Chapter 17

Compact Spaces

In Chapter 9, we discussed compactness in the context of metric spaces.
In this chapter, we discuss the notion from a topological perspective.

17.1 Compactness

A covering of a space X is a family § of subsets of X such that

Ur=x

Feg

A subset Y of X is covered by a family § if
YCc|JF

We say that § is an open covering when every F' € § is open. A sub-collection A C § that
still covers X is called a sub-covering of X.

Examples (COVERINGS AND SUB-COVERINGS)

1. Consider the sets § = {(a,b) | a < b € R}, A = {(a,b) | a < b € Q} and
¢ ={(n—1,n+1) | n € Z}. Then F is an open covering of R, A and ¢ are
sub-coverings, but £ has no proper sub-covering.

2. The collection § = {[a,b) | a < b € R} is an open covering of R,. O

A space X is compact if every open covering of X contains a finite sub-covering. A subspace
C of X is compact in X if every open covering of C contains a finite sub-covering.

1This definition seems rather straightforward, on the face of it, but it is the culmination of a rather long and
arduous process, with dead ends and wrong turns - we will look into some of these in the coming pages.
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17.1. COMPACTNESS

Examples (COMPACT SPACES)

1. R is not compact, since the covering £ from the previous example contains no
proper sub-covering, hence no finite sub-covering.

2. Let X = {0} U{% | n € N}. Any open covering of X will contain a neighbour-
hood of 0, say V. For some N, we have % € Vyforalln > N. For each n
such that 1 < n < N, pick V,, from the open covering such that % € V.. Then
{Vo, V1,...,V,} is a sub-covering, so X is compact. O

It takes some practice to get the hang of the definition.

Theorem 228
Every closed subset C' of a compact set X is compact.

Proof: suppose {U,}, is an open covering of C. As C is closed, X \ C is
open and {U, }, U{X \ C} is an open covering of X. As X is compact, there exists
a finite sub-covering of X, say {Uy, }i-,. If X \ C = U,, for some j, discard U,,.
The remaining ~{UOM.}?(7,£].):1 is a finite sub-covering of C' In the other case, the finite
sub-covering of X is clearly a finite sub-covering of C'. Hence C'is compact. |

In general, the converse is not true (see example 1 on p. 407). However, it holds for a broad
class of spaces.

406

Theorem 229
If X is Hausdorff, every compact subset of X is closed.

Proof: let Y be a compact subset of X. As X is Hausdorff, if ¢ Y, for each
y € Y, there is two disjoint neighbourhoods U, of y, V, of z. Then {U,},cy is an
open covering of Y. But Y is compact so there is a finite sub-covering, say {U,, }I ;.

Now, write

n n

V=V, and U=|]U,.

i=1 i=1
Then V is a neighbourhood of x such that
vny cvnu = Jvnu,) =e.
i=1

Hence we can fit an open set V around every = ¢ Y, which means X \ Y is open and
Y is closed. |
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CHAPTER 17. COMPACT SPACES

Note that we have in fact proven the following result.

Corollary
If X is Hausdorff, and C' is a compact subset of X, then for x ¢ C, there exists disjoint
open sets U, V such thatx € V and C C U.

What can we say when the spaces are not Hausdorff? Depends on the situation, actually.

Examples

1. If X = {a, b} has the indiscrete topology, then every subset of X is compact.
In particular, {a} is compact. However, it is not closed since {b} is not open.

2. In R with the finite complement topology, every subset is compact. Indeed, let
C be a subset of R, with open covering §. For F' € §, F' covers C for at most
a finite number of points, say {¢;}",. Pick F; € § such that ¢; € F; for all .
Then {F, Fy, ..., F,} covers C, and so C is compact.

In the topology of the last example, even the open sets are compact. This does not contradict
Theorem 229 since R is not Hausdorff in the finite complement topology. As it happens, com-
pactness is a topological notion.

Theorem 230
The continuous image of a compactset C C X by f : X — Y is compact.

Proof: let § be an open covering of f(C). By continuity, {f '(F)}rez is an
open covering of C. So there is a finite sub-covering, say { f ~*(F1),..., f'(F,)}, as
C'is compact, and

fe)c s (U fl(ﬂ)) s U

Then {F},. .., F,} covers f(C),and so f(C) is compact. |

There are all sorts of results about compact spaces and continuous functions.

Theorem 231
If X is compact, Y is Hausdorff, and f : X — Y is a continuous bijection, then f is a
homeomorphism.

Proof: let C' be a closed subset of X. As X is compact, C' is compact. Since
f : X — Y is continuous, f(C) is compact in Y and thus closed in Y, as Y is
Hausdorff. So f is closed. As f is a continuous bijection, f is a homeomorphism. W
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17.1. COMPACTNESS

As we had done with connectedness, we would like to show that finite products of compact
spaces are compact.” To do this we will need the following lemma.

Lemma 232 (TUBE LEMMA)
IfY is compact and N is an open set in X x Y which contains the slice {z} x Y, then
there exists a neighbourhood W of z( such that W x Y C N.

Proof: if y € Y, then (z9,y) € N. As N is open, there exists two neighbour-
hoods U, of x5 and V,, of y such that U, x V,, C N. Repeating this process for all
y € Y yields an open covering {V,},cy of Y. As Y is compact, there is a finite
sub-covering, say {V,,,...,V,, },withU,, x V, C N forall1 <i <n. Let

then I is open in X as it is a finite intersection of open sets. Furthermore, xro € W
asxg € Uy, forall 1 <i < n. Now,let (z,y) € W x Y. Thereisa j such thaty € V..
Asx € W,z € Uy,. Then (z,y) € U; x V; C N,soW xY C N. |

We now have all the machinery to prove the following result.

Theorem 233
If X and Y are compact, then X x Y is compact.

Proof: let § be an open covering for X x Y. For each x+ € X we get a fi-
nite sub-covering of {z} x Y from §, say F(z),... F(x),. Let N be the open
set N = J_, F(z);. By the Tube Lemma, there is a neighbourhood W, of z
in X such that W, x Y C N. Repeating this procedure for all x € X, we
get that {IW,}.cx is an open covering of X. But X is compact, so there is
a finite sub-covering {W,,,...,W,, }. For each of these W,, there were n,
corresponding sets F'(x;), in §. Define

§F={F(x;); | 1<i<m,1<j<n;}.

§' is a finite open collection, with >~ | n; elements. Forany (z,y) € X xY,z € W,
for some i. Then (z,y) € W,, x Y and (z,y) € F(z;); for some j, so

m n,

X xv c|JUF);

i=1j=1

Thus §' is a finite sub-covering of X x Y from §, and so X x Y is compact. [ |

%It is not a simple matter to generalize to arbitrary products of compact spaces. This will be the content of

chapter 19.
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CHAPTER 17. COMPACT SPACES

Du to the complementary nature of open and closed sets, it is also possible to express com-
pactness in term of closed sets. A family § of sets has the finite intersection property when-
ever

(F+#o
=1
for any selection F; € §,1 <1 < n.

Theorem 234
A space X is compact if and only if every family {F,},, of closed subsets of X having
the finite intersection property has a non-void intersection, that is, (), F., # @.

Proof: we make the following three remarks: {X \ F,}, is an open family if
and only if { 7}, },, is a closed family;

UX\F) =X <= (F.=2
and

n

UX\F.)=X <= ﬁFaizg

=1 =1

for any selection F; € §,1 < ¢ < n. The theorem is easily proved using the contra-
positive statement and the three remarks. [

There is another version of this theorem:

Theorem 234 (Reprise)
A space X is compact if and only if for every family A of subsets of X satisfying the
finite intersection property, the intersection () . AX Is not empty.

Proof: left as an exercise. [ |

As an easy corollary we get the following result.
Corollary 235 Let X be a compact space, and suppose
Ci20C;,2--2C, 2

is a nested sequence of closed sets. Then

() Cn# 2.

neN
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17.1. COMPACTNESS

Interest in compact spaces arose when we realized that there was something special about
intervals in the usual topology on R that made the max/min theorem come out as it did.

Theorem 236 If X has the order topology, where the ordering has the least upper
bound property, then each interval

la,b] ={z |a <z <b}
is compact.

Proof: the proof is similar to that of the Heine-Borel theorem (see Proposi-
tion 125 in Chapter 9, and Theorem 237). This means that the key point of the
proof is the least upper bound property, and not the metric. [ |

The first step in the process was a generalization of intervals to R".

Theorem 237 (HEINE-BOREL THEOREM — REPRISE)
In the usual topology, the compact sets of R" are exactly the closed and bounded sets.

Proof: since R" is Hausdorff, any of its compact subset is closed. If C' is com-
pact in R", it can be covered by

{(=m,m)" | m € N}.

But C'is compact, so it has a finite sub-covering and there exists M € N such that
C C (=M, M)". Thus C is bounded.

Conversely, suppose that C' is a closed bounded set. Then, there exists M € N such
that C C [-M, M|". But [-M, M]™ and C is a finite product of the compact spaces
[—M, M], and so is itself compact. C is then compact since it is a closed subset of a
compact set. |

Note that this result need not hold for a general metric space (where boundedness may not
be defined, for instance), as we shall see shortly.?

Theorem 238 (MAXIMUM AND MINIMUM VALUE THEOREM)
Let C' be a compact subset of X, and suppose f : X — Y is continuous, where Y has
a (total) order topology. Then f is bounded on C and actually attains its bounds there.

Proof: as C' is compact and f is continuous, f(C) is compact. If f does not
have a largest value on C, then, for each a € C, there exists ¢’ € C such that
f(a) < f(d’). Foranyy € Y, denote (—oo,y) ={z €Y | z < y}.

410

3This is the reason for the less-than-intuitive definition of compactness currently in use.
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CHAPTER 17. COMPACT SPACES
Then

{(=00, f(a))}aco

is an open covering of f(C). But f(C) is compact, so there exists a finite sub-
covering, say

{(=00, flai)) }izy-

Let ay € C be the ; that maximizes f(a;). Since f(ag) € f(C), f(ao) € (—o0, f(a;))
for some j, which means that f(ao) < f(a;) < f(ao), a contradiction, since z £ x in
Y. Hence f has a largest value on C'. The proof that f has a smallest value on C'is
similar. |

This result is the generalization to topological spaces of one of the fundamental results of
analysis (see Theorem 33 in Chapter 3.)

Metric Spaces (Reprise)

Let us revisit metric spaces from the vantage point of topology. If d is a metric on a space X,
the basic open sets in X are the open balls

By(a,r) ={zr € X | d(a,x) <r}.

The topology generated by these basic sets is called the metric topology on X.*

Let us suppose that the metrics d and d’ generate the topologies ¥ and ¥’ on X. ¥ is finer
than ¥ whenever By (a,r’) is openin T for alla € X, " € RT, and so whenever there exists
r € R such that

By(a,r) C Ba(a,r’).

Example: let d be the Euclidean metric on R? and d’ be defined on R? by
d'((z1,91), (x2,92)) = max{|z1 — 22, [y1 — yo[}. Then

By(0,1) = {(x,y) | #* +y* < 1}, B#(0,1) = {(z,y) | -1 <xr <land — 1 <y < 1},

B4(0,1) € By(0,1) and By(0, \/%) C By4(0,1). Generalizing to all open balls, one
gets T =T, O

“The collection of all open balls is a basis. Indeed, x € By(z,1) for all z € X. The empty set is a ball of
radius 0. Suppose thaty € By(x1,71) N By(z2,72) # @. Theny € By(y,r) C Ba(x1,71) N By(z2,r2), where

= mm{d(ml,y) - led(m%y) B T2}
2 .
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17.1. COMPACTNESS

Let X be a metric space with metric d. The standard bounded metric d on X is the metric
defined by

d(xz,y) = min{d(z,y), 1}

(the only property that is not trivially true is the triangle inequality). For any ball B,4(0, ¢),
put § = min{e, 1}. Then

Bg(a, 5) g Bd(a, E).

For a ball By(a,d),if 6 < 1, then By(a,0) = By(a,9). If 6 > 1, Bz(a,0) = X. This means that
the topology generated by the bounded standard metric d on X is the same as that generated
by the metric d. Consequently, we may assume that the metric d is bounded.

A space X is metrizable if there is a metric d on X where the metric topology on X coin-
cides with the topology on X. This leads us to one of the fundamental differences between
metric spaces and general topological spaces, a result which is simple to state, but whose
proof is surprisingly sophisticated.®

Theorem 239
Any countable product of metrizable spaces is metrizable.

Proof: Suppose (X,,d,) is a metric space and d, is the standard bounded
metric on X, foralln € N. Letz,y € X = [[ X,, and define

d(z,y) = Lub. {M}%N

n

It is not hard to see that this defines a metric on X. We need to verify that the
topology generated on X by d is that given by the product topology.

Suppose U C X is open in the product topology. If z = (z,) € U, thereis a
basic set [ [ V,,, where V,, Cp X,,, and V,, = X,, for all but a finite number of n’s, i.e
for alln > N for some N. Then there exists ¢, > 0 such that B(x,,¢,) C V, for all

n € N. Let
e N
€ = min {—}
n Jn=1
Ify = (y,) € B(z,¢),thend(x,y) < ¢, so

dn ny n n
DTrbn) o op ) < o<
n n

forl1 <n < N.

®As a reminder, the notations A Cp X, A C¢ X, and A Cx X are used respectively for A is openin X, A is
closed in X, and A is compactin X.
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CHAPTER 17. COMPACT SPACES

Hence d(x,,y,) < €,, and so
Yn € B(wy,€,) S Vp

forl <n < Nandy, € X, =V, foralln > N,soy € [[V,, and B(z,e) C [[ X,.
Then [] X, is open in the metric topology. As a result, around each point of U, we
can fit an open set in the metric topology, i.e. U C X is open in the metric topology.

Conversely, suppose U C X is open in the metric topology. Then, if z € U,
there exists ¢ > 0 such that B(z,e) C U. Choose N such that + < e. Put
V, = B(xn,ne) for all n, so that V,, = X,, whenever n > N (remember, the metrics
d,, are standard bounded metrics). If y = (y,,) € [[ Vi, then d,,(z,,, y,) < ne for all
n € N. In particular,

d’ﬂ mny n

(0 Yn) _ _
n

whenever 1 < n < N and

dn (Tns Yn)
n

<é€

<1<1
- n N

for alln > N. By construction,

d(e,y) = lub, § Sty L
n neN

Theny € B(z,e)and [[ V,, C B(z,¢). As aresult, around each point of U, we can fit
an open set in the product topology, i.e. U C X is open in the product topology. Bl

Let (X,,d,) be a collection (not necessarily countable) of metric spaces, where d,, is a stan-
dard bounded metric on X,,. Define a metricd on [ [, X, by

d(z,y) = lubdds(za,ya)}

for all z,y € X.° This metric is called the uniform metric, and the topology it generates on
[1,, X4 is called the uniform topology on X. We will in the solved problems that the uniform
topology is finer than the product topology and coarser than the box topology, and that for
infinite products, the inclusions are strict.

We now introduce another concept that allows us to tell if a space is metrizable. A sequence
{z,}, € Ninaspace X (not necessarily metric) converges to x € X (denoted x,, — x) if for

every neighbourhood V' of z, there exists N € N such thatx,, € V for everyn > N.

In a general topological space, the limit of a sequence is not necessarily unique!

5The only non-trivial component here is again the triangle inequality.
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17.1. COMPACTNESS

Examples (LIMITS)

1. Let X = [0,1], where the basic open sets in X are of the form (a,b) and
[0,a) U (b,1] for 0 < a < b < 1. In the topology generated by this basis, every
neighbourhood of 0 is a neighbourhood of 1, and vice-versa. Thus % — 0 as
usual, but £ — 1 as well.

2. Let X be a space with the indiscrete topology. Then every sequence in X con-
verges to every element of X. O

Suppose {a, }nenisasequenceinaset A C X, andleta, — a € A. Then a is a limit point of A.
Indeed, for any neighbourhood V' of a, there is some index NV for which a,, € V whenn > N.
Consequently, a, € VN Aanda # a, foralln > N (asa € A),soa € A.

In general, if a sequence in A converges to a point not in A, the limit is a limit point. How-
ever, the converse statement is false: if a € A, there might not be a sequence in A converging
to a, as can be seen in the next example.’

Example: let  be the first uncountable ordinal; let X be the set Ot = Q U {Q},
with the order topology. Consider A = Q = [0, (2). Suppose the sequence {«, },en,
where «,, € A, has the limit «. As

ap < Uam:/Ba

meN

then @ < (. But 3 is a countable union of countable sets, henc_e it is countable.
Therefore, 5 < 2, s0a < Qand a,, € (3,(2) foralln € N. Now A = [0,], and so
) € A, but no sequence in A converges to (. O

This example may seem a bit far-fetched, but that is the nature of the discipline - in general
topology, exotic counter-examples are entirely legitimate. In metric spaces, however, things
tend to be substantially better behaved.

Lemma 240 (SEQUENCE LEMMA)
Let X be a metrizable space. For any subset A of X, ifa € A, then there is a sequence
{an}nen € A with a,, — a.

Proof: let d be the metric generating the topology on X. For each n € N,
construct the neighbourhood B(a,1). As a € A, we have AN B(a,2) # @ for
alln € N. Leta, € AN B(a,+) foralln € N. Then a, — a. Indeed, let V be a
neighbourhood of a. Then there is a basic neighbourhood B(a,¢c) C V. Let N > %
Then, whenever n > N, we get d(a, a,) < % < % <e¢,hencea, € Vanda, — a. R

"The example requires some familiarity with the first uncountable ordinal, see https://en.wikipedia.
org/wiki/First uncountable ordinal for details.
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CHAPTER 17. COMPACT SPACES

Next, we see that one of the sacred cows of analysis see Proposition 106 in Chapter 8) may
not necessarily hold in general topological spaces.

Theorem 241
The function f : X — Y is continuous if, whenever a,, — a in X, then f(a,) — f(a)
inY. If X is metrizable, the converse holds.

Proof: suppose that f is continuous and a,, — a in X. Let V be a neighbour-
hood of f(a). Then f~!(V) is a neighbourhood of a, and so there exists N such that
a, € f~1(V)whenevern > N. Then f(a,) € V whenevern > N and f(a,) — f(a)
inY.

Conversely, suppose X is metrizable and that the sequence condition holds.
Let A C X. By the sequence lemma, if a € A, there is a sequence {a, },en C A such
that a,, — a. By hypothesis, f(a,) — f(a),so f(a) € f(A),as f(a,) € f(A) forall
n € N. Hence f(A) C f(A) which is equivalent to f being continuous. |

17.2 Limit Point and Sequential Compactness

Throughout the history of topology, many definitions of compactness have been formulated.
At the time, each were thought to have isolated the crucial property of a set like [0, 1] that
made the maximum/minimum theorem possible, amongst others.

As our understanding of topology increased, these different notions were discarded, to be
replaced by the modern concept. But the failed candidates are interesting in their own rights,
as they coincide with compactness in the case of metric spaces, as we shall see.

A subset A in a space X is said to be sequentially compact if every sequence {a, },en C A
contains a convergent subsequence. A subset A in a space X is said to be limit point com-
pact if every infinite subset of A has a limit point.The next few results show how the various
compactness notions are related.

Proposition 242
If X is compact, then X is limit point compact.

Proof: suppose X is compact and let A be a subset of X with no limit point.
Then A = A, and A is closed, so compact. Also, for any a € A, there is a neighbour-
hood V,, such that V, N A = {a}. Thus {V,}.c4 is an open covering of A. Since A is
compact, there is a finite sub-covering {V, }! ;. But

A=AnN (OV) _U (ANV,,) = U{az

i=1 i=1

Hence A is finite. By contraposition, X is limit point compact. |
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17.2. LIMIT POINT AND SEQUENTIAL COMPACTNESS

Proposition 243
If X is a limit point compact metric space, then X is sequentially compact.

Proof: let {a,},en € X, and write A = {aj,as,...}. If A is finite, there has
to exist a constant (hence convergent) subsequence {a,, , }.men. Otherwise, A is infi-
nite. As X is limit point compact, A has alimit point, say a and every neighbourhood
of a contains a point in A different from a. In particular, since X is a metric space,
for eachm € N, B(a, =) is a neighbourhood of @ and there exists a,,, € B(a, =)NA
such that a,,, # a. By construction, a,,, — a, so X is sequentially compact. [

Proposition 244
If X is sequentially compact, then X is limit point compact.

Proof: let A be an infinite subset of the X. Then A contains a countable sub-
set {ay,as,...}. As X is sequentially compact, there is a convergent subsequence
a,, — a.By construction, a is a limit point of A and X is limit point compact. W

The following result to show that the notions of compactness are equivalent for metric spaces.

Theorem 245

Let X be a compact metric space. For any open covering § of X, there is a number
d > 0 satisfying the following property: if A C X is such that diam(A) < §, then
there exists F' € § such that A C F.

Proof: we prove the theorem by contradiction. Let § be an open covering of
X, and suppose that no ¢ satisfying the property exists. Then, for each n € N, we
can find a set A, such that diam(4,) < % where A, ¢ Fforall F € §. As A, # &
foralln € N, we can select a,, € A, for alln € N, and get the sequence {a,, },en.

In a metric space, compactness implies sequential compactness, so there is a
convergent subsequence {a,,, }men, With a,,, — a € X. Pick F' € § such that
a € F. As F is open, there exists r > 0 such that B(a,2r) C F.

Since the subsequence is convergent, there is a number N € N such that
an,, € B(a,r) foralln,, > N. Pickn,, > such that - <r.Ifz € A,,, then

1
d(z,a) < d(z,ap,) +d(a,,,,a) < —+r< 2r

since diam(4,,,) < ﬁ and A4,, C B(a,2r) C F, a contradiction. So there must be
a number 0 > 0 satisfying the property. |

The number ¢ in the proof of Theorem 245 is called a Lebesgue number of the covering §.

416
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CHAPTER 17. COMPACT SPACES

We need one more definition before we are ready to prove our big result. A metric space X
is totally bounded if, for every ¢ > 0, X can be covered by a finite number of e-balls.

Theorem 246
In a metric space, compactness, sequential compactness, and limit point compactness
are equivalent.

Proof: according to Propositions 242, 243, and 244, it only remains to show
that a sequentially compact set X is compact. Let § be an open covering of X, and
suppose X is not totally bounded. Then there exists ¢ > 0 such that there is no
finite covering of X by e-balls.

Let x;y € X. As B(zy1,e) # X, select 5 € X \ B(z,¢). It is possible to
select

Tpy1 € X\ U B(z;,¢)

i=1

since J;_, B(z;,¢) does not cover X. By recursion, {z, },cn is a sequence, and it con-
tains a converging subsequence {z,,, }men, Where z,,  — z, since X is sequentially
compact. Then, there exists M such that z,,,, € B(z, 5) and

A(Trprs Tnpy) < Az, 24, ) +d(x, 20,,) < g + g =¢
whenever m > M. But this yields z,,,,, € B(xy,,,¢), which is a contradiction by

construction of the sequence {z, } ,cn. Hence X must be totally bounded.

Let 3¢ be a Lebesgue number of §. Then there exists a finite collection
B = {B(y;,e)}", covering X. As diam(B(y;,¢)) < 2¢ < 3¢, IF; € F such
that B(y;,e) C Fiforalll <i < n.Ifz € X,thenz € B(y;,e) C F; for some i.
Since ‘B is a finite covering of X, {F;}?_, is a finite sub-covering of X, and so X is
compact. |

The converse of Proposition 242 is not in general true, as can be seen in the following exam-
ple (which again uses the smallest uncountable ordinal).

Example: let Q2 be the first uncountable ordinal, and let X be the set Q™ = QU {Q},
with the order topology. Now, € is limit point compact. Indeed, suppose C'is an
infinite (countable) subset of {2. Then C' is bounded above by U%C v = [, and so
C C [0,p]. Itis clear that 2 has the L.u.b. property, so, by Theorem 236, [0, 5] is
compact. By Proposition 242, [0, /] is limit point compact, and so C' contains a limit
point. Thus € is limit point compact. But €2 isn’t closed in the Hausdorff space X, so
2 is not compact. ]
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17.3 Local Compactness and One-Point Compactification

By analogy with local connectedness, we can also define a notion of local compactness: a
space X is locally compact at z € X if there exists a compact set C' which contains a neigh-
bourhood V' of x. We say that X is locally compact if it is locally compact at each x € X.

There is an equivalent definition if X is Hausdorff space. For each = € X, if there exists
a neighbourhood V' and a compact set C' such that x € V' C (C, then, as X is Hausdorff, C'is
closed, so V C C, and x has a neighbourhood with compact closure.

Examples (LOCAL COMPACTNESS)
1. Every compact space is locally compact.

2. Rislocally compact, since, for any basic open set |a, b], the closure [a, b] is com-
pact. Similarly, R" is locally compact for all n € N. However R is not locally
compact in the product topology. Indeed, let

Vo= (a1, b1) X -+ (an, bp) X Rx -+
be a basic neighbourhood in the product topology. Then
V: [Cll,bl] X [an,bn] XRx--- ,

which is not compact in the product topology. 0J

Let X be alocally compact Hausdorff space, and suppose that oo is a point notin X. Construct
anew set Y = X U {oc}, with the following topology: V' Cy, Y if either

» V=U Cp X whenever co ¢ V, or;
= V =Y \ C, where C is a compact subset of X whenever co € V.
This is indeed a topology on Y/, as we see presently.
1. @ is an open set of type 1, Y is an open set of type 2.
2. Let V1, V5 Cp Y. Then
a) Vi,V Cp X,s0ViNVo Cp X, hence ViNVy, Cp Y or
b) Vi Cp Xand Vo, =Y \ C, where C Ci X. Then
NV =Vin(Y\C)=Vin(X\0) oY,
as C'is closed in X, since X is Hausdorff; or
c) Vi=Y\C, Vo, =Y\ Cywhere C;,Cy Cx X. Then
VinVa=Y\C)N Y \C) =Y\ (CLUCy) Cp Y,
since C; U Cy Cg X whenever C, Cy; Ci X.
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3. a) V3 Co X,s0lU; Vs Co X, hence | J; Vs Co Vs or
b) Vo, Co X (e, Ve Co X)and V3 =Y \ Cs, where Cs Ck X. Then

(U)oU) - (U)o (Uoren) - (U)o (10
=Y\ (Q@—Lé)%) Co Y,

as ﬂﬁ Cs — U, Va is compact since it is a closed subset of a compact set; or
c) Vs =Y \ Cg where Cs Cx X. Then

Uve=Jx\Cs) =Y\ ((Cs) So Y,
B B B

since ﬂﬁ Cs Ck X whenever C3 C X.

The subspace topology on X agrees with the original topology on X. Indeed, in the subspace
topology, open sets look like V1 X, where V Cp V. If oo ¢ V,thenV N X =V Cp X in the
original topology.

On the other hand, ifco € V,V = Y \ C for some compact C,andV =Y \ C = X \ C.
But X is Hausdorff, so C'is closed, and V' C X in the original topology. Conversely, every
open set in the original topology is an open set of type 1 in the subspace topology.

Theorem 247

Let X be a non-compact locally compact Hausdorff space and co ¢ X. Then
Y = X U {oo} is compact Hausdorff with the topology defined above and X =Y.

Proof: let § be an open covering of Y. Then, there exists F|, € § with co € Fj. By
definition, C' = Y\ Fj is a compact subset of X and § = {F' N X }pes is an open
covering of C'in X. As C is compact, there is a finite sub-covering

{FiNnX,....F,Nn X}
of C. Hence { Fy, I, ..., F,,} is a finite sub-covering of Y and Y is compact.

As X is not compact, {oo} = Y \ X is not open in Y. So every neighbour-
hood of oo looks like Y \_C, where C' Cx X, and so meets X. By definition, co is a
limit pointof X inY,so X =Y.

We show now that Y is Hausdorff. If x # y € X, there are open neighbour-
hoods in X satisfying the 75 condition as X is Hausdorff. So suppose x € X and
y = 0o. As X is locally compact, there is a compact set C' and a neighbourhood V' of
xsuchthatz € V C C. ThenU =Y \ Cis a neighbourhood of coand U NV = &,
which proves that Y is Hausdorff. [ |
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The space Y is the one-point compactification of X.

Examples (ONE-POINT COMPACTIFICATION)

1. Let X = R. Then X is a non-compact locally compact Hausdorff space. By
Theorem 247, there is a one-point compactification Y = X U {oo} of X. Y is
in fact homeomorphic to

St={(z,y) | 2* +y* =1},

through the homeomorphism f : S' — Y defined by f(z,y) = . whenever
y # land f(0,1) = oo.

2. Let X = R2 Then X is a non-compact locally compact Hausdorff space. By
Theorem 247, there exists a one-point compactification Y, or X U {co} of X.
Y is in fact homeomorphic to

S* ={(z,y,2) | 2* +y* +2* =1},

through the homeomorphism f : S? — Y defined by

fwy,2) = (liz’lgz)

whenever z # 1 and f(0,0,1) = oc.

17.4 Solved Problems

1. Let ‘B be a basis for a topology on a space X. Show that a subset A of X is compact if
and only if every covering of A by sets from B has a finite subcovering.

Proof: if A Cx X, then every open covering of A contains a finite subcovering of A.
But every covering of A by sets from ‘B is an open covering of A as all sets in 5 are
open, and so contains a finite subcovering of A.

Conversely, suppose that every covering of A by sets from B contains a finite subcov-
ering of A, and let 4 = {U,y}’yer‘ be an open covering of A. Since U, Cp X, and since
‘B is a basis for the topology on X, there exists, for each v € I, a subset B, C B

such that
v,= |J B
BeB.,

Thus, the collection {B|B € B, for some~y € I'} is a covering of A by sets from
B8, and by hypothesis, it contains a finite subcovering of A, say {Bi, ..., B,}. Now,
for 1 < i < n, choose U; € i such that B; C U;. Then {Uy,...,U,} is a finite
subcovering of A,and A Ci X. [ |
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2. Let A and B be disjoint compact subsets of the Hausdorff space X. Show that there
exist disjoint open sets U and V' containing A and B, respectively.

Proof: assume that A, B # &, otherwise the statement is vacuously true. Letb € B.
Since X is Hausdorffand AN B = &, for every a € A, there exists Uy 4, V3o Co X,
such thata € Upq b € Viq and Uy, NV, = @. The collection {Up 4 }aca is an
open covering of A Cx X, and so we can extract from it a finite subcovering, say
{Ubars---,Upgq,}. Now, put

U(b) = CJ Upqe, and V(b) = ﬁ Vb.a,-
i=1 i=1

Then A C U(b),U(b),V(b) Co X andU(b)NV (b) # @. This process can be repeated
for every b € B so that {V'(b) }secp covers B. Since B Cx X, we can extract a finite
subcovering of B, say {V (b1),...,V(bm)}. Let

V=|JV{®:) and U=[)U().
i=1 i=1
ThenU,V Cp X, ACU,BCVandU NV = &. Indeed
unv =Uun(UZ V() =U~L(UNV (b))

C Uve)nuw) =z =2

and the statement is proven. |

3. Show that [0, 1] is not compact in R;. Is it compact in the countable complement topol-
ogy on R?

Proof: we prove the statement by exhibiting an open covering of [0, 1] from which it
is impossible to extract a finite subcovering. Let

U={[1,2); U{[0,1 =1/n)},>,

Then 4l is an open covering of [0, 1] since

0,1)C | JU=0,2),

Ueu

and since [a, b) is openin R; forall « < bin R. Any subcovering of [0, 1) must contain
[1,2)as1 ¢ [0,1 —1/n) for all n > 2. Any finite subcovering must then look like

U ={[1,2),[0,1 - 1/n1),....[0,1— 1/nm)},

where the n;’s are ordered such thatn; > no > ... > n,, > 2. With this ordering,

m—1

LJ0,1—1/n) C[0,1=1/nm).

=1
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However, 1 — 1/(ny, — 1) € [0,1 — 1/ny) and 1 — 1/(ny, — 1) & [1,2). Any finite
subcollection 2 taken from 4 cannot cover all of [0, 1], so [0, 1] is not compact in R;.

We show now that [0, 1] is not compact in R with the finite complement topology.
First, recall that a space is compact if and only if every family € = {C,} of closed
subsets having the finite intersection property, thatis (), Co, # @ forall C,, € €,
1 < ¢ < n, has a non-empty intersection:

(Ca # 2.

We construct a family of closed subsets having the finite intersection property, while
their full intersection is empty. The closed subsets of [0, 1] in this topology are the
countable subsets of [0, 1], as well as [0, 1] itself. Now let

o fh) g

for all n € N. Each of the A4,, # @ is countable and so closed in [0, 1]. Now, take
Apys ..., Ayp,, whereny > ng_1 > ... > ny. By construction,

k
() An, = An, # 2.
=1

But ﬂneN A,, = &, since, otherwise, there would exist m € N such that % < % for
alln € N, a contradiction. We can thus conclude that [0, 1] is not a compact subspace
in the finite complement topology. ]

4. Let X be alocally compact space. If f : X — Y is continuous, is the space f(X) neces-
sarily locally compact? What if f is both continuous and open?

Proof: let X = {—1} U (0, 1) be a subspace of R and
T ={(z,sin(1/z)) | 0 <z <1} U{(0,0)}

be a subspace of R2. This is the topologist’s sine curve. Let f : X — T be the map
sending —1 to (0,0) and z to (z,sin(1/z)) for 0 < x < 1. This map is continuous,
since the pre-image of open subsets of 7" in the subspace topology are unions of open
intervals in X, possibly with {—1}. Furthermore, f(X) = T. X is clearly locally com-
pactatz for 0 < z < 1. And {—1} is a compact neighbourhood of {—1}, so that X
is locally compact at —1. But 7" is not locally compact at (0, 0). Indeed any candidate
for a compact subset around (0, 0) must contain an infinity of points who are as close
as desired from the slice {0} x [—1, 1]. Hence, no such sets are closed in R?, and so
they can not be compact.

Suppose f is continuous and open. Then for any y € f(X) there exists z € X such

that f(z) = y. The space X is locally compact so there is a compact set C;, and an
open set U, such that z € U, C C,. Now, applying f yields

y = [f(x) € f(Uz) € f(Co).
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Since f is continuous and open f(C,) is compactand f(U,,) is open. So f(X) islocally
compact at f(x) forall f(z) € f(X), and f(X) is locally compact. [ |

5. Show that [0, 1]“ is not locally compact in the uniform topology.

Proof: Throughout, we assume that [0, 1] has the uniform topology. Let ,,, be
the Kronecker 4, and let d,;, = (8,1 )nen. Hence d,,, € [0,1]“ for all m € N and
dy(dm,drx) = 1 when m # k. Consequently, the sequence dy, da, . .. has no conver-
gent subsequence. Now, consider the open ball B(z,r) in [0, 1]“. It contains a se-
quence (z,, + %)HGN,B with no convergent subsequence. Hence B(x,r) can not be
contained in a compact set as compact set are sequentially compact in [0, 1]“. Thus
[0, 1] is not locally compact in the uniform topology. [ |

6. Let p, Ty, T denote the product, uniform and box topologies respectively on R“.

a) Show that Ty is strictly finer than %.

b) In which of the topologies are the following functions from R to R* continuous?

Lf(t) = (t,2t+ 1,3t +2,4t+3,...)
il g(t) = (t/2,t/3,t/4,t/5,...)

¢) In which of the topologies do the following sequences converge?

=(1,1,1,1,..)) y1 = (1,0,0,0,...)

zy = (0,2%,2%2,22..) yo = ((1/2)%,(1/2)2,0,0,...)

r3 = (0,0,3%3%...) = ((1/3)*,(1/3)%,(1/3)%,0,...)
=(0,0,0,4%...) ys = ((1/4)% (1/4)* (1/4)*, (1/4)%,..)
:(1,1,0 0,...)
2 = ((1/2)%,(1/2)%,0,0,...)
=<<1/3) (1/3)%,0,0,...)
= ((1/4) (1/4)4’0707" )

Solution:
a) Let B(x,e,) be an open ball in the uniform topology. The set
13 €
(O
neN
is open in the box topology, and z € B, C B(x,e;). Indeed, let z € B,. Then

dn(Zn, z,) < % foralln € N, so

d(z, z) = Lub.{dy(zn, 20)} < %x < ea,

8Select either one of + or — so that z,, stays in [0, 1].

P. Boily (uOttawa)

423



b)

17.4. SOLVED PROBLEMS

and thus z € B(x,e;). Now suppose z # y € B(x,e,). As B(x,e,) is open in
the uniform (metric) topology, there existse,, > 0suchthat B(y,e,) C B(z, ).
Using the same reasoning as above yields

y € B, C B(y,ey) C B(w,e,),

where B,y is open in the box topology for all y € B(x, ;). Hence, around each
point of B(x, ¢, ), we can fit an open set in the box topology, i.e. B(x,¢;) is open
in the box topology and Ty C Tp.

We show that ¥y C Tp by showing that R“ is not metrizable in the box topol-
ogy. Since R“ has a metric in the uniform topology, ¥y is strictly finer than
Ty. Let X = R¥ and A = (0,1)~. Clearly 0 = (0,0,0,...) € A since, in the
box topology every neighbourhood of 0 contains positive sequences. However,
there is no sequence z,, € A such that z,, — 0. Suppose x,, is a sequence in A.
Then,

T = (xlvl,xlg,a:l,g,.. )
Tro = (1:271, €2,2,123, - - )
r3 = (131,732,733,...)

Let e < 0, and construct the open set (in the box topology)

Us = H (573]771)7

meN

where 0 < ¥, < T, forallm € N. By construction, U, is a neighbourhood of
0 in the box topology, and z,, € U. for all n € N. Hence, x,, can not converge to
0. By the Sequence Lemma, R“ (in the box topology) is not metrizable.

Both of the functions are continuous in the product topology as each of the com-
ponents are continuous. In the uniform topology, f is not continuous. Indeed,
lete = 1/2. Then, for every § > 0,

dy(f(z), f(x +9)) = Llub.{min{nd, 1}} =1 > ¢.
In the box topology f is not continuous. Indeed, let

2 2
n-n—1n"—n+1
U=|| , .

neN

U is open, but f~1(U) = {0}° which is closed in R. Similarly, g isn’t continuous
in the box topology. Let

V= (o )

neN

424

Ste fUU) = f(t) €U = 2=l Cpp 4 (n—1) < Z=ndlyy

—Lcont<lvn = t=0.
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V is open, but g~ (V) = {0}*° which is closed in R. But it is continuous in the
uniform topology. Indeed, lete¢ > 0 and put 0 = 2¢. If |z — y| < §, then

dy (9(2), 9(y)) < Lub{min{s/(n +1),1}} = %5 .

c) All three sequences have to converge to 0 = (0,0,0...) if they converge at all.
They all converge in the product topology. Indeed, suppose U is a basic neigh-
bourhood of 0 in the product topology. Then

U=U; xUsx -+ xXUpxRxRx---

for some m € N, and where each of the U; =la;, b;[ are basic neighbourhood
of 0 in R. The sequence x, lies in U for n > m, y, lies in U for all n such that
(1)" < minj<j<;{b;},** and z,, lies in U for all

n

1

n> — .
(ming<;<m{bi})?

Let’s look at what happens in the uniform topology. The sequence x,, does not
converge to 0. Indeed, let B(0, ) be a e-neighbourhood of 0, so

B(0,e) ={¢|Lub.l&| < e}
For the sequence z,,
Lub.{min{|z,;|,1}} =1,

which is bigger than every ¢ < 1. Hence, there does not exist a N for which
x, € B(0,e) whenn > N, and ¢ < 1. At the same time, (x,,) does not converge
in the box topology. For y,, 2,, all elements of the sequence are less than 1 for
large enough n, so we can forget about the metric being bounded, and

Lub{lyn;[} = (1/n)"
Lub{|z;]} = (1/n)2
For these least upper bounds, there exists N such that y,, z, € B(0,¢) when-

ever n > N, so the sequences converge to 0 in the uniform topology.*? In the
box topology, (y,,) doesn’t converge, but (z,) does. O

Vieg (V) <= gt) eV = i <ia <™ = —pg <t<ag 7 < t=0.

"As f(x) = 2% is eventually decreasing, y,, is eventually in U for alln > N.

12Wait, you say. For this sequence to converge to 0, every neighbourhhod of 0 must contain all 4,, whenn > N
for some N. Ah, but every neighbourhood of 0 contains B(0, ) for some £ > 0, and this ball contains all y,, when

n > N, so the original neighbourhood did as well...
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17.5. EXERCISES

17.5 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.

t
X:{—e”
1+t

Give detailed answers to the following:

2. Let X be the subspace

t> 0} U {e™}.

a) Is X compact?

b) Is X locally compact?

3. Prove that if Y is compact and N is an open set in X x Y containing {z¢} x Y, then
there is a neighbourhood W of x5 such that W x Y C N.

4. If Y is compact, show that the projection m; : X x Y — X is closed.
5. Prove Theorem 234 (Reprise) and Corollary 235.

6. Show that the standard bounded metric d and the uniform metric are indeed metrics
on (X, d).
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