
Chapter 20

Introduction to Algebraic Topology

While there are tons of other interesting results and counter-examples in
point set topology, we have touched upon most of the important ideas of
the discipline in Chapters 15-19. In this chapter, we introduce the basic
concepts of algebraic topology, which is both a precursor and an applica-
tion of category theory, and which provides a stepping stone to homol-
ogy theory, a fascinating (but out-of-scope) offshoot of general topology.

20.1 Fundamental Groups
A path in a spaceX from x to y is a continuous function p : I = [0, 1] → X where p(0) = x
and p(1) = y. A path homotopy between 2 paths p0 and p1 from x0 to x1 is a continuous
function F : I × I → X , where

F (t, 0) = p0(t), F (t, 1) = p1(t), F (0, s) = x0, F (1, s) = x1.

If such an F exists, we say that p0 is (path) homotopic to p1 under F , which we denote by
p0 ∼F p1, or p0 ∼ p1 if the dependence on F does not need to be emphasized. Path homotpy
is an equivalence relation on the set of paths.
Re lexivity: if p is a path from x0 to x1 inX , set F (t, s) = p(t) for all s, t. Then p ∼F p.
Symmetry: if p0, p1 are homotopic paths from x0 to x1 with p0 ∼F p1, setG(t, s) = F (t, 1−s)

for all s, t. Then p1 ∼G p0.
Transitivity: let p0 and p1 be paths from x0 to x1 with p0 ∼F p1, and let p1 and p2 be paths

from x1 to x2 with p1 ∼G p2. Then p0 ∼H p2, where

H(s, t) =

{
F (t, 2s) s ∈ [0, 1/2]

G(t, 2s− 1) s ∈ [1/2, 1]

for all t, s ∈ I . By the pasting lemma (Lemma 213), H is continuous since F (t, 1) =
G(t, 0) for all t ∈ I .
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aaaaaa

Examples (P H )
1. Let p and q be any paths with the same endpoints in Rn. Then p ∼F q where

F (t, s) = (1− s)p(t) + sq(t).

This path homotopy is called the straight-line homotopy.

2. Let p, q, and r be paths from x0 = (1, 0) to x1 = (−1, 0) in the punctured plane
R2 \ {0}, de ined by:

p(s) = (cosπs, sinπs) (in green),
q(s) = (cosπs, 2 sinπs) (in blue),
r(s) = (cosπs,− sinπs) (in red).

Then p and q are path homotopic (through the straight-line homotopy, say).
But p and r are not path homotopic – we will prove this at a later point. □

The equivalence class of a path p is denoted by [p]. We show that the equivalence classes of
paths behave very much like the elements of a group. LetX be a topological space.

Composition If p, q are paths inX from x0 to x1 and from x1 to x2, respectively, then pq is a
path from x0 to x2, and we have:

pq(t) =

{
p(2t) t ∈ [0, 1/2],
q(2t− 1) t ∈ [1/2, 1].
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If p0 ∼F p1 from x0 to x1 and q0 ∼G q1 from x1 to x2, de ineH : I × I → X by

H(t, s) =

{
F (2t, s) t ∈ [0, 1/2]

G(2t− 1, s) t ∈ [1/2, 1].

By the pasting lemma, H is continuous since F (1, s) = G(0, s) = x1. Hence p0q0 ∼H p1q1.
Whenever the composition pq is de ined, we can de ine the product of the path classes by
[p][q] = [pq].

Associativity If p, q, r are paths in X from x0 to x1, x1 to x2 and x2 to x3 respectively, then
(pq)r and p(qr) are paths from x0 to x3, and we have:

(pq)r(t) =


p(4t) t ∈ [0, 1/4],
q(4t− 1) t ∈ [1/4, 1/2],
r(2t− 1) t ∈ [1/2, 1].

p(qr)(t) =


p(2t) t ∈ [0, 1/2],
q(4t− 2) t ∈ [1/2, 3/4],
r(4t− 3) t ∈ [3/4, 1].

Clearly, (pq)r ̸= p(qr). But (pq)r ∼F p(qr), where

F (t, s) =


p
(

4t
s+1

)
0 ≤ t ≤ 1

4
(s+ 1),

q(4t− 1− s) 1
4
(s+ 1) ≤ t ≤ 1

4
(s+ 2),

r
(
4t−s−2
2−s

)
1
4
(s+ 2) ≤ t ≤ 1.

Hence ([p][q])[r] = [p]([q][r])whenever these multiplications are de ined.

Identities The constant path cx at x is de ined by cx(t) = x for all t ∈ I . If p is a path from
x to y, then cx ∼F p ∼G pcy . One gets

cxp(t) =

{
x t ∈ [0, 1/2],
q(2t− 1) t ∈ [1/2, 1].

pcy(t) =

{
p(2t) t ∈ [0, 1/2],
y t ∈ [1/2, 1].

Then

F (t, s) =

{
x t ∈ [0, (1− s)/2],
p
(
2t+s−1
s+1

)
t ∈ [0, (1− s)/2],

G(t, s) =

{
p
(

2t
2−s

)
t ∈ [0, 1− s/2],

y t ∈ [1− s/2, 1].
Then F andG are the required homotopies. Hence for any path p from x to y, [cx][p] = [p] and
[p] = [p][cy].
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Inverses If p is a path inX from x to y, then p is a path from y to x de ined by p(t) = p(1− t)
with pp ∼F cx and pp ∼G cy , where

F (t, s) =


p (2t) 0 ≤ t ≤ s

2
,

p(s) s
2
≤ t ≤ 1− s

2
,

p(2− 2t) 1− s
2
≤ t ≤ 1.

Note that p = p, so we get

G(t, s) =


p (2t) 0 ≤ t ≤ s

2
,

p(s) s
2
≤ t ≤ 1− s

2
,

p(2− 2t) 1− s
2
≤ t ≤ 1.

=


p (1− 2t) 0 ≤ t ≤ s

2
,

p(1− s) s
2
≤ t ≤ 1− s

2
,

p(2t− 1) 1− s
2
≤ t ≤ 1.

Hence [p][p] = [cx] and [p][p] = [cy], which means that [p] = [p]−1.

But it is not always possible to multiply path classes, as two paths may not have matching
endpoints, so the group idea is not complete. To remedy the situation, we introduce a new
concept. A path inX from x to x is a loop inX based at x. When p is a loop at x we call the
path class [p] a loop at x.

For a ixed x0 ∈ X , if we consider only loops based at x0, then pq is always de ined. This
means that the composition of path classes is always de ined and so, for any path classes α,
β, γ, with ε the path class of the constant path cx0 , we have

(αβ)γ = α(βγ), αε = εα = α, αα−1 = α−1α = ε;

the path classes of loops inX at x0 thus form a group, the fundamental group of X based
at x0, denoted by π(X, x0). It is also sometimes known as the irst homotopy group of X at
x0, denoted by π1(X, x0). The fundamental group does depend on the chosen base point.

aaaaaa

Examples (F G )
1. IfX = Rn andx0 = 0, thenπ(Rn, 0) = {ε}, as every loop at 0 is pathhomotopic

to the constant loop c0.

2. If X is any convex subset of Rn and x0 ∈ X , then π(X, x0) = {ε}, as every
loop at x0 is path homotopic to the constant loop cx0 through the straight-line
homotopy.

3. If X = Rn \ {0} and p, q and r are de ined as in the 2nd example on p. 458,
then pq and pr are two loops based at (−1, 0). But these loops are not path
homotopic and so their path classes differ, which means that π(X, (−1, 0)) is
not the trivial group. The fundamental group of the punctured plane will be
computed in Section 20.3.
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If X is a path-connected space for which there exists x0 ∈ X such that π(X, x0) = {ε}, we
say thatX is simply connected. The reason why we only need one x0 ∈ X is that the funda-
mental groups of path-connected spaces are independent of the chosen base point.

aaaaaa

Theorem 270
IfX is path-connected, then π(X, x) ∼= π(X, y) for x, y ∈ X .

Proof: As X is path-connected, there is a path class γ from x to y. De ine
γ̂ : π(X, x) → π(X, y) by γ̂(α) = γ−1αγ. We show that γ̂ is the desired isomor-
phism. First, let α, β ∈ π(X, x) . Then

γ̂(α)γ̂(β) = γ−1αγγ−1βγ = γ−1αβγ = γ̂(αβ),

so γ̂ is a homomorphism. The reverse class γ also provides a fundamental group
homomorphism γ̂ : π(X, y) → π(X, x) de ined by γ̂(ξ) = γξγ−1. Then γ̂−1 = γ̂,
which implies that γ is an isomorphism. ■

In the proof of Theorem 270, if we use a different path class δ from x to y, we get a different
isomorphism δ̂ : π(X, x)→ π(X, y). But

δ̂−1γ̂(α) = δγ−1αγδ−1 = (δγ−1)α(δγ−1)−1

for all α ∈ π(X, x). Hence δ̂ and γ̂ differ by an inner automorphism.

Suppose φ : X → Y is a continuous function and p : I → X is a path, then φ ◦ p : I → Y is
a path, denoted φp. If the composition pq is de ined, then φ(pq) = (φp)(φq). Thus, if p ∼F q,
then φp ∼φF φq, and φ induces a homomorphism of path classes

φ∗ : π(X, x)→ π(Y, φ(x)),

de ined by φ∗([p]) = [φp] for all [p] ∈ π(X, x). If furthermore ψ : Y → Z is a continuous
function, then (ψφ)∗ = ψ∗φ∗. From this, if φ is a homeomorphism, (φ−1)∗ = (φ∗)−1 and φ∗

is an isomorphism. As a result, if X is homeomorphic to Y , then π(X, x) is isomorphic to
π(Y, φ(x)), where φ is the homeomorphism betweenX and Y .

aaaaaa Corollary 271
If π(X, x) ̸∼= π(Y, y), thenX and Y are not homeomorphic.

Note that φ∗ need not be surjective (injective) when φ is surjective (injective).
1. LetX = R, Y = S1 and de ine φ : R → S1 by φ(x) = e2πix. Then φ is continuous and

surjective, and φ(0) = 1. But π(R, 0) = {ε0}, so φ∗(π(R, 0)) = {ε1}. As we shall see in
Section 20.3, π(S1, 1) = Z. Hence φ∗ is not surjective.

2. LetX = S1, Y = C, and φ : S1 → Cwith φ(z) = z. Then φ is continuous and injective,
and φ(1) = 1. But π(S1, 1) = Z and π(C, 1) = {ε1}, so kerφ∗ = π(S1, 1) ̸= {ε1} and φ∗

is not injective.
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20.2 Covering Spaces

Suppose p : X̃ → X is a continuous map. Let V be a neighbourhood of x ∈ X . We say that V
is evenly covered by p at x if p−1(V ) can be written as a disjoint union of sets Ṽ (the slices
of p−1(V )) such that the restriction p|Ṽ : Ṽ → V is a homeomorphism. If for every x ∈ X ,
there is some neighbourhood V of x that is evenly covered by p, then p is a coveringmap and
(X̃, p) is a covering space of X . Note that a covering map is automatically surjective.

aaaaaa

Example (C S )
1. Let X̃ = R, X = S1 and de ine p : R → S1 by p(x̃) = e2πix̃. Let z ∈ S1.

Then there exists θz ∈ R such that z = e2πiθz and p−1(z) = {θz + n | n ∈ Z}.
Let Vz =

{
e2πiϕ | |ϕ− θz| < 1

2

}
. We show that Vz is evenly covered by p and

so that (R, p) is a covering space of S1. Note that p−1(Vz) =
⊔

n∈Z Ṽn, where
Ṽn = (θz + n− 1

2
, θz + n− 1

2
) for all n ∈ Z. But, for all n ∈ Z,

p(Ṽn) = {e2πiϕ | ϕ ∈ Ṽn} = {e2πiϕ | |ϕ− θz| < 1/2} = Vz,

and p|−1

Ṽn
(Vz) = Ṽn, so p|Ṽn

is an homeomorphism and Vz is evenly covered.

2. Let p : X̃ → X be a homeomorphism. Then every open set U ⊆ X is evenly
covered by p since p−1(U) ≃ U . Hence (X̃, p) is a covering space ofX .

3. Let X̃ = S1,X = S1 and de ine p : S1 → S1 by p(z) = zn, for all z ∈ S1 and for
some n ∈ Z. Let z ∈ S1. Then there exists θz ∈ R such that z = e2πiθz . By de i-
nition, p−1(z) =

{
e

2πim
n

θz | 0 ≤ m ≤ n− 1
}
. Let Uz =

{
e2πiϕ | |ϕ− θz| < 1

4n

}
.

We show that Uz is evenly covered by p and so that (S1, p) is a covering space
of S1. But p−1(Uz) =

⊔n−1
m=0 Ũm, where Ũm =

{
e2πiϕ | |ϕ+m− θz| < 1

4n

}
for

all 0 ≤ m ≤ n− 1, and so

p(Ũm) = {e2πiϕ | |ϕ− θz| < 1/(4n)} = Uz

for all 0 ≤ m ≤ n − 1, hence p|−1

Ũm
(Uz) = Ũn, so p|Ũn

is an homeomorphism
and Uz is evenly covered.

4. Let X̃ = S2 andX = RP 2 be the real projective plane. Then the quotient map
p : S2 → RP 2 where p(v) = p(−v) for all v ∈ S2 is a covering map.

A continuous function f : X → Y is a local homeomorphism if for each x ∈ X , there is a
neighbourhood V of x such that f |V : V → f(V ) is a homeomorphism. Consequently, every
covering map is a local homeomorphism. But the converse is not necessarily true.
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aaaaaa

Example let X = R+, Y = S1 and de ine p : R+ → S1 by p(x) = e2πix for
x ∈ R+. Then p is continuous and surjective. Let x ∈ R+. Any basic neighbour-
hood (x − ε, x + η) in R+, where ε + η < 1/2 is mapped homeomorphically to{
e2πiϕ | −ε < ϕ− x < η

}
by p. This makes p a local homeomorphism.

But p is not a covering map. Indeed, if U is an evenly covered neighbourhood
of e2πi via p, then p−1(U) =

⊔∞
n=0 Vn, where Vn is a small neighbourhood around n

when n > 0 and V0 = (0, ε) for some small ε. But p(V0) is not homeomorphic to U .
So there is no neighbourhood of e2πi which is evenly covered by p. □

Suppose p : X̃ → X is a covering map and f : Y → X is a continuous function. A lift of f
is a map f̃ : Y → X̃ such that pf̃ = f . The following theorems show that paths and path
homotopies can be lifted.

aaaaaa

Theorem 272 (P L P )
Suppose p : X̃ → X is a covering map and f : I → X is a path with f(0) = x0. For
each x̃0 ∈ p−1(x0), there is a unique path f̃ : I → X̃ such that f̃(0) = x̃0 and pf̃ = f .

X̃

I
f

-

f̃

-

X

p

?

Proof: the sets f−1(V ) where V is a canonical (which is to say, evenly covered)
neighbourhood of a point in f(I) give an open covering F of I . As I is a compact
metric space, Theorem 245 guarantees the existence of a Lebesgue number ε of F.
Let n ∈ N be such that 1

n
< ε. Let tm = m

n
for 1 ≤ m ≤ n and set t0 = 0. Then

Im = [tm−1, tm] has diameter less than ε, so it lies in f−1(Vm) for some canonical Vm
and f(Im) ⊆ Vm for 1 ≤ m ≤ n.

But V1 is a canonical neighbourhood of x0. Let Ṽ1 be the slice of p−1(V1) con-
taining x̃0. De ine f̃ on I1 by

f̃(t) = p−1
1 f(t),

where p1 = p|Ṽ1
. As f is continuous and p1 is a homeomorphism, f̃ is continous on I1.

Now suppose f̃ is de ined on [0, tm] and let xm = f(tm) and x̃m = f̃(tm).
Take Ṽm+1 to be the slice of p−1(Vm) containing x̃m and let pm+1 = p|Ṽm+1

. De ine f̃
on Im+1 by

f̃(t) = p−1
m+1f(t).
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aaaaaa

Since f̃ is de ined at tm, the pasting lemma guarantees that f̃ is continuous on
[0, tm+1]. After n steps, the continuous function f̃ is de ined on I and, by construc-
tion, pf̃ = f .

Now suppose g : I → X̃ is another path such that g(0) = x̃0 and pg = f .
By construction p1g = p1f̃ on I1. Since p1 is a homeomorphism, g = f̃ on I1. Using
an argument identical to that used in the construction of f̃ , if g = f̃ on [0, tm], then
g = f̃ on [tm, tm+1]. Recursively, g = f̃ on I . ■

aaaaaa

Theorem 273 (S L P )
Suppose p : X̃ → X is a coveringmapandF : I×I → X is a continuous functionwith
F (0, 0) = x0,0. For each x̃0,0 ∈ p−1(x0,0), there is a unique lift of F to F̃ : I × I → X̃

where F̃ (0, 0) = x̃0,0.

X̃

I × I
F

-

F̃

-

X

p

?

Proof: the setsF−1(V )where V is a canonical neighbourhood of a point inF (I×I)
form an open covering F of I × I with Lebesgue number ε. Subdivide I × I into
n2 small squares of diameter less than ε. Using arguments similar to that of the
previous proof, lift F to F̃ on I1× I1, then across the base of I× I on I× I1. Next, ill
the square one layer at a time. Special care has to be taken to extend F̃ to Ik × Il+1

from the previous rectangles. This hinges on the fact that the union of the bottom
and leftmost edges is connected. Then F̃ : I × I → X̃ is uniquely de ined. ■

aaaaaa

Theorem 274
If f0, f1 : I → X are paths with initial point x0, p : X̃ → X is a covering map and
p(x̃0) = x0, then the lifts f̃0, f̃1 : I → X̃ with initial point x̃0 are path homotopic
under F̃ if and only if f0, f1 are path homotopic under F , where F̃ is the unique lift of
F based at x̃0.

Proof: suppose f̃0 ∼F̃ f̃1, then let F = pF̃ , so f0 ∼F f1. Conversely, suppose
f0 ∼F f1 and let F̃ be the lift of F obtained by the previous theorem. Then

pF̃ (t, 0) = F (t, 0) = f0(t),

so F̃ (t, 0) is a lift of f0 at F̃ (0, 0) = x̃0. By uniqueness of lifts, F̃ (t, 0) = f̃0(t).
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aaaaaa

Similarly, F̃ (t, 1) = f̃1(t). Now

pF̃ (0, s) = f(0, s) = x0

and F̃ (0, s) is a lift of the constant path ex0(s). But the constant path ex̃0(s) = x̃0 is a
lift of ex0 . By uniqueness of lifts,

F̃ (0, s) = ex̃0(s) = x̃0.

Similarly F̃ (1, s) is a constant path and F̃ is a path homotopy. ■

aaaaaa

Corollary 275
If X and X̃ are path-connected, then p−1(x) has the same cardinality at every point
x ∈ X .

Proof: for any path f in X from x to y, if x̃ ∈ p−1(x), then the lift of f to f̃

with initial point x̃ gives a path in X̃ from x̃ to f̃(1) = ỹ. De ine φ : p−1(x)→ p−1(y)
by φ(x̃) = ỹ.

For f the reverse path of f from y to x, we get a unique lift from ỹ to some terminal
point. But that terminal point has to be x̃, since f̃ = f̃ . Thus φ : p−1(y) → p−1(x)
and φ = φ−1. ■

The cardinality of p−1(x) is the number of sheets of the covering.

aaaaaa

Examples (S )
1. The map p : S1 → S1 de ined by p(z) = zn is an n-sheeted covering.

2. The map p : R→ S1 de ined by p(x) = e2πix is an ω-sheeted covering. □

20.3 Fundamental Groups of S1 and R2 \ {0}
In this section we show how to compute the fundamental group of the circle and of the punc-
tured plane, using techniques introduced in the previous section.

aaaaaa

Theorem 276
The fundamental group of S1 is in inite cyclic, that is it is isomorphic to the additive
group Z.

Proof: since S1 is path-connected, the fundamental group can be based at
any point of S1. For convenience, take z = e2πi = 1. The map p : R→ S1 de ined by
p(x) = e2πix is a covering map.
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aaaaaa

Let α ∈ π(S1, 1). Then α = [f ], where f is a loop in S1 based at 1. Then, by the path
lifting property, there exists a unique f̃ with initial point 0 ∈ p−1(1) such that the
following diagram commutes.

R

I
f

-

f̃

-

S1

p

?

Then

pf̃(0) = p(0) = 1 and pf̃(1) = f(1) = 1.

Hence f̃(1) ∈ Z, say f̃(1) = n. This integer is independent of the choice of the
representative f , by Theorem 274. De ine a map φ : π(S1, 1) → Z by φ(α) = f̃(1).
We show that φ is an isomorphism, which yields the desired result.

φ is a homomorphism: Let α = [f ], β = [g] ∈ π(S1, 1). By construction, φ(α) =

f̃(1) = n andφ(β) = g̃(1) = m for somem,n ∈ Z. De ine h̃ by h̃(t) = n+ g̃(t).
Then f̃ h̃ is a path from 0 to n+m. Then

p(h̃(t)) = e2πi(n+g̃(t)) = p(g̃(t)) = g(t)

and p(f̃ .h̃) = p(f̃).p(h̃) = fg, so f̃ .h̃ is a lift of fg starting at 0. Consequently,

φ(αβ) = f̃ .h̃(1) = n+m = φ(α) + φ(β).

φ is injective: Suppose φ(α) = 0 for α = [f ]. Then, if f̃ is a lift of f starting at 0,
f̃(1) = 0 and so f̃ is a loop in R based at 0. But R is simply connected, so
f̃ ∼ e0. By Theorem 274, f ∼ e1, or α = ε1. Then kerφ = {ε1}.

φ is surjective: For anyn ∈ Z, let f̃(t) = nt. Then f̃ is a path from 0 ton and f = pf̃

is a loop in S1. Let α = [f ]. Then φ(α) = f̃(1) = n. ■

Interestingly, the punctured plane has the same fundamental group as the circle.

aaaaaa

Theorem 277
The fundamental group of R2 \ {0} is in inite cyclic.

Proof: the point b = (1, 0) belongs to both S1 andX = R2 \ {0}. Let i : S1 → X be
the inclusion map and r : X → S1 be the radial map de ined by r(z) = z/|z| onX .
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aaaaaa

Both i and r are continuous, and these maps induce the homomorphisms

i∗ : π(S1, b)→ π(X, b) and r∗ : π(X, b)→ π(S1, b).

Note that ri = idS1 and so that r∗i∗ = idπ(S1,b). Then i∗ is injective and r∗ is
surjective. It remains only to show that i∗r∗ = idπ(X,b).

Let α = [f ] ∈ π(X, b) and de ine F : I × I → X by

F (t, s) = (1− s)f(t) + s
f(t)

|f(t)|
.

Then F is continuous and de ined everywhere since |f(t)| ̸= 0 in X . Furthermore
F (t, s) ̸= 0, as can be easily veri ied.

F (0, s) = F (1, s) = b and F (t, 0) = f(t), F (t, 1) =
f(t)

|f(t)|
.

Then if g = f/|f |, F is a path homotopy between f and g. Hence α = [g]. But g is a
loop in S1 based at b, so r(g(t)) = g(t) and

i∗r∗(α) = i∗([r(g)]) = i∗([g]) = α.

Then i∗r∗ = idπ(X,b) and i∗ and r∗ are isomorphisms. Consequently, π(X, b) is iso-
morphic to the additive group Z. ■

This last result tells us that puncturing the plane changes the topological nature of R2.

aaaaaa Corollary 278
R2 \ {0} and R2 are not homeomorphic.

Note that Rn \ {0} and Rn are homeomorphic when n > 2, however.

A subspace A of X is a retract of X if there is a continuous function r : X → A such that
r(a) = a for all a ∈ A. Such a function is called a retraction. If r : X → A is a retraction,
ri = idA where i : A → X is the inclusion mapping. If a ∈ A, this induces r∗i∗ = idπ(A,a), so
that r∗ is surjective and i∗ is injective.

aaaaaa

Examples (R )
1. S1 is a retract of R2 \ {0}with the radial map r : R2 \ {0} → S1.

2. Since π(R2, 0) = {ε0} and π(S1, 1) ∼= Z, there is no surjective homomorphism
r∗ : π(R2, 0) → π(S1, 1). Hence there cannot be a retraction r : R2 → S1, so
S1 is not a retract of R2.
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aaaaaa

3. The discD = {z | |z| ≤ 1} is a retract ofCwith the continuousmap r : C→ D
de ined by

r(z) =

{
z if |z| ≤ 1,
z/|z| if |z| > 1.

□

Two continuous maps f, g : X → Y are homotopic if ∃ a continuous map F : X × I → Y
such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X . A subsetA ofX is a strong defor-
mation retract if there is a retraction r : X → A and a homotopy F : X × I → X such that
F (x, 0) = x and F (x, 1) = r(x) for all x ∈ X and F (a, t) = a for all a ∈ A, that is if ir ∼F idX .
The importance of strong deformation retracts is explained by the following theorem.

aaaaaa

Theorem 279
If A is a strong deformation retract ofX , then π(X, a) ≃ π(A, a) for a ∈ A.

Proof: suppose r : X → A is a retraction. Then the induced homomorphisms

r∗ : π(X, a)→ π(A, a) and i∗ : π(A, a)→ π(X, a)

are respectively surjective and injective. It will be suf icient to show that i∗ is also
surjective. Let f be a loop inX based at a ∈ A. Then rf = g is a loop inA based at a.
Let F be a homotopy between ir and idX . Then, setting F1(t, s) = F (f(t), s) yields
f ∼F1 g, since

F1(t, 0) = F (f(t), 0) = f(t) and F1(t, 1) = F (f(t), 1) = rf(t) = g(t).

Therefore [g] = [f ] and i∗([g]) = [f ]. Hence i∗ is surjective. ■

Suppose that f : X → Y and g : Y → X are continuous functions such that fg ∼ idY and
gf ∼ idX , thenX and Y are said to be homotopy equivalent, denotedX ≡ Y , and f and g
are said to be homotopy inverses. The relation≡ is an equivalence relation. Re lexivity and
symmetry are trivially shown. To show that≡ is transitive, letX ≡ Y and Y ≡ Z . Then there
exist continuous functions

f : X → Y, g : Y → Z, h : Y → Z and k : Z → Y

such that fg ∼ idX , gf ∼ idY , hk ∼ idZ and kh ∼ idY . Then
(hf)(gk) ∼ h(fg)k ∼ h idY k ∼ hk ∼ idZ and (gk)(hf) ∼ g(kh)f ∼ g idY f ∼ gk ∼ idX ,

soX ≡ Z through the homotopy inverses hf and gk.
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aaaaaa

Examples (S D R )
1. The igure 8 is a strong deformation retract of the doubly-punctured plane. In-

tuitively, this is done by representing the igure 8 as two petals teaching the
axes at the origin. Puncture each petal once. Points interior to the petal slide
radially away from the puncture. Points outside the petals slide radially to-
wards the origin until they reach a petal. Timing it so that each point takes
exactly one unit of time to reach the appropriate petal yields the desired ho-
motopy.

2. If A is a strong deformation retract ofX , then A ≡ X . Indeed, let r : X → A
be a retraction. Then ri = idA and ir ∼ idX .

From this point on, the spaces we consider are all path-connected.

aaaaaa

Theorem 280
Suppose f, g : X → Y are continuous functions, x0 ∈ X and f(x0) = y0, g(x0) = y1.
If f and g are homotopic, then there is a path class α from y0 to y1 such that g∗ = α̂f ∗,
where f ∗ : π(X, x0)→ π(Y, y0), g∗ : π(X, x0)→ π(Y, y1) and α̂ : π(Y, y0)→ π(Y, y1).

Proof: suppose F : X × I → Y is a homotopy between f and g, that is, sup-
pose F (x, 0) = f(x) and F (x, 1) = g(x). Let q : I → Y be such that q(s) = F (x0, s).
As F is continuous, q is a path from y0 to y1 since

q(0) = F (x0, 0) = f(x0) = y0

q(1) = F (x0, 1) = g(x0) = y1.

Let α = [q]. For any loop h inX based at x0, we show that

g∗([h]) = α̂f ∗([h]),

that is [g ◦ h] = α̂([f ◦ h]) = [q][f ◦ h][q], or g ◦ h ∼ (q(f ◦ h))q.

Let e = ey1 . Then g ◦ h ∼ e(g ◦ h) ∼ (e(g ◦ h))e. We next show that

(e(g ◦ h))e ∼G (q(f ◦ h))q

for an appropriate path homotopyG. De ineG : I × I → Y by

G(t, s) =


q(1− 4t(1− s)) t ∈ [0, 1/4],
F (h(4t− 1), s) t ∈ [1/4, 1/2],
q(2t− 1 + 2(1− t)s) t ∈ [1/2, 1].
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aaaaaa

At t = 1
4
, q(s) = F (x0, s) and at t = 1

2
, F (x0, s) = q(s) so, by the pasting lemma,G is

continuous on I × I . NowG(0, s) = G(1, s) = q(1) = y1 and

G(t, 0) =


q(1− 4t) t ∈ [0, 1/4],
F (h(4t− 1), 0) t ∈ [1/4, 1/2],
q(2t− 1) t ∈ [1/2, 1],

G(t, 1) =


q(1) t ∈ [0, 1/4],
F (h(4t− 1), 1) t ∈ [1/4, 1/2],
q(1) t ∈ [1/2, 1].

ThenG(t, 0) = (q(f ◦ h))q(t),G(t, 1) = (e(g ◦ h))e(t) and g∗ = α̂f ∗. ■

The existence of homotopy inverses between X and Y imply that the corresponding funda-
mental groups are isomorphic.

aaaaaa

Corollary 281
If f : X → Y, g : Y → X are homotopy inverses, then f ∗ : π(X, x0)→ π(Y, f(x0)) is
an isomorphism.

Proof: let y0 = f(x0) and x1 = g(y0). As f and g are homotopy inverses,
g ◦ f ∼ idX and the preceding theorem yields (g ◦ f)∗ = α̂ id∗

π(X,x0)
= α̂ for some

path class α from x0 to x1. Then g∗f ∗ = α̂. As α̂ is an isomorphism, g∗ is surjective
and f ∗ is injective. It is then suf icient to show that g∗ is injective.

Let y1 = f(x1) and denote by f ∗
1 the homomorphism induced by f from

π(X, x1) to π(Y, y1). As before, fg ∼ idY and the preceding theorem yields
(f ◦ g)∗ = β̂ id∗

π(Y,f(x0))
= β̂ for some path class β from y0 to y1. But this means that

g∗ is injective as β̂ is an isomorphism. Hence g∗ is an isomorphism and f ∗ = (g∗)−1α̂
is an isomorphism. ■

Note that X and Y may have isomorphic fundamental groups yet fail to be homeomorphic
and/or homotopy equivalent (compare with Corollary 271).

aaaaaa

Examples

1. ConsiderR in the usual topology and the singleton set {∗}. We have seen that
π(R) = π({∗}) = {ε}, but R and {∗} are not homeomorphic since {∗} is com-
pact but R isn’t.

2. Consider S2 in the usual topology and the singleton set {0} ⊆ R3. We can
show (see next section) that π(S2) = π({0}) = {ε}, but S2 and {0} are not
homotopy equivalent (this is harder to prove). □
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20.4 Special Seifert-Van Kampen Theorem
The special Seifert-VanKampen theoremallowsus to determinewhen the fundamental group
of a space is . The following lemma will be helpful.

aaaaaa

Lemma 282
Suppose f : I → X is a path and 0 = a0 < a1 < . . . < an = 1. De ine fi : I → X by
fi(t) = f((1− t)ai−1 + tai) for 1 ≤ i ≤ n. Then

f ∼ f1(f2(· · · fn) · · · ).

Proof: left as an exercise.

The main result is stated and proven below.

aaaaaa

Theorem 283 (S S -V K T )
Let U , V , and U ∩ V be non-empty, open, path-connected subsets ofX = U ∪ V . Let
x0 ∈ U ∩ V . If the inclusions i : U → X and j : V → X induce respectively the trivial
homomorphisms

i∗ : π(U, x0)→ π(X, x0),

j∗ : π(V, x0)→ π(X, x0),

then π(X, x0) is trivial.

Proof: suppose f : I → X is a loop based at x0. The sets f−1(U) and f−1(V ) form
an open covering of the compact metric space I , so the covering has a Lebesgue
number. It is then possible to subdivide I into n intervals of the form Ii = [ai−1, ai]
such that f(I) lies entirely in U or entirely in V for 1 ≤ i ≤ n.

Should the image of consecutive intervals Ii and Ii+1 lie in the same set U or
V , amalgamate them to form a single interval. After having done this whenever it
was possible to do so, we get a new collection of intervals with images lying entirely
either in U or in V , and such that the images of their endpoints lie in U ∩ V for
all such endpoints. Rename these intervals Ii = [ai−1, ai] for 1 ≤ i ≤ m. Then
f(Ii) ⊆ U or f(Ii) ⊆ V and f(ai) ∈ U ∩ V for 1 ≤ i ≤ m.

Let fi be the image of Ii under f . Then f is a path in U or in V from f(ai−1)
to f(ai). Let gi−1 be a path inU ∩V from x0 to f(ai−1) and gi be a path inU ∩V from
x0 to f(ai). As U ∩ V is path connected, the paths gi−1 and gi exist. For consistency,
de ine g0 and gm to be the constant paths x0.

If fi is a path in V , set f ′
i = (gi−1fi)gi. Then f ′

i is a loop in V based at x0.
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aaaaaa

By hypothesis, j∗([fi]) = [ε] inX , so (gi−1fi)gi ∼ ex0 and fi ∼ gi−1gi. De ine

hi =

{
gi−1gi when fi lies in V ,
fi when fi lies in U .

Then fi ∼ hi for all i. By the preceding lemma, f ∼ h1(h2(· · ·hm) · · · ), which is a
loop in U . But loops in U are homotopic to the constant loop ex0 inX , so f ∼ ex0 in
X and π(X, x0) is trivial as f was arbitrary. ■

We have an easy corollary.

aaaaaa Corollary 284 If X = U ∪ V , where U and V are open and simply connected and
U ∩ V is path-connected, thenX is simply connected.

Using the special Seifert-VanKampen theorem,we can easily compute the fundamental group
of Sn, for n ≥ 2.

aaaaaa

Example: if n ≥ 2, π(Sn) ≃ {ε}. Indeed, consider Sn as the unit sphere in Rn+1,
and let N and S be the north and south pole of Sn, respectively. Let U = Sn \ {N}
and V = Sn \ {S}.

Then U and V are both homeomorphic to Rn under stereographic projec-
tion, so U and V are simply connected as Rn is simply connected for n ≥ 2. Clearly
Sn = U ∪ V , where U and V are open. But U ∩ V is path connected, as it is
homeomorphic to Sn−1 × (−1, 1), which is path-connected when n ≥ 2. By the
preceding corollary, Sn is simply connected for n ≥ 2. □

AsRn \ {0} and Sn have the same fundamental group (the proof is similar to that of Theorem
277), then π(Rn+1 \ {0}) is trivial for n ≥ 2.

aaaaaa Corollary 285
R2 is not homeomorphic to Rn when n ≥ 3.

20.5 Solved Problems
1. Suppose that f, g : I → X are paths in a spaceX such that f(t) = g(t) for t ∈ [a, 1]. If

the paths fa, ga : I → X de ined by fa(t) = f(at) and ga(t) = g(at) are path homotopic,
show that f and g are path homotopic.

Proof: irst, note that if a = 0, the result is trivially true. So suppose a ̸= 0. Let
x0 = f(0), xa = f(a) and x1 = f(1). If fa and ga are path homotopic, they both
start at fa(0) = f(0) = x0, and they both end at fa(1) = f(a) = xa. Then, there is a
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continuous functionH1 : I × I → X such that

H1(t, 0) = fa(t) = f(at)

H1(t, 1) = ga(t) = g(at)

H1(0, s) = x0

H1(1, s) = xa.

LetH2 : I × I → X be de ined byH2(t, s) = f(a+ t(1− a)). ThenH2 is continuous
since f is a path, and

H2(t, 0) = f(a+ t(1− a))
H2(t, 1) = g(a+ t(1− a))
H2(0, s) = xa

H2(1, s) = x1.

This makesH2 into a path homotopy between f and g from xa to x1. Now de ine the
mapH : I × I → X by

H(t, s) =

{
H1

(
t
a , s
)

for t ∈ [0, a],

H2

(
t−a
1−a , s

)
for t ∈ [a, 1].

Then H is continuous by the pasting lemma, as H1 and H2 are continuous and at
t = 1,H1(1, s) = H2(0, s) = xa. Furthermore

H(t, 0) =

{
H1

(
t
a , 0
)

for t ∈ [0, a],

H2

(
t−a
1−a , 0

)
for t ∈ [a, 1]

=

{
fa(t/a) for t ∈ [0, a],

f(a+ t−a
1−a(1− a)) for t ∈ [a, 1]

=

{
f(t) for t ∈ [0, a],

f(t) for t ∈ [a, 1]

= f(t),

H(t, 1) =

{
H1

(
t
a , 1
)

for t ∈ [0, a],

H2

(
t−a
1−a , 1

)
for t ∈ [a, 1]

=

{
ga(t/a) for t ∈ [0, a],

g(a+ t−a
1−a(1− a)) for t ∈ [a, 1]

=

{
g(t) for t ∈ [0, a],

g(t) for t ∈ [a, 1]

= g(t),

H(0, s) = H1(0, s) = x0,

H(1, s) = H2(1, s) = x1.

HenceH is a path homotopy from f to g between x0 and x1. ■
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2. Let x0 and x1 be two given points of the path-connected spaceX . Show that π1(X, x0)
is abelian if and only if for every pair α and β of paths from x0 to x1, the induced iso-
morphisms α̂ and β̂ are equal.

Proof: supposeπ1(X,x0) is abelian, and letα andβ be twopaths fromx0 tox1. Then
βα is a loop at x0, so [βα] ∈ π1(X,x0) and

[βα][f ] = [f ][βα]

for all [f ] ∈ π1(X,x0). Then

[f ] = [αβ][f ][βα]

= [α]β̂([f ])[α]

= α̂(β̂([f ])).

Hence α̂([f ]) = β̂([f ]) for all [f ] ∈ π1(X,x0), so α̂ = β̂.

Conversely, suppose the induced isomorphisms of any two paths in X from x0 to
x1 are equal. Let α be such a path, and let f be a loop at x0. Then fα is a path from
x0 to x1 and α̂ = f̂α. Let [g] ∈ π1(X,x0). Then

[α][g][α] = α̂([g]) = f̂α([g]) = [fα][g][fα] = [α][f ][g][f ][α],

thus [g] = [f ][g][f ] for all loops f and g at x0, and π1(X,x0) is abelian. ■

3. Suppose that X̃ is a two-sheeted covering space ofX , that is for each x ∈ X , there are
two values x̃1 and x̃2 with p−1(x) = {x̃1, x̃2}. Prove that the map ϕ : X̃ → X̃ , which
interchanges the values x̃1 and x̃2 is a homeomorphism.

Proof: the map ϕ is clearly a bijection and ϕ2 = id, so ϕ is its own inverse. Further-
more, ϕ(z) ̸= z for all z ∈ X̃ . To show ϕ is a homeomorphism, it is then suf icient to
show that ϕ is a continuous map. To do so, we ind a collection {Zα} of open sets in
X̃ such that∪α∈A Zα = X̃ and such that ϕ|Zα: Zα → X̃ is continuous for all α ∈ A.
Then ϕwill be a continuous map.

First note that

X̃
p - X

X̃

ϕ

6

p

-

is a commutative diagram, since for every x ∈ X , there exists x̃ ∈ X̃ such that
p−1(x) = {x̃, ϕ(x̃)}. Thus pϕ = p. As (X̃, p) is a two-sheeted covering of X there
exists, for every x ∈ X , a neighbourhood Vx of x inX and two disjoint open sets Ux

andWx in X̃ such that p−1(Vx) = Ux ∪Wx and such that the mappings

p|Ux: Ux → Vx and p|Wx:Wx → Vx
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are homeomorphisms.¹ Then Ux is homeomorphic to Wx. We show that ϕ(Ux) =
Wx, and so that ϕ(Ux) is homeomorphic to Ux. Suppose however that ϕ(Ux) ̸= Wx,
that is, suppose there is y ∈ Ux such that ϕ(y) ̸∈Wx. Then

p(y) = p(ϕ(y)) ∈ Vx,

and so ϕ(y) ∈ p−1(Vx) ∪ Ux, since ϕ(x) ̸=Wx. But this would mean that p|Ux: Ux →
Vx is not injective as y ̸= ϕ(y) and p(y) = p(ϕ(y)). Thenϕ(Ux) ⊆Wx, and soϕ(Ux) =
Wx since Ux andWx have the same cardinality and since ϕ is a bijection. Thus ϕ|Ux:
Ux →Wx is a homeomorphism andϕ|Ux: Ux → X̃ is continuous. Similarly, ϕ(Wx) =
Ux and ϕ|Wx:Wx → X̃ is continuous. But

X̃ = p−1(X) = p−1

(∪
x∈X

Vx

)
=
∪
x∈X

p−1(Vx) =
∪
x∈X

(Ux ∪Wx),

whereUx andWx are open in X̃ . By the argument in the irst paragraph, ϕ is a home-
omorphism. ■

4. If (X̃, p) and (Ỹ , q) are covering spaces ofX andY respectively, show that (X̃×Ỹ , (p, q))
is a covering space ofX × Y .

Proof: let h = (p, q). We need to show that h is a continuous surjective map and
that for every (x, y) ∈ X × Y , there exists a neighbourhood V of (x, y) such that
h−1(V ) is a disjoint union of open sets in X̃ × Ỹ and that each of these open sets is
homeomorphic to V via h.
h is continuous Let U1 × U2 be a basic neighbourhood ofX × Y . Then

h−1(U1 × U2) = {(x̃, ỹ) ∈ X̃ × Ỹ : (p(x̃), q(ỹ)) ∈ U1 × U2}
= p−1(U1)× q−1(U2).

But p and q are continuous, so p−1(U1) × q−1(U2) is a basic neighbourhood of
X̃ × Ỹ , so h is continuous.

h is surjective Let (x, y) ∈ X × Y . As p and q are surjective, there exist x̃ ∈ X̃ and
ỹ ∈ Ỹ such that p(x̃) = x and q(ỹ) = y. Then we have h(x̃, ỹ) = (x, y) and h is
surjective.

h is a covering map If (x, y) ∈ X × Y , as p and q are covering maps, there exist
neighbourhoods Vx of x inX and Vy of y in Y that are evenly covered by p and
q respectively. That is p−1(Vx) is a disjoint union of open sets Ṽx in X̃ , each
homeomorphic to Vx via p, and q−1(Vy) is a disjoint union of open sets Ṽy in Ỹ ,
each homeomorphic to Vy via q. Set V = Vx × Vy . Then (x, y) ∈ V and

h−1(V ) = p−1(Vx)× q−1(Vy) =
(∪

Ṽx

)
×
(∪

Ṽy

)
=
∪

(Ṽx × Ṽy),

¹Strictly speaking, p−1(V ) should be the disjoint union of an arbitrary collection of homeomorphic open
sets in X̃ . But there cannot be more than two of them, since this would violate the condition that (X̃, p) be a
two-sheet covering ofX . Similarly, there cannot be less than two of them, since p has to be a homeomorphism
when restricted to p−1(V ).
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that is h−1(V ) is a disjoint union of open sets Ṽx × Ṽy . But

h(Ṽx × Ṽy) = p(Ṽx)× q(Ṽy) ≃ Vx × Vy,

so Ṽx × Ṽy is homeomorphic to Vx × Vy via h.
Then (X̃ × Ỹ , h) is a covering space ofX × Y . ■

5. a) For X as in the previous problem, if (X, p′) is an n-sheeted covering space of X1,
show that (X̃, p′p) is a covering space ofX1.

b) If X is either i. Hausdorff or ii. completely regular, show that X̃ has the same
property.

Proof:
a) That p′p is a continuous surjective mapping is clear, as it is the composition of

two such mappings. It remains only to show that it is a covering map ofX .

Let x ∈ X1. We show that we can ind an open neighbourhood V of x in X1

evenly covered by p′. We then show that the disjoint open sets inX making up
(p′)−1(V ), each of which is homeomorphic to V via p′, are themselves evenly
covered by p. Then there is a disjoint union of open sets in X̃ making up

p−1
(
(p′)−1(V )

)
= (p′p)−1(V ),

each of which is homeomorphic to V via p′p. It is going to be messy, so let’s get
down to it methodically.

Let x ∈ X1. Then (p′)−1(x) = {y1, . . . , yn} in X , as (X, p′) is an n-sheeted
covering ofX1. First, the dramatis personæ.

Vx is a neighbourhood of x inX1 evenly covered by p′;
(p′)−1(Vx) =

⊔n
j=1Wj , where ⊔ denotes a disjoint union,Wj is open inX

and homeomorphic to Vx via p′ and yj ∈Wj for all 1 ≤ j ≤ n.
For 1 ≤ i ≤ n, Ui is a neighbourhood of yi inX evenly covered by p;
For 1 ≤ i ≤ n, p−1(Ui) =

⊔
α Z(i)α, where Z(i)α is open in X̃ and homeo-

morphic to Ui via p for all α;
V = (

∩n
i=1 p

′(Ui) ∩ Vx);
For 1 ≤ j ≤ n,Kj =

(
p′|Wj

)−1
(V ) ⊆Wj and yj ∈ Kj ;

For 1 ≤ j ≤ n,Mj = Kj ∩ Uj and yj ∈Mj ;
For 1 ≤ j ≤ n and for α,N(j)α =

(
p|Z(j)α

)−1
(Mj) ⊆ Z(j)α.

Since p′ is a covering map, it is an open mapping. Then V is an open subset of
X contained in Vx, since it is a inite intersection of open sets inX . As

p′|Wj:Wj → Vx

is a homeomorphism,Kj is homeomorphic to V via p′ for 1 ≤ j ≤ n. Note that
Kj is open for 1 ≤ j ≤ n since V is open and that theKj are disjoint since the
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Wj are disjoint. ThenMj is open,Mj ⊆ Uj for 1 ≤ j ≤ n. Note further that the
Mj are disjoint since theKj are disjoint. As

p|Z(j)α: Z(j)α → Uj

is a homeomorphism,Mj is homeomorphic toN(j)α via p for α and 1 ≤ j ≤ n.
Note thatN(j)α is open for 1 ≤ j ≤ n and α sinceMj is open for 1 ≤ j ≤ n and
that theN(j)α are disjoint since the Z(j)α are disjoint.

Then N(j)α is homeomorphic to, say, the open subset p′(M1) ⊆ Vx via p′p for
1 ≤ j ≤ n. But p′(M1) is a neighbourhood of x inX1 so that p′p evenly covers
p′(M1) at x. Hence (X̃, p′p) is a covering space ofX1.

b) i. Let x̃ ̸= ỹ ∈ X̃ and set x = p(x̃), y = p(ỹ). Suppose Vx and Vy are neigh-
bourhoods of x and y respectively, who are evenly covered by p. LetWx and
Wy be the (open) slices of p−1(Vx) and p−1(Vy) containing x̃ and ỹ respec-
tively.
A. If x = y,Wx andWy meet p−1(x) = p−1(y) in exactly one point respec-

tively, namely x̃ and ỹ. Hence ỹ ̸∈Wx and x̃ ̸∈Wy .
B. If x ̸= y, let Ux and Uy be the Hausdorff neighbourhoods of x and y in

X . Then Ux ∩ Vx is a neighbourhood of x in X disjoint from the neigh-
bourhood Uy ∩ Vy of y inX . Furthermore,Ox = (p|Wx)

−1(Ux ∩ Vx) and
Oy = (p|Wy)

−1(Uy ∩ Vy) are open in X̃ , as p is a covering map. Then
x̃ ∈ Ox, ỹ ∈ Oy andOx ∩Oy = ∅ as

Ux ∩ Vx ∩ Uy ∩ Vy = ∅.

In both cases, X̃ is Hausdorff.
ii. Suppose X̃ is non-empty and completely regular. If W̃ is a neighbourhood

of x̃ ∈ X̃ , letU be a neighbourhood of p(x̃) evenly covered by p such that at
least one of the slices, sayM , of p−1(U) lies in W̃ .

As X is completely regular, there is a neighbourhood V of p(x̃) such that
V ⊆ U . Take Z = p−1(V ) ∩M . Then Z is homeomorphic to the slice of
p−1(V ) inM . By complete regularity of X , there is a continuous function
f : X → [0, 1] such that f(p(x̃)) = 1 and f(X − V ) = {0}.

De ine g1 : Z → [0, 1] by g1 = fp and g2 : X̃−Z → [0, 1] to be the constant
zero-function. As p(X̃ − Z) ⊆ X − V , g1 and g2 are both constantly zero
on Z ∩ X̃ − Z . Then, by the pasting lemma, g1 and g2 de ine a continuous
function g from Z ∪ (X̃ − Z) = X̃ to [0, 1].

By construction, g(x̃) = f(p(x̃)) = 1 and g(X̃ − W̃ ) = {0} since y ̸∈ W̃
implies y ̸∈ Z . Hence X̃ is completely regular. ■
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20.6. EXERCISES

20.6 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. Let h : I → I be a continuous such that h(0) = 0 and h(1) = 1. For any path f : I → X ,
prove that f and fh are path homotopic.

3. For a product spaceX =
∏
Xα, let f : I → X be a path, and de ine fα = παf for all α.

Prove that

a) two paths f and g inX are path homotopic if and only if fα ∼ gα for every α;
b) if f(1) = g(0) for paths f, g : I → X , and h = fg, then hα = fαgα for every α.

4. Prove that the fundamental group of X is isomorphic to the direct product of the fun-
damental groups π(Xα, xα).

5. Let T = S1 × S1 denote the torus. For z0 ∈ S1, show that S1 × {z0} is a retract of T but
not a strong deformation retract.

6. Show that φ : X → Y induces a homomorphism of path classes φ∗, as in the discussion
on p. 461.

7. Show that R3 and R3 \ {0} are homeomorphic.

8. Prove Lemma 282.

9. Show that Rn \ {0} and Sn have the same fundamental group.
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