Chapter 16

Connected Spaces

In Chapter 9, we discussed connectedness and path-connectedness in
the context of metric spaces. In this chapter, we discuss how these notions
extend to general topological spaces.

16.1 Connected Sets

A separation of a space X is a pair of disjoint non-empty open sets U and V' such that
X = U U V. Note that both U and V' are open and closed. When no separation of X ex-
ists, we say that X is connected. Alternatively, X is connected if the only sets that are closed
and open in X are @ and X.

Example: let X = [1,2] U [3,4] be a subspace of R. U = [1,2] is closed in X as U =
X N[1,2]and [1,2]is closed in R. But U = X N (0.5,3.5),s0 U Cp X. Consequently,
X is not connected. O

In general, a subspace Y C X is connected if it is connected in the subspace topology.

Theorem 218
A separation of a subset Y is a pair of non-empty subsets A and B whose union is Y
and suchthat AN B=gand AN B = @.

Proof: Suppose A and B satisfy the conditions of the theorem. Then
ANY =AN(AUB)=(ANAU(ANB)=AU®@ = A,

and A is closed in the subspace topology on Y (i.e., relatively closed). Similarly, B is
relatively closed, so A and B are relatively open in Y. Consequently, A and B form
a separation of Y.
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16.1. CONNECTED SETS

Conversely, suppose A and B are a separation of Y. Then A is relatively closed and
so A= ANY.Then

ANB=ANYNB=ANB=2.

Similarly AN B = @. |

IfY C X is a connected set,and U and V is a separation of X,thenY C UorY C V.

Theorem 219
If{Cy}aca is a family of connected sets such that (), C, # @, then|], C,, is connected.

Proof: suppose v € (),C,. If U and V is a separation of | J, C,, then either
x € Uorx € V. Without loss of generality, let + € U. Let o € A. Since C, is
connected, either C, C UorC, C V. Butz € C,,s0C, C U. ThenlJ,C, C U.
Hence

(Uca>mngmV:@.

As Ua C, = U UV, this means that V = @, which is a contradiction since U and
V form a separation. Consequently, there could be no such separation to start with,
and | J, C, is connected. [

Connectedness behaves well with respect to the closure of a set, as we can see below.

Theorem 220
If A'is connected, and A C B C A, then B is connected.

Proof: if U and V forms a separation of B, then A C U or A C V. Without
loss of generality, suppose A C U. ThenV = BNV C ANV CUNV = @, by
Theorem 218. But V' # @ as U and V form a separation of B. Thus there cannot be
a separation of B and B is connected. |

As mentioned in Chapter 9, connectedness is a topological property.

Theorem 221
Let f : X — Y be a continuous function. If X is connected, f(X) is connected.

Proof: suppose that f(X) is not connected. Let U and V form a separation of
f(X). Then f~'(U) and f~' (V) form a separation of X and X is not connected. W

'Otherwise U NY and V N'Y would form a separation of Y.
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CHAPTER 16. CONNECTED SPACES
Theorem 222 If X and Y are connected spaces, sois X x Y.
Proof: if x € X, the functioni, : ¥ — X x Y defined by i,(y) = (x,y) is

continuous. Then i,(Y) = {z} x Y is connected. Similarly, i,(X) = X x {y} is
connected forall y € Y. Then

i (Y) Niy(X) ={(z,9)} # @

forally € Y. Then C) = i,(X) Ui, (Y) = (X x {y}) U ({z} x Y) is connected for

ally € Y. Now
[ Cy={z} xY =i,(Y) # 2,
yey
s0 J,ey €y = X X Y is connected. |

As aresult, any finite product of connected sets is connected. What about an infinite product
of connected sets?

Theorem 223
Let {X,}aca be a collection of connected sets. Then [, X, is connected in the
product topology.

Proof: if [[, X, = @, then the theorem is trivially true, so letb = (b,)n € [], Xo-
For each finite set {a, ..., a,} of A, consider the space

xa:baifozg{ozl,...,ozn}}

X(ag, ... ap,) = {(:Ua)aeA to € Xoifa e {on,. .. an}

which ishomeomorphicto X, x---x X, ,and so connected. Let B be the collection
of all finite subsets of A. Note thatb € X (ay,...,ay,) forall {a,...,a,} € B, hence

be ﬂ X(ag,...,on) # .

Thus Y = Uy X(a4,...,q,) is connected. We show that Y = [], X,. Since Y is
connected, Y is connected and the theorem is proven.

Let 2 = (z4)a € [[,Xa # b and let V be a basic neighbourhood of z. Then
V =11, Va, where V,, = X,, for all but a finite number of opensets V,,,, 1 <1i < n.
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16.1. CONNECTED SETS

B bo, ifa+#q;foralll <i<n,
Yo = ZTo, ifa=aq;forsomel <i<n.

Then, yo = by, € V, = X, fora & {a,...,a,}, and y, = z, € V, for
a € {ay,...,a,}. Hencey, € V, forallavand y € V.

But, by construction, y € X(a1,...,a,) C Y,s0y € VNY # 2. Asb # x,
we gety # z, and x is a limit point of Y, thatis # € Y. Consequently, Y = I[, X, |

In the usual topology, R has some useful properties, some of which can be extended to general
spaces. A linear continuum. for isntance, is an ordered set X in which the following hold:

i. ifxr <y € X, there exists z € X suchthatx < z < y;
ii. any non-empty set A C X with an upper bound has a least upper bound.

A rather tedious, but not very difficult, argument ([Munkres, , p.153] shows that linear con-
tinua are connected, and that rays and intervals are connected subsets in a linear continuum.
As R is a linear continuum, it is connected. The next result is a generalization of a very im-
portant theorem from analysis (see Theorem 35, Chapter 3).

Theorem 224 (INTERMEDIATE VALUE THEOREM)

Suppose f : X — Y is continuous and Y has the order topology for some ordering <.
If X is connected and a,b € X are such that f(a) < f(b), then foranyy € Y such
that f(a) <y < f(b), there exists x € X such that f(x) = y.

ProofiletA={zc€Y:2>ytandB={2€Y : 2z <y} Then A,B Cp Y, and,
as f is continuous, f~'(A), f'(B) Co X. Furthermore, f~'(A) N f71(B) = &,
a € f7'(B)andb € f~'(A). Since X is connected, X # f~'(A) U f~YB)
(otherwise, f~'(A) and f~!(B) would form a separation of X).

Hence, there exists x € X \ (f'(A) U f~(B)). As f(z) € Aand f(z) ¢ B,
f(@) =y. _

If x € X, the (connected) component of z in X, denoted C, is the union of all connected sets
containing z. Itis connected as the intersection of all these sets contain z. As C, is connected,
C,, is connected and so C, C C,. Then the component C, is closed in X; if X has a finite
number of components, each component is also open.

We can define an equivalence relation on X as follows: z Ry if and only if there is a connected
set containing both x and y.
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CHAPTER 16. CONNECTED SPACES

Then:
1. forallxz € X, xRx;
2. if x Ry, then y Rx, and
3. if Ry and yRx, then x Rz.

The equivalence class of = is simply the (connected) component of x in X.

Examples (COMPONENTS)

1. Let X = [1,2) U (3,4) be a subspace of X. Then X has two components, [1, 2)
and (3,4).

2. Letx € Q. Then the component of z is {x} as the only connected subsets of Q
are one-point sets. When all the components of X are singletons, we say that
the space X is totally disconnected. 0J

16.2 Path-Connectedness

A path in a space X is a continuous map p : [0, 1] — X. Throughout, we denote [0, 1] by I. If
p(0) = aand p(1) = b, we say that p is a path from « to b, a is the initial point of p, while b is
the terminal point of p. A space X is path-connected if for any pair of points a, b € X, there
is a path p from a to b.

Proposition 225
A path-connected space X is connected.

Proof: Suppose A, B were a separation of X. Leta € Aandb € B. As X is
path-connected, there is a path p from a to b. But p(/) is connected in X as [ is
connected, so p(/) C Aorp(l) C B. Butp(0) € Aand p(l) € B, a contradiction.
Hence X is connected. |

We have already discussed paths in Chapter 14.
Examples (PATHS AND PATH-CONNECTEDNESS)

1. Leta € X. The map p, : I — X defined by p,(¢t) = a is a path, the constant
path at a.

2. Forn > 1,R™\ {0} is path-connected. Leta,b € R™\ {0}. Define S, ; to be the
circle with diameter ab. If 0 ¢ Sa.p then either of the semi-circles form a path
from a to bin R™ \ {0}. If0 € S, it can only lie on one of the semi-circles.
Then the other semi-circle gives the desired path.
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16.2. PATH-CONNECTEDNESS

3. Any convex subset C' of R" is connected. Indeed, let a,b € C and define a path

p: 1 — Xby
pt)=1—tha+tb=t(b—a)+a.

Then p is continuous, p(0) = a and p(1) = b — a + a = b. Hence C'is path-
connected, so connected.

. R\ {0} is not connected, as (—o0, 0), (0, c0) is a separation. Letn > 1. Then

R™\ {0} and R\ {0} are not homeomorphic. But this actually means that R™ is
not homeomorphic to R. Suppose f : R” — R was a homeomorphism. Then
f(R"\{0}) = R\ {f(0)} would be the continuous image of a connected set, so
should be connected. But it clearly isn’t, so there can be no homeomorphism.

. Let A = {(z,y) | * = ny,n € N,0 < x < 1}. Graphically, A represents

the union of lines through the origin of slopes 1, %, é, ..., restricted to I x I.

A is connected, as it is clearly path-connected. Let X = A U {(1,0)}. Then
X is connected since A C X C A. We show that X is not path-connected by
showing that there is no path in X from b = (1, 0) to any point of A. As aresult,
connected spaces need not be path connected.

Suppose p : I — X is a path with p(0) = b and let V be a neighbourhood of b,
excluding (0, 0). Lett, € p~1(b). As pis continuous, there exists a basic (hence
connected) neighbourhood U of ¢, such thatp(U) C V. Ift; € U and p(t;) # b,
then p(¢;) lies on x = ny for some n € N. Write

le{(x,y):m< (n+%>y}rﬂ/
WQ:{(x,y):a:> <n+%>y}rﬂ/.

Then W, and W, forms a separation of V. Thus p(U) C W; or p(U) C Ws. But
to € U,sob = p(ty) € p(U)and b = (1,0) € W,. Then p(U) C W,. How-
ever p(t;) € Wi. So there can be no such ¢; and p(U) = {b}. Consequently,
p~1(b) = I, as it is non-empty and both open and closed in . So p is the con-
stant path p,, and no point in A can be reached from b. 0

and

It is possible to define another relation on X: x Py if there is a path in X from z to y.

400

1. Forallz € X, xPx as thereisapath p : I — X defined by p(t) = x forallt € I;

2. ifx Py thereisapathp: I — X such thatp(0) = x and p(1) = y. Then, y Pz as there is
apath g : I — X defined by ¢(t) = p(1 — t).
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CHAPTER 16. CONNECTED SPACES

3. if Py and y Pz there are paths p,q : I — X such that p(1) = ¢(0) = y, p(0) = x and
q(1) = 2. Then z Pz as there isa path r = p.q : I — X defined by

p(2t) ift € [0,1/2],
t) = (pq)(t) =
r) = pa)(t) {q(Zt 1) ift e [1/2,1).
So P is an equivalence relation. The equivalence class of x is the path component of = in X.

A path component need not be closed. Consider the space X from example 5 on p. 399. The
subset A is a path component of X, but A is not closed in X since (1,0) € Abut (1,0) & A.

16.3 Local (Path) Connectedness

A space X is locally (path) connected if for each z € X, every neighbourhood V,, of x con-
tains a (path) connected neighbourhood of x. The following examples show that local (path)
connectedness and (path) connectedness are independent properties.

Examples (LOCAL (PATH) CONNECTEDNESS)

1. The space X from example 5 on p. 399 is connected but not locally connected,
since the only connected neighbourhood of (1,0) is X.

2. The space X = (0,1) U (2, 3) is locally connected and locally path-connected,
but it is clearly neither connected nor path connected.

3. LetY = X U .S, where X is the space from example 5 on p. 399 and S is an arc
joining (1,0) to (1, 1) without meeting any other point of X. Then X is path
connected, but it is not locally path-connected. Indeed, the neighbourhood
V = B((1,0),1/2) N'Y contains no path-connected neighbourhood.

There is a simple characterization of locally connected spaces.

Theorem 226
A space X is locally connected if and only if the components of each open subset V of
X are open.

Proof: if X is locally path-connected and V' Cp X, let C' be a component of
V. If x € V, there is a connected neighbourhood U of x where U C V. As C'is a
maximal connected set, U C C'and C'is open.

Conversely, suppose the components of open subsets are open. If V' is a neighbour-
hood of z, let U be the component of z in V. Then U is a connected neighbourhood
of z lying in V, so X is locally connected. |
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16.4. SOLVED PROBLEMS

A similar theorem holds for locally path-connected spaces. We finish this section with the
following result.

Theorem 227
If X is a locally path-connected space, then the components and path components of
X coincide.

Proof: If + € X, there is a component C' and a path component D of z. Since
D is connected, D C C. By the previous theorem, D C, C. Ify € C'\ D, then there
exists a path-connected neighbourhood V' of y such that VV C C. ThenV N D = @.
Otherwise y € D since there would be a path from z to y. Hencey € V C C'\ D and
C\ D Cp C. Then D is closed and open in C'. Since C'is connected, either D = &
orD=C.Butz € D,soD =C. [ |

16.4 Solved Problems

1. Let A and B be connected subsets of a space X. For each of the following condition,
either prove it to be sufficient to ensure that A U B be connected or provide a counter-
example to show that A U B need not be connected:

a) ANB # @;
b) ANB # @and AN B # @;
c) ANB#@orANB # @.

Solution:

a) Let X = R,a € R, A = (—00,a)and B = (a,+c0). Then A = (—o0,al,
B =la,+oc)and AN B = {a} # &,but AN B = &, so AU B is not connected.
The condition is not sufficient.

(bandc) LetY = AU B. By a theorem seen in class, a separation of Y is a pair of non-
empty subsets W and Z of Y suchthat WNZ = g, WNZ = @andY = WUZ.
By hypothesis (in both cases), A and B can not form a separation of Y. Now
suppose W and Z formed a separation of Y. Since A and B are connected, each
of W and Z must contain exactly one of Aand B,say A C W and B C Z.? Since
W and Z are disjoint,and WU Z C AUB,wegetW C Aand Z C B,andso W
and Z can not form a separation of Y, which is a contradiction. Hence, in both
cases, A U B is connected. O

2. Let X be locally path-connected. Show that every connected open set in X is path-
connected.

Proof: If U = &, the statement is vacuously true. So suppose U # & is an open
connected set in X. Since U Cp X, and X is locally path-connected, then, for every

“The only other possibility is that Y lies in one of W xor Z, which would make the other subset empty, and
so W and Z could not form a separation of Y.

402 Analysis and Topology Course Notes



CHAPTER 16. CONNECTED SPACES

x € U, there exists V,, Cp X such thatx € V, C U and V,, is path-connected. Now,
pick z € U, define V to be the path component of U containing zandletY = U — V.
Since X is locally path-connected, V' is open in X. Note that

Uv | nv=g;
yey

otherwise, there would beay € Y NV, a contradiction. Hence we have Y = U Vy

yey
andY Cp X sinceV,, Cp X forally €Y.

But U is connected, so either V = @ orY = @. Since z € V,wemusthaveY = &
and U = V. Hence U is path-connected. |

3. Let X be an ordered set (with at least two elements) in the order topology. Show that
if X is connected, then X is a linear continuum.
Proof: alinear continuum is an ordered set in which

i. if z < gy, there exists z such thatz < z < y;
ii. any non-empty set A with an upper bound has a least upper bound.

Define the upper open ray and the lower open ray at x by
UR(z) = {y€X|y<uz}
LR(z) = {ye X[z <y}
for all z € X. In the order topology, UR(z),LR(z) Cp X forallz € X. Now let

x,y € X be such that z < y, and suppose that there does not exist z € X such that
x < z < y. Then UR(y) N LR(x) = ), and

UR(y) ULR(z) = X.

Hence UR(y), LR(x) is a separation of X, a contradiction since X is connected, so
there must exista z € X suchthatz < z < y.

Now, let A be a subset of X with at least one upper bound. Define the sets

U = [JUR(a)
acA

v = |J LRw).
VaeA

By construction, both U and V are open, and U NV = (. Since X is connected, U U
V # X, otherwise U and V would be a separation of X. Supposeb,c € X —(UUYV).
Then, either b < ¢,c < borb=c. If b < ¢,thenc > a forall a € A. By i, there exists
w € X suchthatb < w < ¢, and ¢ € LR(w) C V. Similarly, if¢ < b, b € V. This
leaves only the possibility that b = ¢, thatis X — (U U V') = {b}. By construction, b
is smaller than any upper bound of A, and it is greater (or equal) than any element
of A, so it is the least upper bound of A. Hence, X is a linear continuum. [ |
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16.5. EXERCISES

16.5 Exercises

404

. Prepare a 2-page summary of this chapter, with important definitions and results.

[s the product of an arbitrary collection of connected spaces connected in the box topol-
ogy?

. Show that a space X is locally path-connected if and only if the path-connected compo-

nents of each open subset V' of X are open.

Let A be a connected subset of a space X. If A C B C A, show that B is connected.
Are the interior and the boundary of A necessarily connected? If either of these is con-
nected, must A be connected? What if both of them are connected?

Let A be a subset of a locally connected space. Prove or disprove:

a) If Ais path-connected and A C B C A, then B is path-connected.
b) If Ais open and connected, then A is path-connected.

c) If Ais open, the path components are open.

t .
X: it
{1+t€

Give detailed answers to the following:

. Let X be the subspace

t> 0} U {e™}.

a) Is X connected?

b) Is X locally connected?

c) Is X path-connected?

d) Is X locally path-connected?

. Let ¥ and ¥’ be two topologies on a space X. If ¥ is finer than ¥, does connectedness

of X in one topology imply anything about its connectedness in the other?
If | X| is infinite, show that X is connected in the finite complement topology.

If X, is path-connected for each «, show that [[ X, is path-connected. If each X, is
also locally path-connected, show that [] X, is also locally path-connected. Investi-
gate what happens when each X, is locally path connected, but not necessarily path-
connected.
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