
Chapter 17

Compact Spaces

In Chapter 9, we discussed compactness in the context of metric spaces.
In this chapter, we discuss the notion from a topological perspective.

17.1 Compactness
A covering of a spaceX is a family F of subsets ofX such that∪

F∈F

F = X.

A subset Y ofX is covered by a family F if

Y ⊆
∪
F∈F

F.

We say that F is an open covering when every F ∈ F is open. A sub-collection A ⊆ F that
still coversX is called a sub-covering ofX .

aaaaaa

Examples (CĔěĊėĎēČĘ Ćēĉ SĚć-ĈĔěĊėĎēČĘ)
1. Consider the sets F = {(a, b) | a < b ∈ R}, A = {(a, b) | a < b ∈ Q} and
ξ = {(n − 1, n + 1) | n ∈ Z}. Then F is an open covering of R, A and ξ are
sub-coverings, but ξ has no proper sub-covering.

2. The collection F = {[a, b) | a < b ∈ R} is an open covering of Rl. □

A spaceX is compact if every open covering ofX contains a ϐinite sub-covering. A subspace
C ofX is compact inX if every open covering of C contains a ϐinite sub-covering.¹

¹This deϐinition seems rather straightforward, on the face of it, but it is the culmination of a rather long and
arduous process, with dead ends and wrong turns – we will look into some of these in the coming pages.
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17.1. COMPACTNESS

aaaaaa

Examples (CĔĒĕĆĈę SĕĆĈĊĘ)
1. R is not compact, since the covering ξ from the previous example contains no

proper sub-covering, hence no ϐinite sub-covering.

2. LetX = {0}∪
{

1
n

∣∣ n ∈ N}. Any open covering ofX will contain a neighbour-
hood of 0, say V0. For some N , we have 1

n
∈ V0 for all n > N . For each n

such that 1 ≤ n ≤ N , pick Vn from the open covering such that 1
n
∈ Vn. Then

{V0, V1, . . . , Vn} is a sub-covering, soX is compact. □

It takes some practice to get the hang of the deϐinition.

aaaaaa

Theorem 228
Every closed subset C of a compact setX is compact.

Proof: suppose {Uα}α is an open covering of C . As C is closed, X \ C is
open and {Uα}α ∪ {X \ C} is an open covering ofX . AsX is compact, there exists
a ϐinite sub-covering of X , say {Uαi

}ni=1. If X \ C = Uαj
for some j, discard Uαj

.
The remaining {Uαi

}ni(̸=j)=1 is a ϐinite sub-covering of C . In the other case, the ϐinite
sub-covering ofX is clearly a ϐinite sub-covering of C . Hence C is compact. ■

In general, the converse is not true (see example 1 on p. 407). However, it holds for a broad
class of spaces.

aaaaaa

Theorem 229
IfX is Hausdorff, every compact subset ofX is closed.

Proof: let Y be a compact subset of X . As X is Hausdorff, if x ̸∈ Y , for each
y ∈ Y , there is two disjoint neighbourhoods Uy of y, Vy of x. Then {Uy}y∈Y is an
open covering of Y . But Y is compact so there is a ϐinite sub-covering, say {Uyi}ni=1.

Now, write

V =
n∩

i=1

Vyi , and U =
n∪

i=1

Uyi .

Then V is a neighbourhood of x such that

V ∩ Y ⊆ V ∩ U =
n∪

i=1

(V ∩ Uyi) = ∅.

Hence we can ϐit an open set V around every x ̸∈ Y , whichmeansX \Y is open and
Y is closed. ■
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CHAPTER 17. COMPACT SPACES

Note that we have in fact proven the following result.

aaaaaa
Corollary
IfX is Hausdorff, and C is a compact subset ofX , then for x ̸∈ C , there exists disjoint
open sets U , V such that x ∈ V and C ⊆ U .

What can we say when the spaces are not Hausdorff? Depends on the situation, actually.

aaaaaa

Examples

1. If X = {a, b} has the indiscrete topology, then every subset of X is compact.
In particular, {a} is compact. However, it is not closed since {b} is not open.

2. InRwith the ϐinite complement topology, every subset is compact. Indeed, let
C be a subset of R, with open covering F. For F ∈ F, F covers C for at most
a ϐinite number of points, say {ci}ni=1. Pick Fi ∈ F such that ci ∈ Fi for all i.
Then {F, F1, . . . , Fn} covers C , and so C is compact.

In the topology of the last example, even the open sets are compact. This does not contradict
Theorem 229 sinceR is not Hausdorff in the ϐinite complement topology. As it happens, com-
pactness is a topological notion.

aaaaaa

Theorem 230
The continuous image of a compact set C ⊆ X by f : X → Y is compact.

Proof: let F be an open covering of f(C). By continuity, {f−1(F )}F∈F is an
open covering of C . So there is a ϐinite sub-covering, say {f−1(F1), . . . , f

−1(Fn)}, as
C is compact, and

f(C) ⊆ f

(
n∪

i=1

f−1(Fi)

)
=

n∪
i=1

f
(
f−1(Fi)

)
⊆

n∪
i=1

Fi.

Then {F1, . . . , Fn} covers f(C), and so f(C) is compact. ■

There are all sorts of results about compact spaces and continuous functions.

aaaaaa

Theorem 231
IfX is compact, Y is Hausdorff, and f : X → Y is a continuous bijection, then f is a
homeomorphism.

Proof: let C be a closed subset of X . As X is compact, C is compact. Since
f : X → Y is continuous, f(C) is compact in Y and thus closed in Y , as Y is
Hausdorff. So f is closed. As f is a continuous bijection, f is a homeomorphism. ■
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17.1. COMPACTNESS

As we had done with connectedness, we would like to show that ϐinite products of compact
spaces are compact.² To do this we will need the following lemma.

aaaaaa

Lemma 232 (TĚćĊ LĊĒĒĆ)
If Y is compact andN is an open set inX × Y which contains the slice {x0}× Y , then
there exists a neighbourhoodW of x0 such thatW × Y ⊆ N .

Proof: if y ∈ Y , then (x0, y) ∈ N . As N is open, there exists two neighbour-
hoods Uy of x0 and Vy of y such that Uy × Vy ⊆ N . Repeating this process for all
y ∈ Y yields an open covering {Vy}y∈Y of Y . As Y is compact, there is a ϐinite
sub-covering, say {Vy1 , . . . , Vyn}, with Uyi × Vyi ⊆ N for all 1 ≤ i ≤ n. Let

W =
n∩

i=1

Ui.

thenW is open inX as it is a ϐinite intersection of open sets. Furthermore, x0 ∈ W
as x0 ∈ Uyi for all 1 ≤ i ≤ n. Now, let (x, y) ∈ W × Y . There is a j such that y ∈ Vyj .
As x ∈ W , x ∈ Uyj . Then (x, y) ∈ Uj × Vj ⊆ N , soW × Y ⊆ N . ■

We now have all the machinery to prove the following result.

aaaaaa

Theorem 233
IfX and Y are compact, thenX × Y is compact.

Proof: let F be an open covering for X × Y . For each x ∈ X we get a ϐi-
nite sub-covering of {x} × Y from F, say F (x)1, . . . F (x)n. Let N be the open
set N =

∪n
i=1 F (x)i. By the Tube Lemma, there is a neighbourhood Wx of x

in X such that Wx × Y ⊆ N . Repeating this procedure for all x ∈ X , we
get that {Wx}x∈X is an open covering of X . But X is compact, so there is
a ϐinite sub-covering {Wx1 , . . . ,Wxm}. For each of these Wxi

, there were ni

corresponding sets F (xi)j in F. Deϐine

F′ = {F (xi)j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}.

F′ is a ϐinite open collection, with∑m
i=1 ni elements. For any (x, y) ∈ X×Y , x ∈ Wxi

for some i. Then (x, y) ∈ Wxi
× Y and (x, y) ∈ F (xi)j for some j, so

X × Y ⊆
m∪
i=1

ni∪
j=1

F (xi)j.

Thus F′ is a ϐinite sub-covering ofX × Y from F, and soX × Y is compact. ■

²It is not a simple matter to generalize to arbitrary products of compact spaces. This will be the content of
chapter 19.
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CHAPTER 17. COMPACT SPACES

Du to the complementary nature of open and closed sets, it is also possible to express com-
pactness in term of closed sets. A familyF of sets has the ϐinite intersection propertywhen-
ever

n∩
i=1

Fi ̸= ∅

for any selection Fi ∈ F, 1 ≤ i ≤ n.

aaaaaa

Theorem 234
A space X is compact if and only if every family {Fα}α of closed subsets of X having
the ϔinite intersection property has a non-void intersection, that is,

∩
α Fα ̸= ∅.

Proof: we make the following three remarks: {X \ Fα}α is an open family if
and only if {Fα}α is a closed family;∪

α

(X \ Fα) = X ⇐⇒
∩
α

Fα = ∅

and
n∪

i=1

(X \ Fαi
) = X ⇐⇒

n∩
i=1

Fαi
= ∅

for any selection Fi ∈ F, 1 ≤ i ≤ n. The theorem is easily proved using the contra-
positive statement and the three remarks. ■

There is another version of this theorem:

aaaaaa

Theorem 234 (Reprise)
A space X is compact if and only if for every family A of subsets of X satisfying the
ϔinite intersection property, the intersection

∩
A∈AA is not empty.

Proof: left as an exercise. ■

As an easy corollary we get the following result.

aaaaaa

Corollary 235 LetX be a compact space, and suppose

C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ · · ·

is a nested sequence of closed sets. Then∩
n∈N

Cn ̸= ∅.

P. Boily (uOttawa) 409



17.1. COMPACTNESS

Interest in compact spaces arose when we realized that there was something special about
intervals in the usual topology on R that made the max/min theorem come out as it did.

aaaaaa

Theorem 236 IfX has the order topology, where the ordering has the least upper
bound property, then each interval

[a, b] = {x | a ≤ x ≤ b}

is compact.

Proof: the proof is similar to that of the Heine-Borel theorem (see Proposi-
tion 125 in Chapter 9, and Theorem 237). This means that the key point of the
proof is the least upper bound property, and not the metric. ■

The ϐirst step in the process was a generalization of intervals to Rn.

aaaaaa

Theorem 237 (HĊĎēĊ-BĔėĊđ TčĊĔėĊĒ − RĊĕėĎĘĊ)
In the usual topology, the compact sets of Rn are exactly the closed and bounded sets.

Proof: since Rn is Hausdorff, any of its compact subset is closed. If C is com-
pact in Rn, it can be covered by

{(−m,m)n | m ∈ N}.

But C is compact, so it has a ϐinite sub-covering and there existsM ∈ N such that
C ⊆ (−M,M)n. Thus C is bounded.

Conversely, suppose that C is a closed bounded set. Then, there existsM ∈ N such
that C ⊆ [−M,M ]n. But [−M,M ]n and C is a ϐinite product of the compact spaces
[−M,M ], and so is itself compact. C is then compact since it is a closed subset of a
compact set. ■

Note that this result need not hold for a general metric space (where boundedness may not
be deϐined, for instance), as we shall see shortly.³

aaaaaa

Theorem 238 (MĆĝĎĒĚĒ Ćēĉ MĎēĎĒĚĒ VĆđĚĊ TčĊĔėĊĒ)
Let C be a compact subset ofX , and suppose f : X → Y is continuous, where Y has
a (total) order topology. Then f is bounded onC and actually attains its bounds there.

Proof: as C is compact and f is continuous, f(C) is compact. If f does not
have a largest value on C , then, for each a ∈ C , there exists a′ ∈ C such that
f(a) < f(a′). For any y ∈ Y , denote (−∞, y) = {z ∈ Y | z < y}.

³This is the reason for the less-than-intuitive deϐinition of compactness currently in use.
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aaaaaa

Then

{(−∞, f(a))}a∈C

is an open covering of f(C). But f(C) is compact, so there exists a ϐinite sub-
covering, say

{(−∞, f(ai))}ni=1.

Let a0 ∈ C be the ai that maximizes f(ai). Since f(a0) ∈ f(C), f(a0) ∈ (−∞, f(aj))
for some j, which means that f(a0) < f(aj) ≤ f(a0), a contradiction, since x ̸< x in
Y . Hence f has a largest value on C . The proof that f has a smallest value on C is
similar. ■

This result is the generalization to topological spaces of one of the fundamental results of
analysis (see Theorem 33 in Chapter 3.)

Metric Spaces (Reprise)
Let us revisit metric spaces from the vantage point of topology. If d is a metric on a spaceX ,
the basic open sets inX are the open balls

Bd(a, r) = {x ∈ X | d(a, x) < r}.

The topology generated by these basic sets is called themetric topology onX .⁴
Let us suppose that the metrics d and d′ generate the topologies T and T′ onX . T is ϐiner

than T′ whenever Bd′(a, r
′) is open in T for all a ∈ X , r′ ∈ R+, and so whenever there exists

r ∈ R+ such that

Bd(a, r) ⊆ Bd′(a, r
′).

aaaaaa

Example: let d be the Euclidean metric on R2 and d′ be deϐined on R2 by
d′((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}. Then

Bd(0, 1) = {(x, y) | x2 + y2 < 1}, Bd′(0, 1) = {(x, y) | −1 < x < 1 and − 1 < y < 1},

Bd(0, 1) ⊆ Bd′(0, 1) and Bd′(0,
1√
2
) ⊆ Bd(0, 1). Generalizing to all open balls, one

gets T = T′. □

⁴The collection of all open balls is a basis. Indeed, x ∈ Bd(x, 1) for all x ∈ X . The empty set is a ball of
radius 0. Suppose that y ∈ Bd(x1, r1) ∩Bd(x2, r2) ̸= ∅. Then y ∈ Bd(y, r) ⊆ Bd(x1, r1) ∩Bd(x2, r2), where

r =
min{d(x1, y)− r1, d(x2, y)− r2}

2
.
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17.1. COMPACTNESS

LetX be a metric space with metric d. The standard bounded metric d onX is the metric
deϐined by

d(x, y) = min{d(x, y), 1}

(the only property that is not trivially true is the triangle inequality). For any ball Bd(0, ε),
put δ = min{ε, 1}. Then

Bd(a, δ) ⊆ Bd(a, ε).

For a ball Bd(a, δ), if δ ≤ 1, then Bd(a, δ) = Bd(a, δ). If δ > 1, Bd(a, δ) = X . This means that
the topology generated by the bounded standardmetric d onX is the same as that generated
by the metric d. Consequently, we may assume that the metric d is bounded.

A space X is metrizable if there is a metric d on X where the metric topology on X coin-
cides with the topology on X . This leads us to one of the fundamental differences between
metric spaces and general topological spaces, a result which is simple to state, but whose
proof is surprisingly sophisticated.⁵

aaaaaa

Theorem 239
Any countable product of metrizable spaces is metrizable.

Proof: Suppose (Xn, dn) is a metric space and dn is the standard bounded
metric onXn for all n ∈ N. Let x, y ∈ X =

∏
Xn and deϐine

d(x, y) = l.u.b.
{
dn(xn, yn)

n

}
n∈N
.

It is not hard to see that this deϐines a metric on X . We need to verify that the
topology generated onX by d is that given by the product topology.

Suppose U ⊆ X is open in the product topology. If x = (xn) ∈ U , there is a
basic set∏Vn, where Vn ⊆O Xn, and Vn = Xn for all but a ϐinite number of n’s, i.e
for all n > N for someN . Then there exists εn > 0 such that B(xn, εn) ⊆ Vn for all
n ∈ N. Let

ε = min
{εn
n

}N

n=1
.

If y = (yn) ∈ B(x, ε), then d(x, y) < ε, so

dn(xn, yn)

n
≤ d(x, y) < ε ≤ εn

n

for 1 ≤ n ≤ N .

⁵As a reminder, the notationsA ⊆O X ,A ⊆C X , andA ⊆K X are used respectively forA is open inX ,A is
closed inX , andA is compact inX .
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aaaaaa

Hence d(xn, yn) < εn, and so

yn ∈ B(xn, εn) ⊆ Vn

for 1 ≤ n ≤ N and yn ∈ Xn = Vn for all n > N , so y ∈ ∏Vn and B(x, ε) ⊆
∏
Xn.

Then∏Xn is open in the metric topology. As a result, around each point of U , we
can ϐit an open set in the metric topology, i.e. U ⊆ X is open in the metric topology.

Conversely, suppose U ⊆ X is open in the metric topology. Then, if x ∈ U ,
there exists ε > 0 such that B(x, ε) ⊆ U . Choose N such that 1

N
< ε. Put

Vn = B(xn, nε) for all n, so that Vn = Xn whenever n > N (remember, the metrics
dn are standard bounded metrics). If y = (yn) ∈

∏
Vn, then dn(xn, yn) < nε for all

n ∈ N. In particular,

dn(xn, yn)

n
< ε

whenever 1 ≤ n ≤ N and

dn(xn, yn)

n
≤ 1

n
<

1

N
< ε

for all n > N . By construction,

d(x, y) = l.u.b.
{
dn(xn, yn)

n

}
n∈N
< ε.

Then y ∈ B(x, ε) and∏Vn ⊆ B(x, ε). As a result, around each point of U , we can ϐit
an open set in the product topology, i.e. U ⊆ X is open in the product topology. ■

Let (Xα, dα) be a collection (not necessarily countable) of metric spaces, where dα is a stan-
dard bounded metric onXα. Deϐine a metric d on∏αXα by

d(x, y) = l.u.b.{dα(xα, yα)}

for all x, y ∈ X .⁶ This metric is called the uniform metric, and the topology it generates on∏
αXα is called the uniform topology onX . Wewill in the solved problems that the uniform

topology is ϐiner than the product topology and coarser than the box topology, and that for
inϐinite products, the inclusions are strict.

We now introduce another concept that allows us to tell if a space is metrizable. A sequence
{xn}n ∈ N in a spaceX (not necessarily metric) converges to x ∈ X (denoted xn → x) if for
every neighbourhood V of x, there existsN ∈ N such that xn ∈ V for every n > N .

In a general topological space, the limit of a sequence is not necessarily unique!
⁶The only non-trivial component here is again the triangle inequality.
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aaaaaa

Examples (LĎĒĎęĘ)
1. Let X = [0, 1], where the basic open sets in X are of the form (a, b) and

[0, a) ∪ (b, 1] for 0 < a < b < 1. In the topology generated by this basis, every
neighbourhood of 0 is a neighbourhood of 1, and vice-versa. Thus 1

n
→ 0 as

usual, but 1
n
→ 1 as well.

2. LetX be a space with the indiscrete topology. Then every sequence inX con-
verges to every element ofX . □

Suppose{an}n∈N is a sequence in a setA ⊆ X , and letan → a ̸∈ A. Then a is a limit point ofA.
Indeed, for any neighbourhood V of a, there is some indexN for which an ∈ V when n > N .
Consequently, an ∈ V ∩ A and a ̸= an for all n > N (as a ̸∈ A), so a ∈ A.

In general, if a sequence inA converges to a point not inA, the limit is a limit point. How-
ever, the converse statement is false: if a ∈ A, there might not be a sequence inA converging
to a, as can be seen in the next example.⁷

aaaaaa

Example: let Ω be the ϐirst uncountable ordinal; let X be the set Ω+ = Ω ∪ {Ω},
with the order topology. Consider A = Ω = [0,Ω). Suppose the sequence {αn}n∈N,
where αn ∈ A, has the limit α. As

αn ≤
∪
m∈N

αm = β,

then α ≤ β. But β is a countable union of countable sets, hence it is countable.
Therefore, β < Ω, so α < Ω and αn ̸∈ (β,Ω) for all n ∈ N. Now A = [0,Ω], and so
Ω ∈ A, but no sequence in A converges to Ω. □

This example may seem a bit far-fetched, but that is the nature of the discipline – in general
topology, exotic counter-examples are entirely legitimate. In metric spaces, however, things
tend to be substantially better behaved.

aaaaaa

Lemma 240 (SĊĖĚĊēĈĊ LĊĒĒĆ)
LetX be a metrizable space. For any subsetA ofX , if a ∈ A, then there is a sequence
{an}n∈N ⊆ A with an → a.

Proof: let d be the metric generating the topology on X . For each n ∈ N,
construct the neighbourhood B(a, 1

n
). As a ∈ A, we have A ∩ B(a, 1

n
) ̸= ∅ for

all n ∈ N. Let an ∈ A ∩ B(a, 1
n
) for all n ∈ N. Then an → a. Indeed, let V be a

neighbourhood of a. Then there is a basic neighbourhood B(a, ε) ⊆ V . Let N ≥ 1
ε
.

Then, whenever n > N , we get d(a, an) < 1
n
< 1

N
≤ ε, hence an ∈ V and an → a. ■

⁷The example requires some familiaritywith the ϐirst uncountable ordinal, see https://en.wikipedia.
org/wiki/First_uncountable_ordinal for details.
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CHAPTER 17. COMPACT SPACES

Next, we see that one of the sacred cows of analysis see Proposition 106 in Chapter 8) may
not necessarily hold in general topological spaces.

aaaaaa

Theorem 241
The function f : X → Y is continuous if, whenever an → a inX , then f(an) → f(a)
in Y . IfX is metrizable, the converse holds.

Proof: suppose that f is continuous and an → a in X . Let V be a neighbour-
hood of f(a). Then f−1(V ) is a neighbourhood of a, and so there existsN such that
an ∈ f−1(V )whenever n > N . Then f(an) ∈ V whenever n > N and f(an)→ f(a)
in Y .

Conversely, suppose X is metrizable and that the sequence condition holds.
LetA ⊆ X . By the sequence lemma, if a ∈ A, there is a sequence {an}n∈N ⊆ A such
that an → a. By hypothesis, f(an) → f(a), so f(a) ∈ f(A), as f(an) ∈ f(A) for all
n ∈ N. Hence f(A) ⊆ f(A)which is equivalent to f being continuous. ■

17.2 Limit Point and Sequential Compactness
Throughout the history of topology, many deϐinitions of compactness have been formulated.
At the time, each were thought to have isolated the crucial property of a set like [0, 1] that
made the maximum/minimum theorem possible, amongst others.

As our understanding of topology increased, these different notions were discarded, to be
replaced by themodern concept. But the failed candidates are interesting in their own rights,
as they coincide with compactness in the case of metric spaces, as we shall see.

A subset A in a spaceX is said to be sequentially compact if every sequence {an}n∈N ⊆ A
contains a convergent subsequence. A subset A in a space X is said to be limit point com-
pact if every inϐinite subset ofA has a limit point.The next few results show how the various
compactness notions are related.

aaaaaa

Proposition 242
IfX is compact, thenX is limit point compact.

Proof: suppose X is compact and let A be a subset of X with no limit point.
Then A = A, and A is closed, so compact. Also, for any a ∈ A, there is a neighbour-
hood Va such that Va ∩ A = {a}. Thus {Va}a∈A is an open covering of A. Since A is
compact, there is a ϐinite sub-covering {Vai}ni=1. But

A = A ∩

(
n∪

i=1

Vai

)
=

n∪
i=1

(A ∩ Vai) =
n∪

i=1

{ai}.

HenceA is ϐinite. By contraposition,X is limit point compact. ■
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aaaaaa

Proposition 243
IfX is a limit point compact metric space, thenX is sequentially compact.

Proof: let {an}n∈N ⊆ X , and write A = {a1, a2, . . .}. If A is ϐinite, there has
to exist a constant (hence convergent) subsequence {anm}m∈N. Otherwise,A is inϐi-
nite. AsX is limit point compact,A has a limit point, say a and every neighbourhood
of a contains a point in A different from a. In particular, since X is a metric space,
for eachm ∈ N,B(a, 1

m
) is a neighbourhood of a and there exists anm ∈ B(a, 1

m
)∩A

such that anm ̸= a. By construction, anm → a, soX is sequentially compact. ■

aaaaaa

Proposition 244
IfX is sequentially compact, thenX is limit point compact.

Proof: let A be an inϐinite subset of the X . Then A contains a countable sub-
set {a1, a2, . . .}. As X is sequentially compact, there is a convergent subsequence
anm → a. By construction, a is a limit point of A andX is limit point compact. ■

The following result to show that the notions of compactness are equivalent formetric spaces.

aaaaaa

Theorem 245
Let X be a compact metric space. For any open covering F of X , there is a number
δ > 0 satisfying the following property: if A ⊆ X is such that diam(A) < δ, then
there exists F ∈ F such that A ⊆ F .

Proof: we prove the theorem by contradiction. Let F be an open covering of
X , and suppose that no δ satisfying the property exists. Then, for each n ∈ N, we
can ϐind a set An such that diam(An) <

1
n
where An ⊈ F for all F ∈ F. As An ̸= ∅

for all n ∈ N, we can select an ∈ An for all n ∈ N, and get the sequence {an}n∈N.

In a metric space, compactness implies sequential compactness, so there is a
convergent subsequence {anm}m∈N, with anm → a ∈ X . Pick F ∈ F such that
a ∈ F . As F is open, there exists r > 0 such thatB(a, 2r) ⊆ F.

Since the subsequence is convergent, there is a number N ∈ N such that
anm ∈ B(a, r) for all nm > N . Pick nm > such that 1

nm
< r. If x ∈ Anm , then

d(x, a) ≤ d(x, anm) + d(anm , a) <
1

nm

+ r < 2r

since diam(Anm) <
1
nm

and Ank
⊆ B(a, 2r) ⊆ F, a contradiction. So there must be

a number δ > 0 satisfying the property. ■

The number δ in the proof of Theorem 245 is called a Lebesgue number of the covering F.
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We need one more deϐinition before we are ready to prove our big result. A metric spaceX
is totally bounded if, for every ε > 0,X can be covered by a ϐinite number of ε-balls.

aaaaaa

Theorem 246
In a metric space, compactness, sequential compactness, and limit point compactness
are equivalent.

Proof: according to Propositions 242, 243, and 244, it only remains to show
that a sequentially compact set X is compact. Let F be an open covering of X , and
suppose X is not totally bounded. Then there exists ε > 0 such that there is no
ϐinite covering ofX by ε-balls.

Let x1 ∈ X . As B(x1, ε) ̸= X , select x2 ∈ X \ B(x1, ε). It is possible to
select

xn+1 ∈ X \
n∪

i=1

B(xi, ε)

since∪n
i=1B(xi, ε)doesnot coverX . By recursion, {xn}n∈N is a sequence, and it con-

tains a converging subsequence {xnm}m∈N, where xnm → x, sinceX is sequentially
compact. Then, there existsM such that xnm ∈ B(x, ε

2
) and

d(xnm+1 , xnm) ≤ d(x, xnm+1) + d(x, xnm) <
ε

2
+
ε

2
= ε

whenever m > M . But this yields xnm+1 ∈ B(xnm , ε), which is a contradiction by
construction of the sequence {xn}n∈N. HenceX must be totally bounded.

Let 3ε be a Lebesgue number of F. Then there exists a ϐinite collection
B = {B(yi, ε)}ni=1 covering X . As diam(B(yi, ε)) ≤ 2ε < 3ε, ∃Fi ∈ F such
that B(yi, ε) ⊆ Fi for all 1 ≤ i ≤ n. If x ∈ X , then x ∈ B(yi, ε) ⊆ Fi for some i.
Since B is a ϐinite covering of X , {Fi}ni=1 is a ϐinite sub-covering of X , and so X is
compact. ■

The converse of Proposition 242 is not in general true, as can be seen in the following exam-
ple (which again uses the smallest uncountable ordinal).

aaaaaa

Example: letΩ be the ϐirst uncountable ordinal, and letX be the setΩ+ = Ω∪{Ω},
with the order topology. Now, Ω is limit point compact. Indeed, suppose C is an
inϐinite (countable) subset of Ω. Then C is bounded above by ∪γ∈C γ = β, and so
C ⊆ [0, β]. It is clear that Ω has the l.u.b. property, so, by Theorem 236, [0, β] is
compact. By Proposition 242, [0, β] is limit point compact, and so C contains a limit
point. ThusΩ is limit point compact. ButΩ isn’t closed in the Hausdorff spaceX , so
Ω is not compact. □
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17.3 Local Compactness and One-Point Compactiϐication
By analogy with local connectedness, we can also deϐine a notion of local compactness: a
spaceX is locally compact at x ∈ X if there exists a compact set C which contains a neigh-
bourhood V of x. We say thatX is locally compact if it is locally compact at each x ∈ X .

There is an equivalent deϐinition if X is Hausdorff space. For each x ∈ X , if there exists
a neighbourhood V and a compact set C such that x ∈ V ⊆ C , then, asX is Hausdorff, C is
closed, so V ⊆ C , and x has a neighbourhood with compact closure.

aaaaaa

Examples (LĔĈĆđ CĔĒĕĆĈęēĊĘĘ)
1. Every compact space is locally compact.

2. R is locally compact, since, for any basic open set ]a, b[, the closure [a, b] is com-
pact. Similarly, Rn is locally compact for all n ∈ N. However Rω is not locally
compact in the product topology. Indeed, let

V = (a1, b1)× · · · (an, bn)× R× · · ·

be a basic neighbourhood in the product topology. Then

V = [a1, b1]× · · · [an, bn]× R× · · · ,

which is not compact in the product topology. □

LetX be a locally compact Hausdorff space, and suppose that∞ is a point not inX . Construct
a new set Y = X ∪ {∞}, with the following topology: V ⊆O Y if either

V = U ⊆O X whenever∞ ̸∈ V , or;
V = Y \ C , where C is a compact subset ofX whenever∞ ∈ V .

This is indeed a topology on Y , as we see presently.
1. ∅ is an open set of type 1, Y is an open set of type 2.
2. Let V1, V2 ⊆O Y . Then

a) V1, V2 ⊆O X , so V1 ∩ V2 ⊆O X , hence V1 ∩ V2 ⊆O Y ; or
b) V1 ⊆O X and V2 = Y \ C , where C ⊆K X . Then

V1 ∩ V2 = V1 ∩ (Y \ C) = V1 ∩ (X \ C) ⊆O Y,

as C is closed inX , sinceX is Hausdorff; or
c) V1 = Y \ C1, V2 = Y \ C2 where C1, C2 ⊆K X . Then

V1 ∩ V2 = (Y \ C1) ∩ (Y \ C2) = Y \ (C1 ∪ C2) ⊆O Y,

since C1 ∪ C2 ⊆K X whenever C1, C2 ⊆K X .
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3. a) Vβ ⊆O X , so∪β Vβ ⊆O X , hence∪β Vβ ⊆O Y ; or
b) Vα ⊆O X (i.e∪α Vα ⊆O X) and Vβ = Y \ Cβ , where Cβ ⊆K X . Then(∪

α

Vα

)
∪

(∪
β

Vβ

)
=

(∪
α

Vα

)
∪

(∪
β

(Y \ Cβ)

)
=

(∪
α

Vα

)
∪

(
Y \

∩
β

Cβ

)

= Y \

(∩
β

Cβ −
∪
α

Vα

)
⊆O Y,

as∩β Cβ −
∪

α Vα is compact since it is a closed subset of a compact set; or
c) Vβ = Y \ Cβ , where Cβ ⊆K X . Then∪

β

Vβ =
∪
β

(Y \ Cβ) = Y \ (
∩
β

Cβ) ⊆O Y,

since∩β Cβ ⊆K X whenever Cβ ⊆K X .
The subspace topology onX agrees with the original topology onX . Indeed, in the subspace
topology, open sets look like V ∩X , where V ⊆O Y . If∞ ̸∈ V , then V ∩X = V ⊆O X in the
original topology.

On the other hand, if∞ ∈ V , V = Y \ C for some compact C , and V = Y \ C = X \ C .
But X is Hausdorff, so C is closed, and V ⊆O X in the original topology. Conversely, every
open set in the original topology is an open set of type 1 in the subspace topology.

aaaaaa

Theorem 247

Let X be a non-compact locally compact Hausdorff space and ∞ ̸∈ X . Then
Y = X ∪ {∞} is compact Hausdorff with the topology deϔined above andX = Y.

Proof: let F be an open covering of Y . Then, there exists F0 ∈ F with∞ ∈ F0. By
deϐinition, C = Y \ F0 is a compact subset of X and F′ = {F ∩ X}F∈F′ is an open
covering of C inX . As C is compact, there is a ϐinite sub-covering

{F1 ∩X, . . . , Fn ∩X}

of C . Hence {F0, F1, . . . , Fn} is a ϐinite sub-covering of Y and Y is compact.

As X is not compact, {∞} = Y \ X is not open in Y . So every neighbour-
hood of∞ looks like Y \ C , where C ⊊K X , and so meetsX . By deϐinition,∞ is a
limit point ofX in Y , soX = Y .

We show now that Y is Hausdorff. If x ̸= y ∈ X , there are open neighbour-
hoods in X satisfying the T2 condition as X is Hausdorff. So suppose x ∈ X and
y =∞. AsX is locally compact, there is a compact set C and a neighbourhood V of
x such that x ∈ V ⊆ C . Then U = Y \ C is a neighbourhood of∞ and U ∩ V = ∅,
which proves that Y is Hausdorff. ■
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The space Y is the one-point compactiϐication of X .

aaaaaa

Examples (OēĊ-PĔĎēę CĔĒĕĆĈęĎċĎĈĆęĎĔē)
1. Let X = R. Then X is a non-compact locally compact Hausdorff space. By

Theorem 247, there is a one-point compactiϐication Y = X ∪ {∞} ofX . Y is
in fact homeomorphic to

S1 = {(x, y) | x2 + y2 = 1},

through the homeomorphism f : S1 → Y deϐined by f(x, y) = x
1−y

whenever
y ̸= 1 and f(0, 1) =∞.

2. Let X = R2. Then X is a non-compact locally compact Hausdorff space. By
Theorem 247, there exists a one-point compactiϐication Y , orX ∪ {∞} ofX .
Y is in fact homeomorphic to

S2 = {(x, y, z) | x2 + y2 + z2 = 1},

through the homeomorphism f : S2 → Y deϐined by

f(x, y, z) =

(
x

1− z
,

y

1− z

)
whenever z ̸= 1 and f(0, 0, 1) =∞.

17.4 Solved Problems
1. Let B be a basis for a topology on a space X . Show that a subset A of X is compact if

and only if every covering ofA by sets fromB has a ϐinite subcovering.
Proof: ifA ⊆K X , then every open covering ofA contains a ϐinite subcovering ofA.
But every covering of A by sets from B is an open covering of A as all sets in B are
open, and so contains a ϐinite subcovering ofA.

Conversely, suppose that every covering ofA by sets fromB contains a ϐinite subcov-
ering ofA, and let U = {Uγ}γ∈Γ be an open covering ofA. SinceUγ ⊆O X , and since
B is a basis for the topology on X , there exists, for each γ ∈ Γ, a subset Bγ ⊆ B
such that

Uγ =
∪

B∈Bγ

B.

Thus, the collection {B|B ∈ Bγ for some γ ∈ Γ} is a covering of A by sets from
B, and by hypothesis, it contains a ϐinite subcovering of A, say {B1, . . . , Bn}. Now,
for 1 ≤ i ≤ n, choose Ui ∈ U such that Bi ⊆ Ui. Then {U1, . . . , Un} is a ϐinite
subcovering ofA, andA ⊆K X . ■
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2. Let A and B be disjoint compact subsets of the Hausdorff space X . Show that there
exist disjoint open sets U and V containing A andB, respectively.

Proof: assume thatA,B ̸= ∅, otherwise the statement is vacuously true. Let b ∈ B.
SinceX is Hausdorff and A ∩ B = ∅, for every a ∈ A, there exists Ub,a, Vb,a ⊆O X ,
such that a ∈ Ub,a, b ∈ Vb,a and Ub,a ∩ Vb,a = ∅. The collection {Ub,a}a∈A is an
open covering of A ⊆K X , and so we can extract from it a ϐinite subcovering, say
{Ub,a1 , . . . , Ub,an}. Now, put

U(b) =
n∪

i=1

Ub,ai and V (b) =
n∩

i=1

Vb,ai .

ThenA ⊆ U(b),U(b), V (b) ⊆O X andU(b)∩V (b) ̸= ∅. This process canbe repeated
for every b ∈ B so that {V (b)}b∈B covers B. Since B ⊆K X , we can extract a ϐinite
subcovering ofB, say {V (b1), . . . , V (bm)}. Let

V =

m∪
i=1

V (bi) and U =

m∩
i=1

U(bi).

Then U, V ⊆O X ,A ⊆ U ,B ⊆ V and U ∩ V = ∅. Indeed

U ∩ V = U ∩ (
∪m

i=1 V (bi)) =
∪m

i=1(U ∩ V (bi))

⊆
n∪

i=1

(V (bi) ∩ U(bi)) =
m∪
i=1

∅ = ∅,

and the statement is proven. ■

3. Show that [0, 1] is not compact in Rl. Is it compact in the countable complement topol-
ogy on R?

Proof: we prove the statement by exhibiting an open covering of [0, 1] from which it
is impossible to extract a ϐinite subcovering. Let

U = {[1, 2)} ∪ {[0, 1− 1/n)}n≥2 .

Then U is an open covering of [0, 1] since

[0, 1) ⊆
∪
U∈U

U = [0, 2),

and since [a, b) is open inRl for all a < b inR. Any subcovering of [0, 1)must contain
[1, 2) as 1 ̸∈ [0, 1− 1/n) for all n ≥ 2. Any ϐinite subcovering must then look like

V = {[1, 2), [0, 1− 1/n1), . . . , [0, 1− 1/nm)} ,

where the ni’s are ordered such that n1 > n2 > . . . > nm ≥ 2. With this ordering,
m−1∪
i=1

[0, 1− 1/ni) ⊆ [0, 1− 1/nm).
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However, 1 − 1/(nm − 1) ̸∈ [0, 1 − 1/nm) and 1 − 1/(nm − 1) ̸∈ [1, 2). Any ϐinite
subcollectionV taken from U cannot cover all of [0, 1], so [0, 1] is not compact in Rl.

We show now that [0, 1] is not compact in R with the ϐinite complement topology.
First, recall that a space is compact if and only if every family C = {Cα} of closed
subsets having the ϐinite intersection property, that is∩n

i=1Cαi ̸= ∅ for all Cαi ∈ C,
1 ≤ i ≤ n, has a non-empty intersection:∩

α

Cα ̸= ∅.

We construct a family of closed subsets having the ϐinite intersection property, while
their full intersection is empty. The closed subsets of [0, 1] in this topology are the
countable subsets of [0, 1], as well as [0, 1] itself. Now let

An =

{
1

m

}
m≥n

⊆ [0, 1]

for all n ∈ N. Each of the An ̸= ∅ is countable and so closed in [0, 1]. Now, take
An1 , . . . , Ank

, where nk > nk−1 > . . . > n1. By construction,
k∩

i=1

Ani = Ank
̸= ∅.

But ∩n∈NAn = ∅, since, otherwise, there would existm ∈ N such that 1
m ≤

1
n for

all n ∈ N, a contradiction. We can thus conclude that [0, 1] is not a compact subspace
in the ϐinite complement topology. ■

4. LetX be a locally compact space. If f : X → Y is continuous, is the space f(X) neces-
sarily locally compact? What if f is both continuous and open?

Proof: letX = {−1} ∪ (0, 1) be a subspace of R and

T = {(x, sin(1/x)) | 0 < x < 1} ∪ {(0, 0)}

be a subspace of R2. This is the topologist’s sine curve. Let f : X → T be the map
sending −1 to (0, 0) and x to (x, sin(1/x)) for 0 < x < 1. This map is continuous,
since the pre-image of open subsets ofT in the subspace topology are unions of open
intervals inX , possiblywith {−1}. Furthermore, f(X) = T . X is clearly locally com-
pact at x for 0 < x < 1. And {−1} is a compact neighbourhood of {−1}, so that X
is locally compact at−1. But T is not locally compact at (0, 0). Indeed any candidate
for a compact subset around (0, 0)must contain an inϐinity of pointswho are as close
as desired from the slice {0} × [−1, 1]. Hence, no such sets are closed in R2, and so
they can not be compact.

Suppose f is continuous and open. Then for any y ∈ f(X) there exists x ∈ X such
that f(x) = y. The space X is locally compact so there is a compact set Cx and an
open set Ux such that x ∈ Ux ⊆ Cx. Now, applying f yields

y = f(x) ∈ f(Ux) ⊆ f(Cx).
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Since f is continuous andopen f(Cx) is compact and f(Ux) is open. So f(X) is locally
compact at f(x) for all f(x) ∈ f(X), and f(X) is locally compact. ■

5. Show that [0, 1]ω is not locally compact in the uniform topology.
Proof: Throughout, we assume that [0, 1]ω has the uniform topology. Let δm,n be
the Kronecker δ, and let dm = (δm,n)n∈N. Hence dm ∈ [0, 1]ω for all m ∈ N and
dU (dm, dk) = 1 whenm ̸= k. Consequently, the sequence d1, d2, . . . has no conver-
gent subsequence. Now, consider the open ball B(x, r) in [0, 1]ω . It contains a se-
quence (xn ± rdn

2 )n∈N,⁸ with no convergent subsequence. Hence B(x, r) can not be
contained in a compact set as compact set are sequentially compact in [0, 1]ω . Thus
[0, 1]ω is not locally compact in the uniform topology. ■

6. Let TP , TU , TB denote the product, uniform and box topologies respectively on Rω .

a) Show that TB is strictly ϐiner than TU .
b) In which of the topologies are the following functions from R to Rω continuous?

i. f(t) = (t, 2t+ 1, 3t+ 2, 4t+ 3, . . .)

ii. g(t) = (t/2, t/3, t/4, t/5, . . .)

c) In which of the topologies do the following sequences converge?

x1 = (1, 1, 1, 1, . . .) y1 = (1, 0, 0, 0, . . .)

x2 = (0, 22, 22, 22, . . .) y2 = ((1/2)2, (1/2)2, 0, 0, . . .)

x3 = (0, 0, 33, 33, . . .) y3 = ((1/3)3, (1/3)3, (1/3)3, 0, . . .)

x4 = (0, 0, 0, 44, . . .) y4 = ((1/4)4, (1/4)4, (1/4)4, (1/4)4, . . .)

...
z1 = (1, 1, 0, 0, . . .)

z2 = ((1/2)2, (1/2)2, 0, 0, . . .)

z3 = ((1/3)2, (1/3)2, 0, 0, . . .)

z4 = ((1/4)4, (1/4)4, 0, 0, . . .)

...

Solution:
a) LetB(x, εx) be an open ball in the uniform topology. The set

Bx =
∏
n∈N

(
xn −

εx
4
, xn +

εx
4

)
is open in the box topology, and x ∈ Bx ⊆ B(x, εx). Indeed, let z ∈ Bx. Then
dn(xn, zn) <

εx
2 for all n ∈ N, so

d(x, z) = l.u.b.{dn(xn, zn)} ≤
εx
2
< εx,

⁸Select either one of+ or− so that xn stays in [0, 1].
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and thus z ∈ B(x, εx). Now suppose x ̸= y ∈ B(x, εx). As B(x, εx) is open in
the uniform (metric) topology, there exists εy > 0 such thatB(y, εy) ⊆ B(x, εx).
Using the same reasoning as above yields

y ∈ By ⊆ B(y, εy) ⊆ B(x, εx),

where By is open in the box topology for all y ∈ B(x, εx). Hence, around each
point ofB(x, εx), we can ϐit an open set in the box topology, i.e. B(x, εx) is open
in the box topology and TU ⊆ TB .

We show that TU ⊊ TB by showing that Rω is not metrizable in the box topol-
ogy. Since Rω has a metric in the uniform topology, TB is strictly ϐiner than
TU . Let X = Rω and A = (0, 1)ω . Clearly 0 = (0, 0, 0, . . .) ∈ A since, in the
box topology every neighbourhood of 0 contains positive sequences. However,
there is no sequence xn ∈ A such that xn → 0. Suppose xn is a sequence in A.
Then,

x1 = (x1,1, x1,2, x1,3, . . .)

x2 = (x2,1, x2,2, x2,3, . . .)

x3 = (x3,1, x3,2, x3,3, . . .)

...

Let ε < 0, and construct the open set (in the box topology)

Uε =
∏
m∈N

(ε, ym),

where 0 < ym < xm,m for allm ∈ N. By construction, Uε is a neighbourhood of
0 in the box topology, and xn ̸∈ Uε for all n ∈ N. Hence, xn can not converge to
0. By the Sequence Lemma, Rω (in the box topology) is not metrizable.

b) Both of the functions are continuous in the product topology as each of the com-
ponents are continuous. In the uniform topology, f is not continuous. Indeed,
let ε = 1/2. Then, for every δ > 0,

dU (f(x), f(x+ δ)) = l.u.b.{min{nδ, 1}} = 1 > ε.

In the box topology f is not continuous. Indeed, let

U =
∏
n∈N

(
n2 − n− 1

n
,
n2 − n+ 1

n

)
.

U is open, but f−1(U) = {0}⁹ which is closed in R. Similarly, g isn’t continuous
in the box topology. Let

V =
∏
n∈N

(
− 1

(n+ 1)2
,

1

(n+ 1)2

)
.

⁹t ∈ f−1(U) ⇐⇒ f(t) ∈ U ⇐⇒ n2−n−1
n < nt+ (n− 1) < n2−n+1

n ∀n ⇐⇒ − 1
n < nt < 1

n ∀n ⇐⇒ t = 0.
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V is open, but g−1(V ) = {0}¹⁰ which is closed in R. But it is continuous in the
uniform topology. Indeed, let ε > 0 and put δ = 2ε. If |x− y| < δ, then

dY (g(x), g(y)) < l.u.b.{min{δ/(n+ 1), 1}} = 1

2
δ = ε.

c) All three sequences have to converge to 0 = (0, 0, 0...) if they converge at all.
They all converge in the product topology. Indeed, suppose U is a basic neigh-
bourhood of 0 in the product topology. Then

U = U1 × U2 × · · · × Um × R× R× · · ·

for some m ∈ N, and where each of the Ui =]ai, bi[ are basic neighbourhood
of 0 in R. The sequence xn lies in U for n > m, yn lies in U for all n such that(
1
n

)n
< min1≤i≤m{bi},¹¹ and zn lies in U for all

n >
1

(min1≤i≤m{bi})2
.

Let’s look at what happens in the uniform topology. The sequence xn does not
converge to 0. Indeed, letB(0, ε) be a ε-neighbourhood of 0, so

B(0, ε) = {ξ | l.u.b.|ξi| < ε}.

For the sequence xn,

l.u.b.{min{|xnj |, 1}} = 1,

which is bigger than every ε < 1. Hence, there does not exist a N for which
xn ∈ B(0, ε)when n > N , and ε < 1. At the same time, (xn) does not converge
in the box topology. For yn, zn, all elements of the sequence are less than 1 for
large enough n, so we can forget about the metric being bounded, and

l.u.b.{|ynj |} = (1/n)n

l.u.b.{|znj |} = (1/n)2.

For these least upper bounds, there exists N such that yn, zn ∈ B(0, ε) when-
ever n > N , so the sequences converge to 0 in the uniform topology.¹² In the
box topology, (yn) doesn’t converge, but (zn) does. □

¹⁰t ∈ g−1(V ) ⇐⇒ g(t) ∈ V ⇐⇒ − 1
(n+1)2 <

t
n+1 <

1
(n+1)2 ∀n ⇐⇒ − 1

n+1 < t < 1
n+1 ∀n ⇐⇒ t = 0.

¹¹As f(x) = x−x is eventually decreasing, yn is eventually in U for all n > N .
¹²Wait, you say. For this sequence to converge to 0, every neighbourhhod of 0must contain all yn whenn > N

for someN . Ah, but every neighbourhood of 0 containsB(0, ε) for some ε > 0, and this ball contains all yn when
n > N , so the original neighbourhood did as well...
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17.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. LetX be the subspace

X =

{
t

1 + t
eit
∣∣∣∣ t ≥ 0

}
∪ {eiπ}.

Give detailed answers to the following:

a) IsX compact?
b) IsX locally compact?

3. Prove that if Y is compact and N is an open set in X × Y containing {x0} × Y , then
there is a neighbourhoodW of x0 such thatW × Y ⊆ N .

4. If Y is compact, show that the projection π1 : X × Y → X is closed.

5. Prove Theorem 234 (Reprise) and Corollary 235.

6. Show that the standard bounded metric d and the uniform metric are indeed metrics
on (X, d).
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