Chapter 2

Sequences of Real Numbers

Alarge chunk of analysis concerns itself with problems of convergence. In
this chapter, we introduce sequences and limits, provide results that help
to compute such limits (when they exist), and identify situations when the
limit can be shown to exist without first having to compute it.

2.1 Infinity vs. Intuition

When dealing with infinity, our intuition sometimes falters, as we shall see presently.

Example (ZENO'S PARADOX)

Achilles pursues a turtle. When he reaches her starting point, she has moved a cer-
tain distance. When he crosses that distance, she has moved yet another distance,
and so forth. Achilles is always trailing the turtle, so he cannot catch her.

What would happen in reality? U



2.1. INFINITY VS. INTUITION

The next example puts one of the great classical results of planar geometry in doubt.

Example (ANTI-PYTHAGOREAN THEOREM)

Consider a right-angle triangle with base «, height 6, and hypotenuse c¢. We can build
staircase structures that each have the same constant length as a + b, while increas-
ing the number of stairs (see image below).

oS oS
N c 2
'
C = a—kb
?”? @

This seems to tell us that ¢ = a + b. But we know that ¢ = v/a? + b? according to
Pythagoras’ Theorem. Thus, we would expect to have (a +b)? = a? + b? for all right-
angle triangles, which is to say, that 2ab = 0, or, equivalently, that each right-angle
triangle has at least one side with length 0. But we know this cannot be true, as the
(3,4, 5) right-angle triangle demonstrates. What is going on? 0J

Finally, we present two baffling “results” about infinite sums.

Examples (INFINITE SUMS)

1. LetS—1+( 1)+1+( 1) 4 ---. Then
S = (L4 (1)) b (14 (1) 5= 0404 =0

S=1-(1+(-D+1+(-1)+--)=1+5=5=1/2
S=14+((-1)+1)+((-1)+1)+---=140+0+---=1

Therefore 0 = = = 1. Does this make sense?

1

2

2. LetS=1+2+4+8~+---.Then
S=14+21+244=8+4--)=1425= 5 =—-1.

Can a sum of positive terms yield a negative result? 0J
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CHAPTER 2. SEQUENCES OF REAL NUMBERS

2.2 Limit of a Sequence

« n

In each of the examples provided in Section 2.1, the problem arises with a “.” (implicit in
Zeno's paradox, explicit in the others): seen individually, each of the steps makes sense. But
when we stitch them all together - letting the number of steps increase without bounds - all

hell breaks loose.
There are instances where letting n — oo leads to convergent behaviour, others (as in

the preceding examples), where it doesn’t." We start by formalizing these notions.

A sequence of real numbers is a function X : N — R defined by X (n) = a,, where a,, € R.
We denote the sequence X by (a,,),en or simply by (a,,).

Examples

1. X : N = R, n — 2nis the sequence with X (1) = 2, X(2) = 4, etc,; we may
also write X = (z,,) = (2,4,6,...).

2. X : N = R, n — = is the sequence with X (1) = 1, X(2) = 1, etc; we may
also write X = (z,) = (1,1/2,1/3,...). O

In general, we let N stand for whatever countable subset of N is required for the definition
of the sequence to make sense. Graphically, we can display sequences as a “scatterplot”, with
the horizontal coordinate being the index n and the vertical axis the value X (n) = x,, of the
sequence at n. An example is provided below.

We can also see a sequence as an ordered set of terms a,, that is, a set of indexed values.
The set of all values taken by the sequence (a,,) is called the range of (a,) and we denote it
by {a,}. Sequences and their ranges are different objects.

Nt isn’t much of a stretch to state that mathematical analysis is about coming to terms with infinity - thank-
fully, this endeavour has proven to have extremely rich consequences, as we shall see throughout these notes.
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2.2. LIMIT OF A SEQUENCE

Examples

1. The terms of the sequence (-5) are (1, 1, §,...), whileitsrangeis {1, 1, 5,.. .}.

2. The terms of the sequence (W) are (0,1,0,3,0,3,...), while its range is

{0,1,1 1 ..} O

)90 30

Certain sequences are defined with the help of a recurrence relation: the first few terms are
given, and the subsequent terms are computed using the preceding terms and the relation.

Example (FIBONACCI SEQUENCE)
The classic sequence (1,1,2,3,5,8,13,...) is a recurrence relation, defined by by
r1=12y=1andz, = 2,1 + z,,_o forn > 3. ]

We will now examine in detail a specific sequence,

= (£)- ()

As n increases, the values of z,, seem to approach 0. What does this mean, mathematically?
Let e > 0.3 Then the real number % is positive, i.e.,

1>0
2¢ '

According to the Archimedean property, there exists a threshold . € N such that

1
N, > —.
2e
Different values of ¢ lead to different thresholds: for instance, if ¢ = 100, then any
N, > ! =50
° 7 2(1/100)

would work; if e = then any /N. > 500 would work, and so on.

1000’

No matter what value ¢ > 0 takes, however, if we look at indices past the threshold (i.e. when

n > N.), we have

>N>1:> >1<:> >1
" 2 "7 2 7oy

For all indices n after the threshold V. (i.e. Vn > N.), we have:

1 1
— | =—<e=0—-c<2z,<0+c¢.
2n 2n

3In theory, € could take on any positive value, but in practice we are interested in small values ¢ < 1.

[Zn — 0] = |z,| =
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CHAPTER 2. SEQUENCES OF REAL NUMBERS

The interval (—¢, €) thus contains all the terms of the sequence z,, after the N_th term, which
isto say z,, € (—¢,¢) foralln > N..
Another way of saying this is that the interval (—¢, €) contains all the terms of the sequence

(x,,), except maybe for a finite number of terms included in x4, ..., zy..
Ife = 1/100, for instance, ANy /100 > W = 50 (N1/100 = 51 works) such that
1 1 1 1 1
" 20 =0l = ol = 501 = 55 < 31 ~ 102 = 100

In other words, the interval (—1/100,1/100) contains all the terms of the sequence from
n = 52 onward.

But the threshold N, /1090 = 51 does not may not necessarily work for ¢ values smaller than
1/100, however. If ¢ = 1/1000, say, then we need N1i/1000 > m = 500 to guarantee that
all the terms after the threshold fall in the interval (—1/1000, 1/1000).

Obviously, we could find an appropriate threshold V. in the same manner using any ¢ > 0.

This leads us to the following definition.

A sequence (x,,) of real numbers converges to a limit L. € R, which we denote by

z, —+ L or limuz,=1L,
n—oo
if
Ve > 0, IN. € Nsuchthatn > N. = |z, — L| < e.
This may look complicated, butitis just the formalized statement of the example above, where

L = 0: we look for a systematic threshold /V, after which all terms of the sequence z, lie in
(L—¢e,L+e¢).

In the illustration below where z,, — L, we find an acceptable threshold N. for € on the left,
and display the finite number of sequence terms falling outside of the interval (L — ¢, L + ¢)
on the right.

4 4
L ]
°e o
. L ]
® - L+e 2’ 2 B L+e
.............................................................................................. L L
: L-e - - L-¢
Xy, o °
1 - ) -
T “n “n
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2.2. LIMIT OF A SEQUENCE

We also identify a threshold V., for ¢y < ¢ in the illustration below.

A
e . Xy
. . R LI ey
. c. . % ; L+e,
L] .
............................. .".."..' L
. ‘ LI ) ° . * : L'e‘,
i i +n.
N,

A sequence (x,,) which does not converge to a limit is said to be divergent:
VL € R, 3¢, > 0, VN € N, Iny > N such that |z, — L| > ¢p;
in other words, no real number L can be the limit of (z,,).

There is only one way for a sequence to converge - its values must eventually get closer and
closer to the limit; but there is more than one way for a sequence to diverge.

Examples
1. Show that £ — 0.
Proof: let ¢ > 0. By the Archimedean property, 3N, > % soe > Ni If
n > N, then < NL and

1 0 1 1 - 1 -
——0l=|-l=—-<—=<e.
n n n N,

This completes the proof. [ |

2. Show that :2111 — 0.

Proof: let ¢ > 0. By the Archimedean property, 3N, > 2,s0¢ > F. If

1 1
n > N, then - < N and

n+1 0 n+1 < 2n - 2n 2 - 2 -
—-0| = — =—-<—=<ec
n?+1 n+1"n24+1 n2 n N,
This completes the proof. [ |
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CHAPTER 2. SEQUENCES OF REAL NUMBERS

3.

Show that 4=2n=3n% _, _ 3

2n2+n 2
Proof: let ¢ > 0. By the Archimedean property, 3N, > 2,s0¢ > . If
n > N, then + < NLE and
4 —2n — 3n? < 3) |2(4—=2n—3n%) +3(2n* +n)| |8 —n
2n? +n 2/ 2(2n2 +n) C 4n2 420’

Notethat8 —n < &nif1 < n < § and thatn — 8 < 8n if n > 8§, so that
|8 — n| < 8nforalln > 1. Thus

18 —n| < 8n <8n_2< 2 _.
An2+2n ~ 4n2+2n  4n2  n N
when n > N, which completes the proof. [ |

Show that (x,,) = (n) is divergent.

Proof: suppose instead that (z,) converges to a € R. Lete > 0. By
definition, 3N, € N such that |z,, — a| = |n — a|] < £ whenevern > N, —
thatn < a+ cforalln > N, = a + ¢ is a an upper bound for N. This
contradicts the Archimedean property, so the sequence (n) must diverge. W

The main benefit of the formal definition of the limit of a sequence is that it does not call on
infinity: we write n — oo, but that is a merely a notation of convenience. On the flip side, the
formal definition has 2 major inconveniences:

1. it cannot be used to determine the limit of a convergent sequence - it can only be used
to verify that a given candidate is (or is not) a limit of a sequence;

2. it can seem artificial to some extent, especially upon a first encounter.

In practice, using the definition is in fact rather simple: in order to determine a threshold
N, that does the trick, we often backtrack from the end of the string of inequalities rather
than to proceed directly from “Let ¢ > 0".

We have been careful to refer to “a” limit when the sequence converges, but we should re-
ally be talking about “the” limit in such cases.

Theorem 12 (UNIQUE LIMIT)
A convergent sequence (x,,) of real numbers has exactly one limit.

P. Boily (uOttawa)
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2.2. LIMIT OF A SEQUENCE

Proof: suppose that z,, — 2’ and x,, — z”. Lete > 0. Then there exist 2 integers
NI, N! € N such that

|z, — 2’| < e whenevern > N! and |z, — 2”| < e whenevern > N/
Set N. = max{ N/, N'}. Then whenever n > N_, we have

0< |2’ —a"| =2 —axp +a, —2"| <|zp — 2|+ |2, — 2" <e+e=2e

Thus 0 < szl < e. As € > ( was arbitrary, “”_2—“7‘ =0and 2’ = 2". [

Sequences have other properties, which we can sometimes use to show that they converge
(or diverge). A sequence (x,,) C R is bounded by M > 0if |z,| < M foralln € N.

Theorem 13
Any convergent sequence (x,,) of real numbers is bounded.

Proof: let (z,,) C R converge to x € R. Then fore = 1, say, 3N € Ns.t.
|z, — x| <1 whenn > N.
Thanks to the “reverse” triangle inequality (Theorem 6.6), we also have
|z,| — |z| < |z, —2z| <1 whenn > N,
so that |z,,| < |z| + 1 whenn > N.

Finally, we set M = max{|zy|,...,|zn|,|z| + 1}. Then |z,| < M for all n,
which means that (z,,) is bounded. |

About Proofs In general, we may prove results:
= directly, as in Theorem 13;
= by induction, as in Bernouilli’s inequality (Theorem 3), or
* by contradiction, as in the Archimedean property (Theorem 1), and so on.

The contrapositive of P — () is -() = —P. They are logically equivalent, but one may
prove easier to demonstrate than the other. On the other hand, the converse of P —> () is
(Q = P. There is no general link between a statement and its converse: sometimes they are
both true, sometimes they are both false, sometimes only of them is true.

Example: the contrapositive of Theorem 13 is “Any unbounded sequence is diver-
gent”, which is valid since Theorem 13 is true. Its converse is “Any bounded sequence
is convergent” - if we think that the converse is true, then we try to prove it; if we
think that it is false, we look for a counter-example. Which one is it? O
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CHAPTER 2. SEQUENCES OF REAL NUMBERS

2.3 Operations on Sequences and Basic Theorems

The following result removes the need to use the formal definition... as long as we have some
“ground-level” building blocks to start with.

Theorem 14 (OPERATIONS ON CONVERGENT SEQUENCES)
Let (x,), (y.) be convergent, with x,, — x and y,, — y. Let ¢ € R. Then

1 |x,| — |z|;

2. (x +yn) = (z+y);

3. xpyn, — xyand cx, — cx;
4

: ‘;—Z — 5, ifyn,y # 0 forall n.

Proof: we show each part using the definition of the limit of a sequence.

1. Lete > 0. As x, — =z, 3N/ such that |z,, — 2| < ¢ whenever n > N/. But
\|z,| — |z|| < |2, — 2|, according to Theorem 6. Hence, for e > 0, IN. = N!
such that

[|zn] = J2|| < |2n — 2| <e

whenever n > N, ie., |z,| — |z|.

2. Lete > 0;then § > 0. Asz,, — zand y, — v, EIN%C, NY such that
2

£ £
|z, — x| < 3 and |y, —y| < 5 (2.1)

whenever n > N? and n > NY, respectively. Set N. = max{N¥ NY}.
2 2 2 2

Then, whenever n > N_, which is to say, whenever n is strictly larger
than both Nf/Q and Ngy/2 simultaneously, we have:

[(@n +yn) — (@ +y)| = (20 —2) + (Yo — Y)| < |20 — 2| + |y — Y
by (2.1).| <
ie, (x, +yn) — (x +y).

3. According to Theorem 13, (z,,) and (y,,) are bounded since they are convergent
sequences. Thus 3V, M, € N such that for all n, we have

|z, < M, and |y,| < M,.
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2.3. OPERATIONS ON SEQUENCES AND BASIC THEOREMS

— T, Yn — Y, EIN”“"E ,NY. € Nsuch that

My 2My

2A4 ’ QAJ

(2.2)

and |y, —y

g
2M, 2M,

whenever n > N”. and n > NY. respectively. Moreover, |y| < M, (see
2

2My Mg
Theorem 15).

Set N. = max{N*. ,N”. }. Then, whenevern > N, we have:

2My 2M

[Zntn — Y| = |TnlYn — Ty + 20y — 2Y| Zn(Yn — y) + y(zn — 2)|

< |NZallyn =yl + yllzn — 2| < M!yn yl + My|z, — |
19
by (2.2)| < M, - M, -
2M + My QM
= E—l—g—e
= 5+35=

ie., x,y, — wxy. Furthermore, if the sequence (y,) is defined by y,, = ¢ for all
n, then the preceding result yields cx,, — cz, since y, = ¢ — ¢.*

4. Itis enough to show 1/y,, — 1/y under the Theorem’s assumptions; then the
result will hold by part 3. Since y # 0, ‘yl > (. Hence, as y,, — y, AN}y 2 € N
such that |y, — y| < |y|/2, whenever n s Njy|/2- According to Theorem 6, we
then have

1 2

— < — (23)

Yl 1yl

whenever n > N, 2 - everything is well-defined as neither y,, nor y is 0 for

all n.

Iy and so <|yn| or

7'L< 7'L< )
[yl = |ynl <y — ynl 5 o

Lete > 0. Then |y|?c/2 > 0. As y, = y, IN},2./2 € N such that

13
lyn — y| < |y|2§ (2.4)

whenever n > Nj2.<. Set N; = max{Nyy, N},2< }. Then, whenever n > N,
2

i_}’_‘y—yn |y — ynl
Yn Y Yny Yny|

2_n
ey < 2l

ly[?
< oa Py ie oo
y (2. —05 — =g, ., — -,
ly[? 2 y

which completes the proof. [ |
Analysis and Topology Course Notes




CHAPTER 2. SEQUENCES OF REAL NUMBERS
Now that we have some basic tools to work with, we present two results that allow us to com-
pute limits without operating directly on a sequence.

Theorem 15 (COMPARISON THEOREM FOR SEQUENCES)
Let (z,,), (yn) be convergent sequences of real numbers with x,, — x, y, — v, and
Tn <ypVn € N. Then z < y.

Proof: suppose that it is not the case, namely, that z > y. Thenx —y > 0. Set
e = %% > 0. Since x,, — rvand y, — y, INZ, NY € Ns.t,

|z, — x| <& whenevern > N° and |y, —y| <e whenevern > NY.

Let N. = max{NZ* N¥}. Then, if n > N,, we have

r—=y Tty r—=y
< €= = =z — =x—¢e < T,
Y Y+ Y+ 5 7 x 5 T T
But this contradicts the assumption that x,, < y,, for all n, and so z < v. [ |

Warning: the “<“s in the statement of Theorem 15 cannot be replaced by “<“s throughout.
For instance, if (z,) = (;47) and (y.) = (;), then z,, < y, foralln € N, butz, — = =0,
Yp —y=0,and0 =2z £ y = 0.

Theorem 16 (SQUEEZE THEOREM FOR SEQUENCES)
Let (x,), (Yn), (2n) € R be such that x,,, z, — «and z, < y, < z, Vn € N. Then
UYn —> O

Proof: let ¢ > 0. By convergence of (x,,), (2,,) to a, AIN*, NZ € N s.t.
|z, — a| < e whenevern > N¥ and |z, — a| < e whenever n > NZ.

Let N. = max{NZ”, NZ}. Whenn > N,,a — ¢ < 2, < y,, < z, < a + &, which is to
say, that |y, — a| < . Consequently, y,, — . [

We can use these various results to compute a fair collection of limits.

Examples

1
1. Compute lim , if the limit exists.

n—00 n

Solution: note that 2**' = 3 + 1. According to Theorem 14, if the
limit exists we must have

lim = lim
n—oo n n—oo

1 1 1
dn + (3+—>:lim3—|—lim—:3+0+3.

n n—oo n—oo M,
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. Compute lim

. Compute lim

2.3. OPERATIONS ON SEQUENCES AND BASIC THEOREMS

Reading the string of equations backwards, we see that the original limit must
exist and be equal to 3. OJ

sin(n? + 212)

n—00 n

, if the limit exists.

Solution: we cannot use Theorem 14 since neither the numerator nor
the denominator limit exists. This does not necessarily mean that the limit of
the quotient does not exist. In order to determine if it does, we need to use
another approach.

By definition of the sin function (which we take for granted for now),
we have —1 < sinx < 1, Vx € R. Thus

1 i 24212
—1 <sin(n* +212) <1, Vn = —— < M

1
< —, Vn.
n n n

As i% — 0, we can use the squeeze theorem to conclude that

in(n? + 212
lim sin(n® + 212)

n—o0 n

= 0. U

-1
, if the limit exists.
n—oo N

Solution: we cannot apply Theorem 14 directly since neither the numerator

nor the denominator limits exist. However,
2n—1 1/n-2n—1) 2-1/n
n+7  1/n-(n+7)  1+7/n

when n # 0.

Because each of the constituent parts converge (and because the denominator
isnever equal to 0, either in the limit or in the sequence), repeated applications
of Theorem 14 yield

o1 Jim@-1/m) 2= liml/fn 5 g
lim == = _ = =
n—oo n 4+ 7 lim(14+7/n) 14+7-lim1/n 1+47-0
n— o0 n—oo
This is basically a calculus argument. 0J

. Let (x,,) be such that |z,,| — 0. Show that z,, — 0.

Proof: since —|z,| < z, < |z,| foralln € N according to Theorem 6,
and since —|z,|,|z,] — 0 by assumption, then x,, — 0 according to the
squeeze theorem (note, however that if |x,| — a # 0, we cannot necessarily
conclude that z,, — «. Consider, for instance, the sequence (z,) = (—1)"). B
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Let |¢| < 1. Compute lim ¢", if the limit exists.
n—oo

Solution: if ¢ = 0, then¢® = 0 — 0. If ¢ # 0, then ﬁ > 1. Thus,
It > Osuchthatﬁ =1+t

From Bernoulli’s inequality, we have

1 n
(ﬂ) =(14+t)">1+nt, Vn € N,
q

so that 0 < |¢"| < |¢|* < i35 But 17; = 0 when n — oo (does this need to
be proven?); thus |¢"| — 0 according to the squeeze theorem, and so ¢" — 0

by the previous example. ([l

Let |¢| < 1. Compute lim ng", if the limit exists.
n—oo

Solution: the proof that ng” — 0 is left as an exercise; it is similar to
the proof of part of the previous example, but uses an extension of Bernoulli’s
inequality:

(148" >1+nt+— 2 fort>0n>1,

(n—1)
2

which can be proven by induction. OJ

Show that {/n — 1.

Solution: lete > 0. Then1 +¢ > 1and0 < l—ia < 1.

1

Claim: n (11=)" — 0 when n — oo (use previous example with ¢ = ).

1+e

Hence, 3M; € N such that

— 0| <lwhenn> M, = 1<n<(1+¢)"whenn > M.

o

Set N. = M;.Then1—¢ < 1 < n'/" < 1+ewhenn > N..Butthis is precisely
the same as [n'/" — 1| < ¢ whenn > N_; thus n'/" — 1. O

.onl . .
Compute lim —, if the limit exists.
n—oo N

Solution: since

| . I
oM _on=leer 2l L oy
n" n-n n-n n
and % — 0, the squeeze theorem implies % — 0. U



2.3. OPERATIONS ON SEQUENCES AND BASIC THEOREMS

1/n

9. Leta > 0. Compute lim a/", if the limit exists.

n—o0

Solution: since a > 0, we have é > (. According to the Archimedean

property, AN, > max{a,%}. For every n > N,, we then have% < a < n.
Thus ﬁﬁ < {/a < /nforalln > N,. But /n — 1 by a previous example, so
{/a — 1 by the squeeze theorem. 0

10. Compute lim /3" 4 57, if the limit exists.
n—oo
Solution: since
" < 3" +5" <5 +5"=2-5"<n-5H" Vn > 2,

then

5< /30 + 57 < /n-b, VYn > 2.

But we have seen previously that /n — 1.

The squeeze theorem can then be applied to the above chain of inequal-
ities to conclude /3" + 5" — 5. O

We can also use the definition and theorems to demonstrate general results (that is, results
about general sequences rather than about specific examples).

46

Theorem 17
Lety, — y. Ify, > 0Vn € N, then \/y,, — \/¥.

Proof: according to Theorem 15, we must have y > 0. There are 2 cases:

» [fy = 0,lete > 0. Then 2 > 0. Sincey, — 0, IM.>» € N s.t. whenever
n > M2, we must have |y, — 0| =y, < 2. Now, set N, = M.-.

Then whenever n > N, |\/y, — 0| = /yn < Ve =e.

»Ify > 0,lete > 0. Thene,/y > 0. Since y, — y, IM, 5 € N s.t. whenever
n > M. g |yn —y| < €/y. Now, set N, = M. .

Then whenever n > N, |\/y, — \/y| = \}%;1\1/'@ < ‘y’\L/‘ﬂm < %@ = e,

In both cases, we have |/y,, — /. [
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CHAPTER 2. SEQUENCES OF REAL NUMBERS

2.4 Bounded Monotone Convergence Theorem

A sequence (z,,) is increasing if r1 < 25 < -+ 2, < z,41 < ---,Vn € N; itis decreasing if
Ty > Xy > > Ty > Ty oo, ¥n € NUIf (z,) is either increasing or decreasing, we say that
it is monotone. If it is both increasing and decreasing, it is constant.®

Monotone sequences play an important role in the theory of convergence, assuming that
they satisfy an additional condition.

Theorem 18 (BOUNDED MONOTONE CONVERGENCE)
Let (x,) be an increasing sequence bounded above. Then x,, — sup{z,, | n € N}.

Proof: since the sequence (z,) is bounded above, so it its range {z,}. By
completeness of R, z* = sup{x, } exists. It remains only to show z,, — z*.

Let ¢ > 0. By definition, z* — ¢ is not an upper bound for {z, }. Then N, € Ns.t.
r—e<zy <zt <a+e
But (x,,) is increasing; in particular, ., < x,, whenn > N.. Thus
n>N,.— 2" —ec<uz, <z +e¢,

sox, — x*. [ |

A similar result holds for decreasing sequences bounded below.

Examples

= Does the sequence (z,,) = (1 — =) converge? If so, what is its limit?

Solution: as 1 > n%l foralln € N,
1 1 <1 1 <
Tp — - T = - >~ Tn )
n n+1 1

and so (z,,) is increasing. Furthermore, z,, < 1 for alln € N. Then (z,,) con-
verges according to the bounded monotone convergence theorem, and

lim z,, = sup{z,} = sup{l —1/n} =1+ sup{—1/n} =1— inf{l/n} =1,
n—00 neN neN neN neN

which agrees with our intuition. U

*When the inequalities are strict, then the sequence is strictly increasing or strictly decreasing, depend-
ing on the specific situation, and is thus strictly monotone.
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2.5. BOLAZANO-WEIERSTRASS THEOREM

» Let (x,) be defined by x,, = \/2x,_; whenn > 2, with z;y = 1. Does (z,)
converge? If so, to what limit?

Solution: we first show, by induction, that (z,,) is increasing.

- Base Case: 1o = V2> 1= 1.

- Induction Step: Suppose x;, > x;_1. Then
2o 2 2051 = V20, 2> /2041 = Tpq1 > Ty
Thus x,,.1 > x, foralln € N.

Next we show, again by induction, that (z,,) is bounded above by 2.

- BaseCase: 1 <z, =1<2.
- Induction Step: Suppose 1 < x;, < 2. Then

2<20,<2-2=4=1<V2<20, <Vi=2= 1< 144, <2.
Thus x,, < 2 for alln € N (why did we include the lower bound 17).

We then have, according to the bounded monotone convergence theorem,

x, — x = sup{z, | n € N}.

r = lim z, = lim z,,; = lim V22, = , /2 lim z,, = V 2z,
n—oo n—oo n—oo n—o0
whence 22 = 2x. So eitherx = Qorxz = 2. Butz, > 1foralln € N,sox > 1
according to Theorem 15. Thus z,, — 2. U

But

2.5 Bolazano-Weierstrass Theorem

The main result of this section, concerning bounded sequences and their subsequences, is a
corner stone of analysis.

Let (x,) C R be a sequence and n; < ny < --- be an increasing string of positive integers.
The sequence

(xnk)k = (xmv Tngs - - )

is a subsequence of (z,,), denoted by (z,, ) C (z,). Note thatn;, > k forall £ € N.
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Examples

* Let (z,) = (+). Both (55) = (5,1,...) and (1,5, ¢, 55,15, 57, - - -) are subse-

quences of (z,,) as they sample the original sequence while preserving the or-

der in which the terms appear. But (1,1, 1, ¢, .. .) is not a subsequence of (z,,)
as 3 = x3 appears before ; = 5.
» The sequence (z3,) = (x3,%g,2o,...) is a subsequence of (z,,) for any se-

quence (z,,).
» Every sequence (z,) is a (non-proper) subsequence of itself.

* If (yx) = () is a subsequence of (z,,) and (z;) = (w,) is a subsequence of
(yr), then (z;) = (a:nk]) is a subsequence of (z,,). O

Convergent sequences have well-behaved subsequences, as we see below.

Theorem 19 Let z,, — z. If (z,,,) C (z,), then z,,, — x as well.

Proof: Let ¢ > 0. Since x, — =z, IN. € N such that |z, — x| < ¢ whenever
n > N.. But (z,,) is a subsequence of (z,), so n, > k forall & € N. Then
|z, — x| < e whenever n, > k > N, so z,, — = when k — oc. [ |

Note that the converse of Theorem 19 is false (see Exercises).

The next result is surprising (at first glance) and deep, and will prove quite useful.

Theorem 20 (BOLZANO-WEIERSTRASS)
If (z,,) C R is bounded, it has (at least) one convergent subsequence.

Proof: we build a subsequence as follows: as (z,) is bounded, there is an

interval I; = [a, b] s.t. (z,) C I,. Letny = 1. Then z,,, = 27 € I and

b—a
20

length(l,) =b—a=

Set I = [a, %] and I} = [%£2,0),
Alz{n€N|n>n1andxn€I{}, Blz{nEN|n>n1andxn€I{’}.
At least one of A;, B; must be infiniteas Ay UB; ={n e N |n >n }:

= If A, isinfinite, set I, = I]. Since A, is an infinite set of integers, it is not empty.
By the well-ordering axiom, A; contains a smallest element, say 7.
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» If A, is finite, set I, = I{. Since B is an infinite set of integers, it is not empty.
By the well-ordering axiom, B; contains a smallest element, say 7.

Either way, there is an integer ny > n; such thatz,, € I, I O I and

b—a
91

length(/y) =

Now, suppose that [, _; D [} are intervals with

b—a b—a
length(I; 1) = T=2 and length(/[;) = D=

that 3Iny,_1,nx € Nsuchthatn,  <ng, x,, , € Ix_1, z,, € I}, and that atleast one
of the corresponding sets A;_1, By_1 is infinite.

Write I, = [, 8. Set I}, = [, “t2] and I} = [%£2, 3],
Ay ={neN|n>nyandz, € I}, Bi={neN|n>n,andz, € I}'}.

One of A, By, must be infinite as A, U By = {n € N | n > n; and x,, € I} is infinite.

= If Aj is infinite, set I;; = I;. Since Aj is an infinite set of integers, it is not
empty. By the well-ordering axiom, A; contains a smallest element, say 7.

= If Ay is finite, set I, = I;/. Since By is an infinite set of integers, it is not
empty. By the well-ordering axiom, Bj contains a smallest element, say n; .

Either way, there is an integer ng 1 > ng s.t.x,, | € 1, I 2 Ixyq and

length(I;1) = b;ﬂa‘
By induction, we have

LLDL D I} DIy 20

2. for each k € N, length(I},) = 5=%;

3. foreachk € N, z,,, € I}, and

4.np <ng < - <M < Npgp < -0

Furthermore, bz_—k“ — 0 (since it is a subsequence of ”‘T“ — 0). According to the

nested intervals theorem, then, 3¢ € [a, b] such that

ﬂ Iy = {¢}

k>1
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It remains only to show that z,,, — &.
Let ¢ > 0. By the Archimedean property, 3K. € N such that 2571 > b=¢
and so ; ;
K.—1 k—1 —a —a
k>K. =2 <2 :>0§2k—1<2K6—1<8'
Since £ € [ forall k£ € N, then
b—a b-—a

k>K, = |z, —¢& < ST < 9RT < &

which is to say z,, — =. n

We have mentioned that a sequence (z,,) which diverges is one for which
VL € R, 3¢, > 0, VN € N, Iny > N such that |z,, — L| > €.

If (,,) does not converge to L, it is easy to construct a subsequence (z,, ) which also fails to
converge to L:

» letn; € Nbesuchthatn; > 1and |z,, — L| > ¢;;
* let ny € Nbe such thatny > n; and |z, — L| > ¢;;
= etc.

Note that if z,, /4 L, some subsequences of (z,,) might still converge to L: for instance,
T, = (=1)" A 1,butzy, = (—1)*" =1 — 1.

Theorem 21
Let (z,) C R be a bounded sequence such that every one of its proper converging
subsequence converges to the same x € R. Then z,, — =.

Proof: Let M > 0 be a bound for (z,). Then |z,| < M foralln € N. If (z,)
does not converge to z, then 3(z,,, ) C (x,) and an gy > 0 such that

|z, — x| > €9 forallk € N.

But (z,,) is also a bounded sequence, and so, by the Bolzano-Weierstrass theorem,
there is convergent subsequence (z,, ) C (z,,) C (z,).
J

But all subsequences of (x,) converge to z, by assumption, so Ty, — . That

is to say, for ¢; > 0, 3N., € Nsuch that |z,, — z| < o whenever k; > j > N,
J

which contradicts the above property. Hence z,, — . [ |
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2.6 Cauchy Sequences

One of the main challenge with the definition of a limit is that we need to know what L is
before we can show what it is. Thankfully, we can bypass the circularity of the situation.We
say that a sequence (z,,) is a Cauchy sequence if

Ve > 0, dN, € Nsuchthatm,n > N, = |z, — z,,| < .
Incidentally, (x,,) is not a Cauchy sequence if
deg > 0, VN € N, Imy, ny > N such that |z,,,,, — .| > €o.

Examples:

1. Is (z,) = (+) a Cauchy sequence?

Solution: let £ > 0. By the Archimedean property, IN. > 2. Thus

£

SN 1 1 <1+1<1+1 2<
m,n —— <4< —=+—=—<c.
’ © m mn|~_m =n N. N. N.
Thus (x,,) is Cauchy. O
2. Is (z,) = (14 3 +--- + 1) a Cauchy sequence?
Solution: let m > n. Theniznflz---ziand
1 1 1 1 (m—n) n
|$m—$n|:—+"'+—2—+"'+—:—:1——-
n+1 m m m m m
—_— ———

m—n terms

In particular, if m = 2n, then |z, — z,| > 1 for every n € N, and so (z,,) is not
a Cauchy sequence. O

In essence, a Cauchy sequence is a sequence for which the terms can get as close to one an-
other as one wishes, after a certain index threshold.

The next result shows that Cauchy sequences have at least one of the traits of convergent
sequences in R — we will soon see that the similarity is not pure happenstance.

Theorem 22
If (z,,) is a Cauchy sequence, then it is bounded.

Proof: let1 > ¢ > 0. If (z,) is Cauchy, 3N. € N such that |z,, — z,| < ¢
whenever m,n > N.. Setm* = N, + 1. If n > N, then

@l = [T+ (@ — o) < e |+ (20— T | < Jane] +e.

Set M = max{|z1| + 1,...,|zn.| + 1, |z

+ 1}. Then |z,| < M foralln e N. W
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We could also show that the sum of two Cauchy sequences is a Cauchy sequence, that every
bounded Cauchy sequence admits at least one convergent subsequence, and so on. In fact,
any result that applies to convergent sequences in R also applies to Cauchy sequences in R
(and vice-versa) because of the following result.

Theorem 23
A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof: let (x,) be the sequence under consideration. Suppose that z, — =z,
say. Lete > 0. Then 5 > 0 and 3M, , such that

n>ME/2:|xn—x|<g.

Set N. = M. ;5. Whenn, m > N, we have

e €
|xm—xn|§|xm—:v—|—a:—xn|§|xm—x|+]x—xn|§§—|—§:5,

which is to say that (x,,) is Cauchy.

Now suppose that (z,) is Cauchy. According to Theorem 22, it is a bounded
sequence, and so must admit a convergent subsequence (z,,) < (z,) by the
Bolzano-Weierstrass theorem, with z,, — z, say.

Lete > 0. Since (x,,) is Cauchy, 3M. » € N such that

5
n,m > M.y = |Tm — x| < 3"

Since (x, ) converges to z, 3N > M/, such that vy — x| < §. Set N. = M, /5. Then

e €
n>N5:>]:cn—a:|:]a:n—xN+xN—x|§|xn—xN\+\xN—:c|<§+§:8,

and so (z,)is convergent. [

This result can help simplify proofs and computations to a considerable extent.
Examples

1. As the sequence (z,,) = (1+ % + - -+ =) is not a Cauchy sequence, it does not
converge.

2. Compute the limit of the sequence defined by x,, = %(xn_Q +,_1),n > 2,with
T, = 1andx2 = 2.
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Solution: we cannot use the bounded monotone convergence theorem as (z,,)
is not monotone. However, (z,,) is a Cauchy sequence. Indeed,

|xn+1 - Inl = }%(xn—l +In> - In‘ = %’mn - xn—1| = 2L2|xn—1 - xn—Q‘

2%|Cl3n72 — Ty == Zn%‘xZ — 11| = 2n;—1

Let ¢ > 0. By the Archimedean property, 3N, € N such that 2%% < e. Then,
whenever m > n > N,

|xm - xn‘ S ’xm - xm—ll +--+ ’xn—o—l - $n|

1 1 1

1
= om—2 +et on—1 < on—2 < IN:—2 <é&.

Being a Cauchy sequence, (z,) is convergent according to Theorem 23. Let
x, — x. From Theorem 19, we must have z5,,,1 — x as well.

[t is left as an induction exercise to show that

1 1 1 3 1
x2n+1:1+§+§++W:1+1 1-—1.

Then$2n+1—>1+§:§:x. [

Cauchy sequences illustrate the fundamental difference between R and Q. A sequence is
Cauchy if the points of the sequence “accumulate” on top of one another. We have seen that
in R, every Cauchy sequence is convergent, and vice-versa.

In Q, the converging sequences are Cauchy, but there are Cauchy sequences that do not
converge: it is possible that the points of such a sequence “accumulate” around one of the
(uncountably infinitely) many holes of Q. For instance, the sequence (1,1.4,1.41,1.414,...)
is Cauchy in Q, but does not converge in Q.

This remark leads to one of the ways of building R from Q: we take all Cauchy sequences
in Q and add whatever point the sequences “accumulates” around to R (there is more to it
than that, but that is the main idea - We will revisit this idea in much more detail in Chapter 7).
In the example above, the Cauchy sequence would lead us to add V2 to Q.

2.7 Solved Problems

1. The first few terms of a sequence (z,,) are given below. Assuming that the “natural pat-
tern” indicated by these terms persists, give a formula for the nth term z,,.

a) (5,7,9,11,...);
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Solution: there is no general method (this question is a wee bit on the easy side...).

a) Odd integers > 5: x,, = 2n + 3foralln > 1;
b) Alternating powers of %: Ty = (—1)"“%n foralln > 1;

n

¢) Fractions where the denominator is one more than the numerator: z, = 5

foralln > 1;
d) Perfectsquares > 1: x,, = n2foralln > 1. O

2. Use the definition of the limit of a sequence to establish the following limits.

1
li =0;
) Jim ()

2n
b) li = 2;
1
c) lim 3n + = §, and
n—oo \ 2n + 5 2
21 1
d) lim (=) ==
n—oo \ 2n2 + 3 2
Proof:

a) Lete > 0. By the Archimedean property, there is a positive integer N, >
Then

1

0| = —
< <N€

nZ+1 n?

< < g,

S|

1 ‘ 1 1

whenever n > N..

b) Lete > 0. By the Archimedean property, there is a positive integer N. > %
Then
2n Gl |2 ]_ 2 _2_2_
ntl | | Tnti|l n+rin >N %
whenever n > N..
c) Lete > 0. By the Archimedean property, there is a positive integer N, > % . %
Then
Sntl 8| |18 [ 13 1 13 1 131 13 1
2n+5 2| | 2@2n+5)| 2 2n+5 2 2n 4 n 4 N

which is smaller than ¢ whenever n > N..
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d) Lete > 0. By the Archimedean property, there is a positive integer N, > g L

13
Then
1

9
€

D | ot
| ot

| ot
S

1
2n2

n?—1 1'

5 5 1
m2+3 2 ’_2'

- J— <
‘ 2(2n2 + 3) 2 + 3

which is smaller than € whenever n > N.. |
3. Show that

a) lim

n—oo

b) lim

(
(

Q) lim ( v
(

d) lim

Proof:

a) Lete > 0. By the Archimedean property, there is a positive integer N, > E%

Then
n+7 CVn+7 n VN,

whenever n > ..

b) Lete > 0. By the Archimedean property, there is a positive integer N. > g.

Then

B 4 | 4 <4 4
| n+2| n+2 n N

n+2

2
n 0 ‘

whenever n > N..

c) Lete > 0. By the Archimedean property, there is a positive integer N. > E%
Then

<e,

n+1 Cn+1 n  vn VN
whenever n > N..

d) Lete > 0. By the Archimedean property, there is a positive integer N. > é

Then
(=1)"n ’_ n ﬁ_l<i<€
n?+1 n2+1 n?2 n N, ’
whenever n > N.. |
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4. Show that lim (l — 1 ) =0

Proof: let ¢ > 0. By the Archimedean property, there is a positive integer V. > ﬁ

Then

n n-+1

1
= —— < S <<
n(l+n) n? N2 ©

€

1 1 ’ 1 1

whenever n > N..

5. Find the limit of the following sequences:

a) lim ((2—1—1) );
n—o0 n
b) lim <(_1)n>;

c) lim (M),and
+1

n-+1
d) L .
) Jim (%2

Solution: we can only use the definition if we have a candidate. Throughout, we will

assume that it is known that % — 0.

a) Notethat (2+ %)2 =4+ % + # Then, by Theorem 14 (operations on sequences

and limits),

2 1 1 1 1
-=2-——>2.0=0 and5=—--——0-0=
n n n n n
sothatd+ 2+ 5 544+ 0+0=4
b) Clearly,
-1 (="
< , VnéeN.
n+2-"  n+2 " n+?2 "
Note that n + 2 > n for all n so that
1 1
0< <—, VneN;
n+2 " n

as a result, n%rQ — 0 by the squeeze theorem. Then — -1, — —0 = 0 by Theo-

n+2
rem 14, so that D by the squeeze theorem.

n+2
gpita V=1 12
c) Re-write \/ﬁﬂ—l \/ﬁH.Notethat
1 1
0< <—, VnelN
=Vat+l S ym "

We have seen that ﬁ — 0; as aresult of the squeeze theorem

1—- \/772“ —1—2-0=1, by theorem 14.
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d) Note thatn < ny/n < n?foralln € Nso

‘ -

1
— <

<
n?2 ~n -

, VnéeN.

S|

B

But %, #, ﬁ — 0 (see previous problems) so that ﬁ — 0 by the squeeze

theorem. Furthermore,

n+1 1 1
=+ —— 5 0+40=0
nyn  \/n tovm 0t ’
by Theorem 14. O
6. Lety, = v/n + 1 — y/n. Show that (y,,) and (1/ny, ) converge.

Proof: as

0<Vn+1—+yn= Vn € N,

1 1
—_— <
vn+l+yn = n
and in — 0, then v/n + 1 — \/n — 0 by the squeeze theorem.

v

Note that /ny, = /n(n+1) —n = \/711 for all n € N. Then, according to
1+241

theorem 14,

1

1
lim ny, = lim = 5
1+7+1  Iim (,/1++1>
n—oo n
since,/1+%+1>2f0rallnEN. [ |

7. Let (x,) € R* be such that 2/ — L < 1 for all n. Show Jr € (0,1) such that0 < z,, <
r™ for all sufficiently large n € N. Use this result to show that x,, — 0.

Proof: since L < 1,3eg > Osuchthat L < L + ¢g < 1. Then, 3Ny € N such that
|zt/" — L| < ey whenevern > Np.
Hence L — ¢ < x,ll/" < L+e¢pforalln > Ny. Setr = L + eg. Thenr € (0,1) and
0<z,<r"™ Vn>Ng.

Lete > 0. v — 0 (do you know how to show this?), 3N, > Ny such that " < ¢
whenever n > N,, hence
|zy, — 0] =2z, <7" < ¢

whenever n > V.. |

8. Give an example of a convergent (resp. divergent) sequence (x,,) of positive real num-
bers with z/™ — 1.

Solution: the sequences (z,,) = 2 and (z,,) = (n) do the trick, among others. [
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9. Letx; =1, z,41 = /2 + z, for n € N. Show that (z,,) converges; find the limit.

Proof: we show (z,,) isincreasing and bounded by induction; according to the bounded
monotone convergence theorem, (x,,) must then converge.

A quick computation shows that x5 = /3.
Initial case: Clearly, 1 <z < x9 < 2.
Induction hypothesis: Suppose 1 < z; < x11 < 2. Then

3<ap+2 < apy +2<4

and so

1<V3< Vo +2< Vg +2<Vi=2,
ie. 1 Sl‘k+1 §$k+2:2.

Hence () is increasing and bounded above by 2; as such z,, — = for some = € R.

But
z= lim z, = lim 2,41 = lim V242, =, /2+ lim z, = Vv2 + =z,
n—oo n—o0 n—oo n—oo
that is, 22 = 2 + 2. The only solutions are x = 2 orz = —1, but z = —1 must be

rejected since 1 < z,, for all n.

Thus, xz,, — 2.

n

1
10. Letx, = Zﬁ for all n € N. Show that (x,,) is increasing and bounded above.
k=1

Proof: as m > O foralln € N, we have

! + + 1 < ! + + ! + 1
"2 n? — 12 n?  (n+1)2 a
Furthermore, foranykZQEN,wehavek%<ﬁ—%.Then
1 1 1
l‘n:§+§+"'+?

<14 1 1 . 1 1 4 . 1 1
- 1 2 2 3 n—1 n
1
=14+14+0+---+0——<2

n

for all n € N. Hence () is increasing and bounded above by 2.
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11. Show thatc¢!/” — 1if0 < ¢ < 1.

Proof: let z, = ¢!/" foralln € N. Since z,41 = ¢/t > /" = 2 foralln € N
(as ¢ < 1), then (z,) is increasing. Furthermore, 0 < ¢!/ < 1/ = 1 foralln € N,
so (x,) is bounded above.

Hence (x,) converges, and x,, — x, for some = € R. As all subsequences of a conver-
gent sequence converge to the same limit as the convergent sequence, z3,, = ¢/2" —
x. As such,

z= lim ¢/? = lim Vcl/n =

lim
n—oo n—oo n—oo

VT, =/ lim z, =,
n—oo

and so either x = O or z = 1. Butas z,, increases to 1, there comes a point after which
all x,, are “far” from 0 (you should mathematicize this statement...),sox, - 1. H

12. Let (z,) be a bounded sequence and let s,, = sup{xy : £ > n}. If S = inf{s, }, show
that there is a subsequence of (z,,) that converges to S.

Proof: as (z,,) is bounded, 3M > 0 such that —M < z, < M foralln € N. By
definition, sy > s9 > --- and s,, > z; foralln € N, k£ > n.

Hence s,, > —M for all n and (s,) is bounded below and decreasing, i.e. (s,) is
convergent. Furthermore, for eachn € N, as s, = sup{zj, : kK > n}, 3k, € Ns.t.

Sp— — ST, < S
n
(otherwise s, is not the supremum).

The sequence (xf, ) might not necessarily be a subsequence of (z,), but by delet-
ing the terms that are out of order, the resulting sequence, which we will also denote
by (x, ) is a subsequence of (z,,).

Then
1

0<|zg, —sn] <—, VneN
n

By the squeeze theorem,
0 < lim |zg, —sp| <0, so lim |z, — s,|=0.
n—oo n—oo
But this means that

o 7
i i = i s = 51 (ohy?)

where the last equation comes from the theorem on bounded increasing/decreasing
sequences. |
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13. Suppose that z,, > 0 for all » € N and that ((—1)"x,,) converges. Show that (z,,) con-
verges.

Proof: Let (—1)"xz, — . Consider its subsequences

((=1)*"z3,) = (z20) and ((—1)*"aoni1) = (—22n41) -

Then z9, — « and (—z2,+1) — «a. Butzy, > 0Vn € Nsoa > 0. Similarly,
—Zoptr1 < 0Vn € Nsoa < 0. Since 0 < a < 0, we must then have o = 0. By
Theorem 14 (operations on limits), we have:

lim |(—1)"zn| = |0] = 0.

n—oo
But |(—1)"zy| = x, Vn, so x,, — 0. [
14. Show that if (x,,) is unbounded, there exists a subsequence (z,,, ) with 1/z,, — 0.

Proof: as (z,) is unbounded, In; € N such that |z,,| > 1. Moreover, Yk > 2,
dng € N such that |z,, | > kand ngy; > ny (otherwise the sequence would be

bounded).
Let ¢ > 0. According to the Archimedean property, 3K. € N such that K. > %
and
1 1 1 1
—_— = 0’ = < -<—=<zce
Ly, |Tn,| ~ K e
whenever k > K. Thus, 1/z,, — 0. [ |

15. Ifx, = %, find the convergent subsequence in the proof of the Bolzano-Weierstrass
theorem, with I, = [—1, 1].

Proof: we first note that (x,,) is bounded by —1 and 1, so the question makes sense.
Letn; = 1. Thenx,, = x; = —1andlength(l;) = 2. Set I = [-1,0] and I{ = [0, 1].

We have
Aj={neN|n>njandz, € I} = {3,5,7,9,11,...}
and
Bi={neN|n>njandz, € I{} = {2,4,6,8,10,...}.
Since A; is infinite (why?), set I, = I} = [—1,0] and n2 = min A; = 3, so that
Tn, = —1/3. Note that ng > ny, Iy C Iy, and length(l2) = 1. Set I, = [-1,—1/2]

and I] = [-1/2,0].
We have
Ay={neN|n>ngandz, € I}} =2

and
By={neN|n>nyandx, € I} } = {5,7,9,11,13,...}.

Since Aj is finite, set I3 = I}/ = [—1/2,0] and n3 = min By = 5, so that z,,, = —1/5.
Note that n3 > ng > ny, I3 C Iy C I, and length(I3) = 1/2.
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Fork > 3,weset I, = [—-1/2¢2 —1/2*"Yand I} = [-1/2*"1,0]. Then

Ayp={neN|n>ngandz, €[} =0

and

Br={neN|n>ngandz, € I}/} = {2k + 1,2k + 3,2k +5,...}.
Ay, is finite, so set I 41 = I/ = [-1/2%1 0]. Furthermore, ny41 = min By, = 2k + 1
so thatz,, = ﬁ

Notethatngi1 > mng > -+ >ng >ny, Iy C I C--- C Iy C I andlength(f;11) =
1/2%=2. The convergent subsequence is thus —1, —1/3, ~1/5,... — 0. [

16. Show directly that a bounded increasing sequence is a Cauchy sequence.

Proof: letc > 0. By completeness of R, * = sup{z,, | n € N} exists as {z,, | n € N}
is bounded and non-empty. In particular, EIM% € N such that

€
- = <xpy. <zt
2 5

But x* > x,, > xj7. whenever n > M%.
2

Let N, = M%. Then

e €
|Tm — Tp| = |2 — 2% + 2% — 2| < |2 — 2| + |27 — 2| < §+§ —¢
whenever m,n > N.. |
17. If0 < r < land |z,41 — x,| < r"foralln € N, show that (z,,) is Cauchy.

Proof: let ¢ > 0. By the Archimedean property, 3N, > log, (¢(1 —7)) + 1, i.e.
rNe=1 < ¢. Then

’xm - xn‘ < ’xm - xm—l‘ + -+ ‘xn—i—l - xn‘
n—1 rNefl

<
1—r 1—r

<Ml < <e

whenever m > n > N..° [ |

18. If 1 < 29 and z,, = %(xnfl + z,_o) for all n € N, show that (z,,) is convergent and
compute its limit.

Proof: we start by showing that (x,,) is Cauchy. Let L = x5 — x1; by induction,

L
on—2 :

|:En - $n71| <

®The third last inequality holds since 7™ ~! + - .- 4 7™ is a geometric progression.
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Let e > 0. By the Archimedean property, 3N, € N such that 21\&% < e. Then
|xm - xn| < ‘xm - xm—1| +--+ ’wn-I—l - xn’

L L L L
+..

< om—2 'anl — 9n—2 < 2N572 <€

whenever m > n > N.. Hence (z,,) is a Cauchy sequence, and so it converges, say to
xn — x. We can show by induction (do it!) that

L L L
Tantl = 1+ 5+ og + oo

23 922n—1

for all n € N. In particular,

. e (L L

= L yim (111 4 !

22n72
L . 1—(1/22%)" 2 1
= ot g lim <1_<1/22> =t b= glen ot 2e).
For instance, when z; = 1 and 2 = 2, z,, — 5/3. [ |

19. Suppose that (a,) is a bounded sequence and b,, — 0. Show that a,,b,, — 0.

Proof: since (ay,,) is bounded, there exists some 0 < M < oo so that sup,, |a,| < M.
Next, we will check that a,,b,, — 0.

Fix some ¢ > 0. Since b,, — 0, there exists some N so that forall n > N, |b,| < 7.
Thus, for alln > IN,,

€
[anbal < Mlba| < M - = c.
Thus, a,,b,, — 0. |

20. Let (a,) be a sequence with no convergent subsequences. Show that |a,,| — .

Proof: we prove this by contradiction. Assume that |a,,| does not diverge to infinity.
Then there exists some M < oo such that the set {n € N | |a,| < M} is infinite. Let

1<mp<mg<mz<...

be the indices satisfying |a,,, | < M. Setb,, = ay,,,. Then {b,,} isabounded sequence
and so has a convergent subsequence {by,, },, according to the Bolzano-Weierstrass
theorem.

But {am,, tn = {bk,}n is in fact a convergent subsequence of (a,), contradicting

the information given in the question. We conclude that our assumption was false,
and so that |a, | diverges to infinity. [ |
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. We define the limit inferior and the limit superior of a sequence as follows:

liminfa, = lim inf{a; | kK > n}
n—oo n—oo

limsup a,, = lim sup{ax | £k > n}.
n—oo

n—oo

Let (a,) be bounded. Show that lim inf a,, and lim sup a,, exist and are in R.

n—o0 n—00

Proof: define the sequence of sets B,, = {ax | k > n} and the sequence of numbers
b, = sup(By,), so that
limsup a, = lim b,.
n—o0 n—00
We note that B; D By D ..., which implies sup(B;) < sup(Bs) < ..., which means
that {b,,} is monotone decreasing. Furthermore, since (a,) is bounded, there exists
some —oo < M < oosothata, > M foralln € N.

But this M is a lower bound for (a, ), which means it must be a lower bound for
B, for all n € N, which means b,, = sup(B,,) > M for all n € N as well.

Thus, we have shown that {b,,} is a monotone decreasing sequence that is bounded
from below. Hence, by the monotone convergence theorem, it has a limit and so

limsupa, = lim b,

n—00 n—0o0
exists. The proof for the lim inf statement follows a similar path. |
. Let (a,) be unbounded. Show that lim inf a,, = —oc or lim sup a,, = oc.
n—oo

n—o0
Proof: since (a,,) is unbounded, for all 0 < M < oo, there exists n = n(M) satisfy-
ing |a,| > M.

Define the subsequence {b; } by setting by = a, ), so that |by| > k forall k € N.
Since this is an infinite sequence, we have by the Pigeonhole Principle that at least
one of thetwo sets I = {k € N | by > 0}, I_ = {k € N | by < 0} is infinite.

In the case that I is infinite, write the elements ¢; < i3 < i3 < ... in order and
define the subsequence {c,} of {,, } by the formula ¢; = b;, = ay,(;,)- But then for all

n, we have

supfa | k> n} > sup{ay, | £ > n}
=sup{ck | k > n} >sup{k |k >n} = oco.

Thus,

lim sup a,, = co.
n— oo
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The case that /_ is infinite is essentially the same, with the conclusion

liminfa, = —co.
n—oo

This completes the proof.” ]
23. Let (a,), (b,) be two sequences. Show that

liminfa, + limsup b, < limsup(a, + b,) < limsup a,, + lim sup b,,.

n—0o0 n—00 n—00 n—00 n—»00

Proof: fix ¢ > 0. Then there exists some N, € N such that, for all m > N, the
following inequalities all hold:

5 . 3 L.
— + limsupa, > am > —= + liminfay;
2 n—00 2 n—00

% + limsup b,, > b,,, > —g + liminfb,,.

n—o00 n—00

Adding the left-hand sided inequalities, we get:

am + by, < € 4 limsup a,, + limsup b,,.

n—oo n—oo

We conclude with our first desired inequality,

lim sup(a,, + b,) < limsup a,, + lim sup b,,.
n—oo n—oo n—oo

To obtain the reverse inequality, again fix ¢ > 0. Then there exists a sequence {k, }
so that

by, > _< + limsupb,, forall m.
2 n—oo

Chopping off the finitely-many terms in the sequence occurring before the threshold
N, and applying the above inequalities, we have, for all m € N:

ar, + by 2—%+liminfan—g—|—limsupbn.

m m
n—00 n—00

We conclude with the desired reverse inequality,

lim sup(ay, + by,) > liminfa,, + limsup b,,.
n—00 n—roo n—00

For the second question, consider the sequences
an = (=1)", b, = (—1)"+L.

Thus a,, + b, = 0 for all n, so lim sup(a,, + b,,) = 0. However,
n—oo

limsup a,, = limsup b,, =1,
n—oo n—oo

which completes the proof. ]

7As an aside, if I_, I, are both infinite, then we have

limsupa, = o0, liminfa, = —o0,
n—o00 n—00

which you can check holds for sequences such as a,, = (—n)", say.
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2.8. EXERCISES

2.8 Exercises

N o ok

10.

66

. Prepare a 2-page summary of this chapter, with important definitions and results.

Is the converse of Theorem 13 true?

Let |¢| < 1. Compute lim ng", if the limit exists.
n—oo

Let (z,,) be a decreasing sequence, bounded below. Show that z,, — inf{xz,, | n € N}.
Find a divergent sequence with convergent subsequences.
Show directly that the sum of two Cauchy sequences is a Cauchy sequence.

Show directly that every bounded Cauchy sequence admits at least one convergent sub-
sequence.

Complete the induction argument that allows you to compute the limit of the sequence
defined by x,, = %(mn_Q + x,-1),n > 2, withz; = 1and x5 = 2,

Show that (z,) = % and (z,) = (n) are both positive real sequences with /"
even though one converges and one diverges.

— 1,

Complete the proof of solved problem 21 (do the lim inf case). Consider the sequence
given by the recursion a,41 = 3(a, + a, '), with some initial condition a; € (—o0,0) U
(0, 00). Find and prove the limit, if it exists.
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