
Chapter 3

Limits and Continuity

The main objects of study in analysis are functions. In this chapter, we
introduce the ε−δ de initionof the limit of a function, provide results that
help to compute such limits, identify two types of continuity, and present
some of the theorems that form the basis of analytical endeavours.

3.1 Limit of a Function
The objects we have studied thus far are functions of N into R. However, most of calculus
deals with functions ofR intoR. How do we generalize the concepts and results we have de-
rived for sequences to functions?

LetA ⊆ R and c ∈ R. The neighbourhood Vδ(c), where δ > 0, is the interval
Vδ(c) = {x ∈ R : |x− c| < δ} = (c− δ, c+ δ).

The point c ∈ R is a limit point (or cluster point) ofA if every neighbourhoodVδ(c) contains
at least one point x ∈ A other than c.

aaaaaa

Example: consider the setA ⊆ R drawn below.
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3.1. LIMIT OF A FUNCTION

aaaaaa

The Vδ(c)−neighbourhood in blue contains points in A other than c, but c is
not a limit point of A since the Vδ(c)−neighbourhood in yellow does not con-
tain points of A.

The point at the centre of the green interval is a limit point ofA, however.

The set of all limit points ofA is denoted byA; a limit point of A does not have to be inA.

aaaaaa

Example: what are the limit points of A = { 1
n
| n ∈ N}?

Solution: let n ∈ N. The distance between a point 1
n

and its immediate suc-
cessor/predecessor 1

n±1
is

1

n
− 1

n± 1
=

1

n(n± 1)
>

1

3n2
.

Let δ = 1
3n2 . Then Vδ( 1n) = ( 1

n
− 1

3n2 ,
1
n
+ 1

3n2 ) ⊆ ( 1
n−1

, 1
n+1

), so the only point of A
in Vδ( 1n) is 1

n
. Thus 1

n
̸∈ A. No negative real number is a limit point of A; indeed,

if x < 0, set δ = |x|
2
. Then Vδ(x) ⊆ (−∞, 0) and so contains no point of A. Simi-

larly, no real number strictly greater than 1 is a limit point ofA. HenceA ⊆ [0, 1]\A.

Let x ∈ (0, 1] \ A. By the Archimedean property, ∃nx ∈ N s.t. nx >
1
x
> nx − 1, so

1
nx
< x < 1

nx−1
. Set δx = 1

2
min{|x − 1

nx
|, |x − 1

nx−1
|}. Then Vδx(x) contains none of

the points ofA.

The only remaining possibility is x = 0. Let δ > 0. By the Archimedean property,
∃Nδ such that 1

Nδ
< δ. But 0 ̸= 1

Nδ
∈ A, Thus

∅ ̸=
{ 1

Nδ

}
⊆ Vδ ∩ A = (−δ, δ) ∩ A,

so x = 0 is the only limit point of A: A = {0}. □
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CHAPTER 3. LIMITS AND CONTINUITY

Directly determining the limit points of a set is a time-intensive endeavour. Thankfully, there
is a link between limit points and convergent sequences.

aaaaaa

Theorem 24
A point c ∈ R is a limit point of A if and only if there is a sequence (an) ⊆ A, with
an ̸= c for n ∈ N, such that an → c.

Proof: suppose c is a limit point of A. By de inition, the neighbourhood V 1
n
(c)must

contain a point an ̸= c ∈ A, for all n ∈ N. Let ε > 0. By the Archimedean property,
∃Nε >

1
ε
s.t. 1

Nε
< ε. Thus

n > Nε =⇒ 0 < |an − c| <
1

n
<

1

Nε

< ε, i.e. an → c.

Conversely, suppose that there is a sequence (an) ⊆ A, with an ̸= c for all n ∈ N,
such that an → c. Let δ > 0. By de inition, ∃Nδ ∈ N, such that 0 < |an − c| < δ for
all n > Nδ . Then an ∈ Vδ(c) and an ̸= c for all n > Nδ . Thus any neighbourhood of c
contains at least one an ̸= c, so c ∈ A. ■

Any limit point of A is in fact the limit of a sequence in A, and vice-versa.

aaaaaa

Example: let A = [0, 1] ∩Q. What are the limit points of A?

Solution: any convergent sequence (an) ⊆ A is such that 0 ≤ an ≤ 1 for all
n ∈ N, so its limit must also lie in [0, 1], according to Theorem 15. On the other
hand, Theorem 24 tells us that any limit point of A is the limit of a sequence of
rationals in [0, 1]. The sequences ( 1

n
) and (1− 1

n
) lie inA. Since 1

n
→ 0 and 1− 1

n
→ 1,

then 0, 1 ∈ A.

Now, let r ∈ (0, 1). Set η = min{r, 1− r}.

Then η > 0 and 1
η
> 0. By the Archimedean property, ∃M ∈ N s.t.M > 1

η
. Then

0 ≤ r − η < r − 1

M
> r +

1

M
< r + η ≤ 1,

since η = r if r ≤ 1/2 and η = 1− r if r ≥ 1/2. So

n > M =⇒ 0 < r − 1

n
< r +

1

n
< 1.
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aaaaaa

But the density theorem states that for all n > M , ∃an ̸= r ∈ Q such that

r − 1

n
< an < r +

1

n
.

The sequence (an) thus constructed converges to r. Indeed, let ε > 0. According to
the Archimedean property, ∃N ∈ N such thatN > 1

ε
.

SetNε = max{M,N}. Then

n > Nε =⇒ 0 < |an − r| <
1

n
<

1

Nε

< ε,

and so an → r and r ∈ A. Consequently,A = [0, 1]. ■

Intuitively, a limit of a function f at c is a value L towards which f(x) “approaches” as x gets
closer to c, if it exists. But what does that actually mean? What would need to happen for the
value not to exist?

LetA ⊆ R, f : A→ R, and c ∈ A: L ∈ R is the limit of f at c if
∀ε > 0, ∃δε > 0 such that 0 < |x− c| < δε and x ∈ A =⇒ |f(x)− L| < ε,

which we denote by
lim
x→c

f(x) = L or by f(x)→ L, when x→ c.

The limit of f at c is not L ∈ R if
∃ε0 > 0, ∀δ > 0, ∃xδ ∈ A such that 0 < |xδ − c| < δε and |f(xδ)− L| ≥ ε0,

which we denote by
lim
x→c

f(x) ̸= L or by f(x) ̸→ L, when x→ c.
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CHAPTER 3. LIMITS AND CONTINUITY

The underlying principle is the same as that of the limit of a sequence: given ε > 0, we need
to ind a δε > 0 which satis ies the de inition. Graphically, this is equivalent to putting a hor-
izontal strip of width 2ε around the line y = L, and showing that there is a neighbourhood
Vδε(c) such that f(x) is in the strip for any x ∈ Vδε .

aaaaaa

Examples

1. Let f : [0, 1)→ R be the function de ined by

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

Show lim
x→0

f(x) = 2.

Proof: let ε > 0. Set δε = 1. Then

x ∈ [0, 1) and 0 < |x− c| < δε =⇒ |f(x) = 2| = 0 < 0 · δ < ε,

which completes the proof. ■

2. Let f : [0,∞)→ R be de ined by f(x) = x2+2x+2
x+1

. Show lim
x→2

f(x) = 10
3
.

Proof: let ε > 0. Set δε = ε. Then∣∣∣∣x2 + 2x+ 2

x+ 1
− 10

3

∣∣∣∣ = ∣∣∣∣3(x2 + 2x+ 2)− 10(x+ 1)

x+ 1

∣∣∣∣ = ∣∣∣∣3x2 − 4x− 4

3x+ 3

∣∣∣∣
=

∣∣∣∣3x+ 2

3x+ 3

∣∣∣∣︸ ︷︷ ︸
<1

|x− 2| < |x− 2| < δε = ε

when x ≥ 0 and 0 < |x− 2| < δε. ■

3. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: note that c ∈ A = R \ {0}. We can only use the de inition of
the limit if c ∈ A. That it does so is a given, as ( 1

n
) ⊆ A and 1

n
→ 0, with 1

n
̸= 0

for all n ∈ N, according to Theorem 24.

Let ε > 0 and set δε =
√
ε. Then∣∣x2 cos(1/x)− 0
∣∣ = |x|2| | cos(1/x)|︸ ︷︷ ︸

≤1

≤ |x|2 = |x− 0|2 < δ2ε < ε,

whenever x ∈ R \ {0} and 0 < |x− 0| < δε. ■

P. Boily (uOttawa) 71



3.1. LIMIT OF A FUNCTION

As is the case with sequences, a function has at most one limit at any of its limit points c.

aaaaaa

Theorem 25
Let A ⊆ R, f : A→ R and c a limit point of A. Then f has at most one limit at c.

Proof: suppose that

lim
x→c

f(x) = L′ and lim
x→c

f(x) = L′′, where L′ < L′′.

Let ε = L′′−L′

3
> 0. By de inition, ∃δ′ε, δ′′ε s.t. |f(x) − L′| < ε and |f(x) − L′′| < ε

whenever x ∈ A and 0 < |x− c| < δ′ε, 0 < |x− c| < δ′′ε .

Set δε = min{δ′ε, δ′′ε}. Then, whenever x ∈ A and 0 < |x− c| < δε,

f(x) < L′′ + ε = L′ +
L′′ − L′

3
=

2L′ + L′′

3
=
L′ + L′′

3
+
L′

3

<
L′ + L′′

3
+
L′′

3
<

2L′′ + L′

3
= L′′ − L′′ − L′

3
= L′′ − ε < f(x),

which is a contradiction, hence L′ ̸< L′′. The proof that L′′ ̸< L′ is identical. ■

As is the case with sequences, the de inition is useless if we do not have a candidate for L
beforehand. The next result allows us to get such a candidate before using the de inition.

aaaaaa

Theorem 26 ( )
Let A ⊆ R, f : A→ R and c a limit point of A. Then

lim
x→c

f(x) = L if and only if lim
n→∞

f(xn) = L

for any sequence (xn) ⊆ A such that xn → c, with xn ̸= c for all n ∈ N.

Proof: assume lim
x→c

f(x) = L. Let ε > 0. Then ∃δε > 0 such that

x ∈ A and 0 < |x− c| < δε =⇒ |f(x)− L| < ε.

Suppose (xn) ⊆ A is such that xn ̸= c for all n ∈ N and xn → c. Then ∃Mδε > 0 such
that 0 < |xn − c| < δε whenever n > Mδε .

LetNε =Mδε . Then

xn ̸= c ∈ A and n > Nε =⇒ 0 < |xn − c| < δε =⇒ |f(xn)− L| < ε,

which is to say f(xn)→ L.
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aaaaaa

Conversely, if lim
x→c

f(x) ̸= L, then ∃ε0 > 0 s.t. ∀δ > 0, ∃xδ ∈ A with 0 < |xδ − c| < δ

but |f(x)− L| ≥ ε0. Thus, for n ∈ N and δ = 1
n
, ∃xn = xδ as above.

The sequence (xn) ⊆ A is such that 0 < |xn − c| < 1
n

and |f(xn) − L| ≥ ε0.
According to the squeeze theorem, xn → c, with |f(xn) − L| ≥ ε0 for all n ∈ N.
Thus f(xn) ̸→ L. ■

Let us take a look at a few examples.

aaaaaa

Examples

1. Let f : R→ R, f(x) = 3x3 + x+ 1. Compute lim
x→7

f(x).

Solution: let (xn) ⊆ R \ {7}with xn → 7. Then

lim
n→∞

f(xn) = lim
n→∞

(3x2n + xn + 1) = 3
(

lim
n→∞

xn

)2
+ lim

n→∞
xn + 1

= 3 · 73 + 7 + 1 = 1037.

Thus f(x)→ 1037when x→ 7, according to Theorem 26. □

2. Let f : (2,∞)→ R, f(x) = (x−1)(x−2)
(x−2)

. Compute lim
x→2

f(x).

Solution: let (xn) ⊆ R \ {2}with xn → 2. Then

lim
n→∞

f(xn) = lim
n→∞

(xn − 1)(xn − 2)

(xn − 2)
= lim

n→∞
(xn − 1) = lim

n→∞
xn − 1

= 2− 1 = 1.

Since (xn)was arbitrary, f(x)→ 1when x→ 2, according to Theorem 26. □

3. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: let (xn) ⊆ R \ {0} be any sequence converging to 0. Then

0 ≤ |x2n cos(1/xn)| ≤ |x2n| = |xn|2.

However, since xn → 0, then both |xn| → 0 and |xn|2 → 0, which is to say that

lim
n→0
|x2n cos(1/xn)| = 0

according to the squeeze theorem. Thus x2n cos(1/xn) → 0. Since (xn) was
arbitrary, f(x)→ 0when x→ 0, according to the sequential criterion. ■
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aaaaaa

4. Let f : R→ R be the function de ined by

f(x) =

{
0, x ∈ Q
1, x ̸∈ Q

Show that lim
x→0

f(x) does not exist.

Proof: de ine (xn), (yn) by xn = 1
n
, yn =

√
2
n

for all n ∈ N. Then (xn) ⊆ Q and
(yn) ⊆ R \ Q. Furthermore, xn, yn → 0, with xn, yn ̸= 0 for all n ∈ N. But
f(xn) = 0 and f(yn) = 1 for all n ∈ N, so

lim
n→∞

f(xn) = 0 ̸= 1 = lim
n→∞

f(yn),

thus lim
x→0

f(x) does not exist. ■

5. Let sgn : R→ R be the function de ined by

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

Show that lim
x→0

(x+ sgn(x)) does not exist.

Proof: de ine (xn), (yn) by xn = 1
n
, yn = − 1

n
for all n ∈ N. Then xn, yn → 0,

with xn, yn ̸= 0 for all n ∈ N.

But f(xn) = 1
n
+ sgn

(
1
n

)
= 1

n
+ 1, and f(yn) = − 1

n
+ sgn

(
− 1

n

)
= − 1

n
− 1 for

all n ∈ N, so

lim
n→∞

f(xn) = lim
n→∞

( 1
n
+ 1
)
̸= −1 = lim

n→∞

( 1
n
+ 1
)
= lim

n→∞
f(xn),

thus lim
x→0

f(x) does not exist. ■

To show that the limit does not exist, it is enough to ind two speci ic sequences (xn), (yn) ⊆ A,
with xn, yn ̸= c for all n ∈ N and xn, yn → c, such that f(xn)→ L1, f(yn)→ L2, L1 ̸= L2.

But we cannot show that the limit L exists by inding two sequences (xn), (yn) ⊆ A with
xn, yn ̸= c for all n ∈ N, xn, yn → c, and f(xn), f(yn)→ L.

Note that at no point have we needed to use the graph of a function to compute a limit or
prove its existence.
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CHAPTER 3. LIMITS AND CONTINUITY

3.2 Properties of Limits
Limits behave quite nicely with respect to the usual operations.

aaaaaa

Theorem 27 (O L )
Let A ⊆ R, f, g : A → R, and c a limit point of A. Suppose f(x) → L and g(x) → M
when x→ c. Then

1. lim
x→c
|f(x)| = |L|;

2. lim
x→c

(f(x) + g(x)) = L+M ;

3. lim
x→c

f(x)g(x) = LM ;

4. lim
x→c

f(x)

g(x)
=

L

M
, if g(x) ̸= 0 for all x ∈ A and ifM ̸= 0.

Proof: this result is an easy consequence of Theorems 14 and 26. Let (xn) ⊆ Awith
xn ̸= c and xn → c for all n ∈ N. Then f(xn)→ L and g(xn)→M .

1. lim
x→c
|f(x)| = lim

n→∞
|f(xn)| =

∣∣ lim
n→∞

f(xn)
∣∣ = L.

2. lim
x→c

[
f(x) + g(x)

]
= lim

n→∞

[
f(xn) + g(xn)

]
= lim

n→∞
f(xn) + lim

n→∞
g(xn) = L+M .

3. lim
x→c

[
f(x)g(x)

]
= lim

n→∞

[
f(xn)g(xn)

]
= lim

n→∞
f(xn) · lim

n→∞
g(xn) = LM .

4. lim
x→c

[
f(x)

g(x)

]
= lim

n→∞

[
f(xn)

g(xn)

]
=

lim
n→∞

f(xn)

lim
n→∞

g(xn)
=

L

M
, if g(x) ̸= 0 for x ∈ A and if

M = 0. ■

There is also a squeeze theorem for functions, but it is not nearly as useful as the correspond-
ing result for sequences.

aaaaaa

Theorem 28 ( F )
Let A ⊆ R, f, g, h : A → R, and c a limit point of A. If f(x) ≤ g(x) ≤ h(x) for all
x ∈ A and if f(x), h(x)→ L when x→ c, then g(x)→ L when x→ c.

Proof: let (xn) ⊆ A, with xn ̸= c for all n ∈ N and xn → c. According to the
sequential criterion,

lim
n→∞

f(xn) = lim
n→∞

h(xn) = L.

Since f(xn) ≤ g(xn) ≤ h(xn) for all n ∈ N, then limn→∞ g(xn) = L, by the squeeze
theorem(for sequences). Since (xn)was arbitrary, we conclude that g(x)→ L, again
by the sequential criterion. ■
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Let’s take a look at some examples.

aaaaaa

Examples

1. Let f : R→ R, f(x) = k, k ∈ R. Show that lim
x→c

f(x) = k for all c ∈ R.

Proof: let ε > 0. Set δε = ε. Then |f(x) − k| = |k − k| = 0 < ε,
when 0 < |x− c| < δε = ε. ■

2. Let f : R→ R, f(x) = x. Show that lim
x→c

f(x) = f(c) for all c ∈ R.

Proof: let ε > 0. Set δε = ε. Then |f(x) − c| = |x − c| < δε = ε,
when 0 < |x− c| < δε = ε. ■

3. Let f : R→ R, f(x) = x3+2x−4
x2+1

. Compute lim
x→3

f(x).

Solution: according to Theorem 27, and the preceding examples,

lim
x→3

(x3 + 2x+ 4) =
(
lim
x→3

x
)3

+ 2
(
lim
x→3

x
)
+ lim

x→3
4 = 32 + 2(3) + 3 = 37

lim
x→3

(x2 + 1) =
(
lim
x→3

x
)2

+ 1 = 32 + 1 = 10,

and so lim
x→3

x3 + 2x− 4

x2 + 1
= 10

3
, because x2 + 1 ̸= 0 for all x ∈ R. □

4. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: we cannot use the multiplication component of Theorem 27 to
compute the limit since lim

x→0
cos(1/x) does not exist.

Indeed, let (xn), (yn) ⊆ R \ {0} be such that xn = 1
(2n−1)π

, and yn = 1
2nπ

for all
n ∈ N. Then xn, yn → 0. But

cos
(

1

xn

)
= cos((2n− 1)π) = −1 and cos

(
1

yn

)
= cos(2nπ) = 1

for all n ∈ N. Then

cos(1/xn)→ −1 ̸= 1← cos(1/yn).

This does not mean that
lim
x→0

x2 cos
(1
x

)
does not exist, only that we cannot use Theorem 27 to compute it.

In fact, the squeeze theorem for functions does the trick, with
−x2 ≤ f(x) ≤ x2. ■
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Other sequence concepts have analogous de initions in the world of functions. Let A ⊆ R,
f : A → R and c ∈ A. The function f is bounded on some neighbourhood of c if ∃δ > 0
andM > 0 are such that |f(x)| ≤M for all x ∈ A ∩ Vδ(c).

aaaaaa

Theorem 29
If A ⊆ R, f : A → R, c ∈ A, and lim

x→c
f(x) = L for some L ∈ R, then f is bounded on

some neighbourhood of c.

Proof: Let ε = 1. By de inition, ∃δ1 > 0 such that |f(x) − L| < 1 whenever
x ∈ A and 0 < |x− c| < δ1. Since

|f(x)| − |L| < |f(x)− L|,

then |f(x)| − |L| ≤ 1whenever x ∈ A and 0 < |x− c| < δ1.

If c ̸∈ A, set M = |L| + 1. If c ∈ A, set M = max{|f(c)|, |L| + 1}. In either
case, |f(x)| ≤M whenever x ∈ A and 0 < |x− c| < δ1. ■

3.3 Continuous Functions
Functions like polynomials, or trigonometric functions, are continuous, which is a fundamen-
tal notion of calculus.

Intuitively, a function is continuous at a point if the graph of the function at that point can
be traced without lifting the pen. The notion of “continuity” is fundamental is calculus.

But we emphasized earlier that limits could be computed/shown to exist without refer-
ring to the graph of a function. What does that mean for continuity?

LetA ⊆ R, f : A→ R, and c ∈ A; f is continuous at c if

∀ε > 0,∃δε > 0 such that |x− c| < δε and x ∈ A =⇒ |f(x)− f(c)| < ε.

When computing the limit of f at c, we are interested in the behaviour of the function near c,
but not at c. Whenwe are dealing with continuity, we also include the behaviour at c. When
c is a limit point of A, this de inition actually means that

lim
x→c

f(x) = f(c).

If c ̸∈ A, the expression lim
x→c

f(x) is meaningless.¹ In that case, f is automatically continuous
at c. Indeed, there will then be a δ > 0 such that Vδ(c) contains no point of A but c. Then for
ε > 0, whenever x ∈ A and |x− c| < δ (i.e., whenever x = c), we have

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ε.

¹Since there are no sequence (xn) ⊆ Awith xn ̸= c for all n ∈ N and xn → c.
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The de inition contains 3 statements: a function f is continuous at c if

1. f(c) is de ined;

2. lim
x→c

f(x) exists, and

3. lim
x→c

f(x) = f(c).

LetB ⊆ A. If f is continuous for all c ∈ B, then we say that f is continuous onB.

aaaaaa

Examples

Let f : [0,∞)→ R, f(x) = x2+2x+2
x+1

. Is f continuous at c = 2?

Solution: since 2 is a limit point of [0,∞), we need only verify if
lim
x→2

f(x) = f(2). But we have already seen that f(x) → 10
3

= f(2) when
x→ 2, so f is continuous at c = 2. □

Let f : [0, 1)→ R,

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

Is f continuous at c = 0?

Solution: since 0 is a limit point of [0, 1), weneedonly verify if lim
x→0

f(x) = f(0).
But we have already seen that f(x) → 2 ̸= 3 = f(0) when x → 0, so f is not
continuous at c = 0. □

Let f : R→ R, f(x) = 3x3 + x+ 1. Is f continuous at c = 7?

Solution: since 7 is a limit point of R, we need only verify if lim
x→7

f(x) = f(7).
But we have already seen that f(x) → 1037 = f(7) when x → 7, so f is
continuous at c = 7. □

Let f : R→ R,

f(x) =

{
0, x ∈ Q
1, x ̸∈ Q

Is f continuous at c = 0?

Solution: as f(0) = 0, we only need to verify if lim
x→0

f(x) = f(0). But
we have already seen that lim

x→0
f(x) does not exist, so f is not continuous at

c = 0. ■
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aaaaaa

Let f : (2,∞)→ R, f(x) = (x−1)(x−2)
(x−2)

. Is f continuous at c = 2?

Solution: since f is not de ined at c = 2 and since 2 ̸∈ A, f is not
continuous at c = 2. □

Let f : R→ R, f(x) = k, k ∈ R. Is f continuous on R?

Solution: since all c ∈ R are limit points of R, we need only verify if
lim
x→c

f(x) = f(c). But we have already seen that f(x)→ k = f(c) for all c ∈ R,
so f is continuous on R. □

Let f : [0,∞)→ R, f(x) = √x. Is f continuous on [0,∞)?

Solution: let ε > 0. If c = 0, set δε = ε. Then

x ≥ 0 and |x− 0| < δε =⇒ f(x)− f(0)| =
√
x =

√
|x− 0| <

√
δε = ε,

so f is continuous at c = 0. If c > 0, set δε =
√
cε. Then

|f(x)− f(c)| = |
√
x−
√
c| = |x− c|√

x+
√
c
<
|x− c|√

c
<

δε√
c
= ε

whenever x ≥ 0 and |x− c| < δε. Hence f is continuous at any c > 0. □

Let f : R→ R,

f(x) =

{
x, x ∈ Q
0, x ̸∈ Q

Is f continuous at c = 0? At c ̸= 0?

Solution: since f(0) = 0, we need to see if lim
x→0

f(x) = 0. Let ε > 0 and set
δε > 0. Then |x− 0| < δε =⇒ |f(x)− f(0)| = |f(x)| ≤ |x| = |x− 0| < δε = ε,
so f is continuous at c = 0. Now let n ∈ N. According to the density theorem,
∃xn ∈ Q, yn ̸∈ Q such that

c < xn + c+
1

n
and c < yn < c+

1

n
.

According to the sequence squeeze theorem, xn, yn → c. But f(xn) = xn and
f(yn) = 0 for all n ∈ N, so

lim
n→∞

f(xn) = lim
n→∞

xn = c and lim
n→∞

f(yn) = lim
n→∞

0 = 0.

Since c ̸= 0, these limits are different, and so lim
x→c

f(x) does not exist, according
to the sequential criterion. □
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aaaaaa

LetA = {x ∈ R | x > 0}. Consider the function f : A→ R de ined by

f(x) =

{
0 if x ̸∈ Q
1
n

if x = m
n
∈ Q, with gcd(m,n) = 1

Where is f is continuous?

Solution: we consider two types of limit points of A: a ∈ Q and b ̸∈ Q. If
0 < a ∈ Q, let (xn) ⊆ A ∩ Q∁ be such that xn → a. Then f(xn) → 0. But
f(a) > 0, so f(x) ̸→ f(a)when x→ a, according to the sequential criterion.

If 0 < b ̸∈ Q, let ε > 0. By the Archimedean property, there exists an
integer N0 >

1
ε
. There can only be a inite set of rationals with denominator

< N0 in the interval (b − 1, b + 1). Indeed, if n < N0 and m
n
∈ (b − 1, b + 1)

then whenever |k| > 2n, we have:∣∣∣∣m+ k

n
− m

n

∣∣∣∣ = |k|n > 2 =⇒ m+ k

n
̸∈ (b− 1, b+ 1).

Consequently, ∃δ > 0 such that there are no rational number m
n

with denomi-
nator< N0 in (b− δ, b+ δ), which is to say that for all x ∈ (b− δ, b+ δ), either
f(x) = 0 (when x is irrational) or f(x) = 1

n
≤ 1

N0
(when x is rational).

Thus, if |x− b| < δ and x ∈ A, we have

|f(x)− f(b)| = |f(x)− 0| = |f(x)| ≤ 1

N0

< ε,

so f(x)→ f(b)when x→ b, i.e., f is only continuous on A ∩ (R \Q). □

Continuity behaves very nicely with respect to elementary operations on functions.

aaaaaa

Theorem 30 (O C F )
Let A ⊆ R, f, g : A→ R, and c ∈ A. If f, g are continuous at c, then

1. |f | is continuous at c;

2. f + g is continuous at c;

3. fg is continuous at c;

4. f
g
is continuous at c if g ̸= 0 on A.
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aaaaaa

Proof: if c ̸∈ A, there is nothing to prove. If c ∈ A, then

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c).

We can then apply Theorem 27 directly with L = f(c) andM = g(c). ■

Since constants and the identity function are continuous on R (as we saw in the preceding
examples), so are polynomial functions. Furthermore, rational functions are continuous on
their domain.

The composition of the functions f : A → B and g : B → C is the function g ◦ f : A → C ,
with (g ◦ f)(x) = g(f(x)) for all x ∈ A.

aaaaaa

Theorem 31 (C C F )
Let A,B ⊆ R, f : A→ R, g : B → R, c ∈ A. If f is continuous at c, g is continuous at
f(c), and f(A) ⊆ B, then g ◦ f : A→ B is continuous at c.

Proof: let ε > 0. As g is continuous at f(c), ∃δε > 0 such that

y ∈ B and |y − f(c)| < δε =⇒ |g(y)− g(f(c))| < ε.

Since f is continuous at c, ∃ηδε = ηε > 0 such that

x ∈ A and |x− c| < ηδε =⇒ |f(x)− f(c)| < δε =⇒

x ∈ A and |x− c| < ηε =⇒ |(g ◦ f)(x)− (g ◦ f)(c)| = |g(f(x))− g(f(c))| < ε,

which completes the proof. ■

It is not too dif icult to see that Theorems 30 and 31 remain valid if we replace “continuous
at c” with “continuous at A”.

aaaaaa

Example: let f : [0,∞) → R, de ined by f(x) =
√
3x3 + x+ 1. Show that f is

continuous on [0,∞).

Proof: we can write f = g ◦ h, where g : [0,∞) → R, g(y) =
√
y and

h : R→ R, h(x) = 3x2 + x+ 1. Since g and h are both continuous on their domains
and h(R) ⊆ [0,∞), g is continuous on [0,∞), according to Theorem 31. ■

An algebraic function is a function obtained via the (possibly repeated) composition of ratio-
nal functions and root functions. The class of algebraic functions is continuous on its domain.
The same goes for trigonometric, exponential, and logarithmic functions, via their power se-
ries de inition.
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3.4 Max/Min Theorem
We begin our study of the classical theorems of calculus. LetA ⊆ R, f : A→ R. The function
f : A→ R is bounded onA if ∃M > 0 such that |f(x)| < M for all x ∈ A.

aaaaaa

Examples

1. f : [0, 1]→ R, f(x) = x2, is bounded on [0, 1] as |f(x)| < 2,∀x ∈ [0, 1].

2. g : R→ R, g(x) = x2, is not bounded onR Indeed, suppose ∃M > 0 such that
|f(x)| < M for all x ∈ R. Then |x2| = |x|2 < M for all x ∈ R, i.e. |x| <

√
M

for all x ∈ R =⇒ M is an upper bound of R. But there is no such bound, ∴ g
is not bounded on R.

3. f : (0, 1) → R, f(x) = 1
x
, is not bounded on (0, 1], but it is bounded on [a, 1]

for all a ∈ (0, 1]. □

There is a link between continuity and boundedness.

aaaaaa

Theorem 32
If f : [a, b]→ R is continuous on [a, b], then f is bounded on [a, b].

Proof: suppose f is not bounded on [a, b]. Hence, for all n ∈ N, ∃xn ∈ [a, b]
such that |f(xn)| > n. However, (xn) ⊆ [a, b] so that (xn) is bounded.

According to Bolzano-Weierstrass, ∃(xnk
) ⊆ (xn) such that xnk

→ x̂ ∈ [a, b],
since

a ≤ xnk
≤ b for all k.

Since f is continuous, we have

f(x̂) = lim
x→x̂

f(x) = lim
k→∞

f(xnk
),

so (f(xnk
)) is bounded, being a convergent sequence. But this contradicts the as-

sumption that |f(xnk
)| > nk ≥ k for all k. Hence f is bounded on [a, b]. ■

Continuous functions on closed, bounded sets have a useful property. LetA ⊆ R, f : A→ R.
We say that f reaches a global maximum on A if ∃x∗ ∈ A such that f(x∗) ≥ f(x) for all
x ∈ A. Similarly, f reaches a global minimum on A if ∃x∗ ∈ A such that f(x∗) ≤ f(x) for
all x ∈ A.

aaaaaa
Theorem 33 (M /M T )
If f : [a, b] → R is continuous, then f reaches a global maximum and a global mini-
mum of [a, b].
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aaaaaa

Proof: let f([a, b]) = {f(x) | x ∈ [a, b]}. According to Theorem 32, f([a, b]) is
bounded as f is continous, and so, by completeness of R,

s∗ = sup{f(x) | x ∈ [a, b]} and s∗ = inf{f(x) | x ∈ [a, b]}

both exist. We need only show ∃x∗, x∗ ∈ [a, b] such that f(x∗) = s∗ and f(x∗) = s∗.

Since s∗ − 1
n

is not an upper bound of f([a, b]) for every n ∈ N, ∃xn ∈ [a, b]
with

s∗ − 1

n
< f(xn) ≤ s∗, for all n ∈ N.

According to the squeeze theorem, we must have f(xn) → s∗ (this says nothing
about whether xn converges or not, however).

But (xn) ⊆ [a, b] is bounded, so applying the Bolzano-Weierstrass theorem,
we ind that ∃(xnk

) ⊆ (xn) such that xnk
→ x∗ ∈ [a, b]. As f is continuous,

s∗ = lim
k→∞

f(xnk
) = f

(
lim
k→∞

xnk

)
= f(x∗).

The existence of x∗ ∈ [a, b] such that f(x∗) = s∗ is shown similarly. ■

Let’s take a look at some examples.

aaaaaa

Examples

1. The function f : [0, 1]→ R, f(x) = x2, reaches its maximum andminimum on
[0, 1] since f is continuous, being a polynomial.

2. Let f : [0, 1)→ R be the function de ined by

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

The function f is not continuous on [0, 1), and [0, 1) is not closed and bounded,
so we cannot use the max/min theorem to conclude that f reaches its global
max/min on [0, 1)... even though it does: 3 at x∗ = 0 and 2 at any x∗ ∈ (0, 1).²

3. The function f : [a, 1] → R, a ∈ (0, 1], de ined by f(x) = 1
x
reaches its global

max/global min on [a, 1] as f is continuous on [a, 1], being rational there.

4. The function f : (0, 1]→ R de ined by f(x) = 1
x
is continuous on (0, 1], but we

cannot use the max/min theorem as (0, 1] is not closed. In this case, f has no
global maximum, but it does have a global minimum at x = 1. □
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3.5 Intermediate Value Theorem
The following result has many applications; notably it can help locate the roots of a function.

aaaaaa

Theorem 34
Let f : [a, b] → R be continuous. If ∃α, β ∈ [a, b] such that f(α)f(β) < 0, then
∃γ ∈ (a, b) such that f(γ) = 0.

Proof: we prove the result for f(α) < 0 < f(β); the other case is similar.
Write α1 = α, β1 = β, I1 = [α1, β1], and γ1 = α1+β1

2
. There are 3 possibilities:

i. if f(γ1) = 0, set γ = γ1; then γ ∈ (α1, β1) and the theorem is proven;
ii. if f(γ1) > 0, set α2 = α1, β2 = γ1;
iii. if f(γ1) < 0, set α2 = γ1, β2 = β1.

In the last two cases, set I2 = [α2, β2]. Then I1 ⊇ I2, length(I1) = β1−α1

20
and

f(α2) < 0 < f(β2).

This is the base case n = 1 of an induction process, which can be extended for all
n ∈ N. Either one of two things can occur:

1. ∃n ∈ N such that f(γn) = 0, with γn ∈ (αn, βn) ⊆ (α, β), in which case the
theorem is proven, or

2. there is a chain of nested intervals

I1 ⊇ I2 ⊇ · · · Ik ⊇ Ik+1 ⊇ · · ·

where In = [αn, βn], length(In) = βn−αn

2n−1 , f(αn) < 0 < f(βn) ∀n ∈ N.

According to the nested intervals theorem, since

inf
n∈N
{length(In)} = lim

n→∞

βn − αn

2n−1
= 0,

∃c ∈ [α, β] ⊆ [a, b] such that∩n∈N In = {c}.

It remains to show that f(c) = 0. Note that the sequences (αn), (βn)
both converge to c. Indeed, let ε > 0. By the Archimedean property, ∃Nε ∈ N
such thatNε > log2(β−α

ε
) + 1.

Since c ∈ In for all n ∈ N, then |αn − c| < length(In) = β−α
2n−1 < ε

whenever n > Nε. The proof that βn → c is identical.
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aaaaaa

Since f is continuous on [a, b], it is also continuous at c. Thus,

lim
n→∞

f(αn) = lim
n→∞

f(βn) = f(c).

But f(αn) < 0 for all n, so, Theorem 15:

f(c) = lim
n→∞

f(αn) ≤ 0.

Using the same Theorem, we have f(c) ≥ 0. Then f(c) = 0. Lastly, note that
c ̸= α, β; otherwise, f(α)f(β) = 0.

This concludes the proof, with γ = c. ■

We can use the result to revisit a corollary from Chapter 1.

aaaaaa

Example: Show that ∃x ∈ R+ such that x2 = 2.

Proof: the function f : [0, 2] → R de ined by f(x) = x2 − 2 is continuous on
[0, 2]. As f(0) = 02 − 2 = −2 < 0 and f(2) = 22 − 2 = 2 > 0, ∃γ ∈ (0, 2) such that
γ2 − 2 = 0, so γ2 = 2, according to Theorem 34. ■

This result easily generalizes to the following.

aaaaaa

Theorem 35 (I V T )
Let f : [a, b] → R be continuous. If ∃α < β ∈ [a, b] s.t. f(α) < k < f(β) or
f(α) > k > f(β), then ∃γ ∈ (a, b) such that f(γ) = k.

Proof: assume that f(α) < k < f(β); the proof for the other case is similar.
Consider the function g : [a, b]→ R de ined by g(x) = f(x)− k. Theorem 30 shows
that g is continuous on [a, b]. Furthermore,

g(α) = f(α)− k < k − k = 0 < f(β)− k = g(β).

By Theorem 34, ∃γ ∈ (α, β) such that g(γ) = f(γ)− k = 0. Thus f(γ) = k. ■

The following result combines the max/min and the intermediate value theorems.

aaaaaa

Theorem 36
If f : [a, b]→ R is continuous, then f([a, b]) is a closed and bounded interval.

Proof: Let m = inf{f [a, b]} and M = sup{f [a, b]}. According to the max/min
theorem, ∃α, β ∈ [a, b] such that f(α) = m and f(β) =M .
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aaaaaa

If m = M , then f is constant and f([a, b]) = [m,m] = [M,M ]. If m < M , then
α ̸= β. Furthermore,m ≤ f(x) ≤M for all x ∈ [a, b], so that f([a, b]) ⊆ [m,M ].

Now, let k ∈ [m,M ]. According to the intermediate value theorem, ∃γ be-
tween α and β such that f(γ) = k. Hence k ∈ f([a, b]) and so [m,M ] ⊆ f([a, b]).
Consequently, f([a, b]) = [m,M ]. ■

The image of any interval by a continuous function is always an interval, but the only time
that we know for a fact that image is of the same type as the original is when the original is
closed and bounded.

aaaaaa

Examples

1. Let f : [0, 1] → R, f(x) = 2x − 1. Then f([0, 1]) is closed and bounded (in
fact, f([0, 1]) = [−1, 1], but the endpoints of f([−1, 1]) are not provided by
Theorem 36).

2. The function f : (0, 2π) → R de ined by f(x) = sinx is continuous and
f((0, 2π)) = [−1, 1], but Theorem 36 does not apply.

3.6 Uniform Continuity
If f : A → R is continuous (on A), then for ε > 0 and c ∈ A, the δε > 0 that is used to show
continuity of f at c generally depends on ε and on c. But there might be instances when δε
depends only on ε.

The function f is uniformly continuous onA if

x, y ∈ A and |x− y| < δε =⇒ |f(x)− f(y)| < ε.

The notion of uniform continuity is more restrictive than that of (simple) continuity.
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aaaaaa

Theorem 37
If f : A→ R is uniformly continuous on A, then f is continuous on A.

Proof: let c ∈ A and ε > 0. As f is uniformly continuous on A, ∃δε > 0 such
that

|f(x)− f(y)| < ε whenever |x− y| < δε and x, y ∈ A.
In particular, if y = c then

|f(x)− f(c)| < ε whenever |x− c| < δε and x ∈ A.

As c is arbitrary, f is continuous onA. ■

The converse of Theorem 37 is false, as the following example shows.

aaaaaa

Example: show that f : (0,∞) → R de ined by f(x) = 1
x
is continuous on (0,∞)

but not uniformly continuous on (0,∞).

Proof: that f is continuous on (0,∞) is immediate, as it is a rational func-
tion. Let (xn) = ( 1

n
) ⊆ (0,∞). Clearly, (xn) is a Cauchy sequence as it is a

convergent sequence. But f(xn) = 1
1/n

= n for all n ∈ N, so (f(xn)) is not a Cauchy
sequence in R (as it is not bounded, and thus divergent).

According to a lemma that we will prove next, f cannot be uniformly continu-
ous on (0,∞). ■

In a sense, continuity only requires that there be no “holes” in the function; uniform continu-
ity requires that the combination of domain and rule plays “nicely”.

aaaaaa

Lemma: if f is uniformly continuous onA and (xn) ⊆ A is a Cauchy sequence, then
f(xn) is a Cauchy sequence.

Proof: if (xn) ⊆ A is a Cauchy sequence and δ > 0, ∃Nδ ∈ N such that
|xm − xn| < δ wheneverm,n > Nδ .

But f is uniformly continuous onA, so that ∀ε > 0, ∃δε > 0 such that

x, y ∈ A and |x− y| < δε =⇒ |f(x)− f(y)| < ε.

Combining these two statements, withNε =Mδε , yields

m,n > Nε =⇒ |xm − xn| < δε =⇒ |f(xm)− f(xn)| < ε,

and so (f(xn)) is a Cauchy sequence. ■
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While continuous functions are not generally uniformly continuous, there is a speci ic class
of functions for which continuity is equivalent to uniform continuity.

aaaaaa

Theorem 38
Let f : [a, b]→ R. Then f is uniformly continuous on [a, b] if it is continuous on [a, b].

Proof: this is the converse of Theorem 37. Assume f is continuous on [a, b].
If f is not uniformly continuous, then ∃ε0 > 0 such that ∀δ > 0, ∃xδ, yδ ∈ [a, b]with

|f(xδ)− f(yδ)| ≥ ε0 and |xδ − yδ| < δ.

For n ∈ N, let δn = 1
n
. The corresponding sequences (xδn), (yδn) lie in [a, b], with

|xδn − yδn| < δn =
1

n
and |f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N.

As (xδn) is bounded, ∃(xδnk
) ⊆ (xδn) such that xδnk

→ z with k → ∞, according to
the Bolazano-Weierstrass theorem.

Furthermore, z ∈ [a, b] according to Theorem 15. The corresponding sequence
(yδnk

) also converges to z since

0 ≤ |yδnk
− z| ≤ |yδnk

− xδnk
|+ |xδnk

− z| < 1

nk

+ |xδnk
− z|

according to the squeeze theorem, as both 1
nk
, |xδnk

− z| → 0 with k → ∞. But f
is continuous, so both (f(xδnk

)), (f(yδnk
)) → f(z), which is impossible as we have

|f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N. Thus f must be uniformly continuous. ■

There is something “special” about the interval [a, b] that allows for all sorts of interesting
results when combined with continuous functions; as we shall see in Chapters 8, 9, 16-17.

aaaaaa

Example: show f : R→ R, f(x) = 1
1+x2 is uniformly continuous on (0, 1).

Proof: let ε > 0. Set δε = ε. Note that ∀z ∈ R, 0 ≤ (|z| − 1)2 = z2 − 2|z| + 1 =⇒
2|z| ≤ 1 + z2 =⇒ | z

1+z2
| ≤ 1/2. Then whenever |x− y| < δε, we have:

|f(x)− f(y)| =
∣∣∣ 1
1+x2 − 1

1+y2

∣∣∣ = ∣∣∣ y2−x2

(1+x2)(1+y2)

∣∣∣ = ∣∣∣ x+y
(1+x2)(1+y2)

∣∣∣ |x− y|
≤
( ∣∣∣ y

1+y2

∣∣∣ · 1
1+x2︸︷︷︸
≤1

+
∣∣ x
1+x2

∣∣ · 1
1+y2︸︷︷︸
≤1

)
|x− y|

≤
( ∣∣∣ y

1+y2

∣∣∣︸ ︷︷ ︸
≤1/2

+
∣∣ x
1+x2

∣∣︸ ︷︷ ︸
≤1/2

)
|x− y| ≤ |x− y| < δε = ε, ■
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3.7 Solved Problems
1. Show lim

x→c
x3 = c3 for any c ∈ R.

Proof: if |x − c| < 1, then |x| < |c| + 1. Let ε > 0 and set δε = min{1, ε
3|c|2+3|c|+1

}.
Then

|x3 − c3| = |x− c||x2 + cx+ c2| ≤ |x− c|
(
|x|2 + |c||x|+ |c|2

)
< |x− c|

(
(|c|+ 1)2 + |c|(|c|+ 1) + |c|2

)
= |x− c|

(
3|c|2 + 3|c|+ 1

)
< δε ·

(
3|c|2 + 3|c|+ 1

)
≤ ε

3|c|2 + 3|c|+ 1
·
(
3|c|2 + 3|c|+ 1

)
= ε,

whenever 0 < |x− c| < δε and x ∈ R. ■

2. Let f : R→ R and let c ∈ R. Show that lim
x→c

f(x) = L if and only if lim
x→0

f(x+ c) = L.

Proof: we have

lim
x→c

f(x) = L

⇕
∀ε > 0,∃δε > 0 s.t. |f(x)− L| < εwhen 0 < |x− c| < δε

⇕
Set x = y + c : ∀ε > 0, ∃δε > 0 s.t. |f(y + c)− L| < εwhen 0 < |y| < δε

⇕
∀ε > 0,∃δε > 0 s.t. |f(y + c)− L| < εwhen 0 < |y − 0| < δε

⇕
lim
y→0

f(y + c) = L,

which completes the proof. ■

3. Use either the ε−δ de initionof the limit or the sequential criterion for limits to establish
the following limits:

a) lim
x→2

1

1− x
= −1;

b) lim
x→1

x

1 + x
=

1

2
;

c) lim
x→0

x2

|x|
= 0, and

d) lim
x→1

x2 − x+ 1

x+ 1
=

1

2
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Proof:
a) Let ε > 0 and set δε = min{12 , ε2}. Then

0 < |x− 2| < δε =⇒ |x− 2| < 1

2
⇐⇒ 3

2
< x <

5

2

⇐⇒ 1

2
< x− 1 <

3

2
⇐⇒ 1

x− 1
< 2.

Thus ∣∣∣∣ 1

1− x
− (−1)

∣∣∣∣ = 1

|x− 1|
|x− 2| = 1

x− 1
|x− 2| < 2δε < ε

whenever 0 < |x− 2| < δε and x ∈ R. (Note that if 0 < |x− 2| < δε, we’ve seen
that x > 3

2 and so that |x− 1| = x− 1. This explains why we have gotten rid of
the absolute values above.)

b) Let ε > 0 and set δε = min{12 , 3ε}. Then

0 < |x− 1| < δε =⇒ |x− 1| < 1

2
⇐⇒ 1

2
< x <

3

2

⇐⇒ 3 < 2(x+ 1) < 5⇐⇒ 1

2(x+ 1)
<

1

3
.

Thus ∣∣∣∣ x

1 + x
− 1

2

∣∣∣∣ = 1

2|x+ 1|
|x− 1| = 1

2(x+ 1)
|x− 1| < 1

3
δε < ε

whenever 0 < |x− 1| < δε and x ∈ R. (Note that if 0 < |x− 1| < δε, we’ve seen
that 2(x + 1) > 3 and so that 2|x + 1| = 2(x + 1). This explains why we have
gotten rid of the absolute values above.)

c) Let (xn) ⊆ R be a sequence s.t. xn → 0 and xn ̸= 0 for all n. Then

x2n
|xn|

=
|xn|2

|xn|
= |xn| → 0,

by theorem 14. By the sequence squeeze theorem, the limit must be thus 0.
d) Let ε > 0 and set δε = min{12 , 32ε}. Then

0 < |x− 1| < δε =⇒ |2x− 1| < 2 and
∣∣∣∣ 1

2(x+ 1)

∣∣∣∣ < 1

3
.

Thus ,whenever 0 < |x− 1| < δε and x ∈ R, we have∣∣∣∣x2 − x+ 1

x+ 1
− 1

2

∣∣∣∣ = ∣∣∣∣ 2x− 1

2(x+ 1)

∣∣∣∣ |x− 1| < 2

3
|x− 1| < 2

3
δε < ε.

This completes the exercise. ■

4. Show that the following limits do not exist:

a) lim
x→0

1

x2
, with x > 0;
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b) lim
x→0

1√
x
, with x > 0;

c) lim
x→0

(x+ sgn(x)), and

d) lim
x→0

sin(1/x2), with x > 0.

Solution: in each instance, we only give some sequence(s) for which Theorem 26
shows the limit does not exist.
a) xn = 1

n → 0, but f(xn) = 1
1/n2 = n2 →∞.

b) xn = 1
n → 0, but f(xn) = 1

1/
√
n
=
√
n→∞.

c) xn = 1
n , yn = − 1

n → 0, but f(xn) = 1
n + 1→ 1, f(yn) = − 1

n − 1→ −1.
d) xn =

√
2

(4n+1)π , yn =
√

2
(4n+3)π → 0 but

f(xn) = sin
(
4n+ 1

2
π

)
→ 1, f(yn) = sin

(
4n+ 3

2
π

)
→ −1.

This completes the exercise. □

5. Let c ∈ R and let f : R → R be such that lim
x→c

(f(x))2 = L. Show that if L = 0, then
lim
x→c

f(x) = 0. Show that if L ̸= 0, then f may not have a limit at c.

Proof: if lim
x→c

(f(x))2 = 0 then ∀η > 0, ∃δη > 0 such that

|f(x)|2 =
∣∣∣(f(x))2 − 0

∣∣∣ < η

whenever 0 < |x− c| < δη . Let ε > 0.

By de inition of the real numbers, ∃ηε > 0 such that ε = √ηε. Set δε = δηε . Then

|f(x)− 0| = |f(x)| =
√
|f(x)|2 < √ηε = ε

whenever 0 < |x− c| < δε.

Now, consider the function f : R→ R de ined by

f(x) =

{
1 if x ≥ 0

−1 if x < 0
.

Then (f(x))2 ≡ 1 and
lim
x→0

(f(x))2 = lim
x→0

1 = 1.

But lim
x→0

f(x) does not exist since (xn) = ( 1n), (yn) = (− 1
n) are sequences such that

xn, yn → 0, xn, yn ̸= 0 for all n and
f(xn) = −1→ −1 ̸= 1← 1 = f(yn).

This completes the proof. ■
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6. Let f : R → R, let J be a closed interval in R and let c ∈ J . If f2 is the restriction of
f to J , show that if f has a limit at c then f2 has a limit at c. Show the converse is not
necessarily true.

Proof: suppose lim
x→c

f(x) = L exists. Then, ∀ε > 0, ∃δε > 0 s.t. |f(x)−L| < εwhen-
ever 0 < |x− c| < δε. But f2(x) = f(x) for all x ∈ J ⊆ R, so ∀ε > 0, ∃δε > 0 (exactly
as above) s.t. |f2(x)−L| = |f(x)−L| < εwhenever 0 < |x− c| < δε and x ∈ J , and
so lim

x→c
f2(x) = L.

Now consider f : R→ R de ined by

f(x) =

{
0 if x ∈ (−∞, 0) ∪ (1,∞)

1 if x ∈ [0, 1]
,

with J = [0, 1] and f2 = f |J . Then lim
x→1

f2(x) = 1 but lim
x→1

f(x) does not exist. ■

7. Determine the following limits and state which theorems are used in each case.

a) lim
x→2

√
2x+ 1

x+ 3
, (x > 0);

b) lim
x→2

x2 − 4

x− 2
, (x > 0);

c) lim
x→0

√
(x+ 1)2 − 1

x
, (x > 0), and

d) lim
x→1

√
x− 1

x− 1
, (x > 0).

Solution: We will do c) in its entirety and only give the answers to the others.

Consider the sequence (xn) = ( 1n). Then xn → 0, xn ̸= 0 ∀n ∈ N, and

(xn + 1)2 − 1

xn
=

(
1
n + 1

)2 − 1
1
n

=
1

n
+ 2→ 2.

Hence, if lim
x→0

(x+ 1)2 − 1

x
exists, its value must be 2, by Theorem 26.

Let ε > 0. Set δε = ε. Then when 0 < |x− 0| < δε and x > 0, we have∣∣∣∣(x+ 1)2 − 1

x
− 2

∣∣∣∣ = ∣∣∣∣x2 + 2x+ 1− 1− 2x

x

∣∣∣∣ = ∣∣∣∣x2x
∣∣∣∣ = |x| = |x− 0| < δε = ε.

a) 1 b) 4 d) 1
2 □
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8. Give examples of functions f and g such that f and g do not have limits at point c, but
both f + g and fg have limits at c.

Solution: Let f, g : R→ R be de ined by

f(x) =

{
1 x ≥ 0

−1 x < 0

and g(x) = −f(x) for all x ∈ R. Then f(x) + g(x) ≡ 0 and f(x)g(x) ≡ −1. As a
result,

lim
x→0

(f + g)(x) = 0 and lim
x→0

(fg)(x) = −1,

but the limits of f and g don’t exist at 0 (see solved problem 5). □

9. Determine whether the following limits exist in R:

a) lim
x→0

sin
(

1

x2

)
, with x ̸= 0;

b) lim
x→0

x sin
(

1

x2

)
, with x ̸= 0;

c) lim
x→0

sgn sin
(
1

x

)
, with x ̸= 0, and

d) lim
x→0

√
x sin

(
1

x2

)
, with x > 0.

Solution:
a) Let (xn) = ( 1√

nπ
) and (yn) = (

√
2

(4n+1)π ) for all n ∈ N. Then xn, yn → 0 and
xn, yn ̸= 0 for all n ∈ N. But

sin
(

1

x2n

)
= sin(nπ) = 0 and sin

(
1

y2n

)
= sin

(
(4n+ 1)π

2

)
= 1

for all n ∈ N.

Then sin(1/x2n)→ 0 and sin(1/y2n)→ 1. As 0 ̸= 1, lim
x→0

sin
(

1

x2

)
doesn’t exist.

b) Consider the sequence (xn) = ( 1√
nπ

). Then xn → 0 and xn ̸= 0 for all n ∈ N.
Furthermore,

xn sin
(

1

x2n

)
=

1√
nπ

sin(nπ) = 1√
nπ
· 0→ 0.

As a result, if lim
x→0

x sin
(

1

x2

)
exists, it must take the value 0. Let ε > 0. Set

δε = ε. Then∣∣∣∣x sin
(

1

x2

)
− 0

∣∣∣∣ = |x| ∣∣∣∣sin( 1

x2

)∣∣∣∣ ≤ |x| = |x− 0| < δε = ε

whenever 0 < |x− 0| < δε and x > 0. Hence lim
x→0

x sin
(

1

x2

)
= 0.
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c) Let (xn) =
(

2
(2n+1)π

)
. Then xn → 0, xn ̸= 0 for all n ∈ N and

sgn
(
sin
(

1

xn

))
= sgn ((−1)n) = (−1)n,

which does not converge. Hence lim
x→0

sgn
(
sin
(
1

x

))
does not exist.

d) lim
x→0

√
x sin

(
1

x2

)
= 0, with the same proof as b), save for δε = ε2. □

10. Let f : R → R be s.t. f(x + y) = f(x) + f(y) for all x, y ∈ R. Assume lim
x→0

f(x) = L

exists. Prove that L = 0 and that f has a limit at every point c ∈ R.
Proof: as f is additive, we have f(2x) = f(x+ x) = f(x) + f(x) = 2f(x), so that

L = lim
y→0

f(y) = lim
2x→0

f(2x) = lim
x→0

f(2x) = lim
x→0

2f(x) = 2 lim
x→0

f(x) = 2L;

hence L = 2L and L = 0, i.e., lim
x→0

f(x) = 0.

Now, let c ∈ R. Then

lim
x→c

f(x) = lim
x→c

(f(x− c) + f(c)) = lim
x→c

f(x− c) + lim
x→c

f(c)

= lim
y→0

f(y) + f(c) = 0 + f(c) = f(c).

As f is de ined on all of R, f(c) exists for all c ∈ R, and so lim
x→c

f(x) = f(c) exists for
all c ∈ R. ■

11. LetK > 0 and let f : R→ R satisfy the condition

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ R. Show that f is continuous on R.
Proof: let c ∈ R and ε > 0. Set δε = ε

K . Then

|f(x)− f(c)| ≤ K|x− c| < Kδε < K
ε

K
= ε

whenever |x− c| < δε. ■

12. Let f : (0, 1)→ R be bounded and s.t. lim
x→0

f(x) does not exist. Show that there are two
convergent sequences (xn), (yn) ⊆ (0, 1) with xn, yn → 0 and f(xn) → ξ, f(yn) → ζ ,
but ξ ̸= ζ .

Proof: for n ∈ N, let In = (0, 1/n) and set

sn = sup f(In) and tn = inf f(In).

These are well-de ined as f(In) is bounded.
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By construction, (sn) is decreasing and (tn) is increasing. Since

s1 ≥ sn = sup f(In) ≥ inf f(In) = tn ≥ t1,

(sn) is bounded below by t1 and (tn) is bounded above by s1. Hence sn → s and
tn → t exist, by the bounded monotone convergence theorem.

For n ∈ N, let xn, yn ∈ In be s.t.

|f(xn)− sn| <
1

n
and |f(yn)− tn| <

1

n
.

This can always be done as sn− 1
n and tn+ 1

n are not the supremumand the in imum,
respectively, of f(In). Then, xn, yn → 0 and xn, yn ̸= 0 for all n ∈ N.

Furthermore, f(xn) → s and f(yn) → t according to the sequence squeeze theo-
rem; indeed, sn− 1

n < f(xn) ≤ sn, tn ≤ f(yn) < tn+
1
n , sn → s, and tn → t, and the

statement follows.

Now, suppose that s = t = ℓ. Then sn, tn → ℓ. Let ε > 0. ∃N1, N2 ∈ N s.t. |sn−ℓ| < ε
whenever n > N1 and |tn − ℓ| < εwhenever n > N2. SetNε = max{N1, N2}. Then

ℓ− ε < tn ≤ sn < ℓ− ε

whenever n > Nε. Set δε = 1
Nε

. Then

ℓ− ε < tNε = inf f(INε) ≤ f(x) ≤ sup f(INε) ≤ sNε < ℓ+ ε,

that is, |f(x) − ℓ| < ε whenever 0 < |x − 0| < 1
Nε

= δε. Hence lim
x→0

f(x) = ℓ, which
contradicts the hypothesis that the limit does not exist. Consequently, s ̸= t, which
completes the proof. ■

13. Let f : R→ R be continuous on R and let P = {x ∈ R : f(x) > 0}. If c ∈ P , show that
there exists a neighbourhood Vδ(c) ⊆ P .

Proof: let c ∈ P . Then f(c) > 0 and ∃ε0 > 0 s.t. f(c) − ε0 > 0. By the continuity of
f , ∃δε0 s.t. |f(x)− f(c)| < ε0 whenever |x− c| < δε0 .

Thus, 0 < f(c)− ε0 < f(x) for all x ∈ Vδε0 , i.e. Vδε0 ⊆ P . ■

14. Prove that if an additive function is continuous at some point c ∈ R, it is continuous on R.
Proof: in the light of a previous question on the topic, it is suf icient to show that if
lim
x→c

f(x) = f(c) for some c ∈ R, then lim
x→0

f(x) = 0. Let f be continuous at c. Then

f(c) = lim
x→c

f(x) = lim
x→c

(f(x− c) + f(c))

= lim
x→c

f(x− c) + lim
x→c

f(c) = lim
y→0

f(y) + f(c),

hence lim
y→0

f(y) = 0, which completes the proof. ■
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15. If f is a continuous additive function on R, show that f(x) = cx for all x ∈ R, where
c = f(1).

Proof: let n ∈ N. Then

f(1) = f
(n
n

)
= f

(
1

n
+ · · ·+ 1

n

)
= f

(
1

n

)
+ · · ·+ f

(
1

n

)
= nf

(
1

n

)
,

hence 1
nf(1) = f

(
1
n

)
.

Set c = f(1). Let y ∈ Q. Then y = m
n , wherem ∈ Z and n ∈ N×, and

f(y) = f
(m
n

)
= mf

(
1

n

)
= m

1

n
f(1) = yc.

Let x ∈ R. Since x is a limit point of Q, ∃(xn) ⊆ Q s.t. xn → x, with xn ̸= x for
all n ∈ N. But f(xn) → f(x), by continuity, so f(xn) = cxn → cx, by the above
discussion. Hence, f(x) = cx. ■

16. Let I = [a, b] and f : I → R be a continuous function on I s.t. ∀x ∈ I , ∃y ∈ I s.t.
|f(y)| ≤ 1

2
|f(x)|. Show ∃c ∈ I s.t. f(c) = 0.

Proof: let x1 ∈ I . By hypothesis, ∃x2 ∈ I s.t.

|f(x2)| ≤
1

2
|f(x1)|.

Since x2 ∈ I , ∃x3 ∈ I s.t.

|f(x3)| ≤
1

2
|f(x2)| ≤

1

2

(
1

2
|f(x1)|

)
=

1

22
|f(x1)|,

and so on. The sequence (xn) ⊆ I thusly built satist ies

0 ≤ |f(xn)| ≤
1

2n−1
|f(x1)|,

by induction (can you show this?).

Then lim
n→∞

|f(xn)| = 0, by the squeeze theorem, and sof(xn)→ 0. As (xn) is bounded,
it has a convergent subsequence (xnk

) (according to the Bolzano-Weierstrass theo-
rem) whose limit c is in I (because a ≤ xn ≤ b for all n).

Since (f(xnk
)) is a subsequence of (f(xn)), then

lim
k→∞

f(xnk
) = 0.

However,
lim
k→∞

f(xnk
) = f

(
lim
k→∞

xnk

)
= f(c),

as f is continuous. Hence f(c) = 0. ■
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17. Show that every polynomial with odd degree has at least one real root.
Proof: let

f(x) = a2n+1x
2n+1 + a2nx

2n + · · ·+ a1x+ a0,

where ai ∈ R for i = 0, . . . , 2n+ 1. Assume that a2n ̸= 0.³ Let

M = max
{
(2n+ 1)

|a2n|
|a2n+1|

,

(
|a2n−k|
|a2n|

)1/k

; k = 1, . . . , 2n

}
.

Then, whenever |x| ≥M ,
|a2n||x2n| ≥ |a2n||x2n|;
|a2n||x2n| ≥ |a2n−1||x2n−1|;
· · · ;
|a2n||x2n| ≥ |a1||x|, and
|a2n||x2n| ≥ |a0|,

and so

|a2nx2n + · · · a0| ≤ |a2n||x2n|+ · · ·+ |a0| ≤ |a2n||x2n|+ · · ·+ |a2n||x2n|
= (2n+ 1)|a2n||x2n| ≤ |a2n+1||x2n+1| = |a2n+1x

2n+1|,

from which we concude that f(M + 1)f(−M − 1) < 0.

As f is continuous on [−M − 1,M + 1], ∃c ∈ [−M − 1,M + 1] s.t. f(c) = 0, by
the intermediate value theorem. ■

18. Let f : [0, 1]→ R be continuous, with f(0) = f(1). Show ∃c ∈ [0, 1
2
] s.t. f(c) = f(c+ 1

2
).

Proof: let g : [0, 12 ]→ R be de ined by g(x) = f(x)− f(x+ 1
2). By construction, g is

continuous on [0, 12 ]. If g(0) = g(1/2) = 0, there is nothing else to show. Otherwise,

g(0) = f(0)− f(1/2) and g(1/2) = f(1/2)− f(1) = f(1/2)− f(0);

hence g(0)g(12) < 0. By the intermediate value theorem, ∃c ∈ [0, 12 ] s.t. g(c) = 0, that
is f(c)− f(c+ 1

2) = 0. This completes the proof. ■

19. Show that f(x) = 1
x2 is uniformly continuous onA = [1,∞), but not onB = (0,∞).

Proof: if x, y ∈ A, then x, y ≥ 1. In particular, |x| = x and |y| = y, and 1
x2y

, 1
xy2
≤ 1.

Let ε > 0 and set δε = ε
2 . Then

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣ = ∣∣∣∣y2 − x2x2y2

∣∣∣∣ = |y + x||y − x|
x2y2

= |y − x|
(

y

x2y2
+

x

x2y2

)
= |x− y|

(
1

x2y
+

1

xy2

)
≤ 2|x− y| < 2δε = ε

whenever |x− y| < δε and x, y ∈ A.

³If that is not the case, the proof will proceed in a similar fashion, but a2n will be replaced by the irst ai that
is non-zero, starting with a2n−1; if all coef icients are 0, then the real root is 0.
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We show that the negation of the de inition of uniform continuity holds on B. Let
ε = 1 and δ > 0. Then, ∃N ∈ N s.t. 1

N2 < δ. Set xN = 1
N and yN = 1

N+1 . Clearly,
xN , yN ∈ B and

|xN − yN | =
∣∣∣∣ 1N − 1

N + 1

∣∣∣∣ = 1

N(N + 1)
≤ 1

N2
< δ.

However,
|f(xN )− f(yN )| = |N2 − (N + 1)2| = 2N + 1 > ε,

that is, f is not uniformly continuous onB. ■

20. If f(x) = x and g(x) = sinx, show that f and g are both uniformly continuous onR but
that their product is not uniformly continuous on R.

Proof: let ε > 0 and set δε = ε. Then

|f(x)− f(y)| = |x− y| < δε = ε

and

|g(x)− g(y)| = | sinx− sin y| = 2

∣∣∣∣sin(1

2
(x− y)

)
cos
(
1

2
(x+ y)

)∣∣∣∣
≤ 2

1

2
|x− y| · 1 = |x− y| < δε = ε

(the second-last inequality can be obtained using Taylor’s theorem on the sin func-
tion, see Chapter 4), whenever |x − y| < δε and x, y ∈ R. Hence f and g are both
uniformly continuous.

Set h(x) = x sinx. Let ε = 1 and δ > 0. Them ∃N ∈ N s.t. 1
N < δ and K ∈ N

s.t.
K >

1

4

(
1− cos 1

N

)−1

+ 3.

De ine
xK =

4K − 3

2
π and yK =

4K − 3

2
π − 1

N
.

Then |xK − yK | = 1
N < δ and

|h(xK)− h(yK)| ≥ 4K − 3

2
π

(
1− cos 1

N

)
>
π

2
> 1 = ε,

and so h is not uniformly continuous. ■

21. Let A ⊆ R and suppose that f has the following property: ∀ε > 0, ∃gε : A → R s.t. gε
is uniformly continuous onAwith |f(x)− gε(x)| < ε for all x ∈ A. Show f is uniformly
continuous on A.
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Proof: let ε > 0. Then ε
3 > 0 and there exists gε/3 as in the hypothesis: hence

∃ηε/3 > 0 s.t. |gε/3(x) − gε/3(y)| < ε
3 whenever |x − y| < ηε/3 and x, y ∈ A. Set

δε = ηε/3. Then

|f(x)− f(y)| = |f(x)− gε/3(x) + gε/3(x)− gε/3(y) + gε/3(y)− f(y)|
≤ |f(x)− gε/3(x)|+ |gε/3(x)− gε/3(y)|+ |gε/3(y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε

whenever |x− y| < δε and x, y ∈ A. Hence, f is uniformly continuous onA. ■

22. Is a continuous p−periodic fonction on R bounded and uniformly continuous on R?
Proof: since f is continuous, then |f | is also continuous, being the composition of
two continuous functions. As f is p−periodic, ∃c ∈ [0, p] s.t.

sup
x∈R
|f(x)| = sup

x∈[0,p]
|f(x)| = |f(c)|,

by the max/min theorem. Hence f is bounded by |f(c)| on R.

Let ε > 0. By hypothesis, f is continuous on the closed interval [−1, p + 1], which
implies that that f is uniformly continuous on [−1, p+1] (according to Theorem 38).
Then, ∃δε > 0 s.t. |f(x)− f(y)| < εwhenever |x− y| < δε and x, y ∈ [−1, p+ 1].

Without loss of generality, we can assume that δε < 1. Let x, y ∈ R s.t. |x − y| < δε.
Then ∃k ∈ Z and α, β ∈ [−1, p+ 1] s.t. x = α+ kp and y = β + kp.

Thus |α − β| = |x − y| < δε and |f(x) − f(y)| = |f(α) − f(β)| < ε, since f is
uniformly continuous on [−1, p+ 1]; consequently, f is uniformly continuous. ■

23. De ine g : R→ R by

g(x) =

{
(−1)n

n
if x = 1/n for some n ∈ N,

0 otherwise

Prove that g is continuous at 0.
Proof: let ε > 0. Set δε = ε. Then,∣∣∣∣ 1n − 0

∣∣∣∣ < δ =⇒
∣∣∣∣g( 1n)− g(0)

∣∣∣∣ = ∣∣∣∣ 1n
∣∣∣∣ = ∣∣∣∣ 1n − 0

∣∣∣∣ < δε = ε

whenever |1/n− 0| < δε, so g is continuous at 0. ■
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3.8. EXERCISES

3.8 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. Let A = { 1
n
| n ∈ N}. Show that no real number strictly greater than 1 can be a limit

point ofA.

3. Prove the “min” part of Theorem 33.

4. Complete the solution of solved problem 7.

5. Let f : R→ R. The pre-image of a subsetB ⊆ R under f is

f−1(B) = {a ∈ A | f(a) ∈ B}.

Prove that f is continuous if and only if the pre-image of every open subset of R is an
open subset of R.

6. A function f : A→ R is said to be Lipschitz if there is a positive numberM such that

|f(x)− f(y)| ≤M |x− y| ∀x, y ∈ A.

Show that a Lipschitz function must be uniformly continuous, but that uniformly con-
tinuous functions do not have to be Lipschitz.
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