Survey Sampling Methods

10

by Patrick Boily (inspired by Patrick Farrell)

Simply put, data analysis requires data. In pedagogical settings, we take for granted that the data at our disposal is "perfect" (or "ideal"): it either consists of the totality of potentially available data, or it is a representative subset thereof. In practice, either of these can be difficult to achieve; it can prove costly (and sometimes impractical) to collect data from which we can infer population trends and characteristics.

While web scraping (and automated methods) are sometimes used to facilitate the data collection process (see Chapter 16, Web Scraping and Automatic Data Collection), the samples that they provide often fail to be representative enough to be of use in practice.

In this chapter, we discuss the principles that underlie statistical sampling methods, and show how to obtain estimates for various sampling plans.

10.1 Background

To call in the statistician after the experiment is done may be no more than asking them to perform a post-mortem examination: at best, they may be able to say what the experiment died of. [R.A. Fisher, Presidential Address to the First Indian Statistical Congress, 1938]

Data analysis tools and techniques work in conjunction with collected data. The type of data that needs to be collected to carry out such analyses, as well as the priority placed on the collection of quality data relative to other demands, will dictate the choice of data collection strategies.

The manner in which the resulting outputs of these analyses are used for decision support will, in turn, influence appropriate data presentation strategies and system functionality, which is an important access of the analytical process. Although analysts should always endeavour to work with representative and unbiased data, there will be times when the available data is flawed and not easily repaired.

Analysts have a professional responsibility to explore the data, looking for potential fatal flaws prior to the analysis and to inform their client and stakeholders of any findings that could halt, skew, or simply hinder the analytical process or its applicability to the situation at hand. ${ }^{1}$
10.1 Background 599
Sampling Generalities 602
Survey Frames 604
Fundamental Concepts 604
Data Collection Basics 607
Sampling Types 607
10.2 Questionnaire Design 610
Basic Concepts 610
Question Types 611
Design Considerations 612
Question Order 613
10.3 Simple Random Sampling 615
Basic Notions 619
Estimators and C.I. 622
Sample Size 635
10.4 Stratified Sampling 637
Estimators and C.I. 644
Sample Size and Allocation 654
Comparison: SRS and STS 661
10.5 Auxiliary Information 663
Ratio Estimation 663
Regression Estimation 674
Difference Estimation 681
Comparisons 684
10.6 Cluster Sampling 688
Estimators and C.I. 688
Sample Size 704
Comparison: SRS and CLS 706
10.7 Special Topics 707
Systematic Sampling 707
Sampling with PPS 713
Multi-Stage Sampling 716
Multi-Phase Sampling 720
Miscellaneous 722
10.8 Exercises 730
Chapter References 732

1: Unless some clause has specifically been put in the contract/agreement to allow a graceful exit at this point, consultants will have to proceed with the analysis, flaws and all. It is EXTREMELY IMPORTANT that one does not simply sweep these flaws under the carpet. Address them repeatedly in meetings with the clients, and make sure that the analysis results that are presented or reported on include an appropriate caveat.

Formulating the Problem

The objectives drive all other aspects of quantitative analysis. With a question (or questions) in mind, an investigator can start the process that leads to model selection.

With potential models in tow, the next step is to consider:

- what variates (fields, variables) are needed,
- the number of observations required to achieve a pre-determined precision, and
- how to best go about collecting, storing and accessing the data.

Another important aspect of the problem is to determine whether the questions are being asked of the data in and of itself, or whether the data is used as a stand-in for a larger population. In the later case, there are other technical issues to incorporate into the analysis in order to be able to obtain generalizable results.

Questions do more than just drive the other aspects of data analysis they also drive the development of quantitative methods. They come in all flavours and their variability and breadth make attempts to answer them challenging: no single approach can work for all of them, or even for a majority of them, which leads to the discovery of better methods, which are in turn applicable to new situations, and so on, and so on.

Not every question is answerable, of course, but a large proportion of them may be answerable partially or completely; quantitative methods can provide insights, estimates, and ranges for possible answers, and they can point the way towards possible implementations of the solutions.

As an illustration, consider the following questions:

- Is cancer incidence higher for second-hand smokers than it is for smoke-free individuals?
- Using past fatal collision data and economic indicators, can we predict future fatal collision rates given a specific national unemployment rate?
- What effect would moving a central office to a new location have on average employee commuting time?
- Is a clinical agent effective in the treatment against acne?
- Can we predict when border-crossing traffic is likely to be higher than usual, in order to appropriately schedule staff rotations?
- Can personalized offers be provided to past clients to increase the likelihood of them becoming repeat customers?
- Has employee productivity increased since the company introduced mandatory language training?
- Is there a link between early marijuana use and heavy drug use later in life?
- How do selfies from over the world differ in everything from mood to mouth gape to head tilt?

Next steps nearly always requires obtaining relevant data.

Data Types

Data has attributes and properties. Fields are classified as response, auxiliary, demographic or classification variables; they can be quantitative or qualitative; categorical, ordinal or continuous; text-based or numerical.

Furthermore, data is collected through experiments, interviews, censuses, surveys, sensors, scraped from the Internet, etc. Collection methods are not always sophisticated, but new technologies usually improves the process in many ways (while introducing new issues and challenges): modern data collection can occur over one pass, in batches, or continuously.

How does one decide which data collection method to use?
The type of question to answer obviously has an effect, as do the required precision, cost and timeliness. Statistics Canada's Survey Methods and Practices [10] provides a wealth of information on probabilistic sampling and questionnaire design, which remain relevant in this day of big (and real-time) data.

The importance of this step cannot be overstated: without a well-designed plan to collect meaningful data, and without safeguards to identify flaws (and possible fixes) as the data comes in, subsequent steps are likely to prove a waste of time and resources.

As an illustration of the potential effect that data collection can have on the final analysis results, contrast the two following "ways" to collect similar data.

> The Government of Québec has made public its proposal to negotiate a new agreement with the rest of Canada, based on the equality of nations; this agreement would enable Québec to acquire the exclusive power to make its laws, levy its taxes and establish relations abroad - in other words, sovereignty and at the same time to maintain with Canada an economic association including a common currency; any change in political status resulting from these negotiations will only be implemented with popular approval through another referendum; on these terms, do you give the Government of Québec the mandate to negotiate the proposed agreement between Québec and Canada? [1980 Québec sovereignty referendum question]

> Should Scotland be an independent country? [2014 Scotland independence referendum question]

The end result was the same in both instances (no to independence), but an argument can easily be made that the 2014 Scottish ' No^{\prime} was a much clearer 'No' than the Québec 'No' of 34 years earlier, in spite of the smaller 2014 victory margin. ${ }^{2}$

2: $55.3 \%-44.7 \%$ in the Scotland referendum, as opposed to $59.6 \%-40.4 \%$ in the Québec referendum.

3: Such as DNA storing [8], to name but one (!).

Data Storage and Access

Data storage is also strongly linked with the data collection process, in which decisions need to be made to reflect how the data is being collected (one pass, batch, continuously), the volume of data that is being collected, and the type of access and processing that will be required (how fast, how much, by whom).

Stored data may go stale (e.g., people move, addresses are no longer accurate, etc.), so it may be necessary to implement regular updating collection procedures.
Until very recently, the story of data analysis has only been written for small datasets: useful collection techniques yielded data that could, for the most part, be stored on personal computers or on small servers.

The advent of "Big Data" has introduced new challenges vis-à-vis the collection, capture, access, storage, analysis and visualisation of datasets; some effective solutions have been proposed and implemented, and intriguing new approaches are on the way. ${ }^{3}$

We shall not discuss those challenges in detail in this module, but we urge analysts and consultants alike to be aware of their existence.

10.1.1 Survey Sampling Generalities

The latest survey shows that 3 out of 4 people make up 75% of the world's population. [David Letterman]

While the World Wide Web does contain troves of data, web scraping (see Chapter 16) does not address the question of data validity: will the extracted data be useful as an analytical component? Will it suffice to provide the quantitative answers that clients and stakeholders are seeking?

A survey [10] is any activity that collects information about characteristics of interest:

- in an organized and methodical manner;
- from some or all units of a population;
- using well-defined concepts, methods, and procedures, and
- compiles such information into a meaningful summary form.

A census is a survey where information is collected from all units of a population, whereas a sample survey uses only a fraction of the units.

Sampling Model

When survey sampling is done properly, we may be able to use various statistical methods to make inferences about the target population by sampling a (comparatively) small number of units in the study population.

The relationship between the various populations (target, study, respondent) and samples (sample, intended, achieved) is illustrated in Figure 10.1.

Figure 10.1: Various populations and samples in the sampling model.

- Target population: population for which we want to obtain information;
- Study population (survey population): population covered by the survey (it may be different from the target population, but ideally the two are very similar); ${ }^{4}$ conclusions drawn from the survey results only apply to the study population;
- Respondent population: units of the study population that would participate in the survey if they were asked to do so; it may be different from the study population if the respondents are not representative of the study population;
- Survey frame: provides the means to identify and communicate with the units in the survey population; it takes the form of a list, which is linked to the population under study;
- Intended sample: subset of the study population targeted by the survey;
- Achieved sample: subset of the study population whose characteristics were in fact measured.

In general, a survey is preferred to a census if it is expensive/laborious to measure the characteristics of interest for each unit, or if the units are destroyed by measuring the characteristics.

Deciding Factors

In some instances, information about the entire population is required in order to solve the client's problem, whereas in others it is not necessary. How do we determine which type of survey must be conducted to collect data? The answer depends on multiple factors:

- the type of question that needs to be answered;
- the required precision;
- the cost of surveying a unit;
- the time required to survey a unit;
- size of the population under investigation, and
- the prevalence of the attributes of interest.

4: The difference may be due to the difficulty/high cost of data collection for some units excluded from the study population.

5: Compare with Figure 14.4, Section 14.4.1.

Once a choice has been made, each survey typically follows the same general steps:

1. statement of objective
2. selection of survey frame
3. sampling design
4. questionnaire design
5. data collection
6. data capture and coding
7. data processing and imputation
8. estimation
9. data analysis
10. dissemination and documentation

The process is not always linear, in that preliminary planning and data collection may guide the implementation (selection of a frame and of a sampling design, questionnaire design), but there is a definite movement from objective to dissemination. ${ }^{5}$

10.1.2 Survey Frames

The frame provides the means of identifying and contacting the units of the study population. It is generally costly to create and to maintain (in fact, there are organisations and companies that specialize in building and/or selling such frames).

Useful frames contain:

- identification data,
- contact data,
- classification data,
- maintenance data, and
- linkage data.

The ideal frame must minimize the risk of undercoverage or overcoverage, as well as the number of duplications and misclassifications (although some issues that arise can be fixed at the data processing stage).

Unless the selected frame is relevant (which is to say, it corresponds, and permits accessibility to, the target population), accurate (the information it contains is valid), timely (it is up-to-date), and competitively priced, the statistical sampling approach is contra-indicated.

10.1.3 Fundamental Sampling Concepts

In general, a survey is conducted to estimate certain attributes of a population (statistics), such as, for example

- a mean;
- a total, or
- a proportion.

A population (either target, study, or respondent) has a finite number N of members, called units or items. The response associated with the j-th unit of the population is represented by u_{j}.

Let $U=\left\{u_{1}, \ldots, u_{N}\right\}$ be a population of size $N<\infty$. If u_{j} represents a numerical variable, ${ }^{6}$ the mean, variance, and total of the response in the population are respectively

$$
\mu=\frac{1}{N} \sum_{j=1}^{N} u_{j}, \quad \sigma^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(u_{j}-\mu\right)^{2}, \quad \text { and } \quad \tau=\sum_{j=1}^{N} u_{j}=N \mu .
$$

If u_{j} represents a binary variable, ${ }^{7}$ the proportion of the response in the population is

$$
p=\frac{1}{N} \sum_{j=1}^{N} u_{j} .
$$

We seek to estimate μ, τ, σ^{2} and/or p using the values of the response variable for the units in the achieved sample $\mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq \mathscr{U}$. The relationship between \mathscr{y} and \mathscr{U} is simple: in general, $n \ll N$ and $\forall i \in\{1, \ldots, n\}, \exists!j \in\{1, \ldots, N\}$ such that $y_{i}=u_{j}$.

The empirical mean, empirical total, and empirical variance are:

$$
\bar{y}(, \hat{p})=\frac{1}{n} \sum_{i=1}^{n} y_{i}, \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad \hat{\tau}=\left(\frac{N}{n}\right) \sum_{i=1}^{n} y_{i}=N \bar{y} .
$$

Let X_{1}, \ldots, X_{n} be random variables, $b_{1}, \ldots, b_{n} \in \mathbb{R}$, and E, V, and Cov be the expectation, variance and covariance operators. Recall that

$$
\begin{aligned}
& \mathrm{E}\left(\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} b_{i} \mathrm{E}\left(X_{i}\right), \quad \mathrm{V}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)=\mathrm{E}\left(X_{i}^{2}\right)-\mathrm{E}^{2}\left(X_{i}\right) \\
& \mathrm{V}\left(\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} b_{i}^{2} \mathrm{~V}\left(X_{i}\right)+\sum_{1 \leq i \neq j}^{n} b_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& \operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left(X_{i} X_{j}\right)-\mathrm{E}\left(X_{i}\right) \mathrm{E}\left(X_{j}\right) .
\end{aligned}
$$

The bias in an error component is the average of that error component if the survey is repeated many times independently under the same conditions. The variability in an error component is the extent to which that component would vary about its average value in this scenario.
The mean square error of an error component is a measure of the size of the error component:

$$
\begin{aligned}
\operatorname{MSE}(\hat{\beta}) & =\mathrm{E}\left((\hat{\beta}-\beta)^{2}\right)=\mathrm{E}\left((\hat{\beta}-\mathrm{E}(\hat{\beta})+\mathrm{E}(\hat{\beta})-\beta)^{2}\right) \\
& =\mathrm{V}(\hat{\beta})+(\mathrm{E}(\hat{\beta})-\beta)^{2}=\mathrm{V}(\hat{\beta})+\operatorname{Bias}^{2}(\hat{\beta})
\end{aligned}
$$

where $\hat{\beta}$ is an estimate of β. Finally, if the estimate is unbiased, then an approximate $\mathbf{9 5 \%}$ confidence interval (95% C.I.) for β is given by

$$
\hat{\beta} \pm 2 \sqrt{\hat{\mathrm{~V}}(\hat{\beta})}
$$

6: E.g., if u_{j} is the salary of the j-th unit in the population.

7: E.g., 1 if the j-th unit earns more than $\$ 70 \mathrm{~K}$ per year, 0 otherwise.
where $\hat{V}(\hat{\beta})$ is a sampling design-specific estimate of $\mathrm{V}(\hat{\beta})$.

Survey Error

One of the strengths of statistical sampling is in its ability to provide estimates of various quantities of interest in the target population, and to provide some control over the total error (TE) of the estimates. The TE of an estimate is the amount by which it differs from the true value for the target population:

> Total Error = Measurement Error + Sampling Error + Non-response Error + Coverage Error,
where the:

- coverage error is due to differences in the study and target populations;
- non-response error is due to differences in the respondent and study populations;
- sampling error is due to differences in the achieved sample and the respondent population;
- measurement error is due to true value in the achieved sample not being assessed correctly. ${ }^{8}$

If we let:

- \bar{x} be the computed attribute value in the achieved sample;
- $\bar{x}_{\text {true }}$ be the true attribute value in the achieved sample under perfect measurement;
- $x_{\text {resp }}$ be the attribute value in the respondent population;
- $x_{\text {study }}$ be the attribute value in the study population, and
- $x_{\text {target }}$ be the attribute value in the target population,
then
$\underbrace{\bar{x}-x_{\text {target }}}_{\text {total error (TE) }}=\underbrace{\left(\bar{x}-\bar{x}_{\text {true }}\right)}_{\text {meas. \& proc. error }}+\underbrace{\left(\bar{x}_{\text {true }}-x_{\text {resp }}\right)}_{\text {sampling error }}+\underbrace{\left(x_{\text {resp }}-x_{\text {study }}\right)}_{\text {non-response error }}+\underbrace{\left(x_{\text {study }}-x_{\text {target }}\right)}_{\text {coverage error }}$.
In an ideal scenario, $\mathrm{TE}=0$. In practice, there are two main contributions to Total Error: sampling errors (which are this module's main concern) and nonsampling errors, which include every contribution to survey error which is not due to the choice of sampling scheme.
The latter can be controlled, to some extent:
- coverage error can be minimized by selecting a high quality, up-todate survey frame;
- non-response error can be minimized by careful choice of the data collection mode and questionnaire design, and by using "call-backs" and "follow-ups";
- measurement error can be minimized by careful questionnaire design, pre-testing of the measurement apparatus, and crossvalidation of answers.

These suggestions are perhaps less useful than one could hope in modern times: survey frames based on landline telephones are quickly becoming irrelevant in light of an increasingly large and younger population who eschew such phones, for instance, while response rates for surveys that are not mandated by law are surprisingly low. ${ }^{9}$

10.1.4 Data Collection Basics

How is data traditionally captured, then? There are paper-based approaches, computer-assisted approaches, and a suite of other modes.

- Self-administered questionnaires are used when the survey requires detailed information to allow the units to consult personal records (which reduces measurement errors), they are useful to measure responses to sensitive issues as they provide an extra layer of privacy, and are typically not as costly as other collection modes, but they tend to be associated with high non-response rate since there is less pressure to respond.
- Interviewer-assisted questionnaires use trained interviewers to increase the response rate and overall quality of the data. Face-toface personal interviews achieve the highest response rates, but they are costly (both in training and in salaries). Furthermore, the interviewer may be required to visit any selected respondents many times before contact is established. Telephone interviews, on the other hand produce "reasonable" response rates at a reasonable cost and they are safer for the interviewers, but they are limited in length due to respondent phone fatigue. With random dialing, 4-6 minutes of the interviewer's time is spent in out-of-scope numbers for each completed interview.
- Computer-assisted interviews combine data collection and data capture, which saves valuable time, but the drawback is that not every sampling unit may have access to a computer/data recorder (although this is becomine less prevalent). All paper-based modes have a computer-assisted equivalent: computer-assisted self-interview (CASI), computer-assisted interview (CAI), computer-assisted telephone interview (CATI), and computer-assisted personal interview (CAPI).
- Other approaches include unobtrusive direct observation; diaries to be filled (paper or electronic); omnibus surveys; email, Internet (e.g., Survey Monkey \complement^{π}), social media, etc.

10.1.5 Types of Sampling Methods

There is a large variety of methods to select sampling units from the target population.

Non-Probabilistic Sampling

Those that use subjective, non-random approaches are called nonprobabilistic sampling (NPS) methods; these tend to be quick, relatively inexpensive and convenient in that a survey frame is not needed.

9: This explains, in part, the impetus towards automated data collection and the use of non-probabilistic sampling methods.

10: The only component of the total error TE on which the analysts has direct control.

NPS methods are ideal for exploratory analysis and survey development. Unfortunately, they are sometimes used instead of probabilistic sampling designs, which is problematic; the associated selection bias makes NPS methods unsound when it comes to inferences, as they cannot be used to provide reliable estimates of the sampling error. ${ }^{10}$

Automated data collection often fall squarely in the NPS camp, for instance. While we can still analyse data collected with a NPS approach, we may not generalize the results to the target population (except in rare, census-like situations).

NPS methods include:

- haphazard sampling, also known as "person on the street" sampling; it assumes that the population is homogeneous, but the selection remains subject to interviewer biases and the availability of units;
- volunteer sampling in which the respondents are self-selected; there is a large selection bias since the silent majority does not usually volunteer; this method is often imposed upon analysts due to ethical considerations; it is also used for focus groups or qualitative testing;
- judgement sampling is based on the analysts' ideas of the target population composition and behaviour (sometimes using a prior study); the units are selected by population experts, but inaccurate preconceptions can introduce large biases in the study;
- quota sampling is very common (and is used in exit polling to this day in spite of the infamous "Dewey Defeats Truman" debacle of 1948 [2]); sampling continues until a specific number of units have been selected for various sub-populations; it is preferable to other NPS methods because of inclusion of sub-populations, but it ignores non-response bias;
- modified sampling starts out using probability sampling (more on this later), but turns to quota sampling in its last stage, in part as a reaction to high non-response rates;
- snowball sampling asks sampled units to recruit other units among their acquaintances; this NPS approach may help locate hidden populations, but it biased in favour of units with larger social circles and units that are charming enough to convince their acquaintances to participate.

There are contexts where NPS methods might fit a client's need (and that remains their decision to make, ultimately), but the analyst MUST still inform the client of the drawbacks, and present some probabilistic alternatives.

Probabilistic Sampling

The inability to make sound inferences in NPS contexts is a monumental strike against their use. While probabilistic sample designs are usually more difficult and expensive to set-up (due to the need for a quality survey frame), and take longer to complete, they provide reliable estimates for the attribute of interest and the sampling error, paving the way for small samples being used to draw inferences about larger target populations (in theory, at least; the non-sampling error components can still affect results and generalisation).

In this chapter, we take a deeper look at the traditional probability sample designs:

- simple random sampling (SRS), see Section 10.3;
- stratified random sampling (STS), see Section 10.4;
- systematic random sampling (SyS), see Section 10.7.1;
- cluster random sampling (CLS), see Section 10.6;
- sampling with probability proportional to size (PPS), see Section 10.7.2, and
- more advanced designs, see Section 10.7.

In this chapter, the analysis is made easier by assuming that the sampling error dominates the survey error, i.e., that:

- the study population is representative of the target population $\left(x_{\text {study }} \approx x_{\text {target }}\right)$;
- the respondent population and the study population coincide, as are the achieved sample and the target sample ($x_{\text {resp }} \approx x_{\text {study }}$), and

Figure 10.2: Dewey vs Truman - the aftermath: Truman victorious!

Figure 10.3: Schematics of various sampling designs (from left to right, top to bottom): simple random sampling, stratified sampling, systematic sampling, cluster sampling, multi-stage sampling, multi-phase sampling.

- the response is measured without error in the achieved sample $\left(\bar{x} \approx \bar{x}_{\text {true }}\right)$.

The objective is to control and evaluate the sampling error $\left(\bar{x}_{\text {true }}-\bar{x}_{\text {resp }}\right)$ for various random sampling designs.

10.2 Questionnaire Design

People resist a census, but give them a profile page and they'll spend all day telling you who they are [1].

A questionnaire is a series of questions designed to obtain information on a topic from respondents. Of course, design principles vary depending on the subject and method of data collection, but it is considered good practice to test various questionnaires on random pilot populations before rolling it out on the study population.

10.2.1 Basic Concepts

In general, a questionnaire should:

- be as brief as possible, and free of unnecessary questions;
- be accompanied by clear and concise instructions;
- keep the respondent's interests in mind;
- emphasize confidentiality;
- keep a serious and courteous tone;
- be error-free and attractively presented;
- be clearly and precisely worded;
- be designed so that it can be answered accurately, and
- neatly arranged.

The quality of the collected data depends to a large extent on the quality of the questionnaire - this is a practical aspect of the discipline on which much more time should be spent than on data analysis; reputable survey firms employ specialized teams for questionnaire design.

There is an added challenge for Government of Canada (GoC) federal departments that are collecting and reporting information about the public and representatives of businesses or other entities, including federal public servants: see Public opinion research in the Government of Canada \complement^{\square} for details. Some of the information presented in this section will overlap with the POR guidelines, but at other times, our (generic) advice will differ.

When working with the GoC, the POR guidelines must obviously take precedence. ${ }^{11}$

10.2.2 Question Types

The basic unit of the questionnaire is, of course, the question, which comes in two forms:

- closed questions, with a fixed number of predetermined, mutually exclusive, and collectively exhaustive answer choices (and which should always include an "Other (please specify)" category to counteract loss of expressiveness), and
- open questions, which are used primarily to identify common response choices for use in closed-ended questions in a subsequent questionnaire; any closed-ended question should have been an open-ended question at some point.

In everyday conversation, closed-ended questions are not appropriate:
Asking open-ended questions is a friendly way to approach others in discussions. Knowing the difference between open and closed questions will be invaluable in your career and social life. How to ask open-ended questions, WikiHow ©

In a survey, it is rather open-ended questions that are not appropriate: closed-ended questions require less effort on the part of respondents, and they are generally easier to quantify, allowing more questions to be asked in a restricted amount of time and for a given budget.

For example, compare the two following questions.
Open question: What is the most important issue facing Ontario in 2022?

Closed-ended question: Which of these is the most important challenge for Ontario in 2022?

- economy and unemployment

11: Fancy footwork might be required to overcome the challenges presented by the guidelines, but that is par for the course.

12: See Chapters 27 and 32 for details and for limitations of such approaches.

- impact of COVID-19
- reconciliation with indigenous communities
- taxes
- budget deficit
- the environment
- organized crime
- gang violence
- racism
- other (please specify)

However, closed-ended questions can also lead to:

- a loss of an opportunity to test the waters in order to obtain further clarification;
- introducing response bias by presenting alternatives that respondents would never have thought of, and
- a potential loss of interest if the choice of answers does not match a respondents' expectations.

Adding open-ended questions to the questionnaire can mitigate these risks. The use of text analysis and natural language processing methods can also help to extract the main meaning or sentiments of an answer to an open-ended question. ${ }^{12}$

10.2.3 Design Considerations

It is well known that the formulation of questions can influence the responses of a questionnaire; it is good idea to keep the following wording considerations in mind when developing questionnaires:

- Avoid abbreviations and jargon: "Does your organization use TTWQ practices?"
- Avoid using complex terms when simpler terms will do: "How many times have you been defenestrated?" vs. "How many times have you been thrown out a window?"
- Ensure that all respondents can answer the questions, by asking relevant and appropriate-level questions;
- Clarify the framework: "What is your annual income?" vs. "What was your total household income from all sources, before taxes and deductions, in 2021?
- Make the question as accurate as possible: "How much fuel did your moving company use last year?" (answers received: 2,500 liters, 800 gallons, $\$ 13500$, more than the previous year, etc.) vs. "How much did your moving company spend on fuel last year?"
- Avoid "double-barreled" questions: "Do you plan to leave your car at home and take LRT to work?" vs. "Do you plan to leave your car at home? If so, do you plan to take LRT to work?", and
- Avoid leading questions: the always excellent Yes, Prime Minister gives a clear-cut example: ${ }^{13}$ Sir Humphrey demonstrates that asking leading questions in a particular order can lead a respondent to support the reintroduction of national service:
- Are you concerned about the number of unemployed youth?
- Are you concerned about the increase in teenage crime?
- Do you think there is a lack of discipline in our schools?
- Do you think young people would appreciate some leadership?
- Do you think they would respond to a challenge?
- Would you support the re-introduction of national service in the UK?

The first five questions are designed and presented in such a way as to elicit support - the obvious answer to each is "yes". After this pattern of agreement, Sir Humphrey launches the crucial question, framed in such a way that it proposes national service as a supposed solution to all the above problems. In the second part of the exchange, Sir Humphrey demonstrates that another set of leading questions can lead the respondent to oppose the reintroduction of national service:

- Does the danger presented by war worry you?
- Does the arms race worry you?
- Do you think it is dangerous to arm young people and teach them to kill?
- Is it bad to force people to take up arms against their will?
- Would you oppose the reintroduction of national service?

Sir Humphrey's first four questions are deliberately designed to produce agreement. In keeping with the survey design, the fifth question does the same: a person who answers "yes" to each of these questions is necessarily opposed to the reintroduction of national service. ${ }^{14}$

10.2.4 Question Order

The order in which the questions are presented is as important as their wording. Questionnaires should be designed to be seamless and follow a logical process, from the perspective of the respondents: ${ }^{15}$

1. begin with an introduction that provides the title, topic and purpose of the survey;
2. ask for cooperation from respondents and explain the importance of the survey and how the results will be used;
indicate the degree of confidentiality and provide a deadline and contact address;
3. follow up with a series of easy and interesting questions to build respondent confidence;
4. group similar questions under the same heading;
5. only introduce sensitive topics when a relationship of trust is likely to have been established with the respondents;
6. leave some space and/or time for additional comments, and
thank respondents for their participation.
It is worth remembering that without a "sound sampling plan", collected data may be of such poor quality that it is impossible to use it to draw any meaningful conclusions. It is also essential to capture demographic information that allows classification of units into stratas (STS) or clusters (CLS); we will revisit those concepts in subsequent sections.

Example: Consider the following video.

15: Questionnaire design is discussed in the following references:

- Hidiroglou, M., Drew, J. and Gray, G. [1993], "A Framework for Measuring and Reducing Nonresponse in Surveys," Survey Methodology, v.19, n.1, pp.81-94 [4]
- Gower, A. [1994], "Questionnaire Design for Business Surveys," Survey Methodology, v.20, n.2, pp.125136 [3]
- Survey Methods and Practices [J, Statistics Canada, catalogue number 12-587-X [10]

Figure 10.4: 2021 Census - How do I complete the questionnaire? ©

RECENSEMENT•CENSUS

Transcription of the video

In May, your household will receive a letter to complete the 2021 Census questionnaire. On your letter, you will find a secure access code that allows you to complete the questionnaire online. Once online, you can complete the questionnaire in three easy steps. Simply log on using your secure access code, complete the questionnaire and select "Submit." If you need help or require a paper version, please call the Census Help Line. For more information or to complete the 2021 Census questionnaire, visit census.gc.ca [. It's safe, quick and easy.

Message from the Chief Statistician of Canada

Thank you for taking a few minutes to participate in the 2021 Census. The information you provide is converted into statistics used by communities, businesses and governments to plan services and make informed decisions about employment, education, health care, market development and more. Your answers are collected under the authority of the Statistics Act and kept strictly confidential. By law, every household must complete a 2021 Census of Population questionnaire. Statistics Canada makes use of existing sources of information such as immigration, income tax and benefits data to ensure the least amount of burden is placed on households. The information that you provide may be used by Statistics Canada for other statistical and research purposes or may be combined with other survey or administrative data sources. Make sure you count yourself into Canada's statistical portrait, and complete your census questionnaire today.

Thank you,
Anil Arora
Chief Statistician of Canada

10.3 Simple Random Sampling

Let U be a population composed of N units, whose responses are

$$
U=\left\{u_{1}, \ldots, u_{N}\right\} .
$$

Suppose we are interested in the mean μ of this target population U, where

$$
\mu=\frac{1}{N} \sum_{j=1}^{N} u_{j} .
$$

Since the population is of finite size, it is possible to compute μ directly. . . at least, in theory. In practice, we rarely have access to the response values for the entire population U, which leads us to use sampling methods.

A sample \mathscr{Y} of size n is a subset of the target population U,

$$
\mathcal{Y} \subseteq\left\{y_{1}, \ldots, y_{n}\right\} \subseteq\left\{u_{1}, \ldots, u_{N}\right\}=\mathscr{U}
$$

from which we can approximate μ using the sample mean ${ }^{16}$

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} .
$$

A simple random sample (SRS) of size n is obtained by randomly selecting n units from the target population, one at a time, without replacement. In Figure 10.5, a SRS of size $n=16$ is selected from a population of size $N=64$.

At each stage of the sampling procedure, all units not yet in the sample have the same probability of being added to the sample. In an SRS, each subset of n units has the same probability of being selected.

How do we choose a random sample?
This used to be done "by hand", using tables of random numbers. Nowadays, we simply use software (SAS, R, etc.) to obtain (pseudo)random samples.

Example What is the average life span, by country, in 2011?
We use the data available in the Gapminder cr dataset.

Figure 10.5: Schematics of SRS: target population (left) and sample (right).

16: This is not the only estimator of μ.

```
library(tidyverse) # for dplyr, ggplot2
gapminder = read.csv("gapminder_SS.csv",
    stringsAsFactors=TRUE)
gapminder <- gapminder[,c("country","year","region",
    "continent","population",
    "infant_mortality","fertility",
    "gdp","life_expectancy")]
```

The structure is provided below:

```
str(gapminder)
```

```
'data.frame': 10545 obs. of 9 variables:
$ country : Factor w/ 185 levels "Albania","Algeria",..: 1 2 3 4 5 6 7 8 9 ...
$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
$ region : Factor w/ 22 levels "Australia and New Zealand",..: 19 11 10 2 ...
$ continent : Factor w/ 5 levels "Africa","Americas",..: 4 1 1 2 2 3 2 5 4 3 ...
$ population : int 1636054 11124892 5270844 54681 20619075 1867396 54208 ...
$ infant_mortality: num 115.4 148.2 208 NA 59.9 ...
$ fertility : num 6.19 7.65 7.32 4.43 3.11 4.55 4.82 3.45 2.7 5.57 ...
$ gdp : num NA 1.38e+10 NA NA 1.08e+11 ...
$ life_expectancy : num 62.9 47.5 36 63 65.4 ...
```

A famous chart displays the relationship between 4 of the variables [9].
Our version for 2011 (built with R) can be found in Figure 10.6.

Figure 10.6: Health and wealth of nations for the 2011 Gapminder data.
We start by extracting the information of interest.

```
gapminder.SRS <- gapminder |>
    filter(year==2011) |>
    select(life_expectancy)
str(gapminder.SRS)
```

```
'data.frame': }185\mathrm{ obs. of 1 variable:
    $ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...
```

In this specific example, we know the true average life expectancy per country in 2011 (at least, for the $N=185$ countries in the dataset).

```
mean(gapminder.SRS)
```

[1] 71.18

The distribution of the population $U=\left\{u_{1}, \ldots, u_{185}\right\}$ is shown below (with mean in red):

```
ggplot(data=gapminder.SRS, aes(life_expectancy)) +
    geom_rug() +
    geom_histogram(col="black", fill="blue", alpha=.2,
                            breaks=seq(45, 85, by = 2.5)) +
    geom_vline(xintercept=mean(gapminder.SRS$life_expectancy),
                color="red")
```


We select a random sample of size $n=10$ from U. The indices are:

```
set.seed(1234) # for replicability
N = dim(gapminder.SRS)[1]
n = 10
(sample.ind = sample(1:N,n, replace=FALSE))

The corresponding sample \(\mathscr{y}=\left\{y_{1}, \ldots, y_{10}\right\}\) is obtained via:
```

(gapminder.SRS.n = gapminder.SRS[sample.ind,])

```
[1] 67.6067 .7076 .1079 .9775 .7079 .7070 .2059 .6078 .9078 .50

Its empirical mean \(\bar{y}\) is:
\[
(y . \text { bar }=\text { mean (gapminder.SRS.n)) }
\]

\section*{[1] 73.397}

But a different sample may lead to a different estimate. Case in point, consider the following:
```

set.seed(12345) \# replicability
(sample.ind = sample(1:N,n, replace=FALSE))
(gapminder.SRS.n = gapminder.SRS[sample.ind,])
(y.bar = mean(gapminder.SRS.n))

```
[1] \(142 \quad 51 \quad 152 \quad 58 \quad 93 \quad 75 \quad 96 \quad 2 \quad 86 \quad 180\)
[1] 71.074 .363 .081 .665 .075 .046 .776 .178 .174 .8
[1] 70.56

It is quite reasonable for the two estimates to be different - since each \(y_{i}\) in a SRS is a random variable, so is the mean \(\bar{y}\).

The sampling variability explains how the estimates vary with the sample. For example, if we prepare \(m=500\) samples, each of size \(n=10\), we could obtain the empirical means below:
```

set.seed(12) \# for replicability
N=dim(gapminder.SRS)[1]
n=10
m=500
means <- c()
for(k in 1:m){
means[k] <- mean(gapminder.SRS[sample(1:N,n,
replace=FALSE),])
}
ggplot(data=data.frame(means), aes(means)) +
geom_histogram(aes(y =..density..),
breaks=seq(60, 80, by = 1),
col="black", fill="blue", alpha=.2) +
geom_density(col=2) + geom_rug(aes(means))

```


There is some variability, of course, but the sample means seem to congregate around the 72 mark:

\section*{summary (data. frame (means))}
```

means
Min. :63.03
1st Qu.:69.83
Median :71.53
Mean :71.44
3rd Qu.:73.05
Max. :78.86

```

\subsection*{10.3.1 Basic Notions}

The population variance \(\sigma^{2}\) is a measure of dispersion, i.e., the tendency of the response values to deviate from the population mean \(\mu\) :
\[
\begin{aligned}
\sigma^{2} & =\frac{1}{N} \sum_{j=1}^{N}\left(u_{j}-\mu\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(u_{j}^{2}-2 u_{j} \mu+\mu^{2}\right) \\
& =\frac{1}{N}\left(\sum_{j=1}^{N} u_{j}^{2}-2 \mu \sum_{j=1}^{N} u_{j}+N \mu^{2}\right)=\frac{1}{N}\left(\sum_{j=1}^{N} u_{j}^{2}-2 N \mu^{2}+N \mu^{2}\right) \\
& =\frac{1}{N} \sum_{j=1}^{N}\left(u_{j}^{2}-N \mu^{2}\right)=\frac{1}{N} \sum_{j=1}^{N} u_{j}^{2}-\mu^{2}
\end{aligned}
\]

The parameters \(\mu\) and \(\sigma^{2}\) can be interpreted in terms of the expectation and variance of a random variable.

Let \(X\) be a discrete random variable whose probability mass function (p.m.f.) is \(f(x)=P(X=x)\). Thus,
\(\mathrm{E}[X]=\sum_{x} x f(x), \quad \mathrm{V}[\mathrm{X}]=\sum_{x}(x-\mathrm{E}[X])^{2} f(x), \quad \mathrm{SD}[X]=\sqrt{\mathrm{V}[X]}\).

For a sample of size \(n=1\) from this population, whose value is represented by the random variable \(Y_{1}\), we have \(f\left(u_{j}\right)=P\left(Y_{1}=u_{j}\right)=\frac{1}{N}\) for \(j=1, \ldots, N\), from which we see that
\[
\mathrm{E}\left[Y_{1}\right]=\sum_{j=1}^{N} u_{j} f\left(u_{j}\right)=\frac{1}{N} \sum_{j=1}^{N} u_{j}=\mu,
\]
and
\(\mathrm{V}\left[Y_{1}\right]=\sum_{j=1}^{N}\left(u_{j}-\mu\right)^{2} f\left(u_{j}\right)=\frac{1}{N} \sum_{j=1}^{N} u_{j}^{2}-\mu^{2}=\sigma^{2}, \quad \mathrm{SD}\left[Y_{1}\right]=\sqrt{\mathrm{V}\left[Y_{1}\right]}=\sigma\).

In general, however, the estimator \(\bar{y}\) of the population mean \(\mu\) is computed using more than one observation - different sample sizes \(n\) could yield different values of \(\bar{y}\). In order to control the sampling error associated with an SRS, one needs to know the distribution of \(\bar{Y}\); in particular, \(\mathrm{E}[\bar{Y}]\) and \(\mathrm{V}[\bar{Y}]\).

If \(y_{1}, \ldots, y_{n}\) are independent and identically distributed (i.i.d.) random variables, the central limit theorem (CLT) imposes
\[
\bar{Y} \sim_{\text {approx. }} \mathcal{N}\left(\mu, \sigma^{2} / n\right)
\]

Example Consider a finite population with \(N=4\) elements:
\[
u_{1}=2, \quad u_{2}=0, \quad u_{3}=1, \quad u_{4}=5 .
\]

The population mean and variance are, respectively,
\[
\mu=\frac{1}{4}(2+0+1+5)=2 \quad \text { and } \quad \sigma^{2}=\frac{1}{4}\left(2^{2}+0^{2}+1^{2}+5^{2}\right)-2^{2}=\frac{7}{2}
\]

Suppose that draw a SRS of size \(n=3\) without replacement from this population in order to approximate (estimate) the true mean \(\mu\). There are \(\binom{4}{3}=4\) such samples:
\begin{tabular}{cccc}
\hline Sample & Values & \(\bar{y}\) & \(P(\bar{Y}=\bar{y})\) \\
\hline\(u_{1}, u_{2}, u_{3}\) & \(2,0,1\) & 1 & \(1 / 4\) \\
\(u_{1}, u_{2}, u_{4}\) & \(2,0,5\) & \(7 / 3\) & \(1 / 4\) \\
\(u_{1}, u_{3}, u_{4}\) & \(2,1,5\) & \(8 / 3\) & \(1 / 4\) \\
\(u_{2}, u_{3}, u_{4}\) & \(0,1,5\) & 2 & \(1 / 4\) \\
\hline
\end{tabular}

Then
\[
\begin{aligned}
& \mathrm{E}[\bar{Y}]=\sum_{\bar{y}} \bar{y} P(\bar{Y}=\bar{y})=\frac{1}{4}\left(1+\frac{7}{3}+\frac{8}{3}+2\right)=2=\mu \\
& \mathrm{V}[\bar{Y}]=\sum_{\bar{y}} \bar{y}^{2} P(\bar{Y}=\bar{y})-\mathrm{E}^{2}[\bar{Y}]=\frac{1}{4}\left(1^{2}+\left(\frac{7}{3}\right)^{2}+\left(\frac{8}{3}\right)^{2}+2^{2}\right)-2^{2}=\frac{7}{18} .
\end{aligned}
\]

This is all great. . except that \(\mathrm{V}[\bar{Y}] \neq \frac{\sigma^{2}}{n}=\frac{7}{6}\). What is going on?
Here's how we can explain this discrepancy. Let \(\mathscr{U}=\left\{u_{1}, \ldots, u_{N}\right\}\) be a finite population of size \(N\). A SRS \(\mathscr{y}=\left\{y_{1}, \ldots, y_{n}\right\}\) of size \(n\) is drawn
from \(U\) without replacement. Let \(Y_{i}\) be the random variable which represents the value of the \(i-\) th unit of the sample, respectively.
All \(Y_{i}\) have identical distributions: for any \(u_{j} \in \mathcal{U}\), we have:. \({ }^{17}\)
\(P\left(Y_{1}=u_{j}\right)=\frac{1}{N}\),

17: Be careful not to confuse the unit \(u_{j}\) with its response value \(u_{j}\); we use the same notation by laziness, but they represent different concepts.
\(P\left(Y_{2}=u_{j}\right)=\frac{P\left(Y_{2}=u_{j} \mid Y_{1} \neq u_{j}\right) \cdot P\left(Y_{1} \neq u_{j}\right)}{P\left(Y_{1} \neq u_{j} \mid Y_{2}=u_{j}\right)}=\frac{\frac{1}{N-1} \cdot \frac{N-1}{N}}{1}=\frac{1}{N}\),
\(P\left(Y_{3}=u_{j}\right)=\frac{P\left(Y_{3}=u_{j} \mid Y_{1}, Y_{2} \neq u_{j}\right) \cdot P\left(Y_{1}, Y_{2} \neq u_{j}\right)}{P\left(Y_{1}, Y_{2} \neq u_{j} \mid Y_{3}=u_{j}\right)}=\frac{\frac{1}{N-2} \cdot \frac{N-2}{N-1} \cdot \frac{N-1}{N}}{1}=\frac{1}{N}\),
and so on:
\[
P\left(Y_{i}=u_{j}\right)=\frac{1}{N}
\]
for any \(1 \leq i \leq n, 1 \leq j \leq N\), and so \(\mathrm{E}\left[Y_{i}\right]=\mu, \mathrm{V}\left[Y_{i}\right]=\sigma^{2}\) for any \(i\).
Thus, in the preceding example, we would have
\[
\mathrm{E}\left[Y_{1}\right]=\mathrm{E}\left[Y_{2}\right]=\mathrm{E}\left[Y_{3}\right]=\mu=2 \quad \text { and } \quad \mathrm{V}\left[Y_{1}\right]=\mathrm{V}\left[Y_{2}\right]=\mathrm{V}\left[Y_{3}\right]=\sigma^{2}=\frac{7}{2}
\]

But the \(\left\{Y_{i}\right\}\) are not independent of each other since (for example)
\[
\mathrm{E}[\bar{Y}]=\mu=2, \quad \text { but } \quad \mathrm{V}[\bar{Y}]=\mathrm{V}\left[\frac{Y_{1}+Y_{2}+Y_{3}}{3}\right]=\frac{7}{18} \neq \frac{\sigma^{2}}{3}=\frac{7 / 2}{3}=\frac{7}{6}
\]

It is in the variance that we observe a difference. The covariance between two (discrete) random variables \(X_{1}, X_{2}\) is a measure of the strength of association between \(X_{1}\) and \(X_{2}\). If \(\mathrm{E}\left[X_{i}\right]=\mu_{i}\) and \(\mathrm{V}\left[X_{i}\right]=\sigma_{i}^{2}<\infty\) for all \(i\), then
\[
\operatorname{Cov}\left[X_{1}, X_{2}\right]=\mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=\mathrm{E}\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}
\]

If \(X_{1}, X_{2}\) both take values in \(U=\left\{u_{1}, \ldots, u_{N}\right\}\), then their joint expectation is
\[
\mathrm{E}\left[X_{1} X_{2}\right]=\sum_{j=1}^{N} \sum_{k=1}^{N} u_{j} u_{k} P\left(X_{1}=u_{j}, X_{2}=u_{k}\right)
\]

In the case where \(X_{1}=Y_{i}\) and \(X_{2}=Y_{\ell}\) (with the interpretation given before) for \(1 \leq i \neq \ell \leq n\), we get
\(P\left(Y_{i}=u_{j}, Y_{\ell}=u_{k}\right)=P\left(Y_{i}=u_{j}\right) P\left(Y_{\ell}=u_{k} \mid Y_{i}=u_{j}\right)= \begin{cases}\frac{1}{N} \cdot \frac{1}{N-1} & \text { if } j \neq k \\ 0 & \text { if } j=k\end{cases}\)

But \(\mathrm{E}\left[Y_{i}\right]=\mathrm{E}\left[Y_{\ell}\right]=\mu\), and so
\(\operatorname{Cov}\left(Y_{i}, Y_{\ell}\right)=\left\{\begin{array}{cl}\frac{1}{N(N-1)}[\sum_{j=1}^{N} \sum_{k=1}^{N} u_{j} u_{k}-\underbrace{\sum_{m=1}^{N} u_{m}^{2}}_{\text {doublecounting }}]-\mu^{2} & \text { if } i \neq \ell \\ \sigma^{2} & \text { if } i=\ell \text { (by convention) }\end{array}\right.\)

We use the properties \(\sum u_{\xi}=N \mu\) and \(\sum u_{\xi}^{2}=N\left(\mu^{2}+\sigma^{2}\right)\) to simplify the
expression when \(i=\neq \ell\) :
\[
\begin{aligned}
\operatorname{Cov}\left(Y_{i}, Y_{\ell}\right) & =\frac{1}{N(N-1)}\left[\sum_{j=1}^{N} \sum_{k=1}^{N} u_{j} u_{k}-\sum_{m=1}^{N} u_{m}^{2}-N(N-1) \mu^{2}\right] \\
& =\frac{1}{N(N-1)}\left[\sum_{j=1}^{N} u_{j}\left(\sum_{k=1}^{N} u_{k}\right)-N\left(\sigma^{2}+\mu^{2}\right)-N(N-1) \mu^{2}\right] \\
& =\frac{1}{N(N-1)}\left[N \mu \sum_{j=1}^{N} u_{j}-N \sigma^{2}-N \mu^{2}-N^{2} \mu^{2}+N \mu^{2}\right] \\
& =\frac{1}{N(N-1)}\left[N \mu \cdot N \mu-N \sigma^{2}-N^{2} \mu^{2}\right]=-\frac{\sigma^{2}}{N-1} .
\end{aligned}
\]

Using the formulas of the previous section, we thus obtain
\[
\begin{aligned}
\mathrm{E}[\bar{Y}] & =\mathrm{E}\left[\frac{Y_{1}+\cdots+Y_{n}}{n}\right]=\frac{1}{n} \mathrm{E}\left[Y_{1}+\cdots+Y_{n}\right]=\frac{1}{n}\left(\mathrm{E}\left[Y_{1}\right]+\cdots \mathrm{E}\left[Y_{n}\right]\right) \\
& =\frac{1}{n}(\underbrace{\mu+\cdots+\mu}_{n \text { times }})=\mu, \text { and } \\
\mathrm{V}[\bar{Y}] & =\mathrm{V}\left[\frac{Y_{1}+\cdots+Y_{n}}{n}\right]=\frac{1}{n^{2}} \mathrm{~V}\left[Y_{1}+\cdots+Y_{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{\ell=1}^{n} \operatorname{Cov}\left(Y_{i}, Y_{\ell}\right) \\
& =\frac{1}{n^{2}}\left[\sum_{i=1}^{n} \sigma^{2}+2 \sum_{i=1}^{n} \sum_{\ell=i+1}^{n} \operatorname{Cov}\left(Y_{i}, Y_{\ell}\right)\right]=\frac{1}{n^{2}}\left[n \sigma^{2}-n(n-1) \frac{\sigma^{2}}{N-1}\right] \\
& =\frac{\sigma^{2}}{n}\left(1-\frac{n-1}{N-1}\right)=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\end{aligned}
\]

Let's go back to the above example: we have \(N=4, n=3, \mu=2\), and \(\sigma^{2}=\frac{7}{2}\). According to what we have just found, we indeed get
\[
\mathrm{E}[\bar{Y}]=2 \quad \text { and } \quad \mathrm{V}[\bar{Y}]=\frac{7 / 2}{3}\left(\frac{4-3}{4-1}\right)=\frac{7}{18} .
\]

The component \(\frac{N-n}{N-1}\) is the finite population correction factor (FPCF); it shows up because the population is not infinite. Since the SRS is constructed without replacing the units in the finite population after they have been drawn into the sample, the presence of a unit in the SRS affects the probability that another unit will also be in the SRS - the random variables \(Y_{i}\) are not independent. \({ }^{18}\)

\subsection*{10.3.2 Estimators and Confidence Intervals}

The estimator \(\bar{y}\) is unbiased under SRS. In that case, how do we interpret the sapling variance \(\mathrm{V}(\bar{y})\) ? Quite simply, it provides an idea of the typical distance between the empirical mean \(\bar{y}\) and the population mean \(\mu\).

The mean square error of \(\bar{y}\) under SRS is
\[
\operatorname{MSE}(\bar{y})=\mathrm{V}(\bar{y})+(\mathrm{E}(\bar{y})-\mu)^{2}=\mathrm{V}(\bar{y})+0=\mathrm{V}(\bar{y})
\]
which is to say that the estimation error is entirely dominated by \(\mathrm{V}(\bar{y})\).

When we sample with replacement, \({ }^{19}\) the samples \(y_{1}, \ldots, y_{n}\) are viewed as independent from one another. If they are also indentically distributed, we then have \(\mathrm{E}\left(y_{i}\right)=\mu\) and \(\mathrm{V}\left(y_{i}\right)=\sigma^{2}\), or
\[
\mathrm{E}(\bar{y})=\mu, \quad \text { and } \quad \mathrm{V}(\bar{y})=\frac{\sigma^{2}}{n}
\]

When \(n \rightarrow \infty\), the CLT states that \(\bar{y} \sim\) approx. \(\mathcal{N}\left(\mu, \sigma^{2} / n\right)\), whence
\[
Z=\frac{\bar{y}-\mu}{\operatorname{SD}(\bar{y})}=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim_{\text {approx. }} \mathcal{N}(0,1)
\]

Let \(\alpha \in(0,1)\). Denote the \((1-\alpha)^{\text {th }}\) quantile of a standard normal random variable \(Z \sim \mathcal{N}(0,1)\) by \(z_{\alpha}>0\). According to the frequentist interpretation of probability, we can expect that \(\frac{\bar{y}-\mu}{\sigma / \sqrt{n}}\) will fall in the interval \(\left(-z_{\alpha / 2}, z_{\alpha / 2}\right)\) roughly \(100(1-\alpha) \%\) of the time: \({ }^{20}\)
\[
P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=P\left(-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \bar{y}-\mu \leq z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \approx 1-\alpha .
\]

The quantity
\[
B_{\alpha}=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}=z_{\alpha / 2} \mathrm{SD}(\bar{y})
\]
is the bound on the error of estimation, and we can build an approximate 95\% confidence interval for the mean \(\mu\) :
\[
\text { C.I. }(\mu ; 100(1-\alpha) \%): \quad y \pm B_{\alpha}=y \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
\]

However, in a SRS scenario, we are NOT dealing with i.i.d. random variables. How must this argument be modified when we sample without replacement from a finite population?

\section*{Sampling Context - Gapminder Data}

We will illustrate the important concepts of sampling theory with the help of the 2011 Gapminder dataset, as we had done at the start of the section. In addition to average life expectancy, we are also interested in:
- the total population of the planet,
- the average population per country, and
- the proportion of countries with a population of less than 10 M .

The population of 185 countries is available - it ranges from 56,641 to \(1,348,174,478\), with an average value \(\mu=37,080,426\).
```

gapminder.SRS <- gapminder |>
filter(year==2011) |> select(life_expectancy,population)
str(gapminder.SRS)
summary(gapmider.SRS)

```

19: Which is not a SRS situation.

20: The important quantiles are illustrated below:

```

'data.frame': }185\mathrm{ obs. of 2 variables:
\$ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...
\$ population : int 2886010 36717132 21942296 88152 41655616 ...
life_expectancy population
Min: 46.70 5.644e+04
lst Qu: 65.30 2.064e+06
Median :73.70 7.563e+06
Mean :71.18 3.708e+07
3rd Qu.:77.40 2.423e+07
Max. :83.02 1.348e+09

```
```

ggplot(data=gapminder.SRS, aes(population)) +
geom_rug() +
geom_vline(xintercept=mean(gapminder.SRS\$population),
color="red") +
geom_histogram(col="black", fill="blue", alpha=.2)

```


The population distribution by country is asymmetric, with a tail that spreads to the right, and two outliers (China and India). These observations will sometimes be removed from the data set.
```

gapminder.SRS.2 <- gapminder |>
filter(year==2011) |>
select(life_expectancy,population) |>
filter(population<500000000)
nrow(gapminder.SRS.2)
summary(data.frame(gapminder.SRS.2\$population))

```

\section*{[1] 183}
\begin{tabular}{llllll} 
Min. & lst Qu. Median & Mean & 3rd Qu. & Max. \\
56441 & 2061342 & 7355231 & 23301958 & 22242334 & 312390368
\end{tabular}
```

ggplot(data=gapminder.SRS.2, aes(population)) +
geom_rug() +
geom_vline(xintercept=mean(gapminder.SRS\$population),
color="red") +
geom_histogram(col="black", fill="blue", alpha=.2)

```


The associated distribution has the same shape as the one with all countries, but the 183 populations all fall below \(312,390,368\), with a mean value of \(\mu=23,301,958\).

\section*{Estimating the Mean \(\mu\)}

In an SRS, we have shown that the empirical mean \(\bar{y}\) computed from a sample of size \(n\) is an unbiased estimator of the mean \(\mu\) of a population of size \(N\) and variance \(\sigma^{2}\). We have also shown that the sampling variance of the \(\bar{y}\) estimator is
\[
\mathrm{V}(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

What distribution can we expect \(\bar{y}\) to follow? Let's go back to the example of the world population (without China and India). We produce 500 SRS samples of \(n=20\) countries from the list of \(N=183\) countries. For each sample \(1 \leq i \leq 500\), we compute the empirical mean \(\bar{y}_{i}\) :
```

set.seed(12) \# replicability
N=dim(gapminder.SRS.2)[1]
n=20
m=500
means <- c()
for(k in 1:m){
means[k] <- mean(gapminder.SRS.2[sample(1:N,n,
replace=FALSE),2])

```

\section*{\}}

The SRS sample means are listed below:
```

summary(data.frame(means))

```
```

Min. : 5244486
1st Qu.:16289930
Median :21986525
Mean :23238867
3rd Qu.:28718720
Max. :55152022

```

Their distribution (and mean) is:
```

ggplot(data=data.frame(means), aes(means)) +
geom_rug() +
geom_histogram(col="black", fill="blue", alpha=.2) +
geom_vline(xintercept=mean(means), color="red")

```


Although the distribution of empirical means \(\bar{y}_{i}\) is asymmetric with a tail spreading to the right, the density curve still resembles that of a normal distribution.

Central Limit Theorem - SRS Let \(\mathcal{U}=\left\{u_{1}, \ldots, u_{N}\right\}\) be a finite population with mean \(\mu\) and variance \(\sigma^{2}\), and let \(\mathscr{y}=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq \mathscr{U}\) be a simple random sample. If \(n\) and \(N-n\) are both "sufficiently large", then
\[
\bar{y} \sim_{\text {approx. }} \mathcal{N}(\mathrm{E}(\bar{y}), \mathrm{V}(\bar{y}))=\mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)\right) .
\]

In a SRS, the bound on the error of estimation and the approximate \(\mathbf{9 5 \%}\) C.I. are given by:
\(B_{\mu}=2 \sqrt{\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)} \quad\) and \(\quad P\left(|\bar{y}-\mu| \leq B_{\mu}\right) \approx P\left(\left|\frac{\bar{y}-\mu}{\operatorname{SD}(\bar{y})}\right| \leq 2\right) \approx 0.9544\).

In practice, the population variance \(\sigma^{2}\) is rarely known. We usually approximate it with the empirical variance
\[
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right], \quad\left\{y_{i}\right\} \text { i.i.d. }
\]

Unfortunately, \(s^{2}\) is a biased estimator of \(\sigma^{2}\) when the simple random sample is selected without replacement from a finite population. Indeed,
\[
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\mathrm{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right] \\
& =\mathrm{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\mu+\mu-\bar{y}\right)^{2}\right] \\
& =\mathrm{E}\left[\frac{1}{n-1}\left[\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}-n(\bar{y}-\mu)^{2}\right]\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} \mathrm{E}\left[\left(y_{i}-\mu\right)^{2}\right]-n \mathrm{E}\left[(\bar{y}-\mu)^{2}\right]\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} \sigma^{2}-n \mathrm{~V}(\bar{y})\right] \\
& =\frac{1}{n-1}\left[n \sigma^{2}-n \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)\right]=\frac{\sigma^{2}}{n-1}\left[n-\frac{N-n}{N-1}\right] \\
& =\frac{\sigma^{2}}{n-1}\left[\frac{n N-n-N+n}{N-1}\right]=\frac{\sigma^{2}}{n-1} \cdot \frac{N(n-1)}{N-1}=\frac{N}{N-1} \sigma^{2} .
\end{aligned}
\]

The unbiased estimator of \(\sigma^{2}\) in the SRS context is instead
\[
\frac{N-1}{N} s^{2}
\]
since
\[
\mathrm{E}\left[\frac{N-1}{N} s^{2}\right]=\frac{N-1}{N} \mathrm{E}\left(s^{2}\right)=\frac{N-1}{N} \cdot \frac{N}{N-1} \sigma^{2}=\sigma^{2} .
\]

We can approximate the sampling variance by replacing \(\sigma^{2}\) by \(\frac{N-1}{N} s^{2}\) in the expression for \(\mathrm{V}(\bar{y})\) :
\[
\hat{\mathrm{V}}(\bar{y})=\frac{N-1}{N} \cdot \frac{s^{2}}{n}\left(\frac{N-n}{N-1}\right)=\frac{s^{2}}{n}\left(\frac{N-n}{N}\right)=\frac{s^{2}}{n}\left(1-\frac{n}{N}\right) .
\]

The bound on the error of estimation is thus approxiated by
\[
B_{\mu} \approx \hat{B}_{\mu}=2 \sqrt{\hat{V}(\bar{y})}=2 \sqrt{\frac{s^{2}}{n}\left(1-\frac{n}{N}\right)}
\]
from which we conclude that
\[
\text { C.I. }(\mu ; 0.95): \quad \bar{y} \pm 2 \sqrt{\frac{s^{2}}{n}\left(1-\frac{n}{N}\right)}
\]
is an approximate \(\mathbf{9 5 \%}\) confidence interval for \(\mu\).
If the population variance \(\sigma^{2}\) is known, the FPCF is \(\frac{N-n}{N-1}\); if it is unknwon, the FPCF in \(1-\frac{n}{N}\). In practice, when the sampling rate \(\frac{n}{N}\) is below \(5 \%\), we can easily drop the FPCF \(\left(1-\frac{n}{N} \approx 1\right)\) without affecting the resulting quantities too greatly.

Example We draw a SRS sample \(\mathscr{y}\) of size \(n=132\) from a finite population \(U\) with \(N=37,444\) units. Let the sample mean and sample standard deviation be \(\bar{y}=111.3\) and \(s=16.35\), respectively. Find an approximate \(95 \%\) C.I. for the population average \(\mu\).

The bound on the error of estimation is roughly
\[
\hat{B}_{\mu}=2 \sqrt{\hat{V}(\bar{y})}=2 \sqrt{\frac{16.35^{2}}{132}\left(1-\frac{132}{37444}\right)} \approx 2.8
\]
which implies that
\[
\text { C.I. }(\mu ; 0.95) \approx 111.3 \pm 2.8 ;
\]
the outcome is basically the same without the FPCF.

Example Find an approximate \(95 \%\) C.I. for the average population per country in 2011 (excluding China and India) with a SRS of size \(n=20\).

We draw such a SRS sample and compute its sample mean \(\bar{y}\) and sample variance \(s^{2}\) (the outcomes will of course vary from one sample to another).
```

set.seed(12) \# replicability
N = dim(gapminder.SRS.2)[1]
n = 20
SRS = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]
(y.bar = mean(SRS))
(s.2 = var(SRS))

```
[1] 35217143
[1] \(5.492071 \mathrm{e}+15\)

If we do not know the population variance, the bound \(\hat{B}_{\mu}\) and the corresponding approximate \(95 \%\) C.I. for \(\mu\) are given by:
```

(B.hat = 2*sqrt(s.2/n*(1-n/N)))
(IC.hat = c(y.bar-B.hat,y.bar+B.hat))

```
[1] 31278890
[1] 393825366496034

We can compare with the true mean \(\mu\) :
```

(mu = mean(gapminder.SRS.2[,2]))

```
[1] 23301958

Sure enough, \(\mu\) is in the confidence interval:
```

mu > IC.hat[1] \& mu < IC.hat[2]

```

\section*{[1] TRUE}

In this case, however, we also knew the population variance \(\sigma^{2}\) :
```

(sigma.2 = var(gapminder.SRS.2[,2]))

```
[1] \(1.885224 \mathrm{e}+15\)

The bound \(B_{\mu}\) and the corresponding approximate \(95 \%\) C.I. for \(\mu\) are then obtained via:
```

(B = 2*sqrt(sigma.2/n*(N-1)/(N-n)))
(IC = c(y.bar-B,y.bar+B))

```
[1] 20518160
[1] 1469898455735303

Sure enough, \(\mu\) is again in the confidence interval:
```

mu > IC[1] \& mu < IC[2]

```

\section*{[1] TRUE}

In both cases, the true mean \(\mu=23,301,958\) is contained in the confidence interval. We also notice that the C.I. when the variance \(\sigma^{2}\) is known is contained in the \(95 \%\) C.I. when the variance is not known. \({ }^{21}\)

In this case, the true mean was in the confidence interval. But it could be that the \(95 \%\) C.I. constructed from a sample does not contain the mean \(\mu\).

Example We repeat this procedure \(m=1000\) times (with different samples each time). If the CLT for SRS applies, how many times would we expect \(\mu\) to be in the approximate \(95 \%\) C.I. built from the simple random samples? Assume that \(\sigma^{2}\) is not known.
```

m = 1000
mu.in.IC = c()
y.bar = c()
for(j in 1:m){
test = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]
s.2 = var(test)
B.hat = 2*sqrt(s.2/n*(1-n/N))
y.bar[j] = mean(test)
mu.in.IC[j] = y.bar[j]-B.hat < mu \& mu < y.bar[j]+B.hat
}
mean(mu.in.IC)

```

\section*{[1] 0.821}

This is not the \(\approx 95 \%\) we expected; but if we increase the sample size, the proportion gets closer to \(95 \%\) (see Exercises). The long tail of the population distribution for \(N=183\) units probably plays a role - the distribution of the sample measn \(\bar{y}\) (with \(m=1000\) samples of size \(n=20\) ) does not appear to be normal.
```

ggplot(data=data.frame(y.bar), aes(y.bar)) +
geom_rug() +
geom_histogram(col="black", fill="blue", alpha=.2) +
geom_vline(xintercept=mean(y.bar), color="red")

```


\section*{Estimating the Total \(\tau\)}

Most of the work has been done: since the total \(\tau\) can be re-written as
\[
\tau=\sum_{j=1}^{N} u_{j}=N \mu,
\]
we can approximate \(\tau\) with a SRS through the formula
\[
\hat{\tau}=N \bar{y}=\frac{N}{n} \sum_{i=1}^{n} y_{i} .
\]

This estimator is unbiased since its expectation is
\[
\mathrm{E}(\hat{\tau})=\mathrm{E}(N \bar{y})=N \cdot \mathrm{E}(\bar{y})=N \mu=\tau .
\]

Its sampling variance is given by
\[
\mathrm{V}(\hat{\tau})=\mathrm{V}(N \bar{y})=N^{2} \cdot \mathrm{~V}(\bar{y})=N^{2} \cdot \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) ;
\]
the bound on the estimation error is thus
\[
B_{\tau}=2 \sqrt{\mathrm{~V}(\hat{\tau})}=2 \sqrt{N^{2} \cdot \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)}=N \cdot B_{\mu} .
\]

Since we do not usually know the true population variance \(\sigma^{2}\) of \(U\), we provide an approximation by substituting \(\sigma^{2}\) by the sample variance \(s^{2}\), which needs to be multiplied by the "biased" factor \(\frac{N-1}{N} .{ }^{22}\) We can thus provide an approximation of the sampling variance using
\[
\hat{\mathrm{V}}(\hat{\tau})=\hat{\mathrm{V}}(N \bar{y})=N^{2} \cdot \frac{s^{2}}{n}\left(1-\frac{n}{N}\right) ;
\]
this yields an approximate bound on the estimation error of
\[
B_{\tau} \approx \hat{B}_{\tau}=2 \sqrt{\hat{\mathrm{~V}}(\hat{\tau})}=2 \sqrt{N^{2} \cdot \frac{s^{2}}{n}\left(1-\frac{n}{N}\right)}=N \cdot \hat{B}_{\mu}
\]
and an approximate \(\mathbf{9 5 \%}\) C.I. for \(\tau\) :
\[
\text { C.I. }(\tau ; 0.95): \quad \hat{\tau} \pm 2 \sqrt{N^{2} \cdot \frac{s^{2}}{n}\left(1-\frac{n}{N}\right)} .
\]

Example Consider a sample \(\mathscr{y}\) of size \(n=132\) drawn from a finite population \(U\) of size \(N=37,444\). Suppose the empirical mean and standard deviation of the sample are \(\bar{y}=111.3\) and \(s=16.35\), respectively. Give an approximate \(95 \%\) C.I. for the total \(\tau\) in \(\mathcal{U}\).

The approximate bound on the error of estimation
\[
\hat{B}_{\tau}=2 \sqrt{N^{2} \cdot \hat{V}(\bar{y})}=2 \sqrt{37444^{2} \cdot \frac{16.35^{2}}{132}\left(1-\frac{132}{37444}\right)} \approx 106,383.9643
\]
which yields
C.I. \((\tau ; 0.95) \approx 37,444 \cdot 111.3 \pm 106,383.9643=4,167,517.2 \pm 106,384.0\),
or simply \((4,061,133.2 ; 4,273,901.2)\).

Example Find an approximate \(95 \%\) C.I. for the population of the planet in 2011 (excluding China and India), using a SRS of size \(n=20\), assuming

22: Recall that \(s^{2}\) is a biased estimator of \(\sigma^{2}\) in a SRS.
that
\[
\bar{y}=27,396,632 \text { and C.I. }(\mu ; 0.95) \equiv(6,755,099 ; 48,038,164) .
\]

We have \(\hat{B}_{\mu} \approx 48,038,164-27,396,632=20,641,532\) and
\[
\hat{B}_{\tau} \approx N \hat{B}_{\mu}=183 \cdot 20,641,532=3,777,400,356
\]
from which we conclude that
\[
\text { C.I. }(\tau ; 0.95): \quad N \bar{y} \pm B_{\tau}=183(27,396,632) \pm 3,777,400,356,
\]
or simply, C.I. \((\tau ; 0.95): \equiv(1,236,183,300 ; 8,790,984,012) .{ }^{23}\)

\section*{Estimating a Proportion \(p\)}

In a population \(U\) where \(u_{j} \in\{0,1\}\) represents a binary response for all \(1 \leq j \leq N,{ }^{24}\) the mean takes a particular interpretation:
\[
p=\mu=\frac{1}{N} \sum_{j=1}^{N} u_{j}
\]
is the proportion of the units possessing the characteristic in question.
This proportion can be estimated with a SRS via:
\[
\hat{p}=\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \quad y_{i} \in\{0,1\}
\]

It is an unbiased estimator of the proportion since its expectation is
\[
\mathrm{E}(\hat{p})=\mathrm{E}(\bar{y})=\mu=p ;
\]

\section*{its sampling variance is}
\[
\mathrm{V}(\hat{p})=\mathrm{V}(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

But \(U^{2}=U\) when \(U\) is a binary response, from which we see that
\[
\sigma^{2}=\mathrm{E}\left[U^{2}\right]-\mathrm{E}^{2}[U]=\mathrm{E}[U]-\mathrm{E}^{2}[U]=p-p^{2}=p(1-p),
\]
and so
\[
\mathrm{V}(\hat{p})=\frac{p(1-p)}{n}\left(\frac{N-n}{N-1}\right) .
\]

The bound on the error of estimation is thus
\[
B_{p}=2 \sqrt{\mathrm{~V}(\hat{p})}=2 \sqrt{\frac{p(1-p)}{n}\left(\frac{N-n}{N-1}\right)} .
\]

When the population variance \(\sigma^{2}\) is unknown (which is to say, when the true \(p\) is unknown, which is usually the case), the sampling variation approximation is
\[
\hat{\mathrm{V}}(\hat{p})=\hat{\mathrm{V}}(\bar{y})=\frac{s^{2}}{n}\left(1-\frac{n}{N}\right)
\]

But recall that \(y_{i}\) only takes on the values 0 and 1 , so that \(y_{i}^{2}=y_{i}\) for \(1 \leq i \leq n\), from which we see that
\[
s^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right)=\frac{n \bar{y}-n \bar{y}^{2}}{n-1}=\frac{n\left(\hat{p}-\hat{p}^{2}\right)}{n-1}=\frac{n \hat{p}(1-\hat{p})}{n-1}
\]
and
\[
\hat{\mathrm{V}}(\hat{p})=\frac{n \hat{p}(1-\hat{p})}{(n-1) n}\left(1-\frac{n}{N}\right)=\frac{\hat{p}(1-\hat{p})}{n-1}\left(1-\frac{n}{N}\right)
\]

The approximate estimation error bound becomes
\[
B_{p} \approx \hat{B}_{p}=2 \sqrt{\hat{\mathrm{~V}}(\hat{p})}=2 \sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}\left(1-\frac{n}{N}\right)}
\]
with the corresponding approximate \(95 \%\) C.I. for \(p\) being
\[
\text { C.I. }(p ; 0.95): \quad \hat{p} \pm 2 \sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}\left(1-\frac{n}{N}\right)} .
\]

Example Consider a sample \(\mathscr{y}\) of size \(n=132\) drawn from a finite population \(\mathscr{U}\) of size \(N=37,444\). Suppose that 25 of the observations of \(y\) have a particular characteristic. Find an approximate \(95 \%\) C.I. for the proportion \(p\) of the observations of \(U\) that possess the feature.
In this case, \(\hat{p}=25 / 132 \approx 0.19\). The required approximate bound is thus
\[
\hat{B}_{p}=2 \sqrt{\hat{V}(\hat{p})}=2 \sqrt{\frac{0.19(1-0.19)}{132-1}\left(1-\frac{132}{37444}\right)} \approx 0.0684
\]
from which we get
\[
\text { C.I. }(p ; 0.95) \approx 0.19 \pm 0.0684 \equiv(0.121,0.258) .
\]

Example Find an approximate \(95 \%\) C.I. for the proportion of countries for which the 2011 population fell below 10M, using a SRS with sample size \(n=20\).

Let's draw a SRS sample of size \(n=20\) and compute \(\hat{p}\) (results will vary from one sample to when the population of a country is smaller than 10 M and FALSE otherwise.
```

set.seed(1234) \# replicability
N=dim(gapminder.SRS.2)[1]
n=20
thresh.10 <- gapminder.SRS.2[,2] < 10000000
SRS = thresh.10[sample(1:N,n, replace=FALSE)]

```

The proportion of countries with a population smaller than 10 M in that sample is:
```

(p.hat = mean(SRS))

```

\section*{[1] 0.6}

The true proportion \(p\), amongst the \(N=185\) countries, is:
\[
(p=\operatorname{mean}(t h r e s h .10))
\]
[1] 0.5737705

If we assume that population variance is unknown, the bound \(\hat{B}_{p}\) and the approximate \(95 \%\) C.I. are given by:
```

(B.p = 2*sqrt(p.hat*(1-p.hat)/(n-1)*(1-n/N)))
(IC = c(p.hat-B.p,p.hat+B.p))

```
[1] 0.2121422
[1] 0.38785780 .8121422

The true proportion \(p \approx 0.568\) is indeed in the confidence interval. If we repeat this process \(m=1000\) times, how often is the true proportion found inside the obtained C.I.?
```

m=1000
p.in.IC = c()
p.hat = c()
for(j in 1:m){
p.hat[j] = mean(thresh.10[sample(1:N,n, replace=FALSE)])
B.p = 2*sqrt(p.hat[j]*(1-p.hat[j])/(n-1)*(1-n/N))
p.in.IC[j] = p.hat[j]-B.p < p \& p < p.hat[j]+B.p
}
mean(p.in.IC)

```
[1] 0.963

Quite close to \(95 \%\), you will agree. The distribution of the \(m=1000\) estimates \(\hat{p}\) is shown below, with the true proportion (red vertical line).
```

ggplot(data=data.frame(p.hat), aes(p.hat)) +
geom_histogram(bins=21, col="black", fill="blue",
alpha=.2) +
geom_vline(xintercept=mean(gapminder.SRS.2[,2]<10000000),
color="red") + xlim(0,1)

```


\subsection*{10.3.3 Sample Size}

Selecting an appropriate sample size is a challenge, and there is a bit of a chicken-and-egg scenario at play.

Firstly, there is a practical problem associated with sampling: since the cost associated with each response can be costly (in terms of time/cost), we often seek to minimize the size of the realized sample \(\mathscr{y}\), given a desired error bound.

Secondly, the SRS error bound is expressed as
\[
B_{\xi}=2 \sqrt{\mathrm{~V}(\hat{\xi})}, \quad \xi \in\{\mu, \tau, p\}
\]
but the variance depends on the sample size \(|\mathscr{Y}|=n\). We must then express \(n\) in terms of the (known) parameters \(N, \sigma^{2}\), and \(B_{\xi}\).

\section*{Mean \(\mu\)}

If we are trying to estimate the mean \(\mu\), we have:
\[
\begin{aligned}
B_{\mu}=2 \sqrt{\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{\mu}^{2}}{4}}_{=D_{\mu}}=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
\frac{(N-1) D_{\mu}}{\sigma^{2}}=\frac{N-n}{n}=\frac{N}{n}-1 & \Longleftrightarrow \frac{(N-1) D_{\mu}+\sigma^{2}}{\sigma^{2}}=\frac{N}{n} \\
& \Longleftrightarrow n_{\mu}=\frac{N \sigma^{2}}{(N-1) D_{\mu}+\sigma^{2}} .
\end{aligned}
\]

However, we can only use this formula is we know the population variance \(\sigma^{2}\). We could chose to use the empirical variance \(s^{2}\) of the sample \(\mathscr{Y}\) as we did when we estimated the sample variance, but we haven't drawn \(\mathscr{Y}\) from \(\mathscr{U}\) yet!

Stratagies (to obtain \(\sigma^{2}\) ):
- use a preliminary sample (not necessarily random),
- use the empirical variance obtained in a previous study, or
- for a proportion, use a conservative estimate ( \(p=0.5\) ).

Example Consider a finite population \(\ddots\) with size \(N=37,444\). We are interested in the mean \(\mu\) of the response variable in \(\boldsymbol{U}\). In a preliminary SRS of size \(n=132\), we computed an (empirical) standard deviation of \(s=16.35\).

Using \(\sigma=s\), find the minimal SRS sample size \(n_{\mu}\) required to estimate the mean with a bound on the error of estimation at most \(B_{\mu}=1.7\).

We can use the formula directly to get
\[
D_{\mu}=\frac{(1.7)^{2}}{4} \approx 0.73 \Longrightarrow n_{\mu}=\frac{37444(16.35)^{2}}{(37444-1)(0.73)+16.35^{2}}=366.39 \approx 367
\]

\section*{Total \(\tau\)}

If instead, we are seeking to estimate the total \(\tau\), we have:
\[
\begin{aligned}
B_{\tau}=2 \sqrt{N^{2} \cdot \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{\tau}^{2}}{4 N^{2}}}_{=D_{\tau}}=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& \Longleftrightarrow \frac{(N-1) D_{\tau}}{\sigma^{2}}=\frac{N-n}{n}=\frac{N}{n}-1 \\
& \Longleftrightarrow \frac{(N-1) D_{\tau}+\sigma^{2}}{\sigma^{2}}=\frac{N}{n} \\
& \Longleftrightarrow n_{\tau}=\frac{N \sigma^{2}}{(N-1) D_{\tau}+\sigma^{2}} .
\end{aligned}
\]

Example Consider a finite population \(U\) of size \(N=37,444\). We are interested in the total \(\tau\) of the response variable of \(\mathcal{U}\). In a preliminary SRS of size \(n=132\), we computed an empirical standard deviation of \(s=16.35\).

Using \(\sigma=s\), find the minimal SRS sample size \(n_{\tau}\) required to estimate the total response with a bound on the error of estimation at most \(B_{\tau}=10000\).

We can use the formula directly to obtain
\(D_{\tau}=\frac{(10000)^{2}}{4(37444)^{2}} \approx 0.018 \Longrightarrow n_{\tau}=\frac{37444(16.35)^{2}}{(37444-1)(0.018)+16.35^{2}} \approx 10706\).

\section*{Proportion \(p\)}

If we are interested in the proportion \(p\), we have:
\[
\begin{aligned}
B_{p}=2 \sqrt{\frac{p(1-p)}{n}\left(\frac{N-n}{N-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{p}^{2}}{4}}_{=D_{p}}=\frac{p(1-p)}{n}\left(\frac{N-n}{N-1}\right) \\
& \Longleftrightarrow \frac{(N-1) D_{p}}{p(1-p)}=\frac{N-n}{n}=\frac{N}{n}-1 \\
& \Longleftrightarrow \frac{(N-1) D_{p}+p(1-p)}{p(1-p)}=\frac{N}{n} \\
& \Longleftrightarrow n_{p}=\frac{N p(1-p)}{(N-1) D_{p}+p(1-p)} .
\end{aligned}
\]

Example Consider a finite population \(\mathscr{U}\) of size \(N=37,444\). We are interested in the proportion \(p\) of units that have a particular feature. In a preliminary SRS of size \(n=132\), we identify 25 observations possessing the feature.

Using the approximation \(\sigma^{2}=\frac{25}{132} \cdot \frac{107}{132}\) from the preliminary sample, find the minimal SRS sample size \(n_{p}\) required to estimate the true proportion with a bound on the error of estimation of at most \(B_{p}=0.03\).

We use the formula directly and obtain
\(D_{p}=\frac{(0.03)^{2}}{4} \approx 0.0002 \Longrightarrow n_{p}=\frac{37444(0.189)(0.811)}{(37444-1)(0.0002)+(0.189)(0.811)} \approx 671\).

Example Consider a situation similar to the previous example. Using the (conservative) approximation \(\sigma^{2}=(0.5)^{2}\), find the minimal SRS sample size \(n_{p}\) required to estimate the true proportion with a bound on the error of estimation of at most \(B_{p}=0.03\).

We use the formula directly and obtain
\(D_{p}=\frac{(0.03)^{2}}{4} \approx 0.0002 \Longrightarrow n_{p}=\frac{37444(0.5)(0.5)}{(37444-1)(0.0002)+(0.5)(0.5)} \approx 1080\).

\subsection*{10.4 Stratified Random Sampling}

The theory we developed in the previous section allows us to determine the distribution of the three unbiased estimators \(\bar{y}, t \hat{a} u\), and \(p\).

For instance, we have shown that if the size \(N\) of a finite population \(\mathscr{U}=\left\{u_{1}, \ldots, u_{N}\right\}\) of expectation \(\mu\) and variance \(\sigma^{2}\) and the size \(n\) of the SRS \(y\) from which the estimator \(\bar{y}\) is constructed are sufficiently large, and if moreover the responses \(u_{j}\) are i.i.d. for \(1 \leq j \leq N\), then \(\bar{y}\) follows approximately a normal distribution whose parameters are
\[
\mathrm{E}(\bar{y})=\mu \quad \text { and } \quad \mathrm{V}(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)
\]

The higher \(\sigma^{2}\) is, the more the repeated SRS \(\bar{y}\) values vary.
In practice, the normal approximation is:
- often acceptable - see average life expectancy, previous section;
- but it is not always so, which can lead to some challenges - cf. the C.I. \((\mu ; 0.95)\) for the average population which was in fact only an \(80 \%\) C.I. for a SRS of size \(n=20\) in the previous section.

In the presence of outliers or when \(n, N\) are too small, the performance of an SRS may leave something to be desired.

Example Consider a finite population with \(N=16\) elements:
\[
2,2,2,2,0,0,0,0,1,1,1,1,5,5,5,5 .
\]

The population mean and variance are, respectively:
\[
\begin{aligned}
\mu & =\frac{1}{16}(4 \cdot 2+4 \cdot 0+4 \cdot 1+4 \cdot 5)=2 \\
\sigma^{2} & =\frac{1}{16}\left(4 \cdot 2^{2}+4 \cdot 0^{2}+4 \cdot 1^{2}+4 \cdot 5^{2}\right)-2^{2}=\frac{7}{2}
\end{aligned}
\]

Suppose that we draw an SRS of size \(n=4\) from this population, in order to estimate the mean \(\mu\).

From what we discussed in the previous section, the expectation and sampling variance of the estimator \(\bar{y}\) are, respectively:
\[
\mathrm{E}(\bar{y})=2 \quad \text { and } \quad \mathrm{V}(\bar{y})=\frac{\sqrt{7 / 2}^{2}}{4}\left(\frac{16-4}{16-1}\right)=\frac{7}{10}
\]

We could also restrict the sampling structure in the following manner:
1. we start by separating the population into 4 segments (the strata):
strata \(1: 2,2,2,2\)
strata 2 : \(0,0,0,0\)
strata \(3: 1,1,1,1\)
strata \(4: 5,5,5,5\)
2. we then draw a SRS of size \(n=4\) by selecting one unit per stratum.

In such a situation (which is NOT a \(\operatorname{SRS}(n=4, N=16)\) ), each achieved sample takes the form \(\{2,0,1,5\}\) : the empirical mean is always 2 , and so the sampling variance is null.

In practice, this artificial situation rarely occurs, but if the units of the population can be grouped into natural strata, i.e., sub-populations for which:
- the response value is homogeneous within each stratum, but
- it is heterogeneous from one stratum to another, then
this approach can produce an estimator whose sampling variance is lower than that of the SRS estimator; as a bonus, the sample preserves certain population structures.

Example Find an approximate \(95 \%\) C.I. for the average population per country (excluding China and India) in 2011. The population distribution in the 2011 Gapminder dataset has the following characteristics:
```

gapminder.STS <- gapminder |>
filter(year==2011) |> select(population) |>
filter(population < 1000000000)
summary(gapminder.STS\$population)

```
\begin{tabular}{rrrrrr} 
Min. & lst Qu. & Median & Mean & 3rd Qu. & Max. \\
56441 & 2061342 & 7355231 & 23301958 & 22242334 & 312390368
\end{tabular}

The true average population, by country, is \(\mu=23,301,958\). Recall that the population distribution is asymmetrical:
```

N = nrow(gapminder.STS)
ggplot(data=gapminder.STS, aes(population)) +
geom_histogram(col="black", fill="blue", alpha=.2) +
geom_vline(xintercept=mean(gapminder.STS\$population),
color="red") + geom_rug()

```


We use the population strata \([0,10 M),[10 M, 25 M),[25 M, 50 M), 100 M+\).
```

gapminder.STS <- gapminder.STS |>
mutate(strata = ifelse(population<10000000,"S1",
ifelse(population<25000000,"S2",
ifelse(population<50000000,"S3",
ifelse(population<100000000,"S4","S5")))))
gapminder.STS <- gapminder.STS[order(gapminder.STS$population),]
gapminder.STS$strata <- as.factor(gapminder.STS\$strata)

```

The number of countries in each stratum is:
```

(strata.N <- tapply(gapminder.STS$population,
 gapminder.STS$strata, length))

```
S1 \(\quad\) S2 \(\quad\) S3 \(\quad\) S4 55
\begin{tabular}{lllll}
105 & 35 & 21 & 13 & 9
\end{tabular}

For a sample size of \(n=20\), we use approximately \(n_{i}\) countries per stratum \(S_{i}\) :

\section*{strata.N/sum(strata.N) 20}
\begin{tabular}{rrrrr} 
S1 & S2 & S3 & S4 & S5 \\
11.4754098 & 3.8251366 & 2.2950820 & 1.4207650 & 0.9836066
\end{tabular}

Some practical considerations might suggest the use of a different allocation (more on this later). The distribution of the population by stratum has the following characteristics:
```

tapply(gapminder.STS$population, gapminder.STS$strata,
summary)

```
```

\$S1
Min. 1st Qu. Median Mean 3rd Qu. Max.
56441 622957 2886010 3386819 5411377 9988846

```
\$S2
    Min. 1st Qu. Median Mean 3rd Qu. Max.
100271401123469915177280156821242021366824928503
\$S3
    Min. 1st Qu. Median Mean 3rd Qu. Max.
250169212942763134499905362114654165561649356692
\$S4
    Min. 1st Qu. Median Mean 3rd Qu. Max.
522372726326840573517002738411858378763494501233
\$S5
    Min. 1st Qu. Median Mean 3rd Qu. Max.
120365271143211476163770669182154642200517584312390368

In the first attempt, we draw a SRS from each stratum, using the following sizes: \(\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=(11,4,3,1,1)\) :
```

set.seed(12345) \# replicability
n=c(); n[1] = 11; n[2] = 4; n[3] = 3; n[4] = 1; n[5] = 1
ind = list()

draw a SRS of indices in each of the 5 strata

```
```

ind[[1]] <- sample(1:strata.N[1],n[1])
ind[[2]] <- sum(strata.N[1:1]) + sample(1:strata.N[2],n[2])
ind[[3]] <- sum(strata.N[1:2]) + sample(1:strata.N[3],n[3])
ind[[4]] <- sum(strata.N[1:3]) + sample(1:strata.N[4],n[4])
ind[[5]] <- sum(strata.N[1:4]) + sample(1:strata.N[5],n[5])

```

The average population in the sample is computed as below (this value will change from one STS to another).
```

sample.STS <- gapminder.STS[unique(unlist(ind)),]
mean(sample.STS\$population)

```
[1] 24378331

This naïve approach is not ideal. \({ }^{25}\) The estimator
\[
\bar{y}_{\mathrm{STS}}=\frac{1}{20}\left(y_{1}+\cdots+y_{20}\right)
\]
implies that each observation had the same probability of being chosen, which is not the case in reality. \({ }^{26}\) In our second attempt, the weight of each selected observation depends on the size of the stratum. \({ }^{27}\)

25: Despite the relative accuracy of the estimate.

26: Remember, we are not dealing with a SRS situation.

27: We will discuss the theoretical details in the next section.
```

set.seed(123456) \# replicability
cumul.n = cumsum(n); cumul.N = cumsum(strata.N)
ind = list()
ind[[1]] <- sample(1:strata.N[1],n[1])
for(j in 2:length(n)){
ind[[j]] <- cumul.N[j-1] + sample(l:strata.N[j],n[j])
}
sample.STS <- gapminder.STS[unique(unlist(ind)),]
sample.STS = sample.STS[order(sample.STS\$population),]
y.bar <- list()
y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])
for(j in 2:length(n)){
y.bar[[j]] <- mean(sample.STS[(cumul.n[j-1]+1):cumul.n[j], c("population")])
}
y.bar.STS <- 0
for(j in 1:length(n)){
y.bar.STS <- y.bar.STS +
as.numeric(strata.N[j])*y.bar[[j]]
}
y.bar.STS/N

```
[1] 22668202

The estimate is very close to the actual value of \(\mu\), but a lone point estimate does not tell the full story.

We repeat this procedure 500 times, each time using the same size allocation \(\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=(9,3,3,3,2)\) :
```

set.seed(12) \# replicability
strata.N <- tapply(gapminder.STS$population,
 gapminder.STS$strata, length)
cumul.N = cumsum(strata.N)
n=c(); n[1] = 9; n[2] = 3; n[3] = 3; n[4] = 3; n[5] = 2
cumul.n = cumsum(n)
m=500
means <- c()
for(k in 1:m){
ind = list()
ind[[1]] <- sample(1:strata.N[1],n[1])
for(j in 2:length(n)){
ind[[j]] <- cumul.N[j-1] +
sample(1:strata.N[j],n[j])
}
ind.STS <-unique(unlist(ind))
sample.STS <- gapminder.STS[ind.STS,]
sample.STS = sample.STS[order(sample.STS\$population),]
y.bar <- list()
y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])
for(j in 2:length(n)){
y.bar[[j]] = mean(sample.STS[(cumul.n[j-1]+1):
cumul.n[j],c("population")])
}
y.bar.STS <- 0
for(j in 1:length(n)){
y.bar.STS <- y.bar.STS +
as.numeric(strata.N[j])*y.bar[[j]]
}
means[k] <- y.bar.STS/N
}

```

For each sample \(1 \leq i \leq 500\), we then compute the empirical mean their distribution has the following characteristics:
```

summary(means)

```
\begin{tabular}{rrrrrr} 
Min. & lst Qu. Median & Mean & 3rd Qu. & Max. \\
17608174 & 21602380 & 22735650 & 23179372 & 24655297 & 29082447
\end{tabular}

Finally, we plot the histogram of the STS means (with their mean in red):
```

ggplot(data=data.frame(means), aes(means)) + geom_rug() +
geom_histogram(col="black", fill="blue", alpha=.2) +
geom_vline(xintercept=mean(means), color="red")

```


Not only is the shape of the distribution closer to a normal distribution, compared to the distribution of \(\bar{y}\) obtained using SRS, but its variance is also much lower.

As an illustration, ccompare the following image, on the same scale as the corresponding histogram for SRS in Section 10.3.2.
```

ggplot(data=data.frame(means), aes(means)) + geom_rug() +
geom_histogram(col="black", fill="blue", alpha=.2) +
xlim(0,60000000) +
geom_vline(xintercept=mean(means), color="red")

```


Figure 10.7: Schematics of STS: target population (left) and sample (right).

28: Which it is important to remember is not the same thing as the "sampling variance" of an estimator.


\subsection*{10.4.1 Estimators and Confidence Intervals}

Assume that we are interested in a finite population \(\mathcal{U}=\left\{u_{1}, \ldots, u_{N}\right\}\), whose expectation is \(\mu\) and variance is \(\sigma^{2}\). We cover the population with \(M\) disjoint strata, containing, respectively, \(N_{1}, \ldots, N_{M}\) units:
\[
u_{1}=\left\{u_{1,1}, \ldots, u_{1, N_{1}}\right\}, \cdots, u_{M}=\left\{u_{M, 1}, \ldots, u_{M, N_{M}}\right\},
\]
with stratum mean and stratum variance
\[
\mu_{i}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} u_{i, j} \quad \text { and } \quad \sigma_{i}^{2}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} u_{i, j}^{2}-\mu_{i}^{2}, \quad 1 \leq i \leq M .
\]

A stratified sample \(\mathscr{Y}\) of size \(n \leq N\) is a subset of the target population \(U\), with \(n_{1}+\cdots+n_{M}=n\) and \(n_{i} \leq N_{i}\) for \(1 \leq i \leq M\) :
\[
\{\underbrace{y_{1,1}, \ldots, y_{1, n_{1}}}_{\in \text { strate } u_{1}}, \ldots, \underbrace{y_{M, 1}, \ldots, y_{M, n_{m}}}_{\in \text { strate } u_{M}}\} \subseteq \bigcup_{i=1}^{M} u_{i}=\boldsymbol{u}
\]

If every sample \(\mathscr{Y}_{i}=\left\{y_{i, j} \mid 1 \leq j \leq n_{i}\right\}\) is drawn from the corresponding stratum \(U_{i}\) via a SRS, independently from one stratum to another, we obtain a stratified random sample (STS) of size \(n\). The sample mean and the sample variance \({ }^{28}\) of \(\mathscr{Y}_{i}\) are denoted by \(\bar{y}_{i}\) and \(s_{i}^{2}\), respectively. In a STS design, each observation in a stratum has the same probability of being selected, but it may differ from one stratum to another.

\section*{Mean \(\mu\)}

In a STS, the sample mean of the observations of the sample \(y\) falling in the stratum \(U_{i}\) is an estimator of \(\mu_{i}\) given by
\[
\bar{y}_{i}=\frac{1}{n_{i}} \sum_{\ell=1}^{n_{i}} y_{i, \ell}, \quad \text { where } n_{i}=\left|u \cap y_{i}\right|, 1 \leq i \leq M
\]

The true mean \(\mu\) and the STS estimator of \(\mu\) are thus:
\(\mu=\frac{1}{N} \sum_{j=1}^{N} u_{j}=\frac{1}{N} \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} u_{i, j}=\frac{1}{N} \sum_{i=1}^{M} N_{i} \mu_{i} \quad\) and \(\quad \bar{y}_{\mathrm{STS}}=\frac{1}{N} \sum_{i=1}^{M} N_{i} \bar{y}_{i}\).

Since \(\mathscr{Y}_{i}\) is a SRS drawn from \(\mathcal{U}_{i}\), we have: \({ }^{29}\)
\[
\mathrm{E}\left(\bar{y}_{i}\right)=\mu_{i} \quad \text { and } \quad \mathrm{V}\left(\bar{y}_{i}\right)=\frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right), \quad \text { pour } 1 \leq i \leq M
\]

The expectation of the STS estimator is thus:
\[
\mathrm{E}\left(\bar{y}_{\mathrm{STS}}\right)=\mathrm{E}\left(\frac{1}{N} \sum_{i=1}^{M} N_{i} \bar{y}_{i}\right)=\frac{1}{N} \sum_{i=1}^{M} N_{i} \mathrm{E}\left(\bar{y}_{i}\right)=\frac{1}{N} \sum_{i=1}^{M} N_{i} \mu_{i}=\mu
\]
which is to say that \(\bar{y}_{\text {STS }}\) is an unbiased estimator of the true mean \(\mu\) for a population of size \(N\) with variance \(\sigma^{2} .{ }^{30}\)
The sampling variance of the estimator \(\bar{y}_{\text {STS }}\) is
\[
\begin{aligned}
\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right) & =\mathrm{V}\left(\frac{1}{N} \sum_{i=1}^{M} N_{i} \bar{y}_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \mathrm{~V}\left(\bar{y}_{i}\right)+\sum_{i \neq i^{\prime}}^{M} N_{i} N_{i^{\prime}} \underbrace{\operatorname{Cov}\left(\bar{y}_{i}, \bar{y}_{i^{\prime}}\right)}_{=0} \\
& =\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \mathrm{~V}\left(\bar{y}_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)
\end{aligned}
\]

Central Limit Theorem-STS If \(n, N-n, n_{i}\), and \(N_{i}-n_{i}\) are all sufficiently large, for all \(i\), then
\[
\bar{y}_{\text {STS }} \sim_{\text {approx. }} \mathcal{N}\left(\mathrm{E}\left(\bar{y}_{\text {STS }}\right), \mathrm{V}\left(\bar{y}_{\text {STS }}\right)\right)=\mathcal{N}\left(\mu, \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)\right)
\]

In a STS, the bound on the error of estimation is
\[
B_{\mu ; \mathrm{STS}}=2 \sqrt{\mathrm{~V}\left(\bar{y}_{\mathrm{STS}}\right)}=2 \sqrt{\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)}
\]
and the corresponding approximate \(\mathbf{9 5 \%}\) C.I. for \(\mu\) is
\[
\text { C.I.STS }(\mu ; 0.95): \quad \bar{y}_{\mathrm{STS}} \pm B_{\mu ; \mathrm{STS}}
\]

In practice, the population variance \(\sigma^{2}\) is rarely known, \({ }^{31}\) in which case we use the sample variance. \({ }^{32}\)
In each stratum, the empirical variance \(s_{i}^{2}\) is
\[
s_{i}^{2}=\frac{1}{n_{i}-1} \sum_{\ell=1}^{n_{i}}\left(y_{i, \ell}-\bar{y}_{i}\right)^{2}=\frac{1}{n_{i}-1}\left[\sum_{\ell=1}^{n_{i}} y_{i, \ell}^{2}-n_{i} \bar{y}_{i}^{2}\right], \quad 1 \leq i \leq M
\]

We can then approximate the sampling variance in \(U_{i}\) as we did for a SRS, using
\[
\hat{\mathrm{V}}\left(\bar{y}_{i}\right)=\frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right), \quad 1 \leq i \leq M
\]

29: For the sake of completeness, the SRS estimator is sometimes denoted by \(\bar{y}_{\text {SRS }}\).

30: It is evidently not the one as \(\bar{y}_{\text {SRS }}\) is also such an estimator.

The sampling variance of the estimator \(\bar{y}_{\text {STS }}\) is thus
\[
\hat{\mathrm{V}}\left(\bar{y}_{\text {STS }}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \mathrm{~V}\left(\bar{y}_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right) .
\]

The bound of the estimation error is approximated by
\[
B_{\mu ; \mathrm{STS}} \approx \hat{B}_{\mu ; \mathrm{STS}}=2 \sqrt{\hat{\mathrm{~V}}\left(\bar{y}_{\mathrm{STS}}\right)}=2 \sqrt{\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right)},
\]
whence
\[
\text { C.I.STS }(\mu ; 0.95): \quad \bar{y}_{\mathrm{STS}} \pm \hat{B}_{\mu ; \mathrm{STS}} \equiv \bar{y}_{\mathrm{STS}} \pm 2 \sqrt{\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right)}
\]
is an approximate \(\mathbf{9 5 \%}\) C.I. for \(\mu\).
In practice, when the stratum sampling rate \(\frac{n_{i}}{N_{i}}\) is below \(5 \%\), we can drop the FPCF in the corresponding stratum.

Example Consider a finite population \(\mathscr{U}\) of size \(N=37,444\), separated in two disjoint strata \(U_{1}\) and \(U_{2}\), of respective sizes \(N_{1}=21,123\) and \(N_{2}=16,321\). A STS sample \(\mathscr{Y}\) of size \(n=132\) is drawn from \(\mathscr{U}\), with \(n_{1}=82\) and \(n_{2}=50\).

Suppose the empirical mean and standard deviation in \(y_{1}\) and \(y_{2}\) are \(\bar{y}_{1}=120.7, \bar{y}_{2}=96.6, s_{1}=18.99\), and \(s_{2}=14.31\), respectively. Find a \(95 \%\) C.I. for the mean \(\mu\) of \(U\).
The bound on the error of estimation is \(\approx \hat{B}_{\mu ; \text { STS }}=2 \sqrt{\hat{V}\left(\bar{y}_{\text {STS }}\right)}\) :
\(2 \sqrt{\frac{21123^{2}}{37444^{2}} \cdot \frac{18.99^{2}}{82}\left(1-\frac{82}{21123}\right)+\frac{16321^{2}}{37444^{2}} \cdot \frac{14.31^{2}}{50}\left(1-\frac{50}{16321}\right)} \approx 2.95\),
so C.I.sTs \((\mu ; 0.95) \approx\left(\frac{21,123(120.7)}{37,444}+\frac{16,321(96.6)}{37,444}\right) \pm 2.95 \equiv(107.25,113.14)\).

33: Stratifying using the country populations, as we did earlier in this section.

Example Find a 95\% confidence interval for the average life expectancy by country in 2011 (including India and China), using a STS of size \(n=20 .{ }^{33}\)

We can basically re-use the same code:
```

LE.1 <- gapminder |> filter(year==2011) |>
select(population,life_expectancy)
summary(LE.1)

```
\begin{tabular}{lll}
\multicolumn{2}{c}{ population } & \multicolumn{1}{c}{ life_expectancy } \\
Min. \(\quad: 5.644 \mathrm{e}+04\) & Min. \(: 46.70\) \\
lst Qu. \(: 2.064 \mathrm{e}+06\) & lst Qu. \(: 65.30\) \\
Median \(: 7.563 \mathrm{e}+06\) & Median \(: 73.70\) \\
Mean \(\quad: 3.708 \mathrm{e}+07\) & Mean \(: 71.18\) \\
3rd Qu.: \(2.423 \mathrm{e}+07\) & 3rd Qu.:77.40 \\
Max. \(\quad: 1.348 \mathrm{e}+09\) & Max. \(: 83.02\)
\end{tabular}

The average life expectancy is \(\mu=71.18\). We now prepare the strata according to the population, and we sort the observations from the smallest population to the largest:
```

LE.1 <- LE.1 |> mutate(strata = ifelse(population<10000000,"S1",
ifelse(population<25000000,"S2", ifelse(population<50000000,"S3",
ifelse(population<100000000,"S4","S5")))))
LE.1 <- LE.1[order(LE.1$population),]
LE.1$strata <- as.factor(LE.1\$strata)

number of countries in each stratum

(strata.N <- tapply(LE.1$life_expectancy, LE.1$strata, length))

```
\begin{tabular}{rrrrr} 
S1 & S2 & S3 & S4 & S5 \\
105 & 35 & 21 & 13 & 11
\end{tabular}

Unfortunately, the life expectancy distributions in each stratum overlap to a great extent: this is not a good sign as it suggests that a country's population is not aligned with its life expectancy. \({ }^{34}\)
```

ggplot(LE.1,aes(x=life_expectancy,fill=strata)) +
geom_density(alpha=0.5) + geom_rug()

```


Since there are \(N=185\) observations in the data set, a sample of size \(n=20\), allocated in such a way as to maintain the relative frequencies of the number of observations in each \(U_{i}\) (this is known as proportional allocation), would have the following stratum allocation:
```

N=sum(strata.N)
strata.N/sum(strata.N)*20

```
\begin{tabular}{rrrrr}
S 1 & S 2 & S 3 & S 4 & S \\
11.351351 & 3.783784 & 2.270270 & 1.405405 & 1.189189
\end{tabular}

In practice, we prefer to have at least 2 observations per stratum, so we might use \(\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=(11,3,2,2,2)\).
```

n=c(11,3,2,2,2)

```

We select a STS sample \(\mathscr{y}\) with these characteristics via:
```

set.seed(123456) \# replicability
cumul.n = cumsum(n)
cumul.N = cumsum(strata.N)
ind = list()
ind[[1]] <- sample(1:strata.N[1],n[1])
for(j in 2:length(n)){
ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])
}
sam.LE.1 <- LE.1[unique(unlist(ind)),]
sam.LE.1 <- sam.LE.1[order(sam.LE.1\$population),]

```

Next, we compute the mean \(\bar{y}_{i}\) and the standard deviation \(s_{i}\) in each bucket \(\mathscr{y}_{i}, 1 \leq i \leq 5\).
```

y.bar <- list()
std.dev <- list()
y.bar[[1]] <- mean(sam.LE.1[1:n[1],c("life_expectancy")])
std.dev[[1]] <- sd(sam.LE.1[1:n[1],c("life_expectancy")])
for(j in 2:length(n)){
y.bar[[j]] <- mean(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],
c("life_expectancy")])
std.dev[[j]] <- sd(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],
c("life_expectancy")])
}
rbind(y.bar,std.dev)

```
\begin{tabular}{llllll} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
\(y . b a r\) & 70.83636 & 71.6 & 67.55 & 72.15 & 76.2 \\
std.dev & 7.551327 & 3.774917 & 18.45549 & 2.757716 & 9.050967
\end{tabular}

There is not much variation in the means, but the standard deviation values are all over the place: this is due to small sample sizes in some strata, and overlapping distributions of life expectancy by strata.

As we've already mentioned, the stratification of countries by population does not align with the estimate of mean life expectancy. We will continue the STS estimation procedure, for illustration purposes, but in practice, this is the stage at which we would require a different stratification or another sampling plan altogether.

The estimator \(\bar{y}_{\text {STS }}\) is:
```

mean.LE.1 <- 0
for(j in 1:length(n)){
mean.LE.1 <- mean.LE.1 +
as.numeric(strata.N[j])*y.bar[[j]]
}
(mean.LE.1 <- mean.LE.1/N)

```
[1] 71.01902

This is fairly close to the true mean \(\mu\). The bound on the error of estimation \(\hat{B}_{\mu ; \mathrm{STS}}\) is:
```

B=0
for(j in 1:length(n)){
B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))
}
(B<- 2*sqrt(B))

```

\section*{[1] 3.883388}

This is quite a large bound, all things considered. The \(95 \%\) C.I. is thus:
```

c(mean.LE.1 - B, mean.LE.1 + B)

```
[1] 67.1356374 .90241

Compare with the C.I.SRS \((\mu ; 0.95)\) obtained previously - the SRS interval was much narrower. This is no doubt due to stratification on the basis of population being a poor choice when dealing with life expectancy.

Example Find a \(95 \%\) confidence interval for the average life expectancy by country in 2011 (including India and China), using a STS of size \(n=20 .{ }^{35}\)

We make the appropriate modifications to the code, using the following strata, say:
\(U_{1}=\left\{u_{j} \mid u_{j}<70\right\}, \quad U_{2}=\left\{u_{j} \mid 70 \leq u_{j}<80\right\}, \quad U_{3}=\left\{u_{j} \mid u_{j} \geq 80\right\}\).

35: This time stratifying the data using the country life expectations. In general, we do not stratify with respect to the variable of interest, but with the help of auxiliary variables that are linked to the variable of interest.
```

LE.2 <- gapminder |> filter(year==2011) |> select(life_expectancy)
LE.2 <- LE.2 |> mutate(strata = ifelse(life_expectancy<70,"S1",
ifelse(life_expectancy<80,"S2","S3")))
LE.2 <- LE.2[order(LE.2$life_expectancy),]
LE.2$strata <- as.factor(LE.2$strata)
(strata.N <- tapply(LE.2$life_expectancy, LE.2\$strata, length))

```

By construction, the life expectancy distributions do not overlap from stratum to stratum.
```

ggplot(LE.2,aes(x=life_expectancy,fill=strata)) +
geom_density(alpha=0.5) +
geom_rug(aes(color=life_expectancy))

```


Since there are \(N=185\) observations in the data set, with \(\left(N_{1}, N_{2}, N_{3}\right)=\) ( \(65,93,27\) ), a sample of size \(n=20\) could be drawn according to:
```

N=sum(strata.N)
strata.N/sum(strata.N)*20

```
\begin{tabular}{rrr} 
S1 & S2 & S3 \\
7.027027 & 10.054054 & 2.918919
\end{tabular}

We will use \(\left(n_{1}, n_{2}, n_{3}\right)=(7,10,3)\).
\[
n=c(7,10,3)
\]

The rest of the code runs as in the previous example.
```

cumul.n = cumsum(n)
cumul.N = cumsum(strata.N)
set.seed(123456) \# replicability
ind = list()
ind[[1]] <- sample(1:strata.N[1],n[1])

```
```

for(j in 2:length(n)){
ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])
}
sam.LE.2 <- LE.2[unique(unlist(ind)),]
sam.LE.2 <- sam.LE.1[order(sam.LE.2\$life_expectancy),]
y.bar <- list()
std.dev <- list()
y.bar[[1]] <- mean(sam.LE.2[1:n[1],c("life_expectancy")])
std.dev[[1]] <- sd(sam.LE.2[1:n[1],c("life_expectancy")])
for(j in 2:length(n)){
y.bar[[j]] <- mean(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],
c("life_expectancy")])
std.dev[[j]] <- sd(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],
c("life_expectancy")])
}

```

With this sample \(\mathscr{y}\), the strata means and standard deviations are:
```

rbind(y.bar,std.dev)

```
\begin{tabular}{llll} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
y.bar & 71.5 & 70.27 & 74.2 \\
std. dev & 8.469553 & 7.721838 & 7.277362
\end{tabular}

These quantities are more reasonable than with the previous stratification (why?), but they could change from one STS sample to the next. The values for \(\bar{y}_{\text {STS }}\) and \(\hat{B}_{\mu, \text { STS }}\) are:
```

mean.LE.2 <- 0
for(j in 1:length(n)){
mean.LE.2 <- mean.LE.2 +
as.numeric(strata.N[j])*y.bar[[j]]
}
(mean.LE.2 <- mean.LE.2/N)
B=0
for(j in l:length(n)){
B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))
}
(B <- 2*sqrt(B))

```
[1] 71.27573
[1] 3.35133

The estimator is quite close to the true value \(\mu=71.18\), but it is when calculating the bound on the error of estimation that the STS approach proves its superiority. In this case, the \(95 \%\) C.I. for \(\mu\) is:
```

c(mean.LE.2 - B, mean.LE. 2 + B)

```
[1] 67.9244074 .62706

These examples show that stratified sampling can improve SRS estimation, but that this is not always going to be the case.

\section*{Total \(\tau\)}

Most of the work has been done: since the total \(\tau\) can be re-written as
\[
\tau=\sum_{j=1}^{N} u_{j}=N \mu
\]
we can estimate the total with a STS using:
\[
\hat{\tau}_{\mathrm{STS}}=N \bar{y}_{\mathrm{STS}}=\frac{N}{N} \sum_{i=1}^{M} N_{i} \bar{y}_{i}=\sum_{i=1}^{M} N_{i} \bar{y}_{i} .
\]

It is an unbiased estimator of the total since its expectation is
\[
\mathrm{E}\left(\hat{\tau}_{\mathrm{STS}}\right)=\mathrm{E}\left(N \bar{y}_{\mathrm{STS}}\right)=N \cdot \mathrm{E}\left(\bar{y}_{\mathrm{STS}}\right)=N \mu=\tau .
\]

Its sampling variance is
\[
\mathrm{V}\left(\hat{\tau}_{\mathrm{STS}}\right)=\mathrm{V}\left(N \bar{y}_{\mathrm{STS}}\right)=N^{2} \cdot \mathrm{~V}\left(\bar{y}_{\mathrm{STS}}\right)=\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right),
\]
assuming that we know the variance \(\sigma_{i}^{2}\) in each strata \(U_{i}, 1 \leq i \leq M\), whence the bound on the error of estimation is
\[
B_{\tau ; \mathrm{STS}}=2 \sqrt{\mathrm{~V}\left(\hat{\tau}_{\mathrm{STS}}\right)}=2 \sqrt{\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)}=N \cdot B_{\mu ; \mathrm{STS}} .
\]

Since the variances \(\sigma_{i}^{2}\) are usually unknown, we often use the stratum variances \(s_{i}^{2}\), with correction factors \(\frac{N_{i}-1}{N_{i}}, 1 \leq i \leq M\). The approximation of the sampling variance is thus
\[
\hat{\mathrm{V}}\left(\hat{\tau}_{\mathrm{STS}}\right)=\hat{\mathrm{V}}\left(N \bar{y}_{\mathrm{STS}}\right)=\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right),
\]
whence the bound on the error of estimation is
\[
B_{\tau ; \mathrm{STS}} \approx \hat{B}_{\tau ; \mathrm{STS}}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\tau}_{\mathrm{STS}}\right)}=2 \sqrt{\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right)}=N \cdot \hat{B}_{\mu ; \mathrm{STS}}
\]
and the approximate \(\mathbf{9 5 \%}\) C.I. for \(\tau\) is
\[
\text { C.I.STS }(\tau ; 0.95): \quad \hat{\tau}_{\mathrm{STS}} \pm \hat{B}_{\tau ; \mathrm{STS}}
\]

Example Consider a finite population \(U\) of size \(N=37,444\), split into two strata \(U_{1}\) and \(U_{2}\), of sizes \(N_{1}=21,123\) and \(N_{2}=16,321\), respectively. A STS \(\mathscr{Y}\) of size \(n=132\) is drawn from \(\mathscr{U}\), with \(n_{1}=82\) and \(n_{2}=50\).

Suppose the empirical mean and standard deviation in \(y_{1}\) and \(y_{2}\) are \(\bar{y}_{1}=120.7, \bar{y}_{2}=96.6, s_{1}=18.99\), and \(s_{2}=14.31\), respectively. Find a \(95 \%\) C.I. of the total \(\tau\) in \(\mathcal{U}\).
The bound on the error of estimation is \(\approx \hat{B}_{\tau ; \text { STS }}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\tau}_{\text {STS }}\right)}\) :
\(2 \sqrt{21123^{2} \cdot \frac{18.99^{2}}{82}\left(1-\frac{82}{21123}\right)+16321^{2} \cdot \frac{14.31^{2}}{50}\left(1-\frac{50}{16321}\right)} \approx 110312.3 ;\)
C.I.STS \((\tau ; 0.95) \approx 21123(120.7)+16321(96.6) \pm 110312.3 \approx(4015842,4236467)\).

\section*{Proportion \(p\)}

If the response \(u_{i, \ell} \in\{0,1\}\) represents the absence or the presence of a certain characteristic for the \(\ell\) th unit in the \(i\) th strata \(U_{i}\), the mean
\[
p=\mu=\frac{1}{N} \sum_{i=1}^{M} \sum_{\ell=1}^{N_{i}} u_{i, \ell}
\]
is the proportion of all units in \(U\) which posess the characteristic. This proportion can be estimated with a STS via
\[
\hat{p}_{\mathrm{STS}}=\frac{1}{N} \sum_{i=1}^{M} N_{i} \hat{p}_{i}, \quad \text { where } \hat{p}_{i}=\frac{1}{n_{i}} \sum_{\ell=1}^{n_{i}} u_{i, \ell}, 1 \leq i \leq M .
\]

This is an unbiased estimator of \(p\) since
\[
\mathrm{E}\left(\hat{p}_{\mathrm{STS}}\right)=\mathrm{E}\left(\bar{y}_{\mathrm{STS}}\right)=\mu=p ;
\]
its sampling variance is:
\[
\begin{aligned}
\mathrm{V}\left(\hat{p}_{\mathrm{STS}}\right) & =\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right) \\
& =\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{p_{i}\left(1-p_{i}\right)}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)
\end{aligned}
\]
where \(\sigma_{i}^{2}=p_{i}\left(1-p_{i}\right)\) is the variance of the response variable \(u\) in the stratum \(U_{i}\).

The bound on the error of estimation is
\[
B_{p ; \mathrm{STS}}=2 \sqrt{\mathrm{~V}\left(\hat{p}_{\mathrm{STS}}\right)}=2 \sqrt{\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{p_{i}\left(1-p_{i}\right)}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)} .
\]

Since the proportions \(p_{i}\) are not usually known, the approximate sampling variance is used instead:
\[
\hat{\mathrm{V}}\left(\hat{p}_{\mathrm{STS}}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\hat{p}_{i}\left(1-\hat{p}_{i}\right)}{n_{i}-1}\left(1-\frac{n_{i}}{N_{i}}\right) .
\]

The approximate bound on the error of estimation is thus
\[
B_{p ; \mathrm{STS}} \approx \hat{B}_{p ; \mathrm{STS}}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{p}_{\mathrm{STS}}\right)}=\frac{2}{N} \sqrt{\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\hat{p}_{i}\left(1-\hat{p}_{i}\right)}{n_{i}-1}\left(1-\frac{n_{i}}{N_{i}}\right)}
\]
and the corresponding approximate \(\mathbf{9 5 \%}\) C.I. for \(p\) is
\[
\text { C.I.STS }(p ; 0.95): \quad \hat{p}_{\mathrm{STS}} \pm \frac{2}{N} \sqrt{\sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\hat{p}_{i}\left(1-\hat{p}_{i}\right)}{n_{i}-1}\left(1-\frac{n_{i}}{N_{i}}\right)} .
\]

If the sample size in a stratum is too small, we can use the conservative estimate \(\hat{p}_{i}=0.5\).

Example Consider a finite population \(U\) of size \(N=37,444\), split into two strata \(U_{1}\) and \(U_{2}\), of sizes \(N_{1}=21,123\) and \(N_{2}=16,321\), respectively. A STS \(\mathscr{y}\) of size \(n=132\) is drawn from \(U\), with \(n_{1}=82\) and \(n_{2}=50\).
Suppose that \(n_{1}=20\) of the observations from \(\mathscr{Y}_{1}\) and \(n_{2}=5\) of the observations from \(\mathscr{Y}_{2}\) possess a certain characteristic. Find a \(95 \%\) C.I. for the proportion \(p\) of the units in \(U\) that possess the characteristic.
In this case, \(\hat{p}_{1}=20 / 82 \approx 0.244\) and \(\hat{p}_{2}=5 / 50=0.10\), from which we obtain
\[
\hat{p}_{\text {STS }}=\frac{21123}{37444}(0.244)+\frac{16321}{37444}(0.10)=0.181
\]

The bound on the error of estimation is thus
\(\hat{B}_{p}=\frac{2}{37444} \sqrt{21123^{2} \frac{0.244(1-0.244)}{82-1}\left(1-\frac{82}{21123}\right)+16321^{2} \frac{0.1(1-0.1)}{50-1}\left(1-\frac{50}{16321}\right)} \approx 0.0654\),
from which we conclude that
\[
\text { C.I. }(p ; 0.95) \approx 0.181 \pm 0.0654 \equiv(0.116,0.247)
\]

\subsection*{10.4.2 Sample Size and Allocation}

When determining the size of a STS sample \(\mathscr{y}\), we must also consider the problem of allocating the number of units \(n_{i}\) in each stratum \(\mathscr{Y}_{i}\). If \(\left|\mathcal{Y}_{i}\right|=n_{i}, 1 \leq i \leq M\), then \(n=n_{1}+\cdots+n_{M}\). But what are the \(n_{i}\) ?
In a STS, the sampling variance of the estimator \(\bar{y}\) STS is
\[
\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right)
\]

When \(N_{i} \gg 1\), then \(N_{i} \approx N_{i}-1\) and so
\[
\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right) \approx \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}-\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i} \sigma_{i}^{2}
\]

Since the sampling variance \(\mathrm{V}\left(\bar{y}_{\text {STS }}\right)\) determines the bound on the error of estimation \(\hat{B}_{\mu ; S T S}\), we can minimize the bound (and thus the error) by minimizing the sampling variance. The quantities \(N, N_{i}, \sigma_{i}^{2}\), are fixed
for \(1 \leq i \leq M\); what we minimize against is the sample size \(n\) and the allocation \(n_{i}\) in each stratum.

The total cost of the survey \(\tilde{C}\) can also affect the allocation. The survey budget includes the overhead cost (indirect costs) \(c_{0}\) and the cost per response \(c_{i}\) in each stratum \(U_{i}, 1 \leq i \leq M\). The total cost is thus
\[
\tilde{C}=c_{0}+\sum_{i=1}^{M} c_{i} n_{i}
\]
which must remain below than available survey budget \(C\). The allocation problem is an optimization problem: we seek to solve
\[
\arg _{\left(n, n_{1}, \ldots, n_{M}\right)} \min \mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right), \quad \text { subject to } \tilde{C} \leq C
\]

We use the method of Lagrange multipliers. The objective function becomes
\[
\begin{aligned}
f\left(n_{1}, \ldots, n_{M}, \lambda\right) & =\mathrm{V}\left(\bar{y}_{\text {STS }}\right)+\lambda(\tilde{C}-C) \\
& =\frac{1}{N^{2}} \sum_{k=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{k}^{2}}{n_{k}}-\frac{1}{N^{2}} \sum_{k=1}^{M} N_{k} \sigma_{k}^{2}+\lambda\left(c_{0}+\sum_{k=1}^{M} c_{k} n_{k}-C\right) .
\end{aligned}
\]

Its critical points solve
\[
\begin{aligned}
0 & =\frac{\partial f\left(n_{1}, \ldots, n_{M}, \lambda\right)}{\partial n_{i}}=\frac{1}{N^{2}} \sum_{k=1}^{M} N_{k}^{2} \sigma_{k}^{2} \frac{\partial\left(1 / n_{k}\right)}{\partial n_{i}}+\lambda \sum_{k=1}^{M} c_{k} \frac{\partial\left(n_{k}\right)}{\partial n_{i}} \\
& =-\frac{N_{i}^{2} \sigma_{i}^{2}}{N^{2} n_{i}^{2}}+\lambda c_{i}, \quad 1 \leq i \leq M
\end{aligned}
\]
which is to say that
\[
n_{i}=\frac{N_{i} \sigma_{i}}{N \sqrt{\lambda} \sqrt{c_{i}}}, \quad 1 \leq i \leq M
\]

The strata sampling weights \(w_{i}\) are
\[
w_{i}=\frac{n_{i}}{n_{1}+\cdots+n_{M}}, \quad 1 \leq i \leq M .
\]

The general optimal allocation is thus
\[
w_{i}=\frac{n_{i}}{n}=\frac{\frac{N_{i} \sigma_{i}}{N \sqrt{\lambda} \sqrt{c_{i}}}}{\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{N \sqrt{\lambda} \sqrt{c_{k}}}}=\frac{\frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}}{\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}}, \quad 1 \leq i \leq M
\]

Once we have determined the size \(n\) of the sample \(\mathscr{y}\), we compute the size of the sample \(n_{i}\) in each \(\mathscr{Y}_{i}\) using \(w_{i} \cdot n, 1 \leq i \leq M\). Since the product \(w_{i} \cdot n\) is not typically an integer, we allocate \(\left[w_{i} \cdot n\right]\) units to each \(\mathscr{Y}_{i}{ }^{36}\) and distribute the remaining
\[
n-\left[w_{1} \cdot n\right]-\cdots-\left[w_{M} \cdot n\right]
\]
units using "common sense" (while ensuring that \(\tilde{C} \leq C\) ).

36: The integer part \([x]\) of \(x\) is the largest integer smaller than \(x\).

Table 10．2：Sampling weights for Cana－ dian provinces，under proportional alloca－ tion and square root allocation（racine，in French）．

If the cost per response in each stratum is constant，\(c_{1}=\cdots=c_{M}\) ， Neyman allocation yields the following stratum sampling weights：
\[
w_{i}=\frac{n_{i}}{n}=\frac{N_{i} \sigma_{i}}{N_{1} \sigma_{1}+\cdots+N_{M} \sigma_{M}}, \quad 1 \leq i \leq M
\]

If moreover the variance is the same in each stratum，\(\sigma_{1}^{2}=\cdots=\sigma_{M^{\prime}}^{2}\) proportional allocation yields the following stratum sampling weights：
\[
w_{i}=\frac{n_{i}}{n}=\frac{N_{i}}{N_{1}+\cdots+N_{M}}=\frac{N_{i}}{N}, \quad 1 \leq i \leq M .
\]

Once the sample size and allocation have been selected，the methods in the previous section can be used to provide confidence intervals for the mean \(\mu\) ，for the total \(\tau\) ，or for a proportion \(p\) ．When the variances are unknown，the usual approximations can be used．
We may at times use allocation schemes that are not necessarily ideal from a technical perspective，but which facilitate the preparation of reports or the dissemination of results：
\[
w_{i}=\frac{n_{i}}{n}=\frac{f\left(N_{i}\right)}{f\left(N_{1}\right)+\cdots+f\left(N_{M}\right)}, \quad 1 \leq i \leq M, f \text { a random function. }
\]

For instance，when studying Canadian populations，we often stratify according to the provinces and use \(f(x)=\sqrt{x}\) ；the proportional alloca－ tion and square root allocation sampling weights for the 13 Canadian jurisdictions（based on 2022 population data）are shown below．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Juridiction & Prop． & Racine & & Juridiction & Prop． & Racine \\
\hline 중 & Ontario & 38．26\％ & 22．4\％ & 水 & Nouvelle－Ecosse & 2．63\％ & 5．9\％ \\
\hline 88 & Québec & 23．23\％ & 17．4\％ & 建 & Nouveau－Brunswick & 2．13\％ & 5．3\％ \\
\hline ， & Colombie－Britannique & 13．22\％ & 13．2\％ & EE & Terre－Neuve－et－Labrador & 1．48\％ & 4．4\％ \\
\hline 븝 & Alberta & 11．57\％ & 12．3\％ & 等 & Ile－du－Prince－Edward & 0．41\％ & 2．3\％ \\
\hline \({ }^{* 77}\) & Manitoba & 3．64\％ & 6．9\％ & IVI & Territoires－du－Nord－Ouest & 0．12\％ & 1．2\％ \\
\hline － & Saskatchewan & 3．12\％ & 6．4\％ & \i】 & Yukon & 0．10\％ & 1．2\％ \\
\hline & & & & t & Nunavut & 0．10\％ & 1．2\％ \\
\hline
\end{tabular}

Example Consider a finite population \(U\) of size \(N=37,444\) ，separated in two disjoint strata \(U_{1}\) and \(U_{2}\) ，of respective sizes \(N_{1}=21,123\) and \(N_{2}=16,321\) ．We seek to estimate the mean \(\mu\) of \(U\) using a STS．The survey budget allows for a sample size \(n=132\) ．

In a preliminary study，we estimated \(\sigma_{1} \approx 20\) and \(\sigma_{2} \approx 15\) ．If the cost of a response in the first stratum is four times that of the cost of a response in the second stratum，find the general optimal allocation．If the response cost per stratum is constant，determine the Neyman and the proportional allocations．

In the general case，we have \(c_{1}=4 c_{2}\) ，
\[
\frac{N_{1} \sigma_{1}}{\sqrt{c_{1}}}=\frac{21123(20)}{\sqrt{4 c_{2}}}=\frac{211230}{\sqrt{c_{2}}}, \quad \frac{N_{2} \sigma_{2}}{\sqrt{c_{2}}}=\frac{16321(15)}{\sqrt{c_{2}}}=\frac{244815}{\sqrt{c_{2}}}
\]
and
\[
\frac{N_{1} \sigma_{1}}{\sqrt{c_{1}}}+\frac{N_{2} \sigma_{2}}{\sqrt{c_{2}}}=\frac{211230}{\sqrt{c_{2}}}+\frac{244815}{\sqrt{c_{2}}}=\frac{456045}{\sqrt{c_{2}}}
\]
from which we conclude that
\[
n_{1}=132\left(\frac{211230}{456045}\right)=61.13 \text { and } n_{2}=132\left(\frac{244815}{456045}\right)=70.87 ;
\]
the general optimal allocation is thus \(n_{1}=61\) and \(n_{2}=71\).
If the cost for a response is the same in both strata, \(c_{1}=c_{2}\), then:
\[
N_{1} \sigma_{1}=21123(20)=422460, \quad N_{2} \sigma_{2}=16321(15)=244815,
\]
and
\[
N_{1} \sigma_{1}+N_{2} \sigma_{2}=422460+244815=667275
\]
from which we conclude that
\[
n_{1}=132\left(\frac{422460}{667275}\right)=83.57 \text { and } n_{2}=132\left(\frac{244815}{667275}\right)=48.43 ;
\]
the Neyman allocation is thus \(n_{1}=84\) and \(n_{2}=48\).
If we do not trust the study conducted beforehand, and we assume that the variance is constant in each stratum ( \(\sigma_{1}=\sigma_{2}\) ), then we have
\(N_{1}=21123, \quad N_{2}=16321, \quad\) and \(\quad N_{1}+N_{2}=21123+16321=37444\),
from which we conclude that
\[
n_{1}=132\left(\frac{21123}{37444}\right)=74.46 \text { and } n_{2}=132\left(\frac{16321}{37444}\right)=57.54 ;
\]
the proportional allocation is thus \(n_{1}=74\) and \(n_{2}=58\).

\section*{Sample Size, Given a Bound on the Error of Estimation}

In theory, only analytical considerations should influence the sample size. Recall that in a STS of size \(n\), the sampling weight corresponding to the stratum \(U_{i}\) is \(w_{i}=\frac{n_{i}}{n}\), for \(1 \leq i \leq M\). When we estimate \(\mu\) via \(\bar{y}_{\text {STS }}\), the bound on the error of estimation can be written
\[
B_{\mu ; \mathrm{STS}}=2 \sqrt{\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{w_{i} \cdot n}\left(\frac{N_{i}-w_{i} \cdot n}{N_{i}-1}\right)} .
\]

We seek to express \(n\) in terms of the parameters \(N_{i}, \sigma_{i}, w_{i}\), and \(B_{\mu ; S T S}\). If \(N_{i} \gg 1,{ }^{37}\) then \(N_{i} \approx N_{i}-1\) and so
\[
\begin{aligned}
\underbrace{\frac{B_{\mu ; \mathrm{STS}}^{2}}{4}}_{=D_{\mu ; \mathrm{STS}}} & \approx \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{w_{i} \cdot n}\left(\frac{N_{i}-w_{i} \cdot n}{N_{i}}\right) \\
& \Longleftrightarrow N^{2} D_{\mu ; \mathrm{STS}} \approx \frac{1}{n}\left\{\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{w_{i}}\right\}-\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{w_{i}} \cdot \frac{w_{i}}{N_{i}} \\
& \Longleftrightarrow \frac{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}{\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{w_{i}}} \approx \frac{1}{n} \Longleftrightarrow n_{\mu ; \mathrm{STS}} \approx \frac{\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{w_{i}}}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}} .
\end{aligned}
\]

Under general optimal allocation, the stratum sampling weights are given by
\[
w_{i}=\frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}\left(\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}\right)^{-1} \quad 1 \leq i \leq M
\]
and the sample size is then
\(n_{\mu ; \mathrm{STS}} \approx \frac{\left(\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{N_{i} \sigma_{i} / \sqrt{c_{i}}}\right) \div\left(\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}\right)^{-1}}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}=\frac{\left(\sum_{i=1}^{M} N_{i} \sigma_{i} \sqrt{c_{i}}\right)\left(\sum_{i=1}^{M} \frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}\right)}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}\)

Under Neyman allocation, the stratum sampling weights are given by
\[
w_{i}=N_{i} \sigma_{i}\left(\sum_{k=1}^{M} N_{k} \sigma_{k}\right)^{-1} \quad 1 \leq i \leq M
\]
and the sample size is then
\[
n_{\mu ; \mathrm{STS}} \approx \frac{\left(\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{N_{i} \sigma_{i}}\right) \div\left(\sum_{k=1}^{M} N_{k} \sigma_{k}\right)^{-1}}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}=\frac{\left(\sum_{i=1}^{M} N_{i} \sigma_{i}\right)^{2}}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}
\]

In a proportional allocation scenario, the stratum sampling weights are given by
\[
w_{i}=N_{i}\left(\sum_{k=1}^{M} N_{k}\right)^{-1} \quad 1 \leq i \leq M
\]
and the sample size is then
\[
n_{\mu ; \mathrm{STS}} \approx \frac{\left(\sum_{i=1}^{M} \frac{N_{i}^{2} \sigma_{i}^{2}}{N_{i}}\right) \div\left(\sum_{k=1}^{M} N_{k}\right)^{-1}}{N^{2} D_{\mu ; \mathrm{STS}}+\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}=\frac{\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}{N D_{\mu ; \mathrm{STS}}+\frac{1}{N} \sum_{i=1}^{M} N_{i} \sigma_{i}^{2}}
\]

When we try to estimate the total \(\tau\) using the estimator \(\hat{\tau}_{\text {STS }}\), we must substitute
\[
D_{\mu ; \mathrm{STS}}=\frac{B_{\mu ; \mathrm{STS}}^{2}}{4} \quad \text { by } \quad D_{\tau ; \mathrm{STS}}=\frac{B_{\tau ; \mathrm{STS}}^{2}}{4 N^{2}} .
\]

When we want to estimate a proportion \(p\) using the estimator \(\hat{p}_{\text {STS }}\), the bound remains
\[
D_{p ; \mathrm{STS}}=\frac{B_{p ; \mathrm{STS}}^{2}}{4}
\]
but we have to substitute the stratum variances \(\sigma_{i}^{2}\) by \(p_{i}\left(1-p_{i}\right)\). The proportions \(p_{i}\) can be estimated with the help of a previous study, or, conservatively, by using \(p_{i}=0.5\).

Example Consider a finite population \(U\) of size \(N=37,444\), separated in two disjoint strata \(U_{1}\) and \(U_{2}\), of respective sizes \(N_{1}=21,123\) and \(N_{2}=16,321\). We seek to estimate the mean \(\mu\) of \(U\) using a STS, with a bound on the error of estimation of \(B_{\mu ; \mathrm{STS}}=5\). The response costs by stratum are \(c_{1}=400 \$\) and \(c_{2}=100 \$\).
In a preliminary study, we estimated \(\sigma_{1} \approx 20\) and \(\sigma_{2} \approx 15\). Determine the sample size and allocation in each of the three scenarios: general optimal allocation, Neyman allocation, and proportional allocation (in the last two cases, use \(c_{1}=c_{2}=100 \$\) ).
In the general case, we have
\[
\begin{aligned}
\frac{N_{1} \sigma_{1}}{\sqrt{c_{1}}} & =\frac{21123(20)}{\sqrt{400}}=21123, \quad \frac{N_{2} \sigma_{2}}{\sqrt{c_{2}}}=\frac{16321(15)}{\sqrt{100}}=24481.5, \\
N_{1} \sigma_{1} \sqrt{c_{1}} & =21123(20) \sqrt{400}=8449200, \quad N_{2} \sigma_{2} \sqrt{c_{2}}=16321(15) \sqrt{100}=2448150 \\
N_{1} \sigma_{1}^{2} & =21123(20)^{2}=8449200, \quad N_{2} \sigma_{2}^{2}=16321(15)^{2}=3672225, \\
\sum_{i=1}^{2} \frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}} & =45604.5, \quad \sum_{i=1}^{2} N_{i} \sigma_{i} \sqrt{c_{i}}=10897350, \quad \sum_{i=1}^{2} N_{i} \sigma_{i}^{2}=12121425, \\
D_{\mu ; \text { STS }} & =\frac{5^{2}}{4}=6.25, \quad n=\frac{(10897350)(45604.5)}{(37444)^{2}(6.25)+12121425}=56.63 \approx 57 \\
n_{1} & =57\left(\frac{21123}{45604.5}\right)=26.4 \approx 26, \quad n_{2}=57\left(\frac{24481.5}{45604.5}\right)=30.6 \approx 31 .
\end{aligned}
\]

If instead the response cost per stratum is constant \(\left(c_{1}=c_{2}=100\right)\), we have:
\[
\begin{aligned}
N_{1} \sigma_{1} & =21123(20)=422460, \quad N_{2} \sigma_{2}=16321(15)=244815, \\
N_{1} \sigma_{1}^{2} & =21123(20)^{2}=8449200, \quad N_{2} \sigma_{2}^{2}=16321(15)^{2}=3672225, \\
\sum_{i=1}^{2} N_{i} \sigma_{i} & =667275, \quad \sum_{i=1}^{2} N_{i} \sigma_{i}^{2}=12121425, \\
D_{\mu ; \mathrm{STS}} & =\frac{5^{2}}{4}=6.25, \quad n=\frac{(667275)^{2}}{(37444)^{2}(6.25)+12121425}=50.74 \approx 51 \\
n_{1} & =51\left(\frac{422460}{667275}\right)=32.30 \approx 32, \quad n_{2}=51\left(\frac{244815}{667275}\right)=18.71 \approx 19 .
\end{aligned}
\]

It turns out that the exact value of \(c_{1}=c_{2}\) does not come into play.
If we look for a proportional allocation, we still have
\[
\begin{aligned}
N_{1} \sigma_{1} & =21123(20)=422460, \quad N_{2} \sigma_{2}=16321(15)=244815, \\
N_{1} \sigma_{1}^{2} & =21123(20)^{2}=8449200, \quad N_{2} \sigma_{2}^{2}=16321(15)^{2}=3672225, \\
\sum_{i=1}^{2} N_{i} \sigma_{i} & =667275, \quad \sum_{i=1}^{2} N_{i} \sigma_{i}^{2}=12121425, \\
D_{\mu ; \mathrm{STS}} & =\frac{5^{2}}{4}=6.25, \quad n=\frac{12121425}{37444(6.25)+\frac{12121425}{3744}}=51.72 \approx 52 \\
n_{1} & =52\left(\frac{21123}{37444}\right)=29.33 \approx 29, \quad n_{2}=52\left(\frac{16321}{37444}\right)=22.67 \approx 23 .
\end{aligned}
\]

The exact value of \(c_{1}=c_{2}\) also does not come into play.

\section*{Sample Size, Given a Budget}

In practice, however, it is often budgetary considerations that play the most important role in sample size selection.

In a STS of size \(n\), the stratum sampling weights are \(w_{i}=\frac{n_{i}}{n}\), for \(1 \leq i \leq M\). In this case, we seek to maximize the size \(n\) allowed by the survey budget \(C\) :
\[
C=c_{0}+\sum_{i=1}^{M} c_{i} n_{i}=c_{0}+n \sum_{i=1}^{M} c_{i} w_{i} \Longrightarrow n=\frac{C-c_{0}}{\sum_{i=1}^{M} c_{i} w_{i}} .
\]

In a general optimal allocation scenario, we have
\[
w_{i}=\frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}\left(\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}\right)^{-1} \quad 1 \leq i \leq M
\]
from which we see that
\[
c_{i} w_{i}=c_{i} \cdot \frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}\left(\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}\right)^{-1}=N_{i} \sigma_{i} \sqrt{c_{i}}\left(\sum_{k=1}^{M} \frac{N_{k} \sigma_{k}}{\sqrt{c_{k}}}\right)^{-1} \quad 1 \leq i \leq M ;
\]
the sample size is then
\[
n_{\mathrm{STS}}=\left(C-c_{0}\right)\left(\sum_{i=1}^{M} \frac{N_{i} \sigma_{i}}{\sqrt{c_{i}}}\right)\left(\sum_{i=1}^{M} N_{i} \sigma_{i} \sqrt{c_{i}}\right)^{-1}
\]

In a Neyman allocation or proportional allocation scenario, the sample weights are
\[
w_{i}=N_{i} \sigma_{i}\left(\sum_{k=1}^{M} N_{k} \sigma_{k}\right)^{-1} 1 \leq i \leq M
\]
from which we see that
\[
c_{i} w_{i}=c \cdot N_{i} \sigma_{i}\left(\sum_{k=1}^{M} N_{k} \sigma_{k}\right)^{-1} 1 \leq i \leq M
\]
the sample size is then
\[
n_{\mathrm{STS}}=\left(C-c_{0}\right)\left(\sum_{i=1}^{M} N_{i} \sigma_{i}\right)\left(c \sum_{i=1}^{M} N_{i} \sigma_{i}\right)^{-1}=\frac{C-c_{0}}{c} .
\]

Example Consider a finite population \(\mathscr{U}\) of size \(N=37,444\), separated in two disjoint strata \(U_{1}\) and \(U_{2}\), of respective sizes \(N_{1}=21,123\) and \(N_{2}=16,321\). We seek to estimate the mean \(\mu\) of \(\mathscr{U}\) using a STS. The budget for the study is \(C=20,000 \$\), minus \(c_{0}=4,000 \$\) for overhead costs. The cost of a response in each stratum are \(c_{1}=400 \$\) and \(c_{2}=100 \$\), respectively.

In a preliminary study, we estimate \(\sigma_{1}=20\) and \(\sigma_{2}=15\). Determine the sample size and allocation in each of the three scenarios: general optimal
allocation, Neyman allocation, and proportional allocation (in the last two cases, use \(c_{1}=c_{2}=100 \$\) ).

In the general case, we have
\[
\begin{aligned}
\frac{N_{1} \sigma_{1}}{\sqrt{c_{1}}} & =\frac{21123(20)}{\sqrt{400}}=21123, \quad \frac{N_{2} \sigma_{2}}{\sqrt{c_{2}}}=\frac{16321(15)}{\sqrt{100}}=24481.5, \\
N_{1} \sigma_{1} \sqrt{c_{1}} & =21123(20) \sqrt{400}=8449200, \\
N_{2} \sigma_{2} \sqrt{c_{2}} & =16321(15) \sqrt{100}=2448150 \\
\frac{N_{1} \sigma_{1}}{\sqrt{c_{1}}}+\frac{N_{2} \sigma_{2}}{\sqrt{c_{2}}} & =21123+24481.5=45604.5, \\
N_{1} \sigma_{1} \sqrt{c_{1}}+N_{2} \sigma_{2} \sqrt{c_{2}} & =8449200+2448150=10897350, \\
n & =(20000-4000)\left(\frac{45604.5}{10897350}\right)=66.96 \approx 66, \\
n_{1}=66\left(\frac{21123}{45604.5}\right) & =30.56 \approx 31, \quad n_{2}=66\left(\frac{24481.5}{45604.5}\right)=35.43 \approx 35 .
\end{aligned}
\]

If the response cost per stratum is constant \(\left(c_{1}=c_{2}=100\right)\) :
\[
\begin{aligned}
N_{1} \sigma_{1} & =21123(20)=422460, \quad N_{2} \sigma_{2}=16321(15)=244815, \\
N_{1} \sigma_{1}+N_{2} \sigma_{2} & =422460+244815=667275, \\
n & =\frac{20000-4000}{100}=160, \\
n_{1}=160\left(\frac{422460}{667275}\right) & =101.3 \approx 101, \quad n_{2}=160\left(\frac{244815}{667275}\right)=58.7 \approx 59 .
\end{aligned}
\]

If we also assume that the variances are equal in the 2 strata, the sample size remains \(n=160\), but the proportional allocation yields
\(n_{1}=160\left(\frac{21123}{37444}\right)=90.25 \approx 90\) and \(n_{2}=160\left(\frac{16321}{37444}\right)=69.74 \approx 70\).

\subsection*{10.4.3 Comparison Between SRS and STS}

Let \(\mathcal{U}=\left\{u_{1}, \ldots, u_{N}\right\}\) have mean \(\mu\) and variance \(\sigma^{2}\).
Using a SRS of size \(n\), we can construct the estimator \(\bar{y}_{\text {SRS }}\), with sampling variance
\[
\mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right)=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

We have studied the properties of such estimators in section 10.3.
If \(U\) can be split into \(M\) strata
\[
U_{1}=\left\{u_{1,1}, \ldots, u_{1, N_{1}}\right\}, \cdots, U_{M}=\left\{u_{M, 1}, \ldots, u_{M, N_{M}}\right\}
\]
with mean and variance \(\mu_{i}\) and \(\sigma_{i}^{2}\), respectively, for \(1 \leq i \leq M\).
Using a STS of size \(n=\left(n_{1}, \ldots, n_{M}\right)\), we can construct the estimator \(\bar{y}_{\text {STS }}\), with sampling variance
\[
\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right)=\frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right) .
\]

38: This corresponds to a tighter (smaller) C.I.

Both samples have the same size; is there any way to determine which of the two approaches is preferable before computing the confidence intervals? In general, the sample design for which the sampling variance of the corresponding estimator is smallest is preferred. \({ }^{38}\)

If \(N \gg n\) and \(N_{i} \gg n_{i}\) for all \(1 \leq i \leq M\), then \(N-n \approx N-1\) and \(N_{i}-n_{1} \approx N_{i}-1\) for all \(1 \leq i \leq M\). Consequently,
\(\mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right) \approx \frac{\sigma^{2}}{n}=\frac{1}{n N} \sum_{i=1}^{M} \sum_{j=1}^{N_{i}}\left(u_{i, j}-\mu\right)^{2} \quad\) and \(\quad \mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right) \approx \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\).

In a proportional allocation scenario, \(n_{i}=n \cdot \frac{N_{i}}{N}\) for all \(1 \leq i \leq M\), from which we see that
\[
\mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right)_{\text {Prop }} \approx \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2} \cdot N}{n N_{i}}=\frac{1}{n N} \sum_{i=1}^{M} N_{i} \sigma_{i}^{2}
\]

In a Neyman allocation scenario, \(n_{i}=n \cdot \frac{N_{i} \sigma_{i}}{N_{1} \sigma_{1}+\cdots+N_{M} \sigma_{M}}\) for all \(1 \leq i \leq M\), from which we see that
\[
\mathrm{V}\left(\bar{y}_{\text {STS }}\right)_{\text {Neyman }} \approx \frac{1}{N^{2}} \sum_{i=1}^{M} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}\left(\sum_{k=1}^{M} N_{k} \sigma_{k}\right)}{n N_{i} \sigma_{i}}=\frac{1}{n N^{2}}\left(\sum_{i=1}^{M} N_{i} \sigma_{i}\right)^{2} .
\]

But
\[
\begin{aligned}
\mathrm{V}\left(\bar{y}_{\text {SRS }}\right) & \approx \frac{1}{n N} \sum_{i=1}^{M} \sum_{j=1}^{N_{i}}\left(u_{i, j}-\mu\right)^{2}=\frac{1}{n N} \sum_{i=1}^{M} \sum_{j=1}^{N_{i}}\left(u_{i, j}-\mu_{i}+\mu_{i}-\mu\right)^{2} \\
& =\frac{1}{n N} \sum_{i=1}^{M} \sum_{j=1}^{N_{i}}\left\{\left(u_{i, j}-\mu_{i}\right)^{2}+2\left(u_{i, j}-\mu_{i}\right)\left(\mu_{i}-\mu\right)+\left(\mu_{i}-\mu\right)^{2}\right\} \\
& =\frac{1}{n N}\{\sum_{i=1}^{M} \underbrace{\sum_{j=1}^{N_{i}}\left(u_{i, j}-\mu_{i}\right)^{2}}_{N_{i} \sigma_{i}^{2}}+2 \sum_{i=1}^{M}\left(\mu_{i}-\mu\right) \underbrace{\sum_{j=1}^{N_{i}}\left(u_{i, j}-\mu_{i}\right)}_{N_{i} \mu_{i}-N_{i} \mu_{i}=0}+\sum_{i=1}^{M}\left(\mu_{i}-\mu\right)^{2} \underbrace{N_{i}}_{N_{j=1}^{\sum_{i}} 1}\} \\
& =\frac{1}{n N}\left\{\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}+\sum_{i=1}^{M} N_{i}\left(\mu_{i}-\mu\right)^{2}\right\}=\mathrm{V}\left(\bar{y}_{\text {STS }}\right)_{\operatorname{Prop}}+\frac{1}{n N} \sum_{i=1}^{M} N_{i}\left(\mu_{i}-\mu\right)^{2} .
\end{aligned}
\]

As such,
\[
\mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right) \gg \mathrm{V}\left(\bar{y}_{\mathrm{STS}}\right)_{\text {Prop }}, \quad \text { whenever } \frac{1}{n N} \sum_{i=1}^{M} N_{i}\left(\mu_{i}-\mu\right)^{2} \gg 0
\]
a STS under proportional allocation is substantially preferable to a SRS when the variance of the stratum means is high.

Similarly, set
\[
\bar{\sigma}=\frac{1}{N} \sum_{i=1}^{M} N_{i} \sigma_{i}=\sqrt{n \mathrm{~V}\left(\bar{y}_{\text {STS }}\right)_{\text {Neyman }}}
\]

As such
\[
\begin{aligned}
\mathrm{V}\left(\bar{y}_{\text {STS }}\right)_{\text {Prop }}-\mathrm{V}\left(\bar{y}_{\text {STS }}\right)_{\text {Neyman }} & =\frac{1}{n N} \sum_{i=1}^{M} N_{i} \sigma_{i}^{2}-\frac{\bar{\sigma}^{2}}{n} \\
& =\frac{1}{n N}\left\{\sum_{i=1}^{M} N_{i} \sigma_{i}^{2}-N \bar{\sigma}^{2}\right\} \\
& =\frac{1}{n N} \sum_{i=1}^{M} N_{i}\left(\sigma_{i}^{2}-2 \sigma_{i} \bar{\sigma}+\bar{\sigma}^{2}\right) \\
& =\frac{1}{n N} \sum_{i=1}^{M} N_{i}\left(\sigma_{i}-\bar{\sigma}\right)^{2} \geq 0 ;
\end{aligned}
\]
a STS under Neyman allocation is substantially preferable to a STS under proportional allocation when the variance of the stratum standard deviations is high.

Combining these, we can conclude that a STS under Neyman allocation is substantially preferable to a SRS when stratum means and standard deviations vary greatly across strata.

Since in practice there are other considerations at play (sampling cost, etc.), one may still decide in favor of a SRS or a STS under proportional allocation, especially if the difference in the corresponding variances is (relatively) small.

\subsection*{10.5 Using Auxiliary Information}

In what follows we present ways to obtain estimates of the mean, the total, or of a proportion with the help of auxiliary information. So far, we have only discussed univariate SRS and STS estimators. Can we use more than one response per unit to obtain better approximations?

In the 2011 Gapminder © dataset, there are \(N=168\) countries in 2011 for which the life expectancy \(Y\) and the (logarithm of the) gross domestic product per capita \(X\) are available. Suppose it is known that \(\mathrm{E}[X]=\) \(\mu_{X}=7.84\). If we draw a sample \(\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{10}, y_{10}\right)\right\} \subseteq U\) for which the mean of \(y_{i} / x_{i}\) is 8.67 , can we expect that \(\mu_{Y} \approx 8.67 \mu_{X}=68.00 ?^{39}\)

\subsection*{10.5.1 Ratio Estimation}

Let \(\mathscr{U}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)\right\}\) be a finite population of size \(N\) for which each unit \(u_{j}\) has 2 observed values: \(X_{j}\) and \(Y_{j}\). The ratio of the means \(R\) is the ratio of the means (or totals):
\[
R=\frac{\sum_{j=1}^{N} Y_{j}}{\sum_{j=1}^{N} X_{j}}=\frac{\mu_{Y}}{\mu_{X}}=\frac{\tau_{Y}}{\tau_{X}}, \quad \text { as long as } \mu_{X}, \tau_{X} \neq 0
\]

We are interested in such quotients when we try to determine the average wage \(Y\) as a function of years of schooling \(X\) in Canada, for example.

\section*{Ratio Estimator}

Let \(\mathcal{Y}=\left\{\left(x_{i_{1}}, y_{i_{1}}\right), \ldots,\left(x_{i_{n}}, y_{i_{n}}\right)\right\} \subseteq \mathscr{U}\) a bivariate simple random sample of size \(n\). We often simplify the notation by writing
\[
\mathscr{y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} .
\]

The sample ratio of means \(r\) is an estimator of \(R\) :
\[
r=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}}=\frac{\bar{y}}{\bar{x}}=\frac{\hat{\tau}_{Y}}{\hat{\tau}_{X}}, \quad \text { as long as } \bar{x}, \hat{\tau}_{X} \neq 0 .
\]

Warning: this is a biased estimator!

Example Consider a finite bivariate population with \(N=4\) units:
\[
u_{1}=(1,2), \quad u_{2}=(1,0), \quad u_{3}=(2,1), \quad u_{4}=(4,5) .
\]

The population ratio of means \(R\) is simply
\[
R=\frac{2+0+1+5}{1+1+2+4}=\frac{8}{8}=1
\]

Suppose that we want to provide an estimate of \(R\) by drawing a SRS of size \(n=3\) from \(U\). There are \(\binom{4}{3}=4\) such samples.
\begin{tabular}{ccccccc}
\hline Sample & \(y\) Values & \(\bar{y}\) & \(x\) Values & \(\bar{x}\) & \(r\) & \(P(r)\) \\
\hline\(u_{1}, u_{2}, u_{3}\) & \(2,0,1\) & 1 & \(1,1,2\) & \(4 / 3\) & \(3 / 4\) & \(1 / 4\) \\
\(u_{1}, u_{2}, u_{4}\) & \(2,0,5\) & \(7 / 3\) & \(1,1,4\) & 2 & \(7 / 6\) & \(1 / 4\) \\
\(u_{1}, u_{3}, u_{4}\) & \(2,1,5\) & \(8 / 3\) & \(1,2,4\) & \(7 / 3\) & \(8 / 7\) & \(1 / 4\) \\
\(u_{2}, u_{3}, u_{4}\) & \(0,1,5\) & 2 & \(1,2,3\) & 2 & 1 & \(1 / 4\) \\
\hline
\end{tabular}

We can compute the expectation of the estimator \(r\) directly:
\(\mathrm{E}[r]=\sum_{r} r P(r)=\frac{1}{4}(3 / 4+7 / 6+8 / 7+1)=\frac{341}{336} \approx 1.014881 \neq R=1\).
What is the sampling bias of \(r\) as an estimator of \(R\), then?
\[
\mathrm{E}[r-R]=\mathrm{E}\left[\frac{\bar{y}}{\bar{x}}-R\right]=\mathrm{E}\left[\frac{1}{\bar{x}}(\bar{y}-R \bar{x})\right]=? ?
\]

\section*{Ratio Estimator Bias}

In this last expression for the sampling bias, only \(\bar{x}\) and \(\bar{y}\) change when the sample changes: \(R\) remains constant. But there is no simple expression allowing us to compute exactly the expectation of a quotient of random variables; we must use approximations.

Let \(f:[a, b] \rightarrow \mathbb{R}\) be \(C^{2}\) over \([a, b]\) (i.e., \(f, f^{\prime}, f^{\prime \prime}\) are all continuous over \([a, b])\). According to Taylor's theorem, for all \(c \in(a, b)\), there exists a \(\xi\) between \(c\) and \(z\) such that
\[
f(z)=f(c)+f^{\prime}(c)(z-c)+\frac{f^{\prime \prime}(\xi)}{2}(z-c)^{2} .
\]

Since \(f^{\prime \prime}\) is continuous over \([a, b], f^{\prime \prime}\) is bounded on \([a, b]: \exists M>0\) such that \(\left|f^{\prime \prime}(z)\right| \leq M\) for all \(z \in[a, b]\).

Thus, if \(z\) is sufficiently close to \(c\),
\[
\left|f(c)+f^{\prime}(c)(z-c)\right| \gg \frac{M}{2}(z-c)^{2} \geq\left|\frac{f^{\prime \prime}(\xi)}{2}(z-c)^{2}\right|
\]
from which we conclude that
\[
f(z) \approx f(c)+f^{\prime}(c)(z-c)
\]
this is the linear approximation of \(f\) at \(z=c\). If \(f(z)=\frac{1}{z}\), we know that \(f^{\prime}(z)=-\frac{1}{z^{2}}\). Set \(z=\bar{x}\) and \(c=\mu_{X}\).
Since \(f\) is \(C^{2}\) over any interval \([a, b]\) with \(a>0\), if \(\bar{x}\) is sufficiently close to \(\mu_{X}\), then the liner approximation becomes
\[
\frac{1}{\bar{x}} \approx \frac{1}{\mu_{X}}-\frac{1}{\mu_{X}^{2}}\left(\bar{x}-\mu_{X}\right)
\]
(the constant approximation would be \(\frac{1}{\bar{x}} \approx \frac{1}{\mu_{X}}\) ).
\(\operatorname{But} \mathrm{E}(\bar{x})=\mu_{X}, \mathrm{E}(\bar{y})=\mu_{Y}(\mathrm{SRS})\), and \(\mu_{Y}=R \mu_{X}\), so that
\[
\begin{aligned}
\mathrm{E}[r-R] & =\mathrm{E}\left[\frac{\bar{y}-R \bar{x}}{\bar{x}}\right] \approx \mathrm{E}\left[\left(\frac{1}{\mu_{X}}-\frac{1}{\mu_{X}^{2}}\left(\bar{x}-\mu_{X}\right)\right)(\bar{y}-R \bar{x})\right] \\
& =\mathrm{E}\left[\frac{1}{\mu_{X}}(\bar{y}-R \bar{x})\right]-\mathrm{E}\left[\frac{1}{\mu_{X}^{2}}\left(\bar{x}-\mu_{X}\right)(\bar{y}-R \bar{x})\right] \\
& =\frac{1}{\mu_{X}}(\mathrm{E}(\bar{y})-R \cdot \mathrm{E}(\bar{x}))-\frac{1}{\mu_{X}^{2}}\left(\mathrm{E}\left[\overline{x y}-\mu_{X} \bar{y}-R \bar{x}^{2}-R \mu_{X} \bar{x}\right]\right) \\
& =\frac{1}{\mu_{X}} \underbrace{\left(\mu_{Y}-R \mu_{X}\right)}_{=0}-\frac{1}{\mu_{X}^{2}}\left(\mathrm{E}(\overline{x y})-\mu_{X} \mathrm{E}(\bar{y})-R\left(\mathrm{E}\left(\bar{x}^{2}\right)-\mu_{X} \mathrm{E}(\bar{x})\right)\right) \\
& =-\frac{1}{\mu_{X}^{2}}\left(\mathrm{E}(\overline{x y})-\mu_{X} \mu_{Y}-R\left(\mathrm{E}\left(\bar{x}^{2}\right)-\mu_{X}^{2}\right)\right)
\end{aligned}
\]

We further simplify the sampling bias \(\mathrm{E}[r-R]\) with the help of \(\mathrm{E}(\overline{x y})=\) \(\mu_{X} \mu_{Y}+\operatorname{Cov}(\bar{x}, \bar{y})\), and \(\mathrm{E}\left(\bar{x}^{2}\right)=\mu_{X}^{2}+\mathrm{V}(\bar{x})\). Thus,
\[
\mathrm{E}[r-R] \approx-\frac{1}{\mu_{X}^{2}}[\operatorname{Cov}(\bar{x}, \bar{y})-R \cdot \mathrm{~V}(\bar{x})]
\]

In an SRS of size \(n\), drawn from a finite population withsize \(N\) and variance sigma \({ }^{2}\), we have already seen that
\[
V(\bar{x})=\frac{\sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right) \quad \text { and } \quad V(\bar{y})=\frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)
\]

Consider the random variable \(Z=X+Y\). The SRS estimator of
\[
\mu_{Z}=\mu_{X}+\mu_{Y}
\]
is
\[
\bar{z}=\bar{x}+\bar{y} ;
\]
its sampling variance is
\[
\begin{aligned}
& \mathrm{V}(\bar{z})=\frac{\sigma_{Z}^{2}}{n}\left(\frac{N-n}{N-1}\right), \quad \text { where } \\
& \begin{aligned}
\sigma_{Z}^{2} & =\frac{1}{N} \sum_{j=1}^{N}\left(z_{j}-\mu_{Z}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left\{\left(x_{j}+y_{j}\right)-\left(\mu_{X}+\mu_{Y}\right)\right\}^{2} \\
& =\frac{1}{N} \sum_{j=1}^{N}\left(x_{j}-\mu_{X}\right)^{2}+\frac{2}{N} \sum_{j=1}^{N}\left(x_{j}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right)+\frac{1}{N} \sum_{j=1}^{N}\left(y_{j}-\mu_{Y}\right)^{2} \\
& =\sigma_{X}^{2}+2 \sigma_{X Y}+\sigma_{Y}^{2}=\sigma_{X}^{2}+2 \rho \sigma_{X} \sigma_{Y}+\sigma_{Y}^{2},
\end{aligned}
\end{aligned}
\]
where \(\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}\) is the Pearson correlation coefficient between \(X\) and \(Y\).

On the one hand,
\[
\mathrm{V}(\bar{z})=\frac{\sigma_{X}^{2}+2 \rho \sigma_{X} \sigma_{Y}+\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right) ;
\]
on the other,
\[
\begin{aligned}
\mathrm{V}(\bar{z}) & =\mathrm{V}(\bar{x}+\bar{y})=\mathrm{V}(\bar{x})+2 \operatorname{Cov}(\bar{x}, \bar{y})+\mathrm{V}(\bar{y}) \\
& =\frac{\sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right)+2 \operatorname{Cov}(\bar{x}, \bar{y})+\frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)
\end{aligned}
\]
we can thus conclude that
\[
\operatorname{Cov}(\bar{x}, \bar{y})=\frac{\rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right)
\]

Consequently,
\[
\begin{aligned}
\mathrm{E}[r-R] & \approx-\frac{1}{\mu_{X}^{2}}[\operatorname{Cov}(\bar{x}, \bar{y})-R \cdot \mathrm{~V}(\bar{x})] \\
& =-\frac{1}{\mu_{X}^{2}}\left[\frac{\rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right)-R \frac{\sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right)\right] \\
& =\frac{1}{\mu_{X}^{2}} \cdot \frac{R \sigma_{X}^{2}-\rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right)
\end{aligned}
\]

But the systematic error is not the only way to qualify the magnitude of the error made when using \(r\) to estimate \(R\) : the mean square error (MSE) of \(r\) is
\[
\operatorname{MSE}(r)=\mathrm{E}\left((r-R)^{2}\right)=\mathrm{V}(r)+(\mathrm{E}(r)-R)^{2} .
\]

\section*{Ratio Estimator Variability}

We can obtain an approximation of \(\mathrm{V}(r)\) using the constant Taylor approximation (of order 0):
\[
\frac{1}{\bar{x}} \approx \frac{1}{\mu_{X}}
\]

Thus,
\[
\mathrm{V}(r)=\mathrm{V}(r-R)=\mathrm{V}\left[\frac{\bar{y}}{\bar{x}}-R\right]=\mathrm{V}\left[\frac{\bar{y}-R \bar{x}}{\bar{x}}\right] \approx \mathrm{V}\left[\frac{\bar{y}-R \bar{x}}{\mu_{X}}\right] .
\]

Consider the random variable \(W=Y-R X\). Since \(\mu_{Y}=R \mu_{X}\),
\[
\mu_{W}=\mu_{Y}-R \mu_{X}=0
\]

The SRS sample mean of \(W\) in \(\mathscr{y}\) is thus
\[
\bar{w}=\bar{y}-R \bar{x} \Longrightarrow \mathrm{~V}(r) \approx \mathrm{V}\left[\frac{\bar{w}}{\mu_{X}}\right]=\frac{1}{\mu_{X}^{2}} \mathrm{~V}(\bar{w})=\frac{1}{\mu_{X}^{2}} \cdot \frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right)
\]
where
\[
\sigma_{W}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(W_{j}-\mu_{W}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N} W_{j}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-R X_{j}\right)^{2}
\]

We thus have
\[
\mathrm{V}(r) \approx \frac{1}{\mu_{X}^{2}} \cdot \frac{1}{n} \cdot \frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-R X_{j}\right)^{2}\left(\frac{N-n}{N-1}\right) .
\]

The ratio between the systematic error \(\mathrm{E}[r-R]\) and the standard deviation of \(r\) is then
\[
\frac{\mathrm{E}[r-R]}{\mathrm{SD}(r)} \approx \frac{1}{\sqrt{n}} \cdot \frac{R \sigma_{X}^{2}-\rho \sigma_{X} \sigma_{Y}}{\sigma_{W}} \sqrt{\frac{N-1}{N-n}}
\]
when \(n, N \rightarrow \infty\) (while \(N \gg n\) ), we must have
\[
\frac{\mathrm{E}[r-R]}{\mathrm{SD}(r)} \rightarrow 0
\]

In other words, although it is impossible to get rid of the bias, the estimation error
\[
\operatorname{MSE}(r)=\mathrm{V}(r)+(\mathrm{E}(r)-R)^{2}
\]
is dominated by the variance \(\mathrm{V}(r)\) if the sample size \(n\) is sufficiently large.

Example The list of countries for which both life expectancy and (logarithm of) gross domestic product per capita are available in 2011 contains \(N=168\) observations.
```

gapminder.RLD <- gapminder |> filter(year==2011) |>
select(life_expectancy,gdp,population)

we keep only the observations that have both

gapminder.RLD <- gapminder.RLD[complete.cases(gapminder.RLD),]
gapminder.RLD <- gapminder.RLD |> mutate(lgdppc=log(gdp/population))
(N=nrow(gapminder.RLD))

```
[1] 168

We draw \(m=500\) SRS samples of \(n=20\), and we compute the estimator \(r\) of the ratio \(R\) for each of these samples.
```

```
set.seed(12) # replicability
```

```
set.seed(12) # replicability
n=20
n=20
m=500
m=500
quotients <- c()
quotients <- c()
for(k in 1:m){
for(k in 1:m){
    samp <- gapminder.RLD[sample(1:N,n, replace=FALSE),c("life_expectancy","lgdppc")]
    samp <- gapminder.RLD[sample(1:N,n, replace=FALSE),c("life_expectancy","lgdppc")]
    quotients[k] <- mean(samp$life_expectancy/samp$lgdppc)
    quotients[k] <- mean(samp$life_expectancy/samp$lgdppc)
}
```

```
}
```

```


\section*{summary(quotients)}
\begin{tabular}{llllll} 
Min. & 1st Qu. & Median & Mean & 3rd Qu. Max. \\
8.428 & 9.073 & 9.246 & 9.239 & 9.401 & 10.002
\end{tabular}

\section*{Ratio Estimator Confidence Intervals}

We can show that the estimator \(r\) follows approximately a normal distribution \(\mathcal{N}(\mathrm{E}(r), \mathrm{V}(r))\), from which we conclude that the bound on the error of estimation is
\[
B_{R} \approx \hat{B}_{R}=2 \sqrt{\hat{\mathrm{~V}}(r)} \approx 2 \sqrt{\frac{1}{\mu_{X}^{2}} \cdot \frac{s_{W}^{2}}{n}\left(1-\frac{n}{N}\right)} \approx 2 \sqrt{\frac{1}{\bar{x}^{2}} \cdot \frac{s_{W}^{2}}{n}\left(1-\frac{n}{N}\right)},
\]
where
\[
s_{W}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}
\]

Thus
\[
\text { C.I. }(R ; 0.95): \quad r \pm \hat{B}_{R}
\]
is an approximate \(\mathbf{9 5 \%}\) C.I. for \(R\).
Write \(\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}\). We notice that
\[
\begin{aligned}
\sigma_{W}^{2} & =\frac{1}{N} \sum_{j=1}^{N} W_{j}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-R X_{j}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-\mu_{Y}+\mu_{Y}-R X_{j}\right) \\
& =\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-\mu_{Y}+R \mu_{X}-R X_{j}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left[\left(Y_{j}-\mu_{Y}\right)-R\left(X_{j}-\mu_{X}\right)\right]^{2} \\
& =\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}-\mu_{Y}\right)^{2}-2 R \frac{1}{N} \sum_{j=1}^{N}\left(X_{j}-\mu_{X}\right)\left(Y_{j}-\mu_{Y}\right)+R^{2} \frac{1}{N} \sum_{j=1}^{N}\left(X_{j}-\mu_{X}\right)^{2} \\
& =\sigma_{Y}^{2}-2 R \operatorname{Cov}(X, Y)+R^{2} \sigma_{X}^{2}=\sigma_{Y}^{2}-2 R \rho \sigma_{X} \sigma_{Y}+R^{2} \sigma_{X}^{2}
\end{aligned}
\]

By analogy, we then have \(s_{W}^{2}=s_{Y}^{2}-2 r \hat{\rho} s_{X} s_{Y}+r^{2} s_{X}^{2}\), where
\[
\begin{aligned}
& s_{X}^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right), \quad s_{Y}^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right), \\
& s_{X Y}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}\right), \quad \text { and } \hat{\rho}=\frac{s_{X Y}}{s_{X} s_{Y}}
\end{aligned}
\]

In practice, we can also use the following formula:
\[
s_{W}^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} y_{i}^{2}-2 r \sum_{i=1}^{n} x_{i} y_{i}+r^{2} \sum_{i=1}^{n} x_{i}^{2}\right)
\]

Example Consider a SRS \(\mathcal{Y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\) of size \(n=132\), drawn from a population of size \(N=37,444\). Find a \(95 \%\) C.I. for \(R\) if
\[
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=9464.6, \quad \sum_{i=1}^{n} y_{i}=14691.6 \\
& \sum_{i=1}^{n} x_{i}^{2}=686773.2, \quad \sum_{i=1}^{n} x_{i} y_{i}=1062186, \quad \sum_{i=1}^{n} y_{i}^{2}=1670194 .
\end{aligned}
\]

With this sample, we have \(r=\frac{14691.6}{9464.6} \approx 1.55\), so that
\[
\begin{aligned}
s_{W}^{2} & =\frac{1670194-2(1.55)(1062186)+(1.55)^{2}(686773.2)}{132-1} \approx 209.2, \quad \text { and } \\
\hat{\mathrm{V}}(r) & \approx \frac{132^{2}}{9464.6^{2}} \frac{209.2}{132}\left(1-\frac{132}{37444}\right)=0.0003 \Longrightarrow \mathrm{C} . \mathrm{I} .(R ; 0.95) \approx 1.552 \pm 0.035
\end{aligned}
\]

Example Find a 95\% C.I. for the ratio of life expectancy by the logarithm of the GDO per capita in 2011 with the help of a SRS of size \(n=20\).

The true ratio is:
\((R=\) mean(gapminder.RLD\$life_expectancy)/mean(gapminder.RLD\$lgdppc))
[1] 9.046742

We draw a sample of size \(n=20\), and we calculate the intermediate sums:
```

N=nrow(gapminder.RLD); n=20
set.seed(123456) \# replicability
index = sample(l:N,n, replace=FALSE)
samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]
(sum.xi = sum(samp$lgdppc))
(sum.yi = sum(samp$life_expectancy))
(sum.xi.2 = sum(samp$lgdppc^2))
(sum.yi.2 = sum(samp$life_expectancy^2))
(sum.xiyi = sum(samp$lgdppc*samp$life_expectancy))

```
[1] 167.2794
[1] 1450.82
[1] 1430.912
[1] 106117.4
[1] 12245.93

Finally, we compute the estimator \(r\) and its variance, as well as the desired confidence interval.
```

r = sum.yi/sum.xi
s2.W = 1/(n-1)*(sum.yi.2-2*r*sum.xiyi+r^2*sum.xi.2)
V = n^2/sum.xi^2*(1/n)*s2.W*(1-n/N)
B = 2*sqrt(V)
c(r-B,r+B)

```
[1] 8.2525159 .093552

We would expect the quotient \(R\) to be in the interval \((8.25,9.09)\) with \(95 \%\) probability; \({ }^{41}\) since \(R=9.046742\), it is indeed the case. \({ }^{42}\)

\section*{Estimation of the Mean and the Total Using the Ratio Estimator}

In practice, we often know \(\tau_{X}\) and/or \(\mu_{X}\). It is possible to use the relation
\[
\mu_{Y}=R \mu_{X}, \quad \text { where } R=\frac{\mu_{Y}}{\mu_{X}}
\]
in order to approximate \(\mu_{Y}\) (if \(\mu_{X}\) is unknown, one uses \(\mu_{X} \approx \bar{x}\) ).
Since \(r=\bar{y} / \bar{x}\), the ratio-based estimator for \(\hat{\mu}_{Y ; R}\) is simply:
\[
\hat{\mu}_{Y ; R}=r \cdot \mu_{X} .
\]

But we have already observed that \(r\) is a biased estimator of \(R\), so we expect \(\hat{\mu}_{Y ; R}\) to be a biased estimator of \(\mu_{Y}\), with a normal distribution: \(\hat{\mu}_{Y ; R} \sim_{\text {approx }} \mathcal{N}\left(\mathrm{E}\left(\hat{\mu}_{Y ; R}\right), \mathrm{V}\left(\hat{\mu}_{Y ; R}\right)\right)\).
It is easy to show
\[
\begin{aligned}
\mathrm{E}\left[\hat{\mu}_{Y ; R}-\mu_{Y}\right] & =\mu_{X} \mathrm{E}[r-R] \approx \frac{1}{\mu_{X}} \cdot \frac{R \sigma_{X}^{2}-\rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right) \\
\mathrm{V}\left(\hat{\mu}_{Y ; R}\right) & =\mathrm{V}\left(r \cdot \mu_{X}\right)=\mu_{X}^{2} \mathrm{~V}(r) \approx \frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\end{aligned}
\]

The bound of error on the estimation of \(\mu_{Y ; R}\) is thus
\(B_{\mu_{Y ; R}} \approx \hat{B}_{\mu_{Y ; R}}=2 \sqrt{\mathrm{~V}\left(\hat{\mu}_{Y ; R}\right)} \approx 2 \sqrt{\frac{s_{W}^{2}}{n}\left(1-\frac{n}{N}\right)}, s_{W}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}\),
from which we see that C.I. \(._{R}\left(\mu_{Y} ; 0.95\right) \equiv \hat{\mu}_{Y ; R} \pm \hat{B}_{\mu_{Y ; R}}\) is an approximate 95\% C.I. for \(\mu_{Y}\).

41: According to the frequentist interpretation of confidence intervals.
42: As we have noticed several times, the confidence interval can of course change depending on which sample is drawn from the population.

It is also possible to use the relationship
\[
\tau_{Y}=R \tau_{X}, \quad \text { where } \quad R=\frac{\mu_{Y}}{\mu_{X}}=\frac{\tau_{Y}}{\tau_{X}}
\]
to approximate \(\tau_{Y}\) (if \(\tau_{X}\) is unknown, we use \(\tau_{X} \approx N \bar{x}\) ).
Since \(r=\bar{y} / \bar{x}\), the ratio-based estimator for \(\hat{\tau}_{Y ; R}\) is simply:
\[
\hat{\tau}_{Y ; R}=r \cdot \tau_{X}
\]

But we have already observed that \(r\) is a biased estimator of \(R\), so we expect \(\hat{\tau}_{Y ; R}\) to be a biased estimator of \(\tau_{Y}\), which follows a normal distribution:
\[
\hat{\tau}_{Y ; R} \sim_{\text {approx }} \mathcal{N}\left(\mathrm{E}\left(\hat{\tau}_{Y ; R}\right), \mathrm{V}\left(\hat{\tau}_{Y ; R}\right)\right) .
\]

It is easy to show
\[
\begin{aligned}
\mathrm{E}\left[\hat{\tau}_{Y ; R}-\tau_{Y}\right] & =\tau_{X} \mathrm{E}[r-R] \approx \frac{N}{\mu_{X}} \cdot \frac{R \sigma_{X}^{2}-\rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right) \\
\mathrm{V}\left(\hat{\tau}_{Y ; R}\right) & =\mathrm{V}\left(r \cdot \tau_{X}\right)=\tau_{X}^{2} \mathrm{~V}(r)=N^{2} \mu_{X}^{2} \mathrm{~V}(r) \approx N^{2} \cdot \frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right)
\end{aligned}
\]

The bound of error on the estimation of \(\tau_{Y ; R}\) is thus
\(B_{\tau_{Y ; R}} \approx \hat{B}_{\tau_{Y ; R}}=2 \sqrt{\mathrm{~V}\left(\hat{\tau}_{Y ; R}\right)} \approx 2 N \sqrt{\frac{s_{W}^{2}}{n}\left(1-\frac{n}{N}\right)}, s_{W}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}\),
from which we conclude that C.I \({ }_{R}\left(\tau_{Y} ; 0.95\right) \equiv \hat{\tau}_{Y ; R} \pm \hat{B}_{\tau_{Y ; R}}\) is an approximate \(\mathbf{9 5 \%}\) C.I. for \(\tau_{Y}\).

Example Consider a SRS \(\mathscr{y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\) o size \(n=132\), drawn from a population of size \(N=37,444\). Find a \(95 \%\) C.I. for \(\mu_{Y}\) using ratio-based estimation, given that
\[
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=9464.6, \quad \sum_{i=1}^{n} y_{i}=14691.6 \\
& \sum_{i=1}^{n} x_{i}^{2}=686773.2, \quad \sum_{i=1}^{n} x_{i} y_{i}=1062186, \quad \sum_{i=1}^{n} y_{i}^{2}=1670194 .
\end{aligned}
\]

With this sample, we have \(r \approx 1.55, s_{W}^{2} \approx 209.2, \hat{\mathrm{~V}}(r) \approx 0.00031\), and C.I. \((R ; 0.95) \approx 1.552 \pm 0.035\). Moreover, \(\bar{x}=9464.6 / 132=71.70\). Thus
C.I. \(R_{R}\left(\mu_{Y} ; 0.95\right)=\mu_{X} \cdot\) C.I. \((R ; 0.95) \approx \bar{x} \cdot\) C.I. \((R ; 0.95) \equiv 111.29 \pm 2.51\).

Example Find a \(95 \%\) C.I. for the average life expectancy by country \(\mu_{\curlyvee}\), in 2011, using ratio estimation and the logarithm of the gross domestic product per capita in \(2011(X)\), with a SRS sample of size \(n=20\).

We use the same sample as in the preceding example on the topic. We have already obtained a confidence interval for the ratio:
\[
\text { C.I. }(R ; 0.95)=(8.25,9.09) .
\]

The sample mean of \(X\) was \(\bar{x}=\frac{167.2794}{20}=8.364\). The \(95 \%\) confidence interval for the average life expectancy using ratio estimation is thus
\[
\text { C.I. }_{R}\left(\mu_{Y} ; 0.95\right)=\mu_{X} \cdot \mathrm{C} . \mathrm{I} .(R ; 0.95) \approx \bar{x} \cdot(8.25,9.09)=(69.00,76.03) .
\]

Recall that the true value is \(\mu_{Y}=70.95\).

\section*{Sample Size}

Just as was the case with SRS and STS, we can determine the required sample size assuming that we have some information about the population distribution.

To give an estimate for \(R\), use:
\[
\begin{aligned}
B_{R} \approx 2 \sqrt{\frac{1}{\mu_{X}^{2}} \cdot \frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{R}^{2} \mu_{X}^{2}}{4}}_{=D_{R}}=\frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& \Longleftrightarrow \frac{(N-1) D_{R}}{\sigma_{W}^{2}}=\frac{N-n}{n}=\frac{N}{n}-1 \\
& \Longleftrightarrow \frac{(N-1) D_{R}+\sigma_{W}^{2}}{\sigma_{W}^{2}}=\frac{N}{n} \\
& \Longleftrightarrow n_{R}=\frac{N \sigma_{W}^{2}}{(N-1) D_{R}+\sigma_{W}^{2}} .
\end{aligned}
\]

To give an estimate for \(\mu_{Y}\) with ratio estimation, use:
\(B_{\mu_{Y ; R}} \approx 2 \sqrt{\frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right)} \Longleftrightarrow n_{\mu_{Y}}=\frac{N \sigma_{W}^{2}}{(N-1) D_{\mu_{Y}}+\sigma_{W}^{2}}, \quad D_{\mu_{Y}}=\frac{B_{\mu_{Y, R}}^{2}}{4} ;\)
for \(\tau_{Y}\), use:
\(B_{\tau_{Y ; R}} \approx 2 \sqrt{N^{2} \cdot \frac{\sigma_{W}^{2}}{n}\left(\frac{N-n}{N-1}\right)} \Longleftrightarrow n_{\tau_{Y}}=\frac{N \sigma_{W}^{2}}{(N-1) D_{\tau_{Y}}+\sigma_{W}^{2}}, \quad D_{\tau_{Y}}=\frac{B_{\tau_{Y ; R}}^{2}}{4 N^{2}}\).

Since we do not typically know \(\sigma_{W}^{2}\), we often use a small preliminary sample and use the empirical variance \(s_{W}^{2}\) as an estimator of \(\sigma_{W}^{2}\).

Example Consider a SRS \(\mathscr{y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\) of size \(n\), drawn from a population of size \(N=37,444\). Assume that we have \(\sigma_{W}^{2} \approx 209.2\) and \(\mu_{X} \approx 71.7\), perhaps from a previous study.

Determine the minimum sample size required to ensure that the bound on the error of estimation of the:
1. ratio \(R\) using \(r\) is at most 0.025 ;
2. mean \(\mu_{Y}\) using \(\hat{\mu}_{Y ; R}\) is at most 5 , and
3. total \(\tau_{Y}\) using \(\hat{\tau}_{Y ; R}\) is at most 25 .

We simply use the formulas.
1. since \(D_{R}=\frac{B_{R}^{2} \mu_{X}^{2}}{4}=\frac{0.025^{2}(71.7)^{2}}{4} \approx 0.8033\), we have
\[
n_{R}=\frac{37444(209.2)}{(37444-1)(0.8033)+209.2}=258.6453 \Longrightarrow n_{R} \geq 259
\]
2. since \(D_{\mu_{Y}}=\frac{B_{\mu_{Y, R}}^{2}}{4}=\frac{5^{2}}{4} \approx 6.25\), we have
\[
n_{\mu_{Y}}=\frac{37444(209.2)}{(37444-1)(6.25)+209.2}=33.443 \Longrightarrow n_{\mu_{Y}} \geq 34 ;
\]
3. since \(D_{\tau_{Y}}=\frac{B_{\tau_{Y, R}}^{2}}{4 N^{2}}=\frac{25^{2}}{4(37444)} \approx 0.001502243\), we have
\[
n_{\tau_{\Upsilon}}=\frac{37444(209.2)}{(37444-1)(0.001502243)+209.2}=29509.62 \Longrightarrow n_{\tau_{\Upsilon}} \geq 29510
\]

In this last case, the desired bound \(B_{\tau_{Y ; R}}\) is probably too tight (the resulting sample size is way too large).

\subsection*{10.5.2 Regression Estimation}

Ratio estimation is a special case of a more general method, regression estimation. In the gapminder.csv dataset for 2011, we recognize that there is a more or less linear relationship between the life expectancy \(Y\) and the logarithm of the GDP per capita \(X\) for \(N=168\) countries.


Figure 10.8: Health and wealth of nations for the 2011 Gapminder data, with superimposed line of best fit.
When we compute
\[
r=\bar{y} / \bar{x}
\]
using a SRS of size \(n\), we are really assuming that the true relationship between \(Y\) and \(X\) takes the form \(Y=R X \approx r X\), i.e., that it is a straight line of slope \(r\) passing through the origin. But this last condition does not seem to be met. What to do in this case?

\section*{Regression Estimator}

As above, let \(U\) be a finite bivariate population of size \(N\), and \(\mathscr{Y} \subseteq \mathscr{U}\) be a finite bivariate random sample of size \(n\). We assume that the relationship between \(Y\) and \(X\) takes the form
\[
Y-\mu_{Y}=\beta\left(X-\mu_{X}\right)
\]

If \(\mu_{X}\) is known (as we had assumed was the case for ratio estimation), the regression estimator \(\hat{\mu}_{Y ; L}\) of \(\mu_{Y}\) obtained with the SRS \(\mathscr{y}\) is
\[
\hat{\mu}_{Y_{; L}}=\bar{y}+\beta\left(\mu_{X}-\bar{x}\right)
\]

For now, we treat \(\beta\) as an unknown constant (since \(\mu_{Y}\) is also unknown). Since \(\mathscr{y}\) is drawn in a SRS context, \(\mathrm{E}(\bar{x})=\mu_{X}\) and \(\mathrm{E}(\bar{y})=\mu_{Y}\), so that
\[
\mathrm{E}\left(\hat{\mu}_{Y ; L}\right)=\mathrm{E}(\bar{y})+\beta\left(\mu_{X}-\mathrm{E}(\bar{x})\right)=\mu_{Y}+\beta\left(\mu_{X}-\mu_{X}\right)=\mu_{Y} .
\]

Consider the random variable \(W=Y+\beta\left(\mu_{X}-X\right)\). As \(\beta\) is constant, we have
\[
\mu_{W}=\mu_{Y}+\beta\left(\mu_{X}-\mu_{X}\right)=\mu_{Y} .
\]

The sample mean of \(W\) is thus
\[
\bar{w}=\bar{y}+\beta\left(\mu_{X}-\bar{x}\right)=\hat{\mu}_{Y ; L} \Longrightarrow \mathrm{~V}\left(\hat{\mu}_{Y ; L}\right)=\mathrm{V}(\bar{w})=\frac{\sigma_{W ; L}^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

But
\[
\begin{aligned}
\sigma_{W ; L}^{2} & =\frac{1}{N} \sum_{j=1}^{N}\left(W_{j}-\mu_{W}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}+\beta\left(\mu_{X}-X_{j}\right)-\mu_{Y}\right)^{2} \\
& =\frac{1}{N} \sum_{j=1}^{N}\left\{\left(Y_{j}-\mu_{Y}\right)-\beta\left(X_{j}-\mu_{X}\right)\right\}^{2}=\sigma_{Y}^{2}-2 \beta \rho \sigma_{X} \sigma_{Y}+\beta^{2} \sigma_{X}^{2}
\end{aligned}
\]
where \(\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}\). Consequently,
\[
\mathrm{V}\left(\hat{\mu}_{Y ; L}\right)=\frac{\sigma_{Y}^{2}-2 \beta \rho \sigma_{X} \sigma_{Y}+\beta^{2} \sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

In general, for a given systematic error (bias), preference is given to the estimator with the lowest variance. The value of \(\beta\) which minimizes \(\mathrm{V}\left(\hat{\mu}_{Y ; L}\right)\) would then satisfy
\[
\frac{\partial \mathrm{V}\left(\hat{\mu}_{Y ; L}\right)}{\partial \beta}\left(\beta^{*}\right)=\frac{1}{n}\left(\frac{N-n}{N-1}\right)\left(-2 \rho \sigma_{X} \sigma_{Y}+2 \beta^{*} \sigma_{X}^{2}\right)=0
\]
which is to say that
\[
\beta^{*}=\rho \frac{\sigma_{Y}}{\sigma_{X}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} \cdot \frac{\sigma_{Y}}{\sigma_{X}}=\frac{\sigma_{X Y}}{\sigma_{X}^{2}},
\]
from which we conclude that
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; L}\right) & =\frac{\sigma_{Y}^{2}-2 \beta^{*} \rho \sigma_{X} \sigma_{Y}+\left(\beta^{*}\right)^{2} \sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& =\frac{\sigma_{Y}^{2}-2 \rho \frac{\sigma_{Y}}{\sigma_{X}} \rho \sigma_{X} \sigma_{Y}+\left(\rho \frac{\sigma_{Y}}{\sigma_{X}}\right)^{2} \sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& =\frac{\sigma_{Y}^{2}-2 \rho^{2} \sigma_{Y}^{2}+\rho^{2} \sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& =\frac{\sigma_{Y}^{2}\left(1-\rho^{2}\right)}{n}\left(\frac{N-n}{n-1}\right)
\end{aligned}
\]

\section*{Regression Estimator Bias}

The task is to determine the coefficients \(\alpha, \beta\) that "best describe" the linear relationship between \(X\) and \(Y\),
\[
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
\]
where we assume that \(\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \sim_{\text {approx. }} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)\).
There are several ways to interpret the phrase "best describe" - the least squares estimators \(\hat{\alpha}\) and \(\hat{\beta}\) are those that minimize the residual sum of squares
\[
Q(\alpha, \beta)=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}
\]

We solve the system of equations
\[
\frac{\partial Q}{\partial \alpha}(a, b)=\sum_{i=1}^{n}-2\left(y_{i}-a-b x_{i}\right)=0, \quad \frac{\partial Q}{\partial \beta}(a, b)=\sum_{i=1}^{n}-2 x_{i}\left(y_{i}-a-b x_{i}\right)=0
\]
which yields
\[
\hat{\alpha}=a=\bar{y}-b \bar{x} \quad \text { and } \quad \hat{\beta}=b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\]

In practice, it is this \(b=\hat{\rho} \frac{s_{Y}}{s_{X}}\) that plays the role of the estimator \(\beta^{*}\); note that it varies from one SRS to another. Since \(b\) is a random variable, \({ }^{43}\) we cannot conclude that \(\mathrm{E}(b \bar{x})=\mathrm{E}(b) \mathrm{E}(\bar{x})\), so that
\[
\mathrm{E}\left(\hat{\mu}_{Y ; L}\right)=\mathrm{E}(\bar{y})+\mu_{X} \mathrm{E}(b)-\mathrm{E}(b \bar{x}) \neq \mu_{Y}
\]
in general.
However, if the sample size \(n\) is large, it is possible to show that
\[
\mathrm{E}\left[\hat{\mu}_{Y ; L}-\mu_{Y}\right]
\]
is of order \(\frac{1}{n}\) (as was the case for the systematic error in ratio estimation); \(\hat{\mu}_{Y ; L}\) is therefore a biased estimator of \(\mu_{Y}\).

\section*{Regression Estimator Variability}

The sampling variance of \(\hat{\mu}_{Y_{; L}}\) is also of order \(\frac{1}{n}\), and so the quotient of the bias \(\mathrm{E}\left[\hat{\mu}_{Y ; L}-\mu_{Y}\right]\) by the standard deviation of \(\hat{\mu}_{Y ; L}\) is of order \(\frac{1}{\sqrt{n}}\).

Thus, when \(n, N \rightarrow \infty\) (assuming that \(N \gg n\) ), we have
\[
\frac{\mathrm{E}\left[\hat{\mu}_{Y ; L}-\mu_{Y}\right]}{\mathrm{SD}\left(\hat{\mu}_{Y ; l}\right)} \rightarrow 0 .
\]

Although it is impossible to get rid of the bias, the estimation error
\[
\operatorname{MSE}\left(\hat{\mu}_{Y ; L}\right)=\mathrm{V}\left(\hat{\mu}_{Y ; L}\right)+\left(\mathrm{E}\left(\hat{\mu}_{Y ; L}\right)-\mu_{Y}\right)^{2}
\]
is dominated byt the variance \(\mathrm{V}\left(\hat{\mu}_{\left.Y_{; L}\right)}\right.\) when \(n\) is sufficiently large.

\section*{Regression Estimator Confidence Intervals}

The regression estimator \(\hat{\mu}_{Y ; L}\) follows approximately a normal distribution \(\mathcal{N}\left(\mathrm{E}\left(\hat{\mu}_{Y ; L}\right), \mathrm{V}\left(\hat{\mu}_{Y ; L}\right)\right)\), from which we conclude that the bound on the error of estimation is
\[
B_{L} \approx \hat{B}_{L}=2 \sqrt{\hat{V}\left(\hat{\mu}_{Y ; L}\right)} \approx 2 \sqrt{\frac{s_{W ; L}^{2}}{n}\left(1-\frac{n}{N}\right)}
\]
where \(s_{W ; L}^{2}\) is the regression mean square error,
\[
s_{W ; L}^{2}=\frac{n-1}{n-2}\left(s_{Y}^{2}-b^{2} s_{X}^{2}\right)=\frac{n-1}{n-2} \cdot s_{Y}^{2}\left(1-\hat{\rho}^{2}\right) .
\]

Consequently C.I. \({ }_{L}\left(\mu_{Y} ; 0.95\right): \hat{\mu}_{Y ; L} \pm \hat{B}_{L}\) is an approximate \(95 \%\) C.I. for \(\mu_{Y}{ }^{44}\)

44: We tackle \(\tau_{Y}\) and \(p_{Y}\) in the usual manner.

Example Consider a SRS \(\mathcal{Y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\) with \(n=132\), drawn from population of size \(N=37,444\). In a preceding study, we have shown that \(\mu_{X} \approx 70.3\). Find a \(95 \%\) C.I. for \(\mu_{Y}\) using regression estimation if
\[
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=9464.6, \quad \sum_{i=1}^{n} y_{i}=14691.6 \\
& \sum_{i=1}^{n} x_{i}^{2}=686773.2, \quad \sum_{i=1}^{n} x_{i} y_{i}=1062186, \quad \sum_{i=1}^{n} y_{i}^{2}=1670194 .
\end{aligned}
\]

We must evaluate \(\bar{x}, \bar{y}, s_{X}^{2}, s_{X Y}, s_{Y}^{2}\), and \(\hat{\rho}\). But
\[
\begin{aligned}
\bar{x} & =\frac{9464.6}{132} \approx 71.7, \quad \bar{y}=\frac{14691.6}{132} \approx 111.3, \\
s_{X}^{2} & =\frac{686773.2-132(71.7)^{2}}{132-1} \approx 62.2, \quad s_{Y}^{2}=\frac{1670194-132(111.3)^{2}}{132-1} \approx 267.3 \\
s_{X Y} & =\frac{1062186-132(71.7)(111.3)}{132-1} \approx 67.2, \quad \hat{\rho}=\frac{67.2}{\sqrt{(62.2)(267.3)}} \approx 0.521 .
\end{aligned}
\]

The estimator for the regression slope is therefore \(b=\hat{\rho} \frac{s_{Y}}{s_{X}}=1.08\). Moreover,
\[
s_{W ; L}^{2}=\frac{131}{130} \cdot 267.3 \cdot\left(1-0.521^{2}\right) \approx 196.77
\]

Consequently,
\[
\begin{aligned}
\hat{\mu}_{Y ; L} & =111.3+1.08(\underbrace{70.3}_{\mu_{X}}-71.7)=109.8, \quad \text { and } \\
\hat{B}_{L} & \approx 2 \sqrt{\frac{196.77}{132}\left(1-\frac{132}{37444}\right)}=2.43
\end{aligned}
\]
from which we conclude that
\[
\text { C.I. } L_{L}\left(\mu_{Y} ; 0.95\right) \equiv 109.8 \pm 2.43
\]

Of course, if the linearity assumption is not valid, we should not expect the bound on the error of estimation using regression estimation to be substantially tighter than the one obtained in a SRS, say.

Example Find a \(95 \%\) C.I. for the average life expectancy by country in 2011 using regression estimation against the logarithm of the GDP per capita, with \(n=20\), assuming that it is known that \(\mu_{X}=7.84\).

We draw a sample of size \(n=20\) and calculate the required quantities:
```

set.seed(123456) \# replicability
N=nrow(gapminder.RLD); n=20
index = sample(1:N,n, replace=FALSE)
samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]
mu.X = mean(gapminder.RLD\$lgdppc)

```

The sample means are:
```

(y.bar = mean(samp$life_expectancy))
(x.bar = mean(samp$lgdppc))

```
[1] 72.541
[1] 8.363971

The intermediate sums and the correlation coefficient are:
```

sum.xi = sum(samp$lgdppc)
sum.yi = sum(samp$life_expectancy)
sum.xi.2 = sum(samp$lgdppc^2)
sum.yi.2 = sum(samp$life_expectancy^2)
sum.xiyi = sum(samp$lgdppc*samp$life_expectancy)
s2.X = (sum.xi.2-n*x.bar^2)/(n-1)
s2.Y = (sum.yi.2-n*y.bar^2)/(n-1)
s.XY = (sum.xiyi-n*x.bar*y.bar)/(n-1)

```

\section*{\((\) rho \(=s . X Y / s q r t(s 2 . X * s 2 . Y))\)}
[1] 0.667983

Next, we evaluate the MSE:
```

(s2.W.L = (n-1)/(n-2)*s2.Y*(1-rho^2))

```
[1] 26.8736

The bound on the error of estimation is thus:
\[
(B=2 * \operatorname{sqrt}(s 2 \cdot W \cdot L / n *(1-n / N)))
\]
[1] 2.175976
and the corresponding \(95 \%\) C.I. for the mean life expectancy by country is:
```

(hat.mu.Y.L = y.bar + rho*sqrt(s2.Y/s2.X)*(mu.X-x.bar))
c(hat.mu.Y.L-B,hat.mu.Y.L+B)

```
```

[1] 70.71572
[1] 68.53974 72.89170

```

For comparison's sake, the true mean is \(\mu_{\curlyvee}=70.95\).
We can also compute the estimate and the confidence interval directly, with the base lm() function.
```

reg.lin = lm(life_expectancy~lgdppc, data=samp)
summary(reg.lin)

```
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 30 & Max \\
-16.2467 & 0.1592 & 1.6513 & 2.6614 & 5.8812
\end{tabular}
Coefficients:
            Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(43.2559 \quad 7.7768 \quad 5.562 \quad 2.8 \mathrm{e}-05\) ***
\begin{tabular}{lllll} 
lgdppc & 3.5013 & 0.9194 & 3.808 & 0.00129
\end{tabular}\({ }^{* *}\)
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * *} 0.01{ }^{\prime} *^{\prime} 0.05\) '.' 0.1 ' ' 1

Residual standard error: 5.184 on 18 degrees of freedom Multiple R-squared: 0.4462, Adjusted R-squared: 0.4154
F-statistic: 14.5 on 1 and 18 DF, p-value: 0.001287

The required quantities can be extracted as follows:
(b = as.numeric(reg.lin\$coefficients[2]))
[1] 3.501336
(s2.W.L = summary(reg.lin)\$sigma^2)
[1] 26.8736

\section*{Sample Size}

If we seek an regression estimate of \(\mu_{Y}\), we use:
\[
\begin{aligned}
B_{L} \approx 2 \sqrt{\frac{\sigma_{W ; L}^{2}}{n}\left(\frac{N-n}{N-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{L}^{2}}{4}}_{=D_{L}}=\frac{\sigma_{W ; L}^{2}}{n}\left(\frac{N-n}{N-1}\right) \Longleftrightarrow \\
\frac{(N-1) D_{L}}{\sigma_{W ; L}^{2}}=\frac{N-n}{n}=\frac{N}{n}-1 & \Longleftrightarrow \frac{(N-1) D_{L}+\sigma_{W ; L}^{2}}{\sigma_{W ; L}^{2}}=\frac{N}{n}, \\
& \Longleftrightarrow n_{L}=\frac{N \sigma_{W ; L}^{2}}{(N-1) D_{L}+\sigma_{W ; L}^{2}} .
\end{aligned}
\]

For \(\tau_{Y}\), we use:
\[
\begin{gathered}
B_{\tau ; L} \approx 2 N \sqrt{\frac{\sigma_{W ; L}^{2}}{n}\left(\frac{N-n}{N-1}\right)} \Longleftrightarrow n_{\tau ; L}=\frac{N \sigma_{W ; L}^{2}}{(N-1) D_{\tau ; L}+\sigma_{W ; L}^{2}} \\
\text { where } D_{\tau ; L}=\frac{B_{\tau ; L}^{2}}{4 N^{2}} .
\end{gathered}
\]

Since we do not know usually know \(\sigma_{W ; L^{2}}^{2}\), we often draw a small preliminary sample on which we compute the sample \(s_{W ; L^{\prime}}^{2}\), which is used as an estimator of \(\sigma_{W ; L}^{2}{ }^{45}\)

Example Determine the sample size \(n\) required to estimate the average life expectancy \(\mu_{Y}\) using regression estimation against the logarithm of GDP per capita in 2011, with a bound of error on the estimation of \(B_{L}=1\), if \(\sigma_{W ; L} \approx 5.194\) and \(N=168\).

Using the formula, we have:
\[
n_{L}=\frac{168(5.194)^{2}}{167\left(1^{2} / 4\right)+(5.194)^{2}}=65.94498 \Longrightarrow n_{L} \geq 66
\]

Since there are good reasons to trust that the relationship between life expectancy and log GNP per capita in 2011 is approximately linear (see Figure 10.8), the regression approach is a strong one. \({ }^{46}\) How does it compare with the example that uses ratio estimation?

\subsection*{10.5.3 Difference Estimation}

Difference estimation is another special case of regression estimation, where the slope \(\beta\) is now assumed to be 1 .

If \(\mu_{X}\) is known, the difference estimator \(\hat{\mu}_{Y ; D}\) of \(\mu_{Y}\) computed from a SRS \(y\) is
\[
\hat{\mu}_{Y ; D}=\bar{y}+\left(\mu_{X}-\bar{x}\right) .
\]

Difference estimation is a good strategy when the relationship between \(X\) and \(Y\) is approximately linear and of slope \(1,{ }^{47}\) as long as the variance of \(Y\) along this line is constant for all \(X\). Since \(\mathscr{y}\) is drawn according to a SRS, \(\mathrm{E}(\bar{x})=\mu_{X}\) and \(\mathrm{E}(\bar{y})=\mu_{Y}\), from which we conclude that
\[
\mathrm{E}\left(\hat{\mu}_{Y ; D}\right)=\mathrm{E}(\bar{y})+\left(\mu_{X}-\mathrm{E}(\bar{x})\right)=\mu_{Y}+\left(\mu_{X}-\mu_{X}\right)=\mu_{Y} .
\]

Consider the random variable \(D=Y-X\), whose expectation is
\[
\mu_{D}=\mu_{Y}-\mu_{X}
\]

The sample mean of \(D\) is thus
\[
\bar{d}=\bar{y}-\bar{x} \Longrightarrow \hat{\mu}_{Y ; D}=\mu_{X}+(\bar{y}-\bar{x})=\mu_{X}+\bar{d}
\]

Consequently,
\[
\mathrm{V}\left(\hat{\mu}_{Y ; D}\right)=\mathrm{V}\left(\mu_{X}+\bar{d}\right)=\mathrm{V}(\bar{d})=\frac{\sigma_{D}^{2}}{n}\left(\frac{N-n}{N-1}\right) .
\]

But
\[
\begin{aligned}
\sigma_{D}^{2} & =\frac{1}{N} \sum_{j=1}^{N}\left(D_{j}-\mu_{D}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N}\left\{\left(Y_{j}-X_{j}\right)-\left(\mu_{Y}-\mu_{X}\right)\right\}^{2} \\
& =\frac{1}{N} \sum_{j=1}^{N}\left\{\left(Y_{j}-\mu_{Y}\right)-\left(X_{j}-\mu_{X}\right)\right\}^{2}=\sigma_{Y}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\sigma_{X}^{2}
\end{aligned}
\]
where \(\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}\). As such,
\[
\mathrm{V}\left(\hat{\mu}_{Y ; D}\right)=\frac{\sigma_{Y}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right)
\]

The difference estimator \(\hat{\mu}_{Y ; D}\) follows approximately a normal distribution \(\mathcal{N}\left(\mathrm{E}\left(\hat{\mu}_{Y ; D}\right), \mathrm{V}\left(\hat{\mu}_{Y ; D}\right)\right)\), from which we obtain the bound on the error of estimation
\[
B_{D} \approx \hat{B}_{D}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\mu}_{Y ; D}\right)} \approx 2 \sqrt{\frac{s_{D}^{2}}{n}\left(1-\frac{n}{N}\right)}
\]
where
\[
s_{D}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}=s_{Y}^{2}-2 \hat{\rho} s_{X} s_{Y}+s_{X}^{2}
\]

48: We tackle \(\tau_{Y}\) and \(p_{Y}\) in the usual manner.
so that C.I. \({ }_{D}\left(\mu_{Y} ; 0.95\right): \hat{\mu}_{Y ; D} \pm \hat{B}_{D}\) is an approximate \(95 \%\) C.I. for \(\mu_{Y} .{ }^{48}\)

Example Auditors are often interested in comparing the audited value \(Y\) of items with their book value \(X\). Suppose that \(N=180\) items in inventory have a book value of \(\tau_{X}=13,320\). A SRS of \(n=10\) items yields the following data:
\begin{tabular}{ccccccccccc}
\hline item \(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Audit \(y_{i}\) & 9 & 14 & 7 & 29 & 45 & 109 & 40 & 238 & 60 & 170 \\
Book \(x_{i}\) & 10 & 12 & 8 & 26 & 47 & 112 & 36 & 240 & 59 & 167 \\
\(d_{i}=y_{i}-x_{i}\) & -1 & 2 & -1 & 3 & -2 & -3 & 4 & -2 & 1 & 3 \\
\hline
\end{tabular}

Find a \(95 \%\) C.I. for the mean audit value \(\mu_{Y}\) using difference estimation.


From the scatterplot, we surmise that the slope of the linear fit of \(Y\) against \(X\) is approximately 1 . We must compute \(\bar{d}\) and \(s_{D}^{2}\) :
\[
\sum_{i=1}^{10} d_{i}=4, \quad \sum_{i=1}^{10} d_{i}^{2}=58, \Longrightarrow \bar{d}=\frac{4}{10} \quad \text { and } \quad s_{D}^{2}=\frac{58-10(0.4)^{2}}{10-1}=6.27
\]

Since \(\mu_{X}=\frac{\tau_{X}}{N}=\frac{13320}{180}=74\), the difference estimator is
\[
\hat{\mu}_{Y ; D}=\mu_{X}+\bar{d}=74+0.4=74.4
\]
and the bound is
\[
\hat{B}_{D} \approx 2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\mu}_{D}\right)}=2 \sqrt{\frac{6.27}{10}\left(1-\frac{10}{180}\right)}=1.54,
\]
from which
\[
\text { C.I. }{ }_{D}\left(\mu_{Y} ; 0.95\right): \quad 74.4 \pm 1.54 \equiv(72.86,75.94)
\]

Example Consider a bivariate SRS sample \(\mathscr{y}=\left\{\left(x_{i}, y_{i}\right)\right\}\) of size \(n=132\), drawn from a population of size \(N=37,444\). In a preceding study, we
found that \(\mu_{X} \approx 70.3\). Find a \(95 \%\) C.I. for \(\mu_{Y}\) using difference estimation, assuming that
\[
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=9464.6, \quad \sum_{i=1}^{n} y_{i}=14691.6 \\
& \sum_{i=1}^{n} x_{i}^{2}=686773.2, \quad \sum_{i=1}^{n} x_{i} y_{i}=1062186, \quad \sum_{i=1}^{n} y_{i}^{2}=1670194 .
\end{aligned}
\]

In a previous example, we have already computed
\[
\bar{x}=71.7, \bar{y} \approx 111.3, s_{X}^{2} \approx 62.2, s_{Y}^{2} \approx 267.3, s_{X Y} \approx 67.2
\]

The difference estimator is thus
\[
\hat{\mu}_{Y ; D}=\bar{y}+\left(\mu_{x}-\bar{x}\right)=111.3+(70.3-71.7)=109.9
\]
so that
\[
\hat{B}_{D} \approx 2 \sqrt{\frac{267.3-2(67.2)+62.2}{132}\left(1-\frac{132}{37444}\right)}=2.427
\]
and
\[
\text { C.I. }{ }_{D}\left(\mu_{\curlyvee} ; 0.95\right) \equiv 109.9 \pm 2.427
\]

Example Find a 95\% C.I. for the average life expectancy by country in \(2011 \mu_{Y}\) using the difference method with the logarithm of GDP per capita per country ( \(X\) ), using a sample of size \(n=20\). Assume that \(\mu_{X}=7.84\) is known.

We draw a sample of size \(n=20\) and compute the various required quantities.
```

set.seed(1234567) \# for replicability
N=nrow(gapminder.RLD); n=20
index = sample(1:N,n, replace=FALSE)
samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]
d = samp$life_expectancy - samp$lgdppc

```
```

(mu.X = mean(gapminder.RLD[,"lgdppc"]))
(y.bar = mean(samp$life_expectancy))
(x.bar = mean(samp$lgdppc))
(d.bar = mean(d))
(s2.d = var(d))

```
[1] 7.842661
[1] 70.105
[1] 7.577646
[1] 62.52735
[1] 47.69057

Note that the regression slope does not seem to be 1 (if that was the case, we would expect \(\bar{y} / \bar{x} \approx 1\) ). Difference estimation is not recommended in
this case, but we will continue the example nonetheless.
The bound on the error of estimation and the difference estimate are computed below, and the confidence interval is:
```

B = 2*sqrt(s2.d/n*(1-n/N))
hat.mu.Y.D = y.bar + (mu.X-x.bar)
c(hat.mu.Y.D-B,hat.mu.Y.D+B)

```
[1] 67.4712973 .26874

In spite of the difference estimation assumptions not being met, the \(95 \%\) C.I. for \(Y\) does contain the true value, \(\mu_{Y}=70.95\) ! A happy coincidence, no more.

\section*{Sample Size}

As with the other methods, we can determine the sample size required to achieve a certain bound on the error of estimation.

In order to estimate \(\mu_{Y}\) and \(\tau_{Y}\) via difference estimation, use:
\[
\begin{aligned}
& B_{\mu ; D} \approx 2 \sqrt{\frac{\sigma_{D}^{2}}{n}\left(\frac{N-n}{N-1}\right)} \Longleftrightarrow n_{\mu ; D}=\frac{N \sigma_{D}^{2}}{(N-1) D_{\mu ; D}+\sigma_{D}^{2}} ; \\
& B_{\tau ; D} \approx 2 N \sqrt{\frac{\sigma_{D}^{2}}{n}\left(\frac{N-n}{N-1}\right)} \Longleftrightarrow n_{\tau ; D}=\frac{N \sigma_{D}^{2}}{(N-1) D_{\tau ; D}+\sigma_{D}^{2}},
\end{aligned}
\]
where
\[
D_{\mu ; D}=\frac{B_{\mu ; D}^{2}}{4} \quad \text { and } \quad D_{\tau ; D}=\frac{B_{\tau ; D}^{2}}{4 N^{2}} .
\]

As we do not know usually know \(\sigma_{D}^{2}\), we often draw a small preliminary sample and use the empirical variance \(s_{D}^{2}\) as an estimator of \(\sigma_{D}^{2}\).
Warning! Even if formal manipulations can still be performed, the estimate may not be valid if the relationship between the variables \(X\) and \(Y\) is not linear with slope \(\approx 1\).

\subsection*{10.5.4 Comparisons}

We have already compared the bounds on the error of estimation for SRS, STS (Prop), and STS (Neyman), and discussed contexts in which one might expect a STS to be preferable to an SRS, or a STS (Neyman) preferable to a STS (Prop).
What can be said about ratio, regression, and difference estimation, both compared to SRS and to each other?

\section*{Comparaison Between SRS and the Ratio Method}

In what context can we expect ratio estimation to perform "well"? Obviously, the relationship between \(Y\) and \(X\) must at least be linear and pass through the origin, i.e.,
\[
y_{i}=\beta x_{i}+\varepsilon_{i}, \quad i=1, \ldots, n .
\]

It is generally assumed that the observations \(\left\{x_{i}>0\right\}\) are fixed, and that the error terms \(\left\{\varepsilon_{i}\right\}\) are independent of each other, with
\[
\mathrm{E}\left(\varepsilon_{i}\right)=0 \quad \text { and } \quad \mathrm{V}\left(\varepsilon_{i}\right)=f\left(x_{i}\right) \sigma^{2}>0
\]

The question becomes: what form must \(f\left(x_{i}\right)\) take so that the least squares solution \(\hat{\beta}\) is exactly the estimator \(r\) of the ratio \(R\) ?

If we set
\[
\underbrace{\frac{y_{i}}{\sqrt{f\left(x_{i}\right)}}}_{y_{i}^{\prime}}=\beta \underbrace{\frac{x_{i}}{\sqrt{f\left(x_{i}\right)}}}_{x_{i}^{\prime}}+\underbrace{\frac{\varepsilon_{i}}{\sqrt{f\left(x_{i}\right)}}}_{\varepsilon_{i}^{\prime}}, \quad i=1, \ldots, n
\]
we get
\[
\mathrm{E}\left(\varepsilon_{i}^{\prime}\right)=\frac{1}{\sqrt{f\left(x_{i}\right)}} \mathrm{E}(\varepsilon)=0 \quad \text { and } \quad \mathrm{V}\left(\varepsilon_{i}^{\prime}\right)=\frac{1}{f\left(x_{i}\right)} \mathrm{V}\left(\varepsilon_{i}^{\prime}\right)=\frac{f\left(x_{i}\right) \sigma^{2}}{f\left(x_{i}\right)}=\sigma^{2}
\]
and the assumptions of the least squares problem are satisfied. The estimator \(\beta\) is obtained by minimizing
\[
Q(\beta)=\sum_{i=1}^{n}\left(\varepsilon_{i}^{\prime}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{\prime}-\beta x_{i}^{\prime}\right)^{2}=\sum_{i=1}^{n} \frac{1}{f\left(x_{i}\right)}\left(y_{i}-\beta x_{i}\right)^{2} ;
\]
since
\[
Q^{\prime}(\beta)=-2 \sum_{i=1}^{n} \frac{x_{i}}{f\left(x_{i}\right)}\left(y_{i}-\beta x_{i}\right),
\]
this is equivalent to solving
\(0=\sum_{i=1}^{n} \frac{x_{i}}{f\left(x_{i}\right)}\left(y_{i}-\hat{\beta} x_{i}\right) \Longleftrightarrow 0=\sum_{i=1}^{n}\left(\frac{x_{i} y_{i}}{f\left(x_{i}\right)}-\hat{\beta} \frac{x_{i}^{2}}{f\left(x_{i}\right)}\right) \Longleftrightarrow \hat{\beta}=\frac{\sum_{i=1}^{n} \frac{x_{i} y_{i}}{f\left(x_{i}\right)}}{\sum_{i=1}^{n} \frac{x_{i}^{2}}{f\left(x_{i}\right)}}\).

If \(\frac{x_{i}}{f\left(x_{i}\right)}=k>0\) for all \(i=1, \ldots, n\), the estimator \(\hat{\beta}\) becomes
\[
\hat{\beta}=\frac{k \sum_{i=1}^{n} y_{i}}{k \sum_{i=1}^{n} x_{i}}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}}=r .
\]

Thus, when the variance of \(Y\) along the line \(Y=\beta X\) is
\[
\mathrm{V}\left(y_{i}\right)=\mathrm{V}\left(\beta x_{i}+\varepsilon_{i}\right)=\mathrm{V}\left(\varepsilon_{i}\right)=x_{i} \sigma^{2}
\]
(i.e., the variance of \(Y\) is proportional to \(X\) ), the estimator \(r\) of the ratio \(R\) is exactly the least squares solution, \(\hat{\beta}=r\), and we can expect ratio estimation to produce "good" results.

Of course, one can use the ratio estimation method with a SRS \(y\) to obtain an estimate \(\hat{\mu}_{Y ; R}\) of \(\mu_{Y}\) even if \(\mathrm{V}(\varepsilon) \neq x \sigma^{2}\).

We have already determined the variance of this estimator:
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; R}\right) & =\mathrm{V}\left(r \mu_{X}\right)=\mu_{X}^{2} \mathrm{~V}(r) \approx \frac{1}{n}\left(\sigma_{Y}^{2}+R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y}\right)\left(\frac{N-n}{N-1}\right) \\
& =\underbrace{\frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)}_{\mathrm{V}\left(\bar{y}_{\text {SRS }}\right)}+\frac{R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right) .
\end{aligned}
\]

Consequently, \(\mathrm{V}\left(\bar{y}_{\text {SRS }}\right) \gg \mathrm{V}\left(\hat{\mu}_{Y ; R}\right)\) if and only if \(R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y} \ll 0\), which is to say if
\[
\rho \gg \frac{R \sigma_{X}}{2 \sigma_{Y}}=\frac{\mu_{Y} \sigma_{X}}{2 \mu_{X} \sigma_{Y}}=\frac{1}{2} \cdot \frac{\mathrm{CV}_{X}}{\mathrm{CV}} .
\]

\section*{Comparaison Between SRS and the Regression Method}

We have already determined the variance of the estimator \(\hat{\mu}_{Y ; L}\) of \(\mu_{Y}\) :
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; L}\right) & \approx\left(1-\rho^{2}\right) \frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)=\underbrace{\frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)}_{\mathrm{V}\left(\bar{y}_{\text {SRS }}\right)}-\rho^{2} \cdot \frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& =\left(1-\rho^{2}\right) \mathrm{V}\left(\bar{y}_{\text {SRS }}\right) .
\end{aligned}
\]

Consequently, \(\mathrm{V}\left(\hat{\mu}_{Y ; L}\right) \ll \mathrm{V}\left(\bar{y}_{\text {SRS }}\right)\) when \(\left(1-\rho^{2}\right) \mathrm{V}\left(\bar{y}_{\text {SRS }}\right) \ll \mathrm{V}\left(\bar{y}_{\text {SRS }}\right)\), which is to say that
\[
1-\rho^{2} \ll 1 \Longleftrightarrow 0 \ll|\rho| \leq 1
\]

\section*{Comparaison Between SRS and the Difference Method}

We have already determined the variance of the estimator \(\hat{\mu}_{Y ; D}\) of \(\mu_{Y}\) :
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; D}\right) & =\frac{\sigma_{Y}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\sigma_{X}^{2}}{n}\left(\frac{N-n}{N-1}\right) \\
& =\underbrace{\frac{\sigma_{Y}^{2}}{n}\left(\frac{N-n}{N-1}\right)}_{\mathrm{V}\left(\bar{y}_{\text {SRS }}\right)}+\frac{\sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y}}{n}\left(\frac{N-n}{N-1}\right) .
\end{aligned}
\]

Consequently, \(\mathrm{V}\left(\hat{\mu}_{Y ; D}\right) \ll \mathrm{V}\left(\bar{y}_{\text {SRS }}\right)\) when \(\sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y} \ll 0 \Longleftrightarrow \sigma_{X}^{2} \ll 2 \sigma_{X Y}\).

\section*{Comparaison Between the Ratio, Regression, and Difference Methods}

For each of the estimators \(\hat{\mu}_{Y ; \alpha}, \alpha \in\{R, L, D\}\), we have shown that the sampling variance takes the (approximate) form
\[
\mathrm{V}\left(\hat{\mu}_{Y ; \alpha}\right) \approx \mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right)+\frac{A_{\alpha}}{n}\left(\frac{N-n}{N-1}\right)
\]
where
\[
A_{\alpha}= \begin{cases}R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y}, & \alpha=R \\ -\rho^{2} \sigma_{Y}^{2}, & \alpha=L \\ \sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y}, & \alpha=D\end{cases}
\]

In general, \(\mathrm{V}\left(\hat{\mu}_{Y ; \alpha}\right) \ll \mathrm{V}\left(\hat{\mu}_{Y ; \gamma}\right)\) if and only if \(A_{\alpha} \ll A_{\gamma}\); these are the terms that must be compared to one another.

For instance,
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; R}\right) \gg \mathrm{V}\left(\hat{\mu}_{Y ; L}\right) & \Longleftrightarrow R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y} \gg-\rho^{2} \sigma_{Y}^{2} \\
& \Longleftrightarrow R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y}+\rho^{2} \sigma_{Y}^{2} \gg 0 \\
& \Longleftrightarrow\left(R \sigma_{X}-\rho \sigma_{Y}\right)^{2} \gg 0 \Longleftrightarrow\left|R \sigma_{X}-\rho \sigma_{Y}\right| \gg 0 \\
& \Longleftrightarrow R \gg \rho \frac{\sigma_{Y}}{\sigma_{X}}=\hat{\beta} \quad \text { or } \quad R \ll \hat{\beta}
\end{aligned}
\]

All things being equal, the regression estimator is preferable to the ratio estimator (according to their bounds on the error of estimation) when the ratio is quite different from the slope of the regression line.

Similarly,
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; D}\right) \gg \mathrm{V}\left(\hat{\mu}_{Y ; L}\right) & \Longleftrightarrow \sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y} \gg-\rho^{2} \sigma_{Y}^{2} \\
& \Longleftrightarrow \sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\rho^{2} \sigma_{Y}^{2} \gg 0 \\
& \Longleftrightarrow\left(\sigma_{X}-\rho \sigma_{Y}\right)^{2} \gg 0 \Longleftrightarrow\left|\sigma_{X}-\rho \sigma_{Y}\right| \gg 0 \\
& \Longleftrightarrow 1 \gg \frac{\sigma_{Y}}{\sigma_{X}}=\hat{\beta} \quad \text { or } \quad 1 \ll \hat{\beta} .
\end{aligned}
\]

All things being equal, the regression estimator is preferable to the difference estimator (according to their bounds on the error of estimation) when the slope of the regression line takes a value far from 1.

But the regression estimator is always at least as good as the other two since the latter two are special cases of regression estimation.

Finally, we can also compare the estimators by the ratio and by the difference:
\[
\begin{aligned}
\mathrm{V}\left(\hat{\mu}_{Y ; R}\right) \gg \mathrm{V}\left(\hat{\mu}_{Y ; D}\right) & \Longleftrightarrow R^{2} \sigma_{X}^{2}-2 R \rho \sigma_{X} \sigma_{Y} \gg \sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y} \\
& \Longleftrightarrow|R| \neq 1 \quad \text { and } \quad \sigma_{X}^{2} \gg \frac{2}{R+1} \sigma_{X Y}
\end{aligned}
\]
and
\[
\mathrm{V}\left(\hat{\mu}_{Y ; D}\right) \gg \mathrm{V}\left(\hat{\mu}_{Y ; R}\right) \Longleftrightarrow|R| \neq 1 \quad \text { and } \quad \sigma_{X}^{2} \ll \frac{2}{R+1} \sigma_{X Y}
\]

Otherwise, the variances are of relatively similar magnitude.

\subsection*{10.6 Cluster Sampling}

In practice, collecting sample data can require a tremendous amount of travel. Imagine a survey where the residents of the entire country are the target population, and a range of demographic and health indicators are measured about the units:
- age, height, weight, ethnicity, neighborhood, etc;
- blood pressure, blood cholesterol and mercury levels, body-mass index, etc.

Some of the information can be self-reported by the units (age, ethnicity, etc.), but in many cases (body-mass index, mercury levels, etc.), data collection requires the use of health experts and specialized equipment.
If all the sample units are from the Greater Toronto Area (GTA), say, it may be efficient to move the panel of experts (with all the required equipment in a trailer) from site to site, staying 2 weeks at each site. With about 20 sites in the GTA, data collection would take about a year to complete, but the cost of the survey would be greatly reduced: each night, the interviewers would go home; the cost of moving the equipment would also be minimized because of the small distances involved.

In a national study, where units could be drawn from several jurisdictions and remote locations, this approach is no longer necessarily recommended as it is potentially very expensive. Instead, one could start by taking a first sample of geographic areas (cities, regional municipalities, etc.), and then select a sub-sample of units (residents) in each of these areas.
Such a strategy is known as multi-stage sampling ( \(\mathrm{M} n \mathrm{~S}\), see Section 10.7.3). Stratified sampling, for example, is a M2S for which the first level sample is a census and the second level sample is a SRS.
As another example, when the first level sample comes from a SRS and the second level sample is a census (all units are selected), we speak of cluster sampling (CLS).

\subsection*{10.6.1 Estimators and Confidence Intervals}

As it was the case in the second chapter, we are interested in a finite population \(U=\left\{u_{1}, \ldots, u_{N}\right\}\) of expectation \(\mu\) and variance \(\sigma^{2}\).
Suppose we can cover the population with \(M\) disjoint clusters containing, respectively, \(N_{1}, \ldots, N_{M}\) units, so that \(N_{1}+\cdots+N_{M}=N\) :
\[
\mathscr{G}_{1}=\left\{u_{1,1}, \ldots, u_{1, N_{1}}\right\}, \cdots, \mathscr{G}_{M}=\left\{u_{M, 1}, \ldots, u_{M, N_{M}}\right\}
\]
with cluster expectation, total, and variance given by
\(\mu_{i}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} u_{i, j}, \quad \tau_{i}=N_{i} \mu_{i}, \quad\) and \(\quad \sigma_{i}^{2}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} u_{i, j}^{2}-\mu_{i}^{2}, \quad 1 \leq i \leq M\).


A cluster random sample (CLS) \(\mathscr{Y}\) is a subset of the target population \(U\) which is obtained by first drawing a SRS of \(m>1\) clusters, and then selecting all units in the selected clusters:
\(\mathscr{G}_{i_{1}} \cup \cdots \cup \mathscr{G}_{i_{m}}=\{\underbrace{y_{i_{1}, 1}, \ldots, y_{i_{1}, N_{i_{1}}}}_{\text {cluster } \mathscr{S}_{i_{1}}}, \ldots, \underbrace{y_{i_{m}, 1}, \ldots, y_{i_{m}, N_{i_{m}}}}_{\text {cluster } \mathscr{S}_{i_{m}}}\} \subseteq \bigcup_{\ell=1}^{M} \mathscr{G}_{\ell}=\mathscr{U}\).

When \(\mathscr{S}_{i_{k}}\) belongs to the CLS \(\mathscr{y}\), we denote its mean, total, and variance by \(\bar{y}_{i_{k}}, y_{i_{k}}\), and \(s_{i_{k}}^{2}\), respectively, for \(1 \leq k \leq m\).

In a CLS design, each observation has the same probability of being selected, but the sample size may change from one CLS to another, unless the clusters all have the same size in the first place.

\section*{Estimating the Mean \(\mu\) for Clusters of Equal Size}

Let us assume that all clusters have the same size: \(N_{1}=\cdots=N_{M}=\) \(n \Longrightarrow N=M n\). The cluster mean of the sample observations in \(\mathscr{y}\) is an estimator of \(\mu\) :
\[
\bar{y}_{C}=\frac{1}{m n} \sum_{k=1}^{m} \sum_{j=1}^{n} y_{i_{k}, j}=\frac{1}{m n} \sum_{k=1}^{m} y_{i_{k}}=\frac{1}{m} \sum_{k=1}^{m} \bar{y}_{i_{k}}=\frac{1}{m} \sum_{k=1}^{m} \mu_{i_{k}} .
\]

Therefore, the cluster average is simply the average of the selected cluster averages. This is not surprising since
\[
\mu=\frac{1}{N} \sum_{\ell=1}^{M} \sum_{j=1}^{n} u_{\ell, j}=\frac{1}{M n} \sum_{\ell=1}^{M} \sum_{j=1}^{n} u_{\ell, j}=\frac{1}{M n} \sum_{\ell=1}^{M} \tau_{\ell}=\frac{1}{M} \sum_{\ell=1}^{M} \mu_{\ell} .
\]

We can easily show that \(\bar{y}_{C}\) is an unbiased estimator of \(\mu\) :
\[
\mathrm{E}\left(\bar{y}_{C}\right)=\frac{1}{m} \sum_{k=1}^{m} \mathrm{E}\left(\mu_{i_{k}}\right)=\frac{1}{m} \sum_{k=1}^{m} \mu=\mu .
\]

Furthemore, its sampling variance is
\[
\mathrm{V}\left(\bar{y}_{C}\right)=\frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right), \quad \text { where } \sigma_{C}^{2}=\frac{1}{M} \sum_{\ell=1}^{M}\left(\mu_{\ell}-\mu\right)^{2},
\]

Figure 10.10: Schematics of CLS: target population (left) and sample (right).
since clusters are drawn using an SRS. Indeed, \(\bar{y}_{C}\) is the mean of a SRS with \(m\) :
\[
\left\{\mu_{i_{1}}, \ldots, \mu_{i_{m}}\right\} \subseteq\left\{\mu_{1}, \ldots, \mu_{M}\right\}
\]

Central Limit Theorem - CLS: if \(m\) and \(M-m\) are sufficiently large, then
\[
\bar{y}_{C} \sim_{\text {approx. }} \mathcal{N}\left(\mathrm{E}\left(\bar{y}_{C}\right), \mathrm{V}\left(\bar{y}_{C}\right)\right)=\mathcal{N}\left(\mu, \frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right)\right) .
\]

In a CLS, the bound on the error of estimation is thus
\[
B_{\mu ; C}=2 \sqrt{\mathrm{~V}\left(\bar{y}_{C}\right)}=2 \sqrt{\frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right)}
\]
and the corresponding \(\mathbf{9 5 \%}\) C.I. for \(\mu\) is simply
\[
\text { C.I. }(\mu ; 0.95): \quad \bar{y}_{C} \pm B_{\mu ; C}
\]

In practice, the variance of the cluster means \(\sigma_{C}^{2}\) is rarely known - the empirical variance (and the corresponding correction factor) is used instead:
\[
\hat{\mathrm{V}}\left(\bar{y}_{C}\right)=\frac{s_{C}^{2}}{m}\left(1-\frac{m}{M}\right), \text { where } s_{C}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(\bar{y}_{i_{k}}-\bar{y}_{C}\right)^{2} .
\]

The bound on the error of estimation is then approximated by
\[
\begin{aligned}
B_{\mu ; C} \approx & \approx \hat{B}_{\mu ; C}=2 \sqrt{\hat{\mathrm{~V}}\left(\bar{y}_{C}\right)}=2 \sqrt{\frac{s_{C}^{2}}{m}\left(1-\frac{m}{M}\right)}, \\
& \Longrightarrow \text { C.I. }(\mu ; 0.95): \quad \bar{y}_{C} \pm \hat{B}_{\mu ; C} \equiv \bar{y}_{C} \pm 2 \sqrt{\frac{s_{C}^{2}}{m}\left(1-\frac{m}{M}\right)} .
\end{aligned}
\]

Example Consider a finite population \(U\) of size \(N=37\), 444, divided into \(M=44\) clusters \(\mathscr{C}_{\ell}\), each of size \(n=851\). We draw a SRS of \(m=6\) clusters. The means of these clusters are:
\[
\bar{y}_{1}=120.7, \bar{y}_{2}=75.2, \bar{y}_{3}=116.3, \bar{y}_{4}=111.1, \bar{y}_{5}=116.9, \bar{y}_{6}=96.6 .
\]

Find a \(95 \%\) C.I. for the mean \(\mu\).
The bound on the error of estimation for \(\mu\) is \(\approx \hat{B}_{\mu ; C}=2 \sqrt{\hat{V}\left(\bar{y}_{C}\right)}\); we see that
\(\bar{y}_{C}=\frac{1}{6} \sum_{k=1}^{6} \bar{y}_{k} \approx 106.1, s_{C}^{2}=\frac{1}{6-1} \sum_{k=1}^{6}\left(\bar{y}_{k}-\bar{y}_{C}\right)^{2}=\frac{69089.6-6(106.1)^{2}}{6-1} \approx 300.8\),
from which we have
\[
\text { C.I.C }(\mu ; 0.95) \approx 106.1 \pm 2 \sqrt{\frac{300.8}{6}\left(1-\frac{6}{44}\right)} \equiv(93.0,119.3) .
\]

\section*{Estimating the Mean \(\mu\) for Clusters of Different Sizes}

In practice, the clusters are often all of different sizes, so we could write
\[
\mu=\frac{\sum_{\ell=1}^{M} \sum_{j=1}^{N_{\ell}} u_{\ell, j}}{\sum_{\ell=1}^{M} N_{\ell}}=\frac{\sum_{\ell=1}^{M} \tau_{\ell}}{\sum_{\ell=1}^{M} N_{\ell}}
\]
where \(\tau_{\ell}\) is the sum of \(u_{\ell, j}\) for units in the cluster \(\mathscr{G}_{\ell, 1} \leq \ell \leq M .{ }^{49}\)
If we still draw \(m\) clusters from the population of \(M\) clusters using an SRS, the form of \(\mu\) suggests the use of the following estimator:
\[
\bar{y}_{C}=\frac{\sum_{k=1}^{m} \sum_{j=1}^{N_{i_{k}}} y_{i_{k}, j}}{\sum_{k=1}^{m} N_{i_{k}}}=\frac{\sum_{k=1}^{m} y_{i_{k}}}{\sum_{k=1}^{m} N_{i_{k}}}
\]
where we are using the notation of Section 10.5.
If the average cluster size is \(\bar{N}=\frac{N}{M}\), this is similar to the situation that leads to ratio estimation of the mean. By performing the mapping \(\left(\bar{y}_{C}, \mu, \bar{N}, \tau_{\ell}, N_{\ell}\right) \leftrightarrow\left(r, R, \mu_{X}, Y_{j}, X_{j}\right)\), we can therefore conclude that \(\bar{y}_{C}\) is a biased estimator of \(\mu\), whose sampling variance is
\[
\mathrm{V}\left(\bar{y}_{C}\right) \approx \frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(\frac{M-m}{M-1}\right) \cdot \frac{1}{M} \sum_{\ell=1}^{M}(\underbrace{\left.\tau_{\ell}-\mu N_{\ell}\right)^{2}}_{=N_{\ell}\left(\mu_{\ell}-\mu\right)} .
\]

Consequently, the bound on the error of estimation is given by
\[
B_{\mu ; C}=2 \sqrt{\mathrm{~V}\left(\bar{y}_{C}\right)} \approx 2 \sqrt{\frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(\frac{M-m}{M-1}\right) \cdot \frac{1}{M} \sum_{\ell=1}^{M}\left(\tau_{\ell}-\mu N_{\ell}\right)^{2}} .
\]

In practice, we often only have access to the sampled clusters - we must then use the empirical variance:
\[
\begin{aligned}
\hat{\mathrm{V}}\left(\bar{y}_{C}\right) & \approx \frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right) \cdot \frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\bar{y}_{C} N_{i_{k}}\right)^{2} \\
& =\frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right)\left(s_{Y}^{2}+s_{N}^{2} \bar{y}_{C}^{2}-2 \bar{y}_{C} \hat{\rho} s_{N} s_{Y}\right), \quad \text { where } \\
s_{Y}^{2} & =\frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\overline{\bar{y}}\right)^{2}, \quad s_{N}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(N_{i_{k}}-\bar{N}\right)^{2}, \\
\hat{\rho} & =\frac{\sum_{k=1}^{m}\left(y_{i_{k}}-\overline{\bar{y}}\right)\left(N_{i_{k}}-\bar{N}\right)}{\sqrt{\sum_{k=1}^{m}\left(y_{i_{k}}-\overline{\bar{y}}\right)^{2} \sum_{k=1}^{m}\left(N_{i_{k}}-\bar{N}\right)^{2}}} \quad, \quad \overline{\bar{y}}=\frac{1}{m} \sum_{k=1}^{m} y_{i_{k}} .
\end{aligned}
\]

Since it is not always possible to determine the average \(\bar{N}\) of the clusters in the population \(U\), we often use \(\bar{n}\), the average cluster size in the
sample \(\mathscr{y}\) instead:
\[
\bar{n}=\frac{N_{i_{1}}+\cdots+N_{m}}{m} .
\]

The bound on the error of estimation is thus
\[
\hat{B}_{\mu ; C} \approx 2 \sqrt{\frac{1}{\bar{n}^{2}} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right)\left(s_{Y}^{2}+s_{N}^{2} \bar{y}_{C}^{2}-2 \bar{y}_{C} \hat{\rho} s_{N} s_{Y}\right)}
\]
and the approximate \(\mathbf{9 5 \%}\) C.I. for \(\mu\) is
\[
\text { C.I. } C(\mu ; 0.95): \quad \bar{y}_{C} \pm \hat{B}_{\mu ; C} .
\]

Example Consider a finite population \(U\) of size \(N=37,444\), divided into \(M=44\) clusters \(\mathscr{C}_{\ell}\). We draw a SRS of \(m=6\) clusters. The means of the observations in these clusters are:
\begin{tabular}{ccccccc}
\hline\(k\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\bar{y}_{k}\) & 120.7 & 75.2 & 116.3 & 111.1 & 116.9 & 96.6 \\
\(N_{k}\) & 850 & 176 & 1011 & 1001 & 843 & 910 \\
\hline
\end{tabular}

Find a \(95 \%\) C.I. for the mean \(\mu\).
The bound on the error of estimation is \(\approx \hat{B}_{\mu ; C}=2 \sqrt{\hat{V}\left(\bar{y}_{C}\right)}\); we see that
\[
\begin{aligned}
& \bar{y}_{C}=\frac{\sum_{k=1}^{6} N_{k} \bar{y}_{k}}{\sum_{k=1}^{6} N_{k}}=\frac{531073.3}{4791} \approx 110.8, \quad \bar{n}=\frac{1}{6} \sum_{k=1}^{6} N_{k}=\frac{4791}{6}=798.5 \\
& \overline{\bar{y}}=\frac{\sum_{k=1}^{6} N_{k} \bar{y}_{k}}{6}=\frac{531073.3}{6}=88,512.2, \\
& s_{N}^{2}=\frac{1}{6-1} \sum_{k=1}^{6}\left(N_{k}-\bar{n}\right)^{2}=98,146.7 \\
& s_{Y}^{2}=\frac{1}{6-1} \sum_{k=1}^{6}\left(N_{k} \bar{y}_{k}-\overline{\bar{y}}\right)^{2}=1,465,229,403.4 \\
& \hat{\rho}=\frac{\sum_{k=1}^{6}\left(N_{k}-\bar{n}\right)\left(N_{k} \bar{y}_{k}-\overline{\bar{y}}\right)}{\sqrt{\sum_{k=1}^{6}\left(N_{k}-\bar{n}\right)^{2} \sum_{k=1}^{6}\left(N_{k} \bar{y}_{k}-\overline{\bar{y}}\right)^{2}}} \approx 0.9796 \\
& s_{Y}^{2}+s_{N}^{2} \bar{y}_{C}^{2}-2 \bar{y}_{C} \hat{\rho} s_{N} s_{Y}=66,814,598.95
\end{aligned}
\]
from which we conclude that
\[
\hat{\mathrm{V}}\left(\bar{y}_{C}\right)=\frac{1}{798.5^{2}} \cdot \frac{1}{6}\left(1-\frac{6}{44}\right)(66,814,598.95) \approx 15.1
\]
and C.I. \((\mu ; 0.95) \approx 110.8 \pm 2 \sqrt{15.1} \equiv(103.1,118.6)\).

Example Find a \(95 \%\) C.I. for the average life expectancy by country in 2011 (including India and China), using a CLS of size \(m=8\), assuming that the \(N=185\) countries have been grouped into \(M=22\) clusters determined by geographic regions.

We re-use the code from the previous sections, \({ }^{50}\) The cluster sizes in the population are as follows.
```

gapminder.CLS <- gapminder |> filter(year==2011) |> select(life_expectancy, region)
summary(gapminder.CLS,22)

```
\begin{tabular}{llr} 
life_expectancy & & region \\
Min. \(\quad: 46.70\) & Australia and New Zealand: 2 \\
list Qu.:65.30 & Caribbean & \(: 13\) \\
Median :73.70 & Central America & \(: 8\) \\
Mean \(: 71.18\) & Central Asia & \(: 5\) \\
3rd Qu.:77.40 & Eastern Africa & \(: 16\) \\
Max. :83.02 & Eastern Asia & \(: 6\) \\
& & Eastern Europe \\
& Melanesia & \(: 10\) \\
& Micronesia & \(: 5\) \\
& & Middle Africa \\
& Northern Africa & \(: 8\) \\
& Northern America & \(: 6\) \\
& Northern Europe & \(: 3\) \\
& Polynesia & \(: 10\) \\
& South America & \(: 3\) \\
& South-Eastern Asia & \(: 12\) \\
& Southern Africa & \(: 5\) \\
& Southern Asia & \(: 8\) \\
& Southern Europe & \(: 12\) \\
& Western Africa & \(: 16\) \\
& Western Asia & \(: 18\) \\
& Western Europe & \(: 7\)
\end{tabular}

We note that the average life expectancy is \(\mu=71.18\). We can explore the distribution of life expectancy by cluster using the following code:
```

ggplot(data=gapminder.CLS, aes(x=life_expectancy, y=region, fill=region)) +
geom_point(col="black", alpha=.2,pch=22) +
theme(legend.title = element_blank(), legend.position="none")

```


We notice a significant variability between some clusters (Southern Africa vs. Southern Europe, for example), but there is still a lot of overlap (which is a good sign). Next, we draw a SRS of \(m=8\) clusters:
```

set.seed(12345) \# for replicability
regions=unique(gapminder.CLS[,"region"])
M=length(regions); m=8
(sample.reg = sample(1:M,m, replace=FALSE))

```
[1] \(14 \begin{array}{lllllll}19 & 16 & 11 & 2 & 21 & 6 & 7\end{array}\)

We provide a summary of the observations in the sampled clusters:
```

sample.ind = gapminder.CLS$region %in% regions[sample.reg]
gapminder.CLS.n = gapminder.CLS[sample.ind,]
gapminder.CLS.n$region <- as.factor(gapminder.CLS.n\$region)
(summ = gapminder.CLS.n |> group_by(region) |>
summarise(N=n(), y.bar=mean(life_expectancy),
total.y=sum(life_expectancy)))

region	N y.barre total.y		
<fct>	<int>	<dbl>	<dbl>
1 Australia and New Zealand	2	81.5	163
2 Central America	8	75.0	600.
3 Central Asia	5	69.4	347.
4 Melanesia	5	65.5	328.
5 Northern Africa	6	70.7	424.
6 Northern America	3	77.2	232.
7 South-Eastern Asia	10	72.6	726.
8 Western Asia	18	75.8	136

```

We can also produce a summary of this summary:
```

(summ.final = summ |>
summarise(sum.N = sum(N), moy.N = mean(N),
y.bar.bar = mean(total.y),
sum.y.bar = sum(total.y)))

```
\# A tibble: \(1 \times 4\)
    sum.N moy.N y.barre.barre sum.y.barre
    <int> <dbl> <dbl> <dbl>
\(\begin{array}{llll}1 & 57 & 7.12 & 523 .\end{array}\)

We can now calculate the cluster estimator:
```

(est.y.bar.G=summ.final$sum.y.bar/summ.final$sum.N

```
[1] 73.40316

\section*{Next, its sampling variance:}
```

s2.Y = var(summ$total.y)
s2.N = var(summ$N)
rho = cor(summ$N, summ$total.y)
V.est.y.G = 1/summ.final\$moy.N^2*1/m*(1-m/M)*
(s2.Y+s2.N*est.y.bar.G^2-
2*est.y.bar.G*rho*sqrt(s2.N*s2.Y))

```

The bound on the error of estimation and the \(95 \%\) C.I. for \(\mu\) are:
```

B = 2*sqrt(V.est.y.G)
c(est.y.bar.G - B,est.y.bar.G + B)

```
[1] 71.3531075 .45321

The performance of CLS is generally worse than that of SRS and/or STS - no surprise, given the discussion at the beginning of this section. The nature of the clusters may also play a role (in contrast to STS, CLS is more efficient when the cluster structure is similar from one cluster to another), which is not really the case here. We will discuss this further.

\section*{Estimating the Total \(\tau\)}

Most of the work has already been done: since the total \(\tau\) can be rewritten as
\[
\tau=\sum_{j=1}^{N} u_{j}=N \mu,
\]
we can estimate the total with a CLS using the formula
\[
\hat{\tau}_{C}=N \bar{y}_{C} .
\]

There are two possibilities: either \(N_{1}=\cdots=N_{M}=n\), or the clusters are not all the same size.

If \(N_{1}=\cdots=N_{M}=n\), we have an unbiased estimator of \(\tau\) :
\(\mathrm{E}\left(\hat{\tau}_{C}\right)=\mathrm{E}\left(N \bar{y}_{C}\right)=N \cdot \mathrm{E}\left(\bar{y}_{C}\right)=N \mu=\tau\),
\(\mathrm{V}\left(\hat{\tau}_{C}\right)=N^{2} \cdot \mathrm{~V}\left(\bar{y}_{C}\right)=N^{2} \cdot \frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right) \approx N^{2} \cdot \hat{\mathrm{~V}}\left(\bar{y}_{C}\right)=N^{2} \cdot \frac{s_{C}^{2}}{m}\left(1-\frac{m}{M}\right)\).

If the clusters are of different sizes, we have a biased estimator of \(\tau\), with sampling variance given by
\[
\begin{aligned}
\mathrm{V}\left(\hat{\tau}_{C}\right) & =\mathrm{V}\left(N \bar{y}_{C}\right)=N^{2} \cdot \mathrm{~V}\left(\bar{y}_{C}\right) \approx N^{2} \cdot \hat{\mathrm{~V}}\left(\bar{y}_{C}\right) \\
& =\frac{N^{2}}{\bar{N}^{2}} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right)\left(s_{Y}^{2}+s_{N}^{2} \bar{y}_{C}^{2}-2 \bar{y}_{C} \hat{\rho} s_{N} s_{Y}\right) \\
& =M^{2} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right)\left(s_{Y}^{2}+s_{N}^{2} \bar{y}_{C}^{2}-2 \bar{y}_{C} \hat{\rho} s_{N} s_{Y}\right) .
\end{aligned}
\]

The estimator follows an approximate normal distribution
\[
\hat{\tau}_{C} \sim_{\text {approx }} \mathcal{N}\left(\mathrm{E}\left(\hat{\tau}_{C}\right), \hat{\mathrm{V}}\left(\hat{\tau}_{C}\right)\right),
\]
as long as the quantities \(m\), and \(M-m\) are both "large enough".
In both cases, the bound on the error of estimation is
\[
B_{\tau ; C} \approx \hat{B}_{\tau ; C}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\tau}_{C}\right)}
\]
and the \(\mathbf{9 5 \%}\) C.I. for \(\tau\) takes the usual form:
\[
\text { C.I. }{ }_{C}(\tau ; 0.95): \quad \hat{\tau}_{C} \pm \hat{B}_{\tau ; C} .
\]

Example Consider a finite population \(\mathcal{U}\) of size \(N=37,444\), divided into \(M=44\) clusters \(\mathscr{C}_{\ell}\), each of size \(n=851\). We draw a SRS of \(m=6\) clusters. The means of the observations in these clusters are:
\[
\bar{y}_{1}=120.7, \bar{y}_{2}=75.2, \bar{y}_{3}=116.3, \bar{y}_{4}=111.1, \bar{y}_{5}=116.9, \bar{y}_{6}=96.6 .
\]

Find a \(95 \%\) C.I. for the total \(\tau\) in \(\mathcal{U}\).
We have previously seen that C.I.C \((\mu ; 0.95) \equiv(93.0,119.3)\) for this CLS, with \(N_{1}=\cdots=N_{6}=851\). Therefore,
\[
\text { C.I.C }(\tau ; 0.95) \approx 37444(93.0,119.3) \equiv(3481307.7,4466805.3)
\]

Example Consider a finite population \(U\) of size \(N=37\), 444, divided into \(M=44\) clusters \(\mathscr{C}_{\ell}\). We draw a SRS of \(m=6\) clusters. The mean of the observations in these clusters are:
\begin{tabular}{ccccccc}
\hline\(k\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(\bar{y}_{k}\) & 120.7 & 75.2 & 116.3 & 111.1 & 116.9 & 96.6 \\
\(N_{k}\) & 850 & 176 & 1011 & 1001 & 843 & 910 \\
\hline
\end{tabular}

Find a \(95 \%\) C.I. for the total \(\tau\) in \(U\).
We have already seen in a previous example that C.I.C \((\mu ; 0.95) \equiv\) \((103.1,118.6)\) for this CLS with different cluster sizes. Therefore,
\[
\text { C.I. } C(\tau ; 0.95) \approx 37444(103.1,118.6) \equiv(3860476,4440858) .
\]

WARNING: how do we do this if the size \(N\) of the population is unknown? Note that
\[
\tau=\sum_{\ell=1}^{M} \tau_{\ell}=M \cdot \frac{1}{M} \sum_{\ell=1}^{M} \tau_{\ell}=M \bar{\tau}
\]
where \(\bar{\tau}\) is mean of the cluster totals in the population.
We could then use the estimator
\[
M \bar{y}_{T}=M \cdot \frac{1}{m} \sum_{k=1}^{m} y_{i_{k}},
\]
where \(\bar{y}_{T}\) is the mean of the \(m\) cluster totals in the CLS.
In that case, we are dealing with a SRS of size \(m\), drawn from \(M\) cluster totals, i.e., this is an unbiased estimator:
\[
\begin{aligned}
& \mathrm{E}\left(M \bar{y}_{T}\right)=\tau \\
& \mathrm{V}\left(M \bar{y}_{T}\right)=M^{2} \cdot \mathrm{~V}\left(\bar{y}_{T}\right)=M^{2} \cdot \frac{\sigma_{T}^{2}}{m}\left(\frac{M-m}{M-1}\right) \\
& \hat{\mathrm{V}}\left(M \bar{y}_{T}\right) \approx M^{2} \cdot \hat{\mathrm{~V}}\left(\bar{y}_{T}\right)=M^{2} \cdot \frac{s_{T}^{2}}{m}\left(1-\frac{m}{M}\right),
\end{aligned}
\]
where
\[
\sigma_{T}^{2}=\frac{1}{M} \sum_{\ell=1}^{M}\left(\tau_{\ell}-\bar{\tau}\right)^{2} \quad \text { and } \quad s_{T}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\bar{y}_{T}\right)^{2}
\]

The estimator follows an approximate normal distribution
\[
M \bar{y}_{T} \sim_{\operatorname{approx}} \mathcal{N}\left(\tau, \hat{\mathrm{V}}\left(M \bar{y}_{T}\right)\right)
\]
as long as the quantities \(m\), and \(M-m\) are both "large enough".
The bound on the error of estimation is then
\[
B_{\tau ; T} \approx \hat{B}_{\tau ; T}=2 \sqrt{\hat{\mathrm{~V}}\left(M \bar{y}_{T}\right)}
\]
and the \(95 \%\) C.I. for \(\tau\) takes the usual form:
\[
\text { C.I. } T(\tau ; 0.95): \quad M \bar{y}_{T} \pm \hat{B}_{\tau ; T} .
\]

Example Consider a finite population \(\mathcal{U}\) of unknown size, divided into \(M=44\) clusters \(\mathscr{S}_{\ell}\). We draw a SRS of \(m=6\) clusters. The mean of the observations in these clusters are:
\begin{tabular}{ccccccc}
\hline\(k\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\(\bar{y}_{k}\) & 120.7 & 75.2 & 116.3 & 111.1 & 116.9 & 96.6 \\
\(N_{k}\) & 850 & 176 & 1011 & 1001 & 843 & 910 \\
\hline
\end{tabular}

Find a \(95 \%\) C.I. for the total \(\tau\) in \(U\).
Since the population size \(N\) is unknown, the bound on the error of estimation for \(\tau\) is \(\approx \hat{B}_{\tau ; T}=2 \sqrt{\hat{\mathrm{~V}}\left(M \bar{y}_{T}\right)}\); we see that
\(\bar{y}_{T}=\frac{1}{6} \sum_{k=1}^{6} N_{k} \bar{y}_{k}=\frac{531073.3}{6} \approx 88512.2, \quad M \bar{y}_{T}=44(88512.2)=3894537.5\)
and
\[
s_{T}^{2}=\frac{1}{6-1} \sum_{k=1}^{6}\left(N_{k} \bar{y}_{k}-\bar{y}_{T}\right)^{2}=\frac{1}{5}\left(\sum_{k=1}^{6} N_{k}^{2} \bar{y}_{k}^{2}-6 \bar{y}_{T}^{2}\right)=1465229403,
\]
from which we conclude that
\[
\hat{\mathrm{V}}\left(M \bar{y}_{T}\right)=(44)^{2} \cdot \frac{1465229403}{6}\left(1-\frac{6}{44}\right)=408310593755.73
\]
and C.I. \(T(\tau ; 0.95) \approx 3894537.5 \pm 2 \sqrt{408310593755.73} \equiv(2616554,5172521)\).
The estimator is unbiased, but the confidence interval for \(\tau\) is much wider than that given by C.I. \(C(\tau ; 0.95) \equiv(3860476,4440858)\); this is not surprising since we have more information in the latter case (namely, the size \(N\) of the population).

Example Find a \(95 \%\) C.I. for the world population in 2011 (excluding China and India), using a CLS of size \(m=8\), drawn from \(M=22\) clusters determined by geographic regions.

We re-use the code from the previous sections to create the clusters. The true population total is found below:
```

gapminder.CLS.pop <- gapminder |> filter(year==2011) |>
select(population, region) |>
filter(population < 500000000)
(sum(gapminder.CLS.pop\$population))

```
[1] 4264258312

We start by studying the distribution of population by region:
```

ggplot(data=gapminder.CLS.pop, aes(x=population, y=region,
fill=population)) +
geom_point(col="black", alpha=.2,pch=22) +
theme(legend.title = element_blank(),
legend.position="none")

```


The essential statistics are calculated as follows:
```

summ.pop = gapminder.CLS.pop |> group_by(region) |>
summarise(N=n(), y.pop=mean(population),
tau.pop=sum(population))

```

Next we draw a SRS of clusters:
```

set.seed(22) \# for replicability
regions = unique(gapminder.CLS.pop[,"region"])
M=length(regions); m=8
N=nrow(gapminder.CLS.pop)
(sample.reg = sample(l:M,m, replace=FALSE))

```
[1] \(6 \quad 9 \quad 101217 \quad 511 \quad 3\)

The sample is summarized as follows:
```

sample.ind = gapminder.CLS.pop$region %in%
 regions[sample.reg]
gapminder.CLS.T = gapminder.CLS.pop[sample.ind,]
gapminder.CLS.T$region <- as.factor(gapminder.CLS.T\$region)
(summ.T = gapminder.CLS.T |> group_by(region) |>
summarise(N=n(), tau=sum(population)))

```
\begin{tabular}{lrr} 
\# A tibble: \(8 \times 3\) & & \\
region & N & tau \\
<fct> & <int> & <int> \\
1 Central America & 8 & 163510619 \\
2 Eastern Europe & 10 & 294249971 \\
3 Middle Africa & 8 & 134483803 \\
4 Northern Europe & 10 & 99989705 \\
5 South America & 12 & 401182686 \\
6 Southern Asia & 7 & 450825356 \\
7 Western Africa & 16 & 316604189 \\
8 Western Asia & 18 & 237909741
\end{tabular}

If we assume the number of units in the population to be known \((N=183)\), the estimator of the average population per country is:
\[
(y . G=\operatorname{sum}(\text { summ.T\$tau)}) / \text { sum }(\text { summ.T\$N) })
\]
[1] 23581529

The estimator for the total population (excluding China and India) is:
\[
(\text { tau. } G=N * y . G)
\]

The bound on the error of estimation and the \(95 \%\) C.I. for \(\tau\) are:
```

s2.G = 1/(m-1)*sum((summ.T$tau-y.G*summ.T$N)^2)
V = M^2*s2.G/m*(1-m/M)
B = 2*sqrt(V)
c(tau.G-B,tau.G+B)

```

\section*{[1] 24419181426188921427}

If we assume instead that the number of units is unknown, the estimator of the population per cluster is:
```

(y.T = sum(summ.T\$tau)/m)

```

\section*{[1] 262344509}

The estimator for the total population (excluding China and India) would then be:
```

(tau.T = M*y.T)

```

\section*{[1] 5771579192}

The bound on the error of estimation and the \(95 \%\) C.I. for \(\tau\) in that case are computed below:
```

s2.T = 1/(m-1)*sum((summ.T\$tau-y.T)^2)
V = M^2*s2.T/m*(1-m/M)
B = 2*sqrt(V)
C(tau.G-B,tau.G+B)

```

\section*{[1] 27468576625883981906}

51: But different SRS of clusters might lead to different outcomes.

The actual value \(\tau=4,264,258,312\) is found within the \(95 \%\) C.I. \({ }^{51}\)

\section*{Estimating a Proportion \(p\)}

In a population where \(A_{\ell, j} \in\{0,1\}\) represents the absence or presence of a characteristic for the \(j\) th unit in the \(\ell\) th cluster, the mean
\[
p=\frac{1}{N} \sum_{\ell=1}^{M} \sum_{j=1}^{N_{\ell}} A_{\ell, j}=\frac{\sum_{\ell=1}^{M} A_{\ell}}{\sum_{\ell=1}^{M} N_{\ell}}
\]
is the proportion of the population units possessing the characteristic, where \(A_{\ell}\) is the number of units with the characteristic in the \(\ell\) th cluster.

If we are still drawing \(m\) clusters using a SRS from the \(M\) clusters in the population, the form taken by \(p\) suggests the use of the following estimator:
\[
\hat{p}_{C}=\frac{\sum_{k=1}^{m} \sum_{j=1}^{N_{i_{k}}} a_{i_{k}, j}}{\sum_{k=1}^{m} N_{i_{k}}}=\frac{\sum_{k=1}^{m} a_{i_{k}}}{\sum_{k=1}^{m} N_{i_{k}}}
\]
where \(a_{i_{k}}\) is the number of units with the characteristic in the \(k\) th sampled cluster.

Set \(\bar{N}=\frac{N}{M}\). If \(N\) is unknown, we use \(\bar{N} \approx \bar{n}=\frac{1}{m}\left(N_{i_{1}}+\cdots+N_{i_{m}}\right)\). There are then two possibilities: either \(N_{1}=\cdots=N_{M}=n\), or the clusters are not all of the same size. If \(N_{1}=\cdots=N_{M}=n\), we have an unbiased estimator of \(p\) :
\(\mathrm{E}\left(\hat{p}_{C}\right)=p, \quad \mathrm{~V}\left(\hat{p}_{C}\right)=\frac{1}{n^{2}} \cdot \frac{\sigma_{P}^{2}}{m}\left(\frac{M-m}{M-1}\right) \approx \frac{1}{n^{2}} \cdot \frac{s_{P}^{2}}{m}\left(1-\frac{m}{M}\right)=\hat{\mathrm{V}}\left(\hat{p}_{C}\right)\),
where
\[
\sigma_{P}^{2}=\frac{1}{M} \sum_{\ell=1}^{M}\left(A_{\ell}-p N_{\ell}\right)^{2} \quad \text { and } \quad s_{P}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(a_{i_{k}}-\hat{p}_{C} N_{i_{k}}\right)^{2} .
\]

If the clusters are of different sizes, we have a biased estimator of \(p\), whose sampling variance is:
\[
\mathrm{V}\left(\hat{p}_{C}\right) \approx \frac{1}{\bar{N}^{2}} \cdot \frac{\sigma_{P}^{2}}{m}\left(\frac{M-m}{M-1}\right), \quad \hat{\mathrm{V}}\left(\hat{p}_{C}\right) \approx \frac{1}{\bar{n}^{2}} \cdot \frac{s_{P}^{2}}{m}\left(1-\frac{m}{M}\right) .
\]

The estimator follows an approximate normal distribution
\[
\hat{p}_{C} \sim_{\text {approx }} \mathcal{N}\left(\mathrm{E}\left(\hat{p}_{C}\right), \hat{\mathrm{V}}\left(\hat{p}_{C}\right)\right),
\]
as long as the quantities \(m\), and \(M-m\) are both "large enough".
In both cases, the bound on the error of estimation is
\[
B_{p ; C} \approx \hat{B}_{p ; C}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{p}_{C}\right)}
\]
and the \(\mathbf{9 5 \%}\) C.I. for \(p\) takes the usual form:
\[
\text { C.I. } C(p ; 0.95): \quad \hat{p}_{C} \pm \hat{B}_{p ; C} .
\]

Example Find a \(95 \%\) C.I. for the proportion of countries whose life expectancy is above 75 years in 2011, using a CLS with \(m=8\), assuming that the countries are grouped into \(M=22\) clusters determined by geographic regions.

We re-use the code of the previous sections to create the clusters, and we create a new indicator variable for the 75 years life expectancy threshold:
```

gapminder.CLS$life.75 <- ifelse(
 gapminder.CLS$life_expectancy>75,1,0)
gapminder.CLS.75 <- gapminder.CLS |> select(life.75,region)
(mean(gapminder.CLS.75\$life.75)) \# true proportion

```
[1] 0.3945946

We begin by examining the proportions in each region:
```

summ.75 = gapminder.CLS.75 |>
group_by(region) |>
summarise(N=n(), p.hat=mean(life.75))
ggplot(data=summ.75,aes(x=p.hat, y=region, size=N, fill=p.hat)) +
geom_point(col="black", alpha=.2,pch=22) +
theme(legend.title = element_blank(), legend.position="none")

```


The proportion of countries with a life expectancy of more than 75 years is found to vary greatly from region to region - this may affect the quality of the estimate.

Next, we draw a SRS of \(m-8\) clusters:
```

set.seed(0) \# for replicability
regions = unique(gapminder.CLS[,"region"])
M=length(regions)
m=8
(sample.reg = sample(1:M,m, replace=FALSE))

```
[1] \(14 \quad 4 \quad 7 \quad 1 \quad 2112218\)

Then, we provide a summary of the proportions by cluster:
```

sample.ind = gapminder.CLS$region %in% regions[sample.reg]
gapminder.CLS.G = gapminder.CLS[sample.ind,]
gapminder.CLS.G$region <- as.factor(gapminder.CLS.G\$region)
(summ.75.n = gapminder.CLS.G |>
group_by(region) |>
summarise(N=n(), p.hat=mean(life.75)))

```
```


A tibble: 8 x 3

 region
 N p.hat
 <fct>
 <int> <dbl>
 1 Australia and New Zealand 2 1
2 Caribbean 13 0.385
3 Central America 8 0.5
4 Micronesia 2 0
5 Northern Africa 6 0.333
6 Northern Europe 10 0.8
7 South-Eastern Asia 10 0.2
8 Southern Europe 12 1

```

We now have enough information to compute the CLS estimator of the proportion:
```

(p.G = sum(summ.75.n$N*summ.75.n$p.hat)/sum(summ.75.n\$N))

```
[1] 0.5555556

Finally, we compute the sampling variance, the margin of error, and the \(95 \%\) C.I. for \(p\) (assuming that the average cluster size is not known):
```

mean.size = sum(summ.75.n$N)/m
s2.p.G = 1/(m-1)*sum((summ.75.n$N*summ.75.n$p.hat-
 p.G*summ.75.n$N)^2)
V = 1/mean.size^2*s2.p.G/m*(1-m/M)
(B = 2*sqrt(V))
c(p.G-B,p.G+B)

```
[1] 0.2025966
[1] 0.35295900 .7581521

The actual value \(p=0.394\) is indeed within the \(95 \%\) confidence interval. We assumed that the average cluster size was unknown; is this also the case if we use the known value \(\bar{N}=\frac{185}{22} \approx 8.41\) ?

The observations of the Gapmider dataset are probably not that suitable for CLS ... at least, not if we use regions as clusters.

\subsection*{10.6.2 Sample Size}

Depending on whether the clusters are of equal size or not, the variance formulas take different forms; however, they coincide when \(N_{i}=n\) for all \(i\); it is only the nature of the estimator bias and the exactness of its sampling variance that are affected.

Consequently, we will only study the situation where the clusters are assumed to be of different sizes. In what follows, we will use the notations
\[
\sigma_{E}^{2}=\frac{1}{M} \sum_{\ell=1}^{M}\left(\tau_{\ell}-\mu N_{\ell}\right)^{2} \quad \text { and } \quad s_{E}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\bar{y}_{C} N_{i_{k}}\right)^{2}
\]

\section*{Mean \(\mu\)}

If we want to estimate \(\mu\) with \(\bar{y}_{C}\), we use:
\[
\begin{aligned}
B_{\mu ; C}=2 \sqrt{\frac{1}{\bar{N}^{2}} \cdot \frac{\sigma_{E}^{2}}{m}\left(\frac{M-m}{M-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{\mu ; C}^{2} \bar{N}^{2}}{4}}_{=D_{\mu}}=\frac{\sigma_{E}^{2}}{m}\left(\frac{M-m}{M-1}\right) \\
& \Longleftrightarrow \frac{(M-1) D_{\mu}}{\sigma_{E}^{2}}=\frac{M-m}{m}=\frac{M}{m}-1 \\
& \Longleftrightarrow \frac{(M-1) D_{\mu}+\sigma_{E}^{2}}{\sigma_{E}^{2}}=\frac{M}{m} \\
& \Longleftrightarrow m_{\mu ; C}=\frac{M \sigma_{E}^{2}}{(M-1) D_{\mu}+\sigma_{E}^{2}} .
\end{aligned}
\]

Obviously, we can only use this formula if we know the variance \(\sigma_{E}^{2}\) of the cluster totals in the population \(\mathcal{U}\). If that is not available, we can use the empirical variance \(s_{E}^{2}\) from a preliminary sample, or that from a prior survey. \({ }^{52}\)

Finally, note that this formula allows us to determine the number of clusters \(m\) to be drawn from a SRS of clusters in order to obtain some margin of error on the estimate; the sample size may change from one realization to another, depending on the size of the sampled clusters.

Example Consider a company that wants a cost inventory for the \(N=625\) items in stock. In practice, it might be tedious to obtain a SRS of these items; however, the items are arranged on \(M=100\) shelves and it is relatively easy to select a SRS of shelves, treating each shelf as a cluster of items. How many shelves would need to be sampled in order to estimate the average value of all items in inventory with a bound on the error of estimation of at most \(B_{\mu ; C}=1.25 \$\), assuming \(\sigma_{E}^{2} \approx 317.53 \$\) ?
Set \(D_{\mu}=\frac{B_{\mu ; C}^{2} \bar{N}^{2}}{4}=\frac{(1.25)^{2}(6.25)^{2}}{4} \approx 15.26\); then \(m_{\mu ; C}=\frac{M \sigma_{E}^{2}}{(M-1) D_{\mu}+\sigma_{E}^{2}}=\frac{100(317.53)}{(100-1)(15.26)+317.53}=17.4 \approx 18\).

\section*{Total \(\tau\)}

If we want to estimate \(\tau\) with \(N \bar{y}_{C}\), we use:
\[
\begin{aligned}
B_{\tau ; C}=2 \sqrt{M^{2} \cdot \frac{\sigma_{E}^{2}}{m}\left(\frac{M-m}{M-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{\tau ; C}^{2}}{4 M^{2}}}_{=D_{\tau ; C}}=\frac{\sigma_{E}^{2}}{m}\left(\frac{M-m}{M-1}\right) \\
& \Longleftrightarrow \frac{(M-1) D_{\tau ; C}}{\sigma_{E}^{2}}=\frac{M-m}{m}=\frac{M}{m}-1 \\
& \Longleftrightarrow \frac{(M-1) D_{\tau ; C}+\sigma_{E}^{2}}{\sigma_{E}^{2}}=\frac{M}{m} \\
& \Longleftrightarrow m_{\tau ; C}=\frac{M \sigma_{E}^{2}}{(M-1) D_{\tau ; C}+\sigma_{E}^{2}} .
\end{aligned}
\]

Example Consider a company that wants a cost inventory for the \(N=625\) items in stock. In practice, it might be tedious to obtain a SRS of these items; however, the items are arranged on \(M=100\) shelves and it is relatively easy to select a SRS of shelves, treating each shelf as a cluster of items. How many shelves would need to be sampled in order to estimate the total value of all items in inventory with a bound on the error of estimation of at most \(B_{\tau ; C}=600 \$\), assuming \(\sigma_{E}^{2} \approx 317.53 \$\) ?
Set \(D_{\tau ; C}=\frac{B_{\tau ; C}^{2}}{4 M^{2}}=\frac{(600)^{2}}{4(100)^{2}}=9\); then
\[
m_{\tau ; C}=\frac{M \sigma_{E}^{2}}{(M-1) D_{\tau ; C}+\sigma_{E}^{2}}=\frac{100(317.53)}{(100-1)(9)+317.53}=26.3 \approx 27
\]

If we want to estimate \(\tau\) with \(M \bar{y}_{T}\), we use:
\[
\begin{aligned}
B_{\tau ; T}=2 \sqrt{M^{2} \cdot \frac{\sigma_{T}^{2}}{m}\left(\frac{M-m}{M-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{\tau ; T}^{2}}{4 M^{2}}}_{=D_{\tau}}=\frac{\sigma_{T}^{2}}{m}\left(\frac{M-m}{M-1}\right) \\
& \Longleftrightarrow \frac{(M-1) D_{\tau}}{\sigma_{T}^{2}}=\frac{M-m}{m}=\frac{M}{m}-1 \\
& \Longleftrightarrow \frac{(M-1) D_{\tau}+\sigma_{T}^{2}}{\sigma_{T}^{2}}=\frac{M}{m} \\
& \Longleftrightarrow m_{\tau ; T}=\frac{M \sigma_{T}^{2}}{(M-1) D_{\tau}+\sigma_{T}^{2}} .
\end{aligned}
\]

Example Consider a company that wants a cost inventory for the \(N=625\) items in stock. In practice, it might be tedious to obtain a SRS of these items; however, the items are arranged on \(M=100\) shelves and it is relatively easy to select a SRS of shelves, treating each shelf as a cluster of items. How many shelves would need to be sampled in order to estimate the total value of all items in inventory with a bound on the error of estimation of at most \(B_{\tau ; T}=600 \$\), assuming \(\sigma_{T}^{2} \approx 682.77 \$\) ?

Set \(D_{\tau ; T}=\frac{B_{\tau ; T}^{2}}{4 M^{2}}=\frac{(600)^{2}}{4(100)^{2}}=9\); then
\[
m_{\tau ; T}=\frac{M \sigma_{T}^{2}}{(M-1) D_{\tau ; T}+\sigma_{T}^{2}}=\frac{100(682.77)}{(100-1)(9)+682.77}=43.4 \approx 44
\]

\section*{Proportion \(p\)}

If we want to estimate \(p\) with \(\hat{p}_{C}\), we use:
\[
\begin{aligned}
B_{p ; C}=2 \sqrt{\frac{1}{\bar{N}^{2}} \cdot \frac{\sigma_{p}^{2}}{m}\left(\frac{M-m}{M-1}\right)} & \Longleftrightarrow \underbrace{\frac{B_{p ; C}^{2} \bar{N}^{2}}{4}}_{=D_{p ; C}}=\frac{\sigma_{p}^{2}}{m}\left(\frac{M-m}{M-1}\right) \\
& \Longleftrightarrow \frac{(M-1) D_{p ; C}}{\sigma_{P}^{2}}=\frac{M-m}{m}=\frac{M}{m}-1 \\
& \Longleftrightarrow \frac{(M-1) D_{p ; C}+\sigma_{P}^{2}}{\sigma_{P}^{2}}=\frac{M}{m} \\
& \Longleftrightarrow m_{p ; C}=\frac{M \sigma_{P}^{2}}{(M-1) D_{p ; c}+\sigma_{P}^{2}} .
\end{aligned}
\]

\subsection*{10.6.3 Comparison Between SRS and CLS}

Consider a ClS \(\mathscr{y}\) consisting of \(m\) clusters drawn from a population \(\mathcal{U}\) of size \(N\), distributed in \(M\) clusters. Let \(\mu\) be the mean and \(\sigma^{2}\) the variance of the population \(U\).

If the clusters are all of size \(n\), we can show that
\[
\mathrm{V}\left(\bar{y}_{C}\right) \approx \frac{\sigma^{2}-\overline{\sigma^{2}}}{m}\left(1-\frac{m}{M}\right), \quad \text { where } \quad \overline{\sigma^{2}}=\frac{1}{M} \sum_{\ell=1}^{M} \sigma_{\ell}^{2},
\]
where \(\sigma_{\ell}^{2}\) is the variance in the \(\ell\) th cluster.
But we can also consider \(\mathscr{y}\) as having arisen from a SRS with size \(m n\). In that case, we have
\(\mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right)=\frac{\sigma^{2}}{m n}\left(\frac{N-m n}{N-1}\right) \approx \frac{\sigma^{2}}{m n}\left(1-\frac{m n}{N}\right)=\frac{\sigma^{2}}{m n}\left(1-\frac{m n}{M n}\right)=\frac{\sigma^{2}}{m n}\left(1-\frac{m}{M}\right)\),
from which we conclude that
\[
\begin{aligned}
\mathrm{V}\left(\bar{y}_{C}\right)-\mathrm{V}\left(\bar{y}_{\mathrm{SRS}}\right) & \approx \frac{1}{m}\left(1-\frac{m}{M}\right)\left(\sigma^{2}-\overline{\sigma^{2}}-\frac{\sigma^{2}}{n}\right)=\frac{1}{m}\left(1-\frac{m}{M}\right)\left(\frac{n-1}{n} \sigma^{2}-\overline{\sigma^{2}}\right) \\
& \approx \frac{1}{m}\left(1-\frac{m}{M}\right)\left(\sigma^{2}-\overline{\sigma^{2}}\right), \quad \text { si } n-1 \approx n
\end{aligned}
\]

Consequently, \(\mathrm{V}\left(\bar{y}_{\mathrm{C}}\right) \gg \mathrm{V}\left(\bar{y}_{\text {SRS }}\right)\) if and only if \(\sigma^{2} \gg \overline{\sigma^{2}}\), which is the case when the mean of the cluster variances is smaller than the variance in the population.

The moral of the story is that a ClS is effective if the clusters, regardless of their size, are as heterogeneous as the population itself.


\subsection*{10.7 Special Topics}

We complete this introduction to survey sampling by discussing a few additional topics. \({ }^{53}\)

\subsection*{10.7.1 Systematic Sampling}

With the advent of easy-to-access pseudo-random number generators, \({ }^{54}\) it is not very arduous to draw a pseudo SRS \(\mathscr{y}\) of size \(n\) from a population \(U\) of size \(N\) (assuming that we have an appropriate sampling frame, of course).

However, it remains possible for the obtained sample to not be representative of the population: a SRS of countries that do not include China or India, for example, would not be very useful if we are trying to estimate the average population of the world's countries.

In some cases, a systematic sampling design (SYS) can be used to maximize the probability that the random sample \(y\) represents the population.

Here is how we draw a \(1-\mathrm{in}-M\) systematic sample of size \(n(\) or \(n+1)\) from an ordered list of size \(N\) :
1. determine the integer part \(M=\left\lfloor\frac{N}{n}\right\rfloor\);
2. randomly select an integer \(\gamma\) in \(\{1,2, \ldots, M\}\);
3. the sample \(\mathscr{y}\) then contains the values corresponding to units
\[
\underbrace{\gamma, \gamma+M, \gamma+2 M, \ldots, \gamma+(n-1) M}_{n \text { units }}, \underbrace{\gamma+n M}_{\text {if } \gamma+n M \leq N} .
\]

If the ordering of the units in the sampling frame is fixed, there can only be \(M\) different SYS samples of size \(n\) (or \(n+1\), in some cases).

Example The Gapminder dataset contains socio-economic information on \(N=185\) countries in 2011. What are the average life expectancy and population of the world's countries?

Figure 10.11: Schematics of SYS: target population (left) and sample (right).

53: A few of which could even be called advanced.

We modify the code allowing us to access the data set:
```

gapminder.SYS <- gapminder |> filter(year==2011) |>
select(country, life_expectancy, population)
N=nrow(gapminder.SYS)

```

There are 185 units in the data set. If we are interested in a SYS of size \(n=20\), say, the integer \(M\) is:
```

n=20
(M=floor(N/n))

```

\section*{[1] 9}

The vector of observations \(0, M, 2 M, \ldots, n M\) is therefore:
```

index = M*(0:n)

```

We construct \(M=9\) samples \(\mathscr{Y}_{i}, i=1, \ldots, 9\), assuming that the units appear in alphabetical order (by country name) in the dataset.
```

moy.SYS.life_exp = c() \# initialization - life expectation
moy.SYS.pop = c() \# initialization - population
for(j in 1:M){\# all SYS of size n or n+1, alpha order
index.tmp = j + index
index.tmp <- index.tmp[index.tmp < N+1] \# keeping indices <= N
sample.sys = gapminder.SYS[index.tmp,2:3]
moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)
 moy.SYS.pop[j]=mean(sample.sys$population)
}

charts

par(mfrow=c(1,2))
plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")
plot(moy.SYS.pop, xlab="sample", ylab="mean population")

```



Could you identify the sample that contains China or India? What if we change the order in which the countries are listed in the dataset?
```

gapminder.SYS <- gapminder.SYS[order(gapminder.SYS$population),]
for(j in 1:M){# all SYS of size n or n+1, population order
 index.tmp = j + index
 index.tmp <- index.tmp[index.tmp < N+1]
 sample.sys = gapminder.SYS[index.tmp,2:3]
 moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)
moy.SYS.pop[j]=mean(sample.sys\$population)
}
par(mfrow=c(1,2))
plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")
plot(moy.SYS.pop, xlab="sample", ylab="mean population")

```


We obtain similar results when ordering the units in the dataset by life expectancy.

In general, if there is a correlation between the position (rank) of the unit in the sampling frame and the value of the variable of interest, the sampling variance of the SYS estimator will be lower than that of the SRS estimator, because the sample is more likely to be representative of the population.

If there is no such correlation, the SYS sample is essentially an SRS sample, and the sampling variances are comparable - a SYS is as likely to be representative of the population as an SRS.

Finally, if the step \(M\) is aligned with the periodicity of the values of the variable of interest, it is the opposite: the sampling variance of a SYS is larger than that of an SRS - a SYS is then less representative of the population than an SRS.

Some examples illustrating these situations are shown in Figure 10.12.


Figure 10.12: Various populations and systematic samplings: the order in which the population observations are presented may affect the representativity of the SYS sample.

\section*{SYS as SRS}

55: Careful! this is not always easy to demonstrate.

If the order in which the units are listed in the sampling frame is random, \({ }^{55}\) we can simply consider that the sample
\[
\mathcal{Y}_{\mathrm{SYS}}=\underbrace{\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}, y_{n}\right\}}_{\left\{u_{\gamma}, u_{\gamma+M}, \ldots, u_{\gamma+(n-1) M}\right\}} \subseteq \mathcal{U}
\]
of size \(n \approx \frac{N}{M}\) is in fact a SRS of size \(n\). In that case, the theory developed in Section 10.3 for SRS remains valid.

Estimating the Mean \(\mu\) The empirical mean
\[
\bar{y}_{\mathrm{SYS}}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
\]
is an unbiased estimator of the true population mean \(\mu\), with bound on the error of estimation
\[
B_{\mu ; \mathrm{SYS}} \approx \hat{B}_{\mu ; \mathrm{SYS}}=2 \sqrt{\hat{\mathrm{~V}}\left(\bar{y}_{\mathrm{SYS}}\right)}=2 \sqrt{\frac{s_{\mathrm{SYS}}^{2}}{n}\left(1-\frac{n}{N}\right)}
\]
where
\[
s_{\mathrm{SYS}}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}_{\mathrm{SYS}}\right)^{2}
\]
the corresponding \(\mathbf{9 5 \%}\) C.I. for \(\mu\) is thus
\[
\text { C.I.SYS }(\mu ; 0.95): \quad \bar{y}_{\mathrm{SYS}} \pm \hat{B}_{\mu ; \mathrm{SYS}}
\]

\section*{Estimating the Total \(\tau\) The quantity}
\[
\hat{\tau}_{\mathrm{SYS}}=N \bar{y}_{\mathrm{SYS}}=\frac{N}{n} \sum_{i=1}^{n} y_{i}
\]
is an unbiased estimator of the true population total \(\tau\), with bound on the error of estimation
\[
B_{\tau ; \mathrm{SYS}} \approx \hat{B}_{\tau ; \mathrm{SYS}}=2 N \sqrt{\hat{\mathrm{~V}}\left(\bar{y}_{\mathrm{SYS}}\right)}=2 N \sqrt{\frac{s_{\mathrm{SYS}}^{2}}{n}\left(1-\frac{n}{N}\right)} ;
\]
the corresponding \(\mathbf{9 5 \%}\) C.I. for \(\tau\) is thus
\[
\text { C.I.SYS }(\tau ; 0.95): \quad \hat{\tau}_{\mathrm{SYS}} \pm \hat{B}_{\tau ; \mathrm{SYS}} .
\]

Estimating the Proportion \(p \quad\) If \(y_{i} \in\{0,1\}\) denotes the absence or presence of a certain characteristic, the quantity
\[
\hat{p}_{\mathrm{SYS}}=\bar{y}_{\mathrm{SYS}}
\]
is an unbiased estimator of the true proportion \(p\) of units with the characteristic, with bound on the error of estimation
\[
B_{p ; \mathrm{SYS}} \approx \hat{B}_{p ; \mathrm{SYS}}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{p}_{\mathrm{SYS}}\right)}=2 \sqrt{\frac{\hat{p}_{\mathrm{SYS}}\left(1-\hat{p}_{\mathrm{SYS}}\right)}{n-1}\left(1-\frac{n}{N}\right)} ;
\]
the corresponding \(\mathbf{9 5 \%}\) C.I. for \(p\) is thus
\[
\text { C.I.SYS }(p ; 0.95): \quad \hat{p}_{\mathrm{SYS}} \pm \hat{B}_{p ; \mathrm{SYS}} .
\]

\section*{SYS as CLS}

In practice, SYS is equivalent to a CLS of size \(m=1\), where each cluster is one of the \(1-\) in \(-M\) SYS samples.

The quantity
\[
\bar{y}_{C}=\frac{\sum_{k=1}^{m} \sum_{j=1}^{N_{i_{k}}} y_{i_{k}, j}}{\sum_{k=1}^{m} N_{i_{k}}}=\frac{\sum_{k=1}^{m} y_{i_{k}}}{\sum_{k=1}^{m} N_{i_{k}}}
\]
where we use the CLS notation, is thus a biased estimator of the population mean, \(\mu\).

The average cluster size is denoted by \(\bar{N}=\frac{N}{M}\); its sampling variance is
\(\mathrm{V}\left(\bar{y}_{C}\right) \approx \frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(\frac{M-m}{M-1}\right) \cdot \frac{1}{M} \sum_{\ell=1}^{M}(\underbrace{\tau_{\ell}-\mu N_{\ell}}_{=N_{\ell}\left(\mu_{\ell}-\mu\right)})^{2}:=\frac{1}{\bar{N}^{2}} \cdot \frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right)\),
and the corresponding \(\mathbf{9 5 \%}\) C.I. for \(\mu\) is thus
\[
\text { C.I. }{ }_{G}(\mu ; 0.95): \quad \bar{y}_{C} \pm 2 \sqrt{\mathrm{~V}\left(\bar{y}_{C}\right)} .
\]

If the average cluster size \(\bar{N}\) is unknown, we simply substitute it by
\[
\bar{n}=\frac{1}{n} \sum_{k=1}^{m} N_{i_{k}}
\]

The estimator of the total population \(\tau\) is thus either:
- \(N \bar{y}_{C}\), when the number of units \(N\) in the population is known, or
- \(M \bar{y}_{T}\), where \(\bar{y}_{T}\) is the (empirical) mean of the sampled cluster totals, when only \(M\) is known.

Consequently, the sampling variances are
\[
\mathrm{V}\left(N \bar{y}_{C}\right) \approx M^{2} \cdot \frac{\sigma_{C}^{2}}{m}\left(\frac{M-m}{M-1}\right) \quad \text { and } \quad \mathrm{V}\left(M \bar{y}_{T}\right) \approx M^{2} \cdot \frac{\sigma_{T}^{2}}{m}\left(\frac{M-m}{M-1}\right)
\]
where \(\sigma_{C}^{2}\) and \(\sigma_{T}^{2}\) are computed as for a CLS. We can then construct the \(\mathbf{9 5 \%}\) C.I. for \(\tau\) in the usual manner.

Pretty simple, eh?


The sample contains exactly \(m=1\) cluster, so \(\bar{n}=n\). The problem doesn't end there - since we don't know \(\sigma_{C}^{2}\) or \(\sigma_{T}^{2}\) in general, we would use the empirical variances
\[
\begin{aligned}
& \hat{\mathrm{V}}\left(\bar{y}_{C}\right) \approx \frac{1}{\bar{N}^{2}} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right) \cdot \frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\bar{y}_{C} N_{i_{k}}\right)^{2} \\
& \hat{\mathrm{~V}}\left(M \bar{y}_{T}\right) \approx M^{2} \cdot \frac{1}{m}\left(1-\frac{m}{M}\right) \cdot \frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i_{k}}-\bar{y}_{T}\right)^{2} .
\end{aligned}
\]

But if \(m=1\), these variances do not exist. How do we get out of this mess? If we cannot treat the SYS as if it were a SRS (for whatever reason), the solution is to draw additional SYS samples (replicates) and treat it as a CLS, modifying the value of \(M\) as necessary.

\subsection*{10.7.2 Sampling with Probability Proportional to Size}

In practice, the size (whether or not this is a physical characteristic) of the sample units is often quite variable - a SRS is not always effective since it does not take into account the importance that larger population units may have.

Additional information on the unit size can sometimes be used to select a sample that provides a more accurate estimator of the parameters of interest.
One possible way to do this is to assign (potentially) equal selection probabilities to different units, based on their size.

Example To a certain extent \((\rho=0.46)\), the larger the area of a country, the larger its population. If we are trying to estimate the population of the planet, it might be desirable to adopt a sampling scheme in which the probability of selecting a country is proportional to its area - in an SRS, it is very likely that neither China nor India will be selected, resulting in an underestimate of the total sought.

If the variable of interest is (more or less) related to the size of the unit, one can assign a probability of selection proportional to the size of the unit (PPS). Note that in a PPS, previously selected units are replaced in the population, allowing for the multiple selection of a single unit.

\section*{Selecting a PPS With Replacement}

We consider two selection methods for a PPS sample:
- cumulative totals, and
- the Lahiri method.

In both cases, the PPS sample selection procedure consists of associating with each unit a range of numbers, \({ }^{56}\) related to the size of the unit, and taking the units that correspond to numbers chosen at random from the set of numbers associated with the entire population of \(N\) units.
In the method of cumulative totals, the size of the \(i-\) th unit is denoted by \(x_{i}, 1 \leq i \leq N\). We associate a range to each unit as follows:
\begin{tabular}{cccc}
\hline Unit & \multicolumn{3}{c}{ Range } \\
\hline 1 & 1 & to & \(x_{1}\) \\
2 & \(x_{1}+1\) & to & \(x_{1}+x_{2}\) \\
3 & \(x_{1}+x_{2}+1\) & to & \(x_{1}+x_{2}+x_{3}\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(N-1\) & \(x_{1}+\cdots+x_{N-2}+1\) & to & \(x_{1}+\cdots+x_{N-2}+x_{N-1}\) \\
\(N\) & \(x_{1}+\cdots+x_{N-1}+1\) & to & \(x_{1}+\cdots+x_{N-1}+x_{N}\) \\
\hline
\end{tabular}

Finally, we draw a PPS sample by choosing \(n\) integers at random between 1 and \(X=x_{1}+\cdots+x_{N-1}+x_{N}\) (with replacement) and by selecting the units associated with these integers.

56: These are often integers, but that is not necessary.

57: There are other ways to do this, of course; the important thing is to have a mechanism for selecting a PPS sample. We generally prefer sampling without replacement to sampling with replacement, but the latter is a reasonable substitute to the former if \(\frac{n}{N}\) is " sufficiently small".

Example In a village, there are 8 orchards, each containing a certain number of apple trees. A sample of \(n=3\) orchards is drawn (with replacement), in proportion to the number of apple trees per orchard.
\begin{tabular}{cccc}
\hline ID \(i\) & Size \(x_{i}\) & Cumulative Totals & Associated Range \\
\hline 1 & 50 & 50 & \(1-50\) \\
2 & 30 & 80 & \(51-80\) \\
3 & 25 & 105 & \(81-105\) \\
4 & 40 & 145 & \(106-145\) \\
5 & 26 & 171 & \(146-171\) \\
6 & 44 & 215 & \(172-215\) \\
7 & 20 & 235 & \(216-235\) \\
8 & 35 & 270 & \(236-270\) \\
\hline
\end{tabular}

We choose \(n=3\) integers at random between 1 and 270: 108, 140, and 201, say. The associated units are the 4th, the 4th, and the 6th.

In the Lahiri method, we still denote the size of a unit by \(x_{i}, 1 \leq i \leq N\), but without having to calculate and report the successive cumulative totals, which can be tedious to accomplish, even with a computer.

The method consists in selecting a pair of integers \((i, j)\), where \(1 \leq i \leq N\) and \(1 \leq j \leq M=\max \left\{x_{i} \mid 1 \leq i \leq N\right\}\). If \(j \leq x_{i}\), the \(i\) th unit is added to the sample. Otherwise, the pair \((i, j)\) is rejected.
We continue in this manner until \(n\) units have been selected. \({ }^{57}\)

\section*{Estimation}

Let us revisit the orchard example, where \(u_{i}\) is the yield of all apple trees in the \(i\) th orchard.
\begin{tabular}{cccc}
\hline ID \(i\) & \# Trees \(x_{i}\) & \(\pi_{i}\) & Yield \\
\hline 1 & 50 & \(50 / 270\) & \(u_{1}=2250\) \\
2 & 30 & \(30 / 270\) & \(u_{2}=1080\) \\
3 & 25 & \(25 / 270\) & \(u_{3}=1300\) \\
4 & 40 & \(40 / 270\) & \(u_{4}=1400\) \\
5 & 26 & \(26 / 270\) & \(u_{5}=1196\) \\
6 & 44 & \(44 / 270\) & \(u_{6}=1716\) \\
7 & 20 & \(20 / 270\) & \(u_{7}=820\) \\
8 & 35 & \(35 / 270\) & \(u_{8}=1680\) \\
\hline
\end{tabular}

We are interested in the total apple production of the village, which we know in this case to be \(\tau=11,442\). Since in principle an orchard with more apple trees should produce more apples, we draw a PPS sample of \(n=3\) units (with replacement), where the number of apple trees in the orchard is used as the unit size.

In what follows, we illustrate the concepts using the sample
\[
y_{1}=u_{4}=1400, y_{2}=u_{4}=1400, y_{3}=u_{6}=1716
\]

If the sample \(\mathscr{Y}\), with \(|\mathscr{Y}|=n\), is drawn from \(\mathscr{U}\) using a PPS, the units \(y_{1}, \ldots, y_{n}\) are independent and distributed according to
\begin{tabular}{cccccc}
\hline\(y_{i}\) & \(u_{1}\) & \(\cdots\) & \(u_{j}\) & \(\cdots\) & \(u_{N}\) \\
\hline\(p\left(y_{i}\right)\) & \(\pi_{1}\) & \(\cdots\) & \(\pi_{j}\) & \(\cdots\) & \(\pi_{N}\) \\
\hline
\end{tabular}
where \(0<\pi_{j}<1\) for all \(1 \leq j \leq N\) and \(\pi_{1}+\cdots+\pi_{N}=1\).
For all \(1 \leq i \leq n\), there is a \(1 \leq j \leq N\) such that \(y_{i}=u_{j}\). Set \(w_{i}=\frac{u_{j}}{\pi_{j}}\). The sampling weights \(w_{i}\) are also independent and distributed according to
\[
P\left(y_{i}=u_{j}\right)=P\left(w_{i}=\frac{u_{j}}{\pi_{j}}\right)=\pi_{j}, \quad 1 \leq i \leq n, 1 \leq j \leq N .
\]

We note that for any \(1 \leq i \leq n\), the expected weight is
\[
\mathrm{E}\left(w_{i}\right)=\sum_{j=1}^{N} w_{j} P\left(w_{i}=w_{j}\right)=\sum_{j=1}^{N} \frac{u_{j}}{\pi_{j}} \cdot \pi_{j}=\sum_{j=1}^{N} u_{j}=\tau .
\]

In other words,
\[
\hat{\tau}_{\mathrm{pps}}=\bar{w}=\frac{1}{n} \sum_{i=1}^{n} w_{i}
\]
is an unbiased estimator of the total \(\tau\). Its sampling variance is computed as follows:
\[
\begin{aligned}
\mathrm{V}\left(\hat{\tau}_{\mathrm{pps}}\right) & =\mathrm{V}\left(\frac{1}{n} \sum_{i=1}^{n} w_{i}\right)=\underbrace{\frac{1}{n^{2}} \sum_{i=1}^{n} \mathrm{~V}\left(w_{i}\right)}_{\text {ind. des } w_{i}}=\frac{1}{n^{2}} \sum_{i=1}^{n}\left[\sum_{j=1}^{N}\left(w_{j}-\tau\right)^{2} P\left(w_{i}=w_{j}\right)\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{N}\left(\frac{u_{j}}{\pi_{j}}-\tau\right)^{2} \pi_{j}=\frac{1}{n} \sum_{j=1}^{N}\left(\frac{u_{j}}{\pi_{j}}-\tau\right)^{2} \pi_{j}=\frac{1}{n} \sum_{j=1}^{N}\left(\frac{u_{j}^{2}}{\pi^{j}}-\frac{2 \tau u_{j}}{\pi_{j}}+\tau^{2}\right) \pi_{j} \\
& =\frac{1}{n}(\sum_{j=1}^{N} \frac{u_{j}^{2}}{\pi_{j}}-2 \tau \underbrace{\sum_{j=1}^{N} u_{j}}_{=\tau}+\tau^{2} \underbrace{\sum_{j=1}^{N} \pi_{j}}_{=1})=\frac{1}{n}\left(\sum_{j=1}^{N} \frac{u_{j}^{2}}{\pi_{j}}-\tau^{2}\right) .
\end{aligned}
\]

In practice, we do not typically know the true value of \(\tau\), so we use the unbiased estimator
\[
\hat{\mathrm{V}}\left(\hat{\tau}_{\mathrm{pps}}\right)=\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} w_{i}^{2}-n \hat{\tau}_{\mathrm{pps}}^{2}\right) .
\]

Central Limit Theorem - PPS: if \(n\) and \(N-n\) are sufficiently large, then
\[
\hat{\tau}_{\mathrm{pps}} \sim_{\text {approx. }} \mathcal{N}\left(\tau, \hat{\mathrm{V}}\left(\hat{\tau}_{\mathrm{pps}}\right)\right)
\]

The bound on the error of estimation and the \(\mathbf{9 5 \%}\) C.I. for \(\tau\) are therefore
\[
\hat{B}_{\tau \text { pps }}=2 \sqrt{\hat{\mathrm{~V}}\left(\hat{\tau}_{\mathrm{pps}}\right)} \quad \text { and } \quad \text { C.I.pps }(\tau ; 0.95)=\hat{\tau}_{\mathrm{pps}} \pm \hat{B}_{\tau ; \mathrm{pps}}
\]

Example In the orchard dataset, we have
\[
\begin{aligned}
\hat{\tau}_{\mathrm{pps}} & =\frac{1}{3}[\underbrace{\frac{1400}{40 / 270}}_{w_{1}}+\underbrace{\frac{1400}{40 / 270}}_{w_{2}}+\underbrace{\frac{1716}{44 / 270}}_{w_{3}}]=9810 \\
\hat{\mathrm{~V}}\left(\hat{\tau}_{\mathrm{pps}}\right) & =\frac{1}{3(2)}[(\underbrace{\left.\frac{1400}{40 / 270}\right)^{2}+(\underbrace{\frac{1400}{40 / 270}}_{w_{2}})^{2}+(\underbrace{\frac{1716}{44 / 270}}_{w_{3}})^{2}-3 \cdot \underbrace{9810^{2}}_{\hat{\tau}_{\mathrm{pps}}^{2}}]}_{w_{1}} \\
& =129,600 .
\end{aligned}
\]

Consequently, the \(95 \%\) C.I. for the total apple yield in the village is
\[
\text { C.I. }{ }_{\text {pps }}(\tau ; 0.95)=9810 \pm 2 \sqrt{129,600} \equiv(9090,10530)
\]

The actual total yield \((\tau=11,442)\) does not fall within the confidence interval - why might this be the case? Is this problematic?

In general, \(\mathrm{V}\left(\hat{\tau}_{\mathrm{pps}}\right) \leq \mathrm{V}\left(\hat{\tau}_{\text {SRS }}\right)\). In the orchards example, we can show that
\[
\begin{aligned}
& \mathrm{V}\left(\hat{\tau}_{\mathrm{SRS}}\right) \approx 8^{2} \cdot \frac{172981.4375}{3}\left(\frac{8-3}{8-1}\right)=2,635,907.619, \quad \text { and } \\
& \mathrm{V}\left(\hat{\tau}_{\mathrm{pps}}\right) \approx \frac{1}{3}\left[\frac{2250^{2}}{50 / 270}+\cdots+\frac{1680^{2}}{35 / 270}-11,442^{2}\right]=723,912
\end{aligned}
\]

We can also give an estimate of the population average \(\mu\) using
\[
\hat{\mu}_{\mathrm{pps}}=\frac{\hat{\tau}_{\mathrm{pps}}}{N}, \quad \hat{\mathrm{~V}}\left(\hat{\mu}_{\mathrm{pps}}\right)=\frac{\hat{\mathrm{V}}\left(\hat{\tau}_{\mathrm{pps}}\right)}{N^{2}}, \quad \text { C.I. }{ }_{\mathrm{pps}}(\mu ; 0.95)=\frac{\text { C.I. }_{\mathrm{pps}}(\tau ; 0.95)}{N}
\]

A lot more can be said on the topic; PPS usually provides a springboard to more sophisticated sampling designs and other theoretical considerations [5, 7, 6].

\subsection*{10.7.3 Multi-Stage Sampling}

By splitting the sampling process into several stages, one can reduce costs and focus the logistical aspects of sampling on a few focal points. In multi-stage sampling ( \(\mathrm{M} n \mathrm{~S}\) ), a sample of large units (primary units) is drawn, then sub-units (secondary units) are drawn from the large units, and so on.

Example Sampling units in a Canadian province could be decomposed into three steps:
1. conduct a sample of municipalities (primary units);
2. sample neighbourhoods in the sampled municipalities (secondary units), and
3. sample households in the samples neighbourhoods (tertiary units).


In a \(\mathrm{M} n \mathrm{~S}\), the sample is concentrated around several pivots: in field studies, for example, this has the advantage of considerably reducing the survey area, which helps to reduce non-sampling errors. \({ }^{58}\)
Furthermore, detailed information is often available for groups of sample units, but not for individual units: it is therefore not necessary to obtain a complete sampling frame for all sample units, but only for those belonging to the primary units selected in the first round, for example.

Any probability sampling method can be used at each stage, and they can change from stage to stage: e.g., a municipality SRS, a neighborhood SRS, a household SRS, etc.

\section*{Two-Stage Simple Random Sampling}

In a 2-stage process, if sampling is conducted using a SRS for both stages, the method is known as two-stage simple random sampling (SRS2S).

Example The biomass of a plant species in a forest area can be estimated by drawing a SRS of \(m=8\) compartments (primary units) from the \(M=40\) compartments composing the population under study.

For each of these compartments \(1 \leq i \leq m\), we then draw a SRS of \(n_{i}\) plots, and measure the biomass in the plot. Estimates of the average or total amount of biomass in the forest area can be calculated using appropriate formulas.

\section*{Estimation}

Let be a population consisting of \(M\) primary units, having \(N_{\ell}\) secondary units in the \(\ell\) th primary unit. Denote by \(u_{i, j}\) the value of the response variable of the \(j\) th secondary unit in the \(i\) th primary unit.

The population mean is
\[
\mu=\frac{\sum_{\ell=1}^{M} \sum_{j=1}^{N_{\ell}} u_{\ell, j}}{\sum_{\ell=1}^{M} N_{\ell}} .
\]

Figure 10.13: Schematics of SRS2S: target population (left) and sample (right).

58: In addition to reducing operational costs.

Suppose we draw a SRS of \(m\) primary units, and a SRS of \(n_{i}\) secondary units in the \(i\) th primary unit. The total sample size is thus \(n=n_{1}+\) cdots \(+n_{m}\). We obtain an unbiased estimator of \(\mu\) from:
\[
\bar{y}_{\text {SRS2S }}=\frac{1}{m \bar{N}} \sum_{i=1}^{m} N_{i} \bar{y}_{i}=\frac{1}{m \bar{N}} \sum_{i=1}^{m} \frac{N_{i}}{n_{i}} \sum_{k=1}^{n_{i}} y_{i, k}=\frac{1}{m \bar{N}} \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \frac{M N_{i}}{m n_{i}} y_{i, k}
\]
where
\[
\bar{N}=\frac{1}{M} \sum_{\ell=1}^{M} N_{\ell} \approx \frac{N_{1}+\cdots+N_{m}}{m}
\]

The sampling variance is composed of two components:
- a measure of the variation between the primary units, and
- a measure of the variation within the primary units.

When \(n_{i}=N_{i}\) for all \(1 \leq i \leq m\), we are dealing with a CLS and the variance is only given by the first component (see Section 10.6). In the case where \(m=M\), we are dealing with a STS and the variance is only given by the second component (see Section 10.4).

When \(m \neq M\) and \(n_{i} \neq N_{i}\) for at least one primary unit \(i\), the variance is a combination of these two extremes: in that case, the second component represents the contribution of sub-sampling (another name for \(\mathrm{M} n \mathrm{~S}\) ). We use the law of total variance to estimate the sampling variance:
\[
\begin{aligned}
\mathrm{V}\left(\bar{y}_{\mathrm{SRS} 2 \mathrm{~S}}\right) & =\mathrm{E}\left[\mathrm{~V}\left(\bar{y}_{\text {SRS2 }} \mid m\right)\right]+\mathrm{V}\left(\mathrm{E}\left[\bar{y}_{\mathrm{SRS} 2 \mathrm{~S}} \mid m\right]\right) \\
& =\frac{1}{\bar{N}^{2}} \cdot \frac{\sigma_{T}^{2}}{m}\left(\frac{M-m}{M-1}\right)+\frac{1}{m M \bar{N}^{2}} \sum_{i=1}^{m} N_{i}^{2} \cdot \frac{\sigma_{i}^{2}}{n_{i}}\left(\frac{N_{i}-n_{i}}{N_{i}-1}\right) \\
& \approx \underbrace{\frac{1}{\bar{N}^{2}} \cdot \frac{s_{T}^{2}}{m}\left(1-\frac{m}{M}\right)}_{\text {between primary units }}+\underbrace{\frac{1}{m M \bar{N}^{2}} \sum_{i=1}^{m} N_{i}^{2} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right)}_{\text {within primary units }},
\end{aligned}
\]
where
\[
s_{T}^{2}=\frac{1}{m-1} \sum_{i=1}^{n}\left(N_{i} \bar{y}_{i}-\bar{N} \bar{y}_{\mathrm{SRS} 2 \mathrm{~S}}\right)^{2}, \quad s_{i}^{2}=\frac{1}{n_{i}-1} \sum_{k=1}^{n_{i}}\left(y_{i, k}-\bar{y}_{i}\right)^{2} .
\]

Example The biomass of a plant species ( kg ) is measured in plots of 0.025 ha (secondary units) selected from \(m=8\) compartments (primary units), randomly selected themselves among the \(M=40\) compartments of a forested area. The summary of results is shown in the following table:
\begin{tabular}{ccccccccc}
\hline Comp. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \(\bar{y}_{i}\) & 118 & 107 & 109 & 110 & 120 & 95 & 93 & 90 \\
\(s_{i}^{2}\) & 436 & 516 & 586 & 456 & 412 & 497 & 755 & 496 \\
\(N_{i}\) & 1760 & 1975 & 1615 & 1785 & 1775 & 2050 & 1680 & 1865 \\
\(n_{i}\) & 9 & 10 & 8 & 9 & 9 & 10 & 8 & 9 \\
\hline
\end{tabular}

Find a \(95 \%\) C.I. for the average biomass per plot and per compartment, and for its total in the forested area.

Solution: Since we do not know \(\bar{N}\), we approximate it with the mean
\[
\bar{N} \approx \frac{1}{8}(1760+\cdots+1865)=1813.125
\]

The totals in the selected primary units are then:
\begin{tabular}{ccccccccc}
\hline Comp. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(N_{i} \bar{y}_{i}\left(\times 10^{5}\right)\) & 2.077 & 2.113 & 1.760 & 1.964 & 2.130 & 1.946 & 1.562 & 1.679 \\
\hline
\end{tabular}

The SRS2S estimators of the mean \(\mu\), of the mean of the totals in the compartments, and of the total are:
\[
\begin{aligned}
\bar{y}_{\mathrm{SRS} 2 \mathrm{~S}} & =\frac{1}{8(1813.125)}(2.077+\cdots+1.679) \times 10^{5}=105.01 ; \\
\bar{N} \bar{y}_{\mathrm{SRS} 2 \mathrm{~S}} & =1813.125 \cdot 105.01=190,403.75 ; \quad \tau_{\mathrm{SRS} 2 \mathrm{~S}}=M \cdot \bar{N} \bar{y}_{\mathrm{SRS} 2 \mathrm{~S}}=7,616,150 .
\end{aligned}
\]

The variance between compartments (primary units) is thus:
\[
s_{T}^{2}=\frac{1}{8-1} \sum_{i=1}^{8}\left(N_{i} \bar{y}_{i}-190,403.75\right)^{2}=4.55 \times 10^{8}
\]

Finally, we calculate the variance within the compartments:
\begin{tabular}{ccccccccc}
\hline Comp. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\(\frac{N_{i}^{2}}{\bar{N}^{2}} \cdot \frac{s_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{N_{i}}\right)\) & 48.2 & 51.3 & 72.7 & 50.4 & 45.6 & 49.4 & 93.9 & 54.9 \\
\hline
\end{tabular}

The sampling variance is thus
\[
\begin{aligned}
\hat{\mathrm{V}}\left(\bar{y}_{\text {SRS } 2 \mathrm{~S}}\right) & =\frac{4.55 \times 10^{8}}{8(1813.125)^{2}}\left(1-\frac{8}{40}\right)+\frac{1}{8(40)}(48.2+\cdots+54.9) \\
& =14.03
\end{aligned}
\]

The variances of the other two estimators are easily calculated:
\[
\begin{aligned}
\hat{\mathrm{V}}\left(\bar{N} \bar{y}_{\text {SRS2S }}\right) & =\bar{N}^{2} \hat{\mathrm{~V}}\left(\bar{y}_{\text {SRS } 2 S}\right)=(1813.125)^{2} \cdot 14.03=46,141,324.55 \\
\hat{\mathrm{~V}}\left(\tau_{\text {SRS } 2 S}\right) & =M^{2} \bar{N}^{2} \hat{\mathrm{~V}}\left(\bar{y}_{\text {SRS } 2 S}\right)=(40)^{2} \cdot(1813.125)^{2} \cdot 14.03=73,826,119,284 ;
\end{aligned}
\]
the confidence intervals are thus
\[
\begin{aligned}
\text { C.I.SRS2S }(\mu ; 0.95): & 105.01 \pm 2 \sqrt{14.03} \equiv(97.5,112.5) \\
\text { C.I.SRS2S }\left(\frac{N_{0}}{M} \mu ; 0.95\right): & 190,403.75 \pm 2 \sqrt{46,141,324.55} \equiv(176818,203989.2312) \\
\text { C.I.SRS2S }(\tau ; 0.95): & 7,616,150 \pm 2 \sqrt{73,826,119,284} \equiv(7072730,8159569)
\end{aligned}
\]
assuming of course that the central limit theorem remains valid in the context of a SRS2S.

\subsection*{10.7.4 Multi-Phase Sampling}

Multi-stage sampling ( \(\mathrm{M} n \mathrm{P}\) ) plays a crucial role in many types of surveys, including those conducted by remote sensing.

In the first phase, a selected number of units are sampled, but only a small number of characteristics are captured for each unit. In each successive phase, a larger number of features is measured on a smaller sub-sample of units.

In this way, the target parameter can be estimated with more accuracy and at lower cost, by studying the relationship between the features measured in the different sampling phases.

\section*{Two-Phase Random Sampling}

A \(\mathrm{M} n \mathrm{P}\) with only two phases is called a two-phase sampling (M2P). M2Ps are particularly useful in a situation where enumeration of the main trait is expensive (in terms of costs or labor), but in which an auxiliary trait correlated to the main trait can easily be observed.

Thus, it is sometimes preferable to draw a large SRS in the first phase in order to analyze the auxiliary variables, which leads to more accurate estimates of \(\tau\) or \(\mu\) for that auxiliary variable (at least, that is the hope). In the second phase, a smaller sample is drawn, usually a sub-sample of the characteristic, and the auxiliary variable are measured.

Estimates of the main characteristic are then obtained using the information obtained in the first phase, using the ratio method or the regression method, for instance. The precision of the final estimates can be increased by including several correlated auxiliary variables.

Example If we want to estimate the total volume of wood \(\tau\) in a forest, we could first measure the circumference \(c_{i}\) and height \(h_{i}\) of the trees \(i\) in some sample, then the volume \(v_{i_{k}}\) of the trees \(i_{k}\) in a sub-sample. We only need to determine the statistical relationship between \(\tau_{v}\), \(\tau_{c}\), and \(\tau_{h}\) to complete the procedure.

The \(\mathrm{M} n \mathrm{P}\) sampling method helps to reduce the cost of enumeration and increase the accuracy of estimates. It can also be used to stratify a population: an initial sample is taken based on the auxiliary characteristic, which is used to subdivide the population into strata in which the main characteristic is more or less homogeneous.

As long as the two characteristics are correlated, accurate estimates of the main characteristic are obtained from a second, relatively small sample.

M2P can also be paired with M2S, for example (or with any other sampling design). If both selection steps are performed with SRS, the method is called two-phase simple random sampling (SRS2P).

In the first phase, the population is divided into well-defined sampling units; a SRS \(y_{1}\) of size \(n_{1}\) is drawn from these units; the auxiliary variable \(x\) is measured on all units of \(y_{1}\). Next, a sub-SRS \(y_{2}\) of size \(n_{2}\) is drawn from \(y_{1}\); the main characteristic \(y\) is measured on all units of \(y_{2}\).


We can evaluate \(r_{y_{2}}\) or \(b_{y_{2}}\) from the observations in \(y_{2}\) (using either the ratio method or the regression method), which yields
\[
\begin{aligned}
\hat{\mu}_{Y ; R ; S R S 2 P} & =r_{y_{2}} \cdot \bar{x}_{y_{1}} \quad \text { or } \\
\hat{\mu}_{Y ; L ; S R S 2 P} & =\bar{y}_{y_{2}}+b_{y_{2}}\left(\bar{x}_{y_{1}}-\bar{x}_{y_{2}}\right) .
\end{aligned}
\]

\section*{Estimation}

Due to the double sampling, two terms contribute to sampling variances of the estimators (the first when going from \(\mathscr{U}\) to \(\mathscr{Y}_{1}\), and the second from \(y_{1}\) to \(y_{2}\) ):
\(\hat{V}\left(\hat{\mu}_{Y ; R ; S R S 2 P}\right)=\frac{1}{n_{2}}\left(s_{Y}^{2}-2 r_{y_{2}} s_{X Y}+\left(r_{y_{2}}\right)^{2} s_{X}^{2}\right)+\frac{1}{n_{1}}\left(2 r_{y_{2}} s_{X Y}-\left(r_{y_{2}}\right)^{2} s_{X}^{2}\right)\)
\(\hat{\mathrm{V}}\left(\hat{\mu}_{Y ; L ; S \mathrm{RS} 2 \mathrm{P}}\right)=\frac{1}{n_{2}} s_{X Y ; L}^{2}+\frac{1}{n_{1}}\left(s_{X Y ; L}^{2}-s_{Y}^{2}\right)\)
where \(s_{Y}^{2}, s_{X Y}\), and \(s_{X}^{2}\) are the usual quantities (in \(\mathscr{y}_{2}\) ), and
\[
\begin{aligned}
r_{y_{2}} & =\frac{\bar{y}_{y_{2}}}{\bar{x}_{y_{2}}}, b_{y_{2}}=\frac{s_{X Y}}{s_{X}^{2}}, \quad \text { and } \\
s_{X Y ; L}^{2} & =\frac{n_{2}-1}{n_{2}-2} \cdot\left\{s_{Y}^{2}-b_{y_{2}}^{2} s_{X}^{2}\right\}
\end{aligned} .
\]

Example We are interested in the biomass of any plant in a region, which is divided into plots of 0.025 ha each. First, we measure the number \(x\) of groves per unit in a SRS \(\mathscr{y}_{1}\) of \(n_{1}=200\) plots.

Then, the biomass \(y\) of the plant in question is calculated in each unit of a sub-SRS \(y_{2}\) of \(n_{2}=40\) plots:
\[
\begin{aligned}
& \bar{x}_{y_{1}}=374.4 ; \quad \sum_{i=1}^{40} x_{i}=15,419 ; \quad \sum_{i=1}^{40} y_{i}=2104 ; \\
& \sum_{i=1}^{40} x_{i}^{2}=7,744,481 ; \quad \sum_{i=1}^{40} x_{i} y_{i}=960,320 ; \quad \sum_{i=1}^{40} y_{i}^{2}=125,346 .
\end{aligned}
\]

What would a \(95 \%\) C.I. for the average biomass per plot look like?

Figure 10.14: Schematics of SRS2P: target population (left) and sample (right).

Let us compute the required intermediate quantities:
\[
\begin{aligned}
\bar{x}_{y_{2}} & =\frac{15419}{40}=385.5 ; \quad \bar{y}_{y_{2}}=\frac{2104}{40}=52.6 ; \quad r_{y_{2}}=\frac{\bar{y}_{y_{2}}}{\bar{x}_{y_{2}}}=\frac{52.6}{385.5}=0.14 ; \\
s_{X}^{2} & =\frac{1}{39}\left[7744481-40(385.5)^{2}\right] \approx 46175 ; s_{Y}^{2}=\frac{1}{39}\left[125346-40(52.6)^{2}\right] \approx 376 \\
s_{X Y} & =\frac{1}{39}[960320-40(385.5)(52.6)] \approx 3827.7 ; \quad b_{y_{2}}=\frac{s_{X Y}}{s_{X}^{2}}=\frac{3827.7}{46175.4} \approx 0.08 ; \\
s_{X Y ; L}^{2} & =\frac{39}{38}\left[376.3-0.08^{2}(46175.4)\right] \approx 82.9 ;
\end{aligned}
\]
which gives us
\(\hat{\mu}_{Y ; R ; S R S 2 P}=0.14(374.4) \approx 51.1 ; \quad \hat{\mu}_{Y ; L ; S R S 2 P}=52.6+0.08(374.4-385.5) \approx 51.7\)
and
\[
\begin{aligned}
\hat{\mathrm{V}}\left(\hat{\mu}_{\left.Y_{; R ; S R S 2 P}\right)}\right) & \frac{376.3-2(0.14)(3827.7)+(0.14)^{2} 46175.4}{40} \\
& +\frac{2(0.14) 3827.7-(0.14)^{2} 46175.4}{200} \approx 5.67 \\
\hat{\mathrm{~V}}\left(\hat{\mu}_{\left.Y_{; L ; S R S 2 P}\right)}=\right. & \frac{82.9}{40}+\frac{82.9-376.3}{200} \approx 3.54 ;
\end{aligned}
\]
from which we conclude that
\[
\begin{aligned}
& \text { C.I.R;SRS2P }\left(\mu_{Y} ; 0.95\right)=51.1 \pm 2 \sqrt{5.67} \equiv(46.3,55.8) \\
& \text { C.I.I }_{L ; S R S 2 P}\left(\mu_{Y} ; 0.95\right)=51.7 \pm 2 \sqrt{3.54} \equiv(47.9,55.5) .
\end{aligned}
\]

\subsection*{10.7.5 Miscellaneous}

We end the module by briefly discussing a few notions that did not find a natural slot in the previous sections:
- design effects;
- adjusting for non-response;
- estimating the size of a population,
- randomized responses, and
- Bernoulli sampling.

\section*{Design Effect}

The design effect compares the estimator for a given sampling design and for a SRS. It is the ratio of the sampling variance of the estimator under the given sampling design to the sampling variance of the estimator under a SRS (assuming samples of the same size).

This value is often applied to compare the efficiency of estimators from different sampling designs. If the ratio \(<1\), the sampling design is more efficient than SRS; if it is \(>1\), it is less efficient than SRS.

We directly compared the theoretical variances of several sampling designs in sections 10.4.3, 10.5.4, and 10.6.3, but in practice we compute the design effect using the achieved samples (assuming that they had been drawn under various sampling plans).

Design effects also help to obtain approximate variance estimates for complex sampling designs. If a design effect estimate is available from a previous survey (that used the sampling design we will be using for this survey), it can be used to determine the sample size required to meet some pre-determined condition(s).

\section*{Adjusting for Nonresponse}

Non-response is a problem in all surveys. Total non-response (when all or almost all data from a sampled unit are missing) occurs when:
- a sample unit refuses to participate in the survey;
- we cannot establish contact with a sample unit;
- the sampled unit cannot be found, or
- the information obtained form the unit is useless/invalid.

The simplest way to deal with such non-response is to ignore it; in some exceptional circumstances (when the affected observations are not in any way different from those for whom we have valid and complete measurements), proportions or means that are estimated without adjusting for non-response are more or less the same as those produced by applying adjustment for non-response.

If one neglects to compensate for nonresponding units, however, the totals are generally underestimated (e.g., the size of a population, total revenue, or total acres harvested, say).
The most common way to deal with total non-response is to adjust the base sampling weights by assuming that the responding units represent both responding and nonresponding units. If the nonrespondents are equivalent to the respondents for the characteristics measured in the survey, this is a reasonable approach.

The base weights for nonrespondents are then redistributed among respondents, using a adjustment factor for nonrespondents that is multiplied by the base weight, to obtain an adjusted weight.

Example If we draw a SRS of size \(n=25\) from a stratum of size \(N=1000\), the probability of inclusion of each of these units and the corresponding basic weight are
\[
\pi=\frac{n}{N}=\frac{25}{1000}=0.025, \quad w=\frac{1}{\pi}=\frac{1}{0.025}=40
\]

In other words, each selected unit represents 40 units in the stratum.
If we only get a response from \(n_{r}=20\) of the \(n=25\) selected units, the non-response adjustment factor (NRAF) and the adjusted weight (for non-response) become:
\[
\begin{aligned}
\mathrm{NRAF} & =\frac{n}{n_{r}}=\frac{25}{20}=1.25 \\
w_{\mathrm{nr}} & =w \cdot \operatorname{NRAF}=1.25(40)=50
\end{aligned}
\]
each responding unit then represents 50 units in the stratum. This adjusted weighting is what we would end up working with.

59: Assuming that the target and study populations coincide.

Of course, the adjusted weight may vary from stratum to stratum, depending on the sample design and the sample size/allocation.

When we want to determine the optimal sample size/allocation across various strata, what we obtain is the target sample size. \({ }^{59}\) We then have to resort to inflation of the sample size to achieve the target.

Example The allocation of a StS of size \(n=29\) is found to be \((17,9,3)\). In a prior study, the non-response rates by stratum were determined to be ( \(16.2 \%, 20.8 \%, 31.2 \%\) ). Which allocation optimizes the likelihood of achieving the target allocation?
We only need to solve
\[
n_{1}(1-0.162)=17, \quad n_{2}(1-0.208)=9, \quad n_{3}(1-0.312)=3,
\]
which gives a practical sample allocation of \(\left(n_{1}, n_{2}, n_{3}\right)=(20.3,11.3,4.3) \approx\) \((21,12,5)\), and a practical sample size of \(n=38\).

\section*{Estimating a Population Size}

How do we proceed if the size \(N\) of the population \(U\) is unknown? When the population is large enough, we can always use the approximation \(N \approx \infty\) in the sampling variance formulas.
But sometimes it is the parameter \(N\) that represents the quantity of interest; as an example, how would we find out the number \(N\) of \(\$ 5\) bill in circulation?

We approach such a problem using the catch-and-release method (compare with the approach used in Module 25):
1. we capture \(n_{1}\) bills at random (without replacement) from the population;
2. we mark them and release them back into circulation;
3. at a later time, \(n_{2}\) bills are captured at random (without replacement) from the population;
4. we count the number \(X\) of marked bills, \(0<X \leq n_{2}\).

If we wait long enough (to let the marked bills propagate in the population, say), we obtain
\[
\frac{n_{1}}{N} \approx \frac{X}{n_{2}}, \quad \text { from which we have } \hat{N}=\frac{n_{1} n_{2}}{X}
\]
where \(X\) follows a hypergeometric distribution with parameters \(n_{1}, N-\) \(n_{1}, n_{2}\), and probability mass function
\[
\begin{gathered}
P(X=x)=\frac{\binom{n_{1}}{x}\binom{N-n_{1}}{n_{2}-x}}{\binom{N}{n_{2}}}, \quad 0 \leq x \leq n_{2} \\
\mu_{X}=\mathrm{E}[X]=n_{2} \underbrace{\left(\frac{n_{1}}{N}\right)}_{p}=n_{2} p, \quad \sigma_{X}^{2}=\mathrm{V}[X]=n_{2} p(1-p)\left(\frac{N-n_{2}}{N-1}\right) .
\end{gathered}
\]

If \(\frac{n_{2}}{N}<0.05\), we can ignore the FPCF term in the variance:
\[
\sigma_{X}^{2}=\mathrm{V}[X] \approx n_{2} p(1-p)
\]

We can now develop expressions for \(\mathrm{E}[\hat{N}]\) and \(\mathrm{V}[\hat{N}]\), using a Taylor series of order 2 near \(X \approx \mu_{X}=n_{2} p\) :
\[
f(X) \approx f\left(\mu_{X}\right)+f^{\prime}\left(\mu_{X}\right)\left(X-\mu_{X}\right)+\frac{f^{\prime \prime}\left(\mu_{X}\right)}{2}\left(X-\mu_{X}\right)^{2}
\]

Si \(\hat{N}=f(X)=\frac{n_{1} n_{2}}{X}\), so that
\[
\begin{aligned}
\hat{N} & \approx \frac{n_{1} n_{2}}{\mu_{X}}-\frac{n_{1} n_{2}}{\mu_{X}^{2}}\left(X-\mu_{X}\right)+\frac{n_{1} n_{2}}{\mu_{X}^{3}}\left(X-\mu_{X}\right)^{2} \\
& =\frac{n_{1}}{p}-\frac{n_{1}}{n_{2} p^{2}}\left(X-n_{2} p\right)+\frac{n_{1}}{n_{2}^{2} p^{3}}\left(X-n_{2} p\right)^{3} .
\end{aligned}
\]

Consequently,
\[
\begin{aligned}
\mathrm{E}[\hat{N}] & =\mathrm{E}\left[\frac{n_{1} n_{2}}{\mu_{X}}-\frac{n_{1} n_{2}}{\mu_{X}^{2}}\left(X-\mu_{X}\right)+\frac{n_{1} n_{2}}{\mu_{X}^{3}}\left(X-\mu_{X}\right)^{2}\right] \\
& =\mathrm{E}\left[\frac{n_{1} n_{2}}{\mu_{X}}\right]-\mathrm{E}\left[\frac{n_{1} n_{2}}{\mu_{X}^{2}}\left(X-\mu_{X}\right)\right]+\mathrm{E}\left[\frac{n_{1} n_{2}}{\mu_{X}^{3}}\left(X-\mu_{X}\right)^{2}\right] \\
& =\frac{n_{1} n_{2}}{\mu_{X}}-\frac{n_{1} n_{2}}{\mu_{X}^{2}}(\underbrace{\mathrm{E}[X]}_{\mu_{X}}-\mu_{X})+\frac{n_{1} n_{2}}{\mu_{X}^{3}} \mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\frac{n_{1} n_{2}}{\mu_{X}}+\frac{n_{1} n_{2}}{\mu_{X}^{3}} \mathrm{~V}[X] \approx \frac{n_{1}}{p}+\frac{n_{1}}{n_{2}^{2} p^{3}} \cdot n_{2} p(1-p)=\frac{n_{1}}{p}+\frac{n_{1}}{n_{2} p^{2}}(1-p) \\
& =\frac{n_{1}}{p}\left(1+\frac{1-p}{n_{2} p}\right)=N\left(1+\frac{1-p}{n_{2} p}\right)
\end{aligned}
\]

Since \(\frac{1-p}{n_{2} p}>0, \mathrm{E}[\hat{N}] \neq N\), and so \(\hat{N}\) is an asympotically unbiased estimator of \(N\) when the sample size \(n_{2}\) increases.

We can provide an approximation of the variance using a Taylor series of order 1 near \(X \approx \mu_{X}=n_{2} p\) :
\[
\hat{N} \approx \frac{n_{1} n_{2}}{\mu_{X}}-\frac{n_{1} n_{2}}{\mu_{X}^{2}}\left(X-\mu_{X}\right)=\frac{n_{1}}{p}\left(1-\frac{X-n_{2} p}{n_{2} p}\right)=\frac{n_{1}}{p}\left(2-\frac{X}{n_{2} p}\right)
\]

Putting all this together, we get
\[
\begin{aligned}
\mathrm{V}[\hat{N}] & \approx \mathrm{V}\left[\frac{n_{1}}{p}\left(2-\frac{X}{n_{2} p}\right)\right]=\frac{n_{1}^{2}}{p^{2}} \cdot \mathrm{~V}\left[-\frac{X}{n_{2} p}\right]=\frac{n_{1}^{2}}{n_{2}^{2} p^{4}} \cdot \mathrm{~V}[X] \\
& \approx \frac{n_{1}^{2} n_{2} p(1-p)}{n_{2}^{2} p^{4}}=\frac{n_{1}^{2}(1-p)}{n_{2} p^{3}} .
\end{aligned}
\]

In practice, we do not know the true \(p\), so we use
\[
\hat{\mathrm{V}}[\hat{N}]=\frac{n_{1}^{2}(1-\hat{p})}{n_{2} \hat{p}^{3}}, \quad \text { where } \hat{p}=\frac{X}{n_{2}} .
\]

Central Limit Theorem - Population Size \(N\) : if \(n_{2}\) and \(N\) are sufficiently large, we have
\[
\hat{N} \sim_{\text {approx. }} \mathcal{N}(\mathrm{E}[\hat{N}], \hat{\mathrm{V}}[\hat{N}]) \approx \mathcal{N}\left(\frac{n_{1} n_{2}}{X}, \frac{n_{1}^{2}(1-\hat{p})}{n_{2} \hat{p}^{3}}\right)
\]
and the corresponding \(\mathbf{9 5 \%}\) C.I. for \(N\) is thus
\[
\text { C.I. }(N ; 0.95): \quad \frac{n_{1} n_{2}}{X} \pm 2 \sqrt{\frac{n_{1}^{2}(1-\hat{p})}{n_{2} \hat{p}^{3}}} .
\]

Example Say that \(n_{1}=500\) bills were initially captured, marked, and releases; of the \(n_{2}=300\) bills recaptured at a later date, \(X=127\) were marked. Give a \(95 \%\) C.I. for the total number of \(\$ 5\).

The point estimate is \(\hat{N}=\frac{500 \cdot 300}{127} \approx 1181.102\). We also have \(\hat{p}=\frac{X}{n_{2}}=\) \(\frac{127}{300} \approx 0.423\), from which we get the bound on the error of estimation
\[
2 \sqrt{\hat{\mathrm{~V}}(\hat{N})}=2 \sqrt{\frac{500^{2} \cdot(1-0.42)}{300 \cdot(0.42)^{3}}}=159.176,
\]
and
\[
\text { C.I. }(N ; 0.95): \quad 1181.102 \pm 159.176 \equiv(1021.9,1340.3) .
\]

\section*{Randomized Response}

Let's say we ask students whether they cheated on a test or an assignment during the pandemic. If the answer is "Yes," we can likely conclude that it is the true answer. But since there is a social cost associated with such an answer, we can expect that some cheaters will answer "No". What can we do to reduce the measurement error for sensitive questions?
First approach: with such questions, the skill of the interviewer plays a crucial role - this aspect should not be overlooked.
Second approach: the randomized response technique requires the use of two questions:
- the sensitive question, and
- an innocent question,
as well as a random mechanism with known parameters (heads or tails, etc.).

Randomized responses work as follows: the respondent flips a coin (without announcing the result to the interviewer), and answers honestly one of the 2 questions:
- "head": "Have you ever cheated on a test?";
" "tail": "Were you born in January?";

Since the interviewer does not know the outcome of the draw, they do not know whether the respondent is answering the sensitive question or the innocent one. In theory, the anonymity provided by the randomized response is freeing (the social cost is diminished, if not eliminated altogether) - therefore, we could expect an honest answer, regardless of the question.
But we have to be careful: this approach can only be successful if we know the probabilities:
- \(\theta\) of observing a positive response to the innocent question;
- \(\rho\) of the question being answered actually being the sensitive question, and
- \(\phi\) of observing a positive response, whatever the question.

Let \(p\) be the proportion of positive responses to the sensitive question, which is the quantity of interest. According to the Law of Total Probability, we have
```

$\phi=P$ (positive response)
$=\underbrace{P(\text { positive } \mid \text { sensitive })}_{\rho} \times \underbrace{P(\text { sensitive })}_{\rho}+\underbrace{P(\text { positive } \mid \text { innocent })}_{\theta} \times \underbrace{P(\text { innocent })}_{1-\rho}$,
$=p \rho+\theta(1-\rho)$

```
or
\[
p=\frac{\phi-\theta(1-\rho)}{\rho} .
\]

If \(\hat{\phi}\) is the proportion of positive responses in the achieved sample, then the randomized response estimator is
\[
\hat{p}_{\mathrm{rr}}=\frac{\hat{\phi}-\theta(1-\rho)}{\rho}, \quad \theta, \rho \text { constants }
\]
whose sampling variance is
\[
\mathrm{V}\left(\hat{p}_{\mathrm{rr}}\right)=\mathrm{V}\left(\frac{\hat{\phi}-\theta(1-\rho)}{\rho}\right)=\mathrm{V}\left(\frac{\hat{\phi}}{\rho}\right)=\frac{1}{\rho^{2}} \cdot \mathrm{~V}(\hat{\phi}) .
\]

Since \(\hat{\phi}\) is a SRS proportion estimator obtained from a sample of size \(n\) in a population \(U\) of size \(N\), its sampling variance is
\[
\mathrm{V}(\hat{\phi})=\frac{\phi(1-\phi)}{n}\left(\frac{N-n}{N-1}\right)
\]
from which we conclude that
\[
\mathrm{V}\left(\hat{p}_{\mathrm{rr}}\right)=\frac{1}{\rho^{2}} \cdot \frac{\phi(1-\phi)}{n}\left(\frac{N-n}{N-1}\right) .
\]

As the true value of \(\phi\) is typically not known, we instead use the unbiased estimator
\[
\hat{\mathrm{V}}\left(\hat{p}_{\mathrm{rr}}\right)=\frac{1}{\rho^{2}} \cdot \frac{\hat{\phi}(1-\hat{\phi})}{n-1}\left(1-\frac{n}{N}\right)
\]
and we build a \(\mathbf{9 5 \%}\) C.I. for \(p\) via
\[
\text { C.I. }{ }_{\text {rr }}(p ; 0.95): \quad \hat{p}_{\mathrm{rr}} \pm 2 \sqrt{\hat{\mathrm{~V}}\left(\hat{p}_{\mathrm{rr}}\right)} .
\]

The factor \(1 / \rho^{2}\) penalizes the uncertainty brought by the randomized response - the higher \(\rho\) is, the lower \(\hat{V}\left(\hat{p}_{\text {rr }}\right)\) is.

There are practical considerations that limit how high \(\rho\) can get: if it is too large, the anonymity conferred by the approach evaporates, and we risk ruining the study by causing an increase in non-response.

Example We seek to determine the incidence of cheating in online courses among students in the Department of Mathematics and Statistics ( \(N=442\) ), using a SRS with \(n=65\). We use the scheme described in this section with \(\rho=1 / 2\), and observe \(\theta=\frac{52}{442}\) and \(\hat{\phi}=\frac{21}{65}\). Find a \(95 \%\) C.I. for the proportion of students who cheated during the pandemic.

We only need compute
\[
\begin{aligned}
\hat{p}_{\mathrm{rr}} & =\frac{21 / 65-52 / 442(1-1 / 2)}{1 / 2}=0.53 \\
\hat{\mathrm{~V}}\left(\hat{p}_{\mathrm{rr}}\right) & =\frac{1}{1 / 2^{2}} \cdot \frac{21 / 65(1-21 / 65)}{65-1}\left(1-\frac{65}{442}\right)=0.012,
\end{aligned}
\]
which yields C.I. \(._{\text {rr }}(p ; 0.95)=0.53 \pm 2 \sqrt{0.012} \equiv(0.31,0.74)\).

\section*{Bernoulli Sampling}

Bernoulli sampling (BS) is a random sampling design - we do not know the sample size before it is drawn.

Each unit of the population \(\mathscr{U}=\left\{u_{1}, \ldots, u_{N}\right\}\) is assigned the same probability of inclusion in the sample \(\mathscr{Y}: \pi_{j}=\pi \in(0,1)\), for all \(j\). We denote the achieved sample size by \(n_{a}\).
The BS design \({ }^{60}\) consists of performing \(N\) independent Bernoulli trials, each with probability of success \(\pi\) (where a success means that the unit is included in the sample, and a failure means that it rejected).

The probability of obtaining a sample \(\mathscr{Y}\) of size \(n_{a}\) is then:
\[
P\left(|\mathcal{Y}|=n_{a}\right)=\pi^{n_{a}}(1-\pi)^{N-n_{a}} .
\]

There are \(2^{N}\) possible samples, with size varying from \(n_{a}=0\) to \(n_{a}=N\).
The sample size follows a binomial distribution \(n_{a} \sim B(N, \pi)\) :
\[
P\left(n_{a}=n\right)=\binom{N}{n} \pi^{n}(1-\pi)^{N-n}, \quad \mathrm{E}\left[n_{a}\right]=N \pi, \quad \mathrm{~V}\left[n_{a}\right]=N \pi(1-\pi) .
\]

When \(N\) is sufficiently large, this distribution is approximately normal; the \(\mathbf{9 5 \%}\) C.I. for \(n\) is thus
\[
\text { C.I. }\left(n_{a} ; 0.95\right): \quad N \pi \pm 2 \sqrt{N \pi(1-\pi)}
\]

Let \(\pi_{j, k}\) be the probability of inclusion of units \(u_{j}\) and \(u_{k}, j \neq k\) in the smaple \(\mathscr{y}\). Since the Bernouilli trials are independent of one another,
\[
\pi_{j, k}=P\left(\left\{u_{j}, u_{k}\right\} \in \mathscr{y}\right)=P\left(u_{j} \in \mathscr{y}\right) \cdot P\left(u_{k} \in \mathscr{y}\right)=\pi_{j} \pi_{k}=\pi^{2}
\]

The estimator
\[
\hat{\tau}_{\mathrm{BS}}=\frac{1}{\pi} \sum_{i=1}^{n_{a}} y_{i}
\]
is an unbiased estimator of the total \(\tau\) in \(\mathcal{U}\) : indeed,
\[
\mathrm{E}\left[\hat{\tau}_{\mathrm{BS}}\right]=\frac{1}{\pi} \mathrm{E}\left[n_{a} \bar{y}\right]=\frac{\mathrm{E}\left[n_{a}\right] \mathrm{E}[\bar{y}]}{\pi}=\frac{N \pi \mu}{\pi}=N \mu=\tau
\]
as \(n_{a}\) and \(\bar{y}\) are independent of each other.
In the same vein, the sampling variance of \(\hat{\tau}_{\mathrm{BS}}\) is approximately
\[
\hat{\mathrm{V}}\left[\hat{\tau}_{\mathrm{BS}}\right]=\frac{1}{\pi}\left(\frac{1}{\pi}-1\right) \sum_{i=1}^{n_{a}} y_{i}^{2} .
\]

If \(N\) and \(n_{a}\) are sufficiently large, the Central Limit Theorem comes into play again, and we build a \(\mathbf{9 5 \%}\) C.I. for \(\tau\) using
\[
\text { C.I. }{ }_{\mathrm{BS}}(\tau ; 0.95): \quad \hat{\tau}_{\mathrm{BS}} \pm 2 \sqrt{\hat{\mathrm{~V}}\left[\hat{\tau}_{\mathrm{BS}}\right]}
\]

The corresponding estimators for the mean \(\bar{y}_{\mathrm{BS}}\) and the proportion \(\hat{p}_{\mathrm{BS}}\) are obtained in the usual manner.

Example A teacher has to correct 600 exam papers. For each paper, she rolls a die and only corrects it (at this stage) if it shows a 6.

At the end of the process, she has graded 90 papers, of which 60 have received a passing grade. Find a \(95 \%\) C.I. for the total number of passes in her class.

Let \(y_{i}=1\) if the \(i\) th marked examen received a passing grade, and \(y_{i}=0\) otherwise. We have \(N=600, \pi=1 / 6, n_{a}=90\),
\[
\begin{aligned}
& \sum_{i=1}^{90} y_{i}=60, \quad \sum_{i=1}^{90} y_{i}^{2}=60, \hat{\tau}_{\mathrm{BS}}=\frac{1}{1 / 6} \sum_{i=1}^{90} y_{i}=6(60)=360 \\
& \hat{\mathrm{~V}}\left[\hat{\tau}_{\mathrm{BS}}\right]=\frac{1}{1 / 6}\left(\frac{1}{1 / 6}-1\right) \sum_{i=1}^{90} y_{i}^{2}=6(5)(60)=1800
\end{aligned}
\]

The \(95 \%\) C.I. is thus C.I. BS \((\tau ; 0.95)=360 \pm 2 \sqrt{1800} \equiv[277,443]\). We are not going to lie... it is looking particularly bleak for the students.

\subsection*{10.8 Exercises}
1. You are tasked with estimating the annual salary of data scientists in Canada. Determine the: populations (target, study, respondent); sampling frames; samples (target, achieved); information about units (units, response variable, attributes); sources of error (coverage, non-response, sampling, measurement and processing) and variability (sampling, measurement).
2. We seek to estimate the average daily distance travelled by Ontario cars, as well as their daily fuel consumption. Discuss various approaches to be used. What are some of the issues and challenges that could be encountered?
3. We seek an estimate of the average daily distance travelled in Winter 2012 in Ontario, as are the average daily fuel consumption and the proportion of vehicles not in use. An SRS is selected from the Ontario fleet (size \(N=7,868,359\) ); the responses are collected in the file Autos. \(x \backslash s \times \complement^{7}\). Discuss issues that may affect the quality of the data. Provide a numerical and visual summary of the data for the sample. Give an approximate \(95 \%\) C.I. for each population mean sought, with corresponding coefficient of variation.
4. We seek an estimate of the average daily distance travelled in Winter 2012 in Ontario, as are the average daily fuel consumption and the proportion of vehicles not in use. An STS is selected from the Ontario fleet (size \(N=7,868,359\) ), with information concerning vehicle type and age (the strata); the responses are collected in the file Autos. \(\mathrm{xlsx} \mathrm{CT}^{7}\). Discuss issues that may affect the quality of the data. Provide a numerical and visual summary of the data for the sample. Give an approximate \(95 \%\) C.I. for each population mean sought, with corresponding coefficient of variation. Conduct the same exercise for each stratum.
5. We seek an estimate of the average daily distance travelled in Winter 2012 in Ontario. An SRS is selected from the Ontario fleet (size \(N=7,868,359\) ). The responses, as well as the corresponding daily fuel consumption, are collected in the file Autos. \(x\) lsx [ . Give an approximate \(95 \%\) C.I. for the characteristic of interest using quotient, regression, and difference estimation.
6. Could cluster sampling be used to provide estimates of average daily distance travelled, average daily fuel consumption, and proportion of vehicles not in use in Winter 2012 in Ontario? Treat the vehicle type and age information found in Autos. \(\mathrm{xlsx} \mathrm{E}^{\pi}\) as cluster information.
7. Repeat the previous exercise using multi-phase and multi-stage sampling.
8. Draw \(m=1000\) SRS samples of size \(n\) from the \(N=183\) countries (excluding China and India) in the 2011 Gapminder dataset to estimate the average propulation by country \(\mu\). For \(n=30,60,90,120\), what proportion of the \(m\) samples yield an approximate \(95 \%\) C.I. containing \(\mu\) ? Assume that \(\sigma^{2}\) is not known.
9. Find an approximate \(95 \%\) C.I. for the average life expectancy \(\mu\) of the \(N=185\) countries in the 2011 Gapminder dataset using a SRS of size \(n=20\). Is the true average life expectancy in your confidence interval? Repeat this task \(m=1000\) times, with different SRS samples. What proportion of the \(m\) samples yield approximate
\(95 \%\) C.I. containing \(\mu\) ? Assume that \(\sigma^{2}\) is not known. Compare with the results of the previous exercise. How do you explain the discrepancy?
10. Find an approximate \(95 \%\) C.I. for the proportion \(p\) of countries whose life expectancy fell below 60 years in the 2011 Gapminder dataset ( \(N=185\) ), using a SRS of size \(n=20\). Is the true proportion in the confidence interval? Repeat this task \(m=1000\) times, with different SRS samples. What proportion of the \(m\) samples yield approximate \(95 \%\) C.I. containing the true \(p\) ? Assume that \(\sigma^{2}\) is not known. Compare with the results of exercises 8 and 9 .
11. Find an approximate \(95 \%\) C.I. for the total population of the planet in the 2011 Gapminder dataset \((N=185)\), using a STS of size \(n=20\). What variable will you use to stratify the data? Repeat this task \(m=1000\) times, with different STS samples. What proportion of the \(m\) samples yield approximate \(95 \%\) C.I. containing the true total \(\tau\) ? Is the distribution of the obtained totals (approximately) normal? How do you explain the shape of this distribution?
12. Find an approximate \(95 \%\) C.I. for the proportion \(p\) of countries whose life expectancy fell below 60 years in the 2011 Gapminder dataset ( \(N=185\) ), using a STS of size \(n=20\). What variable will you use to stratify the data? Is the true proportion in the confidence interval? Repeat this task \(m=1000\) times, with different STS samples. What proportion of the \(m\) samples yield approximate \(95 \%\) C.I. containing the true \(p\) ? Compare with the results of exercise 10 .
13. Consider a sample \(\mathscr{Y}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\) drawn from a population of size \(N=37,444\). In a preceding study, we have found that \(\sigma_{W ; L}^{2} \approx 188.2\). Find the minimal \(n\) which ensures that the bound on the error of (regression) estimation of the mean \(\mu_{Y}\) is at most 5 . Do the same for the total \(\tau_{Y}\) and a bound of at most 250.
14. Find a \(95 \%\) C.I. for the proportion of countries in the 2011 Gapminder dataset \((N=185)\) whose life expectancy is above 75 years, using a CLS with \(m=8\), assuming that the countries are grouped into \(M=22\) clusters determined by geographic regions. Assume further that the average cluster size is known to be \(\bar{N}=8.41\).
15. Consider a CLS \(\mathscr{y}\) consisting of \(m\) clusters drawn from a population \(U\) of size \(N\), distributed in \(M\) clusters. Let \(\mu\) be the mean and \(\sigma^{2}\) the variance of the population \(\mathcal{U}\). If the clusters are all of size \(n\), show that
\[
\mathrm{V}\left(\bar{y}_{C}\right) \approx \frac{\sigma^{2}-\overline{\sigma^{2}}}{m}\left(1-\frac{m}{M}\right), \quad \text { where } \overline{\sigma^{2}}=\frac{1}{M} \sum_{\ell=1}^{M} \sigma_{\ell}^{2}
\]
where \(\sigma_{\ell}^{2}\) is the variance in the \(\ell\) th cluster.

\section*{Chapter References}
[1] M. Barry. Lexicon. Penguin Press, 2013.
[2] D. DeTurck. Case Study 2: the 1948 Presidential Election [. 2018.
[3] A. Gower. 'Questionnaire Design for Business Surveys'. In: 20.2 (1994), pp. 125-136.
[4] M. Hidiroglou, J. Drew, and G. Gray. 'A Framework for Measuring and Reducing Non-Response in Surveys'. In: 19.1 (1993), pp. 81-94.
[5] R. Latpate et al. Advanced Sampling Methods. Springer Nature Singapore, 2021.
[6] S.L. Lohr. Sampling: Design and Analysis. Duxbury Press, 1999.
[7] Méthodes de sondage pour les enquêtes statistiques agricoles. Rome: FAO. Développement Statistique.
[8] MIT Technology Review. Storing data in DNA is a lot easier than getting it back out \({ }^{\top}\). 2018.
[9] H. Rosling. The Health and Wealth of Nations \(\longleftarrow\). Gapminder Foundation, 2012.
[10] Survey Methods and Practices, Catalogue no.12-587-X. Statistics Canada.```

