Programming Primer

by Patrick Boily and Jen Schellinck, with contributions from Kevin Cheung, Aidan Crowther, Chunyun Ma, and Ehssan Ghashim

Programming languages go in and out of style. To be a strong programmer, it is important to understand not just the ins and outs of a particular programming language, but how computer languages and computing infrastructure work more generally.

In this chapter, learners are first introduced to some of the core concepts of computer programming in a language-agnostic way, before being shown the basics of R and Python, two of the most common programming languages used in modern data analysis.

1.1 Programming Fundamentals

What are computer code and computer programs? Is there a difference between these two concepts? (see [4] for a discussion on the topic).
In a nutshell, a computer program is an algorithm, written in a computer language, providing instructions to a computer for carrying out a series of operations. An example of a computer program is provided in Figure 1.1.

Computer programs can be compiled or interpreted as a series of hardware operations, carried out by a computer's electrical components.

1.1.1 Compiled vs. Interpreted Languages

Compilers translate full source code programs, written in high-level language (i.e., using natural languages, only "understandable" by people, as in Figure 1.1) into machine language (i.e., binary code, only "understandable" by computers): they are basically grammatical (syntactic) checkers - if the source code is error-free, it is converted into machine code, which is eventually run by an executable file. Compiled code runs quickly, and is thus favoured for deployment phase. Commonly-used compiled languages include C/C++/C\#, COBOL, Fortran, Pascal, and Julia.

Interpreters execute the source code directly: as long as an individual statement is error-free (in the context of the available workspace), it can be executed every time it is called, without regard for the overall syntax of the file. Interpreters are slower, generally, and are favoured during the development phase. Commonly-used interpreted languages include $R,{ }^{1}$ Python, JavaScript, and Ruby.
1.1 Programming Fundamentals . 1

Compiled vs. Interpreted . . . 1
Some Fundamental Concepts . 2
Code Components 4
Designing With Pseudo-Code 7
From Pseudo-Code to Code . . 9
Debugging 10
R/Python 10
1.2 Introduction to R 12

Why Use R 12
Installing R / RStudio 12
Test, Test, Test! 13
Customizing RStudio 14
Upgrading R / RStudio 15
Basics of R 15
1.3 More Programming in R . . . 27

Help and Documentation . . 27
Simple Data Manipulation . 29
Exploring Data 34
A Word About NAs 39
Loops and Conditions 40
1.4 The tidyverse 40

Pipeline Operator 41
Tidy Data 42
The dplyr Package 44
1.5 Basics of Python 47

IDE for Python 48
Introduction to Python 48
NumPy and Arrays 67
1.6 Python for Data Science . . . 72

Pandas and Data Frames . . . 72
Data Wrangling 78
Data Aggregation 83
Combining Python with R . . 85
1.7 Getting Started with SQL . . 86

Basics 86
SQL Syntax 87
Key Query Operators 88
Examples 96
1.8 Exercises 98

Chapter References 106

1: Most programmers do not consider R to be a programming language. If they are feeling generous, they might dub it a scripting language, at best. But it gets the job done for data analysis purposes.

```
#include <stdio.h>
int main()
{
    double firstNumber, secondNumber, temporaryVariable;
    printf("Enter first number: ");
    scanf("%lf", &firstNumber);
    printf("Enter second number: ");
    scanf("%lf",&secondNumber);
    // Value of firstNumber is assigned to temporaryVariable
    temporaryVariable = firstNumber;
    // Value of secondNumber is assigned to firstNumber
    firstNumber = secondNumber;
    // Value of temporaryVariable (which contains the initial value of firstNumber)
    secondNumber = temporaryVariable;
    printf("\nAfter swapping, firstNumber = %.2lf\n", firstNumber);
    printf("After swapping, secondNumber = %.2lf", secondNumber);
    return 0;
}
```

Figure 1.1: An example of a computer program written in the computer language C. What do you suppose this program does? (Programiz © .)

1.1.2 Some Fundamental Concepts

We have been using the terms "computer language" and "algorithm" as though they were everyday words. Let us take the time to ensure that their meanings are clear.

Formal Language

In a formal language, words are created by combining letters from a predefined alphabet, according to the rules provided by a formal grammar. Everything that is formed according to the rules is an acceptable word; anything else is not.

Example: Consider the formal language defined with

- alphabet: $\{a, b, C, D,!\}$
- grammatical rules:

1. letters may only be placed immediately to the left or to the right of another letter
2. a letter instance must always be accompanied by another instance of the same letter at some location either to its left and/or to its right (or both)
3. an upper case letter must always be accompanied by a lower case letter immediately to its left or to its right

Thus, aa is a word in this formal language (rules 2 and 3 are clearly satisfied; rule 3 is satisfied vacuously), as is bCaCab, but !aC!, DDaa, and Patrick are not (why?).

Formal languages can sometimes seem ridiculous - of course letters may only be placed to the left or to the right of other letters... where else would they go? Well, rule 1 officially (and formally) eliminates letters piling up on top of one another, for starter, but also spaces between words (for that language, the space ${ }_{-}$is not in the alphabet of letters).

Human languages, of the sort deemed natural (in contrast with artificial or constructed languages) are formal, in theory. In practice, their grammars tend to be flexible (more so with English than French, say) - syntax evolves with cultures (in time and in space), and semantics (meaning) can be retained even when the grammar is mangled. ${ }^{2}$

Computer Language

Computer languages are languages constructed to provide instructions to a computer, in such a way that they can be compiled into low-level instructions that the computer processor can execute.

Computer languages are also called programming languages, for reasons that will soon become obvious. They are formal languages because if the grammatical rules are not followed to the letter, the program cannot be executed - computers cannot guess or infer what the programmer really meant when the syntax is out of sorts.

The structure of the formal definition of a computer language contains the following sections:

1. Lexical Rules

2. Syntax Rules

- Grammar Productions
- Operator Associativities and Precedences

3. Typing Rules

- Declarations
- Type Consistency Requirements (Function Definitions, Expressions, Statements)

4. Operational Characteristics

- Data (Scalars, String Constants, Arrays)
- Expressions (Order of Evaluation, Type Conversion, Array Indexing)
- Assignment Statements (Order of Evaluation, Type Conversion)
- Functions (Evaluation of Actuals, Parameter Passing, Return From a Function)

5. Program Execution

As an illustration, the lexical rules of C are shown in Figure 1.2.

In the lexical and syntax rules given below, BNF notation characters are written in green.

- Alternatives are separated by vertical bars: i.e., ' $a \mid b$ ' stands for " a or b ".
- Square brackets indicate optionality: '[a]' stands for an optional a, i.e., "al epsilon" (here, epsilon refers to the empty sequence).
- Curly braces indicate repetition: '\{ a \}' stands for "epsilon | a | aal aaal..."

1. Lexical Rules


```
id \(\quad::=\) letter \(\{\) letter | digit | _ \}
intcon \(\quad:=\) digit \(\{\) digit \(\}\)
charcon ::= 'ch' | '\n' | ' 10 ', where ch denotes any printable ASCII character, as specified by isprint(), other than \(\backslash\) (backslash) and
stringcon \(::=\) "\{ch\}", where ch denotes any printable ASCII character (as specified by isprint()) other than " (double quotes) and the newline
stringcon ::= character.
Comments Comments are as in C, i.e. a sequence of characters preceded by \(/ *\) and followed by */, and not containing any occurrence of \(/\).
```

Figure 1.2: Lexical rules of the programming language C Debray C^{T}.

3: Delicious!

Algorithm

Computer programs are algorithms, which is to say, sequences of instructions with (at least) one well-defined stopping point (an instruction that tells the program when to stop running).

Algorithms are not always mathematical or computer-based. In some sense, we could think of recipes as algorithms as well: the baking/cooking steps are presented in sequence, and some last step that must be completed before the end product can be eaten.

For instance, here is an algorithm to make muffins: ${ }^{3}$

1. Pour $1 / 2$ cup of flour into a bowl.
2. Break one egg into the bowl.
3. Pour 3 tablespoons of oil into the bowl.
4. Pour 1 teaspoon of baking powder into the bowl.
5. Pour $1 / 4$ cup of sugar into the bowl.
6. Mix with spoon until smooth.
7. Pour the mixture into muffin tins.
8. Bake for 15 minutes at 350 degrees Fahrenheit.
9. Let cool before eating.
10. Enjoy!

What is the stopping point? What is the outcome?

1.1.3 Code Components

Various sets of instructions, conventions, and structures are so fundamental to computer programming aims that they can be found in nearly all computer languages.

These fundamental code elements include:

- Variables
- Data Structures
- Operators
- Statements and Expressions
- Blocks (and Scope)

Figure 1.3: Computer code elements in action, for the scripting language R.

- Functions
- Logical (Control) Flow
- Libraries/Packages/Modules
- Inputs/Outputs
- Interpreters/Compilers

How these components mesh with one another depends on the syntax of the programming language under consideration (or its dialect).

In Figure 1.3, we see how this could be done in base R, for instance. This particular chunk of code uses the
igraph library (specifically, its pre-compiled functions plot (), sample_gnp(), ecount(), and V()),
and builds the
user-defined function my_graph_function () via a code block,
which takes in as
inputs the variables my_number_nodes, my_colour, and my_density.

This function creates a
graph data structure my_graph,
and colours the graph's vertices using my_colour as long as
some conditional logic statement relating to the number of edges in the graphs and my_number_nodes is satisfied.

The function generates a visualization of the graph as an
output,
which is displayed when the function call is issued.

4: The seed enforces replicability.
The code is seen in action below: it creates and displays a 30 -node, green-coloured, non-directed, loop-free graph with probability 0.3 of there being an edge between two arbitrary nodes (we will discuss what these concepts represent in Chapter 29, (Social) Network Data Analysis). ${ }^{4}$

```
Creating a random graph
library(igraph)
my_graph_function <- function(my_number_nodes,
            my_colour,
                    my_density) \{
        my_graph = sample_gnp(my_number_nodes,
                        my_density,
                        directed=FALSE,
                        loops = FALSE)
        if(ecount(my_graph) >= my_number_nodes) \{
            V(my_graph) \$color <- my_colour
        \}
    plot(my_graph,
        layout = layout.fruchterman.reingold,
        vertex.color = V(my_graph)\$color)
\}
set.seed (0)
my_graph_function(30,"green", 0.3)
```


If all of this seems mysterious and opaque at first, it is important to remember that mastering a computer language requires time and practice.

Some languages are dialects or variants of other languages; ${ }^{5}$ proficiency in one can make it is easier to become proficient in another. But not all programming languages follow the same paradigm: imperative languages (object-oriented programming) live in a different "linguistic family" than declarative languages (functional programming) languages.

1.1.4 Designing With Pseudo-Code

Before we can start thinking about writing code (in whatever programming language whose syntax we have mastered), we need to think about what it means to design an algorithm (or a computer program). From a mathematical perspective, an algorithm is a (stochastic) function. We thus need to specify:

- the algorithm's inputs;
- its outputs, and
- the procedure to transform the inputs into the outputs. ${ }^{6}$

It is good programming practice to avoid typing up programs on the fly - code needs to be planned: we need to know what the program will do and how it will go about doing it before we commit it to a file, independently of the language in which it will be implemented.
"Pseudo-code" is a term used to describe a rough sketch of the algorithm, which indicates its expected inputs, outputs, and steps, while leaving the specifics of its functionality in "black boxes". Pseudo-code is usually designed with the main elements of code (e.g., variables, functions, logical flow, etc.), in a language-agnostic (i.e., human readable) manner.

Example: we might be interested in building an algorithm that would cluster the observations in a dataset, using a maximum number of "local" observations (see Chapters 19, Machine Learning 101, and 22, Spotlight on Clustering, for an in-depth discussion of this topic).

What might the following chunk of pseudo-code (which is part of the bigger clustering picture) do?

```
Chunk of pseudo-code
find_neighbours(array_of_points, max_n_neighbour_distance)
{
    for each point[i] in array_of_points
    {
        for each remaining point[j] in array_of_points
    {
        distance_between_ij = distance(point[i], point[j])
        if distance_between_ij <= max_n_neighbour_distance
        then neighbours[i] = add_to_neighbrs(point[i],point[j])
    }
}
}
```

5: Or at least, are mutually intelligible, like Swedish and Danish, say.

6: In the muffin recipe above, the ingredients are the inputs, the muffins themselves are the outputs, and the recipe instructions describe the transformation.

- comdr

Figure 1.4: The first stage of pseudo-coding, in all its chicken scratch glory.

7: Their eventual implementation may change depending on the computer language selected to write the program.
8: Of course, in practice, we also do not sit down and write pseudo-code on the fly... that too must be planned (see Figure 1.4).

9: This is easier said than done, obviously, and it looks an awful lot like the definition of an algorithm we provided previously, but remember that parts of the pseudocode can be "black boxed", which is to say, that functionality can be described at a high level.

This is what is happening:

- the algorithm find_neighbours () takes as inputs a dataset array_ of_points and a quantity max_n_neighbour_distance;
- for each observation point [i] in the dataset (i indexes the observetions), it considers all other observations point [j] and computes their distances to the initial observation point [i] (one by one);
- when these distances are smaller than the input threshold max_n_neighbour_distance, it considers that the corresponding observatron point [j] is a neighbour of observation point [i], and adds the former to the neighbours of observation point [i].

Evidently, this chunk of pseudo-code defines the neighbourhood of each observation in the dataset. Note the black box functions distance () and add_to_neighbrs(): their specifics are not provided, ${ }^{7}$ but what they represent is clear. That is the power of pseudo-code. ${ }^{8}$

Getting a feel for the right level of pseudo code detail takes practice: should we drill down into what add_to_neighbrs() does? Do we need to describe what <= does? How much utility should be sacrificed in favour of understanding?

The answers to these questions depends on the level of abstraction of the programming language used to implement the algorithm:

- high-level languages (such as R and Python) contain tons of builtin functions, which allow for programming at higher levels of abstraction, whereas
" many details and functions must be programmed "by hand" in low-level languages (such as assembly and machine languages), which require lower levels.

The strategy to write useful pseudo-code is deceptively simple:
define the available inputs;
2. define the desired outputs, and
3. identify (and write down) a set of programmatic instructions (procedure) to transform the inputs into the outputs. ${ }^{9}$

1.1.5 From Pseudo-Code to Code That Runs

Once we are satisfied that the pseudo-code provides a decent path to solving the problem at hand, ${ }^{10}$, we can start thinking about how to implement it into real code ("code that runs"):

1. we start by determining the appropriate syntax for the computer language that will be used and we re-write the pseudo-code as syntactically correct code in this language;
2. we replace all "black box" functions with real code, and
3. we determine how to connect the real code (the software) to the computer, so that it can be compiled/interpreted, and run by the computer (receiving inputs and generating outputs).

It might take multiple tries before this is done successfully. That is to be expected. It takes time, even for the most gifted programmer, to become an expert in a new language. The urge to feel defeated if (when?) the first few attempts fail is completely natural; as always, practice is the answer.

The process of taking the high-level code (which is really a text file) and getting it to run on a computer without a hitch requires a certain amount of infrastructure to be in place:

- libraries
- input/output + file system
- compilers/interpreters

In these notes, we are taking care of much of these issues by setting up the R/Python examples internally and running them locally (using our infrastructure); this works well for illustrating the concepts and working with pedagogical datasets, but the infrastructure conundrum must be tackled and solve before it becomes possible to produce useful and actionable data analysis results (see Chapter 17, Data Engineering and Data Management, for more details).

In general, there is no single authoritative reference manual describing how to use a particular computer language and / or how to make code run on particular hardware configurations, in no small part because coding and computer references become obsolete in the blink of an eye. ${ }^{11}$

Successfully coders must be embedded in a community of coders. Luckily, this is getting to be easier to do every day - most questions anybody could ever have about specific aspects of coding have already been answered somewhere online. Stack Exchange ${ }^{〔}$ and similar sites can be quite useful in that regard. ${ }^{12}$

As a last remark on the topic, keep in mind that in the real coding world, there is no such thing as cheating: the objectives are to make happen the things you want to see happen. Getting help along the way is emphatically not prohibited (mind you, it is good practice to cite or acknowledge such help).
Crucially, though, we should not use code when we do not understand what it does - borrowed code may make complete sense in the context for which it was written, but may have unintended ramifications in a different context: be careful!

10: The proposed solution does not need to be final.

11: Consider the change from Python 2 to Python 3 as a cautionary tale.

12: Fair warning: some coder communities can be ... let us say, not overly welcoming of neophytes. It is not unusual for the answer to a question to be some variation on "look it up in the documentation". While this can be true in a general sense, such an answer is useless. We all know that things can be looked up in the documentation. And we all know that some users ask questions without taking the time to think about things, or in the hope that somebody else will do their work for them. It is in the best interest of learners to seek communities that make a concerted effort to be healthy and inclusive, to recognize that not every user has reached the same proficiency level. Such communities are plentiful online; do not waste any time and energy on gatekeepers.

1.1.6 Debugging

PROGRAMMERS DRINKING SONG:

99 little bugs in the code, 99 bugs in the code, fix one bug, compile it again, 141 little bugs in the code.
141 little bugs in the code.....
$($ Repeat until bugs $=0)$
Mistakes WILL happen. What do we do about that?
In the development phase, coding is about getting all the moving pieces to fit together, yes, but it is also about fixing the bugs \square^{\square}, an "error in the source code that causes a program to produce unexpected results or crash altogether". Fixing these bugs (debugging) is mainly about revealing what is in memory at different points in the control flow of the code, to determine if it is actually doing what we think it ought to be doing.

As the quote at the start of the section implies, debugging is a bit of an art form, requiring the programmer to become a detective and a zen master (see The Tao of Programming ${ }^{\top}$). It teaches perseverance and humility, and it really helps us perfect our understanding of the language, of the code itself, and of the task at hand.

Debugging tools can help with all of this; at our level, debugging often requires running the code line-by-line until we can identify the chunk of code that is the culprit. Debugging is a necessary part of coding, no matter how experienced you are.

1.1.7 R/Python

There is only so much that can be said about programming in general; at some point, we need to select a computer language and get going in earnest.

At a foundational level, most programming languages are roughly equivalent (Turing-complete or Turing-equivalent), in the sense that anything that can be done with one can also (more or less) be done with another. But that does not mean that they are all equally useful.

Some are better suited to certain tasks, whether because they are less memory-intensive, or more elegant, or more intuitive, and so on. Even in the data analysis world, there are competing paradigms. In these notes, we will use two of the most popular languages (although by no mean the only ones): R and Python.

In the examples we provide, R code appears in blue boxes:

```
... some R code ...
```

Whereas Python code appears in green boxes:

Object-Oriented Languages vs. Procedural Languages R and Python are objected-oriented languages, as opposed to procedural languages.

The focus of procedural programming is to break down a programming task into a collection of variables, data structures, and subroutines, whereas in object-oriented programming it is to break down a programming task into objects that expose behavior (methods) and data (members or attributes) using interfaces. The most important distinction is that while procedural programming uses procedures to operate on data structures, object-oriented programming bundles the two together, so an "object", which is an instance of a class, operates on its "own" data structure. [3]

This will make more sense if we first understand the concepts of:

- data types
- data structures
- functions

Languages have a set of built-in basic variable types, such as:

- integer: 5
- character: 'm'
- list: $(5,3,9)$

Other variables types can be built up out of these basic types, such as
" strings, which are list of characters: ('t', 'a', 'b', ' 1 ', ' ${ }^{\prime}$ ')
We can also define related variables - a data structure:

- struct myNames = \{string firstName, string middleName, string lastName\}
- jenNames might be a variable of type myNames, with firstName = Jen, middleName = Adele, lastName = Schellinck.

In addition a programmer might want to be able to carry out a set of predefined instructions, or functions, on that data structure:

- jenNames.print_middleName or
- jenNames.string_length_lastName, say (what these functions do should be clear from their name).

Loosely speaking, an object is a user-defined data structure, together with a set of functions that are specific to that structure.

The data frame object in R is structured similarly to a spreadsheet:

- it has rows and columns, with associated row and column names, and
- we can carry out predefined operations (mean, count, etc.) on specific values, on selected rows, or selected columns, or the data frame as a whole.

Learners that are familiar with databases and/or languages that are more vector-focused (e.g. Java) might find the data frame implementation in R frustrating; those who are familiar with matrices and other mathematical concepts used in data analysis, less so.

3: You can browse and ask questions a StackOverflow C^{\top}, and consult worked-out examples on R-bloggers ${ }^{\top}$, for instance.

4: Note that these instructions can quickly become obsolete; we will do what we can to stay on top of them, but you may need to consult other sources or search for "Installing R and RStudio" online. Consult Upgrading R and/or RStudio on 15 for details.

1.2 Introduction to R

R is a powerful language that is widely-used for data analysis and statistical computing. It was developed in the early 90s by Ross Ihaka and Robert Gentleman, as a successor to S , a statistical programming language.

The inclusion of sophisticated packages (such as dplyr, tidyr, readr, data. table, SparkR, ggplot2, etc.) has made R both more powerful and more useful, allowing for smart data manipulation, visualization, and computation, using its built-in data structures and functionality.

Notably, it has gained prominence as a free and open source alternative to expensive statistical software.

1.2.1 Why Use R

Here are some benefits that potential users might note:

- the style of coding is intuitive;
- R is open source and free;
- more than 18,500 packages, customized for various computation tasks, are available (as of February 2022);
- the R community is overwhelmingly welcoming and useful to new users and experienced users alike; ${ }^{13}$
- high performance computing experience is possible (with the appropriate packages), and
- is is one of the highly sought skills by analytics and data science companies.

1.2.2 Installing R / RStudio

Note: If you have a pre-existing installation of R and/or RStudio, you may skip this part. However, we highly recommend that both of these applications be upgraded to the most recent version, if they have not been upgraded for a while. ${ }^{14}$

Data analysis can be conducted using the vanilla (base) version of R , but also using RStudio provides a better coding experience, in our opinion.

The following steps will allow you to install R and RStudio.

1. Download and install R at https:/ / cloud.r-project.org C^{T}.

- Windows users should click on Download R for Windows, then click on base, then click on the Download R X.X.X for Windows link, where R X.X.X is the version number. For example, the latest version of R as of 2022-02-07, was R 4.1.2;
- macOS users should click on Download R for macOS, then on R-X.X.X.pkg (under "Latest release::"), where R-X.X.X is the version number. If the Mac has an Arm-based M1 chip, choose R-X.X.X-arm64.pkg instead;
- Linux users should click on Download R for Linux and choose the specific distribution for more information on installing R for their actual setup.

2. Download and install RStudio at posit.co / download/rstudio-desktop/\#download © ${ }^{7}$.

- look for the big blue button that says DOWNLOAD RSTUDIO DESKTOP FOR ..., where . . . represents the desired OS;
- click on the button to start downloading;
- Once downloading has completed, double-click the file to open it, and follow the installation instruction.

3. (for macOS users only): Download and install XQuartz. ${ }^{15}$
" go to https:/ /www.xquartz.org T. Under "Quick Download", click on "XQuartz-2.8.1.dmg";

- save the . dmg file, double-click it to open, and follow the installation instructions (you may need to restart your computer).
- Reminder: you will need to re-install XQuartz when upgrading your macOS to a new major version.

4. Even with both R and RStudio installed, we will refrain from working directly with the R interface, given that RStudio provides such a "nice" shell over the engine that is R.

Once RStudio is opened, the graphic user interface (GUI) displays 4 panes, as in Figure 1.5.

- Console: bottom left; this area shows the output of code that has been run (either from the command line in the console or from the script window);
- Script: top left; as the name suggests, this is the area one would typically use to write code. Lines can be run by first selecting them (right-clicking) and pressing ctrl + enter (win) or cmd + enter (mac) simultaneously. Alternatively, you can click on the little 'Run' button located at the top right corner of the script window;
- Environment: top right; this space displays the set of external elements that have been added. This includes data set, variables, vectors, functions etc. This area allows the user to verify that data has been loaded properly;
- Graphical Output: bottom right; this space display the graphs created during exploratory data analysis, or embedded help on package functions from R's official documentation.

1.2.3 Test, Test, Test!

To make sure you have installed both R and RStudio properly, type a simple command in the console. For example, place your cursor in the pane labelled Console, type $x<-2+2$ at the prompt, followed by enter or return, then type x, again followed by enter or return.

```
Testing R
x<-2 + 2
x
```

You should see the value 4 printed to the screen.

15: What is XQuartz and why does macOS users need it? ©

Figure 1.5: RStudio interface, with 4 default windows: Console, Script, Environment, and Graphical Output.

16: Feel free to ignore the suggestion as you wish.

1.2.4 Customizing RStudio

We would like to suggest the following settings for your R/RStudio installation, following [16, ch.8]. ${ }^{16}$ In RStudio, go to Tools >> Global Options, and make the changes described below:

[These settings] will cause you some short-term pain, because now when you restart RStudio it will not remember the results of the code that you ran last time. But this short-term pain will save you long-term agony because it forces you to capture all important interactions in your source code. There's nothing worse than discovering three months after the fact that you've only stored the results of an important calculation in your workspace, not the calculation itself in your source code. [16]

Optionally, you could also adjust the font size via Tools >> Global Options >> Appearance >> Editor font size. ${ }^{17}$

1.2.5 Upgrading R / RStudio

We suggest always working with the latest version of R and RStudio.

- To upgrade R, find out the current version of R running on your computer. You can do so from within the RStudio Console:

R version
 R.version.string

[1] "R version 4.1 .3 (2022-03-10)"
As of January 2023, the most recent version of R is 4.2.2. If you have an older version installed on your computer, go to cloud.rproject.org ${ }^{[\pi}$ and follow the steps described in on p. 12 (Installing $R / R S t u d i o)$ to install the latest version of R. You can confirm that the upgrade was successful by restarting RStudio and typing R.version.string in the console again.

- To upgrade RStudio from within RStudio, go to Help > Check for Updates to install newer version of RStudio (if available). Once both R and RStudio have been upgraded, test by typing some simple command in the console (as on p. 13, Test, Test, Test!).

1.2.6 Basics of R

How are the elements of code (introduced in Code Components on p. 4) implemented in R? How do they mesh with one another to form interpretable code? First, we should mention that while R is technically object-oriented, this tends to be hidden in practice; the language is thus especially well-suited for quick, interactive, and intuitive scripting and data exploration.

Note as well that it uses special built-in notation for statistical models, which would not usually be found in other languages (hence the "statistical programming" moniker). Some of the examples and explanations provided in the text are modified from [16, $6,5,11,2,8,12$].

The rest of this section contain information on the basic use of R ; more examples are available in Section 1.3 (More About Programming in R) and throughout the course notes.

17: By default, it is set at 12 , but a larger font size may be easier on the eyes.

Simple Computations in \mathbf{R} We will get familiar with the R coding environment, we start by showing how the console can be used as an interactive calculator.

Type the first line of each group in your console, followed by a carriage return to confirm that R works as we would expect of a calculator:
$2+3$
[1] 5

```
(3*8)/(2*3)
```

[1] 4

$\log (12)$

[1] 2.484907

sqrt(121)

[1] 11

You can experiment with various combinations of calculations.
Should you want to modify or repeat a prior calculation, press the Up Arrow when the cursor is in the console to cycle through previously executed commands; pressing Enter re-runs the selected computation.

On the other hand, you can avoid scrolling through a wall of computations by creating a variable. In R, this is done via the variable assignment symbols <- or $=.{ }^{18}$ Once a variable exists in memory, the output does not get printed directly unless it is called directly at the prompt, or if the variable assignment is surrounded with a pair of parentheses.

```
x <- 8 + 17
```

X
[1] 25

```
(y<- 8 + 17)
```

[1] 25

Variables can be named using any combination of alphanumeric symbols, but the name has to start with a letter ($\mathrm{a}-\mathrm{z}, \mathrm{A}-\mathrm{Z}$) and cannot contain spaces and punctuation marks other than periods and dashes.

R Packages Packages (or libraries) contain pre-compiled functions and objects that could be useful in specific settings.

To install a package, simply type:

```
install.packages("package_name")
```

Take note of the quotation marks. You can type this code directly in the console, followed by a carriage return, or enter it in the script window and click Run in the menu at the top.

The base distribution already comes with some high-priority add-on packages, namely:

KernSmooth	MASS	boot	class
foreign	lattice	mgcv	nlme
rpart	spatial	survival	base
grDevices	graphics	grid	methods
stats	stats4	tcltk	tools
cluster	nnet	datasets	splines

These packages implement standard statistical functionality, for example linear models, classical tests, a huge collection of high-level plotting functions, and tools for survival analysis. Once a package is installed, it needs to be loaded before its objects (datasets, functions) can be used. This can be done by typing: ${ }^{19}$

libary (package_name)

Note the absence of the quotation marks.
For instance, in Code Components (see p. 4), we loaded the igraph package to take advantage of the pre-compiled functions sample_gnp (), ecount (), $V()$, and plot (). The first 3 functions are not in the base distribution; the last function plot () does exist, but it would not know how to handle graph objects without the special instructions provided by igraph.
The help file for compiled functions can be displayed in the graphical output window by using the reserved character "?", as below (assuming that the igraph library has been loaded). ${ }^{20}$

```
?sample_gnp
```

In more sophisticated code, it is conceivable that we would want to load multiple libraries; because we might forget which function is associated with which library, or even that different libraries use the same name for different functions, it is good practice to forego explicitly loading a library in favour of directly fetching the required functionality (the package must be installed first, however). In R, this is done as follows:

```
package_name::function_name(function_parameters)
```

19: Since entering instructions is always done in one of the ways described above, we will stop specifying where and how it must be done.

20: Extract of the igraph help file below:

sample_gnp \{igraph\}	
Generate random graphs according to the $G(n, p)$ Erdos-Renyi model	
Description	
This model is very simple, every possible edge is created with the same constant probability.	
Usage	
```sample_gnp (n, p, directed = FALSE, loops = FALSE) gnp(...)```	
Arguments	
	The number of vertices in the graph.
	The probability for drawing an edge between two arbitrary vertices ( $\mathrm{G}(\mathrm{n}, \mathrm{p}$ ) graph).
directed	Logical, whether the graph will be directed, defaults to FALSE.
100ps	Logical, whether to add loop edges, defauls to FALSE.
	Passed to sample_app.

21: That can cause unforeseen difficulties as it is not always easy to visually distinguish between a real number (numeric) and an integer. Furthermore, the digits of a number can be represented as character strings in some cases.

For instance, the graph code from above can be replaced by the following chunk:

```
my_graph_function <- function(my_number_nodes,
 my_colour,
 my_density) {
 my_graph = igraph::sample_gnp(my_number_nodes,
 my_density,
 directed=FALSE,
 loops = FALSE)
 if(igraph::ecount(my_graph) >= my_number_nodes) {
 igraph::V(my_graph)$color <- my_colour
 }
 plot(my_graph, vertex.color = igraph::V(my_graph)$color)
}
my_graph_function(30,"green",0.3)
```

Note, however, that this strategy is not always optimal (in particular, when using the pipeline operator, see p. 41).

R Essentials Everything you see or create in $R$ is an object: vectors, matrices, data frames, even variables (and functions) are objects.

R allows 5 basic classes of objects:

- Character
- Numeric (real numbers)
- Integer (whole numbers)
- Complex
- Logical (True / False)

Each of these classes has attributes. An object can have the following attributes:

- names, dimension names
- dimensions
- class
- length
- etc.

An object's various attributes can be accessed using the attributes() function. We will have more to say on this topic.

The most basic R object is the vector. An empty vector can be created using vector(). A vector contains various objects, but all must be of the same class. ${ }^{21}$

Vectors can also often created using the combine (or concatenate) operator c() (which makes it a singularly bad idea to use c as a variable name).

```
(a<-c(1.8, 4.5)) # numeric
(b <- c(1 + 2i, 3 - 6i)) # complex
(d <- c(23, 44)) # integer
```

```
(e <- vector("logical", length = 5)) # logical
(f <- c("abc","def")) # character
```

[1] 1.84 .5
[1] 1+2i 3-6i
[1] 2344
[1] FALSE FALSE FALSE FALSE FALSE
[1] "abc" "def"

Comments can be introduced in R code via the \# symbol: all characters following a pound symbol are ignored by $R$ until the next line of code (so the classes in the example above would not be part of the code proper).

R Data Types and Objects There are various types of R objects.

Vectors As mentioned above, a vector contains objects of the same class. We may have a need to mix objects of different classes in a list - this can be done to a vector by coercion. This has the effect of 'converting' objects of different types to the same class. For instance:

```
coercion to character
(vec <- c("Time", 25,TRUE,"retro", 2.22))
coercion to numeric
(bbb <- c(FALSE, 11))
coercion to character
(i.a <- c(215,"October"))
```

```
[1] "Time" "25" "TRUE" "retro" "2.22"
[1] 0 11
[1] "215" "October"
```

We can verify the class of these objects using the class() function.

```
class(vec)
class(bbb)
class(i.a)
```

[1] "character"
[1] "numeric"
[1] "character"

To convert the class of a vector, we can use the as . command.

```
g<- 10:16 # create a vector of 7 integers
class(g) # find bar's class
as.numeric(g) # convert to numeric
class(g)
as.character(g) # convert to character
```


## class(g)

[1] "integer"
[1] $10 \begin{array}{lllllll}11 & 12 & 13 & 14 & 15 & 16\end{array}$
[1] "integer"
[1] "10" "11" "12" "13" "14" "15" "16"
[1] "integer"

We can change the class of any vector using a similar approach. But be careful - while we can convert a numeric vector into a character one, going the other way will introduce NAs (conversion is subject to R's internal class rules).

Lists A list is a special type of object which can contain elements of different data types.

```
my.list <- list(254,"abab", TRUE, 0 - 3i)
my.list
```

[ [1] ]
[1] 254
[ [2]]
[1] "abab"
[ [3]]
[1] TRUE
[ [4]]
[1] 0-3i

The output of a list differs from that of a vector, since all the objects are of different types. The double bracket [ [1]] shows the index of the first element and so on. The elements of a list can be extracted by using the appropriate index:

## my.list[[3]]

## [1] TRUE

The single single bracket [ ] also has a role: it returns the list element with its index number, instead of the result above.

## my. list[3]

[ [1]]
[1] TRUE

Matrices A vector for which rows and columns are explicitly identified is a matrix, a 2-dimensional data structure. All the entries of a matrix have to be of the same class. The following code produces a 6 by 3 matrix consisting of the first 18 integers.

```
my.matrix <- matrix(1:18, nrow=6, ncol=3)
my.matrix
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	7	13
$[2]$,	2	8	14
$[3]$,	3	9	15
$[4]$,	4	10	16
$[5]$,	5	11	17
$[6]$,	6	12	18

The dimensions of a matrix can be obtained using either the $\operatorname{dim}()$ or attributes() commands (the matrix dimensions are a matrix's only attributes in R).

```
dim(my.matrix)
attributes(my.matrix)
```

[1] 63
\$dim
[1] 63

To extract a particular element from a matrix, simply use the appropriate indices. What might you expect to see from the following commands?

```
my.matrix[5,2] # row 5, col 2
my.matrix[c(1,2,4),2] # col 2, rows 1, 2, 4
my.matrix[4,2:3] # row 4, cols 2, 3
my.matrix[,2] # col 2
my.matrix[4,] # row 4
my.matrix[c(1,1,4),2] # col 2, rows 1, 1, 4
```

[1] 11
$\begin{array}{llll}{[1]} & 7 & 8 & 10\end{array}$
[1] 1016
[1] $7 \quad 8 \quad 9 \quad 101112$
[1] 41016
[1] 7710

As an aside, it is straightforward to create a matrix from any vector, by assigning the dimensions using $\operatorname{dim}()$.

For instance, we start by reading in a vector of ages:

```
age <- c(23, 8, 5, 44, 15, 12, 31, 19, 16)
age
```

$\begin{array}{llllllllll}{[1]} & 23 & 8 & 5 & 44 & 15 & 12 & 31 & 19 & 16\end{array}$

Then reshape the vector as a $3 \times 3$ matrix:

```
dim(age) <- c(3,3)
age
class(age)
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	23	44	31
$[2]$,	8	15	19
$[3]$,	5	12	16
$[1]$	"matrix"	"array"	

Matrices can also be created by joining two vectors (with matching dimensions) using cbind() or rbind():

```
x <- c(1, -2, 3, -4, 5, -6)
y <- c(200, 300, 400, 500, 600, 700)
cbind(x, y)
rbind(x,y)
```



```
class(x)
class(y)
class(cbind(x, y))
class(rbind(x, y))
```

[1] "numeric"
[1] "numeric"
[1] "matrix" "array"
[1] "matrix" "array"

We will discuss how R implements regular matrix operations (transpose, multiplication, addition, etc.) in Chapter 3 (Overview of Linear Algebra).

Data Frames The data frame is R's most commonly-used (and most convenient) data type, especially for data analysis tasks.

Like matrices, we can use data frames to store tabular (rectangular) data, but unlike matrices, a data frame can accommodate lists of vectors of different classes: each column of a data frame acts like a list.

When data is read into $R$, it is first stored as a data frame.
The following bit of code, for instance, creates a data frame with two columns, name and age:

```
df <- data.frame(
 name = c("Patrick","Brownyn","Elowyn",
 "Llewellyn","Gwynneth"),
 age =c(45,41,19,8,5)
)
df
```

	name	age
1	Patrick	45
2	Brownyn	41
3	Elowyn	19
4	Llewellyn	8
5	Gwynneth	5

Here are some of df attributes:

```
dim(df)
str(df)
nrow(df)
ncol(df)
```

[1] 52
'data.frame': 5 obs. of 2 variables:
\$ name: chr "Patrick" "Brownyn" "Elowyn" "Llewellyn" ...
\$ age : num 45411985
[1] 5
[1] 2

In the code above, df is the name of data frame, $\operatorname{dim}()$ returns its dimensions, $\operatorname{str}()$ its structure (i.e., the list of variables stored in the data frame), and nrow() and ncol (), the number of rows and number of columns in the data frame, respectively.

Reading Data and Writing Reading data into a statistical system for analysis, and exporting the results to some other system for report writing, can be frustrating tasks that take far more time than the statistical/data analysis itself, but the former task is required if the latter is to be undertaken in earnest.

We describe the import/export facilities available in $R$ itself or via packages available from Comprehensive $R$ Archive Network [〕 (CRAN).

22: Run ?read. table in the console.

23: By default read. table() will read the entire file.
24: Defaults to "\#".

25: Defaults to TRUE because back in the old days, strings represented levels of a categorical variable; now that text mining is an every day occurrence, that is not always the case.

26: In order to use this option, we must know the class of each column in the data frame; if all of the columns are "numeric", for example, then we would simply set colClasses = "numeric".

R comes with a few data reading functions:

- read.table(), read.csv() for tabular data;
- readLines() for lines of a text file;
- source(), dget() to read R code files (inverse of dump() and dput(), respectively);
- load() to read-in saved workspaces;
- unserialize() to read single R objects in binary form.

There are, of course, numerous R packages that have been developed to read in all kinds of other datasets, and you may need to resort to one of these packages if you are working in a specific area.
read. table() The read.table() function is one of the most commonlyused functions for reading data. The help file ${ }^{22}$ is worth reading if only because the function gets so much use. Its main arguments are:

- file, the name of a file, or a connection;
- header, logical indicating if the file has a header line;
- sep, string indicating how the columns are separated;
- colClasses, character vector indicating the class of each column in the dataset;
- nrows, number of rows in the dataset; ${ }^{23}$
- comment. char, character string indicating comments; ${ }^{24}$
- skip, the number of lines to skip from the beginning of the file;
- stringsAsFactors, whether character variables are coded as factors or as strings. ${ }^{25}$

For small to moderately sized datasets, you can usually callread. table() without specifying any other arguments

```
data <- read.table("foo.txt")
```

In this case, R will read in the file foo. txt an automatically:

- skip lines that begin with a \#;
- figure out how many rows there are (and how much memory needs to be allocated), and
- figure what type of variable is in each column of the table.

Telling $R$ all these things directly makes $R$ run faster and more efficiently. The read.csv() function is identical to read.table() except that some of the defaults are set differently (such as the sep argument).

With much larger datasets, some things can be done to prevent $R$ from choking on the data (a risk as R stores everything in RAM):

- read the help page for read.table(), which contains many hints;
- make a rough calculation of the memory required to store the dataset (see on the next page for an example); if the dataset is larger than the amount of RAM on your computer, it is best to stop here;
- set comment. char = " " if all lines in the file are uncommented;
- use the colClasses argument - specifying this option can make read.table() run MUCH faster, often twice as fast. ${ }^{26}$ We can figure out the column classes via the following code:

```
initial <- read.table("datatable.txt", nrows = 100)
classes <- sapply(initial, class)
tabAll <- read.table("datatable.txt",
 colClasses = classes)]
```

- set nrows - this doesn't make R run faster but it helps with memory usage (a mild overestimate is okay; the Unix tool wc can be used to calculate the number of lines in the file).

In general, when using $R$ with larger datasets, it is also useful to know a few things about the operating system:

- how much memory is available on the system?
- what other applications are in use? ${ }^{27}$
- are other users logged into the same system?
- what is the operating system? (some operating systems can limit the amount of memory a single process can access).

For example, suppose we have a data frame with 2,000,000 rows and 100 columns, all of which are numeric data. Roughly speaking, how much memory is required to store this data frame?

On most computers, numeric data is stored using 64 bits of memory ( 8 bytes). Given that information, we have:

$$
\begin{aligned}
2,000,000 \times 100 \times 8 \text { bytes } & =1,600,000,000 \text { bytes } \\
& \approx 1,600 \mathrm{MB}=1.6 \mathrm{~GB} .
\end{aligned}
$$

Reading in a large dataset for which one does not have enough RAM is an easy way to get the computer (or the R session) to freeze. This is usually an unpleasant experience that requires killing the $R$ process, in the best case scenario, or rebooting the computer, in the worst case.

It is always a good idea to do a rough memory requirements calculation before reading in a large dataset.

## txt, csv, and Other Formats

## - Fixed format text files

```
Windows only
df = read.table("folder\\file.txt", header=TRUE)
all OS (including Windows)
df = read.table("folder/file.txt", header=TRUE)
```

The forward slash / is supported as a directory delimiter on all operating systems; the double backslash $\backslash \backslash$ is only supported under Windows. If the first row of the file includes the name of the variables, these entries will be used to create appropriate names ${ }^{28}$ for each of the columns in the dataset. If the first row does not include the names, the header option can be left off (or set to FALSE), and the variables will be named V1, V2, ..., Vn.

27: Close everything that is not required.

29: The appropriate packages should have been installed beforehand, however.

30: The read.ssd() function will only work if SAS is installed locally, however.

A limit on the number of lines to be read can be specified through the nrows option. The read.table() function also supports using a URL as a filename or browsing files interactively using read.table(file.choose()).

Sometimes data arrives in irregularly-shaped data files (there may be a variable number of fields per line, or some data in the line may describe the remainder of the line). In such cases, a useful generic approach is to read each line into a single character variable, then use character variable functions to extract the contents.

```
df = readLines("file.txt")
df = scan("file.txt")
```

The readLines() function returns a character vector with length equal to the number of lines read. A limit on the number of lines to be read can be specified through the nrows option. The scan () function returns a vector, with entries separated by white space by default. These functions read from standard input, but can also read a file or a URL.

- Comma-separated value (CSV) files: the read.csv() function takes on much the same parameters as read.table().

```
df = read.csv("folder/file.csv")
```

- Read sheets from an Excel file: if the data is available in an Excel file, various possibilities exist, depending on the spreadsheet format.

```
df.xls = gdata::read.xls("file.xls", sheet=1)
df.xlsx = xlsx::read.xlsx("file.xlsx", sheet=1)
```

The sheet can be provided as either a number or a name. ${ }^{29}$

- Reading datasets in other formats: the datasets of interest sometimes comes from another software. The foreign library is able to do a native import for some of the most common formats: Stata, Epi Info, Minitab, Octave, SPSS, Systat, and SAS files. ${ }^{30}$

```
df = foreign::read.dbf("filename.dbf")
df = foreign::read.epiinfo("filename.epiinfo")
df = foreign::read.mtp("filename.mtp")
df = foreign::read.octave("filename.octave")
df = read.ssd("filename.ssd")
df = read.xport("filename.xport")
df = read.spss("filename.sav")
df = read.dta("filename.dta")
df = read.systat("filename.sys")
```

There are analogous functions for writing data to files:

- write.table() writes tabular data to text files (i.e. CSV);
- writeLines(), to write character data line-by-line to a file;
- dump(), for dumping a textual representation of multiple R objects;
- dput (), for outputting a textual representation of an R object;
- save (), for saving an arbitrary number of R objects in binary format (possibly compressed) to a file, and
- serialize(), for converting an R object into a binary format for outputting to a file.

There are numerous ways to store data, including structured text file formats like CSV or tab-delimited, or complex binary formats. It is important to take the time to explore the full range of functionality in order to achieve your specific aims.

### 1.3 More About Programming in R

Many software packages and libraries are available to the data analyst. R not only has the advantage that we can easily use its available packages, but it provides enough flexibility for the analyst who wants to get dirty with the data.

In this section, you will find examples and tips that highlight R's data manipulation features. It is not meant to be a complete introduction, or even necessarily a showcase of good programming practices.

### 1.3.1 Help and Documentation

R's various help files and demos can be accessed using the following commands (where function_name and search_term correspond to the desired function and/or term):

- ?function_name
- example(function_name)
- args(function_name)
- ??search_term

For instance, the following code would display the help file for the function glm() in the bottom graphical output window of RStudio:

## ?glm

Most help files contain examples showcasing the use of the function. These can be accessed via example().

```
example(glm)
```

We can thus copy the code from the example file, and run it directly at the console.

```
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
```

```
glm.D93 <- glm(counts ~ outcome + treatment,
 family = poisson())
anova(glm.D93)
summary(glm.D93)
```

treatment			
1	1	1	18
2	1	2	17
3	1	3	15
4	2	1	20
5	2	2	10
6	2	3	20
7	3	1	25
8	3	2	13
9	3	3	12
Analysis of	Deviance	Table	

Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev

NULL		8	10.5814	
outcome	2	5.4523	6	5.1291
treatment	2	0.0000	4	5.1291

Call:
glm(formula $=$ counts $\sim$ outcome + treatment, family $=$ poisson())
Deviance Residuals

1	2	3	4	5
-0.67125	0.96272	-0.16965	-0.21999	-0.95552
	6	7	8	9
	1.04939	0.84715	-0.09167	-0.96656

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) 3.045e+00 1.709e-01 $17.815 \quad<2 e-16{ }^{* * *}$
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
$\begin{array}{lllll}\text { outcome3 } & -2.930 \mathrm{e}-01 & 1.927 \mathrm{e}-01 & -1.520 & 0.1285\end{array}$
treatment2 $1.338 \mathrm{e}-15 \quad 2.000 \mathrm{e}-01 \quad 0.000 \quad 1.0000$

treatment 3	$1.421 \mathrm{e}-15$	$2.000 \mathrm{e}-01$	0.000	1.0000

Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * *} 0.01{ }^{\prime} *^{\prime} 0.05$ '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom
AIC: 56.761
Number of Fisher Scoring iterations: 4

Similarly, the function's arguments can be accessed via args ().

```
args(glm)
function (formula, family = gaussian, data, weights, subset,
 na.action, start = NULL, etastart, mustart, offset, control = list(...),
 model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, singular.ok = TRUE,
 contrasts = NULL, ...)
NULL
```


### 1.3.2 Simple Data Manipulation

So what can we actually do with $R$ ?

Loading a Built-In Dataset We can obtain a list of such datasets in the datsets package by calling the following function:

```
data()
```

Or those available in all installed packages via:

```
data(package = .packages(all.available = TRUE))
```

Let us take a look at the swiss built in dataset. ${ }^{31}$ We can display the
31: Type ?swiss to see the help file. dataset by simply calling it at the prompt, like so:

## swiss

Or we can take a look at its first or last n entries using the functions head() or tail().

```
head(swiss,6)
```

	Fertility	Agriculture	Examination	Education	Catholic	Infant.Mortality
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2
Moutier	85.8	36.5	12	7	33.77	20.3
Neuveville	76.9	43.5	17	15	5.16	20.6
Porrentruy	76.1	35.3	9	7	90.57	26.6

Assigning Data We can create, assign, and display a vector consisting of a sequence of numbers like this:

```
(x<- c(1:3))
```

[1] 123

We can also assign non-sequential numbers:

$$
(w<-c(12,-9))
$$

[1] $12-9$
or mixed objects:

$$
(v=c(w, \text { "pomplamoose" }))
$$

[1] "12" "-9" "pomplamoose"
or matrices:
$(u=t(m a t r i x(1: 10, n c o l=5)))$

	$[, 1]$	$[, 2]$
$[1]$,	1	2
$[2]$,	3	4
$[3]$,	5	6
$[4]$,	7	8
$[5]$,	9	10

Data Types and Conversion We can test whether objects are of a certain type or class:

## is.numeric(x)

[1] TRUE
is.character(x)
[1] FALSE

## is.vector(x)

[1] TRUE

```
is.matrix(x)
```

[1] FALSE

## is.data.frame(x)

[1] FALSE

```
is.character(w)
```

[1] FALSE

## is.character(v)

[1] TRUE

## is.data.frame(swiss)

[1] TRUE

We can also set an object to be of a specific type:
as.numeric(x)
[1] 123

## as.character(x)

[1] "1" "2" "3"

## as. vector( x )

[1] 123

## as.matrix(x)

[,1]
[1, ] 1
$[2] \quad$,
$[3] \quad$,

## as.data.frame (x)

x
11
22
33

Or combine two vectors into a single vector:

```
c(y,w)
[1] 200 300 400 500 600 700 12
```

Or convert vectors to matrices or data frames:

$$
\text { cbind }(x, y)
$$

$x \quad y$
[1,] 1200
[2,] 2300
[3,] 3400
[4,] 1500
[5,] 2600
[6, ] 3700

$$
\operatorname{rbind}(x, y)
$$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$x$	1	2	3	1	2	3
$y$	200	300	400	500	600	700

data.frame $(x, y)$
x y
11200
22300
33400
41500
52600
63700

Conversely, we can convert a matrix to a vector:
as. vector(u)
[1] $14 \begin{array}{lllllllll} & 3 & 5 & 7 & 9 & 2 & 4 & 6 & 8\end{array} 10$
or a matrix to a data frame:

```
as.data.frame(u)
```

    V1 V2
    $\begin{array}{lll}1 & 1 & 2\end{array}$
234
356
478
$5 \quad 9 \quad 10$
or a data frame to a matrix:

```
swiss_matrix=as.matrix(swiss)
head(swiss_matrix)
```

	Fertility	Agriculture	Examination	Education Catholic	Infant.Mortality	
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2
Moutier	85.8	36.5	12	7	33.77	20.3
Neuveville	76.9	43.5	17	15	5.16	20.6
Porrentruy	76.1	35.3	9	7	90.57	26.6

Writing Functions One of R's most advantageous feature is its flexibility: what if we want to write our own functions? The template for all functions is a block of code that looks like:

```
my.function <- function(arg1,arg2, ..., argn) {
 # what my.function does
 # typically involving the arguments
}
```

Here are some (truly) simple examples: here is a function, my. product ( ), that computes the product of two arguments $x$ and $y .{ }^{32}$

```
my.product <- function (x,y) {
 x*y
}
```

Note that the function definition must be compiled (the code must be run) before it can be called in the code.

There are multiple ways to call my . product () for arguments $x=12$ and $y=-2$.

```
my.product(x=12,y=-2)
my.product (}\textrm{y}=-2,x=12
my.product(12,-2)
my.product(-2,12)
```

$$
\begin{array}{cc}
{[1]} & -24 \\
{[1]} & -24 \\
{[1]} & -24 \\
{[1]} & -24
\end{array}
$$

The first two calls reflect better programming practices. The last of those is acceptable because multiplication is commutative, but it is risky to play with the arguments this way.

For instance, consider another simple function my . quotient ():

```
my.quotient <- function (x,y) {
 x/y
}
```

We call my . quotient () on $x=12$ and $y=-2$.

```
my.quotient(}x=12,y=-2
my.quotient(}y=-2,x=12
my.quotient(12,-2)
```

[1] -6
[1] -6
[1] -6
but
my.quotient(-2,12)
[1] -0.1666667

When the parameters are not specified in the function call, their implied order reverts to the declared order in the definition ( $1 \mathrm{st}=x, 2 \mathrm{nd}=y$ ).

And what might we expect to happen with this call?

```
my.quotient(12,0)
```


## [1] Inf

### 1.3.3 Exploring Data

$R$ is good tool for data exploration. Let us examine the swiss dataset in detail.

We start by displaying the first few rows of the dataset ( 3 , in this case):

```
head(swiss,3)
```

	Fertility	Agriculture	Examination	Education	Catholic	Infant.Mortality
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2

We could also display the last few entries ( 6 , here):

```
tail(swiss,6)
```

	Fertility	Agriculture	Examination	Education Catholic	Infant.Mortality	
Neuchatel	64.4	17.6	35	32	16.92	23.0
Val de Ruz	77.6	37.6	15	7	4.97	20.0
ValdeTravers	67.6	18.7	25	7	8.65	19.5
V. De Geneve	35.0	1.2	37	53	42.34	18.0
Rive Droite	44.7	46.6	16	29	50.43	18.2
Rive Gauche	42.8	27.7	22	29	58.33	19.3

We can also get an idea as to the dataset's structure with $\operatorname{str}()$ :

```
str(swiss)
'data.frame': 47 obs. of 6 variables:
$ Fertility : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...
$ Examination : int 15 6 5 12 17 9 16 14 12 16 ...
$ Education : int 12 9 5 7 15 7 7 8 7 13 ...
$ Catholic : num 9.96 84.84 93.4 33.77 5.16 ...
$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...
```

We can extract the column names with the function colnames ():

```
colnames(swiss)
```

```
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"
```

or display a specific column of the data frame, say Education, with the \$ operator:

## swiss\$Education

[1] $12 \begin{array}{llllllllllllllllllllllll} & 9 & 5 & 7 & 15 & 7 & 7 & 8 & 7 & 13 & 6 & 12 & 7 & 12 & 5 & 2 & 8 & 28 & 20 & 9 & 10 & 3 & 12 & 6 \\ 1\end{array}$


This cannot be done with a matrix, however - the following code will provide an error message:

```
swiss_matrix$Education
```

```
Error in swiss_matrix$Education :
 $ operator is invalid for atomic vectors
```

To extract the Education column from a matrix, identify its column index and use this, instead:

```
swiss_matrix[,4]
\begin{tabular}{rrrrr}
Courtelary & Delemont Franches-Mnt & Moutier & Neuveville \\
12 & 9 & 5 & 7 & 15 \\
Porrentruy & Broye & Glane & Gruyere & Sarine \\
7 & 7 & 8 & 7 & 13 \\
.. & & & & \\
Le Locle & Neuchatel & Val de Ruz ValdeTravers V. De Geneve \\
13 & 32 & 7 & 7 & 53 \\
Rive Droite & Rive Gauche & & & \\
29 & 29 & &
\end{tabular}
```

Just as one would expect from the behaviour of colnames (), rownames () extracts the data frame's row names:

```
rownames(swiss)
[1] "Courtelary" "Delemont" "Franches-Mnt" "Moutier"
 ...
[46] "Rive Droite" "Rive Gauche"
```

The summary statistics (5-pt summary + mean + number of missing variables for numerical variables; frequency table for others) can be obtained for all data frame's variables simultaneously:

```
summary(swiss)
```

Fertility	Agriculture	Examination	Education
Min. :35.00	Min. : 1.20	Min. : 3.00	Min. : 1.00
1st Qu.:64.70	1st Qu.:35.90	1st Qu.:12.00	1st Qu.: 6.00
Median :70.40	Median :54.10	Median :16.00	Median : 8.00
Mean :70.14	Mean :50.66	Mean : 16.49	Mean : 10.98
3rd Qu.:78.45	3rd Qu.:67.65	3rd Qu.:22.00	3rd Qu.:12.00
Max. :92.50 Catholic	$\begin{aligned} & \text { Max. } \quad: 89.70 \\ & \text { Infant.Mortal } \end{aligned}$	$\begin{aligned} & \text { Max. }: 37.00 \\ & \text { ity } \end{aligned}$	Max. :53.00
Min. : 2.150	Min. : 10.80		
1st Qu.: 5.195	1st Qu.:18.15		
Median : 15.140	Median :20.00		
Mean : 41.144	Mean : 19.94		
3rd Qu.: 93.125	3rd Qu.:21.70		
Max. :100.000	Max. :26.60		

More in-depth statistics are available with psych's describe():

```
psych::describe(swiss)
```

	vars	n mean	sd	med	trim	mad	min		max	range	skew	kurt	se
Fertility	1	47	70.1	12.4	70.4	70.6	10.2	35.0	92.5	57.5	-0.46	0.2	1.82
Agriculture	2	47	50.6	22.7	54.1	51.1	23.8	1.2	89.7	88.5	-0.32	-0.8	3.31
Examination	3	47	16.4	7.9	16.0	16.0	7.4	3.0	37.0	34.0	0.45	-0.1	1.16
Education	4	47	10.9	9.6	8.0	9.3	5.9	1.0	53.0	52.0	2.27	6.1	1.40
Catholic	5	47	41.1	41.7	15.1	39.1	18.6	2.1	100.0	97.8	0.48	-1.6	6.08
Infant.Mortality	6	47	19.9	2.9	20.0	19.9	2.8	10.8	26.6	15.8	-0.3	0.7	0.42

The correlation matrix is obtained pretty much as one would expect:

```
cor(swiss)
```

	F	A	Ex	Ed	C	IM
Fertility	1.0	0.3	-0.6	-0.6	0.4	0.4
Agriculture	0.3	1.0	-0.6	-0.6	0.4	-0.0
Examination	-0.6	-0.6	1.0	0.6	-0.5	-0.1
Education	-0.6	-0.6	0.6	1.0	-0.1	-0.0
Catholic	0.4	0.4	-0.5	-0.1	1.0	0.1
Infant.Mortality	0.4	-0.0	-0.1	-0.0	0.1	1.0

We can obtain the data frame's number of rows:

```
nrow(swiss)
```

[1] 47
or the summary of a single variable:

```
summary(swiss$Fertility)
```

Min.	lst Qu.	Median	Mean	3rd Qu.	Max.
35.00	64.70	70.40	70.14	78.45	92.50

We can also find all observations for which a feature takes on a value greater than a certain threshold, say:

```
swiss$Fertility>50
```

[1]	TRUE				
[13]	true				
[25]	true				
[37]	true	FALSE	FALSE	FALSE	

or provide summary information for the logical vector:

```
summary(swiss$Fertility>50)
```

Mode	FALSE	TRUE
logical	3	44

```
table(swiss$Fertility>50)
```

FALSE TRUE
344

The logical vector can be used as an index: for instance, here is the dataset only for those observations where Fertility was greater than 50.

```
swiss[swiss$Fertility>50,]
```

with

```
nrow(swiss[swiss$Fertility>50,])
```

[1] 44

We could also replace the threshold; for instance, here is the dataset for observations data where Fertility is in the top $50 \%$ :

```
swiss[swiss$Fertility>median(swiss$Fertility),]
```

	Fertility	Agriculture	Examination	Education Catholic	
Courtelary	80.2	17.0	15	12	9.96
Delemont	83.1	45.1	6	9	84.84
$\ldots$					
Le Locle	72.7	16.7	22	13	11.22
Val de Ruz	77.6	37.6	15	7	4.97
	Infant.Mortality				
Courtelary		22.2			
Delemont		22.2			
$\ldots$					
Le Locle		18.9			
Val de Ruz		20.0			

or, solely the Fertility and Education variables for observations where Fertility is in the top $50 \%$ :

```
swiss[swiss$Fertility > median(swiss$Fertility),
 c("Fertility","Education")]
```

	Fertility	Education
Courtelary	80.2	12
Delemont	83.1	9
$\ldots$	$\ldots$.	$\ldots$
Le Locle	72.7	13
Val de Ruz	77.6	7

or those observations for which Fertility was maximal:

```
swiss[swiss$Fertility == max(swiss$Fertility),]
```

	Fertility	Agriculture	Examination	Education Catholic	Infant.Mortality	
Franches-Mnt	92.5	39.7	5	5	93.4	20.2

### 1.3.4 A Word About NAs

NA values in R can create some havoc. Be careful!
To illustrate some of the issues, create a dataset by sampling 100 values (with replacement) among the values $\{1,2,3,4, \mathrm{NA}\} .^{33}$

33: Your sample will be different.

```
test = sample(c(1:4,NA),100, replace=TRUE)
```

We can summarize test as follows:

```
summary(test) # 5pt summary + mean + number of NAs
```

Min.	lst Qu. Median	Mean 3rd Qu.	Max.	NA's		
1.000	1.500	3.000	2.549	3.500	4.000	29

We can read the mean from the output, or we could try to compute it directly, using mean():

```
mean(test)
```

[1] NA

What is happening? The function mean () does not know how it should handle the NA values; without further guidance, it elects to throw everything akimbo.

Compare with:

```
mean(test, na.rm=TRUE)
```

34: "Behind the scenes", so to speak

### 1.3.5 Loops and Conditional Statements

R allows for flow control through loops and conditional statements:

- if() and ifelse() - when a condition holds, do thing 1, when it does not, do thing 2;
- for() - iterate a procedure for a fixed number of steps;
- while() - repeat steps as long as some condition holds.

High-level interpreted languages (like R) are slower than low-level and / or compiled languages. To get around this issue, interpreted languages will sometimes hand off ${ }^{34}$ some operations to functions written in lower-level languages (like C).

In order to take advantage of this, certain programming strategies are recommended when working with list, vectors, arrays, data frames, and so on, namely vectorized functions (see the family of apply () functions in R). In particular, we try to avoid cycling through each item of a list, and instead use special functions that map a chosen function or operation to every item in the list (in R, this can be done with the apply family of functions, among others).

This can run counter to habits gained when learning other languages, in which for and while loops, for instance, might have been emphasized. Consequently, we elect NOT to introduce such loops at this stage. The syntax is rather intuitive and will be easy to understand when we encounter it in examples.

The ifelse() statement is quite powerful and can speed-up and simplify data frame operations, however, and we take the time to illustrate how it can be used.

We can easily create a new swiss column determining whether the Fertility variable, say, is above a certain threshold (in which case it should take the value 1 ) or not (0):

```
swiss$threshold<-ifelse(swiss$Fertility>50,1,0)
```

[1] 111 ... 111
[45] 000

There will be other opportunities to use these functions; the best way to get the hang of $R$ is to practice and debug.

### 1.4 The tidyverse

$R$ is a functional language, which means that it uses nested parentheses, which can make code difficult to read. ${ }^{35}$

### 1.4.1 Pipeline Operator

The pipeline operator $\mid>($ formerly $\%>\%$ ) and the dplyr package can be used to remedy the situation. Hadley Wickham ${ }^{36}$ provided an example to illustrate how it works:

```
hourly_delay <- filter(
 summarise(
 group_by(
 filter(
 flights,
 !is.na(dep_delay)
),
 date, hour
),
 delay = mean(dep_delay),
 n = n()
),
 n > 10
)
```

Without necessarily knowing how each of the internal functions works, we can still get a sense for what the overall nested structure does, and realize (albeit, with a fair amount of work) that the basic object on which we operate is the flights data frame.

The pipeline operator $\mid>$ removes the need for nesting function calls, in favor of passing data from one function to the next:

```
library(dplyr)
hourly_delay <- flights |>
 filter(!is.na(dep_delay)) |>
 group_by(date, hour) |>
 summarise(delay = mean(dep_delay),n = n()) |>
 filter(n > 10)
```

It is now obvious that the flights data frame is the base object, for instance - the gap between pseudo-code and "code that runs" is significantly reduced. The beauty of this approach is that the block of code can now be 'read' directly: the flights data frame is

1. filtered (to remove missing values of the dep_delay variable);
2. grouped by hours within days;
3. the mean delay is calculated within groups, and
4. the mean delay is returned for those hours with more than $n>$ 10 flights.

The pipeline rules are simple - the object immediately to the left of the pipeline is passed as the first argument to the function immediately to its right:

- data |> function is equivalent to function(data)
- data |> function(arg=value) is equivalent to function(data, arg=value)

36: See [16] for everything there is to know about pipelines and tidy data.

37: Including the ever popular ggplot2 (see Chapter 12, ggplot2 Visualizations in $R$ in [1]).

For instance:

## library(dplyr)

swiss |> summary()

Fertility	Agriculture	Examination	Education
Min. 35.00	Min. : 1.20	Min. : 3.00	Min. : 1.00
1st Qu.:64.70	1st Qu.:35.90	1st Qu.:12.00	1st Qu.: 6.00
Median :70.40	Median :54.10	Median : 16.00	Median : 8.00
Mean :70.14	Mean :50.66	Mean : 16.49	Mean :10.98
3rd Qu.:78.45	3rd Qu.:67.65	3rd Qu.:22.00	3rd Qu.: 12.00
$\begin{gathered} \text { Max. } \quad: 92.50 \\ \text { Catholic } \end{gathered}$	$\begin{aligned} & \text { Max. } \quad: 89.70 \\ & \text { Infant.Mortal } \end{aligned}$	$\begin{array}{cc} \text { Max. } & : 37.00 \\ \text { ity } & \text { threshold } \end{array}$	Max. 553.00
Min. : 2.150	Min. : 10.80	Min. :0.	0
1st Qu.: 5.195	1st Qu.:18.15	1st Qu.:1.00	
Median : 15.140	Median :20.00	Median :1.00	
Mean : 41.144	Mean :19.94	Mean :0.93	
3rd Qu.: 93.125	3rd Qu.:21.70	3rd Qu.:1.00	
Max. :100.000	Max. :26.60	Max. :1.000	

The magrittr vignette ${ }^{\top}$ provides additional information on the magrittr package, on which dplyr is based.

### 1.4.2 Tidy Data

The pipeline operator is also compatible with the tidyverse suite of packages, championed by Wickham, ${ }^{37}$ cheat sheets are available here ${ }^{7}$

Tidy data has a specific structure:

- each variable is a column;
- each observation is a row;
- each type of observational unit is a table.

Two tidyr functions are used to reshape tables to a tidy format: gather () and spread() - gather() requires:

- a data frame to reshape;
- a key column (against which to reshape);
- a value column (which will contain the new variable of interest), and
- the indices of the columns that need to be collapsed.

Consider the following dataset:

```
cities <- data.frame(
 city=c("Toronto","Montreal", "Vancouver",
 "Ottawa", "Calgary", "Edmonton",
 "Quebec City","Winnipeg","Hamilton"),
 prov=c("Ontario","Quebec","BC",
 "Ontario","Alberta","Alberta",
 "Quebec","Manitoba","Ontario"),
```

```
 pop.2016=c(6202225,4291732,2642825,
 1488307,1481806,1418118,
 839311,834678,785184),
 pop.2011=c(5928040,4104074,2463431,
 1371576,1392609,1321441,
 806406,783099,747545)
)
cities
```

	city	prov	pop. 2016	pop.2011
1	Toronto	Ontario	6202225	5928040
2	Montreal	Quebec	4291732	4104074
3	Vancouver	BC	2642825	2463431
4	Ottawa	Ontario	1488307	1371576
5	Calgary	Alberta	1481806	1392609
6	Edmonton	Alberta	1418118	1321441
7	Quebec City	Quebec	839311	806406
8	Winnipeg	Manitoba	834678	783099
9	Hamilton	Ontario	785184	747545

It is not presented in a tidy format, because populations show up in two columns. In tidy format, it would instead look like:

```
cities.tidy <- tidyr::gather(cities,"year","population",
 3:4)
cities.tidy$year <- ifelse(cities.tidy$year=="pop.2016",
 2016,2011)
cities.tidy
```

city	v y	population
Toronto	Ontario 2016	6202225
Montreal	Quebec 2016	4291732
Vancouver	BC 2016	2642825
Ottawa	Ontario 2016	1488307
Calgary	Alberta 2016	1481806
Edmonton	Alberta 2016	1418118
Quebec City	Quebec 2016	839311
Winnipeg	Manitoba 2016	834678
Hamilton	Ontario 2016	785184
Toronto	Ontario 2011	5928040
Montreal	Quebec 2011	4104074
Vancouver	BC 2011	2463431
Ottawa	Ontario 2011	1371576
Calgary	Alberta 2011	1392609
Edmonton	Alberta 2011	1321441
Quebec City	Quebec 2011	806406
Winnipeg	Manitoba 2011	783099
Hamilton	Ontario 2011	747545

spread(), on the other hand, generates multiple columns from two columns; it requires a data frame to reshape; a key column, and values in the value column to become new values.

38: How could you find out?

39: We do not explicitly state the dplyr: : xyz dependency since we already had to load the dplyr package to gain access to the pipeline operator $\mid>$.

For instance, we could reverse the "tidying" of cities.tidy with:

```
cities.back.to.wide <- tidyr::spread(cities.tidy,year,
 population)
colnames(cities.back.to.wide) <- c("city","prov",
 "pop.2011","pop.2016")
cities.back.to.wide
```

            city prov pop. 2011 pop. 2016
        Calgary Alberta 13926091481806
        Edmonton Alberta \(1321441 \quad 1418118\)
        Hamilton Ontario 747545785184
        Montreal Quebec 41040744291732
            Ottawa Ontario 13715761488307
    Quebec City Quebec 806406839311
Toronto Ontario 59280406202225
Vancouver BC 24634312642825
Winnipeg Manitoba 783099834678

Other useful wrangling functions include separate() and unite(). What do you think these do? ${ }^{38}$

### 1.4.3 The dplyr Package

The dplyr package provides functions to transform tabular data. Its most useful functions are compatible with the pipeline operator |>:

- select (): to extract a subset of variables from the data frame;
- filter(): to extract a subset of observations from the data frame;
- arrange(): to sort the data frame;
- mutate(): to create new variables from existing variables;
- summarise(): to create so-called pivot tables;
- group_by (): ... self-evident?

We will showcase these functions with the help of various examples. Try to guess what the outputs would be before looking at them. ${ }^{39}$

```
cities |> select(prov,pop.2016)
```

prov pop. 2016
Ontario 6202225
Quebec 4291732
BC 2642825
Ontario 1488307
Alberta 1481806
Alberta 1418118
7 Quebec 839311
8 Manitoba 834678
Ontario 785184

```
cities |> select(-pop.2016)
```

	city	prov pop. 2011	
1	Toronto	Ontario	5928040
2	Montreal	Quebec	4104074
3	Vancouver	BC	2463431
4	Ottawa	Ontario	1371576
5	Calgary	Alberta	1392609
6	Edmonton	Alberta	1321441
7	Quebec City	Quebec	806406
8	Winnipeg	Manitoba	783099
9	Hamilton	Ontario	747545

```
cities |> filter(pop.2016>1000000)
```

city prov pop. 2016 pop. 2011

```
Toronto Ontario 6202225 5928040
```

Montreal Quebec 42917324104074
Vancouver BC 26428252463431
Ottawa Ontario 14883071371576
Calgary Alberta 14818061392609
Edmonton Alberta 14181181321441

```
cities |> filter(pop.2016>1000000,
 prov %in% c("Ontario","Quebec"))
```

city prov pop. 2016 pop. 2011
1 Toronto Ontario 62022255928040 2 Montreal Quebec 42917324104074 3 Ottawa Ontario 14883071371576

```
cities |> mutate(pop.increase = pop.2016/pop.2011-1)
```

	city	prov	pop. 2016	pop. 2011	pop.increase
1	Toronto	Ontario	6202225	5928040	0.04625222
2	Montreal	Quebec	4291732	4104074	0.04572481
3	Vancouver	BC	2642825	2463431	0.07282282
4	Ottawa	Ontario	1488307	1371576	0.08510721
5	Calgary	Alberta	1481806	1392609	0.06405028
6	Edmonton	Alberta	1418118	1321441	0.07316028
7	Quebec City	Quebec	839311	806406	0.04080451
8	Winnipeg	Manitoba	834678	783099	0.06586524
9	Hamilton	Ontario	785184	747545	0.05035015

```
cities |> summarise(median.2011=median(pop.2011),
variance.2011=var(pop.2011))
```

```
 median.2011 variance.2011
1 1371576 3.209519e+12
```

cities |> summarise(mean.2016=mean(pop.2016),
sum.2016=sum(pop.2016), n=n())

```
 mean.2016 sum.2016 n
1 2220465 19984186 9
```

cities |> arrange(pop.2016)

	city	prov	pop. 2016	pop. 2011
1	Hamilton	Ontario	785184	747545
2	Winnipeg	Manitoba	834678	783099
3	Quebec City	Quebec	839311	806406
4	Edmonton	Alberta	1418118	1321441
5	Calgary	Alberta	1481806	1392609
6	Ottawa	Ontario	1488307	1371576
7	Vancouver	BC	2642825	2463431
8	Montreal	Quebec	4291732	4104074
9	Toronto	Ontario	6202225	5928040

```
cities |> arrange(desc(pop.2011))
```

city	prov	pop.2016	pop. 2011
Toronto	Ontario	6202225	5928040
Montreal	Quebec	4291732	4104074
Vancouver	BC	2642825	2463431
Calgary	Alberta	1481806	1392609
Ottawa	Ontario	1488307	1371576
Edmonton	Alberta	1418118	1321441
Quebec City	Quebec	839311	806406
Winnipeg Manitoba	834678	783099	
Hamilton	Ontario	785184	747545

cities |> arrange(prov,desc(pop.2016))

city	prov	pop. 2016	pop. 2011
Calgary	Alberta	1481806	1392609
Edmonton	Alberta	1418118	1321441
Vancouver	BC	2642825	2463431
Winnipeg	Manitoba	834678	783099
Toronto	Ontario	6202225	5928040
Ottawa	Ontario	1488307	1371576
Hamilton	Ontario	785184	747545
Montreal	Quebec	4291732	4104074
Quebec City	Quebec	839311	806406

```
cities |> group_by(prov) |>
 summarise(mean.2016 = mean(pop.2016))
```

```
A tibble: 5 x 2
 prov mean.2016
 <chr> <dbl>
1 Alberta 1449962
2 BC 2642825
3 Manitoba 834678
4 \text { Ontario 2825239.}
5 Quebec 2565522
```

```
cities |> mutate(pop.increase = pop.2016/pop.2011-1) |>
 select(city, pop.increase) |>
 arrange(desc(pop.increase))
```

	city	
	pop.increase	
1	Ottawa	0.08510721
2	Edmonton	0.07316028
3	Vancouver	0.07282282
4	Winnipeg	0.06586524
5	Calgary	0.06405028
6	Hamilton	0.05035015
7	Toronto	0.04625222
8	Montreal	0.04572481
9	Quebec City	0.04080451

dplyr also comes with "database" functionality (bind_cols(), bind_rows(),union(),intersect(),setdiff(),left_join(),inner_join(), semi_join(), anti_join(), etc.).

Do not hesitate to bookmark, consult, and borrow from the excellent [16] (and from the subsequent chapters) for more examples, and to practice, practice, practice: we learn programming by programming.

### 1.5 Basics of Python

Python is another object-oriented language (OOL). It was created in the early 90 's but was not popularized until the 00 's. It lends itself to writing structured, easy-to-read computer code. ${ }^{40}$

It is intended to be easier to understand and learn than other OOLs. One of its strength is that it has a massive base of open-source modules, which allow programmers to implement very sophisticated functionality simply by making a few function calls (not unlike R's packages).

More information is available from the Python Software Foundation $\left[^{7}\right.$, on Stack Exchange (and similar sites), and in reference manuals, such as Jake VanderPlas' A Whirlwind Tour of Python ${ }^{\pi}$ ºr the Python 3 documentation ${ }^{\top}$.

40: Indentation matters in Python: in some of the code boxes of the next two sections, we have been forced to sometimes introduce a carriage return in order for the code to fit the width of the available box - in instances where a new line starts with indentation, it is important to verify if that line is completing code from the previous line, in which case it should be entered as a single line at the prompt.

41: Note that these examples require Python 3.5 or higher.

### 1.5.1 IDE for Python

Anaconda $\complement^{\nwarrow}$ and Jupyter ${ }^{〔}$ are popular data science Python integrated development environments (IDE); Rodeo $\complement^{\star}$, Spyder $\complement^{\star}$, PyCharm $\complement^{\star}$, Ninja © (an others) also provide RStudio-like functionality for Python. Installation instructions are available on the respective websites.

### 1.5.2 Introduction to Python

The content of the next two sections is intended to help data analysts get a better sense of how Python could be used for data analysis. They are not designed to teach the ins and outs of Python programming. Instead, they illustrate typical tasks through examples. ${ }^{41}$

Fundamentals Let us start with the basics.

Using Python as a Scientific Calculator Mathematical expressions can easily be evaluated numerically in Python. For scientific calculations, one should import the math module (package/library) which contains many mathematical functions $[\sqrt{7}$.

It is important to note that Python also provides facilities for integer arithmetic which will be covered later. In this section, only floating-point calculations are used.

Modules can be imported using the import function.

## import math

We can call pre-compiled functions in a module by prepending the module name (with a period) to the function name: module. function_name() is the Python equivalent of package: : function_name() in R.

For instance, there is a cos function in the math module: it is called using math. cos().

We can evaluate $\cos (\sqrt{\pi})$ with:
math. cos(math.sqrt(math.pi))
$-0.20029354112337366$
$\arctan \left(2^{5} / 3\right)$ with

$$
\text { math.atan }(2 * * 5 / 3)
$$

### 1.477319545636307

and $\ln \left(1+e^{4}\right)$ with

```
math.log(1 + math.exp(4))
```


### 4.0181499279178094

Using Variables to Hold Intermediate Results It could be helpful to break complex calculations into smaller steps. Variables can be used to store intermediate results. We will see later how variables are used in algorithmic settings.
For instance, we could break down the evaluation of $\exp (\sin (\sqrt{2}+2))$ into three parts:

- $x=\sqrt{2}$
- $y=\sin (x+2)$
- $z=\exp (y)$

```
x = math.sqrt(2)
y = math. sin}(x+2
z = math.exp(y)
```

In order to display the values taken by the variables, we must call on them separately, as follows:
$x, y, z$
(1.4142135623731, -0.26925647329403, 0.7639472984402)

The variables are saved even when they are not displayed, however.

Numbers as Formatted Strings Quite often, we may want to control the way numbers are displayed (this can come in handy when reporting results). For example, we may wish to display no more than 4 decimal places for all real numbers, or we may want to pad numbers with zeros so that they all have a given width.

The following block illustrates a number of ways to obtain formatted strings of the number 12.3456789 . For more details on the format specification mini-language, please consult the documentation $\square^{〔}$.

Note that a string must be enclosed within double quotes or single quotes. We will discuss general string operations shortly.

```
x = 12.3456789
```

We can format the number as a string of width 10 , with 2 decimal places:

$$
\text { "\{:10.2f\}".format(x) }
$$

[^0]Or as a string with 4 decimal places:

$$
\text { "\{:.4f\}". format (x) }
$$

'12.3457'
or as a zero-padded string of width 5 , with no decimal:

$$
\text { "\{:05.0f\}". format(x) }
$$

```
'00012'
```

Fixed Decimals Floating-point numbers are usually shunned as they are inherently inexact. For example, we might be bewildered to find out what the following sum amounts to:

```
2.2+1.1
```


### 3.30000000000000003

The result 3.3000000000000003 is definitely not what we would expect as a sum, namely, 3.3.

The decimal module allows us to express decimal numbers exactly (see the documentation for more information). Let's look at a few examples of working with decimal and Decimal().

We start by defining x and y as the fixed decimal values 1.1 and 1.2, respectively. Note that the numbers must entered as strings.

```
import decimal
x = decimal.Decimal("1.1")
y = decimal.Decimal("2.2")
```

These computations behave as we would expect:

```
print(x+y)
print(y/x)
print(x**decimal.Decimal("3"))
```


## 3.3

2
1.331

If we do not enter the numbers as strings, they will be treated as floatingpoint numbers, and then be converted to a string, leading to unexpected results.

```
x = decimal.Decimal(1.1)
y = decimal.Decimal(2.2)
print(x+y)
```


### 3.300000000000000266453525910

Rounding works as one would expect when variables are correctly declared as fixed decimals:

```
z = decimal.Decimal("3.1416")
round(z, 3)
```

```
Decimal('3.142')
```

Once fixed decimals are used, we must use mathematical functions provided by the decimal module in order to stay within that module (unfortunately, trigonmetric functions are not available).

For instance, if:

```
a= decimal.Decimal("0.16")
```

then

```
print(a.sqrt())
print(a.ln())
print(a.log10())
```


## 0.4

- 1.832581463748310130367054424
- 0.7958800173440752191450444211

The same results could be obtained using the math module functions:

```
import math
print(math.sqrt(a))
print(math.log(a))
print(math.log10(a))
```

0.4

- 1.8325814637483102
$-0.7958800173440752$

List and Tuples Lists and tuples are important objects in Python programming. Even though we will be mostly using numpy arrays and certain pandas objects instead of lists later on, it is useful to learn the basics of lists as some of the concepts are transferrable.

List Creation A list holds a sequence of objects, who do not all have to be the same type. One way to create a list is to enclose the elements, separated by commas, with square brackets.

Let us illustrate this concept with a simple list containing three objects.

$$
x=\left[3, ' a^{\prime}, 5.1\right]
$$

We can extract the elements using indices (note that the first element corresponds to index 0 , the second to index 1 , etc.):

```
x[0]
x[1]
x[2]
```

3
'a'
5.1

The type of each of the elements can be found using:

```
print(type(x[0]))
print(type(x[1]))
print(type(x[2]))
```

```
<class 'int'>
```

<class 'str'>
<class 'float'>

We can also "multiply" an element and transform it into a longer list:

```
['Ho']*10
```

['Ho', 'Ho', 'Ho', 'Ho', 'Ho', 'Ho', 'Ho', 'Ho', 'Ho', 'Ho']
or create a list of integers ranging from 0 to $n-1$, or from $a$ to $b-1$ :

```
n = 5
list(range(n))
a=3
b=7
list(range(a,b))
```

$[0,1,2,3,4]$
[3, 4, 5, 6]

Tuples Tuples are list-like objects, but with the following differences:

- they are defined with parentheses instead of square brackets (sometimes, the parentheses can be omitted);
- they are immutable (once created, they cannot be modified).

For instance, if

$$
t=\left(1, a^{\prime}, 4.5\right)
$$

then we can obtain the length of $t$ and print its 2nd element using

```
print(len(t))
print(t[1])
```

3
a
but we cannot change the value of the third element of $t$ or append a new value to $t$ : both commands in the next block of code are illegal:

```
t[2]=1
t.append(5)
```

although the same command applied to the list x would be legal:

```
x[2]=1
x.append(5)
print(x)
```

[3, 'a', 1, 5]

If we know the dimension of a tuple $t$, we can also use an extract pattern to extract the individual components, as the following examples illustrate.

```
t = (1, 'two', 3.0)
fst, snd, trd = t
print(fst, snd, trd)
```

two 3.0

We could use '_' (place holder) to extract the second component, say.

```
_, s, _ = t
print(s)
```

two

What do you think is happening on the next page?

42: Doing so means that we will not require the prefix math. in order to invoke sqrt().

```
days = [(0,"Sun"), (1, "Mon"), (2, "Tue"), (3, "Wed"),
 (4, "Thu"), (5, "Fri"), (6, "Sat")]
for n, d in days:
 print(d+" is represented by " + str(n))
```

Sun is represented by 0
Mon is represented by 1
Tue is represented by 2
Wed is represented by 3
Thu is represented by 4
Fri is represented by 5
Sat is represented by 6

List Comprehension List comprehension is a powerful way to create lists, based on set notation. Before we get into the technical details, let us look at some examples.

We start by importing solely the function sqrt ( ) from the math module; ${ }^{42}$ we also declare an index list x :

```
from math import sqrt
x = [1, 4, 9, 16]
print(x)
```

$[1,4,9,16]$

We can now build new lists from $x$, such as the list of the squares of the elements of $x$ :

```
y = [a**2 for a in x]
print(y)
```

$$
[1,16,81,256]
$$

the list of the square roots of the elements of $x$ greater than 4 :

```
z = [sqrt(b) for b in x if (b > 4)]
print(z)
```


## [3.0, 4.0]

or the list of integers from 0 to 9 (equivalent to range(10)):

```
u = [c for c in range(10)]
print(u)
```

The most basic form of list comprehension is [ $f(x)$ for $x$ in l], where $l$ is a list (or an iterable) and $f(x)$ is an expression in $x$. It creates a list obtained by applying $f$ to each element or iterate in $1 .{ }^{43}$

An optional conditional can also be present, giving the general form [ $f(x)$ for $x$ in lif $g(x)]$, for some boolean expression $g$ (taking on the values True or False) where generation of the list elements only applies to elements that satisfy the boolean expression.

Multiple lists or iterables can be specified in list comprehension. equal to either 'math' or 'stat'.

```
[(x,y,z) for x in [True, False] for y in range(4,7)
 for z in ['math','stat']]
[(True, 4, 'math'), (True, 4, 'stat'), (True, 5, 'math'),
(True, 5, 'stat'), (True, 6, 'math'), (True, 6, 'stat'),
(False, 4, 'math'), (False, 4, 'stat'), (False, 5, 'math'),
(False, 5, 'stat'), (False, 6, 'math'), (False, 6, 'stat')]
```

We can mimic list comprehension with the help of loops (much less efficient); it is preferable to use the former to generate lists.

List Operations We illustrate various other operations that can be performed on zero-indexed lists in the following blocks: ${ }^{44}$

- sublisting
- changing values
- sorting values
- appending values
- concatenating lists
- deleting elements

Consider a given list x :

```
x = [3,1,7,2,5]
print(x)
```


## [3, 1, 7, 2, 5]

We can find the length of the list or print the sublist from the second element to the fourth element, say: ${ }^{45}$

```
print(len(x))
print(x[1:4])
```

43: range provides an example of an iterable. One way to think of an iterable is that it provides a mechanism for generating a sequence of elements one at a time. The benefit is that range (100000), for example, does not take up much computation time since no actual element is generated until it is iterated over.

44: The first element in the list has index 0 .

45: Remember, ordinals start with 0 , cardinals with 1.

We could also modify the second element of the list (index 1), say:

```
x[1] = 4
print(x)
```


## $[3,4,7,2,5]$

Note that $x$ is now permanently changed; ${ }^{46}$ if we want to modify the last entry but we are not sure about the length of the list, for instance, we could use:

```
x[-1] = 6
print(x)
```


## [3, 4, 7, 2, 6]

If we are looking to change the third last element as well, we could use

```
x[-3] = 1
print(x)
```


## $[3,4,1,2,6]$

Finally, we could sort the resulting list:

```
x.sort()
print(x)
```


## $[1,2,3,4,6]$

A lot of Python methods are applied using the syntax object.method(), in contrast to the typical R syntax that would use method (object); so it is $x$.sort ( ) instead of sort ( $x$ ).

Let us create another list, this time with booleans:

```
y = [3, True, False]
print(y)
```

[3, True, False]

We can append a value, say 5 , at the end of this list, as follows:

```
y.append(5)
print(y)
```


## [3, True, False, 5]

It is also possible to concatenate lists, using the (somewhat confusing) addition notation:

```
z = x + y
print(z)
```

```
[1, 2, 3, 4, 6, 3, True, False, 5]
```

and delete the last element of this new list:

```
del z[-1] # Delete the last element from z
print(z)
```

[1, 2, 3, 4, 6, 3, True, False]
or delete a range of elements, say from the 3rd to the 6th, from the resulting list:

```
del z[2:6] # watch out for the indices
print(z)
```

```
[1, 2, True, False]
```

Flow Control We will take a brief look at two ways to alter the flow of control in Python: conditional statements and loops.

Conditional Statements Python supports if-elif-else statements in various forms.

In the following example, we let x be some random integer between 1 and 12 (using function randint ( ) from module random) and see how the results are affected.

```
import random
x = random.randint(1,12)
print(x)
```

9
(which may change from one run to another). Perhaps we want to print the string 'Helloifx' is less than 5, like so:

```
if x < 5:
 print('Hello')
```

We would see nothing here as x is 9 in this run. Perhaps we want to print 'Out of range' if $x$ is less than 5 or greater than 9 , and Within range otherwise?

```
if x < 5 or x > 9:
 print('Out of range')
else:
 print('Within range')
```


## Within range

Finally, we might want to print 'Small' if $x$ is positive and less than 5; otherwise, print 'Five' if $x$ is 5 ; otherwise, print 'Six' if $x$ is 6 ; otherwise, print + :

```
if 0 < x and x < 5:
 print('Small')
elif x == 5:
 print('Five')
elif x == 6:
 print('Six')
else:
 print('+')
```

$+$

Run this sequence of blocks a number of times to see the various outcomes.

Important: Note that the code block that follows an if, else, or elif statement must be properly indented. The custom is to use four spaces for indentation. The following example illustrates the effects of different indentations.

```
x = 4
if x < 5:
 print('Small')
else:
 print('This string will not be printed, because the
 else statement never triggers')
 print('Neither will this, for the same reason')
print('This will be printed no matter what x is, as it
 falls outside the if-else statement block')
```

Small
This will be printed no matter what x is, as it falls outside the if-else statement block

Loops Loops are useful for repeatedly executing a statement or a block. We first consider the for loop.

Let us start with a simple example: for each value in the list $[1,3,8]$, we print its square.

```
for i in [1,3,8]:
 print(i**2)
```

1
9
64

We could also compute sums with loops, such as $1+2+\cdots+8+9$ :

```
sum = 0
for x in range(1,10):
 sum += x # add the value of }x\mathrm{ to sum
print(sum)
```

45

Or print the first n even nonnegative integers

```
n = 5
for n in range(0,n):
 t = 2*n
 print(t)
```

0
2
4
6
8

If a for loop is used to create a list, it is probably best to rewrite it using list comprehension. The following time comparison (using \%\%timeit) illustrates the contrast when building a list of $100 \times 1000$ items.

Using a loop:

```
l = []
for i in range(100):
 for j in range(1000):
 l.append((i,j))
```

Using list comprehension:

```
l = [(i,j) for i in range(100) for j in range(1000)]
```

While loops are useful for iterating until a certain condition is met. For instance, if we want to print the first 10 even positive integers, separated by a space, we could use the following block:

```
i = 0
while i < 10: # Repeat the following block until i
 # reaches 10 or greater
 i += 1 # iterated index
 print(2*i, end=' ')
```

$\begin{array}{lllllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18\end{array} 20$

Or we could print the 26 lower case English alphabets letters on one line, with no separation:

```
i = 0;
while i < 26:
 print(chr(ord('a')+i), end='')
 i += 1
```

abcdefghijklmnopqrstuvwxyz

Note that ord returns the ordinal for a character; chr does the reverse.

Functions A function is a grouped sequence of code that can be called, such as $\cos ()$ and print (). A function can have 0 or more arguments: $\cos ()$ takes one argument, whereas print() can have up to five (see documentation $C^{\top}$ for details).

Named Functions Functions facilitate code re-use. Python functions are defined via the def statement. In the next example, we define a function that returns a pair consisting of the sum and the product of its arguments.

```
def sumprod(x, y):
 return x+y, x*y
```

The parentheses around the tuple are optional in this context. The ouput for $x=3$ and $y=4$ can be obtained as follows (once the function is compiled):

```
print(sumprod(3,4))
```

$(7,12)$

Functions can also have default argument values. In the following example, if the second argument is not supplied, it takes on the value 5.

```
def myIntegerList(start, end=5):
 return list(range(start, end+1))
```

Compare the results of the two calls below:

```
print(myIntegerList(2))
print(myIntegerList(7,9))
```

$[2,3,4,5]$
[7, 8, 9]

Anonymous (Lambda) Functions Another way to define a function is with a lambda statement, which is used to define one-line functions. ${ }^{47}$

Anonymous functions are defined using the one-line notation:

```
lambda variables: output
```

For instance,

```
add = lambda u, v: u + v
multiply = lambda u, v: u*v
```

We can apply a bivariate function func to arguments $x$ and $y$, in a general context, using:

```
def applyFunc(func, x, y):
 return func(x,y)
```

and apply in specific contexts (rule, inputs) as follows:

```
print(applyFunc(multiply, 3,4))
print(applyFunc(add, 7,20))
```

12
27

But we do not need to define the function prior to the call. This would also work:

```
print(applyFunc(lambda u, v: u*v, 3,4))
print(applyFunc(lambda u, v: u + v, 7,20))
```

12
27

47: The function is anonymous because it has no name.

Strings Text manipulation is an important part of data cleaning. Often, the raw data contains string fields that do not quite follow an expected format. For example, proper nouns could be incorrectly capitalized. Dates could have been entered under different conventions. Fortunately, Python offers many tools that make string manipulation rather painless. In this section, we look at some of the commonly-performed operations on strings.

Strings can be defined using single or double quotes; note that Python supports unicode strings.

```
a = 'First string'
b = "Second string"
c = '+*'
print(type(a), type(b), type(c))
```

<class 'str'> <class 'str'> <class 'str'>

We can use the multiplication syntax to define a string made up of identical copies of another string as illustrated below:

```
rl = a*4
r2 = c*3
print(rl)
print(r2)
```


## First stringFirst stringFirst stringFirst string

```
+*+*+*
```

```
+*+*+*
```

Strings can be concatenated using the addition syntax:

```
d = a + c
e = r2 + a + b
print(d)
print(e)
```

First string+*
$+*+*+*$ First stringSecond string

The character in position $i$ (the index) of the string a can be accessed via $a[i]$. Remember that the first character's index is 0 .

Negative indices can also be used:a [-4] returns the fourth character from the end, say. For instance, we can print the first, seventh, last, and fourth-last characters of a using:

```
print(a[0], a[6], a[-1], a[-4])
```

```
F s g r
```

We can obtain a substring of a string a using the syntax a[i:j] where $i$ specifies the starting index and j-1 the ending index. Note that a [:j] is equivalent to $a[0: j]$, and $a[i:]$ is the substring starting at index $i$ and reaching until the end of a.

```
print(a[2:4])
print(a[:3])
print(a[6:])
```


## rs

Fir
string

For a string $x, x$.split () splits the string into a list of words separated by a space (by default). Note that a contiguous sequence of space characters including newline ( $\backslash n$ ), carriage return ( $\backslash r$ ), and tab ( $\backslash \mathrm{t}$ ) is considered as one space.

We can also specify what separating characters to use for the splitting, instead of spaces. For example, $x . s p l i t(', ')$ splits $x$ on commas and x.split('--') splits it on --

Consider the examples below:

```
print('This is a \n\n long sentence with
 \r \t weird spaces separating the words.'.split())
```

['This', 'is', 'a', 'long', 'sentence', 'with', 'weird', 'spaces', 'separating', 'the', 'words.']

```
print('One,two, three ,four'.split(',')) # Note that
 # ' three ' is one of the words after separation.
```

['One', 'two', ' three ', 'four']
print('Five--six--ninety-four'.split('--'))
['Five', 'six', 'ninety-four']

In some case, it is helpful to remove leading and trailing space characters (whitespace stripping).

```
s = ' time
print(s)
print(s.strip())
```

```
 time
time
```

It is common to combine strip() with split(', '):

```
cs = 'One , two, three
print([s.strip() for s in cs.split(',')])
```

['One', 'two', 'three']

In fact, the strip() method can accept a string consisting of all characters to be stripped from anothe string, in any combination. For instance, we can strip any leading and trailing characters contained in ['\&','\#','-','.','!'] from any string as follows:

```
tostrip = '&#-.!'
t = '###.Hel#lo!?!&-'
print(t.strip(tostrip))
```


## Hel\#lo!?

The methods upper(), lower(), and title() are useful for altering the case of characters in a string. The following examples showcase their functionality.

```
x = "gArbagE collECtion"
print(x.upper())
print(x.lower())
print(x.title())
```

```
GARBAGE COLLECTION
garbage collection
Garbage Collection
```

The following example illustrates a function that takes a phrase and turns it into an acronym by concatenating the first letters of the words and capitalizing all the letters. Does the code make sense?

```
def acronymize(phrase):
 a = ,' # start with empty string
 for w in phrase.split(): # iterate through words
 a += w[0] # pick the first letter of
 # the words and concatenate
 return a.upper() # capitalize and return
```

```
acronymize("Be right back"), acronymize("Mr Pat Why?")
```

('BRB', 'MPW')

It can also be useful to convert a string representing a number to a number type, and vice versa. The following examples illustrate how these tasks can be achieved.

```
number = 12.345
s = str(number)
print(s, type(s))
f = float(s)
print(f, type(f))
i = int('345')
print(i, type(i))
```

12.345 <class 'str'>
12.345 <class 'float'>
345 <class 'int'>

We can also check if a string $t$ is a substring of another string $s$ via $t$ in s (pattern matching).

```
t1 = "is"
t2 = "has"
s = "This is my car."
print(t1 in s)
print(t2 in s)
```

True
False

If we want to obtain the index at which a substring begins, we can use the find () method. If the substring is not found, -1 is returned.

```
print(s.find(t1))
print(s.find(t2))
```

2
$-1$

We shall revisit Python strings when we discuss Natural Language Processing (see Chapter 32).

Dictionaries A dictionary is a data structure for key-value pairs ( $k: v$ ). To define a dictionary, simply list the key-value pairs enclosed within braces ( $\{$,$\} ), as shown in the following examples.$

The simplest dictionary is the one that is empty:

```
d = {} # This creates an empty dictionary
print(type(d))
```

<class 'dict'>

A more interesting dictionary could be the one below:

```
days = { 'Sun': 1, 'Mon': 2, 'Tue':3, 'Wed':4, 'Thu':5,
 'Fri':6, 'Sat':7 }
print(type(days))
```

<class 'dict'>

We can access the value for key $k$ in dictionary $d$ via $d[k]$. Note that an exception will be raised if does not contain the key $k$.

We can check if a key $k$ is in a dictionary $d$ via $k$ in $d$.

```
print(days['Wed'])
print('Aug' in days)
```


## 4 <br> False

We can add a new key-value pair $k: v$ to a dictionary $d$ via $d[k]=v$.

```
d[1]=(1,2)
d[2]= 3.45
d['three']= 'string'
print(d)
```

\{1: (1, 2), 2: 3.45, 'three': 'string'\}

Conversely, we can delete key k and its associated value from dictionary d via del d[k].

```
del d[2]
print(d)
```

\{1: (1, 2), 'three': 'string'\}

We can also iterate over the keys in a dictionary using a for loop.

```
for key in d:
 print(type(key), type(d[key]))
```

```
<class 'int'> <class 'tuple'>
<class 'str'> <class 'str'>
```

The following code gives the same output

```
for key, value in d.items():
 print(type(key), type(value))
<class 'int'> <class 'tuple'>
<class 'str'> <class 'str'>
```


### 1.5.3 NumPy and Arrays

NumPy is a Python module that supports numerical computation on multi-dimensional arrays. It comes with many useful mathematical functions.

It is the backbone to the scientific computing library SciPy and data analysis and manipulation library pandas. Even though it is possible to do basic statisical analysis using a comprehensive statistics package without direct manipulation of NumPy arrays, knowledge of NumPy is essential for performing custom operations.

In this section, we get a taste of NumPy arrays of dimension at most two. What is covered only scratches the surface of this powerful library. A handy cheat sheet can be found here $\square^{T}$.

It is customary to use the alias np when importing the module.

```
import numpy as np
```

Arrays Unlike lists, NumPy arrays cannot contain elements of different types. There are various ways to create such arrays.

We can create a 1D array from a list:

```
x = np.array([1,2,3,4])
print(x.shape)
```

(4, )
shape is the method that returns the array's dimensions. We can create a 2D array from a list of lists:

```
y = np.array([[1,2,3],[4,5,6]])
print(y.shape)
```

$(2,3)$

If some of the elements are not of the "right" type, they are converted automatically:

```
c = np.array(['n','u','m',15])
print(c)
```

['n' 'u' 'm' '15']

We can also define a NumPy array out of a range using the arange() function:

```
np.arange(1,5)
print(c)
```

```
array([1, 2, 3, 4])
['n' 'u' 'm' '15']
```

yields the same result as np.array ( $[1,2,3,4])$, but it is more efficient, from a computational perspective.

We can also obtain special arrays, composed of zeros, or composed of ones, with the functions zeros() and ones (). Here is a $3 \times 42 \mathrm{D}$ array of 0s:

```
z = np.zeros([3,4]) # A 3-by-4 array of 0's
print(z.shape)
```

$(3,4)$
and $2 \times 1 \times 33 \mathrm{D}$ array of 1 s :

```
f = np.ones([2,3,4]) # A 2x1x3 3D array of 1's
print(f.ndim)
```


## 3

Note the difference between the shape and ndim methods: the former gives the actual dimensions (number of rows, columns, etc.), the latter, the number of dimensions (axes).

We can also define NumPy arrays containing random values; for instance, here is a 1 D array of 10 random values sampled from the standard normal distribution, using the function random. normal ( ):

```
r = np.random.normal(size=10)
print(r)
```

$[-1.10501533$	-0.69929125	-0.00882625	1.12738611	0.60354054
1.50509863	1.07440466	-0.86260135	1.12680367	$-0.01988042]$

Arithmetic Adding and subtracting NumPy arrays of the same dimensions works as we would expect. Using x and y as above, and x 2 as below, we get:

```
w = np.array([-1,-2,-3,-4])
```

```
print(x+w)
```

[0 0000$]$
print(x-w)
$\left[\begin{array}{llll}2 & 4 & 6 & 8\end{array}\right]$
print $(y+y)$
[[ $\left.\begin{array}{lll}2 & 4 & 6\end{array}\right]$
[ 8 10 12]]

Multiplication by a scalar also works as expected:

```
print(2*x)
```

$\left[\begin{array}{llll}2 & 4 & 6 & 8\end{array}\right]$

However, note that multiplication and division via $*$ and / (resp.) are applied component-wise:

```
print(x*w)
```

$\left[\begin{array}{llll}{\left[\begin{array}{lll}-1 & -4 & -9\end{array}\right.} & -16\end{array}\right]$
as is exponentiation:

```
print(y**3)
```

```
[[[1 8 8 27]
[64 125 216]]
```

Broadcasting allows addition and substraction to be performed between arrays that do not have the same shape. There are rules ${ }^{\top}$ g governing when such operations are valid and what the effects are. Here, we provide two simple examples:

$$
x+3.5
$$

```
array([4.5, 5.5, 6.5, 7.5])
```

y-1
$\operatorname{array}([[0,1,2]$,
[3, 4, 5]])

Can you determine what broadcasting does from these examples?

Math Functions NumPy contain some useful methods mapping arrays to a scalar.

For instance, sum adds up the elements in the array.

```
x.sum()
```


## 10

(the same result could have been obtained with np. sum(x)).
The usual statistical descriptions are also available as methos:

```
print(x.std(),x.var(),x.mean())
```


### 1.1180339887498951 .252 .5

NumPy also has a collection of mathematical functions that can be applied component-wise, such as abs () and $\exp ()$ :

```
print(np.abs(r))
```

```
print(np.exp(y))
```

$\left[\begin{array}{c}{[ } \\ \\ 2.71828183\end{array}\right.$
$\left[\begin{array}{c}5.3890561\end{array}\right.$
$\left[\begin{array}{c}20.08553692\end{array}\right]$

NumPy functions are more efficient when it comes to array computations; they should be used whenever possible.

Logical Operations Operations over arrays of boolean values can also be performed efficiently in NumPy.

Let us create a boolean array $b x$ of the same shape as $x$, with $b x[i]=$ True if and only if $x[i]>=2.5$, and a boolean array by of the same shape as $y$, with by $[i]=$ True if and only if $y[i]>=3.5$.

```
bx = x >= 2.5
by = y >= 3.5
print(bx)
print(by)
```

```
[False False True True]
[[False False False]
[True True True]]
```

Comparison of two NumPy arrays of the same shape results in a boolean array, yet again of the same shape. Note that comparison is performed component-wise:

```
x2 = np.array([2,1,3,0])
print(x == x2)
```

```
[False False True False]
```

Comparisons use the symbols $==,<$, and $>$ :

```
print(x > x2)
```


## [False True False True]

We can perform boolean operations (AND, OR, NEG) on boolean arrays:

```
b = np.array([True, False, True, True])
```

AND is computed using \&:

```
b & bx
array([False, False, True, True])
OR with |:
```

    b | bx
    array([ True, False, True, True])
NEG with ~:
$\sim$ b
array([False, True, False, False])

We can also sum over the values of a boolean array (in this case, True is interpreted as 1 and False as 0 ):

```
np.sum(b)
```

3

### 1.6 Python for Data Science

While Python remains a bona fide programming language, it is as a data science tool that its popularity has soared. Let us take a look at some of its data functionality.

### 1.6.1 Pandas and Data Frames

The Pandas module provides Python with an equivalent of $R$ data frames. Essentially, it is a two-dimensional tabular data structure in which each column can be of different value types.

In this section, we cover the basics of Pandas data frames (and introduce a dataset found in the Seaborn ${ }^{\top}$ module. ${ }^{48}$ Comprehensive references for doing data analysis with Python include [14, 9, 7]. The pandas cheat sheet $C^{T}$ could also prove handy.

We start by importing the required modules, with the customary aliases pd and sns:

```
import pandas as pd
import seaborn as sns
```

Loading Data There are various ways to obtain data. One way is to use a pre-built sample dataset, such as titanic from seaborn.

```
titanic = sns.load_dataset("titanic")
type(titanic)
```

<class 'pandas.core.frame.DataFrame'>

Another way is to read a csv file using pandas.read_csv( ). For instance, if the file calculus.csv is in the data folder, we would call:

```
calculus = pd.read_csv('data/calculus.csv')
```

The first rows are given using the head ( ) method of a DataFrame object:

```
titanic.head()
\begin{tabular}{lrrrrlrlrr}
& survived & pclass & sex & age & \(\ldots\) & deck & embark_town & alive & alone \\
0 & 0 & 3 & male & 22.0 & \(\ldots\) & NaN & Southampton & no & False \\
\(\ldots\) & & & & & & & & & \\
4 & 0 & 3 & male & 35.0 & \(\ldots\) & NaN & Southampton & no & True
\end{tabular}
[5 rows x 15 columns]
```

We can also look at the last rows using the tail() method, ${ }^{49}$ such as:

```
```

calculus.tail(6)

```
```

```
```

calculus.tail(6)

```
```

|  | ID |  | Sex | Grade | GPA |
| ---: | ---: | ---: | ---: | ---: | ---: | Year

We get a quick summary of a DataFrame using the describe( ) method:

```
titanic.describe()
```

49: The number of observations can also be specified in the head () method.

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
$25 \%$	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
$50 \%$	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
$75 \%$	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
$\max$	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

We can also obtain a summary of a subset of the columns:

```
df1 = titanic[['survived', 'age', 'fare']]
df1.describe()
```

	survived	age	fare
count	891.000000	714.000000	891.000000
mean	0.383838	29.699118	32.204208
std	0.486592	14.526497	49.693429
min	0.000000	0.420000	0.000000
$25 \%$	0.000000	20.125000	7.910400
$50 \%$	0.000000	28.000000	14.454200
$75 \%$	1.000000	38.000000	31.000000
max	1.000000	80.000000	512.329200

Or specific summary statistics on the full objects or on a specific column:

```
df1.mean()
print()
df1['age'].median()
```

survived	0.383838
age	29.699118
fare	32.204208
dtype:	float64

28.0

Data Frame Operations We continue with some basic operations on data frames. We will use another built-in dataset

## crashes.head()

	total	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	$\ldots$	784.55	145.08	AL
1	18.1	7.421	4.525	$\ldots$	1053.48	133.93	AK
2	18.6	6.510	5.208	$\ldots$	899.47	110.35	AZ
3	22.4	4.032	5.824	$\ldots$	827.34	142.39	AR
4	12.0	4.200	3.360	$\ldots$	878.41	165.63	CA
[5 rows x 8 columns ]							

New columns can be added to any data frame. In this example, we will generate a new column consisting of strings of the form Cnnn where nnn is a zero-padded three-digit number so that row $1,2, \ldots$ of crashes correspond to C001, C002, ...

```
labels = ['C'+"{:03}".format(i+1) for
 i in range(crashes.shape[0])]
crashes['label'] = labels
```

| crashes.head() |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |
|  | total | speeding | alcohol | $\ldots$ | ins_losses | abbrev | label |
| 0 | 18.8 | 7.332 | 5.640 | $\ldots$ | 145.08 | AL | C001 |
| 1 | 18.1 | 7.421 | 4.525 | $\ldots$ | 133.93 | AK | C002 |
| 2 | 18.6 | 6.510 | 5.208 | $\ldots$ | 110.35 | AZ | C003 |
| 3 | 22.4 | 4.032 | 5.824 | $\ldots$ | 142.39 | AR | C004 |
| 4 | 12.0 | 4.200 | 3.360 | $\ldots$ | 165.63 | CA | C005 |

Quite often, a particular column in a csv file serves as the index column. We can set this column to be an index column via the set_index() method:

```
df = crashes.set_index('label')
df.head()
```

	total	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbrev
label				$\ldots$			
C001	18.8	7.332	5.640	$\ldots$	784.55	145.08	AL
C002	18.1	7.421	4.525	$\ldots$	1053.48	133.93	AK
C003	18.6	6.510	5.208	$\ldots$	899.47	110.35	AZ
C004	22.4	4.032	5.824	$\ldots$	827.34	142.39	AR
C005	12.0	4.200	3.360	$\ldots$	878.41	165.63	CA
[5 rows x 8 columns]							

Note that crashes is not affected by set_index (). To make the change directly to crashes, we would need to replace

```
df = crashes.set_index('label')
```

with

```
crashes.set_index('label', inplace=True)
```

We can subset a data frame by rows and columns labels via loc [ ], as in the examples below:

```
df.loc['C010':'C013',['speeding','total']]
```

	speeding	total
label		
C010	3.759	17.9
C011	2.964	15.6
C012	9.450	17.5
C013	5.508	15.3

```
df.loc['C005':'C008',:]
```

	total	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbrev
label				$\ldots$			
C005	12.0	4.200	3.360	$\ldots$	878.41	165.63	CA
C006	13.6	5.032	3.808	$\ldots$	835.50	139.91	C0
C007	10.8	4.968	3.888	$\ldots$	1068.73	167.02	CT
C008	16.2	6.156	4.860	$\ldots$	1137.87	151.48	DE

[4 rows x 8 columns]
We can also extract using position values via iloc [ ].

```
df.iloc[1:5,0:4]
```

	total	speeding	alcohol	not_distracted
label				
C002	18.1	7.421	4.525	16.290
C003	18.6	6.510	5.208	15.624
C004	22.4	4.032	5.824	21.056
C005	12.0	4.200	3.360	10.920

We can reset the index in a data frame via the reset_index () method. This has the effect of turning label into a data column like all other columns in the data frame df , for instance:

```
df.reset_index(inplace=True)
df.head()
```

	label	total	speeding	$\ldots$	ins_premium	ins_losses	abbrev
0	C001	18.8	7.332	$\ldots$	784.55	145.08	AL
1	C002	18.1	7.421	$\ldots$	1053.48	133.93	AK
2	C003	18.6	6.510	$\ldots$	899.47	110.35	AZ
3	C004	22.4	4.032	$\ldots$	827.34	142.39	AR
4	C005	12.0	4.200	$\ldots$	878.41	165.63	CA

```
[5 rows x 9 columns]
```

It is possible to use the generator iterrows to yield both index and row of a data frame. For instance, the next block of code will print the labels corresponding to the first five rows.

```
for index, row in df[0:5].iterrows():
 print(row['label'])
```

Columns and rows can be dropped from a data frame via the drop() method. In the example below, we drop the label column from df and assign the outcome to $d f 2$ (but note $d f$ itself is not changed):

```
df2 = df.drop('label', axis=1)
df2.head()
```

	total	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	$\ldots$	784.55	145.08	AL
1	18.1	7.421	4.525	$\ldots$	1053.48	133.93	AK
2	18.6	6.510	5.208	$\ldots$	899.47	110.35	AZ
3	22.4	4.032	5.824	$\ldots$	827.34	142.39	AR
4	12.0	4.200	3.360	$\ldots$	878.41	165.63	CA

In contrast, the total column is dropped from df (and df is modified as a result):

```
df.drop('total', axis=1, inplace=True)
df.head()
```

	label	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbrev
0	C001	7.332	5.640	$\ldots$	784.55	145.08	AL
1	C002	7.421	4.525	$\ldots$	1053.48	133.93	AK
2	C003	6.510	5.208	$\ldots$	899.47	110.35	AZ
3	C004	4.032	5.824	$\ldots$	827.34	142.39	AR
4	C005	4.200	3.360	$\ldots$	878.41	165.63	CA

[5 rows x 8 columns]

We can rename the columns of a data frame via the rename ( ) method:

```
df.rename(columns={'label':'case', 'abbrev':'abbr'},
 inplace=True)
df.head()
```

	case	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbr
0	C001	7.332	5.640	$\ldots$	784.55	145.08	AL
1	C002	7.421	4.525	$\ldots$	1053.48	133.93	AK
2	C003	6.510	5.208	$\ldots$	899.47	110.35	AZ
3	C004	4.032	5.824	$\ldots$	827.34	142.39	AR
4	C005	4.200	3.360	$\ldots$.	878.41	165.63	CA

[5 rows x 8 columns]

What would we expect the following chunk of code to do?

```
newColumnNames = {}
for name in list(df):
 newColumnNames[name] = name.capitalize()
df2=df.rename(columns=newColumnNames)
```

Rows can be filtered according to a given condition. In the example below, $b$ and $d$ are Pandas series of booleans related to the df data frame:

```
b = df['ins_losses'] > 160
d = df['not_distracted'] < 12
```

If we want to return the rows of df for which ins_losses is greater than 160 AND not_distracted ia less than 12, we would simply call:

```
df[b & d]
```

	case	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbr
4	C005	4.200	3.360	$\ldots$	878.41	165.63	CA
6	C007	4.968	3.888	$\ldots$	1068.73	167.02	CT
20	C021	4.250	4.000	$\ldots$	1048.78	192.70	MD

[3 rows x 8 columns]

To return the rows of db for which ins_losses is greater than 160 OR abbr is equal to AL, we would call:

$$
d f\left[b \mid\left(d f\left[' a b b r^{\prime}\right]==' A L^{\prime}\right)\right]
$$

	case	speeding	alcohol	$\ldots$	ins_premium	ins_losses	abbr
0	C001	7.332	5.640	$\ldots$	784.55	145.08	AL
4	C005	4.200	3.360	$\ldots$	878.41	165.63	CA
6	C007	4.968	3.888	$\ldots$	1068.73	167.02	CT
18	C019	7.175	6.765	$\ldots$	1281.55	194.78	LA
20	C021	4.250	4.000	$\ldots$	1048.78	192.70	MD
36	C037	6.368	5.771	$\ldots$	881.51	178.86	OK
[6 rows x 8 columns]							

### 1.6.2 Data Wrangling

We now take a look at some ways to combine and clean data frames.

Merging and Joins Consider a fictitious test score dataset. There are two sections in the class, contained in testA.csv and testB.csv. Each row consists of a student ID, a section, and a test mark. The file gpa. csv contains information on the students' GPAs and their current year of study.

We start by reading in the two test score files (recall that pd is the alias for the pandas module).

```
dfA = pd.read_csv('data/testA.csv')
dfB = pd.read_csv('data/testB.csv')
```

The first entries of each sets are shown below:

```
dfA.head()
```

	ID Section	Mark	
0	10021	A	47
1	10073	A	83
2	10084	A	51
3	10102	A	57
4	10175	A	71

```
dfB.head()
```

	ID Section	Mark	
0	10011	B	97
1	10063	B	63
2	10094	B	71
3	10110	B	77
4	10133	B	81

We now read in the GPA information.

```
gpa = pd.read_csv('data/gpa.csv')
gpa.head()
\begin{tabular}{rrr}
Student ID & GPA & Year \\
10011 & 12.0 & 3.0 \\
10021 & NaN & 3.0 \\
10063 & 5.6 & 3.0 \\
10073 & 9.8 & 3.0 \\
10084 & 6.2 & 3.0
\end{tabular}
```

Note that the column title for student ID is different in the test score files and in gpa.csv.

We now concatenate the two data frames of test scores into a single object using the pandas function concat ().

```
df = pd.concat([dfA,dfB])
```

We now merge the GPA data frame with this combined test score data frame.

```
df3 = pd.merge(gpa, df, left_on='Student ID', right_on='ID')
df3
```

Student ID	GPA	Year	ID Section	Mark	
10011	12.0	3.0	10011	B	97
10021	NaN	3.0	10021	A	47
10063	5.6	3.0	10063	B	63
10073	9.8	3.0	10073	A	83
10084	6.2	3.0	10084	A	51
10094	8.1	NaN	10094	B	71
10102	6.9	2.0	10102	A	57
10110	8.4	2.0	10110	B	77
10133	10.4	2.0	10133	B	81
10145	5.1	2.0	10145	B	41
10162	7.2	2.0	10162	B	68
10175	6.9	1.0	10175	A	71
10189	6.1	1.0	10189	B	68
10190	11.2	1.0	10190	A	91
10199	NaN	1.0	10199	A	56

merge( ) performs an inner join, but it can also perform outer joins.
Let us see what happens when we merge gpa with dfA.

```
pd.merge(gpa, dfA, left_on='Student ID', right_on='ID',
how='outer').drop('Student ID', axis=1)
```

	GPA	Year	ID Section	Mark	
0	12.0	3.0	NaN	NaN	NaN
1	NaN	3.0	10021.0	A	47.0
2	5.6	3.0	NaN	NaN	NaN
3	9.8	3.0	10073.0	A	83.0
4	6.2	3.0	10084.0	A	51.0
5	8.1	NaN	NaN	NaN	NaN
6	6.9	2.0	10102.0	A	57.0
7	8.4	2.0	NaN	NaN	NaN
8	10.4	2.0	NaN	NaN	NaN
9	5.1	2.0	NaN	NaN	NaN
10	7.2	2.0	NaN	NaN	NaN
11	6.9	1.0	10175.0	A	71.0
12	6.1	1.0	NaN	NaN	NaN
13	11.2	1.0	10190.0	A	91.0
14	NaN	1.0	10199.0	A	56.0

We can see that there is a row for every row in gpa and that only those rows for which Student ID is present in dfA have merged data (what happens if the .drop('Student ID', axis=1) is omitted?).

Data Cleansing Note that in the merged data frame df3 (and in gpa), there are rows containing NaN . If we do not want any rows with such values, we can use the dropna() method.

```
df3.dropna()
```

	Student ID	GPA	Year	ID Section	Mark	
0	10011	12.0	3.0	10011	B	97
2	10063	5.6	3.0	10063	B	63
3	10073	9.8	3.0	10073	A	83
4	10084	6.2	3.0	10084	A	51
6	10102	6.9	2.0	10102	A	57
7	10110	8.4	2.0	10110	B	77
8	10133	10.4	2.0	10133	B	81
9	10145	5.1	2.0	10145	B	41
10	10162	7.2	2.0	10162	B	68
11	10175	6.9	1.0	10175	A	71
12	10189	6.1	1.0	10189	B	68
13	10190	11.2	1.0	10190	A	91

We can also drop only the rows with NaN in specific columns. If we do not want to retain observations with Year==NaN, we would call:

```
gpa.dropna(subset=['Year'])
```

Student ID	GPA	Year
10011	12.0	3.0
10021	NaN	3.0
10063	5.6	3.0
10073	9.8	3.0
10084	6.2	3.0
10102	6.9	2.0
10110	8.4	2.0
10133	10.4	2.0
10145	5.1	2.0
10162	7.2	2.0
10175	6.9	1.0
10189	6.1	1.0
10190	11.2	1.0
10199	NaN	1.0

Instead of dropping rows containing NaN , we could replace the unwanted values with some other chosen value instead (like 0 , say).

```
gpa.fillna(0)
```

Student ID	GPA	Year
10011	12.0	3.0
10021	0.0	3.0
10063	5.6	3.0
10073	9.8	3.0
10084	6.2	3.0
10094	8.1	0.0
10102	6.9	2.0


7	10110	8.4	2.0
8	10133	10.4	2.0
9	10145	5.1	2.0
10	10162	7.2	2.0
11	10175	6.9	1.0
12	10189	6.1	1.0
13	10190	11.2	1.0
14	10199	0.0	1.0

Note that all the NaNs are changed to 0.0. To change only the GPA volume, we can do the following (note that this will modify the original gpa data frame):

## gpa.fillna(\{'GPA':0.0\})

Student ID	GPA	Year
10011	12.0	3.0
10021	0.0	3.0
10063	5.6	3.0
10073	9.8	3.0
10084	6.2	3.0
10094	8.1	NaN
10102	6.9	2.0
10110	8.4	2.0
10133	10.4	2.0
10145	5.1	2.0
10162	7.2	2.0
10175	6.9	1.0
10189	6.1	1.0
10190	11.2	1.0
10199	0.0	1.0

We can apply a function to a data frame column using the method map (). The following will add a Grade column to dfA, containing Pass or Fail based on the Mark column.

```
def markToGrade(x):
 res = 'Fail'
 if x >= 50:
 res = 'Pass'
 return res
dfA['Grade'] = dfA['Mark'].map(markToGrade)
dfA
```

	ID Section		Mark	Grade
0	10021	A	47	Fail
1	10073	A	83	Pass
2	10084	A	51	Pass
3	10102	A	57	Pass
4	10175	A	71	Pass
5	10190	A	91	Pass
6	10199	A	56	Pass

### 1.6.3 Data Aggregation

Sometimes, the data in a dataset can be divided into groups. We might want to obtain summary statistics for each group. Analyses by groups and aggregation can help us obtain insight on groups.

Summaries by Groups We first illustrate obtaining simple statistics on groups using a dataset containing calculus marks (recall that pd is the pandas alias).

```
calc = pd.read_csv('data/calculus.csv')
calc.head()
```

	ID			Sex	Grade
0	10001	GPA	47	5.02	Year
1	10002	M	57	3.82	1
2	10003	M	91	7.70	1
3	10004	M	71	4.82	1
4	10005	F	83	7.91	1

Suppose that we want to see separate mean grades and mean GPA based on the Sex variables. We can use the groupby () method to perform the task:

```
calc[['Sex','Grade','GPA']].groupby('Sex').mean()
```

    Grade GPA
    Sex
F $67.901961 \quad 6.539804$
M $\quad 64.408163 \quad 5.609388$

If we want descriptive statistics for Grade and GPA grouped by Sex, we can use the more general method agg ( ). Note that we first need to import numpy (alias np ) to access these simple statistics functions.

```
calc[['Sex','Grade','GPA']].groupby('Sex').agg([np.mean,
 np.std, np.median])
\begin{tabular}{lrrrrrr}
& \begin{tabular}{r}
Grade \\
mean
\end{tabular} & std median & \begin{tabular}{r}
GPA \\
mean
\end{tabular} & std median \\
Sex & & & & & & \\
F & 67.901961 & 20.162594 & 66.0 & 6.539804 & 3.008527 & 6.24 \\
M & 64.408163 & 16.237711 & 62.0 & 5.609388 & 2.756965 & 4.77
\end{tabular}
```

If we are interested in the Grade mean and the GPA median, grouped by Sex, we can use a dictionary to specify which function is applied to which column as follows:

```
calc[['Sex','Grade','GPA']].groupby('Sex').agg({'Grade':
 np.mean, 'GPA': np.median})
 Grade GPA
Sex
F 67.901961 6.24
M 64.408163 4.77
```

We can also build custom aggregate functions. The following chunk of code computes the sum of squares for the Grade and GPA columns.

```
def sumOfSq(xs):
 return np.dot(xs,xs)
calc[['Sex','Grade','GPA']].groupby('Sex').agg(sumOfSq)
```

Grade
GPA
Sex
F $\quad 255471 \quad 2633.7825$
M $\quad 215928 \quad 1906.6374$

Pivot Tables We could also have obtained the mean Grade and mean GPA for the Sex groups via pivot_table(), as below:

```
calc[['Sex','Grade','GPA']].pivot_table(index='Sex',
 aggfunc=np.mean)
```

```
 GPA Grade
Sex
F 6.539804 67.901961
M 5.609388 64.408163
```

To obtain a pivot table displaying the number of students in each Year grouped by Sex, we can run the following code:

```
calc[['Sex','Year']].pivot_table(index='Sex',
 columns=['Year'],aggfunc=len, margins=False)
```

$\begin{array}{lllll}\text { Year } & 1 & 2 & 3 & 4\end{array}$
Sex

F	33	11	6	1
$M$	32	11	2	4

We can also print the margins (totals) by changing to margins=True.

### 1.6.4 Combining Python with R

Ask most data scientist and they will tell you that they are a Python person or a R person (or perhaps less frequently a Julia person). Python might be best for data processing (in terms of efficiency, especially with large datasets), while R has a package (or three!) for pretty much any statistical and data visualization task under the sun, but that leaves a lot of data analysis real estate that is not spoken for; frankly, it makes much more sense to be conversant with both. ${ }^{50}$
It is now possible to use Python within $R$ through the reticulate package. ${ }^{51}$. The reticulate vignette contains detailed information on the process; for the time being, we will only give a small example detailing how this could be achieved, based on [17].

## library(reticulate)

We start by creating a variable $x$ in the Python session:

```
x = list(range(8))
```

Once that is done, we can access the Python variable $x$ from $R$; it is a column in the (reserved) py data frame:

```
str(py)
py$x
```

```
Module(__main__)
[1] 0 1 2 3 4 5 6 7
```

We can also create new variables $y$ in the Python session from $R$, and pass a data frame to $y$ :

```
py$y <- head(AirPassengers) # a built-in R dataset
```

This variable can now be displayed in the the Python session, and operated on, as needed:

```
print(y)
```

[112.0, 118.0, 132.0, 129.0, 121.0, 135.0]

It is not difficult to imagine how to expand this back and forth to more complex data analysis situations, leaving us the option of picking whatever language is best suited to a specific task.

50: And anything else that comes up from this point onward.

51: There are other means, see R Interface to Python and Five ways to work seamlessly between $R$ and Python in the same project for more information), for instance

52: You will need to install git, docker, and MySQL Client, and know how to open a port on Windows, MacOS, or Linux (search online if necessary).

53: Similar to R's NA.
54: SQL syntax often uses ALL CAPS in its queries to make it easier to distinguish between commands and data.

### 1.7 Getting Started with SQL

Structured Query Language (SQL) is the standard language used to retrieve, modify, and add data to a relational database. It is implemented by all Relational Database Management Systems (RDMS), such as:

- MySQL [10]
- MS Access
- Oracle
- Postgres
- etc.

SQL allows users to query a database and manipulate the stored data using a variety of parameters. SQL code can be embedded into other languages in order to enable storage and processing of large datasets in an efficient manner.

The toy database with which we will work is "implemented" in Aidan Crowther's github repository $\mathrm{C}^{\star}$. Video instructions can be found at DUDADS - How to access the toy database (04:27) | A. Crowther $\square^{\text {. }} .^{52}$

### 1.7.1 Basics

Table Structure The most common form of data organization in a relational database is known as a table - it is similar to a spreadsheet. Data is stored in a record (row), with individual observations aligned by fields (columns).

Records and Fields Rows consist of data that fall into the categories specified by each column and that either match the field data type or contain a NULL value, ${ }^{53}$ the absence of data - it is not the same as a value of zero or an empty string; NULL can be matched to any data type. ${ }^{54}$

Constraints Data can be further restricted by Table or Field constraints. These constraints define rules by which the data must abide. Most commonly, these constraints are used to identify special fields by which data can be uniquely identified, or to ensure data matches a pattern, such as being unique, or not allowing NULL entries.

Here are some of common constraints (and their meanings).

- DEFAULT: provides a predefined default value if none is specified
- NOT NULL: enforces that columns can not have a NULL value
- UNIQUE: ensures that all values in a column are different
- PRIMARY KEY: uniquely identifies a record within a table
- FOREIGN KEY: uniquely identifies a record in another table
- CHECK: ensures all data in a field matches a restriction
- INDEX: used to quickly retrieve and add data to a table

Notably, primary and foreign keys allow users to create relations between tables. In addition, every table must contain no more than one primary key; although they do not need to be defined with a primary key, doing so is considered bad practice.

Data Integrity Data entered into a table must follow some ensuring the latter's integrity. The following rules exist in every Database Management System (DBMS).

- Entity Integrity: there must not be any duplicate records within a table;
- Domain Integrity: enforces valid entries for all fields, following restrictions on data type, format, or range;
- Referential Integrity: rows used by other records can not be deleted.

Essentially, we cannot enter records that can cause a table to stop being able to uniquely identify and collect data. In addition, relations between tables must never be broken through the deletion of data.

### 1.7.2 SQL Syntax

The fundamental SQL unit is the query, a way to manipulate and output observations from a database by following a specific set of rules.

Generally, queries are used to request data from tables kept within a database, but they can also be used to modify, remove, and add data.

The "sentence structure" of a SQL query is a repeated pattern of a command followed by a descriptor; the end of a query being denoted by a semicolon (;). ${ }^{55}$ More information on SQL (including its syntax) is available in $[10,13,15]$.

We will illustrate the various SQL query parameters with the help of a toy database with 4 tables, whose structure is shown in Figure 1.6.


55: SQL queries read rather naturally as regular English sentences, too.

Figure 1.6: Database diagram for the toy example, with 4 tables. Some of the entries for 2 of the tables are shown in the Exercises. The data is also available as an Excel spreadsheet ${ }^{\pi}$.

56: Spelling, including the case, matters.

57: In this case, the Courses table. The table is typically clear from the context.

Example What would the following toy dataset query return?

## A Simple SQL Query

```
SELECT COURSE FROM Courses WHERE FACULTY_ID=1;
```

We break down the query into its command/descriptor structure.

- SELECT COURSE: display only the COURSE identifier;
- FROM Courses: of the observations from the Courses table;
- WHERE FACULTY_ID=4: for which FACULTY_ID is 4.

This query would fetch all courses taught by the instructor \#4:

```
COURSES
CGSC101
2 CGSC202
```

We see that this is indeed the case in the Courses table:


### 1.7.3 Key Query Operators

## SELECT/FROM

The SELECT command is nearly always used to interact with data; it is used to request data from a table. It is applied to columns, which need to be specified, using a comma-separated list of columns immediately after the SELECT keyword. ${ }^{56}$ The wildcard character (*) can be used to match all columns.

SELECT also needs to be told from which table to retrieve data; this is accomplished with the FROM keyword, after columns have been specified in the query. FROM cannot be used without an argument, but only one table can be used as input.

The simplest form of a SELECT query takes the following form, returning all data within a table. ${ }^{57}$

```
SELECT * FROM Courses;
```

(The output was provided at the end of the previous Section).
The SELECT command also allows aggregate functions (statistics) to be applied to the selected table columns, including COUNT, SUM, AVG, MIN, MAX; and more. All rows matching the field being modified will be combined into one unless combined with the GROUP BY clause. ${ }^{58}$

Multiple fields can be matched with aggregate functions, and multiple aggregate functions can be used in a query. This can be a useful workaround if a SQL server has quota restrictions on the number of queries that can be submitted, allowing multiple fields to be returned with one query.

SELECT AVG(SALARY), MAX(AGE) FROM Professors;
$\begin{array}{rrr} & \text { AVG(SALARY) } & \text { MAX(AGE) } \\ 1 & 210555.6 & 67\end{array}$

Evidently, the oldest professor is 67 years old, and the average salary is \$210,555.60. ${ }^{59}$

## WHERE

In SQL, some queries contain modifiers that narrow the query scope. The most prevalent one of these clauses is WHERE. This clause is often seen used with the SELECT query, but can also be used to specify targets for other queries such as UPDATE and DELETE.
WHERE allows users to specify constraints to apply to the database prior to returning the results of a query. These constraints typically use comparison operators, such as: $>,<,=$, NOT, LIKE, IS, etc...

Constraints based on numerical values behave as expected, but their behaviour might be unexpected however when operating on a strings. Consequently, we recommend consulting the appropriate documentation in the specific database software manual.

We can determine whether a value is NULL by using the IS conditional clause to match for NULL type.

SELECT NAME FROM Professors WHERE SALARY >= 60000;
NAME
Adam Smith
Paige Ryans
Alex Doe
Landon Liu
Kyra Carmichael
Heather Wong
Quine Ngyogne
Vikram Das
Samuel Koffi
Adam Smith
Paige Ryans
Alex Doe
Landon Liu
5 Kyra Carmichael
Heather Wong
Quine Ngyogne
Samuel Koffi

59: Whoa! They're making a killing out there...

Clauses, such as WHERE, can be chained with other constraints in order to conduct complex queries on a database.

We can dive in further within a result when using a WHERE clause by combining conditions using the AND, OR, and NOT clauses, Boolean operators linking query conditions:

- AND returns results where all conditions are true;
- OR returns results where at least one condition is true, and
- NOT returns results where the next condition is false.

These clauses can further be organized into brackets.

```
SELECT * FROM Professors WHERE
 (SALARY>=60000 AND NOT AGE>60) OR FACULTY IS NULL;
```

NAME SALARY	FACULTY_ID AGE	FACULTY	
Paige Ryans 180000	2	48	Physics
Alex Doe 190000	3	37	<NA>
Landon Liu 120000	4	34	Cognitive Science
Marcel Orosz	NA	5	48
Kyra Carmichael 200000	6	30	<NA>
Heather Wong 200000	7	34	Economics
Quine Ngyogne 115000	8	55	Chemistry
Vikram Das 500000	9	60	Computer Science
Samuel Koffi 300000	10	40	Political Science

## EXISTS

The EXISTS keyword is used determine whether a sub-query returns any rows; it returns true if the sub-query returns at least one row; and false otherwise. It is often used in correlated sub-queries.

A correlated sub-query is a query that depends on values from the outer query; it is executed for each row of the outer query, and the results are used to filter the outer query (often based on some condition in the sub-query).

The syntax for a correlated sub-query is similar to a regular sub-query, but it includes a reference to the outer table in the sub-query.

```
SELECT * FROM Professors WHERE EXISTS
 (SELECT * FROM Courses WHERE
 Professors.FACULTY_ID = Courses.FACULTY_ID);
```

            NAME SALARY FACULTY_ID AGE FACULTY
    | 1 | Adam Smith | 90000 | 1 | 67 |
| :--- | ---: | :--- | :--- | :--- |
| 2 | Paige Ryans 180000 | 2 | 48 | Economics |
| 3 | Landon Liu 120000 | 4 | 34 | Cognitive Science |
| 4 | Kyra Carmichael 200000 | 6 | 30 | Business |
| 5 | Quine Ngyogne 115000 | 8 | 55 | Chemistry |
| 6 | Vikram Das 500000 | 9 | 60 | Computer Science |

The correlated sub-query identifies professors currently assigned to courses; the outer query returns the list of details for those professors.

## HAVING/GROUP BY

The GROUP BY clause is used to aggregate data across multiple rows based on one or more fields. ${ }^{60}$ It is used to group data and perform calculations on these groups. The aggregate functions include COUNT, SUM, AVG, MIN, MAX, etc...

We can also use the HAVING clause to narrow grouped data further, allowing for the selection only of those results matching a supplementary set of criteria.

```
SELECT AGE, AVG(SALARY) AS AVG_SALARY FROM Professors
 GROUP BY AGE HAVING AVG(SALARY)>90000;
```

	AGE	AVG_SALARY
1	48	180000
2	37	190000
3	34	160000
4	30	200000
5	55	115000
6	60	500000
7	40	300000

## IN/BETWEEN

In addition to the use of Boolean conditionals, SQL has the ability to match multiple distinct cases, either by constraining results to a narrow value of cases specified by a list, or by matching within a continuous range.

IN allows a set of possible matching values to be specified - any condition contained within this set evaluates to true. We can also use the result of another query to specify the contents of this set via a SELECT query when specifying the set against which to match.

BETWEEN evaluates to true when a compared value falls strictly within the bounds specified by the query. This comparison is performed inclusively; it can also be used to match to an alphabetically sorted list of strings.

```
SELECT * FROM Professors WHERE FACULTY_ID IN (1, 2)
 AND NAME BETWEEN "Adam Smith" AND "Alex Doe";
```

```
 NAME SALARY FACULTY_ID AGE FACULTY
1 Adam Smith 90000 1 67 Economics
```

60: Again, quite reminiscent of Excel pivot tables.

61: This command can vary according to the SQL server in use - in some systems, the command is instead TOP.

62: This works on numerical values and strings.

## LIMIT/ORDER BY

Some tables store a large number of rows, and can overwhelm a receiver; in these cases restricting the number of returned results can be crucial. This can be accomplished by using the LIMIT command, which when followed by a numerical value $n$, returns only the first $n$ results from the query. ${ }^{61}$

ORDER BY is another powerful clause, especially when used in conjunction with the LIMIT/TOP clause - it sorts the result set returned by the query, allowing users to specify sorting columns (and directions: ASC and DESC). ${ }^{62}$

SELECT * FROM Professors ORDER BY NAME ASC LIMIT 4;

	NAME SALARY		FACULTY_ID	AGE	FACULTY
1	Adam Smith	90000	1	67	Economics
2	Alex Doe 190000	3	37	<NA>	
3	Heather Wong 200000	7	34	Economics	
4	Kyra Carmichael 200000	6	30	Business	

## DISTINCT

When one of the fields being used to return results contains a large number of duplicate values, the DISTINCT clause can help narrow the returned data; multiple fields can be marked as distinct, which can be useful when searching for unique matches after performing a JOIN operation.

## SELECT DISTINCT NAME From Professors;

NAME
Adam Smith
Paige Ryans
Alex Doe
Landon Liu
Marcel Orosz
Kyra Carmichael
Heather Wong
Quine Ngyogne Vikram Das Samuel Koffi

## LIKE

The LIKE keyword is used in a WHERE clause to search for a specified pattern in a string column. It is used with the $\%$ and _ wildcard characters, to match any string or any single character, respectively. The pattern provided for matching must be enclosed within quotes.

```
SELECT * FROM Courses WHERE COURSE LIKE 'ECON%';
 COURSE FULL Semester FACULTY_ID
1 ECON101 1 FALL 1
2 ECON401 0 WINTER 1
```


## UNION

A union in SQL is a set operation which combines the result sets of two or more SELECT statements into a single result set.

The UNION command will combine the output of multiple SELECT queries, with a few restrictions:

- the same number of columns must be selected in all queries;
- the same data type must be used for all selections;
- the result must have the same order.

To include all rows, including duplicates, the UNION ALL operator can be used instead of UNION.

A union can be used for a wide range of purposes, such as combining data from multiple tables, aggregating data from different sources, and generating reports that require data from multiple queries.

```
SELECT NAME AS RESULTS FROM Professors WHERE FACULTY_ID=1
 UNION SELECT COURSE FROM Courses WHERE FACULTY_ID=1;
```

    RESULTS
    1 Adam Smith
2 ECON101
3 ECON401

Note that a UNION will combine all matching results into the same column. This may require careful formatting of the selection ordering when matching multiple columns.

## JOIN

A crucial concept of SQL is that of combining tables virtually in order to match related data between tables. One approach to doing so is using the JOIN command, which allows users to combine multiple tables into a single virtual table by matching like data between the two.

Multiple types of JOIN can be performed:

- LEFT JOIN
- RIGHT JOIN
- INNER JOIN
- FULL JOIN
- EXCLUSIVE JOIN

These different forms of JOIN allow data selection to be narrowed to various ranges, based on the order in which the tables are joined and the type of join used.

63: The LEFT JOIN is illustrated below:


## LEFT JOIN

LEFT JOIN is a type of join operation that combines rows from two tables based on the chosen matching condition(s), as well as any unmatched rows from the left table; i.e., the first specified table after the FROM clause. ${ }^{63}$

The resulting table will contain all of the rows from the left table, along with any matching rows from the right table. If a row does not have a match in the right table, it contains only NULL values.

```
SELECT * FROM Professors LEFT JOIN Courses
 ON Courses.FACULTY_ID=Professors.FACULTY_ID;
```

This query will create a list of all professor-assigned-to-course matches, while also listing professors that do not teach any courses.

NAME SALARY	FACULTY_ID	AGE	FACULTY	COURSE	FULL	Semester	FACULTY_ID
Adam Smith 90000	1	67	Economics	ECON101	1	FALL	1
Adam Smith 90000	1	67	Economics	ECON401	0	WINTER	1
Paige Ryans 180000	2	48	Physics	PHYS201	0	WINTER	2
Alex Doe 190000	3	37	<NA>	<NA>	NA	<NA>	NA
Landon Liu 120000	4	34	Cognitive Science	CGSC101	1	SUMMER	4
Landon Liu 120000	4	34	Cognitive Science	CGSC202	1	WINTER	4
Marcel Orosz NA	5	48	<NA>	<NA>	NA	<NA>	NA
Kyra Carmichael 200000	6	30	Business	BUSI202	1	SUMMER	6
Heather Wong 200000	7	34	Economics	<NA>	NA	<NA>	NA
Quine Ngyogne 115000	8	55	Chemistry	CHEM404	0	WINTER	8
Vikram Das 500000	9	60	Computer Science	COMP490	1	FALL	9
Samuel Koffi 300000	10	40	Political Science	<NA>	NA	<NA>	NA

64: The RIGHT JOIN is illustrated below:


RIGHT JOIN

RIGHT JOIN is identical to LEFT JOIN, except that the primary table in this case is the second ("right") table appearing after the FROM clause. ${ }^{64}$ Generally, a RIGHT JOIN and a LEFT JOIN can be used interchangeably by altering the order in which tables are selected.

## SELECT * FROM Professors RIGHT JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

NAME SALARY	FACULTY_ID	AGE	FACULTY	COURSE	FULL	Semester	FACULTY_ID
Kyra Carmichael 200000	6	30	Business BUSI202	1	SUMMER	6	
Landon Liu 120000	4	34	Cognitive Science CGSC101	1	SUMMER	4	
Landon Liu 120000	4	34	Cognitive Science CGSC202	1	WINTER	4	
Quine Ngyogne 115000	8	55	Chemistry CHEM404	0	WINTER	8	
Vikram Das 500000	9	60	Computer Science COMP490	1	FALL	9	
Adam Smith 90000	1	67	Economics ECON101	1	FALL	1	
Adam Smith 90000	1	67	Economics ECON401	0	WINTER	1	
<NA>	NA	NA	NA	<NA> MUSI101	0	SUMMER	NA
Paige Ryans 180000	2	48	Physics PHYS201	0	WINTER	2	

## INNER JOIN

INNER JOIN is a type of join operation that combines rows from two tables based on the chosen matching condition(s), omitting any unmatched rows; the resulting table will contain only rows where both left and right tables meet the match criteria, all unmatched rows will be dropped. ${ }^{65}$

```
SELECT * FROM Professors INNER JOIN Courses
 ON Courses.FACULTY_ID=Professors.FACULTY_ID;
```

This query will provide a list of only those records for which there ia

65: The INNER JOIN is illustrated below:
 professor and a course match.

FACULTY COURSE FULL Semester FACULTY_ID


## FULL JOIN

FULL JOIN returns all rows based on the matching condition(s), including the rows from both right and left tables, replacing missing values with NULL; the input rows of both tables will be present in the output.

MySQL does not inherently support the FULL JOIN as this function is largely "syntactic sugar"; we can emulate it using UNION in conjunction with a LEFT JOIN and RIGHT JOIN. ${ }^{66}$

```
SELECT * FROM Courses LEFT JOIN Professors
 ON Courses.FACULTY_ID=Professors.FACULTY_ID
 UNION SELECT * FROM Courses RIGHT JOIN Professors
 ON Courses.FACULTY_ID=Professors.FACULTY_ID;
```

66: The FULL JOIN is illustrated below:


COURSE FULL Semester FACULTY_ID
2
3
12 <NA> NA <NA>

13 <NA> NA <NA>

NAME SALARY FACULTY_ID AGE
6 Kyra Carmichael 200000
4 Landon Liu 120000
4 Landon Liu 120000
Quine Ngyogne 115000
Vikram Das 500000
Adam Smith 90000
Adam Smith 90000
<NA> NA
Paige Ryans 180000
Alex Doe 190000
Marcel Orosz NA
NA Heather Wong 200000
NA Samuel Koffi 300000

FACULTY
Business

Cognitive Science
Cognitive Science
Chemistry
Computer Science
67 Economics
167 Economics
NA NA <NA>
248 Physics
$337<N A>$
548 <NA>
734 Economics
1040 Political Science

67: The EXCLUSIVE JOIN is illustrated below:


## EXCLUSIVE JOIN

An EXCLUSIVE JOIN is a syntactic concept; the WHERE clause is appended to a JOIN command specifying to only return rows from the left table if no matching data exists in the right table. This modification effectively only return results that are unique to each table, but otherwise operate exactly as before. ${ }^{67}$

```
SELECT * FROM Courses RIGHT JOIN Professors
 ON Courses.FACULTY_ID=Professors.FACULTY_ID
 WHERE Courses.FACULTY_ID IS NULL;
```

This query will return a list of all professors not teaching a course.

	URSE	FULL	Semester	FACULTY_ID	NAME	SALARY	FACULTY_ID	AGE	FACULTY
1	<NA>	NA	<NA>	NA	Alex Doe	190000	3	37	<NA>
2	<NA>	NA	<NA>	NA	Marcel Orosz	NA	5	48	<NA>
3	<NA>	NA	<NA>	NA	Heather Wong	200000	7	34	Economics
4	<NA>	NA	<NA>	NA	Samuel Koffi	300000	10	40	S Science

68: We display the SQL keywords in lower case to make it easier to parse the query; the table and variable names have to be spelled exactly as they appear in the database, however. In practice, it might be a better idea to store the database variables and table names in lower case or camel case, and retain ALL CAPS for the SQL keywords. But you do you.

```
select NAME from
 (Professors left join Courses
 on Professors.FACULTY_ID=Courses.FACULTY_ID)
inner join
 (select COURSE, sum(STATUS in ('DNF', 'FAILED'))
 as Failing_Students
 from Registrations
 where STATUS in ('DNF', 'FAILED')
 group by COURSE order by Failing_Students desc limit 2)
as T on Courses.COURSE=T.COURSE;
```


## NAME

1 Adam Smith
2 Kyra Carmichael

It can be easier to understand a query if it is broken down from the innermost sub table.

1. We start by noting that we work on the Registrations table, and select only rows that contain a STATUS value of DNF or FAILED.
```
from Registrations
 where STATUS in ('DNF', 'FAILED')
```

2. In the sub-query, we select two fields: the COURSE field is returned as it appears in the data, and the count of instances where STATUS is DNF or FAILED (using the aggregation function SUM), which was saved as Failing_Students, now available to the outer query.
```
select COURSE, sum(STATUS in ('DNF', 'FAILED'))
 as Failing_Students
```

3. The sub-query groups the output by the COURSE field, ordered by the count of Failing_Students in each course, but limited to the two largest instances.
```
group by COURSE order by Failing_Students
 desc limit 2
```

4. We can now go to the primary query, in which the Professors table is joined to the Courses table to create a mapping of professors to the courses they teach.
```
(Professors left join Courses
 on Professors.FACULTY_ID=Courses.FACULTY_ID)
```

5. The sub-query is assigned the table identifier $T$, which is inner joined with the primary query table, returning a table with the information of the two professors with the most "failing" students.
```
inner join
as T on Courses.COURSE=T.COURSE;
```

6. Finally, the resultant rows are isolated and only the NAME field is outputted, ultimately returning the names of the two professor with the most failing students.
```
select NAME from
```

...

SQL in R It will not come as a surprise, especially after the reticulate detour of Section 1.6.4, that we can write SQL queries in R, with the appropriate library. ${ }^{69}$

```
SQL in R
 # install required library
 library(RMySQL)
 # connect to the database
mysqlcon = dbConnect(RMySQL::MySQL(),
 dbname='school', host='ayyws.com', port=3000,
 user='Ruser', password='Ruser')
```

[1] "Courses" "Professors" "Registrations" "Students" password arguments are those of a test server where the toy example database can be accessed. For obvious reasons, this is a read-only situation. Just as obviously, the arguments would be different when working with a real database; contact your DBA (database admin) and consult the video linked to at the start of this section for more information and troubleshooting.

70: Hint: see ?log and ?pi for information about how to use.

```
test the connection by listing all tables
dbListTables(mysqlcon)
submit a query to the database
x = dbSendQuery(mysqlcon, "select * from Registrations;")
convert the result to an R data frame, and display
data.frame = fetch(x)
print(data.frame)
```

	STUDENT_ID	COURSE	GRADE	STATUS
1	100	ECON401	NA	Registered
2	100	ECON101	10.00	Passed
3	101	ECON101	2.45	Failed
4	102	BUSI202	NA	Registered
5	102	ECON101	NA	DNF
6	104	CHEM404	NA	Registered
7	104	COMP490	9.80	Passed
8	101	BUSI202	3.52	Failed

### 1.8 Exercises

1. Write pseudo-code that will sort a list of numbers. Identify the inputs and the outputs, and solve the problem "procedurally" on a definite example before generalizing to a general list. You may need to "black box" the manipulation of individual numbers and group of numbers within the list.
2. Write pseudo-code that will enumerate all strings of up to $n$ characters taken from the set A-Z, with no repeated character. Identify the inputs and the outputs, and solve the problem "procedurally" on a definite example before generalizing. Use "black boxes" as needed.
3. Use R to calculate the following quantities:
a) The sum of $1.001,22.9$, and -73.78
b) The square root of 64
c) Calculate the base 10 logarithm of 90, and multiply the result with the cosine of $\pi .{ }^{70}$
4. Type the following $R$ code, which assigns numbers to objects $x, y$.
```
x<-252
y<-5.5
```

a) Calculate the product of $x$ and $y$
b) Store the result in a new object called $z$
c) Inspect your workspace by typing ls(), and by clicking the Environment tab in RStudio, and find the three objects you created
d) Make a vector of the objects ' $x$ ', ' $y$ ', and ' $z$ '.
5. You have measured seven cylinders. Their lengths are: 2.1, 10.8, $5.5,6.6,9.7,8.2,8.1$, and the diameters are: $0.4,0.3,1.2,0.9,0.3$, $0.2,0.1$. Read these data points into two vectors (give the vectors
appropriate names). Use R to calculate the volume of each cylinder $\left(V=\right.$ length $\left.\times \pi \times(\text { diameter } / 2)^{2}\right)$.
6. Input the following data, related to space shuttle launch damage prior to the Challenger explosion. The set covers 6 launches out of 24 that were included in the pre-launch charts used to decide whether to proceed with the launch or not

Temp	Erosion	Blowby	Total
53	3	2	5
57	1	0	1
63	1	0	1
70	1	0	1
70	1	0	1
75	0	2	1

Enter these data into a R data frame, with column names temperature, erosion, blowby, and total.
7. Read the following data into R (number of honeyeaters seen at a site in a week). Give the resulting data frame a reasonable name. Type it into Excel or text file and save it as a CSV file or txt.

Day	nbirds	Day	nbirds
Sunday	3	Thursday	8
Monday	2	Friday	1
Tuesday	5	Saturday	2
Wednesday	0		

Enter the following data as new observations of a different week starting on Sunday: $4,3,6,1,9,2,0$.
8. Read the data from the space shuttle launch (from the previous question) data into $R$.
9. Read the following data set (various Australian populations since 1917) into an R object. Write the object into a text file, from R.

Year	NSW	Vic.	Qld	SA	WA	Tas.	NT	ACT	Aust.
1917	1904	1409	683	440	306	193	5	3	4941
1927	2402	1727	873	565	392	211	4	8	6182
1937	2693	1853	993	589	457	233	6	11	6836
1947	2985	2055	1106	646	502	257	11	17	7579
1957	3625	2656	1413	873	688	326	21	38	9640
1967	4295	3274	1700	1110	879	375	62	103	11799
1977	5002	3837	2130	1286	1204	415	104	214	14192
1987	5617	4210	2675	1393	1496	449	158	265	16264
1997	6274	4605	3401	1480	1798	474	187	310	18532

10. What do you think the following R calls do?
```
swiss$var1 <- swiss[,1]>median(swiss[,1])
swiss$var4 <- swiss[,4]>median(swiss[,4])
```

71: Hint: Use list comprehension and con catenation. To check if a is of type str, use type(a) is str. To check if a is not of type str, use type(a) is not str.

72: Hint: $x \% n$ returns the remainder of $x$ divided by $n$.

73: Hint: type (x) is int is the syntax for testing if $x$ is of type int.

```
table(swiss$var1); table(swiss$var4)
table(swiss$var1,swiss$var4)
```

11. What do you think the following R calls do?
```
median(test, na.rm=TRUE)
min(test, na.rm=TRUE)
max(test, na.rm=TRUE)
quantile(test, na.rm=TRUE)
```

12. In Python:
a) evaluate $\lfloor 10001 / 4\rfloor$ and $\arcsin (\pi / 4)$;
b) obtain the value of $s$ in the following: $a=\pi(1+\ln 5), b=\frac{1}{3+\sqrt{4}}$ and $s=a+b$;
c) obtain a formatted string of $\sin \left(\pi^{2}\right)$ of width 8 , with 5 decimal places;
d) turn the value of $\sqrt{3}$ into a fixed decimal with 8 decimal places.
13. In Python:
a) create a list of integers from - 10 to 5 ;
b) use list comprehension to create a list ( $x, y$ ) so that $x+y>8$ where $x$ can be any nonnegative integer at most 10 and $y$ can be any positive integer at most 7;
c) use list comprehension to create a list ( $x, y$ ) so that $y$ is the square of $x$ and $x$ is from 1 to 10;
d) write one line of code that returns a list obtained from
```
x = ['one', 2, 3, 'four', 5, 6, 'seven', 8, 9, 10,
 'eleven', 12, 13, 'fourteen']
```

by moving all the elements of type str to the end of the list. ${ }^{71}$
14. Write an if statement in Python that prints "odd" if $x$ is odd and prints "even" if x is even where x is a random integer between -100 and 100 , inclusive. ${ }^{72}$

```
import random
x = random.randint(-100,100)
```

15. Use a single while loop in Python to print all pairs ( $x, y$ ) such that $x+y=100$ and $x$ ranges from 0 to 50 .
16. Write a Python function myFunc() that returns the square of $x$ if $x$ is of type int and returns None otherwise. ${ }^{73}$
```
def myFunc(x):
 res = None
 ## Your code here
 return res
```

Verify that the function behaves as expected:

```
assert(myFunc(5) == 25)
assert(myFunc('five') is None)
```

17. Write a function mySoS() that accepts a list of floats as the only argument and returns the sum of squares of the numbers (assume that the argument is indeed a list of floats - no need to test if the condition is met).
```
def mySoS(ns):
 res = 0
 ## Your code here
 return res
```

Verify that the function behaves as expected:

```
assert(mySoS([1.0,2.0,3.0]) == 14.0)
assert(mySoS([-2.5,1.3,13.4]) == 187.5)
```

18. What is the result of the following code?
```
def mystery(func, n):
 return [func(i) for i in range(n)]
print(mystery(lambda x: (2*x+1)**2, 5))
```

Rewrite the function using an anonymous function (single line).
19. Complete the definition of the Python function myRep() with arguments $x, y$, and $n$ (where $x$ and $y$ can be assumed to be strings and $n$ can be assumed to be a nonnegative integer) that returns the string $\mathrm{x}+\mathrm{y}$ repeated n times.

```
def myRep(x, y, n):
 res = ''
 # Your code here
 return res
```

Verify that the function behaves as expected:

```
assert(myRep('a','b',3) == 'ababab')
assert(myRep('Python','C',0) == '')
```

20. Complete the definition of the Python function posOfi() with argument s and returns a list of indices at which s contains the letter ' i '. ${ }^{74}$
```
def posOfi(s):
 # Your code here
 return None
```

Verify that the function behaves as expected:

```
print(posOfi("Mississipi"))
print(posOfi("Harry Potter"))
```

21. Complete the following Python function which takes a string consisting of a paragraph of sentences ending with a period and returns a list of all the sentences, with leading and trailing spaces stripped. You may assume that every period ends a proper sentence and there are no sentences not ending in a period.
```
def sentences(p):
 # Your code here
 return None
```

Verify that the function behaves as expected:

```
p = 'The essence of Python. One can sense. But not learn.'
print(sentences(p))
```

22. What effect do the methods upper(), lower(), and title() have on non-alphabetical characters?
23. Complete the following function which takes a list of full names as argument an returns a list of names that are not properly capitalized. For example, for the argument ['John Doe', 'JANE Kelly', 'nicole dunn', 'David Huang'], the function returns ['JANE Kelly, 'nicole Dunn'].
```
def badNames(names):
 # Your code here
 return None
```

24. Complete the following function which takes a list $l$ of strings as argument and returns a list consisting of the strings in $l$ not containing the symbol -. For example, given the argument [ ' Hi ' , 'Good-bye', 'Ciao', 'Twenty-one'], the function should return ['Hi', 'Ciao'].
```
def filterList(l):
 # Your code here
 return None
```

25. Complete the following function which takes a list of pairs as argument and returns a dictionary with the first components as keys and the second components as the corresponding values. For example, given the argument [(1,'a'), (2,'b')], the function returns \{1: 'a', 2: 'b'\}.
```
def pairListToDict(pairs):
 # Your code here
 return None
```

26. Complete the following function which takes a dictionary as argument and removes all the key-value pairs that do not have values of type str. For example, calling the function with the dictionary \{'one': 1, 'two': 'Two', 'three': 3\} will change the dictionary to \{'two': 'Two'\}.
```
def filter(d):
 # Your code here
 return
```

27. Complete the following code so that sq is a 1D numpy array of the squares of the first 100 positive integers. Use list comprehension.
sq = np.array([...])
28. Obtain a NumPy array from the array sq in the section by applying the function $\sqrt{x}+1$ to each entry x in $\mathrm{sq} .^{75}$
29. Complete the following definition of myFunc() which takes a positive integer argument $n$ and a positive real number $d$ and generates an array of n random values drawn from the standard normal distribution and returns the number of values whose absolute values are less than or equal to $d$. You may assume that $n$ is a positive integer and $d$ is a non-negative float when myFunc ( ) is called. ${ }^{76}$
```
def myFunc(n, d):
 # Your code here
 return 0
```

Verify that the function behaves as expected:

```
np.random.seed(5900)
assert(myFunc(10000,1) == 6848)
assert(myFunc(100000,2) == 95490)
```

30. Obtain the iris data set through seaborn and generate some summary statistics.
31. Write code to change the labels in the data frame crashes from Cnnn to Incident nnn and turn that column into an index column. Commit these changes to crashes.
32. Extract a data frame from df consisting only of the columns speeding and alcohol for which the speeding values are at least 3.0 and the alcohol values are at most 4.5 .
33. There is a powerful way to filter rows involving complex boolean expressions via the query () method. For instance,

75: Hint: use broadcasting and np.sqrt().

76: Hint: use numpy. random. randn () for generating the random array.


Extract a data frame from df via query () consisting of records for which alcohol is at most 4.0 and abbr is neither CA nor LA.
34. Obtain a data frame df 4 by changing the column name of Student ID in the data frame gpa to ID. Then create df5 by merging df4 and df using pd.merge(df4, df, on='ID') and summarize the resulting data frame.
35. Perform an outer join with df 4 from the previous exercise and dfB .

77: Hint: if arr is a NumPy array, then arr $>=50.0$ gives an array of the same length such that element $i$ is True if and only if a[i] >= 50.0.
36. Drop the observations in the original gpa data frame for which the only NaN values are found in the GPA column.
37. Replace the NaN in the original gpa's Year column with the string Unknown.
38. Modify markToGrade so that a mark between 80 to 100 (incusive) is converted to an A , a mark at least 70 but less than 80 is converted to a B, a mark at least 60 but less than 70 is converted to a C, a mark at least 50 but less than 60 is converted to a $D$, and a mark below 50 is converted to an $F$.

```
def markToGrade(x):
 res = 'F'
 # Your code here
 return res
```

Add a Grade column to df 3 containing the converted grades.
39. Obtain the mean for each of the Year groups in the calc data frame.
40. Obtain the mean, standard deviation, and median for each of the Year groups in the calc data frame, using agg ().
41. Produce a summary of the calc data frame giving the Grade mean and standard deviation, and the GPA median, grouped by Years.
42. Complete the definition of a function that returns Satisfactory if the average of the array $x$ is at least 65.0 and Unsatisfactory otherwise.

```
def groupStatus(arr):
 res = ''
 # Your code here
 return res
```

Determine the group status in the calc dataset by both Sex and Year, for the Grade variable.
43. Write a function that produces the pivot table displaying the number of students with a passing grade by Sex and Year. ${ }^{77}$
44. Carry out the remaining exercises in both $R$ and Python. There is no need to do the exercises in any particular order. Take the time to design pseudo-code and think about what the code does before jumping directly into the programming. You may choose to carry out each of the exercises separately, or to write a single program that carries out all of the individual exercises. You will find much of the base code you need in the chapter's examples, but you may need to tweak and add to this code to carry out the exercises. Do not hesitate to look for information and inspiration on the Internet and in the documentation.
a) Create three variables and assign numerical values to each of these variables. Then write one or more statements that carry out the following types of operations using these variables addition, subtraction, multiplication, division, raising to a power.
b) Create three variables and assign string values to each of these variables. Write a statement that joins the three strings into a single string. Write some code that prints the string. Write
some code that tests to see if a substring of your choice is contained within the larger string.
c) Create three variables and assign lists to each of these variables. Join the three lists into a new list containing three distinct sub-lists (a list of three lists). Create a list from this list without sub-lists (all original list elements are part of a single larger list). Create a fourth list by splitting this resulting list in half and assigning the second half of the list to a new variable. Extract the last item of this list (it can either stay in the original list or be removed from it) and assign this element to a variable.
d) Write a statement that contains at least three nested blocks. Use at least three of the following control flow options: if, if else, while, for, break, continue (Python only), next, switch.
e) Write a function that takes three arguments as input and returns one value. Call the function with arguments of your choosing.
f) Execute the relevant command that shows a list of the packages (for R) or modules (for Python) that are currently installed in your environment. Use the available documentation to determine what some of these do. Write some code that uses functions and objects supplied by these packages.
g) Print to the standard output three sentences of your choosing, on three separate lines, using a single statement of code.
h) Locate a comma separated values (.csv) file stored on your computer or online. Read this file into the notebook and store the results in one or more variables.
i) Create a new file and write four lines in. csv format to this file. In a separate statement, write four more lines to this existing file, without overwriting the original file.
j) Write enough code to generate at least five different error messages. Copy these error messages into a text document, and write a short note under each explaining the meaning of the error message, and how the code was fixed.
k) Using a language of your choice, write a function that, when passed a dataset, reports 5 interesting pieces of information about the dataset. Load a dataset and run the function on this dataset.

1) Using a language of your choice, write two functions. The output of the first function should work as the input to the second function. The first function should read in a dataset and generate a subset of the dataset based on some chosen criteria. The second function should read in a dataset and provide summary data of some type for each column in the dataset. Load a dataset and run both functions on the dataset.
m) Write a program that sorts a list of numbers, without using the in-built sorting functions.
n) Write a program that sorts a list of character strings, without using the in-built sorting functions.

45．Consider a database consisting of two tables，as shown below．

Professors					
NAME	SALARY	FACULTY＿ID	AGE	FACULTY	
Adam Smith	60000	1	67	Economics	
Paige Ryans	70000	2	48	Physics	
Alex Doe	55000	3	37		

Courses

COURSE	FULL		SEMESTER
FACULTY＿ID			
ECON101	True	Fall	1
PHYS201	False	Winter	2
ECON401	False	Winter	1
$\ldots$	$\ldots$	$\ldots$	$\ldots$

a）What is the primary key for each table？
b）What are the foreign keys for each table？
c）What are the NULL values？
d）What is the relation between these tables？
e）What type of data does each field support？
f）What constraints might we expect each field to have？
g）What would happen if we tried to mix datatypes without enforcing constraints？

## Chapter References

［1］P．Boily，S．Davies，and J．Schellinck．The Practice of Data Visualization ©T．Data Action Lab， 2023.
［2］R．Duursma，J．Powell，and G．Stone．A Learning Guide to R．Scribd， 2017.
［3］K．Eliason．Difference Between Object－oriented Programming and Procedural Programming Languages ■ ． 2013.
［4］T．Herman．How to Write Software With Mathematical Perfection ©
［5］N．J．Horton and K．Kleinman．Using R and RStudio for Data Management，Statistical Analysis，and Graphics， 2nd Edition［〕．Taylor \＆Francis， 2015.
［6］R．Kabacoff．R in Action ${ }^{\top}$ ．Second．Manning， 2015.
［7］J．Kazil and K．Jarmul．Data Wrangling with Python：Tips and Tools to Make Your Life Easier ■．O＇Reilly， 2016.
［8］J．H．Maindonald．Using R for Data Analysis and Graphics Introduction，Code and Commentary［J．CRAN， 2004.
［9］W．McKinney．Python for Data Analysis ：agile tools for real－world data c．Sebastopol，CA：O＇Reilly， 2013.
［10］MySQL 8．0 Reference Manual 〕．
［11］R．D．Peng．R Programming for Data Science ■ ．Lulu．com， 2012.
［12］AV Content Team．A Complete Tutorial to learn Data Science in R from Scratch 〕． 2016.
［13］SQL Tutorial © ，Tutorials Point．
［14］J．VanderPlas．Python Data Science Handbook ：essential tools for working with data 〔．．Sebastopol，CA：O’Reilly， Inc， 2016.
［15］SQL Tutorial © ${ }^{\text {¹，W3 Schools．}}$
［16］H．Wickham and G．Grolemund．R for Data Science：Import，Tidy，Transform，Visualize，and Model Data 〕． O＇Reilly，Jan． 2017.
［17］Y．Xie，C．Dervieux，and E．Riederer．R Markdown Cookbook 〔．ISBN 9780367563837．Boca Raton，Florida： Chapman and Hall／CRC， 2020.


[^0]:    , 12.35'

