
Chapter 4

Differential and Integral Calculus

We have spent a fair amount of time and energy on concepts like the limit,
continuity, and uniform continuity, with the goal of making differential
and integral calculus sound. In this chapter, we introduce the concepts
of differentiability and Riemann-integrability for functions, and prove
a number of useful calculus results.

4.1 Differentiation
Let I ⊆ R be an interval, f : I → R, and c ∈ I . The real number L is the derivative of f at c,
denoted by f ′(c) = L, if

∀ε > 0,∃δε > 0 s.t. x ∈ I and 0 < |x− c| < δε =⇒
∣∣∣∣f(x)− f(c)x− c

− L
∣∣∣∣ < ε.

In that case, we say that f is differentiable at c.¹ While f ′(c) (if it exists) is a real number, ,
f ′ : I → R is a function – the derivative function.

aaaaaa

Example: let f : I → R be de ined by f(x) = x3. Set c ∈ I . Then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

x3 − c3

x− c
= lim

x→c
(x2 + cx+ c2) = 3c2.

The corresponding derivative function is f ′ : I → R, f ′(x) = 3x2. □

As we learn in calculus courses, there is a link between differentiability and continuity.

¹This de inition simply states that f ′(c) exists if lim
x→c

f(x)−f(c)
x−c exists, and that, in that case,

f ′(c) = lim
x→c

f(x)− f(c)
x− c

.
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aaaaaa

Theorem 39
If f : I → R has a derivative at c, then f is continuous at c.

Proof: let x, c ∈ I , x ̸= c. Then f(x)− f(c) =
(

f(x)−f(c)
x−c

)
(x− c) and so

lim
x→c

(f(x)− f(c)) = lim
x→c

f(x)− f(c)
x− c

· lim
x→c

(x− c),

if all the limits exist. But x− c→ 0when x→ c, and

lim
x→c

f(x)− f(c)
x− c

= f ′(c)

by hypothesis, so

lim
x→c

(f(x)− f(c)) = f ′(c) = 0 = 0 =⇒ lim
x→c

f(x) = f(c),

which means that f is continuous at c. ■

The converse of Theorem 39 does not always hold, however. The function | · | : R → R, for
instance, is continuous at x = 0, but it has no derivative there as |x|/x has no limit when
x→ 0. Continuity is a necessary condition for differentiability, but it is not suf icient.

aaaaaa

Example (W ' M ) Weierstrass provided the irst example of
such a function in 1872: f : R→ R de ined by

f(x) =
∑
n∈N

cos(3nx)
2n

.

That it took so long to ind an example is mostly due to the fact that the de inition of
a function has evolved a fair amount over the last 200 years. □

The usual rules of differentiability are easily demonstrated.

aaaaaa

Theorem 40
Let c ∈ I , I an interval, α ∈ R, f, g : I → R be differentiable at c, with g(c) ̸= 0. Then

1. αf is differentiable at c and (αf)′(c) = αf ′(c);

2. f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c);

3. fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c);

4. f/g is differentiable at c and (f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
.
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aaaaaa

Proof: in all instances, we compute the limit of the differential quotient, taking into
account the fact that f and g are differentiable at c.

1. If αf is differentiable at c, then

(αf)′(c) = lim
x→c

(αf)(x)− (αf)(c)

x− c
= lim

x→c

α(f(x)− f(c))
x− c

= α lim
x→c

f(x)− f(c)
x− c

.

But f is differentiable at c, so the last limit exists, validating the string of equa-
tions, and is equal to f ′(c), and so (αf)′(c) = αf ′(c).

2. If f + g is differentiable at c, then

(f + g)′(c) = lim
x→c

(f + g)(x)− (f + g)(c)

x− c
= lim

x→c

f(x) + g(x)− f(c)− g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

+ lim
x→c

g(x)− g(c)
x− c

.

But both f, g is differentiable at c, so the sum of limits exists, validating the
string of equations, and is equal to f ′(c)+g′(c), and so (f+g)′(c) = f ′(c)+g′(c).

3. If fg is differentiable at c, then

(fg)′(c) = lim
x→c

(fg)(x)− (fg)(c)

x− c
= lim

x→c

f(x)g(x)− f(c)g(c)
x− c

= lim
x→c

f(x)g(x)− f(c)g(x) + f(c)g(x)− f(c)g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

g(x) + lim
x→c

f(c)
g(x)− g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

· lim
x→c

g(x) + f(c) lim
x→c

g(x)− g(c)
x− c

But both f, g is differentiable at c, so the differential quotient limits exist, vali-
dating the string of equations. Furthermore, g is continuous at c, being differ-
entiable at c (acccording to Theorem 39). Hence

(fg)′(c) = f ′(c) · lim
x→c

g(x) + f(c)g′(c) = f ′(c)g(c) + f(c)g′(c).

4. Set h = f/g; then f(c) = g(c)h(c) and f ′(c) = g′(c)h(c) + g(c)h′(c) by the
previous rule. Thus

(f/g)′(c) = h′(c) =
f ′(c)− g′(c)h(c)

g(c)
=
f ′(c)− g′(c)f(c)/g(c)

g(c)
=
f ′(c)g(c)− g′(c)f(c)

[g(c)]2
,

which completes the proof. ■
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Be careful! Although what we wrote in the proof for the fourth rule is undeniably true, we
still need to show that h is differentiable at c under the given conditions before we can use
the product rule. The proof could instead look like the following (reprise).

aaaaaa

4. Since g is continuous at c (being differentiable at c) and g(c) ≠ 0, ∃ an interval
J ⊆ I such that c ∈ J an g ̸= 0 on J . If f/g is differentiable at c, then

(f/g)′(c) = lim
x→c

(f/g)(x)− (f/g)(c)

x− c
= lim

x→c

f(x)/g(x)− f(c)/g(c)
x− c

= lim
x→c

f(x)g(c)− f(c)g(x)
g(x)g(c)(x− c)

= lim
x→c

f(x)g(c)− f(c)g(c) + f(c)g(c)− f(c)g(c)
g(x)g(c)(x− c)

,

so that

(f/g)′(c) = lim
x→c

1

g(x)g(c)

[
f(x)− f(c)

x− c
g(c)− f(c)g(x)− g(c)

x− c

]
= lim

x→c

1

g(x)g(c)
·
[
lim
x→c

f(x)− f(c)
x− c

g(c)− f(c) lim
x→c

g(x)− g(c)
x− c

]
.

But both f, g is differentiable at c, so the differential quotient limits exist,
validating the string of equations.

Furthermore, g is continuous at c, being differentiable at c (cf. Theorem 39),
and g ̸= 0 on J , so that 1

g(x)
→ 1

g(c)
when x→ c. Thus

(f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
. ■

Using mathematical induction, we can easily show that[ n∑
i=1

fi

]′
(c) =

n∑
i=1

f ′
i(c) and

[ n∏
i=1

fi

]′
(c) =

n∑
i=1

(∏
j ̸=i

fj(c)
)
f ′
i(c),

if f1, . . . , fn are all differentiable at c. In particular, if f1 = · · · = fn, then

(fn)′(c) = nfn−1(c) · f ′(c).

If we consider the identity function f , then for c ∈ R, we have

f ′(c) = lim
x→c

x− c
x− c

= 1 =⇒ (fn)′(x) = nfn−1(x) · f ′(x) = nxn−1

for all x ∈ R, n ∈ N; this can be extended to n ∈ Z using Theorem 40.4.
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aaaaaa

Theorem 41 (C ́ )
Let I = [a, b] and f : I → R. Then f is differentiable at c ∈ I if and only if
∃φc : I → R, continuous at c such that f(x) − f(c) = φc(x)(x − c), for all x ∈ I . In
that case, φc(c) = f ′(c).

Proof: let c ∈ I . Assume that f ′(c) exists. De ine φc : I → R by

φc(x) =

{
f(x)−f(c)

x−c
, x ̸= c

f ′(c), x = c

Then φc is continuous at c since

lim
x→c

φc(x) = lim
x→c

f(x)− f(c)
x− c

= f ′(c) = φc(c).

If x = c, then f(x) = f(c) and

f(x)− f(c) = f(c)− f(c) = 0 = φc(c)(c− c) = φc(x)(x− c).

If x ̸= c and x ∈ I , then, by de inition, f(x)− f(c) = φc(x)(x− c). Assume now that
∃φc : I → R, continuous at c, and such that f(x)− f(c) = φc(x)(x− c), for all x ∈ I .

If x ̸= c, then
φc(x) =

f(x)− f(c)
x− c

and, since φc is continuous at c,

φc(c) = lim
x→c

φc(x) = lim
x→c

f(x)− f(c)
x− c

exists. Then φc(c) = f ′(c) and f is differentiable at c. ■

It is important to recognize that φc is not, as a function, the same as f ′, in general – it is only
at c that they can be guaranteed to coincide, although in certain cases (such as when f is
a linear function), f ′(x) = φc(x) for all c in I . Carethéodory’s Theorem can be used to prove
an important rule of calculus.

aaaaaa

Theorem 42 (C R )
Let I, J be closed bounded intervals, g : I → R and f : I → R be functions such that
f(J) ⊆ I , and let c ∈ J , with d = f(c). If f is differentiable at c and g is differentiable
at d, then the composition g ◦ f : J → R is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c) = g′(d)f ′(c)

.
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aaaaaa

Proof: since f ′(c) exists, Carathéodory’s Theorem implies thatφc : J → R such that
φc is continuous at c ∈ J with

φc(c) = f ′(c), and f(x)− f(c) = φc(x)(x− c), for all x ∈ J.

Since g′(d) exists, ∃ψd : I → R such that ψd is continuous at d ∈ I , with

ψd(d) = g′(d), and g(y)− g(d) = ψd(y)(y − d), for all y ∈ I.

Thus, if y = f(x) and d = f(c), we have

(g ◦ f)(x)− (g ◦ f)(c) = g(f(x))− g(f(c)) = ψd(f(x))(f(x)− f(c))
= ψd(f(x))φc(x)(x− c) =

[
(ψd ◦ f)(x) · φc(x)

]
(x− c),

for all x ∈ J such that f(x) ∈ I .

However (ψd ◦ f) · φc is continuous at c, being the product of two functions which
are continuous at c. According to Carathéodory, (ψd ◦ f)(c) · φc(c) = (g ◦ f)′(c). But

(ψd ◦ f)(c) · φc(c) = ψd(f(c))φc(c) = g′(f(c))f ′(c) = g′(d)f ′(c),

which completes the proof. ■

The chain rule can be used to determine some of the other classical rules of differentiation.

aaaaaa

Examples

Suppose that f : I → R is differentiable at c and that f, f ′ ̸= 0 on I . If h is
de ined by h(y) = 1

y
, y ̸= 0, then h′(y) = − 1

y2
. Thus

(1/f)′(x) = (h ◦ f)′(x) = h′(f(x)) · f ′(x) = − f ′(x)

(f(x))2
, for all x ∈ I.

Let g = | · |. Then g′(c) = sgn(c) for all c ̸= 0. Indeed,

lim
x→c

|x| − |c|
x− c

=


lim
x→c

x− c
x− c

, c > 0

− limx→c
x− c
x− c

, c < 0
=

{
1, c > 0

−1, c < 0
= sgn(c),

but g′(0) does not exist (even though sgn(0) = 0). If f : [a, b]→ R is differen-
tiable, the chain Rule states that |f |′(x) = sgn(f(x)) · f ′(x). What happens if
f(c) = 0? Is |f | differentiable at c?
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4.1.1 Mean Value Theorem
With basic calculus in the bag, we can now tackle some of the heavy analysis hitters. Let I be
an interval; a function f : I → R has a relative maximum at c ∈ I if ∃δ > 0 s.t.

f(x) ≤ f(c), ∀x ∈ Vδ(c) = (c− δ, c+ δ);

it has a relative minimum at c ∈ I if ∃δ > 0 such that
f(x) ≥ f(c), ∀x ∈ Vδ(c) = (c− δ, c+ δ).

If f has either a relative maximum or a relative minimum at c, we say that it has a relative
extremum at c.²

aaaaaa

Theorem 43
Let f : [a, b]→ R, c ∈ (a, b). If f has a relative extremum at c and if f is differentiable
at c, then f ′(c) = 0.

Proof: without loss of generality, assume that f has a relative maximum at c;
the proof for a relative minimum follows the same lines. Let δ̃ be the quantity
whose existence is guaranteed by the de inition:

f(x) ≤ f(c), ∀x ∈ Vδ̃.

If f ′(c) > 0, then ∃δ > 0 such that f(x)−f(c)
x−c

> 0 whenever 0 < |x − c| < δ. Indeed,
according to the de inition of the derivative, if ε = 1

2
f ′(c) > 0, ∃δε > 0 such that∣∣∣∣f(x)− f(c)x− c

− f ′(c)

∣∣∣∣ < ε =
1

2
f ′(c)

whenever 0 < |x− c| < δε. Set δ = min{δε, δ̃}. Then

−1

2
f ′(c) <

f(x)− f(c)
x− c

− f ′(c) <
1

2
f ′(c), whenever 0 < |x− c| < δ,

and so
0 <

1

2
f ′(c) <

f(x)− f(c)
x− c

, whenever 0 < |x− c| < δ.

But if x ∈ Vδ(c)with x > c, then

f(x)− f(c) = (x− c)︸ ︷︷ ︸
>0

· f(x)− f(c)
x− c︸ ︷︷ ︸
>0

> 0,

and so f(x) > f(c), which contradicts the fact that f has a relative maximum at c.
Thus, f ′(c) ̸> 0. We can prove that f ′(c) ̸< 0 using a similar argument. As neither
f ′(c) > 0 nor f ′(c) < 0, we must have f ′(c) = 0. ■

²Note that the de inition of relative extremum makes no mention of continuity or differentiability.
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This result justi ies the commonpractice of looking for relative extremaat rootsof thederiva-
tive. Since c is not an endpoint of I , we must also include a and b in the search for extrema.³
The next theorem has far-reaching consequences.

aaaaaa

Theorem 44 (R )
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If f(a) = 0 and
f(b) = 0, ∃c ∈ (a, b) such that f ′(c) = 0.

Proof: if f ≡ 0 on [a, b], then the conclusion holds for any c ∈ (a, b). If ∃x∗
such that f(x∗) ̸= 0, we may suppose, without loss of generality, that f(x∗) > 0.
According to the max/min theorem, f reaches its maximum

sup{f(x) | x ∈ [a, b]} > 0

somewhere in [a, b]. But since f(a) = f(b) = 0, the maximum must be reached in
(a, b). Denote that point by c. Then f ′(c) exists and since f has a relative maximum
at c, Theorem 43 implies that f ′(c) = 0. ■

This subsection’s main result is an easy corollary of Rolle’s Theorem.

aaaaaa

Theorem 45 (M V T )
Let f : [a, b] → R be continuous on [a, b]. If f is differentiable on (a, b), ∃c ∈ (a, b)
such that f(b)− f(a) = f ′(c)(b− a).

Proof: let φ : [a, b]→ R be de ined by

φ(x) = f(x)− (a)− f(b)− f(a)
b− a

(x− a).

Then

φ(a) = f(a)− f(a)− f(b)− f(a)
b− a

(a− a) = 0, and

φ(b) = f(b)− f(a)− f(b)− f(a)
b− a

(b− a) = f(b)− f(a)− (f(b)− f(a)) = 0.

But φ is continuous on [a, b] as f and x 7→ x− a are continuous on [a, b]. According
to Rolle’s Theorem, ∃c ∈ (a, b) such that φ′(c) = 0. But

φ′(x) = f ′(x)− f(b)− f(a)
b− a

,

so that f ′(c)− f(b)−f(a)
b−c

= 0, which completes the proof. ■

³What happens if f is not differentiable at c in Theorem 43?
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Among other things, this tells us something about functions whose derivatives is identically
zero on [a, b].

aaaaaa

Theorem 46
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If f ′ ≡ 0 on
(a, b), then f is constant on [a, b].

Proof: let x ∈ (a, b]. According to the mean value theorem, ∃c ∈ (a, x) such
that f(x) − f(a) = f ′(c)(x − a). But f ′(c) = 0, so that f(x) − f(a) = 0 for all
x ∈ [a, b]. ■

Illustrations of Rolle’s theorem (left) and the mean value theorem (right) are shown below.

4.1.2 Taylor Theorem
This subsection’s main result is used extensively in applications. It is, in a way, an extension
of the mean value theorem to higher order derivatives. We can naturally obtain the higher-
order derivatives of a function f by formally applying the differentiation rules repeatedly.
Hence, f (2) = f ′′ = (f ′)′, f (3) = f ′′′ = (f ′′)′ = ((f ′)′)′, etc. Suppose f = f (0) can be differenti-
ated n times at x = x0. The nth Taylor polynomial of f at x = x0 is

Pn(x; f, x0) =
n∑

i=0

f (i)(x0)

i!
(x− x0)i.

aaaaaa

Theorem 47 (T )
Let n ∈ N and f : [a.b] → R be such that f and its derivatives f ′, f ′′, . . . , f (n) are
continuous on [a, b], and f (n+1) exists on (a, b). If x0 ∈ [a, b], then for all x ̸= x0 ∈ [a, b],
∃c between x and x0 such that

f(x) = Pn(x; f, x0) +
f (n+1)(c)

(n+ 1)!
(x− x0)n+1.
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aaaaaa

Proof: let x ∈ [a, b]. If x0 < x, set J = [x0, x]. Otherwise, set J = [x, x0]. Let
F : J → R be de ined by

F (t) = f(x)− Pn(t; f, x) = f(x)− f(t)− f ′(t)(x− t)− · · · − f (n)(t)

n!
(x− t)n.

Note thatF is continuous onJ as f and itsnhigher-order derivatives are continuous
on J , and that

F ′(t) = −f ′(t)−
[
f ′′(t)(x− t)− f ′(t)

]
−
[f ′′′(t)

2!
(x− t)2 − f ′′(t)(x− t)

]
− · · ·−

−
[f (n+1)(t)

n!
(x− t)n − f (n)(t)(x− t)n−1

]
.

Thus F ′(t) = −f (n+1)(t)
n!

(x− t)n. LetG : J → R be de ined by

G(t) = F (t)−
(
x− t
x− x0

)n+1

F (x0).

Then
G(x0) = F (x0)−

(
x− x0
x− x0

)n+1

F (x0) = 0

G(x) = F (x)−
(
x− x
x− x0

)n+1

F (x0) = F (x).

But
F (x) = f(x)− f(x)− f ′(x)(x− x)− · · · − f (n)(x)

n!
(x− x)n = 0.

ThusG(x) = 0. Note thatG is continuous on J . Furthermore,G is differentiable on
J since

G′(t) = F ′(t) +
(n+ 1)

x− x0

(
x− t
x− x0

)n

F (x0) = −
f (n+1)(t)

n!
(x− t)n + (n+ 1)

x− x0

(
x− t
x− x0

)n

F (x0).

As G satis ies the hypotheses of Rolle’s theorem, ∃c between x and x0 such that
G′(c) = 0. Thus

f (n+1)(c)

n!
(x− c)n = (n+ 1)

(x− c)n

(x− x0)n+1
F (x0) =⇒

F (x0) =
f (n+1)(c)

n!(n+ 1)

(x− c)n

(x− c)n
(x− x0)n+1 =

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

But
F (x0) = f(x)− Pn(x0; f, x) =⇒ f(x) = Pn(f ;x0) + F (x0),

which completes the proof. ■

110 Analysis and Topology Course Notes



CHAPTER 4. DIFFERENTIAL AND INTEGRAL CALCULUS

One of the obvious uses of Taylor’s theorem is for approximations.

aaaaaa

Example: use Taylor’s Theorem with n = 2 to approximate 4
√
1 + x near x0 = 0

(for x > −1).

Solution: let f(x) = (1 + x)1/4. Then

f ′(x) =
1

4
(1 + x)−3/4, f ′′(x) = − 3

16
(1 + x)−7/4, f ′′′(x) =

21

64
(1 + x)−11/4

are all continuous in closed intervals [−a, a], 1 > a > 0, so Taylor’s theorem can be
brought to bear on the situation. Note that f(0) = 1, f ′(0) = 1

4
and f ′′(0) = − 3

16
.

According to Taylor’s Theorem, for every x ∈ [−a, a], 1 > a > 0, ∃c between x and 0
such that

f(x) = P2(x; f, 0) +
f ′′′(c)

3!
x3 = 1 +

1

4
x− 3

32
x2 +

7

128(1 + c)11/4
x3.

For instance, 4
√
1.4 can be approximated by

f(0.4) ≈ P2(0.4) = 1 + 1
4
(0.4)− 3

32
(0.4)2 ≈ 1.085.

Moreover, since c ∈ (0, 0.4),
f ′′′(c)

6
(0.4)3 = 7

128
(1 + c)−11/4(0.4)3 ≤ 7

128
(0.4)3 = 0.0035,

so | 4
√
1.4 − 1.085| ≤ 0.0035, which is to say that the approximation is correct to 2

decimal places. □

4.1.3 Relative Extrema
Weend the section on differentiability by giving a characterization of relative extrema using
the derivative.

A function f : I → R is increasing (resp. decreasing) if

f(x1) ≤ f(x2), (resp. f(x1) ≥ f(x2)) ∀x1 ≤ x2 ∈ I.

If the inequalities are strict, then the function is strictly increasing (resp. strictly decreas-
ing). A function that is either increasing or decreasing (exclusively) ismonotone. If the func-
tion is also differentiable, then a link exists.

aaaaaa
Theorem 48
Let f : [a, b]→ R be continuous on [a, b], differentiable on (a, b). Then f is increasing
on [a, b] if and only if f ′ ≥ 0 on (a, b).
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Proof: suppose f is increasing and let c ∈ (a, b). For all x < c in (a, b), we have
f(x) ≤ f(c); for all x > c in (a, b), we have f(x) ≥ f(c). Thus

f(x)− f(c)
x− c

≥ 0, for all x ̸= c ∈ (a, b).

Since f is differentiable at c, we must have

f ′(c) = lim
x→c

f(x)− f(c)
x− c

≥ 0.

As c is arbitrary, we have f ′(x) ≥ 0 for all x ∈ (a, b). If, conversely, f ′(x) ≥ 0 for all
x ∈ (a, b), let x1 < x2 ∈ [a, b]. By the Mean Value Theorem, ∃c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1).

Since f ′(c) ≥ 0 an x2 > x1, then

f(x2)− f(x1)
x2 − x1

= f ′(c) ≥ 0 =⇒ f(x2)− f(x1) ≥ 0 =⇒ f(x2) ≥ f(x1),

which is to say, f is increasing on [a, b]. ■

Theorem 48 holds for decreasing functions as well (after having made the obvious changes
to the statement).⁴

The next theorem is a celebrated result from calculus.

aaaaaa

Theorem 49 (F D T )
Let f be continuous on [a, b] and let c ∈ (a, b). Suppose f is differentiable on (a, c) and
on (b, c), but not necessarily at c. Then

1. if ∃Vδ(c) ⊆ [a, b] such that f ′(x) ≥ 0 for c − δ < x < c and f ′(x) ≤ 0 for
c < x < c+ δ, then f has a relative maximum at c;

2. if ∃Vδ(c) ⊆ [a, b] such that f ′(x) ≤ 0 for c − δ < x < c and f ′(x) ≥ 0 for
c < x < c+ δ, then f has a relative minimum at c.

Proof: we only prove 1.; the proof for 2. follows the same lines. If x ∈ (c− δ, c), the
mean value theorem states that ∃cx ∈ (x, c) such that

f(c)− f(x) = f ′(cx)︸ ︷︷ ︸
≥0

(c− x)︸ ︷︷ ︸
≥0

≥ 0,

so that f(x) ≤ f(c) for all x ∈ (c− δ, c).

⁴If we switch to strictly monotone functions, only one direction holds in all cases – which one?
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aaaaaa

If x ∈ (c, c+ δ), the mean value theorem states that ∃cx ∈ (c, x) such that

f(c)− f(x) = f ′(cx)︸ ︷︷ ︸
≤0

(c− x)︸ ︷︷ ︸
≤0

≥ 0,

so that f(x) ≤ f(c) for all x ∈ (c, c+ δ).

Combining these statements with the fact that f(c) ≤ f(c), we obtain f(x) ≤ f(c)
for all x ∈ Vδ(c), so f has a relative maximum at c. ■

The converse of the irst derivative test is not necessarily true. For instance, the function
de ined by

f(x) =

{
2x4 + x4 sin(1/x), x ̸= 0

0 x = 0

has an absolute minimum at x = 0, but it has derivatives of either sign on either side of any
neighbourhood of x = 0.

We end this section with a rather surprising result.

aaaaaa

Theorem 50 (D )
Let f : [a, b]→ R be differentiable, continuous on [a, b] and let k be strictly con ined
between f ′(a) and f ′(b). Then ∃c ∈ (a, b)with f ′(c) = k.

Proof: without loss of generality, assume f ′(a) < k < f ′(b). De ine g : [a, b]→ R by
g(x) = kx− f(x); g is then continuous and differentiable on [a, b] given that both f
and x 7→ kx also are.

By the max/min theorem, g reaches its maximum value at some c ∈ [a, b].
However, g′(a) = k − f ′(a) > 0, so that c ̸= a, and g′(b) = k − f ′(b) < 0, so
that c ̸= b. Hence g′(c) = 0 for some c ∈ (a, b), according to Theorem 43, and so
f ′(c) = k, which completes the proof. ■

Darboux’s theorem states that the derivative of a continuous function, which needs not be
continuous, nevertheless satis ies the intermediate value property.⁵

There are a number of other results which could be shown about differentiable functions,
but they are left as exercises (see question 4).

⁵That seems like witchcraft, right? It shouldn’t be possible, but the argument is sound. One of the lessons
from this result is that analytical reasoning can be informed by intuition and geometry, but ultimately, the va-
lidity of results rests on proofs.
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4.2 Riemann Integral
Calculus as a discipline only took light after Newton announced his theory of luxions. With
Leibniz’ independent discovery that the reversal of the process for ining tangents lead to
areas under curves, integration was born. Riemann was the irst to discuss integration as a
process separate from differentiation.

We start by studying the integration of a functions R → R. Later on, we will tackle inte-
gration of functions Rn → R (see Chapter 21) and of functions Rn → Rn (see Chapter 14).

Let I = [a, b]. A partition P ∈ P([a, b]) is a subset P = {x0, . . . , xn} ⊆ I such that

a = x0 < x1 < · · · < xn−1 < xn = b.

If f : I → R is bounded and P is a partition of I , the sums

L(P ; f) =
n∑

i=1

mi(xi − xi−1) <∞, U(P ; f) =
n∑

i=1

Mi(xi − xi−1) <∞,

where

mi = inf{f(x) | x ∈ [xi−1, xi]}, Mi = sup{f(x) | x ∈ [xi−1, xi]}, 1 ≤ i ≤ n

are the lower and the upper sum of f corresponding to P , respectively. If f : I → R+
0 , we

can give a graphical representation of these sums; L(P ; f) is the area of the union of the rect-
angleswith base [xk−1, xk] andheightmk, andU(P ; f) is the area of the unionof the rectangles
with base [xk−1, xk] and heightMk.

A partitionQ of I is a re inement of a partition P of I if P ⊆ Q.

aaaaaa Example: both P = {0, 1, 4, 10} andQ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10} are partitions of
[0, 10]; sinceQ ⊇ P ,Q is a re inement of P . □

We will use the following lemma repeatedly in this section.
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aaaaaa

Lemma: let I = [a, b] and f : I → R be bounded. Then

1. L(P ; f) ≤ U(P ; f) for any partition P of I;

2. L(P ; f) ≤ L(Q; f) and U(Q; f) ≤ L(Q; f) for any re inementQ ⊇ P of I , and

3. L(P1; f) ≤ U(P2; f) for any pair of partitions P1, P2 of I .

Proof:

1. Let P = {x0, . . . , xn} be a partition of I . Since

mi = inf{f(x) | x ∈ [xi−1, xi]} ≤ sup{f(x) | x ∈ [xi−1, xi]} =Mi

for all 1 ≤ i ≤ n, then

L(P ; f) =
n∑

i=1

mi(xi − xi−1︸ ︷︷ ︸
>0

) ≤
n∑

i=1

Mi(xi − xi−1︸ ︷︷ ︸
>0

) = U(P ; f).

2. Let Q = {y0, . . . , ym} be a re inement of P = {x0, . . . , xn}. Set Ii = [xi−1, xi]
and Ĩj = [yj−1, yj], for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Writemi = inf{f(x) | x ∈ Ii}
and m̃j = inf{f(x) | x ∈ Ĩj} and ix 1 ≤ i ≤ n. Then ∃j, k such that

Ii = Ĩj+1 ∪ · · · ∪ Ĩj+k =
k∪

ℓ=1

Ĩj+ℓ.

Then

mi(xi − xi − 1) = mi(yj + k − yj) = mi(yj+1 − yj + · · ·+ yj+k − yj+k−1)

= mi(yj+1 − yj) + · · ·+mi(yj+k − yj+k−1)

=
k∑

ℓ=1

mi(yj+ℓ − yj+ℓ−1) ≤
k∑

ℓ=1

m̃j+ℓ(yj+ℓ − yj+ℓ−1)

since Ĩj+ℓ ⊆ Ii for all ℓ = 1, . . . , k. Hence

L(P ; f) =
n∑

i=1

mi(xi − xi−1) ≤
m∑
j=1

m̃j(yj − yj−1) = L(Q; f).

The proof for U(P ; f) ≥ U(Q; f) follows a similar argument.

3. Let P1, P2 be partitions of I . Set Q = P1 ∪ P2. Then Q is a re inement of both
P1 and P2. By the results proven in the previous parts of this lemma, we have

L(P1; f) ≤ L(Q; f) ≤ U(Q; f) ≤ U(P2; f),

which completes the proof. ■
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Let I = [a, b] and f : I → R be bounded. The lower integral of f on I is the number

L(f) = sup{L(P ; f) | P a partition of I}.

The upper integral of f on I is the number

U(f) = inf{U(P ; f) | P a partition of I}.

Since f is bounded on I , ∃m,M such thatm ≤ f(x) ≤ M for all x ∈ I . Consider the trivial
partition P0 = {a, b}. Since any partition P of I is a re inement of P0, we thus have

L(P ; f) ≤ U(P0; f) ≤M(b− a) and U(P ; f) ≥ L(P0; f) ≥ m(b− a).

Thus L(f), U(f) exist, by completeness. But we can say more.

aaaaaa

Theorem 51
Let f : [a, b]→ R be bounded. Then L(f) ≤ U(f).

Proof: let P1, P2 be partitions of [a, b]. Then L(P1; f) ≤ U(P2; f). If we ix P2,
U(P2; f) is an upper bound for

A = {L(P1; f) | P1 is a partition of [a, b]}.

Since L(f) = sup(A) and since P2 was arbitrary, L(f) is a lower bound for

B = {U(P2; f) | P2 is a partition of [a, b]}.

Thus L(f) ≤ inf(B) = U(f). ■

When L(f) = U(f), we say that f is Riemann-integrable on [a, b]; the integral of f on [a, b]
is the real number

L(f) = U(f) =

∫ b

a

f =

∫ b

a

f(x) dx.

By convention, we de ine
∫ b

a
f = −

∫ a

b
f when b < a. Note that

∫ a

a
f = 0 for all bounded

functions f .

aaaaaa

Example: show directly that the function de ined by h(x) = x2 is Riemann-
integrable on [a, b], b > a ≥ 0. Furthermore show that

∫ b

a
h = b3−a3

3
.

Proof: let Pn =
{
xi = a+ b−a

n
· i | i = 0, . . . , n

}
∈ P([a, b]). For i = 1, . . . , n

setmi = inf{h(x) | x ∈ [xi−1, xi]}. With this notation, we have

L(Pn;h) =
n∑

i=1

mi(xi − xi−1) =
b− a
n

n∑
i=1

mi.
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But h′(x) = 2x ≥ 0 when x ≥ 0, and so h is increasing on [a, b]. Consequently, for
i = 1, . . . , n, we have

mi = x2i−1 =
(
a+

b− a
n

(i− 1)
)2

= a2 + 2
a(b− a)

n
(i− 1) +

(b− a)2

n2
(i− 1)2.

The lower sum of h associated to Pn is thus

L(Pn;h) =
b− a
n

n∑
i=1

(
a2 + 2

a(b− a)
n

(i− 1) +
(b− a)2

n2
(i− 1)2

)
=
na2(b− a)

n
+

2a(b− a)2

n2

n∑
i=1

(i− 1) +
(b− a)3

n3

n∑
i=1

(i− 1)2

= a2(b− a) + 2a(b− a)2

n2
· n(n− 1)

2
+

(b− a)3

n3
· n(n− 1)(2n− 1)

6

= a2(b− a) + a(b− a)2
(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

)(
2− 1

n

)
.

For the lower sum of h on [a, b], we have

L(h) = sup{L(P ;h) | P ∈ P([a, b])} ≥ sup
n∈N
{L(Pn;h)}

= sup
n∈N

{
a2(b− a) + a(b− a)2

(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

) (
2− 1

n

)}
= lim

n→∞

[
a2(b− a) + a(b− a)2

(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

) (
2− 1

n

)]
= a2(b− a) + a(b− a)2 + (b−a)3

6
· 2 = b3−a3

3
.

Similarly, we can show that

U(Pn;h) = a2(b− a) + a(b− a)2
(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)
.
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aaaaaa

For the upper sum of h on [a, b], we have

U(h) = inf{U(P ;h) | P ∈ P([a, b])} ≤ inf
n∈N
{U(Pn;h)}

= inf
n∈N

{
a2(b− a) + a(b− a)2

(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)}
= lim

n→∞

[
a2(b− a) + a(b− a)2

(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)]
= a2(b− a) + a(b− a)2 + (b−a)3

6
· 2 = b3−a3

3
.

Thus b3−a3

3
≤ L(h) ≤ U(h) ≤ b3−a3

3
and so L(h) = U(h) =

∫ b

a
h = b3−a3

3
, which

completes the proof. ■

It is clearly not the most ef icient process in practice, but it works!

aaaaaa

Example: show directly that the Dirichlet function de ined by

f(x) =

{
1, x ∈ Q
0, x ̸∈ Q

is not Riemann-integrable on [0, 1].

Proof: let P = {x0, . . . , xn} ∈ P([0, 1]). Since both Q and R \ Q are dense in
R, for each 1 ≤ i ≤ n, ∃qi ∈ Q, ti ̸∈ Q such that qi, ti ∈ [xi−1, xi].
But f(qi) = 0 and f(ti) = 1, so thatmi = 0 ,Mi = 1 for all 1 ≤ i ≤ n. This implies
that L(P ; f) = 0 and U(P ; f) = 1 for any partition P . Thus L(f) = 0 ̸= 1 = U(f),
and so f is not Riemann-integrable. ■

This last example underlines some of the shortcomings of the Riemann integral – by any ac-
count the integral of Dirichlet’s function should really be 0 on [0, 1]: the set R \Q is so much
larger than Q that whatever happens on Q should largely be irrelevant (see Section 1.2).
There are various theories of integration – as we shall see in Chapter 21, the Lebesgue-Borel
integral of f on [0, 1] is indeed 0.

Other issues arise with the Riemann integral, which we will discuss in the coming sections.

4.2.1 Riemann’s Criterion
We focus on two fundamental questions associated with the Riemann integral of a function
over an interval [a, b]: does it exist? If so, what value does it take?

The direct approach is cumbersome, even for the simplest of functions. The following re-
sult allows us to bypass the need to compute L(f) and U(f) to determine if a function is
Riemann-integrable or not.
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aaaaaa

Theorem 52 (R ' C )
Let I = [a, b] and f : I → R be a bounded function. Then f is Riemann-integrable if
and only if ∀ε > 0, ∃Pε a partition of I such that the lower sum and the upper sum of
f corresponding to Pε satisfy U(Pε; f)− L(Pε; f) < ε.

Proof: if f is Riemann-integrable, then L(f) = U(f) =
∫ b

a
f . Let ε > 0.

Since
∫ b

a
f − ε

2
is not an upper bound of {L(P ; f) | P a partition of [a, b]},

there exists a partition P1 such that∫ b

a

f − ε

2
< L(P1; f) ≤

∫ b

a

f.

Using a similar argument, there exists a partition P2 such that∫ b

a

f +
ε

2
≥ U(P2; f) >

∫ b

a

f.

Set Pε = P1 ∪ P2. Then Pε is a re inement of P1 and P2. Consequently,∫ b

a

f − ε

2
< L(P1; f) ≤ L(Pε; f) ≤ U(Pε; f) ≤ U(P2; f) <

∫ b

a

f +
ε

2

which implies that
U(Pε; f)− L(Pε; f) < ε.

Conversely, let ε > 0 and Pε be such that U(Pε; f)− L(Pε; f) < ε. Since

U(f) ≤ U(Pε; f) and L(f) ≥ L(Pε; f),

then
0 ≤ U(f)− L(f) ≤ U(Pε; f)− L(Pε; f) < ε.

But ε > 0 was arbitrary, so U(f) − L(f) = 0, which implies that U(f) = L(f) and
that f is Riemann-integrable on [a, b]. ■
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In the illustration on the previous page (for a continuous function), the smaller the shaded
area is, the closer U(P ; f) and L(P ; f) are to

∫ b

a
f .

There are 2 instances where the Riemann-integrability of a function f on [a, b] is guaranteed:
when f ismonotone, and when it is continuous.

aaaaaa

Theorem 53
Let I = [a, b] and f : I → R be a monotone function on I . Then f is Riemann-
integrable on I .

Proof: we show that the result holds for increasing functions. The proof for
decreasing functions is similar. Let

Pn = {xi = a+ i
(
b−a
n

)
| i = 0, . . . , n}

be the partition of I into n equal sub-intervals. Since f is increasing on I , we have,
for 1 ≤ i ≤ n,

mi= inf{f(x) | x ∈ [xi−1, xi]} = f(xi−1),

Mi = sup{f(x) | x ∈ [xi−1, xi]} = f(xi).

Hence,

U(Pn; f)− L(Pn; f)=
n∑

i=1

Mi(xi − xi−1)−
n∑

i=1

mi(xi − xi−1)

=
n∑

i=1

(Mi −mi)(xi − xi−1)

=
b− a
n

n∑
i=1

(f(xi)− f(xi−1))

=
b− a
n

[
f(x1)− f(x0) + · · ·+ f(xn)− f(xn−1)

]
=
b− a
n

(f(b)− f(a)) ≥ 0.

Let ε > 0. By the Archimedean property, ∃Nε ∈ N such that

(b− a)(f(b)− f(a))
ε

< n.

Set Pε = Pn. Then

U(Pε; f)− L(Pε; f) <
b− a
Nε

(f(b)− f(a)) < ε,

and f is Riemann-integrable on [a, b], according to Riemann’s criterion. ■
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Theorem 54 Let I = [a, b] and f : I → R be continuous, with a < b. Then f is
Riemann-integrable on I .

Proof: let ε > 0. According to Theorem 38, f is uniformly continuous on I .
Hence ∃δε > 0 s.t. |f(x)− f(y)| < ε

b−a
whenever |x− y| < δε and x, y ∈ [a, b].

Pick n ∈ N such that b−a
n
< δε and let

Pε = {xi = a+ i
(
b−a
n

)
| i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals.

As f is continuous on [xi−1, xi], ∃ui, vi ∈ [xi−1, xi] such that

mi= inf{f(x) | x ∈ [xi−1, xi]} = f(ui), Mi= sup{f(x) | x ∈ [xi−1, xi]} = f(vi),

for all 1 ≤ i ≤ n, according to the max/min Theorem. Since |ui − vi| ≤ b−a
n
< δε for

all i, we have:

U(Pε; f)− L(Pε; f) =
n∑

i=1

(Mi −mi)(xi − xi−1) =
b− a
n

n∑
i=1

(f(vi)− f(ui))

<
b− a
n

n∑
i=1

ε

b− a
= ε,

by uniform continuity of f . According to Theorem 52, f is Riemann-integrable. ■

4.2.2 Properties of the Riemann Integral
The Riemann integral has a whole slew of interesting properties.

aaaaaa

Theorem 55 (P R I )
Let I = [a, b] and f, g : I → R be Riemann-integrable on I . Then

1. f + g is Riemann-integrable on I , with
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g;

2. if k ∈ R, k · f is Riemann-integrable on I , with
∫ b

a
k · f = k

∫ b

a
f ;

3. if f(x) ≤ g(x) ∀x ∈ I , then
∫ b

a
f ≤

∫ b

a
g, and

4. if |f(x)| ≤ K ∀x ∈ I , then
∣∣∣∫ b

a
f
∣∣∣ ≤ K(b− a).

P. Boily (uOttawa) 121



4.2. RIEMANN INTEGRAL

aaaaaa

Proof: we use a variety of pre-existing results.

1. Let ε > 0. Since f, g are Riemann-integrable, ∃P1, P2 partitions of I such that
U(P1; f)− L(P1; f) <

ε
2
and U(P2; g)− L(P2; g) <

ε
2
.

Set P = P1 ∪ P2. Then P is a re inement of P1 and P2, and

U(P ; f + g) ≤ U(P ; f) + U(P ; g)

< L(P ; f) + L(P ; g) + ε ≤ L(P ; f + g) + ε,

since, over non-empty subsets of I , we have

inf{f(x) + g(x)}≥ inf{f(x)}+ inf{g(x)}
sup{f(x) + g(x)}≤ sup{f(x)}+ sup{g(x)}.

Hence f + g is Riemann-integrable according to Riemann’s criterion. Further-
more, we see from above that∫ b

a

(f + g) ≤ U(P ; f + g) < L(P ; f) + L(P ; g) + ε ≤
∫ b

a

f +

∫ b

a

g + ε

and∫ b

a

f +

∫ b

a

g ≤ U(P ; f) + U(P ; g) < L(P ; f + g) + ε ≤
∫ b

a

(f + g) + ε.

Since ε > 0 is arbitrary,
∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g, from which we

conclude that
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

2. The proof for k = 0 is trivial. We show that the result holds for k < 0 (the
proof for k > 0 is similar). Let P = {x0, . . . , xn} be a partition of I .

Since k < 0, we have inf{kf(x)} = k sup{f(x)} over non-empty sub-
sets of I , and so we have L(P ; kf) = kU(P ; f). In particular,

L(kf) = sup{L(P ; kf) | P a partition of I}
= sup{kU(P ; f) | P a partition of I}
= k inf{U(P ; f) | P a partition of I} = kU(f)

Similarly, U(P ; kf) = kL(P ; f) and U(fk) = kL(f), so

L(fk) = kU(f) = kL(f)︸ ︷︷ ︸
since f is R-int.

= U(kf).

Thus kf is Riemann-integrable on I and
∫ b

a
kf = L(k) = kU(f) =

∫ b

a
f.
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aaaaaa

3. We start by showing that if h : I → R is integrable on I and h(x) ≥ 0 for all
x ∈ I , then

∫ b

a
h(x) ≥ 0. Let P0 = {a, b} = {x0, x1} andm1 = inf{h(x) | x ∈

[a, b]} ≥ 0. Then,

0 ≤ m1(b− a) = L(P0;h) ≤ L(P ;h)

for anypartitionP of I , asP ⊇ P0. Buth is Riemann-integrable by assumption,
thus ∫ b

a

h = sup{L(P ;h) | P a partition of I} ≥ L(P0;h) ≥ 0.

Then, set h = g − f . By hypothesis, h(x) = g(x)− f(x) ≥ 0. Then∫ b

a

h =

∫ b

a

(g − f) =
∫ b

a

g −
∫ b

a

f ≥ 0,

which implies that
∫ b

a
g ≥

∫ b

a
f .

4. Let P0 = {a, b} = {x0, x1}. As always, set m1 = inf{f(x) | x ∈ [a, b]}, and
M1 = sup{f(x) | x ∈ [a, b]}. Then for any partition P of I , we have

m1(b− a)= L(P0; f) ≤ L(P ; f) ≤ L(f) =

∫ b

a

f

= U(f) ≤ U(P ; f) ≤ U(P0; f) =M1(b− a).

In particular,
m1(b− a) ≤

∫ b

a

f ≤M1(b− a).

Now, if |f(x)| ≤ K for all x ∈ I , then−K ≤ m1 andM1 ≤ K so that

−K(b− a) ≤ m1(b− a) ≤
∫ b

a

f ≤M1(b− a) ≤ K(b− a),

so that |
∫ b

a
f | ≤ K(b− a). ■

When all the functions involved are non-negative, these results and the next one are compat-
ible with the calculus interpretation of the Riemann integral as the area under the curve.

aaaaaa
Theorem 56 (A R I )
Let I = [a, b], c ∈ (a, b), and f : I → R be bounded on I . Then f is Riemann-integrable
on I if and only if it is Riemann-integrable on I1 = [a, c] and on I2 = [c, b]. When that
is the case,

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .
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aaaaaa

Proof: we start by assuming that f is Riemann-integrable on I . Let ε > 0. According
to the Riemann criterion, ∃Pε a partition of I such thatU(Pε; f)−L(Pε; f) < ε. Now,
set P = Pε ∪ {c}. Then P is a re inement of Pε so that

U(P ; f)− L(P ; f) ≤ U(Pε; f)− L(Pε; f) < ε.

Set P1 = P ∩ I1 and P2 = P ∩ I2. Then Pi is a partition of Ii, and

ε > U(P ; f)− L(P ; f) ≥ U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

=
[
U(P1; f)− L(P1; f)

]
+
[
U(P2; f)− L(P2; f)

]
Consequently, U(Pi; f) − L(Pi; f) < ε for i = 1, 2 and f is Riemann-integrable on
I1 and I2, according to the Riemann criterion.

Now assume that f is Riemann-integrable on I1 and I2. Let ε > 0. According
to the Riemann criterion, for i = 1, 2, ∃Pi a partition of Ii such that

U(Pi; f) + L(Pi; f) <
ε

2
.

Set P = P1 ∪ P2. Then P is a partition of I . Furthermore,

U(P ; f)− L(P ; f) = U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

= U(P1; f)− L(P1; f) + U(P2; f)− L(P2; f) <
ε

2
+
ε

2
= ε,

thus f is Riemann-integrable on I according the Riemann criterion.

Finally, let’s assume that f is Riemann-integrable on I (and so on I1, I2), or
vice-versa. Let P1, P2 be partitions of I1, I2, respectively, such that

U(Pi; f)− L(Pi; f) <
ε

2
, i = 1, 2.

Set P = P1 ∪ P2. Then P is a partition of I and∫ b

a

f ≤ U(P ; f) = U(P1; f) + U(P2; f)

< L(P1; f) + L(P2; f) + ε =

∫ c

a

f +

∫ b

c

f + ε.

Similarly,∫ b

a

f ≥ L(P1; f) + L(P2; f) > U(P1; f) + U(P2; f)− ε ≥
∫ c

a

f +

∫ b

c

f − ε

Since ε > 0 is arbitrary,
∫ b

a
f =

∫ c

a
f +

∫ b

c
f . ■
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The next theorem is the crowning achievement of what has come before, combining results
from previous chapters and sections. Its proof constitutes the irst “real” example of what we
might as well refer to as analytical reasoning.

aaaaaa

Theorem 57 (C T I )
Let I = [a, b] and J = [α, β], f : I → R Riemann-integrable on I , φ : J → R
continuous on J and f(I) ⊆ J . Then φ ◦ f : I → R is Riemann-integrable on I .

Proof: let ε > 0, K = sup{|φ(x)| | x ∈ J} (wich is guaranteed to exist ac-
cording to the max/min theorem) and ε′ = ε

b−a+2K
.

Since φ is uniformly continuous on J (being continuous on a closed, bounded
interval), ∃δε > 0 s.t.

|x− y| < δε, x, y,∈ J =⇒ |φ(x)− φ(y)| < ε′.

Without loss of generality, pick δε < ε′.

Since f is Riemann-integrable on I , there is a partition P = {x0, . . . , xn} of
I = [a, b] such that

U(P ; f)− L(P ; f) < δ2ε

(according to Riemann’s criterion).

We show that U(P ;φ ◦ f) − L(P ;φ ◦ f) < ε, and so that φ ◦ f is Riemann-
integrable according to Riemann’s criterion. On [xi−1, xi] for i = 1, . . . , n, set

mi = inf{f(x)}, Mi = sup{f(x)}, m̃i = inf{φ(f(x))}, M̃i = sup{φ(f(x))}.

With those, set A = {i |Mi −mi < δε},B = {i |Mi −mi ≥ δε}.

If i ∈ A, then

x, y ∈ [xi−1, xi] =⇒ |f(x)− f(y)| ≤Mi −mi < δε,

so |φ(f(x))− φ(f(y)| < ε′ ∀x, y ∈ [xi−1, xi]. In particular, M̃i − m̃i ≤ ε′.

If i ∈ B, then

x, y ∈ [xi−1, xi] =⇒ |φ(f(x))− φ(f(y))| ≤ |φ(f(x))|+ |φ(f(y))| ≤ 2K.

In particular, M̃i − m̃i ≤ 2K , since −K ≤ m̃i ≤ φ(z) ≤ M̃i ≤ K for all
z ∈ [xi−1, xi].
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aaaaaa

Then

U(P ;φ ◦ f)−L(P ;φ ◦ f) =
n∑

i=1

(M̃i − m̃i)(xi − xi−1)

=
∑
i∈A

(M̃i − m̃i)(xi − xi−1) +
∑
i∈B

(M̃i − m̃i)(xi − xi−1)

≤ ε′
∑
i∈A

(xi − xi−1) + 2K
∑
i∈B

(xi − xi−1)

≤ ε′(b− a) + 2K
∑
i∈B

(Mi −mi)

δε
(xi − xi−1)

= ε′(b− a) + 2K

δε

n∑
i=1

(Mi −mi)(xi − xi−1).

By earlier work in the proof, we have
n∑

i=1

(Mi −mi)(xi − xi−1) ≤ U(P ; f)− L(P ; f) < δ2ε ,

so that

U(P ;φ ◦ f)− L(P ;φ ◦ f) < ε′(b− a) + 2K

δε
· δ2ε

= ε′(b− a) + 2Kδε < ε′(b− a) + 2Kε′

= ε′(b− a+ 2K) = ε,

which completes the proof. ■

The proof of the composition theorem requires the intervals I and J to be closed, as the fol-
lowing example shows.

aaaaaa
Example: let f, φ : (0, 1) → R be de ined by f(x) = x and φ(x) = 1

x
. Then f

is Riemann-integrable on (0, 1), φ is continuous on (0, 1), but φ ◦ f : (0, 1) → R,
(φ ◦ f)(x) = 1/x, is not Riemann-integrable on (0, 1). □

Note, however, that there are examples of functions de ined on open intervals for which the
conclusion of the composition theorem still holds.

aaaaaa
Example: let f, φ : (0, 1) → R be de ined by f(x) = x and φ(x) = x. Then f
is Riemann-integrable on (0, 1), φ is continuous on (0, 1), and φ ◦ f : (0, 1) → R,
(φ ◦ f)(x) = x, is Riemann-integrable on (0, 1). □
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Theorem 57 is rather technical, but it can be used to show a variety of results.

aaaaaa

Theorem 58
Let I = [a, b] and f, g : I → R be Riemann-integrable on I . Then fg and |f | are
Riemann-integrable on I , and

∣∣∣∫ b

a
f
∣∣∣ ≤ ∫ b

a
|f |.

Proof: the function de ined by φ(t) = t2 is continuous. by the Composition
theorem, φ ◦ (f + g) = (f + g)2 and φ ◦ (f − g) = (f − g)2 are both Riemann-
integrable on I . But the product fg can be re-written as

fg =
1

4

[
(f + g)2 − (f − g)2

]
.

According to Theorem 55, fg is Riemann-integrable on I .

Now, consider the function de ined by φ(t) = |t|. It is continuous, so φ ◦ f = |f | is
Riemann-integrable on I according to the composition theorem.

Pick c ∈ {±1} such that c
∫ b

a
f ≥ 0. Hence∣∣∣∣∫ b

a

f

∣∣∣∣ = c

∫ b

a

f =

∫ b

a

cf ≤
∫ b

a

|f |,

since cf(x) ≤ |f(x)| for all x ∈ I . ■

Note that even if the product of Riemann-integrable functions is itself Riemann-integrable
there is no simple way to express

∫ b

a
fg in terms of

∫ b

a
f and

∫ b

a
g.

Given all that has come so far, we might suspect that the composition of Riemann-integrable
functions is also Riemann-integrable. The following counter-example shows that this need
not be the case.

aaaaaa

Example: let I = [0, 1] and let f : I → R be Thomae’s function:

f(x) =


1, x = 0

1/n, x = m/n ∈ Q, gcd(m,n) = 1

0, x ̸∈ Q

It can be shown that f is Riemann-integrable on [0, 1] and that
∫ 1

0
f = 0. Consider

the function g : [0, 1] → R de ined by g(x) ≡ 1 on (0, 1] and g(0) = 0. Then g is
Riemann-integrable on [0, 1], with

∫ 1

0
g = 1, but g ◦ f : [0, 1] → R is the Dirichlet

function, and is therefore not Riemann-integrable on [0, 1]. □
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4.2.3 Fundamental Theorem of Calculus
With Descartes’ creation of analytical geometry, it became possible to ind the tangents to
curves that are algebraically described.⁶ Fermat then showed the connection between that
problem and the problem of inding themaximum/minimum of a (continuous) function. In
the 1680s, Newton and Leibniz eventually discovered that computing the areaunderneath a
curve is exactly the opposite of inding the tangent. Calculus provided a general framework
to solve problems that had hitherto been very dif icult to solve.⁷ In this section, we study the
connection between these concepts.

aaaaaa

Theorem 59 (F T C , 1 )
Let I = [a, b], f : I → R be Riemann-integrable on I , and F : I → R be such that F
is continuous on I and differentiable on (a, b). If F ′(x) = f(x) for all x ∈ (a, b), then∫ b

a
f = F (b)− F (a).

Proof: let ε > 0. Since f is Riemann-integrable on I , ∃Pε ∈ P(I) such that

U(Pε; f)− L(Pε; f) < ε.

Applying the mean value theorem to F on [xi−1, xi] for each 1 ≤ i ≤ n, we conclude
that ∃ti ∈ (xi−1, xi) such that

F (xi)− F (xi−1)

xi − xi−1

= F ′(ti) = f(ti), 1 ≤ i ≤ n.

Let m̃i = inf{f(x) | x ∈ [xi−1, xi]}, M̃i = sup{f(x) | x ∈ [xi−1, xi]} for 1 ≤ i ≤ n.
Then

L(Pε; f) =
n∑

i=1

m̃i(xi − xi−1) ≤
n∑

i=1

f(ti)(xi − xi−1) =
n∑

i=1

(F (xi)− F (xi−1)) = F (b)− F (a),

and, similarly, U(Pε; f) ≥ F (b)−F (a). Then L(Pε; f) ≤ F (b)−F (a) ≤ U(Pε; f) for
all ε > 0. Since we have

L(Pε; f) ≤
∫ b

a

f ≤ U(Pε; f)

and U(Pε; f)− L(Pε; f) < ε, for all ε > 0, we must also have∣∣∣∣∫ b

a

f − (F (b)− F (a))
∣∣∣∣ < ε, for all ε > 0,

so that
∫ b

a
f = F (b)− F (a). ■

⁶That is, curves who can be expressed in R2 as f(x, y) = 0 for algebraic functions f .
⁷And even then, only in speci ic circumstances.
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This classical calculus result is quite useful in applications,⁸ as is its cousin.

aaaaaa

Theorem 60 (F T C , 2 )
Let I = [a, b], f : I → R be Riemann-integrable on I . De ine a function F : I → R by
F (x) =

∫ x

a
f . Then F is continuous on I . Furthermore, if f is continuous at c ∈ (a, b),

then F is differentiable at c and F ′(c) = f(c).

Proof: since f is Riemann-integrable on I , then f is bounded on I . Let K > 0 be
such that |f(x)| < K for all x ∈ I . Let x ∈ I and ε > 0. Set δε = ε

K
. Then whenever

|x− y| < δε =
ε
K

and y ∈ I , we have

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ = ∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ K|x− y| < ε.

Then F is uniformly continuous on I , and so is continuous on I . Now assume that f
is continuous at c and let ε > 0. Then ∃δε > 0 such that |f(x)− f(c)| < εwhenever
|x− c| < δε and x ∈ I .

Thus, if 0 ≤ |h| = |x− c| < δε and x ∈ I , we have∣∣∣∣F (c+ h)− F (c)
h

− f(c)
∣∣∣∣ = ∣∣∣∣1h

∫ c+h

a

f − 1

h

∫ c

a

f − f(c)
∣∣∣∣

=

∣∣∣∣1h
∫ c+h

c

f − 1

h

∫ c+h

c

f(c)

∣∣∣∣ = ∣∣∣∣1h
∫ c+h

c

(f − f(c))
∣∣∣∣

≤ 1

|h|

∣∣∣∣∫ c+h

c

(f − f(c))
∣∣∣∣ < 1

|h|
· ε
∣∣∣∣∫ c+h

c

1

∣∣∣∣ = 1

|h|
· ε|h| = ε,

which is to say, F ′(c) = f(c). ■

The irst versionof the fundamental theoremof calculusprovides a justi icationof themethod
used to evaluate de inite integrals in calculus; the second version, which allows the upper
bound of the Riemann integral to vary, provides a basis for inding antiderivatives.

Let I = [a, b] an f : I → R. An antiderivative of f on I is a differentiable function
F : I → R such that F ′(x) = f(x) for all x ∈ I . If f is Riemann-integrable on I , the function
F : I → R de ined by F (x) =

∫ x

a
f for x ∈ I is the inde inite integral of f on I . If f is

Riemann-integrable on I and if F is an antiderivative of f on I , then∫ b

a

f = F (b)− F (a).

However, Riemann-integrable functions on I may not have antiderivatives on I (such as the
signum and Thomae’s functions), and functions with antiderivatives may not be Riemann-
integrable on I (such as the reciprocal of the square root function on [0, 1]).

⁸We will see in Chapter 14 that the Theorem 59 (1st version) is a special case of a more general result.
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If f is Riemann-integrable on I , then F (x) =
∫ x

a
f exists. Moreover, if f is continuous on I ,

than F is an antiderivative of f on I , since F ′(x) = f(x) for all x ∈ I . Continuous functions
thus always have antiderivatives.⁹

But if f is not continuous on I , the inde inite integral F may not be an antiderivative of f
on I – it may fail to be differentiable at certain points of I , or F ′ may exists but be different
from f at various points of I .

4.2.4 Evaluation of Integrals
We complete this chapter by presenting some common methods used to evaluate integrals,
and the proof for two of them.

aaaaaa

Theorem 61 (I P )
Let f, g : [a, b] → R both be Riemann-integrable on [a, b], with antiderivatives F,G :
[a, b]→ R, respectively. Then∫ b

a

Fg = F (b)G(b)− F (a)G(a)−
∫ b

a

fG.

Proof: Let H : [a, b] → R be de ined by H = FG. As F and G are both differen-
tiable, so isH: H ′ = F ′G+ FG′ = fG+ Fg.

Then
∫ b

a
H ′ = H(b)−H(a), so∫ b

a

(fG+ Fg) = F (b)G(b)− F (a)G(a) =⇒
∫ b

a

Fg = H(b)−H(a)−
∫ b

a

fG.

This completes the proof. ■

aaaaaa

Theorem 62 (F S T )
Let J = [α, β], and φ→ R be a function with a continuous derivative on J . If f : I →
R is continuous on I = [a, b] ⊇ φ(J), then∫ β

α

(f ◦ φ)φ′ =

∫ φ(β)

φ(α)

f.

Proof: Since f is continuous on I , it is Riemann-integrable on I and sowe cande ine
a function F : I → R through

F (x) =

∫ x

φ(α)

f, x ∈ I.

By construction F is continuous and differentiable on I . Furthermore, F ′ = f on I ,
according to the second version of the fundamental theorem of calculus.

⁹Even if they can’t be expressed using elementary functions.
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aaaaaa

De ine H : J → R by H = F ◦ φ. Then H is differentiable on I , being the com-
position of two differentiable functions on I , and H ′ = (F ′ ◦ φ)φ′ = (f ′ ◦ φ)φ′ is
Riemann-integrable since φ, f ◦ φ are Riemann-integrable (being continuous) on I ,
according to Theorem58. The irst version of the Fundamental Theoremof Calculus
then yields∫ β

α

(f ◦ φ)φ′ =

∫ β

α

H ′ = H(β)−H(α) = F (φ(β))− F (φ(α)) =
∫ φ(β)

φ(α)

f,

which completes the proof. ■

The proofs of the last three theorems are left as an exercise.

aaaaaa

Theorem 63 (S S T )
Let J = [α, β], and φ → R be a function with a continuous derivative on J and such
that φ′ ̸= 0 on J . Let I = [a, b] ⊇ φ(J), and ψ : I → R be the inverse of φ (which
exists as φ is montoone). If f : I → R is continuous on I , then∫ β

α

f ◦ φ =

∫ φ(β)

φ(α)

fψ′.

aaaaaa

Theorem 64 (M V T I )
Let I = [a, b], f : I → R be continuous on I , and p : I → R be Riemann-integrable on
I , with p ≥ 0 on I . Then ∃c ∈ (a, b) such that∫ b

a

fp = f(c)

∫ b

a

p.

aaaaaa
Theorem 65 (S T I )
Let I = [a, b] and f ≤ g ≤ h : I → R be bounded on I . If f, h are Riemann-integrable
on I with

∫ b

a
f =

∫ b

a
h, then g is Reimann-integrable on I and

∫ b

a
g =

∫ b

a
f =

∫ b

a
h.
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4.3 Solved Problems
1. Use the de inition to ind the derivative of the function de ined by g(x) = 1

x
, x ∈ R,

x ̸= 0.
Solution: from calculus, we “know” that g′(x) = − 1

x2 . Let c ∈ R s.t. c ̸= 0. Set ac = c
2

and bc = 3c
2 . Clearly, if c > 0, 0 < ac < c < bc, whereas bc < c < ac < 0 if c < 0. In

both cases, 1
|x| ≤

1
|ac| whenever x lies between ac and bc. We restrict g on the interval

between ac and bc (denote this interval byA).

Let ε > 0 and set δε = |ac|c2ε. Then whenever 0 < |x − c| < δε and x ∈ A, we
have∣∣∣∣∣ 1x − 1

c

x− c
+

1

c2

∣∣∣∣∣ =
∣∣∣∣ c− x
xc(x− c)

+
1

c2

∣∣∣∣ = ∣∣∣∣ 1c2 − 1

xc

∣∣∣∣ = |x− c||x|c2
≤ |x− c|
|ac|c2

<
δε
|ac|c2

= ε,

which validates our calculus guess. □

2. Prove that the derivative of an even differentiable function is odd, and vice-versa.
Proof: if f is even, then f(x) = f(−x) for all x ∈ R. Let g(x) = f(−x). Then g is
differentiable by the chain rule and f(x) = g(x) for all x ∈ R. Furthermore,

f ′(x) = g′(x) = (f(−x))′ = f ′(−x) · −1,

that is,−f ′(−x) = f ′(−x), or f ′ is odd. The other statement is proved similarly. ■

3. Let a > b > 0 and n ∈ Nwith n ≥ 2. Show that a1/n − b1/n < (a− b)1/n.
Proof: consider the continuous function f : [1,∞) → R de ined by f(x) = x1/n −
(x− 1)1/n, whose derivative is

f ′(x) =
1

n

(
x

1−n
n − (x− 1)

1−n
n

)
.

Now,

0 ≤ x− 1 < x, ∀x ≥ 1 =⇒ 0 ≤ (x− 1)n < xn, ∀x ≥ 1, n ≥ 2

∴ 0 ≤ (x− 1)
n

n−1 < x
n

n−1 , ∀x ≥ 1, n ≥ 2

and so
1

x
n

n−1

<
1

(x− 1)
n

n−1

,

or x 1−n
n < (x− 1)

1−n
n for all x ≥ 1, n ≥ 2.

Hence f ′(x) < 0 for all x ∈ [1,∞), that is f is strictly decreasing over [1,∞). But
f(ab ) < f(1), as a

b > 1. But

f
(a
b

)
=
(a
b

) 1
n −

(a
b
− 1
) 1

n
=

1

b
1
n

(
a

1
n − (a− b)

1
n

)
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and f(1) = 1, so
1

b
1
n

(
a

1
n − (a− b)

1
n

)
< 1,

that is a 1
n − (a− b)

1
n < b

1
n , which completes the proof. ■

4. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Show that if
lim
x→a

f ′(x) = A, then f ′(a) exists and equals A.

Proof: let x ∈ (a, b). By the Mean Value Theorem, ∃cx ∈ (a, x) s.t.

f(x)− f(a)
x− a

= f ′(cx).

Whenx→ a, cx → a (indeed, let ε > 0 and set δε = ε; then |cx−a| < |x−a| < δε = ε
whenever 0 < |x− a| < δε). Then

lim
x→a

f ′(cx) = lim
cx→a

f ′(cx) = A

by hypothesis. Hence lim
x→a

f ′(x) exists and so

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f ′(x) = A

exists. ■

5. If x > 0, show 1 + 1
2
x− 1

8
x2 ≤

√
1 + x ≤ 1 + 1

2
x.

Proof: let x0 = 0 and f(x) =
√
1 + x. According to Taylor’s theorem, since f is C3

when x > 0, f(x) = P1(x) +R1(x) and f(x) = P2(x) +R2(x),where

P1(x) = f(x0) + f ′(x0)(x− x0) =
√
1 + 0 +

1

2
√
1 + 0

x = 1 +
1

2
x

P2(x) = P1(x) +
f ′′(x0)

2
(x− x0)2 = 1 +

1

2
x− 1

8 3
√
1 + 0

x2 = 1 +
1

2
x− 1

8
x2

R1(x) =
f ′′(c1)

2
(x− x0)2 = −

1

8 3
√
1 + c1

x2, for some c1 ∈ [0, x]

R2(x) =
f ′′′(c2)

6
(x− x0)3 =

3

48 5
√
1 + c2

x3, for some c2 ∈ [0, x].

When x > 0,R1(x) ≤ 0 andR2(x) ≥ 0, so P2(x) ≤ f(x) ≤ P1(x). ■

6. Let a ∈ R and f : R→ R be de ined by

f(x) =

{
x2 if x ≥ 0,

ax if x < 0.

For which values of a is f differentiable at x = 0? For which values of a is f continuous
at x = 0?
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Solution: We have

f ′+(0) = lim
x→0+

f(x)− f(0)
x− 0

= lim
x→0+

x2

x
= lim

x→0+
x = 0

and
f ′−(0) = lim

x→0−

f(x)− f(0)
x− 0

= lim
x→0−

ax

x
= lim

x→0+
a = a.

Thus, f is differentiable at x = 0 if and only if a = 0.

Since both x2 and ax are continuous functions, we have

lim
x→0+

f(x) = lim
x→0+

x2 = 0 = f(0) = 0 = lim
x→0−

ax = lim
x→0−

f(x)

and the the function f is continuous at x = 0 for all values of a. □

7. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Show that f is
Lipschitz if and only if f ′ is bounded on (a, b).

Proof: Suppose that f satis ies the Lipschitz condition on [a, b] with constant M .
Then, for all x0 ∈ (a, b), we have∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ ≤M ∀x ∈ (a, b) \ {x0}.

Thus
|f ′(x0)| =

∣∣∣∣ limx→x0

f(x)− f(x0)
x− x0

∣∣∣∣ = lim
x→x0

∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ ≤M,

wherewe used the fact that the absolute value function is continuous to pull the limit
out of the absolute value. So the derivative of f is bounded on (a, b).

Now assume that |f ′(x)| ≤ M for all x ∈ (a, b). Let x, y ∈ [a, b], x < y. Applying the
Mean Value Theorem to f on the interval [x, y] yields the existence of c ∈ (x, y) such
that

f(y)− f(x)
y − x

= f ′(c).

Thus ∣∣∣∣f(x)− f(y)x− y

∣∣∣∣ ≤M =⇒ |f(x)− f(y)| ≤M |x− y|.

This completes the proof. ■

8. Prove that
∫ 1

0
g = 1

2
if

g(x) =

{
1 x ∈ (1

2
, 1]

0 x ∈ [0, 1
2
]
.

Is that still true if g(1
2
) = 7 instead?
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Proof: let ε > 0 and de ine the partition Pε = {0, 12 − ε,
1
2 + ε, 1}. Since g is bounded

on [0, 1], L(g) ≤ U(g) exist and

L(g) ≥ L(Pε; g) =
1

2
− ε and U(g) ≤ U(Pε; g) =

1

2
+ ε.

Hence
1

2
− ε ≤ L(g) ≤ U(g) ≤ 1

2
+ ε, for all ε > 0.

Since ε > 0 is arbitrary, then 1
2 ≤ L(g) ≤ U(g) ≤ 1

2 ; by de inition, g is Riemann-
integrable on [0, 1] and L(g) = U(g) =

∫ 1
0 g = 1

2 .

If instead g(1/2) = 7, the exact same work as above yields

1

2
− ε ≤ L(g) ≤ U(g) ≤ 1

2
+ 13ε, for all ε > 0.

Since ε > 0 is arbitrary, then 1
2 ≤ L(g) ≤ U(g) ≤ 1

2 ; by de inition, g is also Riemann-
integrable on [0, 1] and L(g) = U(g) =

∫ b
a f = 1

2 . ■

9. Let f : [a, b]→ R be bounded and such that f(x) ≥ 0, ∀x ∈ [a, b]. Show L(f) ≥ 0.

Proof: as f is bounded on [a, b], L(f) exists and the set

{f(x) | x ∈ [a, b]} ̸= ∅

is bounded below. By completeness of R, m1 = inf{f(x) | x ∈ [a, b]} exists. Fur-
thermore,m1 ≥ 0 since f(x) ≥ 0 for all x ∈ [a, b].

Let P = {x0, x1} = {a, b} be the trivial partition of [a, b]. Then

L(f) ≥ L(P ; f) = m1(b− a) ≥ 0,

which completes the proof. ■

10. Let f : [a, b] → R be increasing on [a, b]. If Pn partitions [a, b] into n equal parts, show
that

0 ≤ U(Pn; f)−
∫ b

a

f ≤ f(b)− f(a)
n

(b− a).

Proof: asf is increasing, it ismonotoneand thusRiemann-integrablebyTheorem53.
Then L(f) = U(f) =

∫ b
a f . Let

Pn = {xi = a+ i b−a
n | i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals. By de inition, L(Pn; f) ≤
∫ b
a f

and U(Pn; f) ≥
∫ b
a f . Then

U(Pn; f)− L(Pn; f) ≥ U(Pn; f)−
∫ b

a
f ≥

∫ b

a
f −

∫ b

a
f = 0.
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In particular, U(Pn; f)−
∫ b
a f ≥ 0. As f is increasing on [a, b],

Mi = sup
[xi−1,xi]

{f(x)} = f(xi), mi = inf
[xi−1,xi]

{f(x)} = f(xi−1), and

U(Pn; f)− L(Pn; f) =

n∑
i=1

(Mi −mi)(xi − xi−1)

=
b− a
n

n∑
i=1

(f(xi)− f(xi−1)) =
b− a
n

(f(b)− f(a)).

Since L(Pn; f) ≤
∫ b
a f , then

b− a
n

(f(b)− f(a)) = U(Pn; f)− L(Pn; f) ≥ U(Pn; f)−
∫ b

a
f ≥ 0,

which completes the proof. ■

11. Let f : [a, b] → R be an integrable function and let ε > 0. If Pε is the partition whose
existence is asserted by the Riemann Criterion, show that U(P ; f)−L(P ; f) < ε for all
re inement P of Pε.

Proof: letP be a re inement ofPε. ThenU(Pε;f ) ≥ U(P ; f) andL(Pε; f) ≤ L(P ; f),
and so

U(Pε; f) ≥ U(P ; f) ≥ L(P ; f) ≥ L(Pε; f).

By the Riemann Criterion, U(Pε; f) < ε+ L(Pε; f). Then

ε+ L(P ; f) ≥ ε+ L(Pε; f) > U(Pε; f) ≥ U(P ; f),

i.e. ε+ L(P ; f) > U(P ; f), which completes the proof. ■

12. Let a > 0 and J = [−a, a]. Let f : J → R be bounded and letP∗ be the set of symmetric
partitions of J that contain 0. Show L(f) = sup{L(P ; f) | P ∈ P∗}.

Proof: let α = sup{L(P ; f) | P ∈ P∗}. By de inition,

α ≤ L(f) = sup{L(P ; f) | P is a partition of [−a, a]}.

Let ε > 0 and Pε = {x0, x1, . . . , xn} be a partition of [−a, a] such that

L(f)− ε < L(Pε; f) ≤ L(f).

Such a partition exists as L(f)− ε is not the supremum of the aforementioned set.

Consider the set {0,±x0, . . . ,±xn}. Eliminate all the repetitions from this set and
re-order its elements. Denote the new set byQε.

ThenQε is a re inement of Pε andQε ∈ P∗; so α ≥ L(Qε; f), and

L(f)− ε < L(Pε; f) ≤ L(Qε; f) ≤ α ≤ L(f),

as ε > 0 is arbitrary, L(f) = α. ■
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13. Let a > 0 and J = [−a, a]. Let f be integrable on J . If f is even (i.e. f(−x) = f(x) for
all x), show that ∫ a

−a

f = 2

∫ a

0

f.

If f is odd (i.e. f(−x) = −f(x) for all x), show that
∫ a

−a

f = 0.

Proof: as f is integrable over [−a, a], Theorem 56 implies that f is integrable over
[0, a]. If f is even, let P ∈ P∗. There is a partition P̃ of [0, a] s.t. L(P ; f) = 2L(P̃ ; f)
and vice-versa. Indeed, let

P = {x−n, . . . , x−1, x0, x1, . . . , xn},

where x0 = 0 and x−i = −xi for all i = 1, . . . , n. Then P ∈ P∗.

Let mi = inf{f(x) | x ∈ [xi−1, xi]}, for i = −n − 1, . . . , 0, . . . , n. Since f is even,
mi = m−i+1 for i = −n− 1, . . . , 0, . . . , n. Then

L(P ; f) =
0∑

i=−n−1

mi(xi − xi−1) +
n∑

i=1

mi(xi − xi−1) = 2
n∑

i=1

mi(xi − xi−1) = L(P̃ ; f),

where P̃ is a partition of [0, a].

This, combined with the previous solved problem, yields∫ a

−a
f = sup{L(P ; f) | P ∈ P∗} = sup{2L(P̃ ; f) | P̃ is a partition of [0, a]}

= 2 sup{L(P̃ ; f) | P̃ is a partition of [0, a]} = 2

∫ a

0
f.

If f is odd, consider the function h : R→ R given by

h(x) =

{
1 if x ≥ 0

−1 if x < 0
.

The product fh is an even function, so

2

∫ a

0
f = 2

∫ a

0
hf =

∫ a

−a
hf =

∫ 0

−a
hf +

∫ a

0
hf =

∫ 0

−a
−f +

∫ a

0
f,

and so
∫ a
0 f =

∫ 0
−a−f = −

∫ 0
−a f . Then∫ a

−a
f =

∫ 0

−a
f +

∫ a

0
f = −

∫ a

0
f +

∫ a

0
f = 0,

which completes the proof. ■

14. Give an example of a function f : [0, 1]→ R that is not integrable on [0, 1], but such that
|f | is integrable on [0, 1].
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Solution: here is one example – f : [0, 1] → R, de ined by f(x) = −1 if x ̸∈ Q and
f(x) = 1 if x ∈ Q. The proof that f is not Riemann-integrable on [0, 1] is similar to
the proof that the Dirichlet function is not Rimeann-integrable on [0, 1]. □

15. Let f : [a, b]→ R be integrable on [a, b]. Show |f | is integrable on [a, b] directly.

Proof: let ε > 0. By the Riemann criterion, there exists a partitionPε = {x0, . . . , xn}
of [a, b] such that U(Pε; f)− L(Pε; f) < ε.

For all i = 1, . . . , n, let

Mi = sup{f(x) | x ∈ [xi−1, xi]} and mi = inf{f(x) | x ∈ [xi−1, xi]}.

For all i = 1, . . . , n, we then have |f(x)− f(y)| ≤Mi −mi on [xi−1, xi]. As

||f(x)| − |f(y)|| ≤ |f(x)− f(y)| ≤Mi −mi for all x, y ∈ [xi−1, xi],

we have M̃i − m̃i ≤Mi −mi,where

M̃i = sup{|f(x)| | x ∈ [xi−1, xi]} and m̃i = inf{|f(x)| | x ∈ [xi−1, xi]}

for all i = 1, . . . , n. Then

U(Pε; |f |)− L(Pε; |f |) =
n∑

i=1

(
M̃i − m̃i

)
(xi = xi−1)

≤
n∑

i=1

(Mi −mi) (xi = xi−1) = U(Pε; |f |)− L(Pε; |f |) < ε.

According to the Riemann criterion, |f | is thus integrable on [a, b]. ■

16. If f is integrable on [a, b] and 0 ≤ m ≤ f(x) ≤M for all x ∈ [a, b], show that

m ≤
[

1

b− a

∫ b

a

f 2

]1/2
≤M.

Proof: by hypothesis,m2 ≤ f2(x) ≤M2 for all x ∈ [a, b]. As f is integrable on [a, b],
so is f2, by Theorem 58.

Then ∫ b

a
m2 ≤

∫ b

a
f2 ≤

∫ b

a
M2

by the squeeze theorem for integrals and so

m2(b− a) ≤
∫ b

a
f2 ≤M2(b− a).

We obtain the result by re-arranging the terms and extracting square roots. ■
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17. If f is continuous on [a, b] and f(x) ≥ 0 for all x ∈ [a, b], show there exists c ∈ [a, b] such
that

f(c) =

[
1

b− a

∫ b

a

f 2

]1/2
.

Proof: by the max/min theorem, ∃x0, x1 ∈ [a, b] such that
m = inf

[a,b]
{f(x)} = f(x0), M = sup

[a,b]

{f(x)} = f(x1).

By the preceding solved problem, we then have

f(x0) ≤
[

1

b− a

∫ b

a
f2
]1/2
≤ f(x1).

As f is continuous on [x0, x1] (or [x1, x0]), the intermediate value theorem states
∃c ∈ [a, b] such that

f(c) =

[
1

b− a

∫ b

a
f2
]1/2
,

which completes the proof. ■

18. If f is continuous on [a, b] and f(x) > 0 for all x ∈ [a, b], show that 1
f
is integrable on

[a, b].
Proof: since f is continuous on [a, b] it is integrable on [a, b]; by Theorem 36, since f
is continuous and [a, b] is a closed bounded interval, then f([a, b]) = [m,M ] is also
closed bounded interval. Furthermore, 0 < m ≤M since f(x) > 0 for all x ∈ [a, b].

Let φ : [m,M ] → R be de ined by φ(t) = 1
t . Then φ is continuous and bounded

on [m,M ] and so φ ◦ f : [a, b]→ R, de ined by φ(f(x)) = 1
f(x) is integrable on [a, b],

by Theorem 57. ■

19. Let f be continuous on [a, b]. De ineH : [a, b]→ R by

H(x) =

∫ b

x

f for all x ∈ [a, b].

FindH ′(x) for all x ∈ [a, b].
Proof: de ine F (x) =

∫ x
a f . Since f is continuous, F is differentiable and the funda-

mental theorem of calculus (2nd version) yieldsF ′(x) = f(x) for all x ∈ [a, b]. Then,
by the additivity theorem, we have:

F (x) +H(x) =

∫ x

a
f +

∫ b

x
f =

∫ b

a
f.

In particular,
H(x) =

∫ b

a
f − F (x).

As F is differentiable,
∫ b
a f − F (x) is also differentiable; so isH sinceH ′(x) = 0 −

F ′(x) = −f(x). ■
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20. Suppose f : [0,∞)→ R is continuous and f(x) ̸= 0 for all x > 0. If

(f(x))2 = 2

∫ x

0

f for all x > 0,

show that f(x) = x for all x ≥ 0.
Proof: as f is continuous, F (x) =

∫ x
0 f is continuous; the fundamental theorem of

calculus (2nd version) then yields F ′(x) = f(x) for all x ∈ [0,∞).

Now, either f(x) > 0 for all x > 0 or f(x) < 0 for all x > 0 – otherwise f admits
a root c > 0 by the intermediate value theorem, which would contradict f(x) ̸= 0
∀x > 0.

But
F (x) =

∫ x

0
f =

(f(x))2

2
> 0 for all x > 0,

so
∫ x
0 f > 0 for all x > 0, which is to say that f > 0 for all x > 0 – otherwise,∫ x

0 f ≤
∫ x
0 0 = 0, which contradicts one of the above inequalities.

By construction,
(f(0))2

2
= F (0) =

∫ 0

0
f = 0,

that is, f(0) = 0. Now, let c > 0. By hypothesis, F ′(c) = f(c) > 0. Furthermore,
F (c) = (f(c))2

2 . As f is continuous at c,

lim
x→c

1

2
(f(x) + f(c)) = f(c).

Thus we have:

1 =
F ′(c)

f(c)
=

lim
x→c

F (x)− F (c)
x− c

lim
x→c

1

2
(f(x) + f(c))

= lim
x→c

(f(x))2 − (f(c))2

(x− c) (f(x) + f(c))

= lim
x→c

(f(x)− f(c)) (f(x) + f(c))

(x− c) (f(x) + f(c))
= lim

x→c

f(x)− f(c)
x− c

= f ′(c).

Then, the function f is differentiable and f ′(c) = 1 for all c > 0. By the fundamental
theorem of calculus (1st version),∫ x

0
f ′ = f(x)− f(0) = f(x)− 0 = f(x)

for all x ≥ 0. As
∫ x
0 f

′ =
∫ x
0 1 = x − 0 = x, this completes the proof (which,

incidentally, is one of my favourite analysis proofs). ■

21. Let f, g : [a, b]→ R be continuous and such that∫ b

a

f =

∫ b

a

g.

Show that there exists c ∈ [a, b] such that f(c) = g(c).
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Proof: as f and g are continuous, the functions

F (x) =

∫ x

a
f and G(x) =

∫ x

a
g

are continuous and differentiable on [a, b], with F ′(x) = f(x) andG′(x) = g(x), ac-
cording to the fundamental theorem of calculus (2nd version). ThenH(x) = F (x)−
G(x) is continuous.

But by hypothesis, we have

H(a) = F (a)−G(a) =
∫ a

a
f −

∫ a

a
g = 0− 0 = 0

H(b) = F (b)−G(b) =
∫ b

a
f −

∫ b

a
g = 0.

SinceH is also differentiable, ∃c ∈ (a, b) such thatH ′(c) = 0, by Rolle’s theorem. As

H ′(c) = F ′(c)−G′(c) = f(c)− g(c) = 0,

this completes the proof. ■

22. Let f : [0, 3]→ R be de ined by

f(x) =


x x ∈ [0, 1)

1 x ∈ [1, 2)

x x ∈ [2, 3]

.

Find F : [0, 3]→ R, where
F (x) =

∫ x

0

f.

Where is F differentiable? What is F ′ there?
Solution: the function f is increasing on [0, 3] so it is Riemann-integrable there. The
function F is given by

F (x) =


x2

2 , x ∈ [0, 1)

x− 1
2 , x ∈ [1, 2)

x2−1
2 , x ∈ [2, 3]

By the fundamental theoremof calculus,F is differentiablewhereverf is continuous,
that is, on [0, 2) ∪ (2, 3], and F ′ = f there. □

23. If f : [0, 1]→ R is continuous and
∫ x

0
f =

∫ 1

x
f for all x ∈ [0, 1], show that f ≡ 0.

Proof: as f is continuous, then F (x) =
∫ x
0 f is continuous and differentiable on

[0, 1], with F ′(x) = f(x), by the fundamental theorem of calculus. By the additivity
theorem, ∫ x

0
f +

∫ 1

x
f =

∫ 1

0
f.
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But
∫ x
0 f =

∫ 1
x f so 2

∫ x
0 f =

∫ 1
0 f. In particular,

F (x) =
1

2

∫ 1

0
f = constant.

Then f(x) = F ′(x) = 0 for all x ∈ [0, 1]. ■

24. Let f : [a, b]→ R be continuous, f ≥ 0 on [a, b], and
∫ b

a
f = 0. Show that f ≡ 0 on [a, b].

Proof: We show the contrapositive. Suppose that there exists z ∈ [a, b] such that
f(z) > 0. Since f is continuous, we may assume z ∈ (a, b), as if f(z) = 0 for all
z ∈ (a, b), then f(a) = f(b) = 0.

Then, taking ε = f(z)/2 in the de inition of continuity, there exists a δ > 0 such
that

|x− z| < δ =⇒ |f(x)− f(z)| < f(z)/2 =⇒ f(x) > f(z)/2.

Reducing δ if necessary, we may assume δ ≤ min{z − a, b− a}. Therefore,
[z − δ/2, z + δ/2] ⊆ (z − δ, z + δ) ⊆ [a, b].

Thus ∫ b

a
f =

∫ z−δ/2

a
f +

∫ z+δ/2

z−δ/2
f +

∫ b

z+δ/2
f ≥ 0 + δf(z)/2 + 0 > 0.

This completes the proof. ■

25. Let f : [a, b]→ R be continuous and let
∫ b

a
f = 0. Show ∃c ∈ [a, b] such that f(c) = 0.

Proof: we show the contrapositive. Suppose f(c) ̸= 0 for all c ∈ [a, b]. Then, by
the intermediate value theorem, either f(x) > 0 for all x ∈ [a, b] or f(x) < 0 for all
x ∈ [a, b].

If f(x) > 0 for all x ∈ [a, b], then
∫ b
a f > 0 by the preceding solved problem. Simi-

larly, if f(x) < 0 for all x ∈ [a, b], then
∫ b
a (−f) > 0, which implies that −

∫ b
a f > 0.

In both cases,
∫ b
a f ̸= 0. ■

26. Compute d
dx

∫ x

−x

et
2

dt.

Solution: according to the additivity property of the Riemann integral and the fun-
damental theorem of calculus, we have

d
dx

∫ x

−x
et

2
dt =

d
dx

(∫ 0

−x
et

2
dt+

∫ x

0
et

2
dt

)
=

d
dx

(
−
∫ −x

0
et

2
dt+

∫ x

0
et

2
dt

)
= − d

dx

∫ −x

0
et

2
dt+

d
dx

∫ x

0
et

2
dt

= −ex2 · (−1) + ex
2
= 2ex

2
,

where we used the chain rule in the second-to-last equation. □
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27. Let f : [a, b] → R be Riemann-integrable on [a + δ, b] and unbounded in the interval
(a, a+ δ) for every 0 < δ < b− a. De ine∫ b

a

f = lim
δ→0+

∫ b

a+δ

f,

where δ → 0+ means that δ → 0 and δ > 0. A similar construction allows us to de ine∫ b

a

g = lim
δ→0+

∫ b−δ

a

g.

Such integrals are said to be improper; when the limits exist, they are further said to
be convergent. How can the expression∫ 1

0

1√
|x|

dx

be interpreted as an improper integral? Is it convergent? If so, what is its value?
Solution: by de inition,∫ 1

0

1√
|x|

dx = lim
a→0+

∫ 1

a

1√
x

dx = lim
a→0+

(
2
√
1− 2

√
a
)
= 2.

Thus the improper integral converges to 2. □

28. LetG : R→ R be de ined according to

G(x) =

{
x2 sin

(
π
x2

)
x ̸= 0

0 x = 0

Show that G is the antiderivative of some function g : [0, 1] → R, but that g is not
Riemann-integrable on [0, 1].

Proof: the derivative ofG is

G′(x) = g(x) =

{
2x sin

(
π
x2

)
− 2π

x cos
(

π
x2

)
, x ̸= 0

0, x = 0
.

But g is not bounded on [0, 1], so it cannot be Riemann-integrable on [0, 1]. ■

29. Let f : R → R be Thomae’s function. Show that the inde inite integral of f on [1, 2] is
not an antiderivative of f on [1, 2].

Proof: for any x ∈ Q ∩ [1, 2], the inde inite integral F is such that F ′(x) ̸= f(x); F
cannot then be an antiderivative of f on [1, 2].¹⁰ ■

30. Without evaluating the integrals, show that
∫ 4

1

e−8t dt =
1

8

∫ 8

4

te−t2/2 dt.

Proof: we can use the 2nd substitution theorem with f(x) = e−x2/2, φ(t) = 4
√
t,

ψ(t) = t2

16 , J = [1, 4]. ■
¹⁰Of course, this will only make sense if you’ve managed to ind F ...
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4.4. EXERCISES

4.4 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. With the assumptions of Theorem 48, show that f is decreasing on [a, b] if and only if
f ′ ≤ 0 on (a, b).

3. Prove part 2. of the irst derivative test.

4. Let f : (a, b) → R be differentiable on (a, b), with f ′(x) ̸= 0. Prove the following
statements.

a) f is monotone on (a, b) and f((a, b)) is an open interval (α, β);
b) f has an inverse f−1 : (α, β)→ R such that

f−1(f(x)) = x, f(f−1(y)) = y, ∀x ∈ (a, b), y ∈ (α, β),

c) f−1 is differentiable on (α, β), with

(f−1)′(y) =
1

f ′(f−1(y))
, ∀y ∈ (α, β).

5. Let I = [a, b] and f : I → R be bounded. Then U(Q; f) ≤ L(Q; f) for any re inement
Q ⊇ P of I .

6. Prove that f ≡ 1 is Riemann-integrable on [0, 1].

7. Show that Theorem 53 holds for decreasing functions.

8. Show that Thomae’s function f is Riemann-integrable over [0, 1] and that
∫ 1

0
f = 0.

9. Show that the signum function and Thomae’s function do not have antiderivatives on
any closed, bounded interval I ⊆ R.

10. Show that the reciprocal of the square root function has an anti-derivative on [0, 1], but
that it is not Riemann-integrable on [0, 1].

11. Find a function f : [a, b]→ R such that the inde inite integral F : [a, b]→ R de ined by
F (x) =

∫ x

a
f is not an antiderivative of f .

12. Prove Theorems 63, 64, and 65.

13. For which values of s does the integral
∫ 1

0
xs dx converge?

14. Show that the inde inite integral of sgn is not an antiderivative of sgn on [−1, 1].
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