
Chapter 8

Metric Spaces and Sequences

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is bymoving fromR toRm. Some of the notions that
generalize nicely to vectors and functions on vectors include norms and
distances, sequences, and continuity.

The symbolK is sometimes used to denote eitherR orC; CR([0, 1]) represents theR−vector
space of continuous functions [0, 1] → R, and FR([0, 1]) represents the R−vector space of
functions [0, 1]→ R.

8.1 Preliminaries
Most of the results of the previous chapters rely heavily on the properties of the absolute
value. Its fundamental role inR is as a measure of themagnitude of a real number: |x| is the
distance from the real number x to the origin.

We can generalize the concept of the absolute value to higher-dimensional spaces in var-
ious ways. In this chapter, we discuss norms andmetrics, and the topologies they induce.

8.1.1 Norms, Metrics, and Topology
Let E be a K−vector space, such as R, Cn or CR([0, 1]), say. A norm over E is a mapping
∥ · ∥ : E → R for which the following properties hold:

1. ∀x ∈ E, ∥x∥ ≥ 0;

2. ∥x∥ = 0⇐⇒ x = 0;

3. ∀x ∈ E, ∀λ ∈ K, ∥λx∥ = |λ|∥x∥, and

4. ∀x, y ∈ E, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

If the 4 properties hold, we say that (E, ∥ · ∥) is a normed space.
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Examples

1. R is a normed space together with the absolute value | · |.

2. C is a normed space together with the modulus | · |.

3. Rn is a normed space together with the Euclidean norm

∥x∥2 = ∥(x1, . . . , xn)∥2 =
√
x21 + · · ·+ x2n.

The Euclidean norm over Rn will play a special role in our explorations: note
that it is intimately linked to the inner product

(· | ·) : Rn × Rn → R, de ined by (x | y) =
∑

xiyi =⇒ ∥x∥ = (x | x)1/2.

4. E = CR([0, 1]) together with the sup norm ∥f∥∞ = supx∈[0,1] |f(x)| is another
important normed space.

5. For p ≥ 1, the p−norm over Rn is de ined as follows:

∥x∥ =

(
n∑

i=1

|xi|p
)1/p

.

Special cases of the p−norm over Rn include the Euclidean norm (p = 2), the
sup norm (p =∞) and the 1−norm:

∥x∥∞ = max
1≤i≤n

|xi|, ∥x∥∞ =
n∑

i=1

|xi|. □

The open ball of radius 1 induced by the p−norm around the origin in Rn is the set
Bp(0, 1) = {x ∈ Rn | ∥x∥p < 1};

different values of p leading to different geometrical setsBp(0, 1): p = 2,∞, 1 (left to right).¹

¹We can also talk of closed balls, or of general balls of radius r centered at some point a ∈ Rn.
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CHAPTER 8. METRIC SPACES AND SEQUENCES

The open balls have different shapes (only the regions in red, not the boundaries), but wewill
see that they are all equivalent, in the sense that they all induce the same topologies.

Since there are similarities between summation and integration (the Riemann-integral of a
function over an interval is, essentially, the limit of a sum), it could tempting to conclude that
there are equivalent p−norms over FR([0, 1]): something along the lines of

∥f∥p =
(∫

[0,1]

|f |p dm
)1/p

(8.1)

where m is the Lebesgue measure (see Chapters 21 and 26), but these mappings are not in
fact norms on FR([0, 1]).

Indeed, consider the Dirichlet functionχQ ∈ FR([0, 1]), say. It can be shown that ∥f∥1 = 0.
However,χQ ̸= 0which contradicts the secondproperty of norms (in fact, ∥·∥p is a seminorm
on FR([0, 1])).

If we instead restrict the function space to CR([0, 1]), ∥ · ∥p is indeed a norm for all p ≥ 1,
but unfortunately, (CR([0, 1]), ∥ · ∥p) is not complete (more on this later).

Let E be any set. A metric over E is a mapping d : E × E → R for which the following
properties hold:

1. ∀x, y ∈ E, d(x, y) ≥ 0;
2. ∀x ∈ E, d(x, x) = 0;
3. d(x, y) = 0⇐⇒ x = y;
4. ∀x, y ∈ E, d(x, y) = d(y, x), and
5. ∀x, y, z ∈ E, d(x, y) ≤ d(x, z) + d(z, y).

If the 5 properties hold, we say that (E, d) is ametric space.

An important property of such spaces is that every normed space gives rise to ametric space.

aaaaaa

Theorem 88
Let (E, ∥ · ∥) be a normed space, and de ine d : E × E → R by

d(x, y) = ∥x− y∥.

Then (E, d) is a metric space.

Proof: we show that all the metric space properties hold. Property 1, for
instance, is a direct consequence of norm property 1:

∀x, y ∈ E, d(x, y) = ∥x− y∥ ≥ 0.
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Properties 2 and 3 are a direct consequence of norm property 2:

∀x ∈ E, d(x, x) = ∥x− x∥ = ∥0∥ = 0;

∀x, y ∈ E, d(x, y) = ∥x− y∥ = 0⇐⇒ x− y = 0⇐⇒ x = y.

Property 4 is a direct consequence of norm property 3:

∀x, y ∈ E, d(x, y) = ∥x− y∥ = | − 1| · ∥x− y∥ = ∥y− x∥ = d(y, x).

Property 5 is a direct consequence of norm property 5:

∀x, y, z ∈ E, d(x, y) = ∥x− y∥ = ∥x− z+ z− y∥
≤ ∥x− z∥+ ∥z− y∥ = d(x, z) + d(z, y).

Thus (E, d) is a metric space. ■

Not every metric space arises from a norm, however.

aaaaaa

Examples

1. Let E be any set and de ine d : E × E → R by

d(x, y) =

{
0 if x = y
1 otherwise (8.2)

Then (E, d) is a metric space in which every point is considered to be far from
every other distinct point. We call such metric spaces discrete.

2. LetE = Rn and de ine d : E×E → R by d2(x, y) = ∥x−y∥2. Then (E, d2) is a
metric space, which we usually refer to has having the standard topology. □

Let (E, d) be a metric space. The open ball centered at a ∈ E with radius r > 0 is the set

B(a, r) = {x ∈ E | d(a, x) < r};

the closed ball centered at a ∈ E with radius r > 0 is the set

D(a, r) = Dd(a, r) = {x ∈ E | d(a, x) ≤ r},

and the sphere centered at a ∈ E with radius r > 0 is the set

S(a, r) = Sd(a, r) = D(a, r) \B(a, r) = {x ∈ E | d(a, x) = r}.
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aaaaaa

Examples

1. Let a ∈ E = R and de ine d(x, y) = |x − y| for all x, y ∈ E. Then, for r > 0,
the balls reduce to intervals:

B(a, r) = (a− r, a+ r), D(a, r) = [a− r, a+ r],

and the sphere to a discrete set S(a, r) = {a− r, a+ r}.

2. Let (E, d) be a discrete metric space and a ∈ E. Then

B(a, r) =

{
{a}, if r < 1

E, otherwise

3. Let E = CR([0, 1]), d∞(f, g) = ∥f − g∥∞. Then, for ε > 0,

B(f, ε) = {g ∈ E | ∥f − g∥∞ < ε} =
{
g ∈ E | sup

x∈[0,1]
|f(x)− g(x)| < ε

}
= {g ∈ E | |f(x)− g(x)| < ε ∀x ∈ [0, 1]}

We see B(f, ε) in the image below; f is the solid curve in the middle, the two
bounding curves are ε away from f , and the red dashes show a function g in
B(f, ε).

4. Let A,B ̸= ∅ be subsets of a metric space (E, d). The distance between A
andB is de ined by

d(A,B) = inf
x∈A,y∈B

{d(x, y)}. (8.3)

Unfortunately, d does not de ine a metric on ℘(E) \∅ (see exercise 10). When
A = {x}, we write d(A,B) = d(x, B). □
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Lemma 89
Let (E, d) be a metric space, x, a ∈ E, r > 0 and x ̸∈ B(a, r). Show that
d(x, B(a, r)) ≥ d(x, a)− r.

Proof: for all y ∈ B(a, r), we have d(x, y) + d(y, a) ≥ d(x, a), whence

d(x, y) ≥ d(x, a)− d(y, a) ≥ d(x, a)− r.

Consequently,
d(x, B(a, r)) = inf

y∈B(a,r)
{d(x, y)} ≥ d(x, a)− r

whenever x ̸∈ B(a, r). ■

Let (E, d) be a metric space and let∅ ̸= A ⊆ E. The diameter ofA under d is de ined by
δd(A) = sup

x,y∈A
{d(x, y)}.

For instance, in (Rn, d2), we have δd2(B(a, r)) = 2r; the diameter of two subsets A,B ⊆ R2

is illustrated below.

We say that A is bounded in (E, d) if δd(A) <∞.

aaaaaa

Proposition 90
Let (E, d) be a metric space and let ∅ ̸= A ⊆ E. Then, A is bounded in (E, d) if and
only if ∃x ∈ E, ∃r > 0 such that A ⊆ B(x, r).

Proof: one direction is immediate: if ∃x ∈ E, ∃r > 0 such that A ⊆ B(x, r),
then d(y, z) < r for all y, z ∈ A ⊆ B(x, r), so that δd(A) ≤ r.

Conversely, if δd(A) ≤ M , say, then d(y, z) < r = M + 1 for all y, z ∈ A.
Pick any x ∈ A. Then for any other y in A, d(x, y) < r, so that y ∈ B(x, r). Thus
A ⊆ B(x, r). ■
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In this subsection, (E, d) is always a metric space, so we drop the d to lighten the text.

A subset A ⊆ E is an open subset of E under d (or simply “open” if the context is clear)
if either

A = ∅, or
∀x ∈ E, ∃r > 0 such thatB(x, r) ⊆ A.

We denote this relationship by A ⊆O E; an open subset of R2 in the Euclidean topology is
shown below (D.J. Eck).
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Proposition 91
Open sets in E have the following properties:

1. E ⊆O E;

2. ∀a ∈ E, r > 0, thenB(a, r) ⊆O E;

3. the union of an arbitrary family {Ai}i∈I of open subsets of E is an open subset
of E, and

4. the intersection of a inite family {Ai}ℓi=1 of open subsets of E is an open subset
of E.

Proof:

1. Let x ∈ E. SinceB(x, r) ⊆ E for all r > 0, then E ⊆O E.

2. LetB(a, R)be an openball inE, and let x ∈ B(a, R). By de inition, d(a, x) < R

implies ∃ρ > 0 with ρ = R−d(a,x)
2

. It is not hard to show that with such a ρ, we
haveB(x, ρ) ⊆ B(a, R).

3. LetA =
∪
Ai. IfA = ∅ thenA ⊆O E. IfA ̸= ∅, let x ∈ A. By de inition, ∃i ∈ I

such that x ∈ Ai. But Ai ⊆O E and, as such, ∃ρ > 0 for which B(x, ρ) ⊆ Ai ⊆∪
Ai = A. Consequently,A ⊆O E.

4. It suf ices to prove the result for ℓ = 2 (why?). Let A = A1 ∩ A2. If A = ∅
then A ⊆O E. If A ̸= ∅, let x ∈ A. Then x ∈ A1. But A1 ⊆O E and, as such,
∃r1 > 0 for which B(x, r1) ⊆ A1 ⊆ A. As well, x ∈ A2. But A2 ⊆O E and,
as such, ∃r2 > 0 for which B(x, r2) ⊆ A2 ⊆ A. Set ρ = min{r1, r2}. Then
B(x, r) ⊆ A1 ∩ A2, and, consequently,A ⊆O E. ■
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We have seen plenty of examples in Part I.

aaaaaa

Examples

1. Let a ∈ R. Then (−∞, a) and (a,∞) are both open in E = R since

(−∞, a) =
∪
x<a

(x, a) and (a,∞) =
∪
x>a

(a, x).

2. The intersection of an arbitrary family of open subsets ofE could be open, but
need not be: ∩

n∈N

(−n, n) = (−1, 1) ⊆O R,

but ∩
n∈N

(− 1
n
, 1
n
) = {0} is not open in R;

we will have more to say on the topic of arbitrary intersection of open sets in
Part IV and Chapter 21. □

The collection of a metric space (E, d)’s open subsets forms a topology τ on E:

1. ∅, E ∈ τ ;

2. if Ui ∈ τ for all i ∈ I , then∪I Ui ∈ τ , and

3. if U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ .

aaaaaa

Examples

1. Let (E, d) be a metric space. The collection of all open subsets of E under d
forms a topology on E, themetric space topology.

2. LetE be any set. The collection τ = {∅, E} forms a topology onE, the indis-
crete topology.

3. LetE be any set. The collection τ = ℘(E) forms a topology onE, the discrete
topology. □

A subset A ⊆ E is a closed subset of E under d if E \ A ⊆O E. We denote this relationship
byA ⊆C E.

As a consequence of the de inition of closed sets in opposition to open sets, we get awhole
slew of properties of closed subsets, for free, such as∅, E ⊆C E. But there aremore substan-
tial ones as well.
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Examples

1. Every closed ball in (E, d) is closed.

Proof: let A = D(a, R) be a closed ball in E and set

E \ A = {x ∈ E | d(a, x) > R}.

We need to show that E \ A is open. Let x ∈ E \ A; by de inition, d(a, x) > R

and ρ = d(a,x)−R
2

> 0.

It remains only to show thatB(x, ρ) ⊆ E \ A. Let z ∈ B(x, ρ). Then

d(x, z) < ρ and − d(x, z) > −ρ.

Thus, according to the triangle inequality we have

d(a, z) ≥ d(a, x)− d(x, z) ≥ 2ρ+R− d(x, z) ≥ R + ρ > R;

as such, z ∈ E \ A. This completes the proof. ■

2. Every sphere in (E, d) is closed.

Proof: Let S = S(a, R). Note that

E \ S = B(a, R) ∪ [E \D(a, R)] ⊆O E

since it is a union of open sets. Consequently, S ⊆C E. ■

3. The intersectionof an arbitrary family {Ai}i∈I of closed subsets ofE is a closed
subset of E. □

4. The union of a inite family {Ai}ℓi=1 of closed subsets ofE is a closed subset of
E. Note however that the union of an arbitrary family of closed subsets of E
need not be closed (see exercise 18) in E. □
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The closure of a subsetA ⊆ E with respect to a metric d is the smallest closed subsetA ofE
(again, with respect to d) containing A (with possible equality).

The closure has a number of interesting properties, one of which being thatA is the inter-
section of all closed sets containingA, and that A ⊆ A (see exercises 19 and 20).

aaaaaa

Examples

1. In the Euclidean topology, (0, 1) = [0, 1].

2. In the discrete topology, (0, 1) = (0, 1).

3. In the Euclidean topology, S(a, R) = S(a, R). □

The closure provides us with a clear way to characterize closed subsets.

aaaaaa

Lemma 92
Let A be a subset of E. Then A ⊆C E ⇐⇒ A = A.

Proof: one direction is immediate. Let A ⊆C E. The smallest closed subset
of E containing A is thusA itself, soA = A.

Conversely, assume A = A. As A is the smallest closed subset of A contain-
ing A, then A = A is closed in E. ■

A neighbourhood of x ∈ E is a subset V ⊆ E containing an open subset Ux ⊆O E with
x ∈ Ux. In other words, V is a neighbourhood of x if ∃r > 0 such that B(x, r) ⊆ V (but V is
not necessarily open). The set of all neighbourhoods of x is denoted by

V(x) = {V ⊆ E | V is a neighbourhood of x}.
The image below shows a neighbourhood V of x, with an open set Ux.
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Examples

1. In Rwith the standard topology, [0, 1] and (0, 1] are neighbourhoods of 1
2
.

2. In R2 with the standard topology, {3} × [0, 1] is not a neighbourhood of (3, 1
2
).

The various de initions give us an easy lemma.

aaaaaa

Lemma 93
Let (E, d) be a metric space with U ⊆ E. Then U is a neighbourhood of each of its
points if and only if U ⊆O E.

Proof: one direction holds as a consequence of the de inition of open sets;
the other as a consequence of the de inition of neighbourhoods. ■

Points in A have useful (equivalent) properties.

aaaaaa

Proposition 94
Let A ⊆ E. The following conditions are equivalent:

1. x ∈ A

2. ∀ε > 0, ∃a ∈ A such that d(a, x) < ε

3. ∀V ∈ V(x), V ∩ A ̸= ∅

4. d({x}, A) = d(x, A) = 0

Proof: we will only prove that 1.⇐⇒ 2. The proof that 2.⇐⇒ 3⇐⇒ 4. is left as an
exercise.
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aaaaaa

Assume x ̸∈ A. Then x ∈ E \ A ⊆O E. Thus ∃ρ > 0 such that B(x, ρ) ⊆ E \ A.
Consequently, d(a, x) ≥ ρ, ∀a ∈ A.

Conversely, let x ∈ E and assume ∃ε > 0 such that

A ⊆ E \B(x, ε)︸ ︷︷ ︸
closed

.

SinceA is the smallest closed set containingA, we must have

A ⊆ A ⊆ E \B(x, ε)

and so x ̸∈ A. ■

A subset A of E is dense in (E, d) if A = E. A metric space (E, d) is separable if it has at
least one dense subset.

aaaaaa

Examples

1. Q and R \Q are both dense in R in the usual topology. □

2. Neither of these sets are dense in R in the discrete topology. □

3. Every non-empty subset of E is dense in E in the indiscrete topology. □

4. Weierstrass’ Theorem: let P be the set of polynomial functions [0, 1] → R.
Then P is dense in (CR([0, 1]), d∞).

Thus real continuous functions on [0, 1] (which need not even be C1)
can be approximated as closely as desired/needed by smooth (polynomial)
functions (we will discuss this further in Chapter 23).

5. R and Rn are separable in the Euclidean topology. □
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A family G = {Gλ}λ∈L, ∅ ̸= Gλ ⊆O E forms a basis for the open subsets of E if every
non-empty open subset of E can be written as a union of members of G.

aaaaaa

Examples

1. {B(x, r) | x ∈ Q, r ∈ Q∗
+} and {B(x, r) | x ∈ R, r ∈ R∗

+} both form a basis for
the open subsets of R. □

2. {B(x, r) | x ∈ Qn, r ∈ Q∗
+} forms a basis for the open subsets of Rn. □

There is a nice way to characterize such bases.

aaaaaa

Proposition 95
A family G = {Gλ}λ∈L is a basis for the open subsets of E if and only if ∀x ∈ E,
∀V ∈ V(x), ∃λ ∈ L such that x ∈ Gλ ⊆ V .

Proof: the direction =⇒ holds as a consequence of the de inition of neigh-
bourhood and of a base.

Conversely, let ∅ ̸= U ⊆O E. Note that, being open, U is a neighbourhood of
all its points. Then, by hypothesis, ∀x ∈ U ∃λ(x) ∈ L such that x ∈ Gλ(x) ⊆ U .
However,

U =
∪
x∈U

{x} ⊆
∪
x∈U

Gλ(x) ⊆ U,

so that U is the union of elements of G. ■

By analogy with the closure, the interior of a subset A ⊆ E is the largest open subset of E
contained inA; we denote that subset by int(A) (or sometimesA◦). It is not dif icult to show
that int(A) is the union of all the open subsets of E contained in A, and that A ⊆O E if and
only if int(A) = A (see exercises).

aaaaaa

Examples

1. In the discrete topology, int([0, 1]) = [0, 1]; while in the Euclidean topology,
int([0, 1]) = (0, 1). □

2. In the Euclidean topology, int(S(a, R)) = ∅ and int(D(a, R)) = B(a, R). □

3. While int((a, b)) = (a, b) and int([a, b]) = [a, b] in (R, d2), int(W ) ̸= W , in
general, as we can see withW = (0, 1

2
) ∪ (1

2
, 1) ⊆ (R, d2). □

The next concepts are not crucial to our study, but still nice to have: U ⊆ E is a regular open
subset of E if int(U) = U ;B ⊆ E is a regular closed subset of E if int(B) = B.
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Not all metrics are derived from a norm (the discrete metric fails in that regard, for instance),
but normed vector spaces have a very nice property when it comes to closure and balls.

aaaaaa

Lemma 96
If (E, d) is a normed vector space, thenD(0, 1) = B(0, 1).

Proof: since B(0, 1) ⊆ D(0, 1) ⊆C E, we have B(0, 1) ⊆ D(0, 1) as B(0, 1)
since the smallest closed subset of E containingB(0, 1).

As D(0, 1) = B(0, 1) ∪ S(0, 1), we only need to show that S(0, 1) ⊆ B(0, 1)
as B(0, 1) ⊆ B(0, 1). Let x ∈ S(0, 1); then ∥x∥ = 1. Let 1 > ε > 0 and set
z = (1− ε

2
)x.

Then z ∈ B(0, 1), since ∥z∥ = |1 − ε
2
| · ∥x∥ < 1; we note further that

d(z, x) = ∥z − x∥ = ε
2
∥x∥ = ε

2
< ε and so, according to Proposition 94 with

a = z and A = B(0, 1), we indeed have x ∈ B(0, 1). ■

We can use this lemma to show that the discrete metric is not derived from a norm: were it
so, we would haveD(0, 1) = B(0, 1). However, in Rn we have

B(0, 1) = {0} ⊆C R andD(0, 1) = R =⇒ B(0, 1) = {0} ̸= R = D(0, 1).

aaaaaa

Proposition 97
Let A ⊆ E. The following conditions are equivalent:

1. x ∈ int(A)

2. A ∈ V(x)

3. ∃ε > 0 such thatB(x, ε) ⊆ A.

Proof: by de inition, we have 2.⇐⇒ 3. It remains only to show that 1.⇐⇒ 3.

3. =⇒ 1.: Let ε > 0 and B(x, ε) ⊆ A. Since int(A) is the largest open subset
of E contained in A and since B(x, ε) is an open subset of E contained in A, we
must haveB(x, ε) ⊆ int(A), whence x ∈ int(A).

1. =⇒ 3.: Let x ∈ int(A) ⊆O E. By de inition, there must exist some ε > 0
such thatB(x, ε) ⊆ int(A) ⊆ A. ■

As an example of theusefulness of this result, note that by thedensity ofQ and its complement
R \Q in R, we automatically get int(Q) = int(R \Q) = ∅with the usual topology on R.
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We end this section with a few other topological concepts:

the boundary of a subsetA ⊆ E is simply de ined by ∂A = A\ int(A) and the exterior
ofA is given by int(E \ A);²

we say that x ∈ E is a cluster point ofA if

∀ε > 0, ∃yε ∈ B(x, ε) ∩ A such that yε ̸= x;

we also say that x ∈ E is an isolated point ofA if ∃ε > 0 for whichB(x, ε) ∩ A = {x}.

aaaaaa

Examples LetA = { 1
n
: n ≥ 1}.

1. 0 is a cluster point ofA since B(0, ε) ∩ A contains all 1
n
, where n > 1

ε
.

2. For all n ≥ 1, 1
n
is an isolated point ofA, asB( 1

n
, 1
2n(n+1)

) ∩ A = { 1
n
}.

There is a link between cluster points of a set and its closure.

aaaaaa

Lemma 98
If x is a cluster point of A, then x ∈ A and every neighbourhood of x contains an
in inite set of points in A.

Proof: that x ∈ A is a direct consequence of Propostion 94. The rest of the
proof can be done by showing that if a neighbourhood of x exists which contain
only a inite number of points ofA, then x cannot be a cluster point of A. ■

Finally, if (E, d) is ametric space andF ⊆ E, then (F, d) is also ametric space, called ametric
subspace of E. The topology on F is completely determined by the topology on E.

aaaaaa

Proposition 99
Let (E, d) be a metric space and F ⊆ E. Then

B ⊆O F ⇐⇒ ∃A ⊆O E such thatB = A ∩ F

and
B ⊆C F ⇐⇒ ∃A ⊆C E such thatB = A ∩ F.

Proof: left as an exercise. ■

²In a nutshell, the exterior is the largest open subset ofE which excludesA in its entirety.
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8.1.2 Continuity
The concept of continuity is fundamental in all aspects of analysis. Let (A, dA), (B, dB) be
metric spaces. Since we view dA(a, x) and dB(f(a), f(x)) as generalizations of |a − x| and
|f(a)− f(x)|, respectively, and we say that a map f : A→ B is continuous at a ∈ A if

∀ε > 0, ∃δ > 0, (x ∈ A and dA(a, x) < δ) =⇒ dB(f(a), f(x)) < ε;

or, equivalently, if for any open ε−ballW centered at f(a), there is an open δ−ball V centered
at a such that f(V ) ⊆ W ; or yet again equivalently, if for any neighbourhoodW ⊆O B of f(a),
there is a neighbourhood V ⊆O A of a such that f(V ) ⊆ W .³

The continuity of f : (R2, d2)→ (R2, d2) at a ∈ R2 is illustrated below (D.J. Eck).

We further say that the map f is continuous on A if it is continuous at each a ∈ A.

aaaaaa

Proposition 100
Let (E, d), (Ẽ, d̃) be metric spaces, and let f : E → Ẽ. The following conditions are
equivalent:

1. f is continuous on E;

2. for anyW ⊆O Ẽ, f−1(W ) = {x ∈ E|f(x) ∈ W} ⊆O E, and

3. for any Y ⊆C Ẽ, f−1(Y ) ⊆C E.

Proof: that 2.⇐⇒ 3. follows directly from the fact that

f−1(Ẽ \ Y ) = E \ f−1(Y ).

³That these de initions are equivalent is left as an exercise.

P. Boily (uOttawa) 203



8.1. PRELIMINARIES

aaaaaa

1. =⇒ 2.: Let W ⊆O Ẽ and x ∈ f−1(W ). Since W is open in Ẽ, ∃ε > 0 such that
B(f(x), ε) ⊆ W . By continuity, ∃δ > 0 such that f(B(x, δ)) ⊆ B(f(x), ε) ⊆ W . But
this means that

B(x, δ) = f−1(f(B(x, δ)) ⊆ f−1(W )

(see exercises) and so f−1(W ) ⊆O E.

2. =⇒ 1.: Let f(x) ∈ W ⊆O Ẽ. Set V = f−1(W ) ⊆O E. Then x ∈ V and
f(V ) ⊆ W ; consequently, f is continuous. ■

Consider a map f : E → Ẽ as above. If f(W ) ⊆O Ẽ for allW ⊆O E, then we say that f is
an open mapping; by analogy, if f(Y ) ⊆C Ẽ for all Y ⊆C E, then we say that f is a closed
mapping.

Generally speaking, continuous maps are neither open nor closed; the constant function
f : R → R de ined by f(x) = a provides an example of a continuous function which is not
open in the standard topology, as (0, 1) ⊆O R, but f((0, 1)) = {a} ⊆C R, for instance.

aaaaaa

Proposition 101
Let f : (E, d) → (Ẽ, d̃) and g : (Ẽ, d̃) → (Ê, d̂) be continuous. Then the composition
g ◦ f : (E, d)→ (Ê, d̂) is continuous.

Proof: let a ∈ E and ε > 0. As g is continuous at f(a) ∈ Ẽ, ∃δε > 0 such
that

y ∈ Ẽ and y ∈ Bd̃(f(a), δε) =⇒ g(y) ∈ Bd̂(g(f(a)), ε).

Since f is continuous at a, ∃ηδε = ηε > 0 such that

x ∈ E and x ∈ Bd(a, ηδε) =⇒ f(x) ∈ Bd̃(f(a), δε).

Combining these results together, we get

x ∈ E and x ∈ Bd(a, ηδε) =⇒ g(f(x)) ∈ Bd̂(g(f(a)), ε),

which completes the proof. ■

As we can see, in many instances, the broad strokes of proofs in the multi-dimensional cases
follow those of the corresponding one-dimensional proofs.

aaaaaa

Corollary 102 Let f : (E, d) → (Ẽ, d̃) be a continuous function. If F ⊆ E, then the
restriction f |F : (F, d|F )→ (Ẽ, d̃) is continuous.

Proof: it suf ices to show that the inclusion F ↪→ E1 is continuous, which is
left as an exercise, and then to apply Proposition 101. ■
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Some standard examples are shown below.

aaaaaa

Examples

1. The functions f : (R, d2)→ (R, d2) de ined by f(x) = x3 is continuous. □

2. The identity function id : (R, ddiscrete) → (R, d2) is continuous, since
id−1(V ) = V ⊆O (R, ddiscrete) for all V ⊆O (R, d2). □

3. The identity function idinv : (R, d2) → (R, ddiscrete) is not continuous, since,
for instance, (

idinv
)−1

({a}) = {a}

is not open in (R, d2) even though {a} ⊆O (R, ddiscrete). □

4. Consider the characteristic function χR\Q : R → R. Then χR\Q is continuous
when restricted toQ (being a constant function), but χR\Q is nowhere contin-
uous on R. □

A metric d on E gives rise to a topology by de ining the open sets of E. A natural question
to ask is: can two different metrics give rise to the same topology? In order to answer that
question, we need to introduce a new concept.

Let (E, d), (Ẽ, d̃) be metric spaces. A function f : E → Ẽ is a homeomorphism if f is
bijective and both f and f inv are continuous.⁴

aaaaaa

Examples

1. f : (R, d2)→ (R, d2), f(x) = x3, is a homeomorphism. □

2. id : (R, ddiscrete)→ (R, d2), id(x) = x, is not a homeomorphism. □

3. The function g : (R, d2) →
(
(−π

2
, π
2
), d2

)
de ined by g(x) = arctan(x) is a

homeomorphism. □

⁴Alternatively, f is a homeomorphism if it is bijective, continuous and open.
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These examples illustrate that the notion of boundedness is not necessarily preserved by
homeomorphisms: for instance, R is unbounded while (−π

2
, π
2
) is bounded, but both spaces

are homemorphic to one another via arctan.

Furthermore, neither is the notion of distance necessarily preserved by homeomorphisms:
in general,

d(x1, x2) ̸= d̃(f(x1), f(x2)).

For instance, in the irst example,
d(0, 2) = |0− 2| = 2 ̸= d̃(03, 23) = |03 − 23| = 9.

However, homeomorphisms f : E → Ẽ preserve the topologies of E and Ẽ:

W ⊆O E ⇐⇒ f(W ) ⊆O Ẽ = f(E)

Y ⊆C E ⇐⇒ f(Y ) ⊆C Ẽ = f(E).

Two metrics d, d̃ on E are topologically equivalent if id : (E, d) → (E, d̃) is a homeomor-
phism. In that case, d and d̃ give rise to the same topologies on E.

aaaaaa

Example: if p, q ≥ 1, dp and dq induce the same topologies on Rn.

For instance, to show that d2 and d∞ are topologically equivalent in R2, it suf-
ices to show that any point of a 2−ball has an ∞−neighbourhood contained in
the 2−ball, and, conversely, that any point of an ∞−ball has a 2−neighbourhood
contained in the∞−ball (see exercises). In the illustration below, we see a 2−ball
illed with∞−balls (left) and an∞−ball illed with with 2−balls (right). □

There is an associated notion: two metrics d, d̃ on E are (strongly) equivalent if ∃A,B > 0
such that

Ad(x, y) ≤ d̃(x, y) ≤ Bd(x, y) ∀x, y ∈ E.
Intuitively, two metrics are equivalent if it is always possible to it a d̃−ball between two
d−balls, while maintaining the ratios of the balls’ radii. Topological equivalence is not an
equivalent notion, as we see in exercise 36.
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aaaaaa

Example: if p, q ≥ 1, dp and dq are equivalent on Rn.

For instance, to show that d2 and d∞ are equivalent in R2, it suf ices to show
that ∃A,B > 0 such that any 2−ball of radius R > 0 contains an∞−ball of radius
R
A
, and is contained in an∞−ball of radius R

B
.

Given the geometry of squares and circles, what values canA andB take? □

There is also a similar notion for norms. Twonorms ∥·∥∗, ∥·∥◦ onE are equivalent if∃a, b > 0
such that

a∥x∥∗ ≤ ∥x∥◦ ≤ b∥x∥∗, ∀x ∈ E.

Clearly, two equivalent norms on E give rise to two equivalent metrics on E. But there is an
important difference: over a inite−dimensional vector space, any two norms are equiva-
lent, which we can show using the following proof outline:

1. without loss of generality, assume ∥ · ∥∗ = ∥ · ∥1;

2. only the vectors x ∈ S1(0, 1) need to be considered (why?);

3. show that ∥ · ∥◦ is continuous with respect to ∥ · ∥1, and

4. use the max/min theorem over S1(0, 1) to bound a ≤ ∥x∥◦ ≤ b.

We end this section on preliminaries with two de initions that generalize the notion of a con-
tinuous function.

Let f : (E, d)→ (Ẽ, d̃). We say that f is

1. uniformly continuous if ∀ε > 0, ∃δ = δ(ε) > 0 such that ∀x, y ∈ E, d(x, y) < δ =⇒
d̃(f(x), f(y)) < ε;

2. Lipschitz continuous if ∃K > 0 such that d̃(f(x), f(y)) ≤ Kd(x, y) ∀x, y ∈ E.
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The conceptual difference between continuity and uniform continuity is that δ may depend
on x and y as well as ε in the former case, but it can only depend on ε in the latter case.

aaaaaa

Examples

1. Any polynomial p : R → R is uniformly continuous over a closed, bounded
interval. □

2. Any uniformly continuous function is automatically continuous. □

3. Any Lipschitz continuous function is automatically uniformly continuous,
hence continuous. □

4. The function f : (0, 1] → R de ined by f(x) = 1
x
is continuous but not uni-

formly continuous. □

This allows us to de ine another type of equivalence between metrics: two metrics d, d̃ on E
areuniformly equivalent if id : (E, d)→ (E, d̃) is uniformly continuous, and so is its inverse.

Uniformly equivalent metrics are topologically equivalent, as uniform continuity also im-
plies continuity, but there are topologically equivalent metrics that are not uniformly equiva-
lent. However, uniform equivalence and strong equivalence of metrics are ... well, equivalent.

Lastly, note that uniform continuity, unlike continuity, is not a topological notion: given a
function f : E → Ẽ, the knowledge of the topologies onE and Ẽ, respectively, is suf icient to
determine if f is continuous. But moremust be known in order to determine if f is uniformly
continuous. There is something fundamental at play here; we will return to it at a later stage.

8.2 Sequence in a Metric Space
Consider the sequence (xn) ⊆ (E, d). The sequence converges tox ∈ (E, d), whichwedenote
by xn → x, if

∀ε > 0, ∃N ∈ N such that n > N =⇒ d(xn, x) < ε.

In light of the notions presented in the previous section, this is equivalent to the following
de inition: xn → x ∈ E if

∀V ∈ V(x), ∃N ∈ N such that n > N =⇒ xn ∈ V.

Thus a sequence converges to x if any neighbourhood of x contains in initely many terms in
the sequence.

A subsequence of (xn) is a sequence (yn) such that yn = xφ(n) for some strictly increas-
ing function φ : N → N. It is easy to show that if xn → x, then any subsequence of (xn) also
converges to x (see the exercises).
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Let (xn) be a sequence in a metric space (E, d). We say that a ∈ E is a limit point of (xn)
if ∀ε > 0, ∀ρ ∈ N, ∃n ≥ ρ such that d(xn, a) < ε.⁵

aaaaaa

Proposition 103
Let (xn) ⊆ (E, d), a ∈ E. The following are equivalent:

1. a is a limit point of (xn);

2. there is a subsequence of (xn) which converges to a;

3. ∀ρ ∈ N, we have a ∈ Aρ, whereAρ = {xn|n ≥ ρ}, and

4. either a is a cluster point ofA1 or {xn | xn = a} is in inite (in the latter case, we
say that a is a replicating point of (xn).

Proof: we prove 1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 1.

1. =⇒ 2.: Set εn = 1
n
. Since a is a limit point of the sequence (xn), there is a

smallest integer n for which d(yn, a) < 1
n
, where yn is a member of the sequence

(xm)m≥n. By construction, (yn) is a subsequence of (xn) and yn → a.

2. =⇒ 3.: If there is a subsequence (yn) ⊆ (xn) which converges to a, then
∀ε > 0, ∀ρ ∈ N, ∃N ∈ N such that yn ∈ Aρ ∩ B(a, ε) whenever n > N . But accord-
ing to Proposition 94, a ∈ Aρ if and only if ∀ε > 0, Aρ ∩B(a, ε) ̸= ∅. Consequently,
∀ρ ∈ N, a ∈ Aρ.

3. =⇒ 4.: If ∀ρ ∈ N, a ∈ Aρ, then ∀ρ ∈ N, ∀ε > 0, ∃ a smallest nρ ≥ ρ such
that d(xnρ , a) < ε. As such, xnρ is a subsequence of (xn) and

lim
ρ→∞

xnρ = a.

If (xn) converges, it must do so to a, according to exercise 40. Consequently,
∀η > 0, A1 ∩ B(a, ε) is in inite and so must contain at least one point distinct
from a. Consequently, a is a cluster point ofA1.

If (xn) diverges and a is not a replicating point of (xn), then xnρ ̸→ a (why?),
which is a contradiction. Consequently, if (xn) diverges then a is a replicating
point of (xn).

4. =⇒ 1.: Left as an exercise. ■

8.2.1 Closure, Closed Subsets, and Continuity
We can conclude from Proposition 103 that the set ∩ρ∈NAρ of limit points of (xn) is closed
and that if xn → x, then x is the unique limit point of (xn).

⁵Compare with the notion of a cluster point.
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There is a nice way to characterize closure, closed subsets and continuity using sequences
and convergence, provided by the next three results.

aaaaaa

Proposition 104
Let (E, d) be a metric space,A ⊆ E and x ∈ E. Then,

x ∈ A⇐⇒ ∃(xn) ⊆ A such that xn → x.

Proof: the direction ⇐= is a clear consequence of the remark at the start of this
subsection. For =⇒, consider the following argument. Let n ∈ N. Since x ∈ A,
∃xn( ̸= x) ∈ Awith d(xn, x) < 1

n
. Clearly, xn → x. ■

aaaaaa

Proposition 105
Let (E, d) be a metric space, with F ⊆ E. Then, F ⊆C E if and only if any sequence
(xn) ⊆ F which converges in E converges to a point in F .

Proof: if F ⊆C E, then F = F . Assume that xn ∈ F and xn → x. We must
show that x ∈ F = F . If (xn) is eventually constant, then xn = x ∈ F for all n
greater than some index. Otherwise ∀ε > 0, B(x, ε) ∩ F contains an in inite subset
of {xn | n ≥ 1}; consequently, x ∈ F .

Conversely, let x ∈ F . According to Proposition 104, there is a subsequence
(xn) ⊆ F such that xn → x. By hypothesis, any such sequence must converge in F .
Hence, x ∈ F . Consequently, F = F and F ⊆C E. ■

aaaaaa

Proposition 106
Let (E, d), (Ẽ, d̃) be a metric spaces. Then f : E → Ẽ is continuous if and only
f(xn)→ f(x) whenever xn → x.

Proof: the direction ⇐= is a clear consequence of the de inition of a continu-
ous function.

Conversely, let F ⊆C Ẽ. We want to show that f−1(F ) ⊆C E. Let (xn) ⊆ f−1(F )
with xn → x. By hypothesis, f(xn)→ f(x). But F ⊆C Ẽ so that f(x) ∈ F , according
to Proposition 105.

Consequently, x ∈ f−1(F ). According to Proposition 105, we must then have
f−1(F ) ⊆F E; in other words, f is continuous. ■

We will see in Part IV that these characterizations do not always apply to general (as in, non-
metric) topological spaces.
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8.2.2 Complete Spaces and Cauchy Sequences
The sequence (xn) ⊆ (E, d) is a Cauchy sequence if

∀ε > 0,∃N ∈ N such that n,m > N =⇒ d(xn, xm) < ε.

Some properties of Cauchy sequences in R carry over to metric spaces.

aaaaaa

Proposition 107
Convergent sequences in (E, d) are Cauchy.

Proof: let xn → x and ε > 0; thus ∃N ∈ N such that d(xn, x) < ε
2
whenever

n > N . Now, letm > N . According to the triangle inequality,

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+
ε

2
= ε.

Consequently, (xn) is a Cauchy sequence. ■

In a normed space (E, ∥ · ∥), a sequence (xn) is bounded if ∃M ∈ N such that ∥xn∥ < M for
all n ∈ N.

But a metric space (E, d) is not necessarily a normed vector space, so there might not be
a norm available to determine boundedness.

In a general metric space (E, d), a sequence (xn) is bounded if ∃M > 0 s.t. xn ∈ B(0,M)
for all n ∈ N. Similarly, A ⊆ E is bounded if δ(A) <∞ (using the de inition from p. 192).

aaaaaa

Proposition 108
Every Cauchy sequence in (E, d) is bounded.

Proof: let (xn) be a Cauchy sequence. If 1 > ε > 0, then ∃N ∈ N such that
d(xn, xm) < εwhenever n,m > N . Now, let

M = max{d(0, x1), d(0, x2), . . . , d(0, xN), d(0, xN+1)}+ 2.

Then, for any n > N , the triangle inequality yields

d(0, xn) ≤ d(0, xN+1) + d(xN+1, xn) ≤M − 2 + 1,

i.e. for any n > N , xn ∈ B(0,M). Since xn ∈ B(0,M − 2) for all 1 ≤ n ≤ N , then
xn ∈ B(0,M) for all n ∈ N. ■

Interestingly, given its link to convergence in the case of complete spaces, the notion of a
Cauchy sequence is not topological.
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aaaaaa

Example: let A = (0,∞). Consider the following metrics onA:

d1(x, y) = |x− y| and d2(x, y) = | ln x− ln y|.

Show that both metrics induce the same topology on A, but that Cauchy sequences
under one are not necessarily Cauchy sequences under the other.

Proof: the mapping id : (A, d1) → (A, d2) is homeomorphic. Indeed, for
x, z ∈ A and ε, η > 0, we have

Bd1(x, ε) = {y ∈ A | |x− y| < ε} = (x− ε, x+ ε) ∩ A,

and

Bd2(z, η) = {y ∈ A | | ln z − ln y| < η} = {y ∈ A | e−η <
y

z
< eη} = (ze−η, zeη).

It is left as an exercise to show that

Bd1(z,
1
2
z(1− e−η)) ⊆ Bd2(z, η) and Bd2(x, ln(2x+ε

2x
)) ⊆ Bd1(x, ε)

for all x, z ∈ A, ε, η > 0. ThusW ⊆O (A, d1) ⇐⇒ W ⊆O (A, d2). We already know
that the sequence ( 1

n
) is Cauchy in (A, d1). But ifm = 2n, then

d2(
1
m
, 1
n
) =

∣∣ln 1
m
− ln 1

n

∣∣ = ∣∣ln n
m

∣∣ = ∣∣ln n
2n

∣∣ = ln 2 ≥ 1/2

for every n ∈ N, and so ( 1
n
) is not a Cauchy sequence in (A, d2). ■

This could not happen, however, if the metrics are strongly equivalent, which further illus-
trates the distinctness of the notions of strong equivalence and topological equivalence.

aaaaaa

Proposition 109
Let d and d̃ be two equivalent metrics on E. Then, (xn) is a Cauchy sequence in (E, d)
if and only if (xn) is a Cauchy sequence in (E, d̃).

Proof: since d and d̃ are equivalent, ∃a, b > 0 such that

ad(x, y) ≤ d̃(x, y) ≤ bd(x, y) ∀x, y ∈ E.

If (xn) is a Cauchy sequence in (E, d̃), then, ∀ε > 0, ∃N ∈ N such thatm,n > N =⇒
d̃(xn, xm) < ε. Thus, it is the case that

ad(xn, xm) ≤ d̃(xn, xm) < ε ∀m,n > N =⇒ d(xn, xm) <
ε

a
∀m,n > N.

Consequently, (xn) is also a Cauchy sequence in (E, d). By symmetry, the reverse
implication is clearly true. ■
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Ametric space (E, d) is complete if every single one of its Cauchy sequences is convergent. If
a complete metric space is also a normed vector space, then it is a Banach space. If a Banach
space is also an inner product space, then it is a Hilbert space.

aaaaaa

Examples (C , B , H S )
1. We have already seen that (R, d2) is a complete space. Since it is a normed

space, it is also a Banach space. The inner product (x | y) = xy makes it a
Hilbert space.

2. The same applies to (Kn, d2), with the inner product (x | y) =∑xiyi.

3. The space C = (CK([0, 1]), ∥ · ∥∞) is a Hilbert space with the inner product

(f | g) =
∫
[0,1]

fg dm, f ∼ g ⇐⇒ f = g a.e.

4. It is a bit less obvious that the space

ℓ2(N) = {X | X = (xn)n∈N; xn ∈ C,
∑
|xn|2 <∞}

is a Hilbert space, together with

(X | Y) =
∑
xnyn and ∥X∥2 = (X | X )1/2 = (

∑
|xn|2)1/2,

but it is a classical result (see Chapter 27). □

Closed subsets of complete spaces are especially well-behaved, as we see in the next two re-
sults.

aaaaaa

Proposition 110
Every closed subset of a complete metric space is complete.

Proof: let A ⊆C E and (xn) ⊆ A be a Cauchy sequence. Since E is complete,
xn → x converges in E. But A is closed, so x ∈ A, according to Proposition 105. ■

aaaaaa

Proposition 111
Every complete subspace of a metric space is closed.

Proof: let A ⊆ (E, d) be complete. Let x ∈ A. According to Proposition 104,
∃(xn) ⊆ A such that xn → x. Therefore, (xn) is a convergent sequence in E. In
particular, it is a Cauchy sequence of points in A, according to Proposition 107.
But A is complete so that x ∈ A. Hence A ⊆ A and so A = A, which means that
A ⊆C E. ■
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The product of two metric spaces (E ′, d′) and (E∗, d∗) is the metric space

(E, d) = (E ′ × E∗, sup{d′, d∗});

it is easy to see how this de inition can be extended to a product of n metric spaces. At any
rate, the product of metric spaces is also a metric space.⁶

aaaaaa

Proposition 112
Let (Ei, di) be metric spaces for i = 1, . . . , n. The product metric space
(E, d) = (E1 × · · · × En, supi=1,...,n{di}) is complete if and only if (Ei, di) for
all i = 1, . . . , n.

Proof: left as an exercise. ■

The following result is a generalization of the nested intervals theorem of Chapter 1.

aaaaaa

Proposition 113
Let (E, d) be a complete metric space. If (Fn) is a decreasing sequence of non-empty
closed subsets of E

E ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·

such that lim
n→∞

δ(Fn) = 0, then
∩
n≥1

Fn = {x} for some x ∈ E.

Proof: let Γ =
∩
Fn. For each n ∈ N, pick xn ∈ Fn.

Let ε > 0. Since δ(Fn)→ 0, ∃Nε ∈ N such that

n > Nε =⇒ δ(Fn) < sup{d(w, z) | w, z ∈ Fn} < ε
2
.

Letm > n > Nε and pick y ∈ Fm ⊆ Fn. Then

m > n > Nε =⇒ d(xn, xm) ≤ d(xn, y) + d(y, xm) < ε
2
+ ε

2
= ε.

As (xn) ⊆ E is Cauchy and E is complete, ∃x ∈ E such that xn → x. For all p ≥ 1,
(xn)n≥p ⊆ Fp. As Fp ⊆C E, (xn)n≥p converges in Fp, according to Proposition 105.
Hence x ∈ Fp for all p ≥ 1. Consequently, x ∈ Γ.

But if y ∈ Γ, then y ∈ Fn for all n, so that 0 ≤ d(x, y) ≤ δ(Fn) → 0 for all n.
Thus d(x, y) = 0, so that y = x and Γ = {x}. ■

If r ∈ (0, 1), for instance, and if we have Fn = B(0, rn) ⊆ (Rm, d2) for some m ≥ 1, then∩
Fn = {0}.

⁶In fact, the de inition can be generalized to arbitrary collections {Eα}α∈J , but we will see in Part IV that
there are complications.
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The following contraction result is representative of a family of extremely useful theorems.

aaaaaa

Theorem 114 (F P T )
Let (E, d) be a a complete metric space and let f : E → E be a contraction on E,
that is,

∃k ∈ (0, 1) such that d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ E.

Then ∃!x∗ ∈ E such that f(x∗) = x∗; x∗ is a ixed point of f .

Proof: let x0 ∈ E. If f(x0) = x0, we are done. Otherwise, consider the se-
quence (fn(x0))n, where fn represents n successive compositions of f :

d(fn(x0), fn+1(x0)) = d(f(fn−1(x0)), f(fn(x0))) ≤ kd(fn−1(x0), fn(x0))
= kd(f(fn−2)(x0), f(fn−1)(x0)) ≤ · · · ≤ knd(x0, f(x0)).

Then, for anym > n,

d(fm(x0), fn(x0)) ≤ d(fm(x0), fm−1(x0)) + · · ·+ d(fn+1(x0), fn(x0))

≤ (kn + · · ·+ km−1)d(x0, f(x0)) ≤
kn

1− k
d(x0, f(x0))

For any ε, let Mε =
⌈
ln
(

ε
d(x0,f(x0))(1− k)

)
− ln k

⌉
. Then, whenever m > n > Mε,

we have

d(fm(x0), fn(x0)) ≤
kn

1− k
d(x0, f(x0)) ≤

kMε

1− k
d(x0, f(x0)) < ε.

Consequently, (fn(x0)) is a Cauchy sequence in E. But E is complete so that
fn(x0)→ x for some x ∈ E.

By de inition, contraction mappings are Lipschitz continuous, and thus also
continuous, and so

f(x) = f
(

lim
n→∞

fn(x0)
)
= lim

n→∞
f(fn(x0)) = lim

n→∞
fn+1(x0) = x.

Now, suppose that x and y are two ixed points of f . Then,

d(x, y) = d(f(x), f(y)) ≤ kd(x, y).

Since k < 1, the onlyway for the inequality to be valid is if d(x, y) = 0, which implies
that x = y. The ixed point of f is thus unique. Call it x∗ to match with the statement
of the theorem. ■
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The choice of x0 ∈ E in the proof of Theorem 114 is arbitrary; if f is a contraction, the se-
quence (fn(x)) converges to the unique ixed point x∗ for all x ∈ E. Note that the restriction
k ∈ (0, 1) is necessary, as the following example demonstrates.

aaaaaa

Example: let f : R→ R be de ined by

f(x) =

{
1, x < 0

x+ 1
x+1

, x ≥ 0
.

It is not hard to see that f has no ixed point (see exercise 45), yet

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R. □

8.3 Solved Problems
1. LetA,B be subsets of a metric space (E, d). Show that

a) B ⊆ A =⇒ int(B) ⊆ int(A)
b) B ⊆ A =⇒ B ⊆ A

c) int(A ∩B) = int(A) ∩ int(B)

d) A ∪B = A ∪B
e) int(A) ∪ int(B) ⊆ int(A ∪B)

f) A ∩B ⊆ A ∩B

Proof:

a) By de inition, int(B) ⊆ B ⊆ A, i.e. int(B) is an open set contained in A. Con-
sequently, int(B) is contained in the largest open set contained in A, namely
int(A).

b) Byde inition,B ⊆ A ⊆ A, i.e.A is a closed set containingB. Consequently,A con-
tains the smallest closed set containingB, i.e.B.

c) Since int(A) ∩ int(B) ⊆O E and since int(A) ⊆ A and int(B) ⊆ B, we must
have int(A)∩ int(B) ⊆ A∩B. As such, int(A)∩ int(B)must be contained in the
largest open set contained inA∩B, so that int(A)∩ int(B) ⊆ int(A∩B).On the
other hand, sinceA∩B ⊆ A,B, thenwemust have int(A∩B) ⊆ int(A), int(B)
and so

int(A ∩B) ⊆ int(A) ∩ int(B).

d) Basically the same proof with ∩↭ ∪,⊆↭⊇, int(·) ↭ (·).
e) SinceA,B ⊆ A∪B, then int(A), int(B) ⊆ int(A∪B). Hence int(A)∪ int(B) ⊆

int(A ∪B).
f) Basically the same proof with ∩↭ ∪,⊆↭⊇, int(·) ↭ (·). ■
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2. In each instance, give an example showing that, in general,

a) int(A) ∪ int(B) ̸= int(A ∪B)

b) A ∩B ̸= A ∩B

Solution:

a) Let E = R with the Euclidean metric, and let A = [a, b] and B = [b, c] with
c > b > a, for instance. Then

int(A)= (a, b), int(B) = (b, c), A ∪B = [a, c],

int(A ∪B)= (a, c), int(A) ∪ int(B) = (a, b) ∪ (b, c) = (a, c) \ {b}.

b) Let E = R with the Euclidean metric, and A = (a, b) and B = (b, c) with c >
b > a, for instance. Then

A = [a, b], B = [b, c], A ∩B = ∅, A ∩B = ∅, A ∩B = {b}. □

3. LetA be subset of a metric space (E, d). Show that

a) E \ int(A) = E \ A
b) E \ A = int(E \ A)
c) ∂(int(A)) ⊆ ∂A

d) ∂A ⊆ ∂A

Proof:

a) We have

int(A) ⊆ A, by de inition
E \A ⊆ E \ int(A), again by de inition
E \A ⊆ E \ int(A) = E \ int(A), asE \ int(A) ⊆C E

On the other hand, we have

E \A ⊆ E \A, by de inition
E \ E \A ⊆ E \ (E \A) = A, again by de inition
E \ E \A = int(E \ E \A) ⊆ int(A) = E \ int(A), asE \ E \A ⊆O E

E \ int(A) ⊆ E \A

b) We have

A ⊆ A, by de inition
E \A ⊆ E \A, again by de inition
E \A = int(E \A) ⊆ int(E \A), asE \A ⊆O E
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On the other hand, we have

int(E \A) ⊆ E \A, by de inition
A = E \ (E \A) ⊆ E \ int(E \A), again by de inition
A ⊆ E \ int(E \A) = E \ int(E \A) asE \ int(E \A) ⊆C E

int(E \A) ⊆ E \A

c) Since int(A) ⊆ A, we have int(A) ⊆ A and so

∂ int(A) = int(A) \ int(A) ⊆ A \ int(A) = ∂A.

d) Basically the same idea, as above, but withX \ int(A) ⊆ X \ int(A). ■

4. Find an example of a subset A of a metric space (E, d) for which ∂(int(A)), ∂A and ∂A
are all different.

Solution: let E = Rwith the Euclidean metric, and let A = Q ∪ (0, 1), for instance.
Then

A = Q ∪ (0, 1) = Q ∪ (0, 1) = R
int(A) = {x ∈ R | ∃r > 0 s.t. B(x, r) ⊆ A} = (0, 1)

∂(int(A)) = int(A) \ int(A) = (0, 1) \ (0, 1) = [0, 1] \ (0, 1) = {0, 1}
∂A = A \ int(A) = R \ (0, 1)
∂A = A \ int(A) = R \ int(R) = R \ R = ∅

which are all distinct. □

5. Find two subsetsA,B ⊆ (R, d2) for whichA∪B, int(A)∪B,A∪ int(B), int(A)∪ int(B),
and int(A ∪B) are all distinct.

Solution: letE = Rwith the Euclidean metric, and let

A = [
√
2, φ) ∪ (φ, e) ∪ {π} ∪ (Q ∩ (8, 9)), φ =

1 +
√
5

2

for instance. Then

int(A) = (
√
2, φ) ∪ (φ, e), A = [

√
2, e] ∪ {π} ∪ [8, 9]

int(A) = (
√
2, e) ∪ (8, 9)

int(A) = [
√
2, e]

int(A) = [
√
2, e] ∪ [8, 9]

int
(
int(A)

)
= (
√
2, e)

are all distinct. □

6. Find a subsetA ⊆ (R, d2) for whichA, int(A),A, int(A), int(A), int(A) and int
(
int(A)

)
are all distinct.
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Solution: let E = R with the Euclidean metric, and let A = [
√
2, e] and B = [e, π],

for instance. Then

A ∪B = [
√
2, π]

int(A) ∪B = (
√
2, π]

A ∪ int(B) = [
√
2, π)

int(A) ∪ int(B) = (
√
2, π) \ {e}

int(A ∪B) = (
√
2, π)

which are all distinct. □

7. For any subset A ⊆ (R, d2), show that int
(
int(A)

)
= int(A).

Proof: By de inition,

int(A) ⊆ A =⇒ int(A) ⊆ A = A =⇒ int
(
int(A)

)
⊆ int(A).

On the other hand, wheneverB is open we have

B ⊆ B =⇒ B = intB ⊆ int(B).

SetB = int(A). ThenB is open and

int(A) ⊆ int(B) = int
(
int(A)

)
,

which completes the proof. ■

(Could we replace (R, d2) by any metric space? Any topological space?)

8. We say that A ⊆ E ismeagre (or nowhere dense) if and only if int(A) = ∅. Show that
a) A is meagre if and only if int(E \A) is dense inE (A is dense inB ifA ⊆ B ⊆ A);
b) A is meagre if and only if A is contained in a closed subset of E whose interior is

empty;
c) A is closed and meagre if and only ifA = ∂A, and
d) A is meagre=⇒ A = ∂A.

Proof:
a) =⇒ If int(A) = ∅, then

E = E \∅ = E \ int(A) = E \A = intE \A.

Hence int(E \A) is dense inE.

⇐= It’s pretty much the same thing: if int(E \A) = E, then

E = intE \A = E \A = E \ int(A).

Hence int(A) = ∅.
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b) =⇒ If int(A) = ∅, then A does not have interior points. Since A ⊆C E and
sinceA ⊆ A, thenA is contained in a closed set whose interior is empty.

⇐= Let A ⊆ B, where B ⊆C E and int(B) = ∅. By de inition, A ⊆ B
and so int(A) ⊆ int(B) = ∅.

c) =⇒ IfA = A and int(A) = ∅, then int(A) = int(A) = ∅. Then

∂A = A \ int(A) = A \∅ = A = A.

⇐= We have A = ∂A ⇐⇒ A = A \ A =⇒ A ⊆ A \ int(A). However
int(A) ⊆ A so that int(A) ̸= ∅ =⇒ A ̸⊆ A \ int(A). Consequently, int(A) = ∅,
which means thatA = ∂A = A and soA ⊆C E. Then int(A) = int(A) = ∅.

d) If int(A) = ∅, we haveA ⊆ A =⇒ int(A) ⊆ int(A) = ∅. Hence

∂A = A \ int(A) = A \∅ = A.

(What condition must hold for the converse to be satis ied?) ■

9. Show that d∞, d1 and d2 are equivalent on R2.

Proof: we could do it directly, but notice that these metrics are all derived from
norms on R2. Since R2 is a inite-dimensional vector space, all norms on R2 are
equivalent. Hence the three metrics are equivalent. That is all there is to it. ■

10. For i = 1, . . . , n, let (Ei, di) be metric spaces and Ui ⊆O Ei. Show that U1 × · · · × Un is
an open subset of

(E, d) = (E1 × · · · × En, sup{di | i = 1, . . . , n}).

Proof: consider the subset U = U1 × · · · × Un ⊆ E, where Ui ⊆O Ei for all i.
Let x ∈ U . Then πi(x) = xi ∈ Ui for all i. But Ui ⊆O Ei so that ∃ηi > 0 with
Bdi(xi, ηi) ⊆ Ui. Set η = min{ηi}ni=1 > 0. Then

B(x, η) = {y|d(x, y) < η} = {y| sup{di(xi, yi)}ni=1 < η}

= {y|di(xi, yi) < η ∀i = 1, . . . , n} =
n∏

i=1

Bdi(xi, η) ⊆
n∏

i=1

Ui = U

Consequently, U ⊆O E. ■

11. For i = 1, . . . , n, let (Ei, di) be metric spaces and let πi : E1 × · · · ×En → Ei be de ined
by πi(x1, . . . , xn) = xi. Show that πi is open and continuous.

Proof: let i ∈ {1, . . . , n} and U ⊆O Ei. Since

π−1
i (U) = E1 × · · ·Ei−1 × U × Ei+1 × · · ·En,

then π−1
i (U) ⊆0 E1 × · · · × En according to the previous problem, and so πi is con-

tinuous.
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Now, suppose that V ⊆O E1 × · · · × En. We need to show that

πi(V ) = {x ∈ Ei|x = πi(y), y ∈ V } ⊆O Ei.

Let u ∈ πi(V ) and consider x ∈ π−1
i (u). Since V ⊆O E1 × · · · × En, ∃rx > 0 such

that Bd(x, rx) ⊆ V . We will show that Bdi(u, rx) ⊆ πi(V ). Let z ∈ Bdi(u, rx). Then
di(u, z) < rx. Set w = x, except in the ith position, where wi = z. Then πi(w) = z
and

d(w, x) = sup{di(wi, xi)} = sup{0, . . . , di(z,u), . . . , 0} = di(z,u) < rx,

that is,w ∈ Bd(x, rx) ⊆ V . Thus z = πi(w) ∈ πi(V ), and so πi is open. ■

12. Show that a map f : (F, δ)→ (E1, d1)×· · ·× (En, dn) is continuous at a ∈ F if and only
if πi ◦ f is continuous at a ∈ F for all i.

Proof: if f is continuous at a, then π ◦ f is continuous at a for all i, since πi is contin-
uous and the composition of continuous functions is continuous.

Now, if πi ◦ f is continuous at a ∈ F for all i, then, for all ε > 0, ∃η1, . . . , ηn > 0
such that di(πi(f(x)), πi(f(a))) < εwhenever δ(x, a) < ηi for all i = 1, . . . , n.

Set η = sup{ηi} > 0. Then, for all ε > 0,

d(f(x), f(a)) = sup{di(πi(f(x)), πi(f(a)))} < ε

whenever δ(x, a) < η; as such, f is continuous at a. ■

13. Let f : (E1, d1)× · · · × (En, dn) → (F, δ) and a = (a1, . . . , an) ∈ E. For all i, de ine fi :
(Ei, di)→ (F, δ) by fi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an). Show that if f is continuous
at a, then fi is continuous at a for all i.

Proof: by continuity of f , for all ε > 0, ∃η > 0 such that

d(x, a) < η =⇒ δ(f(x), f(a)) < ε.

For any x ∈ Ei, write x̃ = (a1, . . . , ai−1, x, ai+1, . . . , an). Then, if d(x̃, a) < η, we have

δ(fi(x), fi(a)) = δ(f(x̃), f(a)) < ε.

Since di(x, ai) ≤ d(x̃, a) < η, fi is continuous at a. ■

14. Show that d = sup{di | i = 1, . . . , n} de ines a metric on E =
∏n

i=1(Ei, di).
Proof: the only property which is not immediately obvious is the triangle inequality
(and even at that, it is pretty obvious). Let x, y, z ∈ E. Then

d(x, y) = sup{di(xi, yi)} ≤ sup{di(xi, zi) + di(zi, yi)}
≤ sup{di(xi, zi)}+ sup{di(zi, yi)} = d(x, z) + d(z, y)

So we’ve got that going for us, which is nice. ■
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15. Let (Ei, di) be metric spaces for i = 1, . . . , n. Show that the metric product space
(E, d) = (

∏
Ei, sup{di}) is complete if and only if (Ei, di) is complete for each i.

Proof: Assume (E, d) is complete, and let (xn) be a Cauchy sequence in (Ei, di) for
some i. Then for all ε > 0, ∃M ∈ N such that di(xn, xm) < εwhenever n,m > M .

For each j ̸= i, pick aj ∈ Ej .

Write wn = (a1, . . . , ai−1, xn, ai+1, . . . , an). Then (wn) is a Cauchy sequence in E:
indeed for all ε > 0, we have

d(wn,wm) = sup{di(πi(wn), πi(wm))}
= sup{d1(a1, a1), . . . , di(xn, xm), . . . , dn(an, an)}
= sup{0, . . . , 0, di(xn, xm), 0, . . . , 0} = di(xn, xm) < ε

whenever n,m > M .

Since (E, d) is complete, ∃w ∈ E for whichwn → w. Furthermore, πi is continuous,
so that xn = πi(wn)→ πi(w) ∈ Ei, and so (xn) converges in (Ei, di). Consequently,
(Ei, di) is complete for all i.

On the other hand, suppose that (Ei, di) is complete for all i, and let (wn) be a Cauchy
sequence in (E, d).

Since di(πi(wn), πi(wm)) ≤ d(wn,wm) for all i, (πi(wn)) is a Cauchy sequence in
(Ei, di) for all i. As all (Ei, di) are complete, ∃x1, . . . , xn, xi ∈ Ei, such that πi(wn)→
xi for all i, i.e. for all ε > 0, ∃M1, . . . ,Mn ∈ N such that

∀i, di(πi(wn), xi) < ε whenever n > Mi.

SetM = max{Mi|i = 1, . . . , n} <∞ andw = (x1, . . . , xn). Let ε > 0.

Then
d(wn,w) = sup{di(πi(wn), πi(w))} = sup{di(πi(wn), xi)} < ε

whenever n > M .

As we have shown thatwn → w ∈ E, we conclude that (E, d) is complete. ■

16. Show that the converse of the previous result does not hold in general, for instance for
f : R2 → R de ined by

f(x, y) =

{
xy

x2+y2
, (x, y) ̸= (0, 0)

0, else

Solution: the problem is that f(x, 0) is continuous at x = 0, f(0, y) is continuous
at y = 0, but f(x, y) is not continuous at (x, y) = (0, 0) since, among other things,
lim
z→0

f(z, z) =
1

2
̸= 0. ■
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17. Let d1, d2 : N× N→ R be de ined according to

d1(m,n) =

{
0, ifm = n

1 + 1
m+n

, otherwise d2(m,n) =
|m− n|
mn

.

a) Show that d1 and d2 are metrics on N.
b) Show that the topologies of (N, d1) and (N, d2) are both discrete.
c) Show that (N, d1) is complete but that (N, d2) is not.
d) What does this say about completeness as a topological property of a space?

Proof:

a) The only property which is not immediately obvious is the triangle inequality.
If d1(m,n) = 0, then 0 = d1(m,n) ≤ d1(m, k) + d1(k, n) for all k.

If d1(m,n) ̸= 0 and d1(m, k) = 0, then d1(m,n) ≤ d1(m, k) + d1(k, n).

If d1(m,n), d1(m, k), d1(k, n) ̸= 0, then

d1(m,n) = 1 +
1

m+ n
≤ 2 +

1

m+ k
+

1

k + n
= d1(m, k) + d1(k, n)

since 1
m+n < 1.

For d2, notice that

d2(m, k) + d2(k, n) =
|m− k|
mk

+
|k − n|
kn

=
n|m− k|+m|k − n|

mkn

=
|nm− nk|+ |mk −mn|

mkn

≥ |mk − nk|
mkn

=
|m− n|k
mkn

=
|m− n|
mn

= d2(m,n)

b) For all n ∈ N, we need to show that {n} is open in both (N, d1) and (N, d2), that
is, we must show ∃r1, r2 > 0 such thatBdi(n, ri) ⊆ {n}.

Pick any r1 < 1. Then

Bd1(n, r1) = {y ∈ N |1 (y, n) < r1} =
{
y ∈ N | y = n or 1

n+y < 1
}
= {n}.

Simple algebraic manipulations show that d2(n,m) ≥ 1
n(n+1) whenever

n ̸= m ∈ N. Set r2 = 1
n(n+1) > 0. Then

Bd2(n, r2) =

{
y ∈ N |2 (n, y) <

1

n(n+ 1)

}
= {n}

P. Boily (uOttawa) 223



8.3. SOLVED PROBLEMS

c) For completeness:
Let (kn) be a Cauchy sequence in (N, d1). Then, for all 1 > ε > 0, ∃M ∈ N
such that d1(kn, km) < εwhenever n,m > M .

Since d1(x, y) > 1 for all x ̸= y, we must have kn = km for all n,m > M .
Then (kn) is constant for alln > M , and as such, it is a convergent sequence
in (N, d1).
Consider the sequence (n) in (N, d2). To show that (n) is a Cauchy sequence,
let ε > 0 andM > 2

ε . Then

d2(m,n) =
|m− n|
mn

≤ m+ n

mn
=

1

m
+

1

n
≤ 2

min{m,n} <
2

M
< ε

wheneverm,n > M .

Now, ifn→ K in (N, d2), then, for ε = 1
K(K+1) , ∃M ∈ N such thatd(K,n) <

1
K(K+1) whenever n > M (except for possiblyK = n).

But this contradicts the fact that d(K,n) ≥ 1
K(K+1) whenever K ̸= n.

Hence (n) cannot converge in (N, d2).
d) This is yet another example that completeness is not a topological property... ■

18. Let (E, d) be a metric space. De ine d1, d2 : E × E → R by d1(x, y) = d(x,y)
1+d(x,y) and

d2(x, y) = min{d(x, y), 1}.

a) Show that d1 and d2 are metrics on E.
b) Show that d is topologically equivalent to d2.
c) Show that d1 is topologically equivalent to d2.

Proof:
a) The only property which is not immediately obvious is the triangle inequality.

Let x, y, z ∈ E.

Write t = d(x, y) ≥ 0, k = d(x, z) ≥ 0, ℓ = d(z, y) ≥ 0. Since d is a
metric, t ≤ k + ℓ. Since the function f(w) = w

1+w is increasing over [0,∞),

d1(x, y) =
t

1 + t
≤ k + ℓ

1 + k + ℓ
=

k

1 + k + ℓ
+

ℓ

1 + k + ℓ

≤ k

1 + k
+

ℓ

1 + ℓ
= d1(x, z) + d1(z,w).

Let x, y, z ∈ E. If d2(x, z) ≥ 1 or d2(z, y) ≥ 1, then

d2(x, z) + d2(z, y) ≥ 1 ≥ d2(x, y).

If d2(x, z) < 1 and d2(z, y) < 1, then

d2(x, z) ≤ d(x, y) ≤ d(x, z) + d(z, y) = d2(x, z) + d2(z, y).
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b) Since d2 ≤ d, Bd(x, r) ⊆ Bd2(x, r) for all x ∈ E and r > 0. That is, Bd2(x, r) is
open in the d−topology.

Similarly,Bd2(x,min{r, 1}) ⊆ Bd(x, r) for all x ∈ E. That is,Bd(x, r) is open in
the d2−topology. Hence d and d2 are equivalent.

c) Lengthy but simple manipulations show that

d1︸︷︷︸
red

≤ d2︸︷︷︸
green

≤ 2d1︸︷︷︸
yellow

and so the metrics are equivalent. □

19. Let (E, d) and (F, d̂) be two metric spaces, and let A ⊆ E be dense in E.

a) If f : (A, d) → (F, d̂) is continuous and if limy→x,y∈A f(y) exists for all x ∈ E \ A,
show that there exists a unique continuous function g : E → F with g|A = f .

b) Assume further that (F, d̂) is complete. If f : (A, d) → (F, d̂) is uniformly contin-
uous, show that there exists a unique function g : E → F , uniformly continuous,
with g|A = f .

Proof:

a) The function g : E → F that does the trick is given by

g(x) =

{
f(x), x ∈ A
limy→x,y∈A f(y), x ∈ E \A

(8.4)
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In order to show that g is continuous, let x ∈ E and (xn) ⊆ E be such that
xn → x. For all n ∈ N, g(xn) = limy→xn,y∈A f(y). Consequently, for any n ∈ N,
∃yn ∈ A such that

d(xn, yn) ≤
1

n
and d̂(g(xn), f(yn)) <

1

n
.

From the triangle inequality

d(x, yn) ≤ d(x, xn) + d(xn, yn) ≤
1

n
+ d(x, xn)

we conclude that yn → x and so that f(yn)→ g(x). Combining this result with

d̂(g(xn), g(x)) ≤ d̂(g(xn), f(yn)) + d̂(f(yn), g(x)) ≤
1

n
+ d̂(f(yn), g(x)),

we conclude that g(xn) → g(x). By the Sequential Criterion, g is thus continu-
ous at x for all x ∈ E, and so it is continuous onE.

It remains only to show that g is the unique function satisfying the conditions
outlined in the statement of the problem.

Let g, h : E → F be two continuous functions with g|A = h|A = f |A. Then
g(x) = h(x) for all x ∈ A.

Now, let x ∈ E \ A. Since A is dense in E, there is a sequence (xn) ⊆ A such
that xn → x. Since g and h are continuous,

g(x) = lim
n→∞

g(xn) = lim
n→∞

f(xn) = lim
n→∞

h(xn) = h(x).

Hence g(x) = h(x) for all x ∈ E. Consequently, g = h onE.
b) Let x0 ∈ E \ A and ε > 0. Since f is uniformly continuous on A, ∃α > 0 such

that d̂(f(x), f(y)) < εwhenever x, y ∈ A and d(x, y) < α.

In particular, if x, y ∈ A are such that d(x, x0), d(y, x0) < α
2 , then d(x, y) < α

and d̂(f(x), f(y)) < ε.

Since (F, d̂) is complete, the Cauchy Criterion for Functions (wewill discuss this
one later) applies and we conclude that limy→x0,y∈A f(y) exists. According to
the result of part (a), the function g : E → F de ined by (8.4) is continuous on
E.

It remains only to show that g is uniformly continuous onE.

Let ε > 0. By hypothesis, f is uniformly continuous on A. As a result, ∃α > 0
such that d̂(f(x), f(y)) < εwhenever x, y ∈ A and d(x, y) < α.

Letx, y ∈ E satisfyd(x, y) < α. SinceA is dense inE, two sequences (xn), (yn) ⊆
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A can be found such that xn → x and yn → y. Since d is a continuous mapping,
d(xn, yn)→ d(x, y) < αwhich shows the existence of an indexN ∈ N such that
d(xn, yn) < α for all n > N .

Hence, d̂(f(xn), f(yn)) < ε for all n > N . By continuity,

d̂(f(xn), f(yn))→ d̂(g(x), g(y)) ≤ ε,

which shows that g is uniformly continuous onE. ■

20. Let (E, d) be a metric space. Let C denote the set of Cauchy sequences in E.
a) i. Let U = (un), V = (vn) ∈ C. Show that (d(un, vn)) converges, and denote its

limit by δ(U, V ).
ii. Show that δ is symmetric and satis ies the triangle inequality.

b) Consider the equivalence relation∼ on C de ined by
U ∼ V ⇐⇒ δ(U, V ) = 0.

Write Ê = C/ ∼ and denote the equivalence class of U ∈ C in Ê by Û .
i. What is the equivalence class of a sequence which converges in E?
ii. If U ∼ U ′ and V ∼ V ′, show that δ(U, V ) = δ(U ′, V ′). Thus, for Û , V̂ ∈ Ê, the

real number δ(Û , V̂ ) = δ(U, V ) is well-de ined, not being dependent on the
choice of class representatives.

iii. Show that δ is a metric on Ê.
iv. Let ι : E → Ê be de ined by ι(α) = (̂α), where (α) is the constant sequence.

Show that ι is an isometry (and so also 1− 1). Furthermore, show that ι(E) is
dense in Ê.

c) Show that (Ê, δ) is complete.
d) Let (E1, d1) and (E2, d2) be complete metric spaces, and suppose that there are

isometries ιk : E → Ek with ιk(E) dense in Ek, for k = 1, 2. Show that there is a
unique bijective isometry φ : E1 → E2 such that φ(ι1(x)) = ι2(x) for all x ∈ E.

Proof:
a) i. Since R is complete, it will suf ice to show that (d(un, vn)) is a Cauchy se-

quence. For all p, q ∈ N,

d(up, vp) ≤ d(up,uq) + d(uq, vq) + d(vp, vq)
d(uq, vq) ≤ d(up,uq) + d(up, vp) + d(vp, vq)

whence

d(up, vp)− d(uq, vq) ≤ d(up,uq) + d(vp, vq)
d(uq, vq)− d(up, vp) ≤ d(up,uq) + d(vp, vq)

and so |d(up, vp)− d(uq, vq)| ≤ d(up,uq)+ d(vp, vq)→ 0, since bothU and
V are Cauchy sequences. Consequently, (d(un, vn)) is a Cauchy sequence.
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ii. Symmetry is clear, since the limit of a convergent sequence is unique in a
metric space and

δ(V,U)← d(vn,un) = d(un, vn)→ δ(U, V ).

The triangle inequality is also obvious since

δ(U, V )← d(un, vn) ≤ d(un,wn) + d(wn, vn)→ δ(U,W ) + δ(W,V )

implies that δ(U, V ) ≤ δ(U,W ) + δ(W,V ).

b) i. Let U = (un) be a convergent sequence in E which converges to α ∈ E.
Since any convergent sequence is a Cauchy sequence, U ∈ C. Let V =
(vn) ∈ C. Then

U ∼ V ⇐⇒ δ(U, V ) = 0 ⇐⇒ d(un, vn)→ 0.

Thanks to the inequalities

d(α, vn) ≤ d(α,un) + d(un, vn) and d(un, vn) ≤ d(α,un) + d(α, vn),

we see that U ∼ V if and only if d(α, vn) → 0 (since we already have
d(α,un)→ 0). Then, Û = {V = (vn) ∈ C | vn → α}.

ii. If U ∼ U ′ and V ∼ V ′, then, according to the triangle inequality, we have

δ(U, V ) ≤ δ(U,U ′) + δ(U ′, V ′) + δ(V, V ′) = δ(U ′, V ′).

Similarly, δ(U ′, V ′) ≤ δ(U, V ) so that δ(U, V ) = δ(U ′, V ′).

iii. It remains only to show that δ(Û , V̂ ) = 0 if and only if Û = V̂ . But that is
exactly how the equivalence relation was built in the irst place.

iv. For any α ∈ E, let (α) ∈ C be the constant sequence. Then

δ(ι(α), ι(β)) = δ((α), (β)) = d(α, β)

and so ι is an isometry.

Let Û ∈ Ê, with U = (un) ∈ C, and ε > 0. Since U is a Cauchy sequence,
∃N ∈ N such that for all p, q > N we have d(up,uq) < ε. Now, ix p > N .
Then

δ(Û , ι(up)) = δ(U, (up)) = lim
n→∞

d(un,up) ≤ ε.

Since this holds for all p > N , we conclude that ι(un) → Û . Hence any
element of Ê is the limit of a sequence of elements of ι(E), i.e. ι(E) is dense
in Ê.

228 Analysis and Topology Course Notes



CHAPTER 8. METRIC SPACES AND SEQUENCES

c) Let (αn) be a Cauchy sequence in Ê. Since ι(E) is dense in Ê, ∀n ∈ N, ∃xn ∈ E
with δ(αn, ι(xn)) < 1

n . Then

d(xp, xq) = δ(ι(xp), ι(xq)) ≤ δ(ι(xp), αp) + δ(αp, αq) + δ(αq, ι(xq))

≤ δ(αp, αq) +
1

p
+

1

q

so that d(xp, xq) → 0 as p, q → ∞, which is to say that (xn) ∈ C. Denote
α = (x̂n) ∈ Ê.

We will show that αn → α. Since

δ(αn, α) ≤ δ(αn, ι(xn)) + δ(ι(xn), α) <
1

n
+ δ(ι(xn), α),

it suf ices to show that δ(ι(xn), α)→ 0.

Let ε > 0. The sequence (xn) being Cauchy inE, ∃N ∈ N such that d(xp, xq) < ε
whenever p, q ≥ N . Thus, ixing n and letting p→∞, we have

δ(ι(xn), α) = lim
p→∞

d(xn, xp) ≤ ε

for all n > N , whence we have the desired result.

d) De ine φ on ι1(E) by setting φ(ι1(x)) = ι2(x) for all x ∈ E. Restricted to ι1(E),
the mapping φ is an isometry since

d2(φ(ι1(x)), φ(ι1(y))) = d2(ι2(x), ι2(y)) = d(x, y) = d1(ι1(x), ι1(y))

for all x, y ∈ E. Thus, φ is uniformly continuous on ι1(E). Since ι1(E) is dense
in E1 and since E2 is complete, we can apply the result of a previous problem
to show thatφ canbe extended to auniqueuniformly continuous functiononE1.

Furthermore, φ is an isometry on ι1(E); since ι1(E) is dense in E1 and since
φ is continuous on E1, φ is an isometry on E1 in its entirety. In particular φ is
1− 1.

It remains only to show that φ is onto. Let β ∈ E2. As ι2(E) is dense in E2,
∃(βn) = (ι2(xn)) ⊆ ι2(E) such that βn → β. Since

d1(ι1(xp), ι1(xq)) = d(xp, xq) = d2(ι2(xp), ι2(xq)) = d2(βp, βq)

for all p, q ∈ N, the sequence (ι1(xn)) is a Cauchy sequence in E1. But E1 is
complete so that ι1(xn)→ α ∈ E1. Since φ is continuous, we have

φ(α) = lim
n→∞

φ(ι1(xn)) = lim
n→∞

ι2(xn) = lim
n→∞

βn = β,

that is, φ is onto. ■
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21. LetA,B ⊆ E, where E is endowed with any metric you care to imagine. Show that

a) A ⊆ A

b) (A) = A

c) A ∪B = A ∪B
d) ∅ = ∅
e) in general,A ∩B ̸= A ∩B

Proof:
a) This one is clear by de inition.
b) By part (a),A ⊆ (A). Conversely, since (A) is the smallest closed set containing

A and sinceA is also a closed set containingA, then (A) ⊆ A. Hence,A = (A).
c) Since the union of two closed sets is closed,A∪B is a closed set containingA∪B

and soA ∪B ⊆ A∪B. Conversely,A ∪B is a closed set containing bothA and
B, so bothA,B ⊆ A ∪B; thereforeA ∪B ⊆ A ∪B. ThusA ∪B = A ∪B.

d) Since∅ is always a closed set,∅ = ∅.
e) Consider the following example in (R, d2): letA = (−1, 0) andB = (0, 1). Then

A = [−1, 0],B = [0, 1],A ∩B = ∅,A ∩B = ∅whileA ∩B = {0}. ■

22. LetA be a subset of (E, d). Show that A = int(A) ∪ ∂A.
Proof: suppose that x ∈ int(A). Then x ∈ A ⊆ A. Now suppose that x ∈ ∂A.
We proceed by contradiction. If x ̸∈ A then, since E \ A ⊆O E, ∃r > 0 such that
B(x, r) ⊆ E \ A ⊆ E \ A. This contradicts the fact that x ∈ ∂A (how?) and so we
must have x ∈ A. Thus int(A) ∪ ∂A ⊆ A.

Conversely, suppose that x ∈ A. There are only three possibilities: x ∈ int(A),
x ∈ ∂A or x ∈ int(E \ A) (why?). If x ∈ int(E \ A), then ∃r > 0 such that
B(x, r) ⊆ E \ A. This implies that A ⊆ E \ B(x, r). Therefore A ⊆ E \ B(x, r),
sinceE \B(x, r) ⊆C E, which in turns implies that x ̸∈ A, a contradiction.

Thus x ∈ int(A) ∪ ∂A and soA ⊆ int(A) ∪ ∂A. ■

23. Let A = { 1
n
| n ∈ N×}. Under the usual topology on R, show that every point of A is a

boundary point and that the only cluster point of A is 0.
Proof: To show that every point of x ∈ A is a boundary point, note that any neigh-
bourhood V of x contains an open interval Ir = (x − r, x + r), for some r > 0. But
x ∈ Ir∩A and since any open interval contains an irrational number Ir∩(R\A) ̸= ∅.
Consequently, any neighbourhood of x contains both points in A and points not in
A, which is another de inition of x ∈ ∂A.

To show that 0 is a cluster point of A, note that any neighbourhood of 0 in (R, d2)
contains an interval of the form (−ε, ε) for some ε > 0. By the Archimedean prop-
erty, ∃N ∈ N such that 1

N < ε. Hence 0 ̸= 1
N ∈ B(0, ε) and so 0 is a cluster point ofA.
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In order to show that there are no other cluster points, irst observe that any x < 0
cannot be a cluster point of A since the neighbourhood (−2x, 0) contains no points
in A. Likewise, any x > 1 cannot be a cluster point of A since the neighbourhood
(1, 2x) contains no point ofA.

If x ∈ (0, 1], then either x ∈ A or x ̸∈ A. If x = 1
n ∈ A, then the open neigh-

bourhood (x−r, x+r) contains no other point ofA as long as r < 1
n(n−1) , and so x is

not a cluster point ofA. If x ̸∈ A, choose k ∈ N such that x ∈ ( 1k ,
1

k−1). Then the open
neighbourhood (x−r, x+r) contains no other point ofA if r < min{x− 1

k ,
1

k−1−x}
and so x cannot be a cluster point ofA. ■

24. Let τ1 = {U ⊆ R | R \ U is inite or U = ∅}, τ2 = {U ⊆ R | R \ U is countable or U = ∅}.

a) Show that τ1 and τ2 de ine topologies onR (the co- inite topology and countable
complement topology, respectively).

b) What is the boundary of the setA = { 1
n
| n ∈ N×} under these two topologies?

Proof:
a) It suf ices to verify that the three properties hold for τ1:

i. ∅ ∈ τ1 by de inition; R ∈ τ1 since R \ R = ∅ is inite.
ii. Let {Xα} ⊆ τ1. ThenR \Xα is inite for all α. According to the de Morgan’s

Laws, the set
R \

∪
α

Xα =
∩
α

(R \Xα)

is a inite set as it is the intersection of an arbitrary collection of inite sets.
Hence,∪Xα ∈ τ1.

iii. Let {Xi}ni=1 ⊆ τ1. Then R \Xi is inite for all i = 1, . . . , n.

According to the de Morgan’s Laws, the set

R \
n∩

i=1

Xi =
n∪

i=1

(R \Xi)

is a inite set as it is the union of a inite collection of inite sets. Hence,∩n
i=1Xi ∈ τ1.

Now for τ2:
i. ∅ ∈ τ2 by de inition; R ∈ τ2 since R \ R = ∅ is countable.
ii. Let {Xα} ⊆ τ2. Then R \Xα is countable for all α.

According to the de Morgan’s Laws, the set

R \
∪
α

Xα =
∩
α

(R \Xα)

is a countable set as it is the intersection of an arbitrary collection of count-
able sets. Hence,∪Xα ∈ τ2.
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iii. Let {Xi}ni=1 ⊆ τ2. Then R \Xi is countable for all i = 1, . . . , n. According
to the de Morgan’s Laws, the set

R \
n∩

i=1

Xi =
n∪

i=1

(R \Xi)

is a countable set as it is the union of a inite collection of countable sets.
Hence,∩n

i=1Xi ∈ τ2.
b) In the countable complement topology, A ⊆C R, because R \ (R \ A) = A is

countable and so R \ A ⊆O R. Consequently, A = A. Furthermore, the only
open set ofR contained inA is the empty set, as any other open set is uncount-
able. Hence int(A) = ∅ and ∂A = A \ int(A) = A.

In the co- inite topology, the only closed set containing A is R, as any other
closed set is inite. Consequently, A = R. Furthermore, the only open set
of R contained in A is the empty set, as any other open set is in inite. Hence
int(A) = ∅ and ∂A = R. ■

25. Let A,B ⊆ (E, d). If x ∈ E is a cluster point of A ∩ B, show that x is a cluster point of
both A andB.

Proof: let x be a cluster point of A ∩ B. Then any neighbourhood V of x contains a
point y ∈ A ∩ B ⊆ A such that y ̸= x. Thus y is a cluster point of A. The argument
forB is identical. ■

26. Show thatB ⊆ (Rp, d2) is closed if andonly if every convergent sequence inB converges
to a point inB.

Proof: irst, assume that B is closed. Let x = lim xn. Then, for any ε > 0, ∃nε > 0
such that xn ∈ B(x, ε) for all n ≥ nε. Consequently, B ∩ B(x, ε) ̸= ∅ for all ε > 0.
Since Rp \B ⊆O Rp, it follows that x ∈ B (why?).

Conversely, assume that for every convergent sequence (xk) ⊆ Rp, we have x =
lim xk ∈ B. IfRp \B is not open inRp, ∃x ∈ Rp \B such thatB(x, 1n)∩B ̸= ∅ for all
n ∈ N. Then ∃xn ∈ B(x, 1n) ∩ B; the sequence (xn) ⊆ B converges to x ̸∈ B, which
contradicts the hypothesis. Hence Rp \B ⊆O Rp. ■

27. Let (xn) ⊆ (Rp, ∥ · ∥) such that

∥xn+1 − xn∥ ≤ r∥xn − xn−1∥

where r < 1. Show that (xn) converges.
Proof: we have ∥x3 − x2∥ ≤ r∥x2 − x1∥ and it is easily seen by induction that if

∥xn+1 − xn∥ ≤ rn−1∥x2 − x1∥

then
∥xn+2 − xn+1∥ ≤ r∥xn+1 − xn∥ ≤ rn∥x2 − x1∥.
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Therefore, ifm > n,

∥xm − xn∥ =

∥∥∥∥∥
m−1∑
k=n

(xk+1 − xk)

∥∥∥∥∥ ≤
m−1∑
k=n

∥xk+1 − xk∥

≤
∞∑
k=n

∥xk+1 − xk∥ ≤
∞∑
k=n

rk−1∥x2 − x1∥ ≤
rn−1

1− r
∥x2 − x1∥.

Let ε > 0. Since r < 1, ∃Nε so that

rn−1 < ε
1− r
∥x2 − x1∥

for all n ≥ N,

and so ∥xm − xn∥ < ε for allm ≥ n ≥ Nε. It follows that (xn) is Cauchy and that it
is convergent, since (Rp, ∥ · ∥) is a Banach space. ■

8.4 Exercises
1. Prepare a 2-page summary of this chapter, with important de initions and results.

2. Show that the absolute value de ines a norm on R.

3. Show that the modulus de ines a norm on C.

4. Show that the sup norm ∥ · ∥∞ is indeed a norm on CR([0, 1]).

5. Let∞ ≥ p ≥ 1. Show that the p−norm ∥ · ∥∞ is indeed a norm on Rn.

6. Let p ≥ 1. Show that (8.1, p. 189), de ines a norm on Lp([0, 1]).

7. Prove Lemma 8.1.1, p. 189.

8. Let E be any set. Show that (8.2, p. 190) de ines a metric on E.

9. Let E = Rn. Show that d2 is a metric on E.

10. LetE = R, d(x, y) = |x− y|,A = N andB = {n−1
n
| n ∈ N}. Compute d(A,B), where d

is as in (8.3, p. 191)). Can you use this result to show that (8.3, p. 191) does not de ine
a metric on ℘(E) \∅?

11. In a metric space, show that δ(A) ∈ [0,∞]. Also, show that δ(A) = 0 ⇐⇒ A is a
singleton.

12. Prove or disprove: In any metric space (E, d), δd(B(a, r)) = 2r.

13. Prove or disprove: Let d, d′ be metrics on E. Then, A is bounded in (E, d) if and only if
A is bounded in (E, d′).

14. Where does the proof that a inite intersection of open subsets is open fail for arbitrary
intersections?
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15. Show that themetric space topology on a discrete metric space is the discrete topology.

16. Show that the intersection of an arbitrary family {Ai}i∈I of closed subsets of E is a
closed subset of E.

17. Show that the union of a inite family {Ai}ℓi=1 of closed subsets of E is a closed subset
of E.

18. Show that the union of an arbitrary family of closed subsets of E need not be closed in
E.

19. Let A be a subset of a metric space (E, d). Show that A is the intersection of all closed
subsets of E containing A.

20. LetA be a subset of a metric space (E, d). Show that A ⊆ A.

21. Prove Lemma 92, p. 197.

22. In Proposition 94, p. 198, show that 2.⇐⇒ 3⇐⇒ 4.

23. Let A be a subset of a metric space (E, d). Show that int(A) is the union of all open
subsets of E contained in A.

24. LetA be a subset of a metric space (E, d). Show that int(A) ⊆ A.

25. LetA be a subset of a metric space (E, d). Show that A ⊆O E ⇐⇒ A = int(A).

26. Complete the proof of Lemma 98, p. 202.

27. Prove Proposition 99, p. 202.

28. Show that the three de initions of continuity are equivalent.

29. Let f : C → D, A ⊆ C and B ⊆ D. Show that f−1(f(A)) = A and that in general, the
best we can say is that f(f−1(B)) ⊆ B.

30. Can you ind a function f : E → Ẽ which is continuous but not closed?

31. Can you ind a function f : E → Ẽ which is open and closed but not continuous?

32. Can you ind a function f : E → Ẽ which is open and continuous but not closed?

33. Complete the proof of Proposition 101, p. 204.

34. Complete the proof of Corollary 102, p. 204.

35. Provide the details showing that d2 and d∞ are topologically equivalent on R2.
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CHAPTER 8. METRIC SPACES AND SEQUENCES

36. Consider the metric space (R, d2). De ine a new function d̃ : R× R→ R→ R by

d̃(x, y) =
d(x, y)

1 + d(x, y)
.

Show that d̃ de ines ametric onR, that d and d̃ are topologically equivalent but that they
are not equivalent.

37. Let (E, d) be a metric space. Show that d : E × E → R is Lipschitz continuous (with
k = 2) and so that it is a continuous map.

38. Find a function which is uniformly continuous but not Lipschitz continuous.

39. Show that the two de initions of convergence of a sequence are equivalent.

40. Show that if xn → x, then any subsequence of (xn) also converges to x.

41. Show that the set of limit points of a sequence is closed.

42. Complete the proof of Proposition 103, p. 209.

43. Prove Proposition 8.2.2, p. 214.

44. Show that the space ℓ2(N) is a Hilbert space as follows.

a) Show that ℓ2(N) is a vector space over C.
b) Show that (·|·) de ined in the text is indeed an inner product over ℓ2(N).
c) Show that (·|·) de ines a norm ∥ · ∥ over ℓ2(N).
d) Show that ℓ2(N) is complete under ∥ · ∥.

45. Let f : R→ R be de ined by

f(x) =

{
1, x < 0

x+ 1
x+1

, x ≥ 0
.

Show that f has no ixed point but that d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R.

46. LetX be a compact metric space. De ine

CR(X) = {f |f : X → R, f continuous}.

Showthat (CR(X), ∥·∥∞) is aBanach space, but that neither (CR(X), ∥·∥1)nor (CR(X), ∥·
∥2) is complete.

47. Let E = {f ∈ CB(R,R)|f uniformly continuous}. Show that E is a complete sub-
algebra of CB(R,R).

P. Boily (uOttawa) 235



8.4. EXERCISES

48. Let (E, d) be a complete metric space and f : E → E. If there exists a positive integer
r and k ∈ (0, 1) such that

f r = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r times

and d(f r(x), f r(y)) ≤ kd(x, y) for all x, y ∈ E, show that f has a unique ixed point.

49. LetX = (0,∞). Consider the function d̃ : X ×X → R+
0 de ined by

d̃(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ .
a) Prepare a 2-page summary of this chapter; identify the important de initions and

results.
b) Show that d̃ is a metric onX .
c) Show that d̃ and d2 induce the same topology on X (i.e. the open sets of X are

exactly the same under both metrics).
d) Show that (X, d̃) is not a complete metric space.
e) Show that ((0, 1], d̃) is a complete metric space.

50. Let B(X,R) denote the set of bounded functions from X to R. It is easy to see that
B(X,R) is a vector space over R. The norm of f ∈ B(X,R) is de ined by

∥f∥ = sup
x∈X
|f(x)|.

Show that B(X,R) is a Banach space with this norm.

51. Are the co- inite topologies and the countable complement topologies derived from a
metric?
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