
Chapter 15

General Topology Concepts

In this chapter, we begin the study of general topology, which extends the
concepts of analysis to general spaces (on which metrics may not neces-
sarily be deϐinable). We start by presenting the basic concepts and def-
initions of topology: open sets, bases, separation axioms, continuity,
and homeomorphisms, and we present a few examples of frequently-
encountered topologies: order, box, subspace, product, and quotient.

15.1 Basic Deϐinitions
LetX be a set. A topology T onX is a collection of subsets ofX .¹ such that

1. ∅, X ∈ T;

2. if U1, . . . , Un ∈ T, then∩n
i=1 Ui ∈ T;

3. if {Uα}α∈A ∈ T, then∪α∈A Uα ∈ T.

The ordered pair (X,T) is a topological space. The sets U ∈ T are called the open sets of
X . If U is an open set inX containing x, we say that U is a neighbourhood of x inX .

aaaaaa

Examples: The following collections are topologies onX .

1. T = ℘(X) is the discrete topology onX .

2. T = {∅, X} is the indiscrete topology onX .

3. IfX = R, T = {A | A = union of open intervals in R} is the standard topol-
ogy on R.

¹Or a subset T of the power set ℘(X).
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4. IfX is ametric space,T = {A | A is open inX under the metric} is themetric
topology onX .

5. T = {A | X \ A is ϐinite} ∪ {∅} is the ϐinite complement topology onX .

6. T = {A | X \ A is countable} ∪ {∅} is the countable complement topology
onX . □

Let T1 and T2 be two topologies on a set X . If T1 ⊆ T2, then T2 is ϐiner than T1 and T1 is
coarser than T2. Obviously, the discrete topology is ϐiner than all other topologies onX .

If T1 ⊊ T2, then T2 is strictly ϐiner than T1 and T1 is strictly coarser than T2. The col-
lection of all topologies on a set X and the inclusion relation form a poset, but that will not
be that important for us.

A basisB for a topology is a family of subsets ofX such that

1. if x ∈ X , then there existsB ∈ B such that x ∈ B;²

2. ifB1, B2 ∈ B and x ∈ B1 ∩B2, then there existsB ∈ B such that x ∈ B ⊆ B1 ∩B2.

The topology generated by the basisB is

T(B) =

{ ∪
B∈B′

B

∣∣∣∣∣B′ ⊆ B

}
.

We illustrate conditions 1 (left), 2 (right) for the standard topology on R2 below.

²Note that for a given x, the setB need not be unique.
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Examples

1. The standard topology on R has the open intervals as a basis.

2. Let X = R2, B1 be the set of all open discs in X , and B2 the set of all open
squares. ThenB1 andB2 are bases. □

We illustrate conditions 1 (left), 2 (right) for the ℓ1 topology on R2.

aaaaaa

Theorem 201
Suppose that B1 and B2 are bases for topologies T1 and T2, respectively. Then T1 is
ϔiner than T2 if and only if for each B2 ∈ B2 and any x ∈ B2, there exists B1 ∈ B1

such that x ∈ B1 ⊆ B2.

Proof: suppose T1 is ϐiner than T2. Then B2 ∈ T1 exists B ∈ T1 such that
x ∈ B ⊆ B2. Then, since B1 is a basis for T1, there exists B1 ∈ B1 such that
x ∈ B1 ⊆ B ⊆ B2.

Conversely, let B ∈ B2 and x ∈ B. Then there exists Bx ∈ B1 such that
x ∈ Bx ⊆ B, so

B =
∪
x∈B

Bx,

andB ∈ T1. But anyB2 ∈ T2 is a union of open setsB, so T2 ⊆ T1. ■

In the preceding example (second item), it is possible to ϐit a square inside any circle and vice-
versa, and so T(B1) = T(B2).

A sub-basis for a topology on a set X is a collection S of subsets of X such that for each
x ∈ X , there exists S ∈ Swith x ∈ S (note that this means thatX =

∪
S∈S S).
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Examples

1. LetX be a set. Then S = {x | x ∈ X} is a sub-basis for the discrete topology
andS′ = {∅, X} is a sub-basis for the indiscrete topology.

2. Either of the following sets of semi-ϐinite intervals form a sub-basis for the
standard topology on R:

S = {(a,+∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R}
S′ = {(a,+∞) | a ∈ R}.

A basis B can be built from a sub-basis S by adding to it all ϐinite intersections of its ele-
ments. Indeed,B1, B2 ∈ B =⇒ B1 ∩B2 ∈ B if

B = S ∪

{
n∩

i=1

Si

∣∣∣∣∣ Si ∈ S

}
.

aaaaaa

Example: considerX = R andB = {[a, b) | a, b ∈ R}. Then,

[a, b) ∩ [c, d) =



∅ if b ≤ c

[a, b) if b ≥ c, a ≥ c, b ≤ d

[c, d) if b ≥ c, a ≤ c, b ≥ d

[c, b) if b ≥ c, a ≤ c, b ≤ d

[a, d) if b ≥ c, a ≥ c, b ≥ d

The set B is a basis for some topology T′ on R. We compare T′ with the standard
topologyT onR and show that the two topologies are not equal. Suppose (a, b) ∈ T.
Then, for any x ∈ (a, b), we get [x, b) ∈ B and [x, b) ⊂ (a, b). Hence (a, b) ∈ T′, and
T ⊆ T′, i.e. T′ is ϐiner than T.

However, the inclusion is not reversed, which is to say, [a, b[ ̸∈ T. If it were,
since a ∈ [a, b[, there would exist (c, d) such that a ∈ (c, d) ⊆ [a, b), but this is
impossible. Thus T ⊊ T′, i.e. T′ is strictly ϐiner than T.

The topology T′ on R is the lower limit topology, denoted by Rl. □

LetX be a set with a total orderR. By deϐinition,
1. for every x, y ∈ X , if x ̸= y, then xRy or yRx;
2. there is no x ∈ X such that xRx, and
3. for every x, y, z ∈ X , if xRy and yRz, then xRz.

We usually write x < y instead of xRy.
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It is possible to generalize the concept of an interval by writing

(a, b) = {x ∈ X | a < x < b}, [a, b] = {x ∈ X | a ≤ x ≤ b},

and so on.

The order topology on X is generated by the basis B having as elements intervals of the
following forms:

1. (a, b), for a < b;

2. [⊥, b), if⊥ is a smallest element ofX (⊥ ≤ a for all a ∈ X), and

3. (a,⊤], if⊤ is a greatest element ofX (⊤ ≥ b for all b ∈ X).

aaaaaa

Examples

1. The order topology on R is the standard topology on R, as R has no lowest or
greatest element (all basis elements are of the form (a, b), for a < b).

2. In the order topology on N, every point is open as

{1} = [1, 2) and {n} = (n− 1, n+ 1) for n > 1.

Hence the order topology on N is the discrete topology on N.

3. LetX = {0} ∪
{

1
n
| n ∈ N

}
. Then

{1} = (1/2, 1] and
{
1

n

}
=

(
1

n+ 1
,

1

n− 1

)
for n > 1.

But any open set containing 0 will contain a basic set of the form [0, 1
N
), with

1
N+1
∈ [0, 1

N
). Hence {0} is not open, and the order topology on X is not dis-

crete. □

15.2 Box and Subspace Topologies
SupposeX and Y are topological spaces. Consider the family of subsets ofX × Y given by

B = {U × V | U ⊆O X,V ⊆O Y },

whereA ⊆O X stands for S ∈ T (“A is an open subset of X in the topology onX”).

As X ⊆O X and Y ⊆O Y , we have X × Y ∈ B, and so every element of X × Y lies in
(at least) one element ofB.
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Now suppose U1 × V1, U2 × V2 ∈ B. As U1 ∩ U2 ⊆O X and V1 ∩ V2 ⊆O Y , we have

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ B.

Thismeans thatB is a basis for a topology onX×Y , whichwe call theboxproduct topology
onX × Y .

Two mappings come with this topology:

π1 | X × Y → X and π2 | X × Y → Y,

deϐined by π1(x, y) = x and π2(x, y) = y. These mappings are called the projections onto
the ϐirst and second coordinates; we have

U × V = (U × Y ) ∩ (X × V ) = π−1
1 (U) ∩ π−1

2 (V ),

where

π−1
1 (U) = {(x, y) : π1(x, y) ∈ U} and π−1

2 (V ) = {(x, y) : π2(x, y) ∈ V }.

The setS = {π−1
1 (U) | U ⊆O X}∪{π−1

2 (V ) | V ⊆O Y } is thus a sub-basis of the box product
topology onX × Y .

aaaaaa Example: ifX = Y = R, the box product topology on R2 is the standard topology
on R2 (and is also the same as the ℓ1 and ℓ2 topologies on R2). □

Suppose Y ⊆ X , whereX is a topological space. For each V ⊆O X , we deϐine U = V ∩ Y to
be an open set in Y . This creates a topology on Y .

1. ∅, Y ⊆O Y since∅ = ∅ ∩ Y and Y = X ∩ Y , and∅, X ⊆O X .

2. Suppose Uα ⊆O Y . Then ∃Vα ⊆O X such that Uα = Vα ∩ Y . But

∪
α

Vα ⊆O X and
∪
α

Uα =

(∪
α

Vα

)
∩ Y =⇒

∪
α

Uα ⊆O Y.

3. Suppose Ui ⊆O Y , for 1 ≤ i ≤ n. Then ∃Vi ⊆O X such that Ui = Vi ∩ Y , for 1 ≤ i ≤ n.
But

n∩
i=1

Vi ⊆O X and
n∩

i=1

Ui =

(
n∩

i=1

Vi

)
∩ Y =⇒

n∩
i=1

Ui ⊆O Y.

This topology on Y is called the subspace topology on Y relative toX . The open sets in Y
are called relatively open; they are not always open inX .
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Theorem 202
Suppose Y is a subspace of X and B is a basis for the topology on X . Then
BY = {U ∩ Y | U ∈ B} is a basis for the subspace topology.

Proof: let V = U ∩ Y and suppose y ∈ V and U ⊆O X . Let B ∈ B such
that y ∈ B ⊆ U . Hence y ∈ BY = B ∩ Y ⊆ U ∩ Y , and so BY is a basis for the
subspace topology on Y . ■

Some examples will help to solidify the concepts.

aaaaaa

Examples

1. LetX = R and Y = Q. A basic open set of Y is a set of the formB = (a, b)∩Q,
where a, b ∈ R. Note that B contains no interval of real numbers. Hence, no
open set ofQ can be open in R.

2. Let X = R and Y = [0, 1]. A basic open set of Y is a set of the form B =
(a, b) ∩ [0, 1], where a, b ∈ R. If 0 ≤ a < b ≤ 1, the relatively open sets of Y
will be open in R. The basic sets in Y are the sets of the form [0, b), (a, 1], and
(a, b), and the subspace topology on Y is the order topology.

3. Let X = R and Y = {−1} ∪
{

1
n

}
n∈N. In this case, the subspace topology is

discrete. Indeed,

{−1}=(−3/2,−1/2) ∩ Y ,
{
1

n

}
=

(
1

n+ 1/2
,

1

n− 1/2

)
∩ Y.

4. LetX = R and Y = {0} ∪
{

1
n

}
n∈N. In this case, the subspace topology is not

discrete. Indeed, while{
1

n

}
=

(
1

n+ 1/2
,

1

n− 1/2

)
∩ Y,

we have {0} ̸= (a, b) ∩ Y for all a < b ∈ X . □

15.3 Dual Deϐinitions and Separation Axioms
It is possible to deϐine all the notions of topology in terms of closed sets, instead of open sets.
LetX be a set. A topology T onX is a collection of subsets ofX such that

1. ∅, X ∈ T;

2. if C1, . . . , Cn ∈ T, then∪n
i=1Ci ∈ T;

3. if {Cα}α∈A ∈ T, then∩α∈ACα ∈ T.
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The ordered pair (X,T) is a topological space. The sets C ∈ T are called the closed sets of
X . In general, a set V is closed in X , denoted by V ⊆C X , if and only if its complement is
open inX .

Using this deϐinition, it is easy to prove the following propositions.

aaaaaa

Proposition 203
Let Y be a subspace ofX . A set A is closed in Y if and only if it is the intersection of a
closed set inX with Y .

Proof: left as an exercise. □

aaaaaa
Proposition 204
Let Y be a subspace ofX . IfA is closed in Y and Y is closed inX , thenA is closed inX .

Proof: left as an exercise. □

Again, let’s take a look at some examples.

aaaaaa

Examples

1. LetX = R. Then [a, b] is closed in R for all a < b.

2. Let X = R. The set [0, 1[ is neither open nor closed in R with the standard
topology.

3. IfX has the discrete topology, then every set is both open and closed, since
every set is the union of open singletons, and the complement of every set is
also the union of open singletons.

4. LetX = {a, b, c, d} be a set with 4 distinct elements. Deϐine a topology onX
by

T = {∅, {a, b}, {c, d}, X}.

All sets which are open are also closed, and vice-versa; the topology is not
discrete as {b, c} is neither open nor closed. □

The closure of a set A in X is the smallest closed set containing A, usually denoted by A.
Obviously,A ⊆ A. By deϐinition, we have

A =
∩

A⊆C⊆CX

C.
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IfA ⊆C X , then A = A, as A ⊆ A. Thus, A is closed if and only ifA = A.

Similarly, the interior of a set A inX is the largest open set contained in A, usually denoted
byA◦. Obviously, A◦ ⊆ A. By deϐinition, we also have

A◦ =
∪

V⊆A,V⊆OX

V.

IfA ⊆O X , then A = A◦, as A◦ ⊆ A. Thus A is open if and only ifA = A◦.

aaaaaa

Examples

1. The closure of (0, 1) in R is [0, 1].

2. LetX = R and A = Q. Then A◦ = ∅ and A = R. □

The result from the last example follows from Theorem 206.

aaaaaa

Theorem 205
Let A be a subset of X . Then x ∈ A if and only if every neighbourhood V of x has a
non-empty intersection with A.

Proof: we show that x ̸∈ A if and only if there is a neighbourhood V of x
such that A ∩ V = ∅. Suppose x ̸∈ A. Then there is a closed set C containing A
withx ̸∈ C . LetV = X\C ⊆O X . Thenx ∈ V andA∩V ⊆ C∩V = ∅, soA∩V = ∅.

Conversely, suppose there is a neighbourhood V of x such that A ∩ V = ∅.
Let C = X \ V ⊆C X . Then A ⊆ C and A ⊆ C , as C is closed. But V ∩ C = ∅, so
x ̸∈ C and thus x ̸∈ A. ■

Let A be a subset ofX . A point a ∈ X is a limit point of A if every neighbourhood of a con-
tains a point of A different from a, i.e. a ∈ A \ {a}.

aaaaaa

Examples

1. Let X = R and A = { n
n+1
| n ∈ N}. Then {1} is a limit point of A, and

A = A ∪ {1}, according to Theorem 206.

2. LetX be a set with the indiscrete topology. For any non-empty subsetA ofX
and any point a ∈ X , a is a limit point of A as long as A ̸= {a}. For instance,
LetX = {a, b}with topology T = {∅, X}. IfA = {b}, then a is a limit point of
A. Indeed, the only neighbourhood of a isX , and A ∩X = {b} ̸= ∅.
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We’ve alluded to it a few times already, so now it’s time for Theorem 206.

aaaaaa

Theorem 206
IfA′ is the set of all limit points of A, then A = A ∪ A′.

Proof: if x ∈ A ∪ A′, then x ∈ A or x ∈ A′. In the ϐirst case, x ∈ A ⊆ A. In
the other, every neighbourhood of x contains a point of A. Thus x ∈ A.

Conversely, suppose x ∈ A. Either x ∈ A or x ̸∈ A. It is sufϐicient to show
that if x ̸∈ A, then x ∈ A′. If x ̸∈ A, every neighbourhood of x meets A in at least
one point other than x. But x ̸∈ A, so x ∈ A′. ■

We have the following corollary.

aaaaaa
Corollary 207
A is closed inX if and only if A′ ⊆ A.

Proof: left as an exercise.

To avoid degenerate situations like the one found in the preceding example (which is to say,
that any point could be the limit point of all non-singleton subsets in the indiscrete topology),
we introduce the notion of separation axioms.

A spaceX is:
1. T2 or Hausdorff if for every pair x ̸= y ∈ X , there exist disjoint neighbourhoods Ux of
x and Uy of y;

2. T1 if for every pair x ̸= y ∈ X , there exist neighbourhoods Ux of x and Uy of y such that
y ̸∈ Ux and x ̸∈ Uy;

3. T0 if for every pair x ̸= y ∈ X , there exist a neighbourhoodU of either x or y thatmisses
the other.³

Note that every T2 space is T1, and every T1 space is T0, but that there are T0 spaces that are
not T1, and T1 spaces that are not T2; the conditions are illustrated below.

³Other separation axioms will be discussed at a later stage. In their studies, many topologists are only in-
terested in spaces that are at least Hausdorff.
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Theorem 208
IfX is Hausdorff and x ∈ X is a limit point of A ⊆ X , then every neighbourhood of x
contains inϔinitely many points of A.

Proof: let x be a limit point of A and V be a neighbourhood of x. Since X is
a T2 space, its singletons are closed sets. Indeed, let x ∈ X . For all y ̸= x ∈ X ,
there exist neighbourhoods Ux of x and Uy of y such that x ̸∈ Uy and y ̸∈ Ux (the T1
condition holds for T2 spaces). Then

X \ {x} =
∪
y∈Y

Uy

is open inX and {x} is closed; if x has a neighbourhood V such thatA ∩ V is ϐinite,

A ∩ V = {a1, . . . , an}

must be closed, being the ϐinite union of closed sets.

Let W = V \ (A ∩ V ). If x ∈ W , then W is a neighbourhood of x such that
W ∩ A = ∅, which contradicts x being a limit point of A. Hence x ∈ A ∩ V . After
reordering if necessary, suppose x = a1. Then

W1 = V \ {a2, . . . , an}

is a neighbourhood of x such thatW1 ∩ A = {a1} = {x}, so that x cannot be a limit
point ofA. By reductio ad absurdum, A ∩ V is inϐinite. ■

Hausdorff spaces are particularly well-behaved with respect to toplogies.

aaaaaa

Theorem 209
Every simply ordered set is T2 in the order topology. The product of two T2 spaces is
T2. A subspace of a T2 space is T2.

Proof: left as an exercise. ■

15.4 Continuity and Homeomorphisms
Suppose thatX and Y are topological spaces. A function f : X → Y is continuous if f−1(V )
is open inX whenever V is open in Y .⁴

aaaaaa
Theorem 210
Let f : X → Y . IfB is a basis for the topology of Y , then f is continuous if and only if
f−1(B) ⊆O X for everyB ∈ B.

⁴Similarly, ifS is a sub-basis for Y , then f is continuous if and only if f−1(S) ⊆O X for all S ∈ S.
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aaaaaa

Proof: if f is continuous, f−1(B) ⊆O X for all B ∈ B since such B ⊆O Y . Con-
versely, suppose f−1(B) is open for all B ∈ B. Let V =

∪
i∈I Bi be an open subset

of Y . Then

f−1(V ) = f−1

(∪
i∈I

Bi

)
=
∪
i∈I

f−1(Bi)

is open inX since all f−1(Bi) is open inX for all i ∈ I . ■

Continuous functions are to topology what linear maps are to linear algebra.

aaaaaa

Examples

1. IfX and Y are metric spaces and f : X → Y is continuous with respect to the
metrics in the usual sense, it is continuous in the topological sense.

2. For a product space X × Y , the projections π1, π2 are continuous. Indeed,
π−1
1 (U) = U × Y, π−1

2 (V ) = X × V ⊆O X × Y when U ⊆0 X,V ⊆O Y .

3. For each b ∈ Y , the inclusion map ib : X → X × Y deϐined by ib(x) = (x, b)
is continuous. Indeed, let U × V be a basic neighbourhood inX × Y . Then

i−1
b (U × V ) =

{
∅, b ̸∈ V ,
U, b ∈ V ,

which is open inX . Thus the inclusion map is continuous.

4. For anyX , the identity map id : X → X is continuous whenX has the same
topology as a domain as it has as a range.

5. The function id : R → Rl is not continuous. Indeed, let [a, b) be an open set
in Rl. Then id−1([a, b)) = [a, b) is not open in R, so id is not continuous. The
function id : Rl → R is continuous, however. Let (a, b) be a basic open set in
R. Then id−1(a, b) = (a, b) =

∪
n∈N

[a+ 1/n, b) is open in Rl, so id is continuous.

6. Let f : X → Y and g : Y → Z be continuous functions. Then g ◦ f : X → Z
is a continuous function. Indeed, let U ⊆O Z . Then V = g−1(U) ⊆O Y since g
is continuous, and f−1(V ) ⊆O X as f is continuous. Then

(g ◦ f)−1(U) = f−1(g−1(U)) = f−1(V )

is open inX and g ◦ f is continuous. □
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There are other ways to verify if a function is continuous.

aaaaaa

Theorem 211
Let f : X → Y . The following statements are equivalent:

1. f is continuous;

2. for any A ⊆ X , f(A) ⊆ f(A);

3. if C is closed in Y , then f−1(C) is closed inX .

Proof:

1. =⇒ 2.: If x ∈ A, then every neighbourhood of x contains a point of A. If V
is a neighbourhood of f(x) then f−1(V ) is open in X and x ∈ f−1(V ). As x
is a limit point of A, there exists a ∈ A with a ∈ f−1(V ) and f(a) ∈ V , so
f(a) ∈ V ∩ f(A). But this just means that f(x) is a limit point of f(A), so
f(x) ∈ f(A), that is f(A) ⊆ f(A).

2. =⇒ 3.: If C is closed in Y , then C = C . Let A = f−1(C) then A ⊆ A and

f(A) = f(A) = f(f−1(C)) ⊆ C = C.

ThenA ⊆ f−1(C) so f−1(C) is closed.

3. =⇒ 1.: If f−1(C) is closed whenever C is closed, then if V is open in Y , Y \ V is
closed in Y , so f−1(Y \ V ) is closed inX . But

f−1(Y \ V ) = f−1(Y ) \ f−1(V ) = X \ f−1(V ),

so f−1(V ) is open. Hence f is continuous. ■

A homeomorphism f : X → Y is a bijection for which both f and the inverse function
g : Y → X are continuous. We say thatX and Y are homeomorphicwhen there is a home-
omorphism f : X → Y . ⁵

aaaaaa

Examples

1. Let X = R, Y = (0,∞). The function f : X → Y , deϐined by f(x) = ex is
continuous. The inverse function g : Y → X deϐined by g(y) = ln y is also
continuous. Both these functions are bijections, so R and (0,∞) are homeo-
morphic in the standard topology.

⁵Homeomorphisms play the same role for topological spaces as isomorphisms play for groups. Conse-
quently, homeomorphism of spaces is an equivalence relation on the ‘set’ of topological spaces. Homeomorphic
spaces are identical from the point of view of topology.
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aaaaaa

2. The bijections tan : (−π/2, π/2)→ R and arctan : R→ (−π/2, π/2) are both
continuous, so R is homeomorphic to (−π/2, π/2).

3. The continuous bijections f : (a, b)→ (c, d) and g : (c, d)→ (a, b),

f(x) = c+
d− c
b− a

(x− a) and g(y) = a+
b− a
d− c

(y − c),

are inverses of one another, so (a, b) is homeomorphic to (c, d). □

The continuous function f : X → Y is an embedding ofX into Y if the map g : X → f(X)
deϐined by g(x) = f(x) is a homeomorphism when f(X) has the subspace topology.

aaaaaa

Examples

1. For b ∈ Y , the inclusion map ib : X → X × Y , x 7→ (x, b), is an embedding.

2. LetA ⊆ X . The inclusion map ι : A→ X , a 7→ a, is an embedding. □

Continuous functions enjoy a whole slew of attractive properties.

aaaaaa

Theorem 212
LetX,Y, Z be top. spaces, and Vα ⊆O X , Ai ⊆C X .

1. Constant functions are continuous.

2. The inclusion function ι : A ⊆ X → X is continuous.

3. If f : X → Y is continuous, then the restriction function f |A for all subsets
A ⊆ X is continuous.

4. If f : X → Y is continuous, then f : X → Z is continuous, assuming that
f(X) ⊆ Z and either Z ⊆ Y or Y ⊆ Z .

5. If X =
∪
Vα and the restriction f |Vα : Vα → Y is continuous for each α, then

f : X → Y is continuous.

6. IfX =
∪n

i=1Ai and the restriction f |Ai
: Ai → Y is continuous for each 1 ≤ i ≤

n, then f : X → Y is continuous.

Proof: left as an exercise. ■
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As a special case of Theorem 212, we get the following result.

aaaaaa

Lemma 213 (PĆĘęĎēČ LĊĒĒĆ)
SupposeX = A ∪ B where A andB are closed sets. If f : A→ Y and g : B → Y are
such that f(x) = g(x) for all x ∈ A ∩B, then the function h : X → Y deϔined by

h(x) =

{
f(x), if x ∈ A ,

g(x), if x ∈ B

is continuous. The same holds if A andB are both open.

Proof: left as an exercise. ■

Lemma 213 is extremely useful.

aaaaaa

Examples

1. If X = Y = R, let A = [0,∞) and B = (−∞, 0], and deϐine f : A → Y by
f(x) = x and g : B → Y by g(x) = −x. Then h(x) = |x| is continuous by
Lemma 213.

2. Instead, take B = (−∞, 0) and deϐine f : A → Y by f(x) = x + 1 and
g : B → Y by g(x) = x. The function h obtained by Lemma 213 construction
is not continuous as h−1(1/2, 3/2) = [0, 1/2). □

This last example shows that Lemma213doesnot hold ifA andB arenot both closed, or open.

aaaaaa

Theorem 214
Let f : X → Y × Z . Then f is continuous if and only if the functions π1f and π2f are
continuous.

Proof: if f is continuous then π1f and π2f are continuous since the projec-
tions are continuous. Conversely, suppose π1f and π2f are continuous. If U × V is
a basic open set in Y × Z , then

f−1(U × V ) = (π1f)
−1(U) ∩ (π2f)

−1(V ),

which is open as π1f and π2f are continuous. Hence f is continuous. ■

The following local formulation of continuity is sometimes useful in applications. A function
f : X → Y is locally continuous at x ∈ X if for any open set V with f(x) ∈ V , there is a
neighbourhood U of x such that f(U) ⊆ V . A function f : X → Y is thus continuous if and
only if it is locally continuous at every point ofX , as can easily be veriϐied.

P. Boily (uOttawa) 383



15.5. PRODUCT TOPOLOGY

15.5 Product Topology
Suppose {Xα}α∈A is a family of topological spaces, where A is an arbitrary indexing set.⁶
Then

X =
∏
α∈A

Xα

is the set of all maps x : A →
∪

α∈AXα such that x(α) ∈ Xα, ∀α ∈ A. We write xα for x(α)
and x = (xα)α∈A. This setX comes equipped with projection mappings πα for each α ∈ A,
deϐined by πα(x) = xα for all x ∈ X .

We can endowX with a topology by extending the box product topology to arbitrary prod-
ucts. A basic open set in this box topology is a set of the form∏α Uα, where Uα ⊆O Xα for
each α ∈ A.

Alternatively, extending the topology obtained by the sub-basis

S =
∪
α∈A

{π−1
α (Vα) | Vα ⊆O Xα}

to arbitrary products yields a topology called the product topology on X . The basic open
sets in the product topology have the form∏α Uα, where Uα = Xα except in a ϐinite num-
ber of cases Uαi

⊆O Xαi
, for 1 ≤ i ≤ n.

Note that when A is ϐinite, the box and product topologies coincide. Furthermore, the ba-
sic open sets in the product topology are open in the box topology, and so the box topology
is ϐiner than the product topology. But this inclusion is strict. For instance, (−1, 1)ω is open
in Rω =

∏
n∈NRwith the box topology, but it is not open in Rω with the product topology as

this would imply that R ⊆ (−1, 1).

aaaaaa

Theorem 215
IfBα is a basis for the topology onXα, then

B =

{∏
α∈A

Bα

∣∣∣∣∣Bα ∈ Bα

}

is a basis for∏αXα in the box topology.

Proof: left as an exercise. ■

aaaaaa

Theorem 216
In both the box and product topologies, the product of subspaces is a subspace and
the product of Hausdorff spaces is Hausdorff.

Proof: left as an exercise. ■
⁶In particular,Amay not be countable.
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While the deϐinition of the box topology might seem the more natural of the two generaliza-
tions to inϐinite products, there is at least one way in which the product topology is superior
(and hence, preferable).

aaaaaa

Theorem 217
Let f : Y → X =

∏
αXα and and fα = παf for all α. When X is endowed with the

product topology, f is continuous if and only if fα is continuous for all α.

Proof: suppose f is continuous. The projections πα are continuous. Indeed,
pick α. Let Vα be a basic open ofXα. ThenW = π−1

α (Vα) =
∏

β Wβ , whereWα = Vα
and Wβ = Xβ . But W is open in the product topology, so πα is continuous. Thus,
fα = παf is continuous for each α, being the composition of two continuous
functions.

Conversely, suppose that fα is continuous for all α. Let π−1
α (Uα) be a sub-basic

subset ofX . As fα = παf is continuous,

f−1
(
π−1
α (Uα)

)
= f−1

α (Uα)

is open in Y , which is to say that f is continuous. ■

This result need not be true in the box topology.

aaaaaa
Example: consider the function f : R → Rω , deϐined by fn(x) = nx for all x ∈ R.
Each fn is continuous on R, and f(x) = (nx)n∈N. In the box topology, (−1, 1)ω ⊆O

Rω . But f−1
n (−1, 1) = (−1/n, 1/n) and f−1 ((−1, 1)ω) = {0}, which is not open inR.

Hence f is not continuous in the box topology. □

15.6 Quotient Topology
LetX be a topological space and f : X → Y be a surjectivemapping. Wemake f continuous
by deϐining a topology on Y through

V ⊆O Y ⇐⇒ f−1(V ) ⊆O X.

That this deϐines a topology is clear:
1. ∅ ⊆O Y as f−1(∅) = ∅ ⊆O X; Y ⊆O Y as f−1(Y ) = X ⊆O X since f is surjective.
2. If U, V ⊆O Y , then f−1(U), f−1(V ) ⊆O X . But

f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) ⊆O X =⇒ so U ∩ V ⊆O Y.

3. If Uα ⊆O Y for all α, then f−1(Uα) ⊆O X for all α. But

f−1

(∪
α

Uα

)
=
∪
α

f−1(Uα) ⊆O X =⇒ so
∪

Uα ⊆O Y.
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This is thequotient topology on Y , and f : X → Y is a quotientmap. Thus, any continuous
map f : X → Y is a quotient map whenever it is a surjective. Note that a quotient map need
not be open.

aaaaaa

Example: let X = [0, 2] have the subspace topology from R, and set Y = {a, b}
where TY = {∅, {a}, Y }, and deϐine f : X → Y by

f(x) =

{
a, if 0 ≤ x < 1,

b, if 1 ≤ x ≤ 2.

As f−1({a}) = [0, 1) ⊆O X , f is continuous and a quotient map (as it is also surjec-
tive). However, f(1, 2) = {b} is not open in Y , so f is not open. □

If f : X → Y is a quotient map, we deϐine an equivalence relation onX by

x1 ∼ x2 ⇐⇒ f(x1) = f(x2).

Equivalence classes ofX/∼ are in 1−to−1 correspondence with elements of Y ;X/ ∼ and Y
are homeomorphic under the identiϐication topology.

aaaaaa

Examples: in what follows, we set X = I × I , where I = [0, 1], with the usual
subspace topology from R2.

1. The cylinder is deϐined via the following equivalence relation onX:

(x, y) ∼ (x, y′)⇐⇒ y − y′ ∈ Z2.

2. The torus is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′, y − y′) ∈ Z2.

3. TheMöbius band is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ x− x′ ∈ Z and y + y′ = 1.

4. The Klein bottle is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′ ∈ Z and y + y′ = 1) or (x = x′ and y − y′ ∈ Z).

5. The projective plane is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′ ∈ Z and y + y′ = 1) or (x+ x′ = 1 and y − y′ ∈ Z).
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The identiϐication topologies of those spaces onX are shownbelow (fromthatsmaths.com).

15.7 Solved Problems
1. Show that if B is a basis for a topology on X , then the topology generated by B is the

intersection of all topologies onX that containB. Prove the same ifB is a sub-basis.

Proof: letB be a basis, and suppose T(B) is the topology onX generated byB. We
ϐirst show that T(B) ⊆

∩
B⊆T T.

Let U ∈ T(B). Then U =
∪

B∈BU
B, for some BU ⊆ B. Let T be any topology

onX containingB. In particular, it also containsBU , and∪
B∈BU

B = U ∈ T,

since arbitrary unions of open sets in T are open in T. But T was arbitrary, so U ∈∩
B⊆T T, andT(B) ⊆

∩
B⊆T T. Conversely, sinceT(B) is a topology onX containing

B, then ∩
B⊆T

T ⊆ T(B).

Hence∩B⊆T T = T(B).
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Now suppose B is a sub-basis. The proof follows the same lines. The sole differ-
ence is that the topology onX generated byB is

T(B) =

 ∪
arbitrary

 ∩
ϐinite

Bi

∣∣∣∣∣∣Bi ∈ B

 .

So we need only to verify that if U ∈ T(B), then U ∈ ∩B⊆T T. Let

U =
∪
arb.

∩
ϐin.

Bi


and T be any topology on X containing B. Then U ∈ T since arbitrary unions and
ϐinite intersections of open sets in T are open in T.

The rest of the proof is identical to the above proof for whenB is a basis. ■

2. Show that the collection
B = {[a, b) | a < b, a, b ∈ Q}

is a basis that generates a topology different from that of Rl.
Proof: to show that B is a basis, it sufϐices to show the second property, since R =∪

n∈N[−n, n). Let [a, b) and [c, d) belong toB2. Then

[a, b) ∩ [c, d) =



∅ if b ≤ c
[a, b) if b ≥ c, a ≥ c, b ≤ d
[c, d) if b ≥ c, a ≤ c, b ≥ d
[c, b) if b ≥ c, a ≤ c, b ≤ d
[a, d) if b ≥ c, a ≥ c, b ≥ d

,

where a, b, c, d ∈ Q.

Thus, whenever x ∈ [a, b) ∩ [c, d), there exists an interval I ∈ B such that x ∈
I ⊆ [a, b) ∩ [c, d). Hence B is a basis. Denote the topology on R generated by B by
T, and that of the lower limit topology on R by Tl. Clerly, [π, 4) ∈ Tl. Does it also
belong to T?

If it does, we can then write
[π, 4) =

∪
α∈A

[aα, bα),

for aα, bα ∈ Q. But notice that each of the aα must be greater than π. In particular,
since π ̸∈ Q, each of the aα must be strictly greater than π, since they are all rational.
Hence, we can at best obtain

(π, 4) =
∪
α∈A

[aα, bα),

if aα, bα ∈ Q. Hence [π, 4) ̸∈ T and Tl ̸= T. ■
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3. Show that if Y is a subspace ofX , andA is a subset of Y , then the subspace topology on
A as a subspace of Y is the same as the subspace topology on A as a subspace ofX .

Proof: let U be open in the subspace topology on A as a subspace of X , and V be
open in the subspace topology onA as a subspace of Y .

Then, there existsW ⊆O X and Z ⊆O Y such that U = A ∩W and V = A ∩ Z . But
if Z ⊆O Y , there exist Z ′ ⊆O X such that Z = Y ∩ Z ′, and so V = A ∩ Y ∩ Z ′.

SinceA ⊆ Y ,

U = A ∩W = A ∩ Y ∩W, V = A ∩ Y ∩ Z ′ = A ∩ Z ′,

whereW and Z ′ are open inX .

Hence U is open in the subspace topology on A as a subspace of Y , and V is open
in the subspace topology on A as a subspace of X , and so the two topologies are
equal. ■

4. If T and T′ are topologies on X and T′ is strictly ϐiner than T, what can you say about
the corresponding subspace topologies on the subset Y ofX?

Solution: letTY andT′
Y be the subspaces topologies on a subsetY ofX correspond-

ing to T and T′ respectively. It should be clear that T′
Y is ϐiner than TY . Indeed let

B = V ∩ Y for some V ∈ T ⊊ T′. HenceB = V ∩ Y for some V ∈ T′.

Can we necessarily say that T′
Y is strictly ϐiner than T? Well, suppose all U ∈ T′

where U ̸∈ T are such that U ∩ Y = ∅.⁷ Then

A = Y ∩ U = Y ∩∅ ∈ TY

since∅ is open in T.

For all other V ∈ T′, we have V ∈ T, and so we have A = V ∩ Y ∈ T. Hence,
in this case TY = T′

Y . The following example shows that T′
Y could be strictly ϐiner

than TY .

Let X = R (as a set), Y = (0, 1) and suppose T and T′ are the usual topology on
R and the lower limit topology on R, respectively.

Then [0.5, 1) ∈ T′
Y , but it is not open in the usual subspace topology on Y since

there is no interval (a, b) such that

[0.5, 1) = (0, 1) ∩ (a, b).

In this case, T′
Y is strictly ϐiner than TY . Thus, the most we can say without more

information is that T′
Y is ϐiner than TY . □

⁷For instance, letX = {a, b, c}, Y = {c}, T = {∅, X} and T′ = {∅, {a, b}, X}. Then T ⊊ T′, and the only
U ∈ T′ where U ̸∈ T is U = {a, b}, so Y ∩ U = ∅.
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5. Show that the projections π1 : X × Y → X and π2 : X × Y → Y are open maps.
Proof: we show that π1 is open, the proof that π2 is open is similar. LetB be a basic
open set in X × Y . Hence B = U × V , where U is open in X and V is open in Y .
Then π1(B) = U is open inX . Now, any openW inX × Y is written

W =
∪
α∈A

(Uα × Vα),

where Uα × Vα is a basic open set for all α ∈ A. Now

π1(W ) = π1({(u, v) ∈ X × Y |(u, v) ∈ Uα × Vα for some α ∈ A}
= {u ∈ X|u ∈ Uα for some α ∈ A} = ∪α∈AUα,

which is open inX , since it is an arbitrary union of open sets inX , so π1 is open. ■

6. Show thatX is Hausdorff if and only if the diagonal

∆ = {(x, x)|x ∈ X}

is closed inX ×X .
Proof: since ∅ and any one point set are vacuously Hausdorff, and since their re-
spective ∆ are ∅ and X , which are closed sets in X , the result holds when X = ∅
andX = {∗}. We can thus restrict ourselves to spacesX with at least two elements.
For any suchX ,X ×X \∆ ̸= ∅.

SupposeX is Hausdorff. We show thatX ×X \∆ is open inX ×X , and so that ∆
is closed inX ×X .

Let (x, y) ∈ X × X \ ∆. Then x ̸= y. So there exists two sets Ux, Vy (open in
X) such that x ∈ Ux, y ∈ Vy and Ux ∩ Vy = ∅. Now (x, y) ∈ Ux × Vy , which is open
inX ×X . We show that (Ux × Vy) ∩∆ = ∅. Suppose

(z, z) ∈ (Ux × Vy) ∩∆ ̸= ∅.

Then z ∈ Ux and z ∈ Vy , so z ∈ Ux ∩ Vy . But Ux ∩ Vy = ∅, so there is no such (z, z).
Hence, we can ϐit an open set around each (x, y) ∈ X ×X \∆, and soX ×X \∆ is
open inX ×X .

Conversely, suppose ∆ is closed in X × X , and let x, y ∈ X such that x ≠ y. Then
(x, y) ∈ X×X \∆, an open set ofX×X . Hence there exists a basic open setU ×V
ofX ×X such that

(x, y) ∈ U × V ⊆ X ×X \∆.

But U ∩ V = ∅, otherwise there would exist z ∈ X such that

(z, z) ∈ U × V ⊈ X ×X \∆.

Thus U , V are open subsets of X with x ∈ U , y ∈ V , and U ∩ V = ∅, and so X is
Hausdorff. ■
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7. LetA ⊆ X , and let f : A→ Y be continuous; let Y be Hausdorff. Show that if f may be
extended to a continuous function g : A→ Y , then g is uniquely determined.

Proof: suppose f can be extended to g and h, as in the statement of the problem.
Suppose g ̸= h. Then, there exists x0 ∈ A \ A = ∂A such that g(x0) ̸= h(x0), since
f = g|A = h|A.

But Y is Hausdorff, so ∃U, V ⊆O Y such that g(x0) ∈ U , h(x0) ∈ V , and U ∩ V = ∅.

Since g and h are continuous, g−1(U), h−1(V ) ⊆O X . Furthermore,

x0 ∈ g−1(U) ∩ h−1(V ) ⊆O X.

As x0 ∈ A, there exists a ̸= x0 inA such that a ∈ g−1(U) ∩ h−1(V ), and so g(a) ∈ U
and h(a) ∈ V . But g(a) = h(a) = f(a) since a ∈ A, which yields f(a) ∈ U ∩ V , a
contradiction, as this set is supposed empty. Thus when f can be extended, it can be
done uniquely. ■

8. If f1 : X1 → Y1, f2 : X2 → Y2 are continuous, show that F : X1 × X2 → Y1 × Y2 is
continous, where F (x1, x2) = (f1(x1), f2(x2)).

Proof: the setB = {U ×V | U ⊆O Y1, V ⊆O Y2} is a basis for the product topology
onY1×Y2. Then, it is enough to show thatF−1(U×V ) ⊆O X1×X2 for allU×V ∈ B.
But

F−1(U × V ) = {(x1, x2) ∈ X1 ×X2 | F (x1, x2) ∈ U × V }
= {(x1, x2) ∈ X1 ×X2 | f1(x1) ∈ U, f2(x2) ∈ V }
= {(x1, x2) ∈ X1 ×X2 | x1 ∈ f−1

1 (U), x2 ∈ f−1
2 (V )} = f−1

1 (U)× f−1
2 (V ).

But f−1
1 (U) ⊆O X1 and f−1

2 (V ) ⊆O X2 since f1 and f2 are continuous, and so

F−1(U × V ) = f−1
1 (U)× f−1

2 (V ) ⊆O X1 ×X2

in the product topology, which means that F is continuous. ■

9. Let f : X → Y be an onto mapping. For each of the properties T1 and T2, prove or
disprove that if one ofX , Y has the property, then so must the other when

a) f is continuous;
b) f is open;
c) f is both open and continuous.

Solution: throughout, we assume that both X and Y have at least two elements –
otherwise, all the statements are vacuously or trivially true. Recall that a spaceW is
T1 when, for each pair of distinct points x, y ∈W , there existsUx, Vy open sets inW
such that x ∈ Ux ̸∋ y and y ∈ Vy ̸∋ x.
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a) f is continuous: f−1(U) is open inX whenever U is open in Y .
i. X is T1. LetX = R, Y = {a, b}with the indiscrete topology and deϐine the

surjection f : R→ Y by f(0) = a and f(x) = b for all x ̸= 0. Then R is T1,
since it is T2, and f is continuous, since f−1(Y ) = R is open in R, but Y is
not T1 since every neighbourhood of a contains b. SoX is T1 ⇏ Y is T1.

ii. Y is T1. Let X = {a, b, c, d} with TX = {∅, {a, c}, {b, d}, X}, Y = {a, b}
with the discrete topology and deϐine the surjection f : X → Y by f(a) =
a, f(b) = b, f(c) = a and f(d) = b. Then f is continuous, since both
f−1({a}) = {a, c}, f−1({b}) = {b, d} lie in TX , butX is not T1 since every
neighbourhood of a contains c. So Y is T1 ⇏ X is T1.

iii. X is T2. In the counter-example a)i., X is also T2, but Y is not T1, so it is
certainly not T2. HenceX is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., Y is also T2, but X is not T1, so it is
certainly not T2. Hence Y is T2 ⇏ X is T2.

b) f is open: f(V ) is open in Y whenever V is open inX .
i. X is T1. See b)iii. X is T1 ⇏ Y is T1.
ii. Y is T1. In the counter-example a)ii., f is surjective, it is open since Y has

the discrete topology, and Y is T1. ButX is not T1. So Y is T1 ⇏ X is T1.
iii. X is T2. Let X = R, Y = {a, b} with the indiscrete topology, and deϐine

the surjection f : R → Y by f(x) = a whenever x ∈ Q and f(x) = b
whenever x ̸∈ Q. Then f is open. Indeed, any basic open set (a, b) contains
both rational and irrational numbers, and so f(a, b) = Y ⊆O Y . Note that
R is T2, but Y is not T2, as it is not even T1. Thus,X is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, and Y is T2. But X is not T2, as it is not T1. Thus,
Y is T2 ⇏ X is T2.

c) f is both open and continuous: f−1(U) is open in X whenever U is open in Y
and f(V ) is open in Y whenever V is open inX .
i. X is T1. See b)iii. X is T1 ⇏ Y is T1.
ii. Y is T1. In the counter-example a)ii., f is surjective, it is open since Y has

the discrete topology, it is continuous by deϐinition and Y is T1. But X is
not T1. Hence Y is T1 ⇏ X is T1.

iii. X is T2. In the counter-example b)iii., the function f is also continuous
since Y has the indiscrete topology and X = T2. But Y is not T2 as it is
not even T1. HenceX is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, it is continuous by deϐinition and Y is T2. But X is
not T2. As it is not even T1. Hence Y is T2 ⇏ X is T2.

And that’s it, folks: T1 and T2 do not behave nicely with respect to continuous func-
tions. □
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10. Showthat the setAof all bounded sequences is bothopenandclosed in thebox topology
on Rω .

Proof: letA be the set

A = {(xn)n∈N | ∃M ∈ Rwith |xn| < M ∀n ∈ N}.

We start by showing thatA ⊆O Rω .

Let (xn)n∈N ∈ A. Then ∃M ∈ R such that |xn| < M for all n ∈ N. Set

Un = (xn − 1, xn + 1), for all n ∈ N.

Then

U =
∏
n∈N

(xn − 1, xn + 1)

is open in the box topology onRω , sinceUn ⊆O R for all n ∈ N. Clearly, (xn)n∈N ∈ U ,
since xn ∈ Un for all n ∈ N. But U ⊆ A.

Indeed, suppose (wn)n∈N ∈ U . Then wn ∈ Un for all n ∈ N and so xn − 1 < wn <
xn + 1 for all n ∈ N. But this means that

−M − 1 < xn − 1 < wn < xn + 1 < M + 1

and |wn| < M +1 for all n ∈ N. Hence (wn)n∈N ∈ A andU ⊆ A so we conclude that
A ⊆O Rω .

We now show thatA ⊆C Rω . Suppose (xn)n∈N ∈ A, and let

V =
∏
n∈N

(
xn −

1

n
, xn +

1

n

)
.

Then (xn)n∈N ∈ V ⊆O Rω and there exists (an)n∈N ∈ A such that (an)n∈N ∈ V . In
that case, there exists M ∈ R such that −M < an < M for all n ∈ N. However,
an ∈ (xn − 1

n , xn + 1
n) so that

an −
1

n
< xn < an +

1

n

for all n ∈ N, and so

−M − 1 < an −
1

n
< xn < an +

1

n
< M + 1

and |xn| < M + 1 for all n ∈ N.

Thus (xn)n∈N ∈ A, andA ⊆ A, which yieldsA ⊆C Rω . ■
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15.8. EXERCISES

15.8 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Let Z be a subspace of Y . Are the subspace topologies on Z relative to X and Y the
same?

3. Showdirectly that the box product topology onR2 is identical to the ℓ1 and ℓ2 topologies
on R2.

4. Provide a proof of Results 203, 204, 207, 209, 212, 213, 215, and 216.

5. Show that a function which is locally continuous at every point is continuous, and vice-
versa.

6. Provide the details for the homeomorphism examples of pp. 381-382.

7. Provide the details for the embedding examples of p. 382.

8. Provide the equivalence relation for the identiϐication topologyof the cylinder, the sphere,
and the projective plane.

9. Show that the map f : X → Y is continuous if and only if f(A) ⊆ f(A) for any subset
A ofX .

10. Let f, g : X → Y be continuous maps from a space X to a Hausdorff space Y . Prove
that the set C = {x | f(x) = g(x)} is closed inX .

11. Suppose that f : X → Y is a bijection. IfB is a basis for the topology onX , prove that
f is a homeomorphism if and only if the collection {f(B) | B ∈ B} is a basis for the
topology on Y .

12. Show that the map f : X → Y is continuous if and only if f(A) ⊆ f(A) for any subset
A ofX .

13. Let f, g : X → Y be continuous maps from a space X to a Hausdorff space Y . Prove
that the set C = {x | f(x) = g(x)} is closed inX .

14. Suppose that f : X → Y is a bijection. IfB is a basis for the topology onX , prove that
f is a homeomorphism if and only if the collection {f(B) | B ∈ B} is a basis for the
topology on Y .
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