Chapter 16

Connected Spaces

In Chapter 9, we discussed **connectedness** and **path-connectedness** in the context of metric spaces. In this chapter, we discuss how these notions extend to **general topological spaces**.

16.1 Connected Sets

A **separation** of a space X is a pair of **disjoint** non-empty open sets U and V such that $X = U \cup V$. Note that both U and V are open and closed. When no separation of X exists, we say that X is **connected**. Alternatively, X is connected if the only sets that are closed and open in X are \emptyset and X.

Example: let $X = [1, 2] \cup [3, 4]$ be a subspace of \mathbb{R} . U = [1, 2] is closed in X as $U = X \cap [1, 2]$ and [1, 2] is closed in \mathbb{R} . But $U = X \cap (0.5, 3.5)$, so $U \subseteq_O X$. Consequently, X is not connected.

In general, a subspace $Y \subseteq X$ is connected if it is connected in the **subspace topology**.

Theorem 218 A separation of a subset Y is a pair of non-empty subsets A and B whose union is Y and such that $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$.

Proof: Suppose *A* and *B* satisfy the conditions of the theorem. Then

 $\overline{A} \cap Y = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = A \cup \emptyset = A,$

and A is closed in the subspace topology on Y (i.e., relatively closed). Similarly, B is relatively closed, so A and B are relatively open in Y. Consequently, A and B form a separation of Y.

Conversely, suppose A and B are a separation of Y. Then A is relatively closed and so $A = \overline{A} \cap Y$. Then

$$\overline{A} \cap B = \overline{A} \cap Y \cap B = A \cap B = \emptyset.$$

Similarly $A \cap \overline{B} = \emptyset$.

If $Y \subseteq X$ is a connected set, and U and V is a separation of X, then $Y \subseteq U$ or $Y \subseteq V$.¹

Theorem 219

If $\{C_{\alpha}\}_{\alpha \in A}$ is a family of connected sets such that $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha} C_{\alpha}$ is connected.

Proof: suppose $x \in \bigcap_{\alpha} C_{\alpha}$. If U and V is a separation of $\bigcup_{\alpha} C_{\alpha}$, then either $x \in U$ or $x \in V$. Without loss of generality, let $x \in U$. Let $\alpha \in A$. Since C_{α} is connected, either $C_{\alpha} \subseteq U$ or $C_{\alpha} \subseteq V$. But $x \in C_{\alpha}$, so $C_{\alpha} \subseteq U$. Then $\bigcup_{\alpha} C_{\alpha} \subseteq U$. Hence

$$\left(\bigcup_{\alpha} C_{\alpha}\right) \cap V \subseteq U \cap V = \varnothing.$$

As $\bigcup_{\alpha} C_{\alpha} = U \cup V$, this means that $V = \emptyset$, which is a contradiction since U and V form a separation. Consequently, there could be no such separation to start with, and $\bigcup_{\alpha} C_{\alpha}$ is connected.

Connectedness behaves well with respect to the closure of a set, as we can see below.

Theorem 220

If A is connected, and $A \subseteq B \subseteq \overline{A}$, then B is connected.

Proof: if *U* and *V* forms a separation of *B*, then $A \subseteq U$ or $A \subseteq V$. Without loss of generality, suppose $A \subseteq U$. Then $V = B \cap V \subseteq \overline{A} \cap V \subseteq \overline{U} \cap V = \emptyset$, by Theorem 218. But $V \neq \emptyset$ as *U* and *V* form a separation of *B*. Thus there cannot be a separation of *B* and *B* is connected.

As mentioned in Chapter 9, connectedness is a **topological property**.

Theorem 221

Let $f : X \to Y$ be a continuous function. If X is connected, f(X) is connected.

Proof: suppose that f(X) is not connected. Let U and V form a separation of f(X). Then $f^{-1}(U)$ and $f^{-1}(V)$ form a separation of X and X is not connected.

¹Otherwise $U \cap Y$ and $V \cap Y$ would form a separation of Y.

Theorem 222 If *X* and *Y* are connected spaces, so is $X \times Y$.

Proof: if $x \in X$, the function $i_x : Y \to X \times Y$ defined by $i_x(y) = (x, y)$ is continuous. Then $i_x(Y) = \{x\} \times Y$ is connected. Similarly, $i_y(X) = X \times \{y\}$ is connected for all $y \in Y$. Then

$$i_x(Y) \cap i_y(X) = \{(x, y)\} \neq \emptyset$$

for all $y \in Y$. Then $C_y = i_y(X) \cup i_x(Y) = (X \times \{y\}) \cup (\{x\} \times Y)$ is connected for all $y \in Y$. Now

$$\bigcap_{y \in Y} C_y = \{x\} \times Y = i_x(Y) \neq \emptyset,$$

so $\bigcup_{y \in Y} C_y = X \times Y$ is connected.

As a result, any finite product of connected sets is connected. What about an infinite product of connected sets?

Theorem 223

Let $\{X_{\alpha}\}_{\alpha \in A}$ be a collection of connected sets. Then $\prod_{\alpha} X_{\alpha}$ is connected in the product topology.

Proof: if $\prod_{\alpha} X_{\alpha} = \emptyset$, then the theorem is trivially true, so let $b = (b_{\alpha})_{\alpha} \in \prod_{\alpha} X_{\alpha}$. For each finite set $\{\alpha_1, \ldots, \alpha_n\}$ of A, consider the space

$$X(\alpha_1,\ldots,\alpha_n) = \left\{ (x_\alpha)_{\alpha \in A} \middle| \begin{array}{l} x_\alpha = b_\alpha \text{ if } \alpha \notin \{\alpha_1,\ldots,\alpha_n\} \\ x_\alpha \in X_\alpha \text{ if } \alpha \in \{\alpha_1,\ldots,\alpha_n\} \end{array} \right\},$$

which is homeomorphic to $X_{\alpha_1} \times \cdots \times X_{\alpha_n}$, and so connected. Let \mathfrak{B} be the collection of all finite subsets of A. Note that $b \in X(\alpha_1, \ldots, \alpha_n)$ for all $\{\alpha_1, \ldots, \alpha_n\} \in \mathfrak{B}$, hence

$$b \in \bigcap_{\{\alpha_1,\ldots,\alpha_n\} \in \mathfrak{B}} X(\alpha_1,\ldots,\alpha_n) \neq \emptyset.$$

Thus $Y = \bigcup_{\mathfrak{B}} X(\alpha_1, \ldots, \alpha_n)$ is connected. We show that $\overline{Y} = \prod_{\alpha} X_{\alpha}$. Since Y is connected, \overline{Y} is connected and the theorem is proven.

Let $x = (x_{\alpha})_{\alpha} \in \prod_{\alpha} X_{\alpha} \neq b$ and let V be a basic neighbourhood of x. Then $V = \prod_{\alpha} V_{\alpha}$, where $V_{\alpha} = X_{\alpha}$ for all but a finite number of open sets V_{α_i} , $1 \leq i \leq n$.

Define $y = (y_{\alpha})_{\alpha}$ by

$$y_{\alpha} = \begin{cases} b_{\alpha}, & \text{if } \alpha \neq \alpha_i \text{ for all } 1 \leq i \leq n, \\ x_{\alpha}, & \text{if } \alpha = \alpha_i \text{ for some } 1 \leq i \leq n \end{cases}$$

Then, $y_{\alpha} = b_{\alpha} \in V_{\alpha} = X_{\alpha}$ for $\alpha \notin \{\alpha_1, \ldots, \alpha_n\}$, and $y_{\alpha} = x_{\alpha} \in V_{\alpha}$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$. Hence $y_{\alpha} \in V_{\alpha}$ for all α and $y \in V$.

But, by construction, $y \in X(\alpha_1, \ldots, \alpha_n) \subseteq Y$, so $y \in V \cap Y \neq \emptyset$. As $b \neq x$, we get $y \neq x$, and x is a limit point of Y, that is $x \in \overline{Y}$. Consequently, $\overline{Y} = \prod_{\alpha} X_{\alpha}$.

In the usual topology, \mathbb{R} has some useful properties, some of which can be extended to general spaces. A **linear continuum**. for isntance, is an ordered set *X* in which the following hold:

i. if $x < y \in X$, there exists $z \in X$ such that x < z < y;

ii. any non-empty set $A \subset X$ with an upper bound has a least upper bound.

A rather tedious, but not very difficult, argument ([Munkres, , p.153] shows that linear continua are connected, and that rays and intervals are connected subsets in a linear continuum. As \mathbb{R} is a linear continuum, it is connected. The next result is a generalization of a very important theorem from analysis (see Theorem 35, Chapter 3).

Theorem 224 (INTERMEDIATE VALUE THEOREM)

Suppose $f : X \to Y$ is continuous and Y has the order topology for some ordering <. If X is connected and $a, b \in X$ are such that f(a) < f(b), then for any $y \in Y$ such that f(a) < y < f(b), there exists $x \in X$ such that f(x) = y.

Proof: let $A = \{z \in Y : z > y\}$ and $B = \{z \in Y : z < y\}$. Then $A, B \subseteq_O Y$, and, as f is continuous, $f^{-1}(A), f^{-1}(B) \subseteq_O X$. Furthermore, $f^{-1}(A) \cap f^{-1}(B) = \emptyset$, $a \in f^{-1}(B)$ and $b \in f^{-1}(A)$. Since X is connected, $X \neq f^{-1}(A) \cup f^{-1}(B)$ (otherwise, $f^{-1}(A)$ and $f^{-1}(B)$ would form a separation of X).

Hence, there exists $x \in X \setminus (f^{-1}(A) \cup f^{-1}(B))$. As $f(x) \notin A$ and $f(x) \notin B$, f(x) = y.

If $x \in X$, the (connected) **component** of x in X, denoted C_x is the union of all connected sets containing x. It is connected as the intersection of all these sets contain x. As C_x is connected, $\overline{C_x}$ is connected and so $\overline{C_x} \subseteq C_x$. Then the component C_x is closed in X; if X has a finite number of components, each component is also open.

We can define an equivalence relation on X as follows: xRy if and only if there is a connected set containing both x and y.

Then:

- 1. for all $x \in X$, xRx;
- 2. if xRy, then yRx, and
- 3. if xRy and yRx, then xRz.

The **equivalence class** of x is simply the (connected) component of x in X.

Examples (COMPONENTS)

- 1. Let $X = [1, 2) \cup (3, 4)$ be a subspace of X. Then X has two components, [1, 2) and (3, 4).
- 2. Let $x \in \mathbb{Q}$. Then the component of x is $\{x\}$ as the only connected subsets of \mathbb{Q} are one-point sets. When all the components of X are singletons, we say that the space X is **totally disconnected**.

16.2 Path-Connectedness

A **path** in a space *X* is a continuous map $p : [0, 1] \to X$. Throughout, we denote [0, 1] by *I*. If p(0) = a and p(1) = b, we say that *p* is a **path from** *a* **to** *b*, *a* is the **initial point** of *p*, while *b* is the **terminal point** of *p*. A space *X* is **path-connected** if for any pair of points $a, b \in X$, there is a path *p* from *a* to *b*.

Proposition 225

A path-connected space X is connected.

Proof: Suppose A, B were a separation of X. Let $a \in A$ and $b \in B$. As X is path-connected, there is a path p from a to b. But p(I) is connected in X as I is connected, so $p(I) \subseteq A$ or $p(I) \subseteq B$. But $p(0) \in A$ and $p(1) \in B$, a contradiction. Hence X is connected.

We have already discussed paths in Chapter 14.

Examples (PATHS AND PATH-CONNECTEDNESS)

- 1. Let $a \in X$. The map $p_a : I \to X$ defined by $p_a(t) = a$ is a path, the **constant** path at a.
- 2. For n > 1, $\mathbb{R}^n \setminus \{0\}$ is path-connected. Let $a, b \in \mathbb{R}^n \setminus \{0\}$. Define $S_{a,b}$ to be the circle with diameter \overline{ab} . If $0 \notin S_{a,b}$, then either of the semi-circles form a path from a to b in $\mathbb{R}^n \setminus \{0\}$. If $0 \in S_{a,b}$, it can only lie on one of the semi-circles. Then the other semi-circle gives the desired path.

3. Any **convex** subset C of \mathbb{R}^n is connected. Indeed, let $a, b \in C$ and define a path $p: I \to X$ by

$$p(t) = (1 - t)a + tb = t(b - a) + a.$$

Then p is continuous, p(0) = a and p(1) = b - a + a = b. Hence C is pathconnected, so connected.

- 4. $\mathbb{R} \setminus \{0\}$ is not connected, as $(-\infty, 0)$, $(0, \infty)$ is a separation. Let n > 1. Then $\mathbb{R}^n \setminus \{0\}$ and $\mathbb{R} \setminus \{0\}$ are not homeomorphic. But this actually means that \mathbb{R}^n is not homeomorphic to \mathbb{R} . Suppose $f : \mathbb{R}^n \to \mathbb{R}$ was a homeomorphism. Then $f(\mathbb{R}^n \setminus \{0\}) = \mathbb{R} \setminus \{f(0)\}$ would be the continuous image of a connected set, so should be connected. But it clearly isn't, so there can be no homeomorphism.
- 5. Let $A = \{(x, y) \mid x = ny, n \in \mathbb{N}, 0 \le x \le 1\}$. Graphically, A represents the union of lines through the origin of slopes 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., restricted to $I \times I$. A is connected, as it is clearly path-connected. Let $X = A \cup \{(1, 0)\}$. Then X is connected since $A \subseteq X \subseteq \overline{A}$. We show that X is not path-connected by showing that there is no path in X from b = (1, 0) to any point of A. As a result, connected spaces need not be path connected.

Suppose $p: I \to X$ is a path with p(0) = b and let V be a neighbourhood of b, excluding (0, 0). Let $t_0 \in p^{-1}(b)$. As p is continuous, there exists a basic (hence connected) neighbourhood U of t_0 such that $p(U) \subseteq V$. If $t_1 \in U$ and $p(t_1) \neq b$, then $p(t_1)$ lies on x = ny for some $n \in \mathbb{N}$. Write

$$W_1 = \left\{ (x, y) : x < \left(n + \frac{1}{2}\right) y \right\} \cap V$$

and

$$W_2 = \left\{ (x, y) : x > \left(n + \frac{1}{2} \right) y \right\} \cap V.$$

Then W_1 and W_2 forms a separation of V. Thus $p(U) \subseteq W_1$ or $p(U) \subseteq W_2$. But $t_0 \in U$, so $b = p(t_0) \in p(U)$ and $b = (1,0) \in W_2$. Then $p(U) \subseteq W_2$. However $p(t_1) \in W_1$. So there can be no such t_1 and $p(U) = \{b\}$. Consequently, $p^{-1}(b) = I$, as it is non-empty and both open and closed in I. So p is the constant path p_b , and no point in A can be reached from b.

It is possible to define another relation on X: xPy if there is a path in X from x to y.

- **1**. For all $x \in X$, xPx as there is a path $p: I \to X$ defined by p(t) = x for all $t \in I$;
- 2. if xPy there is a path $p: I \to X$ such that p(0) = x and p(1) = y. Then, yPx as there is a path $q: I \to X$ defined by q(t) = p(1-t).

3. if xPy and yPx there are paths $p, q: I \to X$ such that p(1) = q(0) = y, p(0) = x and q(1) = z. Then xPz as there is a path $r = p.q: I \to X$ defined by

$$r(t) = (p.q)(t) = \begin{cases} p(2t) & \text{if } t \in [0, 1/2], \\ q(2t-1) & \text{if } t \in [1/2, 1]. \end{cases}$$

So *P* is an equivalence relation. The equivalence class of *x* is the **path component** of *x* in *X*. A path component need not be closed. Consider the space *X* from example 5 on p. 399. The subset *A* is a path component of *X*, but *A* is not closed in *X* since $(1,0) \in \overline{A}$ but $(1,0) \notin A$.

16.3 Local (Path) Connectedness

A space X is **locally (path) connected** if for each $x \in X$, every neighbourhood V_x of x contains a (path) connected neighbourhood of x. The following examples show that local (path) connectedness and (path) connectedness are independent properties.

Examples (LOCAL (PATH) CONNECTEDNESS)

- 1. The space X from example 5 on p. 399 is connected but not locally connected, since the only connected neighbourhood of (1,0) is X.
- 2. The space $X = (0, 1) \cup (2, 3)$ is locally connected and locally path-connected, but it is clearly neither connected nor path connected.
- 3. Let $Y = X \cup S$, where X is the space from example 5 on p. 399 and S is an arc joining (1,0) to (1,1) without meeting any other point of X. Then X is path connected, but it is not locally path-connected. Indeed, the neighbourhood $V = B((1,0), 1/2) \cap Y$ contains no path-connected neighbourhood.

There is a simple characterization of locally connected spaces.

Theorem 226

A space X is locally connected if and only if the components of each open subset V of X are open.

Proof: if *X* is locally path-connected and $V \subseteq_O X$, let *C* be a component of *V*. If $x \in V$, there is a connected neighbourhood *U* of *x* where $U \subseteq V$. As *C* is a maximal connected set, $U \subseteq C$ and *C* is open.

Conversely, suppose the components of open subsets are open. If V is a neighbourhood of x, let U be the component of x in V. Then U is a connected neighbourhood of x lying in V, so X is locally connected.

A similar theorem holds for locally path-connected spaces. We finish this section with the following result.

Theorem 227

If X is a locally path-connected space, then the components and path components of X coincide.

Proof: If $x \in X$, there is a component C and a path component D of x. Since D is connected, $D \subseteq C$. By the previous theorem, $D \subseteq_O C$. If $y \in C \setminus D$, then there exists a path-connected neighbourhood V of y such that $V \subseteq C$. Then $V \cap D = \emptyset$. Otherwise $y \in D$ since there would be a path from x to y. Hence $y \in V \subseteq C \setminus D$ and $C \setminus D \subseteq_O C$. Then D is closed and open in C. Since C is connected, either $D = \emptyset$ or D = C. But $x \in D$, so D = C.

16.4 Solved Problems

- 1. Let *A* and *B* be connected subsets of a space *X*. For each of the following condition, either prove it to be sufficient to ensure that $A \cup B$ be connected or provide a counter-example to show that $A \cup B$ need not be connected:
 - a) $\overline{A} \cap \overline{B} \neq \emptyset$;
 - b) $\overline{A} \cap B \neq \emptyset$ and $A \cap \overline{B} \neq \emptyset$;
 - c) $\overline{A} \cap B \neq \emptyset$ or $A \cap \overline{B} \neq \emptyset$.

Solution:

- a) Let $X = \mathbb{R}$, $a \in \mathbb{R}$, $A = (-\infty, a)$ and $B = (a, +\infty)$. Then $\overline{A} = (-\infty, a]$, $\overline{B} = [a, +\infty)$ and $\overline{A} \cap \overline{B} = \{a\} \neq \emptyset$, but $A \cap B = \emptyset$, so $A \cup B$ is not connected. The condition is not sufficient.
- (b and c) Let $Y = A \cup B$. By a theorem seen in class, a separation of Y is a pair of nonempty subsets W and Z of Y such that $\overline{W} \cap Z = \emptyset$, $W \cap \overline{Z} = \emptyset$ and $Y = W \cup Z$. By hypothesis (in both cases), A and B can not form a separation of Y. Now suppose W and Z formed a separation of Y. Since A and B are connected, each of W and Z must contain exactly one of A and B, say $A \subseteq W$ and $B \subseteq Z$.² Since W and Z are disjoint, and $W \cup Z \subseteq A \cup B$, we get $W \subseteq A$ and $Z \subseteq B$, and so Wand Z can not form a separation of Y, which is a contradiction. Hence, in both cases, $A \cup B$ is connected.
- 2. Let X be locally path-connected. Show that every connected open set in X is path-connected.

Proof: If $U = \emptyset$, the statement is vacuously true. So suppose $U \neq \emptyset$ is an open connected set in *X*. Since $U \subseteq_O X$, and *X* is locally path-connected, then, for every

²The only other possibility is that Y lies in one of $W \operatorname{xor} Z$, which would make the other subset empty, and so W and Z could not form a separation of Y.

 $x \in U$, there exists $V_x \subseteq_O X$ such that $x \in V_x \subseteq U$ and V_x is path-connected. Now, pick $z \in U$, define V to be the path component of U containing z and let Y = U - V. Since X is locally path-connected, V is open in X. Note that

$$\left(\bigcup_{y\in Y} V_y\right)\cap V=\varnothing;$$

otherwise, there would be a $y \in Y \cap V$, a contradiction. Hence we have $Y = \bigcup_{y \in Y} V_y$

and $Y \subseteq_O X$ since $V_y \subseteq_O X$ for all $y \in Y$.

But *U* is connected, so either $V = \emptyset$ or $Y = \emptyset$. Since $z \in V$, we must have $Y = \emptyset$ and U = V. Hence *U* is path-connected.

3. Let *X* be an ordered set (with at least two elements) in the order topology. Show that if *X* is connected, then *X* is a linear continuum.

Proof: a linear continuum is an ordered set in which

- i. if x < y, there exists z such that x < z < y;
- ii. any non-empty set A with an upper bound has a least upper bound.

Define the upper open ray and the lower open ray at x by

$$\begin{array}{lll} \mathsf{UR}(x) &=& \{y \in X | y < x\} \\ \mathsf{LR}(x) &=& \{y \in X | x < y\} \end{array}$$

for all $x \in X$. In the order topology, UR(x), $LR(x) \subseteq_O X$ for all $x \in X$. Now let $x, y \in X$ be such that x < y, and suppose that there does not exist $z \in X$ such that x < z < y. Then $UR(y) \cap LR(x) = \emptyset$, and

$$\mathrm{UR}(y) \cup \mathrm{LR}(x) = X.$$

Hence UR(y), LR(x) is a separation of X, a contradiction since X is connected, so there must exist a $z \in X$ such that x < z < y.

Now, let A be a subset of X with at least one upper bound. Define the sets

$$U = \bigcup_{\substack{a \in A \\ \forall a \in A}} \mathrm{UR}(a)$$
$$V = \bigcup_{\substack{w > a \\ \forall a \in A}} \mathrm{LR}(w).$$

By construction, both U and V are open, and $U \cap V = \emptyset$. Since X is connected, $U \cup V \neq X$, otherwise U and V would be a separation of X. Suppose $b, c \in X - (U \cup V)$. Then, either b < c, c < b or b = c. If b < c, then c > a for all $a \in A$. By i., there exists $w \in X$ such that b < w < c, and $c \in LR(w) \subseteq V$. Similarly, if $c < b, b \in V$. This leaves only the possibility that b = c, that is $X - (U \cup V) = \{b\}$. By construction, b is smaller than any upper bound of A, and it is greater (or equal) than any element of A, so it is the least upper bound of A. Hence, X is a linear continuum.

16.5 Exercises

- 1. Prepare a 2-page summary of this chapter, with important definitions and results.
- 2. Is the product of an arbitrary collection of connected spaces connected in the box topology?
- 3. Show that a space *X* is locally path-connected if and only if the path-connected components of each open subset *V* of *X* are open.
- 4. Let *A* be a connected subset of a space *X*. If $A \subseteq B \subseteq \overline{A}$, show that *B* is connected. Are the interior and the boundary of *A* necessarily connected? If either of these is connected, must *A* be connected? What if both of them are connected?
- 5. Let *A* be a subset of a locally connected space. Prove or disprove:
 - a) If A is path-connected and $A \subseteq B \subseteq \overline{A}$, then B is path-connected.
 - b) If *A* is open and connected, then *A* is path-connected.
 - c) If *A* is open, the path components are open.
- 6. Let *X* be the subspace

$$X = \left\{ \frac{t}{1+t} e^{it} \mid t \ge 0 \right\} \cup \{ e^{i\pi} \}.$$

Give detailed answers to the following:

- a) Is X connected?
- b) Is X locally connected?
- c) Is *X* path-connected?
- d) Is *X* locally path-connected?
- 7. Let \mathfrak{T} and \mathfrak{T}' be two topologies on a space *X*. If \mathfrak{T}' is finer than \mathfrak{T} , does connectedness of *X* in one topology imply anything about its connectedness in the other?
- 8. If |X| is infinite, show that X is connected in the finite complement topology.
- 9. If X_{α} is path-connected for each α , show that $\prod_{\alpha} X_{\alpha}$ is path-connected. If each X_{α} is also locally path-connected, show that $\prod_{\alpha} X_{\alpha}$ is also locally path-connected. Investigate what happens when each X_{α} is locally path connected, but not necessarily path-connected.