
Chapter 16

Connected Spaces

In Chapter 9, we discussed connectedness and path-connectedness in
the context of metric spaces. In this chapter, we discuss how these notions
extend to general topological spaces.

16.1 Connected Sets
A separation of a space X is a pair of disjoint non-empty open sets U and V such that
X = U ∪ V. Note that both U and V are open and closed. When no separation of X ex-
ists, we say thatX is connected. Alternatively,X is connected if the only sets that are closed
and open inX are∅ andX .

aaaaaa
Example: letX = [1, 2] ∪ [3, 4] be a subspace of R. U = [1, 2] is closed inX as U =
X ∩ [1, 2] and [1, 2] is closed inR. But U = X ∩ (0.5, 3.5), so U ⊆O X . Consequently,
X is not connected. □

In general, a subspace Y ⊆ X is connected if it is connected in the subspace topology.

aaaaaa

Theorem 218
A separation of a subset Y is a pair of non-empty subsets A and B whose union is Y
and such that A ∩B = ∅ andA ∩B = ∅.

Proof: SupposeA andB satisfy the conditions of the theorem. Then

A ∩ Y = A ∩ (A ∪B) = (A ∩ A) ∪ (A ∩B) = A ∪∅ = A,

andA is closed in the subspace topology on Y (i.e., relatively closed). Similarly,B is
relatively closed, so A and B are relatively open in Y . Consequently, A and B form
a separation of Y .
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aaaaaa

Conversely, suppose A and B are a separation of Y . Then A is relatively closed and
soA = A ∩ Y . Then

A ∩B = A ∩ Y ∩B = A ∩B = ∅.

SimilarlyA ∩B = ∅. ■

If Y ⊆ X is a connected set, and U and V is a separation ofX , then Y ⊆ U or Y ⊆ V .¹

aaaaaa

Theorem 219
If {Cα}α∈A is a family of connected sets such that

∩
αCα ̸= ∅, then

∪
αCα is connected.

Proof: suppose x ∈ ∩
αCα. If U and V is a separation of ∪αCα, then either

x ∈ U or x ∈ V . Without loss of generality, let x ∈ U . Let α ∈ A. Since Cα is
connected, either Cα ⊆ U or Cα ⊆ V . But x ∈ Cα, so Cα ⊆ U . Then ∪αCα ⊆ U .
Hence (∪

α

Cα

)
∩ V ⊆ U ∩ V = ∅.

As ∪αCα = U ∪ V , this means that V = ∅, which is a contradiction since U and
V form a separation. Consequently, there could be no such separation to start with,
and∪αCα is connected. ■

Connectedness behaves well with respect to the closure of a set, as we can see below.

aaaaaa

Theorem 220
If A is connected, and A ⊆ B ⊆ A, thenB is connected.

Proof: if U and V forms a separation of B, then A ⊆ U or A ⊆ V . Without
loss of generality, suppose A ⊆ U . Then V = B ∩ V ⊆ A ∩ V ⊆ U ∩ V = ∅, by
Theorem 218. But V ̸= ∅ as U and V form a separation ofB. Thus there cannot be
a separation ofB andB is connected. ■

As mentioned in Chapter 9, connectedness is a topological property.

aaaaaa

Theorem 221
Let f : X → Y be a continuous function. IfX is connected, f(X) is connected.

Proof: suppose that f(X) is not connected. Let U and V form a separation of
f(X). Then f−1(U) and f−1(V ) form a separation ofX andX is not connected. ■

¹Otherwise U ∩ Y and V ∩ Y would form a separation of Y .
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aaaaaa

Theorem 222 IfX and Y are connected spaces, so isX × Y .

Proof: if x ∈ X , the function ix : Y → X × Y deϐined by ix(y) = (x, y) is
continuous. Then ix(Y ) = {x} × Y is connected. Similarly, iy(X) = X × {y} is
connected for all y ∈ Y . Then

ix(Y ) ∩ iy(X) = {(x, y)} ̸= ∅

for all y ∈ Y . Then Cy = iy(X) ∪ ix(Y ) = (X × {y}) ∪ ({x} × Y ) is connected for
all y ∈ Y . Now ∩

y∈Y

Cy = {x} × Y = ix(Y ) ̸= ∅,

so∪y∈Y Cy = X × Y is connected. ■

As a result, any ϐinite product of connected sets is connected. What about an inϐinite product
of connected sets?

aaaaaa

Theorem 223
Let {Xα}α∈A be a collection of connected sets. Then

∏
αXα is connected in the

product topology.

Proof: if∏αXα = ∅, then the theorem is trivially true, so let b = (bα)α ∈
∏

αXα.
For each ϐinite set {α1, . . . , αn} ofA, consider the space

X(α1, . . . , αn) =

{
(xα)α∈A

∣∣∣∣xα = bα if α ̸∈ {α1, . . . , αn}
xα ∈ Xα if α ∈ {α1, . . . , αn}

}
,

which is homeomorphic toXα1×· · ·×Xαn , and so connected. LetBbe the collection
of all ϐinite subsets ofA. Note that b ∈ X(α1, . . . , αn) for all {α1, . . . , αn} ∈ B, hence

b ∈
∩

{α1,...,αn}∈B

X(α1, . . . , αn) ̸= ∅.

Thus Y =
∪

BX(α1, . . . , αn) is connected. We show that Y =
∏

αXα. Since Y is
connected, Y is connected and the theorem is proven.

Let x = (xα)α ∈
∏

αXα ̸= b and let V be a basic neighbourhood of x. Then
V =

∏
α Vα, where Vα = Xα for all but a ϐinite number of open sets Vαi

, 1 ≤ i ≤ n.
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aaaaaa

Deϐine y = (yα)α by

yα =

{
bα, if α ̸= αi for all 1 ≤ i ≤ n,
xα, if α = αi for some 1 ≤ i ≤ n.

Then, yα = bα ∈ Vα = Xα for α ̸∈ {α1, . . . , αn}, and yα = xα ∈ Vα for
α ∈ {α1, . . . , αn}. Hence yα ∈ Vα for all α and y ∈ V .

But, by construction, y ∈ X(α1, . . . , αn) ⊆ Y , so y ∈ V ∩ Y ̸= ∅. As b ̸= x,
we get y ̸= x, and x is a limit point of Y , that is x ∈ Y . Consequently, Y =

∏
αXα. ■

In the usual topology,R has someuseful properties, some ofwhich can be extended to general
spaces. A linear continuum. for isntance, is an ordered setX in which the following hold:

i. if x < y ∈ X , there exists z ∈ X such that x < z < y;

ii. any non-empty set A ⊂ X with an upper bound has a least upper bound.

A rather tedious, but not very difϐicult, argument ([Munkres, , p.153] shows that linear con-
tinua are connected, and that rays and intervals are connected subsets in a linear continuum.
As R is a linear continuum, it is connected. The next result is a generalization of a very im-
portant theorem from analysis (see Theorem 35, Chapter 3).

aaaaaa

Theorem 224 (IēęĊėĒĊĉĎĆęĊ VĆđĚĊ TčĊĔėĊĒ)
Suppose f : X → Y is continuous and Y has the order topology for some ordering<.
If X is connected and a, b ∈ X are such that f(a) < f(b), then for any y ∈ Y such
that f(a) < y < f(b), there exists x ∈ X such that f(x) = y.

Proof: let A = {z ∈ Y : z > y} and B = {z ∈ Y : z < y}. Then A,B ⊆O Y , and,
as f is continuous, f−1(A), f−1(B) ⊆O X . Furthermore, f−1(A) ∩ f−1(B) = ∅,
a ∈ f−1(B) and b ∈ f−1(A). Since X is connected, X ̸= f−1(A) ∪ f−1(B)
(otherwise, f−1(A) and f−1(B)would form a separation ofX).

Hence, there exists x ∈ X \ (f−1(A) ∪ f−1(B)). As f(x) ̸∈ A and f(x) ̸∈ B,
f(x) = y. ■

If x ∈ X , the (connected) component of x inX , denotedCx is the union of all connected sets
containing x. It is connected as the intersection of all these sets contain x. AsCx is connected,
Cx is connected and so Cx ⊆ Cx. Then the component Cx is closed in X; if X has a ϐinite
number of components, each component is also open.

We can deϐine an equivalence relation onX as follows: xRy if and only if there is a connected
set containing both x and y.
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Then:
1. for all x ∈ X , xRx;
2. if xRy, then yRx, and
3. if xRy and yRx, then xRz.

The equivalence class of x is simply the (connected) component of x inX .

aaaaaa

Examples (CĔĒĕĔēĊēęĘ)
1. LetX = [1, 2) ∪ (3, 4) be a subspace ofX . ThenX has two components, [1, 2)

and (3, 4).

2. Let x ∈ Q. Then the component of x is {x} as the only connected subsets ofQ
are one-point sets. When all the components ofX are singletons, we say that
the spaceX is totally disconnected. □

16.2 Path-Connectedness
A path in a spaceX is a continuous map p : [0, 1]→ X . Throughout, we denote [0, 1] by I . If
p(0) = a and p(1) = b, we say that p is a path from a to b, a is the initial point of p, while b is
the terminal point of p. A spaceX is path-connected if for any pair of points a, b ∈ X , there
is a path p from a to b.

aaaaaa

Proposition 225
A path-connected spaceX is connected.

Proof: Suppose A,B were a separation of X . Let a ∈ A and b ∈ B. As X is
path-connected, there is a path p from a to b. But p(I) is connected in X as I is
connected, so p(I) ⊆ A or p(I) ⊆ B. But p(0) ∈ A and p(1) ∈ B, a contradiction.
HenceX is connected. ■

We have already discussed paths in Chapter 14.

aaaaaa

Examples (PĆęčĘ Ćēĉ ĕĆęč-ĈĔēēĊĈęĊĉēĊĘĘ)
1. Let a ∈ X . The map pa : I → X deϐined by pa(t) = a is a path, the constant

path at a.

2. For n > 1,Rn \ {0} is path-connected. Let a, b ∈ Rn \ {0}. Deϐine Sa,b to be the
circle with diameter ab. If 0 ̸∈ Sa,b, then either of the semi-circles form a path
from a to b in Rn \ {0}. If 0 ∈ Sa,b, it can only lie on one of the semi-circles.
Then the other semi-circle gives the desired path.
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aaaaaa

3. Any convex subsetC ofRn is connected. Indeed, let a, b ∈ C and deϐine a path
p : I → X by

p(t) = (1− t)a+ tb = t(b− a) + a.

Then p is continuous, p(0) = a and p(1) = b − a + a = b. Hence C is path-
connected, so connected.

4. R \ {0} is not connected, as (−∞, 0), (0,∞) is a separation. Let n > 1. Then
Rn \{0} andR\{0} are not homeomorphic. But this actuallymeans thatRn is
not homeomorphic to R. Suppose f : Rn → R was a homeomorphism. Then
f(Rn\{0}) = R\{f(0)}would be the continuous image of a connected set, so
should be connected. But it clearly isn’t, so there can be no homeomorphism.

5. Let A = {(x, y) | x = ny, n ∈ N, 0 ≤ x ≤ 1}. Graphically, A represents
the union of lines through the origin of slopes 1, 1

2
, 1
3
, . . ., restricted to I × I .

A is connected, as it is clearly path-connected. Let X = A ∪ {(1, 0)}. Then
X is connected since A ⊆ X ⊆ A. We show thatX is not path-connected by
showing that there is no path inX from b = (1, 0) to any point ofA. As a result,
connected spaces need not be path connected.
Suppose p : I → X is a path with p(0) = b and let V be a neighbourhood of b,
excluding (0, 0). Let t0 ∈ p−1(b). As p is continuous, there exists a basic (hence
connected) neighbourhoodU of t0 such that p(U) ⊆ V . If t1 ∈ U and p(t1) ̸= b,
then p(t1) lies on x = ny for some n ∈ N. Write

W1 =

{
(x, y) : x <

(
n+

1

2

)
y

}
∩ V

and

W2 =

{
(x, y) : x >

(
n+

1

2

)
y

}
∩ V.

ThenW1 andW2 forms a separation of V . Thus p(U) ⊆ W1 or p(U) ⊆ W2. But
t0 ∈ U , so b = p(t0) ∈ p(U) and b = (1, 0) ∈ W2. Then p(U) ⊆ W2. How-
ever p(t1) ∈ W1. So there can be no such t1 and p(U) = {b}. Consequently,
p−1(b) = I , as it is non-empty and both open and closed in I . So p is the con-
stant path pb, and no point in A can be reached from b. □

It is possible to deϐine another relation onX: xPy if there is a path inX from x to y.
1. For all x ∈ X , xPx as there is a path p : I → X deϐined by p(t) = x for all t ∈ I;
2. if xPy there is a path p : I → X such that p(0) = x and p(1) = y. Then, yPx as there is

a path q : I → X deϐined by q(t) = p(1− t).
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3. if xPy and yPx there are paths p, q : I → X such that p(1) = q(0) = y, p(0) = x and
q(1) = z. Then xPz as there is a path r = p.q : I → X deϐined by

r(t) = (p.q)(t) =

{
p(2t) if t ∈ [0, 1/2],
q(2t− 1) if t ∈ [1/2, 1].

So P is an equivalence relation. The equivalence class of x is the path component of x inX .
A path component need not be closed. Consider the spaceX from example 5 on p. 399. The
subset A is a path component ofX , but A is not closed inX since (1, 0) ∈ A but (1, 0) ̸∈ A.

16.3 Local (Path) Connectedness
A spaceX is locally (path) connected if for each x ∈ X , every neighbourhood Vx of x con-
tains a (path) connected neighbourhood of x. The following examples show that local (path)
connectedness and (path) connectedness are independent properties.

aaaaaa

Examples (LĔĈĆđ (PĆęč) CĔēēĊĈęĊĉēĊĘĘ)
1. The spaceX from example 5 on p. 399 is connected but not locally connected,

since the only connected neighbourhood of (1, 0) isX .

2. The spaceX = (0, 1) ∪ (2, 3) is locally connected and locally path-connected,
but it is clearly neither connected nor path connected.

3. Let Y = X ∪S, whereX is the space from example 5 on p. 399 and S is an arc
joining (1, 0) to (1, 1) without meeting any other point of X . Then X is path
connected, but it is not locally path-connected. Indeed, the neighbourhood
V = B((1, 0), 1/2) ∩ Y contains no path-connected neighbourhood.

There is a simple characterization of locally connected spaces.

aaaaaa

Theorem 226
A spaceX is locally connected if and only if the components of each open subset V of
X are open.

Proof: if X is locally path-connected and V ⊆O X , let C be a component of
V . If x ∈ V , there is a connected neighbourhood U of x where U ⊆ V . As C is a
maximal connected set, U ⊆ C and C is open.

Conversely, suppose the components of open subsets are open. If V is a neighbour-
hood of x, let U be the component of x in V . Then U is a connected neighbourhood
of x lying in V , soX is locally connected. ■
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A similar theorem holds for locally path-connected spaces. We ϐinish this section with the
following result.

aaaaaa

Theorem 227
If X is a locally path-connected space, then the components and path components of
X coincide.

Proof: If x ∈ X , there is a component C and a path component D of x. Since
D is connected,D ⊆ C . By the previous theorem,D ⊆O C . If y ∈ C \D, then there
exists a path-connected neighbourhood V of y such that V ⊆ C . Then V ∩D = ∅.
Otherwise y ∈ D since there would be a path from x to y. Hence y ∈ V ⊆ C \D and
C \D ⊆O C . ThenD is closed and open in C . Since C is connected, eitherD = ∅
orD = C . But x ∈ D, soD = C . ■

16.4 Solved Problems
1. Let A and B be connected subsets of a space X . For each of the following condition,

either prove it to be sufϐicient to ensure thatA ∪B be connected or provide a counter-
example to show that A ∪B need not be connected:

a) A ∩B ̸= ∅;
b) A ∩B ̸= ∅ and A ∩B ̸= ∅;
c) A ∩B ̸= ∅ orA ∩B ̸= ∅.

Solution:

a) Let X = R, a ∈ R, A = (−∞, a) and B = (a,+∞). Then A = (−∞, a],
B = [a,+∞) andA∩B = {a} ̸= ∅, butA∩B = ∅, soA∪B is not connected.
The condition is not sufϐicient.

(b and c) Let Y = A ∪ B. By a theorem seen in class, a separation of Y is a pair of non-
empty subsetsW andZ of Y such thatW ∩Z = ∅,W ∩Z = ∅ and Y =W ∪Z .
By hypothesis (in both cases), A and B can not form a separation of Y . Now
supposeW andZ formed a separation of Y . SinceA andB are connected, each
ofW andZ must contain exactly one ofA andB, sayA ⊆W andB ⊆ Z .² Since
W andZ are disjoint, andW ∪Z ⊆ A∪B, we getW ⊆ A andZ ⊆ B, and soW
and Z can not form a separation of Y , which is a contradiction. Hence, in both
cases,A ∪B is connected. □

2. Let X be locally path-connected. Show that every connected open set in X is path-
connected.

Proof: If U = ∅, the statement is vacuously true. So suppose U ̸= ∅ is an open
connected set inX . Since U ⊆O X , andX is locally path-connected, then, for every

²The only other possibility is that Y lies in one ofW xor Z , which would make the other subset empty, and
soW and Z could not form a separation of Y .
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x ∈ U , there exists Vx ⊆O X such that x ∈ Vx ⊆ U and Vx is path-connected. Now,
pick z ∈ U , deϐine V to be the path component ofU containing z and let Y = U −V .
SinceX is locally path-connected, V is open inX . Note that∪

y∈Y
Vy

 ∩ V = ∅;

otherwise, there would be a y ∈ Y ∩ V , a contradiction. Hence we have Y =
∪
y∈Y

Vy

and Y ⊆O X since Vy ⊆O X for all y ∈ Y .

But U is connected, so either V = ∅ or Y = ∅. Since z ∈ V , we must have Y = ∅
and U = V . Hence U is path-connected. ■

3. LetX be an ordered set (with at least two elements) in the order topology. Show that
ifX is connected, thenX is a linear continuum.

Proof: a linear continuum is an ordered set in which
i. if x < y, there exists z such that x < z < y;
ii. any non-empty setAwith an upper bound has a least upper bound.

Deϐine the upper open ray and the lower open ray at x by

UR(x) = {y ∈ X|y < x}
LR(x) = {y ∈ X|x < y}

for all x ∈ X . In the order topology, UR(x), LR(x) ⊆O X for all x ∈ X . Now let
x, y ∈ X be such that x < y, and suppose that there does not exist z ∈ X such that
x < z < y. Then UR(y) ∩ LR(x) = ∅, and

UR(y) ∪ LR(x) = X.

Hence UR(y), LR(x) is a separation of X , a contradiction since X is connected, so
there must exist a z ∈ X such that x < z < y.
Now, letA be a subset ofX with at least one upper bound. Deϐine the sets

U =
∪
a∈A

UR(a)

V =
∪
w>a
∀a∈A

LR(w).

By construction, both U and V are open, and U ∩ V = ∅. SinceX is connected, U ∪
V ̸= X , otherwiseU and V would be a separation ofX . Suppose b, c ∈ X− (U ∪V ).
Then, either b < c, c < b or b = c. If b < c, then c > a for all a ∈ A. By i., there exists
w ∈ X such that b < w < c, and c ∈ LR(w) ⊆ V . Similarly, if c < b, b ∈ V . This
leaves only the possibility that b = c, that isX − (U ∪ V ) = {b}. By construction, b
is smaller than any upper bound of A, and it is greater (or equal) than any element
ofA, so it is the least upper bound ofA. Hence,X is a linear continuum. ■
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16.5. EXERCISES

16.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Is the product of an arbitrary collection of connected spaces connected in the box topol-
ogy?

3. Show that a spaceX is locally path-connected if and only if the path-connected compo-
nents of each open subset V ofX are open.

4. Let A be a connected subset of a space X . If A ⊆ B ⊆ A, show that B is connected.
Are the interior and the boundary ofA necessarily connected? If either of these is con-
nected, must A be connected? What if both of them are connected?

5. LetA be a subset of a locally connected space. Prove or disprove:

a) IfA is path-connected and A ⊆ B ⊆ A, thenB is path-connected.
b) IfA is open and connected, thenA is path-connected.
c) IfA is open, the path components are open.

6. LetX be the subspace

X =

{
t

1 + t
eit
∣∣∣∣ t ≥ 0

}
∪ {eiπ}.

Give detailed answers to the following:

a) IsX connected?
b) IsX locally connected?
c) IsX path-connected?
d) IsX locally path-connected?

7. Let T and T′ be two topologies on a space X . If T′ is ϐiner than T, does connectedness
ofX in one topology imply anything about its connectedness in the other?

8. If |X| is inϐinite, show thatX is connected in the ϐinite complement topology.

9. If Xα is path-connected for each α, show that∏αXα is path-connected. If each Xα is
also locally path-connected, show that ∏αXα is also locally path-connected. Investi-
gate what happens when each Xα is locally path connected, but not necessarily path-
connected.
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