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by Jen Schellinck and Patrick Boily

Modeling plays a central role in a wide range of quantitative endeavours.

To thrive as a successful quantitative analyst and consultant, it is crucial to

grasp the various types of modeling and models, grasp their similarities

and distinctions, and identify suitable applications.

However, due to its pervasive presence across the quantitative spectrum,

the significance of modeling is often underestimated and taken for

granted, in part because it serves as the foundation of, and is integrated

into, numerous techniques.

In reality, quantitative analysts and consultants are inherently modelers.

As such, possessing a solid overall understanding of modeling ( beyond

mastering specific techniques) and being able to construct models in a

broader sense greatly enhances various quantitative undertakings.

12.1 Introduction

Analogical reasoning is the act of reasoning from one specific occurrence

to another specific occurrence, on the basis of similarity. For example,

[HAND:FINGERS, FOOT:—].

A major benefit of this type of reasoning is that it can reveal new aspects or

relationships between objects that have not previously been considered.

Clearly, the choice of objects used in an analogy is important:

[HAND:FINGERS, ORANGE:—]

likely yields little useful insight, but

[HAND:FINGERS, PLANT STEM:—]

might be more interesting (see Figure 12.1).

Analogical reasoning is viewed by some as a primary cognitive strategy,

underlying much of human cognition [7, 6, 4].

Keeping this context in mind, a model is simply an independent entity,

or structure, that has useful similarities to another structure of interest,

and which allows for analogical reasoning. This structure of interest is

referred to as the target of the model.

We can carry out inductive or deductive reasoning on the model and

then, via analogical reasoning, transfer our insights about the model over

to the target, and in this way learn something about the target. The target
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Figure 12.1: Can we draw an analogy be-

tween the top row of shapes and the bot-

tom row of images? What should the shape

and colour of the last image in the bottom

row be?

?

structure might be a single object or a system of objects, or a process

being carried out by this system of objects.

Our ability to create a model with useful similarities to the target system,

and then learn about our chosen target system using this model, can be

extremely powerful.

For instance, we can make a very small model of something that is, in

reality, very large or very distant – for example, a small scale model of

the solar system, made out of wire and styrofoam – and use this small

simple model to come up with accurate predictions about this large and

distant system.

The solar system model example also showcases the importance of

understanding which parts of the model are usefully similar to the
target system in the context of our intended use of the model. If we try

to use our simple solar system model to draw conclusions relating to the

relative densities of planets in the solar system, we will be disappointed.

Although there are many different types of models, which we will

further discussed later, in general we can say that models have two main

functions: explanation and prediction.

In some cases, we might have a system whose behaviour we do not

fully understand and cannot explain. Models can help us increase

our understanding of the mechanisms underlying the behaviours

or properties of interest.

In other cases, regardless of how a type of system is generating

a particular behaviour, or came to have a certain property, our

interest is not in understanding how this came to be, but rather in

predicting the presence (or absence) of that behaviour or property

in another system of the same type.

Modelers often try to create taxonomies or categorisations of models.

These efforts have arguably not been that successful from a conceptually

rigorous point of view but, pragmatically, it is still useful to consider the

types of models that people commonly use and discuss (see [16] for a

useful review and discussion of a variety model and simulation types).

It has been our experienced that clients and stakeholders usually take

a dim view of simulations, as though they are somehow less ‘valid’ or
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‘real‘ than other quantitative approaches.
1

This is worth remembering 1: The reasons for this are varied, and

perhaps not entirely unfounded as simula-

tions can easily be used in the wrong way

or with the wrong endgame in mind.

when producing simulation solutions.

12.1.1 Static Models

At the heart of simulations lies the concept of a model. Models serve as

essential tools in understanding systems, employing various strategies.

Ultimately, their purpose is to enhance the modeler’s comprehension of

a system, using the term "system" in an axiomatic sense.

Conceptual Models

A conceptual model is an abstraction of a real world system or process

that defines which elements of the system or process are of interest in the

current context, and how these elements and their relationships will be

defined for the purposes of drawing conclusions about the behaviours

or properties of the system.

Arguably, before any other type of model can be generated, a conceptual

model must first be created, either implicitly or explicitly.

Explicit conceptual models may take the form of diagrams or formalized

descriptions of the system. Conceptual models may then be implemented

as other types of models (e.g. mathematical, simulation).

Implicit conceptual models are often linked with gaps in the under-

standing of a system – assumptions that go unchallenged and unstated

are often less clear and obvious than is originally believed. An engineer

may, for instance, state to a consultant that the probability of a certain

component failing by time 𝑡 is 0 without feeling the need to specify that,

in the jargon of the discipline, this really means that

𝑃(failure by time 𝑡 > 𝑇) = 𝜀 > 0,

for a “sufficiently large” 𝑇 and a “sufficiently small” 𝜀; the consultant,

not knowing the conventions of the field, might mistake this for

𝑃(failure by time 𝑡) = 0 for all 𝑡;

if not cleared up, the misunderstanding can propagate through the

simulation, potentially making it useless in practice.

Mathematical Models

A mathematical model uses mathematics to support reasoning about

a real world system. Relationships between objects in the system,
2

are 2: Or their properties.

represented by mathematical relationships between variables.

If the relationships within the mathematical model are sufficiently similar
to relationships between objects in the system of interest, then carrying

out truth-preserving mathematical manipulations on the model should

result in valid new conclusions about the system.
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Arguments represented by symbolic logic also fall under this category.

As a result, it could readily be said that all models implemented on

computers are a type of mathematical model. That being said, the

expression ‘mathematical model’ typically refers to models that are not

necessarily implemented on computers, and which consist of systems of

mathematical equations.

Although mathematical models may represent processes and dynamic

elements of systems by including time and space as variables, the models

themselves are static, in the sense that they do not change over time in

a manner that is similar to the ways in which the target system itself

changes over time.

Mathematical models may still be implemented on computers and

methods for solving the systems of equations in these models (e.g.

symbolic manipulations, numerical analysis) may be carried out using

computer algorithms.

Nevertheless, it is important to remember that although both the work

performed on a computer and simulations take place within a computa-

tional environment, finding solutions to equations through programmatic

strategies should not be conflated with the conventional understand-

ing of “simulations”. We will elaborate on this topic in the subsequent

discussion.

Statistical Models

Conceptually, statistics help us represent the world in terms of popula-
tions and processes, which have certain properties that can be themselves

be represented using mathematical expressions. Statistical models could

thus be described as mathematical models motivated by a certain (statis-

tical) conceptualisation of real world processes.

To-Scale Physical Models

A to-scale physical model is a model that is constructed from physical
materials, which are shaped and positioned in such a way as to accurately

represent the physical layout, positions, and sizes of elements of the

target system, as well as relative to each other (see Figure 12.2 for an

example of an architectural model).

Data Models

A data model is a conceptual model used to design the structure of data

storage. Since data itself represents facts about a system, it is appropriate

to first conceptually model the properties and relationships that exist

within the system, and which are represented by the data, and then use

this conceptual model to create a data storage structure that can be used

to efficiently hold, extract, edit and add to the stored data (see Figure 12.3

for an example).
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Figure 12.2: To-scale architectural model

of the interior of an office building [5].
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Figure 12.3: A preliminary data model of a restaurant reservation system, which can be used to help design an efficient data storage

structure, as well as develop data analysis strategies.
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12.1.2 Dynamic Models

In some situations, only the static aspects of a system are interesting, or

the system itself is mostly static.

For instance, if we build a physical model of a house, we expect both the

house and the model to be relatively unchanging – the measurements of

the rooms and the furniture in the house will not change from minute to

minute,
3

and the model will not need to change either.3: Although they could change over years

due to remodeling, or even drastically if

the house is sold to new owners with a

different sense of aesthetics.

We can then use the model to reason about the house:

if the model couch fits against this wall in the model house, we can

reason that the real couch will fit in the real house;

if eight model chairs cannot simultaneously be placed around the

model kitchen table, than eight real chairs cannot be simultaneously

be placed around the real kitchen table, etc.

Other systems, however, are more active, or dynamic, with processes

taking place within the system. When modeling these dynamic system

elements, we often talk about simulation models or simply simulations.

Although the term ‘simulation’ is not precisely defined, it typically

indicates that a model is intended to reflect the behaviour of the target
system – its processes – over time, and also that the model itself will
independently change over time, when it is run.

The goal is to construct the simulation in such a way that it will change

over time in ways that are similar to the manner in which the system

itself changes over time. As a result we can use the simulation to predict

past, current, and future behaviours of the system.

Historically, simulations have often modeled individual object-level
properties and behaviours, as well as the mechanisms underlying rele-

vant behaviours, rather than group-level properties or system outputs,

but this does not have to be the case.

Modeling Time and Movement

How do we incorporate time and movement into a model? To return to

our styrofoam and wires model of the solar system, if we set it up so that

when we turn a crank the planets and moons move realistically around a

light bulb in the centre of the model (representing the sun), then we have

a dynamic model, or simulation of the solar system. We can simulate

what will happen within the actual solar system over time.

As another example, if we wish to know how emergency responders

might behave in different plane crash scenarios, we could set up a number

of simulated crash scenarios, with a life-size model of a crashed plane,

and actors behaving as injured people might. We can then have the

emergency responders try out (i.e., simulate) different approaches and

strategies to dealing with plane crashes.

The advent of computers greatly facilitated the construction and possible

uses of simulations, because it made it possible to simulate dynamic

systems virtually instead of having to create a dynamic physical model

of the system, whose elements could be represented as data structures

(and variables within these structures) within computer programs. The
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physical interactions between these system elements could then, in turn,

be represented by logical rules and mathematical equations operating

over these data structures.

These logical rules and mathematical equations pushed computer simula-

tions closer to the domain of mathematical models, relative to physically

constructed models. At the same time, computer simulations retained the

strategy used by these physical models of determining what would hap-

pen to the system by moving the model through its expected behaviours

step-by-step, over time.

Rather than mechanically moving the model (or using people and

other elements in this capacity) computer models rely on the computer

processor to run the program that represents the system, and essentially

‘move’ (in an electronic sense) the model based on the behaviours the

model implements. As discussed earlier, this is a different technique than

the one used by mathematical models implemented on computers.

12.1.3 Uses, Data, and Contrast with Mathematical Modeling

Simulations are typically used to

better understand actual real-world phenomena and systems, and

explore phenomena that don’t currently exist but which could exist

hypothetically.

Simulations can allow us to both predict what our target system will do

under particular circumstances, but also explain why a system behaves

the way it does. However, given that we build simulations using only

what is already known (or possibly suspected) to be either currently the

case about the system, or at least plausible within the conceptual phase

space in which the system resides, you may wonder how a simulation

could possibly tell us anything new about the system, and thus, why we

would ever bother running simulations.

Human thinking is typically unable to capture all the possible interactions

between a system’s various parts, and how these parts influence each other

in particular circumstances; merely thinking through the behaviours

of a system which is even slightly complicated is likely lead us to miss

implications, and, as a result, incorrectly predict or explain the system’s

behaviour. If, instead, we introduce what we do know into the simulation

and allow it to behave based on these rules, behaviours that we would

not easily have anticipated can emerge from the process.

Consequently, the notion of emergence is crucial in simulations. We can

say that simulation behaviours emerge when they are not programmed

in the simulation directly, but rather occur as the result of interactions

between model components that are themselves programmed into the

simulation directly.

The emergent behaviours may occur at different levels of granularity
of the system. For example, if we create a simulation of people in a

city, we might see emergent behaviour with respect to which people

most frequently interact with which other people, and we might also see

emergent behaviour at the population level, where the average number

of people in a given location is equal to a particular value over time.
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We can see from this example how emergence allows us both to predict

and to explain elements of a system that were not previously amenable

to such efforts. We can predict average numbers of people in a particular

location, if this information is not available from another source; if it is,

we can still use the simulation to explain the origins and underpinnings

of this number, by referring to the more granular system components

whose interactions lead to the value.

‘Emergence’ is a concept that has crossed-over into a large number of

areas of human endeavour. Don’t be surprised to hear clients and end

users talk about “emergent phenomena” in contexts where you would

not normally expect to hear it.
4

Be sure to clarify the situation at an4: It is quite conceivable that they have

a very thorough understanding of what

emergence means and what it entails –

don’t make the classic quantitative con-

sulting mistake of assuming that clients

do not understand technical concepts ...

you never know what their background

and interests are – but, together with terms

like ‘synergy’ or ‘big data’, it seems to have

entered the business lexicon as a trendy

but ultimately meaningless term.

early stage (in the proposal, say) in order to avoid the confusion and

headaches that can result when deliverables are handed off.

Simulations and Data

All modeling activities rely on the modeler having accurate and relevant
information or data about the target system, which allows for the con-

struction of a model with useful similarities to the target system, which

is basically a data collection/information gathering problem. But even

then, simulations have a particular relationship with data:

first and foremost, data is needed in order to properly set simulation

parameters – the initial simulation settings that determine how

the simulation will run in a particular instance; in the absence of

this type of information, although the simulation may generate

outputs that could, in principle, have some relevance to the target

system in some circumstances, the simulation behaviour is unlikely

(or at least, should not be expected) to overlap with target system

behaviours of interest within the specific context in which the

simulation was generated;

secondly, simulations have the capacity to generate large amounts

of data about the behaviour of the simulation, and by extension,

the target system. This data, sometimes referred to as ‘synthetic

data’ or ‘simulated data’, can be uses as a stand-in for actual data

about the system, just as the model is being used as a stand-in for

the target system.

When very little is know about reasonable parameters values, a prelimi-

nary simulation might first be required in order to produce data which

could then be used to set simulation parameters, which, in turn, could

be used to produce data for analysis.

It is not too difficult to conceive of multiple links being added to this

chain; our advice is to keep the number of such links to a minimum

(preferably zero) – in light of the point made in the first item above, it

might be preferable to garner information about parameters from first
principles (or other models).

Simulations vs. Mathematical Models

The procedural element of computer models, whereby the behaviour

of the target system must be, in a sense, mechanically replicated by the
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data structures and procedures of the computer program, distinguishes

computer simulations from mathematical models, which, rather than

modeling the temporal, dynamic components of systems by incorporating

a temporal, dynamic component directly into the model, instead represent

them as variables in mathematical equations that represent components

and behaviours of the system.

On this front, the advantage of mathematical models is that deductive
reasoning (or first principles reasoning) can, in theory, be used to deter-

mine the target system behaviour, rather than have to resort to ‘running’

the model over a range of starting conditions. This is appealing, as math-

ematical strategies can allow for more definitive and general statements

about the system (e.g. “The system will never do the following”; “The

system will always do the following”, etc.); these types of statements are

typically outside the reach of even the most advanced mechanical or pro-

grammatic simulations. In practice, however, the underlying complexity

of such models limit the usefulness of this approach in most scenarios.

Example Consider, for instance, the 𝑛−body problem (𝑛BP) of classical

mechanics, which consists in predicting the individual trajectories of 𝑛

celestial bodies bound by gravitational attraction.

Using Newtonian mechanics, the trajectories can be deduced to follow

the paths described by the following system of differential equations:

𝑚1

d
2q1

d𝑡2
=

∑
𝑗≠1

𝐺𝑚1𝑚 𝑗(q𝑗 − q1)
∥q𝑗 − q1∥3

, · · · , 𝑚𝑛
d

2q𝑛
d𝑡2

=
∑
𝑗≠𝑛

𝐺𝑚𝑛𝑚 𝑗(q𝑗 − q𝑛)
∥q𝑗 − q𝑛 ∥3

,

where 𝑚𝑖 and q𝑖(𝑡) are, respectively, the mass and the trajectory of the 𝑖th

celestial body in 3-space, and 𝐺 is Newton’s constant. These equations

describe, in principle, the behaviour of stars in a globular cluster, say, or

of the Earth-Sun or the Earth-Moon system.

They cannot provide a complete description as the range of gravitational

attraction is infinite – every ‘object’ in the Universe influences every ‘other’

object to some extent, no matter how distant,
5

and other forces/factors 5: At large distances, the force due to grav-

ity overwhelms the other 3 forces, how-

ever.

may also act on the bodies,
6

but for most practical applications,
7

they

6: See the precession of Mercury, for in-

stance.

7: If one can consider astronomy a practi-

cal discipline.

are more than sufficient as long as we are willing to ignore relativistic

effects.

What do the solutions look like? A typical mathematical approach would

be to try to solve the 2BP, and to see if the solution can be generalized to

more complex cases.

The two-body problem has an exact solution. The centre of mass of the

two bodies is the vector

x(𝑡) = 𝑚1q1(𝑡) + 𝑚2q2(𝑡)
𝑚1 + 𝑚2

.

In the ‘centre-of-mass frame’,
8

physical conservation laws show that 8: That is, in the frame that moves along

with the centre of mass.
the trajectories of the two bodies are co-planar and ‘orbit’ the system’s

barycentre, with an angle 𝜃𝑖(𝑡) depending on the reduced mass of the

system 𝑚∗ =
𝑚1𝑚2

𝑚1+𝑚2

and on the effective potential𝑈(𝑟(𝑡), ℓ , 𝑚∗), where

𝑟(𝑡) = ∥q2 − q1∥ and ℓ is the system’s angular momentum.
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Figure 12.4: Possible solutions of the 𝑛−body problem, based on [14]: planetary 3BD (left), 4BP pairs of bodies orbiting each other (middle),

3−body choreography (right).

Various combinations of parameters lead to various orbits; if the effective

potential admits a local minimum, for instance, the orbits will oscillate

around the barycentre;
9

if the effective potential does not admit a9: Elliptic or precessing elliptic paths, in

each Sun-planet system.
minimum, then the orbits may escape to infinity.

10

10: Hyperbolic or parabolic paths, such as

in some Sun-comet systems.
Under some restrictions on the masses and momenta of the bodies,

the 𝑛BP can be shown to have closed-form solutions or theoretically

understood approximate solutions (see [8] for a list, and Figure 12.4 for

some illustrations), including:

Euler’s Problem of Two-Fixed Centres allows for colinear motion

in systems where two of the three masses are comparable and fixed;

the restricted 3BP shows the existence of 5 fixed configurations

(involving the Lagrangian points) which rotate around the system’s

barycentre in cases where one of the masses is negligible, such as

is the case in the Sun-Jupiter-Trojans systems (there are two);

the planetary 𝑛BP admits quasi-periodic solutions in systems

where one of the masses is significantly larger than the other 𝑛 − 1

masses, which shows that planets in stable, planar, and nearly

circular orbits around a star can transition to chaotic orbits, but that

these orbits would be bounded by quasiperiodic tori and so would

preserve some regularity, and

𝑛−body choreography in which all the masses move on the same

manifold, without collisions.

The general 𝑛−body problem can be solved analytically using Taylor

Series (known as Sundman’s series), but the series converge so slowly as

to be of no practical use for astronomical results.
11

11: Which would require at least 10
8000000

terms in the 3BP case, well beyond even

what modern computers can produce [1]. By contrast, in order to draw conclusions from a simulation we must first

set certain initial conditions and then run the simulation and examine

the resulting output. Each simulation run represents only one specific

instance in the model space. As a result, it can be difficult, if not downright

impossible, to draw general conclusions from the results of one or even

multiple simulation runs.
12

12: To say nothing of exploring the out-

come of using different parameter values.

This has lead to criticism over the use of simulations in some milieus, on

the basis that simulations should never be used if mathematical models

can be used instead.



12.1 Introduction 813

However, the 𝑛BP illustrates why taking this hard-line position may

be inadvisable; clearly, there are circumstances in which it is difficult

to create solvable (actionable) mathematical models that represents the

target system in ways sufficiently similar to the system in relevant respects

in order to for salient and accurate conclusions to be drawn about that

system, in which case a simulation might provide greater insight.

It is also possible to create hybrids of mathematical and simulation

models to allow for increased insight into system behaviours.

If 𝑛 is relatively small, the 𝑛BP trajectories can be approximated to a high-

level of accuracy by using numerical methods to solve the corresponding

system of differential equations.
13

For astronomical bodies that avoid 13: See [11] for an example of planetary

system formation).
collisions (or near encounters), there are two main technical issues:

the first one is that the 𝑛BP problem is chaotic for 𝑛 > 2,
14

so 14: A whimsical take on the effects of such

unpredictable behaviour is offered in Liu

Cixin’s The Three-Body Problem [3].

that small errors such as can be generated by truncating initial

conditions or intermediate calculations may lead to simulated

solutions that are wildly divergent from the true paths;

astronomical simulations typically run over million of years, leading

to an accumulation of integration errors; this is problematic as

the approximate solutions are only mathematical objects, whereas

the actual bodies they represent have to satisfy physical laws

(including the various conservation laws); this can be tackled by

using analytical methods such as the variational principle and

perturbation theory to produce trajectory manifolds on which to

‘project’ the integrated approximations.

For many bodies, the time complexity is related to the square of the

number of bodies, which can make the direct simulation unpractical.

In that case, useful simulations must approximate the essential character

of the actual trajectories while reducing the computational complexity.

There are many dedicated methods to achieve this goal, including so-

called tree code and particle mesh methods [8].

While these particular issues may not apply to general simulations, the

interplay of valid approximation and computational feasibility lies at the

core of successful simulations.

12.1.4 Simulation Types

We have already alluded to some simulation types; in this section we

provide more concrete descriptions of the available modeling avenues.

Full-Scale Physical Simulations

Full-scale physical simulations are life-sized, physically realistic simu-

lations, which make use of structures that already exist to replicate or

reproduce target system behaviours.

For example, to simulate boat rescue situations (and then practice re-

sponding under various scenarios), the Coast Guard might make use

of existing vessels and emergency personnel, and introduce actors play-

ing the part of accident victims, a wave machine to simulate possible

environmental conditions, etc.
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Figure 12.5: Harvard orrery [12], and Baltic Aviation Academy Airbus B737 Full Flight Simulator (FFS) in Vilnius (public domain).

Mechanical Simulations

A mechanical simulation is one that is physically implemented but

which is not necessarily full-scale, to-scale, or physically realistic in

some respects. It simulates dynamic behaviours using electro-mechanical

components. Mechanical simulations were popular prior to the advent

of computers.

The ‘orrery’, a classic type of clockwork model of the solar system, is a

typical example of a mechanical simulation (see Figure 12.5, left). Another

example would be a CPR dummy that can be used to practice proper

CPR technique, and which may have sensors to simulate certain heart

behaviours and then provide feedback regarding the effectiveness of the

applied CPR.

Computer (Programmatic) Simulations

Programmatic simulations represent the target system or process using

data structures and algorithms. The data structures are sets of variables

that represent the properties of system objects, and the algorithms deter-

mine how these properties change over time. When quantitative analysts

and consultants produce simulations, they are usually programmatic.

Event-Centric Computer Simulations: this type of computer simu-

lation models activity (and is dynamic in this sense), but the focus

is not accurate modeling of time. The goal, rather, is to represent

an event or sequence of events. For example, we might simulate

the selection, and result, of sampling a population, or simulate

possible outcomes of a series of events that themselves occur with

particular probabilities.

Discrete Time Computer Simulations: as suggested by the name,

discrete time simulations treat time as a discrete series of consecu-
tive steps, rather than continuously. A common example of this is

the agent-based model (or multi-agent simulation); in this type of

simulation, the time step may range from seconds to years, and the

goal of the simulation is to explore how individual agents interact

with each other over this time span.
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Continuous Time Computer Simulations: In contrast to discrete

time simulations, continuous time simulations treat time as a

continuous property. The challenge is that continuous time simula-

tions are generally implemented on a computer, and computers are

necessarily discrete. Thus, in practice, a continuous time simulation

is one where the discrete time steps are simply very small. Note

that this is not equivalent to implementing a continuous-time math-

ematical model on a computer and solving it using mathematical

methods implemented as algorithms.

Hybrid Models

It is also possible to create a model of a system where one part of the

model is of one type and another part is of another type. A realistic flight

simulator, for instance, might consist of a few full-scale physical compo-

nents such as the cockpit, seats, etc.,
15

while the experience of actually 15: Possibly using part of an actual plane.

flying the plane is simulated via computer, and perhaps integrated with

the physical part of the simulation by projecting a computer controlled

image onto the cockpit window (see Figure 12.5, right). The computer

simulation might also controls the physical behaviour of the motion of

the cockpit – its pitch, yaw, and roll, for example.

12.2 Modeling Strategies

Among practitioners, it sometimes said that modeling is as much an art

as it is a science. While there are no tested and true approaches that will

work no matter the situation under consideration, the following steps,

illustrated in Figures 12.6 to 12.11 with the simulation of a school of fish,

often end up having practical importance in the process:

1. gather information about the target system;

2. create a conceptual model;

3. build the model;

4. verify and validate, and

5. run and analyze.

12.2.1 Information Gathering

As domain experts or modeling specialists, it can be tempting to believe

that the understanding of the target system is so strong that that we

can forgo collecting and validating information about that system and

jump right into implementing a model of the system. However, modelers

tend to be experts in specific techniques rather than in the behaviour of

the target system, and vice-versa for the domain experts – teamwork is

usually required to properly construct the model.

In such a case, the modeler and domain expert must work together

closely to gather the information about the system that the domain expert

believes will be required to understand or predict the relevant behaviours

of the target system. The modeler must also keep in mind the types of

information required to create a comprehensive and consistent model
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Figure 12.6: A school of fish – an example

of a target system to simulate [15].

Figure 12.7: Gathering information: rel-

evant perceptual mechanics information

about a single fish, to be incorporated into

the model [13].
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measured on two D. rerio. The mean eye position was 0.20 cm from the tip of the nose and 0.18

cm up from the bottom of the head (ratio 1:1.84).

13º

Figure 17: A coronal scan of a 17mm D. rerio, used to measure D. rerio eye position and angle
(Bryson-Richardson et al, 2007).

Data on lateral line positions in D. rerio larvae (Whitfield et al, 1996; Van Trump and

McHenry 2007 ) indicate that D. rerio lateral line fields run along both sides of the fish from

the head behind the eye to the base of the tail, slightly above the midline of the fish. A visual

inspection of two adult D. rerio specimens placed these lines an average estimated 1.9mm from

the top of the fish and 3.5mm from the bottom of the fish (ratio 1:1.84) (see Figure 18).

4.3 Creating an IBSEM model of D. rerio aggregation

Figure 18: Estimated D. rerio lateral line position (white dots superimposed on photograph, with white
lines indicating body position, not including shadow), based on lateral line position in larvae (as reported
by Whitfield et al, 1996 and Van Trump and McHenry, 2008).

Turning to the model, this section will discuss the construction of the PCA D. rerio model

agents, with a focus on how the collected data were incorporated into the model. The D. rerio

of the system, given the proposed model type. Creating a conceptual
model (see below) will greatly assist with the process of determining

what information is necessary to properly represent the target system.

There is also an opportunity to validate the structure of the model at

this stage. Even when a domain expert is involved, ensuring that the

information being incorporated into the model comes from rigorous and
reliable sources, and documenting these sources early on, will enhance

the likelihood that the model will be valid, as well as increasing the
credibility of the model in the eyes of those using the model.

12.2.2 Conceptual Model

A conceptual model is a clearly defined description of those components,

properties, and relationships of the system that are believed to be

important, relative to the system behaviours or properties of interest (i.e.,

the modeling context). A conceptual model may be a:

verbal description of the system, structured in some way;
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information reception 

area

lateral line 

fields

visual field

vision

lateral line

species specific aggregate 

model

+

Figure 8: Combining the concept of the information area with what is known about animal perception
results in an experimentally validatable model of individual agents. This in turn allows modellers to
create species-specific aggregate models . Perceptual field details are discussed in Section 3.3.2.(Anchovy
drawing in figure from (Pearson Scott Foresman, n.d.)

Figure 12.8: Creating a conceptual model:

a conceptual model showing how ele-

ments of the target system – the fish in

a fish school – will be represented in the

model of the fish school [13].

collection of diagrams depicting elements of the system and their

relationships, or

combination of both.

The conceptual model can be thought of as the blueprint that will be

followed during construction of the model.

At this stage, the modeler will also often discover that it is necessary to

concretely define the more abstract or less well-defined elements of the

target system, in preparation for implementing the model. During the

construction of the conceptual model, it may be determined that there

are gaps in the understanding of the system itself, which prevent the

construction of a complete model of the system.

If this occurs, it may be necessary to return to gathering information
about the target system itself. If the required information is not readily

available it is important at this step to indicate which parts of the model

are based on reliable knowledge about the system and which parts are

speculative.

This step can be challenging from an interdisciplinary perspective because,

as we have already mentioned, it requires the modeler and the domain

expert to work together to create the conceptual model. This requires,

in a sense, the domain expert to enter the modeler’s world, just as the

modeler must enter into the world of the domain expert.

This can be difficult to achieve, for a variety of reasons, and as a result

it can be tempting to skip this step outright – to leave the conceptual

model in an implicit stage rather than in an explicit stage – and to jump

straight into building the model.
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Figure 12.9: Creating a conceptual model:

determining how specific relevant physi-

cal characteristics of individual fish will

be represented and incorporated into the

model [13].
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ø=0.5cm
ø=0.75cm

h=0.56cm

l=2.6cm

d=0.45cm

l=2.5cm

Figure 19: Agent shape, compared with D. rerio shape. The agent is composed of two 0.75 diameter (ø)
spheres, two 0.5 cm diameter spheres and one small sphere that indicates orientation (drawing not to
scale).

(agent-centered) coordinates, the vertices of the cones were located at (0,0,0.25) and (0,0,-0.25)

respectively (the cones extended outwards on either side of the ’head sphere’ of the agent). In

the absence of specific data concerning D. rerio visual acuity, the length of the visual fields of

model agents was set to 40 cm. Since it was assumed that the visual field of the actual fish

would not extend usefully through the glass of the tank, and since the tank was 50⇥ 45⇥ 89

cm, this was considered to be a conservative approximation of the visual field extent for the

fish being modelled. Lateral line fields were set at three points on both sides of the zebra fish

agent, from tail to head, for a total of 6 fields (see Figure 20). The vertex of each field was

placed at the centre of its respective body sphere. It was hypothesised that lateral lines, because

they respond to water flow (Van Trump and McHenry, 2008), operate most effectively from an

information processing perspective at relatively short distances. Therefore the lateral line fields

were set to extend 5 cm outwards from the body of the agent.

In the absence of data on the perceptual resolution of D. rerio vision and the lateral line,

some assumptions were made about the data that these perceptions could supply to the agents.

It was assumed that D. rerio vision was accurate enough to return information about the position

However, unless the modeler is also a domain expert and the system

itself is relatively simple, this can lead to models that do not perform

satisfactorily in the final analysis.

12.2.3 Building the Model

Once the conceptual model is in place, a model type (e.g., mathematical,

simulation) can be selected in order to build the model itself, using the

conceptual model as a blueprint. Target system objects, properties, and

relationships are translated into model structures.

12.2.4 Verification and Validation

Verifying the model means going over the model in order to confirm that

it has been constructed as intended, given the conceptual blueprint that

has been developed.

Validation refers to a process of confirming that the constructed model

is in fact a good match for the target system. Thus, a model could be

verified as having been constructed as intended, but the model might

still be invalid if, for example, the modeler was misinformed about the

actual workings of the target system.

A thoughtful discussion of model validation, in the context of building

population-based disease simulation models, can be found in [9].

12.2.5 Analysis of Results

Once the model has been verified and validated, it may then be analysed

in order to draw conclusions about the target system.
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TIMESTEP(O,�,�, N)

1 for each agent in �
2 do L0  ATTENTION(O)
3 I  COGNITIVE-PROCESSING(L0)
4 ACTION(I)
5 for each agent in �¬ perception deprived agents
6 do L0  ()
7 I  COGNITIVE-PROCESSING(L0)
8 ACTION(I)

ATTENTION(O)

1 L0  MERGE-LISTS(O)
2 L0  PICK-NEIGHBOURS(N , L0)
3 ¬ the appropriate PICK-NEIGHBOURS procedure (below) is called for each scenario
4 return L0

PICK-NEIGHBOURS-RANDOM(N , L0)
1 return RANDOM(N , L0)

PICK-NEIGHBOURS-NEAREST(N , L0)
1 return NEAREST(N , L0)

Algorithm 3: Agent behaviour during one timestep of the minimum information models. Cognitive
processing and action algorithms are the same as in the Chapter 4 D. rerio model, Algorithm 2.

time step received no information.

Parameter combinations Within the context of these four main scenarios a number of addi-

tional parameter combinations were used to explore behaviour across the parameter space of the

scenarios. Specifically, two values for maximum speed, maximum turning angle and preferred

space were chosen and two different starting configurations were chosen, one where all agents

started with a random position within one unit radius of the origin, and one where all agents

started with a random position within a 40 unit radius of the origin (see Table 10). This resulted

in a total of of 80 parameter combinations for each of the first two scenarios.

Model runs and aggregate measures Model runs of 100 timesteps each were run for each

parameter combination, with 10 model runs per parameter combination. At each timestep,

Figure 12.10: Building the model: pseudo-code describing how the simulation of the fish school is created [13].

Figure 12.11: Building the model: the re-

sulting simulation of the fish school. The

schooling behaviour is an emergent prop-

erty of the simulation, coming out of pro-

grammed individual simulated-fish be-

haviours [13].

In the case of simulations, model parameters have to be selected, and

‘runs’ of the model carried out for each set of parameters.
16

16: By ‘run’ we mean that the model is

given certain initial starting conditions
and then the behaviour of the simulation

allowed to proceed and produce various

outputs of interest.

If the model has stochastic components, it may be necessary to carry

out multiple runs using the same parameter settings in order to produce
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posterior distributions for the outputs. Once the simulation has been run

with all of the relevant parameter settings, the resulting output of the

simulation can be analysed.

At this point, the analysis may follow a vast number of methods: trend
extraction and forecasting, classification, data visualization, etc.

12.3 Practical Considerations

As with most applied disciplines, the implementation and applications

are fraught with unsuspected challenges. While it remains important

to have a good handle on the conceptual foundations of the field, the

best way to become a competent practitioner is to continuously attempt

to conduct simulations, and to learn from the inevitable mistakes made

along the way.

12.3.1 Computational Complexity

Because simulations are computer programs, it remains crucial to be

aware of the broader issue of computational complexity when construct-

ing simulations. The computational complexity of an algorithm is based

on the number of possible steps in the algorithm and how they interact

with different types of data to lead to different run times.

Although a detailed discussion of computational complexity is beyond

the scope of this section, understanding that the manner in which the

simulation is programmed will influence its run time is very important,

as this might limit the options for the exploration of parameter space.

As previously discussed, when a simulation is created, a set of parameters

to vary has to be explicitly selected in order to explore the behaviour of

the simulation. However, because specific parameter values have to be

chosen for each run of the simulation, and because multiple simulations

have to be run in order to get a general sense of the behaviour of the

simulation (i.e. building a posterior distribution for the behaviour), and

by extension the system, the problem of combinatorial explosion is

encountered very quickly.

This problem cannot always be overcome, and it might be that the best

that can be hoped for is to maximise the number of simulation runs that

the computer can support in the available time.

12.3.2 Applications and Use Cases

Science The appropriate role of models and simulations within science

is a topic for debate within scientific circles. Statistical models are well ac-

cepted and used extensively. Mathematical models are generally accepted

if used in a theoretical context. In our experience, however, the use of

simulations is currently not encouraged. In situations where carrying out

actual experiments would be difficult,
17

simulations may be viewed as a17: For ethical reasons, notably.

type of virtual experiment. In such situations the results of the virtual

experiment, although not viewed in the same light as actual experimental
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Figure 12.12: A sketch of some different

possible computational complexities of a

computer program, as represented in Big-

O notation.

results, may, at the very least, fuel the discovery of hypotheses, which

may then be tested using other methods.

Business Accurate prediction of events is highly valued in a business

context. Consequently, the emphasis for models in this domain is on

predictive accuracy, rather than on being able to use the model for

explanatory purposes. Businesses use models to, for example, predict

customer behaviour, how their business will be affected in certain market

situations, and how they might reorganise their business structure to

reduce overhead and increase profitability.

Government Setting policy is a major governmental activity. Within this

context, it is often important to explore different possible policy scenarios,

and gain a better understanding of which policies will be effective in a

variety of circumstances. Models that provide explanatory power can

be particularly helpful in this type of work, because it allows for an

understanding of why one approach might work better than another.

This can then be taken into account in order to ensure good policy.

In addition, as with businesses, governments are usually interested

in making its own operations more efficient and effective. From an

organisational perspective, models can help determine the best strategies

for internal structures and processes, as well as the conditions under

which such structures may function optimally.

Education Simulations play an important role in education, allowing

students to explore and experience scenarios virtually, which may de-

crease the risks associated with “learning through doing”, and increase

the rewards of “learn from experience” in controlled and monitored
conditions.

18
18: For a very thorough discussion of the

role of simulations in education, see [10].
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Entertainment It might be argued that most forms of entertainment

are simply reflections or representations of real world experiences, and

are thus, in some sense, models of life. More specifically, simulations

and models frequently play an important role in theatre, television,

and film – allowing creators to convincingly mimic real life situations

without needing to entirely re-create or enact them, using physical
small-scale models (e.g., a small-scale model of a cityscape), life-size
models of particular environments (e.g., a life-size model of a submarine),

or computer simulations (e.g. simulated flocks of birds and artificially

generated clouds, added to provide more realism and detail to the

backdrop of a scene).

12.3.3 Modeling and Simulation Software

It is quite possible to create models by hand, without the use of computers,

and it is also possible to create computer models or simulations without

using a particular programming environment. But some programming

environments have been specifically designed for creating simulations.

Some of these currently available (as of 2018) include:

Matlab Simulink (commercial simulation software)

Simio (commercial simulation software)

Netlogo (free software, mainly for teaching and prototyping)

SymPy (a python library for discrete time simulations)

12.4 Case Study: NWMO

Canada has a long history with nuclear power: the first self-sustained

Canadian nuclear reaction was achieved at Chalk River’s ZEEP reactor

in 1945. Over the years, numerous research reactors and power reactors

have been built and decommissioned – as of 2014, electricity is currently

being produced by 19 CANDU reactors in Ontario and New Brunswick.

Given that the existence of high energy nuclear waste in Canada is a fait
accompli,19 it is paramount that we find ways to safely dispose of this19: We have already chosen, as a society,

to use nuclear power and create nuclear

waste

waste.

In 2002, the Nuclear Fuel Waste Act (NFWA) was enacted to study possible

strategies for the management of Canada’s used nuclear fuel. As a result,

the Nuclear Waste Management Organization (NWMO) was formed by the

Canadian nuclear power companies, with the mandate to provide recom-

mendations to the Canadian Government for the long-term management

of used nuclear fuel. One such recommendation, which was accepted in

2007, was the establishment of Adaptive Phased Management (APM) as

both a social and technical approach to permanently manage Canada’s

used nuclear fuel. Canadian citizens determined that the optimal strategy,

given the current state of technology in Canada, is the construction of a

deep geological repository to contain and isolate the fuel.

This decision puts the NWMO in a unique and demanding position, as it

is the first group in Canada to design and build a unique but extremely

performance-critical engineering structure: a long term Canadian reposi-

tory for high energy nuclear waste. By its very nature, this structure as
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a whole cannot be tested in advance of use and essentially cannot be

maintained once it is built. Furthermore, the environment and materials

involved are themselves volatile and their long term behaviour is difficult

to predict.

Under such challenging circumstances, engineers must do their best to

use all of the expertise at their disposal to create as perfect a design

as possible for the required structure. Despite the uniqueness of the

structure, they need to produce a design that will meet the requirements

that have been set out, and then, once built, function exactly as predicted

on the first try. Such a design process is necessarily a lengthy one,

involving many designers with high levels of expertise. Many designs

would be proposed and rejected before a final design is selected, based on

all the evidence and expertise the design team have at their disposal.

At the end of the process the engineering team will have high confidence

in the final design that is put forward. The success of the structure in

question is critical, and, as responsible, professional engineers, they

would not put forward a design for such a structure without being

entirely certain, to the best of their collective ability, that this structure

will not fail.

Despite this confidence, due diligence requires more than the simple

assurance (and belief) from the design team that the structure will not

fail. It is not enough, from a societal perspective, for the team to simply

provide a “vote of confidence:” it also requires the provision of more

quantitative information about the failure aspects of the structure. Those

responsible for the structure need to be able to determine (and to help

the stakeholders understand) what are the structure’s necessary and

sufficient conditions for failure (and by extension, the conditions for non-

failure). To produce these answers they need to be able to quantitatively

examine what circumstances the structure might encounter, and under

these circumstances, what the probability of failure is.

From an ideal testing point of view, the entire proposed structure would

be built many times over to run trials relating to each of the foreseen

circumstances. Data would then be gathered and analyzed to determine

the failure tolerance of the structure. Failure probabilities would be

calculated based on this data, along with an understanding of possible

failure circumstances – the structure might even be redesigned to take

into account the results of the testing.

However, as we have already noted, this idealistic testing scenario is

simply not an option in this case. The structure as a whole cannot be

directly tested even once, let alone multiple times; even were many

replications of the structure itself available for testing, not all failure

circumstances would be possible to re-create in a test environment.
20

20: In particular those involving major

geological forces and long time spans.

An alternative strategy is centered around a combination of physical

testing and modeling of the behaviour of the structure and environment.

More specifically, a larger structure is built up of many component parts,

which themselves may be built up of many components. The failure

parameters of these component parts may be tested, even if the structure

as a whole cannot.

Similarly, while the structure itself, and perhaps even in some cases the

components themselves, cannot be tested repeatedly, there remains the
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option of creating models of the structure and components in question,

and then using the behaviour of these models to predict the behaviour

of the components and, in turn, of the structure at large.

In the absence of the ideal testing scenario, understanding and quanti-

fying the failure of the system as a whole can be carried out by under-

standing and quantifying the failure circumstances of the components

of the system, understanding the causal relationships between these

components, creating models of the system as a whole based on these

relationships, determining the failure circumstances and probabilities

of the constructed structure level models and then transferring these

findings over to the structure itself. This results in an estimate of the

failure circumstances and probabilities of the actual engineered structure

as a whole.

The end result of this exercise will thus be, rather than a simple yes/no

statement (such as “No, the structure will not fail”, for instance), a

list of the possible failure circumstances and an estimate of the failure

probabilities for both the structure components and the structure itself,

along with a confidence measure indicating a level of confidence in the

failure probabilities calculated for each failure circumstance.

Such a table of failure circumstances, probabilities, and confidence

measures will allow those building the structure to open a legitimate

dialogue with those responsible for, and those being affected by, the

resulting structure. In essence, this deliverable will allow the designers

of the structure to provide their stakeholders with a clearer and more

detailed picture of the risks they are likely to encounter when undertaking

the construction of such a structure.

General Objectives

The general objective of this Failure Analysis project as a whole is to

estimate the failure probability of the Mark II canister and engineered

barrier system immediately surrounding the canister. In order to achieve

that larger objective, we anticipate that we will be using a combination of

statistical analysis, mathematical modeling, and simulations, much as in

this prototype. More specifically, we will take the approach that our model

is meant to answer a specific question, as well as to provide outputs that

can be fed into other models, as may be required by already-developed

NWMO models.

In this prototype phase, however, the objective is to develop a methodol-

ogy and implementation framework to confirm that interactions (both

planned and emergent) can in principle be captured by the modeling

process, both at the repository and the manufacturing level. For both the

manufacturing process and the interactions models, a specific selection

of a small number of sub-components of the entire system will be consid-

ered in this phase, in order to maintain focus on the development and

testability of the methodology itself.

In [2], we report on a simulation approach for the Failure Analysis
Simulation Model for the APMRD-II, we discuss some of the strategies that

could be used to extract information and knowledge about the engineered

barrier system, which could then be incorporated in any interaction model
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of its components. A discussion of system complexity and the effect it

had on our choice of modeling approach is also provided. We also

provide a prototype UFC manufacturing process model: potential states,

actions and variables are introduced, as well as the underlying modeling

assumptions and families of parameters. The model is illustrated via
a specific parameter set; a series of 8 scenarios showcase the effect of

various parameter combinations.
21

21: It should be noted that due to the un-

certainty relating the manufacturing pro-

cess parameters, the numbers presented

are placeholders: reasonable estimates for

a large number of these parameters will

be required before the model can output

meaningful failure estimates.

12.5 Exercise

Create a simulation of pre-board screening (PBS) wait-time at Borealian

airfields (as described in Section 24.6).

Chapter References
[1] D. Beloriszky. ‘Application pratique des méthodes de M. Sundman à un cas particulier du problème des

trois corps’. In: Bulletin Astronomique 6 (series 2) (1930), pp. 417–434.

[2] P. Boily and J. Schellinck. Introduction to Quantitative Consulting. Quadrangle/Data Action Lab, 2025.

[3] L. Cixin. The Three Body Problem. Chongqing Press, 2008.

[4] J.J. Clement. Creative Model Construction in Scientists and Students: The Role of Imagery, Analogy, and Mental
Simulation. Springer Netherlands, 2008.

[5] Fourdee. https://en.wikipedia.org/w/index.php?curid=8650757 .

[6] D.R. Hofstadter. ‘Analogy as the core of cognition’. In: The Analogical Mind: Perspectives from Cognitive
Science. Ed. by D. Gentner, K. Holyoak, and B. Kokinov. Cambridge MA: The MIT Press Bradford Book,

2001.

[7] K. Holyoak, D. Gentner, and B. Kokinov. ‘Introduction: The place of analogy in cognition’. In: Advances in
Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and Neural Sciences. Sofia:

NBU Press, 1998.

[8] https://en.wikipedia.org/wiki/N-body_problem .

[9] J.A. Kopec et al. ‘Validation of population-based disease simulation models: A review of concepts and

methods’. In: BMC Public Health 10 (2010). doi: 10.1186/1471-2458-10-710.

[10] F. Landriscina. Simulation and Learning: A Model-Centered Approach. New York, NY: Springer, 2013.

[11] T. Momkov. Planetary System Formation 2, 𝑁−body simulation. 𝑛−Body Simulation . 2013.

[12] S. Ross. A 1766 Benjamin Martin Orrery, used at Harvard (photo). Putnam Gallery Planetarium. 2009.

[13] J. Schellinck. ‘A general perception based framework for modelling animal aggregation’. Ottawa: Carleton

University, 2009.

[14] weusemath.org. New Discoveries: 𝑛−body problem .

[15] Wikipedia. Shoaling and schooling .

[16] L. Yilmaz, ed. Concepts and Methodologies for Modeling and Simulation: A Tribute to Tuncer Ören. Switzerland:

Springer International Publishing, 2015.

https://en.wikipedia.org/w/index.php?curid=8650757
https://en.wikipedia.org/wiki/N-body_problem
https://doi.org/10.1186/1471-2458-10-710
http://trekto.info/n-body-simulation
http://weusemath.org/?didyouknow=new-discoveries/n-body-problem
https://en.wikipedia.org/wiki/Shoaling_and_schooling

	Simulations and Modeling
	Introduction
	Modeling Strategies
	Practical Considerations
	Case Study: NWMO
	Exercise
	Chapter References


