Chapter 15

General Topology Concepts

In this chapter, we begin the study of general topology, which extends the
concepts of analysis to general spaces (on which metrics may not neces-
sarily be definable). We start by presenting the basic concepts and def-
initions of topology: open sets, bases, separation axioms, continuity,
and homeomorphisms, and we present a few examples of frequently-
encountered topologies: order, box, subspace, product, and quotient.

15.1 Basic Definitions

Let X be a set. A topology T on X is a collection of subsets of X.* such that
1. 9, XeT;
2. ifUy,...,U, € T, then_, U; € T;
3. if {Us}aea € T, then, ., U € T.

The ordered pair (X, T) is a topological space. The sets U € ¥ are called the open sets of
X. IfU is an open set in X containing z, we say that U is a neighbourhood of x in X.

Examples: The following collections are topologies on X.
1. ¥ = p(X) is the discrete topology on X.
2. ¥ = {@, X} is the indiscrete topology on X.

3. If X =R, T={A]| A= union of open intervals in R} is the standard topol-
ogy on R.

'Or a subset T of the power set p(X).
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15.1. BASIC DEFINITIONS

4. If X isametricspace, ¥ = {A | Ais open in X under the metric} is the metric
topology on X.

5. T={A]| X\ Ais finite} U {@} is the finite complement topology on X.

6. T={A| X\ Aiscountable} U {@} is the countable complement topology
on X. 0

Let ¥, and T, be two topologies on a set X. If ¥; C ¥,, then T, is finer than ¥, and T, is
coarser than %,. Obviously, the discrete topology is finer than all other topologies on X.

If T € %y, then T, is strictly finer than ¥; and ¥, is strictly coarser than T5. The col-
lection of all topologies on a set X and the inclusion relation form a poset, but that will not
be that important for us.

A basis ‘B for a topology is a family of subsets of X such that
1. ifx € X, then there exists B € B such that z € B;?

2. if By, By € B and x € B; N By, then there exists B € B suchthatx € B C B; N Bs.

93@3}.

We illustrate conditions 1 (left), 2 (right) for the standard topology on R? below.

The topology generated by the basis ‘B is

’S(%):{UB

Bey’

OO O Ba 3

o O30 .,

“Note that for a given z, the set B need not be unique.
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CHAPTER 15. GENERAL TOPOLOGY CONCEPTS

Examples
1. The standard topology on R has the open intervals as a basis.

2. Let X = R?, B, be the set of all open discs in X, and B, the set of all open
squares. Then B, and B, are bases. L]

We illustrate conditions 1 (left), 2 (right) for the ¢; topology on R2.

84 6

Theorem 201

Suppose that 8, and ‘B, are bases for topologies T, and T,, respectively. Then %, is
finer than %, if and only if for each By, € By and any x € B,, there exists B, € B,
such that x € B; C Ba.

Proof: suppose ¥, is finer than ¥5. Then By € %, exists B € %; such that
r € B C Bs. Then, since B, is a basis for ¥, there exists B; € B; such that

Conversely, let B € B, and * € B. Then there exists B, € B, such that

r € B, CB,so
B=|]JB,

x€B
and B € T,. Butany B, € %, is a union of open sets B,so T, C T;. |

In the preceding example (second item), it is possible to fit a square inside any circle and vice-
versa, and so T(B,) = T(B,).

A sub-basis for a topology on a set X is a collection & of subsets of X such that for each
v € X, there exists S € & with z € & (note that this means that X = (J¢ g 5).
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Examples

1. Let X be aset. Then & = {z | x € X} is a sub-basis for the discrete topology
and &' = {@, X'} is a sub-basis for the indiscrete topology.

2. Either of the following sets of semi-finite intervals form a sub-basis for the
standard topology on R:

S ={(a,+o0) | a € R} U{(—00,b) | b € R}
&' ={(a,+) | a € R}.

A basis ‘B can be built from a sub-basis G by adding to it all finite intersections of its ele-
ments. Indeed, By, By € B = B; N By € B if
S; € (‘5} :

%zeu{ﬁsi
1=1

Example: consider X = Rand B = {[a,b) | a,b € R}. Then,

(

1%} ifb<c
a,b) ifb>c,a>cb<d
la,b)N[c,d) =< [¢,d) ifb>c,a<c,b>d

c¢,b) ifb>ca<cb<d
a,d) ifb>c,a>c,b>d

—_— o — —

\

The set B is a basis for some topology T’ on R. We compare ¥’ with the standard
topology ¥ on R and show that the two topologies are not equal. Suppose (a,b) € %.
Then, for any = € (a,b), we get [z,b) € B and [x,b) C (a,b). Hence (a,b) € ¥, and
T C % i.e. ¥ is finer than ¥.

However, the inclusion is not reversed, which is to say, [a,b[¢ <. If it were,
since a € [a,b], there would exist (¢,d) such that a € (¢,d) C [a,b), but this is
impossible. Thus ¥ C ¥/, i.e. ¥ is strictly finer than ¥.

The topology ¥’ on R is the lower limit topology, denoted by R;. OJ

Let X be a set with a total order R. By definition,
1. forevery x,y € X, ifx # y, then 2Ry or yRz;
2. thereis no x € X such that xRz, and
3. forevery x,y,z € X, if Ry and yRz, then xR 2.

We usually write = < y instead of zRy.
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It is possible to generalize the concept of an interval by writing
(a,b)={x e X |a<z<b}, [a,b]={reX]|a<ax<b},
and so on.

The order topology on X is generated by the basis ‘B having as elements intervals of the
following forms:

1. (a,b), fora < b;
2. [L,b),if L is a smallest element of X (L < aforalla € X), and
3. (a, T],if T is a greatest element of X (T > bforallb € X).

Examples

1. The order topology on R is the standard topology on R, as R has no lowest or
greatest element (all basis elements are of the form (a, b), for a < b).

2. In the order topology on N, every point is open as
{1} =[1,2) and {n} =(n—1,n+1) forn > 1.
Hence the order topology on N is the discrete topology on N.

3. Let X = {0} U {2 |n € N}. Then

(1} = (1/2,1] and {1}:( S > forn > 1.

n n+1'n—1

But any open set containing 0 will contain a basic set of the form [0, %), with

77 € [0, %). Hence {0} is not open, and the order topology on X is not dis-

crete. N

15.2 Box and Subspace Topologies

Suppose X and Y are topological spaces. Consider the family of subsets of X x Y given by
B={UxV|UCopX,VCpY},

where A Cy X stands for S € T (“A is an open subset of X in the topology on X”).

As X Cp XandY Cp Y, we have X x Y € B, and so every element of X x Y lies in
(at least) one element of ‘B.
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15.2. BOX AND SUBSPACE TOPOLOGIES

Now suppose Uy x V,Uy x Vo € B. AsU; NU; Cp Xand Vi NV, Cp Y, we have
(le‘/l)ﬂ(UQX‘/g):a]lﬂUg) ><(V1ﬂV2)€%.

This means that ®8B is a basis for a topology on X x Y, which we call the box product topology
onX xY.

Two mappings come with this topology:
m|XxY =X and m|X XY =Y,

defined by 7 (z,y) = x and my(z,y) = y. These mappings are called the projections onto
the first and second coordinates; we have

UxV=UxY)N(XxV)=rU)Nnm*(V),

m (U) ={(z,y) s m(z,y) €U} and my (V) = {(z,y) : ma(z,y) € V}.

Theset S = {7, ' (U) | U Co X}U{m; (V) | V Cp Y} is thus a sub-basis of the box product
topology on X x Y.

Example: if X = Y = R, the box product topology on R? is the standard topology

on R? (and is also the same as the ¢; and /, topologies on R?). 0

Suppose Y C X, where X is a topological space. For each V' Cp X, we defineU =V NY to
be an open setin Y. This creates a topology on Y.

1. 9,Y CopYsinceog=oNYandY =X NY,and g, X Cp X.

2. Suppose U, Cp Y. Then 3V, Cp X such that U, =V, NY. But

Uva Co X and UUa: (UVQ> ﬂY:>UUa CoY.

3. Suppose U; Cp Y, for1 < i <n. ThendV; Cp X suchthat U; =V, NY,forl <i <n.
But

i=1 i=1 =1 =1

This topology on Y is called the subspace topology on Y relative to X. The open setsin Y
are called relatively open; they are not always open in X.
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Theorem 202
Suppose Y is a subspace of X and ‘B is a basis for the topology on X. Then
By ={UNY |U € B} is a basis for the subspace topology.

Proof: let V = UNY and supposey € Vand U Cp X. Let B € ‘B such
thaty € B C U. Hencey € By = BNY C U NY, and so By is a basis for the
subspace topology on Y. [ |

Some examples will help to solidify the concepts.

1.

Examples

Let X = Rand Y = Q. Abasic open set of Y is a set of the form B = (a,b)NQ,
where a,b € R. Note that B contains no interval of real numbers. Hence, no
open set of (Q can be open in R.

. Let X = Rand Y = [0,1]. A basic open set of Y is a set of the form B =

(a,b) N[0, 1], where a,b € R. If 0 < a < b < 1, the relatively open sets of Y’
will be open in R. The basic sets in Y are the sets of the form [0, b), (a, 1], and
(a, b), and the subspace topology on Y is the order topology.

.Let X = RandY = {~1} U {;;}, - In this case, the subspace topology is

discrete. Indeed,

{(—1}=(=3/2,-1/2)NY, {1}:< ! ! )m/.

n n+1/2"n—1/2

Let X =RandY = {0} U {%}neN. In this case, the subspace topology is not
discrete. Indeed, while

{%} - (n+11/2’ n—11/2> ny,

we have {0} # (a,b) NY foralla < b € X. O

15.3 Dual Definitions and Separation Axioms

Itis possible to define all the notions of topology in terms of closed sets, instead of open sets.
Let X be a set. A topology ¥ on X is a collection of subsets of X such that

1. 9, X e

2. if O, ..

,C, €%, thenJ , C; €T

3. if {Co}aca € T, then(), ., Cs €T

P. Boily (uOttawa)
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15.3. DUAL DEFINITIONS AND SEPARATION AXIOMS

The ordered pair (X, ) is a topological space. The sets C' € T are called the closed sets of
X. In general, a set V is closed in X, denoted by V' C X, if and only if its complement is
openin X.

Using this definition, it is easy to prove the following propositions.

Proposition 203
LetY be a subspace of X. A set Ais closed inY if and only if it is the intersection of a
closed setin X withY.

Proof: left as an exercise. O

Proposition 204
LetY be a subspaceof X. If AisclosedinY andY is closed in X, then A is closed in X.

Proof: left as an exercise. O

Again, let’s take a look at some examples.

Examples

1.
2.

Let X = RR. Then [a, b] is closed in R for all & < b.

Let X = R. The set [0, 1] is neither open nor closed in R with the standard
topology.

If X has the discrete topology, then every set is both open and closed, since
every set is the union of open singletons, and the complement of every set is
also the union of open singletons.

Let X = {a,b, c,d} be a set with 4 distinct elements. Define a topology on X
by

T = {2, {a,b}, {c, d}, X ).

All sets which are open are also closed, and vice-versa; the topology is not
discrete as {b, c} is neither open nor closed. O

The closure of a set A in X is the smallest closed set containing A, usually denoted by A.
Obviously, A C A. By definition, we have

376

A=c

ACCCoX
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CHAPTER 15. GENERAL TOPOLOGY CONCEPTS

IfACq X,then A = A,as A C A. Thus, A is closed if and only if A = A.

Similarly, the interior of a set A in X is the largest open set contained in A, usually denoted
by A°. Obviously, A° C A. By definition, we also have

A=W

VCAVCOoX
If A Cp X,then A = A°,as A° C A. Thus A is open if and only if A = A°.
Examples
1. The closure of (0,1) in R is [0, 1].
2. Let X =Rand A = Q. Then A° = @ and A = R. O

The result from the last example follows from Theorem 206.

Theorem 205
Let A be a subset of X. Then x € A if and only if every neighbourhood V of = has a
non-empty intersection with A.

Proof: we show that z ¢ A if and only if there is a neighbourhood V' of x
such that ANV = @. Suppose = ¢ A. Then there is a closed set C' containing A
withz € C. LetV = X\C Cp X.Thenz € Vand ANV C CNV = g,s0 ANV = @.

Conversely, suppose there is a neighbourhood V' of z such that ANV = .
LetC =X \V C¢o i( Then A C Cand A C C,as Cisclosed. But VN C = &, so
x ¢ Cand thus z ¢ A. |

Let A be a subset of X. A point ¢ € X is a limit point of A if every neighbourhood of a con-
tains a point of A different from q, i.e. a € A\ {a}.

Examples

1. Let X = Rand A = {25 | n € N}. Then {1} is a limit point of 4, and
A = AU {1}, according to Theorem 206.

2. Let X be a set with the indiscrete topology. For any non-empty subset A of X
and any point a € X, a is a limit point of A as long as A # {a}. For instance,
Let X = {a, b} with topology T = {@, X }. If A = {b}, then a is a limit point of
A. Indeed, the only neighbourhood of a is X,and AN X = {b} # 2.
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We've alluded to it a few times already, so now it’s time for Theorem 206.

Theorem 206
If A’ is the set of all limit points of A, then A = AU A,

Proof: if x €¢ AU A’,thenz € Aoraz € A’ In the first case, T € A C A In
the other, every neighbourhood of = contains a point of A. Thus x € A.

Conversely, suppose + € A. Either z € Aorz ¢ A. Itis sufficient to show
thatifx € A, thenz € A'. Ifx ¢ A, every neighbourhood of x meets A in at least
one point other than z. Butz &€ A,sox € A'. |

We have the following corollary.

Corollary 207
Alsclosed in X ifand only if A’ C A.

Proof: left as an exercise.

To avoid degenerate situations like the one found in the preceding example (which is to say,
that any point could be the limit point of all non-singleton subsets in the indiscrete topology),
we introduce the notion of separation axioms.

A space X is:

1. T5 or Hausdorff if for every pair x # y € X, there exist disjoint neighbourhoods U, of
x and U, of y;

2. T; if for every pair x # y € X, there exist neighbourhoods U, of z and U,, of y such that
yéZU,andx ¢ U,;

3. Tyifforevery pair z # y € X, there exista neighbourhood U of either = or y that misses
the other.?

Note that every 75 space is 71, and every 17 space is 7Ty, but that there are 7} spaces that are
not 7, and 7} spaces that are not 75; the conditions are illustrated below.

£\ - e domee, = [
s - -

~ =" ¢ l‘ PO ’ \ 9", AN 'f \\‘ ‘1
. D A . Rl : S
.: , \‘ :. , ,‘ x 'a ': \‘.\ .' L] .l
. % r" ! jo'l .- L~ to 7, 2 R .

-, e ot - . [y LY

LRSI 4 - Se e 4 .72

. e
\ \j .7

U, Uy ._.,."“uj -

30ther separation axioms will be discussed at a later stage. In their studies, many topologists are only in-
terested in spaces that are at least Hausdorff.
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Theorem 208
If X is Hausdorff and x € X is a limit point of A C X, then every neighbourhood of x
contains infinitely many points of A.

Proof: let x be a limit point of A and V' be a neighbourhood of z. Since X is
a T, space, its singletons are closed sets. Indeed, let x € X. Forally # = € X,
there exist neighbourhoods U, of z and U, of y such thatz ¢ U, and y ¢ U, (the T}
condition holds for 75 spaces). Then

X\{z}=J U,

yey
is openin X and {x} is closed; if = has a neighbourhood V' such that A NV is finite,
ANV ={ay,...,a,}

must be closed, being the finite union of closed sets.

Let W = V\(ANV). Ifz € W, then W is a neighbourhood of = such that
W N A = @, which contradicts x being a limit point of A. Hence z € AN V. After
reordering if necessary, suppose = = a;. Then

W1:V\{a2,...,an}

is a neighbourhood of = such that W; N A = {a,} = {z}, so that x cannot be a limit
point of A. By reductio ad absurdum, A NV is infinite. [ |

Hausdorff spaces are particularly well-behaved with respect to toplogies.

Theorem 209
Every simply ordered set is T, in the order topology. The product of two T}, spaces is
T,. A subspace of a T, space is T.

Proof: left as an exercise. [ |

15.4 Continuity and Homeomorphisms

Suppose that X and Y are topological spaces. A function f : X — Y is continuous if f~1(1)
is open in X whenever V is open in Y.*

Theorem 210
Let f : X — Y. If*B is a basis for the topology of Y, then f is continuous if and only if
f~YB) Co X forevery B € B.

*Similarly, if G is a sub-basis for Y, then f is continuous if and only if f~1(S) Cp X forall S € &.
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Proof: if f is continuous, f~!(B) Cp X for all B € B since such B Cp Y. Con-
versely, suppose f~!(B) is open for all B € B. Let V = | J,.; B; be an open subset
of Y. Then

vy =1 (U Bi) =Jr (s

el el

is open in X since all f~!(B;) is openin X foralli € I. [ |

Continuous functions are to topology what linear maps are to linear algebra.

380

Examples

1. If X and Y are metric spaces and f : X — Y is continuous with respect to the
metrics in the usual sense, it is continuous in the topological sense.

2. For a product space X x Y, the projections m, 7, are continuous. Indeed,
T U)=UxY,m (V) =X xV Co X xYwhenU Cy X,V Cp Y.

3. Foreach b € Y, the inclusion map i, : X — X x Y defined by i,(x) = (z,b)
is continuous. Indeed, let U x V be a basic neighbourhood in X x Y. Then

g, bgV,

Z"’1<UXV>:{U beV

which is open in X. Thus the inclusion map is continuous.

4. For any X, the identity map id : X — X is continuous when X has the same
topology as a domain as it has as a range.

5. The function id : R — R; is not continuous. Indeed, let [a, b) be an open set
in R;. Then id*([a, b)) = [a, b) is not open in R, so id is not continuous. The
function id : R, — R is continuous, however. Let (a, b) be a basic open set in
R. Thenid '(a,b) = (a,b) = U [a+ 1/n,b)is open in R;, so id is continuous.

neN

6. Let f : X — Yandg:Y — Z be continuous functions. Thengo f : X — Z

is a continuous function. Indeed, let U Cp Z. Then V = g~ }(U) Cp Y since g
is continuous, and f~!(V) Cp X as f is continuous. Then

(go N)™HU) = fHg ' (U)) = [H(V)

isopenin X and g o f is continuous. U
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There are other ways to verify if a function is continuous.

Theorem 211
Let f : X — Y. The following statements are equivalent:

1. f is continuous;

2. forany A C X, f(A) C f(A);

3. ifCisclosedinY, then f~'(C) is closed in X.
Proof:

1. = 2.: If x € A, then every neighbourhood of z contains a point of A. If V
is a neighbourhood of f(z) then f~*(V)isopenin X and z € f~'(V). Asx
is a limit point of A, there exists « € A witha € f~'(V) and f(a) € V, so
f(a) € V. N f(A). But this just means that f(z) is a limit point of f(A), so
f(x) € f(A), thatis f(A) C f(A).

2. = 3.:IfCisclosedin Y, then C = C. Let A = f~*(C) then A C Aand
fA) = f(A) = f(fHC) cC=C.
Then A C f~1(C) so f~1(C) is closed.

3. = 1.:If f71(C) is closed whenever C'is closed, then if V isopeninY, Y \ V'is
closedinY,so f~1(Y \ V) is closed in X. But

FRYAV) =N V) =X\ V),

so f~1(V) is open. Hence f is continuous. [

A homeomorphism f : X — Y is a bijection for which both f and the inverse function
g :' Y — X are continuous. We say that X and Y are homeomorphic when there is a home-
omorphism f: X — Y.°

Examples

1. Let X = R, Y = (0,00). The function f : X — Y, defined by f(z) = e* is
continuous. The inverse function g : ¥ — X defined by ¢g(y) = Iny is also
continuous. Both these functions are bijections, so R and (0, c0) are homeo-
morphic in the standard topology.

*Homeomorphisms play the same role for topological spaces as isomorphisms play for groups. Conse-
quently, homeomorphism of spaces is an equivalence relation on the ‘set’ of topological spaces. Homeomorphic
spaces are identical from the point of view of topology.
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. The bijections tan : (—7/2,7/2) — R and arctan : R — (—n/2,7/2) are both

continuous, so R is homeomorphic to (—7 /2, 7/2).

. The continuous bijections f : (a,b) — (¢,d)and g : (¢,d) — (a,b),

d—c b—a
flz)=ct+ i —(x—a) and g(y)=a+-—1I(y—o),
are inverses of one another, so (a, b) is homeomorphic to (¢, d). O

The continuous function f : X — Y is an embedding of X into Y ifthemap g : X — f(X)
defined by g(x) = f(x) is a homeomorphism when f(X) has the subspace topology.

1.

2.

Examples

Forb € Y, the inclusion map i, : X — X x Y,z — (x,b), is an embedding.

Let A C X. Theinclusionmap:: A — X, a — q, is an embedding. O

Continuous functions enjoy a whole slew of attractive properties.

382

Theorem 212
Let X, Y, Z be top. spaces, and V, Co X, A; Cc X.
1. Constant functions are continuous.
2. The inclusion function . : A C X — X is continuous.
3. If f : X — Y is continuous, then the restriction function f|, for all subsets
A C X is continuous.
4. If f + X — Y is continuous, then f : X — Z is continuous, assuming that
f(X) C Zandeither Z CY orY C Z.
5. If X = UV, and the restriction f|y, : V, — Y is continuous for each «, then
f X — Y iscontinuous.
6. If X = J;_, A; and the restriction f|a, : A; — Y is continuous foreach 1 < i <
n, then f : X — Y is continuous.
Proof: left as an exercise. |
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As a special case of Theorem 212, we get the following result.

Lemma 213 (PASTING LEMMA)
Suppose X = AU B where A and B are closed sets. If f : A — Y andg : B — Y are
such that f(x) = g(x) forall x € AN B, then the function h : X — Y defined by

oo Jf@), ifred,
he) {g(l’), ifreB

is continuous. The same holds if A and B are both open.

Proof: left as an exercise. [ |

Lemma 213 is extremely useful.

Examples

1. fX =Y =R, let A =[0,00) and B = (—0,0], and define f : A — Y by
f(x) =zandg : B — Y by g(x) = —x. Then h(z) = |z| is continuous by
Lemma 213.

2. Instead, take B = (—00,0) and define f : A — Y by f(z) = = + 1 and
g : B — Y by g(x) = x. The function h obtained by Lemma 213 construction
is not continuous as h~'(1/2,3/2) = [0,1/2). O

This last example shows that Lemma 213 does nothold if Aand B are notboth closed, or open.

Theorem 214
Let f : X — Y x Z. Then f is continuous if and only if the functions m, f and 7, f are
continuous.

Proof: if f is continuous then 7;f and myf are continuous since the projec-
tions are continuous. Conversely, suppose 7, f and 7, f are continuous. If U x V' is
a basicopensetinY x Z, then

fHU % V) = (m f)7H(U) N (m f)7H(V),

which is open as 7, f and 75 f are continuous. Hence f is continuous. [ |

The following local formulation of continuity is sometimes useful in applications. A function
f : X — Y islocally continuous at x € X if for any open set V with f(z) € V, there is a
neighbourhood U of z such that f(U) C V. A function f : X — Y is thus continuous if and
only if it is locally continuous at every point of X, as can easily be verified.
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15.5 Product Topology

Suppose {X,}aca is a family of topological spaces, where A is an arbitrary indexing set.®

Then
X =]] X
acA
is the set of all maps z : A — J,. 4 X such that z(a) € X, Vo € A. We write z,, for z(«)
and z = (x4)aca. This set X comes equipped with projection mappings 7, for each a € A,
defined by 7, (z) = z, forall x € X.

We can endow X with a topology by extending the box product topology to arbitrary prod-
ucts. A basic open set in this box topology is a set of the form [ [ U,, where U, Cp X, for
each a € A.

Alternatively, extending the topology obtained by the sub-basis

&= J{m (V) | Va Co Xa}
acA
to arbitrary products yields a topology called the product topology on X. The basic open
sets in the product topology have the form [[, U,, where U, = X, except in a finite num-
ber of cases U,, Cp X, ,forl <i <n.

Note that when A is finite, the box and product topologies coincide. Furthermore, the ba-
sic open sets in the product topology are open in the box topology, and so the box topology
is finer than the product topology. But this inclusion is strict. For instance, (—1, 1) is open
in R¥ = [, .y R with the box topology, but it is not open in R with the product topology as
this would imply that R C (—1,1).

Theorem 215
If B, is a basis for the topology on X, then

%:{HBQ

a€cA

Bae‘Ba}

is a basis for [ [, X, in the box topology.

Proof: left as an exercise. [ |

Theorem 216
In both the box and product topologies, the product of subspaces is a subspace and
the product of Hausdorff spaces is Hausdorff.

Proof: left as an exercise. [ |

®In particular, A may not be countable.
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While the definition of the box topology might seem the more natural of the two generaliza-
tions to infinite products, there is at least one way in which the product topology is superior
(and hence, preferable).

Theorem 217
Let f : Y — X =[], X, andand f, = 7. f for all o. When X is endowed with the
product topology, f is continuous if and only if f,, is continuous for all .

Proof: suppose f is continuous. The projections 7, are continuous. Indeed,
pick a. Let V, be a basic open of X,,. Then W = 7 1(V,) = Hﬂ Ws, where W, =V,
and Wz = Xjz. But IV is open in the product topology, so 7, is continuous. Thus,
fa = mof is continuous for each «, being the composition of two continuous
functions.

Conversely, suppose that f, is continuous for all . Let 7,'(U,) be a sub-basic
subset of X. As f, = 7. f is continuous,

f_l (W;1<Ua)) - fo?l(Uo)

is open in Y, which is to say that f is continuous. |

This result need not be true in the box topology.

Example: consider the function f : R — R¥, defined by f,,(x) = nx forall z € R.
Each f,, is continuous on R, and f(z) = (nx),en. In the box topology, (—1,1)* Cp
R“. But f,;*(—1,1) = (=1/n,1/n)and f~' ((—1,1)*) = {0}, which is not open in R.
Hence f is not continuous in the box topology. OJ

15.6 Quotient Topology

Let X be atopological spaceand f : X — Y be a surjective mapping. We make f continuous
by defining a topology on Y through

VCoV = fH(V)Co X.
That this defines a topology is clear:
1. gCoYasf (@)= Co X;Y CopYas f1(Y)= X Cp X since f is surjective.
2. IfU,V Co Y, then f71(U), f~1(V) Cp X. But
fFONV)=fHU)NfFHV)Co X =soUNV Cp Y.

3. IfU, Cp Y forall o, then f~1(U,) Cp X forall a. But

! <U Ua) = Uf_l(Ua) Co X = so UUa CoY.
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This is the quotient topologyon Y, and f : X — Y isa quotient map. Thus, any continuous
map f : X — Y is a quotient map whenever it is a surjective. Note that a quotient map need
not be open.

Example: let X = [0, 2] have the subspace topology from R, and set Y = {a, b}
where Ty = {2, {a}, Y}, and define f : X — Y by

a, ifo<z<l,
f(x)_{b, ifl<zr<2

As f7'({a}) =[0,1) Cp X, [ is continuous and a quotient map (as it is also surjec-
tive). However, f(1,2) = {b} isnotopenin Y, so f is not open. O

If f: X — Y is aquotient map, we define an equivalence relation on X by

T ~ To < f(fl]l) = f(lL'Q)

Equivalence classes of X /~ are in 1—to—1 correspondence with elements of Y; X/ ~and Y’
are homeomorphic under the identification topology.

386

Examples: in what follows, we set X = [ x I, where I = [0, 1], with the usual
subspace topology from R2.

1. The cylinder is defined via the following equivalence relation on X:
(z,y) ~ (2,y) =y —y € Z*.
2. The torus is defined via the following equivalence relation on X:
(z,y) ~ (2,y) <= (z — ',y —y) € Z*.
3. The Mobius band is defined via the following equivalence relation on X:
(x,y) ~ (2',y) = x—2 € Zandy + ¢ = 1.
4. The Klein bottle is defined via the following equivalence relation on X:
(z,y) ~ (2,y) <= (r—2' € Zandy+y' =1)or (x =2"andy — y € Z).

5. The projective plane is defined via the following equivalence relation on X:

(z,y) ~ (2',y) <= (r—2' € Zandy+y =1)or (z+ 2 =1landy — ¢ € Z).
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The identification topologies of those spaces on X are shown below (from thatsmaths. com).

A A A B

Cylinder Sphere e & Torus

B A B

A

Y Y

Klein Bottle Projective PlaneA B Moebius Band

Y—

W‘ >

15.7 Solved Problems

1. Show that if ®B is a basis for a topology on X, then the topology generated by ‘B is the
intersection of all topologies on X that contain B. Prove the same if B is a sub-basis.

Proof: let 98 be a basis, and suppose T(*8) is the topology on X generated by 8. We
first show that T(B) C gz T

Let U € T(B). Then U = Upem, B, for some By C B. Let T be any topology
on X containing ®B. In particular, it also contains B, and

U B=UE€g%,
Be®By

since arbitrary unions of open sets in ¥ are open in . But ¥ was arbitrary, so U €
Ngcz T, and T(B) C Nypcs T- Conversely, since T(B) is a topology on X containing
B, then -

(] T <3(B).
BCT

Hence Nypcs T = T(B).
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Now suppose ‘B is a sub-basis. The proof follows the same lines. The sole differ-
ence is that the topology on X generated by B is

T(B) = U (] Bi||Bic®

arbitrary \finite

So we need only to verify thatif U € T(B), then U € [z T. Let

v-U(N=

arb. \fin.

and T be any topology on X containing 5. Then U € ¥ since arbitrary unions and
finite intersections of open sets in ¥ are open in <.

The rest of the proof is identical to the above proof for when ‘B is a basis. |

2. Show that the collection

B ={[a,b) | a <b,a,b € Q}

is a basis that generates a topology different from that of R;.

Proof: to show that ‘B is a basis, it suffices to show the second property, since R =
Unenl—n,n). Let [a, b) and [c, d) belong to B5. Then

o] ifb<e

[a,b) ifb>c,a>e,b<d
[a,b)N[c,d) = < [e,d) ifb>c,a<ce,b>d,

[e,b) ifb>c,a<c,b<d

[a,d) ifb>c,a>e,b>d

where a, b, ¢, d € Q.

Thus, whenever = € [a,b) N [c,d), there exists an interval I € ‘B such that z €
I C [a,b) N [c,d). Hence B is a basis. Denote the topology on R generated by B by
%, and that of the lower limit topology on R by ¥;. Clerly, [r,4) € ¥;. Does it also
belong to ¥?

If it does, we can then write
[7r, 4) = U [aaa ba)a
acA

for a,, b, € Q. But notice that each of the a, must be greater than 7. In particular,
since m € QQ, each of the a,, must be strictly greater than 7, since they are all rational.
Hence, we can at best obtain

(7T74) = U [aa,ba),

acA
ifan, by € Q. Hence [r,4) ¢ Tand T; # <. [
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3. Show thatifY is a subspace of X, and A is a subset of Y, then the subspace topology on
A as a subspace of Y is the same as the subspace topology on A as a subspace of X.

Proof: let U be open in the subspace topology on A as a subspace of X, and V' be
open in the subspace topology on A as a subspace of Y.

Then, there exists W Cp X and Z Cp Y suchthatU = ANWandV = AN Z. But
ifZ Co Y, thereexist Z/ Co X suchthat Z =Y NZ,andsoV =ANY NZ.

Since ACY,
U=ANW=ANnYNW, V=ANnYNZ =AnZ,

where W and Z’ are open in X.

Hence U is open in the subspace topology on A as a subspace of Y, and V' is open
in the subspace topology on A as a subspace of X, and so the two topologies are
equal. ]

4. If ¥ and ¥’ are topologies on X and ¥’ is strictly finer than ¥, what can you say about
the corresponding subspace topologies on the subset Y of X?

Solution: let Ty and T}, be the subspaces topologies on a subset Y of X correspond-
ing to T and ¥’ respectively. It should be clear that T, is finer than Ty. Indeed let
B=VNYforsomeV €T ¢ ¥ . Hence B=V NY forsomeV € .

Can we necessarily say that T, is strictly finer than T? Well, suppose all U € ¥
where U ¢ T are such thatU NY = @.” Then

A=YNU=YNoe%y

since @ is open in ¥.

For all other V € ¥/, we have V € ¥, and so we have A = V NY € . Hence,
in this case Ty = T,. The following example shows that T, could be strictly finer
than fy.

Let X = R (asaset), Y = (0,1) and suppose ¥ and ¥’ are the usual topology on
R and the lower limit topology on R, respectively.

Then [0.5,1) € %%, but it is not open in the usual subspace topology on Y since
there is no interval (a, b) such that

0.5,1) = (0,1) N (a, b).

In this case, T, is strictly finer than Ty. Thus, the most we can say without more
information is that T, is finer than Ty-. O

’For instance, let X = {a,b,c}, Y = {c},T = {@, X} and T = {@, {a,b}, X}. Then T & T/, and the only
Ue% whereU ¢ TisU = {a,b},soY NU = @.
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5. Show that the projections 7 : X XY — X and 7 : X X Y — Y are open maps.

Proof: we show that 7; is open, the proof that w5 is open is similar. Let B be a basic
opensetin X x Y. Hence B = U x V, where U is openin X and V is openin Y.
Then 71 (B) = U is open in X. Now, any open W in X x Y is written

W= (Ua x Va),
acA

where U, x V, is a basic open set for all &« € A. Now

m(W) = m({(u,v) € X xY|(u,v) € U, x V, for some a € A}
{u € X|u e U, forsome a € A} = UpecaU,,

which is open in X, since it is an arbitrary union of open sets in X, so 7 is open. H
6. Show that X is Hausdorff if and only if the diagonal
A ={(x,2)|r € X}
isclosed in X x X.

Proof: since @ and any one point set are vacuously Hausdorff, and since their re-
spective A are @ and X, which are closed sets in X, the result holds when X = &
and X = {x}. We can thus restrict ourselves to spaces X with at least two elements.
Forany such X, X x X \ A # &.

Suppose X is Hausdorff. We show that X x X \ Aisopenin X x X, and so that A
is closed in X x X.

Let (x,y) € X x X \ A. Then z # y. So there exists two sets U,, V, (open in
X)suchthatz € U,y € Vyand U, NV, = @. Now (z,y) € U, x V,, which is open
in X x X. We show that (U, x V) N A = &. Suppose

(z,2) € (Uy x V) N A # 2.

Then z € Uy and z € Vj, so z € U, NV, But U, NV}, = &, so there is no such (z, z).
Hence, we can fit an open set around each (z,y) € X x X \ A,andso X x X \ Ais
openin X x X.

Conversely, suppose A is closed in X x X, and let z, y € X such that x # y. Then
(z,y) € X x X \ A, an open set of X x X. Hence there exists a basicopenset U x V/
of X x X such that

(,y) eUxV CX xX\A.
But U NV = @, otherwise there would exist z € X such that
(2,2) eUxV € X x X\ A.

Thus U, V are open subsets of X withz € U,y € V,andU NV = &, and so X is
Hausdorff. |
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7. Let A C X,andlet f : A — Y be continuous; let Y be Hausdorff. Show that if f may be
extended to a continuous function g : A — Y, then g is uniquely determined.

Proof: suppose f can be extended to g and h, as in the statement of the problem.
Suppose g # h. Then, there exists xg € A\ A = A such that g(x¢) # h(xo), since
f=4gla=hla

But Y is Hausdorff, so 3U, V Cp Y such that g(z¢) € U, h(xzp) € V,andU NV = @.

Since g and h are continuous, g~ }(U), h~ (V) Co X. Furthermore,
zo € g U)NA (V) Co X.

As g € A, there exists a # xo in A suchthata € g~} (U)Nh~1(V),and so g(a) € U
and h(a) € V. But g(a) = h(a) = f(a) since a € A, whichyields f(a) e UNV,a
contradiction, as this set is supposed empty. Thus when f can be extended, it can be
done uniquely. |

8. If fi : X1 = Yy, fo : Xo — Y5 are continuous, show that /' : X; x Xy — Y] X Y, is
continous, where F'(z1,x2) = (fi1(x1), fa(z2)).

Proof: thesetB = {U xV | U Cp Y1,V Cp Ya} is abasis for the product topology
on Y7 x Ya. Then, itis enough to show that F~1(U x V) Cp X1 x Xs forallU xV € 8.
But
FH U X V)= {(x1,22) € X1 x Xo | Fz1,22) €U x V}
= {(z1,22) € X1 x Xo | fi(z1) € U, fo(x2) € V}
= {(z1,22) € Xy x X |z € [ (U),ma € f5 ' (V)} = f7H(U) x f5 '(V).

But ffl(U) Co X7 and f{l(V) Co X5 since f; and f5 are continuous, and so
FHUXV) = fi'(U) x f; (V) Co X1 x Xo
in the product topology, which means that F' is continuous. |

9. Let f : X — Y be an onto mapping. For each of the properties 7} and 75, prove or
disprove that if one of X, Y has the property, then so must the other when
a) fis continuous;
b) fisopen;
c) fisboth open and continuous.
Solution: throughout, we assume that both X and Y have at least two elements -
otherwise, all the statements are vacuously or trivially true. Recall that a space W is

Ty when, for each pair of distinct points z, y € W, there exists U,, V,, open sets in W
suchthatz € U, Zyandy €V, Z z.
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a) fiscontinuous: f~!(U) is open in X whenever U is openin Y.

i. XisTy.Let X =R, Y = {a, b} with the indiscrete topology and define the
surjection f : R — Y by f(0) = aand f(x) = bforall z # 0. Then R is 77,
since it is T, and f is continuous, since f~}(Y) = Ris openin R, butY is
not 77 since every neighbourhood of a contains b. So X is T} # Y is T7.

ii. YisT). Let X = {a,b,c,d} with Tx = {2, {a,c},{b,d}, X}, Y = {a,b}
with the discrete topology and define the surjection f : X — Y by f(a) =
a, f(b) = b, f(¢) = aand f(d) = b. Then f is continuous, since both
f*({a}) = {a,c}, f1({b}) = {b,d} lie in Ty, but X is not T} since every
neighbourhood of a contains ¢. So Y is 11 = X is T7.

iii. X isT5. In the counter-example a)i., X is also 75, but Y is not 77, so it is
certainly not 75. Hence X is T = Y is T5.

iv. Y isT5. In the counter-example a)ii.,, Y is also 75, but X is not 77, so it is
certainly not 75. Hence Y is T3 # X is T5.

b) fisopen: f(V)is openinY whenever V is openin X.
i. X isTj. Seeb)iii. X is Ty = Y is 1.

ii. Y is7j. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, and Y is 77. But X isnotT}. So Y is 171 # X is 1.

iii. Xis7,. Let X = R, Y = {a,b} with the indiscrete topology, and define
the surjection f : R — Y by f(z) = a whenever z € Q and f(xz) = b
whenever z ¢ Q. Then f is open. Indeed, any basic open set (a, b) contains
both rational and irrational numbers, and so f(a,b) =Y Cp Y. Note that
R is Ty, but Y is not 75, as it is not even T3. Thus, X is Ty = Y is Ts.

iv. Y is7T5. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, and Y is 75. But X is not 75, as it is not 7. Thus,
YisTy # XisTs.

c¢) fisboth open and continuous: f~!(U) is open in X whenever U is open in Y’
and f(V) is open in Y whenever V is open in X.

i. X isTi. Seeb)iii. X isTy; = Y isTj.
ii. Y is 7T3. In the counter-example a)ii., f is surjective, it is open since Y has

the discrete topology, it is continuous by definition and Y is 77. But X is
not 7. Hence Y is Ty & X is 1.

iii. X is75. In the counter-example b)iii.,, the function f is also continuous
since Y has the indiscrete topology and X = %,. But Y is not 75 as it is
not even 7. Hence X is Ty = Y is Ts.

iv. Y isT5. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, it is continuous by definition and Y is 75. But X is
not 75. As itis not even T3. Hence Y is Ty # X is T5.

And that’s it, folks: 77 and 7> do not behave nicely with respect to continuous func-
tions. |
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10. Show thatthe set A of allbounded sequences is both open and closed in the box topology
on R*.

Proof: let A be the set
A ={(zn)nen | IM € R with |z, | < M Vn € N}.
We start by showing that A Cp R¥.
Let (x,)nen € A. Then 3M € R such that |z,| < M foralln € N. Set
U, = (zp — 1,2, + 1), foralln € N.
Then

U= H(wn—l,xn—i—l)
neN

is open in the box topology on R¥, since U,, Cp R foralln € N. Clearly, (z,,)nen € U,
since z,, € U, foralln € N. But U C A.

Indeed, suppose (wy,)neny € U. Then w,, € U, foralln € Nand so z,, — 1 < w, <
x, + 1 for all n € N. But this means that

—M-1<z,—-1<w, <zp+1<M+1

and |wy,| < M + 1foralln € N. Hence (wy,)neny € Aand U C A so we conclude that
ACoRY.

We now show that A C R¥. Suppose () nen € A, and let

Then (z,)neny € V' Co R® and there exists (a,)nen € A such that (ap)peny € V. In

that case, there exists M € R such that —M < a,, < M for all n € N. However,

an, € (T — %,xn + %) so that

1 1
anp — — < Tp < ap + —
n n
foralln € N, and so
1 1
—-M-1<a,——<zp<ap+—<M-+1
n mn
and |z,| < M + 1foralln € N.

Thus (2,,)nen € 4, and A C A, which yields A C¢ RY, [ ]
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15.8. EXERCISES

15.8 Exercises

10.

11.

12.

13.

14.

394

. Prepare a 2-page summary of this chapter, with important definitions and results.

. Let Z be a subspace of Y. Are the subspace topologies on Z relative to X and Y the

same?

. Show directly that the box product topology on R? is identical to the ¢; and ¢, topologies

on R2.
Provide a proof of Results 203, 204, 207, 209, 212, 213, 215, and 216.

Show that a function which is locally continuous at every point is continuous, and vice-
versa.

Provide the details for the homeomorphism examples of pp. 381-382.
Provide the details for the embedding examples of p. 382.

Provide the equivalence relation for the identification topology of the cylinder, the sphere,
and the projective plane.

Show that the map f : X — Y is continuous if and only if f(A) C f(A) for any subset
Aof X.

Let f,g : X — Y be continuous maps from a space X to a Hausdorff space Y. Prove
thatthe set C' = {z | f(z) = g(2)} is closed in X.

Suppose that f : X — Y is a bijection. If ‘B is a basis for the topology on X, prove that
f is a homeomorphism if and only if the collection {f(B) | B € B} is a basis for the
topology on Y.

Show that the map f : X — Y is continuous if and only if f(A) C f(A) for any subset
Aof X.

Let f,g : X — Y be continuous maps from a space X to a Hausdorff space Y. Prove
thattheset C' = {z | f(z) = g(x)} is closed in X.

Suppose that f : X — Y is a bijection. If 8 is a basis for the topology on X, prove that
/ is a homeomorphism if and only if the collection {f(B) | B € B} is a basis for the
topology on Y.
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