
Programming Primer 1
1.1 Programming Fundamentals . 1

Compiled vs. Interpreted . . . 1
Some Fundamental Concepts . 2
Code Components . . . . . . . . 4
Designing With Pseudo-Code 7
From Pseudo-Code to Code . . 9
Debugging . . . . . . . . . . . 10
R/Python . . . . . . . . . . . . . 10

1.2 Introduction to R . . . . . . . . 12
Why Use R . . . . . . . . . . . . 12
Installing R / RStudio . . . . . 12
Test, Test, Test! . . . . . . . . . 13
Customizing RStudio . . . . . 14
Upgrading R / RStudio . . . . 15
Basics of R . . . . . . . . . . . . 15

1.3 More Programming in R . . . 27
Help and Documentation . . 27
Simple Data Manipulation . 29
Exploring Data . . . . . . . . . 34
A Word About NAs . . . . . . 39
Loops and Conditions . . . . 40

1.4 The tidyverse . . . . . . . . . 40
Pipeline Operator . . . . . . . 41
Tidy Data . . . . . . . . . . . . 42
The dplyr Package . . . . . . 44

1.5 Basics of Python . . . . . . . . 47
IDE for Python . . . . . . . . . 48
Introduction to Python . . . . 48
NumPy and Arrays . . . . . . . 67

1.6 Python for Data Science . . . 72
Pandas and Data Frames . . . 72
Data Wrangling . . . . . . . . 78
Data Aggregation . . . . . . . 83
Combining Python with R . . 85

1.7 Getting Started with SQL . . 86
Basics . . . . . . . . . . . . . . . 86
SQL Syntax . . . . . . . . . . . 87
Key Query Operators . . . . . 88
Examples . . . . . . . . . . . . 96

1.8 Exercises . . . . . . . . . . . . . 98
Chapter References . . . . . 106

by Patrick Boily and Jen Schellinck, with contributions from Kevin
Cheung, Aidan Crowther, Chunyun Ma, and Ehssan Ghashim

Programming languages go in and out of style. To be a strong programmer,

it is important to understand not just the ins and outs of a particular

programming language, but how computer languages and computing

infrastructure work more generally [6, 9].

In this chapter, learners are first introduced to some of the core concepts of

computer programming in a language-agnostic way, before being shown

the basics of R and Python, two of the most common programming

languages used in modern data analysis.

1.1 Programming Fundamentals

What are computer code and computer programs? Is there a difference

between these two concepts? (see [4] for a discussion on the topic).

In a nutshell, a computer program is an algorithm, written in a computer
language, providing instructions to a computer for carrying out a

series of operations. An example of a computer program is provided

in Figure 1.1.

Computer programs can be compiled or interpreted as a series of hard-

ware operations, carried out by a computer’s electrical components.

1.1.1 Compiled vs. Interpreted Languages

Compilers translate full source code programs, written in high-level
language (i.e., using natural languages, only “understandable” by people,

as in Figure 1.1), into machine language (i.e., binary code, only “under-

standable” by computers): they are basically grammatical (syntactic)

checkers – if the source code is error-free, it is converted into machine

code, which is eventually run by an executable file. Compiled code runs

quickly, and is thus favoured for the deployment phase. Commonly-used

compiled languages include C/C++/C#, COBOL, Fortran, Pascal, and

Julia.

Interpreters execute the source code directly: as long as an individual

statement is error-free (in the context of the available workspace), it can

be executed every time it is called, without regard for the overall syntax

of the file. Interpreters are slower, generally, and are favoured during the

development phase. Commonly-used interpreted languages include R,
1

1: Most programmers do not consider R

to be a programming language. If they

are feeling generous, they might dub it a

scripting language, at best. But it gets the

job done for data analysis purposes.

Python, JavaScript, and Ruby.
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Figure 1.1: An example of a computer program written in the computer language C. What do you suppose this program does?

(Programiz .)

1.1.2 Some Fundamental Concepts

We have been using the terms “computer language” and “algorithm” as

though they were everyday words. Let us take the time to ensure that

their meanings are clear.

Formal Language

In a formal language, words are created by combining letters from a pre-

defined alphabet, according to the rules provided by a formal grammar.
Everything that is formed according to the rules is an acceptable word;

anything else is not.

Example: Consider the formal language defined with

alphabet: {a, b, C, D, !}

grammatical rules:

1. letters may only be placed immediately to the left or to the

right of another letter

2. a letter instance must always be accompanied by another

instance of the same letter at some location either to its left

and/or to its right (or both)

3. an upper case letter must always be accompanied by a lower

case letter immediately to its left or to its right

https://www.programiz.com/c-programming/examples/swapping
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Thus, aa is a word in this formal language (rules 2 and 3 are clearly

satisfied; rule 3 is satisfied vacuously), as is bCaCab, but !aC!, DDaa, and

Patrick are not (why?).

Formal languages can sometimes seem ridiculous – of course letters may

only be placed to the left or to the right of other letters... where else

would they go? Well, rule 1 officially (and formally) eliminates letters

piling up on top of one another, for starter, but also spaces between words

(for that language, the space _ is not in the alphabet of letters).

Human languages, of the sort deemed natural (in contrast with artificial or

constructed languages) are formal, in theory. In practice, their grammars

tend to be flexible (more so with English than French, say) – syntax

evolves with cultures (in time and in space), and semantics (meaning)

can be retained even when the grammar is mangled.
2

2: But only up to a point, of course.

Computer Language

Computer languages are languages constructed to provide instructions

to a computer, in such a way that they can be compiled into low-level

instructions that the computer processor can execute.

Computer languages are also called programming languages, for reasons

that will soon become obvious. They are formal languages because if the

grammatical rules are not followed to the letter, the program cannot be

executed – computers cannot guess or infer what the programmer really

meant when the syntax is out of sorts.

The structure of the formal definition of a computer language contains

the following sections:

1. Lexical Rules
2. Syntax Rules

Grammar Productions
Operator Associativities and Precedences

3. Typing Rules

Declarations
Type Consistency Requirements (Function Definitions, Expres-

sions, Statements)

4. Operational Characteristics

Data (Scalars, String Constants, Arrays)

Expressions (Order of Evaluation, Type Conversion, Array

Indexing)

Assignment Statements (Order of Evaluation, Type Conversion)

Functions (Evaluation of Actuals, Parameter Passing, Return

From a Function)

5. Program Execution

As an illustration, the lexical rules of C are shown in Figure 1.2.



4 1 Programming Primer

Figure 1.2: Lexical rules of the programming language C Debray .

Algorithm

Computer programs are algorithms, which is to say, sequences of in-

structions with (at least) one well-defined stopping point (an instruction

that tells the program when to stop running).

Algorithms are not always mathematical or computer-based. In some

sense, we could think of recipes as algorithms as well: the baking/cooking

steps are presented in sequence, and some last step that must be completed

before the end product can be eaten.

For instance, here is an algorithm to make muffins:
3

3: Delicious!

1. Pour 1/2 cup of flour into a bowl.

2. Break one egg into the bowl.

3. Pour 3 tablespoons of oil into the bowl.

4. Pour 1 teaspoon of baking powder into the bowl.

5. Pour 1/4 cup of sugar into the bowl.

6. Mix with spoon until smooth.

7. Pour the mixture into muffin tins.

8. Bake for 15 minutes at 350 degrees Fahrenheit.

9. Let cool before eating.

10. Enjoy!

What is the stopping point? What is the outcome?

1.1.3 Code Components

Various sets of instructions, conventions, and structures are so funda-

mental to computer programming aims that they can be found in nearly

all computer languages.

These fundamental code elements include:

Variables

Data Structures

Operators

Statements and Expressions

Blocks (and Scope)

https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html
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Figure 1.3: Computer code elements in action, for the scripting language R.

Functions

Logical (Control) Flow

Libraries/Packages/Modules

Inputs/Outputs

Interpreters/Compilers

How these components mesh with one another depends on the syntax

of the programming language under consideration (or its dialect).

In Figure 1.3, we see how this could be done in base R, for instance. This

particular chunk of code uses the

igraph library (specifically, its pre-compiled functionsplot(),

sample_gnp(), ecount(), and V()),

and builds the

user-defined functionmy_graph_function() via a code block,

which takes in as

inputs the variables my_number_nodes, my_colour, and my_-

density.

This function creates a

graph data structure my_graph,

and colours the graph’s vertices using my_colour as long as

some conditional logic statement relating to the number of

edges in the graphs and my_number_nodes is satisfied.

The function generates a visualization of the graph as an

output,

which is displayed when the function call is issued.
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The code is seen in action below: it creates and displays a 30-node,

green-coloured, non-directed, loop-free graph with probability 0.3 of

there being an edge between two arbitrary nodes (we will discuss what

these concepts represent in Chapter 29, (Social) Network Data Analysis).4
4: The seed enforces replicability.

Creating a random graph

library(igraph)

my_graph_function <- function(my_number_nodes,

my_colour,

my_density) {

my_graph = sample_gnp(my_number_nodes,

my_density,

directed=FALSE,

loops = FALSE)

if(ecount(my_graph) >= my_number_nodes) {

V(my_graph)$color <- my_colour

}

plot(my_graph,

layout = layout.fruchterman.reingold,

vertex.color = V(my_graph)$color)

}

set.seed(0)

my_graph_function(30,"green",0.3)
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If all of this seems mysterious and opaque at first, it is important to

remember that mastering a computer language requires time and prac-

tice.

Some languages are dialects or variants of other languages;
5

proficiency 5: Or at least, are mutually intelligible,

like Swedish and Danish, say.
in one can make it is easier to become proficient in another. But not all pro-

gramming languages follow the same paradigm: imperative languages

(object-oriented programming) live in a different “linguistic family” than

declarative languages (functional programming) languages.

1.1.4 Designing With Pseudo-Code

Before we can start thinking about writing code (in whatever program-

ming language whose syntax we have mastered), we need to think about

what it means to design an algorithm (or a computer program). From

a mathematical perspective, an algorithm is a (stochastic) function. We

thus need to specify:

the algorithm’s inputs;

its outputs, and

the procedure to transform the inputs into the outputs.
6

6: In the muffin recipe above, the ingredi-

ents are the inputs, the muffins themselves

are the outputs, and the recipe instructions

describe the transformation.

It is good programming practice to avoid typing up programs on the

fly – code needs to be planned: we need to know what the program

will do and how it will go about doing it before we commit it to a file,

independently of the language in which it will be implemented.

“Pseudo-code” is a term used to describe a rough sketch of the algorithm,

which indicates its expected inputs, outputs, and steps, while leaving

the specifics of its functionality in “black boxes”. Pseudo-code is usually

designed with the main elements of code (e.g., variables, functions, logical

flow, etc.), in a language-agnostic (i.e., human readable) manner.

Example: we might be interested in building an algorithm that would

cluster the observations in a dataset, using a maximum number of “local”

observations (see Chapters 19, Machine Learning 101, and 22, Spotlight on
Clustering, for an in-depth discussion of this topic).

What might the following chunk of pseudo-code (which is part of the

bigger clustering picture) do?

Chunk of pseudo-code

find_neighbours(array_of_points, max_n_neighbour_distance)

{

for each point[i] in array_of_points

{

for each remaining point[j] in array_of_points

{

distance_between_ij = distance(point[i], point[j])

if distance_between_ij <= max_n_neighbour_distance

then neighbours[i] = add_to_neighbrs(point[i],point[j])

}

}

}
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Figure 1.4: The first stage of pseudo-coding, in all its chicken scratch glory.

This is what is happening:

the algorithmfind_neighbours() takes as inputs a datasetarray_-

of_points and a quantity max_n_neighbour_distance;

for each observation point[i] in the dataset (i indexes the observa-

tions), it considers all other observations point[j] and computes

their distances to the initial observation point[i] (one by one);

when these distances are smaller than the input threshold max_n_-

neighbour_distance, it considers that the corresponding observa-

tion point[j] is a neighbour of observation point[i], and adds

the former to the neighbours of observation point[i].

Evidently, this chunk of pseudo-code defines the neighbourhood of each

observation in the dataset. Note the black box functions distance() and

add_to_neighbrs(): their specifics are not provided,
7

but what they7: Their eventual implementation may

change depending on the computer lan-

guage selected to write the program.

represent is clear. That is the power of pseudo-code.
8

8: Of course, in practice, we also do not sit

down and write pseudo-code on the fly...

that too must be planned (see Figure 1.4).

Getting a feel for the right level of pseudo code detail takes practice:

should we drill down into what add_to_neighbrs() does? Do we need

to describe what <= does? How much utility should be sacrificed in

favour of understanding?

The answers to these questions depends on the level of abstraction of

the programming language used to implement the algorithm:

high-level languages (such as R and Python) contain tons of built-

in functions, which allow for programming at higher levels of

abstraction, whereas

many details and functions must be programmed “by hand” in

low-level languages (such as assembly and machine languages),

which require lower levels.

The strategy to write useful pseudo-code is deceptively simple:

1. define the available inputs;

2. define the desired outputs, and

3. identify (and write down) a set of programmatic instructions

(procedure) to transform the inputs into the outputs.
9

9: This is easier said than done, obviously,

and it looks an awful lot like the definition

of an algorithm we provided previously,

but remember that parts of the pseudo-

code can be “black boxed”, which is to

say, that functionality can be described at

a high level.
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1.1.5 From Pseudo-Code to Code That Runs

Once we are satisfied that the pseudo-code provides a decent path to

solving the problem at hand,
10

, we can start thinking about how to 10: The proposed solution does not need

to be final.
implement it into real code (“code that runs”):

1. we start by determining the appropriate syntax for the computer

language that will be used and we re-write the pseudo-code as

syntactically correct code in this language;

2. we replace all “black box” functions with real code, and

3. we determine how to connect the real code (the software) to the

computer, so that it can be compiled/interpreted, and run by the

computer (receiving inputs and generating outputs).

It might take multiple tries before this is done successfully. That is to be

expected. It takes time, even for the most gifted programmer, to become

an expert in a new language. The urge to feel defeated if (when?) the

first few attempts fail is completely natural; as always, practice is the

answer.

The process of taking the high-level code (which is really a text file) and

getting it to run on a computer without a hitch requires a certain amount

of infrastructure to be in place:

libraries

input/output + file system

compilers/interpreters

In these notes, we are taking care of much of these issues by setting

up the R/Python examples internally and running them locally (using

our infrastructure); this works well for illustrating the concepts and

working with pedagogical datasets, but the infrastructure conundrum

must be tackled and solve before it becomes possible to produce useful

and actionable data analysis results (see Chapter 17, Data Engineering and
Data Management, for more details).

In general, there is no single authoritative reference manual describing

how to use a particular computer language and/or how to make code run

on particular hardware configurations, in no small part because coding

and computer references become obsolete in the blink of an eye.
11

11: Consider the change from Python 2 to

Python 3 as a cautionary tale.

Successful coders must be embedded in a community of coders. Luckily,

this is getting to be easier to do every day – most questions anybody could

ever have about specific aspects of coding have already been answered

somewhere online. Stack Overflow and similar sites can be quite useful

in that regard.
12

12: Fair warning: some coder communi-

ties can be ... let us say, not overly wel-

coming of neophytes. It is not unusual for

the answer to a question to be some varia-

tion on “look it up in the documentation”.

While this can be true in a general sense,

such an answer is useless. We all know

that things can be looked up in the doc-

umentation. And we all know that some

users ask questions without taking the

time to think about things, or in the hope

that somebody else will do their work for

them. It is in the best interest of learners to

seek communities that make a concerted

effort to be healthy and inclusive, to recog-

nize that not every user has reached the

same proficiency level. Such communities

are plentiful online; do not waste any time

and energy on gatekeepers.

As a last remark on the topic, keep in mind that in the real coding

world, there is no such thing as cheating: the objectives are to make

happen the things you want to see happen. Getting help along the way

is emphatically not prohibited (mind you, it is good practice to cite or

acknowledge such help).

Crucially, though, we should not use code when we do not understand

what it does – borrowed code may make complete sense in the context

for which it was written, but may have unintended ramifications in a

different context: be careful!

https://stackoverflow.com/
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1.1.6 Debugging

PROGRAMMERS DRINKING SONG:
99 little bugs in the code,

99 bugs in the code,

fix one bug, compile it again,

141 little bugs in the code.

141 little bugs in the code. . . ..

(Repeat until bugs = 0)

Mistakes WILL happen. What do we do about that?

In the development phase, coding is about getting all the moving pieces

to fit together, yes, but it is also about fixing the bugs , an “error in the

source code that causes a program to produce unexpected results or crash

altogether”. Fixing these bugs (debugging) is mainly about revealing

what is in memory at different points in the control flow of the code, to

determine if it is actually doing what we think it ought to be doing.

As the quote at the start of the section implies, debugging is a bit of an art

form, requiring the programmer to become a detective and a zen master

(see The Tao of Programming ). It teaches perseverance and humility,

and it really helps us perfect our understanding of the language, of the

code itself, and of the task at hand.

Debugging tools can help with all of this; at our level, debugging often

requires running the code line-by-line until we can identify the chunk

of code that is the culprit. Debugging is a necessary part of coding, no

matter how experienced you are.

1.1.7 R/Python

There is only so much that can be said about programming in general;
at some point, we need to select a computer language and get going in

earnest.

At a foundational level, most programming languages are roughly equiv-
alent (Turing-complete or Turing-equivalent), in the sense that anything

that can be done with one can also (more or less) be done with another.

But that does not mean that they are all equally useful.

Some are better suited to certain tasks, whether because they are less

memory-intensive, or more elegant, or more intuitive, and so on. Even in

the data analysis world, there are competing paradigms. In these notes,

we will use two of the most popular languages (although by no mean

the only ones): R and Python.

In the examples we provide, R code appears in blue boxes:

... some R code ...

Whereas Python code appears in green boxes:

... some Python code ...

https://www.techslang.com/definition/what-is-a-computer-bug/
https://www.mit.edu/~xela/tao.html
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Object-Oriented Languages vs. Procedural Languages R and Python

are objected-oriented languages, as opposed to procedural languages.

The focus of procedural programming is to break down a pro-

gramming task into a collection of variables, data structures,

and subroutines, whereas in object-oriented programming

it is to break down a programming task into objects that

expose behavior (methods) and data (members or attributes)

using interfaces. The most important distinction is that while

procedural programming uses procedures to operate on data

structures, object-oriented programming bundles the two to-

gether, so an “object”, which is an instance of a class, operates

on its “own” data structure. [3]

This will make more sense if we first understand the concepts of:

data types

data structures

functions

Languages have a set of built-in basic variable types, such as:

integer: 5

character: ‘m’

list: (5, 3, 9)

Other variables types can be built up out of these basic types, such as

strings, which are list of characters: (‘t’, ‘a’, ‘b’, ‘l’, ‘e’)

We can also define related variables – a data structure:

struct myNames = {string firstName, string middleName,

string lastName}

jenNames might be a variable of type myNames, with firstName =

Jen, middleName = Adele, lastName = Schellinck.

In addition a programmer might want to be able to carry out a set of

predefined instructions, or functions, on that data structure:

jenNames.print_middleName or

jenNames.string_length_lastName, say (what these functions

do should be clear from their name).

Loosely speaking, an object is a user-defined data structure, together

with a set of functions that are specific to that structure.

The data frame object in R is structured similarly to a spreadsheet:

it has rows and columns, with associated row and column names,

and

we can carry out predefined operations (mean, count, etc.) on

specific values, on selected rows, or selected columns, or the data

frame as a whole.

Learners that are familiar with databases and/or languages that are more

vector-focused (e.g. Java) might find the data frame implementation in R

frustrating; those who are familiar with matrices and other mathematical

concepts used in data analysis, less so.
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1.2 Introduction to R

R is a powerful language that is widely-used for data analysis and

statistical computing. It was developed in the early 90s by Ross Ihaka

and Robert Gentleman, as a successor to S, a statistical programming
language.

The inclusion of sophisticated packages (such as dplyr, tidyr, readr,

data.table, SparkR, ggplot2, etc.) has made R both more powerful and

more useful, allowing for smart data manipulation, visualization, and

computation, using its built-in data structures and functionality.

Notably, it has gained prominence as a free and open source alternative

to expensive statistical software.

1.2.1 Why Use R

Here are some benefits that potential users might note:

the style of coding is intuitive;

R is open source and free;

more than 18,500 packages, customized for various computation

tasks, are available (as of February 2022);

the R community is overwhelmingly welcoming and useful to new

users and experienced users alike;
13

13: You can browse and ask questions at

StackOverflow , and consult worked-out

examples on R-bloggers , for instance.

high performance computing experience is possible (with the

appropriate packages), and

is is one of the highly sought skills by analytics and data science

companies.

1.2.2 Installing R / RStudio

Note: If you have a pre-existing installation of R and/or RStudio, you

may skip this part. However, we highly recommend that both of these

applications be upgraded to the most recent version, if they have not

been upgraded for a while.
14

14: Note that these instructions can

quickly become obsolete; we will do what

we can to stay on top of them, but you may

need to consult other sources or search for

“Installing R and RStudio” online. Con-

sult Upgrading R and/or RStudio on 15 for

details.

Data analysis can be conducted using the vanilla (base) version of R, but

also using RStudio provides a better coding experience, in our opinion.

The following steps will allow you to install R and RStudio.

1. Download and install R at https://cloud.r-project.org .

Windows users should click on Download R for Windows,

then click on base, then click on the Download R X.X.X for
Windows link, where R X.X.X is the version number. For

example, the latest version of R as of 2022-02-07, was R 4.1.2;

macOS users should click on Download R for macOS, then

on R-X.X.X.pkg (under “Latest release::”), where R-X.X.X is

the version number. If the Mac has an Arm-based M1 chip,

choose R-X.X.X-arm64.pkg instead;

Linux users should click on Download R for Linux and choose

the specific distribution for more information on installing R

for their actual setup.

https://stackoverflow.com/
https://www.r-bloggers.com/
https://cloud.r-project.org
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2. Download and install RStudio at

posit.co/download/rstudio-desktop/#download .

look for the big blue button that says DOWNLOAD RSTU-
DIO DESKTOP FOR ..., where ... represents the desired

OS;

click on the button to start downloading;

Once downloading has completed, double-click the file to

open it, and follow the installation instruction.

3. (for macOS users only): Download and install XQuartz.
15

15: What is XQuartz and why does macOS

users need it?

go to https://www.xquartz.org . Under “Quick Download”,

click on “XQuartz-2.8.1.dmg”;

save the .dmg file, double-click it to open, and follow the instal-

lation instructions (you may need to restart your computer).

Reminder: you will need to re-install XQuartz when upgrad-

ing your macOS to a new major version.

4. Even with both R and RStudio installed, we will refrain from

working directly with the R interface, given that RStudio provides

such a “nice” shell over the engine that is R.

Once RStudio is opened, the graphic user interface (GUI) displays 4

panes, as in Figure 1.5.

Console: bottom left; this area shows the output of code that has

been run (either from the command line in the console or from the

script window);

Script: top left; as the name suggests, this is the area one would

typically use to write code. Lines can be run by first selecting them

(right-clicking) and pressing ctrl + enter (win) or cmd + enter

(mac) simultaneously. Alternatively, you can click on the little ‘Run’

button located at the top right corner of the script window;

Environment: top right; this space displays the set of external

elements that have been added. This includes data set, variables,

vectors, functions etc. This area allows the user to verify that data

has been loaded properly;

Graphical Output: bottom right; this space display the graphs

created during exploratory data analysis, or embedded help on

package functions from R’s official documentation.

1.2.3 Test, Test, Test!

To make sure you have installed both R and RStudio properly, type a

simple command in the console. For example, place your cursor in the

pane labelled Console, type x <- 2 + 2 at the prompt, followed by

enter or return, then type x, again followed by enter or return.

Testing R

x <- 2 + 2

x

You should see the value 4 printed to the screen.

https://posit.co/download/rstudio-desktop/#download
https://www.reddit.com/r/explainlikeimfive/comments/2nba2t/eli5_what_is_xquartz_and_what_does_it_do_running/cmc3t0b
https://www.reddit.com/r/explainlikeimfive/comments/2nba2t/eli5_what_is_xquartz_and_what_does_it_do_running/cmc3t0b
https://www.xquartz.org


14 1 Programming Primer

Figure 1.5: RStudio interface, with 4 default windows: Console, Script, Environment, and Graphical Output.

1.2.4 Customizing RStudio

We would like to suggest the following settings for your R/RStudio

installation, following [18, ch.8].
16

In RStudio, go to Tools >> Global16: Feel free to ignore the suggestion as

you wish. Options, and make the changes described below:
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[These settings] will cause you some short-term pain, because

now when you restart RStudio it will not remember the results

of the code that you ran last time. But this short-term pain

will save you long-term agony because it forces you to capture

all important interactions in your source code. There’s nothing

worse than discovering three months after the fact that you’ve

only stored the results of an important calculation in your

workspace, not the calculation itself in your source code. [18]

Optionally, you could also adjust the font size via Tools >> Global

Options >> Appearance >> Editor font size.
17

17: By default, it is set at 12, but a larger

font size may be easier on the eyes.

1.2.5 Upgrading R / RStudio

We suggest always working with the latest version of R and RStudio.

To upgrade R, find out the current version of R running on your

computer. You can do so from within the RStudio Console:

R version
R.version.string

[1] "R version 4.1.3 (2022-03-10)"

As of January 2023, the most recent version of R is 4.2.2. If you

have an older version installed on your computer, go to cloud.r-

project.org and follow the steps described on p. 12 (Installing
R / RStudio) to install the latest version of R. You can confirm

that the upgrade was successful by restarting RStudio and typing

R.version.string in the console again.

To upgrade RStudio from within RStudio, go to Help > Check

for Updates to install a newer version of RStudio (if available).

Once both R and RStudio have been upgraded, test by typing some

simple command in the console (as on p. 13, Test, Test, Test!).

1.2.6 Basics of R

How are the elements of code (introduced in Code Components on p. 4)

implemented in R? How do they mesh with one another to form in-

terpretable code? First, we should mention that while R is technically

object-oriented, this tends to be hidden in practice; the language is thus

especially well-suited for quick, interactive, and intuitive scripting and

data exploration.

Note as well that it uses special built-in notation for statistical models,

which would not usually be found in other languages (hence the “statis-

tical programming” moniker). Some of the examples and explanations

provided in the text are modified from [18, 7, 5, 13, 2, 10, 14].

The rest of this section contain information on the basic use of R; more

examples are available in Section 1.3 (More About Programming in R) and

throughout the course notes.

https://cloud.r-project.org
https://cloud.r-project.org
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Simple Computations in R We will get familiar with the R coding

environment; we start by showing how the console can be used as an

interactive calculator.

Type the first line of each group in your console, followed by a carriage

return to confirm that R works as we would expect of a calculator:

2 + 3

[1] 5

(3*8)/(2*3)

[1] 4

log(12)

[1] 2.484907

sqrt(121)

[1] 11

You can experiment with various combinations of calculations.

Should you want to modify or repeat a prior calculation, press the Up

Arrow when the cursor is in the console to cycle through previously

executed commands; pressing Enter re-runs the selected computation.

On the other hand, you can avoid scrolling through a wall of computations

by creating a variable. In R, this is done via the variable assignment

symbols <- or =.
18

Once a variable exists in memory, the output does not18: There are 3 others such symbols, but

no language needs 5 assigners, let alone 2,

so we will not introduce them here.

get printed explicitly unless it is called directly at the prompt, or if the

variable assignment is surrounded with a pair of parentheses.

x <- 8 + 17

x

[1] 25

(y <- 8 + 17)

[1] 25

Variables can be named using any combination of alphanumeric symbols,

but the name has to start with a letter (a-z, A-Z) and cannot contain spaces

and punctuation marks other than periods and dashes.
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R Packages Packages (or libraries) contain pre-compiled functions and

objects that could be useful in specific settings.

To install a package, simply type:

install.packages("package_name")

Take note of the quotation marks. You can type this code directly in the

console, followed by a carriage return, or enter it in the script window

and click Run in the menu at the top.

The base distribution already comes with some high-priority add-on

packages, namely:

KernSmooth MASS boot class

foreign lattice mgcv nlme

rpart spatial survival base

grDevices graphics grid methods

stats stats4 tcltk tools

cluster nnet datasets splines

These packages implement standard statistical functionality, for example

linear models, classical tests, a huge collection of high-level plotting

functions, and tools for survival analysis. Once a package is installed, it

needs to be loaded before its objects (datasets, functions) can be used.

This can be done by typing:
19

19: Since entering instructions is always

done in one of the ways described above,

we will stop specifying where and how it

must be done.libary(package_name)

Note the absence of the quotation marks.

For instance, in Code Components (see p. 4), we loaded the igraph package

to take advantage of the pre-compiled functionssample_gnp(),ecount(),

V(), and plot(). The first 3 functions are not in the base distribution;

the last function plot() does exist, but it would not know how to handle

graph objects without the special instructions provided by igraph.

The help file for compiled functions can be displayed in the graphical

output window by using the reserved character “?”, as below (assuming

that the igraph library has been loaded).
20

20: Extract of the igraph help file below:

?sample_gnp

In more sophisticated code, it is conceivable that we would want to load

multiple libraries; because we might forget which function is associated

with which library, or even that different libraries use the same name

for different functions, it is good practice to forego explicitly loading

a library in favour of directly fetching the required functionality (the

package must be installed first, however). In R, this is done as follows:

package_name::function_name(function_parameters)
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For instance, the graph code from above can be replaced by the following

chunk:

my_graph_function <- function(my_number_nodes,

my_colour,

my_density) {

my_graph = igraph::sample_gnp(my_number_nodes,

my_density,

directed=FALSE,

loops = FALSE)

if(igraph::ecount(my_graph) >= my_number_nodes) {

igraph::V(my_graph)$color <- my_colour

}

plot(my_graph, vertex.color = igraph::V(my_graph)$color)

}

my_graph_function(30,"green",0.3)

Note, however, that this strategy is not always optimal (in particular,

when using the pipeline operator, see p. 41).

R Essentials Everything you see or create in R is an object: vectors,

matrices, data frames, even variables (and functions) are objects.

R allows 5 basic classes of objects:

Character

Numeric (real numbers)

Integer (whole numbers)

Complex

Logical (True / False)

Each of these classes has attributes. An object can have the following

attributes:

names, dimension names

dimensions

class

length

etc.

An object’s various attributes can be accessed using the attributes()

function. We will have more to say on this topic.

The most basic R object is the vector. An empty vector can be created

using vector(). A vector contains various objects, but all must be of the

same class.
21

21: That can cause unforeseen difficulties

as it is not always easy to visually distin-

guish between a real number (numeric)
and an integer. Furthermore, the digits of

a number can be represented as character

strings in some cases.

Vectors can also be created using the combine (or concatenate) operator

c() (which makes it a singularly bad idea to use c as a variable name).

(a <- c(1.8, 4.5)) # numeric

(b <- c(1 + 2i, 3 - 6i)) # complex

(d <- c(23, 44)) # integer
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(e <- vector("logical", length = 5)) # logical

(f <- c("abc","def")) # character

[1] 1.8 4.5

[1] 1+2i 3-6i

[1] 23 44

[1] FALSE FALSE FALSE FALSE FALSE

[1] "abc" "def"

Comments can be introduced in R code via the # symbol: all characters

following a pound symbol are ignored by R until the next line of code (so

the classes in the example above would not be part of the code proper).

R Data Types and Objects There are various types of R objects.

Vectors As mentioned above, a vector contains objects of the same class.

We may have a need to mix objects of different classes in a list – this can

be done to a vector by coercion. This has the effect of ‘converting’ objects

of different types to the same class. For instance:

# coercion to character

(vec <- c("Time", 25,TRUE,"retro", 2.22))

# coercion to numeric

(bbb <- c(FALSE, 11))

# coercion to character

(i.a <- c(215,"October"))

[1] "Time" "25" "TRUE" "retro" "2.22"

[1] 0 11

[1] "215" "October"

We can verify the class of these objects using the class() function.

class(vec)

class(bbb)

class(i.a)

[1] "character"

[1] "numeric"

[1] "character"

To convert the class of a vector, we can use the as. command.

g <- 10:16 # create a vector of 7 integers

class(g) # find bar’s class

as.numeric(g) # convert to numeric

class(g)

as.character(g) # convert to character
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class(g)

[1] "integer"

[1] 10 11 12 13 14 15 16

[1] "integer"

[1] "10" "11" "12" "13" "14" "15" "16"

[1] "integer"

We can change the class of any vector using a similar approach. But

be careful – while we can convert a numeric vector into a character

one, going the other way will introduce NAs (conversion is subject to R’s

internal class rules).

Lists A list is a special type of object which can contain elements of

different data types.

my.list <- list(254,"abab", TRUE, 0 - 3i)

my.list

[[1]]

[1] 254

[[2]]

[1] "abab"

[[3]]

[1] TRUE

[[4]]

[1] 0-3i

The output of a list differs from that of a vector, since all the objects are

of different types. The double bracket [[1]] shows the index of the first

element and so on. The elements of a list can be extracted by using the

appropriate index:

my.list[[3]]

[1] TRUE

The single single bracket [ ] also has a role: it returns the list element

with its index number, instead of the result above.

my.list[3]

[[1]]

[1] TRUE
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Matrices A vector for which rows and columns are explicitly identified

is a matrix, a 2-dimensional data structure. All the entries of a matrix

have to be of the same class. The following code produces a 6 by 3 matrix

consisting of the first 18 integers.

my.matrix <- matrix(1:18, nrow=6, ncol=3)

my.matrix

[,1] [,2] [,3]

[1,] 1 7 13

[2,] 2 8 14

[3,] 3 9 15

[4,] 4 10 16

[5,] 5 11 17

[6,] 6 12 18

The dimensions of a matrix can be obtained using either the dim() or

attributes() commands (the matrix dimensions are a matrix’s only

attributes in R).

dim(my.matrix)

attributes(my.matrix)

[1] 6 3

$dim

[1] 6 3

To extract a particular element from a matrix, simply use the appropriate

indices. What might you expect to see from the following commands?

my.matrix[5,2] # row 5, col 2

my.matrix[c(1,2,4),2] # col 2, rows 1, 2, 4

my.matrix[4,2:3] # row 4, cols 2, 3

my.matrix[,2] # col 2

my.matrix[4,] # row 4

my.matrix[c(1,1,4),2] # col 2, rows 1, 1, 4

[1] 11

[1] 7 8 10

[1] 10 16

[1] 7 8 9 10 11 12

[1] 4 10 16

[1] 7 7 10

As an aside, it is straightforward to create a matrix from any vector, by

assigning the dimensions using dim().
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For instance, we start by reading in a vector of ages:

age <- c(23, 8, 5, 44, 15, 12, 31, 19, 16)

age

[1] 23 8 5 44 15 12 31 19 16

Then reshape the vector as a 3 x 3 matrix:

dim(age) <- c(3,3)

age

class(age)

[,1] [,2] [,3]

[1,] 23 44 31

[2,] 8 15 19

[3,] 5 12 16

[1] "matrix" "array"

Matrices can also be created by joining two vectors (with matching

dimensions) using cbind() or rbind():

x <- c(1, -2, 3, -4, 5, -6)

y <- c(200, 300, 400, 500, 600, 700)

cbind(x, y)

rbind(x,y)

x y

[1,] 1 200

[2,] -2 300

[3,] 3 400

[4,] -4 500

[5,] 5 600

[6,] -6 700

[,1] [,2] [,3] [,4] [,5] [,6]

x 1 -2 3 -4 5 -6

y 200 300 400 500 600 700

class(x)

class(y)

class(cbind(x, y))

class(rbind(x, y))

[1] "numeric"

[1] "numeric"

[1] "matrix" "array"

[1] "matrix" "array"

We will discuss how R implements regular matrix operations (transpose,

multiplication, addition, etc.) in Chapter 3 (Overview of Linear Algebra).
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Data Frames The data frame is R’s most commonly-used (and most

convenient) data type, especially for data analysis tasks.

Like matrices, we can use data frames to store tabular (rectangular) data,

but unlike matrices, a data frame can accommodate lists of vectors of

different classes: each column of a data frame acts like a list.

When data is read into R, it is first stored as a data frame.

The following bit of code, for instance, creates a data frame with two

columns, name and age:

df <- data.frame(

name = c("Patrick","Brownyn","Elowyn",

"Llewellyn","Gwynneth"),

age = c(45,41,19,8,5)

)

df

name age

1 Patrick 45

2 Brownyn 41

3 Elowyn 19

4 Llewellyn 8

5 Gwynneth 5

Here are some of df attributes:

dim(df)

str(df)

nrow(df)

ncol(df)

[1] 5 2

’data.frame’: 5 obs. of 2 variables:

$ name: chr "Patrick" "Brownyn" "Elowyn" "Llewellyn" ...

$ age : num 45 41 19 8 5

[1] 5

[1] 2

In the code above, df is the name of the data frame, dim() returns its

dimensions, str() its structure (i.e., the list of variables stored in the

data frame), and nrow() and ncol(), the number of rows and number

of columns in the data frame, respectively.

Reading Data and Writing Reading data into a statistical system for

analysis, and exporting the results to some other system for report writing,

can be frustrating tasks that take far more time than the statistical/data

analysis itself, but the former task is required if the latter is to be

undertaken in earnest.

We describe the import/export facilities available in R itself or via pack-

ages available from Comprehensive R Archive Network (CRAN).

https://cran.r-project.org
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R comes with a few data reading functions:

read.table(), read.csv() for tabular data;

readLines() for lines of a text file;

source(), dget() to read R code files (inverse of dump() and

dput(), respectively);

load() to read-in saved workspaces;

unserialize() to read single R objects in binary form.

There are, of course, numerous R packages that have been developed to

read in all kinds of other datasets, and you may need to resort to one of

these packages if you are working in a specific area.

read.table() Theread.table() function is one of the most commonly-

used functions for reading data. The help file
22

is worth reading if only22: Run ?read.table in the console.

because the function gets so much use. Its main arguments are:

file, the name of a file, or a connection;

header, logical indicating if the file has a header line;

sep, string indicating how the columns are separated;

colClasses, character vector indicating the class of each column

in the dataset;

nrows, number of rows in the dataset;
23

23: By default read.table()will read the

entire file. comment.char, character string indicating comments;
24

24: Defaults to “#”. skip, the number of lines to skip from the beginning of the file;

stringsAsFactors, whether character variables are coded as fac-

tors or as strings.
25

25: Defaults to TRUE because back in the

old days, strings represented levels of a

categorical variable; now that text mining

is an every day occurrence, that is not

always the case.

For small to moderately sized datasets, you can usually callread.table()

without specifying any other arguments.

data <- read.table("foo.txt")

In this case, R will read in the file foo.txt and automatically:

skip lines that begin with a #;

figure out how many rows there are (and how much memory needs

to be allocated), and

figure what type of variable is in each column of the table.

Telling R all these things directly makes R run faster and more efficiently.

The read.csv() function is identical to read.table() except that some

of the defaults are set differently (such as the sep argument).

With much larger datasets, some things can be done to prevent R from

choking on the data (a risk as R stores everything in RAM):

read the help page for read.table(), which contains many hints;

make a rough calculation of the memory required to store the

dataset (see on the next page for an example); if the dataset is larger

than the amount of RAM on your computer, it is best to stop here;

set comment.char = "" if all lines in the file are uncommented;

use the colClasses argument – specifying this option can make

read.table() run MUCH faster, often twice as fast.
26

We can26: In order to use this option, we must

know the class of each column in the data

frame; if all of the columns are “numeric”,

for example, then we would simply set

colClasses = "numeric".

figure out the column classes via the following code:
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initial <- read.table("datatable.txt", nrows = 100)

classes <- sapply(initial, class)

tabAll <- read.table("datatable.txt",

colClasses = classes)]

set nrows – this doesn’t make R run faster but it helps with memory

usage (a mild overestimate is okay; the Unix tool wc can be used to

calculate the number of lines in the file).

In general, when using R with larger datasets, it is also useful to know a

few things about the operating system:

how much memory is available on the system?

what other applications are in use?
27

27: Close everything that is not required.

are other users logged into the same system?

what is the operating system? (some operating systems can limit

the amount of memory a single process can access).

For example, suppose we have a data frame with 2,000,000 rows and 100

columns, all of which are numeric data. Roughly speaking, how much

memory is required to store this data frame?

On most computers, numeric data is stored using 64 bits of memory (8

bytes). Given that information, we have:

2, 000, 000 × 100 × 8 bytes = 1, 600, 000, 000 bytes

≈ 1, 600 MB = 1.6 GB.

Reading in a large dataset for which one does not have enough RAM

is an easy way to get the computer (or the R session) to freeze. This is

usually an unpleasant experience that requires killing the R process, in

the best case scenario, or rebooting the computer, in the worst case.

It is always a good idea to do a rough memory requirements calculation

before reading in a large dataset.

txt, csv, and Other Formats

Fixed format text files

# Windows only

df = read.table("folder\\file.txt", header=TRUE)

# all OS (including Windows)

df = read.table("folder/file.txt", header=TRUE)

The forward slash / is supported as a directory delimiter on all

operating systems; the double backslash \\ is only supported

under Windows. If the first row of the file includes the name of the

variables, these entries will be used to create appropriate names
28

for each of the columns in the dataset. If the first row does not 28: Reserved characters such as ‘$’ are

changed to ‘.’
include the names, the header option can be left off (or set to

FALSE), and the variables will be named V1, V2, ..., Vn.
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A limit on the number of lines to be read can be specified through

the nrows option. The read.table() function also supports us-

ing a URL as a filename or browsing files interactively using

read.table(file.choose()).

Sometimes data arrives in irregularly-shaped data files (there may

be a variable number of fields per line, or some data in the line may

describe the remainder of the line). In such cases, a useful generic

approach is to read each line into a single character variable, then

use character variable functions to extract the contents.

df = readLines("file.txt")

df = scan("file.txt")

The readLines() function returns a character vector with length

equal to the number of lines read. A limit on the number of lines

to be read can be specified through the nrows option. The scan()

function returns a vector, with entries separated by white space

by default. These functions read from standard input, but can also

read a file or a URL.

Comma-separated value (CSV) files: the read.csv() function

takes on much the same parameters as read.table().

df = read.csv("folder/file.csv")

Read sheets from an Excel file: if the data is available in an Excel file,

various possibilities exist, depending on the spreadsheet format.

df.xls = gdata::read.xls("file.xls", sheet=1)

df.xlsx = xlsx::read.xlsx("file.xlsx", sheet=1)

The sheet can be provided as either a number or a name.
29

29: The appropriate packages should have

been installed beforehand, however.

Reading datasets in other formats: the datasets of interest some-

times comes from another software. The foreign library is able to

do a native import for some of the most common formats: Stata,

Epi Info, Minitab, Octave, SPSS, Systat, and SAS files.
30

30: The read.ssd() function will only

work if SAS is installed locally, however.

df = foreign::read.dbf("filename.dbf")

df = foreign::read.epiinfo("filename.epiinfo")

df = foreign::read.mtp("filename.mtp")

df = foreign::read.octave("filename.octave")

df = read.ssd("filename.ssd")

df = read.xport("filename.xport")

df = read.spss("filename.sav")

df = read.dta("filename.dta")

df = read.systat("filename.sys")

There are analogous functions for writing data to files:

write.table() writes tabular data to text files (i.e. CSV);

writeLines(), to write character data line-by-line to a file;



1.3 More Programming in R 27

dump(), for dumping a textual representation of multiple R objects;

dput(), for outputting a textual representation of an R object;

save(), for saving an arbitrary number of R objects in binary format

(possibly compressed) to a file, and

serialize(), for converting an R object into a binary format for

outputting to a file.

There are numerous ways to store data, including structured text file

formats like CSV or tab-delimited, or complex binary formats. It is

important to take the time to explore the full range of functionality in

order to achieve your specific aims.

1.3 More About Programming in R

Many software packages and libraries are available to the data analyst. R

not only has the advantage that we can easily use its available packages,

but it provides enough flexibility for the analyst who wants to get dirty

with the data.

In this section, you will find examples and tips that highlight R’s data

manipulation features. It is not meant to be a complete introduction, or

even necessarily a showcase of good programming practices.

1.3.1 Help and Documentation

R’s various help files and demos can be accessed using the following

commands (where function_name and search_term correspond to the

desired function and/or term):

?function_name

example(function_name)

args(function_name)

??search_term

For instance, the following code would display the help file for the

function glm() in the bottom graphical output window of RStudio:

?glm

Most help files contain examples showcasing the use of the function.

These can be accessed via example().

example(glm)

We can thus copy the code from the example file, and run it directly at

the console.

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))
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glm.D93 <- glm(counts ~ outcome + treatment,

family = poisson())

anova(glm.D93)

summary(glm.D93)

treatment outcome counts

1 1 1 18

2 1 2 17

3 1 3 15

4 2 1 20

5 2 2 10

6 2 3 20

7 3 1 25

8 3 2 13

9 3 3 12

Analysis of Deviance Table

Model: poisson, link: log

Response: counts

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 8 10.5814

outcome 2 5.4523 6 5.1291

treatment 2 0.0000 4 5.1291

Call:

glm(formula = counts ~ outcome + treatment, family = poisson())

Deviance Residuals:

1 2 3 4 5

-0.67125 0.96272 -0.16965 -0.21999 -0.95552

6 7 8 9

1.04939 0.84715 -0.09167 -0.96656

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285

treatment2 1.338e-15 2.000e-01 0.000 1.0000

treatment3 1.421e-15 2.000e-01 0.000 1.0000

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom

Residual deviance: 5.1291 on 4 degrees of freedom

AIC: 56.761

Number of Fisher Scoring iterations: 4
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Similarly, the function’s arguments can be accessed via args().

args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, singular.ok = TRUE,

contrasts = NULL, ...)

NULL

1.3.2 Simple Data Manipulation

So what can we actually do with R?

Loading a Built-In Dataset We can obtain a list of such datasets in the

datsets package by calling the following function:

data()

Or those available in all installed packages via:

data(package = .packages(all.available = TRUE))

Let us take a look at the swiss built in dataset.
31

We can display the 31: Type ?swiss to see the help file.

dataset by simply calling it at the prompt, like so:

swiss

Or we can take a look at its first or last n entries using the functions

head() or tail().

head(swiss,6)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

Assigning Data We can create, assign, and display a vector consisting

of a sequence of numbers like this:

(x<- c(1:3))

[1] 1 2 3
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We can also assign non-sequential numbers:

(w <- c(12,-9))

[1] 12 -9

or mixed objects:

(v = c(w,"pomplamoose"))

[1] "12" "-9" "pomplamoose"

or matrices:

(u = t(matrix(1:10,ncol=5)))

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

[5,] 9 10

Data Types and Conversion We can test whether objects are of a certain

type or class:

is.numeric(x)

[1] TRUE

is.character(x)

[1] FALSE

is.vector(x)

[1] TRUE

is.matrix(x)

[1] FALSE
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is.data.frame(x)

[1] FALSE

is.character(w)

[1] FALSE

is.character(v)

[1] TRUE

is.data.frame(swiss)

[1] TRUE

We can also set an object to be of a specific type:

as.numeric(x)

[1] 1 2 3

as.character(x)

[1] "1" "2" "3"

as.vector(x)

[1] 1 2 3

as.matrix(x)

[,1]

[1,] 1

[2,] 2

[3,] 3
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as.data.frame(x)

x

1 1

2 2

3 3

Or combine two vectors into a single vector:

c(y,w)

[1] 200 300 400 500 600 700 12 -9

Or convert vectors to matrices or data frames:

cbind(x,y)

x y

[1,] 1 200

[2,] 2 300

[3,] 3 400

[4,] 1 500

[5,] 2 600

[6,] 3 700

rbind(x,y)

[,1] [,2] [,3] [,4] [,5] [,6]

x 1 2 3 1 2 3

y 200 300 400 500 600 700

data.frame(x,y)

x y

1 1 200

2 2 300

3 3 400

4 1 500

5 2 600

6 3 700

Conversely, we can convert a matrix to a vector:

as.vector(u)

[1] 1 3 5 7 9 2 4 6 8 10

or a matrix to a data frame:



1.3 More Programming in R 33

as.data.frame(u)

V1 V2

1 1 2

2 3 4

3 5 6

4 7 8

5 9 10

or a data frame to a matrix:

swiss_matrix=as.matrix(swiss)

head(swiss_matrix)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

Writing Functions One of R’s most advantageous feature is its flexibility:

what if we want to write our own functions? The template for all functions

is a block of code that looks like:

my.function <- function(arg1,arg2, ..., argn) {

# what my.function does

# typically involving the arguments

}

Here are some (truly) simple examples: first, a function, my.product(),

that computes the product of two arguments 𝑥 and 𝑦.
32

32: This is not a very interesting function

as the standard multiplication * is already

defined in R, but this is just an illustration

of the functionality.my.product <- function (x,y) {

x*y

}

Note that the function definition must be compiled (the code must be

run) before it can be called in the R session.

There are multiple ways to call my.product() for arguments x=12 and

y=-2.

my.product(x=12,y=-2)

my.product(y=-2,x=12)

my.product(12,-2)

my.product(-2,12)
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[1] -24

[1] -24

[1] -24

[1] -24

The first two calls reflect better programming practices. The last of those

is acceptable because multiplication is commutative, but it is risky to

play with the arguments this way.

For instance, consider another simple function my.quotient():

my.quotient <- function (x,y) {

x/y

}

We call my.quotient() on x=12 and y=-2.

my.quotient(x=12,y=-2)

my.quotient(y=-2,x=12)

my.quotient(12,-2)

[1] -6

[1] -6

[1] -6

but

my.quotient(-2,12)

[1] -0.1666667

When the parameters are not specified in the function call, their implied

order reverts to the declared order in the definition (1st = 𝑥, 2nd = 𝑦).

And what might we expect to happen with this call?

my.quotient(12,0)

[1] Inf

1.3.3 Exploring Data

R is good tool for data exploration. Let us examine the swiss dataset in

detail.

We start by displaying the first few rows of the dataset (3, in this case):



1.3 More Programming in R 35

head(swiss,3)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

We could also display the last few entries (6, here):

tail(swiss,6)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Neuchatel 64.4 17.6 35 32 16.92 23.0

Val de Ruz 77.6 37.6 15 7 4.97 20.0

ValdeTravers 67.6 18.7 25 7 8.65 19.5

V. De Geneve 35.0 1.2 37 53 42.34 18.0

Rive Droite 44.7 46.6 16 29 50.43 18.2

Rive Gauche 42.8 27.7 22 29 58.33 19.3

We can also get an idea as to the dataset’s structure with str():

str(swiss)

’data.frame’: 47 obs. of 6 variables:

$ Fertility : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...

$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...

$ Examination : int 15 6 5 12 17 9 16 14 12 16 ...

$ Education : int 12 9 5 7 15 7 7 8 7 13 ...

$ Catholic : num 9.96 84.84 93.4 33.77 5.16 ...

$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...

We can extract the column names with the function colnames():

colnames(swiss)

[1] "Fertility" "Agriculture" "Examination" "Education"

[5] "Catholic" "Infant.Mortality"

or display a specific column of the data frame, say Education, with the $

operator:

swiss$Education

[1] 12 9 5 7 15 7 7 8 7 13 6 12 7 12 5 2 8 28 20 9 10 3 12 6 1

[26] 8 3 10 19 8 2 6 2 6 3 9 3 13 12 11 13 32 7 7 53 29 29

This cannot be done with a matrix, however – the following code will

provide an error message:
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swiss_matrix$Education

Error in swiss_matrix$Education :

$ operator is invalid for atomic vectors

To extract the Education column from a matrix, identify its column index

and use this, instead:

swiss_matrix[,4]

Courtelary Delemont Franches-Mnt Moutier Neuveville

12 9 5 7 15

Porrentruy Broye Glane Gruyere Sarine

7 7 8 7 13

...

Le Locle Neuchatel Val de Ruz ValdeTravers V. De Geneve

13 32 7 7 53

Rive Droite Rive Gauche

29 29

Just as one would expect from the behaviour of colnames(), rownames()

extracts the data frame’s row names:

rownames(swiss)

[1] "Courtelary" "Delemont" "Franches-Mnt" "Moutier"

...

[46] "Rive Droite" "Rive Gauche"

The summary statistics (5-pt summary + mean + number of missing

variables for numerical variables; frequency table for others) can be

obtained for all data frame’s variables simultaneously:

summary(swiss)

Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality

Min. : 2.150 Min. :10.80

1st Qu.: 5.195 1st Qu.:18.15

Median : 15.140 Median :20.00

Mean : 41.144 Mean :19.94

3rd Qu.: 93.125 3rd Qu.:21.70

Max. :100.000 Max. :26.60
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More in-depth statistics are available with psych’s describe():

psych::describe(swiss)

vars n mean sd med trim mad min max range skew kurt se

Fertility 1 47 70.1 12.4 70.4 70.6 10.2 35.0 92.5 57.5 -0.46 0.2 1.82

Agriculture 2 47 50.6 22.7 54.1 51.1 23.8 1.2 89.7 88.5 -0.32 -0.8 3.31

Examination 3 47 16.4 7.9 16.0 16.0 7.4 3.0 37.0 34.0 0.45 -0.1 1.16

Education 4 47 10.9 9.6 8.0 9.3 5.9 1.0 53.0 52.0 2.27 6.1 1.40

Catholic 5 47 41.1 41.7 15.1 39.1 18.6 2.1 100.0 97.8 0.48 -1.6 6.08

Infant.Mortality 6 47 19.9 2.9 20.0 19.9 2.8 10.8 26.6 15.8 -0.33 0.7 0.42

The correlation matrix is obtained pretty much as one would expect:

cor(swiss)

F A Ex Ed C IM

Fertility 1.0 0.3 -0.6 -0.6 0.4 0.4

Agriculture 0.3 1.0 -0.6 -0.6 0.4 -0.0

Examination -0.6 -0.6 1.0 0.6 -0.5 -0.1

Education -0.6 -0.6 0.6 1.0 -0.1 -0.0

Catholic 0.4 0.4 -0.5 -0.1 1.0 0.1

Infant.Mortality 0.4 -0.0 -0.1 -0.0 0.1 1.0

We can obtain the data frame’s number of rows:

nrow(swiss)

[1] 47

or the summary of a single variable:

summary(swiss$Fertility)

Min. 1st Qu. Median Mean 3rd Qu. Max.

35.00 64.70 70.40 70.14 78.45 92.50

We can also find all observations for which a feature takes on a value

greater than a certain threshold, say:

swiss$Fertility>50

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

or provide summary information for the logical vector:
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summary(swiss$Fertility>50)

Mode FALSE TRUE

logical 3 44

table(swiss$Fertility>50)

FALSE TRUE

3 44

The logical vector can be used as an index: for instance, here is the dataset

only for those observations where Fertility was greater than 50.

swiss[swiss$Fertility>50,]

with

nrow(swiss[swiss$Fertility>50,])

[1] 44

We could also replace the threshold; for instance, here is the dataset for

observations data where Fertility is in the top 50%:

swiss[swiss$Fertility>median(swiss$Fertility),]

Fertility Agriculture Examination Education Catholic

Courtelary 80.2 17.0 15 12 9.96

Delemont 83.1 45.1 6 9 84.84

...

Le Locle 72.7 16.7 22 13 11.22

Val de Ruz 77.6 37.6 15 7 4.97

Infant.Mortality

Courtelary 22.2

Delemont 22.2

...

Le Locle 18.9

Val de Ruz 20.0

or, solely the Fertility and Education variables for observations where

Fertility is in the top 50%:

swiss[swiss$Fertility > median(swiss$Fertility),

c("Fertility","Education")]
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Fertility Education

Courtelary 80.2 12

Delemont 83.1 9

... ... ...

Le Locle 72.7 13

Val de Ruz 77.6 7

or those observations for which Fertility was maximal:

swiss[swiss$Fertility == max(swiss$Fertility),]

Fertility Agriculture Examination Education Catholic Infant.Mortality

Franches-Mnt 92.5 39.7 5 5 93.4 20.2

1.3.4 A Word About NAs

NA values in R can create some havoc. Be careful!

To illustrate some of the issues, create a dataset by sampling 100 values

(with replacement) among the values {1, 2, 3, 4,NA}.33
33: Your sample will be different.

test = sample(c(1:4,NA),100, replace=TRUE)

We can summarize test as follows:

summary(test) # 5pt summary + mean + number of NAs

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

1.000 1.500 3.000 2.549 3.500 4.000 29

We can read the mean from the output, or we could try to compute it

directly, using mean():

mean(test)

[1] NA

What is happening? The function mean() does not know how it should

handle the NA values; without further guidance, it elects to throw every-

thing akimbo.

Compare with:

mean(test, na.rm=TRUE)

[1] 2.549296
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1.3.5 Loops and Conditional Statements

R allows for flow control through loops and conditional statements:

if() and ifelse() – when a condition holds, do thing 1, when it

does not, do thing 2;

for() – iterate a procedure for a fixed number of steps;

while() – repeat steps as long as some condition holds.

High-level interpreted languages (like R) are slower than low-level and/or

compiled languages. To get around this issue, interpreted languages will

sometimes hand off
34

some operations to functions written in lower-level34: “Behind the scenes”, so to speak.

languages (like C).

In order to take advantage of this, certain programming strategies are

recommended when working with list, vectors, arrays, data frames, and

so on, namely vectorized functions (see the family of apply() functions

in R). In particular, we try to avoid cycling through each item of a list, and

instead use special functions that map a chosen function or operation

to every item in the list (in R, this can be done with the apply family of

functions, among others).

This can run counter to habits gained when learning other languages, in

which for and while loops, for instance, might have been emphasized.

Consequently, we elect NOT to introduce such loops at this stage. The

syntax is rather intuitive and will be easy to understand when we

encounter it in examples.

The ifelse() statement is quite powerful and can speed-up and simplify

data frame operations, however, and we take the time to illustrate how it

can be used.

We can easily create a new swiss column determining whether the

Fertility variable, say, is above a certain threshold (in which case it

should take the value 1) or not (0):

swiss$threshold <-ifelse(swiss$Fertility>50,1,0)

[1] 1 1 1 ... 1 1 1

[45] 0 0 0

There will be other opportunities to use these functions; the best way to

get the hang of R is to practice and debug.

1.4 The tidyverse

R is a functional language, which means that it uses nested parentheses,

which can make code difficult to read.
35

35: Exhibit A: everything up to now.
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1.4.1 Pipeline Operator

The pipeline operator |> (formerly %>%) and the dplyr package can be

used to remedy the situation. Hadley Wickham
36

provided an example 36: See [18] for everything there is to know

about pipelines and tidy data.
to illustrate how it works:

hourly_delay <- filter(

summarise(

group_by(

filter(

flights,

!is.na(dep_delay)

),

date, hour

),

delay = mean(dep_delay),

n = n()

),

n > 10

)

Without necessarily knowing how each of the internal functions works,

we can still get a sense for what the overall nested structure does, and

realize (albeit, with a fair amount of work) that the basic object on which

we operate is the flights data frame.

The pipeline operator |> removes the need for nested function calls, in

favor of passing data from one function to the next:

library(dplyr)

hourly_delay <- flights |>

filter(!is.na(dep_delay)) |>

group_by(date, hour) |>

summarise(delay = mean(dep_delay),n = n()) |>

filter(n > 10)

It is now obvious that the flights data frame is the base object, for instance

– the gap between pseudo-code and “code that runs” is significantly

reduced. The beauty of this approach is that the block of code can now

be ‘read’ directly: the flights data frame is

1. filtered (to remove missing values of the dep_delay variable);

2. grouped by hours within days;

3. the mean delay is calculated within groups, and

4. the mean delay is returned for those hours with more than n >

10 flights.

The pipeline rules are simple – the object immediately to the left of the

pipeline is passed as the first argument to the function immediately to

its right:

data |> function is equivalent to function(data)

data |> function(arg=value) is equivalent to function(data,

arg=value)
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For instance:

library(dplyr)

swiss |> summary()

Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality threshold

Min. : 2.150 Min. :10.80 Min. :0.0000

1st Qu.: 5.195 1st Qu.:18.15 1st Qu.:1.0000

Median : 15.140 Median :20.00 Median :1.0000

Mean : 41.144 Mean :19.94 Mean :0.9362

3rd Qu.: 93.125 3rd Qu.:21.70 3rd Qu.:1.0000

Max. :100.000 Max. :26.60 Max. :1.0000

Themagrittrvignette provides additional information on themagrittr

package, on which dplyr is based.

1.4.2 Tidy Data

The pipeline operator is also compatible with the tidyverse suite of

packages, championed by Wickham;
37

cheat sheets are available here37: Including the ever popular ggplot2

(see Chapter 12, ggplot2 Visualizations in
R in [1]).

.

Tidy data has a specific structure:

each column represents a unique variable;

each row represents a unique observation;

each table represents a type of observational unit.

Two tidyr functions are used to reshape tables to a tidy format: gather()

and spread() – gather() requires:

a data frame to reshape;

a key column (against which to reshape);

a value column (which will contain the new variable of interest),

and

the indices of the columns that need to be collapsed.

Consider the following dataset:

cities <- data.frame(

city=c("Toronto","Montreal","Vancouver",

"Ottawa","Calgary","Edmonton",

"Quebec City","Winnipeg","Hamilton"),

prov=c("Ontario","Quebec","BC",

"Ontario","Alberta","Alberta",

"Quebec","Manitoba","Ontario"),

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
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pop.2016=c(6202225,4291732,2642825,

1488307,1481806,1418118,

839311,834678,785184),

pop.2011=c(5928040,4104074,2463431,

1371576,1392609,1321441,

806406,783099,747545)

)

cities

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Ottawa Ontario 1488307 1371576

5 Calgary Alberta 1481806 1392609

6 Edmonton Alberta 1418118 1321441

7 Quebec City Quebec 839311 806406

8 Winnipeg Manitoba 834678 783099

9 Hamilton Ontario 785184 747545

It is not presented in a tidy format, because populations show up in two
columns. In tidy format, it would instead look like:

cities.tidy <- tidyr::gather(cities,"year","population",

3:4)

cities.tidy$year <- ifelse(cities.tidy$year=="pop.2016",

2016,2011)

cities.tidy

city prov year population

1 Toronto Ontario 2016 6202225

2 Montreal Quebec 2016 4291732

3 Vancouver BC 2016 2642825

4 Ottawa Ontario 2016 1488307

5 Calgary Alberta 2016 1481806

6 Edmonton Alberta 2016 1418118

7 Quebec City Quebec 2016 839311

8 Winnipeg Manitoba 2016 834678

9 Hamilton Ontario 2016 785184

10 Toronto Ontario 2011 5928040

11 Montreal Quebec 2011 4104074

12 Vancouver BC 2011 2463431

13 Ottawa Ontario 2011 1371576

14 Calgary Alberta 2011 1392609

15 Edmonton Alberta 2011 1321441

16 Quebec City Quebec 2011 806406

17 Winnipeg Manitoba 2011 783099

18 Hamilton Ontario 2011 747545

spread(), on the other hand, generates multiple columns from two

columns; it requires a data frame to reshape; a key column, and values

in the value column to become new values.
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For instance, we could reverse the “tidying” of cities.tidy with:

cities.back.to.wide <- tidyr::spread(cities.tidy,year,

population)

colnames(cities.back.to.wide) <- c("city","prov",

"pop.2011","pop.2016")

cities.back.to.wide

city prov pop.2011 pop.2016

1 Calgary Alberta 1392609 1481806

2 Edmonton Alberta 1321441 1418118

3 Hamilton Ontario 747545 785184

4 Montreal Quebec 4104074 4291732

5 Ottawa Ontario 1371576 1488307

6 Quebec City Quebec 806406 839311

7 Toronto Ontario 5928040 6202225

8 Vancouver BC 2463431 2642825

9 Winnipeg Manitoba 783099 834678

Other useful wrangling functions include separate() and unite().

What do you think these do?
38

38: How could you find out?

1.4.3 The dplyr Package

The dplyr package provides functions to transform tabular data. Its most

useful functions are compatible with the pipeline operator |>:

select(): to extract a subset of variables from the data frame;

filter(): to extract a subset of observations from the data frame;

arrange(): to sort the data frame;

mutate(): to create new variables from existing variables;

summarise(): to create so-called pivot tables;

group_by(): . . . self-evident?

We will showcase these functions with the help of various examples. Try

to guess what the outputs would be before looking at them.
39

39: We do not explicitly state the

dplyr::xyz dependency since we already

had to load the dplyr package to gain

access to the pipeline operator |>. cities |> select(prov,pop.2016)

prov pop.2016

1 Ontario 6202225

2 Quebec 4291732

3 BC 2642825

4 Ontario 1488307

5 Alberta 1481806

6 Alberta 1418118

7 Quebec 839311

8 Manitoba 834678

9 Ontario 785184
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cities |> select(-pop.2016)

city prov pop.2011

1 Toronto Ontario 5928040

2 Montreal Quebec 4104074

3 Vancouver BC 2463431

4 Ottawa Ontario 1371576

5 Calgary Alberta 1392609

6 Edmonton Alberta 1321441

7 Quebec City Quebec 806406

8 Winnipeg Manitoba 783099

9 Hamilton Ontario 747545

cities |> filter(pop.2016>1000000)

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Ottawa Ontario 1488307 1371576

5 Calgary Alberta 1481806 1392609

6 Edmonton Alberta 1418118 1321441

cities |> filter(pop.2016>1000000,

prov %in% c("Ontario","Quebec"))

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Ottawa Ontario 1488307 1371576

cities |> mutate(pop.increase = pop.2016/pop.2011-1)

city prov pop.2016 pop.2011 pop.increase

1 Toronto Ontario 6202225 5928040 0.04625222

2 Montreal Quebec 4291732 4104074 0.04572481

3 Vancouver BC 2642825 2463431 0.07282282

4 Ottawa Ontario 1488307 1371576 0.08510721

5 Calgary Alberta 1481806 1392609 0.06405028

6 Edmonton Alberta 1418118 1321441 0.07316028

7 Quebec City Quebec 839311 806406 0.04080451

8 Winnipeg Manitoba 834678 783099 0.06586524

9 Hamilton Ontario 785184 747545 0.05035015

cities |> summarise(median.2011=median(pop.2011),

variance.2011=var(pop.2011))
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median.2011 variance.2011

1 1371576 3.209519e+12

cities |> summarise(mean.2016=mean(pop.2016),

sum.2016=sum(pop.2016), n=n())

mean.2016 sum.2016 n

1 2220465 19984186 9

cities |> arrange(pop.2016)

city prov pop.2016 pop.2011

1 Hamilton Ontario 785184 747545

2 Winnipeg Manitoba 834678 783099

3 Quebec City Quebec 839311 806406

4 Edmonton Alberta 1418118 1321441

5 Calgary Alberta 1481806 1392609

6 Ottawa Ontario 1488307 1371576

7 Vancouver BC 2642825 2463431

8 Montreal Quebec 4291732 4104074

9 Toronto Ontario 6202225 5928040

cities |> arrange(desc(pop.2011))

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Calgary Alberta 1481806 1392609

5 Ottawa Ontario 1488307 1371576

6 Edmonton Alberta 1418118 1321441

7 Quebec City Quebec 839311 806406

8 Winnipeg Manitoba 834678 783099

9 Hamilton Ontario 785184 747545

cities |> arrange(prov,desc(pop.2016))

city prov pop.2016 pop.2011

1 Calgary Alberta 1481806 1392609

2 Edmonton Alberta 1418118 1321441

3 Vancouver BC 2642825 2463431

4 Winnipeg Manitoba 834678 783099

5 Toronto Ontario 6202225 5928040

6 Ottawa Ontario 1488307 1371576

7 Hamilton Ontario 785184 747545

8 Montreal Quebec 4291732 4104074

9 Quebec City Quebec 839311 806406
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cities |> group_by(prov) |>

summarise(mean.2016 = mean(pop.2016))

# A tibble: 5 × 2

prov mean.2016

<chr> <dbl>

1 Alberta 1449962

2 BC 2642825

3 Manitoba 834678

4 Ontario 2825239.

5 Quebec 2565522.

cities |> mutate(pop.increase = pop.2016/pop.2011-1) |>

select(city, pop.increase) |>

arrange(desc(pop.increase))

city pop.increase

1 Ottawa 0.08510721

2 Edmonton 0.07316028

3 Vancouver 0.07282282

4 Winnipeg 0.06586524

5 Calgary 0.06405028

6 Hamilton 0.05035015

7 Toronto 0.04625222

8 Montreal 0.04572481

9 Quebec City 0.04080451

dplyr also comes with “database” functionality (bind_cols(), bind_-

rows(),union(),intersect(),setdiff(),left_join(),inner_join(),

semi_join(), anti_join(), etc.).

Do not hesitate to bookmark, consult, and borrow from the excellent [18]

(and from the subsequent chapters) for more examples, and to practice,

practice, practice: we learn programming by programming.

1.5 Basics of Python

Python is another object-oriented language (OOL). It was created in the

early 90’s but was not popularized until the 00’s. It lends itself to writing

structured, easy-to-read computer code.
40

40: Indentation matters in Python: in

some of the code boxes of the next two

sections, we have been forced to some-

times introduce a carriage return in order

for the code to fit the width of the available

box – in instances where a new line starts

with indentation, it is important to verify

if that line is completing code from the

previous line, in which case it should be

entered as a single line at the prompt.

It is intended to be easier to understand and learn than other OOLs.

One of its strength is that it has a massive base of open-source modules,

which allow programmers to implement very sophisticated functionality

simply by making a few function calls (not unlike R’s packages).

More information is available from the Python Software Foundation ,

on Stack Overflow (and similar sites), and in reference manuals, such

as Jake VanderPlas’ A Whirlwind Tour of Python or the Python 3

documentation .

https://www.python.org
https://stackoverflow.com/
https://github.com/jakevdp/WhirlwindTourOfPython
https://docs.python.org/3
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1.5.1 IDE for Python

Anaconda and Jupyter are popular data science Python integrated
development environments (IDE); Rodeo , Spyder , PyCharm ,

Ninja (an others) also provide RStudio-like functionality for Python.

Installation instructions are available on the respective websites.

1.5.2 Introduction to Python

The content of the next two sections is intended to help data analysts get

a better sense of how Python could be used for data analysis. They are

not designed to teach the ins and outs of Python programming. Instead,

they illustrate typical tasks through examples.
41

41: Note that these examples require

Python 3.5 or higher.

Fundamentals Let us start with the basics.

Using Python as a Scientific Calculator Mathematical expressions can

easily be evaluated numerically in Python. For scientific calculations, one

should import the math module (package/library) which contains many

mathematical functions .

It is important to note that Python also provides facilities for integer

arithmetic which will be covered later. In this section, only floating-point

calculations are used.

Modules can be imported using the import function.

import math

We can call pre-compiled functions in a module by prepending the

module name (with a period) to the function name: module.function_-

name() is the Python equivalent of package::function_name() in R.

For instance, there is a cos function in the math module: it is called using

math.cos().

We can evaluate cos(
√
𝜋) with:

math.cos(math.sqrt(math.pi))

-0.20029354112337366

arctan(25/3) with

math.atan(2**5 / 3)

1.477319545636307

and ln(1 + 𝑒4) with

https://www.anaconda.com/
https://jupyter.org/
https://github.com/yhat/rodeo
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://github.com/ninja-ide/ninja-ide
https://docs.python.org/3.5/library/math.html
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math.log(1 + math.exp(4))

4.0181499279178094

Using Variables to Hold Intermediate Results It could be helpful to

break complex calculations into smaller steps. Variables can be used to

store intermediate results. We will see later how variables are used in

algorithmic settings.

For instance, we could break down the evaluation of exp(sin(
√

2 + 2))
into three parts:

𝑥 =
√

2

𝑦 = sin(𝑥 + 2)
𝑧 = exp(𝑦)

x = math.sqrt(2)

y = math.sin(x+2)

z = math.exp(y)

In order to display the values taken by the variables, we must call on

them separately, as follows:

x,y,z

(1.4142135623731, -0.26925647329403, 0.7639472984402)

The variables are saved even when they are not displayed, however.

Numbers as Formatted Strings Quite often, we may want to control

the way numbers are displayed (this can come in handy when reporting

results). For example, we may wish to display no more than 4 decimal

places for all real numbers, or we may want to pad numbers with zeros

so that they all have a given width.

The following block illustrates a number of ways to obtain formatted
strings of the number 12.3456789. For more details on the format specifi-

cation mini-language, please consult the documentation .

Note that a string must be enclosed within double quotes or single quotes.

We will discuss general string operations shortly.

x = 12.3456789

We can format the number as a string of width 10, with 2 decimal places:

"{:10.2f}".format(x)

’ 12.35’

https://docs.python.org/3/library/string.html#format-specification-mini-language
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Or as a string with 4 decimal places:

"{:.4f}".format(x)

’12.3457’

or as a zero-padded string of width 5, with no decimal:

"{:05.0f}".format(x)

’00012’

Fixed Decimals Floating-point numbers are usually shunned as they

are inherently inexact. For example, we might be bewildered to find out

what the following sum amounts to:

2.2 + 1.1

3.3000000000000003

The result 3.3000000000000003 is definitely not what we would expect

as a sum, namely, 3.3.

The decimal module allows us to express decimal numbers exactly (see

the documentation for more information). Let’s look at a few examples

of working with decimal and Decimal().

We start by defining x and y as the fixed decimal values 1.1 and 1.2,

respectively. Note that the numbers must entered as strings.

import decimal

x = decimal.Decimal("1.1")

y = decimal.Decimal("2.2")

These computations behave as we would expect:

print(x+y)

print(y/x)

print(x**decimal.Decimal("3"))

3.3

2

1.331

If we do not enter the numbers as strings, they will be treated as floating-

point numbers, and then be converted to a string, leading to unexpected

results.

https://docs.python.org/3/library/decimal.html
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x = decimal.Decimal(1.1)

y = decimal.Decimal(2.2)

print(x+y )

3.300000000000000266453525910

Rounding works as one would expect when variables are correctly

declared as fixed decimals:

z = decimal.Decimal("3.1416")

round(z, 3)

Decimal(’3.142’)

Once fixed decimals are used, we must use mathematical functions

provided by the decimal module in order to stay within that module

(unfortunately, trigonmetric functions are not available).

For instance, if:

a= decimal.Decimal("0.16")

then

print(a.sqrt())

print(a.ln())

print(a.log10())

0.4

-1.832581463748310130367054424

-0.7958800173440752191450444211

The same results could be obtained using the math module functions:

import math

print(math.sqrt(a))

print(math.log(a))

print(math.log10(a))

0.4

-1.8325814637483102

-0.7958800173440752

List and Tuples Lists and tuples are important objects in Python

programming. Even though we will be mostly using numpy arrays and

certain pandas objects instead of lists later on, it is useful to learn the

basics of lists as some of the concepts are transferrable.
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List Creation A list holds a sequence of objects, who do not all have

to be the same type. One way to create a list is to enclose the elements,

separated by commas, with square brackets.

Let us illustrate this concept with a simple list containing three objects.

x = [3,’a’,5.1]

We can extract the elements using indices (note that the first element

corresponds to index 0, the second to index 1, etc.):

x[0]

x[1]

x[2]

3

’a’

5.1

The type of each of the elements can be found using:

print(type(x[0]))

print(type(x[1]))

print(type(x[2]))

<class ’int’>

<class ’str’>

<class ’float’>

We can also “multiply” an element and transform it into a longer list:

[’Ho’]*10

[’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’]

or create a list of integers ranging from 0 to 𝑛 − 1, or from 𝑎 to 𝑏 − 1:

n = 5

list(range(n))

a=3

b=7

list(range(a,b))

[0, 1, 2, 3, 4]

[3, 4, 5, 6]
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Tuples Tuples are list-like objects, but with the following differences:

they are defined with parentheses instead of square brackets (some-

times, the parentheses can be omitted);

they are immutable (once created, they cannot be modified).

For instance, if

t = (1,’a’,4.5)

then we can obtain the length of t and print its 2nd element using

print(len(t))

print(t[1])

3

a

but we cannot change the value of the third element of t or append a

new value to t: both commands in the next block of code are illegal:

t[2]=1

t.append(5)

although the same command applied to the list x would be legal:

x[2]=1

x.append(5)

print(x)

[3, ’a’, 1, 5]

If we know the dimension of a tuple t, we can also use an extract
pattern to extract the individual components, as the following examples

illustrate.

t = (1, ’two’, 3.0)

fst, snd, trd = t

print(fst, snd, trd )

two 3.0

We could use ‘_’ (place holder) to extract the second component, say.

_, s, _ = t

print(s)

two

What do you think is happening on the next page?
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days = [(0,"Sun"), (1, "Mon"), (2, "Tue"), (3, "Wed"),

(4, "Thu"), (5, "Fri"), (6, "Sat")]

for n, d in days:

print(d+" is represented by " + str(n))

Sun is represented by 0

Mon is represented by 1

Tue is represented by 2

Wed is represented by 3

Thu is represented by 4

Fri is represented by 5

Sat is represented by 6

List Comprehension List comprehension is a powerful way to create

lists, based on set notation. Before we get into the technical details, let us

look at some examples.

We start by importing solely the function sqrt() from the mathmodule;
42

we also declare an index list x:42: Doing so means that we will not re-

quire the prefix math. in order to invoke

sqrt().

from math import sqrt

x = [1, 4, 9, 16]

print(x)

[1, 4, 9, 16]

We can now build new lists from x, such as the list of the squares of the

elements of x:

y = [a**2 for a in x]

print(y)

[1, 16, 81, 256]

the list of the square roots of the elements of x greater than 4:

z = [sqrt(b) for b in x if (b > 4)]

print(z)

[3.0, 4.0]

or the list of integers from 0 to 9 (equivalent to range(10)):

u = [ c for c in range(10) ]

print(u)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
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The most basic form of list comprehension is [f(x) for x in l], where

l is a list (or an iterable) and f(x) is an expression in x. It creates a list

obtained by applying f to each element or iterate in l.
43

43: range provides an example of an iter-

able. One way to think of an iterable is that

it provides a mechanism for generating a

sequence of elements one at a time. The

benefit is that range(100000), for exam-

ple, does not take up much computation

time since no actual element is generated

until it is iterated over.

An optional conditional can also be present, giving the general form

[f(x) for x in l if g(x)], for some boolean expression g (taking on

the values True or False) where generation of the list elements only

applies to elements that satisfy the boolean expression.

Multiple lists or iterables can be specified in list comprehension. equal

to either ‘math’ or ‘stat’.

[(x,y,z) for x in [True, False] for y in range(4,7)

for z in [’math’,’stat’]]

[(True, 4, ’math’), (True, 4, ’stat’), (True, 5, ’math’),

(True, 5, ’stat’), (True, 6, ’math’), (True, 6, ’stat’),

(False, 4, ’math’), (False, 4, ’stat’), (False, 5, ’math’),

(False, 5, ’stat’), (False, 6, ’math’), (False, 6, ’stat’)]

We can mimic list comprehension with the help of loops (much less

efficient); it is preferable to use the former to generate lists.

List Operations We illustrate various other operations that can be

performed on zero-indexed lists in the following blocks:
44

44: The first element in the list has index 0.

sublisting

changing values

sorting values

appending values

concatenating lists

deleting elements

Consider a given list x:

x = [3,1,7,2,5]

print(x)

[3, 1, 7, 2, 5]

We can find the length of the list or print the sublist from the second

element to the fourth element, say:
45

45: Remember, ordinals start with 0, car-

dinals with 1.

print(len(x))

print(x[1:4])

5

[1, 7, 2]
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We could also modify the second element of the list (index 1), say:

x[1] = 4

print(x)

[3, 4, 7, 2, 5]

Note that x is now permanently changed;
46

if we want to modify the last46: ... or at least, until it is modified again.

entry but we are not sure about the length of the list, for instance, we

could use:

x[-1] = 6

print(x)

[3, 4, 7, 2, 6]

If we are looking to change the third last element as well, we could use

x[-3] = 1

print(x)

[3, 4, 1, 2, 6]

Finally, we could sort the resulting list:

x.sort()

print(x)

[1, 2, 3, 4, 6]

A lot of Python methods are applied using the syntax object.method(),

in contrast to the typical R syntax that would use method(object); so it

is x.sort() instead of sort(x).

Let us create another list, this time with booleans:

y = [3, True, False]

print(y)

[3, True, False]

We can append a value, say 5, at the end of this list, as follows:

y.append(5)

print(y)

[3, True, False, 5]

It is also possible to concatenate lists, using the (somewhat confusing)

addition notation:
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z = x + y

print(z)

[1, 2, 3, 4, 6, 3, True, False, 5]

and delete the last element of this new list:

del z[-1] # Delete the last element from z

print(z)

[1, 2, 3, 4, 6, 3, True, False]

or delete a range of elements, say from the 3rd to the 6th, from the

resulting list:

del z[2:6] # watch out for the indices

print(z)

[1, 2, True, False]

Flow Control We will take a brief look at two ways to alter the flow of

control in Python: conditional statements and loops.

Conditional Statements Python supports if-elif-else statements in

various forms.

In the following example, we let x be some random integer between 1

and 12 (using function randint() from module random) and see how the

results are affected.

import random

x = random.randint(1,12)

print(x)

9

(which may change from one run to another). Perhaps we want to print

the string ’Helloifx‘ is less than 5, like so:

if x < 5:

print(’Hello’)

We would see nothing here as x is 9 in this run. Perhaps we want to print

‘Out of range’ if x is less than 5 or greater than 9, and Within range

otherwise?
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if x < 5 or x > 9:

print(’Out of range’)

else:

print(’Within range’)

Within range

Finally, we might want to print ‘Small’ if x is positive and less than 5;

otherwise, print ‘Five’ if x is 5; otherwise, print ‘Six’ if x is 6; otherwise,

print +:

if 0 < x and x < 5:

print(’Small’)

elif x == 5:

print(’Five’)

elif x == 6:

print(’Six’)

else:

print(’+’)

+

Run this sequence of blocks a number of times to see the various out-

comes.

Important: Note that the code block that follows an if, else, or elif

statement must be properly indented. The custom is to use four spaces

for indentation. The following example illustrates the effects of different

indentations.

x = 4

if x < 5:

print(’Small’)

else:

print(’This string will not be printed, because the

else statement never triggers’)

print(’Neither will this, for the same reason’)

print(’This will be printed no matter what x is, as it

falls outside the if-else statement block’)

Small

This will be printed no matter what x is, as it falls

outside the if-else statement block

Loops Loops are useful for repeatedly executing a statement or a block.

We first consider the for loop.

Let us start with a simple example: for each value in the list [1,3,8], we

print its square.
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for i in [1,3,8]:

print(i**2)

1

9

64

We could also compute sums with loops, such as 1 + 2 + · · · + 8 + 9:

sum = 0

for x in range(1,10):

sum += x # add the value of x to sum

print(sum)

45

Or print the first n even nonnegative integers

n = 5

for n in range(0,n):

t = 2*n

print(t)

0

2

4

6

8

If a for loop is used to create a list, it is probably best to rewrite it using

list comprehension. The following time comparison (using %%timeit)

illustrates the contrast when building a list of 100 × 1000 items.

Using a loop:

l = []

for i in range(100):

for j in range(1000):

l.append((i,j))

Using list comprehension:

l = [ (i,j) for i in range(100) for j in range(1000)]

While loops are useful for iterating until a certain condition is met. For

instance, if we want to print the first 10 even positive integers, separated

by a space, we could use the following block:
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i = 0

while i < 10: # Repeat the following block until i

# reaches 10 or greater

i += 1 # iterated index

print(2*i, end=’ ’)

2 4 6 8 10 12 14 16 18 20

Or we could print the 26 lower case English alphabets letters on one line,

with no separation:

i = 0;

while i < 26:

print(chr(ord(’a’)+i), end=’’)

i += 1

abcdefghijklmnopqrstuvwxyz

Note that ord returns the ordinal for a character; chr does the reverse.

Functions A function is a grouped sequence of code that can be called,

such as cos() and print(). A function can have 0 or more arguments:

cos() takes one argument, whereas print() can have up to five (see

documentation for details).

Named Functions Functions facilitate code re-use. Python functions

are defined via the def statement. In the next example, we define a

function that returns a pair consisting of the sum and the product of its

arguments.

def sumprod(x, y):

return x+y, x*y

The parentheses around the tuple are optional in this context. The ouput

for 𝑥 = 3 and 𝑦 = 4 can be obtained as follows (once the function is

compiled):

print(sumprod(3,4))

(7, 12)

Functions can also have default argument values. In the following ex-

ample, if the second argument is not supplied, it takes on the value

5.

def myIntegerList(start, end=5):

return list(range(start, end+1))

https://docs.python.org/3.5/library/functions.html#print


1.5 Basics of Python 61

Compare the results of the two calls below:

print(myIntegerList(2))

print(myIntegerList(7,9))

[2, 3, 4, 5]

[7, 8, 9]

Anonymous (Lambda) Functions Another way to define a function is

with a lambda statement, which is used to define one-line functions.
47

47: The function is anonymous because it

has no name.

Anonymous functions are defined using the one-line notation:

lambda variables: output

For instance,

add = lambda u, v: u + v

multiply = lambda u, v: u*v

We can apply a bivariate function func to arguments x and y, in a general

context, using:

def applyFunc(func, x, y):

return func(x,y)

and apply in specific contexts (rule, inputs) as follows:

print(applyFunc(multiply, 3,4))

print(applyFunc(add, 7,20))

12

27

But we do not need to define the function prior to the call. This would

also work:

print(applyFunc(lambda u, v: u*v, 3,4))

print(applyFunc(lambda u, v: u + v, 7,20))

12

27
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Strings Text manipulation is an important part of data cleaning. Often,

the raw data contains string fields that do not quite follow an expected

format. For example, proper nouns could be incorrectly capitalized. Dates

could have been entered under different conventions. Fortunately, Python

offers many tools that make string manipulation rather painless. In this

section, we look at some of the commonly-performed operations on

strings.

Strings can be defined using single or double quotes; note that Python

supports unicode strings.

a = ’First string’

b = "Second string"

c = ’+*’

print(type(a), type(b), type(c))

<class ’str’> <class ’str’> <class ’str’>

We can use the multiplication syntax to define a string made up of

identical copies of another string as illustrated below:

r1 = a*4

r2 = c*3

print(r1)

print(r2)

First stringFirst stringFirst stringFirst string

+*+*+*

Strings can be concatenated using the addition syntax:

d = a + c

e = r2 + a + b

print(d)

print(e)

First string+*
+*+*+*First stringSecond string

The character in position i (the index) of the string a can be accessed via

a[i]. Remember that the first character’s index is 0.

Negative indices can also be used:a[-4] returns the fourth character

from the end, say. For instance, we can print the first, seventh, last, and

fourth-last characters of a using:
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print(a[0], a[6], a[-1], a[-4])

F s g r

We can obtain a substring of a string a using the syntax a[i:j] where i

specifies the starting index and j-1 the ending index. Note that a[:j] is

equivalent to a[0:j], and a[i:] is the substring starting at index i and

reaching until the end of a.

print(a[2:4])

print(a[:3])

print(a[6:])

rs

Fir

string

For a string x, x.split() splits the string into a list of words separated by

a space (by default). Note that a contiguous sequence of space characters

including newline (\n), carriage return (\r), and tab (\t) is considered as

one space.

We can also specify what separating characters to use for the splitting,

instead of spaces. For example, x.split(',') splits x on commas and

x.split('--') splits it on --.

Consider the examples below:

print(’This is a \n\n long sentence with

\r \t weird spaces separating the words.’.split())

[’This’, ’is’, ’a’, ’long’, ’sentence’, ’with’, ’weird’, ’spaces’, ’separating’, ’the’, ’words.’]

print(’One,two, three ,four’.split(’,’)) # Note that

# ‘ three ‘ is one of the words after separation.

[’One’, ’two’, ’ three ’, ’four’]

print(’Five--six--ninety-four’.split(’--’))

[’Five’, ’six’, ’ninety-four’]

In some case, it is helpful to remove leading and trailing space characters

(whitespace stripping).
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s = ’ time ’

print(s)

print(s.strip())

time

time

It is common to combine strip() with split(','):

cs = ’One , two, three ’

print([s.strip() for s in cs.split(’,’)])

[’One’, ’two’, ’three’]

In fact, the strip() method can accept a string consisting of all char-

acters to be stripped from anothe string, in any combination. For in-

stance, we can strip any leading and trailing characters contained in

['&','#','-','.','!'] from any string as follows:

tostrip = ’&#-.!’

t = ’###.Hel#lo!?!&-’

print(t.strip(tostrip))

Hel#lo!?

The methods upper(), lower(), and title() are useful for altering the
case of characters in a string. The following examples showcase their

functionality.

x = "gArbagE collECtion"

print(x.upper())

print(x.lower())

print(x.title())

GARBAGE COLLECTION

garbage collection

Garbage Collection

The following example illustrates a function that takes a phrase and turns

it into an acronym by concatenating the first letters of the words and

capitalizing all the letters. Does the code make sense?

def acronymize(phrase):

a = ’’ # start with empty string

for w in phrase.split(): # iterate through words

a += w[0] # pick the first letter of

# the words and concatenate

return a.upper() # capitalize and return
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acronymize("Be right back"), acronymize("Mr Pat Why?")

(’BRB’, ’MPW’)

It can also be useful to convert a string representing a number to a

number type, and vice versa. The following examples illustrate how these

tasks can be achieved.

number = 12.345

s = str(number)

print( s, type(s))

f = float(s)

print(f, type(f))

i = int(’345’)

print(i, type(i))

12.345 <class ’str’>

12.345 <class ’float’>

345 <class ’int’>

We can also check if a string t is a substring of another string s via t in

s (pattern matching).

t1 = "is"

t2 = "has"

s = "This is my car."

print(t1 in s)

print(t2 in s)

True

False

If we want to obtain the index at which a substring begins, we can use

the find() method. If the substring is not found, -1 is returned.

print(s.find(t1))

print(s.find(t2))

2

-1

We shall revisit Python strings when we discuss Natural Language Pro-
cessing (see Chapter 32).
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Dictionaries A dictionary is a data structure for key-value pairs (k:v).

To define a dictionary, simply list the key-value pairs enclosed within

braces ({,}), as shown in the following examples.

The simplest dictionary is the one that is empty:

d = {} # This creates an empty dictionary

print(type(d))

<class ’dict’>

A more interesting dictionary could be the one below:

days = { ’Sun’: 1, ’Mon’: 2, ’Tue’:3, ’Wed’:4, ’Thu’:5,

’Fri’:6, ’Sat’:7 }

print(type(days))

<class ’dict’>

We can access the value for key k in dictionary d via d[k]. Note that an

exception will be raised if d does not contain the key k.

We can check if a key k is in a dictionary d via k in d.

print(days[’Wed’])

print(’Aug’ in days)

4

False

We can add a new key-value pair k:v to a dictionary d via d[k] = v.

d[1]=(1,2)

d[2]= 3.45

d[’three’]= ’string’

print(d)

{1: (1, 2), 2: 3.45, ’three’: ’string’}

Conversely, we can delete key k and its associated value from dictionary

d via del d[k].

del d[2]

print(d)

{1: (1, 2), ’three’: ’string’}

We can also iterate over the keys in a dictionary using a for loop.
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for key in d:

print(type(key), type(d[key]))

<class ’int’> <class ’tuple’>

<class ’str’> <class ’str’>

The following code gives the same output

for key, value in d.items():

print(type(key), type(value))

<class ’int’> <class ’tuple’>

<class ’str’> <class ’str’>

1.5.3 NumPy and Arrays

NumPy is a Python module that supports numerical computation on

multi-dimensional arrays. It comes with many useful mathematical

functions.

It is the backbone to the scientific computing library SciPy and data

analysis and manipulation library pandas. Even though it is possible

to do basic statisical analysis using a comprehensive statistics package

without direct manipulation of NumPy arrays, knowledge of NumPy is

essential for performing custom operations.

In this section, we get a taste of NumPy arrays of dimension at most two.

What is covered only scratches the surface of this powerful library. A

handy cheat sheet can be found here .

It is customary to use the alias np when importing the module.

import numpy as np

Arrays Unlike lists, NumPy arrays cannot contain elements of different

types. There are various ways to create such arrays.

We can create a 1D array from a list:

x = np.array([1,2,3,4])

print(x.shape)

(4,)

shape is the method that returns the array’s dimensions. We can create a

2D array from a list of lists:

http://datasciencefree.com/numpy.pdf
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y = np.array([[1,2,3],[4,5,6]])

print(y.shape)

(2, 3)

If some of the elements are not of the “right” type, they are converted

automatically:

c = np.array([’n’,’u’,’m’,15])

print(c)

[’n’ ’u’ ’m’ ’15’]

We can also define a NumPy array out of a range using the arange()

function:

np.arange(1,5)

print(c)

array([1, 2, 3, 4])

[’n’ ’u’ ’m’ ’15’]

yields the same result as np.array([1,2,3,4]), but it is more efficient,

from a computational perspective.

We can also obtain special arrays, composed of zeros, or composed of

ones, with the functions zeros() and ones(). Here is a 3x4 2D array of

0s:

z = np.zeros([3,4]) # A 3-by-4 array of 0’s

print(z.shape)

(3, 4)

and 2x1x3 3D array of 1s:

f = np.ones([2,3,4]) # A 2x1x3 3D array of 1’s

print(f.ndim)

3

Note the difference between the shape and ndim methods: the former

gives the actual dimensions (number of rows, columns, etc.), the latter,

the number of dimensions (axes).

We can also define NumPy arrays containing random values; for instance,

here is a 1D array of 10 random values sampled from the standard normal

distribution, using the function random.normal():
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r = np.random.normal(size=10)

print(r)

[-1.10501533 -0.69929125 -0.00882625 1.12738611 0.60354054

1.50509863 1.07440466 -0.86260135 1.12680367 -0.01988042]

Arithmetic Adding and subtracting NumPy arrays of the same dimen-

sions works as we would expect. Using x and y as above, and x2 as below,

we get:

w = np.array([-1,-2,-3,-4])

print(x+w)

[0 0 0 0]

print(x-w)

[2 4 6 8]

print(y+y)

[[ 2 4 6]

[ 8 10 12]]

Multiplication by a scalar also works as expected:

print(2*x)

[2 4 6 8]

However, note that multiplication and division via * and / (resp.) are

applied component-wise:

print(x*w)

[ -1 -4 -9 -16]

as is exponentiation:
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print(y**3)

[[ 1 8 27]

[ 64 125 216]]

Broadcasting allows addition and substraction to be performed between

arrays that do not have the same shape. There are rules governing

when such operations are valid and what the effects are. Here, we provide

two simple examples:

x + 3.5

array([4.5, 5.5, 6.5, 7.5])

y - 1

array([[0, 1, 2],

[3, 4, 5]])

Can you determine what broadcasting does from these examples?

Math Functions NumPy contain some useful methods mapping arrays

to a scalar.

For instance, sum adds up the elements in the array.

x.sum()

10

(the same result could have been obtained with np.sum(x)).

The usual statistical descriptions are also available as methos:

print(x.std(),x.var(),x.mean())

1.118033988749895 1.25 2.5

NumPy also has a collection of mathematical functions that can be applied

component-wise, such as abs() and exp():

print(np.abs(r))

[1.10501533 0.69929125 0.00882625 1.12738611 0.60354054

1.50509863 1.07440466 0.86260135 1.12680367 0.01988042]

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html
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print(np.exp(y))

[[ 2.71828183 7.3890561 20.08553692]

[ 54.59815003 148.4131591 403.42879349]]

NumPy functions are more efficient when it comes to array computations;

they should be used whenever possible.

Logical Operations Operations over arrays of boolean values can also

be performed efficiently in NumPy.

Let us create a boolean array bx of the same shape as x, with bx[i] =

True if and only if x[i] >= 2.5, and a boolean array by of the same

shape as y, with by[i] = True if and only if y[i] >= 3.5.

bx = x >= 2.5

by = y >= 3.5

print(bx)

print(by)

[False False True True]

[[False False False]

[ True True True]]

Comparison of two NumPy arrays of the same shape results in a boolean

array, yet again of the same shape. Note that comparison is performed

component-wise:

x2 = np.array([2,1,3,0])

print(x == x2)

[False False True False]

Comparisons use the symbols ==, <, and >:

print(x > x2)

[False True False True]

We can perform boolean operations (AND, OR, NEG) on boolean

arrays:

b = np.array([True, False, True, True])

AND is computed using &:
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b & bx

array([False, False, True, True])

OR with |:

b | bx

array([ True, False, True, True])

NEG with ~:

~b

array([False, True, False, False])

We can also sum over the values of a boolean array (in this case, True is

interpreted as 1 and False as 0):

np.sum(b)

3

1.6 Python for Data Science

While Python remains a bona fide programming language, it is as a data

science tool that its popularity has soared. Let us take a look at some of

its data functionality.

1.6.1 Pandas and Data Frames

The Pandas module provides Python with an equivalent of R data

frames. Essentially, it is a two-dimensional tabular data structure in

which each column can be of different value types.

In this section, we cover the basics of Pandas data frames (and introduce

a dataset found in the Seaborn module.
48

Comprehensive references48: Which is used for data visualization

(see Chapter 18 and [1]).
for doing data analysis with Python include [16, 11, 8]. The pandas cheat

sheet could also prove handy.

We start by importing the required modules, with the customary aliases
pd and sns:

import pandas as pd

import seaborn as sns

https://pandas.pydata.org
https://seaborn.pydata.org/
http://datasciencefree.com/pandas.pdf
http://datasciencefree.com/pandas.pdf
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Loading Data There are various ways to obtain data. One way is to use

a pre-built sample dataset, such as titanic from seaborn.

titanic = sns.load_dataset("titanic")

type(titanic)

<class ’pandas.core.frame.DataFrame’>

Another way is to read a csv file using pandas.read_csv(). For instance,

if the file calculus.csv is in the data folder, we would call:

calculus = pd.read_csv(’data/calculus.csv’)

The first rows are given using the head()method of a DataFrame object:

titanic.head()

survived pclass sex age ... deck embark_town alive alone

0 0 3 male 22.0 ... NaN Southampton no False

...

4 0 3 male 35.0 ... NaN Southampton no True

[5 rows x 15 columns]

We can also look at the last rows using the tail() method,
49

such as: 49: The number of observations can also

be specified in the head() method.

calculus.tail(6)

ID Sex Grade GPA Year

94 10095 F 69 6.49 1

95 10096 M 99 12.61 1

96 10097 M 40 4.17 2

97 10098 F 66 6.94 1

98 10099 M 83 10.09 1

99 10100 F 52 6.76 2

We get a quick summary of a DataFrame using the describe()method:

titanic.describe()

survived pclass age sibsp parch fare

count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000

mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208

std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429

min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000

25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400

50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
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We can also obtain a summary of a subset of the columns:

df1 = titanic[[’survived’, ’age’, ’fare’]]

df1.describe()

survived age fare

count 891.000000 714.000000 891.000000

mean 0.383838 29.699118 32.204208

std 0.486592 14.526497 49.693429

min 0.000000 0.420000 0.000000

25% 0.000000 20.125000 7.910400

50% 0.000000 28.000000 14.454200

75% 1.000000 38.000000 31.000000

max 1.000000 80.000000 512.329200

Or specific summary statistics on the full objects or on a specific column:

df1.mean()

print()

df1[’age’].median()

survived 0.383838

age 29.699118

fare 32.204208

dtype: float64

28.0

Data Frame Operations We continue with some basic operations on

data frames. We will use another built-in dataset

crashes.head()

total speeding alcohol ... ins_premium ins_losses abbrev

0 18.8 7.332 5.640 ... 784.55 145.08 AL

1 18.1 7.421 4.525 ... 1053.48 133.93 AK

2 18.6 6.510 5.208 ... 899.47 110.35 AZ

3 22.4 4.032 5.824 ... 827.34 142.39 AR

4 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

New columns can be added to any data frame. In this example, we will

generate a new column consisting of strings of the form Cnnn where

nnn is a zero-padded three-digit number so that row 1, 2,. . . of crashes

correspond to C001, C002, . . .

labels = [’C’+"{:03}".format(i+1) for

i in range(crashes.shape[0])]

crashes[’label’] = labels
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crashes.head()

total speeding alcohol ... ins_losses abbrev label

0 18.8 7.332 5.640 ... 145.08 AL C001

1 18.1 7.421 4.525 ... 133.93 AK C002

2 18.6 6.510 5.208 ... 110.35 AZ C003

3 22.4 4.032 5.824 ... 142.39 AR C004

4 12.0 4.200 3.360 ... 165.63 CA C005

[5 rows x 9 columns]

Quite often, a particular column in a csv file serves as the index column.

We can set this column to be an index column via the set_index()

method:

df = crashes.set_index(’label’)

df.head()

total speeding alcohol ... ins_premium ins_losses abbrev

label ...

C001 18.8 7.332 5.640 ... 784.55 145.08 AL

C002 18.1 7.421 4.525 ... 1053.48 133.93 AK

C003 18.6 6.510 5.208 ... 899.47 110.35 AZ

C004 22.4 4.032 5.824 ... 827.34 142.39 AR

C005 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

Note that crashes is not affected by set_index(). To make the change

directly to crashes, we would need to replace

df = crashes.set_index(’label’)

with

crashes.set_index(’label’, inplace=True)

We can subset a data frame by rows and columns labels via loc[], as in

the examples below:

df.loc[’C010’:’C013’,[’speeding’,’total’]]

speeding total

label

C010 3.759 17.9

C011 2.964 15.6

C012 9.450 17.5

C013 5.508 15.3
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df.loc[’C005’:’C008’,:]

total speeding alcohol ... ins_premium ins_losses abbrev

label ...

C005 12.0 4.200 3.360 ... 878.41 165.63 CA

C006 13.6 5.032 3.808 ... 835.50 139.91 CO

C007 10.8 4.968 3.888 ... 1068.73 167.02 CT

C008 16.2 6.156 4.860 ... 1137.87 151.48 DE

[4 rows x 8 columns]

We can also extract using position values via iloc[].

df.iloc[1:5,0:4]

total speeding alcohol not_distracted

label

C002 18.1 7.421 4.525 16.290

C003 18.6 6.510 5.208 15.624

C004 22.4 4.032 5.824 21.056

C005 12.0 4.200 3.360 10.920

We can reset the index in a data frame via the reset_index() method.

This has the effect of turning label into a data column like all other

columns in the data frame df, for instance:

df.reset_index(inplace=True)

df.head()

label total speeding ... ins_premium ins_losses abbrev

0 C001 18.8 7.332 ... 784.55 145.08 AL

1 C002 18.1 7.421 ... 1053.48 133.93 AK

2 C003 18.6 6.510 ... 899.47 110.35 AZ

3 C004 22.4 4.032 ... 827.34 142.39 AR

4 C005 12.0 4.200 ... 878.41 165.63 CA

[5 rows x 9 columns]

It is possible to use the generator iterrows to yield both index and row

of a data frame. For instance, the next block of code will print the labels

corresponding to the first five rows.

for index, row in df[0:5].iterrows():

print(row[’label’])

C001

C002

C003

C004

C005
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Columns and rows can be dropped from a data frame via the drop()

method. In the example below, we drop the label column from df and

assign the outcome to df2 (but note df itself is not changed):

df2 = df.drop(’label’, axis=1)

df2.head()

total speeding alcohol ... ins_premium ins_losses abbrev

0 18.8 7.332 5.640 ... 784.55 145.08 AL

1 18.1 7.421 4.525 ... 1053.48 133.93 AK

2 18.6 6.510 5.208 ... 899.47 110.35 AZ

3 22.4 4.032 5.824 ... 827.34 142.39 AR

4 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

In contrast, the total column is dropped from df (and df is modified as

a result):

df.drop(’total’, axis=1, inplace=True)

df.head()

label speeding alcohol ... ins_premium ins_losses abbrev

0 C001 7.332 5.640 ... 784.55 145.08 AL

1 C002 7.421 4.525 ... 1053.48 133.93 AK

2 C003 6.510 5.208 ... 899.47 110.35 AZ

3 C004 4.032 5.824 ... 827.34 142.39 AR

4 C005 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

We can rename the columns of a data frame via the rename() method:

df.rename(columns={’label’:’case’, ’abbrev’:’abbr’},

inplace=True)

df.head()

case speeding alcohol ... ins_premium ins_losses abbr

0 C001 7.332 5.640 ... 784.55 145.08 AL

1 C002 7.421 4.525 ... 1053.48 133.93 AK

2 C003 6.510 5.208 ... 899.47 110.35 AZ

3 C004 4.032 5.824 ... 827.34 142.39 AR

4 C005 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

What would we expect the following chunk of code to do?
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newColumnNames = {}

for name in list(df):

newColumnNames[name] = name.capitalize()

df2=df.rename(columns=newColumnNames)

Rows can be filtered according to a given condition. In the example below,

b and d are Pandas series of booleans related to the df data frame:

b = df[’ins_losses’] > 160

d = df[’not_distracted’] < 12

If we want to return the rows of df for which ins_losses is greater than

160 AND not_distracted ia less than 12, we would simply call:

df[b & d]

case speeding alcohol ... ins_premium ins_losses abbr

4 C005 4.200 3.360 ... 878.41 165.63 CA

6 C007 4.968 3.888 ... 1068.73 167.02 CT

20 C021 4.250 4.000 ... 1048.78 192.70 MD

[3 rows x 8 columns]

To return the rows of db for which ins_losses is greater than 160 OR
abbr is equal to AL, we would call:

df[b | (df[’abbr’] == ’AL’)]

case speeding alcohol ... ins_premium ins_losses abbr

0 C001 7.332 5.640 ... 784.55 145.08 AL

4 C005 4.200 3.360 ... 878.41 165.63 CA

6 C007 4.968 3.888 ... 1068.73 167.02 CT

18 C019 7.175 6.765 ... 1281.55 194.78 LA

20 C021 4.250 4.000 ... 1048.78 192.70 MD

36 C037 6.368 5.771 ... 881.51 178.86 OK

[6 rows x 8 columns]

1.6.2 Data Wrangling

We now take a look at some ways to combine and clean data frames.

Merging and Joins Consider a fictitious test score dataset. There are

two sections in the class, contained in testA.csv and testB.csv. Each

row consists of a student ID, a section, and a test mark. The file gpa.csv

contains information on the students’ GPAs and their current year of

study.
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We start by reading in the two test score files (recall that pd is the alias

for the pandas module).

dfA = pd.read_csv(’data/testA.csv’)

dfB = pd.read_csv(’data/testB.csv’)

The first entries of each sets are shown below:

dfA.head()

ID Section Mark

0 10021 A 47

1 10073 A 83

2 10084 A 51

3 10102 A 57

4 10175 A 71

dfB.head()

ID Section Mark

0 10011 B 97

1 10063 B 63

2 10094 B 71

3 10110 B 77

4 10133 B 81

We now read in the GPA information.

gpa = pd.read_csv(’data/gpa.csv’)

gpa.head()

Student ID GPA Year

0 10011 12.0 3.0

1 10021 NaN 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

Note that the column title for student ID is different in the test score files

and in gpa.csv.

We now concatenate the two data frames of test scores into a single object

using the pandas function concat().

df = pd.concat([dfA,dfB])

We now merge the GPA data frame with this combined test score data

frame.
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df3 = pd.merge(gpa, df, left_on=’Student ID’, right_on=’ID’)

df3

Student ID GPA Year ID Section Mark

0 10011 12.0 3.0 10011 B 97

1 10021 NaN 3.0 10021 A 47

2 10063 5.6 3.0 10063 B 63

3 10073 9.8 3.0 10073 A 83

4 10084 6.2 3.0 10084 A 51

5 10094 8.1 NaN 10094 B 71

6 10102 6.9 2.0 10102 A 57

7 10110 8.4 2.0 10110 B 77

8 10133 10.4 2.0 10133 B 81

9 10145 5.1 2.0 10145 B 41

10 10162 7.2 2.0 10162 B 68

11 10175 6.9 1.0 10175 A 71

12 10189 6.1 1.0 10189 B 68

13 10190 11.2 1.0 10190 A 91

14 10199 NaN 1.0 10199 A 56

merge() performs an inner join, but it can also perform outer joins.

Let us see what happens when we merge gpa with dfA.

pd.merge(gpa, dfA, left_on=’Student ID’, right_on=’ID’,

how=’outer’).drop(’Student ID’, axis=1)

GPA Year ID Section Mark

0 12.0 3.0 NaN NaN NaN

1 NaN 3.0 10021.0 A 47.0

2 5.6 3.0 NaN NaN NaN

3 9.8 3.0 10073.0 A 83.0

4 6.2 3.0 10084.0 A 51.0

5 8.1 NaN NaN NaN NaN

6 6.9 2.0 10102.0 A 57.0

7 8.4 2.0 NaN NaN NaN

8 10.4 2.0 NaN NaN NaN

9 5.1 2.0 NaN NaN NaN

10 7.2 2.0 NaN NaN NaN

11 6.9 1.0 10175.0 A 71.0

12 6.1 1.0 NaN NaN NaN

13 11.2 1.0 10190.0 A 91.0

14 NaN 1.0 10199.0 A 56.0

We can see that there is a row for every row in gpa and that only those

rows for which Student ID is present in dfA have merged data (what

happens if the .drop('Student ID', axis=1) is omitted?).

Data Cleansing Note that in the merged data frame df3 (and in gpa),

there are rows containing NaN. If we do not want any rows with such

values, we can use the dropna() method.
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df3.dropna()

Student ID GPA Year ID Section Mark

0 10011 12.0 3.0 10011 B 97

2 10063 5.6 3.0 10063 B 63

3 10073 9.8 3.0 10073 A 83

4 10084 6.2 3.0 10084 A 51

6 10102 6.9 2.0 10102 A 57

7 10110 8.4 2.0 10110 B 77

8 10133 10.4 2.0 10133 B 81

9 10145 5.1 2.0 10145 B 41

10 10162 7.2 2.0 10162 B 68

11 10175 6.9 1.0 10175 A 71

12 10189 6.1 1.0 10189 B 68

13 10190 11.2 1.0 10190 A 91

We can also drop only the rows with NaN in specific columns. If we do

not want to retain observations with Year==NaN, we would call:

gpa.dropna(subset=[’Year’])

Student ID GPA Year

0 10011 12.0 3.0

1 10021 NaN 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

6 10102 6.9 2.0

7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 NaN 1.0

Instead of dropping rows containing NaN, we could replace the unwanted

values with some other chosen value instead (like 0, say).

gpa.fillna(0)

Student ID GPA Year

0 10011 12.0 3.0

1 10021 0.0 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

5 10094 8.1 0.0

6 10102 6.9 2.0
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7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 0.0 1.0

Note that all the NaNs are changed to 0.0. To change only the GPA volume,

we can do the following (note that this will modify the original gpa data

frame):

gpa.fillna({’GPA’:0.0})

Student ID GPA Year

0 10011 12.0 3.0

1 10021 0.0 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

5 10094 8.1 NaN

6 10102 6.9 2.0

7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 0.0 1.0

We can apply a function to a data frame column using the method map().

The following will add a Grade column to dfA, containing Pass or Fail

based on the Mark column.

def markToGrade(x):

res = ’Fail’

if x >= 50:

res = ’Pass’

return res

dfA[’Grade’] = dfA[’Mark’].map(markToGrade)

dfA

ID Section Mark Grade

0 10021 A 47 Fail

1 10073 A 83 Pass

2 10084 A 51 Pass

3 10102 A 57 Pass

4 10175 A 71 Pass

5 10190 A 91 Pass

6 10199 A 56 Pass
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1.6.3 Data Aggregation

Sometimes, the data in a dataset can be divided into groups. We might

want to obtain summary statistics for each group. Analyses by groups

and aggregation can help us obtain insight on groups.

Summaries by Groups We first illustrate obtaining simple statistics on

groups using a dataset containing calculus marks (recall that pd is the

pandas alias).

calc = pd.read_csv(’data/calculus.csv’)

calc.head()

ID Sex Grade GPA Year

0 10001 F 47 5.02 2

1 10002 M 57 3.82 1

2 10003 M 91 7.70 1

3 10004 M 71 4.82 1

4 10005 F 83 7.91 1

Suppose that we want to see separate mean grades and mean GPA based

on the Sex variables. We can use the groupby() method to perform the

task:

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).mean()

Grade GPA

Sex

F 67.901961 6.539804

M 64.408163 5.609388

If we want descriptive statistics for Grade and GPA grouped by Sex, we

can use the more general method agg(). Note that we first need to import

numpy (alias np) to access these simple statistics functions.

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg([np.mean,

np.std, np.median])

Grade GPA

mean std median mean std median

Sex

F 67.901961 20.162594 66.0 6.539804 3.008527 6.24

M 64.408163 16.237711 62.0 5.609388 2.756965 4.77

If we are interested in the Grade mean and the GPA median, grouped

by Sex, we can use a dictionary to specify which function is applied to

which column as follows:
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calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg({’Grade’:

np.mean, ’GPA’: np.median})

Grade GPA

Sex

F 67.901961 6.24

M 64.408163 4.77

We can also build custom aggregate functions. The following chunk of

code computes the sum of squares for the Grade and GPA columns.

def sumOfSq(xs):

return np.dot(xs,xs)

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg(sumOfSq)

Grade GPA

Sex

F 255471 2633.7825

M 215928 1906.6374

Pivot Tables We could also have obtained the mean Grade and mean

GPA for the Sex groups via pivot_table(), as below:

calc[[’Sex’,’Grade’,’GPA’]].pivot_table(index=’Sex’,

aggfunc=np.mean)

GPA Grade

Sex

F 6.539804 67.901961

M 5.609388 64.408163

To obtain a pivot table displaying the number of students in each Year

grouped by Sex, we can run the following code:

calc[[’Sex’,’Year’]].pivot_table(index=’Sex’,

columns=[’Year’],aggfunc=len, margins=False)

Year 1 2 3 4

Sex

F 33 11 6 1

M 32 11 2 4

We can also print the margins (totals) by changing to margins=True.
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1.6.4 Combining Python with R

Ask most data scientist and they will tell you that they are a Python

person or a R person (or perhaps less frequently a Julia person). Python

might be best for data processing (in terms of efficiency, especially with

large datasets), while R has a package (or three!) for pretty much any

statistical and data visualization task under the sun, but that leaves a lot

of data analysis real estate that is not spoken for; frankly, it makes much

more sense to be conversant with both.
50

50: And anything else that comes up from

this point onward.

It is now possible to use Python within R through the reticulate

package.
51

. The reticulate vignette contains detailed information on 51: There are other means, see R Interface

to Python and Five ways to work seam-

lessly between R and Python in the same

project for more information), for instance

the process; for the time being, we will only give a small example detailing

how this could be achieved, based on [19].

library(reticulate)

We start by creating a variable x in the Python session:

x = list(range(8))

Once that is done, we can access the Python variable x from R; it is a

column in the (reserved) py data frame:

str(py)

py$x

Module(__main__)

[1] 0 1 2 3 4 5 6 7

We can also create new variables y in the Python session from R, and pass

a data frame to y:

py$y <- head(AirPassengers) # a built-in R dataset

This variable can now be displayed in the the Python session, and

operated on, as needed:

print(y)

[112.0, 118.0, 132.0, 129.0, 121.0, 135.0]

It is not difficult to imagine how to expand this back and forth to

more complex data analysis situations, leaving us the option of picking

whatever language is best suited to a specific task.

https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
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1.7 Getting Started with SQL

Structured Query Language (SQL) is the standard language used to

retrieve, modify, and add data to a relational database. It is implemented

by all Relational Database Management Systems (RDMS), such as:

MySQL [12]

MS Access

Oracle

Postgres

etc.

SQL allows users to query a database and manipulate the stored data

using a variety of parameters. SQL code can be embedded into other

languages in order to enable storage and processing of large datasets in

an efficient manner.

The toy database with which we will work is “implemented” in Aidan

Crowther’s github repository . Video instructions can be found at

DUDADS – How to access the toy database (04:27) | A. Crowther .
52

52: You will need to install git, docker,

and MySQL Client, and know how to

open a port on Windows, MacOS, or Linux

(search online if necessary). 1.7.1 Basics

Table Structure The most common form of data organization in a

relational database is known as a table – it is similar to a spreadsheet.

Data is stored in a record (row), with individual observations aligned by

fields (columns).

Records and Fields Rows consist of data that fall into the categories

specified by each column and that either match the field data type or

contain a NULL value,
53

the absence of data – it is not the same as a value53: Similar to R’s NA.

of zero or an empty string; NULL can be matched to any data type.
54

54: SQL syntax often uses ALL CAPS in its

queries to make it easier to distinguish

between commands and data.

Constraints Data can be further restricted by Table or Field constraints.

These constraints define rules by which the data must abide. Most

commonly, these constraints are used to identify special fields by which

data can be uniquely identified, or to ensure data matches a pattern, such

as being unique, or not allowing NULL entries.

Here are some of common constraints (and their meanings).

DEFAULT: provides a predefined default value if none is specified

NOT NULL: enforces that columns can not have a NULL value

UNIQUE: ensures that all values in a column are different

PRIMARY KEY: uniquely identifies a record within a table

FOREIGN KEY: uniquely identifies a record in another table

CHECK: ensures all data in a field matches a restriction

INDEX: used to quickly retrieve and add data to a table

Notably, primary and foreign keys allow users to create relations between

tables. In addition, every table must contain no more than one primary

key; although they do not need to be defined with a primary key, doing

so is considered bad practice.

https://github.com/aidancrowther/Data_Action_Lab_SQL_Docker
https://github.com/aidancrowther/Data_Action_Lab_SQL_Docker
https://youtu.be/ZNgRC5S9dZE
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Data Integrity Data entered into a table must follow some ensuring the

latter’s integrity. The following rules exist in every Database Manage-
ment System (DBMS).

Entity Integrity: there must not be any duplicate records within a

table;

Domain Integrity: enforces valid entries for all fields, following

restrictions on data type, format, or range;

Referential Integrity: rows used by other records can not be

deleted.

Essentially, we cannot enter records that can cause a table to stop being

able to uniquely identify and collect data. In addition, relations between

tables must never be broken through the deletion of data.

1.7.2 SQL Syntax

The fundamental SQL unit is the query, a way to manipulate and output

observations from a database by following a specific set of rules.

Generally, queries are used to request data from tables kept within a

database, but they can also be used to modify, remove, and add data.

The “sentence structure” of a SQL query is a repeated pattern of a

command followed by a descriptor; the end of a query being denoted

by a semicolon (;).
55

More information on SQL (including its syntax) is 55: SQL queries read rather naturally as

regular English sentences, too.
available in [12, 15, 17].

We will illustrate the various SQL query parameters with the help of a

toy database with 4 tables, whose structure is shown in Figure 1.6.

Figure 1.6: Database diagram for the toy

example, with 4 tables. Some of the entries

for 2 of the tables are shown in the Exer-

cises. The data is also available as an Excel

spreadsheet .

https://www.data-action-lab.com/wp-content/uploads/2023/06/Schools.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Schools.xlsx
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Example What would the following toy dataset query return?

A Simple SQL Query

SELECT COURSE FROM Courses WHERE FACULTY_ID=1;

We break down the query into its command/descriptor structure.

SELECT COURSE: display only the COURSE identifier;

FROM Courses: of the observations from the Courses table;

WHERE FACULTY_ID=4: for which FACULTY_ID is 4.

This query would fetch all courses taught by the instructor #4:

COURSES

1 CGSC101

2 CGSC202

We see that this is indeed the case in the Courses table:

COURSE FULL Semester FACULTY_ID

1 BUSI202 1 SUMMER 6

2 CGSC101 1 SUMMER 4 <-- *
3 CGSC202 1 WINTER 4 <-- *
4 CHEM404 0 WINTER 8

5 COMP490 1 FALL 9

6 ECON101 1 FALL 1

7 ECON401 0 WINTER 1

8 MUSI101 0 SUMMER NA

9 PHYS201 0 WINTER 2

1.7.3 Key Query Operators

SELECT/FROM

The SELECT command is nearly always used to interact with data; it is

used to request data from a table. It is applied to columns, which need

to be specified, using a comma-separated list of columns immediately

after the SELECT keyword.
56

The wildcard character (*) can be used to56: Spelling, including the case, matters.

match all columns.

SELECT also needs to be told from which table to retrieve data; this is

accomplished with the FROM keyword, after columns have been specified

in the query. FROM cannot be used without an argument, but only one

table can be used as input.

The simplest form of a SELECT query takes the following form, returning

all data within a table.
57

57: In this case, the Courses table. The

table is typically clear from the context.

SELECT * FROM Courses;
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(The output was provided at the end of the previous Section).

The SELECT command also allows aggregate functions (statistics) to be

applied to the selected table columns, including COUNT, SUM, AVG, MIN, MAX;

and more. All rows matching the field being modified will be combined

into one unless combined with the GROUP BY clause.
58

58: Not unlike in an Excel pivot table.

Multiple fields can be matched with aggregate functions, and multiple

aggregate functions can be used in a query. This can be a useful work-

around if a SQL server has quota restrictions on the number of queries

that can be submitted, allowing multiple fields to be returned with one

query.

SELECT AVG(SALARY), MAX(AGE) FROM Professors;

AVG(SALARY) MAX(AGE)

1 210555.6 67

Evidently, the oldest professor is 67 years old, and the average salary is

$210,555.60.
59

59: Whoa! They’re making a killing out

there...

WHERE

In SQL, some queries contain modifiers that narrow the query scope.

The most prevalent one of these clauses is WHERE. This clause is often

seen used with the SELECT query, but can also be used to specify targets
for other queries such as UPDATE and DELETE.

WHERE allows users to specify constraints to apply to the database prior
to returning the results of a query. These constraints typically use com-
parison operators, such as: >, <, =, NOT, LIKE, IS, etc...

Constraints based on numerical values behave as expected, but their

behaviour might be unexpected however when operating on a strings.

Consequently, we recommend consulting the appropriate documentation

in the specific database software manual.

We can determine whether a value is NULL by using the IS conditional

clause to match for NULL type.

SELECT NAME FROM Professors WHERE SALARY >= 60000;

NAME

1 Adam Smith

2 Paige Ryans

3 Alex Doe

4 Landon Liu

5 Kyra Carmichael

6 Heather Wong

7 Quine Ngyogne

8 Vikram Das

9 Samuel Koffi
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AND/OR/NOT

Clauses, such as WHERE, can be chained with other constraints in order to

conduct complex queries on a database.

We can dive in further within a result when using a WHERE clause

by combining conditions using the AND, OR, and NOT clauses, Boolean
operators linking query conditions:

AND returns results where all conditions are true;

OR returns results where at least one condition is true, and

NOT returns results where the next condition is false.

These clauses can further be organized into brackets.

SELECT * FROM Professors WHERE

(SALARY>=60000 AND NOT AGE>60) OR FACULTY IS NULL;

NAME SALARY FACULTY_ID AGE FACULTY

1 Paige Ryans 180000 2 48 Physics

2 Alex Doe 190000 3 37 <NA>

3 Landon Liu 120000 4 34 Cognitive Science

4 Marcel Orosz NA 5 48 <NA>

5 Kyra Carmichael 200000 6 30 Business

6 Heather Wong 200000 7 34 Economics

7 Quine Ngyogne 115000 8 55 Chemistry

8 Vikram Das 500000 9 60 Computer Science

9 Samuel Koffi 300000 10 40 Political Science

EXISTS

The EXISTS keyword is used determine whether a sub-query returns any

rows; it returns true if the sub-query returns at least one row; and false

otherwise. It is often used in correlated sub-queries.

A correlated sub-query is a query that depends on values from the outer
query; it is executed for each row of the outer query, and the results

are used to filter the outer query (often based on some condition in the

sub-query).

The syntax for a correlated sub-query is similar to a regular sub-query,

but it includes a reference to the outer table in the sub-query.

SELECT * FROM Professors WHERE EXISTS

(SELECT * FROM Courses WHERE

Professors.FACULTY_ID = Courses.FACULTY_ID);

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics

2 Paige Ryans 180000 2 48 Physics

3 Landon Liu 120000 4 34 Cognitive Science

4 Kyra Carmichael 200000 6 30 Business

5 Quine Ngyogne 115000 8 55 Chemistry

6 Vikram Das 500000 9 60 Computer Science
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The correlated sub-query identifies professors currently assigned to

courses; the outer query returns the list of details for those professors.

HAVING/GROUP BY

The GROUP BY clause is used to aggregate data across multiple rows based

on one or more fields.
60

It is used to group data and perform calculations 60: Again, quite reminiscent of Excel pivot

tables.
on these groups. The aggregate functions include COUNT, SUM, AVG, MIN,

MAX, etc...

We can also use the HAVING clause to narrow grouped data further,

allowing for the selection only of those results matching a supplementary

set of criteria.

SELECT AGE, AVG(SALARY) AS AVG_SALARY FROM Professors

GROUP BY AGE HAVING AVG(SALARY)>90000;

AGE AVG_SALARY

1 48 180000

2 37 190000

3 34 160000

4 30 200000

5 55 115000

6 60 500000

7 40 300000

IN/BETWEEN

In addition to the use of Boolean conditionals, SQL has the ability to

match multiple distinct cases, either by constraining results to a narrow

value of cases specified by a list, or by matching within a continuous
range.

IN allows a set of possible matching values to be specified – any condition

contained within this set evaluates to true. We can also use the result of

another query to specify the contents of this set via a SELECT query when

specifying the set against which to match.

BETWEEN evaluates to true when a compared value falls strictly within the
bounds specified by the query. This comparison is performed inclusively;

it can also be used to match to an alphabetically sorted list of strings.

SELECT * FROM Professors WHERE FACULTY_ID IN (1, 2)

AND NAME BETWEEN "Adam Smith" AND "Alex Doe";

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics
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LIMIT/ORDER BY

Some tables store a large number of rows, and can overwhelm a receiver;

in these cases restricting the number of returned results can be crucial.
This can be accomplished by using the LIMIT command, which when

followed by a numerical value 𝑛, returns only the first 𝑛 results from the

query.
61

61: This command can vary according to

the SQL server in use – in some systems,

the command is instead TOP. ORDER BY is another powerful clause, especially when used in conjunction

with the LIMIT/TOP clause – it sorts the result set returned by the query,

allowing users to specify sorting columns (and directions: ASC and

DESC).
62

62: This works on numerical values and

strings.

SELECT * FROM Professors ORDER BY NAME ASC LIMIT 4;

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics

2 Alex Doe 190000 3 37 <NA>

3 Heather Wong 200000 7 34 Economics

4 Kyra Carmichael 200000 6 30 Business

DISTINCT

When one of the fields being used to return results contains a large

number of duplicate values, the DISTINCT clause can help narrow the

returned data; multiple fields can be marked as distinct, which can

be useful when searching for unique matches after performing a JOIN

operation.

SELECT DISTINCT NAME From Professors;

NAME

1 Adam Smith

2 Paige Ryans

3 Alex Doe

4 Landon Liu

5 Marcel Orosz

6 Kyra Carmichael

7 Heather Wong

8 Quine Ngyogne

9 Vikram Das

10 Samuel Koffi

LIKE

The LIKE keyword is used in a WHERE clause to search for a specified

pattern in a string column. It is used with the % and _ wildcard characters,

to match any string or any single character, respectively. The pattern

provided for matching must be enclosed within quotes.
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SELECT * FROM Courses WHERE COURSE LIKE ’ECON%’;

COURSE FULL Semester FACULTY_ID

1 ECON101 1 FALL 1

2 ECON401 0 WINTER 1

UNION

A union in SQL is a set operation which combines the result sets of two

or more SELECT statements into a single result set.

The UNION command will combine the output of multiple SELECT queries,

with a few restrictions:

the same number of columns must be selected in all queries;

the same data type must be used for all selections;

the result must have the same order.

To include all rows, including duplicates, the UNION ALL operator can be

used instead of UNION.

A union can be used for a wide range of purposes, such as combining

data from multiple tables, aggregating data from different sources, and

generating reports that require data from multiple queries.

SELECT NAME AS RESULTS FROM Professors WHERE FACULTY_ID=1

UNION SELECT COURSE FROM Courses WHERE FACULTY_ID=1;

RESULTS

1 Adam Smith

2 ECON101

3 ECON401

Note that a UNION will combine all matching results into the same

column. This may require careful formatting of the selection ordering

when matching multiple columns.

JOIN

A crucial concept of SQL is that of combining tables virtually in order to

match related data between tables. One approach to doing so is using

the JOIN command, which allows users to combine multiple tables into a

single virtual table by matching like data between the two.

Multiple types of JOIN can be performed:

LEFT JOIN

RIGHT JOIN

INNER JOIN

FULL JOIN

EXCLUSIVE JOIN

These different forms of JOIN allow data selection to be narrowed to

various ranges, based on the order in which the tables are joined and the

type of join used.
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LEFT JOIN

LEFT JOIN is a type of join operation that combines rows from two tables

based on the chosen matching condition(s), as well as any unmatched
rows from the left table; i.e., the first specified table after the FROM

clause.
63

63: The LEFT JOIN is illustrated below:

The resulting table will contain all of the rows from the left table, along

with any matching rows from the right table. If a row does not have a

match in the right table, it contains only NULL values.

SELECT * FROM Professors LEFT JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

This query will create a list of all professor-assigned-to-course matches,

while also listing professors that do not teach any courses.

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

2 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

3 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2

4 Alex Doe 190000 3 37 <NA> <NA> NA <NA> NA

5 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

6 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

7 Marcel Orosz NA 5 48 <NA> <NA> NA <NA> NA

8 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

9 Heather Wong 200000 7 34 Economics <NA> NA <NA> NA

10 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

11 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

12 Samuel Koffi 300000 10 40 Political Science <NA> NA <NA> NA

RIGHT JOIN

RIGHT JOIN is identical to LEFT JOIN, except that the primary table in

this case is the second (“right”) table appearing after the FROM clause.
64

64: The RIGHT JOIN is illustrated below:

Generally, a RIGHT JOIN and a LEFT JOIN can be used interchangeably
by altering the order in which tables are selected.

SELECT * FROM Professors RIGHT JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

2 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

3 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

4 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

5 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

6 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

7 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

8 <NA> NA NA NA <NA> MUSI101 0 SUMMER NA

9 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2



1.7 Getting Started with SQL 95

INNER JOIN

INNER JOIN is a type of join operation that combines rows from two tables

based on the chosen matching condition(s), omitting any unmatched
rows; the resulting table will contain only rows where both left and right

tables meet the match criteria, all unmatched rows will be dropped.
65

65: The INNER JOIN is illustrated below:

SELECT * FROM Professors INNER JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

This query will provide a list of only those records for which there ia

professor and a course match.

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

2 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

3 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

4 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

5 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

6 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

7 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

8 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2

FULL JOIN

FULL JOIN returns all rows based on the matching condition(s), including

the rows from both right and left tables, replacing missing values with

NULL; the input rows of both tables will be present in the output.

MySQL does not inherently support the FULL JOIN as this function is

largely “syntactic sugar”; we can emulate it using UNION in conjunction

with a LEFT JOIN and RIGHT JOIN.
66

66: The FULL JOIN is illustrated below:

SELECT * FROM Courses LEFT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID

UNION SELECT * FROM Courses RIGHT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

COURSE FULL Semester FACULTY_ID NAME SALARY FACULTY_ID AGE FACULTY

1 BUSI202 1 SUMMER 6 Kyra Carmichael 200000 6 30 Business

2 CGSC101 1 SUMMER 4 Landon Liu 120000 4 34 Cognitive Science

3 CGSC202 1 WINTER 4 Landon Liu 120000 4 34 Cognitive Science

4 CHEM404 0 WINTER 8 Quine Ngyogne 115000 8 55 Chemistry

5 COMP490 1 FALL 9 Vikram Das 500000 9 60 Computer Science

6 ECON101 1 FALL 1 Adam Smith 90000 1 67 Economics

7 ECON401 0 WINTER 1 Adam Smith 90000 1 67 Economics

8 MUSI101 0 SUMMER NA <NA> NA NA NA <NA>

9 PHYS201 0 WINTER 2 Paige Ryans 180000 2 48 Physics

10 <NA> NA <NA> NA Alex Doe 190000 3 37 <NA>

11 <NA> NA <NA> NA Marcel Orosz NA 5 48 <NA>

12 <NA> NA <NA> NA Heather Wong 200000 7 34 Economics

13 <NA> NA <NA> NA Samuel Koffi 300000 10 40 Political Science
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EXCLUSIVE JOIN

An EXCLUSIVE JOIN is a syntactic concept; the WHERE clause is appended

to a JOIN command specifying to only return rows from the left table if

no matching data exists in the right table. This modification effectively

only return results that are unique to each table, but otherwise operate

exactly as before.
67

67: The EXCLUSIVE JOIN is illustrated be-

low:

SELECT * FROM Courses RIGHT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID

WHERE Courses.FACULTY_ID IS NULL;

This query will return a list of all professors not teaching a course.

COURSE FULL Semester FACULTY_ID NAME SALARY FACULTY_ID AGE FACULTY

1 <NA> NA <NA> NA Alex Doe 190000 3 37 <NA>

2 <NA> NA <NA> NA Marcel Orosz NA 5 48 <NA>

3 <NA> NA <NA> NA Heather Wong 200000 7 34 Economics

4 <NA> NA <NA> NA Samuel Koffi 300000 10 40 Political Science

1.7.4 Examples

A Representative SQL Query Typical SQL queries tend to be more com-

plicated than the few examples we have seen so far. The following example

can be seen as representative of the level of sophistication/complexity

we might encounter.
68

68: We display the SQL keywords in lower

case to make it easier to parse the query;

the table and variable names have to

be spelled exactly as they appear in the

database, however. In practice, it might be

a better idea to store the database variables

and table names in lower case or camel

case, and retain ALL CAPS for the SQL

keywords. But you do you.

select NAME from

(Professors left join Courses

on Professors.FACULTY_ID=Courses.FACULTY_ID)

inner join

(select COURSE, sum(STATUS in (’DNF’, ’FAILED’))

as Failing_Students

from Registrations

where STATUS in (’DNF’, ’FAILED’)

group by COURSE order by Failing_Students desc limit 2)

as T on Courses.COURSE=T.COURSE;

NAME

1 Adam Smith

2 Kyra Carmichael

It can be easier to understand a query if it is broken down from the

innermost sub table.

1. We start by noting that we work on the Registrations table, and

select only rows that contain a STATUS value of DNF or FAILED.

from Registrations

where STATUS in (’DNF’, ’FAILED’)
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2. In the sub-query, we select two fields: the COURSE field is returned

as it appears in the data, and the count of instances where STATUS

is DNF or FAILED (using the aggregation function SUM), which was

saved as Failing_Students, now available to the outer query.

select COURSE, sum(STATUS in (’DNF’, ’FAILED’))

as Failing_Students

3. The sub-query groups the output by the COURSE field, ordered by

the count of Failing_Students in each course, but limited to the

two largest instances.

group by COURSE order by Failing_Students

desc limit 2

4. We can now go to the primary query, in which the Professors table

is joined to the Courses table to create a mapping of professors to

the courses they teach.

(Professors left join Courses

on Professors.FACULTY_ID=Courses.FACULTY_ID)

5. The sub-query is assigned the table identifierT, which is inner joined

with the primary query table, returning a table with the information

of the two professors with the most “failing” students.

inner join

...

as T on Courses.COURSE=T.COURSE;

6. Finally, the resultant rows are isolated and only the NAME field is

outputted, ultimately returning the names of the two professor

with the most failing students.

select NAME from

...

SQL in R It will not come as a surprise, especially after the reticulate

detour of Section 1.6.4, that we can write SQL queries in R, with the

appropriate library.
69

69: The dbname, host, port, user, and

password arguments are those of a test

server where the toy example database

can be accessed. For obvious reasons, this

is a read-only situation. Just as obviously,

the arguments would be different when

working with a real database; contact your

DBA (database admin) and consult the

video linked to at the start of this section

for more information and troubleshooting.

SQL in R

# install required library

library(RMySQL)

# connect to the database

mysqlcon = dbConnect(RMySQL::MySQL(),

dbname=’school’, host=’ayyws.com’, port=3000,

user=’Ruser’, password=’Ruser’)

[1] "Courses" "Professors" "Registrations" "Students"
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# test the connection by listing all tables

dbListTables(mysqlcon)

# submit a query to the database

x = dbSendQuery(mysqlcon, "select * from Registrations;")

# convert the result to an R data frame, and display

data.frame = fetch(x)

print(data.frame)

STUDENT_ID COURSE GRADE STATUS

1 100 ECON401 NA Registered

2 100 ECON101 10.00 Passed

3 101 ECON101 2.45 Failed

4 102 BUSI202 NA Registered

5 102 ECON101 NA DNF

6 104 CHEM404 NA Registered

7 104 COMP490 9.80 Passed

8 101 BUSI202 3.52 Failed

1.8 Exercises

1. Write pseudo-code that will sort a list of numbers. Identify the

inputs and the outputs, and solve the problem “procedurally” on

a definite example before generalizing to a general list. You may

need to “black box” the manipulation of individual numbers and

group of numbers within the list.

2. Write pseudo-code that will enumerate all strings of up to n charac-

ters taken from the set A-Z, with no repeated character. Identify the

inputs and the outputs, and solve the problem “procedurally” on a

definite example before generalizing. Use “black boxes” as needed.

3. Use R to calculate the following quantities:

a) The sum of 1.001, 22.9, and -73.78

b) The square root of 64

c) Calculate the base 10 logarithm of 90, and multiply the result

with the cosine of 𝜋.
70

70: Hint: see ?log and ?pi for information

about how to use.

4. Type the following R code, which assigns numbers to objects x, y.

x<-252

y<-5.5

a) Calculate the product of x and y

b) Store the result in a new object called z

c) Inspect your workspace by typing ls(), and by clicking the

Environment tab in RStudio, and find the three objects you

created

d) Make a vector of the objects ‘x‘, ‘y‘, and ‘z‘.

5. You have measured seven cylinders. Their lengths are: 2.1, 10.8,

5.5, 6.6, 9.7, 8.2, 8.1, and the diameters are: 0.4, 0.3, 1.2, 0.9, 0.3,

0.2, 0.1. Read these data points into two vectors (give the vectors
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appropriate names). Use R to calculate the volume of each cylinder

(𝑉 = length × 𝜋 × (diameter/2)2).

6. Input the following data, related to space shuttle launch damage

prior to the Challenger explosion. The set covers 6 launches out

of 24 that were included in the pre-launch charts used to decide

whether to proceed with the launch or not

Temp Erosion Blowby Total

53 3 2 5

57 1 0 1

63 1 0 1

70 1 0 1

70 1 0 1

75 0 2 1

Enter these data into aRdata frame, with column namestemperature,

erosion, blowby, and total.

7. Read the following data into R (number of honeyeaters seen at a

site in a week). Give the resulting data frame a reasonable name.

Type it into Excel or text file and save it as a CSV file or txt.

Day nbirds Day nbirds

Sunday 3 Thursday 8

Monday 2 Friday 1

Tuesday 5 Saturday 2

Wednesday 0

Enter the following data as new observations of a different week

starting on Sunday: 4, 3, 6, 1, 9, 2, 0.

8. Read the data from the space shuttle launch (from the previous

question) data into R.

9. Read the following data set (various Australian populations since

1917) into an R object. Write the object into a text file, from R.

Year NSW Vic. Qld SA WA Tas. NT ACT Aust.

1917 1904 1409 683 440 306 193 5 3 4941

1927 2402 1727 873 565 392 211 4 8 6182

1937 2693 1853 993 589 457 233 6 11 6836

1947 2985 2055 1106 646 502 257 11 17 7579

1957 3625 2656 1413 873 688 326 21 38 9640

1967 4295 3274 1700 1110 879 375 62 103 11799

1977 5002 3837 2130 1286 1204 415 104 214 14192

1987 5617 4210 2675 1393 1496 449 158 265 16264

1997 6274 4605 3401 1480 1798 474 187 310 18532

10. What do you think the following R calls do?

swiss$var1 <- swiss[,1]>median(swiss[,1])

swiss$var4 <- swiss[,4]>median(swiss[,4])
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table(swiss$var1); table(swiss$var4)

table(swiss$var1,swiss$var4)

11. What do you think the following R calls do?

median(test, na.rm=TRUE)

min(test, na.rm=TRUE)

max(test, na.rm=TRUE)

quantile(test, na.rm=TRUE)

12. In Python:

a) evaluate ⌊10001/4⌋ and arcsin(𝜋/4);
b) obtain the value of 𝑠 in the following: 𝑎 = 𝜋(1+ ln 5), 𝑏 = 1

3+
√

4

and 𝑠 = 𝑎 + 𝑏;

c) obtain a formatted string of sin(𝜋2) of width 8, with 5 decimal

places;

d) turn the value of

√
3 into a fixed decimal with 8 decimal places.

13. In Python:

a) create a list of integers from -10 to 5;

b) use list comprehension to create a list (x,y) so that x+y > 8

where x can be any nonnegative integer at most 10 and y can

be any positive integer at most 7;

c) use list comprehension to create a list (x,y) so that y is the

square of x and x is from 1 to 10;

d) write one line of code that returns a list obtained from

x = ['one', 2, 3, 'four', 5, 6, 'seven', 8, 9, 10,

'eleven', 12, 13, 'fourteen']

by moving all the elements of type str to the end of the list.
71

71: Hint: Use list comprehension and con-

catenation. To check if a is of type str, use

type(a) is str. To check if a is not of

type str, use type(a) is not str.

14. Write an if statement in Python that prints “odd” if x is odd and

prints “even” if x is even where x is a random integer between -100

and 100, inclusive.
72

72: Hint: x % n returns the remainder of

x divided by n.

import random

x = random.randint(-100,100)

15. Use a single while loop in Python to print all pairs (x,y) such that

x+y=100 and x ranges from 0 to 50.

16. Write a Python function myFunc() that returns the square of x if x

is of type int and returns None otherwise.
73

73: Hint: type(x) is int is the syntax

for testing if x is of type int.

def myFunc(x):

res = None

## Your code here

return res

Verify that the function behaves as expected:

assert(myFunc(5) == 25)

assert(myFunc(’five’) is None)
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17. Write a function mySoS() that accepts a list of floats as the only

argument and returns the sum of squares of the numbers (assume

that the argument is indeed a list of floats – no need to test if the

condition is met).

def mySoS(ns):

res = 0

## Your code here

return res

Verify that the function behaves as expected:

assert(mySoS([1.0,2.0,3.0]) == 14.0)

assert(mySoS([-2.5,1.3,13.4]) == 187.5)

18. What is the result of the following code?

def mystery(func, n):

return [func(i) for i in range(n)]

print(mystery(lambda x: (2*x+1)**2, 5))

Rewrite the function using an anonymous function (single line).

19. Complete the definition of the Python function myRep() with

arguments x, y, and n (where x and y can be assumed to be strings

and n can be assumed to be a nonnegative integer) that returns the

string x+y repeated n times.

def myRep(x, y, n):

res = ’’

# Your code here

return res

Verify that the function behaves as expected:

assert(myRep(’a’,’b’,3) == ’ababab’)

assert(myRep(’Python’,’C’,0) == ’’)

20. Complete the definition of the Python function posOfi() with

argument s and returns a list of indices at which s contains the

letter ‘i’.
74

74: Hint: use the enumerate function.

def posOfi(s):

# Your code here

return None

Verify that the function behaves as expected:

print(posOfi("Mississipi"))

print(posOfi("Harry Potter"))

https://docs.python.org/3.5/library/functions.html#enumerate
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21. Complete the following Python function which takes a string

consisting of a paragraph of sentences ending with a period and

returns a list of all the sentences, with leading and trailing spaces

stripped. You may assume that every period ends a proper sentence

and there are no sentences not ending in a period.

def sentences(p):

# Your code here

return None

Verify that the function behaves as expected:

p = ’The essence of Python. One can sense. But not learn. ’

print(sentences(p))

22. What effect do the methods upper(), lower(), and title() have

on non-alphabetical characters?

23. Complete the following function which takes a list of full names

as argument an returns a list of names that are not properly

capitalized. For example, for the argument ['John Doe', 'JANE

Kelly', 'nicole dunn', 'David Huang'], the function returns

['JANE Kelly, 'nicole Dunn'].

def badNames(names):

# Your code here

return None

24. Complete the following function which takes a list l of strings

as argument and returns a list consisting of the strings in l not

containing the symbol -. For example, given the argument ['Hi',

'Good-bye', 'Ciao', 'Twenty-one'], the function should re-

turn ['Hi', 'Ciao'].

def filterList(l):

# Your code here

return None

25. Complete the following function which takes a list of pairs as

argument and returns a dictionary with the first components as

keys and the second components as the corresponding values. For

example, given the argument [(1,'a'),(2,'b')], the function

returns {1: 'a', 2: 'b'}.

def pairListToDict(pairs):

# Your code here

return None

26. Complete the following function which takes a dictionary as argu-

ment and removes all the key-value pairs that do not have values

of type str. For example, calling the function with the dictio-

nary {'one': 1, 'two': 'Two', 'three': 3} will change the

dictionary to {'two': 'Two'}.



1.8 Exercises 103

def filter(d):

# Your code here

return

27. Complete the following code so that sq is a 1D numpy array of the

squares of the first 100 positive integers. Use list comprehension.

sq = np.array([...])

28. Obtain a NumPy array from the array sq in the section by applying

the function

√
𝑥 + 1 to each entry x in sq.

75
75: Hint: use broadcasting and

np.sqrt().
29. Complete the following definition of myFunc() which takes a

positive integer argument n and a positive real number d and

generates an array of n random values drawn from the standard

normal distribution and returns the number of values whose

absolute values are less than or equal to d. You may assume that n

is a positive integer and d is a non-negative float when myFunc() is

called.
76

76: Hint: use numpy.random.randn() for

generating the random array.

def myFunc(n, d):

# Your code here

return 0

Verify that the function behaves as expected:

np.random.seed(5900)

assert(myFunc(10000,1) == 6848)

assert(myFunc(100000,2) == 95490)

30. Obtain the iris data set through seaborn and generate some

summary statistics.

31. Write code to change the labels in the data frame crashes from

Cnnn to Incident nnn and turn that column into an index column.

Commit these changes to crashes.

32. Extract a data frame from df consisting only of the columns

speeding and alcohol for which the speeding values are at least

3.0 and the alcohol values are at most 4.5.

33. There is a powerful way to filter rows involving complex boolean

expressions via the query() method. For instance,

df.query("ins_losses > 160 & ins_premium < 900 & abbr == ’CA’")

case speeding alcohol ... ins_premium ins_losses abbr

4 C005 4.2 3.36 ... 878.41 165.63 CA

[1 rows x 8 columns]

Extract a data frame from df via query() consisting of records for

which alcohol is at most 4.0 and abbr is neither CA nor LA.

34. Obtain a data frame df4 by changing the column name of Student

ID in the data frame gpa to ID. Then create df5 by merging df4

and df using pd.merge(df4, df, on='ID') and summarize the

resulting data frame.

35. Perform an outer join with df4 from the previous exercise and dfB.
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36. Drop the observations in the original gpa data frame for which the

only NaN values are found in the GPA column.

37. Replace the NaN in the original gpa’s Year column with the string

Unknown.

38. Modify markToGrade so that a mark between 80 to 100 (incusive) is

converted to an A, a mark at least 70 but less than 80 is converted to

a B, a mark at least 60 but less than 70 is converted to a C, a mark at

least 50 but less than 60 is converted to a D, and a mark below 50 is

converted to an F.

def markToGrade(x):

res = ’F’

# Your code here

return res

Add a Grade column to df3 containing the converted grades.

39. Obtain the mean for each of the Year groups in the calc data

frame.

40. Obtain the mean, standard deviation, and median for each of the

Year groups in the calc data frame, using agg().

41. Produce a summary of the calc data frame giving the Grade mean

and standard deviation, and the GPA median, grouped by Years.

42. Complete the definition of a function that returns Satisfactory

if the average of the array x is at least 65.0 and Unsatisfactory

otherwise.

def groupStatus(arr):

res = ’’

# Your code here

return res

Determine the group status in the calc dataset by both Sex and

Year, for the Grade variable.

43. Write a function that produces the pivot table displaying the number

of students with a passing grade by Sex and Year.
77

77: Hint: if arr is a NumPy array, then arr

>= 50.0 gives an array of the same length

such that element i is True if and only if

a[i] >= 50.0.

44. Carry out the remaining exercises in both R and Python. There is

no need to do the exercises in any particular order. Take the time

to design pseudo-code and think about what the code does before

jumping directly into the programming. You may choose to carry

out each of the exercises separately, or to write a single program

that carries out all of the individual exercises. You will find much

of the base code you need in the chapter’s examples, but you may

need to tweak and add to this code to carry out the exercises. Do

not hesitate to look for information and inspiration on the Internet

and in the documentation.

a) Create three variables and assign numerical values to each of

these variables. Then write one or more statements that carry

out the following types of operations using these variables:

addition, subtraction, multiplication, division, raising to a

power.

b) Create three variables and assign string values to each of these

variables. Write a statement that joins the three strings into

a single string. Write some code that prints the string. Write
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some code that tests to see if a substring of your choice is

contained within the larger string.

c) Create three variables and assign lists to each of these variables.

Join the three lists into a new list containing three distinct

sub-lists (a list of three lists). Create a list from this list without

sub-lists (all original list elements are part of a single larger

list). Create a fourth list by splitting this resulting list in half

and assigning the second half of the list to a new variable.

Extract the last item of this list (it can either stay in the original

list or be removed from it) and assign this element to a variable.

d) Write a statement that contains at least three nested blocks.

Use at least three of the following control flow options: if, if

else, while, for, break, continue (Python only), next, switch.

e) Write a function that takes three arguments as input and

returns one value. Call the function with arguments of your

choosing.

f) Execute the relevant command that shows a list of the packages

(for R) or modules (for Python) that are currently installed

in your environment. Use the available documentation to

determine what some of these do. Write some code that uses

functions and objects supplied by these packages.

g) Print to the standard output three sentences of your choosing,

on three separate lines, using a single statement of code.

h) Locate a comma separated values (.csv) file stored on your

computer or online. Read this file into the notebook and store

the results in one or more variables.

i) Create a new file and write four lines in .csv format to this file.

In a separate statement, write four more lines to this existing

file, without overwriting the original file.

j) Write enough code to generate at least five different error

messages. Copy these error messages into a text document,

and write a short note under each explaining the meaning of

the error message, and how the code was fixed.

k) Using a language of your choice, write a function that, when

passed a dataset, reports 5 interesting pieces of information

about the dataset. Load a dataset and run the function on this

dataset.

l) Using a language of your choice, write two functions. The

output of the first function should work as the input to the

second function. The first function should read in a dataset

and generate a subset of the dataset based on some chosen

criteria. The second function should read in a dataset and

provide summary data of some type for each column in the

dataset. Load a dataset and run both functions on the dataset.

m) Write a program that sorts a list of numbers, without using

the in-built sorting functions.

n) Write a program that sorts a list of character strings, without

using the in-built sorting functions.
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45. Consider a database consisting of two tables, as shown below.

a) What is the primary key for each table?

b) What are the foreign keys for each table?

c) What are the NULL values?

d) What is the relation between these tables?

e) What type of data does each field support?

f) What constraints might we expect each field to have?

g) What would happen if we tried to mix datatypes without

enforcing constraints?
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