
Chapter 6

Series of Functions

In the ϐinal chapter of this part, we discuss a speciϐic type of sequence: the
series (series of numbers, series of functions, and power series). Note
that the latter is more naturally expressed using a complex analysis frame-
work (see Chapter 22), but we present it here, as well as important theo-
rems for regular series, in the real analysis framework.

6.1 Series of Numbers
Let (xn) ⊆ R. The series associated with (xn), denoted by

S(xn) =
∞∑
n=1

xn,

is the sequence (sn), where
s1 = x1, s2 = x1 + x2, s3 = x1 + x2 + x3, . . .

If the sequence of partial sums sn converges to S, we say the series S(xn) converges to the
sum S. When the context is clear, we may also write∑xn(= S).

We start by producing a necessary condition for convergence.

aaaaaa

Theorem 70

If
∞∑
n=1

xn converges, then xn → 0.

Proof: let S be the limit of the partial sums. Then

lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = S − S = 0,

with the second equation being guaranteed by Theorem 14 and the convergence of
the series. ■
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We can bypass the need to know the limit in order to prove convergence.

aaaaaa

Theorem 71 (CĆĚĈčĞ CėĎęĊėĎĔē ċĔė SĊėĎĊĘ)
The series

∞∑
n=1

xn converges if and only if ∀ε > 0, ∃Nε ∈ N such that

m > n > Nε =⇒ |xn+1 + · · ·+ xm| < ε.

Proof: let (sn) be the series of partial sums. If (sn) converges, it is a Cauchy
sequence, so that ∃Nε ∈ N such that m > n > Nε =⇒ |sm − sn| < ε. But
|sm − sn| = |xm + · · ·+ xn+1|, so Cauchy’s criterion holds.

Conversely, if Cauchy’s criterion holds, the sequence of partial terms is a Cauchy
sequence, and so the series converges by completeness ofR. ■

Other tests can be used to show the convergence of a series without knowing the limit.

aaaaaa

Theorem 72 (CĔĒĕĆėĎĘĔē TĊĘę)
Let

∞∑
n=1

xn,
∞∑
n=1

yn be series whose terms are all non-negative. If ∃K ∈ N such that

0 ≤ xn ≤ yn when n > K , then

1.
∞∑
n=1

yn converges =⇒
∞∑
n=1

xn converges.

2.
∞∑
n=1

xn diverges =⇒
∞∑
n=1

yn diverges.

Proof: we prove 1.; the proof for the other part is simply the contrapositive. Let
ε > 0. As∑ yn converges, ∃Nε ∈ N such that 0 ≤ yn+1 + · · · + ym < ε according to
Cauchy’s criterion for series.

Hence, wheneverm ≥ n > Mε = max{Nε, K}, then

0 ≤
m∑

i=n+1

xi ≤
m∑

i=n+1

yi < ε.

As such,∑xn converges as it satisϐies Cauchy’s criterion for series. ■

Typical problems may look like the following.
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aaaaaa

Example: discuss the convergence of
∞∑
n=1

1

n(n+ 1)
and

∞∑
n=1

1

n2
.

Solution: the limit of the partial sums of the ϐirst series converges to 1 as

lim
k→∞

sk = lim
k→∞

k∑
n=1

( 1
n
− 1

n+ 1

)
= lim

k→∞

(
1− 1

k + 1

)
= 1− 0 = 1.

For the second series, since n2 ≥ 1
2
(n2 + n) ≥ 0 for all n ∈ N, then 2

n(n+1)
≥ 1

n2 ≥ 0

for all n ∈ N, and
∞ > 2

∞∑
n=1

1

n(n+ 1)
≥

∞∑
n=1

1

n2
,

thus the series converges, according to the comparison theorem. □

When the sign of the underlying sequence terms alternates, convergence is particularly easy
to establish.

aaaaaa

Theorem 73 (AđęĊėēĆęĎēČ SĊėĎĊĘ TĊĘę)
Let (an) be a sequence of non-negative numbers such that an ↘ 0 (i.e., an → 0 and

an+1 ≤ an). Then
∞∑
n=0

(−1)nan converges.

Proof: let (sk) be the series of partial sums

sk =
k∑

n=0

(−1)nan.

The subsequence of even terms is s2k = s2k−2 − (a2k−1 − a2k); that of the odd terms
is s2k+1 = s2k−1 − (a2k − a2k+1). Since an ↘ 0, an+1 ≤ an for all n. Thus s2k ≤ s2k−2

and s2k+1 ≥ s2k−1 for all k ∈ N. But s2k ≥ s2m+1 for all k,m ∈ N (left as an exercise),
and so

a0 = s0 ≥ s2 ≥ s4 ≥ · · · ≥ s5 ≥ s3 ≥ s1 = a0 − a1.

Thus (s2k) is a bounded decreasing sequence and (s2k−1) is a bounded increasing
sequence, and so lim

k→∞
s2k and lim

k→∞
s2k−1 exist. According to Theorem 14, then, we

have
lim
k→∞

(s2k − s2k−1) = lim
k→∞

a2k = 0

since an ↘ 0, which implies that the alternating series converges:

lim
k→∞

2k∑
n=0

(−1)nan = lim
k→∞

s2k = lim
k→∞

s2k+1 = lim
k→∞

2k+1∑
n=0

(−1)nan,

which completes the proof. ■
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Even though it was not part of the statement, the proof of Theorem 73 allows us to conclude
that the value of a convergent alternating series lies between a2k and a2m+1 for all k,m ∈ N.

aaaaaa
Example: the alternating harmonic series−1+ 1/2− 1/3+ · · · converges. Indeed,
consider the sequence (an) = ( 1

n
) = (1, 1

2
, 1
3
, . . .). As 1

n
→ 0 and 1

n+1
≤ 1

n
for all n,

then the corresponding alternating series converges. Its value lies between s0 = 1
and s1 = 1− 1

2
= 1

2
, s1 = 1

2
and s2 = 1

2
+ 1

3
= 5

6
, s2 = 5

6
and s3 = 5

6
− 1

4
= 7

12
, etc. □

Two other convergence tests are often used in practice: the ratio test and the root test.

aaaaaa

Theorem 74 (RĆęĎĔ TĊĘę)
Let (an) be a sequence of positive real numbers.

1. If lim
n→∞

an+1

an
< 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1, then

∞∑
n=1

an diverges.

Proof:

1. Assume 0 ≤ an+1

an
→ q < 1. Let r = q+1

2
. Thus q < r < 1 and there are only

ϐinitely many indices n for which an+1

an
> r. Indeed, let ε ∈ (0, 1−q

2
).

Then, ∃Nε ∈ N such that

n > Nε =⇒
an+1

an
− q < ε <

1− q
2

=⇒ an+1

an
≤ q + 1

2
= r.

Then
n > Nε =⇒ an =

an
an−1

· · · · · aN+1

aN
· aN ≤ rn−NaN .

The tail of the original series converges, as
∞∑

n=N+1

an ≤
∞∑

n=N+1

aNr
n−N =

aN
rN

∞∑
n=N+1

rn =
aN
rN

( rN+1

1− r

)
<∞,

where the last equation is left as an exercise. As a0+ · · ·+ aN is also ϐinite, the
full series converges.
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aaaaaa

2. Assume an+1

an
→ q > 1. Using a similar argument as in part 1., we can show

that ∃r > 1 andN ∈ N such that an+1

an
≥ r > 1 for all n ∈ N, so that an+1 > an

for all n ≥ 1.

Thus an ̸→ 0, and so
∞∑
n=0

an diverges, according to Theorem 70. ■

If an+1

an
→ 1, then the series may converge or may diverge, depending on the speciϐic nature

of an. The key parts of the proof (namely, the convergence of the tail in the ϐirst case and the
condition an ̸→ 0 in the second) are also valid if the statement is relaxed to some extent.

aaaaaa

Theorem 74 (RĆęĎĔ TĊĘę RĊĕėĎĘĊ)
Let (an) be a sequence of real numbers with an ̸= 0 for all n.

1. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then
∞∑
n=1

an converges.

2. If lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then
∞∑
n=1

an diverges.

The root test is similar (we will not prove it).

aaaaaa

Theorem 75 (RĔĔę TĊĘę)
Let (an) be a sequence of positive real numbers.

1. If lim sup
n→∞

n
√
an < 1, then

∞∑
n=1

an converges.

2. If lim inf
n→∞

n
√
an > 1, then

∞∑
n=1

an diverges.

This general result also has a stricter version, replacing lim sup and lim inf by lim. In either
version, if the limit is 1, then the series may converge or diverge, depending on the speciϐic
nature of the terms an.

aaaaaa

Examples: discuss the convergence of
∞∑
n=1

(−1)n

n2n
,

∞∑
n=1

3n

n2n
, and

∞∑
n=1

1

np
, p > 0.
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aaaaaa

1. The terms are all non-zero. We compute

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1

(n+ 1)2n+1
· n2n

(−1)n

∣∣∣∣ = 1

2
lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1

2
< 1,

so the series converges according to the ratio test. □

2. The terms are all positive. We compute

lim
n→∞

n
√
an = lim

n→∞
n

√
3n

n2n
=

3

2
lim
n→∞

1

n1/n
=

3

2
> 1,

so the series diverges according to the root test. □

3. The terms are all positive. For all p > 0, we compute

lim
n→∞

∣∣∣∣ 1

(n+ 1)p
· n

p

1

∣∣∣∣ = lim
n→∞

( n

n+ 1

)p
→ 1p = 1.

Thuswe cannot use the ratio test to determine if the series converges. If p = 1,
the harmonic series is bounded below by a divergent series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4︸ ︷︷ ︸
=1/2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
=1/2

+ · · · = 1 +
1

2
+

1

2
+

1

2
+ · · · =∞,

and somust itself be divergent. As 1
np >

1
n
for all nwhen p < 1, then the series

diverges for all 0 < p ≤ 1 according to the comparison theorem. If p > 1, the
p−series is bounded above by a convergent series

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+

1

5p
+

1

6p
+

1

7p
+

1

8p
+ · · ·

≤ 1 +
1

2p
+

1

2p︸ ︷︷ ︸
2 times

+
1

4p
+

1

4p
+

1

4p
+

1

4p︸ ︷︷ ︸
4 times

+
1

8p
+ · · ·

= 1 + 21 · 1

(21)p
+ 22 · 1

(22)p
+ · · · =

∞∑
k=0

2k(1−p) =
∞∑
k=0

1

(2p−1)k
.

But this series converges according to the root test. Indeed, all the terms are
positive, and, because p > 1,

lim
k→∞

k

√
1

(2p−1)k
= lim

k→∞

1

2p−1
< 1.

Thus the p−series diverges for 0 < 1 ≤ p and converges for p > 1. □
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The next result (provided without proof) shows that the series of the absolute values may
play an important role in the convergence of the “raw” series.

aaaaaa

Theorem 76 (AćĘĔđĚęĊ CĔēěĊėČĊēĈĊ)
If the series

∞∑
n=0

|an| converges, so does
∞∑
n=0

an (note that this is not an “if and only if”

statement).

The ϐinal result explains when the terms of a series can be re-arranged without affecting the
convergence of the original series.

aaaaaa
Theorem 77 (SĊėĎĊĘ RĊ-ĆėėĆēČĊĒĊēę)
If the series

∞∑
n=0

|an| converges, so does
∞∑
n=0

aφ(n), φ : N→ N a bijection.

6.2 Series of Functions
Series of functions play the same role for sequences of functions that series played for se-
quences of numbers. Let I ⊆ R and fn : I → R, ∀n ∈ N. If the sequence of partial sums

s1(x) = f1(x), s2(x) = f1(x) + f2(x), s3(x) = f1(x) + f2(x) + f3(x), . . .

converges to some function f : I → R for all x ∈ I , we say that the series of functions∑ fn
converges pointwise to f on I .

aaaaaa

Example: consider the sequence of functions fn : R→ R, with fn(x) = xn for each
n ∈ N. Does the sequence of partial sums sk(x) converge to some pointwise limit
over someA ⊆ R?

Solution: formally, we have

(1− xk+1) = (1− x)(1 + x+ x2 + · · ·+ xk) = (1− x)sk(x).

Thus
x ̸= −1 =⇒ sk(x) =

k∑
n=0

xn =
1− xk+1

1− x
,

and so
∞∑
n=0

xn = lim
k→∞

sk(x) =
1

1− x

when x ∈ (−1, 1). □
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If the sequence of partial sums (sn) converges uniformly to f on I , we say that the series of
functions∑ fn converges uniformly to f on I . If the convergence of the series of functions
is uniform, the limit interchange theorems can be applied.

aaaaaa

Theorem 78 (CĆĚĈčĞ CėĎęĊėĎĔē ċĔė SĊėĎĊĘ Ĕċ FĚēĈęĎĔēĘ)
Let fn : I → R for all n ∈ N. The series of functions with term fn converges uniformly
to some function f : I → R if and only if ∀ε > 0, ∃Nε ∈ N (independent of x ∈ I) such
that

m > n > Nε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ < ε.

Proof: theproof followsdirectly fromTheorem66applied to the sequenceof partial
sums sm : I → R. ■

The next result is a powerful tool to prove uniform convergence (and as a pre-requisite to the
use of the limit interchange theorems). The simplicity of its proof belies its importance.

aaaaaa

Theorem 79 (WĊĎĊėĘęėĆĘĘM−TĊĘę)
Let fn : I → R andMn ≥ 0 for all n ∈ N. Assume that |fn(x)| ≤ Mn for all x ∈ I ,
n ∈ N. Then

∞∑
n=1

Mn converges =⇒
∞∑
n=1

fn converges uniformly on I.

Proof: let ε > 0. Since∑Mn converges, its sequences of partial sums (sk) is Cauchy
and ∃Kε ∈ N such that

m > n > Kε =⇒
m∑

i=n+1

Mi < ε.

But
m > n > Kε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ ≤
m∑

i=n+1

|fi(x)| ≤
m∑

i=n+1

Mi < ε;

sinceKε is independent of x ∈ I ,
∞∑
n=1

fn converges uniformly on I . ■

The following example showcases its usefulness.

aaaaaa
Example: let ε ∈ (0, 1). Consider the sequence of functions gn : R → R deϐined by
gn(x) = nxn−1 for each n ∈ N. Does σk(x) ⇒ σ(x) on Iε = (−1 + ε, 1− ε) for some
σ? If so, ϐind σ.
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aaaaaa

Solution: consider the sequence of functions fn : R → R deϐined by fn(x) = xn

for each n ∈ N, and the corresponding sequence of partial sums sk(x) deϐined by
sk(x) = 1 + x+ · · ·+ xk.

We have already shown that sk(x) → 1
1−x

pointwise on (−1 + ε, 1 − ε). The
partials sums sk are differentiable on Iε since

σk(x) = s′k(x) = 1 + 2x+ 3x2 + · · ·+ kxk−1

are polynomials (in fact, σk is also continuous on Iε). Furthermore, note that the
sequence of derivatives of partial sums σk(x) converge uniformly on Iε. To show
this, note that

|gn(x)| = |nxn−1| ≤ n|1− ε|n−1 =Mn ∀x ∈ Iε, ∀n ∈ N.

But
∞∑
n=0

Mn =
∞∑
n=0

n(1− ε)n−1.

Since
lim
n→∞

(n+ 1)(1− ε)n

n(1− ε)n−1
= (1− ε) lim

n→∞

n+ 1

n
= (1− ε) < 1,

then∑Mn converges according to the ratio test.

According to the Weierstrass M−test, then, σk(x) ⇒ σ(x) on Iε for some
function σ : Iε → R. We can use the limit interchange theorem 68 to identify σ:

σ(x) = lim
k→∞

σk(x) = lim
k→∞

d
dx [sk(x)] =

d
dx
[

lim
k→∞

sk(x)
]
=

d
dx
[ 1

1− x

]
,

which is to say σ(x) = 1
(1−x)2

. □

Incidentally, Theorem 68 also tells us that sk(x) ⇒ 1
1−x

on Iε, for all 0 < ε < 1, and that for all
k ∈ N and x ∈ Iε, ε ∈ (0, 1), we have

∞∑
n=0

dk

dxk [x
n] =

dk

dxk
∞∑
n=0

xn =
dk

dxk
( 1

1− x

)
.

6.3 Power Series
A power series around its center x = x0 is a formal expression of the form

∞∑
n=0

an(x− x0)n.
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We have already seen an example of such a series, which converged uniformly on intervals
containing x0 = 0:

∞∑
n=0

xn =
1

1− x
on Iε = (−1 + ε, 1− ε), ∀ε ∈ (0, 1);

note, however, that the convergence is only pointwise on (−1, 1). The function f : A → R,
f(x) = 1

1−x
is deϐined for all x ̸= 1, however, yet the power series 1 + x + x2 + · · · does not

converge to f outside of (−1, 1).¹

aaaaaa

Examples: where do the following power series converge:
∞∑
n=0

xn,

∞∑
n=1

(nx)n,
∞∑
n=1

(x
n

)n
?

Solution: we have seen that the ϐirst power series converges only on (−1, 1).

The second power series obviously converges when x = 0. To show that it
fails to converge on R \ {0}, note that if |x| > 0, then ∃N ∈ N such that N > 2

|x| by
the Archimedean property. Thus,

n > N =⇒ |(nx)n| = nn|x|n > 2n

and the sequence (nx)n is unbounded, which means that the terms do not go to 0,
and so the series diverges.

For the third power series, let x ∈ R. By the Archimedean property, ∃N ∈ N
such thatN > 2|x|. Thus,

n > N =⇒
∣∣∣(x
n

)n∣∣∣ = |x|n
nn

<
1

2n
.

According to the Weierstrass M−test and Theorem 76, the series thus converges
uniformly on R. □

¹Power series are commonly used as a formal guessing procedure to solve differential equations, but this
is not a topic we will tackle at the moment. It is also natural to try to determine for which functions f : A→ R
(and whichA) we can ϐind a sequence of coefϐicients (an) such that

f(x) =

∞∑
n=0

an(x− x0)n, ∀x ∈ A;

questions of this ilk are more naturally answered in C; a more complete treatment would be provided in a
complex analysis course.
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The radius of convergence of a power series
∞∑
n=0

an(x− x0)n is

R =
1

lim sup
n→∞

|an|1/n
.

If the limit exists, we can replace lim sup by lim. Intuitively, for all large enough n, we have:

−R−n ≤ −|an| ≤ an ≤ |an| ≤ R−n,

so that
−
∑
n>N

(x− x0
R

)n
≤
∑
n>N

an(x− x0)n ≤
∑
n>N

(x− x0
R

)n
.

The bounds are geometric series, and they converge when |x − x0| < R. We would then ex-
pect the original power series to converge on the interval of convergence |x− x0| < R.

aaaaaa

Theorem 80
LetR be the radius of convergence of the power series

∞∑
n=0

an(x− x0)n.

Then, if

R = 0, the power series converges for x = x0 and diverges for x ̸= x0;

R =∞, the power series converges absolutely on R, and

0 < R <∞, the power series converges absolutely on |x− x0| < R, diverges on
|x− x0| > R; the extremities must be analyzed separately.

Proof: follows immediately from the root test. ■

But we can provide a stronger convergence statement.

aaaaaa

Theorem 81
The power series of Theorem 80 converges uniformly on any compact sub-interval

[a, b] ⊆ (x0 −R, x0 +R).

Proof: let ℓ = max{|a − x0|, |b − x0|} < R. For every n ∈ N, setMn = ℓn|an| ≥ 0
and ε = 1

4
(R− ℓ).
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aaaaaa

Since 1
R
= lim sup

n→∞
|an|1/n, ∃Nε ∈ N such that n > Nε =⇒ |an| ≤ ( 1

R−ε
)n. Thus, for

all n > Nε, we have

0 ≤Mn = ℓn|an| = (R− 4ε)n|an| ≤
(R− 4ε

R− ε

)n
=
(
1− 3ε

R− ε︸ ︷︷ ︸
>0

)n
,

so that
∞∑
n=0

Mn =
Nε∑
n=0

Mn +
∑
n>Nε

Mn ≤
Nε∑
n=0

Mn +
∑
n>Nε

(
1− 3ε

R− ε

)n
≤

Nε∑
n=0

Mn +
∞∑
n=0

(
1− 3ε

R− ε

)n
=

Nε∑
n=0

Mn︸ ︷︷ ︸
ϐinite

+
R− ε
3ε

<∞.

But for all x ∈ [a, b], we have

|an(x− x0)n| ≤ |an|ℓn =Mn, for all n ∈ N.

According to Theorem 79, the power series converges uniformly on [a, b]. ■

In what follows, we let f : (x0 −R, x0 +R)→ R be the function deϐined by

f(x) =
∞∑
n=0

an(x− x0)n, and sN(x) =
N∑

n=0

an(x− x0)n;

these have multiple nice properties, courtesy of the limit interchange theorems.

aaaaaa

Theorem 82
The function f is continuous on any closed bounded interval [a, b] ⊆ (x0−R, x0 +R).

Proof: the functions an(x− x0)n are continuous on [a, b] for all n, and

sN(x) =
N∑

n=0

an(x− x0)n ⇒ f(x) on [a, b] whenN →∞.

According to Theorem 67, f is continuous on [a, b]. ■

We get more than continuity, however.
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aaaaaa

Theorem 83
Let x ∈ (x0 −R, x0 +R). Then f is Riemann-integrable between x0 and x and∫ x

x0

f(t) dt =
∞∑
n=0

an
n+ 1

(x− x0)n+1.

Proof: without loss of generality, assume x > x0. As in the proof of Theorem 82,
sN(x) ⇒ f(x) on [x0, x]whenN →∞. Thus, according to Limit Interchange Theo-
rem 69, we have∫ x

x0

f(t) dt= lim
N→∞

∫ x

x0

sN(t) dt = lim
N→∞

∫ x

x0

N∑
n=0

an(t− x0)n dt

= lim
N→∞

N∑
n=0

∫ x

x0

an(t− x0)n dt =
∞∑
n=0

an
n+ 1

(x− x0)n+1,

which completes the proof. ■

The last result shows that power series really do behave nicely on their convergence interval.

aaaaaa

Theorem 84
The function f is differentiable on (x0 −R, x0 +R) and

f ′(x) =
∞∑
n=1

nan(x− x0)n−1.

Proof: as n1/n → 1,

lim sup
n→∞

(n|an|)1/n = lim sup
n→∞

n1/n · lim sup
n→∞

|an|1/n =
1

R
,

so the radius of convergence of both power series is identical, and so, in particular,
s′N(x) converges uniformly on any closed bounded interval [a, b] ⊆ (x0−R, x0+R).

Thus, according to limit interchange theorem 68, we have

d
dx
[
f(x)

]
= lim

N→∞

d
dx
[
sN(x)

]
= lim

N→∞

d
dx

N∑
n=0

[
an(x− x0)n

]
= lim

N→∞

N∑
n=0

d
dx
[
an(x− x0)n] =

∞∑
n=1

nan(x− x0)n−1,

which completes the proof. ■
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How do we compute the power series coefϐicients an? Combining Theorems 82 and 84, we
see that f is smooth in its interval of convergence (i.e., all of its derivatives are continuous).

aaaaaa

Theorem 85
IfR > 0, then

an =
f (n)(x0)

n!
.

Proof: if x = x0, then f(x0) = a0, which corresponds to the case n = 0. When
n = k > 0, then repeated application of Theorem 84 yields

f (k)(x) =
∞∑
n=k

n!

(n− k)!
an(x− x0)n−k on (x0 −R, x0 −R).

If we evaluate at x = x0, we get f (k)(x0) = k!ak, thus ak = f (k)(x0)
k!

. ■

As a corollary, if ∃r > 0 such that

f(x) =
∞∑
n=0

an(x− x0)n and g(x) =
∞∑
n=0

bn(x− x0)n

and f(x) = g(x) for all x ∈ (x0 − r, x0 + r), then an = bn for all n ∈ N.²

aaaaaa

Example: consider the function f : R→ R deϐined by

f(x) =

{
exp(−1/x2), x ̸= 0

0, x = 0

Show that f does not have a power series expansion.

Proof: for all n ∈ N, it can be shown that

f (n)(x) =

{
dn
dxn

[
exp(−1/x2)

]
, x ̸= 0

0, x = 0

is continuous and that f (n)(0) = 0. According to the corollary to Theorem 85, if f is
equal to its power series on some interval (−r, r), then all the an would be 0, and so
f ≡ 0, but f ̸≡ 0, so f cannot be equal to its power series expansion. ■

Thus, we cannot always assume that a function is equal to its power series. There are other
ways to expand a function as an inϐinite series, most notably via Laurent Series and Fourier
Series. These topics are covered in courses in complex analysis and partial differential equa-
tions, respectively, although we brieϐly discuss the latter in Chapter 11.

²Attempts to strengthen this uniqueness result must necessarily fail.
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6.4 Solved Problems
1. Answer the following questions about series.

a) If
∞∑
k=1

(ak + bk) converges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

b) If
∞∑
k=1

(ak + bk) diverges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

c) If
∞∑
k=1

(a2k + a2k−1) converges, what about
∞∑
k=1

ak?

d) If
∞∑
k=1

ak converges, what about
∞∑
k=1

(a2k + a2k−1)?

Solution:
a) They might both diverge. Consider ak = −k and bk = k. However, if one con-

verges, then so does the other, by the arithmetic of limits/series.
b) At least one of them diverges because if they both converged, then the series of

sums would converge as well (according to a proposition seen in the notes).

c) Nothing. Consider a2k = k, a2k+1 = −k, forwhich
∞∑
k=1

ak diverges, but a2k = 1
k2

,

a2k+1 = 0, for which
∞∑
k=1

ak converges.

d) It also converges. The sequence of partial sums of the second series is
(a1 + a2, a1 + a2 + a3 + a4, , a1 + a2 + a3 + a4 + a5 + a6, . . .)

is a subsequence of the sequence of partial sums of the ϐirst series
(a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . .).

If the ϐirst series sequence of partial sums converges, so does the subsequence’s
series. □

2. For all r > 1, show that
1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

Solution: we see that
1

ℓ+ 1
=

1

ℓ− 1
− 2

ℓ2 − 1
.

Thus, for all k ∈ N, if ℓ = 2k , we have
1

r2k + 1
=

1

r2k − 1
− 2

r2k+1 − 1

=⇒ 2k

r2k + 1
=

2k

r2k − 1
− 2k+1

r2k+1 − 1
.
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Therefore, we have a telescoping sum
∞∑
k=1

2k

r2k + 1
= lim

n→∞

n∑
k=1

2k

r2k + 1
= lim

n→∞

(
1

r − 1
− 2n

r2n − 1

)
=

1

r − 1
,

where the last equation follows from the fact that, for r > 1, we have

lim
m→∞

m

rm
= 0.

This completes the proof. ■

3. Using Riemann integration, ϐind the values of p for which the series
∞∑
n=1

1

np
converges.

Solution: if p ≤ 0, then 1
np ̸→ 0 so the series diverges. In what follows, then, let

p > 0. For k ∈ N, consider the function fk;p : [1, k] → R deϐined by fk;p(x) = 1
xp .

Since f ′k;p(x) = − p
xp+1 < 0 for all x ≥ 1, fk;p is strictly decreasing on [1, k]. Thus fk;p

is Riemann-integrable on [1, k]. Consider the partition Pk = {1, 2, . . . , k, k + 1} of
[1, k + 1]. Since fk;p is Riemann-integrable,

L(fk;p;Pk) ≤
∫ k+1

1
fk;p ≤ U(fk;p;Pk).

As fk;p is decreasing on the sub-interval [µ, ν], fk;p reaches its maximum at µ and its
minimum at ν; Hence

U(fk;p;Pk) =
k∑

n=1

fk;p(n)(n+ 1− n) =
k∑

n=1

1

np
, and

L(fk;p;Pk) =

k+1∑
n=2

fk;p(n+ 1)(n+ 1− n) =
k+1∑
n=2

1

np
.

But
k+1∑
n=2

1

np
=

1

(k + 1)p
− 1 +

k∑
n=1

1

np
.

Thus
1

(k + 1)p
− 1 +

k∑
n=1

1

np
≤
∫ k+1

1
fk;p ≤

k∑
n=1

1

np
.

Write sk;p for the partial sum and note that∫ k+1

1
fk;p =

∫ k+1

1

dx

xp
=

{
ln(k + 1), when p = 1
1

1−p(k
1−p − 1), when p ̸= 1

If p = 1, then ln(k+1) ≤ sk;1 for all k. Since the sequence {ln(k+1)}k is unbounded,
so must {sk;1}k be unbounded, which means that the corresponding series cannot
converge. If p > 1, then

lim
k→∞

(
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

)
=

p

p− 1
.
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Since sk;p is monotone (as every additional 1
np added to the partial sum is positive)

and since sk;p is bounded above by the convergent sequence{
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

}
k

,

sk;p is a convergent sequence. If p < 1, then{
1

1− p
(k1−p − 1)

}
k

is unbounded. As sk;p ≥ 1
1−p(k

1−p − 1) for all k, {sk;p} is also unbounded, which
means that the corresponding series cannot converge. Thus, the series converges if
and only if p > 1. □

4. Which of the following series converge?

a)
∞∑
n=1

n(n+ 1)

(n+ 2)2

b)
∞∑
n=1

2 + sin3(n+ 1)

2n + n2

c)
∞∑
n=1

1

2n − 1 + cos2 n3

d)
∞∑
n=1

n+ 1

n2 + 1

e)
∞∑
n=1

n+ 1

n3 + 1

f)
∞∑
n=1

n!

nn

g)
∞∑
n=1

n!

5n

h)
∞∑
n=1

nn

31+2n

i)
∞∑
n=1

(
5n+ 3n3

7n3 + 2

)n

Solution: we use the various tests at our disposal.
a) Since

lim
n→∞

n(n+ 1)

(n+ 2)2
= 1 ̸= 0,

the series diverges .
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b) Since−1 ≤ sin3(n+ 1) ≤ 1, we have

0 ≤ 2 + sin3(n+ 1)

2n + n2
≤ 1

2n + n2
≤ 1

2n
.

Thus thegiven series convergesby comparisonwith the geometric series
∞∑
n=1

1

2n
.

c) If an denotes the n-th term of the series, we have

an+1

an
=

2n − 1 + cos2 n3
2n+1 − 1 + cos2(n+ 1)3

→ 1

2
< 1.

Thus the series converges by the ratio test.
d) We have

n+ 1

n2 + 1
≥ n

2n2
=

1

2n
.

Thus the series diverges by comparison with the harmonic series.
e) We have

0 ≤ n+ 1

n3 + 1
≤ 2n

n3
=

2

n2
.

Thus the series converges by comparison with
∞∑
n=1

2

n2
.

f) For n ≥ 2, we have

0 ≤ n!

nn
=

1

n
· 2
n
· 3 · 4 · · ·n

nn−2
≤ 2

n2
.

Thus the series converges by comparison with
∞∑
n=1

2

n2
.

g) If an denotes the n-th term in the series, we have

an+1

an
=

(n+ 1)!

5n+1

5n

n!
=
n+ 1

5
→∞.

Thus the series diverges by the ratio test.
h) We have (

nn

31+2n

)1/n

=
n

32+1/n
→∞.

Thus the series diverges by the root test.
i) We have ((

5n+ 3n3

7n3 + 2

)n)1/n

=
5n+ 3n3

7n3 + 2
→ 3

7
< 1.

Thus the series converges by the root test. □
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5. Give an example of a power series
∞∑
k=0

akx
k with interval of convergence [−

√
2,
√
2).

Proof: consider the series
∞∑
k=1

xk

k
.

We have
lim sup
k→∞

k

√
|x|k
k

= lim sup
k→∞

|x|
k
√
k
= |x|.

Therefore, by the root test, the series converges when |x| < 1 and diverges for
|x| > 1. For x = 1, the series is the harmonic series, which diverges. For x = −1,
it is the alternating harmonic series, which converges. Thus, the series converges
precisely on the interval [−1, 1).

Now, replace x by x/
√
2. The corresponding power series is thus

∞∑
k=0

1
√
2
k
k
xk.

We have
lim sup
k→∞

k

√
|x|k
√
2
k
k
= lim sup

k→∞

|x|√
2 k
√
k
=
|x|√
2
.

The series converges on |x|√
2
< 1 and diverges on |x|√

2
> 1. For x =

√
2, the series

is the harmonic series, which diverges. For x = −
√
2, it is the alternating harmonic

series, which converges.

Thus, the series converges precisely on the interval [−
√
2,
√
2). ■

6. Find the values of x for which the following series converge:

a)
∞∑
n=1

(nx)n;

b)
∞∑
n=1

xn;

c)
∞∑
n=1

xn

n2
;

d)
∞∑
n=1

xn

n!
.
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Solution:

a) The series diverges whenever x ̸= 0 since the terms (nx)n do not tend to zero
when n → ∞. (For large enough n, we have n|x| ≥ 1.) Thus, this power series
converges only at its centre.

b) The geometric series converges precisely on the interval (−1, 1), and the series
takes on the value 1

1−x there.
c) For |x| ≤ 1, we have ∣∣∣∣xnn2

∣∣∣∣ ≤ 1

n2
,

and thus the series converges for these valuesofx. If |x| > 1, the terms |xn/n2| →
∞, and so the series diverges. Hence the series converges precisely on the in-
terval [−1, 1].

d) Let x ∈ R. Using the ratio test we have

xn+1

(n+ 1)!
· n!
xn

=
x

n+ 1
→ 0.

Thus the series converges for all x ∈ R (and takes on the value ex). ■

7. If the power series∑ akx
k has radius of convergence R, what is the radius of conver-

gence of the series∑ akx
2k?

Solution: the new series can be written as
∞∑
k=0

bkx
k , where bk = ak/2 if k is even and

bk = 0 if k is odd. Thus

lim sup
k→∞

k
√
|bk| = lim

k→∞
k

√
|ak/2| = lim

k→∞
2k
√
|ak| = lim

k→∞

(
k
√
|ak|
)1/2

=

(
lim
k→∞

k
√
|ak|
)1/2

= R1/2.

Therefore, the radius of convergence of the new series is
√
R. □

8. Obtain power series expansions for the following functions.

a) x

1 + x2
;

b) x

(1 + x2)2
;

c) x

1 + x3
;

d) x2

1 + x3
;

e) f(x) =
∫ 1

0

1− e−sx

s
ds, about x = 0.
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Solution:

a) Since
1

1− x
=

∞∑
k=0

xk,

we have
x

1 + x2
= x

∞∑
k=0

(−x2)k =
∞∑
k=0

(−1)kx2k+1.

b) We know that, for x ∈ (−1, 1), 1

1− x
=

∞∑
k=1

xk. For any −1 < a < b < 1, the

series
∞∑
k=1

kxk−1 converges uniformly on [a, b]. Indeed, let c = max{|a|, |b|} < 1.

Then, for all x ∈ [a, b], we have

|kxk−1| ≤ kck−1.

Now,
(k + 1)ck

kck−1
=
k + 1

k
c→ c as k →∞.

Since c < 1, the ratio test tells us that
∞∑
k=1

kck−1 converges. Thus,
∞∑
k=1

kxk−1

converges uniformly by the WeierstrassM -test. Consequently, we have
∞∑
k=1

kxk−1 =
d
dx

(
1

1− x

)
=

1

(1− x)2
,

and so for any x ∈ [a, b] ⊆ (−1, 1):

x

(1 + x2)2
= x

∞∑
k=1

k(−x2)k−1 =
∞∑
k=1

(−1)k−1kx2k−1.

c) Using the geometric series, we have

x

1 + x3
= x

∞∑
k=0

(−x3)k =
∞∑
k=0

(−1)kx3k+1.

d) Using the geometric series, we have

x2

1 + x3
= x2

∞∑
k=0

(−x3)k =
∞∑
k=0

(−1)kx3k+2.

e) Since

ex =

∞∑
k=0

xk

k!
,
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we have
1− e−sx

s
= −1

s

∞∑
k=1

(−sx)k

k!
=

∞∑
k=1

(−1)k+1 s
k−1xk

k!
.

This series converges absolutely for all s and all x (use the ratio test or compare
it to the series for ex). Therefore, viewing it as a power series in s (for some
ϐixed x), its interval of convergence is∞, and its centre is 0. Thus the series can
be integrated term by term:∫ 1

0

1− e−sx

s
ds =

∫ 1

0

∞∑
k=1

(−1)k+1 s
k−1xk

k!
ds

=
∞∑
k=1

(−1)k+1

(∫ 1

0
sk−1 ds

)
xk

k!

=

∞∑
k=1

(−1)k+1

[
sk

k

]s=1

s=0

xk

(k!)
=

∞∑
k=1

(−1)k+1 xk

k(k!)
.

□

6.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Prove the relaxed version of Theorem 74.

3. Prove Theorem 75, as well as its relaxed version.

4. Prove Theorem 76.

5. Prove Theorem 77.

6. Explain the inϐinite sums paradoxes of Chapter 2 in light of Theorems 76 and 77.
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