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by Patrick Boily and Jen Schellinck

In 2012, the Harvard Business Review published an article calling data

science the “sexiest job of the 21st century”, describing data scientists

as “hybrids of data hacker, analyst, communicator, and trusted adviser”

[25].

Would-be data scientists are usually introduced to the field via machine

learning algorithms and applications. While we will discuss these topics

in later chapters, we would like to start with some of the important

non-technical (and semi-technical) notions that are often unfortunately

swept aside in favour of diving head first into murky analysis waters.

In this chapter, we focus on some of the fundamental ideas and concepts

that underlie and drive forward the discipline of data science, as well

as the contexts in which these concepts are typically applied. We also

highlight issues related to the ethics of practical data science. We conclude

by getting a bit more concrete and considering the analytical workflow

of a typical data science project, the types of roles and responsibilities

that generally arise during data science projects and some basics of how

to think about data, as a prelude to more technical topics.

Note: we encourage readers to take a look at Chapter 1 (Programming
Primer) before diving into this chapter.

14.1 Introduction

The main constituent of data science is, unsurprisingly, data. This seems

obvious, as far as statements go, but the notion of “data” is more complex

than first appears.

14.1.1 What Is Data?

It is surprisingly difficult to give a clear-cut definition of data – we cannot

even seem to agree on whether it should be used in the singular or the

plural:

“the data is ” vs. “the data are ”

From a strictly linguistic point of view, a datum (borrowed from Latin) is

“a piece of information;” data, then, should mean “pieces of information.”

We can also think of it as a collection of “pieces of information”, and we

would then use data to represent the whole (being potentially greater

than the sum of its parts) or simply the idealized concept.
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When it comes to actual data analysis, however, is the distinction really

that important? Is it even clear what data is, from the definition above,

and where it comes from?

Without context, does it make sense to call the following “data”?

4, 529 red 25.782 𝑌

To paraphrase U.S. Justice Potter Stewart, while it may be hard to define

what data is, “we know it when we see it.” This position may strike

some of you as unsatisfying; to overcome this (sensible) objection, we

will think of data simply as a collection of facts about objects and their

attributes.

For instance, consider the apple and the sandwich below.

Let us say that they have the following attributes:

Object: apple

− Shape: spherical

− Colour: red

− Function: food

− Location: fridge

− Owner: Jen

Object: sandwich

− Shape: rectangle

− Colour: brown

− Function: food

− Location: office

− Owner: Pat

As long as we remember that a person or an object is not simply the sum
of its attributes, this rough definition should not be too problematic.

Note, however, that there remains some ambiguity when it comes to

measuring (and recording) the attributes.

We dare say that no one has ever beheld an apple quite like the one shown

above: for starters, it is a 2-dimensional representation of a 3-dimensional

object. Additionally, while the overall shape of the sandwich is vaguely

rectangular (as seen from above, say), it is not an exact rectangle. While

no one would seriously dispute the shape attribute of the sandwich being

recorded as “rectangle”, a measurement error has occurred.

For most analytical purposes, this error may not be significant, but it is

impossible to dismiss it as such for all tasks.
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More problematic might be the fact that the apple’s shape attribute is

given in terms of a volume, whereas the sandwich’s is recorded as an

area; the measurement types are incompatible. Similar remarks can be

made about all the attributes – the function of an apple may be “food”

from Jen’s perspective, but from the point of view of an apple tree, that

is emphatically not the case; the sandwich is definitely not uniformly

“brown,” and so on.

A number of potential attributes are not even mentioned: size, weight,

time, etc. Measurement errors and incomplete lists are always part of the

picture, but most people would recognize that the collection of attributes

does provide a reasonable description of the objects.

This is the pragmatic definition of data that we will use throughout.

14.1.2 From Objects and Attributes to Datasets

Raw data may exist in any format; we will reserve the term dataset to

represent a collection of data that could conceivably be fed into algorithms

for analytical purposes.

Often, these appear in a table, with rows and columns;
1

attributes are the 1: In practice, more complex databases
are used.fields (or columns) in such a dataset; objects are instances (or rows).

Objects can then be described by their feature vector – the collection of

attributes associated with value(s) of interest. The feature vector for a

given observation is also know as its signature. For instance, the dataset

of physical objects could contain the following items:

ID shape colour function location owner

1 spherical red food fridge Jen

2 rectangle brown food office Pat

3 round white tell time lounge school

. . . . . . . . . . . . . . . . . .

We will revisit this in Section 14.5.2 (Structuring and Organizing Data).

14.1.3 Data in the News

We collected a sample of headlines and article titles showcasing the

growing role of data science (DS), machine learning (ML), and artifi-
cial/augmented intelligence (AI) in different domains of society.

While these demonstrate some of the functionality/capabilities of DS/M-

L/AI technologies, it is important to remain aware that new technologies

are always accompanied by emerging (and not always positive) social

consequences.

“Robots are better than doctors at diagnosing some cancers, major

study finds” [27]

“Deep-learning-assisted diagnosis for knee magnetic resonance

imaging: Development and retrospective validation of MRNet” [10]
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“Google AI claims 99% accuracy in metastatic breast cancer detec-

tion” [8]

“Data scientists find connections between birth month and health”

[21]

“Scientists using GPS tracking on endangered Dhole wild dogs”

[48]

“These AI-invented paint color names are so bad they’re good” [62]

“We tried teaching an AI to write Christmas movie plots. Hilarity

ensued. Eventually.” [32]

“Math model determines who wrote Beatles’ In My Life: Lennon or

McCartney?” [9]

“Scientists use Instagram data to forecast top models at New York

Fashion Week” [39]

“How big data will solve your email problem” [36]

“Artificial intelligence better than physicists at designing quantum

science experiments” [70]

“This researcher studied 400,000 knitters and discovered what

turns a hobby into a business” [75]

“Wait, have we really wiped out 60% of animals?” [80]

“Amazon scraps secret AI recruiting tool that showed bias against

women” [24]

“Facebook documents seized by MPs investigating privacy breach”

[7]

“Firm led by Google veterans uses A.I. to ‘nudge’ workers toward

happiness” [76]

“At Netflix, who wins when it’s Hollywood vs.the algorithm?” [60]

“AlphaGo vanquishes world’s top Go player, marking A.I.’s superi-

ority over human mind” [41]

“An AI-written novella almost won a literary prize” [47]

“Elon Musk: Artificial intelligence may spark World War III” [49]

“A.I. hype has peaked so what’s next?” [64]

“That Popular AI Photo App is Stealing from Human Artists – and

Worse” [66]

“Now AI can write students’ essays for them, will everyone become

a cheat?” [61]

Opinions on the topic are varied – to some, DS/ML/AI provide examples

of brilliant successes, while to others it is the dangerous failures that are

at the forefront.

What do you think?

14.1.4 The Analog/Digital Data Dichotomy

Humans have been collecting data for a long time. In the award-winning

Against the Grain: A Deep History of the Earliest States, J.C. Scott argues that

data collection was a major enabler of the modern nation-state (he also

argues that this was not necessarily beneficial to humanity at large, but

this is another matter altogether) [69].

For most of the history of data collection, humans were living in what

might best be called the analogue world – a world where our under-

standing was grounded in a continuous experience of physical reality.
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Nonetheless, even in the absence of computers, our data collection

activities were, arguably, the first steps taken towards a different strategy

for understanding and interacting with the world. Data, by its very nature,

leads us to conceptualize the world in a way that is, in some sense, more
discrete than continuous.

By translating our experiences and observations into numbers and

categories, we re-conceptualize the world into one with sharper and

more definable boundaries than our raw experience might otherwise

suggest. Fast-forward to the modern world and the culmination of this

conceptual discretization strategy is clear to see in our adoption of the

digital computer, which represents everything as a series of 1s and 0s.
2

2: Or ‘On’ and ‘Off’, ‘TRUE’ and ‘FALSE’.

Somewhat surprisingly, this very minimalist representational strategy

has been wildly successful at representing our physical world, arguably

beyond our most ambitious dreams, and we find ourselves now at a

point where what we might call the digital world is taking on a reality

as pervasive and important as the physical one.

Clearly, this digital world is built on top of the physical world, but very

importantly, the two do not operate under the same set of rules:

in the physical world, the default is to forget; in the digital world,

the default is to remember;
in the physical world, the default is private; in the digital world,

the default is public;

in the physical world, copying is hard; in the digital world, copying

is easy.

As a result of these different rules of operation, the digital is making things

that were once hidden, visible; once veiled, transparent. Considering

data science in light of this new digital world, we might suggest that data

scientists are, in essence, scientists of the digital, in much the same way

that regular scientists are scientists of the physical: data scientists seek to

discover the fundamental principles of data and understand the ways

in which these fundamental principles manifest themselves in different

digital phenomena.

Ultimately, however, data and the digital world are tied to the physical
world. Consequently, what is done with data has repercussions in the

physical world; and it is crucial for analysts and consultants to have a

solid grasp of the fundamentals and context of data work before leaping

into the tools and techniques that drive it forward.

14.2 Conceptual Frameworks for Data Work

In simple terms, we use data to represent the world. But this is not the

only strategy at our disposal: we might also (and in combination) describe

the world using language, or represent it by building physical models.

The common thread is the more basic concept of representation – the

idea that one object can stand in for another, and be used in its stead in

order to indirectly engage with the object being represented. Humans

are representational animals par excellence; our use of representations

becomes almost undetectable to us, at times.
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On some level, we do understand that “the map is not the territory”, but

we do not have to make much of an effort to use the map to navigate

the territory. The transition from the representation to the represented
is typically quite seamless. This is arguably one of humanity’s major

strengths, but in the world of data science it can also act as an Achilles’

heel, preventing analysts from working successfully with clients and

project partners, and from appropriately transferring analytical results
to the real world contexts that could benefit from them.

The best protection against these potential threats is the existence of a

well thought out and explicitly described conceptual framework, by

which we mean, in its broadest sense:

a specification of which parts of the world are being represented;

how they are represented;

the nature of the relationship between the represented and the

representing, and

appropriate and rigorous strategies for applying the results of the

analysis that is carried out in this representational framework.

It would be possible to construct such a specification from scratch, in a

piecemeal fashion, for each new project, but it is worth noting that there

are some overarching modeling frameworks that are broadly applicable

to many different phenomena, which can then be moulded to fit these

more specific instances.

14.2.1 Three Modeling Strategies

We suggest that there are three main not mutually exclusive modeling
strategies that can be used to guide the specification of a phenomenon

or domain:

mathematical modeling;

computer modeling, and

systems modeling.

We start with a description of the latter as it requires, in its simplest

form, no special knowledge of techniques/concepts from mathematics

or computer science.

Systems Modeling

General Systems Theory was initially put forward by L. von Bertalanffy,

a biologist, who felt that it should be possible to describe many disparate
natural phenomena using a common conceptual framework – one which

would be capable of describing many disparate phenomena, all as systems

of interacting objects.

Although Bertalanffy himself presented abstracted, mathematical, de-

scriptions of his general systems concepts, his broad strategy is relatively

easily translated into a purely conceptual framework.

Within this framework, when presented with a novel domain or situation,

we ask ourselves the following questions:
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which objects seem most relevant or involved in the system be-

haviours in which we are most interested?

what are the properties of these objects?

what are the behaviours (or actions) of these objects?

what are the relationships between these objects?

how do the relationships between objects influence their properties

and behaviours?

As we find the answers to these questions about the system of interest, we

start to develop a sense that we understand the system and its relevant
behaviours.

By making this knowledge explicit, e.g. via diagrams and descriptions,

and by sharing it amongst those with whom we are working, we can

further develop a consistent, shared understanding of the system with

which we are engaged. If this activity is carried out prior to data collection,

it can ensure that the right data is collected.

If this activity is carried out after data collection, it can ensure that the

process of interpreting what the data represents and how the latter

should be used going forward is on solid footing.

Mathematical and Computer Modeling

The other modeling approaches come with their own general frameworks

for interpreting and representing real-world phenomena and situations,

separate from, but still compatible with, this systems perspective.

These disciplines have developed their own mathematical/digital (logi-

cal) worlds that are distinct from the tangible, physical world studied by

chemists, biologists, and so on. These frameworks can be used to describe

real-world phenomena by drawing parallels between the properties of

objects in these different worlds and reasoning via these parallels.

Why these constructed worlds and the conceptual frameworks they

provide are so effective at representing and describing the actual world,

and thus allowing us to understand and manipulate it, is more of a

philosophical question than a pragmatic one.

We will only note that they are highly effective at doing so, which

provides the impetus and motivation to learn more about how these

worlds operate, and how, in turn, they can provide data scientists with a

means to engage with domains and systems through a powerful, rigorous

and shared conceptual framework.

14.2.2 Information Gathering

The importance of achieving contextual understanding of a dataset

cannot be over-emphasized. In the abstract we have suggested that

this context can be gained by using conceptual frameworks. But more

concretely, how does this understanding come about?

It can be reached through:

field trips;

interviews with subject matter experts (SMEs);
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readings/viewings;

data exploration (even just trying to obtain or gain access to the

data can prove a major pain),

etc.

In general, clients or stakeholders are not a uniform entity – it is even

conceivable that client data specialists and SMEs will resent the involve-
ment of analysts (external and/or internal). Thankfully, this stage of the

process provides analysts and consultants the opportunity to show that

everyone is pulling in the same direction, by

asking meaningful questions;

taking an interest in the SMEs’/clients’ experiences, and

acknowledging everyone’s ability to contribute.

A little tact goes a long way when it comes to information gathering.

Thinking in Systems Terms

We have already noted that a system is made up of objects with properties
that may change over time. Within the system we perceive actions and

evolving properties, leading us to think in terms of processes.

In order to understand how various aspects of the world interact with

one another, we need to carve out chunks corresponding to the aspects

and define their boundaries. Working with other intelligences requires

this type of shared understanding of what is being studied. Objects
themselves have various properties.

Natural processes generate (or destroy) objects, and may change the

properties of these objects over time. We observe, quantify, and record
particular values of these properties at particular points in time.

This process generates data points in our attempt to capture the under-
lying reality to some acceptable degree of accuracy and error, but it

remains crucial for data analysts and data scientists to remember that

even the best system model only ever provides an approximation of
the situation under analysis; with some luck, experience, and foresight,

these approximations might turn out to be valid.

Identifying Gaps in Knowledge

A gap in knowledge is identified when we realize that what we thought

we knew about a system proves incomplete (or blatantly false).

This can arise as the result of a certain naïveté vis-à-vis the situation being

modeled, but it can also be emblematic of the nature of the project under

consideration: with too many moving parts and grandiose objectives,

there cannot help but be knowledge gaps.
3

3: Note that it also happens with small,

well-organized, and easily contained

projects. It happens all the time, basically. Knowledge gaps might occur repeatedly, at any moment in the process:

data cleaning;

data consolidation;

data analysis,

even during communication of the results (!).
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When faced with such a gap, the best approach is to be flexible: go back,

ask questions, and modify the system representation as often as is

necessary. For obvious reasons, it is preferable to catch these gaps early

on in the process.

Conceptual Models

Consider the following situation: you are away on business and you

forgot to hand in a very important (and urgently required) architectural

drawing to your supervisor before leaving. Your office will send an intern

to pick it up in your living space. How would you explain to them, by

phone, how to find the document?

If the intern has previously been in your living space, if their living space

is comparable to yours, or if your spouse is at home, the process may be

sped up considerably, but with somebody for whom the space is new

(or someone with a visual impairment, say), it is easy to see how things

could get complicated.

But time is of the essence – you and the intern need to get the job done

correctly as quickly as possible. What is your strategy?

Conceptual models are built using methodical investigation tools:

diagrams;

structured interviews;

structured descriptions,

etc.

Data analysts and data scientists should beware implicit conceptual
models – they go hand-in-hand with knowledge gaps.

In our opinion, it is preferable to err on the side of “too much conceptual

modeling” than the alternative (although, at some point we have to

remember that every modeling exercise is wrong
4

and that there is 4: “Every model is wrong; some models

are useful.” George Box.
nothing wrong with building better models in an iterative manner, over

the bones of previously-discarded simpler models).

Roughly speaking, a conceptual model is a model that is not implemented

as a scale-model or computer code, but one which exists only conceptually,

often in the form of a diagram or verbal description of a system – boxes

and arrows, mind maps, lists, definitions (see Figure 14.1, say).

Conceptual models do not necessarily attempt to capture specific be-

haviours, but they emphasize the possible states of the system: the

focus is on object types, not on specific instances, with abstraction as the

ultimate objective.

Conceptual modeling is not an exact science – it is more about making

internal conceptual models explicit and tangible, and providing data

analysis teams with the opportunity to examine and explore their ideas

and assumptions. Attempts to formalize the concept include (see Figure

14.3):

Universal Modeling Language (UML);

Entity Relationship Models (ER), generally connected to relational

databases.
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Figure 14.1: A schematic diagram of systems thinking as it applies to a general problem.

Figure 14.2: A conceptual model of the ’free software’ system (in French) [51].
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Figure 14.3: Examples of UML diagram (Wikibase Data Model, on the left [35]) and ER conceptual map (on the right [79]).

In practice, we must first select a system for the task at hand, then generate

a conceptual model that encompasses:

relevant and key objects (abstract or concrete);

properties of these objects, and their values;

relationships between objects (part-whole, is-a, object-specific,

one-to-many), and

relationships between properties across instances of an object

type.

A simplistic example describing a supposed relationship between a

presumed cause (hours of study) and a presumed effect (test score) is

shown below:

Relating the Data to the System

From a pragmatic perspective, stakeholders and analysts alike need to

know if the data which has been collected and analyzed will be useful to

understand the system.

This question can best be answered if we understand:

how the data is collected;

the approximate nature of both data and system, and

what the data represents (observations and features).
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Is the combination of system and data sufficient to understand the

aspects of the world under consideration? Once again, this is difficult

to answer in practice. Contextual knowledge can help, but if the data,

the system, and the world are out of alignment, any data insight drawn

from mathematical, ontological, programmatical, or data models of the

situation might ultimately prove useless.

14.2.3 Cognitive Biases

Adding to the challenge of building good conceptual models and using

these to interpret the data is the fact that we are all vulnerable to a vast

array of cognitive biases, which influence both how we construct our

models and how we look for patterns in the data.

Such biases are difficult to detect in the spur of the moment, but making

a conscious effort to identify them and setting up a clear and pre-defined

set of thresholds and strategies for analysis will help reduce their negative

impact. Here is a sample of such biases [46, 26]).
5

5: Other biases impacting our ability to

make informed decisions include: band-

wagon effect, base rate fallacy, bounded ra-

tionality, category size bias, commitment

bias, Dunning-Kruger effect, framing ef-

fect, hot-hand fallacy, IKEA effect, illusion

of explanatory depth, illusion of validity,

illusory correlations, look elsewhere ef-

fect, optimism effect, planning fallacy, pro-

innovation bias, representative heuristic,

response bias, selective perception, stereo-

typing, etc.

Anchoring Bias causes us to rely too heavily on the first piece of informa-

tion we are given about a topic; in a salary negotiation, for instance,

whoever makes the first offer establishes a range of reasonable

possibilities in both parties’ minds.

Availability Heuristic describes our tendency to use information that

comes to mind quickly and easily when making decisions about the

future; someone might argue that climate change is a hoax because

the weather in their neck of the woods has not (yet!) changed.

Choice-Supporting Bias causes us to view our actions in a positive light,

even if they are flawed; we are more likely to sweep anomalous

or odd results under the carpet when they arise from our own

analyses.

Clustering Illusion refers to our tendency to see patterns in random

events; if a die has rolled five 3’s in a row, we might conclude that

the next throw is more (or less) likely to come up a 3 (gambling

fallacy).

Confirmation Bias describes our tendency to notice, focus on, and give

greater credence to evidence that fits with our existing beliefs;

gaffes made by politicians you oppose reinforces your dislike.

Conservation Bias occurs when we favour prior evidence over new

information; it might be difficult to accept that there is an association

between factors 𝑋 and 𝑌 if none had been found in the past.

Ostrich Effect describes how people often avoid negative information, in-

cluding feedback that could help them monitor their goal progress;

a professor might chose to not consult their teaching evaluations,

for whatever reason.

Outcome Bias refers to our tendency to judge a decision on the outcome,

rather than on why it was made; the fact that analysts gave Clinton

an 80% chance of winning the 2016 U.S.Presidential Election does

not mean that the forecasts were wrong.
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Overconfidence causes us to take greater risks in our daily lives; experts

are particularly prone to this, as they are more convinced that they

are right.

Recency Bias occurs when we favour new information over prior evi-

dence; investors tend to view today’s market as the “forever’ market

and make poor decisions as a result.

Salience Bias describes our tendency to focus on items or information

that are more noteworthy while ignoring those that do not grab our

attention; you might be more worried about dying in a plane crash

than in a car crash, even though the latter occurs more frequently

than the former.

Survivorship Bias is a cognitive shortcut that occurs when a visible

successful subgroup is mistaken as an entire group, due to the

failure subgroup not being visible; when trying to get the full data

picture, it helps to know what observations did not make it into

the dataset.

Zero-Risk Bias relates to our preference for absolute certainty; we tend

to opt for situations where we can completely eliminate risk, seeking

solace in the figure of 0%, over alternatives that may actually offer

greater risk reduction.

14.3 Ethics in the Data Science Context

A lapse in ethics can be a conscious choice ... but it can also

be negligence. [68]

In most empirical disciplines, ethics are brought up fairly early in the

educational process and may end up playing a crucial role in researchers’

activities. At Memorial University of Newfoundland, for instance, “pro-

posals for research in the social sciences, humanities, sciences, and

engineering, including some health-related research in these areas,”

must receive approval from specific Ethics Review Boards.

This could apply to research and analysis involving [63]:

living human subjects;

human remains, cadavers, tissues, biological fluids, embryos or

foetuses;

a living individual in the public arena if they are to be interviewed

and/or private papers accessed;

secondary use of data – health records, employee records, student

records, computer listings, banked tissue – if any form of identifier

is involved and/or if private information pertaining to individuals

is involved, and

quality assurance studies and program evaluations which address

a research question.

In our experience, data scientists and data analysts who come to the

field by way of mathematics, statistics, computer science, economics,

or engineering, however, are not as likely to have encountered ethical

research boards or to have had formal ethics training.
6

6: We are obviously not implying that

these individuals have no ethical princi-

ples or are unethical; rather, that the oppor-

tunity to establish what these principles

might be, in relation with their research,

may never have presented itself.
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Furthermore, discussions on ethical matters are often tabled, perhaps

understandably, in favour of pressing technical or administrative consid-

erations (such as algorithm selection, data cleaning strategies, contractual

issues, etc.) when faced with hard deadlines.

The problem, of course, is that the current deadline is eventually replaced

by another deadline, and then by a new deadline, with the end result

being that the conversation may never take place. It is to address this

all-too-common scenario that we take the time to discuss ethics in the

data science context; more information is available in [56, 67].

14.3.1 The Need for Ethics

When large-scale data collection first became possible, there was to some

extent a ‘Wild West’ mentality to data collection and use. To borrow

from the old English law principle, whatever was not prohibited (from a

technological perspective) was allowed.

Now, however, professional codes of conduct are being devised for data

scientists [17, 74, 1], outlining responsible ways to practice data science –

ways that are legitimate rather than fraudulent, and ethical rather than

unethical.
7

7: This is not to say that ethical issues have

miraculously disappeared – Volkswagen,

Whole Foods Markets, General Motors,

Cambridge Analytica, and Ashley Madi-

son, to name but a few of the big data

science and data analysis players, have all

recently been implicated in ethical lapses

[29]. More dubious examples can be found

in [52, 19].

Although this shifts some added responsibility onto data scientists, it

also provides them with protection from clients or employers who would

hire them to carry out data science in questionable ways – they can refuse

on the grounds that it is against their professional code of conduct.

14.3.2 What Is/Are Ethics?

Broadly speaking, ethics refers to the study and definition of right and

wrong conduct. Ethics may consider what is right or wrong when it

comes to actions in general, or consider how broad ethical principles are

appropriately applied in more specific circumstances.

And, as noted by R.W. Paul and L. Elder, ethics is not (necessarily) the

same as social convention, religious beliefs, or laws [57]; that distinction

is not always fully understood. The following influential ethical theories

are often used to frame the debate around ethical issues in the data

science context.

Golden rule: do unto others as you would have them do unto you;

Consequentialism: the end justifies the means;

Utilitarianism: act in order to maximize positive effect;

Moral Rights: act to maintain and protect the fundamental rights

and privileges of the people affected by actions;

Justice: distribute benefits and harm among stakeholders in a fair,

equitable, or impartial way.

In general, it is important to remember that our planet’s inhabitants

subscribe to a wide variety of ethical codes, including:

Confucianism, Taoism, Buddhism, Shinto, Ubuntu, Te Ara

Tika (Maori), First Nations Principles of OCAP, various as-

pects of Islamic ethics, etc.
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It is not too difficult to imagine contexts in which any of these (or other

ethical codes, or combinations thereof) would be better-suited to the

task at hand – the challenge is to remember to inquire and to heed the
answers.

14.3.3 Ethics and Data Science

How might these ethical theories apply to data analysis? The (former)

University of Virginia’s Centre for Big Data Ethics, Law and Policy suggested

some specific examples of data science ethics questions [16]:

who, if anyone, owns data?

are there limits to how data can be used?

are there value-biases built into certain analytics?

are there categories that should never be used in analyzing personal

data?

should data be publicly available to all researchers?

The answers may depend on a number of factors, not the least of which

is the matter of who is actually providing them to you. To give you an

idea of some of the complexities, let us consider as an example the first

of those questions: who, if anyone, owns data?

In some sense, the data analysts who transform the data’s potential into

usable insights are only one of the links in the entire chain. Processing

and analyzing the data would be impossible without raw data on which

to work, so the data collectors have a strong ownership claim to the

data.

But collecting the data can be a costly endeavour, and it is easy to imagine

how the sponsors or employers (who made the process economically

viable in the first place) might feel that the data and its insights are

rightfully theirs to dispose of as they wish.

In some instances, the law may chime in as well. Indeed, one can easily

list other players, but let it suffice to say that this simple question turns

out to be far from easily answered, and may even change from case to

case. Incidentally, this also highlights a hidden truth regarding the data

analysis process: there is more to data analysis than just data analysis.

A similar challenge arises in regards to open data, where the “pro”and

“anti” factions both have strong arguments (see [53, 14, 54], as well as [22]

for a science-fictional treatment of the transparency vs security debate).

The answers to the above ethical questions aside, a general principle of

data analysis is to eschew the anecdotal in favour of the general – from a

purely analytical perspective, too narrow a focus on specific observations

can end up obscuring the full picture (for a vivid illustration, see [20]).

But data points are not solely marks on paper or electro-magnetic bytes

on the cloud. Decisions made on the basis of data science (in all manners

of contexts, from security, to financial and marketing context, as well

as policy) may affect living beings in negative ways. And it can not

be ignored that outlying/marginal individuals and minority groups

often suffer disproportionately at the hands of so-called evidence-based

decisions [31, 42, 43].
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14.3.4 Guiding Principles

Under the assumption that one is convinced of the importance of pro-

ceeding ethically, it could prove helpful to have a set of guiding principles

to aid in these efforts.

In his seminal science fiction series about positronic robots, Isaac Asimov

introduced the now-famous Laws of Robotics, which he believed would

have to be built-in so that robots (and by extension, any tool used by

human beings) could overcome humanity’s Frankenstein’s complex (the

fear of mechanical beings) and help rather than hinder human social,

scientific, cultural, and economic activities [5]:

1. A robot may not injure a human being or, through inaction,

allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings,

except where such orders would conflict with the 1st Law.

3. A robot must protect its own existence as long as such

protection does not conflict with the 1st and 2nd Law.

Had they been uniformly well-implemented and respected, the potential

for story-telling would have been somewhat reduced; thankfully, Asimov

found entertaining ways to break the Laws (and to resolve the resulting

conflicts) which made the stories both enjoyable and insightful.

Interestingly enough, he realized over time that a Zeroth Law had to

supersede the First in order for the increasingly complex and intelligent

robots to succeed in their goals. Later on, other thinkers contributed a

few others, filling in some of the holes.

Asimov’s (expanded) Laws of Robotics:

00. A robot may not harm sentience or, through inaction,

allow sentience to come to harm.

0. A robot may not harm humanity, or, through inaction, allow

humanity to come to harm, as long as this action/inaction

does not conflict with the 00th Law.

1. A robot may not injure a human being or, through inaction,

allow a human being to come to harm, as long as this does

not conflict with the 00th or the 0th Law.

2. A robot must obey the orders given to it by human beings,

except where such orders would conflict with the 00th, the

0th or the 1st Law.

3. A robot must protect its own existence as long as such

protection does not conflict with the 00th, the 0th, the 1st or

the 2nd Law.

4. A robot must reproduce, as long as such reproduction does

not interfere with the 00th, the 0th, the 1st, the 2nd or the 3rd

Law.

5. A robot must know it is a robot, unless such knowledge

would contradict the 00th, the 0th, the 1st, the 2nd, the 3rd

or the 4th Law.
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We cannot speak to the validity of these laws for robotics (a term coined by

Asimov, by the way), but we do find the entire set satisfyingly complete.

What does this have to do with data science? Various thinkers have

discussed the existence and potential merits of different sets of Laws

([71]) – wouldn’t it be useful if there were Laws of Analytics, moral
principles that could help us conduct data science ethically?

Best Practices

Such universal principles are unlikely to exist, but best practices have

nonetheless been suggested over the years.

“Do No Harm”: Data collected from an individual should not be used
to harm the individual. This may be difficult to track in practice,

as data scientists and analysts do not always participate in the

ultimate decision process.

Informed Consent: Covers a wide variety of ethical issues, chief among

them being that individuals must agree to the collection and use
of their data, and that they must have a real understanding of
what they are consenting to, and of possible consequences for

them and others.

The Respect of “Privacy”: This principle is dearly-held in theory, but it

is hard to adhere to it religiously with robots and spiders constantly

trolling the net for personal data. In the Transparent Society, D.

Brin (somewhat) controversially suggests that privacy and total

transparency are closely linked [14]:

“Transparency is also the trick to protecting privacy, if

we empower citizens to notice when neighbors infringe

upon it. Isn’t that how you enforce your own privacy

in restaurants, where people leave each other alone,

because those who stare or listen risk getting caught?’

Keeping Data Public: Another aspect of data privacy, and a thornier

issue – should some data be kept private? Most? All? It is fairly

straightforward to imagine scenarios where adherence to the prin-

ciple of public data could cause harm to individuals (for instance,

revealing the source of a leak in a country where the government

routinely jails members of the opposition), thereby contradicting

the first principle against causing harm. It is just as easy to imagine

scenarios where keeping data private would have a similar effect.

Opt-in/Opt-out: Informed consent requires the ability to not consent,
i.e., to opt out. Non-active consent is not really consent.

Anonymize Data: Identifying fields should be removed from the dataset

prior to processing and analysis. Remove any temptation to use

personal information in an inappropriate manner from the get-go,

but be aware that this is easier said than done, technically-speaking.

Let the Data Speak: It is crucial to absolutely restrain oneself from

cherry-picking the data. Use all of it in some way or another;

validate your analysis and make sure your results are repeatable.
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14.3.5 The Good, the Bad, and the Ugly

Data projects could whimsically be classified as good, bad or ugly,

either from a technical or from an ethical standpoint (or both). We have

identified instances in each of these classes (of course, our own biases

are showing):

good projects increase knowledge, can help uncover hidden links,

and so on: [23, 40, 38, 41, 75, 70, 9, 8, 6, 45, 55, 21, 10, 58, 15]

bad projects can lead to bad decisions, which can in turn decrease

the public’s confidence and potentially harm some individuals: [60,

76, 39, 48, 20]

ugly projects are, flat out, unsavoury applications, even if the initial

impetus for the work was noble; either they are poorly executed

from a technical perspective, or they put a lot of people at risk;

these (and similar approaches/studies) should be avoided: [7, 44,

24, 43, 42, 31]

14.4 Analytics Workflows

An overriding component of the discussion so far has been the importance
of context. And although the reader may be eager at this point to move

into data analysis proper, there is one more bit of context that should be

considered first – the project context.

We have alluded to the idea that data science is much more than merely

data analysis, and this is apparent when we look at the typical steps

involved in a data science project. Inevitably, data analysis pieces take

place within this larger project context, as well as in the context of a

larger technical infrastructure or pre-existing system.

14.4.1 The “Analytical” Method

As with the scientific method, there is a “step-by-step” guide to data

analysis:

1. statement of objective

2. data collection

3. data clean-up

4. data analysis/analytics

5. dissemination

6. documentation

Notice that data analysis only makes up a small segment of the entire

flow.

In practice, the process often end up being a bit of a mess, with steps

taken out of sequence, steps added-in, repetitions and re-takes (see Figure

14.4).

And yet ... it tends to work on the whole, if conducted correctly.
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Figure 14.4: The reality of the analytic workflow – definitely not a linear process!

Blitzstein and Pfister (who teach a well-rated data science course at

Harvard) provide their own workflow diagram, but the similarities are

easy to spot (see below).
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Figure 14.5: Theoretical (on the left) and corrupted (on the right) CRISP-DM processes [73].

The Cross Industry Standard Process, Data Mining (CRISP-DM) is

another such framework, with projects consisting of 6 steps:

1. business understanding

2. data understanding

3. data preparation

4. modeling

5. evaluation

6. deployment

The process is iterative and interactive – the dependencies are highlighted

in Figure 14.5. In practice, data analysis is often corrupted by:

1. lack of clarity;

2. mindless rework;

3. blind hand-off to IT, and

4. failure to iterate.

CRISP-DM has a definite old-hat flavour (as exemplified by the use of

the outdated expression “data mining”), but it can be useful to check off

its sub-components, if only as a sanity check.

Business Understanding
understanding the business goal

assessing the situation

translating the goal in a data analysis objective

developing a project plan

Data Understanding
considering data requirements

collecting and exploring data

Data Preparation
selection of appropriate data

data integration and formatting

data cleaning and processing



14.4 Analytics Workflows 901

Modeling
selecting appropriate techniques

splitting into training/testing sets

exploring alternatives methods

fine tuning model settings

Evaluation
evaluation of model in a business context

model approval

Deployment
reporting findings

planning the deployment

deploying the model

distributing and integrating the results

developing a maintenance plan

reviewing the project

planning the next steps

All these approaches have a common core: data science projects are

iterative and (often) non-sequential. Helping the clients and/or stake-

holders recognize this central truth will make it easier for analysts and

consultants to plan the data science process and to obtain actionable
insights for organizations and sponsors.

The main take-away from this section, however, is that there is a great

deal to consider in advance of modeling and analysis – once more, data
science is not solely about data analysis.

14.4.2 Collection, Storage, Processing, Modeling

Data enters the data science pipeline by first being collected. There are

various ways to do this:

data may be collected in a single pass;

it may be collected in batches, or

it may be collected continuously.

The mode of entry may have an impact on the subsequent steps, including

how frequently models, metrics, and other outputs are updated.

Once it is collected, data must be stored. Choices related to storage (and

processing) must reflect:

how the data is collected (mode of entry);

how much data there is to store and process (small vs. big), and

the type of access and processing that will be required (how fast,

how much, by whom).

Unfortunately, stored data may go stale (both figuratively, as in, for

example, addresses no longer accurate, names have changed, etc., and

literally, as in the physical decay of the data and storage space); regular

data audits are recommended.

The data must be processed before it can be analyzed. This is discussed

in detail in Chapter 15 (Data Preparation), but the key point is that raw
data has to be converted into a format that is amenable to analysis, by:
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identifying invalid, unsound, and anomalous entries;

dealing with missing values;

transforming the variables and the datasets so that they meet the

requirements of the selected algorithms.

In contrast, the analysis step itself is almost anti-climactic – simply run

the selected methods/algorithms on the processed data. The specifics of

this procedure depend, of course, on the choice of method/algorithm.

We will not yet get into the details of how to make that choice
8

, but data8: Truth be told, choosing wisely is prob-

ably the the most difficult aspect of a data

science project.

science teams should be familiar with a fair number of techniques and

approaches:

data cleaning

descriptive statistics and correlation

probability and inferential statistics

regression analysis (linear and other variants)

survey sampling

bayesian analysis

classification and supervised learning

clustering and unsupervised learning

anomaly detection and outlier analysis

time series analysis and forecasting

optimization

high-dimensional data analysis

stochastic modeling

distributed computing

etc.

These only represent a small slice of the analysis pie. It is difficult to

imagine that any one analyst/data scientist could master all (or even

a majority of them) at any moment, but that is one of the reasons why

data science is a team activity (more on this in Section 13.1.3, Roles and
Responsibilities).

14.4.3 Model Assessment and Life After Analysis

Before applying the findings from a model or an analysis, one must first

confirm that the model is reaching valid conclusions about the system of

interest.

All analytical processes are, by their very nature, reductive – the raw

data is eventually transformed into a small(er) numerical outcome (or

summary) by various analytical methods, which we hope is still related
to the system of interest, see Section 14.2 (Conceptual Frameworks for Data
Work).

Data science methodologies include an assessment (evaluation, valida-

tion) phase. This does not solely provide an analytical sanity check;
9

9: Are the results analytically compatible

with the data, say?
it can also be used to determine when the system and the data science

process have stepped out of alignment.

Note that past successes can lead to reluctance to re-assess and re-evaluate

a model (the so-called tyranny of past success); even if the analytical

approach has been vetted and has given useful answers in the past, it

may not always do so.
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At what point does one determine that the current data model is out-of-
date? At what point does one determine that the current model is no

longer useful? How long does it take a model to react to a conceptual
shift?10

10: How long does it take Netflix to figure

out that you no longer like action movies

and want to watch comedies instead, say?

How long does it take Facebook to rec-

ognize that you and your spouse have

separated and that you do not wish to see

old pictures of them in your feed?

This is another reason why regular audits are recommended – as long as

the analysts remain in the picture, the only obstacle to performance eval-

uation might be the technical difficulty of conducting said evaluation.

When an analysis or model is ‘released into the wild’ or delivered to the

client, it often takes on a life of its own. When it inevitably ceases to be

current, there may be little that (former) analysts can do to remedy the

situation.

Data analysts and scientists rarely have full (or even partial) control

over model dissemination. Consequently, results may be misappropri-

ated, misunderstood, shelved, or failed to be updated, all without their

knowledge. Can conscientious analysts do anything to prevent this?

Unfortunately, there is no easy answer short of advocating that analysts

and consultants not only focus on data analysis, but also recognize

the opportunity that arises during a project to educate clients and
stakeholders on the importance of these auxiliary concepts.

Finally, because of analytic decay, it is crucial not to view the last step in

the analytical process as a static dead end, but rather as an invitation to

return to the beginning of the process.

14.4.4 Automated Data Pipelines

In the service delivery context, the data analysis process is typically

implemented as an automated data pipeline to enable the analysis

process to occur repeatedly and automatically.

Data pipelines usually consist of 9 components (5 stages and 4 transitions,

as in Figure 14.9):

1. data collection

2. data storage

3. data preparation

4. data analysis

5. data presentation

Each of these components must be designed and then implemented.

Typically, at least one pass of the data analysis process has to be done

manually before the implementation is completed. We will return to this

topic in Section 14.5.2 (Structuring and Organizing Data).

14.5 Getting Insight From Data

With all of the appropriate context now in mind, we can finally turn to

the main attraction, data analysis proper. Let us start this section with

a few definitions, in order to distinguish between some of the common

categories of data analysis.
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What is Data Analysis?

We view finding patterns in data as being data analysis’s main goal.

Alternatively, we describe the data analysis process as using data to:

answer specific questions;

help in the decision-making process;

create models of the data;

describe or explain the situation or system under investigation,

etc.

While some practitioners include other analytical-like activities, such as

testing (scientific) hypotheses, or carrying out calculations on data, we

think of those as separate activities.

What is Data Science?

One of the challenges of working in the data science field is that nearly all

quantitative work can be described as data science (often to a ridiculous

extent). Our simple definition paraphrases T. Kwartler: data science is

the collection of processes by which we extract useful and actionable
insights from data. Robinson [65] further suggests that these insights

usually come via visualization and (manual) inferential analysis.

The noted data scientist H. Mason thinks of the discipline as “the

working intersection of statistics, engineering, computer science, domain

expertise, and ‘hacking’ ” [78].

What is Machine Learning?

Starting in the 1940s, researchers began to take seriously the idea that

machines could be taught to learn, adapt and respond to novel situations.

A wide variety of techniques, accompanied by a great deal of theoretical

underpinning, were created in an effort to achieve this goal.

Machine learning is typically used to obtain “predictions” (or “advice”),

while reducing the operator’s analytical, inferential and decisional work-

load (although it is still present to some extent) [65].

What is Artificial/Augmented Intelligence?

The science fiction answer is that artificial intelligence is non-human
intelligence that has been engineered rather than one that has evolved

naturally. Practically speaking, this translates to “computers carrying out

tasks that only humans can do”. A.I. attempts to remove the need for

oversight, allowing for automatic “actions” to be taken by a completely

unattended system.

These goals are laudable in an academic setting, but we believe that

stakeholders (and humans, in general) should not seek to abdicate all

of their agency in the decision-making process. As such, we follow the

lead of various thinkers and suggest further splitting A.I. into general
A.I. (who would operate independently of human intelligence) and

augmented intelligence (which enhances human intelligence).
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Figure 14.6: Analysis/data science buckets [Marwan Kashef].

These approaches can be further broken down into 4 core key buckets (see

Figure 14.6), moving roughly from low value/low difficulty propositions

(left) to high value/high difficulty propositions (right).

For instance, a shoe store could conduct the following analyses:

Descriptive Sales report

Diagnostic Why did the sales take a large dip?

Predictive What is the sales forecast next quarter?

Prescriptive: How should we change the product mix to reach our target

sales goal?

14.5.1 Asking the Right Questions

Definitions aside, however, data analysis, data science, machine learning,

and artificial intelligence are about asking questions and providing
answers to these questions. We might ask various types of questions,

depending on the situation.

Our position is that, from a quantitative perspective, there are only really

three types of questions:

analytics questions;

data science questions, and

quantitative methods questions.

Analytics questions could be something as simple as:

how many clicks did a specific link on my website get?

Data science questions tend to be more complex – we might ask some-

thing along the lines of:

if we know, historically, when or how often people click on

links, can we predict how many people from Winnipeg will

access a specific page on our website within the next three

hours?
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Whereas analytics-type questions are typically answered by counting
things, data science-like questions are answered by using historical

patterns to make predictions.

Quantitative methods questions might, in our view, be answered by

making predictions but not necessarily based on historical data. We could

build a model from first principles – the “physics” of the situation, as it

were – to attempt to figure out what might happen.

For instance, if we thought there was a correlation between the temper-

ature in Winnipeg and whether or not people click on the links in our

website, then we might build a model that predicts “how many people

from Winnipeg will access a page in the next week?”, say, by trying to

predict the weather instead,
11

which is not necessarily an easy task.11: Questions can also be asked in an un-
supervised manner, see [4, 59], among oth-

ers, and Section 14.5.5 (Quantitative Meth-
ods), briefly.

Analytics models do not usually predict or explain anything – they just

report on the data, which is itself meant to represent the situation. A data

mining or a data science model tends to be predictive, but not necessarily
explanatory – it shows the existence of connections, of correlations, of

links, but without explaining why the connections exist.

In a quantitative method model, we may start by assuming that we know

what the links are, what the connections are – which presumably means

that we have an idea as to why these connections exist
12

– and then we12: Unless we’re talking about quantum

physics and then all bets are off – nobody

has the slightest idea why things happen

the way they do, down there.

try to explore the consequences of the existence of these connections

and these links.

This leads to a singular realization that we share with new data scientists

and analysts, potentially the single most important piece of advice they

will receive in their quantitative career
13

:13: We are not even sure we are joking

when we say this...

not every situation calls for analytics, data science, sta-
tistical analysis, quantitative methods, machine learning,
A.I.

Take the time to identify instances where more is asked out of the data

than what it can actually yield, and be prepared to warn stakeholders, as

early as possible, when such a situation is encountered.

If we cannot ask the right questions of the data, of the client, of the

situation, and so on, any associated project is doomed to fail from the

very beginning. Without questions to answer, analysts are wasting their

time, running analyses for the sake of analysis – the finish line cannot
be reached if there is no finish line.

In order to help clients/stakeholders, data analysts and scientists need:

questions to answer;
questions that can be answered by the types of methods and skills

at their disposal, and

answers that will be recognized as answers.

“How many clicks did this link get?” is a question that is easily answerable

if we have a dataset of links and clicks, but it might not be a question

that the client cares to see answered. Data analysts and scientists often

find themselves in a situation where they will ask the types of questions

that can be answered with the available data, but the answers might not

actually prove useful.
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From a data science perspective, the right question is one that leads to

actionable insights. And it might mean that old data is discarded and

new data is collected in order to answer it. Analysts should beware: given

the sometimes onerous price tag associated with data collection, it is not

altogether surprising that there will sometimes be pressure from above

to keep working with the available data. Stay strong – analysis on the

wrong dataset is the wrong analysis!

The Wrong Questions

Wrong questions might be:

questions that are too broad or too narrow;

questions that no amount of data could ever answer,
questions for which data cannot reasonably be obtained, etc.

One of the issues with “wrong” questions is that they do not necessarily

“break the pipeline”:

in the best-case scenario, stakeholders, clients, colleagues will still

recognize the answers as irrelevant.

in the worst-case scenario, policies will erroneously be implemented

(or decisions made) on the basis of answers that have not been

identified as misleading and/or useless.

Framing Questions

In general, data science questions are used to:

solve problems (fix pressing issues, understand why something is

or isn’t happening, etc.);

create meaningful change (create new standards in the company,

etc.),

support gut feelings (approve or disprove blind intuition).

One thing to note is that individuals prefer to answer a question quickly,

especially in their area of expertise. It is also strongly suggested that

analysts avoid glancing over the data before they settle on the question(s),

to avoid “begging the question”. Finally, not that just as we can be blinded

by love, we can also be blinded by solutions: the right solution to the

right question is not necessarily the “sexiest” solution.

The website kdnuggets.com suggests the following roadmap to framing

questions:

Understand the problem (opportunity vs problem)

What initial assumptions do I have about the situation?

How will the results be used?

What are the risks and/or benefits of answering this question?

What stakeholder questions might arise based on the answer(s)?

Do I have access to the data necessary for answering this question?

How will I measure my “success” criteria?

https://kdnuggets.com
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Example: Should I buy a house? But this is a bit vague; perhaps, instead,

the question could be: should I buy a single house in Scotland?
14

14: Based on an example by M. Kashef.

Answer: Let’s use the roadmap.

Understand the problem. I’ve been renting for two years and feel

like I’m throwing my money away. I want a chance to invest in my

own space instead of someone else’s.

What initial assumptions do I have about the situation? It’s going

to be expensive but worth it – it’ll be an investment that appreciates

over time.

How will the results be used? Either to buy a house or rent a bit

longer to save more for a larger down payment.

What are the risks and/or benefits of answering this question?
Risk: I could put myself under immense debt and become “house

poor”. Benefits: I could get into the market just in time to make a

fortune, and I won’t have to live under the uncertainty from my

landlord possibly selling his home.

What stakeholder questions might arise based on the answer(s)?
Would this new home be in an area that’s safe for kids? Will it be

close to my workplace?

Do I have access to the data necessary to answer this question?
Yes, through my real estate agent and online real estate brokerages,

I can keep my finger on the pulse of the market.

How will I measure my “success” criteria? If I manage to buy a

forever home within my $600k budget, say.

Additional Considerations

Specific questions are preferred over vague questions; questions that

encourage qualification/quantification are preferred over Yes/No ques-
tions. Here are a few examples of questions to avoid [Health Families

BC]:

Is our revenue increasing over time? Has it increased year-over-

year?

Are most of our customers from this demographic?

Does this project have valuable ambitions for the broader depart-

ment?

How great is our hard-working customer success team?

How often do you triple check your work?

Consider using the following questions, instead:

What’s the distribution of our revenues over the past three months?

Where are our top 5 high-spending cohorts from?

What are the different benefits of pursuing this project?

What are three good and bad traits of our customer success team?

What kind of quality assurance testing do you carry out on your

deliverables?

Question Audit Checklist [The Head Game]:

1. Did I avoid creating any yes/no questions?
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2. Would anyone in my team/department understand the question

irrespective of their backgrounds?

3. Does the question need more than one sentence to express?

4. Is the question ‘balanced’ - scope is not too broad that the question

will never truly be answered, or too small that the resulting impact

is minimal?

5. Is the question being skewed to what may be easier to answer for

my/my team’s particular skillset(s)?

14.5.2 Structuring and Organizing Data

Let us now resume the discussion that was cut short in Sections 14.1.1

(What Is Data?) and 14.1.2 (From Objects and Attributes to Datasets).

Data Sources

We cannot have insights from data without data. As with many of the

points we have made, this may seem trivially obvious, but there are many

aspects of data acquisition, structuring, and organization that have a

sizable impact on what insights can be squeezed from data.

Specifically, there are a number of questions that can be considered:

why do we collect data?

what can we do with data?

where does data come from?

what does “a collection” of data look like?

how can we describe data?

must we distinguish between data, information, knowledge?
15

15: According to the adage, “data is not

information, information is not knowl-

edge, knowledge is not understanding,

understanding is not wisdom.” (C.Stoll,

attributed).

Historically, data has had three functions:

record keeping – people/societal management;

science – new general knowledge, and

intelligence – business, military, police, social, domestic, personal.

Traditionally, each of these functions has:

used different sources of information;

collected different types of data, and

had different data cultures and terminologies.

As data science is an interdisciplinary field, it should come as no surprise

that we may run into all of them on the same project (see Figure 14.7).

Ultimately, data is generated from making observations about and taking

measurements of the world. In the process of doing so, we are already

imposing particular conceptualizations and assumptions on our raw

experience.

More concretely, data comes from a variety of sources:

records of activity;

(scientific) observations;

sensors and monitoring, and

from computers themselves (more frequently, of late).



910 14 Data Science Basics

Figure 14.7: Different data cultures and terms.

As discussed in Section 14.1.4, although data may be collected and

recorded by hand, it is fast becoming a mostly digital phenomenon.

Computer science (and information science) has its own theoretical,

fundamental viewpoint about data and information, operating over data

in a fundamental sense – 1s and 0s that represent numbers, letters, etc.

Pragmatically, the resulting data is now stored on computers, and is

accessible through our world-wide computer network.

While data is necessarily a representation of something, analysts should

endeavour to remember that the data itself still has physical properties:

it takes up physical space and requires energy with which to work. In

keeping with this physical nature, data also has a shelf life – it ages over

time. We use the phrases “rotten data/decaying data” in two senses:

literally, as the data storage medium might decay, but also

metaphorically, as when it no longer accurately represents the

relevant objects and relationships (or even when those objects no

longer exist in the same way) – compare with “analytical decay”,

see Section 14.4.3.

Useful data must stay ‘fresh’ and ‘current’, and avoid going ‘stale’ – but

that is both context- and model-dependent!

Before the Data

The various data disciplines share some core concepts and elements,

which should resonate with the systems modeling framework previously

discussed in Section 14.2 (Conceptual Frameworks for Data Work):

all objects have attributes, whether concrete or abstract;

for multiple objects, there are relationships between these objects

and attributes, and

all these elements evolve over time.

The fundamental relationships include:

part–whole;

is–a;

is–a–type–of;

cardinality (one-to-one, one-to-many, many-to-many),

etc.,
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while object-specific relationships include:

ownership;

social relationship;

becomes;

leads-to,

etc.

Objects and Attributes

We can examine concretely the ways in which objects have properties,

relationships and behaviours, and how these are captured and turned

into data through observations and measurements, via the apple and

sandwich example of Section 14.1.1 (What Is Data?).

There, we made measurements on an apple instance, labeled the type of
observations we made, and provided a value describing the observation.

We can further use these labels when observing other apple instances,

and associate new values for these new apple instances.

Regarding the fundamental and object specified relationships, we might

be able to see that:

an apple is a type of fruit;

a sandwich is part of a meal;

this apple is owned by Jen;

this sandwich becomes fuel, etc.

It is worth noting that while this all seems tediously obvious to adult

humans, it is not so from the perspective of a toddler, or an artificial

intelligence. Explicitly, “understanding” requires a basic grasp of:

categories;

instances;

types of attributes;

values of attributes, and

which of these are important or relevant to a specific situation or

in general terms.

From Attributes to Datasets

Were we to run around in an apple orchard, measuring and jotting

down the height, width and colour of 83 different apples completely

haphazardly on a piece of paper, the resulting data would be of limited

value; although it would technically have been recorded, it would be

lacking in structure.

We would not be able to tell which values were heights and which

were widths, and which colours or which widths were associated with

which heights, and vice-versa. Structuring the data using lists, tables, or

even tree structures allows analysts to record and preserve a number of

important relationships:

those between object types and instances, property/attribute types

(sometimes also called fields, features or dimensions), and values;
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those between one attribute value and another value (i.e., both of

these values are connected to this object instance);

those between attribute types, in the case of hierarchical data, and

those between the objects themselves (e.g., this car is owned by this

person).

Tables, also called flat files, are likely the most familiar strategy for struc-

turing data in order to preserve and indicate relationships. In the digital

age, however, we are developing increasingly sophisticated strategies to

store the structure of relationships in the data, and finding new ways to

work with these increasingly complex relationship structures.

Formally, a data model is an abstract (logical) description of both the

dataset structure and the system, constructed in terms that can be

implemented in data management software.In a sense, data models lie

halfway between conceptual models and database implementations.

The data proper relates to instances; the model to object types.

Ontologies provide an alternative representation of the system: simply

put, they are structured, machine-readable collections of facts about

a domain.
16

For instance, the image below is a representation of the16: We could facetiously describe ontolo-

gies as “data models on steroids.” In a

sense, an ontology is an attempt to get

closer to the level of detail of a full con-

ceptual model, while keeping the whole

machine-readable.

Langerhans cells in the Cell Ontology [50].
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Every time we move from a conceptual model to a specific type of model

(a data model, a knowledge model), we lose some information. One way

to preserve as much context as possible in these new models is to also

provide rich metadata – data about the data! Metadata is crucial when it

comes to successfully working with and across datasets. Ontologies can

also play a role here, but that is a topic for another day.

Typically data is stored in a database. A major motivator for some of the

new developments in types of databases and other data storing strategies

is the increasing availability of unstructured and ‘BLOB’ data.

Structured data is labeled, organized, and discrete, with a pre-

defined and constrained form. With that definition, for instance,

data that is collected via an e-form that only uses drop-down menus

is structured.

Unstructured data, by comparison, is not organized, and does

not appear in a specific pre-defined data structure – the classical

example is text in a document. The text may have to subscribe to

specific syntactic and semantic rules to be understandable, but

in terms of storage (where spelling mistakes and meaning are

irrelevant), it is highly unstructured since any data entry is likely

to be completely different from another one in terms of length, etc.

The acronym “BLOB” stands for Binary Large Object data, such as

images, audio files, or general multi-media files. Some of these files

can be structured-like (all pictures taken from a single camera, say),

but they are usually quite unstructured, especially in multi-media

modes.

Not every type of database is well-suited to all data types. Let us look at

four currently popular database options in terms of fundamental data
and knowledge modeling and structuring strategies:

key-value pairs (e.g. JSON);

triples (e.g. resource description framework – RDF);

graph databases, and

relational databases.

Key-Value Stores

In these, all data is simply stored as a giant list of keys and values, where

the ‘key’ is a name or a label (possibly of an object) and the ‘value’ is a

value associated with this key; triple stores operate on the same principle,

but data is stored according to ‘subject – predicate – object’.

The following examples illustrate these concepts:

1. The apple type – apple colour key-value store might contain

Granny Smith -- green, and

Red Delicious -- red.

2. The person – shoe size key-value store might contain

Jen Schellinck -- women's size 7, and

Colin Henein -- men's size 10.

3. Other key-value stores: word – definition, report name – report (docu-
ment file), url – webpage.
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4. Triples stores just add a verb to the mix: person – is – age might

contain

Elowyn -- is -- 20;

Llewellyn -- is -- 9, and

Gwynneth -- is -- 6;

while object – is-colour – colour might contain

apple -- is-colour -- red, and

apple -- is-colour -- green.

Both strategies results in a large amount of flexibility when it comes to

the ‘design’ of the data storage, and not much needs to be known about

the data structure prior to implementation.
17

17: Additionally, missing values do not

take any space in such stores.

In terms of their implementation, the devil is in the details; note that

their extreme flexibility can also be a flaw [13], and it can be difficult to

query them and find the data of interest.

Graph Databases

In graph databases, the emphasis is placed on the relationships between

different types of objects, rather than between an object and the properties

of that object:

the objects are represented by nodes;

the relationships between these objects are represented by edges;

objects can have a relationship with other objects of the same type

(such as person is-a-sibling-of person).

They are fast and intuitive when using relation-based data, and might

in fact be the only reasonable option to use in that case as traditional

databases may slow to a crawl. But they are probably too specialized for

non relation-based data, and they are not yet widely supported.

Relational Databases

In relational databases, data is stored in a series of tables. Broadly

speaking, each table represents a type of object and some properties

related to this type of object; special columns in tables connect object

instances across tables (the entity-relationship model diagram (ERD) of

Figure 14.3 is an example of a relational database model).

For instance, a person lives in a house, which has a particular address.

Sometimes that property of the house will be stored in the table that

stores information about individuals; in other cases, it will make more

sense to store information about the house in its own table.

The form of relational databases are driven by the cardinality of the rela-

tionships (one-to-one, one-to-many, or many-to-many). These concepts

are illustrated in the cheat sheet found in Figure 14.8.

Relational databases are widely supported and well understood, and

they work well for many types of systems and use cases. Note however,

that it is difficult to modify them once they have been implemented and

that, ironically, they do not really handle relationships all that well.
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Figure 14.8: Entity-relationship model diagram (so-called) crow’s foot relationship symbols cheat sheet [18].
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Spreadsheets

We have said very little about keeping data in a single giant table

(spreadsheet, flat file), or multiple spreadsheets (we purposely kept it

out of the original list of modeling and structuring strategies).

On the positive side, spreadsheets are efficient when working with:

static data (e.g., it is only collected once), or

data about one particular type of object (e.g., scientific studies).

Most implementations of analytical algorithms require the data to be

found in one location (such as an R data frame). Since the data will

eventually need to be exported to a flat file anyway, why not remove the

middle step and work with spreadsheets in the first place?

The problem is that it is hard to manage data integrity with spreadsheets

over the long term when data is collected (and processed) continuously.

Furthermore, flat files are not ideal when working with systems involving

many different types of objects and their relationships, and they are not

optimized for querying operations.

For small datasets or quick work, flat files are often a reasonable option;

we should look for alternatives when working on large scale projects.

All in all, we have provided very little in the way of concrete information

on the topic of databases and data stores. Be aware that, time and

time again, projects have sunk when this aspect of the process has not

been taken seriously. Simply put, serious analyses cannot be conducted

properly without the right data infrastructure.

Implementing a Model

In order to implement the data/knowledge model, data engineers and

database specialists need access to data storage and management soft-
ware. Gaining this access might be challenging for individuals or small

teams as the required software traditionally runs on servers.

A server allows multiple users to access the database simultaneously,

from different client programs. The other side of the coin is that servers

make it difficult to ‘play’ with the database.

User-friendly embedded database software (vs client-server database

engines) such as SQLite can help overcome some of these obstacles. Data
management software lets human agents interact easily with their data –

in a nutshell, they are a human–data interface, through which

data can be added to a data collection;

subsets can be extracted from a data collection based on certain

filters/criteria, and

data can be deleted from (or edited in) a data collection.

But tempora mutantur, nos et mutamur in illis18
– we used to speak of:18: “Times change, and we change with

them.” C.Huberinus
databases and database management systems;

data warehouses (data management system designed to enable

analytics);
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data marts (used to retrieve client-facing data, usually oriented to

a specific business line or team);

Structured Query Language (SQL, a commonly-used program-

ming language that helps manage (and perform operations on)

relational databases),

we now speak of (see [28]):

data lakes (centralized repository in which to store structured/un-

structured data alike);

data pools (a small collection of shared data that aspires to be a

data lake, someday);

data swamps (unstructured, ungoverned, and out of control data

lake in which data is hard to find/use and is consumed out of

context, due to a lack of process, standards and governance);

database graveyards (where databases go to die?),

and data might be stored in non-traditional data structures, such as

Popular NoSQL database software include: ArangoDB, Mon-

goDB, Redis, Amazon DynamoDB, OrientDB, Azure Cos-

mosDB, Aerospike, etc.

Once a logical data model is complete, we need only:

1. instantiate it in the chosen software;

2. load the data, and

3. query the data.

Traditional relational databases use SQL; other types of databases either

use other query languages (AQL, semantic engines, etc.) or rely on

bespoke (tailored) computer programs (e.g. written in R, Python, etc.).

Once a data collection has been created, it must be managed, so that

the data remains accurate, precise, consistent, and complete. Databases
decay, after all; if a data lake turns into a data swamp, it will be difficult

to squeeze usefulness out of it!

Data and Information Architectures

There is no single correct structure for a given collection of data (or

dataset).

Rather, consideration must be given to:

the type of relationships that exist in the data/system (and are

thought to be important);

the types of analysis that will be carried out, and

the data engineering requirements relating to the time and effort

required to extract and work with the data.

The chosen structure, which stores and organizes the data, is called the

data architecture. Designing a specific architecture for a data collection

is a necessary part of the data analysis process. The data architecture is

typically embedded in the larger data pipeline infrastructure described

in Section 14.4.4 (Automated Data Pipelines).
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Figure 14.9: An implemented automated pipeline; note the transitions between the 5 stages.

As another example, automated data pipelines in the service delivery
context are usually implemented with 9 components (5 stages, and 4

transitions, as in Figure 14.9):

1. data collection

2. data storage

3. data preparation

4. data analysis

5. data presentation

Note that model validation could be added as a sixth stage, to combat

model “drift”.

By analogy with the human body, the data storage component, which

houses the data and its architecture, is the “heart” of the pipeline,
19

19: The engine that makes the pipeline go

whereas the data analysis component is its “brain.”
20

20: What does that make the other com-

ponents?

Most analysts are familiar with mathematical and statistical models

which are implemented in the data analysis component.

Data models, by contrast, tend to get constructed separately from the

analytical models at the data storage phase. This separation can be

problematic if the analytical model is not compatible with the data

model.
21

21: As an example, if an analyst needs

a flat file (with variables represented as

columns) to feed into an algorithm imple-

mented in R, say.

If the data comes from forms with various fields stored in a relational

database, the discrepancy could create difficulties on the data preparation

side of the process. Building both the analytical model and the data model

off of a common conceptual model might help the data science team

avoid such quandaries.

In essence, the task is to structure and organize both data and knowledge

so that it can be:

stored in a useful manner;

added to easily;

usefully and efficiently extracted from that store (the “extract-
transform-load” (ETL) paradigm), and

operated over by humans and computers alike (programs, bots,

A.I.) with minimal external modification.
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Figure 14.10: AFM image of 1,5,9-trioxo-

13-azatriangulene (left) and its chemical

structure model (right) [33].

14.5.3 Basic Data Analysis Techniques

Business Intelligence (BI) has evolved over the years:

1. we started to recognize that data could be used to gain a competitive
advantage at the end of the 19th century;

2. the 1950s saw the first business database for decision support;

3. in the 1980s and 1990s, computers and data became increasingly

available (data warehouses, data mining);

4. in the 2000s, the trend was to take business analytics out of the

hands of data miners (and other specialists) and into the hands of

domain experts,

5. now, big data and specialized techniques have arrived on the scene,

as have data visualization, dashboards, and software-as-service.

Historically, BI has been one of the streams contributing to modern-day

data science, via:

system of interest: the commercial realm, specifically, the market

of interest;

sources of data: transaction data, financial data, sales data, organi-

zational data;

goals: provide awareness of competitors, consumers and internal

activity and use this to support decision making,

culture and preferred techniques: data marts, key performance

indicators, consumer behaviour, slicing and dicing, business ‘facts’.

But no matter the realm in which we work, the ultimate goal remains the

same: obtaining actionable insight into the system of interest. This can

be achieved in a number of ways. Traditionally, analysts hope to do so by

seeking:

patterns – predictable, repeating regularities;

structure – the organization of elements in a system, and

generalization – the creation of general or abstract concepts from

specific instances (see Figure 14.10).

The underlying analytical hope is to find patterns or structure in the data

from which actionable insights arise.

While finding patterns and structure can be interesting in its own right

(in fact, this is the ultimate reward for many scientists), in the data science

context it is how these discoveries are used that trumps all.
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Variable Types

In the example of a conceptual model shown on page 891, we have

identified different types of variables. In an experimental setting, we

typically encounter:

control/extraneous variables – we do our best to keep these

controlled and unchanging while other variables are changed;

independent variables – we control their values as we suspect they

influence the dependent variables,

dependent variables – we do not control their values; they are

generated in some way during the experiment, and presumed

dependent on the other factors.

For instance, we could be interested in the plant height (dependent)

given the mean number of sunlight hours (independent), given the

region of the country in which each test site is located (control).

Data Types

Variables need not be of the same type. We may encounter:

numerical data – integers or numerics: 1, −7, 34.654, 0.04, etc.;

text data – strings of text, which may be restricted to a certain

number of characters, such as “Welcome to the park”, “AAAAA”,

“345”, “45.678”, etc.;

categorical data – are variables with a fixed number of values,

may be numeric or represented by strings, but for which there

is no specific or inherent ordering, such as (‘red’,‘blue’,‘green’),

(‘1’,‘2’,‘3’), etc.,

ordinal data – categorical data with an inherent ordering; unlike

integer data, the spacing between values is not well-defined (very

cold, cold, tepid, warm, super hot).

We use the following artificial dataset to illustrate some of the concepts.

Creating the artificial dataset

set.seed(0) # for replicability

n.sample = 165 # num. of observations

colour=factor(c("red","blue","green")) # var 1: colour

p.colour=c(40,15,5) # parameters

year=factor(c(2012,2013)) # var 2: year

p.year=c(60,40) # parameters

quarter=factor(c("Q1","Q2","Q3","Q4")) # var 3: quarter

p.quarter=c(20,25,30,35) # parameters

signal.mean=c(14,-2,123) # var 4: signal

p.signal.mean=c(5,3,1) # parameters

signal.sd=c(2,8,15)

p.signal.sd=c(2,3,4)
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s.colour <- sample(length(colour), # var 1: colour

n.sample, # sample

prob=p.colour,

replace=TRUE)

s.year <- sample(length(year), # var 2: year

n.sample, # sample

prob=p.year,

replace=TRUE)

s.quarter <- sample(length(quarter), # var 3: quarter

n.sample, # sample

prob=p.quarter,

replace=TRUE)

s.mean <- sample(length(signal.mean), # var 4: signal

n.sample, # sample (mean)

prob=p.signal.mean,

replace=TRUE)

s.sd <- sample(length(signal.sd), # var 4: signal

n.sample, # sample (sd)

prob=p.signal.mean,

replace=TRUE)

signal <- rnorm(n.sample, # var 4: signal

signal.mean[s.mean], # sample

signal.sd[s.sd])

new_data <- data.frame(colour[s.colour], # creating a

year[s.year], # data frame

quarter[s.quarter],

signal)

colnames(new_data) <- c("colour", # renaming the

"year", # variables

"quarter",

"signal")

new_data |> # displaying the

dplyr::slice_head(n = 6) # first 6 obs

ID colour year quarter signal

1 blue 2013 Q2 22.998

2 red 2012 Q1 12.456

3 red 2012 Q4 9.935

4 red 2012 Q3 5.047

5 blue 2013 Q2 6.142

6 red 2012 Q4 13.498

(Do you understand what the code does?)
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We can transform categorical into numeric data by generating frequency
counts of the different levels of the categorical variable; regular analysis

techniques is then used on the new numeric variable.
22

22: A similar approach underlies most

of modern text mining, natural language

processing, and categorical anomaly de-

tection. Information usually gets lost in

the process, which explains why meaning-

ful categorical analyses tend to stay fairly

simple.

table(new_data$colour)

colour Freq

blue 41

green 10

red 114

Categorical data plays a special role in data analysis:

in data science, categorical variables come with a pre-defined set

of values;

in experimental science, a factor is an independent variable with

its levels being defined (it may also be viewed as a category of

treatment),

in business analytics, these are called dimensions (with members).

However they are labeled, these variable can be used to subset or roll
up/summarize the data.

Hierarchical / Nested / Multilevel Data

When a categorical variable has multiple levels of abstraction, new

categorical variables can be created from these levels. We can view these

levels as new categorical variables, in a sense. The ‘new’ categorical

variable has pre-defined relationships with the more detailed level.

This is commonly the case with time and space variables – we can ‘zoom’

in or out, as needed, which allows us discuss the granularity of the data,

i.e., the ‘maximum zoom factor’ of the data. For instance, observations

could be recorded hourly, and then further processed (mean value, total,

etc.) at the daily level, the monthly level, the quarterly level, the yearly

level, etc., as seen below.

Let us start with the number of observations by year and quarter:

library(tidyverse) # to be able to use

# group_by() and summarise()

new_data |>

group_by(year, quarter) |>

summarise(n = n())

year quarter n year quarter n

2012 Q1 21 2013 Q1 14

2012 Q2 17 2013 Q2 11

2012 Q3 30 2013 Q3 20

2012 Q4 37 2013 Q4 15
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We can also roll it up to the number of observations by year:

new_data |> # no need to load tidyverse again

group_by(year) |>

summarise(n = n())

year n

2012 105

2013 60

Data Summaries

The summary statistics of variables can help analysts gain basic univari-
ate insights into the dataset (and hopefully, into the system with which

it is associated).

These data summaries do not typically provide the full picture and

connections/links between different variables are often missed altogether.

Still, they often give analysts a reasonable sense for the data.
23

23: At least for a first pass.

Common summary statistics include:

min – smallest value taken by a variable;

max – largest value taken by a variable;

median – “middle” value taken by a variable;

mean – average value taken by a variable;

mode – most frequent value taken by a variable;

# of obs – number of observations for a variable;

missing values – # of missing observations for a variable;

# of invalid entries – number of invalid entries for a variable;

unique values – unique values taken by a variable;

quartiles, deciles, centiles;

range, variance, standard deviation;

skew, kurtosis,

total, proportion, etc.

We can also perform operations over subsets of the data – typically over

its columns, in effect compressing or ‘rolling up’ multiple data values

into a single representative value, as below, say.

We start by creating a mode function (there isn’t one in R):

Defining the mode function

mode.R <- function(x) {

unique.x <- unique(x)

unique.x[which.max(tabulate(match(x, unique.x)))]

}

Data scientists often have to create their own routines/functions from

scratch; there is nothing wrong with borrowing from sites such as

StackOverflow, but it is important to make sure that we understand what

those routines do.
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The data can then also be summarized using:

Summarizing the data I

new_data |> # no need to load tidyverse anew

summarise(n = n(),

signal.mean=mean(signal),

signal.sd=sd(signal),

colour.mode=mode.R(colour))

n signal.mean signal.sd colour.mode

165 20.70894 38.39866 red

Typical roll-up functions include the ‘mean’, ‘sum’, ‘count’, and ‘variance’,

but these do not always give sensical outcomes: if the variable measures

a proportion, say, the sum of that variable over all observations is a

meaningless quantity, on its own.

We can apply the same roll-up function to many different columns,

thus providing a mapping (list) of columns to values (as long as the

computations all make sense – this might mean that all variables need to

be of the same type in some cases).

We can map the mode to some dataset variables:

Summarizing the data II

new_data |> # still no need to re-load the tidyverse

summarise(year.mode=mode.R(year),

quarter.mode=mode.R(quarter),

colour.mode=mode.R(colour))

year.mode quarter.mode colour.mode

2012 Q4 red

Datasets can also be summarized via contingency and pivot tables. A

contingency table is used to examine the relationship between two

categorical variables – specifically the frequency of one variable relative

to a second variable (this is also known as cross-tabulation).

Here is a contingency table, by colour and year:

Contingency table (by colour and year)

table(new_data$colour,new_data$year)

2012 2013

blue 21 20

green 6 4

red 78 36
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A contingency table, by colour and quarter:

Contingency table (by colour and quarter)

table(new_data$colour,new_data$quarter)

Q1 Q2 Q3 Q4

blue 5 8 16 12

green 2 0 5 3

red 28 20 29 37

A contingency table, by year and quarter:

Contingency table (by year and quarter)

table(new_data$year,new_data$quarter)

Q1 Q2 Q3 Q4

2012 21 17 30 37

2013 14 11 20 15

A pivot table, on the other hand, is a table generated in a software

application by applying operations (e.g. sum, count, mean) to variables,

possibly based on another (categorical) variable. Here is a pivot table of

signal characteristics by colour:

Pivot table (signal characteristics by colour)

new_data |> group_by(colour) |>

summarise(n = n(),

signal.mean=mean(signal),

signal.sd=sd(signal))

colour n signal.mean signal.sd

blue 41 25.58772 40.64504

green 10 30.79947 49.71225

red 114 18.06916 36.51887

Contingency tables are special instances of pivot tables, where the roll-up

function is count.
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Figure 14.11: Analysis and pattern-reveal through visualization.
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Analysis Through Visualization

Consider the broad definition of analysis as:

identifying patterns or structure, and

adding meaning to these patterns or structure by interpreting
them in the context of the system.

There are two general options to achieve this:

1. use analytical methods of varying degrees of sophistication, and/or

2. visualize the data and use the brain’s analytic (perceptual) power

to reach meaningful conclusions about these patterns.

At this point, we will only list some simple visualization methods that

are often (but not always) used to reveal patterns (see Figure 14.11):

scatter plots are probably best suited for two numeric variables;

line charts, for numeric variable and ordinal variable;

bar charts for one categorical and one numeric, or multiple cate-

gorical/nested categorical data,

boxplots, histograms, bubble charts, small multiples, etc.

An in-depth discussion of data visualization is given in Chapter 18 (Data
Visualization); best practices and a more complete catalogue are provided

in [12].

14.5.4 Common Statistical Procedures in R

The underlying goal of statistical analysis is to reach an understanding
of the data. In this section, we show how some of the most common basic
statistical concepts that can help analysts reach that goal are implemented

in R; a more thorough treatment of probability and statistics notions can

be found in Chapters 6 (Probability and Applications), 7 (Introduction to
Statistical Analysis), and 8 (Classical Regression Analysis).

Once the data is properly organized and visual exploration has begun

in earnest, the typical next step is to describe the distribution of each

variable numerically, followed by an exploration of the relationships

among selected variables.

The objective is to answer questions such as:

What kind of mileage are cars getting these days? Specifically, what’s

the distribution of miles per gallon (mean, standard deviation,

median, range, and so on) in a survey of automobile makes and

models?

After a new drug trial, what is the outcome (no improvement,

some improvement, marked improvement) for drug versus placebo

groups? Does the sex of the participants have an impact on the

outcome?

What is the correlation between income and life expectancy? Is it

significantly different from zero?

Are you more likely to receive imprisonment for a crime in different

regions of Canada? Are the differences between regions statistically

significant?
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Basic Statistics

When it comes to calculating descriptive statistics, R can basically do

it all. We start with functions that are included in the base installation.

We will then look for extensions that are available through the use of

user-contributed packages.

For illustrative purposes, we will use several of the variables from

the Motor Trend Car Road Tests (mtcars) dataset provided in the base

installation: we will focus on miles per gallon (mpg), horsepower (hp),

and weight (wt):

myvars <- c("mpg", "hp", "wt")

head(mtcars[myvars])

mpg hp wt

Mazda RX4 21.0 110 2.620

Mazda RX4 Wag 21.0 110 2.875

Datsun 710 22.8 93 2.320

Hornet 4 Drive 21.4 110 3.215

Hornet Sportabout 18.7 175 3.440

Valiant 18.1 105 3.460

Let us first take a look at descriptive statistics for all 32 models. In the

base installation, we can use the summary() function.

summary(mtcars[myvars])

mpg hp wt

Min.: 10.40 Min.: 52.0 Min.: 1.513

1st Qu.: 15.43 1st Qu.: 96.5 1st Qu.: 2.581

Median: 19.20 Median: 123.0 Median: 3.325

Mean: 20.09 Mean: 146.7 Mean: 3.217

3rd Qu.: 22.80 3rd Qu.: 180.0 3rd Qu.: 3.610

Max.: 33.90 Max.: 335.0 Max.: 5.424

The summary() function provides the minimum, maximum, quartiles,

and mean for numerical variables, and the respective frequencies for

factors and logical vectors. In base R, the functions apply() or sapply()

can be used to provide any descriptive statistics. The format in use is:

sapply(x, FUN, options)

where 𝑥 is the data frame and FUN is an arbitrary function. Optional

arguments are passed to FUN. Typical functions include:

mean()

sd()

var()
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min()

max()

median()

length()

range()

quantile()

fivenum()

The next example provides several descriptive statistics using sapply(),

including the skew and the kurtosis.

mystats <- function(x, na.omit=FALSE){

if (na.omit){

x <- x[!is.na(x)]}

m <- mean(x); n <- length(x); s <- sd(x)

skew <- sum((x-m)^3/s^3)/n; kurt <- sum((x-m)^4/s^4)/n - 3

return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))}

Let us apply mystats() to the data frame of interst.

sapply(mtcars[myvars], mystats)

mpg hp wt

n 32 32 32

mean 20.090625 146.6875 3.21725

stdev 6.026948 68.5628685 0.9784574

skew 0.610655 0.7260237 0.4231465

kurtosis −0.372766 −0.1355511 −0.0227108

We can plot the pairwise scatterplots for the three variables.

plot(mtcars[myvars])
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For cars in this sample, the mean mpg is 20.1, with a standard deviation

of 6.0. The distribution is skewed to the right (+0.61) and is somewhat

flatter than a normal distribution (−0.37). This is most evident if we build

histograms of the data.

hist(mtcars$mpg)

hist(mtcars$hp)

hist(mtcars$wt)

To omit missing values for the computations, we would use the option

na.omit=TRUE.

Since there are no missing observations in the dataset, we create a version

of mtcars with some missing values, then we provide a mystats()

summary.

Adding missing values

my.mtcars <- mtcars

my.mtcars[2,1] <- NA

my.mtcars[17,1] <- NA

sapply(my.mtcars[myvars], mystats, na.omit=TRUE)

mpg hp wt

n 30 32 32

mean 20.24 146.6875 3.21725

stdev 6.1461847 68.5628685 0.9784574

skew 0.5660728 0.7260237 0.4231465

kurt −0.4870340 −0.1355511 −0.0227108

Notice the changes in the mpg summary.

The same table can be obtained using the dplyr package functions instead

(skewness() and kurtosis() are available in e1071 package).

mpg = dplyr::summarise(mtcars, n=n(), mean=mean(mpg),

stdev=sd(mpg), skew=e1071::skewness(mpg),

kurt=e1071::kurtosis(mpg))

hp = dplyr::summarise(mtcars, n=n(), mean=mean(hp),

stdev=sd(hp), skew=e1071::skewness(hp),

kurt=e1071::kurtosis(hp))

wt = dplyr::summarise(mtcars, n=n(), mean=mean(wt),

stdev=sd(wt), skew=e1071::skewness(wt),

kurt=e1071::kurtosis(wt))
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pivot = t(rbind(mpg,hp,wt))

colnames(pivot) <- c("mpg","hp","wt")

mpg hp wt

n 32 32 32

mean 20.090625 146.6875 3.21725

stdev 6.026948 68.5628685 0.9784574

skew 0.610655 0.7260237 0.4231465

kurt −0.372766 −0.1355511 −0.0227108

Hmisc and pastecs

Several packages offer functions for descriptive statistics, including Hmisc

and pastecs (as do dplyr and e1071).

Hmisc’s describe() function returns the number of variables and obser-

vations, the number of missing and unique values, the mean, quantiles,

and the five highest and lowest values.

Hmisc::describe(mtcars[myvars])

mtcars[myvars]

3 Variables 32 Observations

--------------------------------------------------------------------------------

mpg

n missing distinct Info Mean Gmd .05 .10

32 0 25 0.999 20.09 6.796 12.00 14.34

.25 .50 .75 .90 .95

15.43 19.20 22.80 30.09 31.30

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9

--------------------------------------------------------------------------------

hp

n missing distinct Info Mean Gmd .05 .10

32 0 22 0.997 146.7 77.04 63.65 66.00

.25 .50 .75 .90 .95

96.50 123.00 180.00 243.50 253.55

lowest : 52 62 65 66 91, highest: 215 230 245 264 335

--------------------------------------------------------------------------------

wt

n missing distinct Info Mean Gmd .05 .10

32 0 29 0.999 3.217 1.089 1.736 1.956

.25 .50 .75 .90 .95

2.581 3.325 3.610 4.048 5.293

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424

--------------------------------------------------------------------------------

The pastecs package includes the function stat.desc() that provides

a wide range of descriptive statistics:
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stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)

where 𝑥 is a data frame or a time series.

If basic=TRUE (the default), the number of values, null values, missing

values, minimum, maximum, range, and sum are provided. If desc=TRUE

(also the default), the median, mean, standard error of the mean, 95%

confidence interval for the mean, variance, standard deviation, and

coefficient of variation are also provided. Finally, if norm=TRUE (not the

default), normal distribution statistics are returned, including skewness

and kurtosis (with statistical significance) and the Shapiro–Wilk test of

normality.

The 𝑝 option is used to calculate the confidence interval for the mean (.95

by default).

For instance, we may obtain:

pastecs::stat.desc(mtcars[myvars])

mpg hp wt

nbr.val 32 32 32

nbr.null 0 0 0

nbr.na 0 0 0

min 10.4 52 1.513

max 33.9 335 5.424

range 23.5 283 3.911

sum 642.9 4694 102.952

median 19.2 123 3.325

mean 20.0906250 146.6875000 3.2172500

SE.mean 1.0654240 12.1203173 0.1729685

CI.mean.0.95 2.1729465 24.7195501 0.3527715

var 36.3241028 4700.8669355 0.9573790

std.dev 6.0269481 68.5628685 0.9784574

coef.var 0.2999881 0.4674077 0.3041285

We take this opportunity to caution users against relying too heavily on

a single (or even a few) specific packages.

Correlations

Correlation coefficients are used to describe relationships among quan-

titative variables. The sign ± indicates the direction of the relationship

(positive or inverse), and the magnitude indicates the strength of the

relationship (0: no linear relationship; 1: perfect linear relationship).

In this section, we look at a variety of correlation coefficients, as well as

tests of significance. We will use the state.x77 dataset available in the

base R installation. It provides data on the population, income, illiteracy

rate, life expectancy, murder rate, and high school graduation rate for the

50 US states in 1977. There are also temperature and land-area measures,

but we will not be using them.
24

24: In addition to the base installation,

we will also be using the psych and ggm

packages.
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R can produce a variety of correlation coefficients, including:

Pearson’s product-moment coefficient (degree of linear relation-

ship between two quantitative variables);

Spearman’s rank-order coefficient (degree of relationship between

two rank-ordered variables), and

Kendall’s tau coefficient (nonparametric measure of rank correla-

tion).

The cor() function produces all three correlation coefficients, whereas

the cov() function provides covariances. There are many options, but a

simplified format for producing correlations is

cor(x, use=OPT , method=METHOD)

where 𝑥 is a matrix or a data frame, and use specifies the handling of

missing data; its options are

all.obs (assumes no missing data);

everything (any correlation involving a case with missing values

will be set to missing);

complete.obs (listwise deletion), and

pairwise.complete.obs (pairwise deletion).

The method specifies the type of correlation; its options are pearson,

spearman, and kendall.

The default options are use ="everything" and method= "pearson".

For the built-in dataset state.x77, which contains socio-demographic

information about the 50 U.S. states from 1977, we find the following

correlations:

Correlations in the state.x77 data
states <- state.x77[,1:6]

cor(states)

Population Income Illiteracy Life Exp Murder HS Grad

Population 1.0000000 0.2082276 0.1076224 −0.0680520 0.3436428 −0.0984897

Income 0.2082276 1.0000000 −0.4370752 0.3402553 −0.2300776 0.6199323

Illiteracy 0.1076224 −0.4370752 1.0000000 −0.5884779 0.7029752 −0.6571886

Life Exp −0.0680520 0.3402553 −0.5884779 1.0000000 −0.7808458 0.5822162

Murder 0.3436428 −0.2300776 0.7029752 −0.7808458 1.0000000 −0.4879710

HS Grad −0.0984897 0.6199323 −0.6571886 0.5822162 −0.4879710 1.0000000

This produces the Pearson product-moment correlation coefficients. We

can see, for example, that a strong positive correlation exists between

income and HS Grad rate and that a strong negative correlation exists

between Illiteracy and Life Exp.

A partial correlation is a correlation between two quantitative variables,

controlling for one or more other quantitative variables;
25

the pcor() 25: The use of partial correlations is com-

mon in the social sciences, but not so much

in other fields.

function in the ggm package provides partial correlation coefficients (this
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package is not installed by default, so it must be installed before first use).

The format is:

pcor(u, S)

where u is a vector of integers, with the

first two entries representing the indices of the variables to be

correlated, and

remaining numbers being the indices of the conditioning variables

(that is, the variables being partialled out),

and where S is the covariance matrix among the variables.

Partial correlations in the state.x77 data I
colnames(states)

ggm::pcor(c(1,5,2,3,6), cov(states))

"Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"

0.3462724

In this case, 0.346 is the correlation between Population (variable 1)

and the Murder rate (variable 5), controlling for the influence of Income,

Illiteracy, and HS Grad (variables 2, 3, and 6 respectively).

We see that the partial correlations only change slightly if we condition

against a different subset of values.

Partial correlations in the state.x77 data II
ggm::pcor(c(1,5,2,3), cov(states))

ggm::pcor(c(1,5,2), cov(states))

0.3621683

0.4113621

How do these three values compare to the direct correlation between

Population and Murder?

Simple Linear Regression

In many ways, regression analysis is at the heart of statistics. It is a broad

term for a set of methodologies used to predict a response variable (also

called a dependent, criterion, or outcome variable) from one or more

predictor variables (also called independent or explanatory variables).

In general, regression analysis can be used to:

identify the explanatory variables that relate to a response;

describe the form of the relationships involved, and

provide an equation for predicting the response variable from the

explanatory variables.
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For example, an exercise physiologist might use regression analysis to

develop an equation for predicting the expected number of calories a

person will burn while exercising on a treadmill.

In this example, the response variable is the number of calories burned

(calculated from the amount of oxygen consumed), say, and the predictor

variables might include:

duration of exercise (minutes);

percentage of time spent at their target heart rate;

average speed (mph);

age (years);

gender, and

body mass index (BMI).

From a practical point of view, regression analysis could help answer

questions such as:

how many calories can a 30-year-old man with a BMI of 28.7 expect

to burn if he walks for 45 minutes at an average speed of 4 miles

per hour and stays within his target heart rate 80% of the time?

what’s the minimum number of variables needed in order to

accurately predict the number of calories a person will burn when

walking?

R has powerful and comprehensive features for fitting regression models

– the abundance of options can be confusing. The basic function for fitting

a linear model is lm(). The format is

fit <- lm(formula, data)

where formula describes the model to fit and data is the data frame

containing the data that is used in fitting the model. The resulting object

(fit, in this case) is a list that contains extensive information about the

fitted model.

The formula is typically written as

Y ~ X1 + X2 + ... + Xk

where ~ separates the response variable on the left from the predictor

variables on the right, and the predictor variables are separated by +

symbols.

In addition to lm(), there are several functions that are useful when

generating regression models. Each of these functions is applied to the

object returned by lm() in order to generate additional information based

on the fitted model.

As an example, the women dataset in R’s base installation provides the

heights and weights for a set of 15 women aged 30 to 39. Assume that

we are interested in predicting the weight of an individual from their

height.
26

26: An equation for predicting weight

from height could help identifying indi-

viduals who are possibly overweight (or

underweight), say.
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Function Action

summary() Displays detailed results for the fitted model

coefficients() Lists the model parameters (intercept and slopes) for the fitted model

confint() Provides confidence intervals for the model parameters (95% by default)

residuals() Lists the residual values in a fitted model

anova() Generates an ANOVA table for a fitted model, or to compare 2+ fitted models

plot() Generates diagnostic plots for evaluating the fit of a model

fitted() Extracts the fitted values for the dataset

predict() Uses a fitted model to predict response values for a new dataset

The linear regression on the data is obtained as follows:

Regression on the women dataset

fit <- lm(weight ~ height, data=women)

summary(fit)

Call:

lm(formula = weight ~ height, data = women)

Residuals:

Min 1Q Median 3Q Max

-1.7333 -1.1333 -0.3833 0.7417 3.1167

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
height 3.45000 0.09114 37.85 1.09e-14 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.525 on 13 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.9903

F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

From the output, you see that the prediction equation is

ŵeight = −87.52 + 3.45 × height.

Because a height of 0 is impossible, there is no sense in trying to give a

physical interpretation to the intercept – it merely becomes an adjustment

constant (in other words, 0 is not in the domain of the model).

From the P(>|t|) column, we see that the regression coefficient (3.45) is

significantly different from zero (𝑝 < 0.001), which indicates that there’s

an expected increase of 3.45 pounds of weight for every 1 inch increase

in height. The multiple R-squared coefficient (0.991) indicates that the

model accounts for 99.1% of the variance in weights.

The individual weights (in pound) are:



14.5 Getting Insight From Data 937

women$weight

115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

and their fitted values (and residuals) are

fitted(fit)

residuals(fit)

fitted:

1 2 3 4 5 6 7 8

112.5833 116.0333 119.4833 122.9333 126.3833 129.8333 133.2833 136.7333

9 10 11 12 13 14 15

140.1833 143.6333 147.0833 150.5333 153.9833 157.4333 160.8833

residuals:

1 2 3 4 5 6 7 8

2.4167 0.9667 0.5167 0.0667 -0.3833 -0.8333 -1.2833 -1.7333

9 10 11 12 13 14 15

-1.1833 -1.6333 -1.0833 -0.5333 0.0167 1.5667 3.1167

We can see that the linear fit is decent (although the residual structure

suggests that a quadratic fit would probably be better).

plot(women$height,women$weight,

xlab="Height (in inches)", ylab="Weight (in lbs)")

abline(fit)

Bootstrapping

Bootstrapping is a powerful and elegant approach to estimating the

sampling distribution of specific statistics. It can be implemented in many

situations where asymptotic results are difficult to find or otherwise

unsatisfactory.
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Bootstrapping proceeds using three steps:

1. resample the dataset (with replacement) many times over (typically

on the order of 10,000);

2. calculate the desired statistic from each resampled dataset,

3. use the distribution of the resampled statistics to estimate the

standard error of the statistic (normal approximation method) or

construct a confidence interval using quantiles of that distribution

(percentile method).

There are several ways to bootstrap in R. As an example, say that we

want to estimate the standard error and 95% confidence interval for the

coefficient of variation (CV), defined as 𝜎/𝜇, for a random variable 𝑋.

We illustrate the procedure with 1000 generated values of 𝑋 ∼ N(1, 1).

set.seed(0) # for replicability

x = rnorm(1000, mean=1, sd=1)

hist(x)

On this sample, the coefficient of variation is:

(cv=sd(x)/mean(x))

1.014057

We must define a function to compute the statistic of interest in R.

Defining the coefficient of variation in R

cvfun = function(x) {

return(sd(x)/mean(x))

}
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The replicate() function is the base R tool for repeating function calls.

We nest a call to cvfun() and a call to sample the data with replacement

using the sample() function (with 50000 replicates).

Bootstrap distribution of CV(x)

res = replicate(50000, cvfun(sample(x, replace=TRUE)))

hist(res)

We can also compute quantiles, as below:

95% Confidence Interval for CV(x)

quantile(res, c(.025, .975))

2.5% 97.5%

0.9432266 1.0917185

This seems reasonable, as we would expect the CVs to be centered around 1,

given that 𝜇 = 𝜎 = 1 (in this example).

The percentile interval is easy to calculate from the observed bootstrapped

statistics. If the distribution of the bootstrap samples is approximately

normally distributed, a 𝑡−interval could be created by calculating the

standard deviation of the bootstrap samples and finding the appropriate

multiplier for the confidence interval. Plotting the bootstrap sample

estimates is helpful to determine the form of the bootstrap distribution.

The framework can also be extended to include non-linear models, cor-
related variables, probability estimation, and/or multivariate models;

any book on statistical analysis contains at least one chapter or two on

the topic (see [37, 11], for instance).

We will not pursue the topic further except to say that regression analysis

and bootstrapping are two of the arrows that every data scientist should

have in their quiver.
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Figure 14.12: The trousers of classification.

14.5.5 Quantitative Methods

We provided a list of quantitative methods in Section 14.4.2 (Data Collection,
Storage, Processing, and Modeling); we finish this section by expanding on

a few of them.

Classification and Supervised Learning Tasks

Classification is one of the cornerstones of machine learning. Instead

of trying to predict the numerical value of a response variable (as in

regression), a classifier uses historical data27
to identify general patterns27: This training data usually consists of

a randomly selected subset of the labeled
(response) data.

that could lead to observations belonging to one of several pre-defined
categories.

For instance, if a car insurance company only has resources to investigate

up to 20% of all filed claims, it could be useful for them to predict:

whether a claim is likely to be fraudulent;

whether a customer is likely to commit fraud in the near future;

whether an application for a policy is likely to result in a fraudulent

claim,

the amount by which a claim will be reduced if it is fraudulent, etc.

Analysts and machine learning practitioners use a variety of different

techniques to carry this process out (see Figure 14.12 for an illustration,

and Chapters 19 (Introduction to Machine Learning) and 21 (Focus on
Classification), as well as [34, 3, 2] for more details), but the general steps

always remain the same:

1. use training data to teach the classifier;

2. test/validate the classifier using hold-out data,

3. if it passes the test, use the classifier to classify novel instances.
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Some classifiers (such as deep learning neural nets) are ‘black boxes’:

they might be very good at classification, but they are not explainable. In

some instances, that is an acceptable side effect of the process, in others,

it might not be – if an individual is refused refugee status, say, they might

rightly want to know why.

Unsupervised Learning Techniques

The hope of artificial intelligence is that intelligent behaviours will

eventually be able to be automated. For the time being, however, that is

still very much a work in progress.
28

28: One of the challenges in that process is

that not every intelligent behaviour arises

from a supervised process.Classification, for instance, is the prototypical supervised task: can we

learn from historical/training examples? It seems like a decent approach

to learning: evidence should drive the process.

But there are limitations to such an approach: it is difficult to make a

conceptual leap solely on the basis of training data [if our experience in

learning is anything to go by. . . ], if only because the training data might

not be representative of the system, or because the learner target task is

too narrow.

In unsupervised learning, we learn without examples, based solely on

what is found in the data. There is no specific question to answer (in the

classification sense), other than “what can we learn from the data?”

Typical unsupervised learning tasks include:

clustering (finding novel categories);

association rules mining,

recommender systems, etc.

For instance, an online bookstore might want to make recommendations

to customers concerning additional items to browse (and hopefully pur-

chase) based on their buying patterns in prior transactions, the similarity

between books, and the similarity between customer segments:

but what are those patterns?

how do we measure similarity?

what are the customer segments?

can any of that information be used to create promotional bundles?

etc.

The lack of a specific target makes unsupervised learning much more

difficult than supervised learning, as does the challenges of validating
the results.

29
29: This contributes to the proliferation of

clustering algorithms and cluster quality

metrics.More general information and details on clustering can be found in

Chapters 19 (Introduction to Machine Learning) and 22 (Focus on Clustering),

as well as in [4, 2, 77].
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Figure 14.13: Real S&P stock price index (red), earnings (blue), and dividends (green), together with interest rates (black), from 1871 to 2009

[R.J. Shiller].

Other Machine Learning Tasks

These scratch but a minuscule part of the machine learning ecosystem.

Other common tasks include [59]:

profiling and behaviour description;

link prediction;

data reduction,

influence/causal modeling, etc.

to say nothing of more sophisticated learning frameworks (semi-supervised

learning, reinforcement learning [72], deep learning [30], etc.).

Time Series Analysis and Process Monitoring

Processes are often subject to variability:

variability due the cumulative effect of many small, essentially

unavoidable causes, such as regular variations in the weather or

in the quality of materials (a process that only operates with such

common causes is said to be in (statistical) control),
variability due to special causes, such as improperly adjusted

machines, poorly trained operators, defective materials, etc. (the

variability is typically much larger for special causes, and such

processes are said to be out of (statistical) control).

The aim of statistical process monitoring (SPM) is to identify occurrence

of special causes. This is often done via time series analysis.
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Figure 14.14: Sales (in $10,000’s) for 3 different products – years (left), quarters (middle, but labeled in years), weeks (right).

Consider 𝑛 observations {𝑥1 , . . . , 𝑥𝑛} arising from some collection of

processes. In practice, the index 𝑖 is often a time index or a location
index, i.e., the 𝑥𝑖 are observed in sequence or in regions.

30
The processes 30: In the first situation, the observations

form a time series.
that generate the observations could change from one time/location to

the next due to:

external factors (war, pandemic, election results, etc.), or

internal factors (policy changes, modification of manufacturing

process, etc.).

In such case, the mean and standard deviation alone might not provide a

useful summary of the situation.

To get a sense of what is going on with the data (and the associated

system), it could prove preferable to plot the data in the order that it
has been collected (or according to geographical regions, or both). The

horizontal coordinate would then represent:

the time of collection 𝑡 (order, day, week, quarter, year, etc.), or

the location 𝑖 (country, province, city, branch, etc.).

The vertical coordinate represents the observations of interest 𝑥𝑡 or 𝑥𝑖
(see Figure 14.13 for an example). In process monitoring terms, we may

be able to identify potential special causes by identifying trend breaks,

cycles discontinuities, or level shifts in time series.

For instance, consider the three time series of Figure 14.14.

in the first example (left), there are occasional drops in sales from

one year to the next, but the upward trend is clear – we see the

importance of considering the full time series; if only the last two

points are presented to stockholders, they might conclude that

action is needed, whereas the whole series paints a rosier outlook;

in the second case (middle), there is a cyclic effect with increases

from Q1 to Q2 and from Q2 to Q3, but decreases from Q3 to Q4

and from Q4 to Q1. Overall, we also see an upward trend – the

presence of regular patterns is a positive development,

finally, in the last example (right), something clearly happened

after the tenth week, causing a trend level shift. Whether it is due

to internal or external factors depends on the context, which we

do not have at our disposal, but some action certainly seems to be

needed.
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We might also be interested in using historical data to forecast the future

behaviour of the variable. These are the familiar analysis goals:

finding patterns in the data, and

creating a (mathematical) model that captures the essence of these

patterns.

Time series patterns can be quite complex and must be broken down
into multiple component models (trend, seasonal, irregular, etc.).

31
31: Typically, this can be achieved with

fancy analysis methods, but it is not a

simple topic, in general (some details can

be found in Chapter 9, Time Series and
Forecasting) – software libraries can help.

Anomaly Detection

The special points from process monitoring are anomalous in the sense

that something unexpected happens there, something that changes the

nature of the data pre- and post-break.

In a more general context, anomalous observations are those that are

atypical or unlikely. From an analytical perspective, anomaly detection

can be approached using supervised, unsupervised, or conventional

statistical methods.

The discipline is rich and vibrant (and the search for anomalies can end

up being an arms race against the “bad guys”), but it is definitely one for

which analysts should heed contextual understanding – blind analysis

leads to blind alleys!
32

32: A more thorough treatment is pro-

vided in Chapter 26 (Anomaly Detection
and Outlier Analysis).

14.5.6 Quantitative Fallacies

Quantitative fallacies and misinterpretations are a consequence of our

notoriously poor skills at quantitative interpretation, which manifest

themselves through incorrect reasoning or the misuse of statistics (by

design or by accident).

Correlation is not causation: causality is one kind of correlation

but correlation is not necessarily causal – it’s conceivable that a man

who purchases diapers also decides to buy beer, but the purchase

of diapers does not cause the purchase of beer. The statement is

sometimes extended to imply that while correlation is not causation,

it can be highly suggestive.

Extreme patterns can mislead: rare patterns need to be considered

separately from the rest of the data. They are either invalid patterns

and need to be removed altogether, or interesting and they could

reveal that the story has more depth. The presence of extreme

patterns or cases in the modeling process could introduce biases to

the model and the final model is less likely to be a good fit for the

data. For instance, a severe snowstorm hit Ottawa on Feb 16, 2016,

causing a large number of road collisions – if we want to predict

the number of road collisions on an average day in Ottawa, keeping

this day in the model may skew the results.

Small effects can be significant: a statistically significant result

does not need to be large, it just needs to be unlikely to be due to

chance alone. The terminology is partly to blame for the confusion:

in the statistical context, significance is not the same as importance.
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Leaving a study’s range: a fallacy can occur when an assumption

is replaced by a seemingly similar one which turns out not to be

interchangeable. For instance, when a snow storm drops 20cm of

snow in Ottawa, traffic may be delayed slightly, but it’s business

as usual for most citizens; we might expect a similar reaction in

Winnipeg, but the same 20cm would paralyze Beĳing and block

sewers. The effects of a snow storm may not be transferable.

There is a human component to any analytical activity: it is

impossible to avoid human bias altogether when analyzing data.

The ultimate choice of explanatory parameters or of the final model

(to name but these two) can never be done with complete and total

detachment.

Odd results sometimes happen: the patterns in subgroups of the

data may not align with patterns in the entire dataset, thanks to

Simpson’s paradox (see Figure 14.15).

Figure 14.15: Simpson’s paradox: the slope

of the line of best fit in each of the two

subgroups (blue and red) is positive, while

the slope of the line of best fit for the

entire dataset (black) is negative [author

unknown].

Keeping the base rate in mind: the base rate fallacy occurs when

the underlying characteristics of a subgroup are ignored. As an

example, the likelihood that an individual will die of lung cancer

depends on whether he or she is a smoker; if this information is

not known, the prediction will also depend on the likelihood of the

individual being a smoker. This fallacy is best avoided through the

application of Bayesian analysis.

Randomness plays a role: if a situation has occurred more fre-

quently in the past, it is possible that it will be more likely to happen

again in the future, but it is also possible that it happened more

frequently in the past by chance alone. Statistical analysis will help

to separate the Gambler’s fallacy from the presence of a signal in

the data.

Misinterpretation of 𝑝−values: the 𝑝−value reveals the probability

of observing a result given that the null hypothesis is true, rather

than the probability that the null hypothesis is true. As an example,

suppose a Department wants to find out whether a reported

increase in efficiency is due to the implementation of a new policy;

the null hypothesis would be that the new policy has no effect on

efficiency. Using available data, the model produces a 𝑝−value of

0.05; we cannot conclude that there is a 95% probability that the

null hypothesis is false and that the policy change had an effect on

efficiency. We can only conclude that there is a 5% probability that

our model would show an effect even if none was present.

There is a lot more to say on the topic of data analysis – we will delve

into various topics in detail in subsequent chapters.
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14.6 Exercises

1. Are the following examples of good questions? Are they vague or specific? What are the ranges of

answers we could expect? How would you improve them?

a) How does rain affect goal percentage at a soccer match?

b) Did the Toronto Maple Leafs beat the Edmonton Oilers?

c) Did you like watching the Tokyo Olympics?

d) What types of recovery drinks do hockey players drink?

e) How many medals will Canada win at the Paris 2024 Olympics?

f) Should we fund the Canadian Basketball team more than the Canadian Hockey team?

2. Write a paper discussing some of the ethical issues surrounding the use of artificial intelligence (A.I.),

data science (D.S.), and/or machine learning (M.L.) algorithms in the public sector, the private sector,

or in academia.

a) Establish a list of the 3 most important ethical principles that the use of such algorithms should

abide by. Explain why you have selected each of these principles.

b) Describe (at least) 2 instances of the use of A.I./D.S./M.L. in the public sector, the private sector, or

in academia, when the ethical principles you have chosen were violated. Discuss how the failure

to abide by your selected ethical principles have caused (or could cause) harm to individuals,

organizations, countries, etc.

c) Suggest how the projects discussed above could have been modified so that their use of

A.I./D.S./M.L. algorithms would abide by your selected ethical principles.

3. Provide additional data summaries and some simple visual summaries of the artificial dataset of pages

920-921.

4. Select a data project of interest to you (either personally or professionally) and provide a first planning

draft for it, touching on the topics discussed in this module and in Chapter 13 (Non-Technical Aspects of
Quantitative and Data Work). The following questions can help guide your proposal:

a) What are some questions associated with the project?

b) What is the conceptual model of the underlying situation?

c) What kind of dataset(s) exist that could help you answer these questions?

d) Are there data or analytical limitations?

e) Do you need to collect new data to handle such questions?

f) How is the data stored/accessed? What are the infrastructure requirements?

g) What do deliverables look like?

h) How would successes be quantified/qualified?

i) What are your timelines and availability?

j) What skillsets are required to work on this project?

k) Would you work on this alone or as part of a team?

l) How costly would it be to initiate and complete this project?

m) What does the data analysis pipeline look like?

n) What software and analytical methods will be used?

5. The file cities.txt contains population information about a country’s cities. A city is classified

as “small” if its population is below 75K, as “medium” if it falls between 75K and 1M, and as “large”

otherwise.

a) Locate and load the file into the workspace of your choice. How many cities are there? How many

in each group?

b) Display summary population statistics for the cities, both overall and by group.

6. Find examples of recent “Data in the News” stories. Were they successes or failures? What social

consequences could emerge from the technologies described in the stories?

7. In what format is your organization’s data available? Are you able to access it easily? Is it updated

regularly? Are there data dictionaries? Have you read them?

https://www.data-action-lab.com/wp-content/uploads/2021/08/cities.txt
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8. Consider the following situation: you are away on business and you forgot to hand in a very important

(and urgently required) architectural drawing to your supervisor before leaving. Your office will send

an intern to pick it up in your living space. How would you explain to them, by phone, how to find the

document? If the intern has previously been in your living space, if their living space is comparable

to yours, or if your spouse is at home, the process may be sped up considerably, but with somebody

for whom the space is new (or someone with a visual impairment, say), it is easy to see how things

could get complicated. Time is of the essence – you and the intern need to get the job done correctly as

quickly as possible. What is your strategy?

9. Translate the cognitive biases to analytical contexts. What cognitive biases are you, your team, and your

organization most susceptible to? Least?

10. Research the recent data ethics scandals involving Volkswagen, Amazon, Whole Foods Markets,

Cambridge Analytica, Ashley Madison, General Motors, or any other organization. What transpired?

Who was affected? What were the consequences to the general public, the organization, the data

community? How could it have been avoided?

11. Establish a statement of ethics for your data work. Are there areas that you are unwilling to work on?

12. The remaining exercises use the Gapminder Tools (there is also an offline version ).

a) Take some time to explore the tool. In the online version, the default starting point is a bubble

chart of 2020 life expectancy vs. income, per country (with bubble size associated with total

population). In the offline version, select the “Bubbles” option.

b) Can you identify the available variable categories and some of the variables? [You may need to

dig around a bit.]

c) Why do you think that Gapminder has selected Life Expectancy and Income as the default plotting

variables?

d) Replace Life Expectancy by Babies per woman. Observe and discuss the changes from the default

plot.

e) Formulate a few questions that could be answered with the default data.

f) Formulate a few questions that could be answered using some of the other variables.

g) At what point in the data science workflow do you think that visualizations of this nature could

be useful?

h) Do these visualizations provide a sound understanding of the system under investigation (the

geopolitical Earth)?

i) What do you think the data sources are for the underlying dataset? [You may need to dig around

the internet to answer this question].

j) Are all variables and measurements equally trustworthy? How could you figure this out?

k) Is the underlying dataset structured or unstructured?

l) Provide a potential data model for the dataset.

m) What are the types of the 4 default variables (Life Expectancy, Income, Population, World Regions)?

n) Play around with the charts for a bit. Can you find pairs of variables that are positively correlated?

Negatively correlated? Uncorrelated?

o) Among those variables that are correlated, do any seem to you to exhibit a dependent-independent

relationship? How could you identify such pairs?

p) Can you provide an eyeball estimate of the mean, the median, and the range of various numerical

variables?

q) Can you provide an eyeball estimate of the mode of the categorical variables?

r) Can you identify epochal moments (special temporal points) in the data where a shift occurs, say?

s) Is the tool and its underlying dataset useable? What factors does your answer depend on?

https://www.gapminder.org/tools/
https://www.gapminder.org/tools-offline
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