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by Patrick Boily (inspired by Patrick Farrell)

Simply put, data analysis requires data. In pedagogical settings, we take

for granted that the data at our disposal is “perfect” (or “ideal”): it either

consists of the totality of potentially available data, or it is a representative

subset thereof. In practice, either of these can be difficult to achieve; it

can prove costly (and sometimes impractical) to collect data from which

we can infer population trends and characteristics.

While web scraping (and automated methods) are sometimes used to

facilitate the data collection process (see Chapter 16, Web Scraping and
Automatic Data Collection), the samples that they provide often fail to be

representative enough to be of use in practice.

In this chapter, we discuss the principles that underlie statistical sampling

methods, and show how to obtain estimates for various sampling plans.

10.1 Background

To call in the statistician after the experiment is done may be

no more than asking them to perform a post-mortem exami-

nation: at best, they may be able to say what the experiment

died of. [R.A. Fisher, Presidential Address to the First Indian
Statistical Congress, 1938]

Data analysis tools and techniques work in conjunction with collected

data. The type of data that needs to be collected to carry out such analyses,

as well as the priority placed on the collection of quality data relative to

other demands, will dictate the choice of data collection strategies.

The manner in which the resulting outputs of these analyses are used for

decision support will, in turn, influence appropriate data presentation

strategies and system functionality, which is an important access of the

analytical process. Although analysts should always endeavour to work

with representative and unbiased data, there will be times when the

available data is flawed and not easily repaired.

Analysts have a professional responsibility to explore the data, looking

for potential fatal flaws prior to the analysis and to inform their client

and stakeholders of any findings that could halt, skew, or simply hinder
the analytical process or its applicability to the situation at hand.

1

1: Unless some clause has specifically been

put in the contract/agreement to allow a

graceful exit at this point, consultants will

have to proceed with the analysis, flaws

and all. It is EXTREMELY IMPORTANT
that one does not simply sweep these flaws

under the carpet. Address them repeat-

edly in meetings with the clients, and

make sure that the analysis results that

are presented or reported on include an

appropriate caveat.
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Formulating the Problem

The objectives drive all other aspects of quantitative analysis. With a

question (or questions) in mind, an investigator can start the process that

leads to model selection.

With potential models in tow, the next step is to consider:

what variates (fields, variables) are needed,

the number of observations required to achieve a pre-determined

precision, and

how to best go about collecting, storing and accessing the data.

Another important aspect of the problem is to determine whether the

questions are being asked of the data in and of itself, or whether the data

is used as a stand-in for a larger population. In the later case, there are

other technical issues to incorporate into the analysis in order to be able

to obtain generalizable results.

Questions do more than just drive the other aspects of data analysis –

they also drive the development of quantitative methods. They come in

all flavours and their variability and breadth make attempts to answer

them challenging: no single approach can work for all of them, or even

for a majority of them, which leads to the discovery of better methods,

which are in turn applicable to new situations, and so on, and so on.

Not every question is answerable, of course, but a large proportion of

them may be answerable partially or completely; quantitative methods

can provide insights, estimates, and ranges for possible answers, and they

can point the way towards possible implementations of the solutions.

As an illustration, consider the following questions:

Is cancer incidence higher for second-hand smokers than it is for

smoke-free individuals?

Using past fatal collision data and economic indicators, can we

predict future fatal collision rates given a specific national unem-

ployment rate?

What effect would moving a central office to a new location have

on average employee commuting time?

Is a clinical agent effective in the treatment against acne?

Can we predict when border-crossing traffic is likely to be higher

than usual, in order to appropriately schedule staff rotations?

Can personalized offers be provided to past clients to increase the

likelihood of them becoming repeat customers?

Has employee productivity increased since the company introduced

mandatory language training?

Is there a link between early marĳuana use and heavy drug use

later in life?

How do selfies from over the world differ in everything from mood

to mouth gape to head tilt?

Next steps nearly always requires obtaining relevant data.
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Data Types

Data has attributes and properties. Fields are classified as response,

auxiliary, demographic or classification variables; they can be quanti-
tative or qualitative; categorical, ordinal or continuous; text-based or

numerical.

Furthermore, data is collected through experiments, interviews, censuses,

surveys, sensors, scraped from the Internet, etc. Collection methods are

not always sophisticated, but new technologies usually improves the pro-

cess in many ways (while introducing new issues and challenges): modern

data collection can occur over one pass, in batches, or continuously.

How does one decide which data collection method to use?

The type of question to answer obviously has an effect, as do the required

precision, cost and timeliness. Statistics Canada’s Survey Methods and
Practices [10] provides a wealth of information on probabilistic sampling

and questionnaire design, which remain relevant in this day of big (and

real-time) data.

The importance of this step cannot be overstated: without a well-designed
plan to collect meaningful data, and without safeguards to identify flaws

(and possible fixes) as the data comes in, subsequent steps are likely to

prove a waste of time and resources.

As an illustration of the potential effect that data collection can have on

the final analysis results, contrast the two following “ways” to collect

similar data.

The Government of Québec has made public its proposal to

negotiate a new agreement with the rest of Canada, based on

the equality of nations; this agreement would enable Québec

to acquire the exclusive power to make its laws, levy its taxes

and establish relations abroad – in other words, sovereignty –

and at the same time to maintain with Canada an economic

association including a common currency; any change in

political status resulting from these negotiations will only

be implemented with popular approval through another

referendum; on these terms, do you give the Government of

Québec the mandate to negotiate the proposed agreement

between Québec and Canada? [1980 Québec sovereignty

referendum question]

Should Scotland be an independent country? [2014 Scotland

independence referendum question]

The end result was the same in both instances (no to independence),

but an argument can easily be made that the 2014 Scottish ‘No’ was a

much clearer ‘No’ than the Québec ‘No’ of 34 years earlier, in spite of the

smaller 2014 victory margin.
2

2: 55.3%-44.7% in the Scotland referen-

dum, as opposed to 59.6%-40.4% in the

Québec referendum.
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Data Storage and Access

Data storage is also strongly linked with the data collection process, in

which decisions need to be made to reflect how the data is being collected

(one pass, batch, continuously), the volume of data that is being collected,

and the type of access and processing that will be required (how fast,

how much, by whom).

Stored data may go stale (e.g., people move, addresses are no longer

accurate, etc.), so it may be necessary to implement regular updating

collection procedures.

Until very recently, the story of data analysis has only been written for

small datasets: useful collection techniques yielded data that could, for

the most part, be stored on personal computers or on small servers.

The advent of “Big Data” has introduced new challenges vis-à-vis the

collection, capture, access, storage, analysis and visualisation of datasets;

some effective solutions have been proposed and implemented, and

intriguing new approaches are on the way.
3

3: Such as DNA storing [8], to name but

one (!).

We shall not discuss those challenges in detail in this module, but we

urge analysts and consultants alike to be aware of their existence.

10.1.1 Survey Sampling Generalities

The latest survey shows that 3 out of 4 people make up 75%

of the world’s population. [David Letterman]

While the World Wide Web does contain troves of data, web scraping

(see Chapter 16) does not address the question of data validity: will

the extracted data be useful as an analytical component? Will it suffice

to provide the quantitative answers that clients and stakeholders are

seeking?

A survey [10] is any activity that collects information about characteristics

of interest:

in an organized and methodical manner;

from some or all units of a population;

using well-defined concepts, methods, and procedures, and

compiles such information into a meaningful summary form.

A census is a survey where information is collected from all units of a

population, whereas a sample survey uses only a fraction of the units.

Sampling Model

When survey sampling is done properly, we may be able to use various

statistical methods to make inferences about the target population
by sampling a (comparatively) small number of units in the study
population.

The relationship between the various populations (target, study, respon-
dent) and samples (sample, intended, achieved) is illustrated in Figure

10.1.
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Figure 10.1: Various populations and samples in the sampling model.

Target population: population for which we want to obtain infor-

mation;

Study population (survey population): population covered by the

survey (it may be different from the target population, but ideally

the two are very similar);
4

conclusions drawn from the survey 4: The difference may be due to the diffi-
culty/high cost of data collection for some

units excluded from the study population.

results only apply to the study population;

Respondent population: units of the study population that would

participate in the survey if they were asked to do so; it may be

different from the study population if the respondents are not

representative of the study population;

Survey frame: provides the means to identify and communicate
with the units in the survey population; it takes the form of a list,

which is linked to the population under study;

Intended sample: subset of the study population targeted by the

survey;

Achieved sample: subset of the study population whose character-

istics were in fact measured.

In general, a survey is preferred to a census if it is expensive/laborious
to measure the characteristics of interest for each unit, or if the units are

destroyed by measuring the characteristics.

Deciding Factors

In some instances, information about the entire population is required in

order to solve the client’s problem, whereas in others it is not necessary.

How do we determine which type of survey must be conducted to collect

data? The answer depends on multiple factors:

the type of question that needs to be answered;

the required precision;

the cost of surveying a unit;

the time required to survey a unit;

size of the population under investigation, and

the prevalence of the attributes of interest.
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Once a choice has been made, each survey typically follows the same

general steps:

1. statement of objective

2. selection of survey frame

3. sampling design

4. questionnaire design

5. data collection

6. data capture and coding

7. data processing and imputation

8. estimation

9. data analysis

10. dissemination and documentation

The process is not always linear, in that preliminary planning and data

collection may guide the implementation (selection of a frame and of a

sampling design, questionnaire design), but there is a definite movement

from objective to dissemination.
5

5: Compare with Figure 14.4, Section

14.4.1.

10.1.2 Survey Frames

The frame provides the means of identifying and contacting the units of

the study population. It is generally costly to create and to maintain (in

fact, there are organisations and companies that specialize in building

and/or selling such frames).

Useful frames contain:

identification data,

contact data,

classification data,

maintenance data, and

linkage data.

The ideal frame must minimize the risk of undercoverage or overcoverage,

as well as the number of duplications and misclassifications (although

some issues that arise can be fixed at the data processing stage).

Unless the selected frame is relevant (which is to say, it corresponds, and

permits accessibility to, the target population), accurate (the information

it contains is valid), timely (it is up-to-date), and competitively priced,

the statistical sampling approach is contra-indicated.

10.1.3 Fundamental Sampling Concepts

In general, a survey is conducted to estimate certain attributes of a
population (statistics), such as, for example

a mean;

a total, or

a proportion.
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A population (either target, study, or respondent) has a finite number

𝑁 of members, called units or items. The response associated with the

𝑗−th unit of the population is represented by 𝑢𝑗 .

Let U= {𝑢1 , . . . , 𝑢𝑁 } be a population of size 𝑁 < ∞. If 𝑢𝑗 represents a

numerical variable,
6

the mean, variance, and total of the response in 6: E.g., if 𝑢𝑗 is the salary of the 𝑗−th unit

in the population.
the population are respectively

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 , 𝜎2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 , and 𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇.

If 𝑢𝑗 represents a binary variable,
7

the proportion of the response in 7: E.g., 1 if the 𝑗−th unit earns more than

$70𝐾 per year, 0 otherwise.
the population is

𝑝 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 .

We seek to estimate 𝜇, 𝜏, 𝜎2
and/or 𝑝 using the values of the response

variable for the units in the achieved sample Y = {𝑦1 , . . . , 𝑦𝑛} ⊆ U.

The relationship between Y and U is simple: in general, 𝑛 ≪ 𝑁 and

∀𝑖 ∈ {1, . . . , 𝑛}, ∃!𝑗 ∈ {1, . . . , 𝑁} such that 𝑦𝑖 = 𝑢𝑗 .

The empirical mean, empirical total, and empirical variance are:

𝑦(, 𝑝̂) = 1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 , 𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2 , 𝜏̂ =

(
𝑁

𝑛

)
𝑛∑
𝑖=1

𝑦𝑖 = 𝑁𝑦.

Let 𝑋1 , . . . , 𝑋𝑛 be random variables, 𝑏1 , . . . , 𝑏𝑛 ∈ ℝ, and E, V, and Cov

be the expectation, variance and covariance operators. Recall that

E

(
𝑛∑
𝑖=1

𝑏𝑖𝑋𝑖

)
=

𝑛∑
𝑖=1

𝑏𝑖E(𝑋𝑖), V(𝑋𝑖) = Cov(𝑋𝑖 , 𝑋𝑖) = E

(
𝑋2

𝑖

)
− E

2(𝑋𝑖)

V

(
𝑛∑
𝑖=1

𝑏𝑖𝑋𝑖

)
=

𝑛∑
𝑖=1

𝑏2

𝑖 V(𝑋𝑖) +
𝑛∑

1≤𝑖≠𝑗
𝑏𝑖𝑏 𝑗Cov(𝑋𝑖 , 𝑋𝑗)

Cov(𝑋𝑖 , 𝑋𝑗) = E(𝑋𝑖𝑋𝑗) − E(𝑋𝑖)E(𝑋𝑗).

The bias in an error component is the average of that error component

if the survey is repeated many times independently under the same

conditions. The variability in an error component is the extent to which

that component would vary about its average value in this scenario.

The mean square error of an error component is a measure of the size of

the error component:

MSE(𝛽̂) = E

(
(𝛽̂ − 𝛽)2

)
= E

(
(𝛽̂ − E(𝛽̂) + E(𝛽̂) − 𝛽)2

)
= V(𝛽̂) +

(
E(𝛽̂) − 𝛽

)
2

= V(𝛽̂) + Bias
2(𝛽̂)

where 𝛽̂ is an estimate of 𝛽. Finally, if the estimate is unbiased, then an

approximate 95% confidence interval (95% C.I.) for 𝛽 is given by

𝛽̂ ± 2

√
V̂(𝛽̂),
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where V̂(𝛽̂) is a sampling design-specific estimate of V(𝛽̂).

Survey Error

One of the strengths of statistical sampling is in its ability to provide

estimates of various quantities of interest in the target population, and to

provide some control over the total error (TE) of the estimates. The TE of

an estimate is the amount by which it differs from the true value for the

target population:

Total Error = Measurement Error + Sampling Error + Non-response Error + Coverage Error,

where the:

coverage error is due to differences in the study and target popula-

tions;

non-response error is due to differences in the respondent and

study populations;

sampling error is due to differences in the achieved sample and

the respondent population;

measurement error is due to true value in the achieved sample not

being assessed correctly.
8

8: We sometimes also include the pro-
cessing error in this component, due to

the fact that the real value of the charac-

teristic of interest can be affected by the

data transformations performed through-

out the analysis.

If we let:

𝑥 be the computed attribute value in the achieved sample;

𝑥true be the true attribute value in the achieved sample under

perfect measurement;

𝑥resp be the attribute value in the respondent population;

𝑥study be the attribute value in the study population, and

𝑥target be the attribute value in the target population,

then

𝑥 − 𝑥target︸     ︷︷     ︸
total error (TE)

= (𝑥 − 𝑥true)︸      ︷︷      ︸
meas. & proc. error

+ (𝑥true − 𝑥resp)︸          ︷︷          ︸
sampling error

+ (𝑥resp − 𝑥study)︸            ︷︷            ︸
non-response error

+ (𝑥study − 𝑥target)︸             ︷︷             ︸
coverage error

.

In an ideal scenario, TE = 0. In practice, there are two main contributions

to Total Error: sampling errors (which are this module’s main concern)

and nonsampling errors, which include every contribution to survey

error which is not due to the choice of sampling scheme.

The latter can be controlled, to some extent:

coverage error can be minimized by selecting a high quality, up-to-

date survey frame;

non-response error can be minimized by careful choice of the data

collection mode and questionnaire design, and by using “call-backs”

and “follow-ups”;

measurement error can be minimized by careful questionnaire

design, pre-testing of the measurement apparatus, and cross-

validation of answers.
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These suggestions are perhaps less useful than one could hope in modern

times: survey frames based on landline telephones are quickly becoming

irrelevant in light of an increasingly large and younger population who

eschew such phones, for instance, while response rates for surveys that

are not mandated by law are surprisingly low.
9

9: This explains, in part, the impetus to-

wards automated data collection and the

use of non-probabilistic sampling meth-

ods.

10.1.4 Data Collection Basics

How is data traditionally captured, then? There are paper-based ap-

proaches, computer-assisted approaches, and a suite of other modes.

Self-administered questionnaires are used when the survey re-

quires detailed information to allow the units to consult personal

records (which reduces measurement errors), they are useful to

measure responses to sensitive issues as they provide an extra layer

of privacy, and are typically not as costly as other collection modes,

but they tend to be associated with high non-response rate since

there is less pressure to respond.

Interviewer-assisted questionnaires use trained interviewers to

increase the response rate and overall quality of the data. Face-to-

face personal interviews achieve the highest response rates, but

they are costly (both in training and in salaries). Furthermore, the

interviewer may be required to visit any selected respondents many

times before contact is established. Telephone interviews, on the

other hand produce “reasonable” response rates at a reasonable

cost and they are safer for the interviewers, but they are limited in

length due to respondent phone fatigue. With random dialing, 4-6

minutes of the interviewer’s time is spent in out-of-scope numbers

for each completed interview.

Computer-assisted interviews combine data collection and data

capture, which saves valuable time, but the drawback is that not ev-

ery sampling unit may have access to a computer/data recorder (al-

though this is becomine less prevalent). All paper-based modes have

a computer-assisted equivalent: computer-assisted self-interview
(CASI), computer-assisted interview (CAI), computer-assisted
telephone interview (CATI), and computer-assisted personal
interview (CAPI).

Other approaches include unobtrusive direct observation; diaries

to be filled (paper or electronic); omnibus surveys; email, Internet

(e.g., Survey Monkey ), social media, etc.

10.1.5 Types of Sampling Methods

There is a large variety of methods to select sampling units from the

target population.

Non-Probabilistic Sampling

Those that use subjective, non-random approaches are called non-
probabilistic sampling (NPS) methods; these tend to be quick, relatively
inexpensive and convenient in that a survey frame is not needed.

https://surveymonkey.com


608 10 Survey Sampling Methods

NPS methods are ideal for exploratory analysis and survey development.
Unfortunately, they are sometimes used instead of probabilistic sampling

designs, which is problematic; the associated selection bias makes NPS

methods unsound when it comes to inferences, as they cannot be used

to provide reliable estimates of the sampling error.1010: The only component of the total er-

ror TE on which the analysts has direct

control. Automated data collection often fall squarely in the NPS camp, for

instance. While we can still analyse data collected with a NPS approach,

we may not generalize the results to the target population (except in

rare, census-like situations).

NPS methods include:

haphazard sampling, also known as “person on the street” sam-

pling; it assumes that the population is homogeneous, but the

selection remains subject to interviewer biases and the availability

of units;

volunteer sampling in which the respondents are self-selected;

there is a large selection bias since the silent majority does not

usually volunteer; this method is often imposed upon analysts

due to ethical considerations; it is also used for focus groups or

qualitative testing;

judgement sampling is based on the analysts’ ideas of the target

population composition and behaviour (sometimes using a prior

study); the units are selected by population experts, but inaccurate

preconceptions can introduce large biases in the study;

quota sampling is very common (and is used in exit polling to

this day in spite of the infamous “Dewey Defeats Truman” debacle

of 1948 [2]); sampling continues until a specific number of units

have been selected for various sub-populations; it is preferable to

other NPS methods because of inclusion of sub-populations, but it

ignores non-response bias;

modified sampling starts out using probability sampling (more on

this later), but turns to quota sampling in its last stage, in part as a

reaction to high non-response rates;

snowball sampling asks sampled units to recruit other units among

their acquaintances; this NPS approach may help locate hidden

populations, but it biased in favour of units with larger social circles

and units that are charming enough to convince their acquaintances

to participate.
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Figure 10.2: Dewey vs Truman – the after-

math: Truman victorious!

There are contexts where NPS methods might fit a client’s need (and

that remains their decision to make, ultimately), but the analyst MUST

still inform the client of the drawbacks, and present some probabilistic

alternatives.

Probabilistic Sampling

The inability to make sound inferences in NPS contexts is a monumental

strike against their use. While probabilistic sample designs are usually

more difficult and expensive to set-up (due to the need for a quality

survey frame), and take longer to complete, they provide reliable es-
timates for the attribute of interest and the sampling error, paving the

way for small samples being used to draw inferences about larger target

populations (in theory, at least; the non-sampling error components can

still affect results and generalisation).

In this chapter, we take a deeper look at the traditional probability sample

designs:

simple random sampling (SRS), see Section 10.3;

stratified random sampling (STS), see Section 10.4;

systematic random sampling (SyS), see Section 10.7.1;

cluster random sampling (CLS), see Section 10.6;

sampling with probability proportional to size (PPS), see Section

10.7.2, and

more advanced designs, see Section 10.7.

In this chapter, the analysis is made easier by assuming that the sampling

error dominates the survey error, i.e., that:

the study population is representative of the target population

(𝑥study ≈ 𝑥target);
the respondent population and the study population coincide, as

are the achieved sample and the target sample (𝑥resp ≈ 𝑥study), and
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Figure 10.3: Schematics of various sampling designs (from left to right, top to bottom): simple random sampling, stratified sampling,

systematic sampling, cluster sampling, multi-stage sampling, multi-phase sampling.

the response is measured without error in the achieved sample

(𝑥 ≈ 𝑥true).

The objective is to control and evaluate the sampling error (𝑥true − 𝑥resp)
for various random sampling designs.

10.2 Questionnaire Design

People resist a census, but give them a profile page and they’ll

spend all day telling you who they are [1].

A questionnaire is a series of questions designed to obtain information
on a topic from respondents. Of course, design principles vary depending

on the subject and method of data collection, but it is considered good

practice to test various questionnaires on random pilot populations
before rolling it out on the study population.

10.2.1 Basic Concepts

In general, a questionnaire should:

be as brief as possible, and free of unnecessary questions;

be accompanied by clear and concise instructions;

keep the respondent’s interests in mind;

emphasize confidentiality;
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keep a serious and courteous tone;

be error-free and attractively presented;

be clearly and precisely worded;

be designed so that it can be answered accurately, and

neatly arranged.

The quality of the collected data depends to a large extent on the quality

of the questionnaire – this is a practical aspect of the discipline on
which much more time should be spent than on data analysis; reputable

survey firms employ specialized teams for questionnaire design.

There is an added challenge for Government of Canada (GoC) federal

departments that are collecting and reporting information about the

public and representatives of businesses or other entities, including

federal public servants: see Public opinion research in the Government of

Canada for details. Some of the information presented in this section

will overlap with the POR guidelines, but at other times, our (generic)

advice will differ.

When working with the GoC, the POR guidelines must obviously take

precedence.
11

11: Fancy footwork might be required to

overcome the challenges presented by the

guidelines, but that is par for the course.

10.2.2 Question Types

The basic unit of the questionnaire is, of course, the question, which

comes in two forms:

closed questions, with a fixed number of predetermined, mutually

exclusive, and collectively exhaustive answer choices (and which

should always include an “Other (please specify)” category to

counteract loss of expressiveness), and

open questions, which are used primarily to identify common

response choices for use in closed-ended questions in a subsequent

questionnaire; any closed-ended question should have been an

open-ended question at some point.

In everyday conversation, closed-ended questions are not appropriate:

Asking open-ended questions is a friendly way to approach

others in discussions. Knowing the difference between open

and closed questions will be invaluable in your career and

social life. How to ask open-ended questions, WikiHow

In a survey, it is rather open-ended questions that are not appropriate:

closed-ended questions require less effort on the part of respondents,

and they are generally easier to quantify, allowing more questions to be

asked in a restricted amount of time and for a given budget.

For example, compare the two following questions.

Open question: What is the most important issue facing Ontario in

2022?

Closed-ended question: Which of these is the most important challenge

for Ontario in 2022?

economy and unemployment

https://www.tpsgc-pwgsc.gc.ca/rop-por/index-eng.html
https://www.tpsgc-pwgsc.gc.ca/rop-por/index-eng.html
https://www.wikihow.com/Ask-Open-Ended-Questions
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impact of COVID-19

reconciliation with indigenous communities

taxes

budget deficit

the environment

organized crime

gang violence

racism

other (please specify)

However, closed-ended questions can also lead to:

a loss of an opportunity to test the waters in order to obtain further

clarification;

introducing response bias by presenting alternatives that respon-

dents would never have thought of, and

a potential loss of interest if the choice of answers does not match

a respondents’ expectations.

Adding open-ended questions to the questionnaire can mitigate these

risks. The use of text analysis and natural language processing methods

can also help to extract the main meaning or sentiments of an answer to

an open-ended question.
12

12: See Chapters 27 and 32 for details and

for limitations of such approaches.

10.2.3 Design Considerations

It is well known that the formulation of questions can influence the

responses of a questionnaire; it is good idea to keep the following wording
considerations in mind when developing questionnaires:

Avoid abbreviations and jargon: “Does your organization use

TTWQ practices?”

Avoid using complex terms when simpler terms will do: “How

many times have you been defenestrated?” vs. “How many times

have you been thrown out a window?”

Ensure that all respondents can answer the questions, by asking

relevant and appropriate-level questions;

Clarify the framework: “What is your annual income?” vs. “What

was your total household income from all sources, before taxes and

deductions, in 2021?

Make the question as accurate as possible: “How much fuel did

your moving company use last year?” (answers received: 2,500

liters, 800 gallons, $13500, more than the previous year, etc.) vs.

“How much did your moving company spend on fuel last year?”

Avoid “double-barreled” questions: “Do you plan to leave your

car at home and take LRT to work?” vs. “Do you plan to leave your

car at home? If so, do you plan to take LRT to work?”, and

Avoid leading questions: the always excellent Yes, Prime Minister
gives a clear-cut example:

13
Sir Humphrey demonstrates that13: Which is not nearly as facetious as it

appears, in the final analysis.

Yes, Prime Minister | S04xE02 | Lead-

ing Questions | The Ministerial Broadcast

asking leading questions in a particular order can lead a respondent

to support the reintroduction of national service:

− Are you concerned about the number of unemployed youth?

− Are you concerned about the increase in teenage crime?

− Do you think there is a lack of discipline in our schools?

http://www.youtube.com/embed/G0ZZJXw4MTA?rel=0
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− Do you think young people would appreciate some leadership?

− Do you think they would respond to a challenge?

− Would you support the re-introduction of national service in

the UK?

The first five questions are designed and presented in such a way

as to elicit support – the obvious answer to each is “yes”. After

this pattern of agreement, Sir Humphrey launches the crucial

question, framed in such a way that it proposes national service

as a supposed solution to all the above problems. In the second

part of the exchange, Sir Humphrey demonstrates that another

set of leading questions can lead the respondent to oppose the

reintroduction of national service:

− Does the danger presented by war worry you?

− Does the arms race worry you?

− Do you think it is dangerous to arm young people and teach

them to kill?

− Is it bad to force people to take up arms against their will?

− Would you oppose the reintroduction of national service?

Sir Humphrey’s first four questions are deliberately designed to

produce agreement. In keeping with the survey design, the fifth

question does the same: a person who answers “yes” to each of

these questions is necessarily opposed to the reintroduction of

national service.
14

14: Based on an idea by Nagesh Belludi.

10.2.4 Question Order

The order in which the questions are presented is as important as their

wording. Questionnaires should be designed to be seamless and follow
a logical process, from the perspective of the respondents:

15
15: Questionnaire design is discussed in

the following references:

Hidiroglou, M., Drew, J. and Gray,

G. [1993], “A Framework for Mea-

suring and Reducing Nonresponse

in Surveys,” Survey Methodology,

v.19, n.1, pp.81-94 [4]

Gower, A. [1994], “Questionnaire

Design for Business Surveys,” Sur-
vey Methodology, v.20, n.2, pp.125-

136 [3]

Survey Methods and Practices ,

Statistics Canada, catalogue num-

ber 12-587-X [10]

1. begin with an introduction that provides the title, topic and pur-

pose of the survey;

2. ask for cooperation from respondents and explain the importance

of the survey and how the results will be used;

3. indicate the degree of confidentiality and provide a deadline and

contact address;

4. follow up with a series of easy and interesting questions to build

respondent confidence;

5. group similar questions under the same heading;

6. only introduce sensitive topics when a relationship of trust is likely

to have been established with the respondents;

7. leave some space and/or time for additional comments, and

8. thank respondents for their participation.

It is worth remembering that without a “sound sampling plan”, collected

data may be of such poor quality that it is impossible to use it to draw

any meaningful conclusions. It is also essential to capture demographic
information that allows classification of units into stratas (STS) or clusters
(CLS); we will revisit those concepts in subsequent sections.

Example: Consider the following video.

https://www150.statcan.gc.ca/n1/pub/12-587-x/12-587-x2003001-eng.pdf
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Figure 10.4: 2021 Census – How do I com-

plete the questionnaire?

Transcription of the video

In May, your household will receive a letter to complete the

2021 Census questionnaire. On your letter, you will find a

secure access code that allows you to complete the question-

naire online. Once online, you can complete the questionnaire

in three easy steps. Simply log on using your secure access

code, complete the questionnaire and select “Submit.” If you

need help or require a paper version, please call the Census

Help Line. For more information or to complete the 2021

Census questionnaire, visit census.gc.ca . It’s safe, quick

and easy.

Message from the Chief Statistician of Canada

Thank you for taking a few minutes to participate in the

2021 Census. The information you provide is converted into

statistics used by communities, businesses and governments

to plan services and make informed decisions about em-

ployment, education, health care, market development and

more. Your answers are collected under the authority of the

Statistics Act and kept strictly confidential. By law, every

household must complete a 2021 Census of Population ques-

tionnaire. Statistics Canada makes use of existing sources of

information such as immigration, income tax and benefits

data to ensure the least amount of burden is placed on house-

holds. The information that you provide may be used by

Statistics Canada for other statistical and research purposes

or may be combined with other survey or administrative

data sources. Make sure you count yourself into Canada’s

statistical portrait, and complete your census questionnaire
today.

Thank you,

Anil Arora

Chief Statistician of Canada

http://www.youtube.com/embed/Gc4zJBrpvm0?rel=0
http://www.youtube.com/embed/Gc4zJBrpvm0?rel=0
https://census.gc.ca
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Figure 10.5: Schematics of SRS: target pop-

ulation (left) and sample (right).

10.3 Simple Random Sampling

Let Ube a population composed of 𝑁 units, whose responses are

U= {𝑢1 , . . . , 𝑢𝑁 }.

Suppose we are interested in the mean 𝜇 of this target population U,

where

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 .

Since the population is of finite size, it is possible to compute 𝜇 directly. . .

at least, in theory. In practice, we rarely have access to the response values

for the entire population U, which leads us to use sampling methods.

A sample Yof size 𝑛 is a subset of the target population U,

Y⊆ {𝑦1 , . . . , 𝑦𝑛} ⊆ {𝑢1 , . . . , 𝑢𝑁 } = U,

from which we can approximate 𝜇 using the sample mean16
16: This is not the only estimator of 𝜇.

𝑦 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 .

A simple random sample (SRS) of size 𝑛 is obtained by randomly

selecting 𝑛 units from the target population, one at a time, without
replacement. In Figure 10.5, a SRS of size 𝑛 = 16 is selected from a

population of size 𝑁 = 64.

At each stage of the sampling procedure, all units not yet in the sample

have the same probability of being added to the sample. In an SRS, each

subset of 𝑛 units has the same probability of being selected.

How do we choose a random sample?

This used to be done “by hand”, using tables of random numbers.

Nowadays, we simply use software (SAS, R, etc.) to obtain (pseudo-
)random samples.

Example What is the average life span, by country, in 2011?

We use the data available in the Gapminder dataset.

https://www.data-action-lab.com/wp-content/uploads/2023/06/gapminder_SS.csv
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library(tidyverse) # for dplyr, ggplot2

gapminder = read.csv("gapminder_SS.csv",

stringsAsFactors=TRUE)

gapminder <- gapminder[,c("country","year","region",

"continent","population",

"infant_mortality","fertility",

"gdp","life_expectancy")]

The structure is provided below:

str(gapminder)

’data.frame’: 10545 obs. of 9 variables:

$ country : Factor w/ 185 levels "Albania","Algeria",..: 1 2 3 4 5 6 7 8 9 ...

$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

$ region : Factor w/ 22 levels "Australia and New Zealand",..: 19 11 10 2 ...

$ continent : Factor w/ 5 levels "Africa","Americas",..: 4 1 1 2 2 3 2 5 4 3 ...

$ population : int 1636054 11124892 5270844 54681 20619075 1867396 54208 ...

$ infant_mortality: num 115.4 148.2 208 NA 59.9 ...

$ fertility : num 6.19 7.65 7.32 4.43 3.11 4.55 4.82 3.45 2.7 5.57 ...

$ gdp : num NA 1.38e+10 NA NA 1.08e+11 ...

$ life_expectancy : num 62.9 47.5 36 63 65.4 ...

A famous chart displays the relationship between 4 of the variables [9].

Our version for 2011 (built with R) can be found in Figure 10.6.

Figure 10.6: Health and wealth of nations for the 2011 Gapminder data.

We start by extracting the information of interest.

gapminder.SRS <- gapminder |>

filter(year==2011) |>

select(life_expectancy)

str(gapminder.SRS)
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’data.frame’: 185 obs. of 1 variable:

$ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...

In this specific example, we know the true average life expectancy per

country in 2011 (at least, for the 𝑁 = 185 countries in the dataset).

mean(gapminder.SRS)

[1] 71.18

The distribution of the population U = {𝑢1 , . . . , 𝑢185} is shown below

(with mean in red):

ggplot(data=gapminder.SRS, aes(life_expectancy)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2,

breaks=seq(45, 85, by = 2.5)) +

geom_vline(xintercept=mean(gapminder.SRS$life_expectancy),

color="red")

We select a random sample of size 𝑛 = 10 from U. The indices are:

set.seed(1234) # for replicability

N = dim(gapminder.SRS)[1]

n = 10

(sample.ind = sample(1:N,n, replace=FALSE))

[1] 28 80 150 101 111 137 133 166 144 132

The corresponding sample Y= {𝑦1 , . . . , 𝑦10} is obtained via:
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(gapminder.SRS.n = gapminder.SRS[sample.ind,])

[1] 67.60 67.70 76.10 79.97 75.70 79.70 70.20 59.60 78.90 78.50

Its empirical mean 𝑦 is:

(y.bar = mean(gapminder.SRS.n))

[1] 73.397

But a different sample may lead to a different estimate. Case in point,

consider the following:

set.seed(12345) # replicability

(sample.ind = sample(1:N,n, replace=FALSE))

(gapminder.SRS.n = gapminder.SRS[sample.ind,])

(y.bar = mean(gapminder.SRS.n))

[1] 142 51 152 58 93 75 96 2 86 180

[1] 71.0 74.3 63.0 81.6 65.0 75.0 46.7 76.1 78.1 74.8

[1] 70.56

It is quite reasonable for the two estimates to be different – since each 𝑦𝑖
in a SRS is a random variable, so is the mean 𝑦.

The sampling variability explains how the estimates vary with the

sample. For example, if we prepare 𝑚 = 500 samples, each of size 𝑛 = 10,

we could obtain the empirical means below:

set.seed(12) # for replicability

N=dim(gapminder.SRS)[1]

n=10

m=500

means <- c()

for(k in 1:m){

means[k] <- mean(gapminder.SRS[sample(1:N,n,

replace=FALSE),])

}

ggplot(data=data.frame(means), aes(means)) +

geom_histogram(aes(y =..density..),

breaks=seq(60, 80, by = 1),

col="black", fill="blue", alpha=.2) +

geom_density(col=2) + geom_rug(aes(means))
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There is some variability, of course, but the sample means seem to

congregate around the 72 mark:

summary(data.frame(means))

means

Min. :63.03

1st Qu.:69.83

Median :71.53

Mean :71.44

3rd Qu.:73.05

Max. :78.86

10.3.1 Basic Notions

The population variance 𝜎2
is a measure of dispersion, i.e., the tendency

of the response values to deviate from the population mean 𝜇:

𝜎2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢2

𝑗 − 2𝑢𝑗𝜇 + 𝜇2)

=
1

𝑁

(
𝑁∑
𝑗=1

𝑢2

𝑗 − 2𝜇
𝑁∑
𝑗=1

𝑢𝑗 + 𝑁𝜇2

)
=

1

𝑁

(
𝑁∑
𝑗=1

𝑢2

𝑗 − 2𝑁𝜇2 + 𝑁𝜇2

)
=

1

𝑁

𝑁∑
𝑗=1

(
𝑢2

𝑗 − 𝑁𝜇2

)
=

1

𝑁

𝑁∑
𝑗=1

𝑢2

𝑗 − 𝜇2

The parameters 𝜇 and 𝜎2
can be interpreted in terms of the expectation

and variance of a random variable.

Let 𝑋 be a discrete random variable whose probability mass function
(p.m.f.) is 𝑓 (𝑥) = 𝑃(𝑋 = 𝑥). Thus,

E[𝑋] =
∑
𝑥

𝑥 𝑓 (𝑥), V[𝑋] =
∑
𝑥

(𝑥 − E[𝑋])2 𝑓 (𝑥), SD[𝑋] =
√

V[𝑋].
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For a sample of size 𝑛 = 1 from this population, whose value is repre-

sented by the random variable 𝑌1, we have 𝑓 (𝑢𝑗) = 𝑃(𝑌1 = 𝑢𝑗) = 1

𝑁 for

𝑗 = 1, . . . , 𝑁 , from which we see that

E[𝑌1] =
𝑁∑
𝑗=1

𝑢𝑗 𝑓 (𝑢𝑗) =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 = 𝜇,

and

V[𝑌1] =
𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 𝑓 (𝑢𝑗) =
1

𝑁

𝑁∑
𝑗=1

𝑢2

𝑗 − 𝜇2 = 𝜎2 , SD[𝑌1] =
√

V[𝑌1] = 𝜎.

In general, however, the estimator 𝑦 of the population mean𝜇 is computed

using more than one observation – different sample sizes 𝑛 could yield

different values of 𝑦. In order to control the sampling error associated

with an SRS, one needs to know the distribution of 𝑌; in particular, E[𝑌]
and V[𝑌].

If 𝑦1 , . . . , 𝑦𝑛 are independent and identically distributed (i.i.d.) random

variables, the central limit theorem (CLT) imposes

𝑌 ∼approx. N(𝜇, 𝜎2/𝑛).

Example Consider a finite population with 𝑁 = 4 elements:

𝑢1 = 2, 𝑢2 = 0, 𝑢3 = 1, 𝑢4 = 5.

The population mean and variance are, respectively,

𝜇 =
1

4

(2 + 0 + 1 + 5) = 2 and 𝜎2 =
1

4

(22 + 0
2 + 1

2 + 5
2) − 2

2 =
7

2

.

Suppose that draw a SRS of size 𝑛 = 3 without replacement from this

population in order to approximate (estimate) the true mean 𝜇. There

are

(
4

3

)
= 4 such samples:

Sample Values 𝑦 𝑃(𝑌 = 𝑦)
𝑢1 , 𝑢2 , 𝑢3 2, 0, 1 1 1/4

𝑢1 , 𝑢2 , 𝑢4 2, 0, 5 7/3 1/4

𝑢1 , 𝑢3 , 𝑢4 2, 1, 5 8/3 1/4

𝑢2 , 𝑢3 , 𝑢4 0, 1, 5 2 1/4

Then

E[𝑌] =
∑
𝑦

𝑦𝑃(𝑌 = 𝑦) = 1

4

(
1 + 7

3
+ 8

3
+ 2

)
= 2 = 𝜇

V[𝑌] =
∑
𝑦

𝑦
2

𝑃(𝑌 = 𝑦) − E
2[𝑌] = 1

4

(
1

2 +
(

7

3

)
2 +

(
8

3

)
2 + 2

2

)
− 2

2 = 7

18
.

This is all great. . . except that V[𝑌] ≠ 𝜎2

𝑛 = 7

6
. What is going on? ■

Here’s how we can explain this discrepancy. Let U= {𝑢1 , . . . , 𝑢𝑁 } be a

finite population of size 𝑁 . A SRS Y= {𝑦1 , . . . , 𝑦𝑛} of size 𝑛 is drawn
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from U without replacement. Let 𝑌𝑖 be the random variable which

represents the value of the 𝑖−th unit of the sample, respectively.

All 𝑌𝑖 have identical distributions: for any 𝑢𝑗 ∈ U, we have:
17

17: Be careful not to confuse the unit 𝑢𝑗
with its response value 𝑢𝑗 ; we use the same

notation by laziness, but they represent

different concepts.𝑃(𝑌1 = 𝑢𝑗) =
1

𝑁
,

𝑃(𝑌2 = 𝑢𝑗) =
𝑃(𝑌2 = 𝑢𝑗 | 𝑌1 ≠ 𝑢𝑗) · 𝑃(𝑌1 ≠ 𝑢𝑗)

𝑃(𝑌1 ≠ 𝑢𝑗 | 𝑌2 = 𝑢𝑗)
=

1

𝑁−1
· 𝑁−1

𝑁

1

=
1

𝑁
,

𝑃(𝑌3 = 𝑢𝑗) =
𝑃(𝑌3 = 𝑢𝑗 | 𝑌1 , 𝑌2 ≠ 𝑢𝑗) · 𝑃(𝑌1 , 𝑌2 ≠ 𝑢𝑗)

𝑃(𝑌1 , 𝑌2 ≠ 𝑢𝑗 | 𝑌3 = 𝑢𝑗)
=

1

𝑁−2
· 𝑁−2

𝑁−1
· 𝑁−1

𝑁

1

=
1

𝑁
,

and so on:

𝑃(𝑌𝑖 = 𝑢𝑗) =
1

𝑁

for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁 , and so E[𝑌𝑖] = 𝜇, V[𝑌𝑖] = 𝜎2
for any 𝑖.

Thus, in the preceding example, we would have

E[𝑌1] = E[𝑌2] = E[𝑌3] = 𝜇 = 2 and V[𝑌1] = V[𝑌2] = V[𝑌3] = 𝜎2 =
7

2

.

But the {𝑌𝑖} are not independent of each other since (for example)

E[𝑌] = 𝜇 = 2, but V[𝑌] = V

[
𝑌1+𝑌2+𝑌3

3

]
=

7

18

≠
𝜎2

3

=
7/2

3

=
7

6

.

It is in the variance that we observe a difference. The covariance between

two (discrete) random variables 𝑋1, 𝑋2 is a measure of the strength of
association between 𝑋1 and 𝑋2. If E[𝑋𝑖] = 𝜇𝑖 and V[𝑋𝑖] = 𝜎2

𝑖
< ∞ for

all 𝑖, then

Cov[𝑋1 , 𝑋2] = E[(𝑋1 − 𝜇1)(𝑋2 − 𝜇2)] = E[𝑋1𝑋2] − 𝜇1𝜇2.

If 𝑋1 , 𝑋2 both take values in U= {𝑢1 , . . . , 𝑢𝑁 }, then their joint expecta-
tion is

E[𝑋1𝑋2] =
𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘𝑃(𝑋1 = 𝑢𝑗 , 𝑋2 = 𝑢𝑘).

In the case where 𝑋1 = 𝑌𝑖 and 𝑋2 = 𝑌ℓ (with the interpretation given

before) for 1 ≤ 𝑖 ≠ ℓ ≤ 𝑛, we get

𝑃(𝑌𝑖 = 𝑢𝑗 , 𝑌ℓ = 𝑢𝑘) = 𝑃(𝑌𝑖 = 𝑢𝑗)𝑃(𝑌ℓ = 𝑢𝑘 | 𝑌𝑖 = 𝑢𝑗) =
{

1

𝑁 · 1

𝑁−1
if 𝑗 ≠ 𝑘

0 if 𝑗 = 𝑘

But E[𝑌𝑖] = E[𝑌ℓ ] = 𝜇, and so

Cov(𝑌𝑖 , 𝑌ℓ ) =


1

𝑁(𝑁−1)

[ 𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘 −
𝑁∑
𝑚=1

𝑢2

𝑚︸  ︷︷  ︸
doublecounting

]
− 𝜇2

if 𝑖 ≠ ℓ

𝜎2
if 𝑖 = ℓ (by convention)

We use the properties

∑
𝑢𝜉 = 𝑁𝜇 and

∑
𝑢2

𝜉 = 𝑁(𝜇2 + 𝜎2) to simplify the
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expression when 𝑖 =≠ ℓ :

Cov(𝑌𝑖 , 𝑌ℓ ) =
1

𝑁(𝑁 − 1)
[ 𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘 −
𝑁∑
𝑚=1

𝑢2

𝑚 − 𝑁(𝑁 − 1)𝜇2

]
=

1

𝑁(𝑁 − 1)
[ 𝑁∑
𝑗=1

𝑢𝑗

( 𝑁∑
𝑘=1

𝑢𝑘

)
− 𝑁(𝜎2 + 𝜇2) − 𝑁(𝑁 − 1)𝜇2

]
=

1

𝑁(𝑁 − 1)
[
𝑁𝜇

𝑁∑
𝑗=1

𝑢𝑗 − 𝑁𝜎2 − 𝑁𝜇2 − 𝑁2𝜇2 + 𝑁𝜇2

]
=

1

𝑁(𝑁 − 1)
[
𝑁𝜇 · 𝑁𝜇 − 𝑁𝜎2 − 𝑁2𝜇2

]
= − 𝜎2

𝑁 − 1

.

Using the formulas of the previous section, we thus obtain

E[𝑌] = E

[𝑌1 + · · · + 𝑌𝑛
𝑛

]
=

1

𝑛
E[𝑌1 + · · · + 𝑌𝑛] =

1

𝑛

(
E[𝑌1] + · · ·E[𝑌𝑛]

)
=

1

𝑛
(𝜇 + · · · + 𝜇︸       ︷︷       ︸

𝑛 times

) = 𝜇, and

V[𝑌] = V

[𝑌1 + · · · + 𝑌𝑛
𝑛

]
=

1

𝑛2

V[𝑌1 + · · · + 𝑌𝑛] =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
ℓ=1

Cov(𝑌𝑖 , 𝑌ℓ )

=
1

𝑛2

[ 𝑛∑
𝑖=1

𝜎2 + 2

𝑛∑
𝑖=1

𝑛∑
ℓ=𝑖+1

Cov(𝑌𝑖 , 𝑌ℓ )
]
=

1

𝑛2

[
𝑛𝜎2 − 𝑛(𝑛 − 1) 𝜎2

𝑁 − 1

]
=

𝜎2

𝑛

(
1 − 𝑛 − 1

𝑁 − 1

)
=

𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Let’s go back to the above example: we have 𝑁 = 4, 𝑛 = 3, 𝜇 = 2, and

𝜎2 = 7

2
. According to what we have just found, we indeed get

E[𝑌] = 2 and V[𝑌] = 7/2

3

(
4 − 3

4 − 1

)
=

7

18

.

The component
𝑁−𝑛
𝑁−1

is the finite population correction factor (FPCF);

it shows up because the population is not infinite. Since the SRS is

constructed without replacing the units in the finite population after they

have been drawn into the sample, the presence of a unit in the SRS affects

the probability that another unit will also be in the SRS – the random
variables 𝑌𝑖 are not independent.1818: When 𝑁 is “large” and the ratio

𝑛
𝑁

is

“small”, the FPCF ≈ 1, in which case the

situation is very similar to sampling with

replacement. 10.3.2 Estimators and Confidence Intervals

The estimator 𝑦 is unbiased under SRS. In that case, how do we interpret

the sapling variance V(𝑦)? Quite simply, it provides an idea of the typical

distance between the empirical mean 𝑦 and the population mean 𝜇.

The mean square error of 𝑦 under SRS is

MSE(𝑦) = V(𝑦) + (E(𝑦) − 𝜇)2 = V(𝑦) + 0 = V(𝑦),

which is to say that the estimation error is entirely dominated by V(𝑦).
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When we sample with replacement,
19

the samples 𝑦1 , . . . , 𝑦𝑛 are viewed 19: Which is not a SRS situation.

as independent from one another. If they are also indentically dis-
tributed, we then have E(𝑦𝑖) = 𝜇 and V(𝑦𝑖) = 𝜎2

, or

E(𝑦) = 𝜇, and V(𝑦) = 𝜎2

𝑛
.

When 𝑛 → ∞, the CLT states that 𝑦 ∼ approx.N(𝜇, 𝜎2/𝑛), whence

𝑍 =
𝑦 − 𝜇

SD(𝑦) =
𝑦 − 𝜇

𝜎/
√
𝑛

∼approx. N(0, 1).

Let 𝛼 ∈ (0, 1). Denote the (1 − 𝛼)th quantile of a standard normal
random variable 𝑍 ∼ N(0, 1) by 𝑧𝛼 > 0. According to the frequentist

interpretation of probability, we can expect that

𝑦−𝜇
𝜎/

√
𝑛

will fall in the

interval (−𝑧𝛼/2
, 𝑧𝛼/2

) roughly 100(1 − 𝛼)% of the time:
20

20: The important quantiles are illustrated

below:

𝑃(−𝑧𝛼/2
≤ 𝑍 ≤ 𝑧𝛼/2

) = 𝑃
(
−𝑧𝛼/2

𝜎√
𝑛

≤ 𝑦 − 𝜇 ≤ 𝑧𝛼/2

𝜎√
𝑛

)
≈ 1 − 𝛼.

The quantity

𝐵𝛼 = 𝑧𝛼/2

𝜎√
𝑛

= 𝑧𝛼/2
SD(𝑦)

is the bound on the error of estimation, and we can build an approximate

95% confidence interval for the mean 𝜇:

C.I.(𝜇; 100(1 − 𝛼)%) : 𝑦 ± 𝐵𝛼 = 𝑦 ± 𝑧𝛼/2

𝜎√
𝑛
.

However, in a SRS scenario, we are NOT dealing with i.i.d. random

variables. How must this argument be modified when we sample without

replacement from a finite population?

Sampling Context – Gapminder Data

We will illustrate the important concepts of sampling theory with the

help of the 2011 Gapminder dataset, as we had done at the start of the

section. In addition to average life expectancy, we are also interested in:

the total population of the planet,

the average population per country, and

the proportion of countries with a population of less than 10M.

The population of 185 countries is available – it ranges from 56, 641 to

1, 348, 174, 478, with an average value 𝜇 = 37, 080, 426.

gapminder.SRS <- gapminder |>

filter(year==2011) |> select(life_expectancy,population)

str(gapminder.SRS)

summary(gapmider.SRS)
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’data.frame’: 185 obs. of 2 variables:

$ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...

$ population : int 2886010 36717132 21942296 88152 41655616 ...

life_expectancy population

Min: 46.70 5.644e+04

1st Qu: 65.30 2.064e+06

Median :73.70 7.563e+06

Mean :71.18 3.708e+07

3rd Qu.:77.40 2.423e+07

Max. :83.02 1.348e+09

ggplot(data=gapminder.SRS, aes(population)) +

geom_rug() +

geom_vline(xintercept=mean(gapminder.SRS$population),

color="red") +

geom_histogram(col="black", fill="blue", alpha=.2)

The population distribution by country is asymmetric, with a tail that

spreads to the right, and two outliers (China and India). These observa-

tions will sometimes be removed from the data set.

gapminder.SRS.2 <- gapminder |>

filter(year==2011) |>

select(life_expectancy,population) |>

filter(population<500000000)

nrow(gapminder.SRS.2)

summary(data.frame(gapminder.SRS.2$population))

[1] 183

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 2061342 7355231 23301958 22242334 312390368
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ggplot(data=gapminder.SRS.2, aes(population)) +

geom_rug() +

geom_vline(xintercept=mean(gapminder.SRS$population),

color="red") +

geom_histogram(col="black", fill="blue", alpha=.2)

The associated distribution has the same shape as the one with all

countries, but the 183 populations all fall below 312, 390, 368, with a

mean value of 𝜇 = 23, 301, 958.

Estimating the Mean 𝜇

In an SRS, we have shown that the empirical mean 𝑦 computed from a

sample of size 𝑛 is an unbiased estimator of the mean𝜇 of a population of

size 𝑁 and variance 𝜎2
. We have also shown that the sampling variance

of the 𝑦 estimator is

V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

What distribution can we expect 𝑦 to follow? Let’s go back to the example

of the world population (without China and India). We produce 500 SRS

samples of 𝑛 = 20 countries from the list of 𝑁 = 183 countries. For each

sample 1 ≤ 𝑖 ≤ 500, we compute the empirical mean 𝑦 𝑖 :

set.seed(12) # replicability

N=dim(gapminder.SRS.2)[1]

n=20

m=500

means <- c()

for(k in 1:m){

means[k] <- mean(gapminder.SRS.2[sample(1:N,n,

replace=FALSE),2])
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}

The SRS sample means are listed below:

summary(data.frame(means))

Min. : 5244486

1st Qu.:16289930

Median :21986525

Mean :23238867

3rd Qu.:28718720

Max. :55152022

Their distribution (and mean) is:

ggplot(data=data.frame(means), aes(means)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(means), color="red")

Although the distribution of empirical means 𝑦 𝑖 is asymmetric with a
tail spreading to the right, the density curve still resembles that of a

normal distribution.

Central Limit Theorem – SRS Let U = {𝑢1 , . . . , 𝑢𝑁 } be a finite popu-

lation with mean 𝜇 and variance 𝜎2
, and let Y = {𝑦1 , . . . , 𝑦𝑛} ⊆ U be

a simple random sample. If 𝑛 and 𝑁 − 𝑛 are both “sufficiently large”,

then

𝑦 ∼approx. N(E(𝑦),V(𝑦)) = N

(
𝜇,

𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

))
.
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In a SRS, the bound on the error of estimation and the approximate 95%
C.I. are given by:

𝐵𝜇 = 2

√
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
and 𝑃(|𝑦−𝜇| ≤ 𝐵𝜇) ≈ 𝑃

(��� 𝑦−𝜇
SD(𝑦)

��� ≤ 2

)
≈ 0.9544.

In practice, the population variance 𝜎2
is rarely known. We usually

approximate it with the empirical variance

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2 =
1

𝑛 − 1

[ 𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

]
, {𝑦𝑖} i.i.d.

Unfortunately, 𝑠2
is a biased estimator of 𝜎2

when the simple random

sample is selected without replacement from a finite population. In-

deed,

E(𝑠2) = E

[
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2
]

= E

[
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇 + 𝜇 − 𝑦)2
]

= E

[
1

𝑛 − 1

[ 𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇)2 − 𝑛(𝑦 − 𝜇)2
] ]

=
1

𝑛 − 1

[ 𝑛∑
𝑖=1

E

[
(𝑦𝑖 − 𝜇)2

]
− 𝑛E

[
(𝑦 − 𝜇)2

] ]
=

1

𝑛 − 1

[ 𝑛∑
𝑖=1

𝜎2 − 𝑛V(𝑦)
]

=
1

𝑛 − 1

[
𝑛𝜎2 − 𝑛 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)]
=

𝜎2

𝑛 − 1

[
𝑛 − 𝑁 − 𝑛

𝑁 − 1

]
=

𝜎2

𝑛 − 1

[𝑛𝑁 − 𝑛 − 𝑁 + 𝑛
𝑁 − 1

]
=

𝜎2

𝑛 − 1

· 𝑁(𝑛 − 1)
𝑁 − 1

=
𝑁

𝑁 − 1

𝜎2.

The unbiased estimator of 𝜎2
in the SRS context is instead

𝑁 − 1

𝑁
𝑠2

since

E

[
𝑁 − 1

𝑁
𝑠2

]
=
𝑁 − 1

𝑁
E(𝑠2) = 𝑁 − 1

𝑁
· 𝑁

𝑁 − 1

𝜎2 = 𝜎2.

We can approximate the sampling variance by replacing 𝜎2
by

𝑁−1

𝑁 𝑠2
in

the expression for V(𝑦):

V̂(𝑦) = 𝑁 − 1

𝑁
· 𝑠

2

𝑛

(
𝑁 − 𝑛
𝑁 − 1

)
=
𝑠2

𝑛

(
𝑁 − 𝑛
𝑁

)
=
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
.

The bound on the error of estimation is thus approxiated by

𝐵𝜇 ≈ 𝐵̂𝜇 = 2

√
V̂(𝑦) = 2

√
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
,
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from which we conclude that

C.I.(𝜇; 0.95) : 𝑦 ± 2

√
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
is an approximate 95% confidence interval for 𝜇.

If the population variance 𝜎2
is known, the FPCF is

𝑁−𝑛
𝑁−1

; if it is unknwon,

the FPCF in 1 − 𝑛
𝑁 . In practice, when the sampling rate 𝑛

𝑁 is below 5%,

we can easily drop the FPCF (1 − 𝑛
𝑁 ≈ 1) without affecting the resulting

quantities too greatly.

Example We draw a SRS sample Y of size 𝑛 = 132 from a finite

population Uwith 𝑁 = 37, 444 units. Let the sample mean and sample

standard deviation be 𝑦 = 111.3 and 𝑠 = 16.35, respectively. Find an

approximate 95% C.I. for the population average 𝜇.

The bound on the error of estimation is roughly

𝐵̂𝜇 = 2

√
V̂(𝑦) = 2

√
16.35

2

132

(
1 − 132

37444

)
≈ 2.8,

which implies that

C.I.(𝜇; 0.95) ≈ 111.3 ± 2.8;

the outcome is basically the same without the FPCF. ■

Example Find an approximate 95% C.I. for the average population per

country in 2011 (excluding China and India) with a SRS of size 𝑛 = 20.

We draw such a SRS sample and compute its sample mean 𝑦 and

sample variance 𝑠2
(the outcomes will of course vary from one sample to

another).

set.seed(12) # replicability

N = dim(gapminder.SRS.2)[1]

n = 20

SRS = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]

(y.bar = mean(SRS))

(s.2 = var(SRS))

[1] 35217143

[1] 5.492071e+15

If we do not know the population variance, the bound 𝐵̂𝜇 and the

corresponding approximate 95% C.I. for 𝜇 are given by:

(B.hat = 2*sqrt(s.2/n*(1-n/N)))

(IC.hat = c(y.bar-B.hat,y.bar+B.hat))

[1] 31278890

[1] 3938253 66496034
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We can compare with the true mean 𝜇:

(mu = mean(gapminder.SRS.2[,2]))

[1] 23301958

Sure enough, 𝜇 is in the confidence interval:

mu > IC.hat[1] & mu < IC.hat[2]

[1] TRUE

In this case, however, we also knew the population variance 𝜎2
:

(sigma.2 = var(gapminder.SRS.2[,2]))

[1] 1.885224e+15

The bound 𝐵𝜇 and the corresponding approximate 95% C.I. for 𝜇 are

then obtained via:

(B = 2*sqrt(sigma.2/n*(N-1)/(N-n)))

(IC = c(y.bar-B,y.bar+B))

[1] 20518160

[1] 14698984 55735303

Sure enough, 𝜇 is again in the confidence interval:

mu > IC[1] & mu < IC[2]

[1] TRUE

In both cases, the true mean𝜇 = 23, 301, 958 is contained in the confidence

interval. We also notice that the C.I. when the variance 𝜎2
is known is

contained in the 95% C.I. when the variance is not known.
21 ■ 21: Will this always be the case?

In this case, the true mean was in the confidence interval. But it could be

that the 95% C.I. constructed from a sample does not contain the mean 𝜇.

Example We repeat this procedure 𝑚 = 1000 times (with different

samples each time). If the CLT for SRS applies, how many times would

we expect 𝜇 to be in the approximate 95% C.I. built from the simple

random samples? Assume that 𝜎2
is not known.
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m = 1000

mu.in.IC = c()

y.bar = c()

for(j in 1:m){

test = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]

s.2 = var(test)

B.hat = 2*sqrt(s.2/n*(1-n/N))

y.bar[j] = mean(test)

mu.in.IC[j] = y.bar[j]-B.hat < mu & mu < y.bar[j]+B.hat

}

mean(mu.in.IC)

[1] 0.821

This is not the ≈ 95% we expected; but if we increase the sample size,

the proportion gets closer to 95% (see Exercises). The long tail of the

population distribution for 𝑁 = 183 units probably plays a role – the

distribution of the sample measn 𝑦 (with 𝑚 = 1000 samples of size

𝑛 = 20) does not appear to be normal.

ggplot(data=data.frame(y.bar), aes(y.bar)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(y.bar), color="red")

Estimating the Total 𝜏

Most of the work has been done: since the total 𝜏 can be re-written as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,
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we can approximate 𝜏 with a SRS through the formula

𝜏̂ = 𝑁𝑦 =
𝑁

𝑛

𝑛∑
𝑖=1

𝑦𝑖 .

This estimator is unbiased since its expectation is

E(𝜏̂) = E(𝑁𝑦) = 𝑁 · E(𝑦) = 𝑁𝜇 = 𝜏.

Its sampling variance is given by

V(𝜏̂) = V(𝑁𝑦) = 𝑁2 · V(𝑦) = 𝑁2 · 𝜎
2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

the bound on the estimation error is thus

𝐵𝜏 = 2

√
V(𝜏̂) = 2

√
𝑁2 · 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
= 𝑁 · 𝐵𝜇.

Since we do not usually know the true population variance 𝜎2
of U, we

provide an approximation by substituting 𝜎2
by the sample variance 𝑠2

,

which needs to be multiplied by the “biased” factor
𝑁−1

𝑁 .
22

We can thus 22: Recall that 𝑠2
is a biased estimator of

𝜎2
in a SRS.

provide an approximation of the sampling variance using

V̂(𝜏̂) = V̂(𝑁𝑦) = 𝑁2 · 𝑠
2

𝑛

(
1 − 𝑛

𝑁

)
;

this yields an approximate bound on the estimation error of

𝐵𝜏 ≈ 𝐵̂𝜏 = 2

√
V̂(𝜏̂) = 2

√
𝑁2 · 𝑠

2

𝑛

(
1 − 𝑛

𝑁

)
= 𝑁 · 𝐵̂𝜇 ,

and an approximate 95% C.I. for 𝜏:

C.I.(𝜏; 0.95) : 𝜏̂ ± 2

√
𝑁2 · 𝑠

2

𝑛

(
1 − 𝑛

𝑁

)
.

Example Consider a sample Y of size 𝑛 = 132 drawn from a finite

population U of size 𝑁 = 37, 444. Suppose the empirical mean and

standard deviation of the sample are 𝑦 = 111.3 and 𝑠 = 16.35, respectively.

Give an approximate 95% C.I. for the total 𝜏 in U.

The approximate bound on the error of estimation

𝐵̂𝜏 = 2

√
𝑁2 · V̂(𝑦) = 2

√
37444

2 · 16.35
2

132

(
1 − 132

37444

)
≈ 106, 383.9643,

which yields

C.I.(𝜏; 0.95) ≈ 37, 444 · 111.3 ± 106, 383.9643 = 4, 167, 517.2 ± 106, 384.0,

or simply (4, 061, 133.2; 4, 273, 901.2). ■

Example Find an approximate 95% C.I. for the population of the planet

in 2011 (excluding China and India), using a SRS of size 𝑛 = 20, assuming
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that

𝑦 = 27, 396, 632 and C.I.(𝜇; 0.95) ≡ (6, 755, 099; 48, 038, 164).

We have 𝐵̂𝜇 ≈ 48, 038, 164 − 27, 396, 632 = 20, 641, 532 and

𝐵̂𝜏 ≈ 𝑁𝐵̂𝜇 = 183 · 20, 641, 532 = 3, 777, 400, 356,

from which we conclude that

C.I.(𝜏; 0.95) : 𝑁𝑦 ± 𝐵𝜏 = 183(27, 396, 632) ± 3, 777, 400, 356,

or simply, C.I.(𝜏; 0.95) :≡ (1, 236, 183, 300; 8, 790, 984, 012).23 ■23: The interval is “valid”, but it is per-

haps too wide to be of practical use. We

will discuss ways to improve the predic-

tion in future sections. Estimating a Proportion 𝑝

In a population Uwhere 𝑢𝑗 ∈ {0, 1} represents a binary response for all

1 ≤ 𝑗 ≤ 𝑁 ,
24

the mean takes a particular interpretation:24: For example, 𝑢𝑗 = 1 when the corre-

sponding unit possesses a certain charac-

teristic, and 𝑢𝑗 = 0 when it does not.

𝑝 = 𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗

is the proportion of the units possessing the characteristic in question.

This proportion can be estimated with a SRS via:

𝑝̂ = 𝑦 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 𝑦𝑖 ∈ {0, 1}.

It is an unbiased estimator of the proportion since its expectation is

E(𝑝̂) = E(𝑦) = 𝜇 = 𝑝;

its sampling variance is

V(𝑝̂) = V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But𝑈2 = 𝑈 when𝑈 is a binary response, from which we see that

𝜎2 = E[𝑈2] − E
2[𝑈] = E[𝑈] − E

2[𝑈] = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝),

and so

V(𝑝̂) = 𝑝(1 − 𝑝)
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound on the error of estimation is thus

𝐵𝑝 = 2

√
V(𝑝̂) = 2

√
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

When the population variance 𝜎2
is unknown (which is to say, when the

true 𝑝 is unknown, which is usually the case), the sampling variation
approximation is

V̂(𝑝̂) = V̂(𝑦) = 𝑠2

𝑛

(
1 − 𝑛

𝑁

)
.
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But recall that 𝑦𝑖 only takes on the values 0 and 1, so that 𝑦2

𝑖
= 𝑦𝑖 for

1 ≤ 𝑖 ≤ 𝑛, from which we see that

𝑠2 =
1

𝑛 − 1

( 𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

)
=
𝑛𝑦 − 𝑛𝑦2

𝑛 − 1

=
𝑛(𝑝̂ − 𝑝̂2)
𝑛 − 1

=
𝑛𝑝̂(1 − 𝑝̂)
𝑛 − 1

,

and

V̂(𝑝̂) = 𝑛𝑝̂(1 − 𝑝̂)
(𝑛 − 1)𝑛

(
1 − 𝑛

𝑁

)
=
𝑝̂(1 − 𝑝̂)
𝑛 − 1

(
1 − 𝑛

𝑁

)
.

The approximate estimation error bound becomes

𝐵𝑝 ≈ 𝐵̂𝑝 = 2

√
V̂(𝑝̂) = 2

√
𝑝̂(1 − 𝑝̂)
𝑛 − 1

(
1 − 𝑛

𝑁

)
,

with the corresponding approximate 95% C.I. for 𝑝 being

C.I.(𝑝; 0.95) : 𝑝̂ ± 2

√
𝑝̂(1 − 𝑝̂)
𝑛 − 1

(
1 − 𝑛

𝑁

)
.

Example Consider a sample Y of size 𝑛 = 132 drawn from a finite

population Uof size 𝑁 = 37, 444. Suppose that 25 of the observations of

Yhave a particular characteristic. Find an approximate 95% C.I. for the

proportion 𝑝 of the observations of U that possess the feature.

In this case, 𝑝̂ = 25/132 ≈ 0.19. The required approximate bound is

thus

𝐵̂𝑝 = 2

√
V̂(𝑝̂) = 2

√
0.19(1 − 0.19)

132 − 1

(
1 − 132

37444

)
≈ 0.0684,

from which we get

C.I.(𝑝; 0.95) ≈ 0.19 ± 0.0684 ≡ (0.121, 0.258). ■

Example Find an approximate 95% C.I. for the proportion of countries

for which the 2011 population fell below 10M, using a SRS with sample

size 𝑛 = 20.

Let’s draw a SRS sample of size 𝑛 = 20 and compute 𝑝̂ (results will vary

from one sample to when the population of a country is smaller than

10M and FALSE otherwise.

set.seed(1234) # replicability

N=dim(gapminder.SRS.2)[1]

n=20

thresh.10 <- gapminder.SRS.2[,2] < 10000000

SRS = thresh.10[sample(1:N,n, replace=FALSE)]

The proportion of countries with a population smaller than 10M in that

sample is:

(p.hat = mean(SRS))
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[1] 0.6

The true proportion 𝑝, amongst the 𝑁 = 185 countries, is:

(p = mean(thresh.10))

[1] 0.5737705

If we assume that population variance is unknown, the bound 𝐵̂𝑝 and

the approximate 95% C.I. are given by:

(B.p = 2*sqrt(p.hat*(1-p.hat)/(n-1)*(1-n/N)))

(IC = c(p.hat-B.p,p.hat+B.p))

[1] 0.2121422

[1] 0.3878578 0.8121422

The true proportion 𝑝 ≈ 0.568 is indeed in the confidence interval. If

we repeat this process 𝑚 = 1000 times, how often is the true proportion

found inside the obtained C.I.?

m=1000

p.in.IC = c()

p.hat = c()

for(j in 1:m){

p.hat[j] = mean(thresh.10[sample(1:N,n, replace=FALSE)])

B.p = 2*sqrt(p.hat[j]*(1-p.hat[j])/(n-1)*(1-n/N))

p.in.IC[j] = p.hat[j]-B.p < p & p < p.hat[j]+B.p

}

mean(p.in.IC)

[1] 0.963

Quite close to 95%, you will agree. The distribution of the 𝑚 = 1000

estimates 𝑝̂ is shown below, with the true proportion (red vertical line).

ggplot(data=data.frame(p.hat), aes(p.hat)) +

geom_histogram(bins=21, col="black", fill="blue",

alpha=.2) +

geom_vline(xintercept=mean(gapminder.SRS.2[,2]<10000000),

color="red") + xlim(0,1)
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10.3.3 Sample Size

Selecting an appropriate sample size is a challenge, and there is a bit of a

chicken-and-egg scenario at play.

Firstly, there is a practical problem associated with sampling: since the

cost associated with each response can be costly (in terms of time/cost),
we often seek to minimize the size of the realized sample Y, given a

desired error bound.

Secondly, the SRS error bound is expressed as

𝐵𝜉 = 2

√
V(𝜉̂), 𝜉 ∈ {𝜇, 𝜏, 𝑝},

but the variance depends on the sample size |Y| = 𝑛. We must then

express 𝑛 in terms of the (known) parameters 𝑁 , 𝜎2
, and 𝐵𝜉.

Mean 𝜇

If we are trying to estimate the mean 𝜇, we have:

𝐵𝜇 = 2

√
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝜇

4︸︷︷︸
=𝐷𝜇

=
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
(𝑁 − 1)𝐷𝜇

𝜎2

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1 ⇐⇒

(𝑁 − 1)𝐷𝜇 + 𝜎2

𝜎2

=
𝑁

𝑛

⇐⇒ 𝑛𝜇 =
𝑁𝜎2

(𝑁 − 1)𝐷𝜇 + 𝜎2

.

However, we can only use this formula is we know the population
variance 𝜎2

. We could chose to use the empirical variance 𝑠2
of the

sample Y as we did when we estimated the sample variance, but we
haven’t drawn Y from Uyet!

Stratagies (to obtain 𝜎2
):
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use a preliminary sample (not necessarily random),

use the empirical variance obtained in a previous study, or

for a proportion, use a conservative estimate (𝑝 = 0.5).

Example Consider a finite population Uwith size 𝑁 = 37, 444. We are

interested in the mean 𝜇 of the response variable in U. In a preliminary

SRS of size 𝑛 = 132, we computed an (empirical) standard deviation of

𝑠 = 16.35.

Using 𝜎 = 𝑠, find the minimal SRS sample size 𝑛𝜇 required to estimate

the mean with a bound on the error of estimation at most 𝐵𝜇 = 1.7.

We can use the formula directly to get

𝐷𝜇 =
(1.7)2

4

≈ 0.73 =⇒ 𝑛𝜇 =
37444(16.35)2

(37444 − 1)(0.73) + 16.35
2

= 366.39 ≈ 367. ■

Total 𝜏

If instead, we are seeking to estimate the total 𝜏, we have:

𝐵𝜏 = 2

√
𝑁2 · 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝐵2

𝜏

4𝑁2︸︷︷︸
=𝐷𝜏

=
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ (𝑁 − 1)𝐷𝜏

𝜎2

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒ (𝑁 − 1)𝐷𝜏 + 𝜎2

𝜎2

=
𝑁

𝑛

⇐⇒ 𝑛𝜏 =
𝑁𝜎2

(𝑁 − 1)𝐷𝜏 + 𝜎2

.

Example Consider a finite population U of size 𝑁 = 37, 444. We are

interested in the total 𝜏 of the response variable of U. In a preliminary

SRS of size 𝑛 = 132, we computed an empirical standard deviation of

𝑠 = 16.35.

Using 𝜎 = 𝑠, find the minimal SRS sample size 𝑛𝜏 required to estimate

the total response with a bound on the error of estimation at most

𝐵𝜏 = 10000.

We can use the formula directly to obtain

𝐷𝜏 =
(10000)2
4(37444)2 ≈ 0.018 =⇒ 𝑛𝜏 =

37444(16.35)2
(37444 − 1)(0.018) + 16.35

2

≈ 10706. ■
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Proportion 𝑝

If we are interested in the proportion 𝑝, we have:

𝐵𝑝 = 2

√
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝑝

4︸︷︷︸
=𝐷𝑝

=
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)

⇐⇒
(𝑁 − 1)𝐷𝑝

𝑝(1 − 𝑝) =
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒
(𝑁 − 1)𝐷𝑝 + 𝑝(1 − 𝑝)

𝑝(1 − 𝑝) =
𝑁

𝑛

⇐⇒ 𝑛𝑝 =
𝑁𝑝(1 − 𝑝)

(𝑁 − 1)𝐷𝑝 + 𝑝(1 − 𝑝) .

Example Consider a finite population U of size 𝑁 = 37, 444. We are

interested in the proportion 𝑝 of units that have a particular feature. In a

preliminary SRS of size 𝑛 = 132, we identify 25 observations possessing

the feature.

Using the approximation 𝜎2 = 25

132
· 107

132
from the preliminary sample, find

the minimal SRS sample size 𝑛𝑝 required to estimate the true proportion

with a bound on the error of estimation of at most 𝐵𝑝 = 0.03.

We use the formula directly and obtain

𝐷𝑝 =
(0.03)2

4

≈ 0.0002 =⇒ 𝑛𝑝 =
37444(0.189)(0.811)

(37444 − 1)(0.0002) + (0.189)(0.811) ≈ 671. ■

Example Consider a situation similar to the previous example. Using

the (conservative) approximation 𝜎2 = (0.5)2, find the minimal SRS

sample size 𝑛𝑝 required to estimate the true proportion with a bound on

the error of estimation of at most 𝐵𝑝 = 0.03.

We use the formula directly and obtain

𝐷𝑝 =
(0.03)2

4

≈ 0.0002 =⇒ 𝑛𝑝 =
37444(0.5)(0.5)

(37444 − 1)(0.0002) + (0.5)(0.5) ≈ 1080. ■

10.4 Stratified Random Sampling

The theory we developed in the previous section allows us to determine

the distribution of the three unbiased estimators 𝑦, ˆ𝑡𝑎𝑢, and 𝑝.

For instance, we have shown that if the size 𝑁 of a finite population

U= {𝑢1 , . . . , 𝑢𝑁 } of expectation 𝜇 and variance 𝜎2
and the size 𝑛 of the

SRS Y from which the estimator 𝑦 is constructed are sufficiently large,

and if moreover the responses 𝑢𝑗 are i.i.d. for 1 ≤ 𝑗 ≤ 𝑁 , then 𝑦 follows

approximately a normal distribution whose parameters are

E(𝑦) = 𝜇 and V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.
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The higher 𝜎2
is, the more the repeated SRS 𝑦 values vary.

In practice, the normal approximation is:

often acceptable – see average life expectancy, previous section;

but it is not always so, which can lead to some challenges – cf. the

C.I.(𝜇; 0.95) for the average population which was in fact only an

80% C.I. for a SRS of size 𝑛 = 20 in the previous section.

In the presence of outliers or when 𝑛, 𝑁 are too small, the performance

of an SRS may leave something to be desired.

Example Consider a finite population with 𝑁 = 16 elements:

2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 5, 5, 5, 5.

The population mean and variance are, respectively:

𝜇 =
1

16

(4 · 2 + 4 · 0 + 4 · 1 + 4 · 5) = 2;

𝜎2 =
1

16

(4 · 2
2 + 4 · 0

2 + 4 · 1
2 + 4 · 5

2) − 2
2 =

7

2

.

Suppose that we draw an SRS of size 𝑛 = 4 from this population, in order

to estimate the mean 𝜇.

From what we discussed in the previous section, the expectation and

sampling variance of the estimator 𝑦 are, respectively:

E(𝑦) = 2 and V(𝑦) =
√

7/2

2

4

(
16 − 4

16 − 1

)
=

7

10

.

We could also restrict the sampling structure in the following manner:

1. we start by separating the population into 4 segments (the strata):

strata 1 : 2, 2, 2, 2

strata 2 : 0, 0, 0, 0

strata 3 : 1, 1, 1, 1

strata 4 : 5, 5, 5, 5

2. we then draw a SRS of size 𝑛 = 4 by selecting one unit per stratum.

In such a situation (which is NOT a SRS(𝑛 = 4, 𝑁 = 16)), each achieved
sample takes the form {2, 0, 1, 5}: the empirical mean is always 2, and so

the sampling variance is null.

In practice, this artificial situation rarely occurs, but if the units of the

population can be grouped into natural strata, i.e., sub-populations for

which:

the response value is homogeneous within each stratum, but

it is heterogeneous from one stratum to another, then

this approach can produce an estimator whose sampling variance is
lower than that of the SRS estimator; as a bonus, the sample preserves
certain population structures.
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Example Find an approximate 95% C.I. for the average population per

country (excluding China and India) in 2011. The population distribution

in the 2011 Gapminder dataset has the following characteristics:

gapminder.STS <- gapminder |>

filter(year==2011) |> select(population) |>

filter(population < 1000000000)

summary(gapminder.STS$population)

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 2061342 7355231 23301958 22242334 312390368

The true average population, by country, is 𝜇 = 23, 301, 958. Recall that

the population distribution is asymmetrical:

N = nrow(gapminder.STS)

ggplot(data=gapminder.STS, aes(population)) +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(gapminder.STS$population),

color="red") + geom_rug()

We use the population strata [0, 10𝑀), [10𝑀, 25𝑀), [25𝑀, 50𝑀), 100M+.

gapminder.STS <- gapminder.STS |>

mutate(strata = ifelse(population<10000000,"S1",

ifelse(population<25000000,"S2",

ifelse(population<50000000,"S3",

ifelse(population<100000000,"S4","S5")))))

gapminder.STS <- gapminder.STS[order(gapminder.STS$population),]

gapminder.STS$strata <- as.factor(gapminder.STS$strata)
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The number of countries in each stratum is:

(strata.N <- tapply(gapminder.STS$population,

gapminder.STS$strata, length))

S1 S2 S3 S4 S5

105 35 21 13 9

For a sample size of 𝑛 = 20, we use approximately 𝑛𝑖 countries per

stratum 𝑆𝑖 :

strata.N/sum(strata.N)*20

S1 S2 S3 S4 S5

11.4754098 3.8251366 2.2950820 1.4207650 0.9836066

Some practical considerations might suggest the use of a different
allocation (more on this later). The distribution of the population by

stratum has the following characteristics:

tapply(gapminder.STS$population, gapminder.STS$strata,

summary)

$S1

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 622957 2886010 3386819 5411377 9988846

$S2

Min. 1st Qu. Median Mean 3rd Qu. Max.

10027140 11234699 15177280 15682124 20213668 24928503

$S3

Min. 1st Qu. Median Mean 3rd Qu. Max.

25016921 29427631 34499905 36211465 41655616 49356692

$S4

Min. 1st Qu. Median Mean 3rd Qu. Max.

52237272 63268405 73517002 73841185 83787634 94501233

$S5

Min. 1st Qu. Median Mean 3rd Qu. Max.

120365271 143211476 163770669 182154642 200517584 312390368

In the first attempt, we draw a SRS from each stratum, using the following

sizes: (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (11, 4, 3, 1, 1):

set.seed(12345) # replicability

n=c(); n[1] = 11; n[2] = 4; n[3] = 3; n[4] = 1; n[5] = 1

ind = list()

# draw a SRS of indices in each of the 5 strata
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ind[[1]] <- sample(1:strata.N[1],n[1])

ind[[2]] <- sum(strata.N[1:1]) + sample(1:strata.N[2],n[2])

ind[[3]] <- sum(strata.N[1:2]) + sample(1:strata.N[3],n[3])

ind[[4]] <- sum(strata.N[1:3]) + sample(1:strata.N[4],n[4])

ind[[5]] <- sum(strata.N[1:4]) + sample(1:strata.N[5],n[5])

The average population in the sample is computed as below (this value

will change from one STS to another).

sample.STS <- gapminder.STS[unique(unlist(ind)),]

mean(sample.STS$population)

[1] 24378331

This naïve approach is not ideal.
25

The estimator 25: Despite the relative accuracy of the

estimate.

𝑦
STS

= 1

20
(𝑦1 + · · · + 𝑦20)

implies that each observation had the same probability of being chosen,

which is not the case in reality.
26

26: Remember, we are not dealing with a

SRS situation.

In our second attempt, the weight of

each selected observation depends on the size of the stratum.
27

27: We will discuss the theoretical details

in the next section.

set.seed(123456) # replicability

cumul.n = cumsum(n); cumul.N = cumsum(strata.N)

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sample.STS <- gapminder.STS[unique(unlist(ind)),]

sample.STS = sample.STS[order(sample.STS$population),]

y.bar <- list()

y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sample.STS[(cumul.n[j-1]+1):cumul.n[j], c("population")])

}

y.bar.STS <- 0

for(j in 1:length(n)){

y.bar.STS <- y.bar.STS +

as.numeric(strata.N[j])*y.bar[[j]]

}

y.bar.STS/N

[1] 22668202

The estimate is very close to the actual value of 𝜇, but a lone point

estimate does not tell the full story.
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We repeat this procedure 500 times, each time using the same size

allocation (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (9, 3, 3, 3, 2):

set.seed(12) # replicability

strata.N <- tapply(gapminder.STS$population,

gapminder.STS$strata, length)

cumul.N = cumsum(strata.N)

n=c(); n[1] = 9; n[2] = 3; n[3] = 3; n[4] = 3; n[5] = 2

cumul.n = cumsum(n)

m=500

means <- c()

for(k in 1:m){

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] +

sample(1:strata.N[j],n[j])

}

ind.STS <-unique(unlist(ind))

sample.STS <- gapminder.STS[ind.STS,]

sample.STS = sample.STS[order(sample.STS$population),]

y.bar <- list()

y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])

for(j in 2:length(n)){

y.bar[[j]] = mean(sample.STS[(cumul.n[j-1]+1):

cumul.n[j],c("population")])

}

y.bar.STS <- 0

for(j in 1:length(n)){

y.bar.STS <- y.bar.STS +

as.numeric(strata.N[j])*y.bar[[j]]

}

means[k] <- y.bar.STS/N

}

For each sample 1 ≤ 𝑖 ≤ 500, we then compute the empirical mean –

their distribution has the following characteristics:

summary(means)

Min. 1st Qu. Median Mean 3rd Qu. Max.

17608174 21602380 22735650 23179372 24655297 29082447

Finally, we plot the histogram of the STS means (with their mean in

red):
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ggplot(data=data.frame(means), aes(means)) + geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(means), color="red")

Not only is the shape of the distribution closer to a normal distribution,

compared to the distribution of 𝑦 obtained using SRS, but its variance is

also much lower.

As an illustration, ccompare the following image, on the same scale as

the corresponding histogram for SRS in Section 10.3.2.

ggplot(data=data.frame(means), aes(means)) + geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

xlim(0,60000000) +

geom_vline(xintercept=mean(means), color="red")
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Figure 10.7: Schematics of STS: target pop-

ulation (left) and sample (right).

10.4.1 Estimators and Confidence Intervals

Assume that we are interested in a finite population U= {𝑢1 , . . . , 𝑢𝑁 },
whose expectation is 𝜇 and variance is 𝜎2

. We cover the population with

𝑀 disjoint strata, containing, respectively, 𝑁1 , . . . , 𝑁𝑀 units:

U1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , U𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with stratum mean and stratum variance

𝜇𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 and 𝜎2

𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢2

𝑖 , 𝑗 − 𝜇2

𝑖 , 1 ≤ 𝑖 ≤ 𝑀.

A stratified sample Yof size 𝑛 ≤ 𝑁 is a subset of the target population

U, with𝑛1 + · · · + 𝑛𝑀 = 𝑛 and 𝑛𝑖 ≤ 𝑁𝑖 for 1 ≤ 𝑖 ≤ 𝑀:

{𝑦1,1 , . . . , 𝑦1,𝑛1︸          ︷︷          ︸
∈ strate U1

, . . . , 𝑦𝑀,1 , . . . , 𝑦𝑀,𝑛𝑚︸              ︷︷              ︸
∈ strate U𝑀

} ⊆
𝑀⋃
𝑖=1

U𝑖 = U.

If every sample Y𝑖 = {𝑦𝑖 , 𝑗 | 1 ≤ 𝑗 ≤ 𝑛𝑖} is drawn from the corresponding

stratum U𝑖 via a SRS, independently from one stratum to another, we

obtain a stratified random sample (STS) of size 𝑛. The sample mean and

the sample variance28
of Y𝑖 are denoted by 𝑦 𝑖 and 𝑠2

𝑖
, respectively. In a28: Which it is important to remember

is not the same thing as the “sampling

variance” of an estimator.

STS design, each observation in a stratum has the same probability of
being selected, but it may differ from one stratum to another.

Mean 𝜇

In a STS, the sample mean of the observations of the sample Y falling in

the stratum U𝑖 is an estimator of 𝜇𝑖 given by

𝑦 𝑖 =
1

𝑛𝑖

𝑛𝑖∑
ℓ=1

𝑦𝑖 ,ℓ , where 𝑛𝑖 = |U∩ Y𝑖 |, 1 ≤ 𝑖 ≤ 𝑀.

The true mean 𝜇 and the STS estimator of 𝜇 are thus:

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜇𝑖 and 𝑦
STS

=
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 .
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Since Y𝑖 is a SRS drawn from U𝑖 , we have:
29

29: For the sake of completeness, the SRS

estimator is sometimes denoted by 𝑦
SRS

.

E(𝑦 𝑖) = 𝜇𝑖 and V(𝑦 𝑖) =
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
, pour 1 ≤ 𝑖 ≤ 𝑀.

The expectation of the STS estimator is thus:

E

(
𝑦

STS

)
= E

(
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖

)
=

1

𝑁

𝑀∑
𝑖=1

𝑁𝑖E(𝑦 𝑖) =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜇𝑖 = 𝜇,

which is to say that 𝑦
STS

is an unbiased estimator of the true mean 𝜇 for

a population of size 𝑁 with variance 𝜎2
.
30

30: It is evidently not the one as 𝑦
SRS

is

also such an estimator.

The sampling variance of the estimator 𝑦
STS

is

V

(
𝑦

STS

)
= V

(
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) +
𝑀∑
𝑖≠𝑖′

𝑁𝑖𝑁𝑖′ Cov(𝑦 𝑖 , 𝑦 𝑖′)︸        ︷︷        ︸
= 0

=
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

Central Limit Theorem – STS If 𝑛,𝑁−𝑛, 𝑛𝑖 , and𝑁𝑖−𝑛𝑖 are all sufficiently

large, for all 𝑖, then

𝑦
STS

∼approx. N
(
E(𝑦

STS
),V(𝑦

STS
)
)
= N

(
𝜇,

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

))
.

In a STS, the bound on the error of estimation is

𝐵𝜇;STS = 2

√
V(𝑦

STS
) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
and the corresponding approximate 95% C.I. for 𝜇 is

C.I.STS(𝜇; 0.95) : 𝑦
STS

± 𝐵𝜇;STS.

In practice, the population variance 𝜎2
is rarely known,

31
in which case 31: As is the variance 𝜎2

𝑖
in each stratum

U𝑖 , 1 ≤ 𝑖 ≤ 𝑀.
we use the sample variance.

32

32: And the corresponding finite popula-
tion correction factor.In each stratum, the empirical variance 𝑠2

𝑖
is

𝑠2

𝑖 =
1

𝑛𝑖 − 1

𝑛𝑖∑
ℓ=1

(𝑦𝑖 ,ℓ − 𝑦 𝑖)2 =
1

𝑛𝑖 − 1

[ 𝑛𝑖∑
ℓ=1

𝑦2

𝑖 ,ℓ − 𝑛𝑖𝑦
2

𝑖

]
, 1 ≤ 𝑖 ≤ 𝑀.

We can then approximate the sampling variance in U𝑖 as we did for a

SRS, using

V̂(𝑦 𝑖) =
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
, 1 ≤ 𝑖 ≤ 𝑀.
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The sampling variance of the estimator 𝑦
STS

is thus

V̂(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
.

The bound of the estimation error is approximated by

𝐵𝜇;STS ≈ 𝐵̂𝜇;STS = 2

√
V̂(𝑦

STS
) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
,

whence

C.I.STS(𝜇; 0.95) : 𝑦
STS

± 𝐵̂𝜇;STS ≡ 𝑦
STS

± 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
is an approximate 95% C.I. for 𝜇.

In practice, when the stratum sampling rate 𝑛𝑖
𝑁𝑖

is below 5%, we can drop

the FPCF in the corresponding stratum.

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. A STS sample Y of size 𝑛 = 132 is drawn from U, with

𝑛1 = 82 and 𝑛2 = 50.

Suppose the empirical mean and standard deviation in Y1 and Y2 are

𝑦
1
= 120.7, 𝑦

2
= 96.6, 𝑠1 = 18.99, and 𝑠2 = 14.31, respectively. Find a

95% C.I. for the mean 𝜇 of U.

The bound on the error of estimation is ≈ 𝐵̂𝜇;STS = 2

√
V̂(𝑦

STS
):

2

√
21123

2

37444
2

· 18.99
2

82

(
1 − 82

21123

)
+ 16321

2

37444
2

· 14.31
2

50

(
1 − 50

16321

)
≈ 2.95,

so C.I.STS(𝜇; 0.95) ≈
(

21,123(120.7)
37,444

+ 16,321(96.6)
37,444

)
± 2.95 ≡ (107.25, 113.14).

Example Find a 95% confidence interval for the average life expectancy

by country in 2011 (including India and China), using a STS of size

𝑛 = 20.
33

33: Stratifying using the country popula-
tions, as we did earlier in this section.

We can basically re-use the same code:

LE.1 <- gapminder |> filter(year==2011) |>

select(population,life_expectancy)

summary(LE.1)

population life_expectancy

Min. :5.644e+04 Min. :46.70

1st Qu.:2.064e+06 1st Qu.:65.30

Median :7.563e+06 Median :73.70

Mean :3.708e+07 Mean :71.18

3rd Qu.:2.423e+07 3rd Qu.:77.40

Max. :1.348e+09 Max. :83.02
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The average life expectancy is 𝜇 = 71.18. We now prepare the strata

according to the population, and we sort the observations from the

smallest population to the largest:

LE.1 <- LE.1 |> mutate(strata = ifelse(population<10000000,"S1",

ifelse(population<25000000,"S2", ifelse(population<50000000,"S3",

ifelse(population<100000000,"S4","S5")))))

LE.1 <- LE.1[order(LE.1$population),]

LE.1$strata <- as.factor(LE.1$strata)

# number of countries in each stratum

(strata.N <- tapply(LE.1$life_expectancy, LE.1$strata, length))

S1 S2 S3 S4 S5

105 35 21 13 11

Unfortunately, the life expectancy distributions in each stratum overlap

to a great extent: this is not a good sign as it suggests that a country’s

population is not aligned with its life expectancy.
34

34: And so that the strata are heteroge-

neous with respect to life expectancy.

ggplot(LE.1,aes(x=life_expectancy,fill=strata)) +

geom_density(alpha=0.5) + geom_rug()

Since there are 𝑁 = 185 observations in the data set, a sample of size

𝑛 = 20, allocated in such a way as to maintain the relative frequencies of

the number of observations in each U𝑖 (this is known as proportional
allocation), would have the following stratum allocation:

N=sum(strata.N)

strata.N/sum(strata.N)*20

S1 S2 S3 S4 S5

11.351351 3.783784 2.270270 1.405405 1.189189
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In practice, we prefer to have at least 2 observations per stratum, so we

might use (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (11, 3, 2, 2, 2).

n=c(11,3,2,2,2)

We select a STS sample Ywith these characteristics via:

set.seed(123456) # replicability

cumul.n = cumsum(n)

cumul.N = cumsum(strata.N)

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sam.LE.1 <- LE.1[unique(unlist(ind)),]

sam.LE.1 <- sam.LE.1[order(sam.LE.1$population),]

Next, we compute the mean 𝑦 𝑖 and the standard deviation 𝑠𝑖 in each

bucket Y𝑖 , 1 ≤ 𝑖 ≤ 5.

y.bar <- list()

std.dev <- list()

y.bar[[1]] <- mean(sam.LE.1[1:n[1],c("life_expectancy")])

std.dev[[1]] <- sd(sam.LE.1[1:n[1],c("life_expectancy")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

std.dev[[j]] <- sd(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

}

rbind(y.bar,std.dev)

[,1] [,2] [,3] [,4] [,5]

y.bar 70.83636 71.6 67.55 72.15 76.2

std.dev 7.551327 3.774917 18.45549 2.757716 9.050967

There is not much variation in the means, but the standard deviation

values are all over the place: this is due to small sample sizes in some

strata, and overlapping distributions of life expectancy by strata.

As we’ve already mentioned, the stratification of countries by population
does not align with the estimate of mean life expectancy. We will

continue the STS estimation procedure, for illustration purposes, but

in practice, this is the stage at which we would require a different

stratification or another sampling plan altogether.
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The estimator 𝑦
STS

is:

mean.LE.1 <- 0

for(j in 1:length(n)){

mean.LE.1 <- mean.LE.1 +

as.numeric(strata.N[j])*y.bar[[j]]

}

(mean.LE.1 <- mean.LE.1/N)

[1] 71.01902

This is fairly close to the true mean𝜇. The bound on the error of estimation

𝐵̂𝜇;STS is:

B=0

for(j in 1:length(n)){

B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))

}

(B <- 2*sqrt(B))

[1] 3.883388

This is quite a large bound, all things considered. The 95% C.I. is thus:

c(mean.LE.1 - B, mean.LE.1 + B)

[1] 67.13563 74.90241

Compare with the C.I.SRS(𝜇; 0.95) obtained previously – the SRS interval

was much narrower. This is no doubt due to stratification on the basis of

population being a poor choice when dealing with life expectancy.

Example Find a 95% confidence interval for the average life expectancy

by country in 2011 (including India and China), using a STS of size

𝑛 = 20.
35

35: This time stratifying the data using the

country life expectations. In general, we

do not stratify with respect to the variable

of interest, but with the help of auxiliary

variables that are linked to the variable of

interest.

We make the appropriate modifications to the code, using the following

strata, say:

U1 = {𝑢𝑗 | 𝑢𝑗 < 70}, U2 = {𝑢𝑗 | 70 ≤ 𝑢𝑗 < 80}, U3 = {𝑢𝑗 | 𝑢𝑗 ≥ 80}.

LE.2 <- gapminder |> filter(year==2011) |> select(life_expectancy)

LE.2 <- LE.2 |> mutate(strata = ifelse(life_expectancy<70,"S1",

ifelse(life_expectancy<80,"S2","S3")))

LE.2 <- LE.2[order(LE.2$life_expectancy),]

LE.2$strata <- as.factor(LE.2$strata)

(strata.N <- tapply(LE.2$life_expectancy, LE.2$strata, length))
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S1 S2 S3

65 93 27

By construction, the life expectancy distributions do not overlap from

stratum to stratum.

ggplot(LE.2,aes(x=life_expectancy,fill=strata)) +

geom_density(alpha=0.5) +

geom_rug(aes(color=life_expectancy))

Since there are 𝑁 = 185 observations in the data set, with (𝑁1 , 𝑁2 , 𝑁3) =
(65, 93, 27), a sample of size 𝑛 = 20 could be drawn according to:

N=sum(strata.N)

strata.N/sum(strata.N)*20

S1 S2 S3

7.027027 10.054054 2.918919

We will use (𝑛1 , 𝑛2 , 𝑛3) = (7, 10, 3).

n=c(7,10,3)

The rest of the code runs as in the previous example.

cumul.n = cumsum(n)

cumul.N = cumsum(strata.N)

set.seed(123456) # replicability

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])
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for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sam.LE.2 <- LE.2[unique(unlist(ind)),]

sam.LE.2 <- sam.LE.1[order(sam.LE.2$life_expectancy),]

y.bar <- list()

std.dev <- list()

y.bar[[1]] <- mean(sam.LE.2[1:n[1],c("life_expectancy")])

std.dev[[1]] <- sd(sam.LE.2[1:n[1],c("life_expectancy")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

std.dev[[j]] <- sd(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

}

With this sample Y, the strata means and standard deviations are:

rbind(y.bar,std.dev)

[,1] [,2] [,3]

y.bar 71.5 70.27 74.2

std.dev 8.469553 7.721838 7.277362

These quantities are more reasonable than with the previous stratification

(why?), but they could change from one STS sample to the next. The

values for 𝑦
STS

and 𝐵̂𝜇;STS are:

mean.LE.2 <- 0

for(j in 1:length(n)){

mean.LE.2 <- mean.LE.2 +

as.numeric(strata.N[j])*y.bar[[j]]

}

(mean.LE.2 <- mean.LE.2/N)

B=0

for(j in 1:length(n)){

B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))

}

(B <- 2*sqrt(B))

[1] 71.27573

[1] 3.35133

The estimator is quite close to the true value 𝜇 = 71.18, but it is when

calculating the bound on the error of estimation that the STS approach

proves its superiority. In this case, the 95% C.I. for 𝜇 is:
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c(mean.LE.2 - B, mean.LE.2 + B)

[1] 67.92440 74.62706

These examples show that stratified sampling can improve SRS estimation,

but that this is not always going to be the case.

Total 𝜏

Most of the work has been done: since the total 𝜏 can be re-written as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,

we can estimate the total with a STS using:

𝜏̂STS = 𝑁𝑦
STS

=
𝑁

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 =
𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 .

It is an unbiased estimator of the total since its expectation is

E(𝜏̂STS) = E(𝑁𝑦
STS

) = 𝑁 · E(𝑦
STS

) = 𝑁𝜇 = 𝜏.

Its sampling variance is

V(𝜏̂STS) = V(𝑁𝑦
STS

) = 𝑁2 · V(𝑦
STS

) =
𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
,

assuming that we know the variance 𝜎2

𝑖
in each strata Ui, 1 ≤ 𝑖 ≤ 𝑀,

whence the bound on the error of estimation is

𝐵𝜏;STS = 2

√
V(𝜏̂STS) = 2

√
𝑀∑
𝑖=1

𝑁2

𝑖
·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
= 𝑁 · 𝐵𝜇;STS.

Since the variances 𝜎2

𝑖
are usually unknown, we often use the stratum

variances 𝑠2

𝑖
, with correction factors

𝑁𝑖−1

𝑁𝑖
, 1 ≤ 𝑖 ≤ 𝑀. The approximation

of the sampling variance is thus

V̂(𝜏̂STS) = V̂(𝑁𝑦
STS

) =
𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
,

whence the bound on the error of estimation is

𝐵𝜏;STS ≈ 𝐵̂𝜏;STS = 2

√
V̂(𝜏̂STS) = 2

√
𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
= 𝑁 · 𝐵̂𝜇;STS ,

and the approximate 95% C.I. for 𝜏 is

C.I.STS(𝜏; 0.95) : 𝜏̂STS ± 𝐵̂𝜏;STS.
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Example Consider a finite population Uof size 𝑁 = 37, 444, split into

two strata U1 and U2, of sizes𝑁1 = 21, 123 and𝑁2 = 16, 321, respectively.

A STS Yof size 𝑛 = 132 is drawn from U, with 𝑛1 = 82 and 𝑛2 = 50.

Suppose the empirical mean and standard deviation in Y1 and Y2 are

𝑦
1
= 120.7, 𝑦

2
= 96.6, 𝑠1 = 18.99, and 𝑠2 = 14.31, respectively. Find a

95% C.I. of the total 𝜏 in U.

The bound on the error of estimation is ≈ 𝐵̂𝜏;STS = 2

√
V̂(𝜏̂STS):

2

√
21123

2 · 18.99
2

82

(
1 − 82

21123

)
+ 16321

2 · 14.31
2

50

(
1 − 50

16321

)
≈ 110312.3;

C.I.STS(𝜏; 0.95) ≈ 21123(120.7)+16321(96.6)±110312.3 ≈ (4015842, 4236467).

Proportion 𝑝

If the response 𝑢𝑖 ,ℓ ∈ {0, 1} represents the absence or the presence of a

certain characteristic for the ℓ th unit in the 𝑖th strata U𝑖 , the mean

𝑝 = 𝜇 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
ℓ=1

𝑢𝑖 ,ℓ

is the proportion of all units in Uwhich posess the characteristic. This

proportion can be estimated with a STS via

𝑝̂STS =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖 𝑝̂𝑖 , where 𝑝̂𝑖 =
1

𝑛𝑖

𝑛𝑖∑
ℓ=1

𝑢𝑖 ,ℓ , 1 ≤ 𝑖 ≤ 𝑀.

This is an unbiased estimator of 𝑝 since

E(𝑝̂STS) = E(𝑦
STS

) = 𝜇 = 𝑝;

its sampling variance is:

V(𝑝̂STS) = V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
,

where 𝜎2

𝑖
= 𝑝𝑖(1 − 𝑝𝑖) is the variance of the response variable 𝑢 in the

stratum U𝑖 .

The bound on the error of estimation is

𝐵𝑝;STS = 2

√
V(𝑝̂STS) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
· 𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

Since the proportions 𝑝𝑖 are not usually known, the approximate sam-
pling variance is used instead:

V̂(𝑝̂STS) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑝̂𝑖(1 − 𝑝̂𝑖)
𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
.
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The approximate bound on the error of estimation is thus

𝐵𝑝;STS ≈ 𝐵̂𝑝;STS = 2

√
V̂(𝑝̂STS) =

2

𝑁

√
𝑀∑
𝑖=1

𝑁2

𝑖
· 𝑝̂𝑖(1 − 𝑝̂𝑖)

𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
,

and the corresponding approximate 95% C.I. for 𝑝 is

C.I.STS(𝑝; 0.95) : 𝑝̂STS ±
2

𝑁

√
𝑀∑
𝑖=1

𝑁2

𝑖
· 𝑝̂𝑖(1 − 𝑝̂𝑖)

𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
.

If the sample size in a stratum is too small, we can use the conservative

estimate 𝑝̂𝑖 = 0.5.

Example Consider a finite population Uof size 𝑁 = 37, 444, split into

two strata U1 and U2, of sizes𝑁1 = 21, 123 and𝑁2 = 16, 321, respectively.

A STS Yof size 𝑛 = 132 is drawn from U, with 𝑛1 = 82 and 𝑛2 = 50.

Suppose that 𝑛1 = 20 of the observations from Y1 and 𝑛2 = 5 of the

observations from Y2 possess a certain characteristic. Find a 95% C.I. for

the proportion 𝑝 of the units in U that possess the characteristic.

In this case, 𝑝̂1 = 20/82 ≈ 0.244 and 𝑝̂2 = 5/50 = 0.10, from which we

obtain

𝑝̂STS =
21123

37444

(0.244) + 16321

37444

(0.10) = 0.181.

The bound on the error of estimation is thus

𝐵̂𝑝 =
2

37444

√
21123

2
0.244(1−0.244)

82−1

(
1 − 82

21123

)
+ 16321

2
0.1(1−0.1)

50−1

(
1 − 50

16321

)
≈ 0.0654,

from which we conclude that

C.I.(𝑝; 0.95) ≈ 0.181 ± 0.0654 ≡ (0.116, 0.247).

10.4.2 Sample Size and Allocation

When determining the size of a STS sample Y, we must also consider

the problem of allocating the number of units 𝑛𝑖 in each stratum Y𝑖 . If

|Y𝑖 | = 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑀, then 𝑛 = 𝑛1 + · · · + 𝑛𝑀 . But what are the 𝑛𝑖?

In a STS, the sampling variance of the estimator 𝑦
STS

is

V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

When 𝑁𝑖 ≫ 1, then 𝑁𝑖 ≈ 𝑁𝑖 − 1 and so

V(𝑦
STS

) ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖
− 1

𝑁2

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 .

Since the sampling variance V(𝑦
STS

) determines the bound on the error

of estimation 𝐵̂𝜇;STS, we can minimize the bound (and thus the error) by
minimizing the sampling variance. The quantities 𝑁 , 𝑁𝑖 , 𝜎2

𝑖
, are fixed
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for 1 ≤ 𝑖 ≤ 𝑀; what we minimize against is the sample size 𝑛 and the

allocation 𝑛𝑖 in each stratum.

The total cost of the survey 𝐶̃ can also affect the allocation. The survey

budget includes the overhead cost (indirect costs) 𝑐0 and the cost per
response 𝑐𝑖 in each stratum U𝑖 , 1 ≤ 𝑖 ≤ 𝑀. The total cost is thus

𝐶̃ = 𝑐0 +
𝑀∑
𝑖=1

𝑐𝑖𝑛𝑖 ,

which must remain below than available survey budget𝐶. The allocation

problem is an optimization problem: we seek to solve

arg(𝑛,𝑛1 ,...,𝑛𝑀 ) min V(𝑦
STS

), subject to 𝐶̃ ≤ 𝐶.

We use the method of Lagrange multipliers. The objective function

becomes

𝑓 (𝑛1 , . . . , 𝑛𝑀 ,𝜆) = V(𝑦
STS

) + 𝜆(𝐶̃ − 𝐶)

=
1

𝑁2

𝑀∑
𝑘=1

𝑁2

𝑖 ·
𝜎2

𝑘

𝑛𝑘
− 1

𝑁2

𝑀∑
𝑘=1

𝑁𝑘𝜎
2

𝑘
+ 𝜆(𝑐0 +

𝑀∑
𝑘=1

𝑐𝑘𝑛𝑘 − 𝐶).

Its critical points solve

0 =
𝜕 𝑓 (𝑛1 , . . . , 𝑛𝑀 ,𝜆)

𝜕𝑛𝑖
=

1

𝑁2

𝑀∑
𝑘=1

𝑁2

𝑘
𝜎2

𝑘

𝜕(1/𝑛𝑘)
𝜕𝑛𝑖

+ 𝜆
𝑀∑
𝑘=1

𝑐𝑘
𝜕(𝑛𝑘)
𝜕𝑛𝑖

= −
𝑁2

𝑖
𝜎2

𝑖

𝑁2𝑛2

𝑖

+ 𝜆𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑀,

which is to say that

𝑛𝑖 =
𝑁𝑖𝜎𝑖

𝑁
√
𝜆
√
𝑐𝑖
, 1 ≤ 𝑖 ≤ 𝑀.

The strata sampling weights 𝑤𝑖 are

𝑤𝑖 =
𝑛𝑖

𝑛1 + · · · + 𝑛𝑀
, 1 ≤ 𝑖 ≤ 𝑀.

The general optimal allocation is thus

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖𝜎𝑖

𝑁
√
𝜆
√
𝑐𝑖

𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

𝑁
√
𝜆
√
𝑐𝑘

=

𝑁𝑖𝜎𝑖√
𝑐𝑖

𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

, 1 ≤ 𝑖 ≤ 𝑀.

Once we have determined the size 𝑛 of the sample Y, we compute the

size of the sample 𝑛𝑖 in each Y𝑖 using𝑤𝑖 ·𝑛, 1 ≤ 𝑖 ≤ 𝑀. Since the product

𝑤𝑖 · 𝑛 is not typically an integer, we allocate [𝑤𝑖 · 𝑛] units to each Y𝑖 ,
36

36: The integer part [𝑥] of 𝑥 is the largest

integer smaller than 𝑥.
and distribute the remaining

𝑛 − [𝑤1 · 𝑛] − · · · − [𝑤𝑀 · 𝑛]

units using “common sense” (while ensuring that 𝐶̃ ≤ 𝐶).
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If the cost per response in each stratum is constant, 𝑐1 = · · · = 𝑐𝑀 ,

Neyman allocation yields the following stratum sampling weights:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖𝜎𝑖
𝑁1𝜎1 + · · · + 𝑁𝑀𝜎𝑀

, 1 ≤ 𝑖 ≤ 𝑀.

If moreover the variance is the same in each stratum, 𝜎2

1
= · · · = 𝜎2

𝑀
,

proportional allocation yields the following stratum sampling weights:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖

𝑁1 + · · · + 𝑁𝑀
=
𝑁𝑖

𝑁
, 1 ≤ 𝑖 ≤ 𝑀.

Once the sample size and allocation have been selected, the methods in

the previous section can be used to provide confidence intervals for the

mean 𝜇, for the total 𝜏, or for a proportion 𝑝. When the variances are

unknown, the usual approximations can be used.

We may at times use allocation schemes that are not necessarily ideal
from a technical perspective, but which facilitate the preparation of

reports or the dissemination of results:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑓 (𝑁𝑖)
𝑓 (𝑁1) + · · · + 𝑓 (𝑁𝑀) , 1 ≤ 𝑖 ≤ 𝑀, 𝑓 a random function.

For instance, when studying Canadian populations, we often stratify

according to the provinces and use 𝑓 (𝑥) =
√
𝑥; the proportional alloca-

tion and square root allocation sampling weights for the 13 Canadian

jurisdictions (based on 2022 population data) are shown below.

Table 10.2: Sampling weights for Cana-

dian provinces, under proportional alloca-

tion and square root allocation (racine, in

French).

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of U using a STS. The

survey budget allows for a sample size 𝑛 = 132.

In a preliminary study, we estimated 𝜎1 ≈ 20 and 𝜎2 ≈ 15. If the cost of a

response in the first stratum is four times that of the cost of a response in

the second stratum, find the general optimal allocation. If the response

cost per stratum is constant, determine the Neyman and the proportional

allocations.

In the general case, we have 𝑐1 = 4𝑐2,

𝑁1𝜎1√
𝑐1

=
21123(20)√

4𝑐2

=
211230√

𝑐2

,
𝑁2𝜎2√
𝑐2

=
16321(15)√

𝑐2

=
244815√

𝑐2

,

and

𝑁1𝜎1√
𝑐1

+ 𝑁2𝜎2√
𝑐2

=
211230√

𝑐2

+ 244815√
𝑐2

=
456045√

𝑐2

,
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from which we conclude that

𝑛1 = 132

(
211230

456045

)
= 61.13 and 𝑛2 = 132

(
244815

456045

)
= 70.87;

the general optimal allocation is thus 𝑛1 = 61 and 𝑛2 = 71.

If the cost for a response is the same in both strata, 𝑐1 = 𝑐2, then:

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

and

𝑁1𝜎1 + 𝑁2𝜎2 = 422460 + 244815 = 667275,

from which we conclude that

𝑛1 = 132

(
422460

667275

)
= 83.57 and 𝑛2 = 132

(
244815

667275

)
= 48.43;

the Neyman allocation is thus 𝑛1 = 84 and 𝑛2 = 48.

If we do not trust the study conducted beforehand, and we assume that

the variance is constant in each stratum (𝜎1 = 𝜎2), then we have

𝑁1 = 21123, 𝑁2 = 16321, and 𝑁1 + 𝑁2 = 21123 + 16321 = 37444,

from which we conclude that

𝑛1 = 132

(
21123

37444

)
= 74.46 and 𝑛2 = 132

(
16321

37444

)
= 57.54;

the proportional allocation is thus 𝑛1 = 74 and 𝑛2 = 58. ■

Sample Size, Given a Bound on the Error of Estimation

In theory, only analytical considerations should influence the sample

size. Recall that in a STS of size 𝑛, the sampling weight corresponding to

the stratum U𝑖 is 𝑤𝑖 =
𝑛𝑖
𝑛 , for 1 ≤ 𝑖 ≤ 𝑀. When we estimate 𝜇 via 𝑦

STS
,

the bound on the error of estimation can be written

𝐵𝜇;STS = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·

𝜎2

𝑖

𝑤𝑖 · 𝑛
(𝑁𝑖 − 𝑤𝑖 · 𝑛

𝑁𝑖 − 1

)
.

We seek to express 𝑛 in terms of the parameters 𝑁𝑖 , 𝜎𝑖 , 𝑤𝑖 , and 𝐵𝜇;STS. If

𝑁𝑖 ≫ 1,
37

then 𝑁𝑖 ≈ 𝑁𝑖 − 1 and so 37: Which is hopefully the case in practice.

𝐵2

𝜇;STS

4︸ ︷︷ ︸
=𝐷𝜇;STS

≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑤𝑖 · 𝑛
(𝑁𝑖 − 𝑤𝑖 · 𝑛

𝑁𝑖

)

⇐⇒ 𝑁2𝐷𝜇;STS ≈ 1

𝑛

{
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

}
−

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖
· 𝑤𝑖
𝑁𝑖

⇐⇒
𝑁2𝐷𝜇;STS +

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

≈ 1

𝑛
⇐⇒ 𝑛𝜇;STS ≈

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

.
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Under general optimal allocation, the stratum sampling weights are

given by

𝑤𝑖 =
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖𝜎𝑖/
√
𝑐𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖

) (
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

)
𝑁2𝐷𝜇;STS +

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

Under Neyman allocation, the stratum sampling weights are given by

𝑤𝑖 = 𝑁𝑖𝜎𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖𝜎𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

( 𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
)

2

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

In a proportional allocation scenario, the stratum sampling weights are

given by

𝑤𝑖 = 𝑁𝑖

(
𝑀∑
𝑘=1

𝑁𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

𝑁𝐷𝜇;STS +
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

When we try to estimate the total 𝜏 using the estimator 𝜏̂STS, we must

substitute

𝐷𝜇;STS =
𝐵2

𝜇;STS

4

by 𝐷𝜏;STS =
𝐵2

𝜏;STS

4𝑁2

.

When we want to estimate a proportion 𝑝 using the estimator 𝑝̂STS, the

bound remains

𝐷𝑝;STS =
𝐵2

𝑝;STS

4

,

but we have to substitute the stratum variances 𝜎2

𝑖
by 𝑝𝑖(1 − 𝑝𝑖). The

proportions 𝑝𝑖 can be estimated with the help of a previous study, or,

conservatively, by using 𝑝𝑖 = 0.5.
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Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of Uusing a STS, with a

bound on the error of estimation of 𝐵𝜇;STS = 5. The response costs by

stratum are 𝑐1 = 400$ and 𝑐2 = 100$.

In a preliminary study, we estimated 𝜎1 ≈ 20 and 𝜎2 ≈ 15. Determine the

sample size and allocation in each of the three scenarios: general optimal

allocation, Neyman allocation, and proportional allocation (in the last

two cases, use 𝑐1 = 𝑐2 = 100$).

In the general case, we have

𝑁1𝜎1√
𝑐1

=
21123(20)√

400

= 21123,
𝑁2𝜎2√
𝑐2

=
16321(15)√

100

= 24481.5,

𝑁1𝜎1

√
𝑐1 = 21123(20)

√
400 = 8449200, 𝑁2𝜎2

√
𝑐2 = 16321(15)

√
100 = 2448150

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

= 45604.5,
2∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖 = 10897350,

2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
(10897350)(45604.5)

(37444)2(6.25) + 12121425

= 56.63 ≈ 57

𝑛1 = 57

(
21123

45604.5

)
= 26.4 ≈ 26, 𝑛2 = 57

(
24481.5

45604.5

)
= 30.6 ≈ 31.

If instead the response cost per stratum is constant (𝑐1 = 𝑐2 = 100), we

have:

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖 = 667275,
2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
(667275)2

(37444)2(6.25) + 12121425

= 50.74 ≈ 51

𝑛1 = 51

(
422460

667275

)
= 32.30 ≈ 32, 𝑛2 = 51

(
244815

667275

)
= 18.71 ≈ 19.

It turns out that the exact value of 𝑐1 = 𝑐2 does not come into play.

If we look for a proportional allocation, we still have

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖 = 667275,
2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
12121425

37444(6.25) + 12121425

37444

= 51.72 ≈ 52

𝑛1 = 52

(
21123

37444

)
= 29.33 ≈ 29, 𝑛2 = 52

(
16321

37444

)
= 22.67 ≈ 23.

The exact value of 𝑐1 = 𝑐2 also does not come into play. ■
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Sample Size, Given a Budget

In practice, however, it is often budgetary considerations that play the

most important role in sample size selection.

In a STS of size 𝑛, the stratum sampling weights are𝑤𝑖 =
𝑛𝑖
𝑛 , for 1 ≤ 𝑖 ≤ 𝑀.

In this case, we seek to maximize the size 𝑛 allowed by the survey
budget 𝐶:

𝐶 = 𝑐0 +
𝑀∑
𝑖=1

𝑐𝑖𝑛𝑖 = 𝑐0 + 𝑛
𝑀∑
𝑖=1

𝑐𝑖𝑤𝑖 =⇒ 𝑛 =
𝐶 − 𝑐0

𝑀∑
𝑖=1

𝑐𝑖𝑤𝑖

.

In a general optimal allocation scenario, we have

𝑤𝑖 =
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

𝑐𝑖𝑤𝑖 = 𝑐𝑖 ·
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

= 𝑁𝑖𝜎𝑖
√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀;

the sample size is then

𝑛STS = (𝐶 − 𝑐0)
(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

) (
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖

)−1

.

In a Neyman allocation or proportional allocation scenario, the sample

weights are

𝑤𝑖 = 𝑁𝑖𝜎𝑖
( 𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘
)−1

, 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

𝑐𝑖𝑤𝑖 = 𝑐 · 𝑁𝑖𝜎𝑖
( 𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘
)−1

, 1 ≤ 𝑖 ≤ 𝑀;

the sample size is then

𝑛STS = (𝐶 − 𝑐0)
(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

) (
𝑐
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

)−1

=
𝐶 − 𝑐0

𝑐
.

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of U using a STS. The

budget for the study is 𝐶 = 20, 000$, minus 𝑐0 = 4, 000$ for overhead

costs. The cost of a response in each stratum are 𝑐1 = 400$ and 𝑐2 = 100$,

respectively.

In a preliminary study, we estimate 𝜎1 = 20 and 𝜎2 = 15. Determine the

sample size and allocation in each of the three scenarios: general optimal
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allocation, Neyman allocation, and proportional allocation (in the last

two cases, use 𝑐1 = 𝑐2 = 100$).

In the general case, we have

𝑁1𝜎1√
𝑐1

=
21123(20)√

400

= 21123,
𝑁2𝜎2√
𝑐2

=
16321(15)√

100

= 24481.5,

𝑁1𝜎1

√
𝑐1 = 21123(20)

√
400 = 8449200,

𝑁2𝜎2

√
𝑐2 = 16321(15)

√
100 = 2448150

𝑁1𝜎1√
𝑐1

+ 𝑁2𝜎2√
𝑐2

= 21123 + 24481.5 = 45604.5,

𝑁1𝜎1

√
𝑐1 + 𝑁2𝜎2

√
𝑐2 = 8449200 + 2448150 = 10897350,

𝑛 = (20000 − 4000)
(

45604.5

10897350

)
= 66.96 ≈ 66,

𝑛1 = 66

(
21123

45604.5

)
= 30.56 ≈ 31, 𝑛2 = 66

(
24481.5

45604.5

)
= 35.43 ≈ 35.

If the response cost per stratum is constant (𝑐1 = 𝑐2 = 100):

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎1 + 𝑁2𝜎2 = 422460 + 244815 = 667275,

𝑛 =
20000 − 4000

100

= 160,

𝑛1 = 160

(
422460

667275

)
= 101.3 ≈ 101, 𝑛2 = 160

(
244815

667275

)
= 58.7 ≈ 59.

If we also assume that the variances are equal in the 2 strata, the sample

size remains 𝑛 = 160, but the proportional allocation yields

𝑛1 = 160

(
21123

37444

)
= 90.25 ≈ 90 and 𝑛2 = 160

(
16321

37444

)
= 69.74 ≈ 70. ■

10.4.3 Comparison Between SRS and STS

Let U= {𝑢1 , . . . , 𝑢𝑁 } have mean 𝜇 and variance 𝜎2
.

Using a SRS of size 𝑛, we can construct the estimator 𝑦
SRS

, with sampling

variance

V(𝑦
SRS

) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

We have studied the properties of such estimators in section 10.3.

If U can be split into 𝑀 strata

U1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , U𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with mean and variance 𝜇𝑖 and 𝜎2

𝑖
, respectively, for 1 ≤ 𝑖 ≤ 𝑀.

Using a STS of size 𝑛 = (𝑛1 , . . . , 𝑛𝑀), we can construct the estimator 𝑦
STS

,

with sampling variance

V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.
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Both samples have the same size; is there any way to determine which

of the two approaches is preferable before computing the confidence

intervals? In general, the sample design for which the sampling variance
of the corresponding estimator is smallest is preferred.

38
38: This corresponds to a tighter (smaller)

C.I.

If 𝑁 ≫ 𝑛 and 𝑁𝑖 ≫ 𝑛𝑖 for all 1 ≤ 𝑖 ≤ 𝑀, then 𝑁 − 𝑛 ≈ 𝑁 − 1 and

𝑁𝑖 − 𝑛1 ≈ 𝑁𝑖 − 1 for all 1 ≤ 𝑖 ≤ 𝑀. Consequently,

V(𝑦
SRS

) ≈ 𝜎2

𝑛
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇)2 and V(𝑦
STS

) ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖
.

In a proportional allocation scenario, 𝑛𝑖 = 𝑛 · 𝑁𝑖

𝑁 for all 1 ≤ 𝑖 ≤ 𝑀, from

which we see that

V(𝑦
STS

)Prop ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖
· 𝑁

𝑛𝑁𝑖
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 .

In a Neyman allocation scenario, 𝑛𝑖 = 𝑛 · 𝑁𝑖𝜎𝑖
𝑁1𝜎1+···+𝑁𝑀𝜎𝑀

for all 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

V(𝑦
STS

)Neyman ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

(∑𝑀
𝑘=1

𝑁𝑘𝜎𝑘
)

𝑛𝑁𝑖𝜎𝑖
=

1

𝑛𝑁2

(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

)
2

.

But

V(𝑦
SRS

) ≈ 1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇)2 =
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖 + 𝜇𝑖 − 𝜇)2

=
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

{
(𝑢𝑖 , 𝑗 − 𝜇𝑖)2 + 2(𝑢𝑖 , 𝑗 − 𝜇𝑖)(𝜇𝑖 − 𝜇) + (𝜇𝑖 − 𝜇)2

}

=
1

𝑛𝑁


𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖)2︸           ︷︷           ︸
𝑁𝑖𝜎2

𝑖

+2

𝑀∑
𝑖=1

(𝜇𝑖 − 𝜇)
𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖)︸          ︷︷          ︸
𝑁𝑖𝜇𝑖−𝑁𝑖𝜇𝑖=0

+
𝑀∑
𝑖=1

(𝜇𝑖 − 𝜇)2
𝑁𝑖∑
𝑗=1

1︸︷︷︸
𝑁𝑖


=

1

𝑛𝑁

{
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 +
𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2
}
= V(𝑦

STS
)Prop + 1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2.

As such,

V(𝑦
SRS

) ≫ V(𝑦
STS

)Prop , whenever

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2 ≫ 0;

a STS under proportional allocation is substantially preferable to a SRS

when the variance of the stratum means is high.

Similarly, set

𝜎 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖 =
√
𝑛V(𝑦

STS
)Neyman.
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As such,

V(𝑦
STS

)Prop − V(𝑦
STS

)Neyman =
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 −
𝜎2

𝑛

=
1

𝑛𝑁

{
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 − 𝑁𝜎2

}
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜎2

𝑖 − 2𝜎𝑖𝜎 + 𝜎2)

=
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜎𝑖 − 𝜎)2 ≥ 0;

a STS under Neyman allocation is substantially preferable to a STS under

proportional allocation when the variance of the stratum standard
deviations is high.

Combining these, we can conclude that a STS under Neyman allocation

is substantially preferable to a SRS when stratum means and standard
deviations vary greatly across strata.

Since in practice there are other considerations at play (sampling cost,

etc.), one may still decide in favor of a SRS or a STS under proportional

allocation, especially if the difference in the corresponding variances is

(relatively) small.

10.5 Using Auxiliary Information

In what follows we present ways to obtain estimates of the mean, the

total, or of a proportion with the help of auxiliary information. So far,

we have only discussed univariate SRS and STS estimators. Can we use

more than one response per unit to obtain better approximations?

In the 2011 Gapminder dataset, there are 𝑁 = 168 countries in 2011 for

which the life expectancy 𝑌 and the (logarithm of the) gross domestic
product per capita 𝑋 are available. Suppose it is known that E[𝑋] =
𝜇𝑋 = 7.84. If we draw a sample {(𝑥1 , 𝑦1), . . . , (𝑥10 , 𝑦10)} ⊆ U for which

the mean of 𝑦𝑖/𝑥𝑖 is 8.67, can we expect that 𝜇𝑌 ≈ 8.67𝜇𝑋 = 68.00?
39

39: See Figure 10.6.

10.5.1 Ratio Estimation

Let U = {(𝑋1 , 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁 )} be a finite population of size 𝑁 for

which each unit 𝑢𝑗 has 2 observed values: 𝑋𝑗 and 𝑌𝑗 . The ratio of the
means 𝑅 is the ratio of the means (or totals):

𝑅 =

𝑁∑
𝑗=1

𝑌𝑗

𝑁∑
𝑗=1

𝑋𝑗

=
𝜇𝑌
𝜇𝑋

=
𝜏𝑌
𝜏𝑋
, as long as 𝜇𝑋 , 𝜏𝑋 ≠ 0.

We are interested in such quotients when we try to determine the average

wage 𝑌 as a function of years of schooling 𝑋 in Canada, for example.

https://www.data-action-lab.com/wp-content/uploads/2023/06/gapminder_SS.csv
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Ratio Estimator

Let Y = {(𝑥𝑖1 , 𝑦𝑖1), . . . , (𝑥𝑖𝑛 , 𝑦𝑖𝑛 )} ⊆ U a bivariate simple random
sample of size 𝑛. We often simplify the notation by writing

Y= {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)}.

The sample ratio of means 𝑟 is an estimator of 𝑅:

𝑟 =

𝑛∑
𝑖=1

𝑦𝑖

𝑛∑
𝑖=1

𝑥𝑖

=
𝑦

𝑥
=

𝜏̂𝑌
𝜏̂𝑋
, as long as 𝑥, 𝜏̂𝑋 ≠ 0.

Warning: this is a biased estimator!

Example Consider a finite bivariate population with 𝑁 = 4 units:

𝑢1 = (1, 2), 𝑢2 = (1, 0), 𝑢3 = (2, 1), 𝑢4 = (4, 5).

The population ratio of means 𝑅 is simply

𝑅 =
2 + 0 + 1 + 5

1 + 1 + 2 + 4

=
8

8

= 1.

Suppose that we want to provide an estimate of 𝑅 by drawing a SRS of

size 𝑛 = 3 from U. There are

(
4

3

)
= 4 such samples.

Sample 𝑦 Values 𝑦 𝑥 Values 𝑥 𝑟 𝑃(𝑟)
𝑢1 , 𝑢2 , 𝑢3 2, 0, 1 1 1, 1, 2 4/3 3/4 1/4

𝑢1 , 𝑢2 , 𝑢4 2, 0, 5 7/3 1, 1, 4 2 7/6 1/4

𝑢1 , 𝑢3 , 𝑢4 2, 1, 5 8/3 1, 2, 4 7/3 8/7 1/4

𝑢2 , 𝑢3 , 𝑢4 0, 1, 5 2 1, 2, 3 2 1 1/4

We can compute the expectation of the estimator 𝑟 directly:

E[𝑟] =
∑
𝑟

𝑟𝑃(𝑟) = 1

4

(3/4 + 7/6 + 8/7 + 1) = 341

336

≈ 1.014881 ≠ 𝑅 = 1. ■

What is the sampling bias of 𝑟 as an estimator of 𝑅, then?

E[𝑟 − 𝑅] = E

[ 𝑦
𝑥
− 𝑅

]
= E

[
1

𝑥
(𝑦 − 𝑅𝑥)

]
= ??

Ratio Estimator Bias

In this last expression for the sampling bias, only 𝑥 and 𝑦 change when

the sample changes:𝑅 remains constant. But there is no simple expression

allowing us to compute exactly the expectation of a quotient of random
variables; we must use approximations.
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Let 𝑓 : [𝑎, 𝑏] → ℝ be 𝐶2
over [𝑎, 𝑏] (i.e., 𝑓 , 𝑓 ′, 𝑓 ′′ are all continuous over

[𝑎, 𝑏]). According to Taylor’s theorem, for all 𝑐 ∈ (𝑎, 𝑏), there exists a 𝜉
between 𝑐 and 𝑧 such that

𝑓 (𝑧) = 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐) + 𝑓 ′′(𝜉)
2

(𝑧 − 𝑐)2.

Since 𝑓 ′′ is continuous over [𝑎, 𝑏], 𝑓 ′′ is bounded on [𝑎, 𝑏]: ∃𝑀 > 0 such

that | 𝑓 ′′(𝑧)| ≤ 𝑀 for all 𝑧 ∈ [𝑎, 𝑏].

Thus, if 𝑧 is sufficiently close to 𝑐,

| 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐)| ≫ 𝑀

2

(𝑧 − 𝑐)2 ≥
���� 𝑓 ′′(𝜉)

2

(𝑧 − 𝑐)2
���� ,

from which we conclude that

𝑓 (𝑧) ≈ 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐);

this is the linear approximation of 𝑓 at 𝑧 = 𝑐. If 𝑓 (𝑧) = 1

𝑧 , we know that

𝑓 ′(𝑧) = − 1

𝑧2
. Set 𝑧 = 𝑥 and 𝑐 = 𝜇𝑋 .

Since 𝑓 is 𝐶2
over any interval [𝑎, 𝑏] with 𝑎 > 0, if 𝑥 is sufficiently close

to 𝜇𝑋 , then the liner approximation becomes

1

𝑥
≈ 1

𝜇𝑋
− 1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)

(the constant approximation would be
1

𝑥
≈ 1

𝜇𝑋
).

But E(𝑥) = 𝜇𝑋 , E(𝑦) = 𝜇𝑌 (SRS), and 𝜇𝑌 = 𝑅𝜇𝑋 , so that

E[𝑟 − 𝑅] = E

[ 𝑦 − 𝑅𝑥
𝑥

]
≈ E

[(
1

𝜇𝑋
− 1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)
)
(𝑦 − 𝑅𝑥)

]
= E

[
1

𝜇𝑋
(𝑦 − 𝑅𝑥)

]
− E

[
1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)(𝑦 − 𝑅𝑥)
]

=
1

𝜇𝑋

(
E(𝑦) − 𝑅 · E(𝑥)

)
− 1

𝜇2

𝑋

(
E

[
𝑥𝑦 − 𝜇𝑋 𝑦 − 𝑅𝑥2 − 𝑅𝜇𝑋𝑥

] )
=

1

𝜇𝑋

(
𝜇𝑌 − 𝑅𝜇𝑋

)
︸         ︷︷         ︸

=0

− 1

𝜇2

𝑋

(
E(𝑥𝑦) − 𝜇𝑋E(𝑦) − 𝑅

(
E(𝑥2) − 𝜇𝑋E(𝑥)

) )
= − 1

𝜇2

𝑋

(
E(𝑥𝑦) − 𝜇𝑋𝜇𝑌 − 𝑅

(
E(𝑥2) − 𝜇2

𝑋

) )
We further simplify the sampling bias E[𝑟 − 𝑅] with the help of E(𝑥𝑦) =
𝜇𝑋𝜇𝑌 + Cov(𝑥, 𝑦), and E(𝑥2) = 𝜇2

𝑋
+ V(𝑥). Thus,

E[𝑟 − 𝑅] ≈ − 1

𝜇2

𝑋

[
Cov(𝑥, 𝑦) − 𝑅 · V(𝑥)

]
.

In an SRS of size 𝑛, drawn from a finite population withsize 𝑁 and

variance 𝑠𝑖𝑔𝑚𝑎2
, we have already seen that

𝑉(𝑥) =
𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
and 𝑉(𝑦) =

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.
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Consider the random variable 𝑍 = 𝑋 + 𝑌. The SRS estimator of

𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌

is

𝑧 = 𝑥 + 𝑦;

its sampling variance is

V(𝑧) =
𝜎2

𝑍

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
, where

𝜎2

𝑍 =
1

𝑁

𝑁∑
𝑗=1

(𝑧 𝑗 − 𝜇𝑍)2 =
1

𝑁

𝑁∑
𝑗=1

{
(𝑥 𝑗 + 𝑦 𝑗) − (𝜇𝑋 + 𝜇𝑌)

}
2

=
1

𝑁

𝑁∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑋)2 +
2

𝑁

𝑁∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑋)(𝑦 𝑗 − 𝜇𝑌) +
1

𝑁

𝑁∑
𝑗=1

(𝑦 𝑗 − 𝜇𝑌)2

= 𝜎2

𝑋 + 2𝜎𝑋𝑌 + 𝜎2

𝑌 = 𝜎2

𝑋 + 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑌 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

is the Pearson correlation coefficient between 𝑋 and
𝑌.

On the one hand,

V(𝑧) =
𝜎2

𝑋
+ 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

on the other,

V(𝑧) = V(𝑥 + 𝑦) = V(𝑥) + 2Cov(𝑥, 𝑦) + V(𝑦)

=
𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
+ 2Cov(𝑥, 𝑦) +

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

we can thus conclude that

Cov(𝑥, 𝑦) =
𝜌𝜎𝑋𝜎𝑌
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently,

E[𝑟 − 𝑅] ≈ − 1

𝜇2

𝑋

[
Cov(𝑥, 𝑦) − 𝑅 · V(𝑥)

]
= − 1

𝜇2

𝑋

[
𝜌𝜎𝑋𝜎𝑌
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
− 𝑅

𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)]
=

1

𝜇2

𝑋

·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
But the systematic error is not the only way to qualify the magnitude of

the error made when using 𝑟 to estimate 𝑅: the mean square error (MSE)

of 𝑟 is

MSE(𝑟) = E

(
(𝑟 − 𝑅)2

)
= V(𝑟) +

(
E(𝑟) − 𝑅

)
2

.
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Ratio Estimator Variability

We can obtain an approximation of V(𝑟) using the constant Taylor

approximation (of order 0):

1

𝑥
≈ 1

𝜇𝑋
.

Thus,

V(𝑟) = V(𝑟 − 𝑅) = V

[ 𝑦
𝑥
− 𝑅

]
= V

[ 𝑦 − 𝑅𝑥
𝑥

]
≈ V

[ 𝑦 − 𝑅𝑥
𝜇𝑋

]
.

Consider the random variable𝑊 = 𝑌 − 𝑅𝑋. Since 𝜇𝑌 = 𝑅𝜇𝑋 ,

𝜇𝑊 = 𝜇𝑌 − 𝑅𝜇𝑋 = 0.

The SRS sample mean of𝑊 in Y is thus

𝑤 = 𝑦 − 𝑅𝑥 =⇒ V(𝑟) ≈ V

[ 𝑤
𝜇𝑋

]
=

1

𝜇2

𝑋

V(𝑤) = 1

𝜇2

𝑋

·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

where

𝜎2

𝑊 =
1

𝑁

𝑁∑
𝑗=1

(𝑊𝑗 − 𝜇𝑊 )2 =
1

𝑁

𝑁∑
𝑗=1

𝑊2

𝑗 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2.

We thus have

V(𝑟) ≈ 1

𝜇2

𝑋

· 1

𝑛
· 1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2
(𝑁 − 𝑛
𝑁 − 1

)
.

The ratio between the systematic error E[𝑟−𝑅] and the standard deviation

of 𝑟 is then

E[𝑟 − 𝑅]
SD(𝑟) ≈ 1√

𝑛
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝜎𝑊

√
𝑁 − 1

𝑁 − 𝑛 ;

when 𝑛, 𝑁 → ∞ (while 𝑁 ≫ 𝑛), we must have

E[𝑟 − 𝑅]
SD(𝑟) → 0.

In other words, although it is impossible to get rid of the bias, the

estimation error

MSE(𝑟) = V(𝑟) + (E(𝑟) − 𝑅)2

is dominated by the variance V(𝑟) if the sample size 𝑛 is sufficiently
large.

Example The list of countries for which both life expectancy and (loga-

rithm of) gross domestic product per capita are available in 2011 contains

𝑁 = 168 observations.
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gapminder.RLD <- gapminder |> filter(year==2011) |>

select(life_expectancy,gdp,population)

# we keep only the observations that have both

gapminder.RLD <- gapminder.RLD[complete.cases(gapminder.RLD),]

gapminder.RLD <- gapminder.RLD |> mutate(lgdppc=log(gdp/population))

(N=nrow(gapminder.RLD))

[1] 168

We draw 𝑚 = 500 SRS samples of 𝑛 = 20, and we compute the estimator

𝑟 of the ratio 𝑅 for each of these samples.

set.seed(12) # replicability

n=20

m=500

quotients <- c()

for(k in 1:m){

samp <- gapminder.RLD[sample(1:N,n, replace=FALSE),c("life_expectancy","lgdppc")]

quotients[k] <- mean(samp$life_expectancy/samp$lgdppc)

}

The average of the 500 estimators is shown below:

quotients <- data.frame(quotients)

mean(quotients$quotients)

[1] 9.238648

We already know that 𝜇𝑋 = 7.84. It would be reasonable to expect that

𝜇𝑌 ≈ 𝑟𝜇𝑋 :

mean(gapminder.RLD$lgdppc)*mean(quotients$quotients)

[1] 72.45559

Is this a better approximation than the one we obtained at the beginning

of the section: 𝜇𝑌 ≈ 68.00? This question cannot be answered without

knowing the distribution of the estimator 𝑟.40
40: Keep in mind that it is indeed a ran-

dom variable since its value depends on

the sample Y selected.

ggplot(quotients, aes(quotients)) +

geom_rug(aes(quotients)) +

geom_histogram(breaks=seq(8, 10.5, by = .125),

col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(quotients$quotients),

color="red")
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summary(quotients)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.428 9.073 9.246 9.239 9.401 10.002

Ratio Estimator Confidence Intervals

We can show that the estimator 𝑟 follows approximately a normal

distribution N(E(𝑟),V(𝑟)), from which we conclude that the bound on
the error of estimation is

𝐵𝑅 ≈ 𝐵̂𝑅 = 2

√
V̂(𝑟) ≈ 2

√
1

𝜇2

𝑋

·
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
≈ 2

√
1

𝑥
2

·
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2.

Thus

C.I.(𝑅; 0.95) : 𝑟 ± 𝐵̂𝑅
is an approximate 95% C.I. for 𝑅.

Write 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

. We notice that

𝜎2

𝑊 =
1

𝑁

𝑁∑
𝑗=1

𝑊2

𝑗 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌 + 𝜇𝑌 − 𝑅𝑋𝑗)

=
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌 + 𝑅𝜇𝑋 − 𝑅𝑋𝑗)2 =
1

𝑁

𝑁∑
𝑗=1

[(𝑌𝑗 − 𝜇𝑌) − 𝑅(𝑋𝑗 − 𝜇𝑋)]2

=
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌)2 − 2𝑅
1

𝑁

𝑁∑
𝑗=1

(𝑋𝑗 − 𝜇𝑋)(𝑌𝑗 − 𝜇𝑌) + 𝑅2
1

𝑁

𝑁∑
𝑗=1

(𝑋𝑗 − 𝜇𝑋)2

= 𝜎2

𝑌 − 2𝑅Cov(𝑋,𝑌) + 𝑅2𝜎2

𝑋 = 𝜎2

𝑌 − 2𝑅𝜌𝜎𝑋𝜎𝑌 + 𝑅2𝜎2

𝑋 ,
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By analogy, we then have 𝑠2

𝑊
= 𝑠2

𝑌
− 2𝑟𝜌̂𝑠𝑋 𝑠𝑌 + 𝑟2𝑠2

𝑋
, where

𝑠2

𝑋 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥2

𝑖 − 𝑛𝑥
2

)
, 𝑠2

𝑌 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

)
,

𝑠𝑋𝑌 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
)
, and 𝜌̂ =

𝑠𝑋𝑌

𝑠𝑋 𝑠𝑌
.

In practice, we can also use the following formula:

𝑠2

𝑊 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑦2

𝑖 − 2𝑟
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 + 𝑟2

𝑛∑
𝑖=1

𝑥2

𝑖

)
.

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} of size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. Find a 95% C.I. for 𝑅 if

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

With this sample, we have 𝑟 = 14691.6
9464.6 ≈ 1.55, so that

𝑠2

𝑊 =
1670194 − 2(1.55)(1062186) + (1.55)2(686773.2)

132 − 1

≈ 209.2, and

V̂(𝑟) ≈ 132
2

9464.62

209.2

132

(
1 − 132

37444

)
= 0.0003 =⇒ C.I.(𝑅; 0.95) ≈ 1.552 ± 0.035.

Example Find a 95% C.I. for the ratio of life expectancy by the logarithm

of the GDO per capita in 2011 with the help of a SRS of size 𝑛 = 20.

The true ratio is:

(R = mean(gapminder.RLD$life_expectancy)/mean(gapminder.RLD$lgdppc))

[1] 9.046742

We draw a sample of size 𝑛 = 20, and we calculate the intermediate

sums:

N=nrow(gapminder.RLD); n=20

set.seed(123456) # replicability

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

(sum.xi = sum(samp$lgdppc))

(sum.yi = sum(samp$life_expectancy))

(sum.xi.2 = sum(samp$lgdppc^2))

(sum.yi.2 = sum(samp$life_expectancy^2))

(sum.xiyi = sum(samp$lgdppc*samp$life_expectancy))
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[1] 167.2794

[1] 1450.82

[1] 1430.912

[1] 106117.4

[1] 12245.93

Finally, we compute the estimator 𝑟 and its variance, as well as the desired

confidence interval.

r = sum.yi/sum.xi

s2.W = 1/(n-1)*(sum.yi.2-2*r*sum.xiyi+r^2*sum.xi.2)

V = n^2/sum.xi^2*(1/n)*s2.W*(1-n/N)

B = 2*sqrt(V)

c(r-B,r+B)

[1] 8.252515 9.093552

We would expect the quotient 𝑅 to be in the interval (8.25, 9.09) with

95% probability;
41

since 𝑅 = 9.046742, it is indeed the case.
42

41: According to the frequentist interpre-

tation of confidence intervals.

42: As we have noticed several times, the

confidence interval can of course change

depending on which sample is drawn from

the population.

Estimation of the Mean and the Total Using the Ratio Estimator

In practice, we often know 𝜏𝑋 and/or 𝜇𝑋 . It is possible to use the

relation

𝜇𝑌 = 𝑅𝜇𝑋 , where 𝑅 =
𝜇𝑌
𝜇𝑋

in order to approximate 𝜇𝑌 (if 𝜇𝑋 is unknown, one uses 𝜇𝑋 ≈ 𝑥).

Since 𝑟 = 𝑦/𝑥, the ratio-based estimator for 𝜇̂𝑌;𝑅 is simply:

𝜇̂𝑌;𝑅 = 𝑟 · 𝜇𝑋 .

But we have already observed that 𝑟 is a biased estimator of 𝑅, so we

expect 𝜇̂𝑌;𝑅 to be a biased estimator of 𝜇𝑌 , with a normal distribution:

𝜇̂𝑌;𝑅 ∼approx N(E(𝜇̂𝑌;𝑅),V(𝜇̂𝑌;𝑅)).

It is easy to show

E[𝜇̂𝑌;𝑅 − 𝜇𝑌] = 𝜇𝑋E[𝑟 − 𝑅] ≈ 1

𝜇𝑋
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
V(𝜇̂𝑌;𝑅) = V(𝑟 · 𝜇𝑋) = 𝜇2

𝑋V(𝑟) ≈
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound of error on the estimation of 𝜇𝑌;𝑅 is thus

𝐵𝜇𝑌;𝑅
≈ 𝐵̂𝜇𝑌;𝑅

= 2

√
V(𝜇̂𝑌;𝑅) ≈ 2

√
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
, 𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2 ,

from which we see that C.I.𝑅(𝜇𝑌 ; 0.95) ≡ 𝜇̂𝑌;𝑅 ± 𝐵̂𝜇𝑌;𝑅
is an approximate

95% C.I. for 𝜇𝑌 .
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It is also possible to use the relationship

𝜏𝑌 = 𝑅𝜏𝑋 , where 𝑅 =
𝜇𝑌
𝜇𝑋

=
𝜏𝑌
𝜏𝑋

to approximate 𝜏𝑌 (if 𝜏𝑋 is unknown, we use 𝜏𝑋 ≈ 𝑁𝑥).

Since 𝑟 = 𝑦/𝑥, the ratio-based estimator for 𝜏̂𝑌;𝑅 is simply:

𝜏̂𝑌;𝑅 = 𝑟 · 𝜏𝑋 .

But we have already observed that 𝑟 is a biased estimator of 𝑅, so

we expect 𝜏̂𝑌;𝑅 to be a biased estimator of 𝜏𝑌 , which follows a normal

distribution:

𝜏̂𝑌;𝑅 ∼approx N(E(𝜏̂𝑌;𝑅),V(𝜏̂𝑌;𝑅)) .

It is easy to show

E[𝜏̂𝑌;𝑅 − 𝜏𝑌] = 𝜏𝑋E[𝑟 − 𝑅] ≈ 𝑁

𝜇𝑋
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
V(𝜏̂𝑌;𝑅) = V(𝑟 · 𝜏𝑋) = 𝜏2

𝑋V(𝑟) = 𝑁2𝜇2

𝑋V(𝑟) ≈ 𝑁2 ·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound of error on the estimation of 𝜏𝑌;𝑅 is thus

𝐵𝜏𝑌;𝑅
≈ 𝐵̂𝜏𝑌;𝑅

= 2

√
V(𝜏̂𝑌;𝑅) ≈ 2𝑁

√
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
, 𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2 ,

from which we conclude that C.I.𝑅(𝜏𝑌 ; 0.95) ≡ 𝜏̂𝑌;𝑅 ± 𝐵̂𝜏𝑌;𝑅
is an approxi-

mate 95% C.I. for 𝜏𝑌 .

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} o size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. Find a 95% C.I. for 𝜇𝑌
using ratio-based estimation, given that

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

With this sample, we have 𝑟 ≈ 1.55, 𝑠2

𝑊
≈ 209.2, V̂(𝑟) ≈ 0.00031, and

C.I.(𝑅; 0.95) ≈ 1.552 ± 0.035. Moreover, 𝑥 = 9464.6/132 = 71.70. Thus

C.I.𝑅(𝜇𝑌 ; 0.95) = 𝜇𝑋 · C.I.(𝑅; 0.95) ≈ 𝑥 · C.I.(𝑅; 0.95) ≡ 111.29 ± 2.51. ■

Example Find a 95% C.I. for the average life expectancy by country 𝜇𝑌 ,

in 2011, using ratio estimation and the logarithm of the gross domestic

product per capita in 2011 (𝑋), with a SRS sample of size 𝑛 = 20.

We use the same sample as in the preceding example on the topic. We

have already obtained a confidence interval for the ratio:

C.I.(𝑅; 0.95) = (8.25, 9.09).



10.5 Auxiliary Information 673

The sample mean of 𝑋 was 𝑥 = 167.2794

20
= 8.364. The 95% confidence

interval for the average life expectancy using ratio estimation is thus

C.I.𝑅(𝜇𝑌 ; 0.95) = 𝜇𝑋 · C.I.(𝑅; 0.95) ≈ 𝑥 · (8.25, 9.09) = (69.00, 76.03).

Recall that the true value is 𝜇𝑌 = 70.95.

Sample Size

Just as was the case with SRS and STS, we can determine the required sam-

ple size assuming that we have some information about the population

distribution.

To give an estimate for 𝑅, use:

𝐵𝑅 ≈ 2

√
1

𝜇2

𝑋

·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝑅
𝜇2

𝑋

4︸ ︷︷ ︸
=𝐷𝑅

=
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ (𝑁 − 1)𝐷𝑅

𝜎2

𝑊

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒
(𝑁 − 1)𝐷𝑅 + 𝜎2

𝑊

𝜎2

𝑊

=
𝑁

𝑛

⇐⇒ 𝑛𝑅 =
𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝑅 + 𝜎2

𝑊

.

To give an estimate for 𝜇𝑌 with ratio estimation, use:

𝐵𝜇𝑌;𝑅
≈ 2

√
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜇𝑌 =

𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝜇𝑌 + 𝜎2

𝑊

, 𝐷𝜇𝑌 =
𝐵2

𝜇𝑌;𝑅

4

;

for 𝜏𝑌 , use:

𝐵𝜏𝑌;𝑅
≈ 2

√
𝑁2 ·

𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏𝑌 =

𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝜏𝑌 + 𝜎2

𝑊

, 𝐷𝜏𝑌 =
𝐵2

𝜏𝑌;𝑅

4𝑁2

.

Since we do not typically know 𝜎2

𝑊
, we often use a small preliminary

sample and use the empirical variance 𝑠2

𝑊
as an estimator of 𝜎2

𝑊
.

Example Consider a SRS Y= {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} of size 𝑛, drawn

from a population of size 𝑁 = 37, 444. Assume that we have 𝜎2

𝑊
≈ 209.2

and 𝜇𝑋 ≈ 71.7, perhaps from a previous study.

Determine the minimum sample size required to ensure that the bound

on the error of estimation of the:

1. ratio 𝑅 using 𝑟 is at most 0.025;

2. mean 𝜇𝑌 using 𝜇̂𝑌;𝑅 is at most 5, and

3. total 𝜏𝑌 using 𝜏̂𝑌;𝑅 is at most 25.

We simply use the formulas.
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1. since 𝐷𝑅 =
𝐵2

𝑅
𝜇2

𝑋

4
=

0.025
2(71.7)2
4

≈ 0.8033, we have

𝑛𝑅 =
37444(209.2)

(37444 − 1)(0.8033) + 209.2
= 258.6453 =⇒ 𝑛𝑅 ≥ 259;

2. since 𝐷𝜇𝑌 =
𝐵2

𝜇𝑌;𝑅

4
= 5

2

4
≈ 6.25, we have

𝑛𝜇𝑌 =
37444(209.2)

(37444 − 1)(6.25) + 209.2
= 33.443 =⇒ 𝑛𝜇𝑌 ≥ 34;

3. since 𝐷𝜏𝑌 =
𝐵2

𝜏𝑌;𝑅

4𝑁2
= 25

2

4(37444) ≈ 0.001502243, we have

𝑛𝜏𝑌 =
37444(209.2)

(37444 − 1)(0.001502243) + 209.2
= 29509.62 =⇒ 𝑛𝜏𝑌 ≥ 29510.

In this last case, the desired bound 𝐵𝜏𝑌;𝑅
is probably too tight (the

resulting sample size is way too large). ■

10.5.2 Regression Estimation

Ratio estimation is a special case of a more general method, regression
estimation. In the gapminder.csv dataset for 2011, we recognize that

there is a more or less linear relationship between the life expectancy 𝑌
and the logarithm of the GDP per capita 𝑋 for 𝑁 = 168 countries.

Figure 10.8: Health and wealth of nations for the 2011 Gapminder data, with superimposed line of best fit.

When we compute

𝑟 = 𝑦/𝑥

using a SRS of size 𝑛, we are really assuming that the true relationship

between 𝑌 and 𝑋 takes the form 𝑌 = 𝑅𝑋 ≈ 𝑟𝑋, i.e., that it is a straight

line of slope 𝑟 passing through the origin. But this last condition does

not seem to be met. What to do in this case?
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Regression Estimator

As above, let Ube a finite bivariate population of size𝑁 , and Y⊆ Ube a

finite bivariate random sample of size 𝑛. We assume that the relationship

between 𝑌 and 𝑋 takes the form

𝑌 − 𝜇𝑌 = 𝛽(𝑋 − 𝜇𝑋).

If 𝜇𝑋 is known (as we had assumed was the case for ratio estimation),

the regression estimator 𝜇̂𝑌;𝐿 of 𝜇𝑌 obtained with the SRS Y is

𝜇̂𝑌;𝐿 = 𝑦 + 𝛽(𝜇𝑋 − 𝑥).

For now, we treat 𝛽 as an unknown constant (since 𝜇𝑌 is also unknown).

Since Y is drawn in a SRS context, E(𝑥) = 𝜇𝑋 and E(𝑦) = 𝜇𝑌 , so that

E(𝜇̂𝑌;𝐿) = E(𝑦) + 𝛽(𝜇𝑋 − E(𝑥)) = 𝜇𝑌 + 𝛽(𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

Consider the random variable𝑊 = 𝑌 + 𝛽(𝜇𝑋 − 𝑋). As 𝛽 is constant, we

have

𝜇𝑊 = 𝜇𝑌 + 𝛽(𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

The sample mean of𝑊 is thus

𝑤 = 𝑦 + 𝛽(𝜇𝑋 − 𝑥) = 𝜇̂𝑌;𝐿 =⇒ V(𝜇̂𝑌;𝐿) = V(𝑤) =
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But

𝜎2

𝑊 ;𝐿 =
1

𝑁

𝑁∑
𝑗=1

(𝑊𝑗 − 𝜇𝑊 )2 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 + 𝛽(𝜇𝑋 − 𝑋𝑗) − 𝜇𝑌)2

=
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝜇𝑌) − 𝛽(𝑋𝑗 − 𝜇𝑋)

}
2

= 𝜎2

𝑌 − 2𝛽𝜌𝜎𝑋𝜎𝑌 + 𝛽2𝜎2

𝑋 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

. Consequently,

V(𝜇̂𝑌;𝐿) =
𝜎2

𝑌
− 2𝛽𝜌𝜎𝑋𝜎𝑌 + 𝛽2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

In general, for a given systematic error (bias), preference is given to the

estimator with the lowest variance. The value of 𝛽 which minimizes

V(𝜇̂𝑌;𝐿) would then satisfy

𝜕V(𝜇̂𝑌;𝐿)
𝜕𝛽

(𝛽∗) = 1

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
(−2𝜌𝜎𝑋𝜎𝑌 + 2𝛽∗𝜎2

𝑋) = 0,

which is to say that

𝛽∗ = 𝜌
𝜎𝑌
𝜎𝑋

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

· 𝜎𝑌
𝜎𝑋

=
𝜎𝑋𝑌
𝜎2

𝑋

,
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from which we conclude that

V(𝜇̂𝑌;𝐿) =
𝜎2

𝑌
− 2𝛽∗𝜌𝜎𝑋𝜎𝑌 + (𝛽∗)2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
− 2𝜌 𝜎𝑌

𝜎𝑋
𝜌𝜎𝑋𝜎𝑌 + (𝜌 𝜎𝑌

𝜎𝑋
)2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
− 2𝜌2𝜎2

𝑌
+ 𝜌2𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
(1 − 𝜌2)
𝑛

(𝑁 − 𝑛
𝑛 − 1

)
.

Regression Estimator Bias

The task is to determine the coefficients 𝛼, 𝛽 that “best describe” the

linear relationship between 𝑋 and 𝑌,

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where we assume that 𝜀 = (𝜀1 , . . . , 𝜀𝑛) ∼approx. N(0, 𝜎2I𝑛).

There are several ways to interpret the phrase “best describe” – the least
squares estimators 𝛼̂ and 𝛽̂ are those that minimize the residual sum of

squares

𝑄(𝛼, 𝛽) =
𝑛∑
𝑖=1

𝜀2

𝑖 =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)2.

We solve the system of equations

𝜕𝑄

𝜕𝛼
(𝑎, 𝑏) =

𝑛∑
𝑖=1

−2(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0,
𝜕𝑄

𝜕𝛽
(𝑎, 𝑏) =

𝑛∑
𝑖=1

−2𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0,

which yields

𝛼̂ = 𝑎 = 𝑦 − 𝑏𝑥 and 𝛽̂ = 𝑏 =

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2
.

In practice, it is this 𝑏 = 𝜌̂ 𝑠𝑌
𝑠𝑋

that plays the role of the estimator 𝛽∗; note

that it varies from one SRS to another. Since 𝑏 is a random variable,
43 we43: in the sense that we obtain (poten-

tially) a different slope with every SRS

Y.

cannot conclude that E(𝑏𝑥) = E(𝑏)E(𝑥), so that

E(𝜇̂𝑌;𝐿) = E(𝑦) + 𝜇𝑋E(𝑏) − E(𝑏𝑥) ≠ 𝜇𝑌 ,

in general.

However, if the sample size 𝑛 is large, it is possible to show that

E[𝜇̂𝑌;𝐿 − 𝜇𝑌]

is of order
1

𝑛 (as was the case for the systematic error in ratio estimation);

𝜇̂𝑌;𝐿 is therefore a biased estimator of 𝜇𝑌 .
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Regression Estimator Variability

The sampling variance of 𝜇̂𝑌;𝐿 is also of order
1

𝑛 , and so the quotient of

the bias E[𝜇̂𝑌;𝐿 − 𝜇𝑌] by the standard deviation of 𝜇̂𝑌;𝐿 is of order
1√
𝑛

.

Thus, when 𝑛, 𝑁 → ∞ (assuming that 𝑁 ≫ 𝑛), we have

E[𝜇̂𝑌;𝐿 − 𝜇𝑌]
SD(𝜇̂𝑌;𝑙)

→ 0.

Although it is impossible to get rid of the bias, the estimation error

MSE(𝜇̂𝑌;𝐿) = V(𝜇̂𝑌;𝐿) + (E(𝜇̂𝑌;𝐿) − 𝜇𝑌)2

is dominated byt the variance V(𝜇̂𝑌;𝐿) when 𝑛 is sufficiently large.

Regression Estimator Confidence Intervals

The regression estimator 𝜇̂𝑌;𝐿 follows approximately a normal distribu-

tion N(E(𝜇̂𝑌;𝐿),V(𝜇̂𝑌;𝐿)), from which we conclude that the bound on the
error of estimation is

𝐵𝐿 ≈ 𝐵̂𝐿 = 2

√
V̂(𝜇̂𝑌;𝐿) ≈ 2

√
𝑠2

𝑊 ;𝐿

𝑛

(
1 − 𝑛

𝑁

)
,

where 𝑠2

𝑊 ;𝐿
is the regression mean square error,

𝑠2

𝑊 ;𝐿 =
𝑛 − 1

𝑛 − 2

(𝑠2

𝑌 − 𝑏2𝑠2

𝑋) =
𝑛 − 1

𝑛 − 2

· 𝑠2

𝑌(1 − 𝜌̂2).

Consequently C.I.𝐿(𝜇𝑌 ; 0.95) : 𝜇̂𝑌;𝐿 ± 𝐵̂𝐿 is an approximate 95% C.I. for
𝜇𝑌 .

44
44: We tackle 𝜏𝑌 and 𝑝𝑌 in the usual man-

ner.

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} with 𝑛 = 132,

drawn from population of size 𝑁 = 37, 444. In a preceding study, we

have shown that 𝜇𝑋 ≈ 70.3. Find a 95% C.I. for 𝜇𝑌 using regression

estimation if

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

We must evaluate 𝑥, 𝑦, 𝑠2

𝑋
, 𝑠𝑋𝑌 , 𝑠2

𝑌
, and 𝜌̂. But

𝑥 =
9464.6

132

≈ 71.7, 𝑦 =
14691.6

132

≈ 111.3,

𝑠2

𝑋 =
686773.2 − 132(71.7)2

132 − 1

≈ 62.2, 𝑠2

𝑌 =
1670194 − 132(111.3)2

132 − 1

≈ 267.3

𝑠𝑋𝑌 =
1062186 − 132(71.7)(111.3)

132 − 1

≈ 67.2, 𝜌̂ =
67.2√

(62.2)(267.3)
≈ 0.521.
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The estimator for the regression slope is therefore 𝑏 = 𝜌̂ 𝑠𝑌
𝑠𝑋

= 1.08.

Moreover,

𝑠2

𝑊 ;𝐿 =
131

130

· 267.3 · (1 − 0.521
2) ≈ 196.77.

Consequently,

𝜇̂𝑌;𝐿 = 111.3 + 1.08( 70.3︸︷︷︸
𝜇𝑋

−71.7) = 109.8, and

𝐵̂𝐿 ≈ 2

√
196.77

132

(
1 − 132

37444

)
= 2.43,

from which we conclude that

C.I.𝐿(𝜇𝑌 ; 0.95) ≡ 109.8 ± 2.43.

Of course, if the linearity assumption is not valid, we should not expect

the bound on the error of estimation using regression estimation to be

substantially tighter than the one obtained in a SRS, say.

Example Find a 95% C.I. for the average life expectancy by country in

2011 using regression estimation against the logarithm of the GDP per

capita, with 𝑛 = 20, assuming that it is known that 𝜇𝑋 = 7.84.

We draw a sample of size 𝑛 = 20 and calculate the required quantities:

set.seed(123456) # replicability

N=nrow(gapminder.RLD); n=20

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

mu.X = mean(gapminder.RLD$lgdppc)

The sample means are:

(y.bar = mean(samp$life_expectancy))

(x.bar = mean(samp$lgdppc))

[1] 72.541

[1] 8.363971

The intermediate sums and the correlation coefficient are:

sum.xi = sum(samp$lgdppc)

sum.yi = sum(samp$life_expectancy)

sum.xi.2 = sum(samp$lgdppc^2)

sum.yi.2 = sum(samp$life_expectancy^2)

sum.xiyi = sum(samp$lgdppc*samp$life_expectancy)

s2.X = (sum.xi.2-n*x.bar^2)/(n-1)

s2.Y = (sum.yi.2-n*y.bar^2)/(n-1)

s.XY = (sum.xiyi-n*x.bar*y.bar)/(n-1)
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(rho = s.XY/sqrt(s2.X*s2.Y))

[1] 0.667983

Next, we evaluate the MSE:

(s2.W.L = (n-1)/(n-2)*s2.Y*(1-rho^2))

[1] 26.8736

The bound on the error of estimation is thus:

(B = 2*sqrt(s2.W.L/n*(1-n/N)))

[1] 2.175976

and the corresponding 95% C.I. for the mean life expectancy by country

is:

(hat.mu.Y.L = y.bar + rho*sqrt(s2.Y/s2.X)*(mu.X-x.bar))

c(hat.mu.Y.L-B,hat.mu.Y.L+B)

[1] 70.71572

[1] 68.53974 72.89170

For comparison’s sake, the true mean is 𝜇𝑌 = 70.95.

We can also compute the estimate and the confidence interval directly,

with the base lm() function.

reg.lin = lm(life_expectancy~lgdppc, data=samp)

summary(reg.lin)

Residuals:

Min 1Q Median 3Q Max

-16.2467 0.1592 1.6513 2.6614 5.8812

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.2559 7.7768 5.562 2.8e-05 ***
lgdppc 3.5013 0.9194 3.808 0.00129 **
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.184 on 18 degrees of freedom

Multiple R-squared: 0.4462, Adjusted R-squared: 0.4154

F-statistic: 14.5 on 1 and 18 DF, p-value: 0.001287
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The required quantities can be extracted as follows:

(b = as.numeric(reg.lin$coefficients[2]))

[1] 3.501336

(s2.W.L = summary(reg.lin)$sigma^2)

[1] 26.8736

Sample Size

If we seek an regression estimate of 𝜇𝑌 , we use:

𝐵𝐿 ≈ 2

√
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝐿

4︸︷︷︸
=𝐷𝐿

=
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

(𝑁 − 1)𝐷𝐿

𝜎2

𝑊 ;𝐿

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1 ⇐⇒

(𝑁 − 1)𝐷𝐿 + 𝜎2

𝑊 ;𝐿

𝜎2

𝑊 ;𝐿

=
𝑁

𝑛
,

⇐⇒ 𝑛𝐿 =
𝑁𝜎2

𝑊 ;𝐿

(𝑁 − 1)𝐷𝐿 + 𝜎2

𝑊 ;𝐿

.

For 𝜏𝑌 , we use:

𝐵𝜏;𝐿 ≈ 2𝑁

√
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏;𝐿 =

𝑁𝜎2

𝑊 ;𝐿

(𝑁 − 1)𝐷𝜏;𝐿 + 𝜎2

𝑊 ;𝐿

,

where 𝐷𝜏;𝐿 =
𝐵2

𝜏;𝐿

4𝑁2

.

Since we do not know usually know 𝜎2

𝑊 ;𝐿
, we often draw a small prelimi-

nary sample on which we compute the sample 𝑠2

𝑊 ;𝐿
, which is used as an

estimator of 𝜎2

𝑊 ;𝐿
.
45

45: Warning: Even if formal manipula-

tions can still be performed, the estimate

may not be valid if the relationship be-
tween the variables 𝑋 and𝑌 is not linear. Example Determine the sample size 𝑛 required to estimate the average

life expectancy 𝜇𝑌 using regression estimation against the logarithm of

GDP per capita in 2011, with a bound of error on the estimation of 𝐵𝐿 = 1,

if 𝜎𝑊 ;𝐿 ≈ 5.194 and 𝑁 = 168.

Using the formula, we have:

𝑛𝐿 =
168(5.194)2

167(12/4) + (5.194)2 = 65.94498 =⇒ 𝑛𝐿 ≥ 66.

Since there are good reasons to trust that the relationship between life

expectancy and log GNP per capita in 2011 is approximately linear (see

Figure 10.8), the regression approach is a strong one.
46

How does it46: Assuming, of course, that 𝜇𝑋 is

known; otherwise, it is pretty much use-

less.

compare with the example that uses ratio estimation?
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10.5.3 Difference Estimation

Difference estimation is another special case of regression estimation,

where the slope 𝛽 is now assumed to be 1.

If 𝜇𝑋 is known, the difference estimator 𝜇̂𝑌;𝐷 of 𝜇𝑌 computed from a

SRS Y is

𝜇̂𝑌;𝐷 = 𝑦 + (𝜇𝑋 − 𝑥).

Difference estimation is a good strategy when the relationship between

𝑋 and𝑌 is approximately linear and of slope 1,
47

as long as the variance 47: Passing or not through the origin.

of 𝑌 along this line is constant for all 𝑋. Since Y is drawn according to

a SRS, E(𝑥) = 𝜇𝑋 and E(𝑦) = 𝜇𝑌 , from which we conclude that

E(𝜇̂𝑌;𝐷) = E(𝑦) + (𝜇𝑋 − E(𝑥)) = 𝜇𝑌 + (𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

Consider the random variable 𝐷 = 𝑌 − 𝑋, whose expectation is

𝜇𝐷 = 𝜇𝑌 − 𝜇𝑋 .

The sample mean of 𝐷 is thus

𝑑 = 𝑦 − 𝑥 =⇒ 𝜇̂𝑌;𝐷 = 𝜇𝑋 + (𝑦 − 𝑥) = 𝜇𝑋 + 𝑑.

Consequently,

V(𝜇̂𝑌;𝐷) = V(𝜇𝑋 + 𝑑) = V(𝑑) =
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But

𝜎2

𝐷 =
1

𝑁

𝑁∑
𝑗=1

(𝐷𝑗 − 𝜇𝐷)2 =
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝑋𝑗) − (𝜇𝑌 − 𝜇𝑋)

}
2

=
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝜇𝑌) − (𝑋𝑗 − 𝜇𝑋)

}
2

= 𝜎2

𝑌 − 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

. As such,

V(𝜇̂𝑌;𝐷) =
𝜎2

𝑌
− 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The difference estimator 𝜇̂𝑌;𝐷 follows approximately a normal distribu-

tion N(E(𝜇̂𝑌;𝐷),V(𝜇̂𝑌;𝐷)), from which we obtain the bound on the error
of estimation

𝐵𝐷 ≈ 𝐵̂𝐷 = 2

√
V̂(𝜇̂𝑌;𝐷) ≈ 2

√
𝑠2

𝐷

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

𝐷 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑑𝑖 − 𝑑)2 = 𝑠2

𝑌 − 2𝜌̂𝑠𝑋 𝑠𝑌 + 𝑠2

𝑋 ,
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so that C.I.𝐷(𝜇𝑌 ; 0.95) : 𝜇̂𝑌;𝐷 ± 𝐵̂𝐷 is an approximate 95% C.I. for 𝜇𝑌 .
48

48: We tackle 𝜏𝑌 and 𝑝𝑌 in the usual man-

ner.

Example Auditors are often interested in comparing the audited value

𝑌 of items with their book value 𝑋. Suppose that 𝑁 = 180 items in

inventory have a book value of 𝜏𝑋 = 13, 320. A SRS of 𝑛 = 10 items yields

the following data:

item 𝑖 1 2 3 4 5 6 7 8 9 10

Audit 𝑦𝑖 9 14 7 29 45 109 40 238 60 170

Book 𝑥𝑖 10 12 8 26 47 112 36 240 59 167

𝑑𝑖 = 𝑦𝑖 − 𝑥𝑖 −1 2 −1 3 −2 −3 4 −2 1 3

Find a 95% C.I. for the mean audit value 𝜇𝑌 using difference estimation.

Figure 10.9: Scatterplot of 𝑋 and 𝑌.

From the scatterplot, we surmise that the slope of the linear fit of 𝑌

against 𝑋 is approximately 1. We must compute 𝑑 and 𝑠2

𝐷
:

10∑
𝑖=1

𝑑𝑖 = 4,
10∑
𝑖=1

𝑑2

𝑖 = 58, =⇒ 𝑑 =
4

10

and 𝑠2

𝐷 =
58 − 10(0.4)2

10 − 1

= 6.27.

Since 𝜇𝑋 =
𝜏𝑋
𝑁 = 13320

180
= 74, the difference estimator is

𝜇̂𝑌;𝐷 = 𝜇𝑋 + 𝑑 = 74 + 0.4 = 74.4

and the bound is

𝐵̂𝐷 ≈ 2

√
V̂(𝜇̂𝐷) = 2

√
6.27

10

(
1 − 10

180

)
= 1.54,

from which

C.I.𝐷(𝜇𝑌 ; 0.95) : 74.4 ± 1.54 ≡ (72.86, 75.94).

Example Consider a bivariate SRS sample Y= {(𝑥𝑖 , 𝑦𝑖)} of size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. In a preceding study, we
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found that 𝜇𝑋 ≈ 70.3. Find a 95% C.I. for 𝜇𝑌 using difference estimation,

assuming that

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

In a previous example, we have already computed

𝑥 = 71.7, 𝑦 ≈ 111.3, 𝑠2

𝑋 ≈ 62.2, 𝑠2

𝑌 ≈ 267.3, 𝑠𝑋𝑌 ≈ 67.2.

The difference estimator is thus

𝜇̂𝑌;𝐷 = 𝑦 + (𝜇𝑥 − 𝑥) = 111.3 + (70.3 − 71.7) = 109.9,

so that

𝐵̂𝐷 ≈ 2

√
267.3 − 2(67.2) + 62.2

132

(
1 − 132

37444

)
= 2.427,

and

C.I.𝐷(𝜇𝑌 ; 0.95) ≡ 109.9 ± 2.427.

Example Find a 95% C.I. for the average life expectancy by country

in 2011 𝜇𝑌 using the difference method with the logarithm of GDP per

capita per country (𝑋), using a sample of size 𝑛 = 20. Assume that

𝜇𝑋 = 7.84 is known.

We draw a sample of size 𝑛 = 20 and compute the various required

quantities.

set.seed(1234567) # for replicability

N=nrow(gapminder.RLD); n=20

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

d = samp$life_expectancy - samp$lgdppc

(mu.X = mean(gapminder.RLD[,"lgdppc"]))

(y.bar = mean(samp$life_expectancy))

(x.bar = mean(samp$lgdppc))

(d.bar = mean(d))

(s2.d = var(d))

[1] 7.842661

[1] 70.105

[1] 7.577646

[1] 62.52735

[1] 47.69057

Note that the regression slope does not seem to be 1 (if that was the case,

we would expect 𝑦/𝑥 ≈ 1). Difference estimation is not recommended in
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this case, but we will continue the example nonetheless.

The bound on the error of estimation and the difference estimate are

computed below, and the confidence interval is:

B = 2*sqrt(s2.d/n*(1-n/N))

hat.mu.Y.D = y.bar + (mu.X-x.bar)

c(hat.mu.Y.D-B,hat.mu.Y.D+B)

[1] 67.47129 73.26874

In spite of the difference estimation assumptions not being met, the 95%

C.I. for 𝑌 does contain the true value, 𝜇𝑌 = 70.95! A happy coincidence,

no more.

Sample Size

As with the other methods, we can determine the sample size required

to achieve a certain bound on the error of estimation.

In order to estimate 𝜇𝑌 and 𝜏𝑌 via difference estimation, use:

𝐵𝜇;𝐷 ≈ 2

√
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜇;𝐷 =

𝑁𝜎2

𝐷

(𝑁 − 1)𝐷𝜇;𝐷 + 𝜎2

𝐷

;

𝐵𝜏;𝐷 ≈ 2𝑁

√
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏;𝐷 =

𝑁𝜎2

𝐷

(𝑁 − 1)𝐷𝜏;𝐷 + 𝜎2

𝐷

,

where

𝐷𝜇;𝐷 =
𝐵2

𝜇;𝐷

4

and 𝐷𝜏;𝐷 =
𝐵2

𝜏;𝐷

4𝑁2

.

As we do not know usually know 𝜎2

𝐷
, we often draw a small preliminary

sample and use the empirical variance 𝑠2

𝐷
as an estimator of 𝜎2

𝐷
.

Warning! Even if formal manipulations can still be performed, the
estimate may not be valid if the relationship between the variables 𝑋
and 𝑌 is not linear with slope ≈ 1.

10.5.4 Comparisons

We have already compared the bounds on the error of estimation for

SRS, STS (Prop), and STS (Neyman), and discussed contexts in which

one might expect a STS to be preferable to an SRS, or a STS (Neyman)

preferable to a STS (Prop).

What can be said about ratio, regression, and difference estimation, both

compared to SRS and to each other?
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Comparaison Between SRS and the Ratio Method

In what context can we expect ratio estimation to perform “well”?

Obviously, the relationship between 𝑌 and 𝑋 must at least be linear and

pass through the origin, i.e.,

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛.

It is generally assumed that the observations {𝑥𝑖 > 0} are fixed, and that

the error terms {𝜀𝑖} are independent of each other, with

E(𝜀𝑖) = 0 and V(𝜀𝑖) = 𝑓 (𝑥𝑖)𝜎2 > 0.

The question becomes: what form must 𝑓 (𝑥𝑖) take so that the least squares

solution 𝛽̂ is exactly the estimator 𝑟 of the ratio 𝑅?

If we set

𝑦𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝑦′
𝑖

= 𝛽
𝑥𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝑥′
𝑖

+ 𝜀𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝜀′
𝑖

, 𝑖 = 1, . . . , 𝑛,

we get

E(𝜀′𝑖) =
1√
𝑓 (𝑥𝑖)

E(𝜀) = 0 and V(𝜀′𝑖) =
1

𝑓 (𝑥𝑖)
V(𝜀′𝑖) =

𝑓 (𝑥𝑖)𝜎2

𝑓 (𝑥𝑖)
= 𝜎2 ,

and the assumptions of the least squares problem are satisfied. The

estimator 𝛽 is obtained by minimizing

𝑄(𝛽) =
𝑛∑
𝑖=1

(𝜀′𝑖)
2 =

𝑛∑
𝑖=1

(𝑦′𝑖 − 𝛽𝑥′𝑖)
2 =

𝑛∑
𝑖=1

1

𝑓 (𝑥𝑖)
(𝑦𝑖 − 𝛽𝑥𝑖)2;

since

𝑄′(𝛽) = −2

𝑛∑
𝑖=1

𝑥𝑖

𝑓 (𝑥𝑖)
(𝑦𝑖 − 𝛽𝑥𝑖),

this is equivalent to solving

0 =

𝑛∑
𝑖=1

𝑥𝑖

𝑓 (𝑥𝑖)
(𝑦𝑖 − 𝛽̂𝑥𝑖) ⇐⇒ 0 =

𝑛∑
𝑖=1

(
𝑥𝑖𝑦𝑖

𝑓 (𝑥𝑖)
− 𝛽̂

𝑥2

𝑖

𝑓 (𝑥𝑖)

)
⇐⇒ 𝛽̂ =

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

𝑓 (𝑥𝑖)
𝑛∑
𝑖=1

𝑥2

𝑖

𝑓 (𝑥𝑖)

.

If
𝑥𝑖
𝑓 (𝑥𝑖 ) = 𝑘 > 0 for all 𝑖 = 1, . . . , 𝑛, the estimator 𝛽̂ becomes

𝛽̂ =

𝑘
𝑛∑
𝑖=1

𝑦𝑖

𝑘
𝑛∑
𝑖=1

𝑥𝑖

=

𝑛∑
𝑖=1

𝑦𝑖

𝑛∑
𝑖=1

𝑥𝑖

= 𝑟.
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Thus, when the variance of 𝑌 along the line 𝑌 = 𝛽𝑋 is

V(𝑦𝑖) = V(𝛽𝑥𝑖 + 𝜀𝑖) = V(𝜀𝑖) = 𝑥𝑖𝜎
2

(i.e., the variance of 𝑌 is proportional to 𝑋), the estimator 𝑟 of the ratio

𝑅 is exactly the least squares solution, 𝛽̂ = 𝑟, and we can expect ratio

estimation to produce “good” results.

Of course, one can use the ratio estimation method with a SRS Y to

obtain an estimate 𝜇̂𝑌;𝑅 of 𝜇𝑌 even if V(𝜀) ≠ 𝑥𝜎2
.

We have already determined the variance of this estimator:

V(𝜇̂𝑌;𝑅) = V(𝑟𝜇𝑋) = 𝜇2

𝑋V(𝑟) ≈ 1

𝑛
(𝜎2

𝑌 + 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌)
(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

+
𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently, V(𝑦
SRS

) ≫ V(𝜇̂𝑌;𝑅) if and only if 𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌 ≪ 0,

which is to say if

𝜌 ≫ 𝑅𝜎𝑋
2𝜎𝑌

=
𝜇𝑌𝜎𝑋
2𝜇𝑋𝜎𝑌

=
1

2

· CV𝑋

CV𝑌
.

Comparaison Between SRS and the Regression Method

We have already determined the variance of the estimator 𝜇̂𝑌;𝐿 of 𝜇𝑌 :

V(𝜇̂𝑌;𝐿) ≈ (1 − 𝜌2)
𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

−𝜌2 ·
𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
= (1 − 𝜌2)V(𝑦

SRS
).

Consequently, V(𝜇̂𝑌;𝐿) ≪ V(𝑦
SRS

)when (1 − 𝜌2)V(𝑦
SRS

) ≪ V(𝑦
SRS

), which

is to say that

1 − 𝜌2 ≪ 1 ⇐⇒ 0 ≪ |𝜌| ≤ 1.

Comparaison Between SRS and the Difference Method

We have already determined the variance of the estimator 𝜇̂𝑌;𝐷 of 𝜇𝑌 :

V(𝜇̂𝑌;𝐷) =
𝜎2

𝑌
− 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

+
𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently, V(𝜇̂𝑌;𝐷) ≪ V(𝑦
SRS

)when 𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌 ≪ 0 ⇐⇒ 𝜎2

𝑋
≪ 2𝜎𝑋𝑌 .
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Comparaison Between the Ratio, Regression, and Difference Methods

For each of the estimators 𝜇̂𝑌;𝛼, 𝛼 ∈ {𝑅, 𝐿, 𝐷}, we have shown that the

sampling variance takes the (approximate) form

V(𝜇̂𝑌;𝛼) ≈ V(𝑦
SRS

) + 𝐴𝛼

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

where

𝐴𝛼 =


𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌 , 𝛼 = 𝑅

−𝜌2𝜎2

𝑌
, 𝛼 = 𝐿

𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌 , 𝛼 = 𝐷

In general, V(𝜇̂𝑌;𝛼) ≪ V(𝜇̂𝑌;𝛾) if and only if 𝐴𝛼 ≪ 𝐴𝛾; these are the

terms that must be compared to one another.

For instance,

V(𝜇̂𝑌;𝑅) ≫ V(𝜇̂𝑌;𝐿) ⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 ≫ −𝜌2𝜎2

𝑌

⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 + 𝜌2𝜎2

𝑌 ≫ 0

⇐⇒ (𝑅𝜎𝑋 − 𝜌𝜎𝑌)2 ≫ 0 ⇐⇒ |𝑅𝜎𝑋 − 𝜌𝜎𝑌 | ≫ 0

⇐⇒ 𝑅 ≫ 𝜌
𝜎𝑌
𝜎𝑋

= 𝛽̂ or 𝑅 ≪ 𝛽̂

All things being equal, the regression estimator is preferable to the ratio

estimator (according to their bounds on the error of estimation) when

the ratio is quite different from the slope of the regression line.

Similarly,

V(𝜇̂𝑌;𝐷) ≫ V(𝜇̂𝑌;𝐿) ⇐⇒ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌 ≫ −𝜌2𝜎2

𝑌

⇐⇒ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌 + 𝜌2𝜎2

𝑌 ≫ 0

⇐⇒ (𝜎𝑋 − 𝜌𝜎𝑌)2 ≫ 0 ⇐⇒ |𝜎𝑋 − 𝜌𝜎𝑌 | ≫ 0

⇐⇒ 1 ≫ 𝜌
𝜎𝑌
𝜎𝑋

= 𝛽̂ or 1 ≪ 𝛽̂.

All things being equal, the regression estimator is preferable to the

difference estimator (according to their bounds on the error of estimation)

when the slope of the regression line takes a value far from 1.

But the regression estimator is always at least as good as the other two
since the latter two are special cases of regression estimation.

Finally, we can also compare the estimators by the ratio and by the

difference:

V(𝜇̂𝑌;𝑅) ≫ V(𝜇̂𝑌;𝐷) ⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 ≫ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌

⇐⇒ |𝑅 | ≠ 1 and 𝜎2

𝑋 ≫ 2

𝑅 + 1

𝜎𝑋𝑌

and

V(𝜇̂𝑌;𝐷) ≫ V(𝜇̂𝑌;𝑅) ⇐⇒ |𝑅 | ≠ 1 and 𝜎2

𝑋 ≪ 2

𝑅 + 1

𝜎𝑋𝑌

Otherwise, the variances are of relatively similar magnitude.
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10.6 Cluster Sampling

In practice, collecting sample data can require a tremendous amount of

travel. Imagine a survey where the residents of the entire country are

the target population, and a range of demographic and health indicators

are measured about the units:

age, height, weight, ethnicity, neighborhood, etc;

blood pressure, blood cholesterol and mercury levels, body-mass

index, etc.

Some of the information can be self-reported by the units (age, ethnicity,

etc.), but in many cases (body-mass index, mercury levels, etc.), data col-

lection requires the use of health experts and specialized equipment.

If all the sample units are from the Greater Toronto Area (GTA), say,

it may be efficient to move the panel of experts (with all the required

equipment in a trailer) from site to site, staying 2 weeks at each site. With

about 20 sites in the GTA, data collection would take about a year to

complete, but the cost of the survey would be greatly reduced: each night,

the interviewers would go home; the cost of moving the equipment
would also be minimized because of the small distances involved.

In a national study, where units could be drawn from several jurisdictions

and remote locations, this approach is no longer necessarily recom-

mended as it is potentially very expensive. Instead, one could start by

taking a first sample of geographic areas (cities, regional municipalities,

etc.), and then select a sub-sample of units (residents) in each of these

areas.

Such a strategy is known as multi-stage sampling (M𝑛S, see Section

10.7.3). Stratified sampling, for example, is a M2S for which the first level

sample is a census and the second level sample is a SRS.

As another example, when the first level sample comes from a SRS and

the second level sample is a census (all units are selected), we speak of

cluster sampling (CLS).

10.6.1 Estimators and Confidence Intervals

As it was the case in the second chapter, we are interested in a finite

population U= {𝑢1 , . . . , 𝑢𝑁 } of expectation 𝜇 and variance 𝜎2
.

Suppose we can cover the population with𝑀 disjoint clusters containing,

respectively, 𝑁1 , . . . , 𝑁𝑀 units, so that 𝑁1 + · · · + 𝑁𝑀 = 𝑁 :

G1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , G𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with cluster expectation, total, and variance given by

𝜇𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 , 𝜏𝑖 = 𝑁𝑖𝜇𝑖 , and 𝜎2

𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢2

𝑖 , 𝑗 − 𝜇2

𝑖 , 1 ≤ 𝑖 ≤ 𝑀.
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Figure 10.10: Schematics of CLS: target

population (left) and sample (right).

A cluster random sample (CLS) Y is a subset of the target population

Uwhich is obtained by first drawing a SRS of 𝑚 > 1 clusters, and then

selecting all units in the selected clusters:

G𝑖1 ∪ · · · ∪ G𝑖𝑚 = {𝑦𝑖1 ,1 , . . . , 𝑦𝑖1 ,𝑁𝑖
1︸             ︷︷             ︸

cluster G𝑖1

, . . . , 𝑦𝑖𝑚 ,1 , . . . , 𝑦𝑖𝑚 ,𝑁𝑖𝑚︸               ︷︷               ︸
cluster G𝑖𝑚

} ⊆
𝑀⋃
ℓ=1

Gℓ = U.

When G𝑖𝑘 belongs to the CLS Y, we denote its mean, total, and variance
by 𝑦 𝑖𝑘 , 𝑦𝑖𝑘 , and 𝑠2

𝑖𝑘
, respectively, for 1 ≤ 𝑘 ≤ 𝑚.

In a CLS design, each observation has the same probability of being
selected, but the sample size may change from one CLS to another,
unless the clusters all have the same size in the first place.

Estimating the Mean 𝜇 for Clusters of Equal Size

Let us assume that all clusters have the same size: 𝑁1 = · · · = 𝑁𝑀 =

𝑛 =⇒ 𝑁 = 𝑀𝑛. The cluster mean of the sample observations in Y is

an estimator of 𝜇:

𝑦𝐶 =
1

𝑚𝑛

𝑚∑
𝑘=1

𝑛∑
𝑗=1

𝑦𝑖𝑘 , 𝑗 =
1

𝑚𝑛

𝑚∑
𝑘=1

𝑦𝑖𝑘 =
1

𝑚

𝑚∑
𝑘=1

𝑦 𝑖𝑘 =
1

𝑚

𝑚∑
𝑘=1

𝜇𝑖𝑘 .

Therefore, the cluster average is simply the average of the selected cluster
averages. This is not surprising since

𝜇 =
1

𝑁

𝑀∑
ℓ=1

𝑛∑
𝑗=1

𝑢ℓ , 𝑗 =
1

𝑀𝑛

𝑀∑
ℓ=1

𝑛∑
𝑗=1

𝑢ℓ , 𝑗 =
1

𝑀𝑛

𝑀∑
ℓ=1

𝜏ℓ =
1

𝑀

𝑀∑
ℓ=1

𝜇ℓ .

We can easily show that 𝑦𝐶 is an unbiased estimator of 𝜇:

E(𝑦𝐶) =
1

𝑚

𝑚∑
𝑘=1

E(𝜇𝑖𝑘 ) =
1

𝑚

𝑚∑
𝑘=1

𝜇 = 𝜇.

Furthemore, its sampling variance is

V(𝑦𝐶) =
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
, where 𝜎2

𝐶 =
1

𝑀

𝑀∑
ℓ=1

(𝜇ℓ − 𝜇)2 ,
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since clusters are drawn using an SRS. Indeed, 𝑦𝐶 is the mean of a SRS

with 𝑚:

{𝜇𝑖1 , . . . , 𝜇𝑖𝑚 } ⊆ {𝜇1 , . . . , 𝜇𝑀}.

Central Limit Theorem – CLS: if 𝑚 and 𝑀 − 𝑚 are sufficiently large,

then

𝑦𝐶 ∼approx. N
(
E(𝑦𝐶),V(𝑦𝐶)

)
= N

(
𝜇,

𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

))
.

In a CLS, the bound on the error of estimation is thus

𝐵𝜇;𝐶 = 2

√
V(𝑦𝐶) = 2

√
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

and the corresponding 95% C.I. for 𝜇 is simply

C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± 𝐵𝜇;𝐶 .

In practice, the variance of the cluster means 𝜎2

𝐶
is rarely known – the

empirical variance (and the corresponding correction factor) is used

instead:

V̂(𝑦𝐶) =
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
, where 𝑠2

𝐶 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦 𝑖𝑘 − 𝑦𝐶)
2.

The bound on the error of estimation is then approximated by

𝐵𝜇;𝐶 ≈ 𝐵̂𝜇;𝐶 = 2

√
V̂(𝑦𝐶) = 2

√
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
,

=⇒ C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± 𝐵̂𝜇;𝐶 ≡ 𝑦𝐶 ± 2

√
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
.

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ , each of size 𝑛 = 851. We draw a SRS of 𝑚 = 6

clusters. The means of these clusters are:

𝑦
1
= 120.7, 𝑦

2
= 75.2, 𝑦

3
= 116.3, 𝑦

4
= 111.1, 𝑦

5
= 116.9, 𝑦

6
= 96.6.

Find a 95% C.I. for the mean 𝜇.

The bound on the error of estimation for 𝜇 is ≈ 𝐵̂𝜇;𝐶 = 2

√
V̂(𝑦𝐶); we see

that

𝑦𝐶 = 1

6

∑
6

𝑘=1
𝑦𝑘 ≈ 106.1, 𝑠2

𝐶
= 1

6−1

∑
6

𝑘=1
(𝑦𝑘 − 𝑦𝐶)2 =

69089.6−6(106.1)2
6−1

≈ 300.8,

from which we have

C.I.𝐶(𝜇; 0.95) ≈ 106.1 ± 2

√
300.8

6

(
1 − 6

44

)
≡ (93.0, 119.3).
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Estimating the Mean 𝜇 for Clusters of Different Sizes

In practice, the clusters are often all of different sizes, so we could write

𝜇 =

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝑢ℓ , 𝑗

𝑀∑
ℓ=1

𝑁ℓ

=

𝑀∑
ℓ=1

𝜏ℓ

𝑀∑
ℓ=1

𝑁ℓ

,

where 𝜏ℓ is the sum of 𝑢ℓ , 𝑗 for units in the cluster Gℓ , 1 ≤ ℓ ≤ 𝑀.
49

49: If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, the formulas

we will develop will collapse to those seen

in the preceding section.If we still draw 𝑚 clusters from the population of 𝑀 clusters using an

SRS, the form of 𝜇 suggests the use of the following estimator:

𝑦𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑦𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑦𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where we are using the notation of Section 10.5.

If the average cluster size is 𝑁 = 𝑁
𝑀 , this is similar to the situation

that leads to ratio estimation of the mean. By performing the mapping

(𝑦𝐶 , 𝜇, 𝑁 , 𝜏ℓ , 𝑁ℓ )↭ (𝑟, 𝑅, 𝜇𝑋 , 𝑌𝑗 , 𝑋𝑗), we can therefore conclude that

𝑦𝐶 is a biased estimator of 𝜇, whose sampling variance is

V(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ︸    ︷︷    ︸
=𝑁ℓ (𝜇ℓ−𝜇)

)2.

Consequently, the bound on the error of estimation is given by

𝐵𝜇;𝐶 = 2

√
V(𝑦𝐶) ≈ 2

√
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ )2.

In practice, we often only have access to the sampled clusters – we must

then use the empirical variance:

V̂(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2

=
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 𝜌̂𝑠𝑁 𝑠𝑌), where

𝑠2

𝑌 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦)2 , 𝑠2

𝑁 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑁𝑖𝑘 − 𝑁)2 ,

𝜌̂ =

∑𝑚
𝑘=1

(𝑦𝑖𝑘 − 𝑦)(𝑁𝑖𝑘 − 𝑁)√∑𝑚
𝑘=1

(𝑦𝑖𝑘 − 𝑦)2
∑𝑚
𝑘=1

(𝑁𝑖𝑘 − 𝑁)2
, 𝑦 =

1

𝑚

𝑚∑
𝑘=1

𝑦𝑖𝑘 .

Since it is not always possible to determine the average 𝑁 of the clusters

in the population U, we often use 𝑛, the average cluster size in the
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sample Y instead:

𝑛 =
𝑁𝑖1 + · · · + 𝑁𝑚

𝑚
.

The bound on the error of estimation is thus

𝐵̂𝜇;𝐶 ≈ 2

√
1

𝑛
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌
+ 𝑠2

𝑁
𝑦

2

𝐶 − 2𝑦𝐶 𝜌̂𝑠𝑁 𝑠𝑌)

and the approximate 95% C.I. for 𝜇 is

C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± 𝐵̂𝜇;𝐶 .

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The means of

the observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the mean 𝜇.

The bound on the error of estimation is ≈ 𝐵̂𝜇;𝐶 = 2

√
V̂(𝑦𝐶); we see that

𝑦𝐶 =

∑
6

𝑘=1
𝑁𝑘𝑦𝑘∑

6

𝑘=1
𝑁𝑘

=
531073.3

4791

≈ 110.8, 𝑛 =
1

6

6∑
𝑘=1

𝑁𝑘 =
4791

6

= 798.5

𝑦 =

∑
6

𝑘=1
𝑁𝑘𝑦𝑘

6

=
531073.3

6

= 88, 512.2,

𝑠2

𝑁 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘 − 𝑛)2 = 98, 146.7

𝑠2

𝑌 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘𝑦𝑘 − 𝑦)2 = 1, 465, 229, 403.4,

𝜌̂ =

∑
6

𝑘=1
(𝑁𝑘 − 𝑛)(𝑁𝑘𝑦𝑘 − 𝑦)√∑

6

𝑘=1
(𝑁𝑘 − 𝑛)2

∑
6

𝑘=1
(𝑁𝑘𝑦𝑘 − 𝑦)2

≈ 0.9796

𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 𝜌̂𝑠𝑁 𝑠𝑌 = 66, 814, 598.95

from which we conclude that

V̂(𝑦𝐶) =
1

798.52

· 1

6

(
1 − 6

44

)
(66, 814, 598.95) ≈ 15.1

and C.I.𝐶(𝜇; 0.95) ≈ 110.8 ± 2

√
15.1 ≡ (103.1, 118.6).

Example Find a 95% C.I. for the average life expectancy by country in

2011 (including India and China), using a CLS of size 𝑚 = 8, assuming

that the 𝑁 = 185 countries have been grouped into 𝑀 = 22 clusters
determined by geographic regions.

We re-use the code from the previous sections,
50

50: With some modifications, in particular

with respect to the clusters (region.

The cluster sizes in the

population are as follows.
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gapminder.CLS <- gapminder |> filter(year==2011) |> select(life_expectancy, region)

summary(gapminder.CLS,22)

life_expectancy region

Min. :46.70 Australia and New Zealand: 2

1st Qu.:65.30 Caribbean :13

Median :73.70 Central America : 8

Mean :71.18 Central Asia : 5

3rd Qu.:77.40 Eastern Africa :16

Max. :83.02 Eastern Asia : 6

Eastern Europe :10

Melanesia : 5

Micronesia : 2

Middle Africa : 8

Northern Africa : 6

Northern America : 3

Northern Europe :10

Polynesia : 3

South America :12

South-Eastern Asia :10

Southern Africa : 5

Southern Asia : 8

Southern Europe :12

Western Africa :16

Western Asia :18

Western Europe : 7

We note that the average life expectancy is 𝜇 = 71.18. We can explore the

distribution of life expectancy by cluster using the following code:

ggplot(data=gapminder.CLS, aes(x=life_expectancy, y=region, fill=region)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(), legend.position="none")
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We notice a significant variability between some clusters (Southern Africa

vs. Southern Europe, for example), but there is still a lot of overlap (which

is a good sign). Next, we draw a SRS of 𝑚 = 8 clusters:

set.seed(12345) # for replicability

regions=unique(gapminder.CLS[,"region"])

M=length(regions); m=8

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 14 19 16 11 2 21 6 7

We provide a summary of the observations in the sampled clusters:

sample.ind = gapminder.CLS$region %in% regions[sample.reg]

gapminder.CLS.n = gapminder.CLS[sample.ind,]

gapminder.CLS.n$region <- as.factor(gapminder.CLS.n$region)

(summ = gapminder.CLS.n |> group_by(region) |>

summarise(N=n(), y.bar=mean(life_expectancy),

total.y=sum(life_expectancy)))

# A tibble: 8 × 4

region N y.barre total.y

<fct> <int> <dbl> <dbl>

1 Australia and New Zealand 2 81.5 163

2 Central America 8 75.0 600.

3 Central Asia 5 69.4 347.

4 Melanesia 5 65.5 328.

5 Northern Africa 6 70.7 424.

6 Northern America 3 77.2 232.

7 South-Eastern Asia 10 72.6 726.

8 Western Asia 18 75.8 1364.

We can also produce a summary of this summary:

(summ.final = summ |>

summarise(sum.N = sum(N), moy.N = mean(N),

y.bar.bar = mean(total.y),

sum.y.bar = sum(total.y)))

# A tibble: 1 × 4

sum.N moy.N y.barre.barre sum.y.barre

<int> <dbl> <dbl> <dbl>

1 57 7.12 523. 4184.

We can now calculate the cluster estimator:

(est.y.bar.G=summ.final$sum.y.bar/summ.final$sum.N)

[1] 73.40316
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Next, its sampling variance:

s2.Y = var(summ$total.y)

s2.N = var(summ$N)

rho = cor(summ$N,summ$total.y)

V.est.y.G = 1/summ.final$moy.N^2*1/m*(1-m/M)*
(s2.Y+s2.N*est.y.bar.G^2-

2*est.y.bar.G*rho*sqrt(s2.N*s2.Y))

The bound on the error of estimation and the 95% C.I. for 𝜇 are:

B = 2*sqrt(V.est.y.G)

c(est.y.bar.G - B,est.y.bar.G + B)

[1] 71.35310 75.45321

The performance of CLS is generally worse than that of SRS and/or STS

– no surprise, given the discussion at the beginning of this section. The

nature of the clusters may also play a role (in contrast to STS, CLS is

more efficient when the cluster structure is similar from one cluster to
another), which is not really the case here. We will discuss this further.

Estimating the Total 𝜏

Most of the work has already been done: since the total 𝜏 can be rewritten

as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,

we can estimate the total with a CLS using the formula

𝜏̂𝐶 = 𝑁𝑦𝐶 .

There are two possibilities: either 𝑁1 = · · · = 𝑁𝑀 = 𝑛, or the clusters are

not all the same size.

If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, we have an unbiased estimator of 𝜏:

E(𝜏̂𝐶) = E(𝑁𝑦𝐶) = 𝑁 · E(𝑦𝐶) = 𝑁𝜇 = 𝜏,

V(𝜏̂𝐶) = 𝑁2 · V(𝑦𝐶) = 𝑁2 ·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
≈ 𝑁2 · V̂(𝑦𝐶) = 𝑁2 ·

𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
.

If the clusters are of different sizes, we have a biased estimator of 𝜏, with

sampling variance given by

V(𝜏̂𝐶) = V(𝑁𝑦𝐶) = 𝑁2 · V(𝑦𝐶) ≈ 𝑁2 · V̂(𝑦𝐶)

=
𝑁2

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 𝜌̂𝑠𝑁 𝑠𝑌)

= 𝑀2 · 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 𝜌̂𝑠𝑁 𝑠𝑌).
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The estimator follows an approximate normal distribution

𝜏̂𝐶 ∼approx N

(
E(𝜏̂𝐶), V̂(𝜏̂𝐶)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

In both cases, the bound on the error of estimation is

𝐵𝜏;𝐶 ≈ 𝐵̂𝜏;𝐶 = 2

√
V̂(𝜏̂𝐶)

and the 95% C.I. for 𝜏 takes the usual form:

C.I.𝐶(𝜏; 0.95) : 𝜏̂𝐶 ± 𝐵̂𝜏;𝐶 .

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ , each of size 𝑛 = 851. We draw a SRS of 𝑚 = 6

clusters. The means of the observations in these clusters are:

𝑦
1
= 120.7, 𝑦

2
= 75.2, 𝑦

3
= 116.3, 𝑦

4
= 111.1, 𝑦

5
= 116.9, 𝑦

6
= 96.6.

Find a 95% C.I. for the total 𝜏 in U.

We have previously seen that C.I.𝐶(𝜇; 0.95) ≡ (93.0, 119.3) for this CLS,

with 𝑁1 = · · · = 𝑁6 = 851. Therefore,

C.I.𝐶(𝜏; 0.95) ≈ 37444(93.0, 119.3) ≡ (3481307.7, 4466805.3).

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The mean of

the observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the total 𝜏 in U.

We have already seen in a previous example that C.I.𝐶(𝜇; 0.95) ≡
(103.1, 118.6) for this CLS with different cluster sizes. Therefore,

C.I.𝐶(𝜏; 0.95) ≈ 37444(103.1, 118.6) ≡ (3860476, 4440858).

WARNING: how do we do this if the size 𝑁 of the population is
unknown? Note that

𝜏 =

𝑀∑
ℓ=1

𝜏ℓ = 𝑀 · 1

𝑀

𝑀∑
ℓ=1

𝜏ℓ = 𝑀𝜏,

where 𝜏 is mean of the cluster totals in the population.

We could then use the estimator

𝑀𝑦𝑇 = 𝑀 · 1

𝑚

𝑚∑
𝑘=1

𝑦𝑖𝑘 ,
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where 𝑦𝑇 is the mean of the 𝑚 cluster totals in the CLS.

In that case, we are dealing with a SRS of size 𝑚, drawn from 𝑀 cluster

totals, i.e., this is an unbiased estimator:

E(𝑀𝑦𝑇) = 𝜏

V(𝑀𝑦𝑇) = 𝑀2 · V(𝑦𝑇) = 𝑀2 ·
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
V̂(𝑀𝑦𝑇) ≈ 𝑀2 · V̂(𝑦𝑇) = 𝑀2 ·

𝑠2

𝑇

𝑚

(
1 − 𝑚

𝑀

)
,

where

𝜎2

𝑇 =
1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜏)2 and 𝑠2

𝑇 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝑇)2.

The estimator follows an approximate normal distribution

𝑀𝑦𝑇 ∼approx N

(
𝜏, V̂(𝑀𝑦𝑇)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

The bound on the error of estimation is then

𝐵𝜏;𝑇 ≈ 𝐵̂𝜏;𝑇 = 2

√
V̂(𝑀𝑦𝑇)

and the 95% C.I. for 𝜏 takes the usual form:

C.I.𝑇(𝜏; 0.95) : 𝑀𝑦𝑇 ± 𝐵̂𝜏;𝑇 .

Example Consider a finite population Uof unknown size, divided into

𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The mean of the

observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the total 𝜏 in U.

Since the population size 𝑁 is unknown, the bound on the error of

estimation for 𝜏 is ≈ 𝐵̂𝜏;𝑇 = 2

√
V̂(𝑀𝑦𝑇); we see that

𝑦𝑇 =
1

6

6∑
𝑘=1

𝑁𝑘𝑦𝑘 =
531073.3

6

≈ 88512.2, 𝑀𝑦𝑇 = 44(88512.2) = 3894537.5

and

𝑠2

𝑇 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘𝑦𝑘 − 𝑦𝑇)2 =
1

5

(
6∑
𝑘=1

𝑁2

𝑘
𝑦

2

𝑘 − 6𝑦
2

𝑇

)
= 1465229403,
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from which we conclude that

V̂(𝑀𝑦𝑇) = (44)2 · 1465229403

6

(
1 − 6

44

)
= 408310593755.73

and C.I.𝑇(𝜏; 0.95) ≈ 3894537.5±2

√
408310593755.73 ≡ (2616554, 5172521).

The estimator is unbiased, but the confidence interval for 𝜏 is much

wider than that given by C.I.𝐶(𝜏; 0.95) ≡ (3860476, 4440858); this is not

surprising since we have more information in the latter case (namely, the

size 𝑁 of the population).

Example Find a 95% C.I. for the world population in 2011 (excluding

China and India), using a CLS of size𝑚 = 8, drawn from 𝑀 = 22 clusters

determined by geographic regions.

We re-use the code from the previous sections to create the clusters. The

true population total is found below:

gapminder.CLS.pop <- gapminder |> filter(year==2011) |>

select(population, region) |>

filter(population < 500000000)

(sum(gapminder.CLS.pop$population))

[1] 4264258312

We start by studying the distribution of population by region:

ggplot(data=gapminder.CLS.pop, aes(x=population, y=region,

fill=population)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(),

legend.position="none")
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The essential statistics are calculated as follows:

summ.pop = gapminder.CLS.pop |> group_by(region) |>

summarise(N=n(), y.pop=mean(population),

tau.pop=sum(population))

Next we draw a SRS of clusters:

set.seed(22) # for replicability

regions = unique(gapminder.CLS.pop[,"region"])

M=length(regions); m=8

N=nrow(gapminder.CLS.pop)

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 6 9 10 12 17 5 11 3

The sample is summarized as follows:

sample.ind = gapminder.CLS.pop$region %in%

regions[sample.reg]

gapminder.CLS.T = gapminder.CLS.pop[sample.ind,]

gapminder.CLS.T$region <- as.factor(gapminder.CLS.T$region)

(summ.T = gapminder.CLS.T |> group_by(region) |>

summarise(N=n(), tau=sum(population)))

# A tibble: 8 × 3

region N tau

<fct> <int> <int>

1 Central America 8 163510619

2 Eastern Europe 10 294249971

3 Middle Africa 8 134483803

4 Northern Europe 10 99989705

5 South America 12 401182686

6 Southern Asia 7 450825356

7 Western Africa 16 316604189

8 Western Asia 18 237909741

If we assume the number of units in the population to be known (𝑁 = 183),

the estimator of the average population per country is:

(y.G = sum(summ.T$tau)/sum(summ.T$N))

[1] 23581529

The estimator for the total population (excluding China and India) is:

(tau.G = N*y.G)

[1] 4315419784
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The bound on the error of estimation and the 95% C.I. for 𝜏 are:

s2.G = 1/(m-1)*sum((summ.T$tau-y.G*summ.T$N)^2)

V = M^2*s2.G/m*(1-m/M)

B = 2*sqrt(V)

c(tau.G-B,tau.G+B)

[1] 2441918142 6188921427

If we assume instead that the number of units is unknown, the estimator

of the population per cluster is:

(y.T = sum(summ.T$tau)/m)

[1] 262344509

The estimator for the total population (excluding China and India) would

then be:

(tau.T = M*y.T)

[1] 5771579192

The bound on the error of estimation and the 95% C.I. for 𝜏 in that case

are computed below:

s2.T = 1/(m-1)*sum((summ.T$tau-y.T)^2)

V = M^2*s2.T/m*(1-m/M)

B = 2*sqrt(V)

c(tau.G-B,tau.G+B)

[1] 2746857662 5883981906

The actual value 𝜏 = 4, 264, 258, 312 is found within the 95% C.I.
51

51: But different SRS of clusters might lead

to different outcomes.

Estimating a Proportion 𝑝

In a population where 𝐴ℓ , 𝑗 ∈ {0, 1} represents the absence or presence

of a characteristic for the 𝑗th unit in the ℓ th cluster, the mean

𝑝 =
1

𝑁

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝐴ℓ , 𝑗 =

𝑀∑
ℓ=1

𝐴ℓ

𝑀∑
ℓ=1

𝑁ℓ

is the proportion of the population units possessing the characteristic,

where𝐴ℓ is the number of units with the characteristic in the ℓ th cluster.
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If we are still drawing 𝑚 clusters using a SRS from the 𝑀 clusters in

the population, the form taken by 𝑝 suggests the use of the following

estimator:

𝑝̂𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑎𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑎𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where 𝑎𝑖𝑘 is the number of units with the characteristic in the 𝑘th sampled

cluster.

Set 𝑁 = 𝑁
𝑀 . If 𝑁 is unknown, we use 𝑁 ≈ 𝑛 = 1

𝑚 (𝑁𝑖1 + · · · + 𝑁𝑖𝑚 ). There

are then two possibilities: either 𝑁1 = · · · = 𝑁𝑀 = 𝑛, or the clusters are

not all of the same size. If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, we have an unbiased
estimator of 𝑝:

E(𝑝̂𝐶) = 𝑝, V(𝑝̂𝐶) =
1

𝑛2

·
𝜎2

𝑃

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
≈ 1

𝑛2

·
𝑠2

𝑃

𝑚

(
1 − 𝑚

𝑀

)
= V̂(𝑝̂𝐶),

where

𝜎2

𝑃 =
1

𝑀

𝑀∑
ℓ=1

(𝐴ℓ − 𝑝𝑁ℓ )2 and 𝑠2

𝑃 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑎𝑖𝑘 − 𝑝̂𝐶𝑁𝑖𝑘 )2.

If the clusters are of different sizes, we have a biased estimator of 𝑝,

whose sampling variance is:

V(𝑝̂𝐶) ≈
1

𝑁
2

·
𝜎2

𝑃

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
, V̂(𝑝̂𝐶) ≈

1

𝑛
2

·
𝑠2

𝑃

𝑚

(
1 − 𝑚

𝑀

)
.

The estimator follows an approximate normal distribution

𝑝̂𝐶 ∼approx N

(
E(𝑝̂𝐶), V̂(𝑝̂𝐶)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

In both cases, the bound on the error of estimation is

𝐵𝑝;𝐶 ≈ 𝐵̂𝑝;𝐶 = 2

√
V̂(𝑝̂𝐶)

and the 95% C.I. for 𝑝 takes the usual form:

C.I.𝐶(𝑝; 0.95) : 𝑝̂𝐶 ± 𝐵̂𝑝;𝐶 .

Example Find a 95% C.I. for the proportion of countries whose life

expectancy is above 75 years in 2011, using a CLS with 𝑚 = 8, assuming

that the countries are grouped into 𝑀 = 22 clusters determined by

geographic regions.

We re-use the code of the previous sections to create the clusters, and

we create a new indicator variable for the 75 years life expectancy

threshold:
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gapminder.CLS$life.75 <- ifelse(

gapminder.CLS$life_expectancy>75,1,0)

gapminder.CLS.75 <- gapminder.CLS |> select(life.75,region)

(mean(gapminder.CLS.75$life.75)) # true proportion

[1] 0.3945946

We begin by examining the proportions in each region:

summ.75 = gapminder.CLS.75 |>

group_by(region) |>

summarise(N=n(), p.hat=mean(life.75))

ggplot(data=summ.75,aes(x=p.hat, y=region, size=N, fill=p.hat)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(), legend.position="none")

The proportion of countries with a life expectancy of more than 75 years

is found to vary greatly from region to region – this may affect the quality

of the estimate.

Next, we draw a SRS of 𝑚 − 8 clusters:

set.seed(0) # for replicability

regions = unique(gapminder.CLS[,"region"])

M=length(regions)

m=8

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 14 4 7 1 2 11 22 18
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Then, we provide a summary of the proportions by cluster:

sample.ind = gapminder.CLS$region %in% regions[sample.reg]

gapminder.CLS.G = gapminder.CLS[sample.ind,]

gapminder.CLS.G$region <- as.factor(gapminder.CLS.G$region)

(summ.75.n = gapminder.CLS.G |>

group_by(region) |>

summarise(N=n(), p.hat=mean(life.75)))

# A tibble: 8 × 3

region N p.hat

<fct> <int> <dbl>

1 Australia and New Zealand 2 1

2 Caribbean 13 0.385

3 Central America 8 0.5

4 Micronesia 2 0

5 Northern Africa 6 0.333

6 Northern Europe 10 0.8

7 South-Eastern Asia 10 0.2

8 Southern Europe 12 1

We now have enough information to compute the CLS estimator of the

proportion:

(p.G = sum(summ.75.n$N*summ.75.n$p.hat)/sum(summ.75.n$N))

[1] 0.5555556

Finally, we compute the sampling variance, the margin of error, and the

95% C.I. for 𝑝 (assuming that the average cluster size is not known):

mean.size = sum(summ.75.n$N)/m

s2.p.G = 1/(m-1)*sum((summ.75.n$N*summ.75.n$p.hat-

p.G*summ.75.n$N)^2)

V = 1/mean.size^2*s2.p.G/m*(1-m/M)

(B = 2*sqrt(V))

c(p.G-B,p.G+B)

[1] 0.2025966

[1] 0.3529590 0.7581521

The actual value 𝑝 = 0.394 is indeed within the 95% confidence interval.

We assumed that the average cluster size was unknown; is this also the

case if we use the known value 𝑁 = 185

22
≈ 8.41?

The observations of the Gapmider dataset are probably not that suitable

for CLS ... at least, not if we use regions as clusters.
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10.6.2 Sample Size

Depending on whether the clusters are of equal size or not, the variance

formulas take different forms; however, they coincide when 𝑁𝑖 = 𝑛 for

all 𝑖; it is only the nature of the estimator bias and the exactness of its
sampling variance that are affected.

Consequently, we will only study the situation where the clusters are

assumed to be of different sizes. In what follows, we will use the nota-

tions

𝜎2

𝐸 =
1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ )2 and 𝑠2

𝐸 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2.

Mean 𝜇

If we want to estimate 𝜇 with 𝑦𝐶 , we use:

𝐵𝜇;𝐶 = 2

√
1

𝑁
2

·
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜇;𝐶
𝑁

2

4︸   ︷︷   ︸
=𝐷𝜇

=
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒
(𝑀 − 1)𝐷𝜇

𝜎2

𝐸

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

𝜎2

𝐸

=
𝑀

𝑚

⇐⇒ 𝑚𝜇;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

.

Obviously, we can only use this formula if we know the variance 𝜎2

𝐸
of

the cluster totals in the population U. If that is not available, we can use

the empirical variance 𝑠2

𝐸
from a preliminary sample, or that from a

prior survey.
52

52: If the average size 𝑁 of the clusters

of U is unknown, we use the empirical
average size 𝑛 = (𝑁𝑖

1
+· · ·+𝑁𝑖𝑚 )/𝑚 from

the preliminary sample.

Finally, note that this formula allows us to determine the number of
clusters 𝑚 to be drawn from a SRS of clusters in order to obtain some

margin of error on the estimate; the sample size may change from one

realization to another, depending on the size of the sampled clusters.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS of

these items; however, the items are arranged on 𝑀 = 100 shelves and it is

relatively easy to select a SRS of shelves, treating each shelf as a cluster of

items. How many shelves would need to be sampled in order to estimate

the average value of all items in inventory with a bound on the error of

estimation of at most 𝐵𝜇;𝐶 = 1.25$, assuming 𝜎2

𝐸
≈ 317.53$?

Set 𝐷𝜇 =
𝐵2

𝜇;𝐶
𝑁

2

4
=

(1.25)2(6.25)2
4

≈ 15.26; then

𝑚𝜇;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

=
100(317.53)

(100 − 1)(15.26) + 317.53

= 17.4 ≈ 18. ■
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Total 𝜏

If we want to estimate 𝜏 with 𝑁𝑦𝐶 , we use:

𝐵𝜏;𝐶 = 2

√
𝑀2 ·

𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜏;𝐶

4𝑀2︸︷︷︸
=𝐷𝜏;𝐶

=
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒ (𝑀 − 1)𝐷𝜏;𝐶

𝜎2

𝐸

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

𝜎2

𝐸

=
𝑀

𝑚

⇐⇒ 𝑚𝜏;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS

of these items; however, the items are arranged on 𝑀 = 100 shelves and

it is relatively easy to select a SRS of shelves, treating each shelf as a

cluster of items. How many shelves would need to be sampled in order

to estimate the total value of all items in inventory with a bound on the

error of estimation of at most 𝐵𝜏;𝐶 = 600$, assuming 𝜎2

𝐸
≈ 317.53$?

Set 𝐷𝜏;𝐶 =
𝐵2

𝜏;𝐶

4𝑀2
=

(600)2
4(100)2 = 9; then

𝑚𝜏;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

=
100(317.53)

(100 − 1)(9) + 317.53

= 26.3 ≈ 27. ■

If we want to estimate 𝜏 with 𝑀𝑦𝑇 , we use:

𝐵𝜏;𝑇 = 2

√
𝑀2 ·

𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜏;𝑇

4𝑀2︸︷︷︸
=𝐷𝜏

=
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒ (𝑀 − 1)𝐷𝜏

𝜎2

𝑇

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜏 + 𝜎2

𝑇

𝜎2

𝑇

=
𝑀

𝑚

⇐⇒ 𝑚𝜏;𝑇 =
𝑀𝜎2

𝑇

(𝑀 − 1)𝐷𝜏 + 𝜎2

𝑇

.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS

of these items; however, the items are arranged on 𝑀 = 100 shelves and

it is relatively easy to select a SRS of shelves, treating each shelf as a

cluster of items. How many shelves would need to be sampled in order

to estimate the total value of all items in inventory with a bound on the

error of estimation of at most 𝐵𝜏;𝑇 = 600$, assuming 𝜎2

𝑇
≈ 682.77$?
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Set 𝐷𝜏;𝑇 =
𝐵2

𝜏;𝑇

4𝑀2
=

(600)2
4(100)2 = 9; then

𝑚𝜏;𝑇 =
𝑀𝜎2

𝑇

(𝑀 − 1)𝐷𝜏;𝑇 + 𝜎2

𝑇

=
100(682.77)

(100 − 1)(9) + 682.77

= 43.4 ≈ 44. ■

Proportion 𝑝

If we want to estimate 𝑝 with 𝑝̂𝐶 , we use:

𝐵𝑝;𝐶 = 2

√
1

𝑁
2

·
𝜎2

𝑝

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝑝;𝐶
𝑁

2

4︸   ︷︷   ︸
=𝐷𝑝;𝐶

=
𝜎2

𝑝

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒
(𝑀 − 1)𝐷𝑝;𝐶

𝜎2

𝑃

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝑝;𝐶 + 𝜎2

𝑃

𝜎2

𝑃

=
𝑀

𝑚

⇐⇒ 𝑚𝑝;𝐶 =
𝑀𝜎2

𝑃

(𝑀 − 1)𝐷𝑝;𝐶 + 𝜎2

𝑃

.

10.6.3 Comparison Between SRS and CLS

Consider a ClS Yconsisting of 𝑚 clusters drawn from a population Uof

size 𝑁 , distributed in 𝑀 clusters. Let 𝜇 be the mean and 𝜎2
the variance

of the population U.

If the clusters are all of size 𝑛, we can show that

V(𝑦𝐶) ≈
𝜎2 − 𝜎2

𝑚

(
1 − 𝑚

𝑀

)
, where 𝜎2 =

1

𝑀

𝑀∑
ℓ=1

𝜎2

ℓ ,

where 𝜎2

ℓ
is the variance in the ℓ th cluster.

But we can also consider Yas having arisen from a SRS with size 𝑚𝑛. In

that case, we have

V(𝑦
SRS

) = 𝜎2

𝑚𝑛

(𝑁 − 𝑚𝑛
𝑁 − 1

)
≈ 𝜎2

𝑚𝑛

(
1 − 𝑚𝑛

𝑁

)
=

𝜎2

𝑚𝑛

(
1 − 𝑚𝑛

𝑀𝑛

)
=

𝜎2

𝑚𝑛

(
1 − 𝑚

𝑀

)
,

from which we conclude that

V(𝑦𝐶) − V(𝑦
SRS

) ≈ 1

𝑚

(
1 − 𝑚

𝑀

) (
𝜎2 − 𝜎2 − 𝜎2

𝑛

)
=

1

𝑚

(
1 − 𝑚

𝑀

) (𝑛 − 1

𝑛
𝜎2 − 𝜎2

)
≈ 1

𝑚

(
1 − 𝑚

𝑀

)
(𝜎2 − 𝜎2), si 𝑛 − 1 ≈ 𝑛.

Consequently, V(𝑦𝐶) ≫ V(𝑦
SRS

) if and only if 𝜎2 ≫ 𝜎2
, which is the case

when the mean of the cluster variances is smaller than the variance in
the population.

The moral of the story is that a ClS is effective if the clusters, regardless

of their size, are as heterogeneous as the population itself.
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Figure 10.11: Schematics of SYS: target

population (left) and sample (right).

10.7 Special Topics

We complete this introduction to survey sampling by discussing a few

additional topics.
53

53: A few of which could even be called

advanced.

10.7.1 Systematic Sampling

With the advent of easy-to-access pseudo-random number generators,
54

54: Excel, R, SAS, Python, etc.

it is not very arduous to draw a pseudo SRS Yof size 𝑛 from a population

Uof size 𝑁 (assuming that we have an appropriate sampling frame, of

course).

However, it remains possible for the obtained sample to not be represen-
tative of the population: a SRS of countries that do not include China or

India, for example, would not be very useful if we are trying to estimate

the average population of the world’s countries.

In some cases, a systematic sampling design (SYS) can be used to

maximize the probability that the random sample Y represents the

population.

Here is how we draw a 1−in−𝑀 systematic sample of size 𝑛 (or 𝑛 + 1)

from an ordered list of size 𝑁 :

1. determine the integer part 𝑀 = ⌊ 𝑁𝑛 ⌋;
2. randomly select an integer 𝛾 in {1, 2, . . . , 𝑀};
3. the sample Y then contains the values corresponding to units

𝛾, 𝛾 +𝑀, 𝛾 + 2𝑀, . . . , 𝛾 + (𝑛 − 1)𝑀︸                                            ︷︷                                            ︸
𝑛 units

, 𝛾 + 𝑛𝑀︸   ︷︷   ︸
if 𝛾+𝑛𝑀≤𝑁

.

If the ordering of the units in the sampling frame is fixed, there can only

be 𝑀 different SYS samples of size 𝑛 (or 𝑛 + 1, in some cases).

Example The Gapminder dataset contains socio-economic information

on 𝑁 = 185 countries in 2011. What are the average life expectancy and

population of the world’s countries?
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We modify the code allowing us to access the data set:

gapminder.SYS <- gapminder |> filter(year==2011) |>

select(country, life_expectancy, population)

N=nrow(gapminder.SYS)

There are 185 units in the data set. If we are interested in a SYS of size

𝑛 = 20, say, the integer 𝑀 is:

n=20

(M=floor(N/n))

[1] 9

The vector of observations 0, 𝑀, 2𝑀, . . . , 𝑛𝑀 is therefore:

index = M*(0:n)

We construct 𝑀 = 9 samples Y𝑖 , 𝑖 = 1, . . . , 9, assuming that the units

appear in alphabetical order (by country name) in the dataset.

moy.SYS.life_exp = c() # initialization - life expectation

moy.SYS.pop = c() # initialization - population

for(j in 1:M){# all SYS of size n or n+1, alpha order

index.tmp = j + index

index.tmp <- index.tmp[index.tmp < N+1] # keeping indices <= N

sample.sys = gapminder.SYS[index.tmp,2:3]

moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)

moy.SYS.pop[j]=mean(sample.sys$population)

}

# charts

par(mfrow=c(1,2))

plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")

plot(moy.SYS.pop, xlab="sample", ylab="mean population")
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Could you identify the sample that contains China or India? What if we

change the order in which the countries are listed in the dataset?

gapminder.SYS <- gapminder.SYS[order(gapminder.SYS$population),]

for(j in 1:M){# all SYS of size n or n+1, population order

index.tmp = j + index

index.tmp <- index.tmp[index.tmp < N+1]

sample.sys = gapminder.SYS[index.tmp,2:3]

moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)

moy.SYS.pop[j]=mean(sample.sys$population)

}

par(mfrow=c(1,2))

plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")

plot(moy.SYS.pop, xlab="sample", ylab="mean population")

We obtain similar results when ordering the units in the dataset by life

expectancy. ■

In general, if there is a correlation between the position (rank) of the
unit in the sampling frame and the value of the variable of interest, the

sampling variance of the SYS estimator will be lower than that of the SRS

estimator, because the sample is more likely to be representative of the

population.

If there is no such correlation, the SYS sample is essentially an SRS sample,

and the sampling variances are comparable – a SYS is as likely to be

representative of the population as an SRS.

Finally, if the step 𝑀 is aligned with the periodicity of the values of the

variable of interest, it is the opposite: the sampling variance of a SYS

is larger than that of an SRS – a SYS is then less representative of the

population than an SRS.

Some examples illustrating these situations are shown in Figure 10.12.
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Figure 10.12: Various populations and systematic samplings: the order in which the population observations are presented may affect the

representativity of the SYS sample.

SYS as SRS

If the order in which the units are listed in the sampling frame is

random,
55

we can simply consider that the sample55: Careful! this is not always easy to

demonstrate.

YSYS = {𝑦1 , 𝑦2 , 𝑦3 , . . . , 𝑦𝑛−1 , 𝑦𝑛}︸                          ︷︷                          ︸
{𝑢𝛾 ,𝑢𝛾+𝑀 ,...,𝑢𝛾+(𝑛−1)𝑀 }

⊆ U

of size 𝑛 ≈ 𝑁
𝑀 is in fact a SRS of size 𝑛. In that case, the theory developed

in Section 10.3 for SRS remains valid.

Estimating the Mean 𝜇 The empirical mean

𝑦
SYS

=
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the true population mean 𝜇, with bound on
the error of estimation

𝐵𝜇;SYS ≈ 𝐵̂𝜇;SYS = 2

√
V̂(𝑦

SYS
) = 2

√
𝑠2

SYS

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

SYS
=

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦
SYS

)2;

the corresponding 95% C.I. for 𝜇 is thus

C.I.SYS(𝜇; 0.95) : 𝑦
SYS

± 𝐵̂𝜇;SYS.
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Estimating the Total 𝜏 The quantity

𝜏̂SYS = 𝑁𝑦
SYS

=
𝑁

𝑛

𝑛∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the true population total 𝜏, with bound on
the error of estimation

𝐵𝜏;SYS ≈ 𝐵̂𝜏;SYS = 2𝑁

√
V̂(𝑦

SYS
) = 2𝑁

√
𝑠2

SYS

𝑛

(
1 − 𝑛

𝑁

)
;

the corresponding 95% C.I. for 𝜏 is thus

C.I.SYS(𝜏; 0.95) : 𝜏̂SYS ± 𝐵̂𝜏;SYS.

Estimating the Proportion 𝑝 If 𝑦𝑖 ∈ {0, 1} denotes the absence or pres-

ence of a certain characteristic, the quantity

𝑝̂SYS = 𝑦
SYS

is an unbiased estimator of the true proportion 𝑝 of units with the

characteristic, with bound on the error of estimation

𝐵𝑝;SYS ≈ 𝐵̂𝑝;SYS = 2

√
V̂(𝑝̂SYS) = 2

√
𝑝̂SYS(1 − 𝑝̂SYS)

𝑛 − 1

(
1 − 𝑛

𝑁

)
;

the corresponding 95% C.I. for 𝑝 is thus

C.I.SYS(𝑝; 0.95) : 𝑝̂SYS ± 𝐵̂𝑝;SYS.

SYS as CLS

In practice, SYS is equivalent to a CLS of size 𝑚 = 1, where each cluster

is one of the 1−in−𝑀 SYS samples.

The quantity

𝑦𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑦𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑦𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where we use the CLS notation, is thus a biased estimator of the popula-
tion mean, 𝜇.

The average cluster size is denoted by 𝑁 = 𝑁
𝑀 ; its sampling variance

is

V(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ︸    ︷︷    ︸
=𝑁ℓ (𝜇ℓ−𝜇)

)2 :=
1

𝑁
2

·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

and the corresponding 95% C.I. for 𝜇 is thus

C.I.G(𝜇; 0.95) : 𝑦𝐶 ± 2

√
V(𝑦𝐶).
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If the average cluster size 𝑁 is unknown, we simply substitute it by

𝑛 =
1

𝑛

𝑚∑
𝑘=1

𝑁𝑖𝑘 .

The estimator of the total population 𝜏 is thus either:

𝑁𝑦𝐶 , when the number of units 𝑁 in the population is known, or

𝑀𝑦𝑇 , where 𝑦𝑇 is the (empirical) mean of the sampled cluster
totals, when only 𝑀 is known.

Consequently, the sampling variances are

V(𝑁𝑦𝐶) ≈ 𝑀2 ·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
and V(𝑀𝑦𝑇) ≈ 𝑀2 ·

𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

where 𝜎2

𝐶
and 𝜎2

𝑇
are computed as for a CLS. We can then construct the

95% C.I. for 𝜏 in the usual manner.

Pretty simple, eh?

The sample contains exactly𝑚 = 1 cluster, so 𝑛 = 𝑛. The problem doesn’t

end there – since we don’t know 𝜎2

𝐶
or 𝜎2

𝑇
in general, we would use the

empirical variances

V̂(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2

V̂(𝑀𝑦𝑇) ≈ 𝑀2 · 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝑇)2.

But if 𝑚 = 1, these variances do not exist. How do we get out of this

mess? If we cannot treat the SYS as if it were a SRS (for whatever reason),

the solution is to draw additional SYS samples (replicates) and treat it
as a CLS, modifying the value of 𝑀 as necessary.
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10.7.2 Sampling with Probability Proportional to Size

In practice, the size (whether or not this is a physical characteristic) of

the sample units is often quite variable – a SRS is not always effective

since it does not take into account the importance that larger population
units may have.

Additional information on the unit size can sometimes be used to select

a sample that provides a more accurate estimator of the parameters of

interest.

One possible way to do this is to assign (potentially) equal selection

probabilities to different units, based on their size.

Example To a certain extent (𝜌 = 0.46), the larger the area of a country,

the larger its population. If we are trying to estimate the population of

the planet, it might be desirable to adopt a sampling scheme in which the

probability of selecting a country is proportional to its area – in an SRS,

it is very likely that neither China nor India will be selected, resulting in

an underestimate of the total sought. ■

If the variable of interest is (more or less) related to the size of the unit,

one can assign a probability of selection proportional to the size of the

unit (PPS). Note that in a PPS, previously selected units are replaced in

the population, allowing for the multiple selection of a single unit.

Selecting a PPS With Replacement

We consider two selection methods for a PPS sample:

cumulative totals, and

the Lahiri method.

In both cases, the PPS sample selection procedure consists of associating

with each unit a range of numbers,
56

related to the size of the unit, and 56: These are often integers, but that is

not necessary.
taking the units that correspond to numbers chosen at random from the

set of numbers associated with the entire population of 𝑁 units.

In the method of cumulative totals, the size of the 𝑖−th unit is denoted

by 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁 . We associate a range to each unit as follows:

Unit Range

1 1 to 𝑥1

2 𝑥1 + 1 to 𝑥1 + 𝑥2

3 𝑥1 + 𝑥2 + 1 to 𝑥1 + 𝑥2 + 𝑥3

...
...

...
...

𝑁 − 1 𝑥1 + · · · + 𝑥𝑁−2 + 1 to 𝑥1 + · · · + 𝑥𝑁−2 + 𝑥𝑁−1

𝑁 𝑥1 + · · · + 𝑥𝑁−1 + 1 to 𝑥1 + · · · + 𝑥𝑁−1 + 𝑥𝑁

Finally, we draw a PPS sample by choosing 𝑛 integers at random between

1 and 𝑋 = 𝑥1 + · · · + 𝑥𝑁−1 + 𝑥𝑁 (with replacement) and by selecting the

units associated with these integers.
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Example In a village, there are 8 orchards, each containing a certain

number of apple trees. A sample of 𝑛 = 3 orchards is drawn (with

replacement), in proportion to the number of apple trees per orchard.

ID 𝑖 Size 𝑥𝑖 Cumulative Totals Associated Range

1 50 50 1 − 50

2 30 80 51 − 80

3 25 105 81 − 105

4 40 145 106 − 145

5 26 171 146 − 171

6 44 215 172 − 215

7 20 235 216 − 235

8 35 270 236 − 270

We choose 𝑛 = 3 integers at random between 1 and 270: 108, 140, and

201, say. The associated units are the 4th, the 4th, and the 6th. ■

In the Lahiri method, we still denote the size of a unit by 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁 ,

but without having to calculate and report the successive cumulative
totals, which can be tedious to accomplish, even with a computer.

The method consists in selecting a pair of integers (𝑖 , 𝑗), where 1 ≤ 𝑖 ≤ 𝑁

and 1 ≤ 𝑗 ≤ 𝑀 = max{𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑁}. If 𝑗 ≤ 𝑥𝑖 , the 𝑖th unit is added to

the sample. Otherwise, the pair (𝑖 , 𝑗) is rejected.

We continue in this manner until 𝑛 units have been selected.
57

57: There are other ways to do this, of

course; the important thing is to have a

mechanism for selecting a PPS sample.

We generally prefer sampling without re-

placement to sampling with replacement,

but the latter is a reasonable substitute to

the former if
𝑛
𝑁

is “ sufficiently small”.

Estimation

Let us revisit the orchard example, where 𝑢𝑖 is the yield of all apple trees

in the 𝑖th orchard.

ID 𝑖 # Trees 𝑥𝑖 𝜋𝑖 Yield

1 50 50/270 𝑢1 = 2250

2 30 30/270 𝑢2 = 1080

3 25 25/270 𝑢3 = 1300

4 40 40/270 𝑢4 = 1400

5 26 26/270 𝑢5 = 1196

6 44 44/270 𝑢6 = 1716

7 20 20/270 𝑢7 = 820

8 35 35/270 𝑢8 = 1680

We are interested in the total apple production of the village, which we

know in this case to be 𝜏 = 11, 442. Since in principle an orchard with

more apple trees should produce more apples, we draw a PPS sample of

𝑛 = 3 units (with replacement), where the number of apple trees in the

orchard is used as the unit size.

In what follows, we illustrate the concepts using the sample

𝑦1 = 𝑢4 = 1400, 𝑦2 = 𝑢4 = 1400, 𝑦3 = 𝑢6 = 1716.
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If the sample Y, with |Y| = 𝑛, is drawn from Uusing a PPS, the units

𝑦1 , . . . , 𝑦𝑛 are independent and distributed according to

𝑦𝑖 𝑢1 · · · 𝑢𝑗 · · · 𝑢𝑁

𝑝(𝑦𝑖) 𝜋1 · · · 𝜋 𝑗 · · · 𝜋𝑁

where 0 < 𝜋𝑗 < 1 for all 1 ≤ 𝑗 ≤ 𝑁 and 𝜋1 + · · · + 𝜋𝑁 = 1.

For all 1 ≤ 𝑖 ≤ 𝑛, there is a 1 ≤ 𝑗 ≤ 𝑁 such that 𝑦𝑖 = 𝑢𝑗 . Set 𝑤𝑖 =
𝑢𝑗
𝜋𝑗

. The

sampling weights 𝑤𝑖 are also independent and distributed according

to

𝑃(𝑦𝑖 = 𝑢𝑗) = 𝑃
(
𝑤𝑖 =

𝑢𝑗

𝜋 𝑗

)
= 𝜋 𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁.

We note that for any 1 ≤ 𝑖 ≤ 𝑛, the expected weight is

E(𝑤𝑖) =
𝑁∑
𝑗=1

𝑤 𝑗𝑃(𝑤𝑖 = 𝑤 𝑗) =
𝑁∑
𝑗=1

𝑢𝑗

𝜋 𝑗
· 𝜋 𝑗 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝜏.

In other words,

𝜏̂pps = 𝑤 =
1

𝑛

𝑛∑
𝑖=1

𝑤𝑖

is an unbiased estimator of the total 𝜏. Its sampling variance is computed

as follows:

V(𝜏̂pps) = V

(
1

𝑛

𝑛∑
𝑖=1

𝑤𝑖

)
=

1

𝑛2

𝑛∑
𝑖=1

V(𝑤𝑖)︸         ︷︷         ︸
ind. des 𝑤𝑖

=
1

𝑛2

𝑛∑
𝑖=1

[ 𝑁∑
𝑗=1

(𝑤 𝑗 − 𝜏)2𝑃(𝑤𝑖 = 𝑤 𝑗)
]

=
1

𝑛2

𝑛∑
𝑖=1

𝑁∑
𝑗=1

( 𝑢𝑗
𝜋 𝑗

− 𝜏
)

2

𝜋 𝑗 =
1

𝑛

𝑁∑
𝑗=1

( 𝑢𝑗
𝜋 𝑗

− 𝜏
)

2

𝜋 𝑗 =
1

𝑛

𝑁∑
𝑗=1

(𝑢2

𝑗

𝜋 𝑗
−

2𝜏𝑢𝑗
𝜋 𝑗

+ 𝜏2

)
𝜋 𝑗

=
1

𝑛

( 𝑁∑
𝑗=1

𝑢2

𝑗

𝜋 𝑗
− 2𝜏

𝑁∑
𝑗=1

𝑢𝑗︸︷︷︸
=𝜏

+𝜏2

𝑁∑
𝑗=1

𝜋 𝑗︸ ︷︷ ︸
=1

)
=

1

𝑛

( 𝑁∑
𝑗=1

𝑢2

𝑗

𝜋 𝑗
− 𝜏2

)
.

In practice, we do not typically know the true value of 𝜏, so we use the

unbiased estimator

V̂(𝜏̂pps) =
1

𝑛(𝑛 − 1)

(
𝑛∑
𝑖=1

𝑤2

𝑖 − 𝑛𝜏̂
2

pps

)
.

Central Limit Theorem – PPS: if 𝑛 and 𝑁 − 𝑛 are sufficiently large,

then

𝜏̂pps ∼approx. N

(
𝜏, V̂(𝜏̂pps)

)
.

The bound on the error of estimation and the 95% C.I. for 𝜏 are

therefore

𝐵̂𝜏;pps = 2

√
V̂(𝜏̂pps) and C.I.pps(𝜏; 0.95) = 𝜏̂pps ± 𝐵̂𝜏;pps.
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Example In the orchard dataset, we have

𝜏̂pps =
1

3

[
1400

40/270︸   ︷︷   ︸
𝑤1

+ 1400

40/270︸  ︷︷  ︸
𝑤2

+ 1716

44/270︸  ︷︷  ︸
𝑤3

]
= 9810;

V̂(𝜏̂pps) =
1

3(2)
[(

1400

40/270︸  ︷︷  ︸
𝑤1

)
2

+
(

1400

40/270︸  ︷︷  ︸
𝑤2

)
2

+
(

1716

44/270︸  ︷︷  ︸
𝑤3

)
2

− 3 · 9810
2︸︷︷︸

𝜏̂2

pps

]
= 129, 600.

Consequently, the 95% C.I. for the total apple yield in the village is

C.I.pps(𝜏; 0.95) = 9810 ± 2

√
129, 600 ≡ (9090, 10530).

The actual total yield (𝜏 = 11, 442) does not fall within the confidence

interval – why might this be the case? Is this problematic? ■

In general, V(𝜏̂pps) ≤ V(𝜏̂SRS). In the orchards example, we can show

that

V(𝜏̂SRS) ≈ 8
2 · 172981.4375

3

(
8 − 3

8 − 1

)
= 2, 635, 907.619, and

V(𝜏̂pps) ≈
1

3

[
2250

2

50/270

+ · · · + 1680
2

35/270

− 11, 442
2

]
= 723, 912.

We can also give an estimate of the population average 𝜇 using

𝜇̂pps =
𝜏̂pps

𝑁
, V̂(𝜇̂pps) =

V̂(𝜏̂pps)
𝑁2

, C.I.pps(𝜇; 0.95) =
C.I.pps(𝜏; 0.95)

𝑁
.

A lot more can be said on the topic; PPS usually provides a springboard to

more sophisticated sampling designs and other theoretical considerations

[5, 7, 6].

10.7.3 Multi-Stage Sampling

By splitting the sampling process into several stages, one can reduce
costs and focus the logistical aspects of sampling on a few focal points.

In multi-stage sampling (M𝑛S), a sample of large units (primary units)

is drawn, then sub-units (secondary units) are drawn from the large

units, and so on.

Example Sampling units in a Canadian province could be decomposed

into three steps:

1. conduct a sample of municipalities (primary units);

2. sample neighbourhoods in the sampled municipalities (secondary
units), and

3. sample households in the samples neighbourhoods (tertiary units).



10.7 Special Topics 717

Figure 10.13: Schematics of SRS2S: target

population (left) and sample (right).

In a M𝑛S, the sample is concentrated around several pivots: in field

studies, for example, this has the advantage of considerably reducing the

survey area, which helps to reduce non-sampling errors.
58

58: In addition to reducing operational

costs.

Furthermore, detailed information is often available for groups of sample

units, but not for individual units: it is therefore not necessary to obtain

a complete sampling frame for all sample units, but only for those

belonging to the primary units selected in the first round, for example.

Any probability sampling method can be used at each stage, and they

can change from stage to stage: e.g., a municipality SRS, a neighborhood

SRS, a household SRS, etc.

Two-Stage Simple Random Sampling

In a 2-stage process, if sampling is conducted using a SRS for both stages,

the method is known as two-stage simple random sampling (SRS2S).

Example The biomass of a plant species in a forest area can be estimated

by drawing a SRS of 𝑚 = 8 compartments (primary units) from the

𝑀 = 40 compartments composing the population under study.

For each of these compartments 1 ≤ 𝑖 ≤ 𝑚, we then draw a SRS of 𝑛𝑖
plots, and measure the biomass in the plot. Estimates of the average

or total amount of biomass in the forest area can be calculated using

appropriate formulas. ■

Estimation

Let be a population consisting of 𝑀 primary units, having 𝑁ℓ secondary

units in the ℓ th primary unit. Denote by 𝑢𝑖 , 𝑗 the value of the response

variable of the 𝑗th secondary unit in the 𝑖th primary unit.

The population mean is

𝜇 =

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝑢ℓ , 𝑗

𝑀∑
ℓ=1

𝑁ℓ

.
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Suppose we draw a SRS of 𝑚 primary units, and a SRS of 𝑛𝑖 secondary

units in the 𝑖th primary unit. The total sample size is thus 𝑛 = 𝑛1 +
𝑐𝑑𝑜𝑡𝑠 + 𝑛𝑚 . We obtain an unbiased estimator of 𝜇 from:

𝑦
SRS2S

=
1

𝑚𝑁

𝑚∑
𝑖=1

𝑁𝑖𝑦 𝑖 =
1

𝑚𝑁

𝑚∑
𝑖=1

𝑁𝑖

𝑛𝑖

𝑛𝑖∑
𝑘=1

𝑦𝑖 ,𝑘 =
1

𝑚𝑁

𝑚∑
𝑖=1

𝑛𝑖∑
𝑘=1

𝑀𝑁𝑖

𝑚𝑛𝑖
𝑦𝑖 ,𝑘 ,

where

𝑁 =
1

𝑀

𝑀∑
ℓ=1

𝑁ℓ ≈
𝑁1 + · · · + 𝑁𝑚

𝑚
.

The sampling variance is composed of two components:

a measure of the variation between the primary units, and

a measure of the variation within the primary units.

When 𝑛𝑖 = 𝑁𝑖 for all 1 ≤ 𝑖 ≤ 𝑚, we are dealing with a CLS and the

variance is only given by the first component (see Section 10.6). In the

case where 𝑚 = 𝑀, we are dealing with a STS and the variance is only

given by the second component (see Section 10.4).

When 𝑚 ≠ 𝑀 and 𝑛𝑖 ≠ 𝑁𝑖 for at least one primary unit 𝑖, the variance is

a combination of these two extremes: in that case, the second component

represents the contribution of sub-sampling (another name for M𝑛S).

We use the law of total variance to estimate the sampling variance:

V(𝑦
SRS2S

) = E[V(𝑦
SRS2S

| 𝑚)] + V(E[𝑦
SRS2S

| 𝑚])

=
1

𝑁
2

·
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
+ 1

𝑚𝑀𝑁
2

𝑚∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
≈ 1

𝑁
2

·
𝑠2

𝑇

𝑚

(
1 − 𝑚

𝑀

)
︸               ︷︷               ︸
between primary units

+ 1

𝑚𝑀𝑁
2

𝑚∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
︸                               ︷︷                               ︸

within primary units

,

where

𝑠2

𝑇 =
1

𝑚 − 1

𝑛∑
𝑖=1

(
𝑁𝑖𝑦 𝑖 − 𝑁𝑦SRS2S

)
2

, 𝑠2

𝑖 =
1

𝑛𝑖 − 1

𝑛𝑖∑
𝑘=1

(𝑦𝑖 ,𝑘 − 𝑦 𝑖)2.

Example The biomass of a plant species (kg) is measured in plots of

0.025 ha (secondary units) selected from 𝑚 = 8 compartments (primary

units), randomly selected themselves among the 𝑀 = 40 compartments

of a forested area. The summary of results is shown in the following

table:

Comp. 1 2 3 4 5 6 7 8

𝑦 𝑖 118 107 109 110 120 95 93 90

𝑠2

𝑖
436 516 586 456 412 497 755 496

𝑁𝑖 1760 1975 1615 1785 1775 2050 1680 1865

𝑛𝑖 9 10 8 9 9 10 8 9

Find a 95% C.I. for the average biomass per plot and per compartment,

and for its total in the forested area.
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Solution: Since we do not know 𝑁 , we approximate it with the mean

𝑁 ≈ 1

8

(1760 + · · · + 1865) = 1813.125.

The totals in the selected primary units are then:

Comp. 1 2 3 4 5 6 7 8

𝑁𝑖𝑦 𝑖(×10
5) 2.077 2.113 1.760 1.964 2.130 1.946 1.562 1.679

The SRS2S estimators of the mean 𝜇, of the mean of the totals in the

compartments, and of the total are:

𝑦
SRS2S

=
1

8(1813.125) (2.077 + · · · + 1.679) × 10
5 = 105.01;

𝑁𝑦
SRS2S

= 1813.125 · 105.01 = 190, 403.75; 𝜏SRS2S = 𝑀 · 𝑁𝑦
SRS2S

= 7, 616, 150.

The variance between compartments (primary units) is thus:

𝑠2

𝑇 =
1

8 − 1

8∑
𝑖=1

(𝑁𝑖𝑦 𝑖 − 190, 403.75)2 = 4.55 × 10
8

Finally, we calculate the variance within the compartments:

Comp. 1 2 3 4 5 6 7 8

𝑁2

𝑖

𝑁
2
· 𝑠

2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
48.2 51.3 72.7 50.4 45.6 49.4 93.9 54.9

The sampling variance is thus

V̂(𝑦
SRS2S

) = 4.55 × 10
8

8(1813.125)2
(
1 − 8

40

)
+ 1

8(40) (48.2 + · · · + 54.9)

= 14.03

The variances of the other two estimators are easily calculated:

V̂(𝑁𝑦
SRS2S

) = 𝑁
2

V̂(𝑦
SRS2S

) = (1813.125)2 · 14.03 = 46, 141, 324.55;

V̂(𝜏SRS2S) = 𝑀2𝑁
2

V̂(𝑦
SRS2S

) = (40)2 · (1813.125)2 · 14.03 = 73, 826, 119, 284;

the confidence intervals are thus

C.I.SRS2S(𝜇; 0.95) : 105.01 ± 2

√
14.03 ≡ (97.5, 112.5)

C.I.SRS2S(𝑁0

𝑀 𝜇; 0.95) : 190, 403.75 ± 2

√
46, 141, 324.55 ≡ (176818, 203989.2312)

C.I.SRS2S(𝜏; 0.95) : 7, 616, 150 ± 2

√
73, 826, 119, 284 ≡ (7072730, 8159569)

,

assuming of course that the central limit theorem remains valid in the

context of a SRS2S. ■
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10.7.4 Multi-Phase Sampling

Multi-stage sampling (M𝑛P) plays a crucial role in many types of surveys,

including those conducted by remote sensing.

In the first phase, a selected number of units are sampled, but only

a small number of characteristics are captured for each unit. In each

successive phase, a larger number of features is measured on a smaller

sub-sample of units.

In this way, the target parameter can be estimated with more accuracy
and at lower cost, by studying the relationship between the features

measured in the different sampling phases.

Two-Phase Random Sampling

A M𝑛P with only two phases is called a two-phase sampling (M2P).

M2Ps are particularly useful in a situation where enumeration of the

main trait is expensive (in terms of costs or labor), but in which an

auxiliary trait correlated to the main trait can easily be observed.

Thus, it is sometimes preferable to draw a large SRS in the first phase in

order to analyze the auxiliary variables, which leads to more accurate

estimates of 𝜏 or 𝜇 for that auxiliary variable (at least, that is the hope).

In the second phase, a smaller sample is drawn, usually a sub-sample of

the characteristic, and the auxiliary variable are measured.

Estimates of the main characteristic are then obtained using the informa-

tion obtained in the first phase, using the ratio method or the regression
method, for instance. The precision of the final estimates can be increased

by including several correlated auxiliary variables.

Example If we want to estimate the total volume of wood 𝜏 in a forest,

we could first measure the circumference 𝑐𝑖 and height ℎ𝑖 of the trees 𝑖

in some sample, then the volume 𝑣𝑖𝑘 of the trees 𝑖𝑘 in a sub-sample. We

only need to determine the statistical relationship between 𝜏𝑣 , 𝜏𝑐 , and 𝜏ℎ
to complete the procedure. ■

The M𝑛P sampling method helps to reduce the cost of enumeration
and increase the accuracy of estimates. It can also be used to stratify a

population: an initial sample is taken based on the auxiliary characteristic,

which is used to subdivide the population into strata in which the main

characteristic is more or less homogeneous.

As long as the two characteristics are correlated, accurate estimates of the

main characteristic are obtained from a second, relatively small sample.

M2P can also be paired with M2S, for example (or with any other

sampling design). If both selection steps are performed with SRS, the

method is called two-phase simple random sampling (SRS2P).

In the first phase, the population is divided into well-defined sampling

units; a SRS Y1 of size 𝑛1 is drawn from these units; the auxiliary variable
𝑥 is measured on all units of Y1. Next, a sub-SRS Y2 of size 𝑛2 is drawn

from Y1; the main characteristic 𝑦 is measured on all units of Y2.
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Figure 10.14: Schematics of SRS2P: target

population (left) and sample (right).

We can evaluate 𝑟Y2
or 𝑏Y2

from the observations in Y2 (using either the

ratio method or the regression method), which yields

𝜇̂𝑌;𝑅;SRS2P = 𝑟Y2
· 𝑥Y1

or

𝜇̂𝑌;𝐿;SRS2P = 𝑦Y2

+ 𝑏Y2
(𝑥Y1

− 𝑥Y2
).

Estimation

Due to the double sampling, two terms contribute to sampling variances

of the estimators (the first when going from U to Y1, and the second

from Y1 to Y2):

V̂(𝜇̂𝑌;𝑅;SRS2P) =
1

𝑛2

(
𝑠2

𝑌 − 2𝑟Y2
𝑠𝑋𝑌 + (𝑟Y2

)2𝑠2

𝑋

)
+ 1

𝑛1

(
2𝑟Y2

𝑠𝑋𝑌 − (𝑟Y2
)2𝑠2

𝑋

)
V̂(𝜇̂𝑌;𝐿;SRS2P) =

1

𝑛2

𝑠2

𝑋𝑌;𝐿 +
1

𝑛1

(
𝑠2

𝑋𝑌;𝐿 − 𝑠
2

𝑌

)
where 𝑠2

𝑌
, 𝑠𝑋𝑌 , and 𝑠2

𝑋
are the usual quantities (in Y2), and

𝑟Y2
=
𝑦Y2

𝑥Y2

, 𝑏Y2
=
𝑠𝑋𝑌

𝑠2

𝑋

, and

𝑠2

𝑋𝑌;𝐿 =
𝑛2 − 1

𝑛2 − 2

·
{
𝑠2

𝑌 − 𝑏2

Y2

𝑠2

𝑋

} .

Example We are interested in the biomass of any plant in a region,

which is divided into plots of 0.025 ha each. First, we measure the number

𝑥 of groves per unit in a SRS Y1 of 𝑛1 = 200 plots.

Then, the biomass 𝑦 of the plant in question is calculated in each unit of

a sub-SRS Y2 of 𝑛2 = 40 plots:

𝑥Y1
= 374.4;

40∑
𝑖=1

𝑥𝑖 = 15, 419;

40∑
𝑖=1

𝑦𝑖 = 2104;

40∑
𝑖=1

𝑥2

𝑖 = 7, 744, 481;

40∑
𝑖=1

𝑥𝑖𝑦𝑖 = 960, 320;

40∑
𝑖=1

𝑦2

𝑖 = 125, 346.

What would a 95% C.I. for the average biomass per plot look like?
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Let us compute the required intermediate quantities:

𝑥Y2
=

15419

40

= 385.5; 𝑦Y2

=
2104

40

= 52.6; 𝑟Y2
=
𝑦Y2

𝑥Y2

=
52.6

385.5
= 0.14;

𝑠2

𝑋 =
1

39

[7744481 − 40(385.5)2] ≈ 46175; 𝑠2

𝑌 =
1

39

[125346 − 40(52.6)2] ≈ 376

𝑠𝑋𝑌 =
1

39

[960320 − 40(385.5)(52.6)] ≈ 3827.7; 𝑏Y2
=
𝑠𝑋𝑌

𝑠2

𝑋

=
3827.7

46175.4
≈ 0.08;

𝑠2

𝑋𝑌;𝐿 =
39

38

[376.3 − 0.08
2(46175.4)] ≈ 82.9;

which gives us

𝜇̂𝑌;𝑅;SRS2P = 0.14(374.4) ≈ 51.1; 𝜇̂𝑌;𝐿;SRS2P = 52.6 + 0.08(374.4 − 385.5) ≈ 51.7

and

V̂(𝜇̂𝑌;𝑅;SRS2P) =
376.3 − 2(0.14)(3827.7) + (0.14)246175.4

40

+ 2(0.14)3827.7 − (0.14)246175.4

200

≈ 5.67;

V̂(𝜇̂𝑌;𝐿;SRS2P) =
82.9

40

+ 82.9 − 376.3

200

≈ 3.54;

from which we conclude that

C.I.𝑅;SRS2P(𝜇𝑌 ; 0.95) = 51.1 ± 2

√
5.67 ≡ (46.3, 55.8)

C.I.𝐿;SRS2P(𝜇𝑌 ; 0.95) = 51.7 ± 2

√
3.54 ≡ (47.9, 55.5). ■

10.7.5 Miscellaneous

We end the module by briefly discussing a few notions that did not find

a natural slot in the previous sections:

design effects;

adjusting for non-response;

estimating the size of a population,

randomized responses, and

Bernoulli sampling.

Design Effect

The design effect compares the estimator for a given sampling design and

for a SRS. It is the ratio of the sampling variance of the estimator under
the given sampling design to the sampling variance of the estimator
under a SRS (assuming samples of the same size).

This value is often applied to compare the efficiency of estimators from

different sampling designs. If the ratio < 1, the sampling design is more

efficient than SRS; if it is > 1, it is less efficient than SRS.

We directly compared the theoretical variances of several sampling

designs in sections 10.4.3, 10.5.4, and 10.6.3, but in practice we compute

the design effect using the achieved samples (assuming that they had

been drawn under various sampling plans).
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Design effects also help to obtain approximate variance estimates for

complex sampling designs. If a design effect estimate is available from a

previous survey (that used the sampling design we will be using for this

survey), it can be used to determine the sample size required to meet

some pre-determined condition(s).

Adjusting for Nonresponse

Non-response is a problem in all surveys. Total non-response (when all

or almost all data from a sampled unit are missing) occurs when:

a sample unit refuses to participate in the survey;

we cannot establish contact with a sample unit;
the sampled unit cannot be found, or

the information obtained form the unit is useless/invalid.

The simplest way to deal with such non-response is to ignore it; in some

exceptional circumstances (when the affected observations are not in any

way different from those for whom we have valid and complete measure-

ments), proportions or means that are estimated without adjusting for

non-response are more or less the same as those produced by applying

adjustment for non-response.

If one neglects to compensate for nonresponding units, however, the

totals are generally underestimated (e.g., the size of a population, total

revenue, or total acres harvested, say).

The most common way to deal with total non-response is to adjust the
base sampling weights by assuming that the responding units represent

both responding and nonresponding units. If the nonrespondents are
equivalent to the respondents for the characteristics measured in the

survey, this is a reasonable approach.

The base weights for nonrespondents are then redistributed among

respondents, using a adjustment factor for nonrespondents that is

multiplied by the base weight, to obtain an adjusted weight.

Example If we draw a SRS of size 𝑛 = 25 from a stratum of size

𝑁 = 1000, the probability of inclusion of each of these units and the

corresponding basic weight are

𝜋 =
𝑛

𝑁
=

25

1000

= 0.025, 𝑤 =
1

𝜋
=

1

0.025

= 40.

In other words, each selected unit represents 40 units in the stratum.

If we only get a response from 𝑛𝑟 = 20 of the 𝑛 = 25 selected units, the

non-response adjustment factor (NRAF) and the adjusted weight (for

non-response) become:

NRAF =
𝑛

𝑛𝑟
=

25

20

= 1.25

𝑤nr = 𝑤 · NRAF = 1.25(40) = 50;

each responding unit then represents 50 units in the stratum. This

adjusted weighting is what we would end up working with. ■
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Of course, the adjusted weight may vary from stratum to stratum,

depending on the sample design and the sample size/allocation.

When we want to determine the optimal sample size/allocation across

various strata, what we obtain is the target sample size.
59

We then have59: Assuming that the target and study

populations coincide.
to resort to inflation of the sample size to achieve the target.

Example The allocation of a StS of size 𝑛 = 29 is found to be (17, 9, 3).
In a prior study, the non-response rates by stratum were determined to

be (16.2%, 20.8%, 31.2%). Which allocation optimizes the likelihood of

achieving the target allocation?

We only need to solve

𝑛1(1 − 0.162) = 17, 𝑛2(1 − 0.208) = 9, 𝑛3(1 − 0.312) = 3,

which gives a practical sample allocation of (𝑛1 , 𝑛2 , 𝑛3) = (20.3, 11.3, 4.3) ≈
(21, 12, 5), and a practical sample size of 𝑛 = 38.

Estimating a Population Size

How do we proceed if the size 𝑁 of the population U is unknown? When

the population is large enough, we can always use the approximation

𝑁 ≈ ∞ in the sampling variance formulas.

But sometimes it is the parameter 𝑁 that represents the quantity of

interest; as an example, how would we find out the number 𝑁 of $5 bill

in circulation?

We approach such a problem using the catch-and-release method (com-

pare with the approach used in Module 25):

1. we capture 𝑛1 bills at random (without replacement) from the

population;

2. we mark them and release them back into circulation;

3. at a later time, 𝑛2 bills are captured at random (without replacement)

from the population;

4. we count the number 𝑋 of marked bills, 0 < 𝑋 ≤ 𝑛2.

If we wait long enough (to let the marked bills propagate in the population,

say), we obtain

𝑛1

𝑁
≈ 𝑋

𝑛2

, from which we have 𝑁̂ =
𝑛1𝑛2

𝑋
,

where 𝑋 follows a hypergeometric distribution with parameters 𝑛1 , 𝑁 −
𝑛1 , 𝑛2, and probability mass function

𝑃(𝑋 = 𝑥) =

(
𝑛1

𝑥

) (
𝑁 − 𝑛1

𝑛2 − 𝑥

)
(
𝑁

𝑛2

) , 0 ≤ 𝑥 ≤ 𝑛2

𝜇𝑋 = E[𝑋] = 𝑛2

(𝑛1

𝑁

)
︸︷︷︸

𝑝

= 𝑛2𝑝, 𝜎2

𝑋 = V[𝑋] = 𝑛2𝑝(1 − 𝑝)
(
𝑁 − 𝑛2

𝑁 − 1

)
.
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If
𝑛2

𝑁 < 0.05, we can ignore the FPCF term in the variance:

𝜎2

𝑋 = V[𝑋] ≈ 𝑛2𝑝(1 − 𝑝).

We can now develop expressions for E[𝑁̂] and V[𝑁̂], using a Taylor
series of order 2 near 𝑋 ≈ 𝜇𝑋 = 𝑛2𝑝:

𝑓 (𝑋) ≈ 𝑓 (𝜇𝑋) + 𝑓 ′(𝜇𝑋)(𝑋 − 𝜇𝑋) +
𝑓 ′′(𝜇𝑋)

2

(𝑋 − 𝜇𝑋)2.

Si 𝑁̂ = 𝑓 (𝑋) = 𝑛1𝑛2

𝑋 , so that

𝑁̂ ≈ 𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2

=
𝑛1

𝑝
− 𝑛1

𝑛2𝑝2

(𝑋 − 𝑛2𝑝) +
𝑛1

𝑛2

2
𝑝3

(𝑋 − 𝑛2𝑝)3.

Consequently,

E[𝑁̂] = E

[
𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2
]

= E

[
𝑛1𝑛2

𝜇𝑋

]
− E

[
𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋)
]
+ E

[
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2
]

=
𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(E[𝑋]︸︷︷︸
𝜇𝑋

−𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

E

[
(𝑋 − 𝜇𝑋)2

]
=
𝑛1𝑛2

𝜇𝑋
+ 𝑛1𝑛2

𝜇3

𝑋

V[𝑋] ≈ 𝑛1

𝑝
+ 𝑛1

𝑛2

2
𝑝3

· 𝑛2𝑝(1 − 𝑝) = 𝑛1

𝑝
+ 𝑛1

𝑛2𝑝2

(1 − 𝑝)

=
𝑛1

𝑝

(
1 + 1 − 𝑝

𝑛2𝑝

)
= 𝑁

(
1 + 1 − 𝑝

𝑛2𝑝

)
.

Since

1−𝑝
𝑛2𝑝

> 0, E[𝑁̂] ≠ 𝑁 , and so 𝑁̂ is an asympotically unbiased
estimator of 𝑁 when the sample size 𝑛2 increases.

We can provide an approximation of the variance using a Taylor series
of order 1 near 𝑋 ≈ 𝜇𝑋 = 𝑛2𝑝:

𝑁̂ ≈ 𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) =
𝑛1

𝑝

(
1 −

𝑋 − 𝑛2𝑝

𝑛2𝑝

)
=
𝑛1

𝑝

(
2 − 𝑋

𝑛2𝑝

)
.

Putting all this together, we get

V[𝑁̂] ≈ V

[
𝑛1

𝑝

(
2 − 𝑋

𝑛2𝑝

)]
=
𝑛2

1

𝑝2

· V

[
− 𝑋

𝑛2𝑝

]
=

𝑛2

1

𝑛2

2
𝑝4

· V[𝑋]

≈
𝑛2

1
𝑛2𝑝(1 − 𝑝)
𝑛2

2
𝑝4

=
𝑛2

1
(1 − 𝑝)
𝑛2𝑝3

.

In practice, we do not know the true 𝑝, so we use

V̂[𝑁̂] =
𝑛2

1
(1 − 𝑝̂)
𝑛2 𝑝̂3

, where 𝑝̂ =
𝑋

𝑛2

.
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Central Limit Theorem – Population Size 𝑁 : if 𝑛2 and 𝑁 are sufficiently

large, we have

𝑁̂ ∼approx. N

(
E[𝑁̂], V̂[𝑁̂]

)
≈ N

(
𝑛1𝑛2

𝑋
,
𝑛2

1
(1 − 𝑝̂)
𝑛2 𝑝̂3

)
,

and the corresponding 95% C.I. for 𝑁 is thus

C.I.(𝑁 ; 0.95) :

𝑛1𝑛2

𝑋
± 2

√
𝑛2

1
(1 − 𝑝̂)
𝑛2 𝑝̂3

.

Example Say that 𝑛1 = 500 bills were initially captured, marked, and

releases; of the 𝑛2 = 300 bills recaptured at a later date, 𝑋 = 127 were

marked. Give a 95% C.I. for the total number of $5.

The point estimate is 𝑁̂ = 500·300

127
≈ 1181.102. We also have 𝑝̂ = 𝑋

𝑛2

=
127

300
≈ 0.423, from which we get the bound on the error of estimation

2

√
V̂(𝑁̂) = 2

√
500

2 · (1 − 0.42)
300 · (0.42)3 = 159.176,

and

C.I.(𝑁 ; 0.95) : 1181.102 ± 159.176 ≡ (1021.9, 1340.3). ■

Randomized Response

Let’s say we ask students whether they cheated on a test or an assignment

during the pandemic. If the answer is “Yes,” we can likely conclude that

it is the true answer. But since there is a social cost associated with such

an answer, we can expect that some cheaters will answer “No”. What can

we do to reduce the measurement error for sensitive questions?

First approach: with such questions, the skill of the interviewer plays a

crucial role – this aspect should not be overlooked.

Second approach: the randomized response technique requires the use

of two questions:

the sensitive question, and

an innocent question,

as well as a random mechanism with known parameters (heads or tails,

etc.).

Randomized responses work as follows: the respondent flips a coin

(without announcing the result to the interviewer), and answers honestly

one of the 2 questions:

“head”: “Have you ever cheated on a test?”;

“tail”: “Were you born in January?”;
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Since the interviewer does not know the outcome of the draw, they do

not know whether the respondent is answering the sensitive question or

the innocent one. In theory, the anonymity provided by the randomized

response is freeing (the social cost is diminished, if not eliminated
altogether) – therefore, we could expect an honest answer, regardless of

the question.

But we have to be careful: this approach can only be successful if we

know the probabilities:

𝜃 of observing a positive response to the innocent question;

𝜌 of the question being answered actually being the sensitive
question, and

𝜙 of observing a positive response, whatever the question.

Let 𝑝 be the proportion of positive responses to the sensitive question,

which is the quantity of interest. According to the Law of Total Probability,

we have

𝜙 = 𝑃(positive response)
= 𝑃(positive | sensitive)︸                      ︷︷                      ︸

𝑝

×𝑃(sensitive︸       ︷︷       ︸
𝜌

) + 𝑃(positive | innocent)︸                      ︷︷                      ︸
𝜃

×𝑃(innocent)︸        ︷︷        ︸
1−𝜌

,

= 𝑝𝜌 + 𝜃(1 − 𝜌)

or

𝑝 =
𝜙 − 𝜃(1 − 𝜌)

𝜌
.

If 𝜙̂ is the proportion of positive responses in the achieved sample, then

the randomized response estimator is

𝑝̂rr =
𝜙̂ − 𝜃(1 − 𝜌)

𝜌
, 𝜃, 𝜌 constants,

whose sampling variance is

V(𝑝̂rr) = V

(
𝜙̂ − 𝜃(1 − 𝜌)

𝜌

)
= V

(
𝜙̂

𝜌

)
=

1

𝜌2

· V(𝜙̂).

Since 𝜙̂ is a SRS proportion estimator obtained from a sample of size 𝑛

in a population Uof size 𝑁 , its sampling variance is

V(𝜙̂) =
𝜙(1 − 𝜙)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

from which we conclude that

V(𝑝̂rr) =
1

𝜌2

·
𝜙(1 − 𝜙)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

As the true value of 𝜙 is typically not known, we instead use the unbiased

estimator

V̂(𝑝̂rr) =
1

𝜌2

·
𝜙̂(1 − 𝜙̂)
𝑛 − 1

(
1 − 𝑛

𝑁

)
,
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and we build a 95% C.I. for 𝑝 via

C.I.rr(𝑝; 0.95) : 𝑝̂rr ± 2

√
V̂(𝑝̂rr).

The factor 1/𝜌2 penalizes the uncertainty brought by the randomized

response – the higher 𝜌 is, the lower V̂(𝑝̂rr) is.

There are practical considerations that limit how high 𝜌 can get: if it is

too large, the anonymity conferred by the approach evaporates, and we

risk ruining the study by causing an increase in non-response.

Example We seek to determine the incidence of cheating in online

courses among students in the Department of Mathematics and Statistics

(𝑁 = 442), using a SRS with 𝑛 = 65. We use the scheme described in this

section with 𝜌 = 1/2, and observe 𝜃 = 52

442
and 𝜙̂ = 21

65
. Find a 95% C.I.

for the proportion of students who cheated during the pandemic.

We only need compute

𝑝̂rr =
21/65 − 52/442(1 − 1/2)

1/2

= 0.53

V̂(𝑝̂rr) =
1

1/2
2

· 21/65(1 − 21/65)
65 − 1

(
1 − 65

442

)
= 0.012,

which yields C.I.rr(𝑝; 0.95) = 0.53 ± 2

√
0.012 ≡ (0.31, 0.74). ■

Bernoulli Sampling

Bernoulli sampling (BS) is a random sampling design – we do not know

the sample size before it is drawn.

Each unit of the population U = {𝑢1 , . . . , 𝑢𝑁 } is assigned the same

probability of inclusion in the sample Y: 𝜋 𝑗 = 𝜋 ∈ (0, 1), for all 𝑗. We

denote the achieved sample size by 𝑛𝑎 .

The BS design
60

consists of performing 𝑁 independent Bernoulli trials,60: I know, I know.

each with probability of success 𝜋 (where a success means that the unit

is included in the sample, and a failure means that it rejected).

The probability of obtaining a sample Yof size 𝑛𝑎 is then:

𝑃(|Y| = 𝑛𝑎) = 𝜋𝑛𝑎 (1 − 𝜋)𝑁−𝑛𝑎 .

There are 2
𝑁

possible samples, with size varying from 𝑛𝑎 = 0 to 𝑛𝑎 = 𝑁 .

The sample size follows a binomial distribution 𝑛𝑎 ∼ 𝐵(𝑁,𝜋):

𝑃(𝑛𝑎 = 𝑛) =
(
𝑁

𝑛

)
𝜋𝑛(1 − 𝜋)𝑁−𝑛 , E[𝑛𝑎] = 𝑁𝜋, V[𝑛𝑎] = 𝑁𝜋(1 − 𝜋).

When 𝑁 is sufficiently large, this distribution is approximately normal;
the 95% C.I. for 𝑛 is thus

C.I.(𝑛𝑎 ; 0.95) : 𝑁𝜋 ± 2

√
𝑁𝜋(1 − 𝜋).
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Let 𝜋 𝑗 ,𝑘 be the probability of inclusion of units 𝑢𝑗 and 𝑢𝑘 , 𝑗 ≠ 𝑘 in the

smaple Y. Since the Bernouilli trials are independent of one another,

𝜋 𝑗 ,𝑘 = 𝑃({𝑢𝑗 , 𝑢𝑘} ∈ Y) = 𝑃(𝑢𝑗 ∈ Y) · 𝑃(𝑢𝑘 ∈ Y) = 𝜋 𝑗𝜋𝑘 = 𝜋2.

The estimator

𝜏̂BS =
1

𝜋

𝑛𝑎∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the total 𝜏 in U: indeed,

E[𝜏̂BS] =
1

𝜋
E[𝑛𝑎𝑦] =

E[𝑛𝑎]E[𝑦]
𝜋

=
𝑁𝜋𝜇

𝜋
= 𝑁𝜇 = 𝜏,

as 𝑛𝑎 and 𝑦 are independent of each other.

In the same vein, the sampling variance of 𝜏̂BS is approximately

V̂[𝜏̂BS] =
1

𝜋

(
1

𝜋
− 1

) 𝑛𝑎∑
𝑖=1

𝑦2

𝑖 .

If 𝑁 and 𝑛𝑎 are sufficiently large, the Central Limit Theorem comes into

play again, and we build a 95% C.I. for 𝜏 using

C.I.BS(𝜏; 0.95) : 𝜏̂BS ± 2

√
V̂[𝜏̂BS].

The corresponding estimators for the mean 𝑦
BS

and the proportion 𝑝̂BS

are obtained in the usual manner.

Example A teacher has to correct 600 exam papers. For each paper, she

rolls a die and only corrects it (at this stage) if it shows a 6.

At the end of the process, she has graded 90 papers, of which 60 have

received a passing grade. Find a 95% C.I. for the total number of passes

in her class.

Let 𝑦𝑖 = 1 if the 𝑖th marked examen received a passing grade, and 𝑦𝑖 = 0

otherwise. We have 𝑁 = 600, 𝜋 = 1/6, 𝑛𝑎 = 90,

90∑
𝑖=1

𝑦𝑖= 60,
90∑
𝑖=1

𝑦2

𝑖 = 60, 𝜏̂BS =
1

1/6

90∑
𝑖=1

𝑦𝑖 = 6(60) = 360

V̂[𝜏̂BS]=
1

1/6

(
1

1/6

− 1

)
90∑
𝑖=1

𝑦2

𝑖 = 6(5)(60) = 1800.

The 95% C.I. is thus C.I.BS(𝜏; 0.95) = 360 ± 2

√
1800 ≡ [277, 443]. We are

not going to lie... it is looking particularly bleak for the students. ■
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10.8 Exercises

1. You are tasked with estimating the annual salary of data scientists

in Canada. Determine the: populations (target, study, respondent);

sampling frames; samples (target, achieved); information about

units (units, response variable, attributes); sources of error (cover-

age, non-response, sampling, measurement and processing) and

variability (sampling, measurement).

2. We seek to estimate the average daily distance travelled by Ontario

cars, as well as their daily fuel consumption. Discuss various

approaches to be used. What are some of the issues and challenges

that could be encountered?

3. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario, as are the average daily fuel consumption and

the proportion of vehicles not in use. An SRS is selected from the

Ontario fleet (size 𝑁 = 7, 868, 359); the responses are collected in

the file Autos.xlsx . Discuss issues that may affect the quality

of the data. Provide a numerical and visual summary of the data

for the sample. Give an approximate 95% C.I. for each population

mean sought, with corresponding coefficient of variation.

4. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario, as are the average daily fuel consumption and

the proportion of vehicles not in use. An STS is selected from the

Ontario fleet (size 𝑁 = 7, 868, 359), with information concerning

vehicle type and age (the strata); the responses are collected in the

file Autos.xlsx . Discuss issues that may affect the quality of the

data. Provide a numerical and visual summary of the data for the

sample. Give an approximate 95% C.I. for each population mean

sought, with corresponding coefficient of variation. Conduct the

same exercise for each stratum.

5. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario. An SRS is selected from the Ontario fleet (size

𝑁 = 7, 868, 359). The responses, as well as the corresponding daily

fuel consumption, are collected in the file Autos.xlsx . Give

an approximate 95% C.I. for the characteristic of interest using

quotient, regression, and difference estimation.

6. Could cluster sampling be used to provide estimates of average

daily distance travelled, average daily fuel consumption, and pro-

portion of vehicles not in use in Winter 2012 in Ontario? Treat the

vehicle type and age information found in Autos.xlsx as cluster

information.

7. Repeat the previous exercise using multi-phase and multi-stage

sampling.

8. Draw 𝑚 = 1000 SRS samples of size 𝑛 from the 𝑁 = 183 countries

(excluding China and India) in the 2011 Gapminder dataset to esti-

mate the average propulation by country 𝜇. For 𝑛 = 30, 60, 90, 120,

what proportion of the 𝑚 samples yield an approximate 95% C.I.

containing 𝜇? Assume that 𝜎2
is not known.

9. Find an approximate 95% C.I. for the average life expectancy 𝜇
of the 𝑁 = 185 countries in the 2011 Gapminder dataset using

a SRS of size 𝑛 = 20. Is the true average life expectancy in your

confidence interval? Repeat this task𝑚 = 1000 times, with different

SRS samples. What proportion of the𝑚 samples yield approximate

https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
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95% C.I. containing 𝜇? Assume that 𝜎2
is not known. Compare

with the results of the previous exercise. How do you explain the

discrepancy?

10. Find an approximate 95% C.I. for the proportion 𝑝 of countries

whose life expectancy fell below 60 years in the 2011 Gapminder

dataset (𝑁 = 185), using a SRS of size 𝑛 = 20. Is the true proportion

in the confidence interval? Repeat this task 𝑚 = 1000 times, with

different SRS samples. What proportion of the 𝑚 samples yield

approximate 95% C.I. containing the true 𝑝? Assume that 𝜎2
is not

known. Compare with the results of exercises 8 and 9.

11. Find an approximate 95% C.I. for the total population of the planet

in the 2011 Gapminder dataset (𝑁 = 185), using a STS of size

𝑛 = 20. What variable will you use to stratify the data? Repeat this

task 𝑚 = 1000 times, with different STS samples. What proportion

of the 𝑚 samples yield approximate 95% C.I. containing the true

total 𝜏? Is the distribution of the obtained totals (approximately)

normal? How do you explain the shape of this distribution?

12. Find an approximate 95% C.I. for the proportion 𝑝 of countries

whose life expectancy fell below 60 years in the 2011 Gapminder

dataset (𝑁 = 185), using a STS of size 𝑛 = 20. What variable will

you use to stratify the data? Is the true proportion in the confidence

interval? Repeat this task 𝑚 = 1000 times, with different STS

samples. What proportion of the𝑚 samples yield approximate 95%

C.I. containing the true 𝑝? Compare with the results of exercise 10.

13. Consider a sample Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} drawn from a

population of size 𝑁 = 37, 444. In a preceding study, we have

found that 𝜎2

𝑊 ;𝐿
≈ 188.2. Find the minimal 𝑛 which ensures that

the bound on the error of (regression) estimation of the mean 𝜇𝑌 is

at most 5. Do the same for the total 𝜏𝑌 and a bound of at most 250.

14. Find a 95% C.I. for the proportion of countries in the 2011 Gap-

minder dataset (𝑁 = 185) whose life expectancy is above 75 years,

using a CLS with 𝑚 = 8, assuming that the countries are grouped

into 𝑀 = 22 clusters determined by geographic regions. Assume

further that the average cluster size is known to be 𝑁 = 8.41.

15. Consider a CLS Yconsisting of𝑚 clusters drawn from a population

U of size 𝑁 , distributed in 𝑀 clusters. Let 𝜇 be the mean and 𝜎2

the variance of the population U. If the clusters are all of size 𝑛,

show that

V(𝑦𝐶) ≈
𝜎2 − 𝜎2

𝑚

(
1 − 𝑚

𝑀

)
, where 𝜎2 =

1

𝑀

𝑀∑
ℓ=1

𝜎2

ℓ ,

where 𝜎2

ℓ
is the variance in the ℓ th cluster.
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