
Data Preparation 15
15.1 Introduction . . . . . . . . . 951
15.2 General Principles . . . . . . 952

Data Cleaning Approaches 952
Pros and Cons . . . . . . . . 952
Tools and Methods . . . . . 953

15.3 Data Quality . . . . . . . . . 954
Common Error Sources . . . 955
Detecting Invalid Entries . 955

15.4 Missing Values . . . . . . . . 957
Missing Value Mechanisms 957
Imputation Methods . . . . 958
Multiple Imputation . . . . 965

15.5 Anomalous Observations . 966
Anomaly Detection . . . . . 967
Outlier Tests . . . . . . . . . 967
Visual Outlier Detection . . 970

15.6 Data Transformations . . . . 972
Common Transformations . 973
Box-Cox Transformations . 975
Scaling . . . . . . . . . . . . . 979
Discretizing . . . . . . . . . . 979
Creating Variables . . . . . . 980

15.7 Example: Algae Blooms . . 980
Problem Description . . . . 980
Loading the Data . . . . . . 981
Summary & Visualization . 982
Data Cleaning . . . . . . . . 993
Principal Components . . . 997

15.8 Exercises . . . . . . . . . . . . 999
Chapter References . . . . 1000

by Patrick Boily, with contributions from Jen Schellinck

Once raw data has been collected and stored in a database or a dataset,

the focus should shift to data cleaning and processing.

This requires testing for soundness and fixing errors, designing and

implementing strategies to deal with missing values and outlying/in-

fluential observations, as well as low-level exploratory data analysis

and visualization to determine what data transformations and dimen-

sion reduction approaches will be needed before embarking on a more

sophisticated path.

In this chapter, we establish the essential elements of data cleaning and

data processing.

15.1 Introduction

Martin K: Data is messy, Alison.

Alison M: Even after it’s been cleaned?

Martin K: Especially after it’s been cleaned.

(P. Boily, J. Schellinck, The Great Balancing Act [unpublished]).

Data cleaning and data processing are essential aspects of quantitative

analysis projects; analysts and consultants should be prepared to spend

up to 80% of their time on data preparation, keeping in mind that:

processing should NEVER be done on the original dataset – make

copies along the way;

ALL cleaning steps need to be documented;

if too much of the data requires cleaning up, the data collection

procedure might need to be revisited, and

records should only be discarded as a last resort.

Another thing to keep in mind is that cleaning and processing may need

to take place more than once depending on the type of data collection

(one pass, batch, continuously), and that that it is essentially impossible

to determine if all data issues have been found and fixed.

Note: in this chapter, we are assuming that the datasets of interest contain

only numerical and/or categorical observations. Additional steps must

be taken when dealing with unstructured data, such as text or images

(we’ll have more to say on this topic later).
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15.2 General Principles

Dilbert: I didn’t have any accurate numbers, so I just made

up this one. Studies have shown that accurate numbers aren’t

any more useful that the ones you make up.

Pointy-Haired Boss: How many studies showed that?

Dilbert: [beat] Eighty-seven.

(S. Adams, Dilbert , 8 May 2008)

15.2.1 Data Cleaning Approaches

We recognize two main philosophical approaches to data cleaning and

validation:

methodical, and

narrative.

The methodical approach consists in running through a checklist of

potential issues and flagging those that apply to the data.

The narrative approach, on the other hand, consists in exploring the

dataset while searching for unlikely or irregular patterns.

Which approach the consultant/analyst opts to follow depends on a

number of factors, not the least of which is the client’s needs and views

on the matter – it is important to discuss this point with the clients.

15.2.2 Pros and Cons

The methodical approach focuses on syntax; the checklist is typically

context-independent, which means that it (or one of its subsets) can be

reused from one project to another – this makes data analysis pipelines

easy to implement and automate. In the same vein, this approach allows

for common errors to be easily identified.

On the flip side, the checklist may be quite extensive and the entire

process may prove time-consuming, but the biggest disadvantage of the

methodical approach is that it makes it difficult to identify new types of
errors.

In contrast, the narrative approach focuses on semantics; even false starts

may simultaneously produce data understanding prior to an eventual

switch to a more mechanical approach.

It is easy, however, to miss important (and perhaps obvious) sources of

errors as well as invalid observations when the datasets have a large
number of features.

There is an additional downside: domain expertise, coupled with the

narrative approach, may bias the process by neglecting “uninteresting”

areas of the dataset – it takes a special person to spend time on potentially

barren lands when they know that greener pastures are available just

over yonder.

http://dilbert.com/strip/2008-05-08
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Figure 15.1: Data cleaning bingo card [J.

Schellinck].

15.2.3 Tools and Methods

A non-exhaustive list of common data issues can be found in the Data
Cleaning Bingo Card (see Figure 15.1). Other methods include:

visualizations – which may help easily identify observations that

need to be further examined;

data summaries – # of missing observations; 5-pt summary, mean,

standard deviation, skew, kurtosis, for numerical variables; distri-

bution tables for categorical variables;

𝑛-way tables – counts for joint distributions of categorical variables;

small multiples – tables/visualizations indexed along categorical

variables, and

preliminary data analyses – which may provide “huh, that’s odd...”

realizations.

It is important to note that there is nothing wrong with running a number

of analyses to flush out data issues, but remember to label your initial

forays as preliminary analyses.
1

1: From the client or stakeholder’s perspec-

tive, repeated analyses may create a sense

of unease and distrust, even if they form a

crucial part of the analytical process.

Data scientists, dataanalysts, and quantitative consultants alike need to

be comfortable with both approaches.

As an analogy, the narrative approach is akin to working out a crossword

puzzle with a pen and accepting to put down potentially erroneous

answers once in a while to try to open up the grid.
2

2: What artificial intelligence researchers

call the “exploration” approach.

The methodical approach, on the other hand, is similar to working out

the puzzle with a pencil and a dictionary, only putting down answers

when their correctness is guaranteed.
3

3: The “exploitation” approach of artifi-

cial intelligence.
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More puzzles get solved when using the first approach, but missteps

tend to be spectacular. Not as many puzzles get solved the second way,

but the trade-off is that it leads to fewer mistakes.

15.3 Data Quality

Calvin’s Dad: OK Calvin. Let’s check over your math home-

work.

Calvin: Let’s not and say we did.

Calvin’s Dad: Your teacher says you need to spend more

time on it. Have a seat.

Calvin: More time?! I already spent 10 whole minutes on it!

10 minutes shot! Wasted! Down the drain!

Calvin’s Dad: You’ve written here 8 + 4 = 7. Now you know

that’s not right.

Calvin: So I was off a little bit. Sue me.

Calvin’s Dad: You can’t add things and come with less than

you started with!

Calvin: I can do that! It’s a free country! I’ve got my rights!

(B. Watterson, Calvin and Hobbes, 15-09-1990.)

The quality of the data has an important effect on the quality of the

results: as the saying goes: “garbage in, garbage out.”

Data is said to be sound when it has as few issues as possible with:

validity – are observations sensible, given data type, range, manda-

tory response, uniqueness, value, regular expressions, etc. (e.g. a

value that is expected to be text value is a number, a value that is

expected to be positive is negative, etc.)?;

completeness – are there missing observations (more on this in a

subsequent section)?;

accuracy and precision – are there measurement and/or data entry

errors (e.g., an individual has 3 children but only 2 are recorded,

etc., see Figure 15.2, linking accuracy to bias and precision to the

standard error)?;

consistency – are there conflicting observations (e.g., an individual

has no children, but the age of one kid is recorded, etc.)?, and

uniformity – are units used uniformly throughout (e.g., an indi-

vidual is 6ft tall, whereas another one is 145cm tall)?

Finding an issue with data quality after the analyses are completed is

a sure-fire way of losing the stakeholder’s or client’s trust – check early

and often!

Figure 15.2: Accuracy as bias, precision as

standard error [author unknown].
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Figure 15.3: An illustration of heaping behaviour: self-reported time spent working in a day [personal file]. The entries for 7, 7.5, and 8

hours are omitted. Note the rounding off at various multiples of 5 minutes.

15.3.1 Common Error Sources

If the analysts have some control over the data collection and initial

processing, regular data validation tests are easier to set-up.

When analysts are dealing with legacy, inherited, or combined datasets,

however, it can be difficult to recognize errors that arise from:

missing data being given a code;

NA/blank entries being given a code;

data entry errors;

coding errors;

measurement errors;

duplicate entries;

heaping (see Figure 15.3 for an example),

etc.

15.3.2 Detecting Invalid Entries

Potentially invalid entries can be detected with the help of a number of

methods:

univariate descriptive statistics – 𝑧−score, count, range, mean,

median, standard deviation, etc.;

multivariate descriptive statistics – 𝑛−way tables and logic checks;

data visualization – scatterplot, histogram, joint histogram, etc.

(see Chapter 18, Data Visualization and Data Exploration, and [2] for

more information on the topic),

and so on.

It is important to point out that univariate tests do not always tell the

whole story (and may in fact obscure important details).

Example: consider, for instance, an artificial medical dataset consisting

of 38 patients’ records, containing, among others, fields for the sex and

the pregnancy status of the patients.
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A summary of the data of interest is provided in the frequency counts
(1-way tables) of the table below:

Analysts can quickly notice that some values are missing (in green) and

that an entry has been miscoded as 99 (in yellow). Using only these

univariate summaries, however, it is impossible to decide what to do

with these invalid entries.

The 2-way frequency counts shed some light on the situation, and uncover

other potential issues with the data and/or the data collection protocol.

One of the green entries is actually blank along the two variables;

depending on the other information, this entry could be a candidate

for imputation or outright deletion (more on these concepts in the next

section).

Three other observations are missing a value along exactly one variable,

but the information provided by the other variables may be complete

enough to warrant imputation. Of course, if more information is available

about the patients, the analyst may be able to determine why the values

were missing in the first place (however privacy concerns at the collection

stage might muddy the waters).

The mis-coded information on the pregnancy status (99, in yellow) is

linked to a male client, and as such re-coding it as ‘No’ is likely to be a

reasonable decision.
4

4: Although this may not necessarily be
the correct decision... data measurements

are rarely as clear cut as we may think

upon only a first reflection.

A similar reasoning process should make the analyst question the validity

of the entry shaded in red – it might very well be correct, but it is important

to at least inquire about this data point, as the answer could lead to an

eventual re-framing of the definitions and questions used at the collection

stage.

In general, there is no universal or one-size-fits-all approach – a lot

depends on the nature of the data. As always, domain expertise can

provide valuable help and suggest fruitful exploration avenues.
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15.4 Missing Values

Obviously, the best way to treat missing data is not to have

any (T. Orchard, M. Woodbury, [8]).

Why does it matter that some values may be missing?

As a start, missing values can potentially introduce bias into the analysis,

which is rarely (if at all) a good thing, but, more pragmatically, they may

interfere with the functioning of most analytical methods, which cannot

easily accommodate missing observations without breaking down.
5

5: As an example, the normal equations

X⊤X𝛽 = X⊤Y of linear regression could not

be solved if some of the data is missing as

X⊤X is not defined in that case.

Consequently, when faced with missing observations, analysts have two

options: they can either discard the missing observation (which is not

typically recommended, unless the data is missing completely randomly),

or they can create a replacement value for the missing observation (the

imputation strategy has drawbacks since we can never be certain that

the replacement value is the true value, but is often the best available

option; information in this section is taken partly from [5, 9, 12, 10]).

Blank fields come in 4 flavours:

nonresponse – an observation was expected but none was entered;

data entry issues – an observation was recorded but was not

entered in the dataset;

invalid entries – an observation was recorded but was considered

invalid and has been removed, and

expected blanks – a field has been left blank, but expectedly so.

Too many missing values of the first three types can be indicative of

issues with the data collection process, while too many missing values

of the fourth type can be indicative of poor questionnaire design (see

Section 10.2 for a brief discussion on these topics).

Either way, missing values cannot simply be ignored: either the

corresponding record is removed from the dataset (not recom-

mended without justification, as doing so may cause a loss of

auxiliary information and may bias the analysis results), or

missing values must be imputed (that is to say, a reasonable

replacement value must be found).
6

6: A non-negligible proportion of stake-

holders, who would be the first to tell you

that they understand nothing about data

analysis in the first place, balk at this no-

tion. It helps to remember that we do not

generally conduct data analysis to fully un-

derstand any particular unit/observation,

but rather to get a sense for overall pat-
terns in the data (and how we could use

these patterns to make predictions for the

future, say). We suspect that this is directly

linked to the fear that our “personhood”

will be erased in favour of numerical sum-

maries, that we are who the data says we

are instead of ... well, who we really are.

Measurement errors happen.

15.4.1 Missing Value Mechanisms

The relevance of an imputation method is dependent on the underlying

missing value mechanism. Indeed, values may be:

missing completely at random (MCAR) – the item absence is

independent of its value or of the unit’s auxiliary variables (e.g., an

electrical surge randomly deletes an observation in the dataset);

missing at random (MAR) – the item absence is not completely

random, and could, in theory, be accounted by the unit’s complete

auxiliary information, if available (e.g., if women are less likely to

tell you their age than men for societal reasons, but not because of

the age values themselves), and
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not missing at random (NMAR) – the reason for nonresponse is

related to the item value itself (e.g., if illicit drug users are less

likely to admit to drug use than teetotallers).

The analyst’s main challenge in that regard is that the missing mechanism

cannot typically be determined with any degree of certainty.

15.4.2 Imputation Methods

There are numerous statistical imputation methods. They each have their

strengths and weaknesses; analysts should take care to select a method

which is appropriate for the situation at hand.
7

7: Imputation methods work best under

MCAR or MAR, but keep in mind that

they all tend to produce biased estimates
nonetheless... the hope is the bias is small,

and that the benefits of obtaining an es-

timate in the first place overcomes the

presence of bias.

In list-wise deletion, all units with at least one missing value

are removed from the dataset. This straightforward imputation

strategy assumes MCAR, but it can introduce bias if MCAR does

not hold, and it leads to a reduction in the sample size and an

increase in standard errors.

In mean or most frequent imputation, the missing values are

substituted by the average or most frequent value in the unit’s

subpopulation group (stratum). This commonly-used approach

also assumes MCAR, but it can create distortions in the underlying

distributions (such as a spike at the mean) and create spurious

relationships among variables.

In regression or correlation imputation, the missing values are

substituted using a regression on the other variables. This model

assumes MAR and trains the regression on units with complete

information, in order to take full advantage of the auxiliary infor-

mation when it is available. However, it artificially reduces data

variability and produces over-estimates of correlations.

In stochastic regression imputation, the regression estimates are

augmented with random error terms added. Just as in regression

estimation, the model assumes MAR; an added benefit is that it

tends to produce estimates that “look” more realistic than regres-

sion imputation, but it comes with an increased risk of type I error

(false positives) due to small standard errors.

Last observation carried forward (LOCF) and its cousin next
observation carried backward (NOCB) are useful for longitudinal

data; a missing value can simply be substituted by the previous or

next value. LOCF and NOCB can be used when the values do not

vary greatly from one observation to the next, and when values are

MCAR. Their main drawback is that they may be too “generous”

for studies that are trying to determine the effect of a treatment

over time, say.

Finally, in 𝑘-nearest-neighbour imputation, a missing entry in

a MAR scenario is substituted by the average (or median, or

mode) value from the subgroup of the 𝑘 most similar complete

respondents. This requires a notion of similarity between units

(which is not always easy to define reasonably). The choice of 𝑘

is somewhat arbitrary and can affect the imputation, potentially

distorting the data structure when it is too large.

What does imputation look like in practice? Consider the following

scenario (which is, somewhat embarrassingly, based on a true story).
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Example: after marking the final exams of the 211 students who did

not drop her course in Advanced Retroencabulation at State University,

Dr. Helga Vanderwhede creates a data frame grades of final exam grades

and mid term-grades.

Setting up the grades data frame

MT = c(

80,73,83,60,49,96,87,87,60,53,66,83,32,80,66,90,72,55,76,

46,48,69,45,48,77,52,59,97,76,89,73,73,48,59,55,76,87,55,

80,90,83,66,80,97,80,55,94,73,49,32,76,57,42,94,80,90,90,

62,85,87,97,50,73,77,66,35,66,76,90,73,80,70,73,94,59,52,

81,90,55,73,76,90,46,66,76,69,76,80,42,66,83,80,46,55,80,

76,94,69,57,55,66,46,87,83,49,82,93,47,59,68,65,66,69,76,

38,99,61,46,73,90,66,100,83,48,97,69,62,80,66,55,28,83,59,

48,61,87,72,46,94,48,59,69,97,83,80,66,76,25,55,69,76,38,

21,87,52,90,62,73,73,89,25,94,27,66,66,76,90,83,52,52,83,

66,48,62,80,35,59,72,97,69,62,90,48,83,55,58,66,100,82,78,

62,73,55,84,83,66,49,76,73,54,55,87,50,73,54,52,62,36,87,

80,80

)

FE = c(

41,54,93,49,92,85,37,92,61,42,74,84,61,21,75,49,36,62,92,

85,50,90,52,63,64,85,66,51,41,75,4,46,38,71,42,18,76,42,

94,53,77,65,95,3,74,0,97,62,74,61,80,47,39,92,59,37,59,71,

20,67,69,88,53,52,81,41,81,48,67,65,92,75,68,55,67,51,83,

71,58,37,65,66,51,43,83,34,55,59,20,62,22,70,64,59,73,74,

73,53,44,36,62,45,80,85,41,80,84,44,73,72,60,65,78,60,34,

91,40,41,54,91,49,92,85,37,92,61,42,74,84,61,21,75,49,36,

62,92,85,50,92,52,63,64,85,66,51,41,75,4,46,38,71,42,18,

76,42,92,53,77,65,92,3,74,0,52,62,74,61,80,47,39,92,59,37,

59,71,20,67,69,88,53,52,81,41,81,48,67,65,94,75,68,55,67,

51,83,71,58,37,65,66,51,43,83,34,55,59,20,62,22,70,64,59

)

grades=data.frame(MT,FE)

summary(grades)

MT FE

Min.: 21.0 Min.: 0.00

1st Qu.: 55.00 1st Qu.: 56.50

Median: 70.00 Median: 62.00

Mean: 68.74 Mean: 60.09

3rd Qu.: 82.50 3rd Qu.: 75.00

Max.: 100.00 Max.: 97.00

She plots the final exam grades (𝑦) against the mid-term exam grades

(𝑥), as seen below.
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Plotting the grades data frame I

hist(MT, xlim=c(0,100), xlab=c("Midterm Grades"))

hist(FE, xlim=c(0,100), xlab=c("Final Exam Grades"))

Plotting the grades data frame II

plot(grades, xlim=c(0,100), ylim=c(0,100),

xlab=c("Midterm Grade"), ylab=c("Final Exam grade"),

main=c("Course Results"))

Looking at the data, she sees that final exam grades are weakly correlated
with mid-term exam grades: students who performed well on the mid-

term tended to perform well on the final, and students who performed

poorly on the mid-term tended to perform poorly on the final (as is

usually the case), but the link is not that strong.

Correlation between mid-term and final grades

cor(grades$MT,grades$FE)

[1] 0.5481776

She also sees that there is a fair amount of variability in the data: the

noise is not very tight around the (eye-balled) line of best fit. The linear

regression model is:
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Line of best fit
model <- lm(FE ~ MT, data=grades)

summary(model)

library(ggplot2)

ggplot(model) + geom_point(aes(x=MT, y=FE)) +

geom_line(aes(x=MT, y=.fitted), color="blue" ) +

theme_bw() +

xlab(c("Midterm Grade")) +

ylab(c("Final Exam Grade")) +

ggtitle(c("Line of Best Fit"))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.00968 5.01523 2.793 0.0057 **
MT 0.67036 0.07075 9.475 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 17.81 on 209 degrees of freedom

Multiple R-squared: 0.3005, Adjusted R-squared: 0.2972

F-statistic: 89.78 on 1 and 209 DF, p-value: < 2.2e-16

Furthermore, she realizes that the final exam was harder than the students

expected (as the slope of the line of best fit is smaller than 1, as only 29%

of observations lie above the line MT=FE) – she suspects that they simply

did not prepare for the exam seriously,
8

as most of them could not match 8: And not that she made the exam too

difficult, no matter what her ratings on

RateMyProfessor.com suggest.

their mid-term exam performance.

sum(grades$MT <= grades$FE)/nrow(grades)

[1] 0.2890995
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plot(grades, xlim=c(0,100), ylim=c(0,100),

xlab=c("Midterm Grade"), ylab=c("Final Exam grade"),

main=c("Course Results"))

abline(a=0, b=1, col="red")

As Dr. Vanderwhede comes to terms with her disappointment, she takes

a deeper look at the numbers, at some point sorting the dataset according

to the mid-term exam grades.

s.grades <- grades[order(-grades$MT),]

head(s.grades,16)

student MT FE

122 100 92

188 100 94

116 99 91

28 97 51

44 97 3

61 97 69

125 97 92

143 97 85

179 97 88

6 96 85

*47 94 97

54 94 92

74 94 55

97 94 73

139 94 92

162 94 74
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It looks like good old Mary Sue (row number 47) performed better on

the final than on the mid-term (where her performance was already

superlative), scoring the highest grade. What a great student she is!
9

9: And such a fantastic person – in spite

of her superior intellect, she is adored by

all of her classmates, thanks to her sunny

disposition and willingness to help at all

times. If only all students were like Mary

Sue...

plot(s.grades[,c("MT","FE")], xlim=c(0,100), ylim=c(0,100),

col=ifelse(row.names(s.grades)=="47",’red’,’black’),

pch=ifelse(row.names(s.grades)=="47",22,1), bg=’red’,

xlab=c("Midterm Grade"), ylab=c("Final Exam grade"),

main=c("Mary Sue!"))

She continues to toy with the spreadsheet until the phone rings. After a

long and exhausting conversation with Dean Bitterman about teaching

loads and State University’s reputation, Dr. Vanderwhede returns to the

spreadsheet and notices in horror that she has accidentally deleted the

final exam grades of all students with a mid-term grade greater than 93.

s.grades$FE.NA <- ifelse(s.grades$MT>93,NA,s.grades$FE)

What is she to do? Anyone with a modicum of technical savvy would

advise her to either undo her changes or to close the file without saving

the changes,
10

but in full panic mode, the only solution that comes to 10: Or to simply re-enter the final grades

by comparing with the physical papers...
her mind is to impute the missing values.

She knows that the missing final grades are MAR (and not MCAR since

she remembers sorting the data along the MT values); she produces the

imputations shown in Figure 15.4.

List-wise deletion
plot(s.grades[,c("MT","FE.NA")], xlim=c(0,100),

ylim=c(0,100), xlab=c("Midterm Grade"),

ylab=c("Final Exam grade"),

main=c("List-wise Deletion"))
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Figure 15.4: Imputation results in the grades data frame: listwise deletion (top left), mean imputation (top right), regression imputation

(bottom left), stochastic regression imputation (bottom right).

Mean imputation

s.mean <- mean(s.grades$FE.NA, na.rm = TRUE)

s.grades$FE.NA.mean <- ifelse(s.grades$MT>93,s.mean,

s.grades$FE)

plot(s.grades[,c("MT","FE.NA.mean")], xlim=c(0,100),

ylim=c(0,100), pch=ifelse(s.grades$MT>93,23,1),

col=ifelse(s.grades$MT>93,’green’,’black’),

bg=’green’, xlab=c("Midterm Grade"),

ylab=c("Final Exam grade"),

main=c("Imputation by the Mean"))

Regression imputation

model.2 <- lm(FE.NA ~ MT, data=s.grades)

s.grades$FE.NA.reg <- ifelse(s.grades$MT>93,

model.2[[1]][1]+model.2[[1]][2]*s.grades$MT,

s.grades$FE)

plot(s.grades[,c("MT","FE.NA.reg")], xlim=c(0,100),

ylim=c(0,100), pch=ifelse(s.grades$MT>93,24,1),

col=ifelse(s.grades$MT>93,’magenta’,’black’),

bg=’magenta’, xlab=c("Midterm Grade"),

ylab=c("Final Exam grade"),

main=c("Regression Imputation"))
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Stochastic regression imputation

model.3 <- lm(FE.NA ~ MT, data=s.grades)

s.grades$FE.NA.sreg <- ifelse(s.grades$MT>93,

model.3[[1]][1]+model.3[[1]][2]*s.grades$MT +

rnorm(nrow(s.grades),0,summary(model.3)$sigma),

s.grades$FE)

plot(s.grades[,c("MT","FE.NA.sreg")], xlim=c(0,100),

ylim=c(0,100), pch=ifelse(s.grades$MT>93,25,1),

col=ifelse(s.grades$MT>93,’blue’,’black’),

bg=’blue’, xlab=c("Midterm Grade"),

ylab=c("Final Exam grade"),

main=c("Stochastic Regression Imputation"))

She remembers what the data looked like originally, and concludes that

the best imputation method is the stochastic regression model.

This conclusion only applies to this specific example, however. In general,

that might not be the case due to various No Free Lunch results.
11

11: “There ain’t no such thing as a free

lunch” – there is no guarantee that a

method that works best for a dataset works

even reasonably well for another.

The main take-away from this example is that various imputation strate-

gies lead to different outcomes, and perhaps more importantly, that even

though the imputed data might “look” like the true data, we have no

way to measure its departure from reality – any single imputed value is

likely to be completely off.

Mathematically, this might not be problematic, as the average departure

is likely to be relatively small, but in a business context or a personal

one, this might create gigantic problems – how is Mary Sue likely to feel

about Dr.Vanderwhede’s solution to her conundrum?

s.grades[row.names(s.grades) == "47",

c("MT","FE","FE.NA.reg")]

student MT FE FE.NA.reg

*47 94 97 77.54035

And how would Dean Bitterman react were he to find out about the

imputation scenario from irate students? The solution has to be compat-

ible with the ultimate data science objective: from Dr. Vanderwhede’s

perspective, perhaps the only thing that matters is capturing the essence
of the students’ performance, but from the student’s perspective, the

objective is emphatically different.
12

12: Analysts cannot simply hide their

heads in the sand on this topic: if the data

science objectives are incompatible with

the units’ well-being, it is the objectives

that need to change – we cannot ask the

entities represented by those units to “get

over it”.

Even though such questions are not quantitative in nature, their answer

will impact any actionable solution.

15.4.3 Multiple Imputation

Another drawback of imputation is that it tends to increase the noise in

the data, because the imputed data is treated as the actual data.
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In multiple imputation, the impact of that noise can be reduced by

consolidating the analysis outcome from multiple imputed datasets.

Once an imputation strategy has been selected on the basis of the

(assumed) missing value mechanism,

1. the imputation process is repeated 𝑚 times to produce 𝑚 versions

of the dataset (assuming a stochastic procedure – if the imputed

dataset is always the same, this procedure is worthless);

2. each of these datasets is analyzed, yielding 𝑚 outcomes, and

3. the 𝑚 outcomes are pooled into a single result for which the mean,

variance, and confidence intervals are known.

On the plus side, multiple imputation is easy to implement, flexible, as

it can be used in a most situations (MCAR, MAR, even NMAR in certain

cases), and it accounts for uncertainty in the imputed values.

However, 𝑚 may need to be quite large when the values are missing in

large quantities from many of the dataset’s features, which can substan-

tially slow down the analyses.

There may also be additional technical challenges when the output of

the analyses is not a single value but some more complicated object. A

generalization of multiple imputation was used by Transport Canada

to predict the Blood Alcohol Level (BAC) content level in fatal traffic

collisions that involved pedestrians [1].

15.5 Anomalous Observations

The most exciting phrase to hear [...], the one that heralds

the most discoveries, is not “Eureka!” but “That’s funny...” [I.

Asimov (attributed)].

Outlying observations are data points which are atypical in comparison

to the unit’s remaining features (within-unit), or in comparison to the

measurements for other units (between-units), or as part of a collective

subset of observations. Outliers are thus observations which are dissim-
ilar to other cases or which contradict known dependencies/rules.

13

13: Outlying observations may be anoma-

lous along any of the individual variables,

or in combination. Note that observations could be anomalous in one context, but not in

another. Consider, for instance, an adult male who is 6 feet tall. Such a

man would fall in the 86th percentile among Canadian males [6], which,

while on the tall side, is not unusual; in Bolivia, however, the same

man would land in the 99.9th percentile [6], which would mark him as

extremely tall and quite dissimilar to the rest of the population.
14

14: Anomaly detection points towards in-

teresting questions for analysts and sub-

ject matter experts: in this case, why is

there such a large discrepancy in the two

groups?

A common mistake that analysts make when dealing with outlying

observations is to remove them from the dataset without carefully

studying whether they are influential data points, that is, observations

whose absence leads to markedly different analysis results.

When influential observations are identified, remedial measures (such as

data transformation strategies) may need to be applied to minimize any

undue effect. Outliers may be influential, and influential data points may

be outliers, but the conditions are neither necessary nor sufficient.
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15.5.1 Anomaly Detection

By definition, anomalies are infrequent and typically surrounded by

uncertainty due to their relatively low numbers, which makes it difficult

to differentiate them from banal noise or data collection errors.

Furthermore, the boundary between normal and deviant observations

is usually fuzzy; with the advent of e-shops, for instance, a purchase

which is recorded at 3AM local time does not necessarily raise a red flag

anymore.

When anomalies are actually associated to malicious activities, they are

more than often disguised in order to blend in with normal observations,

which obviously complicates the detection process.

Numerous methods exist to identify anomalous observations; none of
them are foolproof and judgement must be used. Methods that employ

graphical aids (such as box-plots, scatterplots, scatterplot matrices, and

2D tours) to identify outliers are particularly easy to implement, but a

low-dimensional setting is usually required for ease of interpretation.

Analytical detection methods also exist (using Cooke’s or Mahalanobis’

distances, for instance), but in general some additional level of analysis

must be performed, especially when trying to identify influential points

(cf. leverage, Chapter 8, Classical Regression Analysis).

With small datasets, anomaly detection can be conducted on a case-by-

case basis, but with large datasets, the temptation to use automated
detection/removal is strong – care must be exercised before the analyst

decides to go down that route.
15

15: This stems partly from the fact that

once the “anomalous” observations have

been removed from the dataset, previously

“regular” observations can become anoma-

lous in turn in the smaller dataset; it is not

clear when that runaway train will stop.

In the early stages of anomaly detection, simple data analyses (such as

descriptive statistics, 1- and 2-way tables, and traditional visualizations)

may be performed to help identify anomalous observations, or to obtain

insights about the data, which could eventually lead to modifications of

the analysis plan.

15.5.2 Outlier Tests

How are outliers actually detected? Most methods come in one of two

flavours: supervised and unsupervised (we will discuss those in detail

in later sections).

Supervised methods use a historical record of labeled (that is to say,

previously identified) anomalous observations to build a predictive
classification or regression model which estimates the probability that a

unit is anomalous; domain expertise is required to tag the data.

Since anomalies are typically infrequent, these models often also have to

accommodate the rare occurrence problem.
16

16: Supervised models are built to mini-

mize a cost function; in default settings, it

is often the case that the mis-classification

cost is assumed to be symmetrical, which

can lead to technically correct but useless

solutions. For instance, the vast majority

(99.999+%) of air passengers emphatically

do not bring weapons with them on flights;

a model that predicts that no passenger is

attempting to smuggle a weapon on board

a flight would be 99.999+% accurate, but

it would miss the point completely.

Unsupervised methods, on the other hand, use no previously labeled

information or data, and try to determine if an observation is an outlying

one solely by comparing its behaviour to that of the other observations.

The following traditional methods and tests of outlier detection fall into

this category:
17

17: Note that normality of the underly-

ing data is an assumption for most tests;

how robust these tests are against depar-

tures from this assumption depends on

the situation.
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Perhaps the most commonly-used test is Tukey’s boxplot test;
for normally distributed data, regular observations typically lie

between the inner fences

𝑄1 − 1.5(𝑄3 −𝑄1) and 𝑄3 + 1.5(𝑄3 −𝑄1).

Suspected outliers lie between the inner fences and their respective

outer fences

𝑄1 − 3(𝑄3 −𝑄1) and 𝑄3 + 3(𝑄3 −𝑄1).

Points beyond the outer fences are identified as outliers (𝑄1 and

𝑄3 represent the data’s 1
st

and 3
rd

quartile; see Figure 15.5).

Figure 15.5: Tukey’s boxplot test; sus-

pected outliers are marked by white disks,

outliers by black disks [author unknown].

As an example, let’s find the outliers for the midterm and final exam

grades in Dr. Vanderwhede’s Advanced Retroencabulation course.

There are no boxplot anomalies for midterm grades:

boxplot(grades$MT)

but there are 4 boxplot anomalies for final exam grades:

boxplot(grades$FE)

boxplot.stats(grades$FE)$out
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[1] 3 0 3 0

The corresponding observations can be found as follows:

out <- boxplot.stats(grades$FE)$out

out_ind <- which(grades$FE %in% c(out))

grades[out_ind,]

student MT FE student MT FE

44 97 3 161 25 3

46 55 0 163 27 0

The Grubbs test is another univariate test, which takes into con-

sideration the number of observations in the dataset. Let 𝑥𝑖 be the

value of feature 𝑋 for the 𝑖th unit, 1 ≤ 𝑖 ≤ 𝑁 , let (𝑥, 𝑠𝑥) be the

mean and standard deviation of feature 𝑋, let 𝛼 be the desired

significance level, and let𝑇(𝛼, 𝑁) be the critical value of the Student

𝑡-distribution at significance 𝛼/2𝑁 . Then, the 𝑖th unit is an outlier
along feature 𝑋 if

|𝑥𝑖 − 𝑥 | ≥
𝑠𝑥(𝑁 − 1)√

𝑁

√
𝑇2(𝛼, 𝑁)

𝑁 − 2 + 𝑇2(𝛼, 𝑁) .

Other common tests include:

− the Mahalanobis distance, which is linked to the leverage of

an observation (a measure of influence), can also be used to

find multi-dimensional outliers, when all relationships are

linear (or nearly linear);

− the Tietjen-Moore test, which is used to find a specific number

of outliers;

− the generalized extreme studentized deviate test, if the num-

ber of outliers is unknown;

− the chi-square test, when outliers affect the goodness-of-fit,

as well as

− DBSCAN and other clustering-based outlier detection meth-

ods.

We will have a lot more to say on the topic in Chapter 26 (Anomaly
Detection and Outlier Analysis).
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Figure 15.6: Summary visualisations for an artificial plant dataset: age distribution (left), height distribution (middle), height vs. age, with

linear trend (right).

15.5.3 Visual Outlier Detection

The following three (simple) examples illustrate the principles underlying

visual outlier and anomaly detection.

Example: On a specific day, the height of several plants are measured.

The records also show each plant’s age (the number of weeks since the

seed has been planted).

Histograms of the data are shown in Figure 15.6 (age on the left, height

in the middle).

Very little can be said about the data at that stage: the age of the plants

(controlled by the nursery staff) seems to be somewhat haphazard, as

does the response variable (height). A scatter plot of the data (rightmost

chart in Figure 15.6), however, reveals that growth is strongly correlated

with age during the early period of a plant’s life for the observations in

the dataset; points clutter around a linear trend. One point (in yellow) is

easily identified as an outlier.

There are (at least) two possibilities: either that measurement was botched

or mis-entered in the database (representing an invalid entry), or that

one specimen has experienced unusual growth (outlier). Either way, the

analyst has to investigate further.

Example: a government department has 11 service points in a jurisdiction.

Service statistics are recorded: the monthly average arrival rates per teller

and average service rates per teller are available for each service point.

A scatter plot of the service rate per teller (𝑦 axis) against the arrival

rate per teller (𝑥 axis), with linear regression trend, is shown in the

leftmost chart in Figure 15.7. The trend inches upwards with increasing

𝑥 values.

A similar chart, but with the left-most point removed from consideration,

is shown in the middle chart of Figure 15.7. The trend still slopes upward,

but the fit is significantly improved, suggesting that the removed obser-

vation is unduly influential (or anomalous) – a better understanding

of the relationship between arrivals and services is afforded if it is set

aside.

Any attempt to fit that data point into the model must take this information

into consideration. Note, however, that influential observations depend

on the analysis that is ultimately being conducted – a point may be

influential for one analysis, but not for another.
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Figure 15.7: Visualisations for an (artificial) service point dataset: trend for 11 service points (left), trend for 10 service points (middle),

influential observations (right).

Example: measurements of the length of the appendage of a certain

species of insect have been made on 71 individuals. Descriptive statistics

have been computed; the results are shown in Table 15.5.

Table 15.5: Descriptive statistics for an

(artificial) appendage length dataset.

Analysts who are well-versed in statistical methods might recognize the

tell-tale signs that the distribution of appendage lengths is likely to be

asymmetrical and to have a “fat” tail.
18

18: Since the skewness is non-negligible,

and due to the kurtosis being commen-

surate with the mean and the standard

deviation, the range being so much larger

than the interquartile range, and the maxi-

mum value being so much larger than the

third quartile.

The mode, minimum, and first quartile values belong to individuals

without appendages, so there appears to be at least two sub-groups

in the population (perhaps split along the lines of juveniles/adults, or

males/females).

The maximum value has already been seen to be quite large compared to

the rest of the observations, which at first suggests that it might belong

to an outlier.

The histogram of the measurements, however, shows that there are 3

individuals with very long appendages (see the chart in Figure 15.8):

it now becomes plausible for these anomalous entries to belong to

individuals from a different species altogether who were erroneously
added to the dataset. This does not, of course, constitute a proof of such

an error, but it raises the possibility, which is often the best that an analyst

can do in the absence of subject matter expertise.
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Figure 15.8: Frequency chart of the ap-

pendage lengths in the artificial dataset.

15.6 Data Transformations

History is the transformation of tumultuous conquerors into

silent footnotes. [P. Eldridge]

This crucial step is often neglected or omitted altogether. Various trans-

formation methods are available, depending on the analysts’ needs and

data types, including:

standardization and unit conversion, which put the dataset’s

variables on an equal footing – a requirement for basic comparison

tasks and more complicated problems of clustering and similarity

matching;

normalization, which attempts to force a variable into a normal

distribution – an assumption which must be met in order to use

number of traditional analysis methods, such as ANOVA or regres-

sion analysis, and

smoothing methods, which help remove unwanted noise from

the data, but at a price – perhaps removing natural variance in the

data.

Another type of data transformation is pre-occupied with the concept of

dimensionality reduction. There are many advantages to working with

low-dimensional data:

visualization methods of all kinds are available to extract and

present insights out of such data;

high-dimensional datasets are subject to the so-called curse of
dimensionality, which asserts (among other things) that multi-

dimensional spaces are vast, and when the number of features in a

model increases, the number of observations required to maintain

predictive power also increases, but at a substantially higher rate
(see Figure 15.9),

another consequence of the curse is that in high-dimension sets, all

observations are roughly dissimilar to one another – observations

tend to be nearer the dataset’s boundaries than they are to one

another.
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Figure 15.9: Illustration of the curse of dimensionality; 𝑁 = 100 observations are uniformly distributed on the unit hypercube [0, 1]𝑑 ,
𝑑 = 1, 2, 3. The red regions represent the smaller hypercubes [0, 0.5]𝑑 , 𝑑 = 1, 2, 3. The percentage of captured datapoints is seen to decrease

with an increase in 𝑑 [7].

Dimension reduction techniques such as:

principal component analysis, independent component analysis,

and factor analysis for numerical data, or

multiple correspondence analysis for categorical data

project multi-dimensional datasets onto low-dimensional but high in-

formation spaces;
19

feature selection techniques, including the popular 19: The so-called Manifold Hypothesis.

family of regularization methods (see Chapter 20, Regression and Value Es-
timation) select an optimal subset of variables with which to accomplish

tasks, according to some appropriate, context-dependent criterion.

Some information is necessarily lost in the process, but in many instances

the drain can be kept under control and the gains made by working

with smaller datasets can offset the losses of completeness. We will have

more to say on the topic in Chapter 23 (\emph{Feature Selection and

Dimension Reduction).

15.6.1 Common Transformations

Models often require that certain data assumptions be met. For instance,

ordinary least square regression assumes:

that the response variable is a linear combination of the predictors;

constant error variance;

uncorrelated residuals, which may or may not be statistically

independent,

etc.

In reality, it is rare that raw data meets all these requirements, but that

does not necessarily mean that we need to abandon the model – an

invertible sequence of data transformations may produce a derived data

set which does meet the requirements, allowing the consultant to draw

conclusions about the original data.

In the regression context, invertibility is guaranteed by monotonic
transformations: identity, logarithmic, square root, inverse (all members

of the power transformations), exponential, etc.

These transformations are illustrated below on a subset of the BUPA liver
disease dataset [4].
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Subset of the BUPA liver disease dataset
library(kerndwd)

data(BUPA)

plot(BUPA$X[,3],BUPA$X[,5],

main="Scatterplot of a subset of the BUPA dataset",

xlab="alamine aminotransferase (SGPT)",

ylab="gamma-glutamyl transpeptidase (GAMMAGT)")

In Figure 15.10, we show the effect of various transformations on 𝑋 =

SGPT and 𝑌 = GAMMAGT.

There are rules of thumb and best practices to transform data, but analysts

should not discount the importance of exploring the data visually before

making a choice.

Transformations on the predictors 𝑋 may be used to achieve the linearity
assumption, but they usually come at a price – Pearson correlations are

not preserved by such transformations, for instance.
20

20: Spearman correlations are preserved

(in magnitude) by monotonous transfor-

mations, however. Transformations on the target𝑌 can help with non-normality of residuals

and non-constant variance of error terms.

Note that transformations can be applied both to the target variable or

the predictors: as an example, if the linear relationship between two

variables 𝑋 and 𝑌 is expressed as 𝑌 = 𝑎 + 𝑏𝑋, then a unit increase in 𝑋

is associated with an average of 𝑏 units in 𝑌.

But a better fit might be provided by either of

log𝑌 = 𝑎 + 𝑏𝑋, 𝑌 = 𝑎 + 𝑏 log𝑋, or log𝑌 = 𝑎 + 𝑏 log𝑋,

for which:

a unit increase in 𝑋 is associated with an average 𝑏% increase in 𝑌;

a 1% increase in 𝑋 is associated with an average 0.01𝑏 unit increase

in 𝑌, and

a 1% increase in𝑋 is associated with a 𝑏% increase in𝑌, respectively.
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Figure 15.10: Various data transformations for a subset of the BUPA liver disease dataset [4], involving the logarithm, the square root, the

inverse, and the square of both variables (see the axes for the specific transformation.

15.6.2 Box-Cox Transformations

There is a useful framework that provides an optimal transformation, in

a certain sense. Consider the task of predicting the target 𝑌 with the help

of the predictors 𝑋𝑗 , 𝑗 = 1, . . . , 𝑝. The usual model takes the form

𝑦𝑖 =

𝑝∑
𝑗=1

𝛽 𝑗𝑋𝑥,𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛.

If the residuals are skewed, or their variance is not constant, or the trend

itself does not appear to be linear, a power transformation on the response

might be indicated, but if so, which one? The Box-Cox transformation
𝑦𝑖 ↦→ 𝑦′

𝑖
(𝜆), 𝑦𝑖 > 0 is defined by

𝑦′𝑖(𝜆) =

(𝑦1 . . . 𝑦𝑛)1/𝑛 ln 𝑦𝑖 , if 𝜆 = 0

𝑦𝜆
𝑖
− 1

𝜆
(𝑦1 . . . 𝑦𝑛)

1−𝜆
𝑛 , if 𝜆 ≠ 0
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The suggested choice of𝜆 is the value that maximizes the log-likelihood

L= −𝑛
2

log

(
2𝜋�̂�2

(𝑦1 . . . 𝑦𝑛)2(𝜆−1)/𝑛 + 1

)
.

The following code shows the effect of the Box-Cox transformation on the

linear fit of 𝑌 (GAMMAGT) against 𝑋 (SGPT) in the BUPA dataset.
21

21: Assume that library(kerndwd) and

data(BUPA) have already been called.

Linear fit in the BUPA liver disease dataset
model <- lm(BUPA$X[,5] ~ BUPA$X[,3])

plot(BUPA$X[,3],BUPA$X[,5],

main="Scatterplot of a subset of the BUPA dataset",

xlab="alamine aminotransferase (SGPT)",

ylab="gamma-glutamyl transpeptidase (GAMMAGT)")

abline(a=model[[1]][1], b=model[[1]][2], col="red")

The fit looks decent, but the 𝑞𝑞−plot of the residuals makes it clear that

the normality assumption of the linear regression model is not met.

QQ plot of the untransformed BUPA model

qqnorm(model$residuals)

qqline(model$residuals, col="blue")
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We find the Box-Cox transformation on 𝑌 as follows:

Linear fit in the Box-Cos transformed BUPA model
library(MASS)

box.cox <- boxcox(BUPA$X[,5] ~ BUPA$X[,3])

(lambda <- box.cox$x[which.max(box.cox$y)])

[1] -0.1818182

The linear model on the Box-Cox transformed response is given as

follows.

Linear fit in the Box-Cos transformed BUPA model
box.cox.Y <- (BUPA$X[,5]^lambda-1)/lambda

bc.model <- lm(box.cox.Y ~ BUPA$X[,3])

plot(BUPA$X[,3],box.cox.Y,

main="Scatterplot of a subset of the BUPA dataset",

xlab="alamine aminotransferase (SGPT)",

ylab="Box-Cox response")

abline(a=bc.model[[1]][1], b=bc.model[[1]][2], col="red")

That the model on the Box-Cox data is better is evidenced by the

𝑞𝑞−plot.
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QQ plot of the transformed BUPA model

qqnorm(bc.model$residuals)

qqline(bc.model$residuals, col="blue")

There might be theoretical rationales which favour a particular choice of

𝜆 – these are not to be ignored. It is also important to produce a residual

analysis, as the best Box-Cox choice does not necessarily meet all the

least squares assumptions.

Finally, it is important to remember that the resulting parameters have

the least squares property only with respect to the transformed data
points (in other words, the inverse transformation has to be applied to

the results before we can make interpretations about the original data).

In the BUPA example, the corresponding curve in the untransformed

space is shown below.

Linear Box-Cox model in the untransformed BUPA data
plot(BUPA$X[,3],BUPA$X[,5],

main="Scatterplot of a subset of the BUPA dataset",

xlab="alamine aminotransferase (SGPT)",

ylab="gamma-glutamyl transpeptidase (GAMMAGT)")

df <- data.frame(order(BUPA$X[,3]),

(lambda * (bc.model[[1]][[1]][1] +

bc.model[[1]][[2]][1] * order(BUPA$X[,3]))

+ 1)^(1/lambda))

abline(a=model[[1]][1], b=model[[1]][2], col="red")

points(df, col=’blue’, pch=1)

legend("bottomright", legend=c("Regular LS", "Box-Cox LS"),

col=c("red", "blue"), lty=1:2, cex=0.8)
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15.6.3 Scaling

Numeric variables may have different scales (weights and heights, for

instance). Since the variance of a large-range variable is typically greater

than that of a small-range variable, leaving the data unscaled may

introduce biases, especially when using unsupervised methods.
22

22: See Chapter 19, Machine Learning 101.

It could also be the case that it is the relative positions (or rankings)

which is of importance, in which case it could become important to look

at relative distances between levels:

standardisation creates a variable with mean 0 and std deviation 1:

𝑌𝑖 =
𝑋𝑖 − 𝑋
𝑠𝑋

,

normalization creates a variable in the range [0, 1]:

𝑌𝑖 =
𝑋𝑖 − min{𝑋𝑘}

max{𝑋𝑘} − min{𝑋𝑘}
.

There are other options; different schemes can lead to different outputs.

15.6.4 Discretizing

In order to reduce computational complexity, a numeric variable may

need to be replaced with an ordinal variable (height values could be

replaced by the qualitative “short”, “average”, and “tall”, for instance.
23

23: Of course, what these terms represent

depend on the context; Canadian short

and Bolivian tall may be fairly commensu-

rate, to revisit the example at the start of

the preceding section.

It is far from obvious how to determine the bins’ limits – domain expertise
can help, but it could introduce unconscious bias to the analyses. In the

absence of such expertise, limits can be set so that either the bins each:

contain (roughly) the same number of observations;

have the same width, or

the performance of some modeling tool is maximized.

Again, various choices may lead to different outputs.
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15.6.5 Creating Variables

Finally, it is possible that new variables may need to be introduced

(in contrast with dimensionality reduction). These new variables may

arise:

as functional relationships of some subset of available features

(introducing powers of a feature, or principal components, say);

because the modeling tool may require independence of obser-
vations or independence of features (in order to remove multi-

collinearity, for instance), or

to simplify the analysis by looking at aggregated summaries (often

used in text analysis).

There is no limit to the number of new variables that can be added to a

dataset – but consultants should strive for relevant additions.

15.7 Example: Algae Blooms

This example is based on a Case Study by L. Torgo [11]. It provides a

concrete illustration of the data preparation process on a realistic dataset:

algae_blooms.csv, which is also available at the UCI Machine Learning

Repository .

The ultimate problem is to predict the occurrence of harmful algae in

water samples. Torgo also uses it to highlight various aspects of data
exploration, data cleaning, and R syntax.

24
24: We will continue this work in Section

20.6.

Readers who would prefer to try this example on their own are invited

to skip this section and head to the first exercise of Section 15.8.

15.7.1 Problem Description

The ability to monitor and perform early forecasts of various river algae

blooms is crucial to control the ecological harm they can cause.

The dataset which is used to train the learning model consists of:

chemical properties of various water samples of European rivers

the quantity of seven algae in each of the samples, and

the characteristics of the collection process for each sample.

What is the data science motivation for such a model? After all, we can
analyze water samples to determine if various harmful algae are present

or absent.

The answer is simple: chemical monitoring is cheap and easy to automate,

whereas biological analysis of samples is expensive and slow.

Another answer is that analyzing the samples for harmful content does

not provide a better understanding of algae drivers: it just tells us which

samples contain algae.

https://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
https://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
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15.7.2 Loading the Data

Before we can take a look at the data and begin the process in earnest, we

need to load it in the in the R workspace. If the dataset was downloaded

from the UCI ML repository and stored in the CSV filealgae_blooms.csv,

we can run the following:

algae_blooms <- read.csv("algae_blooms.csv", sep=",",

stringsAsFactors = TRUE, header=TRUE)

It is also available in Torgo’s DMwR package. As we will use some of

its functions in this example, we will show how to install and load it.

Unfortunately, it could not be installed directly from CRAN with the

install.packages() function, as of January 2023.

Instead, we suggest doing the following:

1. Download the package sourceDMwR_0.4.1.tar.gz from the DMwR

CRAN archive page (additional information about the package

is also available there) and save it locally to some path (in this

example, the file was saved to the folder docs/code/).

2. Install the following dependencies directly from CRAN:

install.packages(c("xts","quantmod","ROCR"))

The dependencies list might be different, based on the packages

already installed locally; any eventual error message in the next

step will inform you of the exact dependencies to install.

3. Install DMwR from the package source:

install.packages("docs/code/DMwR_0.4.1.tar.gz",

repos=NULL, type="source")

4. Load the package and prepare the data:

library(DMwR)

algae_blooms <- as.data.frame(rbind(DMwR::algae,

DMwR::algae.sols))

Either way, we can get a sense for the data frame’s structure by calling

the str function.

str(algae_blooms)

’data.frame’: 340 obs. of 18 variables:

$ season: Factor w/ 4 levels "winter" "spring" "autumn" "spring" ...

$ size : Factor w/ 3 levels "small" "small" "small" "small" ...

$ speed : Factor w/ 3 levels "medium" "medium" "medium" "medium" ...

$ mxPH : num 8 8.35 8.1 8.07 8.06 8.25 8.15 8.05 8.7 7.93 ...

$ mnO2 : num 9.8 8 11.4 4.8 9 13.1 10.3 10.6 3.4 9.9 ...

$ Cl : num 60.8 57.8 40 77.4 55.4 ...

$ NO3 : num 6.24 1.29 5.33 2.3 10.42 ...

https://mran.microsoft.com/snapshot/2016-05-02/web/packages/DMwR/index.html
https://mran.microsoft.com/snapshot/2016-05-02/web/packages/DMwR/index.html
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$ NH4 : num 578 370 346.7 98.2 233.7 ...

$ oPO4 : num 105 428.8 125.7 61.2 58.2 ...

$ PO4 : num 170 558.8 187.1 138.7 97.6 ...

$ Chla : num 50 1.3 15.6 1.4 10.5 ...

$ a1 : num 0 1.4 3.3 3.1 9.2 15.1 2.4 18.2 25.4 17 ...

$ a2 : num 0 7.6 53.6 41 2.9 14.6 1.2 1.6 5.4 0 ...

$ a3 : num 0 4.8 1.9 18.9 7.5 1.4 3.2 0 2.5 0 ...

$ a4 : num 0 1.9 0 0 0 0 3.9 0 0 2.9 ...

$ a5 : num 34.2 6.7 0 1.4 7.5 22.5 5.8 5.5 0 0 ...

$ a6 : num 8.3 0 0 0 4.1 12.6 6.8 8.7 0 0 ...

$ a7 : num 0 2.1 9.7 1.4 1 2.9 0 0 0 1.7 ...

Notes:

3 of the fields are categorical (season, size, speed, which refer to

the data collection process);

of the numerical fields, 8 have vaguely “chemical” names;

presumably, the remaining fields refer to the various algae blooms.

We can get a better feel for the data frame by observing it in its natural

habitat, so to speak, using the head() or tail() functions.

head(algae_blooms,4)

season size speed mxPH ... Chla a1 ... a7

winter small medium 8.00 ... 50.0 0.0 ... 0.0

spring small medium 8.35 ... 1.3 1.4 ... 2.1

autumn small medium 8.10 ... 15.6 3.3 ... 9.7

spring small medium 8.07 ... 138.7 1.4 ... 1.4

15.7.3 Summary and Visualization

As it happens, we are not given an awful lot of information about the

dataset’s domain.
25 Data exploration, in the form of summaries and25: We remain woefully ill-prepared to

deal with matters of a chemical nature, to

our eternal shame.

visualization, can help provide a handle on the problem at hand.
26

26: IMPORTANT NOTE: we may have

given you the impression that exploration

is only really necessary when domain ex-

pertise escapes us. Domain expertise can

help analysts frame the problem and the

analysis results in the appropriate manner,

but it often also gives them a false sense of

security. Errors can creep anywhere – data

exploration at an early stage may save you

a lot of embarrassing back-tracking at a

later stage.

A call to the summary function (on the next page) provides frequency

counts for categorical variables, and 6-pt summaries for numerical vari-

ables. As a bonus, the number of missing values is also tabulated.
27

27: The default setting only lists a lim-

ited number of categorical levels – the

summary documentation will explain how

to increase the number of levels that are

displayed.

Notes:

The chemical variables all have missing values, ranging from only 2

to 7, 16, and 23.

The observations seem fairly uniformly distributed in terms of the

seasons, but large rivers and low speed rivers are not represented

as often as their counterparts.

All numerical values are non-negative, which makes sense in the

context of concentrations

We do not know what the range of the chemical values should take

in a real-world context, but some of the maximum values seem . . .

unrealistic (NH4!!, oPO4, a7, etc.)

Does anything else jump at you?
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summary(algae_blooms)

season autumn spring summer winter

80 84 86 90

size large medium small

83 136 121

speed medium high low

140 142 58

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Min.: 5.6 1.5 0.2 0.0 5.0 1.0 1.0 0.2

Q1 : 7.8 7.9 10.9 1.1 37.8 13.0 40.0 2.1

Med.: 8.0 9.7 32.4 2.3 107.3 37.2 101.5 5.1

Mean: 7.9 9.1 42.5 3.1 471.7 73.0 136.7 12.7

Q3 : 8.3 10.8 57.7 4.1 244.9 88.1 200.2 17.2

Max.: 9.7 13.4 391.5 45.6 24064.0 1435.0 1690.0 110.4

NA’s: 2 2 16 2 2 2 7 23

a1 a2 a3 a4 a5 a6 a7

Min.: 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Q1 : 1.5 0.0 0.0 0.0 0.0 0.0 0.0

Med.: 7.1 2.8 1.4 0.0 2.2 0.0 0.0

Mean: 16.7 7.2 3.9 1.8 5.5 6.4 2.2

Q3 : 25.1 10.1 4.6 2.3 8.0 7.0 2.2

Max.: 89.8 72.6 42.8 44.6 61.1 77.6 31.6

Of course, these summaries each apply to a single variable (1-way tables).

Can we find anything else using 𝑛-way tables?
28

28: On categorical variables, by necessity.

2-way tables

table(algae_blooms$speed,algae_blooms$size)

table(algae_blooms$speed,algae_blooms$season)

table(algae_blooms$season,algae_blooms$size)

large medium small

high 13 56 73

low 32 24 2

medium 38 56 46

autumn spring summer winter

high 32 34 38 38

low 16 13 12 17

medium 32 37 36 35

large medium small

autumn 19 33 28

spring 21 34 29

summer 19 36 31

winter 24 33 33
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3-way table

table(algae_blooms$season,algae_blooms$size,

algae_blooms$speed)

, , = high

large medium small

autumn 3 13 16

spring 3 14 17

summer 3 16 19

winter 4 13 21

, , = low

large medium small

autumn 9 6 1

spring 7 6 0

summer 6 6 0

winter 10 6 1

, , = medium

large medium small

autumn 7 14 11

spring 11 14 12

summer 10 14 12

winter 10 14 11

The 6-pt summary provides some information about the underlying

distribution, but not much on the parametric front. A more traditional

summary can be displayed using the psych library’s describe() func-

tion.

psych::describe(algae_blooms)

(the output is shown at the top of the next page)

Notes:

the categorical variables are marked by an asterisk *; the levels

are coded with an integer, and treated as numerical variables

for the purpose of the analysis, so the results for these fields are

meaningless

the trimmed variable refers to the trimmed mean, the mean obtained

when a certain percentage of the observations are removed from

both end of the spectrum (what percentage, exactly?)

the mad variable refers to the median absolute deviation (from the
median)

We personally find such a table hard to read and really grasp once there

are more than a few variables in the dataset. Visualization comes in

handy in such cases.

Basic histograms can be constructed with the hist() function.
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hist(algae_blooms$mnO2)

Based on this histogram, we can conclude that the underlying distribution

of mnO2 has a negative skew, say, which is confirmed by the table above.

The variable mnO2 clearly does not follow a normal distribution (it never

takes on negative values, and the distribution is skewed negatively, as

indications); but we see that viewing it as normal would be a much better

approximation than viewing the distribution of a1 as normal.
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hist(algae_blooms$a1)

𝑞𝑞−plots, another traditional statistical plot, can be produced with the

car library’s qqPlot() function. Again, we can see that the normal

distribution is not a good fit for mnO2 (left), but the fit is even worse for

a1 (right).

car::qqPlot(algae_blooms$mnO2, ylab="",

main=’Normal QQ plot for minimum values of O2’)

car::qqPlot(algae_blooms$a1, ylab="",

main=’Normal QQ plot for a1’)

We can also take a look at some of the odd values for NH4 using ggplot2

[2, 3, 14, 13].

library(ggplot2)

ggplot(algae_blooms,aes(x=factor(0),y=NH4)) +

geom_boxplot() + geom_rug() +

geom_hline(aes(yintercept=mean(algae_blooms$NH4,

na.rm=TRUE)), linetype=2, colour="pink") +

ylab("Ammonium (NH4+)") + xlab("") +

scale_x_discrete(breaks=NULL)
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We see that there are a string of values falling way above the boxplot. If

the underlying distribution was normal, say, these would definitely be

considered outliers.

Let us investigate further.

plot(algae_blooms$NH4, xlab="", ylab="Ammonium (NH4+)")

abline(h=mean(algae_blooms$NH4, na.rm=TRUE), lty=1)

abline(h=mean(algae_blooms$NH4, na.rm=TRUE) +

sd(algae_blooms$NH4, na.rm=TRUE), lty=2)

abline(h=median(algae_blooms$NH4, na.rm=TRUE), lty=3)

We can also look at the data and see which observations have values of

NH4 below 3000 (roughly all values below the long dashed line above).

nrow(algae_blooms[-which(algae_blooms$NH4>3000),])

[1] 329
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What does the boxplot above looks like without the suspected outliers?

ggplot(algae_blooms[-which(algae_blooms$NH4>3000),],

aes(x=factor(0),y=NH4)) +

geom_boxplot() + geom_rug() +

geom_hline(aes(yintercept=mean(algae_blooms[

-which(algae_blooms$NH4>3000),8], na.rm=TRUE)),

linetype=2, colour="pink") +

ylab("Ammonium (NH4+)") + xlab("") +

scale_x_discrete(breaks=NULL)

It is a bit better, to be sure.
29

29: The box structure has expanded, and

there still seems to be some very high

values. Perhaps that is to be expected?

How would we find out?

Now, let us take a look at some of the algae levels.

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_boxplot() + xlab("Season") + ylab("Algae Level a3")
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What does that tell us? It is hard to get a good handle on the situation

because the season are out of sequential order.

We can re-arrange the factors, but it requires a bit of fancy footwork using

the forcats’library fct_relevel() function, and dplyr’s mutate().

library(forcats) # for fct_relevel

library(dplyr) # for mutate

algae_blooms = mutate(algae_blooms,

size=fct_relevel(size,c("small","medium","large")),

speed=fct_relevel(speed,c("low","medium","high")),

season=fct_relevel(season,c("spring","summer","autumn",

"winter"))

)

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_boxplot() +

xlab("Season") +

ylab("Algae Level a3")

We only have 1 year’s worth of data, so it might be too early to tell, but it

certainly seems as though the a3 levels decrease from spring to winter.

Violin plots are cousins to the boxplots. Can we get a bit more insight on

the a3 trend?

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_violin() +

geom_jitter() +

xlab("Season") +

ylab("Algae Level a3")



990 15 Data Preparation

This plot certainly seems to suggest that a3 levels are cyclic, with a peak

in the spring and low levels in the fall.

Let us return to NH4 for a second to see if we can spot a link with the

season (as we did for a3). We only keep the observations for which the

NH4 value is greater than 3000, and we bin them with respect to the

quartiles.

First, filter the algae_blooms dataset to remove the 2 observations with

missing values.
30

30: Remember that library(dplyr) has

been called on the previous page.

f.NH4.data <- filter(algae_blooms,!is.na(NH4))

nrow(f.NH4.data)

[1] 338

Next we remove the 11 observations for which NH4 > 3000 (again, based

on the mean + sd “argument”)

f.NH4.data <- filter(algae_blooms,!is.na(NH4)) |>

filter(NH4<3000)

nrow(f.NH4.data)

[1] 327

We create a variable indicating in which quartile the NH4 value falls.

f.NH4.data <- filter(algae_blooms,!is.na(NH4)) |>

filter(NH4<3000) |>

mutate(q.NH4=cut(NH4,

quantile(NH4,c(0,0.25,0.5,0.75,1))))

We can now use the new variable q.NH4 to make multi-variate compar-

isons, say between a1, NH4, and season.
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ggplot(f.NH4.data,aes(x=a1,y=season,color=season)) +

geom_point() +

facet_wrap(~q.NH4) +

ggtitle("Algae Level a1 by Season and

Ammonium Quartiles NH4")

That seems decidedly odd ... why are we seeing missing values here?

Have we not just removed the NAs? Let us delve in a bit deeper.

f.NH4.data[which(is.na(f.NH4.data$q.NH4)),]

table(f.NH4.data$q.NH4, useNA="ifany")

Var1 Freq

(5,36.8] 80

(36.8,103] 82

(103,226] 81

(226,2.17e+03] 82

NA 2

The quartiles do not include their lower bound; we can remedy the

situation by including an additional parameter in the mutate() call.

f.NH4.data <- filter(algae_blooms, !is.na(NH4)) |>

filter(NH4<3000) |> mutate(q.NH4=cut(NH4,

quantile(NH4,c(0,0.25,0.5,0.75,1)),

include.lowest=TRUE))
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ggplot(f.NH4.data, aes(x=a1, y=season, color=season)) +

geom_point() + facet_wrap(~q.NH4) +

ggtitle("Algae Level a1 by Season and

Ammonium Quartiles NH4")

The NAs have disappeared from the graph. In any case, it seems as

though the a1 levels are inversely correlated with the NH4 levels but that

the season does not have much of an effect.
31

31: Although we would need more work

to conclude this with any degree of cer-

tainty. We can create a similar graph for a3 instead of a1.

ggplot(f.NH4.data,aes(x=a3,y=season,color=season)) +

geom_point() + facet_wrap(~q.NH4) +

ggtitle("Algae Level a3 by Season and

Ammonium Quartiles NH4")



15.7 Example: Algae Blooms 993

15.7.4 Data Cleaning

We found some potential anomalies in the data when we explored the

dataset;
32

now let us take some time to clean the data to some extent. 32: Although we are electing to keep them

in the dataset for the time being as we lack

the domain expertise to make a reasonable

decision on that front.

Anomalies come in various flavours; we have already explored some

potential outlying behaviour, now we handle missing values.
33

The

33: Again, assume that library(dplyr)

has already been loaded.

function complete.cases() lists the observations for which every field

is present (note that it says nothing about the validity of the case).

table(complete.cases(algae_blooms))

Var1 Freq

FALSE 34

TRUE 306

The vast majority of observations do not have missing cases, but a few

still do. Is there anything special about them? Are the values missing

completely at random?

nrow(filter(algae_blooms, !complete.cases(algae_blooms)))

summary(filter(algae_blooms, !complete.cases(algae_blooms)))

[1] 34

season spring summer autumn winter

7 6 8 13

size small medium large

26 1 7

speed low medium high

4 13 17

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Min.: 5.6 5.7 0.2 0.2 5.0 1.0 1.0 0.3

Q1 : 6.6 9.2 4.5 0.8 10.0 1.0 6.0 1.7

Med.: 7.2 10.8 9.0 1.4 11.8 3.6 10.8 4.0

Mean: 7.3 10.1 19.3 2.1 62.0 25.6 34.5 13.9

Q3 : 8.0 11.3 25.2 2.5 46.3 20.2 19.2 12.2

Max.: 9.7 12.6 71.0 11.0 500.0 295.6 380.0 68.0

NA’s: 2 2 16 2 2 2 7 23

a1 a2 a3 a4 a5 a6 a7

Min.: 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Q1 : 16.8 0.0 0.0 0.0 0.0 0.0 0.0

Med.: 30.3 0.0 0.0 0.0 0.0 0.0 0.0

Mean: 36.0 4.5 1.4 2.3 1.5 1.1 1.7

Q3 : 54.4 3.4 1.1 1.9 0.9 0.0 1.6

Max.: 83.0 36.5 14.6 28.8 21.1 14.5 28.0
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Right off the bat, missing cases seem to be over-represented in small

rivers and under-represented in low-speed rivers. But upon further

investigation (that is, comparing with the original dataset), we suspect

that the under-representation of low-speed rivers is not problematic as it

falls in-line with the numbers in the larger dataset.
34

34: By which we mean that low-speed

rivers do not seem to have a systematic

missing value problem. Let us assume for now (in the interest of efficiency) that the fact that

small rivers have a lot of missing cases (mostly Cl and Chla) is also not a

problem.
35

The bulk of the missing values seem to come from either Cl,35: In a real-life setting, we should defi-
nitely verify that this assumption is valid. Chla, or PO4. There is also a consistent 2 missing values across the board,

but we cannot use the summary output to determine if they arise from

the same two observations.

Which observations have missing NH4 values, say?

algae_blooms[which(is.na(algae_blooms$NH4)),]

While these observations also have missing values in other fields, they

do have some non-missing fields as well. But they are both missing 6 of

the predictor variables. How useful could they be in training a predictive

model?
36

We can easily write a function that will compute how many36: The answer to that question depends

on the model, of course.
missing cases there are for each observations.

table(apply(algae_blooms[,1:11],1,

function(x) sum(is.na(x)))) # 1:rows, 2: columns

which(apply(algae_blooms[,1:11],1,

function(x) sum(is.na(x)))>2)

Var1 Freq

0 306

1 20

2 12

6 2

[1] 62 199

Most observations have no missing cases, which is great news. There are

a few with 1 or 2, but observations 62 and 199 are wild cards, with 6

missing predictors (out of 11). Based on the small number of such wild

cards, we elect to remove them from the analysis.

IMPORTANT NOTES

If we decide to remove observations for any reason whatsoever, we

need to document the process that lead us to eliminate them, and

make that process available to other analysts or to the audience.
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Why do we remove the observations with 6 missing cases, but not

the ones with 2 missing cases? Had there been observations with

4 missing cases, what should we have done? What factors could

influence this decision?

This dataset still contains observations with missing cases, however.

algae_blooms.sna = algae_blooms[-which(apply(

algae_blooms[,1:11],1, function(x) sum(is.na(x)))>2),]

nrow(algae_blooms.sna)

[1] 338

What can we do with the other observations for which values are

missing?

One possibility is to use the set of complete observations to compute a

correlation matrix, and to see if any numerical field is strongly correlated

with another field. That way, if there is a missing value in the first field,

the second could be used to impute it.

IMPORTANT NOTE: this approach only works for variables that are

linearly correlated to a single other variable. Non-linear correlations and

multi-variate associations will not be uncovered.

library(corrplot)

corrplot(cor(algae_blooms.sna[,4:18], use="complete.obs"),

type="upper",tl.pos="d")
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The correlation between PO4 (which has missing cases) and oPO4 (which

does not, anymore) is clear. What is the nature of the relation? We use

the set of complete cases to find it.

algae_blooms.nona <- algae_blooms.sna[-which(apply(algae_blooms.sna,1,

function(x) sum(is.na(x)))>0),]

nrow(algae_blooms.nona)

[1] 306

PO4.oPO4.model = lm(PO4 ~ oPO4, data=algae_blooms.nona)

PO4.oPO4.model

Coefficients:

(Intercept) oPO4

51.811 1.203

The regression function is PO4= 51.811 + 1.203oPO4 (we are not particu-

larly interested in the fit statistics at this point).

Intercept = PO4.oPO4.model$coefficients[[1]]

Slope = PO4.oPO4.model$coefficients[[2]]

What are the observations for which PO4 is missing?

which(is.na(algae_blooms.sna$PO4)==TRUE)

[1] 28 221 291 326 331 335

We can use the regression function to impute the missing PO4 values.

algae_blooms.sna2 <- algae_blooms.sna

algae_blooms.sna2$PO4 <- ifelse(is.na(algae_blooms.sna2$PO4),

max(Intercept + Slope*algae_blooms.sna2$oPO4,0),

algae_blooms.sna2$PO4)

We can clearly see that no values of PO4 are missing anymore.

which(is.na(algae_blooms.sna2$PO4)==TRUE)

integer(0)

That takes care of the missing values with strong linear correlation to

another field. Where do we stand now?
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summary(algae_blooms.sna2)

We suppress the output in the interest of legibility, but there are still

some missing values. And we have exhausted the correlation trick. What

else can we do?

There are many ways to tackle the problem, but we will use 𝑘NN

imputation.
37

The principle is simple: 37: More details on this topic are available

in Chapter 21.

1. using some similarity/distance metric (typically based on the Eu-

clidean distance between points), identify the 𝑘 nearest (complete)

neighbours of each observation with a missing case;

2. compute the mean value of the missing case in the 𝑘−group of

complete observations, and use that value as the imputed value.

IMPORTANT NOTES

As we have seen when we were discussing, we often suggest scaling
the data when dealing with distance metrics. We elected not to

scale the data explicitly here. How much of an effect can that have?

We are going to be usingDMwRs implementation ofknnImputation()

(below). How would you go about determining if the routine scales

the data internally?

algae_blooms.sna2 <- DMwR::knnImputation(algae_blooms.sna2,

k=10)

Sure enough, there are no further observations with incomplete cases.

table(apply(algae_blooms.sna2,1,

function(x) sum(is.na(x))))

0

338

15.7.5 Principal Components

Principal components analysis (PCA) is typically used on the (numeric)

predictor variables. There are methods that can be used to combine

numeric and categorical variables, but for the purposes of this example,

we will simply ignore the categorical fields.
38

38: We revisit this concept in Chapter 23.

pca.algae = algae_blooms.sna2[,4:11]

head(pca.algae)
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We can scale the data frame using the scale() function in R:

head(scale(pca.algae))

Notice the different values in the dataset. The principal components are

obtained via the princomp() function.

pca.1 = princomp(scale(pca.algae))

summary(pca.1)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

Standard deviation 1.5334 1.2022 1.0900 0.9329 0.8750 0.8081 0.6549 0.5224

Proportion of Variance 0.2947 0.1812 0.1489 0.1091 0.0959 0.0818 0.0537 0.0342

Cumulative Proportion 0.2947 0.4760 0.6249 0.7341 0.8301 0.9119 0.9657 1.0000

If we can live with 75% of the variability in the numerical component

of the predictors being explained by principal components, than we can

reduce the dataset dimension by 4.

reduced.algae = data.frame(algae_blooms.sna2[,1:3],

pca.1$scores[,1:4], algae_blooms.sna2[12:17])

head(reduced.algae, 3)

season size speed Comp.1 Comp.2 Comp.3 Comp.4 a1 a2 a3 a4 a5 a6

1 winter small medium 1.0634865 0.2877982 1.6268674 0.26280655 0.0 0.0 0.0 0.0 34.2 8.3

2 spring small medium 2.1808329 0.5908937 -2.1258588 1.07795406 1.4 7.6 4.8 1.9 6.7 0.0

3 autumn small medium 0.2097857 -0.4229638 0.6216107 0.52245855 3.3 53.6 1.9 0.0 0.0 0.0

Whether this reduction proves useful or not will ultimately depend on

what we would like to accomplish with the data; we will study this

dataset again with a particular objective in mind in Section 20.6.
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15.8 Exercises

1. The ability to monitor and perform early forecasts of various river algae blooms is crucial to control

the ecological harm they can cause. The algae_blooms.csv dataset consists of: chemical properties

of various water samples of European rivers; the quantity of seven (biological) algae in each of the

samples, and other characteristics of the collection process for each sample.

a) Identify questions that could be tackled with this dataset.

b) Determine the structure of the dataset, and provide a summary of its features.

c) What can you say about the dataset, in terms of missing values and of the ranges of its values?

d) Do 2-way and 3-way tables (for the categorical variables) provide you with additional insights

about the dataset?

e) Provide some simple (univariate and multivariate) visualizations of season, mn02, NH4+, a1, a3,

and at least one other variable of your choice.

f) Does your analysis above suggest that there are anomalies in the dataset? Take action as needed.

g) Identify observations (cases) with only 1 missing value, 2 missing values, and so on. Are there

strategies that would allow you to handle some of the cases (hint: what is the relationship between

PO4 and oPO4, for instance)? Are there observations that should be removed from the dataset?

h) Produce a clean dataset to be used in analysis, with justification.

2. Consider the datasets GlobalCitiesPBI.csv , 2016collisionsfinal.csv , polls_us_election_-

2016.csv , HR_2016_Census_simple.xlsx , and UniversalBank.csv . For each one:

a) Create a “data dictionary” to explain the different fields and variables. Can you find a source for

these datasets online?

b) Develop a list of questions you would like answered about the datasets.

c) Investigate individual variables (through simple charts, univariate statistics, etc.).

d) Repeat the process with bivariate investigations (though simple charts, joint distributions, variable

interactions, etc.).

e) Do you trust the dataset, or not? Support your answer. If you do not trust the dataset, flag potential

invalid entries, anomalous observations, missing values, or outliers. How should these entries be

treated?

f) Does any of your analysis suggest that some of the variables should be transformed? Do any of

the questions you developed in step 2 support such transformations? If so, transform the data

appropriately.

3. Repeat the last question with any dataset of your liking.

4. The remaining exercises use the Gapminder Tools (there is also an offline version ).

a) Explore the dataset with the Gapminder Tools in its default configuration. Do you think that there

could be problems with the reported values? For instance, select Sweden and the United States

from the checkbox menu on the right and follow their path from 1799 to 2018/2020. From what

point onwards are the values sensible? What do you think is happening at the start of the time

series?

b) Follow Eritrea for the same duration. Look up the country’s independence date from Ethiopia.

What do you think the measurements prior to that date represent?

c) Follow Austria for the same duration. Look up the historical timeline of the country’s boundaries

(Austria-Hungary, Anschluss, modern borders, etc.). What does that imply for the measurements?

d) Follow Finland for the same duration. What happens in 1809? Does that tell you anything about

the way data is coded in the dataset?

e) De-select all countries and let the simulation run from 1799 to 2018/2020. Can you identify

instances where a large subset of observations behaves in unexpected manners? If so, do you

think that this is due to data cleaning/data processing issues?

f) Continue exploring the dataset. You may change which variables are displayed or work with some

of the other visualization methods. Overall, do you think that the dataset is sound? Would you

use it to run analyses? What are some of its strengths and weaknesses?

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
https://www.gapminder.org/tools/
https://www.gapminder.org/tools-offline
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