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by Fabrizio Donzelli, with contributions from Patrick Boily

This chapter contains an essential introduction to multivariable calculus.

The goal is to provide the readers interested in statistics and/or data

science with some basic mathematical tools that are at the base of the

algorithms and the mathematical models of statistical analysis. Theoreti-

cal details, such as rigorous proofs and definitions, will be kept at the

minimal level.

A more detailed and complete introduction to multivariable calculus is

found at the YouTube channel Calc with Fab and in [4, 3, 1].

2.1 Points, Vectors, Coordinates, Dimensions

We denote by ℝ𝑛
the 𝑛-dimensional (real) space. A point 𝑃 in ℝ𝑛

is

located using the orthogonal Cartesian coordinates (𝑥1 , 𝑥2 , · · · , 𝑥𝑛).*

This notation may be adapted according to the context. For instance,

we will often denote a specified point in R𝑛
by a = (𝑎1 , 𝑎2 , · · · , 𝑎𝑛), in

contrast with the notation x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛) which we reserve for a

generic point. The number 𝑛 of coordinates is the dimension of ℝ𝑛
.

Given two sets 𝐴 and 𝐵 (for examples, two regions in ℝ𝑛
) we write 𝐴 ⊆ 𝐵

if 𝐴 is a subset of 𝐵 (that is, 𝐴 is contained in 𝐵: every element of 𝐴 is

also in 𝐵, but the converse is not necessarily true). Let 𝑃 = (𝑎1 , · · · , 𝑎𝑛)
be a point in ℝ𝑛

, and 𝐷 ⊆ ℝ𝑛
. We write 𝑃 ∈ ℝ𝑛

if the point belongs to

the set 𝐷, otherwise we write 𝑃 ∉ ℝ𝑛
.

The real line ℝ contains intervals:

closed [𝑎, 𝑏], the set of all 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏;

open (𝑎, 𝑏), the set of all 𝑥 such that 𝑎 < 𝑥 < 𝑏;

“clopens” (𝑎, 𝑏] (𝑎 < 𝑥 ≤ 𝑏) and [𝑎, 𝑏) (𝑎 ≤ 𝑥 < 𝑏), and

unbounded (𝑎,+∞), (−∞, 𝑎), (−∞,+∞).

Figure 2.1: Intervals on the real line ℝ.

*
We assume some familiarity with most of the following notions, but we suggest reading

this short section before moving on to the rest of the chapter, as a refresher.

https://www.youtube.com/channel/UCHorQtnCoLb5TFWHJRbuz-g
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2.1.1 One Dimension

The (real) one-dimensional space is denoted by ℝ; it is represented by a

line, oriented from left to right along the directon along which values

increase. It is common to denote the position of the points along ℝ by 𝑥,

but one can choose another name for the variable.
1

1: We often use 𝑡 when the real line repre-

sents the passage of time, for instance.

The point with coordinate 𝑥 = 0 is known as the origin of the line.

Positive values of 𝑥 are located to the right of the origin, negative values

to the left, as in Figure 2.2.

Figure 2.2: The real line ℝ, with origin

and direction.

2.1.2 Two and Three Dimensions

The (real) plane ℝ2
is two-dimensional; we give it (Cartesian) coordinates

(𝑥, 𝑦), as shown in Figure 2.3.
2

The four plane sectors formed by the2: As was the case in one-dimensional

space, the notation of the coordinates may

change according to the context: (𝑥1 , 𝑥2)
is also used, for instance, but so are polar

coordinates (𝑟, 𝜃).

coordinate axes (red lines) are the plane’s quadrants, labeled with Roman

numerals in counterclockwise order.

Forℝ3
, we typically use the (Cartesian) coordinates (𝑥, 𝑦, 𝑧)or (𝑥1 , 𝑥2 , 𝑥3).3

3: Other options: spherical coordinates,

cylindrical coordinates.

Figure 2.3: The real plane ℝ2
, with origin

and quadrants (left); the real space ℝ3

(right).

In general, we do not display the coordinate axes.
4

4: Unless we do!

2.1.3 More Dimensions

We define the 𝑛-dimensional (real) space ℝ𝑛
as the space described by

Cartesian coordinates x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛). The point 𝟘 = (0, 0, · · · , 0) is

the origin of ℝ𝑛
, and it is the point of common intersection of the 𝑛

coordinate axes.

In principle, ℝ𝑛
is not a vector space, but it can be treated as such and

so we can perform vector algebra operation with elements of ℝ𝑛
(see

Chapter 3, Overview of Linear Algebra).
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2.2 Functions

Functions are the basic objects of calculus, and are the building blocks of

mathematical modelling. Functions are in a general sense input-output
machines, in the sense of the following general definition, which applies

beyond calculus.

If 𝐷 is a set of input values 𝑂 is the set of output values, then a function
𝑓 : 𝐷 → 𝑂 is a rule that assigns to each input element 𝑥 ∈ 𝐼, a unique
output value, which we denote by 𝑓 (𝑥). The notation of the function, the

input and output set can vary, as usual, according to the context. Once

𝑓 has been specified, we refer to 𝐷 as the domain of 𝑓 and to 𝑂 as its

codomain.

If 𝑓 : 𝐷 → 𝑂 is a function, the set 𝑓 (𝐷) = { 𝑓 (𝑥) | 𝑥 ∈ 𝐷} ⊆ 𝑂 is called

the range (or the image) of 𝑓 .

Examples

1. Let 𝑃 be the collection of patients in a COVID emergency hos-

pital, and 𝑂 = {𝑝(ositive), 𝑛(egative)} be the set of possible test

responses. We construct the “COVID-TEST” function 𝑇 : 𝑃 → 𝑂

as follows: If 𝑥 ∈ 𝑃,

𝑇(𝑥) =
{
𝑝, if patient 𝑥 tests positive

𝑛, if patient 𝑥 tests negative

In this example the output values are categorical, since they classify

the patients into a discrete set of (fixed) classes.
5

5: In statistics, it is often convenient to

represent categorical variables with nu-
meric values. For example, we can assign

𝑓 (𝑥) = 1 if the patient 𝑥 has a positive test,

𝑓 (𝑥) = 0 if their test is negative.

2. Let 𝑆 denote a sphere of arbitrary radius. A point on 𝑆 can be

located using two coordinates: its longitude and its latitude.
6

We

6: Assuming that a special point and great

circle through that point have been identi-

fied.

can then define the temperature function 𝑇 : 𝑆 → ℝ by

𝑇(longitude, latitude) = temperature at the point.

The temperature function is usually assumed to be continuous.
7

7: We will not be discussing this concept

except in an intuitive manner: a contin-

uous function is one in which there are

no ”jumps”. An interesting corollary is

that if we model the temperature on the

Earth in that manner, we can show that at

any given moment there are at least two

antipodal points which have exactly the

same temperature.

3. Probability theory is naturally expressed in the language of multi-

variate calculus (see Chapter 6). For instance, the density function
of the multivariate normal distribution in 2 uncorrelated variables

of expectation 0 is a function 𝑓𝜎1 ,𝜎2
: ℝ2 → ℝ defined by:

𝑓𝜎1 ,𝜎2
(𝑥, 𝑦) = 1

2𝜋𝜎1𝜎2

exp

(
−
𝑥2 + 𝑦2

2

)
.

The probability that a randomly selected point 𝑃 = (𝑥, 𝑦) from this

distribution falls in Ω ⊆ R2
is an integral:∬

Ω

𝑓𝜎1 ,𝜎2
(𝑥, 𝑦) 𝑑𝐴.

We will discuss such notions further in Section 2.6, 6.3, and 6.4.
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4. The following block of R code provides a display of the 3D surface

𝑧 = exp(−𝑥2 − 𝑦2) over {(𝑥, 𝑦) ∈ ℝ2 | −2 ≤ 𝑥, 𝑦 ≤ 2}.

3D plotting in R

library(plot3D) # for 3D plotting

M <- mesh(seq(-2, 2, length.out = 50),

seq(-2, 2, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- exp(-x^2-y^2)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Note: the domain of a function is part of the recipe, it is not automatically

defined by the function itself. However, in calculus, when we use the

word domain, we usually mean the largest set 𝐷 𝑓 to which the function

could be applied. For any 𝑥 in 𝐷 𝑓 , there is a unique output 𝑓 (𝑥).88: That is not necessarily the case in the

general framework of multivalued func-
tions, which, while quite interesting from

a geometrical perspective, are outside the

scope of this document.

Examples

1. What is the (largest possible) domain 𝐷 𝑓 of the function defined

by 𝑓 (𝑥, 𝑦) = 1

𝑥+𝑦 ? We cannot divide by zero, so the denominator

𝑥 + 𝑦 can never be zero when we apply the function 𝑓 (𝑥, 𝑦); 𝐷 𝑓

therefore consists of all pairs (𝑥, 𝑦) expect for those satisfying the

equation 𝑥 + 𝑦 = 0, whose solution set is the line 𝑦 = −𝑥. Thus,

𝐷 𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 + 𝑦 ≠ 0};

in other words, the domain consists of the region above the line

𝑦 = −𝑥 and the region below the line 𝑦 = −𝑥.

2. What is the domain 𝐷 𝑓 of 𝑓 (𝑥, 𝑦, 𝑧, 𝑤) = ln(𝑤) + 𝑥 + 𝑦 + 𝑧? Recall

that the (real) logarithm is defined only for positive input values.

Hence the domain is 𝐷 𝑓 = {(𝑥, 𝑦, 𝑧, 𝑤) ∈ ℝ4 | 𝑤 > 0}.
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2.3 Graphical Representation of Functions

Human eyes (and brains) have a difficult time parsing large data files

directly; we typically rely on graphical representations to make sense of

data (see Chapter 18 and [2] for a lot more information on the topic).

Graphical representations are useful in calculus as well; we review a few

standard ways of providing these for functions of several variables.

2.3.1 One Variable: Sketch the Graph

Let 𝑓 : (𝑎, 𝑏) → ℝ be a function of one variable 𝑥. The graph of 𝑓 is the

curve of equation 𝑦 = 𝑓 (𝑥); a point in the graph is given by coordinates

(𝑥, 𝑓 (𝑥)), for 𝑥 ∈ (𝑎, 𝑏).

Example Sketch the graph of the function 𝑓 : [0,∞) → ℝ defined by

𝑓 (𝑥) = 𝑒−𝑥 for 𝑥 ≥ 0.

Does the point (1, 2) belong to the graph of 𝑓 ?9
9: This is essentially an example of the

exponential distribution.

Note that the domain is restricted to the half-real line 𝑥 ≥ 0; since the

exponent is negative, 𝑒−𝑥 decays to 0 as 𝑥 → ∞ (quite rapidly in fact).

x <- seq(0,4,0.1)

y <- exp(-x)

plot(x, y, type=’l’, col = rainbow(25), lty=1)

To answer the last question, we evaluate 𝑓 (1); it is equal to 𝑒−1 ≠ 2, and

so the point is not on the graph.

2.3.2 Two Variables: Graphs or Level Curves

For function of two variables, there are two convenient ways to provide a

graphical representation.
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The Graph of a Function

Let 𝑓 : 𝐷 → ℝ be a function of two variables 𝑥, 𝑦, where 𝐷 ⊆ ℝ2
. The

graph of 𝑓 is the surface of equation 𝑧 = 𝑓 (𝑥, 𝑦).

A point on the graph is given by coordinates (𝑥, 𝑦, 𝑓 (𝑥, 𝑦)), where

(𝑥, 𝑦) ∈ 𝐷. We can interpret the graph as a hilly region, in which case

(𝑥, 𝑦) are the coordinates of the position with reference to 𝑥𝑦−plane, and

𝑧 is the altitude.

Example Sketch the graph of the function 𝑓 : 𝐷 → ℝ defined by

𝑓 (𝑥, 𝑦) = 𝑒𝑥+𝑦 , for − 1 ≤ 𝑥 ≤ 1,−1 ≤ 𝑦 ≤ 1.

Interpret the graph.

We can recycle the code from one of the previous examples.

library(plot3D)

M <- mesh(seq(-1, 1, length.out = 50),

seq(-1, 1, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- exp(x+y)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Level (Contour) Curves

Let 𝑓 : 𝐷 ⊆ ℝ2 → ℝ. Depending on the nature of 𝑓 , the graph may be

difficult to read (or to plot). An alternative may be to sketch the level (or

contour) curves.
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Let 𝑐 be a value in the range of 𝑓 , which is to say, a possible output value
of 𝑓 . Generically, the equation 𝑓 (𝑥, 𝑦) = 𝑐 is a curve in the 𝑥𝑦−plane, a

level curve (or contour curve) of 𝑓 , which consists of all (and only) the

points (𝑥, 𝑦) ∈ 𝐷 where the function takes the value 𝑐.

Example Plot a few level curves of the function 𝑓 : ℝ2 → ℝ defined by

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦.

For any fixed value 𝑐, the equation 𝑥+𝑦 = 𝑐 can be rewritten as 𝑦 = −𝑥+𝑐.
The level curves of 𝑓 are thus all the lines in the 𝑥𝑦−plane with slope −1.

Along each line of equation 𝑦 = −𝑥 + 𝑐, the value of 𝑓 is given by the

𝑦−intercept.

Here is a sample code for plotting the level curves of 𝑓 ; the numbers

displayed on top of the curves are the values 𝑐 taken by the function

along the curves displayed.

x <- seq(-5,5,length.out=50)

y <- seq(-5,5,length.out=50)

z <- outer(x,y,"+")

cols <- hcl.colors(10, "Inferno") #color palette

contour(x,y,z,col=cols)

We can use level curves to estimate the values of a function in a certain

region of the domain.

Example Given the following level curves of 𝑓 (𝑥, 𝑦) = sin(𝑥) + cos(𝑦),
estimate the value of 𝑓 at 𝐴 and 𝐵.

Level curves in R
x <- seq(-5,5,length.out=50)

y <- seq(-5,5,length.out=50)

z <- outer(sin(x),cos(y),"+")

cols <- hcl.colors(10, "Inferno") #color palette
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contour(x,y,z, col=cols)

points(-2,2,col=’blue’,pch=20)

points(0,3,col=’blue’,pch=20)

points(-2,1.7,col=’blue’,pch="A")

points(0,2.7,col=’blue’,pch="B")

The point𝐴 is located between the level curves 𝑓 (𝑥, 𝑦) = −1 and 𝑓 (𝑥, 𝑦) =
−1.5. Since it is slightly closer to the second curve, we can estimate

𝑓 (𝐴) ≈ −1.3.

The point 𝐵 seems to sit exactly along the level curve 𝑓 (𝑥, 𝑦) = −1, hence

𝑓 (𝐵) ≈ −1.
10

10: Of course, we can double check this

estimate by finding the coordinates of 𝐴

and 𝐵, and computing 𝑓 (𝐴) and 𝑓 (𝐵).
Example Level curves may degenerate to lower dimensional regions,

or, even “worse”, be empty when 𝑐 is not in the range of 𝑓 .

As an illustration, consider the function 𝑓 : ℝ2 → ℝ, 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
:

for 𝑐 > 0, the level curve 𝑥2 + 𝑦2 = 𝑐 is the circle of center (0, 0)
and radius

√
𝑐;

the level curve 𝑥2 + 𝑦2 = 0 degenerates to the point (0, 0), the only

point whose coordinates solve the equation 𝑥2 + 𝑦2 = 0;

for 𝑐 < 0, the level curve 𝑥2+𝑦2 = 𝑐 does not exist, since 𝑥2+𝑦2 ≥ 0

for all real values of 𝑥 and 𝑦.

2.3.3 Three or More Variables

The more variables we have, the more challenging it can be to provide

graphical representations of a function.

However both graphs and level sets can be defined, in purely mathemati-

cal terms, over an arbitrary number of variables, without needing to be

visualized.
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The Graph of a Function

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ be a function of 𝑛 variables x = (𝑥1 , · · · , 𝑥𝑛). The

graph of 𝑓 is the 𝑛−dimensional hypersurface in ℝ𝑛+1
defined by the

equation 𝑤 = 𝑓 (x) = 𝑓 (𝑥1 , · · · , 𝑥𝑛), for x ∈ 𝐷. A point on the graph is

therefore identified by coordinates

(x, 𝑓 (x)) = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛 , 𝑓 (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)),

with x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛) ∈ 𝐷. We can interpret 𝑓 as a way of bending

and stretching the domain 𝐷 into a new region embedded in ℝ𝑛+1
.
11

11: We illustrate this for 𝑛 = 2 below:

The cone is a distortion in ℝ3
of the ring

in R2
.

Level (Contour) Sets

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and let 𝑐 be a value in the range of 𝑓 . Generically,

the equation 𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑛) = 𝑐 is an 𝑛 − 1 dimensional region

(hypersurface) in𝐷, called a level set (or contour set) of 𝑓 , which consists

of all (and only) the points x = (𝑥1 , . . . , 𝑥𝑛) ∈ 𝐷 where the function

takes the value 𝑐.

Level sets may degenerate to lower dimensional regions < 𝑛 − 1, or be

empty when 𝑐 is not in the range of 𝑓 .

Example Describe the level sets of the function 𝑓 : ℝ3 → ℝ defined by

𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2
. Are there “degenerate” level sets?

In ℝ3
, the equation of the 2D sphere of radius 𝑅 > 0 and centre at the

origin 0 = (0, 0, 0) is 𝑥2+ 𝑦2+𝑧2 = 𝑅2
. Thus, the level sets of the functions

consists of spheres all centered at the origin.

If 𝑅 = 0, the equation 𝑥2 + 𝑦2 + 𝑧2 = 0 is satisfied only for the zero

dimensional set {(𝑥, 𝑦, 𝑧) | 𝑥 = 𝑦 = 𝑧 = 0}; this level set is degenerate.

2.3.4 Scalar-Valued Functions and Vector Fields

Let 𝐷 ⊆ ℝ𝑛
be a 𝑛-dimensional domain. A real valued function 𝑓 :

𝐷 → ℝ will be called a function (or a scalar field), in contrast with a

vector valued function F : 𝐷 → ℝ𝑛
, which we call a vector field.

Figure 2.4: An illustration of the 2D vector

field F(𝑥, 𝑦) = (sin 𝑦, sin 𝑥) [author un-

known].

Vector fields play a crucial role in vector calculus and its applications to

physics and geometry, but this is out of scope for our purposes. We refer

again the reader to [4].
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Figure 2.5: Difference quotient and slope of the tangent to 𝑦 = 𝑓 (𝑥) at 𝑃(𝑎, 𝑓 (𝑎)).

2.4 Derivatives

After an introduction to functions, the next step is to define the derivative,

which provides a unified way of measuring the rate of change of a function

with respect to its variables.

2.4.1 Limit of Difference Quotients

Let 𝑓 : (𝑐, 𝑑) → ℝ be a function of one variable 𝑥 and 𝑥 = 𝑎 ∈ 𝐷 𝑓 = (𝑐, 𝑑).
The derivative of 𝑓 (𝑥) at 𝑥 = 𝑎 is denoted by 𝑓 ′(𝑎) and is defined as the

limit (if it exists) of the difference quotients

𝑓 ′(𝑎) = lim

Δ𝑥→0

𝑓 (𝑎 + Δ𝑥) − 𝑓 (𝑎)
Δ𝑥

.

The number 𝑓 ′(𝑎) is a measure of the rate of change of 𝑓 at 𝑥 = 𝑎.

Geometrically, the value 𝑓 ′(𝑎) is the slope of the tangent line to the graph

of 𝑓 at the point (𝑎, 𝑓 (𝑎)).

In general, the value of the derivative of 𝑓 depends on 𝑥; we therefore

define the derivative function 𝑓 ′ : (𝑐, 𝑑) → R, which also carries the

meaning of slope function.

Example Consider the exponential function 𝑓 defined by 𝑓 (𝑥) = 𝑒3𝑥
on

ℝ, whose graph is represented by the red curve below.

x <- seq(0, 3, length.out=50)

y <- exp(3*x)

plot(x, y, type=’l’, col=rainbow(25), lty=1)

lines(x, 3*exp(3)*x-3*exp(3)+exp(3),

col=’darkblue’, lty=3)

points(1, exp(3), pch=20, col=’darkblue’)

lines(x, 3*exp(6)*x-3*2*exp(6)+exp(6),

col=’darkgreen’, lty=3)

points(2, exp(6), pch=20, col=’darkgreen’)



2.4 Derivatives 117

The graph also shows two tangent lines. The slope of each tangent line is

the rate of change of 𝑓 at 𝑥. By comparing the slopes of the two tangent

lines, we observe that the rate of change at 𝑥 = 2 is much larger than the

rate of change at 𝑥 = 1, in accordance with the fact that the exponential

function grows quite quickly.

The process of calculating the derivative of 𝑓 is sometimes referred as

differentiation. The derivative is denoted in two ways:

𝑑𝑓 (𝑥)
𝑑𝑥

or 𝑓 ′(𝑥),

it is up to the reader which one (if not both) to use.

2.4.2 Rules of Differentiation

But there is no need to use the definition via the limit of differential quo-

tients to compute the derivative of a function. The set of differentiation
rules are recalled here for readers’ convenience.

12
12: A detailed discussion about differenti-

ation can be found in [6, 3].

In the following list, 𝑥 denotes the variable, while 𝑎 and 𝑛 are constants.

1. For a constant function 𝑓 , 𝑓 ′(𝑥) = 0

2. Power rule: (𝑥𝑛)′ = 𝑛𝑥𝑛−1

3. Exponentials: (𝑒 𝑎𝑥)′ = 𝑎𝑒 𝑎𝑥

4. Logarithms: (ln(𝑥))′ = 1

𝑥

5. Product rule: ( 𝑓 (𝑥)𝑔(𝑥))′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥)
6. Quotient rule:

(
𝑓 (𝑥)
𝑔(𝑥)

)′
=

𝑓 ′(𝑥)𝑔(𝑥)− 𝑓 (𝑥)𝑔′(𝑥)
𝑔(𝑥)2

7. Chain rule: 𝑓 (𝑔(𝑥))′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

The chain rule, for instance, is important for understanding the construc-

tion of the backpropagation algorithm of neural network models (see

Chapter 31 and [5], say).

Example Using the rules, compute the derivative of 𝑓 (𝑥) = 𝑒−𝑥
2

.
13

13: We will stop using the convoluted

phrasing “the function 𝑓 : 𝐴 → 𝐵 de-

fined by 𝑓 (𝑥) = ...” and substitute instead

“the function 𝑓 (𝑥) = ...” when the context

allows it.

What is the value of the rate of change of 𝑓 (𝑥) at 𝑥 = 2?

From the exponentials derivative rule and the chain rule, we obtain:

𝑓 ′(𝑥) = (𝑒−𝑥2)′ = 𝑒−𝑥
2(−𝑥2)′ = −2𝑥𝑒−𝑥

2
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At 𝑥 = 2, the rate of change of 𝑓 (𝑥) is

𝑓 ′(2) = −2 × 2 × 𝑒−2
2

= −0.073

The slope (or rate of change) at 𝑥 = 2 is negative, as expected by

inspecting the shape of the bell curve representing the curve 𝑦 = 𝑒−𝑥
2

.

Its value is “small”, which is also expected since the function decays to

zero quite rapidly.

x = seq(-3, 3, length.out=50)

y = exp(-x^2)

plot(x, y, type=’l’, col = rainbow(25), lty=1)

lines(x, -2*2*exp(-2**2)*(x-2)+exp(-2**2), col=’darkgreen’,

lty=3)

points(2, exp(-2**2), pch=20, col=’darkgreen’)

2.4.3 Partial Derivatives

How do we expand this definition to functions of several variables? In

this case, we are interested in defining and computing the rate of change

with respect to any of the variables. This is done via partial derivatives
which, computationally speaking, are a straightforward generalization

of the notion of derivative of a function of one variable.

Partial Derivatives of Order 1

Let 𝑓 (𝑥1 , · · · , 𝑥𝑛), and pick any variable 𝑥𝑘 , for some 𝑘 ∈ {1, · · · , 𝑛},
with respect to which we want to compute the rate of change of 𝑓 . We can

use the one-variable differentiation rules from Section 2.4.2 by treating

the remaining variables as constant.

The partial derivative of order one of 𝑓 with respect to the variable 𝑥𝑘 ,

denoted in two alternative ways as follows:

lim

Δ𝑥→0

𝑓 (𝑥1 , . . . , 𝑥𝑘 + Δ𝑥, . . . , 𝑥𝑛) − 𝑓 (𝑥1 , . . . , 𝑥𝑘 , . . . , 𝑥𝑛)
Δ𝑥

=
𝜕 𝑓

𝜕𝑥𝑘
= 𝑓𝑥𝑘 .
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Example Compute the 3 partial derivatives of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 3𝑥𝑧.

We have 3 variables, and we compute the corresponding partial derivative

for each of them:

𝑓𝑥(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑥
= 2𝑥𝑦 + 3𝑧

𝑓𝑦(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑦
= 𝑥2

𝑓𝑧(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑧
= 3𝑥

Tangent Plane

If 𝑓 : ℝ → ℝ is differentiable at 𝑥 = 𝑎, the equation of the unique tangent
line to the graph 𝑦 = 𝑓 (𝑥) at 𝑃(𝑎, 𝑓 (𝑎)) is

𝑦 = 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 (𝑎).

More generally, if 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ is differentiable at x = a, there are

infinitely many tangent lines to its graph 𝑤 = 𝑓 (x) at 𝑃(a, 𝑓 (a)). All of

these lines lie in the same unique tangent hyperplane.

When 𝑛 = 2, we have a tangent plane to 𝑧 = 𝑓 (𝑥, 𝑦) at 𝑃(𝑎, 𝑏, 𝑓 (𝑎, 𝑏));
it is the plane that rests on the surface, touching it only at the point of

tangency, as illustrated in the figure below.
14

14: Near the point of tangency, the surface

resembles the tangent plane: this is partly

why that we’ve long believed the Earth to

be flat!

Figure 2.6: Tangent placn to 𝑧 = −𝑥2 + 𝑦2

at (0, 1, 1), seen from two different angles.

When such a plane exists, as do the partial derivatives, the surface is said

to be differentiable at the point in question.

If 𝑧 = 𝑓 (𝑥, 𝑦) is a differentiable surface 𝑃(𝑎, 𝑏, 𝑓 (𝑎, 𝑏)), the equation of

the tangent plane to the surface at point 𝑃 is

𝑧 = 𝑓 (𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏).

Example Find the tangent plane to 𝑧 =
√
𝑥 − 𝑦 at 𝑃(2, 1, 1)

First, we verify that 𝑃 is indeed on the surface. Since 𝑎 = 2 and 𝑏 = 1,

we simply need to check that

√
𝑎 − 𝑏 =

√
2 − 1 = 1, which is indeed the

case.
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Next we compute the partial derivatives

𝑓𝑥(𝑥, 𝑦) =
1

2

√
𝑥 − 𝑦 and 𝑓𝑦(𝑥, 𝑦) = − 1

2

√
𝑥𝑥 − 𝑦 .

Thus

𝑓𝑥(𝑎, 𝑏) = 𝑓𝑥(2, 1) =
1

2

√
2 − 1

=
1

2

and 𝑓𝑦(𝑎, 𝑏) = 𝑓𝑦(2, 1) = − 1

2

√
2 − 1

= −1

2

,

so the equation of the tangent plane is

𝑧 = 𝑓 (2, 1) + 𝑓𝑥(2, 1)(𝑥 − 2) + 𝑓𝑦(2, 1)(𝑦 − 1)

= 1 + 1

2

· (𝑥 − 2) − 1

2

(𝑦 − 1) = 1

2

(1 + 𝑥 − 𝑦).

When the partial derivatives do not exist at a particular point on the

surface, then either there is no tangent plane or it is not unique.

For example, the partial derivatives of 𝑓 (𝑥, 𝑦) = 2 −
√
𝑥2 + 𝑦2

are not

defined when (𝑥, 𝑦) = (0, 0) (which is in the domain of 𝑓 ); graphically,

this translates into more than one tangent plane at the vertex of the cone

𝑧 = 2 −
√
𝑥2 + 𝑦2

, as shown below.

Figure 2.7: Two tangent planes at the ver-

tex of the cone 𝑧 = 2 −
√
𝑥2 + 𝑦2

.

Partial Derivatives of Order 2

In calculus problems,
15

it is convenient to have at hand the partial15: For example, in optimization.

derivatives of order two. Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and pick any two

variables 𝑥ℎ , 𝑥𝑘 , for 𝑘, ℎ ∈ {1, 2, · · · 𝑛}.

The partial derivative of order two with respect to 𝑥ℎ and 𝑥𝑘 (in that

order) is the function

𝑓𝑥ℎ𝑥𝑘 (𝑥1 , · · · , 𝑥𝑛) =
𝜕2 𝑓 (𝑥1 , · · · , 𝑥𝑛)

𝜕𝑥𝑘𝜕𝑥ℎ

obtained by first computing the partial derivative with respect to 𝑥ℎ , and

then the partial derivative of that partial derivative with respect to 𝑥𝑘 .

But what if, when computing a partial derivative of order two, we

mistakenly change the order of differentiation with respect to the two

chosen variables?
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It turns out that for sufficiently regular functions the order does not

matter, thanks to Clairaut’s Theorem, which is explained in Figure 2.8;

“higher order” means that we can keep differentiating 𝑓 ,16 obtaining 16: When the function is differentiable, it

needs to be added.
partial derivatives of order 3, 4, ... and so on.

Figure 2.8: Illustration of Clairaut’s theo-

rem in 2 variables.

Clairaut’s Theorem applies to the “standard functions” that we introduce

in calculus courses, obtained by combining polynomials, rational funtions,

trigonometric functions, exponentials and logarithmig functions, analytic

functions (power series), etc.

Example Consider such a standard function of 3 variables (𝑥, 𝑦, 𝑧). In

theory, 𝑓 has 9 partial derivatives of order 2:

𝑓𝑥𝑥 , 𝑓𝑥𝑦 , 𝑓𝑥𝑧 , 𝑓𝑦𝑥 , 𝑓𝑦𝑦 , 𝑓𝑦𝑧 , 𝑓𝑧𝑥 , 𝑓𝑧𝑦 , 𝑓𝑧𝑧

But thanks to Clairaut’s Theorem, we have:

𝑓𝑥𝑦 = 𝑓𝑦𝑥

𝑓𝑥𝑧 = 𝑓𝑧𝑥

𝑓𝑦𝑧 = 𝑓𝑧𝑦

We only need to compute 6 partial derivatives of order 2 to obtain them

all!

2.4.4 Gradients

From the point of view of data analysis, the most important vector fields

are the gradients of multivariate functions 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ.

The gradient ∇ 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
is defined by:

17
17: Pronounced “nabla”.

∇ 𝑓 (𝑥1 , · · · , 𝑥𝑛) = ⟨ 𝑓𝑥1
(𝑥1 , · · · , 𝑥𝑛), · · · , 𝑓𝑥𝑛 (𝑥1 , · · · , 𝑥𝑛).⟩

The ⟨...⟩ notation is used to distinguish vector fields (and vectors) from

points in R𝑛
, which are denoted using (...).18 18: The gradient is not only a way to col-

lect the first order partial derivatives of

a function into a vector, but it carries im-

portant geometrical information about the

function, as we shall soon see.
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Example We can easily ompute the gradient of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 𝑧,

and evaluate it at (−1, 1, 2).

Indeed,

∇ 𝑓 (𝑥, 𝑦, 𝑧) = ⟨2𝑥𝑦, 𝑥2 , 1⟩.

At (−1, 1, 2), the gradient becomes a 3-dimensional vector:

∇ 𝑓 (−1, 1, 2) = ⟨2 · (−1) · 1, (−1)2 , 1⟩ = ⟨−2, 1, 1⟩.

Gradient and Level Sets

There is a crucial property linking the gradient of a function 𝑓 : 𝐷 ⊆
ℝ𝑛 → ℝ𝑛

and its level sets: wherever ∇ 𝑓 (x) ≠ 0, the gradient is perpen-
dicular to the level sets of 𝑓 .

More precisely, given a point a = (𝑎1 , · · · , 𝑎𝑛) ∈ 𝐷, if ∇ 𝑓 (a) ≠ 0 =

(0, . . . , 0), then ∇ 𝑓 (𝕒) ⊥ 𝐿a, where 𝐿a is the level set of 𝑓 through a. In

ℝ2
, we can visualize this property quite easily.

Example Consider the function 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
, whose level curves

are concentric circles. The gradient vector field is represented by the

vectors in Figure 2.9. Since ∇ 𝑓 )(𝑥, 𝑦) = ⟨2𝑥, 2𝑦⟩, the gradient is a radial

vector field,
19

and the orthogonality is a simple consequence of Euclidean19: The vectors point along the radii of the

level circles.
geometry.

20

20: A radius meets its circle orthogonally

[3].

Figure 2.9: The gradient ∇ 𝑓 = ⟨2𝑥, 2𝑦⟩ is

perpendicular to the level sets 𝑥2 + 𝑦2 = 𝑐,
as is illustrated with (𝑥, 𝑦) = (−1, 0).

2.4.5 Directional Derivatives

In studying a function whose domain 𝐷 is a region of 𝑛−dimensional

space ℝ𝑛
, we usually choose 𝑛 preferred pairwise orthogonal direc-

tions, corresponding to the 𝑛 cartesian coordinates (𝑥1 , · · · , 𝑥𝑛). Those

directions are given by the canonical basis vectors

e1 = ⟨1, 0, · · · , 0⟩
...

e𝑛 = ⟨0, 0, · · · , 1⟩
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Note that each canonical basis vector is of length 1. In ℝ3
we also denote

the canonical basis by {e1 , e2 , e3} = {i, j, k}.

The rate of change of 𝑓 along the direction e𝑘 is the partial derivative

𝑓𝑥𝑘 . We can also use any direction u with unit length. We can find the

appropriate formula using “minimally intuitive’ ’ reasoning.
21

21: To quote Dr. De Oliveira.

The vector u is a linear combination of the basis elements:

u = 𝑐1e1 + · · · + 𝑐𝑛e𝑛 .

As we have discussed, the rate of change of 𝑓 along e𝑘 is 𝑓𝑥𝑘 . If u is

of length 1, we can interpret the linear combination above as a signed
weighted average of the canonical basis vectors e𝑘 ; consequently, it is

reasonable to define the rate of change of 𝑓 along u as the signed weighted

average of the partial derivatives 𝑓𝑥𝑘 , with the same coefficients 𝑐𝑘 .
22

22: The proof that this indeed the right

approach to take is an easy consequence

of the chain rule.

Link With the Gradient

Given a unit vector

u = 𝑐1e1 + · · · + 𝑐𝑛e𝑛 ,

the directional derivative of 𝑓 along u is

𝐷u 𝑓 (𝑥1 , · · · , 𝑥𝑛) = 𝑐1 𝑓𝑥1
(𝑥1 , · · · , 𝑥𝑛) + · · · + 𝑐𝑛 𝑓𝑥𝑛 (𝑥1 , · · · , 𝑥𝑛).

Using the dot product of vectors, we can also write

𝐷u 𝑓 (𝑥1 , · · · , 𝑥𝑛) = ∇ 𝑓 (𝑥1 , . . . , 𝑥𝑛) · u.

Example What is the directional derivative of 𝑓 (𝑥, 𝑦) = cos(𝑥𝑦)+ 𝑦 along

the unit vector u = 1√
2

⟨1, 1⟩ at the point (1, 1)?

We start computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦) = ⟨−𝑦 sin(𝑥𝑦),−𝑥 sin(𝑥𝑦) + 1⟩.

The directional derivative as a function (that is, for arbitrary 𝑥, 𝑦) is

𝐷u 𝑓 (𝑥, 𝑦) = ∇ 𝑓 (𝑥, 𝑦) · u = ⟨−𝑦 sin(𝑥𝑦),−𝑥 sin(𝑥𝑦) + 1⟩ · 1√
2

⟨1, 1⟩

= − 1√
2

𝑦 sin(𝑥𝑦) + 1√
2

(−𝑥 sin(𝑥𝑦) + 1).

At 𝑥 = 1, 𝑦 = 1 we obtain

𝐷u 𝑓 (1, 1) = − 1√
2

sin(1) + 1√
2

(−1 sin(1) + 1) = −
√

2 sin(1) + 1√
2

Minimum and Maximum Rate of Change

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a = (𝑎1 , · · · , 𝑎𝑛) ∈ 𝐷 with ∇ 𝑓 (a) ≠ 0. The

maximum rate of change of 𝑓 at a occurs along the direction of the



124 2 Multivariate Calculus for Data Analysis

gradient,

∇ 𝑓 (a)
| |∇ 𝑓 (a)| | ,

while the minimum rate of change of 𝑓 at a occurs along the opposite

direction.

To understand this last statement let us reason in the case of a function

of two variables whose graph 𝑧 = 𝑓 (𝑥, 𝑦) is a surface. In order to climb

or go down the hill along the steepest way, we move perpendicularly to

the contour line of the hill located at a certain height. The orthogonal

direction is given by the gradient.
23

23: This property is crucial in understand-

ing the gradient descent algorithm that

searches for the minimum values of a func-

tion (the cost function). See Chapter 31, A
Deep Learning Launchpad.

Figure 2.10: Gradient descent search for

the minimum of 𝑧 = (𝑥2+𝑦2) exp(𝑥4−𝑦4)
[5].

Example What is the maximum rate of change of 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
at

(1, 1)?

We start with the calculation of the gradient

∇ 𝑓 (𝑥, 𝑦) = ⟨2𝑥, 2𝑦⟩.

At (𝑥, 𝑦) = (1, 1), the gradient is

∇ 𝑓 (1, 1) = ⟨2, 2⟩,

the unit vector corresponding to the direction of maximum rate of change

is thus

u = ∇ 𝑓 (1, 1)| |∇ 𝑓 (1, 1)| | 1√
2

⟨1, 1⟩.

The value of the maximum rate of change is thus given by:

𝐷u 𝑓 = ∇ 𝑓 (1, 1) · u = ∇ 𝑓 (1, 1) = ⟨2, 2⟩ · 1√
2

⟨1, 1⟩ = 2

√
2.

For a general 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a ∈ 𝐷 such that ∇ 𝑓 (a) ≠ 0, the value

of the maximum rate of change of 𝑓 at a is | |∇ 𝑓 (a)| |; conversely, the

minimum rate of change of 𝑓 at a is −||∇ 𝑓 (a)| |.
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2.5 Optimization

Optimization problems arise in many areas of sciences and mathemat-

ics.

1. In regression analysis, we minimize a “cost function” in order to

find the parameters that best fit the available data (see Chapter 8);

2. in machine learning, we use algorithms to adjust the learning

parameters, again by minimizing a cost function (see Chapters 19,

20, 21, and 31);

3. in general relativity, objects move along geodesics, which are the

trajectories of minimal length, and

4. in geometry, the shortest path joining two points on a sphere is the

great circle passing through the points.
24

24: These are crucial to navigation, espe-

cially when it comes to determining the

fastest and cheapest air routes between

two cities.

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ. The goal of optimization is to find where 𝑓 reaches

its maximum and minimum values, and to determine these values as

well.
25

25: We provide a more in-depth look at

optimization in Chapter 5.

Example In linear regression, we construct a linear model, in which

a dependent variable (the response) is predicted by the independent

variables (predictors) by means of a linear function.

Consider the case when we have only one independent variable, de-

noted by 𝑥. The goal is to find the linear relation that best determines the

value of the response 𝑦 as a function of 𝑥: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, where 𝜀 is

the error component of the model.
26

The regression goal is to determine 26: In practice, the relation between 𝑥 and

𝑦 is unlikely to be exact, and the error

component (which relies of distribution

parameters) is part and parcel of the prob-

lem. We will discuss this in much more

detail in Chapter 8.

the optimal model parameters 𝛽0 and 𝛽1. But what does optimal mean

in this context?

Let (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, · · · , 𝑁 , be the observed/available data. In the ordinary
least squares framework, the best estimate of the true parameters 𝛽0, 𝛽1

(assuming that the linear model was appropriate in the first place) are

the values minimizing the residual sum of squares:

𝑄(𝛽0 , 𝛽1) =
𝑁∑
𝑘=1

(𝛽0 + 𝛽1𝑥𝑘 − 𝑦𝑘)2.

In the rest of this section, we will review a few of the standard concepts

and methods for solving optimization problems, which come in two

flavours:

1. analytical methods, which are based on differential calculus –

they yield exact solutions, but fail in practice when the underlying

model is too complicated,
27

and 27: See Chapter 5 for more information.

2. numerical methods which provide approximate solutions when

that is the case.
28

28: See Chapter 4 for more information.

2.5.1 Critical Points

The properties of gradient mentioned above require that the gradient not

be zero at the point of interest. But observations where the gradient is zero
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are also important. These “equilibrium” points are location candidates

for finding function’s extrema (max/min).

Throughout, let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a = (𝑎1 , . . . , 𝑎𝑛) ∈ 𝐷. The latter is

a critical point of 𝑓 if

∇ 𝑓 (a) = 0 or ∇ 𝑓 (a) does not exist.

The latter situation occurs at the cone’s apex in Figure 2.7, for instance.

In term of equations, this means that x = (𝑥1 , . . . , 𝑥𝑛) = (𝑥1 , . . . , 𝑥𝑛) = a
is a solution of the system

𝑓𝑥1
(𝑎1 , · · · , 𝑎𝑛) = 0

...

𝑓𝑥𝑛 (𝑎1 , · · · , 𝑎𝑛) = 0.

In general situations, it is typically somewhat difficult to find the critical

points of a function, for two reasons:

1. the system of equations encoded in ∇ 𝑓 = 0 is often **non-linear**,

and so we can not use linear algebra methods to solve it;

2. but even when the system is linear, if the number of variables is

large, it may be time consuming to use the Gauss-Jordan algorithm

to obtain solution(s).
29

29: See Chapter 3 for details.

We thus often have to rely on numerical solvers: the good news is

that most programming languages come with libraries that do the work

behind the scenes. But it remains important to have a basic understanding

of the underlying mathematics, if we want to make conscientious use of

such libraries.

Example Find the critical points of 𝑓 (𝑥, 𝑦) = sin(𝑥𝑦). Plot the graph

and the contour curves of 𝑓 as a solution.

We start by computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦) = ⟨𝑦 cos(𝑥𝑦), 𝑥 cos(𝑥𝑦)⟩.

Next, we solve the system ∇ 𝑓 = 0, which consists of the following

equations:

𝑦 cos(𝑥𝑦) = 0 and 𝑥 cos(𝑥𝑦) = 0.

The first of these has two possible solutions: 𝑦 = 0 or cos(𝑥𝑦) = 0.

Substituting 𝑦 = 0 in the second equation yields 𝑥 cos(0) = 𝑥 = 0, which

implies that 𝑥 = 0 as well. Thus, 𝑃 = (0, 0) is a critical point of 𝑓 .

If cos(𝑥𝑦) = 0, then 𝑥𝑦 = 𝜋
2
+𝑛𝜋, which automatically satisfies the second

equation. We have thus found an infinite collection of critical points of 𝑓 ,

namely all the points located along the the hyperbolas 𝑥𝑦 = 𝜋
2
+ 𝑛𝜋. If

we let 𝑥𝑦 = 𝑡, we see in fact that the graph of 𝑓 looks like a “distorted

cosine wave” drawn along each hyperbola.
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# graph

library(plot3D)

M <- mesh(seq(-2, 2, length.out = 50),

seq(-2, 2, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- sin(x*y)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

# contour lines

x <- seq(-2,2,length.out=50)

y <- seq(-2,2,length.out=50)

z <- sin(outer(x,y,"*"))

cols <- hcl.colors(10, "Inferno") #color palette

contour(x,y,z, col=cols)

2.5.2 Local vs. Global

The extreme values of a function 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ fall into two main

categories: local and global. In general, a local property is a property

that is satisfied (detected) on a small subregion of the domain𝐷; a global
property is one that is satisfied everywhere in the domain.

Thus local extrema are extreme values in a sub-region of the domain 𝐷,

global extrema are extreme values along the entire domain.

2.5.3 Local Extrema

We now discuss how to find the local extrema of multivariate functions

using differential calculus.
30

30: In order to keep things simple from

a geometrical perspective, we will restrict

our efforts to function 𝑓 of two variables,

but the concepts generalize to higher 𝑛.

In this case, the graph is the surface 𝑧 =

𝑓 (𝑥, 𝑦), which can be interpreted as a hilly

region over the domain 𝐷 of 𝑓 .

Locally, the 3 standard shapes that we

encounter at a critical point x = a ∈ 𝐷 where ∇ 𝑓 (a) = 0 resemble the

following.

1. Local maximum
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M <- mesh(seq(-1, 1, length.out = 50),

seq(-1, 1, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- -x**2-y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

2. Local mimimum

z <- x**2+y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

3. Saddle point (“hybrid”: max on one direction, min on the other

one)

z <- x**2-y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Definitions

We say that 𝑓 has a local minimum at a = (𝑎1 , · · · , 𝑎𝑛) if 𝑓 (a) ≤ 𝑓 (x) for

all x in a small 𝑛-dimensional region of 𝐷 centered at a. In contrast, 𝑓 has



2.5 Optimization 129

a local maximum at a) if 𝑓 (a) ≥ 𝑓 (x) for all x in a small 𝑛-dimensional

region of 𝐷 centered at a.

Critical Points and Local Extrema

It is the following result (presented without proof) that justifies the

importance of critical points in the optimization context.

Theorem If 𝑓 has a local extremum at x = a, then x = a is a criti-

cal point of 𝑓 .

The only candidates for local extrema are thus critical points.
31

The first 31: That is not necessarily the case for

step in the search of local extrema therefore consists in solving the system

∇ 𝑓 = 0.

Once that is done, we need to determine which critical points are local

maxima and which are local minima. Thankfully, the second derivative
test of introductory calculus can be generalized to any finite dimension

𝑛, as we shall see shortly.

The Hessian Matrix

We have already introduced the gradient of 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ, a vector

field which provides first-order information about 𝑓 . Second derivatives

are collected into the Hessian matrix:

𝐻( 𝑓 )(x) =

𝑓𝑥1𝑥1

(x) · · · 𝑓𝑥1𝑥𝑛 (x)
...

. . .
...

𝑓𝑥𝑛𝑥1
(x) · · · 𝑓𝑥𝑛𝑥𝑛 (x).


The Hessian matrix is symmetric (according to Clairaut’s Theorem): a

linear algebra result states that real symmetric matrix have real eigenval-
ues.

32
32: We will discuss these notions in detail

in Chapter 3.

Each eigenvalue 𝜆 of 𝐻( 𝑓 )(a) is associated to an eigenvector v ∈ ℝ𝑛
; the

sign of the eigenvalue provides information about the local behaviour of

𝑓 at x = a, along the direction determined by v.

Second Derivative Test

Suppose a ∈ 𝐷 is a critical point of 𝑓 and let

𝐻( 𝑓 )(a) =

𝑓𝑥1𝑥1

(a) · · · 𝑓𝑥1𝑥𝑛 (a)
...

. . .
...

𝑓𝑥𝑛𝑥1
(a) · · · 𝑓𝑥𝑛𝑥𝑛 (a).


be the Hessian matrix of 𝑓 at a. If all eigenvalues of 𝐻( 𝑓 )(a) are negative,

then 𝑓 has a local maximum at x = a; if all eigenvalues of 𝐻( 𝑓 )(a) are

positive, then 𝑓 has a local minimum at x = a; if some are positive and

some are negative, then 𝑓 has a saddle point at x = a.
33

33: What happens if some of the eigenval-

ues are 0?

If 𝑓 : 𝐷 ⊆ ℝ → ℝ, this is simply the second derivative test in ℝ: let 𝑎 be

a critical point of 𝑓 with 𝑓 ′(𝑎) = 0:
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if 𝑓 ”(𝑎) < 0, then 𝑓 has a local maximum at 𝑥 = 𝑎;

if 𝑓 ”(𝑎) > 0, then 𝑓 has a local maximum at 𝑥 = 𝑎, and

if 𝑓 ”(𝑎) = 0, we can not use the second derivative to determine the

nature of the critical point.
34

34: It may be a local maximum (such as

𝑎 = 0 for 𝑓 (𝑥) = −𝑥4
), a local minimum

(such as 𝑎 = 0 for 𝑓 (𝑥) = 𝑥4
, or an inflec-

tion point (such as 𝑎 = 0 for 𝑓 (𝑥) = 𝑥3
.

Which it is depends on the function in

question.

Example Find and classify the critical points of the function 𝑓 : ℝ3 → ℝ

defined by 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑥𝑧.

We start by computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦, 𝑧) = ⟨2𝑥 + 𝑧, 2𝑦, 𝑥⟩.

The system ∇ 𝑓 = 0 has a unique solution, 𝑥 = 𝑦 = 𝑧 = 0; the only critical

point of 𝑓 is thus located at 0 = (0, 0, 0).

The Hessian matrix 𝐻( 𝑓 )(x) is constant since 𝑓 was quadratic. In particu-

lar,

𝐻( 𝑓 )(0) =

2 0 1

0 2 0

1 0 0

 .
We can compute the eigenvalues and the corresponding eigenvectors

of 𝐻( 𝑓 )(0) algebraically (see Chapter 3), but we can also solve the

eigenvalue/eigenvectors problem numerically with two lines of code in

R:

H = matrix(c(2, 0, 1, 0, 2, 0, 1, 0, 0), 3, 3)

print(eigen(H))

𝜆1 = 2.4 v1 = ⟨0.9, 0, 0.4⟩
𝜆2 = 2 v2 = ⟨0,−1, 0⟩
𝜆3 = −0.4 v3 = ⟨0.4, 0,−0.9⟩

Two of the eigenvalues are positive, the other one is negative; the critical

point 0 = (0, 0, 0) is a saddle point of 𝑓 .

Geometrically, along the plane spanned by the vectors v1 and v2,
35

which35: These concepts are discussed in Chap-

ter 3.
corresponds to the positive eigenvalues 𝜆1 and 𝜆2 of 𝐻( 𝑓 )(0), 𝑓 behaves

like a function of two variables with a local minimum; along the line

spanned by the vector v3 associated with the negative eigenvalue 𝜆3, 𝑓

behaves like a function of one variable with a local maximum.

2.5.4 Global Extrema

When we attempt of minimizing the cost function in a machine learn-

ing algorithm, we hope to find the smallest possible cost, which will

correspond to the parameters associated with the "best learning". In

mathematical terms we are looking for the global minimum of the cost

function, which does not necessarily occur at a local minimum – indeed,
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it is conceivable that the global minimum is reached on the boundary of

the domain.

In other types of problems, it could be the global maximum that is of

interest.

Definitions

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ. We say that 𝑓 reaches its global minimum at

a ∈ 𝐷 if 𝑓 (a) ≤ 𝑓 (x) for all x ∈ 𝐷; the value 𝑓 (a) is the global minimum

value of 𝑓 . For the global maximum, we replace “≤” by “≥”.

Note that global extrema do not necessarily exist: 𝑓 : (0,∞) → ℝ, 𝑥 ↦→ 1

𝑥

has neither a global maximum nor a global minimum.

Closed and Bounded Domains

A subset 𝐷 ⊆ ℝ𝑛
is bounded if it can be contained in an 𝑛−ball of finite

radius; formally, it there exists 𝑀 > 0 such that

∥x∥2 =

√
𝑥2

1
+ · · · + 𝑥2

𝑛 ≤ 𝑀

for all x ∈ 𝐷.

It is closed if it contains it boundary. This is perhaps more difficult to

grasp than it looks. An alternative definition (in ℝ𝑛
) is that 𝐷 is closed if

every x ∉ 𝐷 is contained in an 𝑛−ball centered at x which lies entirely

outside of 𝐷.

Example The disk 𝐷 ⊆ ℝ𝑛
defined by the inequality 𝑥2 + 𝑦2 < 1 is a

bounded domain (use 𝑀 = 1, but it not closed – its boundary, which

consists of the circle 𝑥2 + 𝑦2 = 1, is not contained in 𝐷. The closure of 𝐷

is 𝑥2 + 𝑦2 ≤ 1.

Extreme Value Theorem

If 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ is continuous (roughly speaking, if it has no jump

or break) over a closed and bounded domain, then 𝑓 admits a global

maximum and a global minimum on 𝐷.

The EVT is not useful from a computational point of view, but it gives

some conditions that guarantee that the problems of searching for global

extrema makes sense.

Example Let𝐷 be the open disk as in the previous example, and denote

its closure by𝐷. Consider the function 𝑓 (𝑥, 𝑦) = 𝑥2+𝑦2
on𝐷: the globabl

minimum of 𝑓 is 0, clearly attained at 𝑥 = 𝑦 = 0. However there is no

global maximum, since the maximum value is “pushed” to the boundary

circle, which is not part of the domain.

If we take the same function but extend it to the closed domain 𝐷, then

𝑓 does reach its maximum value of 1, at infinitely many points along the

boundary circle.
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Figure 2.11: Critical points for continuous

functions of a single real variable.

2.5.5 Lagrange Multipliers

We have already discussed the link between optimization and the deriva-

tive when it comes to finding local extrema. Is there a link for global

optimization?

Recall that a differentiable function 𝑓 : [𝑎, 𝑏] → ℝ has a critical point at

𝑥∗ ∈ (𝑎, 𝑏) if either 𝑓 ′(𝑥∗) = 0 or 𝑓 ′(𝑥∗) is undefined (see Figure 2.11).

If additionally 𝑓 is continuous, then the optimal solution of the problem

max 𝑓 (𝑥)
s.t. 𝑥 ≤ 𝑏

𝑥 ≥ 𝑎

𝑥 ∈ ℝ

is found at one (or possibly, many) of the following feasible solutions:

𝑥 = 𝑎, 𝑥 = 𝑏, or 𝑥 = 𝑥∗ where 𝑥∗ is a critical point of 𝑓 in (𝑎, 𝑏).

This can be extended fairly easily to multi-dimensional domains, with

the following result.

Theorem Let 𝑓 : 𝐴 ⊆ ℝ𝑛 → ℝ be a continuous function, where 𝐴 is a

closed subset of ℝ𝑛
. Then 𝑓 reaches its maximum (resp.minimum) value

either at a critical point of 𝑓 in 𝐴◦
, the interior of 𝐴, or somewhere on

𝜕𝐴, the boundary of 𝐴.

Example Consider a company that sells gadgets and gizmos. If the

company’s monthly profits are expressed (in 1000$ dollars) according

to

𝑓 (𝑥, 𝑦) = 81 + 16𝑥𝑦 − 𝑥4 − 𝑦4 ,

where 𝑥 and 𝑦 represent, respectively, the number of gadgets and gizmos

sold monthly (in 10,000s of units), and if the company can produce up to

30,000 units of both gadgets and gizmos monthly, what is the optimal

number of each items that the company must sell in order to maximize its

monthly profits? The monthly profit function is shown in Figure 2.12.
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Figure 2.12: Monthly profit function for

the gadgets and gizmos example.

Since 𝑓 is continuous, the maximum value is reached at a critical value

in

𝐴◦ = (0, 3) × (0, 3)

or somewhere on the boundary

𝜕𝐴 = {(𝑥, 𝑦) ∈ [0, 3]2 | 𝑥 = 0 or 𝑥 = 3 or 𝑦 = 0 or 𝑦 = 3}.

Figure 2.13: Boundary of the domain (left);

profile for 𝑔3 and ℎ3 (right) in the gadgets

and gizmos example.

But 𝑓 is smooth; the gradient ∇ 𝑓 (𝑥, 𝑦) is thus always defined, and the

only critical points are those for which∇ 𝑓 (𝑥, 𝑦) = (16𝑦−4𝑥3 , 16𝑥−4𝑦3) =
(0, 0). At such a point, 4𝑥 = 𝑦3

, which, upon substitution in 𝑓𝑥 yields

0 = 16𝑦 − 1

16

𝑦9 =
1

16

𝑦(256 − 𝑦8) = 1

16

𝑦(𝑦 − 2)(𝑦 + 2)(𝑦2 + 4)(𝑦4 + 16),

which is to say 𝑦 = −2, 0, 2.

Only 𝑦 = 2 can potentially yield a critical point in 𝐴◦
, however. When

𝑦 = 2, we must have 𝑥 = 1

4
2

3 = 2: the only critical point of 𝑓 in 𝐴◦
is thus

(𝑥∗ , 𝑦∗) = (2, 2), and the monthly profit function value at that point is

𝑓 (𝑥∗ , 𝑦∗) = 81 + 16(2)(2) − 2
4 − 2

4 = 113.

On the boundary 𝜕𝐴, the objective function reduces to one of:

𝑓 (0, 𝑦) = 𝑔0(𝑦) = 81 − 𝑦4 , on 0 ≤ 𝑦 ≤ 3

𝑓 (3, 𝑦) = 𝑔3(𝑦) = 48𝑦 − 𝑦4 , on 0 ≤ 𝑦 ≤ 3

𝑓 (𝑥, 0) = ℎ0(𝑥) = 81 − 𝑥4 , on 0 ≤ 𝑥 ≤ 3

𝑓 (𝑥, 3) = ℎ3(𝑥) = 48𝑥 − 𝑥4 , on 0 ≤ 𝑥 ≤ 3

These are easy to optimize, being continuous functions of a single real

variable; 𝑔0 and ℎ0 are maximized at the origin, with the objective
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function taking the value 81 there, while 𝑔3 and ℎ3 are maximized at

12
1/3

, with the objective function taking the value ≈ 82.42 there (see

Figure 2.13).

Combining all this information, we conclude that the company will

maximize its monthly profits at 113,000$ if it sells 20,000 units of both

gadgets and gizmos.

While the approach we just presented works in this case, there are many

instances for which it can be substantially more difficult to find the

optimal value on 𝜕𝐴.

The method of Lagrange multipliers can simplify the computations, to

some extent. Consider the problem

min/max 𝑓 (x)
s.t. 𝑔𝑖(x) ≤ 𝑎𝑖 𝑖 = 1, . . . , 𝑚

x ∈ D,

where 𝑓 , 𝑔𝑖 are continuous and differentiable on the (closed) region 𝐴

described by the constraints 𝑔𝑖 ≤ 𝑎𝑖 , 𝑖 = 1, . . . , 𝑚.
36

If the problem is36: Strictly speaking, differentiability is

not required on the entirety of 𝐴. feasible and bounded,
37

then the optimal value is reached either at a

37: See Chapter 5. critical point of 𝑓 in 𝐴◦
or at a point x ∈ 𝜕𝐴 for which

∇ 𝑓 (x) = 𝜆1∇𝑔1(x) + · · · + 𝜆𝑚∇𝑔𝑚(x),

where 𝜆1 , . . . ,𝜆𝑚 ∈ ℝ are the Lagrange multipliers of the problem.

Example Consider a factory that produces various types of deluxe pickle

jars. The monthly number of jars 𝑄 of a specific kind of pickled radish

that can be produced at the factory is given by 𝑄(𝐾, 𝐿) = 900𝐾0.6𝐿0.4 ,

where 𝐾 is the number of dedicated canning machines, and 𝐿 is the

monthly number of employee-hours spent on the pickled radish.

The pay rate for the employees is 100$/hour (the pickles are extra deluxe,

apparently); the monthly maintenance cost for each canning machine is

200$.

If the factory owners want to maintain monthly production at 36,000

jars of pickled radish, what combination of number of canning ma-

chines and employee-hour will minimize the total production costs? The

optimization problem is

min 𝑓 (𝐾, 𝐿) = 200𝐾 + 100𝐿

s.t. 𝐾0.6𝐿0.4 = 40; 𝐾, 𝐿 ≥ 0.

The objective function is linear and so has no critical point. The feasability

region 𝐴 can be described by the constraints 𝑔1(𝐾, 𝐿) = 𝐾0.6𝐿0.4 ≤ 40

and 𝑔2(𝐾, 𝐿) = −𝐾0.6𝐿0.4 ≤ −40. Points of interest on the boundary 𝜕𝐴
are obtained by solving the Lagrange equation

(200, 100) = 𝜆
(
0.6

(
𝐿
𝐾

)
0.4
, 0.4

(
𝐾
𝐿

)
0.6

)
,
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since ∇𝑔1 = −∇𝑔2, with 𝐾0.6𝐿0.4 = 40.

Numerically, there is only one solution, namely

(𝐾∗ , 𝐿∗ ,𝜆) ≈ (35.65, 47.54, 297.10).

The objective function at that point takes on the value

𝑓 (𝐾∗ , 𝐿∗) ≈ 200(35.65) + 100(47.54) ≈ 11884.02,

and this value must either be the maximum or the minimum of the

objective function subject to the constraints of the problem. But we know,

that the point (𝐾1 , 𝐿1) = (1, 40
2.5) belongs to 𝜕𝐴;

38
since 38: As 1

0.6(40
2.5)0.4 = 40).

𝑓 (𝐾1 , 𝐿1) = 200(1) + 100(40
2.5) > 𝑓 (𝐾∗ , 𝐿∗),

then (𝐾∗ , 𝐿∗) is indeed the minimal solution of the problem, and the

minimal value of the objective function subject to the constraints is

≈ 11, 884.02$.

In practice, the value for 𝐾 has to be an integer,
39

, so we might pick: 39: Unless we consider using a different

number of canning machines at various

times during the month.a sub-optimal 𝐾′
∗ = 36 canning machines, which yields

a sub-optimal 𝐿′∗ ≈ 46.84 employee-hours,

which together yield a sub-optimal monthly operating cost of

𝑓 (𝐾′
∗ , 𝐿

′
∗) ≈ 200(36) + 100(46.84) ≈ 11884.85.

This departure from optimality would nevertheless be quite likely to be

acceptable to the factory owners.

Given how straightforward the method is, it might seem that there is no

real need to say anything else – why would anybody ever use something

other than Lagrange multipliers to solve optimization problems?

One of the issues is that when the number of constraints is too high

relative to the dimension 𝑛 of𝐴,
40

then there may not be a finite number 40: Which is usually the case in real-life

situations.of candidate solutions on 𝜕𝐴, which makes this approach useless.

Another difficulty that might arise is that the system of equations

∇ 𝑓 (x) = 𝜆1∇𝑔1(x) + · · · + 𝜆𝑚∇𝑔𝑚(x)

could be ill-conditioned, or highly non-linear, and numerical solutions

could be hard to obtain. We will discuss this further in Chapters 4 and

5.

2.6 Riemann Integrals

Integration, as we will see, is the reverse process of differentiation. We

start with a review of basic integration rules and methods, starting with

one-variable methods which can then be generalized to multiple Riemann

integrals in many variables.
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2.6.1 Motivation: Local Densities vs. Total Quantities

The following argument, motivated by statistics, is one of many possible

ways of introducing the concept of Riemann integrals.

In general, the (multi-variable) Riemann integral∫
𝐷

𝑓 (𝑥1 , · · · , 𝑥𝑛)𝑑𝑉

is the continuous version of the infinite series

∞∑
𝑘1 ,··· ,𝑘𝑛=1

𝑓𝑘1 ,··· ,𝑘𝑛Δ𝑉.

This realization is at the centre of all approaches to Riemann integration.

Consider a real random variable 𝑥 with probability density function
𝑓 (𝑥).41

Let 𝑥0 be an arbitrary value of 𝑥. The probability that 𝑥 takes a41: See Chapter 6 for details.

value in the interval [𝑥0 , 𝑥0 + Δ𝑥] of length (size) Δ𝑥 (which is usually

quite small) is approximately

𝑓 (𝑥0)Δ𝑥.

Assume that [𝑎, 𝑏] is a finite interval. We compute the probability that 𝑥

belongs to the (large) interval [𝑎, 𝑏] by using Riemann sums approxima-
tions.

First, we sub-divide the interval [𝑎, 𝑏] into 𝑁 sub-intervals of equal

length Δ𝑥 = 𝑏−𝑎
𝑁 : if we label the endpoints of each sub-interval as

𝑥0 = 𝑎, 𝑥1 = 𝑥0 + Δ𝑥, · · · , 𝑥𝑁−1 = 𝑥0 + (𝑁 − 1)Δ𝑥, 𝑥𝑁 = 𝑏,

then the sub-interval 𝐼𝑘 can be written as

𝐼𝑘 = [𝑥𝑘−1 , 𝑥𝑘].

If Δ𝑥 is sufficiently small, then we can say that, since the probability

of finding 𝑥 within 𝐼𝑘 is approximately 𝑓 (𝑥𝑘−1)Δ𝑥, then the probabil-

ity of finding 𝑥 in [𝑎, 𝑏] is approximated by the sum of those “local”

(infinitesimal) probabilities:

𝑃(𝑥 ∈ [𝑎, 𝑏]) ≈
𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥.

At this point, we may be nonplussed to realize that this formula is only

going to yield an estimate (or an approximation) of the exact value of

the probability.

But the theory of Riemann integrals shows that as we increase the number

𝑁 of sub-intervals 𝐼𝑘 ,
42

the estimated value converges (gets closer and42: And therefore sending Δ𝑥 → 0.

closer) to the exact value, and in the limiting case 𝑁 → ∞, we obtain

𝑃(𝑥 ∈ [𝑎, 𝑏]) = lim

𝑁→∞

𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥.
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Figure 2.14: Graphical illustration of the Riemann integral

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥: approximations with left-most sample points and 𝑁 = 7 (left); 𝑁 = 14

(middle); Riemann integral (right).

2.6.2 One Variable

Using the same reasoning, we define the Riemann integral for any

continuous function 𝑓 : [𝑎, 𝑏] → ℝ by

𝑏∫
𝑎

𝑓 (𝑥) 𝑑𝑥 = lim

𝑁→∞

𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥,

where 𝑁 is the number of sub-interval 𝐼𝑘 of length Δ𝑥 = (𝑏 − 𝑎)/𝑁 and

𝑥𝑘 is a sample point in 𝐼𝑘 (the centre of the interval, say).

Different choices of sample points lead to different versions of the

Riemann sum approximation. In the limiting case 𝑁 → ∞, however,

all approximations converge to the same value, which is the {Riemann
integral of 𝑓 over [𝑎, 𝑏]; the process is illustrated in Figure 2.14.

2.6.3 Fundamental Theorem of Calculus

As is the case with derivatives, the calculation of Riemann integrals

can (in principle) be performed without going through the process of

Riemann sum approximations.

For a continuous function 𝑓 : [𝑎, 𝑏] → ℝ, there is a function 𝐹 :

[𝑎, 𝑏] → ℝ (the antiderivative or indefinite integral of 𝑓 ), which satisfies

𝐹′(𝑥) = 𝑓 (𝑥) and which we denote by

𝐹(𝑥) =
∫

𝑓 (𝑥)𝑑𝑥,

The antiderivative is unique up to an additive constant 𝑐:

(𝐹(𝑥) + 𝑐)′ = 𝑓 (𝑥).

The Fundamental Theorem of Calculus states that, for any antideriva-

tive 𝐹 of 𝑓 , then

𝑏∫
𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) =
[
𝐹(𝑥)

] 𝑏
𝑎
.

Note that we also denote the difference 𝐹(𝑏) − 𝐹(𝑎) by

[
𝐹(𝑥)

] 𝑏
𝑎
.
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Example Here are the Riemann sum approximations with 4 different

sub-interval sub-divisions, for the integral

4∫
0

𝑒−𝑥𝑑𝑥 =
[
− 𝑒−𝑥

]
4

0

= 1 − 𝑒−4.

For any of the approximations, the area of each vertical rectangle is

𝑓 (𝑥)Δ𝑥, where 𝑥 is the midpoint of the small interval.

The antiderivative 𝐹 of a continuous function 𝑓 always exists. However,

if the analytic expression of the function is too complicated, it may not be

possible to find the antiderivative 𝐹 of 𝑓 .43
What to do, then? We have43: It still exists, however.

no choice but to proceed with numerical integration.
44

44: There are several approaches used

to compute a Riemann integrals numeri-

cally. In the previous example, we used

the midpoint approximation; there are

other ways of approximating the integral

(left-most point, right-most point, Simp-

son rule, Gaussian quadratures, Monte

Carlo, etc.). We will discuss these in Chap-

ter 4.

2.6.4 Finding Antiderivatives

Computing derivatives is usually easy, since it is (almost) a one-directional,

no-choice algorithm: follow the rules and all is good to go.

When we find an antiderivative, we are “climbing back” to the source,

and that can actually be much harder.
45

45: There are methods, but typically

harder to use or understand: how do we

select the right 𝑢-substitution? Or the 𝑢 𝑑𝑣

term in integration by parts?

Here are some basic rules for finding antiderivatives. For more advanced

techniques, we let the reader look into the literature [6, 3].
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1. Linearity:

∫
(𝑎 𝑓 (𝑥) + 𝑏𝑔(𝑥)) 𝑑𝑥 = 𝑎

∫
𝑓 (𝑥) 𝑑𝑥 + 𝑏

∫
𝑔(𝑥) 𝑑𝑥

2. Power rule:

∫
𝑥𝑛 𝑑𝑥 =

𝑥𝑛+1

𝑛 + 1

+ 𝐶, for 𝑛 ≠ −1

3. Power rule special case:

∫
𝑑𝑥

𝑥
= ln |𝑥 | + 𝐶

4. Exponentials:

∫
𝑒 𝑎𝑥 𝑑𝑥 =

𝑒 𝑎𝑥

𝑎
+ 𝐶

5. Integration by parts:

∫
𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 = 𝑓 (𝑥)𝑔(𝑥) −

∫
𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥

6. Integration by substitution:

∫
𝑓 (𝑥) 𝑑𝑥 =

∫
𝑓 (𝑥(𝑢)) 𝑑𝑥

𝑑𝑢
𝑑𝑢

Note that integration by substitution is a sort of inverse of the chain rule,

and integration by parts the same for the product rule.

2.6.5 Several Variables

We are now ready to introduce multiple integrals, that is Riemann

integrals of a function defined over a domain of arbitrary dimension.

Let 𝐷 ⊂ ℝ𝑛
and 𝑓 be a density function on 𝐷, such as a probability

density function for the configuration (𝑥1 , · · · , 𝑥𝑛) of 𝑛 random variables.

Let a ∈ 𝐷. If we pick a point x at random the probability that we find it

in a region centered at x = a of 𝑛−volume Δ𝑉 is approximated by

𝑓 (a)Δ𝑥1 · · ·Δ𝑥𝑛 .

Let 𝑆 ⊂ 𝐷 be a subregion of the whole sample space domain 𝐷. The

probability 𝑝(𝑆) of finding x ∈ 𝑆 is approximated as follows. Subdivide

𝑆 into 𝑁 small sample regions 𝑆𝑘 (𝑘 = 1, · · · , 𝑁), each of volume Δ𝑉 .

Pick, for each 𝑘, a sample point 𝑃𝑘 in 𝑆𝑘 . According to the formula above,
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we have

𝑝(x ∈ 𝑆) ≈
𝑁∑
𝑘=1

𝑓 (𝑃𝑘)Δ𝑉

The exact value is obtained in the limiting case 𝑁 → ∞. This is the multi-

variate Riemann integral construction. If we use Cartesian coordinates
(𝑥1 , · · · , 𝑥𝑛), the volume is

Δ𝑉 = Δ𝑥1 · · ·Δ𝑥𝑛 ,

and so

𝑝(x ∈ 𝑆) =
∫
𝑆

𝑓 (𝑆) 𝑑𝑉 = lim

𝑁→∞

(
𝑁∑
𝑘=1

𝑓 (𝑃𝑘)Δ𝑥1 · · ·Δ𝑥𝑛

)
.

The Riemann sum approximation is used to define the Riemann integral

for an arbitrary continuous function, not necessarily one carrying the

meaning of probability.

The double integral (𝑛 = 2 variables) is often denoted by

∬
, the triple

integral (𝑛 = 3 variables) by

∭
. If the dimension of the integral is not

important (for example, if we are interested in general properties of

Riemann integrals) we simply use the symbol

∫
.

2.6.6 Applications to Statistics

Let 𝑓 be a probability density function of 𝑛 independent continuous

random variables, on a domain𝐷 ⊂ ℝ𝑛
. Let 𝑔(𝑥1 , · · · , 𝑥𝑛) be an arbitrary

random variable.
46

46: We can assume that is a continuous

function.

The average value of 𝑔 is the integral

𝐸{𝑔} =
∫
𝐷

𝑔(𝑥1 , · · · , 𝑥𝑛) 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The variance of 𝑔 is the integral

𝜎2 = 𝐸
{
(𝑔 − 𝐸{𝑔})2

}
=

∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})2 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The standard deviation of 𝑔 is the integral

𝜎 =

√√∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})2 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The covariance between two random variables 𝑔 and ℎ is

𝜎{𝑔, ℎ} =
∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})(ℎ(𝑥1 , · · · , 𝑥𝑛) − 𝐸{ℎ}) 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .
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Computing Riemann Integrals in Several Variables

Several methods can be used to calculate the Riemann integral of a

function of several variables. In Cartesian coordinates, we can deduce a

formula starting, once again, from the “infinitesimal” point of view.

For simplicity, we can consider a 2D domain 𝐷 ⊂ ℝ2
defined by the

inequalities

𝐷 : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐(𝑥) ≤ 𝑦 ≤ 𝑑(𝑥).

Let 𝑓 : 𝐷 ⊆ ℝ2 → ℝ be continuous. In order to compute the integral∬
𝐷

𝑓 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥,

we can proceed by iterating the integration process, one iteration per

variable, as follows.

First, for each value of 𝑥 ∈ [𝑎, 𝑏], we can integrate

∫
𝑓 (𝑥, 𝑦) 𝑑𝑦 along the

vertical direction. Since 𝑦 satisfies the bounds 𝑐(𝑥) ≤ 𝑦 ≤ 𝑑(𝑥) for each

𝑥 ∈ [𝑎, 𝑏], we start by computing the integral along the vertical strips of

width 𝑑𝑥:

𝑑(𝑥)∫
𝑐(𝑥)

𝑓 (𝑥, 𝑦)𝑑𝑦.

Next, we integrate the contributions of each individual strip, by inte-

grating over the remaining variable 𝑥. We therefore obtain a formula for

computing a double integral in Cartesian coordinates, integrating first

by vertical strips:

∫
𝐷

𝑓 𝑑𝐴 =

𝑏∫
𝑎

©­­«
𝑑(𝑥)∫

𝑐(𝑥)

𝑓 (𝑥, 𝑦)𝑑𝑦
ª®®¬ .

Note that the role of the variables can be interchanged; refer to [4] for

more details.

In general, if a domain 𝐷 ⊂ ℝ𝑛
is described by Cartesian coordinate

inequalities (𝑥1 , · · · , 𝑥𝑛), such as:

𝑎1 ≤ 𝑥1 ≤ 𝑏1

𝑎2(𝑥1) ≤ 𝑥2 ≤ 𝑏2(𝑥1)
· · ·
𝑎𝑛(𝑥1 , 𝑥2 , · · · , 𝑥𝑛−1) ≤ 𝑥𝑛 ≤ 𝑏𝑛(𝑥1 , 𝑥2 , · · · , 𝑥𝑛−1)

then the 𝑛− integral of 𝑓 over 𝐷 can be computed by the iterated
integral

∫
𝐷

𝑓 𝑑𝑉 =

𝑏1∫
𝑎1

𝑏1(𝑥1)∫
𝑎2(𝑥1)

· · ·
𝑏𝑛 (𝑥1 ,𝑥2 ,··· ,𝑥𝑛−1)∫

𝑎𝑛 (𝑥1 ,𝑥2 ,··· ,𝑥𝑛−1)

𝑓 (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)𝑑𝑥𝑛𝑑𝑥𝑛−1 · · · 𝑑𝑥1.
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The idea is to integrate one variable per time, using the one-variable

rules of integration. As is the case for integration in ℝ, there is a change
of variables (substitution) formula for integrals in several variables.

We can then derive formulas for double integrals in polar coordinates, or

triple integrals in cylindrical or spherical coordinates.
47

47: Again, refer to [4] for more details.

Let 𝐷 ⊂ ℝ𝑛
and 𝑓 : 𝐷 → ℝ. The Riemann integral of 𝑓 over 𝐷, defined

as the limit of Riemann sums, is denoted by∫
𝐷

𝑓 𝑑𝑉.

The symbol 𝑑𝑉 denotes the infinitesimal 𝑛−dimensional volume ele-
ment, and the infinitesimal quantity 𝑓 𝑑𝑉 represents the infinitesimal

portion of 𝑓 contained in the infinitesimal region of measure 𝑑𝑉 . The total
(“grand sum”) is obtained by integrating 𝑓 𝑑𝑉 over the full domain.

The expression of the volume element depends of the choice of coordi-

nates. In Cartesian coordinates, the volume is as expressed above:

𝑑𝑉 = 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

Thus, if 𝑓 ≡ 1,

∫
𝐷

𝑓 𝑑𝑉 represents the 𝑛−volume of 𝐷. For other types

of coordinate systems, and the corresponding integration formulas, we

once again refer to [4].

Example Let 𝐸 be the solid region located above the triangle of the

𝑥𝑦−plane defined by the inequalities |𝑥 | ≤ 1, 0 ≤ 𝑦 ≤ 1−𝑥, and below the

surface 𝑧 = 𝑥2+𝑦2
. Compute the triple integral of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 over 𝐸.

The bounds of the triangle define the region of the 𝑥𝑦−plane:

−1 ≤ 𝑥 ≤ 1, 0 ≤ 1 ≤ 1 − 𝑥.

The solid is therefore described by the inequalities

−1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 − 𝑥, 0 ≤ 𝑧 ≤ 𝑥2 + 𝑦2 ,

as shown below.
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Therefore, the triple integral is:

∭
𝐸

𝑓 𝑑𝑉 =

1∫
−1

1−𝑥∫
0

𝑥2+𝑦2∫
0

𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

=

1∫
−1

1−𝑥∫
0

[
𝑥𝑧

] 𝑧=𝑥2+𝑦2

𝑧=0

=

1∫
−1

1−𝑥∫
0

(𝑥3 + 𝑥𝑦2) 𝑑𝑦 𝑑𝑥

=

1∫
−1

[
𝑥3𝑦 + 𝑥 𝑦

3

3

] 𝑦=1−𝑥

𝑦=0

𝑑𝑥 =

1∫
−1

(
𝑥3(1 − 𝑥) + 𝑥 (1 − 𝑥)3

3

)
𝑑𝑥

=

1∫
−1

(
−4𝑥4

3

+ 2𝑥3 − 𝑥2 + 𝑥

3

)
𝑑𝑥

=

[
−4𝑥5

15

+ 2𝑥4

4

− 𝑥3

3

+ 𝑥2

6

]
1

−1

= −6

5

.

2.7 Exercises

1. The price at which an item sells is given by 𝑃(𝑑, 𝑠) = 𝑘 𝑑2

𝑠+10
, where

𝑘 is a constant, and 𝑠 and 𝑑 are the product supply and demand,

respectively.

a) For what value(s) of 𝑑 is 𝑃(𝑑, 90) = 100𝑘?

b) For what value(s) of 𝑠 is 𝑃(10, 𝑠) = 10𝑘?

c) If 𝑑 = 9 and 𝑠 = 10, how does 𝑃 change when 𝑑 goes from 9

to 11?

d) If 𝑑 = 9 and 𝑠 = 10, how does 𝑃 change when 𝑠 goes from 10

to 8?

e) Compute and interpret 𝑃(6, 3).
f) Compute and interpret 𝑃𝑑(6, 3).
g) Compute and interpret 𝑃𝑠(6, 3).

2. Find the largest possible domain (in ℝ2
) and the range (in ℝ) of the

following functions.

a) 𝑓 (𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦 + 𝑦2
.

b) 𝑓 (𝑥, 𝑦) = ln(𝑥 − 𝑦).
c) 𝑓 (𝑥, 𝑦) = 1

(𝑦−2) ln 𝑥
.

d) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑦

1−𝑧 .

e) 𝑓 (𝑥, 𝑦, 𝑧) =
√

36 − 𝑥2 − 4𝑦2
.

f) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑧2

(𝑦−2)2 .

g) 𝑓 (𝑥, 𝑦) = √
𝑥 + 𝑦.

h) 𝑓 (𝑥, 𝑦) =
√

4 − 𝑥2 − 𝑦2
.

i) 𝑓 (𝑥, 𝑦) = 1

4−𝑥2−𝑦2
.

j) 𝑓 (𝑥, 𝑦) = 1

𝑒𝑥
2+𝑦2

.

3. Find the equation of the tangent plane to the surface 𝑧 = 𝑓 (𝑥, 𝑦) at

the given point.

a) 𝑓 (𝑥, 𝑦) = 𝑥4 + 𝑦4 − 4𝑥𝑦 + 1, (0, 0).
b) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦, (1, 0).
c) 𝑓 (𝑥, 𝑦) = 2𝑥3 + 𝑥𝑦2 + 5𝑥2 + 𝑦2

, (0, 1).
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d) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥2𝑦 + 4, (1, 2).
e) 𝑓 (𝑥, 𝑦) = 𝑦

√
𝑥 − 𝑦2 − 𝑥 + 6𝑦, (1,−1).

f) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 − 2𝑥 − 𝑦, (2, 3).
g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦(1 − 𝑥 − 𝑦), (−3, 2).
h) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1

𝑥2𝑦2
, (−1, 0).

i) 𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 + 4𝑥𝑦, (0,−2).
j) 𝑓 (𝑥, 𝑦) = 1

𝑥𝑦 , (1,−1).
k) 𝑓 (𝑥, 𝑦) = ln(𝑥2 + 𝑦2), (1, 0).
l) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 , (2, 2).

m) 𝑓 (𝑥, 𝑦) = (𝑥 + 𝑦)𝑒𝑥 , (0, 2).
n) 𝑓 (𝑥, 𝑦) = 𝑥+𝑦

𝑥−𝑦 , (2,−1).
o) 𝑓 (𝑥, 𝑦) = 𝑦 ln(𝑥 + 2)𝑒

√
𝑦
, (−1, 4).

p) 𝑓 (𝑥, 𝑦) = 𝑥𝑦𝑒1/𝑦
, (−1, 1).

4. Classify the critical points of the following functions.

a) 𝑓 (𝑥, 𝑦) = 𝑥4 + 𝑦4 − 4𝑥𝑦 + 1.

b) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦.

c) 𝑓 (𝑥, 𝑦) = 2𝑥3 + 𝑥𝑦2 + 5𝑥2 + 𝑦2
.

d) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥2𝑦 + 4.

e) 𝑓 (𝑥, 𝑦) = 𝑦
√
𝑥 − 𝑦2 − 𝑥 + 6𝑦.

f) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 − 2𝑥 − 𝑦.

g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦(1 − 𝑥 − 𝑦).
h) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1

𝑥2𝑦2

i) 𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 + 4𝑥𝑦.

5. Compute the 2nd order partial derivatives of the following func-

tions.

a) 𝑓 (𝑥, 𝑦) = 1√
𝑥2+𝑦2

.

b) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧.

c) 𝑓 (𝑥, 𝑦, 𝑧) = ln

(
𝑥+𝑦
𝑥+𝑧

)
.

d) 𝑓 (𝑥, 𝑦) = 𝑥2+𝑦2

1+𝑥 .

e) 𝑓 (𝑥, 𝑦, 𝑧) =
√

1 + 𝑥 + 𝑦 − 2𝑧.

f) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧3 + 𝑥𝑦2

√
𝑧.

g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦2

√
𝑥+3

.

h) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑧
√
𝑦.

i) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥3
ln(𝑧𝑥)𝑦𝑧2𝑒𝑦𝑥 .

j) 𝑓 (𝑥, 𝑦) = 𝑥𝑦
√
𝑥2 + 7.

k) 𝑓 (𝑥, 𝑦, 𝑧) = 1

𝑥𝑦𝑧 .

l) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥3𝑦−𝑧2

3𝑥+𝑦+2𝑧 .

6. Compute

∫
2

0

∫ 𝑥

0

𝑒𝑥
2

𝑑𝑦 𝑑𝑥 by first sketching the area of integration.

7. Compute

∫
3

0

∫
9

𝑦2
𝑦 sin(𝑥2) 𝑑𝑥 𝑑𝑦.

8. What is the volume of the solid bounded by the planes 𝑧 = 𝑥+2𝑦+4

and 𝑧 = 2𝑥 + 𝑦, above the triangle in the 𝑥𝑦 plane with vertices

𝐴(1, 0, 0), 𝐵(2, 1, 0) and 𝐶(0, 1, 0)?
9. Compute

∫
𝑊
ℎ 𝑑𝑉 , where ℎ(𝑥, 𝑦, 𝑧) = 𝑎𝑥+𝑏𝑦+ 𝑐𝑧,𝑊 = {(𝑥, 𝑦, 𝑧) :

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑧 ≤ 2}.
10. Sketch the region of integration𝑊 of the triple integral∫

1

0

∫
2−𝑥

0

∫
3

0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥.
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11. What is the volume of the solid defined by the intersection of the

two cylinders 𝑥2 + 𝑧2 = 1 and 𝑦2 + 𝑧2 = 1?

12. Compute

∫ √
2

0

∫ √
4−𝑦2

0

𝑥𝑦 𝑑𝑥 𝑑𝑦.

13. Compute

∫
𝑊

sin(𝑥2 + 𝑦2) 𝑑𝑉 , where 𝑊 is the cylinder centered

about the 𝑧 axis from 𝑧 = −1 to 𝑧 = 3 with radius 1.

14. Compute∫
1

0

∫ √
1−𝑥2

−
√

1−𝑥2

∫ √
1−𝑥2−𝑧2

−
√

1−𝑥2−𝑧2

(𝑥2 + 𝑦2 + 𝑧2)−1/2 𝑑𝑦 𝑑𝑧 𝑑𝑥.

15. Compute ∫
1

0

∫
1

−1

∫ √
1−𝑥2

−
√

1−𝑥2

(𝑥2 + 𝑦2)−1/2 𝑑𝑦 𝑑𝑥 𝑑𝑧.

16. What is the volume of the solid𝑄 directly above the region bounded

by 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2 in the 𝑥𝑦−plane and below the plane

𝑧 = 4 − 𝑥 − 𝑦?

17. Compute

∫
1

0

∫
1√
𝑥
𝑒𝑦

3

𝑑𝑦 𝑑𝑥.

18. Sketch the solid bounded by the the surfaces 𝑧 = 0, 𝑦 = 0, 𝑧 =

𝑎 − 𝑥 + 𝑦 and 𝑦 = 𝑎 − 1

𝑎 𝑥
2
, where 𝑎 is a positive constant. What is

the volume of that solid?

19. Evaluate

∫
ln 2

0

∫
ln 5

0

𝑒2𝑥−𝑦 𝑑𝑥 𝑑𝑦.

20. Evaluate

∫
1

0

∫
1

0

𝑥𝑦√
𝑥2+𝑦2+1

𝑑𝑥 𝑑𝑦.

21. Let 𝐷 = {(𝑥, 𝑦) : 1 ≤ 𝑦 ≤ 𝑒 , 𝑦2 ≤ 𝑥 ≤ 𝑦4}. Compute

∬
𝐷

1

𝑥 𝑑𝐴.

22. What is the volume of the solid lying under the paraboloid 𝑧 =

𝑥2 + 𝑦2
and above the domain bounded by 𝑦 = 𝑥2

and 𝑥 = 𝑦2
?

23. Let 𝑅 be the disk of radius 5, centered at the origin. Evaluate∬
𝑅
𝑥 𝑑𝐴.

24. What is the volume of the solid lying under the cone 𝑧 =
√
𝑥2 + 𝑦2

and above the ring 4 ≤ 𝑥2 + 𝑦2 ≤ 25 located in the 𝑥𝑦−plane?

25. Evaluate

∫
3

0

∫ √
9−𝑥2

0

∫ 𝑥

0

𝑦𝑧 𝑑𝑦 𝑑𝑧 𝑑𝑥.

26. Compute

∭
𝐸
𝑒𝑥 𝑑𝑉 , where

𝐸 = {(𝑥, 𝑦, 𝑧) : 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑥 ≤ 𝑦, 0 ≤ 𝑧 ≤ 𝑥 + 𝑦}.

27. Compute

∭
𝐸
𝑥𝑧 𝑑𝑉 , where 𝐸 is the pyramid with vertices (0, 0, 0),

(0, 1, 0), (1, 1, 0) and (0, 1, 1).
28. Let𝑊 be a three-dimensional solid. Its volume can be computed

by the following iterated integral:

𝑉(𝑊) =
∫

2𝜋

0

∫
2

0

∫
4−𝑟2

0

𝑟 𝑑𝑧 𝑑𝑟 𝑑𝜃.

Find𝑊 and 𝑉(𝑊).
29. Compute

∭
𝐵
(𝑥2+𝑦2+𝑧2) 𝑑𝑉 , where𝐵 is the unit ball 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

30. Evaluate∫
3

0

∫ √
9−𝑦2

0

∫ √
18−𝑥2−𝑦2

√
𝑥2+𝑦2

(𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑧 𝑑𝑥 𝑑𝑦.
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31. Evaluate the integral

∬
𝐷
𝑥2𝑦 𝑑𝑥 𝑑𝑦 where 𝐷 is the region bounded

by the curves 𝑦 = 𝑥2
and 𝑥 = 𝑦2

in the first quadrant.

32. Compute the volume of the solid bounded by the cone 𝑧 =
√
𝑥2 + 𝑦2

and the sphere of radius 𝑎 > 0 whose center is located at the origin.

33. Compute the volume of the solid bounded by the paraboloïds

𝑧 = 10 − 𝑥2 − 𝑦2
and 𝑧 = 2(𝑥2 + 𝑦2 − 1).

34. Compute the area of the planar region bounded by 𝑦 = 𝑥2
, 𝑦 = 2𝑥2

,

𝑥 = 𝑦2
, and 𝑥 = 3𝑦2

.

35. Find the volume of the solid bounded by the interior of the sphere

𝑥2 + 𝑦2 + 𝑧2 = 𝑎2
and the interior of the cylinder 𝑥2 + 𝑦2 = 𝑎2

,

𝑎 > 0.

36. Find the volume of the solid bounded by the interior of each of the

cylinders 𝑥2 + 𝑦2 = 𝑎2
, 𝑥2 + 𝑧2 = 𝑎2

and 𝑦2 + 𝑧2 = 𝑎2
, 𝑎 > 0.

37. Find the volume of the solid bounded by the interior of the cone

𝑧2 = 𝑥2 + 𝑦2
lying above the paraboloïd 𝑧 = 6 − 𝑥2 − 𝑦2

.

38. Find the volume of the solid bounded by the plane 𝑧 = 3𝑥 + 4𝑦

lying below the paraboloïd 𝑧 = 𝑥2 + 𝑦2
.

39. Let 𝑆 be the sphere of radius 𝑎 > 0 centered at (0, 0, 𝑎). Show that∭
𝑆
𝑧2 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 8

5
𝜋𝑎5

.

40. Compute

∭
ℝ3
𝑒−(𝑥

2+𝑦2+𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧.
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