Chapter 5

Sequences of Functions

We now look at sequences of functions, which arise naturally in analysis
and its applications. In particular, we discuss two types of convergence
(pointwise and uniformand prove the limit interchange theorems.

5.1 Pointwise and Uniform Convergence

Let A C Rand (f,), be a sequence of functions f, : A — R. The sequence (f,(x)), may
converge for some = € A and diverge for others. Let Ay = {z € A | (f.(z)), converges} C A.
For each x € Ay, (f.(z)) converges to a unique limit

fa) = lim f(a)
the pointwise limit of ( f,,); we denote the situation by f,, — f on A,.

Examples

1. Let f, : R — R be defined by f,,(z) = £ foralln € N,z € R, and let f be the

zero function on R. Show that f,, — f on R.
Proof: let¢ > 0 and x € R. By the Archimedean property, IN., > Izl
so that

n>N,=|2-0] < <]l <¢

thus f,, = 0Oon RR. [ |

2. Let f,, : R — R be defined by f,,(z) = 2" foralln € N,z € R, and let f be
the zero function on R, except at + = 1 where f(1) = 1. Show that f,, — f on
(—1,1].

Proof: using various results seen in Chapters 2 and 3 (and in the solved
problems and exercises), we know that
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0 re(—1,1)
lim 2" =<1 =1
n—oo
does not exist otherwise
4 1
—+— | - |
-1 A -1 A
{ {

Thus f,, — f on (—1, 1]. Note that all f,, are continuous on (1, 1], but that f is
not. |

3. Let f,, : R — R be defined by f,,(z) = "”2+Tm“ foralln € N,z € R, and let f be
the identity function on R. Show that f,, — f on R.

Proof: as f,(z) = %2 +x — f(z) =z, Vo € R,we have f,, — fonR. |

The last example show that there is something “incomplete” about pointwise convergence -
why is continuity not preserved by the process? As it happens, we can define a different type
of convergence which will preserve this important property.

A sequence of functions f,, : A — R converges uniformlyon 4, C Ato f : 4y — R,
denoted by f, = f on A,, if the threshold V., € N in the pointwise definition is in fact
independent of x € Ay:

Ve >0, IN. € Nsuchthatn > N.andz € Ay = |f.(z) — f(2)| <e.
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CHAPTER 5. SEQUENCES OF FUNCTIONS

The distinction between pointwise and uniform convergence is not unlike that between con-
tinuity and uniform continuity: convergence is uniform if the threshold is the same for all
S AQ.

Clearly, if f,, = f on Ay, then f,, — f on Ay, but the converse is not necessarily true.

Examples

1. Show that the sequence f, : [1,2] — R defined by f,(z) = #2£ forn € N
converges uniformly to the zero function on [1, 2].

Proof: let ¢ > 0. According to the Archimedean property, 3N, > = so
that
' ' 1 1 1
n> N.andz € [1,2] = ST ‘: S <—< —< —<g,
nT n nr - n N,
thus f, = Oon[1,2]. |

2. Let f,, : R — R be defined by f,,(z) = 2" foralln € N,z € R, and let f be
the zero function on R, except at = 1 where f(1) = 1. Show that f,, & f on
(_17 1]

Proof: we use the negation of the definition. Let ¢y = , and set 2; = 55 and
(ng) = (k). Then

| fu (k) = flai)] = |3 = 0] =

which completes the proof. [ |

A sequence of functions f,, does not converge uniformly to f on A if
Jeg > Owith (f,,) C (f,) and (xx) C Ag s.t. | fn, (xr) — f(xk)| > €0, Yk € N.

Example: let £, : [0, 1] — R be the sequence of functions defined by

nw, x € 0,1/n]
folx) =<2 —nx, z€[l/n,2/n]
0 x € [2/n,1]

foralln € N. Let f : [0, 1] — R be the zero function on [0, 1]. Show that f,, — f on
0,1] but £, # f on [0, 1].
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5.1. POINTWISE AND UNIFORM CONVERGENCE

Proof: if = 0, f,,(0) = 0 for all n so (f,,(0)) converges to 0. If z € (0,1], AN, > 2/z
by the Archimedean property. Thus, for n > N,, f,(z) = Osincez > 2 > 2, s0
fn(z) = 00n (0, 1]. Combining these results, f,, — f on [0, 1].

Now, let &5 = 1. Note that since |f,(2) — f(%)] = 1foralln € N, we can
never obtain

[fn(2) = fz)] <e
forall z € [0,1],and so f, & fon |0, 1]. |

The fact that we have to separate the proof for pointwise convergence into distinct arguments
depending on the value of z is a strong indication that the convergence cannot be uniform.*

Intuitively, we can think of the convergence process in the last example as being a flatten-
ing process: what happens to the tents’ peak as n — oo? That we have to “break” the tents to
get to the pointwise limit is another indication that the convergence cannot be uniform.

The definition of uniform convergence is only ever useful if a candidate for a uniform limit is
available, a situation that we have encountered before. As was the case for number sequences,
the completeness of R comes to the rescue.

Theorem 66 (CAUCHY'S CRITERION FOR SEQUENCES OF FUNCTIONS)

Let f, : A — R, Vn € N. Then, f, = fon Ay C Alifandonly ifVe > 0, 3N, € N
(indep. of x € Ay) such that |f,,(z) — f.(z)| < € whenever m > n > N. € Nand
T € Ao.

Proof: let¢ > 0. If f, = f on Ay, IN. € N such that |f,(z) — f(z)] < €
when z € Ay and n > N.. Hence,

[Fn(@) = ul@)] = | finl@) = J(@) + f(@) = fula)]
< |fn(@) = F@)|+ |fule) = F@)] < 5 +

g

9~ ¢

whenever r € Agandm >n > N,.

Although it could be that it was possible to do a one-pass proof and that the insight escaped us.
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5.2

Conversely, let e > 0 and assume that 3V, , € N (independent of x € Ay) such that

DO | ™

m>n> Npandx € Ag = —g < fm(x) = folx) <
Since x € Ay, we know that f,,(z) — f on Ay when m — co. Thus,

m>n> N,pandz € Ag = lim —g < lim (f(z) — fo(x)) < lim g,
m—00

m—o0 m—r0o0

or
<&,

N ™

m2n>N€/2andx€A0:>—€<—ggf(x)—fn(x)g

and so f,, = f on A,. [ |

Limit Interchange Theorems

It is often necessary to know if the limit f of a sequence of functions ( f,,) is continuous, dif-
ferentiable, or Riemann-integrable. Unfortunately, we cannot guarantee that this will be the
case, even when the f,, are continuous, differentiable, or Riemann-integrable, respectively.

Examples

1. Consider the sequence of functions f, : [0, 1] — R defined by f,,(z) = 2™ for
n € Nand f : [0,1] — R be the zero function except at x = 1 where f(1) = 1.
Then f,, is continuous on [0, 1] for all n € N, but f is not. O

2. The same functions f, are differentiable on [0, 1] for all » € N, but f is not (as
it is not continuous at z = 1). 0

3. Consider the functions f,, : [0,1] — R defined by

n’x, x €[0,1/n]
fu(z) =< —n%(x —2/n), z€[l/n,2/n]
0 x € [2/n,1]

forn > 2.
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Since f,, is continuous on [0, 1] for all n > 2, f,, is Riemann-integrable on [0, 1]
for all n > 2, with

1 2
/ fo==-=—-n=1, foralln>2.
2 n
Ifx =0, f,(0) =0forall nso (f,(0)) converges to 0.

Ifx € (0,1], 3N, > 2/:c by the Archimedean property. Thus, for n > N,,
fa(z) =0sincez > £ > 2,50 f,(x) — 0on (0,1]. So f,, — f on[0,1], but

/lf—O#l—hm f,
0

n—o0

which is to say we cannot interchange the limit and the integral here. OJ

Note that none of the “convergences” in the previous example are uniform on [0, 1]. When the
convergence f, = f on A is uniform, then if the f, are

= continuous on A4, sois f;

= differentiable on A, so is f, with

e a) = m [ = m 1

dx n—00 n—00

» Riemann-integrable on A, then so is f, with

/f:/ lim f, = lim fn-

We finish this chapter by proving three limit interchange theorems, with applications in
analysis, engineering, and mathematical physics.?

Theorem 67

Let f,, : A — R be continuous on A foralln € N. If f,, = f on A, then [ is continuous
on A.

Proof: let ¢ > 0. By definition, 3. /3 € N such that

n>Hsandz € A= |f,(7) — f(2)| < 5.

2Although their conclusions are often used without verifying that the convergence is indeed uniform.
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Let ¢ € A. According to the triangle inequality,
[f (@) = fl) < 1f () = Frs (@) + | fr,s () = fh ()] + [fa () — F(o)]
<5+ \fr.,@) = fo.,,)] +5
whenever n > H, ;.
But fp,,, is continuous at ¢, so 35,3 > 0 such that |fy_,(z) — fm_,(c)] <

whenz € Aand |v — ¢ < d.3. Thus |f(x) — f(c)| < € whenever z € A and
|z — ¢| < d./3,s0 f is continuous at c. As ¢ € A is arbitrary, f is continuouson A. W

wlm

The next two results are slightly more complicated to prove.

Theorem 68

Let f, : [a,b] — R be a sequence of differentiable functions on [a,b] such that
Jdxy € [a,b] with f,(xo) — 20, and f/! = g on [a,b]. Then f, = f on [a,b] for some
function f : [a,b] — R such that " = g.

Proof: letc > Oand x € [a,b]. Since f, =2 ¢ on [a,b], the sequence f; satis-
fies Cauchy’s criterion, and so 9/NV; € N such that

€

m>n>Nyandy € [a,b] = |f,,(y) — f,(y)] < W—a)

As (fn(xg)) converges it is also a Cauchy sequence, so 3N, € N such that
m>n> Ny = | fin(z0) — falwo)| < %
According to the mean value theorem, dy between = and z( such that
(fm(x) = fal@)) = (fm(@0) = ful(20)) = (fu(y) — fu(y)) (@ — 20).
Hence,

(@) = fal@)] < |fm(0) = fulmo)| + |fn(y) = fu@)] - |2 — 20

€
oY E

< ° +
2
for allm > n > max{ Ny, N, }.

Both N; and N, are independent of z, so N. = max{/N;, N,} also is, and thus
(fn)n satisfies Cauchy’s criterion, which yields f,, = f on [a, b].
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It remains only to show that f' = g on [a,b]. Lete > Oand ¢ € [a,b]. Since (f})
satisfies Cauchy’s criterion (as f;, = g), 3K, € N (independent of x) such that

m>n> K andy € [a.bl = |£,(s) - 11| < <.
But /' = ¢/, so K, € N (independent of ¢) such that

n>K,andc € [a,b] = |f'(c) — glc)| < %
Set K. > max{ K, Ky}.

As fr. (c) exists, 35. > 0 such that

O0<|z—c¢l<éandzx € [a,b] = fKS(‘Tx) : st(C) — fr.(0)] < %
According to the mean value theorem, dy between = and ¢ such that
(Fnl@) = £ul@)) = (€)= Fal©) = (Fuly) = i)z = o)
Ifx #cthenm >n> K.and z € [a,b] =
f(®) = fm(c)  fulz) = fulc) g / €
Letting m — oo (i.e. f,, — f on A), we get
n> K.andz € [a,b] = ‘f(x; : £<C) — fm(sz : ;fn(c) < %

Combining all of these inequalities, for 0 < |z — ¢| < 6., € [a,b], and k > K., we
have

fz) = f(c) _g(c)‘ _ ‘f(l‘) — fle)  Jul@) — fi(c)

fIELZIE ) 4 pige) - gte)
SV%:?@_&@:?@+_M2:?@_ﬂ@‘
TR —g@ <545+ 5 ==
which is to say that f’(c) = g(c). |

Analysis and Topology Course Notes



CHAPTER 5. SEQUENCES OF FUNCTIONS

Theorem 69
Let f, : [a,b] — R be Riemann-integrable on [a,b] foralln € N. If f, = f on [a,b],
then f is Riemann-integrable on |a, b] and

[r=tm [ 1.

Proof: let ¢ > 0. Since f, = f on [a,b], IK. € N (independent of z) such

that .
> KE n - .
nz K= 1) - 16 < g
Since fk, is Riemann-integrable, 3P. = {x, ..., z,} a partition of [a, b] such that
£
U(Paﬂ st) - L(‘P&) fKe) < 57

according to the Riemann criterion.

Foralll <i <n,set

mi(f) =inf{f(z) | x € [zi1, ]}, mi(fx.) = Inf{ fx(7) | ® € [2;1, 7]},
M;(f) = sup{f(z) | x € [v;1, 7]}, Mi(fx.) = sup{fx.(z) | € [zi1, 2:]}.

Then according to the reverse triangle inequality, we have

[f (@) < [fk.(2)] + = [f(2)] < Mi(fk.) +

£
4(b — a)

= M;(f) < Mi(fx.) +

Similarly, m;(f) = mi(fx.) — 154 on [x;_1,2;]. Thus,

U(P:; f) = ZMz(fxxz —Ti_1)

< ZMz(ng)<xz — 1) + 4(b5— ) Z(Iz — ;1) =U(P.; fx.) + Z

i=1

Similarly, L(P.; f) > L(P.; fx.) — 5. Hence

U(P: f) = L(P: ) S U(Pi fic.) = L(Pss fie)) + 5 <

Thus, according to the Riemann criterion, f is Riemann-integrable.
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Finally, lete > 0. As f,, = f on [a, b], JK. (independent of z) such that

n>K.andz € [a,b] = |fo(z) — f(2)] < ﬁ

Consequently, fab fn — fab f,sincen > K., =

[ [ =|[ -] < [16-1< [ 55m-5<=

which completes the proof. [ |

5.3 Solved Problems

1. Show that lim M Oforallz € R.
n—oo 1 + ’)’Lzl‘2

Proof: if x = 0, then 1#’17951,2 =0 — 0. Ifz # 0,lete > 0. By the Archimedean
property, AN, > ﬁ (depending on z) s.t.

nx n|z| n|z| 1 1
—0| = = < <e
1+ n2z? 14+n222 " n222  njz| Nzl

whenever n > N, i.e. 1;;7%962 — OonR. |

2. Show thatif f,(x) = x + % and f(z) = xforallz € R,n € N, then f,, = f on R but
f? # g on R for any function g.

Proof: let ¢ > 0. By the Archimedean property, 3N, > é (independent of ) s.t.

[fn(z) = f(2)| =

1< L <
—<—<e
n  Ng

whenever n > N, i.e. f, = 0onR.

Now, (fu(2))* = 2 + 2 + L — 22 forallz € R. Hence, f2 — g on R, where
g(z) = 2. If f2 converges uniformly to any function, it will have to do so to g. But
leteg = 2 and z,, = n. Then

2z 1
7”4_72
n n

1
:2+7222:€0
n

[(faln)* = glan)

for all n € N (this is the negation of the definition of uniform convergence). Hence
f? does not converge uniformly on R. |

3. Let f,(x) = W for x € [0, 1]. Denote by f the pointwise limit of f,, on [0, 1]. Does
fo= fon0,1]?

154 Analysis and Topology Course Notes



CHAPTER 5. SEQUENCES OF FUNCTIONS

Proof: first note that 1 < 1+ z on [0, 1]. In particular, H% <1lon|[0,1]. Ifx € (0,1],
then —L~. — 0, according to one of the chapter’s examples.

(1+az)"

Ifx =0, ) .
= =151
I+x)» 1

ie. fn, = fon]0,1], where

0, z¢€(0,1]
xTr) = .

o= {5 x<

However, f,, 7 f by theorem 67, since f,, is continuous on [0, 1] for all n € N, but f

is not. [ |

4. Let (f,) be the sequence of functions defined by f,,(z) = £-, forz € [0,1] and n € N.
Show that ( f,,) converges uniformly to a differentiable function f : [0, 1] — R, and that
the sequence (f/,) converges pointwise to a function g : [0, 1] — R, butthatg(1) # f/(1).

Proof: the sequence f,(z) = ‘%" — f(x) = 0on [0,1]. Indeed, lete¢ > 0. By the

Archimedean property, 3V, > % s.t.

1
Ne

||
<= <

z™ 1
n n

=0
n

< <e€

whenever n > N.. Note that f is differentiable and f’(z) = 0 for all z € [0, 1].

Furthermore, f] (z) = ”12_1 =2""! — g(x) on [0, 1], where
0, z€]0,1)
x) = ,
g9(z) {L 1
by one of the examples I did in class. Then g(1) =1 # 0 = f/(1). [ |
2
5. Show that lim [ ¢ da = 0.
n—oo 1
/
Proof: as (e ") = —2nze """ < Oon [1,2] foralln € N, e~"*" is decreasing on

[1,2] for all n, that is

e~ < e "M — ¢ foralln € N.

Now,
fa(z)=e ™ = f(x)=0 on[lL,2]

Indeed, let € > 0. By the Archimedean property, 3N. > In % (independent of z) s.t.
’e_mZ — 0‘ = <N < N
whenever n > N.. Then (and only because of this uniform convergence),
2 ) 2 ) 2
lim e " dx = / lim e ™™ dx = / 0dz =0,
n—oo 1 1 n—oo 1

by the limit interchange theorem for integrals. |
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™

6. Show that lim

sin(nz)

dx = 0.

Proof: for n € N, define f,, : [7/2,7] — Rby

_ sin(nx)

fa(z) =

nx

Then each f,, is continuous. For all n € N, we have

2
sup { } < —.
z€[m/2,7] nm

Since 2/nm — 0asn — oo, we have f, = 0 (why?). Then the limit interchange
theorem for integrals applies, and we have

lim Sm(m)dx:/ 0dz = 0.

n—o0 7r/2 nx /2

sin(nx)

nx

This completes the proof. |

7. Show thatif f,, = f on [a, ], and each f,, is continuous, then the sequence of functions
(F},)n defined by

Fia) = [ e
also converges uniformly on [a, b].

Proof: define F(z) = [ f(t)dt. Lete > 0. Since f, = f, 3N € N such that, for all
n > N, we have

fu(z) — f(2)] < —— VY € [a,b].

Then, foralln > N and x € [a, b], we have

/:fn(t)dt—/jf(t)dt‘ g/:|fn(t)—f(t)ydt
<.

_(;C_a).bi

[Fn(z) — F(x)] =
< —

Thus F,, = F' on [a, b]. |

5.4 Exercises

1. Prepare a 2-page summary of this chapter, with important definitions and results.

2. Are all the hypotheses of Theorem 68 necessary?
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