
Chapter 9

Metric Spaces and Topology

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is bymoving fromR toRm. Some of the notions that
generalize nicely to vectors and functions on vectors include compactness
and connectedness.

The symbolK is sometimes used to denote either R or C.

9.1 Compact Spaces
LetA be a ϐinite set. A function f : A→ K is necessarily bounded (in the sense that ∃M ∈ K
such that |f(a)| ≤M for all a ∈ A).

Might this be due to the ϐiniteness of A? While ϐiniteness is sufϐicient, it is not a necessary
condition for boundedness: the Dirichlet function χQ : [0, 1] → R is bounded, even though
its domain is the uncountable set [0, 1].

Perhaps it is the boundedness of the function’s domain that does the trick? Unfortunately,
that condition is neither sufϐicient nor necessary, as can be seen from the functions

f : [0, 1]→ R, f(x) =
1

x
for x > 0, and f(0) = 0,

and g : R→ R deϐined by g(x) = exp(−x2).

Could the culprit instead be the continuous nature of the function? Not as such, no, as we
have examples of continuous functions being bounded, others being unbounded; and non-
continuous functions being bounded, others being unbounded.

A condition on the domain of the function alone cannot guarantee boundedness; and nei-
ther can one on the nature of the function. However, a combination of two conditions, one
each on the domain and on the function, can provide such a guarantee.
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9.1. COMPACT SPACES

In this section,we study the appropriate property on thedomain, that of compactness, which
generalizes theproperty of ϐiniteness. Its deϐinition,which in all honesty is not super intuitive,
is due to Borel and Lebesgue, is applicable to metric and general topological spaces alike.

9.1.1 The Borel-Lebesgue Property
A space E is compact if any family of open subsets covering E contains a ϐinite sub-family
which also covers E. In other words, E is compact if, for any collection U = {Ui}i∈I of open
subsets Ui ⊆O E with E ⊆ ∪i∈I Ui, ∃ a ϐinite J ⊆ I such that E ⊆ ∪j∈J Uj.

aaaaaa

Examples

1. Every ϐinite metric space (E, d) is compact.

Proof: let U be an open cover of E = {x1, . . . , xn}. Thus, for each 1 ≤ i ≤ n,
∃Ui ∈ U such that xi ∈ Ui. Then {U1, . . . , Un} is a ϐinite subcover of E. ■

2. In the standard topology, R is not compact.

Proof: consider the open cover R =
∪
n∈N

(−n, n).

Any ϐinite subcollection {(−n1, n1), . . . , (−nm, nm)} is bounded by
M = max{nj | 1 ≤ j ≤ m}, and thus cannot be a cover of R accord-
ing to the Archimedean Property. Consequently, no such ϐinite subcover
exists and R is not compact. ■

3. Show that R is compact in the indiscrete topology.

Proof: the only open cover of R in the indiscrete topology is {R}, which
is already a ϐinite sub-cover of R (the only other open subset of R in the
indiscrete topology is∅). ■

4. Show that any compact metric (E, d) space is bounded.

Proof: consider the open cover U = {B(x, 1) | x ∈ E}. Since E is
compact, ∃x1, . . . , xn ∈ E such thatE = B(x1, 1)∪ · · ·B(xn, 1). Consequently,
E has a ϐinite diameter≤ n and is thus bounded. ■

By abuse of notation, we often write: “let∪Ui be an open cover ofE” rather than “let {Ui} be
an open cover of E,” as in the second example above.

Incidentally, does the fourth example contradict the third one? It doesn’t actually, but what
does that imply about the indiscrete topology?
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

The duality open ↭ closed/ union ↭ intersection yields an equivalent deϐinition: a space
E is compact if any family of closed subsets ofE with an empty intersection contains a ϐinite
sub-family whose intersection is also empty.

In other words,E is compact if, for any collectionW = {Vi}i∈I of closed subsets Vi ⊆C E
with∩i∈I Vi = ∅, ∃ a ϐinite J ⊆ I such that∩j∈J Vj = ∅.

aaaaaa

Proposition 115
Let (Fn)n≥1 be a decreasing sequence of non-empty closed subsets of a compact space
E. Then

∩
n≥1 Fn ̸= ∅.

Proof: if ∩n≥1 Fn = ∅, then E =
∪

n≥1E \ Fn, where E \ F ⊆O E. Since E
is compact, ∃ a ϐinite subsequence of indices n1 < · · · < nk such that

E =
k∪

i=1

E \ Fni
.

Consequently,∩k
i=1 Fni

= ∅. But the original sequence is decreasing, so that
k∩

i=1

Fni
= Fnk

= ∅,

which contradicts the hypothesis that allFn are non-empty. As a result, we conclude
that∩n≥1 Fn ̸= ∅. ■

Continuous functions on compact domains have quite useful properties.

aaaaaa

Proposition 116
Let f : (E, d)→ (F, δ) be any continuous function over a compact metric space. Then
f is uniformly continuous.

Proof: let x ∈ E. Since f is continuous at x ∈ E, ∀ε > 0, ∃Mx(ε) > 0 such
that

f(B(x,Mx)) ⊆ B(f(x), ε).

Furthermore, E =
∪

x∈E B(x,Mx) is an open cover of E, which is compact. Conse-
quently, ∃x1, . . . , xn ∈ E such that E =

∪n
i=1B(xi,Mxi). Set

M =M(ε) = 1
2
·min{Mx1 , . . . ,Mxn} > 0.

Then, ∀ε>0, ∃M(ε) > 0 such that f(B(x,M)) ⊆ B(f(x), ε) for all x ∈ E. AsM does
not depend on x, f is uniformly continuous. ■
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9.1. COMPACT SPACES

A subsetA ⊆ E is deemed to be a compact subset ofE, which we denote byA ⊆K E, if any
family of open subsets of E coveringA contains a ϐinite sub-family which also coversA.

aaaaaa

Proposition 117
A ϔinite union of compact subsets of E is itself compact.

Proof: let A1, . . . , An ⊆K E and write A =
∪n

k=1Ak. Let {Ui}i∈I ⊆ ℘(E) be
an open cover ofA. Then {Ui}i∈I is also an open cover ofAk for each k.

Since all Ak are compact, ∃ ϐinite J1, . . . , Jk ⊆ I such that Ak ⊆
∪

j∈Jk Uj for
each k. Thus,A ⊆ ∪n

k=1

∪
j∈Jk Uj . But∪n

k=1{Uj}j∈Jk is a ϐinite sub-family of {Ui}i∈I ,
from which we conclude that A ⊆K E. ■

The inϐinite union of compact subsets could be compact or not, however.

aaaaaa

Examples

1. Both [0, 1], [2, 3] ⊆K (R, d1), so [0, 1] ∪ [2, 3] ⊆K (R, d1). □

2. For any x ≥ 1, [0, 1
x
] ⊆K (R, d1). The union∪x≥1[0,

1
x
] = [0, 1] is also a compact

subset of (R, d1). □

3. For any n ∈ N, [−n, n] ⊆K (R, d1), but the union ∪n∈N[−n, n] = R is not a
compact subset of (R, d1). □

9.1.2 The Bolzano-Weierstrass Property
Formetric spaces, compactness can also be established via a property of sequenceswhich is
often easier to ascertain than the Borel-Lebesgue property, but it comes with a warning: the
two properties are not equivalent in general for non-metric spaces.

Let (E, d) be a metric space. We say that E is precompact if ∀ε > 0, ∃x1, . . . , xn ∈ E such
that E =

∪n
i=1B(xi, ε).

aaaaaa
Proposition 118
A compact space is precompact.

Proof: left as an exercise. ■

We now present the section’s main result, a “special case” of which we saw in Theorem 20.
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

aaaaaa

Theorem 119 (BĔđğĆēĔ-WĊĎĊėĘęėĆĘĘ CĔĒĕĆĈęēĊĘĘ)
Let (E, d) be a metric space. Then E is compact if and only if any sequence in E has a
convergent sub-sequence in E.

Proof: assume E is compact and let (xn) ⊆ E. If the range of (xn) is ϐinite,
there is a constant subsequence which would then automatically be convergent.
We thus consider sequences with inϐinite rangeA = {xn | n ∈ N}.

We show that such an A has at least one cluster point. Suppose, instead, that
thereA has no cluster point. Thus for any x ∈ E, ∃rx > 0withB(x, rx) ∩A is ϐinite.
Since E is compact, there exists a ϐinite J ⊆ E such that E =

∪
x∈J B(x, rx).

Then
A =

∪
x∈J

(B(x, rx) ∩ A)

is a ϐinite union of ϐinite sets, henceA is itself ϐinite.

But this contradicts the fact that A is inϐinite. Hence, A has at least one clus-
ter point x ∈ E. Such a cluster point is a limit point of (xn): consequently, there
is a subsequence of (xn) which converges to x ∈ E (in which case we say that E
satisϐies the Bolzano-Weierstrass property).

Conversely, assume all sequences in E have convergent subsequence in E.
First, note that any metric space (E, d) satisfying the Bolzano-Weierstrass property
is precompact. Indeed, suppose that ∃ε > 0 such that E can not be covered with a
ϐinite number of ε−balls. Let x0 ∈ E. By assumption, B(x0, ε) ̸= E. Thus ∃x1 ∈ E
such that d(x0, x1) ≥ ε.

Since B(x0, ε) ∪ B(x1, ε) ̸= E, ∃x2 ∈ E such that d(x0, x1), d(x0, x2) ≥ ε.
Continuing this process, we build a list x0, x1, . . . , xn for which d(xi, xj) ≥ ε for all
i < j ≤ n.

Since ∪n
i=0B(xi, ε) ̸= E, ∃xn+1 ∈ E such that d(xi, xn+1) ≥ ε for all 0 ≤ i ≤ n.

By induction, there is a sequence (xn) ⊆ E such that d(xi, xj) ≥ ε whenever
i ̸= j. Consequently, this sequence has no convergent subsequence, since no
subsequence is a Cauchy sequence. This contradicts the hypothesis that E satisϐies
the Bolzano-Weierstrass property, thus E is precompact.

Next, we show that if the metric space (E, d) satisϐies the Bolzano-Weierstrass
property and if {Ui}i∈I is an open cover of E, then

∃α > 0,∀x ∈ E, ∃i ∈ I =⇒ B(x, α) ⊆ Ui. (9.1)
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aaaaaa

Indeed, suppose that

∀α > 0,∃x ∈ E, ∀i ∈ I =⇒ B(x, α) ̸⊆ Ui. (9.2)

In particular,
∀n ∈ N×,∃xn ∈ E, ∀i ∈ I =⇒ B(x, 1

n
) ̸⊆ Ui.

Let (xφ(n)) be a convergent subsequence of (xn) (such a sequence exists since E
satisϐies the Bolzano-Weierstrass property).

Write xφ(n) → x. Since {Ui}i∈I covers E, ∃i ∈ I such that x ∈ Ui. But Ui ⊆O E, so
∃r > 0 such thatB(x, 2r) ⊆ Ui.

Accordingly, ∃N ∈ N such that d(xφ(n), x) < r and φ(n) > 1
r
for all n > N .

Consequently, ∀n > N and ∀y ∈ B(xφ(n), 1
φ(n)

), we have

d(x, y) ≤ d(x, xφ(n)) + d(xφ(n), y) < r + r = 2r.

Thus ∀n > N ,B(xφ(n), 1
φ(n)

) ⊆ Ui, which contradicts (9.2), and so (9.1) holds.

To show E is compact, let {Ui}i∈I be an open cover of E. We know from (9.1)
that

∃α > 0,∀x ∈ E, ∃i ∈ I =⇒ B(x, α) ⊆ Ui.

But E is precompact, so ∃x1, . . . , xn ∈ E such that E =
∪n

j=1B(xj, α).

Let i1, . . . , in be the indices for whichB(xj, α) ⊆ Uij , 1 ≤ j ≤ n. Then E =
∪n

j=1 Uij

is a ϐinite subcover of E; E is indeed compact. ■

The following result has a similar ϐlavour.

aaaaaa

Theorem 120
Let (E, d) be a metric space. Then E is compact if and only if any sequence in E has a
limit point if and only if every inϔinite subset of E has a cluster point.

Proof: left as an exercise. ■

It is usually easier to show that the Bolzano-Weierstrass is violated than to show that it holds.

aaaaaa

Example: Show that the set (0, 1) is not a compact subset of (R, d1).

Proof: Consider the sequence (1/n) ⊆ (0, 1). Every subsequence of (1/n)
converges to 0 ̸∈ (0, 1). According to Theorem 119, (0, 1) is not a compact subset of
(R, d1). ■
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Compact sets really have quite useful properties.

aaaaaa

Proposition 121
Let (E, d) be a metric space.

1. If E is compact and A ⊆C E, then A ⊆K E.

2. If A ⊆K E, then A ⊆C E andA is bounded.

Proof:

1. Since E is compact, it is precompact (see the proof of Theo-
rem 119) and so is A. The set E is also complete (see exercise 2). Thus
A is a closed subset of the complete set E: A is then complete (see Propo-
sition 110). But A is precompact and complete, and so A ⊆K E (see
exercise 3).

2. SinceA ⊆K E, it is precompact. Hence for ε > 0, ∃x1, . . . , xn ∈ A such that

A ⊆
n∪

j=1

B(xj, ε).

Thus, δ(A) ≤ nε <∞ and A is bounded.

To show that A ⊆C E, it sufϐices to show that any sequence in A which
converges does so inA, according to Proposition 105. So let (xn) ⊆ A be such
that xn → x ∈ E. ButA is compact, so that ∃ a convergent subsequence (xφ(n))
which converges in A. Since any subsequence of a sequence converging to x
also converges to x, xφ(n) → x ∈ A and soA ⊆C E. ■

Unlike completeness, compactness is a topological notion.

aaaaaa

Proposition 122
Let (E, d) and (F, δ) be metric spaces, together with a continuous function
f : (E, d)→ (F, δ). If A ⊆K E then f(A) ⊆K F .

Proof: let {Uλ}λ∈Λ be an open cover of f(A). Since f is continuous, we have
that A ∩ f−1(Uλ) ⊆O A for all λ ∈ Λ. Thus {A ∩ f−1(Uλ)}λ∈Λ is an open cover of A.
But A ⊆K E so that ∃ a ϐiniteH ⊆ Λ such that∪

λ∈H

(
A ∩ f−1(Uλ)

)
= A.

As such, {f(Uλ)}λ∈H is a ϐinite sub-cover of f(A), and so f(A) ⊆K F . ■
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There is also a link with homeomorphisms.

aaaaaa

Proposition 123
Let f : (E, d) → (F, δ) be a continuous bijection. If (E, d) is compact, then f is a
homeomorphism.

Proof: let Y ⊆C E. We need to show that f(Y ) ⊆C F . According to Propo-
sition 122, f(Y ) ⊆K F . But, according to Proposition 121, part 2, f(Y ) ⊆C F . So f
is closed, meaning that f inv is continuous. ■

Perhaps the most famous theorem linking continuous functions and compact spaces is the
result to which we were alluding to at the start of this section (we proved a restricted case in
Theorem 33).

aaaaaa

Proposition 124 (MĆĝ/MĎē TčĊĔėĊĒ (RĊĕėĎĘĊ))
Let f : (E, d) → R be continuous. If (E, d) is compact, then f is bounded and
∃a,b ∈ E such that f(a) = infx∈E f(x) and f(b) = supx∈E f(x).

Proof: since E is compact and f is continuous, then f(E) is compact accord-
ing to Proposition 122. As such, f(E) is both closed and bounded inR, according to
Proposition 121.

Now, set A = infx∈E f(x). By deϐinition, for each n ≥ 1, ∃an ∈ E such that
A ≤ f(an) < A+ 1

n
(otherwise infx∈E f(x) ≥ A+ 1

n
> A).

But (an) is a subsequence of the compact space E (hence a subsequence of a
closed space) so ∃ a subsequence (aφ(n))which converges to some a ∈ A according
to Proposition 105.

As f is continuous, f(aφ(n))→ f(a). But f(aφ(n))→ A, since

A ≤ f(aφ(n)) < A+
1

φ(n)
→ A.

The limit of a convergent sequence is unique in a metric space, so f(a) = A.

A similar argument shows ∃b ∈ E such that f(b) = supx∈E f(x). ■

The next result is often used as the deϐinition of a compact set, but it cannot be generalized
to inϐinite dimensional spaces (such as ℓ2(N) or other inϐinite dimensional Banach spaces).

aaaaaa Proposition 125 (HĊĎēĊ-BĔėĊđ)
Any closed bounded subset ofKn is compact in the usual topology.
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aaaaaa

Proof: since Cm ≃ R2m, we only need to verify that this is the case for Rn. Fur-
thermore, the proposition will be established if we can show it to be valid for any
A = [a1, b1]× · · · × [an, bn] ⊆C Rn (why is that the case?).

Since Rn is complete and A ⊆ Rn, then A is a complete subset of Rn, accord-
ing to Proposition 110. It will then be sufϐicient to show that A is precompact,
according to the proof of Theorem 119.

But that is obvious (see exercise 5). ■

9.2 Connected Spaces
Let f : A ⊆ R → R be a continuous function such that ∃a, b ∈ A with f(a)f(b) < 0. What
condition dowe need onA in order to guarantee the existence of a solution to f(x) = 0 onA?

WhetherA is compact or not is irrelevant: for instance, in the standard topology, the func-
tion f : A = [0, 1] ∪ [2, 3]→ R deϐined by

f(x) =

{
−1 x ∈ [0, 1]

1 x ∈ [2, 3]

is continuous over the compact set A, there are points a, b ∈ A such that f(a)f(b) < 0, yet
f(x) ̸= 0 for all x ∈ A. On the other hand, f : A = [−1, 1] → R deϐined by f(x) = x is such
that f(−1)f(1) < 0 and ∃x ∈ A such that f(x) = 0 (namely, x = 0).

The key notion is that of connectedness. Let (E, d) be a metric space. A partition of E
is a collection of two disjoint non-empty subsets U, V ⊆ E such that E = U ∪ V .¹ An open
partition of E is a partition where U, V ⊆O E; a closed partition of E is a partition where
U, V ⊆C E.

aaaaaa

Examples

1. There are many partitions of R in the usual topology, such as

(−∞, 0] ⊔ (0,∞) or [(−∞,−3] ∪ {0}] ⊔ [(−3, 0) ∪ (0,∞)],

but no such partition can be an open partition or a closed partition. □

2. Themetric spaceA = [0, 1]∪ [2, 3] is partitioned by [0, 1] and [2, 3]. This is both
an open partition and a closed partition in the usual subspace topology (note
that this is not the case in R, but we are only interested in the set A, not the
space in which it is embedded). □

3. The singleton set E = {∗} cannot be partitioned. □

¹We denote the disjoint union byE = U ⊔ V .
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The next result establishes an “easy” way to determine if a space has such partitions.

aaaaaa

Proposition 126
Let (E, d) be a metric space. The following conditions are equivalent:

1. E has no open partition;

2. E has no closed partition;

3. The only subsets of E that are both open and closed are∅ and E (such sets are
rather unfortunately known as clopen sets).

Proof: we show 1. =⇒ 2. =⇒ 3. =⇒ 1.

1. =⇒ 2.: Suppose that {F1, F2} forms a closed partition of E. Then
Fi = E \ Fi−1 ⊆O E for i = 1, 2. Hence {F1, F2} also forms an open parti-
tion of E, which contradicts the hypothesis that no such partition of E exists. Thus
E has no closed partition.

2. =⇒ 3.: Let A ⊆ E be such that A ⊆C E and A ⊆O E. Then {A,E \ A}
is a closed partition ofE. By hypothesis, there can be no such partition ofE. Hence
A = ∅ or E \ A = ∅.

3. =⇒ 1.: This is clear once one realizes that any open partition is automati-
cally also a closed partition. ■

Ametric space (E, d) is said tobe connected if it satisϐies anyof the conditions listed inPropo-
sition 126. Similarly, a subsetA ⊆ E is connected if its only clopen partition is trivial, that is:
whenever A = X ⊔ Y ,X,Y ⊆O E, eitherX = ∅ or Y = ∅. We will denote such a situation
with A ⊆© E (this is emphatically not a notation you will ϐind anywhere else).

aaaaaa

Examples

1. In the usual topology, R is connected. □

2. In the same topology, A = [0, 1] ∪ [2, 3] is not a connected subspace of R. □

3. The singleton set E = {∗} is vacuously connected. □

4. IsA = { 1
n
| n ∈ N} a connected subset of R in the usual topology?

Solution: since A = {1} ⊔ { 1
n
| n ≥ 2} is a non-trivial open partition

ofA,A is not a connected subset ofR in the usual topology. Indeed, {1} ⊆O A
since {1} = (1

2
,∞) ∩ A, { 1

n
| n ≥ 2} ⊆O A since { 1

n
| n ≥ 2} = (0, 1) ∩ A. □
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As was the case with compactness, connectedness is a topological notion.

aaaaaa

Proposition 127
Let f : (E, d)→ (F, δ) be continuous. If A ⊆© E, then f(A) ⊆© F .

Proof: LetB ⊆O,C f(A). We will show thatB = ∅ orB = f(A).

Since B ⊆O f(A), then ∃U ⊆O F such that B = f(A) ∩ U . Similarly, since
B ⊆C f(A), then ∃W ⊆C F such that B = f(A) ∩ W . But f is continuous so
f−1(U) ⊆O E and f−1(W ) ⊆C E. Therefore,

f−1(B) = A ∩ f−1(U) ⊆O A and f−1(B) = A ∩ f−1(W ) ⊆C A.

Thus f−1(B) ⊆O,C A. However A is a connected subset of E, so either f−1(B) = ∅
or f−1(B) = A. Since B ⊆ f(A), that leaves only two possibilities: B = ∅ or
B = f(A), which means f(A) ⊆© B. ■

9.2.1 Characterization of Connected Spaces
We now give a simple necessary and sufϐicient condition for connectedness. Throughout, we
endow the set {0, 1}with the discrete metric.

aaaaaa

Proposition 128
A metric space (E, d) is connected if and only if every continuous function
f : E → {0, 1} is constant.

Proof: assume (E, d) is connected. If f : E → {0, 1} is continuous and not
constant, then f−1(0), f−1(1) ⊆O,C E and E = f−1(0) ⊔ f−1(1).

Since f is not constant, neither f−1(0) nor f−1(1) is ∅ or all of E. Hence E is
not connected, as it contains non-trivial clopens, which contradicts our starting
assumption. Thus f is constant.

Conversely, if E is not connected, ∃ non-trivial clopensX,Y such that E = X ⊔ Y .
Consider the characteristic function χX : E → {0, 1}: we have f−1(0) = Y ⊆O E
and f−1(1) = X ⊆O E. Consequently, f is continuous and clearly not constant. ■

In practice, Proposition 128 is typically easier to use to show that a space is not connected.

aaaaaa
Proposition 129
Let (E, d) be a metric space and A ⊆© E. If B ⊆ E is such that A ⊆ B ⊆ A, then
B ⊆© E.
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aaaaaa

Proof: if such aB is not connected, then ∃ a non-trivial open partition {X,Y } ofB.
In particular, {A ∩X,A ∩ Y } is an open (in A) partition of A. But A is dense in B:
if x ∈ B, every neighbourhood around x contains at least a point of A.

In particular, if x ∈ B ∩ X , then any neighbourhood around x must contain
at least a point of A ∩X . Consequently,A ∩X ̸= ∅. Similarly, A ∩ Y ̸= ∅.

Thus, {A ∩ X,A ∩ Y } is a non-trivial open partition of A, which contradicts
the fact that A is connected. SoB must be connected. ■

There is a series of other useful propositions about connected spaces.

aaaaaa

Proposition 130
If (Bi)i∈I is a family of connected subsets of a metric space (E, d) such that∩

i∈I Bi ̸= ∅, thenB =
∪

i∈I Bi ⊆© E.

Proof: if {X,Y } is a non-trivial open partition of B and if b ∈
∩

i∈I Bi, we
may assume b ∈ X without loss of generality. But B =

∪
i∈I = X ⊔ Y and Y ̸= ∅;

hence ∃i0 ∈ I such that Y ∩Bi0 ̸= ∅.

Since b ∈
∩

i∈I Bi, then b ∈ X ∩ Bi0 ̸= ∅ and so {X ∩ Bi0 , Y ∩ Bi0} is a
non-trivial open partition of Bi0 , which contradicts the hypothesis that Bi0 ⊆© E.
Consequently,B ⊆© E. ■

aaaaaa

Proposition 131
If (Cn)n∈N is a sequence of connected subsets of a metric space (E, d) such that
Cn−1 ∩ Cn ̸= ∅, then C =

∪
n∈NCn ⊆© E.

Proof: left as an exercise. ■

aaaaaa

Proposition 132
Let (E1, d1), . . . , (En, dn) be metric spaces. Then

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is connected if and only if (Ei, di) is connected for all i.

Proof: left as an exercise. ■

Let (E, d) be a metric space once more. We deϐine an equivalence relation on E as follows:

xRy⇐⇒ ∃C ⊆© E such that x, y ∈ C. (9.3)
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The equivalence class
[x] = {y ∈ E | yRx} =

∪
C⊆©E

x∈C

C

is a connected subset ofE, which we call the connected component of x. It is not difϐicult to
show that [x] ⊆C E and that if a metric space only has a ϐinite number of connected compo-
nents, then each of those components is a clopen subset of E (see exercises 10 and 11).

aaaaaa

Proposition 133
Consider R with the usual topology. Then, A ⊆© R if and only if A is an interval.

Proof: let A ⊆© R. If A is not an interval, ∃a, b ∈ A for which ∃c ∈ (a, b)
with c ̸∈ A. Thus, A ⊆ (−∞, c) ∪ (c,∞).

Hence {A ∩ (−∞, c), A ∩ (c,∞)} is a non-trivial open partition of A, which
implies that A is not a connected subset of R, a contradiction as A ⊆© E, and so A
is an interval.

Conversely, if A = {∗}, we have already shown that A ⊆© R. According to
Proposition 129, it is sufϐicient to verify thatA = (a, b) ⊆© R for any a < b. We will
show that any continuous map f : (a, b)→ {0, 1} is constant.

Suppose otherwise that ∃x, y ∈ (a, b) such that x < y and f(x) ̸= f(y). Without
loss of generality, let f(x) = 0 and f(y) = 1. Set

Γ = {z | z ≥ x and f(t) = 0 ∀t ∈ [x, z]}.

Clearly, Γ ̸= ∅ since x ∈ Γ. Furthermore Γ is bounded above by y. Thus, since R is
complete, ∃c ∈ [x, y] ⊆ (a, b) such that c = supΓ.

By continuity of f at c, f(c) = 0 and ∃δ > 0 such that

s ∈ (c− δ, c+ δ) =⇒ |f(s)| = |f(s)− f(c)| < 1
2
.

As such, f(s) < 1
2
for all s ∈ (c − δ, c + δ). But f can only take two values: 0 or 1.

Consequently, f(s) = 0 for all s ∈ (c− δ, c+ δ).

This in turn implies that c + δ
2
∈ Γ, which contradicts the fact that c = supΓ.

Thus, f is constant, and (a, b) ⊆© R. ■

We can now give a proof of the remark made after Theorem 36.

P. Boily (uOttawa) 249



9.2. CONNECTED SPACES

aaaaaa

Corollary 134 (BĔđğĆēĔ'Ę TčĊĔėĊĒ)
Consider R with the usual topology and a continuous function f : R→ R. The image
of any interval by f is an interval.

Proof: let A ⊆© R. By the preceding proposition, A is an interval. Since f is
continuous, f(A) ⊆© R. But the only connected subsets of R are the intervals.
Consequently, f(A) is an interval. ■

9.2.2 Path-Connected Spaces
We can also deϐine other types of connectedness.

Let (E, d) be a metric space. We say that E is path-connected if for any two points x, y ∈ E,
there is a continuous function γ : [0, 1] → E such that γ(0) = x and γ(1) = y. The segment
between x and y is

[x, y] = {tx+ (1− t)y | t ∈ [0, 1]}.
The continuous function associated to this segment is the function

fx,y : [0, 1]→ E, deϐined by fx,y(t) = tx+ (1− t)y.

If [x, y] and [z,w] are two segments, deϐine their sum (concatenation) to be

[x, y] + [z,w] = {2tx+ (1− 2t)y | t ∈ [0, 1
2
]} ∪ {(2t− 1)z+ (2− 2t)w | t ∈ [1

2
, 1]}.

If y = z, the continuous function associated to this sum is the function

gx,y,w : [0, 1]→ E, deϐined by gx,y,w(t) =

{
2tx+ (1− 2t)y if t ∈ [0, 1

2
]

(2t− 1)y+ (2− 2t)w if t ∈ [1
2
, 1]

aaaaaa

Examples

1. Show thatB(0, 1) is path-connected in (R2, d2).

Proof: Let a ̸= b ∈ B(0, 1). Then [a,0], [0,b] ⊆ B(0, 1). Indeed, if
x ∈ [a,0], then x = ta for t ∈ [0, 1]. But ∥x∥ = |t|∥a∥ ≤ ∥a∥ < 1, so
that x ∈ B(0, 1). Then ga,0,b ∈ CB(0,1)([0, 1]) is such that ga,0,b(0) = a and
ga,0,b(1) = b. ■

2. In any normed vector space (E, ∥ · ∥) over K, any open ball B(x, ρ) is path-
connected (see exercise 13). □

There is clearly a link between the two connectedness deϐinitions.

aaaaaa Proposition 135
If (E, d) is path-connected, then it is also connected.
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aaaaaa

Proof: let f : E → {0, 1} be a continuous function and a,b ∈ E. Since E is
path-connected, ∃ a continuous path γ : [0, 1]→ R such that γ(0) = a and γ(1) = b.

Since the composition f ◦ γ : [0, 1] → {0, 1} is continuous and since [0, 1] ⊆© R,
then f ◦ γ is constant: in particular,

f(a) = f(γ(0)) = f(γ(1)) = f(b),

so that f itself is constant. Consequently, E is connected. ■

If E = (Kn, dEuclidean), the converse is also true.

aaaaaa
Proposition 136
If A ⊆© Kn in the usual topology, then A is path-connected.

Proof: left as an exercise. ■

But connected spaces are not path-connected, in general (see exercise 22, for instance). The
following result will allow us to segue gently into Chapter 10.

aaaaaa

Theorem 137
Let (E, ∥ · ∥) be a normed vector space overK. Then anyA ⊆O,© E is path-connected.

Proof: Let x0 ∈ A and set

Fx0 = {x ∈ A | ∃γ ∈ CE([0, 1]) such that γ(0) = x0, γ(1) = x}.

We need to show that Fx0 = A. In order to do so, note that Fx0 ̸= ∅ as x0 ∈ Fx0 . If
we can show that Fx0 ⊆O,C A, then we are done asA ⊆© E.

Let x ∈ Fx0 ⊆ A. Since A ⊆O E, ∃ρ > 0 such that B(x, ρ) ⊆ A. For any
y ∈ B(x, ρ), [y, x] ∈ B(x, ρ) (modify the proof of exercise 13). Since x0 ∈ Fx0 ,
B(x, ρ) ⊆ Fx0 . Consequently, Fx0 ⊆O A.

If x ∈ Fx0 ∩ A, then for any ρ > 0 we have B(x, ρ) ∩ Fx0 ̸= ∅. Since A ⊆O E,
∃ρ0 > 0 such that B(x, ρ0) ⊆ A; in particular ∅ ̸= B(x, ρ0) ∩ Fx0 ⊆ A. Now,
let y ∈ B(x, ρ0) ∩ Fx0 . Since [y, x] ⊆ B(x, ρ0), there is a continuous path in
A from y to x. Since y ∈ Fx0 , there is a continuous path in A from x0 to y.
Combining these paths, there is a continuous path in A from x0 to x. Hence,
x ∈ Fx0 . Consequently, Fx0 ⊆C A.

This concludes the proof. ■
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Finally, we note that path-connectedness is a topological notion.

aaaaaa Proposition 138 Let f : (E, d) → (F, δ) be a continuous map. If E is path-
connected, then f(E) is path-connected. Proof: left as an exercise. ■

9.3 Solved Problems
1. Let (E, d) be a metric space.

a) IfW1,W2 ⊆K E, show that ∃xi ∈ Wi such that d(x1, x2) = d(W1,W2).
b) IfW ⊆K E and F ⊆C E are such thatW ⊆ F = ∅, show that d(W,F ) ̸= 0. Is the

conclusion still valid whenW ⊆C E is not necessarily compact?

Proof:

a) The mapping φ : K1 → R deϐined by φ(x) = d(x,K2) is continuous. SinceK1

is compact, the Max/Min Theorem applies: ∃x1 ∈ K1 such that

φ(x1) = d(x1,K2) = inf
x∈K1

{d(x,K2)} = d(K1,K2).

Similarly, the mapping η : K2 → R deϐined by η(y) = d(x1, y) is continuous on
a compact set: as such, ∃x2 ∈ K2 such that

η(x2) = d(x1, x2) = inf
y∈K2

{d(x1,K2)} = d(K1,K2).

b) Themapping θ : K → Rdeϐinedby θ(x) = d(x, F ) is continuouson the compact
K so that ∃x0 ∈ K such that

θ(x0) = d(x0, F ) = inf
x∈K
{d(x, F )} = d(K,F ).

If d(x0, F ) = 0 then x0 ∈ F since F is closed. But that is impossible asK ∩F =
∅ and so d(x0, F ) ̸= 0.

If K is only assumed closed, the conclusion may not hold. For instance in R2,
the sets K = {(x, y) | y ≤ 0} and F = {(x, y) | y ≥ ex} are closed and
disjoints, yet d(K,F ) = 0. ■

2. Let (E, d) = (Rn, d2).

a) If F ⊆C E is unbounded and f : F → R is a continuous map such that

lim
∥x∥→∞

f(x) = +∞, x ∈ F,

show ∃x ∈ F such that f(x) = infy∈F f(y).
b) IfW ⊆K E and F ⊆C E, show ∃x ∈ W, y ∈ F such that d(x, y) = d(W,F ). Is the

conclusion still valid when E is an inϐinite-dimensional vector space over R?

252 Analysis and Topology Course Notes



CHAPTER 9. METRIC SPACES AND TOPOLOGY

Proof:

a) Fix a ∈ F and consider the set Γ = {x ∈ F | f(x) ≤ f(a)}. Since f is continu-
ous, Γ = f−1((−∞, f(a)]) ⊆C F and so Γ ⊆C E. It is also bounded since

lim
∥x∥→∞

f(x) = +∞, x ∈ F.

Thus Γ ⊆K Rn by the Heine-Borel Theorem. Furthermore, Γ ̸= ∅ since a ∈ Γ.
According to the Max/Min Theorem, ∃x ∈ Γ such that f(x) = infy∈Γ{f(y)}. By
construction,

inf
y∈Γ
{f(y)} = inf

y∈F
{f(y)},

whence f(x) = infy∈F {f(y)} for some x ∈ F .
b) Since the mapping φ : K → R deϐined by φ(x) = d(x, F ) is continuous, ∃x ∈ K

such that
d(x, F ) = inf

y∈K
{d(y, F )} = d(K,F ).

Note that the mapping ψx : F → R deϐined by ψx(y) = d(x, y) is also continu-
ous. If F is bounded, then F ⊆K Rn and the desired result is derived from the
result in (a).

Otherwise, if F is unbounded we have

lim
∥y∥→∞

ψx(y) =∞, y ∈ F

so that ∃y ∈ F such that

ψx(y) = inf
z∈F
{ψx(z)} = d(x, F ) = d(K,F ),

which proves the desired result.

The result is false in general if E is inϐinite-dimensional: consider for instance
thevector spaceof bounded sequences inR, with thenorm∥(un)∥ = supn∈N{|un|}.

For any n ∈ N, let Xn be the sequence where the nth term is 1 + 2−n and all
the other terms are 0. The set F = {Xn | n ∈ N} is closed in E since all
its points are isolated points. If K = {0}, it is obvious that d(K,F ) = 1, yet
d(K,Xn) = 1 + 2−n > 1 for all n ∈ N. ■

3. Let (E, d) be a compact metric space with a map f : E → E such that ∀x ̸= y ∈ E,
d(f(x), f(y)) < d(x, y).

a) Show that f admits a unique ϐixed point α ∈ E.
b) Let x0 ∈ E. For each n ∈ N, set xn+1 = f(xn). Show that xn → α.
c) Are these results still valid if E is complete but not compact?
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Proof:
a) First note that, being Lipschitz, f is continuous. Then, the mapping φf : E →
R deϐined by φf (x) = d(x, f(x)) is continuous as it is a composition of con-
tinuous functions. But E is compact so that ∃α ∈ E such that d(α, f(α)) =
infx∈E{d(x, f(x))}. If α ̸= f(α) = β, then

d(β, f(β)) = d(f(α), f(β)) < d(α, β) = d(α, f(α))

by hypothesis, which contradicts the deϐinition of α. Thus α = f(α).

Now, suppose β = f(β)with β ̸= α. Then we have

d(f(α), f(β)) = d(α, β),

which contradicts the hypothesis. Thus α = β.
b) Write un = d(α, xn). If ∃n0 ∈ N such that un0 = 0, then un = un0 = 0 for all

n ≥ n0 and the result follows. Otherwise, for all n ∈ Nwe have

un+1 = d(f(α), f(xn)) < d(α, xn) = un,

i.e. (un) is a strictly decreasing sequence. As it is bounded below by 0, it is nec-
essarily convergent. Let un → ℓ ≥ 0. We need to show ℓ = 0.

Assume that ℓ > 0. Since (un) is decreasing, un ≥ ℓ for all n. Since (xn) is a
sequence in the compact setE, there is a convergent subsequence (xφ(n)), with
φ : N→ N strictly increasing. Let β = lim xφ(n). Then

ℓ = lim
n→∞

d(α, xφ(n)) = d(α, β).

Since f is continuous, we have

lim
n→∞

d(α, f(xφ(n))) = d(α, f(β)).

But that is impossible since

d(α, f(β)) = d(f(α), f(β)) < d(α, β) = ℓ

and
d(α, f(xφ(n))) = d(α, xφ(n)+1) ≥ ℓ ∀n.

The only remaining possibility is thus that ℓ = 0.
c) Completeness of E is not sufϐicient. For instance, the function f : R → R de-

ϐined by

f(x) =

{
1 if x < 0

x+ 1
1+x if x ≥ 0

satisϐies the hypothesis, but it admits no ϐixed point. ■

4. Let (E, d) and (F, δ) be two metric spaces, together with a injective map f : E → F .
Show that f is continuous if and only if f(W ) ⊆K F for allW ⊆K E.
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Proof: we already know that if f is continuous andW ⊆K E, then f(W ) ⊆K F .

Now assume that f(W ) ⊆K F for all W ⊆K E. Let x ∈ E and (xn) ⊆ E be such
that xn → x. The set V = {xn | n ∈ N} ∪ {x} is compact in E, according to the
Borel-Lebesgue property. Thus, we have V ′ = f(V ) ⊆K F .

Let g : V → F be such that g = f |V . Since f is injective, g is a bijection from V
to V ′. The map g−1 : V ′ → V is continuous since any closed subset W ⊆C V is
automatically compact in V .

As such (g−1)−1(W ) = g(W ) ⊆K V ′ is automatically closed in V ′. Since V ′ is com-
pact, (g−1)−1 = g is continuous. Thus

f(xn) = g(xn)→ g(x) = f(x) =⇒ f is continuous.

ote that if f is not injective, the result does not hold in general. For instance, the
Heaviside function f : R → R deϐined by f(x) = 0 if x < 0 and f(x) = 1 if x ≥ 0
sends any compact set to a compact set, but it is not continuous. ■

5. Let (E, d) be a metric space. If ε > 0, we say that E is ε−chained if for all a,b ∈ E,
∃n ∈ N× and x0, . . . , xn ∈ E such that x0 = a, xn = b and d(xi, xi−1) < ε for all
i = 1, . . . , n. We say that E iswell-chained if it is ε−chained for all ε > 0.

a) If E is connected, show that E is well-chained.
b) If E is compact and well-chained, show that E is connected. Is the result still true

if E is not necessarily compact?

Proof:

a) Let ε > 0. We deϐine an equivalence relationRε on E according to the follow-
ing: xRεy if and only if ∃n ∈ N× and x0, . . . , xn ∈ E such that x0 = x, xn = y
and d(xi, xi−1) < ε for all i = 1, . . . , n.

Let x ∈ E and y ∈ [x]. Then, for all z ∈ B(y, ε) we have z ∈ [y] = [x]. Thus
B(y, ε) ⊆ [x] and so [x] ⊆O E.

Since
[x] = E \

∪
y̸∈[x]

[y]

is the complement of an open set, [x] ⊆C E. Consequently, [x] is a clopen subset
of E. But E is connected; we must then have [x] = E since [x] ̸= ∅. Hence,
every pair of point of E can be joined by an ε− chain. As ε is arbitrary, E is
well-chained.

b) Suppose that E is not connected. Then we can write E = F1 ⊔ F2, where ∅ ̸=
F1, F2 ⊆C E. Since E is compact, F1, F2 ⊆K E.It is left as an exercise to show
that ∃a1 ∈ F1 and a2 ∈ F2 such that d(a1, a2) = d(F1, F2).

P. Boily (uOttawa) 255



9.3. SOLVED PROBLEMS

Since F1 ∩ F2 ̸= ∅, a1 ̸= a2 and so ε = d(a1, a2) > 0; as such, d(x, y) ≥ ε for all
(x, y) ∈ F1 × F2.

Let (x, y) be such a point. Since E is well-chained, ∃ an ε−chain (x0, . . . , xn) ∈
En+1 such that

x0 = x, xn = y and d(xi, xi−1) < ε for all i = 1, . . . , n.

Since x0 ∈ F1 and xn ∈ F2, ∃i such that xi−1 ∈ F1 and xi ∈ F2.

But this would imply that ε > d(xi−1, xi) ≥ d(F1, F2) = ε, which is a con-
tradiction. Consequently,E is connected.

If E is not compact, the result is not valid in general: Q is well-chained when
endowed with the usual metric because it is dense inR, but it is not connected.
■

6. Let (E, d) be a metric space, with two disjoint setsA,B ⊆C E. Show that there exists a
continuous function f : E → [0, 1] such that A = f−1({0}) and B = f−1({1}), as well
as two disjoint sets U, V ⊆O E such that A ⊆ U andB ⊆ V .

Proof: Let F ⊆C E. Deϐine gF : (E, d)→ (R, | · |) by

gF (x) = d(x, F ) = inf
y∈F
{d(x, y)}

According to the Triangle Inequality, for all y ∈ F we have

gF (x) = d(x, F ) ≤ d(x, y) ≤ d(x, z) + d(z, y) ∀x, z ∈ E,

thus we must have gF (x) ≤ d(x, z) + gF (z) for all x, z ∈ E, that is, gF (x)− gF (z) ≤
d(x, z) for all x, z ∈ E. In a similar fashion, gF (z) − gF (x) ≤ d(x, z) for all x, z ∈ E.
Thus,

|gF (x)− gF (z)| ≤ d(x, z) for all x, z ∈ E,
i.e. gF is Lipschitz (and so continuous).

Since F ⊆C E, gF (x) = 0 if and only if x ∈ F . Let f : (E, d) → (R, | · |) be de-
ϐined by

f(x) =
gA(x)

gA(x) + gB(x)
=

d(x, A)
d(x, A) + d(x, B)

;

it is well-deϐined since whenever d(x, A) + d(x, B) = 0, we must have d(x, A) =
d(x, B) = 0, i.e. x ∈ A and x ∈ B. But A ∩ B = ∅ and so for all x ∈ E, we have
d(x, A) + d(x, B) ̸= 0.

Furthermore, f(x) = 0 if and only if d(x, A) = 0, i.e. x ∈ A; f(x) = 1 if and only
if d(x, B) = 0, i.e. x ∈ B.

The function f is continuous since it is the composition of continuous functions. It
is clear that 0 ≤ f(x) ≤ 1, so that f : E → [0, 1].
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Finally, let

A ⊆ U = f−1([0, 1/2)) ⊆O [0, 1] and B ⊆ V = f−1((1/2, 1]) ⊆O [0, 1].

Then U ∩ V = ∅ by construction and we are done. ■

9.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Show that any compact metric space is precompact and complete.

3. Show that any complete precompact metric space is compact.

4. Prove Theorem 120.

5. With the usual metric, show that A ⊆ Rn is precompact if and only ifA ⊆K Rn.

6. Prove Proposition 131.

7. Prove Proposition 132.

8. Let (E1, d1), . . . , (En, dn) be metric spaces. Show that

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is compact if and only if (Ei, di) is compact for all i = 1, . . . , n.²

9. Show that (9.3) deϐines an equivalence relation on a metric space (E, d).

10. Let (E, d) be a metric space and let x ∈ E. Show that [x] ⊆C E.

11. Let (E, d) be a metric space with ϐinitely many connected components. Show that each
of those components is a clopen subset of E.

12. Prove Proposition 136.

13. Show that if (E, ∥ · ∥) is a normed vector space over K, then any open ball B(x, ρ) is
path-connected.

14. Let (E, d) be a metric space,B ⊆© E and A ⊆ E such that

B ∩ int(A) ̸= ∅ and B ∩ int(E \ A) ̸= ∅.

Show thatB ∩ ∂A ̸= ∅.
²This result cannot be generalized to inϐinite products (Tychonoff’s Theorem) without calling upon the

Axiom of Choice, a.k.a Zorn’s Lemma, a.k.a. the Existence of Non-Measurable Sets, a.k.a. the Banach-Tarksi
Paradox.
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15. Let (A, d1) and (B, d2) be two metric spaces. LetX ⊊ A and Y ⊊ B. Show that

(A×B) \ (X × Y ) ⊆© A×B.

16. Prove Proposition 9.2.2.

17. In the usual topology, give an example of a subset A ⊆© R2 for which int(A) is not
connected.

18. In the usual topology, give an example of a subset A ⊆ R2 for which A ⊆© R2 but A is
not connected.

19. Show that if the connected components of a compact set are open, then there are ϐinitely
many of them.

20. Let (E, d) and (F, δ) be metric spaces, together with a continuous map f : E → F such
that f−1(W ) ⊆K E for allW ⊆K F . Show that f is a closed map.

21. Let (E, d) be a connected metric space and let F ⊆C E, with ∂F ⊆© E. Show that
F ⊆© E. Is the result still true if F is not necessarily closed?

22. Let Γ =
[∪

x∈Q({x} × (0,∞))
]
∪
[∪

x∈R\Q({x} × (−∞, 0))
]
⊆ R2.

a) Show that Γ ⊆© R2.
b) Show that Γ is not path-connected.
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