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Data analysis tools and techniques work in conjunction with collected

data. The type of data that needs to be collected to carry out such analyses,

as well as the priority placed on the collection of quality data relative

to other demands, dictate the choice of data collection strategies. The

manner in which the resulting outputs of these analyses are used for

decision support will, in turn, influence appropriate data presentation

strategies and system functionality.

We have already discussed how data can be processed and transformed to

make it more suitable for analysis (see Section 15), and how questionnaire

design and probabilistic sampling can be used to obtain representative

datasets (see Section 10); in this chapter we explore the technical aspects

of automated data collection and web scraping, as well as the many ways

in which this activity can go awry.
*

16.1 Data Analysis and Web Scraping

Although analysts should always endeavour to work with representative
and unbiased data, there will be times when the available data is flawed

and not easily repaired.

We have a professional responsibility to explore the data, looking for

potential fatal flaws prior to the start of the analysis and to inform clients

and stakeholders of any findings that could halt, skew, or simply hinder

the analytical process or its applicability to the situation at hand.
1

1: It is EXTREMELY IMPORTANT that

these flaws not simply be swept under the

carpet; they need to be addressed, and the

analysis outcomes that result must be pre-

sented or reported on with an appropriate

caveat.

We might also be called upon to provide suggestions to evaluate or fix

the data collection system. The following items could help with that.

Data validity: the system must collect the data in such a way that data

validity is ensured during initial collection. In particular, data must

be collected in a way that ensures sufficient accuracy and precision

of the data, relative to its intended use.

Data granularity, scale of data: the system must collect the data at a

level of granularity appropriate for future analysis.

Data coverage: the system must collect data that comprehensively, rather

than only partially or unevenly, represents the objects of interest;

the system must collect and store the required data over a sufficient

amount of time, and at the required intervals, to support data

analyses that require data spanning a certain duration;

*
Some of the material is modified, in part, from [6, 5].
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Data storage: the system must have the functionality to store the types

and amount of data required for a particular analysis.

Data accessibility: the system must provide access to the data relevant

for a particular analysis, in a format that is appropriate for this

analysis.

Computational/analytic functionality: the system must have the ability

to carry out the computations required by relevant data analysis

techniques.

Reporting, dashboard, visualization: the system must be able to present

the results of the data analysis in a meaningful, usable and respon-

sive fashion.

A number of different overarching strategies for data collection can

be employed. Each of these different strategies will be more or less

appropriate under certain data collection circumstances, and will result

in different system functional requirements.

This is partly why analysts must take the time to understand their
systems before embarking on data analysis (see Chapter 14, Data Science
Basics for details).

World Wide Web

It has been said that the “streets of the Web are paved

with data just waiting to be collected” [6], but you might

be surprised to discover how much of that data is “trash”

[Boily].

The way we share, collect, and publish data has changed over the past

few years due to the ubiquity of the World Wide Web. Private businesses,

governments, and individual users are posting and sharing all kinds

of data and information. At every moment, new channels generate vast

amounts of data.

There was a time in the recent past where both scarcity and inaccessibility

of data was a problem for researchers and decision-makers. That is

emphatically not the case anymore.

But data abundance carries its own set of problems, in the form of:

tangled masses of data, and

traditional data collection methods and classical data analysis

techniques not being up to the task anymore.
2

2: Which is not to say that the results they

would give would be incorrect; it’s rather

their lack of efficiency that comes into play. The growth and increasing popularity and power of open source software,

such as R and Python, for which the source code can be inspected,

modified, and enhanced by anyone, makes program-based automated

data collection quite appealing.

One note of warning, however: time marches on and packages become

obsolete in the blink of an eye. If the analyst is unable (or unwilling) to

maintain their extraction/analysis code and to monitor the sites from

which the data is extracted, the choice of software will not make much of

a difference.



16.1 Data Analysis & Scraping 1003

16.1.1 The What and Why of Web Scraping

So why bother with automated data collection? Common considerations

include:

the sparsity of financial resources;

the lack of time or desire to collect data manually;

the desire to work with up-to-date, high-quality data-rich sources,

and

the need to document the analytical process from beginning (data

collection) to end (publication).

Manual collection, on the other hand, tends to be cumbersome and prone

to error; non-reproducible processes are also subject to heightened risks

of “death by boredom”, whereas program-based solutions are typically

more reliable, reproducible, time-efficient, and produce datasets of higher

quality (this assumes, of course, that coherently presented data exists in

the first place).

Automated Data Checklist

That being said, web scraping is not always recommended. As a starting

point, it is possible that no online and freely available source of data

meets the analysis’ needs, in which case an approach based on survey

sampling is preferable, in all likelihood.

If most of the answers to the following questions are positive, however,

then an automated approach may be the right choice:

is there a need to repeat the task from time to time?
3

3: E.g., to update a database, say.

is there a need for others to to replicate the data collection process?

are online sources of data frequently used?

is the task non-trivial in terms of scope and complexity?

if the task can be done manually, are the financial resources required

to let others do the work lacking?

is the will to automate the process by means of programming there?

The objective is simple: automatic data collection should yield a collection

of unstructured or unsorted datasets, at a reasonable cost.

16.1.2 Web Data Quality

Data quality issues are inescapable. It is not rare for stakeholders or

clients to have spent thousands of dollars on data collection (automatic or

manual) and to respond to the news that the data is flawed or otherwise

unusable with: “well, it’s the best data we have, so find a way to use it.”

These issues can be side-stepped to some extent if consultants get involved

in the project during or prior to the data collection stage, asking questions

such as:

what type of data is best-suited to answer the client’s question(s)?

is the available data of sufficiently high quality to answer the

client’s question(s)?

is the available information systematically flawed?
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Web data can be first-hand information (a tweet or a news article), or

second-hand (copied from an offline source or scraped from some online

location, which may make it difficult to retrace).

Cross-referencing is a standard practice when dealing with secondary

data. Data quality also depends on its use(s) and purpose(s). For example,

a sample of tweets collected on a random day could be used to analyse

the use of a hashtags or the gender-specific use of words, but that dataset

might not prove as useful if it had been collected on the day of the 2016

U.S. Presidential Election to predict the election outcomes.
4

4: Due to collection bias.

Example Say a client is interested in using a standard telephone survey

to find out what people think of a new potato peeler. Such an approach

has a number of pitfalls:

unrepresentative sample – the selected sample might not represent

the intended population;

systematic non-response – people who do not like phone surveys

might be less (or more) likely to dislike the new potato peeler;

coverage error – people without a landline cannot be reached, say,

and

measurement error – are the survey questions providing suitable

info for the problem at hand?

Traditional solutions to these require the use of survey sampling, ques-
tionnaire design, omnibus surveys, reward systems, audits, etc.

5
5: See Chapter 10 for a discussion of the

first two items.

These solutions can be costly, time-consuming, and ineffective. Proxies
– indicators that are strongly related to the product’s popularity without

measuring it directly, could be used instead.

If popularity is defined as large groups of people preferring a potato

peeler over another one, then sales statistics on a commercial website

may provide a proxy for popularity. Rankings on ‘Amazon.ca‘ (or a

similar website) could, in fact, paint a more comprehensive portrait of

the potato peeler market than would a traditional survey.

It could suffice, then, to build a scraper that is compatible with Amazon’s

application program interface (API) to gather the appropriate data. Of

course, there are potential issues with this approach as well:

representativeness of the listed products – are all potato peelers

listed? If not, is it because that website does not sell them or is there

some other reason?

representativeness of the customers – are there specific groups

buying/not-buying online products? Are there specific groups

buying from specific sites? Are there specific groups leaving/not-

leaving reviews?

truthfulness of customers and reliability of reviews – how can we

distinguish between paid (fake) reviews and real reviews?

Web scraping is usually well-suited for collecting data on products (such

as the aforementioned potato-peeler), but there are numerous questions

for which it is substantially more difficult to imagine where data could

be found online: what data could be collected online to measure the

popularity of a government policy, say?

https://amazon.ca
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16.1.3 Ethical Considerations

So is all the data on the Internet ACTUALLY “freely” available?

A spider is a program that grazes or crawls the web rapidly, looking

for information. It jumps from one page to another, grabbing the entire

page content. Scraping, on the other hand, is defined as taking specific

information from specific websites: how are these different?

“Scraping inherently involves copying, and therefore one

of the most obvious claims against scrapers is copyright

infringement.” [6]

What can be done to minimize the risk? Analysts should:

work as transparently as possible;

document data sources at all time;

give credit to those who originally collected/published the data;

keep in mind that if someone else collected the data, permission is
probably required to reproduce it, and, more importantly,

not do anything illegal.

A number of cases have shown that the courts have not yet found

their footing in this matter – see eBay vs. Bidder’s Edge, Associated Press
vs. Meltwater, Facebook vs. Pete Warden, United States vs. Aaron Swartz, for

instance [5].

There are legal issues that we are not qualified to discuss, but in general,

it seems as though larger companies/organisations usually emerge

victorious from such battles.

Part of the difficulty is that it is not clear which scraping actions are

illegal and which are legal, but there are rough guidelines: re-publishing

content for commercial purposes is considered more problematic than

downloading pages for research/analysis, say.

A site’s robots.txt (Robots Exclusion Protocol) file tells scrapers what

information on the site may be harvested with the publisher’s consent –

analysts must heed that file (see Figure 16.1 for examples of such files).

Figure 16.1: The Robots Exclusion Protocol
file for cqads.carleton.ca , theweather-

network.com , cfl.ca (as of Dec 2022).

Perhaps more importantly, be friendly! Not everything that can be

scraped needs to be scraped. Scraping programs should

https://cqads.carleton.ca/robots.txt
https://www.theweathernetwork.com/robots.txt
https://www.theweathernetwork.com/robots.txt
https://www.cfl.ca/robots.txt
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Figure 16.2: Etiquette flow diagram for web scraping. [6]

1. behave “nicely”;

2. provide useful data, and

3. be efficient, in that order.

Any data accessed by HTTP forms is stored in some sort of database.

When in doubt, contact the data provider to see if they will grant access

to the databases or files.

The larger the amount of data required, the better it is for both parties to

communicate before starting to harvest data – for “small” amounts of

data, that may be less important, but small for someone does not necessarily

mean small for all.

Finally, note the importance of following the Scraping Do’s and Don’t’s:

1. stay identifiable;

2. reduce traffic – accept compressed files, check that a file has been

changed before accessing it again, retrieve only parts of a file;

3. do not bother server with multiple requests – many requests per

second can bring smaller server downs, webmasters may block a

scraper if it is too greedy (a few requests per second is fine), and

4. write efficient and polite scrapers – there is no reason to scrape

pages daily or to repeat the same task over and over, select specific

resources and leave the rest untouched.

The design of webpages tends to change quickly and often.
6

A broken6: Really quickly and really often, in fact.

scraper will still consume bandwidth, however, without payoff; scraper

maintenance is paramount to successful data collection.

This is all put together in an etiquette flow diagram (or perhaps that

should be “ethiquette”?) provided by [6] (see Figure 16.2).
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16.1.4 Automated Data Collection Decision Process

Let us end this section by providing a short summary of the automated
data collection decision process [6, 5], from the point of view of analysts

or quantitative consultants:

1. Know exactly what kind of information the client needs, either

specific (e.g. GDP of all OECD countries for last 10 years, sales of

top 10 tea brands in 2017, etc.) or vague (people’s opinion on tea

brand 𝑋, etc.)

2. Find out if there are any web data sources that could provide
direct or indirect information on the client’s problem. That is

easier to achieve for specific facts (a tea store’s webpage will provide

information about teas that are currently in demand) than it is for

vague facts (where would one find opinions on a collection of tea

brands?). Tweets and social media platforms may contain opinion

trends; commercial platforms can provide information on product

satisfaction.

3. Develop a theory of the data generation process when looking
into potential data sources. When was the data generated? When

was it uploaded to the Web? Who uploaded the data? Are there

any potential areas that are not covered, consistent, or accurate?

How often is the data updated?

4. Balance the advantages and disadvantages of potential data
sources. Validate the quality of data used – are there other inde-

pendent sources that provide similar information against which to

crosscheck? Can original source of secondary data be identified?

5. Make a data collection decision. Choose the data sources that

seem most suitable, and document reasons for this decision. Collect

data from several sources to validate the final choice.

16.2 Web Technologies Basics

Online data can be found in text, tables, lists, links, and other structures,

but the way data is presented in browsers is not necessarily how it is

stored in HTML/XML.

For instance, consider the NHL’s Atlantic Division standings on 20-Mar-

2018 below.

Figure 16.3: NHL’s Atlantic Division stand-

ings on 20-Mar-2018 [nhl.com ]

https://nhl.com
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This table is human-readable: most people familiar with professional

competitions can recognize what it “means”, even if they know very little

about hockey or the National Hockey League.

In a web browser, this is not how the information is found, however (see

Figure 16.4).

Figure 16.4: NHL’s Atlantic Division stand-

ings on 20-Mar-2018 (under the hood)

[nhl.com ]

Furthermore, when web pages are dynamic, there is a “cost” associated

with automated collection. Consequently, a basic knowledge of the web

and web-related techs and documents is crucial.ˆ[Information can readily

be found online and in [5, 6].}

There are three areas of importance for data collection on the web:

technologies for content dissemination (HTTP, HTML/XML, JSON,

plain text, etc.);

technologies for information extraction (R, Python, XPath, JSON

parsers, Beautiful Soup, Selenium, regexps, etc.), and

technologies for data storage (R, Python, SQL, binary formats, plain

text formats, etc.).

16.2.1 Content Dissemination

The information that web scrapers look for on webpages appears in one

of the following formats:

HTML – Hypertext Markup Language is used to display information

on the web; it is not a dedicated data storage format, but it typically

contains the information of interest; HTML is interpreted and

transformed into “pretty” output by browsers (using CSS);

https://nhl.com
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Figure 16.5: Comparison between HTML and XML (left, e-cartouche.ch ), and between JSON and XML (right, activeVOS.com ).

XML – Extensible Markup Language is a popular format for exchang-

ing data over the web; its main purpose is to store data; XML is

data wrapped in user-defined tags and as such is more flexible for

storing data than HTML is;

JSON – JavaScript Object Notation is another data storage and exchange

format; it is compatible with many programming languages and

software; it is easier to parse than HTML or XML, and there is

no need to use a specific query language (high level R is usually

sufficient);

AJAX – Asynchronous JavaScript and XML is a group of technologies

that enables websites to request data in the background of the

browser session and update its visual appearance in a dynamic

fashion, while allowing navigation to proceed when waiting for

server reply (this can be a nuisance for web scrapers).

16.2.2 Hyper Text Transfer Protocol

Hypertext Transfer Protocol (HTTP) is a message language used between

web browsers and web servers; Hypertext Transfer Protocol Secure
(HTTPS) combines HTTP with SSL (encryption) and TLS (authentication)

protocols.

In a nutshell, when we type in a URL in a browser to access a web page,

the browser sends an HTTP request to the underlying server.

A request is made up of a verb, a path, a list of headers, and possibly

some parameters. Common verbs include: GET (click on a link) and PUT

(fill-out a form and submit).

For instance, if we type http://www.yahoo.com/search into the browser,

a GET request is sent by the browswer to the yahoo.com server, together

with the path /search.

https://e-cartouche.ch
https://activeVOS.com
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Figure 16.6: Schematics of HTTP (top) and AJAX (bottom) requests; a new HTTP request refreshes the entire page, a new AJAX request only

refreshes the data javabelazy.blogspot.ca .

The web server then sends a response to the browser, containing a code

(404, 200, etc.), as well as headers and content.

The 200 response, say, means that the request was successful: the browser

reads the content and uses it (and CSS files) to display the page.

16.2.3 Web Content

Webpage content itself comes into three main types:

Hypertext Markup Language and variants (HTML/XML) is used

for web content and code;

Cascading Style Sheets (CSS) is used to define the webpage style,

and

JavaScript (JS) is used to provide webpage interactivity.

HTML is, in some sense, the most fundamental (the other two are

optional); HTML is a document language, like LAT
E
Xor markdown (on

which this book is based). A fresh HTTP/HTTPS request for a page

usually returns an HTML file, which may contain references to additional

server files (CSS, JavaScript, images, etc.) – the browser makes additional

requests for these when the webpage is rendered.

Understanding the tree structure of HTML documents goes a long way

towards helping analysts make full use of the scraping toolbox (see

Section 16.3).

CSS defines the colour schemes, the fonts, spacing, and so on. It operates

basically as a PowerPoint template would. In the absence of a CSS file,

the browser uses a default style to render the webpage.

JS, on the other hand, is a programming language. After the browser

parses and displays the HTML file, it executes any JS files referenced

https://javabelazy.blogspot.ca
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in the HTML. JS can be used to manipulate most things on the page

(delete/add/change content, change CSS, fetch more files from server,

go to new page, etc.), and it can set up actions that run as a result of page

events (clicking a button, typing in a text box, etc.)

16.2.4 HTML/XML

HTML syntax is fairly straightforward. HTML is a document language

based on tags. Tags either come in pairs:

<title>...</title> (self-explanatory),

<b>...</b> (bold face text), etc.,

or as stand alone singletons:

<br> (linebreak),

<hr> (horizontal rule), etc.

Paired tags are nested:

<em><strong>...</strong></em> is acceptable, whereas

<em><strong>...</em></strong> is not.

An HTML file is a tree of tags, also known as elements or nodes.

Tags consist of a name/type (mandatory) and attributes (optional): the

tag <p lang="en">...</p>, for instance, is of type p (paragraph), and it

has a single attribute: lang="en".

Plain text is allowed inside tags: <span>Hello World!</span>.

Beyond this, the only other thing left to learn is the set of possible tags,

and the set of possible attributes. The list is extensive; information can be

found at [2].

Two attributes are particularly important for web scraping:

id uniquely identifies an element: <a id="product">...</a>,

<p id="saleInfo">...</p>, etc.;

class can contain multiple values, separated by spaces and is not

unique, but it identifies a set of elements:<h1 class="lightBackground

oddPage">...</h1>, etc.

16.2.5 Cookies and Other Headers

We discuss briefly three common headers:

a cookie is a string that is sent and received with HTTP/HTTPS; it

allows servers to keep track of user sessions. Upon logging on to a

website, users receive a cookie. If the cookie is included in future

requests, the user (and its preferences and choices) is recognized

by the server; otherwise, the website acts as though the user has

logged out.

user agent contain the name and the version of the user’s browser.

referrer sends the page URL from which the request was initiated;

if the user is on Page A and clicks a link to Page B, the server for

Page B will see that the user came from Page A.
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Figure 16.7: Inspecting Nice Peter ’s website’s elements using Developer Tools in Chrome.

16.3 Scraping Toolbox

From experience, we know that a number of tools can facilitate the

automated data extraction process, including:

Developer Tools,

XPath,

regular expressions,

Beautiful Soup, and

Selenium.

We will briefly introduce each of them in this section.

16.3.1 Developer Tools

Developer Tools allow us to see the correspondence between the HTML

code for a page and the rendered version seen in the browser, as illustrated

in Figure 16.7.

Unlike “View Source”, Developer Tools show the dynamic version of the

HTML content.
7

Inspecting a page’s various elements and discovering7: That is, the HTML is shown with any

changes made by JavaScript since the page

was first received.

where they reside in the HTML file is crucial to efficient web scraping:

Firefox – right click page → Inspect Element

Safari – Safari→ Preferences→Advanced→ Show Develop Menu

in Menu Bar, then Develop → Show Web Inspector

Chrome – right click page → Inspect

https://nicepeter.com/erb
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16.3.2 XPath

XPath is a query (domain-specific) language which is used to select

specific pieces of information from marked-up documents.
8

Before this 8: Such as HTML, XML, or variants such

as SVG, RSS.
can be done, the information stored in a marked-up document needs to be

converted (or parsed) into a format suitable for processing and statistical

analysis; this is implemented in the R package XML, for instance.

The process is simple; it involves

1. specifying the data of interest;

2. locating it in a specific document, and

3. tailoring a query to the document to extract the desired info.

HTML/XML tags have attributes and values. HTML files must be parsed

before they can be queried by XPath. XPath queries require both a path
and a document to search; paths consist of hierarchical addressing

mechanism (succession of nodes, separated by forward slashes (“/”),

while a query takes the form xpathSApply(doc,path).
9

9: xpathSApply(parsed_doc,“/html/

body/div/p/i”), for instance, would find

all <i> tags under a <p> tag, itself under

a <div> tag in the body of the html file

of parsed_doc. A substantially heftier

treatment can be found in [6].

We will illustrate Xpath’s functionality with the following webpage:

Figure 16.8: A simple HTML document,

rendered in a browser, based on [4].

The underlying HTML code is in the file laws.html; we parse the

document using XML’s htmlParse().

parsed_doc <- XML::htmlParse(file = "Data/laws.html")

print(parsed_doc)
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<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head><title>Laws of the Internet</title></head>

<body>

<h1>Laws of the <i>Internet</i>

</h1>

<div id="wiio" lang="english" date="1978">

<h2>Osmo Antero Wiio</h2>

<p><i>Communication usually fails, except by accident.</i></p>

<p><b>Source: </b>Wiion lait - ja vähän muidenkin</p>

</div>

<div lang="english" date="1986">

<h2>Melvin Kranzberg</h2>

<p><i>Technology is neither good nor bad; nor is it neutral.</i> <br><emph>(Kranzberg’s 1st Law)</emph></p>

<p><b>Source: </b><a href="https://www.jstor.org/stable/3105385">Technology and Culture. 27 (3): 544-560.</a></p>

</div>

<div lang="english" date="1958">

<h2>Theodore Sturgeon</h2>

<p><i>90% of everything is crap.</i> <br><emph>(Sturgeon’s Revelation)</emph></p>

<p><b>Source: </b>"Books: On Hand". Venture Science Fiction. Vol. 2, no. 2. p. 66.</p>

</div>

<div id="other">

<h2>Others:</h2>

<ul>

<li>The 1% Rule: "Only 1% of the users of a website actively create new content, while the other 99% of

the participants only lurk."</li>

<li>D!@kwad Theory: "Normal Person + Anonymity + Audience = Total D!@kwad"</li>

<li>Godwin’s Law: "As an online discussion grows longer, the probability of a comparison involving Nazis

or Hitler approaches one."</li>

<li>Poe’s Law: "Without a clear indicator of the author’s intent, parodies of extreme views will be mistaken

by some readers or viewers as sincere expressions of the parodied views."</li>

<li>Skitt’s Law: "Any post correcting an error in another post will contain at least one error itself."</li>

<li>Law of Exclamation: "The more exclamation points used in an email (or other posting), the more likely

it is a complete lie."</li>

<li>Cunningham’s Law: "The best way to get the right answer on the Internet is not to ask a question, it’s to

post the wrong answer."</li>

<li>The Wiki Rule: "There’s a wiki for that."</li>

<li>Danth’s Law: "If you have to insist that you’ve won an Internet argument, you’ve probably lost badly."</li>

<li>Law of the Echo Chamber: "If you feel comfortable enough to post an opinion of any importance on any

given Internet site, you are most likely delivering that opinion to people who already agree with you."</li>

<li>Munroe’s Law: "You will never change anyone’s opinion on anything by making a post on the Internet.

This will not stop you from trying."</li>

</ul>

</div>

<address>

<a href="https://exceptionnotfound.net/15-fundamental-laws-of-the-internet/"><i>15 Fundamental Laws

of the Internet</i></a>, by Matthew Jones<a></a>

</address>

</body>

</html>
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Figure 16.9: The HTML document tree for the R built-in fortunes.html file [6].

Basic Structural Queries

XPath queries are called using xpathSApply(), which requires a parsed

document doc and a query path path.

It is much easier to determine the required query paths if we have some

idea of the structure of the underlying HTML document tree.
10

10: See Figure 16.9 for an example.

Absolute paths are represented by single forward slashes [/]; relative
paths by double forward slashes [//]. The next three calls will all return

the same output.

XML::xpathSApply(doc = parsed_doc, path = "/html/body/div/p/i")

XML::xpathSApply(parsed_doc, "//body//p/i")

XML::xpathSApply(parsed_doc, "//p/i")

[[1]]

<i>Communication usually fails, except by accident.</i>

[[2]]

<i>Technology is neither good nor bad; nor is it neutral.</i>

[[3]]

<i>90% of everything is crap.</i>
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Wildcards are represented by an asterisk [*]: the code below once again

has the same output as the one above.

XML::xpathSApply(parsed_doc, "/html/body/div/*/i")

Going up one level in the parsed tree is represented by a double dot

[..].

XML::xpathSApply(parsed_doc, "//title/..")

[[1]]

<head>

<title>Laws of the Internet</title>

</head>

The disjunction (OR) of two paths is represented by the operator [|].

XML::xpathSApply(parsed_doc, "//address | //title")

[[1]]

<title>Laws of the Internet</title>

[[2]]

<address>

<a href="https://exceptionnotfound.net/15-fundamental-laws-of-the-internet/">

<i>15 Fundamental Laws of the Internet</i></a>, by Matthew Jones<a/>

</address>

We can also concatenate multiple queries (which, in this case, would

produce the same output as the immediate call above).

twoQueries <- c(address = "//address", title = "//title")

XML::xpathSApply(parsed_doc, twoQueries)

Note, however, that absolute (or even relative) paths cannot always

succinctly select nodes in large or complicated files.

Node Relations

A query’s path can also exploit a node’s relation to other nodes. By

analogy with a family tree, a node’s placement in the parsed tree often

mimics the relations in extended families.

Relations are denoted according to node1/relation::node2. For in-

stance:

"//a/ancestor::div" returns all <div> nodes that are an ancestor

to an <a> node;

"//a/ancestor::div//i" returns all <i> nodes contained in a

<div> node that is an ancestor to an <a> node, etc.
11

11: See Figure 16.10 for a complete list of

node relations.
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Figure 16.10: Generic node relations [6].

The following XPath query looks for <a> tags in the document, and

produces their ancestors <div> tag.
12

12: There is only one of each in this ex-

ample, but that is an accident of the file

with which we are working; there could

be more in general.XML::xpathSApply(parsed_doc, "//a/ancestor::div")

[[1]]

<div lang="english" date="1986">

<h2>Melvin Kranzberg</h2>

<p><i>Technology is neither good nor bad; nor is it neutral.</i>

<br/><emph>(Kranzberg’s 1st Law)</emph></p>

<p><b>Source: </b><a href="https://www.jstor.org/stable/3105385">Technology and Culture.

27 (3): 544-560.</a></p>

</div>

The following XPath query looks for <a> tags in the document, and

produces all <i> tags of their ancestors <div> tag (there is only one in

this example).

XML::xpathSApply(parsed_doc, "//a/ancestor::div//i")

[[1]]

<i>Technology is neither good nor bad; nor is it neutral.</i>

The following XPath query looks for <p> tags in the document, and

produces the <h2> tags of all their preceding-sibling nodes (there are

three in this example).
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XML::xpathSApply(parsed_doc, "//p/preceding-sibling::h2")

[[1]]

<h2>Osmo Antero Wiio</h2>

[[2]]

<h2>Melvin Kranzberg</h2>

[[3]]

<h2>Theodore Sturgeon</h2>

What do you think this query will do?

XML::xpathSApply(parsed_doc, "//title/parent::*")

XPath Predicates

A predicate is a function that applies to a node’s name, value, or attributes
and that returns a logical TRUE or FALSE.

Predicates modify the path input of an XPath query: the query selects

the nodes for which the relation holds.

Predicates are denoted by square brackets, placed after a node.

For instance:

"//p[position()=1]" returns the first <p> node relative to its

parent node;

"//p[last()]" returns the last <p> node relative to its parent node,

and

"//div[count(./@*)>2]" returns all <div> nodes with 2+ at-

tributes.

This XPath query finds the first <p> node in each <div> node.

XML::xpathSApply(parsed_doc, "//div/p[position()=1]")

[[1]]

<p>

<i>Communication usually fails, except by accident.</i>

</p>

[[2]]

<p><i>Technology is neither good nor bad; nor is it neutral.</i>

<br/><emph>(Kranzberg’s 1st Law)</emph></p>

[[3]]

<p><i>90% of everything is crap.</i>

<br/><emph>(Sturgeon’s Revelation)</emph></p>
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This XPath query finds the last <p> node in each <div> node.

XML::xpathSApply(parsed_doc, "//div/p[last()]")

[[1]]

<p><b>Source: </b>Wiion lait - ja vähän muidenkin</p>

[[2]]

<p>

<b>Source: </b>

<a href="https://www.jstor.org/stable/3105385">Technology and Culture. 27 (3): 544-560.</a>

</p>

[[3]]

<p><b>Source: </b>"Books: On Hand". Venture Science Fiction. Vol. 2, no. 2. p. 66.</p>

This next XPath query finds the second last <p> node in each <div>

node.

XML::xpathSApply(parsed_doc, "//div/p[last()-1]")

[[1]]

<p>

<i>Communication usually fails, except by accident.</i>

</p>

[[2]]

<p><i>Technology is neither good nor bad; nor is it neutral.</i>

<br/><emph>(Kranzberg’s 1st Law)</emph></p>

[[3]]

<p><i>90% of everything is crap.</i> <br/><emph>(Sturgeon’s Revelation)</emph></p>

This XPath query finds the <div> nodes that have at least one <a> node

among their children.

XML::xpathSApply(parsed_doc, "//div[count(.//a)>0]")

[[1]]

<div lang="english" date="1986">

<h2>Melvin Kranzberg</h2>

<p><i>Technology is neither good nor bad; nor is it neutral.</i>

<br/><emph>(Kranzberg’s 1st Law)</emph></p>

<p><b>Source: </b><a href="https://www.jstor.org/stable/3105385">Technology and Culture.

27 (3): 544-560.</a></p>

</div>

A number of commonly-used XPath functions are shown in Table 16.1.
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For instance, the following XPath query finds the <div> nodes that have

more than 2 attributes.

XML::xpathSApply(parsed_doc, "//div[count(./@*)>2]")

[[1]]

<div id="wiio" lang="english" date="1978">

<h2>Osmo Antero Wiio</h2>

<p><i>Communication usually fails, except by accident.</i></p>

<p><b>Source: </b>Wiion lait - ja vähän muidenkin</p>

</div>

This XPath query finds the nodes for which the text component has more

than 50 characters.

XML::xpathSApply(parsed_doc, "//*[string-length(text())>50]")

[[1]]

<i>Technology is neither good nor bad; nor is it neutral.</i>

[[2]]

<p><b>Source: </b>"Books: On Hand". Venture Science Fiction. Vol. 2, no. 2. p. 66.</p>

[[3]]

<li>The 1% Rule: "Only 1% of the users of a website actively create new content, while ...

[[4]]

<li>D!@kwad Theory: "Normal Person + Anonymity + Audience = Total D!@kwad"</li>

[[5]]

<li>Godwin’s Law: "As an online discussion grows longer, the probability of a comparison ...

[[6]]

<li>Poe’s Law: "Without a clear indicator of the author’s intent, parodies of extreme views ...

[[7]]

<li>Skitt’s Law: "Any post correcting an error in another post will contain at least ...

[[8]]

<li>Law of Exclamation: "The more exclamation points used in an email (or other posting), the ...

[[9]]

<li>Cunningham’s Law: "The best way to get the right answer on the Internet is not to ask ...

[[10]]

<li>Danth’s Law: "If you have to insist that you’ve won an Internet argument, you’ve ...

[[11]]

<li>Law of the Echo Chamber: "If you feel comfortable enough to post an opinion of ...

[[12]]

<li>Munroe’s Law: "You will never change anyone’s opinion on anything by making a post ...
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This XPath query finds all <div> nodes with 2 or fewer attributes.

XML::xpathSApply(parsed_doc, "//div[not(count(./@*)>2)]")

[[1]]

<div lang="english" date="1986">

<h2>Melvin Kranzberg</h2>

<p><i>Technology is neither good nor bad; nor is it neutral.</i> <br/><emph>(Kranzberg’s ...

<p><b>Source: </b><a href="https://www.jstor.org/stable/3105385">Technology and Culture...

</div>

[[2]]

<div lang="english" date="1958">

<h2>Theodore Sturgeon</h2>

<p><i>90% of everything is crap.</i> <br/><emph>(Sturgeon’s Revelation)</emph></p>

<p><b>Source: </b>"Books: On Hand". Venture Science Fiction. Vol. 2, no. 2. p. 66.</p>

</div>

[[3]]

<div id="other">

<h2>Others:</h2>

<ul><li>The 1% Rule: "Only 1% of the users of a website actively create new content...

<li>D!@kwad Theory: "Normal Person + Anonymity + Audience = Total D!@kwad"</li>

<li>Godwin’s Law: "As an online discussion grows longer, the probability of a comparison ...

<li>Poe’s Law: "Without a clear indicator of the author’s intent, parodies of extreme ...

<li>Skitt’s Law: "Any post correcting an error in another post will contain at least ...

<li>Law of Exclamation: "The more exclamation points used in an email (or other posting), the ...

<li>Cunningham’s Law: "The best way to get the right answer on the Internet is not to ...

<li>The Wiki Rule: "There’s a wiki for that."</li>

<li>Danth’s Law: "If you have to insist that you’ve won an Internet argument, you’ve ...

<li>Law of the Echo Chamber: "If you feel comfortable enough to post an opinion of any ...

<li>Munroe’s Law: "You will never change anyone’s opinion on anything by making a post ...

</ul></div>

Can you predict what the following queries do? What they will return?

XML::xpathSApply(parsed_doc, "//div[@date=’1958’]")

XML::xpathSApply(parsed_doc, "//*[contains(text(), ’%’)]")

XML::xpathSApply(parsed_doc, "//div[starts-with(./@id, ’wiio’)]")

Extracting Node Elements

XPath queries can also extract specific elements, using the fun option

(xmlValue, xmlAttrs, xmlGetAttr, xmlName, xmlChildren, xmlSize).

For instance, xmlValue returns a node’s value:

XML::xpathSApply(parsed_doc, "//title", fun = XML::xmlValue)

[1] "Laws of the Internet"
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Table 16.1: Commonly-used XPath functions [6].

On the other hand, xmlAttrs returns a node’s attributes. In the first call,

the first component returns 4 nodes; the second component returns each

of these nodes’ attributes.

XML::xpathSApply(parsed_doc, "//div", XML::xmlAttrs)

[[1]]

id lang date

"wiio" "english" "1978"

[[2]]

lang date

"english" "1986"

[[3]] [[4]]

lang date id

"english" "1958" "other"

Finally, xmlGetAttr can be used to return a specific attribute:

XML::xpathSApply(parsed_doc, "//div", XML::xmlGetAttr, "lang")

[[1]] [[2]] [[3]] [[4]]

[1] "english" [1] "english" [1] "english" NULL
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16.3.3 Regular Expressions

Regular expressions can be used to achieve the main web scraping

objective, which is to extract relevant information from reams of data.

Among this mostly unstructured data lurk systematic elements, which

can be used to help the automation process, especially if quantitative

methods are eventually going to be applied to the scraped data.

Systematic structures include numbers, names (countries, etc.), addresses

(mailing, e-mailing, URLs, etc.), specific character strings, etc. Regular

expressions (regexps) are abstract sequences of strings that match concrete

recurring patterns in text; they allow for the systematic extraction of the

information components from plain text, HTML, and XML.

The examples in this section are based on [3].

Initializing the Environment

The Python module for regular expressions is re.

import re

Let us take a quick look at some basics, through the re method match().

We can try to match a pattern from the beginning of a string, as below:

re.match(’super’,’supercalifragilisticexpialidocious’)

<re.Match object; span=(0, 5), match=’super’>

No such match occurs in the following chunk of code, however.

re.match(’super’,’Supercalifragilisticexpialidocious’)

The regular expression pattern (more on this in a moment) for “word” is

\w+. The following bit of code would match the first word in a string:

w_regex = ’\w+’

re.match(w_regex,’Hello World!’)

<re.Match object; span=(0, 5), match=’Hello’>

Common Regular Expression Patterns

A regular expression pattern is a short form used to indicate a type of

(sub)string:

\w+: word

\d: digit

\s: space

.: wildcard
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+ or *: greedy match

\W: not word

\D: not digit

\S: not space

[a-z]: lower case group

[A-Z]: upper case group

There are a few re functions which, combined with regexps, can make it

easier to extract information from large, unstructured text documents:

split(): splits a string on a regexp;

findall(): finds all substrings matching a regexp in a string;

search(): searches for a regexp in a string, and

match(): matches an entire string based on a regexp

Each of these functions takes two arguments: a regexp (first) and a string
(second). For instance, we can split a string on the spaces (and remove

them):

re.split(’\s+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split?’]

The \ in the regexp above is crucial. The following code splits the sentence

on the s (and removes them):

re.split(’s+’,’Can you do the split?’)

[’Can you do the ’, ’plit?’]

We can also split on single spaces and remove them:

re.split(’\s’,’Can you do the split?’)

[’Can’, ’’, ’you’, ’do’, ’the’, ’split?’]

Alternatively, we can also split on the words and remove them:

re.split(’\w+’,’Can you do the split?’)

[’’, ’ ’, ’ ’, ’ ’, ’ ’, ’?’]

Or better yet, split on the non-words and remove them:

re.split(’\W+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split’, ’’]

Let us take some time to study a silly sentence, saved as a string.
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test_string = ’Oh they built the built the ship Titanic.

It was a mistake. It cost more than 1.5 million dollars.

Never again!’

test_string

’Oh they built the built the ship Titanic. It was a mistake. It cost more than 1.5 million dollars.

Never again!’

In English, only three characters can end a sentence: ., ?, !.
13

We create 13: Apparently, nobody’s heard of the in-

terrobang...
a regexp group (more on those in a moment) as follows:

14

14: In Python, regular expression patterns

must be prefixed with an r to differentiate

between the raw string and the string’s
interpretation.

sent_ends = r"[.?!]"

We could then split the string into its constituent sentences:

print(re.split(sent_ends,test_string))

[’Oh they built the built the ship Titanic’, ’ It was a mistake’,

’ It cost more than 1’, ’5 million dollars’, ’ Never again’, ’’]

If we wanted to know how many such sentences there were, we simply

use the len() function:

print(len(re.split(sent_ends,test_string)))

6

The regexp range consisting of words with an uppercase initial letter is

easy to build:

cap_words = r"[A-Z]\w+" # Upper case characters

We can find all such words (and how many there are in the string)

through:

print(re.findall(cap_words,test_string))

print(len(re.findall(cap_words,test_string)))

[’Oh’, ’Titanic’, ’It’, ’It’, ’Never’]

5

The regexp for spaces is:

spaces = r"\s+" # spaces

We can then split the string on spaces, and count the number of tokens
(see Chapter 27, Text Analysis and Text Mining):
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print(re.split(spaces,test_string))

print(len(re.split(spaces,test_string)))

[’Oh’, ’they’, ’built’, ’the’, ’built’, ’the’, ’ship’, ’Titanic.’,

’It’, ’was’, ’a’, ’mistake.’, ’It’, ’cost’, ’more’, ’than’, ’1.5’,

’million’, ’dollars.’, ’Never’, ’again!’]

21

The regexp for numbers (contiguous strings of digits) is:

numbers = r"\d+"

We can find all the numeric characters using:

print(re.findall(numbers,test_string))

print(len(re.findall(numbers,test_string)))

[’1’, ’5’]

2

The main difference between search() and match() is that match() tries

to match from the beginning of a string, whereas search() looks for a

match anywhere in the string.

Regular Expressions Groups ‘( )‘ and Ranges ‘[ ]‘ With OR ‘|‘

We can create more complicated regexps using groups, ranges, and/or

“or” statements:

[a-zA-Z]+: an unlimited number of lower and upper case En-

glish/French (unaccented) letters;

[0-9]: the digits from 0 to 9;

[a-zA-Z'\.\-]+: any combination of lower and upper case En-

glish/French (unaccented) letters, ', ., and -;

(a-z): the characters a, -, and z;

(\s+|,): any number of spaces, or a comma;

(\d+|\w+): words or numerics

For instance, consider the following text string and regexps groups:

text = ’On the 1st day of xmas, my boat sank.’

numbers_or_words = r"(\d+|\w+)"

spaces_or_commas = r"(\s+|,)"

This next chunk of code does exactly what one would expect:
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print(re.findall(numbers_or_words,text))

[’On’, ’the’, ’1’, ’st’, ’day’, ’of’, ’xmas’, ’my’, ’boat’, ’sank’]

What about this one?

print(re.findall(spaces_or_commas,text))

[’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’,’, ’ ’, ’ ’, ’ ’]

Now, consider a different string:

text = "will something happen after the semi-colon; I don’t think so"

What might happen in each of the following cases?

print(re.match(r"[a-z -]+",text))

print(re.match(r"[a-z ]+",text))

print(re.match(r"[a-z]+",text))

print(re.match(r"(a-z-)+",text))

16.3.4 BeautifulSoup

Simple web requests require some networking code to fetch a page and

return the HTML contents.

Browsers do a lot of work to intelligently parse improper HTML syntax,
15

so that something like 15: Only up to a certain point, of course.

<a href="data-action-lab.com> <b>link text<a> </b>,

say, would be correctly interpreted as

<a href="data-action-lab.com><b>link text</b></a>.

BeautifulSoup (BS) is a Python library that helps extract data out of

HTML and XML files; it parses HTML files, even if they are broken.

But BS does not simply convert bad HTML to good X/HTML; it allows

a user to fully inspect the (proper) HTML structure it produces, in a

programmatical fashion.
16

16: The R equivalent is rvest; we will not

describe how to use it, but you are strongly
encouraged to read up on this versatile

tool and to use it in the Exercises.

Typical HTML elements to be extracted/read come in various formats,

such as:

text

tables

form field values

images

videos

etc.
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When BS has finished its work on an HTML file, the resulting soup is

an API for traversing, searching, and reading the document’s elements.

In essence, it provides idiomatic ways of navigating, searching, and

modifying the parse tree of the HTML file, which can save a fair amount

of time.

For instance, soup.find_all(’a’) would find and output all <a ...>

... </a> tag pairs (with attributes and content) in the soup, whereas

the following chink of code would output the URLs found in the same

tag pairs.

for link in soup.find_all(’a’):

print(link.get(’href’)‘

The BeautifulSoup documentation is quite explicit and provides numerous

examples [1]. We use the lyrics to Meet the Elements , a song by They
Might Be Giants, to illustrate BeautifulSoup’s functionality.

html_doc = """

<html>

<head><title>Meet the Elements</title> <meta name="author" content="They Might Be Giants"></head>

<body><p class="title"><b>Meet the Elements</b></p>

<p class="author"><i>They Might Be Giants</i></p>

<div class="lyrics"><p class="verse" id="verse1">

<a href="https://en.wikipedia.org/wiki/Iron" class="element" id="link1">Iron</a> is a metal, you

see it every day<br>

<a href="https://en.wikipedia.org/wiki/Oxygen" class="element" id="link2">Oxygen</a>, eventually,

will make it rust away<br>

<a href="https://en.wikipedia.org/wiki/Carbon" class="element" id="link3">Carbon</a> in its

ordinary form is coal<br>

Crush it together, and diamonds are born</p>

<p class="chorus" id="chorus1">

Come on, come on, and meet the elements <br>

May I introduce you to our friends, the elements? <br>

Like a box of paints that are mixed to make every shade <br>

They either combine to make a chemical compound or stand alone as they are</p>

<p class="verse" id="verse2">

<a href="https://en.wikipedia.org/wiki/Neon" class="element" id="link4">Neon</a>’s a gas that

lights up the sign for a pizza place <br>

The coins that you pay with are <a href="https://en.wikipedia.org/wiki/Copper" class="element"

id="link5">copper</a>, <a href="https://en.wikipedia.org/wiki/Nickel" class="element"

id="link6">nickel</a>, and <a href="https://en.wikipedia.org/wiki/Zinc" class="element"

id="link7">zinc</a> <br>

<a href="https://en.wikipedia.org/wiki/Silicon" class="element" id="link8">Silicon</a> and oxygen

make concrete bricks and glass <br>

Now add some <a href="https://en.wikipedia.org/wiki/Gold" class="element" id="link9">gold</a> and

<a href="https://en.wikipedia.org/wiki/Silver" class="element" id="link10">silver</a> for some

pizza place class</p>

<p class="chorus" id="chorus2">

Come on, come on, and meet the elements <br>

I think you should check out the ones they call the elements <br>

https://www.youtube.com/watch?v=Uy0m7jnyv6U
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Like a box of paints that are mixed to make every shade <br>

They either combine to make a chemical compound or stand alone as they are <br>

Team up with other elements making compounds when they combine <br>

Or make up a simple element formed out of atoms of the one kind </p>

<p class="verse" id="verse3">

Balloons are full of <a href="https://en.wikipedia.org/wiki/Helium" class="element"

id="link11">helium</a>, and so is every star <br>

Stars are mostly <a href="https://en.wikipedia.org/wiki/Hydrogen" class="element"

id="link12">hydrogen</a>, which may someday fill your car <br>

Hey, who let in all these elephants? <br>

Did you know that elephants are made of elements? <br>

Elephants are mostly made of four elements <br>

And every living thing is mostly made of four elements <br>

Plants, bugs, birds, fish, bacteria and men <br>

Are mostly carbon, hydrogen, <a href="https://en.wikipedia.org/wiki/Nitrogen" class="element"

id="link13">nitrogen</a>, and oxygen</p>

<p class="chorus" id="chorus3">

Come on, come on, and meet the elements <br>

You and I are complicated, but we’re made of elements <br>

Like a box of paints that are mixed to make every shade <br>

They either combine to make a chemical compound or stand alone as they are <br>

Team up with other elements making compounds when they combine <br>

Or make up a simple element formed out of atoms of the one kind <br>

Come on come on and meet the elements <br>

Check out the ones they call the elements <br>

Like a box of paints that are mixed to make every shade <br>

They either combine to make a chemical compound or stand alone as they are</p>

</div>

"""

Note that the HTML file contains neither a </body> nor a </html> tag.

We import the BeautifulSoup module, and parse the file into a soup

using the html.parser.

from bs4 import BeautifulSoup

soup = BeautifulSoup(html_doc, ’html.parser’)

print(soup.prettify())

<html>

<head>

<title>

Meet the Elements

</title>

<meta content="They Might Be Giants" name="author"/>

</head>

<body>

<p class="title">

<b>

Meet the Elements

</b>

</p>
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<p class="author">

<i>

They Might Be Giants

</i>

</p>

<div class="lyrics">

<p class="verse" id="verse1">

<a class="element" href="https://en.wikipedia.org/wiki/Iron" id="link1">

Iron

</a>

is a metal, you see it every day

<br/>

...

<p class="chorus" id="chorus3">

Come on, come on, and meet the elements

<br/>

You and I are complicated, but we’re made of elements

<br/>

Like a box of paints that are mixed to make every shade

<br/>

They either combine to make a chemical compound or stand alone as they are

<br/>

Team up with other elements making compounds when they combine

<br/>

Or make up a simple element formed out of atoms of the one kind

<br/>

Come on come on and meet the elements

<br/>

Check out the ones they call the elements

<br/>

Like a box of paints that are mixed to make every shade

<br/>

They either combine to make a chemical compound or stand alone as they are

</p>

</div>

</body>

</html>

The parser has “fixed” the file by appending the missing tags; it also

indents the tags to make it easier to spot the document’s hierarchic (tree)

structure.

BeautifulSoup Functionality

Is the functionality of BS clear from the following examples?

print(soup.title)

<title>Meet the Elements</title>
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print(soup.title.name)

title

print(soup.title.string)

Meet the Elements

print(soup.title.parent.name)

head

print(soup.p)

<p class="title"><b>Meet the Elements</b></p>

soup.p[’class’]

[’title’]

print(soup.a)

<a class="element" href="https://en.wikipedia.org/wiki/Iron" id="link1">Iron</a>

soup.find_all(’a’)

[<a class="element" href="https://en.wikipedia.org/wiki/Iron" id="link1">Iron</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Oxygen" id="link2">Oxygen</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Carbon" id="link3">Carbon</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Neon" id="link4">Neon</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Copper" id="link5">copper</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Nickel" id="link6">nickel</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Zinc" id="link7">zinc</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Silicon" id="link8">Silicon</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Gold" id="link9">gold</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Silver" id="link10">silver</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Helium" id="link11">helium</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Hydrogen" id="link12">hydrogen</a>,

<a class="element" href="https://en.wikipedia.org/wiki/Nitrogen" id="link13">nitrogen</a>]
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print(soup.find(id="link5"))

<a class="element" href="https://en.wikipedia.org/wiki/Copper"

id="link5">copper</a>

for link in soup.find_all(’a’):

print(link.get(’href’))

https://en.wikipedia.org/wiki/Iron

https://en.wikipedia.org/wiki/Oxygen

https://en.wikipedia.org/wiki/Carbon

https://en.wikipedia.org/wiki/Neon

https://en.wikipedia.org/wiki/Copper

https://en.wikipedia.org/wiki/Nickel

https://en.wikipedia.org/wiki/Zinc

https://en.wikipedia.org/wiki/Silicon

https://en.wikipedia.org/wiki/Gold

https://en.wikipedia.org/wiki/Silver

https://en.wikipedia.org/wiki/Helium

https://en.wikipedia.org/wiki/Hydrogen

https://en.wikipedia.org/wiki/Nitrogen

print(soup.get_text())

Meet the Elements

Meet the Elements

They Might Be Giants

Iron is a metal, you see it every day

Oxygen, eventually, will make it rust away

Carbon in its ordinary form is coal

Crush it together, and diamonds are born

Come on, come on, and meet the elements

May I introduce you to our friends, the elements?

Like a box of paints that are mixed to make every shade

They either combine to make a chemical compound or stand alone as they are

Neon’s a gas that lights up the sign for a pizza place

The coins that you pay with are copper, nickel, and zinc

Silicon and oxygen make concrete bricks and glass

Now add some gold and silver for some pizza place class

Come on, come on, and meet the elements

I think you should check out the ones they call the elements

Like a box of paints that are mixed to make every shade

They either combine to make a chemical compound or stand alone as they are

Team up with other elements making compounds when they combine

Or make up a simple element formed out of atoms of the one kind

Balloons are full of helium, and so is every star

Stars are mostly hydrogen, which may someday fill your car

Hey, who let in all these elephants?

Did you know that elephants are made of elements?
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Elephants are mostly made of four elements

And every living thing is mostly made of four elements

Plants, bugs, birds, fish, bacteria and men

Are mostly carbon, hydrogen, nitrogen, and oxygen

Come on, come on, and meet the elements

You and I are complicated, but we’re made of elements

Like a box of paints that are mixed to make every shade

They either combine to make a chemical compound or stand alone as they are

Team up with other elements making compounds when they combine

Or make up a simple element formed out of atoms of the one kind

Come on come on and meet the elements

Check out the ones they call the elements

Like a box of paints that are mixed to make every shade

They either combine to make a chemical compound or stand alone as they are

16.3.5 Selenium

Selenium is a Python tool used to automate web browser interactions. It

is used primarily for testing purposes, but it has data extraction uses as

well. Mainly, it allows the user to open a browser and to act as a human

being would:

clicking buttons;

entering information in forms;

searching for specific information on a page, etc.

Selenium requires a driver to interface with the chosen browser. Firefox,

for example, uses geckodriver.
17

17: Here are the driver URL for supported

browsers:

Chrome

Edge

Firefox

Safari

Selenium automatically controls a complete browser, including rendering
the web documents and running JavaScript. This is useful for pages

with a lot of dynamic content that is not in the base HTML. Selenium

can program actions like “click on this button”, or “type this text”, to

provide access to the dynamic HTML of the current state of the page, not

unlike what happens in Developer Tools (but now the process can be fully

automated). More information can be found in [9, 7, 8].

16.3.6 APIs

An application programming interface (API) is a website’s way of giving

programs access to their data, without the need for scraping. APIs provide

structured access to structured data: not every bit of information will

necessarily be made available to analysts.

For example, a finance site might offer an API with financial aggregate

data, the New York Times might offer an API for news articles from a

specific time period, Twitter might offer an API to collect tweets by users

or hashtags, etc. In all cases, however, the data will be available in a

pre-defined, structured format (often JSON).

In the examples we consider in Section 16.4, the APIs we consider have

R/Python libraries that encapsulate all required networking and encoding.

This means that users only need to read the library documentation to get

a sense for what needs to be done to get the data.
18

18: A full list of R API libraries can be

found here .

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver
https://github.com/mozilla/geckodriver/releases
https://webkit.org/blog/6900/webdriver-support-in-safari-10
https://cran.r-project.org/web/views/WebTechnologies.html
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16.3.7 Specialized Uses and Applications

Although we will not be discussing them in these notes, it could prove

useful for web scrapers to learn how to handle:

HTML Forms Sometimes we do not just want to receive data from the

server, we also want to send data, such as a username/password
combination to log in to a site. Other input types include: check

boxes, radio buttons, hidden inputs, etc. Real users accomplish

this by filling out forms and submitting them to the server. When

this happens the browser looks at the form HTML and sends a

request with the user inputs as parameters. The server can use those

parameters to send back different data.

Encoding What if we wanted to write <br /> as text in an HTML file? If

we just type it in as-is, it would be interpreted as an HTML tag, not

as text. The solution is to use HTML encoding. In order to type <br

/>, we have to encode it in a special form of text that the browser

understands. An HTML decoder/encoder can be found here .

Combination HTML forms can specify a method for GET as well as for

PUT. In that case the parameters are appended to the URL after a

“?”, like so:

http://search.yahoo.com/search/?p=data+analysis&lang=en.

In that example, the parameter names arep andlang. The parameter

value data+analysis actually represents the string “data analysis”,

but spaces get encoded in URLs. Other characters (such as “/”)

often are as well; use the urlencoder.org to get the correct strings.

16.4 Examples

In this section, we provide web scraping examples (in R and Python) that

highlight some of the notions we discussed in the chapter.
19

19: These examples all worked as of Dec

2022; but it is possible that the websites

that are being scraped have changed their

structure or been deleted, or that the

tools used have been updated/upgrad-

ed/made obsolete in the intervening time.

16.4.1 Wikipedia

This example is inspired by a task found in [6]. We analyze the list of

largest cities on the planet, found on Wikipedia .
20

20: Wikipedia is a commonly-used source

of data on various topics (in a first pass, at

the very least), but it should probably not

be your ONLY source of information. Preamble

We will be using the following R libraries:

stringr, stringi, and strex, for string manipulation;

XML, for reading and creating XML documents;

maps, to display maps, and

rvest, which provides a wrapper for HTTP requests in R.

https://mothereff.in/html-entities
https://www.urlencoder.org
https://en.Wikipedia.org/wiki/List_of_largest_cities
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Loading and Parsing the Data

We read the material from the Wikipedia website using rvest’s read_-

html() command, and we store it to the object html.

html <- rvest::read_html("https://en.Wikipedia.org/wiki/List_of_largest_cities")

A call to the object shows the entire structure of the page under the

hood.

html

{html_document}

<html class="client-nojs" lang="en" dir="ltr">

[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...

[2] <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject ...

Now that we have the information from the webpage, we parse it to

create a string of words.

cities_parsed <- XML::htmlParse(html, encoding="UTF-8")

Note that this new output contains the same information as the original

object html, but that if it was displayed, it would be so in a format

resembling what a human programer would expect to see (at least, to

some extent). We opt not to display it due to its excessive length.

Now that the information from the webpage is parsed, we create tables

to hold the words, using XML’s readHTMLTable().

tables <- XML::readHTMLTable(cities_parsed, stringsAsFactors = FALSE)

Essentially, readHTMLTable() hunts for <table>...</table> tag pairs

in the file; it finds 4 here. We get some structural information by calling

str on the resulting object tables.

str(tables)

List of 4

$ NULL:’data.frame’: 5 obs. of 1 variable:

..$ V1: chr [1:5] "Ekistics" "" "List of largest cities\nList of cities proper by ...

$ NULL:’data.frame’: 84 obs. of 13 variables:

..$ V1 : chr [1:84] "City[a]" "Definition" " " "Tokyo" ...

..$ V2 : chr [1:84] "Country" "Population" "" " Japan" ...

..$ V3 : chr [1:84] "UN 2018 population estimates[b]" "Area.mw-parser-output ...

..$ V4 : chr [1:84] "City proper[c]" "Density(/km2)" "" "Metropolis prefecture" ...

..$ V5 : chr [1:84] "Urban area[8]" "Population" "" "13,515,271" ...

..$ V6 : chr [1:84] "Metropolitan area[d]" "Area(km2)" "" "2,191" ...

..$ V7 : chr [1:84] NA "Density(/km2)" "" "6,169[13]" ...

..$ V8 : chr [1:84] NA "Population" "" "39,105,000" ...
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..$ V9 : chr [1:84] NA "Area(km2)" "" "8,231" ...

..$ V10: chr [1:84] NA "Density(/km2)" "" "4,751[e]" ...

..$ V11: chr [1:84] NA NA "" "37,274,000" ...

..$ V12: chr [1:84] NA NA "" "13,452" ...

..$ V13: chr [1:84] NA NA "" "2,771[14]" ...

$ NULL:’data.frame’: 7 obs. of 2 variables:

..$ V1: chr [1:7] "v\nt\ne\n\nWorld’s largest cities" "City proper" "Metropolitan area" ...

..$ V2: chr [1:7] NA "Capitals\nAfrica\n\nAmericas (North\n\nLatin\nCentral\n\nSouth)\n\nAsia ...

$ NULL:’data.frame’: 9 obs. of 2 variables:

..$ V1: chr [1:9] "v\nt\ne\n\nCities" "Urban geography" "Urban government" "Urban economics" ...

..$ V2: chr [1:9] NA "Urban area\n\nCity centre\nDowntown\nSuburb\nExurb\nCore city\nTwin ...

Data Processing and Data Cleaning

We extract the table containing the information of interest.

cities_table <- tables[[2]]

The column headers are not as we might want them:

colnames(cities_table)

[1] "V1" "V2" "V3" "V4" "V5" "V6" "V7"

[13] "V8" "V9" "V10" "V11" "V12" "V13"

Compare with the second row of cities_table:

cities_table[2,]

V1 V2 V3

2 Definition Population Area.mw-parser-output .nobold{font-weight:normal}(km2)

V4 V5 V6 V7 V8 V9

2 Density(/km2) Population Area(km2) Density(/km2) Population Area(km2)

V10 V11 V12 V13

2 Density(/km2) <NA> <NA> <NA>

This is still not ideal: the first and second rows of the table contain variable

information, and the data itself starts with row 3. We need to manually

input the column names, and delete the non-data rows.

colnames(cities_table) <- c("city", "country", "un.2018.pop","city.def","city.pop","city.area",

"city.den","metro.pop","metro.area","metro.den","urban.pop","urban.area","urban.den")

cities_table <- data.frame(cities_table[4:nrow(cities_table),])

We only select a sample of the columns of the table:

city [1];

country [2];

urban.pop [11];

urban.area [12], and

urban.den [13].
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cities_table <- cities_table[,c(1,2,11,12,13)]

It is never a bad idea to validate our work as we build the scraper: are

we getting what we would expect along the way? Let us take a look at

the structure of the data and compare the first 6 entries of the table to the

information we can see on the Wikipedia page.

str(cities_table)

’data.frame’: 81 obs. of 5 variables:

$ city : chr "Tokyo" "Delhi" "Shanghai" "São Paulo" ...

$ country : chr " Japan" " India" " China" " Brazil" ...

$ urban.pop : chr "37,274,000" "29,000,000" "--" "21,734,682" ...

$ urban.area: chr "13,452" "3,483" "--" "7,947" ...

$ urban.den : chr "2,771[14]" "8,326[16]" "--" "2,735[20]" ...

head(cities_table)

city country urban.pop urban.area urban.den
4 Tokyo Japan 37,274,000 13,452 2,771[14]

5 Delhi India 29,000,000 3,483 8,326[16]

6 Shanghai China — — —

7 São Paulo Brazil 21,734,682 7,947 2,735[20]

8 Mexico City Mexico 21,804,515 7,866 2,772[22]

9 Cairo Egypt — — —

We see that all variables appear as character strings, and that there are

oddities with some of the numerical values (square brackets, missing

values, comma separators, etc.).

We obtain the numerical values using stringr’s str_extract() and

regexps(), orstrex’sstr_extract_numbers() andstr_first_number().

The urban populations are all above 5M, and they are all displayed using

comma separators, thus they all have values that look like ddd,ddd,ddd,

where d ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

We extract only the portion of the strings that follow this pattern from

the population column using str_extract(),
21

removing the commas 21: Which does not retain the footnote

markers.
after the fact using gsub(), and coercing the outcome to a numerical

format using as.numeric().

cities_table$urban.pop <- as.numeric(

gsub(",", "",

stringr::str_extract(

cities_table$urban.pop,

stringr::regex("\\d+,\\d+,\\d+")

)

)

)
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The area column contains no footnote, so we can directly extract the

comma-separated values (using str_extract_numbers()) and coerce to

a vector using as.numeric().
22

22: Otherwise, the output would be a list.

cities_table$urban.area <- as.numeric(

strex::str_extract_numbers(

cities_table$urban.area,

commas=TRUE

)

)

Finally, we extract the first number that appears in each density value,

removing the footnotes,
23

using str_first_number(); the result is then23: Both characters and numerics.

coerced to a numeric vector using as.numeric().

cities_table$urban.den <-

as.numeric(strex::str_first_number(

cities_table$urban.den,

commas=TRUE

)

)

The first six entries are shown below.

rownames(cities_table) = NULL

head(cities_table)

city country urban.pop urban.area urban.den
Tokyo Japan 37274000 13452 2771

Delhi India 29000000 3483 8326

Shanghai China NA NA NA

São Paulo Brazil 21734682 7947 2735

Mexico City Mexico 21804515 7866 2772

Cairo Egypt NA NA NA

We can download latitude and longitude details for ≈ 41K cities.

world_cities = read.csv("worldcities.csv",

stringsAsFactors = TRUE, nrow=200)

str(world_cities)

’data.frame’: 200 obs. of 3 variables:

$ city_ascii: Factor w/ 198 levels "Abidjan","Ahmedabad", ...

$ lat : num 35.69 -6.21 28.66 18.97 14.6 ...

$ lng : num 139.7 106.8 77.2 72.8 121 ...

We extract a 5-digit code for each city, in the hope of being able to match

them in both datasets.

We remove accents using stringi’s stri_trans_general(), which will

convert every character to its nearest equivalent in the Latin ASCII

character list.

https://simplemaps.com/data/world-cities
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world_cities$code = stringi::stri_trans_general(

tolower(

substr(

world_cities$city_ascii,1,5)

),

"Latin-ASCII"

)

cities_table$code = stringi::stri_trans_general(

tolower(

substr(cities_table$city,1,5)

),

"Latin-ASCII"

)

We merge the data frames:

(complete = merge(cities_table, world_cities, all.x=TRUE))

code city country urban.pop urban.area urban.den city_ascii lat lng
ahmed Ahmedabad India 6300000 NA NA Ahmedabad 23.0300 72.5800

alexa Alexandria Egypt NA NA NA Alexandria 31.2000 29.9167

atlan Atlanta United States 5949951 21690 274 Atlanta 33.7627 -84.4224

baghd Baghdad Iraq NA NA NA Baghdad 33.3500 44.4167

banga Bangalore India NA NA NA Bangalore 12.9699 77.5980

... ... ... ... ... ... ... ... ...

seoul Seoul South Korea 25514000 11704 2180 Seoul 37.5600 126.9900

shang Shanghai China NA NA NA Shangrao 28.4419 117.9633

shang Shanghai China NA NA NA Shanghai 31.1667 121.4667

shang Shanghai China NA NA NA Shangqiu 34.4259 115.6467

... ... ... ... ... ... ... ... ...

suzho Suzhou China NA NA NA Suzhou 31.3040 120.6164

suzho Suzhou China NA NA NA Suzhou 33.6333 116.9683

... ... ... ... ... ... ... ... ...

toron Toronto Canada 5928040 5906 1004 Toronto 43.7417 -79.3733

washi Washington United States 6263245 17009 368 Washington 38.9047 -77.0163

wuhan Wuhan China NA NA NA Wuhan 30.5872 114.2881

xi’an Xi’an China NA NA NA Xi’an 34.2667 108.9000

yango Yangon Myanmar NA NA NA NA NA NA

There are still some issues with the data:

Suzhou shows up twice, with two different sets of coordinates,

but the appropriate coordinates are found online to be (31.299999,

120.599998);

Neither Yangon nor Fukuoka appear in the world_cities dataset,

but their coordinates are found online to be (16.871311,96.199379)

and (33.583332,130.399994), respectively;

Shanghai has been associated to three cities: Shanghai, Shangrao,

and Shangqiu, each with its own coordinates. As neither Shangrao

nor Shangqiu appears in the original list, they may be removed

with impunity,
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there is no population data for Foshan, but the Wikipedia page

informs us that Foshan is included in the Guangzhou urban area,

so we will remove the former from the dataset, and

there are missing population, area, and density values for a number

of cities, but these were missing in the original dataset, so we will

leave it be for now.
24

24: Were they really, though? The prob-

lem arises because variables V11, V12, and

V13were poor choices in the first place. We

will ask you to revisit this in the exercises.
# remove duplicate entries

complete = complete[-c(23,68,70,76),c(7,3,8,9,4,5,6)]

rownames(complete) = NULL

# add Fukuoka coordinates

complete[23,3] = 33.5833

complete[23,4] = 130.3999

# add Yangon coordinates

complete[80,3] = 16.8713

complete[80,4] = 96.1994

# add new factor levels for missing city names

complete$city_ascii = factor(complete$city_ascii,

levels=c(levels(complete$city_ascii),"Yangon","Fukuoka"))

complete[23,1] = "Fukuoka"

complete[80,1] = "Yangon"

# rename city_ascii to city

colnames(complete)[1] <- "city"

Visualization

All the work we have done has brought the data in a format that is

amenable to analysis. As an illustration, we plot the cities on a map of

the world. We can display a Mercator projection by using maps’s map().

par(oma=c(0,0,0,0)); par(mar=c(0,0,0,0))

maps::map("world", col = "darkgrey", lwd = .5, mar = c(0.1,0.1,0.1,0.1))

points(complete$lng, complete$lat, col = "black", cex = .8)

title("Locations of the 80 most populuous urban areas", line=1)

box()
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We could also provide a bubble chart of the urban regions (note that not

all 80 observations actually appear):

library(ggplot2)

ggplot(complete,aes(x=urban.pop, y=urban.area, size=urban.den, colour=urban.den,

label=city)) +

geom_point() + theme_bw() + xlab("urban population") + scale_y_log10() +

ylab("urban area (log scaled)") + guides(colour = guide_legend(reverse = TRUE)) +

geom_text(aes(label=ifelse(urban.pop>23000000, as.character(city),’’)),

size=3, hjust=1, vjust=2) +

labs(colour = "urban density", size = "urban density") +

ggtitle("Relationship between population, area, and density",

subtitle="80 most populous urban areas")

16.4.2 Weather Data

Simple web requests sometimes require some networking code to fetch a

page and return the HTML contents.

When a user is extracting data from HTML, they typically search for

certain HTML elements and read the data they contain (data could be

text, tables, form field values, images, videos, etc.).

In this example, we build a function that extracts the 7-day forecast for

the main Canadian cities location.

Preamble

The first step is to load the various required Python modules.

from bs4 import BeautifulSoup # to parse and process the data

from urllib.request import urlopen # to open URLs

import numpy as np # to do some numerics eventually

import pandas # to do some analysis eventually
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Loading and Parsing the Data

We get a handle on the website structure by studying the page for a single

location, say Ottawa, Ontario .
25

25: This version of the code requires that

it be run before 3PM EST; the various

webpages have a different format in the

evenings, unfortunately; see exercises.

ottawaURL = "https://weather.gc.ca/city/pages/on-118_metric_e.html"

The page looks something like the image in Figure 16.11.

Figure 16.11: 7-day forecast for Ottawa, ON, on Wednesday April 6, 2022. [weather.gc.ca

We download the HTML and load it into BeautifulSoup, usinghtml.parser.
26

26: Other parsers can also be used, de-

pending on the type of files with which

we work.

ottawaHTML = urlopen(ottawaURL)

ottawaBS = BeautifulSoup(ottawaHTML, ’html.parser’)

The soup (parsed content) is now available in ottawaBS. The data of

interest is in there, we just need to pick it out of the document.

If we open developer tools pane in our browser, we can examine the

specific HTML elements that contain the numbers we want. The table

with the 7 day forecast appears to correspond to div element with

class=div-table (see Figure 16.12); the weather information is contained

in 7 columns, each of which is a div element with class=div-column

(see Figure 16.13).

https://weather.gc.ca/city/pages/on-118_metric_e.html
https://weather.gc.ca
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Figure 16.12: 7-day forecast for Ottawa,

ON, on Wednesday April 6, 2022; the

‘div‘ element with ‘class=div-table‘ is high-

lighted in the Firefox Inspector.

Figure 16.13: 7-day forecast for Ottawa,

ON, on Wednesday April 6, 2022; the ‘div‘

element with ‘class=div-column‘ is high-

lighted in the Firefox Inspector.

We can find it in the soup ottawaBS as follows:

sevenDaysBS = ottawaBS.find_all(’div’, attrs={"class" : "div-column"})

We display the HTML for the first of those columns below.

print(sevenDaysBS[0].prettify())

<div class="div-column">

<div class="div-row div-row1 div-row-head">

<a href="/forecast/hourly/on-118_metric_e.html">

<strong title="Friday">

Fri

</strong>

<br/>

7

<abbr title="October">

Oct

</abbr>

</a>

</div>
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<a class="linkdate" href="/forecast/hourly/on-118_metric_e.html">

<div class="div-row div-row2 div-row-data">

<img alt="Chance of showers" class="center-block" height="51" src="/weathericons/12.gif" width="60"/>

<p class="mrgn-bttm-0">

<span class="high wxo-metric-hide" title="max">

10°

<abbr title="Celsius">

C

</abbr>

<span class="abnTrend">

*
</span>

</span>

<span class="high wxo-imperial-hide wxo-city-hidden" title="max">

50°

<abbr title="Fahrenheit">

F

</abbr>

<span class="abnTrend">

*
</span>

</span>

</p>

<p class="mrgn-bttm-0 pop text-center" title="Chance of Precipitation">

<small>

60%

</small>

</p>

<p class="mrgn-bttm-0">

Chance of showers

</p>

</div>

</a>

<div class="div-row div-row3 div-row-head">

Tonight

</div>

<div class="div-row div-row4 div-row-data">

<img alt="Mainly cloudy" class="center-block" height="51" src="/weathericons/33.gif" width="60"/>

<p class="mrgn-bttm-0">

<span class="low wxo-metric-hide" title="min">

0°

<abbr title="Celsius">

C

</abbr>

</span>

<span class="low wxo-imperial-hide wxo-city-hidden" title="min">

32°

<abbr title="Fahrenheit">

F

</abbr>

</span>

</p>

<p class="mrgn-bttm-0 pop text-center">

</p>

<p class="mrgn-bttm-0">

Mainly cloudy

</p>

</div>
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</div>

In each of the columns, the first row contains the date (see Figure 16.14),

and the second the maximum forecast temperature during the day (see

Figure 16.14).
27

27: Only if the page is accessed before

3PM, however.

Figure 16.14: 7-day forecast for Ottawa,

ON, on Wednesday April 6, 2022; the

‘div‘ element with ‘class=div-row1‘ is high-

lighted in the Firefox Inspector.

Figure 16.15: 7-day forecast for Ottawa,

ON, on Wednesday April 6, 2022; the

‘div‘ element with ‘class=div-row2‘ is high-

lighted in the Firefox Inspector.

We can extract the strings in each of the first two cells of the first column

using the .strings method, as below:

# date

list(sevenDaysBS[0].find(class_="div-row div-row1 div-row-head").strings)

# temp

list(sevenDaysBS[0].find(class_="high wxo-metric-hide").strings)

[’Fri’, ’7\xa0’, ’Oct’]

[’10°’, ’C’, ’*’]

The lists contains the information of interest, together with additional

characters; for both variables, we join the list elements into a single

string and remove the odd characters (°C, \xa0,*), using the .replace()

method.
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’ ’.join(list(sevenDaysBS[0].find(class_="div-row div-row1 div-row-head").strings))

.replace("\xa0","").replace("*","")

’’.join(list(sevenDaysBS[0].find(class_="high wxo-metric-hide").strings))

.replace("°C","").replace("*","")

’Fri 7 Oct’

’10’

Based on this work, we now write functions that extract a 7-day forecast,

the corresponding dates, the city name, and the province code given a

URL of the right format.
28

28: Additional cleaning is required (see

the various .replace() calls).

def sevenDayForecast(url):

html = urlopen(url)

htmlBS = BeautifulSoup(html, ’html.parser’)

sevenDaysBS = htmlBS.find_all(’div’, attrs={"class" : "div-column"})

temp_degree = []

for day in sevenDaysBS:

temp_de = int(

’’.join(list(day.find(class_="high wxo-metric-hide").strings)).replace("°C","")

.replace("*","")

)

temp_degree.append(temp_de)

return temp_degree

def sevenDayForecastDates(url):

html = urlopen(url)

htmlBS = BeautifulSoup(html, ’html.parser’)

sevenDaysBS = htmlBS.find_all(’div’, attrs={"class" : "div-column"})

temp_date = []

for day in sevenDaysBS:

temp_da = ’ ’.join(list(day.find(class_="div-row div-row1 div-row-head").strings))

.replace("\xa0","").replace("\n ","").replace(" \n","").replace("*","")

temp_date.append(temp_da)

return temp_date

def cityName(url):

html = urlopen(url)

htmlBS = BeautifulSoup(html, ’html.parser’)

nameBS = htmlBS.find(’h1’, attrs={"property" : "name"})

city_name = list(nameBS.strings)[0].replace(" \n","").replace(", ","")

return city_name

def provinceCode(url):

html = urlopen(url)

htmlBS = BeautifulSoup(html, ’html.parser’)

nameBS = htmlBS.find(’h1’, attrs={"property" : "name"})

province_code = list(nameBS.strings)[1]

return province_code

We validated the functions on the Ottawa URL, on Oct 7, 2022.
29

29: Again, a reminder that this will only

work if the code is run before 3PM EST, as

the format of the webpage changes after

that time.
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sevenDayForecast(ottawaURL)

sevenDayForecastDates(ottawaURL)

cityName(ottawaURL)

provinceCode(ottawaURL)

[10, 11, 13, 12, 14, 17, 15]

[’Fri 7 Oct’, ’Sat 8 Oct’, ’Sun 9 Oct’, ’Mon 10 Oct’, ’Tue 11 Oct’, ’Wed 12 Oct’, ’Thu 13 Oct’]

’Ottawa (Kanata - Orléans)’

’ON’

Data Processing

We now prepare the data for analysis. We select the 20 Canadian cities

that appear on the website’s main page .

For each of these cities, we extract the 7-day forecast, and display “today’s”

temperature, “tomorrow’s” prediction, the weekly change 1 week from

“today”, and the mean prediction over the 7-day forecast.

This could be done manually by feeding the URL to each of the 4 functions

defined above (in the example for Ottawa), but we will use BeautifulSoup
to scrape the information automatically (and cleanly).

30
We start by 30: We include only minimal comments in

what follows; it may prove helpful to visit

the corresponding web pages to clarify

the context and make sense of the code

outputs.

finding the URL for each of the cities on the main page.

wURL = "https://weather.gc.ca/canada_e.html"

wHTML = urlopen(wURL)

wBS = BeautifulSoup(wHTML, ’html.parser’)

tableBS = wBS.find(’table’, attrs={"class" : "table

table-hover table-striped table-condensed"})

citiesBS = tableBS.find_all(’a’, href=True)

citiesFURLs = []

for a in citiesBS:

temp = a[’href’]

citiesFURLs.append(temp)

citiesURLs = ["https://weather.gc.ca" + citiesFURLs[index]

for index in range(len(citiesFURLs))]

Next we build a dictionary containing the desired data, for each city:
31

31: Date of scraping: Oct 7, 2022.

today_date = sevenDayForecastDates(citiesURLs[0])[0]

row_dict = []

for row in range(len(citiesURLs)):

d = dict()

tmp = sevenDayForecast(citiesURLs[row])

d[’city’] = cityName(citiesURLs[row])

d[’province’] = provinceCode(citiesURLs[row])

d[’date’] = today_date

d[’today’] = tmp[0]

https://weather.gc.ca/canada_e.html
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d[’tomorrow’] = tmp[1]

d[’1 week change’] = np.subtract(tmp[6],tmp[0])

d[’weekly mean’] = np.mean(tmp)

row_dict.append(d)

Finally, we covert the dictionary into a pandas data frame:

wDF = pandas.DataFrame(row_dict)

wDF

city province ... 1 week change weekly mean

0 Calgary AB ... 6 20.000000

1 Charlottetown PE ... -3 14.142857

2 Edmonton AB ... 0 20.285714

3 Fredericton NB ... -4 15.571429

4 Halifax NS ... -2 15.285714

5 Iqaluit NU ... 2 -1.142857

6 Montréal QC ... 0 14.571429

7 Ottawa (Kanata - Orléans) ON ... 5 13.142857

8 Prince George BC ... -2 16.142857

9 Québec QC ... -4 12.714286

10 Regina SK ... 3 18.428571

11 Saskatoon SK ... 0 19.000000

12 St. John’s NL ... -2 12.714286

13 Thunder Bay ON ... 2 11.857143

14 Toronto ON ... 4 14.857143

15 Vancouver BC ... -2 18.571429

16 Victoria BC ... -2 20.285714

17 Whitehorse YT ... -13 10.571429

18 Winnipeg MB ... 3 14.285714

19 Yellowknife NT ... -9 7.571429

[20 rows x 7 columns]

Visualization

As a last exercise, we provide a basic visualization for the collected

dataset.

import seaborn as sns

sns.set(style=’whitegrid’)

We use seaborn’s pairplot() to produce the scatterplot matrix of the

data, and matplotlib’s plt() to display it.

cols = [’today’, ’tomorrow’, ’1 week change’,

’weekly mean’]

sns.pairplot(data=wDF[cols], size=2.5)
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Perhaps unsurprisingly, there does not seem to be much insight available

in the dataset. If there is an association between tomorrow’s prediction

and the prediction one week from now, we require more information to

explore it; data collected on a daily basis, perhaps?
32

32: In which case, it would be useful to

save the data; how would this be accom-

plished?That is an important point to keep in mind: the process is sometimes

long and complicated, but that does not always translate into insight at
the end of the day.

33
33: Unless the absence of an apparent link

is insight. . . which it could very well be,

in certain cases.

16.4.3 CFL Play-by-Play

In this example, we obtain structured play-by-play data for past CFL.
34

34: Canadian Football League.

games. We could use this information to ask questions such as:

how often do teams convert on 3rd and X?

do teams come back from 7+ pt deficits in the 4th quarter?

etc.

Preamble

Before you start, make sure that BeautifulSoup, Selenium, Pandas, Firefox,

and Geckodriver are installed in your Python environment. You can use

the code below to install the Python modules.

pip3 install beautifulsoup4

pip3 install pandas

pip3 install selenium
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You can get download information for Firefox and Geckodriver here:

Firefox

Geckodriver

Of course, other browsers have their own installation information. We

will use the following Python modules for pulling data out of HTML and

XML files (BeautifulSoup), for dealing with potentially dynamic websites

(Selenium), to open URLs (urllib.request), and other regular tasks.

from bs4 import BeautifulSoup

from pyvirtualdisplay import Display

from selenium import webdriver

from urllib.request import urlopen

import csv

import pandas

import time

import warnings; warnings.filterwarnings(’ignore’)

Game Schedule

Let us start by getting a list of all games in a season; we will switch to

processing data on a game-by-game basis at a later stage. All games in a

season (2016, say) are listed at a single URL in the following format.

year = 2016

scheduleURL = ’https://www.cfl.ca/schedule/?season={}’

.format(year)

This produces the following URL:

scheduleURL

’https://www.cfl.ca/schedule/?season=2016’

Now we open the schedule page and parse it with BeautifulSoup:

scheduleHTML = urlopen(scheduleURL)

scheduleBS = BeautifulSoup(scheduleHTML, ’html.parser’)

We could display the HTML code with:

scheduleBS

Warning: the HTML file contains a lot of information, so the display has

been suppressed. For completness’ sake, when rendered in a browser,

the page looks like the image in Figure 16.16.

https://www.mozilla.org/en-US/
https://github.com/mozilla/geckodriver/releases
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Figure 16.16: Extract of the 2016 CFL schedule and results cfl.ca .

https://www.cfl.ca/schedule/?season=2016
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We could sift through the HTML to try to find what each piece of code

corresponds to on , but that is not the most efficient approach to use.

Instead, we use the Developer Tools to get a better idea. In the example

below, let’s say we are interested in the second pre-season game.
35

35: A 25-16 victory by the Toronto Arg-

onauts over the Hamilton Tiger-Cats.

Right-click on the box containing the game information, and select

“Inspect Element (Q)” from the menu that appears. In the Developer Tool,

you will be taken to the section of HTML code corresponding to the

element you selected.
36

36: We might need to try right-clicking

over a few locations as there sub-elements

in the game box. Each game is represented by a row. According to developer tools, these

rows are div elements with the class heading collapsible-header.
37

37: See Figure 16.17.

Figure 16.17: CFL 2016 schedule and re-

sults; the ‘div‘ element with ‘heading

collapsible-header‘ is highlighted in the

Firefox Inspector.

Scrolling down on the schedule page, it appears as though every game is

presented in the same format, so it is worth a shot to ask Beautiful Soup to

find all rows that contain the class heading collapsible-header.
38

38: Note the _ after class, and the single

quotes.

scheduleRows = scheduleBS.findAll(class_=’heading

collapsible-header’)

Here’s a better view of a single row, with some parts omitted:
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We want the URL that the “GAMETRACKER” button links to – this is

the game page that contains the play-by-play info. The link is found in

the data-url attribute, rather than in the href attribute. We can get the

link for the 2nd pre-season game by querying scheduleRows[1].
39

39: Recall that list indexing starts with 0

in Python.

row = scheduleRows[1]

button = row.find(class_=’gametracker’)

button[’data-url’]

’https://www.cfl.ca/games/2268/hamilton-tiger-cats-vs-toronto-argonauts/’

These are all the steps we need to get the list of game page URLs for an

entire season.

We might also want to store each of these game pages in a Python array.

This can be done as follows.

urls = []

for row in scheduleRows:

button = row.find(class_=’gametracker’)

url = button[’data-url’]

urls.append(url)

# uncomment to display the URLs

# print(urls)

df = pandas.DataFrame(urls)

df.to_csv(path_or_buf=’Data/CFL_Schedule_2016.csv’,

header=False)

Incidentally, how many games were played in total in 2016, including the

pre-season and the playoffs?

That is easy to answer:

len(urls)

95

Scraping Game Data

Here is a URL for one particular game.

gameURL = ’https://www.cfl.ca/games/2391/ottawa-redblacks-vs-toronto-argonauts’

The screenshot of Figure 16.18 shows the page as it is rendered in the

browser after clicking the “PLAY BY PLAY” button.
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Figure 16.18: Play-by-play data for the July

24, 2016 CFL game between the Ottawa

Redblacks and the Toronto Argonauts

cfl.ca .

The page actually only loads the play-by-play data once the “PLAY BY

PLAY’ ’ button is pressed. If we download the HTML before pressing the

button, the data just isn’t there.

gameBS = BeautifulSoup(urlopen(gameURL))

gameBS.text.count(’Kickoff’)

0

The page does contain JavaScript code that tells the browser to fetch

more data when the button is clicked and add it to the page. The most

straightforward way to get this data is to run a browser but control it

automatically. All we need is a way to identify the button to press.

Figure 16.19: Play-by-play data for the July

24, 2016 CFL game between the Ottawa

Redblacks and the Toronto Argonauts; the

‘div‘ element with ‘playbyplay-tab‘ is high-

lighted in the Firefox Inspector.

Luckily the button has a (unique) id (see Figure 16.19), so we can use

that. We define an XPATH string for that id.

https://www.cfl.ca/games/2391/ottawa-redblacks-vs-toronto-argonauts
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pbp_btn_xpath = ’//*[@id="playbyplay-tab"]’

For browser automation, we use Firefox with Selenium – it is important

to ensure that geckodriver is installed (or whatever the appropriate

driver is for the browser in use).

In the next block, we run code for the driver object (in this case, Selenium

controlling Firefox), telling it to load the page, click the button, and then

get the HTML. Depending on the system, the variable executable_path

will vary.

display = Display(visible=0, size=(1440, 1080))

display.start()

driver = webdriver.Firefox(executable_path=’/usr/local/bin/geckodriver’)

# Open the page

driver.get(gameURL)

# Wait for loading

time.sleep(5)

# less about robots.txt but more about content "physically" being there

# Click button to get play-by-play data

playbyplay_btn = driver.find_element_by_xpath(pbp_btn_xpath)

playbyplay_btn.click()

# Wait again for loading

time.sleep(5)

# Take HTML and save in BS object

soup = BeautifulSoup(driver.page_source)

driver.close()

The URL of the loaded play-by-play page can be loaded and parsed into

a into a soup.

pbpURL = ’https://www.cfl.ca/games/2391/ottawa-redblacks-vs-toronto-argonauts#playbyplay’

pbpHTML = urlopen(pbpURL)

soup = BeautifulSoup(pbpHTML, ’html.parser’)

Now that we have the HTML of the loaded page, we can extract data as

usual with Beautiful Soup, such as finding the home team and the away

teams, and so on.

# away, home

[soup.find(class_=’js-data-team_2_location’).text,

soup.find(class_=’js-data-team_1_location’).text]

[’Ottawa’, ’Toronto’]
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16.4.4 Bad HTML

When we write a R/Python program with incorrect syntax, we get an

error and our program does not work. If we write an HTML page with

incorrect syntax, there’s a good chance that browsers will be able to make

sense of it anyway – browsers try to guess ways to correct each error.

We can check whether a webpage on the internet uses correct syntax or

not by entering the URL at validator.w3.org .

If what we see in our browsers is a fixed-up version of the HTML, then

when we parse HTML with Python we’d like to be able to get a similarly

fixed-up version. We look at some simple examples of how Beautiful Soup
handles bad HTML.

from bs4 import BeautifulSoup

First we pass Beautiful Soup a proper (incomplete) HTML document:

goodBS = BeautifulSoup(

’<html><head><title>blah</title></head><body></body>

</html>’, ’html.parser’)

As expected, we can operate with the parsed document, such as finding

elements and getting their data.

goodBS.find(’title’).text

’blah’

Now what if we omit the closing </title> tag? We print the corrected

version that BeautifulSoup builds.

badBS = BeautifulSoup(

’<html><head><title>blah</head><body></body></html>’,

’html.parser’)

print(badBS)

<html><head><title>blah</title></head><body></body></html>

You see that the closing tag has been returned. Similar behaviour is seen

in the following examples where tags are misplaced or omitted. Note

that although <li> (list item) tags are supposed to be put inside a list

tag such as <ul> (unordered list) or <ol> (ordered list), Beautiful Soup
doesn’t add those tags.

badBS = BeautifulSoup(

’<html><head></head><body><li><em>hi</body></em></html>’,

’html.parser’)

print(badBS.prettify())

https://validator.w3.org
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<html>

<html>

<head>

</head>

<body>

<li>

<em>

hi

</em>

</li>

</body>

</html>

badBS = BeautifulSoup(

’<html><head></head><body><li><em>hi<li></body></em>

</html>’,’html.parser’)

print(badBS.prettify())

<html>

<head>

</head>

<body>

<li>

<em>

hi

<li>

</li>

</em>

</li>

</body>

</html>

In general, if the browser can do a good enough job to render an HTML

page as intended, we can trust BeautifulSoup to fix things up logically.

But when we automate the data collection process, we do not usually

visit each page before it is scraped; there might be surprises in store!

16.4.5 Extracting Text from a PDF File

Apache Tika can be used to convert PDF files to TXT files, but a few

R libraries can also do so.
40

We use the pdftools library to extract text 40: And are potentially easier to use, de-

pending on the document’s structure.
from the DAL Data Visualization Learning Map .

library(pdftools)

DAL <- pdf_text("https://www.data-action-lab.com/wp-content/uploads/2020/01/

Learning-Map-Data-Visualization-ACFO.pdf")

length(DAL)

N <- 1:length(DAL)

[1] 7

https://tika.apache.org/2.3.0/index.html
https://www.data-action-lab.com/wp-content/uploads/2020/01/Learning-Map-Data-Visualization-ACFO.pdf
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What does the first page look like, say?

DAL[1]

[1] "

DATA\n DATA EXPLORATION AND DATA VISUALIZATION\n

ACTION\n

LAB\n\n\n\n\n Data

Analytics\n Conference -

ACFO\n Data Exploration

and Data\n

Visualization\n\n

Learning Map\n\n\nab\n\n\n\n\n

Provided by the Data Action Lab\n Canada School of Public

Service Digital Academy\n"

It us quite a mess – the text contains a fair amount of “noise” (we will

revisit text cleaning in detail in Chapter 27, Text Analysis and Text Mining).

library(stringr)

library(dplyr)

removeDiacritics <- function(string) {

chartr(

"SZszYÀÁÂÃÄÅÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝàáâãäåçèéêëìíîïðñòóôõöùúûüýÿ",

"SZszYAAAAAACEEEEIIIIDNOOOOOUUUUYaaaaaaceeeeiiiidnooooouuuuyy",

string

)

}

DAL.clean=c()

for(i in 1:length(DAL)){

DAL.clean[i] <- DAL[i] %>%

{ gsub("\n", " ", .) } %>%

{ gsub("\\d", " ", .) } %>%

{ gsub("\\s+", " ", .) } %>%

trimws()

}

We might keep only those pages with at least 1000 characters, say:

index <- nchar(DAL.clean)>1000

DAL.clean <- DAL.clean[index]

length(DAL.clean)

[1] 6

Only 6 of the pages contain at least 1000 characters. Let us take a look at

one of them, the last one, say.
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DAL.clean[6]

[1] "DAL instructors have consulted for DATA EXPLORATION (and taught to participants from) a

AND DATA VISUALIZATION variety of groups, a selection of which is shown below: § Canada Revenue

Agency § Canada School of Public Service’s Digital Academy § Canadian Air Transport Security

Authority § Canadian Coast Guard § Canadian Food Inspection Agency § Canadian Institute for

Health Information § The Children’s Hospital of Eastern Ontario § Communications Research

Centre Canada § Department of National Defence § Environment and Climate Change Canada

§ Fisheries and Ocean Canada § Health Canada § Immigration, Refugees and Citizenship

Canada § Indigenous and Northern Affairs Canada § Natural Resources Canada § Nuclear Waste

Management Organization § Office of the Privacy Commissioner of Canada § Privy Council Office

§ Public Services and Procurement Canada § Royal Canadian Mounted Police § Transport Canada

§ Treasury Board Secretariat Consult our Data Training Catalogues for a list of practical data

analysis and data leadership courses. Visit data-action-lab.com or contact info@data-action-lab.com

for more information. DATA ACTION LAB | info@data-action-lab.com"

Not too shabby, eh? It’s almost readable, even!

16.4.6 YouTube Video Titles

In this example, we will see how to use the YouTube API to scrape the

titles of YouTube videos.

from apiclient.discovery import build

from apiclient.errors import HttpError

from oauth2client.tools import argparser

# some of these will only be useful for the exerices

import pandas

from functional import seq

import codecs

import glob

import html

import os

import re

import unidecode

import urllib

import urllib.request

import warnings; warnings.filterwarnings(’ignore’)

Authentication

The task is to build or add to a corpus of text by fetching video transcripts

from YouTube. To use the YouTube API, we need to authenticate ourselves.

Create a config.json file in the main directory, whose only content looks

like this:

{ "DEVELOPER_KEY": "your_key_here" }
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Instructions on how to obtain a key are provided here

Once that done, we create an object youtube, through which we can

access YouTube API methods (more information is available at Wikipedia

, YouTube I , YouTube II ).

config = seq.json(’config.json’).dict()

DEVELOPER_KEY = config[’DEVELOPER_KEY’]

YOUTUBE_API_SERVICE_NAME = "youtube"

YOUTUBE_API_VERSION = "v3"

youtube = build(YOUTUBE_API_SERVICE_NAME,

YOUTUBE_API_VERSION,

developerKey=DEVELOPER_KEY)

YouTube API

We could hand-pick videos to read, but we will take a shortcut by getting

all the transcripts in a whole playlist of videos.

The first task is taking a playlist ID and using the API to get the video

IDs of each entry in the playlist. The API for getting entries in a playlist

is paginated. This means that we have to make one request for the first

chunk of entries, then make another request to get some more entries,

and so on until we have got the entire playlist.

It’s designed this way so that we don’t download more than we need;

for example if we were building an infinite scrolling menu, we wouldn’t

want to load everything up front.

After we have obtained the first chunk,
41

we need to tell the API where41: In this example, 10 videos at a time.

to start the next chunk. This is done using a page token.

We take the nextPageToken of the response we get, and pass it to the API

for the next request, until the API returns no nextPageToken value.

def fetch_playlist_videos(playlistId):

’’’

get all videos in a playlist.

Returns: list of dictionaries representing

playlistItem resources,

see https://developers.google.com/youtube/v3/docs

/playlistItems#resource-representation

for the structure of this resource

’’’

# API method: https://developers.google.com/youtube/

# v3/docs/playlistItems/list

res = youtube.playlistItems().list(

part="snippet",

playlistId=playlistId,

maxResults="10").execute()

https://medium.com/mcd-unison/youtube-data-api-v3-in-python-tutorial-with-examples-e829a25d2ebd
https://en.wikipedia.org/wiki/YouTube_API
https://en.wikipedia.org/wiki/YouTube_API
https://www.youtube.com/yt/dev/
https://www.youtube.com/yt/dev/api-resources.html
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nextPageToken = res.get(’nextPageToken’)

while (’nextPageToken’ in res):

nextPage = youtube.playlistItems().list(

part="snippet",

playlistId=playlistId,

maxResults="10",

pageToken=nextPageToken).execute()

res[’items’] = res[’items’] + nextPage[’items’]

if ’nextPageToken’ not in nextPage:

res.pop(’nextPageToken’, None)

else:

nextPageToken = nextPage[’nextPageToken’]

return res[’items’]

Playlist Extraction

The playlist entries come in the form of playlistItem resource dictio-
naries.

42
In the Python API, the object is a nested dictionary. We want 42: A data format defined in the API doc-

umentation that contains fields for all the

information associated with an item in a

playlist.

to get to the video ID, which we will do for all playlist items.

First, take the time to explore the following YouTube playlist: Introduction

to Quantitative Consulting .

Figure 16.20: Introduction to Quantiative Consulting YouTube playlist.

Next, we build the list of videos.

# some playlists with English transcripts available

IQCPlaylist = [’PLbVTnkp2K536WxfoqSvoY08aJ3sLBg9mI’]

https://www.youtube.com/playlist?list=PLbVTnkp2K536WxfoqSvoY08aJ3sLBg9mI
https://www.youtube.com/playlist?list=PLbVTnkp2K536WxfoqSvoY08aJ3sLBg9mI
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videos = []

for playlistID in IQCPlaylist:

videos += fetch_playlist_videos(playlistID)

We can explore the list by looking at the 3rd video in the playlist, say.

print(videos[2])

{’kind’: ’youtube#playlistItem’,

’etag’: ’LYF0Osi6rdPvtzVAqAY-TobYZnE’,

’id’: ’UExiVlRua3AySzUzNld4Zm9xU3ZvWTA4YUozc0xCZzltSS4xMkVGQjNCMUM1N0RFNEUx’,

’snippet’: {’publishedAt’: ’2020-06-20T21:18:23Z’,

’channelId’: ’UCIi6fq-A7sTT4iBDQUKekyg’,

’title’: ’IQC - 1.3 - Guiding Principles (10:46)’,

’description’: ’1.3.1 Best Practices\n1.3.2 The Good, the Bad, and the Ugly’,

’thumbnails’:

{’default’:

{’url’: ’https://i.ytimg.com/vi/eodNQzJFJpg/default.jpg’, ’width’: 120, ’height’: 90},

’medium’:

{’url’: ’https://i.ytimg.com/vi/eodNQzJFJpg/mqdefault.jpg’, ’width’: 320, ’height’: 180},

’high’:

{’url’: ’https://i.ytimg.com/vi/eodNQzJFJpg/hqdefault.jpg’, ’width’: 480, ’height’: 360},

’standard’:

{’url’: ’https://i.ytimg.com/vi/eodNQzJFJpg/sddefault.jpg’, ’width’: 640, ’height’: 480},

’maxres’:

{’url’: ’https://i.ytimg.com/vi/eodNQzJFJpg/maxresdefault.jpg’, ’width’: 1280, ’height’: 720}},

’channelTitle’: ’Patrick Boily’,

’playlistId’: ’PLbVTnkp2K536WxfoqSvoY08aJ3sLBg9mI’,

’position’: 2,

’resourceId’: {’kind’: ’youtube#video’, ’videoId’: ’eodNQzJFJpg’},

’videoOwnerChannelTitle’: ’Patrick Boily’,

’videoOwnerChannelId’: ’UCIi6fq-A7sTT4iBDQUKekyg’}}

We get list of all video IDs and their titles as follows.

videoIDs = [ video[’snippet’][’resourceId’][’videoId’] for video in videos ]

videotitles = [ video[’snippet’][’title’] for video in videos ]

print(videoIDs)

[’-dZImvCSPKI’, ’0vBXkgiJIP8’, ’eodNQzJFJpg’, ’IiQJ1G4QJWg’, ’ycBovk3EtfQ’, ’RErsLHdKFSM’,

’5eu_FoJu7uo’, ’HUzosM19QCs’, ’n4Z3SgEJ4bg’, ’P-jkx_XdJlw’, ’LFS6RbpzLSw’, ’OhrtH6sGbtA’,

’bIO4JmGVf_k’, ’LUU_UKk2YyQ’, ’dgtapT4n484’, ’1cRmNcT1pvo’, ’Ga6VEPk_HfY’, ’Q2o8bIV6328’,

’-ZLuiE0j8Ts’, ’WqTH3OvPKxQ’, ’_9eUuc_-z9s’, ’ITGBjuOwY4w’, ’cQvCq1_Eoms’, ’erP8Xc0hO0U’,

’mb7p4B2spP0’, ’KG4SBzXccEk’, ’A9Wh4L7ZJr0’, ’CL_cVCZ5l7Q’, ’yxP4Nz09rSE’]

We put this information into a dictionary:

yt_dict = []

for row in range(len(videoIDs)):

d = dict()

d[’youtubeURL’] = ’https://youtu.be/{}’.format(videoIDs[row])

d[’title’] = videotitles[row]

yt_dict.append(d)
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It is now child’s play to convert the dictionary to a Pandas dataframe:

ytDF = pandas.DataFrame(yt_dict)

ytDF

youtubeURL title

0 https://youtu.be/-dZImvCSPKI IQC - 1.1 - The Consulting Framework (12:08)

1 https://youtu.be/0vBXkgiJIP8 IQC - 1.2 - Ethical Considerations (16:01)

2 https://youtu.be/eodNQzJFJpg IQC - 1.3 - Guiding Principles (10:46)

3 https://youtu.be/IiQJ1G4QJWg IQC - 1.4 - Asking the Right Questions (04:45)

4 https://youtu.be/ycBovk3EtfQ IQC - 1.5 - The Structure of Data (19:07)

5 https://youtu.be/RErsLHdKFSM IQC - 1.6 - Quantitative Consulting Workflows ...

6 https://youtu.be/5eu_FoJu7uo IQC - 1.7 - Roles and Responsibilities (14:24)

...

21 https://youtu.be/ITGBjuOwY4w IQC - 2.11 - Invoicing (07:25)

22 https://youtu.be/cQvCq1_Eoms IQC - 2.12 - Closing the File (03:43)

23 https://youtu.be/erP8Xc0hO0U IQC - 3.1 - Lessons Learned: About Clients (19...

24 https://youtu.be/mb7p4B2spP0 IQC - 3.2 - Lessons Learned: About Consultants...

25 https://youtu.be/KG4SBzXccEk IQC - 4.1 - The Basics of Business Development...

26 https://youtu.be/A9Wh4L7ZJr0 IQC - 4.2 - Clients and Choices (04:00)

27 https://youtu.be/CL_cVCZ5l7Q IQC - 4.3 - Building Trust (10:33)

28 https://youtu.be/yxP4Nz09rSE IQC - 4.4 - Improving Trust (09:04)

16.5 Exercises

In these exercises, use R’s rvest, Python’s Beautiful Soup, or any other tool (whether we discussed it or not

in the main text) that will allow you to complete the task. You may need to look up various tutorials and

examples, and consult documentation, Stack Overflow, and so on.

1. Complete the unanswered questions in Sections 28.3.2 (XPath) and 28.3.3 (regexp).

2. Recreate the web scraping example of Section 28.4.1, this time selecting (or creating) variables that will

provide population and area values for all entries in the table (not necessarily variables V11, V12, V13).

What changes? What stays the same? Why is that the case?

3. Web data is available from a variety of sources, in a variety of formats and languages. Your job is to

build a collection of 5 text corpora, each one consisting of documents written in a different language

(English, French, Spanish, Italian, and Other). The text documents will be collected from the New

Zealand Government’s press releases , from Wikipedia, from twitter, from a PDF document, and

from other sources. Your final dataset will consist of all of the observations (text) placed in rows, each

row associated with a specific language code (“Eng”, “Fra”, “Esp”, “Ita”, “Oth”).

a) English: the text of all Canadian government press releases published in 2020.

b) French: the text from the (French) Wikipedia entries of all French actresses whose last name starts

with “L”.

c) Spanish: 700 tweets (total) from @realmadrid, @PaulinaRubio, @Armada_esp + 2 other tweeters

of your choice.

d) Italian: the text from Giovannino Guareschi’s Tutto don Camillo (I racconti del Mondo piccolo) –

Volume 1 di 5 (PDF), 1 page per row.

e) Other: 500 other text documents, in other languages that use a Latin-based alphabet.

4. Use Zomato to find which Canadian city has the best sushi restaurants.

https://www.beehive.govt.nz/releases
https://www.beehive.govt.nz/releases
https://github.com/fatihsucu/pyzomato
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5. Build a scraper that automatically collects a multiple-day forecast for all Canadian cities in the database

(not only those found on the landing page ), independently of the time at which the scraping takes

place.

6. Consider the parsed_doc object from the XPath section. What do you think the following blocks of

code do?

lowerCaseFun <- function(x) {

x <- tolower(xmlValue(x))

return(x)

}

XML::xpathSApply(parsed_doc, "//div//i",

fun = lowerCaseFun)

dateFun <- function(x) {

require(stringr)

date <- xmlGetAttr(node = x, name = "date")

year <- str_extract(date, "[0-9]{4}")

return(year)

}

XML::xpathSApply(parsed_doc, "//div", dateFun)

7. In the CFL example, the play-by-play data is in separate tables for each quarter. Write a routine that

grabs the information and produces a Pandas dataframe for each quarter, with the following headers:

ID, away, details, down, home, quarter, time, type, and yard.

8. Modify the YouTube example in order to extract the videos’ captions. Clean them using BeautifulSoup.

9. Use twitteR (or other packages) to build a data frame of tweets related to the Marvel Cinematic Universe.
Do your tweets mostly originate from Android or iPhone devices? Plot the frequency of tweets against

time. Do the same for retweets. Do any patterns emerge?

10. Collect all Canadian government press releases for the 2021 calendar year. Identify the date,

emanating Department(s), and the number of characters in each release. Are there Departments who

release news more frequently than others? Are there Departments whose releases are typically longer

than average? What other insights can you draw from your data frame? Repeat this process with

French-language press releases .

11. Produce a data frame listing all new products available at David’s Tea , the page number where the

product was listed, and its price. Remember the scraping do’s and don’t’s!
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