Chapter 9

Metric Spaces and Topology

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is by moving from R to R™. Some of the notions that
generalize nicely to vectors and functions on vectors include compactness
and connectedness.

The symbol K is sometimes used to denote either R or C.

9.1 Compact Spaces

Let A be a finite set. A function f : A — Kis necessarily bounded (in the sense that M € K
such that [f(a)| < M forall a € A).

Might this be due to the finiteness of A? While finiteness is sufficient, it is not a necessary
condition for boundedness: the Dirichlet function yg : [0,1] — R is bounded, even though

its domain is the uncountable set [0, 1].

Perhaps it is the boundedness of the function’s domain that does the trick? Unfortunately,
that condition is neither sufficient nor necessary, as can be seen from the functions

f:00,1] —» R, f(x):l forz >0, and f(0)=0,

8

and g : R — R defined by g(z) = exp(—z?).

Could the culprit instead be the continuous nature of the function? Not as such, no, as we
have examples of continuous functions being bounded, others being unbounded; and non-
continuous functions being bounded, others being unbounded.

A condition on the domain of the function alone cannot guarantee boundedness; and nei-

ther can one on the nature of the function. However, a combination of two conditions, one
each on the domain and on the function, can provide such a guarantee.
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9.1. COMPACT SPACES

In this section, we study the appropriate property on the domain, that of compactness, which
generalizes the property of finiteness. Its definition, which in all honesty is not super intuitive,
is due to Borel and Lebesgue, is applicable to metric and general topological spaces alike.

9.1.1 The Borel-Lebesgue Property

A space F is compact if any family of open subsets covering £ contains a finite sub-family
which also covers E. In other words, F is compact if, for any collection &/ = {U, };c; of open
subsets U; Cp E with £ C |J,., U;, Fafinite J C I such that £ C UjeJ U,.

Examples

1. Every finite metric space (F, d) is compact.

Proof: let U{ be an open cover of £ = {Xy,...,X,}. Thus, foreach 1 <i <mn,
U; € U such thatx; € U;. Then {Uy, ..., U,} is a finite subcover of F. [ |

2. In the standard topology, R is not compact.

Proof: consider the open cover R = U (—n,n).
neN

Any finite subcollection {(—ni,n1),...,(—nm,ny)} is bounded by

M = max{n; | 1 < j < m}, and thus cannot be a cover of R accord-
ing to the Archimedean Property. Consequently, no such finite subcover
exists and R is not compact. [ |

3. Show that R is compact in the indiscrete topology.

Proof: the only open cover of R in the indiscrete topology is {R}, which
is already a finite sub-cover of R (the only other open subset of R in the
indiscrete topology is ). |

4. Show that any compact metric (F, d) space is bounded.

Proof: consider the open cover Y = {B(x,1) | x € FE}. Since F is
compact, 3xy,...,X, € Esuchthat £ = B(x;,1)U--- B(x,, 1). Consequently,
FE has a finite diameter < n and is thus bounded. |

By abuse of notation, we often write: “let | U; be an open cover of E” rather than “let {U;,} be
an open cover of F,” as in the second example above.

Incidentally, does the fourth example contradict the third one? It doesn’t actually, but what
does that imply about the indiscrete topology?
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

The duality open «~ closed/ union «~ intersection yields an equivalent definition: a space
E is compact if any family of closed subsets of £ with an empty intersection contains a finite
sub-family whose intersection is also empty.

In other words, E is compact if, for any collection W = {V; };c; of closed subsets V; C¢ E

with

icl

V. = &, Jafinite J C ]suchthatﬂjejvj = .

Proposition 115
Let (F},)n>1 be a decreasing sequence of non-empty closed subsets of a compact space
E. Then (5, I # 9.

Proof: if (., F,, = @, then £ = {J, ., F\ F,, where E\ FF Co E. Since E
is compact, J a finite subsequence of indices n; < - -- < n; such that

k
E=|JE\F,.
=1

Consequently, ﬂle F,, = @. But the original sequence is decreasing, so that

k
() Fu = Fo, =2,

=1

which contradicts the hypothesis that all F}, are non-empty. As a result, we conclude
that(),., I, # 9. |

Continuous functions on compact domains have quite useful properties.

Proposition 116
Let f : (E,d) — (F,0) be any continuous function over a compact metric space. Then
f is uniformly continuous.

Proof: let x € E. Since f is continuous at x € FE, Ve > 0, dMx(e) > 0 such
that

f(B(x, My)) € B(f(x),e).

Furthermore, £ = J,.» B(X, My) is an open cover of £, which is compact. Conse-
quently, 3x,,...,x, € Esuchthat £ = (J_, B(x;, My,). Set

M = M(e) =5 -min{My,,..., My, } > 0.

Then, V.~o, M (¢) > 0 such that f(B(x, M)) C B(f(x),¢) forallx € E. As M does
not depend on x, f is uniformly continuous. [ |
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9.1. COMPACT SPACES

A subset A C FE is deemed to be a compact subset of £/, which we denote by A Cyx F, if any
family of open subsets of £ covering A contains a finite sub-family which also covers A.

Proposition 117
A finite union of compact subsets of F is itself compact.

Proof: let Ay,..., A, Cx E and write A = [J;_, Aj. Let {U;}ier C p(E) be
an open cover of A. Then {U, },cs is also an open cover of A;, for each k.

Since all A, are compact, 3 finite J;,...,J; C [ such that A, C Uje,k U; for
each k. Thus, A C U;_, U, Uj- But U,_,{U;}jey, is a finite sub-family of {U; }e;,
from which we conclude that A Cy E. [ |

The infinite union of compact subsets could be compact or not, however.
Examples
1. Both [0,1],[2,3] Ck (R,d;),s0[0,1] U [2,3] Tk (R, dy). 0J

2. Foranyz > 1,[0,1] Cx (R,d;). Theunion|J,,[0, 2] = [0, 1] is also a compact
subset of (R, d). - O

3. Foranyn € N, [-n,n] Cx (R,d;), but the union (J,,.y[—7n,n] = Risnota
compact subset of (R, d;). O

9.1.2 The Bolzano-Weierstrass Property

For metric spaces, compactness can also be established via a property of sequences which is
often easier to ascertain than the Borel-Lebesgue property, but it comes with a warning: the
two properties are not equivalent in general for non-metric spaces.

Let (E, d) be a metric space. We say that £ is precompact if Ve > 0, 3x;,...,X, € E such
that £ = |J;_, B(x;,¢).

Proposition 118
A compact space is precompact.

Proof: left as an exercise. [ |

We now present the section’s main result, a “special case” of which we saw in Theorem 20.
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

Theorem 119 (BOLZANO-WEIERSTRASS COMPACTNESS)
Let (E,d) be a metric space. Then E is compact if and only if any sequence in E has a
convergent sub-sequence in E.

Proof: assume FE is compact and let (x,) C FE. If the range of (x,,) is finite,
there is a constant subsequence which would then automatically be convergent.
We thus consider sequences with infinite range A = {x,, | n € N}.

We show that such an A has at least one cluster point. Suppose, instead, that
there A has no cluster point. Thus for any x € E, 3ry > 0 with B(x, ry) N A is finite.
Since E is compact, there exists a finite / C £ such that £ = (J,, B(X, ry).

Then
A= JBxr)NnA)

xeJ

is a finite union of finite sets, hence A is itself finite.

But this contradicts the fact that A is infinite. Hence, A has at least one clus-
ter point X € E. Such a cluster point is a limit point of (x,): consequently, there
is a subsequence of (x,) which converges to x € F (in which case we say that F
satisfies the Bolzano-Weierstrass property).

Conversely, assume all sequences in E have convergent subsequence in F.
First, note that any metric space (F, d) satisfying the Bolzano-Weierstrass property
is precompact. Indeed, suppose that 4¢ > 0 such that £ can not be covered with a
finite number of e—balls. Let X, € E. By assumption, B(X¢,¢) # E. Thus 3x; € £
such that d(xo, x;) > .

Since B(Xg,e) U B(x1,e) # FE, 3o € FE such that d(Xo,X;),d(Xo,X2) > .
Continuing this process, we build a list Xo, Xy, . . ., X,, for which d(x;,x;) > ¢ for all
1< g3 < n.

Since | J;_, B(x;,¢) # E, 3X,.1 € E such that d(x;,X,+1) > eforall0 < i < n.
By induction, there is a sequence (x,) C FE such that d(x;,X;) > ¢ whenever
i # j. Consequently, this sequence has no convergent subsequence, since no
subsequence is a Cauchy sequence. This contradicts the hypothesis that £ satisfies
the Bolzano-Weierstrass property, thus F is precompact.

Next, we show that if the metric space (F,d) satisfies the Bolzano-Weierstrass
property and if {U, };c; is an open cover of £, then

doa>0,Vx € F,Ji € I = B(x,«a) C U,. (9.1)
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9.1. COMPACT SPACES

Indeed, suppose that
Va>0,3x€ E.Vie I = B(x,a) Z U,. (9.2)
In particular,
Vn e N*,3x, € E,Vie I = B(x,2) Z U,.
Let (X,(,)) be a convergent subsequence of (x,) (such a sequence exists since £

satisfies the Bolzano-Weierstrass property).

Write X,y — X. Since {U; }sc; covers E, 3i € I such thatx € U;. ButU; Co E, so
Jr > 0 such that B(x, 2r) C U,.

Accordingly, IN € N such that d(X,(,),X) < rand ¢(n) > % foralln > N.

Consequently, Vn > N and Yy € B(X,(), ﬁ), we have

d(X, y) < d(X, XW(”)) + d(xgo(n)7Y) <r+r=2r.

Thus Vn > N, B(X,(mn), L) C U;, which contradicts (9.2), and so (9.1) holds.

¢(n)

To show FE is compact, let {U;};c; be an open cover of £. We know from (9.1)
that
da>0,Vx € F,Ji € I = B(x,«a) C U,.

But £ is precompact, so 3x, ..., X, € E'such that £' = |J;_, B(x;, @).

Letiy,. .., i, be the indices for which B(x;,) C U;,,1 < j <n.Then E = U?Zl Ui,
is a finite subcover of F; F is indeed compact. [ |

The following result has a similar flavour.

Theorem 120
Let (E,d) be a metric space. Then E is compact if and only if any sequence in E has a
limit point if and only if every infinite subset of E has a cluster point.

Proof: left as an exercise. [ |

[t is usually easier to show that the Bolzano-Weierstrass is violated than to show that it holds.

242

Example: Show that the set (0, 1) is not a compact subset of (R, d;).
Proof: Consider the sequence (1/n) C (0,1). Every subsequence of (1/n)

converges to 0 ¢ (0, 1). According to Theorem 119, (0, 1) is not a compact subset of
(R, d)). n
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

Compact sets really have quite useful properties.

Proposition 121
Let (E, d) be a metric space.

1. If Fiscompactand A Co E, then A Ck E.
2. If ACgk E, then A C¢ F and A is bounded.
Proof:

1. Since F is compact, it is precompact (see the proof of Theo-
rem 119) and so is A. The set FE is also complete (see exercise 2). Thus
A is a closed subset of the complete set E: A is then complete (see Propo-
sition 110). But A is precompact and complete, and so A Cx FE (see
exercise 3).

2. Since A Ck FE,itis precompact. Hence for ¢ > 0, 3xy, ..., X,, € A such that

A - U B(Xj,g).
j=1

Thus, 6(A) < ne < oo and A is bounded.

To show that A C. F, it suffices to show that any sequence in A which
converges does so in A, according to Proposition 105. So let (x,,) C A be such
thatx, — x € E. But A is compact, so that 3a convergent subsequence (X,(,))
which converges in A. Since any subsequence of a sequence converging to x
also converges to X, X,,) -+ X € Aandso A C¢ F. [ |

Unlike completeness, compactness is a topological notion.

P. Boily (uOttawa)

Proposition 122
Let (E,d) and (F,5) be metric spaces, together with a continuous function
f:(E,d) — (F,6). IfA Cx E then f(A) Ck F.

Proof: let {U,},ca be an open cover of f(A). Since f is continuous, we have
that AN f~1(U,) Co Aforall A € A. Thus {A N f~1(Uy)}rea is an open cover of A.
But A Cx E sothat dafinite # C A such that

U Anf @) =A

NeH

As such, {f(Uy) },cq is a finite sub-cover of f(A),and so f(A) Ck F. [
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9.1. COMPACT SPACES

There is also a link with homeomorphisms.

Proposition 123
Let f : (E,d) — (F,d) be a continuous bijection. If (E,d) is compact, then f is a
homeomorphism.

Proof: let Y Co E. We need to show that f(Y) Co F. According to Propo-
sition 122, f(Y') Ck F. But, according to Proposition 121, part 2, f(Y') C¢ F. So f
is closed, meaning that /™" is continuous. [ |

Perhaps the most famous theorem linking continuous functions and compact spaces is the
result to which we were alluding to at the start of this section (we proved a restricted case in
Theorem 33).

Proposition 124 (MAX/MIN THEOREM (REPRISE))
Let f : (E,d) — R be continuous. If (E,d) is compact, then f is bounded and
Ja,b € E such that f(a) = infycp f(X) and f(b) = sup,.; f(X).

Proof: since F is compact and [ is continuous, then f(FE) is compact accord-
ing to Proposition 122. As such, f(E) is both closed and bounded in R, according to
Proposition 121.

Now, set A = infycp f(X). By definition, for each n > 1, Ja, € E such that
A< f(a,) < A+ 2 (otherwise infycp f(x) > A+ 1 > A).

But (a,,) is a subsequence of the compact space FE (hence a subsequence of a
closed space) so 3 a subsequence (a,(,)) which converges to some a € A according

to Proposition 105.

As f is continuous, f(a,n)) — f(a). But f(a,n)) — A, since

1
A< flagm) < A+ — — Al

p(n)

The limit of a convergent sequence is unique in a metric space, so f(a) = A.

A similar argument shows 3b € E such that f(b) = sup, . f(X). [

The next result is often used as the definition of a compact set, but it cannot be generalized
to infinite dimensional spaces (such as /%(N) or other infinite dimensional Banach spaces).

Proposition 125 (HEINE-BOREL)
Any closed bounded subset of K" is compact in the usual topology.
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

Proof: since C™ ~ R*™, we only need to verify that this is the case for R™. Fur-
thermore, the proposition will be established if we can show it to be valid for any
A =ay,by] X -+ X [an, b,] Cc R™ (why is that the case?).

Since R” is complete and A C R", then A is a complete subset of R”, accord-
ing to Proposition 110. It will then be sufficient to show that A is precompact,

according to the proof of Theorem 119.

But that is obvious (see exercise 5). [

9.2 Connected Spaces

Let f : A C R — R be a continuous function such that Ja,b € A with f(a)f(b) < 0. What
condition do we need on A in order to guarantee the existence of a solution to f(x) = 0 on A?

Whether A is compact or not is irrelevant: for instance, in the standard topology, the func-
tion f : A =10,1] U [2,3] — R defined by

-1 ze0,1]
f(x)_{1 re[2,3]

is continuous over the compact set A, there are points a,b € A such that f(a)f(b) < 0, yet
f(z) # 0forall z € A. On the other hand, f : A = [-1,1] — R defined by f(x) = x is such
that f(—1)f(1) < 0and 3z € A such that f(z) = 0 (namely, =z = 0).

The key notion is that of connectedness. Let (F,d) be a metric space. A partition of F
is a collection of two disjoint non-empty subsets U,V C E such that E = U U V. An open
partition of F is a partition where U,V Cy E; a closed partition of F is a partition where
UV C¢ E.

Examples

1. There are many partitions of R in the usual topology, such as
(_007 0] L (O, OO) or [(_007 _3] U {0}] U [(_37 O) U (07 OO)];
but no such partition can be an open partition or a closed partition. 0

2. The metric space A = [0, 1]U[2, 3] is partitioned by [0, 1] and [2, 3]. This is both
an open partition and a closed partition in the usual subspace topology (note
that this is not the case in R, but we are only interested in the set A, not the
space in which it is embedded). U

3. The singleton set E = {x} cannot be partitioned. O

'We denote the disjoint unionby £ = U U V.

P. Boily (uOttawa) 245



9.2. CONNECTED SPACES

The next result establishes an “easy” way to determine if a space has such partitions.

Proposition 126
Let (E, d) be a metric space. The following conditions are equivalent:

1. E has no open partition;
2. E has no closed partition;

3. The only subsets of E that are both open and closed are & and E (such sets are
rather unfortunately known as clopen sets).

Proof: weshow 1. — 2. =— 3. = 1.

1. = 2. Suppose that {F}, F,} forms a closed partition of £. Then
F, = E\ F,_; Co Efori = 1,2. Hence {Fy, F5} also forms an open parti-
tion of F, which contradicts the hypothesis that no such partition of £ exists. Thus
E has no closed partition.

2. = 3.: Let A C Ebesuchthat A Co Fand A Cp E. Then {A, E \ A}
is a closed partition of F. By hypothesis, there can be no such partition of E. Hence
A=0orE\A=0.

3. = 1.: This is clear once one realizes that any open partition is automati-
cally also a closed partition. [ |

Ametricspace (F, d) is said to be connected if it satisfies any of the conditions listed in Propo-
sition 126. Similarly, a subset A C F is connected if its only clopen partition is trivial, that is:
whenever A = X UY, X, Y Cp E, either X = @ or Y = @. We will denote such a situation
with A Cg F (this is emphatically not a notation you will find anywhere else).

246

Examples
1. In the usual topology, R is connected. O
2. In the same topology, A = [0, 1] U [2, 3] is not a connected subspace of R. [
3. The singleton set F = {x} is vacuously connected. O

4. Is A= {1 | n € N} a connected subset of R in the usual topology?
Solution: since A = {1} U {+ | n > 2} is a non-trivial open partition

of A, Ais not a connected subset of R in the usual topology. Indeed, {1} Cp A
since {1} = (3,00) N A, {L|n>2} Co Asince {2 |n>2} =(0,1)NA O
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

As was the case with compactness, connectedness is a topological notion.

Proposition 127
Let f : (E,d) — (F,0) be continuous. If A Cg E, then f(A) Cg F.

Proof: Let B Cp ¢ f(A). We will show that B = @ or B = f(A).

Since B Cp f(A), then 3U Cp F such that B = f(A) N U. Similarly, since
B C¢ f(A), then 3W Co F such that B = f(A) N W. But f is continuous so
J~YU) Co Fand f~(W) C¢ E. Therefore,

fAB)=Anf ' U)CoA and fHYB)=ANf1(W)Cc A

Thus f~!(B) Co c A. However A is a connected subset of F, so either f~!(B) = @
or f71(B) = A.Since B C f(A), that leaves only two possibilities: B = & or
B = f(A), whichmeans f(A) Cg B. [

9.2.1 Characterization of Connected Spaces

We now give a simple necessary and sufficient condition for connectedness. Throughout, we
endow the set {0, 1} with the discrete metric.

Proposition 128
A metric space (E,d) is connected if and only if every continuous function
f: E —{0,1} is constant.

Proof: assume (F,d) is connected. If f : £ — {0,1} is continuous and not
constant, then f~1(0), f7*(1) Coc Fand E = f~10) U f(1).

Since f is not constant, neither f~'(0) nor f~!(1) is @ or all of E. Hence E is
not connected, as it contains non-trivial clopens, which contradicts our starting
assumption. Thus f is constant.

Conversely, if £ is not connected, 3 non-trivial clopens X, Y suchthat £ = X U Y.
Consider the characteristic function yx : £ — {0,1}: we have f~}(0) =Y Cp F
and f~!(1) = X Cp E. Consequently, f is continuous and clearly not constant. W

In practice, Proposition 128 is typically easier to use to show that a space is not connected.

Proposition 129
Let (E,d) be a metric space and A Co E. If B C Eissuchthat A C B C A, then
B Cg E.
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Proof: if such a B is not connected, then 3 a non-trivial open partition { X, Y} of B.
In particular, {A N X, AN Y} isanopen (in A) partition of A. But A is dense in B:
if x € B, every neighbourhood around x contains at least a point of A.

In particular, if x € B N X, then any neighbourhood around x must contain
atleast a point of A N X. Consequently, AN X # &. Similarly, ANY # &.

Thus, {A N X, A N Y} is a non-trivial open partition of A, which contradicts
the fact that A is connected. So B must be connected. [ |

There is a series of other useful propositions about connected spaces.

Proposition 130
If (B;)ier is a family of connected subsets of a metric space (F,d) such that
mie[ Bz 7é 9, then B = Uie[ Bz §© E.

Proof: if {X,Y} is a non-trivial open partition of B and if b € ()., B;, we

may assume b € X without loss of generality. But B = |J,., = X UY and Y # &;
hence Jiy € I suchthatY N B;, # .

Sinceb € (,.; B, thenb € XN B, # @andso{X N B;,Y N B;}isa
non-trivial open partition of B;, which contradicts the hypothesis that B;, C¢ E.
Consequently, B Cg F. [ |

Proposition 131
If (Cy)nen is a sequence of connected subsets of a metric space (E,d) such that
CooiNC, # D, thenC =,y Crn Co E.

Proof: left as an exercise. [ |

Proposition 132
Let (Ey,dy),...,(E,,d,) be metric spaces. Then

(E,d) = (Ey % - x By, sup{d; | 1 <i<n})

is connected if and only if (E;, d;) is connected for all i.

Proof: left as an exercise. [ |

Let (E, d) be a metric space once more. We define an equivalence relation on £ as follows:

xRy <= JC Cg Fsuchthatx,y € C. (9.3)
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CHAPTER 9. METRIC SPACES AND TOPOLOGY

The equivalence class
X ={yeE|yrx}= ] C

CCoE
xeC

is a connected subset of £/, which we call the connected component of x. It is not difficult to
show that [x| C F and that if a metric space only has a finite number of connected compo-
nents, then each of those components is a clopen subset of £/ (see exercises 10 and 11).

Proposition 133
Consider R with the usual topology. Then, A Cg R if and only if A is an interval.

Proof: let A Cg R. If A is not an interval, Ja,b € A for which 3¢ € (a,b)
with ¢ ¢ A. Thus, A C (—o0,¢) U (¢, 00).

Hence {A N (—o0,¢),A N (c,00)} is a non-trivial open partition of A, which
implies that A is not a connected subset of R, a contradictionas A Cg E, and so A
is an interval.

Conversely, if A = {x}, we have already shown that A Cg R. According to
Proposition 129, it is sufficient to verify that A = (a,b) Cg R for any a < b. We will
show that any continuous map f : (a,b) — {0, 1} is constant.

Suppose otherwise that 3z, y € (a,b) such that x < y and f(x) # f(y). Without
loss of generality, let f(z) = 0 and f(y) = 1. Set

I'={z|z>zand f(t) =0Vt € [z, z]}.

Clearly, I' # @ since x € I'. Furthermore I' is bounded above by y. Thus, since R is
complete, Jc € [z, y] C (a,b) such that ¢ = supI.

By continuity of f atc¢, f(¢) = 0 and 3§ > 0 such that
s€(c—d,c+0) = |f(s)| = If(s) = flO)] < 5.

As such, f(s) < 3 forall s € (¢ — §,c + §). But f can only take two values: 0 or 1.
Consequently, f(s) =0forall s € (¢ — §,c+ ).

This in turn implies that ¢ + g € I, which contradicts the fact that ¢ = supT.
Thus, f is constant, and (a,b) Ce R. [ |

We can now give a proof of the remark made after Theorem 36.
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Corollary 134 (BOLZANO'S THEOREM)
Consider R with the usual topology and a continuous function f : R — R. The image
of any interval by f is an interval.

Proof: let A Cg R. By the preceding proposition, A is an interval. Since f is
continuous, f(A) Ce R. But the only connected subsets of R are the intervals.
Consequently, f(A) is an interval. [

9.2.2 Path-Connected Spaces

We can also define other types of connectedness.

Let (E, d) be a metric space. We say that F is path-connected if for any two points X,y € FE,
there is a continuous function v : [0, 1] — E such that v(0) = xand (1) = y. The segment

between x and y is
x,y] = {tx+ (1 -t)y|t<[0,1]}.

The continuous function associated to this segment is the function
fxy:[0,1] = E, definedby fxy(t) =tx+ (1 —1t)y.
If [x,y] and |z, w] are two segments, define their sum (concatenation) to be
x,y] + [z w] ={2tx+ (1 -20)y |t € [0, 3]} U{(2t — )z + (2—2t)w | t € [5,1]}.
If y = z, the continuous function associated to this sum is the function

2tx + (1 — 2t)y ift € [0, 3]
1

Ixyw [0, 1} — E, defined by gx,y,w(t) = {(Qt . 1)y + (2 _ 2t)w ift € [l ]
2

Examples

1. Show that B(0, 1) is path-connected in (R?, d,).

Proof: Leta # b € B(0,1). Then [a,0],[0,b] C B(0,1). Indeed, if

X € [a,0], thenx = tafort € [0,1]. But ||x| = |t||]a]| < |la]] < 1, so
that x € B(0,1). Then gaop € Cpo,1)([0,1]) is such that g,0,(0) = a and
ga,O,b(l) = b .
2. In any normed vector space (F, || - ||) over K, any open ball B(x, p) is path-
connected (see exercise 13). O

There is clearly a link between the two connectedness definitions.

Proposition 135
If (E, d) is path-connected, then it is also connected.
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Proof: let f : £ — {0,1} be a continuous function and a,b € E. Since E is
path-connected, 3 a continuous path v : [0, 1] — R such thaty(0) =aand (1) = b.

Since the composition f o v : [0,1] — {0,1} is continuous and since [0,1] Cg R,
then f o 7 is constant: in particular,

so that f itself is constant. Consequently, F is connected. [

If B = (K", dgycidean ), the converse is also true.

Proposition 136
If A Co K" in the usual topology, then A is path-connected.

Proof: left as an exercise. [ |

But connected spaces are not path-connected, in general (see exercise 22, for instance). The
following result will allow us to segue gently into Chapter 10.

Theorem 137
Let (E.| - ||) be a normed vector space over K. Then any A Co o E is path-connected.

Proof: Let x; € A and set
Fy, = {x€ A |3y € Cg([0,1]) such that v(0) = xo, v(1) = x}.

We need to show that Fy, = A. In order to do so, note that Fy, # @ asx € Fy,. If
we can show that Fy, Cp ¢ A, then we are doneas A Cg E.

" Letx € Fy, C A. Since A Cp FE, dp > 0 such that B(x,p) C A. For any
y € B(x,p), y,x] € B(z, p) (modify the proof of exercise 13). Since x, € Fk,,
B(x,p) C F,. Consequently, Fy, Cp A.

= Ifx € Fy, N A, then for any p > 0 we have B(x, p) N Fy, # &. Since A Cp E,
dpy > 0 such that B(x, py) C A; in particular @ # B(X, py) N Fx, C A. Now,
lety € B(x,po) N Fx,. Since [y,x] C B(x, po), there is a continuous path in
A fromy to x. Sincey € Fy,, there is a continuous path in A from x, to y.
Combining these paths, there is a continuous path in A from x; to x. Hence,
X € Fy,. Consequently, Fy, Cc A.

This concludes the proof. [ |

P. Boily (uOttawa) 251



9.3. SOLVED PROBLEMS

Finally, we note that path-connectedness is a topological notion.

Proposition 138 Let f : (E,d) — (F,0) be a continuous map. If F is path-
connected, then f(F) is path-connected. Proof: left as an exercise. [

9.3 Solved Problems

1. Let (F, d) be a metric space.

a) If Wy, W, Ck E, show that 3x; € W, such that d(xy, X2) = d(W;, Ws).

b) If W Cx Eand F C¢ F are such that W C F' = &, show that d(W, F') # 0. Is the
conclusion still valid when W C FE is not necessarily compact?

Proof:

a) The mapping ¢ : K1 — R defined by ¢(x) = d(x, K2) is continuous. Since K
is compact, the Max/Min Theorem applies: 3x; € K; such that

C,D(Xl) = d(Xl,KQ) = inf {d(X, Kg)} = d(Kl,KQ).

xeK1

Similarly, the mapping n : Ko — R defined by 1(y) = d(x1,y) is continuous on
a compact set: as such, dzs € K5 such that

n(x2) = d(x1,X;) = yier}g{d(Xl»Kz)} = d(Ky, K3).

b) Themapping6 : K — Rdefined by §(x) = d(x, F) is continuous on the compact
K so that 3xg € K such that

6(x0) = d(x0, F) = inf {d(x, F)} = d(K.F).

If d(xo, F) = 0 then X € F'since F is closed. But that is impossibleas K N F' =
@ and so d(xg, F') # 0.

If K is only assumed closed, the conclusion may not hold. For instance in R2,
the sets K = {(z,y) | y < 0} and F = {(x,y) | y > e”} are closed and
disjoints, yet d(K, F') = 0. [ |

2. Let (E,d) = (R",dy).
a) If F C¢ Fisunbounded and f : F' — R is a continuous map such that

lim f(x) = +o0, xeF,

[[x[[ =00

show 3x € F such that f(x) = infycp f(y).

b) If W Ci Eand F C¢ E, show 3x € W,y € F such thatd(x,y) = d(W, F). Is the
conclusion still valid when F is an infinite-dimensional vector space over R?
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Proof:

a)

b)

Fixa € F and consider thesetI' = {x € F'| f(x) < f(a)}. Since f is continu-
ous,I' = f~!((~o0, f(a)]) Cc FandsoI C¢ E. Itis also bounded since

lim f(x) = 400, xeF.

[[x[| o0

Thus I Cx R”™ by the Heine-Borel Theorem. Furthermore, I' # & sincea € T.
According to the Max/Min Theorem, 3x € I" such that f(x) = infyer{f(y)}. By
construction,

inf{f(y)} = inf{f(¥)},

whence f(x) = infycp{f(y)} for somex € F.

Since the mapping ¢ : K — R defined by ¢(x) = d(x, F') is continuous, 3x € K
such that
d(x, F) = inf {d(y, F)} = d(K, F).
yeK

Note that the mapping vx : ' — R defined by ¢x(y) = d(x,y) is also continu-
ous. If F' is bounded, then F' Cx R"™ and the desired result is derived from the
resultin (a).

Otherwise, if F' is unbounded we have

hm wX(Y) = 00, y € F

[lyll—o0

so that dy € F' such that
¢X(Y) = Zlg}f;{wx(z)} = d(X, F) = d(Kv F)?
which proves the desired result.

The result is false in general if F is infinite-dimensional: consider for instance
the vector space of bounded sequences in R, with the norm || (uy,)|| = sup,,cn{|un|}-

For any n € N, let X, be the sequence where the n™ term is 1 + 27" and all
the other terms are 0. The set /' = {X,, | n € N} is closed in E since all
its points are isolated points. If K = {0}, it is obvious that d(K, F)) = 1, yet
d(K,X,)=1+2"" > 1foralln € N. [ |

3. Let (F,d) be a compact metric space withamap f : £ — FE suchthatVx#yec FE,
d(f(x), f(y)) < d(x,y).

a) Show that f admits a unique fixed point o € E.

b) Letx, € E. Foreachn € N, setx,,.; = f(x,). Show thatx,, — «a.

c) Are these results still valid if £ is complete but not compact?
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Proof:

a) First note that, being Lipschitz, f is continuous. Then, the mapping ¢ : £ —
R defined by ¢¢(x) = d(x, f(x)) is continuous as it is a composition of con-
tinuous functions. But E' is compact so that 3o € E such that d(a, f(«a)) =

infyep{d(x, f(x))}. Ifa # f(a) = B, then
d(, £(8)) = d(f(a), £(B)) < d(a, B) = d(a, f(a))

by hypothesis, which contradicts the definition of a.. Thus o = f(«).

Now, suppose 5 = f(3) with 5 # a. Then we have

d(f(e), f(B)) = d(e, B),

which contradicts the hypothesis. Thus o = .

b) Write u,, = d(«,x,). If 3ng € N such thatu,,, = 0, then u,, = u,, = 0 for all
n > no and the result follows. Otherwise, for all n € N we have

W, 1 = d(f(a), f(Xn)) < d(a, Xp) = ap,

ie. (uy) is a strictly decreasing sequence. As it is bounded below by 0, it is nec-
essarily convergent. Letu,, — ¢ > 0. We need to show ¢ = 0.

Assume that ¢ > 0. Since (u,,) is decreasing, u,, > ¢ for all n. Since (x,) is a
sequence in the compact set F, there is a convergent subsequence (xw(n)), with
¢ : N — N strictly increasing. Let 8 = limx,,,). Then

{= lim (avxga(n)) = d(OJ, ﬁ)

n—oo

Since f is continuous, we have

lim d(a, f(Xym))) = d(a, f(B)).

n—o0

But that is impossible since

(e, f(B)) = d(f(a), f(B)) < d(e, B) = ¢

and
d(a, f(xgo(n))) = d(a?xw(n)+1) > ¢ Vn.
The only remaining possibility is thus that £ = 0.
c) Completeness of FE is not sufficient. For instance, the function f : R — R de-

fined by
1 ifx <0
flx) = L
satisfies the hypothesis, but it admits no fixed point. |

4. Let (F,d) and (F,§) be two metric spaces, together with a injective map f : £ — F.
Show that f is continuous if and only if f(W) Cx F forall W Cyx FE.

Analysis and Topology Course Notes



CHAPTER 9. METRIC SPACES AND TOPOLOGY

Proof: we already know that if f is continuous and W Cg F, then f(W) Ck F.

Now assume that f(W) Cx F forall W Cx E. Letx € E and (x,) C E be such
that x,, — x. ThesetV = {x,, | n € N} U {x} is compact in E, according to the
Borel-Lebesgue property. Thus, we have V' = f(V) Cx F.

Letg : V — F be such that ¢ = f|y. Since f is injective, g is a bijection from V'
to V’. Themap g~! : V/ — V is continuous since any closed subset W Co V is
automatically compactin V.

As such (¢g71) " (W) = g(W) Ck V' is automatically closed in V. Since V' is com-
pact, (¢g~1)~! = g is continuous. Thus

f(%n) = g(x) = g(x) = f(x) = f is continuous.

ote that if f is not injective, the result does not hold in general. For instance, the
Heaviside function f : R — R defined by f(z) = 0ifx < Oand f(z) = lifz > 0
sends any compact set to a compact set, but it is not continuous. |

5. Let (E, d) be a metric space. If ¢ > 0, we say that F is e—chained if for alla,b € FE,
dn € N* and xo,...,X, € E such thatxy, = a, x, = b and d(x;,x;_1) < ¢ for all
1 =1,...,n. We say that F is well-chained if it is e—chained for all £ > 0.

a) If F is connected, show that F is well-chained.

b) If E is compact and well-chained, show that E is connected. Is the result still true
if £ is not necessarily compact?

Proof:

a) Lete > 0. We define an equivalence relation R, on E according to the follow-
ing: xR.y if and only if 3n € N* and xq,...,x, € Fsuchthatxy = x,x, =y
and d(x;,x;—1) < eforalli=1,...,n.

Letx € Fandy € [x]. Then, forallz € B(y,e) we have z € [y] = [x]. Thus
B(y,e) C [x] and so [x] Cp E.

Since
X =E\ [Jl

yZ[x]

is the complement of an open set, [x]| C E. Consequently, [X] is a clopen subset
of E. But E is connected; we must then have [x] = E since [x] # @. Hence,
every pair of point of E can be joined by an e— chain. As ¢ is arbitrary, F is
well-chained.

b) Suppose that E is not connected. Then we can write £ = F} U F5, where @ #
Fy, F» Ceo FE. Since E is compact, Fi, Fo Ci E.ltis left as an exercise to show
that Ja; € F} and ay € F» such thatd(ay, az) = d(F1, Fy).
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Since F1 N F, # @,a; # az and so € = d(aj;,a2) > 0; as such, d(x,y) > ¢ for all
(X,Y) € I x Fs.

Let (x,y) be such a point. Since E is well-chained, 3 an e—chain (xo, ...,X;,) €
E™*! such that

X0 =X, X,=y and d(x;,X;—1)<e foralli=1,...,n.

Since Xy € F; and x,, € Fy, di such thatx;,_1 € F; and x; € F5.

But this would imply that ¢ > d(x;_1,%;) > d(Fi,F2) = ¢, which is a con-
tradiction. Consequently, E is connected.

If £ is not compact, the result is not valid in general: (@) is well-chained when

endowed with the usual metric because it is dense in R, but it is not connected.
[ |

6. Let (F, d) be a metric space, with two disjoint sets A, B C E. Show that there exists a
continuous function f : £ — [0,1] such that A = f~'({0}) and B = f~'({1}), as well
as two disjoint sets U,V Cp E'suchthat AC Uand B C V.

Proof: Let F' C¢ E. Define gp : (E,d) — (R,]|-|) by
9r(x) = d(x. F) = inf {d(x.)}
According to the Triangle Inequality, for ally € F’ we have
gr(x) =d(x, F) <d(x,y) <d(x,z) + d(z,y) VX,z€ E,

thus we must have gp(x) < d(x,z) + gr(z) for allx,z € F, thatis, gr(x) — gr(z) <
d(x,z) forall x,z € E. In a similar fashion, gr(z) — gr(x) < d(x,z) forall x,z € FE.
Thus,

lgr(X) —gr(z)| < d(x,z) forallx,z € E,

i.e. gr is Lipschitz (and so continuous).

Since F' C¢ E, gp(x) = Oifand only ifx € F. Let f : (E,d) — (R,| - |) be de-
fined by
gA(x) d(x,A)

%)= 0230 + () ~ A%, A) + d(x, B)

it is well-defined since whenever d(x, A) + d(x, B) = 0, we must have d(x, A) =
d(x,B) = 0,ie.x € Aandx € B. Bt AN B = @ and so for all x € E, we have
d(x,A) +d(x,B) # 0.

Furthermore, f(x) = 0 if and only if d(x,A) = 0,i.e.x € A; f(x) = 1 if and only
ifd(x,B) =0,ie.x € B.

The function f is continuous since it is the composition of continuous functions. It
is clear that 0 < f(x) < 1,sothat f : E — [0, 1].
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Finally, let

ACU=f1[0,1/2)) Co [0,1] and BCV = f"1((1/2,1]) Co [0,1].

Then U NV = & by construction and we are done. ]

9.4 Exercises

©® N o s

10.
11.

12.
13.

14.

. Prepare a 2-page summary of this chapter, with important definitions and results.

Show that any compact metric space is precompact and complete.
Show that any complete precompact metric space is compact.
Prove Theorem 120.
With the usual metric, show that A C R" is precompact if and only if A Cx R™
Prove Proposition 131.
Prove Proposition 132.
Let (B, dy), ..., (E,,d,) be metric spaces. Show that
(E,d) = (Ey X -+ x E,,sup{d; | 1 <i<n})
is compact if and only if (E;, d;) is compact foralli = 1,...,n.2
Show that (9.3) defines an equivalence relation on a metric space (E, d).

Let (E, d) be a metric space and let x € E. Show that [x] C¢ E.

Let (E, d) be a metric space with finitely many connected components. Show that each

of those components is a clopen subset of E.

Prove Proposition 136.

Show that if (E, || - ||) is a normed vector space over K, then any open ball B(x, p) is

path-connected.

Let (E, d) be a metric space, B Cg F and A C F such that
BnNnint(A) # @ and BNint(E\ A) # @.

Show that BN 0A # @.

2This result cannot be generalized to infinite products (Tychonoff’s Theorem) without calling upon the
Axiom of Choice, a.k.a Zorn's Lemma, a.k.a. the Existence of Non-Measurable Sets, a.k.a. the Banach-Tarksi
Paradox.
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15.

16.
17.

18.

19.

20.

21.

22.

258

9.4. EXERCISES

Let (A, d;) and (B, dy) be two metric spaces. Let X C Aand Y C B. Show that

(AxB)\ (X xY)Cg A X B.

Prove Proposition 9.2.2.

In the usual topology, give an example of a subset A Cg R? for which int(A) is not
connected.

In the usual topology, give an example of a subset A C R? for which A Co R? but A is
not connected.

Show that if the connected components of a compact set are open, then there are finitely
many of them.

Let (E,d) and (F, §) be metric spaces, together with a continuous map f : F — F' such
that f_ (W) Cx E forall W Cg F. Show that f is a closed map.

Let (£, d) be a connected metric space and let ' C E, with 0F Cg E. Show that
F Cg E. Is the result still true if F' is not necessarily closed?

Let T = [U,eq({z} % (0,00)] U |Uemg({2} x (~o0,0))| € R,

a) Show thatI' Cg R2.
b) Show that I is not path-connected.
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