Chapter 8

Metric Spaces and Sequences

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is by moving from R to R™. Some of the notions that
generalize nicely to vectors and functions on vectors include norms and
distances, sequences, and continuity.

The symbol K is sometimes used to denote either R or C; Cg ([0, 1]) represents the R—vector
space of continuous functions [0,1] — R, and Fg([0, 1]) represents the R—vector space of
functions [0, 1] — R.

8.1 Preliminaries

Most of the results of the previous chapters rely heavily on the properties of the absolute
value. Its fundamental role in R is as a measure of the magnitude of a real number: |z| is the
distance from the real number z to the origin.

We can generalize the concept of the absolute value to higher-dimensional spaces in var-
ious ways. In this chapter, we discuss norms and metrics, and the topologies they induce.

8.1.1 Norms, Metrics, and Topology

Let E be a K—vector space, such as R, C" or Cg([0, 1]), say. A norm over F is a mapping
| - || : £ — R for which the following properties hold:

1. Vx € E, ||x|| > 0;

2. X =0+=x=0;

3. Vx € E,VX € K, || Ax|| = |A]]|x||, and
4. vx,y € B, [[x +y| < [x] + [yl

If the 4 properties hold, we say that (£, || - ||) is a normed space.
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Examples

1.
2.

R is a normed space together with the absolute value | - |.

C is a normed space together with the modulus | - |.

. R™is a normed space together with the Euclidean norm

1%l = [[(z1, ..., zn)lla = /2T 4 - - + 22

The Euclidean norm over R"™ will play a special role in our explorations: note
that it is intimately linked to the inner product

(-1):R"xR" >R, definedby (x|y)=> xzy = [x|=(x|x)">
E = Cg([0, 1]) together with the sup norm || f{|c = sup,¢(1) |/ ()| is another
important normed space.

For p > 1, the p—norm over R" is defined as follows:

n 1/p
x| = (Z Il’i\p> :
i=1

Special cases of the p—norm over R" include the Euclidean norm (p = 2), the
sup norm (p = oo) and the 1—norm:

n

100 = lngax zi|,  |IX[|oo = Z |4 Ul
<i<n )

The open ball of radius 1 induced by the p—norm around the origin in R"” is the set
B(0,1) = {x e R" | [[x][, < 1};
different values of p leading to different geometrical sets B(0,1): p = 2, 0o, 1 (left to right).*

We can also talk of closed balls, or of general balls of radius r centered at some pointa € R".
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CHAPTER 8. METRIC SPACES AND SEQUENCES

The open balls have different shapes (only the regions in red, not the boundaries), but we will
see that they are all equivalent, in the sense that they all induce the same topologies.

Since there are similarities between summation and integration (the Riemann-integral of a
function over an interval is, essentially, the limit of a sum), it could tempting to conclude that
there are equivalent p—norms over ([0, 1]): something along the lines of

I, =( [ 1ram)” (61)

where m is the Lebesgue measure (see Chapters 21 and 26), but these mappings are not in
fact norms on Fg([0, 1]).

Indeed, consider the Dirichlet function xq € F&([0, 1]), say. It can be shown that || f[|; = 0.
However, g # 0 which contradicts the second property of norms (in fact, || - ||, is a seminorm
on Fg([0, 1])).

If we instead restrict the function space to Cg([0, 1]), || - ||, is indeed a norm for all p > 1,
but unfortunately, (Cz ([0, 1]), || - ||,) is not complete (more on this later).

Let £/ be any set. A metric over E is a mapping d : £ x £ — R for which the following
properties hold:

1. Vx,y € E,d(x,y) > 0;

2. Vx € E,d(x,x) = 0;

3. dX,y) =0<=x=Y;

4. Vx,y € E,d(x,y) = d(y,x), and
5.Vx,y,zZ € E,d(x,y) < d(x,z) + d(z,y).

If the 5 properties hold, we say that (£, d) is a metric space.

An important property of such spaces is that every normed space gives rise to a metric space.

Theorem 88
Let (E,| - ||) be a normed space, and define d : E x E — R by

d(x,y) = [lx —y|.
Then (E, d) is a metric space.

Proof: we show that all the metric space properties hold. Property 1, for
instance, is a direct consequence of norm property 1:

Vx,y € E, d(x,y) =|x—y]| > 0.
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Properties 2 and 3 are a direct consequence of norm property 2:

VX € E,d(x,x) = [|x — x|| = [[0]| = 0;
VX,y e E.dx,y)=|x—y|=0<=x—-y=0<=x=Y.

Property 4 is a direct consequence of norm property 3:
Vx,y € E, d(x,y) =[x =yl = [ = 1] - [x = yI| = [ly — x[| = d(y,x).
Property 5 is a direct consequence of norm property 5:

vx,y,ze E, dxy) =[xyl =[x -z +z-y]|
< [Ix —zl| + [lz — yl| = d(x,2) + d(z,y).

Thus (£, d) is a metric space. [

Not every metric space arises from a norm, however.
Examples
1. Let E be any set and defined : £ x ' — R by

0 ifx=y
d(x = 8.2
(xy) {1 otherwise (8.2)

Then (£, d) is a metric space in which every point is considered to be far from
every other distinct point. We call such metric spaces discrete.

2. Let E = R"and defined : E x E — Rbydy(X,y) = || X —y|2. Then (£, ds) isa
metric space, which we usually refer to has having the standard topology. []

Let (E, d) be a metric space. The open ball centered at a € £ with radius » > 0 is the set
B(a,r) ={xe€ £ |d(a,x) <r};
the closed ball centered at a € ' with radius r > 0 is the set
D(a,r) = Dy(a,r) ={x € F | d(a,x) <r},
and the sphere centered at a € £ with radius r > 0 is the set

S(a,r) = Syg(a,r) = D(a,r)\ B(a,r) ={x € E | d(a,x) =r}.
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P. Boily (uOttawa)

Examples

the balls reduce to intervals:
B(a,r)=(a—r,a+7r), D(a,r)=[a—r,a+7],

and the sphere to a discrete set S(a,r) = {a —r,a + r}.

. Let (F,d) be a discrete metric space and a € E. Then

Blar) = {{a}, ifr <1

E, otherwise

. Let E = Cgr([0,1]), doo(f,9) = ||f — 9| Then, fore > 0,

B(f,e) ={g € B|1If =gl <} = {g€ E| sup |f() — g()] <<}

z€[0,1]

={9€ E[|f(z) —g(z)| <eVz e [0,1]}

1. Leta € E = R and define d(z,y) = | — y| for all z,y € E. Then, for r > 0,

We see B(f, <) in the image below; f is the solid curve in the middle, the two
bounding curves are ¢ away from f, and the red dashes show a function g in

B(f.e).

. Let A, B # @ be subsets of a metric space (F,d). The distance between A

and B is defined by
d(A,B) = _Inf {d(xy)}. (8.3)
Unfortunately, d does not define a metric on p(F) \ @ (see exercise 10). When
A = {x}, we write d(A, B) = d(x, B). O
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Lemma 89
Let (E,d) be a metric space, x,a € E, r > 0and x ¢ B(a,r). Show that
d(x,B(a,r)) > d(x,a) —r.

Proof: forally € B(a,r), we have d(x,y) + d(y,a) > d(x,a), whence
d(X, Y) > d(X7 a) - d(Y: a) > d(X, a) - T

Consequently,
dx,B(a,r)) = inf {d(xy)}=>d(xa)-r

yeB(a,r

wheneverx ¢ B(a,r). [

Let (E, d) be a metric space and let @ # A C E. The diameter of A under d is defined by
da(A) = sup {d(x,y)}.

X,yEA

For instance, in (R", dy), we have d4,(B(a,r)) = 2r; the diameter of two subsets A, B C R?
is illustrated below.

B
Y7
| |

J(®)

We say that A is bounded in (£, d) if ;(A) < oc.

Proposition 90
Let (E, d) be a metric space and let & # A C E. Then, A is bounded in (E,d) if and
only if 3x € E, 3r > 0 such that A C B(x, 7).

Proof: one direction is immediate: if 3x € F, 3r > 0 such that A C B(x,r),
thend(y,z) < rforally,z € A C B(x,7), so that d4(A) <.

Conversely, if 6,(A) < M, say, then d(y,z) < r = M + 1forally,z € A
Pick any x € A. Then for any other y in A, d(X,y) < r, so thaty € B(x,r). Thus
A C B(x,7). [
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B
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Ac B(b,'o) Bc gloul)

In this subsection, (£, d) is always a metric space, so we drop the d to lighten the text.

A subset A C F is an open subset of £ under d (or simply “open” if the context is clear)
if either

= A=, or

» Vx € E,3r > 0suchthat B(x,r) C A.

We denote this relationship by A Co E; an open subset of R? in the Euclidean topology is
shown below (D.J. Eck).
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Proposition 91
Open sets in E have the following properties:

8.1. PRELIMINARIES

1. ECp E;

2. Vae€ E,r > 0,then B(a,r) Cp E;

3. the union of an arbitrary family { A;}:cr of open subsets of E is an open subset
of E, and

4. the intersection of a finite family { A;}¢_, of open subsets of E is an open subset
of E.

Proof:

1. Letx € FE. Since B(x,r) C E forallr > 0,then £ Cp E.

2. Let B(a, R) beanopenballin £, andletx € B(a, R). By definition, d(a,x) < R
implies dp > 0 with p = %(a’x). It is not hard to show that with such a p, we
have B(x, p) C B(a, R).

3. LetA=|JA;,. IfA=othen A Cp E.If A # &, letx € A. By definition, 3i € [
such thatx € A;. But A; Cp E and, as such, dp > 0 for which B(x,p) C A; C
|JA; = A. Consequently, A Cp E.

4. It suffices to prove the result for / = 2 (why?). Let A = A, N Ay. If A = &

then A Cp E. If A # &, letx € A. Thenx € A;. But A; Cp FE and, as such,
Jr; > 0 for which B(x,7m) C A; C A. Aswell, x € A,. But Ay, Cp F and,
as such, 3r, > 0 for which B(x,75) C Ay C A. Set p = min{ry,7,}. Then
B(x,r) € A; N Ay, and, consequently, A Cp F. [ |

'
e d_--

= - =
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CHAPTER 8. METRIC SPACES AND SEQUENCES

We have seen plenty of examples in Part I.
Examples

1. Leta € R. Then (—o0, a) and (a, co) are both open in £ = R since

(—o0,a) = U(x,a) and (a,00) = U(a,x).

rz<a r>a
2. The intersection of an arbitrary family of open subsets of £ could be open, but

need not be:
((-n,n) =(-1,1) Co R,

neN
but
ﬂ (_%, %) = {0} is not open in R;

neN

we will have more to say on the topic of arbitrary intersection of open sets in
Part IV and Chapter 21. ([l

The collection of a metric space (£, d)’s open subsets forms a topology 7 on E:
1. 9, F e
2. ifU; e tforalli € I,then |, U; € 7,and
3. ifU,U; € T,thenU; N U, € 7.

Examples

1. Let (F,d) be a metric space. The collection of all open subsets of £ under d
forms a topology on F, the metric space topology.

2. Let E be any set. The collection 7 = {&, F'} forms a topology on F, the indis-
crete topology.

3. Let £ be any set. The collection 7 = p(F) forms a topology on F, the discrete
topology. 0J

A subset A C F is a closed subset of £ under d if £\ A Cp E. We denote this relationship

As a consequence of the definition of closed sets in opposition to open sets, we get a whole
slew of properties of closed subsets, for free, such as @, ' C E. But there are more substan-
tial ones as well.
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Examples
1. Every closed ball in (£, d) is closed.
Proof: let A = D(a, R) be a closed ball in E and set
E\A={xe€ F|d(ax) > R}.

We need to show that £\ Aisopen. Letx € E'\ A; by definition, d(a,x) > R
and p = w > 0.

= d(ar) - &
= P >O
Fr==2

It remains only to show that B(x,p) C E'\ A. Letz € B(X, p). Then
d(x,z) <p and —d(x,z) > —p.
Thus, according to the triangle inequality we have
d(a,z) > d(a,x) —d(x,z) > 2p+ R—d(x,z) > R+ p > R;
as such, z € E'\ A. This completes the proof. [ |
2. Every sphere in (F, d) is closed.
Proof: Let S = S(a, R). Note that
E\S=DB(a,R)U[E\ D(a,R)]| Cp E
since it is a union of open sets. Consequently, S Cq FE. |

3. Theintersection of an arbitrary family { A; },<; of closed subsets of F' is a closed
subset of E. O

4. The union of a finite family { A;}_, of closed subsets of F is a closed subset of
E. Note however that the union of an arbitrary family of closed subsets of £
need not be closed (see exercise 18) in F. 0
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The closure of a subset A C E with respect to a metric d is the smallest closed subset A of
(again, with respect to d) containing A (with possible equality).

The closure has a number of interesting properties, one of which being that A is the inter-
section of all closed sets containing A, and that A C A (see exercises 19 and 20).

Examples

1. In the Euclidean topology, (0,1) = [0, 1].

2. In the discrete topology, (0,1) = (0, 1).

3. In the Euclidean topology, S(a, R) = S(a, R). O

The closure provides us with a clear way to characterize closed subsets.

Lemma 92
Let A be asubsetof E. Then A Co E <= A= A.

Proof: one direction is immediate. Let_A Cc FE. The smallest closed subset
of F containing A is thus A itself, so A = A.

Conversely, assume A = A. As A is the smallest closed subset of A contain-
ing A, then A = Ais closed in E. |

A neighbourhood of x € F is asubset IV C FE containing an open subset Uy Cp E with
x € Uy. In other words, V' is a neighbourhood of x if 3r > 0 such that B(x,7) C V (but V is
not necessarily open). The set of all neighbourhoods of x is denoted by

V(x) = {V C E | V is aneighbourhood of x}.

The image below shows a neighbourhood V' of x, with an open set U.
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Examples

1. In R with the standard topology, [0, 1] and (0, 1] are neighbourhoods of 3.

AV
C J? 71
| -
O U| [,_ 4

2. In R? with the standard topology, {3} x [0, 1] is not a neighbourhood of (3, 3).

{ExCad

1wl
3

The various definitions give us an easy lemma.

Lemma 93
Let (E,d) be a metric space with U C E. Then U is a neighbourhood of each of its
points ifand only if U Cp E.

Proof: one direction holds as a consequence of the definition of open sets;
the other as a consequence of the definition of neighbourhoods. |

Points in A have useful (equivalent) properties.

198

Proposition 94
Let A C E. The following conditions are equivalent:

1. xe A

2. Ve > 0,3a € Asuchthatd(a,x) < e
3V EVX),VNAZD

4. d({x},A) =d(x, A) =0

Proof: we will only prove that 1. <= 2. The proof that 2. <= 3 +<= 4.isleftasan
exercise.
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Assumex ¢ A. Thenx € E\ A Cp E. Thus 3p > 0 such that B(x,p) C E \ A
Consequently, d(a,x) > p,Va € A.

X

e

Conversely, let x € F and assume J¢ > 0 such that

ACEFE\B(x,¢).
—_——

closed

Since A is the smallest closed set containing A, we must have
ACACEN\B(xe¢)

andsox ¢ A. |

A subset A of E is dense in (E, d) if A = E. A metric space (E, d) is separable if it has at
least one dense subset.

Examples
1. Qand R\ Q are both dense in R in the usual topology.
2. Neither of these sets are dense in R in the discrete topology.
3. Every non-empty subset of F is dense in E in the indiscrete topology. 0

4. Weierstrass’ Theorem: let P be the set of polynomial functions [0,1] — R.
Then P is dense in (Cr([0, 1]), dx).

Thus real continuous functions on [0,1] (which need not even be C*)
can be approximated as closely as desired/needed by smooth (polynomial)
functions (we will discuss this further in Chapter 23).

5. R and R" are separable in the Euclidean topology. O
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A family G = {G)}rer, @ # G Co FE forms a basis for the open subsets of £ if every
non-empty open subset of £ can be written as a union of members of G.

Examples

1. {B(z,r) |z € Q,r € Qi }and {B(z,r) | z € R, € R’ } both form a basis for
the open subsets of R. 0

2. {B(x,r) | x € Q",r € Q% } forms a basis for the open subsets of R™. O

There is a nice way to characterize such bases.

Proposition 95
A family G = {G\}xcr is a basis for the open subsets of E if and only if VX € E,
YV € V(x), 3\ € Lsuchthatx € G, C V.

Proof: the direction = holds as a consequence of the definition of neigh-
bourhood and of a base.

Conversely, let @ # U Cp E. Note that, being open, U is a neighbourhood of
all its points. Then, by hypothesis, Vx € U 3IA(x) € L such thatx € Gy C U.

However,
U= U{X} c U Gix) € U,
xeU xeU
so that U is the union of elements of G. [ |

By analogy with the closure, the interior of a subset A C FE'is the largest open subset of £
contained in A; we denote that subset by int(A) (or sometimes A°). It is not difficult to show
that int(A) is the union of all the open subsets of £ contained in A, and that A C E if and
only if int(A) = A (see exercises).

Examples

1. In the discrete topology, int(]0, 1]) = [0, 1]; while in the Euclidean topology,
int([0,1]) = (0, 1). 0

2. In the Euclidean topology, int(S(a, R)) = @ and int(D(a, R)) = B(a,R). O

[a,b] in (R, dy), int(W) # W, in

) =
3. While int((a,b)) = (a,b) and int([a,d]) =
YU (3, ) C (R, do). O

general, as we can see with W = (0, %

The next concepts are not crucial to our study, but still nice to have: U C E'is aregular open
subset of F ifint(U) = U; B C F is aregular closed subset of £ if int(B) = B.
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Not all metrics are derived from a norm (the discrete metric fails in that regard, for instance),
but normed vector spaces have a very nice property when it comes to closure and balls.

Lemma 96
If (E, d) is a normed vector space, then D(0,1) = B(0, 1).

Proof: since B(0,1) C D(0,1) Co FE, we have B(0,1) C D(0,1) as B(0,1)
since the smallest closed subset of E containing B(0, 1).

As D(0,1) = B(0,1) U S(0,1), we only need to show that S(0,1) C B(0,1)
as B(0,1) € B(0,1). Letx € S(0,1); then ||| = 1. Let1 > ¢ > 0 and set
z=(1-35)x

Then z € B(0,1), since |z]] = |1 — 5| - [x|| < 1; we note further that
d(z,x) = [z —x|| = §[|x]| = § < ¢ and so, according to Proposition 94 with
a=1zand A= B(0,1), we indeed have x € B(0,1). [ ]

We can use this lemma to show that the discrete metric is not derived from a norm: were it

so, we would have D(0,1) = B(0, 1). However, in R” we have

B(0,1) = {0} Cc Rand D(0,1) = R = B(0,1) = {0} # R = D(0,1).

Proposition 97
Let A C E. The following conditions are equivalent:

1. x € int(A)
2. AeV(x)
3. de > O such that B(x,e) C A.

Proof: by definition, we have 2. <= 3. [t remains only to show that 1. <= 3.

3. = 1.: Lete > 0and B(x,e) C A. Since int(A) is the largest open subset
of E contained in A and since B(X,¢) is an open subset of £ contained in A, we
must have B(x,¢) C int(A), whence x € int(A).

1. = 3.: Letx € int(A) Cp E. By definition, there must exist some ¢ > 0
such that B(x,¢) C int(A) C A. |

As an example of the usefulness of this result, note that by the density of Q and its complement
R\ Qin R, we automatically get int(Q) = int(R \ Q) = @ with the usual topology on R.
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We end this section with a few other topological concepts:

* the boundary of a subset A C F is simply defined by 94 = A\ int(A) and the exterior
of A is given by int(E \ A);?

= we say that x € F is a cluster point of A if

Ve > 0, Jy. € B(X,e) N Asuch thaty. # x;

» we also say that x € F'is an isolated point of A if 3¢ > 0 for which B(x,¢) N A = {x}.
Examples Let A = {1 : n > 1}.
1. 0is a cluster point of A since B(0,<) N A contains all %, where n > %

2. Foralln > 1, L is an isolated point of A, as B(+, =) N A= {Z}.

n 7’ 2n(n+1)

There is a link between cluster points of a set and its closure.

Lemma 98
If x is a cluster point of A, then x € A and every neighbourhood of X contains an
infinite set of points in A.

Proof: that x € A is a direct consequence of Propostion 94. The rest of the
proof can be done by showing that if a neighbourhood of x exists which contain
only a finite number of points of A, then x cannot be a cluster point of A. [ |

Finally, if (£, d) is ametric space and F' C F, then (F, d) is also a metric space, called a metric
subspace of E. The topology on F'is completely determined by the topology on FE.

Proposition 99
Let (E, d) be a metric space and F' C E. Then

B Co F <= dACp Esuchthat B=ANF

and
B Co F < JdACy EsuchthatB=ANF.

Proof: left as an exercise. [ |

%In a nutshell, the exterior is the largest open subset of E which excludes A in its entirety.
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8.1.2 Continuity

The concept of continuity is fundamental in all aspects of analysis. Let (A,d4), (B, dg) be
metric spaces. Since we view d4(a,x) and dg(f(a), f(x)) as generalizations of |a — z| and
|f(a) — f(z)|, respectively, and we say thatamap f : A — B is continuous ata € A if

Ve > 0,35 >0,(x € Aand da(a,x) < ) = dp(f(a), f(X)) < &;

or, equivalently, if for any open e—ball IV centered at f(a), there is an open §—ball V' centered
atasuchthat f(V) C W; oryet again equivalently, if for any neighbourhood W Cy, B of f(a),
there is a neighbourhood V' C A of a such that f(V) C W.2

The continuity of f : (R? dy) — (R?,d,) ata € R? is illustrated below (D.J. Eck).

f

/B

.....

~
L]
b a® ﬁ'f

B, (a) " | f(Bya).~

-
Traam=®

B.(f(a))

We further say that the map f is continuous on A if it is continuous at each a € A.

Proposition 100
Let (E,d), (E,d) be metric spaces, and let f : E — E. The following conditions are
equivalent:

1. fis continuous on E;
2. foranyW Co E, f~Y(W) = {x € E|f(x) € W} Co E, and
3. foranyY C¢ E, f~1(Y) C¢ E.

Proof: that 2. <= 3. follows directly from the fact that

FHENY) =E\ fH(Y)

3That these definitions are equivalent is left as an exercise.
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1. = 2.: Let W Cp Fandx € f‘l(W). Since W is open in E, 3 > 0 such that
B(f(x),e) C W. By continuity, 30 > 0 such that f(B(x,0)) C B(f(x),c) C W. But
this means that

B(x,0) = [ (f(B(x,9)) € f1(W)

(see exercises) and so (W) Cp E.

2. = 1: Let f(x) € W Cp E. SetV = f"Y(W) Co E. Thenx € V and
f(V) C W; consequently, f is continuous. [ |

Consider amap f : E — E as above. If f(W) Co E forall W C, E, then we say that f is
an open mapping; by analogy, if f(Y) C¢ E forall Y C FE, then we say that f is a closed

mapping.

Generally speaking, continuous maps are neither open nor closed; the constant function
f : R — R defined by f(x) = a provides an example of a continuous function which is not
open in the standard topology, as (0,1) Cp R, but f((0,1)) = {a} C¢ R, for instance.

Proposition 101
Let f: (E,d) — (E, d) and g : (E,d) — (E,d) be continuous. Then the composition
go f:(E,d) — (F,d) is continuous.

Proof: leta ¢ Fand e > 0. As g is continuous at f(a) € E, 3. > 0 such
that

y € Eandy € By(f(a).d.) = g(y) € B(9(f(a)),e).

Since f is continuous at a, 375, = 7. > 0 such that
x € Fandx € By(a,ns.) = f(x) € Bj(f(a), ).
Combining these results together, we get

X € Fandx € By(a,ns.) = g(f(x)) € By(g(f(a)),e),

which completes the proof. [ |

As we can see, in many instances, the broad strokes of proofs in the multi-dimensional cases
follow those of the corresponding one-dimensional proofs.

Corollary 102 Let f : (E,d) — (E,d) be a continuous function. If F C E, then the

restriction f|p : (F,d|r) — (E,d) is continuous.

Proof: it suffices to show that the inclusion ¥ — F; is continuous, which is
left as an exercise, and then to apply Proposition 101. [ |
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Some standard examples are shown below.
Examples
1. The functions f : (R,ds) — (R, d») defined by f(z) = 2* is continuous. O

2. The identity function id : (R,dgiscrete) — (R, d2) is continuous, since
id™ (V) =V Co (R, dgiscrete) forall vV Co (R, da). O

3. The identity function id"™ : (R, ds) — (R, dgiscrete) iS NOt continuous, since,
for instance,

. -1
(™) ({a}) = {a}
is not open in (R, dy) even though {a} Co (R, dgiscrete)- O

4. Consider the characteristic function xr\@ : R — R. Then y\q is continuous
when restricted to Q (being a constant function), but x\ g is nowhere contin-
uous on R. U

A metric d on E gives rise to a topology by defining the open sets of £. A natural question
to ask is: can two different metrics give rise to the same topology? In order to answer that
question, we need to introduce a new concept.

Let (E,d), (E,d) be metric spaces. A function f : £ — E is a homeomorphism if f is
bijective and both f and ™ are continuous.*

Examples
1. f: (R,dy) — (R,dp), f(x) = 23, is a homeomorphism. O
2. id : (R, dgjscrete) — (R, ds), id(x) = z, is not a homeomorphism. O

3. The function g : (R,ds) — ((—%,%),d>) defined by g(z) = arctan(z) is a
homeomorphism. 0J

*Alternatively, f is a homeomorphism if it is bijective, continuous and open.
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These examples illustrate that the notion of boundedness is not necessarily preserved by
homeomorphisms: for instance, R is unbounded while (—g, g) is bounded, but both spaces
are homemorphic to one another via arctan.

Furthermore, neither is the notion of distance necessarily preserved by homeomorphisms:
in general,

d(z1,29) # J(f(%% f(z2)).

For instance, in the first example,
d(0,2) = [0 — 2| =2 # d(0%,2%) = |0° — 23| = 9.
However, homeomorphisms f : E — E preserve the topologies of £’ and E:
W Co E < f(W) Co E = f(E)
Y Co E <= f(Y)Co E = f(E).

Two metrics d, d on E are topologically equivalent if id : (E,d) — (F, d) is a homeomor-
phism. In that case, d and d give rise to the same topologies on E.

Example: if p,¢ > 1, d, and d,, induce the same topologies on R".

For instance, to show that d, and d,, are topologically equivalent in R?, it suf-
fices to show that any point of a 2—ball has an co—neighbourhood contained in
the 2—ball, and, conversely, that any point of an co—ball has a 2—neighbourhood
contained in the co—ball (see exercises). In the illustration below, we see a 2—ball
filled with co—balls (left) and an co—ball filled with with 2—balls (right). U

- O

QO

There is an associated notion: two metrics d, d on E are (strongly) equivalent if 34, B > 0
such that 5
Ad(x,y) < d(x,y) < Bd(x,y) Vx,y € E.

Intuitively, two metrics are equivalent if it is always possible to fit a d—ball between two
d—balls, while maintaining the ratios of the balls’ radii. Topological equivalence is not an
equivalent notion, as we see in exercise 36.
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Example: if p, ¢ > 1, d, and d, are equivalent on R".

For instance, to show that d, and d., are equivalent in R?, it suffices to show
that 4A, B > 0 such that any 2—ball of radius R > 0 contains an co—ball of radius
& and is contained in an co—ball of radius £.

Given the geometry of squares and circles, what values can A and B take? 0

There is also a similar notion for norms. Two norms ||-||*, ||-||° on E are equivalentif 3a,b > 0
such that
allx[|" < [Ix[|* < ollx[]*, vx € E.

Clearly, two equivalent norms on F give rise to two equivalent metrics on E. But there is an
important difference: over a finite—dimensional vector space, any two norms are equiva-
lent, which we can show using the following proof outline:

1. without loss of generality, assume || - [|* = || - ||1;

2. only the vectors x € S1(0, 1) need to be considered (why?);

3. show that || - ||° is continuous with respect to || - ||;, and

4. use the max/min theorem over S;(0, 1) to bound a < ||x]|° < b.

We end this section on preliminaries with two definitions that generalize the notion of a con-
tinuous function.

Let f : (E,d) — (E,d). We say that f is

1. uniformly continuous if Ve > 0, 30 = d(¢) > 0 such that Vx,y € F, d(x,y) < 0 =
d(f(x), f(y)) <&

2. Lipschitz continuous if 3K > 0 such that d(f(x), f(y)) < Kd(x,y) ¥x,y € E.
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The conceptual difference between continuity and uniform continuity is that § may depend
on x and y as well as ¢ in the former case, but it can only depend on ¢ in the latter case.
Examples

1. Any polynomial p : R — R is uniformly continuous over a closed, bounded
interval. 0

2. Any uniformly continuous function is automatically continuous. O

3. Any Lipschitz continuous function is automatically uniformly continuous,
hence continuous. U

4. The function f : (0,1] — R defined by f(z) = 1 is continuous but not uni-
formly continuous. 0

This allows us to define another type of equivalence between metrics: two metrics d, d on E
are uniformly equivalentifid : (E,d) — (E, d) is uniformly continuous, and so is its inverse.

Uniformly equivalent metrics are topologically equivalent, as uniform continuity also im-
plies continuity, but there are topologically equivalent metrics that are not uniformly equiva-
lent. However, uniform equivalence and strong equivalence of metrics are ... well, equivalent.

Lastly, note that uniform continuity, unlike continuity, is not a topological notion: given a
function f : E — E, the knowledge of the topologies on E and E, respectively, is sufficient to
determine if f is continuous. But more must be known in order to determine if f is uniformly
continuous. There is something fundamental at play here; we will return to it at a later stage.

8.2 Sequence in a Metric Space

Consider the sequence (x,,) C (£, d). The sequence convergestox € (F, d), which we denote
by x,, — Xx, if
Ve > 0, 3N € Nsuch thatn > N = d(x,,X) < €.

In light of the notions presented in the previous section, this is equivalent to the following
definition: x,, — x € E if

VYV € V(x), 3N € Nsuchthatn > N = x, € V.

Thus a sequence converges to X if any neighbourhood of x contains infinitely many terms in
the sequence.

A subsequence of (x,,) is a sequence (y,) such thaty, = X, for some strictly increas-
ing function ¢ : N — N. It is easy to show that if X, — X, then any subsequence of (x,,) also
converges to X (see the exercises).
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Let (x,,) be a sequence in a metric space (E,d). We say thata € F is a limit point of (x,,)
if Ve > 0,Vp € N, 3In > p such that d(x,,,a) < &.°

Proposition 103
Let (x,) C (E,d), a € E. The following are equivalent:

1. ais a limit point of (X,,);
2. there is a subsequence of (X,,) which converges to a;
3. Vp € N, we havea € A_p, where A, = {x,|n > p}, and

4. either ais a cluster point of A, or {X,, | X,, = a} is infinite (in the latter case, we
say that a is a replicating point of (x,,).

Proof: weprovel. — 2. —= 3. —= 4. = 1.

1. = 2.: Setg, = % Since a is a limit point of the sequence (x,,), there is a
smallest integer n for which d(y,,a) < %, where y,, is a member of the sequence
(Xm)m>n- By construction, (y,,) is a subsequence of (x,,) and y,, — a.

2. = 3.: If there is a subsequence (y,) C (x,) which converges to a, then
Ve > 0,Vp € N, 3N € Nsuch thaty, € A, N B(a, <) whenever n > N. But accord-
ing to Proposition 94,a € A, ifand only if Ve > 0, A, N B(a,¢) # @. Consequently,
VpeN,ae A_p.

3. = 4: IfVpeN,a € A, thenVp €N, Ve >0, 3 a smallest n, > p such
that d(x,,,a) < . As such, x,,, is a subsequence of (x,,) and

lim x,, = a.
p—+00
= If (x,,) converges, it must do so to a, according to exercise 40. Consequently,
Vn > 0, A; N B(a, ¢) is infinite and so must contain at least one point distinct
from a. Consequently, a is a cluster point of A;.

= If (x,,) diverges and a is not a replicating point of (x,), thenx,,, /4 a (why?),
which is a contradiction. Consequently, if (x,,) diverges then a is a replicating
point of (x,,).

4. = 1.: Left as an exercise. [ |

8.2.1 C(losure, Closed Subsets, and Continuity

We can conclude from Proposition 103 that the set ﬂpeNA_p of limit points of (x,,) is closed
and that if x,, — x, then x is the unique limit point of (x,,).

*Compare with the notion of a cluster point.
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There is a nice way to characterize closure, closed subsets and continuity using sequences
and convergence, provided by the next three results.

Proposition 104
Let (E,d) be a metric space, A C E andx € E. Then,

x € A <= 3(x,) C Asuch thatx, — x.

Proof: the direction <= is a clear consequence of the remark at the start of this
subsection. For =, consider the following argument. Let n € N. Since x € A,
Ix,,(# x) € Awith d(x,,x) < L. Clearly, x, — x. |

Proposition 105
Let (E,d) be a metric space, with F C E. Then, F' C E if and only if any sequence
(x,,) € F which converges in E converges to a point in F.

Proof: if F Co F, then F = F. Assume thatx, € F and X, — X. We must
show thatx € F = F. If (z,) is eventually constant, then x, = x € F foralln
greater than some index. Otherwise Ve > 0, B(x,¢) N F contains an infinite subset
of {x,, | n > 1}; consequently,x € F.

Conversely, let x € F. According to Proposition 104, there is a subsequence
(Xx,) € F such thatx,, — x. By hypothesis, any such sequence must converge in F.
Hence, x € F. Consequently, /' = F'and F' C¢ F. [ |

Proposition 106
Let (E,d),(E,d) be a metric spaces. Then f : E — E is continuous if and only
f(x,) — f(x) wheneverx,, — Xx.

Proof: the direction < is a clear consequence of the definition of a continu-
ous function.

Conversely, let ' C E. We want to show that f~'(F) C¢ E. Let (x,) C f~'(F)
with x,, — x. By hypothesis, f(x,) — f(x). But ' C¢ E sothat f(x) € F, according
to Proposition 105.

Consequently, x € f~'(F). According to Proposition 105, we must then have
f~Y(F) Cr FE; in other words, f is continuous. [ |

We will see in Part IV that these characterizations do not always apply to general (as in, non-
metric) topological spaces.

210

Analysis and Topology Course Notes



CHAPTER 8. METRIC SPACES AND SEQUENCES

8.2.2 Complete Spaces and Cauchy Sequences

The sequence (x,,) C (£, d) is a Cauchy sequence if
Ve > 0,3N € Nsuchthatn,m > N = d(X,,X,,) < €.
Some properties of Cauchy sequences in R carry over to metric spaces.

Proposition 107
Convergent sequences in (E, d) are Cauchy.

)

Proof: let x, — xand e > 0; thus 3N € N such that d(x,,x) < 5 whenever
n > N. Now, let m > N. According to the triangle inequality,

d(xnaxm) S d(Xr”X) -+ d(X, Xm) < g + 5 = .

Consequently, (x,,) is a Cauchy sequence. [ |

In a normed space (E, || - ||), a sequence (X,) is bounded if 3V € N such that ||x,,|| < M for

alln € N,
But a metric space (E, d) is not necessarily a normed vector space, so there might not be

a norm available to determine boundedness.

In a general metric space (F, d), a sequence (x,,) is bounded if 3M/ > 0 s.t. x,, € B(0, M)
for alln € N. Similarly, A C E is bounded if §(A) < co (using the definition from p. 192).

Proposition 108
Every Cauchy sequence in (E, d) is bounded.

Proof: let (x,,) be a Cauchy sequence. If 1 > ¢ > 0, then 3N € N such that
d(X,,Xn) < € whenever n,m > N. Now, let

M = max{d(0,x;),d(0,Xs),...,d(0,Xy),d(0,XN1)} + 2.
Then, for any n > N, the triangle inequality yields
d(O,Xn) < d(O,XN+1) + d(XN+1,Xn) < M -2+ 1,

ie foranyn > N, x, € B(0,M). Sincex,, € B(0,M —2)foralll < n < N, then
X, € B(0, M) foralln € N. [

Interestingly, given its link to convergence in the case of complete spaces, the notion of a
Cauchy sequence is not topological.

P. Boily (uOttawa) 211



8.2. SEQUENCE IN A METRIC SPACE

Example: let A = (0, c0). Consider the following metrics on A:
d1($7y): |l’—y| and d2($7y): |lnx—lny|

Show that both metrics induce the same topology on A, but that Cauchy sequences
under one are not necessarily Cauchy sequences under the other.

Proof: the mapping id : (A,d;) — (A,dy) is homeomorphic. Indeed, for
x,z € Aand e,n > 0, we have

By (x,e)={yeAl|llr—y|<el=(x—c,z+e)NA,
and
Bag,(z,n) ={y€ Al |lnz—Iny|<n}={yecA|le"< % < et = (ze ", zel).
It is left as an exercise to show that
Ba,(z,22(1 —e™)) C By,(z,n) and By, (z,In(%)) C By, (z,¢)

forallz,z € A, e,n > 0. Thus W Cp (A,dy) <= W Cp (A, dy). We already know
that the sequence (+) is Cauchy in (4, d;). Butif m = 2n, then

h(E D =t | = 2] =|in 2| =n2>1/2

for every n € N, and so () is not a Cauchy sequence in (4, d»). |

This could not happen, however, if the metrics are strongly equivalent, which further illus-
trates the distinctness of the notions of strong equivalence and topological equivalence.

212

Proposition 109
Let d and d be two equivalent metrics on E. Then, (X,,) is a Cauchy sequence in (E, d)
ifand only if (x,,) is a Cauchy sequence in (E, d).

Proof: since d and d are equivalent, da, b > 0 such that
ad(x,y) < d(x,y) <bd(x,y) Vx,y € E.

If X, ) is a Cauchy sequence in (F, d), then, Ve > 0, 3N € N such thatm,n > N =
d(X,,X,,) < €. Thus, it is the case that

ad(Xp, Xp) < d(Xp,Xp) <& Vm,n >N = d(X,,X,,) < < Ym,n > N.
a
Consequently, (x,,) is also a Cauchy sequence in (E, d). By symmetry, the reverse

implication is clearly true. [
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A metric space (E, d) is complete if every single one of its Cauchy sequences is convergent. If
a complete metric space is also a normed vector space, then it is a Banach space. If a Banach
space is also an inner product space, then it is a Hilbert space.

Examples (COMPLETE, BANACH, AND HILBERT SPACES)

1. We have already seen that (R, d3) is a complete space. Since it is a normed
space, it is also a Banach space. The inner product (z | y) = zy makes it a
Hilbert space.

2. The same applies to (K", d,), with the inner product (x | y) = >_ ;7.

3. The space C = (Ck([0,1]), || - ||o) is a Hilbert space with the inner product

(flg) = [Ol}fﬁdm, f~g<—= f=gae.

4. Itis a bit less obvious that the space
C(N) ={X | X = (z0)nen; Ta € C, 30 |24)* < 00}
is a Hilbert space, together with
(X |Y) =S zgn and [[X]s = (X | X)V2 = (3 [2,)",

but it is a classical result (see Chapter 27). OJ

Closed subsets of complete spaces are especially well-behaved, as we see in the next two re-

sults.

Proposition 110
Every closed subset of a complete metric space is complete.

Proof: let A Co FE and (x,) € A be a Cauchy sequence. Since E is complete,
X, — X converges in F. But A is closed, so x € A, according to Proposition 105. W

Proposition 111
Every complete subspace of a metric space is closed.

Proof: let A C (F,d) be complete. Let x € A. According to Proposition 104,
3(x,) C A such that x, — x. Therefore, (x,,) is a convergent sequence in E. In
particular, it is a Cauchy sequence of points in A, according to Proposition 107.
But A is complete so that x € A. Hence A C A and so A = A, which means that
ACq E. |
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The product of two metric spaces (E’, d') and (E*, d*) is the metric space
(E,d) = (E' x E*,;sup{d’,d*});

it is easy to see how this definition can be extended to a product of n metric spaces. At any
rate, the product of metric spaces is also a metric space.®

Proposition 112

Let (E;,d;) be metric spaces for i = 1,...,n. The product metric space
(E,d) = (Ey x -+ x E,,sup,_; ,{d:}) is complete if and only if (E;,d;) for
alli=1,...,n.

77777

Proof: left as an exercise. [ |

The following result is a generalization of the nested intervals theorem of Chapter 1.

Proposition 113
Let (E, d) be a complete metric space. If (F,,) is a decreasing sequence of non-empty
closed subsets of E

EOF 2F2---2F 2 -

such that lim §(F),) = 0, then ﬂ F,, = {x} forsomex € E.

n—00 ol
Proof: let ' = () F,,. For eachn € N, pick x,, € F,,.
Lete > 0. Since §(F,,) — 0, IN. € N such that
n > N, = 0(F,) < sup{d(w,z) |w,zc F,} <3.
Letm > n > N_.and picky € F,,, C F,,. Then
m >n> Ne = d(Xn, Xp) < d(Xn,y) +d(Y,Xm) < 5+ 5 =¢.
As (x,) C E is Cauchy and F is complete, 3x € F such thatx, — x. Forallp > 1,

(Xp)n>p € Fp. As F, Ce E, (X,)n>p converges in F), according to Proposition 105.
Hence x € F), forall p > 1. Consequently, x € I'.

Butify € I',theny € F), forall n, so that 0 < d(x,y) < §(F,) — 0 for all n.
Thus d(x,y) = 0, so thaty = xand I" = {x}. |

If r € (0,1), for instance, and if we have F,, = B(0,r") C (R™,d,) for some m > 1, then

£, ={0}.

®In fact, the definition can be generalized to arbitrary collections {E, }+cs, but we will see in Part IV that
there are complications.
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The following contraction result is representative of a family of extremely useful theorems.

Theorem 114 (FIXED POINT THEOREM)
Let (E,d) be a a complete metric space and let f : E — E be a contraction on E,
that is,

Jk € (0,1) such that d(f(x), f(y)) < kd(x,y) forallx,y € E.
Then 3'x* € F such that f(x*) = x*; X* is a fixed point of f.

Proof: letx, € E. If f(xg) = X, we are done. Otherwise, consider the se-
quence (f™(Xo))n, where f" represents n successive compositions of f:

d(f" (%0), f"" (%0)) = d(f (/" (%0)), f(f"(%0))) < kd(f"~ (X0), f" (X))
= kd(f(f"%)(%0), F(f" ) (X0)) < -+ < K"d(x0, f(X0)).

Then, for any m > n,

d(f™(Xo), f"(X0)) < d(f™(Xo), [ (%0)) + -+ +d(f" (%0), ["(X0))

< (K R, f(0) € (R, (%)

For any ¢, let M. = [ln (
we have

e ;(XO))(l — k)) —1In k-‘ Then, whenever m > n > M.,

n k;Me

A(f™ (%), I" (%)) < T (X0, f(%0)) < T

d(Xo, f(X0)) < €.

Consequently, (f™(Xo)) is a Cauchy sequence in E. But E is complete so that
f™(%g) — x for some x € F.

By definition, contraction mappings are Lipschitz continuous, and thus also
continuous, and so

7 = F(lim f"(x0)) = Tim (/" (x)) = lim ["(x0) = x

n—oo

Now, suppose that x and y are two fixed points of f. Then,

d(x,y) = d(f(x), f(y)) < kd(X,y).

Since £ < 1, the only way for the inequality to be valid is if d(x,y) = 0, which implies
that x = y. The fixed point of f is thus unique. Call it x* to match with the statement
of the theorem. [ |
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The choice of X, € E in the proof of Theorem 114 is arbitrary; if f is a contraction, the se-
quence (f™(x)) converges to the unique fixed point x* for all x € E. Note that the restriction

k € (0,1) is necessary, as the following example demonstrates.

Example: let f : R — R be defined by

1, x <0
f<x>:{:c+— x>0

x+17?

It is not hard to see that f has no fixed point (see exercise 45), yet

d(f(x), fy)) <d(z,y) forallz,y e R. O

8.3 Solved Problems

1. Let A, B be subsets of a metric space (¥, d). Show that
a) BC A= int(B) Cint(A)
b) BCA=— BCA
c) int(A N B) = int(A) Nint(B)

216

Proof:

a) By definition, int(B) C B C A, i.e.int(B) is an open set contained in A. Con-
sequently, int(B) is contained in the largest open set contained in A, namely
int(A).

b) Bydefinition, B C A C A,i.e. Aisaclosed set containing B. Consequently, A con-
tains the smallest closed set containing B, i.e. B.

c) Since int(A) Nint(B) Cp E and since int(A) C A and int(B) C B, we must
have int(A) Nint(B) € AN B. As such, int(A) Nint(B) must be contained in the
largest open set contained in AN B, so thatint(A)Nint(B) C int(ANB). On the
other hand, since AN B C A, B, then we must have int(AN B) C int(A), int(B)
and so

int(AN B) Cint(A) Nint(B).

d) Basically the same proof with N «~s U, Cens D, int(+) e U

e) Since A, B C AU B, thenint(A),int(B) C int(AU B). Hence int(A) Uint(B) C
int(AU B).

f) Basically the same proof with N «w U, Cens D, int(+) e U [ |
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2. In each instance, give an example showing that, in general,
a) int(A) Uint(B) # int(AU B)
b) ANB#ANB
Solution:
a) Let E = R with the Euclidean metric, and let A = [a,b] and B = [b, ¢] with
¢ > b > q, for instance. Then
int(A)= (a,b), int(B)= (b,c), AUB=]a,c,
int(AU B)= (a,c), int(4)Uint(B) = (a,b) U (b,c) = (a,c) \ {b}.

b) Let £ = R with the Euclidean metric, and A = (a,b) and B = (b, c¢) with ¢ >
b > a, for instance. Then

A=a,b], B=[b, ANB=2, ANB=9, ANB=/{b}. O

3. Let A be subset of a metric space (¥, d). Show that

a) E\int(A) = £\
b) E\A=int(E\ A)
c) J(int(A4)) C 0A

d) 9A C 0A

=

Proof:
a) We have

int(A) C A, by definition
E\ACFE\int(A), again by definition
E\NACFE\int(A) = FE\int(4), asE\int(A) C¢c E

On the other hand, we have

E\ACE\A, bydefinition
E\E\ACE\(E\A)=A, againby definition
E\E\A=int(E\E\ A) Cint(A) = E\int(4), asE\E\ACo E
E\int(A) CE\ A

b) We have

A C A, by definition
E\ACE\A, againby definition
E\A=int(E\ A) Cint(E\ A), asE\ACp FE
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On the other hand, we have
int(E\ A) C E\ A, by definition
A=FE\(E\A) CE\int(E\ A), again by definition
ACE\int(E\A)=FE\int(E\ A) asE\int(E\A) Cc F
int(E\A) CE\ A

c) Since int(A) C A, we have int(4) C A and so
dint(A) = int(A) \ int(4) C A\ int(A) = OA.
d) Basically the same idea, as above, but with X \ int(4) C X \ int(A). |

4. Find an example of a subset A of a metric space (E, d) for which d(int(A)), DA and A
are all different.

Solution: let £ = R with the Euclidean metric, and let A = Q U (0, 1), for instance.

Then
A=QU(0,1)=QuU(0,1)=R
int(A) ={z e R |3Ir>0st Bz,r) C A} = (0,1)
9(int(A)) = int(A) \ int(A) = (0,1)\ (0,1) = [0,1]\ (0,1) = {0, 1}

0A=A\int(A) =R\ int(R) =R\R =9

which are all distinct. O

5. Find two subsets A, B C (R, dy) for which AU B, int(A)U B, AUint(B), int(A) Uint(B),
and int(A U B) are all distinct.

Solution: let £ = R with the Euclidean metric, and let

A:[\/igo)U((p,e)U{W}U(Qm(&g))7 Y= 2

for instance. Then

int (int(A)) = (v2,e)

are all distinct. O

6. Find a subset A C (R, dy) for which 4, int(A), 4, int(A4), int(A), int(A) and int (int(A))

are all distinct.
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Solution: let £ = R with the Euclidean metric, and let A = [\/2,¢] and B = [e, ],
for instance. Then

AUB = [V2,7]
int(A) U B = (V2,7]
AUint(B ) [V2,7)
int(A) Uint(B) = (v2,7) \ {e}
int(AU B) = (V2,7)
which are all distinct. O

7. For any subset A C (R, dy), show that int (int(Z)) = int(4).

Proof: By definition,

int(A) C A = int(A) C A = 4 = int (int(Z)) C int(A).
On the other hand, whenever B is open we have
B C B= B =intB C int(B).
Set B = int(A). Then B is open and

int(4) C int(B) = int (int(Z)) :
which completes the proof. |
(Could we replace (R, d2) by any metric space? Any topological space?)
8. We say that A C F is meagre (or nowhere dense) if and only if int(A) = @. Show that
a) Aismeagre ifand only ifint(E \ A)is densein E (Aisdensein Bif A C B C A);

b) A is meagre if and only if A is contained in a closed subset of £ whose interior is
empty;

c) Ais closed and meagre if and only if A = 0A, and

d) Aismeagre = A = 0A.

Proof:
a) Ifint(A) = @, then
E=E\@=FE\int(A)=E\A=intE\ A.
Hence int(F \ A) is dense in F.
It's pretty much the same thing: if int(E \ A) = F, then
E=intE\A=E\A=E\ int(4).

Hence int(A) =
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b) If int(A) = o, then A does not have interior points. Since A C¢ F and
since A C A, then A is contained in a closed set whose interior is empty.

Let A C B, where B C¢ FE and int(B) = @. By definition, A C B

and so int(4) C int(B) = @.
0) If A= Aandint(A) = &, then int(A) = int(4) = @. Then
0A=A\int(Ad) =A\g=A4=A.
[&=]|Wehave A = A <= A=A\ A = A C A\ int(A). However
int(A) C Asothatint(A) # @ = A ¢ A\ int(A). Consequently, int(A4) = g,
which means that A = 9A = Aand so A C¢ E. Then int(A) = int(A) = 2.
d) Ifint(A) = &, we have A C A = int(A) C int(A) = @. Hence

0A=A\int(A) =A\ o =A.
(What condition must hold for the converse to be satisfied?) |

9. Show that d., d; and d, are equivalent on R

Proof: we could do it directly, but notice that these metrics are all derived from
norms on R2. Since R? is a finite-dimensional vector space, all norms on R? are
equivalent. Hence the three metrics are equivalent. That is all there is to it. ]

10. Fori = 1,...,n,let (E;, d;) be metric spaces and U; Cp E;. Show that U; x - -+ x U, is
an open subset of

(E,d)=(Ey X ---x Ey,sup{d; | i =1,...,n}).

Proof: consider the subsetU = U; x --- x U,, C E, where U; Cp FE; for all 4.
Letx € U. Then m(x) = x; € U, for all i. But U; Cp E; so that In; > 0 with
By, (Xi,m;) € U;. Setn = min{n;}?* ; > 0. Then

B(x,n) = {yld(x,y) < n} = {y|sup{di(xi,y:) }i=1 < n}

i=1 i=1

Consequently, U Cp FE. [ |

11. Fori =1,...,n,let (E;,d;) be metric spaces and let 7; : F; X --- X E,, — F; be defined
by m;(X1, . .., X,) = X;. Show that 7; is open and continuous.

Proof: leti € {1,...,n} and U Cp E;. Since
7T,_1(U):E1 X"'Ei—l XUXEi+1 X"'En,

(2

then 7ri_1(U) Co E1 X - -+ x E,, according to the previous problem, and so 7; is con-
tinuous.
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Now, suppose that V' Cp Fy X - -- X FE,. We need to show that
(V) ={x € Eilx=m(y),y € V} Co Ei.

Letu € 7;(V) and consider x € 7; '(u). Since V. Cp Ej x --- x E,, Iry > 0such
that By(x,7x) € V. We will show that By, (u,rx) C m;(V). Letz € By, (u,7x). Then
di(u,z) < rx. Set w = X, except in the ith position, where w; = z. Then 7;(w) = z
and

d(w,x) = sup{d;(w;,x;)} = sup{0,...,d;(z,u),...,0} = d;(z,u) < ry,
thatis,w € By(x,rx) C V. Thusz = m;(w) € m;(V'), and so 7; is open. [ ]

12. Showthatamap f : (F,9) — (F1,dy) X --- x (E,,d,) is continuous ata € F ifand only
if m; o f is continuous ata € F for all .

Proof: if f is continuous at a, then 7 o f is continuous at a for all 4, since 7; is contin-
uous and the composition of continuous functions is continuous.

Now, if m; o f is continuous ata € F for all 4, then, foralle > 0, 3n,...,m7, > 0
such that d;(m;(f(x)), m(f(a))) < e whenever §(x,a) < n; foralli =1,... n.

Setn = sup{n;} > 0. Then, foralle > 0,
d(f(x), f(a)) = sup{d;(mi(f(x)), mi(f(a)))} < e
whenever 0(x,a) < n; as such, f is continuous at a. |

13. Let f : (E1,dy) X -+ X (Ep,d,) — (F,0)anda = (ay,...,a,) € E. Forall 4, define f; :
(E;,d;) — (F,6) by fi(x) = f(ai,...,a;_1,X,2;11,-..,a,). Show thatif f is continuous
at a, then f; is continuous at a for all i.

Proof: by continuity of f, forall ¢ > 0, 3n > 0 such that

d(x,a) < n = 6(f(x), f(a)) < <.

Foranyx € E;, writex = (a1, ...,a;-1,X,;41,...,a,). Then,ifd(X,a) < n, we have
6(fi(x), fi(a)) = 6(f(x), f(a)) <e.
Since d;(x,a;) < d(x,a) < n, f; is continuous at a. [

14. Show thatd = sup{d; | i = 1,...,n} definesametricon E = [[_,(E;, d;).

Proof: the only property which is not immediately obvious is the triangle inequality
(and even at that, it is pretty obvious). Let X,y,z € E. Then

d(x,y) = sup{d;(x;,y:)} < sup{d;(x;,2;) + d;i(z;,y:)}
< sup{d;(x;,2;) } + sup{di(z;,y:)} = d(x,z) + d(z,y)

So we’ve got that going for us, which is nice. |
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15. Let (£;,d;) be metric spaces for i = 1,...,n. Show that the metric product space
(E,d) = (][ Ei, sup{d;}) is complete if and only if (£;, d;) is complete for each .

Proof: Assume (E, d) is complete, and let (x,,) be a Cauchy sequence in (E;, d;) for
some i. Then for alle > 0, 3IM € N such that d;(x,,X,,) < € whenever n, m > M.

For each j # i, picka; € E;.

Write w,, = (ai1,...,a,-1,Xn,a,41,...,a,). Then (w,,) is a Cauchy sequence in E:
indeed for all e > 0, we have
d(Wp, W) = sup{d;(mi(Wy), mi(Wp)) }
= sup{di(a,ai),...,d;(Xn,Xm), ..., dn(an,an)}

= sup{0,...,0,d;(Xn,Xm),0,...,0} = d;(Xp, Xp) < &

whenever n, m > M.

Since (FE, d) is complete, 3w € FE for which w,, — w. Furthermore, 7; is continuous,
so that x,, = m;(w,) — m;(w) € E;, and so (x,,) converges in (E;, d;). Consequently,
(E;, d;) is complete for all 4.

On the other hand, suppose that (E;, d;) is complete for all 7, and let (w,,) be a Cauchy
sequence in (E, d).

Since d;(m; (W), (W) < d(Wy,,w,,) for all i, (m;(w,,)) is a Cauchy sequence in
(E;, d;) foralli. Asall (E;, d;) are complete, 3x1, ..., X,, X; € E;, such that m;(w,,) —
x; forall 4,i.e. foralle > 0, dMq, ..., M,, € Nsuch that

Vi, d;i(m;(wWyp),X;) < e whenevern > M;.
Set M = max{M;|i=1,...,n} <ococandw = (Xi,...,X,). Lete > 0.
Then
d(Wy, W) = sup{d;(mi(Wy), m;(W))} = sup{d;(m;(wn),X;)} <&

whenever n > M.

As we have shown that w,, — w € E, we conclude that (E, d) is complete. [ |

16. Show that the converse of the previous result does not hold in general, for instance for
f : R? = R defined by

0, else

flz,y) = {:v;—fy?’ (z,y) # (0,0)

Solution: the problem is that f(z,0) is continuous at z = 0, f(0,y) is continuous
aty = 0, but f(z,y) is not continuous at (z,y) = (0,0) since, among other things,

, 1
lim f(z,2) = 5 #0. n
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17. Letd;,d; : N x N — R be defined according to

0, ifm=n m-—n
d1 (m, n) = 1 . dQ(mu n) = | | :
1+ .=, otherwise mn

a) Show that d; and d, are metrics on N.
b) Show that the topologies of (N, d;) and (N, d5) are both discrete.
c) Show that (N, d;) is complete but that (N, d;) is not.

d) What does this say about completeness as a topological property of a space?

Proof:

a) The only property which is not immediately obvious is the triangle inequality.
» Ifdy(m,n) = 0,then 0 = dy(m,n) < di(m, k) + di(k,n) for all k.

If di(m,n) # 0and dy(m, k) = 0, then dy(m,n) < dy(m, k) + di(k, n).

Ifdi(m,n),di(m,k),di(k,n) # 0, then

1 1 1
=1 <24+ —4 — =
dy(m,n) +m+n_ +m+k+k+n dy(m, k) + di(k,n)

: 1
since ;—— < 1.

= For dy, notice that

_Im—k  |k—n| nlm—k|l+m|k—n]|

da(m, k) + da(k,n) = T "
_|nm —nk| + [mk — mn)|
B mkn
|mk —nk| |m—nlk |m—n|
> = p—y pr—
~  mkn mkn mn da(m.m)

b) Foralln € N, we need to show that {n} is open in both (N, d;) and (N, ds), that
is, we must show 31,75 > 0 such that By, (n,7;) C {n}.

= Pickanyr; < 1. Then
Bi (n,m) ={yeN|i (y,n) <ri}= {yEN \ y:norn%ry < 1} ={n}.

» Simple algebraic manipulations show that dy(n,m) > ﬁ whenever

n#meN.Setr2:m>0.Then

Ban(nra) = {w €Nz () < —ts b = )
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c) For completeness:
» Let (k,) be a Cauchy sequence in (N, d;). Then, foralll > ¢ > 0,IM € N
such that d; (k,, k) < € whenever n,m > M.

Since dy(z,y) > 1 forall x # y, we must have k,, = k,, for all n,m > M.
Then (k,,) is constant for all n > M, and as such, it is a convergent sequence
in (N, dl)

» Consider the sequence (n) in (N, d2). To show that (n) is a Cauchy sequence,
lete >0and M > % Then

- 11 2 2
dz(man)Z‘m nfomtn 1,1 2 2

mn mn m n ~ min{m,n} M

whenever m,n > M.

Now, ifn — K in (N, d2), then, fore = m,EIM € Nsuchthatd(K,n) <
m whenever n > M (except for possibly K = n).

But this contradicts the fact that d(K,n) > m whenever K # n.
Hence (n) cannot converge in (N, da).
d) This is yet another example that completeness is not a topological property... B

dx.y)
1+d(x,y)

18. Let (E,d) be a metric space. Define d;,dy : E x E — R by di(x,y) = and

d2(X,y) = min{d(x,y), 1}.
a) Show that d; and d, are metrics on E.
b) Show that d is topologically equivalent to ds.
c) Show that d; is topologically equivalent to ds.

Proof:

a) The only property which is not immediately obvious is the triangle inequality.
= letx,y,z€c E.

Write t = d(x,y) > 0, k = d(x,z) > 0,/ = d(z,y) > 0. Since d is a

metric, t < k + £. Since the function f(w) = 1 is increasing over [0, 00),
t k+¢ k l
d = < =
O e A R A ey
k 1
< ——+4 dy(x,2) + di(z, w).

T+k 140
» Letx,y,z € E. Ifdy(x,z) > 1ords(z,y) > 1, then

dy(x,2) + da(2,y) > 1 > da(x,y).
Ifda(x,2z) < 1and da(z,y) < 1, then
dy(x,z) < d(x,y) < d(x,2) + d(z,y) = da(X,Z) + d2(z,y).
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b) Since dy < d, By4(x,7) C By, (x,r) forallx € Eandr > 0. Thatis, By, (x,7) is
open in the d—topology.

Similarly, By, (x, min{r,1}) C By(x,r) for allx € E. Thatis, B4(xX, r) is open in
the do—topology. Hence d and ds are equivalent.
c) Lengthy but simple manipulations show that

d1 < d2 < 2dl
~ T~ =~~~
red green yellow
and so the metrics are equivalent. O
1.89 _ .
1.6
1.44q
1.29
N
0.8q
0.6
0.45
0.2
0 3 i B 8 10

19. Let (E, d) and (F, d) be two metric spaces, and let A C E be dense in E.
a) If f : (A,d) — (F,d) is continuous and if limy_,xyea f(y) exists forallx € £\ 4,
show that there exists a unique continuous function g : £ — F with g|4 = f.

b) Assume further that (F, d) is complete. If f : (A, d) — (F,d) is uniformly contin-
uous, show that there exists a unique function g : £ — F', uniformly continuous,
with g|A = f

Proof:

a) The function g : £ — F that does the trick is given by

— f(X), X € A
Q(X) - {]imy—ﬂ(,yeA f(y), Xc FE \ A (8_4)
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In order to show that g is continuous, let x € F and (x,,) C FE be such that
X, = X. Foralln € N, g(x,,) = limy_,x, yea f(y). Consequently, for any n € N,
Jy, € A such that

An,y) < - and d(g(x), fy)) <

1
n
From the triangle inequality
1
d(X,¥n) < d(X,Xp) + d(Xn, ¥n) < " + d(X, Xp)

we conclude thaty,, — x and so that f(y,) — g(x). Combining this result with

+d(f(yn), 9(%)),

S

d(g(xn), 9(x)) < d(g(%n), f(yn)) + d(f(¥n), g(x)) <

we conclude that g(x,) — g(x). By the Sequential Criterion, g is thus continu-
ous atx for all x € F, and so it is continuous on FE.

[t remains only to show that g is the unique function satisfying the conditions
outlined in the statement of the problem.

Let g,h : E — F be two continuous functions with g|4 = h|4 = f|4. Then
g(x) = h(x) forallx € A.

Now, letx € E'\ A. Since A is dense in FE, there is a sequence (x,,) C A such
that x,, — X. Since g and h are continuous,

g(X) = lim g(xn) = nlggo f(xn) = lim h(xn) - h(X)

n—oo n—oo

Hence g(x) = h(x) for allx € E. Consequently, g = hon E.

Letxg € E \ Aand e > 0. Since f is uniformly continuous on A, 3o > 0 such
that d(f(x), f(y)) < € whenever x,y € A and d(x,y) < o

In particular, if X,y € A are such that d(x,Xo), d(y,X0) < §, thend(x,y) < «

and d(f(x), f(y)) < e.

Since (F, cZ) is complete, the Cauchy Criterion for Functions (we will discuss this
one later) applies and we conclude that limy_,x, ye 4 f(y) exists. According to
the result of part (a), the function g : £ — F' defined by (8.4) is continuous on
E.

[t remains only to show that g is uniformly continuous on F.

Lete > 0. By hypothesis, f is uniformly continuous on A. As a result, 3o > 0
such that d(f(x), f(y)) < e wheneverx,y € Aand d(x,y) < a.

Letx,y € E'satisfyd(x,y) < . Since Aisdensein £, two sequences (Xy,), (¥») C
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A can be found such that x,, — x and y,, — y. Since d is a continuous mapping,
d(Xn,yYn) — d(X,y) < a which shows the existence of an index V € N such that
d(Xp,yn) < aforalln > N.

Hence, d(f(x,), f(yn)) < € foralln. > N. By continuity,
d(f (%), f(yn)) = d(g(x), 9(¥)) < e,

which shows that g is uniformly continuous on F. ]

20. Let (£, d) be a metric space. Let C denote the set of Cauchy sequences in E.

a) i LetU = (u,),V = (v,) € C. Show that (d(u,,Vv,)) converges, and denote its
limit by 6(U, V).
ii. Show that ¢ is symmetric and satisfies the triangle inequality.

b) Consider the equivalence relation ~ on C defined by
U~V <= §(U,V)=0.
Write £ = C/ ~ and denote the equivalence class of U € C in E by U.

i. What is the equivalence class of a sequence which converges in £7?

ii. IfU ~ U’ andV ~ V’, show that §(U, V) = §(U’, V"). Thus, for U,V € E, the
real number 5(U, ‘7) = 0(U, V) is well-defined, not being dependent on the
choice of class representatives.

iii. Show that d is a metric on E.

iv. Let. : E — E be defined by (o) = @, where («) is the constant sequence.
Show that ¢ is an isometry (and so also 1 — 1). Furthermore, show that L(E)is
dense in F.

c) Show that (E, §) is complete.

d) Let (F1,d;) and (FE», dy) be complete metric spaces, and suppose that there are
isometries ¢, : £ — FEj with (x(F) dense in E, for £ = 1,2. Show that there is a
unique bijective isometry ¢ : F; — E5 such that ¢(¢1(X)) = t2(x) forall x € F.

Proof:

a) i Since R is complete, it will suffice to show that (d(u,, v,,)) is a Cauchy se-
quence. Forall p,q € N,

(
(

q) T d(ug,vy) +d(vy, vy)

d(up, vp) Up, u
u,, uy) + d(uy, vy) + d(vy, vg)

<d
d(ug,ve) < d

whence
and so |d(u,, v,) — d(ug, vq)| < d(u,,uy) + d(v,, vq) — 0, since both U and
V are Cauchy sequences. Consequently, (d(u,,v,)) is a Cauchy sequence.
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b)

il.

il.

iii.

iv.

8.3. SOLVED PROBLEMS

Symmetry is clear, since the limit of a convergent sequence is unique in a
metric space and

I(V,U) < d(Vn,up) = d(uy,vy,) = 6(U, V).
The triangle inequality is also obvious since
(U, V) + d(uy, vy) < dy,wy) + d(wy,vy,) = 6(U, W)+ §(W,V)

implies that 6(U, V) < 6(U, W) + §(W, V).

Let U = (u,) be a convergent sequence in £ which converges to a € E.
Since any convergent sequence is a Cauchy sequence, U € C. Let V =
(vp) € C. Then

U~V <= 0(U,V)=0 <= d(uy,,v,) = 0.
Thanks to the inequalities
d(a,vy,) < d(a,u,) +d(u,,v,) and d(u,,v,) <d(a,uy,) + d(a,vy,),

we see that U ~ V if and only if d(a,v,) — 0 (since we already have
d(a,uy,) — 0). Then, U = {V = (v,) € C | v,, = a}.

IfU ~ U’ and V ~ V’, then, according to the triangle inequality, we have
S(U,V) < 8(U T + 86U, V') +8(V, V') = 6(U", V).
Similarly, §(U’, V') < §(U, V) so that§(U, V) = 6(U', V’).

It remains only to show that §(U, V) = 0 if and only if U = V. But that is
exactly how the equivalence relation was built in the first place.

Forany o € E, let (a) € C be the constant sequence. Then

and so ¢ is an isometry.

Let U € E,withU = (u,) € C,and € > 0. Since U is a Cauchy sequence,
dN € N such that for all p,¢ > N we have d(u,,u,) < €. Now, fixp > N.
Then

(U, u(uy)) =6(U, (uy)) = lim d(u,,uy) <e

n—o0 -

Since this holds for all p > N, we conclude that +(u,) — U. Hence any
element of E is the limit of a sequence of elements of .(E), i.e. c(F) is dense
in B.
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c)

d)

P. Boily (uOttawa)

Let (cv,) be a Cauchy sequence in E. Since +(E) is dense in E,Vn € N, 3x,, € E
with §(ay,, ¢(X,)) < L. Then

d(xp,Xq) = 6(1(Xp), t(Xq)) < 0(u(Xp), ap) + (0, ag) + 6(0g, 1(Xg))

1
+ —
q

so that d(x,,X,) — 0as p,q — oo, which is to say that (x,,) € C. Denote
a=(X,) €F.

We will show that «;, — «. Since
1
0(am, ) < d(an, (X)) + 0(L(Xp), @) < - + 0(¢e(Xp), @),
it suffices to show that §(¢(xy,,), ) — 0.

Lete > 0. The sequence (x,,) being Cauchy in £, 3N € Nsuch thatd(x,,x,) < ¢
whenever p, ¢ > N. Thus, fixing n and letting p — oo, we have

3(e(xXn), @) = lim d(xp,x,) <€

p—00
for all n > NN, whence we have the desired result.

Define ¢ on ¢; (E) by setting ¢(¢1(x)) = t2(x) for all x € E. Restricted to ¢1(E),
the mapping ¢ is an isometry since

da(p(11(x)), p(11(y))) = da(e2(x), 2(y)) = d(x,y) = di(1(x),11(y))

forall x,y € E. Thus, ¢ is uniformly continuous on ¢; (E). Since ¢1(E) is dense
in 7 and since Fs is complete, we can apply the result of a previous problem
to show that ¢ can be extended to a unique uniformly continuous function on £j.

Furthermore, ¢ is an isometry on ¢1(F); since ¢1(F) is dense in F; and since
 is continuous on Ej, ¢ is an isometry on Fj in its entirety. In particular ¢ is
1-1.

It remains only to show that ¢ is onto. Let 5 € FE,. As 12(F) is dense in Ej,
3(Bn) = (t2(xx)) C t2(E) such that 3,, — f. Since

di(t1(Xp), t1(Xg)) = d(Xp,Xg) = da(t2(Xp), t2(Xq)) = da2(Byp, By)

for all p,q € N, the sequence (¢1(X,,)) is a Cauchy sequence in F;. But Ej is
complete so that ¢ (X,,) — « € Ej. Since ¢ is continuous, we have

pla) = lim o(1(Xy)) = lim 5(x,) = lim 5, = 5,

that is, ¢ is onto. |
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21. Let A, B C FE, where F is endowed with any metric you care to imagine. Show that

a) ACA

b) (4)=4

c) AUB=AUB

d g=0

e) ingeneral, ANB # ANB

Proof:

a) This one is clear by definition.

b) By part(a), A C @ Conversely, since (77) is the smallest closed set containing
A and since A is also a closed set containing A, then @ C A. Hence, A = @

c) Since the union of two closed sets is closed, AUB is a closed set containing AUB
andso AU B C AU B. Conversely, A U B is a closed set containing both A and
B,soboth A, B C AU B; therefore AUB C AUB.Thus AUB =AU B.

d) Since @ is always a closed set, @ = @.

e) Consider the following example in (R, d3): let A = (—1,0) and B = (0, 1). Then
A=[-1,0,B=10,1,AnB=2,AN B =@ while AN B = {0}. [

22. Let A be asubset of (E,d). Show that A = int(A) U dA.

Proof: suppose that x € int(A). Thenx € A C A. Now suppose that x € JA.
We proceed by contradiction. If x ¢ A then, since E\ A Co E, 3r > 0 such that
B(x,r) C E\ A C E\ A. This contradicts the fact that x € 9A (how?) and so we
must have x € A. Thus int(4) UJA C A.

Conversely, suppose that x € A. There are only three possibilities: x € int(A),
X € 0Aorx € int(E \ A) (why?). If x € int(E \ A), then 3r > 0 such that
B(x,7) C E \ A. This implies that A C E \ B(x,r). Therefore A C E \ B(x,r),
since E \ B(x,r) Cc FE, which in turns implies that x ¢ 4, a contradiction.

Thus x € int(A) UdA and so A C int(A) U dA. |

23. Let A = {% | n € N*}. Under the usual topology on R, show that every point of A is a
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boundary point and that the only cluster point of A is 0.

Proof: To show that every point of z € A is a boundary point, note that any neigh-
bourhood V' of = contains an open interval I, = (z — r,z + r), for some r > 0. But
z € I,NAandsince any open interval contains an irrational number I, N(R\ A) # .
Consequently, any neighbourhood of = contains both points in A and points not in
A, which is another definition of x € dA.

To show that 0 is a cluster point of A, note that any neighbourhood of 0 in (R, d2)

contains an interval of the form (—¢, ¢) for some £ > 0. By the Archimedean prop-
erty, 3N € Nsuchthat §- < e. Hence 0 # 3 € B(0,¢) and so 0 is a cluster point of A.
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In order to show that there are no other cluster points, first observe that any x < 0
cannot be a cluster point of A since the neighbourhood (—2x, 0) contains no points
in A. Likewise, any x > 1 cannot be a cluster point of A since the neighbourhood
(1,2z) contains no point of A.

Ifz € (0,1), then eitherz € Aorz ¢ A. Ifz = L € A, then the open neigh-

bourhood (z — r, x + ) contains no other point of A aslongasr < ﬁ, and so x is
nota cluster pointof A. Ifx € A, choose k € Nsuchthatz € (%, ﬁ) Then the open
neighbourhood (z —r, z +r) contains no other point of A if r < min{z — , 25 — 2}
and so x cannot be a cluster point of A. |

24. Letry ={U CR|R\ Uisfiniteor U = @}, » = {U C R | R\ U is countable or U = &}.
a) Show that 7y and 7, define topologies on R (the co-finite topology and countable

complement topology, respectively).
b) What is the boundary of the set A = {Z | n € N*} under these two topologies?

Proof:
a) It suffices to verify that the three properties hold for 7:
i. @ € 11 by definition; R € 7 since R \ R = & is finite.
ii. Let{X,} C 7. Then R\ X, is finite for all c. According to the de Morgan’s

Laws, the set
R\ JXa =R\ Xa)

«

is a finite set as it is the intersection of an arbitrary collection of finite sets.
Hence, |J X, € 1.
iii. Let{X;}",; C 71. ThenR\ Xj is finite foralli =1,... ,n.

According to the de Morgan’s Laws, the set

R\ﬂXi:U(R\Xi)

=1 =1

is a finite set as it is the union of a finite collection of finite sets. Hence,
ﬂ?:l Xi [Sal
Now for 7o:
i. @ € 1 by definition; R € 7 since R \ R = & is countable.
ii. Let{X,} C 7. ThenR\ X, is countable for all c.

According to the de Morgan’s Laws, the set

R\UXa:ﬂ(R\Xa)

«

is a countable set as it is the intersection of an arbitrary collection of count-
able sets. Hence, | J X, € To.
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iii. Let {X;}]"; C 7. ThenR \ Xj is countable forall i = 1,...,n. According
to the de Morgan’s Laws, the set

n

R\ mXi: U(R\Xi)
i=1

i=1

is a countable set as it is the union of a finite collection of countable sets.

Hence, N, X; € 7.
b) In the countable complement topology, A C¢ R, because R\ (R \ A) = Ais
countable and so R \ A Cp R. Consequently, A = A. Furthermore, the only

open set of R contained in A is the empty set, as any other open set is uncount-
able. Hence int(A) = gand 94 = A\ int(A4) = A.

In the co-finite topology, the only closed set containing A is R, as any other

closed set is finite. Consequently, A = R. Furthermore, the only open set
of R contained in A is the empty set, as any other open set is infinite. Hence
int(A) = @and 0A = R. [

25. Let A, B C (E,d). Ifx € E is a cluster point of A N B, show that x is a cluster point of
both A and B.

Proof: let x be a cluster point of A N B. Then any neighbourhood V' of x contains a
pointy € AN B C Asuchthaty # x. Thusy is a cluster point of A. The argument
for B is identical. [ |

26. Showthat B C (R?, d,)is closed if and only if every convergent sequence in B converges
to a pointin B.

Proof: first, assume that B is closed. Let x = limx,,. Then, for anye > 0, In. > 0
such that x,, € B(x,¢) for all n > n.. Consequently, BN B(x,¢) # @ foralle > 0.
Since RP \ B Cp R?, it follows that x € B (why?).

Conversely, assume that for every convergent sequence (x;) C RP, we have x =
limx;, € B. IfRP\ BisnotopeninRP, 3x € RP\ B such that B(x, )N B # & forall

1
n € N. Then 3x,, € B(x, 2) N B; the sequence (x,,) C B converges to X ¢ B, which

contradicts the hypothesis. Hence R \ B Cp RP. |
27. Let (x,) € (RP,|| - ||) such that
%1 = X < 7[%0 = X0 ]
where r < 1. Show that (x,,) converges.
Proof: we have ||x3 — X2|| < r||x2 — x| and it is easily seen by induction that if
%1 — Xnl| < 7" %2 — x|
then

X2 = Xoet | < rlloes — Xl < 7% — x|
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Therefore, if m > n,

m—1 m—1
% = Xl = (D Ker = xu)|| < D kg1 — |
k=n k=n

< xprr = x| D0 xe = x| < T X2 = xall.
k=n k=n

Lete > 0. Since r < 1, 3NV, so that

1—

7’”_1 <l &E——m
X2 — x|

foralln > N,

and so ||x,,, — X, || < e forallm > n > N.. It follows that (x,,) is Cauchy and that it
is convergent, since (RP, || - ||) is a Banach space. |

8.4 Exercises

10.

11.

12.
13.

14.

© 0 N o 1ok W

Prepare a 2-page summary of this chapter, with important definitions and results.
Show that the absolute value defines a norm on R.

Show that the modulus defines a norm on C.

Show that the sup norm || - |- is indeed a norm on Cg ([0, 1]).

Let co > p > 1. Show that the p—norm || - ||« is indeed a norm on R™.

Let p > 1. Show that (8.1, p. 189), defines a norm on £?([0, 1]).

Prove Lemma 8.1.1, p. 189.

Let £ be any set. Show that (8.2, p. 190) defines a metric on E.

Let £ = R"™. Show that d5 is a metric on E.

Let E =R, d(z,y) = |z —y|, A=Nand B = {®=! | n € N}. Compute d(A, B), where d
is asin (8.3, p- 191)). Can you use this result to show that (8.3, p. 191) does not define
a metric on p(F) \ @7

In a metric space, show that 6(A) € [0,00]. Also, show that 6(A) = 0 <= Aisa
singleton.

Prove or disprove: In any metric space (¥, d), 6,(B(a,r)) = 2r.

Prove or disprove: Let d, d’ be metrics on E. Then, A is bounded in (%, d) if and only if
Aisbounded in (£, d').

Where does the proof that a finite intersection of open subsets is open fail for arbitrary
intersections?
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

234

8.4. EXERCISES

Show that the metric space topology on a discrete metric space is the discrete topology.

Show that the intersection of an arbitrary family {A;};c; of closed subsets of E is a
closed subset of F.

Show that the union of a finite family {4;}¢_, of closed subsets of E is a closed subset
of E.

Show that the union of an arbitrary family of closed subsets of E need not be closed in
E.

Let A be a subset of a metric space (£, d). Show that A is the intersection of all closed
subsets of E containing A.

Let A be a subset of a metric space (E, d). Show that A C A.
Prove Lemma 92, p. 197.
In Proposition 94, p. 198, show that 2. <= 3 <= 4.

Let A be a subset of a metric space (£, d). Show that int(A) is the union of all open
subsets of £ contained in A.

Let A be a subset of a metric space (F, d). Show thatint(A) C A.

Let A be a subset of a metric space (£, d). Showthat A Cp E <= A = int(A).
Complete the proof of Lemma 98, p. 202.

Prove Proposition 99, p. 202.

Show that the three definitions of continuity are equivalent.

Let f: C — D,AC Cand B C D. Show that f~!(f(A)) = A and that in general, the
best we can say is that f(f~'(B)) C B.

Can you find a function f : £ — E which is continuous but not closed?

Can you find a function f : E — E which is open and closed but not continuous?
Can you find a function f : £ — E which is open and continuous but not closed?
Complete the proof of Proposition 101, p. 204.

Complete the proof of Corollary 102, p. 204.

Provide the details showing that d, and d, are topologically equivalent on R2.
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36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

Consider the metric space (R, dz). Define a new function d:RxR—R—Rby

7 d(fb,y)
d(z,y) = 1+d(z,y)

Show that d defines a metric on R, that d and d are topologically equivalent but that they
are not equivalent.

Let (F,d) be a metric space. Show thatd : £ x F — R is Lipschitz continuous (with
k = 2) and so that it is a continuous map.

Find a function which is uniformly continuous but not Lipschitz continuous.
Show that the two definitions of convergence of a sequence are equivalent.
Show that if x,, — X, then any subsequence of (x,,) also converges to x.
Show that the set of limit points of a sequence is closed.

Complete the proof of Proposition 103, p. 209.

Prove Proposition 8.2.2, p. 214.

Show that the space ¢*(N) is a Hilbert space as follows.

a) Show that ¢?(N) is a vector space over C.

b) Show that (-|-) defined in the text is indeed an inner product over ¢*(N).
c¢) Show that (-|-) defines a norm || - || over ¢*(N).

d) Show that /?(N) is complete under || - ||.

Let f : R — R be defined by

f(a:):{l’ x<0‘

x—i—x%l, x>0

Show that f has no fixed point but that d(f(z), f(y)) < d(x,y) forall z,y € R.

Let X be a compact metric space. Define
Cr(X) ={flf : X — R, f continuous}.

Show that (Cr(X), ||-||) isa Banach space, but that neither (Cr (X), ||-||1) nor (Cr(X), ||-
|l2) is complete.

Let E = {f € Cp(R,R)|f uniformly continuous}. Show that ' is a complete sub-
algebra of Cs(R, R).
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48.

49,

50.

8.4. EXERCISES

Let (E, d) be a complete metric space and f : £ — E. If there exists a positive integer
rand k € (0, 1) such that

fr=fofoof
——
r times
and d(f"(x), f"(y)) < kd(z,y) forall z,y € E, show that f has a unique fixed point.

Let X = (0, 00). Consider the function d : X x X — R{ defined by

d(z,y) =

r oyl

1 1 ’

a) Prepare a 2-page summary of this chapter; identify the important definitions and
results.

b) Show that d is a metric on X.

c) Show that d and d, induce the same topology on X (i.e. the open sets of X are
exactly the same under both metrics).

d) Show that (X, d) is not a complete metric space.

e) Show that ((0, 1], d) is a complete metric space.

Let B(X,R) denote the set of bounded functions from X to R. It is easy to see that
B(X,R) is a vector space over R. The norm of f € B(X,R) is defined by

I/l = sup | f ().
zeX

Show that B(X,R) is a Banach space with this norm.

51. Are the co-finite topologies and the countable complement topologies derived from a
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metric?
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