
Chapter 5

Sequences of Functions

We now look at sequences of functions, which arise naturally in analysis
and its applications. In particular, we discuss two types of convergence
(pointwise and uniformand prove the limit interchange theorems.

5.1 Pointwise and Uniform Convergence
Let A ⊆ R and (fn)n be a sequence of functions fn : A → R. The sequence (fn(x))n may
converge for some x ∈ A and diverge for others. LetA0 = {x ∈ A | (fn(x))n converges} ⊆ A.
For each x ∈ A0, (fn(x)) converges to a unique limit

f(x) = lim
n→∞

f(x),

the pointwise limit of (fn); we denote the situation by fn → f onA0.

aaaaaa

Examples

1. Let fn : R → R be de ined by fn(x) = x
n
for all n ∈ N, x ∈ R, and let f be the

zero function on R. Show that fn → f on R.

Proof: let ε > 0 and x ∈ R. By the Archimedean property, ∃Nε,x > |x|
ε

so that
n > Nε,x =⇒

∣∣x
n
− 0
∣∣ < |x|

n
< |x|

Nε,x
< ε,

thus fn → 0 on R. ■

2. Let fn : R → R be de ined by fn(x) = xn for all n ∈ N, x ∈ R, and let f be
the zero function on R, except at x = 1 where f(1) = 1. Show that fn → f on
(−1, 1].

Proof: using various results seen in Chapters 2 and 3 (and in the solved
problems and exercises), we know that
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lim
n→∞

xn =


0 x ∈ (−1, 1)
1 x = 1

does not exist otherwise

Thus fn → f on (−1, 1]. Note that all fn are continuous on (1, 1], but that f is
not. ■

3. Let fn : R → R be de ined by fn(x) = x2+nx
n

for all n ∈ N, x ∈ R, and let f be
the identity function on R. Show that fn → f on R.

Proof: as fn(x) = x2

n
+ x→ f(x) = x, ∀x ∈ R, we have fn → f on R. ■

The last example show that there is something “incomplete” about pointwise convergence –
why is continuity not preserved by the process? As it happens, we can de ine a different type
of convergence which will preserve this important property.

A sequence of functions fn : A → R converges uniformly on A0 ⊆ A to f : A0 → R,
denoted by fn ⇒ f on A0, if the threshold Nε,x ∈ N in the pointwise de inition is in fact
independent of x ∈ A0:

∀ε > 0, ∃Nε ∈ N such that n > Nε and x ∈ A0 =⇒ |fn(x)− f(x)| < ε.
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The distinction between pointwise and uniform convergence is not unlike that between con-
tinuity and uniform continuity: convergence is uniform if the threshold is the same for all
x ∈ A0.

Clearly, if fn ⇒ f onA0, then fn → f onA0, but the converse is not necessarily true.

aaaaaa

Examples

1. Show that the sequence fn : [1, 2] → R de ined by fn(x) = sinx
nx

for n ∈ N
converges uniformly to the zero function on [1, 2].

Proof: let ε > 0. According to the Archimedean property, ∃Nε > 1
ε

so
that

n > Nε and x ∈ [1, 2] =⇒
∣∣∣∣sinxnx

− 0

∣∣∣∣ = ∣∣∣∣sinxnx

∣∣∣∣ ≤ 1

nx
≤ 1

n
<

1

Nε

< ε,

thus fn ⇒ 0 on [1, 2]. ■

2. Let fn : R → R be de ined by fn(x) = xn for all n ∈ N, x ∈ R, and let f be
the zero function on R, except at x = 1 where f(1) = 1. Show that fn ̸⇒ f on
(−1, 1].

Proof: we use the negation of the de inition. Let ε0 = 1
4
, and set xk = 1

21/k
and

(nk) = (k). Then

|fnk
(xk)− f(xk)| =

∣∣1
2
− 0
∣∣ = 1

2
≥ ε0,

which completes the proof. ■

A sequence of functions fn does not converge uniformly to f onA0 if

∃ε0 > 0with (fnk
) ⊆ (fn) and (xk) ⊆ A0 s.t. |fnk

(xk)− f(xk)| ≥ ε0, ∀k ∈ N.

aaaaaa

Example: let fn : [0, 1]→ R be the sequence of functions de ined by

fn(x) =


nx, x ∈ [0, 1/n]

2− nx, x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for all n ∈ N. Let f : [0, 1] → R be the zero function on [0, 1]. Show that fn → f on
[0, 1] but fn ̸⇒ f on [0, 1].
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Proof: if x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0. If x ∈ (0, 1], ∃Nx > 2/x
by the Archimedean property. Thus, for n > Nx, fn(x) = 0 since x > 2

N
> 2

n
, so

fn(x)→ 0 on (0, 1]. Combining these results, fn → f on [0, 1].

Now, let ε0 = 1
2
. Note that since |fn( 1n) − f( 1

n
)| = 1 for all n ∈ N, we can

never obtain
|fn(x)− f(x)| < ε

for all x ∈ [0, 1], and so fn ̸⇒ f on [0, 1]. ■
The fact thatwe have to separate the proof for pointwise convergence into distinct arguments
depending on the value of x is a strong indication that the convergence cannot be uniform.¹

Intuitively, we can think of the convergence process in the last example as being a latten-
ing process: what happens to the tents’ peak as n→∞? That we have to “break” the tents to
get to the pointwise limit is another indication that the convergence cannot be uniform.

The de inition of uniform convergence is only ever useful if a candidate for a uniform limit is
available, a situation thatwehave encounteredbefore. Aswas the case for number sequences,
the completeness of R comes to the rescue.

aaaaaa

Theorem 66 (C ' C S F )
Let fn : A → R, ∀n ∈ N. Then, fn ⇒ f on A0 ⊆ A if and only if ∀ε > 0, ∃Nε ∈ N
(indep. of x ∈ A0) such that |fm(x) − fn(x)| < ε whenever m ≥ n > Nε ∈ N and
x ∈ A0.

Proof: let ε > 0. If fn ⇒ f on A0, ∃Nε ∈ N such that |fn(x) − f(x)| < ε
when x ∈ A0 and n > Nε. Hence,

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)|

≤ |fm(x)− f(x)|+ |fn(x)− f(x)| <
ε

2
+
ε

2
= ε

whenever x ∈ A0 andm ≥ n > Nε.

¹Although it could be that it was possible to do a one-pass proof and that the insight escaped us.
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Conversely, let ε > 0 and assume that ∃Nε/2 ∈ N (independent of x ∈ A0) such that

m ≥ n > Nε/2 and x ∈ A0 =⇒ −
ε

2
< fm(x)− fn(x) <

ε

2
.

Since x ∈ A0, we know that fm(x)→ f onA0 whenm→∞. Thus,

m ≥ n > Nε/2 and x ∈ A0 =⇒ lim
m→∞

−ε
2
≤ lim

m→∞
(fm(x)− fn(x)) ≤ lim

m→∞

ε

2
,

or
m ≥ n > Nε/2 and x ∈ A0 =⇒ −ε < −

ε

2
≤ f(x)− fn(x) ≤

ε

2
< ε,

and so fn ⇒ f onA0. ■

5.2 Limit Interchange Theorems
It is often necessary to know if the limit f of a sequence of functions (fn) is continuous, dif-
ferentiable, or Riemann-integrable. Unfortunately, we cannot guarantee that this will be the
case, even when the fn are continuous, differentiable, or Riemann-integrable, respectively.

aaaaaa

Examples

1. Consider the sequence of functions fn : [0, 1] → R de ined by fn(x) = xn for
n ∈ N and f : [0, 1]→ R be the zero function except at x = 1where f(1) = 1.
Then fn is continuous on [0, 1] for all n ∈ N, but f is not. □

2. The same functions fn are differentiable on [0, 1] for all n ∈ N, but f is not (as
it is not continuous at x = 1). □

3. Consider the functions fn : [0, 1]→ R de ined by

fn(x) =


n2x, x ∈ [0, 1/n]

−n2(x− 2/n), x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for n ≥ 2.
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Since fn is continuous on [0, 1] for all n ≥ 2, fn is Riemann-integrable on [0, 1]
for all n ≥ 2, with ∫ 1

0

fn =
1

2
· 2
n
· n = 1, for all n ≥ 2.

If x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0.

If x ∈ (0, 1], ∃Nx > 2/x by the Archimedean property. Thus, for n > Nx,
fn(x) = 0 since x > 2

N
> 2

n
, so fn(x)→ 0 on (0, 1]. So fn → f on [0, 1], but∫ 1

0

f = 0 ̸= 1 = lim
n→∞

∫ 1

0

f,

which is to say we cannot interchange the limit and the integral here. □

Note that none of the “convergences” in the previous example are uniform on [0, 1]. When the
convergence fn ⇒ f onA is uniform, then if the fn are

continuous on A, so is f ;

differentiable onA, so is f , with

f ′ =
d
dx
[

lim
n→∞

fn

]
= lim

n→∞

[ d
dxfn

]
= lim

n→∞
f ′
n;

Riemann-integrable on A, then so is f , with∫
A

f =

∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn.

We inish this chapter by proving three limit interchange theorems, with applications in
analysis, engineering, and mathematical physics.²

aaaaaa

Theorem 67
Let fn : A→ R be continuous onA for all n ∈ N. If fn ⇒ f onA, then f is continuous
on A.

Proof: let ε > 0. By de inition, ∃Hε/3 ∈ N such that

n > Hε/3 and x ∈ A =⇒ |fn(x)− f(x)| < ε
3
.

²Although their conclusions are often used without verifying that the convergence is indeed uniform.
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Let c ∈ A. According to the triangle inequality,

|f(x)− f(c)| ≤ |f(x)− fHε/3
(x)|+ |fHε/3

(x)− fHε/3
(c)|+ |fHε/3

(c)− f(c)|
< ε

3
+ |fHε/3

(x)− fHε/3
(c)|+ ε

3

whenever n > Hε/3.

But fHε/3
is continuous at c, so ∃δε/3 > 0 such that |fHε/3

(x) − fHε/3
(c)| < ε

3

when x ∈ A and |x − c| < δε/3. Thus |f(x) − f(c)| < ε whenever x ∈ A and
|x− c| < δε/3, so f is continuous at c. As c ∈ A is arbitrary, f is continuous onA. ■

The next two results are slightly more complicated to prove.

aaaaaa

Theorem 68
Let fn : [a, b] → R be a sequence of differentiable functions on [a, b] such that
∃x0 ∈ [a, b] with fn(x0) → z0, and f ′′

n ⇒ g on [a, b]. Then fn ⇒ f on [a, b] for some
function f : [a, b]→ R such that f ′ = g.

Proof: let ε > 0 and x ∈ [a, b]. Since f ′
n ⇒ g on [a, b], the sequence f ′

n satis-
ies Cauchy’s criterion, and so ∃N1 ∈ N such that

m ≥ n > N1 and y ∈ [a, b] =⇒ |f ′
m(y)− f ′

n(y)| <
ε

2(b− a)
.

As (fn(x0)) converges it is also a Cauchy sequence, so ∃N2 ∈ N such that

m ≥ n > N2 =⇒ |fm(x0)− fn(x0)| <
ε

2
.

According to the mean value theorem, ∃y between x and x0 such that

(fm(x)− fn(x))− (fm(x0)− fn(x0)) = (f ′
m(y)− f ′

n(y))(x− x0).

Hence,

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ |f ′
m(y)− f ′

n(y)| · |x− x0|

<
ε

2
+

ε

2(b− a)
(b− a) = ε

for allm ≥ n > max{N1, N2}.

Both N1 and N2 are independent of x, so Nε = max{N1, N2} also is, and thus
(fn)n satis ies Cauchy’s criterion, which yields fn ⇒ f on [a, b].
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It remains only to show that f ′ = g on [a, b]. Let ε > 0 and c ∈ [a, b]. Since (f ′
n)

satis ies Cauchy’s criterion (as f ′
n ⇒ g), ∃K1 ∈ N (independent of x) such that

m ≥ n > K1 and y ∈ [a, b] =⇒ |f ′
m(y)− f ′

n(y)| <
ε

3
.

But f ′ ⇒ g′, so ∃K2 ∈ N (independent of c) such that

n ≥ K2 and c ∈ [a, b] =⇒ |f ′
n(c)− g(c)| <

ε

3
.

SetKε > max{K1, K2}.

As f ′
Kε
(c) exists, ∃δε > 0 such that

0 < |x− c| < δε and x ∈ [a, b] =⇒
∣∣∣∣fKε(x)− fKε(c)

x− c
− f ′

Kε
(c)

∣∣∣∣ < ε

3
.

According to the mean value theorem, ∃y between x and c such that

(fm(x)− fn(x))− (fm(c)− fn(c)) = (f ′
m(y)− f ′

n(y))(x− c).

If x ̸= c, thenm ≥ n > Kε and x ∈ [a, b] =⇒∣∣∣∣fm(x)− fm(c)x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ = |f ′
m(y)− f ′

n(y)| <
ε

3
.

Lettingm→∞ (i.e. fm → f onA), we get

n > Kε and x ∈ [a, b] =⇒
∣∣∣∣f(x)− f(c)x− c

− fm(c)− fn(c)
x− c

∣∣∣∣ ≤ ε

3
.

Combining all of these inequalities, for 0 < |x − c| < δε, x ∈ [a, b], and k > Kε, we
have∣∣∣∣f(x)− f(c)x− c

− g(c)
∣∣∣∣ = ∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

+
fk(x)− fk(c)

x− c
− f ′

k(c) + f ′
k(c)− g(c)

∣∣∣∣
≤
∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

∣∣∣∣+ ∣∣∣∣fk(x)− fk(c)x− c
− f ′

k(c)

∣∣∣∣
+ |f ′

k(c)− g(c)| <
ε

3
+
ε

3
+
ε

3
= ε,

which is to say that f ′(c) = g(c). ■
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Theorem 69
Let fn : [a, b] → R be Riemann-integrable on [a, b] for all n ∈ N. If fn ⇒ f on [a, b],
then f is Riemann-integrable on [a, b] and∫ b

a

f = lim
n→∞

∫ b

a

fn.

Proof: let ε > 0. Since fn ⇒ f on [a, b], ∃Kε ∈ N (independent of x) such
that

n ≥ Kε =⇒ |fn(x)− f(x)| <
ε

4(b− a)
.

Since fKε is Riemann-integrable, ∃Pε = {x0, . . . , xn} a partition of [a, b] such that

U(Pε; fKε)− L(Pε; fKε) <
ε

2
,

according to the Riemann criterion.

For all 1 ≤ i ≤ n, set

mi(f) = inf{f(x) | x ∈ [xi−1, xi]}, mi(fKε) = inf{fKε(x) | x ∈ [xi−1, xi]},
Mi(f) = sup{f(x) | x ∈ [xi−1, xi]}, Mi(fKε) = sup{fKε(x) | x ∈ [xi−1, xi]}.

Then according to the reverse triangle inequality, we have

|f(x)| < |fKε(x)|+
ε

4(b− a)
=⇒ |f(x)| < Mi(fKε) +

ε

4(b− a)
on [xi−1, xi]

=⇒Mi(f) < Mi(fKε) +
ε

4(b− a)
on [xi−1, xi].

Similarly,mi(f) ≥ mi(fKε)− ε
4(b−a)

on [xi−1, xi]. Thus,

U(Pε; f) =
n∑

i=1

Mi(f)(xi − xi−1)

≤
n∑

i=1

Mi(fKε)(xi − xi−1) +
ε

4(b− a)

n∑
i=1

(xi − xi−1) = U(Pε; fKε) +
ε

4
.

Similarly, L(Pε; f) ≥ L(Pε; fKε)− ε
4
. Hence

U(Pε; f)− L(Pε; f) ≤ U(Pε; fKε)− L(Pε; fKε) +
ε

2
< ε.

Thus, according to the Riemann criterion, f is Riemann-integrable.
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Finally, let ε > 0. As fn ⇒ f on [a, b], ∃K̂ε (independent of x) such that

n > K̂ε and x ∈ [a, b] =⇒ |fn(x)− f(x)| <
ε

2(b− a)
.

Consequently,
∫ b

a
fn →

∫ b

a
f , since n > K̂ε =⇒∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣ = ∣∣∣∣∫ b

a

(fn − f)
∣∣∣∣ ≤ ∫ b

a

|fn − f | ≤
∫ b

a

ε

2(b− a)
=
ε

2
< ε,

which completes the proof. ■

5.3 Solved Problems
1. Show that lim

n→∞

nx

1 + n2x2
= 0 for all x ∈ R.

Proof: if x = 0, then nx
1+n2x2 = 0 → 0. If x ̸= 0, let ε > 0. By the Archimedean

property, ∃Nε >
1

ε|x| (depending on x) s.t.∣∣∣∣ nx

1 + n2x2
− 0

∣∣∣∣ = n|x|
1 + n2x2

<
n|x|
n2x2

=
1

n|x|
<

1

Nε|x|
< ε

whenever n > Nε, i.e. nx
1+n2x2 → 0 on R. ■

2. Show that if fn(x) = x + 1
n
and f(x) = x for all x ∈ R, n ∈ N, then fn ⇒ f on R but

f 2
n ̸⇒ g on R for any function g.

Proof: let ε > 0. By the Archimedean property, ∃Nε >
1
ε (independent of x) s.t.

|fn(x)− f(x)| =
∣∣∣∣x+

1

n
− x
∣∣∣∣ = 1

n
<

1

Nε
< ε

whenever n > Nε, i.e. fn ⇒ 0 on R.

Now, (fn(x))2 = x2 + 2x
n + 1

n2 → x2 for all x ∈ R. Hence, f2n → g on R, where
g(x) = x2. If f2n converges uniformly to any function, it will have to do so to g. But
let ε0 = 2 and xn = n. Then∣∣∣(fn(xn))2 − g(xn)∣∣∣ = ∣∣∣∣2xnn +

1

n2

∣∣∣∣ = 2 +
1

n2
≥ 2 = ε0

for all n ∈ N (this is the negation of the de inition of uniform convergence). Hence
f2n does not converge uniformly on R. ■

3. Let fn(x) = 1
(1+x)n

for x ∈ [0, 1]. Denote by f the pointwise limit of fn on [0, 1]. Does
fn ⇒ f on [0, 1]?
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Proof: irst note that 1 ≤ 1 + x on [0, 1]. In particular, 1
1+x ≤ 1 on [0, 1]. If x ∈ (0, 1],

then 1
(1+x)n → 0, according to one of the chapter’s examples.

If x = 0,
1

(1 + x)n
=

1

1n
= 1→ 1;

i.e. fn → f on [0, 1], where

f(x) =

{
0, x ∈ (0, 1]

1, x = 0
.

However, fn ̸⇒ f by theorem 67, since fn is continuous on [0, 1] for all n ∈ N, but f
is not. ■

4. Let (fn) be the sequence of functions de ined by fn(x) = xn

n
, for x ∈ [0, 1] and n ∈ N.

Show that (fn) converges uniformly to a differentiable function f : [0, 1]→ R, and that
the sequence (f ′

n) converges pointwise to a function g : [0, 1]→ R, but that g(1) ̸= f ′(1).
Proof: the sequence fn(x) = xn

n → f(x) ≡ 0 on [0, 1]. Indeed, let ε > 0. By the
Archimedean property, ∃Nε >

1
ε s.t.∣∣∣∣xnn − 0

∣∣∣∣ ≤ |x|nn ≤ 1

n
<

1

Nε
< ε

whenever n > Nε. Note that f is differentiable and f ′(x) = 0 for all x ∈ [0, 1].
Furthermore, f ′n(x) = nxn−1

n = xn−1 → g(x) on [0, 1], where

g(x) =

{
0, x ∈ [0, 1)

1, x = 1
,

by one of the examples I did in class. Then g(1) = 1 ̸= 0 = f ′(1). ■

5. Show that lim
n→∞

∫ 2

1

e−nx2 dx = 0.

Proof: as
(
e−nx2

)′
= −2nxe−nx2

< 0 on [1, 2] for all n ∈ N, e−nx2 is decreasing on
[1, 2] for all n, that is

e−nx2 ≤ e−n(1)2 = e−n for all n ∈ N.
Now,

fn(x) = e−nx2 ⇒ f(x) ≡ 0 on [1, 2].

Indeed, let ε > 0. By the Archimedean property, ∃Nε > ln 1
ε (independent of x) s.t.∣∣∣e−nx2 − 0

∣∣∣ = e−nx2
< e−Nx2 ≤ e−N < ε

whenever n > Nε. Then (and only because of this uniform convergence),

lim
n→∞

∫ 2

1
e−nx2 dx =

∫ 2

1
lim
n→∞

e−nx2 dx =

∫ 2

1
0 dx = 0,

by the limit interchange theorem for integrals. ■
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6. Show that lim
n→∞

∫ π

π/2

sin(nx)
nx

dx = 0.

Proof: for n ∈ N, de ine fn : [π/2, π]→ R by

fn(x) =
sin(nx)
nx

.

Then each fn is continuous. For all n ∈ N, we have

sup
x∈[π/2,π]

{∣∣∣∣sin(nx)nx

∣∣∣∣} ≤ 2

nπ
.

Since 2/nπ → 0 as n → ∞, we have fn ⇒ 0 (why?). Then the limit interchange
theorem for integrals applies, and we have

lim
n→∞

∫ π

π/2

sin(nx)
nx

dx =

∫ π

π/2
0 dx = 0.

This completes the proof. ■

7. Show that if fn ⇒ f on [a, b], and each fn is continuous, then the sequence of functions
(Fn)n de ined by

Fn(x) =

∫ x

a

fn(t) dt

also converges uniformly on [a, b].
Proof: de ine F (x) =

∫ x
a f(t) dt. Let ε > 0. Since fn ⇒ f , ∃N ∈ N such that, for all

n ≥ N , we have
|fn(x)− f(x)| <

ε

b− a
∀x ∈ [a, b].

Then, for all n ≥ N and x ∈ [a, b], we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a
fn(t) dt−

∫ x

a
f(t) dt

∣∣∣∣ ≤ ∫ x

a
|fn(t)− f(t)| dt

≤ (x− a) · ε

b− a
≤ ε.

Thus Fn ⇒ F on [a, b]. ■

5.4 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. Are all the hypotheses of Theorem 68 necessary?
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