
Data Engineering and
Data Management 17

17.1 Background and Context . 1065
17.2 Data Engineering . . . . . 1067

Data Pipelines . . . . . . . 1068
Automatic Deployment . 1073
Scheduled Pipelines . . . 1075
Data Engineering Tools . . 1077

17.3 Data Management . . . . . 1079
Databases . . . . . . . . . . 1079
Database Modeling . . . . 1082
Data Storage . . . . . . . . 1084

17.4 Reporting and Deployment 1086
Reports and Products . . . 1086
Cloud vs. On-Premise . . 1087
Chapter References . . . . 1088

by Aditya Maheshwari

In this chapter, we briefly explain some of the basic concepts that help

data scientists go beyond theoretical/small scale projects (mostly used

for experiments/local research/conceptual solutions) and introduce the

concepts and frameworks that allow data scientists in conjunction with

data teams to building data science products that process and deliver

results at scale. We will discuss this in the context of exploring the role

of data engineering in data projects and providing an overview of some

of the types of data pipeline infrastructure commonly involved in these

projects.

In the current data ecosystem, most data scientists are still not required to

understand the inner workings of data engineering and data management;

however, as modeling tools become increasingly automated, and as

machine learning solutions move from conceptual to practical, most data

project requirements become engineering focused.

We only provide a cursory look at the topic in this chapter; in-depth

information is available at [1, 3, 7, 8, 5], while shorter overviews can be

found at [6, 2]. Learners interested in database design should also consult

[11].

17.1 Background and Context

In the 2010s, the field of data science gained prominence, with an

emphasis on creating algorithms to decipher patterns from the vast

data generated by digital platforms and technologies with continuous

monitoring capabilities.

This marked a notable shift from traditional data analysis methods that

primarily focused on smaller datasets in a scientific context. In classic

statistical learning, the primary mode of data collection was through

surveys, as detailed in Chapter 10, Survey Sampling Methods. It also

included methods not directly connected to user activities, such as post-

interaction surveys, evident with the post-visit survey of the Canada
Revenue Agency’s My Account service.

1
1: Such approaches have their merits but

can feel detached from real-time user ac-

tions.These methodologies posed theoretical challenges, especially with han-

dling modest sample sizes. However, the objective was clear: under a

set of assumptions, can we determine any correlation between variables

(features) and actions (outcomes)?

Historically, research often relied on fragmented or rudimentary systems.

These were mostly adequate for routine, automated, or substantial tasks



1066 17 Data Engineering and Data Management

using real-time datasets. However, this isolated approach wasn’t always

ideal due to the risk of technical issues.
2

2: Relying solely on such systems not only

constitutes poor practice but may also risk

task failures from technical glitches. Today, with digital platforms’ proliferation, the volume of accessible

data is unparalleled. These platforms can record every user interaction.

Consider a cross-sectional dataset that captures phrases spoken by a user

at home through devices like Amazon’s Alexa, several Google searches

over days, frequent product views across websites, and the ensuing

transaction records.

Instead of selective data gathering, every interaction is catalogued. Be-

yond the ethical concerns surrounding such comprehensive use of per-

sonal data (as highlighted in Section 14.3, Ethics in the Data Science
Context), there are technical challenges, such as processing massive data

and deriving meaningful insights from it.

Data inquiries now predominantly fall into reporting ("what occurred?"),

real-time analytics ("what’s transpiring now?"), and predictive mod-
elling ("what might unfold?"), as opposed to causal inference ("why did

it happen?").

A significant challenge for data scientists today is to format these vast

data repositories to be algorithm-friendly. As a result, a key focus of

modern data engineering, as discussed in subsequent sections, pertains

to the processing of this ever-growing data influx.

Once data is appropriately organized, data scientists deploy machine

learning techniques to develop proofs-of-concept. Subsequently, AI/ML

engineers transform these into deployable models as part of data
pipelines, encapsulating the broader domain of data engineering.

Though data and AI/ML engineering have been around for a while,

the advent of cloud computing places a heightened emphasis on their

importance, sometimes overshadowing data science in specific sectors.

Organizations with low data maturity often lean on software like Excel

to craft makeshift solutions for standard data pipeline tasks.
3

Such3: We could easily join those criticizing

these rudimentary methods, and while

we generally concur, we aren’t suggesting

Excel should NEVER be used. It has its

place, albeit limited.

makeshift systems might suffice for their immediate needs but are

insufficient when dealing with expansive datasets.

In contrast, entities with enhanced data maturity use a mix of SQL

warehouse queries and R/Python scripts. They aggregate data using

the entire population for reporting and then sample to build proofs-of-

concept on local systems. However, even these methods don’t exploit the

full potential offered by contemporary tools and data stacks.

At its core, data engineering aims at collecting, storing, and analyzing

data at scale.
4

4: Scalability refers to a system’s capa-

bility to handle a growing workload effi-

ciently or its potential to expand to accom-

modate that growth.

Investing in data engineering components is invaluable for such extensive

operations, a topic explored further below.

In smaller enterprises, roles in data engineering and data science may

overlap, especially if the company’s needs tilt more towards data engi-

neering. Conversely, many larger companies maintain dedicated data

engineers, responsible for managing data pipelines and overseeing data
warehouses.



17.2 Data Engineering 1067

17.2 Data Engineering

Data engineering is best understood as a subset of computer engineer-

ing that emphasizes designing, constructing, and maintaining systems

specifically geared towards data handling – from collection and ingestion

to analysis and presentation. Given its roots in computer engineering, a

grasp of certain computer engineering fundamentals can be beneficial

when diving into data engineering.

At their core, computers comprise:

memory, which is visualized as labeled containers holding binary

data (ones and zeros), and

circuits, systems that process memory content as input to produce

outputs, which are then stored back in memory.

A computer processor’s array of circuits constitutes its instruction set.
When executing a computer program, these instructions are followed in

a specific sequence.

In this frame of reference, data represents distinct patterns in memory.

These patterns can be:

duplicated into other memory locations;

relocated through copying followed by erasure of the original,

and/or

altered using the patterns as inputs for a series of instructions,

resulting in new patterns stored back in memory.

Notably, computer programs also manifest as data in memory. They’re

loaded into the processor, translated into basic hard-coded instructions,

and then actualize the program’s directives.

Software engineering spotlights the software side of computers. As

defined by IEEE: "The systematic application of scientific and technologi-

cal knowledge, methods, and experience to the design, implementation,

testing, and documentation of software” [4]. Essentially, computer engi-

neering’s objective is to create programs that manipulate binary patterns

via suitable instruction sets.

Data Engineering and IT How does information technology (IT) relate

to this? Generally, IT revolves around technology that manipulates data

and information, extending beyond just computer systems to encompass

communication systems and even television. Thus, computer and data

engineering can be perceived as IT subdomains.

However, colloquially, IT often denotes the use of pre-existing software
and hardware for data and information management. IT professionals

amalgamate these technologies to formulate comprehensive systems

with specific information processing capabilities.

Data engineers, in this landscape, traverse the domains of software

engineers and IT professionals. They might design bespoke software
applications and tailored architectures for unique data types, but typ-

ically within the scope of using established applications to construct
data pipeline infrastructures.



1068 17 Data Engineering and Data Management

In the modern age, awash with data, data engineering’s relevance has

exploded, with applications spanning nearly every sector. Organizations,

flush with vast data troves, are investing in the right talent and tools to

refine this raw data, prepping it for data scientists and analysts.

Data Team Roles Within a data team, data engineers enable streamlined

data collection from varied sources. Subsequently, database analysts

manage this data, priming it for analytical tasks and inclusion in data

projects. Let’s delve deeper into these roles (for a comparison, refer to

Section 13.1.3, Roles and Responsibilities).

Data engineers obtain data.
5

They organize, disperse, and store this5: From sources like paper tax forms man-

ually fed into databases, or real-time data

from online tax platforms that’s streamed

into databases.

data in data lakes and warehouses. Moreover, they craft tools and

data models, aiding data scientists in data querying.

Data scientists use the data curated by data engineers to extract in-

sights, build prototype predictive models, evaluate and enhance

outcomes, and construct data models. Typically, they employ lan-

guages like Python or R and work within analytical notebooks such

as RMarkdown or Jupyter. These notebooks interface with clusters,

converting queries into commands for big data platforms (like

Apache Spark).

ML engineers implement and deploy data models, acting as a bridge

between data engineers and scientists. They take prototype ideas

and upscale them, establishing feedback mechanisms to allow data

scientists to monitor aggregate performance and rectify any issues

in their prototype solutions.

See [10] for another perspective on these roles, in particular as they relate

to the job market.

17.2.1 Data Pipelines

The work of data engineers largely revolves around data pipelines, which

conduct a series of routine data manipulation tasks in an automated

manner. Intriguingly, their work shares similarities with chemical systems

and process engineers, but with a focus on data transformation rather

than chemical transformation.

Here are typical tasks for data pipelines:

1. acquiring datasets that match business requirements;

2. developing algorithms to convert data into actionable insights;

3. building, testing, and maintaining database pipeline structures;

4. collaborating with management to grasp company goals;

5. creating new data validation techniques and data analysis tools;

6. ensuring adherence to data governance and security policies.

A functional data pipeline consists of interfaces and mechanisms that

aid in information flow. Data engineers establish and manage this data
infrastructure, using it to ready data for analysis by data analysts and

scientists. It also delivers the outcomes of this data transformation and

analysis to the end users.



17.2 Data Engineering 1069

Figure 17.1: Illustration of a conceptual data pipeline highlighting the components and transitions.

Data can originate from myriad sources in diverse formats and sizes.

Converting this vast amount of raw data into a usable format for data

scientists is termed building a data pipeline.

Generally, pipelines encompass the following stages.

1. ingestion: collecting data from various sources;

2. processing: cleansing and transferring the data to a suitable data

storage;

3. storage: placing the data in a reachable location and crafting a data

model; and

4. access: facilitating access to cleaned data for analysis and display.

While the number and sequence of steps can differ across frameworks,

they must remain consistent within a particular program.

A primary challenge for data engineers is crafting a pipeline that can

operate in near-real-time when prompted, providing users with current
information swiftly.

6
6: Considering the dataset size.

Data engineers typically start by designing a prototype of a functional

pipeline. Once tested, a more resilient pipeline is devised, which then

undergoes deployment and production.

Related tasks include:

checking data quality;

enhancing query performance;

forming a continuous integration and delivery environment;

aggregating and storing data from various sources following a

specific data model; and

implementing machine learning and data science methods on

distributed systems.

Consider this scenario: The Canada Revenue Agency (CRA) aims to deter-

mine the number of individuals in a region not submitting tax returns



1070 17 Data Engineering and Data Management

and, as a result, forgoing net positive benefits.
7

They also want to ascer-7: After submitting, the benefits received

exceed the taxes paid.
tain who among them possibly missed the deadline due to unawareness

rather than oversight.

Potential pipeline processes include:

gathering and storing data from third-party reports indicating tax

filing numbers in the region;

assessing historical tax filing data for that region;

using predictive modeling to assess known non-filers’ characteris-

tics to predict unintentional filing oversights;

presenting results via a dashboard.

Data Pipeline Connections In our framework, the links between pipeline

components facilitate:

transition from collection methods to an effective storage area;

movement from storage to preparation where data undergoes

transformation;

transfer of transformed data to analysis or modeling phases; and

use of modeling outcomes for presentation.

Typical challenges are:

transferring data into a data lake can be time-consuming, especially

with repeated data ingestion tasks;

data platforms are evolving, leading to a cycle of building, main-

taining, then rebuilding and continuous maintenance;

the growing need for real-time data means low latency pipelines
8

8: Those with minor delays.

become essential, making Service Level Agreements (SLAs) harder to

establish.
9

9: Data pipeline SLAs detail client-service

provider agreements integrated into client

pipelines. Such SLAs necessitate regular

performance checks and tuning.

Without careful planning, these challenges can quickly escalate.

Data Pipeline Operations A data pipeline is essentially an automated
sequence of data operations. This can range from simple tasks, like

moving data from one place to another, to more intricate processes that

aggregate, analyze, and present data.

Common elements for each step include:

data sources – applications, mobile apps, microservices, and more;

data integration – ETL, stream data integration, and the like;

data storage – MDM, data lakes, warehouses, etc.;

data analysis – machine learning, AI, predictive analytics, etc.;

delivery and presentation – dashboards, reports, notifications, and

more.

Furthermore, pipelines allow breaking down a large task into manageable

steps, optimizing each phase.
10

For example, it might be beneficial to10: This enhances efficiency, scalability,

and reusability.
use a specific language or framework for a pipeline segment. With a

monolithic script, all processes, from data collection to presentation,

would need to use the same tool, which might not be optimal.

A more efficient strategy, adopted by most data pipeline tools, is to

choose the best framework for each component.



17.2 Data Engineering 1071

Figure 17.2: A depiction of a data visualization pipeline showcasing different component choices.

ETL Framework In the realm of data pipeline design, one cannot over-

look the significance of the ETL framework, an acronym for Extracting,

Transforming, and Loading data. While ETL has its origins in the earlier

domains of data marts and warehouses, its principles remain indispens-

able in shaping modern-day data pipelines.

All data processes start with the extraction of data from a given source

or temporary holding. When data comes from multiple sources, a subse-

quent loading phase often follows the extraction. This step ensures that

multiple systems and processes uniformly handle the data from the same

extraction point. In scenarios where data from multiple sources “con-

verge”, centralizing this data before its transformation proves beneficial.
11

11: Depending on specific requirements,

post-transformation, this data might ei-

ther be transferred to a different location

like a data warehouse or undergo transfor-

mations right at the source before a final

load.

Once data from all pertinent sources is assembled, the onus falls on the

data engineer to strategize the most effective way to merge these datasets.

This strategy often encompasses the creation of data pipeline components

that facilitate a seamless flow of data from the source systems to a format

amenable for querying by business intelligence tools.

A pivotal role of data engineers lies in assuring the reliability and

correctness of these pipelines. Often, this involves reconciling data or

even deploying supplementary pipelines to corroborate against the

original data sources. They are also tasked with ensuring a consistent and

updated data flow, an endeavour often supported by various monitoring

solutions and site reliability engineering (SRE) methodologies.

User-centric products typically source data from a diverse range of ori-

gins, potentially spanning multiple systems or third-party integrations.

It’s imperative that such data aligns with end-user specifications and

maintains its integrity. However, challenges arise when data sourcing

relies on inter-dependent systems. Each execution of the pipeline man-

dates fresh queries to these systems, potentially extending the pipeline’s

runtime. Even with such intricacies, the ETL framework can often render

subsequent data pipelines more efficient.

Timely access to updated information is a frequent demand from business

units. In navigating this, data engineers must holistically evaluate pipeline

performance. This evaluation must account for the frequency of new data



1072 17 Data Engineering and Data Management

inflows, the duration of transformation phases, and the time required to

update the final data storage location.

Data Architecture Optimal results in data management often hinge on

a shared understanding of the organizational structure of the data and

its flow mechanisms. Serving as a blueprint for these aspects is the data
architecture, which ideally encompasses the following notions.

Storage layout: an overview of the methodology and locations of

data storage. This should factor in the standards pertaining to file

paths, file type specifics for file/object storage, as well as naming

conventions for databases, schemas, views, and tables in the context

of database storage.

Data landscape: a depiction of how data is categorized within a

specific repository.

Data abstractions: a comprehensive elucidation of the components

of any data abstractions present on the platform, complete with

illustrative diagrams.
12

12: These serve as foundational blueprints

for crafting various elements on the data

platform.

Data access: an outline detailing the authorization mechanisms

of the data repository, capturing nuances like user-role mapping,

the structure of role hierarchies, and privilege allocations to these

roles.

Additionally, a well-structured data architecture clearly outlines how data

travels between different repositories within the platform. Such insights

answer pivotal questions about permissible sources and destinations for

data and the tools enlisted for these transfers.

Data Governance and Self-Serviceability Data governance13
is a non-13: This pertains to a comprehensive data

management strategy that empowers an

organization to uphold superior data qual-

ity throughout its entire lifecycle. It en-

compasses controls that align with busi-

ness goals. Primary areas of focus include

data availability, usability, consistency, in-

tegrity, security, and regulatory compli-

ance. It mandates protocols for uphold-

ing data quality across an organization,

holding entities accountable for discrepan-

cies and ensuring a universal data access

paradigm. [12]

negotiable aspect; while data platforms are envisioned to catalyze innova-

tion by democratizing data access, discernment is required in determining

access levels, especially with sensitive datasets.

Specific datasets, especially from realms like sales and HR, often house

sensitive information necessitating restricted access. Further, data sets

comprising customer or health-related data are often tethered to compli-
ance protocols, dictating access and usage parameters.

For users aiming to access a dataset on the platform, there should be

robust mechanisms in place to petition for access. Concurrently, there

should be workflows to review these petitions, ensuring that data access

remains judicious and controlled. This ethos of self-serviceability is

instrumental in liberating data access on any platform.

Further deepening the canvas of self-serviceability is the capability for

users to request the instantiation of new structures or objects within

the data repository. As evolving use cases emerge, the creation of new

"workspaces" allows data engineering teams to devise new data trans-

formations and datasets. This is but a glimpse into the myriad scenarios

where self-serviceability amplifies the autonomy and dynamism of the

data platform.



17.2 Data Engineering 1073

17.2.2 Automatic Deployment and Operations

Automating data pipelines can range from simple tasks like directing data

between locations to intricate operations such as automated aggregation,

transformation, and redistribution of data from various sources.

It’s become increasingly viable to automate the ingestion of petabytes

of ever-evolving data. This enables pipelines to efficiently provide data

suitable for analytics, data science, and machine learning.

Notable automated operations include:

on-the-fly data processing from files or real-time sources like

Kafka, DBMS, NoSQL, and others;

automatic detection of schema (or column) changes across different

data formats;

real-time tracking of incoming data;

implementing auto-backup measures to prevent data loss.

As referenced earlier, ETL provides essential decision points for data

pipeline creation. With contemporary tools, data engineers can minimize

development duration, concentrating on business logic and data quality

checks using SQL, Python, R, and similar. Achievable actions include:

intent-focused declarative development, clarifying the problem,

and simplifying the solution;

automatic generation of detailed data lineage and handling table

dependencies within the pipeline;

auto-checking for missing components, syntax anomalies, and

ensuring data pipeline recovery.

To enhance data reliability, we can:

establish data quality and integrity measures within the pipeline;

address data discrepancies using pre-set policies such as alerts,

quarantine, or dropping faulty data;

use metrics that continuously monitor, log, and report on data

quality throughout the pipeline.

Strategies for Automated Pipeline Deployment Traditional software

deployment often involved:

initiating a build;

manually transferring the build to a production server, and

an ad-hoc “test” to verify application functionality.

This approach is neither scalable nor efficient, with manual steps increas-

ing risk. The ultimate aim of automated pipeline design and deployment

is to prototype and validate scalable components before their full
deployment, while supporting an ongoing development cycle. Agile

methodologies align well here.
14

14: See What Is Agile? And When to Use

It for an overview.

https://www.coursera.org/articles/what-is-agile-a-beginners-guide
https://www.coursera.org/articles/what-is-agile-a-beginners-guide


1074 17 Data Engineering and Data Management

Effective Testing Practices Deploying in a live environment without

exhaustive testing can expose end-users to unresolved bugs or issues. Op-

timal code promotion practices involve automated verification processes

checking code functionality across varied scenarios:

unit tests examine code segments, verifying if, given specific inputs,

they yield expected outputs without depending on external code;
15

15: This not only validates the logic but

ensures the code operates as anticipated. integration testing verifies that multiple code segments cohesively

function and produce anticipated results.
16

16: Ensuring seamless interplay between

systems is the primary objective of this

test layer. Combining both testing methods with modern strategies like blue-green
deployments drastically reduces potential disruptions when introducing

new code.
17

17: "Blue-green deployment" is a strategy

used for releasing applications by having

two separate environments – a "blue" one

and a "green" one:

the blue environment is the cur-

rently running production environ-

ment, serving all the user traffic;

the green environment is a clone

of the blue environment, to which

updates or new versions are de-

ployed.

Once the green environment is ready and

fully tested, the traffic is switched from

the blue environment to the green en-

vironment, making the transition seam-

less to users. This approach is popular

because it allows deployments with no

downtime/service interruption, and be-

cause if something goes wrong in the

green environment after the switch, traf-

fic can be quickly rerouted back to the

blue environment, ensuring high availabil-

ity and minimizing disruptions. Note that

there may be issues with data synchroniza-

tion, especially for databases. Additionally,

since two environments are running con-

currently (at least during deployment),

the infrastructure costs can double (albeit

temporarily).

Disaster Recovery Protocols Before advancing changes to a system,

it’s imperative to pass them through rigorous testing. Furthermore, a

contingency plan for system failure is vital. Systems should be robust

against catastrophic failures. Typical metrics in data engineering for

disaster recovery include Recovery Time Objective (RTO) and Recovery
Point Objective (RPO).

18

18: RTO represents how long the system

or application can be down before there’s

a significant impact on the organization;

RPO represents how much data an orga-

nization can afford to lose in the event of

an incident.

During disaster recovery, it’s essential to gauge the impact on consumers

and system downtime. Data engineers are tasked with ensuring that

data pipelines and storage solutions comply with acceptable recovery

benchmarks.

Guidelines for Effective Pipeline Development With the influx of data

into platforms, adopting development best practices is crucial to guar-

antee reliability, especially with the dynamic nature of data platforms.

Standard practices encompass:

leveraging Source Code Management (SCM) utilities;

using Continuous Integration (CI)/Continuous Delivery (CD);

designing using diverse deployment settings;

prioritizing testing and data quality;

embracing Infrastructure as Code (IaC);
19

19: Defining and managing servers,

databases, networks, and other infrastruc-

ture components through code, rather

than manually.

using database change control;
formulating effective rollback strategies; and

constant monitoring and alert mechanisms.

The guiding principles revolve around automation, testing, and moni-
toring:

streamlining the construction and validation of digital components;

forming deployment pipelines to distribute these components;

evaluating deployments and advancing components through dif-

ferent stages; and

incorporating data quality assessments in pipelines, and raising

flags on inconsistencies.

When tests detect issues, automated rollback procedures should initiate.

Given the constantly shifting landscape of data governance standards,

tooling, best practices, security measures, and business requirements,

deployments must be both automated and verifiable.



17.2 Data Engineering 1075

17.2.3 Scheduled Pipelines and Workflows

There are three primary data pipeline architectures that cater to the

automated scheduling of tasks and workflows:

batch data pipelines transfer vast data amounts at designated

intervals;
20

; 20: Prevalent in scenarios where tables

require daily or weekly updates for report-

ing or dashboard functionality.

streaming data pipelines transfer data from its origin to its desti-

nation immediately upon being generated,
21

and

21: They often fill data lakes, serve data

warehouse integration, or disseminate

data for real-time uses, such as stock price

updates or on-the-spot fraud detection.

change capture data pipelines, whose role is to renew large datasets

and uphold data uniformity across platforms.
22

22: Pivotal when datasets are shared

among multiple systems.
Blueprint for Efficient Pipelines Conceptually, constructing an efficient
data pipeline is a systematic six-phase endeavour:

1. cataloging and overseeing data entails facilitating enterprise-wide

access to trustworthy and compliant data;

2. proficient data ingestion involves drawing data from myriad

sources – on-premises databases, SaaS applications, IoT devices,

streaming apps – and channeling it into a cloud-centric data lake;

3. data fusion cleans, enriches, and remodels the data – the creation

of specific zones, such as landing areas, enrichment hubs, and

enterprise territories, is integral here;

4. implementation of data quality protocols ensures data purity and

organizational distribution, bolstering DataOps;
23

23: DataOps, starting as best practices,

has evolved into a comprehensive data

analytics methodology. It addresses the

entire data life cycle, fostering collabora-

tion between data analytics groups and IT

functionalities. [13]

5. data refinement prepares the sanitized data to be migrated to a

cloud data warehouse, thus allowing for self-driven analytics and

data science scenarios, and

6. real-time data processing ensures that insights are gleaned from

real-time data sources, like Kafka, and subsequently channeled to

a cloud data warehouse for analytical use.

To support ML/AI and process big data at reasonable service level

objectives, an efficient pipeline should also:

seamlessly deploy and process any data on any cloud ecosystem,

such as Amazon Web Services (AWS), Microsoft Azure, Google

Cloud, and Snowflake for both batch and real-time processing;

efficiently ingest data from any source,
24

into any target, such as 24: Such as legacy on-premises systems,

databases, change data capture (CDC)

sources, applications, or IoT sources.

cloud data warehouses and data lakes;

detect schema drift in relational data base management systems

(RDBMS) schema [11] in the source database or a modification to

a table,
25

and automatically replicate the target changes in real 25: Such as adding a column or modifying

a column size.
time for data synchronization and real-time analytics use cases;

provide a simple wizard-based interface with no hand coding for

a unified experience;

incorporate automation and intelligence capabilities such as auto-

tuning, auto-provisioning, and auto-scaling to design time and

run-time, and

deploy in a fully managed advanced server-less environment for

improving productivity and operational efficiency.



1076 17 Data Engineering and Data Management

Assessing Pipeline Performance and SLO A pivotal performance metric

is the pipeline’s alignment with business prerequisites. Service level
objectives (SLOs) offer concrete performance benchmarks against set

standards.

For instance, a system could have the following SLO framework:

data timeliness – 90% of product advice should stem from user

online activity within the last three minutes;

data accuracy – fewer than 0.5% of monthly client bills should have

inaccuracies;

data isolation and resource allocation – within a workday, priority

payments should be processed within 10 minutes of submission,

with standard ones being settled by the subsequent business day.

Data freshness relates to data’s relevance in regards to its age. Typical

SLOs for data freshness encompass:

𝑥% of data processed within 𝑦 time units [sec, min, days] – this

is commonly used for batch pipelines that process bounded data

sources; the metrics are the input and output data sizes at key

processing steps relative to the elapsed pipeline run-time; we may

choose a step that reads an input dataset and another step that

processes each item of the input;

oldest data shouldn’t exceed 𝑦 time units [sec, min, days] – this

is commonly used for streaming pipelines that process data from

unbounded sources; the metrics indicate how long the pipeline

takes to process data, such as the age of the oldest unprocessed

item,
26

or the age of the most recently processed item;26: That is, how long an unprocessed item

has been in the queue. pipeline task completion within 𝑦 time units [sec, min, days] –

this sets a deadline for successful completion and is commonly used

for batch pipelines that process data from bounded data sources; it

requires the total pipeline-elapsed time and job-completion status,

in addition to other signals that indicate the success of the job.
27

27: For example, the percentage of pro-

cessed elements that result in errors.

Data correctness refers to data being free of errors. We can determine data

correctness through different means. One method is to check whether

the data is consistent by using a set of validation rules, such as rules that

use regular expressions (regexps). Another method is to have a domain

expert verify that the data is correct, perhaps by checking it against

reference data.
28

These reference datasets can then be stored and used28: One challenge is that reference data for

validating correctness might not always

be available. Therefore, there might be

a need to generate reference data using

automated tools, or even manually.

for different pipeline tests.

With reference datasets, we can verify data correctness in the following

contexts:

unit and integration tests, which are automated through continu-

ous integration;

end-to-end pipeline tests, which can be executed in a pre-production

environment after the pipeline has successfully passed unit and

integration tests, and is automated via continuous delivery, and/or

pipelines running in production, when using monitoring to ob-

serve metrics related to data correctness.

For running pipelines, defining a data correctness target usually involves

measuring correctness over a period of time, such as:



17.2 Data Engineering 1077

Figure 17.3: An open-source data analysis pipeline.

on a per-job basis, fewer than 𝑥% of input items contain data
errors – this SLO can be used to measure data correctness for batch

pipelines;
29

29: As an example, consider: “For each

daily batch job to process electricity me-

ter readings, fewer than 3% of readings

contain data entry errors”.

over an 𝑦-minute moving window, fewer than 𝑥% of input items
contain data errors – this SLO can be used to measure data correct-

ness for streaming pipelines.
30

30: As an example, consider: “Fewer than

2% of electricity meter readings over the

last hour contain negative values.”

To measure these SLO, we can use metrics over a suitable period of

time to accumulate the number of errors by type, such as the data being

incorrect due to a malformed schema, or the data being outside a valid

range.

17.2.4 Data Engineering Tools

While it is unlikely that any one data engineer could achieve mastery

over all possible data engineering tools, it would be beneficial for data

teams to have competencies in a fair number of the following:
31

31: The content of this section is highly

time-sensitive and is liable to have

changed completely within 1-2 years from

publication. That’s life in the fast data en-

gineering lane for you!

analytical databases (Big Query, Redshift, Synapse, etc.)

ETL (Spark, Databricks, DataFlow, DataPrep, etc.)

scalable compute engines (GKE, AKS, EC2, DataProc, etc.)

process orchestration (AirFlow / Cloud Composer, Bat, Azure

Data Factory, etc.)

platform deployment and scaling (Terraform, custom tools, etc.)

visualization tools (Power BI, Tableau, Google Data Studio, D3.js,

ggplot2, etc.)

programming (tidyverse, numpy, pandas, matplotlib, scikit-learn,

scipy, Spark, Scala, Java, SQL, T-SQL, H-SQL, PL/SQL, etc.)

Here are some currently popular pipeline tools [2].

1. Luigi (Spotify) builds long-running pipelines (thousands of tasks

stretching across days or weeks); it is a Python module available

on an open-source license under Apache. It addresses the “plumb-

ing” issues typically associated with long-running batch processes,



1078 17 Data Engineering and Data Management

Figure 17.4: An unfortunately still far-too-common data analysis pipeline.

where many tasks need to be chained together (Hadoop jobs, dump-

ing data to/from databases, running machine learning algorithms,

etc.).
32

32: Luigi uses 3 steps to build pipelines:

requires() defines the dependencies be-

tween the tasks, output() defines the tar-

get of the task, and run() defines the com-

putation performed by each task. Luigi

tasks are intricately connected with the

data that feeds into them, making it diffi-

cult to create, modify, and test a single task,

but relatively easy to string tasks together.

2. Airflow (AirBnB) is used to build, monitor, and retrofit data

pipelines. It is a very general system, capable of handling flows for

a variety of tools and highly complex pipelines; it is good tool for

pipeline orchestration and monitoring. It connects well with other

systems (databases, Spark, Kubernetes, etc.).
33

33: Airflow defines workflows as Directed

Acyclic Graphs (DAG), and tasks are in-

stantiated dynamically. Airflow is built

around: hooks (high-level interfaces for

connections to external platforms), opera-
tors (predefined tasks that become DAG

nodes), executors (run jobs remotely, han-

dle message queuing, and decide which

worker will execute each task), and sched-
ulers (trigger scheduled workflows and

submit tasks to the executors).

3. scikit-learn pipelines: scikit-learn pipelines are not used to orches-

trate big tasks from different services; rather they help make code

cleaner and easier to reproduce/re-use. They are found in scikit-

learn, a popular Python data science module. The pipelines allow

users to concatenate a series of transformers, followed by a final

estimator; this is useful for model training and data processing, for

instance. With scikit-learn pipelines, data science workflows are

easy to read and understand, which also makes it easier to spot

issues such as data leakage (unplanned or unauthorized release

of data). The pipelines only work with scikit-learn transformers

and estimators, however, and they must all be run within the same

run-time, which makes it impossible to run different pipeline parts

on different worker nodes while keeping a single control point.

4. Pandas (Python) or Tidyverse (R) Pipes: pandas and the tidyverse

are popular data analysis and manipulation libraries. When data

analysis becomes very sophisticated, the underlying code tends to

become messier. Pandas and tidyverse pipes keep the code clean

by allowing users to concatenate multiple tasks using a simple

framework, similar to scikit-learn pipelines. These pipes have one

criterion, the “data frame in, data frame out” principle: every step

consists of a function with a data frame and other parameters as

arguments, and a data frame as output. Users can add as many

steps as needed to the pipe, as long as the criterion is satisfied.



17.3 Data Management 1079

17.3 Data Management

As covered in the previous section, a major element of data engineering

(that is, developing data pipelines) involves moving data from storage

to storage as it is processed. In this sense, data storage can be viewed as

the metaphorical heart of the data pipeline, while the machine learning

model components of the pipeline could be thought of as the brains.

In this section we will focus on this metaphorical heart, and consider

management of the brains (analytics and machine learning models) in

Section 17.4, Reporting and Deployment.

Computers have advanced significantly in their ability to store large

amounts of data. In this section, we will cover databases, data modeling,

and data storage. Readers are invited to refer to [11] (and Section 14.5,

Getting Insight From Data) for more details.

17.3.1 Databases

Historically, computers relied on a file-based system (i.e., they manipulate

data files). File-based systems face a number of shortcomings:

1. data redundancy: files and applications are created by different

programmers from various departments over long periods of

time. This can lead to redundancy, a situation that occurs in a

database when a field needs to be updated in more than one

table, inconsistencies in data format, the same info being stored in

multiple files, and conflicting copies;

2. data isolation: it can prove difficult for new applications to retrieve

the appropriate data, which might be stored in various files;

3. data integrity: maintenance may be required to ensure that data in

a database are correct and consistent;

4. security: it can be difficult to enforce access constraints (if needed)

when application requirements are added to the system in an ad-hoc
manner, and

5. concurrency: if multiple users access the same file at the same time,

there can be issues with file locking.

Spreadsheets were originally designed for a single user, which is reflected

in their characteristics. They are adequate for single users or for small

teams of users who have no need for complicated data manipulations.

Databases, on the other hand, hold massive amounts of information,

and allow multiple concurrent users to quickly and securely access and

query data using highly complex logic and language. They only need to

be defined once before being accessed by various users.

Databases They consist of a representation of some aspect of the real

world, in the form of a collection of data elements representing real
world information.

34
They are: 34: Most databases use a structured query

language (SQL) for writing and query-

ing data. SQL statements include: create/-

drop/alter table; select, insert, update,

delete; where, like, order by, group by,

count, having; join.

logical, coherent, and internally consistent;

designed, built, and populated with data for a specific purpose;

made up of data items, which are stored in fields,

populated with tables, which are combinations of fields.



1080 17 Data Engineering and Data Management

A database management system (DBMS) is a collection of programs that

enables users to create and maintain databases and control all access to

them. The primary goal of a DBMS is to provide an environment for users

to retrieve and store information in a convenient and efficient manner.

Data management is “simply” care-taking for the data so that it works

for its users and remains useful for tasks. Managing information using

a database allows data scientists to become strategic users of the data

at their disposal. The processing power in a database can be used to

manipulate the data it houses, namely: sort, match, link, aggregate, filter,

compute contents, etc. Because of the versatility of databases, we find

them powering all sorts of projects.

Database Benefits While databases might be overkill for small datasets,

they have many benefits (especially for larger projects):

1. self-describing nature of a database system: a database contains

the data and the metadata, which describes and defines relation-

ships between tables in the database. This separation of data and

information about the data makes a database system entirely dif-

ferent from the traditional file-based system in which the data

definition is part of the application program;

2. insulation between program and data (also called program-data

independence): in a file-based system, the structure of data files is

defined in the application programs, so if a user wants to change

the structure of a file, all programs that access it need to be changed

as well. In a database system, the data structure is stored in the

system catalogue and not in the programs. Therefore, one change

(such as adding a new variable) is all that is needed to change the

structure of a file;

3. support for multiple views: a database supports multiple views,

or subsets, of the database. Each view contains data that is only of

interest to the group of users subscribed to the particular view;

4. sharing of data and multi-users: many users can access data

at the same time, through features called concurrency control

strategies. The design of model multi-user database systems is a

great improvement from those in the past which restricted usage

to one user at a time,

5. control of redundancy: ideally, each data item is only found in

one location, but redundancy can sometimes improve query per-

formance (even though it should be kept to a minimum wherever

possible).

Types of Databases Databases come in various flavours:

the most common (as of 2022) are relational databases, in which

data items are organized as a set of tables with columns and rows;

data in object-oriented databases is represented in the form of

objects, as in object-oriented programming (OOP);
35

35: We discuss OOP briefly in Chapter 1,

but there is a lot more to be said on the

topic.

in distributed databases, two or more files are located in different

sites – such databases may be stored on multiple computers located

in the same physical location, or scattered over different networks,

etc.;



17.3 Data Management 1081

data warehouses are central repository for data, designed specifi-

cally for fast query and analysis;

NoSQL warehouses are non-relational databases that allow for

unstructured and semi-structured data to be stored and manipu-

lated (in contrast with relational databases which define how all

the data inserted into the database must be composed) – NoSQL

has grown popular as web apps have became more common and

more complex,

graph databases store data in terms of entities and relationships

between entities – for instance, online transaction processing (OLTP)

databases are speedy analytic databases designed for large numbers

of transactions performed by multiple users.

Database Challenges Today’s large enterprise databases often support

very complex queries and are expected to deliver nearly instant responses

to those queries. As a result, database administrators are constantly called

upon to employ a wide variety of methods to help improve performance

and overcome some common database challenges.

Absorbing significant increases in data volume: the explosion of

data coming in from sensors, connected machines, and dozens of

other sources keeps database administrators scrambling to manage

and organize their companies’ data efficiently;

ensuring data security: data breaches are happening at an ever-

increasing rate, and hackers are getting more and more inventive –

it is more important than ever to ensure that data is secure ... yet

also easily accessible to users;

keeping up with demand: in today’s fast-moving business envi-

ronment, companies need real-time access to their data to support

timely decision-making and to take advantage of new opportuni-

ties;

managing and maintaining the database and infrastructure:
database administrators must continually watch the database for

problems and perform preventative maintenance, as well as apply

software upgrades and patches; as databases become more complex

and data volumes grow, companies are faced with the expense of

hiring additional talent to monitor and tune their databases;

removing limits on scalability: some claim that businesses need

to grow if they are going to survive, and so must their data

management; but it is nearly impossible for database administrators

to predict how much capacity the company will need, particularly

with on-premises databases,

ensuring data residency, data sovereignty, or latency require-
ments: some organizations have use cases that are better suited

to run on-premises; in those cases, engineered systems that are

pre-configured and pre-optimized for running the database are

ideal.

Addressing all of these challenges can be time-consuming and can prevent

database administrators from performing more strategic functions.



1082 17 Data Engineering and Data Management

17.3.2 Database Modeling

Database modeling is a process used to define and analyze data require-

ments needed to support the business processes within the scope of

corresponding information systems. This includes both data elements

and structures/relationships between them.

1. Requirements are put into a conceptual model (tech independent

specifications), which describes the semantics of a domain and the

scope of the model. For example, a model of the interest area of an

organization or industry. This consists of entity classes, representing

the kinds of things of significance in the domain, and relationship

assertions about associations between pairs of entity classes. A

conceptual schema specifies the kinds of facts or propositions that

can be expressed using the model. In that sense, it defines the

allowed expressions in an artificial ‘language’ with a scope that is

limited by the scope of the model.

2. The structure of the database data is put into a logical model, which

describes the model semantics, as represented by a particular

data manipulation technology. This consists of descriptions of

tables and columns, object-oriented classes, and XML tags, among

other things. The implementation of a single conceptual model

may require multiple logical models. The logical models are then

incorporated into a physical data model that organizes data into

tables, which accounts for access, performance, and storage details.

3. The physical data model describes the physical means by which

data is stored, including partitions, CPUs, tablespaces, and the like.

A database model, then, is a specification describing how a database is

structured and used.

The flat (table) model may not strictly qualify as a data model; it

consists of a single, two-dimensional array of data elements, where

all members of a given column are assumed to be roughly similar

values, and all members of a row are assumed to be related to one

another.

The network model organizes data using two fundamental con-

structs: the records and the sets. Records contain fields, and sets

define one-to-many relationships between records: one owner,

many members. The network data model is an abstraction of the

design concept used in the implementation of databases.

The hierarchical model is similar to the network model except

that links in the hierarchical model form a tree structure, while the

network model allows arbitrary graphs.

The relational model is a database model based on first-order

predicate logic. Its core idea is to describe a database as a collection

of predicates over a finite set of predicate variables, describing

constraints on the possible values and combinations of values.

The power of the relational data model lies in its mathematical

foundations and its simple user-level paradigm.

The object-relational model is similar to a relational database

model, but objects, classes and inheritance are directly supported

in database schemas and in the query language.



17.3 Data Management 1083

Object-role modeling is an approach that has been defined as

“attribute free” and “fact-based”. The result is a verifiably correct

system, from which other common artifacts, such as ERD, UML,

and semantic models may be derived. Associations between data

objects are described during the database design procedure, leading

to inevitable database normalization.
36

36: “Database normalization is a tech-

nique for creating database tables with

suitable columns and keys by decompos-

ing a large table into smaller logical units.

The process also considers the demands

of the environment in which the database

resides. Normalization is an iterative pro-

cess. Commonly, normalizing a database

occurs through a series of tests. Each sub-

sequent step decomposes tables into more

manageable information, making the over-

all database logical and easier to work

with.” [9]

The star schema is the simplest of the data warehouse schemas;

it consists of a few “fact tables” (possibly only one, justifying the

name) referencing any number of “dimension tables”. The star

schema is considered an important special case of the snowflake

schema.

Data modeling can also be phrased as a high-level abstract design phase

used to describe:

the data contained in the database;

the relationships between data items, and

constraints on data.

The data items, relationships and constraints are all expressed using

concepts provided by the high-level data model. Because these concepts

do not include the implementation details, the result of the data mod-

eling process is a semi-formal representation of the database structure.

Database design includes logical design which is the definition of a

database in a data model of a specific DBMS, and physical design which

defines the internal database storage structure, file organization, and

indexing techniques.

Database Design In database design, the first step is to identify business
rules [11]. The design is then created and implemented using a DBMS.

In an external model, the user’s view of a database (multiple

different external views) is closely related to the real world as

perceived by each user.

Conceptual models provide flexible data-structuring capabilities;

they offer a “community view” of the entire database (logical

structure). This contains the data stored in the database and it

shows relationships including: constraints, semantic information

(e.g., business rules), security and integrity information, etc.
37

37: Conceptual models consider that a

database is a collection of entities (objects)

of various kinds, but they avoid detailed

descriptions of the main data objects, in

effect being independent of the eventual

database implementation model.

Internal models are relational, network, and/or hierarchical data

models. They consider the database as a collection of fixed-size

records, closer to the physical level or the file structure. Internal

models offer a representation of the database as seen by the DBMS

and require the database designer to match the conceptual model’s

characteristics and constraints to those of the selected implementa-

tion model; this may involve mapping entities in the conceptual

model to tables in the relational model, say.

Physical models are physical representations of the database, its

lowest level of abstraction. The focus is on how to deal with run-

time, storage utilization and compression, file organization and

access, and data encryption. The physical level is managed by the

operating system; it provides concepts that describe how the data

is stored in computer memory, in detail.



1084 17 Data Engineering and Data Management

Schemas We have already mentioned schemas, which are database

descriptions represented by an entity relationship diagram (ERD, see

Structuring and Organizing Data in Section 14.5). The most popular data

models today are relational data models, although hierarchical and net-

work data models are also often used on mainframe platforms. Relational

data models describe the world as “a collection of inter-related relations

(or tables)” [11].

Fundamental concepts include:

1. relations (table or file), which are subset of the Cartesian product

of a list of domains characterized by a name;
38

38: Within each table, the row represents

a group of related data values; the row

is known as a record or a tuple. Table

columns are known as fields or attributes.

Attributes are used to define a record, and

a record contains a set of attributes.

2. tables and columns house the basic data components, into which

content can be broken down;
39

39: Columns are combined into tables. Ta-

bles must have distinct names, no dupli-

cate rows, and atomic entries (values that

cannot be divided) in its columns.

3. a column’s domain, the range of values found it the column, and

4. records, which contain related fields, and degree, which refers to

the number of attributes.
40

40: Records and fields form the basis of

all databases. A simple table provides

the clearest picture of how records and

fields work together in a database storage

project.

17.3.3 Data Storage

Data storage refers to the collection and retention of digital information:

the bits and bytes behind applications, network protocols, documents,

media, address books, user preferences, and so on.

For computers, short term information is handled on random-access

memory (RAM), and long-term information is held on storage volumes.

Computers also distribute data by type. Markup languages have become

popular formats for digital file storage: UML, XML, JSON, CSV, etc.

Data storage basically boils down to:

the different ways to store different files;

how to store them in the right kind of structures based on data

type, and

how those structures link together in a database.

It is data engineers and database analysts (data managers) that are

responsible for storing collected and transformed data in various locations

depending on the business requirements. Each combination of tool and

location may store and access the data in different ways; the limitations,

benefits, and use cases for each location and set of data must be taken

into account as part of good data management.

For instance, let us assume a company is ingesting a million records a

day from a particular data source. If the data is stored on a disk, we

cannot simply append the daily updates to a singular file!
41

) Any report41: This would be akin to looking for a

needle in the world’s largest haystack!
or question needing a particular piece of information found on the disk

would never be produced/answered.

Instead, the company’s data engineers would:

know that the data needs to be partitioned across different files

and directories within the file system to separate the data;

evaluate the data and how it is loaded and consumed to determine

the appropriate way to split it,
determine how to update specific pieces of data as changes are

applied to the data source.



17.3 Data Management 1085

At a more meta level, there are other factors to consider, such as:

is the data key-value based (see Structuring and Organizing Data, in

Section 14.5)?

are there complex relationships in the data?

does the data need to be processed or joined with other datasets?

and so on.

Data Warehousing Data warehousing is the term used to refer to

the storage process of structured data. Data storage is transforming

rapidly, since files can be compressed to take up less memory space, and

computers can hold more files locally and in RAM.

Cloud-based data warehousing solutions like Snowflake, AWS Redshift,
Azure Synapse, and Google BigQuery allow for pay-per-use data warehouses

too, giving seemingly infinite storage.
42

42: This was written in August 2022; that

list is liable to have changed quite a lot

since then.For on-premise data warehousing solutions, the investment is all up-

front. The customers pay for the data warehousing solution, but do

not get to see any return on investment while the hardware is set up,

configured, and operationalized.
43

Initially, then, businesses are left 43: It might take months, with millions of

dollars already invested, just to be able to

start to implement a solution for the first

use case.

with a severely under-utilized piece of hardware, making such a move a

high-risk leap of faith for anyone but the biggest players.

At some point in the warehouse lifetime, enough use cases exist to eat the
available hardware computer power or storage. When this occurs, either

more hardware must be acquired (at another large hit to the budget) or

existing use cases that can be scaled back (and to what extent) must be

identified to create the required “space”. Purchasing more hardware in

this stage is not as much of a leap of faith as the initial commitment was,

but will once again leave the organization with an under-utilized data

platform as new use cases are prioritized and solutions built for them.

In comparison, cloud-based data warehouse solutions use a pay-per-use

cost model, where there is an opportunity to prove the value of a use case

using an iterative approach. The initial step is to implement a use case

solution with very light requirements to help gauge cost estimates and

to understand how valuable that solution might be. Future iterations can

expand on the solution, modifying the complexity of data transformation

or how data flows through it, and even remove it to focus on another use

case, if appropriate.

At no point is there a need to consider purchasing and installing additional

hardware, as new warehouses or clusters can be created on-demand.

Using a cloud-based data warehouse allows costs to scale according to

the number of use cases and their complexity. However, this requires a

level of expertise
44

and a lack of control over any changes to prices or 44: Potentially different than the level of

expertise required for on-premise ware-

housing, if not necessarily more sophisti-

cated.

policies that go with cloud tools.

It is also important to consider who has access to what pieces of informa-

tion that are stored (data governance). In practice, rules and regulations

define who should have access to particular pieces of information within

your organization. For a shipping company, as an example, we may need

to separate the data that suppliers and customers can see at any given

time, or ensure that different suppliers cannot see information about

other suppliers.



1086 17 Data Engineering and Data Management

This requires data classification, tagging, and access constraints. When

gathering data from various systems, a data engineer is responsible for

applying the classification and tagging rules upon collection.
45

45: This might include adding additional

data points to the collected data or storing

data separately on disk. Then, when the data is aggregated or transformed, the end result must

include this same information. When setting up access constraints to the

data, the data engineer also has to enforce the required policies.

As more organizations are obtaining additional data from ever-growing

new sources, they are faced with new problems:

securing the data;

ensuring regulatory compliance, and

general management of the data.

These are also problems that data governance exists to solve.
46

46: Unfortunately, data governance is not

achieved by using a specific tool or set

of tools. Tools exist to support some of

the aspects of data governance, but they

only enhance existing data governance

practices. Part of the challenge is that data

governance is very much a “people and
process” oriented discipline, intending to

make data secure, usable, available, and

of high quality.

17.4 Reporting and Deployment

Currently, the two main applications of data science in industry are

reporting and deployment of machine learning models. In the context of

data engineering, these machine learning models are embedded in the

data pipeline.
47

As noted in a previous section, these machine learning47: Data pipelines do not need to contain

machine learning models; they may in-

stead focus, for example, on business intel-

ligence functionality. But we will assume

that they do.

models can be viewed metaphorically as the brains of the pipeline.

In an implemented context, managing machine learning models is known

as MLOps. The traditional AI training cycle often involves a single pass

of the following steps:

1. preparing the training data;

2. training the model,

3. evaluating the model.

These are still present in MLOps, with an increased focus on ongoing
monitoring/management of the models embedded in the pipeline.

48
48: For example, MLOps processes mon-

itor models for drift in the context of the

automated data stream, monitor models

for performance relative to volume of data,

and iteratively and automatically train and

improve models over time based on the

feedback received from this monitoring.

This iterative or interactive approach often includes automated machine
learning (AutoML) capabilities; what happens outside the scope of the

trained model is not included in this traditional definition.
49

49: In modern data science contexts,

MLOps may also refer to the entire data

science process, from ingestion of the data

to a live application that runs in a busi-

ness environment and makes an impact at

the business level. In this respect, MLOps

overlaps with DataOps and DevOps.

17.4.1 Reports and Products

In the research-first approach to data science, which still dominates a lot

of industry applications, machine learning models are used to generate

static or interactive reports for business analysts; data science is handled

as a silo, running batch predictions on historical data and returning the

results for someone else to incorporate manually into applications.

In those conditions, there is little demand for resiliency, scale, real-
time access, or continuous integration and deployment (CI/CD); the

results are of limited value, in and of themselves, and are used more as

proof-of-concept.

Most data science solutions and platforms today still start with a research

workflow but fail to move past the proof-of-concept stage.
50

50: CI/CD components refer to the

training/re-training loop of a model, and

do not extend to the full reporting and de-

ployment pipeline. Even the concept of a

CI/CD pipeline is often used to refer only

to the training loop and do not extend to

include the entire operational pipeline.



17.4 Reporting and Deployment 1087

Generaly, we start an AI project with the development of a model:

1. data scientists receive data, which may be extracted manually from

many sources;

2. the data is then joined and cleaned in an interactive way (using

notebooks, perhaps), and

3. training and experiments are conducted while tracking results.

The model is generated and tested/validated until the results “look

good”,
51

at which point different teams take the results and attempt to 51: That is, they meet a certain perfor-

mance threshold.
integrate them into real-world applications.

52
In most cases, eventually,

52: Modern tools (such as Flask) allow

data scientists to serialize a model into a

file and then simply call the file to make

predictions. However, the full process of

monitoring, creating feedback loops, then

retraining and updating the model still

requires an underlying architecture.

the original data science product is set aside and re-implemented in a

robust and scalable way which fits production, but which may not be

what the data scientist originally intended.

A production pipeline starts with automated data collection and prepa-

ration, continues with automated training and evaluation pipelines, and

incorporates real-time application pipelines, data quality and model

monitoring, feedback loops, etc.

As applications that demand real-time recommendations, prevent fraud,

predict failures, and make decisions continue to be in demand, engineer-

ing efforts are required to make them feasible. Business needs have forced

data science components to be robust, performant, highly scalable, and

aligned with agile software and DevOps practices.
53

53: It is all too often the case that opera-
tionalizing machine learning (in the sense

of considering all business requirements,

such as federated data sources, need for

scale, critical implications of real-time data

ingestion or transformation, online feature

engineering, handling upgrades, monitor-

ing, etc.) comes as an afterthought, mak-

ing it all the more difficult to create real

business value with AI.

Instead of this siloed, complex, and manual process, we should start by

designing the ML elements of the pipeline using a modular strategy,

where the different parts of the ML component provide a continuous,

automated, and far simpler way to move from research and development

to scalable production pipelines, without the need to refactor code, add

glue logic, and spend significant efforts on data and ML engineering.
54

54: ML production-ready pipelines have

four key components:

1. feature store: collects, prepares,

catalogues, and serves data fea-

tures for development (offline) and

real-time (online) usage;

2. machine learning CI/CD pipeline:
automatically trains, tests, opti-

mizes, and deploys or updates

models using a snapshot of the

production data (generated by the

feature store) and code from the

source control (Git);

3. real-time/event-driven applica-
tion pipeline: includes the API

handling, data preparation/en-

richment, model serving, ensem-

bles, driving and measuring ac-

tions, etc., and

4. real-time data and model moni-
toring: monitors data, models, and

production components, and pro-

vides a feedback loop for exploring

production data, identifying drift,

alerting on anomalies or data qual-

ity issues, triggering re-training

jobs, measuring business impact,

etc.

17.4.2 Cloud and On-Premise Architecture

Organizations have to make decisions on how much of their data architec-

ture to build in-house, and how much to build with off-the-shelf tools.

Additionally, there are compromises and benefits to building infrastruc-

ture on the cloud (renting external resources) with potential to publish

results for anyone in the world to see and build on, and building solutions

on premise which depend heavily on local capacity and hardware.
*

Developers must write new code for every data source, and may need

to rewrite it if a vendor changes its API, or if the organization adopts a

different data warehouse destination. Data engineers must also address

speed and scalability: for time-sensitive analysis or business intelligence

applications, ensuring low latency can be crucial to providing data that

drives decisions.

*
Many companies, such as Spotify, build their own pipelines from scratch to analyze data

and understand user preferences, and map customers to music preferences, say. The

main challenges to developing in-house pipelines are that different data sources provide

different application program interfaces (API, see Section 16.3.6) and involve different

kinds of technologies.



1088 17 Data Engineering and Data Management

Data solutions need to be able to dynamically access more resources as

data volume grows. Therefore, in-house pipelines can be expensive to

build and maintain.

On-premise amateur-ish data pipelines ingest data in pre-scheduled
batches (e.g., twice every hour or every night, say), and are not ideal for

any real-time analytics solutions.
55

55: Such pipelines may be all that is re-

quired in certain cases, such as establish-

ing a proof-of-concept for business pro-

cesses that require less frequent and man-

ual decision-making. For example, a re-

tailer can use them to make decisions

about the order of recommendation of

certain items in an online store, but may

miss on recommending a product to an

individual on a certain short-term buying

spree in real-time.

ETL tools that work with in-house data warehouses do as much prepara-

tion work as possible, including transformation, prior to loading data into

data warehouses. Cloud data warehouses like Amazon Redshift, Google
BigQuery, Azure SQL Data Warehouse, and Snowflake can scale up and

down in seconds or minutes, so developers can replicate raw data from

disparate sources and define transformations in SQL and run them in

the data warehouse after loading or at the time of query.

Just as there are cloud-native data warehouses, there also are ETL services
built for the cloud. Organizations can set up a cloud-first platform for

moving data in minutes, and data engineers can rely on the solution to

monitor and handle unusual scenarios and failure points.
56

56: Even without larger, more specialized

tools, simple desktop tools such as Tableau,

Looker, or Microsoft’s Power BI can still be

used to run queries and reports, and with a

modern real-time pipeline the results will

be current and immediately actionable.

Overall, cloud tools are becoming more and more popular to host data

pipelines and by extension data science solutions.

Data engineering and data management are not always the most interest-

ing aspects of the discipline for data analysts, but the long and the short

of it is that it is impossible to conduct meaningful data science without

the right data or without the right tools.
57

But tools do not only refer to57: This might perhaps be the only thing

worth remembering from this chapter,

especially since technology changes so

quickly.

the analytical tools; becoming familiar with the entire data ecosystem
will pay off in the end.

Chapter References
[1] Introduction to Data Engineering .

[2] Anouk Dutrée. Data pipelines: what, why and which ones . 2021.

[3] What is Data Engineering? Everything You Need to Know in 2022 . phData, 2022.

[4] Systems and software engineering - Vocabulary, ISO/IEC/IEEE std 24765:2010(E) . 2010.

[5] M. Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable
Systems. O’Reilly, 2017.

[6] Henryk Konsek. Automating Data Pipelines: Types, Use Cases, Best Practices .

[7] J. Kunigk et al. Architecting Modern Data Platforms: A Guide to Enterprise Hadoop at Scale. O’Reilly, 2018.

[8] T. Malaska and J. Seidman. Foundations for Architecting Data Solutions: Managing Successful Data Projects.
O’Reilly, 2018.

[9] What is Database Normalization? .

[10] E. Uz. Analysis of the data job market using "Ask HN: Who is hiring?" posts . Aug. 2023.

[11] Adrienne Watt. Database Design . BCCampus, 2014.

[12] Data Governance .

[13] DataOps .

https://www.coursera.org/lecture/introduction-to-data-engineering/rdbms-0EgFf
https://towardsdatascience.com/data-pipelines-what-why-and-which-ones-1f674ba49946
https://www.phdata.io/blog/what-is-data-engineering/
https://www.iso.org/standard/50518.html
https://www.softkraft.co/automating-data-pipelines/
https://phoenixnap.com/kb/database-normalization
https://emiruz.com/post/2023-08-12-data-jobs/
https://opentextbc.ca/dbdesign01/
https://en.wikipedia.org/wiki/Data_governance
https://en.wikipedia.org/wiki/DataOps

	Data Engineering and Data Management
	Background and Context
	Data Engineering
	Data Management
	Reporting and Deployment
	Chapter References


