise C'. Then:

1. the line integral is linear in the sum (concatenation) of paths:

/ w:/w—l—/w
Y+n Yy n

2. the line integral is linear in the sum of differential forms:

fiveoa= e

Proof: left as an exercise. [ |

Proposition 189, together with the next property, justifies the naming of the line integral: if
it looks like an integral and it behaves like an integral...

Theorem 190 (FUNDAMENTAL THEOREM OF LINE INTEGRALS)
Let~ : [a,b] — R be a piecewise C' path and w = df € Q'(U) for some vector field
f € C>(U,R). Then

/7 . / df = f(v(b) - f(x(a)).

Proof: according to Proposition 189.1, it is sufficient to show the result for C! paths
~; according to Proposition 184, we know that d(v*(f)) = v*(df). Then

/w—/df /ab] /abdw(f))=/abd<fov>:/ab<fo~y>'<t>dt
YO = Fv(b) — flv(a)).

which completes the proof. [ |

In the example on page 335, we have f7 —ydr+xdr # fn —ydx + x dz, even though v and n
have the same starting points and finishing points, and so Theorem 190 does not apply. What

is the problem?

Corollary 191
Ifw = dg € QYU) and ~ is a C! path in U, then f,yw = f,y dg depends only on the
endpoints of . Proof: immediately follows from Theorem 190. [
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An open subset U C R” is path-connected if for all u,v € U, there is a path~ : [a,b] = U
such that y(a) = uand v(b) = v; open balls and open annulii/torii are path-connected in
R?/R3, but a set made up of disjoint open balls isn’t.

Aloop ~ is a path v : [a,b] — U for which v(a) = ~(b); the path v : [0,27] - R? ~ C

defined by v(t) = (cost,sint) ~ ¢’ is a loop.

338

Theorem 192
Let U Co R™ be path-connected. For a continuous differential form w € QY (U), the
following are equivalent:

1. wisexactinU;
2. fﬁ/w = 0 for any loop ~ : [a,b] — U;

3. ifvisany pathinU, f,y w only depends on the endpoints of .

Proof: follows from Theorem 190 since v(a) = ~(b) for any loop
v :la,b] = U.

For [2. —> 3. let 4,n be two paths in U with the same endopoints. Then
~ —mnisaloopin U, and

[ oo o

For[3. = 1.} letx, € U be fixed. For any x € U, let «, be a path in U from X, to x.
Define f : U — Rby f(x) = fw w. By assumption, if 44 is any other path in U from
X, to X, then 4 — 4, isaloop in U and

[ oo o et o

no matter which path ~4 we use. Hence, f is well-defined.

It remains to see that d f = w. Since

df:igi dz; and w:anPidxi,

we need to show that 2L = P;, 1 <1 < n.Weknow that

ox;
of ~ lim f(x+te;) —f(x)’
0x; t—0 t

for 1 < i < nif the limit exists. Since U is open, X + te; € U for all ¢ if ¢ is small
enough.
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For each ¢, we have

L0 re) — (X)) = [/w—/w] :%/ﬁw,

small enough), thatis 4} : [0, 1] — U defined by
~Yi(s) = s(x +te;) + (1 — s)X = X + ste;;

then (v!)'(s) = te;. In particular, for 1 < j < n we have

— 9(7)); 0 ifi#]
d(%?)j:z?jdsz ds ifi—

= ifi=7

so that the pullback of w by +! is
()" (w) = (Pyo~t) d(v));

and so

%/?w—%/m /ZPO% = [ s

z

/ (X + ste;) ds—/l(R(x)+B(x+stei) — Pi(x))ds
Pi(x

)+/ (Pi(x + ste;) — Pi(x)) ds.

Hence, 1
gi :15% [P(X+/O (Pi(X—FStei)—Pi(x))ds}
1
= Pi(x) +/0 1136 <P¢(X+ ste;) — B(X)> ds = P(x),

e

=0 since w is C°

which completes the proof.

We extract a specific implication from this result, for future ease of access.

Corollary 193

where ~/ is the straight line path from x to x + te; (which is possible, again, if ¢ is

With the same hypotheses as in Theorem 192, iff,y w = 0 for any loop ~ in U, then w

is exact.
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14.1. LINE INTEGRAL OF A DIFFERENTIAL 1-FORM

Finally, we show how to build an antiderivative for w € Q!(U).

Example: consider the differential form
w = Py(z,y)dr + Py(x,y) dy = (e* + 22y) dz + (2% + cosy) dy € Q' (R?).

Since

P. P,
dw = (%—%—;) dz Ady = (22 — 2z)dx Ady =0,

then w is closed. According to Poincaré’s lemma, since R? is star-shaped (and thus
path-connected), then w is exact, so it has an antiderivative f : R? — R. We will
compute f in two ways, exploiting Theorem 192.

1. Letzg = (wo,y0) € U be fixed and consider the path « : [0, 1] — R? given by
~(t) = tzo (v is the line segment joining the origin to zy). Then v/(¢) = z,. Set

F(z) = / w= / () = / Pu(0)%,(8) dt + Pa(y(£))i(t) dt
= /1 Py (txg, tyo)xo dt + Py(txo, tyo)yo dt

= /01 <6tx0 + 2(tw0)(ty0)$0> dt + /01 ((t:co)? + cos(tyo)yo> dt

2 1
- {emo + S8akyo + 5tadyo + Sin(tyo)} — €™ 4 ayo + sinyo — 1.
0

2. If instead we join the origin to zg = (¢, yo) by first travelling horizontally to
(x0,0) along -, then travelling vertically to (zy, yo) along ., we have

Mt [07170] — R27t = (t,O), Yo [an()] — R2at = ($07t)7

and v (t) = (1,0), v3(t) = (0,1), so that

- oo [ oo

Zo Yo
= / et dt + / (x5 + cost)dt = ™ — 1 + [x5t + sint])°
0 0

=™ — 1+ xdyo + sinyp.

No surprise there: they’re the same! 0

Interpretation of the Line Integral Suppose a point particle proceeds along the path ~
and is subjected to the effects of a vector field F. Then the work done by the particle on its
journey is given by fw ®,oF = fw WF-

340
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CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS

14.2 Integral of a Differential p—Form

Let U Cp R". Given a differential form w € Q'(U) and aC! function~ : V = [a,b] C R! = U,
we have seen how we could define a quantity, the line integral fw w, that behaves in many
ways like the Riemann integral.

If we remember that dim(A*(R!)) = 1, we can define an vector space isomorphism
¢ R'— A

by ®,(a) = a dt and thus re-write the line integral formulation as

L o= [ v [ 6 w)an - /[ B E)an

where m is the Borel-Lebesgue measure on R (see Chapter 21).

We can generalize this definition to differential p—forms. Let V' C R? and consider a C*
function o : V' — U and a differential form ¢ € QP(U) C QP(R"). The pullback of ¢ by o is
itself a differential form o*(¢) € Q'(V) C QP(RP). Since dim A?(RP) = 1, we there is a vector
space isomorphism

®, : R! — AP(RP)

given by ®,(a) = adt; A --- A dt,. Suppose that o is orientable (more on this later), then we
define the "surface” integral of o on V' by

/USDZ/VU*(SD) rZ/V@;I(v*(so))dm.

Example: consider o : [0,1]> — R3, which is defined by o (s, t) = (s,t, s* + t?), and
¢ =dz Adz —dz A dy € Q*(R?). Then

o*(p) =o(dz Ndz) — o"(dx Ady) = doy A dos — doy A doy

. 80'1 80'1 80'3 80'3 80’1 80’1 80’2 80’2

S
=(1-ds+0-dt)A(2sds+2tdt) —(1-ds+0-dt)A(0-ds+1-dt) = (2t —1)ds Adt.

Hence ;' (o*(¢)) = 2t — 1 and

1 1 1
/gp:/ ://(Zt—l)dsdt:/(%—l)dt:O,
o 0,1]2 o Jo 0

assuming that the reader knows how to compute multivariate integrals. 0

2Note that <f>1 and @, defined in the previous section are different functions.
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We have seen in Chapter 13 that
0 =op = P(z,y,2)dy Adz + Q(,y, 2) dz A dz + R(z,y, z) dz A dy € Q*(R?)
corresponds to the vector field F : R? — R? defined by
F(z,y,z) = (P(z,y,2),Q(z,y,2), R(z,y, 2)).

If we set dA = (dy A dz,dz A dz, dz A dy), then we often write

o [ra ffro

where S = o (V) = {o(s,t) | (s,t) € V}is orientable. In that case, the surface integral
(also known as the flux integral) of © over o is

[o=[ o 0r=+ [ Fer |5 x 57| am

(the 4 comes from the surface orientation).

Interpretation of the Surface Integral Suppose asurface S parameterized by o is “dropped”
into a fluid whose flow is governed by the vector field F. Then the flux of the fluid through S

isgivenby [ ®y0F = [ op.
14.3 Green’s Theorem
Consider a rectangle R = [a, b] x [c,d] C R? and let R be its boundary:
OR = ([a,b] x {c}) U ({b} x [¢,d]) U ([a, b] x {d}) U ({a} x [¢,d]),

together with the induced orientation, chosen so that as we travel OR, along the direction
given by the orientation, the surface R falls to the left, as shown below.

C
d =
C4w R “C
2
C
C < OR
a b
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Theorem 194 (GREEN'S THEOREM FOR A RECTANGLE)
Let R = [a,b] x [c,d] C R? (with the induced orientation) and w € Q'(U), where

R C U Cp R2 Then
/dw:/ w
R OR

whereR : R — U and OR : OR — U are the identity functions.

Proof: write w = P(z,y) dz + Q(z,y) dy € Q'(U). We have seen that

_ (0Q(x,y)  9P(x,y)
dw-( a9y I >dx/\dy

/dw_/R*(dw /R B (R (dw)) /R<8Q(wy) 8P€()xy)) dm
L) [ o

P
= / / %Z’y) drdy — / / Ga—z,y) dydz, by Fubini’'s theorem (see Chapter 21)

d b
— Q. - Qa)dy— [ (Plad) - Pla.c) s

:/abP(x,c)dx—i—/ch(b,y)dy—i—/baP(a:,d)da:+/ch(a,y)dy

= / P(t,c)dm + Q(b,t)dm — P(t,d)dm — Q(a,t)dm
0,8

[e,d] [a,b] [c,d]

Now write JR = C; + C, + C3 + C4, where

Ci:[a,b] = R? Ci(t) = (t,¢); Cs:[a,b] = R? Cs3(t) = (b+a—td);
Cy: [c,d] = R? Cy(t) = (b,t); Cy:[c,d] — R? Cy(t) = (a,d+c—1).

According to Proposition 189,

/w—/w+/w+/w+/w
OR C1 Ca Cs Cy

- [ e s [ e + /[ BGE) [ Cw)

[c,d]

:/ [P(tc) 1+ Q(t,c) - 0 dm +
gl

\

b+a—t,d)-(—1)+Q(b+a—t,d)-0] dm
[

+/d] [P(b,t) 0+ Q(b,t) - 1 dm+/

[c,d]

a,b]

P(a,d+c—t)- 0+Q(a,d+c—t)-(—1)}dm
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14.3. GREEN’S THEOREM

SO
/ w:/ P(t,c)dm + Q(b,t)dm — Pb+a—t,d)ydm— Qa,d+c—t)dm
OR [a,b] [e,d] [a,b] [e,d]
= / P(t,c)dm + Q(b, 1) dm+/ P(s,d)dm + Q(a,s)dm
[a,b] [e,d] [b,a] [dyc]
_ / P(t,)dm+ | Qb,1)dm — / P(t,dydm— | Qla,t)dm
[a,b] [e,d] [a,b] [c,d]
which completes the proof. [

This is a remarkable result: integrating a derivative on a rectangle is equivalent to integrating
the antiderivative on the rectangle’s boundary. As it happens, it is not specific to rectangles.?

Theorem 195 (GREEN'S THEOREM)
Let K Cg R? and assume that OK can be given the induced orientation. If

w = P(x,y)dz + Q(z,y)dy € Q'(V)

/dw:/ w,
K oK

whereK : K — R? and 9K : 0K — R? are identity functions.

for K C U Cp R?, then

Proof: we only provide a sketch. Green’s theorem for a rectangle can be shown
to apply to unions of rectangles where each pair shares at most an edge: if the
rectangles do not share edges, then the result is obvious - if they do share edges,
then the induced orientation ensures that the shared edges are traversed one way
for one rectangle, and the other way for another, meaning that their contribution to
the integral will cancel out and only the outside boundary counts.

We can write any compact set K as a (potentially infinite) union of such rect-
angles { R, }; Green’s theorem holds in the limit. |

K and 0K=y, Uy, Uy3 UV, Y2

SRS

Y1

3It's not even specific to R?, as we shall see shortly.
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The classical version of Green’s theorem is

//K (%‘%) dxdy—]gKPdHQdy.

Let K Cx R? have a boundary with the induced orientation. By definition, we have
1
d(zdy) =dr Ady = d(~ydzr) = do Ady =d (5(—y dz + dy)) = dw.

Thus, according to Green’s theorem,

1
Area(K):// dA:/l-dm:/dw:/ wzi/ —ydx + z dy.
K K K K K

Example: what is the area of the ellipse

2 2
x—+y—g1}, a,b> 07

k={@ner| 5L

Solution: let v : [0,27] — R? be defined by ~(t) = (acost,bsint); then v is a
parameterization of 0K = ~([0, 27]), and so

1 1 =
area(k) = 3 [ —ydesady=5 [ der)
9K [0,27]

_ % / P(y(£)7, (1) dt + Qv (£))7h(1) dt
[0,27]

1
=5 / P(acost,bsint)(—asint)dt + Q(acost,bsint)(bcost)dt
[0,27]

1 2w 1 2w
= —/ [(—b sint)(asint) 4+ (acost)(bcos t)] dt = —/ abdt = wab,
2 Jo 2 Jo

which we could have derived by viewing ellipses as generalized circles, but it’s nice
to be able to do it analytically. 0

Asubset X C R"is simply connected, denoted 7, (X) ~ 1, if X is connected and if each loop
in X is homotopic to a single point, which is to say that each loop in X can be deformed
continuously to a single point (see Chapter 20 for more on this topic).*

Example: the connected component bounded by =, in the image on the previous
page is simply connected; the connected component bounded by ~; U 73 U 7y, isn't.

*Roughly speaking, X is simply connected if its interior contains no “hole”,
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14.3. GREEN’S THEOREM

Corollary 196
Let U Cp R? be simply connected. If w € Q' (U) is closed, then w is exact.

Proof: according to Theorem 194, for any rectangle R C U, we have

/w:/dw;
OR R

since w is closed, then dw = 0, so that f(‘)R w=0.

For a fixed X, € U and for all x € U, there is a piecewise C! path ~, connect-
ing X, to x that is made up of horizontal and vertical segments in U.

We would like to define f(x) = f% w, so that df = w (as in the proof of The-
orem 192). But this is only possible if f is well-defined, meaning that f(x) takes
on the same value independently of the piecewise C! path ~ taken from x, to X, as
long as it is a path of horizontal and vertical segments.

If 4 and =, are two such paths, then v; — -, enclose a region made up of
contiguous rectangles, say Ry U --- U R;. According to Green’s theorem for
rectangles,

RiU--URg R; R} ORy ORy, Yi—"2 1 Y2

Since w is closed in U, the left hand-side of that string of equations is 0, so that
w = fw w. Thus f is well-defined and the proof is complete. [ |

7

The condition that U be simply connected is necessary: if

e+ ———
x2+y2 x2+y2

w =

dy € Q'(U =R*\ {0}),
then we have
0 T 0 —y —x% + 92 y? — 22
dw=|=—|-5—=]—-—=|—-—"=) ) deAdy = — dzAndy = 0.
’ (ax <z2+y2) 0y ( +y)) o ((aﬂ P @ryp)
Ifv : [0,27] — R? defined by «(¢) = (cost,sint) € U is a parameterization of the unit circle,

we have
27
/w:/ (fl_l('y*(w)):/ dt:27r7é0:/ dw,
vy [0727"} 0 B!

and so w cannot be exact in U since the 3rd statement in Theorem 192.3 does not hold. The
only fly in the ointment is that U = R? \ {0} is not simply connected.
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14.4 Surfaces and Orientable Surfaces in R?

It is fairly easy (?) to parameterize areas in R?, but the addition of a 3rd dimension can com-
plicate matters to some extent (especially when it comes to their boundaries).

There are 3 classical ways to describe a plane S C R?,

= The implicit approach requires a normal vector n to S and a point i, € S:

S={veR|(v-PF) -n=0}={(2,9,2) | ax + by + cz — (azo + byy + cz) = 0}.

~

= The explicit approach views the plane as the graph of a function: asn = (a,b,¢) # 0,
we may assume that ¢ # 0.> Then we have cz = d — ax — by, so that

d—ar—0b
Z:M:f(l’,y), f:RZ%Ra
C

and we have F(x,y, f(x,y)) =0and S = {(z,y, f(z,y)) | (z,y) € R?}.

= Finally, in the parametric approach, let v{, v, € Sj be linearly independent, where
So={(z,y,2) | F(z,y,2) = ax + by + cz = 0};

hence Sy = Span{vy,v,}. If vy € S, we have S = vy + 5. Let g : R? — R3, defined by
g(s,t) = Vo + svy + tvy; then g(R?) = S and so g is a parameterization of S.

These approaches generalize to non-planar surfaces. A subset S C R is a surface in R? if one
of the three following equivalent conditions hold.®

» Explicit description: Vp € S, 3W, o R*and f : 7, ,(W,) C R*> — R smooth such
that S N W}, = Graph(f).

*» Implicit description: Vp € S, 3W, Co R? and F : 17, — R? smooth such that
SNW,=F10)={we W, |Fw)=0}
and det(DF) # 0 on .S N W,

* Parametric description: Vp € S, 3, C, R? and a smooth injectiong : U C R* — R?
such that rank(Dg(x)) = 2 for all x € U and such thatg~' : SN W, — U is continuous.
In that case, we say that g is a local parameterization of S.

In the latter case, the challenge is usually to find the “right” g.

>Change the variable representation, if necessary.
5The equivalence of the conditions is a consequence of the implicit function theorem.
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14.4. SURFACES AND ORIENTABLE SURFACES IN R?

Examples
1. Consider the unit sphere S C R3.

= Implicit descriptions: S = {(z,y,2) | 22 +y? + 2% = 1}
= Explicit description:
a) Wy = {(z,y,2) | 2 > 0}, Vi = mpy (W) = {(z,9) | 2* +9° < 1},
and f;" : V; — Risgiven by f,"(z,y) = /1 —12%2—1y? = 2, then
S N Wt is the northern hemisphere.
b) If Wy = {(2,y,2) | 2 <0}, Vi = mpy (W) = {(w,9) | 2° +y* < 1},
and f{ : Vi — Risgiven by f; (z,y) = —y/1 — 22 —y? = z, then
S N Wy is the southern hemisphere.
Q) Wy = {(z,y,2) |y > 0} Vo = mp.(W5)) = {(x,2) [ 2 + 2° < 1},
and f;" : Vo, — Risgiven by f, (z,2) = V1 — 22 — 22 = y,and so on.

* Parameteric description: consider g : (0,7) x (—m,7) — R3 defined
by
g(0, ) = (sinf cos ¢, sinf sin p, cos ) = (z,y, z).
Then
cosfcosy —sinfsingp
Dg(0,p) = | cosfsinp sinfcosy
—sind 0

It is an exercise to show that rank(Dg(f, ¢)) = 2 for all (6, ). Further-
more, gisinjective over U = (0, 7) x (—m, 7). Indeed, if (0, ¢), (¢, ¢") € U
and g(0, ) = g(0', ¢'), then:

- cosf =cosh = 0=20;

sin 6 cos ¢ = sin 6 cos p = cos p = cos ¢’;

sin # sin ¢ = sin @ sin ¢ = sin ¢ = sin ¢’

the last two equations yield p = ¢’ over (—m, 7).

Finally, we show that that g~! : g(U) — U defined by g(z,y,2) = (6, ¢)
is continuous. Since z = cos 0< then # = arccos z, which is continuous.
Since —7/2 < ¢/2 < w/2, we have cos(p/2) # 0, and we can write

@ sinésin p

Yy
2  sinf+sinfcosp 1 —22+2

whence
Yy
=2arctan | — |,
4 <\/ 1—22+ x)
which is also continuous.

ButC' = {(z,0,2) | > + 22 = 1,2 < 0} C S,sowe have g(U) = S\ C, and so
g is a local parametrization of S - it is impossible to get all of S with g.

Analysis and Topology Course Notes



CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS

2. Consider the infinite cone S : 22 = 22 + 2, 2z > 0.

* Implicit description: S = {(z,vy,2) | |[2*> + 3*> — 22 = 0}
* Explicit description: If f : R? — R is given by f(x,y) = 22 + ¢? then
S={(z,y. f(z.y)) | (z,y) € R?}
* Parameteric description: consider g : U = (0,27) x (0,a) — R? de-
fined by
g(p,r) = (rcosp,rsing,r).

We can show that Dg is of full rank on U, that g is injective on U, and
that g~! is continuous on U (see exercises).

Finally, if Cy = {(2,0,2) | a > x — z > 0}, then
8(U) ={(z,y.2) | 2" +y* = 2* <a’} \ Oy

the parameterization is local. 0

In both examples, the local parameterization covers the surface entirely, except for a set of
measure (area) zero (see Chapter 21) - the missing pieces do not contribute to the integrals.

A subset S C R? is a surface with a boundary in R? if for at least some point p € S, there is
aWp, Co R® and a parameterizationg : U — R? suchthatg(U) =V = W,NSand U ¢ R3.
We write p € 95 if p = g(u) for some u € 9R? = {(z,y) | y = 0}.

Examples

1. Consider the surface S which is the northern hemisphere of the unit sphere in
R3. Let p be a point of S which is not on the equator: 30 € U Cp R* and a
local parameterization g : U — R3 such that g(0) = p and g(U) C S. For a
point p on the equator, we can find 0 € U’ Cp R? and alocal parameterization
g : U’ — R®suchthatg (0) = pand g'(U’) C S. Thus 95 is the equator.

2. Apair of trousers S is a “surface” in R?; the boundary 05 consists of the top of
the waistband and the bottom of the two leg openings.

3. The ellipsoid
IQ y2 22
§+ﬁ+§:%

S = {(w,y,z) eR?

is a surface without a boundary. 0
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14.5. INTEGRAL OF A DIFFERENTIAL FORM ON AN ORIENTABLE SURFACE

In the last example, there is a sense in which the volume
2 2 2
oyt oz
2 + » + = < 1}

(which is not the same as the surface S) DOES have a “boundary”, namely 0V = S. In general,
if S'is a m—dimensional object, its boundary should be a m — 1—dimensional object.

V= {(a:,y,z) e R?

14.5 Integral of a Form on an Orientable Surface

We have seen that we can induce an orientation on the boundary of planar regions; can we
orient surfaces as well? Let £ = {ey,...,e,}and & = {f}, ... f,} be two bases of R", and let
P be the change of basis matrix from £ to F. We say that £ and F have the same orienta-
tion if det(P) > 0 and that they have opposite orientation if det(P) < 0.

Examples

1. InR? if &€ = {(1,0),(0,1)} and F, = {(cosa,sina),(—sina,cosa)}, the

cosa  —sin a) anddetP = 1, s0 £ and F,

change of basis matrix is P = | .
sina cosa

have the same orientation.

2. IR if € = {(1,0), (0,1)} and F = {(1,0), (0,—1)}, then P — ((1) _01) and

det P = —1, so £ and F have opposite orientations. ([l

By convention, the orientation of the canonical basis of R” is taken to be positive.

Let S C R? be a surface. For all p, let 7,(S) C R? denote the tangent plane to S at p.
By definition, 7,(S) ~ R? = Span(uy, vp), n L T,(5), as below. We say that S is orientable if
it is possible to continuously select a basis {up, v, } of 7,(S) as p € S varies continuously.”

“Importantly, not every surface is orientable (such as a Mébius strip or a Klein bottle, for instance).
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Let S C R be a compact surface with boundary 95. Let q € 95 and define T4(9S) C Tq(S)
to be the 1—dimensional line tangent to 95 at p. Pick @ > 0 and let~ : [0,#) — S beaC!
path on S with v(0) = q. Pickazq € T4(S5) such thatzq L T4(9S) and the angle between
zq and v'(0) € T4(S) is greater than a right angle. We say that z, points to the exterior of S,
whereas —z4 points to the interior of S.

The boundary S is orientable when for all q € 05, the orientation of 74(0.5) is given by a
vector v such that the orientation of 74 (.5) is given by the basis {n, v}, where n is normal to
T4(0S) and points towards the exterior of S.

T,(0S) = Span{v}

At any point of the boundary, the cross-product n x v (in that order) points towards the pos-
itive orientation of the surface S (the direction given by the right-hand rule).
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14.5. INTEGRAL OF A DIFFERENTIAL FORM ON AN ORIENTABLE SURFACE

Recall that if U Cy R? and w = P(z,y)dz A dy € Q?(R?) where P is integrable over U (see
Chapter 21 for details), then

/w = / Pdm, where U:U — R? = identity on U.
U U

Let W Co R?, U a Borel® subset of R2, U Cp U, U Cp R? with Area(U — Uy) = 0 and let
¢ : U — W be such that |y, = g : Uy — W isCL. Ifw € Q*(W), then

fo= L

This is well-defined, as we can see below. Let U], ¢, be objects that satisfy the same properties
as Uy, p;,. Denote ¢} (w) = Py(z,y) dz Ady and ¢'y(w) = Pj(z,y) dz A dy. We must show that

/ Pdm = P dm.
U U

Write U}l = U, N U}; we have Py = P} on U] and
U\ Uy = Uy N (U)) CUN (U =U\Ug.

Thus,
Area(Uy \ Uy) < Area(Uy \ Uf) = 0.

Similarly, Area(U] \ Uj) = 0, and so

/ Podm= [ Pydm= Fydm = [ Fydm.
Uo vy uy U

Example: letw = 222 dy A dz + y2? dz A dy + 29 dx A dy € Q%(R?) and set a > 0.
We consider the function ® : [0, 7| x [0,27) — R? defined by

(0, ) — a(sin @ cos ¢, sin f sin p, cos 0);
® is a parameterization in spherical coordinates of the surface
Sa={(x,y,2) | 2> +y° + 2> = a®}.

Let U = [0,7] x [0,27) and Uy = (0,7) x (0,27); then &, = @]y, is C'. Since

Area(U \ Up) = 0, we have
/ w= / P (w).
P Uop

8For all intents and purposes, U is sufficiently “nice” (see Chapter 21).
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We can show that
®*(w) = a’(sin® 0 cos® § + sin® O cos® p sin? @) df A dop,
and so
™ 2w 4
/ W= / / a’(sin® 0 cos® 6 + sin® 0 cos? p sin? ) df dp = gwa5.
3 o Jo

For any (6, ), the basis {%—‘;’, 3_3} defines the positive orientation on S, via the right-

hand rule; ®, then defines a local parameterization of S, up to a set of area 0. O

If S is orientable in R and ® : U — R?, ¥ : V' — RR3 are two orientation-preserving param-
eterizations of S, letp : U — V be the unique bijection such that & = ¥ o 7. Then i is a
diffeomorphism and Vu € U,

D®(u) = D¥(n(u))Dn(w).
Since {8‘;2’) : %‘I)T(;’)} is a positive basis of T () (S5) and since {a‘l'ézl(“)) : aq’é’;?(“)) } is a positive ba-
sis of T (sy(uy) (S), both D@ (u) and D¥(n(u)) transform the canonical basis of R? into positive-
orientation bases of T ) (.5).

In that case, Dnj(u) preserves the orientation of R? and det(Dn(u)) > 0 for all u.

Ifw € Q%(R?), we have ®*(w) = a(uy, uz) duj A dug, ¥*(w) = b(vy,v7) dvy Aduvy fora € QO(U)
and b € Q°(V). Since ® = ¥ o 7, we have

®*(w) = aduy Aduy = n*(¥*(w)) = n*(bduy A dvg) = (bomn)det(Dn) duy A dus.

Thus, according to the change of variable theorem (see Chapter 21), we have

/U B*(w) — L W= /U o duy dus — /U (bon) det(Dn) duy dup — /U (bon)| det(Dn)| duy dus

:/Vbdvldvgz/v\I’*(w):/Pw.

We have then proven the following result.

Theorem 197
Under the hypotheses outlined above, the integrability of w with respect to ® and the
value of [, w depend only on w and the surface S = ®(U).

We say that w € Q?(R?) is integrable over S C R? if w is integrable with respect to a parame-
terization ® of S and we write [(w = [, w.
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14.6 Area of a Surface and Flux Integral

In an exercise from the previous chapter, we saw that if u,v,n € R? are such that u and v are
not parallel, n L u, v with ||n|| = 1 and

¢ =n1dy Adx +nydz Adz +nzdr Ady € A*(R?),

then ¢(u, v) represents the signed area of the parallelogram bound by u and v. Thus:

uxv

m ] —
ifn = piop

then Area = ¢(u, v);

" ifn = _ﬁ' then Area = —¢p(u, v).

Let S C R? be an orientable surface, and let n : S — R3 be the vector field of unit vectors
normal to S, pointing towards the exterior of S.°

Example: consider the sphere of radius a > 0 centered at the origin:

Then VF(z,y,2) = (2z,2y,2z) L S, and points towards the exterior of S, for all
(x,y,2) € S, sowe could pick

(e 2) = o O

IVE(z,y,2)|l

The area differential o = n,dy A dz + nydz A dz + nydz A dy € Q*(R?) is such that
o : R® — A?(R3). According to the preceding discussion, for alls € S C R3, and for all
u,v € T5(5), we have

o (s)(u,v) = signed area of parallelogram bound by u and v.

Using the above notation, we then have the following result.

Proposition 198
For an orientable surface S C R?, let o € Q*(R?) be the area differential of S. Then
the signed area of S is given by fs w.

We sometimes used the following formulation:

Signed Area(5) = //
Uo

where ® : U, — R3 is a parameterization of S.

(9_0'
0s

oo
—|| dsdt
XatH At

°In other words, we can find a continuous mapping s € S — {u(s),v(s)}, where {u(s),v(s)} € Ts(S)
defines the orientation of S, so that {n(s), u(s), v(s)} forms a basis of R with positive orientation.
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Example: consider the unit sphere
S={(z,y,2) eER® | 2> +y* + 2* = 1= F(z,y,2) = 0}.
The outward normal vector field n : S — R3 is given by

VE(x,y,z)

= ———""" = (x,y,2) LS.
NFG, g, 2] &Y

n(zx,y, z)

The area differential of S is thus o = zdy A dx + ydz A dz + zdz A dy € Q*(R3).
In order to calculate [, o, we use the following parameterization of .S

®:Uy=[0,7] x [0,27) = R®, where ®(0, ) = (sinf cos y,sindsinp, cosh),

o fo fowie

But ®*(o) = (sin® @ + cos? @ sin0) df A dy, so that

and

™ 2m
/ ®*(0) = / / (sin® 0 + cos?fsinf)dfdp = 47. [
Uo 0 Jo

14.7 Stokes’ Theorem

We finish this chapter (and this part of the course notes) with a generalization of Green’s the-
orem, which we unfortunately present without proof.

Theorem 199 (STOKES' THEOREM)
Let M C W Cpo R™ be a compact orientable manifold with orientable boundary 0 M
such that dim(M) = p. Ifw € Q"= (W), then [, w = [,, dw.

When M = S C R®and p = dim(M) = 2, then we usually write Stokes’ theorem as

/(VxF)-dA:f F.dr.
S s
Corollary 200

Let OM = & in Theorem 199. If ¢ € QP(W) is exact, then [, ¢ = 0.

Proof: since ¢ is exact, In € QP~1(W) such that dn = ¢, so that

/gpz/dn:/ n=20. |
M M oM
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14.8 Solved Problems

Let’s do some vector calculus!

1. Let F(z,y) = (zy,z — y) and C be the boundary of the triangle with vertices (1,0),
(—1,0) and (0, 1). Compute the line integral [ F - dr.

Solution: the triangle is parameterized by
Cy:(t,0), —1<t<1l, Cy:(1—-tt), 0<t<1l, Cs3:(-t,1—1t), 0<t<1.

Thus, the line integral of interest is

IZ%F-dl‘:/ F‘dl'—i—/ F-dr+/ F.dr
C Ch Co Cs

1 1 1
:/ (tQ,t)-(l,O)dt—i—/ (t—12.1—2) (—1,1) dt+/ (12—t —1) (—1,—1)dt = 1.
0 0

-1

Under the other orientation, the answer is —1. O
2. Let F(z,y) = (2z¢* siny, e” cosy) and C be the path defined by z(t) = t, y(t) = 5t
0<t<1L

a) Compute [, F - dr directly.

b) Compute fo F - dr using the fundamental theorem of line integrals.

Solution:
a) We have

1
I= / F-dr= / (2te’” sin(nt/2),e!” cos(nt/2)) - (1,7/2) dt

C 0

1
_ / e (2t sin(xt/2) + /2 cos(rt/2)) dt = [ sin(wt/Z)Ll):e.
0
b) Let f(z,y) = e*” sin y. Then F = V f and
/ F-dr= f(1,7/2) — f(0,0) =e— 0=,
C

according to the fundamental theorem of line integrals. g
3. Compute [, F-dr,if F(z,y) = (2*y, —zy) and C' = {r(t) = (£*,¢") | 0 <t < 1}
Solution: we have r'(t) = (3t2,4¢3). Thus,

/CF~dr:/01F(r(t))-r’(t)dt:/lF(t3,t4)-(3t2,4t3)dt

0
1 1
= / (t10,—t7) - (3t%,4¢%) dt = / (3t'% — 4¢'%) dt
0 0

R G R T
L1, 143
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4. Compute [ F-dr, where F(z,y,2) = (y + 2, —2*, —4y*) and
C={rt)= @ttt |0<t <1}
Solution: in this case, we have r'(t) = (1,2t, 4t3). Thus,
1 1
/ F.dr= / F(r(t) r'(t)dt = / F(t,t%,t%) - (1,2¢t,4¢%) dt
c 0 0

1 1
= / (8% + 1, =2, —4t?) - (1,2t,4¢%) dt = / (t —2t> + ' — 16t7) dt

0 0
= ﬁ_ﬁ_kﬁ_ztégli_@ |:|
3 25 o 30

5. Compute [, F-drifF(z,y,z) = (sinz, cosy, zz) and
C={rt)=@ ~t3t)|0<t <1}

Solution: in this case, we have r'(t) = (3t2, —2t,1). Thus,

1 1
/CF-dr:/o F(r(t))-r’(t)dt:/o F(t°,—t%,t) - (33, —2t,1) dt

1 1
:/ (sin(t*), cos(—t%), %) - (3t%, —2¢,1) dt :/ (3% sin(t?) — 2t cos(—t?) + t*) dt
0 0

1
= [— cos(t?) — sin(t?) + t‘:} = g — cos(1) — sin(1). O
0

6. Are F(z,y) = (ye® + siny, e® + x cosy) and F(z,y) = (ye™ + 423y, ve™ + z*) a conser-
vative vector fields? If so, find their potential.

Solution: the vector field F is conservative if and only if

or, _ or,
oy Oz’
Since
@—2( e’ +siny) = e* + cos
%—g(e‘r%—xcos ) = e” + cos
or  Ox ¥= Y

the field is conservative. In this case, the potential f satisfies V f = F, that is

fo(z,y) = Fi(z,y) = ye* + siny
fy(z,y) = Fa(z,y) = e” + xcosy

whence

fa.9) = [ olw)de = [ (9o + siny) do = ye + wsing + k().
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where k(y) is a function of y. Substituting this function f in the equation for f,, we
have
Jy(@,y) =€ +xcosy+ k' (y) = e® + z cosy;

the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for Fis f(z,y) = ye* + zsiny + k, k € R.

Since
OF 0
8—1 = 50 (ye™ + 4z’y) = e + xye™ + 4
Y Y
OF: 0
5% 2 = e (ze™ + 2') = ™ + aye™ + 4o
x x

the second field is conservative. In this case, the potential f satisfies V f = F, that is
fe(@,y) = Fi(z,y) = ye™ + 42’y
fy(xvy) = FQ(;va) = ze*V + 334

whence
fla,y) = /fx(a:,y)dx = / (ye™ + 4a’y) dz = €™ + a'y + k(y),

where k(y) is a function of y. Substituting this function f in the equation for f,, we
have
Jol@,y) = 2e™ + at + K (y) = 2™ + 2
the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for Fis f(z,y) = e™ + oty + k, k € R. O
7. Find a potential for these vector fields, if one exists.

a) F(z,y) = (2zy®, 32%y + x);
b) F(z,y) = 22y + y, 32%y + x);
) F(z,y) = (2zy, 2* + 8y).

Solution: a) and b) do not have potential functions, but f(z,y) = z%y + 4y® is a
potential function for c). (|

8. Using the directapproach and Green’s theorem, compute |, F-dr, where C'is the square
with vertices (0,0), (1,0), (1,1), (0,1), and F(z,y) = (z%y, xy>).

Solution: the region is shown below.
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Let C be the segment from (0, 0) to (1,0); C5 the segment from (1,0) to (1,1); Cs

the segment from (1, 1) to (0, 1), and C} the segment from (0, 1) to (0,0). Thus
Cr={r(t)=(t,0)|0<t <1}
Co={r(t)=(1,t)|0<t <1}
Cy={r(t) = (1-£,1) [0 <t < 1)
Cy={x(t) = (0,1- 1) [0 <t < 1}

and

/F~dr:/ F-dr+/ F-dr+/ F-dr+/ F-dr.
C Cq Co C3 Cy

We can show with ease that

1
/ F-dr:/ (t%(0),t(0)3) - (1,0)dt = 0
Cq 0

1 1
1
/ F-dr:/(12(t),1t3)-(0,1)dt:/ t3dt =~
Ca 0 0 4

1 1
/CSF dr /0((1 )2(1), (1 —)(1)3) - (—=1,0) dt /0 (1—1t)%dt
/ F.dr—/1(02(1—t),0(1—t)3)-(0,—1)dt—0
Cy 0

so that L1 .
Fodr=04-—-40=——.
/C r=0ty-3" 12

Using Green'’s theorem instead, we have

[ (22 aae [0

where the region of integration D (in red) is bounded by the curve C, with the posi-
tive orientation. Since D = {(z,y) | 0 <2 < 1,0 <y < 1}, we have

1,1 1 yh y=1
// (y3 - x2) dA = / (y® — 2 dy dx = / [ — ny} dx
D o Jo o L4 y=0
3

371
_ L2 _|z_z 1
- [ G-) = [5-5, -3

This completes the computations. g

9. Compute fc F - dr, where C is the circle 2% + y* = 4 from (2, 0) to (\/5, \/5), then along

the segment from (1/2, v/2) to the origin and finally along the segment from the origin
to (2, 0) (with the positive orientation), for F(x,y) = (y? — 2%y, 1y?).

Solution: according to Green’s theorem,
oFy 0
F-dr:// <—) dA:// y? — 2y + 2?) dA,
/c p \ Oz oy D ( )
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where the region D is bounded by the curve C, oriented positively. In polar coordi-

nates,
7I'

D(T’Q):{(TQ)‘O<T<2 0<9

Ny

and y? — 2y + 2? = r?2 — 2r sin§, whence

) ) w/4 2 9 . /4 16
(y° =2y +2°) dA = (r* — 2rsin@)rdrdf = 4 — —sind| do
D o Jo 0 3

1 w/4
= [49+6c050] :7r+§(\f—2).
3 o 3
g

10. What is the work accomplished by the vector field F(z, y) = (z(x+v), xy?) on a particle
traveling along the x—axis from the origin to (1,0), then from (1,0) to (0, 1) along a
straight line, and finally back to the origin along the y—axis?

Solution: the work in question is given by

o e (32 aa [ -0

where the region D (in red) is bounded by the curve C, oriented positively.

Since D = {(z,y) | 0<2<1,0<y<1-—ux},

W://D(y2_x)dA:/Ol/Ol_x(?f_x)dydx: [33 rlzdx

:/01<($_31)3—x(1—x)>d:c:[—112(1—x)4 9;+”;]0= 112. O
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11. LetF(z,y,2) = (5,%,2z) and S be the rectangle with vertices (2,0,4), (2,3,4), (0,0, 4)
et (0,3, 4). Compute the surface integral [ F - dA.
Solution: the region S is parameterized by
x(s,t) =s, y(s,t) =1t, 2(s,t) =4, (5,t) e D:0<5<2,0<t<3
Thus, vy = (1,0,0), v, = (0,1,0) and
v, x v = (0,0,1).
Restricted to S, the vector field takes the form
F(z(s,t),y(s,t),z(s,t)) = (2,t,2s).

The positive orientation of the surface S was not specified, so we select the upwards
orientation as the positive orientation. Since v, x v; = (0,0, 1) points upwards,

3 2
[—//F-dA—// (2,t,2s)-(0,0,1)dsdt—/ / 2sdsdt = 12. O
S D 0o Jo

12. LetF(x,y,2) = (z,y, z) and S be the surface defined by = = —2x — 4y + 1 in the first
octant. Compute the surface integral [/, F - dA.

Solution: the region S is parameterized by
z(s,t) = s, y(s,t) =t, z(s,t) = =25 —4t+1, (s,t) e D: 0<t<1/4,0<s<1/2 -2t
Thus, vs = (1,0, —2),v; = (0,1, —4) and
Vs X vy = (2,4,1).
Restricted to .S, the vector field becomes
F(z(s,t),y(s,t),z(s,t)) = (s,t,—2s — 4t + 1).

The positive orientation of S is still not specified, so we select the upwards orienta-
tion. Since vy x v; = (2,4, 1) points upwards, we have

I://F-dA://(s,t,—25—4t—|—1)-(2,4,1)d8dt
S D

1/4 p1/2—2t 1/4 1
:/ / 1dsdt:/ (1/2 =2t)dt = —. O
0 0 0 16

13. LetF(z,y, 2) = (—wz, —yz, 2%) and S be the surface 2> = z* + y? lying above the plane
z = 0 and below the plane z = 1. Compute [, F - dA.

Solution: the region S is parameterized by

z(s,t) = s, y(s,t) =t, 2(s,t) = V/s2 + 12, (s,t) € D : s> + 2 < 1.

P. Boily (uOttawa) 361



14.8. SOLVED PROBLEMS

Thus, vs = (1,0, ), V¢ = (0,t, -=—=) and

Nz

Ve X vy = (—s(s? +t2) 72 —i(s> + 12712 ).
Restricted to .S, the vector field becomes
F(z(s,1),y(s,1),2(s5,1)) = (—sV/s2 + 2, —t\/s2 + 12, s> + ).

The positive orientation of S is once again not specified, we again select the upwards
orientation as the positive one. Since v x v, points upwards, we have

- —t
I= F-dA = —5V/ 2+ 12, —t\/s2 + 12,57 + t?) - 5 , ,1)dsdt
Jlpraa= [l iveee G v
:2//(32+t2)dsdt.
D

In polar coordinates, this last integral is easy to evaluate: s = rcos#f,t = rsiné,
0<r<1,0<6<2m

1 2w 1 2w
I:2// (s +t?) ds dt:2/ / (r2c0529+r25in29)rd9dr:2/ / r3dfdr = . O
D 0 Jo 0 Jo

14. Let F(z,y,2) =

(y,7,0) and S be the surface defined by 2> + y* = 9,0 < z < 3,
z < 2. Compute the surface integral [ [ F - dA.

Solution: without a single computation, it is possible to determine that the flux must
be zero. Why is that? g

15. LetF(x,y, 2z) = (z,0,0)and let S be the surface parameterized by z = e?, y = cos 3¢, z =
6p,0 <p < 4,0 < ¢ < £. Compute the surface integral [/, F - dA.

Solution: the region S is parameterized by

z(p,q) = €, y(p,q) = cos(3q), z(p,q) =6p, (5,t) €D:0<p<4,0<¢g<

ol

Thus, v, = (e?,0,6), vy = (0, —3 sin 3¢, 0) and
v, x v, = (18sin(3¢), 0, —3€” sin(3q)).
Restricted to .S, the vector field becomes

F(z(p.q),y(p,q), 2(p,q)) = (¢",0,0).

Guess what, the surface orientation has not been specified, so we select the positive
x—axis as a positive orientation. Since the first component of v, X v, is positive when
0 < g < %, we have

I://SF-dA://D(ep,O,O)-(185in(3q),0, _3¢Psin(3q)) dp dq

w/6 4
= 18/ / ePsin(3q)dpdg = 6(e* —1). O
0 0
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16. What is the area of the piece S of the cylinder z2 + 2? = o bounded by the surface of
the cylinder 22 + y* = a2, where a > 0?

Solution: in the image below, the situation is illustrated in the first octant, for a = 1:
the cylinder z? 4+ 2? = a? appears in grey, the cylinder 2 + 4> = a? in red. The part
of S in the first octant shows up in blue.

The surface S is parameterized by

r=p, y=gq, z=+a>—-p% (p,q) €

where (2 is the region of the zy—plane bounded by the green curve. Accordingly,

A(S) =8 / /Q v, Vgl dq dp,

where
_ p _
vy, = (1’0’_T) , vg=1(0,1,0)
a’—p
and
N p
vp><vq—<—OLQ_pQ,O,1)7
whence a
[vp x Vgl = )
Thus,
A(S) 8//“ |dpdg = 8 " ggap=s [T g
o s ] s [
o 1 o +/a? — p? o Jo a? — p?
:8/ —q dp:8a/ dp = 8a®. O
0 [\/CLZ—p2 L 0
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14.8. SOLVED PROBLEMS

17. What is the area of the piece S of the sphere 22 + y? + 22 = a? bounded by the surface
of the cylinder 2% + y? = ax, where a > 0?

Solution: in the image below, the situation is illustrated in the first octant, fora = 1:
the cylinder x? + y? = ax appears in grey, the sphere x> + 32 + 22 = a? inred. The
part of S in the first octant shows up in blue.

The surface S is parameterized by

r=p, y=gq, z=vVat-p>—¢, (p,q) €

where 2 is the region of the xy—plane bounded by the green curve. Accordingly,

A(S) = 4//Q v, x v, || dg dp,

where
N _ p N _ q
vp—(l,O, a2_p2_q2>, vq—<0,1, a2_p2_q2>
and
_ p q _ a
Vvaq_<\/a2—p2—q2’\/a2—p2—q2’1>’ whence ||v,xv,|| = oy
Thus,

a

. o P
Q Q\/a® —p°—q 0 0 vV as —pe—(q

2

= 4/0a [a arctan (\/Cﬂ_q]!)ﬁ)] 0 o dp = 4a /Oa arctan <\/§> dp
=4a {(p + a) arctan <\/§> - \/@} ' = 2a*(m — 2). O

0
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18. Let F(z,y,z) = (2z — y,z + 4y,0). Compute the line integral |, F - dr using Stokes’
theorem, when C' is a circle of radius 10 centered at the origin

a) in the plane z = 0;

b) in the plane x = 0.

Solution: Since curl F(z,y, z) = (0,0, 2), if C' is oriented positively, we have

/F-dr://curlF-dA
C S

according to Stokes’ Theorem.

a) We select the zy—plane region S parameterized by

z=rcosf, y=rsinf, z =0,
(s,t) eD={0<r<10,0<60<2r}.

Thus, v, = (cos §,sin 6, 0),
vy = (—7rsinf,rcosb,0)

and v, x vy = (0,0, 7). The positive orientation has to be the upwards orienta-
tion. Since v, X vy points upwards when r > 0,

I://curlF-dA
S
—//(0,0,2)-(0,0,r)drd0
S

27 10
:// 2rdrd9:2/ / rdrdf = 200m.
D 0 0

b) We select the yz—plane region S parameterized by
x=0,y=rcosf, z=rsinf, (r,d) € D:0<r <10, 0<0 < 2.
Thus, v, = (0, cos 6, sinf),
vy = (0, —rsiné,r cos )

and v, x vg = (r,0,0). Independently of the orientation of S, we have

I://curlF~dA
S
:// (0,0,2)-(r,0,0)drd9://0drd0=0.[]
D S
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14.9. EXERCISES

14.9 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.

2. Translate all of the solved problems of this section (and their solutions) into the lan-
guage of differential forms.

Ifo: [a,b] — [c,d] is aC" difftomorphism, show that ¢/(t) # 0 for all ¢ € [a, b).
Prove Proposition 189.

Flesh out the details in the proof of Green’s theorem.

o ok~ W

For the parametric description of the unit sphere S C R?, show that rank(Dg(6, ¢)) = 2
for all (0, p).

7. For the parametric description of the cone S C R?, show that rank(Dg(¢,r)) = 2 for
all (o, ), that g is injective, and that g~! is continuous.

8. Complete the calculations of the example on pp. 352-352.
9. Complete the calculations of the example on p. 355.
10. Consider the following classical mathematical results.

Fundamental Theorem of Calculus: Let f : [a,b] — R be R-intand F : [a,b] — R be
such that F is continuous on |[a, b], differentiable on (a, b) and F'(x) = f(z) for all

z € (a,b). Then [’ f = F(b) — F(a).

Fundamental Theorem of Line Integrals: Let U Cp R", ¢ : U — Rbe C' and L be a
piecewise-C'" path from A to B in U. Then [, V(r) - dr = ¢(B) — ¢(A).

Green’s Theorem: Let (' be a positively oriented, piecewise smooth, simple closed

curve in R? and let D be the region bounded by C. If L and M are C! on an open
region containing D, then

fivacaran = [ (22

Classical Stokes’ Theorem: Let.S C R3beacompactsurface with a piecewise-smooth
boundary C. IfF : S — R3is C, then

/curlF-dA:]{F-dr.
s c

Divergence Theorem: Let1l C R3beacompactsolid with a piecewise-smooth bound-
ary OW.IfF : W — R3is C!, then

/// divFdV = F.dA.
W ow

Using the language of differential forms, explain why these five results are special in-
stances of the same result.
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