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by Patrick Boily (inspired by David Haziza)

In data-driven decision-making, it is not enough to simply possess vast

datasets (which are often passively collected) and analytical prowess.

The manner in which experiments are designed, conducted, and ana-
lyzed can make a huge difference in the validity and reliability of the

conclusions that analysts draw.

The design of experiment provides the foundation for sound experimental

methodology, enabling scientists and data professionals to meticulously

control variables, uncover hidden patterns, and discern causality amidst

the complexity of real-world data.
*

11.1 Basic Notions

At its core, statistics serves as the science of collecting, analyzing, and

deriving meaningful conclusions from data.

Data can be obtained through several primary methods, each with its

own unique characteristics.

One common approach to data collection involves conducting sample
surveys. These surveys are often carried out by entities such as National

Statistical Offices and polling market firms.
†

The main objective of sample surveys is typically to estimate parameters

for finite populations. For instance, they may aim to determine the average

income within the Canadian population or calculate the unemployment

rate.
‡

Another method involves observational studies, where researchers

gather data by observing and recording natural occurrences. These

studies provide valuable insights into real-world phenomena but may

not always allow for the establishment of causality between variables.

Experimentation represents a powerful way to investigate causal relation-

ships. In experiments, researchers manipulate one or more variables and

observe the effects on others. This controlled approach helps establish

potential causal networks,
1

a crucial aspect of scientific inquiry. 1: Or cause-and-effect connections.

These foundational concepts lay the groundwork for our exploration of

experimental design.

*
More details, examples, and exercises are available in [2, 5], among others.

†
Such as Statistics Canada or EKOS Research, say.

‡
Survey sampling is explored in depth in Chapter 10.
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11.1.1 Experiments

The essence of experimental studies lies in the comparison of treatments
and their respective outcomes. Researchers leverage experiments to

address crucial questions, often revolving around topics such as:

Is a drug a safe and effective cure for a disease? This could involve

testing how AZT affects the progression of AIDS.

What combination of protein and carbohydrate sources provides

the optimal nutrition for growing lambs?

How will long-distance telephone usage patterns change if our

company introduces a different rate structure for our customers?

Can an ice cream manufactured with a new kind of stabilizer match

the palatability of our current ice cream?

A fundamental aspect of scientific reasoning involves drawing conclu-

sions from experiments that have been meticulously designed, executed

appropriately, and rigorously analyzed. Key elements include the treat-
ments and experimental units to be employed, the methodology for

assigning treatments to units, and the measured responses.

Note that the environment and observation conditions must be carefully

controlled and fixed.
2

2: Explanatory variables are under the

direct control of the researchers; some are

intentionally altered, while others are held

constant. Observational Studies against Experiments

Both observational studies and experiments are typically employed

to establish relationships between two or more measured quantities.

However, there is a fundamental distinction between observational

studies and experiments.

In an observational study, researchers do not actively manipulate or

create data; instead, they solely observe the characteristics of pre-existing

data. Consequently, an observational study entails the observation of

units/individuals and the measurement of variables of interest, without
any attempt to influence their responses.

Conversely, an experiment involves the deliberate imposition of specific
treatments on individuals/units to observe their responses. Causal infer-

ences find justification in experiments, where the explanatory variables

𝑥1 , · · · , 𝑥𝑝 , often referred to as the "possible causes," are directly con-

trolled by the researcher. Such experiments are known as randomized
trials because the values of the explanatory variables are assigned to

experimental units through some random mechanism.

In observational studies, the values of the explanatory variables are

observed rather than assigned by the researcher, alongside the value of

the response. In such studies, causal inferences are not warranted because,

although efforts can be made to "control" for certain "confounding" factors,

it is generally impossible to control for all relevant factors.

What constitutes a relevant (or confounding) factor in observational

studies? It is a factor that both influences the response variable(s) and

relates to the explanatory variable(s) on which the research focuses.
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A drawback of observational studies is that the grouping of individ-

uals into "treatments" is beyond the experimenter’s control, and the

mechanism underlying this grouping is often unknown.

Consequently, observed differences in responses between treatment

groups may be attributable to hidden mechanisms rather than to the

treatments.

Example Consider a dataset from Canada’s Health Care System compar-

ing the effectiveness of two procedures for treating prostate disease:

1. traditional surgery, or

2. a new method that does not require surgery.

The dataset includes many patients suffering from prostate disease, with

their doctors choosing one of the two methods. Initially, the study found

that patients treated with the new method were significantly more likely

to die within 8 years. H

However, further data analysis revealed that this conclusion was incorrect.

Why? What potential confounding variables might be at play?

Definitions

Some concepts will re-appear time and time again in this chapter, and so

we take the time to define them properly.

Treatments represent the different procedures under examination.

These could encompass various types or amounts of fertilizer in

agronomy or distinct long-distance rate structures in marketing.

An experimental unit refers to the physical entity that can be

randomly assigned to a treatment. This unit may be an individual,

an animal, a plot of land receiving fertilizer, and so forth, upon

which measurements are taken.
3

3: It does not have to be a “physical” entity

per se, as the data may arise in a simulation

context (see Chapter 12).

The dependent (or response) variable, often denoted by 𝑌, rep-

resents the observed outcome after applying a treatment to an

experimental unit.

Randomization involves the use of a known and perfectly con-

trolled probabilistic mechanism to assign treatments to units.

A factor in an experiment is a controlled independent variable, a

variable whose levels are determined by the experimenter. Factors

combine to create treatments. For instance, the baking treatment

for a cake may involve specific time and temperature settings, with

each variable varied independently.

A level denotes the intensity setting (or value) of a factor.

The effect is the change in the response caused by a change in a

factor.

A lurking (or hidden) variable is an uncontrolled variable that falls

outside the experimenter’s awareness and control, which could

influence the experiment’s outcome.

A cell refers to the subset of data occurring at the intersection of

one level of every treatment.
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Example In each of five different campuses across the country, we

selected 10 students at random to assess their attitudes toward industrial

pollution. Each student responded to a specific set of questions, and their

responses were aggregated into a total interview score.

Campus I II III IV V

Score 172 248 236 250 241

Experimental unit: a student

Response variable: total aggregated score

Factor: campus, with 5 levels

There are 5 cells in this experiment

Example We would like to compare the effects of three different insecti-

cides on a particular variety of string beans. Four plots were prepared,

with each plot subdivided into three rows. Each row was planted with

100 seeds and then maintained under the insecticide assigned to the row.

The insecticides were randomly assigned to the rows within a plot so

that each insecticide appeared in one row in all four plots. The response

variable was the number of seedlings that emerged per row.

Plot
Row I II III IV

1 (A)

121

(A)

73

(B)

144

(B)

134

2 (B)

128

(B)

141

(C)

118

(A)

85

3 (C)

112

(C)

118

(A)

109

(C)

111

Of course, we do not need to physically refer to the rows in order; in

fact, it might make more sense to represent the experiment using the

treatments instead of the location.

Plot
Insecticide I II III IV

A (1)

121

(1)

73

(3)

109

(2)

85

B (2)

128

(2)

141

(1)

144

(1)

134

C (3)

112

(3)

118

(2)

118

(3)

111

Experimental unit: variety of string beans

Response variable: number of seedlings

Factors: plot and insecticide

Levels of the factors:

− Plot: four levels (I, II, III, IV)

− Insecticide: three levels (A, B, C)

There are 3 · 4 = 12 cells in this experiment
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Example We aim to test whether a chemical agent can prevent symp-

tomatic infection from a respiratory diseases. A clinical trial was con-

ducted where patients received either the compound (C) or a placebo

(P). The treatment was administered to both men (M) and women (F),

each belonging to a specific age group. The information is summarized

below.

Gender

M F

Drug
Age P C P C

29− (102)

0.31

(99)

0.29

(105)

0.28

(105)

0.30

30-59 (117)

0.35

(119)

0.31

(120)

0.31

(119)

0.27

60+ (89)

0.38

(85)

0.41

(91)

0.38

(90)

0.37

Experimental unit: individual on which the infected/non-infected

status is measured

Response variable: 1 = infection, 0 = no infection.

Factors: gender, drug, and age group

Levels of the factors:

− Drug: two levels (compound and placebo)

− Gender: two levels (male and female)

− Age group: three levels (29−, 30-60, 60+)

There are 2 · 2 · 3 = 12 cells in this experiment

11.1.2 Useful Distributions

We have encountered several probabilistic and statistical concepts that

arise time and time again in applications.
4

We briefly mention those 4: See Chapters 6, 7, 8, 9, and 10.

properties that will be useful in the analysis and design of experiments.

Sample Mean and Sample Variance Consider a random sample

Y= {𝑦1 , . . . , 𝑦𝑛}

drawn from a population with mean 𝜇 and variance 𝜎2
, where E(𝑦𝑖) = 𝜇

and Var(𝑦𝑖) = 𝜎2
for 𝑖 = 1, . . . , 𝑛.

We assume that the sample observations in Y are independent and
identically distributed (i.i.d), indicating that they were generated from

the same distribution (or from the same population U).

The sample mean and sample variance of Yare given by:

𝑦 =
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 , 𝑠2 =
1

𝑛 − 1

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦)2.
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As a reminder, both the sample mean and the sample variance are

unbiased estimators of the population mean and the population variance,

respectively:

E(𝑦) = 1

𝑁

𝑁∑
𝑖=1

E(𝑦𝑖) =
1

𝑁

𝑁∑
𝑖=1

𝜇 = 𝜇,

Var(𝑦) = 1

𝑛2

𝑁∑
𝑖=1

Var(𝑦𝑖) =
1

𝑛2

𝑁∑
𝑖=1

𝜎2 =
𝜎2

𝑛
,

and

E(𝑠2) = 1

𝑛 − 1

[
𝑁∑
𝑖=1

E(𝑦2

𝑖 ) − 𝑛E(𝑦2)
]
=

1

𝑛 − 1

[
𝑁∑
𝑖=1

(𝜎2 + 𝜇2) − 𝑛
(
𝜎2

𝑛
+ 𝜇2

)]
=

1

𝑛 − 1

[
𝑛(𝜎2 + 𝜇2) − 𝑛

(
𝜎2

𝑛
+ 𝜇2

)]
= 𝜎2.

Probability Distributions The distribution of sample observations is

described by a probability distribution. For a continuous variable 𝑌, the

probability distribution is characterized by a density function, denoted

as 𝑓 (𝑦), with the following properties:

𝑓 (𝑦) ≥ 0, 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) =
∫ 𝑏

𝑎

𝑓 (𝑦)𝑑𝑦,
∫ +∞

−∞
𝑓 (𝑦)𝑑𝑦 = 1.

The mean of a probability distribution, denoted by 𝜇, serves as a measure

of centrality location and is defined as:

𝜇 = E(𝑌) =
∫ +∞

−∞
𝑦 𝑓 (𝑦)𝑑𝑦.

The variance 𝜎2
can be used to quantify the dispersion of a variable:

𝜎2 = Var(𝑌) = E[(𝑦 − 𝜇)2] =
∫ +∞

−∞
(𝑦 − 𝜇)2 𝑓 (𝑦)𝑑𝑦.

Normal Distributions If 𝑌 follows a normal distribution N(𝜇, 𝜎2) with

mean 𝜇 and variance 𝜎2
, its probability density function is given by

𝑓 (𝑦) = 1√
2𝜋𝜎

exp

(
−(𝑦 − 𝜇)2

2𝜎2

)
, −∞ < 𝑦 < ∞

.

If 𝑦1 , . . . , 𝑦𝑛 , is a random sample generated from a N(𝜇, 𝜎2), then 𝑦 and

𝑠2
are statistically independent.

Normal distributions are entirely characterized by their expectation

E(𝑌) = 𝜇 and variance Var(𝑦) = 𝜎2
; any other normal random variable

with the same properties must in fact be exactly 𝑌 ∼ N(𝜇, 𝜎2). We can

standardize any such random variable:

𝑍 =
𝑌 − 𝜇

𝜎
∼ N(0, 1).

The resulting random variable 𝑍 is said to be standard normal.
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We have discussed normal distributions in detail in Section 6.3.3; the

primacy of normal distributions in statistical applications is explained

by the following oft-used result.

Central Limit Theorem: let 𝑌1 , . . . , 𝑌𝑛 , be 𝑛 i.i.d. random variables with

mean 𝜇 and variance 𝜎2
. The random variable

𝑍𝑛 =
𝑌 − 𝜇

𝜎/
√
𝑛

converges in distribution to 𝑍 ∼ N(0, 1), where 𝑌 =
∑𝑛
𝑖=1
𝑌𝑖/𝑛.5 5: A sequence {𝑋𝑛} of random variables,

with cumulative distribution functions

{𝐹1} converges in distribution to a random

variable 𝑋 with cumulative distribution

function 𝐹 if 𝐹𝑛(𝑥) → 𝐹(𝑥) for all 𝑥 where

𝐹 is continuous.

𝜒2 Distributions If 𝑍1 , . . . , 𝑍𝑘 ∼ N(0, 1) are 𝑘 i.i.d. random variables,

then the random variable

𝑌 = 𝑍2

1
+ · · · + 𝑍2

𝑘

follows a 𝜒2

𝑘
distribution (with 𝑘 degrees of freedom).

6
6: We have also used the notation 𝜒2(𝑘)
in these notes.

The probability density function of such a random variable is

𝑓 (𝑦) = 1

2
𝑘/2Γ

(
𝑘
2

) 𝑦𝑘/2−1𝑒−𝑦/2 , 𝑦 > 0,

where Γ is the Gamma function .

When 𝑌 ∼ 𝜒2

𝑘
, we have E(𝑌) = 𝑘 and Var(𝑌) = 2𝑘.

As the degrees of freedom parameter 𝑘 increases, the chi-square distribu-

tion converges in distribution to a normal distribution with a mean equal

to 𝑘 and a variance equal to 2𝑘. This convergence is a direct consequence

of the Central Limit Theorem.

Now, if we have a random sample 𝑦1 , . . . , 𝑦𝑛 generated from a normal

distribution N(𝜇, 𝜎2), we can make the following observation:

(𝑛 − 1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1
.

This implies that we can obtain an unbiased estimator of 𝜎2
by dividing

the sum of squares by the number of degrees of freedom, which is 𝑛 − 1.

This unbiased estimator of the population variance will prove useful

when introduce ANOVA tables.

Student’s 𝑇−Distributions If 𝑍 ∼ N(0, 1) and 𝑌 ∼ 𝜒2

𝑘
independent,

then the distribution of the random variable

𝑊 =
𝑍√
𝑌/𝑘

is that of a Student 𝑇−distribution with 𝑘 degrees of freedom, denoted

by𝑊 ∼ 𝑡𝑘 .7 7: We have also used the notation 𝑡(𝑘) in

these notes.

https://en.wikipedia.org/wiki/Gamma_function
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The probability density function of the 𝑇−distribution is :

𝑓 (𝑤) =
Γ

(
𝑘+1

2

)
√
𝑘𝜋Γ

(
𝑘
2

) (
1 + 𝑤2

𝑘

) 𝑘+1

2

, −∞ < 𝑤 < ∞.

The 𝑇−distribution is symmetric, and its expected value is E(𝑊) = 0,

while its variance is Var(𝑊) = 𝑘
𝑘−2

for 𝑘 > 2. As the degrees of freedom

parameter 𝑘 increases,𝑊 converges in distribution to the standard normal

distribution N(0, 1).

Fisher’s 𝐹−Distributions If 𝑋 ∼ 𝜒2

𝑢 and 𝑌 ∼ 𝜒2

𝑣 are independent, then

the distribution of the random variable

𝑊 =

𝑋
𝑢

𝑌
𝑣

is that of a Ficher 𝐹−distribution with (𝑢, 𝑣) degrees of freedom, denoted

by𝑊 ∼ 𝐹𝑢,𝑣 .
8

8: We have also used the notation 𝐹(𝑢, 𝑣)
in these notes. The order of the degrees of

freedom is important: if 𝑊 ∼ 𝐹𝑢,𝑣 , then

1

𝑊
∼ 𝐹𝑣,𝑢 .

The probability density function of the 𝐹−distribution is given by:

𝑓 (𝑤) =
Γ

(
𝑢+𝑣

2

) (
𝑢
𝑣

) 𝑢
2

Γ
(
𝑢
2

)
Γ

(
𝑣
2

) 𝑤
𝑢
2
−1(

1 + 𝑢
𝑣𝑤

) 𝑢+𝑣
2

, 𝑤 > 0.

The expectation of𝑊 ∼ 𝐹𝑢,𝑣 is only defined if 𝑣 > 2; its variance is only

defined if 𝑣 > 4. In those cases, we have

E(𝑊) = 𝑢

𝑣 − 2

and Var(𝑊) = 2𝑣2(𝑢 + 𝑣 − 2)
𝑢(𝑣 − 2)2(𝑣 − 4) ;

if 𝑣 ≤ 4, 𝑊 does not have a well-defined variance, if 𝑣 ≤ 2, it does not

have a well-defined expectation. Moreover, if 𝑋 ∼ 𝑡(𝑘), then 𝑋2 ∼ 𝐹1,𝑘 .

11.2 Review of Hypothesis Testing

We have discussed hypothesis testing in detail in Section 7.4 (and in the

chapters on applications); we briefly review its important features as it

relates to the design of experiment.

11.2.1 Inference on the Population Mean

The customary Student 𝑇−test relies on several key assumptions:

1. a random sample of size 𝑛 is selected for analysis;

2. the individual observations in this sample are denoted by 𝑦1 , 𝑦2 , . . . , 𝑦𝑛 ;

3. these observations are assumed to have been generated from a

normal population with a mean parameter 𝜇 and variance 𝜎2
,

expressed as:

𝑦1 , 𝑦2 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2).
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However, what if the underlying population does not follow a normal

distribution? The Student 𝑡−test exhibits robustness in the sense that the

distribution of the test statistic remains relatively stable even when the

normality assumption is not strictly met. This robustness holds, provided

that the sampled population exhibits an approximately mound-shaped
distribution.

In the context of hypothesis testing: we typically formulate both null and

alternative hypotheses as follows. We pit the

null hypothesis (𝐻0): 𝜇 = 𝜇0

against the two-tailed

alternative hypothesis (𝐻1): 𝜇 ≠ 𝜇0,

or either of the one-tailed

alternative hypothesis (𝐻1): 𝜇 > 𝜇0 (one-tailed test), or

alternative hypothesis (𝐻1): 𝜇 < 𝜇0 (one-tailed test).

We define the following terms related to hypothesis testing (see Table

11.5 for a summary):

a type I error occurs when we wrongly reject the null hypothesis

𝐻0 but it is in fact valid:

𝛼 = 𝑃(Type I error) = 𝑃(reject 𝐻0 | 𝐻0 is true);

a type II error occurs when we do not reject the null hypothesis 𝐻0

but it should in fact be rejected:

𝛽 = 𝑃(Type II error) = 𝑃(do not reject 𝐻0 | 𝐻0 is false);

the power of the test is the probability of correctly rejecting the

null hypothesis when it is in fact false:

Power = 1 − 𝛽 = 𝑃(reject 𝐻0 | 𝐻0 is false)

We discuss other types of error in one of the sidenotes of Section 7.4.1.

Reality
𝐻0 is true 𝐻0 is false

Decision
Reject 𝐻0

type I error

(𝛼)
right decision

(1 − 𝛽)

Do not reject 𝐻0

right decision

(1 − 𝛼)
type II error

(𝛽) Table 11.5: The four possible outcomes for

hypothesis testing.

We usually set the significance level 𝛼 of the test, typically chosen as

𝛼 = 0.01, 0.05, 0.1, and aim to construct a test with high power 1 − 𝛽,

typically for 𝛽 = 0.1, 0.2.

The test statistic 𝑡0 is calculated as follows:

𝑡0 =
𝑦 − 𝜇0

𝑠/
√
𝑛
.
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If 𝐻0 is true,
9

the distribution of 𝑡0 follows a 𝑇−distribution with 𝑛 − 19: We also say “under 𝐻0”.

degrees of freedom (𝑡𝑛−1).

For a two-tailed test at the level 𝛼, we reject 𝐻0 when |𝑡0 | is greater than

the critical value 𝑡𝛼/2;𝑛−1
.
10

For a one-tailed test, either 𝐻0 : 𝜇 = 𝜇010: See Section 7.3.2 for more information.

against 𝐻1 : 𝜇 > 𝜇0 or 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0, we reject 𝐻0

based on the sign of 𝑡0:

for 𝐻1 : 𝜇 > 𝜇0, we reject 𝐻0 when 𝑡0 > 𝑡𝛼;𝑛−1;

for 𝐻1 : 𝜇 < 𝜇0, we reject 𝐻0 when 𝑡0 < −𝑡𝛼;𝑛−1.

We can then build an 100(1 − 𝛼)% confidence interval for 𝜇 according

to:

𝑦 ± 𝑡𝛼/2;𝑛−1
· 𝑠√

𝑛

The margin of error 𝑚 (sometimes known as the bound on the error of
estimation, see Chapter 10) is

𝑚 = 𝑡𝛼/2;𝑛−1
· 𝑠√

𝑛

We reject 𝐻0 if

��� 𝑦−𝜇0

𝑠/
√
𝑛

��� > 𝑡𝛼/2;𝑛−1
, that is, if 𝑦 lies in the rejection region

𝑦 ≥ 𝜇0 + 𝑚 or 𝑦 ≤ 𝜇0 − 𝑚.

Inference about 𝜇: Power The power of a test depends on various

factors, including the specific alternative hypothesis, the significance
level 𝛼, the variance 𝜎2

, and the sample size 𝑛.

We can think of the power as a function

𝜋(𝜃) = 𝑃(reject 𝐻0 : 𝜃 = 𝜃0 | observed sample).

The power function 𝜋(𝜃) obviously depends on the true value of the

parameter 𝜃, of course, but may also be influenced by the sample size
and the rejection rule or significance level of the test. By construction,

we must have 𝜋(𝜃0) = 𝛼.

We can compute the power of the Student 𝑇−test with the help of the

following random variable: if 𝑍 ∼ N(0, 1) and 𝑋 ∼ 𝜒2

𝑘
are independent,

the distribution of

𝑊 =
𝑍 + 𝛿√
𝑋/𝑘

is a non-central 𝑇−distribution with 𝑘 degrees of freedom and non-
centrality parameter 𝛿, denoted by𝑊 ∼ 𝑡𝑘(𝛿).1111: When 𝛿 = 0, this clearly reduces to the

standard Student 𝑇−distribution.

We take a detailed look at computing the power of the test for a one-tailed

test with hypotheses 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0.

In this case, we reject 𝐻0 if 𝑡0 > 𝑡𝛼;𝑛−1, which is equivalent to

𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1.
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The power function of the test can then be expressed as:

𝜋(𝜇) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1

����𝐻0 is false

)
= 𝑃

(
𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1

����𝜇 > 𝜇0

)
.

To compute this probability, we first note that

𝑦 − 𝜇0

𝑠/
√
𝑛

=
(𝑦 − 𝜇) + (𝜇 − 𝜇0)

𝑠/
√
𝑛

=

√
𝑛(𝑦 − 𝜇)/𝜎 +

√
𝑛(𝜇 − 𝜇0)/𝜎

𝑠/𝜎 .

According to the central limit theorem, 𝑍 =
𝑦−𝜇
𝜎/

√
𝑛
∼ N(0, 1).

Furthermore, 𝑋 = (𝑛 − 1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1
. If 𝛿 =

√
𝑛(𝜇 − 𝜇0)/𝜎,

12
then 12: In practice, we use 𝛿 ≈

√
𝑛(𝜇 − 𝜇0)/𝑠.

𝑦 − 𝜇0

𝑠/
√
𝑛

=
𝑍 + 𝛿

𝑋/(𝑛 − 1) .

Under 𝐻1, then, we have:

𝑊 =
𝑦 − 𝜇0

𝑠/
√
𝑛

∼ 𝑡𝑛−1(
√
𝑛(𝜇 − 𝜇0)/𝜎).

Example Let 𝑦1 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2) be i.i.d., with 𝑠 = 10. We want to

test𝐻0 : 𝜇 = 60 against𝐻1 : 𝜇 > 60; assume that we reject𝐻0 if 𝑦 ≥ 62.

What is the power of the test when 𝑛 = 25 and the true value of

the mean is 𝜇 = 63?

In this case, we have 𝛿 ≈
√

25(63 − 60)/10 = 1.5 and

𝜋(63) = 𝑃(𝑦 ≥ 62 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√

25

����𝜇 = 63

)
= 𝑃(𝑡24(1.5) ≥ 1) = 0.6933.

We can compute this in R as follows:

1 - pt(q=1, df=24, ncp=1.5)

Thus, if 𝜇 = 63, the probability of correctly rejecting 𝐻0 is ≈ 70%.

Repeat the calculation, but assuming that 𝑛 = 100 instead. In this

case, we have 𝛿 ≈
√

100(63 − 60)/10 = 3 and

𝜋(63) = 𝑃(reject 𝐻0 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√

100

����𝜇 = 63

)
= 𝑃(𝑡99(3) ≥ 2) = 0.8401,

which can also be obtained in R as follows:

1 - pt(q=2, df=99, ncp=3)

We note that, for given values of 𝜇 and 𝑠, the power of the test

increases as the sample size 𝑛 increases.

For an arbitrary 𝑛, we have 𝛿 ≈
√
𝑛(63 − 60)/10 = 0.3

√
𝑛, and

𝜋(63) = 𝑃(reject 𝐻0 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√
𝑛

����𝜇 = 63

)
= 𝑃(𝑡𝑛−1(0.3

√
𝑛) ≥ 0.2

√
𝑛).
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If the true parameter value is 𝜇 = 60, then for an arbitrary sample

size 𝑛, we have 𝛿 =
√
𝑛(60 − 60)/10 = 0 and

𝜋(60) = 𝑃(reject 𝐻0 | 𝜇 = 60) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√
𝑛

����𝜇 = 60

)
= 𝑃(𝑡𝑛−1 ≥ 0.2

√
𝑛) = 𝛼.

Note that 𝜋(60) corresponds to the probability of a Type I error for

a given decision rule and sample size. □

In general, the power of a test increases as:

the effect |𝜇 − 𝜇0 | increases for fixed values of 𝑛 and 𝑠;

the sample size increases for fixed values of 𝜇 and 𝑠;

𝑠 decreases for fixed values of 𝜇 and 𝑛.

Sample Size When designing an experiment, it is crucial to determine

an appropriate sample size. Typically, researchers aim to determine the

sample size 𝑛 that guarantees a high statistical power.
13

To achieve this,13: Often set at 1 − 𝛽 = 0.8 or 0.9.

the they need to specify the following key factors.

1. The desired power, which represents the probability of detecting a

true effect if it exists;

2. the significance level 𝛼 (the probability of making a Type I error);

3. the effect size |𝜇 − 𝜇0 |, which is chosen to represent a practically

meaningful difference between groups or conditions, and

4. an estimate or range for the population variance 𝜎2
.

We illustrate the process via a simple example.

Example Let 𝑦1 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2) be i.i.d. We wish to test the following

hypotheses:

𝐻0 : 𝜇 = 100 against 𝐻1 : 𝜇 > 100.

We assume that 20 a plausible value for 𝜎, and that the level of significance

𝛼 is 0.05. If an effect 𝜇 − 𝜇0 = 10 is considered meaningful, what sample

size is required to detect such a difference with a power of 0.9?

Given our assumption about 𝜎2
, the distribution of the test statistic

𝑍 =
𝑦 − 𝜇0

𝜎/
√
𝑛

is standard normal, N(0, 1).

In order for 𝜇 − 𝜇0 to be 10, we must have 𝜇 = 110; we can achieve a

power of 0.9 as follows:

𝜋(110) = 𝑃(reject 𝐻0 | 𝜇 = 110) = 0.9 ⇔ 𝑃 (𝑍 ≥ 𝑧0.05 | 𝜇 = 110) = 0.9

⇔ 𝑃

(
𝑦 − 100

20/
√
𝑛

≥ 1.645

����𝜇 = 110

)
= 0.9 ⇔ 𝑃

(
𝑦 ≥ 1.645 · 20√

𝑛
+ 100

����𝜇 = 110

)
= 0.9

⇔ 𝑃

(
𝑦 − 110

20/
√
𝑛

≥ 1.645 − 10

√
𝑛

20

)
= 0.9.

What is the corresponding quantile of the standard normal distribu-

tion?
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qnorm(p=0.9, mean=0, sd=1, lower.tail=FALSE)

[1] -1.281552

Then, we must have

1.645 − 10

√
𝑛

20

= −1.29,

which is to say, 𝑛 ≈ 35. □

11.2.2 Inference on the Difference of Means

We start with an example borrowed from [4].

Motivational Example An experiment was conducted to compare the

mean number of tapeworms in the stomachs of sheep that had been

treated for worms against the mean number in those that were un-

treated.

A sample of 14 worms-infected lambs was randomly divided into two

groups: 7 were injected with the drug and the remainder were left

untreated. After a 6-month period, the lambs were slaughtered and the

following worm counts were recorded.

Drug-treated sheep 18 43 28 50 16 32 13

Untreated sheep 40 54 26 63 21 37 39

How would we test the hypothesis that there is no difference in the mean

number of worms between treated and untreated lambs? □

We will return to this example after some important notions.

To test for the difference of means, we assume two populations, denoted

by I and II, in each of which the distribution of the response variable is

taken to be normal.
14

14: Note that in the motivational example,

the response is the worm count, which can-

not be normally distributed as negative

and fractional values cannot arise. Never-

theless, that assumption may be a good

approximation to reality (see Section 6.3.6,

for instance).For Population 1, let 𝜇1 and 𝜎2

1
be the respective population mean

and variance, and analogously, for Population II, 𝜇2, and 𝜎2

2
.
15

A key 15: Referring to the motivational exam-

ple, 𝜇1 and 𝜇2 are the true worm count

means in the populations of treated and

untreated lambs, respectively.

assumption is that the population variances are equal: 𝜎2

1
= 𝜎2

2
= 𝜎2

.

Let 𝑦1,1 , . . . , 𝑦1,𝑛1
be a random sample of size 𝑛1 drawn from Population I,

with sample mean 𝑦
1
, and 𝑦2,1 , . . . , 𝑦2,𝑛2

be a random sample of size 𝑛2

drawn from Population II, with sample mean 𝑦
2
. Crucially, these samples

are assumed to be independent.

Expressed in distributional terms:

𝑦1,1 , . . . , 𝑦1,𝑛1
∼ N(𝜇1 , 𝜎

2), 𝑦2,1 , . . . , 𝑦2,𝑛2
∼ N(𝜇2 , 𝜎

2)

or equivalently:

𝑦1,𝑖 = 𝜇1 + 𝜀1,𝑖 , 𝜀1,𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛1 , and

𝑦2,𝑖 = 𝜇2 + 𝜀2,𝑖 , 𝜀2,𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛2.
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The test’s null and alternative hypotheses are:

𝐻0 : 𝜇1 = 𝜇2 and 𝐻1 : 𝜇1 ≠ 𝜇2;

the treatment effect is denoted by 𝜇1 − 𝜇2.
16

16: When the alternative hypothesis is

in the form 𝐻1 : 𝜇1 ≠ 𝜇2, the test is a

two-tailed test. If, however, the alterna-

tive hypothesis is either 𝐻1 : 𝜇1 > 𝜇2 or

𝐻1 : 𝜇1 < 𝜇2, the test becomes a one-
tailed test.

We require a test statistic to determine whether to reject or accept the null

hypothesis, 𝐻0. Setting the level of the test as 𝛼,
17

we aim to formulate a

17: Common values: 𝛼 = 0.01, 0.05, 0.1.

test with a substantial power.

The customary 𝑇−statistic with significance level 𝛼 is

𝑡0 =
𝑦

1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

, where 𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

is the pooled estimate of the common variance 𝜎2
.

If the null hypothesis 𝐻0 holds true, the test statistics 𝑡0 follows a

𝑇−distribution with 𝑛1 + 𝑛2 − 2 degrees of freedom, 𝑡0 ∼ 𝑡𝑛1+𝑛2−2. The

decision to reject the null hypothesis at level 𝛼 is made when

|𝑡0 | > 𝑡𝛼/2;𝑛1+𝑛2−2
.

In practice, the decision often hinges on the 𝑝-value. The computation

for the 𝑝-value (in the two-tailed case) is:

𝑝−value = 2𝑃(𝑡𝑛1+𝑛2−2 > |𝑡0 |);

that quantity is smaller then 𝛼 if and only if the test rejects 𝐻0 at level 𝛼.

Motivational Example (Cont.) We compute the required quantities.

y.1 <- c(18,43,28,50,16,32,13)

y.2 <- c(40,54,26,63,21,37,39)

(y.bar.1 <- mean(y.1))

(y.bar.2 <- mean(y.2))

(s.2.1 <- var(y.1))

(s.2.2 <- var(y.2))

[1] 28.57143

[1] 40

[1] 198.619

[1] 215.3333

The pooled estimate of the variance is easy to compute.

n.1 = length(y.1)

n.2 = length(y.2)

(n.1+n.2-2)

(s.2.p <- ((n.1-1)*s.2.1 + (n.2-1)*s.2.2)/(n.1 + n.2 - 2))
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[1] 12

[1] 206.9762

The test statistic is computed below.

(t_0 <- (y.bar.1 - y.bar.2)/sqrt(s.2.p*(1/n.1 + 1/n.2)))

[1] -1.486161

The 𝑝−value for the two-sided test is thus 2𝑃(𝑡12 > |−1.486161|).

2*pt(q=t_0, df=n.1 + n.2 - 2, lower.tail=TRUE)

[1] 0.1630303

Since the 𝑝−value is larger than 𝛼 = 0.05, we have insufficient evidence

to reject 𝐻0, which is to say that the observed data is compatible with the

idea that the treatment has no effect. □

We have discussed this before (in Section 7.4, notably), but we will repeat

it here for good measure: failure to reject the null hypothesis 𝐻0 is not

the same as accepting the null hypothesis 𝐻0. We cannot prove 𝐻0, we

can only show that the observed data is at least compatible with it.
18

18: We can reject 𝐻0, however, which is

equivalent to saying that the observed data

is not compatible with it.

Power and Sample Size We now turn to the sample size determination

𝑛1 and 𝑛2. In a study, these are usually determined based on the need to

offer sufficient statistical power.

When𝐻0 is true, the test statistic 𝑡0 follows a Student𝑇−distribution with

𝑛1 + 𝑛2 − 2 degrees of freedom. However, when 𝐻0 is false, 𝑡0 follows a

non-central 𝑇−distribution with non-centrality parameter

𝛿 =
𝜇1 − 𝜇2

𝜎
√

1

𝑛1

+ 1

𝑛2

.

Suppose we test 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2.

The power function of the test is then given by

𝜋(𝜇1 − 𝜇2) = 𝑃
©«

𝑦
1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

> 𝑡𝛼;𝑛1+𝑛2−2

������� 𝐻0 is false

ª®®¬
= 𝑃

©«
𝑦

1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

> 𝑡𝛼;𝑛1+𝑛2−2

������� 𝜇1 − 𝜇2 > 0

ª®®¬ .
The power function increases with 𝛿. Thus, the power increases when:

1. |𝜇1 − 𝜇2 | increases – a large difference between the means is easier

to detect;
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2. 𝜎 decreases – a given difference between 𝜇1 and 𝜇2 is easier to

detect when the errors 𝜀ℓ , 𝑗 are small, and/or

3. 𝑛1 and/or 𝑛2 increases.

Confidence Intervals We can construct an approximate 100(1 − 𝛼)%
confidence interval for 𝜇1 − 𝜇2:

C.I.(𝜇1 − 𝜇2; 1 − 𝛼) ≡ 𝑦
1
− 𝑦

2
) ± 𝑡𝛼/2;𝑛1+𝑛2−2

· 𝑠𝑝
√

1

𝑛1

+ 1

𝑛2

.

In the previous example, we get a 95% confidence interval for 𝜇1 − 𝜇2 by

computing

C.I.(𝜇1−𝜇2; 0.95) ≡ (28.57−40)±2.1788·14.39

√
1

7

+ 1

7

⇐⇒ (−28.18, 5.32).

Because the interval contains 0, we do not have enough evidence to reject

𝐻0 – the data is not incompatible with the notion that 𝜇1 −𝜇2 = 0.
19

This19: Which is not the same as saying that

we accept 𝐻1 : 𝜇1 − 𝜇2 ≠ 0.
matches the 𝑝−test result from the previous section.

Paired-Difference Test When the samples are drawn independently

from the two populations, we refer to the test as unpaired.
20

In a paired20: We often have 𝑛1 ≠ 𝑛2.

scenario, the units are not independent:
21

we could imagine selecting21: In some sense, they are maximally de-

pendent. 𝑛 = 7 sheep, testing them for tapeworm before treating them with a

drug, then testing the same sheep for tapeworm after the treatment.

If a given specimen is somehow more likely to be afflicted by tapeworm

due to genetics or farmer care, we wouldn’t be surprised to find a link in

its before/after measurements.

Motivational Example To compare the wear-and-tear qualities of two

types of road paints, A and B, a sample of each is applied to a small

area of five randomly selected roads. The roads operate as they normally

do, with their specific usage patters, and the number of weeks to some

“failure” threshold is recorded for each sample.

These measurements appear in the table below. Do the data present

sufficient evidence to indicate a difference in the average wear for the

two paint types?

Road Paint A Paint B

1 9.1 8.7

2 11.2 10.7

3 9.6 9.0

4 8.6 8.2

5 8.9 8.4

If we treated these samples as independent, we would be able be able to

answer the question using the pooled variance 𝑠2

𝑝 , computed with the

help of 𝑦𝐴, 𝑦𝐵, 𝑠𝐴, 𝑠𝐵, and 𝑛𝐴 = 𝑛𝐵 = 5.
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The two-sample pooled 𝑇−test would conclude that we cannot reject

the null hypothesis 𝐻0 : 𝜇𝐴 = 𝜇𝐵, which is certainly thought-provoking

given that the time to “failure” is systematically longer for Paint A than

it is for Paint B. □

We have alluded to this problem at the start of the section: the two-

sampled pooled 𝑇−test is not the proper statistical test to use in this

case because the two samples are not independent.

Motivational Example (Cont.) Indeed, the (pair of) measurements Paint

A and Paint B for a particular roadway are definitely related. The readings

have approximately the same magnitude for a road but vary markedly

from one road to another. Paint wear-and-tear is largely determined by

traffic volume and type, the weather, and the road surface, say.

Since each road is likely to have different characteristics on that front,

we expect a large amount of variability in the data from one road to

another.

In designing the paint wear-and-tear experiment, the experimenters

realized that the measurements would vary greatly from road to road. If

the paint types (five of type A and five of type B) were randomly assigned

to 10 roads, resulting in two independent random samples of size 5, this

variability would result in a large standard error and make it difficult to

detect a difference in the means.

Instead, they chose to "pair" the measurements, comparing the wear-and-

tear for Paint A and Paint B on each of the five roads.

Road Paint A Paint B Difference 𝑑

1 9.1 8.7 0.4

2 11.2 10.7 0.5

3 9.6 9.0 0.6

4 8.6 8.2 0.4

5 8.9 8.4 0.5

This experimental design, sometimes called a paired-difference or

matched pairs design, allows us to eliminate the road-to-road vari-

ability by looking at only the five difference measurements shown above.

These five differences form a single random sample of size 𝑛 = 5. □

For a paired-difference test with 𝑛 samples, we compute 𝑑𝑖 = 𝑦1,𝑖 − 𝑦2,𝑖

for 𝑖 = 1, . . . , 𝑛. The null and the alternative hypotheses are:

𝐻0 : 𝜇𝑑 = 0

and

𝐻1 : 𝜇𝑑 ≠ 0 or 𝐻1 : 𝜇𝑑 > 0 or 𝐻1 : 𝜇𝑑 < 0,

while the test statistic is:

𝑡0 =
𝑑 − 0

𝑠𝑑/
√
𝑛
, (11.1)
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where 𝑑 = (𝑑1 + · · · + 𝑑𝑛)/𝑛 and

𝑠2

𝑑
=

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑑𝑖 − 𝑑)2.

For a two-tailed test at level 𝛼, we reject 𝐻0 when

|𝑡0 | > 𝑡𝛼/2;𝑛−1
.

For a one-tailed test 𝐻0 : 𝜇𝑑 = 0 against 𝐻1 : 𝜇𝑑 > 0 (respectively,

𝐻1 : 𝜇𝑑 < 0), we reject 𝐻0 when

𝑡0 > 𝑡𝛼;𝑛−1; (resp. 𝑡0 < −𝑡𝛼;𝑛−1).

We can build an approximate 100(1 − 𝛼)% confidence interval for 𝜇𝑑
using

C.I.(𝜇𝑑; 1 − 𝛼) ≡ 𝑑 ± 𝑡𝛼/2;𝑛−1
· 𝑠𝑑√

𝑛
.

Motivational Example (Cont.) We prepare the data.

d <- c(0.4, 0.5, 0.6, 0.4, 0.5)

n = length(d)

Simple calculations leads to 𝑑 and 𝑠𝑑.

(d.bar <- mean(d))

(s.2.d <- var(d))

[1] 0.48

[1] 0.007

The test statistic 𝑡0 can be computed easily.

(t_0 <- (d.bar - 0)/sqrt(s.2.d/n))

[1] 12.8285

At significance level 𝛼, the critical value of Student’s 𝑇 distribution with

𝑛 − 1 = 4 degrees of freedom is 𝑡𝛼/2;𝑛−1
, which can compute using either

of the following ways in R.

alpha = 0.05

(t.crit = qt(p=1 - 0.05/2, df=n-1))

qt(p=0.05/2, df=n-1, lower.tail = FALSE)

[1] 2.776445

Since 12.829 = 𝑡0 > 𝑡4;0.025 = 2.776, we reject 𝐻0 and we conclude that

there is a difference in the mean wear-and-tear for paints A and B.
22

22: Note that the observed value 𝑡0 =

12.829 is quite large for the Student 𝑇 dis-

tribution with 4 degrees of freedom, and

the test result is highly significant.

We build an approximate 95% confidence interval for𝜇𝑑 as follows.
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c(d.bar - t.crit*sqrt(s.2.d/n),

d.bar + t.crit*sqrt(s.2.d/n))

[1] 0.3761149 0.5838851

Note that this interval is much narrower than the interval that would

have been obtained using the unpaired data, which indicates that the

paired difference design increased the accuracy of the estimate – we have

gained valuable information by using this design. □

The paired-difference test or matched pairs design used in the paint

wear-and-tear experiment is a special case of an experimental design

called a randomized block design (see Section 11.5). Importantly, the

pairing (or blocking) must occur when the experiment is planned, and

not after the data are collected.

11.2.3 Inference on the Population Variance

In some research situations, the primary interest lies in making infer-

ences concerning population variances rather than focusing solely on

population means. We begin by considering a test designed for a single
population variance.

Imagine we have selected a random sample, represented as 𝑦1 , . . . , 𝑦𝑛 ,

from a population characterized by a mean of 𝜇 and a variance of 𝜎2
. An

important assumption is that the population from which this sample is

drawn is normally distributed, i.e. 𝑌 ∼ N(𝜇, 𝜎2).

The hypothesis test pits

𝐻0 : 𝜎2 = 𝜎2

0
against 𝐻1 : 𝜎2 ≠ 𝜎2

0
.

The analysis uses the test statistic

𝜒2

0
= (𝑛 − 1)𝑠2/𝜎2

0
.

Under the assumption that 𝐻0 is indeed true, the distribution of 𝜒2

0

follows a 𝜒2

𝑛−1
distribution.

We reject 𝐻0 if 𝜒2

0
> 𝜒2

𝛼/2;𝑛−1

or 𝜒2

0
< 𝜒2

1−𝛼/2;𝑛−1

, with

𝑃(𝑊 > 𝜒2

𝛼/2;𝑛−1
) = 𝑃(𝑊 < 𝜒2

1−𝛼/2;𝑛−1
) = 𝛼/2, where𝑊 ∼ 𝜒2

𝑛−1
.

We build an approximate 100(1 − 𝛼)% confidence interval for 𝜎2 via:

(𝑛 − 1)𝑠2

𝜒2

𝛼/2;𝑛−1

< 𝜎2 <
(𝑛 − 1)𝑠2

𝜒2

1−𝛼/2;𝑛−1

.
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Example An experimenter believes that the variability of her measuring

apparatus has a standard deviation of 𝜎 = 2.5. During an experiment, the

measurements recorded were 4.2, 5.3, and 10.3. The question arises: do

these observations support or contradict her belief? We test this assertion

using a significance level of 𝛼 = 0.05.

Firstly, we define our null and alternative hypotheses as:

𝐻0 : 𝜎2 = 6.25 against 𝐻1 : 𝜎2 ≠ 6.25.

We can find the test statistics 𝜒2

0
as follows.

x <- c(4.2, 5.3, 10.3)

n = length(x)

(s.2 = var(x))

[1] 10.57

sigma.2 = 6.25

chi.2.0 = (n-1)*s.2/sigma.2

[1] 3.3824

We can compute the critical 𝜒2

𝑛−1
values at 𝛼 = 0.05.

alpha = 0.05

(crit.lv = qchisq(p=alpha/2, df=2))

(crit.uv = qchisq(p=1-alpha/2, df=2))

[1] 0.05063562

[1] 7.377759

We reject the null hypothesis 𝐻0 if 𝜒2

0
> 7.38 or 𝜒2

0
< 0.05. Since the

observed value of 𝜒2

0
= 3.3824 lies between the critical values, we do not

reject 𝐻0.
23

23: This indicates that the data does not

provide sufficient evidence to dispute the

experimenter’s initial belief about the vari-

ability of her instrument.

She can build an approximate 95% confidence interval for 𝜎2
by using

the formula.

c((n-1)*s.2/crit.uv, (n-1)*s.2/crit.lv)

[1] 2.865369 417.4927

This wide range implies a high level of uncertainty about the true variance,

which further underscores the need for more data (or a different testing

approach). □
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11.2.4 Inference on the Ratio of Variances

We now turn our attention to the case of comparing two population

variances. Consider two normal populations, labeled I and II. Denote the

population variances associated with each populations by 𝜎2

1
and 𝜎2

2
.

We draw a random sample of size 𝑛1 from Population I:

𝑦1,1 , . . . , 𝑦1,𝑛1
∼ N(0, 𝜎2

1
)

and similarly from Population II:

𝑦2,1 , . . . , 𝑦2,𝑛2
∼ N(0, 𝜎2

2
).

The samples are unpaired, and so assumed to be independent of one

another.

The hypothesis test for the variances is framed as:

𝐻0 : 𝜎2

1
= 𝜎2

2
against 𝐻1 : 𝜎2

1
≠ 𝜎2

2
.

The test statistic employed for the test is

𝐹0 = 𝑠2

1
/𝑠2

2
.

Under the assumption that 𝐻0 is true, the distribution of 𝐹0 follows

an 𝐹 distribution with 𝑛1 − 1 and 𝑛2 − 1 degrees of freedom. The null

hypothesis 𝐻0 is rejected at significance level 𝛼 if

𝐹0 > 𝐹𝛼/2;𝑛1−1,𝑛2−1
or 𝐹0 < 𝐹

1−𝛼/2;𝑛1−1,𝑛2−1
,

with

𝑃(𝑊 > 𝐹𝛼/2;𝑛1−1,𝑛2−1
) = 𝑃(𝑊 < 𝐹

1−𝛼/2;𝑛1−1,𝑛2−1
) = 𝛼/2, where𝑊 ∼ 𝐹𝑛1−1,𝑛2−1.

Equivalently, we can express a 100(1 − 𝛼)% confidence interval for the
ratio 𝜎2

1
/𝜎2

2
via:

𝑠2

1
/𝑠2

2
· 𝐹

1−𝛼/2;𝑛2−1,𝑛1−1
< 𝜎2

1
/𝜎2

2
< 𝑠2

1
/𝑠2

2
· 𝐹𝛼/2;𝑛2−1,𝑛1−1

.

Note the order of the degrees of freedom.
24

24: We may need to leverage the relation-

ship

𝐹1−𝛾,𝜈
1
,𝜈

2
=

1

𝐹𝛾,𝜈
2
,𝜈

1

in the analysis.

Example The same experimenter is concerned that the variability of

her responses may not be the same when she is using two different

experimental procedures.

She conducts a preliminary study with random samples of 𝑛1 = 11 and

𝑛2 = 9 responses and obtains 𝑠2

1
= 8.25 and 𝑠2

2
= 4.32, respectively. Do

the sample variances present sufficient evidence to indicate that the

population variances are unequal?

The null and alternative hypotheses are

𝐻0 : 𝜎2

1
= 𝜎2

2
against 𝐻1 : 𝜎2

1
≠ 𝜎2

2
.
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The test statistic is given by 𝐹0 = 8.25/4.32 = 1.91. We reject 𝐻0 at level

𝛼 = 0.05 if

𝐹0 > 𝐹0.025,10,8 = 4.29 or 𝐹0 < 𝐹0.975,10,8 = 0.26;

therefore, we cannot reject 𝐻0 based on the observed data: there is

insufficient evidence to indicate a difference in the population variances.
25

25: Perhaps if we increased the sample

sizes?

We can build a 95% confidence interval for 𝜎2

1
/𝜎2

2
via:

C.I.(𝜎2

1
/𝜎2

2
; 0.95) ≡ (8.25/4.32 · 𝐹0.975,8,10 , 8.25/4.32 · 𝐹0.025,8,10)

≡ (8.25/4.32 · 0.23, 8.25/4.32 · 3.85)
≡ (0.44, 7.36).

Because the confidence interval includes 1 (which corresponds to the

situation of equal variances), we cannot reject 𝐻0 at significance level

𝛼 = 0.05.

11.3 One-Way Classification

In the worm/sheep example of Section 11.2.1, we were primarily con-

cerned with comparing the worm counts in treated versus untreated

lambs, represented as 𝜇1−𝜇2. Within the context of experimental designs,

the drug administered (or lack thereof) to the lambs is considered a factor
with two levels: treated, untreated.

As we progress through this chapter, our focus shifts to a model where

the factor encompasses 𝑎 levels, thereby giving rise to 𝑎 treatments. The

primary objective is to examine hypothesis testing for equality among
more than two population means. To achieve this, we leverage a method

of data analysis known as the analysis of variance (ANOVA).
26

26: In essence, ANOVA can be perceived

as a generalization of the customary

𝑇−test.

11.3.1 Completely Randomized Designs

In experiments where we have 𝑎 treatments to compare and 𝑁 units

available for the study, a completely randomized design offers an efficient

approach. To implement such a design:

1. decide on sample sizes 𝑛1 , 𝑛2 , . . . , 𝑛𝑎 such that 𝑛1+𝑛2+. . .+𝑛𝑎 = 𝑁 ;

2. randomly allocate 𝑛1 units to Treatment 1, 𝑛2 units to Treatment 2,

and so forth, until 𝑛𝑎 units are assigned to Treatment 𝑎.

In this design, the 𝑁 experimental units are randomly divided into 𝑎

groups. Taking the worm/sheep example of Section 11.2.1 as an illustra-

tion, the 𝑁 = 14 lambs were divided at random into 𝑎 = 2 groups: the

treated group and the untreated group.

Alternatively, one could view the completely randomized design as

drawing random samples from each of 𝑎 distinct populations. Each

population represents a unique level (or treatment) of the factor under

consideration.
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Regardless of the perspective – whether through random selection or

random assignment – completely randomized designs are centered

around a single factor, which is why they are often referred to as a

one-way classification.

The next example (modified from [3]) illustrates the basic notation.

Example A horticulturist is investigating the phosphorus content of

tree leaves from three different varieties of apple trees (A, B and C).

Random samples of five leaves from each three varieties are analyzed for

phosphorus content. The observations are shown below.

variety sample size phosphorus content totals means

1 5 0.45, 0.50, 0.68, 0.60, 0.57 2.80 0.560

2 5 0.65, 0.70, 0.90, 0.84, 0.79 3.88 0.776

3 5 0.50, 0.70, 0.65, 0.63, 0.56 3.04 0.608

The response variable is the phosphorus content, the factor (with three

levels) is the tree variety.

Notation

𝑦𝑖 , 𝑗 is the 𝑗th observation for the 𝑖th factor level (group, class),

𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛𝑖 ;

𝑛𝑖 is the number of sample observations for the 𝑖th factor level;
the total sample size is

𝑁 =

𝑎∑
𝑖=1

𝑛𝑖 ;

𝑦𝑖 ,• is the total of the sample observations for the 𝑖th factor level,
so

𝑦𝑖 ,• =
𝑛𝑖∑
𝑗=1

𝑦𝑖 , 𝑗 ;

𝑦•,• is the grand total of the sample observations, so

𝑦•,• =
𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑦𝑖 , 𝑗 ;

𝑦 𝑖 ,• is the average of the sample observations for the 𝑖th factor
level, so

𝑦 𝑖 ,• = 𝑦𝑖 ,•/𝑛𝑖 ;

𝑦•,• is the average of all sample observations, so 𝑦•,• = 𝑦•,•/𝑁 .

In the example, we have:

𝑦𝑖 , 𝑗 is the phosphorus content from leave 𝑗 of variety 𝑖, 𝑖 = 1, 2, 3;

𝑗 = 1, . . . , 5;

𝑛1 = 𝑛2 = 𝑛3 ≡ 𝑛 = 5;

𝑁 = 𝑛 · 3 = 5 · 3 = 15;

𝑦1,• = 2.80, 𝑦2,• = 3.88, 𝑦3,• = 3.04;

𝑦•,• = 9.72;

𝑦
1,• = 0.560, 𝑦

2,• = 0.776, 𝑦
3,• = 0.608;

𝑦•,• = 0.648.
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11.3.2 One-Way Classification Model

We consider 𝑎 populations (groups, treatments). Initially, we address

the scenario of balanced data, with 𝑛𝑖 = 𝑛 = 𝑁/𝑎 observations for each

treatment 𝑖.

The data can be summarized in the following manner:

from Population 1, we gather the observations 𝑦1,1 , . . . , 𝑦1,𝑛 ;

from Population 2, we gather the observations 𝑦2,1 , . . . , 𝑦2,𝑛 ;

. . .

from Population 𝑎, we gather the observations 𝑦𝑎,1 , . . . , 𝑦𝑎,𝑛 .

For each treatment 𝑖 = 1, . . . , 𝑎, we assume that the observations

𝑦𝑖 ,1 , . . . , 𝑦𝑖 ,𝑛 ∼ N(𝜇𝑖 , 𝜎2).

Equivalently, we can express the model as

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

with the errors 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2) being i.i.d. random variables. We also

assume a common variance 𝜎2
for the 𝑎 populations.

27
The parameters27: See homoscedasticity, Chapter 8.

to be estimated include 𝜇1 , . . . , 𝜇𝑎 , and 𝜎2
.

We can deduce that:

E(𝑦𝑖 , 𝑗) = 𝜇𝑖 for the 𝑗th observation in treatment group 𝑖

and the variance is given by:

Var(𝑦𝑖 , 𝑗) = 𝜎2

for all 𝑖 , 𝑗.

Alternative Reparametrization We can also recast the problem in a

different manner:

𝜇𝑖 = 𝜇 + (𝜇𝑖 − 𝜇) ≡ 𝜇 + 𝜏𝑖 ,

where 𝜏𝑖 = 𝜇𝑖−𝜇 for all 𝑖 = 1, . . . , 𝑎. Here, 𝜏𝑖 represents the 𝑖th treatment
effect (or treatment effect).

Given this, the one-way classification model can be expressed as:

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 stands for the global (or common) mean applicable to all

observations, and the error term 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2). This yields an expectation

of:

E(𝑦𝑖 , 𝑗) = 𝜇 + 𝜏𝑖 .

The original model has 𝑎 parameters, specifically: 𝜇1 , . . . , 𝜇𝑎 . However,

the new model presents 𝑎 + 1 parameters: 𝜇, 𝜏1 , . . . , 𝜏𝑎 . This makes the

model over-parametrized.

Addressing this, we set the constraint:

𝑎∑
𝑖=1

𝜏𝑖 = 0.
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It’s clear that the both the original model and the reparametrized model

are equivalent, provided we adhere to the constraint. This constraint

enables us to express:

𝜇1 = 𝜇 + 𝜏1 ,

...

𝜇𝑎−1 = 𝜇 + 𝜏𝑎−1 ,

𝜇𝑎 = 𝜇 − (𝜏1 + · · · + 𝜏𝑎−1),

reducing the parameter count to 𝑎 parameters: 𝜇, 𝜏1 , . . . , 𝜏𝑎−1.

Overview Most often, the main objective in ANOVA is to determine

if there are differences between the 𝑎 populations (or treatments). A

pertinent question arises: why do we need a new procedure to compare

population means when Student’s 𝑇−test is available?

Consider an instance with 𝑎 = 3 population means: 𝜇1 , 𝜇2, and 𝜇3. We

could hypothetically test each of the three pairs of hypotheses:

𝐻0 : 𝜇1 = 𝜇2 , 𝐻0 : 𝜇1 = 𝜇3 , and 𝐻0 : 𝜇2 = 𝜇3

against the appropriate alternatives to identify where the differences (if

any) are located.

But each test we conduct is prone to errors – consequently, the more tests

we perform, the greater the likelihood that at least one of our conclusions

will be erroneous.
28

28: We will dive deeper into this subject

at a later date.

ANOVA offers a singular, comprehensive test to evaluate the equality of

the 𝑎 population means. Once we discern if a genuine difference exists

among the means, we can then use a designated procedure to pinpoint

the origins of these differences.

The hypothesis tests pits

𝐻0 : 𝜇1 = · · · = 𝜇𝑎 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 , for at least one pair (𝑖 , 𝑗),

or, in an equivalent form:

𝐻0 : 𝜏1 = · · · = 𝜏𝑎−1 = 0 against 𝐻1 : at least one 𝜏𝑖 ≠ 0.

11.3.3 Analysis of Variance

In the analysis of variance, we focus on partitioning the total sum of
squares, starting with the basic decomposition

𝑦𝑖 , 𝑗 − 𝑦•,• = (𝑦 𝑖 ,• − 𝑦•,•) + (𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•).

Each component of the decomposition is interpreted as follows:

𝑦𝑖 , 𝑗 − 𝑦•,• is the total deviation component;

𝑦 𝑖 ,• − 𝑦•,• is the deviation of the estimated factor level mean
around the overall mean, and

𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• is the deviation around the estimated factor level mean.
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We can show (see Exercises) that the sums of squares decomposition for

this scenario is:

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦•,•)2 = 𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2 +
𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 ,

or

SST = SSA + SSE,

where:

SST is the total sum of squares;

SSA is the treatment (or factor) sum of squares, and

SSE is the error sum of squares.

Given that the total sum of squares SST is fixed, an increase in SSA

corresponds to a decrease in SSE and vice versa.

If all the observations within a given factor level are identical across all

factor levels, then SSE = 0 and SST = SSA. Conversely, if all the estimated

factor levels 𝑦 𝑖 ,• are equal, then SSA = 0 and SST = SSE.

Each sum of squares in the decomposition is associated to a degree of
freedom (df):

SST⇝ 𝑁 − 1

SSA⇝ 𝑎 − 1

SSE⇝ 𝑎(𝑛 − 1) = 𝑁 − 𝑎

The decomposition’s “structure” applies to the degrees of freedome:

𝑁 − 1 = (𝑎 − 1) + 𝑎(𝑛 − 1) = 𝑎 − 1 + 𝑁 − 𝑎.

Variance Considerations The 𝑖th treatment sample variance is:

𝑠2

𝑖 =
1

𝑛 − 1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 , 𝑖 = 1, . . . , 𝑎;

we know that E(𝑠2

𝑖
) = 𝜎2

and (𝑛 − 1)𝑠2

𝑖
/𝜎2 ∼ 𝜒2

𝑛−1
for all 𝑖 = 1, . . . , 𝑎.

Thus, we can express SSE as

SSE =

𝑎∑
𝑖=1

[
𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2
]
=

𝑎∑
𝑖=1

(𝑛 − 1)𝑠2

𝑖 = (𝑛 − 1)
𝑎∑
𝑖=1

𝑠2

𝑖 ,

and using the typical argument related to the trace of quadratic forms,

we can show that

SSE/𝜎2 ∼ 𝜒2

𝑁−𝑎 .

Theorem: The random variable

MSE =
SSE

𝑁 − 𝑎 =
𝑛 − 1

𝑁 − 𝑎
𝑎∑
𝑖=1

𝑠2

𝑖 =
1

𝑎

𝑎∑
𝑖=1

𝑠2

𝑖

is an unbiased estimator of 𝜎2
.
29

29: This holds true regardless of whether

the factor level means 𝜇𝑖 are equal or not.

Intuitively, this is reasonable: the variabil-

ity of observations within each factor level

is not influenced by the magnitude of the

estimated factor level means when the

populations are normal.

So, what exactly does SSA estimate?
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Theorem: the expectation of SSA is:

E(SSA) = 1

𝑁

𝑎∑
𝑖=1

{
𝑛𝜎2 + [𝑛(𝜇 + 𝜏𝑖)]2

}
− 1

𝑎𝑛
[𝑎𝑛𝜎2 + (𝑎𝑛𝜇)2]

= (𝑎 − 1)𝜎2 + 𝑛
𝑎∑
𝑖=1

𝜏2

𝑖 .

If we denote the mean square due to the factor 𝐴 (commonly known as

the treatment mean square) as MSA = SSA/(𝑎 − 1), then:

E(MSA) = 𝜎2 + 𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 .

In situations where all the factor level means are the same (𝜇𝑖 ≡ 𝜇), then

we have 𝜏2

𝑖
= (𝜇𝑖 − 𝜇)2 ≡ 0 and E(MSA) = 𝜎2

. Consequently, both MSE

and MSA offer unbiased estimates of 𝜎2
. However, when the 𝜇𝑖 ’s differ,

MSA tends to be larger than MSE on average.

It can be shown (although it is beyond the scope of these notes) that:

SSA/𝜎2
follows a non-central 𝜒2 distribution:

SSA/𝜎2 ∼ 𝜒2

𝑎−1

(
𝑛

𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2

)
;

the random variables SSE and SSA are independent.

𝐹−Test for the Equality of Treatment Means How can we tell if the

treatment means are identical?

The 𝐹−test pits

𝐻0 : 𝜇1 = · · · = 𝜇𝑎 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 for at least one pair (𝑖 , 𝑗).

The test statistic to be used is

𝐹0 =
MSA

MSE

.

Large values of 𝐹0 support 𝐻1 since MSA will tend to exceed MSE when

𝐻1 holds.
30

On the other hand, values of 𝐹0 near 1 tend to support 𝐻0 30: We have seen above that the ratio of

the expected values,
E(MSA)
E(MSE) , is greater

than 1 under 𝐻1.

since both MSE and MSA have the same expected value when𝐻0 holds.
31

Hence, the appropriate test is an upper-tail one.

31: Indeed, under 𝐻0,

E(MSA)
E(MSE) = 1.

When𝐻0 holds, SSE/𝜎2
and SSA/𝜎2

are independent 𝜒2
variables. There-

fore, under 𝐻0,

𝐹0 =
SSA/(𝑎 − 1)
SSE/(𝑁 − 𝑎) ∼ 𝐹𝑎−1,𝑁−𝑎 .

When𝐻1 holds, that is, when the 𝜇𝑖 ’s are not all equal, 𝐹0 does not follow

the customary 𝐹 distribution.
32

32: It follows instead a more complicated

non-central 𝐹 distribution.

It is thus reasonable to reject𝐻0 if we observe large values of 𝐹0. Formally,

we reject 𝐻0 at significance level 𝛼 if

𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎 .
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We can construct an ANOVA table for the 𝐹−test for equality of treatment

means in the one-way classification scenario, based on the test statistic

𝐹0 = MSA/MSE (see Table 11.11).

Table 11.11: ANOVA table for the equality

of the treatment means 𝜇𝑖 in the one-way

classification scenario.

Source SS df MS F0

Treatment SSA 𝑎 − 1 MSA 𝐹0 = MSA/MSE

Error SSE 𝑁 − 𝑎 MSE

Total SST 𝑁 − 1

From a computational perspective, the following equivalent formulas

are sometimes used, since they are easier to handle when we do not use

software:

SST =

𝑎∑
𝑖=1

𝑛∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

, SSA =
1

𝑁

𝑎∑
𝑖=1

𝑦2

𝑖 ,• −
𝑦2

•,•
𝑁

, SSE = SST − SSA.

Example The ANOVA table for the phosphorus dataset of the previous

section can be obtained as follows in R.

First we load the data.

variety <- c(1,2,3)

sample.size <- c(5,5,5)

content.1 <- c(0.45, 0.50, 0.68, 0.60, 0.57)

content.2 <- c(0.65, 0.70, 0.90, 0.84, 0.79)

content.3 <- c(0.50, 0.70, 0.65, 0.63, 0.56)

content <- rbind(content.1, content.2, content.3)

data <- data.frame(cbind(sample.size, content))

rownames(data) <- variety

colnames(data) <- c("sample.size", "leaf.1", "leaf.2",

"leaf.3", "leaf.4", "leaf.5")

data$totals <- rowSums(content)

data$means <- data$totals/data$sample.size

data

sample.size leaf.1 leaf.2 leaf.3 leaf.4 leaf.5 totals means

1 5 0.45 0.5 0.68 0.60 0.57 2.80 0.560

2 5 0.65 0.7 0.90 0.84 0.79 3.88 0.776

3 5 0.50 0.7 0.65 0.63 0.56 3.04 0.608

We compute the necessary quantities and place them in the ANOVA

table.

a = nrow(data)

n = length(content.1)

N = a*n

grand.mean = mean(unlist(data[,c(2:(n+1))]))

SST = sum((data[,c(2:(n+1))]-grand.mean)^2)

SSA = n * sum((data$means-grand.mean)^2)

SSE = SST - SSA
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ANOVA = as.data.frame(cbind(c(SSA,SSE,SST),

c(a-1, N-a, N-1),

c(SSA/(a-1),SSE/(N-a),0),

c((SSA/(a-1))/(SSE/(N-a)),0,0)))

rownames(ANOVA) = c("Treatment", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment 0.12864 2 0.06432 7.892025

Error 0.09780 12 0.00815

Total 0.22644 14

At significance level 𝛼 = 0.05, the critical value of 𝐹2,12 is:

alpha=0.05

qf(p=1-alpha, df1 = a-1, df2 = N-a)

[1] 3.885294

Since 7.89 = 𝐹0 > 𝐹0.05;2,12 = 3.89, we reject 𝐻0 at 𝛼 = 0.05 and we

conclude that the mean phosphorus content is unlikely to be the same

for all 𝑎 = 3 varieties of trees. □

11.3.4 Estimation of Model Parameters

Recall that in the one-way classification model, 𝑎 + 1 parameters require

estimation, namely 𝜇, 𝜏1 , . . . , 𝜏𝑎 . We use the least square estimation
principle to find them based on the observed data.

The sum of squares is defined as

𝐿 =

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖)2.

We find �̂� and �̂�𝑖 that minimize 𝐿 by differentiating 𝐿 with respect to 𝜇
and 𝜏𝑖 , 𝑖 = 1, . . . , 𝑎, and setting to 0. This yields the normal equations:

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖) = 0 (𝜇-equation),

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖) = 0 (𝜏𝑖-equation, 𝑖 = 1, . . . , 𝑎).

The corresponding system of linear equations is:

𝑁�̂� + 𝑛
𝑎∑
𝑖=1

�̂�𝑖 = 𝑦•,• ,

𝑛�̂� + 𝑛�̂�1 = 𝑦1,• ,

...

𝑛�̂� + 𝑛�̂�𝑎 = 𝑦𝑎,•.
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Given the constraint 𝜏1 + · · · + 𝜏𝑎 = 0, the solution is:

�̂� = 𝑦•,• ,

�̂�𝑖 = 𝑦 𝑖 ,• − 𝑦•,• for 𝑖 = 1, . . . , 𝑎.

Thus, the estimated treatment effect for the 𝑖th treatment is

�̂�𝑖 = �̂� + �̂�𝑖 = 𝑦 𝑖 ,•;

the difference between treatments 𝑖 and 𝑗 is given by

�̂�𝑖 − �̂�𝑗 = 𝑦 𝑖 ,• − 𝑦 𝑗 ,•.

Using the pooled estimate MSE as an estimator of 𝜎2
, we can exhibit a

100(1 − 𝛼)% confidence interval for 𝜇𝑖 via:

𝑦 𝑖 ,• ± 𝑡𝛼/2;𝑁−𝑎

√
MSE

𝑛
;

for 𝜇𝑖 − 𝜇𝑗 , we have instead:

(𝑦 𝑖 ,• − 𝑦 𝑗 ,•) ± 𝑡𝛼/2;𝑁−𝑎

√
2MSE

𝑛
.

11.3.5 Unbalanced Designs

We could also opt for an unbalanced design, in which the number of

observations 𝑛𝑖 we sample in each treatment group 𝑖 is not necessarily

the same from one group to the other. However, a balanced design has

several advantages.
33

33: First and foremost, the theoretical

derivations are simpler to obtain in the

balanced case. In particular, the power of the 𝐹−test is larger with balanced data. Indeed

for 𝑎 = 2 (two treatments), we can show that the power of the 𝐹−test is

maximized when
1

𝑛 + 1

𝑁−𝑛 is minimized (see Exercises); if 𝑁 is even and

fixed, the minimum is thus achieved when 𝑛 = 𝑁/2.

Moreover, the 𝐹 test is only robust against unequal variances when data

is balanced. For the case of 𝑎 = 2 treatments, the 𝐹 test is equivalent to

the Student’s 𝑇−test, with 𝐹0 = 𝑡2
0
.

If we define 𝜃 as the ratio 𝜎2

1
/𝜎2

2
and 𝑅 as the ratio 𝑛1/𝑛2, the Student’s

𝑇−test can be expressed as:

𝑡0 =
𝑦

1
− 𝑦

2(
𝜎2

1

𝑛1

+ 𝜎2

2

𝑛2

)
1/2

©« 1

𝑠2

𝑝

·
𝜎2

1

𝑛1

+ 𝜎2

2

𝑛2

1

𝑛1

+ 1

𝑛2

ª®¬
1/2

.

When 𝑛1 , 𝑛2 → ∞,

𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

→ 𝜎2

2

1 + 𝑅𝜃
1 + 𝑅 .

Consquently, 𝑡0 → N(0, (𝑅 + 𝜃)/(1 + 𝑅𝜃)), and (𝑅 + 𝜃)/(1 + 𝑅𝜃) = 1

when 𝑅 = 1, regardless of 𝜃’s value.
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For unbalanced data, the sum of squares formulas must be modified:

SST =

𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

, SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•
𝑛𝑖

−
𝑦2

•,•
𝑁

.

Finally, when we estimate the model parameters, we solve the normal
equations subject to the constraint:

𝑎∑
𝑖=1

𝑛𝑖 �̂�𝑖 = 0

as opposed to the constraint

∑𝑎
𝑖=1

�̂�𝑖 = 0.
34

34: If we note that the latter can also be

written as 𝑛𝜏1 + · · · + 𝑛𝜏𝑎 = 0 in the bal-

anced case, we see that it is simply a special

instance of the unbalanced case. The same

comment applies to the modified formula

for SSA.

11.3.6 Contrasts

The analysis of variance can tell us an indication that not all the treatment

groups have the same mean response, but an ANOVA does not, by itself,

provide information about which treatments are different or in what

ways they differ.

To get answers to these questions, we must examine the treatment means,

or equivalently, the treatment effects. We can do so through contrasts,

which enable us to focus in on specific (narrow) features of the data.
35

35: In fact, a single contrast’s focus is so

narrow that it may obscure the overall

picture.By using several contrasts, we can move the focus around and explore

more features. Intelligent use of contrasts involves choosing the contrasts

so that they highlight interesting data features.
36

36: But that’s easier said than done with-

out a solid understanding of the domain

under study, which can be improved via
data exploration, among others (see Chap-

ter 18 for more information).

Linear Contrasts Linear combinations of the treatment effects 𝜇𝑖

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖 , where

𝑎∑
𝑖=1

𝑐𝑖 = 0 with 𝑐𝑖 ∈ ℝ.

are called linear contrasts; in general, we are interested in testing for

𝐻0 : 𝐶 = 0 against 𝐻1 : 𝐶 ≠ 0.

When there are 𝑎 treatment effects, we sometimes identify the linear

contrast 𝐶 with its signature vector (𝑐1 , . . . , 𝑐𝑎).

Examples

1. Suppose that we wish to test for

𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 ≠ 𝜇2;

we must then work with the linear contrast (1,−1, 0, . . . , 0).37
37: The linear contrast (1,−1, 0, . . . , 0)
also does the trick, being equivalent to

the one in the text when it comes to hy-

pothesis testing.

2. Suppose that we wish to test for

𝐻0 :
1

2
(𝜇1 + 𝜇2) = 1

2
(𝜇3 + 𝜇4) against 𝐻1 :

1

2
(𝜇1 + 𝜇2) ≠ 1

2
(𝜇3 + 𝜇4);

we work with the linear contrast (1/2, 1/2,−1/2,−1/2, 0, . . . , 0).
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To test a contrast hypothesis, we start by estimating 𝐶 using

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,•.

Assume a balanced design; if the observations are obtained independently,

we have Cov(𝑦 𝑖1 ,• , 𝑦 𝑖2 ,•) = 0 if 𝑖1 = 𝑖2, and Var(𝑦 𝑖 ,•) = 𝜎2/𝑛 for all 𝑖, so

Var(𝐶) =
𝑎∑
𝑖=1

𝑐2

𝑖 Var(𝑦 𝑖 ,•) =
𝜎2

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

We obtain an estimator of Var(𝐶) via:

V̂ar(𝐶) = MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

It follows that the test statistic is given by

𝑡0 =
𝐶√

MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖

.

We can show that 𝑡0 ∼ 𝑡𝑁−𝑎 ; therefore, we reject 𝐻0 at significance level

𝛼 if |𝑡0 | > 𝑡𝛼/2;𝑁−𝑎 .

Instead of the 𝑇−test, however, we could use the equivalent 𝐹−test,

with test statistic 𝐹0 = SSC

MSE
, which rejects 𝐻0 at significance level 𝛼 if

𝐹0 > 𝐹𝛼;1,𝑁−𝑎 , where

SSC =

(
𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,•

)
2
/

𝑎∑
𝑖=1

𝑐2

𝑖 /𝑛.

We can build a 100(1 − 𝛼)% confidence interval for 𝐶 is given by

𝐶 ± 𝑡𝛼/2;𝑁−𝑎

√
MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖
.

Example In the phosphorus dataset, suppose we want to test

𝐻0 : 𝜇2 =
𝜇1 + 𝜇3

2

against 𝐻1 : 𝜇2 ≠
𝜇1 + 𝜇3

2

.

This is a contrast with 𝑐1 = −1/2, 𝑐2 = 1 and 𝑐3 = −1/2.

The test statistics is given by

𝑡0 =
(−1/2) · 0.560 + 1 · 0.776 + (−1/2) · 0.608√(

0.00815/12

5

)
{(−1/2)2 + 1

2 + (−1/2)2}
=

0.192

0.0142741

= 13.45094.

Since |𝑡0 | > 𝑡0.025,12 = 2.17881, we reject 𝐻0 and we conclude that there

is enough evidence to conclude that 𝜇2 is different from the average of

𝜇1 and 𝜇3. □
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Orthogonal Contrasts Two contrasts with coefficients {𝑐𝑖} and {𝑑𝑖} are

orthogonal if 𝑐1𝑑1+· · ·+𝑐𝑎𝑑𝑎 = 0. For instance, the contrasts−2𝜇1+𝜇2+𝜇3

and 𝜇3 − 𝜇2 are orthogonal since

(−2)(0) + (1)(−1) + (1)(1) = 0.

If there are 𝑎 treatments, we can find a set of 𝑎 − 1 contrasts that are

mutually orthogonal, that is, each one is orthogonal to all of the others.

With 5 treatments (say), we can define 4 mutually orthogonal contrasts:

𝐶1 = 𝜇4 −𝜇5

𝐶2 = 𝜇1 +𝜇3 −𝜇4 −𝜇5

𝐶3 = 𝜇1 −𝜇3

𝐶4 = 𝜇1 −4𝜇2 +𝜇3 +𝜇4 +𝜇5

The important feature of orthogonal contrasts is that they are independent
(as random variables).

38
38: An additional useful fact is that they

partition the treatment sum of squares:

SSA =

𝑎−1∑
𝑖=1

SSC𝑖 .

In other words, if we compute the sums

of squares for a full set of orthogonal con-

trasts (𝑎−1 contrasts for 𝑎 groups), adding

up those 𝑎 − 1 sums of squares yields ex-

actly the treatment sum of squares, which

also has 𝑎 − 1 degrees of freedom.

11.3.7 Multiple Comparisons

We have discussed multiple hypothesis testing in Section 8.2.3; how

does it apply to design of experiments?

Example Suppose we want to compare four treatments, so 𝑎 = 4. We

may want to compare all the pairs

𝐻0 : 𝜇1 = 𝜇2 , 𝐻0 : 𝜇1 = 𝜇3 , 𝐻0 : 𝜇1 = 𝜇4 ,

𝐻0 : 𝜇2 = 𝜇3 , 𝐻0 : 𝜇2 = 𝜇4 , 𝐻0 : 𝜇3 = 𝜇4.

Overall, there we have 𝑘 = 6 possible tests of the form 𝐻0 : 𝜇𝑖 = 𝜇𝑗
against some fixed alternative type. □

In general, suppose that we wish to conduct 𝑘 hypothesis tests. If the

level of each individual test is 𝛼, then the overall error rate is likely to be

(much) larger than 𝛼.

As an illustration, suppose that we conduct 𝑘 = 2 tests, each one at

significance level 5% .
39

Then, the probability of rejecting at least one of 39: That is, the probability of a Type 1

error is 5% for each test separately.
the null hypotheses when they are both true will be higher than 5%.

Indeed, let 𝐸 𝑗 be the event that we reject the null hypothesis for the 𝑗th

test, 𝑗 = 1, 2. Then,

𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1 ∩ 𝐸2)
= 0.05 + 0.05 − 𝑃(𝐸1 ∩ 𝐸2) = 0.1 − 𝑃(𝐸1 ∩ 𝐸2).

As 0 ≤ 𝑃(𝐸1 ∩ 𝐸2) ≤ 0.5, the probability of making at least one mistake

is now between 5% and 10%.
40

40: If the events are independent, then

0 < 𝑃(𝐸1 ∩ 𝐸2), and 𝑃(𝐸1 ∪ 𝐸2) > 0.05.

We can extend this argument to the general case of 𝑘 tests. Suppose that

the 𝑘 null hypotheses 𝐻0 are true. Once again, let’s define 𝐸 𝑗 as the event

that we reject the null hypothesis for the 𝑗th test, 𝑗 = 1, · · · , 𝑘.
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Boole’s inequality states that

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤

𝑘∑
𝑗=1

𝑃(𝐸 𝑗) =
𝑘∑
𝑗=1

𝛼 𝑗 ,

where 𝛼 𝑗 denotes the probability of Type 1 error associated with the
𝑗th test. If 𝛼 𝑗 = 𝛼 then

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤ 𝑘𝛼.

For instance, for 𝑘 = 10, and 𝛼 𝑗 = 0.05 for all 𝑗, then the best that we can

say is that

𝑃 (𝐸1 ∪ · · · ∪ 𝐸10) ≤ 0.5.

Conclusion: the level of significance of a family of tests may differ from

that of an individual test.

We use multiple comparison procedures to conduct multiple inference

while controlling the overall error rate. The rationale behind these

procedures is simple – we seek to ensure a global significance level
below (or at) 𝛼. More specifically, we seek a procedure for which the

probability of rejecting at least one the null hypotheses when they are all

true is not larger than 𝛼.

Several procedures have been proposed in the literature, including:

Bonferroni’s (1936);

Tukey’s (1949);

Scheffé’s (1959).

Bonferroni’s Procedure When investigating a particular set of 𝑘 pair-

wise comparisons and/or contrasts, it is essential to specify the family of

interest in advance. The Bonferroni procedure is versatile, and applicable

whether the 𝑛𝑖 ’s are equal or unequal and irrespective of whether the

focus is on pairwise comparisons, contrasts, or a mix of both.

Instead of conducting each of the 𝑘 tests at the usual 𝛼 level, we conduct

each test at the 𝛼/𝑘 level. With this adjustment, the probability of making

at least one Type I error across all 𝑘 tests is bounded by 𝛼:

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤

𝑘∑
𝑗=1

𝛼
𝑘
= 𝑘

(𝛼
𝑘

)
= 𝛼.

For example, for an analysis involving 10 tests with an intended over-

all error rate of 𝛼 = 0.05, the Bonferroni correction would adjust the

significance level for each test to 0.05/10 = 0.005.

This method can also be extended to the construction of simultaneous
confidence intervals. If we denote by C.I.1 , · · · ,C.I.𝑘 the associated

confidence intervals, each constructed at a coverage level of 1 − 𝛼,
41

41: That is,

𝑃(𝐶 𝑗 ∈ C.I.𝑗) = 1 − 𝛼, 𝑗 = 1, · · · , 𝑘,

where 𝐶 𝑗 is the true value of the 𝑗th pa-

rameter or contrast of interest.

then the probability that all 𝑘 intervals simultaneously contain their true

parameter values is bounded above by 1 − 𝛼:

𝑃

(
𝑘⋂
𝑗=1

𝐸 𝑗

)
≤ 1 − 𝛼.
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However, with Bonferroni’s adjustment, if each interval is constructed to

have a coverage probability of 1−𝛼/𝑘, then the joint coverage probability
is at least 1 − 𝛼:

𝑃

(
𝑘⋂
𝑗=1

𝐸 𝑗

)
= 1 − 𝑃

(
𝑘⋃
𝑗=1

𝐸𝑐𝑗

)
≥ 1 −

𝑘∑
𝑗=1

𝑃(𝐸𝑐𝑗 ) = 1 −
𝑘∑
𝑗=1

𝛼
𝑘
= 1 − 𝛼.

An undoubted advantage of the Bonferroni method lies in its generality:

it is applicable to a wide range of probability-based inferences across

various distributions, not merely confidence intervals within a normal

linear model.

But this method is not without its drawbacks. Chief among them being

that for larger values of 𝑘, the individual significance level for each test

can become exceedingly stringent.

With an overall error rate of 𝛼 = 5% and 𝑘 = 10, say, the significance

level for each test under Bonferroni’s method is 1 − 𝛼/𝑘 = 0.995. This

means each confidence interval might be so wide that its practical utility
diminishes.

42
42: In such scenarios, one might consider

increasing the overall (joint) error rate,

perhaps to 10%, to make the results more
easily interpretable.Tukey’s Procedure The Tukey multiple comparison procedure is par-

ticularly valuable when our focus is on analyzing the set of all pairwise
comparisons of factor level means. Specifically, when utilizing this

method, the primary interest revolves around the tests defined by:

𝐻0 : 𝜇𝑖 = 𝜇𝑗 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 .

When all sample sizes are balanced, the family confidence coefficient

for the Tukey method aligns precisely with 1 − 𝛼, ensuring the family

significance level is consistent with 𝛼. However, for unbalanced data,

where sample sizes diverge, the Tukey procedure exhibits a conservative
behaviour. This results in the family confidence coefficient surpassing

1 − 𝛼, and subsequently, the family significance level falling below 𝛼.

A key component of the Tukey procedure is the use of the Studentized
range distribution. Given a set of i.i.d. random variables 𝑦1 , . . . , 𝑦𝑘 ∼
N(𝜇, 𝜎2), their range 𝑅 is defined as:

𝑅 = max{𝑦1 , . . . , 𝑦𝑘} − min{𝑦1 , . . . , 𝑦𝑘}.

If 𝑠2
be an estimator of 𝜎2

independent of 𝑅, and assume that
𝑣𝑠2

𝜎2
∼ 𝜒2

𝑣 .

Then the variable
𝑅
𝑠 follows a Studentized range distribution 𝑞𝑘,𝑣 . Let

𝑞𝛼;𝑘,𝑣 be the critical value for which

𝑃

(
𝑅

𝑠
> 𝑞𝛼;𝑘,𝑣

)
= 𝛼.

Theorem: suppose we have 𝑎 means, 𝑦
1,• , . . . , 𝑦𝑎,•, obtained from 𝑎

independent normal samples, each of size 𝑛, with respective means

𝜇1 , . . . , 𝜇𝑎 and a shared variance 𝜎2
.
43

43: That is, 𝑦 𝑖 ,• ∼ N(𝜇𝑖 , 𝜎2/𝑛), for all 𝑖.
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We know that MSE is an unbiased estimator of 𝜎2
independent of 𝑅

and

(𝑁 − 𝑎)MSE

𝜎2

∼ 𝜒2

𝑁−𝑎 .

Under these conditions, the simultaneous probability for all pairwise

comparisons is:

(𝑦 𝑖 ,• − 𝑦 𝑗 ,•) − 𝑞𝛼;𝑎,𝑁−𝑎

√
MSE

𝑛
< 𝜇𝑖 −𝜇𝑗 < (𝑦 𝑖 ,• − 𝑦 𝑗 ,•) + 𝑞𝛼;𝑎,𝑁−𝑎

√
MSE

𝑛
.

The family confidence coefficient 1−𝛼 pertaining to the multiple pairwise

comparisons refers to the proportion of correct families, each consisting

of all pairwise comparisons, when repeated sets of samples are selected

and all pairwise confidence intervals are calculated each time.
44

44: A family of pairwise comparisons is

considered to be correct if every pairwise
comparison in the family is correct. This family confidence coefficient implies that, across repeated sampling,

all pairwise comparisons in the family will be accurate in 100(1 − 𝛼)% of

the instances.

Transitioning our focus to simultaneous testing, the objective is to

conduct a comprehensive set of tests that pit

𝐻0 : 𝜇𝑖 = 𝜇𝑗 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗

for all potential pairwise comparisons. The pivotal test statistic in this

context is:

𝑞0 =
𝑦 𝑖 ,• − 𝑦 𝑗 ,•√

MSE/𝑛
.

We reject 𝐻0 at significance level 𝛼 if |𝑞0 | ≥ 𝑞𝛼;𝑎,𝑁−𝑎 .45
45: Selected percentiles for the Studen-

tized range distribution can be found in

tables, such as on this page . In R, we can

use the functions qtukey() and ptukey().

We illustrate the procedure with the help of a classical example.
46

46: See here , for instance.

Example In a study of the effectiveness of different rust inhibitors, four

brands (A, E, C, D) were tested. Altogether, 40 experimental units were

randomly assigned to the four brands, with 10 units assigned to each

brand. The results obtained after exposing the experimental units to

severe weather conditions are given below.
47

47: The higher the value, the more effec-

tive the rust inhibitor.

Rust Inhibitor Brand

A B C D

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝑦 𝑖 ,• 43.14 89.44 67.95 40.47

𝑦•,• = 60.25

MSE = 6.14

This study is a completely randomized design, where the levels of the

single factor correspond to the four rust inhibitor brands. Suppose we

are interested in all pairwise comparisons, which we evaluate via the

Tukey procedure.

The important parameters are loaded below.

https://www.statisticshowto.com/studentized-range-distribution/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Supplemental_Modules_(Computing_and_Modeling)/Experimental_Design
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a = 4; N = 40; n = 10; alpha = 0.05

y.bar.1 = 43.14; y.bar.2 = 89.44

y.bar.3 = 67.95; y.bar.4 = 40.47

y.bar = 60.25; MSE = 6.14

(q.crit = qtukey(alpha, a, N-a, lower.tail = FALSE))

B = q.crit*sqrt(MSE/n)

[1] 3.808798

The 6 confidence intervals (with corresponding test statitsics) are com-

puted as follows.

ci.2.1 = y.bar.2 - y.bar.1 +B*c(-1,1); q0.2.1 = (y.bar.2 - y.bar.1)/sqrt(MSE/n)

ci.3.1 = y.bar.3 - y.bar.1 +B*c(-1,1); q0.3.1 = (y.bar.3 - y.bar.1)/sqrt(MSE/n)

ci.4.1 = y.bar.4 - y.bar.1 +B*c(-1,1); q0.4.1 = (y.bar.4 - y.bar.1)/sqrt(MSE/n)

ci.3.2 = y.bar.3 - y.bar.2 +B*c(-1,1); q0.3.2 = (y.bar.3 - y.bar.2)/sqrt(MSE/n)

ci.4.2 = y.bar.4 - y.bar.2 +B*c(-1,1); q0.4.2 = (y.bar.4 - y.bar.2)/sqrt(MSE/n)

ci.4.3 = y.bar.4 - y.bar.3 +B*c(-1,1); q0.4.3 = (y.bar.4 - y.bar.3)/sqrt(MSE/n)

The simultaneous confidence intervals and tests for pairwise differences

are shown in the table below.

Confidence Interval Test
𝐻0 𝐻1 𝑞0

43.3 < 𝜇2 − 𝜇1 < 49.3 𝜇2 = 𝜇1 𝜇2 ≠ 𝜇1 58.99

21.8 < 𝜇3 − 𝜇1 < 27.8 𝜇3 = 𝜇1 𝜇3 ≠ 𝜇1 31.61

−0.3 < 𝜇4 − 𝜇1 < 5.7 𝜇1 = 𝜇4 𝜇1 ≠ 𝜇4 3.40

18.5 < 𝜇2 − 𝜇3 < 24.5 𝜇2 = 𝜇3 𝜇2 ≠ 𝜇3 27.37

46.0 < 𝜇2 − 𝜇4 < 52.0 𝜇2 = 𝜇4 𝜇2 ≠ 𝜇4 62.39

24.5 < 𝜇3 − 𝜇4 < 30.5 𝜇3 = 𝜇4 𝜇3 ≠ 𝜇4 35.01

Only in the comparison between A and D does the confidence interval

include 0. Therefore, there is no clear evidence that either D or A is

the better rust inhibitor. For the other pairs, we conclude that there is a

difference in performance:

B ⪰ A, C ⪰ A, B ⪰ C, B ⪰ D, C ⪰ D (see the diagram format

below).

A D

C

B

We obtain the same conclusions if we look at the test statistics, and

compare their absolute value to 𝑞0.05;4,36 = 3.814 – except for A and D, all

differences are found to be statistically significant. □
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Scheffé’s Procedure The family of interest refers to the set of all possible
contrasts among the factor level means:

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖 , where

𝑎∑
𝑖=1

𝑐𝑖 = 0, with 𝑐𝑖 ∈ ℝ.

In essence, the family is comprised of estimates of all possible contrasts

𝐶 or tests concerning all possible contrasts of the type:

𝐻0 : 𝐶 = 0 versus 𝐻1 : 𝐶 ≠ 0;

thus, the family consists of infinitely many statements.

The confidence level for the Scheffé procedure for the entire family is

exactly 1 − 𝛼, regardless of whether the design is balanced or unbal-

anced.

Recall that

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖

is estimated by

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,• ,

and that the variance of this estimate is

V̂ar(𝐶) = MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

For simultaneous estimation through confidence intervals, the Scheffé
confidence intervals for the family of contrasts 𝐶 take the form:

𝐶 −𝑊
√

V̂ar(𝐶) < 𝐶 < 𝐶 +𝑊
√

V̂ar(𝐶),

where𝑊2 = (𝑎 − 1)𝐹𝛼;𝑎−1,𝑁−𝑎 .48
48: See the justification for the Working-

Hostelling test in Section 8.2.3 for an indi-

cation of how to prove this statement. If we were to compute the confidence intervals for every conceivable

contrast, then we would expect that the entire set of confidence intervals in

the family would be accurate in roughly 100(1− 𝛼)% of the experimental

repetitions. Note that the simultaneous confidence limits differ from those

for a single confidence limit solely in terms of the estimated standard
deviation multiple in front of the square root.

Considering the problem of simultaneous testing, we are interested in

tests of the form:

𝐻𝐶
0

: 𝐶 = 0 versus 𝐻𝐶
1

: 𝐶 ≠ 0.

The corresponding test statistics are

𝐹0 =
𝐶2

(𝑎 − 1)V̂ar(𝐶)
,

and we reject the specific test 𝐻𝐶
0

if 𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎 .49

49: Given that applications of the Scheffé

procedure never involve all conceivable

contrasts, the confidence coefficient for the

finite family of statements under consid-

eration will exceed 1 − 𝛼. Thus, 1 − 𝛼 acts

as a guaranteed lower bound. In a similar

vein, the significance level for the finite

family of tests will be below 𝛼.

The following example is found in [1].
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Example The Kenton Food Company tested four different package

designs for a new breakfast cereal. Twenty stores were selected as the

experimental units. Each store was randomly assigned one of the package

designs, with each package design assigned to five stores. A fire occurred

in one store during the study period, so this store was dropped from the

study. Hence, one of the designs was tested in only four stores.

The stores were chosen to be comparable in location and sales volume.

Other relevant conditions that could affect sales, such as price, amount

and location of shelf space, and special promotional efforts, were kept

the same for all of the stores in the experiment.

Sales were observed for the study period; the results are recorded below.

Package Design (𝑖)
1 2 3 4 Total

𝑛𝑖 5 5 4 5 19
𝑦𝑖 ,• 73 67 78 136 354
𝑦 𝑖 ,• 14.6 13.4 19.5 27.2 18.63

This study is a completely randomized unbalanced design with package

type as the single, four-level factor.

For what it is worth, the package types had the following characteristics

Package 1: 3-colour design, with a cartoon character;

Package 2: 3-colour design, without a cartoon character;

Package 3: 5-colour design, with a cartoon character;

Package 4: 5-colour design, without a cartoon character.

The one-way classification ANOVA table for the observed data is:

Source SS df MS F0

Treatment 588.2 3 196.07 18.585

Error 158.2 15 10.55

Total 746.42 8

We are interested in estimating the following 4 contrasts with family

confidence coefficient 0.90:

𝐶1 =
𝜇1 + 𝜇2

2

− 𝜇3 + 𝜇4

2

𝐶2 =
𝜇1 + 𝜇3

2

−
𝜇2 + 𝜇4

2

𝐶3 = 𝜇1 − 𝜇2

𝐶4 = 𝜇3 − 𝜇4.

We can compute the coefficient𝑊 for significance level 𝛼 = 0.1.

a=4; alpha=0.1; N=19;

(W = sqrt((a-1)*qf(alpha, df1=a-1, df2=N-a, lower.tail=FALSE)))

[1] 2.733014
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We can easily compute the estimated contrasts.

y.bar.1 = 14.6; y.bar.2 = 13.4; y.bar.3 = 19.5; y.bar.4 = 27.2

C.hat.1 = (y.bar.1 + y.bar.2)/2 - (y.bar.3 + y.bar.4)/2

C.hat.2 = (y.bar.1 + y.bar.3)/2 - (y.bar.2 + y.bar.4)/2

C.hat.3 = y.bar.1 - y.bar.2

C.hat.4 = y.bar.3 - y.bar.4

The designed is unbalanced, so 𝑛 is not constant. For the purposes of this

exercise, we use the average value of the 𝑛𝑖 for 𝑛. Moreover, we can read

the value of MSE from the ANOVA table.

n = mean(c(5,5,4,5)); MSE = 10.55

We now compute the variance of the contrasts.

sum.c2.1 = 4*(1/2)^2; sum.c2.2 = 4*(1/2)^2

sum.c2.3 = 2*(1)^2; sum.c2.4 = 2*(1)^2

B.1 = sqrt(MSE/n*sum.c2.1); B.2 = sqrt(MSE/n*sum.c2.2)

B.3 = sqrt(MSE/n*sum.c2.3); B.4 = sqrt(MSE/n*sum.c2.4)

We are now able to obtain the joint 90% confidence intervals for the

contrasts.

C.hat.1 + W*B.1*c(-1,1)

C.hat.2 + W*B.2*c(-1,1)

C.hat.3 + W*B.3*c(-1,1)

C.hat.4 + W*B.4*c(-1,1)

[1] -13.423064 -5.276936

[1] -7.3230638 0.8230638

[1] -4.560182 6.960182

[1] -13.460182 -1.939818

Note that the confidence interval for 𝐶1 does not include 0. Hence, if we

wished to test 𝐻0 : 𝐶1 = 0 versus 𝐻1 : 𝐶1 ≠ 0 at 90% confidence (among

3 other contrasts), we would reject 𝐻0 in favour of 𝐻1, namely that the

mean sales for the 3-colour and 5-colour designs differ.

The confidence interval provides additional information, however; the

mean sales for the 5-colour designs exceed the mean sales for the 3-colour

designs, by somewhere between 5.3 and 13.4 cases per store.

Using the other contrasts, the sales manager also concluded that no

overall effect of cartoon characters in the package design is indicated by

the data, although the use of a cartoon character in the 5-colour designs

is associated with lower mean sales than when no cartoon character is

used.
50 □50: Is the link necessarily causal?
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Bonferroni vs. Tukey vs. Scheffé If all pairwise comparisons are of

interest, the Tukey procedure is superior to the Bonferroni and Scheffé

procedures, leading to narrower confidence intervals. If not all pairwise
comparisons are to be considered, the Bonferroni procedure may be

prove to be a better choice (at times).

The Bonferroni procedure yields tighter confidence intervals than Scheffé’s

when the number of contrasts of interest is about the same as (or is

smaller than) the number of factor levels. Indeed, the number of con-

trasts of interest must exceed the number of factor levels by a considerable
amount before the Scheffé procedure becomes a better choice.

All three procedures are of the form

Estimator ± Multiplier · SE.

The only difference among the three procedures is the multiplier. In

any given problem, one may then compute the Bonferroni and Scheffé

multipliers (and, when appropriate, the Tukey multiplier), and select the

smallest option.
51

51: This is an appropriate choice because

the multiplier does not depend on the

observed data, only on the structure of the

design and the desierd joint signficance

level.

11.3.8 Model Validation

In our analysis of experimental results, we have primarily compared the

average responses across various treatment groups. These comparisons

have been conducted using an overarall ANOVA test or more targeted

procedures based on contrasts and pairwise comparisons.

The foundation of these methods rests on the assumption that the data

follows the model

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 symbolizes the global mean applicable to all observations, and

𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2). Note that the designed is assumed to be balanced.

The 𝜏𝑖 ’s are fixed but unknown coefficients, whereas the 𝜀𝑖 , 𝑗 ’s are indepen-

dent normal random variables with constant but potentially unknown

variance 𝜎2
.

At its core, a model is essentially a set of assumptions – but we have

done nothing so far to verify if (or ensure that) these assumptions are

reasonable.

Specifically, we must verify three primary assumptions about the errors:

1. they are independent;

2. they are normally distributed, and

3. they have constant variance.

The model’s analytical rigour and the consequent inferences largely

depend on the extent to which the errors 𝜀𝑖 , 𝑗 , adhere to these assumptions.

Unfortunately, we never observe the true errors 𝜀𝑖 , 𝑗 ; the most accurate

representation we possess for them are the residuals 𝑒𝑖 , 𝑗 , derived from

the full model.
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Validation must then be based on these observable residuals rather than

the genuine errors. Due to the indirect nature of this process, diagnostics

are sometimes complicated.

In any practical data set, it’s almost inevitable that we encounter violations

of one or more of these core assumptions. But there is reason for optimism:

even in the face of slight deviations, the procedures can still yield

reasonable inferences.

We now dwell on diagnostics and possible remedial measures for

scenarios where the model assumptions are not met.

Residuals The (unobservable) errors are given by

𝜀𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖 .

After the model parameters have been estimated, we can compute the

residuals

𝑒𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 = 𝑦𝑖 , 𝑗 − �̂�𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•.

These residuals are often referred to as raw residuals.

The error sum of squares is simply

SSE =

𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑒2

𝑖 ,

and the mean square error is

MSE =
SSE

𝑁 − 𝑎 , where 𝑁 = 𝑛1 + · · · + 𝑛𝑎 .

At times, we may also use the Studentized residuals

𝑑𝑖 , 𝑗 =
𝑒𝑖 , 𝑗√
MSE

,

which we have discussed in Section 8.3.5.

Assessing Non-Normality The 𝑞𝑞−plot, also known as the normal
probability plot, is used to determine if the errors align with a nor-
mal distribution. The assessment is made by comparing the observed
quantiles of the residuals with the expected quantiles from a normal

distribution.

A straight line is indicative of errors following a normal distribution,

albeit slight deviations at the tails are customary (and anticipated).
52

For52: See Section 8.3.5 for description and

examples. non-normal data, the curvature of the plot provides insights into how

the data varies from the normal distribution.

In the context of 𝑞𝑞−plots, the choice between raw residuals and Studen-

tized residuals is generally inconsequential.



11.3 One-Way Classification 775

Assessing Non-Constant Variance We look for non-constant variance

occurring when the responses within a treatment group all have the

same variance 𝜎2

𝑖
, but the 𝜎2

𝑖
differ between different groups.

This can be assessed visually by plotting the residuals, either 𝑒𝑖 , 𝑗 or 𝑑𝑖 , 𝑗 ,

against the fitted values �̂�𝑖 , 𝑗 . With constant variance, the vertical disper-
sion observed within the stripes of this plot remains fairly consistent;
any discernible pattern in the residuals signals non-constant variance.

The most common deviations from constant variance are those where

the residual variation depends on the mean. Usually we see variances

increasing as the mean increases, but other patterns can occur.

Assessing Independence Serial dependence, also known as autocorre-
lation, is a common deviation from the assumption of independence in

data analysis. This phenomenon emerges when consecutive data points,

particularly those in close temporal proximity, exhibit excessive similar-

ity (indicating positive dependence) or marked dissimilarity (suggesting

negative dependence). Among these, positive dependence is the more

prevalent form.

To visually discern the presence of serial dependence, analysts frequently

use an index plot, which plots residuals on the vertical axis against their

temporal sequence on the horizontal axis. By examining this plot, one

can gauge the degree of dependence.

A discernible drift across the plot, for instance, is indicative of positive

dependence. On the other hand, residuals rapidly alternating between

positive and negative values, all the while centering around zero, typically

suggest negative dependence.

Remedial Measures Non-normality and non-constant variance can

sometimes be alleviated by transforming the response to a different
scale:

skewness to the right is often mitigated by employing a square

root, logarithm, or other transformation to a power smaller than 1;

in contrast, skewness to the left can be lessened by a square, cube,

or other transformation to a power greater than 1;

similarly, a prevalent method to address non-constant error vari-

ances is through the transformation of the response variable.

The Box-Cox transformation is particularly well-suited to such a situation,

offering a suite of transformations indexed by a parameter 𝜆:
53

53: We also discuss it in Section 8.3.5.

𝑌(𝜆) =

{
𝑌𝜆−1

𝜆 , 𝜆 ≠ 0

log(𝑌), 𝜆 = 0.

The idea is to transform the data over a spectrum of 𝜆 values, perhaps

between −3 and 3, and subsequently perform the ANOVA using 𝑌(𝜆).
We compute the sum of squared errors SSE(𝜆) for every chosen 𝜆.

Specifically, the optimal𝜆 is the one that maximizes the log-likelihood

−𝑁
2

log[SSE(𝜆)] + (𝜆 − 1)
𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

log(𝑦𝑖 , 𝑗).



776 11 The Design of Experiments

And what can we do about the assumption of data independence? Un-

fortunately, straightforward methodologies to confront data dependence

are limited. Advanced analytical techniques like time series analysis
(see Chapter 9) and spatial statistics could be used to model such data,

but these are beyond the scope of this chapter.

11.3.9 Power and Sample Size

So far, our focus has primarily been on analyzing experimental results.

A new focus now emerges as we proceed: how do we determine an

appropriate sample size for a completely randomized design?

Ideally, the sample size should be as small as possible, in order to

optimize both time and costs, yet it must also be sufficiently large to

fulfill the analytical requirements.
54

54: Making an informed decision on the

appropriate sample size requires the ana-

lysts to have some knowledge of the sys-

tem being examined; we will discuss this

further in Chapters 13 and 14.

We need two additional distributions to answer the original question:

if 𝑋1 , . . . , 𝑋𝑎 ∼ N(𝜇𝑖 , 1) are independent random variables, then

𝑋2

1
+· · ·+ 𝑥2

𝑎 follows a non-central 𝜒2 distributions with 𝑎 degrees
of freedom and non-centrality parameter 𝛿 = 𝜇2

1
+· · ·+𝜇2

𝑎 , denoted

by 𝑎𝑋 ∼ 𝜒2

𝑎(𝛿);55
55: This definition is a generalization of

the original definition of the (central) 𝑐ℎ𝑖2𝑎
distribution.

if 𝑋 ∼ 𝜒𝑛(𝜂) and 𝑌 ∼ 𝜒𝑚 , then

𝐹 =
𝑋/𝑛
𝑌/𝑚 ∼ 𝐹𝑛,𝑚(𝜂),

where 𝐹𝑛,𝑚(𝜂) is the non-central 𝐹 distribution with 𝑛 and 𝑚

degrees of freedom and non-centrality parameter 𝜂.

Recall that the statistic 𝐹0 for testing

𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0 against 𝐻1 : 𝜏𝑖 ≠ 0, for at least one 𝑖

follows a distribution 𝐹𝑎−1,𝑁−𝑎 when 𝐻0 is true. Under the alternative

hypothesis 𝐻1, this distribution assumption no longer holds.

Instead, the statistic 𝐹0 follows a non-central 𝐹𝑎−1,𝑁−𝑎(𝛿2), where

𝛿2 = 𝑛
𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2

is the non-centrality parameter.

This parameter essentially measures the extent to which the treatment

means deviate from being equal, scaled relative to the variation of 𝑦 𝑖 ,•,
which is 𝜎2/𝑛.

When computing the power for a specific sample size or determining the

necessary sample size for a desired power, we have to use non-central

𝐹-distributions.

A potential complication arises from the fact that each value of the non-

centrality parameter corresponds to a unique alternative distribution,

meaning that there is a distinct non-central 𝐹−distribution for every

possible non-centrality parameter value.
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Example Suppose that 𝑎 = 5 and that the treatment means are

𝜇1 = 11, 𝜇2 = 12, 𝜇3 = 15, 𝜇4 = 18, and 𝜇5 = 19.

From previous studies, we know that it is reasonable to expect that 𝜎2 = 9.

What should 𝑁 (or 𝑛) be in a balanced complete design if we use a test

with 𝛼 = 0.01, assuming we want a power of at least 1 − 𝛽 = 0.9? □

In order to answer this question, we need to actually know ahead of
time what the true individual values of 𝜇1 , . . . , 𝜇5 are, which may prove

challenging; we also needed to specify a plausible value (or range of

values) for 𝜎2
.

An alternative approach is to determine the sample size 𝑁 such that the

largest difference between treatment means

max{𝜇𝑖} − min{𝜇𝑖}

is larger than a given value 𝐷.

If 𝐷 = max{𝜇𝑖} − min{𝜇𝑖}, the non-centrality parameter is minimized

when the other means are exactly in the middle of the interval

(min{𝜇𝑖},max{𝜇𝑖}) = (𝜇𝑖∗ , 𝜇𝑖∗).

In that case, we would have

𝜏𝑖∗ = 𝜇𝑖∗ − 𝜇 = −𝐷
2

and 𝜏𝑖∗ = 𝜇𝑖∗ − 𝜇 =
𝐷

2

,

and all other 𝜏𝑖 ≡ 0, from which we conclude

𝑎∑
𝑖=1

𝜏2

𝑖 = 2(𝐷/2)2 = 𝐷2/2.

It follows that

𝛿2

min
= 𝑛𝐷2/(2𝜎2),

for a power equal to

𝑃
(
𝐹𝑎−1,𝑁−𝑎(𝛿2

min
) ≥ 𝐹𝛼;𝑎−1,𝑁−𝑎

)
.

Example With the data in the statement of the previous example,

suppose that we have reason to believe that the largest difference between

the treatment means is 𝐷 = 8. Then

𝛿2

min
= 𝑛 · 8

2/(2 · 9) = (32/9)𝑛.

The power of the test is

𝑃
[
𝐹

4,5(𝑛−1)((32/9)𝑛) ≥ 𝐹
0.01;4,5(𝑛−1)

]
.

We try different values of 𝑛, until we obtain a power which is at least

0.9.
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for(n in c(2:9)){

delta.2.min = 32/9*n; df1 = 4; df2 = 5*(n-1); alpha = 0.01

crit = qf(0.01, df1=df1, df2=df2, lower.tail=FALSE)

print(c(n,

pf(crit, df1=df1, df2=df2, ncp=delta.2.min,

lower.tail=FALSE)))

}

[1] 2.0000000 0.0704121

[1] 3.0000000 0.2308392

[1] 4.0000000 0.4413316

[1] 5.0000000 0.6376441

[1] 6.0000000 0.7861772

[1] 7.0000000 0.8833954

[1] 8.0000000 0.9405001

[1] 9.0000000 0.9713123

With a value of 𝑁 = 40 (i.e., with 𝑛 = 8), the test’s power is 94.1%. □

11.4 One-Way ANOVA with Random Effects

In the one-way ANOVA model from the previous section

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 is the common mean to all observations and 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2), the

treatment effects 𝜏1 , . . . , 𝜏𝑎 are viewed as fixed; this one-way ANOVA

model is known as a fixed-effect model.

But in some situations, the fixed-effect model is not appropriate; in

this section, we consider treatments that are drawn randomly from a

population of potential treatments, leading to a random effects model.

Examples: Fixe vs. Random Effects

A business operates 50 machines that produce cardboard boxes

for canned products. To analyze the consistency in the carton’s

durability, they randomly select ten machines out of the 50 and

manufacture 40 boxes from each. They distribute 400 batches of

feedstock cardboard randomly among these ten machines. Sub-

sequently, the boxes’ strength is assessed. This approach follows

a completely randomized design, encompassing ten treatment

groups and 400 units.

In this context, a fixed-effect model is not suitable since the goal is

to understand and draw conclusions about the entire population
of machines, not merely the ten we tested in the experiment –

we want to make assertions for the entire population, not just the

random subset we examined. Moreover, if the experiment was

repeated with a fresh batch of 10 machines, we would most likely

end up with a completely distinct group of machines (and so with

different observations).
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Imagine a home gardener conducting a small experiment using 24

tomato plants, divided into 4 varieties with 6 plants each. These

varieties have piqued the gardener’s interest after occasional use

over recent summers. Now, the gardener plans to compare these

varieties within a 12’ x 8’ garden patch. Each plant is randomly

placed in one of the 2’ x 2’ sections. In this scenario, the gardener’s

focus is solely on these specific four varieties, with no consideration

for any other types. The emphasis is strictly on the varieties being

tested, and nothing else, so we can use fixed effects.

Suppose, on the other hand, the 4 tomato varieties were chosen

at random from a broader population of tomato types. In this

scenario, we’d be dealing with random effects. If the experiment

were repeated with a different batch of 4 varieties, it would likely

result in a completely distinct group of tomato varieties.

To determine how proficiently Ontario students can read by the

conclusion of first grade, imagine we randomly select 6 schools

within the province. From each chosen school, a group of students

is randomly picked to undergo a reading assessment. Given that

these schools are a random sample from a broader group of interest

(all the schools in Ontario), we are operating under a random effect

model.

If our sole focus was on the performance of those specific 6 schools,

then a fixed-effect model would have been appropriate. However,

that is not the intention in this scenario.

11.4.1 Estimation of Model Parameters

The one-way ANOVA model with random effects is given by

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where

𝜇 is the global (or common) mean to all observations;

𝜏𝑖 ∼ i.i.d. N(0, 𝜎2

𝑇
), 𝑖 = 1, . . . , 𝑎;

𝜀𝑖 , 𝑗 ∼ i.i.d. N(0, 𝜎2), 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑛𝑖 ;

𝜏𝑖 and 𝜀𝑖 , 𝑗 are independent.

It follows that

E(𝜏𝑖) = 0, Var(𝜏𝑖) = 𝜎2

𝑇 , Cov(𝜏𝑖 , 𝜏𝑖′) = 0, 𝑖 ≠ 𝑖′;

E(𝜀𝑖 , 𝑗) = 0, Var(𝜀𝑖 , 𝑗) = 𝜎2 , and

Cov(𝜀𝑖 , 𝑗 , 𝜀𝑖′ , 𝑗′) = 0, except when 𝑖 = 𝑖′ and 𝑗 = 𝑗′;

Cov(𝜏𝑖 , 𝜀𝑖′ , 𝑗′) = 0, for all 𝑖 and 𝑖′.

Consequently, we have

E(𝑦𝑖 , 𝑗) = E(𝑦𝑖 , 𝑗 | 𝜏𝑖) = E(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 | 𝜏𝑖) = E(𝜇 + 𝜏𝑖) = 𝜇

and

Var(𝑦𝑖 , 𝑗) = Var(𝑦𝑖 , 𝑗 | 𝜏𝑖) + VarE(𝑦𝑖 , 𝑗 | 𝜏𝑖) = 𝜎2

𝑇 + 𝜎2.
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Although the 𝜏𝑖 ’s and the 𝜀𝑖 , 𝑗 ’s are uncorrelated, the 𝑦𝑖 , 𝑗 ’s are correlated.

Indeed, for those in the same treatment class, we have

Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖 , 𝑗′) = Cov(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗′) = 𝜎2

𝑇 , for 𝑗 ≠ 𝑗′,

whereas for those in different treatment classes, we have

Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖′ , 𝑗′) = Cov(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝜇 + 𝜏𝑖′ + 𝜀𝑖′ , 𝑗′) = 0, for 𝑖 ≠ 𝑖′.

Estimation of Parameters The intra-class correlation coefficient is

defined as

𝜌 =
Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖 , 𝑗′)√

Var(𝑦𝑖 , 𝑗)
√

Var(𝑦𝑖 , 𝑗′)
=

𝜎2

𝑇

𝜎2

𝑇
+ 𝜎2

, if 𝑗 ≠ 𝑗′.

It is a measure of the correlation between two observations from the

same factor level (or class); the parameters 𝜎2

𝑇
and 𝜎2

are the variance
components.

In practice, there are 4 family of parameters to be estimated and/or

predicted: the common mean 𝜇, the treatment effects 𝜏𝑖 , and the variance

components 𝜎2

𝑇
and 𝜎2

.

The common mean and the variance components are fixed parameters;

these we seek to estimate. The treatment effects are random variables,

these we seek to predict.

11.4.2 Analysis of Variance

In the one-way fixed-effects ANOVA model, we considered the overall test

of hypothesis 𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0. In the context of a random- effects

ANOVA model, this hypothesis is nonsensical as the 𝜏𝑖 ’s are random
variables.

Instead, we look to test if the factor (treatment) has an impact on the

variability of the response 𝑌. The null hypothesis is then expressed as

𝐻0 : 𝜎2

𝑇
= 0. The alternative stipulates that the factor has an effect on the

variability of the response 𝑌, which we express as 𝐻1 : 𝜎2

𝑇
> 0.

In effect, if 𝐻0 is valid, then all the 𝜏𝑖 ’s are equal, whereas if 𝐻1 holds,

then at least two of the 𝜏𝑖 ’s differ.

Despite the fact that the fixed-effects model is emphatically not equivalent

to the random-effects model, their analysis of variance for a single-factor

study (one-way classification) is conducted in similar fashions.

We can show (see Exercises) that

E(MSE) = 𝜎2

and E(MSA) = 𝜎2 + 𝑛𝜎2

𝑇 .

It then follows that MSE and MSA have the same expectation 𝜎2
if 𝜎2

𝑇
= 0.

If 𝜎2

𝑇
> 0, on the other hand, then E(MSA) > E(MSE) as 𝑛 > 0.

Therefore, we would reject 𝐻0 at significance level 𝛼 if

𝐹0 =
MSA

MSE

> 𝐹𝛼;𝑎−1,𝑁−𝑎 .
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To understand why we compare the observed test statistic 𝐹0 to critical

values of the 𝐹𝑎−1,𝑁−𝑎 distribution, we first note that

𝑦 𝑖 ,• =
1

𝑁

𝑛∑
𝑗=1

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 ,• , where

𝜀𝑖 ,• =
𝑛∑
𝑗=1

𝜀𝑖 , 𝑗
𝑛

∼ N

(
0,

𝜎2

𝑛

)
,

from which it follows that

𝑦 𝑖 ,• ∼ N

(
𝜇, 𝜎2

𝑇 + 𝜎2

𝑛

)
, 𝑖 = 1, . . . , 𝑎.

The random variables 𝑦 𝑖 ,• being i.i.d., we must then have

(𝑎 − 1)MSA

𝜎2 + 𝑛𝜎2

𝑇

∼ 𝜒2

𝑎−1
.

In the context of a balanced design, SSA can be expressed as

SSA =

𝑎∑
𝑖=1

𝑛𝑖(𝑦 𝑖 ,• − 𝑦•,•)2 = 𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2

= 𝑛
𝑎∑
𝑖=1

[(𝜏𝑖 − 𝜏•) + (𝜀𝑖 ,• − 𝜀•,•)]2 ,

where

𝜏• =
𝑎∑
𝑖=1

𝜏𝑖
𝑎

and 𝜀•,• =
𝑎∑
𝑖=1

𝜀𝑖 ,•
𝑎
.

On the other hand, we have

(𝑛 − 1)𝑠2

𝑖 =

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 =

𝑛∑
𝑗=1

(𝜀𝑖 , 𝑗 − 𝜀𝑖 ,•)2.

According to the i.i.d. condition,

(𝑛 − 1)𝑠2

𝑖

𝜎2

∼ 𝜒2

𝑛−1

independently for all 𝑖 = 1, . . . .𝑎. As a result, we then have

(𝑁 − 𝑎)MSE

𝜎2

= (𝑁 − 𝑎)
𝑎∑
𝑖=1

𝑠2

𝑖

𝜎2

=

𝑎∑
𝑖=1

(𝑛 − 1)𝑠2

𝑖

𝜎2

∼ 𝜒2

𝑁−𝑎 .

Thus, MSA only depends on {𝜏1 , . . . , 𝜏𝑎} and {𝜀1,• , . . . , 𝜀𝑎,•} and MSE

only depends on

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
. But the sets {𝜏1 , . . . , 𝜏𝑎} and

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
are independent, as are the sets {𝜀1,• , . . . , 𝜀𝑎,•} and

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
. There-

fore, MSA and MSE are independent and so we have, by definition of the

𝐹 distribution,

𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎 .

Under 𝐻0 : 𝜎2

𝑇
= 0, this collapses to the decision protocol presented

above.
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11.4.3 Inference on 𝜎2, 𝜎2

𝑇
, and 𝜇

As was the case with the fixed-effects model, we can conduct inference

on the model parameters.
56

56: Assuming, as before, a balanced

model.

Confidence interval for 𝜎2 and 𝜎2

𝑇
As before, MSE = �̂�2

is an unbiased
estimator of 𝜎2

. Since (𝑁 − 𝑎)MSE/𝜎2 ∼ 𝜒2

𝑁−𝑎 , it follows from that we

obtain a 100(1 − 𝛼)% confidence interval for 𝜎2 via[
(𝑁 − 𝑎)MSE

𝜒2

𝛼/2;𝑁−𝑎
,
(𝑁 − 𝑎)MSE

𝜒2

1−𝛼/2;𝑁−𝑎

]
.

But we also have

𝐸

(
MSA − MSE

𝑛

)
=

𝜎2

𝑛
−

𝜎2 + 𝑛𝜎2

𝑇

𝑛
= 𝜎2

𝑇 ;

consequently, (MSA − MSE)/𝑛 is an unbiased estimator of 𝜎2

𝑇
.

However, nothing precludes this estimator to take on negative values,

which may occur when MSA < MSE.
57

To overcome this issue, we use57: This can occur when we are evaluating

MSE and MSA from actual data (not their

expectations).

the truncated estimator

�̂�2

𝑇 =

{
(MSA − MSE)/𝑛, if MSA ≥ MSE,

0, otherwise.

The distribution of �̂�2

𝑇
is not simple since it is expressed as the linear

combination of two chi-square distributions. As a result, we cannot

derive an exact confidence interval for 𝜎2

𝑇
; we will have to settle for an

approximate confidence interval for 𝜎2

𝑇
.

However, we can construct an exact confidence interval for the intra-class

correlation coefficient 𝜌 = 𝜎2

𝑇
/(𝜎2

𝑇
+ 𝜎2). Indeed,

1 − 𝛼 = 𝑃

(
𝐹

1−𝛼/2;𝑎−1,𝑁−𝑎 ≤
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

≤ 𝐹𝛼/2;𝑎−1,𝑁−𝑎

)
= 𝑃

(
1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

)
≤

𝜎2

𝑇

𝜎2

≤ 1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

))
= 𝑃

(
𝑔

(
1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

))
≤ 𝑔

(
𝜎2

𝑇

𝜎2

)
=

𝜎2

𝑇

𝜎2

𝑇
+ 𝜎2

≤ 𝑔

(
1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

)))
,

where 𝑔(𝑡) = 𝑡/(𝑡 + 1) is an increasing function. Therefore, a 100(1− 𝛼)%
confidence interval for 𝜎2

𝑇
/(𝜎2

𝑇
+ 𝜎2) is obtained via:[

MSA − 𝐹𝛼/2;𝑎−1,𝑁−𝑎MSE

MSA + (𝑛 − 1)𝐹𝛼/2;𝑎−1,𝑁−𝑎MSE

,
MSA − 𝐹

1−𝛼/2;𝑎−1,𝑁−𝑎MSE

MSA + (𝑛 − 1)𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎MSE

]
.

When 𝑁 − 𝑎 is large, the estimator MSE of 𝜎2
becomes more precise and

we can write 𝜎2 ≈ MSE.
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It follows that

1 − 𝛼 ≈ 𝑃
(

1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

)
≤

𝜎2

𝑇

MSE

≤ 1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

))
= 𝑃

(
1

𝑛

(
MSA

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− MSE

)
≤ 𝜎2

𝑇 ≤ 1

𝑛

(
MSA

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− MSE

))
,

which provides an approximate 100(1−𝛼)% confidence interval for 𝜎2

𝑇
.

Confidence interval for 𝜇 Inferences about the global mean are simpler

to obtain. The expression

�̂� = 𝑦•,• =
1

𝑁

𝑎∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖 , 𝑗

provides an unbiased estimator of 𝜇. Its variance is given by

Var(�̂�) =
𝑛𝜎2

𝑇
+ 𝜎2

𝑁
;

an unbiased estimator of which is given by

V̂ar(�̂�) = MSA

𝑁
.

It follows that we can find a 100(1 − 𝛼)% confidence interval for 𝜇 via

𝑦•,• ± 𝑡𝛼/2;𝑎−1

√
MSA

𝑁
.

11.4.4 Power of a Test

In the case of the 𝐹−test at significance level 𝛼 for a one-way random-

effects model, the power of the test

𝐻0 : 𝜎2

𝑇 = 0 vs. 𝐻1 : 𝜎2

𝑇 ≠ 0

is:

𝑃(Δ) = 𝑃
(
MSA

MSE

> 𝐹𝛼;𝑎−1,𝑁−𝑎

���� 𝜎2

𝑇 ≠ 0

)
= 𝑃

(
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

>
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

𝐹𝛼;𝑎−1,𝑁−𝑎

)
= 𝑃

(
𝐹𝑎−1,𝑁−𝑎 >

1

1 + Δ
𝐹𝛼;𝑎−1,𝑁−𝑎

)
,

where Δ = 𝑛𝜎2

𝑇
/𝜎2

.
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11.5 Randomized Complete Block Designs

As the variance of the experimental error 𝜎2 increases, the corresponding

confidence intervals get longer and the power of tests decreases.

All other things being equal, we would thus prefer to conduct experiments

with units that are homogeneous so that 𝜎2
is as small as possible.

We can achieve this through variance-reduction designs, which almost

exclusively use blocking. A block of units is a collection of units that

are homogeneous in some sense – field plots located in the same general

area, or units that came from a single supplier, say.

These similarities in the units themselves lead us to anticipate that units

within a block may have similar responses.

When constructing blocks, the goal is to achieve homogeneity of the

units within blocks, with the caveat that units in different blocks may be

dissimilar.58
The primary purpose of blocking is to remove or isolate the58: Compare with the notion of stratified

random sampling in Section 10.4. block-to-block variability. This helps ensure that this variability does

not overshadow or mask the treatment effects under consideration.

A notable experimental design that makes use of this concept is the

Randomized Complete Block Design (RCBD). This design is structured

for comparing 𝑎 treatments across 𝑏 blocks. In this setup, treatments are

randomly assigned to experimental units within a block – each treatment

appears exactly once in every block. If a RCBD integrates 𝑎 treatments

within each of 𝑏 blocks, then the total number of observations would be

𝑁 = 𝑎𝑏.

Randomized block designs can be seen as an extension of the paired-

difference designs that were discussed in Section 11.2.

Examples: Randomized Complete Block Design

A production supervisor is keen on comparing the mean assem-

bly times of operators using three distinct methods: A, B, and C.

Given the anticipated variation in assembly times across differ-

ent operators, the supervisor employs an RCDB for the comparison.

Specifically, six assembly-line operators are selected, each represent-

ing a block. Each operator is tasked with assembling the item three

times, once for every method. The importance of the sequence in

which the methods are applied is recognized, as factors like fatigue

or heightened dexterity might influence the results. Therefore,

every operator is assigned a randomized sequence of the three

methods. For instance:

− Operator 1 first uses method A, proceeds to B, and finishes with C.

− Operator 2 first uses method A, proceeds to C, and finishes with B.

− Operator 3 first uses method B, proceeds to A, and finishes with C.

− Operator 4 first uses method B, proceeds to C, and finishes with A.

− Operator 5 first uses method C, proceeds to A, and finishes with B.

− Operator 6 first uses method C, proceeds to B, and finishes with A.
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The credit card industry is engaged in an intense competition for

cardholders. Each company designs its unique, intricate reward

and fee structure in an attempt to attract customers. Notably, the

benefits or costs associated with a credit card can vary significantly

depending on the cardholder’s monthly spending.

To investigate this, a consumer watchdog group set out to compare

the average rewards or fees of four different credit card companies

(A, B, C, D). They used three distinct spending levels as blocks:

− low spending – $500 per month,

− middle spending – $2,500 per month, and

− high spending – $10,000 per month.

If the rewards are not monetary in nature, the watchdog group

has first converted them to a monetary value. The average monthly

rewards, as quoted by the credit card companies for cardholders

across these spending levels, are presented in the table below.

Rewards Credit Card Company

Spending Level A
(𝑖 = 1)

B
(𝑖 = 2)

C
(𝑖 = 3)

D
(𝑖 = 4)

Low
(𝑗 = 1) 30 27 34 26

Middle
(𝑗 = 2) 68 76 65 67

High
(𝑗 = 3) 304 322 308 296

11.5.1 Analysis of Variance

In an RCBD, we consider two key factors: treatments and blocks, both of

which play a significant role in influencing the response. Let 𝑦𝑖 , 𝑗 represent

the response when the 𝑖th treatment is applied within the 𝑗th block. The

underlying RCBD is described via:

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏,

where the error terms 𝜀𝑖 , 𝑗 are independent random variables from a

N(0, 𝜎2) distribution.

In this model, the parameter 𝜇 represents the global effect, while 𝜏𝑖
denotes the treatment effect for the 𝑖th treatment level, and 𝛽 𝑗 indicates

the effect associated with the 𝑗th block.
59

59: We also refer to the treatment as the

first factor (or Factor A), and to blocking

as the second factor (or Factor B).Both treatments and blocks are regarded as fixed factors; the expected

value of the response can thus be expressed as:

E(𝑦𝑖 , 𝑗) = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 .

Just as in the one-way (single-factor) fixed-effect experimental design

discussed previously, the RCBD model is over-parameterized.
60

The 60: We can bypass this problem by enforc-

ing constraints on the treatment and block

effects:

𝑎∑
𝑖=1

𝜏𝑖 = 0 and

𝑏∑
𝑗=1

𝛽 𝑗 = 0.

primary aim is to test the uniformity of the treatment means, effectively

examining the presence or absence of an effect for Factor A.
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Formally, we test for

𝐻0 : 𝜏1 = 𝜏2 = · · · = 𝜏𝑎 = 0, against 𝐻1 : 𝜏𝑖 ≠ 0 for at least one 𝑖.

The totals for the 𝑖th treatment, the 𝑗th block, and the overall total of the

𝑁 = 𝑎𝑏 observations are given, respectively, by

𝑦𝑖 ,• =
𝑏∑
𝑗=1

𝑦𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎, 𝑦•, 𝑗 =
𝑎∑
𝑖=1

𝑦𝑖 , 𝑗 , 𝑗 = 1, . . . , 𝑏

𝑦•,• =
𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦𝑖 , 𝑗 =
𝑎∑
𝑖=1

𝑦𝑖 ,• =
𝑏∑
𝑗=1

𝑦•, 𝑗 .

Similarly, we define the various means

𝑦 𝑖 ,• =
𝑦𝑖 ,•
𝑏
, 𝑦•, 𝑗 =

𝑦•, 𝑗
𝑎
, and 𝑦•,• =

𝑦•,•
𝑁

.

Example (cont.) In the credit card example from earlier in the section,

the totals and means are given in the table below.

Rewards Credit Card Company

Spending Level A
(𝑖 = 1)

B
(𝑖 = 2)

C
(𝑖 = 3)

D
(𝑖 = 4)

Totals
𝑦•, 𝑗

Means
𝑦•, 𝑗

Low
(𝑗 = 1) 30 27 34 26 117 29.25

Middle
(𝑗 = 2) 68 76 65 67 276 69

High
(𝑗 = 3) 304 322 308 296 1230 307.5

Totals
𝑦𝑖 ,•

402 425 407 389 1623

Means
𝑦 𝑖 ,•

134 141.7 135.7 129.7 135.25

The total sum of square (SST) can be expressed as the sum of three sums

of squares:

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦•,•)2 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

[
(𝑦 𝑖 ,• − 𝑦•,•) + (𝑦•, 𝑗 − 𝑦•,•) + (𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•)

]
2

= 𝑏
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2 + 𝑎
𝑏∑
𝑗=1

(𝑦•, 𝑗 − 𝑦•,•)2 +
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•)2 ,

or, using the customary symbols (along with the corresponding degrees

of freedom):

SST = SSA + SSB + SSE

𝑁 − 1 = (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1) = 𝑎𝑏 − 1
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There are equivalent formulas (which are slightly easier to use) for the

sums of squares:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

,

SSA =
1

𝑏

𝑎∑
𝑖=1

𝑦2

𝑖 ,• −
𝑦2

•,•
𝑁

,

SSB =
1

𝑎

𝑏∑
𝑗=1

𝑦2

•, 𝑗 −
𝑦2

•,•
𝑁

,

Finally, SSE is obtained as

SSE = SST − SSA − SSB.

It can be shown that

SSA

𝜎2

∼ 𝜒2

𝑎−1

(
𝑏

𝑎∑
𝑖=1

𝜏2

𝑖

𝜎2

)
,

SSB

𝜎2

∼ 𝜒2

𝑏−1

(
𝑎

𝑏∑
𝑗=1

𝛽2

𝑗

𝜎2

)
,

and

SSE

𝜎2

∼ 𝜒2

(𝑎−1)(𝑏−1).

As has been the case throughout, we can also show that the three sums of

squares SSA, SSB, and SSE are mutually independent. The corresponding

mean squares are obtained in the usual way:

MSA =
SSA

𝑎 − 1

, MSB =
SSB

𝑏 − 1

, and MSE =
SSE

(𝑎 − 1)(𝑏 − 1) .

We can show (see Exercises) that

E(MSA) = 𝜎2 + 𝑏

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ,

E(MSB) = 𝜎2 + 𝑎

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ,

E(MSE) = 𝜎2.

We can test for the absence of a treatment effect (Factor A) by pitting

𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0 against 𝐻1 : 𝜏𝑖 ≠ 0 for at least one 𝑖 , using the test

statistics

𝐹0 =
MSA

MSE

,

which follows an 𝐹𝑎−1,(𝑎−1)(𝑏−1) distribution under 𝐻0.

All of this is summarized in Table 11.19.
61

61: A “large” value of the ratio MSB/MSE

implies that blocking was a good strategy.

Source SS df MS F0

Treatment SSA 𝑎 − 1 MSA 𝐹0 = MSA/MSE

Block SSB 𝑏 − 1 MSB

Error SSE (𝑎 − 1)(𝑏 − 1) MSE

Total SST 𝑁 − 1

Table 11.19: ANOVA table for the equality

of the treatment means 𝜏𝑖 in a two-factor

randomized complete block design.
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Example (cont.) In the credit card example from earlier in the section, we

have a randomized block design with 𝑏 = 3 spending levels (blocks) and

𝑎 = 4 companies (treatments), so there are 𝑁 = 𝑎𝑏 = 12 observations.

We start by loading the data.

content.1 <- c(30, 27, 34, 26)

content.2 <- c(68, 76, 65, 67)

content.3 <- c(304, 322, 308, 296)

data <- data.frame(rbind(content.1, content.2, content.3))

rownames(data) <- c("Low", "Middle", "High")

colnames(data) <- c("A", "B", "C", "D")

row.totals <- rowSums(data)

row.means <- rowMeans(data)

data <- cbind(data, row.totals, row.means)

col.totals <- colSums(data)

col.means <- colMeans(data)

data <- rbind(data, col.totals, col.means)

rownames(data) <- c("Low", "Middle", "High", "col.totals",

"col.means")

data[4,6] <- NA; data[5,5] <- NA

A B C D row.totals row.means

Low 30 27.0000 34.0000 26.0000 117 29.25

Middle 68 76.0000 65.0000 67.0000 276 69.00

High 304 322.0000 308.0000 296.0000 1230 307.50

col.totals 402 425.0000 407.0000 389.0000 1623

col.means 134 141.6667 135.6667 129.6667 135.25

We compute the necessary quantities and place them in the ANOVA

table.

a = ncol(content)

b = nrow(content)

N = a*b

grand.mean = data[b+2,a+2]

SST = sum((data[c(1:b),c(1:a)]-grand.mean)^2)

SSA = b * sum((data[b+2,c(1:a)]-grand.mean)^2)

SSB = a * sum((data[c(1:b),a+2]-grand.mean)^2)

SSE = SST - SSA - SSB

ANOVA = as.data.frame(cbind(c(SSA,SSB,SSE,SST),

c(a-1, b-1, (a-1)*(b-1), N-1),

c(SSA/(a-1),SSB/(b-1),SSE/((a-1)*(b-1)),0),

c((SSA/(a-1))/(SSE/((a-1)*(b-1))),(SSB/(b-1))/(SSE/((a-1)*(b-1))),0,0)))

rownames(ANOVA) = c("Treatment", "Block", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment 222.25 3 74.08333 1.84058

Block 181180.50 2 90590.25000 2250.68944

Error 241.50 6 40.25000

Total 181644.25 11
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At significance level 𝛼 = 0.05, the critical value of 𝐹
4−1,(4−1)(3−1) = 𝐹3,6 is

given below.

qf(0.05, df1 = a-1, df2 = (a-1)*(b-1), lower.tail=FALSE)

[1] 4.757063

We see that 𝐹0 = MSA/MSE = 1.84 < 𝐹0.05;3,6 = 4.76; therefore, the

results do not show a significant difference in the treatment means. That

is, there is insufficient evidence to indicate a difference in the credit card

companies’ monthly rewards.
62

62: The ratio MSB/MSE is quite large,

which suggests that blocking is effective,

even if we cannot say that the treatment is

so.11.5.2 Estimation of Model Parameters

The RCBD model parameters are the grand mean 𝜇, the treatment effects

𝜏𝑖 , and the blocking effect 𝛽 𝑗 , which can be estimated from the data as

follows.

We seek to minimize the sum of squares errors:

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝜀2

𝑖 , 𝑗 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖 − 𝛽 𝑗)2.

We determine the model values of 𝜇, 𝜏𝑖 and 𝛽 𝑗 by differentiating the

expression above, setting the gradient to 0, and solving for the parameters.

In the RCBD context, this leads to:

𝜇 : −2

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0,

𝜏𝑖 : −2

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0, 𝑖 = 1, . . . , 𝑎,

𝛽 𝑗 : −2

𝑎∑
𝑖=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0, 𝑗 = 1, . . . , 𝑏.

After some simplifications, we obtain the following system of linear

equations:

𝜇 : 𝑁�̂� = 𝑦•,• ,

𝜏𝑖 : 𝑏�̂� + 𝑏�̂�𝑖 = 𝑦𝑖 ,• , 𝑖 = 1, . . . , 𝑎,

𝛽 𝑗 : 𝑎�̂� + 𝑎�̂� 𝑗 = 𝑦•, 𝑗 , 𝑗 = 1, . . . , 𝑏,

whose solution is

�̂� = 𝑦•,• , �̂�𝑖 = 𝑦 𝑖 ,• − 𝑦•,• , �̂� 𝑗 = 𝑦•, 𝑗 − 𝑦•,•.

11.5.3 Multiple Comparisons

We can compare two treatments 𝑖 and 𝑖′, by looking at the difference of

treatments 𝜏𝑖 − 𝜏𝑖′ , which we estimate via 𝑦 𝑖 ,• − 𝑦 𝑖′ .
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The variance of 𝑦 𝑖 ,• − 𝑦 𝑖′ ,• is given by

Var(𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) = 𝜎2 · 2

𝑏
.

We obtain an 100(1 − 𝛼)% confidence interval for 𝜏𝑖 − 𝜏𝑖′ in the usual

manner:

𝜏𝑖 − 𝜏𝑖′ : (𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) ± 𝑡𝛼/2;(𝑎−1)(𝑏−1)
√

MSE

√
2

𝑏
.

For simultaneous confidence intervals, we must use a modification (as in

Section 11.3.7). If we use Tukey’s method, for instance, the confidence

interval with family confidence 100(1 − 𝛼)% becomes

𝜏𝑖 − 𝜏𝑖′ : (𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) ± 𝑞𝛼;𝑎,(𝑎−1)(𝑏−1)
√

MSE

√
1

𝑏
.

11.5.4 Power and Sample Size

Whether or not Factor A has an effect, the distribution of the test statistic

𝐹0 is a non-central 𝐹𝑎−1,(𝑎−1)(𝑏−1)(𝛿2), with non-centrality parameter

𝛿2 = 𝑏
𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2.

To determine the sample size, we can use an approach similar to the one

described in Section 11.3.9.

The differences between the treatment effects are 𝜏𝑖 − 𝜏𝑖′ ; the largest

difference between the treatment averages is thus

𝐷 = max{𝜏𝑖} − min{𝜏𝑖}.

The minimal non-centrality parameter is thus

𝛿2

min
= 𝑏𝐷2/(2𝜎2),

which yields a test power of

𝑃
(
𝐹𝑎−1,(𝑎−1)(𝑏−1)(𝛿2

min
) ≥ 𝐹𝛼;𝑎−1,(𝑎−1)(𝑏−1)

)
.

11.5.5 Model Validation

As in the previously studied design, three basic assumptions about errors

must be checked: independence, normality, and homoscedasticity. As

before, we use the residuals to verify whether the assumptions seem

reasonable. In the RCBD predicted responses are

�̂�𝑖 , 𝑗 = �̂� + �̂�𝑖 + �̂� 𝑗 = 𝑦 𝑖 ,• + 𝑦•, 𝑗 − 𝑦•,•;

their residuals are thus

𝑒𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − �̂�𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•.
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11.6 Factorial Designs

In our discussions up to this point, we primarily focused on the foun-

dational problem of understanding how a single independent factor
influences the response. However, it’s not uncommon in research to

encounter situations where the interest lies in studying the combined
effects of multiple independent variables on a given response. We call

such experimental setups, where two or more factors are simultaneously

investigated, factorial designs.

Consider an example where researchers wish to determine the effect of

sleep deprivation on student test performance. If the study only revolves

around the sleep factor and the test performance, it is a simple (one-way)
experiment. But we can add a twist: what if the researchers also wants

to know whether the impacts of sleep deprivation vary between high

school and university students? This introduces a second factor, school

level,
63

into the study, turning it into a factorial design. 63: Which is presumably linked to age.

Factorial designs can vary in their complexity. A frequently encountered

type is the 2 × 2 factorial design, where two factors are being analyzed,

and each factor has two distinct levels. The numeric representation of

a factorial design offers quick insights: the number of digits indicates

the number of factors, while the value of each number shows how
many levels the corresponding factor has. For instance, a 4 × 3 factorial

design consists of two factors, with the first having four levels and the

second comprising three levels. Extending this understanding, a 2× 2× 2

factorial design would mean the experiment has three factors, each of

which having two levels.

11.6.1 Two-Way Factorial Experiments

We start by looking into two-factor designs. The data from a two-way

factorial design can be illustratively showcased using a table, as in Table

11.21.

𝐵1 𝐵2 𝐵3

𝐴1 𝑦1,1,1 , . . . , 𝑦1,1,𝑛 𝑦1,2,1 , . . . , 𝑦1,2,𝑛 𝑦1,3,1 , . . . , 𝑦1,3,𝑛

𝐴2 𝑦2,1,1 , . . . , 𝑦2,1,𝑛 𝑦2,2,1 , . . . , 𝑦2,2,𝑛 𝑦2,3,1 , . . . , 𝑦2,3,𝑛

𝐴3 𝑦3,1,1 , . . . , 𝑦3,1,𝑛 𝑦3,2,1 , . . . , 𝑦3,2,𝑛 𝑦3,3,1 , . . . , 𝑦3,3,𝑛

𝐴4 𝑦4,1,1 , . . . , 𝑦4,1,𝑛 𝑦4,2,1 , . . . , 𝑦4,2,𝑛 𝑦4,3,1 , . . . , 𝑦4,3,𝑛
Table 11.21: 4×3 factorial design treatment

structure, with 𝑛 observations per cell.

In this representation, rows align with the levels of one specific factor

(designated as Factor A), while columns represent the levels of the second

factor (Factor B).

In that design, there are 4 × 3 = 12 total treatments. In balanced factorial

designs, the number of observations 𝑛 per unique combination of factor

levels (which we also call a cell) is the same value across all combinations.

For the current discussion, we assume that the collected data is balanced,

𝑛 responses to a cell.
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Assume that we are working with an 𝑎 × 𝑏 two-way design; there are

𝑁 = 𝑎𝑏𝑛 observations in total. We refer to the 𝑘th response in the

(𝑖 , 𝑗)−cell by 𝑦𝑖 , 𝑗 ,𝑘 .

By similarity to the one-way design, we adopt the following notation:

𝑦𝑖 ,•,• =
𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦 𝑖 ,•,• =
𝑦𝑖 ,•,•
𝑏𝑛

;

𝑦•, 𝑗 ,• =
𝑎∑
𝑖=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦•, 𝑗 ,• =
𝑦•, 𝑗 ,•
𝑎𝑛

;

𝑦𝑖 , 𝑗 ,• =
𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦 𝑖 , 𝑗 ,• =
𝑦𝑖 , 𝑗 ,•
𝑛

;

𝑦•,•,• =
𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦•,•,• =
𝑦•,•,•
𝑁

.

Example We are interested in determining if a medicated agent can

help reduce inflammation among athletes. 6000 college-level athletes are

assigned to 30 lots of 200 athletes each.

The 30 lots are divided at random into ten groups of three lots each, with

each group receiving a different treatment.

A treatment is factorial combination of the medication dosage (Factor A,

with two levels), and when the medication is applied (Factor B, with five

levels: 1 hour after a game, immediately after the game, during the game,

immediately before the game, 1 hour before game).

In each lot, the response is the number of athletes who experience

inflammation at some point within a 24-hour period after the game.

Cases Application Period

Dosage 1 2 3 4 5

Low
10 6 8 12 19

7 18 36 29 46

9 16 19 35 37

High
3 7 9 10 15

4 4 10 10 26

7 0 4 0 10

The data is summarized below.

Cases Application Period

Dosage 1 2 3 4 5 𝑦𝑖 ,•,•

Low 26 40 63 76 102 307

High 14 11 23 20 51 119

𝑦•, 𝑗 ,• 40 51 86 96 153 426

We will discuss how to estimate the two-way factorial design model

parameters shortly. □
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Typically, we are interested in the treatment effects and interaction effects.

The mathematical representation of a two-way factorial experiment is

given by the model:

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇𝑖 , 𝑗 + 𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛;

the subscripts 𝑖 and 𝑗 serve as indices for the treatment levels A and B,

respectively.

We can re-write the treatment effects as follows:

𝜇𝑖 , 𝑗 = 𝜇•,• + (𝜇𝑖 ,• − 𝜇•,•) + (𝜇•, 𝑗 − 𝜇•,•) + (𝜇𝑖 , 𝑗 − 𝜇𝑖 ,• − 𝜇•, 𝑗 + 𝜇•,•)
= 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + (𝜏𝛽)𝑖 , 𝑗

By adopting this perspective, we can reformulate the model as:

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇+𝜏𝑖+𝛽 𝑗+(𝜏𝛽)𝑖 , 𝑗+𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛.

As always, we incorporate constraints to avoid an over-parametrized

model:

𝑎∑
𝑖=1

𝜏𝑖 = 0,
𝑏∑
𝑗=1

𝛽 𝑗 = 0,
𝑎∑
𝑖=1

(𝜏𝛽)𝑖 , 𝑗 = 0,
𝑏∑
𝑗=1

(𝜏𝛽)𝑖 , 𝑗 = 0.

The main treatment effects are represented by 𝜏𝑖 (Factor A) and 𝛽 𝑗 (Factor

B); the interaction effect by (𝜏𝛽)𝑖 , 𝑗 . This interaction plays a pivotal role

in understanding the experiment’s nuances.

The row effects tells us how the response changes as we transition from

one row to the next, averaged across all columns. In contrast, the column
effect tells us how the response changes as we move from once column

to the next, averaged across all rows.

The interaction effects tell us how the change in response depends on

columns when moving between rows, or how the change in response

depends on rows when moving between columns. An interaction term

between Factor A and Factor B means that the change in mean response

going from level 𝑖1 of Factor A to level 𝑖2 of Factor A depends on the level

of Factor B under consideration.
64

64: We cannot simply say that changing

the level of Factor A changes the response

by a given amount; we may need a dif-

ferent amount of change for each level of

Factor B.

Advantages Factorial experiments present several advantages.

When the factors do not interact, factorial experiments are more

efficient than one-at-a-time experiments, as the units can be used

to assess the (main) effects for both factors. Units in a one-at-a-time

experiment can only be used to assess the effects of one factor.

When the factors interact, factorial experiments can estimate the

interaction. One-at-at-time experiments cannot estimate interaction.

Use of one-at-a-time experiments in the presence of interaction can

lead to serious misunderstanding of how the response varies as a

function of the factors.

When there is no interaction, then the main treatment effects alone are

suffcient to describe the means of the response – such a model is said to

be additive.
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Estimation of Model Parameters As before, we seek to minimize the

sum of squared residuals

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝜀2

𝑖 , 𝑗 ,𝑘
=

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − 𝜇 − 𝜏𝑖 − 𝛽 𝑗 − 𝛾𝑖 , 𝑗)2 ,

where we write 𝛾𝑖 , 𝑗 for (𝜏𝛽)𝑖 , 𝑗 to simplify the notation.

We compute the partial derivatives and set them to 0:

𝜇 :

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦•,•,• − 𝑁�̂� = 0;

𝜏𝑖 :

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦𝑖 ,•,• − 𝑏𝑛�̂� − 𝑏𝑛�̂�𝑖 = 0;

𝛽 𝑗 :

𝑎∑
𝑖=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦•, 𝑗 ,• − 𝑎𝑛�̂� − 𝑎𝑛�̂� 𝑗 = 0;

𝛾𝑖 , 𝑗 :

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦𝑖 , 𝑗 ,• − 𝑛�̂� − 𝑛�̂�𝑖 − 𝑛�̂� 𝑗 − 𝑛�̂�𝑖 , 𝑗 = 0.

The system’s solution is

�̂� = 𝑦•,•,• ,

�̂�𝑖 = 𝑦 𝑖 ,•,• − 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎,

�̂� 𝑗 = 𝑦•, 𝑗 ,• − 𝑦•,•,• , 𝑗 = 1, . . . , 𝑏,

�̂�𝑖 , 𝑗 = 𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏.

Analysis of Variance The total sum of squares can be decomposed as

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − 𝑦•,•,•)2 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

[
(𝑦 𝑖 ,•,• − 𝑦•,•,•) + (𝑦•, 𝑗 ,• − 𝑦•,•,•) + (𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•) + (𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•)

]
2

= 𝑏𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,•,• − 𝑦•,•,•)2 + 𝑎𝑛
𝑏∑
𝑗=1

(𝑦•, 𝑗 ,• − 𝑦•,•,•)2 + 𝑛
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•)2 +
∑
𝑖 , 𝑗 ,𝑘

(𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•)2 ,

which we can re-write simply as

SST = SSA + SSB + SSAB + SSE.

The corresponding ANOVA table is shown below.

Table 11.25: ANOVA table for equality of

factorial effects and of interaction effects,

in a two-way design.

Source SS df MS F

Treatment A SSA 𝑎 − 1 MSA 𝐹𝐴 = MSA/MSE

Treatment B SSB 𝑏 − 1 MSB 𝐹𝐵 = MSB/MSE

Interaction AB SSAB (𝑎 − 1)(𝑏 − 1) MSAB 𝐹𝐴𝐵 = MSAB/MSE

Error SSE 𝑎𝑏(𝑛 − 1) MSE

Total SST 𝑁 − 1
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As always, there are equivalent formulas for the sums of squares:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦2

𝑖 , 𝑗 ,𝑘
−
𝑦2

•,•,•
𝑁

; SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•,•
𝑏𝑛

−
𝑦2

•,•,•
𝑁

;

SSB =

𝑏∑
𝑗=1

𝑦2

•, 𝑗 ,•
𝑎𝑛

−
𝑦2

•,•,•
𝑁

; SSTR =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦2

𝑖 , 𝑗 ,•
𝑛

−
𝑦2

•,•,•
𝑁

;

SSAB = SSTR − SSA − SSB; SSE = SST − SSTR.

Example In a comprehensive study aimed at understanding the growth

dynamics of plants, we use a 33 factorial design, resulting in a total of 9 dis-

tinct treatments. For each treatment combination, we collect information

on 𝑛 = 4 replicates, ensuring robustness in the observations.

The response variable of interest is the height of the plants (in cm), all of

the same species, after a span of 30 days. We examine two critical factors:

the amount of daily sunlight exposure,
65

and the type of fertilizer used.
66

65: With three specific levels (4 hours, 8

hours, and 12 hours).
The responses are shown below.

66: With three unique compositions (Type

1, Type 2, Type 3).

Height (cm) Daily Sunlight Exposure (hours)

Fertilizer 12 8 4

Type 1 14.0 19.8 12.6 13.2 1.5 8.0

14.9 13.6 9.6 12.5 4.8 5.5

Type 2 14.0 14.5 4.4 3.0 3.0 6.0

8.4 17.0 9.0 6.5 9.2 4.8

Type 3 13.8 11.0 17.4 12.0 9.6 10.4

16.8 16.0 15.0 13.9 8.2 6.0

The primary objective of the study is not only to tease out the individual

and interactive effects of sunlight exposure and fertilizer composition on

the plant’s growth, but also to pinpoint whether a particular fertilizer

type consistently supports optimal growth across sunlight conditions.

The data is summarized below.

Height (cm) Exposure (hrs)

Dosage 12 8 4 𝑦𝑖 ,•,•

Type 1 62.3 47.9 19.8 130.0

Type 2 53.9 22.9 23.0 99.8

Type 3 57.6 58.3 34.2 150.1

𝑦•, 𝑗 ,• 173.8 129.1 77.0 379.9

We can also create this table in R.
67

67: We will use the tidyverse package

this time around, just to show it can be

done.

data = data.frame(

Fertilizer = as.factor(c(rep("Type 1",4),rep("Type 2",4),rep("Type 3",4))),

Height_12 = c(14.0, 14.9, 19.8, 13.6, 14.0, 8.4, 14.5, 17.0, 13.8, 16.8, 11.0, 16.0),

Height_8 = c(12.6, 9.6, 13.2, 12.5, 4.4, 9.0, 3.0, 6.5, 17.4, 15.0, 12.0, 13.9),

Height_4 = c(1.5, 4.8, 8.0, 5.5, 3.0, 9.2, 6.0, 4.8, 9.6, 8.2, 10.4, 6.0))
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library(tidyverse)

summary.main <- data |> group_by(Fertilizer) |>

summarise(h12 = sum(Height_12), h8 = sum(Height_8), h4 = sum(Height_4))

totals <- summary.main$h12 + summary.main$h8 + summary.main$h4

summary.big <- data.frame(cbind(summary.main[,c(2:4)], totals))

summary.end <- summary.big |>

summarise(h12 = sum(h12), h8 = sum(h8), h4 = sum(h4), totals = sum(totals))

summary.data <- rbind(summary.big,summary.end)

rownames(summary.data) <- c("Type 1", "Type 2", "Type 3", "totals")

summary.data

h12 h8 h4 totals

Type 1 62.3 47.9 19.8 130.0

Type 2 53.9 22.9 23.0 99.8

Type 3 57.6 58.3 34.2 150.1

totals 173.8 129.1 77.0 379.9

We can obtain the ANOVA table as follows.

a = nrow(summary.data) - 1

b = ncol(summary.data) - 1

n = nrow(data)/a

N = a*b*n

SST = sum(data[,c(2:(b+1))]^2)-summary.data[4,4]^2/N

SSA = sum(summary.data[b+1,c(1:a)]^2)/(b*n)-summary.data[4,4]^2/N

SSB = sum(summary.data[c(1:b),a+1]^2)/(a*n)-summary.data[4,4]^2/N

SSTR = sum(summary.data[c(1:b),c(1:a)]^2)/n-summary.data[4,4]^2/N

SSAB = SSTR - SSA - SSB

SSE = SST - SSTR

MSA = SSA/(a-1)

MSB = SSB/(b-1)

MSAB = SSAB/((a-1)*(b-1))

MSE = SSE/(a*b*(n-1))

ANOVA = as.data.frame(cbind(c(SSA,SSB,SSAB,SSE,SST),

c(a-1, b-1, (a-1)*(b-1), a*b*(n-1), N-1),

c(MSA,MSB,MSAB,MSE,0),

c(MSA/MSE,MSB/MSE,MSAB/MSE,0,0)))

rownames(ANOVA) = c("Treatment A", "Treatment B", "Interaction AB", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment A 391.18722 2 195.593611 29.159629

Treatment B 106.83722 2 53.418611 7.963792

Interaction AB 96.13778 4 24.034444 3.583121

Error 181.10750 27 6.707685

Total 775.26972 35



11.6 Factorial Designs 797

Hypothesis Testing Before discussing the different hypothesis tests, we

need the following results (see Exercises):

E(MSA) = 𝜎2 + 𝑏𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ; E(MSB) = 𝜎2 + 𝑎𝑛

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ;

E(MSAB) = 𝜎2 + 𝑛

(𝑎 − 1)(𝑏 − 1)
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ; E(MSE) = 𝜎2.

In general, we may be interested in the following tests:

presence/absence of interactions between Factor A and Factor B;

presence/absence of a Factor A effect;

presence/absence of a Factor B effect.

The hypothesis of absence of interaction between Factors A and B can

be formulated as

𝐻𝐴𝐵
0

: 𝜇𝑖 , 𝑗 − 𝜇𝑖 ,• − 𝜇•, 𝑗 + 𝜇•,• = (𝜏𝛽)𝑖 , 𝑗 = 0, 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏.

In the absence of interaction, the difference between averages obtained

by varying either Factor A or Factor B is the same regardless of the level

of the other factor:

𝜇𝑖 , 𝑗 − 𝜇𝑖 , 𝑗′ = 𝜇𝑖′ , 𝑗 − 𝜇𝑖′ , 𝑗′

𝜇𝑖 , 𝑗 − 𝜇𝑖′ , 𝑗 = 𝜇𝑖 , 𝑗′ − 𝜇𝑖′ , 𝑗′ , 𝑖 , 𝑖′ = 1, . . . , 𝑎, 𝑗, 𝑗′ = 1, . . . , 𝑏.

The absence of effect for Factor A can be formulated as

𝐻𝐴
0

: 𝜇𝑖 ,• − 𝜇•,• = 𝜏𝑖 = 0, 𝑖 = 1, . . . , 𝑎.

In the absence of interaction, we can rewrite the hypothesis as

𝐻𝐴
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖′ , 𝑗 , 𝑖 , 𝑖′ = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏,

which corresponds to the intuitive notion of the absence of effect of Factor A.

Similarly, the absence of effect for Factor B can be formulated as

𝐻𝐵
0

: 𝜇•, 𝑗 − 𝜇•,• = 𝛽 𝑗 = 0, 𝑗 = 1, . . . , 𝑏.

In the absence of interaction, we can rewrite the hypothesis as

𝐻𝐵
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖 , 𝑗′ , 𝑖 = 1, . . . , 𝑎, 𝑗, 𝑗′ = 1, . . . , 𝑏,

which corresponds to the intuitive notion of the absence of effect of Factor B.

The hypotheses 𝐻𝐴𝐵
0

, 𝐻𝐴
0

and 𝐻𝐵
0

use, respectively, the following tests:

𝐹𝐴𝐵 =
MSAB

MSE

∼ 𝐹(𝑎−1)(𝑏−1),𝑁−𝑎𝑏(𝛿2

𝐴𝐵), 𝛿2

𝐴𝐵 =
𝑛

𝜎2

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ;

𝐹𝐴 =
MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎𝑏(𝛿2

𝐴), 𝛿2

𝐴 =
𝑏𝑛

𝜎2

𝑎∑
𝑖=1

𝜏2

𝑖 ;

𝐹𝐵 =
MSB

MSE

∼ 𝐹𝑏−1,𝑁−𝑎𝑏(𝛿2

𝐵), 𝛿2

𝐵 =
𝑎𝑛

𝜎2

𝑏∑
𝑗=1

𝛽2

𝑗 .
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When𝐻𝐴𝐵
0

,𝐻𝐴
0

, and/or𝐻𝐵
0

hold, we note that𝐸(MSAB),𝐸(MSA), and/or

𝐸(MSB) take on the value MSE = 𝜎2
, respectively. Thus, large values

of 𝐹𝐴𝐵, 𝐹𝐴, and/or 𝐹𝐵 imply that the observations do not support the

corresponding null hypotheses.

More generally, When 𝐻𝐴𝐵
0

, 𝐻𝐴
0

, and/or 𝐻𝐵
0

hold, the corresponding test

statistic 𝐹𝐴𝐵, 𝐹𝐴, and/or 𝐹𝐵 follow a central 𝐹-distribution. Thus, we

reject 𝐻𝐴𝐵
0

, 𝐻𝐴
0

, and/or 𝐻𝐵
0

, respectively, at significance 𝛼 if

𝐴𝐵 : 𝐹0 > 𝐹𝛼;(𝑎−1)(𝑏−1),𝑁−𝑎𝑏 ;

𝐴 : 𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎𝑏 , and/or

𝐵 : 𝐹0 > 𝐹𝛼;𝑏−1,𝑁−𝑎𝑏 .

In practice, we start by testing the absence/presence of interactions. If the

interaction is not significant, then we perform the tests corresponding to

treatment effects for Factors A and B.
68

68: In the latter case, the hypotheses 𝐻𝐴
0

et 𝐻𝐵
0

can easily be interpreted; when the

interaction is statistically significant, the

interpretation of the treatment effect may

be more challenging.

Example In the plant growth example, we have 𝐹𝐴𝐵 = 3.58, 𝐹𝐴 = 29.16,

and 𝐹𝐵 = 7.96. At significance level 𝛼 = 0.05, we find:

qf(0.05, df1=(a-1)*(b-1), df2=N-a*b, lower.tail=FALSE)

qf(0.05, df1=a-1, df2=N-a*b, lower.tail=FALSE)

qf(0.05, df1=b-1, df2=N-a*b, lower.tail=FALSE)

[1] 2.727765

[1] 3.354131

[1] 3.354131

Since 3.58 > 𝐹0.05,4,27 = 2.73, we reject 𝐻𝐴𝐵
0

and conclude that the

interaction is significant at 𝛼 = 0.05. Also, since 7.96 > 𝐹0.05,2,27 = 3.35

and since 29.16 > 𝐹0.05,2,27 = 3.35, we reject both 𝐻𝐴
0

and 𝐻𝐵
0

, but it is

not as obvious what the means for the data. □

11.6.2 Model Validation

The three basic model assumptions are still that the errors are indepen-
dent, normally distributed, and have constant variance. As we have

done before, we would use the residuals in lieu of the errors to validate

these assumptions.

In the two-way balanced factorial design, the predicted values are given

by

�̂�𝑖 , 𝑗 ,𝑘 = �̂� + �̂�𝑖 + �̂� 𝑗 + (𝜏𝛽)𝑖 , 𝑗 = 𝑦 𝑖 , 𝑗 ,•;

the model residuals are thus given by

𝑒𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − �̂�𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•.
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11.6.3 Model Without Interaction

In the absence of interaction, the model simplifies to

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛.

In that case, the estimators of the model parameters are given by

�̂� = 𝑦•,•,•

�̂�𝑖 = 𝑦 𝑖 ,•,• − 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎

�̂� 𝑗 = 𝑦•, 𝑗 ,• − 𝑦•,•,• , 𝑗 = 1, . . . , 𝑏,

and the decomposition of the total sum of squares is

SST = SSA + SSB + SSE

𝑁 − 1 = (𝑎 − 1) + (𝑏 − 1) + [(𝑎 − 1)(𝑏 − 1) + 𝑎𝑏(𝑛 − 1)]
= (𝑎 − 1) + (𝑏 − 1) + (𝑁 − 𝑎 − 𝑏 + 1).

The treatment sums of squares SSA and SSB are identical to those in the

ANOVA model with interaction. The simpler formulas collapse to:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦2

𝑖 , 𝑗 ,𝑘
−
𝑦2

•,•,•
𝑁

; SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•,•
𝑏𝑛

−
𝑦2

•,•,•
𝑁

;

SSB =

𝑏∑
𝑗=1

𝑦2

•, 𝑗 ,•
𝑎𝑛

−
𝑦2

•,•,•
𝑁

; SSE = SST − SSA − SSB.

The corresponding ANOVA table is given below:

Source SS df MS F

Treatment A SSA 𝑎 − 1 MSA 𝐹𝐴 = MSA/MSE

Treatment B SSB 𝑏 − 1 MSB 𝐹𝐵 = MSB/MSE

Error SSE 𝑁 − 𝑎 − 𝑏 + 1 MSE

Total SST 𝑁 − 1

Table 11.29: ANOVA table for equality of

factorial effects, with no interaction effects,

in a two-way design.

We test for the null hypotheses

𝐻𝐴
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖′ , 𝑗 and 𝐻𝐵
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖 , 𝑗′

using the test statistics

𝐹𝐴 =
MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎−𝑏+1(𝛿2

𝐴), 𝛿2

𝐴 =
𝑏𝑛

𝜎2

𝑎∑
𝑖=1

𝜏2

𝑖 ,

𝐹𝐵 =
MSB

MSE

∼ 𝐹𝑏−1,𝑁−𝑎−𝑏+1(𝛿2

𝐵), 𝛿2

𝐵 =
𝑎𝑛

𝜎2

𝑏∑
𝑗=1

𝛽2

𝑗 .

The analysis of the residuals is based on the following residuals

𝑒𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − �̂�𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − (�̂� + �̂�𝑖 + �̂� 𝑗) = 𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•.

The rest of the analysis proceeds as before.
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11.6.4 Multiple Comparisons

As in previous sections, we may want to perform multiple comparisons.

More often than not, we are interested in constructing simultaneous
confidence intervals that compare the effects for each factor.

Throughout, recall that we estimate 𝜎2
by

𝑠2 = MSE =
SSE

𝑁 − 𝑎𝑏 =
SSE

𝑎𝑏(𝑛 − 1) .

Suppose that we are interested in all possible pairwise comparisons for

treatment A; in that case, there are 𝐾 =
(𝑎
2

)
= 𝑎(𝑎 − 1)/2 possible pairs to

test. For treatment B, there are 𝐿 = 𝑏(𝑏 − 1)/2 possible pairs to test.

We could use the Bonferroni procedure to do so; the simultaneous

confidence intervals corresponding to Factor 𝐴 take the form

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑡𝛼/(2𝐾),𝑁−𝑎𝑏
√

MSE

√
2

𝑏𝑛
,

and those for Factor 𝐵, the form

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ± 𝑡𝛼/(2𝐿),𝑁−𝑎𝑏
√

MSE

√
2

𝑎𝑛
.

If instead we use Tukey’s method, the simultaneous confidence intervals

corresponding to Factor A are given by

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑞𝛼;𝑎,𝑁−𝑎𝑏
√

MSE

√
1

𝑏𝑛
,

and those for Factor 𝐵, by

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ± 𝑞𝛼;𝑏,𝑁−𝑎𝑏
√

MSE

√
1

𝑎𝑛
.

For Scheffé’s approach, the simultaneous confidence intervals corre-

sponding to Factor A are

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ±
√
(𝑎 − 1)𝐹𝛼;𝑎−1,𝑁−𝑎𝑏

1/2√
MSE

√
2

𝑏𝑛
,

and those for Factor B,

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ±
√
(𝑏 − 1)𝐹𝛼;𝑏−1,𝑁−𝑎𝑏

1/2√
MSE

√
2

𝑎𝑛
.

For the two-way balanced factorial model without interaction, the

simultaneous confidence intervals are similar, except that the number of

degrees of freedom in the residual sum of squares SSE is now𝑁−𝑎−𝑏+1.

In that case, the estimator of 𝜎2
is

𝑠2 = ˜
MSE =

SSE

𝑁 − 𝑎 − 𝑏 + 1

.

For instance, the simultaneous confidence intervals for Factor A obtained
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using Tukey’s method are given by

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑞𝛼;𝑎,𝑁−𝑎−𝑏+1

√
˜

MSE

√
1

𝑏𝑛
,

whereas the simultaneous confidence intervals for Factor B obtained via
Scheffé’s approach, say, are given by

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ±
√
(𝑏 − 1)𝐹𝛼;𝑏−1,𝑁−𝑎−𝑏+1

√
˜

MSE

√
2

𝑎𝑛
.

11.6.5 Factorial Designs with Multiple Factors

The two-way factorial design can be naturally extended to multiple
factors. For instance, the three-way factorial design 𝑎 × 𝑏 × 𝑐 is:

𝑦𝑖 , 𝑗 ,𝑘,𝑙 = 𝜇𝑖 , 𝑗 ,𝑘+𝜀𝑖 , 𝑗 ,𝑘,𝑙 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑐; 𝑙 = 1, . . . , 𝑛

where

𝜇𝑖 , 𝑗 ,𝑘 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝛾𝑘 + (𝜏𝛽)𝑖 , 𝑗 + (𝜏𝛾)𝑖 ,𝑘 + (𝛽𝛾)𝑗 ,𝑘 + (𝜏𝛽𝛾)𝑖 , 𝑗 ,𝑘 .

With three factors, we can explore second-order interactions 𝐴𝐵, 𝐴𝐶,

and 𝐵𝐶, or the third-order interaction 𝐴𝐵𝐶. Such designs are out of

scope for these course notes,
69

more details are available in [2, 5]. 69: The ANOVA table for the 𝑎 × 𝑏 × 𝑐

design has 9 rows, but is otherwise what

one would expect to see.

11.7 Exercises

1. Conduct an analysis of the paint example of Section 11.2.1 assuming

that the samples are independent (unpaired test). Compare with

the results of the paired test on the same data.

2. Recreate the analysis of the apparatus example of Section 11.2.4

using R. What if the sample sizes were 𝑛1 = 25 and 𝑛2 = 30, instead?

3. Show directly that the decomposition SST = SSA+ SSE of one-way

classification holds.

4. In a one-way classification model with 𝑎 = 2, show that the power

of the 𝐹−test is maximized when
1

𝑛 + 1

𝑁−𝑛 is minimized.

5. Use the least square estimation principles to establish the normal

equations, and estimate the parameters in the unbalanced one-way

classification model. What are the estimated treatment effects and

the estimated difference between treatments in that case? What

about their confidence intervals?

6. Compute the ANOVA table for the completely randomized unbal-

anced design in the Kenton Food Company example.

7. In the one-way random-effects ANOVA model, show that E(MSE) =
𝜎2

and E(MSA) = 𝜎2 + 𝑛𝜎2

𝑇
.

8. In the one-way random-effects ANOVA model, show that

(𝑎 − 1)MSA

𝜎2 + 𝑛𝜎2

𝑇

∼ 𝜒2

𝑎−1
.
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9. In a two-factor RCBD, show that

E(MSA) = 𝜎2 + 𝑏

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ,

E(MSB) = 𝜎2 + 𝑎

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 .

10. Verify if the RCBD model assumptions are met for the credit card

example.

11. Show directly that the total sum of squares in a balanced two-way

factorial design breaks down as

SST = SSA + SSB + SSAB + SSE.

12. In the two-way balanced factorial design, show that

E(MSA) = 𝜎2 + 𝑏𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ;

E(MSB) = 𝜎2 + 𝑎𝑛

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ;

E(MSAB) = 𝜎2 + 𝑛

(𝑎 − 1)(𝑏 − 1)
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ;

E(MSE) = 𝜎2.

13. In the medical agent example (two-way factorial design), is the

interaction effect significant at 𝛼 = 0.05? What about the dosage

effect? The application period effect?

14. Produce simultaneous confidence intervals at family significance

𝛼 for treatment effects (Factors A and B) in the medical agent and

plant growth examples.
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