
Introduction to
Machine Learning 19

19.1 Preliminaries 1121
19.2 Statistical Learning 1122

Types of Learning 1122
DS and ML Tasks 1123

19.3 Association Rules Mining 1126
Overview 1126
Generating Rules 1131
The A Priori Algorithm . 1133
Validation 1135
Case Study: Medical Data 1135
Toy Example: Titanic Data . 1137

19.4 Classification & Regression 1138
Overview 1138
Classification Algorithms . 1141
Decision Trees 1143
Performance Evaluation . . 1146
Case Study: Tax Audits . . . 1149
Toy Example: Kyphosis Data1154

19.5 Clustering 1156
Overview 1156
Clustering Algorithms . . 1159
𝑘-Means 1160
Clustering Validation . . . 1163
Case Study: Livehoods . . . 1164
Toy Example: Iris Data . . . 1167

19.6 Issues & Challenges 1169
Bad Data 1169
Overfitting/Underfitting . . 1170
Transferability 1172
Myths and Mistakes 1173

19.7 R Examples 1173
ARM: Titanic Data 1173
Classification: Kyphosis . . 1178
Clustering: Iris 1187

19.8 Exercises 1194
Chapter References 1198

by Patrick Boily

Data scientists are often introduced to the field via machine learning con-

cepts, algorithms and applications, which we introduce in this chapter.

In Chapters 20, 21, and 22, we will discuss other technical aspects of

machine learning, as well as more sophisticated algorithms (abundant

details can also be found in [3, 1, 24, 6, 27], among others).

19.1 Preliminaries

“Data is not information, information is not knowledge,

knowledge is not understanding, understanding is not wis-

dom.” (attributed to C. Stoll [30])

One of the challenges of working in the data science (DS), machine
learning (ML), and artificial intelligence (AI) fields is that nearly all

quantitative work can be described with some combination of the terms

DS/ML/AI (often to a ridiculous extent). As such, it can be difficult to

differentiate the discipline from other quantitative fields, which makes

studying and learning it properly harder than it should.

Robinson [49] suggests that their relationships follow an inclusive hier-
archical structure:

in a first stage, DS provides “insights” via visualization and (man-

ual) inferential analysis;

in a second stage, ML yields “predictions” (or “advice”), while

reducing the operator’s analytical, inferential and decisional work-

load (although it is still present to some extent), and

in the final stage, AI removes the need for oversight, allowing

for automatic “actions” to be taken by a completely unattended

system.

The goals of AI are laudable in an academic setting, but in practice, we

believe that stakeholders should not seek to give up their agency in the

decision-making process; as such, we follow the lead of various thinkers

and suggest further splitting AI into “general AI” (which we will not be

pursuing further at this stage) and “augmented intelligence”.
1

1: Which can be viewed as ML “on

steroids”.

With this in mind, our definition of the DS/ML/AI approach is that

it consists of quantitative processes
2

that can help users learn action- 2: What H. Mason has called “the work-
ing intersection of statistics, engineering,

computer science, domain expertise, and

”hacking” [59].

able insights about their situation without completely abdicating their

decision-making responsibility.

In this chapter, we will take a brief look at:

1122 19 Introduction to Machine Learning

the fundamentals of data science (see Section 19.2);

association rules mining (see Section 19.3);

supervised learning and classification, with a focus on decision
trees (see Section 19.4);

unsupervised learning and clustering, with a focus on 𝑘−means
(see Section 19.5), and

some of the common issues and challenges encountered during

the data science and machine learning process (see Section 19.6).

19.2 Statistical Learning

“We learn from failure, not from success!” (B. Stoker, Dracula)

As humans, we learn (at all stages) by first taking in our environment,

and then by:

answering questions about it;

testing hypotheses;

creating concepts;

making predictions;

creating categories, and

classifying and grouping its various objects and attributes.

In a way, the main concept of DS/ML/AI is to try to teach our machines

(and thus, ultimately, ourselves) to glean insight from data, and how to

do this properly and efficiently, free of biases and pre-conceived notions

– in other words, can we design algorithms that can learn?3
3: Note that this is not the same thing

as asking whether we should design such

algorithms. In that context, the simplest DS/ML/AI method is exploring the data
(or a representative sample) to:

provide a summary through basic statistics – mean, variance,

histograms, etc.;

make its multi-dimensional structure evident through data visual-

ization, and

look for consistency, considering what is in there and what is

missing.

19.2.1 Types of Learning

In the statistical learning context,
4

more sophisticated approaches tradi-4: A term sometimes used to describe gen-

eral DS/ML/AI approaches, for no partic-

ular reason other than letting the audience

know that the user has a background in

mathematics and statistics.

tionally fall into a supervised or an unsupervised learning framework.

Supervised learning is akin to “learning with a teacher.” Typical tasks

include classification, regression, rankings, and recommendations.

In supervised learning, algorithms use labeled training data to build

(or train) a predictive model;
5

each algorithm’s performance is evalu-5: For instance, students may need to an-

swer each exam question based on what

they learned from worked-out examples

provided by the teacher/textbook.

ated using test data for which the label is known but not used in the

prediction.
6

6: The teacher provides the correct an-

swers and marks the exam questions using

the key, to continue the example.

In supervised learning, there are fixed targets against which to train the

model (such as age categories, or plant species) – the categories (and

their number) are known prior to the analysis.

19.2 Statistical Learning 1123

Unsupervised learning, on the other hand, is akin to “self-learning

by grouping similar exercises together as a study guide.” Typical tasks

include clustering, association rules discovery, link profiling, and

anomaly detection. Unsupervised algorithms use unlabeled data to find

natural patterns in the data; the drawback is that accuracy cannot be
evaluated with the same degree of satisfaction.

7
7: The teacher would not be involved in

the discovery process, say, and the stu-

dents might end up with different group-

ings, as an example.

In unsupervised learning, we don’t know what the target is, or even if

there is one – we are simply looking for natural groups in the data.
8

8: Perhaps junior students who like litera-

ture, have longish hair, and know how to

cook vs. students who are on a sports team

and have siblings vs. financial profession-

als with a penchant for superhero movies,

craft beer and Hello Kitty backpack vs. ...

Other Learning Frameworks Some data science techniques fit into both

camps; others can be either supervised or unsupervised, depending

on how they are applied, but there are other conceptual approaches,

especially for AI tasks:

semi-supervised learning in which some data points have labels

but most do not, which may occur when acquiring data is costly;
9

9: The teacher could provide worked-out

examples and a list of unsolved problems

to try out; the students try to find similar

groups of unsolved problems and com-

pare them with the solved problems to

find close matches.

reinforcement learning, where an agent attempts to collect as

much (short-term) reward as possible while minimizing (long-

term) regret.
10

10: Embarking on a Ph.D. with an advi-

sor, with all of the highs and the lows

(and maybe a diploma at the end of the

process?).

19.2.2 DS and ML Tasks

Outside of academia, DS/ML/AI methods are only really interesting

when they help ask and answer useful questions. Compare, for instance:

Analytics – “How many clicks did this link get?”

Data Science – “Based on the previous history of clicks on links of

this publisher’s site, can I predict how many people from Manitoba

will read this specific page in the next three hours?” or “Is there a

relationship between the history of clicks on links and the number

of people from Manitoba who will read this specific page?”

Quantitative Methods – “We have no similar pages whose history

could be consulted to make a prediction, but we have reasons to

believe that the number of hits will be strongly correlated with

the temperature in Winnipeg. Using the weather forecast over the

next week, can we predict how many people will access the specific

page during that period?”

Data science and machine learning models are usually predictive (not

explanatory): they show connections, and exploit correlations to make

predictions, but they don’t reveal why such connections exist.

Quantitative methods, on the other hand, usually assume a certain level of

causal understanding based on various first principles. That distinction

is not always understood properly by clients and consultants alike.

Common data science tasks include [45]:

classification and probability estimation – which undergraduates

are likely to succeed at the graduate level?

value estimation – how much is a given client going to spend at a

restaurant?

similarity matching – which prospective clients are most similar

to a company’s established best clients?

1124 19 Introduction to Machine Learning

clustering – do signals from a sensor form natural groups?

association rules discovery – what books are commonly purchased

together at an online retailer?

profiling and behaviour description – what is the typical cell

phone usage of a certain customer segment?

link prediction – J. and K. have 20 friends in common: perhaps

they’d be great friends?

A classic example is provided by the UCI Machine Learning Repository

Mushroom Dataset [15]. Consider Amanita muscaria (commonly known as

the fly agaric), a specimen of which is shown below.

Figure 19.1: Amanita muscaria (fly agaric),

in the wild. Does it look dangerous to you?

Is it edible, or poisonous? There is a simple way to get an answer – eat it,

wait, and see: if you do not die or get sick upon ingestion, it was edible;

otherwise it was poisonous.

But this test in unappealing for various reasons, however. Apart from the

obvious risk of death, we might not learn much from the experiment; it is

possible that this specific specimen was poisonous due to some mutation

or some other factor (or that the ingester had a pre-existing condition

which combined with the fungus to cause discomfort, etc.), and that fly

agaric is actually edible in general (unlikely, but not impossible).

A predictive model, which would use features of a vast collection of

mushroom species and specimens (including their class) could help shed

light on the matter: what do poisonous mushrooms have in common?

What properties do edible mushrooms share?
11

11: Note that this is not the same as under-

standing why a mushroom is poisonous

or edible – the data alone cannot provide

an answer to that question.

For instance, let’s say that Amanita muscaria has the following features:

habitat: woods;

gill size: narrow;

spores: white;

odor: none,

cap color: red.

We do not know a priori whether it is poisonous or edible. Is the available

information sufficient to answer the question? Not on its own, no.
12

12: A mycologist could perhaps deduce

the answer from these features alone, but

she would be using her experience with

fungi to make a prediction, and so would

not be looking at the features in a vacuum.

But we could use past data, with correct edible or poisonous labels and

the same set of predictors to build various supervised classification
models to attempt to answer the question.

A simple form of such model, a decision tree, is shown in Figure 19.2.

The model prediction for Amanita muscaria follows the decision path
shown in Figure 19.3.

19.2 Statistical Learning 1125

Figure 19.2: Decision tree for the mushroom classification problem [author unknown].

1. some mushroom odors (musty, spicy, etc.) are associated with poi-

sonous mushrooms, some (almond, anise) with edible mushrooms,

but there are mushrooms with no specific odor in either category

– for mushroom with ‘no odor’ (as with Amanita muscaria), odor

does not provide enough information for proper classification and

we need to incorporate additional features into the decision path;

2. among mushrooms with no specific odor, some spore colours
(black, etc.) are associated with edible mushrooms, some (almond,

anise) with poisonous mushrooms, but there are mushrooms with

‘white’ spores in either category – the combination ‘no odor and

white spores’ does not provide enough information to classify

Amanita muscaria and we need to incorporate additional features

into the decision path;

3. among mushrooms of no specific odor with white spores, some

habitats (grasses, paths, wastes) are associated with edible mush-

rooms, but there are mushrooms in either category that are found

in the ‘woods’ – the combination ‘no odor, white spores, found

in the woods’ does not provide enough information to classify

Amanita muscaria and we need to incorporate additional features

into the decision path,

4. among white-spored forest mushroom with no specific odor, a

broad gill size is associated with edible mushrooms, whereas a

‘narrow’ gill size is associated with poisonous mushrooms – as

Amanita muscaria is a narrow-gilled, white-spored forest mushroom

with no specific odor, the decision path predicts that it is poisonous.

Note that the cap color does not affect the decision path, however.
13

But the decision tree model does not explain why this particular 13: It would have had Amanita muscaria’s

habitat been ‘leaves’.
combinations of features is associated with poisonous mushrooms – the

decision path is not causal.

1126 19 Introduction to Machine Learning

Figure 19.3: Decision path for Amanita
muscaria.

At this point, a number of questions naturally arise:

Would you have trusted an edible prediction?

How are the features measured?

What is the true cost of making a mistake?

Is the data on which the model is built representative?

What data is required to build trustworthy models?

What do we need to know about the model in order to trust it?

The stage has now been set: this mushroom classification problem has all

the hallmarks of a ML problem. Keep it in mind as a representative of

the discipline in the sections that follow.

19.3 Association Rules Mining

“Correlation isn’t causation. But it’s a big hint.” (E. Tufte)

19.3.1 Overview

Association rules discovery is a type of unsupervised learning that finds

connections among the attributes (variables) and levels (values), and

combinations thereof, of a dataset’s observations. For instance, we might

analyze a (hypothetical) dataset on the physical activities and purchasing

habits of North Americans and discover that

runners who are also triathletes (the premise) tend to drive Subarus,

drink microbrews, and use smart phones (the conclusion), or

individuals who have purchased home gym equipment are unlikely

to be using it 1 year later, say.

But the presence of a correlation between the premise and the conclusion

does not necessarily imply the existence of a causal relationship between

them. It is rather difficult to “demonstrate” causation via data analysis; in

19.3 Association Rules Mining 1127

practice, decision-makers pragmatically (and often erroneously) focus on

the second half of Tufte’s rejoinder, which basically asserts that “there’s

no smoke without fire.”

Case in point, while being a triathlete does not cause one to drive a

Subaru, Subaru Canada thinks that the connection is strong enough to

offer to reimburse the registration fee at an IRONMAN 70.3 competition

(since at least 2018)! [8]

Market Basket Analysis Association rules discovery is also known as

market basket analysis after its original application, in which supermar-

kets record the contents of shopping carts (the baskets) at check-outs to

determine which items are frequently purchased together.

For instance, while bread and milk might often be purchased together,

that is unlikely to be of interest to supermarkets given the frequency of

market baskets containing milk or bread.
14

14: In the mathematical sense of “or”: one,

or the other, or both.

Knowing that a customer has purchased bread does provide some infor-

mation regarding whether they also purchased milk, but the individual

probability that each item is found, separately, in the basket is so high to

begin with that this insight is unlikely to be useful.

If 70% of baskets contain milk and 90% contain bread, say, we would

expect at least
90% × 70% = 63%

of all baskets to contain milk and bread, should the presence of one in

the basket be totally independent of the presence of the other.

If we then observe that 69% of baskets contain both items (a 1.10-fold

increase on the expected proportion, assuming there is no link), we

would conclude that there was at best a weak correlation between the

purchase of milk and the purchase of bread.

Sausages and hot dog buns, on the other hand, which we might suspect are

not purchased as frequently as milk and bread, might still be purchased

as a pair more often than one would expect given the frequency of baskets

containing sausages or buns.

If 10% of baskets contain sausages, and 5% contain buns, say, we would

expect that

10% × 5% = 0.5%

of all baskets would contain sausages and buns, should the presence of

one in the basket be totally independent of the presence of the other.

If we then observe that 4% of baskets contain both items (an 8-fold

increase on the expected proportion, assuming there is no link), we

would obviously conclude that there is a strong correlation between the

purchase of sausages and the purchase of hot dog buns.

It is not too difficult to see how this information could potentially be used

to help supermarkets turn a profit: announcing or advertising a sale on

sausages while simultaneously (and quietly) raising the price of buns

could have the effect of bringing in a higher number of customers into

the store, increasing the sale volume for both items while keeping the

combined price of the two items constant.
15

15: The marketing team is banking on the

fact that customers are unlikely to shop

around to get the best deal on hot dogs

AND buns, which may or may not be a

valid assumption.

1128 19 Introduction to Machine Learning

A (possibly) apocryphal story shows the limitations of association rules:

a supermarket found an association rule linking the purchase of beer

and diapers and consequently moved its beer display closer to its diapers

display, having confused correlation and causation.

Purchasing diapers does not cause one to purchase beer (or vice-versa); it

could simply be that parents of newborns have little time to visit public

houses and bars, and whatever drinking they do will be done at home.

Who knows? Whatever the case, rumour has it that the experiment was

neither popular nor successful.

Applications Typical uses include:

finding related concepts in text documents – looking for pairs

(triplets, etc) of words that represent a joint concept: {San Jose,

Sharks}, {Michelle, Obama}, etc.;

detecting plagiarism – looking for specific sentences that appear in

multiple documents, or for documents that share specific sentences;

identifying biomarkers – searching for diseases that are frequently

associated with a set of biomarkers;

making predictions and decisions based on association rules (there

are pitfalls here);

altering circumstances or environment to take advantage of these

correlations (suspected causal effect);

using connections to modify the likelihood of certain outcomes

(see immediately above);

imputing missing data,

text autofill and autocorrect, etc.

Other uses and examples can be found in [52, 7, 20].

Causation and Correlation Association rules can automate hypothesis
discovery, but one must remain correlation-savvy.

16
16: Which remains less prevalent among

quantitative specialists and data scientists

than one might hope, unfortunately, in our

experience.

If attributes 𝐴 and 𝐵 are shown to be correlated in a dataset, there are

four possibilities:

𝐴 and 𝐵 are correlated entirely by chance in this particular dataset;

𝐴 is a relabeling of 𝐵 (or vice-versa);

𝐴 causes 𝐵 (or vice-versa), or

some combination of attributes 𝐶1 , . . . , 𝐶𝑛 (which may not be

available in the dataset) cause both 𝐴 and 𝐵.

Siegel [52] illustrates the confusion that can arise with a number of

real-life examples:

Walmart has found that sales of strawberry Pop-Tarts increase

about seven-fold in the days preceding the arrival of a hurricane;

Xerox employees engaged in front-line service and sales-based

positions who use Chrome and Firefox browsers perform better on

employment assessment metrics and tend to stay with the company

longer, or

University of Cambridge researchers found that liking “Curly Fries”

on Facebook is predictive of high intelligence.

19.3 Association Rules Mining 1129

It can be tempting to try to explain these results (again, from [52]).

Perhaps:

when faced with a coming disaster, people stock up on comfort or

nonperishable foods;

the fact that an employee takes the time to install another browser

shows that they are an informed individual and that they care

about their productivity, or

an intelligent person liked this Facebook page first, and her friends

saw it, and liked it too, and since intelligent people have intelligent

friends (?), the likes spread among people who are intelligent.

While these explanations might very well be the right ones (although

probably not in the last case), there is nothing in the data that supports

them. Association rules discovery finds interesting rules, but it does not

explain them. The point cannot be over-emphasized: correlation does

not imply causation.

Analysts and consultants might not have much control over the matter,

but they should do whatever is in their power so that the following

headlines do not see the light of day:

“Pop-Tarts” get hurricane victims back on their feet;

Using Chrome of Firefox improves employee performance, or

Eating curly fries makes you more intelligent.

Definitions A rule 𝑋 → 𝑌 is a statement of the form “if 𝑋 (the premise)

then 𝑌 (the conclusion)” built from any logical combinations of a dataset

attributes.

In practice, a rule does not need to be true for all observations in the

dataset – there could be instances where the premise is satisfied but the

conclusion is not.

In fact, some of the “best” rules are those which are only accurate 10% of

the time, as opposed to rules which are only accurate 5% of the time, say.

As always, it depends on the context. To determine a rule’s strength, we

compute various rule metrics, such as the:

support, which measures the frequency at which a rule occurs in a

dataset – low coverage values indicate rules that rarely occur;

confidence, which measures the reliability of the rule: how often

does the conclusion occur in the data given that the premises have

occurred – rules with high confidence are “truer”, in some sense;

interest, which measures the difference between its confidence and

the relative frequency of its conclusion – rules with high absolute

interest are . . . more interesting than rules with small absolute

interest;

lift, which measures the increase in the frequency of the conclusion

which can be explained by the premises – in a rule with a high

lift (> 1), the conclusion occurs more frequently than it would if it

were independent of the premises, and

conviction [55], all-confidence [40], leverage [43], collective strength
[4], and many others [53, 22].

1130 19 Introduction to Machine Learning

In a dataset with 𝑁 observations, let Freq(𝐴) ∈ {0, 1, . . . , 𝑁} represent

the count of the dataset’s observations for which property 𝐴 holds.

This is all the information that is required to compute a rule’s evaluation

metrics:

Support(𝑋 → 𝑌) = Freq(𝑋 ∩ 𝑌)
𝑁

∈ [0, 1]

Confidence(𝑋 → 𝑌) = Freq(𝑋 ∩ 𝑌)
Freq(𝑋) ∈ [0, 1]

Interest(𝑋 → 𝑌) = Confidence(𝑋 → 𝑌) − Freq(𝑌)
𝑁

∈ [−1, 1]

Lift(𝑋 → 𝑌) = 𝑁2 · Support(𝑋 → 𝑌)
Freq(𝑋) · Freq(𝑌) ∈ (0, 𝑁2)

Conviction(𝑋 → 𝑌) = 1 − Freq(Y)/𝑁
1 − Confidence(𝑋 → 𝑌) ≥ 0

British Music Dataset A simple example will serve to illustrate these

concepts. Consider a (hypothetical) music dataset containing data for

𝑁 = 15, 356 British music lovers and a candidate rule RM:

“If an individual is born before 1976 (𝑋), then they own a

copy of the Beatles’ Sergeant Peppers’ Lonely Hearts Club Band,

in some format (𝑌)”.

Let’s assume further that

Freq(𝑋) = 3888 individuals were born before 1976;

Freq(𝑌) = 9092 individuals own a copy of Sergeant Peppers’ Lonely
Hearts Club Band, and

Freq(𝑋 ∩ 𝑌) = 2720 individuals were born before 1976 and own a

copy of Sergeant Peppers’ Lonely Hearts Club Band.

We can easily compute the 5 metrics for RM:

Support(RM) = 2720

15, 356

≈ 18%

Confidence(RM) = 2720

3888

≈ 70%

Interest(RM) = 2720

3888

− 9092

15, 356

≈ 0.11

Lift(RM) = 15, 356
2 · 0.18

3888 · 9092

≈ 1.18

Conviction(RM) = 1 − 9092/15, 356

1 − 2720/3888

≈ 1.36

These values are easy to interpret: RM occurs in 18% of the dataset’s

instances, and it holds true in 70% of the instances where the individual

was born prior to 1976.

This would seem to make RM a meaningful rule about the dataset –

being older and owning the album are linked properties. But if being

younger and not owning that song are not also linked properties, the

statement is actually weaker than it would appear at a first glance.

19.3 Association Rules Mining 1131

As it happens, RM’s lift is 1.18, which can be rewritten as

1.18 ≈ 0.70

0.59

,

i.e. 59% of ALL individuals also own the song.
17

17: Whereas 56% of young individuals

own the song.

The ownership rates of the two age categories are different, but perhaps

not as significantly as one would deduce using the confidence and

support alone, which is reflected by the rule’s “low” interest, whose

value is 0.11.

Finally, the rule’s conviction is 1.36, which means that the rule would be

incorrect 36% more often if 𝑋 and 𝑌 were completely independent.

All this seems to point to the rule RM being not entirely devoid of meaning,

but to what extent, exactly? This is a difficult question to answer.
18

18: There will be times when an interest

of 0.11 in a rule would be considered a

smashing success; a lift of 15 would not be

considered that significant but a support

of 2% would be, and so forth.

It is nearly impossible to provide hard and fast thresholds: it always

depends on the context, and on comparing evaluation metric values for

a rule with the values obtained for some other of the dataset’s rules. In

short, evaluation of a lone rule is meaningless.

In general, it is recommended to conduct a preliminary exploration of the

space of association rules (using domain expertise when appropriate) in

order to determine reasonable threshold ranges for the specific situation;

candidate rules would then be discarded or retained depending on these

metric thresholds.

This requires the ability to “easily” generate potentially meaningful

candidate rules.

19.3.2 Generating Rules

Given association rules, it is straightforward to evaluate them using

various metrics, as discussed in the previous section.

The real challenge of association rules discovery lies in generating a set

of candidate rules which are likely to be retained, without wasting time

generating rules which are likely to be discarded.

An itemset (or instance set) for a dataset is a list of attributes and values.

A set of rules can be created from the itemset by adding “IF . . . THEN”

blocks to the instances.

As an example, from the instance set

{membership = True, age = Youth, purchasing = Typical},

we can create the 7 following 3−item rules:

IF (membership = True AND age = Youth) THEN purchasing =

Typical;

IF (age = Youth AND purchasing = Typical) THEN membership =

True;

IF (purchasing = Typical AND membership = True) THEN age =

Youth;

IF membership = True THEN (age = Youth AND purchasing =

Typical);

1132 19 Introduction to Machine Learning

IF age = Youth THEN (purchasing = Typical AND membership =

True);
IF purchasing = Typical THEN (membership = True) AND age =

Youth);
IF∅THEN (membership = True AND age = Youth AND purchasing =

Typical);

the 9 following 2−item rules:

IF membership = True THEN age = Youth;

IF age = Youth THEN purchasing = Typical;

IF purchasing = Typical THEN membership = True;

IF membership = True THEN purchasing = Typical;

IF age = Youth THEN membership = True;

IF purchasing = Typical THEN age = Youth;

IF ∅ THEN (age = Youth AND purchasing = Typical);

IF ∅ THEN (purchasing = Typical AND membership = True);
IF ∅ THEN (membership = True) AND age = Youth);

and the 3 following 1−item rules:

IF ∅ THEN age = Youth;

IF ∅ THEN purchasing = Typical,

IF ∅ THEN membership = True.

In practice, we usually only consider rules with the same number of

items as there are members in the itemset: in the example above, for

instance, the 2−item rules could be interpreted as emerging from the 3

separate itemsets

{membership = True, age = Youth}
{age = Youth, purchasing = Typical}

{purchasing = Typical,membership = True}

and the 1−item rules as arising from the 3 separate itemsets

{membership = True}, {age = Youth}, {purchasing = Typical}.

Note that rules of the form ∅ → 𝑋 (or IF ∅ THEN 𝑋) are typically

denoted simply by 𝑋.

Now, consider an itemset C𝑛 with 𝑛 members (that is to say, 𝑛 at-

tribute/level pairs). In an 𝑛−item rule derived from C, each of the 𝑛

members appears either in the premise or in the conclusion; there are

thus 2
𝑛

such rules, in principle.

The rule where each member is part of the premise (i.e., the rule without

a conclusion) is nonsensical and is not allowed; we can derive exactly

2
𝑛 − 1 𝑛−item rules from C𝑛 . Thus, the number of rules increases

exponentially when the number of features increases linearly.

This combinatorial explosion is a problem – it instantly disqualifies the

brute force approach (simply listing all possible itemsets in the data and

generating all rules from those itemsets) for any dataset with a realistic

number of attributes.

How can we then generate a small number of promising candidate rules,

in general?

19.3 Association Rules Mining 1133

Figure 19.4: Pruned supersets of an infrequent itemset in the a priori network of a dataset with 5 items [11]; no rule would be generated from

the grey itemsets.

19.3.3 The A Priori Algorithm

The a priori algorithm is an early attempt to overcome that difficulty.

Initially, it was developed to work for transaction data (i.e. goods as

columns, customer purchases as rows), but every reasonable dataset can

be transformed into a transaction dataset using dummy variables.

The algorithm attempts to find frequent itemsets from which to build

candidate rules, instead of building rules from all possible itemsets.

It starts by identifying frequent individual items in the database and

extends those that are retained into larger and larger item supersets,

who are themselves retained only if they occur frequently enough in the

data.

The main idea is that “all non-empty subsets of a frequent itemset must

also be frequent” [11], or equivalently, that all supersets of an infrequent

itemset must also be infrequent (see Figure 19.4).

In the technical jargon of machine learning, we say that a priori uses a

bottom-up approach and the downward closure property of support.

The memory savings arise from the fact that the algorithm prunes

candidates with infrequent sub-patterns and removes them from con-

sideration for any future itemset: if a 1−itemset is not considered to

be frequent enough, any 2−itemset containing it is also infrequent (see

Figure 19.5 for another illustration).

A list of the 4 teams making the playoffs each year is shown on the left

(𝑁 = 20). Frequent itemsets are generated using the a priori algorithms,

1134 19 Introduction to Machine Learning

Figure 19.5: Association rules for NHL playoff teams (1942-1967): 4 teams (out of 6) made the playoffs each year.

with a support threshold of 10. We see that there are 5 frequent 1−itemsets,

in yellow;
19

6 frequent 2−itemsets are found in the subsequent list of19: New York made the playoffs 6 < 10

times – no larger frequent itemset can

contain New York.

ten 2−itemsets, in green.
20

Only 2 frequent 3−itemsets are found, in

20: Note the absence of New York.

orange. Candidate rules are generated from the shaded itemsets; the

rules retained by the thresholds

Support ≥ 0.5, Confidence ≥ 0.7, and Lift > 1 (barely),

are shown in the table on the bottom row – the main result is that when

Boston made the playoffs, it was not surprising to see Detroit also make

the playoffs.
21

Are these rules meaningful at all?21: The presence or absence of Montreal

in a rule is a red herring, as Montreal made

the playoffs every year in the data. Of course, this process requires a support threshold input, for which

there is no guaranteed way to pick a “good” value; it has to be set

sufficiently high to minimize the number of frequent itemsets that are

being considered, but not so high that it removes too many candidates

from the output list.22
22: As ever, optimal threshold values are

dataset-specific.

The algorithm terminates when no further itemsets extensions are re-

tained, which must occur in datasets with a finite # of categorical levels.

Strengths: easy to implement and to parallelize [36]

Limitations: slow, requires frequent data set scans, not ideal for

finding rules for infrequent and rare itemsets

More efficient algorithms have since displaced a priori in practice:
23

23: Although it retains historical value.

Max-Miner tries to identify frequent itemsets without enumerating

them – it performs jumps in itemset space instead of using a bottom-

up approach;

Eclat is faster and uses depth-first search, but requires extensive

memory storage.
24

24: A priori and eclat are both imple-

mented in the R package arules [40].

19.3 Association Rules Mining 1135

19.3.4 Validation

How reliable are association rules? What is the likelihood that they occur

entirely by chance? How relevant are they? Can they be generalised

outside the dataset, or to new data streaming in?

These questions are notoriously difficult to answer for association rules

discovery, but statistically sound association discovery can help reduce

the risk of finding spurious associations to a user-specified significance

level [53, 22].

We end this section with a few comments.

Since frequent rules correspond to instances that occur repeatedly in

the dataset, algorithms that generate itemsets often try to maximize
coverage. When rare events are more meaningful (such as detection

of a rare disease or a threat), we need algorithms that can generate

rare itemsets. This is not a trivial problem.

Continuous data has to be binned into categorical data to generate

rules. As there are many ways to accomplish that task, the same

dataset can give rise to completely different rules. This could create

some credibility issues with clients and stakeholders.

Other popular algorithms include: AIS, SETM, aprioriTid, apriori-

Hybrid, PCY, Multistage, Multihash, etc.

Additional evaluation metrics can be found in the arules docu-

mentation [40].

19.3.5 Case Study: Danish Medical Data

In temporal disease trajectories condensed from population wide registry data
covering 6.2 million patients [29], A.B. Jensen et al. study diagnoses in

the Danish population, with the help of association rules mining and

clustering methods.

Objectives Estimating disease progression (trajectories) from current

patient state is a crucial notion in medical studies. Such trajectories

had (at the time of publication) only been analyzed for a small number

of diseases, or using large-scale approaches without consideration for

time exceeding a few years. Using data from the Danish National Patient
Registry (an extensive, long-term data collection effort by Denmark), the

authors sought connections between different diagnoses: how does the

presence of a diagnosis at some point in time allow for the prediction of

another diagnosis at a later point in time?

Methodology The authors took the following methodological steps:

1. compute the strength of correlation for pairs of diagnoses over a 5

year interval (on a representative subset of the data);

2. test diagnoses pairs for directionality (one diagnosis repeatedly

occurring before the other);

3. determine reasonable diagnosis trajectories (thoroughfares) by

combining smaller (but frequent) trajectories with overlapping

diagnoses;

1136 19 Introduction to Machine Learning

4. validate the trajectories by comparison with non-Danish data,

5. cluster the thoroughfares to identify a small number of central med-
ical conditions (key diagnoses) around which disease progression

is organized.

Data The Danish National Patient Registry is an electronic health

registry containing administrative information and diagnoses, covering

the whole population of Denmark, including private and public hospital

visits of all types: inpatient (overnight stay), outpatient (no overnight

stay) and emergency. The data set covers 15 years, from January ’96 to

November ’10 and consists of 68 million records for 6.2 million patients.

Challenges and Pitfalls

Access to the Patient Registry is protected and could only be

granted after approval by the Danish Data Registration Agency the
National Board of Health.

Gender-specific differences in diagnostic trends are clearly iden-

tifiable (pregnancy and testicular cancer do not have much cross-

appeal), but many diagnoses were found to be made exclusively

(or at least, predominantly) in different sites (inpatient, outpatient,

emergency ward), which suggests the importance of stratifying by

site as well as by gender.
In the process of forming small diagnoses chains, it became neces-

sary to compute the correlations using large groups for each pair

of diagnoses. For close to 1 million diagnosis pairs, more than 80

million samples would have been required to obtain significant

𝑝−values while compensating for multiple testing, which would

have translated to a thousand years’ worth of computer running

time. A pre-filtering step was included to avoid this pitfall.
25

25: The final trajectories were validated

using the full sampling procedure.

Project Summary and Results The dataset was reduced to 1,171 sig-
nificant trajectories. These thoroughfares were clustered into patterns

centred on 5 key diagnoses central to disease progression:

diabetes;

chronic obstructive pulmonary disease (COPD);

cancer;
arthritis, and

cerebrovascular disease.

Early diagnoses for these central factors can help reduce the risk of

adverse outcome linked to future diagnoses of other conditions.

Two author quotes illustrate the importance of these results:

“The sooner a health risk pattern is identified, the better we

can prevent and treat critical diseases.” [S. Brunak]

“Instead of looking at each disease in isolation, you can talk

about a complex system with many different interacting

factors. By looking at the order in which different diseases

19.3 Association Rules Mining 1137

Figure 19.6: The COPD cluster showing five preceding diagnoses leading to COPD and some of its possible outcomes [29].

appear, you can start to draw patterns and see complex cor-

relations outlining the direction for each individual person.”

[L.J. Jensen]

Among the specific results, the following “surprising” insights were

found:

a diagnosis of anemia is typically followed months later by the

discovery of colon cancer;

gout was identified as a step on the path toward cardiovascular

disease, and

COPD is under-diagnosed and under-treated.

The disease trajectories cluster for COPD is shown in Figure 19.6.

19.3.6 Toy Example: Titanic Dataset

Compiled by Robert Dawson in 1995, the Titanic dataset consists of 4

categorical attributes for each of the 2201 people aboard the Titanic when

it sank in 1912 (some issues with the dataset have been documented, but

we will ignore them for now):

class (1st class, 2nd class, 3rd class, crewmember)

age (adult, child)

sex (male, female)

survival (yes, no)

The natural question of interest for this dataset is:

“How does survival relate to the other attributes?”

1138 19 Introduction to Machine Learning

Figure 19.7: Visualization of 8 Titanic association rules with parallel coordinates.

This is not, strictly speaking, an unsupervised task (as the interesting

rules’ structure is fixed to conclusions of the form survival = Yes or

survival = No).

For the purpose of this example, we elect not to treat the problem as

a predictive task, since the long removed situation on the Titanic has

little bearing on survival for new data – as such, we use fixed-structure

association rules to describe and explore survival conditions on the

Titanic (compare with [47]).

We use the arules implementation of the a priori algorithm in R to

generate and prune candidate rules, eventually leading to 8 rules (the

results are visualized in Figure 19.7). Who survived? Who didn’t?
26

We26: Again, with feeling: correlation does
not imply causation.

show how to obtain these rules via R in Section 19.7.1 (Association Rules
Mining: Titanic Dataset).

19.4 Classification and Value Estimation

“The diversity of problems that can be addressed by classifi-

cation algorithms is significant, and covers many domains. It

is difficult to comprehensively discuss all the methods in a

single book.” [2]

19.4.1 Overview

The principles underlying classification, regression and class probability

estimation are well-known and straightforward. Classification is a super-

vised learning endeavour in which a sample training set of data is used

to determine rules and patterns that divide the data into predetermined

groups, or classes. The training set usually consists of a randomly selected

subset of the labeled data.
27

27: Value estimation (regression) is simi-

lar to classification, except that the target

variable is numerical instead of categori-

cal.

19.4 Classification & Regression 1139

In the testing phase, the model is used to assign a class to observations

in the testing set, in which the label is hidden, in spite of being actually

known.

The performance of the predictive model is then evaluated by comparing

the predicted and the actual values for the testing set observations (but

never using the training set observations). A number of technical issues

need to be addressed in order to achieve optimal performance, among

them: determining which features to select for inclusion in the model

and, perhaps more importantly, which algorithm to choose.

The edible/poisonous mushroom model from Data Science and Machine
Learning Tasks provides a clean example of a classification model, albeit

one for which no detail regarding the training data and choice of algorithm

were made available.

Applications Classification and value estimation models are among the

most frequently used of the data science models, and form the backbone

of what is also known as predictive analytics. There are applications and

uses in just about every field of human endeavour, such as:

medicine and health science – predicting which patient is at risk

of suffering a second, and this time fatal, heart attack within 30

days based on health factors (blood pressure, age, sinus problems,

etc.);

social policies – predicting the likelihood of required assisted

housing in old age based on demographic information/survey

answers;

marketing/business – predicting which customers are likely to

cancel their membership to a gym based on demographics and

usage;

in general, predicting that an object belongs to a particular class, or

organizing and grouping instances into categories, or

enhancing the detection of relevant objects:

− avoidance – “this object is an incoming vehicle”;

− pursuit – “this object is leaving the scene of a collision”;

− degree – “this object is 90% likely to run in front of the car”,

economics – predicting the inflation rate for the coming two years

based on a number of economic indicators.

Other examples may be found in [33, 32, 18, 31].

Concrete Examples Some concrete examples may provide a clearer

picture of the types of SL problems encountered by analysts.

A motor insurance company has a fraud investigation department

that studies up to 20% of all claims made, yet money is still getting

lost on fraudulent claims. To help better direct the investigators,

management would like to determine, using past data, if it is

possible to predict whether a claim is likely to be fraudulent?
28

28: And/or whether a customer is likely

to commit fraud in the near future?

Whether an application for a policy is

likely to result in a fraudulent claim? If the

amount by which a claim will be reduced

if it is fraudulent?

1140 19 Introduction to Machine Learning

Figure 19.8: A classification pipeline, including training set, testing set, performance evaluation, and (eventual) deployment.

Customers who make a large number of calls to a mobile phone

company’s customer service number have been identified as churn

risks. The company is interested in reducing said churn. Can they

predict the overall lifetime value of a customer? Which customers

are more likely to churn in the near future? What retention offer a

particular customer will best respond to?

In every classification scenario, the following questions must be answered

before embarking on analysis:

What kind of data is required?

How much of it?

What would constitute a predictive success?

What are the risks associated with a predictive modeling approach?

These have no one-size-fits-all answers; they have to be considered on a

case-by-case basis.

In the absence of testing data, classification models cannot be used for

predictive tasks, but may still be useful for descriptive tasks (see Titanic

example above).

When testing data exists, the overall process is often quite similar, inde-

pendently of the choice of the algorithm (see the classification pipeline

shown in Figure 19.8).

This clearly points to the importance of obtaining good test data, but keep

in mind that this process may be costly and/or difficult to implement,

in general. Data scientists often have to enact clever schemes to collect

the right “stuff” – consider, for instance, the current procedures used to

prove that an online user is not a bot, such as identifying all traffic lights,

motorcycles, crosswalks, store fronts, etc. in a picture.
29

29: It is not in fact the answers that iden-

tify a user as human; rather, it is reaction

times and mouse movements that betray

bots. The answers are used to collect data

to train self-driving vehicle AIs.

19.4 Classification & Regression 1141

19.4.2 Classification Algorithms

The number of classification algorithms is truly staggering – it often

seems as though new algorithms and variants are put forward on a

monthly basis, depending on the task and on the type of data [2].

While some of them tend to be rather esoteric, there is a fairly small

number of commonly-used workhorse algorithms/approaches that data

scientists and consultants should at least have at their command:
30

30: Full descriptions: [54, 24, 45].

logistic regression and linear regression are classical models which

are often used by statisticians but rarely in a classification setting

(the estimated coefficients are often used to determine the features’

importance); one of their strengths is that the machinery of standard

statistical theory (hypothesis testing, confidence intervals, etc.)

is still available to the analyst, but they are easily affected by

variance inflation in the presence of predictor multi-collinearity,

and the stepwise variable selection process that is typically used

is problematic – regularization methods would be better suited in

general [25] (see Figure 19.9 for illustrations);

neural networks have become popular recently due to the advent

of deep learning; they might provide the prototypical example of a

black box algorithm as they are hard to interpret; another issue is

that they require a fair amount of data to train properly – we will

have more to say on the topic in a later chapter;

decision trees are perhaps the most common of all data science

algorithms, but they tend to overfit the data when they are not

pruned correctly, a process which often has to be done manually

(see Figure 19.9 for an illustration) – we shall discuss the pros an

cons of decision trees in general in Decision Trees;
naïve Bayes classifiers have known quite a lot of success in text

mining applications (more specifically as the basis of powerful

spam filters), but, embarrassingly, no one is quite sure why they

should work as well as they do given that one of their required

assumptions (independence of priors) is rarely met in practice (see

Figure 19.9 for an illustration);

support vector machines attempt to separate the dataset by “fitting”

as wide of a “tube” as possible through the classes (subjected to a

number of penalty constraints); they have also known successes,

most notably in the field of digital handwriting recognition, but

their decision boundaries (the tubes in question) tend to be non-

linear and quite difficult to interpret; nevertheless, they may help

mitigate some of the difficulties associated with big data (see Figure

19.10 for an illustration);

nearest neighbours classifiers (𝑘NN) basically implement a voting

procedure and require very little assumptions about the data, but

they are not very stable as adding training points may substantially

modify the boundary (see Figures 19.9 and 19.10 for illustrations),

Boosting methods [35, 27] and Bayesian methods [48, 16] (also see

Chapter 25) are becoming increasingly more popular.

1142 19 Introduction to Machine Learning

Figure 19.9: Illustrations of various classifiers – linear regression, top left; optimal Bayes, top right; 1NN and 15NN, middle left and right,

respectively, on an artificial dataset (from [24]); decision tree depicting the chances of survival for various disasters (fictional, based on [39]).

Note that linear regression is more stable, simpler to describe, but less accurate than 𝑘NN and optimal Bayes.

19.4 Classification & Regression 1143

Figure 19.10: Illustration of a 𝑘 nearest neighbour (left) and a support vector machines classifier (right, based on [45]). What is the 6NN

prediction for the location marked by a question mark? What about the 19NN prediction?

19.4.3 Decision Trees

In order to highlight the relative simplicity of most classification algo-

rithms, we will discuss the workings of ID3, a historically significant

decision tree algorithm.
31

31: ID3 would never be used in a deploy-

ment setting, but it will serve to illustrate

a number of classification concepts.Classification trees are perhaps the most intuitive of all supervised

methods: classification is achieved by following a path up the tree, from

its root, through its branches, and ending at its leaves (although typically

the tree is depicted with its root at the top and its leaves at the bottom).

To make a prediction for a new instance, it suffices to follow the path

down the tree, reading the prediction directly once a leaf is reached. It

sounds simple enough in theory, but in practice, creating the tree and

traversing it might be time-consuming if there are too many variables

in the dataset (due to the criterion that is used to determine how the

branches split).

Prediction accuracy can be a concern in trees whose growth is unchecked.

In practice, the criterion of purity at the leaf-level
32

is linked to bad 32: That is to say, all instances in a leaf

belong to the same leaf.
prediction rates for new instances. Other criteria are often used to prune

trees, which may lead to impure leaves.

How do we grow such trees?

For predictive purposes, we need a training set and a testing set upon

which to evaluate the tree’s performance. Ross Quinlan’s Iterative Di-
chotomizer 3 (a precursor to the widely-used C4.5 and C5.0) follows a

simple procedure:

1. split the training data (parent) set into (children) subsets, using

the different levels of a particular attribute;

2. compute the information gain for each subset;

3. select the most advantageous split, and

4. repeat for each node until some leaf criterion is met.

1144 19 Introduction to Machine Learning

Entropy is a measure of disorder in a set 𝑆. Let 𝑝𝑖 be the proportion of

observations in 𝑆 belonging to category 𝑖, for 𝑖 = 1, . . . , 𝑛. The entropy

of 𝑆 is given by

𝐸(𝑆) = −
𝑛∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 .

If the parent set 𝑆 consisting of 𝑚 records is split into 𝑘 children sets

𝐶1 , . . . , 𝐶𝑘 containing 𝑞1 , . . . , 𝑞𝑘 records, respectively, then the informa-
tion gained from the split is

𝐼(𝑆 : 𝐶1 , . . . , 𝐶𝑘) = 𝐸(𝑆) −
1

𝑚

𝑘∑
𝑗=1

𝑞 𝑗𝐸(𝐶 𝑗).

The sum term in the information gain equation is a weighted average of

the entropy of the children sets.

If the split leads to little disorder in the children, then IG(𝑆;𝐶1 , . . . , 𝐶𝑘)
is high; if the split leads to similar disorder in both children and parent,

then IG(𝑆;𝐶1 , . . . , 𝐶𝑘) is low.

Consider, as in Figure 19.11, two splits shown for a parent set with 30

observations separated into 2 classes: ◦ and ★.
33

33:

Figure 19.11: Picking the optimal informa-

tion gain split. [45]

Visually, it appears as though the binary split does a better job of

separating the classes. Numerically, the entropy of the parent set 𝑆 is

𝐸(𝑆) = −𝑝◦ log 𝑝◦ − 𝑝★ log 𝑝★

= −16

30

log

16

30

− 14

30

log

14

30

≈ 0.99.

For the binary split (on the left), leading to the children set 𝐿 (left) and 𝑅

19.4 Classification & Regression 1145

(right), the respective entropies are

𝐸(𝐿) = −12

13

log

12

13

− 1

13

log

1

13

≈ 0.39

and

𝐸(𝑅) = − 4

17

log

4

17

− 13

17

log

13

17

≈ 0.79,

so that the information gained by that split is

IG(𝑆;𝐶𝐿 , 𝐶𝑅) ≈ 0.99 − 1

30

[13 · 0.39 + 17 · 0.79] = 0.37.

On its own, this value is not substantially meaningful – it is only in

comparison to the information gained from other splits that it becomes

useful. A similar computation for the three-way split (see sidenote on

previous page) leads to IG(𝑆;𝐶1 , 𝐶2 , 𝐶3) ≈ 0.13, which is indeed smaller

than the information gained by the binary split – of these two options,

ID3 would select the first as being most advantageous.

Decision trees have numerous strengths: they

are easy to interpret, providing, as they do, a white box model –

predictions can always be explained by following the appropriate

paths;

can handle numerical and categorical data simultaneously, without

first having to “binarise” the data;

can be used with incomplete datasets, if needed (although there is

still some value in imputing missing observations);

allow for built-in feature selection as less relevant features do not

tend to be used as splitting features;

make no assumption about independence of observations, under-

lying distributions, multi-collinearity, etc., and can thus be used

without the need to verify assumptions;

lend themselves to statistical validation (in the form of cross-

validation), and

are in line with human decision-making approaches, especially

when such decisions are taken deliberately.

On the other hand, they are

not usually as accurate as other more complex algorithms, nor as
robust, as small changes in the training data can lead to a completely

different tree, with a completely different set of predictions;[This

can become problematic when presenting the results to a client

whose understanding of these matters is slight.]

particularly vulnerable to overfitting in the absence of pruning

— and pruning procedures are typically fairly convoluted (some

algorithms automate this process, using statistical tests to determine

when a tree’s “full” growth has been achieved), and

biased towards categorical features with high number of levels,

which may give such variables undue importance in the classifica-

tion process.

Information gain tends to grow small trees in its pursuit of pure leaves,

but it is not the only splitting metric in use (Gini impurity, variance
reduction, etc.).

1146 19 Introduction to Machine Learning

Notes ID3 is a precursor of C4.5, perhaps the most popular decision

tree algorithm on the market. There are other tree algorithms, such as

C5.0, CHAID, MARS, conditional inference trees, CART, etc., each grown

using algorithms with their own strengths and weaknesses.

Regression trees are grown in a similar fashion, but with a numerical
response variable (predicted inflation rate, say), which introduces some

complications [27, 24].

Decision trees can also be combined together using boosting algorithms
(such as AdaBoost) or random forests, providing a type of voting

procedure also known as ensemble learning – an individual tree might

make middling predictions, but a large number of judiciously selected

trees are likely to make good predictions, on average [27, 24, 35] – we

will re-visit these concepts in a later chapter.

Additionally:

since classification is linked to probability estimation, approaches

that extend the basic ideas of regression models could prove

fruitful;

rare occurrences are often more interesting and more difficult

to predict and identify than regular instances – historical data at

Fukushima’s nuclear reactor prior to the 2011 meltdown could not

have been used to learn about meltdowns, for obvious reasons,
34

34: Classical performance evaluation met-

rics can easily be fooled; if out of two

classes one of the instances is only repre-

sented in 0.01% of the instances, predicting

the non-rare class will yield correct predic-

tions roughly 99.99% of the time, missing

the point of the exercise altogether.

with big datasets, algorithms must also consider efficiency – thank-

fully, decision trees are easily parallelizable.

19.4.4 Performance Evaluation

As a consequence of the (so-called) No Free-Lunch Theorem, no single

classifier can be the best performer for every problem [57, 58]. Model

selection must take into account:

the nature of the available data;

the relative frequencies of the classification sub-groups;

the stated classification goals;

how easily the model lends itself to interpretation and statistical
analysis;

how much data preparation is required;

whether it can accommodate various data types and missing

observations;

whether it performs well with large datasets, and

whether it is robust against small data departures from theoretical

assumptions.

Past success is not a guarantee of future success – it is the analyst’s

responsibility to try a variety of models. But how can the “best” model

be selected?

When a classifier attempts to determine what kind of music a new

customer would prefer, there is next to no cost in making a mistake; if,

on the other hand, the classifier attempts to determine the presence or

absence of cancerous cells in lung tissue, mistakes are more consequential.

Several metrics can be used to assess a classifier’s performance, depending

on the context.

19.4 Classification & Regression 1147

Binary classifiers (presented in the abstract in Table 19.1) are simpler and

have been studied far longer than multi-level classifiers; consequently, a

larger body of evaluation metrics is available for these classifiers.

In the medical literature, for instance, TP, TN, FP and FN stand for

True Positives, True Negatives, False Positives, and False Negatives,

respectively.

Table 19.1: A general binary classifier.

A perfect classifier would be one for which both FP, FN = 0, but in

practice, that rarely ever happens (if at all).

Traditional performance metrics include:

sensitivity: TP/AP

specificity: TN/AN

precision: TP/PP

negative predictive value: TN/PN

false positive rate: FP/AN

false discovery rate: 1 − TP/PP

false negative rate: FN/AP

accuracy: (TP + TN)/T
𝐹1−score: 2TP/(2TP + FP + FN)
MCC:

TP·TN−FP·FN√
AP·AN·PP·PN

informedness/ROC: TP/AP + TN/AN − 1

markedness: TP/PP + TN/PN − 1.

The confusion matrices of two artificial binary classifers for a testing set

are shown in Table 19.2.

Both classifiers have an accuracy of 80%, but while the second classifier

sometimes makes a wrong prediction for 𝐴, it never does so for 𝐵,

whereas the first classifier makes erroneous predictions for both 𝐴 and 𝐵.

On the other hand, the second classifier mistakenly predicts occurrence

𝐴 as 𝐵 16 times while the first one only does so 6 times. Which is best?

The performance metrics alone do not suffice to answer the question:

the cost associated with making a mistake must also be factored in.

Furthermore, it could be preferable to select performance evaluation

metrics that generalize more readily to multi-level classifiers (see Table

19.3 for examples of associated confusion matrices).

The accuracy is the proportion of correct predictions amid all the ob-

servations; its value ranges from 0% to 100%. The higher the accuracy,

the better the match, and yet, a predictive model with high accuracy

may nevertheless be useless thanks to the Accuracy Paradox (see rare

occurrence sidenote on page 1146).

The Matthews Correlation Coefficient (MCC), on the other hand, is a

statistic which is of use even when the classes are of very different sizes. As

1148 19 Introduction to Machine Learning

Table 19.2: Performance metrics for two (artificial) binary classifiers.

Table 19.3: Performance metrics for (artificial) multi-level classifiers: ternary - left; senary - right [personal files].

a correlation coefficient between the actual and predicted classifications,

its range varies from −1 to 1.

If MCC = 1, the predicted and actual responses are identical, while if

MCC = 0, the classifier performs no better than a random prediction

(“flip of a coin”).

It is also possible to introduce two non-traditional performance metrics

(which are nevertheless well-known statistical quantities) to describe

how accurately a classifier preserves the classification distribution (rather

than how it behaves on an observation-by-observation basis):

Pearson’s 𝜒2
:

1

T

(
(PP −AP)2/PP + (PN −AN)2/PN

)
Hist:

1

T
(|PP −AP| + |PN −AN|)

Note, however, that these are non-standard performance metrics. For a

given number of levels, the smaller these quantities, the more similar the

actual and predicted distributions.

For numerical targets 𝑦 with predictions �̂�, the confusion matrix is not

defined, but a number of classical performance evaluation metrics can

19.4 Classification & Regression 1149

be used on the testing set: the

mean squared and mean absolute errors

MSE = mean

{
(𝑦𝑖 − �̂�𝑖)2

}
, MAE = mean{|𝑦𝑖 − �̂�𝑖 |};

normalized mean squared/mean absolute errors

NMSE =
mean

{
(𝑦𝑖 − �̂�𝑖)2

}
mean {(𝑦𝑖 − 𝑦)2}

,

NMAE =
mean {|𝑦𝑖 − �̂�𝑖 |}
mean {|𝑦𝑖 − 𝑦 |}

;

mean average percentage error

MAPE = mean

{ |𝑦𝑖 − �̂�𝑖 |
𝑦𝑖

}
;

correlation 𝜌𝑦,�̂� , which is based on the notion that for good models,

the predicted values and the actual values should congregate

around the lines 𝑦 = �̂� (as in Figure 19.12).

Figure 19.12: Predicted and actual numer-

ical responses [personal file].

As is the case for classification, an isolated value estimation performance

metric does not provide enough of a rationale for model validation/selec-

tion. One possible exception: normalized evaluation metrics do provide

some information about the relative quality of performance [24, 27].

19.4.5 Case Study: Minnesota Tax Audit

Large gaps between revenue owed (in theory) and revenue collected (in

practice) are problematic for governments. Revenue agencies implement

various fraud detection strategies (such as audit reviews) to bridge that

gap.

1150 19 Introduction to Machine Learning

Since business audits are rather costly, there is a definite need for algo-

rithms that can predict whether an audit is likely to be successful or a

waste of resources.

In Data Mining Based Tax Audit Selection: A Case Study of a Pilot Project at
the Minnesota Department of Revenue [26], Hsu et al. study the Minnesota

Department of Revenue’s (DOR) tax audit selection process with the help

of classification algorithms.

Objective The U.S. Internal Revenue Service (IRS) estimated that there

were large gaps between revenue owed and revenue collected for 2001

and for 2006. Using DOR data, the authors sought to increase efficiency
in the audit selection process and to reduce the gap between revenue

owed and revenue collected.

Methodology The authors took the following steps:

1. data selection and separation: experts selected several hundred

cases to audit and divided them into training, testing and validating

sets;

2. classification modeling using MultiBoosting, Naïve Bayes, C4.5

decision trees, multilayer perceptrons, support vector machines,

etc;

3. evaluation of all models was achieved by testing the model on the

testing set – models originally performed poorly on the testing set

until the size of the business being audited was recognized to have

an effect, leading to two separate tasks (large and small businesses),

4. model selection and validation was done by comparing the esti-

mated accuracy between different classification model predictions

and the actual field audits. Ultimately, MultiBoosting with Naïve

Bayes was selected as the final model; the combination also sug-

gested some improvements to increase audit efficiency.

Data The data consisted of selected tax audit cases from 2004 to 2007,

collected by the audit experts, which were split into training, testing and

validation sets:

the training data set consisted of Audit Plan General (APGEN) Use
Tax audits and their results for the years 2004-2006;

the testing data consisted of APGEN Use Tax audits conducted

in 2007 and was used to test or evaluate models (for Large and

Smaller businesses) built on the training dataset,

while validation was assessed by actually conducting field audits

on predictions made by models built on 2007 Use Tax return data

processed in 2008.

None of the sets had records in common (see Figure 19.13).

19.4 Classification & Regression 1151

Figure 19.13: Data sources for APGEN

mining [26]. Note the 6 final sets which

feed the Data Analysis component.

Strengths and Limitations of Algorithms

The Naïve Bayes classification scheme assumes independence of the

features, which rarely occurs in real-world situations. This approach

is also known to potentially introduce bias to classification schemes.

In spite of this, classification models built using Naïve Bayes have

a successful track record.

MultiBoosting is an ensemble technique that uses committee (i.e.

groups of classification models) and “group wisdom” to make

predictions; unlike other ensemble techniques, it is different from

other ensemble techniques in the sense that it forms a committee

of sub-committees (i.e., a group of groups of classification models),

which has a tendency to reduce both bias and variance of predictions

(see [35, 2] for more information on these topics).

Procedures Classification schemes need a response variable for predic-

tion: audits which yielded more than $500 per year in revenues during

the audit period were classified as Good; the others were Bad. The various

models were tested and evaluated by comparing the performances of

the manual audits (which yield the actual revenue) and the classification

models (the predicted classification).

The procedure for manual audit selection in the early stages of the study

required:

1. DOR experts selecting several thousand potential cases through a

query;

2. DOR experts further selecting several hundreds of these cases to

audit;

3. DOR auditors actually auditing the cases, and

4. calculating audit accuracy and return on investment (ROI) using

the audits results.

1152 19 Introduction to Machine Learning

Once the ROIs were available, data mining started in earnest. The steps

involved were:

1. Splitting the data into training, testing, and validating sets.

2. Cleaning the training data by removing “bad” cases.

3. Building (and revising) classification models on the training

dataset. The first iteration of this step introduced a separation

of models for larger businesses and relatively smaller businesses

according to their average annual withholding amounts (the

threshold value that was used is not revealed in [26]).

4. Selecting separate modeling features for the APGEN Large and

Small training sets. The feature selection process is shown in Figure

19.14.

5. Building classification models on the training dataset for the two

separate class of business (using C4.5, Naïve Bayes, multilayer per-

ceptron, support vector machines, etc.), and assessing the classifiers

using precision and recall with improved estimated ROI:

Efficiency = ROI =
Total revenue generated

Total collection cost

Figure 19.14: Feature selection process in

[26]; note the involvement of domain ex-

perts.

Results, Evaluation and Validation The models that were eventually

selected were combinations of MultiBoosting and Naïve Bayes (C4.5

produced interpretable results, but its performance was shaky). For

APGEN Large (2007), experts had put forward 878 cases for audit (495

of which proved successful), while the classification model suggested

534 audits (386 of which proved successful). The theoretical best process

would find 495 successful audits in 495 audits performed, while the

manual audit selection process needed 878 audits in order to reach the

same number of successful audits.

For APGEN Small (2007), 473 cases were recommended for audit by

experts (only 99 of which proved successful); in contrast, 47 out of the 140

cases selected by the classification model were successful. The theoretical

best process would find 99 successful audits in 99 audits performed,

while the manual audit selection process needed 473 audits in order to

reach the same number of successful audits.

In both cases, the classification model improves on the manual audit

process: roughly 685 data mining audits to reach 495 successful audits of

19.4 Classification & Regression 1153

Figure 19.15: Audit resource deployment efficiency [26]; left – APGEN Large (2007); right – APGEN Small (2007). In both cases, the Data

Mining approach was more efficient (the slope of the Data Mining vector is “closer” to the Theoretical Best vector than is the Manual Audit

vector).

Table 19.4: Confusion matrices for audit evaluation [26]; left – APGEN Large (2007); right – APGEN Small (2007). 𝑅 stands for revenues, 𝐶
for collection costs.

APGEN Large (2007), and 295 would be required to reach 99 successful

audits for APGEN Small (2007), as can be seen in Figure 19.15.

Figure 19.4 presents the confusion matrices for the classification model

on both the APGEN Large and Small 2007 datasets.

The revenue 𝑅 and collection cost 𝐶 entries can be read as follows: the

47 successful audits which were correctly identified by the model for

APGEN Small (2007) correspond to cases consuming 9.9% of collection

costs but generating 42.5% of the revenues. Similarly, the 281 bad audits

correctly predicted by the model represent notable collection cost savings.

These are associated with 59.4% of collection costs but they generate only

11.1% of the revenues.

Once the testing phase of the study was completed, the DOR validated

the data mining-based approach by using the models to select cases for

actual field audits in a real audit project. The prior success rate of audits

for APGEN Use tax data was 39% while the model was predicting a

success rate of 56%; the actual field success rate was 51%.

Take-Aways A substantial number of models were churned out before

the team made a final selection. Past performance of a model family in

a previous project can be used as a guide, but it provides no guarantee

regarding its performance on the current data – remember the No Free
Lunch (NFL) Theorem [57]: nothing works best all the time!

There is a definite iterative feel to this project: the feature selection process

could very well require a number of visits to domain experts before the

1154 19 Introduction to Machine Learning

feature set yields promising results. This is a valuable reminder that the

data analysis team should seek out individuals with a good understand

of both data and context. Another consequence of the NFL is that domain-

specific knowledge has to be integrated in the model in order to beat

random classifiers, on average [58].

Finally, this project provides an excellent illustration that even slight

improvements over the current approach can find a useful place in an

organization – data science is not solely about Big Data and disruption!

19.4.6 Toy Example: Kyphosis Dataset

As a basic illustration of these concepts, consider the following example.

Kyphosis is a medical condition related to an excessive convex curvature

of the spine. Corrective spinal surgery is at times performed on children.

A dataset of 81 observations and 4 attributes has been collected (we have

no information on how the data was collected and how representative it

is likely to be, but those details can be gathered from [9]).

The attributes are:

kyphosis (absent or present after presentation);

age (at time of operation, in months);

number (of vertebrae involved),

start (topmost vertebra operated on).

The natural question of interest for this dataset is:

“How do the three explanatory attributes impact the opera-

tion’s success?”

We use the rpart implementation of Classification and Regression Tree

(CART) in R to generate a decision tree. Strictly speaking, this is not a

predictive supervised task as we treat the entire dataset as a training set

for the time being – there are no hold-out testing observations.

The results are shown in Figure 19.16. Interestingly, it would appear that

the variable number does not play a role in determining the success of

the operation (for the observations in the dataset).

Figure 19.16: Kyphosis decision tree visu-

alization. Only two features are used to

construct the tree. We also note that the

leaves are not pure – there are blue and
red instances in 3 of the 5 classification

regions.

Furthermore, the decision tree visualization certainly indicates that its

leaves are not pure (see Figure 19.17. Some additional work suggests that

the tree is somewhat overgrown and that it could benefit from being

pruned after the first branching point.

19.4 Classification & Regression 1155

Figure 19.17: Pruning a decision tree – the original tree (left) is more accurate/more complex than the pruned tree (right).

Table 19.5: Kyphosis decision tree – performance evaluation. The accuracy and 𝐹1 scores are good, but the false discovery and false negative

rates are not so great. This tree is good at predicting successful surgeries, but not fantastic at predicting failed surgeries. Is it still useful?

At any rate, it remains meangingless to discuss the performance of the tree

for predictive purposes if we are not using a holdout testing sample (not

to say anything about the hope of generalizing to a larger population).

To that end, we trained a model on 50 randomly selected observations

and evaluated the performance on the remaining 31 observations (the

structure of the tree is not really important at this stage). The results are

shown in Table 19.5. Is the model “good”?

It is difficult to answer this question in the machine learning sense

without being able to compare its performance metrics with those of

other models (or families of models).
35

35: The relative small size of the dataset

should give data analysts pause for

thought, at the very least.In the Model Selection subsection, we will briefly discuss how estimate a

model’s true predictive error rate through cross-validation. We will also

discuss a number of other issues that can arise when ML/AI methods

are not used correctly.

We show how to obtain these decision trees via R in Section 19.7 (Classifi-
cation: Kyphosis Dataset).

1156 19 Introduction to Machine Learning

19.5 Clustering

“Clustering is in the eye of the beholder, and as such, re-

searchers have proposed many induction principles and

models whose corresponding optimisation problem can only

be approximately solved by an even larger number of algo-

rithms.” [17]

19.5.1 Overview

We can make a variety of quantitative statements about a dataset, at the

univariate level. For instance, we can

compute frequency counts for the variables;

identify measures of centrality (mean, mode, median), and

measure the dispersion (range, standard deviation), among others.

At the multivariate level, the various options include 𝑛−way tabulations,

correlation analysis, and data visualization, among others.

While these can provide insights in simple situations, datasets with a large
number of variables or with mixed types (categorical and numerical)

might not yield to such an approach. Instead, insights might come in the

form of aggregation or clustering of similar observations.

A successful clustering scheme is one that tightly joins together any

number of similarity profiles – “tight” in this context refers to small

variability within the cluster, see Figure 19.18 for an illustration.

Figure 19.18: Clusters and outliers in an

artificial dataset [personal file].

A typical application is one found in search engines, where the listed

search results are the nearest similar objects (relevant webpages) clus-

tered around the search item.

Dissimilar objects (irrelevant webpages) should not appear in the list,

being “far” from the search item. Left undefined in this example is the

crucial notion of closeness: what does it mean for one observation to be

near another one? Various metrics can be used (see Figure 19.19 for some

simple examples), and not all of them lead to the same results.

19.5 Clustering 1157

Figure 19.19: Distance metrics between

observations: Euclidean (as the crow flies,

top left); cosine (direction from a vantage

point, top right); Manhattan (taxi-cab, bot-

tom left). Observations should be trans-

formed (scaled, translated) before distance

computations (bottom right).

Clustering is a form of unsupervised learning since the cluster labels

(and possibly their number) are not determined ahead of the analysis.

The algorithms can be complex and non-intuitive, based on varying

notions of similarities between observations, and yet, the temptation

to provide a simple a posteriori explanation for the groupings remains

strong – we really, really want to reason with the data.
36

36: Is it possible to look at Figure 19.18

without assigning labels or trying to un-

derstand what type of customers were

likely to be young and have medium in-

come? Older and wealthier?

They are also (typically) non-deterministic – the same routine, applied

twice to the same dataset, can discover completely different clusters.
37

37: The order in which the data is pre-

sented can play a role, as can starting con-

figurations.

This (potential) non-replicability is not just problematic for validation

– it can also leads to client dissatisfaction. If the analyst is tasked with

finding customer clusters for marketing purposes and the clusters change

every time the client or the stakeholders ask for a report, they will be

very confused (and will be doubting the results) unless the stochastic
nature of the process has already been explained.

Another interesting aspect of clustering algorithms is that they often find

clusters even when there are no natural ways to break down a dataset

into constituent parts.

When there is no natural way to break up the data into clusters, the

results may be arbitrary and fail to represent any underlying reality

of the dataset. On the other hand, it could be that while there was no

recognized way of naturally breaking up the data into clusters, the

algorithm discovered such a grouping – clustering is sometimes called

automated classification as a result.

The aim of clustering, then, is to divide into naturally occurring groups.

Within each group, observations are similar; between groups, they are

dissimilar (see Figure 19.20 for an illustration).

Figure 19.20: Distance to points in own

clusters (left, smaller is better) and to

points in other clusters (right, larger is

better).

1158 19 Introduction to Machine Learning

As a learning process, clustering is fairly intuitive for human beings

– our brains unconsciously search for patterns and they can generally

handle messy data with the same relative ease as clean data. Computers

have a harder time of it, however, partly because there is no agreed-upon
definition of what constitutes a cluster, and so we cannot easily code

their recognition into algorithms – to paraphrase Justice Potter Stewart,

“I may not be able to define what a cluster is, but I know one

when I see one.”

All clustering algorithms rely on the notion of similarity 𝑤 between

observations; in many instances, similarity is obtained via a distance (or

metric) 𝑑, with 𝑤 → 1 as 𝑑→ 0, and 𝑤 → 0 as 𝑑→∞. However, there

are similarity measures which are not derived from a distance metric.

One additional clustering challenge is that there is no such thing as the
distance or the similarity measure between observations – observations

which are similar using a specific measure may not be similar at all
using another. Commonly-used metrics include:

euclidean, Manhattan, cosine, Canberra, Hamming, Jaccard,

Pearson, and so on.

Note, however, that no matter which similarity measure is selected, the

data must first be transformed: scaled, centered, etc. (see Figure 19.19).

This introduces another layer of arbitrary choices, as there are multiple

available options and no canonical way to perform this.

Applications Frequently, we use clustering and other unsupervised

learning tasks as preliminary steps in supervised learning problems,

but there exist stand-alone applications as well:

text analysis – grouping similar documents according to their

topics, based on the patterns of common and unusual terms;

product recommendations – grouping online purchasers based on

the products they have viewed, purchased, liked, or disliked, or

grouping products based on customer reviews;

marketing – grouping client profiles based on their demographics

and preferences;

social network analysis – recognizing communities within large

groups of people;

medical imaging – differentiating between different tissue types in

a 3D voxel;

genetics – inferring structures in populations;

dividing a larger group (or area, or category) into smaller groups,

with members of the smaller groups having similarities of some

kind, as analytical tasks may then be solved separately for each of

the smaller groups, which may lead to increased accuracy once the

separate results are aggregated, or

creating (new) taxonomies on the fly, as new items are added to a

group of items, which could allow for easier product navigation

on a website like Netflix, for instance.

Numerous other applications may be found in [3, 51, 13, 21, 41, 44, 42, 28,

50, 12, 34, 5].

19.5 Clustering 1159

Figure 19.21: A clustering pipeline, including validation and (eventual) deployment.

When all is said and done, the clustering process is quite standard,

notwithstanding the choice of scaling strategy, similarity measure, and

algorithm and parameters (see the pipeline shown in Figure 19.21).

19.5.2 Clustering Algorithms

As is the case with classification, the number of clustering algorithms is

quite high; the Wikipedia page lists 40+ such algorithms as of August

2018 [56]. The choice of algorithms (and associated parameters) is as

much an art as it is a science, although domain expertise can come in

handy [3].

There is a smaller list of common algorithms that data scientists and

consultants should have in their toolbox:
38

38: Full descriptions: [54, 45, 3].

𝑘−means, close on the heels of decision trees for the title of “most-

used data science algorithm”, is a partition clustering method
which tends to produce equal-sized clusters; when clients ask for

their data to be clustered, they are typically envisioning 𝑘−means

with the Euclidean metric; variants include 𝑘−mode (for categorical

data), 𝑘−medians (for data with outliers), and 𝑘−means| | and

𝑘−means++ for large data sets; the number of clusters 𝑘 (and the

similarity measure/distance metric) must be provided by the user;

works fairly well for “blob”-like data;

hierarchical clustering is one of the few deterministic algorithms

on the market, with divisive (DIANA) and agglomerative (AGNES)

versions; no parameters need to be inputted, but the users must

select a linkage strategy (roughly speaking, a metric that computes

the distance between clusters) and a level at which to read off the

clusters (see Figure 19.22 for an illustration);

1160 19 Introduction to Machine Learning

Figure 19.22: Illustration of hierarchical clustering (left), DBSCAN (middle, based on [23]), and spectral clustering (right).

density-based spatial clustering (DBSCAN) is a graph-based

approach which attempts to identify densely-packed regions in the

dataset; its most obvious advantages (and of its variants OPTICS and

DENCLUE) are robustness to outliers and not needing to input a

number of clusters to search for in the data; the main disadvantage

is that the optimal input parameters (neighbourhood radius and

minimum number of points to be considered dense) are not easy

to derive (see Figure 19.22);

affinity propagation is another algorithm which selects the optimal

number of clusters directly from the data, but it does so by trying

and evaluating various scenarios, which may end up being time-
consuming,

spectral clustering can be used to recognize non-globular clusters

(see Figure 19.22 for an illustration); these are found by computing

eigenvalues of an associated Laplacian matrix – consequently,

spectral clustering is fast.

Other methods include latent Dirichlet allocation (used in topics mod-

eling), expectation-maximisation (particularly useful to find gaussian

clusters), BIRCH (a local method which does not require the entire

dataset to be scanned) and fuzzy clustering (a soft clustering scheme in

which the observations have a degree of belonging to each cluster).

19.5.3 𝑘-Means

As mentioned previously, 𝑘−means is a very natural way to group

observations together (formally, 𝑘−means is linked to Voronoi tilings).

𝑘−means clustering is achieved by:

1. selecting a distance metric 𝑑 (based on the data type and domain

expertise);

2. selecting a number of clusters 𝑘;
3. randomly choosing 𝑘 data instances as initial cluster centres;

4. calculating the distance from each observation to each centre;

5. placing each instance in the cluster whose centre it is nearest to;

6. computing/updating the centroid for each cluster (see Figure 19.23

for an illustration),

7. repeating steps 4-6 until the clusters are “stable”.

19.5 Clustering 1161

Figure 19.23: 𝑘−means cluster allocation

(left) and updated centres (right) [author

unknown].

For 𝑘−means, cluster centroids are obtained by averaging all points in the

cluster. For 𝑘−medians and 𝑘−mode, the centrality measure is replaced

by the obvious candidate.

This simple algorithm has numerous strengths:

it is elegant and easy to implement (without actually having to

compute pairwise distances), and so is extremely common as a

result;

in many contexts, it is a natural way to look at grouping observa-

tions, and

it provides a first-pass basic understanding of the data structure.

On the other hand,

it can only assign an instance to one cluster, which can lead to

overfitting – a more robust solution would be to compute the

probability of belonging to each cluster, perhaps based on the

distance to the centroid;

it requires the “true” underlying clusters to be gaussian- or blob-

shaped, and it will fail to produce useful clusters if that assumption

is not met in practice,

it does not allow for overlapping or hierarchical groupings.

Notes Let us now return to some issues relating to clustering in general
(and not just to 𝑘−means):

No matter the choice of algorithm, clustering rests on the assumption

that nearness of observations (in whatever metric) is linked with object
similarity, and that large distances are linked with dissimilarity. While

there are plenty of situations where this is an appropriate assumption

to make (temperature readings on a map, for instance), there are others

where it is unlikely to be the case (chocolate bars and sensationalist

tabloids at a grocery’s checkout, say).

The lack of a clear-cut definition of what a cluster actually is (see Figure

19.24 for an example) makes it difficult to validate clustering results.

Much more can be said on the topic [3].

The fact that various algorithms are non-deterministic is also problematic

– clustering schemes should never be obtained using only one algorithmic

pass, as the outcome could be different depending on the location of

random starting positions and the distance/similarity metric in use.

1162 19 Introduction to Machine Learning

Figure 19.24: Cluster suggestions in an artificial dataset: suggested (blue), rejected (red).

But this apparent fickleness is not necessarily a problem: essential pat-
terns may emerge if the algorithms are implemented multiple times, with

different starting positions and re-ordered data (see cluster ensembles
[3]). For those algorithms that require the number of clusters as an input,

it may be difficult to determine what the optimal number should be (see

Figure 19.25 for an illustration).

Figure 19.25: The number of clusters in

a dataset is ambiguous: are there 2, 3, 4+

clusters in this example?

This number obviously depends on the choice of algorithm/metric, the

underlying data, and the use that will be made of the resulting clusters;

a dataset could have 3 natural groups when seen through the lens of

𝑘−means, but only 2 clusters for a specific choice of parameter values in

DBSCAN, and so on.

This problem could be overcome by producing clustering schemes (from

the same family of algorithms) with an increasing number of clusters and

to plot the average distance of a cluster member to its cluster representative

(centroid) against the number of clusters. Any kink in the plot represents

a number of clusters at which an increase does not provide an in-step

increase in clustering “resolution”, so to speak (see Figure 19.30 in the

Toy Example: Iris Dataset subsection for an illustration).

19.5 Clustering 1163

Figure 19.26: An illustration of ghost clustering with 𝑘−means, for 𝑘 = 5.

And even when a cluster scheme has been accepted as valid, a cluster
description might be difficult to come by – should clusters be described

using representative instances or average values or some combination of

its’ members most salient features? Although there are exceptions, the

ease with which clusters can be described often provides an indication

about how natural the groups really are.

One of the most frustrating aspects of the process is that most methods

will find clusters in the data even if there are none – although DBSCAN

is exempt from this ghost clustering phenomenon (see Figure 19.26 for a

𝑘−means example).

Finally, analysts should beware (and resist) the temptation of a posteriori
rationalisation – once clusters have been found, it is tempting to try to

“explain” them; why are the groups as they have been found? But that is

a job for domain experts, at best, and a waste of time and resources, at

worst. Tread carefully.

19.5.4 Clustering Validation

What does it mean for a clustering scheme to be better than another?

What does it mean for a clustering scheme to be valid? What does it

mean for a single cluster to be good? How many clusters are there in the

data, really?

These are not easy questions to answer. In general, asking if a clustering

scheme is the right one or a good one is meaningless – much better to

ask if it is optimal or sub-optimal, potentially in comparison to other

schemes.

An optimal clustering scheme is one which

maximizes separation between clusters;

maximizes similarity within groups;

agrees with the human eye test, and

is useful at achieving its goals.

1164 19 Introduction to Machine Learning

There are 3 families of clustering validation approaches:

external, which use additional information (but the labels in ques-

tion might have very little to do with the similarity of the observa-

tions);

internal, which use only the clustering results (shape and size of

clusters, etc), and

relative, which compare across a number of clustering attempts.

In order to illustrate some of the possibilities, consider a dataset with

clustering scheme C= {C1 , . . . , C𝑁 }, where C𝑚 ’s centroid is denoted

by 𝑐𝑚 , and the average distance of C𝑚 ’s members to 𝑐𝑚 is denoted by 𝑠𝑚 .

The Davies-Bouldin Index is defined as

DBC =
1

𝑁
=

𝑁∑
𝑖=1

max

𝑗≠𝑖

{
𝑠𝑖 + 𝑠 𝑗
𝑑(𝑐𝑖 , 𝑐 𝑗)

}
,

where 𝑑 is the selected distance metric. Since DBC is only defined using

the clustering results, it is an internal validation method.

Heuristically, if the cluster separation is small, we might expect 𝑑(𝑐𝑖 , 𝑐 𝑗)
to be (relatively) small, and so DBC should be (relatively) large. In the

same vein, if the clusters are heterogeneous, we might expect 𝑠𝑖 + 𝑠 𝑗 to

be (relatively) large, and so DBC should be (relatively) large.

In short, when the clustering scheme is sub-optimal, DBC is “large”. This

suggests another way to determine the optimal number of clusters – pick

the scheme with minimal DBC (see Figure 19.30, which uses a modified

version of the index, for an illustration).

Other cluster quality metrics exist, including SSE, Dunn’s Index, the

Silhouette Metric, etc. [3, 14].

19.5.5 Case Study: Pittsburgh Livehoods

When we think of similarity at the urban level, we typically think in

terms of neighbourhoods. Is there some other way to identify similar

parts of a city?

In The Livehoods Project: Utilizing Social Media to Understand the Dynamics
of a City [12], Cranshaw et al. study the social dynamics of urban living

spaces with the help of clustering algorithms.

Objective The researchers aims to draw the boundaries of livehoods,

areas of similar character within a city, by using clustering models. Unlike

static administrative neighborhoods, the livehoods are defined based on

the habits of people who live there.

Methodology The case study introduces spectral clustering to discover

the distinct geographic areas of the city based on its inhabitants’ collective

movement patterns. Semi-structured interviews are also used to explore,

label, and validate the resulting clusters, as well as the urban dynamics

that shape them.

Livehood clusters are built using the following methodology:

19.5 Clustering 1165

1. a geographic distance is computed based on pairs of check-in

venues’ coordinates;

2. social similarity between each pair of venues is computed using

cosine measurements,

3. spectral clustering produces candidate livehoods clusters;

4. interviews are conducted with residents in order to validate the

clusters discovered by the algorithm.

Data The data comes from two sources, combining 11 million (a recom-

mendation site for venues based on users’ experiences) check-ins from

the dataset of Chen et al. [10] and a new dataset of 7 million Twitter

check-ins downloaded between June and December of 2011.

For each check-in, the data consists of the user ID, the time, the latitude
and longitude, the name of the venue, and its category.

In this case study, it is livehood clusters from the city of Pittsburgh,

Pennsylvania, that are examined via 42,787 check-ins of 3840 users at

5349 venues.

Strengths and Limitations of the Approach

The technique used in this study is agnostic towards the particular

source of the data: it is not dependent on meta-knowledge about

the data.

The algorithm may be prone to “majority” bias, consequently

misrepresenting/hiding minority behaviours.

The dataset is built from a limited sample of check-ins shared on

Twitter and are therefore biased towards the types of visits/loca-

tions that people typically want to share publicly.

Tuning the clusters is non-trivial: experimenter bias may combine

with “confirmation bias” of the interviewees in the validation stage

– if the researchers are themselves residents of Pittsburgh, will they

see clusters when there are none?

Procedures The Livehoods project uses a spectral clustering model to

provide structure for local urban areas (UAs), grouping close Foursquare

venues into clusters based on both the spatial proximity between venues

and the social proximity which is derived from the distribution of people

that check-in to them.

The guiding principle of the model is that the “character” of an UA is

defined both by the types of venues it contains and by the people frequent

them as part of their daily activities. These clusters are referred to as

Livehoods, by analogy with more traditional neighbourhoods.

Let 𝑉 be a list of Foursquare venues, 𝐴 the associated affinity matrix
representing a measure of similarity between each venue, and 𝐺𝑚(𝐴) be

the graph obtained from the 𝐴 by linking each venue to its nearest 𝑚

neighbours. Spectral clustering is implemented as follows:
39

39: We will discuss spectral clustering and

other clustering algorithms in detail in

Chapter 22, Spotlight on Clustering.1. Compute the diagonal degree matrix 𝐷𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 ;

2. Set the Laplacian matrix 𝐿 = 𝐷 − 𝐴 and

𝐿norm = 𝐷−1/2𝐿𝐷−1/2
;

1166 19 Introduction to Machine Learning

Figure 19.27: Some livehoods in metropolitan Pittsburgh, PA: Shadyside/East Liberty, Lawrenceville/Polish Hill, and South Side. Municipal

borders are shown in black.

3. Find the k smallest eigenvalues of 𝐿norm, where 𝑘 is the index which

provides the biggest jump in successive eigenvalues of eigenvalues

of 𝐿norm, in increasing order;

4. Find the eigenvectors 𝑒1 , ...𝑒𝑘 of 𝐿 corresponding to the 𝑘 smallest

eigenvalues;

5. Construct the matrix 𝐸 with the eigenvectors 𝑒1 , ...𝑒𝑘 as columns;

6. Denote the rows of 𝐸 by 𝑦1 , ..., 𝑦𝑛 , and cluster them into 𝑘 clusters

𝐶1 , ..., 𝐶𝑘 using 𝑘-means. This induces a clustering {𝐴1 , ..., 𝐴𝑘}
defined by

𝐴𝑖 = { 𝑗 | 𝑦 𝑗 ∈ 𝐶𝑖};

7. For each 𝐴𝑖 , let 𝐺(𝐴𝑖) be the subgraph of 𝐺𝑚(𝐴) induced by vertex

𝐴𝑖 ; split 𝐺(𝐴𝑖) into connected components; add each component

as a new cluster to the list of clusters, and remove the subgraph

𝐺(𝐴𝑖) from the list;

8. Let 𝑏 be the area of bounding box containing coordinates in the set

of venues 𝑉 , and 𝑏𝑖 be the area of the box containing 𝐴𝑖 ; if
𝑏𝑖
𝑏
> 𝜏,

delete cluster 𝐴𝑖 , and redistribute each of its venues 𝑣 ∈ 𝐴𝑖 to the

closest 𝐴 𝑗 under the distance measurement.

19.5 Clustering 1167

Results, Evaluation and Validation The parameters used for the cluster-

ing were 𝑚 = 10, 𝑘min = 30, 𝑘max = 45, and 𝜏 = 0.4. The results for three

areas of the city are shown in Figure 19.27. In total, 9 livehoods have been

identified and validated by 27 Pittsburgh residents; the article has more

information on this process.

Municipal Neighborhoods Borders: livehoods are dynamic, and

evolve as people’s behaviours change, unlike the fixed neighbour-

hood borders set by the city government.

Demographics: the interviews displayed strong evidence that the

demographics of the residents and visitors of an area often play a

strong role in explaining the divisions between livehoods.

Development and Resources: economic development can affect

the character of an area. Similarly, the resources (or lack there of)

provided by a region has a strong influence on the people that visit

it, and hence its resulting character. This is assumed to be reflected

in the livehoods.

Geography and Architecture: the movements of people through a

certain area is presumably shaped by its geography and architec-

ture; livehoods can reveal this influence and the effects it has over

visiting patterns.

Take-Away While this is a neat example of practical clustering, its main

take-away, from our perspective, is to remind everyone that 𝑘−means is

not the sole clustering algorithm in applications!

19.5.6 Toy Example: Iris Dataset

Iris is a genus of plants with showy flowers. The iris dataset contains

150 observations of 5 attributes for specimens collected by Anderson,

mostly from a Gaspé peninsula’s pasture in the 1930s [19].
40

40:

The attributes are:

petal width
petal length
sepal width
sepal length
species (virginica, versicolor, setosa)

This dataset has become synonymous with data analysis, being used to

showcase just about every algorithm under the sun. That is, sadly, also

what we are going to do in this section.
41

41: Note that the iris dataset has started

being phased out in favour of the penguin

dataset [46], for reasons that do not solely

have to do with its overuse (hint: take

a look at the name of the journal that

published Fisher’s paper).

A principal component projection of the dataset, with species indicated

by colours, is shown in Figure 19.28 (left).

From an unsupervised learning point of view, one question of interest is

whether the observations form natural groupings, and, if so, whether

these groupings correspond to the (known) species.

We use the 𝑘−means algorithm with Euclidean distance to resolve the

problem. Since we do not know how many clusters there should be in

the data (the fact that there are 3 species does not mean that there should

be 3 clusters), we run 40 replicates for 𝑘 = 2, . . . , 15.

1168 19 Introduction to Machine Learning

Figure 19.28: Classification of the iris dataset’s 3 species, projected on the first 2 principal components (left); optimal clustering results for

the iris dataset – one replicate, 𝑘 = 5 (right).

Figure 19.29: Clustering results on the iris

dataset with 𝑘−means, for 𝑘 = 2, 3, 4, 15

(from left to right).

For each replicate, we compute a (modified) Davies-Bouldin Index and

the Sum of Squared Errors of the associated clustering schemes (see

Figure 19.30 for the output) – the validation curves seem to indicate that

there could be either 3 of 5 natural 𝑘−means clusters in the data. Is this a

surprising outcome?

A single replicate with 𝑘 = 5 is shown in Figure 19.28 (right). Would you

consider this representative final clustering scheme to be meaningful?

We show how to obtain these clustering results via R in Section 19.7

(Clustering: Iris Dataset).

19.6 Issues & Challenges 1169

Figure 19.30: Optimal clustering results for the iris dataset: 5 clusters using (modified) Davies-Bouldin index and Sum of Squared Errors.

19.6 Issues and Challenges

“We all say we like data, but we don’t. We like getting insight

out of data. That’s not quite the same as liking data itself. In

fact, I dare say that I don’t quite care for data, and it sounds

like I’m not alone.” [38]

19.6.1 Bad Data

The main difficulties with data is that it is not always representative
of the situation that we would like to model and that it might not be

consistent (the collection and collation methods may have changed over

time, say). There are other potential data issues [38]:

the data might be formatted for human consumption, not machine

readability;

the data might contain lies and mistakes;

the data might not reflect reality, and

there might be additional sources of bias and errors (imputation

bias, replacing extreme values with average values, proxy reporting,

etc.).

Seeking perfection in the data beyond a “reasonable” threshold
42

can 42: This threshold is difficult to establish

exactly, however.
hamper the efforts of analysts: different quality requirements exist for

academic data, professional data, economic data, government data,

military data, service data, commercial data, etc. It can be helpful to

remember the engineering dictum: “close enough is good enough”!
43

43: In terms of completeness, coherence,

correctness, and accountability.
The challenge lies in defining what is “close enough” for the application

under consideration.

Even when all (most?) data issues have been mitigated, there remains a

number of common data analysis pitfalls:

analyzing data without understanding the context;
using one and only one tool (by choice or by fiat) – neither the

“cloud”, nor Big Data, nor Deep Learning, nor Artificial Intelligence

will solve all of an organization’s problems;

1170 19 Introduction to Machine Learning

Figure 19.31: Illustration of underfitting (left) and overfitting (right) for a classification task – the optimal classifier (middle) might reach a

compromise between accuracy and simplicity.

analyzing data just for the sake of analysis,

having unrealistic expectations of data analysis/DS/ML/AI – in

order to optimize the production of actionable insights from data,

we must first recognize the methods’ domains of application and

their limitations.

19.6.2 Overfitting/Underfitting

In a traditional statistical model, 𝑝−values and goodness-of-fit statistics

are used to validate the model. But such statistics cannot always be

computed for predictive data science models. We recognise a “good”

model based on how well it performs on unseen data.

In practice, training sets and ML methods are used to search for rules
and models that are generalizable to new data (or validation/testing

sets).

Problems arise when knowledge that is gained from supervised learning

does not generalize properly to the data. Ironically, this may occur if the

rules or models fit the training set too well – in other words, the results

are too specific to the training set (see Figure 19.31 for an illustration of

overfitting and underfitting).

A simple example may elucidate further. Consider the following rules

regarding hair colour among humans:

vague rule – some people have black hair, some have brown hair,

some blond, and some red;
44

44: This is obviously “true”, but too gen-

eral to be useful for predictions. reasonable rule – in populations of European descent, approxi-

mately 45% have black hair, 45% brown hair, 7% blond and 3% red,

and

overly specific rule – in every 10,000 individuals of European

descent, we predict there are 46.32% with black hair, 47.27% with

brown hair, 6.51% with blond hair, and 0.00% with red hair.
45

45: This rule presumably emerges from

redhead-free training data.

With the overly specific rule, we would predict that there are no redheads

in populations of European descent, which is false. This rule is too
specific to the particular training subset that was used to produce it.

46
46: We could argue that the data was sim-

ply not representative – using a training

set with redheads would yield a rule that

would make better predictions. But “over-

reporting/overconfidence” (which mani-

fest themselves with the use of significant

digits) is also part of the problem.

More formally, underfitting and overfitting can be viewed as resulting

from the level of model complexity (see Figure 19.32).

19.6 Issues & Challenges 1171

Figure 19.32: Underfitting and overfitting as a function of model complexity; error prediction on training sample (blue) and testing sample

(red). High error prediction rates for simple models are a manifestation of underfitting; large difference between error prediction rates

on training and testing samples for complex models are a manifestation of overfitting. Ideally, model complexity is chosen to reach the

situation’s ’sweet spot’; fishing for the ideal scenario might diminish explanatory power (based on [24]).

Figure 19.33: Schematic illustration of cross-fold validation, for 8 replicates and 4 folds; 8 × 4 = 32 models from a given family are built on

various training sets (consisting of 3/4 of the available data – the training folds). Model family performance is evaluated on the respective

holdout folds; the distribution of the performance metrics (in practice, some combination of the mean/median and standard deviation) can

be used to compare various model families (based on [45, 54]).

1172 19 Introduction to Machine Learning

Underfitting can be overcome by using more complex models (or models

that use a larger proportion of a dataset’s variables). Overfitting, on the

other hand, can be overcome in several ways:

using multiple training sets (ensemble learning approaches), with

overlap being allowed – this has the effect of reducing the odds of

finding spurious patterns based on quirks of the training data;

using larger training sets may also remove signal which is too

specific to small training sets: a 70%/30% split is often suggested,

and

using simpler models (or models that use a dataset with a reduced

number of variables as input).

When using multiple training sets, the size of the dataset may also affect

the suggested strategy: when faced with

small datasets (less than a few hundred observations, say, but that

depends on numerous factors such as computer power and number

of tasks), use 100-200 repetitions of a bootstrap procedure [27];

average-sized datasets (less than a few thousand observations),

use a few repetitions of 10-fold cross-validation [27, 54] (see Figure

19.33 for an illustration), and

large datasets, use a few repetitions of a holdout split (70%/30%?).

No matter which strategy is eventually selected, the machine learning

approach requires ALL models to be evaluated on unseen data.
47

47: These issues will be revisited in Chap-

ters 20 (Regression and Value Estimation)

and 21 (Spotlight on Classification).

19.6.3 Appropriateness and Transferability

Data science models will continue to be used heavily in the near fu-

ture; while there are pros and cons to their use on ethical and other

non-technical grounds, their applicability is also driven by technical
considerations.

DS/ML/AI methods are not appropriate if:

existing (legacy) datasets absolutely must be used instead of ide-

al/appropriate datasets;
48

48: “It’s the best data we have!” does not

mean that it is the right data, or even good

data.

the dataset has attributes that usefully predict a value of interest,

but these attributes are not available when a prediction is required

(e.g. the total time spent on a website may be predictive of a visitor’s

purchases, but the prediction must be made before the total time

spent on the website is known), and

class membership or numerical outcome is going to be predicted

using an unsupervised learning algorithm.
49

49: For instance, clustering loan default

data might lead to a cluster contains many

defaulters – if new instances get added to

this cluster, should they automatically be

viewed as loan defaulters?

Every model makes certain assumptions about what is and is not relevant
to its workings, but there is a tendency to only gather data which is

assumed to be relevant to a particular situation. If the data is used in

other contexts, or to make predictions depending on attributes for which

no data is available, then there might be no way to validate the results.
50

This is not just an esoteric consideration: over-generalizations and50: For instance, can we use a model

that predicts whether a borrower will de-

fault on a mortgage or not to also predict

whether a borrower will default on a car

loan or not? The problem is compounded

by the fact that there might be some link

between mortgage defaults and car loan

defaults, but the original model does not

necessarily takes this into account.

inaccurate predictions can lead to harmful results.

19.7 R Examples 1173

19.6.4 Myths and Mistakes

We end this section by briefly repeating various data science myths,

originally found in [37]:

1. DS is about algorithms;

2. DS is about predictive accuracy;

3. DS requires a data warehouse;

4. DS requires a large quantity of data, and

5. DS requires only technical experts,

as well as common data analysis mistakes [same source]:

1. selecting the wrong problem;

2. getting by without metadata understanding;

3. not planning the data analysis process;

4. insufficient business/domain knowledge;

5. using incompatible data analysis tools;

6. using tools that are too specific;

7. favouring aggregates over individual results;

8. running out of time;

9. measuring results differently than the client, and

10. naïvely believing what one is told about the data.

It remains the analyst’s and/or the consultant’s responsibility to address

these issues with the stakeholders and/or clients, the earlier, the better.
It is safer to assume that not everyone is on the same page – prod and

ask, early and often.

19.7 R Examples

We provide the R code that was used to produce the outputs of the toy

examples in Sections 19.3, 19.4, and 19.5.

19.7.1 ARM: Titanic

This example refers to the Titanic dataset toy example of Section 19.3.

The very first step in programming withRis to import data.

Setting up the Titanic dataset

class = as.factor(c(rep("3rd",52),rep("1st",118),

rep("2nd",154),rep("3rd",387),rep("Crew",670),

rep("1st",4),rep("2nd",13.01),rep("3rd",89),

rep("Crew",3),rep("1st",5),rep("2nd",11),

rep("3rd",13),rep("1st",1),rep("2nd",13),

rep("3rd",14),rep("1st",57),rep("2nd",14),

rep("3rd",75),rep("Crew",192),rep("1st",140),

rep("2nd",80),rep("3rd",76),rep("Crew",20)))

sex = as.factor(c(rep("Male",35),rep("Female",17),

rep("Male",1329),rep("Female",109),rep("Male",29),

rep("Female",28),rep("Male",338),rep("Female",316)))

1174 19 Introduction to Machine Learning

age = as.factor(c(rep("Child",52),rep("Adult",1438),

rep("Child",57),rep("Adult",654)))

survived = as.factor(c(rep("No",1490),rep("Yes",711)))

titanic = data.frame(class,sex,age,survived)

We briefly explore the structure of data.

Summary data

summary(titanic)

table(titanic$age,titanic$survived)

table(titanic$class,titanic$survived)

class sex age survived

1st: 325 Female: 470 Adult: 2092 No: 1490

2nd: 285 Male: 1731 Child: 109 Yes: 711

3rd: 706

Crew: 885

age/survived No Yes class/survived No Yes

Adult 1438 654 1st 122 203

Child 52 57 2nd 167 118

3rd 528 178

Crew 673 212

Then we use the arules package function apriori(), which returns all

possible rules (built by the apriori algorithm). By default, apriori()

creates rules with minimum support of 0.1, minimum confidence of 0.8,

and maximum of 10.

Original apriori rules

rules.titanic <- arules::apriori(titanic)

Apriori parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.8 0.1 1 none FALSE TRUE 5 0.1 1

maxlen target ext

10 rules TRUE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 220

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[10 item(s), 2201 transaction(s)] done [0.00s].

sorting and recoding items ... [9 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

19.7 R Examples 1175

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [27 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

For a rule 𝑋 → 𝑌, arule evaluates a number of default metrics. We can

extract the rules using the function inspect(): there are 27 in total.

Inspecting the original rules

arules::inspect(rules.titanic)

lhs rhs support confidence

[1] {} => {age=Adult} 0.9504771 0.9504771

[2] {class=2nd} => {age=Adult} 0.1185825 0.9157895

[3] {class=1st} => {age=Adult} 0.1449341 0.9815385

...

[26] {class=Crew, sex=Male, survived=No} => {age=Adult} 0.3044071 1.0000000

[27] {class=Crew, age=Adult, survived=No} => {sex=Male} 0.3044071 0.9955423

coverage lift count

[1] 1.0000000 1.0000000 2092

[2] 0.1294866 0.9635051 261

[3] 0.1476602 1.0326798 319

...

[26] 0.3044071 1.0521033 670

[27] 0.3057701 1.2658514 670

We set our own parameters to create a new list of rules, with minimum

support of 0.005 and minimum confidence of 0.8. As we are naturally

interested in finding combinations of attributes associated with survival

(either Yes or No), we only retain rule for which the conclusion is

{survived=No} or {survived=Yes}.

There are 12 such rules.

Constrained apriori rules

rules.titanic.2 <- arules::apriori(titanic,

parameter = list(minlen=2, supp=0.005, conf=0.8),

appearance = list(rhs=c("survived=No","survived=Yes"),

default="lhs"),

control = list(verbose=F))

We then sort the list by the lift value (in descending order) and print the

results:

Sorting the constrained rules

rules.titanic.2 <- arules::sort(rules.titanic.2,

by=c("lift"), decreasing=TRUE)

1176 19 Introduction to Machine Learning

Inspecting the constrained rules

arules::inspect(rules.titanic.2)

lhs rhs

[1] {class=2nd, age=Child} => {survived=Yes}

...

[11] {class=3rd, sex=Male, age=Adult} => {survived=No}

[12] {class=3rd, sex=Male} => {survived=No}

support confidence coverage lift count

[1] 0.010904134 1.0000000 0.010904134 3.095640 24

...

[11] 0.175829169 0.8376623 0.209904589 1.237379 387

[12] 0.191731031 0.8274510 0.231712858 1.222295 422

Are all these rules independent? If we know that

{class=3rd,sex=Male} => {survived=No}

is a rule, say, then we would not be surprised to find out that

{class=3rd,sex=Male,age=Adult} => {survived=No}

is also a rule.

The following chunk of code identifies which rules have an antecedent

which is a subset of another rule’s antecedent, marking one of them as

redundant, and removing those from the set of rules, which brings us

down to 8 rules:

Pruned apriori rules

subset.matrix <- as.matrix(arules::is.subset(

rules.titanic.2, rules.titanic.2))

subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA

redundant.titanic <- colSums(subset.matrix, na.rm=T) >= 1

rules.titanic.2.pruned <- rules.titanic.2[!redundant.titanic]

arules::inspect(rules.titanic.2.pruned)

lhs rhs supp conf cove lift count

[1] {class=2nd, age=Child} => {survived=Yes} 0.01 1.00 0.01 3.10 24

[2] {class=1st, sex=Female} => {survived=Yes} 0.06 0.97 0.07 3.01 141

[3] {class=2nd, sex=Female} => {survived=Yes} 0.04 0.88 0.05 2.72 93

[4] {class=Crew, sex=Female} => {survived=Yes} 0.01 0.87 0.01 2.69 20

[5] {class=2nd, sex=Male, age=Adult} => {survived=No} 0.07 0.92 0.08 1.35 154

[6] {class=2nd, sex=Male} => {survived=No} 0.07 0.86 0.08 1.27 154

[7] {class=3rd, sex=Male, age=Adult} => {survived=No} 0.18 0.84 0.21 1.24 387

[8] {class=3rd, sex=Male} => {survived=No} 0.19 0.83 0.23 1.22 422

We have presented the “interesting” associations in tabular format, but

there are a variety of graphical representations as well (available in

package arulesViz), such as:

a bubble chart;

19.7 R Examples 1177

a two-key plot (taking into account the rules’ lengths);

a graph structure, or

parallel coordinates (where the width of the arrows represents

support and the intensity of the colour represent confidence).

The original rules are shown below:

Visualizing the original rules

library(arulesViz)

plot(rules.titanic)

plot(rules.titanic, method="graph")

plot(rules.titanic, method="paracoord", control = list(reorder = TRUE))

For the constrained and the pruned rules, we obtain:

plot(rules.titanic.2)

plot(rules.titanic.2, method="graph")

plot(rules.titanic.2, method="paracoord")

plot(rules.titanic.2.pruned)

plot(rules.titanic.2.pruned, method="graph")

plot(rules.titanic.2.pruned, method="paracoord")

Is anything surprising about these outcomes?

1178 19 Introduction to Machine Learning

19.7.2 Classification: Kyphosis Dataset

This example refers to the Kyphosis dataset toy example of Section 19.4;

we explore the built-in kyphosis dataset with two decision tree methods

(rpart(), ctree()).

Let’s get some information on the kyphosis dataset.

Getting the help file

?rpart::kyphosis

We can also determine its structure and summary statistics:

Kyphosis dataset structure

str(rpart::kyphosis)

’data.frame’: 81 obs. of 4 variables:

$ Kyphosis: Factor w/ 2 levels "absent","present": 1 1 2 ...

$ Age : int 71 158 128 2 1 1 61 37 113 59 ...

$ Number : int 3 3 4 5 4 2 2 3 2 6 ...

$ Start : int 5 14 5 1 15 16 17 16 16 12 ...

Summary data

summary(rpart::kyphosis)

Kyphosis Age Number Start

absent: 64 Min. : 1.00 Min. : 2.000 Min. : 1.00

present: 17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00

Median : 87.00 Median : 4.000 Median : 13.00

Mean : 83.65 Mean : 4.049 Mean : 11.49

3rd Qu.: 130.00 3rd Qu.: 5.000 3rd Qu.: 16.00

Max. : 206.00 Max. : 10.000 Max. : 18.00

19.7 R Examples 1179

As always, we should take the time to visualize the dataset. In this case,

since there are 4 variables (one of which is categorical), a scatterplot

matrix is probably a good approach.

Visualizing the kyphosis data

pairs(rpart::kyphosis[,2:4],

main = "Kyphosis Data",

bg = c("red", "blue")[unclass(rpart::kyphosis[,1])],

pch = 21, lower.panel=NULL,

cex.labels=4.5, labels=c("Age","Number","Start"),

font.labels=2)

What should the legend of this scatterplot matrix be (red=?, blue=?).

We build a tree using the recursive partitioning algorithm implemented

in rpart.
51

For the time being, we’re assuming that the training set is 51: The package is called rpart, the func-

tion. . . also rpart().
the dataset as a whole (so there is no reason to expect that the decision

trees should have predictive power, only descriptive power).

Building a recursive partition tree

set.seed(2) # for replicability

tree <- rpart::rpart(Kyphosis ~ Age + Number + Start,

method="class", data=rpart::kyphosis)

tree

1180 19 Introduction to Machine Learning

n= 81

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 81 17 absent (0.79012346 0.20987654)

2) Start>=8.5 62 6 absent (0.90322581 0.09677419)

4) Start>=14.5 29 0 absent (1.00000000 0.00000000) *
5) Start< 14.5 33 6 absent (0.81818182 0.18181818)

10) Age< 55 12 0 absent (1.00000000 0.00000000) *
11) Age>=55 21 6 absent (0.71428571 0.28571429)

22) Age>=111 14 2 absent (0.85714286 0.14285714) *
23) Age< 111 7 3 present (0.42857143 0.57142857) *

3) Start< 8.5 19 8 present (0.42105263 0.57894737) *

We can access the method results by using printcp() (although how

informative this output will prove depends on the expectations. . .)

Getting information about the tree

rpart::printcp(tree)

Classification tree:

rpart::rpart(formula = Kyphosis ~ Age + Number + Start, data = rpart::kyphosis,

method = "class")

Variables actually used in tree construction:

[1] Age Start

Root node error: 17/81 = 0.20988

n= 81

CP nsplit rel error xerror xstd

1 0.176471 0 1.00000 1.0000 0.21559

2 0.019608 1 0.82353 1.2353 0.23200

3 0.010000 4 0.76471 1.2941 0.23548

Details on the nodes and the splits can be obtained using summary().

Summarizing the tree

summary(tree)

n= 81

CP nsplit rel error xerror xstd

1 0.17647059 0 1.0000000 1.000000 0.2155872

2 0.01960784 1 0.8235294 1.235294 0.2320031

3 0.01000000 4 0.7647059 1.294118 0.2354756

Variable importance

Start Age Number

19.7 R Examples 1181

64 24 12

Node number 1: 81 observations, complexity param=0.1764706

predicted class=absent expected loss=0.2098765 P(node) =1

class counts: 64 17

probabilities: 0.790 0.210

left son=2 (62 obs) right son=3 (19 obs)

Primary splits:

Start < 8.5 to the right, improve=6.762330, (0 missing)

Number < 5.5 to the left, improve=2.866795, (0 missing)

Age < 39.5 to the left, improve=2.250212, (0 missing)

Surrogate splits:

Number < 6.5 to the left, agree=0.802, adj=0.158, (0 split)

...

Node number 23: 7 observations

predicted class=present expected loss=0.4285714 P(node) =0.08641975

class counts: 3 4

probabilities: 0.429 0.571

What are these nodes that are being referred to? Plotting the tree provides

more information. Here is a basic plot:

Plotting the tree

rpart.plot::prp(tree)

and a fancier one:

Plotting a fancier tree

rattle::fancyRpartPlot(tree,

main="Classification Tree for Kyphosis")

1182 19 Introduction to Machine Learning

In the fancy plot, does the intensity of the colour play a role? What about

the percentages? What about the decimals?

Unchecked tree growth usually leads to overfitting. This is typically a

problem when datasets contain too many variables.
52

But overfitting52: The corresponding decision tree will

contain too many splits in that case.
is unlikely to be an issue in the case of the kyphosis dataset because it

contains only three variables.

Nevertheless, the code below shows you how you would prune the

growth of the tree in general, by finding a value of cp which maximizes

xerror (this will be revisited in Section 21.4.1, Tree-Based Methods).

Pruning and plotting the pruned tree

tree2 = rpart::prune(tree, cp = 0.02)

rattle::fancyRpartPlot(tree2)

How good is the classification model provided by the tree? We don’t

have access to 𝑝−values or confidence intervals – we need to rely on the

model’s confusion matrix.

We can obtain the predictions made by the model on the object tree by

using the predict() function. This procedure takes each observation

19.7 R Examples 1183

and feeds it to the model, outputting the likelihood of kyphosis being

absent or present.

Note that the probabilities are calibrated - compare with the Naive Bayes

method which we will see later.

The following model predicts the class probabilities for all observations:

Getting the class probabilities

predictions1 = predict(tree, type = "prob")

The first 10 predictions are:

head(predictions1, 10)

absent present

0.4210526 0.5789474

0.8571429 0.1428571

0.4210526 0.5789474

0.4210526 0.5789474

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

0.4285714 0.5714286

In general, the confusion matrix requires a specific prediction (absent

or present), against which we compare the actual classification. Here,

we have probabilities. How can we take the probabilities and transform

them into specific predictions?

Here is one way to do this.

Building the confidence matrix

uniformly generate a random number (between 0 and 1)

for each of the observations

random1 <- runif(81)

extract the actual classification of the observations

real <- rpart::kyphosis$Kyphosis

join together the prediction probabilities,

the random numbers, and the actual classification

since we’re joining together text and numbers,

cbind coerces the factors to numerical values

absent = 1, present = 2

test1 <- cbind(predictions1,random1,real)

this code takes advantage of the numerical presentation

1184 19 Introduction to Machine Learning

of the factors to output a specific prediction

if random1 < prob of absent, then

real = absent (1), otherwise real = present (2)

pred1 <- 2-(test1[,3]<test1[,1])

add the specific predictions to the test1 dataset

test1 <- cbind(test1,pred1)

The confusion matrix actually depends on the random variables generated

in the previous chunk of code.

In this case, the first 10 predictions would be:

head(test1[,c(1,2,4,5)],10)

absent present real pred1

0.4210526 0.5789474 1 1

0.8571429 0.1428571 1 1

0.4210526 0.5789474 2 2

0.4210526 0.5789474 1 2

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

0.4285714 0.5714286 2 1

We can now build the confusion matrix on the model predictions using

real (actual classification) and pred1 (specific model prediction).

The function table() produces a joint distribution, where the rows

correspond to the first variable in the call (actual), and the columns to

the second variable (predicted).

Confusion matrix
table(test1[,4],test1[,5])

1 2

1 59 5

2 9 8

Note that the confusion matrix could be different every time a new set of

predictions are made. Why would that be the case?

Is this a good classification model or not?

In this example, we computed the confusion matrix using the entire
dataset. In a sense, we should not have been surprised that the results

were decent, because we were using the same data to build the model

and to evaluate it.

From a predictive perspective, classification models are built on a subset

of the data (the training set) and evaluated on the remaining data (the

19.7 R Examples 1185

testing set). The idea is that if there IS a strong classification signal, it

should be found in any representative subset. As a rule, we look for

training sets making up between 70% and 80% of the data. They should

be selected randomly.

We start by creating a training set with 50 instances, and we fit the

rpart() algorithm to this data:
53

53: If we use all variables, we do not need

to specify them in the model call; we only

need to use the “.”

Training a recursive partition tree

sub <- c(sample(1:81, 50))

(fit <- rpart::rpart(Kyphosis ~ ., data = rpart::kyphosis,

subset = sub))

n= 50

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 50 9 absent (0.8200000 0.1800000)

2) Start>=8.5 40 3 absent (0.9250000 0.0750000) *
3) Start< 8.5 10 4 present (0.4000000 0.6000000) *

The confusion matrix has to be built on the testing set.
54

There are 2 54: Iindicated here by -sub, that is, the

opposite of the sub indices.
ways to make a prediction: we either use the most likely outcome, or we

generate a random vector of predictions using the probabilities for each

class, as above.

We can predict on the basis of class:

Predictions on the testing set

table(predict(fit, rpart::kyphosis[-sub,], type = "class"),

rpart::kyphosis[-sub, "Kyphosis"])

absent present

absent 19 3

present 4 5

Or we can predict on the basis of probability:

prob.fit <- predict(fit, rpart::kyphosis[-sub,],

type = "prob")

random1 <- runif(31)

real <- rpart::kyphosis[-sub,"Kyphosis"]

absent = 1, present = 2

test1 <- cbind(prob.fit,random1,real)

pred1 <- 2-(test1[,3]<test1[,1])

test1 <- cbind(test1,pred1)

table(test1[,4], test1[,5])

1186 19 Introduction to Machine Learning

1 2

1 20 3

2 5 3

These are the confusion matrices that should be used to evaluate the

decision’s tree performance.

Another way to build decision trees is via party’s ctree() function.

Conditional inference trees have the property that they will automatically
prune themselves once a statistical criterion is met by the tree as a whole.

The downside is that they do not usually pick fully reasonable splits

(they may not conform to contextual understanding).

Building and plotting a conditional inference tree

kyphosis.ctree <- party::ctree(Kyphosis ~ .,

data = rpart::kyphosis, subset = sub)

kyphosis.ctree

plot(kyphosis.ctree)

Conditional inference tree with 2 terminal nodes

Response: Kyphosis

Inputs: Age, Number, Start

Number of observations: 50

1) Number <= 5; criterion = 0.998, statistic = 11.641

2)* weights = 42

1) Number > 5

3)* weights = 8

A very simple tree, as can be seen.

Confusion matrix on the testing set

table(predict(kyphosis.ctree, rpart::kyphosis[-sub,]),

rpart::kyphosis[-sub,1])

absent present

absent 21 7

present 2 1

How good of a model is this one? Which of the rpart() or ctree()

model is preferable? Does this depend on the training set?

19.7 R Examples 1187

19.7.3 Clustering: Iris Dataset

This example refers to the Iris dataset toy example of Section 19.5; we

cluster the ubiquitous (built-in) iris dataset, via 𝑘-means.

The procedure is straightforward:

1. cluster with 𝑛 = 2, . . . , 15 clusters;

2. display the Within Sum of Squares curve, as a function of the # of

clusters;

3. display the Davies-Bouldin curve, as a function of the # of clusters,

4. select the optimal number of clusters on the basis of these curves.

Let us load the data and take a look at the iris dataset.
55

55: Without the species labels, as this is

an unsupervised problem.

Visualizing the iris data

my.data<-iris[,1:4]

head(my.data)

pairs(my.data)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

1188 19 Introduction to Machine Learning

The eye test would most likely identify 2 clusters.

In preparation for the cluster analysis, we will scale the data so that all

the variables are represented on the same scale. This can be done using

the scale() function.

Scaling the data

my.data.scaled<-scale(my.data)

head(my.data.scaled)

pairs(my.data.scaled)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 -0.8976739 1.01560199 -1.335752 -1.311052

2 -1.1392005 -0.13153881 -1.335752 -1.311052

3 -1.3807271 0.32731751 -1.392399 -1.311052

4 -1.5014904 0.09788935 -1.279104 -1.311052

5 -1.0184372 1.24503015 -1.335752 -1.311052

6 -0.5353840 1.93331463 -1.165809 -1.048667

The “shape” of the dataset is the same, but the axis ranges have changed.

One way to reduce the dimension of the problem is to work with the

principal components (see Chapter 23, Feature Selection and Dimension
Reduction). The hope is that most of the variation in the data can be

explained by a smaller number of derived variables, expressed as linear

combinations of the original variables.

19.7 R Examples 1189

This can be accomplished in R with the princomp() function.

Principal Components

pc.agg.data = princomp(my.data.scaled)

summary(pc.agg.data)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.7026571 0.9528572 0.38180950 0.143445939

Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709

Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000

This provides a summary of the “strength” of the signal in each compo-

nent. The cumulative proportion of the variance is the value of interest.

If 2 principal components are needed to explain 95% of the variance, we

would expect that roughly 95% of the set is “2-dimensional”.

As this is indeed the case, we opt to cluster the data projected on only

the first 2 components, which can be accessed via the scores attribute

of pc.agg.data. The plot below shows a 2D representation of the iris

dataset obtained via principal components analysis (PCA).

Visualizing the PCA data

pc.df.agg.data = cbind(pc.agg.data$scores[,1],

pc.agg.data$scores[,2])

plot(pc.df.agg.data,col=iris[,5])

title(’PCA plot of Iris Data - 2 Main PCs’)

1190 19 Introduction to Machine Learning

The Davies-Bouldin (DB) index is a measure that is used to determine the

optimal number of clusters in the data. For a given dataset, the optimal

number of clusters is obtained by maximizing the DB index (there are

different versions of the DB index, all giving equivalent results).

Davies.Bouldin <- function(A, SS, m) {

A - the clusters’ centres

SS - the within sum of squares

m - the sizes of the clusters

N <- nrow(A) # number of clusters

intercluster distance

S <- sqrt(SS/m)

Get the distances between centres

M <- as.matrix(dist(A))

Get the ratio of intercluster/centre.dist

R <- matrix(0, N, N)

for (i in 1:(N-1)) {

for (j in (i+1):N) {

R[i,j] <- (S[i] + S[j])/M[i,j]

R[j,i] <- R[i,j]

}

}

return(mean(apply(R, 1, max)))

}

But we do not yet know how many clusters we will ultimately be using,
56

so we will construct 𝑘−means clusters for a variety of values 𝑘.56: Although the visual inspection above

suggested 𝑘 = 2 or 𝑘 = 3.

We will in fact produce 40 replicates for each 𝑘 = 2, . . . , 15 and track both

the DB index and the Within Sums of Squares (SS), which is a measure

of how similar observations are within each cluster, and how different

they are from observations in other clusters.
57

57: The value for the SS can be found by

calling the attribute withinss on a kmeans

object. If the DB index does not provide a clear-cut winner, the optimal number of

clusters is obtained when the slope of the SS curve flattens “drastically”.
58

58: So that adding more clusters does not

provide as big a decrease in SS.

We start by setting up the number of repetitions and the loop.

Initializing the k-means process

setting up the repetitions and display options

oldpar <- par(mfrow = c(4, 4))

N = 40 # Number of repetitions

max.cluster = 15 # Maximum number of desired clusters

initializing values

m.errs <- rep(0, max.cluster)

m.DBI <- rep(0, max.cluster)

s.errs <- rep(0, max.cluster)

s.DBI <- rep(0, max.cluster)

19.7 R Examples 1191

Now we run 40 replicates for each number of clusters (so 560 calls to the

kmeans() clustering algorithm in total). For each clustering schemes, we

compute the DB index and the SS, and store them in memory.

We also print one of the clustering schemes for each of the number of

clusters in the iteration.

Clustering the iris data

set.seed(0) # for replicability

clustering and plotting

for (i in 2:max.cluster) {

errs <- rep(0, max.cluster)

DBI <- rep(0, max.cluster)

for (j in 1:N) {

KM <- kmeans(pc.df.agg.data, iter.max = 10, i)

errs[j] <- sum(KM$withinss)

DBI[j] <- Davies.Bouldin(KM$centers, KM$withinss,

KM$size)

}

m.errs[i - 1] = mean(errs)

s.errs[i - 1] = sd(errs)

m.DBI[i - 1] = mean(DBI)

s.DBI[i - 1] = sd(DBI)

plot(pc.df.agg.data,col=KM$cluster, pch=KM$cluster,

main=paste(i,"clusters - kmeans (euclidean)"))

}

Since we have replicates, we can compute confidence bonds for both the

average DB index and the average SS.

1192 19 Introduction to Machine Learning

Confidence bands for Within SS and DB curves
MSE.errs_up = m.errs + 1.96 * s.errs / sqrt(N)

MSE.errs_low = m.errs - 1.96 * s.errs / sqrt(N)

MSE.DBI_up = m.DBI + 1.96 * s.DBI / sqrt(N)

MSE.DBI_low = m.DBI - 1.96 * s.DBI / sqrt(N)

Within SS curve

plot(2:(max.cluster+1), m.errs, main = "SS",

xlab="k", ylab="SS")

lines(2:(max.cluster+1), m.errs)

par(col = "red")

lines(2:(max.cluster+1), MSE.errs_up)

lines(2:(max.cluster+1), MSE.errs_low)

par(col = "black")

DBI curve

plot(2:(max.cluster+1), m.DBI, main = "Davies-Bouldin",

xlab="k", ylab="DBI")

lines(2:(max.cluster+1), m.DBI)

par(col="red")

lines(2:(max.cluster+1), MSE.DBI_up)

lines(2:(max.cluster+1), MSE.DBI_low)

par(col = "black")

Where is the DB curve maximized? Does it match what the SS curve

shows? We pick the optimal number of clusters using the following:

(i_choice <- which(

m.DBI==max(m.DBI[1:(length(m.DBI)-1)]))+1)

[1] 5

19.7 R Examples 1193

Finally, let us plot a “final” realization of the clustering scheme with the

optimal number of clusters. We cluster on the PCA-reduced scaled data,

but we plot the results with the original iris data.

We will also verify if we get similar clustering schemes when we use

a different distance measure (the default measure in kmeans() is the

Euclidean metric). Let us try the manhattan distance (𝑘-medians) with the

cclus() method (available with the flexclust package, which provides

a more flexible clustering approach, including different algorithms and

distances).

Comparison of k-means and k-medians

k-means

KM <- kmeans(agg.data, iter.max = 10, i_choice)

plot(iris[,1:4],col=KM$cluster, pch=KM$cluster,

main=paste(i_choice,"clusters - kmeans (euclidean)"))

k-medians

library(flexclust)

KMed <- cclust(pc.df.agg.data, i_choice, dist="manhattan")

plot(iris[,1:4], col=predict(KMed), pch=predict(KMed),

main=paste(i_choice,"clusters - kmed (manhattan)"))

How do they compare to one another?

1194 19 Introduction to Machine Learning

19.8 Exercises

1. What are some examples of supervised and unsupervised learning tasks in the business world? In a

public policy/government setting? In a scientific setting?

2. Assuming that data mining techniques are used in the following cases, identify whether the required

task falls under supervised or unsupervised learning [37].

a) Deciding whether to issue a loan to an applicant based on demographic and financial data (with

reference to a database of similar data on prior customers).

b) In an online bookstore, making recommendations to customers concerning additional items to

buy based on the buying pattern in prior transactions.

c) Identifying a network data packet as dangerous (virus, hacker attack) based on comparison to

other packets with a known threat status.

d) Identifying segments of similar customers.

e) Predicting whether a company will go bankrupt based on comparing its financial data to those of

similar bankrupt and non-bankrupt firms.

f) Estimating the repair time required for an aircraft based on a trouble ticket.

g) Automated sorting of mail by zip code scanning.

h) It is more difficult and expensive to win new customers than it is to retain existing customers.

Scoring each customer on their likelihood to quit can help an organization design effective

interventions, such as discounts or free services, to retain profitable customers in a cost-effective

manner.

i) Some medical practitioners conduct unnecessary tests and/or over-bill their government or

insurance companies. Using audit data, it may be possible to identify such providers and take

appropriate action.

j) A market basket analysis can help develop predictive models to determine which products often

sell together. This knowledge of affinities between products can help retailers create promotional

bundles to push non-selling items along a set of products that sell well.

k) Diagnosing the cause of a medical condition is the crucial first step in medical engagement.

In addition to the current condition, other factors can be considered, including the patient’s

health history, medication history, family’s history, and other environmental factors. A predictive

model can absorb all of the information available to date (for this patient and others) and make

probabilistic diagnoses, in the form of a decision tree, taking away most of the guess work involved.

l) Schools can develop models to identify students who are at risk of not returning to school. Such

students can be flagged to be on the receiving end of potential corrective measures.

m) In addition to customer data, telecom companies also store call detail records (CDR), which

precisely describe the calling behaviour of each customer. The unique data can be used to profile

customers, who may be marketed to based on the similarity of their CDR to other customers’.

n) Statistically, all equipment is likely to break down at some point in time. Predicting which machine

is likely to shut down is a complex process. Decision models to forecast machinery failure could

be constructed using past data, which can lead to savings provided by preventative maintenance.

o) Identifying which tweets contain disinformation and which tweets are legitimate.

3. Would the results of the Danish medical study (see Section 19.3) be applicable to the Canadian context?

To the Chinese context? What do you think some of the ethical/technical challenges were?

4. Evaluate the following candidate association rules for the British Musical Dataset introduced in Section

19.3:

a) If an individual owns a classical music album (𝑊), then they also own a hip-hop album (𝑍), given

that Freq(𝑊) = 2010, Freq(𝑍) = 6855, and Freq(𝑊 ∩ 𝑍) = 132.

b) If an individual owns both the Beatles’ Sergeant Peppers’ Lonely Hearts Club Band and a classical music

album, then they were born before 1976, given that Freq(𝑌∩𝑊) = 1852 and Freq(𝑌∩𝑊∩𝑋) = 1778.

5. Out of the 3 rules that have been established in the previous question (𝑋 → 𝑌, 𝑊 → 𝑍, and

(𝑌 AND𝑊) → 𝑋), which do you think is more useful? Which is more surprising?

19.8 Exercises 1195

6. A store that sells accessories for smart phones runs a promotion on faceplates. Customers who purchase

multiple faceplates from a choice of 6 different colours get a discount. The store managers, who would

like to know what colours of faceplates are likely to be purchased together, collected past transactions

in the file Transactions.csv . Consider the following rules:

{red, white}→ {green}

{green}→ {white}

{red, green}→ {white}

{green}→ {red}

{orange}→ {red}

{white, black}→ {yellow}

{black}→ {green}

a) For each rule, compute the support, confidence, interest, lift, and conviction.

b) Amongst the rules for which the support is positive (> 0), which one has the highest lift?

Confidence? Interest? Conviction?

c) Build an additional 5-10 candidate rules (randomly), and evaluate them. Which of the 12-17

candidate rules do you think would be most useful for the store managers?

d) How would one determine reasonable threshold values for the support, coverage, interest, and

lift of rules derived from a given dataset?

7. Consider the following datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv , and

HR_2016_Census_simple.xlsx .

a) Determine what the data is reporting on / what it is about / create a “data dictionary” to explain

the different fields and variables in the dataset.

b) Develop a list of questions you would like to answer about the data.

c) Investigate variables (individual, bivariate, multivariate) through charts, distributions, variable

interactions, summary statistics, etc.

d) Do you trust the data or not? Why? If you don’t trust it, flag some potential issues with the

data/specific entries.

e) Conduct an association rule mining analysis of the datasets. Using either the brute force approach

or the apriori algorithm, determine 10-20 strong association rules. Visualize them, and interpret

their results.

8. UniversalBank is looking at converting its liability customers (i.e., customers who only have deposits at

the bank) into asset customers (i.e., customers who have a loan with the bank). In a previous campaign,

UniversalBank was able to convert 9.6% of 5000 of its liability customers into asset customers.

The marketing department would like to understand what combination of factors make a customer

more likely to accept a personal loan, in order to better design the next conversion campaign.

UniversalBank.csv contains data on 5000 customers, including the following measurements: age,

years of professional experience, yearly income (in thousands of USD), family size, value of mortgage

with the bank, whether the client has a certificate of deposit with the bank, a credit card, etc.

They build 2 decision trees on a training subset of 3000 records to predict whether a customer is likely

to accept a personal loan (1) or not (0).

https://www.data-action-lab.com/wp-content/uploads/2019/10/Transactions.csv
https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv

1196 19 Introduction to Machine Learning

a) Explore the UniversalBank.csv dataset. Can you come up with a reasonable guess as to what

each of the variables represent?

b) How many variables are used in the construction of tree 𝐴? Of tree 𝐵?

c) Are the following decision rules valid or not for trees 𝐴 and/or 𝐵?

IF (Income ≥ 114) AND (Education ≥ 1.5) THEN (Personal Loan = 1)
IF (Income < 92) AND (CCAvg ≥ 3) AND (CD.Account < 0.5) THEN (Personal Loan = 0)

d) What prediction would trees 𝐴 and 𝐵 make for a customer with:

a yearly income of 94,000$USD (Income = 94);

2 kids (Family = 4);

no certificate of deposit with the bank (CD.Account = 0);

a credit card interest rate of 3.2% (CCAvg = 3.2), and

a graduate degree in Engineering (Education = 3)?

9. The confusion matrices for the predictions of trees 𝐴 and 𝐵 on the remaining 2000 testing observations

are shown below.

a) Using the appropriate matrices, compute the 9 performance evaluation metrics for each of the

trees (on the testing set).

b) If customers who would not accept a personal loan get irritated when offered a personal loan,

what tree should UniversalBank’s marketing group use to help maintain good customer relations?

10. Consider the algae_blooms.csv dataset. We try to build a model to predict the presence/absence

of algae based on various chemical properties of river water. What is the data science motivation for

such a model? After all, we can simply analyze water samples to determine if various harmful algae are

present or absent. The answer is simple: chemical monitoring is cheap and easy to automate, whereas

biological analysis of samples is expensive and slow. Another answer is that analyzing the samples for

harmful content does not provide a better understanding of algae drivers: it just tells us which samples

contain algae.

a) Load the data and summarize/visualize it: you will be tasked with predicting the presence/absence

of algae a1 and a2.

b) Clean the data and impute missing values, as needed.

c) Remove 20% of the observations for a validation set.

https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/algae_blooms.csv

19.8 Exercises 1197

d) Create a training/testing pair on the remaining 80% of the observations and train 2 decision trees

to predict the presence/absence of algaes a1 and a2, respectively. Evaluate the performance of

each model. Which models performs best on your training/testing pair?

e) Repeat step d) on at least 20 distinct training/testing pairs. Evaluate the performance of each

model, and save them.

f) For each algae, pick the best of the models (how would you determine this) and use it to make

predictions for the readings in the validation set. Evaluate.

g) Instead of picking the best of the 20+ models, find some way to combine the results of the 20

models and to make predictions for the readings in the validation set. Evaluate these predictions.

h) Which of the resulting models of steps 6 or 7 provide the best performance? Which are easier to

interpret?

11. Repeat question 10, using the same validation set in part c). In part d), use the remaining 80% of

the data to build a decision tree (do not split into a training/testing pair first). Use these models to

make predictions for the readings in the validation set. Evaluate these predictions. Is there evidence of

overfitting?

12. Repeat question 10, using the same validation set in part c). In parts d) to g), use decision stumps

(decision trees with only 1 branching point) instead of full growth trees. Is there evidence of underfitting?

13. The population of Canada is divided physically into provincial and territorial areas, most of which are

further subdivided into health regions. The Census information (from 2016) is available for those

health regions. The equivalent 2018 dataset has been clustered to produce peer groups: the result is

shown here . The data is found in the file HR_2016_Census_simple.xlsx .

a) Load the data and summarize/visualize it (extract the rows with a 4-digit geocode).

b) Clean the data and impute missing values (if necessary). Scale the data and assign to a new set.

c) Run the 𝑘−means algorithm (with Euclidean distance) on the scaled data, using ALL the features,

for 𝑘 = 3, ..., 16. Use the Davies-Bouldin index and the Within-SS index to determine the optimal

number of clusters. Is the optimal clustering scheme plausible?

14. Reduce the dimension of the health region dataset by running a principal component analysis (PCA)

and keep the principal components that explain up to 80% of the variability in the data. Repeat step c).

Are the results significantly different than they were for question 13?

15. Run 𝑘−means on the original health regions data (previous question) and on the reduced data, for the

same range of 𝑘−values, but replicate the process 30+ times per value of 𝑘. What are the optimal 𝑘

values in the aggregate runs?

16. Save the cluster assignments for each run with the optimal values of 𝑘 found in question 13. Say that

two observations 𝐴 and 𝐵 have similarity 𝑤(𝐴, 𝐵) ∈ [0, 1] if 𝐴 and 𝐵 lie in the same cluster in 𝑤(𝐴, 𝐵)%
of the runs. What are some observations with high similarity measurements? With low similarity

measurements?

17. Provide a 𝑘−means clustering schema for the UniversalBank dataset.

18. The remaining exercises use the Gapminder Tools (there is also an offline version).

a) In the default configuration, we can identify some potential association rules. Using visual and

ballpark estimates, evaluate the performance of the following rules:

Income > 8000→ Life Expectancy > 70

Income < 8000 AND Life Expectancy < 70→ Region = Africa

18.. Play around with various charts and variables and identify and evaluate 5+ additional association

rules.

18.. Identify groups of similar countries, in 2018 [be sure to validate your groups using various charts].

18.. In the default configuration, follow the trajectories of Finland, Sweden, Iceland, Norway, and

Denmark between 1900 and 2018. Do the countries appear to follow similar trajectories? Are there

outliers or anomalous trajectories?

18.. Repeat step d) for Brazil, Paraguay, Uruguay, Venezuela, Colombia, Peru, and Ecuador.

18.. Based on your results in steps 4 and 5, would you expect the trajectory for Argentina to be more

like those of the Nordic countries or those of the South American countries? Or perhaps neither?

Is your answer the same over all time horizons?

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710012201
https://www150.statcan.gc.ca/n1/pub/82-402-x/2018001/maps-cartes/rm-cr14-eng.htm
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.gapminder.org/tools/
https://www.gapminder.org/tools-offline

1198 19 Introduction to Machine Learning

Chapter References
[1] C.C. Aggarwal. Data Mining: the Textbook . Cham: Springer, 2015.

[2] C.C. Aggarwal, ed. Data Classification: Algorithms and Applications . CRC Press, 2015.

[3] C.C. Aggarwal and C.K. Reddy, eds. Data Clustering: Algorithms and Applications . CRC Press, 2014.

[4] C.C. Aggarwal and P.S. Yu. ‘A New Framework for Itemset Generation’. In: Proceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’98. Seattle,

Washington, USA: Association for Computing Machinery, 1998, pp. 18–24. doi: 10.1145/275487.

275490.

[5] F.R. Bach and M.I. Jordan. ‘Learning Spectral Clustering, With Application To Speech Separation’. In: J.
Mach. Learn. Res. 7 (Dec. 2006), pp. 1963–2001.

[6] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge Press, 2012.

[7] S.E. Brossette et al. ‘Association Rules and Data Mining in Hospital Infection Control and Public Health

Surveillance’. In: Journal of the American Medical Informatics Association 5.4 (July 1998), pp. 373–381. doi:

10.1136/jamia.1998.0050373.

[8] Subaru Canada. Athlete Rebate .

[9] J. Chambers and T. Hastie. Statistical Models in S. Wadsworth and Brooks/Cole, 1992.

[10] Z. Cheng et al. ‘Exploring Millions of Footprints in Location sharing services ’. In: ICWSM. Ed. by

Lada A. Adamic, Ricardo Baeza-Yates, and Scott Counts. The AAAI Press, 2011.

[11] T. Chou. ‘Apriori: Association Rule Mining In-Depth Explanation and Python Implementation ’. In:

Towards Data Science (Oct. 2020).

[12] J. Cranshaw et al. ‘The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City

’. In: ICWSM. Ed. by John G. Breslin et al. The AAAI Press, 2012.

[13] J. d’Huy. ‘Scientists Trace Society’s Myths to Primordial Origins’. In: Scientific American (Online) (Sept.

2016).

[14] B. Desgraupes. clusterCrit: Clustering Indices . R package version 1.2.8. 2018.

[15] D. Dua and E. Karra Taniskidou. UCI Machine Learning Repository . 2017.

[16] B. Efron. Large Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge

University Press, 2010.

[17] V. Estivill-Castro. ‘Why so Many Clustering Algorithms: A Position Paper’. In: SIGKDD Explor. Newsl.
4.1 (June 2002), pp. 65–75.

[18] S. Fefilatyev et al. ‘Detection of Anomalous Particles from Deepwater Horizon Oil Spill Using SIPPER3

Underwater Imaging Platform’. In: Data Mining Case Studies IV, Proceedings of the 11th IEEE International
Conference on Data Mining. Vancouver, BC: IEEE, 2011.

[19] R. A. Fisher. ‘The Use of Multiple Measurements in Taxonomic Problems’. In: Annals of Eugenics 7.7

(1936), pp. 179–188.

[20] E. Garcia et al. ‘Drawbacks and solutions of applying association rule mining in learning management

systems’. In: Proceedings of the International Workshop on Applying Data Mining in e-Learning. Greece:

CEUR-WS.org, 2007.

[21] U. Habib, K. Hayat, and G. Zucker. ‘Complex building’s energy system operation patterns analysis

using bag of words representation with hierarchical clustering’. In: Complex Adapt. Syst. Model. 4 (2016),

p. 8. doi: 10.1186/s40294-016-0020-0.

[22] M. Hahsler and K. Hornik. ‘New probabilistic interest measures for association rules ’. In: CoRR
abs/0803.0966 (2008).

[23] N. Harris. Visualizing DBSCAN Clustering .

[24] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction , 2nd ed. Springer, 2008.

https://link.springer.com/book/10.1007/978-3-319-14142-8
https://www.charuaggarwal.net/classbook.pdf
http://www.charuaggarwal.net/clusterbook.pdf
https://doi.org/10.1145/275487.275490
https://doi.org/10.1145/275487.275490
https://doi.org/10.1136/jamia.1998.0050373
https://www.subaru.ca/WebPage.aspx?WebSiteID=282&WebPageID=12912
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2011.html#ChengCLS11
https://towardsdatascience.com/apriori-association-rule-mining-explanation-and-python-implementation-290b42afdfc6
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2012.html#CranshawSHS12
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2012.html#CranshawSHS12
https://CRAN.R-project.org/package=clusterCrit
http://archive.ics.uci.edu/ml
https://doi.org/10.1186/s40294-016-0020-0
http://arxiv.org/abs/0803.0966
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/ElemStatLearn/

Chapter References 1199

[25] T. Hastie, T. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The LASSO and Generaliza-
tions. CRC Press, 2015.

[26] K.-W. Hsu et al. ‘Data Mining Based Tax Audit Selection: A Case Study of a Pilot Project at the Minnesota

Department of Revenue’. In: Real World Data Mining Applications. Cham: Springer International

Publishing, 2015, pp. 221–245. doi: 10.1007/978-3-319-07812-0_12.

[27] G. James et al. An Introduction to Statistical Learning: With Applications in R . Springer, 2014.

[28] A. Jawad, K. Kersting, and N. Andrienko. ‘Where Traffic Meets DNA: Mobility Mining Using Biological

Sequence Analysis Revisited’. In: Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. GIS ’11. Chicago, Illinois: Association for Computing

Machinery, 2011, pp. 357–360. doi: 10.1145/2093973.2094022.

[29] A.B. Jensen et al. ‘Temporal disease trajectories condensed from population-wide registry data covering

6.2 million patients’. English. In: Nature Communications 5 (2014). doi: 10.1038/ncomms5022.

[30] M.R. Keeler. Nothing to Hide: Privacy in the 21st Century. iUniverse, 2006.

[31] B. Kitts. ‘Product Targeting From Rare Events: Five Years of One-to-One Marketing at CPI’. In: Marketing
Science Conference (2005).

[32] B. Kitts. ‘The Making of a Large-Scale Ad Server’. In: Data Mining Case Studies Workshop and Practice
Prize 5. Proceedings of the IEEE Thirteenth International Conference on Data Mining Workshops.

Dallas, TX: IEEE Press, 2013.

[33] B. Kitts et al. ‘Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft’. In:

Annals of Information Systems (Special Issue on Data Mining in Real-World Applications). Springer, 2015,

pp. 181–201. doi: 10.1007/978-3-319-07812-0.

[34] H. T. Kung and D. Vlah. ‘A Spectral Clustering Approach to Validating Sensors via Their Peers in

Distributed Sensor Networks’. In: Int. J. Sen. Netw. 8.3/4 (Oct. 2010), pp. 202–208. doi: 10.1504/IJSNET.

2010.036195.

[35] O. Leduc and P. Boily. ‘Boosting with AdaBoost and Gradient Boosting ’. In: Data Action Lab Blog
(2019).

[36] J. Leskovec, A. Rajamaran, and J.D. Ullman. Mining of Massive Datasets. Cambridge Press, 2014.

[37] A.K. Maheshwari. Business Intelligence and Data Mining. Business Expert Press, 2015.

[38] Q.E. McCallum. Bad Data Handbook. O’Reilly, 2013.

[39] A. Ng and K. Soo, eds. Surviving a Disaster, in Numsense! algobeans, 2016.

[40] E.R. Omiecinski. ‘Alternative interest measures for mining associations in databases’. In: IEEE
Transactions on Knowledge and Data Engineering 15.1 (2003), pp. 57–69. doi: 10.1109/TKDE.2003.1161582.

[41] M. Orlowska et al. ‘A Comparison of Antioxidant, Antibacterial, and Anticancer Activity of the Selected

Thyme Species by Means of Hierarchical Clustering and Principal Component Analysis’. In: Acta
Chromatographica Acta Chromatographica 28.2 (2016), pp. 207–221. doi: 10.1556/achrom.28.2016.2.7.

[42] V. U. Panchami and N. Radhika. ‘A novel approach for predicting the length of hospital stay with

DBSCAN and supervised classification algorithms ’. In: ICADIWT. IEEE, 2014, pp. 207–212.

[43] G. Piatetsky-Shapiro. ‘Discovery, Analysis, and Presentation of Strong Rules’. In: Knowledge Discovery
in Databases. 1991.

[44] C. Plant et al. ‘Automated detection of brain atrophy patterns based on MRI for the prediction of

Alzheimer’s disease ’. In: NeuroImage 50.1 (2010), pp. 162–174.

[45] F. Provost and T. Fawcett. Data Science for Business. O’Reilly, 2015.

[46] A.M. Raja. ‘Penguins Dataset Overview - iris alternative ’. In: Towards Data Science (June 2020).

[47] M. Risdal. ‘Exploring Survival on the Titanic’. In: Kaggle.com (2016).

[48] C.F. Robert. Le choix bayésien - Principes et pratique. Springer-Verlag France, 2006.

[49] D. Robinson. ‘What’s the difference between data science, machine learning, and artificial intelligence?

’. In: Variance Explained (Jan. 2018).

https://doi.org/10.1007/978-3-319-07812-0_12
https://www.statlearning.com/
https://doi.org/10.1145/2093973.2094022
https://doi.org/10.1038/ncomms5022
https://doi.org/10.1007/978-3-319-07812-0
https://doi.org/10.1504/IJSNET.2010.036195
https://doi.org/10.1504/IJSNET.2010.036195
https://www.data-action-lab.com/2019/07/31/boosting-with-adaboost-and-gradient-boosting/
https://doi.org/10.1109/TKDE.2003.1161582
https://doi.org/10.1556/achrom.28.2016.2.7
http://dblp.uni-trier.de/db/conf/icadiwt/icadiwt2014.html#PanchamiR14
http://dblp.uni-trier.de/db/conf/icadiwt/icadiwt2014.html#PanchamiR14
http://dblp.uni-trier.de/db/journals/neuroimage/neuroimage50.html#PlantTOBMMBHE10
http://dblp.uni-trier.de/db/journals/neuroimage/neuroimage50.html#PlantTOBMMBHE10
https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95
http://kaggle.com
http://varianceexplained.org/r/ds-ml-ai/
http://varianceexplained.org/r/ds-ml-ai/

1200 19 Introduction to Machine Learning

[50] G. Schoier and G. Borruso. ‘Individual Movements and Geographical Data Mining. Clustering

Algorithms for Highlighting Hotspots in Personal Navigation Routes’. In: Computational Science and
Its Applications - ICCSA 2011. Ed. by Beniamino Murgante et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 454–465.

[51] E. Schubert et al. ‘DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN’. In:

ACM Trans. Database Syst. 42.3 (July 2017). doi: 10.1145/3068335.

[52] E. Siegel. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie or Die. Predictive Analytics

World, 2016.

[53] P.-N. Tan, V. Kumar, and J. Srivastava. ‘Selecting the Right Objective Measure for Association Analysis’.

In: Inf. Syst. 29.4 (June 2004), pp. 293–313. doi: 10.1016/S0306-4379(03)00072-3.

[54] L. Torgo. Data Mining with R, 2nd ed. CRC Press, 2016.

[55] Wikipedia. Association Rule Learning . 2020.

[56] Wikipedia. Cluster Analysis Algorithms .

[57] D.H. Wolpert. ‘The Lack of A Priori Distinctions Between Learning Algorithms’. In: Neural Computation
8.7 (1996), pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341.

[58] D.H. Wolpert and W.G. Macready. ‘Coevolutionary free lunches’. In: IEEE Transactions on Evolutionary
Computation 9.6 (2005), pp. 721–735. doi: 10.1109/TEVC.2005.856205.

[59] D. Woods. ‘bitly’s Hilary Mason on "What is A Data Scientist?" ’. In: Forbes (Mar. 2012).

https://doi.org/10.1145/3068335
https://doi.org/10.1016/S0306-4379(03)00072-3
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Cluster_analysis_algorithms
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1109/TEVC.2005.856205
https://www.forbes.com/sites/danwoods/2012/03/08/hilary-mason-what-is-a-data-scientist/#1189ca465502

	Introduction to Machine Learning
	Preliminaries
	Statistical Learning
	Association Rules Mining
	Classification & Regression
	Clustering
	Issues & Challenges
	R Examples
	Exercises
	Chapter References

