Chapter 18

Countability and Separation

In Chapter 15, we introduced a few simple separation definitions (7g, 77,
and 7T, /Hausdorff); in this chapter, we extend the discussion to more so-
phisticated separation axioms, and introduce the notions of first and sec-

ond countable spaces.

18.1 Countability Axioms

A basis at z € X is a collection ‘B of open sets containing = and such that, for each neigh-
bourhood V of z, there exists B € Bwithz €¢ BC V.

We say that a space X is first countable at + € X if there is a countable basis at z; X is
simply first countable if it is first countable at every x € X. It is second countable if its
topology has a countable basis.

Examples (FIRST AND SECOND COUNTABILITY)

1. If X is second countable, then it has a countable basis 8. Letz € X. If U is an
(open) neighbourhood of z, then

U=JB.

neN

where B,, € B foralln € N. Asxz € U, then z € B,, for some m. Hence
B, ={BeB|zec B}

is a countable basis at z since B, C ‘B, and so X is first countable at 2. But =
is arbitrary, so X is first countable.
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18.1. COUNTABILITY AXIOMS

2. Let X = R in the usual topology; it is second countable since
B = {(a,0) |a<beQ}

is a countable basis of X. In light of the previous example, X is also first count-
able.

3. Let X = R in the discrete topology. R is not second countable as every set is
open and R is uncountable. However, it is first countable, since {x} is a basis
atx foreach z € X. OJ

A space X is Lindel6f if every open covering of X contains a countable (not necessarily fi-
nite) sub-covering. A subset A of X is Lindelof if it is Lindel6f in the subspace topology.

Theorem 248
If X is second countable, then it is Lindeldf.

Proof: let § be an open covering and 8 = {B,}, be a countable basis of X.
For each n € N, whenever it is possible to do so, let F;, € § be such that B,, C F,,.
Otherwise let F,, = @. Then

X:U&gUﬂ

neN neN

and {F,,}, is a countable sub-collection; it is also an open cover. Indeed, let z € X.
Then there exists F' € § such that z € F. As F' is open, there exists a basic set
B, € ®B suchthatz € B, C F. By construction, I’ € {F,,},,. Hence X is Lindelof. B

Let us take a look at some examples.
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Examples (LINDELOF SPACES)
1. The space R is second countable (hence Lindel6f), since
B ={(a,b) | a<beQ}
is a countable basis.

2. The space R, is Lindel6f but not second countable. Indeed, let B be any basis
for the lower limit topology on R;. Then, for any z € R and ¢ > 0, we have
[z, +¢) Cp Ry, that is, there is a basic set B, . such that

r€ B, Clr,x+e¢).
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CHAPTER 18. COUNTABILITY AND SEPARATION
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Ifx < y, then, fore = y — 2,y € B,.. So ‘B must contain an uncountable
sub-collection and R; is not second countable.

We show that R, is Lindel6f by showing that every open covering by ba-
sic sets contains a countable sub-covering. Let § = {[a,, 5.) }acs be an open
covering of R; and

C = J(@u Ba)

aeJ

be a subspace of R. As R is second countable, so is C; it is thus also Lindelof,
as of Theorem 248. The collection {(«, .) }acs is an open covering of C, so
there exists a sub-covering {(a,, , Ba, ) tnen of C. Then

3/ = {[aam Ban)}neN

also covers C'and §’' U (R \ C) is a covering of R.

Letz € R\ C. Thenz = «, forsomea € J. Letq, € (g, 5.) N Q.
Then

(%, ) € (aa, Ba) € C.

Now suppose = < y € R\ C. Necessarily, ¢, < g, since, otherwise,
y e (*TaCIy) g (I7Qx) g Ca

a contradiction as y ¢ C. Thus the map = — ¢, is an injection of R \ C' into
Q, which means that R \ C'is countable. Write R \ C' = {z,}.cn, and find
[, Bm) € & with z,,, € [ay,, Bn) for all m € N - this can be done as § is an
open covering of R;. Then §' U {[ay, Bm) }men 1S @ countable sub-cover of R,
extracted from §.

. The space R? is not Lindel6f. To show this, let L = {(z, —x)},cr. Then R? \ L

is open in R?. Indeed, let (z,y) € R} \ L and pute = £ Then
(z,y) € [v,x+¢e) X [y,y +¢)

and ([z,z+¢) X [y,y+¢)) N L =2. Now F = {R?\ L} U{F,}.cr, where
F,=la,a+1) x [-a,—a+ 1),

is an open covering of R?. But F, is the only set in § containing (a, —a), so
any sub-covering will contain F, for all a € R. As R is uncountable, § does not
contain a countable sub-covering. Hence R? is not Lindelof. This demonstrates
that the product of two Lindel6f spaces need not be Lindelof.
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18.1. COUNTABILITY AXIOMS

4. Let ) be the first uncountable ordinal. Then 2 = [0, §2) is first countable but
not Lindelo6f, so it is not second countable. Indeed, suppose a € §2. Then

B, ={(c,a+1)}eeq

is countable as a < (). Let U be a neighbourhood of a. Thena € (¢c,a+1) CU
for ¢ < a. This makes B, a countable basis at a € (2. Then (1 is first countable.

To show that 2 is not second countable, consider the open covering
§ ={[0,b) }peq of 2, and let §’ be any countable sub-collection from F. Let

As it is a countable union of countable sets, 3 is countable, that is 7 € (). But
B ¢ 10,b) for all [0,b) in §, and so § cannot be a sub-covering from §. Hence
() is not Lindelof, nor is it second countable. O

We can show fairly easily that countability behaves as expected for subspaces and products.

Theorem 249
If X is first (resp. second) countable, then any subspace of X is first (resp. second)
countable. If X, is first (resp. second) countable for all n € N, then

1~
neN

is first (resp. second) countable.

Proof: the statement about subspaces is clearly true. We show that the countable
product of second countable spaces is second countable. The proof for first count-
able spaces is similar, and is left as an exercise.

Let X =[] X,,, B,, be a countable basis for X,,, and define

¢, = {an

neN

VnE‘anorogngm,vn—anorm<n}

forallm € N. Then € = UmeN ¢,, is countable. Furthermore, it is a basis for the
product topology on X. So X is second countable. [

We shall see in the next section that there is a link between countability and separation.
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CHAPTER 18. COUNTABILITY AND SEPARATION

18.2 Separation Axioms

Let X be a space. In Chapter 15, we introduced a number of separation axioms:

0. X is Ty if for every pair x # y € X, there exist a neighbourhood U of either x or y that
misses the other;

1. X isT; if for every pair x # y € X, there exist neighbourhoods U, of z and U,, of y such
thaty € U, and x ¢ Uy;

2. X is T, or Hausdorff if for every pair z # y € X, there exist disjoint neighbourhoods
U, of x and U, of y.

We have also seen that if a space X is 77, then every singleton is closed in X. Note that the
condition 75 is strictly stronger than the condition 7;: there are 7} spaces that fail to be 75.

We introduce two new separation axioms." We say that a space X is:

3. T3 or regular if X is 7} and if for every pair consisting of az € X and a closed set B
disjoint from z, there exist disjoint neighbourhoods U, of x and U containing B;

4. T, or normal if X is 7 and if for every pair consisting of disjoint closed sets A and B,
there exist disjoint neighbourhoods U4 containing A and U containing B.

Some of the conditions imply some of the others: a regular space is Hausdorff, for instance,
since singletons are closed. Indeed let  # y. Then x and the closed set {y} are disjoint and
there exist U, and Uy, such that x € U, {y} € Uy, and U, N Uy,; = @. For the same
reasons, a normal space is regular. The following examples (without proof) show that none
of the implications

T4:>T3:>T2:>T1:>Tg

can be reversed and that normal spaces are not as well behaved as we might expect.

Example: (REGULARITY AND NORMALITY)

1. Let K = {1 : n € N} be a subset of R, with basic open sets of the form (a, b)
and (a,b) \ K forall a,b € R. With this topology R is Hausdorff. But it is not
regular, since it is possible to separate the point 0 and the closed set K. Hence
a Hausdorff space need not be regular.

2. Let € be the least uncountable ordinal. The spaces 2 and Q2 are normal in
the order topology. But their product is not normal. The product Q" x Q7 is
normal however, so a subspace of a normal space need not be normal. And, as
we will see later, Q x Q7 is regular, being the product of two regular spaces, so
aregular space need not be normal.

3. If Ais uncountable, the product space R* is not normal.

'There are other such axioms; see https://en.wikipedia.org/wiki/Separation axiom for more.
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We can also formulate the conditions of regularity and normality differently, as that could be
more useful in different contexts (as in the next section).

Lemma 250
Let X beT). Then

1. X is regular if and only if given a point of v € X and a neighbourhood U of z,
there is a neighbourhood V' of x such that V C U.

2. X isnormalif and only if given a closed set A C X and an open set U containing
A, there is an open set V' containing A such thatV C U.

Proof:
1. Suppose X is regular and let z € X have a neighbourhood U. Then

By regularity of X, there exist open subsets V' and W such that x € V,
X\UCWandVnWW =g. Suppose y € W. Then W is a neighbourhood of
y that does not meet V,andso VNW = @. Hence V C X \ W = U.

Conversely, suppose B C¢ X and = ¢ B. then
xre X\ BCo X.

By hypothesis, there exists a neighbourhood V' of x such that
reV CX\B.

Then by construction, B C X \V Co X,z € Vand X \Vﬂ V = @&. In other
words, X is regular.

2. The proof of the second statement uses sensibly the same argument. [

T, and T3 spaces behave particularly well with respect to subspaces and products.
Theorem 251 Let W, {IV, } be Hausdorff, X, { X3} be regular.
1. Each subspace Y of W is Hausdorff, and the product [ [ W, is Hausdorff.

2. Each subspace Y of X is regular, and the product [ [ X is regular.
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CHAPTER 18. COUNTABILITY AND SEPARATION

1.

Proof:

Let Y be a subspace of W. If x # y € Y, then there exist disjoint U,V Cp X
suchthatx €e Uandy € V.ButUNY,VNY Cp Y aredisjointandz € UNY,
y € VNY,soY is Hausdorff.

Let W = [[W, Ifx = (z,) # v = (ya) then there is a coordinate ~y
such that z, # y,. As W, is Hausdorff, there exist disjoint U,V Cp X, such
thatz, € U,y, € V. Then ' (U), n; ' (V) Co W aredisjointand z € 7' (U),
y € m;'(V), so W is Hausdorff.

y

. Let Y be a subspace of X. Since Y is Hausdorff, one point sets are closed in Y.

If x € Y, and B is a closed subset of Y disjoint from z, then
BNYCBNY=BNY =B,

Sox ¢ B (in X). By regularity of X, there exist disjoint U,V Co X such that
reUand B C V. ThenUNY,VNY Cp Y aredisjoint, r € UNY and
B CVNY.HenceY isregular.

Let X = [[Xjs. Since X is Hausdorff, one point sets are closed in X.
Let x = (xz3) € X and suppose U is a neighbourhood of z. Choose a basis
[1Us such that

rel[uscu
For each 3, Xj is regular. Then there exists a neighbourhood V3 such that

x5 € V3 C Ug.> Then, V = [] V; is a neighbourhood of z € X. ButV = [] V3,
S0

ve][uscu

and so X is regular according to Lemma 250. [ |

The following three theorems give sets of hypotheses under which normality is assured.
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Theorem 252
Let X be metrizable. Then X is normal.

Proof: let d be the metric on X, and A and B be disjoint closed subsets of X.
For each a € A, choose ¢, such that B(a,¢,) N B = & - this can always be done as
Bisclosedin X so X \ B Cp X.
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18.2. SEPARATION AXIOMS

Similarly, for each b € B, choose ¢;, such that B(b,¢,) N A = @. Then

U=|JB(a,e/2) and V=|]B(bze/2)

acA beB

are open subsets of X containing A and B respectively. They are also disjoint. Oth-
erwise, B(a,&,/2) N B(b,e,/2) # @ for some a € A, b € B. Suppose z lies in that
intersection. Then

Eq T &b

d(a,b) <d(a,z)+d(z,b) < 5

Ife, < &, thend(a,b) < ¢, and a € B(b,&). If e, > &, then d(a,b) < ¢, and
b € B(a,¢e,). But both these statements are false,so U NV = @ and X is normal. B

As usual, compact Hausdorff space behave nicely.

Theorem 253
Let X be a compact Hausdorff space. Then X is normal.

Proof: see the solved problems. [ |

We establish a link with second countability below.

Theorem 254
Let X be a second countable regular space. Then X is normal.

Proof: let ‘B be a countable basis for X. Suppose A and B are disjoint closed
subsets of X. As B is closed, each z € A has a neighbourhood U, not meeting B. By
regularity, there is a neighbourhood V. of x such that

reV,CU.
AsV, Cp X, there exists W, € 8 such thatx € W, C V,, and
W, CU. CX\B,

soW,NB = @. Then {W,}+ea is acountable open covering of A since itis contained
in 8. Let us re-index it, and write {IV,, },,en. Similarly, it is possible to construct a
countable open covering {7, },cn of B such that Z.NA = oforalln € N. Given
n € N, define

W =wAUZ and z—2z,\|JT
=1

=1
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CHAPTER 18. COUNTABILITY AND SEPARATION
Then W/, Z! Co X as W, Z, Co X and U, Wi, U, Z; Cc X. Let

w'=|Jw, and z'={]2Z,

neN neN

Then W', Z' Co X and A C W'and B C Z'. Indeed if x € A, then z € W, for some
n. But, by construction, » ¢ Z; for alli € N. Then z € W/. Similarly, if y € B, then
y € Z! for some n € N. It remains only to show that W' N 7' = @.

Suppose ¢ € W' N Z'. Then¢ € W) n Z! for some m,n € N. If m > n,
then

EeW = ¢cW,, and ¢c€Z, =4 W,,
which is a contradiction. If m < n, then

EeW —=¢¢ 7, and (cZ —€cZ,,

another contradiction. Then W’ N Z' = @ and X is normal. [ |

18.3 Results of Urysohn and Tietze

Let X be a normal space, and A, B be disjoint closed subsets of X. Put Ul_: X\ B Co X,
so A C U,. As X is normal, there exists Uy Cp X such that A C U, and U, C U;. For each
dyadic rational » = % in [0, 1], we can associate an open set U, such that

r<s= U, CU,. (18.1)
To do so, we start with any Ué Co X such that
UyCUL CULCU,

(this can be done as X is normal, U; Cp X, Uy C¢ X, and Uy C U;). Then, by the same
process, it is possible to obtain Ui’ U% Co X satisfying

UyCUi CULCUy and Uy CUs CUs CUL
Recursively, suppose we have sets U satisfying (18.1), form =0,1,...,2™

ThenU_an C U%l forallm = 0,1,...,2" — 1. By normality of X, form = 0,1,...,2" — 1,
there is an set U2m7j_—11 Co X such that
2’)1

on+1 on+1

UQLTLL - Uzmsr C Uzm+r - Um+.
Pig

Let r be a dyadic rational not in [0, 1].> If r > 1, take U, = X. Ifr < 0, take U, = @. Then
(18.1) holds for all dyadic rational.

3A dyadic rational is a real number that can be written as a fraction with denominator 29 for some non-
negative integer q.
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18.3. RESULTS OF URYSOHN AND TIETZE

Now, let z € X, and define

Qx) ={p |z € Up}.

Forallz € X, p ¢ Q(z) whenever p < Osincez ¢ U, = @, and ¢ € Q(x) whenever ¢ > 1
since x € U, = X. Hence )(z) is bounded below and its greatest lower bound lies in [0, 1].
Define f : X — [0, 1] by

f() = g1bQ(@)}.

Then, f(a) = 0 for a € A since (a) is the set of dyadic rational in [0, c0), and f(b) = 1 for
b € B since () is the set of dyadic rational in (1, c0). By construction,

1. €U, = f(z) <p;
2.0 ¢ U, = f(z) 2p

Indeed, if x € U, then z € U, for all ¢ > p. Then ¢ € Q(x) for all ¢ > p, and so that f(x) < p.
Ifx ¢ U, then p is a lower bound for ()(z) so that f(z) > p.

Theorem 255 (URYSOHN LEMMA)
The function f defined above is continuous.

Proof: suppose z, € X and (a,b) is a neighbourhood of f(z,). We find a set
U Co X suchthatzy € U C f~'((a,b)). Choose two dyadic rationals p < ¢ such
thata < p < f(xg) < ¢ <b. LetU = U, \U Then U Cp X as U, is open and U, is
closed. Since ¢ > f(z0) > p, we have oy ¢ U, and 2y € U,, so xy € U.

Ifz € U, thenz € U, U, and f(z) < ¢ <bbutx§ZUsox§ZUand
@ < p < fa). Thus f(U) € (ab) and U C F((a.b)), 50 f1((a,1) Co X and fis
continuous. |

C
C

We have shown that in any normal space X, it is possible to separate any two disjoint closed

sets A and B by a continuous function f : X — [0, 1], where f(a) = O foralla € A and

f(b) = 1forall b € B. Note that this does not necessarily mean that f~'({0}) = A and
~1({1}) = B. This prompts the following definition.

ATi-spaceis Tgé or completely regular if, given a point zp and a closed subset A with xy & A,

there is a continuous function f : X — [0, 1] such that f(z¢) = 0 and f(a) = 1 forall a € A.
Suppose X is completely regular. Let zp and A be a closed subset of X such thatzy ¢ A. Then
there is a continuous function f : X — [0, 1] with f(z9) = 0and f(a) = 1foralla € A. Define

U=f"([0,1/3)) and V =f7((2/3,1]).

Then U,V Cp X, 20 € U, ACV,andU NV = &, and so X is regular.
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One of the most important corollaries of the Urysohn lemma is the Tietze extension theo-
rem. Before stating and proving it, we first prove the following useful lemma.

Lemma 256

Let X be a normal space and A C¢ X. If h : A — [—r, r] is continuous, then there is
a continuous function g : X — [—%, £] such that |h(z) — g(z)| < 2r forall v € A.
Proof: let B = h™!([r/3,r]) and C = h~'([-r,—r/3]). Then B,C Co Aash
is continuous,so B,C Co X as A C¢ X,and BN C = &. Since X is normal, we can
use the Urysohn lemma to construct a continuous function g : X — [—%, g} such
that g(b) = 3 forall b € Band g(c) = —% forallc € C. Now, letz € A.

Then there are three cases:

1. Ifz € B, thenr > h(z) > & = g(x),s0 3r > h(z) — g(z) > 0.
2. Ifz € C,then —r < h(z) < —% = g(x),s0 3r > g(x) — h(x) > 0.
3. Ifx € A\ (BUC) then |h(z)| < rand|g(z)| < 3,s0

() = g()] < [h(2)] + |g(x)] < 2r/3.

Hence |h(z) — g(x)| < 2r/3 whenever z € A. [

We are now ready to prove the extension result.

Theorem 257 (TIETZE EXTENSION THEOREM)
Let X be a normal space and A a closed subset of X.

1. If f : A — [a,b] is continuous, there is a continuous function g : X — |a, b] such

that gla = f.
2. If f + A — R s continuous, there is a continuous function g : X — R such that
gla=f.
Proof:
1. It is sufficient to prove the theorem for a = —1, b = +1, as [—1, 1] is homeo-

morphic to [a,b] foralla < b € R. Letr = 1, h = f and apply Lemma 256 to
get a a continuous function g; on X such that

91(x)] <1/3 and  [f(a) —gi(a)] < 2/3

forallz € X,a € A.
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Then, forr = %, h = f — g1, we repeat the process to get a continuous function
g2 on X such that, forall x € X, a € A, we have:

l92(2)] < 1/3-(2/3) and [f(a) = gi(a) — ga(a)| < (2/3)".

By recursion, suppose that s, = >_;'_, g, where |f(a) — s,(a)| < (2)" for

alla € A Taker = (%)",and h = f — s,. Then by Lemma 256, there is a

continuous function g,, .1 on X such that

(gas1(@)] <1/3-(2/3)"  and  [f(a) = su(a) = gnya(a)] < (2/3)""

forall z € X, a € A. By induction, the continuous functions g, are defined for
alln € N,and |g,(z)] < 1/3-(2/3)"" = M, forall z € X. By the Weierstrass
M-test (Theorem 79),

g= § 9n
neN
is uniformly convergent hence continuous. By construction

WIS« 5 (3) =2y

neN neN

forallz € X.Fora € A, |f(a) —s,(a)] < (%)n Then, asn — oo, s,(a) — f(a)
and s, (a) — g(a). As X is Hausdorff, limits are unique, so g|4 = f

. Itis sufficient to prove the theorem for continuous f : A — (—1,1),as (—1,1)
is homeomorphictoR. If f : A — (—1,1) C [—1, 1] is a continuous function,
using part 1 of the theorem, there is a continuous extension  : X — [—1,1].
Define

D=h({-1)UhT({1}) € X.
As h is continuous and X is Hausdorff, D C X. Since
h(A4) = f(A) C (-1,1),

then AN D = @. Using the Urysohn lemma, there is a continuous function
¢ : X — [0,1] such that (D) = {0} and ¢(A) = {1}. Let g(z) = ¢(x)h(x) for
allz € X.

Then ¢ is continuous and g|4 = f since g(a) = ¢(a)h(a) = 1 - h(a) =
forall @ € A. Finally ¢ : X — (—1,1). Indeed, if x € D, then
g(z) = ¢(x)h(x) = 0-h(x) = 0 € (=1,1). If o ¢ D, then |h(x)] < 1,
so|g(x)] < |o(z)[|h(x)] < 1. u
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In the remaining part of this chapter, we prove a result that provides conditions under which
a topological space is metrizable.

Theorem 258 (URYSOHN METRIZATION THEOREM)
Every regular second countable space X is metrizable.

Proof: we show X is metrizable by showing it is homeomorphic to a sub-
space of R“ in the product topology. Let B = {B,, }.cn be a basis of X. Then, using
appendix A, section 4, question 3, there is a countable collection of continuous
function f, : X — [0, 1], where f,(z) > Oforz € B, and f(X \ B,) = {0} for
all n € N. Given zy € X, and a neighbourhood U of z, there is an indexn € N
such that f,,(zo) > 0Oand f(X \ U) = {0}. Indeed, choose a basis element B,, such
that 2y € B, C U. Then the index n satisfies the property. Now, define a function
F: X — RY (in the product topology) by

F(z) = (fi(z), fo(x),...).

We show that F' is an embedding. Clearly, F' is continuous, since f,, is continuous
for all n € N. Furthermore, it is injective. Indeed, let = # y. As X is Hausdorff, there
is a neighbourhood U of x disjoint from y. Using the property above, there is an
indexn € Nsuch that f,,(x) > 0and f,(y) = 0. Hence F'(x) # F(y). It remains only
to show that F' is an homeomorphism from X to F'(X). As F'is already continuous,
it will be sufficient to show that F' is open.

Let U Cp X and 2y € F(X). Then there exists W Cp F(X) such that
2o € W C F(U). Indeed, let zg € U such that F'(zy) = 2. As above, there is an
index N € Nsuch that fy(zy) > 0and fx(X \ U) = {0}. Let

V= my'((0,00)) Co R,
andset W =V N F(X). Then W Cp F(X), and
mn(20) = Tn (F(20)) = fn(z0) > 0,
so that zp € W. We show now that W C F(U). If z € W, there exists an z € X such

that z = F(z) and 7y (2) > 0. But 0 < my(2) = fn(x),soz € U. Then F(z) € F(U)
and W C F(U). Hence F is open. |

In the proof, we have called upon a special countable collection of continuous functions. The
following theorem shows how to generalize to arbitrary collections.

Theorem 259 (EMBEDDING THEOREM)

Suppose X is Hausdorff and { f,} is a family of real-valued continuous functions (in-
dexed by A) such that if U is a neighbourhood of o € X, there is an o € A such that
fa(zo) > 0and f.(x) = 0ifx & U. Then X is homeomorphic to a subspace of R*,
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18.3. RESULTS OF URYSOHN AND TIETZE

Proof: the proof is similar to that of the Urysohn metrization theorem, just replace
n € w throughout by a € A. [ |

Let’s take a look at another embedding result.

Theorem 260
Let X be a completely regular space. Then X can be embedded in R* for some A.

Proof: we first define an index set. Let A = {(C,z) | C C¢ X,z ¢ C}. Forzy € X,
if U is aneighbourhood of 2o, then C' = X \U Cy X andzy ¢ C,soa = (C, xp) € A.

Since X is completely regular, there is a continuous function f, : X — [0,1]
such that f(zy) = 1and f(z) = Oforallz € C,soforallz ¢ U. Hence there is a
family of continuous functions { f,}. satisfying the hypotheses of the embedding
theorem. As X is Hausdorff, we apply the embedding theorem to obtain the desired
result. |

The next result shows that T3% spaces behave in a nice fashion, not unlike their 75 cousins.
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Theorem 261
Subspaces and product of completely regular spaces are completely regular.

Proof: suppose Y is a subspace of the completely regular space X. Ify € YV
andy ¢ A Cc Y, then A =Y N A (closure in X) and y ¢ A. Since X is completely
regular, there is a continuous function f : X — [0, 1] such that f(A) = {0} and
f(y) = 1. Then the restriction of f to Y is continuous and f|y(A) = {0} and
flv(y) =1, so that Y is completely regular.

Now suppose that X, is completely regular for every o. Let X = [[, 6 X,. If
C Co X and zg = (z4)a ¢ C, then there is a basic neighbourhood [ ], U, of z
disjoint from C. By definition, U, = X,, except when o = «;, 1 < 7 < n for
some n. Leti € {1,...,n}. Thenz,, € U, Co Xa, 50 X4, \ Us, Cc Xa,. By
complete regularity of X,,, there is a continuous function f,, : X,, — [0, 1] such
that f,,(z,,) = 1 and f,,(X,, \ Us,) = {0}. This can be done for all 1 < i < n. Now
define a function f : X — [0, 1] by

f(@) = for (Tar (2)) - -+ fa (T, (7))

Then, f is continuous, being the product of continuous functions. Furthermore,

f(xo) = for(Tay(20)) -+ fan, (Tan(20)) = 1. Now suppose y & [], U,. Then, there
exists a; such that 7,,(y) € U,, and f,,(7,,(y)) = 0. Hence f(y) = 0, and X is
completely regular. |
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18.4 Solved Problems

1. Show thatif X is Lindelofand Y is compact, then X x Y is Lindelof.

Proof: the proof is nearly identical to that showing X x Y is compact whenever X
and Y are compact. Let § be an open covering for X x Y. For each x € X we geta
finite subcovering of {x} x Y from §, say F(z)1, ... F(x),. Let N be the open set

By the Tube Lemma, there is a neighbourhood W, of x in X suchthat W, x Y C N.
Repeating this procedure for all z € X, we get that {W, },c x is an open covering of
X. But X is Lindel6f, so there is a countable subcovering

Wais Wag, o
For each of these W,,, there were n; corresponding sets F'(z;); in §. Define
S‘J:{F(:Ei)j |ZEN,1§]§TLZ}

§' is an open countable collection. For any (z,y) € X x Y,z € W,, for some i. Then
(z,y) € Wy, x Y and (z,y) € F(x;); for some j, so

ieNj=1
So § is a countable subcovering of X x Y extracted from §, so X x Y is Lindelof. B
2. Let X be a space with the order topology. Show that X is regular.

Proof: let A Co X, withb ¢ A. As A is closed, there exists an open interval (c, d)
such that

be(c,d) C X\ A

There are now four possibilities.
a) If there existse, f € X suchthatec < e < b < f < d,putU = (e, f) and
V = (—o0,e) U (f, +00).
b) Ifthereisan f,butnosuche,thatis(c,b) = &, putU = (¢, f)and V = (—o0, b)U
(f, 4+00).
c) If there is an e, but no such f, thatis (b,d) = @, put U = (e,d) and V =
(—o0,e) U (b, +00).
d) If there are no such e, f, thatis (¢,b) = (b,d) = &, put U = (¢,d) = {b} and
V = (—00,b) U (b, +00).
Inallcases,be U Cp X, ACV Cp XandU NV = g, so X isregular. [ |
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18.4. SOLVED PROBLEMS

3. a) If X is a Lindelof space, show that every closed subset of X is Lindelof.

b) If A, B are disjoint closed subsets of a regular space, show that there are open
coverings &, § of A, B respectively suchthatUN B = @and VN A = & for all
UegVes.

c) If X is aregular Lindel6f space, show that X is normal.

Proof:

a)

b)

Let A be a closed subset of X, and suppose that § is an open covering of A. Then
X \ Aisopenand §U {X \ A} is an open covering of X. But X is Lindelof, so
there is a countable sub-covering of X, say

{X\ A Fi, Fs,...},
where F,, € § for all n € N. Consequently,
{F17F27"‘} g',g

is a countable sub-covering of A, and A is Lindelof.

Leta € A. Since X \ B is open, there exists an open set W, such thata € W,
and W, N B = @. By regularity of X, there exists an open set U, such that

acU, CU, CW,.

Then U, N B € W, N B = &. The collection {U, },c 4 is an open covering of A
satisfying the requisite property. Similarly, we can construct an open covering
of B satisfying the property.

Let A and B be disjoint closed subsets of the regular Lindel6f space X. Then A
and B are Lindelof, by part (a), and there are open coverings € and § of A and
B respectively such that

UNB=@ and VNA=0

forallU € €,V € 3. Since A and B are Lindel6f, it is possible to extract count-
able sub-coverings

{U1,Us,...} C€¢ and {V1,V5,...} CF

of A and B respectively. Now define
U, =U,\|JVi and V=V, \[JT.
i=1 =1

Then U}, V,, are open in X as U,,V,, are open in X and J_, U;, J_, V; are
closed in X. Let
U= U U/ and V'= U V.

neN neN
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Then U’, V' are open in X with A C U’ and B C V'. Indeed if z € A, then
x € U, for some n. But, by construction, z ¢ V; foralli € N. Then z € Uj,.
Similarly, if y € B, theny € V! for some n € N. It remains only to show that
U'NV'=@. Suppose { € U'NV'. Then ¢ € U, NV, for some m,n € N. If
m > n, then

EelUl = ¢el,

cevy = ¢¢U,

a contradiction. If m < n, then
€U, = E¢Vn
EeV), = £€Vy,

another contradiction. Then U’ NV’ = @ and X is normal. [ ]

4. Let X be a second countable regular space and let U be an open set.

a) Let {f,}nen be a sequence of real-valued functions on a space X. If there exists
M € Rsuchthat|f,(z)] < M forallz € X, n € N show that

1
neN
converges uniformly on X.

b) Show that U is a countable union of closed sets in X.

c) Show that there is a continuous function f : X — [0, 1] such that f(z) > 0 for all
z € Uand f(x) =0forallz ¢ U.

Proof:

a) Lete > 0, and choose N, € N such that

log M —1
N, > 2840 T 08F
log 2

Then, forallz € X andn > N,,

o0 o0 o0
1 1 1 M M
E ?fl(x) < E ?‘fz(x)‘ < M( E : 21) ~ on < oN: <&
i=n+1 i=n+1 i=n+1

and so > 27" f,, converges uniformly on X.

b) Suppose B = { B, } en is abasis for X and U is openin X. Then X \ U is closed
in X. Since X is regular, if x € U, there exist B, € 5 and an open set V, such
thatz € B,, X \U C V,and B, NV, = @. But

UszU

zeU
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18.4. SOLVED PROBLEMS

since B, N (X \U) C B,NV, = @forallz € U. As ‘B is countable, there exists
a sequence {z,, }nen in U such that

U= |JB.= B

zelU neN

By construction, X \U C V, ,so X\ V,, C U foralln € N, and

U&xx\v,) cu

neN

Now, suppose z € U. Thenz € B, forsomen € N,sox ¢ V,, andz € X\ V,,
for that n. Hence

U(X\Vxn) =U.

neN

But X \ V,, is closed in X foralln € N so U is a countable union of closed sets.

By hypothesis, U = | J,,cyy Cn, where C,, is closed in X and X \ U is closed. But
X is normal, as it is regular and second countable, so, by the Urysohn lemma,
there exists a family of continuous functions { f,, },en, where f,, : X — [0,1],
such that f,,(X \ U) = {0} and f,,(C,,) = {1}. Define the function f on X by

Fa) =Y o fala).

neN

Since each f, is bounded by 1 above and 0 below, we can apply the result ob-
tained in q. 2 to show that f is defined for all x € X and that f is continuous,
since the series is uniformly convergent. Now we show that f : X — [0, 1]. Let
xz € X. Then f,(z) € [0,1] foralln € N, so

0<) 27" fulw) <D 27" =1.

neN neN

=f(z)

It remains to show that f satisfies the requisite property. Suppose x ¢ U. Then
flx) => 27" fu(x) = > 27" -0 = 0. Now suppose x € U. Thenz € C, for
some n, and f(x) > 27" > 0. [ ]

5. For disjoint closed sets A, B in a completely regular space, if A is compact show that
there is a continuous function f : X — [0, 1] with f(A) = {0} and f(B) = {1}.

Proof: let a € A. Then, by the previous question, there exists a continuous function
fa : X — [0,1] such that f,(B) = {1} and f,(U,) = {0} for some neighbourhood
U, of a, disjoint from B. The collection § = {U, }4c 4 is then an open covering of A,
disjoint from B. But A is compact, so there is a finite sub-covering

{Uars--- U, } € F
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b)

of A. Pick the associated functions f,,, 1 < ¢ < n, and construct the function f :
X — [0, 1] defined by

f(@) = fa, (@) fay (®) -+ - fa, (2).

Then f is continuous, since the finite product of continuous functions is continuous.
Furthermore, f(A) = {0} and f(B) = {1}. Indeed, suppose z € A. Then z € U,,
for some i and f,,(x) = 0,s0 f(z) = 0. Ifz € B, f,,(z) = 1foralll <i < n,so
f(z) =1 [ |

Show thata connected normal space X having more than one pointis uncountable.

Show thata connected regular space X having more than one pointis uncountable.

Proof:

a)

b)

By hypothesis, there exists z # y € X. Since X is normal, singletons are closed
in X and X is completely regular. Then there exists a continuous function f :
X — [0,1] such that f(z) = 0 and f(y) = 1. But X is connected. By the
intermediate value theorem, for every 0 = f(z) < r < f(y) = 1, there exists
zr € X such that f(z,) = r. Then f is a surjection of X onto [0, 1]. Hence X is
uncountable.

Suppose X was a countable connected regular space with at least two points.
Then X is clearly Lindelof, so it is normal by a previous solved problem. But this
would make X uncountable by this problem’s first part, which is a contradiction.
Hence X has to be uncountable. |

7. Show that every locally compact Hausdorff space is completely regular.

Proof: as X is alocally compact Hausdorff space, it has a one-point compactification

Y =

X U{oco}, whereY = X and X is a subspace of Y. But Y is compact Hausdorff,

so X is homeomorphic to a subspace of a compact Hausdorff space, hence X is com-
pletely regular. ]

18.5 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.

2. If A is a subspace of a first countable space X, show that 2 € A if and only if there is a
sequence of points in A converging to x.

3. If X is a first countable space, show that f : X — Y is continuous if and only if for any
convergent sequence z,, — z, the sequence f(x,,) converges to f(z).

4. If X is second countable, show that every collection of disjoint open sets in X is count-

able.

5. If Y is compact and X is Lindel6f, show that X x Y is Lindelof.

P. Boily (uOttawa)
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18.5. EXERCISES
Let X be aregular, second countable space. Show that every open set U in X is a count-
able union of closed sets.

Use the fact that X is completely regular to show that there is a continuous function
f:X — 0,1 such that f(z) > Oforallz € U and f(z) = 0forx ¢ U.

Show that subspaces and products of completely regular spaces are completely regular.
If X,, is first countable for all n € N, show that HneN X, is first countable.

Provide proofs for the examples of p. 431.

Complete the proof of Lemma 250.

[llustrate the separation axioms as in Chapter 15 (see p. 321, and footnote for a list).
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