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Preface

Personalities and Stakes
Differential calculus is a collection of algebraic tools that enable the exact resolution of certain
geometrical problems posed by the ancients: determining the length of a curve, the area of
a geometric ϐigure, or the volume of a solid, for example, or ϐinding the tangent line to any
geometric shape. By the 17th century, it was already possible to solve these problems.

Isaac Newton and his British contemporaries relied on velocity and rates of change in
a theory of ϐluxions, whereas Leibniz and European mathematicians used inϐinitesimal in-
crements, or differentials, mysterious quantities larger than 0, but smaller than any other
number.¹ The results obtained were valid in both frameworks, but the methods used in ei-
ther case were far from satisfactory. It was not necessary to understand why the methods
were valid for them to work, but the question often recurred, scratching the collective sub-
conscious of mathematicians, philosophers, and theologians of the time: mathematics were
considered “divine” or “heavenly”, so why was there so much ambiguity?²

Both methods used the notion of inϐinity without ever deϐining the concept; unfortu-
nately, inϐinity has the troublesome habit of defying intuition when one least expects it.

The French mathematician d’Alembert then attempted to provide a certain formalism by in-
troducing the notion of a limit,

[...] the number which one can approach as closely as one wishes by using a se-
quence of secant approximations [...],

but his deϐinition hardly proved more precise. What is meant by “approaching”? Do we ever
reach this number?

It was in response to this lack of formalism thatmathematical analysiswas established.
Its foundations are owed, among others, to Cauchy, Gauss, and Weierstrass; calculus is an
“intuitive” version of their analysis.

¹Mathematicians of the era engaged in furious academic battles over the priority of discovery; the British
insisted that Newton was the inventor of differential calculus since he had used it to calculate the orbits of
planets; but Leibniz published his results on the derivative of a product before Newton. Several collaborations,
as well as many friendships, became casualties of the conϐlict.

²Bishop Berkeley, in a (now famous) treatise published in 1734, attacked the approaches of both camps: if
velocity is the ϐirst derivative (the ϐirst ϐluxion) of a particle’s position, what corresponds to the second and third
derivative? How can a quantity be smaller than any other quantity? Are inϐinitesimals the ghosts of departed
quantities?

iii



REFERENCES AND INFLUENCES

References and Inϐluences
These notes are mostly based on courses I taught at the University of Ottawa between 2004
and 2021, but also on courses that I took as a student between 1994 and 2002. I was lucky to
have had fantastic calculus, analysis, differential equations, dynamical systems, and topology
instructors and mentors:

RichardBlute,LucDemers,MarcelDéruaz,BenoitDionne,ThierryGiordano,Barry
Jessup, Victor Leblanc, and Rémi Vaillancourt at the University of Ottawa, and
Wojciech Jaworski andMichael Moore at Carleton University.

It is no exaggeration to say that I would not be a professional mathematician without their
guidance, for which I thank them heartily.

More pragmatically, these notes could not exist without their inϐluence and hard work, in
particular that of B. Dionne (chapters 1-6), T. Giordano (chapters 7-14, 21-24), and M. Moore
(chapters 15-20). I should also mention Aaron Smith with whom I co-taught MAT 2125 (Ele-
mentary Real Analysis) online during the COVID-19 pandemic, who contributed some mate-
rial and solved problems to chapters 1-6.

I have consulted and borrowed from a whole slew of references over the years, of which the
following are the most prominent:

Bartle, R.G., Sherbert, D.R. [1992], Introduction to Real Analysis, 2nd edition, Wiley.
Brown, J.W., Churchill, R.V. [1996],ComplexVariables andApplications, 7th edition,McGraw-
Hill.
Gourdon, X. [2000], Les maths en tête: analyse, 2e édition, Ellipses.
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PREFACE

Pre-Requisites and Course Notes Overview
Readers are assumed to have taken three semesters of calculus, two semesters of linear alge-
bra, and one course in mathematical reasoning and proofs at the university level (MAT 1320,
MAT 1322, MAT1341, MAT 1362, MAT 2122, and MAT 2141 at the University of Ottawa), and
more importantly, to havemastered their contents.

Each of the ϐirst four parts correspond roughly to a course offered (or previously offered)
at the University of Ottawa:

Part I: MAT 2125 (Elementary Real Analysis, formerly Real Analysis I);

Part II: MAT 3120 (formerly Real Analysis III, currently Real Analysis);

Part III: MAT 2121 (formerly Real Analysis II, not in the course catalogue anymore, ex-
cept as a special topics course), and

Part IV: MAT 4153 (General Topology),

whereas Part V contains tidbits that could easily be found in MAT 3121 (Complex Analysis I),
MAT3130 (Introduction toDynamical Systems),MAT4121 (Measureand Integration I), and/or
MAT 4124 (Introduction to Functional Analysis).

Any analyst and any topologist worth their salt will have to tackle all the topics listed above in
their training (andmore besides, depending on their individual research interests), but there
is no substitute for taking courses and learning from speciϐic instructors.

I make these notes available mainly to help students bridge gaps caused by scheduling
issues and to whet their appetites by giving them a chance to look ahead.

No matter how we swing it, there is a lot of material to cover, and there is no denying that
some of it can be scary the ϐirst time it is encountered ... but it helps to keep in mind that
analysis is mostly fun once we get the hang of it.

So roll up your sleeves, and happy learning!

Patrick Boily
Wakeϔield, Canada

December 2023

P. Boily (uOttawa) v
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Elementary Real Analysis





Chapter 1

The Real Numbers

In real analysis, the fundamental object of study is the set of real numbers,
R. In this chapter, we introduce R and some of its important properties,
discuss the cardinality of sets, and provide a ϐirst analytical result, whose
proof will serve as an introduction to the discipline.

1.1 Hierarchy of Number Systems
At a basic level, analysis is a theory on the real numbersR, that is, the objects with which we
work are real numbers, real sets, and real functions. We will see at a later stage that we
can conduct analysis on anymetric space (such as Rn and C, for instance).

There is a natural hierarchy amongst number sets, which you have no doubt encountered
in your courses:

N× ⊊ N ⊊ Z ⊊ Q ⊊ A ⊊ R ⊊ C.

The positive integersN× are the counting numbers; zero is added toN× to formN, in which
all equations x + a = b, b ≥ a ∈ N× have a solution. Similarly, the integers Z are built by
adding new numbers to N in order for all equations of the form x + a = b, a, b ∈ N to have
solutions. For the rational numbersQ, the equations in question have the form ax+ b = 0,
a, b ∈ Z, b ̸= 0. For the algebraic numbers A, we are looking at equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ Q,

and for complex numbers C, equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ R.

In other words, number sets are generally easy to construct once we have the right building
blocks... except when it comes to the real numbers R. In this chapter and the next, we will
introduce concepts that will allow us to “formally” deϐine R.

3
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In what follows, we will make use of the following axiom about the set N.

aaaaaa Axiom (WĊđđ-OėĉĊėĎēČ PėĎēĈĎĕđĊ)
Any non-empty subset of N has a smallest element.

We will deϐine the “smallest” element of a set momentarily. We shall also discuss how to
measure the “size” of a set in Section 1.2; for the moment, we remark only that while Q is
inϐinite, it contains inϐinitely more holes than it does elements.

Field and Order Properties of R
A ϐield F is a set endowed with two binary operations: an addition+ : F × F → F , deϐined
by+(a, b) = a+ b, and amultiplication · : F ×F → F , deϐined by ·(a, b) = ab,which satisfy
the 9 ϐield properties:

(A1) commutativity of+: ∀a, b ∈ F , a+ b = b+ a;
(A2) associativity of+: ∀a, b, c ∈ F , (a+ b) + c = a+ (b+ c);
(A3) existence of neutral element for+: ∃0 ∈ F , ∀a ∈ F , a+ 0 = a;
(A4) inverse with respect to+: ∀a ∈ F , ∃!b ∈ F , a+ b = 0;
(M1) commutativity of ·: ∀a, b ∈ F , ab = ba
(M2) associativity of ·: ∀a, b, c ∈ F , (ab)c = a(bc)
(M3) existence of neutral element for ·: ∃1 ∈ F , ∀a ∈ F , 1a = a
(M4) inverse with respect to ·: ∀a ∈ F×, ∃!b ∈ F , ab = 1
(D1) distributivity of · over+: ∀a, b, c ∈ F , a(b+ c) = ab+ ac

aaaaaa Examples: Q is a ϐield; N is not a ϐield since (A4) is not satisϐied for x = 1 ∈ N, say;
Z is not a ϐield since (M4) is not satisϐied for x = 2, say. □

An order on a set F is a binary relation “<” satisfying the order properties:

(O1) trichotomy: ∀a, b, c ∈ F , a < b or a = b or b < a;
(O2) transitivity: ∀a, b, c ∈ F , if a < b and b < c, then a < c.
(O3) ∀a, b, c ∈ F , if a < b, then a+ c < b+ c.
(O4) (speciϐic to R): ∀a, b, c ∈ R, if a < b and c > 0, then ac < bc.

aaaaaa

Examples

1. The relation “is born before” is an order relation on the set of human beings
(with reasonable assumptions about birth);

2. the relation “is smaller than” is an order relation on N,Z,Q;
3. the relation “is a subset of” is not an order on ℘(N) since we have neither
{1, 2} ̸⊆ {1, 3}, {1, 2} ̸= {1, 3}, nor {1, 3} ̸⊆ {1, 2}. □
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CHAPTER 1. THE REAL NUMBERS

Let (F,<) be an ordered set and S ⊆ F . If a < b or a = b, we write a ≤ b. The element u ∈ F
is an upper bound of S if s ≤ u for all s ∈ S. In that case, we say that S is bounded above. If
u is the smallest upper bound of S, we say that it is the supremum of S, denoted u = supS.

The element v ∈ F is a lower bound of S if v ≤ s for all s ∈ S. In that case, we say that
S is bounded below. If v is the largest lower bound of S, we say that it is the inϐimum of S,
denoted u = infS. If the set S is bounded both above and below, we say that it is bounded.

aaaaaa

Example: if S = {x ∈ Q | 2 < x < 3}, then infS = 2.

Proof: the rational number v = 2 is a lower bound of S since 2 = v < x for all x ∈ S
(but so are v = −1 and v = 1.5). Hence infS ≥ 2.

To show that 2 is indeed the greatest lower bound, we suppose that u = infS > 2
and derive a contradiction. As we already know that infS ≥ 2, this will only leave
one possibility: infS = 2.

By assumption, there exists 0 < ε < 1 in Q such that u = 2 + ε. Find a rational
number u∗ ∈ (2, u). By deϐinition, u∗ ∈ S, since 3 > u∗ > 2. But u > u∗, and so u
cannot be a lower bound of S, which contradicts the hypothesis that u = infS. Thus
infS ̸> 2 and infS = 2. ■

This “proof” rests on thin ice, however: it assumes that the inϐimum exists in the ϐirst place;
that if the inϐimum exists, it is a rational number, and that a rational number can be found
between any two distinct rationals. These assumptions are valid in this speciϐic case, but
not so in general – more on this later.

aaaaaa

Example: show that if S = N, then infS = 1.

Proof: the integer v = 1 is a lower bound since 1 = v ≤ n for all n ∈ N, so infN ≥ 1.
But any number above 1 cannot be a lower bound ofN since it would not be smaller
than 1. Thus, infS = 1. ■

Completeness of R
A set (F,<) is complete if every non-empty bounded subset S ⊆ F has a supremum and an
inϐimum.

aaaaaa

Example: show thatQ is not complete.

Proof: consider the subset S = {x ∈ Q+ | 2 < x2 < 3}. Since 1.5 ∈ Q+, then
1.52 = 2.25 ∈ Q+. We have 2 < 1.52 = 2.25 < 3, so 1.5 ∈ S, and thus S ̸= ∅.
Furthermore, S is bounded above by 3 since 32 > 3 and bounded below by 1 since
12 < 1, so S is bounded.

P. Boily (uOttawa) 5
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aaaaaa We will see shortly that S has no supremum/inϐimum in Q (since no rational x is
such that x2 = 2 or x2 = 3). ThusQ is not complete. ■

The set R of real numbers is the smallest complete ordered ϐield containing N, with order
a < b⇐⇒ b− a > 0.

Archimedean Property
Classically, R is constructed using Dedekind cuts or Cauchy sequences: in effect, R is con-
structedby “ϐilling theholes” ofQ. Wewill discuss Cauchy sequences in Chapter 2 andprovide
the outline of R’s construction in Chapter 7. For now, we assume that R is available and that
is satisϐies the properties mentioned previously, as well as the next “obvious” result.

aaaaaa

Theorem 1 (AėĈčĎĒĊĉĊĆē PėĔĕĊėęĞ Ĕċ R)
Let x ∈ R. Then ∃nx ∈ N× such that x < nx.

Proof: suppose that there is no such integer. Then x ≥ n ∀n ∈ N. Consequently, x
is an upper bound of N×. But N× is a non-empty subset of R. Since R is complete,
α = supN× exists.

By deϐinition of the supremum (the smallest upper bound), α − 1 is not an upper
bound of N× (otherwise α would not be the smallest upper bound, as α − 1 < α
would be a smaller upper bound).

Since α − 1 is not an upper bound of N×, ∃m ∈ N× such that α − 1 < m. Using the
properties ofR, wemust then haveα < m+1 ∈ N×; that is, α is not an upper bound
of N×.

This contradicts the fact that α = supN×, and so, since N× ̸= ∅, x cannot be an
upper bound of N×. Thus ∃nx ∈ N× such that x < nx. ■

TheArchimedeanproperty ofR is a fundamental construct; it used (often implicitly) in nearly
all analytical proofs.

aaaaaa

Theorem 2 (VĆėĎĆēęĘ Ĕċ ęčĊ AėĈčĎĒĊĉĊĆē PėĔĕĊėęĞ)
Let x, y ∈ R+. Then ∃n1, n2, n3 ≥ 1 such that

1. x < n1y;

2. 0 < 1
n2
< y, and

3. n3 − 1 ≤ x < n3.
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aaaaaa

Proof:

1. Let z = x
y
> 0. By the Archimedean property, ∃n1 ≥ 1 such that z = x

y
< n1.

Then x < n1y.

2. If x = 1, then part 1 implies ∃n2 ≥ 1 such that 0 < 1 < n2y. Then 0 < 1
n2
< y.

3. Let L = {m ∈ N× : x < m}. By the Archimedean property, L ̸= ∅. Indeed,
there is at least one n ≥ 1 such that x < n. By the well-ordering principle, L
has a smallest element, saym = n3. Then n3− 1 ̸∈ L (otherwise, n3− 1would
be the least element of L, which it is not) and so n3 − 1 ≤ x < n3.

There are other variants, but these are the ones we will use the most. ■

Let’s look at a basic result which highlights how to use the Archimedean property.

aaaaaa

Example: show that inf{ 1
n
| n ∈ N×} = 0.

Proof: since 0 ≤ 1
n
for all n ∈ N×, 0 is a lower bound of the set. Suppose that ε > 0

is also a lower bound. Then ε ≤ 1
n

for all n ∈ N×, which means that n ≤ 1
ε
for

all n ∈ N×. This contradicts the Archimedean Property, so 0 is the smallest lower
bound of the set. ■

It is thus always possible to ϐind an integer greater than any speciϐied real number. This result
is extremely useful – we use it next to show the existence of irrational numbers.

aaaaaa

Corollary
The positive root of x2 = 2 lies in R but not inQ.

Proof: we ϐirst show that any solution of x2 = 2 cannot be rational. Suppose the
equation x2 = 2 has a rational positive root r = p/q, with gcd(p, q) = 1. Then
p2/q2 = 2, or p2 = 2q2. Hence p2 is even, and so p is also even. Indeed, if p = 2k + 1
is odd, then so is p2 = 2(2k2 + 2k) + 1.

Set p = 2m. Then (2m)2 = 2q2, or 2m2 = q2. Thus q2 and q are even. Consequently,
both p and q are even, which contradicts the hypothesis gcd(p, q) = 1. The equation
r2 = 2 cannot thenhave a solution inQ. Butwehave not yet shown that the equation
has a solution in R.

Consider the set S = {s ∈ R+ : s2 < 2}, where R+ denotes the set of positive real
numbers. This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 2.
Indeed, if t ≥ 2, then t2 ≥ 4 > 2, whence t ̸∈ S.

By completeness ofR, u = supS ≥ 1 exists. It is enough to show that neither u2 < 2
and u2 > 2 can hold. The only remaining possibility is that u2 = 2.

P. Boily (uOttawa) 7
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aaaaaa

If u2 < 2, then 2u+1
2−u2 > 0. By the Archimedean property, ∃n > 0 such that

2u+1
2−u2 < n. By re-arranging the terms, we get

0 <
1

n
(2u+ 1) < 2− u2.

Then(
u+

1

n

)2

= u2 +
2u

n
+

1

n2
≤ u2 +

2u

n
+

1

n

= u2 +
1

n
(2u+ 1) < u2 + 2− u2 = 2.

Since (u+ 1
n
)2 < 2, u+ 1

n
∈ S. But u < u+ 1

n
; u is then not an upper bound of

S, which contradicts the fact that u = supS. Thus u2 ̸< 2.

If u2 > 3, then 2u
u2−2

> 0. By the Archimedean property, ∃n > 0 such that
2u

u2−3
< n. By re-arranging the terms, we get

0 > −2u

n
> 2− u2.

Then (
u− 1

n

)2

= u2 − 2u

n
+

1

n2
> u2 − 2u

n
> u2 + 2− u2 = 2.

Since (u − 1
n
)2 > 2, u − 1

n
is an upper bound of S. But u > u − 1

n
; u can not

then be the supremum of S, which is a contradiction. Thus u2 ̸> 2.

That leaves only one alternative (since u ∈ R): u2 = 2, and u =
√
2 ∈ R. ■

From this point on, when we mention the Archimedean Property, we mean one of the four
variants from Theorems 1 and 2.

Absolute Value and Useful Inequalities
The real numbers enjoy another collection of useful and interesting properties.

aaaaaa
Theorem 3 (BĊėēĔĚđđĎ'Ę IēĊĖĚĆđĎęĞ)
Let x ≥ −1. Then (1 + x)n ≥ 1 + nx, ∀n ∈ N.

Proof: we prove the result by induction on n.
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aaaaaa

If n = 1, then (1 + x)1 = 1 + x ≥ 1 + 1x.

Suppose that the result is true for n = k, that is (1 + x)k ≥ 1 + kx. We have to
show that it is also true for n = k + 1. But

(1+x)k+1 = (1+x)k(1+x)≥ (1 + kx)(1 + x)︸ ︷︷ ︸
Ind. Hyp.

= 1+(k+1)x+kx2 ≥ 1+(k+1)x,

which completes the proof. ■

The assumption x ≥ −1 is essential – if 1 + x < 0, the use of the induction hypothesis in
the string of inequalities cannot be justiϐied (it would, in fact, be invalid).

aaaaaa

Theorem 4 (CĆĚĈčĞ'Ę IēĊĖĚĆđĎęĞ)
If a1, . . . , an and b1, . . . , bn are real numbers, then(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Furthermore, if bj ̸= 0 for one of 1 ≤ j ≤ n, then equality holds if and only if ∃s ∈ R
such that ai = sbi for all i = 1, . . . , n.

Proof: for any t ∈ R,

0 ≤
n∑

i=1

(ai + tbi)
2 =

n∑
i=1

a2i + 2t
n∑

i=1

aibi + t2
n∑

i=1

b2i .

The right-hand side of this inequality is a polynomial of degree 2 in t. As it is non-
negative, it has at most 1 real root. Thus, its discriminant(

2
n∑

i=1

aibi

)2

− 4

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
≤ 0,

and so (
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

If all the bi are 0, the equality holds trivially, as both the left and right side of the
Cauchy inequality are 0. So suppose bi ̸= 0 for at least one of the values j between 1
and n.

P. Boily (uOttawa) 9



1.1. HIERARCHY OF NUMBER SYSTEMS

aaaaaa

If ai = sbi for all i = 1, . . . , n and s ∈ R is ϐixed then(
n∑

i=1

aibi

)2

=

(
n∑

i=1

sb2i

)2

= s2

(
n∑

i=1

b2i

)2

= s2

(
n∑

i=1

b2i

)(
n∑

i=1

b2i

)

=

(
n∑

i=1

s2b2i

)(
n∑

i=1

b2i

)
=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

On the other hand, if(
n∑

i=1

aibi

)2

=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
then 4

(
n∑

i=1

aibi

)2

−4

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
= 0.

But the left-hand side of this expression is the discriminant of the following polyno-
mial of degree 2 in t:

n∑
i=1

(ai + tbi)
2 =

n∑
i=1

a2i + 2t
n∑

i=1

aibi + t2
n∑

i=1

b2i .

Since the discriminant is 0, the polynomial has a unique root, say t = −s, therefore
n∑

i=1

(ai − sbi)2 = 0.

Since (ai − sbi)2 ≥ 0 for all i = 1, . . . , n, then

(ai − sbi)2 = 0 =⇒ ai − sbi = 0 =⇒ ai = sbi for all i = 1, . . . , n,

which completes the proof. ■

The next result is used extensively in analytical arguments.

aaaaaa

Theorem 5 (TėĎĆēČđĊ IēĊĖĚĆđĎęĞ)
If a1, . . . , an, b1, . . . , bn ∈ R,(

n∑
i=1

(ai + bi)
2

)1/2

≤

(
n∑

i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

.

Furthermore, if bj ̸= 0 for one of 1 ≤ j ≤ n, then equality holds if and only if ∃s ∈ R
such that ai = sbi for all i = 1, . . . , n.
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aaaaaa

Proof: taking the square root on both sides of the inequality below yields the de-
sired result:

n∑
i=1

(ai + bi)
2 =

n∑
i=1

a2i + 2
n∑

i=1

aibi +
n∑

i=1

b2i

Cauchy Inequality ≤
n∑

i=1

a2i + 2

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

+
n∑

i=1

b2i

=

( n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2
2

.

If all the bi are 0, the equality holds trivially, as both the left and right side of the
Triangle Inequality are (∑n

i=1 a
2
i )

1/2
. So suppose bi ̸= 0 for at least one of the values

j between 1 and n.

If ai = sbi for all i = 1, . . . , n and s ∈ R is ϐixed, then equality holds since(
n∑

i=1

(ai + bi)
2

)1/2

=

(
n∑

i=1

(sbi + bi)
2

)1/2

=

(
n∑

i=1

(s+ 1)2b2i

)1/2

=

(
(s+ 1)2

n∑
i=1

b2i

)1/2

= (s+ 1)

(
n∑

i=1

b2i

)1/2

and
(

n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

=

(
n∑

i=1

s2b2i

)1/2

+

(
n∑

i=1

b2i

)1/2

= s

(
n∑

i=1

b2i

)1/2

+

(
n∑

i=1

b2i

)1/2

= (s+ 1)

(
n∑

i=1

b2i

)1/2

.

Conversely, if (
n∑

i=1

(ai + bi)
2

)1/2

=

(
n∑

i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2

then
n∑

i=1

(ai + bi)
2 =

( n∑
i=1

a2i

)1/2

+

(
n∑

i=1

b2i

)1/2
2

.

Developing both sides of this expression yields

n∑
i=1

a2i + 2
n∑

i=1

aibi +
n∑

i=1

b2i =
n∑

i=1

a2i + 2

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

+
n∑

i=1

b2i ,
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1.1. HIERARCHY OF NUMBER SYSTEMS

aaaaaa

or simply
n∑

i=1

aibi =

(
n∑

i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

.

Elevating both sides to the second power yields(
n∑

i=1

aibi

)2

=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

By Cauchy’s Inequality, ∃s ∈ R such that ai = sbi for all i = 1, . . . , n. ■

In the triangle inequality, if we set n = 1, we obtain the very useful inequality:√
(a+ b)2 ≤

√
a2 +

√
b2,

which we usually write as

|a+ b| ≤ |a|+ |b|, for all a, b ∈ R.

The function | · | : R → R is the absolute value, which represents the distance between a
real number and the origin. It is deϐined by

|x| =

{
x, x ≥ 0

x, x ≤ 0

Equipped with this function, R is an example of a normed space. Normed space will be dis-
cussed in Chapter 8.

aaaaaa

Theorem 6 (PėĔĕĊėęĎĊĘ Ĕċ ęčĊ AćĘĔđĚęĊ VĆđĚĊ)
If x, y ∈ R, then

1. |x| =
√
x2

2. −|x| ≤ x ≤ |x|
3. |xy| = |x||y|
4. |x+ y| ≤ |x|+ |y|

5. |x− y| ≤ |x|+ |y|
6. ||x| − |y|| ≤ |x− y|

Remark: the following inequality will play a central role in the chapters to come:

|x− a| < ε⇐⇒ a− ε < x < a+ ε.
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Density ofQ

We ϐinish this section with an intriguing result about the distribution of rationals and irra-
tionals among the reals.

aaaaaa

Theorem 7 (DĊēĘĎęĞ Ĕċ Q)
Let x, y ∈ R be such that x < y. Then, ∃r ∈ Q such that x < r < y.

Proof: there are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If 0 ≤ x < y, then y − x > 0 and 1
y−x

> 0. By the Archimedean property,
∃n ≥ 1 such that

n >
1

y − x
> 0.

By that same property, ∃m ≥ 1 such thatm−1 ≤ nx < m. Since n(y−x) > 1,
then ny − 1 > nx and nx ≥ m − 1. By the transitivity of the order < on R,
we have ny − 1 > m − 1, and so ny > m. Butm > nx, so ny > m > nx and
y > m

n
> x. Select r = m

n
.

3. If x < y ≤ 0, then y − x > 0 and 1
y−x

> 0. By the Archimedean property,
∃n ≥ 1 such that

n >
1

y − x
> 0.

Note that−nx > 0. By that sameproperty,∃m ≥ 0 such thatm < −nx ≤ m+1
or −m − 1 ≤ nx < −m. Since n(y − x) > 1, then ny − 1 > nx ≥ −m − 1,
that is ny > −m. But −m > nx, so ny > −m > nx and y > −m

n
> x. Select

r = −m
n
. ■

Theorem 7 has a twin: the set of irrational numbers is also dense in R.

aaaaaa

Corollary (DĊēĘĎęĞ Ĕċ R \Q)
Let x, y ∈ R with x < y. Then, ∃z ̸∈ Q such that x < z < y.

Proof: we will prove the case x, y > 0, the other cases are left as an exercise. Ac-
cording to Theorem 7, ∃r ̸= 0 ∈ Q such that x√

2
< r < y√

2
.

Hence x < r
√
2 < y. Set z = r

√
2. Then z ̸∈ Q – indeed, if z = r

√
2 = p

q
∈ Q, then√

2 = p
qr
∈ Q, a contradiction. ■

It is thus possible to ϐind rationals and irrationals between any two real numbers x < y.
In spite of this, however,Q is in fact much “smaller” than R \Q, as we shall presently see.
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1.2. CARDINALITY OF SETS

1.2 Cardinality of Sets
For all n ∈ N×, deϐine Nn = {1, 2, . . . , n}. A set S is ϐinite if S = ∅ or if there exists a
bijection f : Nn → S for some n ∈ N×. If S is not ϐinite, it is inϐinite. If S is inϐinite and
there exists a bijection f : N→ S, then S is countable and we write |S| = ω. Otherwise, it is
uncountable.¹

Consider two sets Sn and Tn, both with n distinct elements:

Sn = {s1, . . . , sn}, Tn = {t1, . . . , tn}.

These two ϐinite sets have the same size: there is a bijection f : Sn → Tn, f(si) = ti for
1 ≤ i ≤ n (it is not the only such bijection).

In general, two sets S, T are said to have the same cardinality, denoted |S| = |T |, if there
exists a bijection f : S → T . If S, T are ϐinite, |S| = |T | means that the two sets have the
same number of elements: |S| = |T | = |Nn| = n for some n ∈ N. If S, T are inϐinite, the
“number of elements” is not a well-deϐined, which can lead to counter-intuitive results.

aaaaaa

Examples

1. The set 2N = {2, 4, . . .} is countable because f : N→ 2N, with f(n) = 2n, is a
bijection. We would then write |N| = |2N| = ω.

2. The set Z = {. . . ,−2,−1, 0, 1, 2, . . .} is countable since f : Z→ Nwith

f(z) =

{
2z, z ≥ 0

−2z − 1, z < 0

is a bijection. Thus |Z| = |N| = ω. □

So two sets can have equal cardinality even when one is strictly contained in the other – but
this can only happen with inϐinite sets, however.

aaaaaa

Theorem 8
If S is an inϔinite subset of a countable set A, then S is countable.

Proof: asA is countable,we can list all its elements: A = {a1, a2, . . . , }.Letn1, n2, . . .
be integers obtained by the following algorithm:

SetK1 = {n ∈ N | an ∈ S}. According to the well-ordering principle, ∃n1 ∈
K1 which is minimal. Then an1 ∈ S and am ̸∈ S for allm < n1.

¹Finite sets may also be called ϐinitely countable sets, and countable sets, inϐinitely countable sets.
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aaaaaa

Set K2 = K1 \ K1. According to the WOP, ∃n2 ∈ K2 which is minimal, with
n1 < n2. Then an2 ∈ S and am ̸∈ S for allm < n1 withm ̸= n1; etc.

Repeating this process, we obtain the set S ′ = {an1 , an2 , . . .}. But every element of
S must be in S ′ (why?), so S = S ′. The function f : N → S deϐined by k 7→ ank

is
thus a bijection, and so S is countable. ■

General Remark: when a proof is difϐicult to follow, it is never a bad idea to try the reasoning
it with speciϐic examples satisfying the hypotheses. If we have to provide a proof, remember
that an example only works if we are trying to show that some statement is false. A direct
proof never uses examples.

The contrapositive of Theorem 8 gives a useful way to show that a set is uncountable: if
S ⊆ A is uncountable, then A is uncountable.

Cardinality ofQ
Another way to think of countable sets is that they could be enumerated, at least conceptu-
ally, in an inϐinite list.

aaaaaa

Theorem 9
The setQ is countable.

Proof: WriteQ = Q− ∪ {0} ∪Q+, with the obvious notation. As there is a bijection
f : Q+ → Q−, with f(r) = −r, we must have |Q+| = |Q−|. It is then sufϐicient to
show that |Q+| = ω.

Indeed, if we can enumerate the elements of Q+, then we can enumerate the ele-
ments of Q by starting with 0, and alternating from Q− to Q+. But note that every
positive rational takes the form m

n
, with m,n ∈ N×. We can thus arrange all such

fractions in an inϐinite array:

There is a bijection between N× and the set F = {1
1
, 1
2
, 2
1
, 3
1
, 2
2
, . . .}, so |F | = ω. But

Q+ ⊆ F , so Q+ is countable since it is inϐinite (indeed, N× ⊆ Q+). According to
Theorem 8, we must have |Q+| = ω. This completes the proof. ■
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Cardinality of R
We now show that a set which would seem to be much smaller than Q at a ϐirst glance is in
fact much larger thanQ from a cardinality perspective, using a celebrated argument.

aaaaaa

Theorem 10 (CĆēęĔė'Ę DĎĆČĔēĆđ AėČĚĒĊēę)
The set I = [0, 1] is uncountable.

Proof: every number x ∈ I has a (not necessarily unique) decimal representation
of the form

x = 0.a1a2a3 · · · , ai ∈ {0, . . . , 9}.

By convention, we write 1 = .0.999999 and 0 = 0.000000. When numbers have two
decimal representations, such as 0.40000 = 0.39999, we only consider the represen-
tation with a tail of repeating 9s.

Assume that I is countable. Then it is possible to enumerate its elements:

I = {x1, x2, . . .}.

Each of the xi ∈ I has a unique decimal representation (with the convention given
earlier):

x1 = 0.a1,1a1,2a1,3 · · · a1,n · · ·
x2 = 0.a2,1a2,2a2,3 · · · a2,n · · ·

...
xn = 0.an,1an,2an,3 · · · an,n · · ·

...
where ai,j ∈ {0, . . . , 9} for all i, j ∈ N×. Deϐine the real number y = 0.y1y2y3 · · · ,
where

yi =

{
2 if ai,i ≥ 5

6 if ai,i ≤ 4
for i ∈ N×.

As 0 ≤ y ≤ 1, we have y ∈ I . But for all i ∈ N×, we also have y ̸= xi in the list
because yi ̸= ai,i. Thus y ̸∈ I , a contradiction. Consequently, the assumption that I
is countable is not valid. ■

Since [0, 1] ⊆ R, then R is also uncountable. What about R \ Q? In general, is it possible
for the union of two countable sets to be uncountable? Is the intersection of two uncountable
sets uncountable?
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1.3 Nested Intervals Theorem
We end this initial chapter with an important result concerning nested intervals, which we
will use shortly. In style and rigour, its proof is representative of analytical reasoning.

aaaaaa

Theorem 11 (NĊĘęĊĉ IēęĊėěĆđĘ)
For every integer n ≥ 1, let [an, bn] = In be such that

I1 ⊇ I2 ⊇ · · · In ⊇ In+1 ⊇ · · ·

Then there exists ψ, η ∈ R such that ψ ≤ η and
∩

n≥1 In = [ψ, η]. Furthermore, if
inf{bn − an | n ∈ N} = 0, then ψ = η.

Proof: since In ⊆ I1 for all n ≥ 1, the set S = {a1, . . . , an} is bounded above by b1.
But S ̸= ∅, so ψ = supS exists by completeness of R, and thus

an ≤ ψ, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and ak ≤ bk ≤ bn;

if k < n, then In ⊆ Ik and ak ≤ an ≤ bn.

In both cases, ak ≤ bn for all k ≥ 1. Thus bn is an upper bound of S for all n ≥ 1. As
ψ = supS, ψ ≤ bn for all n ≥ 1. Combining these results, we have an ≤ ψ ≤ bn, for
all n ≥ 1.

Since In ⊆ I1 for all n ≥ 1, the set T = {b1, . . . , bn} is bounded below by a1. But
T ̸= ∅, so η = infT exists by completeness of R, and thus

bn ≥ η, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and an ≤ ak ≤ bk;

if k < n, then In ⊆ Ik and an ≤ bn ≤ bk.

In both cases, an ≤ bk for all k ≥ 1. Thus an is an lower bound of T for all n ≥ 1. As
η = infT , η ≥ an for all n ≥ 1. Combining these results, we have an ≤ η ≤ bn, for all
n ≥ 1.

Since ψ ≤ bn for all n ≥ 1, ψ is a lower bound of T . As η is the largest such lower
bound, ψ ≤ η, which is to say: an ≤ ψ ≤ η ≤ bn, for all n ≥ 1, and so [ψ, η] ⊆ In for
all n ≥ 1.
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aaaaaa

Consequently,
[ψ, η] ⊆

∩
n≥1

In.

Now, suppose that γ ∈ In for all n ≥ 1. Then an ≤ γ ≤ bn for all n ≥ 1, and so γ is
an upper bound of S and a lower bound of T .

But ψ is the smallest upper bound of S, so ψ = supS ≤ γ, and η is the largest lower
bound of T , so γ ≤ infT ≤ η, and so γ ∈ [ψ, η]. Thus∩

n≥1

In ⊆ [ψ, η] =⇒
∩
n≥1

In = [ψ, η].

Finally, suppose that inf{bn − an | n ≥ 1} = 0. Let ε > 0. By deϐinition, ∃k ≥ 1
such that 0 ≤ bk−ak < ε, otherwise ε > 0would be a lower bound of the set, which
would contradict the assumption that 0 is the largest such upper bound.

We have seen that bk ≥ η and that ak ≤ ψ, so

ε > bk − ak ≥ η − ψ ≥ 0.

Thus, for all ε > 0, we have 0 ≤ η − ψ < ε, which is to say η − ψ = 0. ■

Proof note: from this point on, wewill avoid repeating nearly identical proof segments, using
generic statements like “Similarly, we can show that an ≤ inf{bi | i ≥ 1} ≤ bn, for all n ≥ 1”
while leaving the details to be worked out by the reader.

Why canwe conclude that η−ψ = 0 if 0 ≤ η−ψ < ε for all ε > 0? In general, if a ≤ x < a+ ε
for all ε > 0, then x = a. Indeed, if x ̸= a, ∃δ > 0 such that x = a+ δ. Thus, if ε = δ (which is
possible since ε can take on any positive value) we would have δ = x − a < ε = δ, a contra-
diction.

aaaaaa

Example: if In = [1 − 1
n
, 1 + 1

n
] for n ≥ 1, then the conditions of Theorem 11 are

satisϐied, and so∩n≥1 In = [ψ, η]. As inf{bn − an | n ≥ 1} = inf{ 2
n
| n ≥ 1} = 0, we

have:
ψ = sup{1− 1

n
} = 1 = inf{1 + 1

n
} = η,=⇒ [ψ, η] = {1},

which concludes the example. □

Warning: we can only use a theorem if the hypotheses are satisϐied (even though the con-
clusion may hold nonetheless). The intervals In = (1 − 1

n
, 1 + 1

n
), n ≥ 1 are such that their

intersection is {1}, but not because of the Theorem 11.
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1.4 Solved Problems

1. Let a, b ∈ R and suppose that a ≤ b+ ε for all ε > 0. Show that a ≤ b.
Proof: suppose that a > b. Let ε0 = a−b

2 > 0. Then

a > b =⇒ a+ a > a+ b (by O3) =⇒ a =
a+ a

2
>
a+ b

2
= b+ ε0 (by O4).

Hence, a > b + ε0, which contradicts the hypothesis that a ≤ b + ε for all ε > 0.
Consequently, the assumption a > b is false, that is, a ≯ b or a ≤ b by trichotomy of
the order on R. ■

2. Let c > 0 be a real number.

a) If c > 1, show that cn ≥ c for all n ∈ N and that cn > 1 if n > 1.
b) If 0 < c < 1, show that cn ≤ c for all n ∈ N and that cn < 1 if n > 1.

Proof: the statements are clearly not true if n = 0: as a result, we must interpret
N to stand for the set N = {1, 2, 3, . . .}, without the 0. Generally, we use whatever
“version” of N is appropriate.
a) If c > 1, ∃x ∈ R such that x > 0 and c = 1 + x. Let n ∈ N. First note that

n− 1 ≥ 0 and so (n− 1)x > 0.

Then, by Bernoulli’s inequality,

cn = (1 + x)n ≥ 1 + nx = 1 + x+ (n− 1)x ≥ 1 + x = c.

Furthermore, n − 1 > 0 and (n − 1)x > 0 if n > 1. Consequently, the last
inequality above is strict and so cn > c > 1, which implies cn > 1 (by transitivity
of the order>).

b) If 0 < c < 1, there exists b > 1 such that c = 1
b . Indeed, 1c is such that c · 1c = 1.

As c > 0, then 1
c > 0 since the product c · 1c = 1 is positive.

But c < 1, so that 1 = c · 1c <
1
c .

In particular, if we let b = 1
c , then b > 1 and so we can apply part (a) of this

question to get bn ≥ b for all n ∈ N and bn > 1 if n > 1.

Let n ∈ N. Then
1

cn
= bn ≥ b = 1

c

so that c ≥ cn and
1

cn
= bn > 1

so that 1 > cn if n > 1. ■
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3. Let c > 0 be a real number.

a) If c > 1 andm,n ∈ N, show that cm > cn if and only ifm > n.
b) If 0 < c < 1 andm,n ∈ N, show that cm > cn if and only ifm < n.

Proof:
a) It is sufϐicient to show that ifm ≥ n, then cm ≥ cn. Ifm = n, the result is clear,

so we assumem > n. In that case, ∃k ≥ 1 such thatm = n+ k. An easy induc-
tion exercise shows that cn+k = cnck for for all integers n and k.

In particular, using the previous problem,

cm = cn+k = cnck ≥ cn · c > cn · 1 = cn

and so cm > cn.
b) This can be shown from a) using the technique from the previous question. ■

4. Let S = {x ∈ R | x > 0}. Does S have lower bounds? Does S have upper bounds? Does
infS exist? Does supS exist? Prove your statements.

Does S have lower bounds? Yes.
By deϐinition, any negative real number is a lower bound (so is 0).

Does S have upper bounds? No.
Assume that it does. By the completeness of R, α = supR exists. In particular,
α ≥ n for all n ∈ N, which contradicts the Archimedean Property ofR. Hence S
has no upper bound.

Does infS exist? Yes.
Consider the set−S = {x ∈ R | −x ∈ S} = {x ∈ R | x < 0}. By construction,
0 is an upper bound of−S. Note furthermore that neither S nor−S are empty.

By completeness of R, sup(−S) exists. Right? The deϐinition of completeness
we use is that any non-empty bounded subset of R has a supremum. But−S is
only bounded above, not below. How can we conclude that sup(−S) exists?

That deϐinition is one particular version of the Completeness Property of R.
An equivalent way of stating it is: The ordered set F is complete if for any
∅ ̸= S ⊂ F , S has a supremum in F whenever S is bounded above and an in-
ϔimum in F whenever S is bounded below.

But sup(−S) = − infS. Indeed, let u = sup(−S). Then u ≥ −x for all−x ∈ −S
and if v is another upper bound of −S then u ≤ v. Note that if v is an upper
bound of−S, then v ≥ −x for all−x ∈ −S, i.e. −v ≤ x for all x ∈ S: as a result,
−v is a lower bound of S.

Similarly, if−v is a lower bound of S, v is automatically an upper bound of−S.
Then any lower bound of S is of the form−v, where v is an upper bound of−S.
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Then, −u ≤ x for all x ∈ S and −v ≤ −u whenever −v is a lower bound of
S. Hence−u = infS and so u = − infS.

As sup(−S) = − infS exists, so does infS.
Does supS exist? No.

See second item. ■

5. Let S =
{
1− (−1)n

n
| n ∈ N

}
. Find infS and supS.

Proof: the ϐirst few elements of S are:

2,
1

2
,
4

3
,
3

4
,
6

5
,
5

6
, · · · .

This suggests that S is bounded above by 2 and below by 1
2 . To show that this is

indeed the case, note that (−1)n only takes on the values−1 and 1, whatever the in-
teger n.

Technically, this also has to be shown. One proceeds by induction.

The base case is clear: when n = 1, (−1)1 = −1 ∈ {1,−1}.

Now, on to the induction step: suppose (−1)k ∈ {1,−1}. Then

(−1)k+1 = (−1)k(−1) =

{
1(−1) = −1
(−1)(−1) = 1

.

Hence (−1)k+1 ∈ {1,−1}.

By induction, (−1)n ∈ {−1, 1} for all n ∈ N.

Thus −1 ≤ (−1)n ≤ 1 for all n ≥ 1. (In practice, we need only show it once and
refer to the result if we need it in the future.)

For any n ≥ 2, we then have−n ≤ −1 ≤ (−1)n and n
2 ≥ 1 ≥ (−1)n, that is

−n ≤ (−1)n ≤ n

2
.

A quick check shows the inequalities also hold for n = 1. Then, for n ≥ 1, we have

−n ≤ (−1)n ≤ n

2

∴ −1 ≤ (−1)n

n
≤ 1

2

∴ 1 ≥ −(−1)n

n
≥ −1

2

∴ 2 ≥ 1− (−1)n

n
≥ 1

2
.
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Hence 2 ≥ s ≥ 1
2 for all s ∈ S, i.e. 2 is an upper bound and 1

2 is a lower bound of S.

By completeness, S ⊆ R has a supremum and an inϐimum in R. If u = supS < 2,
there is a contradiction as u ̸≥ s for all s ∈ S (it “misses” the element 2 in S).

Thus, supS ≥ 2. But 2 is already an upper bound so supS ≤ 2. Consequently
supS = 2. Similarly, infS = 1

2 . ■

6. Let S ⊆ R be non-empty. Show that if u = supS exists, then for every number n ∈ N
the number u− 1

n
is not an upper bound of S, but the number u+ 1

n
is.

Proof: let n ≥ 1. Then 1
n > 0 and u < u+ 1

n . Since s ≤ u for all s ∈ S, s < u+ 1
n for

all s ∈ S by transitivity of<. Consequently, u+ 1
n is an upper bound of S.

Furthermore, u − 1
n < u. Since u is the least upper bound, u − 1

n cannot be an
upper bound (as it would then be lesser upper bound than u, a contradiction). This
completes the proof. Or does it?

We haven’t used the hypothesis S ̸= ∅. Where does it ϐit? Does it even ϐit? The
deϐinition of an upper bound implies that every real number is an upper bound of
the empty set. Indeed, if v ∈ R, then v ≥ s for all s ∈ ∅ automatically as there is no
s ∈ ∅.
The proof rests on the fact that u = supS. But sup∅ does not exist, as discussed. ■

7. If S =
{

1
n
− 1

m
| m,n ∈ N

}
, ϐind infS and supS.

Proof: the set S =
{

1
n −

1
m | n,m ∈ N

}
is bounded above by 1 and below by −1

since
1

n
≤ 1 ≤ 1 +

1

m
and 1

m
≤ 1 ≤ 1 +

1

n
=⇒ −1 ≤ 1

n
− 1

m
≤ 1, ∀m,n ∈ N.

Note that S is not empty as 0 = 1
2 −

1
2 is in S, say.

By completeness, S has a supremum and an inϐimum. By deϐinition, s∗ = supS ≤ 1.
Suppose that s∗ < 1. Then ∃ε > 0 such that s∗ = 1− ε. Furthermore,

1

n
− 1

m
≤ 1− ε, ∀m,n ∈ N.

In particular, if n = 1, then

1− 1

m
≤ 1− ε, ∀m ∈ N.

Equivalently, ε ≤ 1
m for all integersm so that 1

ε is an upper bound forN. This contra-
dicts the Archimedean Property of R. Hence s∗ ≮ 1 and so s∗ = 1.

To prove that infS = −1, proceed along the same lines (inf ↭ sup, etc.). ■
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8. LetX be a non-empty set and let f : X → R have bounded range in R. If a ∈ R, show
that

sup{a+ f(x) : x ∈ X} = a+ sup{f(x) : x ∈ X}
inf{a+ f(x) : x ∈ X} = a+ inf{f(x) : x ∈ X}.

Proof: let f(X) = {f(x) | x ∈ X}. By hypothesis, f(X) is bounded and not empty
and so has a supremum inR, sayu∗. We need to show sup{a+f(x);x ∈ X} = a+u∗.

To do so, ϐirst note that a + u∗ is an upper bound of sup{a + f(x) | x ∈ X} since
u∗ ≥ f(x) for all x ∈ X; as a result a + u∗ ≥ a + f(x) for all x ∈ X (we know that
sup{a+ f(x) | x ∈ X} indeed has a supremum by completeness of R).

Next, we need to show that a+u∗ is the smallest upper bound of {a+f(x) | x ∈ X}.
Suppose v is another upper bound of {a+ f(x) | x ∈ X}. Then v ≥ a+ f(x) for all
x ∈ X; in particular, v − a is an upper bound of f(X).

By hypothesis, v − a ≥ u∗, hence v ≥ a + u∗. Consequently, a + u∗ is the least
upper bound of {a+ f(x) | x ∈ X}, i.e.

sup{a+ f(x) | x ∈ X} = a+ u∗.

The proof for the other equality proceeds in a similar manner. ■

9. LetA andB be bounded non-empty subsets of R, and let
A+B = {a+ b | a ∈ A, b ∈ B}.

Prove that sup(A+B) = supA+ supB and inf(A+B) = infA+ infB.
Proof: A andB are bounded and non-empty. By completeness, they have inϐimums
(in R), say a∗ and b∗, respectively. Then a∗ ≤ a and b∗ ≤ b for all a ∈ A, b ∈ B.

The real number a∗ + b∗ is a lower bound of A + B since a∗ + b∗ ≤ a + b for all
a ∈ A, b ∈ B. By completeness of R, A + B has an inϐimum as it is also not empty.
We show that this inϐimum is indeed a∗ + b∗.

Let w be a lower bound of A + B. Then, w ≤ a + b for all a ∈ A and b ∈ B, or
w − b ≤ a for all a ∈ A and b ∈ B.

Thus, w − b is a lower bound of A for all b ∈ B, i.e. w − b ≤ a∗ for all b ∈ B =⇒
w − a∗ ≤ b for all b ∈ B, so w − a∗ is a lower bound ofB.

Hence w − a∗ ≤ b∗. As a result, w ≤ a∗ + b∗, which concludes the proof. The other
equality is shown in the same manner. ■

10. LetX be a non-empty set and let f, g : X → R have bounded range in R. Show that
sup{f(x) + g(x) | x ∈ X} ≤ sup{f(x) | x ∈ X}+ sup{g(x) | x ∈ X}

inf{f(x) | x ∈ X}+ inf{g(x) | x ∈ X} ≤ inf{f(x) + g(x) | x ∈ X}.
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Proof: let f(X) = {f(x) | x ∈ X} and g(X) = {g(x) | x ∈ X}. By hypothesis,
f(X) and g(X) are both bounded and not empty, so they each have a supremum in
R, say u∗ and v∗ respectively.

Since f(x) ≤ u∗ and g(x) ≤ v∗ for all x ∈ X , then f(x) + g(x) ≤ u∗ + v∗ for all
x ∈ X . Hence, {f(x) + g(x) | x ∈ X} has a supremum in R, as it is a bounded
non-empty subset of R. Let w∗ be that supremum, i.e. the smallest upper bound of
{f(x) + g(x) | x ∈ X}.

Since u∗ + v∗ is also an upper bound of that set, it’s automatically larger than w∗.

Note that we can not say more: it is not true, in general, that w∗ = u∗ + v∗. Indeed,
takeX = [1, 2] and let f and g be deϐined by

f(x) =
1

x
and g(x) = −1

x
, ∀x ∈ X.

Then f(X) = { 1x | x ∈ X}, g(X) = {− 1
x | x ∈ X} and u∗ = 1, v∗ = −1

2 and w∗ = 0
(you should show these results!), and w∗ ≤ u∗ + v∗ but w∗ ̸= u∗ + v∗.²

The other inequality is tackled in a similar manner. ■

11. LetX and Y be non-empty sets and let h : X × Y → R have bounded range in R. Let
F : X → R andG : Y → R be deϐined by

F (x) = sup{h(x, y) | y ∈ Y } and G(y) = sup{h(x, y) | x ∈ X}.

Show that

sup{h(x, y) | (x, y) ∈ X × Y } = sup{F (x) | x ∈ X} = sup{G(y) | y ∈ Y }.

Proof: let h(X,Y ) = {h(x, y) | (x, y) ∈ X × Y } ⊆ R. By deϐinition, h(X,Y ) is
bounded and not empty, so it has a supremum in R, and F andG are well-deϐined.

Let α = suph(X,Y ). Then α ≥ h(x, y) for all x ∈ X and y ∈ Y . In particular,
if x ∈ X is ϐixed, α ≥ h(x, y) for all y ∈ Y . But F (x) is the smallest upper bound of
{h(x, y) | y ∈ Y }, so α ≥ F (x).

But x was arbitrary, so α ≥ F (x) for all x ∈ X . Hence α is an upper bound of
{F (x) | x ∈ X}; by completeness, {F (x) | x ∈ X} has a supremum in R, say β.
Then α ≥ β, by deϐinition of the supremum.

Again, ϐix x ∈ X . Then β ≥ F (x) ≥ h(x, y) for all y ∈ Y . Hence, for any x ∈ X ,
β ≥ h(x, y) for all y ∈ Y . As a result, β is an upper bound of h(X,Y ). Then β ≥ α,
by deϐinition of the supremum.

Combining these two results yields α = β (now do the other). ■
²Compare this result with the one from the previous question; what is the difference?
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12. Show there exists a positive real number u such that u2 = 3.
Proof: we ϐirst show that u is not rational.³

Suppose the equation r2 = 3has a positive root r inQ. Let r = p/qwith gcd(p, q) = 1
be that solution. Then p2/q2 = 3, or p2 = 3q2. Hence p2 is a multiple of 3, and so p is
also a multiple of 3.⁴

Set p = 3m. Then (3m)2 = 3q2, which is the same as 3m2 = q2. Then q2 is a multiple
of 3, and so q is also a multiple of 3. Consequently, p and q are both divisible by 3,
which contradicts the hypothesis gcd(p, q) = 1. The equation r2 = 3 cannot then
have a solution inQ.

But we haven’t shown yet that the equation has a solution in R. Consider the set
S = {s ∈ R+ : s2 < 3},where R+ denotes the set of positive real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 3. (Indeed,
if t ≥ 3, then t2 ≥ 9 > 3, whence t ̸∈ S.) By completeness of R, x = supS ≥ 1
exists. It will be enough to show that neither x2 < 3 and x2 > 3 can hold. The only
remaining possibility is that x =

√
3.

If x2 < 3, then 2x+1
3−x2 > 0. By the Archimedean property, ∃n > 0 such that

2x+1
3−x2 < n. By re-arranging the terms, we get

0 <
1

n
(2x+ 1) < 3− x2.

Then(
x+

1

n

)2

= x2 +
2x

n
+

1

n2
≤ x2 +

2x

n
+

1

n

= x2 +
1

n
(2x+ 1) < x2 + 3− x2 = 3.

Since (x+ 1
n)

2 < 3, x+ 1
n ∈ S. But x < x+ 1

n ; x is then not an upper bound of
S, which contradicts the fact that x = supS. Thus x2 ̸< 3.
If x2 > 3, then 2x

x2−3
> 0. By the Archimedean property, ∃n > 0 such that

2x
x2−3

< n. By re-arranging the terms, we get

0 > −2x

n
> 3− x2.

Then (
x− 1

n

)2

= x2 − 2x

n
+

1

n2
> x2 − 2x

n
> x2 + 3− x2 = 3.

Since (x− 1
n)

2 > 3, x− 1
n is an upper bound of S. But x > x− 1

n ; then x cannot
be the supremum of S, which is a contradiction. Thus x2 ̸> 3.

³Even though that wasn’t part of the question, it will be informative.
⁴Indeed, if p is not amultiple of 3, then neither is p2. Let p = 3k+1 or p = 3k+2. Then p2 = 3(3k2+2k)+1

or p2 = 3(3k2 + 4k + 1) + 1, neither of which is a multiple of 3.
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That leaves only one alternative (since we know that x ∈ R): x2 = 3, whence x =
u =
√
3 > 0. ■

13. Show there exists a positive real number u such that u3 = 2.

Proof: consider the setS = {s ∈ R+ : s3 < 2},whereR+ denotes the set of positive
real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 2.⁵ By com-
pleteness of R, x = supS ≥ 1 exists. It will be enough to show that neither x3 < 2
and x3 > 2 can hold. The only remaining possibility is that x = 3

√
2.

If x3 < 2, then 3x2+3x+1
2−x3 > 0. By the Archimedean property, ∃n > 0 such that

3x2+3x+1
2−x3 < n. By re-arranging the terms, we get

0 <
1

n
(3x2 + 3x+ 1) < 2− x3.

Then (
x+

1

n

)3

= x3 +
3x2

n
+

3x

n2
+

1

n3

≤ x3 + 3x2

n
+

3x

n
+

1

n

= x3 +
1

n
(3x2 + 3x+ 1) < x3 + 2− x3 = 2.

Since (x+ 1
n)

3 < 2, x+ 1
n ∈ S. But x < x+ 1

n ; x is then not an upper bound of
S, which contradicts the fact that x = supS. Thus x3 ̸< 2.
If x3 > 2, then 3x2+1

x3−2
> 0. By the Archimedean property, ∃n > 0 such that

3x2+1
x3−2

< n. By re-arranging the terms, we get

0 > −(3x2 + 1)

n
> 2− x3.

Then (
x− 1

n

)3

= x3 − 3x2

n
+

3x

n2
− 1

n3

≥ x3 − 3x2

n
− 1

n3
≥ x3 − 3x2

n
− 1

n

= x3 − 1

n
(3x2 + 1) > x3 + 2− x3 = 2.

Since (x− 1
n)

3 > 2, x− 1
n is an upper bound of S. But x > x− 1

n ; x can not then
be the supremum of S, which is a contradiction. Thus x3 ̸> 2.

That leaves only one alternative (since we know x ∈ R): x3 = 2 or, equivalently,
x = u = 3

√
2 > 0.⁶ ■

⁵Indeed, if t ≥ 2, then t3 ≥ 8 > 2, whence t ̸∈ S.
⁶We could also show it is irrational, but we’ll leave it as an exercise.
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14. LetS ⊆ R and suppose that s∗ = supS belongs toS. If u ̸∈ S, show that sup(S∪{u}) =
sup{s∗, u}.

Proof: in this case, we do not need to verify if s∗ exists, as that is one of the hypothe-
ses. Set v = sup{s∗, u}. Then, v is an upper bound of S ∪ {u} since v ≥ u and
v ≥ s∗ ≥ s for all s ∈ S.

Furthermore, v ∈ S ∪ {u}.
Hence, any upper bound of S ∪ {u} must be ≥ v: consequently, v is the smallest
upper bound of sup(S ∪ {u}). ■

15. Show that a non-empty ϐinite set S ⊆ R contains its supremum.

Proof: we use induction on the cardinality of S to prove the statement.
Base case: if |S| = 1, then S = {s1} for some s1 ∈ R. Clearly, s1 = supS ∈ S.
Induction step: Suppose that the result holds for any setwhose cardinality isn = k.

Let S be any set with |S| = k + 1, say

S = {s1, . . . , sk, sk+1}.

Write S = T ∪ {sk+1}, with T = {s1, . . . , sk}. Note that we can assume that
sk+1 ̸∈ T (otherwise |S| = k).

Then T is non-empty and bounded since it is ϐinite (exercise: a ϐinite set is
bounded); by completeness, t∗ = supT exists. However, |T | = k. By the in-
duction hypothesis, then, supT ∈ T , i.e. t∗ = sj for some j ∈ {1, . . . , k}.

According to the preceding problem,

supS = sup(T ∪ {sk+1}) = sup{t∗, sk+1} ∈ T ∪ {sk+1} = S.

By induction, any non-empty ϐinite set then contains its supremum.⁷ ■

16. If S ⊆ R is a non-empty bounded set and IS = [infS, supS], show that S ⊆ IS . More-
over, if J is any closed bounded interval of R such that S ⊆ J , show that IS ⊆ J .

Proof: as S is non-empty and bounded, supS and infS exist by the completeness
of R. Since infS ≤ s ≤ supS for all s ∈ S, then infS ≤ supS and so the interval
IS = [infS, supS] is well-deϐined. Furthermore, the string of inequalities above also
shows that S ⊆ IS .

Now, let J = [a, b] be a closed interval containing S. Then a ≤ s ≤ b for all s ∈ S.
Thus, a is a lower bound and b is an upper bound of S. By deϐinition,

a ≤ infS ≤ supS ≤ b,

and so IS = [infS, supS] ⊆ [a, b] = J . ■

⁷And its inϐimum too – it’s the same idea.
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17. Prove that ifKn = (n,∞) for n ∈ N, then
∩
n∈N

Kn = ∅.

Proof: suppose x ∈ ∩Kn. Then x ∈ Kn for all n, i.e. x > n for all n ∈ N. This im-
plies x is an upper bound ofN, which contradicts the Archimedean property. Hence,∩
Kn = ∅.⁸ ■

18. If S is ϐinite and s∗ ̸∈ S, show S ∪ {s∗} is ϐinite.

Proof: If S = ∅, then S ∪{s∗} = {s∗} is ϐinite as the function f : N1 → {s∗} deϐined
by f(1) = s∗ is a bijection.

Now, suppose S ̸= ∅. As S is ϐinite, there exist an integer k and a bijection f :
Nk → S.
Deϐine the associated function f̃ : Nk+1 → S ∪ {s∗} by

f̃(i) =

{
f(i) if 1 ≤ i ≤ k
s∗ if i = k + 1

.

As s∗ ̸∈ S, f̃ is a bijection. Hence S ∪ {s∗} is ϐinite. ■

19. Show directly that there exists a bijection between Z andQ.

Proof: write
Q =

{m
n
| m,n ∈ Z, n > 0, gcd(m,n) = 1

}
,

where gcd(m,n) is the greatest common divisor ofm,n. Deϐine the map f : Q→ Z
by f(mn ) = m. To see that f is surjective, note that for all m ∈ Z, m

1 ∈ Q and
f(m1 ) = m.

Next, we deϐine the map g : Z → Q according to three cases: for numbers of the
form
a) 2a3b with a, b ∈ {0, 1, 2, . . .}, set g(2a3b) = a

b .
b) −2a3b with a, b ∈ {0, 1, 2, . . .}, set g(−2a3b) = −a

b .
c) every other type n, set g(n) = 0.

We need to check that g is well-deϐined, and then that it is surjective. To see that it is
well-deϐined, we note that integers have unique prime decompositions, and 2, 3 are
prime.

This means that every number can have at most one decomposition of the form
±2a3b, so every number is in at most one case. But every number n must be in at
least one case. Thus, every number belongs to exactly one case, so it is well-deϐined.

⁸If you do not like contradiction proofs, here is the same proof, but presented as a direct argument.
Let x ∈ R. Wewill show that x ̸∈ ∩Kn; as x is arbitrary, this implies∩Kn = ∅. By the Archimedean
property, there is a positive integerN such thatN > x. Hence x ̸∈ Kn for all n ≥ N . The conclusion
follows. ■
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To check that g is surjective, we consider some m
n ∈ Q and again consider three

cases:
a) m

n > 0: g(2m3n) = m
n .

b) m
n < 0: g(−2m3n) = m

n .
c) m

n = 0: g(5) = m
n .

This completes the proof.⁹ ■

20. Using only the ϐield axioms of R, show that the multiplicative identity of R is unique.
Proof: let a, b be two multiplicative identities in a ϐield. Since a is a multiplicative
identity, ab = b. Since b is a multiplicative identity, ab = a. Combining these two
equations, we have b = ab = a. This completes the proof. ■

21. Using only the ϐield axioms of R, show that (2x− 1)(2x+ 1) = 4x2 − 1.
Proof: each equality is labeled with the ϐield axiom used:

(2x− 1)(2x+ 1)
D1
= 2x(2x+ 1) + (−1)(2x+ 1)

D1
= (2x)(2x) + (1)2x+ (−1)(2x) + (−1)(1)
D1
= (2x)(2x) + (1 + (−1))2x+ (−1)(1)
A4
= (2x)(2x) + (−1)(1) A3

= (2x)(2x)− 1

M1
= ((2)(2))(x2)− 1 = ((1 + 1)(1 + 1))(x2)− 1

D1
= (1(1 + 1) + 1(1 + 1))x2 − 1

M3
= 4x2 − 1.

This completes the proof. ■

22. Using only the order axioms, usual arithmetic manipulations, and inequalities between
concrete numbers, prove that if x ∈ R satisϐies x < ε for all ε > 0, then x ≤ 0.

Proof: assume ϐirst that x > 0. By O4 (and the fact that 0 < 1
2 < 1), we have(

1

2

)
x >

(
1

2

)
· 0 = 0

as well. By O3, since x
2 > 0, we have

x

2
<
x

2
+
x

2
= x.

Putting together these two sequences of inequalities, we have

0 <
x

2
< x.

But then we have found some number ε = x
2 > 0 so that x > ε; this contradicts the

original assumption. Thus, we conclude that our original assumption x > 0 is false;
by O1, we conclude x ≤ 0. ■

⁹Note that other bijections could also be exhibited.
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23. Show that there exists some x ∈ R satisfying x2 + x = 5.
Proof: consider the interval I = [0, 10], deϐine S = {x ∈ I | x2 + x < 5}, and deϐine
A = supS. Note that for x ∈ [0, 1],

x2 + x− 5 ≤ 12 + 1− 5 = −3 < 0,

soA ≥ 1. Similarly, for x ∈ [9, 10],

x2 + x− 5 ≥ 92 + 9− 5 > 0,

soA ≤ 9.

Claim: A2 + A = 5. This is shown in two parts: ϐirst we show that A2 + A ≤ 5,
then we show thatA2 +A ≥ 5.

We show that A2 + A ≤ 5 by contradiction. Let us assume A2 + A > 5. Then,
by a previous exercise, there exists some 0 < ε < 1 so thatA2 +A > 5+ ε. But then
for all 0 < δ < ε

100 , we have

(A− δ)2 + (A− δ) = A2 − 2Aδ + δ2 +A− δ
≥ A2 − (2)(10)(δ) +A− δ
≥ A2 +A− 21δ

> A2 +A− ε > 5.

Furthermore, since A ≥ 1 and δ ≤ 0.01, we know that A − δ ∈ I. Thus, in this case
A− ε

100 < A is also an upper bound on S, contradicting the fact thatA is deϐined to
be the least upper bound on S. We conclude thatA2 +A ≤ 5.

Next, we show that A2 + A ≥ 5 by contradiction. Let us assume A2 + A < 5. Then,
by a previous exercise, there exists some 0 < ε < 1 so thatA2 +A < 5− ε. But then
for all 0 < δ < ε

100 , we have

(A+ δ)2 + (A+ δ) = A2 +A+ (2A+ 1 + δ)δ

≤ A2 +A+ 22δ

< A2 +A− ε < 5.

Furthermore, since A ≤ 9 and δ ≤ 0.01, we know that A + δ ∈ I. Thus, in this case
A+ ε

100 ∈ S andA+ ε
100 > A, contradicting the fact thatA is deϐined to be an upper

bound on S. We conclude thatA2 +A ≤ 5.

SinceA2 +A ≤ 5 andA2 +A ≥ 5, we conclude thatA2 +A = 5. ■

24. Consider a set S with 0 ≤ supS = A < ∞ and A /∈ S. Show that for all ε > 0,
S ∩ [A− ε, A] ̸= ∅. Using this fact, conclude that S ∩ [A− ε, A] is inϐinite.

Proof: we prove the ϐirst claim by contradiction.
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Assume there is some ε > 0 such that S ∩ [A − ε,A] is empty. Since A is an up-
per bound for S, we also know that S ∩ (A,∞) is empty. Thus, S ∩ [A − ε,∞) is
empty. But this means thatA− ε < A is an upper bound for s, contradicting the fact
that A is the least upper bound for S. We conclude that in fact S ∩ [A − ε,A] is not
empty.

We also prove the second part by contradiction. Assume there is some ε > 0 such
that S ∩ [A − ε,A] is ϐinite. Then we can enumerate its elements, {b1, . . . , bn}. Let
B = max(b1, . . . , bn}.

Since A /∈ S, we know that b1, . . . , bn < A. Since B is a maximum of ϐinitely many
elements, we must haveB < A as well.

But then A > A − A−B
2 > B, so [A − A−B

2 , A] ∩ S is empty. This, however, is
impossible according to the ϐirst part of the question.

This completes the proof. ■

25. Somebody walks up to you with a proof by induction of the statement “For any integer
N ∈ N, all collections ofN sheep are the same colour,” as follows:

Notation: Let x1, x2, . . . , be the colours of all sheep in the world, in some order.
Base Case: Obviously the ϐirst sheep is a single colour, x1.
Induction Step: Assume that the statement is true up to some integer n.

By the induction hypothesis, the collection of the ϐirst n sheep {x1, . . . , xn} are one
colour (label this “colour 1’), and the collection of the last n sheep {x2, . . . , xn+1}
are also one colour (label this “colour 2” - note that we haven’t yet shown it is the
same colour as the ϐirst collection).

Since {x2, . . . , xn} are in both sets, we must have that “colour 1” and “colour 2”
are the same, and so {x1, . . . , xn+1} are all one colour.

Explain why this “proof” fails by identifying/explaining a (signiϐicant) false statement.
Solution: the critical error is in the following part of the argument, in the casen = 1:

“the collection of the ϐirst n sheep {x1, . . . , xn} are one colour, and the col-
lection of the last n sheep {x2, . . . , xn+1} are also one (possibly different)
colour. Since {x2, . . . , xn} are in both sets, both sets must in fact be the
same colour, and so {x1, . . . , xn+1} are all one colour.”

Consider the case n = 1. Then the collection {x2, . . . , xn} is actually empty, and so
we cannot conclude that the two sets {x1}, {x2} share any sheep, and so we cannot
conclude that they are the same colour. □
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1.5. EXERCISES

1.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Complete the proof of the corollary on the density of R \Q.

3. Can the union of two countable sets be uncountable? IsR\Q countable or uncountable?

4. Is the intersection of two uncountable sets uncountable or countable?

5. Complete the proof of solved problem 11.
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Chapter 2

Sequences of Real Numbers

A large chunk of analysis concerns itself with problems of convergence. In
this chapter, we introduce sequences and limits, provide results that help
to compute such limits (when they exist), and identify situationswhen the
limit can be shown to exist without ϐirst having to compute it.

2.1 Inϐinity vs. Intuition
When dealing with inϐinity, our intuition sometimes falters, as we shall see presently.

aaaaaa

Example (ZĊēĔ'Ę PĆėĆĉĔĝ)
Achilles pursues a turtle. When he reaches her starting point, she has moved a cer-
tain distance. When he crosses that distance, she has moved yet another distance,
and so forth. Achilles is always trailing the turtle, so he cannot catch her.

What would happen in reality? □
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The next example puts one of the great classical results of planar geometry in doubt.

aaaaaa

Example (AēęĎ-PĞęčĆČĔėĊĆē TčĊĔėĊĒ)
Consider a right-angle triangle with base a, height b, and hypotenuse c. We can build
staircase structures that each have the same constant length as a+ b, while increas-
ing the number of stairs (see image below).

This seems to tell us that c = a + b. But we know that c =
√
a2 + b2 according to

Pythagoras’ Theorem. Thus, we would expect to have (a+ b)2 = a2+ b2 for all right-
angle triangles, which is to say, that 2ab = 0, or, equivalently, that each right-angle
triangle has at least one side with length 0. But we know this cannot be true, as the
(3, 4, 5) right-angle triangle demonstrates. What is going on? □

Finally, we present two bafϐling “results” about inϐinite sums.

aaaaaa

Examples (IēċĎēĎęĊ SĚĒĘ)
1. Let S = 1 + (−1) + 1 + (−1) + · · · . Then

S = (1 + (−1)) + (1 + (−1)) + · · · = 0 + 0 + · · · = 0

S = 1− (1 + (−1) + 1 + (−1) + · · · ) = 1 + S =⇒ S = 1/2

S = 1 + ((−1) + 1) + ((−1) + 1) + · · · = 1 + 0 + 0 + · · · = 1

Therefore 0 = 1
2
= 1. Does this make sense?

2. Let S = 1 + 2 + 4 + 8 + · · · . Then

S = 1 + 2(1 + 2 + 4 = 8 + · · · ) = 1 + 2S =⇒ S = −1.

Can a sum of positive terms yield a negative result? □
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2.2 Limit of a Sequence
In each of the examples provided in Section 2.1, the problem arises with a “...” (implicit in
Zeno’s paradox, explicit in the others): seen individually, each of the steps makes sense. But
when we stitch them all together – letting the number of steps increase without bounds – all
hell breaks loose.

There are instances where letting n → ∞ leads to convergent behaviour, others (as in
the preceding examples), where it doesn’t.¹ We start by formalizing these notions.

A sequence of real numbers is a functionX : N → R deϐined byX(n) = an, where an ∈ R.
We denote the sequenceX by (an)n∈N or simply by (an).

aaaaaa

Examples

1. X : N → R, n 7→ 2n is the sequence with X(1) = 2, X(2) = 4, etc.; we may
also writeX = (xn) = (2, 4, 6, . . .).²

2. X : N → R, n 7→ 1
n
is the sequence with X(1) = 1

2
, X(2) = 1

2
, etc.; we may

also writeX = (xn) = (1, 1/2, 1/3, . . .). □

In general, we let N stand for whatever countable subset of N is required for the deϐinition
of the sequence to make sense. Graphically, we can display sequences as a “scatterplot”, with
the horizontal coordinate being the index n and the vertical axis the valueX(n) = xn of the
sequence at n. An example is provided below.

We can also see a sequence as an ordered set of terms an, that is, a set of indexed values.
The set of all values taken by the sequence (an) is called the range of (an) and we denote it
by {an}. Sequences and their ranges are different objects.

¹It isn’t much of a stretch to state that mathematical analysis is about coming to terms with inϐinity – thank-
fully, this endeavour has proven to have extremely rich consequences, as we shall see throughout these notes.

P. Boily (uOttawa) 35



2.2. LIMIT OF A SEQUENCE

aaaaaa

Examples

1. The terms of the sequence ( 1
n2 ) are (1, 14 , 19 , . . .), while its range is {1, 1

4
, 1
9
, . . .}.

2. The terms of the sequence (1+(−1)n

n
) are (0, 1, 0, 1

2
, 0, 1

3
, . . .), while its range is

{0, 1, 1
2
, 1
3
, . . .}. □

Certain sequences are deϐinedwith the help of a recurrence relation: the ϐirst few terms are
given, and the subsequent terms are computed using the preceding terms and the relation.

aaaaaa
Example (FĎćĔēĆĈĈĎ SĊĖĚĊēĈĊ)
The classic sequence (1, 1, 2, 3, 5, 8, 13, . . .) is a recurrence relation, deϐined by by
x1 = 1, x2 = 1, and xn = xn−1 + xn−2 for n ≥ 3. □

We will now examine in detail a speciϐic sequence,

(xn) =

(
1

2n

)
=

(
1

2
,
1

4
,
1

6
,
1

8
, . . .

)
.

As n increases, the values of xn seem to approach 0. What does this mean, mathematically?
Let ε > 0.³ Then the real number 1

2ε
is positive, i.e.,

1

2ε
> 0.

According to the Archimedean property, there exists a thresholdNε ∈ N such that

Nε >
1

2ε
.

Different values of ε lead to different thresholds: for instance, if ε = 1
100

, then any

Nε >
1

2(1/100)
= 50

would work; if ε = 1
1000

, then anyNε > 500would work, and so on.

Nomatter what value ε > 0 takes, however, if we look at indices past the threshold (i.e. when
n > Nε), we have

n > Nε >
1

2ε
=⇒ n >

1

2ε
⇐⇒ ε >

1

2n
.

For all indices n after the thresholdNε (i.e. ∀n > Nε), we have:

|xn − 0| = |xn| =
∣∣∣∣ 12n

∣∣∣∣ = 1

2n
< ε =⇒ 0− ε < xn < 0 + ε.

³In theory, ε could take on any positive value, but in practice we are interested in small values ε≪ 1.
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The interval (−ε, ε) thus contains all the terms of the sequence xn after theNεth term, which
is to say xn ∈ (−ε, ε) for all n > Nε.

Anotherwayof saying this is that the interval (−ε, ε) contains all the termsof the sequence
(xn), except maybe for a ϐinite number of terms included in x1, . . . , xNε .

If ε = 1/100, for instance, ∃N1/100 >
1

2(1/100)
= 50 (N1/100 = 51works) such that

n > 51 =⇒ |xn − 0| = |xn| =
∣∣∣∣ 12n

∣∣∣∣ = 1

2n
<

1

2(51)
=

1

102
<

1

100
= ε.

In other words, the interval (−1/100, 1/100) contains all the terms of the sequence from
n = 52 onward.

But the threshold N1/100 = 51 does not may not necessarily work for ε values smaller than
1/100, however. If ε = 1/1000, say, then we need N1/1000 >

1
2(1/1000)

= 500 to guarantee that
all the terms after the threshold fall in the interval (−1/1000, 1/1000).

Obviously, we could ϐind an appropriate thresholdNε in the samemanner using any ε > 0.
This leads us to the following deϐinition.

A sequence (xn) of real numbers converges to a limit L ∈ R, which we denote by

xn → L or lim
n→∞

xn = L,

if
∀ε > 0, ∃Nε ∈ N such that n > Nε =⇒ |xn − L| < ε.

Thismay look complicated, but it is just the formalized statement of the example above,where
L = 0: we look for a systematic thresholdNε after which all terms of the sequence xn lie in
(L− ε, L+ ε).

In the illustration below where xn → L, we ϐind an acceptable thresholdNε for ε on the left,
and display the ϐinite number of sequence terms falling outside of the interval (L− ε, L+ ε)
on the right.
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We also identify a thresholdNε0 for ε0 ≤ ε in the illustration below.

A sequence (xn)which does not converge to a limit is said to be divergent:

∀L ∈ R, ∃εL > 0, ∀N ∈ N, ∃nN > N such that |xnN
− L| ≥ εL;

in other words, no real number L can be the limit of (xn).

There is only one way for a sequence to converge – its values must eventually get closer and
closer to the limit; but there is more than one way for a sequence to diverge.

aaaaaa

Examples

1. Show that 1
n
→ 0.

Proof: let ε > 0. By the Archimedean property, ∃Nε > 1
ε
, so ε > 1

Nε
. If

n > Nε, then 1
n
< 1

Nε
and∣∣∣∣ 1n − 0

∣∣∣∣ = ∣∣∣∣ 1n
∣∣∣∣ = 1

n
<

1

Nε

< ε.

This completes the proof. ■

2. Show that n+1
n2+1

→ 0.

Proof: let ε > 0. By the Archimedean property, ∃Nε > 2
ε
, so ε > 2

Nε
. If

n > Nε, then 1
n
< 1

Nε
and∣∣∣∣ n+ 1

n2 + 1
− 0

∣∣∣∣ = n+ 1

n2 + 1
≤ 2n

n2 + 1
<

2n

n2
=

2

n
<

2

Nε

< ε.

This completes the proof. ■
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aaaaaa

3. Show that 4−2n−3n2

2n2+n
→ −3

2
.

Proof: let ε > 0. By the Archimedean property, ∃Nε > 2
ε
, so ε > 2

Nε
. If

n > Nε, then 1
n
< 1

Nε
and∣∣∣∣4− 2n− 3n2

2n2 + n
−
(
− 3

2

)∣∣∣∣ = ∣∣∣∣2(4− 2n− 3n2) + 3(2n2 + n)

2(2n2 + n)

∣∣∣∣ = |8− n|
4n2 + 2n

.

Note that 8 − n ≤ 8n if 1 ≤ n ≤ 8, and that n − 8 ≤ 8n if n ≥ 8, so that
|8− n| ≤ 8n for all n ≥ 1. Thus

|8− n|
4n2 + 2n

≤ 8n

4n2 + 2n
<

8n

4n2
=

2

n
<

2

Nε

< ε

when n > Nε, which completes the proof. ■

4. Show that (xn) = (n) is divergent.

Proof: suppose instead that (xn) converges to a ∈ R. Let ε > 0. By
deϐinition, ∃Nε ∈ N such that |xn − a| = |n − a| < ε whenever n > Nε =⇒
that n < a + ε for all n > Nε, =⇒ a + ε is a an upper bound for N. This
contradicts the Archimedean property, so the sequence (n)must diverge. ■

The main beneϐit of the formal deϐinition of the limit of a sequence is that it does not call on
inϐinity: we write n→∞, but that is a merely a notation of convenience. On the ϐlip side, the
formal deϐinition has 2 major inconveniences:

1. it cannot be used to determine the limit of a convergent sequence – it can only be used
to verify that a given candidate is (or is not) a limit of a sequence;

2. it can seem artiϐicial to some extent, especially upon a ϐirst encounter.

In practice, using the deϐinition is in fact rather simple: in order to determine a threshold
Nε that does the trick, we often backtrack from the end of the string of inequalities rather
than to proceed directly from “Let ε > 0”.

We have been careful to refer to “a” limit when the sequence converges, but we should re-
ally be talking about “the” limit in such cases.

aaaaaa Theorem 12 (UēĎĖĚĊ LĎĒĎę)
A convergent sequence (xn) of real numbers has exactly one limit.
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aaaaaa

Proof: suppose that xn → x′ and xn → x′′. Let ε > 0. Then there exist 2 integers
N ′

ε, N
′′
ε ∈ N such that

|xn − x′| < εwhenever n > N ′
ε and |xn − x′′| < εwhenever n > N ′′

ε .

SetNε = max{N ′
ε, N

′′
ε }. Then whenever n > Nε, we have

0 ≤ |x′ − x′′| = |x′ − xn + xn − x′′| ≤ |xn − x′|+ |xn − x′′| < ε+ ε = 2ε.

Thus 0 ≤ |x′−x′′|
2

< ε. As ε > 0was arbitrary, |x′−x′′|
2

= 0 and x′ = x′′. ■

Sequences have other properties, which we can sometimes use to show that they converge
(or diverge). A sequence (xn) ⊆ R is bounded byM > 0 if |xn| ≤M for all n ∈ N.

aaaaaa

Theorem 13
Any convergent sequence (xn) of real numbers is bounded.

Proof: let (xn) ⊆ R converge to x ∈ R. Then for ε = 1, say, ∃N ∈ N s.t.

|xn − x| < 1 when n > N.

Thanks to the “reverse“ triangle inequality (Theorem 6.6), we also have

|xn| − |x| ≤ |xn − x| < 1 when n > N,

so that |xn| < |x|+ 1when n > N .

Finally, we set M = max{|x1|, . . . , |xN |, |x| + 1}. Then |xn| ≤ M for all n,
which means that (xn) is bounded. ■

About Proofs In general, we may prove results:

directly, as in Theorem 13;

by induction, as in Bernouilli’s inequality (Theorem 3), or

by contradiction, as in the Archimedean property (Theorem 1), and so on.

The contrapositive of P =⇒ Q is ¬Q =⇒ ¬P . They are logically equivalent, but one may
prove easier to demonstrate than the other. On the other hand, the converse of P =⇒ Q is
Q =⇒ P . There is no general link between a statement and its converse: sometimes they are
both true, sometimes they are both false, sometimes only of them is true.

aaaaaa
Example: the contrapositive of Theorem 13 is “Any unbounded sequence is diver-
gent”, which is valid since Theorem13 is true. Its converse is “Any bounded sequence
is convergent” – if we think that the converse is true, then we try to prove it; if we
think that it is false, we look for a counter-example. Which one is it? □
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2.3 Operations on Sequences and Basic Theorems
The following result removes the need to use the formal deϐinition... as long as we have some
“ground-level” building blocks to start with.

aaaaaa

Theorem 14 (OĕĊėĆęĎĔēĘ Ĕē CĔēěĊėČĊēę SĊĖĚĊēĈĊĘ)
Let (xn), (yn) be convergent, with xn → x and yn → y. Let c ∈ R. Then

1. |xn| → |x|;

2. (xn + yn)→ (x+ y);

3. xnyn → xy and cxn → cx;

4. xn

yn
→ x

y
, if yn, y ̸= 0 for all n.

Proof: we show each part using the deϐinition of the limit of a sequence.

1. Let ε > 0. As xn → x, ∃N ′
ε such that |xn − x| < ε whenever n > N ′

ε. But
||xn| − |x|| ≤ |xn − x|, according to Theorem 6. Hence, for ε > 0, ∃Nε = N ′

ε

such that
||xn| − |x|| ≤ |xn − x| < ε

whenever n > Nε, i.e., |xn| → |x|.

2. Let ε > 0; then ε
2
> 0. As xn → x and yn → y, ∃Nx

ε
2
, N y

ε
2
such that

|xn − x| <
ε

2
and |yn − y| <

ε

2
(2.1)

whenever n > Nx
ε
2
and n > Ny

ε
2
, respectively. SetNε = max{Nx

ε
2
, N y

ε
2
}.

Then, whenever n > Nε, which is to say, whenever n is strictly larger
than bothNx

ε/2 andNy
ε/2 simultaneously, we have:

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|

by (2.1). <
ε

2
+
ε

2
= ε,

i.e., (xn + yn)→ (x+ y).

3. According toTheorem13, (xn) and (yn) are bounded since they are convergent
sequences. Thus ∃Mx,My ∈ N such that for all n, we have

|xn| < Mx and |yn| < My.
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aaaaaa

Let ε > 0; then ε
2Mx

, ε
2My

> 0. As xn → x, yn → y, ∃Nx
ε

2My

, N y
ε

2Mx

∈ N such that

|xn − x| <
ε

2My

and |yn − y| <
ε

2Mx

(2.2)

whenever n > Nx
ε

2My

and n > Ny
ε

2Mx

respectively. Moreover, |y| ≤ My (see
Theorem 15).

SetNε = max{Nx
ε

2Mx

, N y
ε

2My

}. Then, whenever n > Nε, we have:

|xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + y(xn − x)|
≤ |xn||yn − y|+ |y||xn − x| < Mx|yn − y|+My|xn − x|

by (2.2) < Mx ·
ε

2Mx

+My ·
ε

2My

=
ε

2
+
ε

2
= ε,

i.e., xnyn → xy. Furthermore, if the sequence (yn) is deϐined by yn = c for all
n, then the preceding result yields cxn → cx, since yn = c→ c.⁴

4. It is enough to show 1/yn → 1/y under the Theorem’s assumptions; then the
result will hold by part 3. Since y ̸= 0, |y|

2
> 0. Hence, as yn → y, ∃N|y|/2 ∈ N

such that |yn − y| < |y|/2, whenever n > N|y|/2. According to Theorem 6, we
then have

|y| − |yn| < |y − yn| <
|y|
2
, and so |y|

2
< |yn| or 1

|yn|
<

2

|y|
(2.3)

whenever n > N|y|/2 – everything is well-deϐined as neither yn nor y is 0 for
all n.

Let ε > 0. Then |y|2ε/2 > 0. As yn → y, ∃N|y|2ε/2 ∈ N such that

|yn − y| < |y|2
ε

2
(2.4)

whenever n > N|y|2· ε
2
. SetNε = max{N |y|

2

, N|y|2 ε
2
}. Then, whenever n > Nε,∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣y − ynyny

∣∣∣∣ =
|y − yn|
|yny|

by (2.3) <
2|y − yn|
|y|2

by (2.4) <
2

|y|2
· |y|2 ε

2
= ε, i.e., 1

yn
→ 1

y
,

which completes the proof. ■
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Now that we have some basic tools toworkwith, we present two results that allow us to com-
pute limits without operating directly on a sequence.

aaaaaa

Theorem 15 (CĔĒĕĆėĎĘĔē TčĊĔėĊĒ ċĔė SĊĖĚĊēĈĊĘ)
Let (xn), (yn) be convergent sequences of real numbers with xn → x, yn → y, and
xn ≤ yn ∀n ∈ N. Then x ≤ y.

Proof: suppose that it is not the case, namely, that x > y. Then x − y > 0. Set
ε = x−y

2
> 0. Since xn → x and yn → y, ∃Nx

ε , N
y
ε ∈ N s.t.

|xn − x| < ε whenever n > Nx
ε and |yn − y| < ε whenever n > Ny

ε .

LetNε = max{Nx
ε , N

y
ε }. Then, if n > Nε, we have

yn < y + ε = y +
x− y
2

=
x+ y

2
= x− x− y

2
= x− ε < xn.

But this contradicts the assumption that xn ≤ yn for all n, and so x ≤ y. ■

Warning: the “≤“s in the statement of Theorem 15 cannot be replaced by “<“s throughout.
For instance, if (xn) = ( 1

n+1
) and (yn) = ( 1

n
), then xn < yn for all n ∈ N, but xn → x = 0,

yn → y = 0, and 0 = x ̸< y = 0.

aaaaaa

Theorem 16 (SĖĚĊĊğĊ TčĊĔėĊĒ ċĔė SĊĖĚĊēĈĊĘ)
Let (xn), (yn), (zn) ⊆ R be such that xn, zn → α and xn ≤ yn ≤ zn, ∀n ∈ N. Then
yn → α.

Proof: let ε > 0. By convergence of (xn), (zn) to α, ∃Nx
ε , N

z
ε ∈ N s.t.

|xn − α| < εwhenever n > Nx
ε and |zn − α| < εwhenever n > N z

ε .

Let Nε = max{Nx
ε , N

z
ε }. When n > Nε, α − ε < xn ≤ yn ≤ zn < α + ε, which is to

say, that |yn − α| < ε. Consequently, yn → α. ■

We can use these various results to compute a fair collection of limits.

aaaaaa

Examples

1. Compute lim
n→∞

3n+ 1

n
, if the limit exists.

Solution: note that 3n+1
n

= 3 + 1
n
. According to Theorem 14, if the

limit existswe must have

lim
n→∞

3n+ 1

n
= lim

n→∞

(
3 +

1

n

)
= lim

n→∞
3 + lim

n→∞

1

n
= 3 + 0 + 3.
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Reading the string of equations backwards, we see that the original limit must
exist and be equal to 3. □

2. Compute lim
n→∞

sin(n2 + 212)

n
, if the limit exists.

Solution: we cannot use Theorem 14 since neither the numerator nor
the denominator limit exists. This does not necessarily mean that the limit of
the quotient does not exist. In order to determine if it does, we need to use
another approach.

By deϐinition of the sin function (which we take for granted for now),
we have−1 ≤ sinx ≤ 1, ∀x ∈ R. Thus

−1 ≤ sin(n2 + 212) ≤ 1, ∀n =⇒ − 1

n
≤ sin(n2 + 212)

n
≤ 1

n
, ∀n.

As± 1
n
→ 0, we can use the squeeze theorem to conclude that

lim
n→∞

sin(n2 + 212)

n
= 0. □

3. Compute lim
n→∞

2n− 1

n+ 7
, if the limit exists.

Solution: we cannot apply Theorem 14 directly since neither the numerator
nor the denominator limits exist. However,

2n− 1

n+ 7
=

1/n · (2n− 1)

1/n · (n+ 7)
=

2− 1/n

1 + 7/n
when n ̸= 0.

Because each of the constituent parts converge (and because the denominator
is never equal to 0, either in the limit or in the sequence), repeated applications
of Theorem 14 yield

lim
n→∞

2n− 1

n+ 7
=

lim
n→∞

(2− 1/n)

lim
n→∞

(1 + 7/n)
=

2− lim
n→∞

1/n

1 + 7 · lim
n→∞

1/n
=

2− 0

1 + 7 · 0
= 2.

This is basically a calculus argument. □

4. Let (xn) be such that |xn| → 0. Show that xn → 0.

Proof: since −|xn| ≤ xn ≤ |xn| for all n ∈ N according to Theorem 6,
and since −|xn|, |xn| → 0 by assumption, then xn → 0 according to the
squeeze theorem (note, however that if |xn| → α ̸= 0, we cannot necessarily
conclude that xn → α. Consider, for instance, the sequence (xn) = (−1)n). ■
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aaaaaa

5. Let |q| < 1. Compute lim
n→∞

qn, if the limit exists.

Solution: if q = 0, then qn = 0 → 0. If q ̸= 0, then 1
|q| > 1. Thus,

∃t > 0 such that 1
|q| = 1 + t.

From Bernoulli’s inequality, we have(
1

|q|

)n

= (1 + t)n ≥ 1 + nt, ∀n ∈ N,

so that 0 ≤ |qn| ≤ |q|n ≤ 1
1+nt

. But 1
1+nt

= 0 when n → ∞ (does this need to
be proven?); thus |qn| → 0 according to the squeeze theorem, and so qn → 0
by the previous example. □

6. Let |q| < 1. Compute lim
n→∞

nqn, if the limit exists.

Solution: the proof that nqn → 0 is left as an exercise; it is similar to
the proof of part of the previous example, but uses an extension of Bernoulli’s
inequality:

(1 + t)n ≥ 1 + nt+
n(n− 1)

2
t2, for t > 0, n ≥ 1,

which can be proven by induction. □

7. Show that n
√
n→ 1.

Solution: let ε > 0. Then 1 + ε > 1 and 0 < 1
1+ε

< 1.

Claim: n
(

1
1+ε

)n → 0when n→∞ (use previous example with q = 1
1+ε

).

Hence, ∃M1 ∈ N such that∣∣∣∣ n

(1 + ε)n
− 0

∣∣∣∣ < 1when n > M1 =⇒ 1 ≤ n < (1 + ε)n when n > M1.

SetNε =M1. Then 1−ε < 1 ≤ n1/n < 1+εwhen n > Nε. But this is precisely
the same as |n1/n − 1| < εwhen n > Nε; thus n1/n → 1. □

8. Compute lim
n→∞

n!

nn
, if the limit exists.

Solution: since

0 ≤ n!

nn
=
n · (n− 1) · · · · · 2 · 1
n · n · · · · · n · n

≤ 1

n
, ∀n ∈ N,

and 1
n
→ 0, the squeeze theorem implies n!

nn → 0. □
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aaaaaa

9. Let a > 0. Compute lim
n→∞

a1/n, if the limit exists.

Solution: since a > 0, we have 1
a
> 0. According to the Archimedean

property, ∃Na ≥ max{a, 1
a
}. For every n ≥ Na, we then have 1

n
≤ a ≤ n.

Thus 1
n√n
≤ n
√
a ≤ n

√
n for all n ≥ Na. But n

√
n → 1 by a previous example, so

n
√
a→ 1 by the squeeze theorem. □

10. Compute lim
n→∞

n
√
3n + 5n, if the limit exists.

Solution: since

5n ≤ 3n + 5n ≤ 5n + 5n = 2 · 5n ≤ n · 5n, ∀n ≥ 2,

then
5 ≤ n
√
3n + 5n ≤ n

√
n · 5, ∀n ≥ 2.

But we have seen previously that n
√
n→ 1.

The squeeze theorem can then be applied to the above chain of inequal-
ities to conclude n

√
3n + 5n → 5. □

We can also use the deϐinition and theorems to demonstrate general results (that is, results
about general sequences rather than about speciϐic examples).

aaaaaa

Theorem 17
Let yn → y. If yn ≥ 0 ∀n ∈ N, then√yn →

√
y.

Proof: according to Theorem 15, we must have y ≥ 0. There are 2 cases:

If y = 0, let ε > 0. Then ε2 > 0. Since yn → 0, ∃Mε2 ∈ N s.t. whenever
n > Mε2 , we must have |yn − 0| = yn < ε2. Now, setNε =Mε2 .

Then whenever n > Nε, |√yn − 0| = √yn <
√
ε2 = ε.

If y > 0, let ε > 0. Then ε√y > 0. Since yn → y, ∃Mε
√
y ∈ N s.t. whenever

n > Mε
√
y , |yn − y| < ε

√
y. Now, setNε =Mε

√
y .

Then whenever n > Nε, |√yn −√y| = |yn−y|√
yn+

√
y
≤ |yn−y|√

y
<

ε
√
y

√
y
= ε.

In both cases, we have√yn → √y. ■
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2.4 Bounded Monotone Convergence Theorem
A sequence (xn) is increasing if x1 ≤ x2 ≤ · · · xn ≤ xn+1 ≤ · · · , ∀n ∈ N; it is decreasing if
x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 · · · , ∀n ∈ N. If (xn) is either increasing or decreasing, we say that
it ismonotone. If it is both increasing and decreasing, it is constant.⁵

Monotone sequences play an important role in the theory of convergence, assuming that
they satisfy an additional condition.

aaaaaa

Theorem 18 (BĔĚēĉĊĉ MĔēĔęĔēĊ CĔēěĊėČĊēĈĊ)
Let (xn) be an increasing sequence bounded above. Then xn → sup{xn | n ∈ N}.

Proof: since the sequence (xn) is bounded above, so it its range {xn}. By
completeness of R, x∗ = sup{xn} exists. It remains only to show xn → x∗.

Let ε > 0. By deϐinition, x∗ − ε is not an upper bound for {xn}. Then ∃Nε ∈ N s.t.

x∗ − ε < xNε ≤ x∗ < x∗ + ε.

But (xn) is increasing; in particular, xNε ≤ xn when n > Nε. Thus

n > Nε =⇒ x∗ − ε < xn < x∗ + ε,

so xn → x∗. ■

A similar result holds for decreasing sequences bounded below.

aaaaaa

Examples

Does the sequence (xn) = (1− 1
n
) converge? If so, what is its limit?

Solution: as 1
n
≥ 1

n+1
for all n ∈ N,

xn − 1− 1

n
≤ 1− 1

n+ 1
≤ xn+1,

and so (xn) is increasing. Furthermore, xn ≤ 1 for all n ∈ N. Then (xn) con-
verges according to the bounded monotone convergence theorem, and

lim
n→∞

xn = sup
n∈N
{xn} = sup

n∈N
{1− 1/n} = 1 + sup

n∈N
{−1/n} = 1− inf

n∈N
{1/n} = 1,

which agrees with our intuition. □

⁵When the inequalities are strict, then the sequence is strictly increasing or strictly decreasing, depend-
ing on the speciϐic situation, and is thus strictly monotone.
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aaaaaa

Let (xn) be deϐined by xn =
√
2xn−1 when n ≥ 2, with x1 = 1. Does (xn)

converge? If so, to what limit?

Solution: we ϐirst show, by induction, that (xn) is increasing.

– Base Case: x2 =
√
2 ≥ 1 = x1.

– Induction Step: Suppose xk ≥ xk−1. Then

2xk ≥ 2xk−1 =⇒
√
2xk ≥

√
2xk−1 =⇒ xk+1 ≥ xk.

Thus xn+1 ≥ xn for all n ∈ N.

Next we show, again by induction, that (xn) is bounded above by 2.

– Base Case: 1 ≤ x1 = 1 ≤ 2.
– Induction Step: Suppose 1 ≤ xk ≤ 2. Then

2 ≤ 2xk ≤ 2 · 2 = 4 =⇒ 1 ≤
√
2 ≤
√
2xk ≤

√
4 = 2 =⇒ 1 ≤ xk+1 ≤ 2.

Thus xn ≤ 2 for all n ∈ N (why did we include the lower bound 1?).

We then have, according to the bounded monotone convergence theorem,

xn → x = sup{xn | n ∈ N}.

But
x = lim

n→∞
xn = lim

n→∞
xn+1 = lim

n→∞

√
2xn =

√
2 lim
n→∞

xn =
√
2x,

whence x2 = 2x. So either x = 0 or x = 2. But xn ≥ 1 for all n ∈ N, so x ≥ 1
according to Theorem 15. Thus xn → 2. □

2.5 Bolazano-Weierstrass Theorem
The main result of this section, concerning bounded sequences and their subsequences, is a
corner stone of analysis.

Let (xn) ⊆ R be a sequence and n1 < n2 < · · · be an increasing string of positive integers.
The sequence

(xnk
)k = (xn1 , xn2 , . . .)

is a subsequence of (xn), denoted by (xnk
) ⊆ (xn). Note that nk ≥ k for all k ∈ N.
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aaaaaa

Examples

Let (xn) = ( 1
n
). Both ( 1

2k
) = (1

2
, 1
4
, . . .) and (1, 1

3
, 1
6
, 1
10
, 1
15
, 1
21
, . . .) are subse-

quences of (xn) as they sample the original sequence while preserving the or-
der in which the terms appear. But (1, 1

3
, 1
2
, 1
8
, . . .) is not a subsequence of (xn)

as 1
3
= x3 appears before 1

2
= x2.

The sequence (x3n) = (x3, x6, x9, . . .) is a subsequence of (xn) for any se-
quence (xn).

Every sequence (xn) is a (non-proper) subsequence of itself.

If (yk) = (xnk
) is a subsequence of (xn) and (zj) = (ykj) is a subsequence of

(yk), then (zj) = (xnkj
) is a subsequence of (xn). □

Convergent sequences have well-behaved subsequences, as we see below.

aaaaaa

Theorem 19 Let xn → x. If (xnk
) ⊆ (xn), then xnk

→ x as well.

Proof: Let ε > 0. Since xn → x, ∃Nε ∈ N such that |xn − x| < ε whenever
n > Nε. But (xnk

) is a subsequence of (xn), so nk ≥ k for all k ∈ N. Then
|xnk
− x| < εwhenever nk ≥ k > Nε, so xnk

→ xwhen k →∞. ■

Note that the converse of Theorem 19 is false (see Exercises).

The next result is surprising (at ϐirst glance) and deep, and will prove quite useful.

aaaaaa

Theorem 20 (BĔđğĆēĔ-WĊĎĊėĘęėĆĘĘ)
If (xn) ⊆ R is bounded, it has (at least) one convergent subsequence.

Proof: we build a subsequence as follows: as (xn) is bounded, there is an
interval I1 = [a, b] s.t. (xn) ⊆ I1. Let n1 = 1. Then xn1 = x1 ∈ I1 and

length(I1) = b− a =
b− a
20

.

Set I ′1 = [a, a+b
2
] and I ′′1 = [a+b

2
, b],

A1 = {n ∈ N | n > n1 and xn ∈ I ′1}, B1 = {n ∈ N | n > n1 and xn ∈ I ′′1 }.

At least one of A1,B1 must be inϐinite as A1 ∪B1 = {n ∈ N | n > n1}:

IfA1 is inϐinite, set I2 = I ′1. SinceA1 is an inϐinite set of integers, it is not empty.
By the well-ordering axiom, A1 contains a smallest element, say n2.
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IfA1 is ϐinite, set I2 = I ′′1 . SinceB1 is an inϐinite set of integers, it is not empty.
By the well-ordering axiom,B1 contains a smallest element, say n2.

Either way, there is an integer n2 > n1 such that xn2 ∈ I2, I1 ⊇ I2 and

length(I2) =
b− a
21

.

Now, suppose that Ik−1 ⊇ Ik are intervals with

length(Ik−1) =
b− a
2k−2

and length(Ik) =
b− a
2k−1

,

that ∃nk−1, nk ∈ N such that nk−1 < nk, xnj−1
∈ Ik−1, xnk

∈ Ik, and that at least one
of the corresponding setsAk−1,Bk−1 is inϐinite.

Write Ik = [α, β]. Set I ′k = [α, α+β
2
] and I ′′k = [α+β

2
, β],

Ak = {n ∈ N | n > nk and xn ∈ I ′k}, Bk = {n ∈ N | n > nk and xn ∈ I ′′k}.

One ofAk,Bk must be inϐinite asAk∪Bk = {n ∈ N | n > nk and xn ∈ Ik} is inϐinite.

If Ak is inϐinite, set Ik+1 = I ′k. Since Ak is an inϐinite set of integers, it is not
empty. By the well-ordering axiom, Ak contains a smallest element, say nk+1.

If Ak is ϐinite, set Ik+1 = I ′′k . Since Bk is an inϐinite set of integers, it is not
empty. By the well-ordering axiom,Bk contains a smallest element, say nk+1.

Either way, there is an integer nk+1 > nk s.t. xnk+1
∈ Ik+1, Ik ⊇ Ik+1 and

length(Ik+1) =
b− a
2k

.

By induction, we have

1. I1 ⊇ I2 ⊇ · · · Ik ⊇ Ik+1 ⊇ · · · ;

2. for each k ∈ N, length(Ik) = b−a
2k−1 ;

3. for each k ∈ N, xnk
∈ Ik , and

4. n1 < n2 < · · · < nk < nk+1 < · · · .

Furthermore, b−a
2k
→ 0 (since it is a subsequence of b−a

n
→ 0). According to the

nested intervals theorem, then, ∃ξ ∈ [a, b] such that∩
k≥1

Ik = {ξ}.
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aaaaaa

It remains only to show that xnk
→ ξ.

Let ε > 0. By the Archimedean property, ∃Kε ∈ N such that 2Kε−1 > b−a
ε
,

and so
k > Kε =⇒ 2Kε−1 < 2k−1 =⇒ 0 ≤ b− a

2k−1
<
b− a
2Kε−1

< ε.

Since ξ ∈ Ik for all k ∈ N, then

k > Kε =⇒ |xnk
− ξ| ≤ b− a

2k−1
<
b− a
2Kε−1

< ε,

which is to say xnk
→ x. ■

We have mentioned that a sequence (xn)which diverges is one for which

∀L ∈ R, ∃εL > 0, ∀N ∈ N, ∃nN > N such that |xnN
− L| ≥ εL.

If (xn) does not converge to L, it is easy to construct a subsequence (xnk
)which also fails to

converge to L:

let n1 ∈ N be such that n1 ≥ 1 and |xn1 − L| ≥ εL;

let n2 ∈ N be such that n2 ≥ n1 and |xn2 − L| ≥ εL;

etc.

Note that if xn ̸→ L, some subsequences of (xn) might still converge to L: for instance,
xn = (−1)n ̸→ 1, but x2n = (−1)2n = 1→ 1.

aaaaaa

Theorem 21
Let (xn) ⊆ R be a bounded sequence such that every one of its proper converging
subsequence converges to the same x ∈ R. Then xn → x.

Proof: Let M > 0 be a bound for (xn). Then |xn| ≤ M for all n ∈ N. If (xn)
does not converge to x, then ∃(xnk

) ⊆ (xn) and an ε0 > 0 such that

|xnk
− x| ≥ ε0 for all k ∈ N.

But (xnk
) is also a bounded sequence, and so, by the Bolzano-Weierstrass theorem,

there is convergent subsequence (xnkj
) ⊆ (xnk

) ⊆ (xn).

But all subsequences of (xn) converge to x, by assumption, so xnkj
→ x. That

is to say, for ε0 > 0, ∃Nε0 ∈ N such that |xnkj
− x| < ε0 whenever kj > j > Nε0 ,

which contradicts the above property. Hence xn → x. ■
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2.6 Cauchy Sequences
One of the main challenge with the deϐinition of a limit is that we need to know what L is
before we can show what it is. Thankfully, we can bypass the circularity of the situation.We
say that a sequence (xn) is a Cauchy sequence if

∀ε > 0, ∃Nε ∈ N such thatm,n > Nε =⇒ |xm − xn| < ε.

Incidentally, (xn) is not a Cauchy sequence if
∃ε0 > 0, ∀N ∈ N, ∃mN , nN > N such that |xmN

− xnN
| ≥ ε0.

aaaaaa

Examples:

1. Is (xn) = ( 1
n
) a Cauchy sequence?

Solution: let ε > 0. By the Archimedean property, ∃Nε >
2
ε
. Thus

m,n > Nε =⇒
∣∣∣∣ 1m − 1

n

∣∣∣∣ ≤ 1

m
+

1

n
<

1

Nε

+
1

Nε

=
2

Nε

< ε.

Thus (xn) is Cauchy. □

2. Is (xn) = (1 + 1
2
+ · · ·+ 1

n
) a Cauchy sequence?

Solution: letm > n. Then 1
n
≥ 1

n+1
≥ · · · ≥ 1

m
and

|xm − xn| =
1

n+ 1
+ · · ·+ 1

m
≥ 1

m
+ · · ·+ 1

m︸ ︷︷ ︸
m−n terms

=
(m− n)

m
= 1− n

m
.

In particular, ifm = 2n, then |xm − xn| ≥ 1
2
for every n ∈ N, and so (xn) is not

a Cauchy sequence. □

In essence, a Cauchy sequence is a sequence for which the terms can get as close to one an-
other as one wishes, after a certain index threshold.

The next result shows that Cauchy sequences have at least one of the traits of convergent
sequences in R – we will soon see that the similarity is not pure happenstance.

aaaaaa

Theorem 22
If (xn) is a Cauchy sequence, then it is bounded.

Proof: let 1 > ε > 0. If (xn) is Cauchy, ∃Nε ∈ N such that |xm − xn| < ε
wheneverm,n > Nε. Setm∗ = Nε + 1. If n > Nε, then

|xn| = |xm∗ + (xn − xm∗)| ≤ |xm∗|+ |xn − xm∗| < |xm∗|+ ε.

SetM = max{|x1|+ 1, . . . , |xNε |+ 1, |xm∗|+ 1}. Then |xn| ≤M for all n ∈ N. ■
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We could also show that the sum of two Cauchy sequences is a Cauchy sequence, that every
bounded Cauchy sequence admits at least one convergent subsequence, and so on. In fact,
any result that applies to convergent sequences in R also applies to Cauchy sequences in R
(and vice-versa) because of the following result.

aaaaaa

Theorem 23
A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof: let (xn) be the sequence under consideration. Suppose that xn → x,
say. Let ε > 0. Then ε

2
> 0 and ∃Mε/2 such that

n > Mε/2 =⇒ |xn − x| <
ε

2
.

SetNε =Mε/2. When n,m > Nε, we have

|xm − xn| ≤ |xm − x+ x− xn| ≤ |xm − x|+ |x− xn| ≤
ε

2
+
ε

2
= ε,

which is to say that (xn) is Cauchy.

Now suppose that (xn) is Cauchy. According to Theorem 22, it is a bounded
sequence, and so must admit a convergent subsequence (xnk

) ⊆ (xn) by the
Bolzano-Weierstrass theorem, with xnk

→ x, say.

Let ε > 0. Since (xn) is Cauchy, ∃Mε/2 ∈ N such that

n,m > Mε/2 =⇒ |xm − xn| <
ε

2
.

Since (xnk
) converges to x, ∃N > Mε/2 such that |xN − x| < ε

2
. SetNε =Mε/2. Then

n > Nε =⇒ |xn − x| = |xn − xN + xN − x| ≤ |xn − xN |+ |xN − x| <
ε

2
+
ε

2
= ε,

and so (xn)is convergent. ■

This result can help simplify proofs and computations to a considerable extent.

aaaaaa

Examples

1. As the sequence (xn) = (1+ 1
2
+ · · ·+ 1

n
) is not a Cauchy sequence, it does not

converge.

2. Compute the limit of the sequence deϐined by xn = 1
2
(xn−2+xn−1), n > 2, with

x1 = 1 and x2 = 2.
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aaaaaa

Solution: we cannot use the boundedmonotone convergence theoremas (xn)
is not monotone. However, (xn) is a Cauchy sequence. Indeed,

|xn+1 − xn| =
∣∣1
2
(xn−1 + xn)− xn

∣∣ = 1
2
|xn − xn−1| = 1

22
|xn−1 − xn−2|

= 1
23
|xn−2 − xn−3| = · · · = 1

2n−1 |x2 − x1| = 1
2n−1 .

Let ε > 0. By the Archimedean property, ∃Nε ∈ N such that 1
2Nε−2 < ε. Then,

wheneverm ≥ n > Nε,

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

=
1

2m−2
+ · · ·+ 1

2n−1
<

1

2n−2
<

1

2Nε−2
< ε.

Being a Cauchy sequence, (xn) is convergent according to Theorem 23. Let
xn → x. From Theorem 19, we must have x2n+1 → x as well.

It is left as an induction exercise to show that

x2n+1 = 1 +
1

2
+

1

23
+ · · ·+ 1

22n−1
= 1 +

3

4

(
1− 1

4n

)
.

Then x2n+1 → 1 + 2
3
= 5

3
= x. □

Cauchy sequences illustrate the fundamental difference between R and Q. A sequence is
Cauchy if the points of the sequence ‘‘accumulate” on top of one another. We have seen that
in R, every Cauchy sequence is convergent, and vice-versa.

In Q, the converging sequences are Cauchy, but there are Cauchy sequences that do not
converge: it is possible that the points of such a sequence “accumulate” around one of the
(uncountably inϐinitely) many holes of Q. For instance, the sequence (1, 1.4, 1.41, 1.414, . . .)
is Cauchy inQ, but does not converge inQ.

This remark leads to one of the ways of building R from Q: we take all Cauchy sequences
in Q and add whatever point the sequences “accumulates” around to R (there is more to it
than that, but that is themain idea –Wewill revisit this idea inmuchmore detail in Chapter 7).
In the example above, the Cauchy sequence would lead us to add

√
2 toQ.

2.7 Solved Problems
1. The ϐirst few terms of a sequence (xn) are given below. Assuming that the “natural pat-

tern” indicated by these terms persists, give a formula for the nth term xn.

a) (5, 7, 9, 11, . . .);
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b)
(
1
2
,−1

4
, 1
8
,− 1

16
, . . .

)
;

c)
(
1
2
, 2
3
, 3
4
, 4
5
, . . .

)
;

d) (1, 4, 9, 16, . . .).

Solution: there is no general method (this question is a wee bit on the easy side...).
a) Odd integers≥ 5: xn = 2n+ 3 for all n ≥ 1;
b) Alternating powers of 1

2 : xn = (−1)n+1 1
2n for all n ≥ 1;

c) Fractions where the denominator is one more than the numerator: xn = n
n+1

for all n ≥ 1;
d) Perfect squares≥ 1: xn = n2 for all n ≥ 1. □

2. Use the deϐinition of the limit of a sequence to establish the following limits.

a) lim
n→∞

(
1

n2 + 1

)
= 0;

b) lim
n→∞

(
2n

n+ 1

)
= 2;

c) lim
n→∞

(
3n+ 1

2n+ 5

)
=

3

2
, and

d) lim
n→∞

(
n2 − 1

2n2 + 3

)
=

1

2
.

Proof:

a) Let ε > 0. By the Archimedean property, there is a positive integer Nε >
1
ε .

Then ∣∣∣∣ 1

n2 + 1
− 0

∣∣∣∣ = 1

n2 + 1
<

1

n2
≤ 1

n
<

1

Nε
< ε,

whenever n > Nε.
b) Let ε > 0. By the Archimedean property, there is a positive integer Nε >

2
ε .

Then ∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ = ∣∣∣∣− 2

n+ 1

∣∣∣∣ = 2

n+ 1
<

2

n
<

2

Nε
< ε,

whenever n > Nε.
c) Let ε > 0. By the Archimedean property, there is a positive integerNε >

13
4 ·

1
ε .

Then∣∣∣∣3n+ 1

2n+ 5
− 3

2

∣∣∣∣ = ∣∣∣∣− 13

2(2n+ 5)

∣∣∣∣ = 13

2
· 1

2n+ 5
<

13

2
· 1

2n
=

13

4
· 1
n
<

13

4
· 1

Nε
,

which is smaller than εwhenever n > Nε.
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d) Let ε > 0. By the Archimedean property, there is a positive integerNε >
5
4 ·

1
ε .

Then∣∣∣∣ n2 − 1

2n2 + 3
− 1

2

∣∣∣∣ = ∣∣∣∣− 5

2(2n2 + 3)

∣∣∣∣ = 5

2
· 1

2n2 + 3
<

5

2
· 1

2n2
≤ 5

4
· 1
n
<

5

4
· 1

Nε
,

which is smaller than εwhenever n > Nε. ■

3. Show that

a) lim
n→∞

(
1√
n+ 7

)
= 0;

b) lim
n→∞

(
2n

n+ 2

)
= 2;

c) lim
n→∞

( √
n

n+ 1

)
= 0, and

d) lim
n→∞

(
(−1)nn
n2 + 1

)
= 0.

Proof:

a) Let ε > 0. By the Archimedean property, there is a positive integer Nε >
1
ε2

.
Then ∣∣∣∣ 1√

n+ 7
− 0

∣∣∣∣ = 1√
n+ 7

<
1√
n
<

1√
Nε

< ε,

whenever n > Nε.
b) Let ε > 0. By the Archimedean property, there is a positive integer Nε >

4
ε .

Then ∣∣∣∣ 2n

n+ 2
− 2

∣∣∣∣ = ∣∣∣∣− 4

n+ 2

∣∣∣∣ = 4

n+ 2
<

4

n
<

4

Nε
< ε,

whenever n > Nε.
c) Let ε > 0. By the Archimedean property, there is a positive integer Nε >

1
ε2

.
Then ∣∣∣∣ √nn+ 1

− 0

∣∣∣∣ = √
n

n+ 1
<

√
n

n
=

1√
n
<

1√
Nε

< ε,

whenever n > Nε.
d) Let ε > 0. By the Archimedean property, there is a positive integer Nε >

1
ε .

Then ∣∣∣∣(−1)nnn2 + 1
− 0

∣∣∣∣ = n

n2 + 1
<

n

n2
=

1

n
<

1

Nε
< ε,

whenever n > Nε. ■
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4. Show that lim
n→∞

(
1

n
− 1

n+ 1

)
= 0.

Proof: let ε > 0. By the Archimedean property, there is a positive integerNε >
1√
ε
.

Then ∣∣∣∣ 1n − 1

n+ 1
− 0

∣∣∣∣ = 1

n(1 + n)
<

1

n2
<

1

N2
ε

< ε,

whenever n > Nε. ■

5. Find the limit of the following sequences:

a) lim
n→∞

((
2 +

1

n

)2
)
;

b) lim
n→∞

(
(−1)n

n+ 2

)
;

c) lim
n→∞

(√
n− 1√
n+ 1

)
, and

d) lim
n→∞

(
n+ 1

n
√
n

)
.

Solution: we can only use the deϐinition if we have a candidate. Throughout, wewill
assume that it is known that 1

n → 0.
a) Note that (2+ 1

n)
2 = 4+ 2

n+
1
n2 . Then, by Theorem14 (operations on sequences

and limits),
2

n
= 2 · 1

n
→ 2 · 0 = 0 and 1

n2
=

1

n
· 1
n
→ 0 · 0 = 0,

so that 4 + 2
n + 1

n2 → 4 + 0 + 0 = 4.
b) Clearly,

−1
n+ 2

≤ (−1)n

n+ 2
≤ 1

n+ 2
, ∀n ∈ N.

Note that n+ 2 ≥ n for all n so that

0 ≤ 1

n+ 2
≤ 1

n
, ∀n ∈ N;

as a result, 1
n+2 → 0 by the squeeze theorem. Then − 1

n+2 → −0 = 0 by Theo-
rem 14, so that (−1)n

n+2 → 0 by the squeeze theorem.
c) Re-write

√
n−1√
n+1

= 1− 2√
n+1

. Note that

0 ≤ 1√
n+ 1

<
1√
n
, ∀n ∈ N.

We have seen that 1√
n
→ 0; as a result of the squeeze theorem, 1√

n+1
→ 0. Then

1− 2√
n+1
→ 1− 2 · 0 = 1, by theorem 14.
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d) Note that n ≤ n√n ≤ n2 for all n ∈ N so
1

n2
≤ 1

n
√
n
≤ 1

n
, ∀n ∈ N.

But 1
n ,

1
n2 ,

1√
n
→ 0 (see previous problems) so that 1

n
√
n
→ 0 by the squeeze

theorem. Furthermore,
n+ 1

n
√
n

=
1√
n
+

1

n
√
n
→ 0 + 0 = 0,

by Theorem 14. □

6. Let yn =
√
n+ 1−

√
n. Show that (yn) and (

√
nyn) converge.

Proof: as
0 ≤
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1√

n
, ∀n ∈ N,

and 1√
n
→ 0, then

√
n+ 1−

√
n→ 0 by the squeeze theorem.

Note that √nyn =
√
n(n+ 1) − n = 1√

1+ 1
n
+1

for all n ∈ N. Then, according to

theorem 14,

lim
n→∞

√
nyn = lim

n→∞

1√
1 + 1

n + 1
=

1

lim
n→∞

(√
1 +

1

n
+ 1

) =
1

2
,

since
√
1 + 1

n + 1 > 2 for all n ∈ N. ■

7. Let (xn) ⊆ R+ be such that x1/nn → L < 1 for all n. Show ∃r ∈ (0, 1) such that 0 < xn <
rn for all sufϐiciently large n ∈ N. Use this result to show that xn → 0.

Proof: since L < 1, ∃ε0 > 0 such that L < L+ ε0 < 1. Then, ∃N0 ∈ N such that

|x1/nn − L| < ε0 whenever n > N0.

Hence L− ε0 < x
1/n
n < L+ ε0 for all n > N0. Set r = L+ ε0. Then r ∈ (0, 1) and

0 < xn < rn, ∀n > N0.

Let ε > 0. rn → 0 (do you know how to show this?), ∃Nε ≥ N0 such that rn < ε
whenever n > Nε, hence

|xn − 0| = xn < rn < ε

whenever n > Nε. ■

8. Give an example of a convergent (resp. divergent) sequence (xn) of positive real num-
bers with x1/nn → 1.

Solution: the sequences (xn) = 1
n and (xn) = (n) do the trick, among others. □
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9. Let x1 = 1, xn+1 =
√
2 + xn for n ∈ N. Show that (xn) converges; ϐind the limit.

Proof: weshow (xn) is increasing andboundedby induction; according to thebounded
monotone convergence theorem, (xn)must then converge.

A quick computation shows that x2 =
√
3.

Initial case: Clearly, 1 ≤ x1 ≤ x2 ≤ 2.
Induction hypothesis: Suppose 1 ≤ xk ≤ xk+1 ≤ 2. Then

3 ≤ xk + 2 ≤ xk+1 + 2 ≤ 4

and so
1 ≤
√
3 ≤
√
xk + 2 ≤

√
xk+1 + 2 ≤

√
4 = 2,

i.e. 1 ≤ xk+1 ≤ xk+2 = 2.
Hence (xn) is increasing and bounded above by 2; as such xn → x for some x ∈ R.
But

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

√
2 + xn =

√
2 + lim

n→∞
xn =

√
2 + x,

that is, x2 = 2 + x. The only solutions are x = 2 or x = −1, but x = −1 must be
rejected since 1 ≤ xn for all n.

Thus, xn → 2.

10. Let xn =
n∑

k=1

1

k2
for all n ∈ N. Show that (xn) is increasing and bounded above.

Proof: as 1
(n+1)2

> 0 for all n ∈ N, we have

xn =
1

12
+ · · ·+ 1

n2
≤ 1

12
+ · · ·+ 1

n2
+

1

(n+ 1)2
= xn+1.

Furthermore, for any k ≥ 2 ∈ N, we have 1
k2
< 1

k−1 −
1
k . Then

xn =
1

12
+

1

22
+ · · ·+ 1

n2

≤ 1 +

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1 + 1 + 0 + · · ·+ 0− 1

n
< 2

for all n ∈ N. Hence (xn) is increasing and bounded above by 2.
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11. Show that c1/n → 1 if 0 < c < 1.
Proof: let xn = c1/n for all n ∈ N. Since xn+1 = c1/(n+1) > c1/n = xn for all n ∈ N
(as c < 1), then (xn) is increasing. Furthermore, 0 < c1/n < 11/n = 1 for all n ∈ N,
so (xn) is bounded above.

Hence (xn) converges, and xn → x, for some x ∈ R. As all subsequences of a conver-
gent sequence converge to the same limit as the convergent sequence,x2n = c1/2n →
x. As such,

x = lim
n→∞

c1/2n = lim
n→∞

√
c1/n = lim

n→∞

√
xn =

√
lim
n→∞

xn =
√
x,

and so eitherx = 0 orx = 1. But asxn increases to 1, there comes a point afterwhich
all xn are “far” from 0 (you should mathematicize this statement...), so xn → 1. ■

12. Let (xn) be a bounded sequence and let sn = sup{xk : k ≥ n}. If S = inf{sn}, show
that there is a subsequence of (xn) that converges to S.

Proof: as (xn) is bounded, ∃M > 0 such that −M < xn < M for all n ∈ N. By
deϐinition, s1 ≥ s2 ≥ · · · and sn ≥ xk for all n ∈ N, k ≥ n.

Hence sn > −M for all n and (sn) is bounded below and decreasing, i.e. (sn) is
convergent. Furthermore, for each n ∈ N, as sn = sup{xk : k ≥ n}, ∃kn ∈ N s.t.

sn −
1

n
≤ xkn < sn

(otherwise sn is not the supremum).

The sequence (xkn) might not necessarily be a subsequence of (xn), but by delet-
ing the terms that are out of order, the resulting sequence, which wewill also denote
by (xkn) is a subsequence of (xn).

Then
0 ≤ |xkn − sn| ≤

1

n
, ∀n ∈ N.

By the squeeze theorem,

0 ≤ lim
n→∞

|xkn − sn| ≤ 0, so lim
n→∞

|xkn − sn| = 0.

But this means that
lim
n→∞

xkn = lim
n→∞

sn = S, (why?)

where the last equation comes from the theorem on bounded increasing/decreasing
sequences. ■
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13. Suppose that xn ≥ 0 for all n ∈ N and that ((−1)nxn) converges. Show that (xn) con-
verges.

Proof: Let (−1)nxn → α. Consider its subsequences(
(−1)2nx2n

)
= (x2n) and

(
(−1)2n+1x2n+1

)
= (−x2n+1) .

Then x2n → α and (−x2n+1) → α. But x2n ≥ 0 ∀n ∈ N so α ≥ 0. Similarly,
−x2n+1 ≤ 0 ∀n ∈ N so α ≤ 0. Since 0 ≤ α ≤ 0, we must then have α = 0. By
Theorem 14 (operations on limits), we have:

lim
n→∞

|(−1)nxn| = |0| = 0.

But |(−1)nxn| = xn ∀n, so xn → 0. ■

14. Show that if (xn) is unbounded, there exists a subsequence (xnk
)with 1/xnk

→ 0.
Proof: as (xn) is unbounded, ∃n1 ∈ N such that |xn1 | ≥ 1. Moreover, ∀k ≥ 2,
∃nk ∈ N such that |xnk

| ≥ k and nk+1 > nk (otherwise the sequence would be
bounded).

Let ε > 0. According to the Archimedean property, ∃Kε ∈ N such that Kε > 1
ε

and ∣∣∣∣ 1

xnk

− 0

∣∣∣∣ = 1

|xnk
|
≤ 1

k
<

1

Kε
< ε

whenever k > Kε. Thus, 1/xnk
→ 0. ■

15. If xn = (−1)n

n
, ϐind the convergent subsequence in the proof of the Bolzano-Weierstrass

theorem, with I1 = [−1, 1].
Proof: we ϐirst note that (xn) is bounded by−1 and 1, so the question makes sense.
Let n1 = 1. Then xn1 = x1 = −1 and length(I1) = 2. Set I ′1 = [−1, 0] and I ′′1 = [0, 1].

We have
A1 = {n ∈ N | n > n1 and xn ∈ I ′1} = {3, 5, 7, 9, 11, . . .}

and
B1 = {n ∈ N | n > n1 and xn ∈ I ′′1 } = {2, 4, 6, 8, 10, . . .}.

Since A1 is inϐinite (why?), set I2 = I ′1 = [−1, 0] and n2 = minA1 = 3, so that
xn2 = −1/3. Note that n2 > n1, I2 ⊆ I1, and length(I2) = 1. Set I ′2 = [−1,−1/2]
and I ′′2 = [−1/2, 0].

We have
A2 = {n ∈ N | n > n2 and xn ∈ I ′2} = ∅

and
B2 = {n ∈ N | n > n2 and xn ∈ I ′′2 } = {5, 7, 9, 11, 13, . . .}.

SinceA2 is ϐinite, set I3 = I ′′2 = [−1/2, 0] and n3 = minB2 = 5, so that xn3 = −1/5.
Note that n3 > n2 > n1, I3 ⊆ I2 ⊆ I1, and length(I3) = 1/2.
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For k ≥ 3, we set I ′k = [−1/2k−2,−1/2k−1] and I ′′k = [−1/2k−1, 0]. Then

Ak = {n ∈ N | n > nk and xn ∈ I ′k} = ∅

and

Bk = {n ∈ N | n > nk and xn ∈ I ′′k} = {2k + 1, 2k + 3, 2k + 5, . . .}.

Ak is ϐinite, so set Ik+1 = I ′′k = [−1/2k−1, 0]. Furthermore, nk+1 = minBk = 2k + 1
so that xnk

= −1
2k+1 .

Note thatnk+1 > nk > · · · > n2 > n1, Ik+1 ⊆ Ik ⊆ · · · ⊆ I2 ⊆ I1 and length(Ik+1) =
1/2k−2. The convergent subsequence is thus−1,−1/3,−1/5, . . .→ 0. ■

16. Show directly that a bounded increasing sequence is a Cauchy sequence.

Proof: let ε > 0. By completeness ofR, x∗ = sup{xn | n ∈ N} exists as {xn | n ∈ N}
is bounded and non-empty. In particular, ∃M ε

2
∈ N such that

x∗ − ε

2
< xM ε

2
≤ x∗.

But x∗ ≥ xn > xM ε
2
whenever n > M ε

2
.

LetNε =M ε
2
. Then

|xm − xn| = |xm − x∗ + x∗ − xn| ≤ |x∗ − xm|+ |x∗ − xn| <
ε

2
+
ε

2
= ε

wheneverm,n > Nε. ■

17. If 0 < r < 1 and |xn+1 − xn| < rn for all n ∈ N, show that (xn) is Cauchy.

Proof: let ε > 0. By the Archimedean property, ∃Nε > logr (ε(1− r)) + 1, i.e.
rNε−1 < ε. Then

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

< rm−1 + · · ·+ rn <
rn−1

1− r
<
rNε−1

1− r
< ε

wheneverm > n > Nε.⁶ ■

18. If x1 < x2 and xn = 1
2
(xn−1 + xn−2) for all n ∈ N, show that (xn) is convergent and

compute its limit.

Proof: we start by showing that (xn) is Cauchy. Let L = x2 − x1; by induction,

|xn − xn−1| ≤
L

2n−2
.

⁶The third last inequality holds since rm−1 + · · ·+ rn is a geometric progression.
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Let ε > 0. By the Archimedean property, ∃Nε ∈ N such that L
2Nε−2 < ε. Then

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

≤ L

2m−2
+ · · · L

2n−1
≤ L

2n−2
<

L

2Nε−2
< ε

wheneverm > n > Nε. Hence (xn) is a Cauchy sequence, and so it converges, say to
xn → x. We can show by induction (do it!) that

x2n+1 = x1 +
L

2
+
L

23
+ · · ·+ L

22n−1

for all n ∈ N. In particular,

x = lim
n→∞

x2n+1 = x1 + lim
n→∞

(
L

2
+
L

23
+ · · ·+ L

22n−1

)
= x1 +

L

2
lim
n→∞

(
1 +

1

22
+ · · ·+ 1

22n−2

)
= x1 +

L

2
lim
n→∞

(
1− (1/22)n

1− (1/22)

)
= x1 +

2

3
L =

1

3
(x1 + 2x2).

For instance, when x1 = 1 and x2 = 2, xn → 5/3. ■

19. Suppose that (an) is a bounded sequence and bn → 0. Show that anbn → 0.

Proof: since (an) is bounded, there exists some 0 ≤M <∞ so that supn |an| ≤M .
Next, we will check that anbn → 0.

Fix some ε > 0. Since bn → 0, there exists someNε so that for all n > Nε, |bn| ≤ ε
M .

Thus, for all n > Nε,

|anbn| ≤M |bn| ≤M
ε

M
= ε.

Thus, anbn → 0. ■

20. Let (an) be a sequence with no convergent subsequences. Show that |an| → ∞.

Proof: we prove this by contradiction. Assume that |an| does not diverge to inϐinity.
Then there exists someM <∞ such that the set {n ∈ N | |an| < M} is inϐinite. Let

1 ≤ m1 ≤ m2 ≤ m3 ≤ . . .

be the indices satisfying |amn | < M . Set bn = amn . Then {bn} is a bounded sequence
and so has a convergent subsequence {bkn}n according to the Bolzano-Weierstrass
theorem.

But {amkn
}n = {bkn}n is in fact a convergent subsequence of (an), contradicting

the information given in the question. We conclude that our assumption was false,
and so that |an| diverges to inϐinity. ■
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21. We deϐine the limit inferior and the limit superior of a sequence as follows:

lim inf
n→∞

an = lim
n→∞

inf{ak | k ≥ n}

lim sup
n→∞

an = lim
n→∞

sup{ak | k ≥ n}.

Let (an) be bounded. Show that lim inf
n→∞

an and lim sup
n→∞

an exist and are in R.

Proof: deϐine the sequence of setsBn = {ak | k ≥ n} and the sequence of numbers
bn = sup(Bn), so that

lim sup
n→∞

an = lim
n→∞

bn.

We note thatB1 ⊃ B2 ⊃ . . ., which implies sup(B1) ≤ sup(B2) ≤ . . ., which means
that {bn} is monotone decreasing. Furthermore, since (an) is bounded, there exists
some−∞ < M <∞ so that an ≥M for all n ∈ N.

But this M is a lower bound for (an), which means it must be a lower bound for
Bn for all n ∈ N, which means bn = sup(Bn) ≥M for all n ∈ N as well.

Thus, we have shown that {bn} is a monotone decreasing sequence that is bounded
from below. Hence, by the monotone convergence theorem, it has a limit and so

lim sup
n→∞

an = lim
n→∞

bn

exists. The proof for the lim inf statement follows a similar path. ■

22. Let (an) be unbounded. Show that lim inf
n→∞

an = −∞ or lim sup
n→∞

an =∞.

Proof: since (an) is unbounded, for all 0 < M < ∞, there exists n = n(M) satisfy-
ing |an| > M .

Deϐine the subsequence {bk} by setting bk = an(k), so that |bk| > k for all k ∈ N.
Since this is an inϐinite sequence, we have by the Pigeonhole Principle that at least
one of the two sets I+ = {k ∈ N | bk ≥ 0}, I− = {k ∈ N | bk ≤ 0} is inϐinite.

In the case that I+ is inϐinite, write the elements i1 < i2 < i3 < . . . in order and
deϐine the subsequence {cℓ} of {bn} by the formula cℓ = biℓ = an(iℓ). But then for all
n, we have

sup{ak | k ≥ n} ≥ sup{an(iℓ) | ℓ ≥ n}
= sup{ck | k ≥ n} ≥ sup{k | k ≥ n} =∞.

Thus,

lim sup
n→∞

an =∞.
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The case that I− is inϐinite is essentially the same, with the conclusion
lim inf
n→∞

an = −∞.

This completes the proof.⁷ ■

23. Let (an), (bn) be two sequences. Show that
lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Proof: ϐix ε > 0. Then there exists some Nε ∈ N such that, for all m > Nε, the
following inequalities all hold:

ε

2
+ lim sup

n→∞
an ≥ am ≥ −

ε

2
+ lim inf

n→∞
an;

ε

2
+ lim sup

n→∞
bn ≥ bm ≥ −

ε

2
+ lim inf

n→∞
bn.

Adding the left-hand sided inequalities, we get:
am + bm ≤ ε+ lim sup

n→∞
an + lim sup

n→∞
bn.

We conclude with our ϐirst desired inequality,
lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

To obtain the reverse inequality, again ϐix ε > 0. Then there exists a sequence {kn}
so that

bkm ≥ −
ε

2
+ lim sup

n→∞
bn for allm.

Chopping off the ϐinitely-many terms in the sequence occurring before the threshold
Nε and applying the above inequalities, we have, for allm ∈ N:

akm + bkm ≥ −
ε

2
+ lim inf

n→∞
an −

ε

2
+ lim sup

n→∞
bn.

We conclude with the desired reverse inequality,
lim sup
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim sup
n→∞

bn.

For the second question, consider the sequences
an = (−1)n, bn = (−1)n+1.

Thus an + bn = 0 for all n, so lim sup
n→∞

(an + bn) = 0. However,

lim sup
n→∞

an = lim sup
n→∞

bn = 1,

which completes the proof. ■
⁷As an aside, if I−, I+ are both inϐinite, then we have

lim sup
n→∞

an =∞, lim inf
n→∞

an = −∞,

which you can check holds for sequences such as an = (−n)n, say.
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2.8 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Is the converse of Theorem 13 true?

3. Let |q| < 1. Compute lim
n→∞

nqn, if the limit exists.

4. Let (xn) be a decreasing sequence, bounded below. Show that xn → inf{xn | n ∈ N}.

5. Find a divergent sequence with convergent subsequences.

6. Show directly that the sum of two Cauchy sequences is a Cauchy sequence.

7. Showdirectly that every bounded Cauchy sequence admits at least one convergent sub-
sequence.

8. Complete the induction argument that allows you to compute the limit of the sequence
deϐined by xn = 1

2
(xn−2 + xn−1), n > 2, with x1 = 1 and x2 = 2.

9. Show that (xn) = 1
n
and (xn) = (n) are both positive real sequences with x1/nn → 1,

even though one converges and one diverges.

10. Complete the proof of solved problem 21 (do the lim inf case). Consider the sequence
given by the recursion an+1 =

1
2
(an + a−1

n ), with some initial condition a1 ∈ (−∞, 0) ∪
(0,∞). Find and prove the limit, if it exists.

66 Analysis and Topology Course Notes



Chapter 3

Limits and Continuity

The main objects of study in analysis are functions. In this chapter, we
introduce the ε−δ deϐinitionof the limit of a function, provide results that
help to compute such limits, identify two types of continuity, and present
some of the theorems that form the basis of analytical endeavours.

3.1 Limit of a Function
The objects we have studied thus far are functions of N into R. However, most of calculus
deals with functions ofR intoR. How do we generalize the concepts and results we have de-
rived for sequences to functions?

LetA ⊆ R and c ∈ R. The neighbourhood Vδ(c), where δ > 0, is the interval
Vδ(c) = {x ∈ R : |x− c| < δ} = (c− δ, c+ δ).

The point c ∈ R is a limit point (or cluster point) ofA if every neighbourhoodVδ(c) contains
at least one point x ∈ A other than c.

aaaaaa

Example: consider the setA ⊆ R drawn below.
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aaaaaa

The Vδ(c)−neighbourhood in blue contains points in A other than c, but c is
not a limit point of A since the Vδ(c)−neighbourhood in yellow does not con-
tain points of A.

The point at the centre of the green interval is a limit point ofA, however.

The set of all limit points ofA is denoted byA; a limit point of A does not have to be inA.

aaaaaa

Example: what are the limit points of A = { 1
n
| n ∈ N}?

Solution: let n ∈ N. The distance between a point 1
n

and its immediate suc-
cessor/predecessor 1

n±1
is

1

n
− 1

n± 1
=

1

n(n± 1)
>

1

3n2
.

Let δ = 1
3n2 . Then Vδ( 1n) = ( 1

n
− 1

3n2 ,
1
n
+ 1

3n2 ) ⊆ ( 1
n−1

, 1
n+1

), so the only point of A
in Vδ( 1n) is 1

n
. Thus 1

n
̸∈ A. No negative real number is a limit point of A; indeed,

if x < 0, set δ = |x|
2
. Then Vδ(x) ⊆ (−∞, 0) and so contains no point of A. Simi-

larly, no real number strictly greater than 1 is a limit point ofA. HenceA ⊆ [0, 1]\A.

Let x ∈ (0, 1] \ A. By the Archimedean property, ∃nx ∈ N s.t. nx >
1
x
> nx − 1, so

1
nx
< x < 1

nx−1
. Set δx = 1

2
min{|x − 1

nx
|, |x − 1

nx−1
|}. Then Vδx(x) contains none of

the points ofA.

The only remaining possibility is x = 0. Let δ > 0. By the Archimedean property,
∃Nδ such that 1

Nδ
< δ. But 0 ̸= 1

Nδ
∈ A, Thus

∅ ̸=
{ 1

Nδ

}
⊆ Vδ ∩ A = (−δ, δ) ∩ A,

so x = 0 is the only limit point of A: A = {0}. □
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Directly determining the limit points of a set is a time-intensive endeavour. Thankfully, there
is a link between limit points and convergent sequences.

aaaaaa

Theorem 24
A point c ∈ R is a limit point of A if and only if there is a sequence (an) ⊆ A, with
an ̸= c for n ∈ N, such that an → c.

Proof: suppose c is a limit point of A. By deϐinition, the neighbourhood V 1
n
(c)must

contain a point an ̸= c ∈ A, for all n ∈ N. Let ε > 0. By the Archimedean property,
∃Nε >

1
ε
s.t. 1

Nε
< ε. Thus

n > Nε =⇒ 0 < |an − c| <
1

n
<

1

Nε

< ε, i.e. an → c.

Conversely, suppose that there is a sequence (an) ⊆ A, with an ̸= c for all n ∈ N,
such that an → c. Let δ > 0. By deϐinition, ∃Nδ ∈ N, such that 0 < |an − c| < δ for
all n > Nδ . Then an ∈ Vδ(c) and an ̸= c for all n > Nδ . Thus any neighbourhood of c
contains at least one an ̸= c, so c ∈ A. ■

Any limit point of A is in fact the limit of a sequence in A, and vice-versa.

aaaaaa

Example: let A = [0, 1] ∩Q. What are the limit points of A?

Solution: any convergent sequence (an) ⊆ A is such that 0 ≤ an ≤ 1 for all
n ∈ N, so its limit must also lie in [0, 1], according to Theorem 15. On the other
hand, Theorem 24 tells us that any limit point of A is the limit of a sequence of
rationals in [0, 1]. The sequences ( 1

n
) and (1− 1

n
) lie inA. Since 1

n
→ 0 and 1− 1

n
→ 1,

then 0, 1 ∈ A.

Now, let r ∈ (0, 1). Set η = min{r, 1− r}.

Then η > 0 and 1
η
> 0. By the Archimedean property, ∃M ∈ N s.t.M > 1

η
. Then

0 ≤ r − η < r − 1

M
> r +

1

M
< r + η ≤ 1,

since η = r if r ≤ 1/2 and η = 1− r if r ≥ 1/2. So

n > M =⇒ 0 < r − 1

n
< r +

1

n
< 1.
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aaaaaa

But the density theorem states that for all n > M , ∃an ̸= r ∈ Q such that

r − 1

n
< an < r +

1

n
.

The sequence (an) thus constructed converges to r. Indeed, let ε > 0. According to
the Archimedean property, ∃N ∈ N such thatN > 1

ε
.

SetNε = max{M,N}. Then

n > Nε =⇒ 0 < |an − r| <
1

n
<

1

Nε

< ε,

and so an → r and r ∈ A. Consequently,A = [0, 1]. ■

Intuitively, a limit of a function f at c is a value L towards which f(x) “approaches” as x gets
closer to c, if it exists. But what does that actually mean? What would need to happen for the
value not to exist?

LetA ⊆ R, f : A→ R, and c ∈ A: L ∈ R is the limit of f at c if
∀ε > 0, ∃δε > 0 such that 0 < |x− c| < δε and x ∈ A =⇒ |f(x)− L| < ε,

which we denote by
lim
x→c

f(x) = L or by f(x)→ L, when x→ c.

The limit of f at c is not L ∈ R if
∃ε0 > 0, ∀δ > 0, ∃xδ ∈ A such that 0 < |xδ − c| < δε and |f(xδ)− L| ≥ ε0,

which we denote by
lim
x→c

f(x) ̸= L or by f(x) ̸→ L, when x→ c.

70 Analysis and Topology Course Notes



CHAPTER 3. LIMITS AND CONTINUITY

The underlying principle is the same as that of the limit of a sequence: given ε > 0, we need
to ϐind a δε > 0 which satisϐies the deϐinition. Graphically, this is equivalent to putting a hor-
izontal strip of width 2ε around the line y = L, and showing that there is a neighbourhood
Vδε(c) such that f(x) is in the strip for any x ∈ Vδε .

aaaaaa

Examples

1. Let f : [0, 1)→ R be the function deϐined by

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

Show lim
x→0

f(x) = 2.

Proof: let ε > 0. Set δε = 1. Then

x ∈ [0, 1) and 0 < |x− c| < δε =⇒ |f(x) = 2| = 0 < 0 · δ < ε,

which completes the proof. ■

2. Let f : [0,∞)→ R be deϐined by f(x) = x2+2x+2
x+1

. Show lim
x→2

f(x) = 10
3
.

Proof: let ε > 0. Set δε = ε. Then∣∣∣∣x2 + 2x+ 2

x+ 1
− 10

3

∣∣∣∣ = ∣∣∣∣3(x2 + 2x+ 2)− 10(x+ 1)

x+ 1

∣∣∣∣ = ∣∣∣∣3x2 − 4x− 4

3x+ 3

∣∣∣∣
=

∣∣∣∣3x+ 2

3x+ 3

∣∣∣∣︸ ︷︷ ︸
<1

|x− 2| < |x− 2| < δε = ε

when x ≥ 0 and 0 < |x− 2| < δε. ■

3. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: note that c ∈ A = R \ {0}. We can only use the deϐinition of
the limit if c ∈ A. That it does so is a given, as ( 1

n
) ⊆ A and 1

n
→ 0, with 1

n
̸= 0

for all n ∈ N, according to Theorem 24.

Let ε > 0 and set δε =
√
ε. Then∣∣x2 cos(1/x)− 0
∣∣ = |x|2| | cos(1/x)|︸ ︷︷ ︸

≤1

≤ |x|2 = |x− 0|2 < δ2ε < ε,

whenever x ∈ R \ {0} and 0 < |x− 0| < δε. ■
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As is the case with sequences, a function has at most one limit at any of its limit points c.

aaaaaa

Theorem 25
Let A ⊆ R, f : A→ R and c a limit point of A. Then f has at most one limit at c.

Proof: suppose that

lim
x→c

f(x) = L′ and lim
x→c

f(x) = L′′, where L′ < L′′.

Let ε = L′′−L′

3
> 0. By deϐinition, ∃δ′ε, δ′′ε s.t. |f(x) − L′| < ε and |f(x) − L′′| < ε

whenever x ∈ A and 0 < |x− c| < δ′ε, 0 < |x− c| < δ′′ε .

Set δε = min{δ′ε, δ′′ε}. Then, whenever x ∈ A and 0 < |x− c| < δε,

f(x) < L′′ + ε = L′ +
L′′ − L′

3
=

2L′ + L′′

3
=
L′ + L′′

3
+
L′

3

<
L′ + L′′

3
+
L′′

3
<

2L′′ + L′

3
= L′′ − L′′ − L′

3
= L′′ − ε < f(x),

which is a contradiction, hence L′ ̸< L′′. The proof that L′′ ̸< L′ is identical. ■

As is the case with sequences, the deϐinition is useless if we do not have a candidate for L
beforehand. The next result allows us to get such a candidate before using the deϐinition.

aaaaaa

Theorem 26 (ĘĊĖĚĊēęĎĆđ ĈėĎęĊėĎĔē)
Let A ⊆ R, f : A→ R and c a limit point of A. Then

lim
x→c

f(x) = L if and only if lim
n→∞

f(xn) = L

for any sequence (xn) ⊆ A such that xn → c, with xn ̸= c for all n ∈ N.

Proof: assume lim
x→c

f(x) = L. Let ε > 0. Then ∃δε > 0 such that

x ∈ A and 0 < |x− c| < δε =⇒ |f(x)− L| < ε.

Suppose (xn) ⊆ A is such that xn ̸= c for all n ∈ N and xn → c. Then ∃Mδε > 0 such
that 0 < |xn − c| < δε whenever n > Mδε .

LetNε =Mδε . Then

xn ̸= c ∈ A and n > Nε =⇒ 0 < |xn − c| < δε =⇒ |f(xn)− L| < ε,

which is to say f(xn)→ L.
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Conversely, if lim
x→c

f(x) ̸= L, then ∃ε0 > 0 s.t. ∀δ > 0, ∃xδ ∈ A with 0 < |xδ − c| < δ

but |f(x)− L| ≥ ε0. Thus, for n ∈ N and δ = 1
n
, ∃xn = xδ as above.

The sequence (xn) ⊆ A is such that 0 < |xn − c| < 1
n

and |f(xn) − L| ≥ ε0.
According to the squeeze theorem, xn → c, with |f(xn) − L| ≥ ε0 for all n ∈ N.
Thus f(xn) ̸→ L. ■

Let us take a look at a few examples.

aaaaaa

Examples

1. Let f : R→ R, f(x) = 3x3 + x+ 1. Compute lim
x→7

f(x).

Solution: let (xn) ⊆ R \ {7}with xn → 7. Then

lim
n→∞

f(xn) = lim
n→∞

(3x2n + xn + 1) = 3
(

lim
n→∞

xn

)2
+ lim

n→∞
xn + 1

= 3 · 73 + 7 + 1 = 1037.

Thus f(x)→ 1037when x→ 7, according to Theorem 26. □

2. Let f : (2,∞)→ R, f(x) = (x−1)(x−2)
(x−2)

. Compute lim
x→2

f(x).

Solution: let (xn) ⊆ R \ {2}with xn → 2. Then

lim
n→∞

f(xn) = lim
n→∞

(xn − 1)(xn − 2)

(xn − 2)
= lim

n→∞
(xn − 1) = lim

n→∞
xn − 1

= 2− 1 = 1.

Since (xn)was arbitrary, f(x)→ 1when x→ 2, according to Theorem 26. □

3. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: let (xn) ⊆ R \ {0} be any sequence converging to 0. Then

0 ≤ |x2n cos(1/xn)| ≤ |x2n| = |xn|2.

However, since xn → 0, then both |xn| → 0 and |xn|2 → 0, which is to say that

lim
n→0
|x2n cos(1/xn)| = 0

according to the squeeze theorem. Thus x2n cos(1/xn) → 0. Since (xn) was
arbitrary, f(x)→ 0when x→ 0, according to the sequential criterion. ■
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4. Let f : R→ R be the function deϐined by

f(x) =

{
0, x ∈ Q
1, x ̸∈ Q

Show that lim
x→0

f(x) does not exist.

Proof: deϐine (xn), (yn) by xn = 1
n
, yn =

√
2
n

for all n ∈ N. Then (xn) ⊆ Q and
(yn) ⊆ R \ Q. Furthermore, xn, yn → 0, with xn, yn ̸= 0 for all n ∈ N. But
f(xn) = 0 and f(yn) = 1 for all n ∈ N, so

lim
n→∞

f(xn) = 0 ̸= 1 = lim
n→∞

f(yn),

thus lim
x→0

f(x) does not exist. ■

5. Let sgn : R→ R be the function deϐined by

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

Show that lim
x→0

(x+ sgn(x)) does not exist.

Proof: deϐine (xn), (yn) by xn = 1
n
, yn = − 1

n
for all n ∈ N. Then xn, yn → 0,

with xn, yn ̸= 0 for all n ∈ N.

But f(xn) = 1
n
+ sgn

(
1
n

)
= 1

n
+ 1, and f(yn) = − 1

n
+ sgn

(
− 1

n

)
= − 1

n
− 1 for

all n ∈ N, so

lim
n→∞

f(xn) = lim
n→∞

( 1
n
+ 1
)
̸= −1 = lim

n→∞

( 1
n
+ 1
)
= lim

n→∞
f(xn),

thus lim
x→0

f(x) does not exist. ■

To show that the limit does not exist, it is enough to ϐind two speciϐic sequences (xn), (yn) ⊆ A,
with xn, yn ̸= c for all n ∈ N and xn, yn → c, such that f(xn)→ L1, f(yn)→ L2, L1 ̸= L2.

But we cannot show that the limit L exists by ϐinding two sequences (xn), (yn) ⊆ A with
xn, yn ̸= c for all n ∈ N, xn, yn → c, and f(xn), f(yn)→ L.

Note that at no point have we needed to use the graph of a function to compute a limit or
prove its existence.
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3.2 Properties of Limits
Limits behave quite nicely with respect to the usual operations.

aaaaaa

Theorem 27 (OĕĊėĆęĎĔēĘ Ĕē LĎĒĎęĘ)
Let A ⊆ R, f, g : A → R, and c a limit point of A. Suppose f(x) → L and g(x) → M
when x→ c. Then

1. lim
x→c
|f(x)| = |L|;

2. lim
x→c

(f(x) + g(x)) = L+M ;

3. lim
x→c

f(x)g(x) = LM ;

4. lim
x→c

f(x)

g(x)
=

L

M
, if g(x) ̸= 0 for all x ∈ A and ifM ̸= 0.

Proof: this result is an easy consequence of Theorems 14 and 26. Let (xn) ⊆ Awith
xn ̸= c and xn → c for all n ∈ N. Then f(xn)→ L and g(xn)→M .

1. lim
x→c
|f(x)| = lim

n→∞
|f(xn)| =

∣∣ lim
n→∞

f(xn)
∣∣ = L.

2. lim
x→c

[
f(x) + g(x)

]
= lim

n→∞

[
f(xn) + g(xn)

]
= lim

n→∞
f(xn) + lim

n→∞
g(xn) = L+M .

3. lim
x→c

[
f(x)g(x)

]
= lim

n→∞

[
f(xn)g(xn)

]
= lim

n→∞
f(xn) · lim

n→∞
g(xn) = LM .

4. lim
x→c

[
f(x)

g(x)

]
= lim

n→∞

[
f(xn)

g(xn)

]
=

lim
n→∞

f(xn)

lim
n→∞

g(xn)
=

L

M
, if g(x) ̸= 0 for x ∈ A and if

M = 0. ■

There is also a squeeze theorem for functions, but it is not nearly as useful as the correspond-
ing result for sequences.

aaaaaa

Theorem 28 (ĘĖĚĊĊğĊ ęčĊĔėĊĒ ċĔė FĚēĈęĎĔēĘ)
Let A ⊆ R, f, g, h : A → R, and c a limit point of A. If f(x) ≤ g(x) ≤ h(x) for all
x ∈ A and if f(x), h(x)→ L when x→ c, then g(x)→ L when x→ c.

Proof: let (xn) ⊆ A, with xn ̸= c for all n ∈ N and xn → c. According to the
sequential criterion,

lim
n→∞

f(xn) = lim
n→∞

h(xn) = L.

Since f(xn) ≤ g(xn) ≤ h(xn) for all n ∈ N, then limn→∞ g(xn) = L, by the squeeze
theorem(for sequences). Since (xn)was arbitrary, we conclude that g(x)→ L, again
by the sequential criterion. ■
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Let’s take a look at some examples.

aaaaaa

Examples

1. Let f : R→ R, f(x) = k, k ∈ R. Show that lim
x→c

f(x) = k for all c ∈ R.

Proof: let ε > 0. Set δε = ε. Then |f(x) − k| = |k − k| = 0 < ε,
when 0 < |x− c| < δε = ε. ■

2. Let f : R→ R, f(x) = x. Show that lim
x→c

f(x) = f(c) for all c ∈ R.

Proof: let ε > 0. Set δε = ε. Then |f(x) − c| = |x − c| < δε = ε,
when 0 < |x− c| < δε = ε. ■

3. Let f : R→ R, f(x) = x3+2x−4
x2+1

. Compute lim
x→3

f(x).

Solution: according to Theorem 27, and the preceding examples,

lim
x→3

(x3 + 2x+ 4) =
(
lim
x→3

x
)3

+ 2
(
lim
x→3

x
)
+ lim

x→3
4 = 32 + 2(3) + 3 = 37

lim
x→3

(x2 + 1) =
(
lim
x→3

x
)2

+ 1 = 32 + 1 = 10,

and so lim
x→3

x3 + 2x− 4

x2 + 1
= 10

3
, because x2 + 1 ̸= 0 for all x ∈ R. □

4. Let f : R \ {0} → R, f(x) = x2 cos(1/x). Show that lim
x→0

f(x) = 0.

Proof: we cannot use the multiplication component of Theorem 27 to
compute the limit since lim

x→0
cos(1/x) does not exist.

Indeed, let (xn), (yn) ⊆ R \ {0} be such that xn = 1
(2n−1)π

, and yn = 1
2nπ

for all
n ∈ N. Then xn, yn → 0. But

cos
(

1

xn

)
= cos((2n− 1)π) = −1 and cos

(
1

yn

)
= cos(2nπ) = 1

for all n ∈ N. Then

cos(1/xn)→ −1 ̸= 1← cos(1/yn).

This does not mean that
lim
x→0

x2 cos
(1
x

)
does not exist, only that we cannot use Theorem 27 to compute it.

In fact, the squeeze theorem for functions does the trick, with
−x2 ≤ f(x) ≤ x2. ■
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Other sequence concepts have analogous deϐinitions in the world of functions. Let A ⊆ R,
f : A → R and c ∈ A. The function f is bounded on some neighbourhood of c if ∃δ > 0
andM > 0 are such that |f(x)| ≤M for all x ∈ A ∩ Vδ(c).

aaaaaa

Theorem 29
If A ⊆ R, f : A → R, c ∈ A, and lim

x→c
f(x) = L for some L ∈ R, then f is bounded on

some neighbourhood of c.

Proof: Let ε = 1. By deϐinition, ∃δ1 > 0 such that |f(x) − L| < 1 whenever
x ∈ A and 0 < |x− c| < δ1. Since

|f(x)| − |L| < |f(x)− L|,

then |f(x)| − |L| ≤ 1whenever x ∈ A and 0 < |x− c| < δ1.

If c ̸∈ A, set M = |L| + 1. If c ∈ A, set M = max{|f(c)|, |L| + 1}. In either
case, |f(x)| ≤M whenever x ∈ A and 0 < |x− c| < δ1. ■

3.3 Continuous Functions
Functions like polynomials, or trigonometric functions, are continuous, which is a fundamen-
tal notion of calculus.

Intuitively, a function is continuous at a point if the graph of the function at that point can
be traced without lifting the pen. The notion of “continuity” is fundamental is calculus.

But we emphasized earlier that limits could be computed/shown to exist without refer-
ring to the graph of a function. What does that mean for continuity?

LetA ⊆ R, f : A→ R, and c ∈ A; f is continuous at c if

∀ε > 0,∃δε > 0 such that |x− c| < δε and x ∈ A =⇒ |f(x)− f(c)| < ε.

When computing the limit of f at c, we are interested in the behaviour of the function near c,
but not at c. Whenwe are dealing with continuity, we also include the behaviour at c. When
c is a limit point of A, this deϐinition actually means that

lim
x→c

f(x) = f(c).

If c ̸∈ A, the expression lim
x→c

f(x) is meaningless.¹ In that case, f is automatically continuous
at c. Indeed, there will then be a δ > 0 such that Vδ(c) contains no point of A but c. Then for
ε > 0, whenever x ∈ A and |x− c| < δ (i.e., whenever x = c), we have

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ε.

¹Since there are no sequence (xn) ⊆ Awith xn ̸= c for all n ∈ N and xn → c.
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The deϐinition contains 3 statements: a function f is continuous at c if

1. f(c) is deϐined;

2. lim
x→c

f(x) exists, and

3. lim
x→c

f(x) = f(c).

LetB ⊆ A. If f is continuous for all c ∈ B, then we say that f is continuous onB.

aaaaaa

Examples

Let f : [0,∞)→ R, f(x) = x2+2x+2
x+1

. Is f continuous at c = 2?

Solution: since 2 is a limit point of [0,∞), we need only verify if
lim
x→2

f(x) = f(2). But we have already seen that f(x) → 10
3

= f(2) when
x→ 2, so f is continuous at c = 2. □

Let f : [0, 1)→ R,

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

Is f continuous at c = 0?

Solution: since 0 is a limit point of [0, 1), weneedonly verify if lim
x→0

f(x) = f(0).
But we have already seen that f(x) → 2 ̸= 3 = f(0) when x → 0, so f is not
continuous at c = 0. □

Let f : R→ R, f(x) = 3x3 + x+ 1. Is f continuous at c = 7?

Solution: since 7 is a limit point of R, we need only verify if lim
x→7

f(x) = f(7).
But we have already seen that f(x) → 1037 = f(7) when x → 7, so f is
continuous at c = 7. □

Let f : R→ R,

f(x) =

{
0, x ∈ Q
1, x ̸∈ Q

Is f continuous at c = 0?

Solution: as f(0) = 0, we only need to verify if lim
x→0

f(x) = f(0). But
we have already seen that lim

x→0
f(x) does not exist, so f is not continuous at

c = 0. ■
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aaaaaa

Let f : (2,∞)→ R, f(x) = (x−1)(x−2)
(x−2)

. Is f continuous at c = 2?

Solution: since f is not deϐined at c = 2 and since 2 ̸∈ A, f is not
continuous at c = 2. □

Let f : R→ R, f(x) = k, k ∈ R. Is f continuous on R?

Solution: since all c ∈ R are limit points of R, we need only verify if
lim
x→c

f(x) = f(c). But we have already seen that f(x)→ k = f(c) for all c ∈ R,
so f is continuous on R. □

Let f : [0,∞)→ R, f(x) = √x. Is f continuous on [0,∞)?

Solution: let ε > 0. If c = 0, set δε = ε. Then

x ≥ 0 and |x− 0| < δε =⇒ f(x)− f(0)| =
√
x =

√
|x− 0| <

√
δε = ε,

so f is continuous at c = 0. If c > 0, set δε =
√
cε. Then

|f(x)− f(c)| = |
√
x−
√
c| = |x− c|√

x+
√
c
<
|x− c|√

c
<

δε√
c
= ε

whenever x ≥ 0 and |x− c| < δε. Hence f is continuous at any c > 0. □

Let f : R→ R,

f(x) =

{
x, x ∈ Q
0, x ̸∈ Q

Is f continuous at c = 0? At c ̸= 0?

Solution: since f(0) = 0, we need to see if lim
x→0

f(x) = 0. Let ε > 0 and set
δε > 0. Then |x− 0| < δε =⇒ |f(x)− f(0)| = |f(x)| ≤ |x| = |x− 0| < δε = ε,
so f is continuous at c = 0. Now let n ∈ N. According to the density theorem,
∃xn ∈ Q, yn ̸∈ Q such that

c < xn + c+
1

n
and c < yn < c+

1

n
.

According to the sequence squeeze theorem, xn, yn → c. But f(xn) = xn and
f(yn) = 0 for all n ∈ N, so

lim
n→∞

f(xn) = lim
n→∞

xn = c and lim
n→∞

f(yn) = lim
n→∞

0 = 0.

Since c ̸= 0, these limits are different, and so lim
x→c

f(x) does not exist, according
to the sequential criterion. □

P. Boily (uOttawa) 79



3.3. CONTINUOUS FUNCTIONS

aaaaaa

LetA = {x ∈ R | x > 0}. Consider the function f : A→ R deϐined by

f(x) =

{
0 if x ̸∈ Q
1
n

if x = m
n
∈ Q, with gcd(m,n) = 1

Where is f is continuous?

Solution: we consider two types of limit points of A: a ∈ Q and b ̸∈ Q. If
0 < a ∈ Q, let (xn) ⊆ A ∩ Q∁ be such that xn → a. Then f(xn) → 0. But
f(a) > 0, so f(x) ̸→ f(a)when x→ a, according to the sequential criterion.

If 0 < b ̸∈ Q, let ε > 0. By the Archimedean property, there exists an
integer N0 >

1
ε
. There can only be a ϐinite set of rationals with denominator

< N0 in the interval (b − 1, b + 1). Indeed, if n < N0 and m
n
∈ (b − 1, b + 1)

then whenever |k| > 2n, we have:∣∣∣∣m+ k

n
− m

n

∣∣∣∣ = |k|n > 2 =⇒ m+ k

n
̸∈ (b− 1, b+ 1).

Consequently, ∃δ > 0 such that there are no rational number m
n

with denomi-
nator< N0 in (b− δ, b+ δ), which is to say that for all x ∈ (b− δ, b+ δ), either
f(x) = 0 (when x is irrational) or f(x) = 1

n
≤ 1

N0
(when x is rational).

Thus, if |x− b| < δ and x ∈ A, we have

|f(x)− f(b)| = |f(x)− 0| = |f(x)| ≤ 1

N0

< ε,

so f(x)→ f(b)when x→ b, i.e., f is only continuous on A ∩ (R \Q). □

Continuity behaves very nicely with respect to elementary operations on functions.

aaaaaa

Theorem 30 (OĕĊėĆęĎĔēĘ Ĕē CĔēęĎēĚĔĚĘ FĚēĈęĎĔēĘ)
Let A ⊆ R, f, g : A→ R, and c ∈ A. If f, g are continuous at c, then

1. |f | is continuous at c;

2. f + g is continuous at c;

3. fg is continuous at c;

4. f
g
is continuous at c if g ̸= 0 on A.

80 Analysis and Topology Course Notes



CHAPTER 3. LIMITS AND CONTINUITY

aaaaaa

Proof: if c ̸∈ A, there is nothing to prove. If c ∈ A, then

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c).

We can then apply Theorem 27 directly with L = f(c) andM = g(c). ■

Since constants and the identity function are continuous on R (as we saw in the preceding
examples), so are polynomial functions. Furthermore, rational functions are continuous on
their domain.

The composition of the functions f : A → B and g : B → C is the function g ◦ f : A → C ,
with (g ◦ f)(x) = g(f(x)) for all x ∈ A.

aaaaaa

Theorem 31 (CĔĒĕĔĘĎęĎĔē Ĕċ CĔēęĎēĚĔĚĘ FĚēĈęĎĔēĘ)
Let A,B ⊆ R, f : A→ R, g : B → R, c ∈ A. If f is continuous at c, g is continuous at
f(c), and f(A) ⊆ B, then g ◦ f : A→ B is continuous at c.

Proof: let ε > 0. As g is continuous at f(c), ∃δε > 0 such that

y ∈ B and |y − f(c)| < δε =⇒ |g(y)− g(f(c))| < ε.

Since f is continuous at c, ∃ηδε = ηε > 0 such that

x ∈ A and |x− c| < ηδε =⇒ |f(x)− f(c)| < δε =⇒

x ∈ A and |x− c| < ηε =⇒ |(g ◦ f)(x)− (g ◦ f)(c)| = |g(f(x))− g(f(c))| < ε,

which completes the proof. ■

It is not too difϐicult to see that Theorems 30 and 31 remain valid if we replace “continuous
at c” with “continuous at A”.

aaaaaa

Example: let f : [0,∞) → R, deϐined by f(x) =
√
3x3 + x+ 1. Show that f is

continuous on [0,∞).

Proof: we can write f = g ◦ h, where g : [0,∞) → R, g(y) =
√
y and

h : R→ R, h(x) = 3x2 + x+ 1. Since g and h are both continuous on their domains
and h(R) ⊆ [0,∞), g is continuous on [0,∞), according to Theorem 31. ■

An algebraic function is a function obtained via the (possibly repeated) composition of ratio-
nal functions and root functions. The class of algebraic functions is continuous on its domain.
The same goes for trigonometric, exponential, and logarithmic functions, via their power se-
ries deϐinition.
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3.4 Max/Min Theorem
We begin our study of the classical theorems of calculus. LetA ⊆ R, f : A→ R. The function
f : A→ R is bounded onA if ∃M > 0 such that |f(x)| < M for all x ∈ A.

aaaaaa

Examples

1. f : [0, 1]→ R, f(x) = x2, is bounded on [0, 1] as |f(x)| < 2,∀x ∈ [0, 1].

2. g : R→ R, g(x) = x2, is not bounded onR Indeed, suppose ∃M > 0 such that
|f(x)| < M for all x ∈ R. Then |x2| = |x|2 < M for all x ∈ R, i.e. |x| <

√
M

for all x ∈ R =⇒ M is an upper bound of R. But there is no such bound, ∴ g
is not bounded on R.

3. f : (0, 1) → R, f(x) = 1
x
, is not bounded on (0, 1], but it is bounded on [a, 1]

for all a ∈ (0, 1]. □

There is a link between continuity and boundedness.

aaaaaa

Theorem 32
If f : [a, b]→ R is continuous on [a, b], then f is bounded on [a, b].

Proof: suppose f is not bounded on [a, b]. Hence, for all n ∈ N, ∃xn ∈ [a, b]
such that |f(xn)| > n. However, (xn) ⊆ [a, b] so that (xn) is bounded.

According to Bolzano-Weierstrass, ∃(xnk
) ⊆ (xn) such that xnk

→ x̂ ∈ [a, b],
since

a ≤ xnk
≤ b for all k.

Since f is continuous, we have

f(x̂) = lim
x→x̂

f(x) = lim
k→∞

f(xnk
),

so (f(xnk
)) is bounded, being a convergent sequence. But this contradicts the as-

sumption that |f(xnk
)| > nk ≥ k for all k. Hence f is bounded on [a, b]. ■

Continuous functions on closed, bounded sets have a useful property. LetA ⊆ R, f : A→ R.
We say that f reaches a global maximum on A if ∃x∗ ∈ A such that f(x∗) ≥ f(x) for all
x ∈ A. Similarly, f reaches a global minimum on A if ∃x∗ ∈ A such that f(x∗) ≤ f(x) for
all x ∈ A.

aaaaaa
Theorem 33 (MĆĝ/MĎē TčĊĔėĊĒ)
If f : [a, b] → R is continuous, then f reaches a global maximum and a global mini-
mum of [a, b].
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aaaaaa

Proof: let f([a, b]) = {f(x) | x ∈ [a, b]}. According to Theorem 32, f([a, b]) is
bounded as f is continous, and so, by completeness of R,

s∗ = sup{f(x) | x ∈ [a, b]} and s∗ = inf{f(x) | x ∈ [a, b]}

both exist. We need only show ∃x∗, x∗ ∈ [a, b] such that f(x∗) = s∗ and f(x∗) = s∗.

Since s∗ − 1
n

is not an upper bound of f([a, b]) for every n ∈ N, ∃xn ∈ [a, b]
with

s∗ − 1

n
< f(xn) ≤ s∗, for all n ∈ N.

According to the squeeze theorem, we must have f(xn) → s∗ (this says nothing
about whether xn converges or not, however).

But (xn) ⊆ [a, b] is bounded, so applying the Bolzano-Weierstrass theorem,
we ϐind that ∃(xnk

) ⊆ (xn) such that xnk
→ x∗ ∈ [a, b]. As f is continuous,

s∗ = lim
k→∞

f(xnk
) = f

(
lim
k→∞

xnk

)
= f(x∗).

The existence of x∗ ∈ [a, b] such that f(x∗) = s∗ is shown similarly. ■

Let’s take a look at some examples.

aaaaaa

Examples

1. The function f : [0, 1]→ R, f(x) = x2, reaches its maximum andminimum on
[0, 1] since f is continuous, being a polynomial.

2. Let f : [0, 1)→ R be the function deϐined by

f(x) =

{
2, x ∈ (0, 1)

3, x = 0

The function f is not continuous on [0, 1), and [0, 1) is not closed and bounded,
so we cannot use the max/min theorem to conclude that f reaches its global
max/min on [0, 1)... even though it does: 3 at x∗ = 0 and 2 at any x∗ ∈ (0, 1).²

3. The function f : [a, 1] → R, a ∈ (0, 1], deϐined by f(x) = 1
x
reaches its global

max/global min on [a, 1] as f is continuous on [a, 1], being rational there.

4. The function f : (0, 1]→ R deϐined by f(x) = 1
x
is continuous on (0, 1], but we

cannot use the max/min theorem as (0, 1] is not closed. In this case, f has no
global maximum, but it does have a global minimum at x = 1. □
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3.5 Intermediate Value Theorem
The following result has many applications; notably it can help locate the roots of a function.

aaaaaa

Theorem 34
Let f : [a, b] → R be continuous. If ∃α, β ∈ [a, b] such that f(α)f(β) < 0, then
∃γ ∈ (a, b) such that f(γ) = 0.

Proof: we prove the result for f(α) < 0 < f(β); the other case is similar.
Write α1 = α, β1 = β, I1 = [α1, β1], and γ1 = α1+β1

2
. There are 3 possibilities:

i. if f(γ1) = 0, set γ = γ1; then γ ∈ (α1, β1) and the theorem is proven;
ii. if f(γ1) > 0, set α2 = α1, β2 = γ1;
iii. if f(γ1) < 0, set α2 = γ1, β2 = β1.

In the last two cases, set I2 = [α2, β2]. Then I1 ⊇ I2, length(I1) = β1−α1

20
and

f(α2) < 0 < f(β2).

This is the base case n = 1 of an induction process, which can be extended for all
n ∈ N. Either one of two things can occur:

1. ∃n ∈ N such that f(γn) = 0, with γn ∈ (αn, βn) ⊆ (α, β), in which case the
theorem is proven, or

2. there is a chain of nested intervals

I1 ⊇ I2 ⊇ · · · Ik ⊇ Ik+1 ⊇ · · ·

where In = [αn, βn], length(In) = βn−αn

2n−1 , f(αn) < 0 < f(βn) ∀n ∈ N.

According to the nested intervals theorem, since

inf
n∈N
{length(In)} = lim

n→∞

βn − αn

2n−1
= 0,

∃c ∈ [α, β] ⊆ [a, b] such that∩n∈N In = {c}.

It remains to show that f(c) = 0. Note that the sequences (αn), (βn)
both converge to c. Indeed, let ε > 0. By the Archimedean property, ∃Nε ∈ N
such thatNε > log2(β−α

ε
) + 1.

Since c ∈ In for all n ∈ N, then |αn − c| < length(In) = β−α
2n−1 < ε

whenever n > Nε. The proof that βn → c is identical.
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aaaaaa

Since f is continuous on [a, b], it is also continuous at c. Thus,

lim
n→∞

f(αn) = lim
n→∞

f(βn) = f(c).

But f(αn) < 0 for all n, so, Theorem 15:

f(c) = lim
n→∞

f(αn) ≤ 0.

Using the same Theorem, we have f(c) ≥ 0. Then f(c) = 0. Lastly, note that
c ̸= α, β; otherwise, f(α)f(β) = 0.

This concludes the proof, with γ = c. ■

We can use the result to revisit a corollary from Chapter 1.

aaaaaa

Example: Show that ∃x ∈ R+ such that x2 = 2.

Proof: the function f : [0, 2] → R deϐined by f(x) = x2 − 2 is continuous on
[0, 2]. As f(0) = 02 − 2 = −2 < 0 and f(2) = 22 − 2 = 2 > 0, ∃γ ∈ (0, 2) such that
γ2 − 2 = 0, so γ2 = 2, according to Theorem 34. ■

This result easily generalizes to the following.

aaaaaa

Theorem 35 (IēęĊėĒĊĉĎĆęĊ VĆđĚĊ TčĊĔėĊĒ)
Let f : [a, b] → R be continuous. If ∃α < β ∈ [a, b] s.t. f(α) < k < f(β) or
f(α) > k > f(β), then ∃γ ∈ (a, b) such that f(γ) = k.

Proof: assume that f(α) < k < f(β); the proof for the other case is similar.
Consider the function g : [a, b]→ R deϐined by g(x) = f(x)− k. Theorem 30 shows
that g is continuous on [a, b]. Furthermore,

g(α) = f(α)− k < k − k = 0 < f(β)− k = g(β).

By Theorem 34, ∃γ ∈ (α, β) such that g(γ) = f(γ)− k = 0. Thus f(γ) = k. ■

The following result combines the max/min and the intermediate value theorems.

aaaaaa

Theorem 36
If f : [a, b]→ R is continuous, then f([a, b]) is a closed and bounded interval.

Proof: Let m = inf{f [a, b]} and M = sup{f [a, b]}. According to the max/min
theorem, ∃α, β ∈ [a, b] such that f(α) = m and f(β) =M .
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aaaaaa

If m = M , then f is constant and f([a, b]) = [m,m] = [M,M ]. If m < M , then
α ̸= β. Furthermore,m ≤ f(x) ≤M for all x ∈ [a, b], so that f([a, b]) ⊆ [m,M ].

Now, let k ∈ [m,M ]. According to the intermediate value theorem, ∃γ be-
tween α and β such that f(γ) = k. Hence k ∈ f([a, b]) and so [m,M ] ⊆ f([a, b]).
Consequently, f([a, b]) = [m,M ]. ■

The image of any interval by a continuous function is always an interval, but the only time
that we know for a fact that image is of the same type as the original is when the original is
closed and bounded.

aaaaaa

Examples

1. Let f : [0, 1] → R, f(x) = 2x − 1. Then f([0, 1]) is closed and bounded (in
fact, f([0, 1]) = [−1, 1], but the endpoints of f([−1, 1]) are not provided by
Theorem 36).

2. The function f : (0, 2π) → R deϐined by f(x) = sinx is continuous and
f((0, 2π)) = [−1, 1], but Theorem 36 does not apply.

3.6 Uniform Continuity
If f : A → R is continuous (on A), then for ε > 0 and c ∈ A, the δε > 0 that is used to show
continuity of f at c generally depends on ε and on c. But there might be instances when δε
depends only on ε.

The function f is uniformly continuous onA if

x, y ∈ A and |x− y| < δε =⇒ |f(x)− f(y)| < ε.

The notion of uniform continuity is more restrictive than that of (simple) continuity.
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aaaaaa

Theorem 37
If f : A→ R is uniformly continuous on A, then f is continuous on A.

Proof: let c ∈ A and ε > 0. As f is uniformly continuous on A, ∃δε > 0 such
that

|f(x)− f(y)| < ε whenever |x− y| < δε and x, y ∈ A.
In particular, if y = c then

|f(x)− f(c)| < ε whenever |x− c| < δε and x ∈ A.

As c is arbitrary, f is continuous onA. ■

The converse of Theorem 37 is false, as the following example shows.

aaaaaa

Example: show that f : (0,∞) → R deϐined by f(x) = 1
x
is continuous on (0,∞)

but not uniformly continuous on (0,∞).

Proof: that f is continuous on (0,∞) is immediate, as it is a rational func-
tion. Let (xn) = ( 1

n
) ⊆ (0,∞). Clearly, (xn) is a Cauchy sequence as it is a

convergent sequence. But f(xn) = 1
1/n

= n for all n ∈ N, so (f(xn)) is not a Cauchy
sequence in R (as it is not bounded, and thus divergent).

According to a lemma that we will prove next, f cannot be uniformly continu-
ous on (0,∞). ■

In a sense, continuity only requires that there be no “holes” in the function; uniform continu-
ity requires that the combination of domain and rule plays “nicely”.

aaaaaa

Lemma: if f is uniformly continuous onA and (xn) ⊆ A is a Cauchy sequence, then
f(xn) is a Cauchy sequence.

Proof: if (xn) ⊆ A is a Cauchy sequence and δ > 0, ∃Nδ ∈ N such that
|xm − xn| < δ wheneverm,n > Nδ .

But f is uniformly continuous onA, so that ∀ε > 0, ∃δε > 0 such that

x, y ∈ A and |x− y| < δε =⇒ |f(x)− f(y)| < ε.

Combining these two statements, withNε =Mδε , yields

m,n > Nε =⇒ |xm − xn| < δε =⇒ |f(xm)− f(xn)| < ε,

and so (f(xn)) is a Cauchy sequence. ■
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While continuous functions are not generally uniformly continuous, there is a speciϐic class
of functions for which continuity is equivalent to uniform continuity.

aaaaaa

Theorem 38
Let f : [a, b]→ R. Then f is uniformly continuous on [a, b] if it is continuous on [a, b].

Proof: this is the converse of Theorem 37. Assume f is continuous on [a, b].
If f is not uniformly continuous, then ∃ε0 > 0 such that ∀δ > 0, ∃xδ, yδ ∈ [a, b]with

|f(xδ)− f(yδ)| ≥ ε0 and |xδ − yδ| < δ.

For n ∈ N, let δn = 1
n
. The corresponding sequences (xδn), (yδn) lie in [a, b], with

|xδn − yδn| < δn =
1

n
and |f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N.

As (xδn) is bounded, ∃(xδnk
) ⊆ (xδn) such that xδnk

→ z with k → ∞, according to
the Bolazano-Weierstrass theorem.

Furthermore, z ∈ [a, b] according to Theorem 15. The corresponding sequence
(yδnk

) also converges to z since

0 ≤ |yδnk
− z| ≤ |yδnk

− xδnk
|+ |xδnk

− z| < 1

nk

+ |xδnk
− z|

according to the squeeze theorem, as both 1
nk
, |xδnk

− z| → 0 with k → ∞. But f
is continuous, so both (f(xδnk

)), (f(yδnk
)) → f(z), which is impossible as we have

|f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N. Thus f must be uniformly continuous. ■

There is something “special” about the interval [a, b] that allows for all sorts of interesting
results when combined with continuous functions; as we shall see in Chapters 8, 9, 16-17.

aaaaaa

Example: show f : R→ R, f(x) = 1
1+x2 is uniformly continuous on (0, 1).

Proof: let ε > 0. Set δε = ε. Note that ∀z ∈ R, 0 ≤ (|z| − 1)2 = z2 − 2|z| + 1 =⇒
2|z| ≤ 1 + z2 =⇒ | z

1+z2
| ≤ 1/2. Then whenever |x− y| < δε, we have:

|f(x)− f(y)| =
∣∣∣ 1
1+x2 − 1

1+y2

∣∣∣ = ∣∣∣ y2−x2

(1+x2)(1+y2)

∣∣∣ = ∣∣∣ x+y
(1+x2)(1+y2)

∣∣∣ |x− y|
≤
( ∣∣∣ y

1+y2

∣∣∣ · 1
1+x2︸︷︷︸
≤1

+
∣∣ x
1+x2

∣∣ · 1
1+y2︸︷︷︸
≤1

)
|x− y|

≤
( ∣∣∣ y

1+y2

∣∣∣︸ ︷︷ ︸
≤1/2

+
∣∣ x
1+x2

∣∣︸ ︷︷ ︸
≤1/2

)
|x− y| ≤ |x− y| < δε = ε, ■
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3.7 Solved Problems
1. Show lim

x→c
x3 = c3 for any c ∈ R.

Proof: if |x − c| < 1, then |x| < |c| + 1. Let ε > 0 and set δε = min{1, ε
3|c|2+3|c|+1

}.
Then

|x3 − c3| = |x− c||x2 + cx+ c2| ≤ |x− c|
(
|x|2 + |c||x|+ |c|2

)
< |x− c|

(
(|c|+ 1)2 + |c|(|c|+ 1) + |c|2

)
= |x− c|

(
3|c|2 + 3|c|+ 1

)
< δε ·

(
3|c|2 + 3|c|+ 1

)
≤ ε

3|c|2 + 3|c|+ 1
·
(
3|c|2 + 3|c|+ 1

)
= ε,

whenever 0 < |x− c| < δε and x ∈ R. ■

2. Let f : R→ R and let c ∈ R. Show that lim
x→c

f(x) = L if and only if lim
x→0

f(x+ c) = L.

Proof: we have

lim
x→c

f(x) = L

⇕
∀ε > 0,∃δε > 0 s.t. |f(x)− L| < εwhen 0 < |x− c| < δε

⇕
Set x = y + c : ∀ε > 0, ∃δε > 0 s.t. |f(y + c)− L| < εwhen 0 < |y| < δε

⇕
∀ε > 0,∃δε > 0 s.t. |f(y + c)− L| < εwhen 0 < |y − 0| < δε

⇕
lim
y→0

f(y + c) = L,

which completes the proof. ■

3. Use either the ε−δ deϐinitionof the limit or the sequential criterion for limits to establish
the following limits:

a) lim
x→2

1

1− x
= −1;

b) lim
x→1

x

1 + x
=

1

2
;

c) lim
x→0

x2

|x|
= 0, and

d) lim
x→1

x2 − x+ 1

x+ 1
=

1

2
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Proof:
a) Let ε > 0 and set δε = min{12 , ε2}. Then

0 < |x− 2| < δε =⇒ |x− 2| < 1

2
⇐⇒ 3

2
< x <

5

2

⇐⇒ 1

2
< x− 1 <

3

2
⇐⇒ 1

x− 1
< 2.

Thus ∣∣∣∣ 1

1− x
− (−1)

∣∣∣∣ = 1

|x− 1|
|x− 2| = 1

x− 1
|x− 2| < 2δε < ε

whenever 0 < |x− 2| < δε and x ∈ R. (Note that if 0 < |x− 2| < δε, we’ve seen
that x > 3

2 and so that |x− 1| = x− 1. This explains why we have gotten rid of
the absolute values above.)

b) Let ε > 0 and set δε = min{12 , 3ε}. Then

0 < |x− 1| < δε =⇒ |x− 1| < 1

2
⇐⇒ 1

2
< x <

3

2

⇐⇒ 3 < 2(x+ 1) < 5⇐⇒ 1

2(x+ 1)
<

1

3
.

Thus ∣∣∣∣ x

1 + x
− 1

2

∣∣∣∣ = 1

2|x+ 1|
|x− 1| = 1

2(x+ 1)
|x− 1| < 1

3
δε < ε

whenever 0 < |x− 1| < δε and x ∈ R. (Note that if 0 < |x− 1| < δε, we’ve seen
that 2(x + 1) > 3 and so that 2|x + 1| = 2(x + 1). This explains why we have
gotten rid of the absolute values above.)

c) Let (xn) ⊆ R be a sequence s.t. xn → 0 and xn ̸= 0 for all n. Then

x2n
|xn|

=
|xn|2

|xn|
= |xn| → 0,

by theorem 14. By the sequence squeeze theorem, the limit must be thus 0.
d) Let ε > 0 and set δε = min{12 , 32ε}. Then

0 < |x− 1| < δε =⇒ |2x− 1| < 2 and
∣∣∣∣ 1

2(x+ 1)

∣∣∣∣ < 1

3
.

Thus ,whenever 0 < |x− 1| < δε and x ∈ R, we have∣∣∣∣x2 − x+ 1

x+ 1
− 1

2

∣∣∣∣ = ∣∣∣∣ 2x− 1

2(x+ 1)

∣∣∣∣ |x− 1| < 2

3
|x− 1| < 2

3
δε < ε.

This completes the exercise. ■

4. Show that the following limits do not exist:

a) lim
x→0

1

x2
, with x > 0;
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b) lim
x→0

1√
x
, with x > 0;

c) lim
x→0

(x+ sgn(x)), and

d) lim
x→0

sin(1/x2), with x > 0.

Solution: in each instance, we only give some sequence(s) for which Theorem 26
shows the limit does not exist.
a) xn = 1

n → 0, but f(xn) = 1
1/n2 = n2 →∞.

b) xn = 1
n → 0, but f(xn) = 1

1/
√
n
=
√
n→∞.

c) xn = 1
n , yn = − 1

n → 0, but f(xn) = 1
n + 1→ 1, f(yn) = − 1

n − 1→ −1.
d) xn =

√
2

(4n+1)π , yn =
√

2
(4n+3)π → 0 but

f(xn) = sin
(
4n+ 1

2
π

)
→ 1, f(yn) = sin

(
4n+ 3

2
π

)
→ −1.

This completes the exercise. □

5. Let c ∈ R and let f : R → R be such that lim
x→c

(f(x))2 = L. Show that if L = 0, then
lim
x→c

f(x) = 0. Show that if L ̸= 0, then f may not have a limit at c.

Proof: if lim
x→c

(f(x))2 = 0 then ∀η > 0, ∃δη > 0 such that

|f(x)|2 =
∣∣∣(f(x))2 − 0

∣∣∣ < η

whenever 0 < |x− c| < δη . Let ε > 0.

By deϐinition of the real numbers, ∃ηε > 0 such that ε = √ηε. Set δε = δηε . Then

|f(x)− 0| = |f(x)| =
√
|f(x)|2 < √ηε = ε

whenever 0 < |x− c| < δε.

Now, consider the function f : R→ R deϐined by

f(x) =

{
1 if x ≥ 0

−1 if x < 0
.

Then (f(x))2 ≡ 1 and
lim
x→0

(f(x))2 = lim
x→0

1 = 1.

But lim
x→0

f(x) does not exist since (xn) = ( 1n), (yn) = (− 1
n) are sequences such that

xn, yn → 0, xn, yn ̸= 0 for all n and
f(xn) = −1→ −1 ̸= 1← 1 = f(yn).

This completes the proof. ■
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6. Let f : R → R, let J be a closed interval in R and let c ∈ J . If f2 is the restriction of
f to J , show that if f has a limit at c then f2 has a limit at c. Show the converse is not
necessarily true.

Proof: suppose lim
x→c

f(x) = L exists. Then, ∀ε > 0, ∃δε > 0 s.t. |f(x)−L| < εwhen-
ever 0 < |x− c| < δε. But f2(x) = f(x) for all x ∈ J ⊆ R, so ∀ε > 0, ∃δε > 0 (exactly
as above) s.t. |f2(x)−L| = |f(x)−L| < εwhenever 0 < |x− c| < δε and x ∈ J , and
so lim

x→c
f2(x) = L.

Now consider f : R→ R deϐined by

f(x) =

{
0 if x ∈ (−∞, 0) ∪ (1,∞)

1 if x ∈ [0, 1]
,

with J = [0, 1] and f2 = f |J . Then lim
x→1

f2(x) = 1 but lim
x→1

f(x) does not exist. ■

7. Determine the following limits and state which theorems are used in each case.

a) lim
x→2

√
2x+ 1

x+ 3
, (x > 0);

b) lim
x→2

x2 − 4

x− 2
, (x > 0);

c) lim
x→0

√
(x+ 1)2 − 1

x
, (x > 0), and

d) lim
x→1

√
x− 1

x− 1
, (x > 0).

Solution: We will do c) in its entirety and only give the answers to the others.

Consider the sequence (xn) = ( 1n). Then xn → 0, xn ̸= 0 ∀n ∈ N, and

(xn + 1)2 − 1

xn
=

(
1
n + 1

)2 − 1
1
n

=
1

n
+ 2→ 2.

Hence, if lim
x→0

(x+ 1)2 − 1

x
exists, its value must be 2, by Theorem 26.

Let ε > 0. Set δε = ε. Then when 0 < |x− 0| < δε and x > 0, we have∣∣∣∣(x+ 1)2 − 1

x
− 2

∣∣∣∣ = ∣∣∣∣x2 + 2x+ 1− 1− 2x

x

∣∣∣∣ = ∣∣∣∣x2x
∣∣∣∣ = |x| = |x− 0| < δε = ε.

a) 1 b) 4 d) 1
2 □
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8. Give examples of functions f and g such that f and g do not have limits at point c, but
both f + g and fg have limits at c.

Solution: Let f, g : R→ R be deϐined by

f(x) =

{
1 x ≥ 0

−1 x < 0

and g(x) = −f(x) for all x ∈ R. Then f(x) + g(x) ≡ 0 and f(x)g(x) ≡ −1. As a
result,

lim
x→0

(f + g)(x) = 0 and lim
x→0

(fg)(x) = −1,

but the limits of f and g don’t exist at 0 (see solved problem 5). □

9. Determine whether the following limits exist in R:

a) lim
x→0

sin
(

1

x2

)
, with x ̸= 0;

b) lim
x→0

x sin
(

1

x2

)
, with x ̸= 0;

c) lim
x→0

sgn sin
(
1

x

)
, with x ̸= 0, and

d) lim
x→0

√
x sin

(
1

x2

)
, with x > 0.

Solution:
a) Let (xn) = ( 1√

nπ
) and (yn) = (

√
2

(4n+1)π ) for all n ∈ N. Then xn, yn → 0 and
xn, yn ̸= 0 for all n ∈ N. But

sin
(

1

x2n

)
= sin(nπ) = 0 and sin

(
1

y2n

)
= sin

(
(4n+ 1)π

2

)
= 1

for all n ∈ N.

Then sin(1/x2n)→ 0 and sin(1/y2n)→ 1. As 0 ̸= 1, lim
x→0

sin
(

1

x2

)
doesn’t exist.

b) Consider the sequence (xn) = ( 1√
nπ

). Then xn → 0 and xn ̸= 0 for all n ∈ N.
Furthermore,

xn sin
(

1

x2n

)
=

1√
nπ

sin(nπ) = 1√
nπ
· 0→ 0.

As a result, if lim
x→0

x sin
(

1

x2

)
exists, it must take the value 0. Let ε > 0. Set

δε = ε. Then∣∣∣∣x sin
(

1

x2

)
− 0

∣∣∣∣ = |x| ∣∣∣∣sin( 1

x2

)∣∣∣∣ ≤ |x| = |x− 0| < δε = ε

whenever 0 < |x− 0| < δε and x > 0. Hence lim
x→0

x sin
(

1

x2

)
= 0.
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c) Let (xn) =
(

2
(2n+1)π

)
. Then xn → 0, xn ̸= 0 for all n ∈ N and

sgn
(
sin
(

1

xn

))
= sgn ((−1)n) = (−1)n,

which does not converge. Hence lim
x→0

sgn
(
sin
(
1

x

))
does not exist.

d) lim
x→0

√
x sin

(
1

x2

)
= 0, with the same proof as b), save for δε = ε2. □

10. Let f : R → R be s.t. f(x + y) = f(x) + f(y) for all x, y ∈ R. Assume lim
x→0

f(x) = L

exists. Prove that L = 0 and that f has a limit at every point c ∈ R.
Proof: as f is additive, we have f(2x) = f(x+ x) = f(x) + f(x) = 2f(x), so that

L = lim
y→0

f(y) = lim
2x→0

f(2x) = lim
x→0

f(2x) = lim
x→0

2f(x) = 2 lim
x→0

f(x) = 2L;

hence L = 2L and L = 0, i.e., lim
x→0

f(x) = 0.

Now, let c ∈ R. Then

lim
x→c

f(x) = lim
x→c

(f(x− c) + f(c)) = lim
x→c

f(x− c) + lim
x→c

f(c)

= lim
y→0

f(y) + f(c) = 0 + f(c) = f(c).

As f is deϐined on all of R, f(c) exists for all c ∈ R, and so lim
x→c

f(x) = f(c) exists for
all c ∈ R. ■

11. LetK > 0 and let f : R→ R satisfy the condition

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ R. Show that f is continuous on R.
Proof: let c ∈ R and ε > 0. Set δε = ε

K . Then

|f(x)− f(c)| ≤ K|x− c| < Kδε < K
ε

K
= ε

whenever |x− c| < δε. ■

12. Let f : (0, 1)→ R be bounded and s.t. lim
x→0

f(x) does not exist. Show that there are two
convergent sequences (xn), (yn) ⊆ (0, 1) with xn, yn → 0 and f(xn) → ξ, f(yn) → ζ ,
but ξ ̸= ζ .

Proof: for n ∈ N, let In = (0, 1/n) and set

sn = sup f(In) and tn = inf f(In).

These are well-deϐined as f(In) is bounded.
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By construction, (sn) is decreasing and (tn) is increasing. Since

s1 ≥ sn = sup f(In) ≥ inf f(In) = tn ≥ t1,

(sn) is bounded below by t1 and (tn) is bounded above by s1. Hence sn → s and
tn → t exist, by the bounded monotone convergence theorem.

For n ∈ N, let xn, yn ∈ In be s.t.

|f(xn)− sn| <
1

n
and |f(yn)− tn| <

1

n
.

This can always be done as sn− 1
n and tn+ 1

n are not the supremumand the inϐimum,
respectively, of f(In). Then, xn, yn → 0 and xn, yn ̸= 0 for all n ∈ N.

Furthermore, f(xn) → s and f(yn) → t according to the sequence squeeze theo-
rem; indeed, sn− 1

n < f(xn) ≤ sn, tn ≤ f(yn) < tn+
1
n , sn → s, and tn → t, and the

statement follows.

Now, suppose that s = t = ℓ. Then sn, tn → ℓ. Let ε > 0. ∃N1, N2 ∈ N s.t. |sn−ℓ| < ε
whenever n > N1 and |tn − ℓ| < εwhenever n > N2. SetNε = max{N1, N2}. Then

ℓ− ε < tn ≤ sn < ℓ− ε

whenever n > Nε. Set δε = 1
Nε

. Then

ℓ− ε < tNε = inf f(INε) ≤ f(x) ≤ sup f(INε) ≤ sNε < ℓ+ ε,

that is, |f(x) − ℓ| < ε whenever 0 < |x − 0| < 1
Nε

= δε. Hence lim
x→0

f(x) = ℓ, which
contradicts the hypothesis that the limit does not exist. Consequently, s ̸= t, which
completes the proof. ■

13. Let f : R→ R be continuous on R and let P = {x ∈ R : f(x) > 0}. If c ∈ P , show that
there exists a neighbourhood Vδ(c) ⊆ P .

Proof: let c ∈ P . Then f(c) > 0 and ∃ε0 > 0 s.t. f(c) − ε0 > 0. By the continuity of
f , ∃δε0 s.t. |f(x)− f(c)| < ε0 whenever |x− c| < δε0 .

Thus, 0 < f(c)− ε0 < f(x) for all x ∈ Vδε0 , i.e. Vδε0 ⊆ P . ■

14. Prove that if an additive function is continuous at some point c ∈ R, it is continuous on R.
Proof: in the light of a previous question on the topic, it is sufϐicient to show that if
lim
x→c

f(x) = f(c) for some c ∈ R, then lim
x→0

f(x) = 0. Let f be continuous at c. Then

f(c) = lim
x→c

f(x) = lim
x→c

(f(x− c) + f(c))

= lim
x→c

f(x− c) + lim
x→c

f(c) = lim
y→0

f(y) + f(c),

hence lim
y→0

f(y) = 0, which completes the proof. ■
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15. If f is a continuous additive function on R, show that f(x) = cx for all x ∈ R, where
c = f(1).

Proof: let n ∈ N. Then

f(1) = f
(n
n

)
= f

(
1

n
+ · · ·+ 1

n

)
= f

(
1

n

)
+ · · ·+ f

(
1

n

)
= nf

(
1

n

)
,

hence 1
nf(1) = f

(
1
n

)
.

Set c = f(1). Let y ∈ Q. Then y = m
n , wherem ∈ Z and n ∈ N×, and

f(y) = f
(m
n

)
= mf

(
1

n

)
= m

1

n
f(1) = yc.

Let x ∈ R. Since x is a limit point of Q, ∃(xn) ⊆ Q s.t. xn → x, with xn ̸= x for
all n ∈ N. But f(xn) → f(x), by continuity, so f(xn) = cxn → cx, by the above
discussion. Hence, f(x) = cx. ■

16. Let I = [a, b] and f : I → R be a continuous function on I s.t. ∀x ∈ I , ∃y ∈ I s.t.
|f(y)| ≤ 1

2
|f(x)|. Show ∃c ∈ I s.t. f(c) = 0.

Proof: let x1 ∈ I . By hypothesis, ∃x2 ∈ I s.t.

|f(x2)| ≤
1

2
|f(x1)|.

Since x2 ∈ I , ∃x3 ∈ I s.t.

|f(x3)| ≤
1

2
|f(x2)| ≤

1

2

(
1

2
|f(x1)|

)
=

1

22
|f(x1)|,

and so on. The sequence (xn) ⊆ I thusly built satistϐies

0 ≤ |f(xn)| ≤
1

2n−1
|f(x1)|,

by induction (can you show this?).

Then lim
n→∞

|f(xn)| = 0, by the squeeze theorem, and sof(xn)→ 0. As (xn) is bounded,
it has a convergent subsequence (xnk

) (according to the Bolzano-Weierstrass theo-
rem) whose limit c is in I (because a ≤ xn ≤ b for all n).

Since (f(xnk
)) is a subsequence of (f(xn)), then

lim
k→∞

f(xnk
) = 0.

However,
lim
k→∞

f(xnk
) = f

(
lim
k→∞

xnk

)
= f(c),

as f is continuous. Hence f(c) = 0. ■
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17. Show that every polynomial with odd degree has at least one real root.
Proof: let

f(x) = a2n+1x
2n+1 + a2nx

2n + · · ·+ a1x+ a0,

where ai ∈ R for i = 0, . . . , 2n+ 1. Assume that a2n ̸= 0.³ Let

M = max
{
(2n+ 1)

|a2n|
|a2n+1|

,

(
|a2n−k|
|a2n|

)1/k

; k = 1, . . . , 2n

}
.

Then, whenever |x| ≥M ,
|a2n||x2n| ≥ |a2n||x2n|;
|a2n||x2n| ≥ |a2n−1||x2n−1|;
· · · ;
|a2n||x2n| ≥ |a1||x|, and
|a2n||x2n| ≥ |a0|,

and so

|a2nx2n + · · · a0| ≤ |a2n||x2n|+ · · ·+ |a0| ≤ |a2n||x2n|+ · · ·+ |a2n||x2n|
= (2n+ 1)|a2n||x2n| ≤ |a2n+1||x2n+1| = |a2n+1x

2n+1|,

from which we concude that f(M + 1)f(−M − 1) < 0.

As f is continuous on [−M − 1,M + 1], ∃c ∈ [−M − 1,M + 1] s.t. f(c) = 0, by
the intermediate value theorem. ■

18. Let f : [0, 1]→ R be continuous, with f(0) = f(1). Show ∃c ∈ [0, 1
2
] s.t. f(c) = f(c+ 1

2
).

Proof: let g : [0, 12 ]→ R be deϐined by g(x) = f(x)− f(x+ 1
2). By construction, g is

continuous on [0, 12 ]. If g(0) = g(1/2) = 0, there is nothing else to show. Otherwise,

g(0) = f(0)− f(1/2) and g(1/2) = f(1/2)− f(1) = f(1/2)− f(0);

hence g(0)g(12) < 0. By the intermediate value theorem, ∃c ∈ [0, 12 ] s.t. g(c) = 0, that
is f(c)− f(c+ 1

2) = 0. This completes the proof. ■

19. Show that f(x) = 1
x2 is uniformly continuous onA = [1,∞), but not onB = (0,∞).

Proof: if x, y ∈ A, then x, y ≥ 1. In particular, |x| = x and |y| = y, and 1
x2y

, 1
xy2
≤ 1.

Let ε > 0 and set δε = ε
2 . Then

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣ = ∣∣∣∣y2 − x2x2y2

∣∣∣∣ = |y + x||y − x|
x2y2

= |y − x|
(

y

x2y2
+

x

x2y2

)
= |x− y|

(
1

x2y
+

1

xy2

)
≤ 2|x− y| < 2δε = ε

whenever |x− y| < δε and x, y ∈ A.

³If that is not the case, the proof will proceed in a similar fashion, but a2n will be replaced by the ϐirst ai that
is non-zero, starting with a2n−1; if all coefϐicients are 0, then the real root is 0.

P. Boily (uOttawa) 97



3.7. SOLVED PROBLEMS

We show that the negation of the deϐinition of uniform continuity holds on B. Let
ε = 1 and δ > 0. Then, ∃N ∈ N s.t. 1

N2 < δ. Set xN = 1
N and yN = 1

N+1 . Clearly,
xN , yN ∈ B and

|xN − yN | =
∣∣∣∣ 1N − 1

N + 1

∣∣∣∣ = 1

N(N + 1)
≤ 1

N2
< δ.

However,
|f(xN )− f(yN )| = |N2 − (N + 1)2| = 2N + 1 > ε,

that is, f is not uniformly continuous onB. ■

20. If f(x) = x and g(x) = sinx, show that f and g are both uniformly continuous onR but
that their product is not uniformly continuous on R.

Proof: let ε > 0 and set δε = ε. Then

|f(x)− f(y)| = |x− y| < δε = ε

and

|g(x)− g(y)| = | sinx− sin y| = 2

∣∣∣∣sin(1

2
(x− y)

)
cos
(
1

2
(x+ y)

)∣∣∣∣
≤ 2

1

2
|x− y| · 1 = |x− y| < δε = ε

(the second-last inequality can be obtained using Taylor’s theorem on the sin func-
tion, see Chapter 4), whenever |x − y| < δε and x, y ∈ R. Hence f and g are both
uniformly continuous.

Set h(x) = x sinx. Let ε = 1 and δ > 0. Them ∃N ∈ N s.t. 1
N < δ and K ∈ N

s.t.
K >

1

4

(
1− cos 1

N

)−1

+ 3.

Deϐine
xK =

4K − 3

2
π and yK =

4K − 3

2
π − 1

N
.

Then |xK − yK | = 1
N < δ and

|h(xK)− h(yK)| ≥ 4K − 3

2
π

(
1− cos 1

N

)
>
π

2
> 1 = ε,

and so h is not uniformly continuous. ■

21. Let A ⊆ R and suppose that f has the following property: ∀ε > 0, ∃gε : A → R s.t. gε
is uniformly continuous onAwith |f(x)− gε(x)| < ε for all x ∈ A. Show f is uniformly
continuous on A.
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Proof: let ε > 0. Then ε
3 > 0 and there exists gε/3 as in the hypothesis: hence

∃ηε/3 > 0 s.t. |gε/3(x) − gε/3(y)| < ε
3 whenever |x − y| < ηε/3 and x, y ∈ A. Set

δε = ηε/3. Then

|f(x)− f(y)| = |f(x)− gε/3(x) + gε/3(x)− gε/3(y) + gε/3(y)− f(y)|
≤ |f(x)− gε/3(x)|+ |gε/3(x)− gε/3(y)|+ |gε/3(y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε

whenever |x− y| < δε and x, y ∈ A. Hence, f is uniformly continuous onA. ■

22. Is a continuous p−periodic fonction on R bounded and uniformly continuous on R?
Proof: since f is continuous, then |f | is also continuous, being the composition of
two continuous functions. As f is p−periodic, ∃c ∈ [0, p] s.t.

sup
x∈R
|f(x)| = sup

x∈[0,p]
|f(x)| = |f(c)|,

by the max/min theorem. Hence f is bounded by |f(c)| on R.

Let ε > 0. By hypothesis, f is continuous on the closed interval [−1, p + 1], which
implies that that f is uniformly continuous on [−1, p+1] (according to Theorem 38).
Then, ∃δε > 0 s.t. |f(x)− f(y)| < εwhenever |x− y| < δε and x, y ∈ [−1, p+ 1].

Without loss of generality, we can assume that δε < 1. Let x, y ∈ R s.t. |x − y| < δε.
Then ∃k ∈ Z and α, β ∈ [−1, p+ 1] s.t. x = α+ kp and y = β + kp.

Thus |α − β| = |x − y| < δε and |f(x) − f(y)| = |f(α) − f(β)| < ε, since f is
uniformly continuous on [−1, p+ 1]; consequently, f is uniformly continuous. ■

23. Deϐine g : R→ R by

g(x) =

{
(−1)n

n
if x = 1/n for some n ∈ N,

0 otherwise

Prove that g is continuous at 0.
Proof: let ε > 0. Set δε = ε. Then,∣∣∣∣ 1n − 0

∣∣∣∣ < δ =⇒
∣∣∣∣g( 1n)− g(0)

∣∣∣∣ = ∣∣∣∣ 1n
∣∣∣∣ = ∣∣∣∣ 1n − 0

∣∣∣∣ < δε = ε

whenever |1/n− 0| < δε, so g is continuous at 0. ■
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3.8 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Let A = { 1
n
| n ∈ N}. Show that no real number strictly greater than 1 can be a limit

point ofA.

3. Prove the “min” part of Theorem 33.

4. Complete the solution of solved problem 7.

5. Let f : R→ R. The pre-image of a subsetB ⊆ R under f is

f−1(B) = {a ∈ A | f(a) ∈ B}.

Prove that f is continuous if and only if the pre-image of every open subset of R is an
open subset of R.

6. A function f : A→ R is said to be Lipschitz if there is a positive numberM such that

|f(x)− f(y)| ≤M |x− y| ∀x, y ∈ A.

Show that a Lipschitz function must be uniformly continuous, but that uniformly con-
tinuous functions do not have to be Lipschitz.
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Chapter 4

Differential and Integral Calculus

We have spent a fair amount of time and energy on concepts like the limit,
continuity, and uniform continuity, with the goal of making differential
and integral calculus sound. In this chapter, we introduce the concepts
of differentiability and Riemann-integrability for functions, and prove
a number of useful calculus results.

4.1 Differentiation
Let I ⊆ R be an interval, f : I → R, and c ∈ I . The real number L is the derivative of f at c,
denoted by f ′(c) = L, if

∀ε > 0,∃δε > 0 s.t. x ∈ I and 0 < |x− c| < δε =⇒
∣∣∣∣f(x)− f(c)x− c

− L
∣∣∣∣ < ε.

In that case, we say that f is differentiable at c.¹ While f ′(c) (if it exists) is a real number, ,
f ′ : I → R is a function – the derivative function.

aaaaaa

Example: let f : I → R be deϐined by f(x) = x3. Set c ∈ I . Then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

x3 − c3

x− c
= lim

x→c
(x2 + cx+ c2) = 3c2.

The corresponding derivative function is f ′ : I → R, f ′(x) = 3x2. □

As we learn in calculus courses, there is a link between differentiability and continuity.

¹This deϐinition simply states that f ′(c) exists if lim
x→c

f(x)−f(c)
x−c exists, and that, in that case,

f ′(c) = lim
x→c

f(x)− f(c)
x− c

.
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aaaaaa

Theorem 39
If f : I → R has a derivative at c, then f is continuous at c.

Proof: let x, c ∈ I , x ̸= c. Then f(x)− f(c) =
(

f(x)−f(c)
x−c

)
(x− c) and so

lim
x→c

(f(x)− f(c)) = lim
x→c

f(x)− f(c)
x− c

· lim
x→c

(x− c),

if all the limits exist. But x− c→ 0when x→ c, and

lim
x→c

f(x)− f(c)
x− c

= f ′(c)

by hypothesis, so

lim
x→c

(f(x)− f(c)) = f ′(c) = 0 = 0 =⇒ lim
x→c

f(x) = f(c),

which means that f is continuous at c. ■

The converse of Theorem 39 does not always hold, however. The function | · | : R → R, for
instance, is continuous at x = 0, but it has no derivative there as |x|/x has no limit when
x→ 0. Continuity is a necessary condition for differentiability, but it is not sufϐicient.

aaaaaa

Example (WĊĎĊėĘęėĆĘĘ' MĔēĘęĊė) Weierstrass provided the ϐirst example of
such a function in 1872: f : R→ R deϐined by

f(x) =
∑
n∈N

cos(3nx)
2n

.

That it took so long to ϐind an example is mostly due to the fact that the deϐinition of
a function has evolved a fair amount over the last 200 years. □

The usual rules of differentiability are easily demonstrated.

aaaaaa

Theorem 40
Let c ∈ I , I an interval, α ∈ R, f, g : I → R be differentiable at c, with g(c) ̸= 0. Then

1. αf is differentiable at c and (αf)′(c) = αf ′(c);

2. f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c);

3. fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c);

4. f/g is differentiable at c and (f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
.
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aaaaaa

Proof: in all instances, we compute the limit of the differential quotient, taking into
account the fact that f and g are differentiable at c.

1. If αf is differentiable at c, then

(αf)′(c) = lim
x→c

(αf)(x)− (αf)(c)

x− c
= lim

x→c

α(f(x)− f(c))
x− c

= α lim
x→c

f(x)− f(c)
x− c

.

But f is differentiable at c, so the last limit exists, validating the string of equa-
tions, and is equal to f ′(c), and so (αf)′(c) = αf ′(c).

2. If f + g is differentiable at c, then

(f + g)′(c) = lim
x→c

(f + g)(x)− (f + g)(c)

x− c
= lim

x→c

f(x) + g(x)− f(c)− g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

+ lim
x→c

g(x)− g(c)
x− c

.

But both f, g is differentiable at c, so the sum of limits exists, validating the
string of equations, and is equal to f ′(c)+g′(c), and so (f+g)′(c) = f ′(c)+g′(c).

3. If fg is differentiable at c, then

(fg)′(c) = lim
x→c

(fg)(x)− (fg)(c)

x− c
= lim

x→c

f(x)g(x)− f(c)g(c)
x− c

= lim
x→c

f(x)g(x)− f(c)g(x) + f(c)g(x)− f(c)g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

g(x) + lim
x→c

f(c)
g(x)− g(c)
x− c

= lim
x→c

f(x)− f(c)
x− c

· lim
x→c

g(x) + f(c) lim
x→c

g(x)− g(c)
x− c

But both f, g is differentiable at c, so the differential quotient limits exist, vali-
dating the string of equations. Furthermore, g is continuous at c, being differ-
entiable at c (acccording to Theorem 39). Hence

(fg)′(c) = f ′(c) · lim
x→c

g(x) + f(c)g′(c) = f ′(c)g(c) + f(c)g′(c).

4. Set h = f/g; then f(c) = g(c)h(c) and f ′(c) = g′(c)h(c) + g(c)h′(c) by the
previous rule. Thus

(f/g)′(c) = h′(c) =
f ′(c)− g′(c)h(c)

g(c)
=
f ′(c)− g′(c)f(c)/g(c)

g(c)
=
f ′(c)g(c)− g′(c)f(c)

[g(c)]2
,

which completes the proof. ■
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Be careful! Although what we wrote in the proof for the fourth rule is undeniably true, we
still need to show that h is differentiable at c under the given conditions before we can use
the product rule. The proof could instead look like the following (reprise).

aaaaaa

4. Since g is continuous at c (being differentiable at c) and g(c) ≠ 0, ∃ an interval
J ⊆ I such that c ∈ J an g ̸= 0 on J . If f/g is differentiable at c, then

(f/g)′(c) = lim
x→c

(f/g)(x)− (f/g)(c)

x− c
= lim

x→c

f(x)/g(x)− f(c)/g(c)
x− c

= lim
x→c

f(x)g(c)− f(c)g(x)
g(x)g(c)(x− c)

= lim
x→c

f(x)g(c)− f(c)g(c) + f(c)g(c)− f(c)g(c)
g(x)g(c)(x− c)

,

so that

(f/g)′(c) = lim
x→c

1

g(x)g(c)

[
f(x)− f(c)

x− c
g(c)− f(c)g(x)− g(c)

x− c

]
= lim

x→c

1

g(x)g(c)
·
[
lim
x→c

f(x)− f(c)
x− c

g(c)− f(c) lim
x→c

g(x)− g(c)
x− c

]
.

But both f, g is differentiable at c, so the differential quotient limits exist,
validating the string of equations.

Furthermore, g is continuous at c, being differentiable at c (cf. Theorem 39),
and g ̸= 0 on J , so that 1

g(x)
→ 1

g(c)
when x→ c. Thus

(f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
. ■

Using mathematical induction, we can easily show that[ n∑
i=1

fi

]′
(c) =

n∑
i=1

f ′
i(c) and

[ n∏
i=1

fi

]′
(c) =

n∑
i=1

(∏
j ̸=i

fj(c)
)
f ′
i(c),

if f1, . . . , fn are all differentiable at c. In particular, if f1 = · · · = fn, then

(fn)′(c) = nfn−1(c) · f ′(c).

If we consider the identity function f , then for c ∈ R, we have

f ′(c) = lim
x→c

x− c
x− c

= 1 =⇒ (fn)′(x) = nfn−1(x) · f ′(x) = nxn−1

for all x ∈ R, n ∈ N; this can be extended to n ∈ Z using Theorem 40.4.
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aaaaaa

Theorem 41 (CĆėĆęčĊ́ĔĉĔėĞ)
Let I = [a, b] and f : I → R. Then f is differentiable at c ∈ I if and only if
∃φc : I → R, continuous at c such that f(x) − f(c) = φc(x)(x − c), for all x ∈ I . In
that case, φc(c) = f ′(c).

Proof: let c ∈ I . Assume that f ′(c) exists. Deϐine φc : I → R by

φc(x) =

{
f(x)−f(c)

x−c
, x ̸= c

f ′(c), x = c

Then φc is continuous at c since

lim
x→c

φc(x) = lim
x→c

f(x)− f(c)
x− c

= f ′(c) = φc(c).

If x = c, then f(x) = f(c) and

f(x)− f(c) = f(c)− f(c) = 0 = φc(c)(c− c) = φc(x)(x− c).

If x ̸= c and x ∈ I , then, by deϐinition, f(x)− f(c) = φc(x)(x− c). Assume now that
∃φc : I → R, continuous at c, and such that f(x)− f(c) = φc(x)(x− c), for all x ∈ I .

If x ̸= c, then
φc(x) =

f(x)− f(c)
x− c

and, since φc is continuous at c,

φc(c) = lim
x→c

φc(x) = lim
x→c

f(x)− f(c)
x− c

exists. Then φc(c) = f ′(c) and f is differentiable at c. ■

It is important to recognize that φc is not, as a function, the same as f ′, in general – it is only
at c that they can be guaranteed to coincide, although in certain cases (such as when f is
a linear function), f ′(x) = φc(x) for all c in I . Carethéodory’s Theorem can be used to prove
an important rule of calculus.

aaaaaa

Theorem 42 (CčĆĎē RĚđĊ)
Let I, J be closed bounded intervals, g : I → R and f : I → R be functions such that
f(J) ⊆ I , and let c ∈ J , with d = f(c). If f is differentiable at c and g is differentiable
at d, then the composition g ◦ f : J → R is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c) = g′(d)f ′(c)

.
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aaaaaa

Proof: since f ′(c) exists, Carathéodory’s Theorem implies thatφc : J → R such that
φc is continuous at c ∈ J with

φc(c) = f ′(c), and f(x)− f(c) = φc(x)(x− c), for all x ∈ J.

Since g′(d) exists, ∃ψd : I → R such that ψd is continuous at d ∈ I , with

ψd(d) = g′(d), and g(y)− g(d) = ψd(y)(y − d), for all y ∈ I.

Thus, if y = f(x) and d = f(c), we have

(g ◦ f)(x)− (g ◦ f)(c) = g(f(x))− g(f(c)) = ψd(f(x))(f(x)− f(c))
= ψd(f(x))φc(x)(x− c) =

[
(ψd ◦ f)(x) · φc(x)

]
(x− c),

for all x ∈ J such that f(x) ∈ I .

However (ψd ◦ f) · φc is continuous at c, being the product of two functions which
are continuous at c. According to Carathéodory, (ψd ◦ f)(c) · φc(c) = (g ◦ f)′(c). But

(ψd ◦ f)(c) · φc(c) = ψd(f(c))φc(c) = g′(f(c))f ′(c) = g′(d)f ′(c),

which completes the proof. ■

The chain rule can be used to determine some of the other classical rules of differentiation.

aaaaaa

Examples

Suppose that f : I → R is differentiable at c and that f, f ′ ̸= 0 on I . If h is
deϐined by h(y) = 1

y
, y ̸= 0, then h′(y) = − 1

y2
. Thus

(1/f)′(x) = (h ◦ f)′(x) = h′(f(x)) · f ′(x) = − f ′(x)

(f(x))2
, for all x ∈ I.

Let g = | · |. Then g′(c) = sgn(c) for all c ̸= 0. Indeed,

lim
x→c

|x| − |c|
x− c

=


lim
x→c

x− c
x− c

, c > 0

− limx→c
x− c
x− c

, c < 0
=

{
1, c > 0

−1, c < 0
= sgn(c),

but g′(0) does not exist (even though sgn(0) = 0). If f : [a, b]→ R is differen-
tiable, the chain Rule states that |f |′(x) = sgn(f(x)) · f ′(x). What happens if
f(c) = 0? Is |f | differentiable at c?
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4.1.1 Mean Value Theorem
With basic calculus in the bag, we can now tackle some of the heavy analysis hitters. Let I be
an interval; a function f : I → R has a relative maximum at c ∈ I if ∃δ > 0 s.t.

f(x) ≤ f(c), ∀x ∈ Vδ(c) = (c− δ, c+ δ);

it has a relative minimum at c ∈ I if ∃δ > 0 such that
f(x) ≥ f(c), ∀x ∈ Vδ(c) = (c− δ, c+ δ).

If f has either a relative maximum or a relative minimum at c, we say that it has a relative
extremum at c.²

aaaaaa

Theorem 43
Let f : [a, b]→ R, c ∈ (a, b). If f has a relative extremum at c and if f is differentiable
at c, then f ′(c) = 0.

Proof: without loss of generality, assume that f has a relative maximum at c;
the proof for a relative minimum follows the same lines. Let δ̃ be the quantity
whose existence is guaranteed by the deϐinition:

f(x) ≤ f(c), ∀x ∈ Vδ̃.

If f ′(c) > 0, then ∃δ > 0 such that f(x)−f(c)
x−c

> 0 whenever 0 < |x − c| < δ. Indeed,
according to the deϐinition of the derivative, if ε = 1

2
f ′(c) > 0, ∃δε > 0 such that∣∣∣∣f(x)− f(c)x− c

− f ′(c)

∣∣∣∣ < ε =
1

2
f ′(c)

whenever 0 < |x− c| < δε. Set δ = min{δε, δ̃}. Then

−1

2
f ′(c) <

f(x)− f(c)
x− c

− f ′(c) <
1

2
f ′(c), whenever 0 < |x− c| < δ,

and so
0 <

1

2
f ′(c) <

f(x)− f(c)
x− c

, whenever 0 < |x− c| < δ.

But if x ∈ Vδ(c)with x > c, then

f(x)− f(c) = (x− c)︸ ︷︷ ︸
>0

· f(x)− f(c)
x− c︸ ︷︷ ︸
>0

> 0,

and so f(x) > f(c), which contradicts the fact that f has a relative maximum at c.
Thus, f ′(c) ̸> 0. We can prove that f ′(c) ̸< 0 using a similar argument. As neither
f ′(c) > 0 nor f ′(c) < 0, we must have f ′(c) = 0. ■

²Note that the deϐinition of relative extremum makes no mention of continuity or differentiability.
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This result justiϐies the commonpractice of looking for relative extremaat rootsof thederiva-
tive. Since c is not an endpoint of I , we must also include a and b in the search for extrema.³
The next theorem has far-reaching consequences.

aaaaaa

Theorem 44 (RĔđđĊ)
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If f(a) = 0 and
f(b) = 0, ∃c ∈ (a, b) such that f ′(c) = 0.

Proof: if f ≡ 0 on [a, b], then the conclusion holds for any c ∈ (a, b). If ∃x∗
such that f(x∗) ̸= 0, we may suppose, without loss of generality, that f(x∗) > 0.
According to the max/min theorem, f reaches its maximum

sup{f(x) | x ∈ [a, b]} > 0

somewhere in [a, b]. But since f(a) = f(b) = 0, the maximum must be reached in
(a, b). Denote that point by c. Then f ′(c) exists and since f has a relative maximum
at c, Theorem 43 implies that f ′(c) = 0. ■

This subsection’s main result is an easy corollary of Rolle’s Theorem.

aaaaaa

Theorem 45 (MĊĆē VĆđĚĊ TčĊĔėĊĒ)
Let f : [a, b] → R be continuous on [a, b]. If f is differentiable on (a, b), ∃c ∈ (a, b)
such that f(b)− f(a) = f ′(c)(b− a).

Proof: let φ : [a, b]→ R be deϐined by

φ(x) = f(x)− (a)− f(b)− f(a)
b− a

(x− a).

Then

φ(a) = f(a)− f(a)− f(b)− f(a)
b− a

(a− a) = 0, and

φ(b) = f(b)− f(a)− f(b)− f(a)
b− a

(b− a) = f(b)− f(a)− (f(b)− f(a)) = 0.

But φ is continuous on [a, b] as f and x 7→ x− a are continuous on [a, b]. According
to Rolle’s Theorem, ∃c ∈ (a, b) such that φ′(c) = 0. But

φ′(x) = f ′(x)− f(b)− f(a)
b− a

,

so that f ′(c)− f(b)−f(a)
b−c

= 0, which completes the proof. ■

³What happens if f is not differentiable at c in Theorem 43?
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Among other things, this tells us something about functions whose derivatives is identically
zero on [a, b].

aaaaaa

Theorem 46
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If f ′ ≡ 0 on
(a, b), then f is constant on [a, b].

Proof: let x ∈ (a, b]. According to the mean value theorem, ∃c ∈ (a, x) such
that f(x) − f(a) = f ′(c)(x − a). But f ′(c) = 0, so that f(x) − f(a) = 0 for all
x ∈ [a, b]. ■

Illustrations of Rolle’s theorem (left) and the mean value theorem (right) are shown below.

4.1.2 Taylor Theorem
This subsection’s main result is used extensively in applications. It is, in a way, an extension
of the mean value theorem to higher order derivatives. We can naturally obtain the higher-
order derivatives of a function f by formally applying the differentiation rules repeatedly.
Hence, f (2) = f ′′ = (f ′)′, f (3) = f ′′′ = (f ′′)′ = ((f ′)′)′, etc. Suppose f = f (0) can be differenti-
ated n times at x = x0. The nth Taylor polynomial of f at x = x0 is

Pn(x; f, x0) =
n∑

i=0

f (i)(x0)

i!
(x− x0)i.

aaaaaa

Theorem 47 (TĆĞđĔė)
Let n ∈ N and f : [a.b] → R be such that f and its derivatives f ′, f ′′, . . . , f (n) are
continuous on [a, b], and f (n+1) exists on (a, b). If x0 ∈ [a, b], then for all x ̸= x0 ∈ [a, b],
∃c between x and x0 such that

f(x) = Pn(x; f, x0) +
f (n+1)(c)

(n+ 1)!
(x− x0)n+1.
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aaaaaa

Proof: let x ∈ [a, b]. If x0 < x, set J = [x0, x]. Otherwise, set J = [x, x0]. Let
F : J → R be deϐined by

F (t) = f(x)− Pn(t; f, x) = f(x)− f(t)− f ′(t)(x− t)− · · · − f (n)(t)

n!
(x− t)n.

Note thatF is continuous onJ as f and itsnhigher-order derivatives are continuous
on J , and that

F ′(t) = −f ′(t)−
[
f ′′(t)(x− t)− f ′(t)

]
−
[f ′′′(t)

2!
(x− t)2 − f ′′(t)(x− t)

]
− · · ·−

−
[f (n+1)(t)

n!
(x− t)n − f (n)(t)(x− t)n−1

]
.

Thus F ′(t) = −f (n+1)(t)
n!

(x− t)n. LetG : J → R be deϐined by

G(t) = F (t)−
(
x− t
x− x0

)n+1

F (x0).

Then
G(x0) = F (x0)−

(
x− x0
x− x0

)n+1

F (x0) = 0

G(x) = F (x)−
(
x− x
x− x0

)n+1

F (x0) = F (x).

But
F (x) = f(x)− f(x)− f ′(x)(x− x)− · · · − f (n)(x)

n!
(x− x)n = 0.

ThusG(x) = 0. Note thatG is continuous on J . Furthermore,G is differentiable on
J since

G′(t) = F ′(t) +
(n+ 1)

x− x0

(
x− t
x− x0

)n

F (x0) = −
f (n+1)(t)

n!
(x− t)n + (n+ 1)

x− x0

(
x− t
x− x0

)n

F (x0).

As G satisϐies the hypotheses of Rolle’s theorem, ∃c between x and x0 such that
G′(c) = 0. Thus

f (n+1)(c)

n!
(x− c)n = (n+ 1)

(x− c)n

(x− x0)n+1
F (x0) =⇒

F (x0) =
f (n+1)(c)

n!(n+ 1)

(x− c)n

(x− c)n
(x− x0)n+1 =

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

But
F (x0) = f(x)− Pn(x0; f, x) =⇒ f(x) = Pn(f ;x0) + F (x0),

which completes the proof. ■
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One of the obvious uses of Taylor’s theorem is for approximations.

aaaaaa

Example: use Taylor’s Theorem with n = 2 to approximate 4
√
1 + x near x0 = 0

(for x > −1).

Solution: let f(x) = (1 + x)1/4. Then

f ′(x) =
1

4
(1 + x)−3/4, f ′′(x) = − 3

16
(1 + x)−7/4, f ′′′(x) =

21

64
(1 + x)−11/4

are all continuous in closed intervals [−a, a], 1 > a > 0, so Taylor’s theorem can be
brought to bear on the situation. Note that f(0) = 1, f ′(0) = 1

4
and f ′′(0) = − 3

16
.

According to Taylor’s Theorem, for every x ∈ [−a, a], 1 > a > 0, ∃c between x and 0
such that

f(x) = P2(x; f, 0) +
f ′′′(c)

3!
x3 = 1 +

1

4
x− 3

32
x2 +

7

128(1 + c)11/4
x3.

For instance, 4
√
1.4 can be approximated by

f(0.4) ≈ P2(0.4) = 1 + 1
4
(0.4)− 3

32
(0.4)2 ≈ 1.085.

Moreover, since c ∈ (0, 0.4),
f ′′′(c)

6
(0.4)3 = 7

128
(1 + c)−11/4(0.4)3 ≤ 7

128
(0.4)3 = 0.0035,

so | 4
√
1.4 − 1.085| ≤ 0.0035, which is to say that the approximation is correct to 2

decimal places. □

4.1.3 Relative Extrema
Weend the section on differentiability by giving a characterization of relative extrema using
the derivative.

A function f : I → R is increasing (resp. decreasing) if

f(x1) ≤ f(x2), (resp. f(x1) ≥ f(x2)) ∀x1 ≤ x2 ∈ I.

If the inequalities are strict, then the function is strictly increasing (resp. strictly decreas-
ing). A function that is either increasing or decreasing (exclusively) ismonotone. If the func-
tion is also differentiable, then a link exists.

aaaaaa
Theorem 48
Let f : [a, b]→ R be continuous on [a, b], differentiable on (a, b). Then f is increasing
on [a, b] if and only if f ′ ≥ 0 on (a, b).
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aaaaaa

Proof: suppose f is increasing and let c ∈ (a, b). For all x < c in (a, b), we have
f(x) ≤ f(c); for all x > c in (a, b), we have f(x) ≥ f(c). Thus

f(x)− f(c)
x− c

≥ 0, for all x ̸= c ∈ (a, b).

Since f is differentiable at c, we must have

f ′(c) = lim
x→c

f(x)− f(c)
x− c

≥ 0.

As c is arbitrary, we have f ′(x) ≥ 0 for all x ∈ (a, b). If, conversely, f ′(x) ≥ 0 for all
x ∈ (a, b), let x1 < x2 ∈ [a, b]. By the Mean Value Theorem, ∃c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1).

Since f ′(c) ≥ 0 an x2 > x1, then

f(x2)− f(x1)
x2 − x1

= f ′(c) ≥ 0 =⇒ f(x2)− f(x1) ≥ 0 =⇒ f(x2) ≥ f(x1),

which is to say, f is increasing on [a, b]. ■

Theorem 48 holds for decreasing functions as well (after having made the obvious changes
to the statement).⁴

The next theorem is a celebrated result from calculus.

aaaaaa

Theorem 49 (FĎėĘę DĊėĎěĆęĎěĊ TĊĘę)
Let f be continuous on [a, b] and let c ∈ (a, b). Suppose f is differentiable on (a, c) and
on (b, c), but not necessarily at c. Then

1. if ∃Vδ(c) ⊆ [a, b] such that f ′(x) ≥ 0 for c − δ < x < c and f ′(x) ≤ 0 for
c < x < c+ δ, then f has a relative maximum at c;

2. if ∃Vδ(c) ⊆ [a, b] such that f ′(x) ≤ 0 for c − δ < x < c and f ′(x) ≥ 0 for
c < x < c+ δ, then f has a relative minimum at c.

Proof: we only prove 1.; the proof for 2. follows the same lines. If x ∈ (c− δ, c), the
mean value theorem states that ∃cx ∈ (x, c) such that

f(c)− f(x) = f ′(cx)︸ ︷︷ ︸
≥0

(c− x)︸ ︷︷ ︸
≥0

≥ 0,

so that f(x) ≤ f(c) for all x ∈ (c− δ, c).

⁴If we switch to strictly monotone functions, only one direction holds in all cases – which one?
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aaaaaa

If x ∈ (c, c+ δ), the mean value theorem states that ∃cx ∈ (c, x) such that

f(c)− f(x) = f ′(cx)︸ ︷︷ ︸
≤0

(c− x)︸ ︷︷ ︸
≤0

≥ 0,

so that f(x) ≤ f(c) for all x ∈ (c, c+ δ).

Combining these statements with the fact that f(c) ≤ f(c), we obtain f(x) ≤ f(c)
for all x ∈ Vδ(c), so f has a relative maximum at c. ■

The converse of the ϐirst derivative test is not necessarily true. For instance, the function
deϐined by

f(x) =

{
2x4 + x4 sin(1/x), x ̸= 0

0 x = 0

has an absolute minimum at x = 0, but it has derivatives of either sign on either side of any
neighbourhood of x = 0.

We end this section with a rather surprising result.

aaaaaa

Theorem 50 (DĆėćĔĚĝ)
Let f : [a, b]→ R be differentiable, continuous on [a, b] and let k be strictly conϐined
between f ′(a) and f ′(b). Then ∃c ∈ (a, b)with f ′(c) = k.

Proof: without loss of generality, assume f ′(a) < k < f ′(b). Deϐine g : [a, b]→ R by
g(x) = kx− f(x); g is then continuous and differentiable on [a, b] given that both f
and x 7→ kx also are.

By the max/min theorem, g reaches its maximum value at some c ∈ [a, b].
However, g′(a) = k − f ′(a) > 0, so that c ̸= a, and g′(b) = k − f ′(b) < 0, so
that c ̸= b. Hence g′(c) = 0 for some c ∈ (a, b), according to Theorem 43, and so
f ′(c) = k, which completes the proof. ■

Darboux’s theorem states that the derivative of a continuous function, which needs not be
continuous, nevertheless satisϐies the intermediate value property.⁵

There are a number of other results which could be shown about differentiable functions,
but they are left as exercises (see question 4).

⁵That seems like witchcraft, right? It shouldn’t be possible, but the argument is sound. One of the lessons
from this result is that analytical reasoning can be informed by intuition and geometry, but ultimately, the va-
lidity of results rests on proofs.
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4.2 Riemann Integral
Calculus as a discipline only took ϐlight after Newton announced his theory of ϐluxions. With
Leibniz’ independent discovery that the reversal of the process for ϐining tangents lead to
areas under curves, integration was born. Riemann was the ϐirst to discuss integration as a
process separate from differentiation.

We start by studying the integration of a functions R → R. Later on, we will tackle inte-
gration of functions Rn → R (see Chapter 21) and of functions Rn → Rn (see Chapter 14).

Let I = [a, b]. A partition P ∈ P([a, b]) is a subset P = {x0, . . . , xn} ⊆ I such that

a = x0 < x1 < · · · < xn−1 < xn = b.

If f : I → R is bounded and P is a partition of I , the sums

L(P ; f) =
n∑

i=1

mi(xi − xi−1) <∞, U(P ; f) =
n∑

i=1

Mi(xi − xi−1) <∞,

where

mi = inf{f(x) | x ∈ [xi−1, xi]}, Mi = sup{f(x) | x ∈ [xi−1, xi]}, 1 ≤ i ≤ n

are the lower and the upper sum of f corresponding to P , respectively. If f : I → R+
0 , we

can give a graphical representation of these sums; L(P ; f) is the area of the union of the rect-
angleswith base [xk−1, xk] andheightmk, andU(P ; f) is the area of the unionof the rectangles
with base [xk−1, xk] and heightMk.

A partitionQ of I is a reϐinement of a partition P of I if P ⊆ Q.

aaaaaa Example: both P = {0, 1, 4, 10} andQ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10} are partitions of
[0, 10]; sinceQ ⊇ P ,Q is a reϐinement of P . □

We will use the following lemma repeatedly in this section.
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aaaaaa

Lemma: let I = [a, b] and f : I → R be bounded. Then

1. L(P ; f) ≤ U(P ; f) for any partition P of I;

2. L(P ; f) ≤ L(Q; f) and U(Q; f) ≤ L(Q; f) for any reϐinementQ ⊇ P of I , and

3. L(P1; f) ≤ U(P2; f) for any pair of partitions P1, P2 of I .

Proof:

1. Let P = {x0, . . . , xn} be a partition of I . Since

mi = inf{f(x) | x ∈ [xi−1, xi]} ≤ sup{f(x) | x ∈ [xi−1, xi]} =Mi

for all 1 ≤ i ≤ n, then

L(P ; f) =
n∑

i=1

mi(xi − xi−1︸ ︷︷ ︸
>0

) ≤
n∑

i=1

Mi(xi − xi−1︸ ︷︷ ︸
>0

) = U(P ; f).

2. Let Q = {y0, . . . , ym} be a reϐinement of P = {x0, . . . , xn}. Set Ii = [xi−1, xi]
and Ĩj = [yj−1, yj], for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Writemi = inf{f(x) | x ∈ Ii}
and m̃j = inf{f(x) | x ∈ Ĩj} and ϐix 1 ≤ i ≤ n. Then ∃j, k such that

Ii = Ĩj+1 ∪ · · · ∪ Ĩj+k =
k∪

ℓ=1

Ĩj+ℓ.

Then

mi(xi − xi − 1) = mi(yj + k − yj) = mi(yj+1 − yj + · · ·+ yj+k − yj+k−1)

= mi(yj+1 − yj) + · · ·+mi(yj+k − yj+k−1)

=
k∑

ℓ=1

mi(yj+ℓ − yj+ℓ−1) ≤
k∑

ℓ=1

m̃j+ℓ(yj+ℓ − yj+ℓ−1)

since Ĩj+ℓ ⊆ Ii for all ℓ = 1, . . . , k. Hence

L(P ; f) =
n∑

i=1

mi(xi − xi−1) ≤
m∑
j=1

m̃j(yj − yj−1) = L(Q; f).

The proof for U(P ; f) ≥ U(Q; f) follows a similar argument.

3. Let P1, P2 be partitions of I . Set Q = P1 ∪ P2. Then Q is a reϐinement of both
P1 and P2. By the results proven in the previous parts of this lemma, we have

L(P1; f) ≤ L(Q; f) ≤ U(Q; f) ≤ U(P2; f),

which completes the proof. ■
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Let I = [a, b] and f : I → R be bounded. The lower integral of f on I is the number

L(f) = sup{L(P ; f) | P a partition of I}.

The upper integral of f on I is the number

U(f) = inf{U(P ; f) | P a partition of I}.

Since f is bounded on I , ∃m,M such thatm ≤ f(x) ≤ M for all x ∈ I . Consider the trivial
partition P0 = {a, b}. Since any partition P of I is a reϐinement of P0, we thus have

L(P ; f) ≤ U(P0; f) ≤M(b− a) and U(P ; f) ≥ L(P0; f) ≥ m(b− a).

Thus L(f), U(f) exist, by completeness. But we can say more.

aaaaaa

Theorem 51
Let f : [a, b]→ R be bounded. Then L(f) ≤ U(f).

Proof: let P1, P2 be partitions of [a, b]. Then L(P1; f) ≤ U(P2; f). If we ϐix P2,
U(P2; f) is an upper bound for

A = {L(P1; f) | P1 is a partition of [a, b]}.

Since L(f) = sup(A) and since P2 was arbitrary, L(f) is a lower bound for

B = {U(P2; f) | P2 is a partition of [a, b]}.

Thus L(f) ≤ inf(B) = U(f). ■

When L(f) = U(f), we say that f is Riemann-integrable on [a, b]; the integral of f on [a, b]
is the real number

L(f) = U(f) =

∫ b

a

f =

∫ b

a

f(x) dx.

By convention, we deϐine
∫ b

a
f = −

∫ a

b
f when b < a. Note that

∫ a

a
f = 0 for all bounded

functions f .

aaaaaa

Example: show directly that the function deϐined by h(x) = x2 is Riemann-
integrable on [a, b], b > a ≥ 0. Furthermore show that

∫ b

a
h = b3−a3

3
.

Proof: let Pn =
{
xi = a+ b−a

n
· i | i = 0, . . . , n

}
∈ P([a, b]). For i = 1, . . . , n

setmi = inf{h(x) | x ∈ [xi−1, xi]}. With this notation, we have

L(Pn;h) =
n∑

i=1

mi(xi − xi−1) =
b− a
n

n∑
i=1

mi.
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aaaaaa

But h′(x) = 2x ≥ 0 when x ≥ 0, and so h is increasing on [a, b]. Consequently, for
i = 1, . . . , n, we have

mi = x2i−1 =
(
a+

b− a
n

(i− 1)
)2

= a2 + 2
a(b− a)

n
(i− 1) +

(b− a)2

n2
(i− 1)2.

The lower sum of h associated to Pn is thus

L(Pn;h) =
b− a
n

n∑
i=1

(
a2 + 2

a(b− a)
n

(i− 1) +
(b− a)2

n2
(i− 1)2

)
=
na2(b− a)

n
+

2a(b− a)2

n2

n∑
i=1

(i− 1) +
(b− a)3

n3

n∑
i=1

(i− 1)2

= a2(b− a) + 2a(b− a)2

n2
· n(n− 1)

2
+

(b− a)3

n3
· n(n− 1)(2n− 1)

6

= a2(b− a) + a(b− a)2
(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

)(
2− 1

n

)
.

For the lower sum of h on [a, b], we have

L(h) = sup{L(P ;h) | P ∈ P([a, b])} ≥ sup
n∈N
{L(Pn;h)}

= sup
n∈N

{
a2(b− a) + a(b− a)2

(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

) (
2− 1

n

)}
= lim

n→∞

[
a2(b− a) + a(b− a)2

(
1− 1

n

)
+ (b−a)3

6

(
1− 1

n

) (
2− 1

n

)]
= a2(b− a) + a(b− a)2 + (b−a)3

6
· 2 = b3−a3

3
.

Similarly, we can show that

U(Pn;h) = a2(b− a) + a(b− a)2
(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)
.
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aaaaaa

For the upper sum of h on [a, b], we have

U(h) = inf{U(P ;h) | P ∈ P([a, b])} ≤ inf
n∈N
{U(Pn;h)}

= inf
n∈N

{
a2(b− a) + a(b− a)2

(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)}
= lim

n→∞

[
a2(b− a) + a(b− a)2

(
1 + 1

n

)
+ (b−a)3

6

(
1 + 1

n

) (
2 + 1

n

)]
= a2(b− a) + a(b− a)2 + (b−a)3

6
· 2 = b3−a3

3
.

Thus b3−a3

3
≤ L(h) ≤ U(h) ≤ b3−a3

3
and so L(h) = U(h) =

∫ b

a
h = b3−a3

3
, which

completes the proof. ■

It is clearly not the most efϐicient process in practice, but it works!

aaaaaa

Example: show directly that the Dirichlet function deϐined by

f(x) =

{
1, x ∈ Q
0, x ̸∈ Q

is not Riemann-integrable on [0, 1].

Proof: let P = {x0, . . . , xn} ∈ P([0, 1]). Since both Q and R \ Q are dense in
R, for each 1 ≤ i ≤ n, ∃qi ∈ Q, ti ̸∈ Q such that qi, ti ∈ [xi−1, xi].
But f(qi) = 0 and f(ti) = 1, so thatmi = 0 ,Mi = 1 for all 1 ≤ i ≤ n. This implies
that L(P ; f) = 0 and U(P ; f) = 1 for any partition P . Thus L(f) = 0 ̸= 1 = U(f),
and so f is not Riemann-integrable. ■

This last example underlines some of the shortcomings of the Riemann integral – by any ac-
count the integral of Dirichlet’s function should really be 0 on [0, 1]: the set R \Q is so much
larger than Q that whatever happens on Q should largely be irrelevant (see Section 1.2).
There are various theories of integration – as we shall see in Chapter 21, the Lebesgue-Borel
integral of f on [0, 1] is indeed 0.

Other issues arise with the Riemann integral, which we will discuss in the coming sections.

4.2.1 Riemann’s Criterion
We focus on two fundamental questions associated with the Riemann integral of a function
over an interval [a, b]: does it exist? If so, what value does it take?

The direct approach is cumbersome, even for the simplest of functions. The following re-
sult allows us to bypass the need to compute L(f) and U(f) to determine if a function is
Riemann-integrable or not.
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aaaaaa

Theorem 52 (RĎĊĒĆēē'Ę CėĎęĊėĎĔē)
Let I = [a, b] and f : I → R be a bounded function. Then f is Riemann-integrable if
and only if ∀ε > 0, ∃Pε a partition of I such that the lower sum and the upper sum of
f corresponding to Pε satisfy U(Pε; f)− L(Pε; f) < ε.

Proof: if f is Riemann-integrable, then L(f) = U(f) =
∫ b

a
f . Let ε > 0.

Since
∫ b

a
f − ε

2
is not an upper bound of {L(P ; f) | P a partition of [a, b]},

there exists a partition P1 such that∫ b

a

f − ε

2
< L(P1; f) ≤

∫ b

a

f.

Using a similar argument, there exists a partition P2 such that∫ b

a

f +
ε

2
≥ U(P2; f) >

∫ b

a

f.

Set Pε = P1 ∪ P2. Then Pε is a reϐinement of P1 and P2. Consequently,∫ b

a

f − ε

2
< L(P1; f) ≤ L(Pε; f) ≤ U(Pε; f) ≤ U(P2; f) <

∫ b

a

f +
ε

2

which implies that
U(Pε; f)− L(Pε; f) < ε.

Conversely, let ε > 0 and Pε be such that U(Pε; f)− L(Pε; f) < ε. Since

U(f) ≤ U(Pε; f) and L(f) ≥ L(Pε; f),

then
0 ≤ U(f)− L(f) ≤ U(Pε; f)− L(Pε; f) < ε.

But ε > 0 was arbitrary, so U(f) − L(f) = 0, which implies that U(f) = L(f) and
that f is Riemann-integrable on [a, b]. ■
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In the illustration on the previous page (for a continuous function), the smaller the shaded
area is, the closer U(P ; f) and L(P ; f) are to

∫ b

a
f .

There are 2 instances where the Riemann-integrability of a function f on [a, b] is guaranteed:
when f ismonotone, and when it is continuous.

aaaaaa

Theorem 53
Let I = [a, b] and f : I → R be a monotone function on I . Then f is Riemann-
integrable on I .

Proof: we show that the result holds for increasing functions. The proof for
decreasing functions is similar. Let

Pn = {xi = a+ i
(
b−a
n

)
| i = 0, . . . , n}

be the partition of I into n equal sub-intervals. Since f is increasing on I , we have,
for 1 ≤ i ≤ n,

mi= inf{f(x) | x ∈ [xi−1, xi]} = f(xi−1),

Mi = sup{f(x) | x ∈ [xi−1, xi]} = f(xi).

Hence,

U(Pn; f)− L(Pn; f)=
n∑

i=1

Mi(xi − xi−1)−
n∑

i=1

mi(xi − xi−1)

=
n∑

i=1

(Mi −mi)(xi − xi−1)

=
b− a
n

n∑
i=1

(f(xi)− f(xi−1))

=
b− a
n

[
f(x1)− f(x0) + · · ·+ f(xn)− f(xn−1)

]
=
b− a
n

(f(b)− f(a)) ≥ 0.

Let ε > 0. By the Archimedean property, ∃Nε ∈ N such that

(b− a)(f(b)− f(a))
ε

< n.

Set Pε = Pn. Then

U(Pε; f)− L(Pε; f) <
b− a
Nε

(f(b)− f(a)) < ε,

and f is Riemann-integrable on [a, b], according to Riemann’s criterion. ■
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aaaaaa

Theorem 54 Let I = [a, b] and f : I → R be continuous, with a < b. Then f is
Riemann-integrable on I .

Proof: let ε > 0. According to Theorem 38, f is uniformly continuous on I .
Hence ∃δε > 0 s.t. |f(x)− f(y)| < ε

b−a
whenever |x− y| < δε and x, y ∈ [a, b].

Pick n ∈ N such that b−a
n
< δε and let

Pε = {xi = a+ i
(
b−a
n

)
| i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals.

As f is continuous on [xi−1, xi], ∃ui, vi ∈ [xi−1, xi] such that

mi= inf{f(x) | x ∈ [xi−1, xi]} = f(ui), Mi= sup{f(x) | x ∈ [xi−1, xi]} = f(vi),

for all 1 ≤ i ≤ n, according to the max/min Theorem. Since |ui − vi| ≤ b−a
n
< δε for

all i, we have:

U(Pε; f)− L(Pε; f) =
n∑

i=1

(Mi −mi)(xi − xi−1) =
b− a
n

n∑
i=1

(f(vi)− f(ui))

<
b− a
n

n∑
i=1

ε

b− a
= ε,

by uniform continuity of f . According to Theorem 52, f is Riemann-integrable. ■

4.2.2 Properties of the Riemann Integral
The Riemann integral has a whole slew of interesting properties.

aaaaaa

Theorem 55 (PėĔĕĊėęĎĊĘ Ĕċ ęčĊ RĎĊĒĆēē IēęĊČėĆđ)
Let I = [a, b] and f, g : I → R be Riemann-integrable on I . Then

1. f + g is Riemann-integrable on I , with
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g;

2. if k ∈ R, k · f is Riemann-integrable on I , with
∫ b

a
k · f = k

∫ b

a
f ;

3. if f(x) ≤ g(x) ∀x ∈ I , then
∫ b

a
f ≤

∫ b

a
g, and

4. if |f(x)| ≤ K ∀x ∈ I , then
∣∣∣∫ b

a
f
∣∣∣ ≤ K(b− a).
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aaaaaa

Proof: we use a variety of pre-existing results.

1. Let ε > 0. Since f, g are Riemann-integrable, ∃P1, P2 partitions of I such that
U(P1; f)− L(P1; f) <

ε
2
and U(P2; g)− L(P2; g) <

ε
2
.

Set P = P1 ∪ P2. Then P is a reϐinement of P1 and P2, and

U(P ; f + g) ≤ U(P ; f) + U(P ; g)

< L(P ; f) + L(P ; g) + ε ≤ L(P ; f + g) + ε,

since, over non-empty subsets of I , we have

inf{f(x) + g(x)}≥ inf{f(x)}+ inf{g(x)}
sup{f(x) + g(x)}≤ sup{f(x)}+ sup{g(x)}.

Hence f + g is Riemann-integrable according to Riemann’s criterion. Further-
more, we see from above that∫ b

a

(f + g) ≤ U(P ; f + g) < L(P ; f) + L(P ; g) + ε ≤
∫ b

a

f +

∫ b

a

g + ε

and∫ b

a

f +

∫ b

a

g ≤ U(P ; f) + U(P ; g) < L(P ; f + g) + ε ≤
∫ b

a

(f + g) + ε.

Since ε > 0 is arbitrary,
∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g, from which we

conclude that
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

2. The proof for k = 0 is trivial. We show that the result holds for k < 0 (the
proof for k > 0 is similar). Let P = {x0, . . . , xn} be a partition of I .

Since k < 0, we have inf{kf(x)} = k sup{f(x)} over non-empty sub-
sets of I , and so we have L(P ; kf) = kU(P ; f). In particular,

L(kf) = sup{L(P ; kf) | P a partition of I}
= sup{kU(P ; f) | P a partition of I}
= k inf{U(P ; f) | P a partition of I} = kU(f)

Similarly, U(P ; kf) = kL(P ; f) and U(fk) = kL(f), so

L(fk) = kU(f) = kL(f)︸ ︷︷ ︸
since f is R-int.

= U(kf).

Thus kf is Riemann-integrable on I and
∫ b

a
kf = L(k) = kU(f) =

∫ b

a
f.
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aaaaaa

3. We start by showing that if h : I → R is integrable on I and h(x) ≥ 0 for all
x ∈ I , then

∫ b

a
h(x) ≥ 0. Let P0 = {a, b} = {x0, x1} andm1 = inf{h(x) | x ∈

[a, b]} ≥ 0. Then,

0 ≤ m1(b− a) = L(P0;h) ≤ L(P ;h)

for anypartitionP of I , asP ⊇ P0. Buth is Riemann-integrable by assumption,
thus ∫ b

a

h = sup{L(P ;h) | P a partition of I} ≥ L(P0;h) ≥ 0.

Then, set h = g − f . By hypothesis, h(x) = g(x)− f(x) ≥ 0. Then∫ b

a

h =

∫ b

a

(g − f) =
∫ b

a

g −
∫ b

a

f ≥ 0,

which implies that
∫ b

a
g ≥

∫ b

a
f .

4. Let P0 = {a, b} = {x0, x1}. As always, set m1 = inf{f(x) | x ∈ [a, b]}, and
M1 = sup{f(x) | x ∈ [a, b]}. Then for any partition P of I , we have

m1(b− a)= L(P0; f) ≤ L(P ; f) ≤ L(f) =

∫ b

a

f

= U(f) ≤ U(P ; f) ≤ U(P0; f) =M1(b− a).

In particular,
m1(b− a) ≤

∫ b

a

f ≤M1(b− a).

Now, if |f(x)| ≤ K for all x ∈ I , then−K ≤ m1 andM1 ≤ K so that

−K(b− a) ≤ m1(b− a) ≤
∫ b

a

f ≤M1(b− a) ≤ K(b− a),

so that |
∫ b

a
f | ≤ K(b− a). ■

When all the functions involved are non-negative, these results and the next one are compat-
ible with the calculus interpretation of the Riemann integral as the area under the curve.

aaaaaa
Theorem 56 (AĉĉĎęĎěĎęĞ Ĕċ ęčĊ RĎĊĒĆēē IēęĊČėĆđ)
Let I = [a, b], c ∈ (a, b), and f : I → R be bounded on I . Then f is Riemann-integrable
on I if and only if it is Riemann-integrable on I1 = [a, c] and on I2 = [c, b]. When that
is the case,

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .
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aaaaaa

Proof: we start by assuming that f is Riemann-integrable on I . Let ε > 0. According
to the Riemann criterion, ∃Pε a partition of I such thatU(Pε; f)−L(Pε; f) < ε. Now,
set P = Pε ∪ {c}. Then P is a reϐinement of Pε so that

U(P ; f)− L(P ; f) ≤ U(Pε; f)− L(Pε; f) < ε.

Set P1 = P ∩ I1 and P2 = P ∩ I2. Then Pi is a partition of Ii, and

ε > U(P ; f)− L(P ; f) ≥ U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

=
[
U(P1; f)− L(P1; f)

]
+
[
U(P2; f)− L(P2; f)

]
Consequently, U(Pi; f) − L(Pi; f) < ε for i = 1, 2 and f is Riemann-integrable on
I1 and I2, according to the Riemann criterion.

Now assume that f is Riemann-integrable on I1 and I2. Let ε > 0. According
to the Riemann criterion, for i = 1, 2, ∃Pi a partition of Ii such that

U(Pi; f) + L(Pi; f) <
ε

2
.

Set P = P1 ∪ P2. Then P is a partition of I . Furthermore,

U(P ; f)− L(P ; f) = U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

= U(P1; f)− L(P1; f) + U(P2; f)− L(P2; f) <
ε

2
+
ε

2
= ε,

thus f is Riemann-integrable on I according the Riemann criterion.

Finally, let’s assume that f is Riemann-integrable on I (and so on I1, I2), or
vice-versa. Let P1, P2 be partitions of I1, I2, respectively, such that

U(Pi; f)− L(Pi; f) <
ε

2
, i = 1, 2.

Set P = P1 ∪ P2. Then P is a partition of I and∫ b

a

f ≤ U(P ; f) = U(P1; f) + U(P2; f)

< L(P1; f) + L(P2; f) + ε =

∫ c

a

f +

∫ b

c

f + ε.

Similarly,∫ b

a

f ≥ L(P1; f) + L(P2; f) > U(P1; f) + U(P2; f)− ε ≥
∫ c

a

f +

∫ b

c

f − ε

Since ε > 0 is arbitrary,
∫ b

a
f =

∫ c

a
f +

∫ b

c
f . ■
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The next theorem is the crowning achievement of what has come before, combining results
from previous chapters and sections. Its proof constitutes the ϐirst “real” example of what we
might as well refer to as analytical reasoning.

aaaaaa

Theorem 57 (CĔĒĕĔĘĎęĎĔē TčĊĔėĊĒ ċĔė IēęĊČėĆđĘ)
Let I = [a, b] and J = [α, β], f : I → R Riemann-integrable on I , φ : J → R
continuous on J and f(I) ⊆ J . Then φ ◦ f : I → R is Riemann-integrable on I .

Proof: let ε > 0, K = sup{|φ(x)| | x ∈ J} (wich is guaranteed to exist ac-
cording to the max/min theorem) and ε′ = ε

b−a+2K
.

Since φ is uniformly continuous on J (being continuous on a closed, bounded
interval), ∃δε > 0 s.t.

|x− y| < δε, x, y,∈ J =⇒ |φ(x)− φ(y)| < ε′.

Without loss of generality, pick δε < ε′.

Since f is Riemann-integrable on I , there is a partition P = {x0, . . . , xn} of
I = [a, b] such that

U(P ; f)− L(P ; f) < δ2ε

(according to Riemann’s criterion).

We show that U(P ;φ ◦ f) − L(P ;φ ◦ f) < ε, and so that φ ◦ f is Riemann-
integrable according to Riemann’s criterion. On [xi−1, xi] for i = 1, . . . , n, set

mi = inf{f(x)}, Mi = sup{f(x)}, m̃i = inf{φ(f(x))}, M̃i = sup{φ(f(x))}.

With those, set A = {i |Mi −mi < δε},B = {i |Mi −mi ≥ δε}.

If i ∈ A, then

x, y ∈ [xi−1, xi] =⇒ |f(x)− f(y)| ≤Mi −mi < δε,

so |φ(f(x))− φ(f(y)| < ε′ ∀x, y ∈ [xi−1, xi]. In particular, M̃i − m̃i ≤ ε′.

If i ∈ B, then

x, y ∈ [xi−1, xi] =⇒ |φ(f(x))− φ(f(y))| ≤ |φ(f(x))|+ |φ(f(y))| ≤ 2K.

In particular, M̃i − m̃i ≤ 2K , since −K ≤ m̃i ≤ φ(z) ≤ M̃i ≤ K for all
z ∈ [xi−1, xi].
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aaaaaa

Then

U(P ;φ ◦ f)−L(P ;φ ◦ f) =
n∑

i=1

(M̃i − m̃i)(xi − xi−1)

=
∑
i∈A

(M̃i − m̃i)(xi − xi−1) +
∑
i∈B

(M̃i − m̃i)(xi − xi−1)

≤ ε′
∑
i∈A

(xi − xi−1) + 2K
∑
i∈B

(xi − xi−1)

≤ ε′(b− a) + 2K
∑
i∈B

(Mi −mi)

δε
(xi − xi−1)

= ε′(b− a) + 2K

δε

n∑
i=1

(Mi −mi)(xi − xi−1).

By earlier work in the proof, we have
n∑

i=1

(Mi −mi)(xi − xi−1) ≤ U(P ; f)− L(P ; f) < δ2ε ,

so that

U(P ;φ ◦ f)− L(P ;φ ◦ f) < ε′(b− a) + 2K

δε
· δ2ε

= ε′(b− a) + 2Kδε < ε′(b− a) + 2Kε′

= ε′(b− a+ 2K) = ε,

which completes the proof. ■

The proof of the composition theorem requires the intervals I and J to be closed, as the fol-
lowing example shows.

aaaaaa
Example: let f, φ : (0, 1) → R be deϐined by f(x) = x and φ(x) = 1

x
. Then f

is Riemann-integrable on (0, 1), φ is continuous on (0, 1), but φ ◦ f : (0, 1) → R,
(φ ◦ f)(x) = 1/x, is not Riemann-integrable on (0, 1). □

Note, however, that there are examples of functions deϐined on open intervals for which the
conclusion of the composition theorem still holds.

aaaaaa
Example: let f, φ : (0, 1) → R be deϐined by f(x) = x and φ(x) = x. Then f
is Riemann-integrable on (0, 1), φ is continuous on (0, 1), and φ ◦ f : (0, 1) → R,
(φ ◦ f)(x) = x, is Riemann-integrable on (0, 1). □
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Theorem 57 is rather technical, but it can be used to show a variety of results.

aaaaaa

Theorem 58
Let I = [a, b] and f, g : I → R be Riemann-integrable on I . Then fg and |f | are
Riemann-integrable on I , and

∣∣∣∫ b

a
f
∣∣∣ ≤ ∫ b

a
|f |.

Proof: the function deϐined by φ(t) = t2 is continuous. by the Composition
theorem, φ ◦ (f + g) = (f + g)2 and φ ◦ (f − g) = (f − g)2 are both Riemann-
integrable on I . But the product fg can be re-written as

fg =
1

4

[
(f + g)2 − (f − g)2

]
.

According to Theorem 55, fg is Riemann-integrable on I .

Now, consider the function deϐined by φ(t) = |t|. It is continuous, so φ ◦ f = |f | is
Riemann-integrable on I according to the composition theorem.

Pick c ∈ {±1} such that c
∫ b

a
f ≥ 0. Hence∣∣∣∣∫ b

a

f

∣∣∣∣ = c

∫ b

a

f =

∫ b

a

cf ≤
∫ b

a

|f |,

since cf(x) ≤ |f(x)| for all x ∈ I . ■

Note that even if the product of Riemann-integrable functions is itself Riemann-integrable
there is no simple way to express

∫ b

a
fg in terms of

∫ b

a
f and

∫ b

a
g.

Given all that has come so far, we might suspect that the composition of Riemann-integrable
functions is also Riemann-integrable. The following counter-example shows that this need
not be the case.

aaaaaa

Example: let I = [0, 1] and let f : I → R be Thomae’s function:

f(x) =


1, x = 0

1/n, x = m/n ∈ Q, gcd(m,n) = 1

0, x ̸∈ Q

It can be shown that f is Riemann-integrable on [0, 1] and that
∫ 1

0
f = 0. Consider

the function g : [0, 1] → R deϐined by g(x) ≡ 1 on (0, 1] and g(0) = 0. Then g is
Riemann-integrable on [0, 1], with

∫ 1

0
g = 1, but g ◦ f : [0, 1] → R is the Dirichlet

function, and is therefore not Riemann-integrable on [0, 1]. □
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4.2.3 Fundamental Theorem of Calculus
With Descartes’ creation of analytical geometry, it became possible to ϐind the tangents to
curves that are algebraically described.⁶ Fermat then showed the connection between that
problem and the problem of ϐinding themaximum/minimum of a (continuous) function. In
the 1680s, Newton and Leibniz eventually discovered that computing the areaunderneath a
curve is exactly the opposite of ϐinding the tangent. Calculus provided a general framework
to solve problems that had hitherto been very difϐicult to solve.⁷ In this section, we study the
connection between these concepts.

aaaaaa

Theorem 59 (FĚēĉĆĒĊēęĆđ TčĊĔėĊĒ Ĕċ CĆđĈĚđĚĘ, 1Ęę ěĊėĘĎĔē)
Let I = [a, b], f : I → R be Riemann-integrable on I , and F : I → R be such that F
is continuous on I and differentiable on (a, b). If F ′(x) = f(x) for all x ∈ (a, b), then∫ b

a
f = F (b)− F (a).

Proof: let ε > 0. Since f is Riemann-integrable on I , ∃Pε ∈ P(I) such that

U(Pε; f)− L(Pε; f) < ε.

Applying the mean value theorem to F on [xi−1, xi] for each 1 ≤ i ≤ n, we conclude
that ∃ti ∈ (xi−1, xi) such that

F (xi)− F (xi−1)

xi − xi−1

= F ′(ti) = f(ti), 1 ≤ i ≤ n.

Let m̃i = inf{f(x) | x ∈ [xi−1, xi]}, M̃i = sup{f(x) | x ∈ [xi−1, xi]} for 1 ≤ i ≤ n.
Then

L(Pε; f) =
n∑

i=1

m̃i(xi − xi−1) ≤
n∑

i=1

f(ti)(xi − xi−1) =
n∑

i=1

(F (xi)− F (xi−1)) = F (b)− F (a),

and, similarly, U(Pε; f) ≥ F (b)−F (a). Then L(Pε; f) ≤ F (b)−F (a) ≤ U(Pε; f) for
all ε > 0. Since we have

L(Pε; f) ≤
∫ b

a

f ≤ U(Pε; f)

and U(Pε; f)− L(Pε; f) < ε, for all ε > 0, we must also have∣∣∣∣∫ b

a

f − (F (b)− F (a))
∣∣∣∣ < ε, for all ε > 0,

so that
∫ b

a
f = F (b)− F (a). ■

⁶That is, curves who can be expressed in R2 as f(x, y) = 0 for algebraic functions f .
⁷And even then, only in speciϐic circumstances.

128 Analysis and Topology Course Notes



CHAPTER 4. DIFFERENTIAL AND INTEGRAL CALCULUS

This classical calculus result is quite useful in applications,⁸ as is its cousin.

aaaaaa

Theorem 60 (FĚēĉĆĒĊēęĆđ TčĊĔėĊĒ Ĕċ CĆđĈĚđĚĘ, 2ēĉ ěĊėĘĎĔē)
Let I = [a, b], f : I → R be Riemann-integrable on I . Deϔine a function F : I → R by
F (x) =

∫ x

a
f . Then F is continuous on I . Furthermore, if f is continuous at c ∈ (a, b),

then F is differentiable at c and F ′(c) = f(c).

Proof: since f is Riemann-integrable on I , then f is bounded on I . Let K > 0 be
such that |f(x)| < K for all x ∈ I . Let x ∈ I and ε > 0. Set δε = ε

K
. Then whenever

|x− y| < δε =
ε
K

and y ∈ I , we have

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ = ∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ K|x− y| < ε.

Then F is uniformly continuous on I , and so is continuous on I . Now assume that f
is continuous at c and let ε > 0. Then ∃δε > 0 such that |f(x)− f(c)| < εwhenever
|x− c| < δε and x ∈ I .

Thus, if 0 ≤ |h| = |x− c| < δε and x ∈ I , we have∣∣∣∣F (c+ h)− F (c)
h

− f(c)
∣∣∣∣ = ∣∣∣∣1h

∫ c+h

a

f − 1

h

∫ c

a

f − f(c)
∣∣∣∣

=

∣∣∣∣1h
∫ c+h

c

f − 1

h

∫ c+h

c

f(c)

∣∣∣∣ = ∣∣∣∣1h
∫ c+h

c

(f − f(c))
∣∣∣∣

≤ 1

|h|

∣∣∣∣∫ c+h

c

(f − f(c))
∣∣∣∣ < 1

|h|
· ε
∣∣∣∣∫ c+h

c

1

∣∣∣∣ = 1

|h|
· ε|h| = ε,

which is to say, F ′(c) = f(c). ■

The ϐirst versionof the fundamental theoremof calculusprovides a justiϐicationof themethod
used to evaluate deϐinite integrals in calculus; the second version, which allows the upper
bound of the Riemann integral to vary, provides a basis for ϐinding antiderivatives.

Let I = [a, b] an f : I → R. An antiderivative of f on I is a differentiable function
F : I → R such that F ′(x) = f(x) for all x ∈ I . If f is Riemann-integrable on I , the function
F : I → R deϐined by F (x) =

∫ x

a
f for x ∈ I is the indeϐinite integral of f on I . If f is

Riemann-integrable on I and if F is an antiderivative of f on I , then∫ b

a

f = F (b)− F (a).

However, Riemann-integrable functions on I may not have antiderivatives on I (such as the
signum and Thomae’s functions), and functions with antiderivatives may not be Riemann-
integrable on I (such as the reciprocal of the square root function on [0, 1]).

⁸We will see in Chapter 14 that the Theorem 59 (1st version) is a special case of a more general result.
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If f is Riemann-integrable on I , then F (x) =
∫ x

a
f exists. Moreover, if f is continuous on I ,

than F is an antiderivative of f on I , since F ′(x) = f(x) for all x ∈ I . Continuous functions
thus always have antiderivatives.⁹

But if f is not continuous on I , the indeϐinite integral F may not be an antiderivative of f
on I – it may fail to be differentiable at certain points of I , or F ′ may exists but be different
from f at various points of I .

4.2.4 Evaluation of Integrals
We complete this chapter by presenting some common methods used to evaluate integrals,
and the proof for two of them.

aaaaaa

Theorem 61 (IēęĊČėĆęĎĔē ćĞ PĆėęĘ)
Let f, g : [a, b] → R both be Riemann-integrable on [a, b], with antiderivatives F,G :
[a, b]→ R, respectively. Then∫ b

a

Fg = F (b)G(b)− F (a)G(a)−
∫ b

a

fG.

Proof: Let H : [a, b] → R be deϐined by H = FG. As F and G are both differen-
tiable, so isH: H ′ = F ′G+ FG′ = fG+ Fg.

Then
∫ b

a
H ′ = H(b)−H(a), so∫ b

a

(fG+ Fg) = F (b)G(b)− F (a)G(a) =⇒
∫ b

a

Fg = H(b)−H(a)−
∫ b

a

fG.

This completes the proof. ■

aaaaaa

Theorem 62 (FĎėĘę SĚćĘęĎęĚęĎĔē TčĊĔėĊĒ)
Let J = [α, β], and φ→ R be a function with a continuous derivative on J . If f : I →
R is continuous on I = [a, b] ⊇ φ(J), then∫ β

α

(f ◦ φ)φ′ =

∫ φ(β)

φ(α)

f.

Proof: Since f is continuous on I , it is Riemann-integrable on I and sowe candeϐine
a function F : I → R through

F (x) =

∫ x

φ(α)

f, x ∈ I.

By construction F is continuous and differentiable on I . Furthermore, F ′ = f on I ,
according to the second version of the fundamental theorem of calculus.

⁹Even if they can’t be expressed using elementary functions.
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aaaaaa

Deϐine H : J → R by H = F ◦ φ. Then H is differentiable on I , being the com-
position of two differentiable functions on I , and H ′ = (F ′ ◦ φ)φ′ = (f ′ ◦ φ)φ′ is
Riemann-integrable since φ, f ◦ φ are Riemann-integrable (being continuous) on I ,
according to Theorem58. The ϐirst version of the Fundamental Theoremof Calculus
then yields∫ β

α

(f ◦ φ)φ′ =

∫ β

α

H ′ = H(β)−H(α) = F (φ(β))− F (φ(α)) =
∫ φ(β)

φ(α)

f,

which completes the proof. ■

The proofs of the last three theorems are left as an exercise.

aaaaaa

Theorem 63 (SĊĈĔēĉ SĚćĘęĎęĚęĎĔē TčĊĔėĊĒ)
Let J = [α, β], and φ → R be a function with a continuous derivative on J and such
that φ′ ̸= 0 on J . Let I = [a, b] ⊇ φ(J), and ψ : I → R be the inverse of φ (which
exists as φ is montoone). If f : I → R is continuous on I , then∫ β

α

f ◦ φ =

∫ φ(β)

φ(α)

fψ′.

aaaaaa

Theorem 64 (MĊĆē VĆđĚĊ TčĊĔėĊĒ ċĔė IēęĊČėĆđĘ)
Let I = [a, b], f : I → R be continuous on I , and p : I → R be Riemann-integrable on
I , with p ≥ 0 on I . Then ∃c ∈ (a, b) such that∫ b

a

fp = f(c)

∫ b

a

p.

aaaaaa
Theorem 65 (SĖĚĊĊğĊ TčĊĔėĊĒ ċĔė IēęĊČėĆđĘ)
Let I = [a, b] and f ≤ g ≤ h : I → R be bounded on I . If f, h are Riemann-integrable
on I with

∫ b

a
f =

∫ b

a
h, then g is Reimann-integrable on I and

∫ b

a
g =

∫ b

a
f =

∫ b

a
h.
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4.3 Solved Problems
1. Use the deϐinition to ϐind the derivative of the function deϐined by g(x) = 1

x
, x ∈ R,

x ̸= 0.
Solution: from calculus, we “know” that g′(x) = − 1

x2 . Let c ∈ R s.t. c ̸= 0. Set ac = c
2

and bc = 3c
2 . Clearly, if c > 0, 0 < ac < c < bc, whereas bc < c < ac < 0 if c < 0. In

both cases, 1
|x| ≤

1
|ac| whenever x lies between ac and bc. We restrict g on the interval

between ac and bc (denote this interval byA).

Let ε > 0 and set δε = |ac|c2ε. Then whenever 0 < |x − c| < δε and x ∈ A, we
have∣∣∣∣∣ 1x − 1

c

x− c
+

1

c2

∣∣∣∣∣ =
∣∣∣∣ c− x
xc(x− c)

+
1

c2

∣∣∣∣ = ∣∣∣∣ 1c2 − 1

xc

∣∣∣∣ = |x− c||x|c2
≤ |x− c|
|ac|c2

<
δε
|ac|c2

= ε,

which validates our calculus guess. □

2. Prove that the derivative of an even differentiable function is odd, and vice-versa.
Proof: if f is even, then f(x) = f(−x) for all x ∈ R. Let g(x) = f(−x). Then g is
differentiable by the chain rule and f(x) = g(x) for all x ∈ R. Furthermore,

f ′(x) = g′(x) = (f(−x))′ = f ′(−x) · −1,

that is,−f ′(−x) = f ′(−x), or f ′ is odd. The other statement is proved similarly. ■

3. Let a > b > 0 and n ∈ Nwith n ≥ 2. Show that a1/n − b1/n < (a− b)1/n.
Proof: consider the continuous function f : [1,∞) → R deϐined by f(x) = x1/n −
(x− 1)1/n, whose derivative is

f ′(x) =
1

n

(
x

1−n
n − (x− 1)

1−n
n

)
.

Now,

0 ≤ x− 1 < x, ∀x ≥ 1 =⇒ 0 ≤ (x− 1)n < xn, ∀x ≥ 1, n ≥ 2

∴ 0 ≤ (x− 1)
n

n−1 < x
n

n−1 , ∀x ≥ 1, n ≥ 2

and so
1

x
n

n−1

<
1

(x− 1)
n

n−1

,

or x 1−n
n < (x− 1)

1−n
n for all x ≥ 1, n ≥ 2.

Hence f ′(x) < 0 for all x ∈ [1,∞), that is f is strictly decreasing over [1,∞). But
f(ab ) < f(1), as a

b > 1. But

f
(a
b

)
=
(a
b

) 1
n −

(a
b
− 1
) 1

n
=

1

b
1
n

(
a

1
n − (a− b)

1
n

)
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and f(1) = 1, so
1

b
1
n

(
a

1
n − (a− b)

1
n

)
< 1,

that is a 1
n − (a− b)

1
n < b

1
n , which completes the proof. ■

4. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Show that if
lim
x→a

f ′(x) = A, then f ′(a) exists and equals A.

Proof: let x ∈ (a, b). By the Mean Value Theorem, ∃cx ∈ (a, x) s.t.

f(x)− f(a)
x− a

= f ′(cx).

Whenx→ a, cx → a (indeed, let ε > 0 and set δε = ε; then |cx−a| < |x−a| < δε = ε
whenever 0 < |x− a| < δε). Then

lim
x→a

f ′(cx) = lim
cx→a

f ′(cx) = A

by hypothesis. Hence lim
x→a

f ′(x) exists and so

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f ′(x) = A

exists. ■

5. If x > 0, show 1 + 1
2
x− 1

8
x2 ≤

√
1 + x ≤ 1 + 1

2
x.

Proof: let x0 = 0 and f(x) =
√
1 + x. According to Taylor’s theorem, since f is C3

when x > 0, f(x) = P1(x) +R1(x) and f(x) = P2(x) +R2(x),where

P1(x) = f(x0) + f ′(x0)(x− x0) =
√
1 + 0 +

1

2
√
1 + 0

x = 1 +
1

2
x

P2(x) = P1(x) +
f ′′(x0)

2
(x− x0)2 = 1 +

1

2
x− 1

8 3
√
1 + 0

x2 = 1 +
1

2
x− 1

8
x2

R1(x) =
f ′′(c1)

2
(x− x0)2 = −

1

8 3
√
1 + c1

x2, for some c1 ∈ [0, x]

R2(x) =
f ′′′(c2)

6
(x− x0)3 =

3

48 5
√
1 + c2

x3, for some c2 ∈ [0, x].

When x > 0,R1(x) ≤ 0 andR2(x) ≥ 0, so P2(x) ≤ f(x) ≤ P1(x). ■

6. Let a ∈ R and f : R→ R be deϐined by

f(x) =

{
x2 if x ≥ 0,

ax if x < 0.

For which values of a is f differentiable at x = 0? For which values of a is f continuous
at x = 0?
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Solution: We have

f ′+(0) = lim
x→0+

f(x)− f(0)
x− 0

= lim
x→0+

x2

x
= lim

x→0+
x = 0

and
f ′−(0) = lim

x→0−

f(x)− f(0)
x− 0

= lim
x→0−

ax

x
= lim

x→0+
a = a.

Thus, f is differentiable at x = 0 if and only if a = 0.

Since both x2 and ax are continuous functions, we have

lim
x→0+

f(x) = lim
x→0+

x2 = 0 = f(0) = 0 = lim
x→0−

ax = lim
x→0−

f(x)

and the the function f is continuous at x = 0 for all values of a. □

7. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Show that f is
Lipschitz if and only if f ′ is bounded on (a, b).

Proof: Suppose that f satisϐies the Lipschitz condition on [a, b] with constant M .
Then, for all x0 ∈ (a, b), we have∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ ≤M ∀x ∈ (a, b) \ {x0}.

Thus
|f ′(x0)| =

∣∣∣∣ limx→x0

f(x)− f(x0)
x− x0

∣∣∣∣ = lim
x→x0

∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ ≤M,

wherewe used the fact that the absolute value function is continuous to pull the limit
out of the absolute value. So the derivative of f is bounded on (a, b).

Now assume that |f ′(x)| ≤ M for all x ∈ (a, b). Let x, y ∈ [a, b], x < y. Applying the
Mean Value Theorem to f on the interval [x, y] yields the existence of c ∈ (x, y) such
that

f(y)− f(x)
y − x

= f ′(c).

Thus ∣∣∣∣f(x)− f(y)x− y

∣∣∣∣ ≤M =⇒ |f(x)− f(y)| ≤M |x− y|.

This completes the proof. ■

8. Prove that
∫ 1

0
g = 1

2
if

g(x) =

{
1 x ∈ (1

2
, 1]

0 x ∈ [0, 1
2
]
.

Is that still true if g(1
2
) = 7 instead?
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Proof: let ε > 0 and deϐine the partition Pε = {0, 12 − ε,
1
2 + ε, 1}. Since g is bounded

on [0, 1], L(g) ≤ U(g) exist and

L(g) ≥ L(Pε; g) =
1

2
− ε and U(g) ≤ U(Pε; g) =

1

2
+ ε.

Hence
1

2
− ε ≤ L(g) ≤ U(g) ≤ 1

2
+ ε, for all ε > 0.

Since ε > 0 is arbitrary, then 1
2 ≤ L(g) ≤ U(g) ≤ 1

2 ; by deϐinition, g is Riemann-
integrable on [0, 1] and L(g) = U(g) =

∫ 1
0 g = 1

2 .

If instead g(1/2) = 7, the exact same work as above yields

1

2
− ε ≤ L(g) ≤ U(g) ≤ 1

2
+ 13ε, for all ε > 0.

Since ε > 0 is arbitrary, then 1
2 ≤ L(g) ≤ U(g) ≤ 1

2 ; by deϐinition, g is also Riemann-
integrable on [0, 1] and L(g) = U(g) =

∫ b
a f = 1

2 . ■

9. Let f : [a, b]→ R be bounded and such that f(x) ≥ 0, ∀x ∈ [a, b]. Show L(f) ≥ 0.

Proof: as f is bounded on [a, b], L(f) exists and the set

{f(x) | x ∈ [a, b]} ̸= ∅

is bounded below. By completeness of R, m1 = inf{f(x) | x ∈ [a, b]} exists. Fur-
thermore,m1 ≥ 0 since f(x) ≥ 0 for all x ∈ [a, b].

Let P = {x0, x1} = {a, b} be the trivial partition of [a, b]. Then

L(f) ≥ L(P ; f) = m1(b− a) ≥ 0,

which completes the proof. ■

10. Let f : [a, b] → R be increasing on [a, b]. If Pn partitions [a, b] into n equal parts, show
that

0 ≤ U(Pn; f)−
∫ b

a

f ≤ f(b)− f(a)
n

(b− a).

Proof: asf is increasing, it ismonotoneand thusRiemann-integrablebyTheorem53.
Then L(f) = U(f) =

∫ b
a f . Let

Pn = {xi = a+ i b−a
n | i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals. By deϐinition, L(Pn; f) ≤
∫ b
a f

and U(Pn; f) ≥
∫ b
a f . Then

U(Pn; f)− L(Pn; f) ≥ U(Pn; f)−
∫ b

a
f ≥

∫ b

a
f −

∫ b

a
f = 0.
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In particular, U(Pn; f)−
∫ b
a f ≥ 0. As f is increasing on [a, b],

Mi = sup
[xi−1,xi]

{f(x)} = f(xi), mi = inf
[xi−1,xi]

{f(x)} = f(xi−1), and

U(Pn; f)− L(Pn; f) =

n∑
i=1

(Mi −mi)(xi − xi−1)

=
b− a
n

n∑
i=1

(f(xi)− f(xi−1)) =
b− a
n

(f(b)− f(a)).

Since L(Pn; f) ≤
∫ b
a f , then

b− a
n

(f(b)− f(a)) = U(Pn; f)− L(Pn; f) ≥ U(Pn; f)−
∫ b

a
f ≥ 0,

which completes the proof. ■

11. Let f : [a, b] → R be an integrable function and let ε > 0. If Pε is the partition whose
existence is asserted by the Riemann Criterion, show that U(P ; f)−L(P ; f) < ε for all
reϐinement P of Pε.

Proof: letP be a reϐinement ofPε. ThenU(Pε;f ) ≥ U(P ; f) andL(Pε; f) ≤ L(P ; f),
and so

U(Pε; f) ≥ U(P ; f) ≥ L(P ; f) ≥ L(Pε; f).

By the Riemann Criterion, U(Pε; f) < ε+ L(Pε; f). Then

ε+ L(P ; f) ≥ ε+ L(Pε; f) > U(Pε; f) ≥ U(P ; f),

i.e. ε+ L(P ; f) > U(P ; f), which completes the proof. ■

12. Let a > 0 and J = [−a, a]. Let f : J → R be bounded and letP∗ be the set of symmetric
partitions of J that contain 0. Show L(f) = sup{L(P ; f) | P ∈ P∗}.

Proof: let α = sup{L(P ; f) | P ∈ P∗}. By deϐinition,

α ≤ L(f) = sup{L(P ; f) | P is a partition of [−a, a]}.

Let ε > 0 and Pε = {x0, x1, . . . , xn} be a partition of [−a, a] such that

L(f)− ε < L(Pε; f) ≤ L(f).

Such a partition exists as L(f)− ε is not the supremum of the aforementioned set.

Consider the set {0,±x0, . . . ,±xn}. Eliminate all the repetitions from this set and
re-order its elements. Denote the new set byQε.

ThenQε is a reϐinement of Pε andQε ∈ P∗; so α ≥ L(Qε; f), and

L(f)− ε < L(Pε; f) ≤ L(Qε; f) ≤ α ≤ L(f),

as ε > 0 is arbitrary, L(f) = α. ■
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13. Let a > 0 and J = [−a, a]. Let f be integrable on J . If f is even (i.e. f(−x) = f(x) for
all x), show that ∫ a

−a

f = 2

∫ a

0

f.

If f is odd (i.e. f(−x) = −f(x) for all x), show that
∫ a

−a

f = 0.

Proof: as f is integrable over [−a, a], Theorem 56 implies that f is integrable over
[0, a]. If f is even, let P ∈ P∗. There is a partition P̃ of [0, a] s.t. L(P ; f) = 2L(P̃ ; f)
and vice-versa. Indeed, let

P = {x−n, . . . , x−1, x0, x1, . . . , xn},

where x0 = 0 and x−i = −xi for all i = 1, . . . , n. Then P ∈ P∗.

Let mi = inf{f(x) | x ∈ [xi−1, xi]}, for i = −n − 1, . . . , 0, . . . , n. Since f is even,
mi = m−i+1 for i = −n− 1, . . . , 0, . . . , n. Then

L(P ; f) =
0∑

i=−n−1

mi(xi − xi−1) +
n∑

i=1

mi(xi − xi−1) = 2
n∑

i=1

mi(xi − xi−1) = L(P̃ ; f),

where P̃ is a partition of [0, a].

This, combined with the previous solved problem, yields∫ a

−a
f = sup{L(P ; f) | P ∈ P∗} = sup{2L(P̃ ; f) | P̃ is a partition of [0, a]}

= 2 sup{L(P̃ ; f) | P̃ is a partition of [0, a]} = 2

∫ a

0
f.

If f is odd, consider the function h : R→ R given by

h(x) =

{
1 if x ≥ 0

−1 if x < 0
.

The product fh is an even function, so

2

∫ a

0
f = 2

∫ a

0
hf =

∫ a

−a
hf =

∫ 0

−a
hf +

∫ a

0
hf =

∫ 0

−a
−f +

∫ a

0
f,

and so
∫ a
0 f =

∫ 0
−a−f = −

∫ 0
−a f . Then∫ a

−a
f =

∫ 0

−a
f +

∫ a

0
f = −

∫ a

0
f +

∫ a

0
f = 0,

which completes the proof. ■

14. Give an example of a function f : [0, 1]→ R that is not integrable on [0, 1], but such that
|f | is integrable on [0, 1].
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Solution: here is one example – f : [0, 1] → R, deϐined by f(x) = −1 if x ̸∈ Q and
f(x) = 1 if x ∈ Q. The proof that f is not Riemann-integrable on [0, 1] is similar to
the proof that the Dirichlet function is not Rimeann-integrable on [0, 1]. □

15. Let f : [a, b]→ R be integrable on [a, b]. Show |f | is integrable on [a, b] directly.

Proof: let ε > 0. By the Riemann criterion, there exists a partitionPε = {x0, . . . , xn}
of [a, b] such that U(Pε; f)− L(Pε; f) < ε.

For all i = 1, . . . , n, let

Mi = sup{f(x) | x ∈ [xi−1, xi]} and mi = inf{f(x) | x ∈ [xi−1, xi]}.

For all i = 1, . . . , n, we then have |f(x)− f(y)| ≤Mi −mi on [xi−1, xi]. As

||f(x)| − |f(y)|| ≤ |f(x)− f(y)| ≤Mi −mi for all x, y ∈ [xi−1, xi],

we have M̃i − m̃i ≤Mi −mi,where

M̃i = sup{|f(x)| | x ∈ [xi−1, xi]} and m̃i = inf{|f(x)| | x ∈ [xi−1, xi]}

for all i = 1, . . . , n. Then

U(Pε; |f |)− L(Pε; |f |) =
n∑

i=1

(
M̃i − m̃i

)
(xi = xi−1)

≤
n∑

i=1

(Mi −mi) (xi = xi−1) = U(Pε; |f |)− L(Pε; |f |) < ε.

According to the Riemann criterion, |f | is thus integrable on [a, b]. ■

16. If f is integrable on [a, b] and 0 ≤ m ≤ f(x) ≤M for all x ∈ [a, b], show that

m ≤
[

1

b− a

∫ b

a

f 2

]1/2
≤M.

Proof: by hypothesis,m2 ≤ f2(x) ≤M2 for all x ∈ [a, b]. As f is integrable on [a, b],
so is f2, by Theorem 58.

Then ∫ b

a
m2 ≤

∫ b

a
f2 ≤

∫ b

a
M2

by the squeeze theorem for integrals and so

m2(b− a) ≤
∫ b

a
f2 ≤M2(b− a).

We obtain the result by re-arranging the terms and extracting square roots. ■
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17. If f is continuous on [a, b] and f(x) ≥ 0 for all x ∈ [a, b], show there exists c ∈ [a, b] such
that

f(c) =

[
1

b− a

∫ b

a

f 2

]1/2
.

Proof: by the max/min theorem, ∃x0, x1 ∈ [a, b] such that
m = inf

[a,b]
{f(x)} = f(x0), M = sup

[a,b]

{f(x)} = f(x1).

By the preceding solved problem, we then have

f(x0) ≤
[

1

b− a

∫ b

a
f2
]1/2
≤ f(x1).

As f is continuous on [x0, x1] (or [x1, x0]), the intermediate value theorem states
∃c ∈ [a, b] such that

f(c) =

[
1

b− a

∫ b

a
f2
]1/2
,

which completes the proof. ■

18. If f is continuous on [a, b] and f(x) > 0 for all x ∈ [a, b], show that 1
f
is integrable on

[a, b].
Proof: since f is continuous on [a, b] it is integrable on [a, b]; by Theorem 36, since f
is continuous and [a, b] is a closed bounded interval, then f([a, b]) = [m,M ] is also
closed bounded interval. Furthermore, 0 < m ≤M since f(x) > 0 for all x ∈ [a, b].

Let φ : [m,M ] → R be deϐined by φ(t) = 1
t . Then φ is continuous and bounded

on [m,M ] and so φ ◦ f : [a, b]→ R, deϐined by φ(f(x)) = 1
f(x) is integrable on [a, b],

by Theorem 57. ■

19. Let f be continuous on [a, b]. DeϐineH : [a, b]→ R by

H(x) =

∫ b

x

f for all x ∈ [a, b].

FindH ′(x) for all x ∈ [a, b].
Proof: deϐine F (x) =

∫ x
a f . Since f is continuous, F is differentiable and the funda-

mental theorem of calculus (2nd version) yieldsF ′(x) = f(x) for all x ∈ [a, b]. Then,
by the additivity theorem, we have:

F (x) +H(x) =

∫ x

a
f +

∫ b

x
f =

∫ b

a
f.

In particular,
H(x) =

∫ b

a
f − F (x).

As F is differentiable,
∫ b
a f − F (x) is also differentiable; so isH sinceH ′(x) = 0 −

F ′(x) = −f(x). ■
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20. Suppose f : [0,∞)→ R is continuous and f(x) ̸= 0 for all x > 0. If

(f(x))2 = 2

∫ x

0

f for all x > 0,

show that f(x) = x for all x ≥ 0.
Proof: as f is continuous, F (x) =

∫ x
0 f is continuous; the fundamental theorem of

calculus (2nd version) then yields F ′(x) = f(x) for all x ∈ [0,∞).

Now, either f(x) > 0 for all x > 0 or f(x) < 0 for all x > 0 – otherwise f admits
a root c > 0 by the intermediate value theorem, which would contradict f(x) ̸= 0
∀x > 0.

But
F (x) =

∫ x

0
f =

(f(x))2

2
> 0 for all x > 0,

so
∫ x
0 f > 0 for all x > 0, which is to say that f > 0 for all x > 0 – otherwise,∫ x

0 f ≤
∫ x
0 0 = 0, which contradicts one of the above inequalities.

By construction,
(f(0))2

2
= F (0) =

∫ 0

0
f = 0,

that is, f(0) = 0. Now, let c > 0. By hypothesis, F ′(c) = f(c) > 0. Furthermore,
F (c) = (f(c))2

2 . As f is continuous at c,

lim
x→c

1

2
(f(x) + f(c)) = f(c).

Thus we have:

1 =
F ′(c)

f(c)
=

lim
x→c

F (x)− F (c)
x− c

lim
x→c

1

2
(f(x) + f(c))

= lim
x→c

(f(x))2 − (f(c))2

(x− c) (f(x) + f(c))

= lim
x→c

(f(x)− f(c)) (f(x) + f(c))

(x− c) (f(x) + f(c))
= lim

x→c

f(x)− f(c)
x− c

= f ′(c).

Then, the function f is differentiable and f ′(c) = 1 for all c > 0. By the fundamental
theorem of calculus (1st version),∫ x

0
f ′ = f(x)− f(0) = f(x)− 0 = f(x)

for all x ≥ 0. As
∫ x
0 f

′ =
∫ x
0 1 = x − 0 = x, this completes the proof (which,

incidentally, is one of my favourite analysis proofs). ■

21. Let f, g : [a, b]→ R be continuous and such that∫ b

a

f =

∫ b

a

g.

Show that there exists c ∈ [a, b] such that f(c) = g(c).
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Proof: as f and g are continuous, the functions

F (x) =

∫ x

a
f and G(x) =

∫ x

a
g

are continuous and differentiable on [a, b], with F ′(x) = f(x) andG′(x) = g(x), ac-
cording to the fundamental theorem of calculus (2nd version). ThenH(x) = F (x)−
G(x) is continuous.

But by hypothesis, we have

H(a) = F (a)−G(a) =
∫ a

a
f −

∫ a

a
g = 0− 0 = 0

H(b) = F (b)−G(b) =
∫ b

a
f −

∫ b

a
g = 0.

SinceH is also differentiable, ∃c ∈ (a, b) such thatH ′(c) = 0, by Rolle’s theorem. As

H ′(c) = F ′(c)−G′(c) = f(c)− g(c) = 0,

this completes the proof. ■

22. Let f : [0, 3]→ R be deϐined by

f(x) =


x x ∈ [0, 1)

1 x ∈ [1, 2)

x x ∈ [2, 3]

.

Find F : [0, 3]→ R, where
F (x) =

∫ x

0

f.

Where is F differentiable? What is F ′ there?
Solution: the function f is increasing on [0, 3] so it is Riemann-integrable there. The
function F is given by

F (x) =


x2

2 , x ∈ [0, 1)

x− 1
2 , x ∈ [1, 2)

x2−1
2 , x ∈ [2, 3]

By the fundamental theoremof calculus,F is differentiablewhereverf is continuous,
that is, on [0, 2) ∪ (2, 3], and F ′ = f there. □

23. If f : [0, 1]→ R is continuous and
∫ x

0
f =

∫ 1

x
f for all x ∈ [0, 1], show that f ≡ 0.

Proof: as f is continuous, then F (x) =
∫ x
0 f is continuous and differentiable on

[0, 1], with F ′(x) = f(x), by the fundamental theorem of calculus. By the additivity
theorem, ∫ x

0
f +

∫ 1

x
f =

∫ 1

0
f.
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But
∫ x
0 f =

∫ 1
x f so 2

∫ x
0 f =

∫ 1
0 f. In particular,

F (x) =
1

2

∫ 1

0
f = constant.

Then f(x) = F ′(x) = 0 for all x ∈ [0, 1]. ■

24. Let f : [a, b]→ R be continuous, f ≥ 0 on [a, b], and
∫ b

a
f = 0. Show that f ≡ 0 on [a, b].

Proof: We show the contrapositive. Suppose that there exists z ∈ [a, b] such that
f(z) > 0. Since f is continuous, we may assume z ∈ (a, b), as if f(z) = 0 for all
z ∈ (a, b), then f(a) = f(b) = 0.

Then, taking ε = f(z)/2 in the deϐinition of continuity, there exists a δ > 0 such
that

|x− z| < δ =⇒ |f(x)− f(z)| < f(z)/2 =⇒ f(x) > f(z)/2.

Reducing δ if necessary, we may assume δ ≤ min{z − a, b− a}. Therefore,
[z − δ/2, z + δ/2] ⊆ (z − δ, z + δ) ⊆ [a, b].

Thus ∫ b

a
f =

∫ z−δ/2

a
f +

∫ z+δ/2

z−δ/2
f +

∫ b

z+δ/2
f ≥ 0 + δf(z)/2 + 0 > 0.

This completes the proof. ■

25. Let f : [a, b]→ R be continuous and let
∫ b

a
f = 0. Show ∃c ∈ [a, b] such that f(c) = 0.

Proof: we show the contrapositive. Suppose f(c) ̸= 0 for all c ∈ [a, b]. Then, by
the intermediate value theorem, either f(x) > 0 for all x ∈ [a, b] or f(x) < 0 for all
x ∈ [a, b].

If f(x) > 0 for all x ∈ [a, b], then
∫ b
a f > 0 by the preceding solved problem. Simi-

larly, if f(x) < 0 for all x ∈ [a, b], then
∫ b
a (−f) > 0, which implies that −

∫ b
a f > 0.

In both cases,
∫ b
a f ̸= 0. ■

26. Compute d
dx

∫ x

−x

et
2

dt.

Solution: according to the additivity property of the Riemann integral and the fun-
damental theorem of calculus, we have

d
dx

∫ x

−x
et

2
dt =

d
dx

(∫ 0

−x
et

2
dt+

∫ x

0
et

2
dt

)
=

d
dx

(
−
∫ −x

0
et

2
dt+

∫ x

0
et

2
dt

)
= − d

dx

∫ −x

0
et

2
dt+

d
dx

∫ x

0
et

2
dt

= −ex2 · (−1) + ex
2
= 2ex

2
,

where we used the chain rule in the second-to-last equation. □
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27. Let f : [a, b] → R be Riemann-integrable on [a + δ, b] and unbounded in the interval
(a, a+ δ) for every 0 < δ < b− a. Deϐine∫ b

a

f = lim
δ→0+

∫ b

a+δ

f,

where δ → 0+ means that δ → 0 and δ > 0. A similar construction allows us to deϐine∫ b

a

g = lim
δ→0+

∫ b−δ

a

g.

Such integrals are said to be improper; when the limits exist, they are further said to
be convergent. How can the expression∫ 1

0

1√
|x|

dx

be interpreted as an improper integral? Is it convergent? If so, what is its value?
Solution: by deϐinition,∫ 1

0

1√
|x|

dx = lim
a→0+

∫ 1

a

1√
x

dx = lim
a→0+

(
2
√
1− 2

√
a
)
= 2.

Thus the improper integral converges to 2. □

28. LetG : R→ R be deϐined according to

G(x) =

{
x2 sin

(
π
x2

)
x ̸= 0

0 x = 0

Show that G is the antiderivative of some function g : [0, 1] → R, but that g is not
Riemann-integrable on [0, 1].

Proof: the derivative ofG is

G′(x) = g(x) =

{
2x sin

(
π
x2

)
− 2π

x cos
(

π
x2

)
, x ̸= 0

0, x = 0
.

But g is not bounded on [0, 1], so it cannot be Riemann-integrable on [0, 1]. ■

29. Let f : R → R be Thomae’s function. Show that the indeϐinite integral of f on [1, 2] is
not an antiderivative of f on [1, 2].

Proof: for any x ∈ Q ∩ [1, 2], the indeϐinite integral F is such that F ′(x) ̸= f(x); F
cannot then be an antiderivative of f on [1, 2].¹⁰ ■

30. Without evaluating the integrals, show that
∫ 4

1

e−8t dt =
1

8

∫ 8

4

te−t2/2 dt.

Proof: we can use the 2nd substitution theorem with f(x) = e−x2/2, φ(t) = 4
√
t,

ψ(t) = t2

16 , J = [1, 4]. ■
¹⁰Of course, this will only make sense if you’ve managed to ϐind F ...
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4.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. With the assumptions of Theorem 48, show that f is decreasing on [a, b] if and only if
f ′ ≤ 0 on (a, b).

3. Prove part 2. of the ϐirst derivative test.

4. Let f : (a, b) → R be differentiable on (a, b), with f ′(x) ̸= 0. Prove the following
statements.

a) f is monotone on (a, b) and f((a, b)) is an open interval (α, β);
b) f has an inverse f−1 : (α, β)→ R such that

f−1(f(x)) = x, f(f−1(y)) = y, ∀x ∈ (a, b), y ∈ (α, β),

c) f−1 is differentiable on (α, β), with

(f−1)′(y) =
1

f ′(f−1(y))
, ∀y ∈ (α, β).

5. Let I = [a, b] and f : I → R be bounded. Then U(Q; f) ≤ L(Q; f) for any reϐinement
Q ⊇ P of I .

6. Prove that f ≡ 1 is Riemann-integrable on [0, 1].

7. Show that Theorem 53 holds for decreasing functions.

8. Show that Thomae’s function f is Riemann-integrable over [0, 1] and that
∫ 1

0
f = 0.

9. Show that the signum function and Thomae’s function do not have antiderivatives on
any closed, bounded interval I ⊆ R.

10. Show that the reciprocal of the square root function has an anti-derivative on [0, 1], but
that it is not Riemann-integrable on [0, 1].

11. Find a function f : [a, b]→ R such that the indeϐinite integral F : [a, b]→ R deϐined by
F (x) =

∫ x

a
f is not an antiderivative of f .

12. Prove Theorems 63, 64, and 65.

13. For which values of s does the integral
∫ 1

0
xs dx converge?

14. Show that the indeϐinite integral of sgn is not an antiderivative of sgn on [−1, 1].
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Chapter 5

Sequences of Functions

We now look at sequences of functions, which arise naturally in analysis
and its applications. In particular, we discuss two types of convergence
(pointwise and uniformand prove the limit interchange theorems.

5.1 Pointwise and Uniform Convergence
Let A ⊆ R and (fn)n be a sequence of functions fn : A → R. The sequence (fn(x))n may
converge for some x ∈ A and diverge for others. LetA0 = {x ∈ A | (fn(x))n converges} ⊆ A.
For each x ∈ A0, (fn(x)) converges to a unique limit

f(x) = lim
n→∞

f(x),

the pointwise limit of (fn); we denote the situation by fn → f onA0.

aaaaaa

Examples

1. Let fn : R → R be deϐined by fn(x) = x
n
for all n ∈ N, x ∈ R, and let f be the

zero function on R. Show that fn → f on R.

Proof: let ε > 0 and x ∈ R. By the Archimedean property, ∃Nε,x > |x|
ε

so that
n > Nε,x =⇒

∣∣x
n
− 0
∣∣ < |x|

n
< |x|

Nε,x
< ε,

thus fn → 0 on R. ■

2. Let fn : R → R be deϐined by fn(x) = xn for all n ∈ N, x ∈ R, and let f be
the zero function on R, except at x = 1 where f(1) = 1. Show that fn → f on
(−1, 1].

Proof: using various results seen in Chapters 2 and 3 (and in the solved
problems and exercises), we know that
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aaaaaa

lim
n→∞

xn =


0 x ∈ (−1, 1)
1 x = 1

does not exist otherwise

Thus fn → f on (−1, 1]. Note that all fn are continuous on (1, 1], but that f is
not. ■

3. Let fn : R → R be deϐined by fn(x) = x2+nx
n

for all n ∈ N, x ∈ R, and let f be
the identity function on R. Show that fn → f on R.

Proof: as fn(x) = x2

n
+ x→ f(x) = x, ∀x ∈ R, we have fn → f on R. ■

The last example show that there is something “incomplete” about pointwise convergence –
why is continuity not preserved by the process? As it happens, we can deϐine a different type
of convergence which will preserve this important property.

A sequence of functions fn : A → R converges uniformly on A0 ⊆ A to f : A0 → R,
denoted by fn ⇒ f on A0, if the threshold Nε,x ∈ N in the pointwise deϐinition is in fact
independent of x ∈ A0:

∀ε > 0, ∃Nε ∈ N such that n > Nε and x ∈ A0 =⇒ |fn(x)− f(x)| < ε.
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The distinction between pointwise and uniform convergence is not unlike that between con-
tinuity and uniform continuity: convergence is uniform if the threshold is the same for all
x ∈ A0.

Clearly, if fn ⇒ f onA0, then fn → f onA0, but the converse is not necessarily true.

aaaaaa

Examples

1. Show that the sequence fn : [1, 2] → R deϐined by fn(x) = sinx
nx

for n ∈ N
converges uniformly to the zero function on [1, 2].

Proof: let ε > 0. According to the Archimedean property, ∃Nε > 1
ε

so
that

n > Nε and x ∈ [1, 2] =⇒
∣∣∣∣sinxnx

− 0

∣∣∣∣ = ∣∣∣∣sinxnx

∣∣∣∣ ≤ 1

nx
≤ 1

n
<

1

Nε

< ε,

thus fn ⇒ 0 on [1, 2]. ■

2. Let fn : R → R be deϐined by fn(x) = xn for all n ∈ N, x ∈ R, and let f be
the zero function on R, except at x = 1 where f(1) = 1. Show that fn ̸⇒ f on
(−1, 1].

Proof: we use the negation of the deϐinition. Let ε0 = 1
4
, and set xk = 1

21/k
and

(nk) = (k). Then

|fnk
(xk)− f(xk)| =

∣∣1
2
− 0
∣∣ = 1

2
≥ ε0,

which completes the proof. ■

A sequence of functions fn does not converge uniformly to f onA0 if

∃ε0 > 0with (fnk
) ⊆ (fn) and (xk) ⊆ A0 s.t. |fnk

(xk)− f(xk)| ≥ ε0, ∀k ∈ N.

aaaaaa

Example: let fn : [0, 1]→ R be the sequence of functions deϐined by

fn(x) =


nx, x ∈ [0, 1/n]

2− nx, x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for all n ∈ N. Let f : [0, 1] → R be the zero function on [0, 1]. Show that fn → f on
[0, 1] but fn ̸⇒ f on [0, 1].
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aaaaaa

Proof: if x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0. If x ∈ (0, 1], ∃Nx > 2/x
by the Archimedean property. Thus, for n > Nx, fn(x) = 0 since x > 2

N
> 2

n
, so

fn(x)→ 0 on (0, 1]. Combining these results, fn → f on [0, 1].

Now, let ε0 = 1
2
. Note that since |fn( 1n) − f( 1

n
)| = 1 for all n ∈ N, we can

never obtain
|fn(x)− f(x)| < ε

for all x ∈ [0, 1], and so fn ̸⇒ f on [0, 1]. ■
The fact thatwe have to separate the proof for pointwise convergence into distinct arguments
depending on the value of x is a strong indication that the convergence cannot be uniform.¹

Intuitively, we can think of the convergence process in the last example as being a ϐlatten-
ing process: what happens to the tents’ peak as n→∞? That we have to “break” the tents to
get to the pointwise limit is another indication that the convergence cannot be uniform.

The deϐinition of uniform convergence is only ever useful if a candidate for a uniform limit is
available, a situation thatwehave encounteredbefore. Aswas the case for number sequences,
the completeness of R comes to the rescue.

aaaaaa

Theorem 66 (CĆĚĈčĞ'Ę CėĎęĊėĎĔē ċĔė SĊĖĚĊēĈĊĘ Ĕċ FĚēĈęĎĔēĘ)
Let fn : A → R, ∀n ∈ N. Then, fn ⇒ f on A0 ⊆ A if and only if ∀ε > 0, ∃Nε ∈ N
(indep. of x ∈ A0) such that |fm(x) − fn(x)| < ε whenever m ≥ n > Nε ∈ N and
x ∈ A0.

Proof: let ε > 0. If fn ⇒ f on A0, ∃Nε ∈ N such that |fn(x) − f(x)| < ε
when x ∈ A0 and n > Nε. Hence,

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)|

≤ |fm(x)− f(x)|+ |fn(x)− f(x)| <
ε

2
+
ε

2
= ε

whenever x ∈ A0 andm ≥ n > Nε.

¹Although it could be that it was possible to do a one-pass proof and that the insight escaped us.
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aaaaaa

Conversely, let ε > 0 and assume that ∃Nε/2 ∈ N (independent of x ∈ A0) such that

m ≥ n > Nε/2 and x ∈ A0 =⇒ −
ε

2
< fm(x)− fn(x) <

ε

2
.

Since x ∈ A0, we know that fm(x)→ f onA0 whenm→∞. Thus,

m ≥ n > Nε/2 and x ∈ A0 =⇒ lim
m→∞

−ε
2
≤ lim

m→∞
(fm(x)− fn(x)) ≤ lim

m→∞

ε

2
,

or
m ≥ n > Nε/2 and x ∈ A0 =⇒ −ε < −

ε

2
≤ f(x)− fn(x) ≤

ε

2
< ε,

and so fn ⇒ f onA0. ■

5.2 Limit Interchange Theorems
It is often necessary to know if the limit f of a sequence of functions (fn) is continuous, dif-
ferentiable, or Riemann-integrable. Unfortunately, we cannot guarantee that this will be the
case, even when the fn are continuous, differentiable, or Riemann-integrable, respectively.

aaaaaa

Examples

1. Consider the sequence of functions fn : [0, 1] → R deϐined by fn(x) = xn for
n ∈ N and f : [0, 1]→ R be the zero function except at x = 1where f(1) = 1.
Then fn is continuous on [0, 1] for all n ∈ N, but f is not. □

2. The same functions fn are differentiable on [0, 1] for all n ∈ N, but f is not (as
it is not continuous at x = 1). □

3. Consider the functions fn : [0, 1]→ R deϐined by

fn(x) =


n2x, x ∈ [0, 1/n]

−n2(x− 2/n), x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for n ≥ 2.
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aaaaaa

Since fn is continuous on [0, 1] for all n ≥ 2, fn is Riemann-integrable on [0, 1]
for all n ≥ 2, with ∫ 1

0

fn =
1

2
· 2
n
· n = 1, for all n ≥ 2.

If x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0.

If x ∈ (0, 1], ∃Nx > 2/x by the Archimedean property. Thus, for n > Nx,
fn(x) = 0 since x > 2

N
> 2

n
, so fn(x)→ 0 on (0, 1]. So fn → f on [0, 1], but∫ 1

0

f = 0 ̸= 1 = lim
n→∞

∫ 1

0

f,

which is to say we cannot interchange the limit and the integral here. □

Note that none of the “convergences” in the previous example are uniform on [0, 1]. When the
convergence fn ⇒ f onA is uniform, then if the fn are

continuous on A, so is f ;

differentiable onA, so is f , with

f ′ =
d
dx
[

lim
n→∞

fn

]
= lim

n→∞

[ d
dxfn

]
= lim

n→∞
f ′
n;

Riemann-integrable on A, then so is f , with∫
A

f =

∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn.

We ϐinish this chapter by proving three limit interchange theorems, with applications in
analysis, engineering, and mathematical physics.²

aaaaaa

Theorem 67
Let fn : A→ R be continuous onA for all n ∈ N. If fn ⇒ f onA, then f is continuous
on A.

Proof: let ε > 0. By deϐinition, ∃Hε/3 ∈ N such that

n > Hε/3 and x ∈ A =⇒ |fn(x)− f(x)| < ε
3
.

²Although their conclusions are often used without verifying that the convergence is indeed uniform.
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aaaaaa

Let c ∈ A. According to the triangle inequality,

|f(x)− f(c)| ≤ |f(x)− fHε/3
(x)|+ |fHε/3

(x)− fHε/3
(c)|+ |fHε/3

(c)− f(c)|
< ε

3
+ |fHε/3

(x)− fHε/3
(c)|+ ε

3

whenever n > Hε/3.

But fHε/3
is continuous at c, so ∃δε/3 > 0 such that |fHε/3

(x) − fHε/3
(c)| < ε

3

when x ∈ A and |x − c| < δε/3. Thus |f(x) − f(c)| < ε whenever x ∈ A and
|x− c| < δε/3, so f is continuous at c. As c ∈ A is arbitrary, f is continuous onA. ■

The next two results are slightly more complicated to prove.

aaaaaa

Theorem 68
Let fn : [a, b] → R be a sequence of differentiable functions on [a, b] such that
∃x0 ∈ [a, b] with fn(x0) → z0, and f ′′

n ⇒ g on [a, b]. Then fn ⇒ f on [a, b] for some
function f : [a, b]→ R such that f ′ = g.

Proof: let ε > 0 and x ∈ [a, b]. Since f ′
n ⇒ g on [a, b], the sequence f ′

n satis-
ϐies Cauchy’s criterion, and so ∃N1 ∈ N such that

m ≥ n > N1 and y ∈ [a, b] =⇒ |f ′
m(y)− f ′

n(y)| <
ε

2(b− a)
.

As (fn(x0)) converges it is also a Cauchy sequence, so ∃N2 ∈ N such that

m ≥ n > N2 =⇒ |fm(x0)− fn(x0)| <
ε

2
.

According to the mean value theorem, ∃y between x and x0 such that

(fm(x)− fn(x))− (fm(x0)− fn(x0)) = (f ′
m(y)− f ′

n(y))(x− x0).

Hence,

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ |f ′
m(y)− f ′

n(y)| · |x− x0|

<
ε

2
+

ε

2(b− a)
(b− a) = ε

for allm ≥ n > max{N1, N2}.

Both N1 and N2 are independent of x, so Nε = max{N1, N2} also is, and thus
(fn)n satisϐies Cauchy’s criterion, which yields fn ⇒ f on [a, b].
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aaaaaa

It remains only to show that f ′ = g on [a, b]. Let ε > 0 and c ∈ [a, b]. Since (f ′
n)

satisϐies Cauchy’s criterion (as f ′
n ⇒ g), ∃K1 ∈ N (independent of x) such that

m ≥ n > K1 and y ∈ [a, b] =⇒ |f ′
m(y)− f ′

n(y)| <
ε

3
.

But f ′ ⇒ g′, so ∃K2 ∈ N (independent of c) such that

n ≥ K2 and c ∈ [a, b] =⇒ |f ′
n(c)− g(c)| <

ε

3
.

SetKε > max{K1, K2}.

As f ′
Kε
(c) exists, ∃δε > 0 such that

0 < |x− c| < δε and x ∈ [a, b] =⇒
∣∣∣∣fKε(x)− fKε(c)

x− c
− f ′

Kε
(c)

∣∣∣∣ < ε

3
.

According to the mean value theorem, ∃y between x and c such that

(fm(x)− fn(x))− (fm(c)− fn(c)) = (f ′
m(y)− f ′

n(y))(x− c).

If x ̸= c, thenm ≥ n > Kε and x ∈ [a, b] =⇒∣∣∣∣fm(x)− fm(c)x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ = |f ′
m(y)− f ′

n(y)| <
ε

3
.

Lettingm→∞ (i.e. fm → f onA), we get

n > Kε and x ∈ [a, b] =⇒
∣∣∣∣f(x)− f(c)x− c

− fm(c)− fn(c)
x− c

∣∣∣∣ ≤ ε

3
.

Combining all of these inequalities, for 0 < |x − c| < δε, x ∈ [a, b], and k > Kε, we
have∣∣∣∣f(x)− f(c)x− c

− g(c)
∣∣∣∣ = ∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

+
fk(x)− fk(c)

x− c
− f ′

k(c) + f ′
k(c)− g(c)

∣∣∣∣
≤
∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

∣∣∣∣+ ∣∣∣∣fk(x)− fk(c)x− c
− f ′

k(c)

∣∣∣∣
+ |f ′

k(c)− g(c)| <
ε

3
+
ε

3
+
ε

3
= ε,

which is to say that f ′(c) = g(c). ■
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Theorem 69
Let fn : [a, b] → R be Riemann-integrable on [a, b] for all n ∈ N. If fn ⇒ f on [a, b],
then f is Riemann-integrable on [a, b] and∫ b

a

f = lim
n→∞

∫ b

a

fn.

Proof: let ε > 0. Since fn ⇒ f on [a, b], ∃Kε ∈ N (independent of x) such
that

n ≥ Kε =⇒ |fn(x)− f(x)| <
ε

4(b− a)
.

Since fKε is Riemann-integrable, ∃Pε = {x0, . . . , xn} a partition of [a, b] such that

U(Pε; fKε)− L(Pε; fKε) <
ε

2
,

according to the Riemann criterion.

For all 1 ≤ i ≤ n, set

mi(f) = inf{f(x) | x ∈ [xi−1, xi]}, mi(fKε) = inf{fKε(x) | x ∈ [xi−1, xi]},
Mi(f) = sup{f(x) | x ∈ [xi−1, xi]}, Mi(fKε) = sup{fKε(x) | x ∈ [xi−1, xi]}.

Then according to the reverse triangle inequality, we have

|f(x)| < |fKε(x)|+
ε

4(b− a)
=⇒ |f(x)| < Mi(fKε) +

ε

4(b− a)
on [xi−1, xi]

=⇒Mi(f) < Mi(fKε) +
ε

4(b− a)
on [xi−1, xi].

Similarly,mi(f) ≥ mi(fKε)− ε
4(b−a)

on [xi−1, xi]. Thus,

U(Pε; f) =
n∑

i=1

Mi(f)(xi − xi−1)

≤
n∑

i=1

Mi(fKε)(xi − xi−1) +
ε

4(b− a)

n∑
i=1

(xi − xi−1) = U(Pε; fKε) +
ε

4
.

Similarly, L(Pε; f) ≥ L(Pε; fKε)− ε
4
. Hence

U(Pε; f)− L(Pε; f) ≤ U(Pε; fKε)− L(Pε; fKε) +
ε

2
< ε.

Thus, according to the Riemann criterion, f is Riemann-integrable.
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aaaaaa

Finally, let ε > 0. As fn ⇒ f on [a, b], ∃K̂ε (independent of x) such that

n > K̂ε and x ∈ [a, b] =⇒ |fn(x)− f(x)| <
ε

2(b− a)
.

Consequently,
∫ b

a
fn →

∫ b

a
f , since n > K̂ε =⇒∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣ = ∣∣∣∣∫ b

a

(fn − f)
∣∣∣∣ ≤ ∫ b

a

|fn − f | ≤
∫ b

a

ε

2(b− a)
=
ε

2
< ε,

which completes the proof. ■

5.3 Solved Problems
1. Show that lim

n→∞

nx

1 + n2x2
= 0 for all x ∈ R.

Proof: if x = 0, then nx
1+n2x2 = 0 → 0. If x ̸= 0, let ε > 0. By the Archimedean

property, ∃Nε >
1

ε|x| (depending on x) s.t.∣∣∣∣ nx

1 + n2x2
− 0

∣∣∣∣ = n|x|
1 + n2x2

<
n|x|
n2x2

=
1

n|x|
<

1

Nε|x|
< ε

whenever n > Nε, i.e. nx
1+n2x2 → 0 on R. ■

2. Show that if fn(x) = x + 1
n
and f(x) = x for all x ∈ R, n ∈ N, then fn ⇒ f on R but

f 2
n ̸⇒ g on R for any function g.

Proof: let ε > 0. By the Archimedean property, ∃Nε >
1
ε (independent of x) s.t.

|fn(x)− f(x)| =
∣∣∣∣x+

1

n
− x
∣∣∣∣ = 1

n
<

1

Nε
< ε

whenever n > Nε, i.e. fn ⇒ 0 on R.

Now, (fn(x))2 = x2 + 2x
n + 1

n2 → x2 for all x ∈ R. Hence, f2n → g on R, where
g(x) = x2. If f2n converges uniformly to any function, it will have to do so to g. But
let ε0 = 2 and xn = n. Then∣∣∣(fn(xn))2 − g(xn)∣∣∣ = ∣∣∣∣2xnn +

1

n2

∣∣∣∣ = 2 +
1

n2
≥ 2 = ε0

for all n ∈ N (this is the negation of the deϐinition of uniform convergence). Hence
f2n does not converge uniformly on R. ■

3. Let fn(x) = 1
(1+x)n

for x ∈ [0, 1]. Denote by f the pointwise limit of fn on [0, 1]. Does
fn ⇒ f on [0, 1]?
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Proof: ϐirst note that 1 ≤ 1 + x on [0, 1]. In particular, 1
1+x ≤ 1 on [0, 1]. If x ∈ (0, 1],

then 1
(1+x)n → 0, according to one of the chapter’s examples.

If x = 0,
1

(1 + x)n
=

1

1n
= 1→ 1;

i.e. fn → f on [0, 1], where

f(x) =

{
0, x ∈ (0, 1]

1, x = 0
.

However, fn ̸⇒ f by theorem 67, since fn is continuous on [0, 1] for all n ∈ N, but f
is not. ■

4. Let (fn) be the sequence of functions deϐined by fn(x) = xn

n
, for x ∈ [0, 1] and n ∈ N.

Show that (fn) converges uniformly to a differentiable function f : [0, 1]→ R, and that
the sequence (f ′

n) converges pointwise to a function g : [0, 1]→ R, but that g(1) ̸= f ′(1).
Proof: the sequence fn(x) = xn

n → f(x) ≡ 0 on [0, 1]. Indeed, let ε > 0. By the
Archimedean property, ∃Nε >

1
ε s.t.∣∣∣∣xnn − 0

∣∣∣∣ ≤ |x|nn ≤ 1

n
<

1

Nε
< ε

whenever n > Nε. Note that f is differentiable and f ′(x) = 0 for all x ∈ [0, 1].
Furthermore, f ′n(x) = nxn−1

n = xn−1 → g(x) on [0, 1], where

g(x) =

{
0, x ∈ [0, 1)

1, x = 1
,

by one of the examples I did in class. Then g(1) = 1 ̸= 0 = f ′(1). ■

5. Show that lim
n→∞

∫ 2

1

e−nx2 dx = 0.

Proof: as
(
e−nx2

)′
= −2nxe−nx2

< 0 on [1, 2] for all n ∈ N, e−nx2 is decreasing on
[1, 2] for all n, that is

e−nx2 ≤ e−n(1)2 = e−n for all n ∈ N.
Now,

fn(x) = e−nx2 ⇒ f(x) ≡ 0 on [1, 2].

Indeed, let ε > 0. By the Archimedean property, ∃Nε > ln 1
ε (independent of x) s.t.∣∣∣e−nx2 − 0

∣∣∣ = e−nx2
< e−Nx2 ≤ e−N < ε

whenever n > Nε. Then (and only because of this uniform convergence),

lim
n→∞

∫ 2

1
e−nx2 dx =

∫ 2

1
lim
n→∞

e−nx2 dx =

∫ 2

1
0 dx = 0,

by the limit interchange theorem for integrals. ■

P. Boily (uOttawa) 155



5.4. EXERCISES

6. Show that lim
n→∞

∫ π

π/2

sin(nx)
nx

dx = 0.

Proof: for n ∈ N, deϐine fn : [π/2, π]→ R by

fn(x) =
sin(nx)
nx

.

Then each fn is continuous. For all n ∈ N, we have

sup
x∈[π/2,π]

{∣∣∣∣sin(nx)nx

∣∣∣∣} ≤ 2

nπ
.

Since 2/nπ → 0 as n → ∞, we have fn ⇒ 0 (why?). Then the limit interchange
theorem for integrals applies, and we have

lim
n→∞

∫ π

π/2

sin(nx)
nx

dx =

∫ π

π/2
0 dx = 0.

This completes the proof. ■

7. Show that if fn ⇒ f on [a, b], and each fn is continuous, then the sequence of functions
(Fn)n deϐined by

Fn(x) =

∫ x

a

fn(t) dt

also converges uniformly on [a, b].
Proof: deϐine F (x) =

∫ x
a f(t) dt. Let ε > 0. Since fn ⇒ f , ∃N ∈ N such that, for all

n ≥ N , we have
|fn(x)− f(x)| <

ε

b− a
∀x ∈ [a, b].

Then, for all n ≥ N and x ∈ [a, b], we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a
fn(t) dt−

∫ x

a
f(t) dt

∣∣∣∣ ≤ ∫ x

a
|fn(t)− f(t)| dt

≤ (x− a) · ε

b− a
≤ ε.

Thus Fn ⇒ F on [a, b]. ■

5.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Are all the hypotheses of Theorem 68 necessary?
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Chapter 6

Series of Functions

In the ϐinal chapter of this part, we discuss a speciϐic type of sequence: the
series (series of numbers, series of functions, and power series). Note
that the latter is more naturally expressed using a complex analysis frame-
work (see Chapter 22), but we present it here, as well as important theo-
rems for regular series, in the real analysis framework.

6.1 Series of Numbers
Let (xn) ⊆ R. The series associated with (xn), denoted by

S(xn) =
∞∑
n=1

xn,

is the sequence (sn), where
s1 = x1, s2 = x1 + x2, s3 = x1 + x2 + x3, . . .

If the sequence of partial sums sn converges to S, we say the series S(xn) converges to the
sum S. When the context is clear, we may also write∑xn(= S).

We start by producing a necessary condition for convergence.

aaaaaa

Theorem 70

If
∞∑
n=1

xn converges, then xn → 0.

Proof: let S be the limit of the partial sums. Then

lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = S − S = 0,

with the second equality being guaranteed by Theorem 14 and the convergence of
the series. ■
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We can bypass the need to know the limit in order to prove convergence.

aaaaaa

Theorem 71 (CĆĚĈčĞ CėĎęĊėĎĔē ċĔė SĊėĎĊĘ)
The series

∞∑
n=1

xn converges if and only if ∀ε > 0, ∃Nε ∈ N such that

m > n > Nε =⇒ |xn+1 + · · ·+ xm| < ε.

Proof: let (sn) be the series of partial sums. If (sn) converges, it is a Cauchy
sequence, so that ∃Nε ∈ N such that m > n > Nε =⇒ |sm − sn| < ε. But
|sm − sn| = |xm + · · ·+ xn+1|, so Cauchy’s criterion holds.

Conversely, if Cauchy’s criterion holds, the sequence of partial terms is a Cauchy
sequence, and so the series converges by completeness ofR. ■

Other tests can be used to show the convergence of a series without knowing the limit.

aaaaaa

Theorem 72 (CĔĒĕĆėĎĘĔē TĊĘę)
Let

∞∑
n=1

xn,
∞∑
n=1

yn be series whose terms are all non-negative. If ∃K ∈ N such that

0 ≤ xn ≤ yn when n > K , then

1.
∞∑
n=1

yn converges =⇒
∞∑
n=1

xn converges.

2.
∞∑
n=1

xn diverges =⇒
∞∑
n=1

yn diverges.

Proof: we prove 1.; the proof for the other part is simply the contrapositive. Let
ε > 0. As∑ yn converges, ∃Nε ∈ N such that 0 ≤ yn+1 + · · · + ym < ε according to
Cauchy’s criterion for series.

Hence, wheneverm ≥ n > Mε = max{Nε, K}, then

0 ≤
m∑

i=n+1

xi ≤
m∑

i=n+1

yi < ε.

As such,∑xn converges as it satisϐies Cauchy’s criterion for series. ■

Typical problems may look like the following.
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aaaaaa

Example: discuss the convergence of
∞∑
n=1

1

n(n+ 1)
and

∞∑
n=1

1

n2
.

Solution: the limit of the partial sums of the ϐirst series converges to 1 as

lim
k→∞

sk = lim
k→∞

k∑
n=1

( 1
n
− 1

n+ 1

)
= lim

k→∞

(
1− 1

k + 1

)
= 1− 0 = 1.

For the second series, since n2 ≥ 1
2
(n2 + n) ≥ 0 for all n ∈ N, then 2

n(n+1)
≥ 1

n2 ≥ 0

for all n ∈ N, and
∞ > 2

∞∑
n=1

1

n(n+ 1)
≥

∞∑
n=1

1

n2
,

thus the series converges, according to the comparison theorem. □

When the sign of the underlying sequence terms alternates, convergence is particularly easy
to establish.

aaaaaa

Theorem 73 (AđęĊėēĆęĎēČ SĊėĎĊĘ TĊĘę)
Let (an) be a sequence of non-negative numbers such that an ↘ 0 (i.e., an → 0 and

an+1 ≤ an). Then
∞∑
n=0

(−1)nan converges.

Proof: let (sk) be the series of partial sums

sk =
k∑

n=0

(−1)nan.

The subsequence of even terms is s2k = s2k−2 − (a2k−1 − a2k); that of the odd terms
is s2k+1 = s2k−1 − (a2k − a2k+1). Since an ↘ 0, an+1 ≤ an for all n. Thus s2k ≤ s2k−2

and s2k+1 ≥ s2k−1 for all k ∈ N. But s2k ≥ s2m+1 for all k,m ∈ N (left as an exercise),
and so

a0 = s0 ≥ s2 ≥ s4 ≥ · · · ≥ s5 ≥ s3 ≥ s1 = a0 − a1.

Thus (s2k) is a bounded decreasing sequence and (s2k−1) is a bounded increasing
sequence, and so lim

k→∞
s2k and lim

k→∞
s2k−1 exist. According to Theorem 14, then, we

have
lim
k→∞

(s2k − s2k−1) = lim
k→∞

a2k = 0

since an ↘ 0, which implies that the alternating series converges:

lim
k→∞

2k∑
n=0

(−1)nan = lim
k→∞

s2k = lim
k→∞

s2k+1 = lim
k→∞

2k+1∑
n=0

(−1)nan,

which completes the proof. ■
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Even though it was not part of the statement, the proof of Theorem 73 allows us to conclude
that the value of a convergent alternating series lies between a2k and a2m+1 for all k,m ∈ N.

aaaaaa
Example: the alternating harmonic series−1+ 1/2− 1/3+ · · · converges. Indeed,
consider the sequence (an) = ( 1

n
) = (1, 1

2
, 1
3
, . . .). As 1

n
→ 0 and 1

n+1
≤ 1

n
for all n,

then the corresponding alternating series converges. Its value lies between s0 = 1
and s1 = 1− 1

2
= 1

2
, s1 = 1

2
and s2 = 1

2
+ 1

3
= 5

6
, s2 = 5

6
and s3 = 5

6
− 1

4
= 7

12
, etc. □

Two other convergence tests are often used in practice: the ratio test and the root test.

aaaaaa

Theorem 74 (RĆęĎĔ TĊĘę)
Let (an) be a sequence of positive real numbers.

1. If lim
n→∞

an+1

an
< 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1, then

∞∑
n=1

an diverges.

Proof:

1. Assume 0 ≤ an+1

an
→ q < 1. Let r = q+1

2
. Thus q < r < 1 and there are only

ϐinitely many indices n for which an+1

an
> r. Indeed, let ε ∈ (0, 1−q

2
).

Then, ∃Nε ∈ N such that

n > Nε =⇒
an+1

an
− q < ε <

1− q
2

=⇒ an+1

an
≤ q + 1

2
= r.

Then
n > Nε =⇒ an =

an
an−1

· · · · · aN+1

aN
· aN ≤ rn−NaN .

The tail of the original series converges, as
∞∑

n=N+1

an ≤
∞∑

n=N+1

aNr
n−N =

aN
rN

∞∑
n=N+1

rn =
aN
rN

( rN+1

1− r

)
<∞,

where the last equation is left as an exercise. As a0+ · · ·+ aN is also ϐinite, the
full series converges.
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aaaaaa

2. Assume an+1

an
→ q > 1. Using a similar argument as in part 1., we can show

that ∃r > 1 andN ∈ N such that an+1

an
≥ r > 1 for all n ∈ N, so that an+1 > an

for all n ≥ 1.

Thus an ̸→ 0, and so
∞∑
n=0

an diverges, according to Theorem 70. ■

If an+1

an
→ 1, then the series may converge or may diverge, depending on the speciϐic nature

of an. The key parts of the proof (namely, the convergence of the tail in the ϐirst case and the
condition an ̸→ 0 in the second) are also valid if the statement is relaxed to some extent.

aaaaaa

Theorem 74 (RĆęĎĔ TĊĘę RĊĕėĎĘĊ)
Let (an) be a sequence of real numbers with an ̸= 0 for all n.

1. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then
∞∑
n=1

an converges.

2. If lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then
∞∑
n=1

an diverges.

The root test is similar (we will not prove it).

aaaaaa

Theorem 75 (RĔĔę TĊĘę)
Let (an) be a sequence of positive real numbers.

1. If lim sup
n→∞

n
√
an < 1, then

∞∑
n=1

an converges.

2. If lim inf
n→∞

n
√
an > 1, then

∞∑
n=1

an diverges.

This general result also has a stricter version, replacing lim sup and lim inf by lim. In either
version, if the limit is 1, then the series may converge or diverge, depending on the speciϐic
nature of the terms an.

aaaaaa

Examples: discuss the convergence of
∞∑
n=1

(−1)n

n2n
,

∞∑
n=1

3n

n2n
, and

∞∑
n=1

1

np
, p > 0.
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aaaaaa

1. The terms are all non-zero. We compute

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1

(n+ 1)2n+1
· n2n

(−1)n

∣∣∣∣ = 1

2
lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1

2
< 1,

so the series converges according to the ratio test. □

2. The terms are all positive. We compute

lim
n→∞

n
√
an = lim

n→∞
n

√
3n

n2n
=

3

2
lim
n→∞

1

n1/n
=

3

2
> 1,

so the series diverges according to the root test. □

3. The terms are all positive. For all p > 0, we compute

lim
n→∞

∣∣∣∣ 1

(n+ 1)p
· n

p

1

∣∣∣∣ = lim
n→∞

( n

n+ 1

)p
→ 1p = 1.

Thuswe cannot use the ratio test to determine if the series converges. If p = 1,
the harmonic series is bounded below by a divergent series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4︸ ︷︷ ︸
=1/2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
=1/2

+ · · · = 1 +
1

2
+

1

2
+

1

2
+ · · · =∞,

and somust itself be divergent. As 1
np >

1
n
for all nwhen p < 1, then the series

diverges for all 0 < p ≤ 1 according to the comparison theorem. If p > 1, the
p−series is bounded above by a convergent series

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+

1

5p
+

1

6p
+

1

7p
+

1

8p
+ · · ·

≤ 1 +
1

2p
+

1

2p︸ ︷︷ ︸
2 times

+
1

4p
+

1

4p
+

1

4p
+

1

4p︸ ︷︷ ︸
4 times

+
1

8p
+ · · ·

= 1 + 21 · 1

(21)p
+ 22 · 1

(22)p
+ · · · =

∞∑
k=0

2k(1−p) =
∞∑
k=0

1

(2p−1)k
.

But this series converges according to the root test. Indeed, all the terms are
positive, and, because p > 1,

lim
k→∞

k

√
1

(2p−1)k
= lim

k→∞

1

2p−1
< 1.

Thus the p−series diverges for 0 < 1 ≤ p and converges for p > 1. □
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The next result (provided without proof) shows that the series of the absolute values may
play an important role in the convergence of the “raw” series.

aaaaaa

Theorem 76 (AćĘĔđĚęĊ CĔēěĊėČĊēĈĊ)
If the series

∞∑
n=0

|an| converges, so does
∞∑
n=0

an (note that this is not an “if and only if”

statement).

The ϐinal result explains when the terms of a series can be re-arranged without affecting the
convergence of the original series.

aaaaaa
Theorem 77 (SĊėĎĊĘ RĊ-ĆėėĆēČĊĒĊēę)
If the series

∞∑
n=0

|an| converges, so does
∞∑
n=0

aφ(n), φ : N→ N a bijection.

6.2 Series of Functions
Series of functions play the same role for sequences of functions that series played for se-
quences of numbers. Let I ⊆ R and fn : I → R, ∀n ∈ N. If the sequence of partial sums

s1(x) = f1(x), s2(x) = f1(x) + f2(x), s3(x) = f1(x) + f2(x) + f3(x), . . .

converges to some function f : I → R for all x ∈ I , we say that the series of functions∑ fn
converges pointwise to f on I .

aaaaaa

Example: consider the sequence of functions fn : R→ R, with fn(x) = xn for each
n ∈ N. Does the sequence of partial sums sk(x) converge to some pointwise limit
over someA ⊆ R?

Solution: formally, we have

(1− xk+1) = (1− x)(1 + x+ x2 + · · ·+ xk) = (1− x)sk(x).

Thus
x ̸= −1 =⇒ sk(x) =

k∑
n=0

xn =
1− xk+1

1− x
,

and so
∞∑
n=0

xn = lim
k→∞

sk(x) =
1

1− x

when x ∈ (−1, 1). □

P. Boily (uOttawa) 163



6.2. SERIES OF FUNCTIONS

If the sequence of partial sums (sn) converges uniformly to f on I , we say that the series of
functions∑ fn converges uniformly to f on I . If the convergence of the series of functions
is uniform, the limit interchange theorems can be applied.

aaaaaa

Theorem 78 (CĆĚĈčĞ CėĎęĊėĎĔē ċĔė SĊėĎĊĘ Ĕċ FĚēĈęĎĔēĘ)
Let fn : I → R for all n ∈ N. The series of functions with term fn converges uniformly
to some function f : I → R if and only if ∀ε > 0, ∃Nε ∈ N (independent of x ∈ I) such
that

m > n > Nε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ < ε.

Proof: theproof followsdirectly fromTheorem66applied to the sequenceof partial
sums sm : I → R. ■

The next result is a powerful tool to prove uniform convergence (and as a pre-requisite to the
use of the limit interchange theorems). The simplicity of its proof belies its importance.

aaaaaa

Theorem 79 (WĊĎĊėĘęėĆĘĘM−TĊĘę)
Let fn : I → R andMn ≥ 0 for all n ∈ N. Assume that |fn(x)| ≤ Mn for all x ∈ I ,
n ∈ N. Then

∞∑
n=1

Mn converges =⇒
∞∑
n=1

fn converges uniformly on I.

Proof: let ε > 0. Since∑Mn converges, its sequences of partial sums (sk) is Cauchy
and ∃Kε ∈ N such that

m > n > Kε =⇒
m∑

i=n+1

Mi < ε.

But
m > n > Kε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ ≤
m∑

i=n+1

|fi(x)| ≤
m∑

i=n+1

Mi < ε;

sinceKε is independent of x ∈ I ,
∞∑
n=1

fn converges uniformly on I . ■

The following example showcases its usefulness.

aaaaaa
Example: let ε ∈ (0, 1). Consider the sequence of functions gn : R → R deϐined by
gn(x) = nxn−1 for each n ∈ N. Does σk(x) ⇒ σ(x) on Iε = (−1 + ε, 1− ε) for some
σ? If so, ϐind σ.
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aaaaaa

Solution: consider the sequence of functions fn : R → R deϐined by fn(x) = xn

for each n ∈ N, and the corresponding sequence of partial sums sk(x) deϐined by
sk(x) = 1 + x+ · · ·+ xk.

We have already shown that sk(x) → 1
1−x

pointwise on (−1 + ε, 1 − ε). The
partials sums sk are differentiable on Iε since

σk(x) = s′k(x) = 1 + 2x+ 3x2 + · · ·+ kxk−1

are polynomials (in fact, σk is also continuous on Iε). Furthermore, note that the
sequence of derivatives of partial sums σk(x) converge uniformly on Iε. To show
this, note that

|gn(x)| = |nxn−1| ≤ n|1− ε|n−1 =Mn ∀x ∈ Iε, ∀n ∈ N.

But
∞∑
n=0

Mn =
∞∑
n=0

n(1− ε)n−1.

Since
lim
n→∞

(n+ 1)(1− ε)n

n(1− ε)n−1
= (1− ε) lim

n→∞

n+ 1

n
= (1− ε) < 1,

then∑Mn converges according to the ratio test.

According to the Weierstrass M−test, then, σk(x) ⇒ σ(x) on Iε for some
function σ : Iε → R. We can use the limit interchange theorem 68 to identify σ:

σ(x) = lim
k→∞

σk(x) = lim
k→∞

d
dx [sk(x)] =

d
dx
[

lim
k→∞

sk(x)
]
=

d
dx
[ 1

1− x

]
,

which is to say σ(x) = 1
(1−x)2

. □

Incidentally, Theorem 68 also tells us that sk(x) ⇒ 1
1−x

on Iε, for all 0 < ε < 1, and that for all
k ∈ N and x ∈ Iε, ε ∈ (0, 1), we have

∞∑
n=0

dk

dxk [x
n] =

dk

dxk
∞∑
n=0

xn =
dk

dxk
( 1

1− x

)
.

6.3 Power Series
A power series around its center x = x0 is a formal expression of the form

∞∑
n=0

an(x− x0)n.
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We have already seen an example of such a series, which converged uniformly on intervals
containing x0 = 0:

∞∑
n=0

xn =
1

1− x
on Iε = (−1 + ε, 1− ε), ∀ε ∈ (0, 1);

note, however, that the convergence is only pointwise on (−1, 1). The function f : A → R,
f(x) = 1

1−x
is deϐined for all x ̸= 1, however, yet the power series 1 + x + x2 + · · · does not

converge to f outside of (−1, 1).¹

aaaaaa

Examples: where do the following power series converge:
∞∑
n=0

xn,

∞∑
n=1

(nx)n,
∞∑
n=1

(x
n

)n
?

Solution: we have seen that the ϐirst power series converges only on (−1, 1).

The second power series obviously converges when x = 0. To show that it
fails to converge on R \ {0}, note that if |x| > 0, then ∃N ∈ N such that N > 2

|x| by
the Archimedean property. Thus,

n > N =⇒ |(nx)n| = nn|x|n > 2n

and the sequence (nx)n is unbounded, which means that the terms do not go to 0,
and so the series diverges.

For the third power series, let x ∈ R. By the Archimedean property, ∃N ∈ N
such thatN > 2|x|. Thus,

n > N =⇒
∣∣∣(x
n

)n∣∣∣ = |x|n
nn

<
1

2n
.

According to the Weierstrass M−test and Theorem 76, the series thus converges
uniformly on R. □

¹Power series are commonly used as a formal guessing procedure to solve differential equations, but this
is not a topic we will tackle at the moment. It is also natural to try to determine for which functions f : A→ R
(and whichA) we can ϐind a sequence of coefϐicients (an) such that

f(x) =

∞∑
n=0

an(x− x0)n, ∀x ∈ A;

questions of this ilk are more naturally answered in C; a more complete treatment would be provided in a
complex analysis course.
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The radius of convergence of a power series
∞∑
n=0

an(x− x0)n is

R =
1

lim sup
n→∞

|an|1/n
.

If the limit exists, we can replace lim sup by lim. Intuitively, for all large enough n, we have:

−R−n ≤ −|an| ≤ an ≤ |an| ≤ R−n,

so that
−
∑
n>N

(x− x0
R

)n
≤
∑
n>N

an(x− x0)n ≤
∑
n>N

(x− x0
R

)n
.

The bounds are geometric series, and they converge when |x − x0| < R. We would then ex-
pect the original power series to converge on the interval of convergence |x− x0| < R.

aaaaaa

Theorem 80
LetR be the radius of convergence of the power series

∞∑
n=0

an(x− x0)n.

Then, if

R = 0, the power series converges for x = x0 and diverges for x ̸= x0;

R =∞, the power series converges absolutely on R, and

0 < R <∞, the power series converges absolutely on |x− x0| < R, diverges on
|x− x0| > R; the extremities must be analyzed separately.

Proof: follows immediately from the root test. ■

But we can provide a stronger convergence statement.

aaaaaa

Theorem 81
The power series of Theorem 80 converges uniformly on any compact sub-interval

[a, b] ⊆ (x0 −R, x0 +R).

Proof: let ℓ = max{|a − x0|, |b − x0|} < R. For every n ∈ N, setMn = ℓn|an| ≥ 0
and ε = 1

4
(R− ℓ).
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aaaaaa

Since 1
R
= lim sup

n→∞
|an|1/n, ∃Nε ∈ N such that n > Nε =⇒ |an| ≤ ( 1

R−ε
)n. Thus, for

all n > Nε, we have

0 ≤Mn = ℓn|an| = (R− 4ε)n|an| ≤
(R− 4ε

R− ε

)n
=
(
1− 3ε

R− ε︸ ︷︷ ︸
>0

)n
,

so that
∞∑
n=0

Mn =
Nε∑
n=0

Mn +
∑
n>Nε

Mn ≤
Nε∑
n=0

Mn +
∑
n>Nε

(
1− 3ε

R− ε

)n
≤

Nε∑
n=0

Mn +
∞∑
n=0

(
1− 3ε

R− ε

)n
=

Nε∑
n=0

Mn︸ ︷︷ ︸
ϐinite

+
R− ε
3ε

<∞.

But for all x ∈ [a, b], we have

|an(x− x0)n| ≤ |an|ℓn =Mn, for all n ∈ N.

According to Theorem 79, the power series converges uniformly on [a, b]. ■

In what follows, we let f : (x0 −R, x0 +R)→ R be the function deϐined by

f(x) =
∞∑
n=0

an(x− x0)n, and sN(x) =
N∑

n=0

an(x− x0)n;

these have multiple nice properties, courtesy of the limit interchange theorems.

aaaaaa

Theorem 82
The function f is continuous on any closed bounded interval [a, b] ⊆ (x0−R, x0 +R).

Proof: the functions an(x− x0)n are continuous on [a, b] for all n, and

sN(x) =
N∑

n=0

an(x− x0)n ⇒ f(x) on [a, b] whenN →∞.

According to Theorem 67, f is continuous on [a, b]. ■

We get more than continuity, however.
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aaaaaa

Theorem 83
Let x ∈ (x0 −R, x0 +R). Then f is Riemann-integrable between x0 and x and∫ x

x0

f(t) dt =
∞∑
n=0

an
n+ 1

(x− x0)n+1.

Proof: without loss of generality, assume x > x0. As in the proof of Theorem 82,
sN(x) ⇒ f(x) on [x0, x]whenN →∞. Thus, according to Limit Interchange Theo-
rem 69, we have∫ x

x0

f(t) dt= lim
N→∞

∫ x

x0

sN(t) dt = lim
N→∞

∫ x

x0

N∑
n=0

an(t− x0)n dt

= lim
N→∞

N∑
n=0

∫ x

x0

an(t− x0)n dt =
∞∑
n=0

an
n+ 1

(x− x0)n+1,

which completes the proof. ■

The last result shows that power series really do behave nicely on their convergence interval.

aaaaaa

Theorem 84
The function f is differentiable on (x0 −R, x0 +R) and

f ′(x) =
∞∑
n=1

nan(x− x0)n−1.

Proof: as n1/n → 1,

lim sup
n→∞

(n|an|)1/n = lim sup
n→∞

n1/n · lim sup
n→∞

|an|1/n =
1

R
,

so the radius of convergence of both power series is identical, and so, in particular,
s′N(x) converges uniformly on any closed bounded interval [a, b] ⊆ (x0−R, x0+R).

Thus, according to limit interchange theorem 68, we have

d
dx
[
f(x)

]
= lim

N→∞

d
dx
[
sN(x)

]
= lim

N→∞

d
dx

N∑
n=0

[
an(x− x0)n

]
= lim

N→∞

N∑
n=0

d
dx
[
an(x− x0)n] =

∞∑
n=1

nan(x− x0)n−1,

which completes the proof. ■
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How do we compute the power series coefϐicients an? Combining Theorems 82 and 84, we
see that f is smooth in its interval of convergence (i.e., all of its derivatives are continuous).

aaaaaa

Theorem 85
IfR > 0, then

an =
f (n)(x0)

n!
.

Proof: if x = x0, then f(x0) = a0, which corresponds to the case n = 0. When
n = k > 0, then repeated application of Theorem 84 yields

f (k)(x) =
∞∑
n=k

n!

(n− k)!
an(x− x0)n−k on (x0 −R, x0 −R).

If we evaluate at x = x0, we get f (k)(x0) = k!ak, thus ak = f (k)(x0)
k!

. ■

As a corollary, if ∃r > 0 such that

f(x) =
∞∑
n=0

an(x− x0)n and g(x) =
∞∑
n=0

bn(x− x0)n

and f(x) = g(x) for all x ∈ (x0 − r, x0 + r), then an = bn for all n ∈ N.²

aaaaaa

Example: consider the function f : R→ R deϐined by

f(x) =

{
exp(−1/x2), x ̸= 0

0, x = 0

Show that f does not have a power series expansion.

Proof: for all n ∈ N, it can be shown that

f (n)(x) =

{
dn
dxn

[
exp(−1/x2)

]
, x ̸= 0

0, x = 0

is continuous and that f (n)(0) = 0. According to the corollary to Theorem 85, if f is
equal to its power series on some interval (−r, r), then all the an would be 0, and so
f ≡ 0, but f ̸≡ 0, so f cannot be equal to its power series expansion. ■

Thus, we cannot always assume that a function is equal to its power series. There are other
ways to expand a function as an inϐinite series, most notably via Laurent Series and Fourier
Series. These topics are covered in courses in complex analysis and partial differential equa-
tions, respectively, although we brieϐly discuss the latter in Chapter 11.

²Attempts to strengthen this uniqueness result must necessarily fail.
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6.4 Solved Problems
1. Answer the following questions about series.

a) If
∞∑
k=1

(ak + bk) converges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

b) If
∞∑
k=1

(ak + bk) diverges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

c) If
∞∑
k=1

(a2k + a2k−1) converges, what about
∞∑
k=1

ak?

d) If
∞∑
k=1

ak converges, what about
∞∑
k=1

(a2k + a2k−1)?

Solution:
a) They might both diverge. Consider ak = −k and bk = k. However, if one con-

verges, then so does the other, by the arithmetic of limits/series.
b) At least one of them diverges because if they both converged, then the series of

sums would converge as well (according to a proposition seen in the notes).

c) Nothing. Consider a2k = k, a2k+1 = −k, forwhich
∞∑
k=1

ak diverges, but a2k = 1
k2

,

a2k+1 = 0, for which
∞∑
k=1

ak converges.

d) It also converges. The sequence of partial sums of the second series is
(a1 + a2, a1 + a2 + a3 + a4, , a1 + a2 + a3 + a4 + a5 + a6, . . .)

is a subsequence of the sequence of partial sums of the ϐirst series
(a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . .).

If the ϐirst series sequence of partial sums converges, so does the subsequence’s
series. □

2. For all r > 1, show that
1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

Solution: we see that
1

ℓ+ 1
=

1

ℓ− 1
− 2

ℓ2 − 1
.

Thus, for all k ∈ N, if ℓ = 2k , we have
1

r2k + 1
=

1

r2k − 1
− 2

r2k+1 − 1

=⇒ 2k

r2k + 1
=

2k

r2k − 1
− 2k+1

r2k+1 − 1
.
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Therefore, we have a telescoping sum
∞∑
k=1

2k

r2k + 1
= lim

n→∞

n∑
k=1

2k

r2k + 1
= lim

n→∞

(
1

r − 1
− 2n

r2n − 1

)
=

1

r − 1
,

where the last equation follows from the fact that, for r > 1, we have

lim
m→∞

m

rm
= 0.

This completes the proof. ■

3. Using Riemann integration, ϐind the values of p for which the series
∞∑
n=1

1

np
converges.

Solution: if p ≤ 0, then 1
np ̸→ 0 so the series diverges. In what follows, then, let

p > 0. For k ∈ N, consider the function fk;p : [1, k] → R deϐined by fk;p(x) = 1
xp .

Since f ′k;p(x) = − p
xp+1 < 0 for all x ≥ 1, fk;p is strictly decreasing on [1, k]. Thus fk;p

is Riemann-integrable on [1, k]. Consider the partition Pk = {1, 2, . . . , k, k + 1} of
[1, k + 1]. Since fk;p is Riemann-integrable,

L(fk;p;Pk) ≤
∫ k+1

1
fk;p ≤ U(fk;p;Pk).

As fk;p is decreasing on the sub-interval [µ, ν], fk;p reaches its maximum at µ and its
minimum at ν; Hence

U(fk;p;Pk) =
k∑

n=1

fk;p(n)(n+ 1− n) =
k∑

n=1

1

np
, and

L(fk;p;Pk) =

k+1∑
n=2

fk;p(n+ 1)(n+ 1− n) =
k+1∑
n=2

1

np
.

But
k+1∑
n=2

1

np
=

1

(k + 1)p
− 1 +

k∑
n=1

1

np
.

Thus
1

(k + 1)p
− 1 +

k∑
n=1

1

np
≤
∫ k+1

1
fk;p ≤

k∑
n=1

1

np
.

Write sk;p for the partial sum and note that∫ k+1

1
fk;p =

∫ k+1

1

dx

xp
=

{
ln(k + 1), when p = 1
1

1−p(k
1−p − 1), when p ̸= 1

If p = 1, then ln(k+1) ≤ sk;1 for all k. Since the sequence {ln(k+1)}k is unbounded,
so must {sk;1}k be unbounded, which means that the corresponding series cannot
converge. If p > 1, then

lim
k→∞

(
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

)
=

p

p− 1
.
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Since sk;p is monotone (as every additional 1
np added to the partial sum is positive)

and since sk;p is bounded above by the convergent sequence{
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

}
k

,

sk;p is a convergent sequence. If p < 1, then{
1

1− p
(k1−p − 1)

}
k

is unbounded. As sk;p ≥ 1
1−p(k

1−p − 1) for all k, {sk;p} is also unbounded, which
means that the corresponding series cannot converge. Thus, the series converges if
and only if p > 1. □

4. Which of the following series converge?

a)
∞∑
n=1

n(n+ 1)

(n+ 2)2

b)
∞∑
n=1

2 + sin3(n+ 1)

2n + n2

c)
∞∑
n=1

1

2n − 1 + cos2 n3

d)
∞∑
n=1

n+ 1

n2 + 1

e)
∞∑
n=1

n+ 1

n3 + 1

f)
∞∑
n=1

n!

nn

g)
∞∑
n=1

n!

5n

h)
∞∑
n=1

nn

31+2n

i)
∞∑
n=1

(
5n+ 3n3

7n3 + 2

)n

Solution: we use the various tests at our disposal.
a) Since

lim
n→∞

n(n+ 1)

(n+ 2)2
= 1 ̸= 0,

the series diverges .
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b) Since−1 ≤ sin3(n+ 1) ≤ 1, we have

0 ≤ 2 + sin3(n+ 1)

2n + n2
≤ 1

2n + n2
≤ 1

2n
.

Thus thegiven series convergesby comparisonwith the geometric series
∞∑
n=1

1

2n
.

c) If an denotes the n-th term of the series, we have

an+1

an
=

2n − 1 + cos2 n3
2n+1 − 1 + cos2(n+ 1)3

→ 1

2
< 1.

Thus the series converges by the ratio test.
d) We have

n+ 1

n2 + 1
≥ n

2n2
=

1

2n
.

Thus the series diverges by comparison with the harmonic series.
e) We have

0 ≤ n+ 1

n3 + 1
≤ 2n

n3
=

2

n2
.

Thus the series converges by comparison with
∞∑
n=1

2

n2
.

f) For n ≥ 2, we have

0 ≤ n!

nn
=

1

n
· 2
n
· 3 · 4 · · ·n

nn−2
≤ 2

n2
.

Thus the series converges by comparison with
∞∑
n=1

2

n2
.

g) If an denotes the n-th term in the series, we have

an+1

an
=

(n+ 1)!

5n+1

5n

n!
=
n+ 1

5
→∞.

Thus the series diverges by the ratio test.
h) We have (

nn

31+2n

)1/n

=
n

32+1/n
→∞.

Thus the series diverges by the root test.
i) We have ((

5n+ 3n3

7n3 + 2

)n)1/n

=
5n+ 3n3

7n3 + 2
→ 3

7
< 1.

Thus the series converges by the root test. □
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5. Give an example of a power series
∞∑
k=0

akx
k with interval of convergence [−

√
2,
√
2).

Proof: consider the series
∞∑
k=1

xk

k
.

We have
lim sup
k→∞

k

√
|x|k
k

= lim sup
k→∞

|x|
k
√
k
= |x|.

Therefore, by the root test, the series converges when |x| < 1 and diverges for
|x| > 1. For x = 1, the series is the harmonic series, which diverges. For x = −1,
it is the alternating harmonic series, which converges. Thus, the series converges
precisely on the interval [−1, 1).

Now, replace x by x/
√
2. The corresponding power series is thus

∞∑
k=0

1
√
2
k
k
xk.

We have
lim sup
k→∞

k

√
|x|k
√
2
k
k
= lim sup

k→∞

|x|√
2 k
√
k
=
|x|√
2
.

The series converges on |x|√
2
< 1 and diverges on |x|√

2
> 1. For x =

√
2, the series

is the harmonic series, which diverges. For x = −
√
2, it is the alternating harmonic

series, which converges.

Thus, the series converges precisely on the interval [−
√
2,
√
2). ■

6. Find the values of x for which the following series converge:

a)
∞∑
n=1

(nx)n;

b)
∞∑
n=1

xn;

c)
∞∑
n=1

xn

n2
;

d)
∞∑
n=1

xn

n!
.
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Solution:

a) The series diverges whenever x ̸= 0 since the terms (nx)n do not tend to zero
when n → ∞. (For large enough n, we have n|x| ≥ 1.) Thus, this power series
converges only at its centre.

b) The geometric series converges precisely on the interval (−1, 1), and the series
takes on the value 1

1−x there.
c) For |x| ≤ 1, we have ∣∣∣∣xnn2

∣∣∣∣ ≤ 1

n2
,

and thus the series converges for these valuesofx. If |x| > 1, the terms |xn/n2| →
∞, and so the series diverges. Hence the series converges precisely on the in-
terval [−1, 1].

d) Let x ∈ R. Using the ratio test we have

xn+1

(n+ 1)!
· n!
xn

=
x

n+ 1
→ 0.

Thus the series converges for all x ∈ R (and takes on the value ex). ■

7. If the power series∑ akx
k has radius of convergence R, what is the radius of conver-

gence of the series∑ akx
2k?

Solution: the new series can be written as
∞∑
k=0

bkx
k , where bk = ak/2 if k is even and

bk = 0 if k is odd. Thus

lim sup
k→∞

k
√
|bk| = lim

k→∞
k

√
|ak/2| = lim

k→∞
2k
√
|ak| = lim

k→∞

(
k
√
|ak|
)1/2

=

(
lim
k→∞

k
√
|ak|
)1/2

= R1/2.

Therefore, the radius of convergence of the new series is
√
R. □

8. Obtain power series expansions for the following functions.

a) x

1 + x2
;

b) x

(1 + x2)2
;

c) x

1 + x3
;

d) x2

1 + x3
;

e) f(x) =
∫ 1

0

1− e−sx

s
ds, about x = 0.
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Solution:

a) Since
1

1− x
=

∞∑
k=0

xk,

we have
x

1 + x2
= x

∞∑
k=0

(−x2)k =
∞∑
k=0

(−1)kx2k+1.

b) We know that, for x ∈ (−1, 1), 1

1− x
=

∞∑
k=1

xk. For any −1 < a < b < 1, the

series
∞∑
k=1

kxk−1 converges uniformly on [a, b]. Indeed, let c = max{|a|, |b|} < 1.

Then, for all x ∈ [a, b], we have

|kxk−1| ≤ kck−1.

Now,
(k + 1)ck

kck−1
=
k + 1

k
c→ c as k →∞.

Since c < 1, the ratio test tells us that
∞∑
k=1

kck−1 converges. Thus,
∞∑
k=1

kxk−1

converges uniformly by the WeierstrassM -test. Consequently, we have
∞∑
k=1

kxk−1 =
d
dx

(
1

1− x

)
=

1

(1− x)2
,

and so for any x ∈ [a, b] ⊆ (−1, 1):

x

(1 + x2)2
= x

∞∑
k=1

k(−x2)k−1 =
∞∑
k=1

(−1)k−1kx2k−1.

c) Using the geometric series, we have

x

1 + x3
= x

∞∑
k=0

(−x3)k =
∞∑
k=0

(−1)kx3k+1.

d) Using the geometric series, we have

x2

1 + x3
= x2

∞∑
k=0

(−x3)k =
∞∑
k=0

(−1)kx3k+2.

e) Since

ex =

∞∑
k=0

xk

k!
,
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we have
1− e−sx

s
= −1

s

∞∑
k=1

(−sx)k

k!
=

∞∑
k=1

(−1)k+1 s
k−1xk

k!
.

This series converges absolutely for all s and all x (use the ratio test or compare
it to the series for ex). Therefore, viewing it as a power series in s (for some
ϐixed x), its interval of convergence is∞, and its centre is 0. Thus the series can
be integrated term by term:∫ 1

0

1− e−sx

s
ds =

∫ 1

0

∞∑
k=1

(−1)k+1 s
k−1xk

k!
ds

=
∞∑
k=1

(−1)k+1

(∫ 1

0
sk−1 ds

)
xk

k!

=

∞∑
k=1

(−1)k+1

[
sk

k

]s=1

s=0

xk

(k!)
=

∞∑
k=1

(−1)k+1 xk

k(k!)
.

□

6.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Prove the relaxed version of Theorem 74.

3. Prove Theorem 75, as well as its relaxed version.

4. Prove Theorem 76.

5. Prove Theorem 77.

6. Explain the inϐinite sums paradoxes of Chapter 2 in light of Theorems 76 and 77.
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Chapter 7

The Real Numbers (Reprise)

In a course on real analysis, the fundamental object of study is the set of
real numbers. In Chapter 1, we introduced R in an intuitive and informal
way. In this chapter, we show how R can be built using Cauchy sequences.

7.1 Cauchy Sequences inQ
(R, | · |) and (Q, | · |) are both ordered ϐields. There is a fundamental difference between them,
however: in (R, | · |), every Cauchy sequence converges; in (Q, | · |), some do not.

aaaaaa

Lemma
If (xn) ⊆ Q converges to x ∈ Q, then (x2n) converges to x2 ∈ Q.

Proof: ϐirst, note that if x ∈ Q, then x2 ∈ Q, since Q is a ϐield. Now, let ε > 0. By
hypothesis, ∃N ∈ N such that n > N =⇒ |xn − x| < ε. Hence, for all n > N ,

|x2n − x2| = |xn − x||xn + x| < ε|xn + x| ≤ ε(|xn|+ |x|)
= ε(|xn − x+ x|+ |x|) ≤ ε(|xn − x|+ 2|x|) < ε(ε+ 2|x|).

As ε can be made arbitrarily small, this completes the proof. ■

The following result sets the stage to show thatQ is incomplete (see proof on pages 7-8).

aaaaaa Lemma
There is no rational number a for which a2 = 2.

We build a sequence of rational numbers an for which a2n → 2:

a1 =
1

1
, a2 =

14

10
, a3 =

141

100
, a4 =

1414

1000
, . . .
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We can show by induction that

0 < a1 < a2 < · · · < an−1 < an < · · · < 2 and 0 < a21 < a22 < · · · < a2n−1 < a2n < · · · < 2.

For n ∈ N, write bn = an +
1

10n−1 . Then b2n > 2 > a2n for all n.

Consequently, a2n → 2 since

|a2n − 2| ≤ |b2n − a2n| = |bn − an||bn + an| ≤
1

10n−1

(
2an +

1

10n−1

)
→ 0.

It is easy to see that (an) is a Cauchy sequence inQ; indeed, |an−am| < 10−n wheneverm ≥ n.

However, (an) cannot be a convergent sequence inQ: were it to converge to a number a ∈ Q,
we would have a2n → a2 = 2 ∈ Q according to the ϐirst Lemma, but a ̸∈ Q according to the
second Lemma.

Ametric space (E, d) inwhich every Cauchy sequence also converges in (E, d) is termed com-
plete.¹ The previous discussion shows that (Q, | · |) is not complete.

7.2 Building R by CompletingQ
Is the fact that Q incomplete problematic? Not in the sense that arithmetic in Q is compro-
mised. But it is still fairly inconvenient.

If we take a closer look at the formal deϐinition, we notice that we can only claim a se-
quence to be convergent once we know what its limit is. But if we already know that the
sequence has a limit, then it automatically converges.

At this stage, the main advantage a complete metric space holds over a non-complete one
is simply that it allows one to talk about the convergence of a sequence without knowing a
thing about its limit, save that it exists. But this does not change the fact that Q is not com-
plete. What can we do about that?

The sequence (an) described previously does not converge inQ, but its values get closer and
closer to one of the “holes” ofQ.

If we ϐill up that hole (in effect starting the process of “completing”Q), wemay expect that
the sequence would now converge in the bigger set. This leads to the following deϐinition of
the real numbers R:

1. any Cauchy sequence inQ corresponds to a real number;

2. two Cauchy sequences (xn) and (yn) inQ deϐine the same real number if (xn) ∼ (yn):

∀ε > 0,∃N ∈ N such that n > N =⇒ |xn − yn| < ε.

¹We will discuss metric spaces in the coming chapters – for now, we simply think of it as a space in which
we can compute the “distance” between points.
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It is not too difϐicult to show that∼ is an equivalence relation on the set of Cauchy sequences
inQ (see exercises), and so we deϐineR as the quotient set

R = {(xn) | (xn) is a Cauchy sequence inQ}/ ∼ .

How does this deϐinition of R compare with our usual intuition?

For starters, there should be an addition and amultiplication inR that behave as we expect
them to (commutative, associative, invertible, and so on). We achieve this by endowing
our deϐinition of Rwith the following operations: if α = [(an)], β = [(bn)] ∈ R, deϐine

α + β = [(an + bn)] and αβ = [(anbn)].

In order for this deϐinition to make sense, we need to verify that if (an) and (bn) are Cauchy
sequences, then so are (an+bn) and (anbn), and that the choice or representative in the equiv-
alence classes are irrelevant:

(an) ∼ (a′n) and (bn) ∼ (b′n) =⇒ (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb
′
n).

The proof is left as an exercise, and relies on the following inequalities:

|(an + bn)− (a′n + b′n)| ≤ |an − a′n|+ |bn − b′n|

and

|anbn − a′nb′n| ≤ |an||bn − b′n|+ |b′n||an − a′n|

and on Cauchy sequences being bounded inQ.

Finally, in order for Q to be a subset of R, we complete its deϐinition as follows: if α ∈ R
is such that

α = [(a, a, a, . . .)], a ∈ Q,

we identify α with a ∈ Q. Consequently, if a Cauchy sequence (bn) converges to b ∈ Q, the
real number β = [(bn)] is the rational number b.

7.3 An Order Relation on R
To show that R is indeed complete, we next need to introduce an order on R. If (an) and (bn)
are Cauchy sequences inQ, there are three possibilities:

1. ∃N ∈ N such that (n > N =⇒ an ≥ bn);

2. ∃N ∈ N such that (n > N =⇒ an ≤ bn), or

3. (an) and (bn) “overlap” inϐinitely often, in which case we must have (an) ∼ (bn).

Write α = [(an)] and β = [(bn)]. We deϐine an order< on R as follows:
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1. α ≥ β if cases 1 or 3 hold;

2. α ≤ β if cases 2 or 3 hold.

But it is not enough towrite≤ or≥; we still need to show that the relation is indeed an order
(this is left as an exercise).

aaaaaa

Lemma
Let ε ∈ Q and N ∈ N. If (an) is a Cauchy sequence in Q for which an ≤ ε for all
n > N , then α = [(an)] ≤ ε.

Proof: it sufϐices to identify ε ∈ Q with the equivalence class of the constant
sequence

[(ε, ε, . . .)].

Then the above deϐinition of≤ in R yields the desired conclusion. ■

We see now why we deϐine R using Cauchy sequence inQ.

aaaaaa

Theorem 86
Let (an) be a Cauchy sequence inQ and set α = [(an)] ∈ R. Then (an) converges to α
in R.

Proof: We want to show that given any (real) ε > 0, we can ϐind an integer
N ∈ N such that |an − α| < εwhenever n > N .

For all n ∈ N, the sequence (an, an, . . .) deϐines the real number an; similarly,
the sequence (a1, a2, . . .) deϐines the real number α. Consequently, the sequences

(an − a1, an − a2, . . . , an − am, . . .) and (|an − a1|, |an − a2|, . . . , |an − am|, . . .)

deϐine respectively the real numbers an − α and |an − α|.

Let ε > 0. Since (an) is a Cauchy sequence, there is an integer N ∈ N such
that |an − am| < ε (as rational numbers) for each n,m > N . Fix n > N . Then
we have |an − am| < ε (as rational numbers) whenever m > N ; consequently,
|an − α| < ε. Since this holds whenever n > N , we have an → α in R. ■

As a corollary, every real number is the limit of a Cauchy sequence of rational numbers.

aaaaaa

Theorem 87 (CĔĒĕđĊęĊēĊĘĘ Ĕċ R)
R is complete.

Proof: let (αn) be a Cauchy sequence in R. We show that it converges in R as
follows:

184 Analysis and Topology Course Notes



CHAPTER 7. THE REAL NUMBERS (REPRISE)

aaaaaa

1. construct a sequence (an) inQ for which |an − αn| < 1
10n

(where an is viewed
as the constant sequence);

2. verify that (an) is a Cauchy sequence inQ and denote the associated real num-
ber by α;

3. show that αn → α.

That is, once more, left as an exercise. ■

We have not put emphasis on the fact that there are multiple ways of completing sets, but the
completion of Q is entirely dependent on the notion of closeness that is being used: tradi-
tionally, the metric we use is that two rational numbers are considered close to one another
if their respective decimal expansions start to differ far to the right of the decimal point.

For instance, the distance between 23410.0001 and 23410.0008 is smaller than 10−3 because
the decimal expansions start to differ at the 4th digit to the right of the decimal point. In base
10, if q, r ∈ Q, then we can write

q =
∑
i∈Z

qi10
i, r =

∑
i∈Z

ri10
i

Under the usual metric d10(q, r) =
∣∣∣∣∣∑
i∈Z

(qi − ri)10i
∣∣∣∣∣, we have

d10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10n + · · ·+ (0− 0)105

+ (2− 2)104 + (3− 3)103 + (4− 4)102 + (1− 1)101

+ (0− 0)100 + (0− 0)10−1 + (0− 0)10−2

+ (0− 0)10−3 + (1− 8)10−4 + (0− 0)10−5 + · · ·
+(0− 0)10−n + · · ·

∣∣ = 7 · 10−4.

But that is an artiϐicial convention. What would happen if we deϐined ametric the other way?
Two rational numbers would be considered close to one another if their respective decimal
expansions start to differ far to the left of the decimal point, say.

Under this new metric d̃10(q, r) =
∣∣∣∣∣∑
i∈Z

(qi − ri)10−i

∣∣∣∣∣, we have

d̃10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10−n + · · ·+ (0− 0)10−5

+ (2− 2)10−4 + (3− 3)10−3 + (4− 4)10−2 + (1− 1)10−1

+ (0− 0)100 + (0− 0)101 + (0− 0)102 + (0− 0)103

+(1− 8)104 + (0− 0)105 + · · ·+ (0− 0)10n + · · ·
∣∣ = 7 · 104,
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so that 23410.0001 and 23410.0008 are actually far apart, whereas 20000000012 and 12 are very
close to one another since d̃10(20000000012, 12) = 2 · 10−10.

If d̃10 is indeed a metric onQ (see exercise 10), then Cauchy sequences in (Q, d)will not have
a lot in common with Cauchy sequences in (Q, d̃). There is no reason to expect that the com-
pletion ofQwill be the same in both instances, and in fact, it is not.

When we completeQ using the metric d̃p, where p is a prime integer, the resulting set we
obtain is called the ϐield of p−adic numbers, and it is distinct fromR. Just about everything
we will do in these course notes could also apply to these new sets.

The moral of the story is that different metrics lead to different completions of Q, and that
neither of those is intrinsically superior to the others.

7.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Show that the relation (xn) ∼ (yn) is an equivalence relation on the space of Cauchy
sequences inQ (i.e., show that it is reϐlexive, symmetric, and transitive).

3. If (an) and (bn) are Cauchy sequences inQ, show that so are (an + bn) and (anbn).

4. If (an), (bn), (a′n) and (b′n) are Cauchy sequences in Q such that (an) ∼ (a′n) and (bn) ∼
(b′n), show that (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb

′
n).

5. Show that R is a ϐield.

6. If (an) and (bn) are Cauchy sequences which “overlap” inϐinitely often, show that (an) ∼
(bn).

7. Let α, β, γ ∈ R. If α ≤ β and β ≤ γ, show that α ≤ γ.

8. Let α, β ∈ R. If α ≤ β and β ≤ α, show that α = β.

9. Fill the details in the proof of Theorem 7.3.

10. Show that d̃10 is a metric onQ (use the deϐinition in Section 8.1.1).

11. Let p be a prime integer. What can you say about the ϐield of p−adic numbers?
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Chapter 8

Metric Spaces and Sequences

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is bymoving fromR toRm. Some of the notions that
generalize nicely to vectors and functions on vectors include norms and
distances, sequences, and continuity.

The symbolK is sometimes used to denote eitherR orC; CR([0, 1]) represents theR−vector
space of continuous functions [0, 1] → R, and FR([0, 1]) represents the R−vector space of
functions [0, 1]→ R.

8.1 Preliminaries
Most of the results of the previous chapters rely heavily on the properties of the absolute
value. Its fundamental role inR is as a measure of themagnitude of a real number: |x| is the
distance from the real number x to the origin.

We can generalize the concept of the absolute value to higher-dimensional spaces in var-
ious ways. In this chapter, we discuss norms andmetrics, and the topologies they induce.

8.1.1 Norms, Metrics, and Topology
Let E be a K−vector space, such as R, Cn or CR([0, 1]), say. A norm over E is a mapping
∥ · ∥ : E → R for which the following properties hold:

1. ∀x ∈ E, ∥x∥ ≥ 0;

2. ∥x∥ = 0⇐⇒ x = 0;

3. ∀x ∈ E, ∀λ ∈ K, ∥λx∥ = |λ|∥x∥, and

4. ∀x, y ∈ E, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

If the 4 properties hold, we say that (E, ∥ · ∥) is a normed space.
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aaaaaa

Examples

1. R is a normed space together with the absolute value | · |.

2. C is a normed space together with the modulus | · |.

3. Rn is a normed space together with the Euclidean norm

∥x∥2 = ∥(x1, . . . , xn)∥2 =
√
x21 + · · ·+ x2n.

The Euclidean norm over Rn will play a special role in our explorations: note
that it is intimately linked to the inner product

(· | ·) : Rn × Rn → R, deϐined by (x | y) =
∑

xiyi =⇒ ∥x∥ = (x | x)1/2.

4. E = CR([0, 1]) together with the sup norm ∥f∥∞ = supx∈[0,1] |f(x)| is another
important normed space.

5. For p ≥ 1, the p−norm over Rn is deϐined as follows:

∥x∥ =

(
n∑

i=1

|xi|p
)1/p

.

Special cases of the p−norm over Rn include the Euclidean norm (p = 2), the
sup norm (p =∞) and the 1−norm:

∥x∥∞ = max
1≤i≤n

|xi|, ∥x∥∞ =
n∑

i=1

|xi|. □

The open ball of radius 1 induced by the p−norm around the origin in Rn is the set
Bp(0, 1) = {x ∈ Rn | ∥x∥p < 1};

different values of p leading to different geometrical setsBp(0, 1): p = 2,∞, 1 (left to right).¹

¹We can also talk of closed balls, or of general balls of radius r centered at some point a ∈ Rn.
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The open balls have different shapes (only the regions in red, not the boundaries), but wewill
see that they are all equivalent, in the sense that they all induce the same topologies.

Since there are similarities between summation and integration (the Riemann-integral of a
function over an interval is, essentially, the limit of a sum), it could tempting to conclude that
there are equivalent p−norms over FR([0, 1]): something along the lines of

∥f∥p =
(∫

[0,1]

|f |p dm
)1/p

(8.1)

where m is the Lebesgue measure (see Chapters 21 and 26), but these mappings are not in
fact norms on FR([0, 1]).

Indeed, consider the Dirichlet functionχQ ∈ FR([0, 1]), say. It can be shown that ∥f∥1 = 0.
However,χQ ̸= 0which contradicts the secondproperty of norms (in fact, ∥·∥p is a seminorm
on FR([0, 1])).

If we instead restrict the function space to CR([0, 1]), ∥ · ∥p is indeed a norm for all p ≥ 1,
but unfortunately, (CR([0, 1]), ∥ · ∥p) is not complete (more on this later).

Let E be any set. A metric over E is a mapping d : E × E → R for which the following
properties hold:

1. ∀x, y ∈ E, d(x, y) ≥ 0;
2. ∀x ∈ E, d(x, x) = 0;
3. d(x, y) = 0⇐⇒ x = y;
4. ∀x, y ∈ E, d(x, y) = d(y, x), and
5. ∀x, y, z ∈ E, d(x, y) ≤ d(x, z) + d(z, y).

If the 5 properties hold, we say that (E, d) is ametric space.

An important property of such spaces is that every normed space gives rise to ametric space.

aaaaaa

Theorem 88
Let (E, ∥ · ∥) be a normed space, and deϔine d : E × E → R by

d(x, y) = ∥x− y∥.

Then (E, d) is a metric space.

Proof: we show that all the metric space properties hold. Property 1, for
instance, is a direct consequence of norm property 1:

∀x, y ∈ E, d(x, y) = ∥x− y∥ ≥ 0.
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aaaaaa

Properties 2 and 3 are a direct consequence of norm property 2:

∀x ∈ E, d(x, x) = ∥x− x∥ = ∥0∥ = 0;

∀x, y ∈ E, d(x, y) = ∥x− y∥ = 0⇐⇒ x− y = 0⇐⇒ x = y.

Property 4 is a direct consequence of norm property 3:

∀x, y ∈ E, d(x, y) = ∥x− y∥ = | − 1| · ∥x− y∥ = ∥y− x∥ = d(y, x).

Property 5 is a direct consequence of norm property 5:

∀x, y, z ∈ E, d(x, y) = ∥x− y∥ = ∥x− z+ z− y∥
≤ ∥x− z∥+ ∥z− y∥ = d(x, z) + d(z, y).

Thus (E, d) is a metric space. ■

Not every metric space arises from a norm, however.

aaaaaa

Examples

1. Let E be any set and deϐine d : E × E → R by

d(x, y) =

{
0 if x = y
1 otherwise (8.2)

Then (E, d) is a metric space in which every point is considered to be far from
every other distinct point. We call such metric spaces discrete.

2. LetE = Rn and deϐine d : E×E → R by d2(x, y) = ∥x−y∥2. Then (E, d2) is a
metric space, which we usually refer to has having the standard topology. □

Let (E, d) be a metric space. The open ball centered at a ∈ E with radius r > 0 is the set

B(a, r) = {x ∈ E | d(a, x) < r};

the closed ball centered at a ∈ E with radius r > 0 is the set

D(a, r) = Dd(a, r) = {x ∈ E | d(a, x) ≤ r},

and the sphere centered at a ∈ E with radius r > 0 is the set

S(a, r) = Sd(a, r) = D(a, r) \B(a, r) = {x ∈ E | d(a, x) = r}.
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aaaaaa

Examples

1. Let a ∈ E = R and deϐine d(x, y) = |x − y| for all x, y ∈ E. Then, for r > 0,
the balls reduce to intervals:

B(a, r) = (a− r, a+ r), D(a, r) = [a− r, a+ r],

and the sphere to a discrete set S(a, r) = {a− r, a+ r}.

2. Let (E, d) be a discrete metric space and a ∈ E. Then

B(a, r) =

{
{a}, if r < 1

E, otherwise

3. Let E = CR([0, 1]), d∞(f, g) = ∥f − g∥∞. Then, for ε > 0,

B(f, ε) = {g ∈ E | ∥f − g∥∞ < ε} =
{
g ∈ E | sup

x∈[0,1]
|f(x)− g(x)| < ε

}
= {g ∈ E | |f(x)− g(x)| < ε ∀x ∈ [0, 1]}

We see B(f, ε) in the image below; f is the solid curve in the middle, the two
bounding curves are ε away from f , and the red dashes show a function g in
B(f, ε).

4. Let A,B ̸= ∅ be subsets of a metric space (E, d). The distance between A
andB is deϐined by

d(A,B) = inf
x∈A,y∈B

{d(x, y)}. (8.3)

Unfortunately, d does not deϐine a metric on ℘(E) \∅ (see exercise 10). When
A = {x}, we write d(A,B) = d(x, B). □

P. Boily (uOttawa) 191



8.1. PRELIMINARIES

aaaaaa

Lemma 89
Let (E, d) be a metric space, x, a ∈ E, r > 0 and x ̸∈ B(a, r). Show that
d(x, B(a, r)) ≥ d(x, a)− r.

Proof: for all y ∈ B(a, r), we have d(x, y) + d(y, a) ≥ d(x, a), whence

d(x, y) ≥ d(x, a)− d(y, a) ≥ d(x, a)− r.

Consequently,
d(x, B(a, r)) = inf

y∈B(a,r)
{d(x, y)} ≥ d(x, a)− r

whenever x ̸∈ B(a, r). ■

Let (E, d) be a metric space and let∅ ̸= A ⊆ E. The diameter ofA under d is deϐined by
δd(A) = sup

x,y∈A
{d(x, y)}.

For instance, in (Rn, d2), we have δd2(B(a, r)) = 2r; the diameter of two subsets A,B ⊆ R2

is illustrated below.

We say that A is bounded in (E, d) if δd(A) <∞.

aaaaaa

Proposition 90
Let (E, d) be a metric space and let ∅ ̸= A ⊆ E. Then, A is bounded in (E, d) if and
only if ∃x ∈ E, ∃r > 0 such that A ⊆ B(x, r).

Proof: one direction is immediate: if ∃x ∈ E, ∃r > 0 such that A ⊆ B(x, r),
then d(y, z) < r for all y, z ∈ A ⊆ B(x, r), so that δd(A) ≤ r.

Conversely, if δd(A) ≤ M , say, then d(y, z) < r = M + 1 for all y, z ∈ A.
Pick any x ∈ A. Then for any other y in A, d(x, y) < r, so that y ∈ B(x, r). Thus
A ⊆ B(x, r). ■
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In this subsection, (E, d) is always a metric space, so we drop the d to lighten the text.

A subset A ⊆ E is an open subset of E under d (or simply “open” if the context is clear)
if either

A = ∅, or
∀x ∈ E, ∃r > 0 such thatB(x, r) ⊆ A.

We denote this relationship by A ⊆O E; an open subset of R2 in the Euclidean topology is
shown below (D.J. Eck).

P. Boily (uOttawa) 193



8.1. PRELIMINARIES

aaaaaa

Proposition 91
Open sets in E have the following properties:

1. E ⊆O E;

2. ∀a ∈ E, r > 0, thenB(a, r) ⊆O E;

3. the union of an arbitrary family {Ai}i∈I of open subsets of E is an open subset
of E, and

4. the intersection of a ϔinite family {Ai}ℓi=1 of open subsets of E is an open subset
of E.

Proof:

1. Let x ∈ E. SinceB(x, r) ⊆ E for all r > 0, then E ⊆O E.

2. LetB(a, R)be an openball inE, and let x ∈ B(a, R). By deϐinition, d(a, x) < R

implies ∃ρ > 0 with ρ = R−d(a,x)
2

. It is not hard to show that with such a ρ, we
haveB(x, ρ) ⊆ B(a, R).

3. LetA =
∪
Ai. IfA = ∅ thenA ⊆O E. IfA ̸= ∅, let x ∈ A. By deϐinition, ∃i ∈ I

such that x ∈ Ai. But Ai ⊆O E and, as such, ∃ρ > 0 for which B(x, ρ) ⊆ Ai ⊆∪
Ai = A. Consequently,A ⊆O E.

4. It sufϐices to prove the result for ℓ = 2 (why?). Let A = A1 ∩ A2. If A = ∅
then A ⊆O E. If A ̸= ∅, let x ∈ A. Then x ∈ A1. But A1 ⊆O E and, as such,
∃r1 > 0 for which B(x, r1) ⊆ A1 ⊆ A. As well, x ∈ A2. But A2 ⊆O E and,
as such, ∃r2 > 0 for which B(x, r2) ⊆ A2 ⊆ A. Set ρ = min{r1, r2}. Then
B(x, r) ⊆ A1 ∩ A2, and, consequently,A ⊆O E. ■

194 Analysis and Topology Course Notes



CHAPTER 8. METRIC SPACES AND SEQUENCES

We have seen plenty of examples in Part I.

aaaaaa

Examples

1. Let a ∈ R. Then (−∞, a) and (a,∞) are both open in E = R since

(−∞, a) =
∪
x<a

(x, a) and (a,∞) =
∪
x>a

(a, x).

2. The intersection of an arbitrary family of open subsets ofE could be open, but
need not be: ∩

n∈N

(−n, n) = (−1, 1) ⊆O R,

but ∩
n∈N

(− 1
n
, 1
n
) = {0} is not open in R;

we will have more to say on the topic of arbitrary intersection of open sets in
Part IV and Chapter 21. □

The collection of a metric space (E, d)’s open subsets forms a topology τ on E:

1. ∅, E ∈ τ ;

2. if Ui ∈ τ for all i ∈ I , then∪I Ui ∈ τ , and

3. if U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ .

aaaaaa

Examples

1. Let (E, d) be a metric space. The collection of all open subsets of E under d
forms a topology on E, themetric space topology.

2. LetE be any set. The collection τ = {∅, E} forms a topology onE, the indis-
crete topology.

3. LetE be any set. The collection τ = ℘(E) forms a topology onE, the discrete
topology. □

A subset A ⊆ E is a closed subset of E under d if E \ A ⊆O E. We denote this relationship
byA ⊆C E.

As a consequence of the deϐinition of closed sets in opposition to open sets, we get awhole
slew of properties of closed subsets, for free, such as∅, E ⊆C E. But there aremore substan-
tial ones as well.
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aaaaaa

Examples

1. Every closed ball in (E, d) is closed.

Proof: let A = D(a, R) be a closed ball in E and set

E \ A = {x ∈ E | d(a, x) > R}.

We need to show that E \ A is open. Let x ∈ E \ A; by deϐinition, d(a, x) > R

and ρ = d(a,x)−R
2

> 0.

It remains only to show thatB(x, ρ) ⊆ E \ A. Let z ∈ B(x, ρ). Then

d(x, z) < ρ and − d(x, z) > −ρ.

Thus, according to the triangle inequality we have

d(a, z) ≥ d(a, x)− d(x, z) ≥ 2ρ+R− d(x, z) ≥ R + ρ > R;

as such, z ∈ E \ A. This completes the proof. ■

2. Every sphere in (E, d) is closed.

Proof: Let S = S(a, R). Note that

E \ S = B(a, R) ∪ [E \D(a, R)] ⊆O E

since it is a union of open sets. Consequently, S ⊆C E. ■

3. The intersectionof an arbitrary family {Ai}i∈I of closed subsets ofE is a closed
subset of E. □

4. The union of a ϐinite family {Ai}ℓi=1 of closed subsets ofE is a closed subset of
E. Note however that the union of an arbitrary family of closed subsets of E
need not be closed (see exercise 18) in E. □
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The closure of a subsetA ⊆ E with respect to a metric d is the smallest closed subsetA ofE
(again, with respect to d) containing A (with possible equality).

The closure has a number of interesting properties, one of which being thatA is the inter-
section of all closed sets containingA, and that A ⊆ A (see exercises 19 and 20).

aaaaaa

Examples

1. In the Euclidean topology, (0, 1) = [0, 1].

2. In the discrete topology, (0, 1) = (0, 1).

3. In the Euclidean topology, S(a, R) = S(a, R). □

The closure provides us with a clear way to characterize closed subsets.

aaaaaa

Lemma 92
Let A be a subset of E. Then A ⊆C E ⇐⇒ A = A.

Proof: one direction is immediate. Let A ⊆C E. The smallest closed subset
of E containing A is thusA itself, soA = A.

Conversely, assume A = A. As A is the smallest closed subset of A contain-
ing A, then A = A is closed in E. ■

A neighbourhood of x ∈ E is a subset V ⊆ E containing an open subset Ux ⊆O E with
x ∈ Ux. In other words, V is a neighbourhood of x if ∃r > 0 such that B(x, r) ⊆ V (but V is
not necessarily open). The set of all neighbourhoods of x is denoted by

V(x) = {V ⊆ E | V is a neighbourhood of x}.
The image below shows a neighbourhood V of x, with an open set Ux.
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aaaaaa

Examples

1. In Rwith the standard topology, [0, 1] and (0, 1] are neighbourhoods of 1
2
.

2. In R2 with the standard topology, {3} × [0, 1] is not a neighbourhood of (3, 1
2
).

The various deϐinitions give us an easy lemma.

aaaaaa

Lemma 93
Let (E, d) be a metric space with U ⊆ E. Then U is a neighbourhood of each of its
points if and only if U ⊆O E.

Proof: one direction holds as a consequence of the deϐinition of open sets;
the other as a consequence of the deϐinition of neighbourhoods. ■

Points in A have useful (equivalent) properties.

aaaaaa

Proposition 94
Let A ⊆ E. The following conditions are equivalent:

1. x ∈ A

2. ∀ε > 0, ∃a ∈ A such that d(a, x) < ε

3. ∀V ∈ V(x), V ∩ A ̸= ∅

4. d({x}, A) = d(x, A) = 0

Proof: we will only prove that 1.⇐⇒ 2. The proof that 2.⇐⇒ 3⇐⇒ 4. is left as an
exercise.
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aaaaaa

Assume x ̸∈ A. Then x ∈ E \ A ⊆O E. Thus ∃ρ > 0 such that B(x, ρ) ⊆ E \ A.
Consequently, d(a, x) ≥ ρ, ∀a ∈ A.

Conversely, let x ∈ E and assume ∃ε > 0 such that

A ⊆ E \B(x, ε)︸ ︷︷ ︸
closed

.

SinceA is the smallest closed set containingA, we must have

A ⊆ A ⊆ E \B(x, ε)

and so x ̸∈ A. ■

A subset A of E is dense in (E, d) if A = E. A metric space (E, d) is separable if it has at
least one dense subset.

aaaaaa

Examples

1. Q and R \Q are both dense in R in the usual topology. □

2. Neither of these sets are dense in R in the discrete topology. □

3. Every non-empty subset of E is dense in E in the indiscrete topology. □

4. Weierstrass’ Theorem: let P be the set of polynomial functions [0, 1] → R.
Then P is dense in (CR([0, 1]), d∞).

Thus real continuous functions on [0, 1] (which need not even be C1)
can be approximated as closely as desired/needed by smooth (polynomial)
functions (we will discuss this further in Chapter 23).

5. R and Rn are separable in the Euclidean topology. □
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A family G = {Gλ}λ∈L, ∅ ̸= Gλ ⊆O E forms a basis for the open subsets of E if every
non-empty open subset of E can be written as a union of members of G.

aaaaaa

Examples

1. {B(x, r) | x ∈ Q, r ∈ Q∗
+} and {B(x, r) | x ∈ R, r ∈ R∗

+} both form a basis for
the open subsets of R. □

2. {B(x, r) | x ∈ Qn, r ∈ Q∗
+} forms a basis for the open subsets of Rn. □

There is a nice way to characterize such bases.

aaaaaa

Proposition 95
A family G = {Gλ}λ∈L is a basis for the open subsets of E if and only if ∀x ∈ E,
∀V ∈ V(x), ∃λ ∈ L such that x ∈ Gλ ⊆ V .

Proof: the direction =⇒ holds as a consequence of the deϐinition of neigh-
bourhood and of a base.

Conversely, let ∅ ̸= U ⊆O E. Note that, being open, U is a neighbourhood of
all its points. Then, by hypothesis, ∀x ∈ U ∃λ(x) ∈ L such that x ∈ Gλ(x) ⊆ U .
However,

U =
∪
x∈U

{x} ⊆
∪
x∈U

Gλ(x) ⊆ U,

so that U is the union of elements of G. ■

By analogy with the closure, the interior of a subset A ⊆ E is the largest open subset of E
contained inA; we denote that subset by int(A) (or sometimesA◦). It is not difϐicult to show
that int(A) is the union of all the open subsets of E contained in A, and that A ⊆O E if and
only if int(A) = A (see exercises).

aaaaaa

Examples

1. In the discrete topology, int([0, 1]) = [0, 1]; while in the Euclidean topology,
int([0, 1]) = (0, 1). □

2. In the Euclidean topology, int(S(a, R)) = ∅ and int(D(a, R)) = B(a, R). □

3. While int((a, b)) = (a, b) and int([a, b]) = [a, b] in (R, d2), int(W ) ̸= W , in
general, as we can see withW = (0, 1

2
) ∪ (1

2
, 1) ⊆ (R, d2). □

The next concepts are not crucial to our study, but still nice to have: U ⊆ E is a regular open
subset of E if int(U) = U ;B ⊆ E is a regular closed subset of E if int(B) = B.
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Not all metrics are derived from a norm (the discrete metric fails in that regard, for instance),
but normed vector spaces have a very nice property when it comes to closure and balls.

aaaaaa

Lemma 96
If (E, d) is a normed vector space, thenD(0, 1) = B(0, 1).

Proof: since B(0, 1) ⊆ D(0, 1) ⊆C E, we have B(0, 1) ⊆ D(0, 1) as B(0, 1)
since the smallest closed subset of E containingB(0, 1).

As D(0, 1) = B(0, 1) ∪ S(0, 1), we only need to show that S(0, 1) ⊆ B(0, 1)
as B(0, 1) ⊆ B(0, 1). Let x ∈ S(0, 1); then ∥x∥ = 1. Let 1 > ε > 0 and set
z = (1− ε

2
)x.

Then z ∈ B(0, 1), since ∥z∥ = |1 − ε
2
| · ∥x∥ < 1; we note further that

d(z, x) = ∥z − x∥ = ε
2
∥x∥ = ε

2
< ε and so, according to Proposition 94 with

a = z and A = B(0, 1), we indeed have x ∈ B(0, 1). ■

We can use this lemma to show that the discrete metric is not derived from a norm: were it
so, we would haveD(0, 1) = B(0, 1). However, in Rn we have

B(0, 1) = {0} ⊆C R andD(0, 1) = R =⇒ B(0, 1) = {0} ̸= R = D(0, 1).

aaaaaa

Proposition 97
Let A ⊆ E. The following conditions are equivalent:

1. x ∈ int(A)

2. A ∈ V(x)

3. ∃ε > 0 such thatB(x, ε) ⊆ A.

Proof: by deϐinition, we have 2.⇐⇒ 3. It remains only to show that 1.⇐⇒ 3.

3. =⇒ 1.: Let ε > 0 and B(x, ε) ⊆ A. Since int(A) is the largest open subset
of E contained in A and since B(x, ε) is an open subset of E contained in A, we
must haveB(x, ε) ⊆ int(A), whence x ∈ int(A).

1. =⇒ 3.: Let x ∈ int(A) ⊆O E. By deϐinition, there must exist some ε > 0
such thatB(x, ε) ⊆ int(A) ⊆ A. ■

As an example of theusefulness of this result, note that by thedensity ofQ and its complement
R \Q in R, we automatically get int(Q) = int(R \Q) = ∅with the usual topology on R.
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We end this section with a few other topological concepts:

the boundary of a subsetA ⊆ E is simply deϐined by ∂A = A\ int(A) and the exterior
ofA is given by int(E \ A);²

we say that x ∈ E is a cluster point ofA if

∀ε > 0, ∃yε ∈ B(x, ε) ∩ A such that yε ̸= x;

we also say that x ∈ E is an isolated point ofA if ∃ε > 0 for whichB(x, ε) ∩ A = {x}.

aaaaaa

Examples LetA = { 1
n
: n ≥ 1}.

1. 0 is a cluster point ofA since B(0, ε) ∩ A contains all 1
n
, where n > 1

ε
.

2. For all n ≥ 1, 1
n
is an isolated point ofA, asB( 1

n
, 1
2n(n+1)

) ∩ A = { 1
n
}.

There is a link between cluster points of a set and its closure.

aaaaaa

Lemma 98
If x is a cluster point of A, then x ∈ A and every neighbourhood of x contains an
inϔinite set of points in A.

Proof: that x ∈ A is a direct consequence of Propostion 94. The rest of the
proof can be done by showing that if a neighbourhood of x exists which contain
only a ϐinite number of points ofA, then x cannot be a cluster point of A. ■

Finally, if (E, d) is ametric space andF ⊆ E, then (F, d) is also ametric space, called ametric
subspace of E. The topology on F is completely determined by the topology on E.

aaaaaa

Proposition 99
Let (E, d) be a metric space and F ⊆ E. Then

B ⊆O F ⇐⇒ ∃A ⊆O E such thatB = A ∩ F

and
B ⊆C F ⇐⇒ ∃A ⊆C E such thatB = A ∩ F.

Proof: left as an exercise. ■

²In a nutshell, the exterior is the largest open subset ofE which excludesA in its entirety.
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8.1.2 Continuity
The concept of continuity is fundamental in all aspects of analysis. Let (A, dA), (B, dB) be
metric spaces. Since we view dA(a, x) and dB(f(a), f(x)) as generalizations of |a − x| and
|f(a)− f(x)|, respectively, and we say that a map f : A→ B is continuous at a ∈ A if

∀ε > 0, ∃δ > 0, (x ∈ A and dA(a, x) < δ) =⇒ dB(f(a), f(x)) < ε;

or, equivalently, if for any open ε−ballW centered at f(a), there is an open δ−ball V centered
at a such that f(V ) ⊆ W ; or yet again equivalently, if for any neighbourhoodW ⊆O B of f(a),
there is a neighbourhood V ⊆O A of a such that f(V ) ⊆ W .³

The continuity of f : (R2, d2)→ (R2, d2) at a ∈ R2 is illustrated below (D.J. Eck).

We further say that the map f is continuous on A if it is continuous at each a ∈ A.

aaaaaa

Proposition 100
Let (E, d), (Ẽ, d̃) be metric spaces, and let f : E → Ẽ. The following conditions are
equivalent:

1. f is continuous on E;

2. for anyW ⊆O Ẽ, f−1(W ) = {x ∈ E|f(x) ∈ W} ⊆O E, and

3. for any Y ⊆C Ẽ, f−1(Y ) ⊆C E.

Proof: that 2.⇐⇒ 3. follows directly from the fact that

f−1(Ẽ \ Y ) = E \ f−1(Y ).

³That these deϐinitions are equivalent is left as an exercise.
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aaaaaa

1. =⇒ 2.: Let W ⊆O Ẽ and x ∈ f−1(W ). Since W is open in Ẽ, ∃ε > 0 such that
B(f(x), ε) ⊆ W . By continuity, ∃δ > 0 such that f(B(x, δ)) ⊆ B(f(x), ε) ⊆ W . But
this means that

B(x, δ) = f−1(f(B(x, δ)) ⊆ f−1(W )

(see exercises) and so f−1(W ) ⊆O E.

2. =⇒ 1.: Let f(x) ∈ W ⊆O Ẽ. Set V = f−1(W ) ⊆O E. Then x ∈ V and
f(V ) ⊆ W ; consequently, f is continuous. ■

Consider a map f : E → Ẽ as above. If f(W ) ⊆O Ẽ for allW ⊆O E, then we say that f is
an open mapping; by analogy, if f(Y ) ⊆C Ẽ for all Y ⊆C E, then we say that f is a closed
mapping.

Generally speaking, continuous maps are neither open nor closed; the constant function
f : R → R deϐined by f(x) = a provides an example of a continuous function which is not
open in the standard topology, as (0, 1) ⊆O R, but f((0, 1)) = {a} ⊆C R, for instance.

aaaaaa

Proposition 101
Let f : (E, d) → (Ẽ, d̃) and g : (Ẽ, d̃) → (Ê, d̂) be continuous. Then the composition
g ◦ f : (E, d)→ (Ê, d̂) is continuous.

Proof: let a ∈ E and ε > 0. As g is continuous at f(a) ∈ Ẽ, ∃δε > 0 such
that

y ∈ Ẽ and y ∈ Bd̃(f(a), δε) =⇒ g(y) ∈ Bd̂(g(f(a)), ε).

Since f is continuous at a, ∃ηδε = ηε > 0 such that

x ∈ E and x ∈ Bd(a, ηδε) =⇒ f(x) ∈ Bd̃(f(a), δε).

Combining these results together, we get

x ∈ E and x ∈ Bd(a, ηδε) =⇒ g(f(x)) ∈ Bd̂(g(f(a)), ε),

which completes the proof. ■

As we can see, in many instances, the broad strokes of proofs in the multi-dimensional cases
follow those of the corresponding one-dimensional proofs.

aaaaaa

Corollary 102 Let f : (E, d) → (Ẽ, d̃) be a continuous function. If F ⊆ E, then the
restriction f |F : (F, d|F )→ (Ẽ, d̃) is continuous.

Proof: it sufϐices to show that the inclusion F ↪→ E1 is continuous, which is
left as an exercise, and then to apply Proposition 101. ■
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Some standard examples are shown below.

aaaaaa

Examples

1. The functions f : (R, d2)→ (R, d2) deϐined by f(x) = x3 is continuous. □

2. The identity function id : (R, ddiscrete) → (R, d2) is continuous, since
id−1(V ) = V ⊆O (R, ddiscrete) for all V ⊆O (R, d2). □

3. The identity function idinv : (R, d2) → (R, ddiscrete) is not continuous, since,
for instance, (

idinv
)−1

({a}) = {a}

is not open in (R, d2) even though {a} ⊆O (R, ddiscrete). □

4. Consider the characteristic function χR\Q : R → R. Then χR\Q is continuous
when restricted toQ (being a constant function), but χR\Q is nowhere contin-
uous on R. □

A metric d on E gives rise to a topology by deϐining the open sets of E. A natural question
to ask is: can two different metrics give rise to the same topology? In order to answer that
question, we need to introduce a new concept.

Let (E, d), (Ẽ, d̃) be metric spaces. A function f : E → Ẽ is a homeomorphism if f is
bijective and both f and f inv are continuous.⁴

aaaaaa

Examples

1. f : (R, d2)→ (R, d2), f(x) = x3, is a homeomorphism. □

2. id : (R, ddiscrete)→ (R, d2), id(x) = x, is not a homeomorphism. □

3. The function g : (R, d2) →
(
(−π

2
, π
2
), d2

)
deϐined by g(x) = arctan(x) is a

homeomorphism. □

⁴Alternatively, f is a homeomorphism if it is bijective, continuous and open.
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These examples illustrate that the notion of boundedness is not necessarily preserved by
homeomorphisms: for instance, R is unbounded while (−π

2
, π
2
) is bounded, but both spaces

are homemorphic to one another via arctan.

Furthermore, neither is the notion of distance necessarily preserved by homeomorphisms:
in general,

d(x1, x2) ̸= d̃(f(x1), f(x2)).

For instance, in the ϐirst example,
d(0, 2) = |0− 2| = 2 ̸= d̃(03, 23) = |03 − 23| = 9.

However, homeomorphisms f : E → Ẽ preserve the topologies of E and Ẽ:

W ⊆O E ⇐⇒ f(W ) ⊆O Ẽ = f(E)

Y ⊆C E ⇐⇒ f(Y ) ⊆C Ẽ = f(E).

Two metrics d, d̃ on E are topologically equivalent if id : (E, d) → (E, d̃) is a homeomor-
phism. In that case, d and d̃ give rise to the same topologies on E.

aaaaaa

Example: if p, q ≥ 1, dp and dq induce the same topologies on Rn.

For instance, to show that d2 and d∞ are topologically equivalent in R2, it suf-
ϐices to show that any point of a 2−ball has an ∞−neighbourhood contained in
the 2−ball, and, conversely, that any point of an ∞−ball has a 2−neighbourhood
contained in the∞−ball (see exercises). In the illustration below, we see a 2−ball
ϐilled with∞−balls (left) and an∞−ball ϐilled with with 2−balls (right). □

There is an associated notion: two metrics d, d̃ on E are (strongly) equivalent if ∃A,B > 0
such that

Ad(x, y) ≤ d̃(x, y) ≤ Bd(x, y) ∀x, y ∈ E.
Intuitively, two metrics are equivalent if it is always possible to ϐit a d̃−ball between two
d−balls, while maintaining the ratios of the balls’ radii. Topological equivalence is not an
equivalent notion, as we see in exercise 36.
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aaaaaa

Example: if p, q ≥ 1, dp and dq are equivalent on Rn.

For instance, to show that d2 and d∞ are equivalent in R2, it sufϐices to show
that ∃A,B > 0 such that any 2−ball of radius R > 0 contains an∞−ball of radius
R
A
, and is contained in an∞−ball of radius R

B
.

Given the geometry of squares and circles, what values canA andB take? □

There is also a similar notion for norms. Twonorms ∥·∥∗, ∥·∥◦ onE are equivalent if∃a, b > 0
such that

a∥x∥∗ ≤ ∥x∥◦ ≤ b∥x∥∗, ∀x ∈ E.

Clearly, two equivalent norms on E give rise to two equivalent metrics on E. But there is an
important difference: over a ϐinite−dimensional vector space, any two norms are equiva-
lent, which we can show using the following proof outline:

1. without loss of generality, assume ∥ · ∥∗ = ∥ · ∥1;

2. only the vectors x ∈ S1(0, 1) need to be considered (why?);

3. show that ∥ · ∥◦ is continuous with respect to ∥ · ∥1, and

4. use the max/min theorem over S1(0, 1) to bound a ≤ ∥x∥◦ ≤ b.

We end this section on preliminaries with two deϐinitions that generalize the notion of a con-
tinuous function.

Let f : (E, d)→ (Ẽ, d̃). We say that f is

1. uniformly continuous if ∀ε > 0, ∃δ = δ(ε) > 0 such that ∀x, y ∈ E, d(x, y) < δ =⇒
d̃(f(x), f(y)) < ε;

2. Lipschitz continuous if ∃K > 0 such that d̃(f(x), f(y)) ≤ Kd(x, y) ∀x, y ∈ E.
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The conceptual difference between continuity and uniform continuity is that δ may depend
on x and y as well as ε in the former case, but it can only depend on ε in the latter case.

aaaaaa

Examples

1. Any polynomial p : R → R is uniformly continuous over a closed, bounded
interval. □

2. Any uniformly continuous function is automatically continuous. □

3. Any Lipschitz continuous function is automatically uniformly continuous,
hence continuous. □

4. The function f : (0, 1] → R deϐined by f(x) = 1
x
is continuous but not uni-

formly continuous. □

This allows us to deϐine another type of equivalence between metrics: two metrics d, d̃ on E
areuniformly equivalent if id : (E, d)→ (E, d̃) is uniformly continuous, and so is its inverse.

Uniformly equivalent metrics are topologically equivalent, as uniform continuity also im-
plies continuity, but there are topologically equivalent metrics that are not uniformly equiva-
lent. However, uniform equivalence and strong equivalence of metrics are ... well, equivalent.

Lastly, note that uniform continuity, unlike continuity, is not a topological notion: given a
function f : E → Ẽ, the knowledge of the topologies onE and Ẽ, respectively, is sufϐicient to
determine if f is continuous. But moremust be known in order to determine if f is uniformly
continuous. There is something fundamental at play here; we will return to it at a later stage.

8.2 Sequence in a Metric Space
Consider the sequence (xn) ⊆ (E, d). The sequence converges tox ∈ (E, d), whichwedenote
by xn → x, if

∀ε > 0, ∃N ∈ N such that n > N =⇒ d(xn, x) < ε.

In light of the notions presented in the previous section, this is equivalent to the following
deϐinition: xn → x ∈ E if

∀V ∈ V(x), ∃N ∈ N such that n > N =⇒ xn ∈ V.

Thus a sequence converges to x if any neighbourhood of x contains inϐinitely many terms in
the sequence.

A subsequence of (xn) is a sequence (yn) such that yn = xφ(n) for some strictly increas-
ing function φ : N → N. It is easy to show that if xn → x, then any subsequence of (xn) also
converges to x (see the exercises).
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Let (xn) be a sequence in a metric space (E, d). We say that a ∈ E is a limit point of (xn)
if ∀ε > 0, ∀ρ ∈ N, ∃n ≥ ρ such that d(xn, a) < ε.⁵

aaaaaa

Proposition 103
Let (xn) ⊆ (E, d), a ∈ E. The following are equivalent:

1. a is a limit point of (xn);

2. there is a subsequence of (xn) which converges to a;

3. ∀ρ ∈ N, we have a ∈ Aρ, whereAρ = {xn|n ≥ ρ}, and

4. either a is a cluster point ofA1 or {xn | xn = a} is inϔinite (in the latter case, we
say that a is a replicating point of (xn).

Proof: we prove 1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 1.

1. =⇒ 2.: Set εn = 1
n
. Since a is a limit point of the sequence (xn), there is a

smallest integer n for which d(yn, a) < 1
n
, where yn is a member of the sequence

(xm)m≥n. By construction, (yn) is a subsequence of (xn) and yn → a.

2. =⇒ 3.: If there is a subsequence (yn) ⊆ (xn) which converges to a, then
∀ε > 0, ∀ρ ∈ N, ∃N ∈ N such that yn ∈ Aρ ∩ B(a, ε) whenever n > N . But accord-
ing to Proposition 94, a ∈ Aρ if and only if ∀ε > 0, Aρ ∩B(a, ε) ̸= ∅. Consequently,
∀ρ ∈ N, a ∈ Aρ.

3. =⇒ 4.: If ∀ρ ∈ N, a ∈ Aρ, then ∀ρ ∈ N, ∀ε > 0, ∃ a smallest nρ ≥ ρ such
that d(xnρ , a) < ε. As such, xnρ is a subsequence of (xn) and

lim
ρ→∞

xnρ = a.

If (xn) converges, it must do so to a, according to exercise 40. Consequently,
∀η > 0, A1 ∩ B(a, ε) is inϐinite and so must contain at least one point distinct
from a. Consequently, a is a cluster point ofA1.

If (xn) diverges and a is not a replicating point of (xn), then xnρ ̸→ a (why?),
which is a contradiction. Consequently, if (xn) diverges then a is a replicating
point of (xn).

4. =⇒ 1.: Left as an exercise. ■

8.2.1 Closure, Closed Subsets, and Continuity
We can conclude from Proposition 103 that the set ∩ρ∈NAρ of limit points of (xn) is closed
and that if xn → x, then x is the unique limit point of (xn).

⁵Compare with the notion of a cluster point.
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There is a nice way to characterize closure, closed subsets and continuity using sequences
and convergence, provided by the next three results.

aaaaaa

Proposition 104
Let (E, d) be a metric space,A ⊆ E and x ∈ E. Then,

x ∈ A⇐⇒ ∃(xn) ⊆ A such that xn → x.

Proof: the direction ⇐= is a clear consequence of the remark at the start of this
subsection. For =⇒, consider the following argument. Let n ∈ N. Since x ∈ A,
∃xn( ̸= x) ∈ Awith d(xn, x) < 1

n
. Clearly, xn → x. ■

aaaaaa

Proposition 105
Let (E, d) be a metric space, with F ⊆ E. Then, F ⊆C E if and only if any sequence
(xn) ⊆ F which converges in E converges to a point in F .

Proof: if F ⊆C E, then F = F . Assume that xn ∈ F and xn → x. We must
show that x ∈ F = F . If (xn) is eventually constant, then xn = x ∈ F for all n
greater than some index. Otherwise ∀ε > 0, B(x, ε) ∩ F contains an inϐinite subset
of {xn | n ≥ 1}; consequently, x ∈ F .

Conversely, let x ∈ F . According to Proposition 104, there is a subsequence
(xn) ⊆ F such that xn → x. By hypothesis, any such sequence must converge in F .
Hence, x ∈ F . Consequently, F = F and F ⊆C E. ■

aaaaaa

Proposition 106
Let (E, d), (Ẽ, d̃) be a metric spaces. Then f : E → Ẽ is continuous if and only
f(xn)→ f(x) whenever xn → x.

Proof: the direction ⇐= is a clear consequence of the deϐinition of a continu-
ous function.

Conversely, let F ⊆C Ẽ. We want to show that f−1(F ) ⊆C E. Let (xn) ⊆ f−1(F )
with xn → x. By hypothesis, f(xn)→ f(x). But F ⊆C Ẽ so that f(x) ∈ F , according
to Proposition 105.

Consequently, x ∈ f−1(F ). According to Proposition 105, we must then have
f−1(F ) ⊆F E; in other words, f is continuous. ■

We will see in Part IV that these characterizations do not always apply to general (as in, non-
metric) topological spaces.
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8.2.2 Complete Spaces and Cauchy Sequences
The sequence (xn) ⊆ (E, d) is a Cauchy sequence if

∀ε > 0,∃N ∈ N such that n,m > N =⇒ d(xn, xm) < ε.

Some properties of Cauchy sequences in R carry over to metric spaces.

aaaaaa

Proposition 107
Convergent sequences in (E, d) are Cauchy.

Proof: let xn → x and ε > 0; thus ∃N ∈ N such that d(xn, x) < ε
2
whenever

n > N . Now, letm > N . According to the triangle inequality,

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+
ε

2
= ε.

Consequently, (xn) is a Cauchy sequence. ■

In a normed space (E, ∥ · ∥), a sequence (xn) is bounded if ∃M ∈ N such that ∥xn∥ < M for
all n ∈ N.

But a metric space (E, d) is not necessarily a normed vector space, so there might not be
a norm available to determine boundedness.

In a general metric space (E, d), a sequence (xn) is bounded if ∃M > 0 s.t. xn ∈ B(0,M)
for all n ∈ N. Similarly, A ⊆ E is bounded if δ(A) <∞ (using the deϐinition from p. 192).

aaaaaa

Proposition 108
Every Cauchy sequence in (E, d) is bounded.

Proof: let (xn) be a Cauchy sequence. If 1 > ε > 0, then ∃N ∈ N such that
d(xn, xm) < εwhenever n,m > N . Now, let

M = max{d(0, x1), d(0, x2), . . . , d(0, xN), d(0, xN+1)}+ 2.

Then, for any n > N , the triangle inequality yields

d(0, xn) ≤ d(0, xN+1) + d(xN+1, xn) ≤M − 2 + 1,

i.e. for any n > N , xn ∈ B(0,M). Since xn ∈ B(0,M − 2) for all 1 ≤ n ≤ N , then
xn ∈ B(0,M) for all n ∈ N. ■

Interestingly, given its link to convergence in the case of complete spaces, the notion of a
Cauchy sequence is not topological.

P. Boily (uOttawa) 211



8.2. SEQUENCE IN A METRIC SPACE

aaaaaa

Example: let A = (0,∞). Consider the following metrics onA:

d1(x, y) = |x− y| and d2(x, y) = | ln x− ln y|.

Show that both metrics induce the same topology on A, but that Cauchy sequences
under one are not necessarily Cauchy sequences under the other.

Proof: the mapping id : (A, d1) → (A, d2) is homeomorphic. Indeed, for
x, z ∈ A and ε, η > 0, we have

Bd1(x, ε) = {y ∈ A | |x− y| < ε} = (x− ε, x+ ε) ∩ A,

and

Bd2(z, η) = {y ∈ A | | ln z − ln y| < η} = {y ∈ A | e−η <
y

z
< eη} = (ze−η, zeη).

It is left as an exercise to show that

Bd1(z,
1
2
z(1− e−η)) ⊆ Bd2(z, η) and Bd2(x, ln(2x+ε

2x
)) ⊆ Bd1(x, ε)

for all x, z ∈ A, ε, η > 0. ThusW ⊆O (A, d1) ⇐⇒ W ⊆O (A, d2). We already know
that the sequence ( 1

n
) is Cauchy in (A, d1). But ifm = 2n, then

d2(
1
m
, 1
n
) =

∣∣ln 1
m
− ln 1

n

∣∣ = ∣∣ln n
m

∣∣ = ∣∣ln n
2n

∣∣ = ln 2 ≥ 1/2

for every n ∈ N, and so ( 1
n
) is not a Cauchy sequence in (A, d2). ■

This could not happen, however, if the metrics are strongly equivalent, which further illus-
trates the distinctness of the notions of strong equivalence and topological equivalence.

aaaaaa

Proposition 109
Let d and d̃ be two equivalent metrics on E. Then, (xn) is a Cauchy sequence in (E, d)
if and only if (xn) is a Cauchy sequence in (E, d̃).

Proof: since d and d̃ are equivalent, ∃a, b > 0 such that

ad(x, y) ≤ d̃(x, y) ≤ bd(x, y) ∀x, y ∈ E.

If (xn) is a Cauchy sequence in (E, d̃), then, ∀ε > 0, ∃N ∈ N such thatm,n > N =⇒
d̃(xn, xm) < ε. Thus, it is the case that

ad(xn, xm) ≤ d̃(xn, xm) < ε ∀m,n > N =⇒ d(xn, xm) <
ε

a
∀m,n > N.

Consequently, (xn) is also a Cauchy sequence in (E, d). By symmetry, the reverse
implication is clearly true. ■
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Ametric space (E, d) is complete if every single one of its Cauchy sequences is convergent. If
a complete metric space is also a normed vector space, then it is a Banach space. If a Banach
space is also an inner product space, then it is a Hilbert space.

aaaaaa

Examples (CĔĒĕđĊęĊ, BĆēĆĈč, Ćēĉ HĎđćĊėę SĕĆĈĊĘ)
1. We have already seen that (R, d2) is a complete space. Since it is a normed

space, it is also a Banach space. The inner product (x | y) = xy makes it a
Hilbert space.

2. The same applies to (Kn, d2), with the inner product (x | y) =∑xiyi.

3. The space C = (CK([0, 1]), ∥ · ∥∞) is a Hilbert space with the inner product

(f | g) =
∫
[0,1]

fg dm, f ∼ g ⇐⇒ f = g a.e.

4. It is a bit less obvious that the space

ℓ2(N) = {X | X = (xn)n∈N; xn ∈ C,
∑
|xn|2 <∞}

is a Hilbert space, together with

(X | Y) =
∑
xnyn and ∥X∥2 = (X | X )1/2 = (

∑
|xn|2)1/2,

but it is a classical result (see Chapter 27). □

Closed subsets of complete spaces are especially well-behaved, as we see in the next two re-
sults.

aaaaaa

Proposition 110
Every closed subset of a complete metric space is complete.

Proof: let A ⊆C E and (xn) ⊆ A be a Cauchy sequence. Since E is complete,
xn → x converges in E. But A is closed, so x ∈ A, according to Proposition 105. ■

aaaaaa

Proposition 111
Every complete subspace of a metric space is closed.

Proof: let A ⊆ (E, d) be complete. Let x ∈ A. According to Proposition 104,
∃(xn) ⊆ A such that xn → x. Therefore, (xn) is a convergent sequence in E. In
particular, it is a Cauchy sequence of points in A, according to Proposition 107.
But A is complete so that x ∈ A. Hence A ⊆ A and so A = A, which means that
A ⊆C E. ■
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The product of two metric spaces (E ′, d′) and (E∗, d∗) is the metric space

(E, d) = (E ′ × E∗, sup{d′, d∗});

it is easy to see how this deϐinition can be extended to a product of n metric spaces. At any
rate, the product of metric spaces is also a metric space.⁶

aaaaaa

Proposition 112
Let (Ei, di) be metric spaces for i = 1, . . . , n. The product metric space
(E, d) = (E1 × · · · × En, supi=1,...,n{di}) is complete if and only if (Ei, di) for
all i = 1, . . . , n.

Proof: left as an exercise. ■

The following result is a generalization of the nested intervals theorem of Chapter 1.

aaaaaa

Proposition 113
Let (E, d) be a complete metric space. If (Fn) is a decreasing sequence of non-empty
closed subsets of E

E ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·

such that lim
n→∞

δ(Fn) = 0, then
∩
n≥1

Fn = {x} for some x ∈ E.

Proof: let Γ =
∩
Fn. For each n ∈ N, pick xn ∈ Fn.

Let ε > 0. Since δ(Fn)→ 0, ∃Nε ∈ N such that

n > Nε =⇒ δ(Fn) < sup{d(w, z) | w, z ∈ Fn} < ε
2
.

Letm > n > Nε and pick y ∈ Fm ⊆ Fn. Then

m > n > Nε =⇒ d(xn, xm) ≤ d(xn, y) + d(y, xm) < ε
2
+ ε

2
= ε.

As (xn) ⊆ E is Cauchy and E is complete, ∃x ∈ E such that xn → x. For all p ≥ 1,
(xn)n≥p ⊆ Fp. As Fp ⊆C E, (xn)n≥p converges in Fp, according to Proposition 105.
Hence x ∈ Fp for all p ≥ 1. Consequently, x ∈ Γ.

But if y ∈ Γ, then y ∈ Fn for all n, so that 0 ≤ d(x, y) ≤ δ(Fn) → 0 for all n.
Thus d(x, y) = 0, so that y = x and Γ = {x}. ■

If r ∈ (0, 1), for instance, and if we have Fn = B(0, rn) ⊆ (Rm, d2) for some m ≥ 1, then∩
Fn = {0}.

⁶In fact, the deϐinition can be generalized to arbitrary collections {Eα}α∈J , but we will see in Part IV that
there are complications.
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The following contraction result is representative of a family of extremely useful theorems.

aaaaaa

Theorem 114 (FĎĝĊĉ PĔĎēę TčĊĔėĊĒ)
Let (E, d) be a a complete metric space and let f : E → E be a contraction on E,
that is,

∃k ∈ (0, 1) such that d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ E.

Then ∃!x∗ ∈ E such that f(x∗) = x∗; x∗ is a ϔixed point of f .

Proof: let x0 ∈ E. If f(x0) = x0, we are done. Otherwise, consider the se-
quence (fn(x0))n, where fn represents n successive compositions of f :

d(fn(x0), fn+1(x0)) = d(f(fn−1(x0)), f(fn(x0))) ≤ kd(fn−1(x0), fn(x0))
= kd(f(fn−2)(x0), f(fn−1)(x0)) ≤ · · · ≤ knd(x0, f(x0)).

Then, for anym > n,

d(fm(x0), fn(x0)) ≤ d(fm(x0), fm−1(x0)) + · · ·+ d(fn+1(x0), fn(x0))

≤ (kn + · · ·+ km−1)d(x0, f(x0)) ≤
kn

1− k
d(x0, f(x0))

For any ε, let Mε =
⌈
ln
(

ε
d(x0,f(x0))(1− k)

)
− ln k

⌉
. Then, whenever m > n > Mε,

we have

d(fm(x0), fn(x0)) ≤
kn

1− k
d(x0, f(x0)) ≤

kMε

1− k
d(x0, f(x0)) < ε.

Consequently, (fn(x0)) is a Cauchy sequence in E. But E is complete so that
fn(x0)→ x for some x ∈ E.

By deϐinition, contraction mappings are Lipschitz continuous, and thus also
continuous, and so

f(x) = f
(

lim
n→∞

fn(x0)
)
= lim

n→∞
f(fn(x0)) = lim

n→∞
fn+1(x0) = x.

Now, suppose that x and y are two ϐixed points of f . Then,

d(x, y) = d(f(x), f(y)) ≤ kd(x, y).

Since k < 1, the onlyway for the inequality to be valid is if d(x, y) = 0, which implies
that x = y. The ϐixed point of f is thus unique. Call it x∗ to match with the statement
of the theorem. ■

P. Boily (uOttawa) 215



8.3. SOLVED PROBLEMS

The choice of x0 ∈ E in the proof of Theorem 114 is arbitrary; if f is a contraction, the se-
quence (fn(x)) converges to the unique ϐixed point x∗ for all x ∈ E. Note that the restriction
k ∈ (0, 1) is necessary, as the following example demonstrates.

aaaaaa

Example: let f : R→ R be deϐined by

f(x) =

{
1, x < 0

x+ 1
x+1

, x ≥ 0
.

It is not hard to see that f has no ϐixed point (see exercise 45), yet

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R. □

8.3 Solved Problems
1. LetA,B be subsets of a metric space (E, d). Show that

a) B ⊆ A =⇒ int(B) ⊆ int(A)
b) B ⊆ A =⇒ B ⊆ A

c) int(A ∩B) = int(A) ∩ int(B)

d) A ∪B = A ∪B
e) int(A) ∪ int(B) ⊆ int(A ∪B)

f) A ∩B ⊆ A ∩B

Proof:

a) By deϐinition, int(B) ⊆ B ⊆ A, i.e. int(B) is an open set contained in A. Con-
sequently, int(B) is contained in the largest open set contained in A, namely
int(A).

b) Bydeϐinition,B ⊆ A ⊆ A, i.e.A is a closed set containingB. Consequently,A con-
tains the smallest closed set containingB, i.e.B.

c) Since int(A) ∩ int(B) ⊆O E and since int(A) ⊆ A and int(B) ⊆ B, we must
have int(A)∩ int(B) ⊆ A∩B. As such, int(A)∩ int(B)must be contained in the
largest open set contained inA∩B, so that int(A)∩ int(B) ⊆ int(A∩B).On the
other hand, sinceA∩B ⊆ A,B, thenwemust have int(A∩B) ⊆ int(A), int(B)
and so

int(A ∩B) ⊆ int(A) ∩ int(B).

d) Basically the same proof with ∩↭ ∪,⊆↭⊇, int(·) ↭ (·).
e) SinceA,B ⊆ A∪B, then int(A), int(B) ⊆ int(A∪B). Hence int(A)∪ int(B) ⊆

int(A ∪B).
f) Basically the same proof with ∩↭ ∪,⊆↭⊇, int(·) ↭ (·). ■
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2. In each instance, give an example showing that, in general,

a) int(A) ∪ int(B) ̸= int(A ∪B)

b) A ∩B ̸= A ∩B

Solution:

a) Let E = R with the Euclidean metric, and let A = [a, b] and B = [b, c] with
c > b > a, for instance. Then

int(A)= (a, b), int(B) = (b, c), A ∪B = [a, c],

int(A ∪B)= (a, c), int(A) ∪ int(B) = (a, b) ∪ (b, c) = (a, c) \ {b}.

b) Let E = R with the Euclidean metric, and A = (a, b) and B = (b, c) with c >
b > a, for instance. Then

A = [a, b], B = [b, c], A ∩B = ∅, A ∩B = ∅, A ∩B = {b}. □

3. LetA be subset of a metric space (E, d). Show that

a) E \ int(A) = E \ A
b) E \ A = int(E \ A)
c) ∂(int(A)) ⊆ ∂A

d) ∂A ⊆ ∂A

Proof:

a) We have

int(A) ⊆ A, by deϐinition
E \A ⊆ E \ int(A), again by deϐinition
E \A ⊆ E \ int(A) = E \ int(A), asE \ int(A) ⊆C E

On the other hand, we have

E \A ⊆ E \A, by deϐinition
E \ E \A ⊆ E \ (E \A) = A, again by deϐinition
E \ E \A = int(E \ E \A) ⊆ int(A) = E \ int(A), asE \ E \A ⊆O E

E \ int(A) ⊆ E \A

b) We have

A ⊆ A, by deϐinition
E \A ⊆ E \A, again by deϐinition
E \A = int(E \A) ⊆ int(E \A), asE \A ⊆O E
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On the other hand, we have

int(E \A) ⊆ E \A, by deϐinition
A = E \ (E \A) ⊆ E \ int(E \A), again by deϐinition
A ⊆ E \ int(E \A) = E \ int(E \A) asE \ int(E \A) ⊆C E

int(E \A) ⊆ E \A

c) Since int(A) ⊆ A, we have int(A) ⊆ A and so

∂ int(A) = int(A) \ int(A) ⊆ A \ int(A) = ∂A.

d) Basically the same idea, as above, but withX \ int(A) ⊆ X \ int(A). ■

4. Find an example of a subset A of a metric space (E, d) for which ∂(int(A)), ∂A and ∂A
are all different.

Solution: let E = Rwith the Euclidean metric, and let A = Q ∪ (0, 1), for instance.
Then

A = Q ∪ (0, 1) = Q ∪ (0, 1) = R
int(A) = {x ∈ R | ∃r > 0 s.t. B(x, r) ⊆ A} = (0, 1)

∂(int(A)) = int(A) \ int(A) = (0, 1) \ (0, 1) = [0, 1] \ (0, 1) = {0, 1}
∂A = A \ int(A) = R \ (0, 1)
∂A = A \ int(A) = R \ int(R) = R \ R = ∅

which are all distinct. □

5. Find two subsetsA,B ⊆ (R, d2) for whichA∪B, int(A)∪B,A∪ int(B), int(A)∪ int(B),
and int(A ∪B) are all distinct.

Solution: letE = Rwith the Euclidean metric, and let

A = [
√
2, φ) ∪ (φ, e) ∪ {π} ∪ (Q ∩ (8, 9)), φ =

1 +
√
5

2

for instance. Then

int(A) = (
√
2, φ) ∪ (φ, e), A = [

√
2, e] ∪ {π} ∪ [8, 9]

int(A) = (
√
2, e) ∪ (8, 9)

int(A) = [
√
2, e]

int(A) = [
√
2, e] ∪ [8, 9]

int
(
int(A)

)
= (
√
2, e)

are all distinct. □

6. Find a subsetA ⊆ (R, d2) for whichA, int(A),A, int(A), int(A), int(A) and int
(
int(A)

)
are all distinct.
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Solution: let E = R with the Euclidean metric, and let A = [
√
2, e] and B = [e, π],

for instance. Then

A ∪B = [
√
2, π]

int(A) ∪B = (
√
2, π]

A ∪ int(B) = [
√
2, π)

int(A) ∪ int(B) = (
√
2, π) \ {e}

int(A ∪B) = (
√
2, π)

which are all distinct. □

7. For any subset A ⊆ (R, d2), show that int
(
int(A)

)
= int(A).

Proof: By deϐinition,

int(A) ⊆ A =⇒ int(A) ⊆ A = A =⇒ int
(
int(A)

)
⊆ int(A).

On the other hand, wheneverB is open we have

B ⊆ B =⇒ B = intB ⊆ int(B).

SetB = int(A). ThenB is open and

int(A) ⊆ int(B) = int
(
int(A)

)
,

which completes the proof. ■

(Could we replace (R, d2) by any metric space? Any topological space?)

8. We say that A ⊆ E ismeagre (or nowhere dense) if and only if int(A) = ∅. Show that
a) A is meagre if and only if int(E \A) is dense inE (A is dense inB ifA ⊆ B ⊆ A);
b) A is meagre if and only if A is contained in a closed subset of E whose interior is

empty;
c) A is closed and meagre if and only ifA = ∂A, and
d) A is meagre=⇒ A = ∂A.

Proof:
a) =⇒ If int(A) = ∅, then

E = E \∅ = E \ int(A) = E \A = intE \A.

Hence int(E \A) is dense inE.

⇐= It’s pretty much the same thing: if int(E \A) = E, then

E = intE \A = E \A = E \ int(A).

Hence int(A) = ∅.
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b) =⇒ If int(A) = ∅, then A does not have interior points. Since A ⊆C E and
sinceA ⊆ A, thenA is contained in a closed set whose interior is empty.

⇐= Let A ⊆ B, where B ⊆C E and int(B) = ∅. By deϐinition, A ⊆ B
and so int(A) ⊆ int(B) = ∅.

c) =⇒ IfA = A and int(A) = ∅, then int(A) = int(A) = ∅. Then

∂A = A \ int(A) = A \∅ = A = A.

⇐= We have A = ∂A ⇐⇒ A = A \ A =⇒ A ⊆ A \ int(A). However
int(A) ⊆ A so that int(A) ̸= ∅ =⇒ A ̸⊆ A \ int(A). Consequently, int(A) = ∅,
which means thatA = ∂A = A and soA ⊆C E. Then int(A) = int(A) = ∅.

d) If int(A) = ∅, we haveA ⊆ A =⇒ int(A) ⊆ int(A) = ∅. Hence

∂A = A \ int(A) = A \∅ = A.

(What condition must hold for the converse to be satisϐied?) ■

9. Show that d∞, d1 and d2 are equivalent on R2.

Proof: we could do it directly, but notice that these metrics are all derived from
norms on R2. Since R2 is a ϐinite-dimensional vector space, all norms on R2 are
equivalent. Hence the three metrics are equivalent. That is all there is to it. ■

10. For i = 1, . . . , n, let (Ei, di) be metric spaces and Ui ⊆O Ei. Show that U1 × · · · × Un is
an open subset of

(E, d) = (E1 × · · · × En, sup{di | i = 1, . . . , n}).

Proof: consider the subset U = U1 × · · · × Un ⊆ E, where Ui ⊆O Ei for all i.
Let x ∈ U . Then πi(x) = xi ∈ Ui for all i. But Ui ⊆O Ei so that ∃ηi > 0 with
Bdi(xi, ηi) ⊆ Ui. Set η = min{ηi}ni=1 > 0. Then

B(x, η) = {y|d(x, y) < η} = {y| sup{di(xi, yi)}ni=1 < η}

= {y|di(xi, yi) < η ∀i = 1, . . . , n} =
n∏

i=1

Bdi(xi, η) ⊆
n∏

i=1

Ui = U

Consequently, U ⊆O E. ■

11. For i = 1, . . . , n, let (Ei, di) be metric spaces and let πi : E1 × · · · ×En → Ei be deϐined
by πi(x1, . . . , xn) = xi. Show that πi is open and continuous.

Proof: let i ∈ {1, . . . , n} and U ⊆O Ei. Since

π−1
i (U) = E1 × · · ·Ei−1 × U × Ei+1 × · · ·En,

then π−1
i (U) ⊆0 E1 × · · · × En according to the previous problem, and so πi is con-

tinuous.
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Now, suppose that V ⊆O E1 × · · · × En. We need to show that

πi(V ) = {x ∈ Ei|x = πi(y), y ∈ V } ⊆O Ei.

Let u ∈ πi(V ) and consider x ∈ π−1
i (u). Since V ⊆O E1 × · · · × En, ∃rx > 0 such

that Bd(x, rx) ⊆ V . We will show that Bdi(u, rx) ⊆ πi(V ). Let z ∈ Bdi(u, rx). Then
di(u, z) < rx. Set w = x, except in the ith position, where wi = z. Then πi(w) = z
and

d(w, x) = sup{di(wi, xi)} = sup{0, . . . , di(z,u), . . . , 0} = di(z,u) < rx,

that is,w ∈ Bd(x, rx) ⊆ V . Thus z = πi(w) ∈ πi(V ), and so πi is open. ■

12. Show that a map f : (F, δ)→ (E1, d1)×· · ·× (En, dn) is continuous at a ∈ F if and only
if πi ◦ f is continuous at a ∈ F for all i.

Proof: if f is continuous at a, then π ◦ f is continuous at a for all i, since πi is contin-
uous and the composition of continuous functions is continuous.

Now, if πi ◦ f is continuous at a ∈ F for all i, then, for all ε > 0, ∃η1, . . . , ηn > 0
such that di(πi(f(x)), πi(f(a))) < εwhenever δ(x, a) < ηi for all i = 1, . . . , n.

Set η = sup{ηi} > 0. Then, for all ε > 0,

d(f(x), f(a)) = sup{di(πi(f(x)), πi(f(a)))} < ε

whenever δ(x, a) < η; as such, f is continuous at a. ■

13. Let f : (E1, d1)× · · · × (En, dn) → (F, δ) and a = (a1, . . . , an) ∈ E. For all i, deϐine fi :
(Ei, di)→ (F, δ) by fi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an). Show that if f is continuous
at a, then fi is continuous at a for all i.

Proof: by continuity of f , for all ε > 0, ∃η > 0 such that

d(x, a) < η =⇒ δ(f(x), f(a)) < ε.

For any x ∈ Ei, write x̃ = (a1, . . . , ai−1, x, ai+1, . . . , an). Then, if d(x̃, a) < η, we have

δ(fi(x), fi(a)) = δ(f(x̃), f(a)) < ε.

Since di(x, ai) ≤ d(x̃, a) < η, fi is continuous at a. ■

14. Show that d = sup{di | i = 1, . . . , n} deϐines a metric on E =
∏n

i=1(Ei, di).
Proof: the only property which is not immediately obvious is the triangle inequality
(and even at that, it is pretty obvious). Let x, y, z ∈ E. Then

d(x, y) = sup{di(xi, yi)} ≤ sup{di(xi, zi) + di(zi, yi)}
≤ sup{di(xi, zi)}+ sup{di(zi, yi)} = d(x, z) + d(z, y)

So we’ve got that going for us, which is nice. ■
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15. Let (Ei, di) be metric spaces for i = 1, . . . , n. Show that the metric product space
(E, d) = (

∏
Ei, sup{di}) is complete if and only if (Ei, di) is complete for each i.

Proof: Assume (E, d) is complete, and let (xn) be a Cauchy sequence in (Ei, di) for
some i. Then for all ε > 0, ∃M ∈ N such that di(xn, xm) < εwhenever n,m > M .

For each j ̸= i, pick aj ∈ Ej .

Write wn = (a1, . . . , ai−1, xn, ai+1, . . . , an). Then (wn) is a Cauchy sequence in E:
indeed for all ε > 0, we have

d(wn,wm) = sup{di(πi(wn), πi(wm))}
= sup{d1(a1, a1), . . . , di(xn, xm), . . . , dn(an, an)}
= sup{0, . . . , 0, di(xn, xm), 0, . . . , 0} = di(xn, xm) < ε

whenever n,m > M .

Since (E, d) is complete, ∃w ∈ E for whichwn → w. Furthermore, πi is continuous,
so that xn = πi(wn)→ πi(w) ∈ Ei, and so (xn) converges in (Ei, di). Consequently,
(Ei, di) is complete for all i.

On the other hand, suppose that (Ei, di) is complete for all i, and let (wn) be a Cauchy
sequence in (E, d).

Since di(πi(wn), πi(wm)) ≤ d(wn,wm) for all i, (πi(wn)) is a Cauchy sequence in
(Ei, di) for all i. As all (Ei, di) are complete, ∃x1, . . . , xn, xi ∈ Ei, such that πi(wn)→
xi for all i, i.e. for all ε > 0, ∃M1, . . . ,Mn ∈ N such that

∀i, di(πi(wn), xi) < ε whenever n > Mi.

SetM = max{Mi|i = 1, . . . , n} <∞ andw = (x1, . . . , xn). Let ε > 0.

Then
d(wn,w) = sup{di(πi(wn), πi(w))} = sup{di(πi(wn), xi)} < ε

whenever n > M .

As we have shown thatwn → w ∈ E, we conclude that (E, d) is complete. ■

16. Show that the converse of the previous result does not hold in general, for instance for
f : R2 → R deϐined by

f(x, y) =

{
xy

x2+y2
, (x, y) ̸= (0, 0)

0, else

Solution: the problem is that f(x, 0) is continuous at x = 0, f(0, y) is continuous
at y = 0, but f(x, y) is not continuous at (x, y) = (0, 0) since, among other things,
lim
z→0

f(z, z) =
1

2
̸= 0. ■
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17. Let d1, d2 : N× N→ R be deϐined according to

d1(m,n) =

{
0, ifm = n

1 + 1
m+n

, otherwise d2(m,n) =
|m− n|
mn

.

a) Show that d1 and d2 are metrics on N.
b) Show that the topologies of (N, d1) and (N, d2) are both discrete.
c) Show that (N, d1) is complete but that (N, d2) is not.
d) What does this say about completeness as a topological property of a space?

Proof:

a) The only property which is not immediately obvious is the triangle inequality.
If d1(m,n) = 0, then 0 = d1(m,n) ≤ d1(m, k) + d1(k, n) for all k.

If d1(m,n) ̸= 0 and d1(m, k) = 0, then d1(m,n) ≤ d1(m, k) + d1(k, n).

If d1(m,n), d1(m, k), d1(k, n) ̸= 0, then

d1(m,n) = 1 +
1

m+ n
≤ 2 +

1

m+ k
+

1

k + n
= d1(m, k) + d1(k, n)

since 1
m+n < 1.

For d2, notice that

d2(m, k) + d2(k, n) =
|m− k|
mk

+
|k − n|
kn

=
n|m− k|+m|k − n|

mkn

=
|nm− nk|+ |mk −mn|

mkn

≥ |mk − nk|
mkn

=
|m− n|k
mkn

=
|m− n|
mn

= d2(m,n)

b) For all n ∈ N, we need to show that {n} is open in both (N, d1) and (N, d2), that
is, we must show ∃r1, r2 > 0 such thatBdi(n, ri) ⊆ {n}.

Pick any r1 < 1. Then

Bd1(n, r1) = {y ∈ N |1 (y, n) < r1} =
{
y ∈ N | y = n or 1

n+y < 1
}
= {n}.

Simple algebraic manipulations show that d2(n,m) ≥ 1
n(n+1) whenever

n ̸= m ∈ N. Set r2 = 1
n(n+1) > 0. Then

Bd2(n, r2) =

{
y ∈ N |2 (n, y) <

1

n(n+ 1)

}
= {n}
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c) For completeness:
Let (kn) be a Cauchy sequence in (N, d1). Then, for all 1 > ε > 0, ∃M ∈ N
such that d1(kn, km) < εwhenever n,m > M .

Since d1(x, y) > 1 for all x ̸= y, we must have kn = km for all n,m > M .
Then (kn) is constant for alln > M , and as such, it is a convergent sequence
in (N, d1).
Consider the sequence (n) in (N, d2). To show that (n) is a Cauchy sequence,
let ε > 0 andM > 2

ε . Then

d2(m,n) =
|m− n|
mn

≤ m+ n

mn
=

1

m
+

1

n
≤ 2

min{m,n} <
2

M
< ε

wheneverm,n > M .

Now, ifn→ K in (N, d2), then, for ε = 1
K(K+1) , ∃M ∈ N such thatd(K,n) <

1
K(K+1) whenever n > M (except for possiblyK = n).

But this contradicts the fact that d(K,n) ≥ 1
K(K+1) whenever K ̸= n.

Hence (n) cannot converge in (N, d2).
d) This is yet another example that completeness is not a topological property... ■

18. Let (E, d) be a metric space. Deϐine d1, d2 : E × E → R by d1(x, y) = d(x,y)
1+d(x,y) and

d2(x, y) = min{d(x, y), 1}.

a) Show that d1 and d2 are metrics on E.
b) Show that d is topologically equivalent to d2.
c) Show that d1 is topologically equivalent to d2.

Proof:
a) The only property which is not immediately obvious is the triangle inequality.

Let x, y, z ∈ E.

Write t = d(x, y) ≥ 0, k = d(x, z) ≥ 0, ℓ = d(z, y) ≥ 0. Since d is a
metric, t ≤ k + ℓ. Since the function f(w) = w

1+w is increasing over [0,∞),

d1(x, y) =
t

1 + t
≤ k + ℓ

1 + k + ℓ
=

k

1 + k + ℓ
+

ℓ

1 + k + ℓ

≤ k

1 + k
+

ℓ

1 + ℓ
= d1(x, z) + d1(z,w).

Let x, y, z ∈ E. If d2(x, z) ≥ 1 or d2(z, y) ≥ 1, then

d2(x, z) + d2(z, y) ≥ 1 ≥ d2(x, y).

If d2(x, z) < 1 and d2(z, y) < 1, then

d2(x, z) ≤ d(x, y) ≤ d(x, z) + d(z, y) = d2(x, z) + d2(z, y).
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b) Since d2 ≤ d, Bd(x, r) ⊆ Bd2(x, r) for all x ∈ E and r > 0. That is, Bd2(x, r) is
open in the d−topology.

Similarly,Bd2(x,min{r, 1}) ⊆ Bd(x, r) for all x ∈ E. That is,Bd(x, r) is open in
the d2−topology. Hence d and d2 are equivalent.

c) Lengthy but simple manipulations show that

d1︸︷︷︸
red

≤ d2︸︷︷︸
green

≤ 2d1︸︷︷︸
yellow

and so the metrics are equivalent. □

19. Let (E, d) and (F, d̂) be two metric spaces, and let A ⊆ E be dense in E.

a) If f : (A, d) → (F, d̂) is continuous and if limy→x,y∈A f(y) exists for all x ∈ E \ A,
show that there exists a unique continuous function g : E → F with g|A = f .

b) Assume further that (F, d̂) is complete. If f : (A, d) → (F, d̂) is uniformly contin-
uous, show that there exists a unique function g : E → F , uniformly continuous,
with g|A = f .

Proof:

a) The function g : E → F that does the trick is given by

g(x) =

{
f(x), x ∈ A
limy→x,y∈A f(y), x ∈ E \A

(8.4)
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In order to show that g is continuous, let x ∈ E and (xn) ⊆ E be such that
xn → x. For all n ∈ N, g(xn) = limy→xn,y∈A f(y). Consequently, for any n ∈ N,
∃yn ∈ A such that

d(xn, yn) ≤
1

n
and d̂(g(xn), f(yn)) <

1

n
.

From the triangle inequality

d(x, yn) ≤ d(x, xn) + d(xn, yn) ≤
1

n
+ d(x, xn)

we conclude that yn → x and so that f(yn)→ g(x). Combining this result with

d̂(g(xn), g(x)) ≤ d̂(g(xn), f(yn)) + d̂(f(yn), g(x)) ≤
1

n
+ d̂(f(yn), g(x)),

we conclude that g(xn) → g(x). By the Sequential Criterion, g is thus continu-
ous at x for all x ∈ E, and so it is continuous onE.

It remains only to show that g is the unique function satisfying the conditions
outlined in the statement of the problem.

Let g, h : E → F be two continuous functions with g|A = h|A = f |A. Then
g(x) = h(x) for all x ∈ A.

Now, let x ∈ E \ A. Since A is dense in E, there is a sequence (xn) ⊆ A such
that xn → x. Since g and h are continuous,

g(x) = lim
n→∞

g(xn) = lim
n→∞

f(xn) = lim
n→∞

h(xn) = h(x).

Hence g(x) = h(x) for all x ∈ E. Consequently, g = h onE.
b) Let x0 ∈ E \ A and ε > 0. Since f is uniformly continuous on A, ∃α > 0 such

that d̂(f(x), f(y)) < εwhenever x, y ∈ A and d(x, y) < α.

In particular, if x, y ∈ A are such that d(x, x0), d(y, x0) < α
2 , then d(x, y) < α

and d̂(f(x), f(y)) < ε.

Since (F, d̂) is complete, the Cauchy Criterion for Functions (wewill discuss this
one later) applies and we conclude that limy→x0,y∈A f(y) exists. According to
the result of part (a), the function g : E → F deϐined by (8.4) is continuous on
E.

It remains only to show that g is uniformly continuous onE.

Let ε > 0. By hypothesis, f is uniformly continuous on A. As a result, ∃α > 0
such that d̂(f(x), f(y)) < εwhenever x, y ∈ A and d(x, y) < α.

Letx, y ∈ E satisfyd(x, y) < α. SinceA is dense inE, two sequences (xn), (yn) ⊆
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A can be found such that xn → x and yn → y. Since d is a continuous mapping,
d(xn, yn)→ d(x, y) < αwhich shows the existence of an indexN ∈ N such that
d(xn, yn) < α for all n > N .

Hence, d̂(f(xn), f(yn)) < ε for all n > N . By continuity,

d̂(f(xn), f(yn))→ d̂(g(x), g(y)) ≤ ε,

which shows that g is uniformly continuous onE. ■

20. Let (E, d) be a metric space. Let C denote the set of Cauchy sequences in E.
a) i. Let U = (un), V = (vn) ∈ C. Show that (d(un, vn)) converges, and denote its

limit by δ(U, V ).
ii. Show that δ is symmetric and satisϐies the triangle inequality.

b) Consider the equivalence relation∼ on C deϐined by
U ∼ V ⇐⇒ δ(U, V ) = 0.

Write Ê = C/ ∼ and denote the equivalence class of U ∈ C in Ê by Û .
i. What is the equivalence class of a sequence which converges in E?
ii. If U ∼ U ′ and V ∼ V ′, show that δ(U, V ) = δ(U ′, V ′). Thus, for Û , V̂ ∈ Ê, the

real number δ(Û , V̂ ) = δ(U, V ) is well-deϐined, not being dependent on the
choice of class representatives.

iii. Show that δ is a metric on Ê.
iv. Let ι : E → Ê be deϐined by ι(α) = (̂α), where (α) is the constant sequence.

Show that ι is an isometry (and so also 1− 1). Furthermore, show that ι(E) is
dense in Ê.

c) Show that (Ê, δ) is complete.
d) Let (E1, d1) and (E2, d2) be complete metric spaces, and suppose that there are

isometries ιk : E → Ek with ιk(E) dense in Ek, for k = 1, 2. Show that there is a
unique bijective isometry φ : E1 → E2 such that φ(ι1(x)) = ι2(x) for all x ∈ E.

Proof:
a) i. Since R is complete, it will sufϐice to show that (d(un, vn)) is a Cauchy se-

quence. For all p, q ∈ N,

d(up, vp) ≤ d(up,uq) + d(uq, vq) + d(vp, vq)
d(uq, vq) ≤ d(up,uq) + d(up, vp) + d(vp, vq)

whence

d(up, vp)− d(uq, vq) ≤ d(up,uq) + d(vp, vq)
d(uq, vq)− d(up, vp) ≤ d(up,uq) + d(vp, vq)

and so |d(up, vp)− d(uq, vq)| ≤ d(up,uq)+ d(vp, vq)→ 0, since bothU and
V are Cauchy sequences. Consequently, (d(un, vn)) is a Cauchy sequence.
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ii. Symmetry is clear, since the limit of a convergent sequence is unique in a
metric space and

δ(V,U)← d(vn,un) = d(un, vn)→ δ(U, V ).

The triangle inequality is also obvious since

δ(U, V )← d(un, vn) ≤ d(un,wn) + d(wn, vn)→ δ(U,W ) + δ(W,V )

implies that δ(U, V ) ≤ δ(U,W ) + δ(W,V ).

b) i. Let U = (un) be a convergent sequence in E which converges to α ∈ E.
Since any convergent sequence is a Cauchy sequence, U ∈ C. Let V =
(vn) ∈ C. Then

U ∼ V ⇐⇒ δ(U, V ) = 0 ⇐⇒ d(un, vn)→ 0.

Thanks to the inequalities

d(α, vn) ≤ d(α,un) + d(un, vn) and d(un, vn) ≤ d(α,un) + d(α, vn),

we see that U ∼ V if and only if d(α, vn) → 0 (since we already have
d(α,un)→ 0). Then, Û = {V = (vn) ∈ C | vn → α}.

ii. If U ∼ U ′ and V ∼ V ′, then, according to the triangle inequality, we have

δ(U, V ) ≤ δ(U,U ′) + δ(U ′, V ′) + δ(V, V ′) = δ(U ′, V ′).

Similarly, δ(U ′, V ′) ≤ δ(U, V ) so that δ(U, V ) = δ(U ′, V ′).

iii. It remains only to show that δ(Û , V̂ ) = 0 if and only if Û = V̂ . But that is
exactly how the equivalence relation was built in the ϐirst place.

iv. For any α ∈ E, let (α) ∈ C be the constant sequence. Then

δ(ι(α), ι(β)) = δ((α), (β)) = d(α, β)

and so ι is an isometry.

Let Û ∈ Ê, with U = (un) ∈ C, and ε > 0. Since U is a Cauchy sequence,
∃N ∈ N such that for all p, q > N we have d(up,uq) < ε. Now, ϐix p > N .
Then

δ(Û , ι(up)) = δ(U, (up)) = lim
n→∞

d(un,up) ≤ ε.

Since this holds for all p > N , we conclude that ι(un) → Û . Hence any
element of Ê is the limit of a sequence of elements of ι(E), i.e. ι(E) is dense
in Ê.
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c) Let (αn) be a Cauchy sequence in Ê. Since ι(E) is dense in Ê, ∀n ∈ N, ∃xn ∈ E
with δ(αn, ι(xn)) < 1

n . Then

d(xp, xq) = δ(ι(xp), ι(xq)) ≤ δ(ι(xp), αp) + δ(αp, αq) + δ(αq, ι(xq))

≤ δ(αp, αq) +
1

p
+

1

q

so that d(xp, xq) → 0 as p, q → ∞, which is to say that (xn) ∈ C. Denote
α = (x̂n) ∈ Ê.

We will show that αn → α. Since

δ(αn, α) ≤ δ(αn, ι(xn)) + δ(ι(xn), α) <
1

n
+ δ(ι(xn), α),

it sufϐices to show that δ(ι(xn), α)→ 0.

Let ε > 0. The sequence (xn) being Cauchy inE, ∃N ∈ N such that d(xp, xq) < ε
whenever p, q ≥ N . Thus, ϐixing n and letting p→∞, we have

δ(ι(xn), α) = lim
p→∞

d(xn, xp) ≤ ε

for all n > N , whence we have the desired result.

d) Deϐine φ on ι1(E) by setting φ(ι1(x)) = ι2(x) for all x ∈ E. Restricted to ι1(E),
the mapping φ is an isometry since

d2(φ(ι1(x)), φ(ι1(y))) = d2(ι2(x), ι2(y)) = d(x, y) = d1(ι1(x), ι1(y))

for all x, y ∈ E. Thus, φ is uniformly continuous on ι1(E). Since ι1(E) is dense
in E1 and since E2 is complete, we can apply the result of a previous problem
to show thatφ canbe extended to auniqueuniformly continuous functiononE1.

Furthermore, φ is an isometry on ι1(E); since ι1(E) is dense in E1 and since
φ is continuous on E1, φ is an isometry on E1 in its entirety. In particular φ is
1− 1.

It remains only to show that φ is onto. Let β ∈ E2. As ι2(E) is dense in E2,
∃(βn) = (ι2(xn)) ⊆ ι2(E) such that βn → β. Since

d1(ι1(xp), ι1(xq)) = d(xp, xq) = d2(ι2(xp), ι2(xq)) = d2(βp, βq)

for all p, q ∈ N, the sequence (ι1(xn)) is a Cauchy sequence in E1. But E1 is
complete so that ι1(xn)→ α ∈ E1. Since φ is continuous, we have

φ(α) = lim
n→∞

φ(ι1(xn)) = lim
n→∞

ι2(xn) = lim
n→∞

βn = β,

that is, φ is onto. ■
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21. LetA,B ⊆ E, where E is endowed with any metric you care to imagine. Show that

a) A ⊆ A

b) (A) = A

c) A ∪B = A ∪B
d) ∅ = ∅
e) in general,A ∩B ̸= A ∩B

Proof:
a) This one is clear by deϐinition.
b) By part (a),A ⊆ (A). Conversely, since (A) is the smallest closed set containing

A and sinceA is also a closed set containingA, then (A) ⊆ A. Hence,A = (A).
c) Since the union of two closed sets is closed,A∪B is a closed set containingA∪B

and soA ∪B ⊆ A∪B. Conversely,A ∪B is a closed set containing bothA and
B, so bothA,B ⊆ A ∪B; thereforeA ∪B ⊆ A ∪B. ThusA ∪B = A ∪B.

d) Since∅ is always a closed set,∅ = ∅.
e) Consider the following example in (R, d2): letA = (−1, 0) andB = (0, 1). Then

A = [−1, 0],B = [0, 1],A ∩B = ∅,A ∩B = ∅whileA ∩B = {0}. ■

22. LetA be a subset of (E, d). Show that A = int(A) ∪ ∂A.
Proof: suppose that x ∈ int(A). Then x ∈ A ⊆ A. Now suppose that x ∈ ∂A.
We proceed by contradiction. If x ̸∈ A then, since E \ A ⊆O E, ∃r > 0 such that
B(x, r) ⊆ E \ A ⊆ E \ A. This contradicts the fact that x ∈ ∂A (how?) and so we
must have x ∈ A. Thus int(A) ∪ ∂A ⊆ A.

Conversely, suppose that x ∈ A. There are only three possibilities: x ∈ int(A),
x ∈ ∂A or x ∈ int(E \ A) (why?). If x ∈ int(E \ A), then ∃r > 0 such that
B(x, r) ⊆ E \ A. This implies that A ⊆ E \ B(x, r). Therefore A ⊆ E \ B(x, r),
sinceE \B(x, r) ⊆C E, which in turns implies that x ̸∈ A, a contradiction.

Thus x ∈ int(A) ∪ ∂A and soA ⊆ int(A) ∪ ∂A. ■

23. Let A = { 1
n
| n ∈ N×}. Under the usual topology on R, show that every point of A is a

boundary point and that the only cluster point of A is 0.
Proof: To show that every point of x ∈ A is a boundary point, note that any neigh-
bourhood V of x contains an open interval Ir = (x − r, x + r), for some r > 0. But
x ∈ Ir∩A and since any open interval contains an irrational number Ir∩(R\A) ̸= ∅.
Consequently, any neighbourhood of x contains both points in A and points not in
A, which is another deϐinition of x ∈ ∂A.

To show that 0 is a cluster point of A, note that any neighbourhood of 0 in (R, d2)
contains an interval of the form (−ε, ε) for some ε > 0. By the Archimedean prop-
erty, ∃N ∈ N such that 1

N < ε. Hence 0 ̸= 1
N ∈ B(0, ε) and so 0 is a cluster point ofA.
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In order to show that there are no other cluster points, ϐirst observe that any x < 0
cannot be a cluster point of A since the neighbourhood (−2x, 0) contains no points
in A. Likewise, any x > 1 cannot be a cluster point of A since the neighbourhood
(1, 2x) contains no point ofA.

If x ∈ (0, 1], then either x ∈ A or x ̸∈ A. If x = 1
n ∈ A, then the open neigh-

bourhood (x−r, x+r) contains no other point ofA as long as r < 1
n(n−1) , and so x is

not a cluster point ofA. If x ̸∈ A, choose k ∈ N such that x ∈ ( 1k ,
1

k−1). Then the open
neighbourhood (x−r, x+r) contains no other point ofA if r < min{x− 1

k ,
1

k−1−x}
and so x cannot be a cluster point ofA. ■

24. Let τ1 = {U ⊆ R | R \ U is ϐinite or U = ∅}, τ2 = {U ⊆ R | R \ U is countable or U = ∅}.

a) Show that τ1 and τ2 deϐine topologies onR (the co-ϐinite topology and countable
complement topology, respectively).

b) What is the boundary of the setA = { 1
n
| n ∈ N×} under these two topologies?

Proof:
a) It sufϐices to verify that the three properties hold for τ1:

i. ∅ ∈ τ1 by deϐinition; R ∈ τ1 since R \ R = ∅ is ϐinite.
ii. Let {Xα} ⊆ τ1. ThenR \Xα is ϐinite for all α. According to the de Morgan’s

Laws, the set
R \

∪
α

Xα =
∩
α

(R \Xα)

is a ϐinite set as it is the intersection of an arbitrary collection of ϐinite sets.
Hence,∪Xα ∈ τ1.

iii. Let {Xi}ni=1 ⊆ τ1. Then R \Xi is ϐinite for all i = 1, . . . , n.

According to the de Morgan’s Laws, the set

R \
n∩

i=1

Xi =
n∪

i=1

(R \Xi)

is a ϐinite set as it is the union of a ϐinite collection of ϐinite sets. Hence,∩n
i=1Xi ∈ τ1.

Now for τ2:
i. ∅ ∈ τ2 by deϐinition; R ∈ τ2 since R \ R = ∅ is countable.
ii. Let {Xα} ⊆ τ2. Then R \Xα is countable for all α.

According to the de Morgan’s Laws, the set

R \
∪
α

Xα =
∩
α

(R \Xα)

is a countable set as it is the intersection of an arbitrary collection of count-
able sets. Hence,∪Xα ∈ τ2.
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iii. Let {Xi}ni=1 ⊆ τ2. Then R \Xi is countable for all i = 1, . . . , n. According
to the de Morgan’s Laws, the set

R \
n∩

i=1

Xi =
n∪

i=1

(R \Xi)

is a countable set as it is the union of a ϐinite collection of countable sets.
Hence,∩n

i=1Xi ∈ τ2.
b) In the countable complement topology, A ⊆C R, because R \ (R \ A) = A is

countable and so R \ A ⊆O R. Consequently, A = A. Furthermore, the only
open set ofR contained inA is the empty set, as any other open set is uncount-
able. Hence int(A) = ∅ and ∂A = A \ int(A) = A.

In the co-ϐinite topology, the only closed set containing A is R, as any other
closed set is ϐinite. Consequently, A = R. Furthermore, the only open set
of R contained in A is the empty set, as any other open set is inϐinite. Hence
int(A) = ∅ and ∂A = R. ■

25. Let A,B ⊆ (E, d). If x ∈ E is a cluster point of A ∩ B, show that x is a cluster point of
both A andB.

Proof: let x be a cluster point of A ∩ B. Then any neighbourhood V of x contains a
point y ∈ A ∩ B ⊆ A such that y ̸= x. Thus y is a cluster point of A. The argument
forB is identical. ■

26. Show thatB ⊆ (Rp, d2) is closed if andonly if every convergent sequence inB converges
to a point inB.

Proof: ϐirst, assume that B is closed. Let x = lim xn. Then, for any ε > 0, ∃nε > 0
such that xn ∈ B(x, ε) for all n ≥ nε. Consequently, B ∩ B(x, ε) ̸= ∅ for all ε > 0.
Since Rp \B ⊆O Rp, it follows that x ∈ B (why?).

Conversely, assume that for every convergent sequence (xk) ⊆ Rp, we have x =
lim xk ∈ B. IfRp \B is not open inRp, ∃x ∈ Rp \B such thatB(x, 1n)∩B ̸= ∅ for all
n ∈ N. Then ∃xn ∈ B(x, 1n) ∩ B; the sequence (xn) ⊆ B converges to x ̸∈ B, which
contradicts the hypothesis. Hence Rp \B ⊆O Rp. ■

27. Let (xn) ⊆ (Rp, ∥ · ∥) such that

∥xn+1 − xn∥ ≤ r∥xn − xn−1∥

where r < 1. Show that (xn) converges.
Proof: we have ∥x3 − x2∥ ≤ r∥x2 − x1∥ and it is easily seen by induction that if

∥xn+1 − xn∥ ≤ rn−1∥x2 − x1∥

then
∥xn+2 − xn+1∥ ≤ r∥xn+1 − xn∥ ≤ rn∥x2 − x1∥.
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Therefore, ifm > n,

∥xm − xn∥ =

∥∥∥∥∥
m−1∑
k=n

(xk+1 − xk)

∥∥∥∥∥ ≤
m−1∑
k=n

∥xk+1 − xk∥

≤
∞∑
k=n

∥xk+1 − xk∥ ≤
∞∑
k=n

rk−1∥x2 − x1∥ ≤
rn−1

1− r
∥x2 − x1∥.

Let ε > 0. Since r < 1, ∃Nε so that

rn−1 < ε
1− r
∥x2 − x1∥

for all n ≥ N,

and so ∥xm − xn∥ < ε for allm ≥ n ≥ Nε. It follows that (xn) is Cauchy and that it
is convergent, since (Rp, ∥ · ∥) is a Banach space. ■

8.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Show that the absolute value deϐines a norm on R.

3. Show that the modulus deϐines a norm on C.

4. Show that the sup norm ∥ · ∥∞ is indeed a norm on CR([0, 1]).

5. Let∞ ≥ p ≥ 1. Show that the p−norm ∥ · ∥∞ is indeed a norm on Rn.

6. Let p ≥ 1. Show that (8.1, p. 189), deϐines a norm on Lp([0, 1]).

7. Prove Lemma 8.1.1, p. 189.

8. Let E be any set. Show that (8.2, p. 190) deϐines a metric on E.

9. Let E = Rn. Show that d2 is a metric on E.

10. LetE = R, d(x, y) = |x− y|,A = N andB = {n−1
n
| n ∈ N}. Compute d(A,B), where d

is as in (8.3, p. 191)). Can you use this result to show that (8.3, p. 191) does not deϐine
a metric on ℘(E) \∅?

11. In a metric space, show that δ(A) ∈ [0,∞]. Also, show that δ(A) = 0 ⇐⇒ A is a
singleton.

12. Prove or disprove: In any metric space (E, d), δd(B(a, r)) = 2r.

13. Prove or disprove: Let d, d′ be metrics on E. Then, A is bounded in (E, d) if and only if
A is bounded in (E, d′).

14. Where does the proof that a ϐinite intersection of open subsets is open fail for arbitrary
intersections?
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15. Show that themetric space topology on a discrete metric space is the discrete topology.

16. Show that the intersection of an arbitrary family {Ai}i∈I of closed subsets of E is a
closed subset of E.

17. Show that the union of a ϐinite family {Ai}ℓi=1 of closed subsets of E is a closed subset
of E.

18. Show that the union of an arbitrary family of closed subsets of E need not be closed in
E.

19. Let A be a subset of a metric space (E, d). Show that A is the intersection of all closed
subsets of E containing A.

20. LetA be a subset of a metric space (E, d). Show that A ⊆ A.

21. Prove Lemma 92, p. 197.

22. In Proposition 94, p. 198, show that 2.⇐⇒ 3⇐⇒ 4.

23. Let A be a subset of a metric space (E, d). Show that int(A) is the union of all open
subsets of E contained in A.

24. LetA be a subset of a metric space (E, d). Show that int(A) ⊆ A.

25. LetA be a subset of a metric space (E, d). Show that A ⊆O E ⇐⇒ A = int(A).

26. Complete the proof of Lemma 98, p. 202.

27. Prove Proposition 99, p. 202.

28. Show that the three deϐinitions of continuity are equivalent.

29. Let f : C → D, A ⊆ C and B ⊆ D. Show that f−1(f(A)) = A and that in general, the
best we can say is that f(f−1(B)) ⊆ B.

30. Can you ϐind a function f : E → Ẽ which is continuous but not closed?

31. Can you ϐind a function f : E → Ẽ which is open and closed but not continuous?

32. Can you ϐind a function f : E → Ẽ which is open and continuous but not closed?

33. Complete the proof of Proposition 101, p. 204.

34. Complete the proof of Corollary 102, p. 204.

35. Provide the details showing that d2 and d∞ are topologically equivalent on R2.
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36. Consider the metric space (R, d2). Deϐine a new function d̃ : R× R→ R→ R by

d̃(x, y) =
d(x, y)

1 + d(x, y)
.

Show that d̃ deϐines ametric onR, that d and d̃ are topologically equivalent but that they
are not equivalent.

37. Let (E, d) be a metric space. Show that d : E × E → R is Lipschitz continuous (with
k = 2) and so that it is a continuous map.

38. Find a function which is uniformly continuous but not Lipschitz continuous.

39. Show that the two deϐinitions of convergence of a sequence are equivalent.

40. Show that if xn → x, then any subsequence of (xn) also converges to x.

41. Show that the set of limit points of a sequence is closed.

42. Complete the proof of Proposition 103, p. 209.

43. Prove Proposition 8.2.2, p. 214.

44. Show that the space ℓ2(N) is a Hilbert space as follows.

a) Show that ℓ2(N) is a vector space over C.
b) Show that (·|·) deϐined in the text is indeed an inner product over ℓ2(N).
c) Show that (·|·) deϐines a norm ∥ · ∥ over ℓ2(N).
d) Show that ℓ2(N) is complete under ∥ · ∥.

45. Let f : R→ R be deϐined by

f(x) =

{
1, x < 0

x+ 1
x+1

, x ≥ 0
.

Show that f has no ϐixed point but that d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R.

46. LetX be a compact metric space. Deϐine

CR(X) = {f |f : X → R, f continuous}.

Showthat (CR(X), ∥·∥∞) is aBanach space, but that neither (CR(X), ∥·∥1)nor (CR(X), ∥·
∥2) is complete.

47. Let E = {f ∈ CB(R,R)|f uniformly continuous}. Show that E is a complete sub-
algebra of CB(R,R).
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48. Let (E, d) be a complete metric space and f : E → E. If there exists a positive integer
r and k ∈ (0, 1) such that

f r = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r times

and d(f r(x), f r(y)) ≤ kd(x, y) for all x, y ∈ E, show that f has a unique ϐixed point.

49. LetX = (0,∞). Consider the function d̃ : X ×X → R+
0 deϐined by

d̃(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ .
a) Prepare a 2-page summary of this chapter; identify the important deϐinitions and

results.
b) Show that d̃ is a metric onX .
c) Show that d̃ and d2 induce the same topology on X (i.e. the open sets of X are

exactly the same under both metrics).
d) Show that (X, d̃) is not a complete metric space.
e) Show that ((0, 1], d̃) is a complete metric space.

50. Let B(X,R) denote the set of bounded functions from X to R. It is easy to see that
B(X,R) is a vector space over R. The norm of f ∈ B(X,R) is deϐined by

∥f∥ = sup
x∈X
|f(x)|.

Show that B(X,R) is a Banach space with this norm.

51. Are the co-ϐinite topologies and the countable complement topologies derived from a
metric?

236 Analysis and Topology Course Notes



Chapter 9

Metric Spaces and Topology

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is bymoving fromR toRm. Some of the notions that
generalize nicely to vectors and functions on vectors include compactness
and connectedness.

The symbolK is sometimes used to denote either R or C.

9.1 Compact Spaces
LetA be a ϐinite set. A function f : A→ K is necessarily bounded (in the sense that ∃M ∈ K
such that |f(a)| ≤M for all a ∈ A).

Might this be due to the ϐiniteness of A? While ϐiniteness is sufϐicient, it is not a necessary
condition for boundedness: the Dirichlet function χQ : [0, 1] → R is bounded, even though
its domain is the uncountable set [0, 1].

Perhaps it is the boundedness of the function’s domain that does the trick? Unfortunately,
that condition is neither sufϐicient nor necessary, as can be seen from the functions

f : [0, 1]→ R, f(x) =
1

x
for x > 0, and f(0) = 0,

and g : R→ R deϐined by g(x) = exp(−x2).

Could the culprit instead be the continuous nature of the function? Not as such, no, as we
have examples of continuous functions being bounded, others being unbounded; and non-
continuous functions being bounded, others being unbounded.

A condition on the domain of the function alone cannot guarantee boundedness; and nei-
ther can one on the nature of the function. However, a combination of two conditions, one
each on the domain and on the function, can provide such a guarantee.
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In this section,we study the appropriate property on thedomain, that of compactness, which
generalizes theproperty of ϐiniteness. Its deϐinition,which in all honesty is not super intuitive,
is due to Borel and Lebesgue, is applicable to metric and general topological spaces alike.

9.1.1 The Borel-Lebesgue Property
A space E is compact if any family of open subsets covering E contains a ϐinite sub-family
which also covers E. In other words, E is compact if, for any collection U = {Ui}i∈I of open
subsets Ui ⊆O E with E ⊆ ∪i∈I Ui, ∃ a ϐinite J ⊆ I such that E ⊆ ∪j∈J Uj.

aaaaaa

Examples

1. Every ϐinite metric space (E, d) is compact.

Proof: let U be an open cover of E = {x1, . . . , xn}. Thus, for each 1 ≤ i ≤ n,
∃Ui ∈ U such that xi ∈ Ui. Then {U1, . . . , Un} is a ϐinite subcover of E. ■

2. In the standard topology, R is not compact.

Proof: consider the open cover R =
∪
n∈N

(−n, n).

Any ϐinite subcollection {(−n1, n1), . . . , (−nm, nm)} is bounded by
M = max{nj | 1 ≤ j ≤ m}, and thus cannot be a cover of R accord-
ing to the Archimedean Property. Consequently, no such ϐinite subcover
exists and R is not compact. ■

3. Show that R is compact in the indiscrete topology.

Proof: the only open cover of R in the indiscrete topology is {R}, which
is already a ϐinite sub-cover of R (the only other open subset of R in the
indiscrete topology is∅). ■

4. Show that any compact metric (E, d) space is bounded.

Proof: consider the open cover U = {B(x, 1) | x ∈ E}. Since E is
compact, ∃x1, . . . , xn ∈ E such thatE = B(x1, 1)∪ · · ·B(xn, 1). Consequently,
E has a ϐinite diameter≤ n and is thus bounded. ■

By abuse of notation, we often write: “let∪Ui be an open cover ofE” rather than “let {Ui} be
an open cover of E,” as in the second example above.

Incidentally, does the fourth example contradict the third one? It doesn’t actually, but what
does that imply about the indiscrete topology?
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The duality open ↭ closed/ union ↭ intersection yields an equivalent deϐinition: a space
E is compact if any family of closed subsets ofE with an empty intersection contains a ϐinite
sub-family whose intersection is also empty.

In other words,E is compact if, for any collectionW = {Vi}i∈I of closed subsets Vi ⊆C E
with∩i∈I Vi = ∅, ∃ a ϐinite J ⊆ I such that∩j∈J Vj = ∅.

aaaaaa

Proposition 115
Let (Fn)n≥1 be a decreasing sequence of non-empty closed subsets of a compact space
E. Then

∩
n≥1 Fn ̸= ∅.

Proof: if ∩n≥1 Fn = ∅, then E =
∪

n≥1E \ Fn, where E \ F ⊆O E. Since E
is compact, ∃ a ϐinite subsequence of indices n1 < · · · < nk such that

E =
k∪

i=1

E \ Fni
.

Consequently,∩k
i=1 Fni

= ∅. But the original sequence is decreasing, so that
k∩

i=1

Fni
= Fnk

= ∅,

which contradicts the hypothesis that allFn are non-empty. As a result, we conclude
that∩n≥1 Fn ̸= ∅. ■

Continuous functions on compact domains have quite useful properties.

aaaaaa

Proposition 116
Let f : (E, d)→ (F, δ) be any continuous function over a compact metric space. Then
f is uniformly continuous.

Proof: let x ∈ E. Since f is continuous at x ∈ E, ∀ε > 0, ∃Mx(ε) > 0 such
that

f(B(x,Mx)) ⊆ B(f(x), ε).

Furthermore, E =
∪

x∈E B(x,Mx) is an open cover of E, which is compact. Conse-
quently, ∃x1, . . . , xn ∈ E such that E =

∪n
i=1B(xi,Mxi). Set

M =M(ε) = 1
2
·min{Mx1 , . . . ,Mxn} > 0.

Then, ∀ε>0, ∃M(ε) > 0 such that f(B(x,M)) ⊆ B(f(x), ε) for all x ∈ E. AsM does
not depend on x, f is uniformly continuous. ■
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A subsetA ⊆ E is deemed to be a compact subset ofE, which we denote byA ⊆K E, if any
family of open subsets of E coveringA contains a ϐinite sub-family which also coversA.

aaaaaa

Proposition 117
A ϔinite union of compact subsets of E is itself compact.

Proof: let A1, . . . , An ⊆K E and write A =
∪n

k=1Ak. Let {Ui}i∈I ⊆ ℘(E) be
an open cover ofA. Then {Ui}i∈I is also an open cover ofAk for each k.

Since all Ak are compact, ∃ ϐinite J1, . . . , Jk ⊆ I such that Ak ⊆
∪

j∈Jk Uj for
each k. Thus,A ⊆ ∪n

k=1

∪
j∈Jk Uj . But∪n

k=1{Uj}j∈Jk is a ϐinite sub-family of {Ui}i∈I ,
from which we conclude that A ⊆K E. ■

The inϐinite union of compact subsets could be compact or not, however.

aaaaaa

Examples

1. Both [0, 1], [2, 3] ⊆K (R, d1), so [0, 1] ∪ [2, 3] ⊆K (R, d1). □

2. For any x ≥ 1, [0, 1
x
] ⊆K (R, d1). The union∪x≥1[0,

1
x
] = [0, 1] is also a compact

subset of (R, d1). □

3. For any n ∈ N, [−n, n] ⊆K (R, d1), but the union ∪n∈N[−n, n] = R is not a
compact subset of (R, d1). □

9.1.2 The Bolzano-Weierstrass Property
Formetric spaces, compactness can also be established via a property of sequenceswhich is
often easier to ascertain than the Borel-Lebesgue property, but it comes with a warning: the
two properties are not equivalent in general for non-metric spaces.

Let (E, d) be a metric space. We say that E is precompact if ∀ε > 0, ∃x1, . . . , xn ∈ E such
that E =

∪n
i=1B(xi, ε).

aaaaaa
Proposition 118
A compact space is precompact.

Proof: left as an exercise. ■

We now present the section’s main result, a “special case” of which we saw in Theorem 20.
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aaaaaa

Theorem 119 (BĔđğĆēĔ-WĊĎĊėĘęėĆĘĘ CĔĒĕĆĈęēĊĘĘ)
Let (E, d) be a metric space. Then E is compact if and only if any sequence in E has a
convergent sub-sequence in E.

Proof: assume E is compact and let (xn) ⊆ E. If the range of (xn) is ϐinite,
there is a constant subsequence which would then automatically be convergent.
We thus consider sequences with inϐinite rangeA = {xn | n ∈ N}.

We show that such an A has at least one cluster point. Suppose, instead, that
thereA has no cluster point. Thus for any x ∈ E, ∃rx > 0withB(x, rx) ∩A is ϐinite.
Since E is compact, there exists a ϐinite J ⊆ E such that E =

∪
x∈J B(x, rx).

Then
A =

∪
x∈J

(B(x, rx) ∩ A)

is a ϐinite union of ϐinite sets, henceA is itself ϐinite.

But this contradicts the fact that A is inϐinite. Hence, A has at least one clus-
ter point x ∈ E. Such a cluster point is a limit point of (xn): consequently, there
is a subsequence of (xn) which converges to x ∈ E (in which case we say that E
satisϐies the Bolzano-Weierstrass property).

Conversely, assume all sequences in E have convergent subsequence in E.
First, note that any metric space (E, d) satisfying the Bolzano-Weierstrass property
is precompact. Indeed, suppose that ∃ε > 0 such that E can not be covered with a
ϐinite number of ε−balls. Let x0 ∈ E. By assumption, B(x0, ε) ̸= E. Thus ∃x1 ∈ E
such that d(x0, x1) ≥ ε.

Since B(x0, ε) ∪ B(x1, ε) ̸= E, ∃x2 ∈ E such that d(x0, x1), d(x0, x2) ≥ ε.
Continuing this process, we build a list x0, x1, . . . , xn for which d(xi, xj) ≥ ε for all
i < j ≤ n.

Since ∪n
i=0B(xi, ε) ̸= E, ∃xn+1 ∈ E such that d(xi, xn+1) ≥ ε for all 0 ≤ i ≤ n.

By induction, there is a sequence (xn) ⊆ E such that d(xi, xj) ≥ ε whenever
i ̸= j. Consequently, this sequence has no convergent subsequence, since no
subsequence is a Cauchy sequence. This contradicts the hypothesis that E satisϐies
the Bolzano-Weierstrass property, thus E is precompact.

Next, we show that if the metric space (E, d) satisϐies the Bolzano-Weierstrass
property and if {Ui}i∈I is an open cover of E, then

∃α > 0,∀x ∈ E, ∃i ∈ I =⇒ B(x, α) ⊆ Ui. (9.1)
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aaaaaa

Indeed, suppose that

∀α > 0,∃x ∈ E, ∀i ∈ I =⇒ B(x, α) ̸⊆ Ui. (9.2)

In particular,
∀n ∈ N×,∃xn ∈ E, ∀i ∈ I =⇒ B(x, 1

n
) ̸⊆ Ui.

Let (xφ(n)) be a convergent subsequence of (xn) (such a sequence exists since E
satisϐies the Bolzano-Weierstrass property).

Write xφ(n) → x. Since {Ui}i∈I covers E, ∃i ∈ I such that x ∈ Ui. But Ui ⊆O E, so
∃r > 0 such thatB(x, 2r) ⊆ Ui.

Accordingly, ∃N ∈ N such that d(xφ(n), x) < r and φ(n) > 1
r
for all n > N .

Consequently, ∀n > N and ∀y ∈ B(xφ(n), 1
φ(n)

), we have

d(x, y) ≤ d(x, xφ(n)) + d(xφ(n), y) < r + r = 2r.

Thus ∀n > N ,B(xφ(n), 1
φ(n)

) ⊆ Ui, which contradicts (9.2), and so (9.1) holds.

To show E is compact, let {Ui}i∈I be an open cover of E. We know from (9.1)
that

∃α > 0,∀x ∈ E, ∃i ∈ I =⇒ B(x, α) ⊆ Ui.

But E is precompact, so ∃x1, . . . , xn ∈ E such that E =
∪n

j=1B(xj, α).

Let i1, . . . , in be the indices for whichB(xj, α) ⊆ Uij , 1 ≤ j ≤ n. Then E =
∪n

j=1 Uij

is a ϐinite subcover of E; E is indeed compact. ■

The following result has a similar ϐlavour.

aaaaaa

Theorem 120
Let (E, d) be a metric space. Then E is compact if and only if any sequence in E has a
limit point if and only if every inϔinite subset of E has a cluster point.

Proof: left as an exercise. ■

It is usually easier to show that the Bolzano-Weierstrass is violated than to show that it holds.

aaaaaa

Example: Show that the set (0, 1) is not a compact subset of (R, d1).

Proof: Consider the sequence (1/n) ⊆ (0, 1). Every subsequence of (1/n)
converges to 0 ̸∈ (0, 1). According to Theorem 119, (0, 1) is not a compact subset of
(R, d1). ■
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Compact sets really have quite useful properties.

aaaaaa

Proposition 121
Let (E, d) be a metric space.

1. If E is compact and A ⊆C E, then A ⊆K E.

2. If A ⊆K E, then A ⊆C E andA is bounded.

Proof:

1. Since E is compact, it is precompact (see the proof of Theo-
rem 119) and so is A. The set E is also complete (see exercise 2). Thus
A is a closed subset of the complete set E: A is then complete (see Propo-
sition 110). But A is precompact and complete, and so A ⊆K E (see
exercise 3).

2. SinceA ⊆K E, it is precompact. Hence for ε > 0, ∃x1, . . . , xn ∈ A such that

A ⊆
n∪

j=1

B(xj, ε).

Thus, δ(A) ≤ nε <∞ and A is bounded.

To show that A ⊆C E, it sufϐices to show that any sequence in A which
converges does so inA, according to Proposition 105. So let (xn) ⊆ A be such
that xn → x ∈ E. ButA is compact, so that ∃ a convergent subsequence (xφ(n))
which converges in A. Since any subsequence of a sequence converging to x
also converges to x, xφ(n) → x ∈ A and soA ⊆C E. ■

Unlike completeness, compactness is a topological notion.

aaaaaa

Proposition 122
Let (E, d) and (F, δ) be metric spaces, together with a continuous function
f : (E, d)→ (F, δ). If A ⊆K E then f(A) ⊆K F .

Proof: let {Uλ}λ∈Λ be an open cover of f(A). Since f is continuous, we have
that A ∩ f−1(Uλ) ⊆O A for all λ ∈ Λ. Thus {A ∩ f−1(Uλ)}λ∈Λ is an open cover of A.
But A ⊆K E so that ∃ a ϐiniteH ⊆ Λ such that∪

λ∈H

(
A ∩ f−1(Uλ)

)
= A.

As such, {f(Uλ)}λ∈H is a ϐinite sub-cover of f(A), and so f(A) ⊆K F . ■
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There is also a link with homeomorphisms.

aaaaaa

Proposition 123
Let f : (E, d) → (F, δ) be a continuous bijection. If (E, d) is compact, then f is a
homeomorphism.

Proof: let Y ⊆C E. We need to show that f(Y ) ⊆C F . According to Propo-
sition 122, f(Y ) ⊆K F . But, according to Proposition 121, part 2, f(Y ) ⊆C F . So f
is closed, meaning that f inv is continuous. ■

Perhaps the most famous theorem linking continuous functions and compact spaces is the
result to which we were alluding to at the start of this section (we proved a restricted case in
Theorem 33).

aaaaaa

Proposition 124 (MĆĝ/MĎē TčĊĔėĊĒ (RĊĕėĎĘĊ))
Let f : (E, d) → R be continuous. If (E, d) is compact, then f is bounded and
∃a,b ∈ E such that f(a) = infx∈E f(x) and f(b) = supx∈E f(x).

Proof: since E is compact and f is continuous, then f(E) is compact accord-
ing to Proposition 122. As such, f(E) is both closed and bounded inR, according to
Proposition 121.

Now, set A = infx∈E f(x). By deϐinition, for each n ≥ 1, ∃an ∈ E such that
A ≤ f(an) < A+ 1

n
(otherwise infx∈E f(x) ≥ A+ 1

n
> A).

But (an) is a subsequence of the compact space E (hence a subsequence of a
closed space) so ∃ a subsequence (aφ(n))which converges to some a ∈ A according
to Proposition 105.

As f is continuous, f(aφ(n))→ f(a). But f(aφ(n))→ A, since

A ≤ f(aφ(n)) < A+
1

φ(n)
→ A.

The limit of a convergent sequence is unique in a metric space, so f(a) = A.

A similar argument shows ∃b ∈ E such that f(b) = supx∈E f(x). ■

The next result is often used as the deϐinition of a compact set, but it cannot be generalized
to inϐinite dimensional spaces (such as ℓ2(N) or other inϐinite dimensional Banach spaces).

aaaaaa Proposition 125 (HĊĎēĊ-BĔėĊđ)
Any closed bounded subset ofKn is compact in the usual topology.
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aaaaaa

Proof: since Cm ≃ R2m, we only need to verify that this is the case for Rn. Fur-
thermore, the proposition will be established if we can show it to be valid for any
A = [a1, b1]× · · · × [an, bn] ⊆C Rn (why is that the case?).

Since Rn is complete and A ⊆ Rn, then A is a complete subset of Rn, accord-
ing to Proposition 110. It will then be sufϐicient to show that A is precompact,
according to the proof of Theorem 119.

But that is obvious (see exercise 5). ■

9.2 Connected Spaces
Let f : A ⊆ R → R be a continuous function such that ∃a, b ∈ A with f(a)f(b) < 0. What
condition dowe need onA in order to guarantee the existence of a solution to f(x) = 0 onA?

WhetherA is compact or not is irrelevant: for instance, in the standard topology, the func-
tion f : A = [0, 1] ∪ [2, 3]→ R deϐined by

f(x) =

{
−1 x ∈ [0, 1]

1 x ∈ [2, 3]

is continuous over the compact set A, there are points a, b ∈ A such that f(a)f(b) < 0, yet
f(x) ̸= 0 for all x ∈ A. On the other hand, f : A = [−1, 1] → R deϐined by f(x) = x is such
that f(−1)f(1) < 0 and ∃x ∈ A such that f(x) = 0 (namely, x = 0).

The key notion is that of connectedness. Let (E, d) be a metric space. A partition of E
is a collection of two disjoint non-empty subsets U, V ⊆ E such that E = U ∪ V .¹ An open
partition of E is a partition where U, V ⊆O E; a closed partition of E is a partition where
U, V ⊆C E.

aaaaaa

Examples

1. There are many partitions of R in the usual topology, such as

(−∞, 0] ⊔ (0,∞) or [(−∞,−3] ∪ {0}] ⊔ [(−3, 0) ∪ (0,∞)],

but no such partition can be an open partition or a closed partition. □

2. Themetric spaceA = [0, 1]∪ [2, 3] is partitioned by [0, 1] and [2, 3]. This is both
an open partition and a closed partition in the usual subspace topology (note
that this is not the case in R, but we are only interested in the set A, not the
space in which it is embedded). □

3. The singleton set E = {∗} cannot be partitioned. □

¹We denote the disjoint union byE = U ⊔ V .
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The next result establishes an “easy” way to determine if a space has such partitions.

aaaaaa

Proposition 126
Let (E, d) be a metric space. The following conditions are equivalent:

1. E has no open partition;

2. E has no closed partition;

3. The only subsets of E that are both open and closed are∅ and E (such sets are
rather unfortunately known as clopen sets).

Proof: we show 1. =⇒ 2. =⇒ 3. =⇒ 1.

1. =⇒ 2.: Suppose that {F1, F2} forms a closed partition of E. Then
Fi = E \ Fi−1 ⊆O E for i = 1, 2. Hence {F1, F2} also forms an open parti-
tion of E, which contradicts the hypothesis that no such partition of E exists. Thus
E has no closed partition.

2. =⇒ 3.: Let A ⊆ E be such that A ⊆C E and A ⊆O E. Then {A,E \ A}
is a closed partition ofE. By hypothesis, there can be no such partition ofE. Hence
A = ∅ or E \ A = ∅.

3. =⇒ 1.: This is clear once one realizes that any open partition is automati-
cally also a closed partition. ■

Ametric space (E, d) is said tobe connected if it satisϐies anyof the conditions listed inPropo-
sition 126. Similarly, a subsetA ⊆ E is connected if its only clopen partition is trivial, that is:
whenever A = X ⊔ Y ,X,Y ⊆O E, eitherX = ∅ or Y = ∅. We will denote such a situation
with A ⊆© E (this is emphatically not a notation you will ϐind anywhere else).

aaaaaa

Examples

1. In the usual topology, R is connected. □

2. In the same topology, A = [0, 1] ∪ [2, 3] is not a connected subspace of R. □

3. The singleton set E = {∗} is vacuously connected. □

4. IsA = { 1
n
| n ∈ N} a connected subset of R in the usual topology?

Solution: since A = {1} ⊔ { 1
n
| n ≥ 2} is a non-trivial open partition

ofA,A is not a connected subset ofR in the usual topology. Indeed, {1} ⊆O A
since {1} = (1

2
,∞) ∩ A, { 1

n
| n ≥ 2} ⊆O A since { 1

n
| n ≥ 2} = (0, 1) ∩ A. □
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As was the case with compactness, connectedness is a topological notion.

aaaaaa

Proposition 127
Let f : (E, d)→ (F, δ) be continuous. If A ⊆© E, then f(A) ⊆© F .

Proof: LetB ⊆O,C f(A). We will show thatB = ∅ orB = f(A).

Since B ⊆O f(A), then ∃U ⊆O F such that B = f(A) ∩ U . Similarly, since
B ⊆C f(A), then ∃W ⊆C F such that B = f(A) ∩ W . But f is continuous so
f−1(U) ⊆O E and f−1(W ) ⊆C E. Therefore,

f−1(B) = A ∩ f−1(U) ⊆O A and f−1(B) = A ∩ f−1(W ) ⊆C A.

Thus f−1(B) ⊆O,C A. However A is a connected subset of E, so either f−1(B) = ∅
or f−1(B) = A. Since B ⊆ f(A), that leaves only two possibilities: B = ∅ or
B = f(A), which means f(A) ⊆© B. ■

9.2.1 Characterization of Connected Spaces
We now give a simple necessary and sufϐicient condition for connectedness. Throughout, we
endow the set {0, 1}with the discrete metric.

aaaaaa

Proposition 128
A metric space (E, d) is connected if and only if every continuous function
f : E → {0, 1} is constant.

Proof: assume (E, d) is connected. If f : E → {0, 1} is continuous and not
constant, then f−1(0), f−1(1) ⊆O,C E and E = f−1(0) ⊔ f−1(1).

Since f is not constant, neither f−1(0) nor f−1(1) is ∅ or all of E. Hence E is
not connected, as it contains non-trivial clopens, which contradicts our starting
assumption. Thus f is constant.

Conversely, if E is not connected, ∃ non-trivial clopensX,Y such that E = X ⊔ Y .
Consider the characteristic function χX : E → {0, 1}: we have f−1(0) = Y ⊆O E
and f−1(1) = X ⊆O E. Consequently, f is continuous and clearly not constant. ■

In practice, Proposition 128 is typically easier to use to show that a space is not connected.

aaaaaa
Proposition 129
Let (E, d) be a metric space and A ⊆© E. If B ⊆ E is such that A ⊆ B ⊆ A, then
B ⊆© E.
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aaaaaa

Proof: if such aB is not connected, then ∃ a non-trivial open partition {X,Y } ofB.
In particular, {A ∩X,A ∩ Y } is an open (in A) partition of A. But A is dense in B:
if x ∈ B, every neighbourhood around x contains at least a point of A.

In particular, if x ∈ B ∩ X , then any neighbourhood around x must contain
at least a point of A ∩X . Consequently,A ∩X ̸= ∅. Similarly, A ∩ Y ̸= ∅.

Thus, {A ∩ X,A ∩ Y } is a non-trivial open partition of A, which contradicts
the fact that A is connected. SoB must be connected. ■

There is a series of other useful propositions about connected spaces.

aaaaaa

Proposition 130
If (Bi)i∈I is a family of connected subsets of a metric space (E, d) such that∩

i∈I Bi ̸= ∅, thenB =
∪

i∈I Bi ⊆© E.

Proof: if {X,Y } is a non-trivial open partition of B and if b ∈
∩

i∈I Bi, we
may assume b ∈ X without loss of generality. But B =

∪
i∈I = X ⊔ Y and Y ̸= ∅;

hence ∃i0 ∈ I such that Y ∩Bi0 ̸= ∅.

Since b ∈
∩

i∈I Bi, then b ∈ X ∩ Bi0 ̸= ∅ and so {X ∩ Bi0 , Y ∩ Bi0} is a
non-trivial open partition of Bi0 , which contradicts the hypothesis that Bi0 ⊆© E.
Consequently,B ⊆© E. ■

aaaaaa

Proposition 131
If (Cn)n∈N is a sequence of connected subsets of a metric space (E, d) such that
Cn−1 ∩ Cn ̸= ∅, then C =

∪
n∈NCn ⊆© E.

Proof: left as an exercise. ■

aaaaaa

Proposition 132
Let (E1, d1), . . . , (En, dn) be metric spaces. Then

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is connected if and only if (Ei, di) is connected for all i.

Proof: left as an exercise. ■

Let (E, d) be a metric space once more. We deϐine an equivalence relation on E as follows:

xRy⇐⇒ ∃C ⊆© E such that x, y ∈ C. (9.3)
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The equivalence class
[x] = {y ∈ E | yRx} =

∪
C⊆©E

x∈C

C

is a connected subset ofE, which we call the connected component of x. It is not difϐicult to
show that [x] ⊆C E and that if a metric space only has a ϐinite number of connected compo-
nents, then each of those components is a clopen subset of E (see exercises 10 and 11).

aaaaaa

Proposition 133
Consider R with the usual topology. Then, A ⊆© R if and only if A is an interval.

Proof: let A ⊆© R. If A is not an interval, ∃a, b ∈ A for which ∃c ∈ (a, b)
with c ̸∈ A. Thus, A ⊆ (−∞, c) ∪ (c,∞).

Hence {A ∩ (−∞, c), A ∩ (c,∞)} is a non-trivial open partition of A, which
implies that A is not a connected subset of R, a contradiction as A ⊆© E, and so A
is an interval.

Conversely, if A = {∗}, we have already shown that A ⊆© R. According to
Proposition 129, it is sufϐicient to verify thatA = (a, b) ⊆© R for any a < b. We will
show that any continuous map f : (a, b)→ {0, 1} is constant.

Suppose otherwise that ∃x, y ∈ (a, b) such that x < y and f(x) ̸= f(y). Without
loss of generality, let f(x) = 0 and f(y) = 1. Set

Γ = {z | z ≥ x and f(t) = 0 ∀t ∈ [x, z]}.

Clearly, Γ ̸= ∅ since x ∈ Γ. Furthermore Γ is bounded above by y. Thus, since R is
complete, ∃c ∈ [x, y] ⊆ (a, b) such that c = supΓ.

By continuity of f at c, f(c) = 0 and ∃δ > 0 such that

s ∈ (c− δ, c+ δ) =⇒ |f(s)| = |f(s)− f(c)| < 1
2
.

As such, f(s) < 1
2
for all s ∈ (c − δ, c + δ). But f can only take two values: 0 or 1.

Consequently, f(s) = 0 for all s ∈ (c− δ, c+ δ).

This in turn implies that c + δ
2
∈ Γ, which contradicts the fact that c = supΓ.

Thus, f is constant, and (a, b) ⊆© R. ■

We can now give a proof of the remark made after Theorem 36.
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aaaaaa

Corollary 134 (BĔđğĆēĔ'Ę TčĊĔėĊĒ)
Consider R with the usual topology and a continuous function f : R→ R. The image
of any interval by f is an interval.

Proof: let A ⊆© R. By the preceding proposition, A is an interval. Since f is
continuous, f(A) ⊆© R. But the only connected subsets of R are the intervals.
Consequently, f(A) is an interval. ■

9.2.2 Path-Connected Spaces
We can also deϐine other types of connectedness.

Let (E, d) be a metric space. We say that E is path-connected if for any two points x, y ∈ E,
there is a continuous function γ : [0, 1] → E such that γ(0) = x and γ(1) = y. The segment
between x and y is

[x, y] = {tx+ (1− t)y | t ∈ [0, 1]}.
The continuous function associated to this segment is the function

fx,y : [0, 1]→ E, deϐined by fx,y(t) = tx+ (1− t)y.

If [x, y] and [z,w] are two segments, deϐine their sum (concatenation) to be

[x, y] + [z,w] = {2tx+ (1− 2t)y | t ∈ [0, 1
2
]} ∪ {(2t− 1)z+ (2− 2t)w | t ∈ [1

2
, 1]}.

If y = z, the continuous function associated to this sum is the function

gx,y,w : [0, 1]→ E, deϐined by gx,y,w(t) =

{
2tx+ (1− 2t)y if t ∈ [0, 1

2
]

(2t− 1)y+ (2− 2t)w if t ∈ [1
2
, 1]

aaaaaa

Examples

1. Show thatB(0, 1) is path-connected in (R2, d2).

Proof: Let a ̸= b ∈ B(0, 1). Then [a,0], [0,b] ⊆ B(0, 1). Indeed, if
x ∈ [a,0], then x = ta for t ∈ [0, 1]. But ∥x∥ = |t|∥a∥ ≤ ∥a∥ < 1, so
that x ∈ B(0, 1). Then ga,0,b ∈ CB(0,1)([0, 1]) is such that ga,0,b(0) = a and
ga,0,b(1) = b. ■

2. In any normed vector space (E, ∥ · ∥) over K, any open ball B(x, ρ) is path-
connected (see exercise 13). □

There is clearly a link between the two connectedness deϐinitions.

aaaaaa Proposition 135
If (E, d) is path-connected, then it is also connected.
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aaaaaa

Proof: let f : E → {0, 1} be a continuous function and a,b ∈ E. Since E is
path-connected, ∃ a continuous path γ : [0, 1]→ R such that γ(0) = a and γ(1) = b.

Since the composition f ◦ γ : [0, 1] → {0, 1} is continuous and since [0, 1] ⊆© R,
then f ◦ γ is constant: in particular,

f(a) = f(γ(0)) = f(γ(1)) = f(b),

so that f itself is constant. Consequently, E is connected. ■

If E = (Kn, dEuclidean), the converse is also true.

aaaaaa
Proposition 136
If A ⊆© Kn in the usual topology, then A is path-connected.

Proof: left as an exercise. ■

But connected spaces are not path-connected, in general (see exercise 22, for instance). The
following result will allow us to segue gently into Chapter 10.

aaaaaa

Theorem 137
Let (E, ∥ · ∥) be a normed vector space overK. Then anyA ⊆O,© E is path-connected.

Proof: Let x0 ∈ A and set

Fx0 = {x ∈ A | ∃γ ∈ CE([0, 1]) such that γ(0) = x0, γ(1) = x}.

We need to show that Fx0 = A. In order to do so, note that Fx0 ̸= ∅ as x0 ∈ Fx0 . If
we can show that Fx0 ⊆O,C A, then we are done asA ⊆© E.

Let x ∈ Fx0 ⊆ A. Since A ⊆O E, ∃ρ > 0 such that B(x, ρ) ⊆ A. For any
y ∈ B(x, ρ), [y, x] ∈ B(x, ρ) (modify the proof of exercise 13). Since x0 ∈ Fx0 ,
B(x, ρ) ⊆ Fx0 . Consequently, Fx0 ⊆O A.

If x ∈ Fx0 ∩ A, then for any ρ > 0 we have B(x, ρ) ∩ Fx0 ̸= ∅. Since A ⊆O E,
∃ρ0 > 0 such that B(x, ρ0) ⊆ A; in particular ∅ ̸= B(x, ρ0) ∩ Fx0 ⊆ A. Now,
let y ∈ B(x, ρ0) ∩ Fx0 . Since [y, x] ⊆ B(x, ρ0), there is a continuous path in
A from y to x. Since y ∈ Fx0 , there is a continuous path in A from x0 to y.
Combining these paths, there is a continuous path in A from x0 to x. Hence,
x ∈ Fx0 . Consequently, Fx0 ⊆C A.

This concludes the proof. ■
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Finally, we note that path-connectedness is a topological notion.

aaaaaa Proposition 138 Let f : (E, d) → (F, δ) be a continuous map. If E is path-
connected, then f(E) is path-connected. Proof: left as an exercise. ■

9.3 Solved Problems
1. Let (E, d) be a metric space.

a) IfW1,W2 ⊆K E, show that ∃xi ∈ Wi such that d(x1, x2) = d(W1,W2).
b) IfW ⊆K E and F ⊆C E are such thatW ⊆ F = ∅, show that d(W,F ) ̸= 0. Is the

conclusion still valid whenW ⊆C E is not necessarily compact?

Proof:

a) The mapping φ : K1 → R deϐined by φ(x) = d(x,K2) is continuous. SinceK1

is compact, the Max/Min Theorem applies: ∃x1 ∈ K1 such that

φ(x1) = d(x1,K2) = inf
x∈K1

{d(x,K2)} = d(K1,K2).

Similarly, the mapping η : K2 → R deϐined by η(y) = d(x1, y) is continuous on
a compact set: as such, ∃x2 ∈ K2 such that

η(x2) = d(x1, x2) = inf
y∈K2

{d(x1,K2)} = d(K1,K2).

b) Themapping θ : K → Rdeϐinedby θ(x) = d(x, F ) is continuouson the compact
K so that ∃x0 ∈ K such that

θ(x0) = d(x0, F ) = inf
x∈K
{d(x, F )} = d(K,F ).

If d(x0, F ) = 0 then x0 ∈ F since F is closed. But that is impossible asK ∩F =
∅ and so d(x0, F ) ̸= 0.

If K is only assumed closed, the conclusion may not hold. For instance in R2,
the sets K = {(x, y) | y ≤ 0} and F = {(x, y) | y ≥ ex} are closed and
disjoints, yet d(K,F ) = 0. ■

2. Let (E, d) = (Rn, d2).

a) If F ⊆C E is unbounded and f : F → R is a continuous map such that

lim
∥x∥→∞

f(x) = +∞, x ∈ F,

show ∃x ∈ F such that f(x) = infy∈F f(y).
b) IfW ⊆K E and F ⊆C E, show ∃x ∈ W, y ∈ F such that d(x, y) = d(W,F ). Is the

conclusion still valid when E is an inϐinite-dimensional vector space over R?
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Proof:

a) Fix a ∈ F and consider the set Γ = {x ∈ F | f(x) ≤ f(a)}. Since f is continu-
ous, Γ = f−1((−∞, f(a)]) ⊆C F and so Γ ⊆C E. It is also bounded since

lim
∥x∥→∞

f(x) = +∞, x ∈ F.

Thus Γ ⊆K Rn by the Heine-Borel Theorem. Furthermore, Γ ̸= ∅ since a ∈ Γ.
According to the Max/Min Theorem, ∃x ∈ Γ such that f(x) = infy∈Γ{f(y)}. By
construction,

inf
y∈Γ
{f(y)} = inf

y∈F
{f(y)},

whence f(x) = infy∈F {f(y)} for some x ∈ F .
b) Since the mapping φ : K → R deϐined by φ(x) = d(x, F ) is continuous, ∃x ∈ K

such that
d(x, F ) = inf

y∈K
{d(y, F )} = d(K,F ).

Note that the mapping ψx : F → R deϐined by ψx(y) = d(x, y) is also continu-
ous. If F is bounded, then F ⊆K Rn and the desired result is derived from the
result in (a).

Otherwise, if F is unbounded we have

lim
∥y∥→∞

ψx(y) =∞, y ∈ F

so that ∃y ∈ F such that

ψx(y) = inf
z∈F
{ψx(z)} = d(x, F ) = d(K,F ),

which proves the desired result.

The result is false in general if E is inϐinite-dimensional: consider for instance
thevector spaceof bounded sequences inR, with thenorm∥(un)∥ = supn∈N{|un|}.

For any n ∈ N, let Xn be the sequence where the nth term is 1 + 2−n and all
the other terms are 0. The set F = {Xn | n ∈ N} is closed in E since all
its points are isolated points. If K = {0}, it is obvious that d(K,F ) = 1, yet
d(K,Xn) = 1 + 2−n > 1 for all n ∈ N. ■

3. Let (E, d) be a compact metric space with a map f : E → E such that ∀x ̸= y ∈ E,
d(f(x), f(y)) < d(x, y).

a) Show that f admits a unique ϐixed point α ∈ E.
b) Let x0 ∈ E. For each n ∈ N, set xn+1 = f(xn). Show that xn → α.
c) Are these results still valid if E is complete but not compact?
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Proof:
a) First note that, being Lipschitz, f is continuous. Then, the mapping φf : E →
R deϐined by φf (x) = d(x, f(x)) is continuous as it is a composition of con-
tinuous functions. But E is compact so that ∃α ∈ E such that d(α, f(α)) =
infx∈E{d(x, f(x))}. If α ̸= f(α) = β, then

d(β, f(β)) = d(f(α), f(β)) < d(α, β) = d(α, f(α))

by hypothesis, which contradicts the deϐinition of α. Thus α = f(α).

Now, suppose β = f(β)with β ̸= α. Then we have

d(f(α), f(β)) = d(α, β),

which contradicts the hypothesis. Thus α = β.
b) Write un = d(α, xn). If ∃n0 ∈ N such that un0 = 0, then un = un0 = 0 for all

n ≥ n0 and the result follows. Otherwise, for all n ∈ Nwe have

un+1 = d(f(α), f(xn)) < d(α, xn) = un,

i.e. (un) is a strictly decreasing sequence. As it is bounded below by 0, it is nec-
essarily convergent. Let un → ℓ ≥ 0. We need to show ℓ = 0.

Assume that ℓ > 0. Since (un) is decreasing, un ≥ ℓ for all n. Since (xn) is a
sequence in the compact setE, there is a convergent subsequence (xφ(n)), with
φ : N→ N strictly increasing. Let β = lim xφ(n). Then

ℓ = lim
n→∞

d(α, xφ(n)) = d(α, β).

Since f is continuous, we have

lim
n→∞

d(α, f(xφ(n))) = d(α, f(β)).

But that is impossible since

d(α, f(β)) = d(f(α), f(β)) < d(α, β) = ℓ

and
d(α, f(xφ(n))) = d(α, xφ(n)+1) ≥ ℓ ∀n.

The only remaining possibility is thus that ℓ = 0.
c) Completeness of E is not sufϐicient. For instance, the function f : R → R de-

ϐined by

f(x) =

{
1 if x < 0

x+ 1
1+x if x ≥ 0

satisϐies the hypothesis, but it admits no ϐixed point. ■

4. Let (E, d) and (F, δ) be two metric spaces, together with a injective map f : E → F .
Show that f is continuous if and only if f(W ) ⊆K F for allW ⊆K E.
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Proof: we already know that if f is continuous andW ⊆K E, then f(W ) ⊆K F .

Now assume that f(W ) ⊆K F for all W ⊆K E. Let x ∈ E and (xn) ⊆ E be such
that xn → x. The set V = {xn | n ∈ N} ∪ {x} is compact in E, according to the
Borel-Lebesgue property. Thus, we have V ′ = f(V ) ⊆K F .

Let g : V → F be such that g = f |V . Since f is injective, g is a bijection from V
to V ′. The map g−1 : V ′ → V is continuous since any closed subset W ⊆C V is
automatically compact in V .

As such (g−1)−1(W ) = g(W ) ⊆K V ′ is automatically closed in V ′. Since V ′ is com-
pact, (g−1)−1 = g is continuous. Thus

f(xn) = g(xn)→ g(x) = f(x) =⇒ f is continuous.

ote that if f is not injective, the result does not hold in general. For instance, the
Heaviside function f : R → R deϐined by f(x) = 0 if x < 0 and f(x) = 1 if x ≥ 0
sends any compact set to a compact set, but it is not continuous. ■

5. Let (E, d) be a metric space. If ε > 0, we say that E is ε−chained if for all a,b ∈ E,
∃n ∈ N× and x0, . . . , xn ∈ E such that x0 = a, xn = b and d(xi, xi−1) < ε for all
i = 1, . . . , n. We say that E iswell-chained if it is ε−chained for all ε > 0.

a) If E is connected, show that E is well-chained.
b) If E is compact and well-chained, show that E is connected. Is the result still true

if E is not necessarily compact?

Proof:

a) Let ε > 0. We deϐine an equivalence relationRε on E according to the follow-
ing: xRεy if and only if ∃n ∈ N× and x0, . . . , xn ∈ E such that x0 = x, xn = y
and d(xi, xi−1) < ε for all i = 1, . . . , n.

Let x ∈ E and y ∈ [x]. Then, for all z ∈ B(y, ε) we have z ∈ [y] = [x]. Thus
B(y, ε) ⊆ [x] and so [x] ⊆O E.

Since
[x] = E \

∪
y̸∈[x]

[y]

is the complement of an open set, [x] ⊆C E. Consequently, [x] is a clopen subset
of E. But E is connected; we must then have [x] = E since [x] ̸= ∅. Hence,
every pair of point of E can be joined by an ε− chain. As ε is arbitrary, E is
well-chained.

b) Suppose that E is not connected. Then we can write E = F1 ⊔ F2, where ∅ ̸=
F1, F2 ⊆C E. Since E is compact, F1, F2 ⊆K E.It is left as an exercise to show
that ∃a1 ∈ F1 and a2 ∈ F2 such that d(a1, a2) = d(F1, F2).
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Since F1 ∩ F2 ̸= ∅, a1 ̸= a2 and so ε = d(a1, a2) > 0; as such, d(x, y) ≥ ε for all
(x, y) ∈ F1 × F2.

Let (x, y) be such a point. Since E is well-chained, ∃ an ε−chain (x0, . . . , xn) ∈
En+1 such that

x0 = x, xn = y and d(xi, xi−1) < ε for all i = 1, . . . , n.

Since x0 ∈ F1 and xn ∈ F2, ∃i such that xi−1 ∈ F1 and xi ∈ F2.

But this would imply that ε > d(xi−1, xi) ≥ d(F1, F2) = ε, which is a con-
tradiction. Consequently,E is connected.

If E is not compact, the result is not valid in general: Q is well-chained when
endowed with the usual metric because it is dense inR, but it is not connected.
■

6. Let (E, d) be a metric space, with two disjoint setsA,B ⊆C E. Show that there exists a
continuous function f : E → [0, 1] such that A = f−1({0}) and B = f−1({1}), as well
as two disjoint sets U, V ⊆O E such that A ⊆ U andB ⊆ V .

Proof: Let F ⊆C E. Deϐine gF : (E, d)→ (R, | · |) by

gF (x) = d(x, F ) = inf
y∈F
{d(x, y)}

According to the Triangle Inequality, for all y ∈ F we have

gF (x) = d(x, F ) ≤ d(x, y) ≤ d(x, z) + d(z, y) ∀x, z ∈ E,

thus we must have gF (x) ≤ d(x, z) + gF (z) for all x, z ∈ E, that is, gF (x)− gF (z) ≤
d(x, z) for all x, z ∈ E. In a similar fashion, gF (z) − gF (x) ≤ d(x, z) for all x, z ∈ E.
Thus,

|gF (x)− gF (z)| ≤ d(x, z) for all x, z ∈ E,
i.e. gF is Lipschitz (and so continuous).

Since F ⊆C E, gF (x) = 0 if and only if x ∈ F . Let f : (E, d) → (R, | · |) be de-
ϐined by

f(x) =
gA(x)

gA(x) + gB(x)
=

d(x, A)
d(x, A) + d(x, B)

;

it is well-deϐined since whenever d(x, A) + d(x, B) = 0, we must have d(x, A) =
d(x, B) = 0, i.e. x ∈ A and x ∈ B. But A ∩ B = ∅ and so for all x ∈ E, we have
d(x, A) + d(x, B) ̸= 0.

Furthermore, f(x) = 0 if and only if d(x, A) = 0, i.e. x ∈ A; f(x) = 1 if and only
if d(x, B) = 0, i.e. x ∈ B.

The function f is continuous since it is the composition of continuous functions. It
is clear that 0 ≤ f(x) ≤ 1, so that f : E → [0, 1].
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Finally, let

A ⊆ U = f−1([0, 1/2)) ⊆O [0, 1] and B ⊆ V = f−1((1/2, 1]) ⊆O [0, 1].

Then U ∩ V = ∅ by construction and we are done. ■

9.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Show that any compact metric space is precompact and complete.

3. Show that any complete precompact metric space is compact.

4. Prove Theorem 120.

5. With the usual metric, show that A ⊆ Rn is precompact if and only ifA ⊆K Rn.

6. Prove Proposition 131.

7. Prove Proposition 132.

8. Let (E1, d1), . . . , (En, dn) be metric spaces. Show that

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is compact if and only if (Ei, di) is compact for all i = 1, . . . , n.²

9. Show that (9.3) deϐines an equivalence relation on a metric space (E, d).

10. Let (E, d) be a metric space and let x ∈ E. Show that [x] ⊆C E.

11. Let (E, d) be a metric space with ϐinitely many connected components. Show that each
of those components is a clopen subset of E.

12. Prove Proposition 136.

13. Show that if (E, ∥ · ∥) is a normed vector space over K, then any open ball B(x, ρ) is
path-connected.

14. Let (E, d) be a metric space,B ⊆© E and A ⊆ E such that

B ∩ int(A) ̸= ∅ and B ∩ int(E \ A) ̸= ∅.

Show thatB ∩ ∂A ̸= ∅.
²This result cannot be generalized to inϐinite products (Tychonoff’s Theorem) without calling upon the

Axiom of Choice, a.k.a Zorn’s Lemma, a.k.a. the Existence of Non-Measurable Sets, a.k.a. the Banach-Tarksi
Paradox.
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15. Let (A, d1) and (B, d2) be two metric spaces. LetX ⊊ A and Y ⊊ B. Show that

(A×B) \ (X × Y ) ⊆© A×B.

16. Prove Proposition 9.2.2.

17. In the usual topology, give an example of a subset A ⊆© R2 for which int(A) is not
connected.

18. In the usual topology, give an example of a subset A ⊆ R2 for which A ⊆© R2 but A is
not connected.

19. Show that if the connected components of a compact set are open, then there are ϐinitely
many of them.

20. Let (E, d) and (F, δ) be metric spaces, together with a continuous map f : E → F such
that f−1(W ) ⊆K E for allW ⊆K F . Show that f is a closed map.

21. Let (E, d) be a connected metric space and let F ⊆C E, with ∂F ⊆© E. Show that
F ⊆© E. Is the result still true if F is not necessarily closed?

22. Let Γ =
[∪

x∈Q({x} × (0,∞))
]
∪
[∪

x∈R\Q({x} × (−∞, 0))
]
⊆ R2.

a) Show that Γ ⊆© R2.
b) Show that Γ is not path-connected.
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Normed Vector Spaces

The main objective of this chapter is to show that linear transformations
of ϐinite-dimensional normed vector spaces overK are continuous.

Normswere introduced in chapter 8; we provided a family of examples, the p−norms onKn.
Let p ≥ 1 andA ∈Mm,n(K), the setMm,n(K) of matrices of sizem× nwith entries inK. The
induced p−norm onMm,n(K) is given by

∥A∥p = sup
∥x∥p≤1

{∥Ax∥p} .

It is easy to show that:

∥A∥∞ = max
1≤i≤m

{ n∑
j=1

|aij|
}
, ∥A∥1 = max

1≤j≤n

{ m∑
i=1

|aij|
}
, ∥A∥2 = largest singular value of A.

Anormed vector space (E, ∥·∥E) is a vector space (E,+, ·,0E) overK endowedwith a norm
∥ · ∥E; with matrix addition and multiplication by a scalar, the set Mm,n(K) is such a space
for any of the induced p−norms. A normed vector space’s operations behave as well as they
could be hoped to, under the circumstances.

aaaaaa

Proposition 139
LetE be a normed vector space overK. The maps+ : E×E → E and · : K×E → E
are continuous.

Proof: left as an exercise. ■

Inwhat follows, let (E, ∥·∥E) and (F, ∥·∥F )benormedvector spaces overK. AmapT : E → F
is linear if

T (0E) = 0F and T (ax+ by) = aT (x) + bT (y), ∀a, b ∈ K, x, y ∈ E.

The set of all linear maps from E to F is denoted by L(E,F ). For instance, if E = Kn and
F = Km, then L(E,F ) ≃Mm,n(K).

259



aaaaaa

Theorem 140
Let (E, ∥ ·∥E) and (F, ∥ ·∥F ) be two normed vector spaces overK and let f ∈ L(E,F ).
The following conditions are equivalent:

1. f is continuous over E

2. f is continuous at 0 ∈ E

3. f is bounded overB(0, 1)

4. f is bounded over S(0, 1)

5. ∃M > 0 such that ∥f(x)∥F ≤M∥x∥E for all x ∈ E.

6. f is Lipschitz continuous

7. f is uniformly continuous

Proof: the implications 1. =⇒ 2., 3. =⇒ 4., 5. =⇒ 6. =⇒ 7. =⇒ 1. are clear.

2. =⇒ 3.: Let ε = 1. By continuity at 0, ∃δ > 0 such that

∥f(x)− f(0)∥F = ∥f(x)∥F ≤ 1

whenever ∥x− 0∥E = ∥x∥E ≤ δ. Now, let y ∈ B(0, 1). Since f is linear, we have

∥f(y)∥F = ∥f(1
δ
δy)∥F = 1

δ
∥f(δy)∥F .

Since ∥δy∥E ≤ δ∥y∥E ≤ δ. Consequently, ∥f(δy)∥F ≤ 1 and

∥f(y)∥F = 1
δ
∥f(δy)∥F ≤ 1

δ
.

But y ∈ B(0, 1) is arbitrary, so that f is bounded by 1
δ
overB(0, 1).

4. =⇒ 5.: Since f is bounded over S(0, 1), ∃N > 0 such that ∥f(x)∥F ≤ N
whenever ∥x∥E = 1. Suppose y ̸= 0E ∈ E. Then, since f is linear we have

∥f(y)∥F =
∥∥∥f (∥y∥E y

∥y∥E

)∥∥∥
F
= ∥y∥E

∥∥∥f ( y
∥y∥E

)∥∥∥
F
. (10.1)

However,
∥∥∥ y
∥y∥E

∥∥∥
E
= 1 so that

∥∥∥f ( y
∥y∥E

)∥∥∥
F
≤ N .

Substituting this last result in (10.1), we get that ∥f(y)∥F ≤ N∥y∥E for all
0 ̸= y ∈ E. When y = 0, the inequality remains valid since f(0E) = 0F and
0 = ∥0F∥F ≤ N∥0E∥E = 0. This completes the proof. ■
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If f ∈ L(E,F ) is also continuous (that is, if f ∈ Lc(E,F )), it then makes sense to deϐine
∥f∥ = sup

∥x∥E=1

{∥f(x)∥F} = sup
∥x∥E≤1

{∥f(x)∥F} .

With this deϐinition, (Lc(E,F ), ∥ · ∥) is a normed vector space. Furthermore, if f ∈ Lc(E,F )
and g ∈ Lc(F,G) then g ◦ f ∈ Lc(E,G) and we have

∥(g ◦ f)(x)∥ = ∥g(f(x))∥ ≤ ∥g∥∥f(x)∥ ≤ ∥g∥∥f∥∥x∥ ≤M∥x∥
for some M > 0 and for all x ∈ E. In particular, ∥f ◦ g∥ ≤ ∥f∥∥g∥. The composition thus
deϐines a kind of multiplication on Lc(E,E); together with this multiplication, Lc(E,E) is a
normed algebra.

aaaaaa

Theorem 141
If F is a Banach space overK, then so is Lc(E,F ).

Proof: let (fn)n∈N be a Cauchy sequence in Lc(E,F ). For all x ∈ E, (fn(x))n∈N is a
sequence in F . Fix such an x. Thus, for all p, q ∈ N,

∥fp(x)− fq(x)∥F = ∥(fp − fq)(x)∥F ≤ ∥fp − fq∥∥x∥E.

Let ε > 0. Since (fn) is a Cauchy sequence in Lc(E,F ), ∃M ∈ N such that
∥fp−fq∥F ≤ εwhenever p, q > M . As a result, ∥fp(x)−fq(x)∥F < ε∥x∥E whenever
p, q > M , so that (fn(x))n∈N is a Cauchy sequence in F .

But F is complete so that fn(x) → f(x) ∈ F for all x ∈ E, which deϐines a
map f : E → F . It remains only to show that f ∈ Lc(E,F ) and that fn → f in
(Lc(E,F ), ∥ · ∥). The map f is linear as

f(ax+ by) = lim
n→∞

fn(ax+ by) = lim
n→∞

[afn(x) + bfn(y)] = af(x) + bf(y)

for all x, y ∈ E, a, b ∈ K. Furthermore, f is continuous since, as the Cauchy
sequence (fn) is necessarily bounded, ∃N > 0 such that ∥fn∥ ≤ N . Fix x ∈ E to get
∥fn(x)∥F ≤ N∥x∥E for all n. As n→∞, we see that ∥f(x)∥F ≤ N∥x∥E .

Finally, we need to show that fn → f in Lc(E,F ). Let ε > 0. Since (fn) is a
Cauchy sequence in Lc(E,F ), ∃K > 0 such that ∥fp − fq∥ < ε whenever p, q > K .
Now, ϐix x ∈ E. Then,

∥fp(x)− fq(x)∥F ≤ ∥fp − fq∥∥x∥E < ε∥x∥E

whenever p, q > N . If we ϐix p and let q →∞, then we have

∥fp(x)− f(x)∥F < ε∥x∥E

whenever p > N . Since this holds for all x ∈ E, we have ∥fp − f∥ ≤ ε for all p > N ,
i.e. fn → f in Lc(E,F ). ■
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We have seen that the metrics dp are equivalent inKn, for p ≥ 1. Can the same be said about
the norms? In fact, we can say evenmore: not only are the p−norms equivalent, but all norms
onKn are equivalent.

aaaaaa

Proposition 142
Let E be a ϔinite dimensional vector space overK. All norms on E are equivalent.

Proof: suppose dimK(E) = n < ∞. If {e1, . . . , en} is a basis of E, any x ∈ E can
be written uniquely as a linear combination x =

∑n
i=1 xiei. It is easy to see that the

functionN0 : E → R, where

N0(x) = ∥φ(x)∥∞ = ∥(x1, . . . , xn)∥∞ = sup{|xi| | i = 1, . . . , n},

deϐines a norm on E. LetN : E → R be any norm on E and set a =
∑n

i=1N(ei). If
x ∈ E, we have:

N(x) = N

(
n∑

i=1

xiei

)
≤

n∑
i=1

N(xiei) ≤
n∑

i=1

|xi|N(ei) ≤ sup
i=1,...,n

{|xi|}
n∑

i=1

N(ei) = N0(x) · a

so thatN(x) ≤ aN0(x) for all x ∈ E.

But the map φ : (E,N0) → (Kn, ∥ · ∥∞) is an isometry since N0(x) = ∥x∥∞
for all x ∈ E, which means that it must be continuous (why?). Since

S̃ = {(x1, . . . , xn) ∈ Kn | ∥(x1, . . . , xn)∥∞ = 1} ⊆K Kn,

then S = φ−1(S̃) = {x ∈ E|N0(x) = 1} ⊆K E; the norm N : (E,N0) → (R, | · |)
is also a continuous function – according to the max/min theorem, ∃x∗ ∈ S such
that N(x∗) = infx∈S{N(x)}. Clearly, N(x∗) ̸= 0; otherwise we have x∗ = 0, which
contradicts the fact that x ∈ S asN0(x∗) = N0(0) = 0 ̸= 1. Hence infx∈S{N(x)} > 0.

Write infx∈S{N(x)} = 1/b for the appropriate b > 0. If x = 0 ∈ E, then

N(x) = N(0) = 0 ≥ 0 =
1

b
N0(0) =

1

b
N0(x).

If x ̸= 0 ∈ E, then x
N0(x) ∈ S and

N(x) = N

(
N0(x)

x
N0(x)

)
= N0(x)N

(
x

N0(x)

)
≥ N0(x) ·

1

b
.

In both cases,N0(x) ≤ bN(x) for all x ∈ E, and so any normN onE is equivalent to
the normN0. By transitivity, any such norms are then equivalent to one another. ■

In general, this result is not valid if E is inϐinite-dimensional.
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Corollary 143
Let E be a ϔinite-dimensional vector space over K and let (F, ∥ · ∥F ) be any normed
vector space overK. If f : E → F is a linear mapping, then f is continuous.

Proof: Let {e1, . . . , en} be a basis of E. For any x ∈ E, we have

∥f(x)∥F = ∥f (
∑
xiei)∥F = ∥

∑
xif(ei)∥F

≤
∑
|xi|∥f(ei)∥F ≤ N0(x) ·

∑
∥f(ei)∥F := aN0(x).

Then for any ε > 0, ∃δ = ε
a
such that

∥f(x)− f(y)∥F = ∥f(x− y)∥F ≤ aN0(x− y) < aδ = ε

wheneverN0(x− y) < δ, and so f is continuous. ■

This leads to a series of useful results.

aaaaaa

Corollary 144
Any ϔinite-dimensional vector space overK is a Banach space.

Proof: this is an easy consequence of the facts that the map

φ : (E,N0)→ (Kn, ∥ · ∥∞)

is an isometry and that (Kn, ∥ · ∥∞) is a Banach space. ■

aaaaaa Corollary 145
Any ϔinite-dimensional subspace of a normed vector space overK is closed.

aaaaaa
Corollary 146
The compact subsets of a ϔinite-dimensional normed vector are the subsets that are
both closed and bounded under the norm.

10.1 Solved Problems
1. Let E be a normed vector space over R and A,B ⊆ E. Denote

A+B = {a+ b | (a,b) ∈ A×B}.

a) IfA ⊆O E, show that A+B ⊆O E.
b) If A ⊆K E and B ⊆C E, show that A+ B ⊆C E. Is the result still true if A is only

assumed to be closed in E?
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Proof:

a) We can write
A+B =

∪
b∈B

(A+ {b}).

IfA ⊆O E, we obviously haveA+ {b} ⊆O E for any b ∈ B.

Indeed, if B(x, ρ) ⊆ A, then B(x + b, ρ) ⊆ A + {b}. Thus A + B is a union
of open sets: as a result,A+B ⊆O E.

b) Let (zn) = (xn+yn) ⊆ A+B be such that zn → zwhere (xn) ⊆ A and (yn) ⊆ B.
SinceA ⊆K E, there is a convergent subsequence (xφ(n))with xφ(n) → x ∈ A.

Since (zφ(n)) converges to z, the sequence (yφ(n)) ⊆ B converges to y = z − x.
ButB ⊆C E so that y ∈ B. Thus, z = x+ y ∈ A+B, which proves the desired
result. If A is only closed (and not compact), the result is false in general. Let
E = R2, A = {(x, ex) | x ∈ R} and B = R × {0}. Both A,B ⊆C R2 but
A+B = R× (0,∞) is not closed in R2. ■ ■

2. Let E be a normed vector space over R and φ : E → R be a linear functional on E.

a) Show directly that φ is continuous on E if and only if kerφ ⊆C E.
b) i. Let F be a subspace of E. Show that the mapN : E/F → R deϐined by

N([x]) = inf
y∈[x]
{∥y∥}

is a semi-norm on the quotient space E/F . What can you say if F ⊆C E?
ii. Show part a) again, this time using part b)i.

Proof:

a) If φ is continuous, then kerφ = φ−1({0}) ⊆C E since {0} ⊆C R.

Conversely, suppose that kerφ ⊆C E. If φ is not continuous, φ is unbounded
on the unit sphere S(0, 1). Thus, ∃(xn) ⊆ E such that ∥xn∥ = 1 for all n ∈ N
and for which |φ(xn)| → ∞. Let u ∈ E be such that φ(u) = 1: such a u ∈ E
necessarily exists because φ is linear. Indeed, if 0 ̸= φ(w) = r ∈ R, thenw ̸= 0.
Set u = w

φ(w) . Then

φ(u) = φ

(
w

φ(w)

)
=

1

φ(w)
φ(w) = 1.

For any n ∈ N, set un = u− xn
φ(xn) . Then

φ(un) = φ(u)− φ
(

xn
φ(xn)

)
= φ(u)− φ(xn)

φ(xn)
= φ(un)− 1 = 0,
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whence un ∈ kerφ for all n ∈ N. Note that un = u − xn
φ(xn) → u since

|φ(xn)| → ∞ and ∥xn∥ = 1 for all n. Since kerφ, the limit u ∈ kerφ, i.e.
φ(u) = 0. But this contradicts the fact that φ(u) = 1. Hence φ is continuous.

b) i. Let x ∈ E and λ ∈ R. Recall that [x] = x+ F . Since [λx] = λ[x], we have

N(λ[x]) = |λ|N([x]).

It remains only to show thatN satisϐies the triangle inequality.
Let x, y ∈ E. For any u, v ∈ F , we have

N([x+ y]) ≤ ∥(x+ y) + (u+ v)∥ ≤ ∥x+ u∥+ ∥y+ v∥.

Thus

N([x+ y]) ≤ inf
u,v∈F

{∥x+ u∥+ ∥y+ v∥}

≤ inf
u∈F
{∥x+ u∥}+ inf

v∈F
{∥y+ v∥} = N([x]) +N([y]).

As such,N is a semi-normonE/F . Since [x] = x+F for all x ∈ E,N([x]) =
infy∈F {∥x− y∥} = d(x, F ). As a result, if F ⊆C E,N([x]) = 0 if and only if
x ∈ F , i.e. [x] = 0. Consequently, if F ⊆C E,N is a norm onE/F .

ii. Let φ : E → R be a linear functional for which kerφ ⊆C E. If φ ≡ 0, φ is
clearly continuous. Otherwise,φ(E) = R. Indeed, let x ∈ R. Ifφ(u) = 1 for
some u ∈ E, then xu ∈ E, φ(xu) = x and φ is onto. Let η : E → E/ kerφ
be the canonical surjection η(u) = u+kerφ. By the IsomorphismTheorem
for vector spaces, it is possible to factorφ = ψ ◦ η, where ψ : E/ kerφ→ R
is linear.

According to Corollary 143, ψ is thus continuous, being linear. If N is the
norm deϐined in (b)i. with F = kerφ, we have

N([x]− [y]) = N([x− y]) ≤ ∥x− y∥ ∀x, y ∈ E

and so η is continuous Thus, ϕ is continuous being the composition of two
continuous functions. ■

3. If x = (x1, . . . , xn) ∈ Rn, deϐine ∥x∥∞ = sup{|x1|, . . . , |xn|}. Show that x 7→ ∥x∥∞
deϐines a norm on Rn.

Proof: There are 4 conditions to verify:
a) ∥x∥∞ = sup{|x1|, . . . , |xn|} ≥ 0 is clear since |xi| ≥ 0 for all i.
b) ∥x∥∞ = 0⇐⇒ sup{|x1|, . . . , |xn|} = 0⇐⇒ |xi| = 0, ∀i⇐⇒

xi = 0, ∀i⇐⇒ x = 0.
c) If a ∈ R, then

∥ax∥∞ = sup{|ax1|, . . . , |axn|} = |a| sup{|x1|, . . . , |xn|} = |a|∥x∥∞.
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d) Let x, y ∈ Rn. Then
∥x+ y∥∞ = sup{|x1 + y1|, . . . , |xn + yn|} ≤ sup{|x1|+ |y1|, . . . , |xn|+ |yn|}

≤ sup{|x1|, . . . , |xn|}+ sup{|y1|, . . . , |yn|} = ∥x∥∞ + ∥y∥∞.

Thus, x→ ∥x∥∞ deϐines a norm on Rn. ■

4. Let x, y ∈ Rn and deϐine the inner product (x | y) = x1y1 + · · · + xnyn. As seen in
the notes, this inner product deϐines a norm ∥x∥ =

√
(x | x). Show the Parallelogram

Identity: ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2), ∀x, y ∈ Rn.

Proof: We have
∥x+ y∥2 + ∥x− y∥2 = (x+ y | x+ y) + (x− y | x− y)

= (x | x) + 2(x | y) + (y | y) + (x | x)− 2(x | y) + (y | y)
= 2(x | x) + 2(y | y) = 2(∥x∥2 + ∥y∥2)

Now, consider a parallelogram with vertices 0, x, y, x + y. Then the sum of squares
of the lengths of the four sides is 2(∥x∥2 + ∥y∥2), while the sum of squares of the
diagonals is ∥x+ y∥2 + ∥x− y∥2. ■

5. Let x, y ∈ Rn. Is it true that ∥x+ y∥∞ = ∥x∥∞ + ∥y∥∞ if and only if x = cy or y = cx for
some c ≥ 0?

Proof: No. Consider the following example in R2: let x = (1, 0) and y = (1, 1). Then
x+ y = (2, 1) and ∥x∥∞ + ∥y∥∞ = ∥x+ y∥∞ = 2, but x ̸= cy for any c ∈ R. ■

10.2 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.
2. Show that ∥A∥∞, ∥A∥1, and ∥A∥2 (from the ϐirst page of this chapter) deϐine norms over
Mm,n(K).

3. Show that the induced p−norm is a norm onMm,n(K) for all p ≥ 1.
4. Prove Proposition 139.
5. Show that all isometries are continuous.
6. Prove Corollary 145.
7. Prove Corollary 146.
8. Let E be a normed vector space with a countably inϐinite basis. Show that E cannot be

complete.
9. LetE be an inϐinite-dimensional normed vector space overR. Show thatD(0, 1) is not

compact in E by showing that it is not pre-compact in E (by what name is this result
usually known?).
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Chapter 11

Sequences of Functions in Metric Spaces

In this chapter, we study properties of sequences and series of functions,
extending Chapters 5 and 6 to general metric spaces and provide impor-
tant Fourier analysis results.

The symbol K is used to denote either R or C; Cℓ(X,K) represents the K−vector space of ℓ
times continuously differentiable functions X → K; F(X,K), the K−vector space of func-
tionsX → K;R(X,K), theK−vector spaceofRiemann-integrable functionsX → K, Cc(R,C)
is the set of continuous functionsR→ Cwith compact support,¹ andB(X,K), theK−vector
space of bounded functionsX → K.

11.1 Uniform Convergence
LetX be a set and let (E, d) be a metric space. A sequence (fn)n∈N of functions fn : X → E
is said to converge pointwise to a function f : X → E (denoted by fn → f on X) if
fn(x)→ f(x) for all x ∈ X .

Symbolically, fn → f onX if
∀ε > 0,∀x ∈ X, ∃N = Nε,x such that n > N =⇒ d(fn(x), f(x)) < ε

(note the explicit dependence ofN on x).

As we have discussed in Chapters 5 and 6, pointwise convergence is quite often not strong
enough of a property for our needs. Consequently, we introduce a second kind of conver-
gence: the sequence (fn) is said to converge uniformly to a function f : X → E (denoted
by fn ⇒ f onX) if we can remove the explicit dependence ofN on x.

Symbolically, fn ⇒ f onX if
∀ε > 0,∃N = Nε such that n > N =⇒ sup

x∈X
{d(fn(x), f(x))} < ε.

¹That is, functions taking on the value 0 outside of some compact subsetK ⊆ R.
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Examples

1. Let (E, d) = (R, | · |), X = [0, 1] and fn : X → E be deϐined by fn(x) = xn.
Then fn → f on X , where f : X → E is given by f(x) = 0 if x ̸= 1 and
f(1) = 1. Note that f is not continuous on X , even though each of the fn is
continuous.

The sequence (fn) in black, the limit f in red.

2. With the deϐinitions as in the last example, fn ̸⇒ f onX . Indeed,

sup
x∈[0,1]

{d(fn(x), f(x))} = sup
x∈[0,1]

{|xn|} = 1n = 1,

which can never be smaller than any 1 > ε > 0.

However, fn ⇒ f on [0, a] for all a ∈ [0, 1) (see Chapter 5).

Theorem 66 generalizes to metric spaces as one would expect.

aaaaaa

Proposition 147 (CĆĚĈčĞ'Ę CėĎęĊėĎĔē ċĔė SĊĖĚĊēĈĊĘ Ĕċ FĚēĈęĎĔēĘ)
Let (E, d) be a complete metric space and (fn) be a sequence of functions fn : X → E.
Then, fn ⇒ f onX if and only if

∀ε > 0,∃N = Nε > 0 s.t. n,m > N =⇒ sup
x∈X
{d(fn(x), fm(x))} < ε.

268 Analysis and Topology Course Notes



CHAPTER 11. SEQUENCES OF FUNCTIONS IN METRIC SPACES

aaaaaa

Proof: suppose that fn ⇒ f onX and let ε > 0. By hypothesis, ∃N1, N2 such that

sup
x∈X
{d(fn(x), f(x))} <

ε

2
, sup

x∈X
{d(fm(x), f(x))} <

ε

2

whenever n > N1 and n > N2. SetN = max{N1, N2}.

Then, whenever n,m > N , we have

sup
x∈X
{d(fn(x), fm(x))} ≤ sup

x∈X
{d(fn(x), f(x)) + d(fm(x), f(x))}

≤ sup
x∈X
{d(fn(x), f(x))}+ sup

x∈X
{d(fm(x), f(x))} < ε.

Conversely, suppose that the ε−statement holds. Then, for any x ∈ X , (fn(x)) is
a Cauchy sequence in E and thus converges to a f(x) ∈ E, as E is complete. As a
result, fn → f onX . It remains to show that fn ⇒ f onX .

Let ε > 0. By hypothesis, ∃N > 0 such that supx∈X{d(fn(x), fm(x))} < ε
2

whenever n,m > N . Now, ϐix n > N and let

am(x) = d(fn(x), fm(x)) and a(x) = d(fn(x), f(x)).

Then am(x) → a(x) Since am(x) < ε
2
for all x ∈ X , then a(x) ≤ ε

2
for all x ∈ X .

Hence,
sup
x∈X
{d(fn(x), f(x))} ≤ sup

x∈X
{a(x)} ≤ ε

2
< ε.

As such, fn ⇒ f onX . ■

Series of Functions

Similar notions exist for series of functions. Let (E, d) be a metric space and let (un) be a
sequence of functions un : X → E. For anym ∈ N, deϐine the partial sum fm : X → E by

fm(x) = u1(x) + · · ·+ um(x) =
m∑

n=1

un(x).

The sequence (fm) is the series generated by (un), and it is usually denoted by
∑
n∈N

un.

If fm → f on X , we say that the series converges (pointwise) on X; if fm ⇒ f on X ,
we say that the series converges uniformly on X . In both cases, f is said to be the sum of
the series. If (fm) does not converge, we say that the series diverges.

Finally, let E be a Banach space and let (gn) be a sequence of functions gn ∈ B(X,E). The
series∑ gn converges absolutely onX if∑ ∥gn∥∞ converges.²

²There is no need to stipulate the type of convergence in the latter case, since that is a numerical series.
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Proposition 148
If
∑
gn converges absolutely onX , then

∑
gn converges uniformly onX .

Proof: according to the Cauchy criterion, it sufϐices to show that ∀ε > 0,
∃N ∈ N such that ∥∥∥ m∑

k=n

gk

∥∥∥
∞
< ε.

But according to the triangle inequality,∥∥∥ m∑
k=n

gk

∥∥∥
∞
≤

m∑
k=n

∥gk∥∞.

Since∑ gk converges absolutely, ∀ε > 0, ∃N > 0 such that
m∑

k=n

∥gk∥∞ < ε

whenever n > N . ■

11.1.1 Properties
The two main types of convergence are not created equal, however. We establish the superi-
ority of uniform convergence over pointwise convergence in a series ofwell-known theorems
(which all have counterparts in Chapter 5).

aaaaaa

Theorem 149
Let (E, d) and (F, d̃) be metric spaces. If (fn) ⊆ C(E,F ) is such that fn ⇒ f on E,
then f ∈ C(E,F ).

Proof: let ε > 0 and x0 ∈ E.

Since fn ⇒ f on E, then ∃n > N for which supx∈E{d(fn(x), f(x))} < ε
3
.

Furthermore, since fn is continuous at x0, ∃δ > 0 such that

d̃(fn(x), fn(x0)) <
ε

3
whenever d(x, x0) < δ.

Then

d̃(f(x), f(x0)) = d̃(f(x), fn(x)) + d̃(fn(x), fn(x0)) + d̃(fn(x0), f(x))

<
ε

3
+
ε

3
+
ε

3
= ε

whenever d(x, x0) < δ, hence f is continuous at x0. ■
We have already seen an example showing that this may not hold for pointwise convergence.
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Theorem 150 (LĎĒĎę IēęĊėĈčĆēČĊ; RĎĊĒĆēē-IēęĊČėĆćđĊ FĚēĈęĎĔēĘ)
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f on [a, b],
and if fn is Riemann-integrable over [a, b] for all n, then f is Riemann-integrable and∫ b

a
fn(x) dx→

∫ b

a
f(x) dx.

Proof: left as an exercise (see Chapter 5). ■

Although, the fact that the limit interchange is not necessarily valid if fn → f instead of
fn ⇒ f on [a, b] could be seen as an indictment of the Riemann integral rather than as an
indictment of pointwise convergence. In chapter 21, we will take the former position and in-
troduce the Lebesgue (Borel) integral to circumvent this difϐiculty.

The next result is a companion to Theorem 150.

aaaaaa

Theorem 151 (LĎĒĎę IēęĊėĈčĆēČĊ; FĚēĉĆĒĊēęĆđ TčĊĔėĊĒ)
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f on [a, b],
and if fn is Riemann-integrable over [a, b] for all n, then f is Riemann-integrable
according to Theorem 150. Deϔine Fn, F : [a, b] → E by Fn(x) =

∫ x

a
fn(t) dt and

F (x) =
∫ x

a
f(t) dt. Then Fn ⇒ F on [a, b].

Proof: let ε > 0.

Since fn ⇒ f on [a, b], ∃N ∈ N such that ∥f − fn∥∞ < ε
2(b−a)

whenever
n > N . Now,

∥Fn(x)− F (x)∥ =
∥∥∥∥∫ x

a

(fn(t)− f(t)) dt
∥∥∥∥ ≤ ∫ x

a

∥fn(t)− f(t)∥ dt

≤
∫ x

a

∥fn − f∥∞ dt <
ε

2(b− a)
(x− a) ≤ ε

2(b− a)
(b− a) = ε

2
.

Since this is true for all x ∈ [a, b], then ∥Fn−F∥∞ ≤ ε
2
< ε. By the Cauchy criterion,

Fn ⇒ F on [a, b]. ■

Theorem 151 has an interesting corollary when applied to series, which is often assumed to
hold (without proof) when solving differential equations.

aaaaaa

Theorem 152 Let (E, ∥ · ∥) be a Banach space and let∑ gn be a series of functions
inR([a, b], E). If∑ gn is uniformly convergent, then∫ b

a

(∑
n∈N

gn(t)

)
dt =

∑
n∈N

(∫ b

a

gn(t) dt

)
.

Proof: this is a direct consequence of Theorem 151. ■
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We have not deϐined differentiability of functions R → E in a general normed vector space
E, but we can use functions R → Kn as a template: a function f : R → Kn is differentiable
at t if

f ′(t) = lim
h→0

f(t+ h)− f(t)
h

exists; it is differentiable overR if it is differentiable at all t ∈ R. Differentiability is also the
subject of a limit interchange theorem.

aaaaaa

Theorem 153 (LĎĒĎę IēęĊėĈčĆēČĊ; DĎċċĊėĊēęĎĆćđĊ FĚēĈęĎĔēĘ)
Let (E, ∥ · ∥) be a Banach space. If (fn) ⊆ C1([a, b], E) is such that fn(x0) → f(x0)
for some x0 ∈ [a, b] and if ∃g ∈ C([a, b], E) such that f ′

n ⇒ g on [a, b], then
∃f ∈ C1([a, b], E) such that fn ⇒ f on [a, b] and f ′ = g.

Proof: according to the fundamental theorem of calculus, for all n ∈ N we
have fn(x)− fn(a) =

∫ x

a
f ′
n(t) dt. Since f ′

n ⇒ g, then

fn(x)− fn(a) =
∫ x

a

f ′
n(t) dt⇒

∫ x

a

g(t) dt on [a, b],

according to Theorem 150. In particular, the sequence (fn(x0) − f(a))n converges,
which implies that (fn(a))n converges to some ℓ ∈ E. It is easy to show that fn ⇒ f ,
where f : [a, b]→ E is deϐined by

f(x) = ℓ+

∫ x

a

g(t) dt.

Since all the fn are continuous and the convergence is uniform, then f is continu-
ous. It is also differentiable, and its derivative is continuous as f ′ = g ∈ C([a, b], E)
(again, according to the fundamental theorem of calculus). ■

We can use these theorems to compute various quantities that would be difϐicult to compute
directly.

aaaaaa

Examples

1. Compute
∫∞
0
f(x) dx, where f(x) = x2

exp(x)−1
.

Solution: consider (gn) ⊆ C(R+,R+) deϐined by gn(x) = exp(−nx)x2
for all n ∈ N×. Then∑ gn converges pointwise to f : R+ → R+.
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Indeed,
m∑

n=1

gn(x) = x2

(
m∑

n=1

exp(−nx)
)

= x2

(
m∑

n=1

(exp(−x))n
)

= x2
(exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)
≤ f(x),

since exp(−x) < 1 for all x ∈ R+.

Then,
∑
n∈N×

gn(x) = lim
m→∞

m∑
n=1

gn(x) = lim
m→∞

x2
(exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)
=

x2

exp(x)− 1
.

Furthermore,∑ gn converges absolutely to f on [a, b] ⊆ (0,∞).

Indeed, for all x ∈ [a, b], we have |gn(x)| ≤ exp(−na)b2. Note that∑
n∈N×

exp(−na)b2 = b2
∑
n∈N×

(exp(−a))n =
b2

exp(a)− 1
, since a > 0.

Hence ∑
n∈N× exp(−na)b2 converges and so, according to Exercise 1,∑

gn is absolutely convergent.

Since
∫∞
0
f(t) dt converges (use the Comparison Theorem with exp(−√x),

for instance), then, according to Theorem 152,∫ ∞

0

f(t) dt =

∫ ∞

0

(∑
n∈N×

gn(t)

)
dt =

∑
n∈N×

(∫ ∞

0

gn(t) dt

)

Repeated integration by parts shows that
∫∞
0
gn(t) dt =

2
n3 , so that∫ ∞

0

x2

exp(x)− 1
dx = 2

∑
n∈N×

1

n3
= 2ζ(3). ■
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2. Show that uniform convergence is not equivalent to absolute convergence.

Proof: it will be sufϐicient to exhibit a series which is uniformly conver-
gent but not absolutely convergent. Consider (uk) a series of constant
functions from an interval I to R deϐined by uk(x) = (−1)k

k
for all x ∈ I .

Since ∥uk∥∞ = 1
k
, and since ∑ 1

k
diverges (it is the harmonic series,

after all), then∑uk is not absolutely convergent. However,∥∥∥∥∥
m∑

k=n

uk

∥∥∥∥∥
∞

=

∣∣∣∣∣
m∑

k=n

(−1)k

k

∣∣∣∣∣ ≤ 1

n
→ 0 as n,m→∞,

so that∑uk is uniformly convergent. ■

11.1.2 Abel’s Criterion
In calculus courses and in Chapters 5 and 6, we have seen a number of tests can be used to
gauge the convergence of series (whether numerical series or series of functions):

p−test;
comparison test;
alternating series test;
integral test;
d’Alembert test (also known as the ratio test), or
Cauchy test (also known as the root test).

In this section, we present a new test.

aaaaaa

Proposition 154 (AćĊđ'Ę CėĎęĊėĎĔē)
Let (an) ⊆ E, where E is a Banach space over R. If we can write an = εnbn with

1. εn ↘ 0 a sequence in R, and

2. ∃σ ∈ R such that ∥
∑

n≤N bn∥ ≤ σ for allN ∈ N.

Then
∑

an is pointwise convergent and ∥
∑

n≥N an∥ ≤ 2σεN for allN ∈ N.

Proof: for any q > p, let Sq
p = bp+1 + · · · + bq . Since Sq

p =
∑

n≤q bn −
∑

n≤p bn, we
have

∥∥Sq
p

∥∥ ≤ 2σ. If we write

bp+1 = Sp+1
p , bp+2 = Sp+2

p − Sp+1
p , · · · , bq = Sq

p − Sq−1
p ,
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aaaaaa

then
εp+1bp+1 + · · ·+ εqbq = εp+1S

p+1
p + εp+2

(
Sp+2
p − Sp+1

p

)
+ · · ·+ εq

(
Sq
p − Sq−1

p

)
= Sp+1

p (εp+1 − εp+2) + · · ·+ Sq−1
p (εq−1 − εq) + εqS

q
p ,

whence∥∥∥ q∑
k=p+1

ak
∥∥∥ = ∥εp+1bp+1 + · · ·+ εqbq∥

≤
∥∥Sp+1

p

∥∥ |εp+1 − εp+2|+ · · ·+
∥∥Sq−1

p

∥∥ |εq−1 − εq|+ |εq|
∥∥Sq

p

∥∥
≤ 2σ (εp+1 − εp+2) + · · ·+ 2σ (εq−1 − εq) + 2σεq

= 2σεp+1 → 0 as p, q →∞

Hence,∑ ak converges by the Cauchy Criterion. ■

We can easily generalize this result to sequences of functions.

aaaaaa

Proposition 155 (AćĊđ'Ę CėĎęĊėĎĔē (RĊĕėĎĘĊ))
Let
∑
fn be such that fn = εngn ∈ F([a, b], E), where E is a Banach space over R. If

1. εn(x)↘ 0 for all x ∈ [a, b];

2. ∃σ ∈ R such that ∥
∑

n≤N gn(x)∥ ≤ σ for allN ∈ N and all x ∈ [a, b], and

3. ∥εn∥∞ → 0.

Then
∑
fn is uniformly convergent on [a, b].

Proof: left as an exercise. ■

The three conditions are in fact independent (see Exercise 7). For the next example (and the
rest of the chapter), we assume some familiarity with complex numbers (see Chapter 22 if
necessary).

aaaaaa

Example: consider the series∑k∈N ckbk(x), where bk(x) = eikx, x ∈ R and ck ↘ 0.
Show that the series converges (pointwise) for any x ∈ (0, 2π) and that it converges
uniformly on [δ, 2π − δ] for any δ ∈ (0, π).

Proof: since |eikx| = 1, then ∑k∈N cke
ikx is absolutely convergent whenever∑

k∈N |ck| <∞. If x ̸= 2kπ, k ∈ N, then

1 + eix + · · ·+ einx =
1− ei(n+1)x

1− eix
,
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whence ∣∣∣∣∣
n∑

k=1

bk(x)

∣∣∣∣∣ = |1 + eix + · · ·+ einx| ≤ 2

|1− eix|
:= σx.

According to Abel’s criterion for numerical series, ∑k∈N cke
ikx thus converges

pointwise for any x ∈ (0, 2π).

Now, let π > δ > 0 and x ∈ [δ, 2π − δ]. Then

|1− eix| =
∣∣eix/2(e−ix/2 − eix/2)

∣∣ = 2

∣∣∣∣eix/2 − e−ix/2

2i

∣∣∣∣ = 2| sin(x/2)| > sin δ,

from which we can conclude that∣∣∣∣∣
n∑

k=1

bk(x)

∣∣∣∣∣ ≤ 2

sin δ := σ.

Consequently, again according to Abel’s criterion applied to series of functions,∑
k∈N cke

ikx converges uniformly for any on [δ, 2π − δ] for any π > δ > 0. ■

11.2 Fourier Series
The series∑k∈N cke

ikx in the previous example is continuous on (0, 2π) even though it fails
to converge uniformly on (0, 2π). It is an example of a Fourier Series, a monumental idea
in the development of modern mathematics. They were ϐirst proposed as solutions to the
heat equation, in which we seek functions u : U ⊆O R2 × (a, b) → R satisfying the partial
differential equation

∂u

∂t
= ∆u =

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

Since the Fourier series approach gave rise toalready-knownsolutions of the heat equation,
the process with which they were formed was accepted as valid, even though a number of
mathematicians had objections concerning the use of inϐinity and (possibly divergent) series.

The importance of rigour in mathematics was just starting to be understood by some of
the best mathematical minds; while these objections may sound a bit odd nowadays, it is im-
portant to remember that the current deϐinitions of the concepts that made some of our pre-
decessors queasy have been distilled of all offending material after years of polishing, which
was driven by the very objections that they brought up.

It is no exaggeration to say that analysis would not be what it is today without this partic-
ular episode; while it remains in fashion amongst some mathematicians to deride engineers
and physicists for “playing with tools beyond their understanding”, let us keep in mind that
analytical advancesmostly arise from the application ofmathematics to so-called ‘real-world’
problems, in the grand tradition of Archimedes and Newton.

In this section, we introduce and discuss the convergence of Fourier Series.
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11.2.1 Trigonometric Series and Periodic Functions
A trigonometric polynomial is any (ϐinite) linear combination of positive powers of sines
and cosines:

p(t) = a0 +
n∑

k=1

(ak cos(kt) + bk sin(kt)) , where ak, bk ∈ C.

Since
cos t = eit + e−it

2
, sin t = eit − e−it

2i
,

we can write
p(t) = a0 +

n∑
k=1

(ak cos(kt) + bk sin(kt)) =
n∑

k=−n

cke
ikt,

with
a0 = c0, ak = ck + c−k, and bk = i(ck − c−k),

or
c0 = a0, ck =

ak − ibk
2

, and c−k =
ak + ibk

2
,

for all 1 ≤ k ≤ n.

A trigonometric series is a formal expression of the form∑
k∈Z

cke
ikt = a0 +

∑
k∈N

(ak cos(kt) + bk sin(kt)) .

Wesay that a series indexed byZ converges if both the series indexed by the positive integers
and the series indexed by the negative integers converges.

aaaaaa

Proposition 156
If
∑

k∈Z cke
ikt converges absolutely for some t, then

∑
k∈Z |ck| < ∞. Furthermore, if∑

k∈Z |ck| <∞, then ∃f ∈ C(R,C) such that
∑

k∈Z cke
ikt ⇒ f on R.

Proof: left as an exercise. ■
These ideas will become more clear with a concrete example.

aaaaaa

Example: Let b ∈ (−1, 1). Consider the trigonometric series∑k∈N b
k sin(kt). What

is its complex form? Does it converge anywhere? If so, what to?

Solution: according to the previous formulas, we formally have

c0 = 0, ck =
0− ibk

2
=
bk

2i
and c−k =

0 + ibk

2
= −b

k

2i
,

for k ≥ 1.
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We also have
n∑

k=1

bk sin(kt) = − 1

2i

−1∑
k=−n

b−keikt +
1

2i

n∑
k=1

bkeikt,

so that, formally,
∞∑
k=1

bk sin(kt) = − 1

2i

−1∑
k=−∞

b−keikt +
1

2i

∞∑
k=1

bkeikt.

The series converges absolutely (and thus at least pointwise), as∑
k≥1

∥bk sin(kt)∥∞ =
∑
k≥1

|b|k = |b|
1− |b|

<∞, since |b| < 1.

According to Proposition 148, ∃f ∈ C(R,C) towhich the series converges uniformly
on R. We can re-write the convergent series as

∞∑
k=1

bk sin(kt) = 1

2i

[
∞∑
k=1

(
beit
)k − ∞∑

k=1

(
be−it

)k]
=

1

2i

(
beit

1− beit
− be−it

1− be−it

)
=

b

2i
· eit − e−it

1− b(eit + e−it) + b2
= b · e

it − e−it

2i︸ ︷︷ ︸
=sin t

· 1

1− 2b
eit + e−it

2︸ ︷︷ ︸
=cos t

+b2
.

Thus the series converges uniformly to f : t 7→ b sin t
1−2b sin t+b2

on R. ■

b = −1/2, k = 1 b = −1/2, k = 1, 2
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aaaaaa b = −1/2, k = 1, 2, 3 b = −1/2, k = 1, . . . , 6

b = −1/2, f(t) = b sin t
1−2b sin t+b2

11.2.2 Again, Abel’s Criterion

aaaaaa
Proposition 157
Let

∑
k∈Z cke

ikt be such that ck ≥ 0 and ck ↘ 0 both as k → ∞ and as k → −∞.
Then

∑
k∈Z cke

ikt converges uniformly on [δ, 2π − δ] for any δ ∈ (0, π). Consequently,
the sum f(t) =

∑
k∈Z cke

ikt is continuous on (0, 2π).
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Proof: it sufϐices to show that∑
k≥0

cke
ikt and

∑
k≤−1

cke
ikt

both converge uniformly on [δ, 2π−δ] for all 0 < δ < π, and to apply Abel’s criterion
for each of the series.

Let δ ∈ (0, π). Since∣∣∣∣∣
n∑

k=0

eikt

∣∣∣∣∣ = ∣∣1 + · · ·+ eint
∣∣ = ∣∣∣∣1− ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ∣∣∣∣∣
−1∑

k=−n

eikt

∣∣∣∣∣ = ∣∣e−int + · · ·+ e−it
∣∣ = ∣∣e−int

∣∣ ∣∣1 + · · ·+ ei(n−1)t
∣∣

=
∣∣1 + · · ·+ ei(n−1)t

∣∣ = ∣∣∣∣1− eint1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ

for all t ∈ [δ, 2π − δ], the series converge uniformly on [δ, 2π − δ]. ■

Abel’s criterion could also be used even in circumstances where ck is not always positive.
For instance, let∑k∈Z(−1)kckeikt where the coefϐicient ck are as in the statement of Proposi-
tion 157. What does the fact that∣∣∣∣∣∑

k∈Z

(−1)keikt
∣∣∣∣∣ =

∣∣∣∣1 + (−1)n+1ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1 + eit|

tell you? These results also apply to the real part and the imaginary part of∑k∈Z cke
ikt, i.e. to

the series
a0 +

∑
k≥1

ak cos(kt) and
∑
k≥1

bk sin(kt).

For instance,∑k≥1
sin(kt)

k
converges uniformly on [δ, 2π− δ] for any δ > 0. As a result, the sum

is continuous on (0, 2π). However, even though∑k≥1
sin(kt)

k
converges for t = 0 and t = 2π,

the function is not continuous on [0, 2π] (see Exercise 9).

Let T > 0. A function f : R → C is T−periodic if f(t + T ) = f(t) for all t ∈ R. The
smallest positive T for which this holds is the period of the function. Periodic functions play
an important role in Fourier analysis.

aaaaaa

Examples

1. The functions cos and sin are 2π−periodic. □

2. The function tan is π−periodic. □
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3. The function deϐined by eikt is 2π
k
−periodic for any k ∈ Z. □

4. The function deϐined by eikwt, where w = 2π
T

and k ∈ Z, is T−periodic. □

5. Let f ∈ Cc(R,C), with compact support K (that is, f(t) = 0 when t ̸∈ K).
Show that φf : t 7→

∑
k∈Z f(t− k) is 1−periodic.

Proof: this series converges for all t since there is only a ϐinite set of
integers k for which t− k ∈ K (becauseK is compact). Then

φ(t+ 1) =
∑
k∈Z

f(t+ 1− k) =
∑
k∈Z

f(t− k) = φf (t),

so φf is 1−periodic. ■

If f ∈ C(R,C) is a T−periodic function, then f is bounded on the interval [0, T ], with

c0(f) =
1

T

∫ T

0

f(t) dt <∞.

The complex number c0 is themean value of f , also given by

c0(f) =
1

T

∫ T

0

f(t) dt.

If w = 2π
T

and k ̸= 0, the function g : t 7→ eikwt is T−periodic. Then

c0(g) =
1

T

∫ T

0

eikwt dt =
1

T

[
eikwt

ikw

]T
0

= 0.

Hence, if f(t) =∑k∈Z cke
ikwt is uniformly convergent on [0, T ] and T−periodic, then

c0(f) =
1

T

∫ T

0

f(t) dt =
1

T

∫ T

0

(∑
k∈Z

cke
ikwt

)
dt =

∑
k∈Z

ck
T

∫ T

0

eikwt dt = c0

The sum and the integral can be interchanged because the series converges uniformly on
[0, T ]. If f ∈ C(R,C) is T−periodic, the sequence (ck(f)), where

ck(f) = c0
(
fe−ikwt

)
=

1

T

∫ T

0

f(t)e−ikwt dt, k ∈ Z,

is the sequence of Fourier coefϐicients of f . Clearly, if w = 2π
T

and f(t) =
∑

k∈Z cke
ikwt is

uniformly convergent on [0, T ], then ck(f) = ck.
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Proposition 158
The mapping f 7→ (ck(f))k∈Z is a linear map from the vector space of continuous
T−periodic functions to the space of bounded sequences indexed byZ. More precisely,

sup
k∈Z
{|ck(f)|} ≤ ∥f∥1 ≤ ∥f∥∞ <∞,

where ∥f∥1 = 1
T

∫ T

0
|f(t)| dt.

Proof: left as an exercise. ■

We can improve on Proposition 158 once we show that

∥f∥2 =

(∑
k∈Z

|ck(f)|2
)1/2

.

aaaaaa

Proposition 159 Let f be a 2π−periodic function such that f ∈ Cn, n > 0. Then

ck(f) =
1

(ik)n
ck
(
f (n)

)
, k ̸= 0.

In particular,
|ck(f)| ≤

∥f (n)∥∞
|k|n

and so |ck(f)| → 0 as |k| → ∞.

Proof: this is easily shown by induction on n. If n = 1, we have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt =
1

2π

[
f(t)e−ikt

−ik

∣∣∣∣2π
0

+
1

ik

∫ 2π

0

f ′(t)e−ikt dt

]
=

1

ik
ck(f

′).

A sequence of integrations by parts yields the result for general n. ■

As a corollary, if f ∈ C2 is 2π−periodic, then∑k∈Z ck(f)e
ikt converges absolutely (and so

uniformly) on R.

All that precedes leads us to the crucial deϐinition: the Fourier series of a 2π−periodic func-
tion f is the series∑k∈Z ck(f)e

ikt; in that case, we write f(t) ∼∑k∈Z ck(f)e
ikt. Note that it is

possible for f not to equal its Fourier series.
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11.2.3 Convergence of Fourier Series
The next results discuss the convergence of Fourier series.

aaaaaa

Theorem 160
Let f be 2π−periodic. If f ∈ C2, then the Fourier series

∑
k∈Z ck(f)e

ikt converges
absolutely (and so uniformly) to f on R.

Proof: according to the corollary to Proposition 159, the Fourier series
g(t) =

∑
k∈Z ck(f)e

ikt converges absolutely on R, and thus g is continuous
and 2π−periodic. We want to show that g = f .

Let h = f − g. Then h is continuous and 2π−periodic. We also have

ck(h) = ck(f)− ck(g) = 0,

so that ck(f) = ck(g) for all k ∈ Z.

It remains only to show that when h is continuous, 2π−periodic, and ck(h) = 0 for
all k ∈ Z, then h ≡ 0. According to a corollary of the Stone-Weierstrass theorem
(see Chapter 23), ∃(pn)n∈N such that pn(t) =

∑
k∈Z ak(n)e

ikt and pn ⇒ h. Note that
for a ϐixed k, we must have ak(n)→ 0when n→∞.

Then
1

2π

∫ 2π

0

|h(t)|2 dt = 1

2π

∫ 2π

0

h(t)h(t) dt
thm 150
= lim

n→∞

1

2π

∫ 2π

0

h(t)pn(t) dt

thm 152
=

∑
k∈Z

(
lim
n→∞

ak(n)
1

2π

∫ 2π

0

h(t)eikt dt

)
=
∑
k∈Z

(
lim
n→∞

ak(n)c−k(h)
)
= 0.

Since |h(t)|2 is continuous, |h(t)|2 = 0 for all t ∈ [0, 2π], so that h(t) = 0 for all
t ∈ [0, 2π]. ■

The next result provides a sufϐicient condition for a function to be equal to its Fourier series.

aaaaaa

Theorem 161
Let f be a continuous 2π−periodic function such that∑

k∈Z

|ck(f)| =M <∞.

Then the Fourier series of f converges absolutely to f on R and is equal to f on R.

Proof: left as an exercise. ■
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Let us take a look at an example.

aaaaaa

Example: ϐix a ∈ R and let fa(t) = cos(at), |t| ≤ π. Extend fa to R by periodicity.
What is the Fourier series of fa? Is it equal to fa on R? Solution: if a ̸∈ Z, fa is not
differentiable (see example below).

If a ∈ Z then cos(at) is already a trigonometric polynomial so the Fourier series of
fa is simply cos(at). So assume that a ̸∈ Z.

Let k ∈ Z. Then

ck(fa) =
1

2π

∫ π

−π

cos(at)e−ikt dt =
1

2π

∫ π

−π

eiat − e−iat

2
e−ikt dt =

a(−1)k sin(πa)
π(a2 − k2)

Using the comparison test with |ck(f)| ∼ 1
k2

, we see that∑k∈Z |ck(f)| <∞. Accord-
ing to Theorem 161,

fa(t) =
∑
k∈Z

a(−1)k sin(πa)
π(a2 − k2)

eikt

converges absolutely on R. ■
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11.2.4 Dirichlet’s Convergence Theorem
Let f : R→ C be a 2π−periodic Riemann-integrable function. For k ∈ Z, set

ek(t) = eikt =
(
eit
)k

= (e1(t))
k.

LetN ∈ N. Deϐine
SN(f)(t) :=

N∑
k=−N

ck(f)ek(t);

SN(f) is the partial sum of degreeN for the Fourier series of f .³ We can write these partial
sums as convolutions: indeed, we have

SN(f)(t) :=
N∑

k=−N

ck(f)ek(t) =
N∑

k=−N

ek(t)

∫
f(y)ek(−y) dy

=

∫
f(y)

{
N∑

k=−N

ek(t)ek(−y)

}
dy

=

∫
f(y)

{
N∑

k=−N

ek(t− y)

}
dy

=

∫
f(y)KN(t− y) dy := (D̂N ∗ f)(t),

where the Dirichlet kernel of orderN is, formally,

KN(t) =
N∑

k=−N

ek(t) =
N∑

k=−N

eikt =
e−iNt − ei(N+1)t

1− eit

=
1

eiNt

(
1− ei(2N+1)t

1− eit

)
=

sin((N + 1/2)t)

sin(t/2) , when t ̸∈ 2πZ.

aaaaaa

Proposition 162
The Dirichlet kernel is even, 2π−periodic, c0(KN) = 1,

∫ π

0
KN(t) dt = π, and

KN(0) = lim
t→

KN(t) = 2N + 1.

Proof: left as an exercise. ■

The next result is substantially more difϐicult to prove.

³In what follows, we will write
∫
:= 1

2π

∫ 2π

0
= 1

2π

∫ a+2π

a
for any a ∈ R.
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aaaaaa
Lemma 163 (RĎĊĒĆēē-LĊćĊĘČĚĊ LĊĒĒĆ)
Let f : [a, b]→ C be integrable over [a, b]. Then limn→∞

∫ b

a
f(t)eint dt = 0.

Proof: left as a (difϐicult) exercise. ■

We can now state and prove this section’s main result.

aaaaaa

Theorem 164 (DĎėĎĈčđĊę'Ę CĔēěĊėČĊēĈĊ TčĊĔėĊĒ)
Let f : R→ C be piecewise (with a ϔinite number of discontinuities) and 2π−periodic.
If the following one-sided limits exist ∀x ∈ R:

f(x±) = lim
h↘0

f(x± h), f ′(x±) = lim
h↘0

f(x± h)− f(x)
h

,

then

SN(f)(x) =
N∑

k=−N

ck(f)ek(x)→
f(x+) + f(x−)

2
, asN →∞.

Proof: without loss of generality, we can assume that x = 0 by translating the vari-
able x to the origin as needed. Consider the sequence of partial sums

sN := SN(f)(0) =
N∑

k=−N

ck(f)ek(0) =
N∑

k=−N

ck(f).

ForN ∈ N, we have

sN =
∑
|k|≤N

∫
f(t)e−ikt dt =

∫
f(t)KN(t) dt.

SinceKN(t) is even, then∫ 0

−π

f(t)KN(t) dt =

∫ π

0

f(−t)KN(t) dt,

whence (remember the notation convention for integrals)

sN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt.

Write
uN = sN − f(0+)+f(0−)

2
.
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aaaaaa

Then

uN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt− f(0+)+f(0−)
2

· 1
π

∫ π

0

KN(t) dt

=
1

2π

∫ π

0

{f(t) + f(−t)− f(0+)− f(0−)}KN(t) dt

=
1

2π

∫ π

0

g(t) sin((N + 1/2)t) dt,

where

g(t) =


f(t)− f(0+) + f(−t)− f(0−)

sin(t/2) , if t ∈ (0, π]

0, otherwise
By construction, g is clearly piecewise continuous on (0, π]. It is necessarily bounded
in a neighbourhood of t = 0 according to de l’Hôpital’s Rule:

lim
t↘0

g(t) = lim
t↘0

2(f ′(t)− f ′(−t))
cos(t/2) = 2(f ′(0+) + f ′(0−)) <∞.

The function g is thus nicely-behaved: it is bounded and piecewise continuous
(with at most a ϐinite number of discontinuities) over [0, π] and so is integrable on
every continuous piece of [0, π], using an easy generalization of Theorem 54 (see
Chapter 4).

According to the Riemann-Lebesgue lemma 155,

lim
n→∞

∫ π

0

g(t)eint dt = 0.

The relation still holds with the change of variable n = N + 1/2.

Since 2πuN is the imaginary part of
∫ π

0
g(t)ei(N+1/2)t dt, then 2πuN → 0 and

sN → f(0+)+f(0−)
2

whenN →∞. ■

In other words, if a periodic function f is “nice enough” (piecewise C1), then it is equal to
its Fourier series wherever f is continuous. At discontinuities of f , the Fourier series con-
verges to themean of the one-sided limits.⁴

aaaaaa Example: let f : [0, 2π] → R be deϐined by f(t) = t2. Extend f to R by periodicity.
What is the Fourier series of f . Is it equal to f on R?

⁴Be careful: some piecewise C0 periodic functions have divergent Fourier series.
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aaaaaa

Solution: the Fourier coefϐicients of f are

ck(fa) =
1

2π

∫ 2π

0

t2e−ikt dt =

{
[c] 2

n2 (iπk + 1), k ̸= 0
4π2

3
, k = 0

According to Dirichlet’s convergence theorem,∑
k∈Z

ck(f)e
ikt =

4π2

3
+
∑
k∈Z×

2

k2
(iπk + 1)eikt

converges (at least pointwise) to t2 for t ̸∈ 2πZ, and to f(2π)+f(0)
2

= 2π2 for t ∈ 2πZ,
since f is piecewise C1.

S1(f) S2(f) S3(f)

S8(f) S20(f) S200(f)

The convergence turns out to be uniform on [2πℓ+ δ, 2π(ℓ+1)− δ], for all δ ∈ (0, π),
ℓ ∈ Z (more on this in the next section), but only pointwise over R as a whole, in
keeping with Theorem 164. ■

Notice the overshooting of the partial sums as t→ 2πℓ, ℓ ∈ Z, which does not seem todampen
whenN →∞. This “universal” behaviour at discontinuities is termed Gibbs’ Phenomenon
(contrast the behaviour of the Fourier series of t2 with that of cos(at) discussed earlier).

The explanation of the problem is linked with the lim sup and lim inf of the partial sums
Sn(f)(xN) at points xN that approach a discontinuity at x0, but we will not discuss this any
further.
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11.2.5 Quadratic Mean Convergence
The set of 2π−periodic piecewise continuous functions from R to C is an inner product
space together with

(f | g) = 1

2π

∫ 2π

0

f(t)g(t) dt,

with associated norm ∥f∥2 =
√

(f | f).

Note that for µ, ν ∈ Z, we have

(eµ | eν) =
1

2π

∫ 2π

0

eiµte−iνt dt =
1

2π

∫ 2π

0

ei(µ−ν)t dt = δµ,ν =

{
0, µ ̸= ν

1, µ = ν

For a given N ∈ N and a function f in the inner product space of the previous page, con-
sider the partial sum

SN(f) =
∑
|k|≤N

ck(f)ek(t).

For any |k| ≤ N , we must have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt = (f | ek).

But
(SN(f) | ek) =

∑
|ℓ|≤N

cℓ(f)(eℓ | ek) =
∑
|ℓ|≤N

cℓ(f)δℓ,k = ck(f).

Thus, (f − SN(f) | ek) = 0 for all |k| ≤ N and we can write
f = SN(f) + (f − SN(f)),

with SN(f) ∈ PN = Span{ek | −N ≤ k ≤ N} and f − SN(f) ∈ P⊥
N .

Note furthermore that since (SN | f − SN(f)) = 0, then
∥f∥22 = (f | f) = (SN(f) + (f − SN(f)) | SN(f) + (f − SN(f)))

= (SN(f) | SN(f)) + 2Re (SN(f) | f − SN(f))︸ ︷︷ ︸
=0

+(f − SN(f) | f − SN(f))

= ∥SN(f)∥22 + ∥f − SN(f)∥22.

For any other function g ∈ PN , we see that
∥f − g∥2 = ∥ f − SN(f)︸ ︷︷ ︸

∈P⊥
N

+SN(f)− g︸ ︷︷ ︸
∈PN

∥22

= ∥f − SN(f)∥22 + ∥SN(f)− g∥22 ≥ ∥f − SN(f)∥22.
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Since g was arbitrary,

inf
g∈PN

∥f − g∥22 = ∥f − SN(f)∥22 = ∥f∥22 − ∥SN(f)∥22. (11.1)

The partial sum SN(f) is thus the nearest trigonometric polynomial to f in PN , in the sense
of the quadratic mean.

aaaaaa

Theorem 165 (PĆėĘĊěĆđ'Ę IĉĊēęĎęĞ)
Let f be a 2π−periodic piecewise continuous function from R to C. Then

1

2π

∫ 2π

0

|f(t)|2 dt =
∞∑

k=−∞

|ck(f)|2.

Proof: as |f |2 is Riemann-integrable on [0, 2π], the convergence of the series will be
assured once the equality is established. By construction,

∥SN(f)∥22 =

∑
|k|≤N

ck(f)e
ikt

∣∣∣∣∣∣
∑
|ℓ|≤N

cℓ(f)e
iℓt

 =
N∑

k,ℓ=−N

ck(f)cℓ(f)(ek | eℓ)

=
N∑

k,ℓ=−N

ck(f)cℓ(f)δk,ℓ =
N∑

k=−N

|ck(f)|2.

The sequence of inϐimums given in (11.1) by

(xN) =

(
inf

g∈PN

{∥f − g∥22}
)

is bounded below by 0.

LetN ∈ N. Clearly, ∥SN(f)∥22 ≤ ∥SN+1(f)∥22, and so

xN = ∥f − SN(f)∥22 = ∥f∥22 − ∥SN(f)∥22 ≥ ∥f∥22 − ∥SN+1(f)∥22 = xN+1.

Thus (xN) is a decreasing and bounded sequence; as such, it converges to
0 ≤ x∗ = inf{xN | N ∈ N} by the bounded monotone convergence theorem.

In particular, this means that

x∗ = lim
N→∞

xN = ∥f∥22 − lim
N→∞

∥SN(f)∥22 =
1

2π

∫ 2π

0

|f(t)|2 dt −
∞∑

k=−∞

|ck(f)|2,

which guarantees the convergence of the series, as |f |2 is Riemann-integrable over
[0, 2π] (being continuous).
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aaaaaa

Write P =
∪

N∈NPN . Since PN ⊆ P for allN ∈ N, we have

inf
g∈P
∥f − g∥22 ≤ inf

g∈PN

∥f − g∥22 = xN , for allN ∈ N,

which implies that
0 ≤ inf

g∈P
∥f − g∥22 ≤ x∗.

Conversely, x∗ ≤ ∥f − g∥22 for all g ∈ PN ,N ∈ N. Thus x∗ ≤ ∥f − g∥22 for all g ∈ P ,
so that

x∗ ≤ inf
g∈P
∥f − g∥22.

Combining these, we obtain

inf
g∈P
∥f − g∥22 =

1

2π

∫ 2π

0

|f(t)|2 dt−
∞∑

k=−∞

|ck(f)|2.

Let ε > 0. As f is a 2π−periodic piecewise continuous function, we can ϐind a
2π−periodic continuous function fc such that

∥f − fc∥2 < Kε, for someK > 0.

If f is constant, simply set fc = f ; we do the same if f is continuous.

Otherwise, assume that f admitsm discontinuities at

x1 < . . . < xm ∈ (δ, 2π + δ), for some δ > 0,

and denote the closed ε2−neighbourhood around xα by

Bα,ε2 = [yα,ε2 , yα,ε2 + 2ε2],

for α = 1, . . . ,m, and their union by Bε2 (restrict ε as needed to ensure that the
Bα,ε2 = [yα,ε2 , yα,ε2 + 2ε2] do not overlap).

Outside of Bε2 but in [δ, 2π + δ], deϐine fc ≡ f . In each of the Bα,ε2 ∩ [δ, 2π + δ], let
fc be the linear function joining the points

(yα,ε2 , f(yα,ε2)) and (yα,ε2 + 2ε2, f(yα,ε2 + 2ε2)).

The function fc : [δ, 2π + δ] → C is “clearly” continuous, and can be extended to a
2π−periodic continuous function over R.

In particular, |f − fc|2 is real-valued and continuous over [δ, 2π + δ]. Conse-
quently, the latter reaches its maximum M > 0 somewhere on [δ, 2π + δ], by the
max/min theorem.
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aaaaaa

Thus, for any δ > 0,

∥f − fc∥22 =
1

2π

∫ 2π+δ

δ

|f(t)− fc(t)|2 dt =
1

2π

m∑
α=1

∫
Bα,ε2

|f(t)− fc(t)|2 dt

≤ 1

2π

m∑
α=1

∫
Bα,ε2

M dt =
1

2π

m∑
α=1

2ε2 ·M =
mM

π︸ ︷︷ ︸
>0

ε2 := K2ε2

According to the Stone-Weierstrass theorem (see Chapter 23), the set of
2π−periodic trigonometric polynomials P is dense in the set of 2π−periodic
continuous functions w.r.t. to ∥ · ∥2, and so ∃g ∈ P with ∥fc − g∥2 < ε.

Putting this together, we see that

∥f − g∥2 ≤ ∥f − fc∥2 + ∥fc − g∥2 < Kε+ ε = (K + 1)ε.

Thus

inf
g∈P
∥f − g∥2 < (K + 1)ε for all ε =⇒ inf

g∈P
∥f − g∥2 = 0. ■

Parseval’s identity remains valid for locally Riemann-integrable functions (
∫
K
|f | dt <∞ for

allK ⊆K [0, 2π]), instead of piecewise continuous, with multiple consequences: the series∑
k∈Z

|ck(f)|2

converges, which shows that |ck(f)|2 → 0, and thus ck(f)→ 0 as k → ±∞ (by the Riemann-
Lebesgue lemma). It can also be used to show that any 2π−periodic continuous function
f : R → C whose Fourier series converges uniformly on R must be equal to said series
(compare with Dirichlet’s convergence theorem).

11.3 Exercises
1. Let (gn) be a sequence of functions. Show that∑ gn converges absolutely if and only

if ∃(an) ⊆ R+ such that∑ an converges and ∥gn∥∞ ≤ an for all n. Use that result to
show that the series of functions∑ gn, where gn : [0, 1] → R is deϐined by gn(x) = xn

n2 ,
is absolutely convergent on [0, 1].

2. For each of the theorems of Section 11.1.1 (save for Theorem 152), ϐind an example
showing that the result does not hold if uniform convergence is replaced by pointwise
convergence.

3. Prove Theorems 152, 153, and 161, as well as Propositions 156 and 158.
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4. Find some examples showing that the result of Theorem 152 does not hold in general
if absolute convergence is replaced by a weaker type of convergence.

5. Let gn : R→ R be deϐined by gn(x) = xn

n!
for eachn ∈ N. Show that each of the following

series of functions converges absolutely on R.
a) S =

∑
(−1)n+1g2n+1

b) C =
∑

(−1)ng2n
c) E =

∑
gn

6. Let S,C,E be as in the previous question. Using the appropriate theorems, show that
for any x ∈ R show that S ′(x) = C(x), C ′(x) = −S(x), and E ′(x) = E(x).

7. Find examples showing that the three conditions in the statement of Proposition 155
are independent from one another.

8. Improve the bound in Proposition 158 by showing that

∥f∥2 =

(∑
k∈Z

|ck(f)|2
)1/2

.

9. Show that the function f : [0, 2π]→ R deϐined by f(t) =∑k≥1
sin(kt)

k
is not continuous

on [0, 2π].
10. Using the Fourier series of the cosine, show that π cot(aπ) = ∑

k∈Z
a

a2−k2
for all a ̸∈ Z

(also known as Euler’s Formula).
11. Prove the properties of the Dirichlet kernel (Proposition 11.2.4).
12. Show that (f | g) (see page 289) deϐines an inner product on the set of 2π−periodic

piecewise continuous functions from R to C.
13. Prove the Riemann-Lebesgue lemma without using Parseval’s identity.
14. Show that any 2π−periodic continuous function f : R→ Cwhose Fourier coefϐicients

are all 0must be the zero function.
15. Let (an) ⊆ C be such that an → ℓ and let (εn) ⊆ R+ be a divergent sequence. Deϐine a

sequence (bn) ⊆ C by
bn =

∑n
i=1 aiεi∑n
i=1 εi

.

Show that bn → ℓ.
16. a) Let (fn) be the sequence of functions deϐined by

fn : R+
0 → R, fn(x) =

{(
1− x

n

)n
x ∈ [0, n]

0 x > n

Show that fn ⇒ f on R+
0 , where f : R+

0 → R is deϐined by f(x) = e−x.
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b) Let U ⊆K C and let (fn) be the sequence of functions deϐined by

f : C→ C, f(z) =
(
1 +

z

n

)n
.

Show that fn ⇒ f onK , where f : C→ C is deϐined by f(z) = ez .
17. For any n ∈ N×, let un : R+

0 → R be deϐined by u(x) = x
n2+x2 .

a) Show that∑un → f for some f ∈ C(R+
0 ,R), but that

∑
un ̸⇒ f on R+

0 .
b) Show that∑(−1)nun ⇒ g onR+

0 for some g ∈ C(R+
0 ,R), but that

∑
(−1)nun is not

absolutely convergent on R+
0 .

18. What can you say about a function f : R→ Rwhich is the uniform limit of a sequence
of polynomials (Pn)?

19. Consider the sequence of functions (fn) ⊆ C([0, π/2],R) deϐined by fn(x) = cosn x sinx
for all n ∈ N.
a) LetO : [0, π/2]→ R be the zero function. Show that fn ⇒ O on [0, π/2].
b) Consider the sequence of functions (gn) deϐined by gn = (n+1)fn. Let δ > 0. Show

that gn ⇒ O on [δ, π/2] but that∫ π/2

0

gn(t) dt ̸→ 0.

20. Theses results are due to Dini.
a) Let (fn) ∈ C([a, b],R) be an increasing sequence of functions (i.e. for all x ∈ [a, b]

and for all n ∈ N, we have fn(x) ≤ fn+1(x)). If fn → f on [a, b] where f ∈
C([a, b],R), show that fn ⇒ f on [a, b].

b) Let (fn) ∈ C([a, b],R) be a sequence of increasing functions (i.e. for all x ≥ y ∈
[a, b] and for all n ∈ N, we have fn(x) ≥ fn(y)). If fn → f on [a, b] where f ∈
C([a, b],R), show that fn ⇒ f on [a, b].

21. Determine whether∑ xn converges in (R2, ∥ · ∥2), where

xn =

(
(sinn)n
n2

,
1

n2

)
.

If so, does∑ xn converge absolutely?
22. Compute the values of the following convergent series

∞∑
n=1

1

n2
,

∞∑
n=1

1

(2n− 1)2
,

∞∑
n=1

1

n4
,

using the 2π−periodic function deϐined by f(x) = 1− x2/π2 over the interval [−π, π].
23. Prepare a 2-page summary of this chapter, with important deϐinitions and results.
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Chapter 12

Alternating Multilinear Forms

In order to deϐine the notion of differential forms (and to learn how to
integrate them), we need concepts from linear algebra. In this chapter, E
is a ϐinite dimensional vector space overR (i.e., dim(E) = n =⇒ E ≃ Rn).

12.1 Linear Algebra Notions
A (linear) 1−form over E is a linear map f : E → R; a (linear) p−form over E is a linear
map f : Ep = E × · · · × E → Rwhich is linear in each of its arguments.

aaaaaa

Examples

1. The projection map f1 : Rn → R, deϐined by f1(x) = f1(x1, . . . , xn) = x1 is a
1−form over Rn. Generally, the projection fi : Rn → R deϐined by fi(x) = xi
is a 1−form over Rn for all i = 1, . . . , n.

If B = {e1, . . . , en} is a basis of E, then for any x ∈ E we can write

x = x1e1 + · · ·+ x1e1

and the projection fB
i : E → R deϐined by fB

i (x) = xi is a 1−form over E. □

2. The inner product (· | ·) : Rn × Rn → Rn deϐined by

(x | y) = ((x1, . . . , xn) | (y1, . . . , yn)) =
n∑

i=1

xiyi

is a (bilinear) 2−form over Rn.

If (x | y) = (y | x) for all x, y ∈ E, the 2−form is symmetric. □
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aaaaaa

3. The 2−determinant det : R2 × R2 → R deϐined by

det(x, y) = det
(
x1 x2
y1 y2

)
= x1y2 − x2y1

is a bilinear form overR2, but it is not symmetric since det(x, y) = − det(y, x)
for all x, y ∈ R2. Note as well that det(x, x) = 0 for all x ∈ R2. □

A p−form f over E is alternating if f(x1, . . . , xp) = 0whenever xi = xj for some i < j.

aaaaaa

Example: det : R2 × R2 → R is an alternating bilinear form. More generally,

det : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

is an alternating linear n−form. □

Let f : R2 × R2 → R be an alternating bilinear form on R2. If {e1, e2} is a basis of R2, then f
is completely determined by the value taken by f(e1, e2). Indeed, let x, y ∈ R2, Then

f(x, y) = f(x1e1 + x2e2, y1e1 + y2e2) = x1f(e1, y1e1 + y2e2) + x2f(e2, y1e1 + y2e2)
= x1y1 f(e1, e1)︸ ︷︷ ︸

=0

+x1y2f(e1, e2) + x2y1 f(e2, e1)︸ ︷︷ ︸
=−f(e1,e2)

+x2y2 f(e2, e2)︸ ︷︷ ︸
=0

= (x1y2 − x2y1)f(e1, e2) = det
(
x1 x2
y1 y2

)
f(e1, e2).

Let {e1, . . . , en} be a basis of E = Rn and let {x1, . . . , xn} ⊆ E = Rn. For 1 ≤ i ≤ n, Write

xi =
n∑

j=1

si,jej.

If f : En → R is an alternating (linear) n−form, then

f(x1, . . . , xn) = det

x1,1 · · · x1,n
... . . . ...

xn,1 · · · xn,n

 f(e1, . . . , en) = det
(
x1 · · · xn

)⊤
f(e1, . . . , en).

Let f1, . . . , fp be p linear 1−forms over E.¹ Deϐine f : Ep → R by
f(x1, . . . , xp) = f1(x1) · · · fp(xp).

Then f is the tensor product of the fi; it is a linear p−form overE, which we usually denote
by f = f1 ⊗ · · · ⊗ fp.

¹We can also write this as f1, . . . , fp ∈ E∗, whereE∗ = {f : E → R | f linear} is the dual space ofE.
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If B = {e1, . . . , en} is a basis of E, then for 1 ≤ i ≤ n, we deϐine the linear functionals
e∗i ∈ E∗ by

e∗i (x) = e∗i (x1e1 + · · ·+ xnen) = x1e∗i (e1) + · · ·+ xne∗i (en) = xie∗i (ei) = xi

for all x = (x1, . . . , xn) ∈ E. In that case, the set{
e∗i1 ⊗ · · · ⊗ e∗ip | ij ∈ {1, . . . , n}

}
forms a basis of the vector space of p−forms over E, and dim({p− forms over E}) = np.

12.2 Anti-Symmetric Forms
In introductory linear algebra and group theory courses, we learn that ifA = (ai,j) ⊆Mn(R),
then we can write the determinant ofA using the Laplace expansion:

det(A) =
∑
σ∈Sn

ϵ(σ)a1,σ(1) · · · an,σ(n),

where Sn is the permutation group on {1, . . . , n} (whence |Sn| = n!) and ϵ : Sn → {±1} is
the signature of a permutation σ (more on this in the ϐirst footnote of Section 12.3).

aaaaaa

Proposition 166
Let f be a linear p−form over E. If g : Ep → R is deϔined by

g(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)f(xσ(1), . . . , xσ(p)),

then g is an alternating p−form.

Proof: we only prove the statement for p = 2. The proof for p ≥ 3 is left as
an exercise.

Let p = 2. Then S2 = {id, σ =
(
1 2

)
} and we have ϵ(id) = 1 and ϵ(σ) = −1.

Therefore,
g(x1, x2) = f(x1, x2)− f(x2, x1).

Clearly g(x, x) = 0, and so g is alternating. ■

The alternating p−form g in Proposition 166 is the anti-symmetric form built from f .

Let f1, . . . , fp be linear 1−forms overE. The anti-symmetric form built from the tensor prod-
uct f1 ⊗ · · · ⊗ fp is thewedge product of f1, . . . , fp, denoted by (f1 ∧ · · · ∧ fp).²

²Formally, we should be using the brackets around the wedge product (and the tensor product) of linear
forms, but we will often omit them to simplify the notation.
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By deϐinition, then, we have

(f1 ∧ · · · ∧ fp)(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)(f1 ⊗ · · · ⊗ fp)(xσ(1), . . . , xσ(p))

=
∑
σ∈Sp

ϵ(σ)f1(xσ(1)) · · · fp(xσ(p)) = det

f1(x1) · · · f1(xp)
... . . . ...

fp(x1) · · · fp(xp)

 .

A few examples will help to illustrate the concept.

aaaaaa

Examples: consider the case p = 2; let f1, f2 be linear 1−form over E = R2 and
x1, x2 ∈ E. Then:

1. f1 ∧ f2(x1, x2) = f1(x1)f2(x2)− f1(x2)f2(x1).

2. f2 ∧ f1(x1, x2) = f2(x1)f1(x2)− f2(x2)f1(x1) = −f1 ∧ f2(x1, x2).

3. f1 ∧ f1(x1, x2) = f2 ∧ f2(x1, x2) = 0. □

Generally, if fi = fj for some i ̸= j, then f1 ∧ · · · ∧ fp = 0. Furthermore, if σ ∈ Sp, then

fσ(1) ∧ · · · ∧ fσ(p) = ϵ(σ)f1 ∧ · · · ∧ fp.

aaaaaa

Example: let B = {e1, e2, e3} be a basis of E (i.e., n = dim(E) = 3) and let g :
E × E → R be a bilinear alternating form (i.e., p = 2). Then

g(x, y) = g

(
3∑

i=1

xiei,
3∑

j=1

yjej

)
=

3∑
i,j=1

xiyjg(ei, ej).

Since g is alternating, we must have:

g(ei, ej) = −g(ej, ei), g(ei, ei) = 0, for all i, j = 1, . . . , 3.

Thus,

g(x, y) = x1y2g(e1, e2) + x1y3g(e1, e3) + x2y3g(e2, e3)
− x2y1g(e1, e2)− x3y1g(e1, e3)− x3y2g(e2, e3)
= (x1y2 − x2y1)g(e1, e2) + (x1y3 − x3y1)g(e1, e3) + (x2y3 − x3y2)g(e2, e3).

But note that for i < j, we have

e∗i ∧ e∗j(x, y) = e∗i (x)e∗j(y)− e∗i (y)e∗j(x) = xiyj − xjyi.
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aaaaaa

Combining the last two results, we have

g(x, y) = g(e1, e2)e∗1 ∧ e∗2 + g(e1, e3)e∗1 ∧ e∗3 + g(e2, e3)e∗2 ∧ e∗3.

Consequently, g is a linear combination of the wedge products {e∗2 ∧ e∗3 | i < j}.
Furthermore, {e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} are linearly independent.

Indeed, suppose that

(d1,2e∗1 ∧ e∗2 + d1,3e∗1 ∧ e∗3 + d2,3e∗2 ∧ e∗3)(x, y) = 0 for all x, y.

In particular, this would hold for (x, y) = (e1, e2), and so

0 = d1,2e∗1 ∧ e∗2(e1, e2) + d1,3e∗1 ∧ e∗3(e1, e3) + d2,3e∗2 ∧ e∗3(e2, e3)
= d1,2(e∗1(e1)e∗2(e2)− e∗1(e2)e∗2(e1)) + d1,3((e∗1(e1)e∗3(e2)− e∗1(e2)e∗3(e1))

+ d2,3((e∗2(e1)e∗3(e2)− e∗2(e2)e∗3(e1))
= d1,2(1 · 1− 0 · 0) + d1,3(1 · 0− 0 · 0) + d2,3(0 · 0− 0 · 0) = d1,2 =⇒ d1,2 = 0.

Similarly, using (x, y) = (e1, e3) and (x, y) = (e2, e3) yields d1,3 = d2,3 = 0.

Thus {e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} forms a basis for the space of alternating bi-
linear (2−)forms over E. ■

The space of alternating p−forms over E ≃ Rn will constantly be appearing in what fol-
lows; to lighten the text, we denote it by Λp(E).

aaaaaa

Theorem 167
Let {e1, . . . , en} be a basis of E ≃ Rn and {e∗1, . . . , e∗n} be the dual basis of E∗. Then

{e∗i1 ∧ · · · ∧ e
∗
ip | i1 < · · · < ip}

is a basis of Λp(E).

Proof: left as an exercise. ■

aaaaaa

Corollary 168
Let E ≃ Rn. If 1 ≤ p ≤ n, then

dim(Λp(E)) =

(
n

p

)
=

n!

p!(n− p)!
;

if p > n, then dim(Λp(E)) = 0.

Proof: left as an exercise. ■
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12.3 Wedge Product of Alternating Forms
If f ∈ Λp(E) and g ∈ Λq(E), is there a natural way to build a form f ∧ g ∈ Λp+q(E)? It turns
out that it can be done, with a small group theory detour.

Let Sp+q be the permutation group on {1, . . . , p+ q},³ and set

A = {σ ∈ Sp+q | σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q)}.

aaaaaa

Examples

1. If p = 1 and q = 2, then A = {σ ∈ S3 | σ(2) < σ(3)}. But

S3 = {id,
(
1 2

)
,
(
1 3

)
,
(
2 3

)
,
(
1 2 3

)
,
(
1 3 2

)
},

so that
A = {id,

(
1 2

)
,
(
1 3 2

)
}.

2. If p = 2 and q = 2, then A = {σ ∈ S4 | σ(1) < σ(2) and σ(3) < σ(4)}; S4

has 4! = 24 permutations, and we can show that

A = {id,
(
2 3

)
,
(
2 4 3

)
,
(
1 2 3

)
,
(
1 2 4 3

)
,
(
1 3

) (
2 4

)
}.

Permutation calculations can quickly become cumbersome! □

If f ∈ Λp(E) and g ∈ Λq(E), thewedge product of f and g is given by

f ∧ g(x1, . . . , xp, xp+1, . . . , xp+q) =
∑
σ∈A

ϵ(σ)f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)).

As f ∧ g depends linearly on each of x1, . . . , xp+q , then it is a linear (p + q)−form on E. Is it
alternating?

aaaaaa

Example: if p = 1 and q = 3, then

A = {σ ∈ S4 | σ(2) < σ(3) < σ(4)} = {id,
(
1 2

)
,
(
1 3 2

)
,
(
1 4 3 2

)
};

the corresponding signatures are 1,−1, 1,−1. If all we knowof f, g is that f ∈ Λ1(E)
and g ∈ Λq(E), then we must have:

³A permutation σ ∈ Sn is a bijection σ : {1, . . . , n} → {1, . . . , n}. We can also write σ in cycle notation, as
illustrated as follows: suppose that σ acts on {1, 2, 3, 4, 5} according to σ(1) = 2, σ(2) = 5, σ(5) = 1, σ(3) = 3,
and σ(4) = 4. Then we write σ as

(
1 2 5

) (
3
) (

4
)
, or usually as

(
1 2 5

)
since 3, 4 are left unchanged by σ.

The signature ϵ(σ) of a permutation σ is determined as follows. We write σ as a product of disjoint cycles (as
above); the signature is −1 if and only if the factorization contains an odd number of even-length cycles. As
σ =

(
1 2 5

)
contains no even-length cycle, ϵ(σ) = 1.

302 Analysis and Topology Course Notes



CHAPTER 12. ALTERNATING MULTILINEAR FORMS

aaaaaa

f ∧ g(x1, x2, x3, x4) = f(x1)g(x2, x3, x4)− f(x2)g(x1, x3, x4)
+ f(x3)g(x1, x2, x4)− f(x4)g(x1, x2, x3).

If x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4, or x3 = x4, the g components of f ∧ g
are either 0 because they are alternating and contain a repeated argument, or they
cancel one another out (try it!); thus f ∧ g is alternating. □

The wedge product has the right kinds of properties: if f, f1, f2 ∈ Λp(E), g, g1, g2 ∈ Λq(E),
and α ∈ R, then

(f1 + f2) ∧ g = f1 ∧ g + f2 ∧ g,
f ∧ (g1 + g2) = f ∧ g1 + f ∧ g2,

(αf) ∧ g = α(f ∧ g) = f ∧ (αg).

This leads us to the following crucial result.

aaaaaa

Lemma 169
Let fi ∈ E∗, 1 ≤ i ≤ p+q. Then f = f1∧· · ·∧fp ∈ Λp(E), g = gp+1∧· · ·∧gp+q ∈ Λq(E)
and

f ∧ g = f1 ∧ · · · ∧ fp+q.

Proof: by deϐinition,

f1 ∧ · · · ∧ fp(x1, . . . , xp) =
∑
σ∈Sp

ϵ(σ)f1(xσ(1)) · · · fp(xσ(p)),

fp+1 ∧ · · · ∧ fp+q(xp+1, . . . , xp+q) =
∑
τ∈Sq

ϵ(τ)fp+1(xτ(p+1)) · · · fp+q(xτ(p+q)).

It is easy to see that

Sp ≃ {σ ∈ Sp+q | σ(j) = j, p+ 1 ≤ j ≤ p+ q} and Sq ≃ {τ ∈ Sp+q | τ(j) = j, 1 ≤ j ≤ p}.

In Lemma171, wewill see that every σ̃ ∈ Sp+q can bewritten uniquely as σ̃ = σσ′σ′′,
with σ ∈ A, σ′ ∈ Sp, and σ′′ ∈ Sq . Then

f1 ∧ · · · ∧ fp+q(x1, . . . , xp+q) =
∑

σ̃∈Sp+q

ϵ(σ̃)f1(xσ̃(1)) · · · fp+q(xσ̃(p+q))

=
∑

σ,σ′,σ′′

ϵ(σσ′σ′′)f1(xσσ′σ′′(1)) · · · fp+q(xσσ′σ′′(p+q))

=
∑

σ,σ′,σ′′

ϵ(σ)ϵ(σ′)ϵ(σ′′)f1(xσσ′(1)) · · · fp(xσσ′(p))fp+1(xσσ′′(p+1)) · · · fp+q(xσσ′′(p+q))
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aaaaaa

so that
f1 ∧ · · · ∧ fp+q(x1, . . . , xp+q)

=
∑
σ∈A

ϵ(σ)
( ∑

σ′∈Sp

ϵ(σ′′)f1(xσσ′(1)) · · · fp(xσσ′(p))
)( ∑

σ′′∈Sq

ϵ(σ′′)fp+1(xσσ′′(p+1)) · · · fp+q(xσσ′′(p+q))
)

=
∑
σ∈A

f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)) = f ∧ g(xσ(p), . . . , xσ(p+q)).

That this (p+ q)−form is alternating is left as an exercise. ■

This leads us to the main result of this section.

aaaaaa

Theorem 170
Let f ∈ Λp(E) and g ∈ Λq(E). Then f ∧ g ∈ Λp+q(E).

Proof: according to Theorem 167, f is a linear combination of wedge prod-
ucts of p−forms overE of the form e∗i1 ∧ · · ·∧e

∗
ip ; similarly, g is a linear combination

of wedge products of q−forms over E of the form e∗j1 ∧ · · · ∧ e
∗
jq .

According to Lemma 169, expressions of the form

(e∗i1 ∧ · · · ∧ e
∗
ip) ∧ (e∗j1 ∧ · · · ∧ e

∗
jq) (12.1)

are alternating (p+ q)−forms.

Thus f ∧ g is a linear combination of alternating (p + q)−forms as in (12.1);
since Λp+q(E) is a vector space over E (see Corollary 168), f ∧ g is alternating. ■

The wedge product of alternating forms is thus well-deϐined, and it has a set of useful prop-
erties. Let f ∈ Λp(E), g ∈ Λq(E), h ∈ Λr(E). Then:

1. f ∧ (g ∧ h) = (f ∧ g) ∧ h (the wedge product is associative);

2. f ∧ g = (−1)pqg ∧ f (it is not commutative), and

3. if u : E → F is a linear transformation, f ∈ Λp(E), and g ∈ Λq(F ), then u(f) ∈ Λp(E),
where

u(f)(x1, . . . , xp) = f(u(x1), . . . , u(xp));

u(g) ∈ Λq(E), where

u(g)(x1, . . . , xp) = g(u(x1), . . . , u(xq)),

and u(f ∧ g) = u(f) ∧ u(g) ∈ Λp+q(E) (the proof is left as an exercise).
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We ϐinish this section with the promised lemma.

aaaaaa

Lemma 171
If σ̃ ∈ Sp+q , there is a unique triplet σ ∈ A, σ′ ∈ Sp, and σ′′ ∈ Sq such that σ̃ = σσ′σ′′.

Proof: let A′ = {σ̃(1), . . . , σ̃(p)} ⊆ {1, . . . , p + q}. List the integers in A′ in
increasing order, and deϐine σ′ by σ′(j) =rank of σ̃(j) inA′, for 1 ≤ j ≤ p.

Similarly, deϐine σ′′ by σ′′(j) =rank of σ̃(i) inA′′ = ordered{σ̃(p+ 1), . . . , σ̃(p+ q)},
for p+ 1 ≤ i ≤ p+ q.

If we write A′ = {i1 < · · · < ip} and A′′ = {ip+1 < · · · < ip+q}, we can then
deϐine σ by σ(j) = ij , 1 ≤ j ≤ p+ q. Then σ̃ = σσ′σ′′. ■

12.4 Solved Problems
1. Let E be a ϐinite-dimensional vector space over R, with dim(E) = 3. If x, y, z ∈ E are

linearly dependent, show that f(x, y, z) = 0 for any alternating linear 3−form f .
Proof: let {e1, e2, e3} be the canonical basis of E. Since x, y, z ∈ E are linearly
dependent, (at least) one of them may be expressed as a linear combination of the
other two. Without loss of generality, say x = ay+ bz, with a, b ∈ R. Then

f(x, y, z) = f(ay+ bz, y, z) = af(y, y, z) + bf(z, y, z) = a · 0 + b · 0 = 0,

since f is alternating. ■

2. Let E be a ϐinite-dimensional vector space over R, with dim(E) = 3. If x, y, z ∈ E are linearly
independent, show that f(x, y, z) ̸= 0 for any alternating linear 3−form f ̸= 0.

Proof: let {e1, e2, e3} be the canonical basis of E. Since f ≠ 0, f(e1, e2, e3) ̸= 0.
Write

x = x1e1 + x2e2 + x3e3
y = y1e1 + y2e2 + y3e3
z = z1e1 + z2e2 + z3e3

Since {x, y, z} are linearly independent,

det

x1 y1 z1
x2 y2 z2
x3 y3 z3

 ̸= 0.

Then

f(x, y, z) =
∑
i ̸= j
i ̸= k
j ̸= k

xiyjzkf(e1, e2, e3) = det

x1 y1 z1
x2 y2 z2
x3 y3 z3

 · f(e1, e2, e3) ̸= 0. ■
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3. Show that the inner product (· | |·) : Rn × Rn → R is a bilinear form.

Proof: the inner product (· | ·) : Rn × Rn → R is deϐined by

(x | y) =
n∑

i=1

xiyi.

In order to show it is bilinear, we need to show that for all x, y, z ∈ Rn, a, b ∈ R, we
have

(ax+ by | z) = a(x|z) + b(y | z)
(x | ay+ bz) = a(x | y) + b(x | z)

But

(ax+ by | z) =
n∑

i=1

(axi + byi)zi = a
n∑

i=1

xizi + b
n∑

i=1

yizi = a(x | z) + b(y | z)

and

(x | ay+ bz) =
n∑

i=1

xi(ayi + bzi) = a
n∑

i=1

xiyi + b
n∑

i=1

xizi = a(x | y) + b(x | z)

so that the inner product is indeed bilinear. It is not alternating, however, since we
would need (x | x) = 0 for all x ∈ Rn but (e1 | e1) = 1. ■

4. Show that det : Rn × · · · × Rn → R is a bilinear form.

Proof: that this form is both multilinear and alternating is immediate due to the
properties of the determinant that you have seen/will see in your linear algebra
courses:

Firstly, det (x1, . . . , a1y1 + a2y2, . . . , xn) =
2∑

j=1

aj det (x1, . . . , yj , . . . , xn)

Secondly, det (x1, . . . , xn) = 0 if xi = xj for some i ̸= j.
■

5. Show that {e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip
: 1 ≤ ij ≤ n} forms a basis of the vector space of linear p−forms

overE. What is the dimension of that vector space?

Proof: recall that e∗i : E → R is the linear functional such that e∗i (ej) = δi,j .

Let us ϐirst assume that the set in question is indeed a basis of the space of all lin-
ear (but not necessarily alternating) p−forms. There are n possible choices for each
1−form e∗ij appearing in the tensor product. Since there are p such forms, there is a
total of np tensor products. Hence, dim({space of p−linear forms overE}) = np.
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We now show that the set is such a basis. First, note that for any choice of indices ij ,
1 ≤ j ≤ p, e∗i1 ⊗ · · · e∗ip is a p−linear form overE; indeed,

e∗i1⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , ay1 + by2, . . . , xp)

= e∗i1(x1) · · · e
∗
ij (ay1 + by2) · · · e∗ip(xp)

= ae∗i1(x1) · · · e
∗
ij (y1) · · · e

∗
ip(xp) + be∗i1(x1) · · · e

∗
ij (y2) · · · e

∗
ip(xp)

= ae∗i1 ⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , y1, . . . , xp) + be∗i1 ⊗ · · · ⊗ e∗ij ⊗ · · · ⊗ e∗ip(x1, . . . , y2, . . . , xp)

since e∗ij is linear. Hence,

Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip : 1 ≤ ij ≤ n} ⊆ {space of p−linear forms overE}

Now, let f be a p−linear form, and suppose {e1, . . . , en} be the canonical basis ofE.
For 1 ≤ j ≤ p, write

xj =
n∑

i=1

xj,iei.

Then

f(x1, . . . , xp) =
n∑

j1,...,jp=1

xj1,1 · · ·xjp,1f(ej1 , . . . , ejp)

=
n∑

j1,...,jp=1

e∗j1(x1) · · · e
∗
jp(xp)f(ej1 , . . . , ejp)

=

n∑
j1,...,jp=1

f(ej1 , . . . , ejp)e∗j1 ⊗ · · · ⊗ e∗jp(x1, . . . , xp)

and so f ∈ Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip
: 1 ≤ ij ≤ n}. Consequently,

Span{e∗i1 ⊗ e∗i2 ⊗ · · · e
∗
ip : 1 ≤ ij ≤ n} = {space of p−linear forms overE}

It remains only to show that the tensor products are linearly independent. To do so,
suppose that

n∑
j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp = 0

Then
n∑

j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(x1, . . . , xp) = 0

for all (x1, . . . , xp) ∈ Ep. Fix j∗1 , . . . , j∗p . Then (ej∗1 , . . . , ej∗p ) ∈ E
p and so

n∑
j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(ej∗1 , . . . , ej∗p ) = 0
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But
n∑

j1,...,jp=1

aj1,...,jpe∗j1 ⊗ · · · ⊗ e∗jp(ej∗1 , . . . , ej∗p ) = aj∗1 ,...,j∗p

so that aj∗1 ,...,j∗p = 0. But j∗1 , . . . , j∗p were arbitrary, so thatwe indeed have aj1,...,jp = 0
for all 1 ≤ j1, . . . , jp ≤ n, and the tensor products are linearly independent. ■

6. Let f1, f2, . . . , fp be linear 1−forms overE and σ ∈ Sp. Show that

fσ(1) ∧ · · · ∧ fσ(p) = ε(σ)f1 ∧ · · · ∧ fp.

Proof: by deϐinition, we have

fσ(1) ∧ · · · ∧ fσ(p)(x1, . . . , xp) = det

fσ(1)(x1) · · · fσ(1)(xp)
... ...

fσ(p)(x1) · · · fσ(p)(xp)


= ϵ(σ) det

f1(x1) · · · f1(xp)
... ...

fp(x1) · · · fp(xp)


= ϵ(σ)f1 ∧ · · · ∧ fp(x1, . . . , xp)

■

7. Let f1, f2, . . . , fp be linear 1−forms overE such that fi = fj for some i ̸= j. Show that f1∧· · ·∧
fp = 0.

Proof: by deϐinition, we have

f1 ∧ · · · ∧ fp(x1, . . . , xp) = det

f1(x1) · · · f1(xp)
... ...

fp(x1) · · · fp(xp)


If fi = fj for i ̸= j, two of the rows in the above matrix are identical; as a result, the
determinant is 0. ■

8. Provide a proof of Corollary 168.

Proof: you should be able tomake an informal argument for this one. In essence, the
proof runs as follows:
a) Λp(E) is a subspace of the space of linear p−forms overE.
b) e∗i1 ∧ · · · ∧ e

∗
ip
∈ Λp(E) for all 1 ≤ i1, . . . , ip ≤ n, so that

Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n} ⊆ Λp(E).

c) Any f ∈ Λp(E) can be written as

f =
∑

i1<···<ip

f(ei1 , . . . , eip)e∗i1 ∧ · · · ∧ e
∗
ip
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so that
Λp(E) ⊆ Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n}.

Consequently,

Λp(E) = Span{e∗i1 ∧ · · · ∧ e∗ip : 1 ≤ i1, . . . , ip ≤ n}.

d) For each ϐixed choice of i1, . . . , ip there are two possibilities:
i. if the indices are all distinct, let

Ai1,...,ip =
{
σ ∈ Sp : σ({i1, . . . , ip}) ⊆ {i1, . . . , ip}

}
.

Then e∗i1 ∧ · · · ∧ e∗ip = ϵ(σ)e∗σ(i1) ∧ · · · ∧ e∗σ(ip) for each σ ∈ Ai1,...,ip . Con-
sequently, all wedge products containing e∗i1 , . . . , e

∗
ip

are linearly depen-
dent. Remove all of them except the canonical one, i.e. the one for which
i1 < . . . < ip (this can be done since all indices are distinct);

ii. if some of the indices repeat, then e∗i1 ∧ · · · ∧ e
∗
ip
= 0 (see exercise 8). Con-

sequently, all such wedge products are linearly dependent. Remove all of
them.

e) The remaining wedge products {e∗i1 ∧ · · · ∧ e∗ip : i1 < · · · < ip} span Λp(E).
One can show that they are linearly independent just as was done at the end of
exercise 6. Thus

{e∗i1 ∧ · · · ∧ e
∗
ip : i1 < · · · < ip}

is a basis of Λp(E).
f) If n ≤ p, there are

(
n
p

)
ways of selecting p distinct indices from a set of n indices,

and so dim(Λp(E)) =
(
n
p

)
.

g) In the event where p > n, there is no way of selecting p distinct indices from a
set of n indices, and so Λp(E) = {0}. ■

9. Let f = f1∧f2 and g = g1∧g2 be alternating p−forms overE. Work out the details and express
f ∧ g in terms of f and g, and show that f ∧ g is alternating.

Proof: we have

A = {σ ∈ S4|σ(1) < σ(2) and σ(3) < σ(4)}
= {id, (2 3), (2 4 3), (1 2 3), (1 2 4 3), (1 3)(2 4)}

Consequently,

f ∧ g(x1, x2, x3, x4) =
∑
σ∈A

ϵ(σ)f(xσ(1), xσ(2))g(xσ(3), xσ(4))

= f(x1, x2)g(x3, x4)− f(x1, x3)g(x2, x4) + f(x1, x2)g(x3, x4)
+ f(x2, x3)g(x1, x4)− f(x2, x4)g(x1, x3) + f(x3, x4)g(x1, x2)

We can easily verify that f ∧ g is alternating, using the fact that both f and g are
alternating. ■
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12.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Prove Proposition 166 for p ≥ 3.

3. Let f1, . . . , fp ∈ E∗. Show that if fi = fj for some i ̸= j, then f1 ∧ · · · ∧ fp = 0.

4. Prove Theorem 167.

5. Show that if p = q = 2, the set A ⊆ S4 contains only 6 permutations.

6. Let f, f1, f2 be alternating p−forms overE, g, g1, g2 be alternating q−forms overE, and
α ∈ R. Show that

a) (f1 + f2) ∧ g = f1 ∧ g + f2 ∧ g
b) f ∧ (g1 + g2) = f ∧ g1 + f ∧ g2
c) (αf) ∧ g = α(f ∧ g) = f ∧ (αg)

7. Complete the proof of Lemma 169.

8. Let f ∈ Λp(E), g ∈ Λq(E), andh ∈ Λr(E). Show that f∧(g∧h) = (f∧g)∧h ∈ Λp+q+r(E)
and that f ∧ g = (−1)pqg ∧ f .

9. Prove property 3 on p. 304.

10. Let k be odd and ω ∈ Λk(Rn). Show that ω ∧ ω = 0. Is the condition on k necessary,
sufϐicient, or both?
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Chapter 13

Differential Forms

In this chapter, we introduce the notion of differential p−forms overRn,
which are derivatives of alternating linear p−forms overRn. This new no-
tion is a generalization of the differential of a function and admits a num-
ber of applications inmathematical physics (GrandUniϐied Theories, Yang-
Mills theory, superstring theory, etc.)

13.1 Differential p−Forms
We start by discussing the situation for n = 3. Let U ⊆O R3. A differential 1−form over U
is a function U → (R3)∗; the set of all such differential forms is denoted Ω1(U).

If {e1, e2, e3} is the canonical basis of R3, then for anyw ∈ R3 we have
w = w1e1 + w2e2 + w3e3.

We denote the dual basis of (R3)∗ by { dx, dy, dz}, which is to say that
dx, dy, dz : R3 → R and dx(w) = w1, dy(w) = w2, dz(w) = w3 for allw ∈ R3.

Then, if α ∈ (R3)∗, there are unique P,Q,R ∈ R such that
α = P dx+Q dy +R dz.

In general, if ω ∈ Ω1(U), ∃!P,Q,R : U → R such that
ω(u) = P (u) dx+Q(u) dy +R(u) dz, for all u ∈ U.

Let f : U → R be differentiable on U ; the differential of f is df ∈ Ω1(U), where

df(u) = ∂f

∂x
(u) dx+ ∂f

∂y
(u) dy + ∂f

∂z
(u) dz, for all u ∈ U.

Let ω ∈ Ω1(U). If the constituents P,Q,R : U → R are continuous on U (respectively C1 or
C∞), then ω is continuous U (respectively C1 or C∞).¹

¹These restrictions on P,Q,Rmake Ω1(U) a C0(U,R)−module (respectively, C1(U,R) or C∞(U,R)).
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aaaaaa
Proposition 172
Ω1(U) is an inϔinite-dimensional vector space over R.

Proof: left as an exercise. ■

If U ⊆O Rn, f : U → R is C0 (respectively C1 or C∞) and ω is a C0 (respectively C1 or C∞)
differential 1−form over U , then fω ∈ Ω1(U), where

fω(u) = f(u)P (u) dx+ f(u)Q(u) dy + f(u)R(u) dz, ∀u ∈ U.

A differential p−form ω over U is a map ω : U → Λp(Rn); the set of all such differential
forms is denoted by Ωp(U). If p = 0, Ω0(U) = Ck(U,R), where k ∈ {0, 1,∞}; Corollary 168
shows that Ωp(U) = {0}when p > n.

aaaaaa

Proposition 173
Ωp(U) is an inϔinite-dimensional vector space over R and a Ck(U)−module (i.e., if
f ∈ Ck(U,R) and ω ∈ Ωp(U), then fω ∈ Ωp(U) for k ∈ {0, 1,∞}.

Proof: left as an exercise. ■

Let ω1 ∈ Ωp1(U) and ω2 ∈ Ωp2(U). By deϐinition, ωi(u) ∈ Λpi(U) for all u ∈ U , for i = 1, 2;
according to Theorem 170, we must have

ω1(u) ∧ ω2(u) ∈ Λp1+p2(U),

and so the function ω1 ∧ ω2 : U → Λp1+p2(U) deϐined by

(ω1 ∧ ω2)(u) = ω1(u) ∧ ω2(u), for all u ∈ U

is a differential (p1 + p2)−form over U , which is to say that ω1 ∧ ω2 ∈ Ωp1+p2(U). This differ-
ential form is called thewe dge (or exterior) product of ω1 and ω2.²

aaaaaa

Example: if n = 3, we have

Ω0(U) = {ω = f | f ∈ Ck(U,R)};

Ω1(U) = {ω = f dx+ g dy + h dz | f, g, h ∈ Ck(U,R)};

Ω2(U) = {ω = f dx ∧ dy + g dx ∧ dz + h dy ∧ dz | f, g, h ∈ Ck(U,R)};

Ω3(U) = {ω = f dx ∧ dy ∧ dz | f ∈ Ck(U,R)}, and

Ωp(U) = {0}, when p > 3. □

²It is also sometimes denoted by ω1ω2.
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aaaaaa

Theorem 174

1. For i = 1, 2, let ωi, ω
′
i ∈ Ωpi(U) and f : U → R. Then:

(ω1 + ω′
1) ∧ ω2 = ω1 ∧ ω2 + ω′

1 ∧ ω2;
ω1 ∧ (ω2 + ω′

2) = ω1 ∧ ω2 + ω1 ∧ ω′
2, and

(fω1) ∧ ω2 = f(ω1 ∧ ω2) = ω1 ∧ (fω2).

2. If ω1, . . . , ωq ∈ Ω1(U), then

when ωi = ωj for some i ̸= j, we have ω1 ∧ · · · ∧ ωq = 0;

for σ ∈ Sq , ωσ(1) ∧ · · · ∧ ωσ(q) = ϵ(σ)ω1 ∧ · · · ∧ ωq.

3. For i = 1, 2, 3, let ωi ∈ Ωpi(U). Then:

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3, and
ω1 ∧ ω2 = (−1)p1p2ω2 ∧ ω1.

Proof: left as an exercise. ■

A few examples will help illustrate the main principles.

aaaaaa

Examples: let n = 3, f : U → R, and set

ω1 = dx1 = e∗1, ω2 = dx2 = e∗3, ω3 = dx3 = e∗3 ∈ Ω1(U).

dx1 ∧ dx2 = (−1)1·1 dx2 ∧ dx1;

dx1 ∧ dx2 ∧ dx3 = dx3 ∧ dx1 ∧ dx2 = − dx1 ∧ dx3 ∧ dx2;

dx1 ∧ dx1 = dx2 ∧ dx2 = dx3 ∧ dx3 = 0, and

(f dx1 ∧ dx2) ∧ dx3 = (−1)2·1 dx3 ∧ (f dx1 ∧ dx2). □

This section’s ϐinal result will set the stage for the rest of the chapter and the next one.

aaaaaa

Theorem 175
Let ω ∈ Ωp(U). We can uniquely write

ω =
∑

Pi1,··· ,ip dxi1 ∧ · · · ∧ dxip ,

where Pi1,··· ,ip : U → R for i1 < · < ip.

Proof: left as an exercise. ■
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13.2 Exterior Derivative
In what follows, we ϐix k =∞ so that Ωp(U) represents the vector space of C∞ (smooth) dif-
ferential p−forms over U ⊆O Rn.

The exterior derivative (or differential) of ω ∈ Ωp(U) is deϐined recursively.

1. If f ∈ Ω0(U) (that is, f : U → R is smooth), then its exterior derivative is

df =
n∑

i=1

∂f

∂xi
dxi ∈ Ω1(U).

2. If ω =
∑n

i=1 Pi dxi ∈ Ω1(U), Pi ∈ C∞(U,R) for 1 ≤ i ≤ n, then its exterior derivative is

dω =
n∑

i=1

dPi ∧ dxi =
n∑

i=1

(
n∑

j=1

∂Pi

∂xj
dxj
)
∧ dxi =

∑
i<j

(
∂Pj

∂xi
− ∂Pi

∂xj

)
dxi ∧ dxj ∈ Ω2(U).

...

p. In general, if
ω =

∑
i1<···<ip

Pi1,··· ,ip dxi1 ∧ · · · ∧ dxip ∈ Ωp(U),

then its exterior derivative is

dω =
∑

i1<···<ip

dPi1,··· ,ip ∧ dxi1 ∧ · · · ∧ dxip ∈ Ωp+1(U).

As we shall see after the next examples, the exterior derivative behaves as a regular deriva-
tive with respect to the sum of differential forms and to the product of functions, but there is
a twist for a general product of differential forms.

aaaaaa

Examples: throughout, let f, g, h ∈ C∞(Rn,R) for an appropriate n.

1. In R2, let ω = f dx+ g dy ∈ Ω1(R2). Then

dω = df ∧ dx+ dg ∧ dy =

(
∂f

∂x
dx+ ∂f

∂y
dy
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy
)
∧ dy

=
∂f

∂x
dx ∧ dx+ ∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dy + ∂g

∂y
dy ∧ dy

=
∂f

∂x
· 0− ∂f

∂y
dx ∧ dy + ∂g

∂x
dx ∧ dy + ∂g

∂y
· 0 =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy ∈ Ω2(R2).
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aaaaaa

2. In R3, let ω = f dx+ g dy + h dz ∈ Ω1(R3). Then

dω = df ∧ dx+ dg ∧ dy + dh ∧ dz

=

(
∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy + ∂g

∂z
dz
)
∧ dy+

=

(
∂h

∂x
dx+ ∂h

∂y
dy + ∂h

∂z
dz
)
∧ dz

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy −

(
∂f

∂z
− ∂h

∂x

)
dx ∧ dz +

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz ∈ Ω2(R3).

3. In R3, let ω = f dx ∧ dy + g dx ∧ dz + h dy ∧ dz ∈ Ω2(R3). Then

dω = df ∧ dx ∧ dy + dg ∧ dx ∧ dz + dh ∧ dy ∧ dz

=

(
∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz
)
∧ dx ∧ dy +

(
∂g

∂x
dx+ ∂g

∂y
dy + ∂g

∂z
dz
)
∧ dx ∧ dz+

=

(
∂h

∂x
dx+ ∂h

∂y
dy + ∂h

∂z
dz
)
∧ dy ∧ dz

=
∂f

∂z
dz ∧ dx ∧ dy + ∂g

∂y
dy ∧ dx ∧ dz + ∂h

∂x
dx ∧ dy ∧ dz

=

(
∂f

∂z
− ∂g

∂y
+
∂h

∂x

)
dx ∧ dy ∧ dz ∈ Ω3(R3). □

aaaaaa
Theorem 176
Let ω1, ω2 ∈ Ωp(U). Then d(ω1 + ω2) = dω1 + dω2.

Proof: left as an exercise. ■

aaaaaa

Lemma 177
If f, g ∈ Ω0(Rn), then d(fg) = (df)g + f(dg).

Proof: the product fg ∈ Ω0(Rn) is itself a function Rn → R. By deϐinition,

d(fg) =
n∑

i=1

∂(fg)

∂xi
dxi =

n∑
i=1

(
∂f

∂xi
g + f

∂g

∂xi

)
dxi

=

(
n∑

i=1

∂f

∂xi
dxi
)
g + f

(
n∑

i=1

∂g

∂xi
dxi
)

= (df)g + f(dg). ■

P. Boily (uOttawa) 315



13.2. EXTERIOR DERIVATIVE

Lemma 177 is a special case (with p = 0) of the more general rule for the derivative of the
product of differential forms.

aaaaaa

Theorem 178
Let ω ∈ Ωp(U), ω′ ∈ Ωq(U). Then d(ω ∧ ω′) = dω ∧ ω′ + (−1)pω ∧ dω′.

Proof: if {i1, . . . , iℓ} ⊆ {1, . . . , n} (in increasing order) and f ∈ C∞(U,R),
then

d(f dxi1 ∧ · · · ∧ dxiℓ) = df ∧ dxi1 ∧ · · · ∧ dxiℓ .
Since d(ω1 + ω2) = dω1 + dω2, we only need to verify the conclusion for

ω = f dxi1 ∧ · · · ∧ dxip , i1 < · · · < ip

ω′ = g dxj1 ∧ · · · ∧ dxjq , j1 < · · · < jq.

Then
d(ω ∧ ω′) = d(f dxi1 ∧ · · · ∧ dxip ∧ g dxj1 ∧ · · · ∧ dxjq)

thm 174.1 = d(fg dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq)
= d(fg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

lemma 177 = [(df)g + f(dg)] ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq
= (df)g ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

+ f(dg) dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq
= df ∧ dxi1 ∧ · · · ∧ dxip︸ ︷︷ ︸

=dω

∧ g dxj1 ∧ · · · ∧ dxjq︸ ︷︷ ︸
=ω′

+ (−1)p f dxi1 ∧ · · · ∧ dxip︸ ︷︷ ︸
=ω

∧ dg ∧ dxj1 ∧ · · · ∧ dxjq︸ ︷︷ ︸
=dω′

= dω ∧ ω′ + (−1)pω ∧ dω′. ■

We illustrate this in the case where ω =
∑n

i=1 fi dxi ∈ Ω1(Rn) and ω′ = h ∈ Ω0(Rn). Then

ω ∧ ω′ =
n∑

i=1

fih dxi and d(ω ∧ ω′) = d
(

n∑
i=1

fih dxi
)

=
n∑

i=1

d(fih dxi) =
n∑

i=1

d(fih) ∧ dxi

=
n∑

i=1

[(dfi)h+ fi(dh)] ∧ dxi =
n∑

i=1

(dfi ∧ dxi)h+
n∑

i=1

fi dh ∧ dxi

= dω ∧ ω′ +
n∑

i=1

fi(− dxi ∧ dh) = dω ∧ ω′ − ω ∧ dω′

= dω ∧ ω′ + (−1)1ω ∧ dω′.
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The next result showcases a crucial property of exterior derivatives.

aaaaaa

Theorem 179
Let ω ∈ Ωp(U). Then d(dω) = 0.

Proof: if f ∈ C∞(U,R) = Ω0(U), then df ∈ Ω1(U) and

d(df) = d
(

n∑
i=1

∂f

∂xi
dxi
)

=
n∑

i=1

d
(
∂f

∂xi

)
∧ dxi =

n∑
i=1

(
n∑

j=1

∂2f

∂xi∂xj
dxj
)
∧ dxi.

When i = j, dxi ∧ dxj = 0; when i > j, dxi ∧ dxj = − dxj ∧ dxi, so that

d2f =
∑
i<j

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
︸ ︷︷ ︸

=0 since f∈C∞(U,R)

dxi ∧ dxj = 0.

Furthermore,

d(dxi) = d(1 · dxi) = d(1) ∧ dxi = 0 ∧ dxi = 0.

Since d(ω + ω′) = dω + dω′, it is sufϐicient to show that d2(f dxi1 ∧ · · · ∧ dxip) = 0,
where {i1 < . . . < ip} ⊆ {1, . . . , n} and f is as above. As

d(d(f dxi1 ∧ · · · ∧ dxip)) = d(df ∧ dxi1 ∧ · · · ∧ dxip)
= d(df) ∧ dxi1 ∧ · · · ∧ dxip + (−1)0+1df ∧ d(dxi1 ∧ · · · ∧ dxip)
= 0 ∧ dxi1 ∧ · · · ∧ dxip − df ∧ 0 = 0. ■

A differential form ω ∈ Ωp(U) is closed if dω = 0.

aaaaaa Example: let n = 1 and ω ∈ Ω1(R1). Then dω ∈ Ω2(R1); since Ω2(R1) = {0}, ω is
automatically closed. □

13.3 Antiderivative
Let p > 1, U ⊆O Rn and ω ∈ Ωp(U); ω is exact if ∃η ∈ Ωp−1(U) such that dη = ω. The
differential form η is an antiderivative of ω. If ω is exact, then dω = d2η = 0 and so every
exact form is also closed.

If n = 1, let f ∈ Ω0(R). Then Ω1(R) = {g dx | g ∈ Ω0(R)}. If F : R → R is such that
F ′(x) = f(x) for all x ∈ R, then F ∈ Ω0(R) and

dF =
∂F

∂x
dx = f dx.

Such an F exists by Theorem 60 since f is continuous onR. Hence, every ω ∈ Ω1(R) is exact.
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Examples

1. Let ω = P1(x, y) dx+ P2(x, y) dy = y dx− x dy ∈ Ω1(R2). Since

dω =

(
∂P2

∂x
− ∂P1

∂y

)
dx ∧ dy = (−1− 1) dx ∧ dy = −2 dx ∧ dy ̸= 0;

since ω is not closed, it cannot be exact. □

2. Letω = f(x, y) dx+ g(x, y) dy = (3x2 + 2xy + y2) dx+ (x2 + 2xy + 3y2) dy ∈ Ω1(R2).
Since

dω = df ∧ dx+ dg ∧ dy

=

(
∂f

∂x
dx+ ∂f

∂y
dy
)
∧ dx+

(
∂g

∂x
dx+ ∂g

∂y
dy
)
∧ dy

=
∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dy =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

But
∂g

∂x
= 2x+ 2y =

∂f

∂y

in this speciϐic case, so dω = 0, which means that ω is closed.

We can show that this particular closed form is also exact, which is to
say that ∃F ∈ Ω0(R2) = C∞(R2,R) such that dF = ω. If such a F exists,

dF =
∂F

∂x
dx+ ∂F

∂y
dy = f(x, y) dx+ g(x, y) dy,

and we must have
∂F

∂x
= f(x, y) = 3x2 + 2xy + y2 and ∂F

∂y
= g(x, y) = x2 + 2xy + 3y2.

Integrating the ϐirst of these with respect to x yields

F (x, y) = x3 + x2y + y2x+ φ(y).

Differentiating with respect to y yields

∂F

∂y
= x3 + 2xy + φ′(y) = x2 + 2xy + 3y2,

so that φ′(y) = 3y2, and so φ(y) = y3 + C . Thus the antiderivatives of ω take
the form

F (x, y) = x3 + x2y + xy2 + y3 + C,

where C ∈ R. □
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Exact forms are necessarily closed; the converse is valid when U ⊆O Rn has an additional
property. A set U ⊆ R is star-shaped if ∃a ∈ U such that ∀y ∈ U we have

[a, y] = {(1− t)a+ ty | 0 ≤ t ≤ 1} = {a+ t(y− a) | 0 ≤ t ≤ 1} ⊆ U.

In R2, for instance, U1 (on the left) is star-shaped, whereas U2 (on the right) is not.

We now present a highly technical lemma that will allow us to prove the desired result.

aaaaaa

Theorem 180
Let U ⊆O Rn, I = [0, 1], and φ : U × I → R a continuous function in the Euclidean
metric. Then the function ψ : U → R deϔined by

ψ(x =

∫ 1

0

φ(x, t)dt

is continuous.

Furthermore, if Dxφ : U × I → End(Rn,R) ≃ (Rn)∗ exists and is continuous,
then ψ is C1 and

Dxψ(x) =
∫ 1

0

Dxφ(x, t)dt.
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Proof: we start by proving the continuity ofψ. Wewant to show that ∀ε > 0, ∃δε > 0
such that

∥x− x′∥ < δε =⇒ |ψ(x)− ψ(x′)| < ε.

For x, x′ ∈ U , we have

|ψ(x)− ψ(x′)| =
∣∣∣∣∫ 1

0

(φ(x, t)− φ(x′, t))dt
∣∣∣∣ ≤ ∫ 1

0

|φ(x, t)− φ(x′, t)|dt.

Let ε > 0 and (x, t) ∈ U × I . Since φ is continuous, ∃δε = δε(x, t) such that

∥x− x′∥, |t− t′| < δε =⇒ |φ(x, t)− φ(x′, t′)| < ε/12.

In particular,
∥x− x′∥ < δε =⇒ |φ(x, t′)− φ(x′, t′)| < ε/6.

For a x ϐixed, deϐineVt = {t′ ∈ R | |t−t′| < δε(x, t)}∩I; then {Vt}t∈I is an open cover
of the subspace I ⊆ R. But I is a compact subspace of R in the Euclidean topology,
and so there is a ϐinite subcover {Vt1 , . . . , VtK} of I with

K∪
i=1

Vti = I.

Let δε(x) = min{δ(x, ti) | i = 1, . . . , K}. Thus for any t′ ∈ I , we can ϐind a ti ∈ I
such that |ti − t′| < δε(x, ti). If we also have ∥x− x′∥ < δε(x), then

|φ(x, t′)− φ(x′, t′)| ≤ |φ(x, t′)− φ(x, ti)|+ |φ(x, ti)− φ(x′, ti)|+ |φ(x′, ti)− φ(x′, t′)|
< ε/6 + ε/6 + ε/6 = ε/2.

Set δε = δε(x). Then for all x, x′ ∈ U we have

|ψ(x)− ψ(x′)| ≤
∫ 1

0

ε

2
dt =

ε

2
< ε.

Wenow tackle the differentiability ofψ. SinceDxφ is continuous by assumption, the
same argument as above shows that the function

x ∈ U 7→ λ(x) =
∫ 1

0

Dxφ(x, t)dt

is continuous. It remains only to show that λ(x) = Dxψ(x), that is, ∀ε > 0, ∃δε > 0
such that

∥h∥ < δε =⇒ |ψ(x+ h)− ψ(x)− λ(x)h| < ε · ∥h∥.

But

|ψ(x+ h)− ψ(x)− λ(x)h| =
∣∣∣∣∫ 1

0

(φ(x+ h, t)− φ(x, t))dt−
∫ 1

0

Dxφ(x, t)hdt
∣∣∣∣
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≤
∫ 1

0

|φ(x+ h, t)− φ(x, t))−Dxφ(x, t)h|dt

Taylor’s thm =

∫ 1

0

|Dxφ(x+ θ, t)−Dxφ(x, t)|dt,

for θ ∈ [0,h]. ButDxφ is continuous so ∀ε > 0, ∃δε > 0 such that

∥θ∥ ≤ ∥h∥ < δε =⇒ |Dxφ(x+ θ, t)−Dxφ(x, t)| < ε.

Hence
|ψ(x+ h)− ψ(x)− λ(x)h| <

∫ 1

0

ε∥h∥dt = ε∥h∥,

which completes the proof. ■.

And now, the pièce de résistance.
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Theorem 181 (PĔĎēĈĆėĊ́'Ę LĊĒĒĆ)
Let U ⊆ Rn be star-shaped and containing 0. If ω ∈ Ωp(U) is closed, then it is exact.

Proof: we start by proving the result for n = 1, p = 1. Let ω ∈ Ω1(U). Then
ω = f dx, with f ∈ C∞(U,R). Since Ω2(U) = {0}, we have dω = 0 ∈ Ω2(U). We
show that ∃F ∈ Ω0(U) such that dF = ω.

Recall that
F (x) =

∫ x

0

f(t)dt =

∫ 1

0

f(xs)xds =

∫ 1

0

g(x, s)ds.

According to Lemma 180,

F ′(x) =

∫ 1

0

∂g

∂x
(x, s)ds =

∫ 1

0

(f(xs) + sf ′(xs))ds

=

∫ 1

0

d

ds
[sf(x, s)]ds = 1 · f(x, 1)− 0 · f(x, 0) = f(x).

Hence dF = ∂F
∂x

dx = F ′(x) dx = f(x) dx = ω.

Now suppose that n > 1, p = 1. Let ω ∈ Ω1(U) with dω = 0. We want to
show ∃η = F ∈ Ω0(U) = C∞(U,R) such that dη = ω. By hypothesis,

ω =
n∑

i=1

fi dxi, with fi ∈ C∞(U,R)
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and

dω =
n∑

i=1

dfi ∧ dxi =
n∑

i,j=1

∂fi
∂xj

dxi ∧ dxj =
∑
i<j

(
∂fi
∂xj
− ∂fj
∂xi

)
dxi ∧ dxj = 0,

and so
∂fi
∂xj

=
∂fj
∂xi

, for all 1 ≤ i < j ≤ n.

Let
F (x) = F (x1, . . . , xn) =

n∑
i=1

fi(xs)xids =
n∑

i=1

fi(x1s, . . . , xns)xi︸ ︷︷ ︸
=gi(x,s)

ds.

We show that dF = ω:

∂F

∂x1
(x) =

n∑
i=1

∂

∂x1

∫ 1

0

gi(x, s)ds =
n∑

i=1

∫ 1

0

∂

∂x1
gi(x, s)ds

=

∫ 1

0

[
f1(xs) + x1s

∂

∂x1
f(xs)

]
ds+

n∑
j=2

∫ 1

0

xjs
∂

∂x1
fj(xs)ds

=

∫ 1

0

[
f1(xs) +

n∑
j=1

xjs
∂

∂xj
f1(xs)

]
ds,

by the equality of partial derivatives above. Set k1(s) = sf1(xs). Then

k′1(s) = f1(xs) +
n∑

j=1

xjs
∂

∂xj
f1(xs),

so that
∂F

∂x1
(x) =

∫ 1

0

k′(s)ds = k(1)− k(0) = f1(x).

In a similar fashion, we can see that
∂F

∂xi
(x) = fi(x), for all 1 ≤ j ≤ n,

and so
dF =

n∑
i=1

∂F

∂xi
dxi =

n∑
i=1

fi dxi = ω.

We will not be providing the proof for p > 1. ■

Where exactly was the hypothesis that U is star-shaped used?³

³Hint: look at the deϐinition of F (x) (in the case n = 1) and F (x) (in the case n > 1).
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In a nutshell, we have shown the following result.

aaaaaa

Proposition 182
Let U ⊆O R and ω =

∑n
i=1 fi dxi ∈ Ω1(U). Consider the following conditions:

1. ω is exact in U ;

2. ω is closed in U ;

3. ∂fi
∂xj

=
∂fj
∂xi

for all i, j.

Then 1. =⇒ 2. ⇐⇒ 3. Furthermore, if U is star-shaped, then the three conditions
are equivalent.

13.4 Pullback of a Differential Form
LetU ⊆O Rm, V ⊆O Rn, g ∈ C∞(U, V ).⁴ The pullback function g∗ : Ωk(V )→ Ωk(U) satisϐies

g∗(
∧
i

ωi) =
∧
i

g∗(ωi).

We deϐine it as follows.

Case k = 0: if f ∈ C∞(V,R) = Ω0(V ), the pullback is

g∗(f) = f ◦ g : U → R ∈ C∞(U, V ) = Ω0(U).

Case k = 1: if a smooth g : U ⊆o Rm → V ⊆O Rn maps

u = (u1, . . . , um) ∈ U 7→ v = g(u) = (g1(u), . . . , gn(u)) ∈ V,

and ω ∈ Ω1(V ), then ω =
∑n

i=1 fi dxi and the pullback is

g∗(ω) =
n∑

i=1

g∗(fi)g∗(dxi) =
n∑

i=1

(fi ◦ g) dgi =
n∑

i=1

(fi ◦ g)

(
m∑
j=1

∂gi
∂uj

duj
)
.

Let us take a look at some examples.

aaaaaa

Examples

1. Let g : U = R → V = R and consider ω = f dx ∈ Ω1(V ). Then the pullback
g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(u) = (f ◦ g)g∗(dx)(u) = f(g(u)) · g′(u) du. □

⁴We will encounter such functions when we discuss vector ϐields in Section 13.5.
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2. Let g : U = R→ V = R2 be deϐined by

g(t) = (cos t, sin t)

and ω = −y dx+ x dy ∈ Ω1(V ). Then

g∗(dx)(t) = (dg1)(t) = − sin t dt, g∗(dy)(t) = (dg2)(t) = cos t dt,

and the pullback g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(t) = f1(g(t))(dg1)(t) + f2(g(t))(dg2)(t)
= (− sin t)(− sin t dt) + (cos t)(cos t dt) = (sin2 t+ cos2 t) dt = dt. □

3. Let g : U = R2 → V = R2 be deϐined by

g(u) = (g1(u1, u2), g2(u1, u2)) = (u1 cosu2, u1 sinu2)

and ω = f1(x1, x2) dx1 + f2(x1, x2) dx2 = x1 dx1 + x2 dx2 ∈ Ω1(V ). Then

g∗(dx1)(u1, u2) = (dg1)(u1, u2) =
∂g1(u1, u2)

∂u1
du1 +

∂g1(u1, u2)

∂u2
du2

= cosu2 du1 − u1 sinu2 du2

g∗(dx2)(u1, u2) = (dg2)(u1, u2) =
∂g2(u1, u2)

∂u1
du1 +

∂g2(u1, u2)

∂u2
du2

= sinu2 du1 + u1 cosu2 du2,

and the pullback g∗(ω) ∈ Ω1(U) is given by

g∗(ω)(u1, u2) = f1(g(u1, u2))(dg1)(u1, u2) + f2(g(u1, u2))(dg2)(u1, u2)
= u1 cosu2(cosu2 du1 − u1 sinu2 du2) + u1 sinu2(sinu2 du1 + u1 cosu2 du2)
= u1(cos2 u2 + sin2 u2), du = u1 du1. □

Case k > 1: if g : U ⊆O Rm → V ⊆O Rn is smooth and ω = dxi1 ∧ · · · ∧ dxik ∈ Ωk(V ), we
deϐine the pullback

g∗(ω) = g∗(dxi1 ∧ · · · ∧ dxik) = dgi1 ∧ · · · ∧ dgik ∈ Ωk(U).

If
ω =

∑
i1<···<ik

Pi1,··· ,ikdxi1 ∧ · · · ∧ dxik ∈ Ωk(V ),

then the pullback is
g∗(ω) =

∑
i1<···<ik

g∗(Pi1,··· ,ik)g
∗(dxi1∧· · ·∧dxik) =

∑
i1<···<ik

(Pi1,··· ,ik ◦g)dgi1∧· · ·∧dgik ∈ Ωk(U).
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Example: let g : U = R2 → V = R2 be deϐined by

g(u) = (g1(u1, u2), g2(u1, u2)) = (u1 cosu2, u1 sinu2)

and ω = dx1 ∧ dx2 ∈ Ω2(V ). Then

(dg1)(u1, u2) = cosu2 du1 − u1 sinu2 du2, (dg2)(u1, u2) = sinu2 du1 + u1 cosu2 du2,

and the pullback g∗(ω) ∈ Ω2(U) is given by

g∗(ω)(u1, u2) = g∗(dx1 ∧ dx2)(u1, u2) = (dg1)(u1, u2) ∧ (dg2)(u1, u2)
= (cosu2 du1 − u1 sinu2 du2) ∧ (sinu2 du1 + u1 cosu2 du2)
= u1 cos2 u2 du1 ∧ du2 − u1 sin2 u2 du2 ∧ du1
= u1(cos2 u2 + sin2 u2) du1 ∧ du2 = u1 du1 ∧ du2. □

While none of the computations are particularly difϐicult to perform (although they can be
tedious), there is a simpler way to express pullbacks, as the following discussion illustrates.

If g : U = R2 → V = R2 is smooth, then the pullback of dx1 ∧ dx2 ∈ Ω2(V ) by g is

g∗(dx1 ∧ dx2) = dg1 ∧ dg2 =
(
∂g1
∂u1

du1 +
∂g1
∂u2

du2
)
∧
(
∂g2
∂u1

du1 +
∂g2
∂u2

du2
)

=

(
∂g1
∂u1

∂g2
∂u2
− ∂g1
∂u2

∂g2
∂u1

)
du1 ∧ du2 = det(Dg) du1 ∧ du2 ∈ Ω2(U),

whereDg is the Jacobian matrix of g (see Section 21.7).

Generally, ifg : U ⊆O Rm → V ⊆O Rm is smooth, then thepullbackof dxi1∧· · ·∧dxik ∈ Ωk(V )
by g is

g∗(dxi1 ∧ · · · ∧ dxik) = dgi1 ∧ · · · ∧ dgik =

(
m∑
j=1

∂gi1
∂uj

duj
)
∧ · · · ∧

(
m∑
j=1

∂gik
∂uj

duj
)

=
∑

j1<···<jk

det


∂gi1
∂uj1

· · · ∂gi1
∂ujk... . . . ...

∂gik
∂uj1

· · · ∂gik
∂ujk

 duj1 ∧ · · · ∧ dujk ∈ Ωk(U).

If U, V ⊆O Rn, g : U → V smooth, f ∈ C∞(V,R), and ω = f dx1 ∧ · · · ∧ dxn ∈ Ωn(V ), then
the pullback of ω by g is

g∗(ω) = (f ◦ g) dg1 ∧ · · · ∧ dgn = g∗(f) det(Dg) du1 ∧ · · · ∧ dun ∈ Ωn(U).

The pullback commutes with the exterior derivative for 0−differential forms.
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Lemma 183
With the usual assumptions of this section, if f ∈ Ω0(V ), then d(g∗(f)) = g∗(df).

Proof: we use the deϐinition and see that

d(g∗(f)) = d(f ◦ g) =
m∑
j=1

∂(f ◦ g)
∂uj

duj =
m∑
j=1

(
n∑

i=1

(
∂f

∂xi
◦ g
)
∂gi
∂uj

)
duj

=
n∑

i=1

(
∂f

∂xi
◦ g
)( m∑

j=1

∂gi
∂uj

duj
)

= g∗
(

n∑
i=1

∂f

∂xi
dxi
)

= g∗(df),

which completes the proof. ■

But this result does not apply solely to Ω0(V ).
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Proposition 184
Let g : U ⊆O Rm → V ⊆O Rm be smooth. If ω ∈ Ω0(V ), then d(g∗(ω)) = g∗(dω).

Proof: the case k = 0 was proven in Lemma 183. For k > 0, since
d(ω1 + ω2) = dω1 + dω2 and

ω =
∑

i1<···<ik

fi1,...,ik dxi1 ∧ · · · ∧ dxil , fi1,...,ik ∈ Ω0(V ),

it is sufϐicient to show that

g∗(d(f dxi1 ∧ · · · ∧ dxik)) = d (g∗(f dxi1 ∧ · · · ∧ dxik)) .

But the left side of this equation reduces to

g∗(d(f dxi1 ∧ · · · ∧ dxik)) = g∗(df) ∧ g∗(dxi1 ∧ · · · ∧ dxik)
lemma 183 = d(g∗(f)) ∧ g∗(dxi1 ∧ · · · ∧ dxik)

= d(g∗(f)) ∧ (dgi1 ∧ · · · ∧ dgik).

Thanks to repeated use of Theorem 177, the right side, on the other hand, reduces
to
d(f ◦ g dgi1 ∧ · · · ∧ dgik) = d(f ◦ g) ∧ dgi1 ∧ · · · ∧ dgik + (−1)0(f ◦ g) d(dgi1 ∧ · · · ∧ dgik)︸ ︷︷ ︸

=0

= d(f ◦ g) ∧ dgi1 ∧ · · · ∧ dgik . ■

The machinery we have developed up to now may seem hopelessly formal and mechanical;
its practical value comes through once we identify differential forms with vector ϐields.

326 Analysis and Topology Course Notes



CHAPTER 13. DIFFERENTIAL FORMS

13.5 Vector Fields
Let U ⊆O Rn. A vector ϐield is a function F : U → Rn; it is of class Ck if F ∈ Ck(U,Rn). A
function f : U → R is called a scalar ϐield.

aaaaaa

Example: let f : U → R be continuously differentiable and consider∇f : U → Rn

deϐined by
∇f(u) =

(
∂f(u)
∂x1

, . . . ,
∂f(u)
∂xn

)
.

Then f is a scalar ϐield and∇f is a vector ϐield.

We can associate to any vector ϐield F : U → Rn, deϐined by F(x) = (F1(x), . . . , Fn(x)) a
unique differential form ωF ∈ Ω1(U) deϐined by

ωF = F1 dx1 + · · ·+ Fn dxn.

In particular, if f : U → R is smooth, the differential form associated to∇f is

ω∇f =
∂f

∂x1
dx1 + · · ·+

∂f

∂xn
dxn = df ∈ Ω1(U).

aaaaaa

Theorem 185
Let U ⊆O Rn and F : U → Rn be smooth. Consider the following conditions:

1. F = ∇f for some f : U → R smooth;

2. ∂Fi

∂xj
=

∂Fj

∂xi
for all i, j.

Then 1. =⇒ 2. If U is star-shaped then, the conditions are equivalent.

Proof: if F = ∇f , then ωF = ω∇f = df ∈ Ω1(U) is exact and so condition 2.
holds according to Proposition 182.

If U is star-shaped and ∂Fi

∂xj
=

∂Fj

∂xi
for all i, j, then ωF = F1 dx1 + · · · + dxn is

exact (again, by Theorem 182), so that

ωF = df =
n∑

i=1

∂f

∂xi
dxi

for some f : U → R ∈ Ω0(U). By unicity of ωF, wemust haveFi =
∂f
∂xi

for all i, which
is to say that F = ∇f . ■

When F = ∇f , we say that F is a conservative vector ϐield (or a gradient ϐield) and that f
is a scalar potential for F.

P. Boily (uOttawa) 327



13.5. VECTOR FIELDS

Until the end of the chapter, we work with vector ϐields F : U ⊆O R3 → R3. Recall that, seen
as a vector ϐield over R,

dim (Λp(Rn)) =

(
n

p

)
,

according to Corollary 168; in that case, we have

dim(Λ1(R3)) = dim(Λ2(R3)), dim(Λ0(R3)) = dim(Λ3(R3)) = 1.

Consider the vector space isomorphism Φ1 : R3 → Λ1(R3) deϐined by

Φ1(a) = Φ1(a1, a2, a3) = a1 dx1 + a2 dx2 + a3 dx3.

If we “multiply” two vectors in R3, we should get the same “result” as if we “multiply” two
1−forms overR3; the problem is that we while the wedge product can play the role of a mul-
tiplication, the wedge product of two 1−forms over R3 is a 2−form over R3.

Over other spaces this would be a deal-breaker, but overR3 the problem evaporates once
we introduce a second vector space isomorphism Φ2 : R3 → Λ2(R3), deϐined by

Φ2(a) = Φ2(a1, a2, a3) = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2,

and deϐine the cross-product over R3 by

a× b = (a1, a2, a3)× (b1, b2, b3)

≃ Φ1(a1, a2, a3) ∧ Φ1(b1, b2, b3)

= (a1 dx1 + a2 dx2 + a3 dx3) ∧ (b1 dx1 + b2 dx2 + b3 dx3)
= (a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx1 ∧ dx2 + (a1b2 − a2b1) dx1 ∧ dx2
≃ Φ−1

2 ((a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx1 ∧ dx2 + (a1b2 − a2b1) dx1 ∧ dx2)
= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

which should go someway towards elucidating the mystery of where the apparently random
deϐinition of the cross-product come fromwhen it is ϐirst introduced in linear algebra courses.

In applications, it is typical to use x = x1, y = x2, and z = x3. In that case, we could also
write the vector ϐield F : U → R3 as

F(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z));

the composition
Φ1 ◦ F = ωF = P dx+Q dy +R dz ∈ Ω1(U)

is the corresponding differential 1−form over U .
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Then, we have:
dωF = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

=

(
∂P

∂x
dx+ ∂P

∂y
dy + ∂P

∂z
dz
)
∧ dx+

(
∂Q

∂x
dx+ ∂Q

∂y
dy + ∂Q

∂z
dz
)
∧ dy

+

(
∂R

∂x
dx+ ∂R

∂y
dy + ∂R

∂z
dz
)
∧ dz

=

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy ∈ Ω2(U).

The vector ϐield Φ−1
2 (dωF) = Φ−1

2 (Φ1(F)) associated with dωF is the curl of F and is denoted
by curl(F) = ∇× F : U → R3 and

curl(F) = ∇× F =

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

aaaaaa

Theorem 186
Let U =⊆O R3 and F : U → R3 be smooth. Consider the following conditions:

1. F = ∇f for some smooth f : U → R;

2. ∇× F = 0.

Then 1. =⇒ 2. If U is star-shaped then, the conditions are equivalent.

Proof: direct application of Theorem 185. ■

If instead we consider the composition
Φ2 ◦ F = φF = P dy ∧ dx+Q dz ∧ dx+R dx ∧ dz ∈ Ω2(U),

then we have
dφF = dP ∧ dy ∧ dz + dQ ∧ dz ∧ dx+ dR ∧ dx ∧ dy

=

(
∂P

∂x
dx+ ∂P

∂y
dy + ∂P

∂z
dz
)
∧ dy ∧ dz +

(
∂Q

∂x
dx+ ∂Q

∂y
dy + ∂Q

∂z
dz
)
∧ dz ∧ dx

+

(
∂R

∂x
dx+ ∂R

∂y
dy + ∂R

∂z
dz
)
∧ dx ∧ dy

=
∂P

∂x
dx ∧ dy ∧ dz + ∂Q

∂y
dy ∧ dz ∧ dx+ ∂R

∂z
dz ∧ dx ∧ dy

=

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz ∈ Ω3(U).

The scalar ϐield associated with dφF is the divergence of F and is denoted by div(F) = ∇ · F :
U → R and

div(F) = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.
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As a consequence of Poincaré’s lemma, we obtain the following result.

aaaaaa

Theorem 187
Let U =⊆O R3 and F : U → R3 be smooth. If there is a vector ϔield G : U → R3

such that curl(G) = ∇ × G = F, then div(F) = ∇ · F = 0. If U is star-shaped and
div(F) = ∇ · F = 0, then there is a G : U → R3 such that curl(G) = ∇× G = F.

Proof: let ωG ∈ Ω1(U) and φF ∈ Ω2(U) be the associated differential forms.
If curl(G) = F, then dωG = φF, so that dφF = d(dωG) = 0, and thus div(F) = 0.

If U is star-shaped and div(F) = 0, then dφF = 0, and so φF is closed. Ac-
cording to Poincaré’s lemma, φF is exact, which is to say that ∃ω ∈ Ω1(U) such that
dω = φF. If G is the vector ϐield corresponding to ω, then we have curl(G) = F. ■

When F = curl(G) for some G : U → GR3, the vector ϐield G is a vector potential for F. Such
a vector potential is not unique; indeed if f : U → R is smooth, then curl(G+∇f) = curl(G),
as we can see below: if

G ↭ ωG ∈ Ω1(U), curl(G) ↭ dωG ∈ Ω2(U), ∇f ↭ df ∈ Ω1(U),

then
curl(G+∇f) ↭ d(ωG + df) = dωG ↭ curl(G).

In short, differential forms provide a tool to work with vector ϐields, which are the objects of
interests in applications; the correspondence is diagrammed below.
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13.6 Solved Problems
1. Are the following 1−forms exact?

a) ω = 2xy dx+x2 dy b) ω = (x2+ yz) dx+(xz+ cos y) dy+(z+xy) dz
c) ω = y dx+ z dy + x dz d) ω = x

x2+y2
dx+ y

x2+y2
dy

Solution:
a) We have ω = 2xy dx+ x2 dy ∈ Ω1(R2), where R2 is star-shaped. Since

dω = 2
[
(dx)y + x(dy)

]
∧ dx+ (2x dx) ∧ dy = 2x

[
dy ∧ dx+ dx ∧ dy

]
= 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact, η = x2y is an
anti-derivative of ω (i.e. dη = ω).

b) We have ω = (x2 + yz) dx+ (xz + cos y) dy + (z + xy) dz ∈ Ω1(R3),whereR3

is star-shaped. Since

dω = z dy∧dx+ y dz ∧dx+x dz ∧dy+ z dx∧dy+x dy∧dz+ y dx∧dz = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact,

η =
x3

3
+ xyz + sin y + z2

2

is an anti-derivative of ω (i.e. dη = ω).
c) Since dω = dy ∧ dx + dz ∧ dy + dx ∧ dz ̸= 0, ω is not closed. Consequently, ω

is not exact (remember, this has nothing to do with Poincaré’s lemma).
d) We have ω = x

x2+y2
dx + y

x2+y2
dy ∈ Ω1(R2 − {(0, 0)}). Note that U = R2 −

{(0, 0)} is NOT star-shaped, and so we cannot use Poincaré’s lemma to deter-
mine whether ω is exact or not. If ω is not closed, then it will necessarily not be
exact, by contraposition. However,

dω =
−2xy

(x2 + y2)2
dy ∧ dx− 2xy

(x2 + y2)2
dx ∧ dy = 0,

and so ω is closed and we cannot use this approach. We are left with no other
option than to try to ϐind an anti-derivative. The brute force method yields η =
ln(
√
x2 + y2) as an anti-derivative of ω (i.e. dη = ω). □

2. Are the following 2−forms exact?

a) ω = dx ∧ dy
b) ω = z dx ∧ dy + y dx ∧ dz + z dy ∧ dz

Solution:
a) We have ω = dx ∧ dy ∈ Ω2(R2), where R2 is star-shaped. Since

dω = d(dx ∧ dy) = d2x ∧ dy − dx ∧ dy2 = 0− 0 = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact.
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b) We have
ω = z dx ∧ dy + y dx ∧ dz + z dy ∧ dz ∈ Ω2(R3),

where R3 is star-shaped. Since

dω = dz ∧ dx ∧ dy + dy ∧ dx ∧ dz + dz ∧ dy ∧ dz
= dz ∧ dx ∧ dy − dz ∧ dx ∧ dy + 0 = 0,

ω is closed. According to Poincaré’s lemma, ω is also exact. In fact, η = xz dy +
xy dz is an anti-derivative of ω (i.e. dη = ω). □

13.7 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.
2. Prove results 172, 173, 174, 175, 176, 180 (try, at least), and 184.
3. If f ∈ Ω0(U) and ω ∈ Ωp(U), show that f ∧ ω = fω.
4. Show that if ω and φ are two closed differential forms, then so is ω ∧ φ. Show that if ω

is also exact, then ω ∧ φ is exact.
5. What is the pullback g∗(ω) ∈ Ω1(R) ifg : R→ R2 is deϐinedbyg(v) = (3 cos 2v, 3 sin 2v)

and ω = −y dx+ x dy ∈ Ω1(R2)? Simplify your answer as much as possible.
6. What is thepullbackg∗(ω) ∈ Ω1(R2) if g : R2 → R3 is deϐinedbyg(u, v) = (cosu, sinu, v)

and ω = z dx+ x dy + y dz ∈ Ω1(R3)? Simplify your answer as much as possible.
7. What is thepullbackg∗(ω) ∈ Ω2(R2) if g : R2 → R3 is deϐinedbyg(u, v) = (cosu, sinu, v)

and ω = z dx ∧ dy + y dz ∧ dx ∈ Ω2(R3)? Simplify your answer as much as possible.
8. For each of the three previous exercises, compute g∗(dω) and d(g∗ω).
9. Let g : (0,∞)× (0, π)× (0, 2π)→ R3 the map deϐining the spherical coordinates inR3.

Compute g∗(dx ∧ dy ∧ dz).
10. Let F,G : R3 → R3, f : R3 → R be smooth mappings and · and × represent the inner

product and cross product in R3, respectively. Show that
a) div(F+ G) = div(F) + div(G)
b) div(fF) = fdiv(F) + F · ∇f
c) div(F× G) = G · curl F− F · curlG
d) curl(fF) = f curl(F) + (∇f)× F
e) div(f∇f) = |∇f |2

11. Let U ⊆O Rn and p ≥ 0. Show that Ωp(U) is a vector space over R.
12. Let U ⊆O Rn, p ≥ 0 and ω1, ω2 ∈ Ωp(U). Show that d(ω1 + ω2) = dω1 + dω2.
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Chapter 14

Integrating Differential Forms

The integral of a differential form generalizes the concept of the integral of
a function of a single variable (see Chapter 21 for another). In this chap-
ter, we formalize the concepts of the line, surface, and ϐlux integral, and
present Stokes’ Theorem, a deep unifying result of vector analysis.

14.1 Line Integral of a Differential 1−Form
Let U ⊆O Rn. Assume that γ is a differentiable path in U and that ω ∈ Ω1(U). This section’s
objective is to deϐine

∫
γ
ωmeaningfully. A path in U is a continuous function γ : [a, b]→ U ;

γ(a) is the starting point while γ(b) is the path’s ϐinishing point.

aaaaaa

Examples

1. Let u, v ∈ Rn. The path γ : [0, 1] → Rn deϐined by γ(t) = tv + (1 − t)u is the
(oriented) line segment joining u and v. □

2. Let γ : [0, 2π] → R2 be deϐined by γ(t) = (cos t, sin t). Then γ([0, 2π]) is
the unit circle in R2, starting at γ(0) = (1, 0) and ending at γ(2π) = (1, 0),
travelling counter-clockwise. □

In that last example, γ is a closed, simple curve, which is to say that
γ(0) = γ(2π) and γ(t) ̸= γ(s) for all t ̸= s ∈ (0, 2π).

Apathγ is continuouslydifferentiable (denoted C1) if its derivativeγ ′ : [a, b]→ End(R,Rn)
varies continuously with t; the derivative is one-sided at the endpoints a and b. In that case,

γ ′(t) : R→ Rn, x 7→ γ ′(t)x = ∇γ(t)x = (γ′1(t), . . . , γ
′
n(t))x.
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aaaaaa

Examples

1. In the line segment example above, γ ′(t) = v− u ∈ Rn. □

2. In the circle example above, ∇γ(t) = (− sin t, cos t). Note that γ(t) ⊥ ∇γ(t)
for all t. □

If γ : [a, b] → U ⊆O Rn represents the position of a particle at time t, then γ ′(t) represents
the velocity vector of the particle at time t; γ ′(t0) is necessarily tangent to the pathγ at t = t0.

A path γ is piecewise differentiable if a = t0 < t1 < · · · < tn = b and γ|[ti,ti+1]
is C1 for all i.

Now we come to the section’s important deϐinition. Let γ be a C1 path in U ⊆O Rn and

ω =
n∑

i=1

Pi(x) dxi ∈ Ω1(U).

The line integral of ω along γ is given by∫
γ

ω =

∫
γ

n∑
i=1

Pi(x) dxi :=
∫
[a,b]

n∑
i=1

Pi(γ(t))γi(t) dt,

where γ(t) = (γ1(t), . . . , γn(t)), γ ′(t) = (γ′1(t), . . . , γ
′
n(t)), and γ : [a, b]→ U ⊆O Rn.
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aaaaaa

Example: if γ : [−1, 1]→ R2 is γ(t) = (t, t2) and ω = −y dx + x dy ∈ Ω1(R2), then
γ ′(t) = (1, 2t), P1(x, y) = −y, P2(x, y) = x, and∫

γ

ω =

∫ 1

−1

(P1(γ(t))γ
′
1(t) + P2(γ(t))γ

′
2(t)) dt

=

∫ 1

−1

(P1(t, t
2)(1) + P2(t, t

2)(2t)) dt

=

∫ 1

−1

(−t2 + t(2t)) dt =
∫ 1

−1

t2 dt =
[
t3

3

]1
−1

=
2

3
,

using the regular rules of integration. □

But we could also approach the problem from a different (but ultimately equivalent) angle:
the pullback of ω by γ is

γ∗(ω) = γ∗(−y dx+x dy) = P1(γ(t))
∂γ1
∂t

dt+P2(γ(t))
∂γ1
∂t

dt = (−γ2(t)γ′1(t)+γ1(t)γ′2(t)) dt ∈ Ω1(R),

so that
∫
γ
ω =

∫ 1

−1
γ∗(ω).

In general, if γ : [a, b]→ U ⊆O Rn and ω =
∑n

i=1 Pi dxi ∈ Ω1(U), then∫
γ

ω =

∫
[a,b]

γ∗(ω) =

∫
[a,b]

n∑
i=1

Pi(γ(t)) dγi =
∫
[a,b]

n∑
i=1

Pi(γ(t))γi(t) dt.

aaaaaa

Example: consider ω = −y dx + x dy ∈ Ω1(R2) and two paths from (1, 0) to (0, 1),
γ : [0, π/2] → R2 (a circle arc) and η : [0, 1] → R2 (a line segment), deϐined by
γ(t) = (cos t, sin t) and η(t) = (1− t, t). Then∫

γ

ω =

∫ π/2

0

γ∗(ω) =

∫ π/2

0

[
(− sin t)(sin t) + (cos t)(cos t)

]
dt =

∫ π/2

0

1 dt = [t]
π/2
0 =

π

2
,∫

η

ω =

∫ 1

0

η∗(ω) =

∫ 1

0

[
(−t)(−1) + (1− t)(1)

]
dt =

∫ 1

0

1 dt = [t]10 = 1.

Evidently, the value of the line integral depends on the path and the endpoints. □

If P : U → Rn is the vector ϐield corresponding to ω ∈ Ω1(U), then
n∑

i=1

Pi(γ(t))γ
′
i(t) = P(γ(t)) · γ ′(t) = (P(γ(t)) | γ ′(t)) ,

we sometimes write ∫
γ

ω =

∫
[a,b]

P(γ(t)) · γ ′(t) dt =
∫
γ

P · dr,

where r is a parameterization of γ (i.e., dr(t) = γ ′(t)dt).
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Let φ : [a′, b′] → [a, b] be a C1 diffeomorphism;¹ this entails that φ′(t) ̸= 0 for all t ∈ [a′, b′].
Since φ′ is continuous, there are 2 possibilities:

1. φ′(t) > 0 =⇒ φ(a′) = a and φ(b′) = b, in which case φ preserves the orientation;

2. φ′(t) < 0 =⇒ φ(a′) = b and φ(b′) = a, in which case φ reverses the orientation.

aaaaaa
Examples: φ : [1, 2] → [1, 4] deϐined by φ(t) = t2 preserves the orientation as
φ′(t) = 2t > 0 on [1, 2]; but φ : [−2,−1] → [1, 4] deϐined by φ(t) = t2 reverses the
orientation as φ′(t) = 2t < 0 on [−2,−1]. □

The distinction comes in at the following level.

aaaaaa

Proposition 188
Let ω =

∑n
i=1 Pi(x) dxi ∈ Ω1(U), γ : [a, b] → U , γ ∈ C1. If φ : [a′, b′] → [a, b] is a C1

diffeomorphism, then

1.
∫
γ◦φ ω =

∫
γ
ω if φ is orientation-preserving;

2.
∫
γ◦φ ω = −

∫
γ
ω if φ is orientation-reversing.

Proof:

1. By construction, γ ◦ φ : [a′, b′]→ U is a C1 path and γ ′(φ(t))φ′(t) exists for all
t ∈ [a′, b′]. If we write t = φ(s), then dt = φ′(s) ds, a = φ(a′), and b = φ(b′),
and so∫

γ

ω =

∫ t=b

t=a

∑
i=1

(Pi ◦ γ(t))γ′i(t) dt =
∫ s=b′

s=a′

n∑
i=1

(Pi ◦ γ(φ(s)))γ′i(φ(s))φ′(s) ds

=

∫ b′

a′

n∑
i=1

[
Pi ◦ (γ ◦ φ)(s)

]
(γ ◦ φ)′i(s) ds =

∫
γ◦φ

ω.

2. The proof is similar, except that the change of variable is t = φ(s), then dt =
φ′(s) ds, a = φ(b′), and b = φ(a′), and so∫

γ

ω =

∫ s=a′

s=b′

n∑
i=1

(Pi ◦ γ(φ(s)))γ′i(φ(s))φ′(s) ds = −
∫ s=b′

s=a′
· · · = −

∫
γ◦φ

ω. ■

The line integral has two properties that are the counterparts of Theorems 55.1 and 56.

¹That is, both φ and φ−1 are C1.
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aaaaaa

Proposition 189
Let U ⊆O Rn, ω, ω1, ω2 ∈ Ω1(U), and γ,η be C1 paths in U such that the ϔinishing
point of γ is the starting point of η. The concatenation γ + η is piecewise C1. Then:

1. the line integral is linear in the sum (concatenation) of paths:∫
γ+η

ω =

∫
γ

ω +

∫
η

ω;

2. the line integral is linear in the sum of differential forms:∫
γ

(ω1 + ω2) =

∫
γ

ω1 +

∫
γ

ω2.

Proof: left as an exercise. ■

Proposition 189, together with the next property, justiϐies the naming of the line integral: if
it looks like an integral and it behaves like an integral...

aaaaaa

Theorem 190 (FĚēĉĆĒĊēęĆđ TčĊĔėĊĒ Ĕċ LĎēĊ IēęĊČėĆđĘ)
Let γ : [a, b] → R be a piecewise C1 path and ω = df ∈ Ω1(U) for some vector ϔield
f ∈ C∞(U,R). Then ∫

γ

ω =

∫
γ

df = f(γ(b))− f(γ(a)).

Proof: according to Proposition 189.1, it is sufϐicient to show the result for C1 paths
γ; according to Proposition 184, we know that d(γ∗(f)) = γ∗(df). Then∫

γ

ω =

∫
γ

df =

∫
[a,b]

γ∗(f)(df) =
∫ b

a

d(γ∗(f)) =

∫ b

a

d(f ◦ γ) =
∫ b

a

(f ◦ γ)′(t) dt

= [f ◦ γ(t)]ba = f(γ(b))− f(γ(a)),

which completes the proof. ■

In the example on page 335, we have
∫
γ
−y dx+x dx ̸=

∫
η
−y dx+x dx, even though γ and η

have the same starting points and ϐinishing points, and so Theorem 190 does not apply. What
is the problem?

aaaaaa
Corollary 191
If ω = dg ∈ Ω1(U) and γ is a C1 path in U , then

∫
γ
ω =

∫
γ
dg depends only on the

endpoints of γ . Proof: immediately follows from Theorem 190. ■
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An open subset U ⊆O Rn is path-connected if for all u, v ∈ U , there is a path γ : [a, b] → U
such that γ(a) = u and γ(b) = v; open balls and open annulii/torii are path-connected in
R2/R3, but a set made up of disjoint open balls isn’t.

A loop γ is a path γ : [a, b] → U for which γ(a) = γ(b); the path γ : [0, 2π] → R2 ≃ C
deϐined by γ(t) = (cos t, sin t) ≃ eit is a loop.

aaaaaa

Theorem 192
Let U ⊆O Rn be path-connected. For a continuous differential form ω ∈ Ω1(U), the
following are equivalent:

1. ω is exact in U ;

2.
∫
γ
ω = 0 for any loop γ : [a, b]→ U ;

3. if γ is any path in U ,
∫
γ
ω only depends on the endpoints of γ .

Proof: 1. =⇒ 2. follows from Theorem 190 since γ(a) = γ(b) for any loop
γ : [a, b]→ U .

For 2. =⇒ 3. , let γ,η be two paths in U with the same endopoints. Then
γ − η is a loop in U , and

0 =

∫
γ−η

ω =

∫
γ

ω +

∫
−η

ω =

∫
γ

ω −
∫
η

ω =⇒
∫
γ

ω =

∫
η

ω.

For 3. =⇒ 1. , let x0 ∈ U be ϐixed. For any x ∈ U , let γx be a path in U from x0 to x.
Deϐine f : U → R by f(x) =

∫
γx
ω. By assumption, if γ̃x is any other path in U from

x0 to x, then γx − γ̃x is a loop in U and

0 =

∫
γx−γ̃x

ω =

∫
γx

ω −
∫
γ̃x

ω =⇒ f(x) =
∫
γx

ω =

∫
γ̃x

ω,

no matter which path γx we use. Hence, f is well-deϐined.

It remains to see that df = ω. Since

df =
n∑

i=1

∂f

∂xi
dxi and ω =

n∑
i=1

Pi dxi,

we need to show that ∂f
∂xi

= Pi, 1 ≤ i ≤ n. We know that

∂f

∂xi
= lim

t→0

f(x+ tei)− f(x)
t

,

for 1 ≤ i ≤ n if the limit exists. Since U is open, x + tei ∈ U for all i if t is small
enough.
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For each i, we have

1

t
(f(x+ tei)− f(x)) =

1

t

[∫
γx+tei

ω −
∫
γx

ω

]
=

1

t

∫
γt
i

ω,

where γt
i is the straight line path from x to x + tei (which is possible, again, if t is

small enough), that is γt
i : [0, 1]→ U deϐined by

γt
i (s) = s(x+ tei) + (1− s)x = x+ stei;

then (γt
i )

′(s) = tei. In particular, for 1 ≤ j ≤ nwe have

d(γt
i )j =

n∑
j=1

∂(γt
i )j

∂s
ds =

{
0 if i ̸= j

t ds if i = j

so that the pullback of ω by γt
i is

(γt
i )

∗(ω) =
n∑

j=1

(
Pj ◦ γt

i

)
d(γt

i )j

and so

1

t

∫
γt
i

ω =
1

t

∫ 1

0

(γt
i )

∗(ω) =
1

t

∫ 1

0

n∑
j=1

Pj ◦ γt
i (s) d(γt

i )j =
1

t

∫ 1

0

Pi(γ
t
i (s))t ds

=

∫ 1

0

Pi(x+ stei) ds =
∫ 1

0

(Pi(x) + Pi(x+ stei)− Pi(x)) ds

= Pi(x) +
∫ 1

0

(Pi(x+ stei)− Pi(x)) ds.

Hence,
∂f

∂xi
= lim

t→0

[
Pi(x+

∫ 1

0

(Pi(x+ stei)− Pi(x)) ds
]

= Pi(x) +
∫ 1

0

lim
t→0

(
Pi(x+ stei)− Pi(x)

)
︸ ︷︷ ︸

=0 since ω is C0

ds = Pi(x),

which completes the proof. ■

We extract a speciϐic implication from this result, for future ease of access.

aaaaaa
Corollary 193
With the same hypotheses as in Theorem 192, if

∫
γ
ω = 0 for any loop γ in U , then ω

is exact.
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Finally, we show how to build an antiderivative for ω ∈ Ω1(U).

aaaaaa

Example: consider the differential form

ω = P1(x, y) dx+ P2(x, y) dy = (ex + 2xy) dx+ (x2 + cos y) dy ∈ Ω1(R2).

Since
dω =

(
∂P2

∂x
− ∂P1

∂y

)
dx ∧ dy = (2x− 2x) dx ∧ dy = 0,

then ω is closed. According to Poincaré’s lemma, since R2 is star-shaped (and thus
path-connected), then ω is exact, so it has an antiderivative f : R2 → R. We will
compute f in two ways, exploiting Theorem 192.

1. Let z0 = (x0, y0) ∈ U be ϐixed and consider the path γ : [0, 1] → R2 given by
γ(t) = tz0 (γ is the line segment joining the origin to z0). Then γ ′(t) = z0. Set

f(z0) =
∫
γ

ω =

∫ 1

0

γ∗(ω) =

∫ 1

0

P1(γ(t))γ
′
1(t) dt+ P2(γ(t))γ

′
2(t) dt

=

∫ 1

0

P1(tx0, ty0)x0 dt+ P2(tx0, ty0)y0 dt

=

∫ 1

0

(
etx0 + 2(tx0)(ty0)x0

)
dt+

∫ 1

0

(
(tx0)

2 + cos(ty0)y0
)
dt

=

[
etx0 +

2

3
t3x20y0 +

1

3
t3x20y0 + sin(ty0)

]1
0

= ex0 + x20y0 + sin y0 − 1.

2. If instead we join the origin to z0 = (x0, y0) by ϐirst travelling horizontally to
(x0, 0) along γ1, then travelling vertically to (x0, y0) along γ2, we have

γ1 : [0, x0]→ R2, t 7→ (t, 0), γ2 : [0, y0]→ R2, t 7→ (x0, t),

and γ ′
1(t) = (1, 0), γ ′

2(t) = (0, 1), so that

f(z0) =
∫
γ1

ω +

∫
γ2

ω =

∫
γ1

ω +

∫
γ2

ω

=

∫ x0

0

et dt+
∫ y0

0

(x20 + cos t) dt = ex0 − 1 + [x20t+ sin t]y00
= ex0 − 1 + x20y0 + sin y0.

No surprise there: they’re the same! □

Interpretation of the Line Integral Suppose a point particle proceeds along the path γ
and is subjected to the effects of a vector ϐield F. Then the work done by the particle on its
journey is given by

∫
γ
Φ1 ◦ F =

∫
γ
ωF.
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14.2 Integral of a Differential p−Form
Let U ⊆O Rn. Given a differential form ω ∈ Ω1(U) and a C1 function γ : V = [a, b] ⊆ R1 → U ,
we have seen how we could deϐine a quantity, the line integral

∫
γ
ω, that behaves in many

ways like the Riemann integral.

If we remember that dim(Λ1(R1)) = 1, we can deϐine an vector space isomorphism

Φ̃1 : R1 → Λ

by Φ̃1(a) = a dt and thus re-write the line integral formulation as∫
γ

ω =

∫
V

γ∗(ω) :=

∫
V

Φ̃−1
1 (γ∗(ω)) dm =

∫
[a,b]

Φ̃−1
1 (γ∗(ω)) dm,

wherem is the Borel-Lebesgue measure on R (see Chapter 21).²

We can generalize this deϐinition to differential p−forms. Let V ⊆ Rp and consider a C1
function σ : V → U and a differential form φ ∈ Ωp(U) ⊆ Ωp(Rn). The pullback of φ by σ is
itself a differential formσ∗(φ) ∈ Ω1(V ) ⊆ Ωp(Rp). Since dimΛp(Rp) = 1, we there is a vector
space isomorphism

Φ̃p : R1 → Λp(Rp)

given by Φ̃p(a) = a dt1 ∧ · · · ∧ dtp. Suppose thatσ is orientable (more on this later), then we
deϐine the ”surface” integral of φ on V by∫

σ

φ =

∫
V

σ∗(φ) :=

∫
V

Φ̃−1
p (γ∗(φ)) dm.

aaaaaa

Example: consider σ : [0, 1]2 → R3, which is deϐined by σ(s, t) = (s, t, s2 + t2), and
φ = dx ∧ dz − dx ∧ dy ∈ Ω2(R3). Then

σ∗(φ) = σ(dx ∧ dz)− σ∗(dx ∧ dy) = dσ1 ∧ dσ3 − dσ1 ∧ dσ2

=

(
∂σ1
∂s

ds+ ∂σ1
∂t

dt
)
∧
(
∂σ3
∂s

ds+ ∂σ3
∂t

dt
)
−
(
∂σ1
∂s

ds+ ∂σ1
∂t

dt
)
∧
(
∂σ2
∂s

ds+ ∂σ2
∂t

dt
)

= (1 · ds+ 0 · dt) ∧ (2s ds+ 2t dt)− (1 · ds+ 0 · dt) ∧ (0 · ds+ 1 · dt) = (2t− 1) ds ∧ dt.

Hence Φ̃−1
2 (σ∗(φ)) = 2t− 1 and∫

σ

φ =

∫
[0,1]2

=

∫ 1

0

∫ 1

0

(2t− 1) ds dt =
∫ 1

0

(2t− 1) dt = 0,

assuming that the reader knows how to compute multivariate integrals. □

²Note that Φ̃1 and Φ1 deϐined in the previous section are different functions.
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We have seen in Chapter 13 that

φ = φF = P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy ∈ Ω2(R3)

corresponds to the vector ϐield F : R3 → R3 deϐined by

F(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)).

If we set dA = (dy ∧ dz, dz ∧ dx, dx ∧ dy), then we often write∫
σ

φ =

∫
σ

F · dA =

∫∫
S

F · dA,

where S = σ(V ) = {σ(s, t) | (s, t) ∈ V } is orientable. In that case, the surface integral
(also known as the ϐlux integral) of φ over σ is∫

σ

φ =

∫
V

σ∗(φ) = ±
∫
V

F(σ) ·
[
∂σ

∂s
× ∂σ

∂t

]
dm

(the± comes from the surface orientation).

Interpretationof theSurface Integral Supposea surfaceS parameterizedbyσ is “dropped”
into a ϐluid whose ϐlow is governed by the vector ϐield F. Then the ϐlux of the ϐluid through S
is given by

∫
σ
Φ2 ◦ F =

∫
σ
φF.

14.3 Green’s Theorem
Consider a rectangleR = [a, b]× [c, d] ⊆ R2 and let ∂R be its boundary:

∂R = ([a, b]× {c}) ∪ ({b} × [c, d]) ∪ ([a, b]× {d}) ∪ ({a} × [c, d]),

together with the induced orientation, chosen so that as we travel ∂R, along the direction
given by the orientation, the surfaceR falls to the left, as shown below.
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aaaaaa

Theorem 194 (GėĊĊē'Ę TčĊĔėĊĒ ċĔė Ć RĊĈęĆēČđĊ)
Let R = [a, b] × [c, d] ⊆ R2 (with the induced orientation) and ω ∈ Ω1(U), where
R ⊆ U ⊆O R2. Then ∫

R
dω =

∫
∂R
ω,

where R : R→ U and ∂R : ∂R→ U are the identity functions.

Proof: write ω = P (x, y) dx+Q(x, y) dy ∈ Ω1(U). We have seen that

dω =

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dx ∧ dy

and∫
R
dω =

∫
R

R∗(dω) =
∫
R

Φ̃−1
2 (R∗(dω)) dm =

∫
R

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dm

=

∫ b

a

∫ d

c

(
∂Q(x, y)

∂y
− ∂P (x, y)

∂x

)
dy dx =

∫ b

a

∫ d

c

∂Q(x, y)

∂y
dy dx−

∫ b

a

∫ d

c

∂P (x, y)

∂x
dy dx

=

∫ d

c

∫ b

a

∂Q(x, y)

∂y
dx dy −

∫ b

a

∫ d

c

∂P (x, y)

∂x
dy dx, by Fubini’s theorem (see Chapter 21)

=

∫ d

c

(Q(b, y)−Q(a, y)) dy −
∫ b

a

(P (x, d)− P (x, c)) dx

=

∫ b

a

P (x, c) dx+
∫ d

c

Q(b, y) dy +
∫ a

b

P (x, d) dx+
∫ c

d

Q(a, y) dy

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (t, d) dm−
∫
[c,d]

Q(a, t) dm.

Now write ∂R = C1 + C2 + C3 + C4, where

C1 : [a, b]→ R2, C1(t) = (t, c); C3 : [a, b]→ R2, C3(t) = (b+ a− t, d);
C2 : [c, d]→ R2, C2(t) = (b, t); C4 : [c, d]→ R2, C4(t) = (a, d+ c− t).

According to Proposition 189,∫
∂R
ω =

∫
C1
ω +

∫
C2
ω +

∫
C3
ω +

∫
C4
ω

=

∫
[a,b]

Φ̃−1
1 (C∗

1(ω)) +

∫
[c,d]

Φ̃−1
1 (C∗

2(ω)) +

∫
[a,b]

Φ̃−1
1 (C∗

3(ω)) +

∫
[c,d]

Φ̃−1
1 (C∗

4(ω)),

=

∫
[a,b]

[
P (t, c) · 1 +Q(t, c) · 0

]
dm+

∫
[a,b]

[
P (b+ a− t, d) · (−1) +Q(b+ a− t, d) · 0

]
dm

+

∫
[c,d]

[
P (b, t) · 0 +Q(b, t) · 1

]
dm+

∫
[c,d]

[
P (a, d+ c− t) · 0 +Q(a, d+ c− t) · (−1)

]
dm
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so∫
∂R
ω =

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (b+ a− t, d) dm−
∫
[c,d]

Q(a, d+ c− t) dm

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm+

∫
[b,a]

P (s, d) dm+

∫
[d,c]

Q(a, s) dm

=

∫
[a,b]

P (t, c) dm+

∫
[c,d]

Q(b, t) dm−
∫
[a,b]

P (t, d) dm−
∫
[c,d]

Q(a, t) dm

,

which completes the proof. ■

This is a remarkable result: integrating a derivative on a rectangle is equivalent to integrating
the antiderivative on the rectangle’s boundary. As it happens, it is not speciϐic to rectangles.³

aaaaaa

Theorem 195 (GėĊĊē'Ę TčĊĔėĊĒ)
LetK ⊆K R2, and assume that ∂K can be given the induced orientation. If

ω = P (x, y) dx+Q(x, y) dy ∈ Ω1(U)

forK ⊆ U ⊆O R2, then ∫
K
dω =

∫
∂K
ω,

where K : K → R2 and ∂K : ∂K → R2 are identity functions.

Proof: we only provide a sketch. Green’s theorem for a rectangle can be shown
to apply to unions of rectangles where each pair shares at most an edge: if the
rectangles do not share edges, then the result is obvious – if they do share edges,
then the induced orientation ensures that the shared edges are traversed one way
for one rectangle, and the other way for another, meaning that their contribution to
the integral will cancel out and only the outside boundary counts.

We can write any compact set K as a (potentially inϐinite) union of such rect-
angles {Rn}; Green’s theorem holds in the limit. ■

³It’s not even speciϐic to R2, as we shall see shortly.

344 Analysis and Topology Course Notes



CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS

The classical version of Green’s theorem is∫∫
K

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
∂K

P dx+Q dy.

LetK ⊆K R2 have a boundary with the induced orientation. By deϐinition, we have

d(x dy) = dx ∧ dy = d(−y dx) =⇒ dx ∧ dy = d
(
1

2
(−y dx+ dy)

)
:= dω.

Thus, according to Green’s theorem,

Area(K) =

∫∫
K

dA =

∫
K

1 · dm =

∫
K
dω =

∫
∂K
ω =

1

2

∫
∂K
−y dx+ x dy.

aaaaaa

Example: what is the area of the ellipse

K =

{
(x, y) ∈ R2

∣∣∣∣ x2a2 +
y2

b2
≤ 1

}
, a, b > 0?

Solution: let γ : [0, 2π] → R2 be deϐined by γ(t) = (a cos t, b sin t); then γ is a
parameterization of ∂K = γ([0, 2π]), and so

Area(K) =
1

2

∫
∂K
−y dx+ x dy =

1

2

∫
[0,2π]

Φ̃−1
1 (γ∗(ω))

=
1

2

∫
[0,2π]

P (γ(t))γ′1(t) dt+Q(γ(t))γ′2(t) dt

=
1

2

∫
[0,2π]

P (a cos t, b sin t)(−a sin t) dt+Q(a cos t, b sin t)(b cos t) dt

=
1

2

∫ 2π

0

[
(−b sin t)(a sin t) + (a cos t)(b cos t)

]
dt = 1

2

∫ 2π

0

ab dt = πab,

which we could have derived by viewing ellipses as generalized circles, but it’s nice
to be able to do it analytically. □

A subsetX ⊆ Rn is simply connected, denoted π1(X) ≃ 1, ifX is connected and if each loop
in X is homotopic to a single point, which is to say that each loop in X can be deformed
continuously to a single point (see Chapter 20 for more on this topic).⁴

aaaaaa Example: the connected component bounded by γ2 in the image on the previous
page is simply connected; the connected component bounded by γ1 ∪ γ3 ∪ γ4 isn’t.

⁴Roughly speaking,X is simply connected if its interior contains no “hole”.
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Corollary 196
Let U ⊆O R2 be simply connected. If ω ∈ Ω1(U) is closed, then ω is exact.

Proof: according to Theorem 194, for any rectangleR ⊆ U , we have∫
∂R
ω =

∫
R
dω;

since ω is closed, then dω = 0, so that
∫
∂R ω = 0.

For a ϐixed x0 ∈ U and for all x ∈ U , there is a piecewise C1 path γx connect-
ing x0 to x that is made up of horizontal and vertical segments in U .

We would like to deϐine f(x) =
∫
γx
ω, so that df = ω (as in the proof of The-

orem 192). But this is only possible if f is well-deϐined, meaning that f(x) takes
on the same value independently of the piecewise C1 path γx taken from x0 to x, as
long as it is a path of horizontal and vertical segments.

If γ1 and γ2 are two such paths, then γ1 − γ2 enclose a region made up of
contiguous rectangles, say R1 ∪ · · · ∪ Rk. According to Green’s theorem for
rectangles,∫
R1∪···∪Rk

dω =

∫
R1

dω+· · ·+
∫
Rk

dω =

∫
∂R1

ω+· · ·+
∫
∂Rk

ω =

∫
γ1−γ2

ω =

∫
γ1

ω−
∫
γ2

ω.

Since ω is closed in U , the left hand-side of that string of equations is 0, so that∫
γ1
ω =

∫
γ2
ω. Thus f is well-deϐined and the proof is complete. ■

The condition that U be simply connected is necessary: if

ω =
−y

x2 + y2
dx+ x

x2 + y2
dy ∈ Ω1(U = R2 \ {0}),

then we have

dω =

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
dx∧dy =

(
−x2 + y2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

)
dx∧dy = 0.

If γ : [0, 2π]→ R2 deϐined by γ(t) = (cos t, sin t) ∈ U is a parameterization of the unit circle,
we have ∫

γ

ω =

∫
[0,2π]

Φ̃−1
1 (γ∗(ω)) =

∫ 2π

0

dt = 2π ̸= 0 =

∫
B1

dω,

and so ω cannot be exact in U since the 3rd statement in Theorem 192.3 does not hold. The
only ϐly in the ointment is that U = R2 \ {0} is not simply connected.
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14.4 Surfaces and Orientable Surfaces in R3

It is fairly easy (?) to parameterize areas in R2, but the addition of a 3rd dimension can com-
plicate matters to some extent (especially when it comes to their boundaries).

There are 3 classical ways to describe a plane S ⊆ R3.

The implicit approach requires a normal vector n to S and a point P0 ∈ S:

S = {v ∈ R3 | (v− P0) · n = 0} = {(x, y, z) | ax+ by + cz︸ ︷︷ ︸
=F (x,y,z)

− (ax0 + by0 + cz0)︸ ︷︷ ︸
=d

= 0}.

The explicit approach views the plane as the graph of a function: as n = (a, b, c) ̸= 0,
we may assume that c ̸= 0.⁵ Then we have cz = d− ax− by, so that

z =
d− ax− by

c
= f(x, y), f : R2 → R2,

and we have F (x, y, f(x, y)) = 0 and S = {(x, y, f(x, y)) | (x, y) ∈ R2}.

Finally, in the parametric approach, let v1, v2 ∈ S0 be linearly independent, where

S0 = {(x, y, z) | F (x, y, z) = ax+ by + cz = 0};

hence S0 = Span{v1, v2}. If v0 ∈ S, we have S = v0 + S0. Let g : R2 → R3, deϐined by
g(s, t) = v0 + sv1 + tv2; then g(R2) = S and so g is a parameterization of S.

These approaches generalize to non-planar surfaces. A subset S ⊆ R is a surface inR3 if one
of the three following equivalent conditions hold.⁶

Explicit description: ∀p ∈ S, ∃Wp ⊆0 R3 and f : πx,y(Wp) ⊆ R2 → R smooth such
that S ∩Wp = Graph(f).

Implicit description: ∀p ∈ S, ∃Wp ⊆0 R3 and F : Wp → R3 smooth such that

S ∩Wp = F−1(0) = {w ∈ Wp | F(w) = 0}

and det(DF) ̸= 0 on S ∩Wp.

Parametric description: ∀p ∈ S, ∃Wp ⊆0 R3 and a smooth injection g : U ⊆ R2 → R3

such that rank(Dg(x)) = 2 for all x ∈ U and such that g−1 : S ∩Wp → U is continuous.
In that case, we say that g is a local parameterization of S.

In the latter case, the challenge is usually to ϐind the “right” g.

⁵Change the variable representation, if necessary.
⁶The equivalence of the conditions is a consequence of the implicit function theorem.
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Examples

1. Consider the unit sphere S ⊆ R3.

Implicit descriptions: S = {(x, y, z) | x2 + y2 + z2 = 1}
Explicit description:
a) IfW+

1 = {(x, y, z) | z > 0}, V1 = πx,y(W
+
1 ) = {(x, y) | x2 + y2 < 1},

and f+
1 : V1 → R is given by f+

1 (x, y) =
√

1− x2 − y2 = z, then
S ∩W+

1 is the northern hemisphere.
b) IfW−

1 = {(x, y, z) | z < 0}, V1 = πx,y(W
−
1 ) = {(x, y) | x2 + y2 < 1},

and f−
1 : V1 → R is given by f−

1 (x, y) = −
√

1− x2 − y2 = z, then
S ∩W−

1 is the southern hemisphere.
c) IfW+

2 = {(x, y, z) | y > 0}, V2 = πx,z(W
+
2 ) = {(x, z) | x2 + z2 < 1},

and f+
2 : V2 → R is given by f+

2 (x, z) =
√
1− x2 − z2 = y, and so on.

Parameteric description: consider g : (0, π) × (−π, π) → R3 deϐined
by

g(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) = (x, y, z).

Then

Dg(θ, φ) =

cos θ cosφ − sin θ sinφ
cos θ sinφ sin θ cosφ
− sin θ 0

 .

It is an exercise to show that rank(Dg(θ, φ)) = 2 for all (θ, φ). Further-
more, g is injective overU = (0, π)×(−π, π). Indeed, if (θ, φ), (θ′, φ′) ∈ U
and g(θ, φ) = g(θ′, φ′), then:
– cos θ = cos θ′ =⇒ θ = θ′;
– sin θ cosφ = sin θ cosφ =⇒ cosφ = cosφ′;
– sin θ sinφ = sin θ sinφ =⇒ sinφ = sinφ′.
– the last two equations yield φ = φ′ over (−π, π).

Finally, we show that that g−1 : g(U) → U deϐined by g(x, y, z) = (θ, φ)
is continuous. Since z = cos θ< then θ = arccos z, which is continuous.
Since−π/2 < φ/2 < π/2, we have cos(φ/2) ̸= 0, and we can write

tan φ
2
=

sin θ sinφ
sin θ + sin θ cosφ =

y√
1− z2 + x

,

whence
φ = 2 arctan

(
y√

1− z2 + x

)
,

which is also continuous.

But C = {(x, 0, z) | x2 + z2 = 1, x ≤ 0} ⊆ S, so we have g(U) = S \ C , and so
g is a local parametrization of S – it is impossible to get all of S with g.
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aaaaaa

2. Consider the inϐinite cone S : z2 = x2 + y2, z ≥ 0.

Implicit description: S = {(x, y, z) | |x2 + y2 − z2 = 0}
Explicit description: If f : R2 → R is given by f(x, y) = x2 + y2, then
S = {(x, y, f(x, y)) | (x, y) ∈ R2}
Parameteric description: consider g : U = (0, 2π) × (0, a) → R3 de-
ϐined by

g(φ, r) = (r cosφ, r sinφ, r).
We can show that Dg is of full rank on U , that g is injective on U , and
that g−1 is continuous on U (see exercises).

Finally, if C0 = {(x, 0, z) | a > x− z ≥ 0}, then

g(U) = {(x, y, z) | x2 + y2 = z2 < a2} \ C0;

the parameterization is local. □

In both examples, the local parameterization covers the surface entirely, except for a set of
measure (area) zero (see Chapter 21) – themissing pieces do not contribute to the integrals.

A subset S ⊆ R3 is a surface with a boundary inR3 if for at least some point p ∈ S, there is
aWp ⊆O R3 and a parameterization g : U → R3 such that g(U) = V = Wp ∩S and U ⊆0 R2

+.
We write p ∈ ∂S if p = g(u) for some u ∈ ∂R2

+ = {(x, y) | y = 0}.

aaaaaa

Examples

1. Consider the surface S which is the northern hemisphere of the unit sphere in
R3. Let p be a point of S which is not on the equator: ∃0 ∈ U ⊆O R2 and a
local parameterization g : U → R3 such that g(0) = p and g(U) ⊆ S. For a
pointp on the equator, we can ϐind0 ∈ U ′ ⊆O R2

+ and a local parameterization
g′ : U ′ → R3 such that g′(0) = p and g′(U ′) ⊆ S. Thus ∂S is the equator.

2. A pair of trousers S is a “surface” inR3; the boundary ∂S consists of the top of
the waistband and the bottom of the two leg openings.

3. The ellipsoid
S =

{
(x, y, z) ∈ R3

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
= 1

}
is a surface without a boundary. □
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In the last example, there is a sense in which the volume

V =

{
(x, y, z) ∈ R3

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
≤ 1

}
(which is not the same as the surface S) DOES have a “boundary”, namely ∂V = S. In general,
if S is am−dimensional object, its boundary should be am− 1−dimensional object.

14.5 Integral of a Form on an Orientable Surface
We have seen that we can induce an orientation on the boundary of planar regions; can we
orient surfaces as well? Let E = {e1, . . . , en} and E = {f1, . . . , fn} be two bases of Rn, and let
P be the change of basis matrix from E to F . We say that E and F have the same orienta-
tion if det(P ) > 0 and that they have opposite orientation if det(P ) < 0.

aaaaaa

Examples

1. In R2, if E = {(1, 0), (0, 1)} and Fα = {(cosα, sinα), (− sinα, cosα)}, the
change of basis matrix is P =

(
cosα − sinα
sinα cosα

)
and detP = 1, so E and Fα

have the same orientation. □

2. In R2, if E = {(1, 0), (0, 1)} and F = {(1, 0), (0,−1)}, then P =

(
1 0
0 −1

)
and

detP = −1, so E and F have opposite orientations. □

By convention, the orientation of the canonical basis of Rn is taken to be positive.

Let S ⊆ R3 be a surface. For all p, let Tp(S) ⊆ R3 denote the tangent plane to S at p.
By deϐinition, Tp(S) ≃ R2 = Span(up, vp), n ⊥ Tp(S), as below. We say that S is orientable if
it is possible to continuously select a basis {up, vp} of Tp(S) as p ∈ S varies continuously.⁷

⁷Importantly, not every surface is orientable (such as a Möbius strip or a Klein bottle, for instance).

350 Analysis and Topology Course Notes



CHAPTER 14. INTEGRATING DIFFERENTIAL FORMS

Let S ⊆ R3 be a compact surface with boundary ∂S. Let q ∈ ∂S and deϐine Tq(∂S) ⊆ Tq(S)
to be the 1−dimensional line tangent to ∂S at p. Pick α > 0 and let γ : [0, t) → S be a C1
path on S with γ(0) = q. Pick a zq ∈ Tq(S) such that zq ⊥ Tq(∂S) and the angle between
zq and γ ′(0) ∈ Tq(S) is greater than a right angle. We say that zq points to the exterior of S,
whereas−zq points to the interior of S.

The boundary ∂S is orientable when for all q ∈ ∂S, the orientation of Tq(∂S) is given by a
vector v such that the orientation of Tq(S) is given by the basis {n, v}, where n is normal to
Tq(∂S) and points towards the exterior of S.

At any point of the boundary, the cross-product n× v (in that order) points towards the pos-
itive orientation of the surface S (the direction given by the right-hand rule).
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Recall that if U ⊆0 R2 and ω = P (x, y) dx ∧ dy ∈ Ω2(R2) where P is integrable over U (see
Chapter 21 for details), then∫

U
ω =

∫
U

P dm, where U : U → R2 ≡ identity on U.

Let W ⊆O R3, U a Borel⁸ subset of R2, U ⊆O U , U ⊆O R2 with Area(U − U0) = 0 and let
φ : U → W be such thatφ|U0 = φ0 : U0 → W is C1. If ω ∈ Ω2(W ), then∫

φ

ω =

∫
φ0

ω.

This iswell-deϐined, aswecan seebelow. LetU ′
0,φ

′
0 beobjects that satisfy the sameproperties

asU0,φ
′
0. Denoteφ∗

0(ω) = P0(x, y) dx∧dy andφ′∗
0(ω) = P ′

0(x, y) dx∧dy. Wemust show that∫
U

P dm =

∫
U ′
P ′ dm.

Write U ′′
0 = U0 ∩ U ′

0; we have P0 = P ′
0 on U ′′

0 and

U0 \ U ′′
0 = U0 ∩ (U ′

0)
c ⊆ U ∩ (U ′

0)
c = U \ U ′

0.

Thus,
Area(U0 \ U ′′

0 ) ≤ Area(U0 \ U ′
0) = 0.

Similarly, Area(U ′
0 \ U ′′

0 ) = 0, and so∫
U0

P0 dm =

∫
U ′′
0

P0 dm =

∫
U ′′
0

P ′
0 dm =

∫
U ′
0

P ′
0 dm.

aaaaaa

Example: let ω = xz2 dy ∧ dz + yx2 dx ∧ dy + zy2 dx ∧ dy ∈ Ω2(R3) and set a > 0.
We consider the functionΦ : [0, π]× [0, 2π)→ R3 deϐined by

(θ, φ) 7→ a(sin θ cosφ, sin θ sinφ, cos θ);

Φ is a parameterization in spherical coordinates of the surface

Sa = {(x, y, z) | x2 + y2 + z2 = a2}.

Let U = [0, π] × [0, 2π) and U0 = (0, π) × (0, 2π); then Φ0 = Φ|U0 is C1. Since
Area(U \ U0) = 0, we have ∫

Φ

ω =

∫
U0

Φ∗(ω).

⁸For all intents and purposes, U is sufϐiciently “nice” (see Chapter 21).
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aaaaaa

We can show that

Φ∗(ω) = a5(sin3 θ cos2 θ + sin5 θ cos2 φ sin2 φ) dθ ∧ dφ,

and so ∫
Φ

ω =

∫ π

0

∫ 2π

0

a5(sin3 θ cos2 θ + sin5 θ cos2 φ sin2 φ) dθ dφ =
4

5
πa5.

For any (θ, φ), the basis {∂Φ
∂θ
, ∂Φ
∂φ
} deϐines the positive orientation onSa via the right-

hand rule;Φ0 then deϐines a local parameterization of Sa up to a set of area 0. □

If S is orientable in R3 andΦ : U → R3, Ψ : V → R3 are two orientation-preserving param-
eterizations of S, let η : U → V be the unique bijection such that Φ = Ψ ◦ η. Then η is a
diffeomorphism and ∀u ∈ U ,

DΦ(u) = DΨ(η(u))Dη(u).

Since {∂Φ(u)
∂u1

, ∂Φ(u)
∂u2
} is a positive basis ofTΦ(u)(S) and since {∂Ψ(η(u))

∂v1
, ∂Ψ(η(u))

∂v2
} is a positive ba-

sis ofTΦ(η(u))(S), bothDΦ(u) andDΨ(η(u)) transform the canonical basis ofR2 intopositive-
orientation bases of TΦ(u)(S).

In that case,Dη(u) preserves the orientation of R2 and det(Dη(u)) > 0 for all u.

If ω ∈ Ω2(R3), we haveΦ∗(ω) = a(u1, u2) du1∧du2,Ψ∗(ω) = b(v1, v2) dv1∧dv2 for a ∈ Ω0(U)
and b ∈ Ω0(V ). SinceΦ = Ψ ◦ η, we have

Φ∗(ω) = a du1 ∧ du2 = η∗(Ψ∗(ω)) = η∗(b dv1 ∧ dv2) = (b ◦ η) det(Dη) du1 ∧ du2.

Thus, according to the change of variable theorem (see Chapter 21), we have∫
U

Φ∗(ω) =

∫
Φ

ω =

∫
U

a du1 du2 =
∫
U

(b ◦ η) det(Dη) du1 du2 =
∫
U

(b ◦ η)| det(Dη)| du1 du2

=

∫
V

b dv1 dv2 =
∫
V

Ψ∗(ω) =

∫
Ψ

ω.

We have then proven the following result.

aaaaaa
Theorem 197
Under the hypotheses outlined above, the integrability of ω with respect toΦ and the
value of

∫
Φ
ω depend only on ω and the surface S = Φ(U).

We say that ω ∈ Ω2(R3) is integrable over S ⊆ R3 if ω is integrable with respect to a parame-
terizationΦ of S and we write

∫
S
ω =

∫
Φ
ω.
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14.6 Area of a Surface and Flux Integral
In an exercise from the previous chapter, we saw that if u, v,n ∈ R3 are such that u and v are
not parallel, n ⊥ u, vwith ∥n∥ = 1 and

φ = n1 dy ∧ dx+ n2 dz ∧ dx+ n3 dx ∧ dy ∈ Λ2(R3),

then φ(u, v) represents the signed area of the parallelogram bound by u and v. Thus:
if n = u×v

∥u×v∥ , then Area = φ(u, v);

if n = − u×v
∥u×v∥ , then Area = −φ(u, v).

Let S ⊆ R3 be an orientable surface, and let n : S → R3 be the vector ϐield of unit vectors
normal to S, pointing towards the exterior of S.⁹

aaaaaa

Example: consider the sphere of radius a > 0 centered at the origin:

Sa = {(x, y, z) ∈ R3 | x2 + y2 + z2 − a2 = F (x, y, z) = 0}.

Then ∇F (x, y, z) = (2x, 2y, 2z) ⊥ Sa and points towards the exterior of Sa for all
(x, y, z) ∈ Sa, so we could pick

n(x, y, z) =
∇F (x, y, z)
∥∇F (x, y, z)∥

. □

The area differential σ = n1 dy ∧ dx + n2 dz ∧ dx + n3 dx ∧ dy ∈ Ω2(R3) is such that
σ : R3 → Λ2(R3). According to the preceding discussion, for all s ∈ S ⊆ R3, and for all
u, v ∈ Ts(S), we have

σ(s)(u, v) = signed area of parallelogram bound by u and v.

Using the above notation, we then have the following result.

aaaaaa
Proposition 198
For an orientable surface S ⊆ R3, let σ ∈ Ω2(R3) be the area differential of S. Then
the signed area of S is given by

∫
S
ω.

We sometimes used the following formulation:

Signed Area(S) =
∫∫

U0

∥∥∥∥∂σ∂s × ∂σ

∂t

∥∥∥∥ ds dt,

whereΦ : U0 → R3 is a parameterization of S.
⁹In other words, we can ϐind a continuous mapping s ∈ S 7→ {u(s), v(s)}, where {u(s), v(s)} ∈ Ts(S)

deϐines the orientation of S, so that {n(s),u(s), v(s)} forms a basis of R3 with positive orientation.
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aaaaaa

Example: consider the unit sphere

S = {(x, y, z) ∈ R3 | x2 + y2 + z2 − 1 = F (x, y, z) = 0}.

The outward normal vector ϐield n : S → R3 is given by

n(x, y, z) =
∇F (x, y, z)
∥∇F (x, y, z)∥

= (x, y, z) ⊥ S.

The area differential of S is thus σ = x dy ∧ dx + y dz ∧ dx + z dx ∧ dy ∈ Ω2(R3).
In order to calculate

∫
S
σ, we use the following parameterization of S:

Φ : U0 = [0, π]× [0, 2π)→ R3, where Φ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ),

and ∫
S

σ =

∫
Φ

σ =

∫
U0

Φ∗(σ).

ButΦ∗(σ) = (sin3 θ + cos2 θ sin θ) dθ ∧ dφ, so that∫
U0

Φ∗(σ) =

∫ π

0

∫ 2π

0

(sin3 θ + cos2 θ sin θ) dθ dφ = 4π. □

14.7 Stokes’ Theorem
We ϐinish this chapter (and this part of the course notes) with a generalization of Green’s the-
orem, which we unfortunately present without proof.

aaaaaa
Theorem 199 (SęĔĐĊĘ' TčĊĔėĊĒ)
LetM ⊆ W ⊆O Rn be a compact orientable manifold with orientable boundary ∂M
such that dim(M) = p. If ω ∈ Ωp−1(W ), then

∫
∂M

ω =
∫
M
dω.

WhenM = S ⊆ R3 and p = dim(M) = 2, then we usually write Stokes’ theorem as∫
S

(∇× F) · dA =

∮
∂S

F · dr.

aaaaaa

Corollary 200
Let ∂M = ∅ in Theorem 199. If ϕ ∈ Ωp(W ) is exact, then

∫
M
ϕ = 0.

Proof: since φ is exact, ∃η ∈ Ωp−1(W ) such that dη = φ, so that∫
M

φ =

∫
M

dη =

∫
∂M

η = 0. ■
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14.8 Solved Problems
Let’s do some vector calculus!

1. Let F(x, y) = (xy, x − y) and C be the boundary of the triangle with vertices (1, 0),
(−1, 0) and (0, 1). Compute the line integral

∫
C
F · dr.

Solution: the triangle is parameterized by

C1 :(t, 0), −1 ≤ t ≤ 1, C2 : (1− t, t), 0 ≤ t ≤ 1, C3 : (−t, 1− t), 0 ≤ t ≤ 1.

Thus, the line integral of interest is

I =

∮
C
F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr

=

∫ 1

−1
(t2, t) · (1, 0) dt+

∫ 1

0
(t− t2, 1− 2t) · (−1, 1) dt+

∫ 1

0
(t2 − t,−1) · (−1,−1) dt = 1.

Under the other orientation, the answer is−1. □

2. Let F(x, y) = (2xex
2 sin y, ex2 cos y) and C be the path deϐined by x(t) = t, y(t) = π

2
t,

0 ≤ t ≤ 1.
a) Compute

∫
C
F · dr directly.

b) Compute
∫
C
F · dr using the fundamental theorem of line integrals.

Solution:
a) We have

I =

∫
C
F · dr =

∫ 1

0
(2tet

2 sin(πt/2), et2 cos(πt/2)) · (1, π/2) dt

=

∫ 1

0
et

2
(2t sin(πt/2) + π/2 cos(πt/2)) dt =

[
et

2 sin(πt/2)
]1
0
= e.

b) Let f(x, y) = ex
2 sin y. Then F = ∇f and∫

C
F · dr = f(1, π/2)− f(0, 0) = e− 0 = e,

according to the fundamental theorem of line integrals. □

3. Compute
∫
C
F · dr, if F(x, y) = (x2y,−xy) and C = {r(t) = (t3, t4) | 0 ≤ t ≤ 1}.

Solution: we have r′(t) = (3t2, 4t3). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t3, t4

)
· (3t2, 4t3) dt

=

∫ 1

0

(
t10,−t7

)
· (3t2, 4t3) dt =

∫ 1

0

(
3t12 − 4t10

)
dt

=

[
3t13

13
− 4t11

11

]1
0

= − 19

143
. □
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4. Compute
∫
C
F · dr, where F(x, y, z) = (y + z,−x2,−4y2) and

C = {r(t) = (t, t2, t4) | 0 ≤ t ≤ 1}.

Solution: in this case, we have r′(t) = (1, 2t, 4t3). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t, t2, t4

)
· (1, 2t, 4t3) dt

=

∫ 1

0

(
t2 + t4,−t2,−4t4

)
· (1, 2t, 4t3) dt =

∫ 1

0

(
t2 − 2t3 + t4 − 16t7

)
dt

=

[
t3

3
− t4

2
+
t5

5
− 2t8

]1
0

= −59

30
. □

5. Compute
∫
C
F · dr if F(x, y, z) = (sinx, cos y, xz) and

C = {r(t) = (t3,−t2, t) | 0 ≤ t ≤ 1}.

Solution: in this case, we have r′(t) = (3t2,−2t, 1). Thus,∫
C
F · dr =

∫ 1

0
F (r(t)) · r′(t) dt =

∫ 1

0
F
(
t3,−t2, t

)
· (3t2,−2t, 1) dt

=

∫ 1

0

(
sin(t3), cos(−t2), t4

)
· (3t2,−2t, 1) dt =

∫ 1

0

(
3t2 sin(t3)− 2t cos(−t2) + t4

)
dt

=

[
− cos(t3)− sin(t2) + t5

5

]1
0

=
6

5
− cos(1)− sin(1). □

6. Are F(x, y) = (yex + sin y, ex + x cos y) and F(x, y) = (yexy + 4x3y, xexy + x4) a conser-
vative vector ϐields? If so, ϐind their potential.

Solution: the vector ϐield F is conservative if and only if
∂F1

∂y
=
∂F2

∂x
.

Since
∂F1

∂y
=

∂

∂y
(yex + sin y) = ex + cos y

∂F2

∂x
=

∂

∂x
(ex + x cos y) = ex + cos y

the ϐield is conservative. In this case, the potential f satisϐies∇f = F, that is

fx(x, y) = F1(x, y) = yex + sin y
fy(x, y) = F2(x, y) = ex + x cos y

whence

f(x, y) =

∫
fx(x, y)dx =

∫
(yex + sin y) dx = yex + x sin y + k(y),
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where k(y) is a function of y. Substituting this function f in the equation for fy , we
have

fy(x, y) = ex + x cos y + k′(y) = ex + x cos y;
the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for F is f(x, y) = yex + x sin y + k, k ∈ R.

Since
∂F1

∂y
=

∂

∂y

(
yexy + 4x3y

)
= exy + xyexy + 4x3

∂F2

∂x
=

∂

∂x

(
xexy + x4

)
= exy + xyexy + 4x3

the second ϐield is conservative. In this case, the potential f satisϐies∇f = F, that is
fx(x, y) = F1(x, y) = yexy + 4x3y

fy(x, y) = F2(x, y) = xexy + x4

whence

f(x, y) =

∫
fx(x, y)dx =

∫ (
yexy + 4x3y

)
dx = exy + x4y + k(y),

where k(y) is a function of y. Substituting this function f in the equation for fy , we
have

fy(x, y) = xexy + x4 + k′(y) = xexy + x4;

the function k(y) is a constant since the derivative in y is zero. Thus, the family of
potential for F is f(x, y) = exy + x4y + k, k ∈ R. □

7. Find a potential for these vector ϐields, if one exists.
a) F(x, y) = (2xy3, 3x2y + x);
b) F(x, y) = (2xy3 + y, 3x2y + x);
c) F(x, y) = (2xy, x2 + 8y).

Solution: a) and b) do not have potential functions, but f(x, y) = x2y + 4y2 is a
potential function for c). □

8. Using the direct approach andGreen’s theorem, compute
∫
C
F·dr, whereC is the square

with vertices (0, 0), (1, 0), (1, 1), (0, 1), and F(x, y) = (x2y, xy3).
Solution: the region is shown below.
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Let C1 be the segment from (0, 0) to (1, 0); C2 the segment from (1, 0) to (1, 1); C3

the segment from (1, 1) to (0, 1), and C4 the segment from (0, 1) to (0, 0). Thus

C1 = {r(t) = (t, 0) | 0 ≤ t ≤ 1}
C2 = {r(t) = (1, t) | 0 ≤ t ≤ 1}
C3 = {r(t) = (1− t, 1) | 0 ≤ t ≤ 1}
C4 = {r(t) = (0, 1− t) | 0 ≤ t ≤ 1}

and ∫
C
F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr+
∫
C4

F · dr.

We can show with ease that∫
C1

F · dr =
∫ 1

0
(t2(0), t(0)3) · (1, 0) dt = 0∫

C2

F · dr =
∫ 1

0
(12(t), 1t3) · (0, 1) dt =

∫ 1

0
t3 dt = 1

4∫
C3

F · dr =
∫ 1

0
((1− t)2(1), (1− t)(1)3) · (−1, 0) dt =

∫ 1

0
−(1− t)2 dt = −1

3∫
C4

F · dr =
∫ 1

0
(02(1− t), 0(1− t)3) · (0,−1) dt = 0

so that ∫
C
F · dr = 0 +

1

4
− 1

3
+ 0 = − 1

12
.

Using Green’s theorem instead, we have∫
C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y3 − x2

)
dA,

where the region of integrationD (in red) is bounded by the curveC , with the posi-
tive orientation. SinceD = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, we have∫∫

D

(
y3 − x2

)
dA =

∫ 1

0

∫ 1

0
(y3 − x2) dy dx =

∫ 1

0

[
y4

4
− x2y

]y=1

y=0

dx

=

∫ 1

0

(
1

4
− x2

)
dx =

[
x

4
− x3

3

]1
0

=
1

4
− 1

3
= − 1

12
.

This completes the computations. □

9. Compute
∫
C
F · dr, where C is the circle x2 + y2 = 4 from (2, 0) to (

√
2,
√
2), then along

the segment from (
√
2,
√
2) to the origin and ϐinally along the segment from the origin

to (2, 0) (with the positive orientation), for F(x, y) = (y2 − x2y, xy2).
Solution: according to Green’s theorem,∫

C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y2 − 2y + x2

)
dA,
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where the regionD is bounded by the curve C , oriented positively. In polar coordi-
nates,

D(r,θ) = {(r, θ) | 0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
},

and y2 − 2y + x2 = r2 − 2r sin θ, whence∫∫
D

(
y2 − 2y + x2

)
dA =

∫ π/4

0

∫ 2

0
(r2 − 2r sin θ)r dr dθ =

∫ π/4

0

[
4− 16

3
sin θ

]
dθ

=

[
4θ +

16

3
cos θ

]π/4
0

= π +
8

3
(
√
2− 2).

□

10. What is thework accomplished by the vector ϐield F(x, y) = (x(x+y), xy2) on a particle
traveling along the x−axis from the origin to (1, 0), then from (1, 0) to (0, 1) along a
straight line, and ϐinally back to the origin along the y−axis?

Solution: the work in question is given by

W =

∫
C
F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(
y2 − x

)
dA,

where the regionD (in red) is bounded by the curve C , oriented positively.

SinceD = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x},

W =

∫∫
D

(
y2 − x

)
dA =

∫ 1

0

∫ 1−x

0
(y2 − x) dy dx =

∫ 1

0

[
y3

3
− xy

]y=1−x

y=0

dx

=

∫ 1

0

(
(x− 1)3

3
− x(1− x)

)
dx =

[
− 1

12
(1− x)4 − x2

2
+
x3

3

]1
0

= − 1

12
. □
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11. Let F(x, y, z) = ( z
2
, y, 2x) and S be the rectangle with vertices (2, 0, 4), (2, 3, 4), (0, 0, 4)

et (0, 3, 4). Compute the surface integral
∫∫

S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) = 4, (s, t) ∈ D : 0 ≤ s ≤ 2, 0 ≤ t ≤ 3

Thus, vs = (1, 0, 0), vt = (0, 1, 0) and

vs × vt = (0, 0, 1).

Restricted to S, the vector ϐield takes the form

F(x(s, t), y(s, t), z(s, t)) = (2, t, 2s).

The positive orientation of the surface S was not speciϐied, so we select the upwards
orientation as the positive orientation. Since vs × vt = (0, 0, 1) points upwards,

I =

∫∫
S
F · dA =

∫∫
D
(2, t, 2s) · (0, 0, 1) ds dt =

∫ 3

0

∫ 2

0
2s ds dt = 12. □

12. Let F(x, y, z) = (x, y, z) and S be the surface deϐined by z = −2x − 4y + 1 in the ϐirst
octant. Compute the surface integral

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) = −2s− 4t+ 1, (s, t) ∈ D : 0 ≤ t ≤ 1/4, 0 ≤ s ≤ 1/2− 2t

Thus, vs = (1, 0,−2), vt = (0, 1,−4) and

vs × vt = (2, 4, 1).

Restricted to S, the vector ϐield becomes

F(x(s, t), y(s, t), z(s, t)) = (s, t,−2s− 4t+ 1).

The positive orientation of S is still not speciϐied, so we select the upwards orienta-
tion. Since vs × vt = (2, 4, 1) points upwards, we have

I =

∫∫
S
F · dA =

∫∫
D
(s, t,−2s− 4t+ 1) · (2, 4, 1) ds dt

=

∫ 1/4

0

∫ 1/2−2t

0
1 ds dt =

∫ 1/4

0
(1/2− 2t) dt = 1

16
. □

13. Let F(x, y, z) = (−xz,−yz, z2) and S be the surface z2 = x2 + y2 lying above the plane
z = 0 and below the plane z = 1. Compute

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(s, t) = s, y(s, t) = t, z(s, t) =
√
s2 + t2, (s, t) ∈ D : s2 + t2 ≤ 1.
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Thus, vs = (1, 0, s√
s2+t2

), vt = (0, t, t√
s2+t2

) and

vs × vt = (−s(s2 + t2)−1/2,−t(s2 + t2)−1/2, 1).

Restricted to S, the vector ϐield becomes

F(x(s, t), y(s, t), z(s, t)) = (−s
√
s2 + t2,−t

√
s2 + t2, s2 + t2).

The positive orientation ofS is once again not speciϐied, we again select the upwards
orientation as the positive one. Since vs × vt points upwards, we have

I =

∫∫
S
F · dA =

∫∫
D
(−s

√
s2 + t2,−t

√
s2 + t2, s2 + t2) · ( −s√

s2 + t2
,
−t√
s2 + t2

, 1) ds dt

= 2

∫∫
D
(s2 + t2) ds dt.

In polar coordinates, this last integral is easy to evaluate: s = r cos θ, t = r sin θ,
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π:

I = 2

∫∫
D
(s2 + t2) ds dt = 2

∫ 1

0

∫ 2π

0
(r2 cos2 θ + r2 sin2 θ)r dθ dr = 2

∫ 1

0

∫ 2π

0
r3 dθ dr = π. □

14. Let F(x, y, z) = (y, x, 0) and S be the surface deϐined by x2 + y2 = 9, 0 ≤ x ≤ 3,
−3 ≤ y ≤ 3, 1 ≤ z ≤ 2. Compute the surface integral

∫∫
S
F · dA.

Solution: without a single computation, it is possible to determine that the ϐluxmust
be zero. Why is that? □

15. LetF(x, y, z) = (x, 0, 0) and letS be the surfaceparameterizedbyx = ep, y = cos 3q, z =
6p, 0 ≤ p ≤ 4, 0 ≤ q ≤ π

6
. Compute the surface integral

∫∫
S
F · dA.

Solution: the region S is parameterized by

x(p, q) = ep, y(p, q) = cos(3q), z(p, q) = 6p, (s, t) ∈ D : 0 ≤ p ≤ 4, 0 ≤ q ≤ π

6
.

Thus, vp = (ep, 0, 6), vq = (0,−3 sin 3q, 0) and

vp × vq = (18 sin(3q), 0,−3ep sin(3q)).

Restricted to S, the vector ϐield becomes

F(x(p, q), y(p, q), z(p, q)) = (ep, 0, 0).

Guess what, the surface orientation has not been speciϐied, so we select the positive
x−axis as a positive orientation. Since the ϐirst component of vp×vq is positivewhen
0 ≤ q ≤ π

6 , we have

I =

∫∫
S
F · dA =

∫∫
D
(ep, 0, 0) · (18 sin(3q), 0,−3ep sin(3q)) dp dq

= 18

∫ π/6

0

∫ 4

0
ep sin(3q) dp dq = 6(e4 − 1). □
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16. What is the area of the piece S of the cylinder x2 + z2 = a2 bounded by the surface of
the cylinder x2 + y2 = a2, where a > 0?

Solution: in the image below, the situation is illustrated in the ϐirst octant, for a = 1:
the cylinder x2 + z2 = a2 appears in grey, the cylinder x2 + y2 = a2 in red. The part
of S in the ϐirst octant shows up in blue.

The surface S is parameterized by
x = p, y = q, z =

√
a2 − p2, (p, q) ∈ Ω

where Ω is the region of the xy−plane bounded by the green curve. Accordingly,

A(S) = 8

∫∫
Ω
∥vp × vq∥ dq dp,

where
vp =

(
1, 0,− p√

a2 − p2

)
, vq = (0, 1, 0)

and
vp × vq =

(
p√

a2 − p2
, 0, 1

)
,

whence
∥vp × vq∥ =

a√
a2 − p2

.

Thus,

A(S) = 8

∫∫
Ω
∥vp × vq∥ dp dq = 8

∫∫
Ω

a√
a2 − p2

dq dp = 8

∫ a

0

∫ √a2−p2

0

a√
a2 − p2

dq dp

= 8

∫ a

0

[
a√

a2 − p2
q

]√a2−p2

0

dp = 8a

∫ a

0
dp = 8a2. □
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17. What is the area of the piece S of the sphere x2 + y2 + z2 = a2 bounded by the surface
of the cylinder x2 + y2 = ax, where a > 0?

Solution: in the image below, the situation is illustrated in the ϐirst octant, for a = 1:
the cylinder x2 + y2 = ax appears in grey, the sphere x2 + y2 + z2 = a2 in red. The
part of S in the ϐirst octant shows up in blue.

The surface S is parameterized by
x = p, y = q, z =

√
a2 − p2 − q2, (p, q) ∈ Ω

where Ω is the region of the xy−plane bounded by the green curve. Accordingly,

A(S) = 4

∫∫
Ω
∥vp × vq∥ dq dp,

where

vp =

(
1, 0,− p√

a2 − p2 − q2

)
, vq =

(
0, 1,− q√

a2 − p2 − q2

)
and

vp×vq =

(
p√

a2 − p2 − q2
,

q√
a2 − p2 − q2

, 1

)
, whence ∥vp×vq∥ =

a√
a2 − p2 − q2

.

Thus,

A(S) = 4

∫∫
Ω
∥vp × vq∥ dp dq = 4

∫∫
Ω

a√
a2 − p2 − q2

dq dp = 4

∫ a

0

∫ √ap−p2

0

a√
a2 − p2 − q2

dq dp

= 4

∫ a

0

[
a arctan

(
q√

a2 − p2 − q2

)]√ap−p2

0

dp = 4a

∫ a

0
arctan

(√
p

a

)
dp

= 4a

[
(p+ a) arctan

(√
p

a

)
−√ap

]a
0

= 2a2(π − 2). □
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18. Let F(x, y, z) = (2x − y, x + 4y, 0). Compute the line integral
∫
C
F · dr using Stokes’

theorem, when C is a circle of radius 10 centered at the origin

a) in the plane z = 0;
b) in the plane x = 0.

Solution: Since curl F(x, y, z) = (0, 0, 2), if C is oriented positively, we have∫
C
F · dr =

∫∫
S
curl F · dA

according to Stokes’ Theorem.
a) We select the xy−plane region S parameterized by

x = r cos θ, y = r sin θ, z = 0,

(s, t) ∈ D = {0 ≤ r ≤ 10, 0 ≤ θ ≤ 2π}.

Thus, vr = (cos θ, sin θ, 0),

vθ = (−r sin θ, r cos θ, 0)

and vr × vθ = (0, 0, r). The positive orientation has to be the upwards orienta-
tion. Since vr × vθ points upwards when r ≥ 0,

I =

∫∫
S
curl F · dA

=

∫∫
S
(0, 0, 2) · (0, 0, r) dr dθ

=

∫∫
D
2r dr dθ = 2

∫ 2π

0

∫ 10

0
r dr dθ = 200π.

b) We select the yz−plane region S parameterized by

x = 0, y = r cos θ, z = r sin θ, (r, θ) ∈ D : 0 ≤ r ≤ 10, 0 ≤ θ ≤ 2π.

Thus, vr = (0, cos θ, sin θ),

vθ = (0,−r sin θ, r cos θ)

and vr × vθ = (r, 0, 0). Independently of the orientation of S, we have

I =

∫∫
S
curl F · dA

=

∫∫
D
(0, 0, 2) · (r, 0, 0) dr dθ =

∫∫
S
0 dr dθ = 0.□
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14.9 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.
2. Translate all of the solved problems of this section (and their solutions) into the lan-

guage of differential forms.
3. If φ : [a, b]→ [c, d] is a C1 diffeomorphism, show that φ′(t) ̸= 0 for all t ∈ [a, b].
4. Prove Proposition 189.
5. Flesh out the details in the proof of Green’s theorem.
6. For the parametric description of the unit sphereS ⊆ R3, show that rank(Dg(θ, φ)) = 2

for all (θ, φ).
7. For the parametric description of the cone S ⊆ R3, show that rank(Dg(φ, r)) = 2 for

all (φ, r), that g is injective, and that g−1 is continuous.
8. Complete the calculations of the example on pp. 352-352.
9. Complete the calculations of the example on p. 355.

10. Consider the following classical mathematical results.
Fundamental Theorem of Calculus: Let f : [a, b] → R be R-int and F : [a, b] → R be

such that F is continuous on [a, b], differentiable on (a, b) and F ′(x) = f(x) for all
x ∈ (a, b). Then

∫ b

a
f = F (b)− F (a).

Fundamental Theorem of Line Integrals: Let U ⊆O Rn, ϕ : U → R be C1 and L be a
piecewise-C1 path fromA toB in U . Then

∫
L
∇ϕ(r) · dr = ϕ(B)− ϕ(A).

Green’s Theorem: Let C be a positively oriented, piecewise smooth, simple closed
curve in R2 and letD be the region bounded by C . If L andM are C1 on an open
region containingD, then∮

C

(L dx+M dy) =
∫∫

D

(
∂M

∂x
− ∂L

∂y

)
dA.

Classical Stokes’ Theorem: LetS ⊆ R3 bea compact surfacewith apiecewise-smooth
boundary C . If F : S → R3 is C1, then∫

S

curl F · dA =

∮
C

F · dr.

Divergence Theorem: LetW ⊆ R3 bea compact solidwith apiecewise-smoothbound-
ary ∂W . If F : W → R3 is C1, then∫∫∫

W

div F dV =

∫
∂W

F · dA.

Using the language of differential forms, explain why these ϐive results are special in-
stances of the same result.
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Chapter 15

General Topology Concepts

In this chapter, we begin the study of general topology, which extends the
concepts of analysis to general spaces (on which metrics may not neces-
sarily be deϐinable). We start by presenting the basic concepts and def-
initions of topology: open sets, bases, separation axioms, continuity,
and homeomorphisms, and we present a few examples of frequently-
encountered topologies: order, box, subspace, product, and quotient.

15.1 Basic Deϐinitions
LetX be a set. A topology T onX is a collection of subsets ofX .¹ such that

1. ∅, X ∈ T;

2. if U1, . . . , Un ∈ T, then∩n
i=1 Ui ∈ T;

3. if {Uα}α∈A ∈ T, then∪α∈A Uα ∈ T.

The ordered pair (X,T) is a topological space. The sets U ∈ T are called the open sets of
X . If U is an open set inX containing x, we say that U is a neighbourhood of x inX .

aaaaaa

Examples: The following collections are topologies onX .

1. T = ℘(X) is the discrete topology onX .

2. T = {∅, X} is the indiscrete topology onX .

3. IfX = R, T = {A | A = union of open intervals in R} is the standard topol-
ogy on R.

¹Or a subset T of the power set ℘(X).
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aaaaaa

4. IfX is ametric space,T = {A | A is open inX under the metric} is themetric
topology onX .

5. T = {A | X \ A is ϐinite} ∪ {∅} is the ϐinite complement topology onX .

6. T = {A | X \ A is countable} ∪ {∅} is the countable complement topology
onX . □

Let T1 and T2 be two topologies on a set X . If T1 ⊆ T2, then T2 is ϐiner than T1 and T1 is
coarser than T2. Obviously, the discrete topology is ϐiner than all other topologies onX .

If T1 ⊊ T2, then T2 is strictly ϐiner than T1 and T1 is strictly coarser than T2. The col-
lection of all topologies on a set X and the inclusion relation form a poset, but that will not
be that important for us.

A basisB for a topology is a family of subsets ofX such that

1. if x ∈ X , then there existsB ∈ B such that x ∈ B;²

2. ifB1, B2 ∈ B and x ∈ B1 ∩B2, then there existsB ∈ B such that x ∈ B ⊆ B1 ∩B2.

The topology generated by the basisB is

T(B) =

{ ∪
B∈B′

B

∣∣∣∣∣B′ ⊆ B

}
.

We illustrate conditions 1 (left), 2 (right) for the standard topology on R2 below.

²Note that for a given x, the setB need not be unique.
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aaaaaa

Examples

1. The standard topology on R has the open intervals as a basis.

2. Let X = R2, B1 be the set of all open discs in X , and B2 the set of all open
squares. ThenB1 andB2 are bases. □

We illustrate conditions 1 (left), 2 (right) for the ℓ1 topology on R2.

aaaaaa

Theorem 201
Suppose that B1 and B2 are bases for topologies T1 and T2, respectively. Then T1 is
ϔiner than T2 if and only if for each B2 ∈ B2 and any x ∈ B2, there exists B1 ∈ B1

such that x ∈ B1 ⊆ B2.

Proof: suppose T1 is ϐiner than T2. Then B2 ∈ T1 exists B ∈ T1 such that
x ∈ B ⊆ B2. Then, since B1 is a basis for T1, there exists B1 ∈ B1 such that
x ∈ B1 ⊆ B ⊆ B2.

Conversely, let B ∈ B2 and x ∈ B. Then there exists Bx ∈ B1 such that
x ∈ Bx ⊆ B, so

B =
∪
x∈B

Bx,

andB ∈ T1. But anyB2 ∈ T2 is a union of open setsB, so T2 ⊆ T1. ■

In the preceding example (second item), it is possible to ϐit a square inside any circle and vice-
versa, and so T(B1) = T(B2).

A sub-basis for a topology on a set X is a collection S of subsets of X such that for each
x ∈ X , there exists S ∈ Swith x ∈ S (note that this means thatX =

∪
S∈S S).
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Examples

1. LetX be a set. Then S = {x | x ∈ X} is a sub-basis for the discrete topology
andS′ = {∅, X} is a sub-basis for the indiscrete topology.

2. Either of the following sets of semi-ϐinite intervals form a sub-basis for the
standard topology on R:

S = {(a,+∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R}
S′ = {(a,+∞) | a ∈ R}.

A basis B can be built from a sub-basis S by adding to it all ϐinite intersections of its ele-
ments. Indeed,B1, B2 ∈ B =⇒ B1 ∩B2 ∈ B if

B = S ∪

{
n∩

i=1

Si

∣∣∣∣∣ Si ∈ S

}
.

aaaaaa

Example: considerX = R andB = {[a, b) | a, b ∈ R}. Then,

[a, b) ∩ [c, d) =



∅ if b ≤ c

[a, b) if b ≥ c, a ≥ c, b ≤ d

[c, d) if b ≥ c, a ≤ c, b ≥ d

[c, b) if b ≥ c, a ≤ c, b ≤ d

[a, d) if b ≥ c, a ≥ c, b ≥ d

The set B is a basis for some topology T′ on R. We compare T′ with the standard
topologyT onR and show that the two topologies are not equal. Suppose (a, b) ∈ T.
Then, for any x ∈ (a, b), we get [x, b) ∈ B and [x, b) ⊂ (a, b). Hence (a, b) ∈ T′, and
T ⊆ T′, i.e. T′ is ϐiner than T.

However, the inclusion is not reversed, which is to say, [a, b[ ̸∈ T. If it were,
since a ∈ [a, b[, there would exist (c, d) such that a ∈ (c, d) ⊆ [a, b), but this is
impossible. Thus T ⊊ T′, i.e. T′ is strictly ϐiner than T.

The topology T′ on R is the lower limit topology, denoted by Rl. □

LetX be a set with a total orderR. By deϐinition,
1. for every x, y ∈ X , if x ̸= y, then xRy or yRx;
2. there is no x ∈ X such that xRx, and
3. for every x, y, z ∈ X , if xRy and yRz, then xRz.

We usually write x < y instead of xRy.
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It is possible to generalize the concept of an interval by writing

(a, b) = {x ∈ X | a < x < b}, [a, b] = {x ∈ X | a ≤ x ≤ b},

and so on.

The order topology on X is generated by the basis B having as elements intervals of the
following forms:

1. (a, b), for a < b;

2. [⊥, b), if⊥ is a smallest element ofX (⊥ ≤ a for all a ∈ X), and

3. (a,⊤], if⊤ is a greatest element ofX (⊤ ≥ b for all b ∈ X).

aaaaaa

Examples

1. The order topology on R is the standard topology on R, as R has no lowest or
greatest element (all basis elements are of the form (a, b), for a < b).

2. In the order topology on N, every point is open as

{1} = [1, 2) and {n} = (n− 1, n+ 1) for n > 1.

Hence the order topology on N is the discrete topology on N.

3. LetX = {0} ∪
{

1
n
| n ∈ N

}
. Then

{1} = (1/2, 1] and
{
1

n

}
=

(
1

n+ 1
,

1

n− 1

)
for n > 1.

But any open set containing 0 will contain a basic set of the form [0, 1
N
), with

1
N+1
∈ [0, 1

N
). Hence {0} is not open, and the order topology on X is not dis-

crete. □

15.2 Box and Subspace Topologies
SupposeX and Y are topological spaces. Consider the family of subsets ofX × Y given by

B = {U × V | U ⊆O X,V ⊆O Y },

whereA ⊆O X stands for S ∈ T (“A is an open subset of X in the topology onX”).

As X ⊆O X and Y ⊆O Y , we have X × Y ∈ B, and so every element of X × Y lies in
(at least) one element ofB.
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Now suppose U1 × V1, U2 × V2 ∈ B. As U1 ∩ U2 ⊆O X and V1 ∩ V2 ⊆O Y , we have

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ B.

Thismeans thatB is a basis for a topology onX×Y , whichwe call theboxproduct topology
onX × Y .

Two mappings come with this topology:

π1 | X × Y → X and π2 | X × Y → Y,

deϐined by π1(x, y) = x and π2(x, y) = y. These mappings are called the projections onto
the ϐirst and second coordinates; we have

U × V = (U × Y ) ∩ (X × V ) = π−1
1 (U) ∩ π−1

2 (V ),

where

π−1
1 (U) = {(x, y) : π1(x, y) ∈ U} and π−1

2 (V ) = {(x, y) : π2(x, y) ∈ V }.

The setS = {π−1
1 (U) | U ⊆O X}∪{π−1

2 (V ) | V ⊆O Y } is thus a sub-basis of the box product
topology onX × Y .

aaaaaa Example: ifX = Y = R, the box product topology on R2 is the standard topology
on R2 (and is also the same as the ℓ1 and ℓ2 topologies on R2). □

Suppose Y ⊆ X , whereX is a topological space. For each V ⊆O X , we deϐine U = V ∩ Y to
be an open set in Y . This creates a topology on Y .

1. ∅, Y ⊆O Y since∅ = ∅ ∩ Y and Y = X ∩ Y , and∅, X ⊆O X .

2. Suppose Uα ⊆O Y . Then ∃Vα ⊆O X such that Uα = Vα ∩ Y . But

∪
α

Vα ⊆O X and
∪
α

Uα =

(∪
α

Vα

)
∩ Y =⇒

∪
α

Uα ⊆O Y.

3. Suppose Ui ⊆O Y , for 1 ≤ i ≤ n. Then ∃Vi ⊆O X such that Ui = Vi ∩ Y , for 1 ≤ i ≤ n.
But

n∩
i=1

Vi ⊆O X and
n∩

i=1

Ui =

(
n∩

i=1

Vi

)
∩ Y =⇒

n∩
i=1

Ui ⊆O Y.

This topology on Y is called the subspace topology on Y relative toX . The open sets in Y
are called relatively open; they are not always open inX .
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aaaaaa

Theorem 202
Suppose Y is a subspace of X and B is a basis for the topology on X . Then
BY = {U ∩ Y | U ∈ B} is a basis for the subspace topology.

Proof: let V = U ∩ Y and suppose y ∈ V and U ⊆O X . Let B ∈ B such
that y ∈ B ⊆ U . Hence y ∈ BY = B ∩ Y ⊆ U ∩ Y , and so BY is a basis for the
subspace topology on Y . ■

Some examples will help to solidify the concepts.

aaaaaa

Examples

1. LetX = R and Y = Q. A basic open set of Y is a set of the formB = (a, b)∩Q,
where a, b ∈ R. Note that B contains no interval of real numbers. Hence, no
open set ofQ can be open in R.

2. Let X = R and Y = [0, 1]. A basic open set of Y is a set of the form B =
(a, b) ∩ [0, 1], where a, b ∈ R. If 0 ≤ a < b ≤ 1, the relatively open sets of Y
will be open in R. The basic sets in Y are the sets of the form [0, b), (a, 1], and
(a, b), and the subspace topology on Y is the order topology.

3. Let X = R and Y = {−1} ∪
{

1
n

}
n∈N. In this case, the subspace topology is

discrete. Indeed,

{−1}=(−3/2,−1/2) ∩ Y ,
{
1

n

}
=

(
1

n+ 1/2
,

1

n− 1/2

)
∩ Y.

4. LetX = R and Y = {0} ∪
{

1
n

}
n∈N. In this case, the subspace topology is not

discrete. Indeed, while{
1

n

}
=

(
1

n+ 1/2
,

1

n− 1/2

)
∩ Y,

we have {0} ̸= (a, b) ∩ Y for all a < b ∈ X . □

15.3 Dual Deϐinitions and Separation Axioms
It is possible to deϐine all the notions of topology in terms of closed sets, instead of open sets.
LetX be a set. A topology T onX is a collection of subsets ofX such that

1. ∅, X ∈ T;

2. if C1, . . . , Cn ∈ T, then∪n
i=1Ci ∈ T;

3. if {Cα}α∈A ∈ T, then∩α∈ACα ∈ T.
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The ordered pair (X,T) is a topological space. The sets C ∈ T are called the closed sets of
X . In general, a set V is closed in X , denoted by V ⊆C X , if and only if its complement is
open inX .

Using this deϐinition, it is easy to prove the following propositions.

aaaaaa

Proposition 203
Let Y be a subspace ofX . A set A is closed in Y if and only if it is the intersection of a
closed set inX with Y .

Proof: left as an exercise. □

aaaaaa
Proposition 204
Let Y be a subspace ofX . IfA is closed in Y and Y is closed inX , thenA is closed inX .

Proof: left as an exercise. □

Again, let’s take a look at some examples.

aaaaaa

Examples

1. LetX = R. Then [a, b] is closed in R for all a < b.

2. Let X = R. The set [0, 1[ is neither open nor closed in R with the standard
topology.

3. IfX has the discrete topology, then every set is both open and closed, since
every set is the union of open singletons, and the complement of every set is
also the union of open singletons.

4. LetX = {a, b, c, d} be a set with 4 distinct elements. Deϐine a topology onX
by

T = {∅, {a, b}, {c, d}, X}.

All sets which are open are also closed, and vice-versa; the topology is not
discrete as {b, c} is neither open nor closed. □

The closure of a set A in X is the smallest closed set containing A, usually denoted by A.
Obviously,A ⊆ A. By deϐinition, we have

A =
∩

A⊆C⊆CX

C.
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IfA ⊆C X , then A = A, as A ⊆ A. Thus, A is closed if and only ifA = A.

Similarly, the interior of a set A inX is the largest open set contained in A, usually denoted
byA◦. Obviously, A◦ ⊆ A. By deϐinition, we also have

A◦ =
∪

V⊆A,V⊆OX

V.

IfA ⊆O X , then A = A◦, as A◦ ⊆ A. Thus A is open if and only ifA = A◦.

aaaaaa

Examples

1. The closure of (0, 1) in R is [0, 1].

2. LetX = R and A = Q. Then A◦ = ∅ and A = R. □

The result from the last example follows from Theorem 206.

aaaaaa

Theorem 205
Let A be a subset of X . Then x ∈ A if and only if every neighbourhood V of x has a
non-empty intersection with A.

Proof: we show that x ̸∈ A if and only if there is a neighbourhood V of x
such that A ∩ V = ∅. Suppose x ̸∈ A. Then there is a closed set C containing A
withx ̸∈ C . LetV = X\C ⊆O X . Thenx ∈ V andA∩V ⊆ C∩V = ∅, soA∩V = ∅.

Conversely, suppose there is a neighbourhood V of x such that A ∩ V = ∅.
Let C = X \ V ⊆C X . Then A ⊆ C and A ⊆ C , as C is closed. But V ∩ C = ∅, so
x ̸∈ C and thus x ̸∈ A. ■

Let A be a subset ofX . A point a ∈ X is a limit point of A if every neighbourhood of a con-
tains a point of A different from a, i.e. a ∈ A \ {a}.

aaaaaa

Examples

1. Let X = R and A = { n
n+1
| n ∈ N}. Then {1} is a limit point of A, and

A = A ∪ {1}, according to Theorem 206.

2. LetX be a set with the indiscrete topology. For any non-empty subsetA ofX
and any point a ∈ X , a is a limit point of A as long as A ̸= {a}. For instance,
LetX = {a, b}with topology T = {∅, X}. IfA = {b}, then a is a limit point of
A. Indeed, the only neighbourhood of a isX , and A ∩X = {b} ̸= ∅.
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We’ve alluded to it a few times already, so now it’s time for Theorem 206.

aaaaaa

Theorem 206
IfA′ is the set of all limit points of A, then A = A ∪ A′.

Proof: if x ∈ A ∪ A′, then x ∈ A or x ∈ A′. In the ϐirst case, x ∈ A ⊆ A. In
the other, every neighbourhood of x contains a point of A. Thus x ∈ A.

Conversely, suppose x ∈ A. Either x ∈ A or x ̸∈ A. It is sufϐicient to show
that if x ̸∈ A, then x ∈ A′. If x ̸∈ A, every neighbourhood of x meets A in at least
one point other than x. But x ̸∈ A, so x ∈ A′. ■

We have the following corollary.

aaaaaa
Corollary 207
A is closed inX if and only if A′ ⊆ A.

Proof: left as an exercise.

To avoid degenerate situations like the one found in the preceding example (which is to say,
that any point could be the limit point of all non-singleton subsets in the indiscrete topology),
we introduce the notion of separation axioms.

A spaceX is:
1. T2 or Hausdorff if for every pair x ̸= y ∈ X , there exist disjoint neighbourhoods Ux of
x and Uy of y;

2. T1 if for every pair x ̸= y ∈ X , there exist neighbourhoods Ux of x and Uy of y such that
y ̸∈ Ux and x ̸∈ Uy;

3. T0 if for every pair x ̸= y ∈ X , there exist a neighbourhoodU of either x or y thatmisses
the other.³

Note that every T2 space is T1, and every T1 space is T0, but that there are T0 spaces that are
not T1, and T1 spaces that are not T2; the conditions are illustrated below.

³Other separation axioms will be discussed at a later stage. In their studies, many topologists are only in-
terested in spaces that are at least Hausdorff.
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aaaaaa

Theorem 208
IfX is Hausdorff and x ∈ X is a limit point of A ⊆ X , then every neighbourhood of x
contains inϔinitely many points of A.

Proof: let x be a limit point of A and V be a neighbourhood of x. Since X is
a T2 space, its singletons are closed sets. Indeed, let x ∈ X . For all y ̸= x ∈ X ,
there exist neighbourhoods Ux of x and Uy of y such that x ̸∈ Uy and y ̸∈ Ux (the T1
condition holds for T2 spaces). Then

X \ {x} =
∪
y∈Y

Uy

is open inX and {x} is closed; if x has a neighbourhood V such thatA ∩ V is ϐinite,

A ∩ V = {a1, . . . , an}

must be closed, being the ϐinite union of closed sets.

Let W = V \ (A ∩ V ). If x ∈ W , then W is a neighbourhood of x such that
W ∩ A = ∅, which contradicts x being a limit point of A. Hence x ∈ A ∩ V . After
reordering if necessary, suppose x = a1. Then

W1 = V \ {a2, . . . , an}

is a neighbourhood of x such thatW1 ∩ A = {a1} = {x}, so that x cannot be a limit
point ofA. By reductio ad absurdum, A ∩ V is inϐinite. ■

Hausdorff spaces are particularly well-behaved with respect to toplogies.

aaaaaa

Theorem 209
Every simply ordered set is T2 in the order topology. The product of two T2 spaces is
T2. A subspace of a T2 space is T2.

Proof: left as an exercise. ■

15.4 Continuity and Homeomorphisms
Suppose thatX and Y are topological spaces. A function f : X → Y is continuous if f−1(V )
is open inX whenever V is open in Y .⁴

aaaaaa
Theorem 210
Let f : X → Y . IfB is a basis for the topology of Y , then f is continuous if and only if
f−1(B) ⊆O X for everyB ∈ B.

⁴Similarly, ifS is a sub-basis for Y , then f is continuous if and only if f−1(S) ⊆O X for all S ∈ S.
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aaaaaa

Proof: if f is continuous, f−1(B) ⊆O X for all B ∈ B since such B ⊆O Y . Con-
versely, suppose f−1(B) is open for all B ∈ B. Let V =

∪
i∈I Bi be an open subset

of Y . Then

f−1(V ) = f−1

(∪
i∈I

Bi

)
=
∪
i∈I

f−1(Bi)

is open inX since all f−1(Bi) is open inX for all i ∈ I . ■

Continuous functions are to topology what linear maps are to linear algebra.

aaaaaa

Examples

1. IfX and Y are metric spaces and f : X → Y is continuous with respect to the
metrics in the usual sense, it is continuous in the topological sense.

2. For a product space X × Y , the projections π1, π2 are continuous. Indeed,
π−1
1 (U) = U × Y, π−1

2 (V ) = X × V ⊆O X × Y when U ⊆0 X,V ⊆O Y .

3. For each b ∈ Y , the inclusion map ib : X → X × Y deϐined by ib(x) = (x, b)
is continuous. Indeed, let U × V be a basic neighbourhood inX × Y . Then

i−1
b (U × V ) =

{
∅, b ̸∈ V ,
U, b ∈ V ,

which is open inX . Thus the inclusion map is continuous.

4. For anyX , the identity map id : X → X is continuous whenX has the same
topology as a domain as it has as a range.

5. The function id : R → Rl is not continuous. Indeed, let [a, b) be an open set
in Rl. Then id−1([a, b)) = [a, b) is not open in R, so id is not continuous. The
function id : Rl → R is continuous, however. Let (a, b) be a basic open set in
R. Then id−1(a, b) = (a, b) =

∪
n∈N

[a+ 1/n, b) is open in Rl, so id is continuous.

6. Let f : X → Y and g : Y → Z be continuous functions. Then g ◦ f : X → Z
is a continuous function. Indeed, let U ⊆O Z . Then V = g−1(U) ⊆O Y since g
is continuous, and f−1(V ) ⊆O X as f is continuous. Then

(g ◦ f)−1(U) = f−1(g−1(U)) = f−1(V )

is open inX and g ◦ f is continuous. □
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There are other ways to verify if a function is continuous.

aaaaaa

Theorem 211
Let f : X → Y . The following statements are equivalent:

1. f is continuous;

2. for any A ⊆ X , f(A) ⊆ f(A);

3. if C is closed in Y , then f−1(C) is closed inX .

Proof:

1. =⇒ 2.: If x ∈ A, then every neighbourhood of x contains a point of A. If V
is a neighbourhood of f(x) then f−1(V ) is open in X and x ∈ f−1(V ). As x
is a limit point of A, there exists a ∈ A with a ∈ f−1(V ) and f(a) ∈ V , so
f(a) ∈ V ∩ f(A). But this just means that f(x) is a limit point of f(A), so
f(x) ∈ f(A), that is f(A) ⊆ f(A).

2. =⇒ 3.: If C is closed in Y , then C = C . Let A = f−1(C) then A ⊆ A and

f(A) = f(A) = f(f−1(C)) ⊆ C = C.

ThenA ⊆ f−1(C) so f−1(C) is closed.

3. =⇒ 1.: If f−1(C) is closed whenever C is closed, then if V is open in Y , Y \ V is
closed in Y , so f−1(Y \ V ) is closed inX . But

f−1(Y \ V ) = f−1(Y ) \ f−1(V ) = X \ f−1(V ),

so f−1(V ) is open. Hence f is continuous. ■

A homeomorphism f : X → Y is a bijection for which both f and the inverse function
g : Y → X are continuous. We say thatX and Y are homeomorphicwhen there is a home-
omorphism f : X → Y . ⁵

aaaaaa

Examples

1. Let X = R, Y = (0,∞). The function f : X → Y , deϐined by f(x) = ex is
continuous. The inverse function g : Y → X deϐined by g(y) = ln y is also
continuous. Both these functions are bijections, so R and (0,∞) are homeo-
morphic in the standard topology.

⁵Homeomorphisms play the same role for topological spaces as isomorphisms play for groups. Conse-
quently, homeomorphism of spaces is an equivalence relation on the ‘set’ of topological spaces. Homeomorphic
spaces are identical from the point of view of topology.
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aaaaaa

2. The bijections tan : (−π/2, π/2)→ R and arctan : R→ (−π/2, π/2) are both
continuous, so R is homeomorphic to (−π/2, π/2).

3. The continuous bijections f : (a, b)→ (c, d) and g : (c, d)→ (a, b),

f(x) = c+
d− c
b− a

(x− a) and g(y) = a+
b− a
d− c

(y − c),

are inverses of one another, so (a, b) is homeomorphic to (c, d). □

The continuous function f : X → Y is an embedding ofX into Y if the map g : X → f(X)
deϐined by g(x) = f(x) is a homeomorphism when f(X) has the subspace topology.

aaaaaa

Examples

1. For b ∈ Y , the inclusion map ib : X → X × Y , x 7→ (x, b), is an embedding.

2. LetA ⊆ X . The inclusion map ι : A→ X , a 7→ a, is an embedding. □

Continuous functions enjoy a whole slew of attractive properties.

aaaaaa

Theorem 212
LetX,Y, Z be top. spaces, and Vα ⊆O X , Ai ⊆C X .

1. Constant functions are continuous.

2. The inclusion function ι : A ⊆ X → X is continuous.

3. If f : X → Y is continuous, then the restriction function f |A for all subsets
A ⊆ X is continuous.

4. If f : X → Y is continuous, then f : X → Z is continuous, assuming that
f(X) ⊆ Z and either Z ⊆ Y or Y ⊆ Z .

5. If X =
∪
Vα and the restriction f |Vα : Vα → Y is continuous for each α, then

f : X → Y is continuous.

6. IfX =
∪n

i=1Ai and the restriction f |Ai
: Ai → Y is continuous for each 1 ≤ i ≤

n, then f : X → Y is continuous.

Proof: left as an exercise. ■
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As a special case of Theorem 212, we get the following result.

aaaaaa

Lemma 213 (PĆĘęĎēČ LĊĒĒĆ)
SupposeX = A ∪ B where A andB are closed sets. If f : A→ Y and g : B → Y are
such that f(x) = g(x) for all x ∈ A ∩B, then the function h : X → Y deϔined by

h(x) =

{
f(x), if x ∈ A ,

g(x), if x ∈ B

is continuous. The same holds if A andB are both open.

Proof: left as an exercise. ■

Lemma 213 is extremely useful.

aaaaaa

Examples

1. If X = Y = R, let A = [0,∞) and B = (−∞, 0], and deϐine f : A → Y by
f(x) = x and g : B → Y by g(x) = −x. Then h(x) = |x| is continuous by
Lemma 213.

2. Instead, take B = (−∞, 0) and deϐine f : A → Y by f(x) = x + 1 and
g : B → Y by g(x) = x. The function h obtained by Lemma 213 construction
is not continuous as h−1(1/2, 3/2) = [0, 1/2). □

This last example shows that Lemma213doesnot hold ifA andB arenot both closed, or open.

aaaaaa

Theorem 214
Let f : X → Y × Z . Then f is continuous if and only if the functions π1f and π2f are
continuous.

Proof: if f is continuous then π1f and π2f are continuous since the projec-
tions are continuous. Conversely, suppose π1f and π2f are continuous. If U × V is
a basic open set in Y × Z , then

f−1(U × V ) = (π1f)
−1(U) ∩ (π2f)

−1(V ),

which is open as π1f and π2f are continuous. Hence f is continuous. ■

The following local formulation of continuity is sometimes useful in applications. A function
f : X → Y is locally continuous at x ∈ X if for any open set V with f(x) ∈ V , there is a
neighbourhood U of x such that f(U) ⊆ V . A function f : X → Y is thus continuous if and
only if it is locally continuous at every point ofX , as can easily be veriϐied.
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15.5 Product Topology
Suppose {Xα}α∈A is a family of topological spaces, where A is an arbitrary indexing set.⁶
Then

X =
∏
α∈A

Xα

is the set of all maps x : A →
∪

α∈AXα such that x(α) ∈ Xα, ∀α ∈ A. We write xα for x(α)
and x = (xα)α∈A. This setX comes equipped with projection mappings πα for each α ∈ A,
deϐined by πα(x) = xα for all x ∈ X .

We can endowX with a topology by extending the box product topology to arbitrary prod-
ucts. A basic open set in this box topology is a set of the form∏α Uα, where Uα ⊆O Xα for
each α ∈ A.

Alternatively, extending the topology obtained by the sub-basis

S =
∪
α∈A

{π−1
α (Vα) | Vα ⊆O Xα}

to arbitrary products yields a topology called the product topology on X . The basic open
sets in the product topology have the form∏α Uα, where Uα = Xα except in a ϐinite num-
ber of cases Uαi

⊆O Xαi
, for 1 ≤ i ≤ n.

Note that when A is ϐinite, the box and product topologies coincide. Furthermore, the ba-
sic open sets in the product topology are open in the box topology, and so the box topology
is ϐiner than the product topology. But this inclusion is strict. For instance, (−1, 1)ω is open
in Rω =

∏
n∈NRwith the box topology, but it is not open in Rω with the product topology as

this would imply that R ⊆ (−1, 1).

aaaaaa

Theorem 215
IfBα is a basis for the topology onXα, then

B =

{∏
α∈A

Bα

∣∣∣∣∣Bα ∈ Bα

}

is a basis for∏αXα in the box topology.

Proof: left as an exercise. ■

aaaaaa

Theorem 216
In both the box and product topologies, the product of subspaces is a subspace and
the product of Hausdorff spaces is Hausdorff.

Proof: left as an exercise. ■
⁶In particular,Amay not be countable.
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While the deϐinition of the box topology might seem the more natural of the two generaliza-
tions to inϐinite products, there is at least one way in which the product topology is superior
(and hence, preferable).

aaaaaa

Theorem 217
Let f : Y → X =

∏
αXα and and fα = παf for all α. When X is endowed with the

product topology, f is continuous if and only if fα is continuous for all α.

Proof: suppose f is continuous. The projections πα are continuous. Indeed,
pick α. Let Vα be a basic open ofXα. ThenW = π−1

α (Vα) =
∏

β Wβ , whereWα = Vα
and Wβ = Xβ . But W is open in the product topology, so πα is continuous. Thus,
fα = παf is continuous for each α, being the composition of two continuous
functions.

Conversely, suppose that fα is continuous for all α. Let π−1
α (Uα) be a sub-basic

subset ofX . As fα = παf is continuous,

f−1
(
π−1
α (Uα)

)
= f−1

α (Uα)

is open in Y , which is to say that f is continuous. ■

This result need not be true in the box topology.

aaaaaa
Example: consider the function f : R → Rω , deϐined by fn(x) = nx for all x ∈ R.
Each fn is continuous on R, and f(x) = (nx)n∈N. In the box topology, (−1, 1)ω ⊆O

Rω . But f−1
n (−1, 1) = (−1/n, 1/n) and f−1 ((−1, 1)ω) = {0}, which is not open inR.

Hence f is not continuous in the box topology. □

15.6 Quotient Topology
LetX be a topological space and f : X → Y be a surjectivemapping. Wemake f continuous
by deϐining a topology on Y through

V ⊆O Y ⇐⇒ f−1(V ) ⊆O X.

That this deϐines a topology is clear:
1. ∅ ⊆O Y as f−1(∅) = ∅ ⊆O X; Y ⊆O Y as f−1(Y ) = X ⊆O X since f is surjective.
2. If U, V ⊆O Y , then f−1(U), f−1(V ) ⊆O X . But

f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) ⊆O X =⇒ so U ∩ V ⊆O Y.

3. If Uα ⊆O Y for all α, then f−1(Uα) ⊆O X for all α. But

f−1

(∪
α

Uα

)
=
∪
α

f−1(Uα) ⊆O X =⇒ so
∪

Uα ⊆O Y.
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This is thequotient topology on Y , and f : X → Y is a quotientmap. Thus, any continuous
map f : X → Y is a quotient map whenever it is a surjective. Note that a quotient map need
not be open.

aaaaaa

Example: let X = [0, 2] have the subspace topology from R, and set Y = {a, b}
where TY = {∅, {a}, Y }, and deϐine f : X → Y by

f(x) =

{
a, if 0 ≤ x < 1,

b, if 1 ≤ x ≤ 2.

As f−1({a}) = [0, 1) ⊆O X , f is continuous and a quotient map (as it is also surjec-
tive). However, f(1, 2) = {b} is not open in Y , so f is not open. □

If f : X → Y is a quotient map, we deϐine an equivalence relation onX by

x1 ∼ x2 ⇐⇒ f(x1) = f(x2).

Equivalence classes ofX/∼ are in 1−to−1 correspondence with elements of Y ;X/ ∼ and Y
are homeomorphic under the identiϐication topology.

aaaaaa

Examples: in what follows, we set X = I × I , where I = [0, 1], with the usual
subspace topology from R2.

1. The cylinder is deϐined via the following equivalence relation onX:

(x, y) ∼ (x, y′)⇐⇒ y − y′ ∈ Z2.

2. The torus is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′, y − y′) ∈ Z2.

3. TheMöbius band is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ x− x′ ∈ Z and y + y′ = 1.

4. The Klein bottle is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′ ∈ Z and y + y′ = 1) or (x = x′ and y − y′ ∈ Z).

5. The projective plane is deϐined via the following equivalence relation onX:

(x, y) ∼ (x′, y′)⇐⇒ (x− x′ ∈ Z and y + y′ = 1) or (x+ x′ = 1 and y − y′ ∈ Z).
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The identiϐication topologies of those spaces onX are shownbelow (fromthatsmaths.com).

15.7 Solved Problems
1. Show that if B is a basis for a topology on X , then the topology generated by B is the

intersection of all topologies onX that containB. Prove the same ifB is a sub-basis.

Proof: letB be a basis, and suppose T(B) is the topology onX generated byB. We
ϐirst show that T(B) ⊆

∩
B⊆T T.

Let U ∈ T(B). Then U =
∪

B∈BU
B, for some BU ⊆ B. Let T be any topology

onX containingB. In particular, it also containsBU , and∪
B∈BU

B = U ∈ T,

since arbitrary unions of open sets in T are open in T. But T was arbitrary, so U ∈∩
B⊆T T, andT(B) ⊆

∩
B⊆T T. Conversely, sinceT(B) is a topology onX containing

B, then ∩
B⊆T

T ⊆ T(B).

Hence∩B⊆T T = T(B).
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Now suppose B is a sub-basis. The proof follows the same lines. The sole differ-
ence is that the topology onX generated byB is

T(B) =

 ∪
arbitrary

 ∩
ϐinite

Bi

∣∣∣∣∣∣Bi ∈ B

 .

So we need only to verify that if U ∈ T(B), then U ∈ ∩B⊆T T. Let

U =
∪
arb.

∩
ϐin.

Bi


and T be any topology on X containing B. Then U ∈ T since arbitrary unions and
ϐinite intersections of open sets in T are open in T.

The rest of the proof is identical to the above proof for whenB is a basis. ■

2. Show that the collection
B = {[a, b) | a < b, a, b ∈ Q}

is a basis that generates a topology different from that of Rl.
Proof: to show that B is a basis, it sufϐices to show the second property, since R =∪

n∈N[−n, n). Let [a, b) and [c, d) belong toB2. Then

[a, b) ∩ [c, d) =



∅ if b ≤ c
[a, b) if b ≥ c, a ≥ c, b ≤ d
[c, d) if b ≥ c, a ≤ c, b ≥ d
[c, b) if b ≥ c, a ≤ c, b ≤ d
[a, d) if b ≥ c, a ≥ c, b ≥ d

,

where a, b, c, d ∈ Q.

Thus, whenever x ∈ [a, b) ∩ [c, d), there exists an interval I ∈ B such that x ∈
I ⊆ [a, b) ∩ [c, d). Hence B is a basis. Denote the topology on R generated by B by
T, and that of the lower limit topology on R by Tl. Clerly, [π, 4) ∈ Tl. Does it also
belong to T?

If it does, we can then write
[π, 4) =

∪
α∈A

[aα, bα),

for aα, bα ∈ Q. But notice that each of the aα must be greater than π. In particular,
since π ̸∈ Q, each of the aα must be strictly greater than π, since they are all rational.
Hence, we can at best obtain

(π, 4) =
∪
α∈A

[aα, bα),

if aα, bα ∈ Q. Hence [π, 4) ̸∈ T and Tl ̸= T. ■
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3. Show that if Y is a subspace ofX , andA is a subset of Y , then the subspace topology on
A as a subspace of Y is the same as the subspace topology on A as a subspace ofX .

Proof: let U be open in the subspace topology on A as a subspace of X , and V be
open in the subspace topology onA as a subspace of Y .

Then, there existsW ⊆O X and Z ⊆O Y such that U = A ∩W and V = A ∩ Z . But
if Z ⊆O Y , there exist Z ′ ⊆O X such that Z = Y ∩ Z ′, and so V = A ∩ Y ∩ Z ′.

SinceA ⊆ Y ,

U = A ∩W = A ∩ Y ∩W, V = A ∩ Y ∩ Z ′ = A ∩ Z ′,

whereW and Z ′ are open inX .

Hence U is open in the subspace topology on A as a subspace of Y , and V is open
in the subspace topology on A as a subspace of X , and so the two topologies are
equal. ■

4. If T and T′ are topologies on X and T′ is strictly ϐiner than T, what can you say about
the corresponding subspace topologies on the subset Y ofX?

Solution: letTY andT′
Y be the subspaces topologies on a subsetY ofX correspond-

ing to T and T′ respectively. It should be clear that T′
Y is ϐiner than TY . Indeed let

B = V ∩ Y for some V ∈ T ⊊ T′. HenceB = V ∩ Y for some V ∈ T′.

Can we necessarily say that T′
Y is strictly ϐiner than T? Well, suppose all U ∈ T′

where U ̸∈ T are such that U ∩ Y = ∅.⁷ Then

A = Y ∩ U = Y ∩∅ ∈ TY

since∅ is open in T.

For all other V ∈ T′, we have V ∈ T, and so we have A = V ∩ Y ∈ T. Hence,
in this case TY = T′

Y . The following example shows that T′
Y could be strictly ϐiner

than TY .

Let X = R (as a set), Y = (0, 1) and suppose T and T′ are the usual topology on
R and the lower limit topology on R, respectively.

Then [0.5, 1) ∈ T′
Y , but it is not open in the usual subspace topology on Y since

there is no interval (a, b) such that

[0.5, 1) = (0, 1) ∩ (a, b).

In this case, T′
Y is strictly ϐiner than TY . Thus, the most we can say without more

information is that T′
Y is ϐiner than TY . □

⁷For instance, letX = {a, b, c}, Y = {c}, T = {∅, X} and T′ = {∅, {a, b}, X}. Then T ⊊ T′, and the only
U ∈ T′ where U ̸∈ T is U = {a, b}, so Y ∩ U = ∅.
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5. Show that the projections π1 : X × Y → X and π2 : X × Y → Y are open maps.
Proof: we show that π1 is open, the proof that π2 is open is similar. LetB be a basic
open set in X × Y . Hence B = U × V , where U is open in X and V is open in Y .
Then π1(B) = U is open inX . Now, any openW inX × Y is written

W =
∪
α∈A

(Uα × Vα),

where Uα × Vα is a basic open set for all α ∈ A. Now

π1(W ) = π1({(u, v) ∈ X × Y |(u, v) ∈ Uα × Vα for some α ∈ A}
= {u ∈ X|u ∈ Uα for some α ∈ A} = ∪α∈AUα,

which is open inX , since it is an arbitrary union of open sets inX , so π1 is open. ■

6. Show thatX is Hausdorff if and only if the diagonal

∆ = {(x, x)|x ∈ X}

is closed inX ×X .
Proof: since ∅ and any one point set are vacuously Hausdorff, and since their re-
spective ∆ are ∅ and X , which are closed sets in X , the result holds when X = ∅
andX = {∗}. We can thus restrict ourselves to spacesX with at least two elements.
For any suchX ,X ×X \∆ ̸= ∅.

SupposeX is Hausdorff. We show thatX ×X \∆ is open inX ×X , and so that ∆
is closed inX ×X .

Let (x, y) ∈ X × X \ ∆. Then x ̸= y. So there exists two sets Ux, Vy (open in
X) such that x ∈ Ux, y ∈ Vy and Ux ∩ Vy = ∅. Now (x, y) ∈ Ux × Vy , which is open
inX ×X . We show that (Ux × Vy) ∩∆ = ∅. Suppose

(z, z) ∈ (Ux × Vy) ∩∆ ̸= ∅.

Then z ∈ Ux and z ∈ Vy , so z ∈ Ux ∩ Vy . But Ux ∩ Vy = ∅, so there is no such (z, z).
Hence, we can ϐit an open set around each (x, y) ∈ X ×X \∆, and soX ×X \∆ is
open inX ×X .

Conversely, suppose ∆ is closed in X × X , and let x, y ∈ X such that x ≠ y. Then
(x, y) ∈ X×X \∆, an open set ofX×X . Hence there exists a basic open setU ×V
ofX ×X such that

(x, y) ∈ U × V ⊆ X ×X \∆.

But U ∩ V = ∅, otherwise there would exist z ∈ X such that

(z, z) ∈ U × V ⊈ X ×X \∆.

Thus U , V are open subsets of X with x ∈ U , y ∈ V , and U ∩ V = ∅, and so X is
Hausdorff. ■
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7. LetA ⊆ X , and let f : A→ Y be continuous; let Y be Hausdorff. Show that if f may be
extended to a continuous function g : A→ Y , then g is uniquely determined.

Proof: suppose f can be extended to g and h, as in the statement of the problem.
Suppose g ̸= h. Then, there exists x0 ∈ A \ A = ∂A such that g(x0) ̸= h(x0), since
f = g|A = h|A.

But Y is Hausdorff, so ∃U, V ⊆O Y such that g(x0) ∈ U , h(x0) ∈ V , and U ∩ V = ∅.

Since g and h are continuous, g−1(U), h−1(V ) ⊆O X . Furthermore,

x0 ∈ g−1(U) ∩ h−1(V ) ⊆O X.

As x0 ∈ A, there exists a ̸= x0 inA such that a ∈ g−1(U) ∩ h−1(V ), and so g(a) ∈ U
and h(a) ∈ V . But g(a) = h(a) = f(a) since a ∈ A, which yields f(a) ∈ U ∩ V , a
contradiction, as this set is supposed empty. Thus when f can be extended, it can be
done uniquely. ■

8. If f1 : X1 → Y1, f2 : X2 → Y2 are continuous, show that F : X1 × X2 → Y1 × Y2 is
continous, where F (x1, x2) = (f1(x1), f2(x2)).

Proof: the setB = {U ×V | U ⊆O Y1, V ⊆O Y2} is a basis for the product topology
onY1×Y2. Then, it is enough to show thatF−1(U×V ) ⊆O X1×X2 for allU×V ∈ B.
But

F−1(U × V ) = {(x1, x2) ∈ X1 ×X2 | F (x1, x2) ∈ U × V }
= {(x1, x2) ∈ X1 ×X2 | f1(x1) ∈ U, f2(x2) ∈ V }
= {(x1, x2) ∈ X1 ×X2 | x1 ∈ f−1

1 (U), x2 ∈ f−1
2 (V )} = f−1

1 (U)× f−1
2 (V ).

But f−1
1 (U) ⊆O X1 and f−1

2 (V ) ⊆O X2 since f1 and f2 are continuous, and so

F−1(U × V ) = f−1
1 (U)× f−1

2 (V ) ⊆O X1 ×X2

in the product topology, which means that F is continuous. ■

9. Let f : X → Y be an onto mapping. For each of the properties T1 and T2, prove or
disprove that if one ofX , Y has the property, then so must the other when

a) f is continuous;
b) f is open;
c) f is both open and continuous.

Solution: throughout, we assume that both X and Y have at least two elements –
otherwise, all the statements are vacuously or trivially true. Recall that a spaceW is
T1 when, for each pair of distinct points x, y ∈W , there existsUx, Vy open sets inW
such that x ∈ Ux ̸∋ y and y ∈ Vy ̸∋ x.
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a) f is continuous: f−1(U) is open inX whenever U is open in Y .
i. X is T1. LetX = R, Y = {a, b}with the indiscrete topology and deϐine the

surjection f : R→ Y by f(0) = a and f(x) = b for all x ̸= 0. Then R is T1,
since it is T2, and f is continuous, since f−1(Y ) = R is open in R, but Y is
not T1 since every neighbourhood of a contains b. SoX is T1 ⇏ Y is T1.

ii. Y is T1. Let X = {a, b, c, d} with TX = {∅, {a, c}, {b, d}, X}, Y = {a, b}
with the discrete topology and deϐine the surjection f : X → Y by f(a) =
a, f(b) = b, f(c) = a and f(d) = b. Then f is continuous, since both
f−1({a}) = {a, c}, f−1({b}) = {b, d} lie in TX , butX is not T1 since every
neighbourhood of a contains c. So Y is T1 ⇏ X is T1.

iii. X is T2. In the counter-example a)i., X is also T2, but Y is not T1, so it is
certainly not T2. HenceX is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., Y is also T2, but X is not T1, so it is
certainly not T2. Hence Y is T2 ⇏ X is T2.

b) f is open: f(V ) is open in Y whenever V is open inX .
i. X is T1. See b)iii. X is T1 ⇏ Y is T1.
ii. Y is T1. In the counter-example a)ii., f is surjective, it is open since Y has

the discrete topology, and Y is T1. ButX is not T1. So Y is T1 ⇏ X is T1.
iii. X is T2. Let X = R, Y = {a, b} with the indiscrete topology, and deϐine

the surjection f : R → Y by f(x) = a whenever x ∈ Q and f(x) = b
whenever x ̸∈ Q. Then f is open. Indeed, any basic open set (a, b) contains
both rational and irrational numbers, and so f(a, b) = Y ⊆O Y . Note that
R is T2, but Y is not T2, as it is not even T1. Thus,X is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, and Y is T2. But X is not T2, as it is not T1. Thus,
Y is T2 ⇏ X is T2.

c) f is both open and continuous: f−1(U) is open in X whenever U is open in Y
and f(V ) is open in Y whenever V is open inX .
i. X is T1. See b)iii. X is T1 ⇏ Y is T1.
ii. Y is T1. In the counter-example a)ii., f is surjective, it is open since Y has

the discrete topology, it is continuous by deϐinition and Y is T1. But X is
not T1. Hence Y is T1 ⇏ X is T1.

iii. X is T2. In the counter-example b)iii., the function f is also continuous
since Y has the indiscrete topology and X = T2. But Y is not T2 as it is
not even T1. HenceX is T2 ⇏ Y is T2.

iv. Y is T2. In the counter-example a)ii., f is surjective, it is open since Y has
the discrete topology, it is continuous by deϐinition and Y is T2. But X is
not T2. As it is not even T1. Hence Y is T2 ⇏ X is T2.

And that’s it, folks: T1 and T2 do not behave nicely with respect to continuous func-
tions. □
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10. Showthat the setAof all bounded sequences is bothopenandclosed in thebox topology
on Rω .

Proof: letA be the set

A = {(xn)n∈N | ∃M ∈ Rwith |xn| < M ∀n ∈ N}.

We start by showing thatA ⊆O Rω .

Let (xn)n∈N ∈ A. Then ∃M ∈ R such that |xn| < M for all n ∈ N. Set

Un = (xn − 1, xn + 1), for all n ∈ N.

Then

U =
∏
n∈N

(xn − 1, xn + 1)

is open in the box topology onRω , sinceUn ⊆O R for all n ∈ N. Clearly, (xn)n∈N ∈ U ,
since xn ∈ Un for all n ∈ N. But U ⊆ A.

Indeed, suppose (wn)n∈N ∈ U . Then wn ∈ Un for all n ∈ N and so xn − 1 < wn <
xn + 1 for all n ∈ N. But this means that

−M − 1 < xn − 1 < wn < xn + 1 < M + 1

and |wn| < M +1 for all n ∈ N. Hence (wn)n∈N ∈ A andU ⊆ A so we conclude that
A ⊆O Rω .

We now show thatA ⊆C Rω . Suppose (xn)n∈N ∈ A, and let

V =
∏
n∈N

(
xn −

1

n
, xn +

1

n

)
.

Then (xn)n∈N ∈ V ⊆O Rω and there exists (an)n∈N ∈ A such that (an)n∈N ∈ V . In
that case, there exists M ∈ R such that −M < an < M for all n ∈ N. However,
an ∈ (xn − 1

n , xn + 1
n) so that

an −
1

n
< xn < an +

1

n

for all n ∈ N, and so

−M − 1 < an −
1

n
< xn < an +

1

n
< M + 1

and |xn| < M + 1 for all n ∈ N.

Thus (xn)n∈N ∈ A, andA ⊆ A, which yieldsA ⊆C Rω . ■
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15.8. EXERCISES

15.8 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Let Z be a subspace of Y . Are the subspace topologies on Z relative to X and Y the
same?

3. Showdirectly that the box product topology onR2 is identical to the ℓ1 and ℓ2 topologies
on R2.

4. Provide a proof of Results 203, 204, 207, 209, 212, 213, 215, and 216.

5. Show that a function which is locally continuous at every point is continuous, and vice-
versa.

6. Provide the details for the homeomorphism examples of pp. 381-382.

7. Provide the details for the embedding examples of p. 382.

8. Provide the equivalence relation for the identiϐication topologyof the cylinder, the sphere,
and the projective plane.

9. Show that the map f : X → Y is continuous if and only if f(A) ⊆ f(A) for any subset
A ofX .

10. Let f, g : X → Y be continuous maps from a space X to a Hausdorff space Y . Prove
that the set C = {x | f(x) = g(x)} is closed inX .

11. Suppose that f : X → Y is a bijection. IfB is a basis for the topology onX , prove that
f is a homeomorphism if and only if the collection {f(B) | B ∈ B} is a basis for the
topology on Y .

12. Show that the map f : X → Y is continuous if and only if f(A) ⊆ f(A) for any subset
A ofX .

13. Let f, g : X → Y be continuous maps from a space X to a Hausdorff space Y . Prove
that the set C = {x | f(x) = g(x)} is closed inX .

14. Suppose that f : X → Y is a bijection. IfB is a basis for the topology onX , prove that
f is a homeomorphism if and only if the collection {f(B) | B ∈ B} is a basis for the
topology on Y .
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Chapter 16

Connected Spaces

In Chapter 9, we discussed connectedness and path-connectedness in
the context of metric spaces. In this chapter, we discuss how these notions
extend to general topological spaces.

16.1 Connected Sets
A separation of a space X is a pair of disjoint non-empty open sets U and V such that
X = U ∪ V. Note that both U and V are open and closed. When no separation of X ex-
ists, we say thatX is connected. Alternatively,X is connected if the only sets that are closed
and open inX are∅ andX .

aaaaaa
Example: letX = [1, 2] ∪ [3, 4] be a subspace of R. U = [1, 2] is closed inX as U =
X ∩ [1, 2] and [1, 2] is closed inR. But U = X ∩ (0.5, 3.5), so U ⊆O X . Consequently,
X is not connected. □

In general, a subspace Y ⊆ X is connected if it is connected in the subspace topology.

aaaaaa

Theorem 218
A separation of a subset Y is a pair of non-empty subsets A and B whose union is Y
and such that A ∩B = ∅ andA ∩B = ∅.

Proof: SupposeA andB satisfy the conditions of the theorem. Then

A ∩ Y = A ∩ (A ∪B) = (A ∩ A) ∪ (A ∩B) = A ∪∅ = A,

andA is closed in the subspace topology on Y (i.e., relatively closed). Similarly,B is
relatively closed, so A and B are relatively open in Y . Consequently, A and B form
a separation of Y .
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aaaaaa

Conversely, suppose A and B are a separation of Y . Then A is relatively closed and
soA = A ∩ Y . Then

A ∩B = A ∩ Y ∩B = A ∩B = ∅.

SimilarlyA ∩B = ∅. ■

If Y ⊆ X is a connected set, and U and V is a separation ofX , then Y ⊆ U or Y ⊆ V .¹

aaaaaa

Theorem 219
If {Cα}α∈A is a family of connected sets such that

∩
αCα ̸= ∅, then

∪
αCα is connected.

Proof: suppose x ∈ ∩
αCα. If U and V is a separation of ∪αCα, then either

x ∈ U or x ∈ V . Without loss of generality, let x ∈ U . Let α ∈ A. Since Cα is
connected, either Cα ⊆ U or Cα ⊆ V . But x ∈ Cα, so Cα ⊆ U . Then ∪αCα ⊆ U .
Hence (∪

α

Cα

)
∩ V ⊆ U ∩ V = ∅.

As ∪αCα = U ∪ V , this means that V = ∅, which is a contradiction since U and
V form a separation. Consequently, there could be no such separation to start with,
and∪αCα is connected. ■

Connectedness behaves well with respect to the closure of a set, as we can see below.

aaaaaa

Theorem 220
If A is connected, and A ⊆ B ⊆ A, thenB is connected.

Proof: if U and V forms a separation of B, then A ⊆ U or A ⊆ V . Without
loss of generality, suppose A ⊆ U . Then V = B ∩ V ⊆ A ∩ V ⊆ U ∩ V = ∅, by
Theorem 218. But V ̸= ∅ as U and V form a separation ofB. Thus there cannot be
a separation ofB andB is connected. ■

As mentioned in Chapter 9, connectedness is a topological property.

aaaaaa

Theorem 221
Let f : X → Y be a continuous function. IfX is connected, f(X) is connected.

Proof: suppose that f(X) is not connected. Let U and V form a separation of
f(X). Then f−1(U) and f−1(V ) form a separation ofX andX is not connected. ■

¹Otherwise U ∩ Y and V ∩ Y would form a separation of Y .

396 Analysis and Topology Course Notes



CHAPTER 16. CONNECTED SPACES

aaaaaa

Theorem 222 IfX and Y are connected spaces, so isX × Y .

Proof: if x ∈ X , the function ix : Y → X × Y deϐined by ix(y) = (x, y) is
continuous. Then ix(Y ) = {x} × Y is connected. Similarly, iy(X) = X × {y} is
connected for all y ∈ Y . Then

ix(Y ) ∩ iy(X) = {(x, y)} ̸= ∅

for all y ∈ Y . Then Cy = iy(X) ∪ ix(Y ) = (X × {y}) ∪ ({x} × Y ) is connected for
all y ∈ Y . Now ∩

y∈Y

Cy = {x} × Y = ix(Y ) ̸= ∅,

so∪y∈Y Cy = X × Y is connected. ■

As a result, any ϐinite product of connected sets is connected. What about an inϐinite product
of connected sets?

aaaaaa

Theorem 223
Let {Xα}α∈A be a collection of connected sets. Then

∏
αXα is connected in the

product topology.

Proof: if∏αXα = ∅, then the theorem is trivially true, so let b = (bα)α ∈
∏

αXα.
For each ϐinite set {α1, . . . , αn} ofA, consider the space

X(α1, . . . , αn) =

{
(xα)α∈A

∣∣∣∣xα = bα if α ̸∈ {α1, . . . , αn}
xα ∈ Xα if α ∈ {α1, . . . , αn}

}
,

which is homeomorphic toXα1×· · ·×Xαn , and so connected. LetBbe the collection
of all ϐinite subsets ofA. Note that b ∈ X(α1, . . . , αn) for all {α1, . . . , αn} ∈ B, hence

b ∈
∩

{α1,...,αn}∈B

X(α1, . . . , αn) ̸= ∅.

Thus Y =
∪

BX(α1, . . . , αn) is connected. We show that Y =
∏

αXα. Since Y is
connected, Y is connected and the theorem is proven.

Let x = (xα)α ∈
∏

αXα ̸= b and let V be a basic neighbourhood of x. Then
V =

∏
α Vα, where Vα = Xα for all but a ϐinite number of open sets Vαi

, 1 ≤ i ≤ n.
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aaaaaa

Deϐine y = (yα)α by

yα =

{
bα, if α ̸= αi for all 1 ≤ i ≤ n,
xα, if α = αi for some 1 ≤ i ≤ n.

Then, yα = bα ∈ Vα = Xα for α ̸∈ {α1, . . . , αn}, and yα = xα ∈ Vα for
α ∈ {α1, . . . , αn}. Hence yα ∈ Vα for all α and y ∈ V .

But, by construction, y ∈ X(α1, . . . , αn) ⊆ Y , so y ∈ V ∩ Y ̸= ∅. As b ̸= x,
we get y ̸= x, and x is a limit point of Y , that is x ∈ Y . Consequently, Y =

∏
αXα. ■

In the usual topology,R has someuseful properties, some ofwhich can be extended to general
spaces. A linear continuum. for isntance, is an ordered setX in which the following hold:

i. if x < y ∈ X , there exists z ∈ X such that x < z < y;

ii. any non-empty set A ⊂ X with an upper bound has a least upper bound.

A rather tedious, but not very difϐicult, argument ([Munkres, , p.153] shows that linear con-
tinua are connected, and that rays and intervals are connected subsets in a linear continuum.
As R is a linear continuum, it is connected. The next result is a generalization of a very im-
portant theorem from analysis (see Theorem 35, Chapter 3).

aaaaaa

Theorem 224 (IēęĊėĒĊĉĎĆęĊ VĆđĚĊ TčĊĔėĊĒ)
Suppose f : X → Y is continuous and Y has the order topology for some ordering<.
If X is connected and a, b ∈ X are such that f(a) < f(b), then for any y ∈ Y such
that f(a) < y < f(b), there exists x ∈ X such that f(x) = y.

Proof: let A = {z ∈ Y : z > y} and B = {z ∈ Y : z < y}. Then A,B ⊆O Y , and,
as f is continuous, f−1(A), f−1(B) ⊆O X . Furthermore, f−1(A) ∩ f−1(B) = ∅,
a ∈ f−1(B) and b ∈ f−1(A). Since X is connected, X ̸= f−1(A) ∪ f−1(B)
(otherwise, f−1(A) and f−1(B)would form a separation ofX).

Hence, there exists x ∈ X \ (f−1(A) ∪ f−1(B)). As f(x) ̸∈ A and f(x) ̸∈ B,
f(x) = y. ■

If x ∈ X , the (connected) component of x inX , denotedCx is the union of all connected sets
containing x. It is connected as the intersection of all these sets contain x. AsCx is connected,
Cx is connected and so Cx ⊆ Cx. Then the component Cx is closed in X; if X has a ϐinite
number of components, each component is also open.

We can deϐine an equivalence relation onX as follows: xRy if and only if there is a connected
set containing both x and y.
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Then:
1. for all x ∈ X , xRx;
2. if xRy, then yRx, and
3. if xRy and yRx, then xRz.

The equivalence class of x is simply the (connected) component of x inX .

aaaaaa

Examples (CĔĒĕĔēĊēęĘ)
1. LetX = [1, 2) ∪ (3, 4) be a subspace ofX . ThenX has two components, [1, 2)

and (3, 4).

2. Let x ∈ Q. Then the component of x is {x} as the only connected subsets ofQ
are one-point sets. When all the components ofX are singletons, we say that
the spaceX is totally disconnected. □

16.2 Path-Connectedness
A path in a spaceX is a continuous map p : [0, 1]→ X . Throughout, we denote [0, 1] by I . If
p(0) = a and p(1) = b, we say that p is a path from a to b, a is the initial point of p, while b is
the terminal point of p. A spaceX is path-connected if for any pair of points a, b ∈ X , there
is a path p from a to b.

aaaaaa

Proposition 225
A path-connected spaceX is connected.

Proof: Suppose A,B were a separation of X . Let a ∈ A and b ∈ B. As X is
path-connected, there is a path p from a to b. But p(I) is connected in X as I is
connected, so p(I) ⊆ A or p(I) ⊆ B. But p(0) ∈ A and p(1) ∈ B, a contradiction.
HenceX is connected. ■

We have already discussed paths in Chapter 14.

aaaaaa

Examples (PĆęčĘ Ćēĉ ĕĆęč-ĈĔēēĊĈęĊĉēĊĘĘ)
1. Let a ∈ X . The map pa : I → X deϐined by pa(t) = a is a path, the constant

path at a.

2. For n > 1,Rn \ {0} is path-connected. Let a, b ∈ Rn \ {0}. Deϐine Sa,b to be the
circle with diameter ab. If 0 ̸∈ Sa,b, then either of the semi-circles form a path
from a to b in Rn \ {0}. If 0 ∈ Sa,b, it can only lie on one of the semi-circles.
Then the other semi-circle gives the desired path.
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aaaaaa

3. Any convex subsetC ofRn is connected. Indeed, let a, b ∈ C and deϐine a path
p : I → X by

p(t) = (1− t)a+ tb = t(b− a) + a.

Then p is continuous, p(0) = a and p(1) = b − a + a = b. Hence C is path-
connected, so connected.

4. R \ {0} is not connected, as (−∞, 0), (0,∞) is a separation. Let n > 1. Then
Rn \{0} andR\{0} are not homeomorphic. But this actuallymeans thatRn is
not homeomorphic to R. Suppose f : Rn → R was a homeomorphism. Then
f(Rn\{0}) = R\{f(0)}would be the continuous image of a connected set, so
should be connected. But it clearly isn’t, so there can be no homeomorphism.

5. Let A = {(x, y) | x = ny, n ∈ N, 0 ≤ x ≤ 1}. Graphically, A represents
the union of lines through the origin of slopes 1, 1

2
, 1
3
, . . ., restricted to I × I .

A is connected, as it is clearly path-connected. Let X = A ∪ {(1, 0)}. Then
X is connected since A ⊆ X ⊆ A. We show thatX is not path-connected by
showing that there is no path inX from b = (1, 0) to any point ofA. As a result,
connected spaces need not be path connected.
Suppose p : I → X is a path with p(0) = b and let V be a neighbourhood of b,
excluding (0, 0). Let t0 ∈ p−1(b). As p is continuous, there exists a basic (hence
connected) neighbourhoodU of t0 such that p(U) ⊆ V . If t1 ∈ U and p(t1) ̸= b,
then p(t1) lies on x = ny for some n ∈ N. Write

W1 =

{
(x, y) : x <

(
n+

1

2

)
y

}
∩ V

and

W2 =

{
(x, y) : x >

(
n+

1

2

)
y

}
∩ V.

ThenW1 andW2 forms a separation of V . Thus p(U) ⊆ W1 or p(U) ⊆ W2. But
t0 ∈ U , so b = p(t0) ∈ p(U) and b = (1, 0) ∈ W2. Then p(U) ⊆ W2. How-
ever p(t1) ∈ W1. So there can be no such t1 and p(U) = {b}. Consequently,
p−1(b) = I , as it is non-empty and both open and closed in I . So p is the con-
stant path pb, and no point in A can be reached from b. □

It is possible to deϐine another relation onX: xPy if there is a path inX from x to y.
1. For all x ∈ X , xPx as there is a path p : I → X deϐined by p(t) = x for all t ∈ I;
2. if xPy there is a path p : I → X such that p(0) = x and p(1) = y. Then, yPx as there is

a path q : I → X deϐined by q(t) = p(1− t).
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3. if xPy and yPx there are paths p, q : I → X such that p(1) = q(0) = y, p(0) = x and
q(1) = z. Then xPz as there is a path r = p.q : I → X deϐined by

r(t) = (p.q)(t) =

{
p(2t) if t ∈ [0, 1/2],
q(2t− 1) if t ∈ [1/2, 1].

So P is an equivalence relation. The equivalence class of x is the path component of x inX .
A path component need not be closed. Consider the spaceX from example 5 on p. 399. The
subset A is a path component ofX , but A is not closed inX since (1, 0) ∈ A but (1, 0) ̸∈ A.

16.3 Local (Path) Connectedness
A spaceX is locally (path) connected if for each x ∈ X , every neighbourhood Vx of x con-
tains a (path) connected neighbourhood of x. The following examples show that local (path)
connectedness and (path) connectedness are independent properties.

aaaaaa

Examples (LĔĈĆđ (PĆęč) CĔēēĊĈęĊĉēĊĘĘ)
1. The spaceX from example 5 on p. 399 is connected but not locally connected,

since the only connected neighbourhood of (1, 0) isX .

2. The spaceX = (0, 1) ∪ (2, 3) is locally connected and locally path-connected,
but it is clearly neither connected nor path connected.

3. Let Y = X ∪S, whereX is the space from example 5 on p. 399 and S is an arc
joining (1, 0) to (1, 1) without meeting any other point of X . Then X is path
connected, but it is not locally path-connected. Indeed, the neighbourhood
V = B((1, 0), 1/2) ∩ Y contains no path-connected neighbourhood.

There is a simple characterization of locally connected spaces.

aaaaaa

Theorem 226
A spaceX is locally connected if and only if the components of each open subset V of
X are open.

Proof: if X is locally path-connected and V ⊆O X , let C be a component of
V . If x ∈ V , there is a connected neighbourhood U of x where U ⊆ V . As C is a
maximal connected set, U ⊆ C and C is open.

Conversely, suppose the components of open subsets are open. If V is a neighbour-
hood of x, let U be the component of x in V . Then U is a connected neighbourhood
of x lying in V , soX is locally connected. ■
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A similar theorem holds for locally path-connected spaces. We ϐinish this section with the
following result.

aaaaaa

Theorem 227
If X is a locally path-connected space, then the components and path components of
X coincide.

Proof: If x ∈ X , there is a component C and a path component D of x. Since
D is connected,D ⊆ C . By the previous theorem,D ⊆O C . If y ∈ C \D, then there
exists a path-connected neighbourhood V of y such that V ⊆ C . Then V ∩D = ∅.
Otherwise y ∈ D since there would be a path from x to y. Hence y ∈ V ⊆ C \D and
C \D ⊆O C . ThenD is closed and open in C . Since C is connected, eitherD = ∅
orD = C . But x ∈ D, soD = C . ■

16.4 Solved Problems
1. Let A and B be connected subsets of a space X . For each of the following condition,

either prove it to be sufϐicient to ensure thatA ∪B be connected or provide a counter-
example to show that A ∪B need not be connected:

a) A ∩B ̸= ∅;
b) A ∩B ̸= ∅ and A ∩B ̸= ∅;
c) A ∩B ̸= ∅ orA ∩B ̸= ∅.

Solution:

a) Let X = R, a ∈ R, A = (−∞, a) and B = (a,+∞). Then A = (−∞, a],
B = [a,+∞) andA∩B = {a} ̸= ∅, butA∩B = ∅, soA∪B is not connected.
The condition is not sufϐicient.

(b and c) Let Y = A ∪ B. By a theorem seen in class, a separation of Y is a pair of non-
empty subsetsW andZ of Y such thatW ∩Z = ∅,W ∩Z = ∅ and Y =W ∪Z .
By hypothesis (in both cases), A and B can not form a separation of Y . Now
supposeW andZ formed a separation of Y . SinceA andB are connected, each
ofW andZ must contain exactly one ofA andB, sayA ⊆W andB ⊆ Z .² Since
W andZ are disjoint, andW ∪Z ⊆ A∪B, we getW ⊆ A andZ ⊆ B, and soW
and Z can not form a separation of Y , which is a contradiction. Hence, in both
cases,A ∪B is connected. □

2. Let X be locally path-connected. Show that every connected open set in X is path-
connected.

Proof: If U = ∅, the statement is vacuously true. So suppose U ̸= ∅ is an open
connected set inX . Since U ⊆O X , andX is locally path-connected, then, for every

²The only other possibility is that Y lies in one ofW xor Z , which would make the other subset empty, and
soW and Z could not form a separation of Y .
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x ∈ U , there exists Vx ⊆O X such that x ∈ Vx ⊆ U and Vx is path-connected. Now,
pick z ∈ U , deϐine V to be the path component ofU containing z and let Y = U −V .
SinceX is locally path-connected, V is open inX . Note that∪

y∈Y
Vy

 ∩ V = ∅;

otherwise, there would be a y ∈ Y ∩ V , a contradiction. Hence we have Y =
∪
y∈Y

Vy

and Y ⊆O X since Vy ⊆O X for all y ∈ Y .

But U is connected, so either V = ∅ or Y = ∅. Since z ∈ V , we must have Y = ∅
and U = V . Hence U is path-connected. ■

3. LetX be an ordered set (with at least two elements) in the order topology. Show that
ifX is connected, thenX is a linear continuum.

Proof: a linear continuum is an ordered set in which
i. if x < y, there exists z such that x < z < y;
ii. any non-empty setAwith an upper bound has a least upper bound.

Deϐine the upper open ray and the lower open ray at x by

UR(x) = {y ∈ X|y < x}
LR(x) = {y ∈ X|x < y}

for all x ∈ X . In the order topology, UR(x), LR(x) ⊆O X for all x ∈ X . Now let
x, y ∈ X be such that x < y, and suppose that there does not exist z ∈ X such that
x < z < y. Then UR(y) ∩ LR(x) = ∅, and

UR(y) ∪ LR(x) = X.

Hence UR(y), LR(x) is a separation of X , a contradiction since X is connected, so
there must exist a z ∈ X such that x < z < y.
Now, letA be a subset ofX with at least one upper bound. Deϐine the sets

U =
∪
a∈A

UR(a)

V =
∪
w>a
∀a∈A

LR(w).

By construction, both U and V are open, and U ∩ V = ∅. SinceX is connected, U ∪
V ̸= X , otherwiseU and V would be a separation ofX . Suppose b, c ∈ X− (U ∪V ).
Then, either b < c, c < b or b = c. If b < c, then c > a for all a ∈ A. By i., there exists
w ∈ X such that b < w < c, and c ∈ LR(w) ⊆ V . Similarly, if c < b, b ∈ V . This
leaves only the possibility that b = c, that isX − (U ∪ V ) = {b}. By construction, b
is smaller than any upper bound of A, and it is greater (or equal) than any element
ofA, so it is the least upper bound ofA. Hence,X is a linear continuum. ■
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16.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Is the product of an arbitrary collection of connected spaces connected in the box topol-
ogy?

3. Show that a spaceX is locally path-connected if and only if the path-connected compo-
nents of each open subset V ofX are open.

4. Let A be a connected subset of a space X . If A ⊆ B ⊆ A, show that B is connected.
Are the interior and the boundary ofA necessarily connected? If either of these is con-
nected, must A be connected? What if both of them are connected?

5. LetA be a subset of a locally connected space. Prove or disprove:

a) IfA is path-connected and A ⊆ B ⊆ A, thenB is path-connected.
b) IfA is open and connected, thenA is path-connected.
c) IfA is open, the path components are open.

6. LetX be the subspace

X =

{
t

1 + t
eit
∣∣∣∣ t ≥ 0

}
∪ {eiπ}.

Give detailed answers to the following:

a) IsX connected?
b) IsX locally connected?
c) IsX path-connected?
d) IsX locally path-connected?

7. Let T and T′ be two topologies on a space X . If T′ is ϐiner than T, does connectedness
ofX in one topology imply anything about its connectedness in the other?

8. If |X| is inϐinite, show thatX is connected in the ϐinite complement topology.

9. If Xα is path-connected for each α, show that∏αXα is path-connected. If each Xα is
also locally path-connected, show that ∏αXα is also locally path-connected. Investi-
gate what happens when each Xα is locally path connected, but not necessarily path-
connected.
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Chapter 17

Compact Spaces

In Chapter 9, we discussed compactness in the context of metric spaces.
In this chapter, we discuss the notion from a topological perspective.

17.1 Compactness
A covering of a spaceX is a family F of subsets ofX such that∪

F∈F

F = X.

A subset Y ofX is covered by a family F if

Y ⊆
∪
F∈F

F.

We say that F is an open covering when every F ∈ F is open. A sub-collection A ⊆ F that
still coversX is called a sub-covering ofX .

aaaaaa

Examples (CĔěĊėĎēČĘ Ćēĉ SĚć-ĈĔěĊėĎēČĘ)
1. Consider the sets F = {(a, b) | a < b ∈ R}, A = {(a, b) | a < b ∈ Q} and
ξ = {(n − 1, n + 1) | n ∈ Z}. Then F is an open covering of R, A and ξ are
sub-coverings, but ξ has no proper sub-covering.

2. The collection F = {[a, b) | a < b ∈ R} is an open covering of Rl. □

A spaceX is compact if every open covering ofX contains a ϐinite sub-covering. A subspace
C ofX is compact inX if every open covering of C contains a ϐinite sub-covering.¹

¹This deϐinition seems rather straightforward, on the face of it, but it is the culmination of a rather long and
arduous process, with dead ends and wrong turns – we will look into some of these in the coming pages.
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aaaaaa

Examples (CĔĒĕĆĈę SĕĆĈĊĘ)
1. R is not compact, since the covering ξ from the previous example contains no

proper sub-covering, hence no ϐinite sub-covering.

2. LetX = {0}∪
{

1
n

∣∣ n ∈ N}. Any open covering ofX will contain a neighbour-
hood of 0, say V0. For some N , we have 1

n
∈ V0 for all n > N . For each n

such that 1 ≤ n ≤ N , pick Vn from the open covering such that 1
n
∈ Vn. Then

{V0, V1, . . . , Vn} is a sub-covering, soX is compact. □

It takes some practice to get the hang of the deϐinition.

aaaaaa

Theorem 228
Every closed subset C of a compact setX is compact.

Proof: suppose {Uα}α is an open covering of C . As C is closed, X \ C is
open and {Uα}α ∪ {X \ C} is an open covering ofX . AsX is compact, there exists
a ϐinite sub-covering of X , say {Uαi

}ni=1. If X \ C = Uαj
for some j, discard Uαj

.
The remaining {Uαi

}ni(̸=j)=1 is a ϐinite sub-covering of C . In the other case, the ϐinite
sub-covering ofX is clearly a ϐinite sub-covering of C . Hence C is compact. ■

In general, the converse is not true (see example 1 on p. 407). However, it holds for a broad
class of spaces.

aaaaaa

Theorem 229
IfX is Hausdorff, every compact subset ofX is closed.

Proof: let Y be a compact subset of X . As X is Hausdorff, if x ̸∈ Y , for each
y ∈ Y , there is two disjoint neighbourhoods Uy of y, Vy of x. Then {Uy}y∈Y is an
open covering of Y . But Y is compact so there is a ϐinite sub-covering, say {Uyi}ni=1.

Now, write

V =
n∩

i=1

Vyi , and U =
n∪

i=1

Uyi .

Then V is a neighbourhood of x such that

V ∩ Y ⊆ V ∩ U =
n∪

i=1

(V ∩ Uyi) = ∅.

Hence we can ϐit an open set V around every x ̸∈ Y , whichmeansX \Y is open and
Y is closed. ■
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Note that we have in fact proven the following result.

aaaaaa
Corollary
IfX is Hausdorff, and C is a compact subset ofX , then for x ̸∈ C , there exists disjoint
open sets U , V such that x ∈ V and C ⊆ U .

What can we say when the spaces are not Hausdorff? Depends on the situation, actually.

aaaaaa

Examples

1. If X = {a, b} has the indiscrete topology, then every subset of X is compact.
In particular, {a} is compact. However, it is not closed since {b} is not open.

2. InRwith the ϐinite complement topology, every subset is compact. Indeed, let
C be a subset of R, with open covering F. For F ∈ F, F covers C for at most
a ϐinite number of points, say {ci}ni=1. Pick Fi ∈ F such that ci ∈ Fi for all i.
Then {F, F1, . . . , Fn} covers C , and so C is compact.

In the topology of the last example, even the open sets are compact. This does not contradict
Theorem 229 sinceR is not Hausdorff in the ϐinite complement topology. As it happens, com-
pactness is a topological notion.

aaaaaa

Theorem 230
The continuous image of a compact set C ⊆ X by f : X → Y is compact.

Proof: let F be an open covering of f(C). By continuity, {f−1(F )}F∈F is an
open covering of C . So there is a ϐinite sub-covering, say {f−1(F1), . . . , f

−1(Fn)}, as
C is compact, and

f(C) ⊆ f

(
n∪

i=1

f−1(Fi)

)
=

n∪
i=1

f
(
f−1(Fi)

)
⊆

n∪
i=1

Fi.

Then {F1, . . . , Fn} covers f(C), and so f(C) is compact. ■

There are all sorts of results about compact spaces and continuous functions.

aaaaaa

Theorem 231
IfX is compact, Y is Hausdorff, and f : X → Y is a continuous bijection, then f is a
homeomorphism.

Proof: let C be a closed subset of X . As X is compact, C is compact. Since
f : X → Y is continuous, f(C) is compact in Y and thus closed in Y , as Y is
Hausdorff. So f is closed. As f is a continuous bijection, f is a homeomorphism. ■
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As we had done with connectedness, we would like to show that ϐinite products of compact
spaces are compact.² To do this we will need the following lemma.

aaaaaa

Lemma 232 (TĚćĊ LĊĒĒĆ)
If Y is compact andN is an open set inX × Y which contains the slice {x0}× Y , then
there exists a neighbourhoodW of x0 such thatW × Y ⊆ N .

Proof: if y ∈ Y , then (x0, y) ∈ N . As N is open, there exists two neighbour-
hoods Uy of x0 and Vy of y such that Uy × Vy ⊆ N . Repeating this process for all
y ∈ Y yields an open covering {Vy}y∈Y of Y . As Y is compact, there is a ϐinite
sub-covering, say {Vy1 , . . . , Vyn}, with Uyi × Vyi ⊆ N for all 1 ≤ i ≤ n. Let

W =
n∩

i=1

Ui.

thenW is open inX as it is a ϐinite intersection of open sets. Furthermore, x0 ∈ W
as x0 ∈ Uyi for all 1 ≤ i ≤ n. Now, let (x, y) ∈ W × Y . There is a j such that y ∈ Vyj .
As x ∈ W , x ∈ Uyj . Then (x, y) ∈ Uj × Vj ⊆ N , soW × Y ⊆ N . ■

We now have all the machinery to prove the following result.

aaaaaa

Theorem 233
IfX and Y are compact, thenX × Y is compact.

Proof: let F be an open covering for X × Y . For each x ∈ X we get a ϐi-
nite sub-covering of {x} × Y from F, say F (x)1, . . . F (x)n. Let N be the open
set N =

∪n
i=1 F (x)i. By the Tube Lemma, there is a neighbourhood Wx of x

in X such that Wx × Y ⊆ N . Repeating this procedure for all x ∈ X , we
get that {Wx}x∈X is an open covering of X . But X is compact, so there is
a ϐinite sub-covering {Wx1 , . . . ,Wxm}. For each of these Wxi

, there were ni

corresponding sets F (xi)j in F. Deϐine

F′ = {F (xi)j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}.

F′ is a ϐinite open collection, with∑m
i=1 ni elements. For any (x, y) ∈ X×Y , x ∈ Wxi

for some i. Then (x, y) ∈ Wxi
× Y and (x, y) ∈ F (xi)j for some j, so

X × Y ⊆
m∪
i=1

ni∪
j=1

F (xi)j.

Thus F′ is a ϐinite sub-covering ofX × Y from F, and soX × Y is compact. ■

²It is not a simple matter to generalize to arbitrary products of compact spaces. This will be the content of
chapter 19.
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Du to the complementary nature of open and closed sets, it is also possible to express com-
pactness in term of closed sets. A familyF of sets has the ϐinite intersection propertywhen-
ever

n∩
i=1

Fi ̸= ∅

for any selection Fi ∈ F, 1 ≤ i ≤ n.

aaaaaa

Theorem 234
A space X is compact if and only if every family {Fα}α of closed subsets of X having
the ϔinite intersection property has a non-void intersection, that is,

∩
α Fα ̸= ∅.

Proof: we make the following three remarks: {X \ Fα}α is an open family if
and only if {Fα}α is a closed family;∪

α

(X \ Fα) = X ⇐⇒
∩
α

Fα = ∅

and
n∪

i=1

(X \ Fαi
) = X ⇐⇒

n∩
i=1

Fαi
= ∅

for any selection Fi ∈ F, 1 ≤ i ≤ n. The theorem is easily proved using the contra-
positive statement and the three remarks. ■

There is another version of this theorem:

aaaaaa

Theorem 234 (Reprise)
A space X is compact if and only if for every family A of subsets of X satisfying the
ϔinite intersection property, the intersection

∩
A∈AA is not empty.

Proof: left as an exercise. ■

As an easy corollary we get the following result.

aaaaaa

Corollary 235 LetX be a compact space, and suppose

C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ · · ·

is a nested sequence of closed sets. Then∩
n∈N

Cn ̸= ∅.
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Interest in compact spaces arose when we realized that there was something special about
intervals in the usual topology on R that made the max/min theorem come out as it did.

aaaaaa

Theorem 236 IfX has the order topology, where the ordering has the least upper
bound property, then each interval

[a, b] = {x | a ≤ x ≤ b}

is compact.

Proof: the proof is similar to that of the Heine-Borel theorem (see Proposi-
tion 125 in Chapter 9, and Theorem 237). This means that the key point of the
proof is the least upper bound property, and not the metric. ■

The ϐirst step in the process was a generalization of intervals to Rn.

aaaaaa

Theorem 237 (HĊĎēĊ-BĔėĊđ TčĊĔėĊĒ − RĊĕėĎĘĊ)
In the usual topology, the compact sets of Rn are exactly the closed and bounded sets.

Proof: since Rn is Hausdorff, any of its compact subset is closed. If C is com-
pact in Rn, it can be covered by

{(−m,m)n | m ∈ N}.

But C is compact, so it has a ϐinite sub-covering and there existsM ∈ N such that
C ⊆ (−M,M)n. Thus C is bounded.

Conversely, suppose that C is a closed bounded set. Then, there existsM ∈ N such
that C ⊆ [−M,M ]n. But [−M,M ]n and C is a ϐinite product of the compact spaces
[−M,M ], and so is itself compact. C is then compact since it is a closed subset of a
compact set. ■

Note that this result need not hold for a general metric space (where boundedness may not
be deϐined, for instance), as we shall see shortly.³

aaaaaa

Theorem 238 (MĆĝĎĒĚĒ Ćēĉ MĎēĎĒĚĒ VĆđĚĊ TčĊĔėĊĒ)
Let C be a compact subset ofX , and suppose f : X → Y is continuous, where Y has
a (total) order topology. Then f is bounded onC and actually attains its bounds there.

Proof: as C is compact and f is continuous, f(C) is compact. If f does not
have a largest value on C , then, for each a ∈ C , there exists a′ ∈ C such that
f(a) < f(a′). For any y ∈ Y , denote (−∞, y) = {z ∈ Y | z < y}.

³This is the reason for the less-than-intuitive deϐinition of compactness currently in use.
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aaaaaa

Then

{(−∞, f(a))}a∈C

is an open covering of f(C). But f(C) is compact, so there exists a ϐinite sub-
covering, say

{(−∞, f(ai))}ni=1.

Let a0 ∈ C be the ai that maximizes f(ai). Since f(a0) ∈ f(C), f(a0) ∈ (−∞, f(aj))
for some j, which means that f(a0) < f(aj) ≤ f(a0), a contradiction, since x ̸< x in
Y . Hence f has a largest value on C . The proof that f has a smallest value on C is
similar. ■

This result is the generalization to topological spaces of one of the fundamental results of
analysis (see Theorem 33 in Chapter 3.)

Metric Spaces (Reprise)
Let us revisit metric spaces from the vantage point of topology. If d is a metric on a spaceX ,
the basic open sets inX are the open balls

Bd(a, r) = {x ∈ X | d(a, x) < r}.

The topology generated by these basic sets is called themetric topology onX .⁴
Let us suppose that the metrics d and d′ generate the topologies T and T′ onX . T is ϐiner

than T′ whenever Bd′(a, r
′) is open in T for all a ∈ X , r′ ∈ R+, and so whenever there exists

r ∈ R+ such that

Bd(a, r) ⊆ Bd′(a, r
′).

aaaaaa

Example: let d be the Euclidean metric on R2 and d′ be deϐined on R2 by
d′((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}. Then

Bd(0, 1) = {(x, y) | x2 + y2 < 1}, Bd′(0, 1) = {(x, y) | −1 < x < 1 and − 1 < y < 1},

Bd(0, 1) ⊆ Bd′(0, 1) and Bd′(0,
1√
2
) ⊆ Bd(0, 1). Generalizing to all open balls, one

gets T = T′. □

⁴The collection of all open balls is a basis. Indeed, x ∈ Bd(x, 1) for all x ∈ X . The empty set is a ball of
radius 0. Suppose that y ∈ Bd(x1, r1) ∩Bd(x2, r2) ̸= ∅. Then y ∈ Bd(y, r) ⊆ Bd(x1, r1) ∩Bd(x2, r2), where

r =
min{d(x1, y)− r1, d(x2, y)− r2}

2
.
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LetX be a metric space with metric d. The standard bounded metric d onX is the metric
deϐined by

d(x, y) = min{d(x, y), 1}

(the only property that is not trivially true is the triangle inequality). For any ball Bd(0, ε),
put δ = min{ε, 1}. Then

Bd(a, δ) ⊆ Bd(a, ε).

For a ball Bd(a, δ), if δ ≤ 1, then Bd(a, δ) = Bd(a, δ). If δ > 1, Bd(a, δ) = X . This means that
the topology generated by the bounded standardmetric d onX is the same as that generated
by the metric d. Consequently, we may assume that the metric d is bounded.

A space X is metrizable if there is a metric d on X where the metric topology on X coin-
cides with the topology on X . This leads us to one of the fundamental differences between
metric spaces and general topological spaces, a result which is simple to state, but whose
proof is surprisingly sophisticated.⁵

aaaaaa

Theorem 239
Any countable product of metrizable spaces is metrizable.

Proof: Suppose (Xn, dn) is a metric space and dn is the standard bounded
metric onXn for all n ∈ N. Let x, y ∈ X =

∏
Xn and deϐine

d(x, y) = l.u.b.
{
dn(xn, yn)

n

}
n∈N
.

It is not hard to see that this deϐines a metric on X . We need to verify that the
topology generated onX by d is that given by the product topology.

Suppose U ⊆ X is open in the product topology. If x = (xn) ∈ U , there is a
basic set∏Vn, where Vn ⊆O Xn, and Vn = Xn for all but a ϐinite number of n’s, i.e
for all n > N for someN . Then there exists εn > 0 such that B(xn, εn) ⊆ Vn for all
n ∈ N. Let

ε = min
{εn
n

}N

n=1
.

If y = (yn) ∈ B(x, ε), then d(x, y) < ε, so

dn(xn, yn)

n
≤ d(x, y) < ε ≤ εn

n

for 1 ≤ n ≤ N .

⁵As a reminder, the notationsA ⊆O X ,A ⊆C X , andA ⊆K X are used respectively forA is open inX ,A is
closed inX , andA is compact inX .
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aaaaaa

Hence d(xn, yn) < εn, and so

yn ∈ B(xn, εn) ⊆ Vn

for 1 ≤ n ≤ N and yn ∈ Xn = Vn for all n > N , so y ∈ ∏Vn and B(x, ε) ⊆
∏
Xn.

Then∏Xn is open in the metric topology. As a result, around each point of U , we
can ϐit an open set in the metric topology, i.e. U ⊆ X is open in the metric topology.

Conversely, suppose U ⊆ X is open in the metric topology. Then, if x ∈ U ,
there exists ε > 0 such that B(x, ε) ⊆ U . Choose N such that 1

N
< ε. Put

Vn = B(xn, nε) for all n, so that Vn = Xn whenever n > N (remember, the metrics
dn are standard bounded metrics). If y = (yn) ∈

∏
Vn, then dn(xn, yn) < nε for all

n ∈ N. In particular,

dn(xn, yn)

n
< ε

whenever 1 ≤ n ≤ N and

dn(xn, yn)

n
≤ 1

n
<

1

N
< ε

for all n > N . By construction,

d(x, y) = l.u.b.
{
dn(xn, yn)

n

}
n∈N
< ε.

Then y ∈ B(x, ε) and∏Vn ⊆ B(x, ε). As a result, around each point of U , we can ϐit
an open set in the product topology, i.e. U ⊆ X is open in the product topology. ■

Let (Xα, dα) be a collection (not necessarily countable) of metric spaces, where dα is a stan-
dard bounded metric onXα. Deϐine a metric d on∏αXα by

d(x, y) = l.u.b.{dα(xα, yα)}

for all x, y ∈ X .⁶ This metric is called the uniform metric, and the topology it generates on∏
αXα is called the uniform topology onX . Wewill in the solved problems that the uniform

topology is ϐiner than the product topology and coarser than the box topology, and that for
inϐinite products, the inclusions are strict.

We now introduce another concept that allows us to tell if a space is metrizable. A sequence
{xn}n ∈ N in a spaceX (not necessarily metric) converges to x ∈ X (denoted xn → x) if for
every neighbourhood V of x, there existsN ∈ N such that xn ∈ V for every n > N .

In a general topological space, the limit of a sequence is not necessarily unique!
⁶The only non-trivial component here is again the triangle inequality.
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aaaaaa

Examples (LĎĒĎęĘ)
1. Let X = [0, 1], where the basic open sets in X are of the form (a, b) and

[0, a) ∪ (b, 1] for 0 < a < b < 1. In the topology generated by this basis, every
neighbourhood of 0 is a neighbourhood of 1, and vice-versa. Thus 1

n
→ 0 as

usual, but 1
n
→ 1 as well.

2. LetX be a space with the indiscrete topology. Then every sequence inX con-
verges to every element ofX . □

Suppose{an}n∈N is a sequence in a setA ⊆ X , and letan → a ̸∈ A. Then a is a limit point ofA.
Indeed, for any neighbourhood V of a, there is some indexN for which an ∈ V when n > N .
Consequently, an ∈ V ∩ A and a ̸= an for all n > N (as a ̸∈ A), so a ∈ A.

In general, if a sequence inA converges to a point not inA, the limit is a limit point. How-
ever, the converse statement is false: if a ∈ A, there might not be a sequence inA converging
to a, as can be seen in the next example.⁷

aaaaaa

Example: let Ω be the ϐirst uncountable ordinal; let X be the set Ω+ = Ω ∪ {Ω},
with the order topology. Consider A = Ω = [0,Ω). Suppose the sequence {αn}n∈N,
where αn ∈ A, has the limit α. As

αn ≤
∪
m∈N

αm = β,

then α ≤ β. But β is a countable union of countable sets, hence it is countable.
Therefore, β < Ω, so α < Ω and αn ̸∈ (β,Ω) for all n ∈ N. Now A = [0,Ω], and so
Ω ∈ A, but no sequence in A converges to Ω. □

This example may seem a bit far-fetched, but that is the nature of the discipline – in general
topology, exotic counter-examples are entirely legitimate. In metric spaces, however, things
tend to be substantially better behaved.

aaaaaa

Lemma 240 (SĊĖĚĊēĈĊ LĊĒĒĆ)
LetX be a metrizable space. For any subsetA ofX , if a ∈ A, then there is a sequence
{an}n∈N ⊆ A with an → a.

Proof: let d be the metric generating the topology on X . For each n ∈ N,
construct the neighbourhood B(a, 1

n
). As a ∈ A, we have A ∩ B(a, 1

n
) ̸= ∅ for

all n ∈ N. Let an ∈ A ∩ B(a, 1
n
) for all n ∈ N. Then an → a. Indeed, let V be a

neighbourhood of a. Then there is a basic neighbourhood B(a, ε) ⊆ V . Let N ≥ 1
ε
.

Then, whenever n > N , we get d(a, an) < 1
n
< 1

N
≤ ε, hence an ∈ V and an → a. ■

⁷The example requires some familiaritywith the ϐirst uncountable ordinal, see https://en.wikipedia.
org/wiki/First_uncountable_ordinal for details.
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Next, we see that one of the sacred cows of analysis see Proposition 106 in Chapter 8) may
not necessarily hold in general topological spaces.

aaaaaa

Theorem 241
The function f : X → Y is continuous if, whenever an → a inX , then f(an) → f(a)
in Y . IfX is metrizable, the converse holds.

Proof: suppose that f is continuous and an → a in X . Let V be a neighbour-
hood of f(a). Then f−1(V ) is a neighbourhood of a, and so there existsN such that
an ∈ f−1(V )whenever n > N . Then f(an) ∈ V whenever n > N and f(an)→ f(a)
in Y .

Conversely, suppose X is metrizable and that the sequence condition holds.
LetA ⊆ X . By the sequence lemma, if a ∈ A, there is a sequence {an}n∈N ⊆ A such
that an → a. By hypothesis, f(an) → f(a), so f(a) ∈ f(A), as f(an) ∈ f(A) for all
n ∈ N. Hence f(A) ⊆ f(A)which is equivalent to f being continuous. ■

17.2 Limit Point and Sequential Compactness
Throughout the history of topology, many deϐinitions of compactness have been formulated.
At the time, each were thought to have isolated the crucial property of a set like [0, 1] that
made the maximum/minimum theorem possible, amongst others.

As our understanding of topology increased, these different notions were discarded, to be
replaced by themodern concept. But the failed candidates are interesting in their own rights,
as they coincide with compactness in the case of metric spaces, as we shall see.

A subset A in a spaceX is said to be sequentially compact if every sequence {an}n∈N ⊆ A
contains a convergent subsequence. A subset A in a space X is said to be limit point com-
pact if every inϐinite subset ofA has a limit point.The next few results show how the various
compactness notions are related.

aaaaaa

Proposition 242
IfX is compact, thenX is limit point compact.

Proof: suppose X is compact and let A be a subset of X with no limit point.
Then A = A, and A is closed, so compact. Also, for any a ∈ A, there is a neighbour-
hood Va such that Va ∩ A = {a}. Thus {Va}a∈A is an open covering of A. Since A is
compact, there is a ϐinite sub-covering {Vai}ni=1. But

A = A ∩

(
n∪

i=1

Vai

)
=

n∪
i=1

(A ∩ Vai) =
n∪

i=1

{ai}.

HenceA is ϐinite. By contraposition,X is limit point compact. ■
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aaaaaa

Proposition 243
IfX is a limit point compact metric space, thenX is sequentially compact.

Proof: let {an}n∈N ⊆ X , and write A = {a1, a2, . . .}. If A is ϐinite, there has
to exist a constant (hence convergent) subsequence {anm}m∈N. Otherwise,A is inϐi-
nite. AsX is limit point compact,A has a limit point, say a and every neighbourhood
of a contains a point in A different from a. In particular, since X is a metric space,
for eachm ∈ N,B(a, 1

m
) is a neighbourhood of a and there exists anm ∈ B(a, 1

m
)∩A

such that anm ̸= a. By construction, anm → a, soX is sequentially compact. ■

aaaaaa

Proposition 244
IfX is sequentially compact, thenX is limit point compact.

Proof: let A be an inϐinite subset of the X . Then A contains a countable sub-
set {a1, a2, . . .}. As X is sequentially compact, there is a convergent subsequence
anm → a. By construction, a is a limit point of A andX is limit point compact. ■

The following result to show that the notions of compactness are equivalent formetric spaces.

aaaaaa

Theorem 245
Let X be a compact metric space. For any open covering F of X , there is a number
δ > 0 satisfying the following property: if A ⊆ X is such that diam(A) < δ, then
there exists F ∈ F such that A ⊆ F .

Proof: we prove the theorem by contradiction. Let F be an open covering of
X , and suppose that no δ satisfying the property exists. Then, for each n ∈ N, we
can ϐind a set An such that diam(An) <

1
n
where An ⊈ F for all F ∈ F. As An ̸= ∅

for all n ∈ N, we can select an ∈ An for all n ∈ N, and get the sequence {an}n∈N.

In a metric space, compactness implies sequential compactness, so there is a
convergent subsequence {anm}m∈N, with anm → a ∈ X . Pick F ∈ F such that
a ∈ F . As F is open, there exists r > 0 such thatB(a, 2r) ⊆ F.

Since the subsequence is convergent, there is a number N ∈ N such that
anm ∈ B(a, r) for all nm > N . Pick nm > such that 1

nm
< r. If x ∈ Anm , then

d(x, a) ≤ d(x, anm) + d(anm , a) <
1

nm

+ r < 2r

since diam(Anm) <
1
nm

and Ank
⊆ B(a, 2r) ⊆ F, a contradiction. So there must be

a number δ > 0 satisfying the property. ■

The number δ in the proof of Theorem 245 is called a Lebesgue number of the covering F.
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We need one more deϐinition before we are ready to prove our big result. A metric spaceX
is totally bounded if, for every ε > 0,X can be covered by a ϐinite number of ε-balls.

aaaaaa

Theorem 246
In a metric space, compactness, sequential compactness, and limit point compactness
are equivalent.

Proof: according to Propositions 242, 243, and 244, it only remains to show
that a sequentially compact set X is compact. Let F be an open covering of X , and
suppose X is not totally bounded. Then there exists ε > 0 such that there is no
ϐinite covering ofX by ε-balls.

Let x1 ∈ X . As B(x1, ε) ̸= X , select x2 ∈ X \ B(x1, ε). It is possible to
select

xn+1 ∈ X \
n∪

i=1

B(xi, ε)

since∪n
i=1B(xi, ε)doesnot coverX . By recursion, {xn}n∈N is a sequence, and it con-

tains a converging subsequence {xnm}m∈N, where xnm → x, sinceX is sequentially
compact. Then, there existsM such that xnm ∈ B(x, ε

2
) and

d(xnm+1 , xnm) ≤ d(x, xnm+1) + d(x, xnm) <
ε

2
+
ε

2
= ε

whenever m > M . But this yields xnm+1 ∈ B(xnm , ε), which is a contradiction by
construction of the sequence {xn}n∈N. HenceX must be totally bounded.

Let 3ε be a Lebesgue number of F. Then there exists a ϐinite collection
B = {B(yi, ε)}ni=1 covering X . As diam(B(yi, ε)) ≤ 2ε < 3ε, ∃Fi ∈ F such
that B(yi, ε) ⊆ Fi for all 1 ≤ i ≤ n. If x ∈ X , then x ∈ B(yi, ε) ⊆ Fi for some i.
Since B is a ϐinite covering of X , {Fi}ni=1 is a ϐinite sub-covering of X , and so X is
compact. ■

The converse of Proposition 242 is not in general true, as can be seen in the following exam-
ple (which again uses the smallest uncountable ordinal).

aaaaaa

Example: letΩ be the ϐirst uncountable ordinal, and letX be the setΩ+ = Ω∪{Ω},
with the order topology. Now, Ω is limit point compact. Indeed, suppose C is an
inϐinite (countable) subset of Ω. Then C is bounded above by ∪γ∈C γ = β, and so
C ⊆ [0, β]. It is clear that Ω has the l.u.b. property, so, by Theorem 236, [0, β] is
compact. By Proposition 242, [0, β] is limit point compact, and so C contains a limit
point. ThusΩ is limit point compact. ButΩ isn’t closed in the Hausdorff spaceX , so
Ω is not compact. □
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17.3 Local Compactness and One-Point Compactiϐication
By analogy with local connectedness, we can also deϐine a notion of local compactness: a
spaceX is locally compact at x ∈ X if there exists a compact set C which contains a neigh-
bourhood V of x. We say thatX is locally compact if it is locally compact at each x ∈ X .

There is an equivalent deϐinition if X is Hausdorff space. For each x ∈ X , if there exists
a neighbourhood V and a compact set C such that x ∈ V ⊆ C , then, asX is Hausdorff, C is
closed, so V ⊆ C , and x has a neighbourhood with compact closure.

aaaaaa

Examples (LĔĈĆđ CĔĒĕĆĈęēĊĘĘ)
1. Every compact space is locally compact.

2. R is locally compact, since, for any basic open set ]a, b[, the closure [a, b] is com-
pact. Similarly, Rn is locally compact for all n ∈ N. However Rω is not locally
compact in the product topology. Indeed, let

V = (a1, b1)× · · · (an, bn)× R× · · ·

be a basic neighbourhood in the product topology. Then

V = [a1, b1]× · · · [an, bn]× R× · · · ,

which is not compact in the product topology. □

LetX be a locally compact Hausdorff space, and suppose that∞ is a point not inX . Construct
a new set Y = X ∪ {∞}, with the following topology: V ⊆O Y if either

V = U ⊆O X whenever∞ ̸∈ V , or;
V = Y \ C , where C is a compact subset ofX whenever∞ ∈ V .

This is indeed a topology on Y , as we see presently.
1. ∅ is an open set of type 1, Y is an open set of type 2.
2. Let V1, V2 ⊆O Y . Then

a) V1, V2 ⊆O X , so V1 ∩ V2 ⊆O X , hence V1 ∩ V2 ⊆O Y ; or
b) V1 ⊆O X and V2 = Y \ C , where C ⊆K X . Then

V1 ∩ V2 = V1 ∩ (Y \ C) = V1 ∩ (X \ C) ⊆O Y,

as C is closed inX , sinceX is Hausdorff; or
c) V1 = Y \ C1, V2 = Y \ C2 where C1, C2 ⊆K X . Then

V1 ∩ V2 = (Y \ C1) ∩ (Y \ C2) = Y \ (C1 ∪ C2) ⊆O Y,

since C1 ∪ C2 ⊆K X whenever C1, C2 ⊆K X .
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3. a) Vβ ⊆O X , so∪β Vβ ⊆O X , hence∪β Vβ ⊆O Y ; or
b) Vα ⊆O X (i.e∪α Vα ⊆O X) and Vβ = Y \ Cβ , where Cβ ⊆K X . Then(∪

α

Vα

)
∪

(∪
β

Vβ

)
=

(∪
α

Vα

)
∪

(∪
β

(Y \ Cβ)

)
=

(∪
α

Vα

)
∪

(
Y \

∩
β

Cβ

)

= Y \

(∩
β

Cβ −
∪
α

Vα

)
⊆O Y,

as∩β Cβ −
∪

α Vα is compact since it is a closed subset of a compact set; or
c) Vβ = Y \ Cβ , where Cβ ⊆K X . Then∪

β

Vβ =
∪
β

(Y \ Cβ) = Y \ (
∩
β

Cβ) ⊆O Y,

since∩β Cβ ⊆K X whenever Cβ ⊆K X .
The subspace topology onX agrees with the original topology onX . Indeed, in the subspace
topology, open sets look like V ∩X , where V ⊆O Y . If∞ ̸∈ V , then V ∩X = V ⊆O X in the
original topology.

On the other hand, if∞ ∈ V , V = Y \ C for some compact C , and V = Y \ C = X \ C .
But X is Hausdorff, so C is closed, and V ⊆O X in the original topology. Conversely, every
open set in the original topology is an open set of type 1 in the subspace topology.

aaaaaa

Theorem 247

Let X be a non-compact locally compact Hausdorff space and ∞ ̸∈ X . Then
Y = X ∪ {∞} is compact Hausdorff with the topology deϔined above andX = Y.

Proof: let F be an open covering of Y . Then, there exists F0 ∈ F with∞ ∈ F0. By
deϐinition, C = Y \ F0 is a compact subset of X and F′ = {F ∩ X}F∈F′ is an open
covering of C inX . As C is compact, there is a ϐinite sub-covering

{F1 ∩X, . . . , Fn ∩X}

of C . Hence {F0, F1, . . . , Fn} is a ϐinite sub-covering of Y and Y is compact.

As X is not compact, {∞} = Y \ X is not open in Y . So every neighbour-
hood of∞ looks like Y \ C , where C ⊊K X , and so meetsX . By deϐinition,∞ is a
limit point ofX in Y , soX = Y .

We show now that Y is Hausdorff. If x ̸= y ∈ X , there are open neighbour-
hoods in X satisfying the T2 condition as X is Hausdorff. So suppose x ∈ X and
y =∞. AsX is locally compact, there is a compact set C and a neighbourhood V of
x such that x ∈ V ⊆ C . Then U = Y \ C is a neighbourhood of∞ and U ∩ V = ∅,
which proves that Y is Hausdorff. ■
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The space Y is the one-point compactiϐication of X .

aaaaaa

Examples (OēĊ-PĔĎēę CĔĒĕĆĈęĎċĎĈĆęĎĔē)
1. Let X = R. Then X is a non-compact locally compact Hausdorff space. By

Theorem 247, there is a one-point compactiϐication Y = X ∪ {∞} ofX . Y is
in fact homeomorphic to

S1 = {(x, y) | x2 + y2 = 1},

through the homeomorphism f : S1 → Y deϐined by f(x, y) = x
1−y

whenever
y ̸= 1 and f(0, 1) =∞.

2. Let X = R2. Then X is a non-compact locally compact Hausdorff space. By
Theorem 247, there exists a one-point compactiϐication Y , orX ∪ {∞} ofX .
Y is in fact homeomorphic to

S2 = {(x, y, z) | x2 + y2 + z2 = 1},

through the homeomorphism f : S2 → Y deϐined by

f(x, y, z) =

(
x

1− z
,

y

1− z

)
whenever z ̸= 1 and f(0, 0, 1) =∞.

17.4 Solved Problems
1. Let B be a basis for a topology on a space X . Show that a subset A of X is compact if

and only if every covering ofA by sets fromB has a ϐinite subcovering.
Proof: ifA ⊆K X , then every open covering ofA contains a ϐinite subcovering ofA.
But every covering of A by sets from B is an open covering of A as all sets in B are
open, and so contains a ϐinite subcovering ofA.

Conversely, suppose that every covering ofA by sets fromB contains a ϐinite subcov-
ering ofA, and let U = {Uγ}γ∈Γ be an open covering ofA. SinceUγ ⊆O X , and since
B is a basis for the topology on X , there exists, for each γ ∈ Γ, a subset Bγ ⊆ B
such that

Uγ =
∪

B∈Bγ

B.

Thus, the collection {B|B ∈ Bγ for some γ ∈ Γ} is a covering of A by sets from
B, and by hypothesis, it contains a ϐinite subcovering of A, say {B1, . . . , Bn}. Now,
for 1 ≤ i ≤ n, choose Ui ∈ U such that Bi ⊆ Ui. Then {U1, . . . , Un} is a ϐinite
subcovering ofA, andA ⊆K X . ■

420 Analysis and Topology Course Notes



CHAPTER 17. COMPACT SPACES

2. Let A and B be disjoint compact subsets of the Hausdorff space X . Show that there
exist disjoint open sets U and V containing A andB, respectively.

Proof: assume thatA,B ̸= ∅, otherwise the statement is vacuously true. Let b ∈ B.
SinceX is Hausdorff and A ∩ B = ∅, for every a ∈ A, there exists Ub,a, Vb,a ⊆O X ,
such that a ∈ Ub,a, b ∈ Vb,a and Ub,a ∩ Vb,a = ∅. The collection {Ub,a}a∈A is an
open covering of A ⊆K X , and so we can extract from it a ϐinite subcovering, say
{Ub,a1 , . . . , Ub,an}. Now, put

U(b) =
n∪

i=1

Ub,ai and V (b) =
n∩

i=1

Vb,ai .

ThenA ⊆ U(b),U(b), V (b) ⊆O X andU(b)∩V (b) ̸= ∅. This process canbe repeated
for every b ∈ B so that {V (b)}b∈B covers B. Since B ⊆K X , we can extract a ϐinite
subcovering ofB, say {V (b1), . . . , V (bm)}. Let

V =

m∪
i=1

V (bi) and U =

m∩
i=1

U(bi).

Then U, V ⊆O X ,A ⊆ U ,B ⊆ V and U ∩ V = ∅. Indeed

U ∩ V = U ∩ (
∪m

i=1 V (bi)) =
∪m

i=1(U ∩ V (bi))

⊆
n∪

i=1

(V (bi) ∩ U(bi)) =
m∪
i=1

∅ = ∅,

and the statement is proven. ■

3. Show that [0, 1] is not compact in Rl. Is it compact in the countable complement topol-
ogy on R?

Proof: we prove the statement by exhibiting an open covering of [0, 1] from which it
is impossible to extract a ϐinite subcovering. Let

U = {[1, 2)} ∪ {[0, 1− 1/n)}n≥2 .

Then U is an open covering of [0, 1] since

[0, 1) ⊆
∪
U∈U

U = [0, 2),

and since [a, b) is open inRl for all a < b inR. Any subcovering of [0, 1)must contain
[1, 2) as 1 ̸∈ [0, 1− 1/n) for all n ≥ 2. Any ϐinite subcovering must then look like

V = {[1, 2), [0, 1− 1/n1), . . . , [0, 1− 1/nm)} ,

where the ni’s are ordered such that n1 > n2 > . . . > nm ≥ 2. With this ordering,
m−1∪
i=1

[0, 1− 1/ni) ⊆ [0, 1− 1/nm).
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However, 1 − 1/(nm − 1) ̸∈ [0, 1 − 1/nm) and 1 − 1/(nm − 1) ̸∈ [1, 2). Any ϐinite
subcollectionV taken from U cannot cover all of [0, 1], so [0, 1] is not compact in Rl.

We show now that [0, 1] is not compact in R with the ϐinite complement topology.
First, recall that a space is compact if and only if every family C = {Cα} of closed
subsets having the ϐinite intersection property, that is∩n

i=1Cαi ̸= ∅ for all Cαi ∈ C,
1 ≤ i ≤ n, has a non-empty intersection:∩

α

Cα ̸= ∅.

We construct a family of closed subsets having the ϐinite intersection property, while
their full intersection is empty. The closed subsets of [0, 1] in this topology are the
countable subsets of [0, 1], as well as [0, 1] itself. Now let

An =

{
1

m

}
m≥n

⊆ [0, 1]

for all n ∈ N. Each of the An ̸= ∅ is countable and so closed in [0, 1]. Now, take
An1 , . . . , Ank

, where nk > nk−1 > . . . > n1. By construction,
k∩

i=1

Ani = Ank
̸= ∅.

But ∩n∈NAn = ∅, since, otherwise, there would existm ∈ N such that 1
m ≤

1
n for

all n ∈ N, a contradiction. We can thus conclude that [0, 1] is not a compact subspace
in the ϐinite complement topology. ■

4. LetX be a locally compact space. If f : X → Y is continuous, is the space f(X) neces-
sarily locally compact? What if f is both continuous and open?

Proof: letX = {−1} ∪ (0, 1) be a subspace of R and

T = {(x, sin(1/x)) | 0 < x < 1} ∪ {(0, 0)}

be a subspace of R2. This is the topologist’s sine curve. Let f : X → T be the map
sending −1 to (0, 0) and x to (x, sin(1/x)) for 0 < x < 1. This map is continuous,
since the pre-image of open subsets ofT in the subspace topology are unions of open
intervals inX , possiblywith {−1}. Furthermore, f(X) = T . X is clearly locally com-
pact at x for 0 < x < 1. And {−1} is a compact neighbourhood of {−1}, so that X
is locally compact at−1. But T is not locally compact at (0, 0). Indeed any candidate
for a compact subset around (0, 0)must contain an inϐinity of pointswho are as close
as desired from the slice {0} × [−1, 1]. Hence, no such sets are closed in R2, and so
they can not be compact.

Suppose f is continuous and open. Then for any y ∈ f(X) there exists x ∈ X such
that f(x) = y. The space X is locally compact so there is a compact set Cx and an
open set Ux such that x ∈ Ux ⊆ Cx. Now, applying f yields

y = f(x) ∈ f(Ux) ⊆ f(Cx).
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Since f is continuous andopen f(Cx) is compact and f(Ux) is open. So f(X) is locally
compact at f(x) for all f(x) ∈ f(X), and f(X) is locally compact. ■

5. Show that [0, 1]ω is not locally compact in the uniform topology.
Proof: Throughout, we assume that [0, 1]ω has the uniform topology. Let δm,n be
the Kronecker δ, and let dm = (δm,n)n∈N. Hence dm ∈ [0, 1]ω for all m ∈ N and
dU (dm, dk) = 1 whenm ̸= k. Consequently, the sequence d1, d2, . . . has no conver-
gent subsequence. Now, consider the open ball B(x, r) in [0, 1]ω . It contains a se-
quence (xn ± rdn

2 )n∈N,⁸ with no convergent subsequence. Hence B(x, r) can not be
contained in a compact set as compact set are sequentially compact in [0, 1]ω . Thus
[0, 1]ω is not locally compact in the uniform topology. ■

6. Let TP , TU , TB denote the product, uniform and box topologies respectively on Rω .

a) Show that TB is strictly ϐiner than TU .
b) In which of the topologies are the following functions from R to Rω continuous?

i. f(t) = (t, 2t+ 1, 3t+ 2, 4t+ 3, . . .)

ii. g(t) = (t/2, t/3, t/4, t/5, . . .)

c) In which of the topologies do the following sequences converge?

x1 = (1, 1, 1, 1, . . .) y1 = (1, 0, 0, 0, . . .)

x2 = (0, 22, 22, 22, . . .) y2 = ((1/2)2, (1/2)2, 0, 0, . . .)

x3 = (0, 0, 33, 33, . . .) y3 = ((1/3)3, (1/3)3, (1/3)3, 0, . . .)

x4 = (0, 0, 0, 44, . . .) y4 = ((1/4)4, (1/4)4, (1/4)4, (1/4)4, . . .)

...
z1 = (1, 1, 0, 0, . . .)

z2 = ((1/2)2, (1/2)2, 0, 0, . . .)

z3 = ((1/3)2, (1/3)2, 0, 0, . . .)

z4 = ((1/4)4, (1/4)4, 0, 0, . . .)

...

Solution:
a) LetB(x, εx) be an open ball in the uniform topology. The set

Bx =
∏
n∈N

(
xn −

εx
4
, xn +

εx
4

)
is open in the box topology, and x ∈ Bx ⊆ B(x, εx). Indeed, let z ∈ Bx. Then
dn(xn, zn) <

εx
2 for all n ∈ N, so

d(x, z) = l.u.b.{dn(xn, zn)} ≤
εx
2
< εx,

⁸Select either one of+ or− so that xn stays in [0, 1].
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and thus z ∈ B(x, εx). Now suppose x ̸= y ∈ B(x, εx). As B(x, εx) is open in
the uniform (metric) topology, there exists εy > 0 such thatB(y, εy) ⊆ B(x, εx).
Using the same reasoning as above yields

y ∈ By ⊆ B(y, εy) ⊆ B(x, εx),

where By is open in the box topology for all y ∈ B(x, εx). Hence, around each
point ofB(x, εx), we can ϐit an open set in the box topology, i.e. B(x, εx) is open
in the box topology and TU ⊆ TB .

We show that TU ⊊ TB by showing that Rω is not metrizable in the box topol-
ogy. Since Rω has a metric in the uniform topology, TB is strictly ϐiner than
TU . Let X = Rω and A = (0, 1)ω . Clearly 0 = (0, 0, 0, . . .) ∈ A since, in the
box topology every neighbourhood of 0 contains positive sequences. However,
there is no sequence xn ∈ A such that xn → 0. Suppose xn is a sequence in A.
Then,

x1 = (x1,1, x1,2, x1,3, . . .)

x2 = (x2,1, x2,2, x2,3, . . .)

x3 = (x3,1, x3,2, x3,3, . . .)

...

Let ε < 0, and construct the open set (in the box topology)

Uε =
∏
m∈N

(ε, ym),

where 0 < ym < xm,m for allm ∈ N. By construction, Uε is a neighbourhood of
0 in the box topology, and xn ̸∈ Uε for all n ∈ N. Hence, xn can not converge to
0. By the Sequence Lemma, Rω (in the box topology) is not metrizable.

b) Both of the functions are continuous in the product topology as each of the com-
ponents are continuous. In the uniform topology, f is not continuous. Indeed,
let ε = 1/2. Then, for every δ > 0,

dU (f(x), f(x+ δ)) = l.u.b.{min{nδ, 1}} = 1 > ε.

In the box topology f is not continuous. Indeed, let

U =
∏
n∈N

(
n2 − n− 1

n
,
n2 − n+ 1

n

)
.

U is open, but f−1(U) = {0}⁹ which is closed in R. Similarly, g isn’t continuous
in the box topology. Let

V =
∏
n∈N

(
− 1

(n+ 1)2
,

1

(n+ 1)2

)
.

⁹t ∈ f−1(U) ⇐⇒ f(t) ∈ U ⇐⇒ n2−n−1
n < nt+ (n− 1) < n2−n+1

n ∀n ⇐⇒ − 1
n < nt < 1

n ∀n ⇐⇒ t = 0.
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V is open, but g−1(V ) = {0}¹⁰ which is closed in R. But it is continuous in the
uniform topology. Indeed, let ε > 0 and put δ = 2ε. If |x− y| < δ, then

dY (g(x), g(y)) < l.u.b.{min{δ/(n+ 1), 1}} = 1

2
δ = ε.

c) All three sequences have to converge to 0 = (0, 0, 0...) if they converge at all.
They all converge in the product topology. Indeed, suppose U is a basic neigh-
bourhood of 0 in the product topology. Then

U = U1 × U2 × · · · × Um × R× R× · · ·

for some m ∈ N, and where each of the Ui =]ai, bi[ are basic neighbourhood
of 0 in R. The sequence xn lies in U for n > m, yn lies in U for all n such that(
1
n

)n
< min1≤i≤m{bi},¹¹ and zn lies in U for all

n >
1

(min1≤i≤m{bi})2
.

Let’s look at what happens in the uniform topology. The sequence xn does not
converge to 0. Indeed, letB(0, ε) be a ε-neighbourhood of 0, so

B(0, ε) = {ξ | l.u.b.|ξi| < ε}.

For the sequence xn,

l.u.b.{min{|xnj |, 1}} = 1,

which is bigger than every ε < 1. Hence, there does not exist a N for which
xn ∈ B(0, ε)when n > N , and ε < 1. At the same time, (xn) does not converge
in the box topology. For yn, zn, all elements of the sequence are less than 1 for
large enough n, so we can forget about the metric being bounded, and

l.u.b.{|ynj |} = (1/n)n

l.u.b.{|znj |} = (1/n)2.

For these least upper bounds, there exists N such that yn, zn ∈ B(0, ε) when-
ever n > N , so the sequences converge to 0 in the uniform topology.¹² In the
box topology, (yn) doesn’t converge, but (zn) does. □

¹⁰t ∈ g−1(V ) ⇐⇒ g(t) ∈ V ⇐⇒ − 1
(n+1)2 <

t
n+1 <

1
(n+1)2 ∀n ⇐⇒ − 1

n+1 < t < 1
n+1 ∀n ⇐⇒ t = 0.

¹¹As f(x) = x−x is eventually decreasing, yn is eventually in U for all n > N .
¹²Wait, you say. For this sequence to converge to 0, every neighbourhhod of 0must contain all yn whenn > N

for someN . Ah, but every neighbourhood of 0 containsB(0, ε) for some ε > 0, and this ball contains all yn when
n > N , so the original neighbourhood did as well...
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17.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. LetX be the subspace

X =

{
t

1 + t
eit
∣∣∣∣ t ≥ 0

}
∪ {eiπ}.

Give detailed answers to the following:

a) IsX compact?
b) IsX locally compact?

3. Prove that if Y is compact and N is an open set in X × Y containing {x0} × Y , then
there is a neighbourhoodW of x0 such thatW × Y ⊆ N .

4. If Y is compact, show that the projection π1 : X × Y → X is closed.

5. Prove Theorem 234 (Reprise) and Corollary 235.

6. Show that the standard bounded metric d and the uniform metric are indeed metrics
on (X, d).
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Chapter 18

Countability and Separation

In Chapter 15, we introduced a few simple separation deϐinitions (T0, T1,
and T2/Hausdorff); in this chapter, we extend the discussion to more so-
phisticated separation axioms, and introduce the notions of ϐirst and sec-
ond countable spaces.

18.1 Countability Axioms
A basis at x ∈ X is a collection B of open sets containing x and such that, for each neigh-
bourhood V of x, there existsB ∈ Bwith x ∈ B ⊆ V .

We say that a space X is ϐirst countable at x ∈ X if there is a countable basis at x; X is
simply ϐirst countable if it is ϐirst countable at every x ∈ X . It is second countable if its
topology has a countable basis.

aaaaaa

Examples (FĎėĘę Ćēĉ SĊĈĔēĉ CĔĚēęĆćĎđĎęĞ)
1. IfX is second countable, then it has a countable basisB. Let x ∈ X . If U is an

(open) neighbourhood of x, then

U =
∪
n∈N

Bn,

whereBn ∈ B for all n ∈ N. As x ∈ U , then x ∈ Bm for somem. Hence

Bx = {B ∈ B | x ∈ B}

is a countable basis at x since Bx ⊆ B, and soX is ϐirst countable at x. But x
is arbitrary, soX is ϐirst countable.
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aaaaaa

2. LetX = R in the usual topology; it is second countable since

B = {(a, b) | a < b ∈ Q}

is a countable basis ofX . In light of the previous example,X is also ϐirst count-
able.

3. LetX = R in the discrete topology. R is not second countable as every set is
open and R is uncountable. However, it is ϐirst countable, since {x} is a basis
at x for each x ∈ X . □

A space X is Lindelöf if every open covering of X contains a countable (not necessarily ϐi-
nite) sub-covering. A subsetA ofX is Lindelöf if it is Lindelöf in the subspace topology.

aaaaaa

Theorem 248
IfX is second countable, then it is Lindelöf.

Proof: let F be an open covering and B = {Bn}n be a countable basis of X .
For each n ∈ N, whenever it is possible to do so, let Fn ∈ F be such that Bn ⊆ Fn.
Otherwise let Fn = ∅. Then

X =
∪
n∈N

Bn ⊆
∪
n∈N

Fn

and {Fn}n is a countable sub-collection; it is also an open cover. Indeed, let x ∈ X .
Then there exists F ∈ F such that x ∈ F . As F is open, there exists a basic set
Bn ∈ B such that x ∈ Bn ⊆ F . By construction, F ∈ {Fn}n. HenceX is Lindelöf. ■

Let us take a look at some examples.

aaaaaa

Examples (LĎēĉĊđĔ̈ċ SĕĆĈĊĘ)
1. The space R is second countable (hence Lindelöf), since

B = {(a, b) | a < b ∈ Q}

is a countable basis.

2. The space Rl is Lindelöf but not second countable. Indeed, let B be any basis
for the lower limit topology on Rl. Then, for any x ∈ R and ε > 0, we have
[x, x+ ε) ⊆O Rl, that is, there is a basic setBx,ε such that

x ∈ Bx,ε ⊆ [x, x+ ε).
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aaaaaa

If x < y, then, for ε = y − x, y ̸∈ Bx,ε. So B must contain an uncountable
sub-collection and Rl is not second countable.

We show that Rl is Lindelöf by showing that every open covering by ba-
sic sets contains a countable sub-covering. Let F = {[αa, βa)}a∈J be an open
covering of Rl and

C =
∪
a∈J

(αa, βa)

be a subspace of R. As R is second countable, so is C; it is thus also Lindelöf,
as of Theorem 248. The collection {(αa, βa)}a∈J is an open covering of C , so
there exists a sub-covering {(αan , βan)}n∈N of C . Then

F′ = {[αan , βan)}n∈N

also covers C and F′ ∪ (R \ C) is a covering of R.

Let x ∈ R \ C . Then x = αa for some a ∈ J . Let qx ∈ (αa, βa) ∩ Q.
Then

(x, qx) ⊆ (αa, βa) ⊆ C.

Now suppose x < y ∈ R \ C . Necessarily, qx < qy since, otherwise,

y ∈ (x, qy) ⊆ (x, qx) ⊆ C,

a contradiction as y ̸∈ C . Thus the map x 7→ qx is an injection of R \ C into
Q, which means that R \ C is countable. Write R \ C = {zn}n∈N, and ϐind
[αm, βm) ∈ F with zm ∈ [αm, βm) for all m ∈ N – this can be done as F is an
open covering of Rl. Then F′ ∪ {[αm, βm)}m∈N is a countable sub-cover of Rl

extracted from F.

3. The space R2
l is not Lindelöf. To show this, let L = {(x,−x)}x∈R. Then R2

l \ L
is open in R2

l . Indeed, let (x, y) ∈ R2
l \ L and put ε = x+y

2
. Then

(x, y) ∈ [x, x+ ε)× [y, y + ε)

and ([x, x+ ε)× [y, y + ε)) ∩ L = ∅. Now F = {R2
l \ L} ∪ {Fa}a∈R, where

Fa = [a, a+ 1)× [−a,−a+ 1),

is an open covering of R2
l . But Fa is the only set in F containing (a,−a), so

any sub-covering will contain Fa for all a ∈ R. AsR is uncountable, F does not
contain a countable sub-covering. HenceR2

l is not Lindelöf. This demonstrates
that the product of two Lindelöf spaces need not be Lindelöf.
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4. Let Ω be the ϐirst uncountable ordinal. Then Ω = [0,Ω) is ϐirst countable but
not Lindelöf, so it is not second countable. Indeed, suppose a ∈ Ω. Then

Ba = {(c, a+ 1)}c<a

is countable as a < Ω. Let U be a neighbourhood of a. Then a ∈ (c, a+1) ⊆ U
for c < a. This makesBa a countable basis at a ∈ Ω. ThenΩ is ϐirst countable.

To show that Ω is not second countable, consider the open covering
F = {[0, b)}b∈Ω of Ω, and let F′ be any countable sub-collection from F. Let

β =
∪

[0,b)∈F′

b.

As it is a countable union of countable sets, β is countable, that is β ∈ Ω. But
β ̸∈ [0, b) for all [0, b) in F′, and so F′ cannot be a sub-covering from F. Hence
Ω is not Lindelöf, nor is it second countable. □

We can show fairly easily that countability behaves as expected for subspaces and products.

aaaaaa

Theorem 249
If X is ϔirst (resp. second) countable, then any subspace of X is ϔirst (resp. second)
countable. IfXn is ϔirst (resp. second) countable for all n ∈ N, then∏

n∈N

Xn

is ϔirst (resp. second) countable.

Proof: the statement about subspaces is clearly true. We show that the countable
product of second countable spaces is second countable. The proof for ϐirst count-
able spaces is similar, and is left as an exercise.

LetX =
∏
Xn,Bn be a countable basis forXn, and deϐine

Cm =

{∏
n∈N

Vn

∣∣∣∣∣Vn ∈ Bn for 0 ≤ n ≤ m,Vn = Xn form < n

}

for all m ∈ N. Then C =
∪

m∈N Cm is countable. Furthermore, it is a basis for the
product topology onX . SoX is second countable. ■

We shall see in the next section that there is a link between countability and separation.
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18.2 Separation Axioms
LetX be a space. In Chapter 15, we introduced a number of separation axioms:

0. X is T0 if for every pair x ̸= y ∈ X , there exist a neighbourhood U of either x or y that
misses the other;

1. X is T1 if for every pair x ̸= y ∈ X , there exist neighbourhoods Ux of x and Uy of y such
that y ̸∈ Ux and x ̸∈ Uy;

2. X is T2 or Hausdorff if for every pair x ̸= y ∈ X , there exist disjoint neighbourhoods
Ux of x and Uy of y.

We have also seen that if a space X is T1, then every singleton is closed in X . Note that the
condition T2 is strictly stronger than the condition T1: there are T1 spaces that fail to be T2.

We introduce two new separation axioms.¹ We say that a spaceX is:
3. T3 or regular if X is T1 and if for every pair consisting of a x ∈ X and a closed set B

disjoint from x, there exist disjoint neighbourhoods Ux of x and UB containingB;
4. T4 or normal ifX is T1 and if for every pair consisting of disjoint closed sets A and B,

there exist disjoint neighbourhoods UA containing A and UB containingB.
Some of the conditions imply some of the others: a regular space is Hausdorff, for instance,
since singletons are closed. Indeed let x ̸= y. Then x and the closed set {y} are disjoint and
there exist Ux and U{y} such that x ∈ Ux, {y} ⊆ U{y} and Ux ∩ U{y} = ∅. For the same
reasons, a normal space is regular. The following examples (without proof) show that none
of the implications

T4 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0

can be reversed and that normal spaces are not as well behaved as we might expect.

aaaaaa

Example: (RĊČĚđĆėĎęĞ Ćēĉ NĔėĒĆđĎęĞ)
1. LetK =

{
1
n
: n ∈ N

}
be a subset of R, with basic open sets of the form (a, b)

and (a, b) \K for all a, b ∈ R. With this topology R is Hausdorff. But it is not
regular, since it is possible to separate the point 0 and the closed setK . Hence
a Hausdorff space need not be regular.

2. Let Ω be the least uncountable ordinal. The spaces Ω and Ω+ are normal in
the order topology. But their product is not normal. The product Ω+ × Ω+ is
normal however, so a subspace of a normal space need not be normal. And, as
wewill see later,Ω×Ω+ is regular, being the product of two regular spaces, so
a regular space need not be normal.

3. IfA is uncountable, the product space RA is not normal.

¹There are other such axioms; see https://en.wikipedia.org/wiki/Separation_axiom for more.
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We can also formulate the conditions of regularity and normality differently, as that could be
more useful in different contexts (as in the next section).

aaaaaa

Lemma 250
LetX be T1. Then

1. X is regular if and only if given a point of x ∈ X and a neighbourhood U of x,
there is a neighbourhood V of x such that V ⊆ U .

2. X is normal if and only if given a closed setA ⊆ X and an open setU containing
A, there is an open set V containing A such that V ⊆ U .

Proof:

1. SupposeX is regular and let x ∈ X have a neighbourhood U . Then

x ̸∈ X \ U ⊆C X.

By regularity of X , there exist open subsets V and W such that x ∈ V ,
X \ U ⊆ W and V ∩W = ∅. Suppose y ∈ W . ThenW is a neighbourhood of
y that does not meet V , and so V ∩W = ∅. Hence V ⊆ X \W = U .

Conversely, supposeB ⊆C X and x ̸∈ B. then

x ∈ X \B ⊆O X.

By hypothesis, there exists a neighbourhood V of x such that

x ∈ V ⊆ X \B.

Then by construction,B ⊆ X \ V ⊆O X , x ∈ V andX \ V ∩ V = ∅. In other
words,X is regular.

2. The proof of the second statement uses sensibly the same argument. ■

T2 and T3 spaces behave particularly well with respect to subspaces and products.

aaaaaa

Theorem 251 LetW , {Wα} be Hausdorff,X , {Xβ} be regular.

1. Each subspace Y ofW is Hausdorff, and the product∏Wα is Hausdorff.

2. Each subspace Y ofX is regular, and the product∏Xβ is regular.
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Proof:

1. Let Y be a subspace ofW . If x ̸= y ∈ Y , then there exist disjoint U, V ⊆O X
such that x ∈ U and y ∈ V . ButU ∩Y, V ∩Y ⊆O Y are disjoint and x ∈ U ∩Y ,
y ∈ V ∩ Y , so Y is Hausdorff.

Let W =
∏
Wα. If x = (xα) ̸= y = (yα), then there is a coordinate γ

such that xγ ̸= yγ . AsWγ is Hausdorff, there exist disjoint U, V ⊆O Xγ such
that xγ ∈ U , yγ ∈ V . Then π−1

γ (U), π−1
γ (V ) ⊆O W are disjoint and x ∈ π−1

γ (U),
y ∈ π−1

γ (V ), soW is Hausdorff.

2. Let Y be a subspace ofX . Since Y is Hausdorff, one point sets are closed in Y .
If x ∈ Y , andB is a closed subset of Y disjoint from x, then

B ∩ Y ⊆ B ∩ Y = B ∩ Y = B.

So x ̸∈ B (inX). By regularity ofX , there exist disjoint U, V ⊆O X such that
x ∈ U and B ⊆ V . Then U ∩ Y, V ∩ Y ⊆O Y are disjoint, x ∈ U ∩ Y and
B ⊆ V ∩ Y . Hence Y is regular.

Let X =
∏
Xβ . Since X is Hausdorff, one point sets are closed in X .

Let x = (xβ) ∈ X and suppose U is a neighbourhood of x. Choose a basis∏
Uβ such that

x ∈
∏

Uβ ⊆ U.

For each β, Xβ is regular. Then there exists a neighbourhood Vβ such that
xβ ∈ Vβ ⊆ Uβ.² Then, V =

∏
Vβ is a neighbourhood of x ∈ X . But V =

∏
Vβ ,

so

V ⊆
∏

Uβ ⊆ U

and soX is regular according to Lemma 250. ■

The following three theorems give sets of hypotheses under which normality is assured.

aaaaaa

Theorem 252
LetX be metrizable. ThenX is normal.

Proof: let d be the metric on X , and A and B be disjoint closed subsets of X .
For each a ∈ A, choose εa such that B(a, εa) ∩ B = ∅ – this can always be done as
B is closed inX soX \B ⊆O X .
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Similarly, for each b ∈ B, choose εb such thatB(b, εb) ∩ A = ∅. Then

U =
∪
a∈A

B(a, εa/2) and V =
∪
b∈B

B(b, εb/2)

are open subsets ofX containing A andB respectively. They are also disjoint. Oth-
erwise, B(a, εa/2) ∩ B(b, εb/2) ̸= ∅ for some a ∈ A, b ∈ B. Suppose z lies in that
intersection. Then

d(a, b) ≤ d(a, z) + d(z, b) <
εa + εb

2
.

If εa ≤ εb, then d(a, b) < εb and a ∈ B(b, εb). If εa ≥ εb, then d(a, b) < εa and
b ∈ B(a, εa). But both these statements are false, so U ∩ V = ∅ andX is normal. ■

As usual, compact Hausdorff space behave nicely.

aaaaaa
Theorem 253
LetX be a compact Hausdorff space. ThenX is normal.

Proof: see the solved problems. ■

We establish a link with second countability below.

aaaaaa

Theorem 254
LetX be a second countable regular space. ThenX is normal.

Proof: let B be a countable basis for X . Suppose A and B are disjoint closed
subsets ofX . AsB is closed, each x ∈ A has a neighbourhood Ux not meetingB. By
regularity, there is a neighbourhood Vx of x such that

x ∈ Vx ⊆ U.

As Vx ⊆O X , there existsWx ∈ B such that x ∈ Wx ⊆ Vx, and

Wx ⊆ Ux ⊆ X \B,

soWx∩B = ∅. Then {Wx}x∈A is a countable open covering ofA since it is contained
in B. Let us re-index it, and write {Wn}n∈N. Similarly, it is possible to construct a
countable open covering {Zn}n∈N of B such that Zn ∩ A = ∅ for all n ∈ N. Given
n ∈ N, deϐine

W ′
n = Wn \

n∪
i=1

Zi and Z ′
n = Zn \

n∪
i=1

Wi.
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aaaaaa

ThenW ′
n, Z

′
n ⊆O X asWn, Zn ⊆O X and∪n

i=1Wi,
∪n

i=1 Zi ⊆C X . Let

W ′ =
∪
n∈N

W ′
n and Z ′ =

∪
n∈N

Z ′
n.

ThenW ′, Z ′ ⊆O X andA ⊆ W ′ andB ⊆ Z ′. Indeed if x ∈ A, then x ∈ Wn for some
n. But, by construction, x ̸∈ Zi for all i ∈ N. Then x ∈ W ′

n. Similarly, if y ∈ B, then
y ∈ Z ′

n for some n ∈ N. It remains only to show thatW ′ ∩ Z ′ = ∅.

Suppose ξ ∈ W ′ ∩ Z ′. Then ξ ∈ W ′
n ∩ Z ′

m for some m,n ∈ N. If m ≥ n,
then

ξ ∈ W ′
n =⇒ ξ ∈ Wn, and ξ ∈ Z ′

m =⇒ ξ ̸∈ Wn,

which is a contradiction. Ifm ≤ n, then

ξ ∈ W ′
n =⇒ ξ ̸∈ Zm, and ξ ∈ Z ′

m =⇒ ξ ∈ Zm,

another contradiction. ThenW ′ ∩ Z ′ = ∅ andX is normal. ■

18.3 Results of Urysohn and Tietze
Let X be a normal space, and A, B be disjoint closed subsets of X . Put U1 = X \ B ⊆O X ,
so A ⊆ U1. As X is normal, there exists U0 ⊆O X such that A ⊆ U0 and U0 ⊆ U1. For each
dyadic rational r = m

2n
in [0, 1], we can associate an open set Ur such that

r < s =⇒ Ur ⊆ Us. (18.1)
To do so, we start with any U 1

2
⊆O X such that

U0 ⊆ U 1
2
⊆ U 1

2
⊆ U1

(this can be done as X is normal, U1 ⊆O X , U0 ⊆C X , and U0 ⊆ U1). Then, by the same
process, it is possible to obtain U 1

4
, U 3

4
⊆O X satisfying

U0 ⊆ U 1
4
⊆ U 1

4
⊆ U 1

2
and U 1

2
⊆ U 3

4
⊆ U 3

4
⊆ U1.

Recursively, suppose we have sets U m
2n

satisfying (18.1), form = 0, 1, . . . , 2n.

Then U m
2n
⊆ Um+1

2n
for all m = 0, 1, . . . , 2n − 1. By normality of X , for m = 0, 1, . . . , 2n − 1,

there is an set U 2m+1

2n+1
⊆O X such that

U m
2n
⊆ U 2m+1

2n+1
⊆ U 2m+1

2n+1
⊆ Um+1

2n
.

Let r be a dyadic rational not in [0, 1].³ If r > 1, take Ur = X . If r < 0, take Ur = ∅. Then
(18.1) holds for all dyadic rational.

³A dyadic rational is a real number that can be written as a fraction with denominator 2q for some non-
negative integer q.
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Now, let x ∈ X , and deϐine

Q(x) = {p | x ∈ Up}.

For all x ∈ X , p ̸∈ Q(x) whenever p < 0 since x ̸∈ Up = ∅, and q ∈ Q(x) whenever q > 1
since x ∈ Up = X . HenceQ(x) is bounded below and its greatest lower bound lies in [0, 1].
Deϐine f : X → [0, 1] by

f(x) = g.l.b.{Q(x)}.

Then, f(a) = 0 for a ∈ A since Q(a) is the set of dyadic rational in [0,∞), and f(b) = 1 for
b ∈ B sinceQ(b) is the set of dyadic rational in (1,∞). By construction,

1. x ∈ Up =⇒ f(x) ≤ p;

2. x ̸∈ Up =⇒ f(x) ≥ p.

Indeed, if x ∈ Up, then x ∈ Uq for all q > p. Then q ∈ Q(x) for all q > p, and so that f(x) ≤ p.
If x ̸∈ Up, then p is a lower bound forQ(x) so that f(x) ≥ p.

aaaaaa

Theorem 255 (UėĞĘĔčē LĊĒĒĆ)
The function f deϔined above is continuous.

Proof: suppose x0 ∈ X and (a, b) is a neighbourhood of f(x0). We ϐind a set
U ⊆O X such that x0 ∈ U ⊆ f−1((a, b)). Choose two dyadic rationals p < q such
that a < p < f(x0) < q < b. Let U = Uq \ Up. Then U ⊆O X as Uq is open and Up is
closed. Since q > f(x0) > p, we have x0 ̸∈ Up and x0 ∈ Uq , so x0 ∈ U .

If x ∈ U , then x ∈ Uq ⊆ Uq and f(x) ≤ q < b; but x ̸∈ Up so x ̸∈ Up and
a < p ≤ f(x). Thus f(U) ⊆ (a, b) and U ⊆ f−1((a, b)), so f−1((a, b)) ⊆O X and f is
continuous. ■

Wehave shown that in any normal spaceX , it is possible to separate any two disjoint closed
sets A and B by a continuous function f : X → [0, 1], where f(a) = 0 for all a ∈ A and
f(b) = 1 for all b ∈ B. Note that this does not necessarily mean that f−1({0}) = A and
f−1({1}) = B. This prompts the following deϐinition.

AT1-space isT3 1
2
or completely regular if, given a point x0 and a closed subsetAwith x0 ̸∈ A,

there is a continuous function f : X → [0, 1] such that f(x0) = 0 and f(a) = 1 for all a ∈ A.
SupposeX is completely regular. Let x0 andA be a closed subset ofX such that x0 ̸∈ A. Then
there is a continuous function f : X → [0, 1]with f(x0) = 0 and f(a) = 1 for all a ∈ A. Deϐine

U = f−1([0, 1/3)) and V = f−1((2/3, 1]).

Then U, V ⊆O X , x0 ∈ U , A ⊆ V , and U ∩ V = ∅, and soX is regular.
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One of the most important corollaries of the Urysohn lemma is the Tietze extension theo-
rem. Before stating and proving it, we ϐirst prove the following useful lemma.

aaaaaa

Lemma 256
LetX be a normal space and A ⊆C X . If h : A → [−r, r] is continuous, then there is
a continuous function g : X →

[
− r

3
, r
3

]
such that |h(x)− g(x)| ≤ 2

3
r for all x ∈ A.

Proof: let B = h−1([r/3, r]) and C = h−1([−r,−r/3]). Then B,C ⊆C A as h
is continuous, soB,C ⊆C X asA ⊆C X , andB ∩C = ∅. SinceX is normal, we can
use the Urysohn lemma to construct a continuous function g : X →

[
− r

3
, r
3

]
such

that g(b) = r
3
for all b ∈ B and g(c) = − r

3
for all c ∈ C . Now, let x ∈ A.

Then there are three cases:

1. If x ∈ B, then r ≥ h(x) ≥ r
3
= g(x), so 2

3
r ≥ h(x)− g(x) ≥ 0.

2. If x ∈ C , then−r ≤ h(x) ≤ − r
3
= g(x), so 2

3
r ≥ g(x)− h(x) ≥ 0.

3. If x ∈ A \ (B ∪ C) then |h(x)| < r and |g(x)| ≤ r
3
, so

|h(x)− g(x)| ≤ |h(x)|+ |g(x)| ≤ 2r/3.

Hence |h(x)− g(x)| ≤ 2r/3whenever x ∈ A. ■

We are now ready to prove the extension result.

aaaaaa

Theorem 257 (TĎĊęğĊ EĝęĊēĘĎĔē TčĊĔėĊĒ)
LetX be a normal space and A a closed subset ofX .

1. If f : A→ [a, b] is continuous, there is a continuous function g : X → [a, b] such
that g|A = f .

2. If f : A → R is continuous, there is a continuous function g : X → R such that
g|A = f .

Proof:

1. It is sufϐicient to prove the theorem for a = −1, b = +1, as [−1, 1] is homeo-
morphic to [a, b] for all a < b ∈ R. Let r = 1, h = f and apply Lemma 256 to
get a a continuous function g1 onX such that

|g1(x)| ≤ 1/3 and |f(a)− g1(a)| ≤ 2/3

for all x ∈ X , a ∈ A.
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aaaaaa

Then, for r = 2
3
, h = f −g1, we repeat the process to get a continuous function

g2 onX such that, for all x ∈ X , a ∈ A, we have:

|g2(x)| ≤ 1/3 · (2/3) and |f(a)− g1(a)− g2(a)| ≤ (2/3)2 .

By recursion, suppose that sn =
∑n

k=1 gk, where |f(a) − sn(a)| ≤
(
2
3

)n for
all a ∈ A. Take r =

(
2
3

)n, and h = f − sn. Then by Lemma 256, there is a
continuous function gn+1 onX such that

|gn+1(x)| ≤ 1/3 · (2/3)n and |f(a)− sn(a)− gn+1(a)| ≤ (2/3)n+1

for all x ∈ X , a ∈ A. By induction, the continuous functions gn are deϐined for
all n ∈ N, and |gn(x)| ≤ 1/3 · (2/3)n−1 =Mn for all x ∈ X . By the Weierstrass
M -test (Theorem 79),

g =
∑
n∈N

gn

is uniformly convergent hence continuous. By construction

|g(x)| ≤
∑
n∈N

|gn(x)| ≤
∑
n∈N

1

3

(
2

3

)n−1

=
1/3

1− 2/3
= 1

for all x ∈ X . For a ∈ A, |f(a)− sn(a)| ≤
(
2
3

)n. Then, as n→∞, sn(a)→ f(a)
and sn(a)→ g(a). AsX is Hausdorff, limits are unique, so g|A = f .

2. It is sufϐicient to prove the theorem for continuous f : A→ (−1, 1), as (−1, 1)
is homeomorphic to R. If f : A → (−1, 1) ⊆ [−1, 1] is a continuous function,
using part 1 of the theorem, there is a continuous extension h : X → [−1, 1].
Deϐine

D = h−1({−1}) ∪ h−1({1}) ⊆ X.

As h is continuous andX is Hausdorff,D ⊆C X . Since

h(A) = f(A) ⊆ (−1, 1),

then A ∩ D = ∅. Using the Urysohn lemma, there is a continuous function
ϕ : X → [0, 1] such that ϕ(D) = {0} and ϕ(A) = {1}. Let g(x) = ϕ(x)h(x) for
all x ∈ X .

Then g is continuous and g|A = f since g(a) = ϕ(a)h(a) = 1 · h(a) = f(a)
for all a ∈ A. Finally, g : X → (−1, 1). Indeed, if x ∈ D, then
g(x) = ϕ(x)h(x) = 0 · h(x) = 0 ∈ (−1, 1). If x ̸∈ D, then |h(x)| < 1,
so |g(x)| ≤ |ϕ(x)||h(x)| < 1. ■
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In the remaining part of this chapter, we prove a result that provides conditions under which
a topological space ismetrizable.

aaaaaa

Theorem 258 (UėĞĘĔčē MĊęėĎğĆęĎĔē TčĊĔėĊĒ)
Every regular second countable spaceX is metrizable.

Proof: we show X is metrizable by showing it is homeomorphic to a sub-
space of Rω in the product topology. Let B = {Bn}n∈N be a basis ofX . Then, using
appendix A, section 4, question 3, there is a countable collection of continuous
function fn : X → [0, 1], where fn(x) > 0 for x ∈ Bn and f(X \ Bn) = {0} for
all n ∈ N. Given x0 ∈ X , and a neighbourhood U of x0, there is an index n ∈ N
such that fn(x0) > 0 and f(X \ U) = {0}. Indeed, choose a basis element Bn such
that x0 ∈ Bn ⊆ U. Then the index n satisϐies the property. Now, deϐine a function
F : X → Rω (in the product topology) by

F (x) = (f1(x), f2(x), . . .).

We show that F is an embedding. Clearly, F is continuous, since fn is continuous
for all n ∈ N. Furthermore, it is injective. Indeed, let x ̸= y. AsX is Hausdorff, there
is a neighbourhood U of x disjoint from y. Using the property above, there is an
index n ∈ N such that fn(x) > 0 and fn(y) = 0. Hence F (x) ̸= F (y). It remains only
to show that F is an homeomorphism fromX to F (X). As F is already continuous,
it will be sufϐicient to show that F is open.

Let U ⊆O X and z0 ∈ F (X). Then there exists W ⊆O F (X) such that
z0 ∈ W ⊆ F (U). Indeed, let x0 ∈ U such that F (x0) = z0. As above, there is an
indexN ∈ N such that fN(x0) > 0 and fN(X \ U) = {0}. Let

V = π−1
N ((0,∞)) ⊆O Rω,

and setW = V ∩ F (X). ThenW ⊆O F (X), and

πN(z0) = πN(F (x0)) = fN(x0) > 0,

so that z0 ∈ W . We show now thatW ⊆ F (U). If z ∈ W , there exists an x ∈ X such
that z = F (x) and πN(z) > 0. But 0 < πN(z) = fN(x), so x ∈ U . Then F (x) ∈ F (U)
andW ⊆ F (U). Hence F is open. ■

In the proof, we have called upon a special countable collection of continuous functions. The
following theorem shows how to generalize to arbitrary collections.

aaaaaa
Theorem 259 (EĒćĊĉĉĎēČ TčĊĔėĊĒ)
Suppose X is Hausdorff and {fα} is a family of real-valued continuous functions (in-
dexed by A) such that if U is a neighbourhood of x0 ∈ X , there is an α ∈ A such that
fα(x0) > 0 and fα(x) = 0 if x ̸∈ U . ThenX is homeomorphic to a subspace of RA.
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aaaaaa Proof: the proof is similar to that of the Urysohn metrization theorem, just replace
n ∈ ω throughout by α ∈ A. ■

Let’s take a look at another embedding result.

aaaaaa

Theorem 260
LetX be a completely regular space. ThenX can be embedded in RA for some A.

Proof: we ϐirst deϐine an index set. Let A = {(C, x) | C ⊆C X, x ̸∈ C}. For x0 ∈ X ,
ifU is a neighbourhood of x0, thenC = X \U ⊆C X and x0 ̸∈ C , soα = (C, x0) ∈ A.

Since X is completely regular, there is a continuous function fα : X → [0, 1]
such that f(x0) = 1 and f(x) = 0 for all x ∈ C , so for all x ̸∈ U . Hence there is a
family of continuous functions {fα}α satisfying the hypotheses of the embedding
theorem. AsX is Hausdorff, we apply the embedding theorem to obtain the desired
result. ■

The next result shows that T3 1
2
spaces behave in a nice fashion, not unlike their T3 cousins.

aaaaaa

Theorem 261
Subspaces and product of completely regular spaces are completely regular.

Proof: suppose Y is a subspace of the completely regular space X . If y ∈ Y
and y ̸∈ A ⊆C Y , then A = Y ∩ A (closure inX) and y ̸∈ A. SinceX is completely
regular, there is a continuous function f : X → [0, 1] such that f(A) = {0} and
f(y) = 1. Then the restriction of f to Y is continuous and f |Y (A) = {0} and
f |Y (y) = 1, so that Y is completely regular.

Now suppose that Xα is completely regular for every α. Let X =
∏

αXα. If
C ⊆C X and x0 = (xα)α ̸∈ C , then there is a basic neighbourhood ∏α Uα of x0
disjoint from C . By deϐinition, Uα = Xα, except when α = αi, 1 ≤ i ≤ n for
some n. Let i ∈ {1, . . . , n}. Then xαi

∈ Uαi
⊊O Xαi

, so Xαi
\ Uαi

⊆C Xαi
. By

complete regularity of Xαi
, there is a continuous function fαi

: Xαi
→ [0, 1] such

that fαi
(xαi

) = 1 and fαi
(Xαi

\ Uαi
) = {0}. This can be done for all 1 ≤ i ≤ n. Now

deϐine a function f : X → [0, 1] by

f(x) = fα1(πα1(x)) · · · fαn(παn(x)).

Then, f is continuous, being the product of continuous functions. Furthermore,
f(x0) = fα1(πα1(x0)) · · · fαn(παn(x0)) = 1. Now suppose y ̸∈ ∏α Uα. Then, there
exists αi such that παi

(y) ̸∈ Uαi
and fαi

(παi
(y)) = 0. Hence f(y) = 0, and X is

completely regular. ■
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18.4 Solved Problems
1. Show that ifX is Lindelöf and Y is compact, thenX × Y is Lindelöf.

Proof: the proof is nearly identical to that showingX × Y is compact wheneverX
and Y are compact. Let F be an open covering forX × Y . For each x ∈ X we get a
ϐinite subcovering of {x} × Y from F, say F (x)1, . . . F (x)n. LetN be the open set

N =

n∪
i=1

F (x)i.

By the Tube Lemma, there is a neighbourhoodWx of x inX such thatWx × Y ⊆ N .
Repeating this procedure for all x ∈ X , we get that {Wx}x∈X is an open covering of
X . ButX is Lindelöf, so there is a countable subcovering

Wx1 ,Wx2 , . . .

For each of theseWxi , there were ni corresponding sets F (xi)j in F. Deϐine

F′ = {F (xi)j | i ∈ N, 1 ≤ j ≤ ni}.

F′ is an open countable collection. For any (x, y) ∈ X ×Y , x ∈Wxi for some i. Then
(x, y) ∈Wxi × Y and (x, y) ∈ F (xi)j for some j, so

X × Y ⊆
∪
i∈N

ni∪
j=1

F (xi)j .

So F′ is a countable subcovering ofX × Y extracted from F, soX × Y is Lindelöf. ■

2. LetX be a space with the order topology. Show thatX is regular.
Proof: let A ⊆C X , with b ̸∈ A. As A is closed, there exists an open interval (c, d)
such that

b ∈ (c, d) ⊆ X \A.

There are now four possibilities.
a) If there exists e, f ∈ X such that c < e < b < f < d, put U = (e, f) and

V = (−∞, e) ∪ (f,+∞).
b) If there is an f , but no such e, that is (c, b) = ∅, putU = (c, f) andV = (−∞, b)∪

(f,+∞).
c) If there is an e, but no such f , that is (b, d) = ∅, put U = (e, d) and V =

(−∞, e) ∪ (b,+∞).
d) If there are no such e, f , that is (c, b) = (b, d) = ∅, put U = (c, d) = {b} and

V = (−∞, b) ∪ (b,+∞).
In all cases, b ∈ U ⊆O X ,A ⊆ V ⊆O X and U ∩ V = ∅, soX is regular. ■
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3. a) IfX is a Lindelöf space, show that every closed subset ofX is Lindelöf.
b) If A, B are disjoint closed subsets of a regular space, show that there are open

coverings E, F of A, B respectively such that U ∩ B = ∅ and V ∩ A = ∅ for all
U ∈ E, V ∈ F.

c) IfX is a regular Lindelöf space, show thatX is normal.

Proof:

a) LetA be a closed subset ofX , and suppose thatF is an open covering ofA. Then
X \ A is open and F ∪ {X \ A} is an open covering ofX . ButX is Lindelöf, so
there is a countable sub-covering ofX , say

{X \A,F1, F2, . . .},

where Fn ∈ F for all n ∈ N. Consequently,

{F1, F2, . . .} ⊆ F

is a countable sub-covering ofA, andA is Lindelöf.
b) Let a ∈ A. Since X \ B is open, there exists an open setWa such that a ∈ Wa

andWa ∩B = ∅. By regularity ofX , there exists an open set Ua such that

a ∈ Ua ⊆ Ua ⊆Wa.

Then Ua ∩ B ⊆ Wa ∩ B = ∅. The collection {Ua}a∈A is an open covering of A
satisfying the requisite property. Similarly, we can construct an open covering
ofB satisfying the property.

c) LetA andB be disjoint closed subsets of the regular Lindelöf spaceX . ThenA
and B are Lindelöf, by part (a), and there are open coverings E and F of A and
B respectively such that

U ∩B = ∅ and V ∩A = ∅

for all U ∈ E, V ∈ F. SinceA andB are Lindelöf, it is possible to extract count-
able sub-coverings

{U1, U2, . . .} ⊆ E and {V1, V2, . . .} ⊆ F

ofA andB respectively. Now deϐine

U ′
n = Un \

n∪
i=1

Vi and V ′
n = Vn \

n∪
i=1

Ui.

Then U ′
n, V

′
n are open in X as Un, Vn are open in X and ∪n

i=1 Ui,
∪n

i=1 Vi are
closed inX . Let

U ′ =
∪
n∈N

U ′
n and V ′ =

∪
n∈N

V ′
n.
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Then U ′, V ′ are open in X with A ⊆ U ′ and B ⊆ V ′. Indeed if x ∈ A, then
x ∈ Un for some n. But, by construction, x ̸∈ Vi for all i ∈ N. Then x ∈ U ′

n.
Similarly, if y ∈ B, then y ∈ V ′

n for some n ∈ N. It remains only to show that
U ′ ∩ V ′ = ∅. Suppose ξ ∈ U ′ ∩ V ′. Then ξ ∈ U ′

n ∩ V ′
m for somem,n ∈ N. If

m ≥ n, then

ξ ∈ U ′
n =⇒ ξ ∈ Un

ξ ∈ V ′
m =⇒ ξ ̸∈ Un,

a contradiction. Ifm ≤ n, then

ξ ∈ U ′
n =⇒ ξ ̸∈ Vm

ξ ∈ V ′
m =⇒ ξ ∈ Vm,

another contradiction. Then U ′ ∩ V ′ = ∅ andX is normal. ■

4. LetX be a second countable regular space and let U be an open set.

a) Let {fn}n∈N be a sequence of real-valued functions on a space X . If there exists
M ∈ R such that |fn(x)| ≤M for all x ∈ X , n ∈ N show that∑

n∈N

1

2n
fn

converges uniformly onX .
b) Show that U is a countable union of closed sets inX .
c) Show that there is a continuous function f : X → [0, 1] such that f(x) > 0 for all

x ∈ U and f(x) = 0 for all x ̸∈ U .

Proof:
a) Let ε > 0, and chooseNε ∈ N such that

Nε >
logM − log ε

log 2 .

Then, for all x ∈ X and n > Nε,∣∣∣∣∣
∞∑

i=n+1

1

2i
fi(x)

∣∣∣∣∣ ≤
∞∑

i=n+1

1

2i
|fi(x)| ≤M

( ∞∑
i=n+1

1

2i

)
=
M

2n
<

M

2Nε
< ε,

and so∑ 2−nfn converges uniformly onX .
b) SupposeB = {Bn}n∈N is a basis forX andU is open inX . ThenX \U is closed

inX . SinceX is regular, if x ∈ U , there exist Bx ∈ B and an open set Vx such
that x ∈ Bx,X \ U ⊆ Vx andBx ∩ Vx = ∅. But∪

x∈U
Bx = U
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sinceBx ∩ (X \U) ⊆ Bx ∩Vx = ∅ for all x ∈ U . AsB is countable, there exists
a sequence {xn}n∈N in U such that

U =
∪
x∈U

Bx =
∪
n∈N

Bxn .

By construction,X \ U ⊆ Vxn , soX \ Vxn ⊆ U for all n ∈ N, and∪
n∈N

(X \ Vxn) ⊆ U.

Now, suppose x ∈ U . Then x ∈ Bxn for some n ∈ N, so x ̸∈ Vxn and x ∈ X \Vxn

for that n. Hence ∪
n∈N

(X \ Vxn) = U.

ButX \ Vxn is closed inX for all n ∈ N so U is a countable union of closed sets.
c) By hypothesis, U =

∪
n∈NCn, where Cn is closed inX andX \ U is closed. But

X is normal, as it is regular and second countable, so, by the Urysohn lemma,
there exists a family of continuous functions {fn}n∈N, where fn : X → [0, 1],
such that fn(X \ U) = {0} and fn(Cn) = {1}. Deϐine the function f onX by

f(x) =
∑
n∈N

1

2n
fn(x).

Since each fn is bounded by 1 above and 0 below, we can apply the result ob-
tained in q. 2 to show that f is deϐined for all x ∈ X and that f is continuous,
since the series is uniformly convergent. Now we show that f : X → [0, 1]. Let
x ∈ X . Then fn(x) ∈ [0, 1] for all n ∈ N, so

0 ≤
∑
n∈N

2−nfn(x)︸ ︷︷ ︸
=f(x)

≤
∑
n∈N

2−n = 1.

It remains to show that f satisϐies the requisite property. Suppose x ̸∈ U . Then
f(x) =

∑
2−nfn(x) =

∑
2−n · 0 = 0. Now suppose x ∈ U . Then x ∈ Cn for

some n, and f(x) ≥ 2−n > 0. ■

5. For disjoint closed sets A, B in a completely regular space, if A is compact show that
there is a continuous function f : X → [0, 1]with f(A) = {0} and f(B) = {1}.

Proof: let a ∈ A. Then, by the previous question, there exists a continuous function
fa : X → [0, 1] such that fa(B) = {1} and fa(Ua) = {0} for some neighbourhood
Ua of a, disjoint from B. The collection F = {Ua}a∈A is then an open covering of A,
disjoint fromB. ButA is compact, so there is a ϐinite sub-covering

{Ua1 , . . . , Uan} ⊆ F
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of A. Pick the associated functions fai , 1 ≤ i ≤ n, and construct the function f :
X → [0, 1] deϐined by

f(x) = fa1(x)fa2(x) · · · fan(x).

Then f is continuous, since the ϐinite product of continuous functions is continuous.
Furthermore, f(A) = {0} and f(B) = {1}. Indeed, suppose x ∈ A. Then x ∈ Uai

for some i and fai(x) = 0, so f(x) = 0. If x ∈ B, fai(x) = 1 for all 1 ≤ i ≤ n, so
f(x) = 1. ■

6. a) Show that a connectednormal spaceX havingmore thanonepoint is uncountable.
b) Show that a connected regular spaceX havingmore thanonepoint is uncountable.

Proof:

a) By hypothesis, there exists x ̸= y ∈ X . SinceX is normal, singletons are closed
in X and X is completely regular. Then there exists a continuous function f :
X → [0, 1] such that f(x) = 0 and f(y) = 1. But X is connected. By the
intermediate value theorem, for every 0 = f(x) ≤ r ≤ f(y) = 1, there exists
zr ∈ X such that f(zr) = r. Then f is a surjection ofX onto [0, 1]. HenceX is
uncountable.

b) Suppose X was a countable connected regular space with at least two points.
ThenX is clearly Lindelöf, so it is normal by a previous solved problem. But this
wouldmakeX uncountable by this problem’s ϐirst part, which is a contradiction.
HenceX has to be uncountable. ■

7. Show that every locally compact Hausdorff space is completely regular.

Proof: asX is a locally compact Hausdorff space, it has a one-point compactiϐication
Y = X ∪{∞}, where Y = X andX is a subspace of Y . But Y is compact Hausdorff,
soX is homeomorphic to a subspace of a compact Hausdorff space, henceX is com-
pletely regular. ■

18.5 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. If A is a subspace of a ϐirst countable spaceX , show that x ∈ A if and only if there is a
sequence of points inA converging to x.

3. IfX is a ϐirst countable space, show that f : X → Y is continuous if and only if for any
convergent sequence xn → x, the sequence f(xn) converges to f(x).

4. IfX is second countable, show that every collection of disjoint open sets inX is count-
able.

5. If Y is compact andX is Lindelöf, show thatX × Y is Lindelöf.

P. Boily (uOttawa) 445



18.5. EXERCISES

6. LetX be a regular, second countable space. Show that every open setU inX is a count-
able union of closed sets.

7. Use the fact that X is completely regular to show that there is a continuous function
f : X → [0, 1] such that f(x) > 0 for all x ∈ U and f(x) = 0 for x ̸∈ U .

8. Show that subspaces and products of completely regular spaces are completely regular.

9. IfXn is ϐirst countable for all n ∈ N, show that∏n∈NXn is ϐirst countable.

10. Provide proofs for the examples of p. 431.

11. Complete the proof of Lemma 250.

12. Illustrate the separation axioms as in Chapter 15 (see p. 321, and footnote for a list).
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Chapter 19

Advanced Topics

In Chapter 17, we showed that the ϐiniteproduct of compact spaces is com-
pact in the box, uniform, and product topologies. Arbitrary products of
compact spaces, on the other hand, are surprisingly more complicated to
handle.

19.1 Tychonoff’s Theorem
Our formulation of compactness in terms of closed sets uses the ϐinite intersection prop-
erty (f.i.p.).¹ In this section, we will use the following notation:

a is an element ofX;

A is a subset ofX;

A is a collection of subsets ofX;

A is a family of collections of subsets ofX;

as well as a slightly altered re-formulation of that statement (see Theorem 234 (Reprise) in
Chapter 17):

aaaaaa

Theorem 234 (Reprise, Reprise)
X is compact if and only if for every family F of subsets of X satisfying the f.i.p., we
have ∩

F∈F

F ̸= ∅.

Proof: left as an exercise. ■

¹We note that the projection mappings are not closed in general.
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Our goal is to show that arbitrary products of compact spaces are compact; the following lem-
mas will bring us to the promise land.

aaaaaa

Lemma 262
For any set X and any collection F of subsets of X satisfying the f.i.p., there exists a
maximal collection G with respect to the f.i.p., that is, F ⊆ G, and G ⊊ G′ =⇒ G′

does not satisfy the f.i.p.

Proof: consider all possible collections of subsets of X satisfying the f.i.p.,
and deϐine a partial order on them by strict inclusion. Then {F} is a totally ordered
family, so by the maximum principle of set theory, there is a maximal totally
ordered family A containing it. Deϐine

G =
∪
F′∈A

F′.

Then G satisϐies the f.i.p. Indeed, if G1, . . . , Gn ∈ G, then, for each i, there exists
Fi ∈ A such thatGi ∈ Fi. But A is totally ordered, so one of the Fi, say Fk, contains
all the others. ThenG1, . . . , Gn ∈ Fk. But Fk satisϐies the f.i.p., so

n∩
i=1

Gi ̸= ∅.

As F ∈ A, we have F ⊆ G.

Now, suppose G ⊆ G′, where G′ also satisϐies the f.i.p. Then F ⊆ G′. Fur-
thermore, if F′ ∈ A, then F′ ⊆ G′. So G′ is comparable with every collection in A.
Thus A ∪ {G′} is totally ordered and each of its constituent collection satisϐies the
f.i.p. But A was maximal with respect to the f.i.p., so G′ ∈ A, hence G′ ⊆ G and
G′ ⊆ G. ■

TheHaussdorfmaximumprinciple states that in any partially ordered set, every totally or-
dered subset is contained in amaximal totally ordered subset. This benign looking statement
is in fact equivalent to the infamous axiomof choice; as it is a a fundamental part of the proof
of Lemma 262, it is also a fundamental constituent of its descendents.

aaaaaa

Lemma 263
If F is maximal with respect to the f.i.p. and F1, . . . , Fn ∈ F, then

∩n
i=1 Fi ∈ F.

Proof: let G =
∩n

i=1 Fi and G = F ∪ {G}. Suppose G1, . . . , Gm ∈ G are all
distinct.
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aaaaaa

1. IfG is not one of theGj ’s, thenGj ∈ F for 1 ≤ j ≤ m. Then
m∩
j=1

Gj ̸= ∅,

since F satisϐies the f.i.p.

2. IfG = Gm, then thenGj ∈ F for 1 ≤ j ≤ m− 1. Then
m∩
j=1

Gj =

(
m−1∩
j=1

Gj

)
∩

(
n∩

i=1

Fi

)
̸= ∅,

since F satisϐies the f.i.p.

ThusG satisϐies the f.i.p. By maximality of F,G = F, henceG ∈ F. ■

We will need one more lemma.

aaaaaa

Lemma 264
If F is a maximal collection with respect to the f.i.p. andA ⊆ X is such thatA∩F ̸= ∅
for any F ∈ F, then A ∈ F.

Proof: letG = {A} ∪ F. We showG satisϐies the f.i.p. LetG1, . . . , Gn ∈ G.

1. IfGi ̸= A for 1 ≤ i ≤ n, then∩n
i=1Gi ̸= ∅, since F satisϐies the f.i.p.

2. IfGn = A, let F =
∩n−1

i=1 Gi, whereGi ∈ F for 1 ≤ i ≤ n− 1. By Lemma 263,
F ∈ F. But by hypothesis,

n∩
i=1

Gi = A ∩ F ̸= ∅.

HenceG = F and A ∈ F. ■

We are now ready to state and prove this section’s main result.

aaaaaa

Theorem 265 (TĞĈčĔēĔċċ TčĊĔėĊĒ)
Let {Xα}α be a family of compact sets. Then

∏
αXα is compact.

Proof: we show that any collection of subsets of X =
∏

αXα satisfying the
f.i.p. has a non-trivial intersection. If A is such a collection, then let F be the
corresponding maximal collection with respect to the f.i.p., given by Lemma 262.
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aaaaaa

Then ∩
F∈F

F ⊆
∩
F∈A

F,

and it will be sufϐicient to show ∩
F∈F

F ̸= ∅.

For each α, let Fα = {πα(F )}F∈F. Then, since F satisϐies the f.i.p.,

πα

(
n∩

i=1

Fi

)
︸ ︷︷ ︸

̸=∅

⊆
n∪

i=1

πα(Fi)

for any F1, . . . , Fn ∈ F. Hence Fα satisϐies the f.i.p. ButXα is compact, so

P (α) =
∩
F∈F

πα(F ) ̸= ∅.

Let xα ∈ P (α) ⊆ Xα and set x = (xα)α. Then x ∈ X . If Uβ is a neighbourhood of
xβ inXβ , then π−1

β (Uβ) is a sub-basic open set inX , and Uβ ∩ πβ(F ) ̸= ∅ for every
F ∈ F, since xβ ∈ πβ(F ) for all F ∈ F.

Consequently, π−1
β (Uβ)∩F ̸= ∅ for all F ∈ F. Then, by Lemma 264, π−1

β (Uβ) ∈ F. If
V is a neighbourhood of x inX , then V contains a basic neighbourhood U =

∏
α Uα

around x, where Uα = Xα for all but ϐinitely many α.

But

U =
n∩

i=1

π−1
βi
(Uβi

).

By Lemma 19.1, U ∈ F. Then U ∩ F ̸= ∅ for all F ∈ F since F satisϐies the f.i.p.,
so V ∩ F ̸= ∅ for all F ∈ F. But V was arbitrary, so x ∈ F for all F ∈ F and
x ∈

∩
F∈F F . HenceX is compact. ■

Note that as [0, 1] is compact, [0, 1]A is compact in the product topology. As a result, any com-
pletely regular space can be embedded in [0, 1]A for some index set A, according to the em-
bedding theorem (Theorem 259). Hence, any completely regular space is homeomorphic to
a subspace of a compact Hausdorff space, which is to say, a normal space. This opens the
door for us to continue the discussion on compactiϐication.
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19.2 Stone-Čech Compactiϐication
A compactiϐication of a spaceX is a compact Hausdorff space Y which containsX as a sub-
space and such thatX = Y . ForX to have a compactiϐication, it must be completely regular.

As Y is compact Hausdorff, it is necessarily normal, and so completely regular, and its
subspaces are also completely regular. We now show that this condition is sufϐicient.

aaaaaa

Theorem 266
IfX is completetly regular, thenX has a compactiϔication Y .

Proof: since X is completely regular, it is possible to embed X into a space
Z = [0, 1]A. If f : X → Z is the embedding, letX0 = f(X) and take Y = X . Then
Y0 is compact, since it is closed in the compact space Z . Let X1 be a set disjoint
from X , in one-to-one correspondence with Y0 \ X0. Then, put Y = X ∪ X1. If
g : X1 → Y0 \X0 is the bijection, then deϐine h : Y → Y0 by

h(x) =

{
f(x) if x ∈ X ,
g(x) if x ∈ X1.

Then h is a bijection. Topologize Y by setting

V ⊆O Y ⇐⇒ h(V ) ⊆O Y0.

This clearly makes h : Y → Y0 a homeomorphism, and so Y is compact, Hausdorff.
But the restriction of h onX is a homeomorphism ofX ontoX0, soX is a subspace
of Y andX0 = Y0 impliesX = Y . ■

The compactiϐication clearly depends on the embedding f : X → Z .

aaaaaa

Examples: letX = (0, 1) in the usual topology and f : X → Z .

1. If Z = [0, 1]2 in the usual topology and f(x) = e2πix, then the resulting com-
pactiϐication is the one-point compactiϐication.

2. If Z = [0, 1] in the usual topology and f(x) = x, then the resulting compactiϐi-
cation is a two-point compactiϐication.

3. IfZ = [0, 1]2 in the usual topology and f(x) = (x, sin(1/x)), then the resulting
compactiϐication is given by adding the sets {0}× [−1, 1] and {(1, sin 1)} to the
topologist’s sine curve.
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Now, supposeX is a completely regular space. Let{fα}α∈A be the set of all continuousbounded
real-valued functions onX . For each α ∈ A, let

Iα =

[
inf
x∈X
{fα(x)}, sup

x∈X
{fα(x)}

]
.

Then Iα is a closed bounded interval in R, so Iα is compact and ∏α Iα is compact by Ty-
chonoff’s theorem. Deϐine F̂ : X →

∏
α Iα by

F̂ (x) = (fα(x))α,

and so F̂ is continuous as fα(x) is continuous for all α. SinceX is completely regular, the set
{fα}α∈A satisϐies the conditions of the embedding theorem.

Consequently, X is homeomorphic to a subspace of Z =
∏

α Iα, and we obtain a compact-
iϐication of X that is homeomorphic to the closure of F̂ (X) in Z . This compactiϐication is
called the Stone-Čech compactiϐication ofX , and is denoted β(X).²

If Y and Z are compactiϐications ofX for which there exists an homeomorphism f : Y → Z ,
we say that Y and Z are equivalent if f(x) = x for all x ∈ X .

aaaaaa

Theorem 267
IfX is completely regular, then every continuous bounded real-valued function onX
can be uniquely extended to a continuous function on β(X).

Proof: let fγ be a continuous bounded real-valued function onX . Then

fγ = πγ ◦ F |X ,

where F : β(X)→
∏
Iα is the embedding given in footnote 2. Deϐine g on β(X) by

g(x) = πγF (x).

Then g|X = fγ ; according to a previous solved problem, the extension is unique as
β(X) = X . ■

This leads to the following useful result.

aaaaaa
Theorem 268
Suppose that g : X → Z is continuous, where Z is compact Hausdorff. Suppose Y is
a compactiϔication ofX such that every continuous real-valued function onX can be
extended to Y . Then g can be extended to Y .

²Note that we have just uniquely extended the continuous function F̂ on X to a continuous function F on
β(X) = X using one of the solved problems from a previous section.
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aaaaaa

Proof: since Z is a compact Hausdorff it is normal, and so completely regular. Then
Z can be embedded into [0, 1]A for some A. Without loss of generality, we may take
Z as a subspace of [0, 1]A. Note thatZ is closed in [0, 1]A, since it is a compact subset
of [0, 1]A. Then g : X → [0, 1]A is continuous and gα = πα ◦ g : X → [0, 1] is
continuous for allα ∈ A. By hypothesis, gα can be extended to a continuous function
fα : Y → R. Deϐine f : Y → RA by

f(y) = (fα(y))α∈A.

As each coordinate function is continuous, f is continuous. Furthermore, f |X = g.
It remains only to show that f maps Y into Z . But

f(Y ) = f(X) ⊆ f(X) = g(X).

But g(X) ⊆ Z and Z is closed, so g(X) ⊆ Z . Consequently, f(Y ) ⊆ Z . Thus
f : Y → [0, 1]A is the desired extension. ■

In a certain sense, the Stone-Cƽech compactiϐication is unique.

aaaaaa

Theorem 269
Suppose Y1 and Y2 are compactiϔications of X satisfying the conditions of Theo-
rem 268. If every continuous function g : X → Z can be extended, Y1 and Y2 are
equivalent.

Proof: let i1 : X → Y1 be the injection of X into the compact normal space
Y1. Then, i1 can be extended to f1 : Y2 → Y1. Similarly, we can extend i2 : X → Y2
to f2 : Y1 → Y2. Then f1f2 : Y1 → Y1, and

f1f2(x) = f1i2(x) = f1(x) = i1(x) = x

for x ∈ X . Hence f1f2 extends id : X → Y1 to Y1 = X . Since idY1 is also such a
continuous extension, f1f2 = idY1 and, similarly, f2f1 = idY2 . Hence f1 and f2 are
homeomorphisms and Y1 and Y2 are equivalent.

X
i1 - Y1

Y2

f1

6

f2

?

i
2

-

■
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19.3 Solved Problems
1. Let {Xα} be a family of non-empty topological spaces. Prove that the product space is

locally compact if and only if each Xα is locally compact and all but a ϐinite number of
theXα are compact.

Proof: letX =
∏
Xα andassume theaxiomof choiceholds. Supposex = (xα)α ∈ X .

If X is locally compact, then it is locally compact at x and there exist a compact set
C and a basic neighbourhood U such that x ∈ U ⊆ C ⊆ X . But U takes the form

U = Uα1 × · · · × Uαn ×
∏

α̸=α1,...,αn

Xα,

where Uαi is open inXαi for all 1 ≤ i ≤ n. Since U ⊆ C , then

C = Cα1 × · · · × Cαn ×
∏

α ̸=α1,...,αn

Xα,

where Uαi ⊆ Cαi . But C is compact, soXα is compact for all α ̸= αi, and so is Cαi ,
for 1 ≤ i ≤ n. Now, considerXαi for 1 ≤ i ≤ n. By construction,Cαi is compact,Uαi

is open and

xαi ∈ Uαi ⊆ Cαi ⊆ Xαi

for 1 ≤ i ≤ n. But this means that Xαi is locally compact at xαi , so Xαi is locally
compact for 1 ≤ i ≤ n.

Conversely, suppose Xαi is locally compact for 1 ≤ i ≤ n and Xα is compact for
α ̸= αi, 1 ≤ i ≤ n. Write

W =
∏

α ̸=α1,...,αn

Xα.

By Tychonoff’s theorem,W is compact, and so locally compact. Then

X = Xα1 × · · · ×Xαn ×W

is a ϐinite product of locally compact spaces, and so is locally compact. ■

2. Show that if X is completely regular and B is a closed set with a ̸∈ B, then there is a
continuous function f : X → [0, 1] such that f(x) = 1 for all x ∈ B and f(x) = 0 in
some neighbourhood of a.

Proof: sinceX is completely regular, it is homeomorphic to a subspace of a normal
space Y (we identify X with its homeomorphic copy in Y ). Since B is closed in X ,
there exists BY closed in Y such that B = BY ∩ X . As a ∈ X , a ∈ Y \ BY . By
normality of Y , there is an open set UY in Y such that

a ∈ UY ⊆ UY ⊆ Y \BY .
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Then UY ∩ BY = ∅, and we can apply the Urysohn lemma to ϐind a continuous
function f : Y → [0, 1] such that f(UY ) = {0} and f(BY ) = {1}. The restriction of
a continuous function to a subspace is continuous, so the restriction

f |X : X → [0, 1]

is continuous. Put U = UY ∩X and U = UY ∩X , so that U is open and U is closed
inX and U ⊆ U . Then

f |X(B) = f(BY ∩X) = {1} and f |X(U) = f(UY ∩X) = {0},

so that f |X(U) = {0}. But by construction, a ∈ U , so f |X is the desired function. ■

3. LetX be completely regular. Show thatX is connected if and only if β(X) is connected.
Proof: ifX is connected, β(X) ≃ X is connected. Now supposeX is not connected,
and letA,B be a separation ofX . Note that

β(X) ≃ X = A ∪B = A ∪B.

Hence β(X) is disconnected if A, B is a separation of β(X). It will be sufϐicient to
show that A ∩ B = ∅. Deϐine f : X → [0, 1] by f(A) = {0} and f(B) = {1}. Then,
f is continuous. Indeed,

f−1([0, 1]) = X

f−1((a, b)) = ∅ for 0 ≤ a < b ≤ 1

f−1([0, b)) = A for 0 < b ≤ 1

f−1((a, 1]) = B for 0 ≤ a < 1,

andX ,∅,A andB are all open inX . Then f can be extended to a continuous function
f̂ : β(X)→ Y where f̂ |X = f . As f̂ is continuous,

{0} ⊆ f̂(A) ⊆ f̂(A) ⊆ f̂(A) = f(A) = {0} = {0}

and
{1} ⊆ f̂(B) ⊆ f̂(B) ⊆ f̂(B) = f(B) = {1} = {1}.

Then f̂(A) = {0} and f̂(B) = {1}. Hence A ∩ B = ∅, since otherwise there would
be a x ∈ β(X) such that f̂(x) = 0 and f̂(x) = 1, a contradiction as f̂ is a function. ■

4. Let Y be an arbitrary compactiϐication of X . Show there is a continuous surjective
closed map g : β(X)→ Y such that g|X = idX .

Proof: if Y is a compactiϐication of X , there is an embedding f : X → Y with
f(X) = Y . Hence, by the properties of the Stone-Cƽech compactiϐication, and since
Y is compact Hausdorff, f can be extended continuously to g : β(X) → Y , where
g|X = f . As β(X) is compact and Y is Hausdorff, the map g is closed. Indeed, let C
be a closed subset of β(X). As β(X) is compact,C is compact, so g(C) is compact in
Y . But Y is Hausdorff, so g(C) is closed.

It remains only to show that g is surjective. To do this, we show that Y ⊆ g(β(X)).
As g is an extension of f onX , f(X) ⊆ g(β(X)). But g is closed, so g(β(X)) is closed
in Y . Thus Y = f(X) ⊆ g(β(X)) and g is surjective. ■

P. Boily (uOttawa) 455



19.4. EXERCISES

19.4 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Provide a proof for Theorem 234 (Reprise, Reprise).

3. IfX ̸= β(X), show that β(X) is not metrizable.

4. LetX be a discrete.

a) IfA ⊆ X , show that A,X \ A ⊆C β(X) are disjoint.
b) If U ⊆O β(X), show that U ⊆O β(X).
c) Is β(X) totally disconnected?
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Chapter 20

Introduction to Algebraic Topology

While there are tons of other interesting results and counter-examples in
point set topology, we have touched upon most of the important ideas of
the discipline in Chapters 15-19. In this chapter, we introduce the basic
concepts of algebraic topology, which is both a precursor and an applica-
tion of category theory, and which provides a stepping stone to homol-
ogy theory, a fascinating (but out-of-scope) offshoot of general topology.

20.1 Fundamental Groups
A path in a spaceX from x to y is a continuous function p : I = [0, 1] → X where p(0) = x
and p(1) = y. A path homotopy between 2 paths p0 and p1 from x0 to x1 is a continuous
function F : I × I → X , where

F (t, 0) = p0(t), F (t, 1) = p1(t), F (0, s) = x0, F (1, s) = x1.

If such an F exists, we say that p0 is (path) homotopic to p1 under F , which we denote by
p0 ∼F p1, or p0 ∼ p1 if the dependence on F does not need to be emphasized. Path homotpy
is an equivalence relation on the set of paths.
Reϐlexivity: if p is a path from x0 to x1 inX , set F (t, s) = p(t) for all s, t. Then p ∼F p.
Symmetry: if p0, p1 are homotopic paths from x0 to x1 with p0 ∼F p1, setG(t, s) = F (t, 1−s)

for all s, t. Then p1 ∼G p0.
Transitivity: let p0 and p1 be paths from x0 to x1 with p0 ∼F p1, and let p1 and p2 be paths

from x1 to x2 with p1 ∼G p2. Then p0 ∼H p2, where

H(s, t) =

{
F (t, 2s) s ∈ [0, 1/2]

G(t, 2s− 1) s ∈ [1/2, 1]

for all t, s ∈ I . By the pasting lemma (Lemma 213), H is continuous since F (t, 1) =
G(t, 0) for all t ∈ I .
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aaaaaa

Examples (PĆęč HĔĒĔęĔĕĎĊĘ)
1. Let p and q be any paths with the same endpoints in Rn. Then p ∼F q where

F (t, s) = (1− s)p(t) + sq(t).

This path homotopy is called the straight-line homotopy.

2. Let p, q, and r be paths from x0 = (1, 0) to x1 = (−1, 0) in the punctured plane
R2 \ {0}, deϐined by:

p(s) = (cosπs, sinπs) (in green),
q(s) = (cosπs, 2 sinπs) (in blue),
r(s) = (cosπs,− sinπs) (in red).

Then p and q are path homotopic (through the straight-line homotopy, say).
But p and r are not path homotopic – we will prove this at a later point. □

The equivalence class of a path p is denoted by [p]. We show that the equivalence classes of
paths behave very much like the elements of a group. LetX be a topological space.

Composition If p, q are paths inX from x0 to x1 and from x1 to x2, respectively, then pq is a
path from x0 to x2, and we have:

pq(t) =

{
p(2t) t ∈ [0, 1/2],
q(2t− 1) t ∈ [1/2, 1].
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If p0 ∼F p1 from x0 to x1 and q0 ∼G q1 from x1 to x2, deϐineH : I × I → X by

H(t, s) =

{
F (2t, s) t ∈ [0, 1/2]

G(2t− 1, s) t ∈ [1/2, 1].

By the pasting lemma, H is continuous since F (1, s) = G(0, s) = x1. Hence p0q0 ∼H p1q1.
Whenever the composition pq is deϐined, we can deϐine the product of the path classes by
[p][q] = [pq].

Associativity If p, q, r are paths in X from x0 to x1, x1 to x2 and x2 to x3 respectively, then
(pq)r and p(qr) are paths from x0 to x3, and we have:

(pq)r(t) =


p(4t) t ∈ [0, 1/4],
q(4t− 1) t ∈ [1/4, 1/2],
r(2t− 1) t ∈ [1/2, 1].

p(qr)(t) =


p(2t) t ∈ [0, 1/2],
q(4t− 2) t ∈ [1/2, 3/4],
r(4t− 3) t ∈ [3/4, 1].

Clearly, (pq)r ̸= p(qr). But (pq)r ∼F p(qr), where

F (t, s) =


p
(

4t
s+1

)
0 ≤ t ≤ 1

4
(s+ 1),

q(4t− 1− s) 1
4
(s+ 1) ≤ t ≤ 1

4
(s+ 2),

r
(
4t−s−2
2−s

)
1
4
(s+ 2) ≤ t ≤ 1.

Hence ([p][q])[r] = [p]([q][r])whenever these multiplications are deϐined.

Identities The constant path cx at x is deϐined by cx(t) = x for all t ∈ I . If p is a path from
x to y, then cx ∼F p ∼G pcy . One gets

cxp(t) =

{
x t ∈ [0, 1/2],
q(2t− 1) t ∈ [1/2, 1].

pcy(t) =

{
p(2t) t ∈ [0, 1/2],
y t ∈ [1/2, 1].

Then

F (t, s) =

{
x t ∈ [0, (1− s)/2],
p
(
2t+s−1
s+1

)
t ∈ [0, (1− s)/2],

G(t, s) =

{
p
(

2t
2−s

)
t ∈ [0, 1− s/2],

y t ∈ [1− s/2, 1].
Then F andG are the required homotopies. Hence for any path p from x to y, [cx][p] = [p] and
[p] = [p][cy].
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Inverses If p is a path inX from x to y, then p is a path from y to x deϐined by p(t) = p(1− t)
with pp ∼F cx and pp ∼G cy , where

F (t, s) =


p (2t) 0 ≤ t ≤ s

2
,

p(s) s
2
≤ t ≤ 1− s

2
,

p(2− 2t) 1− s
2
≤ t ≤ 1.

Note that p = p, so we get

G(t, s) =


p (2t) 0 ≤ t ≤ s

2
,

p(s) s
2
≤ t ≤ 1− s

2
,

p(2− 2t) 1− s
2
≤ t ≤ 1.

=


p (1− 2t) 0 ≤ t ≤ s

2
,

p(1− s) s
2
≤ t ≤ 1− s

2
,

p(2t− 1) 1− s
2
≤ t ≤ 1.

Hence [p][p] = [cx] and [p][p] = [cy], which means that [p] = [p]−1.

But it is not always possible to multiply path classes, as two paths may not have matching
endpoints, so the group idea is not complete. To remedy the situation, we introduce a new
concept. A path inX from x to x is a loop inX based at x. When p is a loop at x we call the
path class [p] a loop at x.

For a ϐixed x0 ∈ X , if we consider only loops based at x0, then pq is always deϐined. This
means that the composition of path classes is always deϐined and so, for any path classes α,
β, γ, with ε the path class of the constant path cx0 , we have

(αβ)γ = α(βγ), αε = εα = α, αα−1 = α−1α = ε;

the path classes of loops inX at x0 thus form a group, the fundamental group of X based
at x0, denoted by π(X, x0). It is also sometimes known as the ϐirst homotopy group of X at
x0, denoted by π1(X, x0). The fundamental group does depend on the chosen base point.

aaaaaa

Examples (FĚēĉĆĒĊēęĆđ GėĔĚĕ)
1. IfX = Rn andx0 = 0, thenπ(Rn, 0) = {ε}, as every loop at 0 is pathhomotopic

to the constant loop c0.

2. If X is any convex subset of Rn and x0 ∈ X , then π(X, x0) = {ε}, as every
loop at x0 is path homotopic to the constant loop cx0 through the straight-line
homotopy.

3. If X = Rn \ {0} and p, q and r are deϐined as in the 2nd example on p. 458,
then pq and pr are two loops based at (−1, 0). But these loops are not path
homotopic and so their path classes differ, which means that π(X, (−1, 0)) is
not the trivial group. The fundamental group of the punctured plane will be
computed in Section 20.3.
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If X is a path-connected space for which there exists x0 ∈ X such that π(X, x0) = {ε}, we
say thatX is simply connected. The reason why we only need one x0 ∈ X is that the funda-
mental groups of path-connected spaces are independent of the chosen base point.

aaaaaa

Theorem 270
IfX is path-connected, then π(X, x) ∼= π(X, y) for x, y ∈ X .

Proof: As X is path-connected, there is a path class γ from x to y. Deϐine
γ̂ : π(X, x) → π(X, y) by γ̂(α) = γ−1αγ. We show that γ̂ is the desired isomor-
phism. First, let α, β ∈ π(X, x) . Then

γ̂(α)γ̂(β) = γ−1αγγ−1βγ = γ−1αβγ = γ̂(αβ),

so γ̂ is a homomorphism. The reverse class γ also provides a fundamental group
homomorphism γ̂ : π(X, y) → π(X, x) deϐined by γ̂(ξ) = γξγ−1. Then γ̂−1 = γ̂,
which implies that γ is an isomorphism. ■

In the proof of Theorem 270, if we use a different path class δ from x to y, we get a different
isomorphism δ̂ : π(X, x)→ π(X, y). But

δ̂−1γ̂(α) = δγ−1αγδ−1 = (δγ−1)α(δγ−1)−1

for all α ∈ π(X, x). Hence δ̂ and γ̂ differ by an inner automorphism.

Suppose φ : X → Y is a continuous function and p : I → X is a path, then φ ◦ p : I → Y is
a path, denoted φp. If the composition pq is deϐined, then φ(pq) = (φp)(φq). Thus, if p ∼F q,
then φp ∼φF φq, and φ induces a homomorphism of path classes

φ∗ : π(X, x)→ π(Y, φ(x)),

deϐined by φ∗([p]) = [φp] for all [p] ∈ π(X, x). If furthermore ψ : Y → Z is a continuous
function, then (ψφ)∗ = ψ∗φ∗. From this, if φ is a homeomorphism, (φ−1)∗ = (φ∗)−1 and φ∗

is an isomorphism. As a result, if X is homeomorphic to Y , then π(X, x) is isomorphic to
π(Y, φ(x)), where φ is the homeomorphism betweenX and Y .

aaaaaa Corollary 271
If π(X, x) ̸∼= π(Y, y), thenX and Y are not homeomorphic.

Note that φ∗ need not be surjective (injective) when φ is surjective (injective).
1. LetX = R, Y = S1 and deϐine φ : R → S1 by φ(x) = e2πix. Then φ is continuous and

surjective, and φ(0) = 1. But π(R, 0) = {ε0}, so φ∗(π(R, 0)) = {ε1}. As we shall see in
Section 20.3, π(S1, 1) = Z. Hence φ∗ is not surjective.

2. LetX = S1, Y = C, and φ : S1 → Cwith φ(z) = z. Then φ is continuous and injective,
and φ(1) = 1. But π(S1, 1) = Z and π(C, 1) = {ε1}, so kerφ∗ = π(S1, 1) ̸= {ε1} and φ∗

is not injective.
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20.2 Covering Spaces

Suppose p : X̃ → X is a continuous map. Let V be a neighbourhood of x ∈ X . We say that V
is evenly covered by p at x if p−1(V ) can be written as a disjoint union of sets Ṽ (the slices
of p−1(V )) such that the restriction p|Ṽ : Ṽ → V is a homeomorphism. If for every x ∈ X ,
there is some neighbourhood V of x that is evenly covered by p, then p is a coveringmap and
(X̃, p) is a covering space of X . Note that a covering map is automatically surjective.

aaaaaa

Example (CĔěĊėĎēČ SĕĆĈĊĘ)
1. Let X̃ = R, X = S1 and deϐine p : R → S1 by p(x̃) = e2πix̃. Let z ∈ S1.

Then there exists θz ∈ R such that z = e2πiθz and p−1(z) = {θz + n | n ∈ Z}.
Let Vz =

{
e2πiϕ | |ϕ− θz| < 1

2

}
. We show that Vz is evenly covered by p and

so that (R, p) is a covering space of S1. Note that p−1(Vz) =
⊔

n∈Z Ṽn, where
Ṽn = (θz + n− 1

2
, θz + n− 1

2
) for all n ∈ Z. But, for all n ∈ Z,

p(Ṽn) = {e2πiϕ | ϕ ∈ Ṽn} = {e2πiϕ | |ϕ− θz| < 1/2} = Vz,

and p|−1

Ṽn
(Vz) = Ṽn, so p|Ṽn

is an homeomorphism and Vz is evenly covered.

2. Let p : X̃ → X be a homeomorphism. Then every open set U ⊆ X is evenly
covered by p since p−1(U) ≃ U . Hence (X̃, p) is a covering space ofX .

3. Let X̃ = S1,X = S1 and deϐine p : S1 → S1 by p(z) = zn, for all z ∈ S1 and for
some n ∈ Z. Let z ∈ S1. Then there exists θz ∈ R such that z = e2πiθz . By deϐi-
nition, p−1(z) =

{
e

2πim
n

θz | 0 ≤ m ≤ n− 1
}
. Let Uz =

{
e2πiϕ | |ϕ− θz| < 1

4n

}
.

We show that Uz is evenly covered by p and so that (S1, p) is a covering space
of S1. But p−1(Uz) =

⊔n−1
m=0 Ũm, where Ũm =

{
e2πiϕ | |ϕ+m− θz| < 1

4n

}
for

all 0 ≤ m ≤ n− 1, and so

p(Ũm) = {e2πiϕ | |ϕ− θz| < 1/(4n)} = Uz

for all 0 ≤ m ≤ n − 1, hence p|−1

Ũm
(Uz) = Ũn, so p|Ũn

is an homeomorphism
and Uz is evenly covered.

4. Let X̃ = S2 andX = RP 2 be the real projective plane. Then the quotient map
p : S2 → RP 2 where p(v) = p(−v) for all v ∈ S2 is a covering map.

A continuous function f : X → Y is a local homeomorphism if for each x ∈ X , there is a
neighbourhood V of x such that f |V : V → f(V ) is a homeomorphism. Consequently, every
covering map is a local homeomorphism. But the converse is not necessarily true.
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aaaaaa

Example let X = R+, Y = S1 and deϐine p : R+ → S1 by p(x) = e2πix for
x ∈ R+. Then p is continuous and surjective. Let x ∈ R+. Any basic neighbour-
hood (x − ε, x + η) in R+, where ε + η < 1/2 is mapped homeomorphically to{
e2πiϕ | −ε < ϕ− x < η

}
by p. This makes p a local homeomorphism.

But p is not a covering map. Indeed, if U is an evenly covered neighbourhood
of e2πi via p, then p−1(U) =

⊔∞
n=0 Vn, where Vn is a small neighbourhood around n

when n > 0 and V0 = (0, ε) for some small ε. But p(V0) is not homeomorphic to U .
So there is no neighbourhood of e2πi which is evenly covered by p. □

Suppose p : X̃ → X is a covering map and f : Y → X is a continuous function. A lift of f
is a map f̃ : Y → X̃ such that pf̃ = f . The following theorems show that paths and path
homotopies can be lifted.

aaaaaa

Theorem 272 (PĆęč LĎċęĎēČ PėĔĕĊėęĞ)
Suppose p : X̃ → X is a covering map and f : I → X is a path with f(0) = x0. For
each x̃0 ∈ p−1(x0), there is a unique path f̃ : I → X̃ such that f̃(0) = x̃0 and pf̃ = f .

X̃

I
f

-

f̃

-

X

p

?

Proof: the sets f−1(V ) where V is a canonical (which is to say, evenly covered)
neighbourhood of a point in f(I) give an open covering F of I . As I is a compact
metric space, Theorem 245 guarantees the existence of a Lebesgue number ε of F.
Let n ∈ N be such that 1

n
< ε. Let tm = m

n
for 1 ≤ m ≤ n and set t0 = 0. Then

Im = [tm−1, tm] has diameter less than ε, so it lies in f−1(Vm) for some canonical Vm
and f(Im) ⊆ Vm for 1 ≤ m ≤ n.

But V1 is a canonical neighbourhood of x0. Let Ṽ1 be the slice of p−1(V1) con-
taining x̃0. Deϐine f̃ on I1 by

f̃(t) = p−1
1 f(t),

where p1 = p|Ṽ1
. As f is continuous and p1 is a homeomorphism, f̃ is continous on I1.

Now suppose f̃ is deϐined on [0, tm] and let xm = f(tm) and x̃m = f̃(tm).
Take Ṽm+1 to be the slice of p−1(Vm) containing x̃m and let pm+1 = p|Ṽm+1

. Deϐine f̃
on Im+1 by

f̃(t) = p−1
m+1f(t).

P. Boily (uOttawa) 463



20.2. COVERING SPACES

aaaaaa

Since f̃ is deϐined at tm, the pasting lemma guarantees that f̃ is continuous on
[0, tm+1]. After n steps, the continuous function f̃ is deϐined on I and, by construc-
tion, pf̃ = f .

Now suppose g : I → X̃ is another path such that g(0) = x̃0 and pg = f .
By construction p1g = p1f̃ on I1. Since p1 is a homeomorphism, g = f̃ on I1. Using
an argument identical to that used in the construction of f̃ , if g = f̃ on [0, tm], then
g = f̃ on [tm, tm+1]. Recursively, g = f̃ on I . ■

aaaaaa

Theorem 273 (SĖĚĆėĊ LĎċęĎēČ PėĔĕĊėęĞ)
Suppose p : X̃ → X is a coveringmapandF : I×I → X is a continuous functionwith
F (0, 0) = x0,0. For each x̃0,0 ∈ p−1(x0,0), there is a unique lift of F to F̃ : I × I → X̃

where F̃ (0, 0) = x̃0,0.

X̃

I × I
F

-

F̃

-

X

p

?

Proof: the setsF−1(V )where V is a canonical neighbourhood of a point inF (I×I)
form an open covering F of I × I with Lebesgue number ε. Subdivide I × I into
n2 small squares of diameter less than ε. Using arguments similar to that of the
previous proof, lift F to F̃ on I1× I1, then across the base of I× I on I× I1. Next, ϐill
the square one layer at a time. Special care has to be taken to extend F̃ to Ik × Il+1

from the previous rectangles. This hinges on the fact that the union of the bottom
and leftmost edges is connected. Then F̃ : I × I → X̃ is uniquely deϐined. ■

aaaaaa

Theorem 274
If f0, f1 : I → X are paths with initial point x0, p : X̃ → X is a covering map and
p(x̃0) = x0, then the lifts f̃0, f̃1 : I → X̃ with initial point x̃0 are path homotopic
under F̃ if and only if f0, f1 are path homotopic under F , where F̃ is the unique lift of
F based at x̃0.

Proof: suppose f̃0 ∼F̃ f̃1, then let F = pF̃ , so f0 ∼F f1. Conversely, suppose
f0 ∼F f1 and let F̃ be the lift of F obtained by the previous theorem. Then

pF̃ (t, 0) = F (t, 0) = f0(t),

so F̃ (t, 0) is a lift of f0 at F̃ (0, 0) = x̃0. By uniqueness of lifts, F̃ (t, 0) = f̃0(t).
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aaaaaa

Similarly, F̃ (t, 1) = f̃1(t). Now

pF̃ (0, s) = f(0, s) = x0

and F̃ (0, s) is a lift of the constant path ex0(s). But the constant path ex̃0(s) = x̃0 is a
lift of ex0 . By uniqueness of lifts,

F̃ (0, s) = ex̃0(s) = x̃0.

Similarly F̃ (1, s) is a constant path and F̃ is a path homotopy. ■

aaaaaa

Corollary 275
If X and X̃ are path-connected, then p−1(x) has the same cardinality at every point
x ∈ X .

Proof: for any path f in X from x to y, if x̃ ∈ p−1(x), then the lift of f to f̃

with initial point x̃ gives a path in X̃ from x̃ to f̃(1) = ỹ. Deϐine φ : p−1(x)→ p−1(y)
by φ(x̃) = ỹ.

For f the reverse path of f from y to x, we get a unique lift from ỹ to some terminal
point. But that terminal point has to be x̃, since f̃ = f̃ . Thus φ : p−1(y) → p−1(x)
and φ = φ−1. ■

The cardinality of p−1(x) is the number of sheets of the covering.

aaaaaa

Examples (SčĊĊęĘ)
1. The map p : S1 → S1 deϐined by p(z) = zn is an n-sheeted covering.

2. The map p : R→ S1 deϐined by p(x) = e2πix is an ω-sheeted covering. □

20.3 Fundamental Groups of S1 and R2 \ {0}
In this section we show how to compute the fundamental group of the circle and of the punc-
tured plane, using techniques introduced in the previous section.

aaaaaa

Theorem 276
The fundamental group of S1 is inϔinite cyclic, that is it is isomorphic to the additive
group Z.

Proof: since S1 is path-connected, the fundamental group can be based at
any point of S1. For convenience, take z = e2πi = 1. The map p : R→ S1 deϐined by
p(x) = e2πix is a covering map.
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aaaaaa

Let α ∈ π(S1, 1). Then α = [f ], where f is a loop in S1 based at 1. Then, by the path
lifting property, there exists a unique f̃ with initial point 0 ∈ p−1(1) such that the
following diagram commutes.

R

I
f

-

f̃

-

S1

p

?

Then

pf̃(0) = p(0) = 1 and pf̃(1) = f(1) = 1.

Hence f̃(1) ∈ Z, say f̃(1) = n. This integer is independent of the choice of the
representative f , by Theorem 274. Deϐine a map φ : π(S1, 1) → Z by φ(α) = f̃(1).
We show that φ is an isomorphism, which yields the desired result.

φ is a homomorphism: Let α = [f ], β = [g] ∈ π(S1, 1). By construction, φ(α) =

f̃(1) = n andφ(β) = g̃(1) = m for somem,n ∈ Z. Deϐine h̃ by h̃(t) = n+ g̃(t).
Then f̃ h̃ is a path from 0 to n+m. Then

p(h̃(t)) = e2πi(n+g̃(t)) = p(g̃(t)) = g(t)

and p(f̃ .h̃) = p(f̃).p(h̃) = fg, so f̃ .h̃ is a lift of fg starting at 0. Consequently,

φ(αβ) = f̃ .h̃(1) = n+m = φ(α) + φ(β).

φ is injective: Suppose φ(α) = 0 for α = [f ]. Then, if f̃ is a lift of f starting at 0,
f̃(1) = 0 and so f̃ is a loop in R based at 0. But R is simply connected, so
f̃ ∼ e0. By Theorem 274, f ∼ e1, or α = ε1. Then kerφ = {ε1}.

φ is surjective: For anyn ∈ Z, let f̃(t) = nt. Then f̃ is a path from 0 ton and f = pf̃

is a loop in S1. Let α = [f ]. Then φ(α) = f̃(1) = n. ■

Interestingly, the punctured plane has the same fundamental group as the circle.

aaaaaa

Theorem 277
The fundamental group of R2 \ {0} is inϔinite cyclic.

Proof: the point b = (1, 0) belongs to both S1 andX = R2 \ {0}. Let i : S1 → X be
the inclusion map and r : X → S1 be the radial map deϐined by r(z) = z/|z| onX .
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aaaaaa

Both i and r are continuous, and these maps induce the homomorphisms

i∗ : π(S1, b)→ π(X, b) and r∗ : π(X, b)→ π(S1, b).

Note that ri = idS1 and so that r∗i∗ = idπ(S1,b). Then i∗ is injective and r∗ is
surjective. It remains only to show that i∗r∗ = idπ(X,b).

Let α = [f ] ∈ π(X, b) and deϐine F : I × I → X by

F (t, s) = (1− s)f(t) + s
f(t)

|f(t)|
.

Then F is continuous and deϐined everywhere since |f(t)| ̸= 0 in X . Furthermore
F (t, s) ̸= 0, as can be easily veriϐied.

F (0, s) = F (1, s) = b and F (t, 0) = f(t), F (t, 1) =
f(t)

|f(t)|
.

Then if g = f/|f |, F is a path homotopy between f and g. Hence α = [g]. But g is a
loop in S1 based at b, so r(g(t)) = g(t) and

i∗r∗(α) = i∗([r(g)]) = i∗([g]) = α.

Then i∗r∗ = idπ(X,b) and i∗ and r∗ are isomorphisms. Consequently, π(X, b) is iso-
morphic to the additive group Z. ■

This last result tells us that puncturing the plane changes the topological nature of R2.

aaaaaa Corollary 278
R2 \ {0} and R2 are not homeomorphic.

Note that Rn \ {0} and Rn are homeomorphic when n > 2, however.

A subspace A of X is a retract of X if there is a continuous function r : X → A such that
r(a) = a for all a ∈ A. Such a function is called a retraction. If r : X → A is a retraction,
ri = idA where i : A → X is the inclusion mapping. If a ∈ A, this induces r∗i∗ = idπ(A,a), so
that r∗ is surjective and i∗ is injective.

aaaaaa

Examples (RĊęėĆĈęĘ)
1. S1 is a retract of R2 \ {0}with the radial map r : R2 \ {0} → S1.

2. Since π(R2, 0) = {ε0} and π(S1, 1) ∼= Z, there is no surjective homomorphism
r∗ : π(R2, 0) → π(S1, 1). Hence there cannot be a retraction r : R2 → S1, so
S1 is not a retract of R2.
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aaaaaa

3. The discD = {z | |z| ≤ 1} is a retract ofCwith the continuousmap r : C→ D
deϐined by

r(z) =

{
z if |z| ≤ 1,
z/|z| if |z| > 1.

□

Two continuous maps f, g : X → Y are homotopic if ∃ a continuous map F : X × I → Y
such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X . A subsetA ofX is a strong defor-
mation retract if there is a retraction r : X → A and a homotopy F : X × I → X such that
F (x, 0) = x and F (x, 1) = r(x) for all x ∈ X and F (a, t) = a for all a ∈ A, that is if ir ∼F idX .
The importance of strong deformation retracts is explained by the following theorem.

aaaaaa

Theorem 279
If A is a strong deformation retract ofX , then π(X, a) ≃ π(A, a) for a ∈ A.

Proof: suppose r : X → A is a retraction. Then the induced homomorphisms

r∗ : π(X, a)→ π(A, a) and i∗ : π(A, a)→ π(X, a)

are respectively surjective and injective. It will be sufϐicient to show that i∗ is also
surjective. Let f be a loop inX based at a ∈ A. Then rf = g is a loop inA based at a.
Let F be a homotopy between ir and idX . Then, setting F1(t, s) = F (f(t), s) yields
f ∼F1 g, since

F1(t, 0) = F (f(t), 0) = f(t) and F1(t, 1) = F (f(t), 1) = rf(t) = g(t).

Therefore [g] = [f ] and i∗([g]) = [f ]. Hence i∗ is surjective. ■

Suppose that f : X → Y and g : Y → X are continuous functions such that fg ∼ idY and
gf ∼ idX , thenX and Y are said to be homotopy equivalent, denotedX ≡ Y , and f and g
are said to be homotopy inverses. The relation≡ is an equivalence relation. Reϐlexivity and
symmetry are trivially shown. To show that≡ is transitive, letX ≡ Y and Y ≡ Z . Then there
exist continuous functions

f : X → Y, g : Y → Z, h : Y → Z and k : Z → Y

such that fg ∼ idX , gf ∼ idY , hk ∼ idZ and kh ∼ idY . Then
(hf)(gk) ∼ h(fg)k ∼ h idY k ∼ hk ∼ idZ and (gk)(hf) ∼ g(kh)f ∼ g idY f ∼ gk ∼ idX ,

soX ≡ Z through the homotopy inverses hf and gk.
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aaaaaa

Examples (SęėĔēČ DĊċĔėĒĆęĎĔē RĊęėĆĈęĘ)
1. The ϐigure 8 is a strong deformation retract of the doubly-punctured plane. In-

tuitively, this is done by representing the ϐigure 8 as two petals teaching the
axes at the origin. Puncture each petal once. Points interior to the petal slide
radially away from the puncture. Points outside the petals slide radially to-
wards the origin until they reach a petal. Timing it so that each point takes
exactly one unit of time to reach the appropriate petal yields the desired ho-
motopy.

2. If A is a strong deformation retract ofX , then A ≡ X . Indeed, let r : X → A
be a retraction. Then ri = idA and ir ∼ idX .

From this point on, the spaces we consider are all path-connected.

aaaaaa

Theorem 280
Suppose f, g : X → Y are continuous functions, x0 ∈ X and f(x0) = y0, g(x0) = y1.
If f and g are homotopic, then there is a path class α from y0 to y1 such that g∗ = α̂f ∗,
where f ∗ : π(X, x0)→ π(Y, y0), g∗ : π(X, x0)→ π(Y, y1) and α̂ : π(Y, y0)→ π(Y, y1).

Proof: suppose F : X × I → Y is a homotopy between f and g, that is, sup-
pose F (x, 0) = f(x) and F (x, 1) = g(x). Let q : I → Y be such that q(s) = F (x0, s).
As F is continuous, q is a path from y0 to y1 since

q(0) = F (x0, 0) = f(x0) = y0

q(1) = F (x0, 1) = g(x0) = y1.

Let α = [q]. For any loop h inX based at x0, we show that

g∗([h]) = α̂f ∗([h]),

that is [g ◦ h] = α̂([f ◦ h]) = [q][f ◦ h][q], or g ◦ h ∼ (q(f ◦ h))q.

Let e = ey1 . Then g ◦ h ∼ e(g ◦ h) ∼ (e(g ◦ h))e. We next show that

(e(g ◦ h))e ∼G (q(f ◦ h))q

for an appropriate path homotopyG. DeϐineG : I × I → Y by

G(t, s) =


q(1− 4t(1− s)) t ∈ [0, 1/4],
F (h(4t− 1), s) t ∈ [1/4, 1/2],
q(2t− 1 + 2(1− t)s) t ∈ [1/2, 1].
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aaaaaa

At t = 1
4
, q(s) = F (x0, s) and at t = 1

2
, F (x0, s) = q(s) so, by the pasting lemma,G is

continuous on I × I . NowG(0, s) = G(1, s) = q(1) = y1 and

G(t, 0) =


q(1− 4t) t ∈ [0, 1/4],
F (h(4t− 1), 0) t ∈ [1/4, 1/2],
q(2t− 1) t ∈ [1/2, 1],

G(t, 1) =


q(1) t ∈ [0, 1/4],
F (h(4t− 1), 1) t ∈ [1/4, 1/2],
q(1) t ∈ [1/2, 1].

ThenG(t, 0) = (q(f ◦ h))q(t),G(t, 1) = (e(g ◦ h))e(t) and g∗ = α̂f ∗. ■

The existence of homotopy inverses between X and Y imply that the corresponding funda-
mental groups are isomorphic.

aaaaaa

Corollary 281
If f : X → Y, g : Y → X are homotopy inverses, then f ∗ : π(X, x0)→ π(Y, f(x0)) is
an isomorphism.

Proof: let y0 = f(x0) and x1 = g(y0). As f and g are homotopy inverses,
g ◦ f ∼ idX and the preceding theorem yields (g ◦ f)∗ = α̂ id∗

π(X,x0)
= α̂ for some

path class α from x0 to x1. Then g∗f ∗ = α̂. As α̂ is an isomorphism, g∗ is surjective
and f ∗ is injective. It is then sufϐicient to show that g∗ is injective.

Let y1 = f(x1) and denote by f ∗
1 the homomorphism induced by f from

π(X, x1) to π(Y, y1). As before, fg ∼ idY and the preceding theorem yields
(f ◦ g)∗ = β̂ id∗

π(Y,f(x0))
= β̂ for some path class β from y0 to y1. But this means that

g∗ is injective as β̂ is an isomorphism. Hence g∗ is an isomorphism and f ∗ = (g∗)−1α̂
is an isomorphism. ■

Note that X and Y may have isomorphic fundamental groups yet fail to be homeomorphic
and/or homotopy equivalent (compare with Corollary 271).

aaaaaa

Examples

1. ConsiderR in the usual topology and the singleton set {∗}. We have seen that
π(R) = π({∗}) = {ε}, but R and {∗} are not homeomorphic since {∗} is com-
pact but R isn’t.

2. Consider S2 in the usual topology and the singleton set {0} ⊆ R3. We can
show (see next section) that π(S2) = π({0}) = {ε}, but S2 and {0} are not
homotopy equivalent (this is harder to prove). □
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20.4 Special Seifert-Van Kampen Theorem
The special Seifert-VanKampen theoremallowsus to determinewhen the fundamental group
of a space is . The following lemma will be helpful.

aaaaaa

Lemma 282
Suppose f : I → X is a path and 0 = a0 < a1 < . . . < an = 1. Deϔine fi : I → X by
fi(t) = f((1− t)ai−1 + tai) for 1 ≤ i ≤ n. Then

f ∼ f1(f2(· · · fn) · · · ).

Proof: left as an exercise.

The main result is stated and proven below.

aaaaaa

Theorem 283 (SĕĊĈĎĆđ SĊĎċĊėę-VĆē KĆĒĕĊē TčĊĔėĊĒ)
Let U , V , and U ∩ V be non-empty, open, path-connected subsets ofX = U ∪ V . Let
x0 ∈ U ∩ V . If the inclusions i : U → X and j : V → X induce respectively the trivial
homomorphisms

i∗ : π(U, x0)→ π(X, x0),

j∗ : π(V, x0)→ π(X, x0),

then π(X, x0) is trivial.

Proof: suppose f : I → X is a loop based at x0. The sets f−1(U) and f−1(V ) form
an open covering of the compact metric space I , so the covering has a Lebesgue
number. It is then possible to subdivide I into n intervals of the form Ii = [ai−1, ai]
such that f(I) lies entirely in U or entirely in V for 1 ≤ i ≤ n.

Should the image of consecutive intervals Ii and Ii+1 lie in the same set U or
V , amalgamate them to form a single interval. After having done this whenever it
was possible to do so, we get a new collection of intervals with images lying entirely
either in U or in V , and such that the images of their endpoints lie in U ∩ V for
all such endpoints. Rename these intervals Ii = [ai−1, ai] for 1 ≤ i ≤ m. Then
f(Ii) ⊆ U or f(Ii) ⊆ V and f(ai) ∈ U ∩ V for 1 ≤ i ≤ m.

Let fi be the image of Ii under f . Then f is a path in U or in V from f(ai−1)
to f(ai). Let gi−1 be a path inU ∩V from x0 to f(ai−1) and gi be a path inU ∩V from
x0 to f(ai). As U ∩ V is path connected, the paths gi−1 and gi exist. For consistency,
deϐine g0 and gm to be the constant paths x0.

If fi is a path in V , set f ′
i = (gi−1fi)gi. Then f ′

i is a loop in V based at x0.
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aaaaaa

By hypothesis, j∗([fi]) = [ε] inX , so (gi−1fi)gi ∼ ex0 and fi ∼ gi−1gi. Deϐine

hi =

{
gi−1gi when fi lies in V ,
fi when fi lies in U .

Then fi ∼ hi for all i. By the preceding lemma, f ∼ h1(h2(· · ·hm) · · · ), which is a
loop in U . But loops in U are homotopic to the constant loop ex0 inX , so f ∼ ex0 in
X and π(X, x0) is trivial as f was arbitrary. ■

We have an easy corollary.

aaaaaa Corollary 284 If X = U ∪ V , where U and V are open and simply connected and
U ∩ V is path-connected, thenX is simply connected.

Using the special Seifert-VanKampen theorem,we can easily compute the fundamental group
of Sn, for n ≥ 2.

aaaaaa

Example: if n ≥ 2, π(Sn) ≃ {ε}. Indeed, consider Sn as the unit sphere in Rn+1,
and let N and S be the north and south pole of Sn, respectively. Let U = Sn \ {N}
and V = Sn \ {S}.

Then U and V are both homeomorphic to Rn under stereographic projec-
tion, so U and V are simply connected as Rn is simply connected for n ≥ 2. Clearly
Sn = U ∪ V , where U and V are open. But U ∩ V is path connected, as it is
homeomorphic to Sn−1 × (−1, 1), which is path-connected when n ≥ 2. By the
preceding corollary, Sn is simply connected for n ≥ 2. □

AsRn \ {0} and Sn have the same fundamental group (the proof is similar to that of Theorem
277), then π(Rn+1 \ {0}) is trivial for n ≥ 2.

aaaaaa Corollary 285
R2 is not homeomorphic to Rn when n ≥ 3.

20.5 Solved Problems
1. Suppose that f, g : I → X are paths in a spaceX such that f(t) = g(t) for t ∈ [a, 1]. If

the paths fa, ga : I → X deϐined by fa(t) = f(at) and ga(t) = g(at) are path homotopic,
show that f and g are path homotopic.

Proof: ϐirst, note that if a = 0, the result is trivially true. So suppose a ̸= 0. Let
x0 = f(0), xa = f(a) and x1 = f(1). If fa and ga are path homotopic, they both
start at fa(0) = f(0) = x0, and they both end at fa(1) = f(a) = xa. Then, there is a
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continuous functionH1 : I × I → X such that

H1(t, 0) = fa(t) = f(at)

H1(t, 1) = ga(t) = g(at)

H1(0, s) = x0

H1(1, s) = xa.

LetH2 : I × I → X be deϐined byH2(t, s) = f(a+ t(1− a)). ThenH2 is continuous
since f is a path, and

H2(t, 0) = f(a+ t(1− a))
H2(t, 1) = g(a+ t(1− a))
H2(0, s) = xa

H2(1, s) = x1.

This makesH2 into a path homotopy between f and g from xa to x1. Now deϐine the
mapH : I × I → X by

H(t, s) =

{
H1

(
t
a , s
)

for t ∈ [0, a],

H2

(
t−a
1−a , s

)
for t ∈ [a, 1].

Then H is continuous by the pasting lemma, as H1 and H2 are continuous and at
t = 1,H1(1, s) = H2(0, s) = xa. Furthermore

H(t, 0) =

{
H1

(
t
a , 0
)

for t ∈ [0, a],

H2

(
t−a
1−a , 0

)
for t ∈ [a, 1]

=

{
fa(t/a) for t ∈ [0, a],

f(a+ t−a
1−a(1− a)) for t ∈ [a, 1]

=

{
f(t) for t ∈ [0, a],

f(t) for t ∈ [a, 1]

= f(t),

H(t, 1) =

{
H1

(
t
a , 1
)

for t ∈ [0, a],

H2

(
t−a
1−a , 1

)
for t ∈ [a, 1]

=

{
ga(t/a) for t ∈ [0, a],

g(a+ t−a
1−a(1− a)) for t ∈ [a, 1]

=

{
g(t) for t ∈ [0, a],

g(t) for t ∈ [a, 1]

= g(t),

H(0, s) = H1(0, s) = x0,

H(1, s) = H2(1, s) = x1.

HenceH is a path homotopy from f to g between x0 and x1. ■
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2. Let x0 and x1 be two given points of the path-connected spaceX . Show that π1(X, x0)
is abelian if and only if for every pair α and β of paths from x0 to x1, the induced iso-
morphisms α̂ and β̂ are equal.

Proof: supposeπ1(X,x0) is abelian, and letα andβ be twopaths fromx0 tox1. Then
βα is a loop at x0, so [βα] ∈ π1(X,x0) and

[βα][f ] = [f ][βα]

for all [f ] ∈ π1(X,x0). Then

[f ] = [αβ][f ][βα]

= [α]β̂([f ])[α]

= α̂(β̂([f ])).

Hence α̂([f ]) = β̂([f ]) for all [f ] ∈ π1(X,x0), so α̂ = β̂.

Conversely, suppose the induced isomorphisms of any two paths in X from x0 to
x1 are equal. Let α be such a path, and let f be a loop at x0. Then fα is a path from
x0 to x1 and α̂ = f̂α. Let [g] ∈ π1(X,x0). Then

[α][g][α] = α̂([g]) = f̂α([g]) = [fα][g][fα] = [α][f ][g][f ][α],

thus [g] = [f ][g][f ] for all loops f and g at x0, and π1(X,x0) is abelian. ■

3. Suppose that X̃ is a two-sheeted covering space ofX , that is for each x ∈ X , there are
two values x̃1 and x̃2 with p−1(x) = {x̃1, x̃2}. Prove that the map ϕ : X̃ → X̃ , which
interchanges the values x̃1 and x̃2 is a homeomorphism.

Proof: the map ϕ is clearly a bijection and ϕ2 = id, so ϕ is its own inverse. Further-
more, ϕ(z) ̸= z for all z ∈ X̃ . To show ϕ is a homeomorphism, it is then sufϐicient to
show that ϕ is a continuous map. To do so, we ϐind a collection {Zα} of open sets in
X̃ such that∪α∈A Zα = X̃ and such that ϕ|Zα: Zα → X̃ is continuous for all α ∈ A.
Then ϕwill be a continuous map.

First note that

X̃
p - X

X̃

ϕ

6

p

-

is a commutative diagram, since for every x ∈ X , there exists x̃ ∈ X̃ such that
p−1(x) = {x̃, ϕ(x̃)}. Thus pϕ = p. As (X̃, p) is a two-sheeted covering of X there
exists, for every x ∈ X , a neighbourhood Vx of x inX and two disjoint open sets Ux

andWx in X̃ such that p−1(Vx) = Ux ∪Wx and such that the mappings

p|Ux: Ux → Vx and p|Wx:Wx → Vx
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are homeomorphisms.¹ Then Ux is homeomorphic to Wx. We show that ϕ(Ux) =
Wx, and so that ϕ(Ux) is homeomorphic to Ux. Suppose however that ϕ(Ux) ̸= Wx,
that is, suppose there is y ∈ Ux such that ϕ(y) ̸∈Wx. Then

p(y) = p(ϕ(y)) ∈ Vx,

and so ϕ(y) ∈ p−1(Vx) ∪ Ux, since ϕ(x) ̸=Wx. But this would mean that p|Ux: Ux →
Vx is not injective as y ̸= ϕ(y) and p(y) = p(ϕ(y)). Thenϕ(Ux) ⊆Wx, and soϕ(Ux) =
Wx since Ux andWx have the same cardinality and since ϕ is a bijection. Thus ϕ|Ux:
Ux →Wx is a homeomorphism andϕ|Ux: Ux → X̃ is continuous. Similarly, ϕ(Wx) =
Ux and ϕ|Wx:Wx → X̃ is continuous. But

X̃ = p−1(X) = p−1

(∪
x∈X

Vx

)
=
∪
x∈X

p−1(Vx) =
∪
x∈X

(Ux ∪Wx),

whereUx andWx are open in X̃ . By the argument in the ϐirst paragraph, ϕ is a home-
omorphism. ■

4. If (X̃, p) and (Ỹ , q) are covering spaces ofX andY respectively, show that (X̃×Ỹ , (p, q))
is a covering space ofX × Y .

Proof: let h = (p, q). We need to show that h is a continuous surjective map and
that for every (x, y) ∈ X × Y , there exists a neighbourhood V of (x, y) such that
h−1(V ) is a disjoint union of open sets in X̃ × Ỹ and that each of these open sets is
homeomorphic to V via h.
h is continuous Let U1 × U2 be a basic neighbourhood ofX × Y . Then

h−1(U1 × U2) = {(x̃, ỹ) ∈ X̃ × Ỹ : (p(x̃), q(ỹ)) ∈ U1 × U2}
= p−1(U1)× q−1(U2).

But p and q are continuous, so p−1(U1) × q−1(U2) is a basic neighbourhood of
X̃ × Ỹ , so h is continuous.

h is surjective Let (x, y) ∈ X × Y . As p and q are surjective, there exist x̃ ∈ X̃ and
ỹ ∈ Ỹ such that p(x̃) = x and q(ỹ) = y. Then we have h(x̃, ỹ) = (x, y) and h is
surjective.

h is a covering map If (x, y) ∈ X × Y , as p and q are covering maps, there exist
neighbourhoods Vx of x inX and Vy of y in Y that are evenly covered by p and
q respectively. That is p−1(Vx) is a disjoint union of open sets Ṽx in X̃ , each
homeomorphic to Vx via p, and q−1(Vy) is a disjoint union of open sets Ṽy in Ỹ ,
each homeomorphic to Vy via q. Set V = Vx × Vy . Then (x, y) ∈ V and

h−1(V ) = p−1(Vx)× q−1(Vy) =
(∪

Ṽx

)
×
(∪

Ṽy

)
=
∪

(Ṽx × Ṽy),

¹Strictly speaking, p−1(V ) should be the disjoint union of an arbitrary collection of homeomorphic open
sets in X̃ . But there cannot be more than two of them, since this would violate the condition that (X̃, p) be a
two-sheet covering ofX . Similarly, there cannot be less than two of them, since p has to be a homeomorphism
when restricted to p−1(V ).
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that is h−1(V ) is a disjoint union of open sets Ṽx × Ṽy . But

h(Ṽx × Ṽy) = p(Ṽx)× q(Ṽy) ≃ Vx × Vy,

so Ṽx × Ṽy is homeomorphic to Vx × Vy via h.
Then (X̃ × Ỹ , h) is a covering space ofX × Y . ■

5. a) For X as in the previous problem, if (X, p′) is an n-sheeted covering space of X1,
show that (X̃, p′p) is a covering space ofX1.

b) If X is either i. Hausdorff or ii. completely regular, show that X̃ has the same
property.

Proof:
a) That p′p is a continuous surjective mapping is clear, as it is the composition of

two such mappings. It remains only to show that it is a covering map ofX .

Let x ∈ X1. We show that we can ϐind an open neighbourhood V of x in X1

evenly covered by p′. We then show that the disjoint open sets inX making up
(p′)−1(V ), each of which is homeomorphic to V via p′, are themselves evenly
covered by p. Then there is a disjoint union of open sets in X̃ making up

p−1
(
(p′)−1(V )

)
= (p′p)−1(V ),

each of which is homeomorphic to V via p′p. It is going to be messy, so let’s get
down to it methodically.

Let x ∈ X1. Then (p′)−1(x) = {y1, . . . , yn} in X , as (X, p′) is an n-sheeted
covering ofX1. First, the dramatis personæ.

Vx is a neighbourhood of x inX1 evenly covered by p′;
(p′)−1(Vx) =

⊔n
j=1Wj , where ⊔ denotes a disjoint union,Wj is open inX

and homeomorphic to Vx via p′ and yj ∈Wj for all 1 ≤ j ≤ n.
For 1 ≤ i ≤ n, Ui is a neighbourhood of yi inX evenly covered by p;
For 1 ≤ i ≤ n, p−1(Ui) =

⊔
α Z(i)α, where Z(i)α is open in X̃ and homeo-

morphic to Ui via p for all α;
V = (

∩n
i=1 p

′(Ui) ∩ Vx);
For 1 ≤ j ≤ n,Kj =

(
p′|Wj

)−1
(V ) ⊆Wj and yj ∈ Kj ;

For 1 ≤ j ≤ n,Mj = Kj ∩ Uj and yj ∈Mj ;
For 1 ≤ j ≤ n and for α,N(j)α =

(
p|Z(j)α

)−1
(Mj) ⊆ Z(j)α.

Since p′ is a covering map, it is an open mapping. Then V is an open subset of
X contained in Vx, since it is a ϐinite intersection of open sets inX . As

p′|Wj:Wj → Vx

is a homeomorphism,Kj is homeomorphic to V via p′ for 1 ≤ j ≤ n. Note that
Kj is open for 1 ≤ j ≤ n since V is open and that theKj are disjoint since the
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Wj are disjoint. ThenMj is open,Mj ⊆ Uj for 1 ≤ j ≤ n. Note further that the
Mj are disjoint since theKj are disjoint. As

p|Z(j)α: Z(j)α → Uj

is a homeomorphism,Mj is homeomorphic toN(j)α via p for α and 1 ≤ j ≤ n.
Note thatN(j)α is open for 1 ≤ j ≤ n and α sinceMj is open for 1 ≤ j ≤ n and
that theN(j)α are disjoint since the Z(j)α are disjoint.

Then N(j)α is homeomorphic to, say, the open subset p′(M1) ⊆ Vx via p′p for
1 ≤ j ≤ n. But p′(M1) is a neighbourhood of x inX1 so that p′p evenly covers
p′(M1) at x. Hence (X̃, p′p) is a covering space ofX1.

b) i. Let x̃ ̸= ỹ ∈ X̃ and set x = p(x̃), y = p(ỹ). Suppose Vx and Vy are neigh-
bourhoods of x and y respectively, who are evenly covered by p. LetWx and
Wy be the (open) slices of p−1(Vx) and p−1(Vy) containing x̃ and ỹ respec-
tively.
A. If x = y,Wx andWy meet p−1(x) = p−1(y) in exactly one point respec-

tively, namely x̃ and ỹ. Hence ỹ ̸∈Wx and x̃ ̸∈Wy .
B. If x ̸= y, let Ux and Uy be the Hausdorff neighbourhoods of x and y in

X . Then Ux ∩ Vx is a neighbourhood of x in X disjoint from the neigh-
bourhood Uy ∩ Vy of y inX . Furthermore,Ox = (p|Wx)

−1(Ux ∩ Vx) and
Oy = (p|Wy)

−1(Uy ∩ Vy) are open in X̃ , as p is a covering map. Then
x̃ ∈ Ox, ỹ ∈ Oy andOx ∩Oy = ∅ as

Ux ∩ Vx ∩ Uy ∩ Vy = ∅.

In both cases, X̃ is Hausdorff.
ii. Suppose X̃ is non-empty and completely regular. If W̃ is a neighbourhood

of x̃ ∈ X̃ , letU be a neighbourhood of p(x̃) evenly covered by p such that at
least one of the slices, sayM , of p−1(U) lies in W̃ .

As X is completely regular, there is a neighbourhood V of p(x̃) such that
V ⊆ U . Take Z = p−1(V ) ∩M . Then Z is homeomorphic to the slice of
p−1(V ) inM . By complete regularity of X , there is a continuous function
f : X → [0, 1] such that f(p(x̃)) = 1 and f(X − V ) = {0}.

Deϐine g1 : Z → [0, 1] by g1 = fp and g2 : X̃−Z → [0, 1] to be the constant
zero-function. As p(X̃ − Z) ⊆ X − V , g1 and g2 are both constantly zero
on Z ∩ X̃ − Z . Then, by the pasting lemma, g1 and g2 deϐine a continuous
function g from Z ∪ (X̃ − Z) = X̃ to [0, 1].

By construction, g(x̃) = f(p(x̃)) = 1 and g(X̃ − W̃ ) = {0} since y ̸∈ W̃
implies y ̸∈ Z . Hence X̃ is completely regular. ■

P. Boily (uOttawa) 477



20.6. EXERCISES

20.6 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. Let h : I → I be a continuous such that h(0) = 0 and h(1) = 1. For any path f : I → X ,
prove that f and fh are path homotopic.

3. For a product spaceX =
∏
Xα, let f : I → X be a path, and deϐine fα = παf for all α.

Prove that

a) two paths f and g inX are path homotopic if and only if fα ∼ gα for every α;
b) if f(1) = g(0) for paths f, g : I → X , and h = fg, then hα = fαgα for every α.

4. Prove that the fundamental group of X is isomorphic to the direct product of the fun-
damental groups π(Xα, xα).

5. Let T = S1 × S1 denote the torus. For z0 ∈ S1, show that S1 × {z0} is a retract of T but
not a strong deformation retract.

6. Show that φ : X → Y induces a homomorphism of path classes φ∗, as in the discussion
on p. 461.

7. Show that R3 and R3 \ {0} are homeomorphic.

8. Prove Lemma 282.

9. Show that Rn \ {0} and Sn have the same fundamental group.
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Chapter 21

Borel-Lebesgue Integration

In this chapter, we present an extension of the theory of integration that
overcomes some of the issues associated with Riemann integration, and
show how to integrate multi-variate functions in this new framework.

One of the problems associatedwith Riemann integration (see Chapters 4 and 5) is that some
functions that should be integrable in any reasonable theory of integration fail to be so, for a
variety of reasons.

aaaaaa

Examples

1. Consider the Dirichlet function χQ : R→ R deϐined by

χQ(x) =

{
0 x ∈ R \Q
1 x ∈ Q

We have seen in Chapter 4 that this function is not Riemann-integrable over
any interval [a, b], but…it shouldbe, right? R\Q is somuch “bigger” thanQ that
the ϐirst branch should dominate and give us an integral of 0. Unfortunately, it
doesn’t.

2. Consider the function f : [0, 1]→ R deϐined by

f(x) =

{
1√
x

x ∈ (0, 1]

1 x = 0

It is not Riemann-integrable on [0, 1] as it is not bounded on [0, 1], but it is
Riemann-integrable of [a, 1] for all 1 ≥ a > 0 since it is continuous on [a, 1] for
all 1 ≥ a > 0.
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Furthermore ∫ 1

a

f dx =
[
2
√
x
]1
a
= 2(1−

√
a).

As a→ 0+, we see that ∫ 1

a

f dx→ 2(1−
√
0) = 2,

and we would at the very least consider an extension of Riemann integration
for which

∫ 1

0
f dx = 2.

3. The function g : [0,∞)→ R deϐined by g(x) = e−x is not Riemann-integrable
on [0,∞) since the domain of integration cannot even be partitioned. But it is
clearly Riemann-integrable on [0, n], n > 0, since it is continuous on [0, n]; in
fact, ∫ n

0

e−x dx = [−e−x]n0 = 1− e−n.

Since
lim
n→∞

∫ n

0

e−x dx = lim
n→∞

(1− e−n) = 1− 0 = 1;

any extension of Riemann integration should at least give us
∫∞
0
g = 1. □

In this chapter, we will introduce an extension of the Riemann integral in which all of these
examples will work out as we think they should. The Lebesgue-Borel approach to integra-
tion views the problem fromadifferent example:¹ fundamentally, instead of building vertical
boxes under the graph of f , we stack horizontal boxes under it. This conceptual shift has far-
ranging consequences.²

We will also extend our deϐinition of the integral to multivariate domains (which is to say,
the functions we consider will be functions of Rn to R). To help illustrate the concepts, we
will often work with functions f : A ⊆ R2 → R+, where f is bounded (as a function), as is
A (as a set). By analogy to the 1-dimensional case, we will want to deϐine

I =

∫∫
A

f(x, y) dx dy

so that
I = Vol

(
{(x, y, t) | (x, y) ∈ A, 0 ≤ t ≤ f(x, y)}

)
.

¹There are other approaches: improper Riemann integration and generalized Riemann integration,
say, but we will not be touching on those.

²It does not resolve all difϐiculties, however: there are differentiable functions F : [a, b] → R for which F ′

is not Lebesgue-integrable and some important improper integrals do not exist, for instance.
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21.1 Borel Sets and Borel Functions
Generally speaking, theBorel subsets ofRn are the σ−algebra of subsets for whichwe know
how to compute the length, and/or the surface area, and/or the volume, and so on.³

Formally, a σ−algebraS of Rn is a collection of subsets of Rn such that

1. A1, A2, . . . , An, . . . ∈ S =⇒
∪

n≥1An ∈ S, and

2. A ∈ S =⇒ Ac = Rn\A ∈ S.

Consequently (see exercises),

1. A1, A2, . . . , An, . . . ∈ S =⇒
∩

n≥1An ∈ S;

2. A,B ∈ S =⇒ A ∩Bc ∈ S, and

3. ∅,Rn ∈ S.

aaaaaa

Examples

1. The power set ℘(Rn) is the largest σ−algebra of Rn, since the union of any
collection subsets of Rn is itself a subset of Rn, and since the complement of
any subset of Rn is also a subset of Rn.

2. The standard topology τ = {U ⊆ Rn | U ⊆O Rn} is not a σ−algebra of Rn

since the complement of the open ball of radius 1 centered at the origin, say,
is not open in Rn (see Part IV).

3. S0(Rn) = {Rn,∅} is the smallest σ−algebra of Rn. □

Note thatS of Rn is a subset of ℘(Rn).

aaaaaa

Proposition 286
If (Si)i≥1 is a collection of σ−algebras of Rn thenS =

∩
i≥1Si is a σ−algebra of Rn.

Proof:

1. Suppose A1, . . . , An . . . ∈ S.Then, A1, . . . , An, . . . ∈ Si ∀i. But, Si is a σ−
algebra for all i so that∪n≥1An ∈ Si ∀i. Then,

∪
n≥1An ∈

∩
i≥1Si = S.

2. Suppose A ∈ S then we have that A ∈ Si ∀ i. But Si is a σ− algebra so that
Ac ∈ Si ∀ i =⇒ Ac ∈

∩
i≥1Si = S. ■

³We only present a restricted version of the Borel-Lebesgue theory of integration; the full version is built on
measurable subsets of Rn, where themeasure generalizes the notions of of length, surface area, volume, etc.
to “not-as-nice” geometric subsets of Rn (a feature of the theory is that not every subset of Rn is measurable).
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The standard topology is not a σ−algebra of Rn, but since τ ∈ ℘(Rn), there is at least one
σ-algebra containing the open sets of Rn. The Borel σ−algebra of Rn is the intersection of
all σ−algebras containing the open sets of Rn, we denote it by:

B = B(Rn) =
∩

τ⊆S∈℘(Rn)

S.

An element of B is called a Borel set of Rn.

Just about every subset of Rn that we encounter in practice is a Borel set:

every open subset of Rn is a Borel set of Rn;
every closed subset of Rn is a Borel set of Rn;
any set built via unions, intersections, and complements with open sets and/or closed
sets is a Borel set of Rn.

aaaaaa

Theorem 287
Let B = B(R2). There exists a unique function Area : B → [0,∞] such that:

1. Area(A) ≥ 0, ∀A ∈ B

2. if A1, . . . , An, . . . ∈ B are pairwise disjoint then:

Area

(∪
n≥1

An

)
=
∑
n≥1

Area(An)

3. Area([a, a′]× [b, b′]) = (a′ − a)(b′ − b).

The area functionwhose existence is guaranteedby theorem287 corresponds to our intuition
of area inR2, but such a function cannot be deϐined on the entirety of ℘(R2) (see the Banach-
Tarski paradox).⁴

aaaaaa

Theorem 288
Let A,B ∈ B(R2) such that A ⊆ B, then Area(A) ≤ Area(B).

Proof: by deϐinition B = (A ∩ B) ∪ (Ac ∩ B) = A ∪ (B\Ac) where B\Ac ∈ B(Rn).
Hence, we have

Area(B) = Area(A) + Area(B\Ac) ≥ Area(A),

which completes the proof. ■

We can extend Theorem 287.2 to not necessarily pairwise disjoint Borel sets.

⁴Proving the existence of the function and of a set whose area cannot be measured is rather difϐicult and is
properly tackled in advanced measure theory courses.

484 Analysis and Topology Course Notes



CHAPTER 21. BOREL-LEBESGUE INTEGRATION

aaaaaa

Theorem 289
Let A1, A2, . . . , An, . . . ∈ B(R2). Then Area(

∪
n≥1An) ≤

∑
n≥1 Area(An).

Proof: construct the sequenceA′
n ∈ B(R2) as follows:

1. A′
1 = A1;

2. A′
2 = A2 ∩ Ac

1;

3. A′
3 = A3 ∩ (A1 ∪ A2)

c, etc.

The process is illustrated below onA1, A2, A3.

ThenA′
1, . . . , A

′
n, . . . ∈ B(R2) are pairwise disjoint and

A1 ∪ A2 ∪ . . . ∪ An = A′
1 ∪ A′

2 ∪ . . . ∪ A′
n

for all n ≥ 1. Since A′
n ⊆ An ∀n ≥ 1. Then

Area
(∪

n≥1

An

)
= Area

(∪
n≥1

A′
n

)
=
∑
n≥1

Area(A′
n) ≤

∑
n≥1

Area(An),

which completes the proof. ■

We say thatB ⊆ R2 has a (2D)measure 0 if ∀ε > 0, there is a cover

{R1, R2, . . . , Rn, . . .}

ofB by rectanglesRn = [an, a
′
n]× [bn, b

′
n]with an < a′n and bn < b′n for all n ≥ 1, such that∑

n≥1

Area(Rn) < ε.
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aaaaaa

Examples

1. Show thatB = R× {b} has a 2Dmeasure 0 for any choice of b ∈ R.

Proof: let ε > 0 and set

Rn = [−n, n]×
[
b− ε

2n2n+2
, b+

ε

2n2n+2

]
.

Then Area(Rn) = 2n · ε
n2n+2 = ε

2n+1 for all n ∈ N, andB ⊆ ∪n≥1Rn, so that

0 ≤ Area(B) ≤
∑
n≥1

(Rn) = ε
∑
n≥1

1

2n+1
< ε.

As ε > 0 is arbitrary, Area(B) = 0. ■

2. S1 = {(x, y) | x2 + y2 = 1} has 2Dmeasure 0.

3. Show that Area((a, a′)× (b, b′)) = Area([a, a′]× [b, b′]).

Proof: write

[a, a′]×[b, b′] = (a, a′)×(b, b′)⊔{a}×[b, b′]⊔{a′}×[b, b′]⊔[a, a′]×{b}⊔[a, a′]×{b′}.

Each of the components [∗, ∗] × {∗} are subsets of R × {∗}, so that they have
2D area 0 (and similarly for the components {∗} × [∗, ∗]). Thus

Area([a, a′]×[b, b′]) ≤ Area((a, a′)×(b, b′))+0+0+0+0 = Area((a, a′)×(b, b′)).

But Area((a, a′)× (b, b′)) ≤ Area([a, a′]× [b, b′]) since (a, a′)× (b, b′) ⊆ [a, a′]×
[b, b′], so Area((a, a′)× (b, b′)) = Area([a, a′]× [b, b′]). ■

4. Show that every ϐinite subsetB ⊆ R2 has 2Dmeasure 0.

Proof: letB = {(x1, y1), . . . (xn, yn)} and ε > 0. Pick:

a closed rectangleR1 with Area(R1) =
ε
2
and (x1, y1) ∈ R1;

a closed rectangleR2 with Area(R2) =
ε
22

and (x2, y2) ∈ R2;
. . .

a closed rectangleRn with Area(Rn) =
ε
2n

and (xn, yn) ∈ Rn;
form > n, any closed rectangle with Area(Rm) =

ε
2m+1 will do.

ThenB ⊆ ∪m≥1Rm and∑
m≥1

Area(Rm) =
∑
m≥1

ε

2m+1
< ε,

which completes the proof. ■
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5. Every countable subset of R2 has 2Dmeasure 0.

6. Let φ : [0, 1]→ R2 be continuous and such that there existsM > 0with

∥φ(s)− φ(t)∥∞ ≤M |s− t| ∀s, t ∈ [0, 1].

Then φ([0, 1]) has 2Dmeasure 0.

Proof: recall that ∥(x1, x2)∥∞ = max{|x1|, |x2|}. For allN ≥ 1, let

0 = t0 < t1 < · · · < tN = 1,

with ti = i
N
. Let si, s′i ∈ [ti−1, ti]. By hypothesis,

∥φ(si)− φ(s′i)∥∞ ≤M |si − s′i| ≤M |ti−1 − ti| ≤M

∣∣∣∣i− 1

N
− i

N

∣∣∣∣ ≤ M

N
.

Thus, there exists a square Ii ⊆ R2 whose sides have length 2M
N

such that
φ([ti−1, ti]) ⊆ Ii. By construction, for all 1 ≤ i ≤ N we have

Area(Ii) =
4M2

N2
and

N∑
i=1

Area(Ii) =
4M2

N
.

Let ε > 0 and select N > 4M2

ε
. Going through the above procedure yields a

sequence of rectangles Ri = Ii for 1 ≤ i ≤ N ; for n > N , set Rn = {∗} ⊆ R2,
a singleton square of area 0. Then

φ([0, 1]) ⊆
∪
i=1

Ri =⇒
∑
i≥1

Area(Ri) =
4M2

N
< ε,

which completes the proof. ■

In the rest of this section, we introduce the class of functions f : R2 → R for which we may
expect that ∫∫

R2

f(x, y) dx dy ∈ R

exists.⁵ As we see below, we cannot untangle the function rule from its domain. IfA ∈ B(R2),
let the characteristic function χA : R2 → R be deϐined by

χA(x, y) =

{
0 if (x, y) ̸∈ A
1 if (x, y) ∈ A

⁵The set R = R ∪ {∞} is the one-point compactiϐication of R (see Section 17.4).
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Characteristic functions are the building blocks of Borel-Lebesgue integrable functions;
their integral is easy to obtain. Let k ∈ R; if f : R2 → R is deϐined by f(x, y) = k · χA(x, y),
then the Borel-Lebesgue integral of f over R2 is∫∫

R2

f dx dy = k · Area(A) ∈ R.

A function f : R2 → R is simple if ∃A1, . . . , An ∈ B(R2) and a1, . . . , an ∈ R such that
R2 = A1 ⊔ A2 ⊔ · · · ⊔ An and f |Ai

≡ ai;

in that case, f =
∑n

i=1 aiχAi
.

aaaaaa

Examples (SĎĒĕđĊ FĚēĈęĎĔēĘ)
1. If f(x, y) = k for all (x, y) ∈ R2, then f is a simple function.

2. If f =
∑n

i=1 aiχAi
, then |f | =∑n

i=1 |ai|χAi
is a simple function.

3. If f =
∑n

i=1 aiχAi
and g =∑m

j=1 bjχBj
are simple functions, then

a) R =
⊔n

i=1

⊔m
j=1Ai ∩Bj ;

b) f + g =
∑n

i=1

∑m
j=1(ai + bj)χAi∩Bj

is a simple function, and
c) fg =∑n

i=1

∑m
j=1 ai bj χAi∩Bj

is a simple function. □

A Borel function is a function f : R2 → R for which
Ef

d = {(x, y) | f(x, y) ≤ d} ∈ B(R2), ∀d ∈ R.
We illustrate the concept below, for a function over R.

Since every subset of R2 we encounter in practice is a Borel set, every function f : R2 → R
we encounter in practice is a Borel function.⁶

⁶It is in fact rather difϐicult to construct a non-Borel function, although they do exist.
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Proposition 289
Let f, g : R2 → R be Borel functions. Then, |f |, f + g, fg are also Borel functions.

Proof: we prove the result only for |f |; the proof for the other two functions is left
as an exercise. Write z = (x, y) ∈ R2. Then, we want to show

E
|f |
d = {z ∈ R2 | |f(z)| ≤ d} ∈ B(R2 ∀d ∈ R

1. if d < 0, then E|f |
d = ∅ ∈ B(R2);

2. if d ≥ 0, then

E
|f |
d = {z | −d ≤ f(z) ≤ d} = {z | −d ≤ f(z)} ∩ {z | f(z) ≤ d}

= {z | −d ≤ f(z)} ∩ Ef
d = {z | f(z) < −d}c ∩ Ef

d

=

(∪
n≥1

Ef

−d− 1
n

)c

∩ Ef
d .

But f is a Borel function, soEf
d , E

f

−d− 1
n

∈ B(R2) for all n ≥ 1. This implies that∪
n≥1

Ef

−d− 1
n

∈ B(R2),

as B(R2) is a σ−algebra, and so that

R2 \

(∪
n≥1

Ef

−d− 1
n

)
∈ B(R2),

for the same reason; henceE|f |
d ∈ B(R2). ■

We can approximate positive-valued Borel functions with simple functions.

aaaaaa

Theorem 290
Let f : R2 → [0,∞] be a Borel function; then there is a sequence (fn) of simple func-
tions such that:

1. ∀z ∈ R2, fn(z)→ f(z), and

2. 0 ≤ fn ≤ f , for all n ≥ 1.
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Proof: we provide a proof for f : R → [0,∞]; the proof for functions on Rk is
identical, but the simpler case is easier to illustrate.

We build the sequence (fn) as follows.

1. For f1, write

R =

{
x

∣∣∣∣ 0 ≤ f(x) <
1

21

}
︸ ︷︷ ︸

A1
1

⊔
{
x

∣∣∣∣ 12 ≤ f(x) < 1

}
︸ ︷︷ ︸

A1
2

⊔{x | f(x) ≥ 1}︸ ︷︷ ︸
A1

,

and set
f1 = 0 · χA1

1
+

1

2
χA1

2
+ 1 · χA1 , A1

1, A
1
2, A

1 ∈ B(R2).

2. For f2,write

R =


8⊔

i=1

{
x

∣∣∣∣ i− 1

22
≤ f(x) <

i

22

}
︸ ︷︷ ︸

A2
i

 ⊔ {x | f(x) ≥ 2}︸ ︷︷ ︸
A2

=

(
8⊔

i=1

A2
i

)
∪ A2,

and set
f2 =

8∑
i=1

i− 1

22
χA2

i
+ 2χA2 .

· · ·

n. For fn, writeAn = {x | f(x) ≥ n} and

An
i =

{
x

∣∣∣∣ i− 1

2n
≤ f(x) <

i

2n

}
, for 1 ≤ i ≤ n · 2n.

We then have R =
(⊔n·2n

i=1 A
n
i

)
⊔ An. Set fn =

∑n·2n
i=1

i−1
2n
χAn

i
+ n · χAn .
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By construction, each fn is simple and

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · · ≤ f(x) ∀x ∈ R.

1. If f(x) =∞, then x ∈ An for all n ≥ 1,whence fn(x) = n→∞ = f(x)

2. If f(x) <∞, then for n > f(x), there exists 1 ≤ i ≤ u ≤ n · 2n such that

i− 1

2n
≤ f(x) <

i

2n
.

In that case x ∈ An
i and

|f(x)− fn(x)| =
∣∣∣∣f(x)− i− 1

2n

∣∣∣∣ < 1

2n
→ 0,

which completes the proof. ■

21.2 Integral of Simple Functions
Let f =

∑k
i=1 αiχAi

be a simple function R2 → [0,∞], that is, αi ∈ [0,∞] for 1 ≤ i ≤ k and
R2 = A1 ⊔ · · · ⊔ Ak. Since simple functions are ϐinite linear combinations of characteristic
functions, we deϐine the integral of a simple function as∫∫

R2

f(x, y) dx dy =
k∑

i=1

αi · Area(Ai) ∈ [0,∞]

(in the Borel-Lebesgue theory of integration, we have 0 ·(+∞) = 0, by convention). But there
might be multiple ways to write a simple function as a sum of characteristic functions: if

f =
k∑

i=1

αiχAi
=

m∑
j=1

βjχBj
,

is the integral the same in both cases? For each 1 ≤ i ≤ k, let Ji = {j | βj = αi}. Then
m∑
j=1

βj · Area(Bj) =
k∑

i=1

∑
j∈Ji

βj · Area(Bj) =
k∑

i=1

αi

∑
j∈Ji

Area(Bj)

=
k∑

i=1

αi · Area
(⊔

j∈Ji

Bj

)
=

k∑
i=1

αi · Area(Ai).

In what follows, we denote the set of simple functions onRn by ζ(n) and the set of positive
simple functions on Rn by ζ(n)+ .
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Lemma 291
Let f, g ∈ ζ(2)+ , α ≥ 0. Then:

1.
∫∫
R2 αf dx dy = α

∫∫
R2 f dx dy;

2.
∫∫
R2(f + g) dx dy =

∫∫
R2 f dx dy +

∫∫
R2 g dx dy, and

3. if f ≤ g on R2, then
∫∫
R2 f dx dy ≤

∫∫
R2 g dx dy.

Proof: note that the results hold over general multi-dimensional spaces, but we re-
strict the demonstration to R2.

1. The ϐirst statement is clear; its proof is left as an exercise.

2. If f =
∑n

i=1 αiχAi
and g =∑m

j=1 βjχBj
then f + g =

∑
i,j

(αi + βj)χAi∩Bj
and

∫∫
R2

(f + g) dx dy =
∑
i,j

(αi + βj) · Area(Ai ∩Bj)

=
∑
i,j

αi · Area(Ai ∩Bj) +
∑
i,j

βj · Area(Ai ∩Bj)

=
n∑

i=1

αi

m∑
j=1

Area(Ai ∩Bj) +
m∑
j=1

βj

n∑
i=1

Area(Ai ∩Bj)

=
n∑

i=1

αi · Area
[
Ai ∩

(
m⊔
j=1

Bj

)]
+

m∑
j=1

βj · Area
[
Bj ∩

(
n⊔

i=1

Ai

)]

=
n∑

i=1

αi · Area(Ai) +
m∑
j=1

βj · Area(Bj) =

∫∫
R2

f dx dy +
∫∫

R2

g dx dy

3. If f ≤ g on R2, then g − f ∈ ζ(2)+ and∫∫
R2

=

∫∫
R2

[f + (g − f)] dx dy =

∫∫
R2

f dx dy +
∫∫

R2

(g − f) dx dy︸ ︷︷ ︸
≥ 0

≥
∫∫

R2

f dx dy,

since g − f ≥ 0. ■

The ϐirst two properties of Lemma 291 indicate that the integral of a simple function behaves
as a linear operator on the set of positive simple functions on Rn.⁷

⁷We cannot say “over the vector space of positive simple functions” since ζ(n)+ is not a vector space overR...
but ζ(n) is, however.
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Furthermore, if f = χA, A ∈ B(R2), then
∫∫

f dx dy = Area(A).⁸

As mentioned in the proof of Lemma 291, we can generalize the notion of the integral of pos-
itive simple functions directly to higher dimensions. For instance, if f : R3 → R ∈ ζ(3)+ , then∫∫∫

R3

f(x, y, z) dx dy dz =
∫∫∫

R3

ℓ∑
k=1

γkχAk
dx dy dz =

ℓ∑
k=1

γk · Vol(Ak),

and so on with n ≥ 3: ∫
· · ·
∫
f(x1, . . . , xn) dx1 . . . dxn

if f : Rn → R is in ζ(n)+ .

21.3 Integral of Positive Borel Functions
Of course, the overwhelming majority of functions on Rn are not simple positive functions;
but large classes of non-negative functions can be approximated by simple functions (as we
have seen Theorem 290). If f is a positive Borel function ofR2 to [0,∞], its Borel-Lebesgue
integral ∫∫

f(x, y) dx dy = sup
s∈ζ(2)+

{∫∫
s dx dy

∣∣∣∣ s ≤ f

}
;

this deϐinition can be extended to higher-dimensional domains in the obvious way. We illus-
trate how it applies in practice with a deceptively complicated example.

aaaaaa

Example: using the deϐinition, ϐind
∫∫

f dx dy, where

f(x, y) =

{
x+ y if (x, y) ∈ [0, 1]2

0 otherwise

Solution: the function is shown below.

⁸When the context is clear, we may omit the domain of integration.
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We start by building the sequence of positive simple functions

s1 ≤ . . . ≤ sn ≤ . . . ≤ f

from Theorem 290.

For n = 1, we have:

A1
1 = {(x, y) | 0 ≤ f(x, y) < 1

2
} = ({(x, y) | 0 ≤ x+ y < 1

2
} ∩ [0, 1]2) ∪ (R2 \ [0, 1]2),

A1
2 = {(x, y) | 12 ≤ f(x, y) < 1} = {(x, y) | 1

2
≤ x+ y < 1} ∩ [0, 1]2, and

A1 = {(x, y) | f(x, y) ≥ 1} = {(x, y) | x+ y ≥ 1} ∩ [0, 1]2 (see below).

The ϐirst simple approximation is thus

s1 = 0 · χA1 +
1

2
· χA1

2
+ 1 · χA1 ,

whose graph is shown below:
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We then have∫∫
s1(x, y) dx dy = 0 · Area(A1

1) +
1

2
· Area(A1

2) + 1 · Area(A1),

whose value we leave un-evaluated.

For n = 2, we have

A2
1 = {(x, y) | 0 ≤ f(x, y) < 1

4
} = ({(x, y) | 0 ≤ x+ y < 1

4
} ∩ [0, 1]2) ∪ (R2 \ [0, 1]2),

A2
2 = {(x, y) | 14 ≤ f(x, y) < 2

4
} = {(x, y) | 1

4
≤ x+ y < 1

2
} ∩ [0, 1]2,

A2
3 = {(x, y) | 24 ≤ f(x, y) < 3

4
} = {(x, y) | 1

2
≤ x+ y < 3

4
} ∩ [0, 1]2,

A2
4 = {(x, y) | 34 ≤ f(x, y) < 4

4
} = {(x, y) | 3

4
≤ x+ y < 1} ∩ [0, 1]2,

A2
5 = {(x, y) | 44 ≤ f(x, y) < 5

4
} = {(x, y) | 1 ≤ x+ y < 5

4
} ∩ [0, 1]2,

A2
6 = {(x, y) | 54 ≤ f(x, y) < 6

4
} = {(x, y) | 5

4
≤ x+ y < 3

2
} ∩ [0, 1]2,

A2
7 = {(x, y) | 64 ≤ f(x, y) < 7

4
} = {(x, y) | 3

2
≤ x+ y < 7

4
} ∩ [0, 1]2,

A2
8 = {(x, y) | 74 ≤ f(x, y) < 8

4
} = {(x, y) | 7

4
≤ x+ y < 8} ∩ [0, 1]2, and

A2 = {(1, 1)} (see below).

The second simple approximation is thus

s2 =

2(22)∑
i=1

i− 1

22
· χA2

i
+ 2 · χA2 =

8∑
i=1

i− 1

4
· χA2

i
+ 2 · χA2 ,

whose graph is shown on the next page:
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We then have∫∫

s2(x, y) dx dy =
8∑

i=1

i− 1

4
· Area(A2

i ) + 2 · Area(A2),

whose value we again leave un-evaluated.

The process continues in the same way for all n, yielding a sequence of posi-
tive simple functions.
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At step n, we have:

An
1 =

(
{(x, y) | 0 ≤ x+ y < 1

2n
} ∩ [0, 1]2

)
∪ (R2 \ [0, 1]2),

An
i = {(x, y) | i−1

2n
≤ x+ y < i

2n
} ∩ [0, 1]2 for 2 ≤ i ≤ 2n+1,

An
2n+1+1 = {(1, 1)} and An = An

j = ∅ for j > 2n+1 + 1.

Then the nth simple approximation is

sn =
n·2n∑
i=1

i− 1

2n
· χAi

+ n · χAn =
2n+1∑
i=1

i− 1

2n
· χAn

i
+ 2 · χAn

2n+1+1
,

so that ∫∫
sn(x, y) dx dy =

2n+1∑
i=1

i− 1

2n
· Area(An

i ) + 2 · Area(An
2n+1+1)︸ ︷︷ ︸

=0

=
2n∑
i=1

i− 1

2n
· Area(An

i ) +
2n+1∑

i=2n+1

i− 1

2n
· Area(An

i ).

We can show (see Exercises) that

Area(An
i ) =

{
1
4n

(
i− 1

2

)
for 1 ≤ i ≤ 2n

1
4n

(
2n+1 − i− 1

2

)
for 2n + 1 ≤ i ≤ 2n+1

In general, then, we have:∫∫
sn(x, y) dx dy =

2n∑
i=1

i− 1

2n
· 1
4n

(
i− 1

2

)
+

2n+1∑
i=2n+1

i− 1

2n
· 1
4n

(
2n+1 − i− 1

2

)

=
1

2nrn

[
2n∑
i=1

(i− 1)(i− 1/2) +
2n+1∑
i=1

(i− 1)(2n+1 − i− 1/2)

]
= 1− 1

2n−1
+

1

2 · 4n
.

WriteBn =
∫∫

sn dx dy; we clearly haveBn < 1 for all n, andBn → 1. Then∫∫
f(x, y) dx dy = sup

{∫∫
s(x, y) dx, dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≥ 1 = lim

n→∞
Bn.

For s ∈ ζ(2)+ , we have seen that∫∫
s(x, y) dx dy =

m∑
j=1

αj · Area(Ai),
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and so the integral represents the volume of a collection ofm prisms with base area
Aj and height αj . By construction,∫∫

s(x, y) dx dy ≤ Volume(solid bounded by 0 ≤ x, y ≤ 1 and 0 ≤ z ≤ x+ y).

We cannot compute the volume using integrals as we have not yet established that
the integral of a general positive Borel function over a domain A is the volume of
the solid bounded by f overA, but we see easily that the solid in question is exactly
the bottom half of the prism deϐined by 0 ≤ x, y ≤ 1 and 0 ≤ z ≤ 2, whose volume
we know to be 2, from geometry (see the bottom image on p. 493).

By deϐinition, we must then have

sup
{∫∫

s(x, y) dx, dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≤ 1

2
(2) = 1,

which, combined with the previous inequality, shows that∫∫
f(x, y) dx dy = 1.

Phew! □

If f ∈ ζ
(2)
+ , both deϐinitions coincide: i.e, if f =

∑
αiχAi

, with αi ∈ R, Ai ∈ B(R2), and
A1 ⊔ · · · ⊔ An = R2, then∫∫

f(x, y) dx dy =
n∑

i=1

αi · Area(Ai) = I(f) = sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
.

Indeed, if f ∈ ζ(2)+ ,we have
∫∫

f(x, y) dx dy ≤ I(f). On the other hand, if s ∈ ζ(2)+ , with s ≤ f ,
then ∫∫

s(x, y) dx dy ≤
∫∫

f(x, y) dx dy,

according to Lemma 291.3, from which we conclude that

I(f) = sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
≤
∫∫

f(x, y) dx dy ≤ I(f).

The next result shows that Lemma 291.3 also applies to positive Borel functions.

aaaaaa

Proposition 292
If f, g are positive Borel functions and if f ≤ g, then∫∫

f dx dy ≤
∫∫

g dx dy.
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Proof: if f ≤ g, then {s ∈ ζ(2)+ | s ≤ f} ⊆ {s ∈ ζ(2)+ | s ≤ g}whence{∫∫
s(x, y) dx dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
⊆
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ g

}
So that

sup
{∫∫

s(x, y) dx dy
∣∣∣∣ s ∈ ζ(2)+ , s ≤ f

}
⊆ sup

{∫∫
s(x, y) dx dy

∣∣∣∣ s ∈ ζ(2)+ , s ≤ g

}
■

Onemight wonder why exactly we bothered to introduce the Borel-Lebesgue integral – while
going from Riemann sums to simple functions does change our viewpoint of integration, are
the corresponding integrals equivalent, or is one “preferable” over the other?

aaaaaa

Theorem 293 (LĊćĊĘČĚĊ MĔēĔęĔēĊ CĔēěĊėČĊēĈĊ TčĊĔėĊĒ)
Let (fn)n≥1 be a sequence of Borel functions on R2 such that

1. 0 ≤ f1(x, y) ≤ f2(x, y) ≤ · · · ≤ fn(x, y) ≤ · · · ∀(x, y) ∈ R2, and

2. fn(x, y)→ f(x, y) ∀(x, y) ∈ R2.

Then f is a Borel function on R2 and
∫∫

fn(x, y) dx dy →
∫∫

f(x, y) dx dy. In partic-
ular,

∫∫
f dx dy = limn→∞

∫∫
sn dx dy, whenever (sn) is a monotonically increasing

sequence of positive simple functions bounded above by f , with sn → f (pointwise).

Proof: left as a (difϐicult) exercise. ■.

Theorem 293 suggests that the new deϐinition has a clear advantage: what additional con-
straint does the equivalent limit interchange theorem 69 of Riemann integration require?

aaaaaa

Corollary 294
Let f, g : R2 → [0,∞] be Borel functions and α ≥ 0. Then

1.
∫∫

(f + g) dx dy =
∫∫

f dx dy +
∫∫

g dx dy,

2.
∫∫

α f dx dy = α
∫∫

f dx dy.

Proof: left as an exercise. ■.

From this point on, in order to not have to rely on the notation of iterated integrals, wewrite∫
f dm =

∫
· · ·
∫
f(x1, . . . , xn) dx1 · · · dxn

andm(B) for themeasure ofB ⊆ Rn (a generalization of the length, area, volume).
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aaaaaa

Theorem 295
Let f be a positive Borel function, taking on the value 0 outside of a Borel set A with
Area(A) = 0. Then

∫∫
f dx dy = 0.

Proof: let
k(x, y) =

{
∞ (x, y) ∈ A
0 (x, y) ̸∈ A

THen k ∈ ζ(2)+ and∫
k dm == 0 · Area(R2 \ A) +∞ · Area(A) = 0 · ∞+∞ · 0 = 0,

by convention. Since f ≤ k, then

0 ≤
∫
f dm ≤

∫
k dm = 0,

which completes the proof. ■

We say that a positive Borel function f is (Borel-Lebesgue) integrable if
∫
f dm < ∞. If

f ≥ 0 is integrable and g ≤ f is a Borel function, then

∞ >

∫
f dm =

∫
g dm+

∫
(f − g) dm ≥

∫
g dm,

and so g is also integrable. This result deϐinitely does not hold in general for Riemann inte-
gration.⁹

aaaaaa

Theorem 296
Let g be a bounded positive Borel function, taking on the value 0 outside a bounded
Borel set A. Then g is integrable.

Proof: let M be such that g(z) ≤ M. By deϐinition, ∃B = [a1, a
′
1] × [a2, a

′
2]

such that A ⊆ B and g(z) = 0 if z /∈ B. Then g ≤MχB and∫
g dm ≤

∫
MχB dm =M · Area(χB) <∞,

which completes the proof. ■

We can extend the idea to general Borel functions using the positive and negative parts.

Note that the Riemann and Borel-Lebesgue integral coincidewhen the former exists.

⁹Can you think of a counterexample?
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21.4 Integral of Borel Functions
For a general function f : Rn → R, deϐine the positive part of f by

f+(x) =

{
f(x) when f(x) ≥ 0

0 when f(x) < 0,

and the negative part of f by

f−(x) =

{
−f(x) when f(x) ≤ 0

0 when f(x) > 0.

Then f = f+ − f− and |f | = f+ + f−.

If f : Rn → R is a ϐinite Borel function, then f+, f− are positive Borel functions, by deϐini-
tion. A Borel function f : Rn → R is integrable if both f+ and f− are integrable. In this case,
we deϐine ∫

f dm =

∫
f+ dm−

∫
f− dm.

We see now that Lemma 291 has a counterpart for Borel functions.

aaaaaa

Theorem 297
Let f, g be integrable functions and λ ∈ R. Then

1.
∫
λf dm = λ

∫
f dm,

2.
∫
(f + g) dm =

∫
f dm+

∫
g dm, and

3. If f ≤ g then
∫
f dm ≤

∫
g dm.

Proof: since f, g are integrable, we have∫
f dm =

∫
f+ dm−

∫
f− dm <∞, and

∫
g dm =

∫
g+ dm−

∫
g− dm <∞.

1. Assume λ ≥ 0. Then

∞ > λ

∫
f dm = λ

(∫
f+ dm−

∫
f− dm

)
= λ

∫
f+ dm− λ

∫
f− dm

Corollary 294 =

∫
λf+ dm−

∫
λf− dm =

∫
(λf)+ dm−

∫
(λf)+ dm

=

∫
λf dm,

which simultaneously shows that λf is integrable.
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aaaaaa

The only thing left to do is to show that the property holds for λ− 1. Note that
(−f)+ = f− and that (−f−) = f+, so that−f is itself integrable. Then

−
∫
f dm = −

∫
f+ dm+

∫
f− dm =

∫
f− dm−

∫
f+ dm

=

∫
(−f)+ dm−

∫
(−f)− dm =

∫
(−f) dm,

because−f is integrable.

2. By deϐinition, we have

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−).

According to the second solved problem (see p. 512), f + g is thus integrable
and∫

(f + g) dm =

∫
[(f+ + g+)− (f− + g−)] dm

=

∫
(f+ + g+) dm−

∫
(f− + g−) dm

Corollary 294 =

∫
f+ dm+

∫
g+ dm−

∫
f− dm−

∫
g− dm =

∫
f dm+

∫
g dm.

3. Since g − f ≥ 0 and g = f + (g − f), we have∫
g dm =

∫
f dm+

∫
g − f dm ≥

∫
f dm,

according to Corollary 294 and Proposition 292. ■

The set Vn = {f : Rn → R | f ϐinite, Borel, integrable} is a vector space overR; the integral
of f over Rn is a linear functional, which is to say that∫

Rn

dm : Vn → R

is a linear functional.

aaaaaa
Theorem 298
Let B ∈ B(Rn), withm(B) = 0. If f, g are Borel functions such that f = g on Rn \ B
and if f is integrable, then g is integrable and

∫
f dm =

∫
g dm.
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aaaaaa

Proof: the functions f − g is a Borel function with f − g ≡ 0 on Rn \ B. Since
f = g + (f − g), we have∫

f dm =

∫
g dm+

∫
(f − g) dm.

Write h = f − g; then
∫
h dm = 0. Since h+, h− = 0 on Rn \B, we must have∫

h+ dm =

∫
h− dm = 0,

according to Theorem 295. Then∫
h dm =

∫
h+ dm−

∫
h− dm = 0 and

∫
f dm−

∫
g dm = 0 =⇒

∫
f dm =

∫
g dm,

which completes the proof. ■

21.5 Integration Over a Subset
To this point, we have studied integration over Rn in its entirety:∫

f dm =

∫
f dmA.

But we can also integrate functions over substes of Rn. Let A ∈ B(Rn) and f : A ⊆ Rn → R.
If the function fχA : Rn → R deϐined by

(fχA)(x) =

{
f(x) x ∈ A
0 x ̸∈ A

is a Borel function and if fχA ≥ 0 or fχA is integrable, we deϐine∫
A

f dm =

∫
fχA dm.

We can show (see Exercises and Theorem 296) that if f is bounded on A and fχA is a Borel
function, then fχA is integrable. When

∫
A
f dm <∞, we say that f is integrable on A.

aaaaaa

Theorem 299
Let A,B ∈ B(Rn), A ∩B = ∅. If f is a Borel function on A ∪B, then

1. if f ≥ 0,
∫
A∪B f dm =

∫
A
f dm+

∫
B
f dm, and

2. f is integrable over A ∪B if and only if f is integrable over A andB.

Proof: left as an exercise. ■

Ifm(B) = 0, then
∫
B
f dm = 0. In that case

∫
A∪B

f dm =

∫
A

f dm.
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21.6 Multiple Integrals
The example of Section 21.4 shows that while we can compute the (Borel-Lebesgue) inte-
gral of a relatively straightforward integrand f , the process can leave a lot to be desired.¹⁰
Let f : R2 → R be a bounded Borel function, that is 0 outside of a bounded region. For all
y ∈ R, x 7→ f(x, y) is a Borel bounded function that is 0 outside of a bounded subset of R,
hence x 7→ f(x, y) is integrable.

aaaaaa

Theorem 300 (FĚćĎēĎ'Ę TčĊĔėĊĒ)
Let f : R2 → [0,∞] be a Borel function. For every y, let F (y) =

∫
R f(x, y) dx. Then F

is a Borel function and∫
R2

f dm =

∫∫
R2

f(x, y) dx dy =

∫
R
F (y) dy =

∫
R

(∫
R
f(x, y) dx

)
dy.

Proof: left as an exercise. ■

Similarly, ifG(x) =
∫
R f(x, y) dx, we have∫
R2

f dm =

∫
R
G(x) dx =

∫
R

(∫
R
f(x, y) dy

)
dx,

aaaaaa

Example: let f : R2 → [0,∞] be deϐined by f(x, y) = (x + y)−4, where A ⊆ R2 is
the triangle bounded by x = 1, y = 1, and x+ y = 4. Compute

∫
A
f dm.

Solution: the triangle’s three vertices are located at (1, 1), (1, 3), and (3, 1).
For a ϐixed x ∈ R, we have

F (x) =

∫
R
f(x, y) dy =

{
0 if x ̸∈ [1, 3]∫
[1,4−x]

(x+ y)−4 dy otherwise

But∫
[1,4−x]

dy
(x+ y)4

=

∫ 4−x

1

(x+ y)−4 dy =

[
(x+ y)−3

−3

]y=4−x

y=1

=
(x+ 1)−3

3
− 1

192
,

from which we have∫
A

f dm =

∫
[1,3]

F (x) dx =

∫ 3

1

[
(x+ 1)−3

3
− 1

192

]
dx =

[
(x+ 1)−2

3(−2)
− x

192

]3
x=1

=
1

48
. □

¹⁰As in the previous sections, wewill provide the important details for functionsR2 → R; the process is easy
to generalize to Rn.
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If f is a positive Borel function, we can interchange the order of integration (as in Theorem
300); for general functions, there are complications. Onewayout of thequagmire is to decom-
pose f = f+−f− and to integrate f+ and f− separately, but that can quickly get cumbersome.

aaaaaa

Theorem 301 (SĕĊĈĎĆđ FĚćĎēĎ TčĊĔėĊĒ)
Let f : R2 → R be a bounded Borel function taking on the value 0 outside of a bounded
region. For all y, x 7→ f(x, y) is a bounded Borel function taking on the value 0 outside
of a bounded subset ofR. SetF (y) =

∫
R f(x, y) dx. ThenF is a boundedBorel function

and ∫
R2

f dm =

∫∫
R2

f(x, y) dx dy =

∫
R
F (y) dy =

∫
R
G(x) dx.

Proof: by hypothesis, ∃M,N > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ R2 and
f(x, y) = 0 for all (x, y) ̸∈ [−N,N ]2.

For a ϐixed y = y0, x 7→ f(x, y0) is a Borel function, with |f(x, y0)| ≤ M for
all x (and y0) and f(x, y0) = 0when |x| > N . If |y0| > N , F (y0) = 0; more generally,

|F (y0)| ≤
∫ N

−N

M dx = 2MN,

so it is bounded.

It remains to see that F is a Borel function and that conclusion of the theo-
rem holds. Using the decomposition f = f+ − f−, we reduce the problem to
the case f ≥ 0; it then sufϐices to apply Theorem 300 to each of the positive and
negative parts of f , completing the proof. ■

The result generalizes to Rn in the natural way.

aaaaaa

Example: Let f : A ⊆ R3 → R be deϐined by f(x, y, z) = 2xyz · χA(x, y, z), where

A = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 1}.

Compute
I =

∫
f dm =

∫∫∫
R3

f(x, y, z) dx dy dz.

Solution: let B = {(x, y, z) | x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, z = 0}. For ϐixed x, y ∈ R2,
we have

F (x, y) =

∫
R
2xyz · χA(x, y, z) dz =

{
0 if (x, y, 0) ̸∈ B∫
[0,
√

1−x2−y2]
2xyzdz if (x, y, 0) ∈ B
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aaaaaa

Since ∫ √1−x2−y2

0

2xyz dz = 2xy

[
z2

2

]z=√1−x2−y2

z=0

= xy(1− x2 − y2),

the desired integral is

I =

∫∫
R2

F (x, y) dx dy =

∫∫
B

xy(1− x2 − y2) dx dy.

We can decompose this double integral as follows: for 0 ≤ x ≤ 1, set

G(x) =

∫ √
1−x2

0

xy(1− x2 − y2) dy =
x

4
(1− x2)2;

otherwise, setG(x) = 0. Then

I =

∫
R
G(x) dx =

1

4

∫
[0,1]

x(1− x2)2 dx =
1

24
. □

In general, ifD ⊆ Rn is a Borel set, then

m(D) =

∫
χD dm.

If n = 2, this takes the form

Area(D) =

∫∫
R2

χD(x, y) dx dy;

if n = 3, we have
Vol(D) =

∫∫∫
R3

χD(x, y, z) dx dy dz.

aaaaaa

Examples

1. Let a, b > 0. Find the area of the ellipseA = {(x, y) ∈ R2 | x2/a2+ y2/b2 ≤ 1}.

Solution: rewrite

A =

{
(x, y) ∈ R2

∣∣∣∣−a ≤ x ≤ a,− b
a

√
a2 − x2 ≤ y ≤ b

a

√
a2 − x2

}
.

Then

Area(A) =
∫∫

R2

χA(x, y) dx dy =

∫ a

−a

(∫
R
χA(x, y) dy

)
dx
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aaaaaa

But ∫
R
χA(x, y) dy =

{
0 if x ̸∈ [−a, a]∫ b/a

√
a2−x2

−b/a
√
a2−x2 dy = 2b

a

√
a2 − x2 if x ∈ [−a, a]

Then

Area(A) = 2b

a

∫ x=a

x=−a

√
a2 − x2 dx

x = a cosφ, dx = −a sinφ dφ =
2b

a

∫ φ=0

φ=π

√
a2(1− cos2 φ)(−a sinφ) dφ

= −2b

a

∫ 0

π

a2 sin2 φ dφ = 2ab

∫ π

0

sin2 φ dφ

= 2ab

∫ π

0

(
1− cos 2φ

2

)
dφ = ab

[
φ− sin 2φ

2

]π
0

= πab.

2. Let a, b, c > 0 and E = {(x, y, z) | x2/a2 + y2/b2 + z2/c2 ≤ 1}. Find Vol(E).

Solution: we have

Vol(E) =
∫∫∫

R3

χE(x, y, z) dx dy dz =
∫ c

−c

(∫∫
R2

χE(x, y, z) dx dy
)

︸ ︷︷ ︸
=Area(Ez)

dz,

where

Ez =

{
(x, y)

∣∣∣∣ x2a2 +
y2

b2
+
z2

c2
≤ 1

}
=

{
(x, y)

∣∣∣∣ x2

(ah)2
+

y2

(bh)2
≤ 1

}
,

where h =
√

1− z2/c2 > 0.

According to the preceding example, we know that

Area(Ez) = π(ah)(bh) = πabh2 = πab(1− z2/c2)

when |z| ≤ c, so that

Vol(E) =
∫ c

−c

πab

(
1− z2

c2

)
dz = πab

[
z − z3

3c2

]z=c

z=−c

=
4π

3
abc. □

We ϐinish the chapter with some detail regarding one of themost commonly-used integration
shortcuts: changes of variables.
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21.7 Change of Variables and/or Coordinates
In the preceding section’s example where we compute the area of an ellipse, we encounter an
integral in x which we cannot compute directly; instead we introduce a new variable φ and
a relation between x and φ that we leverage to easily compute the integral. We formalize the
process in this section.

LetΨ : U ⊆O Rn → V ⊆O Rn be a diffeomorphism; thus,Ψ andΨ−1 areC1,Ψ◦Ψ−1(v) = v,
Ψ−1 ◦Ψ(u) = u, the Jacobians dΨ(u), dΨ−1(v) : Rn → Rn are linear maps and

d(Ψ ◦Ψ−1)(v) = dΨ(Ψ−1(v))dΨ−1(v) = In,

for all u ∈ U, v ∈ V , which means that dΨ(u) and dΨ−1(v) are invertible for all u ∈ U, v ∈ V .

aaaaaa

Examples

1. For n = 1, deϐine Ψ : U = (0, π) → V = (−1, 1) by Ψ(u) = cosu. Then
dΨ(u) = − sinu < 0 for all u ∈ (0, π), i.e., Ψ is decreasing on (0, π), with
Ψ(0) = 1 andΨ(π) = −1.

2. For n = 1, let U = V = (0, 1) and deϐine Ψ : U → V by Ψ(u) = u2. Then
dΨ(u) = 2u > 0 for all u ∈ U , i.e., Ψ is increasing on U , with Ψ(0) = 0 and
Ψ(1) = 1.

3. For n = 2, let U = {(r, θ) | r > 0 and − π < θ < π}, V = R2 \ {(x, 0) | x ≤ 0},
and deϐineΨ(r, θ) = (r cos θ, r sin θ). Then

dΨ(r, θ) =

(
cos θ sin θ
−r sin θ r cos θ

)
.

Note that JΨ(r, θ) = det(dΨ) = r cos2 θ + r sin2 θ = r > 0 and thatΨ is:

injective since ifΨ(r1, θ1) = Ψ(r2, θ2), then

r1 = ∥Ψ(r1, θ1)∥2 = ∥Ψ(r2, θ2)∥2 = r2

and cos θ1 = cos θ2 and sin θ1 = sin θ2 yields θ1 = θ2 ∈ (−π, π);
surjective since if (x, y) ∈ V , set r =

√
x2 + y2 > 0; then

1 =
x2 + y2

r2
=
x2

r2
+
y2

r2
=⇒ x = r cos θ, y = r sin θ for some θ ∈ (−π, π].

But if θ = π, then x = −r and y = 0, so that (x, y) ̸∈ V , a contradiction;
thus θ ∈ (−π, π).
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aaaaaa

Thus Ψ : U → V is a bijection; its inverse is Ψ−1 : V → U is deϐined by
Ψ−1(x, y) = (r, θ), as given on the previous page. It is easy to verify that Ψ ◦
Ψ−1 : V → V is the identity, as

Ψ(Ψ−1(x, y)) = Ψ(
√
x2 + y2, θ) = Ψ(r, θ) = (r cos θ, r sin θ) = (x, y).

Both Ψ and Ψ−1 are C1 and the Jacobians dΨ(r, θ) and dΨ−1(x, y) are invert-
ible (see Exercises); as such, Ψ is a diffeomorphism between U and V . In this
particular case, we can express θ explicitly in terms of (x, y):

θ ∈ (−π, π) =⇒ θ

2
∈
(
−π
2
,
π

2

)
=⇒ cos(θ/2) ̸= 0;

then

tan(θ/2) = sin(θ/2)
cos(θ/2) =

sin θ
1 + cos θ =

r sin θ
r(1 + cos θ) =

y√
x2 + y2 + x

=⇒ θ = 2Arctan
(

y√
x2 + y2 + x

)
. □

If f : V → R is a Borel function, let JΨ(z) = det(dΨ(z)); then JΨ(z) ̸= 0 since Ψ is a diffeo-
morphism, and the composition f ◦Ψ : U → R is also a Borel function. In R2, for instance, if
Ψ(s, t) = (x, y) = (x(s, t), y(s, t)), then

JΨ(s, t) = det
(

∂x(s,t)
∂s

∂x(s,t)
∂t

∂y(s,t)
∂s

∂y(s,t)
∂t

)
=
∂x(s, t)

∂s
· ∂y(s, t)

∂t
− ∂x(s, t)

∂t
· ∂y(s, t)

∂s
̸= 0.

aaaaaa

Theorem 301 (CčĆēČĊ Ĕċ VĆėĎĆćđĊĘ)

1. Let f : V → [0,∞] be a positive Borel function. Then∫∫
V

f(x, y) dx dy =

∫∫
U

f(x(s, t), y(s, t)) |JΨ(s, t)| ds dt.

2. If f : V → R is an integrable Borel function, then f ◦ Ψ|JΨ| is Borel and
integrable on U and∫∫

V

f(x, y) dx dy =

∫∫
U

f ◦Ψ(s, t) |Jφ(s, t)| ds dt.

Proof: left as an exercise. ■
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As usual, this result easily generalizes to Rn.

aaaaaa

Examples

1. For n = 1, ifΨ : [α, β]→ [a, b] is a bijection withΨ(α) = a, Ψ(β) = b, Ψ is C1,
and Ψ′ > 0 on (α, β), then Ψ is an increasing diffeomorphism between [α, β]
and [a, b]. Let f : [a, b]→ R be a continuous function. Then∫ b

a

f(u) du =

∫
[a,b]

f(u) du =

∫
(a,b)

f(u) du =

∫
[α,β]

f(Ψ(t))|Ψ′(t)| dt =
∫ β

α

f(Ψ(t))Ψ′(t) dt.

2. IfΨ is as in the previous example, but withΨ′ < 0 on (α, β), then∫ b

a

f(u) du = −
∫ α

β

f(Ψ(t))Ψ′(t) dt. □

21.7.1 Polar Coordinates
Let U, V,Ψ be as in the example on pp. 508-509. Then JΨ(r, θ) = r. If I = {(x, 0) | x ≤ 0},
then Area(I) = 0. Then, if f : R2 → [0,∞] is a positive Borel function, we have∫∫

R2

f(x, y) dx dy =

∫∫
V

f(x, y) dx dy =

∫∫
U

f(r cos θ, r sin θ)r dr dθ.

If f is Borel and integrable over R2, then (r, θ) 7→ f(r cos θ, r sin θ)r is integrable over U and∫∫
R2

f(x, y) dx dy =

∫∫
U

f(r cos θ, r sin θ)r dr dθ.

This transformation yields polar coordinates, as illustrated below.

aaaaaa

Example: for the Borel function f : R2 → R deϐined by f(x, y) = exp(−x2 − y2),
we have

I =

∫∫
R2

exp(−x2 − y2) dx dy =

∫∫
U

exp(−r2)r dr dθ =
∫ ∞

0

∫ π

−π

exp(−r2)r dr dθ

= π

∫ ∞

0

2r exp(−r2) dr = π

∫ u=∞

u=0

exp(−u) du = π.
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Since

I =

(∫
R
exp(−x2) dx

)(∫
R
exp(−y2) dy

)
=

(∫
R
exp(−x2) dx

)2

= π,

then ∫
R
exp(−x2) dx =

√
π;

we can compute the integral even though exp(−x2) does not have an elementary
anti-derivative. □

21.7.2 Spherical Coordinates
In spherical coordinates, we represent the point P (x, y, z) ∈ R3 using the coordinates
(r, φ, θ):

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

Let U = {(r, φ, θ) | r > 0, 0 < φ < π, 0 < θ < 2π} and V = R2 \ Ix = R3 \ {(x, 0, z) | x ≥ 0}.
SetΨ : U → V , with

Ψ(r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ).

Then

dΨ(r, φ, θ) =

 sinφ cos θ sinφ sin θ cosφ
r cosφ r cosφ sin θ −r sinφ

−r sinφ sin θ r sinφ cos θ 0

 ,

so that |JΨ(r, φ, θ)| = r2 sinφ, because of the restrictions in the deϐinition ofU . Furthermore,
Vol(Ix) = 0; if f : R3 → [0,∞] is a positive Borel function, we then have∫∫∫

R3

f(x, y, z) dx dy dz =
∫∫∫

V

f(x, y, z) dx dy dz

=

∫∫∫
U

f(r sinφ cos θ, r sinφ sin θ, r cosφ) r2 sinφdr dφ dθ.
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More generally, that relationship also holds if f : R3 → R is Borel and integrable.

aaaaaa

Example: compute the volume of the ball BR = {(x, y, z) | x2 + y2 + z2 ≤ R2}, for
R ≥ 0.

Solution: according to the deϐinition,

Vol(BR) =

∫∫∫
BR

dx dy dz =
∫∫∫

R3

χBR
(x, y, z) dx dy dz

=

∫ R

0

(∫ π

0

(∫ 2π

0

r2 sinφ dθ dφdr
))

= 2π

∫ R

0

r2
(∫ π

0

sinφ dφ
)
dr

= 2π

∫ R

0

r2[− cosφ]π0 dr = 4π

∫ R

0

r2 dr = 4π

[
r3

3

]R
0

=
4

3
πR3. □

21.8 Solved Problems

21.8.1 Borel-Lebesgue Integral on Rn

1. Show that a bounded Borel function which is identically zero outside of a bounded set
is integrable.

Proof: by hypothesis, ∃M ∈ R+ such that |g(z)| < M for all z ∈ Rn. Furthermore,
there is a bounded set A such that g(z) = 0 for all z ̸∈ A. Since A is bounded, there
exist ai, a′i ∈ R such that

A ⊆ B =
n∏

i=1

[ai, a
′
i]

and g(z) = 0 for all z ̸∈ B. Finally, |g| ≤MχB and∣∣∣∣∫ g

∣∣∣∣ ≤ ∫ |g| ≤ ∫ MχB =M

∫
χB =M ·m(B) =M

n∏
i=1

(a′i − ai) <∞,

that is, g is integrable. ■

2. Let u, v be positive, integrable Borel functions. Show that u− v is integrable and that∫
(u− v) dm =

∫
u dm−

∫
v dm.

Proof: by hypothesis, 0 ≤
∫
u,
∫
v < ∞, and so we also have −∞ ≤

∫
u,
∫
v < ∞.

Then,

∞ >

∫
u =

∫
(u− v + v) =

∫
(u− v) +

∫
v > −∞
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so that

∞−
∫
v >

∫
(u− v) > −∞−

∫
v

Since−∞ <
∫
v <∞,∞−

∫
v =∞ and−∞−

∫
v = −∞. Finally, this yields

∞ >

∫
(u− v) > −∞

and u− v is integrable. We proved the other required result in the ϐirst inequality.■

3. If f is bounded on A ∈ B(R2), fχA is a Borel function, and Area(A) < ∞, show that
fχA is integrable.

Proof: letM > 0 be such that |f(x)| < M for all x ∈ A. Then, under they hypothe-
ses,∣∣∣∣∫ fχA

∣∣∣∣ ≤ ∫ |fχA| =
∫
|f |χA <

∫
MχA =M

∫
χA =M · Area(A) <∞,

which completes the proof. ■

4. LetA,B ∈ B(Rn), A ∩B = ∅, and f be a Borel function on A ∪B.

a) If f ≥ 0, show that ∫
A∪B

f dm =

∫
A

f dm+

∫
B

f dm.

b) In general, show that f is integrable over A ∪ B if and only if f is integrable over
A and integrable overB.

c) If f is integrable overA ∪B, show that the equation of part a) holds.

Proof:
a) Let sn be the sequence of positive simple functions guaranteed by one of the

theorems. Then we have
i. sn(z)→ f(z) for all z
ii. 0 ≤ sn(z) ≤ f(z) for all z
iii. sn(z) ≤ sn+1(z) for all z
Let C ∈ B. Consider the function fχC . Then,
i. (snχC)(z)→ (fχC)(z) for all z
ii. 0 ≤ (snχC)(z) ≤ (fχC)(z) for all z
iii. (snχC)(z) ≤ (sn+1χC)(z) for all z
According to the Lebesgue convergence theorem,∫

C
sn =

∫
snχC →

∫
fχC =

∫
C
f. (21.1)

For any n ∈ N, we have
sχA∪B = sχA + sχB
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sinceA ∩B = ∅. Then∫
A∪B

sn =

∫
snχA∪B ≥

∫
snχA∪B =

∫
(snχA + snχB)

=

∫
snχA +

∫
snχB =

∫
A
sn +

∫
B
sn.

If we let C = A ∪B in (21.1), we have∫
A∪B

sn →
∫
A∪B

f.

If we let C = A in (21.1), we have∫
A
sn →

∫
A
f.

Finally, if we let C = B in (21.1), we have∫
B
sn →

∫
B
f.

Combining all these results yields

∫
A
sn +

∫
B
sn =

∫
A∪B

sn

∫
A
f +

∫
B
f

? ∫
A∪B

f

?

so that we can conclude that∫
A∪B

f =

∫
A
f +

∫
B
f

as limits are unique.
b) Suppose that f is a general (not necessarily positive) function, integrable over

A andB, i.e. ∣∣∣∣∫
A
f

∣∣∣∣ , ∣∣∣∣∫
B
f

∣∣∣∣ <∞.
By a remark made in class, this also means that

0 ≤
∫
A
f+,

∫
A
f−,

∫
B
f+,

∫
B
f− <∞.

Since f− and f+ are positive integrable Borel functions, we can apply part a) to
obtain

0 ≤
∫
A∪B

f+ =

∫
A
f+ +

∫
B
f+ <∞

0 ≤
∫
A∪B

f− =

∫
A
f− +

∫
B
f− <∞
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so that f+ and f− are both integrable overA ∪B. Consequently, f is integrable
overA ∪B.

Conversely, suppose that f is a general (not necessarily positive) function, in-
tegrable overA ∪B, i.e. ∣∣∣∣∫

A∪B
f

∣∣∣∣ <∞.
By a remark made in class, this also means that

0 ≤
∫
A∪B

f+,

∫
A∪B

f− <∞.

Since f− and f+ are positive integrable Borel functions, we can apply part a) to
obtain

0 ≤
∫
A
f+ +

∫
B
f+ =

∫
A∪B

f+ <∞

0 ≤
∫
A
f− +

∫
B
f− =

∫
A∪B

f− <∞

This implies that

0 ≤
∫
A
f+,

∫
A
f−,

∫
B
f+,

∫
B
f− <∞

and so that f+ and f− are both integrable over A and over B. Consequently, f
is integrable overA and overB.

c) Let us assume that f is a general (not necessarily positive) function, integrable
overA ∪B (and so also overA and overB, see part b). By construction,∫

A∪B
f =

∫
A∪B

f+ −
∫
A∪B

f−

=

∫
A
f+ +

∫
B
f+ −

∫
A
f− −

∫
B
f−

=

∫
A
f+ −

∫
A
f− +

∫
B
f+ −

∫
B
f−

=

∫
A
f +

∫
B
f

■

5. Show that the area of the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1} is zero.

Proof: we use the following intermediary result.
LĊĒĒĆ: let φ : [0, T ] → R2 be continuous, with T > 0. If ∃M > 0 such
that

∥φ(s)− φ(t)∥∞ ≤M |s− t| (21.2)
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for all s, t ∈ [0, T ], then φ([0, 1]) has 2Dmeasure 0.

Proof: for allN ≥ 1, let

0 = t0 < t1 < · · · < tN = 1, ti =
i

N
.

Recall that∥x⃗∥∞ = max{|x1|, |x2|}. Then, according to (21.2),φ([ti−1, ti]) ⊆
Ii for some square Ii of length 2M

N (think about this for a second). Then,
Area(Ii) = 4M2

N2 and
N∑
i=1

Area(Ii) =
4M2

N
.

Now, let ε > 0 and selectN > 4M2

ε . QED
Let φ : [0, 2π] → R2 be deϐined by φ(t) = (cos t, sin t). Then φ is continuous and
φ([0, 2π]) = S1. According to the mean value theorem,

∥φ(s)− φ(t)∥∞ ≤ max{sup
η
|Dφ1(η)|, sup

η
|Dφ2(η)}|s− t|

≤ max{sup
η
| sin η|, sup

η
| cos η}|s− t|

≤ |s− t|

We can then apply the preceding Lemma to obtain Area(S1) = 0. ■

6. Show that if f, g : R2 → R are Borel functions, then so is f + g.
Proof: let d ∈ R. For any r, s ∈ Q such that r + s < d, we have

{z | f(z) < r} ∩ {z | g(z) < s} ⊆ {z | f(z) + g(z) < d},

or
Ef

r ∩ Eg
s ⊆ E

f+g
d .

Then ∪
r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
⊆ Ef+g

d .

If z0 ∈ Ef+g
d , i.e. if f(z0) + g(z0) < d, then ∃r, s ∈ Q such that f(z0) < r, g(z0) < s

and r + s < d (becauseQ is dense in R), so that z0 ∈ Ef
r ∩ Eg

s . Then∪
r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
= Ef+g

d .

But f, g are Borel functions; as a result,Ef
r , E

g
s ∈ B for all r, s ∈ Q. Since B is a

σ−algebra,
Ef+g

d =
∪

r,s∈Q
r+s<d

(
Ef

r ∩ Eg
s

)
∈ B

and f + g is a Borel function. ■

516 Analysis and Topology Course Notes



CHAPTER 21. BOREL-LEBESGUE INTEGRATION

7. Show that every countable subset of R2 has 2Dmeasure zero.

Proof: let ε > 0. List the elements of the countable subset asA = {a1, a2, . . . , an, . . .}.
LetRn be a square centered at an with Area(Rn) =

ε
2n+1 . Then∑

n∈N
Area(Rn) =

∑
n∈N

ε

2n+1
=
ε

2

∑
n∈N

1

2n
=
ε

2
< ε.

Thus, Area(A) = 0. ■

8. Let f : R2 → R be deϐined by f(x, y) = sin(x) and set A = [0, 2π] × [0, 1]. Compute∫
A
f dm.

Solution: we have∫
A
f =

∫
fχA =

∫
(fχA)+ −

∫
(fχA)− =

∫
f+χA −

∫
f−χA

where

f+(x, y)χA(x, y) =

{
sinx if x ∈ [0, π]

0 otherwise

f−(x, y)χA(x, y) =

{
− sinx if x ∈ [π, 2π]

0 otherwise

Clearly,
∫
f+χA =

∫
f−χA, so that

∫
A f = 0. □

9. Show that the set

I = {f : Rn → R : f ϐinite, Borel, integrable}

is a vector space over R.

Proof: since I is a subset of the vector space of all functions from Rn to R over the
scalar ϐield R, it sufϐices to verify that the three subspace conditions hold:
a) O ∈ I: this is the case since the function deϐined byO(x) = 0 for all x ∈ Rn is

Borel as I was able to write it down, ϐinite since |O(x)| = 0 <∞ for all x ∈ Rn,
and integrable as

∫
O = 0 <∞.

b) f, g ∈ I =⇒ f + g ∈ I: if f, g are Borel, ϐinite and integrable, then f + g is
clearly Borel and ϐinite. It is also clearly integrable, albeit I have to use Theorem
25 (in disguise) to show this:

−∞ < −
∣∣∣∣∫ f

∣∣∣∣− ∣∣∣∣∫ g

∣∣∣∣ ≤ ∣∣∣∣∫ (f + g)

∣∣∣∣ ≤ ∣∣∣∣∫ f

∣∣∣∣+ ∣∣∣∣∫ g

∣∣∣∣ <∞.
Thus, f + g ∈ I .
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c) f ∈ I, α ∈ R =⇒ αf ∈ I: if f is Borel, ϐinite and integrable, and α ∈ R, then
αf is clearly Borel and ϐinite (since |α| ̸=∞). It is also clearly integrable, albeit
I have to use Theorem 25 (once again in disguise) to show this:

−∞ < −α
∣∣∣∣∫ f

∣∣∣∣ ≤ ∣∣∣∣∫ αf

∣∣∣∣ ≤ α ∣∣∣∣∫ f

∣∣∣∣ <∞.
Thus, αf ∈ I .

Consequently, I is a vector space. ■

10. Show that I : I → R deϐined by I(f) =
∫
f dm is a linear functional.

Proof: now that we know that I is a vector space over R, it sufϐices to show that
I : I → R acts linearly on I , i.e. that

I(αf + βg) = αI(f) + βI(g)

for all f, g ∈ I , α, β ∈ R.

But that is the content of Theorem 25 (since f, g are integrable):

I(αf + βg) =

∫
(αf + βg) =

∫
(αf) +

∫
(βg)

= α

∫
f + β

∫
g = αI(f) + βI(g),

which completes the proof. ■

11. Let f : R→ R be deϐined by

f(x) =

{
1 if x ∈ Q
0 otherwise

Is f integrable? If so, what value does
∫
f dm take? If not, where does the problem lie?

Proof: note that f(x) ≥ 0 for all x ∈ R andQ ∈ B(R)with Length(Q) = 0. Thus,∫
R
f =

∫
R−Q

f =

∫
R−Q

0 = 0 <∞

and f is integrable. ■

12. Let f : R2 → R be deϐined by f(x, y) = x + y Is f integrable? If so, what value does∫
f dm take? If not, where does the problem lie?

Proof: a function is integrable if and only if both its positive part and negative part
are integrable. Here, f+, f− : R2 → R are deϐined by

f+(x, y) =

{
x+ y if y ≥ −x
0 else

f−(x, y) =

{
−x− y if y ≤ −x
0 else
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Consider the positive simple functions

s1(x, y) =

{
1 if x, y ≥ 1

0 else

s2(x, y) =

{
1 if x, y ≤ −1
0 else

Then
0 ≤ s1(x, y) ≤ f+(x, y)
0 ≤ s2(x, y) ≤ f−(x, y)

for all (x, y) ∈ R2. Consequently,

0 ≤
∫
s1 ≤

∫
f+

0 ≤
∫
s2 ≤

∫
f−

But
∫
s1,
∫
s2 =∞, so

∫
f+,

∫
f− =∞ and f is not integrable, as neither its positive

part nor its negative part is integrable. ■

13. Suppose that f is R-integrable over [a, b]. Is f integrable over [a, b]? What relation is
there between

∫
[a,b]

f dm and
∫ b

a
f(x) dx, if any?

Proof: if f is R-integrable over [a, b], then on the one hand we have
∫ b
a f(x) dx =∫

[a,b] f dm andon theotherhandwehave∞ >
∣∣∣∫ b

a f(x) dx
∣∣∣. Consequently, ∣∣∣∫[a,b] f dm

∣∣∣ <
∞ and f is integrable over [a, b]. ■

14. Suppose that f is integrable over [a, b]. Is f R-integrable over [a, b]? What relation is
there between

∫
[a,b]

f dm and
∫ b

a
f(x) dx, if any?

Proof: there is no relation in this case. There are instances of integrable functions
which are also R-integrable, such as f : [0, 1]→ R deϐined by f(x) = x2. Then∫

[0,1]
f dm =

∫ 1

0
f(x) dx =

1

3
<∞.

But there are also instances of integrable functions which are not R-integrable.

Consider the function f : [0, 1]→ [0,∞] deϐined by

f(x) =

{
∞ x ∈ Q ∩ [0, 1]

0 else
.

Wehave seen that
∫
[0,1] f dm = 0 <∞ so that f is integrable. We have also seen that∫ 1

0 f(x) dx does not exist, so that it is not R-integrable.

The moral of the story: Lebesgue integration is more general than Riemann inte-
gration. But you already knew that. ■

P. Boily (uOttawa) 519



21.8. SOLVED PROBLEMS

21.8.2 Multivariate Calculus
1. Let f : R2 → R be independent of y, that is, there exists a function g : R→ R such that
f(x, y) ≡ g(x) for all (x, y) ∈ R2.

a) What general property does the surface z = f(x, y) possess?
b) Let R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}. By interpreting the integral as a

volume and by using the answer from part a), write
∫
R
f dA using a function of

one variable.

Solution: iff is independent ofy, the surface z = f(x, y) is constant in the y−direction,
that is, for any x ∈ R, f(x, y1) = f(x, y2) for all y1, y2. As such,∫

R
f dA =

(∫ b

a
g(x) dx

)
(d− c). □

2. Let f : R ⊂ R2 → R be an integrable function andR be as below.

Write
∫
R
f dA as an iterated integral.

Solution: the vertices of R are: (1, 0), (2, 1), (4, 2) and (4, a), where 1 < a < 2. The
line from (1, 2) to (4, a) is y = a

3 (x− 1). Thus,R is the region deϐined by
a

3
(x− 1) ≤ y ≤ 2, 1 ≤ x ≤ 4,

and
∫ 4
1

∫ 2
a
3
(x−1) f(x, y) dy dx is one way to write the iterated integral. □

3. Compute the integral
∫ 2

0

∫ x

0
ex

2 dy dx.
Solution: the region of integration is given by

0 ≤ y ≤ x, 0 ≤ x ≤ 2.

As such, it is the triangle with vertices (0, 0), (2, 2) and (2, 0) (we’re not drawing it
but you probably should). Thus,∫ 2

0

∫ x

0
ex

2 dy dx =

∫ 2

0

[
yex

2
]x
0

dx =

∫ 2

0
xex

2 dx =

[
1

2
ex

2

]2
0

=
1

2
(e4 − 1). □

4. Compute
∫ 3

0

∫ 9

y2
y sin(x2) dx dy.
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Solution: the region of integration is

y2 ≤ x ≤ 9, 0 ≤ y ≤ 3.

Since it is difϐicult (read: impossible) to ϐind an anti-derivative of sin(x2)with respect
to x, we change the order of integration. To do so cleanly, it sufϐices to notice that the
region can be written as

0 ≤ y ≤
√
x, 0 ≤ x ≤ 9.

Thus,∫ 3

0

∫ 9

y2
y sin(x2) dx dy =

∫ 9

0

∫ √
x

0
y sin(x2) dy dx =

∫ 9

0

[
y2

2
sin(x2)

]√x

0

dx =

∫ 9

0

x

2
sin(x2) dx

=

[
−1

4
cos(x2)

]9
0

=
1

4
(1− cos 81). □

5. What is the volume of the solid bounded by the planes z = x + 2y + 4 and z = 2x + y,
above the triangle in the xy plane with vertices A(1, 0, 0),B(2, 1, 0) and C(0, 1, 0)?

Solution: in the xy−plane, the equations of the boundary of∆ABC are

AC : y = −x+ 1 ↭ x = −y + 1

BC : y = 1

AB : y = x− 1 ↭ x = y + 1

The region of integrationR can be written as

0 ≤ y ≤ 1, −y + 1 ≤ x ≤ y + 1,

and the volume of interest is

V =

∫
R
|(x+ 2y + 4)− (2x+ y)| dA =

∫ 1

0

∫ y+1

−y+1
(y − x+ 4) dx dy =

∫ 1

0

[
yx− x2

2
+ 4x

]y+1

−y+1

dy

=

∫ 1

0

[(
y(y + 1)− (y + 1)2

2
+ 4(y + 1)

)
−
(
y(−y + 1)− (−y + 1)2

2
+ 4(−y + 1)

)]
dy

=

∫ 1

0
(2y2 + 6y) dy =

[
2y3

3
+ 3y

]1
0

=
11

3
. □
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6. Compute
∫
W
h dV , where h(x, y, z) = ax+ by + cz and

W = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2}.

Solution: the region of integration is rectangular, so there are no hardships:∫
W
h dV =

∫ 1

0

∫ 1

0

∫ 2

0
(ax+ by + cz) dz dx dy =

∫ 1

0

∫ 1

0

[
axz + byz + c

z2

2

]2
0

dx dy

=

∫ 1

0

∫ 1

0
(2ax+ 2by + 2c) dx dy =

∫ 1

0

[
ax2 + 2bxy + 2cx

]1
0
dy

=

∫ 1

0
(a+ 2by + 2c) dy =

[
ay + by2 + 2cy

]1
0
= a+ b+ 2c. □

7. Sketch the region of integrationW of the triple integral
∫ 1

0

∫ 2−x

0

∫ 3

0
f(x, y, z) dz dy dx.

Solution: the region is deϐined by
0 ≤ z ≤ 3, 0 ≤ y ≤ 2− x, 0 ≤ x ≤ 1.

Thus, it is a box bounded by 6 planes: z = 0, z = 3, y = 0, y = 2− x, x = 0, x = 1.

□

8. Let f : R→ R be deϐined as below. Write
∫
R
f dA as an iterated integral.
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Solution: in polar coordinates, the region becomes

1 ≤ r ≤ 2,
π

2
≤ θ ≤ 3π

2
.

Thus, ∫
R
f(x, y) dA =

∫ 2

1

∫ 3π/2

π/2
f(r cos θ, r sin θ)r dθ dr. □

9. Compute
∫ √

2

0

∫√4−y2

0
xy dx dy.

Solution: The region of integrationR is deϐined by

0 ≤ x ≤
√
4− y2, 0 ≤ y ≤

√
2.

We separate this region into two subregionsR1 andR2 with the line y = x. Thus,∫
R
xy dA =

∫
R1

xy dA+

∫
R2

xy dA.

The regions’ geometry indicates that polar coordinates have to be used in the ϐirst
region, while cartesian coordinates will be appropriate in the second region.
In polar coordinates,R1 is

0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
,

whence∫
R1

xy dA =

∫ 2

0

∫ π/4

0
(r cos θ)(r sin θ)r dθ dr =

∫ 2

0

∫ π/4

0
r3 cos θ sin θ dθ dr

=

∫ 2

0

∫ π/4

0

r3

2
sin 2θ dθ dr =

∫ 2

0

[
−r

3

4
cos 2θ

]π/4
0

dθ dr =
∫ 2

0

r3

4
dr =

[
r4

16

]2
0

= 1.
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In cartesian coordinates,R2 is

0 ≤ x ≤
√
2, x ≤ y ≤

√
2,

whence∫
R2

xy dA =

∫ √
2

0

∫ √
2

x
xy dy dx =

∫ √
2

0

[
xy2

2

]√2

0

dx =

∫ √
2

0

x(2− x2)
2

dx

=

[
x2

2
− x4

8

]√2

0

=
1

2
.

Thus,
∫
R xy dA =

∫
R1
xy dA+

∫
R2
xy dA = 1 + 1

2 = 3
2 . □

10. Compute
∫
W

sin(x2 + y2) dV , where W is the cylinder centered about the z axis from
z = −1 to z = 3 and with radius 1.

Solution: in cylindrical coordinates,W is

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, −3 ≤ z ≤ 1.

Thus,∫
W

sin(x2 + y2) dV =

∫ 1

−3

∫ 2π

0

∫ 1

0
sin(r2)r dr dθ dz = 4π(1− cos 1). □

11. Using spherical coordinates, compute the triple integral of f(ρ, θ, φ) = sinφ on the
region deϐined by 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 1 ≤ ρ ≤ 2.

Solution: in spherical coordinates, the region is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 1 ≤ ρ ≤ 2.

Thus, the integral is

I =

∫ 2π

0

∫ π/4

0

∫ 2

1
sinφρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π/4

0

∫ 2

1
ρ2 sin2 φ dρ dφ dθ

=

∫ 2π

0

∫ π/4

0

[
ρ3

3
sin2 φ

]2
1

dφ dθ =
∫ 2π

0

∫ π/4

0

7

3
sin2 φ dφ dθ

=

∫ 2π

0

7

6
[φ− sinφ cosφ]π/40 dθ =

∫ 2π

0

7

12

(π
2
− 1
)

dθ = 14π

12

(π
2
− 1
)
=

7π

6
(π − 1). □

12. Compute ∫ 1

0

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−z2

−
√
1−x2−z2

(x2 + y2 + z2)−1/2 dy dz dx.

Solution: in spherical coordinates, the region of integration is

−π
2
≤ θ ≤ π

2
, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1.
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Thus, the integral is

I =

∫ 1

0

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−z2

−
√
1−x2−z2

(x2 + y2 + z2)−1/2 dy dz dx =

∫ π/2

−π/2

∫ π

0

∫ 1

0

1√
ρ2
ρ2 sinφ dρ dφ dθ

=

∫ π/2

−π/2

∫ π

0

∫ 1

0
ρ sinφ dρ dφ dθ =

∫ π/2

−π/2

∫ π

0

[
ρ2

2
sinφ

]1
0

dφ dθ =
∫ π/2

−π/2

∫ π

0

sinφ
2

dφ dθ

=

∫ π/2

−π/2

[
−cosφ

2

]π
0

dθ =
∫ π/2

−π/2
dθ = π. □

13. Compute ∫ 1

0

∫ 1

−1

∫ √
1−x2

−
√
1−x2

(x2 + y2)−1/2 dy dx dz.

Solution: in cylindrical coordinates, the region of integration is
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

In that case, the integral of interest is

I =

∫ 1

0

∫ 1

−1

∫ √
1−x2

−
√
1−x2

(x2 + y2)−1/2 dy dx dz =
∫ 1

0

∫ 2π

0

∫ 1

0

1√
r2
r dr dθ dz

=

∫ 1

0

∫ 2π

0

∫ 1

0
dr dθ dz = 2π. □

14. Compute
∫ 1

0

∫ 1√
x
ey

3 dy dx.
Solution: the region of integration is given by

0 ≤ x ≤ y2, 0 ≤ y ≤ 1.

Thus, the integral of interest is∫ 1

0

∫ 1

√
x
ey

3 dy dx =

∫ 1

0

∫ y2

0
ey

3 dx dy =

∫ 1

0

[
xey

3
]x=y2

x=0
dy =

∫ 1

0
y2ey

3 dy =

[
ey

3

3

]1
0

=
e− 1

3
. □

15. Sketch the solid bounded by the the surfaces z = 0, y = 0, z = a−x+y and y = a− 1
a
x2,

where a is a positive constant. What is the volume of that solid?
Solution: the solid’s base is the parabolic region in the xy−plane bounded by the
line y = 0 and the parabola y = a− 1

ax
2. The volume of this solid is thus

V =

∫∫
D
(a− x+ y) dA =

∫∫
D
(a+ y) dA,

(why can we eliminate the x in the integral?) so that

V =

∫ a

−a

∫ a− 1
a
x2

0
(a+ y) dy dx =

∫ a

−a

[
ay +

y2

2

]y=a− 1
a
x2

y=0

dx

= 2

∫ a

0

(
3

2
a2 − 2x2 +

x4

2a2

)
dx =

[
3a2x− 4

3
x3 +

1

5a2
x5
]a
0

= 3a3 − 4

3
a3 +

1

5
a3 =

28

15
. □
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16. Evaluate
∫ ln 2

0

∫ ln 5

0
e2x−y dx dy.

Solution: the region of integration appears in red R, while the surface z = e2x−y

shows up in blue.

SinceR is a rectangle, we can proceed directly:∫ ln 2

0

∫ ln 5

0
e2x−y dx dy =

∫ ln 2

0

[
1

2
e2x−y

]x=ln 5

x=0

dy =

∫ ln 2

0
12e−y dy =

[
−12e−y

]y=ln 2

y=0
= 6. □

17. Evaluate
∫ 1

0

∫ 1

0
xy√

x2+y2+1
dx dy.

Solution: the region of integration appears in redR, while the surface z = xy√
x2+y2+1

shows up in blue.
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SinceR is a rectangle, we can proceed directly:

I =

∫ 1

0

∫ 1

0

xy√
x2 + y2 + 1

dx dy

=

∫ 1

0

[
y
√
x2 + y2 + 1

]x=1

x=0
dy =

∫ 1

0
y
[√

y2 + 2−
√
y2 + 1

]
dy

=

∫ 1

0
y
√
y2 + 2 dy −

∫ 1

0
y
√
y2 + 1 dy =

[
1

3
(y2 + 2)3/2

]y=1

y=0

−
[
1

3
(y2 + 1)3/2

]y=1

y=0

=
√
3− 4

3

√
2 +

1

3
. □

18. LetD = {(x, y) | 1 ≤ y ≤ e, y2 ≤ x ≤ y4}. Compute
∫∫

D
1
x
dA.

Solution: the region of integration appears in redR, while the surface z = 1
x shows

up in blue.

The double integral can be expressed as an iterated integral:

∫∫
D

1

x
dA =

∫ e

1

∫ y4

y2

1

x
dx dy =

∫ e

1
[ln |x|]y4

y2
dy =

∫ e

1

[
ln |y4| − ln |y2|

]
dy

=

∫ e

1

[
ln |y2|

]
dy =

∫ e

1

[
ln y2

]
dy = 2

∫ e

1
ln y dy = 2 [y ln y − y]e1 = 2. □

19. What is the volume of the solid lying under the paraboloid z = x2 + y2 and above the
domain bounded by y = x2 and x = y2?

Solution: the domainD is shown below:
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Thus, D = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤
√
x} and the solid of interest is shown in

the following ϐigure:

Its volume is thus

V =

∫∫
D
(x2 + y2) dA =

∫ 1

0

∫ √
x

x2

(x2 + y2) dy dx =

∫ 1

0

[
x2y +

y3

3

]√x

x2

dx

=

∫ 1

0

[
x5/2 − x4 + x3/2

3
− x6

3

]
dx =

[
2

7
x7/2 − x5

5
+

2

15
x5/2 − x7

21

]1
0

=
6

35
. □

20. LetR be the disk of radius 5, centered at the origin. Evaluate
∫∫

R
x dA.

Solution: in polar coordinates,R rewrites as
R(r,θ) = {(r, θ) | 0 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}.
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Since x = r cos θ, the change of variables formula yields∫∫
R
x dA =

∫ 5

0

∫ 2π

0
r cos θ · r dθ dr =

∫ 5

0

∫ 2π

0
r2 cos θ dθ dr =

∫ 5

0

[
r2 sin θ

]2π
0
dr = 0.

Are you suprised by this result? You should not be. □

21. What is the volume of the solid lying under the cone z =
√
x2 + y2 and above the ring

4 ≤ x2 + y2 ≤ 25 located in the xy−plane?

Solution: the solid of interest is shown here:

If R = {(x, y) | 4 ≤ x2 + y2 ≤ 25}, we wish to evaluate
∫∫

R

√
x2 + y2 dA. In polar

coordinates, we have

R(r,θ) = {(r, θ) | 2 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}

and
√
x2 + y2 =

√
r2 = r, whence

∫∫
R

√
x2 + y2 dA =

∫ 5

2

∫ 2π

0
r · r dθ dr =

∫ 5

2

∫ 2π

0
r2 dθ dr =

∫ 5

2
2πr2 dr = 78π. □

22. Compute
∫ 2

0

∫ √
2x−x2

0

√
x2 + y2 dy dx.

Solution: the region of integration is shown below:
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In polar coordinates, this regions rewrites as

R(r,θ) = {(r, θ) : 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 2 cos θ},

whence the integral of interest is

I =

∫ 2

0

∫ √
2x−x2

0

√
x2 + y2 dy dx =

∫ π/2

0

∫ 2 cos θ

0

√
r2 · r dr dθ =

∫ π/2

0

[
r3

3

]r=2 cos θ

r=0

dθ

=

∫ π/2

0

(
8

3
cos3 θ

)
dθ =

[
8

9
cos2 θ sin θ + 16

9
sin θ

]π/2
0

=
16

9
. □

23. Find the mass and the centre of mass of the metal plate occupying the domain

D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 3},

if the density function of the plate is ρ(x, y) = y.
Solution: the total mass of the plate ism =

∫∫
D ρ(x, y) dA, while the coordinates of

the centre of mass (x, y) are given by

x =
1

m

∫∫
D
xρ(x, y) dA and y =

1

m

∫∫
D
yρ(x, y) dA.

Thus,

m =

∫ 2

0

∫ 3

0
y dy dx =

∫ 2

0

[
y2

2

]3
0

dx =

∫ 2

0

9

2
dx = 9

x =
1

9

∫ 2

0

∫ 3

0
xy dy dx =

1

9

∫ 2

0

[
x
y2

2

]3
0

dx =
1

9

∫ 2

0

9

2
x dx = 1

y =
1

9

∫ 2

0

∫ 3

0
y2 dy dx =

1

9

∫ 2

0

[
y3

3

]3
0

dx =
1

9

∫ 2

0
9 dx = 2. □
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24. Evaluate
∫ 3

0

∫ √
9−x2

0

∫ x

0
yz dy dz dx.

Solution: this can be done directly:

I =

∫ 3

0

∫ √
9−x2

0

∫ x

0
yz dy dz dx =

∫ 3

0

∫ √
9−x2

0

[
y2z

2

]x
0

dz dx =

∫ 3

0

∫ √
9−x2

0

x2z

2
dz dx

=

∫ 3

0

[
x2z2

4

]√9−x2

0

dx =

∫ 3

0

x2(9− x2)
4

dx =

[
−x

5

20
+

3

4
x3
]3
0

=
81

10
. □

25. Compute
∫∫∫

E
ex dV , where

E = {(x, y, z) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y, 0 ≤ z ≤ x+ y}.

Solution: again, this can be done directly, with the help of an iterated integral.

I =

∫ 1

0

∫ y

0

∫ x+y

0
ex dz dx dy =

∫ 1

0

∫ y

0
[exz]z=x+y

z=0 dx dy =

∫ 1

0

∫ y

0
ex(x+ y) dx dy

=

∫ 1

0
[ex(x+ y − 1)]x=y

x=0 dy =

∫ 1

0
(ey − 1)(y − 1) dy =

[
2yey − 3ey + y − y2

2

]1
0

=
7

2
− e. □

26. Compute
∫∫∫

E
xz dV , whereE is the pyramidwith vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and

(0, 1, 1).
Solution: we can deϐineE by

E = {(x, y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ y, 0 ≤ x ≤ y − z},

as can be seen on the ϐigure below.
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Thus,

∫∫∫
E
xz dV =

∫ 1

0

∫ y

0

∫ y−z

0
xz dx dz dy =

∫ 1

0

∫ y

0

1

2
(y − z)2z dz dy

=
1

2

∫ 1

0

[
1

2
y2z2 − 2

3
yz3 +

1

4
z4
]z=y

z=0

dy =
1

24

∫ 1

0
y4 dy =

1

24

[
1

25

]1
0

=
1

120
. □

27. LetW be a three-dimensional solid. Its volume can be computed by the following iter-
ated integral:

V (W ) =

∫ 2π

0

∫ 2

0

∫ 4−r2

0

r dz dr dθ.

FindW and V (W ).

Solution: in cartesian coordinates, V (W ) =
∫∫∫

W dV . The volume integral is given
in cylindrical coordinates, from which we can conclude that

W(r,θ,z) = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, 0 ≤ z ≤ 4− r2}.

In cartesian coordinates, the solid of interest lies under the paraboloid z = 4−x2−y2
and above the disk in the xy−plane of radius 2 centered at the origin.

532 Analysis and Topology Course Notes



CHAPTER 21. BOREL-LEBESGUE INTEGRATION

Thus,

V (W ) =

∫ −2

−2

∫ √
4−x2

−
√
4−x2

∫ 4−x2−y2

0
dz dy dx =

∫ 2π

0

∫ 2

0

∫ 4−r2

0
r dz dr dθ

=

∫ 2π

0

∫ 2

0
[rz]z=4−r2

z=0 dr dθ =
∫ 2π

0

∫ 2

0
r(4− r2) dr dθ

=

∫ 2π

0

[
−r

4

4
+ 2r2

]2
0

dθ = 4

∫ 2π

0
dθ = 8π. □

28. LetW be a three-dimensional solid. Its volume can be computed by the following iter-
ated integral: ∫ π/3

0

∫ 2π

0

∫ secφ

0

ρ2 sinφ dρ dθ dφ.

FindW and V (W ).

Solution: in cartesian coordinates, V (W ) =
∫∫∫

W dV . The volume integral is given
in spherical coordinates, from which we can conclude that

W(ρ,θ,φ) = {(ρ, θ, φ) | 0 ≤ ρ ≤ π/3, 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ secφ}.

Using the ϐirst two sets of inequalities, we see that the solid is part of the conewhose
surface is z = 1√

3

√
x2 + y2 (in cartesian coordinates): when the radius is ρ = secφ,

the height of the of the point in cartesian coordinates is automatically 1, as can be
seen when we provide a transverse slice of the cone:
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Thus, the volume of the cone is

V (W ) =

∫ √
3

−
√
3

∫ √
3−x2

−
√
3−x2

∫ 1

1√
3

√
x2+y2

dz dy dx =

∫ π/3

0

∫ 2π

0

∫ secφ

0
ρ2 sinφ dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

[
1

3
ρ3 sinφ

]ρ=sec(φ)

ρ=0

dθ dφ =

∫ π/3

0

[
1

3
sec3 φ sinφθ

]θ=2π

θ=0

dφ

=

∫ π/3

0

2π

3
sec3 φ sinφ dφ =

[π
3

sec2 φ
]π/3
0

= π,

However, you do know how to compute the volume of a cone when the height and
the radius are known: V = 1

3πr
2h. How does that compare to your answer? □

29. Compute
∫∫∫

B
(x2 + y2 + z2) dV , whereB is the unit ball x2 + y2 + z2 ≤ 1.

Solution: in spherical coordinates, the region can be written as
B(ρ,θ,φ) = {(ρ, θ, φ) | 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π},

with ρ2 = x2 + y2 + z2, whence

I =

∫∫∫
B
(x2 + y2 + z2) dV =

∫ 1

0

∫ 2π

0

∫ π

0
ρ2 · ρ2 sinφ dφ dθ dρ

=

∫ 1

0

∫ 2π

0

∫ π

0
ρ4 sinφ dφ dθ dρ =

∫ 1

0

∫ 2π

0

[
−ρ4 cosφ

]φ=π/3

φ=0
dθ dρ

=

∫ 1

0

∫ 2π

0

ρ4

2
dθ dρ =

∫ 1

0
πρ4 dρ = π

[
ρ5

5

]1
0

=
π

5
. □

30. Evaluate ∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dz dx dy.

Solution: □

31. Solution: the volume of integration is deϐined by the solid lying above the the disk of
radius 3 in the ϐirst quadrant of the xy−plane and bounded by the cone z2 = x2+y2

and the sphere x2+y2+z2 = 18; as such, it is the solid of revolution of the following
curve
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around the z axis, under a rotation of π
2 radians:

In spherical coordinates, the region becomes{
(ρ, θ, φ) | 0 ≤ ρ ≤

√
18, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

4

}
with ρ2 = x2 + y2 + z2, whence

I =

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dz dx dy =

∫ √
18

0

∫ π/2

0

∫ π/4

0
ρ2 · ρ2 sinφ dφ dθ dρ

=

∫ √
18

0

∫ π/2

0

∫ π/4

0
ρ4 sinφ dφ dθ dρ =

∫ √
18

0

∫ π/2

0

[
−ρ4 cosφ

]φ=π/4

φ=0
dθ dρ

=

∫ √
18

0

∫ π/2

0
[1− cos(π/4)] ρ4 dθ dρ =

∫ √
18

0

π

2
(1− cos(π/4))ρ4 dρ

=

[
π

2
(1− cos(π/4))ρ

5

5

]√18

0

=
π

2
(1− cos(π/4))

√
18

5

5
. □

32. Compute the volume of the solid bounded by the cone z =
√
x2 + y2 and the sphere of

radius a > 0whose center is located at the origin.

Solution: let

A = B(0, a) ∩ Cone = {(x, y, z) | x2 + y2 + z2 ≤ a2 and z ≥
√
x2 + y2}

If (x, y, z) ∈ A, then
x2 + y2 ≤ z2 ≤ a2 − (x2 + y2),
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whence x2 + y2 ≤ a2

2 . Denote

C =

{
(x, y) | x2 + y2 ≤ a2

2

}
.

We then have

A = {(x, y, z) : (x, y) ∈ C,
√
x2 + y2 ≤ z ≤

√
a2 − (x2 + y2)}

and so

Vol(A) =
∫∫∫

A
dx dy dz =

∫∫
C

(√
a2 − (x2 + y2)−

√
x2 + y2

)
dx dy

=

∫
[0,a/

√
2]

∫
[−π,π]

(√
a2 − r2 − r

)
r dθ dr = · · · = 2πa3

3

(
1− 1√

2

)
. □

33. Compute the volume of the solid bounded by the paraboloı̈ds z = 10 − x2 − y2 and
z = 2(x2 + y2 − 1).

Solution: let

A = {(x, y, z) | 2(x2 + y2 − 1) ≤ z ≤ 10− x2 − y2}

If (x, y, z) ∈ A, then x2 + y2 ≤ 4 (why?). Denote

B = {(x, y) : x2 + y2 ≤ 4}.

We then have

A = {(x, y, z) | (x, y) ∈ B, 2(x2 + y2 − 1) ≤ z ≤ 10− x2 − y2}

and so

Vol(A) =
∫∫∫

A
dx dy dz =

∫∫
B

(
(10− x2 − y2)− 2(x2 + y2 − 1)

)
dx dy

= 3

∫∫
B

(
4− (x2 + y2)

)
dx dy = 3

∫
[0,2]

∫
[−π,π]

(4− r2)r dθ dr = · · · = 24π. □

34. Let T be the triangle with vertices (0, 0), (0, 1) and (1, 0). Compute
∫∫

T
exp

(
y−x
y+x

)
dx dy

using

a) polar coordinates;
b) the change of variables u = y − x, v = y + x.

Solution:
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a) Let x = r cos θ, y = r sin θ. Then

I =

∫∫
T
exp

(
y − x
y + x

)
dx dy

=

∫
[0,π/2]

∫
[0,(sin θ+cos θ)−1]

exp
(sin θ − cos θ

sin θ + cos θ

)
r dr dθ

=

∫
[0,π/2]

exp
(sin θ − cos θ

sin θ + cos θ

)(∫
[0,(sin θ+cos θ)−1]

r dr

)
dθ

=
1

2

∫
[0,π/2]

exp
(sin θ − cos θ

sin θ + cos θ

)(
1

sin θ + cos θ

)2

dθ

Set t = sin θ−cos θ
sin θ+cos θ . Then dt = 2

(sin θ+cos θ)2 dθ so that

I =
1

4

∫
[−1,1]

exp(t) dt = e− e−1

4
.

b) Let y = 1
2(u+ v), x = 1

2(v − u). Then

I =
1

2

∫∫
T ′

exp
(u
v

)
du dV

where T ′ is the triangle in the uv−plane bounded by the points (0, 0), (−1, 1)
and (1, 1). Then

I =
1

2

∫
[0,1]

∫
[−v,v]

exp
(u
v

)
du dV = · · · = e− e−1

4
. □

35. Compute the area of the planar region bounded by y = x2, y = 2x2, x = y2 and x = 3y2.
Solution: denote the region in question by D and set u = y

x2 and v = x
y2

. Then
(x, y) ∈ D if and only if (u, v) ∈ R, where R is the rectangle deϐined by 1 ≤ u ≤ 2
and 1 ≤ v ≤ 3. Let φ : D → R be deϐined by φ(x, y) = (u, v) = ( y

x2 ,
x
y2
). Then we

have
Jφ(x, y) = detDφ(x, y) = 3

x2y2
= 3u2v2

and ∣∣Jφ−1(u, v)
∣∣ = 1

|Jφ(x, y)|
=

1

3u2v2
.

Consequently,

Area(D) =

∫∫
D

dx dy =

∫∫
R

1

3u2v2
du dV =

1

3

∫
[1,2]

∫
[1,3]

1

v2u2
dV du = · · · = 1

9
. □

36. For what values of k ∈ R does the integral∫∫
x2+y2≤1

dx dy
(x2 + y2)k

converge? For each such k, ϐind the value to which it converges.
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Solution: ϐirst, note that∫∫
x2+y2≤1

dx dy
(x2 + y2)k

= lim
ε→0

∫∫
ε2≤x2+y2≤1

dx dy
(x2 + y2)k

.

In polar coordinates, we have∫∫
ε2≤x2+y2≤1

dx dy
(x2 + y2)k

=

∫
[ε,1]

∫
[0,2π]

1

r2k−1
dθ dr = 2π

∫
[ε,1]

dr

r2k−1
.

Then,
lim
ε→0

∫
[ε,1]

dr

r2k−1

if and only if 2k − 1 < 1, i.e. k < 1. Furthermore,∫
[ε,1]

dr

r2k−1
=

1

2(1− k)
− ε2(1−k)

2(1− k)
,

and so ∫∫
x2+y2≤1

dx dy
(x2 + y2)k

=
π

1− k

when k < 1. □

37. Find the volume of the solid bounded by the interior of the sphere x2+y2+z2 = a2 and
the interior of the cylinder x2 + y2 = a2, a > 0.

Solution: let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ a2}.

We have

V = 2

∫∫
B

√
2a2 − (x2 + y2) dx dy = 2

∫
[0,a]

∫
[0,2π]

√
2a2 − r2 dθ dr

= 4π

∫
[0,a]

√
2a2 − r2r dr = · · · = 4π

3

(
23/2 − 1

)
a3. □

38. Find the volume of the solid bounded by the interior of the cone z2 = x2+y2 lying above
the paraboloı̈d z = 6− x2 − y2.

Solution: let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ 4}.

We have

V = 2

∫∫
B

(
6− (x2 + y2)−

√
x2 + y2

)
dx dy =

∫
[0,2]

∫
[0,2π]

(6− r2 − r)r dθ dr

= 2π

∫
[0,2]

(6− r2 − r)r dθ dr = · · · = 32π

3
. □
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39. Find thevolumeof the solidboundedby theplane z = 3x+4y lyingbelow theparaboloı̈d
z = x2 + y2.

Solution: the intersection of the paraboloı̈d and the plane is {(x, y, z) | 3x + 4y =
z = x2 + y2}. The set

D = {(x, y) | 3x+ 4y = x2 + y2}

is the circle of radius 5
2 centered at (32 , 2). For every (x, y) ∈ D, x2 + y2 ≤ 3x + 4y.

Let V be the volume sought. Set

B = {(x, y) | x2 + y2 ≤ 4}.

We have
V =

∫∫
B

(
3x+ 4y − (x2 + y2)

)
dx dy.

Using the change of variable

x =
3

2
+ r cos θ, y = 2 + r sin θ,

we obtain V = 1875π
64 . □

21.9 Exercises
1. Prepare a 2-page summary of this chapter, with important deϐinitions and results.

2. LetS be a σ−algebra. Show that

a) A1, A2, . . . , An, . . . ∈ S =⇒
∩

n≥1An ∈ S;
b) A,B ∈ S =⇒ A ∩Bc ∈ S, and
c) ∅,Rn ∈ S.

3. Complete the proof of Lemma 291.1.

4. Compute
∫∫

s1(x, y) dx dy and
∫∫

s2(x, y) dx dy in the example of Section 21.3.

5. In the example of Section 21.3, show that:

a) for 1 ≤ i ≤ 2n, we have Area(An
i ) =

1
4n

(
i− 1

2

)
;

b) for 2n + 1 ≤ i ≤ 2n+1, we have Area(An
i ) =

1
4n

(
2n+1 − i− 1

2

)
.

6. Complete the proof of Corollary 294.

7. Is the converse of the third solved problem (Borel-Lebesgue integration onRn) true?

8. Let f : R2 → R be a Borel function and d ∈ R. Show that {z ∈ R2 | f(z) < d} ∈ B(R2).

9. Complete the proof of Proposition 289 for f + g and fg.
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10. Show that if g : R2 → R and

{z ∈ R2 | g(z) < d} ∈ B(R2)

for all d ∈ R, then g is a Borel function.

11. Show thatQ2 is dense in R2 but that Area(Q2) = 0.

12. Show that Vn = {f : Rn → R | f ϐinite, Borel, integrable} is a vector space and that the
Borel-Lebesgue integral is a linear functional over Vn.

13. Complete the proof of Theorem 301.

14. Let f : R2 → R be deϐined by f(z) = exp(−∥z∥2). Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

15. Let f : R2 → R be deϐined by

f(z) =

{
x2 + y2 if (x, y) ∈ [0, 1]× [0, 1]

0 otherwise

Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

16. Let f : R2 → R be deϐined by

f(z) =

{
x2 + y2 if x2 + y2 ≤ 1

0 otherwise

Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R2. Can you use the sequence to compute
∫
f dm? If

so, do so.

17. Let f : R3 → R be deϐined by

f(z) =

{
x+ y + z if (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1]

0 otherwise
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Find a sequence of simple functions

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ f

for which sn(z)→ f(z) for all z ∈ R3. Can you use the sequence to compute
∫
f dm? If

so, do so.

18. Give a proof of the Lebesgue monotone convergence theorem.

19. Prove Theorem 300.

20. Show thatΨ(r, θ) = (x, y) is a diffeomorphism between U and V for polar coordinates.

21. Show that |JΨ(r, φ, θ)| = r2 sinφ for spherical coordinates.

22. What is the volume of the solid deϐined by the intersection of the two cylindersx2+z2 =
1 and y2 + z2 = 1?

23. What is the volume of the solid Q directly above the region bounded by 0 ≤ x ≤ 1,
1 ≤ y ≤ 2 in the xy−plane and below the plane z = 4− x− y?

24. Evaluate the integral
∫∫

D
x2y dx dywhereD is the region bounded by the curves y = x2

and x = y2 in the ϐirst quadrant.

25. Let f, f1 : I → R be two continuous functions for which f1 ≤ f . If

A = {(x, y) ∈ R2 | f1(x) ≤ y ≤ f(x)},

show that ∫∫
χA(x, y) dx dy =

∫
I

(f1(x)− f(x)) dx.

Can you use this result to show that

Graph(f) = {(x, f(x)) | x ∈ I}

has 2Dmeasure 0?

26. The Gamma and Beta functions are deϐined by

Γ(x) =

∫ ∞

0

tx−1e−t dt, for x > 0

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, for x > 0, y > 0

Show that the following properties hold:

a) Γ(x+ 1) = xΓ(x), (x > 0);
b) Γ(n+ 1) = n!, (n = 0, 1, 2, . . .);
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c) Γ(x) = 2
∫∞
0
s2x−1e−s2 ds, (x > 0);

d) Γ(1
2
) =
√
π, Γ(3

2
) =

√
π
2
;

e) B(x, y) = 2
∫ π/2

0
cos2x−1 θ sin2y−1 θ dθ, (x > 0, y > 0);

f) B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, (x > 0, y > 0).

27. Find the volumeof the solid boundedby the interior of each of the cylindersx2+y2 = a2,
x2 + z2 = a2 and y2 + z2 = a2, a > 0.

28. Let S be the sphere of radius a > 0 centered at (0, 0, a). Show that
∫∫∫

S
z2 dx dy dz =

8
5
πa5.

29. Compute
∫∫∫

e−(x2+y2+z2) dx dy dz.

30. Show that S1 = {(x, y) | x2 + y2 = 1} has 2Dmeasure 0.

31. Show that every countable subset of R2 has 2Dmeasure 0.
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Complex Analysis Fundamentals

Coming soon.
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Stone-Weierstrass Theorem

Coming soon.
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Baire’s Theorem

Coming soon.
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Hale’s Theorem

Coming soon.
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Coming soon.
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A Classical Hilbert Space Example

Coming soon.
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