Chapter 19

Advanced Topics

In Chapter 17, we showed that the finite product of compact spaces is com-
pact in the box, uniform, and product topologies. Arbitrary products of
compact spaces, on the other hand, are surprisingly more complicated to
handle.

19.1 Tychonoff’s Theorem

Our formulation of compactness in terms of closed sets uses the finite intersection prop-
erty (fip.)." In this section, we will use the following notation:

= g is an element of X;

= Aisasubsetof X;

= 9 is a collection of subsets of X;

= A is a family of collections of subsets of X;

as well as a slightly altered re-formulation of that statement (see Theorem 234 (Reprise) in
Chapter 17):

Theorem 234 (Reprise, Reprise)
X is compact if and only if for every family § of subsets of X satisfying the f.i.p., we
have
(T +#e.
Feg
Proof: left as an exercise. [

We note that the projection mappings are not closed in general.
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19.1. TYCHONOFF'S THEOREM

Our goal is to show that arbitrary products of compact spaces are compact; the following lem-
mas will bring us to the promise land.

Lemma 262

For any set X and any collection § of subsets of X satisfying the f.i.p., there exists a
maximal collection & with respect to the fi.p., thatis, § C &, and & C &' — &’
does not satisfy the fi.p.

Proof: consider all possible collections of subsets of X satisfying the fi.p.,
and define a partial order on them by strict inclusion. Then {F} is a totally ordered
family, so by the maximum principle of set theory, there is a maximal totally
ordered family A containing it. Define

® = Ug’.

§'eA

Then & satisfies the f.i.p. Indeed, if Gy,...,G,, € &, then, for each i, there exists
§: € A such that G; € §;. But A is totally ordered, so one of the §;, say §%, contains
all the others. Then Gy, ..., G, € §.. But §; satisfies the f.i.p., so

Aovo
=1

As§ € A, we have § C &.

Now, suppose & C &', where &’ also satisfies the fi.p. Then § C G’. Fur-
thermore, if § € A, then § C &'. So &' is comparable with every collection in A.
Thus A U {®'} is totally ordered and each of its constituent collection satisfies the
fip. But A was maximal with respect to the fi.p., so & € A, hence & C & and
&' C &. [ |

The Haussdorf maximum principle states that in any partially ordered set, every totally or-
dered subset is contained in a maximal totally ordered subset. This benign looking statement
isin fact equivalent to the infamous axiom of choice; as it is a a fundamental part of the proof
of Lemma 262, it is also a fundamental constituent of its descendents.

Lemma 263
If § is maximal with respect to the fip. and F}, ..., F, € §, then ﬂ?zl F, ef.

Proof: let G = (), Fiand & = § U {G}. Suppose Gy,...,G,, € & are all
distinct.
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CHAPTER 19. ADVANCED TOPICS

1. If Gisnotone of the G}’s, then G, € §for 1 < j < m. Then
¢ #o.
j=1

since § satisfies the f.i.p.

2. If G =G, thenthen G, € §for1l < j <m — 1. Then

o (o) )

since § satisfies the f.i.p.

Thus & satisfies the f.i.p. By maximality of §, & = §, hence G € §. |

We will need one more lemma.

Lemma 264
If § is a maximal collection with respect to the f.i.p. and A C X issuchthat ANF # &
forany F' € §, then A € §.

Proof: let & = { A} U §. We show & satisfies the fip. Let Gy, ..., G, € 8.
1. IfG; # Afor1 <i <n,then(,_, G; # &, since § satisfies the f.i.p.

2. IfG, = Alet F = (- G;, where G; € F for 1 <i < n — 1. By Lemma 263,
F' € §. But by hypothesis,

ﬁ@_AmF¢Q
1=1

Hence = Fand A € §. [ |

We are now ready to state and prove this section’s main result.

Theorem 265 (TYCHONOFF THEOREM)
Let {X,}. be a family of compact sets. Then [ [, X, is compact.

Proof: we show that any collection of subsets of X = [], X, satisfying the
fip. has a non-trivial intersection. If 2 is such a collection, then let § be the
corresponding maximal collection with respect to the f.i.p., given by Lemma 262.
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19.1. TYCHONOFF'S THEOREM

Then
NFenF
Feg Fe

and it will be sufficient to show

For each o, let §, = {7, (F') } reg. Then, since § satisfies the f.i.p.,

T (ﬂ Fz) C Uﬂ'a(Fz‘)
=1 =1

#£0

forany Fi, ..., F, € §. Hence §, satisfies the f.i.p. But X,, is compact, so

P(a) = (] m(F) # 2.

Feg

Letz, € P(a) € X, and setz = (z,),. Thenz € X. If Up is a neighbourhood of
x5 in X4, then ;" (Uy) is a sub-basic open set in X, and Uy N ms3(F) # & for every

F € 3, since xg € mg(F) forall F' € §.

Consequently, 7' (Us) N F # @ for all F € §. Then, by Lemma 264, 75" (Up) € §. If
V' is a neighbourhood of z in X, then V' contains a basic neighbourhood U =[], U,
around z, where U, = X, for all but finitely many «.

«

But

U= ﬂﬂ-ﬁ_ll(Uﬁm)

i=1

By Lemma 19.1, U € §. ThenU N F # & for all F' € § since § satisfies the f.ip.,
soV N F_;é g forall F € §. But V was arbitrary, so x € F forall FF € § and
T € (Vpes - Hence X is compact. |

Note that as [0, 1] is compact, [0, 1]* is compact in the product topology. As a result, any com-
pletely regular space can be embedded in [0, 1] for some index set A, according to the em-
bedding theorem (Theorem 259). Hence, any completely regular space is homeomorphic to
a subspace of a compact Hausdorff space, which is to say, a normal space. This opens the
door for us to continue the discussion on compactification.
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19.2 Stone-Cech Compactification

A compactification of a space X is a compact Hausdorff space Y which contains X as a sub-

space and such that X = Y. For X to have a compactification, it must be completely regular.
As Y is compact Hausdorff, it is necessarily normal, and so completely regular, and its

subspaces are also completely regular. We now show that this condition is sufficient.

Theorem 266
If X is completetly regular, then X has a compactification Y.

Proof: since X is completely regular, it is possible to embed X into a space
7 =1[0,1]A 1f f : X — Z is the embedding, let X; = f(X) and take Y = X. Then
Yy is compact, since it is closed in the compact space Z. Let X, be a set disjoint
from X, in one-to-one correspondence with Yy \ Xo. Then, putY = X U X;. If
g : X7 — Yo\ Xy is the bijection, then define h : Y — Y by

) fle) ifrelX,
h(x)_{g(x) ifr € X;.

Then A is a bijection. Topologize Y by setting

This clearly makes h : Y — Y;; a homeomorphism, and so Y is compact, Hausdorff.
But the restriction of 2 on X' is a homeomorphism of X onto X, so X is a subspace
of Y and Xy = Y, implies X =Y. [ |

The compactification clearly depends on the embedding f : X — Z.
Examples: let X = (0, 1) in the usual topology and f : X — Z.

1. If Z = [0,1]? in the usual topology and f(z) = e*™*, then the resulting com-
pactification is the one-point compactification.

2. If Z = [0, 1] in the usual topology and f(z) = x, then the resulting compactifi-
cation is a two-point compactification.

3. If Z = [0, 1]* in the usual topology and f(z) = (z, sin(1/x)), then the resulting
compactification is given by adding the sets {0} x [—1, 1] and {(1, sin 1)} to the
topologist’s sine curve.
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Now, suppose X isa completely regular space. Let { f, } .c 4 be the set of all continuous bounded
real-valued functions on X. For each o € A, let

I, = xlél)f;{fa(l‘)}, Sg}g{fa(x)}

Then I, is a closed bounded interval in R, so I, is compact and [[, /, is compact by Ty-
chonoff’s theorem. Define F': X — [[ I by

F(2) = (fa(®))as

and so F is continuous as fa(z) is continuous for all «. Since X is completely regular, the set
{fa}aca satisfies the conditions of the embedding theorem.

Consequently, X is homeomorphic to a subspace of Z = [] I,, and we obtain a compact-
ification of X that is homeomorphic to the closure of F(X) in Z. This compactification is
called the Stone-Cech compactification of X, and is denoted 5(X).2

If Y and Z are compactifications of X for which there exists an homeomorphism f : Y — Z,
we say that Y and Z are equivalent if f(z) = z forall z € X.

Theorem 267
If X is completely regular, then every continuous bounded real-valued function on X
can be uniquely extended to a continuous function on 5(X).

Proof: let f, be a continuous bounded real-valued function on X. Then
fy =m0 Flx,

where F' : 5(X) — [] I, is the embedding given in footnote 2. Define g on 5(X) by
9(x) = 7y F(x).

Then g|X_: f+; according to a previous solved problem, the extension is unique as
B(X) = X. [ |

This leads to the following useful result.

Theorem 268

Suppose that g : X — Z is continuous, where Z is compact Hausdorff. Suppose Y is
a compactification of X such that every continuous real-valued function on X can be
extended to Y. Then g can be extended to Y.

“Note that we have just uniquely extended the continuous function F on X to a continuous function F on
B(X) = X using one of the solved problems from a previous section.
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Proof: since Z is a compact Hausdorff it is normal, and so completely regular. Then
7 can be embedded into [0, 1]* for some A. Without loss of generality, we may take
7 as a subspace of [0, 1] Note that Z is closed in [0, 1]*, since it is a compact subset
of [0,1]4 Then g : X — [0,1]4 is continuous and g, = T, 0g9 : X — [0,1] is
continuous for all &« € A. By hypothesis, g, can be extended to a continuous function
fa:Y — R. Define f : Y — R4 by

f(y) = (fa(y))aeA

As each coordinate function is continuous, f is continuous. Furthermore, f|x = g.
It remains only to show that f maps Y into Z. But

fY) = f(X) C f(X) = g(X).

But ¢(X) C Z and 7 is closed, so g(X) C Z. Consequently, f(Y) C Z. Thus
f:Y —[0,1]* is the desired extension. |

In a certain sense, the Stone-Cech compactification is unique.

Theorem 269

Suppose Y; and Y, are compactifications of X satisfying the conditions of Theo-
rem 268. If every continuous function g : X — Z can be extended, Y, and Y, are
equivalent.

Proof: leti; : X — Y] be the injection of X into the compact normal space
Y1. Then, i7; can be extended to f; : Yo — Yj. Similarly, we can extend 75 : X — Y5
to fo : Y1 — Y5. Then f1 f : Y7 — Yy, and

fifo(z) = fris(w) = fi(z) =i(2) = 2

for x € X. Hence f;f; extendsid : X — Y toY; = X. Since tdy, is also such a
continuous extension, f;f; = idy, and, similarly, f,f; = idy,. Hence f; and f; are
homeomorphisms and Y; and Y; are equivalent.

i1

X

Y]

fil | f2
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19.3 Solved Problems

1. Let { X, } be a family of non-empty topological spaces. Prove that the product space is
locally compact if and only if each X|, is locally compact and all but a finite number of
the X, are compact.

Proof: let X = [] X, and assume the axiom of choice holds. Supposez = (z,), € X.
If X is locally compact, then it is locally compact at « and there exist a compact set
C and a basic neighbourhood U such thatx € U C C C X. But U takes the form

U=Uy, X - xU,, X Xa,
aFaq,...,an
where U, is openin X, forall 1 <4 < n. Since U C C, then
C=Cq X xCq, X HXQ,
0‘750‘17'"70477,

where U,,, C C,,. But C'is compact, so X,, is compact for all & # «;, and so is C,,,
for1 <7 < n. Now, consider X, for 1 <14 < n. By construction, C,,, is compact, U,,
is open and

Ta,; € Uai - Cai - Xai

for 1 < ¢ < n. But this means that X, is locally compact at z,,, so X, is locally
compact for 1 < i < n.

Conversely, suppose X, is locally compact for 1 < ¢+ < n and X, is compact for
a # a;, 1 < i < n. Write

W:fp@

Q#ar,.an
By Tychonoff’s theorem, W is compact, and so locally compact. Then
X=Xy XXX, XxXW
is a finite product of locally compact spaces, and so is locally compact. |

2. Show that if X is completely regular and B is a closed set with a ¢ B, then there is a
continuous function f : X — [0, 1] such that f(z) = 1forallz € B and f(z) = 0in
some neighbourhood of a.

Proof: since X is completely regular, it is homeomorphic to a subspace of a normal
space Y (we identify X with its homeomorphic copy in Y'). Since B is closed in X,
there exists By closed in Y suchthat B = By N X. Asa € X,a € Y \ By. By
normality of Y, there is an open set Uy in Y such that

ac€Uy CUy CY\ By.
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Then Uy N By = @, and we can apply the Urysohn lemma to find a continuous
function f : Y — [0, 1] such that f(Uy) = {0} and f(By) = {1}. The restriction of
a continuous function to a subspace is continuous, so the restriction

flx : X —[0,1]

is continuous. Put U = Uy N X and U = Uy N X, so that U is open and U is closed
in X and U C U. Then

flx(B)=f(BynX)={1} and f|x(U)=f(UyNX)={0},
so that f|x (U) = {0}. But by construction, a € U, so f|x is the desired function. W

3. Let X be completely regular. Show that X is connected if and only if 5(.X) is connected.

Proof: if X is connected, 3(X) ~ X is connected. Now suppose X is not connected,
and let A, B be a separation of X. Note that

B(X)~X=AUB=AUB.

Hence 3(X) is disconnected if A, B is a separation of 3(X). It will be sufficient to
show that A N B = @. Define f : X — [0,1] by f(A) = {0} and f(B) = {1}. Then,
f is continuous. Indeed,

o) = X

1((a,b)) = gfor0<a<b<l1

“1(0,b)) = Afor0<b<1
f Y(a,1]) = Bfor0<a<1,

and X, &, Aand Bareall openin X. Then f can be extended to a continuous function
f B(X) — Y where f|X = f.As f is continuous,

~ —~

{0} € J(A) € F(A) € F(A4) = F(4) = {0} = {0}

and

{1} C f(B) C f(B) C f(B) = f(B) = {1} = {1}.

Then f(Z) = {0} and f(E) {1}. Hence AN B = g, since otherwise there would
beaxz € B(X) such that f(z) = 0 and f(z) = 1, a contradiction as fis a function. W

4, Let Y be an arbitrary compactification of X. Show there is a continuous surjective
closed map g : 5(X) — Y such that g|x = idx.

Proof: if Y is a compactification of X, there is an embedding f : X — Y with
f(X) = Y. Hence, by the properties of the Stone-Cech compactification, and since
Y is compact Hausdorff, f can be extended continuously to g : 5(X) — Y, where
glx = f. As 5(X) is compact and Y is Hausdorff, the map g is closed. Indeed, let C
be a closed subset of 5(X). As §(X) is compact, C is compact, so g(C') is compact in
Y. ButY is Hausdorff, so g(C) is closed.

It remains only to show that g is surjective. To do this, we show that Y C ¢(5(X)).
As gisan extension of f on X, f(X) C g(8(X)). Butgis closed, so g(3(X)) is closed
inY. ThusY = f(X) C g(8(X)) and g is surjective. [ |
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19.4. EXERCISES

19.4 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.
2. Provide a proof for Theorem 234 (Reprise, Reprise).

3. If X # (X)), show that 5(X) is not metrizable.

4, Let X be a discrete.

a) If A C X,showthat A, X \ A C¢ 3(X) are disjoint.
b) IfU Cp B(X), show that U Cp B(X).
c) Is B(X) totally disconnected?
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