Chapter 3

Limits and Continuity

The main objects of study in analysis are functions. In this chapter, we
introduce the ¢ —¢ definition of the limit of a function, provide results that
help to compute such limits, identify two types of continuity, and present
some of the theorems that form the basis of analytical endeavours.

3.1 Limit of a Function

The objects we have studied thus far are functions of N into R. However, most of calculus
deals with functions of R into R. How do we generalize the concepts and results we have de-
rived for sequences to functions?

Let A C Rand ¢ € R. The neighbourhood Vj(c), where ¢ > 0, is the interval
Vs(e)={z eR:|z—¢| <} =(c—0d,c+9).

~V

c-§ c c+§

The point ¢ € Ris alimit point (or cluster point) of A if every neighbourhood V;(¢) contains
at least one point x € A other than c.

Example: consider the set A C R drawn below.
A A

C=6—CT——_

C
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3.1. LIMIT OF A FUNCTION

The Vs(c)—neighbourhood in blue contains points in A other than ¢, but ¢ is
not a limit point of A since the Vj(c)—neighbourhood in yellow does not con-
tain points of A.

A (o

& o ——

= ———

The point at the centre of the green interval is a limit point of A, however.

A A
) N /St

=B R

The set of all limit points of A is denoted by A; a limit point of A does not have to be in A.

68

Example: what are the limit points of A = {1 | n € N}?

Solution: let n € N. The distance between a point % and its immediate suc-
1

cessor/predecessor — is

N SRR B
n n+l nnh+l) 3

n2’

Let § = 35;. Then V(;(%)_: (+ — 32, = + 322) € (555, 797), so the only point of A
in V5(1)is 2. Thus 1 ¢ A. No negative real number is a limit point of 4; indeed,
ifr <0,setd = % Then Vs(z) C (—o0,0) and so contains no point of A. Simi-

larly, no real number strictly greater than 1 is a limit point of A. Hence A C [0, 1]\ A.

Letxz € (0,1] \ A. By the Archimedean property, 3n, € Ns.t.n, > % >n, —1,s0
-+ <x < . Setd, = ymin{|z — ;-|, |z — —[}. Then V;, () contains none of

ny—1
the points of A.
= BN
%
®

The only remaining possibility is + = 0. Let § > 0. By the Archimedean property,
IN; such that - < 6. But0 # 5~ € A, Thus

L
N,

@#{%}QWHA:@@amA

so z = 0 is the only limit point of A: A = {0}. O
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CHAPTER 3. LIMITS AND CONTINUITY

Directly determining the limit points of a set is a time-intensive endeavour. Thankfully, there
is a link between limit points and convergent sequences.

Theorem 24
A point ¢ € R is a limit point of A if and only if there is a sequence (a,) C A, with
a, # c forn € N, such that a,, — c.

Proof: suppose cis a limit point of A. By definition, the neighbourhood V1 (¢) must
contain a pointa,, # ¢ € A, foralln € N. Lete > 0. By the Archimedean property,
IN. > Lst. NLE < ¢. Thus

n>Na:>O<|an—c|<l<i<5, ie. a, — c.
n N,
Conversely, suppose that there is a sequence (a,) C A, with a,, # cforalln € N,
such that a,, — ¢. Let § > 0. By definition, 3N; € N, such that 0 < |a,, — ¢| < ¢ for
alln > Ns. Then a,, € Vjs(c) and a,, # c for all n > Nj;. Thus any neighbourhood of ¢
contains at least one a,, # ¢, soc € A. [ |

Any limit point of A is in fact the limit of a sequence in A, and vice-versa.

Example: let A = [0, 1] N Q. What are the limit points of A?

Solution: any convergent sequence (a,) C A is such that0 < a, < 1 for all
n € N, so its limit must also lie in [0, 1], according to Theorem 15. On the other
hand, Theorem 24 tells us that any limit point of A is the limit of a sequence of
rationals in [0, 1]. The sequences (+) and (1 —2)liein A. Since £ — 0and1—2: — 1,
then 0,1 € A.

Now, letr € (0,1). Sety = min{r, 1 — r}.

—
,_,(* 4 Y

Then n > 0 and % > (. By the Archimedean property, M € Ns.t. M > % Then

1 1
0<r—m<r——> — < <1
<r—mn r i r—i—M r+n<1,

sincen =rifr <1/2andn=1-—rifr >1/2.So

1 1
n>M=—0<r——<r+-—<1.
n n
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3.1. LIMIT OF A FUNCTION

But the density theorem states that for all n > M, Ja,, # r € Q such that

1 1
r——<a,<r+ —.
n n
The sequence (a,) thus constructed converges to r. Indeed, let ¢ > 0. According to
the Archimedean property, 3N € N such that N > %
Set N. = max{M, N}. Then

1 1
n>N.—=0<|a,—71<—-<—<g¢g,
n N,

and so a,, — r and r € A. Consequently, A = [0, 1]. [ |

Intuitively, a limit of a function f at ¢ is a value L towards which f(z) “approaches” as x gets
closer to ¢, if it exists. But what does that actually mean? What would need to happen for the
value not to exist?

Let ACR, f: A— R,andc € A: L € Ris the limit of f at ¢ if

Ve >0, 30. > Osuchthat0 < |z —¢| < d.andzx € A = |f(z) — L| <&,

which we denote by

lim f(x) =L orby f(z)— L, whenz — c.

Tr—cC

The limit of f at cisnot L € R if

deg > 0, V6 > 0, dx5 € Asuchthat0 < |z5 — ¢| < é. and | f(zs) — L| > &y,

which we denote by

70

lim f(x) # L orby f(z)# L, whenz — c.

Tr—C

yA
&
Y /
LA 7
&
Y
¢ >
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CHAPTER 3. LIMITS AND CONTINUITY

The underlying principle is the same as that of the limit of a sequence: given ¢ > 0, we need
to find a §. > 0 which satisfies the definition. Graphically, this is equivalent to putting a hor-
izontal strip of width 2¢ around the line y = L, and showing that there is a neighbourhood
Vs.(c) such that f(z) is in the strip for any = € Vj_.

Examples

1. Let f : [0,1) — R be the function defined by

Show lim f(z) = 2.

z—0

Proof: lete > 0. Set §. = 1. Then
re0,l)and0< |z — | <d. = |f(z) =2|=0<0-d<e¢,

which completes the proof. [

2. Let f : [0,00) — R be defined by f(z) = =222, Show lim f(z) = 1.

T—2 3

Proof: let > 0. Set §. = . Then

242042 10| 322+ 20 +2) —10(x +1)|  [32® — 4z — 4
r+1 3] r+1 | 3w +3

3x 4+ 2

= -2l <|r—=2|<d. =
o3| lv 2 <l -2 ©
——

<1
whenz > 0and 0 < |z — 2| < d.. |

3. Let f: R\ {0} = R, f(x) = 2? cos(1/x). Show that lir% f(z)=0.
T—
Proof: note thatc € A = R\ {0}. We can only use the definition of
the limit if ¢ € A. Thatit does so is a given, as (£) C Aand = — 0, with = # 0

for all n € N, according to Theorem 24. "

Lete > 0 and set 0. = /c. Then

‘932 cos(1/z) — 0] = |z|?| | cos(1/z)| < |z|* = |z — 0]* < 02 < ¢,
<
<1

whenever x € R\ {0} and 0 < |z — 0| < 0.. |
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3.1. LIMIT OF A FUNCTION

As is the case with sequences, a function has at most one limit at any of its limit points c.

Theorem 25
Let ACR, f: A— Rand ca limit point of A. Then f has at most one limit at c.

Proof: suppose that

lim f(x) =L and lim f(z)=L", wherel <L".

Tr—C r—cC

glr7e

whenever x € Aand0 < |z —¢| < 6,0 < |z —c| <.

Let e = 2L > (. By definition, 30,6” s.t. |[f(z) — L'| < eand |f(z) — L"| < ¢

Set §. = min{J., §”}. Then, whenever x € Aand 0 < |z — ¢| < 4,

grve

L// _ L/ B 2L/ + L// B L/ + L// L/

< Ll/ — L/
f(x) +e€ + 5 5 5 + 5
L/ + L// L// 2L// _|_ L/ L// _ L/
< —<—=I"- =L"—¢e<
T T3 3 3 e < f(a),
which is a contradiction, hence L' £ L”. The proofthat L” £ L’ is identical. [ |

As is the case with sequences, the definition is useless if we do not have a candidate for L
beforehand. The next result allows us to get such a candidate before using the definition.

72

Theorem 26 (SEQUENTIAL CRITERION)
Let ACR, f: A— Rand ca limit point of A. Then

lim f(z) = L ifand only if le flz,) =L

Tr—cC

for any sequence (x,,) C A such that x,, — ¢, with x,, # c for alln € N.

Proof: assume lim f(z) = L. Lete > 0. Then 35, > 0 such that

T—rC
re€Aand0< |z —¢| <é. = |f(z) — L| <e.

Suppose (z,) C Aissuch thatx, # cforalln € Nand x,, — ¢. Then 3M;_ > 0 such
that 0 < |z,, — ¢| < 6. whenever n > Mj..

Let N, = M;_. Then
xpFceAandn > N, = 0< |z, —c| <. = |f(x,) — L| <e,

which is to say f(z,) — L.
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CHAPTER 3. LIMITS AND CONTINUITY

Conversely, if lim f(x) # L, then 3g¢ > 0s.t. V0 > 0,dxs € Awith0 < |z5s —¢| < §
T—rC
but |f(z) — L| > €o. Thus, forn € Nand ¢ = %, 3z,, = z; as above.

The sequence (z,) C Aissuchthat0 < |z, —c[ < % and |f(z,) — L| > &
According to the squeeze theorem, x,, — ¢, with |f(z,) — L| > &, foralln € N.
Thus f(z,) /4 L. [

Let us take a look at a few examples.
Examples
1. Let f : R = R, f(x) = 32° + = + 1. Compute lim f ().
T—
Solution: let (z,,) C R\ {7} with z,, — 7. Then
2
lim f(z,) = lim (322 + 2, + 1) = 3 (nm xn> + lim a2, + 1
n—00 n—00 n—00 n—0o0
=374+ 7+1=1037.

Thus f(z) — 1037 when x — 7, according to Theorem 26. O

2. Let f: (2,00) = R, f(z) = & 272 Compute lim f ().

(z—2) o

Solution: let (z,,) C R\ {2} with z,, — 2. Then

lim f(z,) = lim &2 D@ =2

n—o0 n—o00 (l‘n — 2) n—o00 n—o00

=2—-1=1

Since (x,,) was arbitrary, f(xz) — 1 when z — 2, according to Theorem 26. [J
3. Let f: R\ {0} = R, f(x) = 2? cos(1/x). Show that lim f(z)=0.
Proof: let (x,,) C R\ {0} be any sequence converging to 0. Then
0 < |z cos(1/zy)| < |z = |za]*.
However, since x,, — 0, then both |z,,| — 0 and |z, |*> — 0, which is to say that
lim |22 cos(1/x,)] =0

according to the squeeze theorem. Thus z2 cos(1/x,) — 0. Since (z,,) was
arbitrary, f(x) — 0 when = — 0, according to the sequential criterion. [
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3.1. LIMIT OF A FUNCTION

4. Let f : R — R be the function defined by

_J0, z€Q
o ={) 1es

Show that lirr(l) f(z) does not exist.
z—

Proof: define (z,), (y,) by z, = 1,4, = \/75 for alln € N. Then (z,,) C Q and
(yn) € R\ Q. Furthermore, z,,y, — 0, with z,,,y,, # 0 for alln € N. But
f(z,) =0and f(y,) = 1foralln € N, so

i f(@a) =07 1= lim f(g),
thus lirr(l) f(z) does not exist. |
T—

5. Letsgn : R — R be the function defined by

1, x>0
sgn(z) =40, x=
-1, <0

Show that lirr(l)(x + sgn(z)) does not exist.
z—

Proof: define (z,), (y,) by z, = 1, y, = —= foralln € N. Then z,,,y, — 0,
with z,,,y, # 0 foralln € N.

But f(z,) = %—l—sgn(%) =1411,and f(y,) = —%—l—sgn(— %) = —L _1for

n

alln € N, so
: . 1 _ 1 _
lim f(z,) = lim (- + 1) £ —1= lim (- + 1) = lim f(z,),
n—o00 n—oo \N n—oo \ M n—oo
thus lir% f(z) does not exist. |
T—

To show that the limit does not exist, it is enough to find two specific sequences (z,,), (y,) C 4,
with z,,, y, # cforalln € Nand z,, y, — ¢ such that f(z,) — L1, f(yn) = Lo, L1 # Lo.

But we cannot show that the limit L exists by finding two sequences (), (y,) C A with
T, yn # cforalln € N, z,,,y, — ¢, and f(x,), f(y,) — L.

Note that at no point have we needed to use the graph of a function to compute a limit or
prove its existence.
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CHAPTER 3. LIMITS AND CONTINUITY

3.2 Properties of Limits

Limits behave quite nicely with respect to the usual operations.

Theorem 27 (OPERATIONS ON LIMITS)
Let ACR, f,g: A— R, and ca limit point of A. Suppose f(x) — L and g(z) — M
when x — c¢. Then

1 lim | f(x)| = |L};

2. lim(f(z)+ g(x)) = L+ M;

Tr—C

3. lim f(x)g(z) = LM;

Tr—cC

. flx) L . .
4. il_rg@— M,Ifg(:c) # 0forallx € Aandif M # 0.

Proof: this result is an easy consequence of Theorems 14 and 26. Let (z,,) C A with
x, # cand z,, — cforalln € N. Then f(z,) — L and g(z,) — M.

1. tim [£(2)] = lim [£(z,)] = | lim f(z.)| = L.
2. lim[f(2) + g(2)] = lim [f(za) +g(za)] = lim f(z,)+ lim g(2,) = L+ M.

3. im[f(x)g(@)] = lim [f(an)g(a)] = lim f(a) - lim g(z,) = LM,

Tr—C n—oo

if g(z) # 0 for x € A and if

T—C n—o0

am] - 2] 0 -
M = 0. -

There is also a squeeze theorem for functions, but it is not nearly as useful as the correspond
ing result for sequences.

Theorem 28 (SQUEEZE THEOREM FOR FUNCTIONS)
Let A CR, f,g,h: A — R, and c a limit point of A. If f(x) < g(z) < h(z) for all
x € Aandif f(x), h(x) — L when x — ¢, then g(x) — L when x — c.

Proof: let (v,) C A, withz, # cforalln € Nand z, — c¢. According to the
sequential criterion,
lim f(z,) = lim h(z,) = L.

n—oo n—oo
Since f(z,) < g(z,) < h(z,) foralln € N, then lim,,_,, g(z,,) = L, by the squeeze
theorem (for sequences). Since (z,,) was arbitrary, we conclude that g(z) — L, again
by the sequential criterion. [
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3.2. PROPERTIES OF LIMITS

Let’s take a look at some examples.

76

Examples

1. Let f : R — R, f(z) = k, k € R. Show thatlim f(z) = k forall ¢ € R,
Tr—C

Proof: letc > 0. Setd. = e Then |f(z) — k| = |k —k] = 0 < ¢

when0 < |z —¢| < 6. =e. |
. Let f: R —» R, f(z) = z. Show that lim f(z) = f(c) forallc € R.

Tr—C
Proof: letc > 0. Setd. = e. Then |f(z) — ¢ = |z — ¢ < 0. = ¢
when0 < |z —¢| < 6. =e. [

241

. Let f: R = R, f(z) = £42=4 Compute lim f(x).
z—

Solution: according to Theorem 27, and the preceding examples,
3
lim (2 + 22 + 4) = <lim $> +2 (lim x) 4 lim4 =32+ 2(3) + 3 =37
r—3 r—3 r—3 r—3
2
lim(2? + 1) = <lim:n> +1=3241=10,
r—3 r—3

34 92r—14
and so lim R e — 10 pecause 2% + 1 # 0 forall x € R. O
z—3 {132 —+ 1 3

. Let f: R\ {0} = R, f(z) = 2* cos(1/x). Show that lim f(z)=0.

Proof: we cannot use the multiplication component of Theorem 27 to
compute the limit since lir% cos(1/z) does not exist.
T—

Indeed, let (z,), (y,) € R\ {0} be such that z,, = 255, and y, = 5, forall
n € N. Then z,,, vy, — 0. But

cos (i) =cos((2n—1)mr) =—1 and cos (i> = cos(2nm) =1

Ty Yn
foralln € N. Then

cos(1/z,) — —1 # 1 < cos(1/yy).
This does not mean that

1
lim z2 cos (—)

z—0 x
does not exist, only that we cannot use Theorem 27 to compute it.

In fact, the squeeze theorem for functions does the trick, with
—2? < f(z) < 22 [ |
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CHAPTER 3. LIMITS AND CONTINUITY

Other sequence concepts have analogous definitions in the world of functions. Let A C R,
f: A — Randc € A. The function f is bounded on some neighbourhood of cif 35 > 0
and M > 0 are such that |f(x)| < M forall z € AN Vs(c).

Theorem 29
IFACR, f: A— R ce A andlim f(z) = L for some L € R, then f is bounded on

T—rC
some neighbourhood of c.

Proof: Let ¢ = 1. By definition, 36; > 0 such that |f(z) — L| < 1 whenever
x € Aand 0 < |z — ¢| < §;. Since

[f (@) = [L] < |f(z) = LI,
then |f(x)| — |L| < 1wheneverz € Aand 0 < |z — ¢| < d;.

Ifc & A, set M = |[L|+ 1. Ifc € A set M = max{|f(c)|,|L| + 1}. In either
case, | f(z)] < M wheneverz € Aand 0 < |z — | < d;. |

3.3 Continuous Functions

Functions like polynomials, or trigonometric functions, are continuous, which is a fundamen-
tal notion of calculus.

Intuitively, a function is continuous at a point if the graph of the function at that point can
be traced without lifting the pen. The notion of “continuity” is fundamental is calculus.

But we emphasized earlier that limits could be computed/shown to exist without refer-
ring to the graph of a function. What does that mean for continuity?

Let ACR, f: A— R,and c € A; f is continuous at c if
Ve > 0,36. > Osuchthat|r —¢| < d.andz € A = |f(z) — f(c)] <e.

When computing the limit of f at ¢, we are interested in the behaviour of the function near ¢,
but not at c. When we are dealing with continuity, we also include the behaviour at c. When
cis a limit point of A, this definition actually means that

lim f(z) = f(c).

r—C

If c ¢ A, the expression lim f(z) is meaningless.! In that case, f is automatically continuous
Tr—cC

at c. Indeed, there will then be a § > 0 such that Vj(c) contains no point of A but ¢. Then for
e > 0, whenever z € Aand |z — ¢| < § (i.e,, whenever z = ¢), we have

[f(@) = fle)| = |f(c) = flo) =0 <e.

!Since there are no sequence (z,,) C A with x,, # cforalln € Nand z,, — c.
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3.3. CONTINUOUS FUNCTIONS

The definition contains 3 statements: a function f is continuous at c if

1.
2.

3.

f(c) is defined;

lim f(z) exists, and
Tr—cC

lim /() = f(c).

Tr—C

Let B C A. If f is continuous for all ¢ € B, then we say that f is continuous on B.

78

Examples
* Let f:[0,00) = R, f(z) = meTﬁ” Is f continuous at ¢ = 2?

Solution: since 2 is a limit point of [0,00), we need only verify if

lirr; f(xz) = f(2). But we have already seen that f(z) — % = f(2) when
T—

x — 2,s0 f is continuous at ¢ = 2. O

" Letf:[0,1) = R,

Is f continuous at ¢ = 0?

Solution: since Ois alimit pointof [0, 1), we need only verify iflirrg) f(z) = f(0).
—

But we have already seen that f(z) — 2 # 3 = f(0) whenz — 0, so f is not
continuous at c = 0. U

*Let f: R = R, f(z) = 32® + = + 1. Is f continuous at ¢ = 7?

Solution: since 7 is a limit point of R, we need only verify if lirr% flz) = f(7).
T—

But we have already seen that f(x) — 1037 = f(7) whenx — 7,so fis
continuous atc = 7. U

ﬂ@z{Q e

" Let f: R — R,

1, 2£Q
Is f continuous at ¢ = 0?
Solution: as f(0) = 0, we only need to verify if lirrg) f(z) = f(0). But
T—

we have already seen that lirr(l) f(z) does not exist, so f is not continuous at
T—
c=0. |
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" Let f: (2,00) = R, f(z) = &=0E=2) g £ continuous at ¢ = 2?

(z=2)

Solution: since f is not defined at ¢ = 2 and since 2 ¢ A, f is not
continuous at ¢ = 2. U

Let f: R — R, f(x) =k, k € R. Is f continuous on R?

Solution: since all ¢ € R are limit points of R, we need only verify if
lim f(x) = f(c). But we have already seen that f(x) — k = f(c) forall c € R,
Tr—cC

so f is continuous on R. O

Let f : [0,00) — R, f(x) = /2. Is f continuous on [0, c0)?

Solution: lete > 0. If ¢ = 0, set ), = . Then
z>0and |z —0| < 6. = f(z)— f(0) = vz =]z — 0] < /6. =¢,

so f is continuous at ¢ = 0. If ¢ > 0, set §. = y/ce. Then

o —c _|e—d

[f(z) = ()] = [VE = Vel = NIV <\%:€
whenever x > 0 and |z — ¢| < J.. Hence f is continuous at any ¢ > 0. O
Let f: R —> R,

LR

Is f continuous at ¢ = 0?7 At ¢ # 0?

Solution: since f(0) = 0, we need to see if hm f(z) =0. Lete > 0 and set

d: > 0. Then |z — 0| < J. = |f(z) — f(O )]—\f( ) <l|z|=]r—0| <. =¢,
so f is continuous at ¢ = 0. Now let n € N. According to the density theorem,
Jz, € Q, y, ¢ Q such that

1 1
c<zT,+c+— and c<y,<c+ —.
n n

According to the sequence squeeze theorem, z,,,y, — ¢. But f(z,) = =, and
f(y,) =0foralln € N, so

lim f(z,)= lim z, =¢ and lim f(y,) = lim 0 =0.
n—oo n—oo

n—o0 n—oo

Since ¢ # 0, these limits are different, and so lim f(z) does not exist, according
xr—c

to the sequential criterion. ([l
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3.3. CONTINUOUS FUNCTIONS

» Let A= {z € R |z > 0}. Consider the function f : A — R defined by

fla) = {2 ifz ¢ Q

ifz =" € Q withged(m,n) =1
Where is f is continuous?

Solution: we consider two types of limit points of A: « € Qand b ¢ Q. If
0 <a € Qlet(z,) € AN QL besuch thatz, — a. Then f(z,) — 0. But
f(a) > 0,s0 f(x) 4 f(a) when x — q, according to the sequential criterion.

IfO < b ¢ Q lete > 0. By the Archimedean property, there exists an
integer Ny > é There can only be a finite set of rationals with denominator
< Ny in the interval (b — 1,0 + 1). Indeed, if n < Npand ™ € (b — 1,0+ 1)
then whenever |k| > 2n, we have:

k k
_ | |>2:>u§z(b—1,b+1).
n

n

'm+k m

n n

Consequently, 30 > 0 such that there are no rational number ~* with denomi-
nator < Ny in (b — d,b+ 0), which is to say that forall z € (b — §,b+ ), either
f(z) = 0 (when  is irrational) or f(z) = < 3= (when  is rational).

Thus, if [ — b| < d and = € A, we have

1
[f(x) = fFO)] = [f(z) = 0] = [f(2)] < N <e

so f(z) — f(b) when x — b, i.e, f is only continuous on A N (R \ Q). O

Continuity behaves very nicely with respect to elementary operations on functions.

80

Theorem 30 (OPERATIONS ON CONTINUOUS FUNCTIONS)
Let ACR, f,g: A— R,and c € A If f, g are continuous at c, then

1. |f] is continuous at ¢;

2. f + g is continuous at ¢;
3. fgis continuous at c;
4

: 5 is continuous at c if g # 0 on A.
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CHAPTER 3. LIMITS AND CONTINUITY
Proof: if ¢ ¢ A, there is nothing to prove. If ¢ € A, then

lim f(z) = f(¢) and limg(x) = g(c).

Tr—C r—cC

We can then apply Theorem 27 directly with L = f(c¢) and M = g(c). [

Since constants and the identity function are continuous on R (as we saw in the preceding
examples), so are polynomial functions. Furthermore, rational functions are continuous on
their domain.

The composition of the functions f : A — Band g : B — C'is the functiongo f : A — C,
with (g o f)(x) = g(f(z)) forallx € A.

Theorem 31 (COMPOSITION OF CONTINUOUS FUNCTIONS)
Let AABCR, f:A—R g: B— R, ce A If fiscontinuous at ¢, g is continuous at
f(e),and f(A) C B, thengo f: A — B is continuous at c.

Proof: let¢ > 0. As g is continuous at f(c), 35. > 0 such that

y € Band |y — f(c)| < d. = |g(y) — g(f(c))] <e.
Since f is continuous at ¢, 3ns, = 7. > 0 such that

re€Aand |z — ¢ <ns, = |f(z) — f(o)] < b =

ze Aand |z —c| <n. = |[(go f)(x) — (g0 f)le)] = [g(f(x)) —g(f(c)] <e,
which completes the proof. [

It is not too difficult to see that Theorems 30 and 31 remain valid if we replace “continuous
at ¢” with “continuous at A”.

Example: let f : [0,00) — R, defined by f(z) = v/32% + x + 1. Show that f is
continuous on [0, 00).

Proof: we can write f = g o h, where g : [0,00) — R, g(y) = /y and
h:R — R, h(x) = 3z% + x + 1. Since g and h are both continuous on their domains
and A(R) C [0, 00), ¢ is continuous on [0, c0), according to Theorem 31. |

An algebraic function is a function obtained via the (possibly repeated) composition of ratio-
nal functions and root functions. The class of algebraic functions is continuous on its domain.
The same goes for trigonometric, exponential, and logarithmic functions, via their power se-
ries definition.
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3.4 Max/Min Theorem

We begin our study of the classical theorems of calculus. Let A C R, f : A — R. The function
f:A— Risbounded on Aif 3V > 0 such that |f(z)| < M forallz € A.

Examples
1. f:]0,1] = R, f(z) = 22, is bounded on [0, 1] as | f(z)| < 2,Vx € [0, 1].

2. g:R — R, g(x) = 2% is not bounded on R Indeed, suppose 3M > 0 such that
|f(x)| < M forall z € R. Then |2%| = |z|?> < M forallz € R, i.e. |z| < VM
forall z € R = M is an upper bound of R. But there is no such bound, .". ¢
is not bounded on R.

3. f:(0,1) = R, f(z) = 3, is not bounded on (0, 1], but it is bounded on [a, 1]
forall a € (0, 1]. O

There is a link between continuity and boundedness.

Theorem 32
If f : [a,b] — R is continuous on [a, b), then f is bounded on |a, b|.

Proof: suppose f is not bounded on [a,b]. Hence, foralln € N, 3z, € |a,b
such that | f(x,)| > n. However, (x,,) C [a, b] so that (z,,) is bounded.

According to Bolzano-Weierstrass, 3(x,,) < (z,) such that z,, — 2 € [a,}],
since

a<z, <b forallk.

Since f is continuous, we have

£(@) = lim f(x) = lim f(z,,)

=T

so (f(x,,)) is bounded, being a convergent sequence. But this contradicts the as-
sumption that | f(z,, )| > ny > k for all k. Hence f is bounded on [a, b]. |

Continuous functions on closed, bounded sets have a useful property. Let ACR, f: A — R.
We say that f reaches a global maximum on A if 32* € A such that f(z*) > f(x) for all
x € A. Similarly, f reaches a global minimum on A if 3z, € A such that f(z,) < f(z) for
allz € A.

Theorem 33 (MAX/MIN THEOREM)

If f : [a,b] — R is continuous, then f reaches a global maximum and a global mini-
mum of [a, bl.
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Proof: let f([a,b]) = {f(z) | * € [a,b]}. According to Theorem 32, f([a,b]) is
bounded as f is continous, and so, by completeness of R,

s* =sup{f(x) |z € [a,b]} and s, =inf{f(z)|x € [a,b]}
both exist. We need only show 3z*, z, € [a, b] such that f(z*) = s* and f(z.) = s..

Since s* — & is not an upper bound of f([a,b]) for every n € N, 3z, € [a,b]

with |
s* — - < f(x,) <s*, foralln € N.

According to the squeeze theorem, we must have f(x,) — s* (this says nothing
about whether z,, converges or not, however).

But (z,) < [a,b] is bounded, so applying the Bolzano-Weierstrass theorem,
we find that 3(z,,, ) C (z,,) such thatz,, — z* € [a, b]. As f is continuous,

s = lim f(zn,) = f(lgingoxnk) = f(a).

k—o0

The existence of z, € [a,b] such that f(x,) = s, is shown similarly. |

Let’s take a look at some examples.
Examples

1. The function f : [0,1] = R, f(x) = 2%, reaches its maximum and minimum on
[0, 1] since f is continuous, being a polynomial.

2. Let f : [0,1) — R be the function defined by

The function f is not continuous on [0, 1), and [0, 1) is not closed and bounded,

so we cannot use the max/min theorem to conclude that f reaches its global

max/min on [0, 1)... even though it does: 3 at z* = 0 and 2 at any z,. € (0, 1).?
3. The function f : [a,1] — R, a € (0, 1], defined by f(x) = % reaches its global

T

max/global min on [a, 1] as f is continuous on [, 1], being rational there.

4. The function f : (0,1] — R defined by f(x) = 1 is continuous on (0, 1], but we
cannot use the max/min theorem as (0, 1] is not closed. In this case, f has no
global maximum, but it does have a global minimum at x = 1. ([l
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3.5. INTERMEDIATE VALUE THEOREM

Intermediate Value Theorem

The following result has many applications; notably it can help locate the roots of a function.

84

Theorem 34
Let f : |a,b] — R be continuous. If 3o, € [a,b] such that f(a)f(B) < 0, then
Iy € (a,b) such that f(v) = 0.

Proof: we prove the result for f(a) < 0 < f(f); the other case is similar.
Write oy = o, 81 = 5, [, = [, f1],and 71 = ‘“T% There are 3 possibilities:

i. if f(7) =0, sety = 7; theny € (ay, 1) and the theorem is proven;
ii. if f(71) > 0,set s = g, B2 = 713
iii. lff(’}/l) < 0,setay = Y1, 62 = 51.

In the last two cases, set Iy = [, 52]. Then I} D I, length(1;) = 512_0"‘1 and

flag) <0 < f(Ba).

This is the base case n = 1 of an induction process, which can be extended for all
n € N. Either one of two things can occur:

1. 3n € Nsuch that f(v,) = 0, with v, € (o, n) C (o, ), in which case the
theorem is proven, or

2. there is a chain of nested intervals

LOLD I, DI D

where [, = [ay, £,], length(1,,) = Bg,fff", flan) <0< f(B,) Vn € N.

According to the nested intervals theorem, since

. 1 Bn — Oy o
inf {length(f,)} = lim ———— =0,
Je € [a, B] C [a, b] such that (), . I, = {c}.
It remains to show that f(¢) = 0. Note that the sequences (a,), (5,)

both converge to c. Indeed, let ¢ > 0. By the Archimedean property, 4N, € N
such that N, > log,(2=2) + 1.

€

Since ¢ € I, forall n € N, then |a,, — ¢[ < length(l,) = 5% < ¢
whenever n > N.. The proof that 3,, — cis identical.
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Since f is continuous on [a, b], it is also continuous at ¢. Thus,
lim f(an) = lim f(5,) = f(c).
But f(«,) < 0 for all n, so, Theorem 15:

f(e) = lim f(a,) <0.

n—0o0

Using the same Theorem, we have f(c) > 0. Then f(c¢) = 0. Lastly, note that
¢ # a, 5; otherwise, f(a)f(S) = 0.

This concludes the proof, with v = c. [

We can use the result to revisit a corollary from Chapter 1.

Example: Show that 3z € R such that 2% = 2.

Proof: the function f : [0,2] — R defined by f(z) = z? — 2 is continuous on
[0,2]. As f(0) = 0> —2= -2 < 0and f(2) =22 —2 =2 > 0,3y € (0,2) such that
7v? —2=0,s0v% = 2, according to Theorem 34. |

This result easily generalizes to the following.

Theorem 35 (INTERMEDIATE VALUE THEOREM)
Let f : [a,b] — R be continuous. If 3o < p € [a,b] s.t. f(a) < k < f(B) or
f(a) > k > f(pB), then 3y € (a,b) such that f(vy) = k.

Consider the function g : [a,b] — R defined by g(z) = f(x) — k. Theorem 30 shows
that g is continuous on [a, b]. Furthermore,

gla) = fla) =k <k —k=0<f(B) =k =g(B).
By Theorem 34, 3y € («, 5) such that g(y) = f(v) — k = 0. Thus f(vy) = k. |

Proof: assume that f(a) < k < f(f); the proof for the other case is similar.
[

The following result combines the max/min and the intermediate value theorems.

Theorem 36
If f : [a,b] — R is continuous, then f([a,b]) is a closed and bounded interval.

Proof: Let m = inf{f[a,b]} and M = sup{f]

a,bl}. Accordlng to the max/min
theorem, 3o, 5 € [a,b] such that f(a) = mand f(8) =
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If m = M, then f is constant and f([a,b]) = [m,m| = [M,M]. If m < M, then
a # (. Furthermore, m < f(x) < M forall z € [a, ], so that f([a,b]) C [m, M].

Now, let & € [m,M]. According to the intermediate value theorem, 3y be-
tween « and /3 such that f(v) = k. Hence k € f([a,b]) and so [m, M] C f([a,b]).
Consequently, f([a,b]) = [m, M]. [

The image of any interval by a continuous function is always an interval, but the only time
that we know for a fact that image is of the same type as the original is when the original is
closed and bounded.

1 1

Examples

1. Let f : [0,1] — R, f(x) = 2z — 1. Then f([0,1]) is closed and bounded (in
fact, f([0,1]) = [—1,1], but the endpoints of f([—1,1]) are not provided by
Theorem 36).

2. The function f : (0,27) — R defined by f(z) = sinz is continuous and
f((0,27)) = [—1, 1], but Theorem 36 does not apply.

3.6 Uniform Continuity

If f: A — Ris continuous (on A), then fore > 0 and ¢ € A, the §. > 0 that is used to show
continuity of f at c generally depends on € and on c. But there might be instances when o,
depends only on ¢.

The function f is uniformly continuous on A if
z,y € Aand |z —y| <. = |f(2) — f(y)| <e.

The notion of uniform continuity is more restrictive than that of (simple) continuity.
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Theorem 37
If f © A — Ris uniformly continuous on A, then f is continuous on A.

Proof: letc € Aand ¢ > 0. As f is uniformly continuous on 4, 36. > 0 such
that
|f(z) — f(y)] <e whenever |z —y| < d.and z,y € A.

In particular, if y = ¢ then

|f(xz) — f(c)] <& whenever |z —¢| < d.andx € A.

As cis arbitrary, f is continuous on A. |

The converse of Theorem 37 is false, as the following example shows.

Example: show that f : (0,00) — R defined by f(x) = 1 is continuous on (0, 00)
but not uniformly continuous on (0, co).

Proof: that f is continuous on (0,00) is immediate, as it is a rational func-

tion. Let (z,) = (1) C (0,00). Clearly, (z,) is a Cauchy sequence as it is a
convergent sequence. But f(z,) = - = nforalln € N, so (f(x,)) is nota Cauchy

sequence in R (as it is not bounded, and thus divergent).

According to a lemma that we will prove next, f cannot be uniformly continu-
ous on (0, c0). |

In a sense, continuity only requires that there be no “holes” in the function; uniform continu-
ity requires that the combination of domain and rule plays “nicely”.

Lemma: if f is uniformly continuous on A and (z,,) C A is a Cauchy sequence, then
f(z,) is a Cauchy sequence.

Proof: if (z,) C A is a Cauchy sequence and 6 > 0, 3N; € N such that
|z, — x,| < 0 whenever m,n > Nj.

But f is uniformly continuous on A, so that Ve > 0, 36. > 0 such that
z,y € Aand [z —y| <. = |f(z) — f(y)| < e
Combining these two statements, with N, = Mj;_, yields

m,n > N, = |z, — x,| < 0c = | f(xm) — f(2)| <&,

and so (f(z,)) is a Cauchy sequence. [
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While continuous functions are not generally uniformly continuous, there is a specific class
of functions for which continuity is equivalent to uniform continuity.

Theorem 38
Let f : [a,b] — R. Then f is uniformly continuous on [a, b if it is continuous on [a, b].

Proof: this is the converse of Theorem 37. Assume f is continuous on |a,b|.
If f is not uniformly continuous, then 3¢5 > 0 such that ¥é > 0, x4, ys € [a, b] with

|f(zs) — [(ys)| = €0 and x5 — ys| < 0.
Forn € N, let 6, = +. The corresponding sequences (x5, ), (ys,) lie in [a, b], with

1
\:U(;n—y(;n\<(5n:ﬁ and |f(zs,) — f(ys,)| > €0, VneN.

As (5,) is bounded, (5, ) C (5,) such thatz;, — z with k — oo, according to
the Bolazano-Weierstrass theorem.

Furthermore, 2 € [a,b] according to Theorem 15. The corresponding sequence
(ys,,) also converges to z since

1
0 < Y5, = 2| < |y, = s, | + |25, — 2] < —+ w5, — 2]
k
according to the squeeze theorem, as both n—lk, |5,, — 2| = 0 with k — oo. But f

is continuous, so both (f(zs,,)), (f(vs,, ) — f(2), which is impossible as we have
|f(zs,) — f(ys,)| = €0, Vn € N. Thus f must be uniformly continuous. |

There is something “special” about the interval [a, b] that allows for all sorts of interesting
results when combined with continuous functions; as we shall see in Chapters 8,9, 16-17.
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Example: show [ : R — R, f(z) = ﬁ is uniformly continuous on (0, 1).

Proof: lete > 0. Set. = . NotethatVz € R,0 < (|z2] = 1)2 = 22 = 22| + 1 =
2|z] <14 2> = |7%5| < 1/2. Then whenever |z — y| < 6., we have:

1+
_ 1 1 _ 2 g2 . 4
‘f($) - f(y)| T 122 T 12| T (1+Z2)(T+y2) - (1+x§)(?{+y2) ’33 — y’
1 1
< ( HZ—JyQ " 1422 +|1+I:102| T T2 )’1’ —
<1 <1
5(‘157 +|1ﬁ\)lx—ylélx—yl<5a=€, _
~———
<1/2 <1/2
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3.7 Solved Problems

1. Show lim 2® = ¢* for any ¢ € R.
Tr—rc

Proof: if |z — ¢| < 1, then |z| < |c¢| + 1. Lete > 0 and set . = min{1, m}
Then

23 — | = |z — ||z + cx + | < |z — | (|z]* + |e]|2] + |¢?)
<o — el ((lel +1)* +[el(Je] + 1) +[c]?)
= |z — | (3[¢|* + 3|c| + 1)

<3 (3le|* +3lef +1) <

9
— (3l +3 1) =
S g a1 Gl sk ==

whenever 0 < |z — ¢| < - and z € R. ]
2. Let f : R — Rand let ¢ € R. Show that lim f(z) = L if and only if lin(l) f(x+¢)=L.
Tr—cC r—
Proof: we have
lim /() = L
)
Ve > 0,30, > 0s.t.|f(z) — L| <ewhenO < |z —¢| < ¢
)
Setx =y+c: Ve >0,30. >0s.t. |[f(y+¢) — L| <ewhenO0 < |y| < 6
)
Ve > 0,36 > 0s.t.|f(y+c¢) — L| < ewhen0 < |y — 0] < 4.
)

lim f(y +¢) =L,
y—0

which completes the proof. ]

3. Useeitherthee—¢ definition of the limit or the sequential criterion for limits to establish
the following limits:

. 1
a) }:1—%1—1*__1'
T 1
b) li = —;

2
c) lim T 0, and

x—0 |:L‘|
2 _ 1 1
d) lim ozl 1L
z—1 x+1 2
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Proof:
a) Lete > Oandsetd. = min{3, 5}. Then
1 3 )
O<!m—2\<6gz>|x—2|<§<:>§<x<§
<:>1< 1<3<:> ! <2
—<zT— - .
2 2 z—1
Thus ) ) )
—(=1)| = 2= — |z —2| <26 <
5 - D] = il -2 = e -2l <2 <o

whenever 0 < |z — 2| < 0. and z € R. (Note thatif 0 < |z — 2| < d., we've seen
that z > % and so that |z — 1| = = — 1. This explains why we have gotten rid of
the absolute values above.)

b) Lete > 0and setd, = min{3, 3c}. Then

1 1 3
O<|z—-1l<d=|z- 1< <= _-<z< <

2 2 2
1 1
—3<2 DH<he=s —— < -
(z+1) 2r+1) 3
Thus
T 1 1 1 1
e = e 1< 2d <
‘1+x 2' et U= gpple g% <

whenever 0 < |z — 1| < 0. and z € R. (Note thatif 0 < |z — 1| < d., we've seen
that 2(x 4+ 1) > 3 and so that 2|z + 1| = 2(z + 1). This explains why we have
gotten rid of the absolute values above.)

c) Let(x,) C R beasequence s.t. z,, — 0 and z,, # 0 for all n. Then

2

xn _ |$n|2

- = =|z,| — 0,

by theorem 14. By the sequence squeeze theorem, the limit must be thus 0.
d) Lete > 0and set§. = min{3, 3¢}. Then
1
3

O<|x—1|<55:>|21‘—1|<2and‘ <

=

Thus ,whenever 0 < |z — 1| < §. and = € R, we have

22 —x+1 1 27 — 1 | 1‘<2| 1|<25<
— | = |— |- —|z — = €.
T+1 2 2(z +1) 3 3°
This completes the exercise. ]

4. Show that the following limits do not exist:

1
a) lim —, withz > 0;
x—0 1’2
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b)

<)

d)

1
lim —, withz > 0;
x—0 x

3161_r>r(1)(a: + sgn(x)), and
limsin(1/2?), withz > 0,
z—0

Solution: in each instance, we only give some sequence(s) for which Theorem 26
shows the limit does not exist.

a) xn:%%O,butf(wn):U%:Tﬂ%oo.
b) xn:%%O,butf(xn):ﬁ:\/ﬁ%oo.
Q) zp=2y,=—2s0butf(z,)=L+1-1f(y,)=-2-1— -1

2 2
d) xn:\/%ayn: m*}()but
4 1 4
flxy) = Sin< n2—i— 7'[') =1, flyn) = Sin( n2+371'> — —1.

This completes the exercise. (]

5. Letc € Randlet f : R — R be such that lim (f(z))* = L. Show that if L = 0, then
T—C
lim f(z) = 0. Show that if L # 0, then f may not have a limit at c.

Tr—cC

Proof: if lim (f(x))® = 0 then ¥y > 0,35, > 0 such that

@ = |(F@)* 0| <7

whenever 0 < |z — ¢| < d,. Lete > 0.

By definition of the real numbers, 37, > 0 such thate = /7. Set . = J,.. Then

If(z) = 0] = |f(2)] = V|f(x)]2 < /- =¢

whenever 0 < |z — ¢| < d..

Now, consider the function f : R — R defined by

1 ifx >0
T) = .
/(@) {—1 ifr <0

Then (f(2))* = 1 and
lim (f(z))* = lim1=1.

z—0 x—0

1

But lirr%) f(z) does not exist since (z,) = (%), (yn) = (—1+) are sequences such that
T—r

T, Yn — 0, Tpn, yn # 0 for all n and
flep)=—-1—= —1#1+ 1= f(yn).

This completes the proof. |
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3.7. SOLVED PROBLEMS

6. Let f : R — R, let J be a closed interval in R and let ¢ € J. If f; is the restriction of
f to J, show that if f has a limit at ¢ then f5 has a limit at ¢. Show the converse is not
necessarily true.

Proof: suppose liLn f(z) = L exists. Then, Ve > 0,35, > 0s.t.|f(z) — L| < ¢ when-
r—cC

ever 0 < |z —¢| < 0. But fo(x) = f(x) forallz € J C R, soVe > 0,35, > 0 (exactly
asabove) s.t. | fa(z) — L| = | f(z) — L| < e whenever0 < |z —¢| < cand z € J,and
so liLn fa(x) = L.

Now consider f : R — R defined by

9

_J0 ifx € (—00,0)U(1,00)
f@%_Lﬁxemﬂ

with J = [0, 1] and f2 = f]|;. Then lim1 fa(x) = 1but lim1 f(x) does not exist. [ |
T T

7. Determine the following limits and state which theorems are used in each case.

a)

b)

c)

d)

) 20 +1
olcl—% x—|—3,($>0),
2
R A
e (>0
12 -1

lim u, (x > 0),and
x—0 x

-1
lim\/5 , (x> 0).
rx—1 .T—l

Solution: We will do c) in its entirety and only give the answers to the others.

Consider the sequence (z,,) = (2). Then z,, — 0,2, # 0Vn € N, and

2
N2-1 (t+1)°-1 1
T - n
1)2-1
Hence, if lirrbu exists, its value must be 2, by Theorem 26.
xr— T

Lete > 0. Set 6. = &. Thenwhen 0 < |z — 0| < §. and = > 0, we have

1‘2

242 4+1-1-22
o

=|z|=]r—0| <0 =e.

12 -1
(x+1) _2‘
X

a) 1 b) 4 d

D=
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8. Give examples of functions f and ¢ such that f and g do not have limits at point ¢, but
both f 4+ g and fg¢ have limits at c.

Solution: Let f, g : R — R be defined by

1 x>0
J@) = {—1 <0
and g(z) = —f(z) forallz € R. Then f(z) + g(z) = 0 and f(z)g(z) = —1. Asa
result,
lim(f + ¢)(x) =0 andlim(fg)(z) = —1,
z—0 z—0
but the limits of f and g don’t exist at O (see solved problem 5). U

9. Determine whether the following limits exist in R:

1
a) hmsm< >, with z # 0;
l’

z—0
1 .
b) hmxsm( 2), with x # 0;

1
) lin% sgn sin ( ), with z # 0, and
z—

d) lim /7 sin ( ), with z > 0.
x—0 (13

Solution:

a) Let (z,) = (\/%) and (yn) = (4 /m) for all n € N. Then z,,,y, — 0 and
ZTn,Yn 7 0foralln € N. But

1 1 4 1
sin <$%> =sin(nm) =0 and sin (y,%) = sin <(n—;—)7r) =1

foralln € N.

1
Then sin(1/z2) — 0 and sin(1/y2) — 1. As0 # 1, 11m sin ( > doesn’t exist.

b) Consider the sequence (z,,) = (ﬁ) Then x,, — 0 and x,, # 0 foralln € N.
Furthermore,

1 1 1
Iy sin <x%> = \/ﬁ Sin(nﬂ') = \/ﬁ -0—0.

1
As a result, if lim z sin <) exists, it must take the value 0. Let ¢ > 0. Set
22

z—0
0 = €. Then

1
xsm( ) —O‘ ||
z?

1
whenever 0 < |z — 0| < . and « > 0. Hence lim z sin < 2) = 0.
X

x—0

1
51n<ng >'<|x] |zt — 0| <de=¢
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c) Let(x,) = (ﬁ) Then z,, — 0, x,, # 0 foralln € Nand

sen (sin (- ) ) =sen (-1 = (-1)"

: . (1 :
which does not converge. Hence lm}) sgn [ sin [ — | | does not exist.
T— T

1
d) lim v/xsin <2> = 0, with the same proof as b), save for 6, = 2. U
z—0 T

10. Let f : R — Rbest f(r+vy) = f(x) + f(y) forall z,y € R. Assume lirr(l]f(x) =1L
T—
exists. Prove that L = 0 and that f has a limit at every point ¢ € R.
Proof: as f is additive, we have f(2z) = f(z + x) = f(z) + f(x) = 2f(x), so that
L=1lim f(y) = Jim f(22) = lim f(2r) = lim 2/ (x) = 2 lim f(x) = 2L:

hence L =2Land L =0, i.e, lir% f(z)=0.
T—

Now, let ¢ € R. Then
lim f(2) = lim (f(z — ¢) + f(c)) = lim f(z — ¢) + lim f(c)
= lim f(4) + () = 0+ £(c) = f(0).

As f is defined on all of R, f(c) exists for all ¢ € R, and so lim f(z) = f(c) exists for

Tr—cC
allc e R. ]
11. Let K > Oand let f : R — R satisfy the condition
[f(z) = f(y)| < K|z —y]
for all x,y € R. Show that f is continuous on R.
Proof: letc € Rand ¢ > 0. Setd. = 4. Then
U@%ﬁ@ﬂgK@—d<K&<K%:5
whenever |z — ¢| < J.. [

12. Let f : (0,1) — R be bounded and s.t. lirr(l) f(x) does not exist. Show that there are two
T—

convergent sequences (z,), (y,) C (0,1) with z,,y, — 0and f(z,) — & f(y.) — C,
but & # C.

Proof: forn € N, let I, = (0,1/n) and set
sp =sup f(I,) and t, =inff(I,).

These are well-defined as f(7,,) is bounded.
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By construction, (s,,) is decreasing and (¢,,) is increasing. Since
s1> sp = sup f(In) > inf f(I,) = t, > t1,

(sn) is bounded below by ¢; and (¢,) is bounded above by s;. Hence s,, — s and
t, — t exist, by the bounded monotone convergence theorem.

Forn € N, let z,,, y,, € I, bes.t.
1 1
|f(zn) — sn| < " and [f(yn) —tn| < w

This can always be done as s, — % andt, + % are not the supremum and the infimum,
respectively, of f(1,,). Then, x,,,y,, — 0 and z,, y,, # 0 foralln € N.

Furthermore, f(x,) — s and f(y,) — t according to the sequence squeeze theo-
rem; indeed, s,, — % < flzn) < spptn < flyn) < tn+ %, s, — s,and t,, — t, and the
statement follows.

Now, suppose thats = ¢ = ¢. Then s,,,t,, — ¢. Lete > 0. 3N, Ny € Ns.t. s, —{| < ¢
whenever n > Nj and |t,, — ¢| < £ whenever n > Ny. Set N. = max{Ny, N2}. Then

l—e<t,<s,<l—c¢
whenever n > N.. Setd. = N% Then
l—e <ty =inff(In.) < f(z) <sup f(In.) < sn. <l +e,

thatis, | f(z) — | < e whenever 0 < |z — 0] < 3= = .. Hence lirr}) f(x) = ¢, which
€ r—

contradicts the hypothesis that the limit does not exist. Consequently, s # ¢, which

completes the proof. |

13. Let f : R — R be continuouson Randlet P = {z € R : f(z) > 0}. If c € P, show that
there exists a neighbourhood Vj(c) C P.

Proof: let c € P. Then f(c) > 0and 3¢ > 0s.t. f(c) — o > 0. By the continuity of
[, 30, st | f(x) — f(c)| < eo whenever |z — ¢| < Jg,.

Thus, 0 < f(c) —eo < f(z) forallz € Vj, ,ie Vs, CP. [ |
14. Prove that if an additive function is continuous at some point ¢ € R, it is continuous on R.

Proof: in the light of a previous question on the topic, it is sufficient to show that if
lim f(z) = f(c) for some ¢ € R, then lin}) f(z) = 0. Let f be continuous at c. Then
r—cC Tr—

F(e) = lim f(z) = lim (f(z — ¢) + f(¢))
— lim f(z — ) + lim f(c) = lim f(3) + /().

hence lir% f(y) = 0, which completes the proof. [ |
Y—
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3.7. SOLVED PROBLEMS

15. If f is a continuous additive function on R, show that f(z) = cz for all x € R, where

c= f(1).

Proof: let n € N. Then

f(1):f(Z):f<:l+--~+i>:f(i)+~--+f(i) :nf(D,
hence L /(1) = f (%).

Setc = f(1). Lety € Q. Theny = ™, where m € Zandn € N*, and

r) = £ (%) = () =m0 = e

n

Let z € R. Since z is a limit point of Q, 3(z,) C Q s.t. z, — z, with z,, # z for
alln € N. But f(z,) — f(x), by continuity, so f(z,) = cz, — cz, by the above
discussion. Hence, f(x) = cx. [ |

16. Let I = [a,b] and f : I — R be a continuous function on / s.t. Vo € [, Jy € I s.t.
|f(y)] < 3|f(2)]. Show Je € I s.t. f(c) = 0.

Proof: let z; € I. By hypothesis, dz2 € I s.t.

1
F (@) < 517,
Since x9 € I,dz3 € I s.t.

) < 315Gl < 5 (515l ) = gl rte)

and so on. The sequence (z,,) C I thusly built satistfies

1
0.< 1 (o)l < gy ()]

by induction (can you show this?).

Then le | f(xy)| = 0, by the squeeze theorem, and so f(z,) — 0. As (z,,) is bounded,

it has a convergent subsequence (z,, ) (according to the Bolzano-Weierstrass theo-
rem) whose limit c is in I (because a < x,, < bfor all n).

Since (f(zy,)) is a subsequence of (f(zy,)), then

lim f(z,,)=0.

k—00
However,
fim o) = 1 Jim o, ) = 700
as f is continuous. Hence f(c¢) = 0. [
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17. Show that every polynomial with odd degree has at least one real root.

Proof: let
flx) = a2n+1x2n+1 + agnz®™ + - - + a1z + ag,

wherea; € Rfori =0,...,2n + 1. Assume that as,, # 0.3 Let

1/k
M—max{(2n—|—1) [22n] (‘GQ"_]“') ;k—l,...,2n}.

lagn+1]” \ |azn|

Then, whenever |z| > M,

" aza||22"] > Jaznll2®"];
" aga||2?"] > Jagn—1||z*"~1];

. ... "
)
* |agn|lz®"| > |a1||x], and
= Jagn|lz*"| > |ao),
and so
|aona® + -+~ ag| < |agnl[2®"| + - + |ao| < |azn||2*"| + -+ + |azn||2*"]

= (2n + Daza|z*"| < laznt1]|2*" | = |agn 122"

9

from which we concude that f(M +1)f(—M — 1) < 0.

As f is continuous on [-M — 1, M + 1],3c € [-M — 1,M + 1] s.t. f(¢) = 0, by
the intermediate value theorem. [ |

18. Let f : [0, 1] — R be continuous, with f(0) = f(1). Show 3c € [0, 3] s.t. f(c) = f(c+3).

Proof: let g : [0, 3] — R be defined by g(z) = f(z) — f(z + 3). By construction, g is
continuous on [0, 1]. If g(0) = g(1/2) = 0, there is nothing else to show. Otherwise,

9(0) = f(0) = f(1/2) and g¢(1/2) = f(1/2) = f(1) = F(1/2) = f(0);

hence g(0)g(1) < 0. By the intermediate value theorem, 3¢ € [0, 3] s.t. g(c) = 0, that
is f(¢) — f(c+ %) = 0. This completes the proof. [ |

19. Show that f(x) = - is uniformly continuous on A = [1, c0), but not on B = (0, c0).

Proof: if z,y € A, then z,y > 1. In particular, || = z and |y| = y, and ley, le,? <L
Lete > 0 and set . = 5. Then
1 1] |y =2®| |y +ally -
’f(x)_f(y)’: ﬁ_? = 5L‘2y2 = x2y2
Y T 1 1
= |y — x| <x2y2 + x2y2> = |z -y (xgy + xyg) <2z —y|<20.=¢

whenever [z — y| < ;. and z,y € A.

3If that is not the case, the proof will proceed in a similar fashion, but a,,, will be replaced by the first a; that
is non-zero, starting with as,,_1; if all coefficients are 0, then the real root is 0.
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We show that the negation of the definition of uniform continuity holds on B. Let

€ =1andd > 0. Then, AN € Ns.t. ﬁ < 9. Setzy = % and yy = +i+. Clearly,

N+1*
ITN,YN € B and

| [y E—— L1
a - = |- — = J— .
NTINTIN TN+ T NN +1) © N2
However,
|f(zn) — flyn)| = N? = (N +1)* | =2N +1 > ¢,
that is, f is not uniformly continuous on B. [ |

20. If f(z) = x and g(x) = sin x, show that f and g are both uniformly continuous on R but
that their product is not uniformly continuous on R.

Proof: letc > 0 and set 5. = . Then

f(@) = fy)l =z -yl <. =¢

sin @(:p - y)) cos <;(w + y)> '

1
S2lr—yl-l=lr—yl<d=e

and

|9(x) = g(y)| = [sinz —siny| =2

(the second-last inequality can be obtained using Taylor’s theorem on the sin func-
tion, see Chapter 4), whenever |z — y| < J. and z,y € R. Hence f and g are both
uniformly continuous.

Set h(z) = xsinz. Lete = land§ > 0. Them 3N € Nst. & < dand K € N

s.t.
1 1\
K>-(1- — 3.
> 4( COS N> +
Define
_AK-3 L AK -3 1
T = 5 s YK = 5 T N

Then |z — yx| = % < J and

4K — 3 1
(h(xxe) = hlyx)| > — w(l—cosN> >g>1:€,

and so h is not uniformly continuous. |
21. Let A C R and suppose that f has the following property: Ve > 0,dg. : A — Rs.t. g,

is uniformly continuous on A with |f(x) — g.(x)| < e forall z € A. Show f is uniformly
continuous on A.
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Proof: lete¢ > 0. Then § > 0 and there exists g./3 as in the hypothesis: hence
Iess > 0st|g.y3(x) — g-/3(y)| < § whenever [z —y| < 7./3and z,y € A. Set
de = 13- Then

[f(@) = FW) = 1f (@) = gey3(2) + 9e/3(2) — 9e/3(y) + 9es3(y) — f (W)
<N (@) = geps(@)| + 192/3(2) — ge/3 ()| + 192/3(y) — f(¥)]
e € €
< g + g + g =€
whenever |z — y| < d. and x,y € A. Hence, f is uniformly continuous on A. |

22. Is a continuous p—periodic fonction on R bounded and uniformly continuous on R?

Proof: since f is continuous, then |f| is also continuous, being the composition of
two continuous functions. As f is p—periodic, 3¢ € [0, p] s.t.

sup |f(z)| = sup |f(z)| = |f(c)],

zeR z€(0,p)

by the max/min theorem. Hence f is bounded by | f(c)| on R.

Let ¢ > 0. By hypothesis, f is continuous on the closed interval [—1,p + 1], which
implies that that f is uniformly continuous on [—1, p+ 1] (according to Theorem 38).
Then, 30 > 0s.t. |f(z) — f(y)| < e whenever |z — y| < §. and z,y € [-1,p + 1].

Without loss of generality, we can assume that §. < 1. Letx,y € Rs.t. |z — y| < ..
Then3k € Zand o, f € [-1,p+ 1]st.z =a+ kpandy = 5 + kp.

Thus o — 5| = |& —y| < & and [f(z) = f(y)| = |f(a) = f(B)] < & since [ is
uniformly continuous on [—1, p + 1]; consequently, f is uniformly continuous. |

23. Defineg: R — R by

glx)=9,"

GO iy = 1/n for somen € N,
0 otherwise

Prove that g is continuous at 0.

Proof: letc > 0. Set §. = . Then,

1 1 1 1
—0'<5:>‘g(>—g(0)‘= —| = —O‘ <b.=¢€
n n n n

whenever |1/n — 0| < d,, so g is continuous at 0. [ |
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3.8. EXERCISES

3.8 Exercises

100

. Prepare a 2-page summary of this chapter, with important definitions and results.

. Let A = {1 | n € N}. Show that no real number strictly greater than 1 can be a limit

point of A.

. Prove the “min” part of Theorem 33.
. Complete the solution of solved problem 7.

. Let f : R — R. The pre-image of a subset B C R under f is

f7(B)={a€ Al f(a) € B}.

Prove that f is continuous if and only if the pre-image of every open subset of R is an
open subset of R.

. Afunction f : A — R is said to be Lipschitz if there is a positive number M such that

|f(z) — fly)| < M|z —y| Vaz,y€ A

Show that a Lipschitz function must be uniformly continuous, but that uniformly con-
tinuous functions do not have to be Lipschitz.
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