
Chapter 7

The Real Numbers (Reprise)

In a course on real analysis, the fundamental object of study is the set of
real numbers. In Chapter 1, we introduced R in an intuitive and informal
way. In this chapter, we show how R can be built using Cauchy sequences.

7.1 Cauchy Sequences inQ
(R, | · |) and (Q, | · |) are both ordered ϐields. There is a fundamental difference between them,
however: in (R, | · |), every Cauchy sequence converges; in (Q, | · |), some do not.

aaaaaa

Lemma
If (xn) ⊆ Q converges to x ∈ Q, then (x2n) converges to x2 ∈ Q.

Proof: ϐirst, note that if x ∈ Q, then x2 ∈ Q, since Q is a ϐield. Now, let ε > 0. By
hypothesis, ∃N ∈ N such that n > N =⇒ |xn − x| < ε. Hence, for all n > N ,

|x2n − x2| = |xn − x||xn + x| < ε|xn + x| ≤ ε(|xn|+ |x|)
= ε(|xn − x+ x|+ |x|) ≤ ε(|xn − x|+ 2|x|) < ε(ε+ 2|x|).

As ε can be made arbitrarily small, this completes the proof. ■

The following result sets the stage to show thatQ is incomplete (see proof on pages 7-8).

aaaaaa Lemma
There is no rational number a for which a2 = 2.

We build a sequence of rational numbers an for which a2n → 2:

a1 =
1

1
, a2 =

14

10
, a3 =

141

100
, a4 =

1414

1000
, . . .
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7.2. BUILDING R BY COMPLETINGQ

We can show by induction that

0 < a1 < a2 < · · · < an−1 < an < · · · < 2 and 0 < a21 < a22 < · · · < a2n−1 < a2n < · · · < 2.

For n ∈ N, write bn = an +
1

10n−1 . Then b2n > 2 > a2n for all n.

Consequently, a2n → 2 since

|a2n − 2| ≤ |b2n − a2n| = |bn − an||bn + an| ≤
1

10n−1

(
2an +

1

10n−1

)
→ 0.

It is easy to see that (an) is a Cauchy sequence inQ; indeed, |an−am| < 10−n wheneverm ≥ n.

However, (an) cannot be a convergent sequence inQ: were it to converge to a number a ∈ Q,
we would have a2n → a2 = 2 ∈ Q according to the ϐirst Lemma, but a ̸∈ Q according to the
second Lemma.

Ametric space (E, d) inwhich every Cauchy sequence also converges in (E, d) is termed com-
plete.¹ The previous discussion shows that (Q, | · |) is not complete.

7.2 Building R by CompletingQ
Is the fact that Q incomplete problematic? Not in the sense that arithmetic in Q is compro-
mised. But it is still fairly inconvenient.

If we take a closer look at the formal deϐinition, we notice that we can only claim a se-
quence to be convergent once we know what its limit is. But if we already know that the
sequence has a limit, then it automatically converges.

At this stage, the main advantage a complete metric space holds over a non-complete one
is simply that it allows one to talk about the convergence of a sequence without knowing a
thing about its limit, save that it exists. But this does not change the fact that Q is not com-
plete. What can we do about that?

The sequence (an) described previously does not converge inQ, but its values get closer and
closer to one of the “holes” ofQ.

If we ϐill up that hole (in effect starting the process of “completing”Q), wemay expect that
the sequence would now converge in the bigger set. This leads to the following deϐinition of
the real numbers R:

1. any Cauchy sequence inQ corresponds to a real number;

2. two Cauchy sequences (xn) and (yn) inQ deϐine the same real number if (xn) ∼ (yn):

∀ε > 0,∃N ∈ N such that n > N =⇒ |xn − yn| < ε.

¹We will discuss metric spaces in the coming chapters – for now, we simply think of it as a space in which
we can compute the “distance” between points.
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It is not too difϐicult to show that∼ is an equivalence relation on the set of Cauchy sequences
inQ (see exercises), and so we deϐineR as the quotient set

R = {(xn) | (xn) is a Cauchy sequence inQ}/ ∼ .

How does this deϐinition of R compare with our usual intuition?

For starters, there should be an addition and amultiplication inR that behave as we expect
them to (commutative, associative, invertible, and so on). We achieve this by endowing
our deϐinition of Rwith the following operations: if α = [(an)], β = [(bn)] ∈ R, deϐine

α + β = [(an + bn)] and αβ = [(anbn)].

In order for this deϐinition to make sense, we need to verify that if (an) and (bn) are Cauchy
sequences, then so are (an+bn) and (anbn), and that the choice or representative in the equiv-
alence classes are irrelevant:

(an) ∼ (a′n) and (bn) ∼ (b′n) =⇒ (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb
′
n).

The proof is left as an exercise, and relies on the following inequalities:

|(an + bn)− (a′n + b′n)| ≤ |an − a′n|+ |bn − b′n|

and

|anbn − a′nb′n| ≤ |an||bn − b′n|+ |b′n||an − a′n|

and on Cauchy sequences being bounded inQ.

Finally, in order for Q to be a subset of R, we complete its deϐinition as follows: if α ∈ R
is such that

α = [(a, a, a, . . .)], a ∈ Q,

we identify α with a ∈ Q. Consequently, if a Cauchy sequence (bn) converges to b ∈ Q, the
real number β = [(bn)] is the rational number b.

7.3 An Order Relation on R
To show that R is indeed complete, we next need to introduce an order on R. If (an) and (bn)
are Cauchy sequences inQ, there are three possibilities:

1. ∃N ∈ N such that (n > N =⇒ an ≥ bn);

2. ∃N ∈ N such that (n > N =⇒ an ≤ bn), or

3. (an) and (bn) “overlap” inϐinitely often, in which case we must have (an) ∼ (bn).

Write α = [(an)] and β = [(bn)]. We deϐine an order< on R as follows:
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7.3. AN ORDER RELATION ON R

1. α ≥ β if cases 1 or 3 hold;

2. α ≤ β if cases 2 or 3 hold.

But it is not enough towrite≤ or≥; we still need to show that the relation is indeed an order
(this is left as an exercise).

aaaaaa

Lemma
Let ε ∈ Q and N ∈ N. If (an) is a Cauchy sequence in Q for which an ≤ ε for all
n > N , then α = [(an)] ≤ ε.

Proof: it sufϐices to identify ε ∈ Q with the equivalence class of the constant
sequence

[(ε, ε, . . .)].

Then the above deϐinition of≤ in R yields the desired conclusion. ■

We see now why we deϐine R using Cauchy sequence inQ.

aaaaaa

Theorem 86
Let (an) be a Cauchy sequence inQ and set α = [(an)] ∈ R. Then (an) converges to α
in R.

Proof: We want to show that given any (real) ε > 0, we can ϐind an integer
N ∈ N such that |an − α| < εwhenever n > N .

For all n ∈ N, the sequence (an, an, . . .) deϐines the real number an; similarly,
the sequence (a1, a2, . . .) deϐines the real number α. Consequently, the sequences

(an − a1, an − a2, . . . , an − am, . . .) and (|an − a1|, |an − a2|, . . . , |an − am|, . . .)

deϐine respectively the real numbers an − α and |an − α|.

Let ε > 0. Since (an) is a Cauchy sequence, there is an integer N ∈ N such
that |an − am| < ε (as rational numbers) for each n,m > N . Fix n > N . Then
we have |an − am| < ε (as rational numbers) whenever m > N ; consequently,
|an − α| < ε. Since this holds whenever n > N , we have an → α in R. ■

As a corollary, every real number is the limit of a Cauchy sequence of rational numbers.

aaaaaa

Theorem 87 (CĔĒĕđĊęĊēĊĘĘ Ĕċ R)
R is complete.

Proof: let (αn) be a Cauchy sequence in R. We show that it converges in R as
follows:
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aaaaaa

1. construct a sequence (an) inQ for which |an − αn| < 1
10n

(where an is viewed
as the constant sequence);

2. verify that (an) is a Cauchy sequence inQ and denote the associated real num-
ber by α;

3. show that αn → α.

That is, once more, left as an exercise. ■

We have not put emphasis on the fact that there are multiple ways of completing sets, but the
completion of Q is entirely dependent on the notion of closeness that is being used: tradi-
tionally, the metric we use is that two rational numbers are considered close to one another
if their respective decimal expansions start to differ far to the right of the decimal point.

For instance, the distance between 23410.0001 and 23410.0008 is smaller than 10−3 because
the decimal expansions start to differ at the 4th digit to the right of the decimal point. In base
10, if q, r ∈ Q, then we can write

q =
∑
i∈Z

qi10
i, r =

∑
i∈Z

ri10
i

Under the usual metric d10(q, r) =
∣∣∣∣∣∑
i∈Z

(qi − ri)10i
∣∣∣∣∣, we have

d10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10n + · · ·+ (0− 0)105

+ (2− 2)104 + (3− 3)103 + (4− 4)102 + (1− 1)101

+ (0− 0)100 + (0− 0)10−1 + (0− 0)10−2

+ (0− 0)10−3 + (1− 8)10−4 + (0− 0)10−5 + · · ·
+(0− 0)10−n + · · ·

∣∣ = 7 · 10−4.

But that is an artiϐicial convention. What would happen if we deϐined ametric the other way?
Two rational numbers would be considered close to one another if their respective decimal
expansions start to differ far to the left of the decimal point, say.

Under this new metric d̃10(q, r) =
∣∣∣∣∣∑
i∈Z

(qi − ri)10−i

∣∣∣∣∣, we have

d̃10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10−n + · · ·+ (0− 0)10−5

+ (2− 2)10−4 + (3− 3)10−3 + (4− 4)10−2 + (1− 1)10−1

+ (0− 0)100 + (0− 0)101 + (0− 0)102 + (0− 0)103

+(1− 8)104 + (0− 0)105 + · · ·+ (0− 0)10n + · · ·
∣∣ = 7 · 104,
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7.4. EXERCISES

so that 23410.0001 and 23410.0008 are actually far apart, whereas 20000000012 and 12 are very
close to one another since d̃10(20000000012, 12) = 2 · 10−10.

If d̃10 is indeed a metric onQ (see exercise 10), then Cauchy sequences in (Q, d)will not have
a lot in common with Cauchy sequences in (Q, d̃). There is no reason to expect that the com-
pletion ofQwill be the same in both instances, and in fact, it is not.

When we completeQ using the metric d̃p, where p is a prime integer, the resulting set we
obtain is called the ϐield of p−adic numbers, and it is distinct fromR. Just about everything
we will do in these course notes could also apply to these new sets.

The moral of the story is that different metrics lead to different completions of Q, and that
neither of those is intrinsically superior to the others.

7.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Show that the relation (xn) ∼ (yn) is an equivalence relation on the space of Cauchy
sequences inQ (i.e., show that it is reϐlexive, symmetric, and transitive).

3. If (an) and (bn) are Cauchy sequences inQ, show that so are (an + bn) and (anbn).

4. If (an), (bn), (a′n) and (b′n) are Cauchy sequences in Q such that (an) ∼ (a′n) and (bn) ∼
(b′n), show that (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb

′
n).

5. Show that R is a ϐield.

6. If (an) and (bn) are Cauchy sequences which “overlap” inϐinitely often, show that (an) ∼
(bn).

7. Let α, β, γ ∈ R. If α ≤ β and β ≤ γ, show that α ≤ γ.

8. Let α, β ∈ R. If α ≤ β and β ≤ α, show that α = β.

9. Fill the details in the proof of Theorem 7.3.

10. Show that d̃10 is a metric onQ (use the deϐinition in Section 8.1.1).

11. Let p be a prime integer. What can you say about the ϐield of p−adic numbers?
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