
Chapter 21

Borel-Lebesgue Integration

In this chapter, we present an extension of the theory of integration that
overcomes some of the issues associated with Riemann integration, and
show how to integrate multi-variate functions in this new framework.

One of the problems associatedwith Riemann integration (see Chapters 4 and 5) is that some
functions that should be integrable in any reasonable theory of integration fail to be so, for a
variety of reasons.

aaaaaa

Examples

1. Consider the Dirichlet function χQ : R→ R de ined by

χQ(x) =

{
0 x ∈ R \Q
1 x ∈ Q

We have seen in Chapter 4 that this function is not Riemann-integrable over
any interval [a, b], but…it shouldbe, right? R\Q is somuch “bigger” thanQ that
the irst branch should dominate and give us an integral of 0. Unfortunately, it
doesn’t.

2. Consider the function f : [0, 1]→ R de ined by

f(x) =

{
1√
x

x ∈ (0, 1]

1 x = 0

It is not Riemann-integrable on [0, 1] as it is not bounded on [0, 1], but it is
Riemann-integrable of [a, 1] for all 1 ≥ a > 0 since it is continuous on [a, 1] for
all 1 ≥ a > 0.
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Furthermore ∫ 1

a

f dx =
[
2
√
x
]1
a
= 2(1−

√
a).

As a→ 0+, we see that ∫ 1

a

f dx→ 2(1−
√
0) = 2,

and we would at the very least consider an extension of Riemann integration
for which

∫ 1

0
f dx = 2.

3. The function g : [0,∞)→ R de ined by g(x) = e−x is not Riemann-integrable
on [0,∞) since the domain of integration cannot even be partitioned. But it is
clearly Riemann-integrable on [0, n], n > 0, since it is continuous on [0, n]; in
fact, ∫ n

0

e−x dx = [−e−x]n0 = 1− e−n.

Since
lim
n→∞

∫ n

0

e−x dx = lim
n→∞

(1− e−n) = 1− 0 = 1;

any extension of Riemann integration should at least give us
∫∞
0
g = 1. □

In this chapter, we will introduce an extension of the Riemann integral in which all of these
examples will work out as we think they should. The Lebesgue-Borel approach to integra-
tion views the problem fromadifferent example:¹ fundamentally, instead of building vertical
boxes under the graph of f , we stack horizontal boxes under it. This conceptual shift has far-
ranging consequences.²

We will also extend our de inition of the integral to multivariate domains (which is to say,
the functions we consider will be functions of Rn to R). To help illustrate the concepts, we
will often work with functions f : A ⊆ R2 → R+, where f is bounded (as a function), as is
A (as a set). By analogy to the 1-dimensional case, we will want to de ine

I =

∫∫
A

f(x, y) dx dy

so that
I = Vol

(
{(x, y, t) | (x, y) ∈ A, 0 ≤ t ≤ f(x, y)}

)
.

¹There are other approaches: improper Riemann integration and generalized Riemann integration,
say, but we will not be touching on those.

²It does not resolve all dif iculties, however: there are differentiable functions F : [a, b] → R for which F ′

is not Lebesgue-integrable and some important improper integrals do not exist, for instance.
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CHAPTER 21. BOREL-LEBESGUE INTEGRATION

21.1 Borel Sets and Borel Functions
Generally speaking, theBorel subsets ofRn are the σ−algebra of subsets for whichwe know
how to compute the length, and/or the surface area, and/or the volume, and so on.³

Formally, a σ−algebraS of Rn is a collection of subsets of Rn such that

1. A1, A2, . . . , An, . . . ∈ S =⇒
∪

n≥1An ∈ S, and

2. A ∈ S =⇒ Ac = Rn\A ∈ S.

Consequently (see exercises),

1. A1, A2, . . . , An, . . . ∈ S =⇒
∩

n≥1An ∈ S;

2. A,B ∈ S =⇒ A ∩Bc ∈ S, and

3. ∅,Rn ∈ S.

aaaaaa

Examples

1. The power set ℘(Rn) is the largest σ−algebra of Rn, since the union of any
collection subsets of Rn is itself a subset of Rn, and since the complement of
any subset of Rn is also a subset of Rn.

2. The standard topology τ = {U ⊆ Rn | U ⊆O Rn} is not a σ−algebra of Rn

since the complement of the open ball of radius 1 centered at the origin, say,
is not open in Rn (see Part IV).

3. S0(Rn) = {Rn,∅} is the smallest σ−algebra of Rn. □

Note thatS of Rn is a subset of ℘(Rn).

aaaaaa

Proposition 286
If (Si)i≥1 is a collection of σ−algebras of Rn thenS =

∩
i≥1Si is a σ−algebra of Rn.

Proof:

1. Suppose A1, . . . , An . . . ∈ S.Then, A1, . . . , An, . . . ∈ Si ∀i. But, Si is a σ−
algebra for all i so that∪n≥1An ∈ Si ∀i. Then,

∪
n≥1An ∈

∩
i≥1Si = S.

2. Suppose A ∈ S then we have that A ∈ Si ∀ i. But Si is a σ− algebra so that
Ac ∈ Si ∀ i =⇒ Ac ∈

∩
i≥1Si = S. ■

³We only present a restricted version of the Borel-Lebesgue theory of integration; the full version is built on
measurable subsets of Rn, where themeasure generalizes the notions of of length, surface area, volume, etc.
to “not-as-nice” geometric subsets of Rn (a feature of the theory is that not every subset of Rn is measurable).
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21.1. BOREL SETS AND BOREL FUNCTIONS

The standard topology is not a σ−algebra of Rn, but since τ ∈ ℘(Rn), there is at least one
σ-algebra containing the open sets of Rn. The Borel σ−algebra of Rn is the intersection of
all σ−algebras containing the open sets of Rn, we denote it by:

B = B(Rn) =
∩

τ⊆S∈℘(Rn)

S.

An element of B is called a Borel set of Rn.

Just about every subset of Rn that we encounter in practice is a Borel set:

every open subset of Rn is a Borel set of Rn;
every closed subset of Rn is a Borel set of Rn;
any set built via unions, intersections, and complements with open sets and/or closed
sets is a Borel set of Rn.

aaaaaa

Theorem 287
Let B = B(R2). There exists a unique function Area : B → [0,∞] such that:

1. Area(A) ≥ 0, ∀A ∈ B

2. if A1, . . . , An, . . . ∈ B are pairwise disjoint then:

Area

(∪
n≥1

An

)
=
∑
n≥1

Area(An)

3. Area([a, a′]× [b, b′]) = (a′ − a)(b′ − b).

The area functionwhose existence is guaranteedby theorem287 corresponds to our intuition
of area inR2, but such a function cannot be de ined on the entirety of ℘(R2) (see the Banach-
Tarski paradox).⁴

aaaaaa

Theorem 288
Let A,B ∈ B(R2) such that A ⊆ B, then Area(A) ≤ Area(B).

Proof: by de inition B = (A ∩ B) ∪ (Ac ∩ B) = A ∪ (B\Ac) where B\Ac ∈ B(Rn).
Hence, we have

Area(B) = Area(A) + Area(B\Ac) ≥ Area(A),

which completes the proof. ■

We can extend Theorem 287.2 to not necessarily pairwise disjoint Borel sets.

⁴Proving the existence of the function and of a set whose area cannot be measured is rather dif icult and is
properly tackled in advanced measure theory courses.
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CHAPTER 21. BOREL-LEBESGUE INTEGRATION

aaaaaa

Theorem 289
Let A1, A2, . . . , An, . . . ∈ B(R2). Then Area(

∪
n≥1An) ≤

∑
n≥1 Area(An).

Proof: construct the sequenceA′
n ∈ B(R2) as follows:

1. A′
1 = A1;

2. A′
2 = A2 ∩ Ac

1;

3. A′
3 = A3 ∩ (A1 ∪ A2)

c, etc.

The process is illustrated below onA1, A2, A3.

ThenA′
1, . . . , A

′
n, . . . ∈ B(R2) are pairwise disjoint and

A1 ∪ A2 ∪ . . . ∪ An = A′
1 ∪ A′

2 ∪ . . . ∪ A′
n

for all n ≥ 1. Since A′
n ⊆ An ∀n ≥ 1. Then

Area
(∪

n≥1

An

)
= Area

(∪
n≥1

A′
n

)
=
∑
n≥1

Area(A′
n) ≤

∑
n≥1

Area(An),

which completes the proof. ■

We say thatB ⊆ R2 has a (2D)measure 0 if ∀ε > 0, there is a cover

{R1, R2, . . . , Rn, . . .}

ofB by rectanglesRn = [an, a
′
n]× [bn, b

′
n]with an < a′n and bn < b′n for all n ≥ 1, such that∑

n≥1

Area(Rn) < ε.
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21.1. BOREL SETS AND BOREL FUNCTIONS

aaaaaa

Examples

1. Show thatB = R× {b} has a 2Dmeasure 0 for any choice of b ∈ R.

Proof: let ε > 0 and set

Rn = [−n, n]×
[
b− ε

2n2n+2
, b+

ε

2n2n+2

]
.

Then Area(Rn) = 2n · ε
n2n+2 = ε

2n+1 for all n ∈ N, andB ⊆ ∪n≥1Rn, so that

0 ≤ Area(B) ≤
∑
n≥1

(Rn) = ε
∑
n≥1

1

2n+1
< ε.

As ε > 0 is arbitrary, Area(B) = 0. ■

2. S1 = {(x, y) | x2 + y2 = 1} has 2Dmeasure 0.

3. Show that Area((a, a′)× (b, b′)) = Area([a, a′]× [b, b′]).

Proof: write

[a, a′]×[b, b′] = (a, a′)×(b, b′)⊔{a}×[b, b′]⊔{a′}×[b, b′]⊔[a, a′]×{b}⊔[a, a′]×{b′}.

Each of the components [∗, ∗] × {∗} are subsets of R × {∗}, so that they have
2D area 0 (and similarly for the components {∗} × [∗, ∗]). Thus

Area([a, a′]×[b, b′]) ≤ Area((a, a′)×(b, b′))+0+0+0+0 = Area((a, a′)×(b, b′)).

But Area((a, a′)× (b, b′)) ≤ Area([a, a′]× [b, b′]) since (a, a′)× (b, b′) ⊆ [a, a′]×
[b, b′], so Area((a, a′)× (b, b′)) = Area([a, a′]× [b, b′]). ■

4. Show that every inite subsetB ⊆ R2 has 2Dmeasure 0.

Proof: letB = {(x1, y1), . . . (xn, yn)} and ε > 0. Pick:

a closed rectangleR1 with Area(R1) =
ε
2
and (x1, y1) ∈ R1;

a closed rectangleR2 with Area(R2) =
ε
22

and (x2, y2) ∈ R2;
. . .

a closed rectangleRn with Area(Rn) =
ε
2n

and (xn, yn) ∈ Rn;
form > n, any closed rectangle with Area(Rm) =

ε
2m+1 will do.

ThenB ⊆ ∪m≥1Rm and∑
m≥1

Area(Rm) =
∑
m≥1

ε

2m+1
< ε,

which completes the proof. ■
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CHAPTER 21. BOREL-LEBESGUE INTEGRATION

aaaaaa

5. Every countable subset of R2 has 2Dmeasure 0.

6. Let φ : [0, 1]→ R2 be continuous and such that there existsM > 0with

∥φ(s)− φ(t)∥∞ ≤M |s− t| ∀s, t ∈ [0, 1].

Then φ([0, 1]) has 2Dmeasure 0.

Proof: recall that ∥(x1, x2)∥∞ = max{|x1|, |x2|}. For allN ≥ 1, let

0 = t0 < t1 < · · · < tN = 1,

with ti = i
N
. Let si, s′i ∈ [ti−1, ti]. By hypothesis,

∥φ(si)− φ(s′i)∥∞ ≤M |si − s′i| ≤M |ti−1 − ti| ≤M

∣∣∣∣i− 1

N
− i

N

∣∣∣∣ ≤ M

N
.

Thus, there exists a square Ii ⊆ R2 whose sides have length 2M
N

such that
φ([ti−1, ti]) ⊆ Ii. By construction, for all 1 ≤ i ≤ N we have

Area(Ii) =
4M2

N2
and

N∑
i=1

Area(Ii) =
4M2

N
.

Let ε > 0 and select N > 4M2

ε
. Going through the above procedure yields a

sequence of rectangles Ri = Ii for 1 ≤ i ≤ N ; for n > N , set Rn = {∗} ⊆ R2,
a singleton square of area 0. Then

φ([0, 1]) ⊆
∪
i=1

Ri =⇒
∑
i≥1

Area(Ri) =
4M2

N
< ε,

which completes the proof. ■

In the rest of this section, we introduce the class of functions f : R2 → R for which we may
expect that ∫∫

R2

f(x, y) dx dy ∈ R

exists.⁵ As we see below, we cannot untangle the function rule from its domain. IfA ∈ B(R2),
let the characteristic function χA : R2 → R be de ined by

χA(x, y) =

{
0 if (x, y) ̸∈ A
1 if (x, y) ∈ A

⁵The set R = R ∪ {∞} is the one-point compacti ication of R (see Section 17.4).
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21.1. BOREL SETS AND BOREL FUNCTIONS

Characteristic functions are the building blocks of Borel-Lebesgue integrable functions;
their integral is easy to obtain. Let k ∈ R; if f : R2 → R is de ined by f(x, y) = k · χA(x, y),
then the Borel-Lebesgue integral of f over R2 is∫∫

R2

f dx dy = k · Area(A) ∈ R.

A function f : R2 → R is simple if ∃A1, . . . , An ∈ B(R2) and a1, . . . , an ∈ R such that
R2 = A1 ⊔ A2 ⊔ · · · ⊔ An and f |Ai

≡ ai;

in that case, f =
∑n

i=1 aiχAi
.

aaaaaa

Examples (S F )
1. If f(x, y) = k for all (x, y) ∈ R2, then f is a simple function.

2. If f =
∑n

i=1 aiχAi
, then |f | =∑n

i=1 |ai|χAi
is a simple function.

3. If f =
∑n

i=1 aiχAi
and g =∑m

j=1 bjχBj
are simple functions, then

a) R =
⊔n

i=1

⊔m
j=1Ai ∩Bj ;

b) f + g =
∑n

i=1

∑m
j=1(ai + bj)χAi∩Bj

is a simple function, and
c) fg =∑n

i=1

∑m
j=1 ai bj χAi∩Bj

is a simple function. □

A Borel function is a function f : R2 → R for which
Ef

d = {(x, y) | f(x, y) ≤ d} ∈ B(R2), ∀d ∈ R.
We illustrate the concept below, for a function over R.

Since every subset of R2 we encounter in practice is a Borel set, every function f : R2 → R
we encounter in practice is a Borel function.⁶

⁶It is in fact rather dif icult to construct a non-Borel function, although they do exist.
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aaaaaa

Proposition 289
Let f, g : R2 → R be Borel functions. Then, |f |, f + g, fg are also Borel functions.

Proof: we prove the result only for |f |; the proof for the other two functions is left
as an exercise. Write z = (x, y) ∈ R2. Then, we want to show

E
|f |
d = {z ∈ R2 | |f(z)| ≤ d} ∈ B(R2 ∀d ∈ R

1. if d < 0, then E|f |
d = ∅ ∈ B(R2);

2. if d ≥ 0, then

E
|f |
d = {z | −d ≤ f(z) ≤ d} = {z | −d ≤ f(z)} ∩ {z | f(z) ≤ d}

= {z | −d ≤ f(z)} ∩ Ef
d = {z | f(z) < −d}c ∩ Ef

d

=

(∪
n≥1

Ef

−d− 1
n

)c

∩ Ef
d .

But f is a Borel function, soEf
d , E

f

−d− 1
n

∈ B(R2) for all n ≥ 1. This implies that∪
n≥1

Ef

−d− 1
n

∈ B(R2),

as B(R2) is a σ−algebra, and so that

R2 \

(∪
n≥1

Ef

−d− 1
n

)
∈ B(R2),

for the same reason; henceE|f |
d ∈ B(R2). ■

We can approximate positive-valued Borel functions with simple functions.

aaaaaa

Theorem 290
Let f : R2 → [0,∞] be a Borel function; then there is a sequence (fn) of simple func-
tions such that:

1. ∀z ∈ R2, fn(z)→ f(z), and

2. 0 ≤ fn ≤ f , for all n ≥ 1.
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aaaaaa

Proof: we provide a proof for f : R → [0,∞]; the proof for functions on Rk is
identical, but the simpler case is easier to illustrate.

We build the sequence (fn) as follows.

1. For f1, write

R =

{
x

∣∣∣∣ 0 ≤ f(x) <
1

21

}
︸ ︷︷ ︸

A1
1

⊔
{
x

∣∣∣∣ 12 ≤ f(x) < 1

}
︸ ︷︷ ︸

A1
2

⊔{x | f(x) ≥ 1}︸ ︷︷ ︸
A1

,

and set
f1 = 0 · χA1

1
+

1

2
χA1

2
+ 1 · χA1 , A1

1, A
1
2, A

1 ∈ B(R2).

2. For f2,write

R =


8⊔

i=1

{
x

∣∣∣∣ i− 1

22
≤ f(x) <

i

22

}
︸ ︷︷ ︸

A2
i

 ⊔ {x | f(x) ≥ 2}︸ ︷︷ ︸
A2

=

(
8⊔

i=1

A2
i

)
∪ A2,

and set
f2 =

8∑
i=1

i− 1

22
χA2

i
+ 2χA2 .

· · ·

n. For fn, writeAn = {x | f(x) ≥ n} and

An
i =

{
x

∣∣∣∣ i− 1

2n
≤ f(x) <

i

2n

}
, for 1 ≤ i ≤ n · 2n.

We then have R =
(⊔n·2n

i=1 A
n
i

)
⊔ An. Set fn =

∑n·2n
i=1

i−1
2n
χAn

i
+ n · χAn .

490 Analysis and Topology Course Notes



CHAPTER 21. BOREL-LEBESGUE INTEGRATION

aaaaaa

By construction, each fn is simple and

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · · ≤ f(x) ∀x ∈ R.

1. If f(x) =∞, then x ∈ An for all n ≥ 1,whence fn(x) = n→∞ = f(x)

2. If f(x) <∞, then for n > f(x), there exists 1 ≤ i ≤ u ≤ n · 2n such that

i− 1

2n
≤ f(x) <

i

2n
.

In that case x ∈ An
i and

|f(x)− fn(x)| =
∣∣∣∣f(x)− i− 1

2n

∣∣∣∣ < 1

2n
→ 0,

which completes the proof. ■

21.2 Integral of Simple Functions
Let f =

∑k
i=1 αiχAi

be a simple function R2 → [0,∞], that is, αi ∈ [0,∞] for 1 ≤ i ≤ k and
R2 = A1 ⊔ · · · ⊔ Ak. Since simple functions are inite linear combinations of characteristic
functions, we de ine the integral of a simple function as∫∫

R2

f(x, y) dx dy =
k∑

i=1

αi · Area(Ai) ∈ [0,∞]

(in the Borel-Lebesgue theory of integration, we have 0 ·(+∞) = 0, by convention). But there
might be multiple ways to write a simple function as a sum of characteristic functions: if

f =
k∑

i=1

αiχAi
=

m∑
j=1

βjχBj
,

is the integral the same in both cases? For each 1 ≤ i ≤ k, let Ji = {j | βj = αi}. Then
m∑
j=1

βj · Area(Bj) =
k∑

i=1

∑
j∈Ji

βj · Area(Bj) =
k∑

i=1

αi

∑
j∈Ji

Area(Bj)

=
k∑

i=1

αi · Area
(⊔

j∈Ji

Bj

)
=

k∑
i=1

αi · Area(Ai).

In what follows, we denote the set of simple functions onRn by ζ(n) and the set of positive
simple functions on Rn by ζ(n)+ .
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aaaaaa

Lemma 291
Let f, g ∈ ζ(2)+ , α ≥ 0. Then:

1.
∫∫
R2 αf dx dy = α

∫∫
R2 f dx dy;

2.
∫∫
R2(f + g) dx dy =

∫∫
R2 f dx dy +

∫∫
R2 g dx dy, and

3. if f ≤ g on R2, then
∫∫
R2 f dx dy ≤

∫∫
R2 g dx dy.

Proof: note that the results hold over general multi-dimensional spaces, but we re-
strict the demonstration to R2.

1. The irst statement is clear; its proof is left as an exercise.

2. If f =
∑n

i=1 αiχAi
and g =∑m

j=1 βjχBj
then f + g =

∑
i,j

(αi + βj)χAi∩Bj
and

∫∫
R2

(f + g) dx dy =
∑
i,j

(αi + βj) · Area(Ai ∩Bj)

=
∑
i,j

αi · Area(Ai ∩Bj) +
∑
i,j

βj · Area(Ai ∩Bj)

=
n∑

i=1

αi

m∑
j=1

Area(Ai ∩Bj) +
m∑
j=1

βj

n∑
i=1

Area(Ai ∩Bj)

=
n∑

i=1

αi · Area
[
Ai ∩

(
m⊔
j=1

Bj

)]
+

m∑
j=1

βj · Area
[
Bj ∩

(
n⊔

i=1

Ai

)]

=
n∑

i=1

αi · Area(Ai) +
m∑
j=1

βj · Area(Bj) =

∫∫
R2

f dx dy +
∫∫

R2

g dx dy

3. If f ≤ g on R2, then g − f ∈ ζ(2)+ and∫∫
R2

=

∫∫
R2

[f + (g − f)] dx dy =

∫∫
R2

f dx dy +
∫∫

R2

(g − f) dx dy︸ ︷︷ ︸
≥ 0

≥
∫∫

R2

f dx dy,

since g − f ≥ 0. ■

The irst two properties of Lemma 291 indicate that the integral of a simple function behaves
as a linear operator on the set of positive simple functions on Rn.⁷

⁷We cannot say “over the vector space of positive simple functions” since ζ(n)+ is not a vector space overR...
but ζ(n) is, however.
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Furthermore, if f = χA, A ∈ B(R2), then
∫∫

f dx dy = Area(A).⁸

As mentioned in the proof of Lemma 291, we can generalize the notion of the integral of pos-
itive simple functions directly to higher dimensions. For instance, if f : R3 → R ∈ ζ(3)+ , then∫∫∫

R3

f(x, y, z) dx dy dz =
∫∫∫

R3

ℓ∑
k=1

γkχAk
dx dy dz =

ℓ∑
k=1

γk · Vol(Ak),

and so on with n ≥ 3: ∫
· · ·
∫
f(x1, . . . , xn) dx1 . . . dxn

if f : Rn → R is in ζ(n)+ .

21.3 Integral of Positive Borel Functions
Of course, the overwhelming majority of functions on Rn are not simple positive functions;
but large classes of non-negative functions can be approximated by simple functions (as we
have seen Theorem 290). If f is a positive Borel function ofR2 to [0,∞], its Borel-Lebesgue
integral ∫∫

f(x, y) dx dy = sup
s∈ζ(2)+

{∫∫
s dx dy

∣∣∣∣ s ≤ f

}
;

this de inition can be extended to higher-dimensional domains in the obvious way. We illus-
trate how it applies in practice with a deceptively complicated example.

aaaaaa

Example: using the de inition, ind
∫∫

f dx dy, where

f(x, y) =

{
x+ y if (x, y) ∈ [0, 1]2

0 otherwise

Solution: the function is shown below.

⁸When the context is clear, we may omit the domain of integration.
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We start by building the sequence of positive simple functions

s1 ≤ . . . ≤ sn ≤ . . . ≤ f

from Theorem 290.

For n = 1, we have:

A1
1 = {(x, y) | 0 ≤ f(x, y) < 1

2
} = ({(x, y) | 0 ≤ x+ y < 1

2
} ∩ [0, 1]2) ∪ (R2 \ [0, 1]2),

A1
2 = {(x, y) | 12 ≤ f(x, y) < 1} = {(x, y) | 1

2
≤ x+ y < 1} ∩ [0, 1]2, and

A1 = {(x, y) | f(x, y) ≥ 1} = {(x, y) | x+ y ≥ 1} ∩ [0, 1]2 (see below).

The irst simple approximation is thus

s1 = 0 · χA1 +
1

2
· χA1

2
+ 1 · χA1 ,

whose graph is shown below:
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aaaaaa

We then have∫∫
s1(x, y) dx dy = 0 · Area(A1

1) +
1

2
· Area(A1

2) + 1 · Area(A1),

whose value we leave un-evaluated.

For n = 2, we have

A2
1 = {(x, y) | 0 ≤ f(x, y) < 1

4
} = ({(x, y) | 0 ≤ x+ y < 1

4
} ∩ [0, 1]2) ∪ (R2 \ [0, 1]2),

A2
2 = {(x, y) | 14 ≤ f(x, y) < 2

4
} = {(x, y) | 1

4
≤ x+ y < 1

2
} ∩ [0, 1]2,

A2
3 = {(x, y) | 24 ≤ f(x, y) < 3

4
} = {(x, y) | 1

2
≤ x+ y < 3

4
} ∩ [0, 1]2,

A2
4 = {(x, y) | 34 ≤ f(x, y) < 4

4
} = {(x, y) | 3

4
≤ x+ y < 1} ∩ [0, 1]2,

A2
5 = {(x, y) | 44 ≤ f(x, y) < 5

4
} = {(x, y) | 1 ≤ x+ y < 5

4
} ∩ [0, 1]2,

A2
6 = {(x, y) | 54 ≤ f(x, y) < 6

4
} = {(x, y) | 5

4
≤ x+ y < 3

2
} ∩ [0, 1]2,

A2
7 = {(x, y) | 64 ≤ f(x, y) < 7

4
} = {(x, y) | 3

2
≤ x+ y < 7

4
} ∩ [0, 1]2,

A2
8 = {(x, y) | 74 ≤ f(x, y) < 8

4
} = {(x, y) | 7

4
≤ x+ y < 8} ∩ [0, 1]2, and

A2 = {(1, 1)} (see below).

The second simple approximation is thus

s2 =

2(22)∑
i=1

i− 1

22
· χA2

i
+ 2 · χA2 =

8∑
i=1

i− 1

4
· χA2

i
+ 2 · χA2 ,

whose graph is shown on the next page:
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We then have∫∫

s2(x, y) dx dy =
8∑

i=1

i− 1

4
· Area(A2

i ) + 2 · Area(A2),

whose value we again leave un-evaluated.

The process continues in the same way for all n, yielding a sequence of posi-
tive simple functions.
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At step n, we have:

An
1 =

(
{(x, y) | 0 ≤ x+ y < 1

2n
} ∩ [0, 1]2

)
∪ (R2 \ [0, 1]2),

An
i = {(x, y) | i−1

2n
≤ x+ y < i

2n
} ∩ [0, 1]2 for 2 ≤ i ≤ 2n+1,

An
2n+1+1 = {(1, 1)} and An = An

j = ∅ for j > 2n+1 + 1.

Then the nth simple approximation is

sn =
n·2n∑
i=1

i− 1

2n
· χAi

+ n · χAn =
2n+1∑
i=1

i− 1

2n
· χAn

i
+ 2 · χAn

2n+1+1
,

so that ∫∫
sn(x, y) dx dy =

2n+1∑
i=1

i− 1

2n
· Area(An

i ) + 2 · Area(An
2n+1+1)︸ ︷︷ ︸

=0

=
2n∑
i=1

i− 1

2n
· Area(An

i ) +
2n+1∑

i=2n+1

i− 1

2n
· Area(An

i ).

We can show (see Exercises) that

Area(An
i ) =

{
1
4n

(
i− 1

2

)
for 1 ≤ i ≤ 2n

1
4n

(
2n+1 − i− 1

2

)
for 2n + 1 ≤ i ≤ 2n+1

In general, then, we have:∫∫
sn(x, y) dx dy =

2n∑
i=1

i− 1

2n
· 1
4n

(
i− 1

2

)
+

2n+1∑
i=2n+1

i− 1

2n
· 1
4n

(
2n+1 − i− 1

2

)

=
1

2nrn

[
2n∑
i=1

(i− 1)(i− 1/2) +
2n+1∑
i=1

(i− 1)(2n+1 − i− 1/2)

]
= 1− 1

2n−1
+

1

2 · 4n
.

WriteBn =
∫∫

sn dx dy; we clearly haveBn < 1 for all n, andBn → 1. Then∫∫
f(x, y) dx dy = sup

{∫∫
s(x, y) dx, dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≥ 1 = lim

n→∞
Bn.

For s ∈ ζ(2)+ , we have seen that∫∫
s(x, y) dx dy =

m∑
j=1

αj · Area(Ai),
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and so the integral represents the volume of a collection ofm prisms with base area
Aj and height αj . By construction,∫∫

s(x, y) dx dy ≤ Volume(solid bounded by 0 ≤ x, y ≤ 1 and 0 ≤ z ≤ x+ y).

We cannot compute the volume using integrals as we have not yet established that
the integral of a general positive Borel function over a domain A is the volume of
the solid bounded by f overA, but we see easily that the solid in question is exactly
the bottom half of the prism de ined by 0 ≤ x, y ≤ 1 and 0 ≤ z ≤ 2, whose volume
we know to be 2, from geometry (see the bottom image on p. 493).

By de inition, we must then have

sup
{∫∫

s(x, y) dx, dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≤ 1

2
(2) = 1,

which, combined with the previous inequality, shows that∫∫
f(x, y) dx dy = 1.

Phew! □

If f ∈ ζ
(2)
+ , both de initions coincide: i.e, if f =

∑
αiχAi

, with αi ∈ R, Ai ∈ B(R2), and
A1 ⊔ · · · ⊔ An = R2, then∫∫

f(x, y) dx dy =
n∑

i=1

αi · Area(Ai) = I(f) = sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
.

Indeed, if f ∈ ζ(2)+ ,we have
∫∫

f(x, y) dx dy ≤ I(f). On the other hand, if s ∈ ζ(2)+ , with s ≤ f ,
then ∫∫

s(x, y) dx dy ≤
∫∫

f(x, y) dx dy,

according to Lemma 291.3, from which we conclude that

I(f) = sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≤
∫∫

f(x, y) dx dy ≤ I(f).

The next result shows that Lemma 291.3 also applies to positive Borel functions.

aaaaaa

Proposition 292
If f, g are positive Borel functions and if f ≤ g, then∫∫

f dx dy ≤
∫∫

g dx dy.
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Proof: if f ≤ g, then {s ∈ ζ(2)+ | s ≤ f} ⊆ {s ∈ ζ(2)+ | s ≤ g}whence{∫∫
s(x, y) dx dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
⊆
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ g

}
So that

sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
⊆ sup

{∫∫
s(x, y) dx dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ g

}
■

Onemight wonder why exactly we bothered to introduce the Borel-Lebesgue integral – while
going from Riemann sums to simple functions does change our viewpoint of integration, are
the corresponding integrals equivalent, or is one “preferable” over the other?

aaaaaa

Theorem 293 (L M C T )
Let (fn)n≥1 be a sequence of Borel functions on R2 such that

1. 0 ≤ f1(x, y) ≤ f2(x, y) ≤ · · · ≤ fn(x, y) ≤ · · · ∀(x, y) ∈ R2, and

2. fn(x, y)→ f(x, y) ∀(x, y) ∈ R2.

Then f is a Borel function on R2 and
∫∫

fn(x, y) dx dy →
∫∫

f(x, y) dx dy. In partic-
ular,

∫∫
f dx dy = limn→∞

∫∫
sn dx dy, whenever (sn) is a monotonically increasing

sequence of positive simple functions bounded above by f , with sn → f (pointwise).

Proof: left as a (dif icult) exercise. ■.

Theorem 293 suggests that the new de inition has a clear advantage: what additional con-
straint does the equivalent limit interchange theorem 69 of Riemann integration require?

aaaaaa

Corollary 294
Let f, g : R2 → [0,∞] be Borel functions and α ≥ 0. Then

1.
∫∫

(f + g) dx dy =
∫∫

f dx dy +
∫∫

g dx dy,

2.
∫∫

α f dx dy = α
∫∫

f dx dy.

Proof: left as an exercise. ■.

From this point on, in order to not have to rely on the notation of iterated integrals, wewrite∫
f dm =

∫
· · ·
∫
f(x1, . . . , xn) dx1 · · · dxn

andm(B) for themeasure ofB ⊆ Rn (a generalization of the length, area, volume).
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Theorem 295
Let f be a positive Borel function, taking on the value 0 outside of a Borel set A with
Area(A) = 0. Then

∫∫
f dx dy = 0.

Proof: let
k(x, y) =

{
∞ (x, y) ∈ A
0 (x, y) ̸∈ A

THen k ∈ ζ(2)+ and∫
k dm == 0 · Area(R2 \ A) +∞ · Area(A) = 0 · ∞+∞ · 0 = 0,

by convention. Since f ≤ k, then

0 ≤
∫
f dm ≤

∫
k dm = 0,

which completes the proof. ■

We say that a positive Borel function f is (Borel-Lebesgue) integrable if
∫
f dm < ∞. If

f ≥ 0 is integrable and g ≤ f is a Borel function, then

∞ >

∫
f dm =

∫
g dm+

∫
(f − g) dm ≥

∫
g dm,

and so g is also integrable. This result de initely does not hold in general for Riemann inte-
gration.⁹

aaaaaa

Theorem 296
Let g be a bounded positive Borel function, taking on the value 0 outside a bounded
Borel set A. Then g is integrable.

Proof: let M be such that g(z) ≤ M. By de inition, ∃B = [a1, a
′
1] × [a2, a

′
2]

such that A ⊆ B and g(z) = 0 if z /∈ B. Then g ≤MχB and∫
g dm ≤

∫
MχB dm =M · Area(χB) <∞,

which completes the proof. ■

We can extend the idea to general Borel functions using the positive and negative parts.

Note that the Riemann and Borel-Lebesgue integral coincidewhen the former exists.

⁹Can you think of a counterexample?
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21.4 Integral of Borel Functions
For a general function f : Rn → R, de ine the positive part of f by

f+(x) =

{
f(x) when f(x) ≥ 0

0 when f(x) < 0,

and the negative part of f by

f−(x) =

{
−f(x) when f(x) ≤ 0

0 when f(x) > 0.

Then f = f+ − f− and |f | = f+ + f−.

If f : Rn → R is a inite Borel function, then f+, f− are positive Borel functions, by de ini-
tion. A Borel function f : Rn → R is integrable if both f+ and f− are integrable. In this case,
we de ine ∫

f dm =

∫
f+ dm−

∫
f− dm.

We see now that Lemma 291 has a counterpart for Borel functions.

aaaaaa

Theorem 297
Let f, g be integrable functions and λ ∈ R. Then

1.
∫
λf dm = λ

∫
f dm,

2.
∫
(f + g) dm =

∫
f dm+

∫
g dm, and

3. If f ≤ g then
∫
f dm ≤

∫
g dm.

Proof: since f, g are integrable, we have∫
f dm =

∫
f+ dm−

∫
f− dm <∞, and

∫
g dm =

∫
g+ dm−

∫
g− dm <∞.

1. Assume λ ≥ 0. Then

∞ > λ

∫
f dm = λ

(∫
f+ dm−

∫
f− dm

)
= λ

∫
f+ dm− λ

∫
f− dm

Corollary 294 =

∫
λf+ dm−

∫
λf− dm =

∫
(λf)+ dm−

∫
(λf)+ dm

=

∫
λf dm,

which simultaneously shows that λf is integrable.
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The only thing left to do is to show that the property holds for λ− 1. Note that
(−f)+ = f− and that (−f−) = f+, so that−f is itself integrable. Then

−
∫
f dm = −

∫
f+ dm+

∫
f− dm =

∫
f− dm−

∫
f+ dm

=

∫
(−f)+ dm−

∫
(−f)− dm =

∫
(−f) dm,

because−f is integrable.

2. By de inition, we have

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−).

According to the second solved problem (see p. 512), f + g is thus integrable
and∫

(f + g) dm =

∫
[(f+ + g+)− (f− + g−)] dm

=

∫
(f+ + g+) dm−

∫
(f− + g−) dm

Corollary 294 =

∫
f+ dm+

∫
g+ dm−

∫
f− dm−

∫
g− dm =

∫
f dm+

∫
g dm.

3. Since g − f ≥ 0 and g = f + (g − f), we have∫
g dm =

∫
f dm+

∫
g − f dm ≥

∫
f dm,

according to Corollary 294 and Proposition 292. ■

The set Vn = {f : Rn → R | f inite, Borel, integrable} is a vector space overR; the integral
of f over Rn is a linear functional, which is to say that∫

Rn

dm : Vn → R

is a linear functional.

aaaaaa
Theorem 298
Let B ∈ B(Rn), withm(B) = 0. If f, g are Borel functions such that f = g on Rn \ B
and if f is integrable, then g is integrable and

∫
f dm =

∫
g dm.
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Proof: the functions f − g is a Borel function with f − g ≡ 0 on Rn \ B. Since
f = g + (f − g), we have∫

f dm =

∫
g dm+

∫
(f − g) dm.

Write h = f − g; then
∫
h dm = 0. Since h+, h− = 0 on Rn \B, we must have∫

h+ dm =

∫
h− dm = 0,

according to Theorem 295. Then∫
h dm =

∫
h+ dm−

∫
h− dm = 0 and

∫
f dm−

∫
g dm = 0 =⇒

∫
f dm =

∫
g dm,

which completes the proof. ■

21.5 Integration Over a Subset
To this point, we have studied integration over Rn in its entirety:∫

f dm =

∫
f dmA.

But we can also integrate functions over substes of Rn. Let A ∈ B(Rn) and f : A ⊆ Rn → R.
If the function fχA : Rn → R de ined by

(fχA)(x) =

{
f(x) x ∈ A
0 x ̸∈ A

is a Borel function and if fχA ≥ 0 or fχA is integrable, we de ine∫
A

f dm =

∫
fχA dm.

We can show (see Exercises and Theorem 296) that if f is bounded on A and fχA is a Borel
function, then fχA is integrable. When

∫
A
f dm <∞, we say that f is integrable on A.

aaaaaa

Theorem 299
Let A,B ∈ B(Rn), A ∩B = ∅. If f is a Borel function on A ∪B, then

1. if f ≥ 0,
∫
A∪B f dm =

∫
A
f dm+

∫
B
f dm, and

2. f is integrable over A ∪B if and only if f is integrable over A andB.

Proof: left as an exercise. ■

Ifm(B) = 0, then
∫
B
f dm = 0. In that case

∫
A∪B

f dm =

∫
A

f dm.
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21.6 Multiple Integrals
The example of Section 21.4 shows that while we can compute the (Borel-Lebesgue) inte-
gral of a relatively straightforward integrand f , the process can leave a lot to be desired.¹⁰
Let f : R2 → R be a bounded Borel function, that is 0 outside of a bounded region. For all
y ∈ R, x 7→ f(x, y) is a Borel bounded function that is 0 outside of a bounded subset of R,
hence x 7→ f(x, y) is integrable.

aaaaaa

Theorem 300 (F ' T )
Let f : R2 → [0,∞] be a Borel function. For every y, let F (y) =

∫
R f(x, y) dx. Then F

is a Borel function and∫
R2

f dm =

∫∫
R2

f(x, y) dx dy =

∫
R
F (y) dy =

∫
R

(∫
R
f(x, y) dx

)
dy.

Proof: left as an exercise. ■

Similarly, ifG(x) =
∫
R f(x, y) dx, we have∫
R2

f dm =

∫
R
G(x) dx =

∫
R

(∫
R
f(x, y) dy

)
dx,

aaaaaa

Example: let f : R2 → [0,∞] be de ined by f(x, y) = (x + y)−4, where A ⊆ R2 is
the triangle bounded by x = 1, y = 1, and x+ y = 4. Compute

∫
A
f dm.

Solution: the triangle’s three vertices are located at (1, 1), (1, 3), and (3, 1).
For a ixed x ∈ R, we have

F (x) =

∫
R
f(x, y) dy =

{
0 if x ̸∈ [1, 3]∫
[1,4−x]

(x+ y)−4 dy otherwise

But∫
[1,4−x]

dy
(x+ y)4

=

∫ 4−x

1

(x+ y)−4 dy =

[
(x+ y)−3

−3

]y=4−x

y=1

=
(x+ 1)−3

3
− 1

192
,

from which we have∫
A

f dm =

∫
[1,3]

F (x) dx =

∫ 3

1

[
(x+ 1)−3

3
− 1

192

]
dx =

[
(x+ 1)−2

3(−2)
− x

192

]3
x=1

=
1

48
. □

¹⁰As in the previous sections, wewill provide the important details for functionsR2 → R; the process is easy
to generalize to Rn.
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If f is a positive Borel function, we can interchange the order of integration (as in Theorem
300); for general functions, there are complications. Onewayout of thequagmire is to decom-
pose f = f+−f− and to integrate f+ and f− separately, but that can quickly get cumbersome.

aaaaaa

Theorem 301 (S F T )
Let f : R2 → R be a bounded Borel function taking on the value 0 outside of a bounded
region. For all y, x 7→ f(x, y) is a bounded Borel function taking on the value 0 outside
of a bounded subset ofR. SetF (y) =

∫
R f(x, y) dx. ThenF is a boundedBorel function

and ∫
R2

f dm =

∫∫
R2

f(x, y) dx dy =

∫
R
F (y) dy =

∫
R
G(x) dx.

Proof: by hypothesis, ∃M,N > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ R2 and
f(x, y) = 0 for all (x, y) ̸∈ [−N,N ]2.

For a ixed y = y0, x 7→ f(x, y0) is a Borel function, with |f(x, y0)| ≤ M for
all x (and y0) and f(x, y0) = 0when |x| > N . If |y0| > N , F (y0) = 0; more generally,

|F (y0)| ≤
∫ N

−N

M dx = 2MN,

so it is bounded.

It remains to see that F is a Borel function and that conclusion of the theo-
rem holds. Using the decomposition f = f+ − f−, we reduce the problem to
the case f ≥ 0; it then suf ices to apply Theorem 300 to each of the positive and
negative parts of f , completing the proof. ■

The result generalizes to Rn in the natural way.

aaaaaa

Example: Let f : A ⊆ R3 → R be de ined by f(x, y, z) = 2xyz · χA(x, y, z), where

A = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 1}.

Compute
I =

∫
f dm =

∫∫∫
R3

f(x, y, z) dx dy dz.

Solution: let B = {(x, y, z) | x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, z = 0}. For ixed x, y ∈ R2,
we have

F (x, y) =

∫
R
2xyz · χA(x, y, z) dz =

{
0 if (x, y, 0) ̸∈ B∫
[0,
√

1−x2−y2]
2xyzdz if (x, y, 0) ∈ B
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Since ∫ √1−x2−y2

0

2xyz dz = 2xy

[
z2

2

]z=√1−x2−y2

z=0

= xy(1− x2 − y2),

the desired integral is

I =

∫∫
R2

F (x, y) dx dy =

∫∫
B

xy(1− x2 − y2) dx dy.

We can decompose this double integral as follows: for 0 ≤ x ≤ 1, set

G(x) =

∫ √
1−x2

0

xy(1− x2 − y2) dy =
x

4
(1− x2)2;

otherwise, setG(x) = 0. Then

I =

∫
R
G(x) dx =

1

4

∫
[0,1]

x(1− x2)2 dx =
1

24
. □

In general, ifD ⊆ Rn is a Borel set, then

m(D) =

∫
χD dm.

If n = 2, this takes the form

Area(D) =

∫∫
R2

χD(x, y) dx dy;

if n = 3, we have
Vol(D) =

∫∫∫
R3

χD(x, y, z) dx dy dz.

aaaaaa

Examples

1. Let a, b > 0. Find the area of the ellipseA = {(x, y) ∈ R2 | x2/a2+ y2/b2 ≤ 1}.

Solution: rewrite

A =

{
(x, y) ∈ R2

∣∣∣∣−a ≤ x ≤ a,− b
a

√
a2 − x2 ≤ y ≤ b

a

√
a2 − x2

}
.

Then

Area(A) =
∫∫

R2

χA(x, y) dx dy =

∫ a

−a

(∫
R
χA(x, y) dy

)
dx
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aaaaaa

But ∫
R
χA(x, y) dy =

{
0 if x ̸∈ [−a, a]∫ b/a

√
a2−x2

−b/a
√
a2−x2 dy = 2b

a

√
a2 − x2 if x ∈ [−a, a]

Then

Area(A) = 2b

a

∫ x=a

x=−a

√
a2 − x2 dx

x = a cosφ, dx = −a sinφ dφ =
2b

a

∫ φ=0

φ=π

√
a2(1− cos2 φ)(−a sinφ) dφ

= −2b

a

∫ 0

π

a2 sin2 φ dφ = 2ab

∫ π

0

sin2 φ dφ

= 2ab

∫ π

0

(
1− cos 2φ

2

)
dφ = ab

[
φ− sin 2φ

2

]π
0

= πab.

2. Let a, b, c > 0 and E = {(x, y, z) | x2/a2 + y2/b2 + z2/c2 ≤ 1}. Find Vol(E).

Solution: we have

Vol(E) =
∫∫∫

R3

χE(x, y, z) dx dy dz =
∫ c

−c

(∫∫
R2

χE(x, y, z) dx dy
)

︸ ︷︷ ︸
=Area(Ez)

dz,

where

Ez =

{
(x, y)

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
≤ 1

}
=

{
(x, y)

∣∣∣∣ x2

(ah)2
+

y2

(bh)2
≤ 1

}
,

where h =
√

1− z2/c2 > 0.

According to the preceding example, we know that

Area(Ez) = π(ah)(bh) = πabh2 = πab(1− z2/c2)

when |z| ≤ c, so that

Vol(E) =
∫ c

−c

πab

(
1− z2

c2

)
dz = πab

[
z − z3

3c2

]z=c

z=−c

=
4π

3
abc. □

We inish the chapter with some detail regarding one of themost commonly-used integration
shortcuts: changes of variables.
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21.7 Change of Variables and/or Coordinates
In the preceding section’s example where we compute the area of an ellipse, we encounter an
integral in x which we cannot compute directly; instead we introduce a new variable φ and
a relation between x and φ that we leverage to easily compute the integral. We formalize the
process in this section.

LetΨ : U ⊆O Rn → V ⊆O Rn be a diffeomorphism; thus,Ψ andΨ−1 areC1,Ψ◦Ψ−1(v) = v,
Ψ−1 ◦Ψ(u) = u, the Jacobians dΨ(u), dΨ−1(v) : Rn → Rn are linear maps and

d(Ψ ◦Ψ−1)(v) = dΨ(Ψ−1(v))dΨ−1(v) = In,

for all u ∈ U, v ∈ V , which means that dΨ(u) and dΨ−1(v) are invertible for all u ∈ U, v ∈ V .

aaaaaa

Examples

1. For n = 1, de ine Ψ : U = (0, π) → V = (−1, 1) by Ψ(u) = cosu. Then
dΨ(u) = − sinu < 0 for all u ∈ (0, π), i.e., Ψ is decreasing on (0, π), with
Ψ(0) = 1 andΨ(π) = −1.

2. For n = 1, let U = V = (0, 1) and de ine Ψ : U → V by Ψ(u) = u2. Then
dΨ(u) = 2u > 0 for all u ∈ U , i.e., Ψ is increasing on U , with Ψ(0) = 0 and
Ψ(1) = 1.

3. For n = 2, let U = {(r, θ) | r > 0 and − π < θ < π}, V = R2 \ {(x, 0) | x ≤ 0},
and de ineΨ(r, θ) = (r cos θ, r sin θ). Then

dΨ(r, θ) =

(
cos θ sin θ
−r sin θ r cos θ

)
.

Note that JΨ(r, θ) = det(dΨ) = r cos2 θ + r sin2 θ = r > 0 and thatΨ is:

injective since ifΨ(r1, θ1) = Ψ(r2, θ2), then

r1 = ∥Ψ(r1, θ1)∥2 = ∥Ψ(r2, θ2)∥2 = r2

and cos θ1 = cos θ2 and sin θ1 = sin θ2 yields θ1 = θ2 ∈ (−π, π);
surjective since if (x, y) ∈ V , set r =

√
x2 + y2 > 0; then

1 =
x2 + y2

r2
=
x2

r2
+
y2

r2
=⇒ x = r cos θ, y = r sin θ for some θ ∈ (−π, π].

But if θ = π, then x = −r and y = 0, so that (x, y) ̸∈ V , a contradiction;
thus θ ∈ (−π, π).
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aaaaaa

Thus Ψ : U → V is a bijection; its inverse is Ψ−1 : V → U is de ined by
Ψ−1(x, y) = (r, θ), as given on the previous page. It is easy to verify that Ψ ◦
Ψ−1 : V → V is the identity, as

Ψ(Ψ−1(x, y)) = Ψ(
√
x2 + y2, θ) = Ψ(r, θ) = (r cos θ, r sin θ) = (x, y).

Both Ψ and Ψ−1 are C1 and the Jacobians dΨ(r, θ) and dΨ−1(x, y) are invert-
ible (see Exercises); as such, Ψ is a diffeomorphism between U and V . In this
particular case, we can express θ explicitly in terms of (x, y):

θ ∈ (−π, π) =⇒ θ

2
∈
(
−π
2
,
π

2

)
=⇒ cos(θ/2) ̸= 0;

then

tan(θ/2) = sin(θ/2)
cos(θ/2) =

sin θ
1 + cos θ =

r sin θ
r(1 + cos θ) =

y√
x2 + y2 + x

=⇒ θ = 2Arctan
(

y√
x2 + y2 + x

)
. □

If f : V → R is a Borel function, let JΨ(z) = det(dΨ(z)); then JΨ(z) ̸= 0 since Ψ is a diffeo-
morphism, and the composition f ◦Ψ : U → R is also a Borel function. In R2, for instance, if
Ψ(s, t) = (x, y) = (x(s, t), y(s, t)), then

JΨ(s, t) = det
(

∂x(s,t)
∂s

∂x(s,t)
∂t

∂y(s,t)
∂s

∂y(s,t)
∂t

)
=
∂x(s, t)

∂s
· ∂y(s, t)

∂t
− ∂x(s, t)

∂t
· ∂y(s, t)

∂s
̸= 0.

aaaaaa

Theorem 301 (C V )

1. Let f : V → [0,∞] be a positive Borel function. Then∫∫
V

f(x, y) dx dy =

∫∫
U

f(x(s, t), y(s, t)) |JΨ(s, t)| ds dt.

2. If f : V → R is an integrable Borel function, then f ◦ Ψ|JΨ| is Borel and
integrable on U and∫∫

V

f(x, y) dx dy =

∫∫
U

f ◦Ψ(s, t) |Jφ(s, t)| ds dt.

Proof: left as an exercise. ■
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As usual, this result easily generalizes to Rn.

aaaaaa

Examples

1. For n = 1, ifΨ : [α, β]→ [a, b] is a bijection withΨ(α) = a, Ψ(β) = b, Ψ is C1,
and Ψ′ > 0 on (α, β), then Ψ is an increasing diffeomorphism between [α, β]
and [a, b]. Let f : [a, b]→ R be a continuous function. Then∫ b

a

f(u) du =

∫
[a,b]

f(u) du =

∫
(a,b)

f(u) du =

∫
[α,β]

f(Ψ(t))|Ψ′(t)| dt =
∫ β

α

f(Ψ(t))Ψ′(t) dt.

2. IfΨ is as in the previous example, but withΨ′ < 0 on (α, β), then∫ b

a

f(u) du = −
∫ α

β

f(Ψ(t))Ψ′(t) dt. □

21.7.1 Polar Coordinates
Let U, V,Ψ be as in the example on pp. 508-509. Then JΨ(r, θ) = r. If I = {(x, 0) | x ≤ 0},
then Area(I) = 0. Then, if f : R2 → [0,∞] is a positive Borel function, we have∫∫

R2

f(x, y) dx dy =

∫∫
V

f(x, y) dx dy =

∫∫
U

f(r cos θ, r sin θ)r dr dθ.

If f is Borel and integrable over R2, then (r, θ) 7→ f(r cos θ, r sin θ)r is integrable over U and∫∫
R2

f(x, y) dx dy =

∫∫
U

f(r cos θ, r sin θ)r dr dθ.

This transformation yields polar coordinates, as illustrated below.

aaaaaa

Example: for the Borel function f : R2 → R de ined by f(x, y) = exp(−x2 − y2),
we have

I =

∫∫
R2

exp(−x2 − y2) dx dy =

∫∫
U

exp(−r2)r dr dθ =
∫ ∞

0

∫ π

−π

exp(−r2)r dr dθ

= π

∫ ∞

0

2r exp(−r2) dr = π

∫ u=∞

u=0

exp(−u) du = π.
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aaaaaa

Since

I =

(∫
R
exp(−x2) dx

)(∫
R
exp(−y2) dy

)
=

(∫
R
exp(−x2) dx

)2

= π,

then ∫
R
exp(−x2) dx =

√
π;

we can compute the integral even though exp(−x2) does not have an elementary
anti-derivative. □

21.7.2 Spherical Coordinates
In spherical coordinates, we represent the point P (x, y, z) ∈ R3 using the coordinates
(r, φ, θ):

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

Let U = {(r, φ, θ) | r > 0, 0 < φ < π, 0 < θ < 2π} and V = R2 \ Ix = R3 \ {(x, 0, z) | x ≥ 0}.
SetΨ : U → V , with

Ψ(r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ).

Then

dΨ(r, φ, θ) =

 sinφ cos θ sinφ sin θ cosφ
r cosφ r cosφ sin θ −r sinφ

−r sinφ sin θ r sinφ cos θ 0

 ,

so that |JΨ(r, φ, θ)| = r2 sinφ, because of the restrictions in the de inition ofU . Furthermore,
Vol(Ix) = 0; if f : R3 → [0,∞] is a positive Borel function, we then have∫∫∫

R3

f(x, y, z) dx dy dz =
∫∫∫

V

f(x, y, z) dx dy dz

=

∫∫∫
U

f(r sinφ cos θ, r sinφ sin θ, r cosφ) r2 sinφdr dφ dθ.
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More generally, that relationship also holds if f : R3 → R is Borel and integrable.

aaaaaa

Example: compute the volume of the ball BR = {(x, y, z) | x2 + y2 + z2 ≤ R2}, for
R ≥ 0.

Solution: according to the de inition,

Vol(BR) =

∫∫∫
BR

dx dy dz =
∫∫∫

R3

χBR
(x, y, z) dx dy dz

=

∫ R

0

(∫ π

0

(∫ 2π

0

r2 sinφ dθ dφdr
))

= 2π

∫ R

0

r2
(∫ π

0

sinφ dφ
)
dr

= 2π

∫ R

0

r2[− cosφ]π0 dr = 4π

∫ R

0

r2 dr = 4π

[
r3

3

]R
0

=
4

3
πR3. □

21.8 Solved Problems

21.8.1 Borel-Lebesgue Integral on Rn

1. Show that a bounded Borel function which is identically zero outside of a bounded set
is integrable.

Proof: by hypothesis, ∃M ∈ R+ such that |g(z)| < M for all z ∈ Rn. Furthermore,
there is a bounded set A such that g(z) = 0 for all z ̸∈ A. Since A is bounded, there
exist ai, a′i ∈ R such that

A ⊆ B =
n∏

i=1

[ai, a
′
i]

and g(z) = 0 for all z ̸∈ B. Finally, |g| ≤MχB and∣∣∣∣∫ g

∣∣∣∣ ≤ ∫ |g| ≤ ∫ MχB =M

∫
χB =M ·m(B) =M

n∏
i=1

(a′i − ai) <∞,

that is, g is integrable. ■

2. Let u, v be positive, integrable Borel functions. Show that u− v is integrable and that∫
(u− v) dm =

∫
u dm−

∫
v dm.

Proof: by hypothesis, 0 ≤
∫
u,
∫
v < ∞, and so we also have −∞ ≤

∫
u,
∫
v < ∞.

Then,

∞ >

∫
u =

∫
(u− v + v) =

∫
(u− v) +

∫
v > −∞
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so that

∞−
∫
v >

∫
(u− v) > −∞−

∫
v

Since−∞ <
∫
v <∞,∞−

∫
v =∞ and−∞−

∫
v = −∞. Finally, this yields

∞ >

∫
(u− v) > −∞

and u− v is integrable. We proved the other required result in the irst inequality.■

3. If f is bounded on A ∈ B(R2), fχA is a Borel function, and Area(A) < ∞, show that
fχA is integrable.

Proof: letM > 0 be such that |f(x)| < M for all x ∈ A. Then, under they hypothe-
ses,∣∣∣∣∫ fχA

∣∣∣∣ ≤ ∫ |fχA| =
∫
|f |χA <

∫
MχA =M

∫
χA =M · Area(A) <∞,

which completes the proof. ■

4. LetA,B ∈ B(Rn), A ∩B = ∅, and f be a Borel function on A ∪B.

a) If f ≥ 0, show that ∫
A∪B

f dm =

∫
A

f dm+

∫
B

f dm.

b) In general, show that f is integrable over A ∪ B if and only if f is integrable over
A and integrable overB.

c) If f is integrable overA ∪B, show that the equation of part a) holds.

Proof:
a) Let sn be the sequence of positive simple functions guaranteed by one of the

theorems. Then we have
i. sn(z)→ f(z) for all z
ii. 0 ≤ sn(z) ≤ f(z) for all z
iii. sn(z) ≤ sn+1(z) for all z
Let C ∈ B. Consider the function fχC . Then,
i. (snχC)(z)→ (fχC)(z) for all z
ii. 0 ≤ (snχC)(z) ≤ (fχC)(z) for all z
iii. (snχC)(z) ≤ (sn+1χC)(z) for all z
According to the Lebesgue convergence theorem,∫

C
sn =

∫
snχC →

∫
fχC =

∫
C
f. (21.1)

For any n ∈ N, we have
sχA∪B = sχA + sχB
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sinceA ∩B = ∅. Then∫
A∪B

sn =

∫
snχA∪B ≥

∫
snχA∪B =

∫
(snχA + snχB)

=

∫
snχA +

∫
snχB =

∫
A
sn +

∫
B
sn.

If we let C = A ∪B in (21.1), we have∫
A∪B

sn →
∫
A∪B

f.

If we let C = A in (21.1), we have∫
A
sn →

∫
A
f.

Finally, if we let C = B in (21.1), we have∫
B
sn →

∫
B
f.

Combining all these results yields

∫
A
sn +

∫
B
sn =

∫
A∪B

sn

∫
A
f +

∫
B
f

? ∫
A∪B

f

?

so that we can conclude that∫
A∪B

f =

∫
A
f +

∫
B
f

as limits are unique.
b) Suppose that f is a general (not necessarily positive) function, integrable over

A andB, i.e. ∣∣∣∣∫
A
f

∣∣∣∣ , ∣∣∣∣∫
B
f

∣∣∣∣ <∞.
By a remark made in class, this also means that

0 ≤
∫
A
f+,

∫
A
f−,

∫
B
f+,

∫
B
f− <∞.

Since f− and f+ are positive integrable Borel functions, we can apply part a) to
obtain

0 ≤
∫
A∪B

f+ =

∫
A
f+ +

∫
B
f+ <∞

0 ≤
∫
A∪B

f− =

∫
A
f− +

∫
B
f− <∞
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so that f+ and f− are both integrable overA ∪B. Consequently, f is integrable
overA ∪B.

Conversely, suppose that f is a general (not necessarily positive) function, in-
tegrable overA ∪B, i.e. ∣∣∣∣∫

A∪B
f

∣∣∣∣ <∞.
By a remark made in class, this also means that

0 ≤
∫
A∪B

f+,

∫
A∪B

f− <∞.

Since f− and f+ are positive integrable Borel functions, we can apply part a) to
obtain

0 ≤
∫
A
f+ +

∫
B
f+ =

∫
A∪B

f+ <∞

0 ≤
∫
A
f− +

∫
B
f− =

∫
A∪B

f− <∞

This implies that

0 ≤
∫
A
f+,

∫
A
f−,

∫
B
f+,

∫
B
f− <∞

and so that f+ and f− are both integrable over A and over B. Consequently, f
is integrable overA and overB.

c) Let us assume that f is a general (not necessarily positive) function, integrable
overA ∪B (and so also overA and overB, see part b). By construction,∫

A∪B
f =

∫
A∪B

f+ −
∫
A∪B

f−

=

∫
A
f+ +

∫
B
f+ −

∫
A
f− −

∫
B
f−

=

∫
A
f+ −

∫
A
f− +

∫
B
f+ −

∫
B
f−

=

∫
A
f +

∫
B
f

■

5. Show that the area of the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1} is zero.

Proof: we use the following intermediary result.
L : let φ : [0, T ] → R2 be continuous, with T > 0. If ∃M > 0 such
that

∥φ(s)− φ(t)∥∞ ≤M |s− t| (21.2)
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for all s, t ∈ [0, T ], then φ([0, 1]) has 2Dmeasure 0.

Proof: for allN ≥ 1, let

0 = t0 < t1 < · · · < tN = 1, ti =
i

N
.

Recall that∥x⃗∥∞ = max{|x1|, |x2|}. Then, according to (21.2),φ([ti−1, ti]) ⊆
Ii for some square Ii of length 2M

N (think about this for a second). Then,
Area(Ii) = 4M2

N2 and
N∑
i=1

Area(Ii) =
4M2

N
.

Now, let ε > 0 and selectN > 4M2

ε . QED
Let φ : [0, 2π] → R2 be de ined by φ(t) = (cos t, sin t). Then φ is continuous and
φ([0, 2π]) = S1. According to the mean value theorem,

∥φ(s)− φ(t)∥∞ ≤ max{sup
η
|Dφ1(η)|, sup

η
|Dφ2(η)}|s− t|

≤ max{sup
η
| sin η|, sup

η
| cos η}|s− t|

≤ |s− t|

We can then apply the preceding Lemma to obtain Area(S1) = 0. ■

6. Show that if f, g : R2 → R are Borel functions, then so is f + g.
Proof: let d ∈ R. For any r, s ∈ Q such that r + s < d, we have

{z | f(z) < r} ∩ {z | g(z) < s} ⊆ {z | f(z) + g(z) < d},

or
Ef

r ∩ Eg
s ⊆ E

f+g
d .

Then ∪
r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
⊆ Ef+g

d .

If z0 ∈ Ef+g
d , i.e. if f(z0) + g(z0) < d, then ∃r, s ∈ Q such that f(z0) < r, g(z0) < s

and r + s < d (becauseQ is dense in R), so that z0 ∈ Ef
r ∩ Eg

s . Then∪
r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
= Ef+g

d .

But f, g are Borel functions; as a result,Ef
r , E

g
s ∈ B for all r, s ∈ Q. Since B is a

σ−algebra,
Ef+g

d =
∪

r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
∈ B

and f + g is a Borel function. ■
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7. Show that every countable subset of R2 has 2Dmeasure zero.

Proof: let ε > 0. List the elements of the countable subset asA = {a1, a2, . . . , an, . . .}.
LetRn be a square centered at an with Area(Rn) =

ε
2n+1 . Then∑

n∈N
Area(Rn) =

∑
n∈N

ε

2n+1
=
ε

2

∑
n∈N

1

2n
=
ε

2
< ε.

Thus, Area(A) = 0. ■

8. Let f : R2 → R be de ined by f(x, y) = sin(x) and set A = [0, 2π] × [0, 1]. Compute∫
A
f dm.

Solution: we have∫
A
f =

∫
fχA =

∫
(fχA)+ −

∫
(fχA)− =

∫
f+χA −

∫
f−χA

where

f+(x, y)χA(x, y) =

{
sinx if x ∈ [0, π]

0 otherwise

f−(x, y)χA(x, y) =

{
− sinx if x ∈ [π, 2π]

0 otherwise

Clearly,
∫
f+χA =

∫
f−χA, so that

∫
A f = 0. □

9. Show that the set

I = {f : Rn → R : f inite, Borel, integrable}

is a vector space over R.

Proof: since I is a subset of the vector space of all functions from Rn to R over the
scalar ield R, it suf ices to verify that the three subspace conditions hold:
a) O ∈ I: this is the case since the function de ined byO(x) = 0 for all x ∈ Rn is

Borel as I was able to write it down, inite since |O(x)| = 0 <∞ for all x ∈ Rn,
and integrable as

∫
O = 0 <∞.

b) f, g ∈ I =⇒ f + g ∈ I: if f, g are Borel, inite and integrable, then f + g is
clearly Borel and inite. It is also clearly integrable, albeit I have to use Theorem
25 (in disguise) to show this:

−∞ < −
∣∣∣∣∫ f

∣∣∣∣− ∣∣∣∣∫ g

∣∣∣∣ ≤ ∣∣∣∣∫ (f + g)

∣∣∣∣ ≤ ∣∣∣∣∫ f

∣∣∣∣+ ∣∣∣∣∫ g

∣∣∣∣ <∞.
Thus, f + g ∈ I .
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c) f ∈ I, α ∈ R =⇒ αf ∈ I: if f is Borel, inite and integrable, and α ∈ R, then
αf is clearly Borel and inite (since |α| ̸=∞). It is also clearly integrable, albeit
I have to use Theorem 25 (once again in disguise) to show this:

−∞ < −α
∣∣∣∣∫ f

∣∣∣∣ ≤ ∣∣∣∣∫ αf

∣∣∣∣ ≤ α ∣∣∣∣∫ f

∣∣∣∣ <∞.
Thus, αf ∈ I .

Consequently, I is a vector space. ■

10. Show that I : I → R de ined by I(f) =
∫
f dm is a linear functional.

Proof: now that we know that I is a vector space over R, it suf ices to show that
I : I → R acts linearly on I , i.e. that

I(αf + βg) = αI(f) + βI(g)

for all f, g ∈ I , α, β ∈ R.

But that is the content of Theorem 25 (since f, g are integrable):

I(αf + βg) =

∫
(αf + βg) =

∫
(αf) +

∫
(βg)

= α

∫
f + β

∫
g = αI(f) + βI(g),

which completes the proof. ■

11. Let f : R→ R be de ined by

f(x) =

{
1 if x ∈ Q
0 otherwise

Is f integrable? If so, what value does
∫
f dm take? If not, where does the problem lie?

Proof: note that f(x) ≥ 0 for all x ∈ R andQ ∈ B(R)with Length(Q) = 0. Thus,∫
R
f =

∫
R−Q

f =

∫
R−Q

0 = 0 <∞

and f is integrable. ■

12. Let f : R2 → R be de ined by f(x, y) = x + y Is f integrable? If so, what value does∫
f dm take? If not, where does the problem lie?

Proof: a function is integrable if and only if both its positive part and negative part
are integrable. Here, f+, f− : R2 → R are de ined by

f+(x, y) =

{
x+ y if y ≥ −x
0 else

f−(x, y) =

{
−x− y if y ≤ −x
0 else
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Consider the positive simple functions

s1(x, y) =

{
1 if x, y ≥ 1

0 else

s2(x, y) =

{
1 if x, y ≤ −1
0 else

Then
0 ≤ s1(x, y) ≤ f+(x, y)
0 ≤ s2(x, y) ≤ f−(x, y)

for all (x, y) ∈ R2. Consequently,

0 ≤
∫
s1 ≤

∫
f+

0 ≤
∫
s2 ≤

∫
f−

But
∫
s1,
∫
s2 =∞, so

∫
f+,

∫
f− =∞ and f is not integrable, as neither its positive

part nor its negative part is integrable. ■

13. Suppose that f is R-integrable over [a, b]. Is f integrable over [a, b]? What relation is
there between

∫
[a,b]

f dm and
∫ b

a
f(x) dx, if any?

Proof: if f is R-integrable over [a, b], then on the one hand we have
∫ b
a f(x) dx =∫

[a,b] f dm andon theotherhandwehave∞ >
∣∣∣∫ b

a f(x) dx
∣∣∣. Consequently, ∣∣∣∫[a,b] f dm

∣∣∣ <
∞ and f is integrable over [a, b]. ■

14. Suppose that f is integrable over [a, b]. Is f R-integrable over [a, b]? What relation is
there between

∫
[a,b]

f dm and
∫ b

a
f(x) dx, if any?

Proof: there is no relation in this case. There are instances of integrable functions
which are also R-integrable, such as f : [0, 1]→ R de ined by f(x) = x2. Then∫

[0,1]
f dm =

∫ 1

0
f(x) dx =

1

3
<∞.

But there are also instances of integrable functions which are not R-integrable.

Consider the function f : [0, 1]→ [0,∞] de ined by

f(x) =

{
∞ x ∈ Q ∩ [0, 1]

0 else
.

Wehave seen that
∫
[0,1] f dm = 0 <∞ so that f is integrable. We have also seen that∫ 1

0 f(x) dx does not exist, so that it is not R-integrable.

The moral of the story: Lebesgue integration is more general than Riemann inte-
gration. But you already knew that. ■
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21.8.2 Multivariate Calculus
1. Let f : R2 → R be independent of y, that is, there exists a function g : R→ R such that
f(x, y) ≡ g(x) for all (x, y) ∈ R2.

a) What general property does the surface z = f(x, y) possess?
b) Let R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}. By interpreting the integral as a

volume and by using the answer from part a), write
∫
R
f dA using a function of

one variable.

Solution: iff is independent ofy, the surface z = f(x, y) is constant in the y−direction,
that is, for any x ∈ R, f(x, y1) = f(x, y2) for all y1, y2. As such,∫

R
f dA =

(∫ b

a
g(x) dx

)
(d− c). □

2. Let f : R ⊂ R2 → R be an integrable function andR be as below.

Write
∫
R
f dA as an iterated integral.

Solution: the vertices of R are: (1, 0), (2, 1), (4, 2) and (4, a), where 1 < a < 2. The
line from (1, 2) to (4, a) is y = a

3 (x− 1). Thus,R is the region de ined by
a

3
(x− 1) ≤ y ≤ 2, 1 ≤ x ≤ 4,

and
∫ 4
1

∫ 2
a
3
(x−1) f(x, y) dy dx is one way to write the iterated integral. □

3. Compute the integral
∫ 2

0

∫ x

0
ex

2 dy dx.
Solution: the region of integration is given by

0 ≤ y ≤ x, 0 ≤ x ≤ 2.

As such, it is the triangle with vertices (0, 0), (2, 2) and (2, 0) (we’re not drawing it
but you probably should). Thus,∫ 2

0

∫ x

0
ex

2 dy dx =

∫ 2

0

[
yex

2
]x
0

dx =

∫ 2

0
xex

2 dx =

[
1

2
ex

2

]2
0

=
1

2
(e4 − 1). □

4. Compute
∫ 3

0

∫ 9

y2
y sin(x2) dx dy.
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Solution: the region of integration is

y2 ≤ x ≤ 9, 0 ≤ y ≤ 3.

Since it is dif icult (read: impossible) to ind an anti-derivative of sin(x2)with respect
to x, we change the order of integration. To do so cleanly, it suf ices to notice that the
region can be written as

0 ≤ y ≤
√
x, 0 ≤ x ≤ 9.

Thus,∫ 3

0

∫ 9

y2
y sin(x2) dx dy =

∫ 9

0

∫ √
x

0
y sin(x2) dy dx =

∫ 9

0

[
y2

2
sin(x2)

]√x

0

dx =

∫ 9

0

x

2
sin(x2) dx

=

[
−1

4
cos(x2)

]9
0

=
1

4
(1− cos 81). □

5. What is the volume of the solid bounded by the planes z = x + 2y + 4 and z = 2x + y,
above the triangle in the xy plane with vertices A(1, 0, 0),B(2, 1, 0) and C(0, 1, 0)?

Solution: in the xy−plane, the equations of the boundary of∆ABC are

AC : y = −x+ 1 ↭ x = −y + 1

BC : y = 1

AB : y = x− 1 ↭ x = y + 1

The region of integrationR can be written as

0 ≤ y ≤ 1, −y + 1 ≤ x ≤ y + 1,

and the volume of interest is

V =

∫
R
|(x+ 2y + 4)− (2x+ y)| dA =

∫ 1

0

∫ y+1

−y+1
(y − x+ 4) dx dy =

∫ 1

0

[
yx− x2

2
+ 4x

]y+1

−y+1

dy

=

∫ 1

0

[(
y(y + 1)− (y + 1)2

2
+ 4(y + 1)

)
−
(
y(−y + 1)− (−y + 1)2

2
+ 4(−y + 1)

)]
dy

=

∫ 1

0
(2y2 + 6y) dy =

[
2y3

3
+ 3y

]1
0

=
11

3
. □
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6. Compute
∫
W
h dV , where h(x, y, z) = ax+ by + cz and

W = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2}.

Solution: the region of integration is rectangular, so there are no hardships:∫
W
h dV =

∫ 1

0

∫ 1

0

∫ 2

0
(ax+ by + cz) dz dx dy =

∫ 1

0

∫ 1

0

[
axz + byz + c

z2

2

]2
0

dx dy

=

∫ 1

0

∫ 1

0
(2ax+ 2by + 2c) dx dy =

∫ 1

0

[
ax2 + 2bxy + 2cx

]1
0
dy

=

∫ 1

0
(a+ 2by + 2c) dy =

[
ay + by2 + 2cy

]1
0
= a+ b+ 2c. □

7. Sketch the region of integrationW of the triple integral
∫ 1

0

∫ 2−x

0

∫ 3

0
f(x, y, z) dz dy dx.

Solution: the region is de ined by
0 ≤ z ≤ 3, 0 ≤ y ≤ 2− x, 0 ≤ x ≤ 1.

Thus, it is a box bounded by 6 planes: z = 0, z = 3, y = 0, y = 2− x, x = 0, x = 1.

□

8. Let f : R→ R be de ined as below. Write
∫
R
f dA as an iterated integral.
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Solution: in polar coordinates, the region becomes

1 ≤ r ≤ 2,
π

2
≤ θ ≤ 3π

2
.

Thus, ∫
R
f(x, y) dA =

∫ 2

1

∫ 3π/2

π/2
f(r cos θ, r sin θ)r dθ dr. □

9. Compute
∫ √

2

0

∫√4−y2

0
xy dx dy.

Solution: The region of integrationR is de ined by

0 ≤ x ≤
√
4− y2, 0 ≤ y ≤

√
2.

We separate this region into two subregionsR1 andR2 with the line y = x. Thus,∫
R
xy dA =

∫
R1

xy dA+

∫
R2

xy dA.

The regions’ geometry indicates that polar coordinates have to be used in the irst
region, while cartesian coordinates will be appropriate in the second region.
In polar coordinates,R1 is

0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
,

whence∫
R1

xy dA =

∫ 2

0

∫ π/4

0
(r cos θ)(r sin θ)r dθ dr =

∫ 2

0

∫ π/4

0
r3 cos θ sin θ dθ dr

=

∫ 2

0

∫ π/4

0

r3

2
sin 2θ dθ dr =

∫ 2

0

[
−r

3

4
cos 2θ

]π/4
0

dθ dr =
∫ 2

0

r3

4
dr =

[
r4

16

]2
0

= 1.
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In cartesian coordinates,R2 is

0 ≤ x ≤
√
2, x ≤ y ≤

√
2,

whence∫
R2

xy dA =

∫ √
2

0

∫ √
2

x
xy dy dx =

∫ √
2

0

[
xy2

2

]√2

0

dx =

∫ √
2

0

x(2− x2)
2

dx

=

[
x2

2
− x4

8

]√2

0

=
1

2
.

Thus,
∫
R xy dA =

∫
R1
xy dA+

∫
R2
xy dA = 1 + 1

2 = 3
2 . □

10. Compute
∫
W

sin(x2 + y2) dV , where W is the cylinder centered about the z axis from
z = −1 to z = 3 and with radius 1.

Solution: in cylindrical coordinates,W is

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, −3 ≤ z ≤ 1.

Thus,∫
W

sin(x2 + y2) dV =

∫ 1

−3

∫ 2π

0

∫ 1

0
sin(r2)r dr dθ dz = 4π(1− cos 1). □

11. Using spherical coordinates, compute the triple integral of f(ρ, θ, φ) = sinφ on the
region de ined by 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 1 ≤ ρ ≤ 2.

Solution: in spherical coordinates, the region is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 1 ≤ ρ ≤ 2.

Thus, the integral is

I =

∫ 2π

0

∫ π/4

0

∫ 2

1
sinφρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π/4

0

∫ 2

1
ρ2 sin2 φ dρ dφ dθ

=

∫ 2π

0

∫ π/4

0

[
ρ3

3
sin2 φ

]2
1

dφ dθ =
∫ 2π

0

∫ π/4

0

7

3
sin2 φ dφ dθ

=

∫ 2π

0

7

6
[φ− sinφ cosφ]π/40 dθ =

∫ 2π

0

7

12

(π
2
− 1
)

dθ = 14π

12

(π
2
− 1
)
=

7π

6
(π − 1). □

12. Compute ∫ 1

0

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−z2

−
√
1−x2−z2

(x2 + y2 + z2)−1/2 dy dz dx.

Solution: in spherical coordinates, the region of integration is

−π
2
≤ θ ≤ π

2
, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1.
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Thus, the integral is

I =

∫ 1

0

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−z2

−
√
1−x2−z2

(x2 + y2 + z2)−1/2 dy dz dx =

∫ π/2

−π/2

∫ π

0

∫ 1

0

1√
ρ2
ρ2 sinφ dρ dφ dθ

=

∫ π/2

−π/2

∫ π

0

∫ 1

0
ρ sinφ dρ dφ dθ =

∫ π/2

−π/2

∫ π

0

[
ρ2

2
sinφ

]1
0

dφ dθ =
∫ π/2

−π/2

∫ π

0

sinφ
2

dφ dθ

=

∫ π/2

−π/2

[
−cosφ

2

]π
0

dθ =
∫ π/2

−π/2
dθ = π. □

13. Compute ∫ 1

0

∫ 1

−1

∫ √
1−x2

−
√
1−x2

(x2 + y2)−1/2 dy dx dz.

Solution: in cylindrical coordinates, the region of integration is
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

In that case, the integral of interest is

I =

∫ 1

0

∫ 1

−1

∫ √
1−x2

−
√
1−x2

(x2 + y2)−1/2 dy dx dz =
∫ 1

0

∫ 2π

0

∫ 1

0

1√
r2
r dr dθ dz

=

∫ 1

0

∫ 2π

0

∫ 1

0
dr dθ dz = 2π. □

14. Compute
∫ 1

0

∫ 1√
x
ey

3 dy dx.
Solution: the region of integration is given by

0 ≤ x ≤ y2, 0 ≤ y ≤ 1.

Thus, the integral of interest is∫ 1

0

∫ 1

√
x
ey

3 dy dx =

∫ 1

0

∫ y2

0
ey

3 dx dy =

∫ 1

0

[
xey

3
]x=y2

x=0
dy =

∫ 1

0
y2ey

3 dy =

[
ey

3

3

]1
0

=
e− 1

3
. □

15. Sketch the solid bounded by the the surfaces z = 0, y = 0, z = a−x+y and y = a− 1
a
x2,

where a is a positive constant. What is the volume of that solid?
Solution: the solid’s base is the parabolic region in the xy−plane bounded by the
line y = 0 and the parabola y = a− 1

ax
2. The volume of this solid is thus

V =

∫∫
D
(a− x+ y) dA =

∫∫
D
(a+ y) dA,

(why can we eliminate the x in the integral?) so that

V =

∫ a

−a

∫ a− 1
a
x2

0
(a+ y) dy dx =

∫ a

−a

[
ay +

y2

2

]y=a− 1
a
x2

y=0

dx

= 2

∫ a

0

(
3

2
a2 − 2x2 +

x4

2a2

)
dx =

[
3a2x− 4

3
x3 +

1

5a2
x5
]a
0

= 3a3 − 4

3
a3 +

1

5
a3 =

28

15
. □
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16. Evaluate
∫ ln 2

0

∫ ln 5

0
e2x−y dx dy.

Solution: the region of integration appears in red R, while the surface z = e2x−y

shows up in blue.

SinceR is a rectangle, we can proceed directly:∫ ln 2

0

∫ ln 5

0
e2x−y dx dy =

∫ ln 2

0

[
1

2
e2x−y

]x=ln 5

x=0

dy =

∫ ln 2

0
12e−y dy =

[
−12e−y

]y=ln 2

y=0
= 6. □

17. Evaluate
∫ 1

0

∫ 1

0
xy√

x2+y2+1
dx dy.

Solution: the region of integration appears in redR, while the surface z = xy√
x2+y2+1

shows up in blue.
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SinceR is a rectangle, we can proceed directly:

I =

∫ 1

0

∫ 1

0

xy√
x2 + y2 + 1

dx dy

=

∫ 1

0

[
y
√
x2 + y2 + 1

]x=1

x=0
dy =

∫ 1

0
y
[√

y2 + 2−
√
y2 + 1

]
dy

=

∫ 1

0
y
√
y2 + 2 dy −

∫ 1

0
y
√
y2 + 1 dy =

[
1

3
(y2 + 2)3/2

]y=1

y=0

−
[
1

3
(y2 + 1)3/2

]y=1

y=0

=
√
3− 4

3

√
2 +

1

3
. □

18. LetD = {(x, y) | 1 ≤ y ≤ e, y2 ≤ x ≤ y4}. Compute
∫∫

D
1
x
dA.

Solution: the region of integration appears in redR, while the surface z = 1
x shows

up in blue.

The double integral can be expressed as an iterated integral:

∫∫
D

1

x
dA =

∫ e

1

∫ y4

y2

1

x
dx dy =

∫ e

1
[ln |x|]y4

y2
dy =

∫ e

1

[
ln |y4| − ln |y2|

]
dy

=

∫ e

1

[
ln |y2|

]
dy =

∫ e

1

[
ln y2

]
dy = 2

∫ e

1
ln y dy = 2 [y ln y − y]e1 = 2. □

19. What is the volume of the solid lying under the paraboloid z = x2 + y2 and above the
domain bounded by y = x2 and x = y2?

Solution: the domainD is shown below:
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Thus, D = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤
√
x} and the solid of interest is shown in

the following igure:

Its volume is thus

V =

∫∫
D
(x2 + y2) dA =

∫ 1

0

∫ √
x

x2

(x2 + y2) dy dx =

∫ 1

0

[
x2y +

y3

3

]√x

x2

dx

=

∫ 1

0

[
x5/2 − x4 + x3/2

3
− x6

3

]
dx =

[
2

7
x7/2 − x5

5
+

2

15
x5/2 − x7

21

]1
0

=
6

35
. □

20. LetR be the disk of radius 5, centered at the origin. Evaluate
∫∫

R
x dA.

Solution: in polar coordinates,R rewrites as
R(r,θ) = {(r, θ) | 0 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}.
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Since x = r cos θ, the change of variables formula yields∫∫
R
x dA =

∫ 5

0

∫ 2π

0
r cos θ · r dθ dr =

∫ 5

0

∫ 2π

0
r2 cos θ dθ dr =

∫ 5

0

[
r2 sin θ

]2π
0
dr = 0.

Are you suprised by this result? You should not be. □

21. What is the volume of the solid lying under the cone z =
√
x2 + y2 and above the ring

4 ≤ x2 + y2 ≤ 25 located in the xy−plane?

Solution: the solid of interest is shown here:

If R = {(x, y) | 4 ≤ x2 + y2 ≤ 25}, we wish to evaluate
∫∫

R

√
x2 + y2 dA. In polar

coordinates, we have

R(r,θ) = {(r, θ) | 2 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}

and
√
x2 + y2 =

√
r2 = r, whence

∫∫
R

√
x2 + y2 dA =

∫ 5

2

∫ 2π

0
r · r dθ dr =

∫ 5

2

∫ 2π

0
r2 dθ dr =

∫ 5

2
2πr2 dr = 78π. □

22. Compute
∫ 2

0

∫ √
2x−x2

0

√
x2 + y2 dy dx.

Solution: the region of integration is shown below:
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In polar coordinates, this regions rewrites as

R(r,θ) = {(r, θ) : 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 2 cos θ},

whence the integral of interest is

I =

∫ 2

0

∫ √
2x−x2

0

√
x2 + y2 dy dx =

∫ π/2

0

∫ 2 cos θ

0

√
r2 · r dr dθ =

∫ π/2

0

[
r3

3

]r=2 cos θ

r=0

dθ

=

∫ π/2

0

(
8

3
cos3 θ

)
dθ =

[
8

9
cos2 θ sin θ + 16

9
sin θ

]π/2
0

=
16

9
. □

23. Find the mass and the centre of mass of the metal plate occupying the domain

D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 3},

if the density function of the plate is ρ(x, y) = y.
Solution: the total mass of the plate ism =

∫∫
D ρ(x, y) dA, while the coordinates of

the centre of mass (x, y) are given by

x =
1

m

∫∫
D
xρ(x, y) dA and y =

1

m

∫∫
D
yρ(x, y) dA.

Thus,

m =

∫ 2

0

∫ 3

0
y dy dx =

∫ 2

0

[
y2

2

]3
0

dx =

∫ 2

0

9

2
dx = 9

x =
1

9

∫ 2

0

∫ 3

0
xy dy dx =

1

9

∫ 2

0

[
x
y2

2

]3
0

dx =
1

9

∫ 2

0

9

2
x dx = 1

y =
1

9

∫ 2

0

∫ 3

0
y2 dy dx =

1

9

∫ 2

0

[
y3

3

]3
0

dx =
1

9

∫ 2

0
9 dx = 2. □
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24. Evaluate
∫ 3

0

∫ √
9−x2

0

∫ x

0
yz dy dz dx.

Solution: this can be done directly:

I =

∫ 3

0

∫ √
9−x2

0

∫ x

0
yz dy dz dx =

∫ 3

0

∫ √
9−x2

0

[
y2z

2

]x
0

dz dx =

∫ 3

0

∫ √
9−x2

0

x2z

2
dz dx

=

∫ 3

0

[
x2z2

4

]√9−x2

0

dx =

∫ 3

0

x2(9− x2)
4

dx =

[
−x

5

20
+

3

4
x3
]3
0

=
81

10
. □

25. Compute
∫∫∫

E
ex dV , where

E = {(x, y, z) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y, 0 ≤ z ≤ x+ y}.

Solution: again, this can be done directly, with the help of an iterated integral.

I =

∫ 1

0

∫ y

0

∫ x+y

0
ex dz dx dy =

∫ 1

0

∫ y

0
[exz]z=x+y

z=0 dx dy =

∫ 1

0

∫ y

0
ex(x+ y) dx dy

=

∫ 1

0
[ex(x+ y − 1)]x=y

x=0 dy =

∫ 1

0
(ey − 1)(y − 1) dy =

[
2yey − 3ey + y − y2

2

]1
0

=
7

2
− e. □

26. Compute
∫∫∫

E
xz dV , whereE is the pyramidwith vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and

(0, 1, 1).
Solution: we can de ineE by

E = {(x, y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ y, 0 ≤ x ≤ y − z},

as can be seen on the igure below.
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Thus,

∫∫∫
E
xz dV =

∫ 1

0

∫ y

0

∫ y−z

0
xz dx dz dy =

∫ 1

0

∫ y

0

1

2
(y − z)2z dz dy

=
1

2

∫ 1

0

[
1

2
y2z2 − 2

3
yz3 +

1

4
z4
]z=y

z=0

dy =
1

24

∫ 1

0
y4 dy =

1

24

[
1

25

]1
0

=
1

120
. □

27. LetW be a three-dimensional solid. Its volume can be computed by the following iter-
ated integral:

V (W ) =

∫ 2π

0

∫ 2

0

∫ 4−r2

0

r dz dr dθ.

FindW and V (W ).

Solution: in cartesian coordinates, V (W ) =
∫∫∫

W dV . The volume integral is given
in cylindrical coordinates, from which we can conclude that

W(r,θ,z) = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, 0 ≤ z ≤ 4− r2}.

In cartesian coordinates, the solid of interest lies under the paraboloid z = 4−x2−y2
and above the disk in the xy−plane of radius 2 centered at the origin.
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Thus,

V (W ) =

∫ −2

−2

∫ √
4−x2

−
√
4−x2

∫ 4−x2−y2

0
dz dy dx =

∫ 2π

0

∫ 2

0

∫ 4−r2

0
r dz dr dθ

=

∫ 2π

0

∫ 2

0
[rz]z=4−r2

z=0 dr dθ =
∫ 2π

0

∫ 2

0
r(4− r2) dr dθ

=

∫ 2π

0

[
−r

4

4
+ 2r2

]2
0

dθ = 4

∫ 2π

0
dθ = 8π. □

28. LetW be a three-dimensional solid. Its volume can be computed by the following iter-
ated integral: ∫ π/3

0

∫ 2π

0

∫ secφ

0

ρ2 sinφ dρ dθ dφ.

FindW and V (W ).

Solution: in cartesian coordinates, V (W ) =
∫∫∫

W dV . The volume integral is given
in spherical coordinates, from which we can conclude that

W(ρ,θ,φ) = {(ρ, θ, φ) | 0 ≤ ρ ≤ π/3, 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ secφ}.

Using the irst two sets of inequalities, we see that the solid is part of the conewhose
surface is z = 1√

3

√
x2 + y2 (in cartesian coordinates): when the radius is ρ = secφ,

the height of the of the point in cartesian coordinates is automatically 1, as can be
seen when we provide a transverse slice of the cone:
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Thus, the volume of the cone is

V (W ) =

∫ √
3

−
√
3

∫ √
3−x2

−
√
3−x2

∫ 1

1√
3

√
x2+y2

dz dy dx =

∫ π/3

0

∫ 2π

0

∫ secφ

0
ρ2 sinφ dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

[
1

3
ρ3 sinφ

]ρ=sec(φ)

ρ=0

dθ dφ =

∫ π/3

0

[
1

3
sec3 φ sinφθ

]θ=2π

θ=0

dφ

=

∫ π/3

0

2π

3
sec3 φ sinφ dφ =

[π
3

sec2 φ
]π/3
0

= π,

However, you do know how to compute the volume of a cone when the height and
the radius are known: V = 1

3πr
2h. How does that compare to your answer? □

29. Compute
∫∫∫

B
(x2 + y2 + z2) dV , whereB is the unit ball x2 + y2 + z2 ≤ 1.

Solution: in spherical coordinates, the region can be written as
B(ρ,θ,φ) = {(ρ, θ, φ) | 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π},

with ρ2 = x2 + y2 + z2, whence

I =

∫∫∫
B
(x2 + y2 + z2) dV =

∫ 1

0

∫ 2π

0

∫ π

0
ρ2 · ρ2 sinφ dφ dθ dρ

=

∫ 1

0

∫ 2π

0

∫ π

0
ρ4 sinφ dφ dθ dρ =

∫ 1

0

∫ 2π

0

[
−ρ4 cosφ

]φ=π/3

φ=0
dθ dρ

=

∫ 1

0

∫ 2π

0

ρ4

2
dθ dρ =

∫ 1

0
πρ4 dρ = π

[
ρ5

5

]1
0

=
π

5
. □

30. Evaluate ∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dz dx dy.

Solution: □

31. Solution: the volume of integration is de ined by the solid lying above the the disk of
radius 3 in the irst quadrant of the xy−plane and bounded by the cone z2 = x2+y2

and the sphere x2+y2+z2 = 18; as such, it is the solid of revolution of the following
curve
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around the z axis, under a rotation of π
2 radians:

In spherical coordinates, the region becomes{
(ρ, θ, φ) | 0 ≤ ρ ≤

√
18, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

4

}
with ρ2 = x2 + y2 + z2, whence

I =

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dz dx dy =

∫ √
18

0

∫ π/2

0

∫ π/4

0
ρ2 · ρ2 sinφ dφ dθ dρ

=

∫ √
18

0

∫ π/2

0

∫ π/4

0
ρ4 sinφ dφ dθ dρ =

∫ √
18

0

∫ π/2

0

[
−ρ4 cosφ

]φ=π/4

φ=0
dθ dρ

=

∫ √
18

0

∫ π/2

0
[1− cos(π/4)] ρ4 dθ dρ =

∫ √
18

0

π

2
(1− cos(π/4))ρ4 dρ

=

[
π

2
(1− cos(π/4))ρ

5

5

]√18

0

=
π

2
(1− cos(π/4))

√
18

5

5
. □

32. Compute the volume of the solid bounded by the cone z =
√
x2 + y2 and the sphere of

radius a > 0whose center is located at the origin.

Solution: let

A = B(0, a) ∩ Cone = {(x, y, z) | x2 + y2 + z2 ≤ a2 and z ≥
√
x2 + y2}

If (x, y, z) ∈ A, then
x2 + y2 ≤ z2 ≤ a2 − (x2 + y2),
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whence x2 + y2 ≤ a2

2 . Denote

C =

{
(x, y) | x2 + y2 ≤ a2

2

}
.

We then have

A = {(x, y, z) : (x, y) ∈ C,
√
x2 + y2 ≤ z ≤

√
a2 − (x2 + y2)}

and so

Vol(A) =
∫∫∫

A
dx dy dz =

∫∫
C

(√
a2 − (x2 + y2)−

√
x2 + y2

)
dx dy

=

∫
[0,a/

√
2]

∫
[−π,π]

(√
a2 − r2 − r

)
r dθ dr = · · · = 2πa3

3

(
1− 1√

2

)
. □

33. Compute the volume of the solid bounded by the paraboloı̈ds z = 10 − x2 − y2 and
z = 2(x2 + y2 − 1).

Solution: let

A = {(x, y, z) | 2(x2 + y2 − 1) ≤ z ≤ 10− x2 − y2}

If (x, y, z) ∈ A, then x2 + y2 ≤ 4 (why?). Denote

B = {(x, y) : x2 + y2 ≤ 4}.

We then have

A = {(x, y, z) | (x, y) ∈ B, 2(x2 + y2 − 1) ≤ z ≤ 10− x2 − y2}

and so

Vol(A) =
∫∫∫

A
dx dy dz =

∫∫
B

(
(10− x2 − y2)− 2(x2 + y2 − 1)

)
dx dy

= 3

∫∫
B

(
4− (x2 + y2)

)
dx dy = 3

∫
[0,2]

∫
[−π,π]

(4− r2)r dθ dr = · · · = 24π. □

34. Let T be the triangle with vertices (0, 0), (0, 1) and (1, 0). Compute
∫∫

T
exp

(
y−x
y+x

)
dx dy

using

a) polar coordinates;
b) the change of variables u = y − x, v = y + x.

Solution:
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a) Let x = r cos θ, y = r sin θ. Then

I =

∫∫
T
exp

(
y − x
y + x

)
dx dy

=

∫
[0,π/2]

∫
[0,(sin θ+cos θ)−1]

exp
(sin θ − cos θ

sin θ + cos θ

)
r dr dθ

=

∫
[0,π/2]

exp
(sin θ − cos θ

sin θ + cos θ

)(∫
[0,(sin θ+cos θ)−1]

r dr

)
dθ

=
1

2

∫
[0,π/2]

exp
(sin θ − cos θ

sin θ + cos θ

)(
1

sin θ + cos θ

)2

dθ

Set t = sin θ−cos θ
sin θ+cos θ . Then dt = 2

(sin θ+cos θ)2 dθ so that

I =
1

4

∫
[−1,1]

exp(t) dt = e− e−1

4
.

b) Let y = 1
2(u+ v), x = 1

2(v − u). Then

I =
1

2

∫∫
T ′

exp
(u
v

)
du dV

where T ′ is the triangle in the uv−plane bounded by the points (0, 0), (−1, 1)
and (1, 1). Then

I =
1

2

∫
[0,1]

∫
[−v,v]

exp
(u
v

)
du dV = · · · = e− e−1

4
. □

35. Compute the area of the planar region bounded by y = x2, y = 2x2, x = y2 and x = 3y2.
Solution: denote the region in question by D and set u = y

x2 and v = x
y2

. Then
(x, y) ∈ D if and only if (u, v) ∈ R, where R is the rectangle de ined by 1 ≤ u ≤ 2
and 1 ≤ v ≤ 3. Let φ : D → R be de ined by φ(x, y) = (u, v) = ( y

x2 ,
x
y2
). Then we

have
Jφ(x, y) = detDφ(x, y) = 3

x2y2
= 3u2v2

and ∣∣Jφ−1(u, v)
∣∣ = 1

|Jφ(x, y)|
=

1

3u2v2
.

Consequently,

Area(D) =

∫∫
D

dx dy =

∫∫
R

1

3u2v2
du dV =

1

3

∫
[1,2]

∫
[1,3]

1

v2u2
dV du = · · · = 1

9
. □

36. For what values of k ∈ R does the integral∫∫
x2+y2≤1

dx dy
(x2 + y2)k

converge? For each such k, ind the value to which it converges.
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Solution: irst, note that∫∫
x2+y2≤1

dx dy
(x2 + y2)k

= lim
ε→0

∫∫
ε2≤x2+y2≤1

dx dy
(x2 + y2)k

.

In polar coordinates, we have∫∫
ε2≤x2+y2≤1

dx dy
(x2 + y2)k

=

∫
[ε,1]

∫
[0,2π]

1

r2k−1
dθ dr = 2π

∫
[ε,1]

dr

r2k−1
.

Then,
lim
ε→0

∫
[ε,1]

dr

r2k−1

if and only if 2k − 1 < 1, i.e. k < 1. Furthermore,∫
[ε,1]

dr

r2k−1
=

1

2(1− k)
− ε2(1−k)

2(1− k)
,

and so ∫∫
x2+y2≤1

dx dy
(x2 + y2)k

=
π

1− k

when k < 1. □

37. Find the volume of the solid bounded by the interior of the sphere x2+y2+z2 = a2 and
the interior of the cylinder x2 + y2 = a2, a > 0.

Solution: let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ a2}.

We have

V = 2

∫∫
B

√
2a2 − (x2 + y2) dx dy = 2

∫
[0,a]

∫
[0,2π]

√
2a2 − r2 dθ dr

= 4π

∫
[0,a]

√
2a2 − r2r dr = · · · = 4π

3

(
23/2 − 1

)
a3. □

38. Find the volume of the solid bounded by the interior of the cone z2 = x2+y2 lying above
the paraboloı̈d z = 6− x2 − y2.

Solution: let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ 4}.

We have

V = 2

∫∫
B

(
6− (x2 + y2)−

√
x2 + y2

)
dx dy =

∫
[0,2]

∫
[0,2π]

(6− r2 − r)r dθ dr

= 2π

∫
[0,2]

(6− r2 − r)r dθ dr = · · · = 32π

3
. □
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39. Find thevolumeof the solidboundedby theplane z = 3x+4y lyingbelow theparaboloı̈d
z = x2 + y2.

Solution: the intersection of the paraboloı̈d and the plane is {(x, y, z) | 3x + 4y =
z = x2 + y2}. The set

D = {(x, y) | 3x+ 4y = x2 + y2}

is the circle of radius 5
2 centered at (32 , 2). For every (x, y) ∈ D, x2 + y2 ≤ 3x + 4y.

Let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ 4}.

We have
V =

∫∫
B

(
3x+ 4y − (x2 + y2)

)
dx dy.

Using the change of variable

x =
3

2
+ r cos θ, y = 2 + r sin θ,

we obtain V = 1875π
64 . □

21.9 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. LetS be a σ−algebra. Show that

a) A1, A2, . . . , An, . . . ∈ S =⇒
∩

n≥1An ∈ S;
b) A,B ∈ S =⇒ A ∩Bc ∈ S, and
c) ∅,Rn ∈ S.

3. Complete the proof of Lemma 291.1.

4. Compute
∫∫

s1(x, y) dx dy and
∫∫

s2(x, y) dx dy in the example of Section 21.3.

5. In the example of Section 21.3, show that:

a) for 1 ≤ i ≤ 2n, we have Area(An
i ) =

1
4n

(
i− 1

2

)
;

b) for 2n + 1 ≤ i ≤ 2n+1, we have Area(An
i ) =

1
4n

(
2n+1 − i− 1

2

)
.

6. Complete the proof of Corollary 294.

7. Is the converse of the third solved problem (Borel-Lebesgue integration onRn) true?

8. Let f : R2 → R be a Borel function and d ∈ R. Show that {z ∈ R2 | f(z) < d} ∈ B(R2).

9. Complete the proof of Proposition 289 for f + g and fg.
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10. Show that if g : R2 → R and

{z ∈ R2 | g(z) < d} ∈ B(R2)

for all d ∈ R, then g is a Borel function.

11. Show thatQ2 is dense in R2 but that Area(Q2) = 0.

12. Show that Vn = {f : Rn → R | f inite, Borel, integrable} is a vector space and that the
Borel-Lebesgue integral is a linear functional over Vn.

13. Complete the proof of Theorem 301.

14. Let f : R2 → R be de ined by f(z) = exp(−∥z∥2). Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

15. Let f : R2 → R be de ined by

f(z) =

{
x2 + y2 if (x, y) ∈ [0, 1]× [0, 1]

0 otherwise

Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

16. Let f : R2 → R be de ined by

f(z) =

{
x2 + y2 if x2 + y2 ≤ 1

0 otherwise

Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

17. Let f : R3 → R be de ined by

f(z) =

{
x+ y + z if (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1]

0 otherwise
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Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R3. Can you use the sequence to compute
∫
f dm? If

so, do so.

18. Give a proof of the Lebesgue monotone convergence theorem.

19. Prove Theorem 300.

20. Show thatΨ(r, θ) = (x, y) is a diffeomorphism between U and V for polar coordinates.

21. Show that |JΨ(r, φ, θ)| = r2 sinφ for spherical coordinates.

22. What is the volume of the solid de ined by the intersection of the two cylindersx2+z2 =
1 and y2 + z2 = 1?

23. What is the volume of the solid Q directly above the region bounded by 0 ≤ x ≤ 1,
1 ≤ y ≤ 2 in the xy−plane and below the plane z = 4− x− y?

24. Evaluate the integral
∫∫

D
x2y dx dywhereD is the region bounded by the curves y = x2

and x = y2 in the irst quadrant.

25. Let f, f1 : I → R be two continuous functions for which f1 ≤ f . If

A = {(x, y) ∈ R2 | f1(x) ≤ y ≤ f(x)},

show that ∫∫
χA(x, y) dx dy =

∫
I

(f1(x)− f(x)) dx.

Can you use this result to show that

Graph(f) = {(x, f(x)) | x ∈ I}

has 2Dmeasure 0?

26. The Gamma and Beta functions are de ined by

Γ(x) =

∫ ∞

0

tx−1e−t dt, for x > 0

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, for x > 0, y > 0

Show that the following properties hold:

a) Γ(x+ 1) = xΓ(x), (x > 0);
b) Γ(n+ 1) = n!, (n = 0, 1, 2, . . .);
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c) Γ(x) = 2
∫∞
0
s2x−1e−s2 ds, (x > 0);

d) Γ(1
2
) =
√
π, Γ(3

2
) =

√
π
2
;

e) B(x, y) = 2
∫ π/2

0
cos2x−1 θ sin2y−1 θ dθ, (x > 0, y > 0);

f) B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, (x > 0, y > 0).

27. Find the volumeof the solid boundedby the interior of each of the cylindersx2+y2 = a2,
x2 + z2 = a2 and y2 + z2 = a2, a > 0.

28. Let S be the sphere of radius a > 0 centered at (0, 0, a). Show that
∫∫∫

S
z2 dx dy dz =

8
5
πa5.

29. Compute
∫∫∫

e−(x2+y2+z2) dx dy dz.

30. Show that S1 = {(x, y) | x2 + y2 = 1} has 2Dmeasure 0.

31. Show that every countable subset of R2 has 2Dmeasure 0.
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