Chapter 19

Advanced Topics

In Chapter 17, we showed that the **finite** product of compact spaces is compact in the **box**, **uniform**, and **product** topologies. **Arbitrary** products of compact spaces, on the other hand, are surprisingly more complicated to handle.

19.1 Tychonoff's Theorem

Our formulation of **compactness** in terms of closed sets uses the **finite intersection property** (f.i.p.).¹ In this section, we will use the following notation:

- *a* is an element of *X*;
- *A* is a subset of *X*;
- \mathfrak{A} is a collection of subsets of *X*;
- A is a family of collections of subsets of *X*;

as well as a slightly altered re-formulation of that statement (see Theorem 234 (Reprise) in Chapter 17):

Theorem 234 (Reprise, Reprise)

X is **compact** if and only if for every family \mathfrak{F} of subsets of X satisfying the f.i.p., we have

$$\bigcap_{F\in\mathfrak{F}}\overline{F}\neq\varnothing.$$

Proof: left as an exercise.

¹We note that the projection mappings are not closed in general.

Our goal is to show that arbitrary products of compact spaces are compact; the following lemmas will bring us to the promise land.

Lemma 262

For any set X and any collection \mathfrak{F} of subsets of X satisfying the f.i.p., there exists a maximal collection \mathfrak{G} with respect to the f.i.p., that is, $\mathfrak{F} \subseteq \mathfrak{G}$, and $\mathfrak{G} \subsetneq \mathfrak{G}' \Longrightarrow \mathfrak{G}'$ does not satisfy the f.i.p.

Proof: consider all possible collections of subsets of *X* satisfying the f.i.p., and define a partial order on them by strict inclusion. Then $\{\mathfrak{F}\}$ is a totally ordered family, so by the **maximum principle** of set theory, there is a maximal totally ordered family \mathbb{A} containing it. Define

$$\mathfrak{G} = \bigcup_{\mathfrak{F}' \in A} \mathfrak{F}'.$$

Then \mathfrak{G} satisfies the f.i.p. Indeed, if $G_1, \ldots, G_n \in \mathfrak{G}$, then, for each *i*, there exists $\mathfrak{F}_i \in \mathbb{A}$ such that $G_i \in \mathfrak{F}_i$. But \mathbb{A} is totally ordered, so one of the \mathfrak{F}_i , say \mathfrak{F}_k , contains all the others. Then $G_1, \ldots, G_n \in \mathfrak{F}_k$. But \mathfrak{F}_k satisfies the f.i.p., so

$$\bigcap_{i=1}^{n} G_i \neq \varnothing.$$

As $\mathfrak{F} \in \mathbb{A}$, we have $\mathfrak{F} \subseteq \mathfrak{G}$.

Now, suppose $\mathfrak{G} \subseteq \mathfrak{G}'$, where \mathfrak{G}' also satisfies the f.i.p. Then $\mathfrak{F} \subseteq G'$. Furthermore, if $\mathfrak{F}' \in \mathbb{A}$, then $\mathfrak{F}' \subseteq \mathfrak{G}'$. So \mathfrak{G}' is comparable with every collection in \mathbb{A} . Thus $\mathbb{A} \cup {\mathfrak{G}'}$ is totally ordered and each of its constituent collection satisfies the f.i.p. But \mathbb{A} was maximal with respect to the f.i.p., so $\mathfrak{G}' \in \mathbb{A}$, hence $\mathfrak{G}' \subseteq \mathfrak{G}$.

The **Haussdorf maximum principle** states that in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. This benign looking statement is in fact equivalent to the infamous **axiom of choice**; as it is a a fundamental part of the proof of Lemma 262, it is also a fundamental constituent of its descendents.

Lemma 263

If \mathfrak{F} is maximal with respect to the f.i.p. and $F_1, \ldots, F_n \in \mathfrak{F}$, then $\bigcap_{i=1}^n F_i \in \mathfrak{F}$.

Proof: let $G = \bigcap_{i=1}^{n} F_i$ and $\mathfrak{G} = \mathfrak{F} \cup \{G\}$. Suppose $G_1, \ldots, G_m \in \mathfrak{G}$ are all distinct.

1. If G is not one of the G_j 's, then $G_j \in \mathfrak{F}$ for $1 \leq j \leq m$. Then

$$\bigcap_{j=1}^m G_j \neq \emptyset,$$

since $\mathfrak F$ satisfies the f.i.p.

2. If $G = G_m$, then then $G_j \in \mathfrak{F}$ for $1 \leq j \leq m - 1$. Then

$$\bigcap_{j=1}^{m} G_j = \left(\bigcap_{j=1}^{m-1} G_j\right) \cap \left(\bigcap_{i=1}^{n} F_i\right) \neq \emptyset,$$

since $\mathfrak F$ satisfies the f.i.p.

Thus \mathfrak{G} satisfies the f.i.p. By maximality of $\mathfrak{F}, \mathfrak{G} = \mathfrak{F}$, hence $G \in \mathfrak{F}$.

We will need one more lemma.

Lemma 264

If \mathfrak{F} is a maximal collection with respect to the f.i.p. and $A \subseteq X$ is such that $A \cap F \neq \emptyset$ for any $F \in \mathfrak{F}$, then $A \in \mathfrak{F}$.

Proof: let $\mathfrak{G} = \{A\} \cup \mathfrak{F}$. We show \mathfrak{G} satisfies the f.i.p. Let $G_1, \ldots, G_n \in \mathfrak{G}$.

- 1. If $G_i \neq A$ for $1 \leq i \leq n$, then $\bigcap_{i=1}^n G_i \neq \emptyset$, since \mathfrak{F} satisfies the f.i.p.
- 2. If $G_n = A$, let $F = \bigcap_{i=1}^{n-1} G_i$, where $G_i \in F$ for $1 \le i \le n-1$. By Lemma 263, $F \in \mathfrak{F}$. But by hypothesis,

$$\bigcap_{i=1}^{n} G_i = A \cap F \neq \emptyset.$$

Hence $\mathfrak{G} = \mathfrak{F}$ and $A \in \mathfrak{F}$.

We are now ready to state and prove this section's main result.

Theorem 265 (TYCHONOFF THEOREM) Let $\{X_{\alpha}\}_{\alpha}$ be a family of compact sets. Then $\prod_{\alpha} X_{\alpha}$ is compact.

Proof: we show that any collection of subsets of $X = \prod_{\alpha} X_{\alpha}$ satisfying the f.i.p. has a non-trivial intersection. If \mathfrak{A} is such a collection, then let \mathfrak{F} be the corresponding maximal collection with respect to the f.i.p., given by Lemma 262.

Then

$$\bigcap_{F\in\mathfrak{F}}\overline{F}\subseteq\bigcap_{F\in\mathfrak{A}}\overline{F}$$

and it will be sufficient to show

$$\bigcap_{F\in\mathfrak{F}}\overline{F}\neq\varnothing$$

For each α , let $\mathfrak{F}_{\alpha} = \{\pi_{\alpha}(F)\}_{F \in \mathfrak{F}}$. Then, since \mathfrak{F} satisfies the f.i.p.,

$$\pi_{\alpha}\underbrace{\left(\bigcap_{i=1}^{n}F_{i}\right)}_{\neq\varnothing}\subseteq\bigcup_{i=1}^{n}\pi_{\alpha}(F_{i})$$

for any $F_1, \ldots, F_n \in \mathfrak{F}$. Hence \mathfrak{F}_{α} satisfies the f.i.p. But X_{α} is compact, so

$$P(\alpha) = \bigcap_{F \in \mathfrak{F}} \overline{\pi_{\alpha}(F)} \neq \emptyset.$$

Let $x_{\alpha} \in P(\alpha) \subseteq X_{\alpha}$ and set $x = (x_{\alpha})_{\alpha}$. Then $x \in X$. If U_{β} is a neighbourhood of x_{β} in X_{β} , then $\pi_{\beta}^{-1}(U_{\beta})$ is a sub-basic open set in X, and $U_{\beta} \cap \pi_{\beta}(F) \neq \emptyset$ for every $F \in \mathfrak{F}$, since $x_{\beta} \in \overline{\pi_{\beta}(F)}$ for all $F \in \mathfrak{F}$.

Consequently, $\pi_{\beta}^{-1}(U_{\beta}) \cap F \neq \emptyset$ for all $F \in \mathfrak{F}$. Then, by Lemma 264, $\pi_{\beta}^{-1}(U_{\beta}) \in \mathfrak{F}$. If V is a neighbourhood of x in X, then V contains a basic neighbourhood $U = \prod_{\alpha} U_{\alpha}$ around x, where $U_{\alpha} = X_{\alpha}$ for all but finitely many α .

But

$$U = \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i}).$$

By Lemma 19.1, $U \in \mathfrak{F}$. Then $U \cap F \neq \emptyset$ for all $F \in \mathfrak{F}$ since \mathfrak{F} satisfies the f.i.p., so $V \cap F \neq \emptyset$ for all $F \in \mathfrak{F}$. But V was arbitrary, so $x \in \overline{F}$ for all $F \in \mathfrak{F}$ and $x \in \bigcap_{F \in \mathfrak{F}} \overline{F}$. Hence X is compact.

Note that as [0, 1] is compact, $[0, 1]^A$ is compact in the product topology. As a result, any completely regular space can be embedded in $[0, 1]^A$ for some index set A, according to the embedding theorem (Theorem 259). Hence, any completely regular space is homeomorphic to a subspace of a compact Hausdorff space, which is to say, a **normal space**. This opens the door for us to continue the discussion on **compactification**.

19.2 Stone-Čech Compactification

A **compactification** of a space *X* is a compact Hausdorff space *Y* which contains *X* as a subspace and such that $\overline{X} = Y$. For *X* to have a compactification, it must be **completely regular**.

As Y is compact Hausdorff, it is necessarily normal, and so completely regular, and its subspaces are also completely regular. We now show that this condition is sufficient.

Theorem 266

If X is completely regular, then X has a compactification Y.

Proof: since X is completely regular, it is possible to embed X into a space $Z = [0, 1]^A$. If $f : X \to Z$ is the embedding, let $X_0 = f(X)$ and take $Y = \overline{X}$. Then Y_0 is compact, since it is closed in the compact space Z. Let X_1 be a set disjoint from X, in one-to-one correspondence with $Y_0 \setminus X_0$. Then, put $Y = X \cup X_1$. If $g : X_1 \to Y_0 \setminus X_0$ is the bijection, then define $h : Y \to Y_0$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in X, \\ g(x) & \text{if } x \in X_1. \end{cases}$$

Then h is a bijection. Topologize Y by setting

 $V \subseteq_O Y \iff h(V) \subseteq_O Y_0.$

This clearly makes $h: Y \to Y_0$ a homeomorphism, and so Y is compact, Hausdorff. But the restriction of h on X is a homeomorphism of X onto X_0 , so X is a subspace of Y and $\overline{X_0} = Y_0$ implies $\overline{X} = Y$.

The compactification clearly depends on the embedding $f: X \to Z$.

Examples: let X = (0, 1) in the usual topology and $f : X \to Z$.

- 1. If $Z = [0, 1]^2$ in the usual topology and $f(x) = e^{2\pi i x}$, then the resulting compactification is the one-point compactification.
- 2. If Z = [0, 1] in the usual topology and f(x) = x, then the resulting compactification is a two-point compactification.
- 3. If $Z = [0, 1]^2$ in the usual topology and $f(x) = (x, \sin(1/x))$, then the resulting compactification is given by adding the sets $\{0\} \times [-1, 1]$ and $\{(1, \sin 1)\}$ to the topologist's sine curve.

Now, suppose X is a completely regular space. Let $\{f_{\alpha}\}_{\alpha \in A}$ be the set of all continuous bounded real-valued functions on X. For each $\alpha \in A$, let

$$I_{\alpha} = \left[\inf_{x \in X} \{f_{\alpha}(x)\}, \sup_{x \in X} \{f_{\alpha}(x)\}\right].$$

Then I_{α} is a closed bounded interval in \mathbb{R} , so I_{α} is compact and $\prod_{\alpha} I_{\alpha}$ is compact by Tychonoff's theorem. Define $\hat{F} : X \to \prod_{\alpha} I_{\alpha}$ by

$$\hat{F}(x) = (f_{\alpha}(x))_{\alpha},$$

and so \hat{F} is continuous as $f_{\alpha}(x)$ is continuous for all α . Since X is completely regular, the set $\{f_{\alpha}\}_{\alpha \in A}$ satisfies the conditions of the embedding theorem.

Consequently, X is homeomorphic to a subspace of $Z = \prod_{\alpha} I_{\alpha}$, and we obtain a compactification of X that is homeomorphic to the closure of $\hat{F}(X)$ in Z. This compactification is called the **Stone-Čech compactification** of X, and is denoted $\beta(X)$.²

If *Y* and *Z* are compactifications of *X* for which there exists an homeomorphism $f : Y \to Z$, we say that *Y* and *Z* are **equivalent** if f(x) = x for all $x \in X$.

Theorem 267

If X is completely regular, then every continuous bounded real-valued function on X can be uniquely extended to a continuous function on $\beta(X)$.

Proof: let f_{γ} be a continuous bounded real-valued function on X. Then

$$f_{\gamma} = \pi_{\gamma} \circ F|_X,$$

where $F: \beta(X) \to \prod I_{\alpha}$ is the embedding given in footnote 2. Define g on $\beta(X)$ by

$$g(x) = \pi_{\gamma} F(x).$$

Then $g|_X = f_{\gamma}$; according to a previous solved problem, the extension is unique as $\beta(X) = \overline{X}$.

This leads to the following useful result.

Theorem 268

Suppose that $g : X \to Z$ is continuous, where Z is compact Hausdorff. Suppose Y is a compactification of X such that every continuous real-valued function on X can be extended to Y. Then g can be extended to Y.

²Note that we have just uniquely extended the continuous function \hat{F} on X to a continuous function F on $\beta(X) = \overline{X}$ using one of the solved problems from a previous section.

Proof: since Z is a compact Hausdorff it is normal, and so completely regular. Then Z can be embedded into $[0, 1]^A$ for some A. Without loss of generality, we may take Z as a subspace of $[0, 1]^A$. Note that Z is closed in $[0, 1]^A$, since it is a compact subset of $[0, 1]^A$. Then $g : X \to [0, 1]^A$ is continuous and $g_\alpha = \pi_\alpha \circ g : X \to [0, 1]$ is continuous for all $\alpha \in A$. By hypothesis, g_α can be extended to a continuous function $f_\alpha : Y \to \mathbb{R}$. Define $f : Y \to \mathbb{R}^A$ by

$$f(y) = (f_{\alpha}(y))_{\alpha \in A}.$$

As each coordinate function is continuous, f is continuous. Furthermore, $f|_X = g$. It remains only to show that f maps Y into Z. But

$$f(Y) = f(\overline{X}) \subseteq \overline{f(X)} = \overline{g(X)}.$$

But $g(X) \subseteq Z$ and Z is closed, so $\overline{g(X)} \subseteq Z$. Consequently, $f(Y) \subseteq Z$. Thus $f: Y \to [0,1]^A$ is the desired extension.

In a certain sense, the Stone-Čech compactification is unique.

Theorem 269

Suppose Y_1 and Y_2 are compactifications of X satisfying the conditions of Theorem 268. If every continuous function $g : X \to Z$ can be extended, Y_1 and Y_2 are equivalent.

Proof: let $i_1 : X \to Y_1$ be the injection of X into the compact normal space Y_1 . Then, i_1 can be extended to $f_1 : Y_2 \to Y_1$. Similarly, we can extend $i_2 : X \to Y_2$ to $f_2 : Y_1 \to Y_2$. Then $f_1 f_2 : Y_1 \to Y_1$, and

$$f_1 f_2(x) = f_1 i_2(x) = f_1(x) = i_1(x) = x$$

for $x \in X$. Hence f_1f_2 extends $id : X \to Y_1$ to $Y_1 = \overline{X}$. Since id_{Y_1} is also such a continuous extension, $f_1f_2 = id_{Y_1}$ and, similarly, $f_2f_1 = id_{Y_2}$. Hence f_1 and f_2 are homeomorphisms and Y_1 and Y_2 are equivalent.

19.3 Solved Problems

1. Let $\{X_{\alpha}\}$ be a family of non-empty topological spaces. Prove that the product space is locally compact if and only if each X_{α} is locally compact and all but a finite number of the X_{α} are compact.

Proof: let $X = \prod X_{\alpha}$ and assume the axiom of choice holds. Suppose $x = (x_{\alpha})_{\alpha} \in X$. If X is locally compact, then it is locally compact at x and there exist a compact set C and a basic neighbourhood U such that $x \in U \subseteq C \subseteq X$. But U takes the form

$$U = U_{\alpha_1} \times \cdots \times U_{\alpha_n} \times \prod_{\alpha \neq \alpha_1, \dots, \alpha_n} X_{\alpha},$$

where U_{α_i} is open in X_{α_i} for all $1 \leq i \leq n$. Since $U \subseteq C$, then

$$C = C_{\alpha_1} \times \cdots \times C_{\alpha_n} \times \prod_{\alpha \neq \alpha_1, \dots, \alpha_n} X_{\alpha},$$

where $U_{\alpha_i} \subseteq C_{\alpha_i}$. But C is compact, so X_{α} is compact for all $\alpha \neq \alpha_i$, and so is C_{α_i} , for $1 \leq i \leq n$. Now, consider X_{α_i} for $1 \leq i \leq n$. By construction, C_{α_i} is compact, U_{α_i} is open and

$$x_{\alpha_i} \in U_{\alpha_i} \subseteq C_{\alpha_i} \subseteq X_{\alpha_i}$$

for $1 \leq i \leq n$. But this means that X_{α_i} is locally compact at x_{α_i} , so X_{α_i} is locally compact for $1 \leq i \leq n$.

Conversely, suppose X_{α_i} is locally compact for $1 \le i \le n$ and X_{α} is compact for $\alpha \ne \alpha_i$, $1 \le i \le n$. Write

$$W = \prod_{\alpha \neq \alpha_1, \dots, \alpha_n} X_{\alpha}.$$

By Tychonoff's theorem, W is compact, and so locally compact. Then

$$X = X_{\alpha_1} \times \dots \times X_{\alpha_n} \times W$$

is a finite product of locally compact spaces, and so is locally compact.

2. Show that if X is completely regular and B is a closed set with $a \notin B$, then there is a continuous function $f : X \to [0, 1]$ such that f(x) = 1 for all $x \in B$ and f(x) = 0 in some neighbourhood of a.

Proof: since *X* is completely regular, it is homeomorphic to a subspace of a normal space *Y* (we identify *X* with its homeomorphic copy in *Y*). Since *B* is closed in *X*, there exists B_Y closed in *Y* such that $B = B_Y \cap X$. As $a \in X$, $a \in Y \setminus B_Y$. By normality of *Y*, there is an open set U_Y in *Y* such that

$$a \in U_Y \subseteq \overline{U_Y} \subseteq Y \setminus B_Y.$$

Then $\overline{U_Y} \cap B_Y = \emptyset$, and we can apply the Urysohn lemma to find a continuous function $f: Y \to [0,1]$ such that $f(\overline{U_Y}) = \{0\}$ and $f(B_Y) = \{1\}$. The restriction of a continuous function to a subspace is continuous, so the restriction

$$f|_X: X \to [0,1]$$

is continuous. Put $U = U_Y \cap X$ and $\overline{U} = \overline{U_Y} \cap X$, so that U is open and \overline{U} is closed in X and $U \subseteq \overline{U}$. Then

$$f|_X(B) = f(B_Y \cap X) = \{1\}$$
 and $f|_X(\overline{U}) = f(\overline{U_Y} \cap X) = \{0\},\$

so that $f|_X(U) = \{0\}$. But by construction, $a \in U$, so $f|_X$ is the desired function.

3. Let X be completely regular. Show that X is connected if and only if $\beta(X)$ is connected.

Proof: if *X* is connected, $\beta(X) \simeq \overline{X}$ is connected. Now suppose *X* is not connected, and let *A*, *B* be a separation of *X*. Note that

$$\beta(X) \simeq \overline{X} = \overline{A \cup B} = \overline{A} \cup \overline{B}.$$

Hence $\beta(X)$ is disconnected if \overline{A} , \overline{B} is a separation of $\beta(X)$. It will be sufficient to show that $\overline{A} \cap \overline{B} = \emptyset$. Define $f : X \to [0,1]$ by $f(A) = \{0\}$ and $f(B) = \{1\}$. Then, f is continuous. Indeed,

$$\begin{aligned} f^{-1}([0,1]) &= X \\ f^{-1}((a,b)) &= \varnothing \text{ for } 0 \le a < b \le 1 \\ f^{-1}([0,b)) &= A \text{ for } 0 < b \le 1 \\ f^{-1}((a,1]) &= B \text{ for } 0 \le a < 1, \end{aligned}$$

and X, \emptyset , A and B are all open in X. Then f can be extended to a continuous function $\widehat{f} : \beta(X) \to Y$ where $\widehat{f}|_X = f$. As \widehat{f} is continuous,

$$\{0\} \subseteq \widehat{f}(A) \subseteq \widehat{f}(\overline{A}) \subseteq \overline{\widehat{f}(A)} = \overline{f(A)} = \overline{\{0\}} = \{0\}$$

and

$$\{1\} \subseteq \widehat{f}(B) \subseteq \widehat{f}(\overline{B}) \subseteq \widehat{f}(B) = \overline{f(B)} = \overline{\{1\}} = \{1\}.$$

Then $\widehat{f}(\overline{A}) = \{0\}$ and $\widehat{f}(\overline{B}) = \{1\}$. Hence $\overline{A} \cap \overline{B} = \emptyset$, since otherwise there would be a $x \in \beta(X)$ such that $\widehat{f}(x) = 0$ and $\widehat{f}(x) = 1$, a contradiction as \widehat{f} is a function.

4. Let *Y* be an arbitrary compactification of *X*. Show there is a continuous surjective closed map $g : \beta(X) \to Y$ such that $g|_X = id_X$.

Proof: if *Y* is a compactification of *X*, there is an embedding $f : X \to Y$ with $\overline{f(X)} = Y$. Hence, by the properties of the Stone-Čech compactification, and since *Y* is compact Hausdorff, *f* can be extended continuously to $g : \beta(X) \to Y$, where $g|_X = f$. As $\beta(X)$ is compact and *Y* is Hausdorff, the map *g* is closed. Indeed, let *C* be a closed subset of $\beta(X)$. As $\beta(X)$ is compact, *C* is compact, so g(C) is compact in *Y*. But *Y* is Hausdorff, so g(C) is closed.

It remains only to show that g is surjective. To do this, we show that $Y \subseteq g(\beta(X))$. As g is an extension of f on X, $f(X) \subseteq g(\beta(X))$. But g is closed, so $g(\beta(X))$ is closed in Y. Thus $Y = \overline{f(X)} \subseteq g(\beta(X))$ and g is surjective.

19.4 Exercises

- 1. Prepare a 2-page summary of this chapter, with important definitions and results.
- 2. Provide a proof for Theorem 234 (Reprise, Reprise).
- 3. If $X \neq \beta(X)$, show that $\beta(X)$ is not metrizable.
- 4. Let X be a discrete.
 - a) If $A \subseteq X$, show that $\overline{A}, \overline{X \setminus A} \subseteq_C \beta(X)$ are disjoint.
 - b) If $U \subseteq_O \beta(X)$, show that $\overline{U} \subseteq_O \beta(X)$.
 - c) Is $\beta(X)$ totally disconnected?