Chapter 20

Introduction to Algebraic Topology

While there are tons of other interesting results and counter-examples in
point set topology, we have touched upon most of the important ideas of
the discipline in Chapters 15-19. In this chapter, we introduce the basic
concepts of algebraic topology, which is both a precursor and an applica-
tion of category theory, and which provides a stepping stone to homol-
ogy theory, a fascinating (but out-of-scope) offshoot of general topology.

20.1 Fundamental Groups

A path in a space X from z to y is a continuous function p : I = [0, 1] — X where p(0) = =
and p(1) = y. A path homotopy between 2 paths py and p; from z, to x; is a continuous
function F': I x I — X, where

F(t,0) =po(t), F(t,1)=p(t), F(0,s) =0, F(1,s)=u.

If such an F' exists, we say that pg is (path) homotopic to p; under F, which we denote by
Po ~F P1, OT pg ~ p; if the dependence on F' does not need to be emphasized. Path homotpy
is an equivalence relation on the set of paths.

Reflexivity: if p is a path from z to 21 in X, set (¢, s) = p(t) for all s, ¢t. Then p ~pgp.

Symmetry: if py, p; are homotopic paths from z to z; with pg ~gpy, set G(t,s) = F(t,1—s)
for all s, ¢. Then p; ~¢ po.

Transitivity: let py and p; be paths from z( to x; with py ~r p;, and let p; and p, be paths
from x; to x5 with p; ~¢gps. Then pg ~ g ps, Wwhere

His.t) = F(t,2s) s€[0,1/2]
U7\ G 2s - 1) se1)2,1]

for all ¢,s € I. By the pasting lemma (Lemma 213), H is continuous since F(¢,1) =
G(t,0) forallt € I.



20.1. FUNDAMENTAL GROUPS

Examples (PATH HOMOTOPIES)
1. Let p and g be any paths with the same endpoints in R”. Then p ~rq where
F(t,s) = (1= s)p(t) + sq(t).
This path homotopy is called the straight-line homotopy.

2. Letp, ¢, and r be paths from zy = (1,0) to z; = (—1,0) in the punctured plane
R?\ {0}, defined by:

p(s) = (cosmws,sinms) (ingreen),
q(s) = (cosms,2sinws) (inblue),
r(s) = (cosws,—sinws) (inred).
) 41 0 2
-2

Then p and ¢ are path homotopic (through the straight-line homotopy, say).
But p and r are not path homotopic - we will prove this at a later point. 0

The equivalence class of a path p is denoted by [p]. We show that the equivalence classes of
paths behave very much like the elements of a group. Let X be a topological space.

Composition If p, g are pathsin X from x( to x; and from x; to xs, respectively, then pq is a
path from x; to =5, and we have:

 [p) te[0,1/2],
pq(t) = {q(2t —1) te[l/2,1].
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CHAPTER 20. INTRODUCTION TO ALGEBRAIC TOPOLOGY

If po ~pp1 from z( to 1 and ¢y ~¢ ¢q; from z; to x4, define H : [ x I — X by
F(2t t 1/2
His < [FChs) e/
G(2t—1,s) tel[l/2,1].

By the pasting lemma, H is continuous since F'(1,s) = G(0,s) = z;. Hence pogo ~u p1¢s-
Whenever the composition pq is defined, we can define the product of the path classes by

[plla] = [pql-

Associativity If p, ¢, r are paths in X from x, to xy, z; to x5 and x5 to x5 respectively, then
(pq)r and p(qr) are paths from z, to z3, and we have:

p(4t) te0,1/4],
(po)r(t) = qalt—1) te[l/4,1/2],
(r(2t —1) te[1/2,1].
p(2t) te[0,1/2],
plar)(t) = qa(dt—2) te[l/2,3/4],
(7(4t —3) te[3/4,1].
Clearly, (pq)r # p(qr). But (pg)r ~pp(qr), where
p(25) 0<t<i(s+1)
F(t,s)=qqdt—1—3s) 1(s+1)<t<i(s+2),
r(4522) s +2) <t <1

Hence ([p|[q])[r] = [p]([¢][r]) whenever these multiplications are defined.

Identities The constant path ¢, at z is defined by ¢, (t) = z forall ¢ € I. If p is a path from
x to y, then ¢, ~pp ~¢gpc,. One gets

L te0,1/2],
cap(t) = {q(gt —1) tell/2,1].
~ p2t) telo,1/2),
pcy(t) - {y t e [1/27 1]'
Then
e te[0,(1—s)/2],
F(t,s) = {p(%;—sl—l) tel0,(1-s)/2],

_ p(%) tel0,1—s/2],
Glt,s) {y tel—s/2,1].

Then F' and G are the required homotopies. Hence for any path p from z to y, [¢.|[p] = [p] and

[p] = [plley].
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Inverses Ifpisapathin X from x to y, then 7 is a path from y to = defined by 5(¢) = p(1 —1t)
with pp ~pc, and Dp ~¢ c,, where

p(2t) 0<t<3,
F(t,s) = < p(s) s<t<1-3,
p(2-2t) 1-5<t<1.
Note thatp = p, so we get
(— s
p2t)  0<t<s,
G(t,s) = p(s) s<t<1-34,
p2—2t) 1-5<t<1.
(p(1—-2t) 0<t<3,
= qp(l—s) 5<t<1-3,
p2t—1) 1-$<t<Ll
Hence [p|[p] = [c.] and [p][p] = [¢,], which means that [p] = [p] .

But it is not always possible to multiply path classes, as two paths may not have matching
endpoints, so the group idea is not complete. To remedy the situation, we introduce a new
concept. A path in X from z to x is a loop in X based at z. When p is a loop at = we call the
path class [p| a loop at z.

For a fixed z( € X, if we consider only loops based at z(, then pq is always defined. This
means that the composition of path classes is always defined and so, for any path classes «,
3, 7, with € the path class of the constant path c,,, we have

(O.//B)’}/ = O[(ﬂ’)/), ag =ex = «, O./O[_1 = Qg_laz =g

the path classes of loops in X at z( thus form a group, the fundamental group of X based
at z, denoted by 7(X, x¢). It is also sometimes known as the first homotopy group of X at
xo, denoted by 7 (X, o). The fundamental group does depend on the chosen base point.

Examples (FUNDAMENTAL GROUP)

1. If X = R"and 2 = 0,then7(R™,0) = {¢},aseveryloop at0is path homotopic
to the constant loop cy.

2. If X is any convex subset of R” and 2y € X, then 7(X,z) = {¢}, as every
loop at z is path homotopic to the constant loop c,, through the straight-line
homotopy.

3. If X = R™\ {0} and p, ¢ and r are defined as in the 2nd example on p. 458,
then pg and pr are two loops based at (—1,0). But these loops are not path
homotopic and so their path classes differ, which means that 7(X, (—1,0)) is
not the trivial group. The fundamental group of the punctured plane will be
computed in Section 20.3.
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CHAPTER 20. INTRODUCTION TO ALGEBRAIC TOPOLOGY

If X is a path-connected space for which there exists z, € X such that 7(X,z¢) = {¢}, we
say that X is simply connected. The reason why we only need one z;, € X is that the funda-
mental groups of path-connected spaces are independent of the chosen base point.

Theorem 270
If X is path-connected, then (X, z) = w(X,y) forz,y € X.

Proof: As X is path-connected, there is a path class v from z to y. Define
y: m(X,x) = 7(X,y) by Y(a) = v 'ay. We show that 4 is the desired isomor-
phism. First, let a, § € 7(X, x). Then

Y(@)A(B) =7y By =7 By = A(aB),

so v is a homomorphlsm The reverse class 7 also prov1des a fundamental group
homomorphism 5 : 7(X,y) — 7(X,z) defined by 7(¢) = v¢y~'. Then 4! = 7,
which implies that v is an isomorphism.

In the proof of Theorem 270, if we use a different path class ¢ from z to y, we get a different
isomorphism ¢ : 7(X,z) — 7(X,y). But

57 (a) = oy tanyd ™t = Gy Ha(sy )

forall @« € 7(X, x). Hence § and ~ differ by an inner automorphism.

Suppose ¢ : X — Y is a continuous functionand p : I — X isa path,thenpop: [ — Yis
a path, denoted ¢p. If the composition pq is defined, then ¢(pq) = (vp)(¢q). Thus, if p ~ggq,
then pp ~,r g, and ¢ induces a homomorphism of path classes

" m(X,x) = 7 (Y, 0(x)),

defined by ¢*([p]) = [¢p] for all [p] € =(X,x). If furthermore ¢) : Y — Z is a continuous
function, then (¢p)* = ¥*¢*. From this, if ¢ is a homeomorphism, (¢')* = (©*)~! and ¢*
is an isomorphism. As a result, if X is homeomorphic to Y, then 7(X, x) is isomorphic to
(Y, p(z)), where ¢ is the homeomorphism between X and Y.

Corollary 271
Ifn(X,z) 2 n(Y,y), then X and Y are not homeomorphic.

Note that ¢* need not be surjective (injective) when ¢ is surjective (injective).

1. Let X = R, Y = S! and define ¢ : R — S! by ¢(z) = ¢*™*. Then ¢ is continuous and
surjective, and ¢(0) = 1. But 7(R,0) = {&0}, so ¢*(7(R,0)) = {&:}. As we shall see in
Section 20.3, 7(S*, 1) = Z. Hence »* is not surjective.

2. Let X = S, Y =C,and ¢ : S — C with ¢(z) = z. Then ¢ is continuous and injective,
and (1) = 1. But 7(S*,1) = Zand 7(C, 1) = {e1 }, so ker p* = 7(S*,1) # {e;} and ¢*
is not injective.
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20.2. COVERING SPACES
20.2 Covering Spaces

Suppose p : X — X is a continuous map. Let VV be a neighbourhood of z € X. We say that V'
is evenly covered by p at x if p~*(V) can be written as a disjoint union of sets V' (the slices
of p~*(V)) such that the restriction p| : V — V is a homeomorphism. If for every z € X,
there is some neighbourhood V' of x that is evenly covered by p, then p is a covering map and
(X, p) is a covering space of X. Note that a covering map is automatically surjective.

Example (COVERING SPACES)

1. Let X = R, X = S" and definep : R — S' by p(i) = €2, Let z € S
Then there exists 6, € R such that z = €™ andp~!(2) = {. +n | n € Z}.
Let V., = {e*™ | |¢ —6.| < 1}. We show that V, is evenly covered by p and

so that (R, p) is a covering space of S*. Note that p~' (V) = | |,z V,,, where
Vo=(0.+n—3,0.+n—3)foralln € Z. But, foralln € Z,

p(Va) ={ |0 €Va} ={ | |o—0: < 1/2} = V.,
and p|‘i/:(‘/;) =V, s0 ply;, is an homeomorphism and V, is evenly covered.

2. Letp: X — Xbea homeomorphism. Then every open set U C X is evenly
covered by p since p~(U) ~ U. Hence (X, p) is a covering space of X.

3. Let X = S!, X = S!and definep : S — S* by p(z) = 2", forall z € S! and for
some n € Z. Let z € S'. Then there exists §, € R such that z = ™%, By defi-
nition, p~!(z) = {e%rfmez 0<m<n-— 1}. LetU, = {e*™ | |p —0.| < L
We show that U, is evenly covered by p and so that (S!, p) is a covering space
of S'. But p~"(U,) = ||} Uy, where Uy, = {2 | ¢ +m — 0,| < -} for
all0 <m <n-—1,and so

p(Un) = { | |¢ = 0.| < 1/(4n)} = U.

forall0 < m < n — 1, hence p[{}l (U,) = ﬁn, o) p’ﬁn is an homeomorphism
and U, is evenly covered.

4. Let X = S?and X = RP? be the real projective plane. Then the quotient map
p: 5% — RP? where p(v) = p(—v) for all v € S? is a covering map.

A continuous function f : X — Y is a local homeomorphism if for each z € X, thereisa
neighbourhood V' of z such that f|,, : V' — f(V) is a homeomorphism. Consequently, every
covering map is a local homeomorphism. But the converse is not necessarily true.
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CHAPTER 20. INTRODUCTION TO ALGEBRAIC TOPOLOGY

Example let X = R*, Y = S! and define p : RT — S by p(z) = &> for
x € R*. Then p is continuous and surjective. Let z € R". Any basic neighbour-
hood (x — ¢,z 4+ n) in R*, where ¢ + n < 1/2 is mapped homeomorphically to
{e*™% | —e < ¢ — = < n} by p. This makes p a local homeomorphism.

But p is not a covering map. Indeed, if U is an evenly covered neighbourhood
of e*™ via p, then p~*(U) = |2, V,,, where V;, is a small neighbourhood around n
whenn > 0and 1 = (0, ¢) for some small €. But p(1}) is not homeomorphic to U.
So there is no neighbourhood of 2™ which is evenly covered by p. ([l

Suppose p : X = X isacoveringmap and f : Y — X is a continuous function. A lift of f
isamap f : Y — X such that pf = f. The following theorems show that paths and path
homotopies can be lifted.

Theorem 272 (PATH LIFTING PROPERTY)
Suppose p : X — X is a covering map and f : I — X is a path with f(0) = z,. For
each Ty € p~'(xy), there is a unique path f : I — X such that f(0) = Toand pf = f.

X

X
f

Proof: the sets f~!(V) where V is a canonical (which is to say, evenly covered)
neighbourhood of a point in f(I) give an open covering § of I. As I is a compact
metric space, Theorem 245 guarantees the existence of a Lebesgue number ¢ of §.
Letn € Nbesuchthat% < e Lett,, = 2 for1 < m < nandsetty, = 0. Then
I, = [tm—1, 1] has diameter less than ¢, so it lies in f~*(V,,) for some canonical V,,
and f(I,) CV,, for1 <m <mn.

But V; is a canonical neighbourhood of xj. Let ‘N/l be the slice of p~!(V}) con-
taining zy. Define f on I; by

ft)=prtf(2),

where p; = p|‘71. As f is continuous and p; is a homeomorphism, f is continous on /.

Now suppose f is defined on [0,%,] and let z,, = f(tm) and T, = f(tm).
Take V,,,, 1 to be the slice of p~(V,,) containing 7,,, and let p,,, 1 = p|‘~/m+1. Define f
on [,,.1 by

F(t) = P F (1)
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Since fvis defined at t,,, the pasting lemma guarantees that fis continuous on
0,t,,41]. After n steps, the continuous function f is defined on I and, by construc-

tion, pf = f.

Now suppose ¢ : I — X is another path such that g(0) = 7o and pg = f.
By construction p;g = plfon ;. Since p, is a homeomorphism, g = fon I;. Using
an argument identical to that used in the construction of f, ifg = fon 0,t,,], then
g= fon [tm, tms1]. Recursively, g = fvon I. [ |

Theorem 273 (SQUARE LIFTING PROPERTY)

Supposep : XX isacoveringmap and F' : [ X I — X is a continuous function with
F(0,0) = z0. Foreach oo € p~'(xoy), thereis a unique liftof Fto F : [ x [ — X
where ﬁ((), 0) = Zop.

X

I x1I X

Proof: the sets F~! (V') where V is a canonical neighbourhood of a pointin F'(1 x I)
form an open covering § of / x [ with Lebesgue number . Subdivide I x I into
n* small squares of diameter less than . Using arguments similar to that of the
previous proof, lift F'to F'on [; X Iy, then across the base of I x I on I x I;. Next, fill
the square one layer at a time. Special care has to be taken to extend F'to [ X [,
from the previous rectangles. This hinges on the fact that the union of the bottom
and leftmost edges is connected. Then F': I x I — X is uniquely defined. [ |

Theorem 274

If fo, f1 : I — X are paths with initial point x, p : X > Xisa covering map and
p(To) = xq, then the lifts fo. fi + I — X with initial point %, are path homotopic
under F if and only if fy, f1 are path homotopic under F, where F is the unique lift of
F based at x.

Proof: suppose fo ~ fl, then let F' = pﬁ, so fo ~p fi. Conversely, suppose
fo ~r f1 and let F’ be the lift of F' obtained by the previous theorem. Then

pF(t,O) = F(t,O) = fO(t)a

so F(t,0) is alift of f, at F'(0,0) = Z,. By uniqueness of lifts, F\(,0) = fo(t).
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Similarly, F'(t,1) = f,(t). Now

pF(0,5) = f(0,5) =z

and F(0, s) is a lift of the constant path €, (5). But the constant path ez, (s) = Zpisa
lift of e,,. By uniqueness of lifts,

F(0,5) = ez, (s) = Zo.

Similarly f(l, s) is a constant path and Fisa path homotopy. [ |
Corollary 275

If X and X are path-connected, then p~'(x) has the same cardinality at every point
x e X.

Proof: for any path f in X from z to y, if 7 € p~'(x), then the lift of f to f
with initial pomtx gives a path in X from 7 to f(1) = 7. Define ¢ : p~(z) — p~'(y)
by () = y.

For f the reverse path of f from y to z, we geta unique lift from y to some terminal

point. But that terminal point has to be 7, since f = f. Thus % : p~'(y) — p~'(z)
andp = ¢~ L. |

The cardinality of p~!(z) is the number of sheets of the covering.
Examples (SHEETS)
1. Themap p : S' — S defined by p(z) = 2" is an n-sheeted covering.

2. Themap p : R — S! defined by p(z) = €™ is an w-sheeted covering. O

20.3 Fundamental Groups of S* and R?\ {0}

In this section we show how to compute the fundamental group of the circle and of the punc-
tured plane, using techniques introduced in the previous section.

Theorem 276
The fundamental group of S' is infinite cyclic, that is it is isomorphic to the additive
group 7.

Proof: since S! is path-connected, the fundamental group can be based at
any point of S*. For convenience, take z = ¢ = 1. The map p : R — S defined by
p(x) = e*™* is a covering map.
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Leta € 7(S",1). Then = [f], where f isaloop in S' based at 1. Then, by the path

lifting property, there exists a unique f with initial point 0 € p~!(1) such that the
following diagram commutes.

Then

pf(0)=p(0)=1 and pf(1)=f(1) =1

Hence f(1) € Z, say f(1) = n. This integer is independent of the choice of the
representative f, by Theorem 274. Define a map ¢ : m(S',1) — Z by ¢(a) = f(1).
We show that ¢ is an isomorphism, which yields the desired result.

¢ is a homomorphism: Leta = [f], 8 = [¢] € 7(S',1). By construction, p(a) =
f(1) = nand ¢(8) = g(1) = m for some m,n € Z. Define h by h(t) = n+g(?).
Then fh is a path from 0 to n + m. Then

p((0) = 700 = p(G(0) = (1)
and p(fﬁ) = p(f) p(}Nl) = fg,so fN}Nl is a lift of f¢ starting at 0. Consequently,

p(aB) = f.h(1) =n+m = p(a) + (B).

¢ is injective: Suppose p(«) = 0 for a« = [f]. Then, if £ is a lift of f starting at 0,
f(1) = 0 and so f is a loop in R based at 0. But R is simply connected, so

f ~ eg. By Theorem 274, f ~ ey, or & = ;1. Then ker p = {1}

© is surjective: Foranyn € Z, let f(t) = nt. Then fis apathfrom(Otonand f = pf
isaloopin S'. Let a = [f]. Then (o) = f(1) = n. |

Interestingly, the punctured plane has the same fundamental group as the circle.

Theorem 277
The fundamental group of R? \ {0} is infinite cyclic.

Proof: the point b = (1,0) belongs to both S' and X = R?\ {0}. Leti : S' — X be
the inclusion map and r : X — S be the radial map defined by r(2) = z/|z| on X.
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Both ¢ and r are continuous, and these maps induce the homomorphisms
i w(SY,0) — m(X,b) and r*:w(X,b) — 7(S,b).

Note that ri = idg and so that 7*i* = id,(s1 5. Then i is injective and r* is
surjective. It remains only to show that ¢*r* = id.(x ).

Leta = [f] € (X, b) and define F : I x [ — X by

=(1l-s s&
F(t,s) = (L= 9)(t) + 5770

Then F' is continuous and defined everywhere since |f(t)| # 0 in X. Furthermore
F(t,s) # 0, as can be easily verified.

F(0,s) = F(1,s) =b and F(t,0) = f(t), F(t,1) = L.

Then if g = f/|f|, F is a path homotopy between f and g. Hence o = [g|. But g isa
loop in S* based at b, so r(g(t)) = g(¢) and

i'r(a) =" ([r(g)]) = " (lg]) = o

Then i*r* = id,(x and i* and 7* are isomorphisms. Consequently, 7(X,b) is iso-
morphic to the additive group Z. [ |

This last result tells us that puncturing the plane changes the topological nature of R2.

Corollary 278
R?\ {0} and R? are not homeomorphic.

Note that R" \ {0} and R™ are homeomorphic when n > 2, however.

A subspace A of X is a retract of X if there is a continuous function » : X — A such that
r(a) = afor all a € A. Such a function is called a retraction. If r : X — A is a retraction,
ri = id4 where i : A — X is the inclusion mapping. If a € A, this induces r*i* = id (4 4), SO
that r* is surjective and ¢* is injective.

Examples (RETRACTS)
1. S'is aretract of R? \ {0} with the radial map r : R?\ {0} — S™.

2. Since 7(R?,0) = {&0} and 7(S?, 1) = Z, there is no surjective homomorphism
r* . 7(R?,0) — 7(S*, 1). Hence there cannot be a retraction r : R> — S, so
St is not a retract of R2.
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3. Thedisc D = {z | |z| < 1} isaretract of C with the continuousmapr : C — D
defined by

if |z| <1
T(Z) = {Z ! ’Z‘ -

z/|z| if|z] > 1.

Two continuous maps f,g : X — Y are homotopic if 94 a continuousmap F' : X x [ — Y
such that F'(z,0) = f(z)and F(x,1) = g(x) forall z € X. A subset A of X is a strong defor-
mation retract if there is a retraction r : X — A and a homotopy F' : X x I — X such that
F(z,0) =z and F(z,1) = r(z) forallz € X and F(a,t) = aforalla € A, thatisifir ~ridx.
The importance of strong deformation retracts is explained by the following theorem.

Theorem 279
If A is a strong deformation retract of X, then m(X,a) ~ w(A,a) fora € A.

Proof: suppose r : X — Ais aretraction. Then the induced homomorphisms
r*:m(X,a) > m(A,a) and " :7(A,a) = 7(X, a)

are respectively surjective and injective. It will be sufficient to show that * is also
surjective. Let f bealoopin X based ata € A. Thenrf = gisaloop in A based ata.
Let I’ be a homotopy between ir and idx. Then, setting F;(t,s) = F(f(¢), s) yields

f ~r g, since
Fi(t,0) = F(f(t),0) = f(t) and Fi(t,1) = F(f(t),1) =rf(t) = g(t).

Therefore [g] = [f] and i*([g]) = [f]. Hence i* is surjective. |

Suppose that f : X — Y and g : Y — X are continuous functions such that f¢g ~ idy and
gf ~ idy, then X and Y are said to be homotopy equivalent, denoted X = Y, and f and ¢
are said to be homotopy inverses. The relation = is an equivalence relation. Reflexivity and
symmetry are trivially shown. To show that = is transitive,let X = Y and Y = Z. Then there
exist continuous functions

fX=>Y g Y—>Z h:Y—>Zandk:Z =Y
such that fg ~ idx, gf ~ idy, hk ~ idz and kh ~ idy. Then
(hf)(gk) ~ h(fg)k ~ hidy k ~ hk ~idz and (gk)(hf) ~ g(kh)f ~ gidy f ~ gk ~ idyx,
so X = Z through the homotopy inverses A f and gk.
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Examples (STRONG DEFORMATION RETRACTS)

1. The figure 8 is a strong deformation retract of the doubly-punctured plane. In-
tuitively, this is done by representing the figure 8 as two petals teaching the
axes at the origin. Puncture each petal once. Points interior to the petal slide
radially away from the puncture. Points outside the petals slide radially to-
wards the origin until they reach a petal. Timing it so that each point takes
exactly one unit of time to reach the appropriate petal yields the desired ho-
motopy.

2. If A is a strong deformation retract of X, then A = X. Indeed, letr : X — A
be a retraction. Then i = id4 and or ~ idy.

From this point on, the spaces we consider are all path-connected.

Theorem 280

Suppose f,g : X — Y are continuous functions, xo € X and f(xo) = yo, 9(z0) = 1.
If f and g are homotopic, then there is a path class o from y, to y; such that g* = a f*,
where f* : m(X,x¢) = (Y %), g° : 71(X,x0) = 7(Y,y1)anda : ©(Y, o) — 7(Y, 1)

Proof: suppose F' : X x I — Y is a homotopy between f and g, that is, sup-

pose F(z,0) = f(z) and F(x,1) = g(x). Letq : I — Y be such that q(s) = F(xy, ).
As F'is continuous, ¢ is a path from g, to y; since

q(0) = F(0,0) = f(x0) = vo
q(1) = F(x0,1) = g(x0) = 1.

Let a = [¢]. For any loop & in X based at zy, we show that
g*([n]) = af([h)),
thatis [g o h] = a([f o h]) = [q][f o h[g], or g o h ~ (G(f o R))g.
Lete =e,,. Thengoh ~ e(goh) ~ (e(g o h))e. We next show that
(e(goh)e ~c (a(foh))q

for an appropriate path homotopy G. Define G : [ x I — Y by

q(1 —4t(1 —s)) t €[0,1/4],
G(t,s) = F(h(4t — 1), 5) tefl/4,1/2],
q(2t — 1+ 2(1 —t)s) te[l/2,1].
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Att = 1,q(s) = F(zo,s)and att = 1, F(zo, s) = ¢(s) so, by the pasting lemma, G is
continuous on I x I. Now G(0,s) = G(1,s) = ¢(1) = y; and

(q(1 — 4t) t€[0,1/4],
G(t,0) = { F(h(4t—1),0) te[1/4,1/2],
Lq(2t — 1) te1/2,1),
(¢(1) t€[0,1/4],
G(t,1) = { F(h(4t—1),1) te[1/4,1/2],
La(1) te[1/2,1].
Then G(t,0) = (q(f o h))q(t), G(t,1) = (e(g o h))e(t) and ¢* = af*. |

The existence of homotopy inverses between X and Y imply that the corresponding funda-
mental groups are isomorphic.

Corollary 281
Iff : X —Y,g:Y — X are homotopy inverses, then f* : (X, zo) — w(Y, f(x0)) is
an isomorphism.

Proof: let yo = f(xo) and ;1 = g(y). As f and g are homotopy inverses,
g o f ~ idx and the preceding theorem yields (g o f)* = @id} y,, = @ for some
path class « from x to x1. Then ¢* f* = a. As & is an isomorphism, ¢g* is surjective
and f* is injective. It is then sufficient to show that ¢g* is injective.

Let yy = f(z1) and denote by f; the homomorphism induced by f from
m(X,z1) to 7(Y,y1). As before, f¢g ~ idy and the preceding theorem yields
(fog)" = Bid;y, () = B for some path class 3 from y, to y;. But this means that

g* is injective as (3 is an isomorphism. Hence g* is an isomorphism and f* = (¢*) '@
is an isomorphism. [ |

Note that X and Y may have isomorphic fundamental groups yet fail to be homeomorphic
and/or homotopy equivalent (compare with Corollary 271).

470

Examples

1. Consider R in the usual topology and the singleton set {*}. We have seen that
m(R) = n({*}) = {¢}, but R and {*} are not homeomorphic since {x} is com-
pact but R isn’t.

2. Consider S? in the usual topology and the singleton set {0} C R3. We can
show (see next section) that 7(S?) = 7({0}) = {e}, but S? and {0} are not
homotopy equivalent (this is harder to prove). 0
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20.4 Special Seifert-Van Kampen Theorem

The special Seifert-Van Kampen theorem allows us to determine when the fundamental group
of a space is . The following lemma will be helpful.

Lemma 282
Suppose f : I — X isapathand(0 = ay < ay < ... < a, = 1. Define f; : I — X by
fit) = f(1 = t)a;—1 + ta;) for 1 <i < n. Then

RS VEICRN EYRREDE

Proof: left as an exercise.

The main result is stated and proven below.

Theorem 283 (SPECIAL SEIFERT-VAN KAMPEN THEOREM)
Let U, V, and U NV be non-empty, open, path-connected subsets of X = U U V. Let
xg € UNV. Ifthe inclusionsi : U — X and j : V — X induce respectively the trivial
homomorphisms

it (U, xo) = (X, x0),
j* : 7-(_(‘/; 17()) - W(Xa xO)a
then w(X, xy) is trivial.

Proof: suppose f : I — X is a loop based at xq. The sets f~'(U) and f~*(V) form
an open covering of the compact metric space I, so the covering has a Lebesgue
number. It is then possible to subdivide I into n intervals of the form I; = [a;_1, a;]
such that f(/) lies entirely in U or entirely in V for 1 <i < n.

Should the image of consecutive intervals I; and [;,; lie in the same set U or
V, amalgamate them to form a single interval. After having done this whenever it
was possible to do so, we get a new collection of intervals with images lying entirely
either in U or in V, and such that the images of their endpoints lie in U N V for
all such endpoints. Rename these intervals I; = [a;_1,a;] for 1 < ¢ < m. Then
f(L;) CUor f(I;) CVand f(a;)) e UNVforl <i<m.

Let f; be the image of I; under f. Then f is a path in U or in V from f(a; ;)
to f(a;). Let g;_1 beapathin U NV from z( to f(a;_1) and g; be apathin U NV from
xo to f(a;). As U NV is path connected, the paths ¢;_; and g; exist. For consistency,
define gy and g,, to be the constant paths z.

If f;isapathin V,set f/ = (g;_1f;)g:- Then f!is aloop in V based at z.
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By hypothesis, j*([f:]) = [¢] in X, so (g;—1fi)Gi ~ e, and f; ~ G,_,g;. Define

b — G;_19; when f;liesinV,
R when f; lies in U.

Then f; ~ h; for all i. By the preceding lemma, f ~ hy(hs(---hy,)---), which is a
loop in U. Butloops in U are homotopic to the constant loop e,, in X, so f ~ e, in
X and 7 (X, xo) is trivial as f was arbitrary. |

We have an easy corollary.

Corollary 284 If X = U UV, where U and V are open and simply connected and
U NV is path-connected, then X is simply connected.

Using the special Seifert-Van Kampen theorem, we can easily compute the fundamental group
of S™, forn > 2.

Example: if n > 2, 7(S™) ~ {¢}. Indeed, consider S™ as the unit sphere in R""!,
and let N and S be the north and south pole of S”, respectively. Let U = S™ \ {N}
and V = 5"\ {S}.

Then U and V are both homeomorphic to R" under stereographic projec-
tion, so U and V are simply connected as R" is simply connected for n > 2. Clearly
S™ = U UV, where U and V are open. But U N V is path connected, as it is
homeomorphic to S"~! x (—1,1), which is path-connected when n > 2. By the
preceding corollary, S™ is simply connected for n > 2. ([l

AsR"™\ {0} and S™ have the same fundamental group (the proofis similar to that of Theorem
277), then (R"*1 \ {0}) is trivial for n > 2.

Corollary 285
R? is not homeomorphic to R™ when n > 3.

20.5 Solved Problems

1. Suppose that f, g : I — X are paths in a space X such that f(t) = g(¢) fort € [a, 1]. If
the paths f,, g, : I — X defined by f,(t) = f(at) and g,(t) = g(at) are path homotopic,
show that f and g are path homotopic.

Proof: first, note that if « = 0, the result is trivially true. So suppose a # 0. Let
zo = f(0), za = f(a)and 1 = f(1). If f, and g, are path homotopic, they both
startat f,(0) = f(0) = =z, and they both end at f,(1) = f(a) = x,. Then, there is a
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continuous function H; : I x I — X such that

) - fa(t) - f(at)

) = ga(t) = g(at)
H1 (0, S) = X

) = .

Let Hy : I x I — X be defined by Ha(t,s) = f(a+t(1 —a)). Then H» is continuous
since f is a path, and

Hy(t,0) = fla+t(1—a)
Hy(t,1) = gla+t(1-a))
H>(0,s) = x4
Hy(1,s) = x1.

This makes Hs into a path homotopy between f and g from x, to x1. Now define the
map H : I x I — X by

Hi (%,s) fort € [0, al,
H(ts) =1 (t*—“ ) for t
2 (=5, ort € [a,1].

Then H is continuous by the pasting lemma, as H; and Hs are continuous and at
t=1,H(1,s) = Hy(0,s) = x,. Furthermore

Hy (£,0) fort € [0,q],

Hy (f:—go) fort € [a, 1]

o - {
_ { fa(t/a) fort € [0, al,
fla+ 21 —a)) fortea,l]

f(t) forte[0,al,
f() fort € [a,1]

H(t,1) =
1 =19 g, ({—31) for ¢ € [a, 1]

) ga(t/a) fort € [0, al,
\gla+ 21 —a) fort€ [a,1]
~ Jg(t) forte|0,a],
~lg(t) fortela,1]
=g(1),

H(0,s) = H1(0,s) = xo,

H(1,s) = Hao(1,s) = x;.

Hence H is a path homotopy from f to g between zg and x;. |

P. Boily (uOttawa) 473



474

20.5. SOLVED PROBLEMS

2. Let ¢ and z; be two given points of the path-connected space X. Show that (X, x¢)
is abelian if and only if for every pair « and S of paths from z, to z;, the induced iso-

morphisms @ and 3 are equal.

Proof: suppose 71 (X, ) is abelian, and let « and 3 be two paths from x( to z;. Then
pais aloop at x, so [fa] € m1 (X, zp) and

[6al(f] = [f1[62]
forall [f] € m1 (X, xp). Then
1) = [aBlf)i6a)
= [B(fDe]
= a(B(f)-

~

Hence a([f]) = B([f]) for all [f] € m1 (X, x0), s0 @ = .

Conversely, suppose the induced isomorphisms of any two paths in X from z( to
z1 are equal. Let a be such a path, and let f be aloop at zo. Then fa is a path from
zotoziand & = fa. Let [g] € m1(X, zo). Then

[@llg)la] = a(lg)) = Fa(lg)) = [Fallgllfal = @[Fllg)[f]led,
thus [g] = [f][g][f] for all loops f and g at xp, and 71 (X, 7o) is abelian. |

3. Suppose that X is a two-sheeted covering space of X, that is for each = € X, there are
two values 7, and 7, with p~!(z) = {7}, 7>}. Prove that the map ¢ : X — X, which
interchanges the values z; and 75 is a homeomorphism.

Proof: the map ¢ is clearly a bijection and ¢? = id, so ¢ is its own inverse. Further-
more, ¢(z) # z forall z € X. To show ¢ is a homeomorphism, it is then sufficient to
show that ¢ is a continuous map. To do so, we find a collection {Z, } of open sets in
X such that Uaca Za = X and such that ¢|_: Z, — X is continuous for all a € A.
Then ¢ will be a continuous map.

First note that

X

is a commutative diagram, since for every € X, there exists & € X such that
p~Yx) = {&, ¢(@)}. Thus p¢ = p. As (X, p) is a two-sheeted covering of X there
exists, for every x € X, a neighbourhood V,, of x in X and two disjoint open sets U,
and W, in X such that p~(V,) = U, U W, and such that the mappings

plu,: Uy =V, and plw,: Wp =V,
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are homeomorphisms." Then U, is homeomorphic to W,.. We show that ¢(U,) =
W, and so that ¢(U,) is homeomorphic to U,. Suppose however that ¢p(U,) # W,
that is, suppose there is y € U, such that ¢(y) ¢ W,. Then

p(y) = p(o(y)) € Va,

and so ¢(y) € p~1(Vy) UU,, since ¢(z) # W,. But this would mean that p|y,: U, —
V, isnotinjectiveasy # ¢(y) and p(y) = p(¢(y)). Then ¢(U,) C W,,andso ¢(U,) =
W, since U, and W, have the same cardinality and since ¢ is a bijection. Thus ¢|,:
U, — W, isahomeomorphism and ¢|;,: U, — X is continuous. Similarly, (W, ) =
U, and ¢|w,: W, — X is continuous. But

X=p'(X)=p! <U Vx> =Ur'e) = U0,

zeX zeX zeX

where U, and W, are open in X. By the argument in the first paragraph, ¢ is a home-
omorphism. ]

4. If (X, p)and (Y, q) are covering spaces of X and Y respectively, show that (X x Y, (p, q))
is a covering space of X x Y.

Proof: let h = (p,q). We need to show that h is a continuous surjective map and
that for every (z,y) € X x Y, there exists a neighbourhood V' of (z,y) such that
h~1(V) is a disjoint union of open sets in X x Y and that each of these open sets is
homeomorphic to V via h.

h is continuous Let U; x Us be a basic neighbourhood of X x Y. Then

WU x Uy) = {(#,§) € X x Y : (p(&),q(7)) € Ur x Us}
p~H(U1) x g (V).

But p and q are continuous, so p~1(U;) x ¢~ !(Us) is a basic neighbourhood of
X x }7, so h is continuous.

h is surjective Let (z,y) € X x Y. As p and q are surjective, there exist Z € X and
§j € Y such that p(#) = x and ¢(§) = y. Then we have h(%,§) = (z,y) and h is
surjective.

his acoveringmap If (z,y) € X x Y, as p and ¢ are covering maps, there exist
neighbourhoods V, of z in X and V), of y in Y that are evenly covered by p and
q respectively. That is p~!(V},) is a disjoint union of open sets V, in X, each
homeomorphic to V,, via p, and q_l(V;J) is a disjoint union of open sets f/y inY,
each homeomorphic to V; via q. Set V- =V, x V,,. Then (z,y) € V and

pV) = ) <) = (UT) < (UW) = U < )

IStrictly speaking, p~! (V) should be the disjoint union of an arbitrary collection of homeomorphic open
sets in X. But there cannot be more than two of them, since this would violate the condition that ()~(,p) be a
two-sheet covering of X. Similarly, there cannot be less than two of them, since p has to be a homeomorphism
when restricted to p~1 (V).
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thatis 2~ (V/) is a disjoint union of open sets V; x XN/y. But
h(% X ‘7y) = P(vx) X Q(vy) =~ Vy x Vy,

50V, x ‘~/y is homeomorphic to V, x V,, via h.

Then (X x Y, h) is a covering space of X x Y. [ |

5. a) For X as in the previous problem, if (X, p’) is an n-sheeted covering space of X3,
show that (X, p'p) is a covering space of X;.

b) If X is either i. Hausdorff or ii. completely regular, show that X has the same
property.

Proof:

a) That p'p is a continuous surjective mapping is clear, as it is the composition of
two such mappings. It remains only to show that it is a covering map of X.

Let x € X;. We show that we can find an open neighbourhood V' of x in X;
evenly covered by p’. We then show that the disjoint open sets in X making up
(p')~1(V), each of which is homeomorphic to V via p/, are themselves evenly
covered by p. Then there is a disjoint union of open sets in X making up

p ()7 V) = @'p) N (V),

each of which is homeomorphic to V' via p’p. It is going to be messy, so let’s get
down to it methodically.

Letx € Xi. Then (p)"Y(z) = {y1,...,yn} in X, as (X,p’) is an n-sheeted
covering of X;. First, the dramatis personee.

= V, is aneighbourhood of = in X evenly covered by p’;

()" H(Vy) = LJ7—1 Wj, where L denotes a disjoint union, Wj is open in X

and homeomorphic to V,, via p’ and y; € W forall1 < j <n.

» For 1 <4 < n,U;is aneighbourhood of y; in X evenly covered by p;

» For1 <i<mn,p ' (U;) =, Z(i)a where Z(i), is open in X and homeo-
morphic to U; via p for all «;

" V= (L, P/ (Ui) N Va);

= For1<j<nK;=¥|w,) (V)CW;andy, € K;;

* For1 <j<n,M;=K;NUjandy; € M;;

= For1 < j <nandfora, N(j)a = (plz(j).)

(M;) € Z(j)a-
Since p’ is a covering map, it is an open mapping. Then V is an open subset of
X contained in V,, since it is a finite intersection of open sets in X. As

p,‘Wj: Wj -V
is a homeomorphism, K is homeomorphic to V' via p’ for 1 < j < n. Note that

Kjisopenfor1 < j < nsince V is open and that the K are disjoint since the
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b)

P. Boily (uOttawa)

W
M;

are disjoint. Then M; is open, M; C U; for 1 < j < n. Note further that the
are disjoint since the K; are disjoint. As

plzG)at Z(G)a = Uj

is a homeomorphism, M; is homeomorphic to N(j), viap foraand 1 < j < n.
Note that N (j), is open for 1 < j < nand « since M, isopenfor1 < j < nand
that the N(j), are disjoint since the Z(j),, are disjoint.

Then N(j), is homeomorphic to, say, the open subset p’(M;) C V, via p'p for
1 <j <n. But p/(Mi) is a neighbourhood of = in X7 so that p'p evenly covers
p' (M) at z. Hence (X, p'p) is a covering space of X;.

L.

il.

LetZ # ¢ € X and setz = p(Z), y = p(y). Suppose V, and V,, are neigh-

bourhoods of z and y respectively, who are evenly covered by p. Let W, and

W, be the (open) slices of p~1(V,,) and p~!(V,)) containing Z and 7 respec-

tively.

A. Ifz = y, W, and W, meet p~!(z) = p~!(y) in exactly one point respec-
tively, namely = and 3. Hence y ¢ W, and & & W,,.

B. If z # y, let U, and U, be the Hausdorff neighbourhoods of = and y in
X. Then U, NV, is a neighbourhood of x in X disjoint from the neigh-
bourhood U, NV, of y in X. Furthermore, O, = (p|w,) (U, NV,) and
Oy = (plw,) ' (Uy N'V,) are open in X, as p is a covering map. Then
2€0;y€0yand 0, NOy = T as

U.NVaNU, NV, =o.

In both cases, X is Hausdorff.

Suppose X is non-empty and completely regular. If Wisa neighbourhood
of # € X, let U be a neighbourhood of p(#) evenly covered by p such that at
least one of the slices, say M, of p~(U) lies in w.

As X is completely regular, there is a neighbourhood V' of p(#) such that
V C U. Take Z = p~ (V) N M. Then Z is homeomorphic to the slice of
p~ (V) in M. By complete regularity of X, there is a continuous function
f:X —[0,1] such that f(p(Z)) = 1and f(X — V) = {0}.

Define g1 : Z — [0,1] by g1 = fpand gy : X — Z — [0,1] to be the constant
zero-function. As p(X — Z) € X —V, g1 and g3 are both constantly zero
on ZNX — Z. Then, by the pasting lemma, g1 and g, define a continuous
function g from Z U (X — Z) = X to [0, 1].

By construction, g(7) = f(p(¥)) = 1 and g(X —W) = {0} sincey ¢ W
implies y ¢ Z. Hence X is completely regular. |
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20.6 Exercises

478

. Prepare a 2-page summary of this chapter, with important definitions and results.

. Leth : I — I be a continuous such that 2(0) = 0 and ~(1) = 1. Forany path f : I — X,

prove that f and fh are path homotopic.

. For a product space X = [[ X,,let f : I — X be a path, and define f, = 7, f for all a.

Prove that

a) two paths f and g in X are path homotopic if and only if f, ~ g, for every «;
b) if f(1) = ¢(0) for paths f,g : I — X,and h = fg, then h, = f,g, for every a.

. Prove that the fundamental group of X is isomorphic to the direct product of the fun-

damental groups m(X,, ).

. LetT = S' x S! denote the torus. For z; € S', show that S x {2} is a retract of T but

not a strong deformation retract.

. Show that ¢ : X — Y induces a homomorphism of path classes ¢*, as in the discussion

on p. 461.

. Show that R? and R? \ {0} are homeomorphic.
. Prove Lemma 282.

. Show that R™ \ {0} and S™ have the same fundamental group.
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