
Chapter 18

Countability and Separation

In Chapter 15, we introduced a few simple separation de initions (T0, T1,
and T2/Hausdorff); in this chapter, we extend the discussion to more so-
phisticated separation axioms, and introduce the notions of irst and sec-
ond countable spaces.

18.1 Countability Axioms
A basis at x ∈ X is a collection B of open sets containing x and such that, for each neigh-
bourhood V of x, there existsB ∈ Bwith x ∈ B ⊆ V .

We say that a space X is irst countable at x ∈ X if there is a countable basis at x; X is
simply irst countable if it is irst countable at every x ∈ X . It is second countable if its
topology has a countable basis.

aaaaaa

Examples (F S C )
1. IfX is second countable, then it has a countable basisB. Let x ∈ X . If U is an

(open) neighbourhood of x, then

U =
∪
n∈N

Bn,

whereBn ∈ B for all n ∈ N. As x ∈ U , then x ∈ Bm for somem. Hence

Bx = {B ∈ B | x ∈ B}

is a countable basis at x since Bx ⊆ B, and soX is irst countable at x. But x
is arbitrary, soX is irst countable.
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2. LetX = R in the usual topology; it is second countable since

B = {(a, b) | a < b ∈ Q}

is a countable basis ofX . In light of the previous example,X is also irst count-
able.

3. LetX = R in the discrete topology. R is not second countable as every set is
open and R is uncountable. However, it is irst countable, since {x} is a basis
at x for each x ∈ X . □

A space X is Lindelöf if every open covering of X contains a countable (not necessarily i-
nite) sub-covering. A subsetA ofX is Lindelöf if it is Lindelöf in the subspace topology.

aaaaaa

Theorem 248
IfX is second countable, then it is Lindelöf.

Proof: let F be an open covering and B = {Bn}n be a countable basis of X .
For each n ∈ N, whenever it is possible to do so, let Fn ∈ F be such that Bn ⊆ Fn.
Otherwise let Fn = ∅. Then

X =
∪
n∈N

Bn ⊆
∪
n∈N

Fn

and {Fn}n is a countable sub-collection; it is also an open cover. Indeed, let x ∈ X .
Then there exists F ∈ F such that x ∈ F . As F is open, there exists a basic set
Bn ∈ B such that x ∈ Bn ⊆ F . By construction, F ∈ {Fn}n. HenceX is Lindelöf. ■

Let us take a look at some examples.

aaaaaa

Examples (L ̈ S )
1. The space R is second countable (hence Lindelöf), since

B = {(a, b) | a < b ∈ Q}

is a countable basis.

2. The space Rl is Lindelöf but not second countable. Indeed, let B be any basis
for the lower limit topology on Rl. Then, for any x ∈ R and ε > 0, we have
[x, x+ ε) ⊆O Rl, that is, there is a basic setBx,ε such that

x ∈ Bx,ε ⊆ [x, x+ ε).
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If x < y, then, for ε = y − x, y ̸∈ Bx,ε. So B must contain an uncountable
sub-collection and Rl is not second countable.

We show that Rl is Lindelöf by showing that every open covering by ba-
sic sets contains a countable sub-covering. Let F = {[αa, βa)}a∈J be an open
covering of Rl and

C =
∪
a∈J

(αa, βa)

be a subspace of R. As R is second countable, so is C; it is thus also Lindelöf,
as of Theorem 248. The collection {(αa, βa)}a∈J is an open covering of C , so
there exists a sub-covering {(αan , βan)}n∈N of C . Then

F′ = {[αan , βan)}n∈N

also covers C and F′ ∪ (R \ C) is a covering of R.

Let x ∈ R \ C . Then x = αa for some a ∈ J . Let qx ∈ (αa, βa) ∩ Q.
Then

(x, qx) ⊆ (αa, βa) ⊆ C.

Now suppose x < y ∈ R \ C . Necessarily, qx < qy since, otherwise,

y ∈ (x, qy) ⊆ (x, qx) ⊆ C,

a contradiction as y ̸∈ C . Thus the map x 7→ qx is an injection of R \ C into
Q, which means that R \ C is countable. Write R \ C = {zn}n∈N, and ind
[αm, βm) ∈ F with zm ∈ [αm, βm) for all m ∈ N – this can be done as F is an
open covering of Rl. Then F′ ∪ {[αm, βm)}m∈N is a countable sub-cover of Rl

extracted from F.

3. The space R2
l is not Lindelöf. To show this, let L = {(x,−x)}x∈R. Then R2

l \ L
is open in R2

l . Indeed, let (x, y) ∈ R2
l \ L and put ε = x+y

2
. Then

(x, y) ∈ [x, x+ ε)× [y, y + ε)

and ([x, x+ ε)× [y, y + ε)) ∩ L = ∅. Now F = {R2
l \ L} ∪ {Fa}a∈R, where

Fa = [a, a+ 1)× [−a,−a+ 1),

is an open covering of R2
l . But Fa is the only set in F containing (a,−a), so

any sub-covering will contain Fa for all a ∈ R. AsR is uncountable, F does not
contain a countable sub-covering. HenceR2

l is not Lindelöf. This demonstrates
that the product of two Lindelöf spaces need not be Lindelöf.
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4. Let Ω be the irst uncountable ordinal. Then Ω = [0,Ω) is irst countable but
not Lindelöf, so it is not second countable. Indeed, suppose a ∈ Ω. Then

Ba = {(c, a+ 1)}c<a

is countable as a < Ω. Let U be a neighbourhood of a. Then a ∈ (c, a+1) ⊆ U
for c < a. This makesBa a countable basis at a ∈ Ω. ThenΩ is irst countable.

To show that Ω is not second countable, consider the open covering
F = {[0, b)}b∈Ω of Ω, and let F′ be any countable sub-collection from F. Let

β =
∪

[0,b)∈F′

b.

As it is a countable union of countable sets, β is countable, that is β ∈ Ω. But
β ̸∈ [0, b) for all [0, b) in F′, and so F′ cannot be a sub-covering from F. Hence
Ω is not Lindelöf, nor is it second countable. □

We can show fairly easily that countability behaves as expected for subspaces and products.

aaaaaa

Theorem 249
If X is irst (resp. second) countable, then any subspace of X is irst (resp. second)
countable. IfXn is irst (resp. second) countable for all n ∈ N, then∏

n∈N

Xn

is irst (resp. second) countable.

Proof: the statement about subspaces is clearly true. We show that the countable
product of second countable spaces is second countable. The proof for irst count-
able spaces is similar, and is left as an exercise.

LetX =
∏
Xn,Bn be a countable basis forXn, and de ine

Cm =

{∏
n∈N

Vn

∣∣∣∣∣Vn ∈ Bn for 0 ≤ n ≤ m,Vn = Xn form < n

}

for all m ∈ N. Then C =
∪

m∈N Cm is countable. Furthermore, it is a basis for the
product topology onX . SoX is second countable. ■

We shall see in the next section that there is a link between countability and separation.

430 Analysis and Topology Course Notes



CHAPTER 18. COUNTABILITY AND SEPARATION

18.2 Separation Axioms
LetX be a space. In Chapter 15, we introduced a number of separation axioms:

0. X is T0 if for every pair x ̸= y ∈ X , there exist a neighbourhood U of either x or y that
misses the other;

1. X is T1 if for every pair x ̸= y ∈ X , there exist neighbourhoods Ux of x and Uy of y such
that y ̸∈ Ux and x ̸∈ Uy;

2. X is T2 or Hausdorff if for every pair x ̸= y ∈ X , there exist disjoint neighbourhoods
Ux of x and Uy of y.

We have also seen that if a space X is T1, then every singleton is closed in X . Note that the
condition T2 is strictly stronger than the condition T1: there are T1 spaces that fail to be T2.

We introduce two new separation axioms.¹ We say that a spaceX is:
3. T3 or regular if X is T1 and if for every pair consisting of a x ∈ X and a closed set B

disjoint from x, there exist disjoint neighbourhoods Ux of x and UB containingB;
4. T4 or normal ifX is T1 and if for every pair consisting of disjoint closed sets A and B,

there exist disjoint neighbourhoods UA containing A and UB containingB.
Some of the conditions imply some of the others: a regular space is Hausdorff, for instance,
since singletons are closed. Indeed let x ̸= y. Then x and the closed set {y} are disjoint and
there exist Ux and U{y} such that x ∈ Ux, {y} ⊆ U{y} and Ux ∩ U{y} = ∅. For the same
reasons, a normal space is regular. The following examples (without proof) show that none
of the implications

T4 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0

can be reversed and that normal spaces are not as well behaved as we might expect.

aaaaaa

Example: (R N )
1. LetK =

{
1
n
: n ∈ N

}
be a subset of R, with basic open sets of the form (a, b)

and (a, b) \K for all a, b ∈ R. With this topology R is Hausdorff. But it is not
regular, since it is possible to separate the point 0 and the closed setK . Hence
a Hausdorff space need not be regular.

2. Let Ω be the least uncountable ordinal. The spaces Ω and Ω+ are normal in
the order topology. But their product is not normal. The product Ω+ × Ω+ is
normal however, so a subspace of a normal space need not be normal. And, as
wewill see later,Ω×Ω+ is regular, being the product of two regular spaces, so
a regular space need not be normal.

3. IfA is uncountable, the product space RA is not normal.

¹There are other such axioms; see https://en.wikipedia.org/wiki/Separation_axiom for more.
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We can also formulate the conditions of regularity and normality differently, as that could be
more useful in different contexts (as in the next section).

aaaaaa

Lemma 250
LetX be T1. Then

1. X is regular if and only if given a point of x ∈ X and a neighbourhood U of x,
there is a neighbourhood V of x such that V ⊆ U .

2. X is normal if and only if given a closed setA ⊆ X and an open setU containing
A, there is an open set V containing A such that V ⊆ U .

Proof:

1. SupposeX is regular and let x ∈ X have a neighbourhood U . Then

x ̸∈ X \ U ⊆C X.

By regularity of X , there exist open subsets V and W such that x ∈ V ,
X \ U ⊆ W and V ∩W = ∅. Suppose y ∈ W . ThenW is a neighbourhood of
y that does not meet V , and so V ∩W = ∅. Hence V ⊆ X \W = U .

Conversely, supposeB ⊆C X and x ̸∈ B. then

x ∈ X \B ⊆O X.

By hypothesis, there exists a neighbourhood V of x such that

x ∈ V ⊆ X \B.

Then by construction,B ⊆ X \ V ⊆O X , x ∈ V andX \ V ∩ V = ∅. In other
words,X is regular.

2. The proof of the second statement uses sensibly the same argument. ■

T2 and T3 spaces behave particularly well with respect to subspaces and products.

aaaaaa

Theorem 251 LetW , {Wα} be Hausdorff,X , {Xβ} be regular.

1. Each subspace Y ofW is Hausdorff, and the product∏Wα is Hausdorff.

2. Each subspace Y ofX is regular, and the product∏Xβ is regular.
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Proof:

1. Let Y be a subspace ofW . If x ̸= y ∈ Y , then there exist disjoint U, V ⊆O X
such that x ∈ U and y ∈ V . ButU ∩Y, V ∩Y ⊆O Y are disjoint and x ∈ U ∩Y ,
y ∈ V ∩ Y , so Y is Hausdorff.

Let W =
∏
Wα. If x = (xα) ̸= y = (yα), then there is a coordinate γ

such that xγ ̸= yγ . AsWγ is Hausdorff, there exist disjoint U, V ⊆O Xγ such
that xγ ∈ U , yγ ∈ V . Then π−1

γ (U), π−1
γ (V ) ⊆O W are disjoint and x ∈ π−1

γ (U),
y ∈ π−1

γ (V ), soW is Hausdorff.

2. Let Y be a subspace ofX . Since Y is Hausdorff, one point sets are closed in Y .
If x ∈ Y , andB is a closed subset of Y disjoint from x, then

B ∩ Y ⊆ B ∩ Y = B ∩ Y = B.

So x ̸∈ B (inX). By regularity ofX , there exist disjoint U, V ⊆O X such that
x ∈ U and B ⊆ V . Then U ∩ Y, V ∩ Y ⊆O Y are disjoint, x ∈ U ∩ Y and
B ⊆ V ∩ Y . Hence Y is regular.

Let X =
∏
Xβ . Since X is Hausdorff, one point sets are closed in X .

Let x = (xβ) ∈ X and suppose U is a neighbourhood of x. Choose a basis∏
Uβ such that

x ∈
∏

Uβ ⊆ U.

For each β, Xβ is regular. Then there exists a neighbourhood Vβ such that
xβ ∈ Vβ ⊆ Uβ.² Then, V =

∏
Vβ is a neighbourhood of x ∈ X . But V =

∏
Vβ ,

so

V ⊆
∏

Uβ ⊆ U

and soX is regular according to Lemma 250. ■

The following three theorems give sets of hypotheses under which normality is assured.

aaaaaa

Theorem 252
LetX be metrizable. ThenX is normal.

Proof: let d be the metric on X , and A and B be disjoint closed subsets of X .
For each a ∈ A, choose εa such that B(a, εa) ∩ B = ∅ – this can always be done as
B is closed inX soX \B ⊆O X .
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aaaaaa

Similarly, for each b ∈ B, choose εb such thatB(b, εb) ∩ A = ∅. Then

U =
∪
a∈A

B(a, εa/2) and V =
∪
b∈B

B(b, εb/2)

are open subsets ofX containing A andB respectively. They are also disjoint. Oth-
erwise, B(a, εa/2) ∩ B(b, εb/2) ̸= ∅ for some a ∈ A, b ∈ B. Suppose z lies in that
intersection. Then

d(a, b) ≤ d(a, z) + d(z, b) <
εa + εb

2
.

If εa ≤ εb, then d(a, b) < εb and a ∈ B(b, εb). If εa ≥ εb, then d(a, b) < εa and
b ∈ B(a, εa). But both these statements are false, so U ∩ V = ∅ andX is normal. ■

As usual, compact Hausdorff space behave nicely.

aaaaaa
Theorem 253
LetX be a compact Hausdorff space. ThenX is normal.

Proof: see the solved problems. ■

We establish a link with second countability below.

aaaaaa

Theorem 254
LetX be a second countable regular space. ThenX is normal.

Proof: let B be a countable basis for X . Suppose A and B are disjoint closed
subsets ofX . AsB is closed, each x ∈ A has a neighbourhood Ux not meetingB. By
regularity, there is a neighbourhood Vx of x such that

x ∈ Vx ⊆ U.

As Vx ⊆O X , there existsWx ∈ B such that x ∈ Wx ⊆ Vx, and

Wx ⊆ Ux ⊆ X \B,

soWx∩B = ∅. Then {Wx}x∈A is a countable open covering ofA since it is contained
in B. Let us re-index it, and write {Wn}n∈N. Similarly, it is possible to construct a
countable open covering {Zn}n∈N of B such that Zn ∩ A = ∅ for all n ∈ N. Given
n ∈ N, de ine

W ′
n = Wn \

n∪
i=1

Zi and Z ′
n = Zn \

n∪
i=1

Wi.
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aaaaaa

ThenW ′
n, Z

′
n ⊆O X asWn, Zn ⊆O X and∪n

i=1Wi,
∪n

i=1 Zi ⊆C X . Let

W ′ =
∪
n∈N

W ′
n and Z ′ =

∪
n∈N

Z ′
n.

ThenW ′, Z ′ ⊆O X andA ⊆ W ′ andB ⊆ Z ′. Indeed if x ∈ A, then x ∈ Wn for some
n. But, by construction, x ̸∈ Zi for all i ∈ N. Then x ∈ W ′

n. Similarly, if y ∈ B, then
y ∈ Z ′

n for some n ∈ N. It remains only to show thatW ′ ∩ Z ′ = ∅.

Suppose ξ ∈ W ′ ∩ Z ′. Then ξ ∈ W ′
n ∩ Z ′

m for some m,n ∈ N. If m ≥ n,
then

ξ ∈ W ′
n =⇒ ξ ∈ Wn, and ξ ∈ Z ′

m =⇒ ξ ̸∈ Wn,

which is a contradiction. Ifm ≤ n, then

ξ ∈ W ′
n =⇒ ξ ̸∈ Zm, and ξ ∈ Z ′

m =⇒ ξ ∈ Zm,

another contradiction. ThenW ′ ∩ Z ′ = ∅ andX is normal. ■

18.3 Results of Urysohn and Tietze
Let X be a normal space, and A, B be disjoint closed subsets of X . Put U1 = X \ B ⊆O X ,
so A ⊆ U1. As X is normal, there exists U0 ⊆O X such that A ⊆ U0 and U0 ⊆ U1. For each
dyadic rational r = m

2n
in [0, 1], we can associate an open set Ur such that

r < s =⇒ Ur ⊆ Us. (18.1)
To do so, we start with any U 1

2
⊆O X such that

U0 ⊆ U 1
2
⊆ U 1

2
⊆ U1

(this can be done as X is normal, U1 ⊆O X , U0 ⊆C X , and U0 ⊆ U1). Then, by the same
process, it is possible to obtain U 1

4
, U 3

4
⊆O X satisfying

U0 ⊆ U 1
4
⊆ U 1

4
⊆ U 1

2
and U 1

2
⊆ U 3

4
⊆ U 3

4
⊆ U1.

Recursively, suppose we have sets U m
2n

satisfying (18.1), form = 0, 1, . . . , 2n.

Then U m
2n
⊆ Um+1

2n
for all m = 0, 1, . . . , 2n − 1. By normality of X , for m = 0, 1, . . . , 2n − 1,

there is an set U 2m+1

2n+1
⊆O X such that

U m
2n
⊆ U 2m+1

2n+1
⊆ U 2m+1

2n+1
⊆ Um+1

2n
.

Let r be a dyadic rational not in [0, 1].³ If r > 1, take Ur = X . If r < 0, take Ur = ∅. Then
(18.1) holds for all dyadic rational.

³A dyadic rational is a real number that can be written as a fraction with denominator 2q for some non-
negative integer q.
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Now, let x ∈ X , and de ine

Q(x) = {p | x ∈ Up}.

For all x ∈ X , p ̸∈ Q(x) whenever p < 0 since x ̸∈ Up = ∅, and q ∈ Q(x) whenever q > 1
since x ∈ Up = X . HenceQ(x) is bounded below and its greatest lower bound lies in [0, 1].
De ine f : X → [0, 1] by

f(x) = g.l.b.{Q(x)}.

Then, f(a) = 0 for a ∈ A since Q(a) is the set of dyadic rational in [0,∞), and f(b) = 1 for
b ∈ B sinceQ(b) is the set of dyadic rational in (1,∞). By construction,

1. x ∈ Up =⇒ f(x) ≤ p;

2. x ̸∈ Up =⇒ f(x) ≥ p.

Indeed, if x ∈ Up, then x ∈ Uq for all q > p. Then q ∈ Q(x) for all q > p, and so that f(x) ≤ p.
If x ̸∈ Up, then p is a lower bound forQ(x) so that f(x) ≥ p.

aaaaaa

Theorem 255 (U L )
The function f de ined above is continuous.

Proof: suppose x0 ∈ X and (a, b) is a neighbourhood of f(x0). We ind a set
U ⊆O X such that x0 ∈ U ⊆ f−1((a, b)). Choose two dyadic rationals p < q such
that a < p < f(x0) < q < b. Let U = Uq \ Up. Then U ⊆O X as Uq is open and Up is
closed. Since q > f(x0) > p, we have x0 ̸∈ Up and x0 ∈ Uq , so x0 ∈ U .

If x ∈ U , then x ∈ Uq ⊆ Uq and f(x) ≤ q < b; but x ̸∈ Up so x ̸∈ Up and
a < p ≤ f(x). Thus f(U) ⊆ (a, b) and U ⊆ f−1((a, b)), so f−1((a, b)) ⊆O X and f is
continuous. ■

Wehave shown that in any normal spaceX , it is possible to separate any two disjoint closed
sets A and B by a continuous function f : X → [0, 1], where f(a) = 0 for all a ∈ A and
f(b) = 1 for all b ∈ B. Note that this does not necessarily mean that f−1({0}) = A and
f−1({1}) = B. This prompts the following de inition.

AT1-space isT3 1
2
or completely regular if, given a point x0 and a closed subsetAwith x0 ̸∈ A,

there is a continuous function f : X → [0, 1] such that f(x0) = 0 and f(a) = 1 for all a ∈ A.
SupposeX is completely regular. Let x0 andA be a closed subset ofX such that x0 ̸∈ A. Then
there is a continuous function f : X → [0, 1]with f(x0) = 0 and f(a) = 1 for all a ∈ A. De ine

U = f−1([0, 1/3)) and V = f−1((2/3, 1]).

Then U, V ⊆O X , x0 ∈ U , A ⊆ V , and U ∩ V = ∅, and soX is regular.
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One of the most important corollaries of the Urysohn lemma is the Tietze extension theo-
rem. Before stating and proving it, we irst prove the following useful lemma.

aaaaaa

Lemma 256
LetX be a normal space and A ⊆C X . If h : A → [−r, r] is continuous, then there is
a continuous function g : X →

[
− r

3
, r
3

]
such that |h(x)− g(x)| ≤ 2

3
r for all x ∈ A.

Proof: let B = h−1([r/3, r]) and C = h−1([−r,−r/3]). Then B,C ⊆C A as h
is continuous, soB,C ⊆C X asA ⊆C X , andB ∩C = ∅. SinceX is normal, we can
use the Urysohn lemma to construct a continuous function g : X →

[
− r

3
, r
3

]
such

that g(b) = r
3
for all b ∈ B and g(c) = − r

3
for all c ∈ C . Now, let x ∈ A.

Then there are three cases:

1. If x ∈ B, then r ≥ h(x) ≥ r
3
= g(x), so 2

3
r ≥ h(x)− g(x) ≥ 0.

2. If x ∈ C , then−r ≤ h(x) ≤ − r
3
= g(x), so 2

3
r ≥ g(x)− h(x) ≥ 0.

3. If x ∈ A \ (B ∪ C) then |h(x)| < r and |g(x)| ≤ r
3
, so

|h(x)− g(x)| ≤ |h(x)|+ |g(x)| ≤ 2r/3.

Hence |h(x)− g(x)| ≤ 2r/3whenever x ∈ A. ■

We are now ready to prove the extension result.

aaaaaa

Theorem 257 (T E T )
LetX be a normal space and A a closed subset ofX .

1. If f : A→ [a, b] is continuous, there is a continuous function g : X → [a, b] such
that g|A = f .

2. If f : A → R is continuous, there is a continuous function g : X → R such that
g|A = f .

Proof:

1. It is suf icient to prove the theorem for a = −1, b = +1, as [−1, 1] is homeo-
morphic to [a, b] for all a < b ∈ R. Let r = 1, h = f and apply Lemma 256 to
get a a continuous function g1 onX such that

|g1(x)| ≤ 1/3 and |f(a)− g1(a)| ≤ 2/3

for all x ∈ X , a ∈ A.
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Then, for r = 2
3
, h = f −g1, we repeat the process to get a continuous function

g2 onX such that, for all x ∈ X , a ∈ A, we have:

|g2(x)| ≤ 1/3 · (2/3) and |f(a)− g1(a)− g2(a)| ≤ (2/3)2 .

By recursion, suppose that sn =
∑n

k=1 gk, where |f(a) − sn(a)| ≤
(
2
3

)n for
all a ∈ A. Take r =

(
2
3

)n, and h = f − sn. Then by Lemma 256, there is a
continuous function gn+1 onX such that

|gn+1(x)| ≤ 1/3 · (2/3)n and |f(a)− sn(a)− gn+1(a)| ≤ (2/3)n+1

for all x ∈ X , a ∈ A. By induction, the continuous functions gn are de ined for
all n ∈ N, and |gn(x)| ≤ 1/3 · (2/3)n−1 =Mn for all x ∈ X . By the Weierstrass
M -test (Theorem 79),

g =
∑
n∈N

gn

is uniformly convergent hence continuous. By construction

|g(x)| ≤
∑
n∈N

|gn(x)| ≤
∑
n∈N

1

3

(
2

3

)n−1

=
1/3

1− 2/3
= 1

for all x ∈ X . For a ∈ A, |f(a)− sn(a)| ≤
(
2
3

)n. Then, as n→∞, sn(a)→ f(a)
and sn(a)→ g(a). AsX is Hausdorff, limits are unique, so g|A = f .

2. It is suf icient to prove the theorem for continuous f : A→ (−1, 1), as (−1, 1)
is homeomorphic to R. If f : A → (−1, 1) ⊆ [−1, 1] is a continuous function,
using part 1 of the theorem, there is a continuous extension h : X → [−1, 1].
De ine

D = h−1({−1}) ∪ h−1({1}) ⊆ X.

As h is continuous andX is Hausdorff,D ⊆C X . Since

h(A) = f(A) ⊆ (−1, 1),

then A ∩ D = ∅. Using the Urysohn lemma, there is a continuous function
ϕ : X → [0, 1] such that ϕ(D) = {0} and ϕ(A) = {1}. Let g(x) = ϕ(x)h(x) for
all x ∈ X .

Then g is continuous and g|A = f since g(a) = ϕ(a)h(a) = 1 · h(a) = f(a)
for all a ∈ A. Finally, g : X → (−1, 1). Indeed, if x ∈ D, then
g(x) = ϕ(x)h(x) = 0 · h(x) = 0 ∈ (−1, 1). If x ̸∈ D, then |h(x)| < 1,
so |g(x)| ≤ |ϕ(x)||h(x)| < 1. ■
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In the remaining part of this chapter, we prove a result that provides conditions under which
a topological space ismetrizable.

aaaaaa

Theorem 258 (U M T )
Every regular second countable spaceX is metrizable.

Proof: we show X is metrizable by showing it is homeomorphic to a sub-
space of Rω in the product topology. Let B = {Bn}n∈N be a basis ofX . Then, using
appendix A, section 4, question 3, there is a countable collection of continuous
function fn : X → [0, 1], where fn(x) > 0 for x ∈ Bn and f(X \ Bn) = {0} for
all n ∈ N. Given x0 ∈ X , and a neighbourhood U of x0, there is an index n ∈ N
such that fn(x0) > 0 and f(X \ U) = {0}. Indeed, choose a basis element Bn such
that x0 ∈ Bn ⊆ U. Then the index n satis ies the property. Now, de ine a function
F : X → Rω (in the product topology) by

F (x) = (f1(x), f2(x), . . .).

We show that F is an embedding. Clearly, F is continuous, since fn is continuous
for all n ∈ N. Furthermore, it is injective. Indeed, let x ̸= y. AsX is Hausdorff, there
is a neighbourhood U of x disjoint from y. Using the property above, there is an
index n ∈ N such that fn(x) > 0 and fn(y) = 0. Hence F (x) ̸= F (y). It remains only
to show that F is an homeomorphism fromX to F (X). As F is already continuous,
it will be suf icient to show that F is open.

Let U ⊆O X and z0 ∈ F (X). Then there exists W ⊆O F (X) such that
z0 ∈ W ⊆ F (U). Indeed, let x0 ∈ U such that F (x0) = z0. As above, there is an
indexN ∈ N such that fN(x0) > 0 and fN(X \ U) = {0}. Let

V = π−1
N ((0,∞)) ⊆O Rω,

and setW = V ∩ F (X). ThenW ⊆O F (X), and

πN(z0) = πN(F (x0)) = fN(x0) > 0,

so that z0 ∈ W . We show now thatW ⊆ F (U). If z ∈ W , there exists an x ∈ X such
that z = F (x) and πN(z) > 0. But 0 < πN(z) = fN(x), so x ∈ U . Then F (x) ∈ F (U)
andW ⊆ F (U). Hence F is open. ■

In the proof, we have called upon a special countable collection of continuous functions. The
following theorem shows how to generalize to arbitrary collections.

aaaaaa
Theorem 259 (E T )
Suppose X is Hausdorff and {fα} is a family of real-valued continuous functions (in-
dexed by A) such that if U is a neighbourhood of x0 ∈ X , there is an α ∈ A such that
fα(x0) > 0 and fα(x) = 0 if x ̸∈ U . ThenX is homeomorphic to a subspace of RA.
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aaaaaa Proof: the proof is similar to that of the Urysohn metrization theorem, just replace
n ∈ ω throughout by α ∈ A. ■

Let’s take a look at another embedding result.

aaaaaa

Theorem 260
LetX be a completely regular space. ThenX can be embedded in RA for some A.

Proof: we irst de ine an index set. Let A = {(C, x) | C ⊆C X, x ̸∈ C}. For x0 ∈ X ,
ifU is a neighbourhood of x0, thenC = X \U ⊆C X and x0 ̸∈ C , soα = (C, x0) ∈ A.

Since X is completely regular, there is a continuous function fα : X → [0, 1]
such that f(x0) = 1 and f(x) = 0 for all x ∈ C , so for all x ̸∈ U . Hence there is a
family of continuous functions {fα}α satisfying the hypotheses of the embedding
theorem. AsX is Hausdorff, we apply the embedding theorem to obtain the desired
result. ■

The next result shows that T3 1
2
spaces behave in a nice fashion, not unlike their T3 cousins.

aaaaaa

Theorem 261
Subspaces and product of completely regular spaces are completely regular.

Proof: suppose Y is a subspace of the completely regular space X . If y ∈ Y
and y ̸∈ A ⊆C Y , then A = Y ∩ A (closure inX) and y ̸∈ A. SinceX is completely
regular, there is a continuous function f : X → [0, 1] such that f(A) = {0} and
f(y) = 1. Then the restriction of f to Y is continuous and f |Y (A) = {0} and
f |Y (y) = 1, so that Y is completely regular.

Now suppose that Xα is completely regular for every α. Let X =
∏

αXα. If
C ⊆C X and x0 = (xα)α ̸∈ C , then there is a basic neighbourhood ∏α Uα of x0
disjoint from C . By de inition, Uα = Xα, except when α = αi, 1 ≤ i ≤ n for
some n. Let i ∈ {1, . . . , n}. Then xαi

∈ Uαi
⊊O Xαi

, so Xαi
\ Uαi

⊆C Xαi
. By

complete regularity of Xαi
, there is a continuous function fαi

: Xαi
→ [0, 1] such

that fαi
(xαi

) = 1 and fαi
(Xαi

\ Uαi
) = {0}. This can be done for all 1 ≤ i ≤ n. Now

de ine a function f : X → [0, 1] by

f(x) = fα1(πα1(x)) · · · fαn(παn(x)).

Then, f is continuous, being the product of continuous functions. Furthermore,
f(x0) = fα1(πα1(x0)) · · · fαn(παn(x0)) = 1. Now suppose y ̸∈ ∏α Uα. Then, there
exists αi such that παi

(y) ̸∈ Uαi
and fαi

(παi
(y)) = 0. Hence f(y) = 0, and X is

completely regular. ■
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18.4 Solved Problems
1. Show that ifX is Lindelöf and Y is compact, thenX × Y is Lindelöf.

Proof: the proof is nearly identical to that showingX × Y is compact wheneverX
and Y are compact. Let F be an open covering forX × Y . For each x ∈ X we get a
inite subcovering of {x} × Y from F, say F (x)1, . . . F (x)n. LetN be the open set

N =

n∪
i=1

F (x)i.

By the Tube Lemma, there is a neighbourhoodWx of x inX such thatWx × Y ⊆ N .
Repeating this procedure for all x ∈ X , we get that {Wx}x∈X is an open covering of
X . ButX is Lindelöf, so there is a countable subcovering

Wx1 ,Wx2 , . . .

For each of theseWxi , there were ni corresponding sets F (xi)j in F. De ine

F′ = {F (xi)j | i ∈ N, 1 ≤ j ≤ ni}.

F′ is an open countable collection. For any (x, y) ∈ X ×Y , x ∈Wxi for some i. Then
(x, y) ∈Wxi × Y and (x, y) ∈ F (xi)j for some j, so

X × Y ⊆
∪
i∈N

ni∪
j=1

F (xi)j .

So F′ is a countable subcovering ofX × Y extracted from F, soX × Y is Lindelöf. ■

2. LetX be a space with the order topology. Show thatX is regular.
Proof: let A ⊆C X , with b ̸∈ A. As A is closed, there exists an open interval (c, d)
such that

b ∈ (c, d) ⊆ X \A.

There are now four possibilities.
a) If there exists e, f ∈ X such that c < e < b < f < d, put U = (e, f) and

V = (−∞, e) ∪ (f,+∞).
b) If there is an f , but no such e, that is (c, b) = ∅, putU = (c, f) andV = (−∞, b)∪

(f,+∞).
c) If there is an e, but no such f , that is (b, d) = ∅, put U = (e, d) and V =

(−∞, e) ∪ (b,+∞).
d) If there are no such e, f , that is (c, b) = (b, d) = ∅, put U = (c, d) = {b} and

V = (−∞, b) ∪ (b,+∞).
In all cases, b ∈ U ⊆O X ,A ⊆ V ⊆O X and U ∩ V = ∅, soX is regular. ■
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3. a) IfX is a Lindelöf space, show that every closed subset ofX is Lindelöf.
b) If A, B are disjoint closed subsets of a regular space, show that there are open

coverings E, F of A, B respectively such that U ∩ B = ∅ and V ∩ A = ∅ for all
U ∈ E, V ∈ F.

c) IfX is a regular Lindelöf space, show thatX is normal.

Proof:

a) LetA be a closed subset ofX , and suppose thatF is an open covering ofA. Then
X \ A is open and F ∪ {X \ A} is an open covering ofX . ButX is Lindelöf, so
there is a countable sub-covering ofX , say

{X \A,F1, F2, . . .},

where Fn ∈ F for all n ∈ N. Consequently,

{F1, F2, . . .} ⊆ F

is a countable sub-covering ofA, andA is Lindelöf.
b) Let a ∈ A. Since X \ B is open, there exists an open setWa such that a ∈ Wa

andWa ∩B = ∅. By regularity ofX , there exists an open set Ua such that

a ∈ Ua ⊆ Ua ⊆Wa.

Then Ua ∩ B ⊆ Wa ∩ B = ∅. The collection {Ua}a∈A is an open covering of A
satisfying the requisite property. Similarly, we can construct an open covering
ofB satisfying the property.

c) LetA andB be disjoint closed subsets of the regular Lindelöf spaceX . ThenA
and B are Lindelöf, by part (a), and there are open coverings E and F of A and
B respectively such that

U ∩B = ∅ and V ∩A = ∅

for all U ∈ E, V ∈ F. SinceA andB are Lindelöf, it is possible to extract count-
able sub-coverings

{U1, U2, . . .} ⊆ E and {V1, V2, . . .} ⊆ F

ofA andB respectively. Now de ine

U ′
n = Un \

n∪
i=1

Vi and V ′
n = Vn \

n∪
i=1

Ui.

Then U ′
n, V

′
n are open in X as Un, Vn are open in X and ∪n

i=1 Ui,
∪n

i=1 Vi are
closed inX . Let

U ′ =
∪
n∈N

U ′
n and V ′ =

∪
n∈N

V ′
n.
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Then U ′, V ′ are open in X with A ⊆ U ′ and B ⊆ V ′. Indeed if x ∈ A, then
x ∈ Un for some n. But, by construction, x ̸∈ Vi for all i ∈ N. Then x ∈ U ′

n.
Similarly, if y ∈ B, then y ∈ V ′

n for some n ∈ N. It remains only to show that
U ′ ∩ V ′ = ∅. Suppose ξ ∈ U ′ ∩ V ′. Then ξ ∈ U ′

n ∩ V ′
m for somem,n ∈ N. If

m ≥ n, then

ξ ∈ U ′
n =⇒ ξ ∈ Un

ξ ∈ V ′
m =⇒ ξ ̸∈ Un,

a contradiction. Ifm ≤ n, then

ξ ∈ U ′
n =⇒ ξ ̸∈ Vm

ξ ∈ V ′
m =⇒ ξ ∈ Vm,

another contradiction. Then U ′ ∩ V ′ = ∅ andX is normal. ■

4. LetX be a second countable regular space and let U be an open set.

a) Let {fn}n∈N be a sequence of real-valued functions on a space X . If there exists
M ∈ R such that |fn(x)| ≤M for all x ∈ X , n ∈ N show that∑

n∈N

1

2n
fn

converges uniformly onX .
b) Show that U is a countable union of closed sets inX .
c) Show that there is a continuous function f : X → [0, 1] such that f(x) > 0 for all

x ∈ U and f(x) = 0 for all x ̸∈ U .

Proof:
a) Let ε > 0, and chooseNε ∈ N such that

Nε >
logM − log ε

log 2 .

Then, for all x ∈ X and n > Nε,∣∣∣∣∣
∞∑

i=n+1

1

2i
fi(x)

∣∣∣∣∣ ≤
∞∑

i=n+1

1

2i
|fi(x)| ≤M

( ∞∑
i=n+1

1

2i

)
=
M

2n
<

M

2Nε
< ε,

and so∑ 2−nfn converges uniformly onX .
b) SupposeB = {Bn}n∈N is a basis forX andU is open inX . ThenX \U is closed

inX . SinceX is regular, if x ∈ U , there exist Bx ∈ B and an open set Vx such
that x ∈ Bx,X \ U ⊆ Vx andBx ∩ Vx = ∅. But∪

x∈U
Bx = U
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sinceBx ∩ (X \U) ⊆ Bx ∩Vx = ∅ for all x ∈ U . AsB is countable, there exists
a sequence {xn}n∈N in U such that

U =
∪
x∈U

Bx =
∪
n∈N

Bxn .

By construction,X \ U ⊆ Vxn , soX \ Vxn ⊆ U for all n ∈ N, and∪
n∈N

(X \ Vxn) ⊆ U.

Now, suppose x ∈ U . Then x ∈ Bxn for some n ∈ N, so x ̸∈ Vxn and x ∈ X \Vxn

for that n. Hence ∪
n∈N

(X \ Vxn) = U.

ButX \ Vxn is closed inX for all n ∈ N so U is a countable union of closed sets.
c) By hypothesis, U =

∪
n∈NCn, where Cn is closed inX andX \ U is closed. But

X is normal, as it is regular and second countable, so, by the Urysohn lemma,
there exists a family of continuous functions {fn}n∈N, where fn : X → [0, 1],
such that fn(X \ U) = {0} and fn(Cn) = {1}. De ine the function f onX by

f(x) =
∑
n∈N

1

2n
fn(x).

Since each fn is bounded by 1 above and 0 below, we can apply the result ob-
tained in q. 2 to show that f is de ined for all x ∈ X and that f is continuous,
since the series is uniformly convergent. Now we show that f : X → [0, 1]. Let
x ∈ X . Then fn(x) ∈ [0, 1] for all n ∈ N, so

0 ≤
∑
n∈N

2−nfn(x)︸ ︷︷ ︸
=f(x)

≤
∑
n∈N

2−n = 1.

It remains to show that f satis ies the requisite property. Suppose x ̸∈ U . Then
f(x) =

∑
2−nfn(x) =

∑
2−n · 0 = 0. Now suppose x ∈ U . Then x ∈ Cn for

some n, and f(x) ≥ 2−n > 0. ■

5. For disjoint closed sets A, B in a completely regular space, if A is compact show that
there is a continuous function f : X → [0, 1]with f(A) = {0} and f(B) = {1}.

Proof: let a ∈ A. Then, by the previous question, there exists a continuous function
fa : X → [0, 1] such that fa(B) = {1} and fa(Ua) = {0} for some neighbourhood
Ua of a, disjoint from B. The collection F = {Ua}a∈A is then an open covering of A,
disjoint fromB. ButA is compact, so there is a inite sub-covering

{Ua1 , . . . , Uan} ⊆ F
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of A. Pick the associated functions fai , 1 ≤ i ≤ n, and construct the function f :
X → [0, 1] de ined by

f(x) = fa1(x)fa2(x) · · · fan(x).

Then f is continuous, since the inite product of continuous functions is continuous.
Furthermore, f(A) = {0} and f(B) = {1}. Indeed, suppose x ∈ A. Then x ∈ Uai

for some i and fai(x) = 0, so f(x) = 0. If x ∈ B, fai(x) = 1 for all 1 ≤ i ≤ n, so
f(x) = 1. ■

6. a) Show that a connectednormal spaceX havingmore thanonepoint is uncountable.
b) Show that a connected regular spaceX havingmore thanonepoint is uncountable.

Proof:

a) By hypothesis, there exists x ̸= y ∈ X . SinceX is normal, singletons are closed
in X and X is completely regular. Then there exists a continuous function f :
X → [0, 1] such that f(x) = 0 and f(y) = 1. But X is connected. By the
intermediate value theorem, for every 0 = f(x) ≤ r ≤ f(y) = 1, there exists
zr ∈ X such that f(zr) = r. Then f is a surjection ofX onto [0, 1]. HenceX is
uncountable.

b) Suppose X was a countable connected regular space with at least two points.
ThenX is clearly Lindelöf, so it is normal by a previous solved problem. But this
wouldmakeX uncountable by this problem’s irst part, which is a contradiction.
HenceX has to be uncountable. ■

7. Show that every locally compact Hausdorff space is completely regular.

Proof: asX is a locally compact Hausdorff space, it has a one-point compacti ication
Y = X ∪{∞}, where Y = X andX is a subspace of Y . But Y is compact Hausdorff,
soX is homeomorphic to a subspace of a compact Hausdorff space, henceX is com-
pletely regular. ■

18.5 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. If A is a subspace of a irst countable spaceX , show that x ∈ A if and only if there is a
sequence of points inA converging to x.

3. IfX is a irst countable space, show that f : X → Y is continuous if and only if for any
convergent sequence xn → x, the sequence f(xn) converges to f(x).

4. IfX is second countable, show that every collection of disjoint open sets inX is count-
able.

5. If Y is compact andX is Lindelöf, show thatX × Y is Lindelöf.
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6. LetX be a regular, second countable space. Show that every open setU inX is a count-
able union of closed sets.

7. Use the fact that X is completely regular to show that there is a continuous function
f : X → [0, 1] such that f(x) > 0 for all x ∈ U and f(x) = 0 for x ̸∈ U .

8. Show that subspaces and products of completely regular spaces are completely regular.

9. IfXn is irst countable for all n ∈ N, show that∏n∈NXn is irst countable.

10. Provide proofs for the examples of p. 431.

11. Complete the proof of Lemma 250.

12. Illustrate the separation axioms as in Chapter 15 (see p. 321, and footnote for a list).
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