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by Patrick Boily

In Chapter 19 (Machine Learning 101), we provided a (basically) math-free

general overview of machine learning. In this chapter, we present an

introductory mathematical treatment of the discipline, with a focus on

regression and value estimation methods (in particular, on parametric

methods).

Our approach borrows heavily from [3, 5]; explanations and examples

are also available in [1].

We will continue the ML treatment in Chapters 21 and 22 (and 23, to a

lesser extent).

20.1 Statistical Learning

Statistical learning is a series of procedures and approaches that allows

analysts to tackle problems such as:

identifying risk factors associated to breast/prostate cancer;

predicting whether a patient will have a second, fatal heart attack

within 30 days of the first on the basis of demographics, diet,

clinical measurements, etc.;

establishing the relationship between salary and demographic

information in population survey data;

predicting the yearly inflation rate using various indicators, etc.

Statistical learning tasks are typically divided into 2 main classes: super-
vised learning and unsupervised learning.

1
1: There are other types, such as semi-

supervised or reinforcement learning, but

these are topics for future chapters.

20.1.1 Supervised Learning Framework

In the supervised learning environment, the outcome (response, target,

dependent variable, etc.) is denoted by 𝑌, and the vector of 𝑝 predictors
(features) by

®𝑋 = (𝑋1 , . . . , 𝑋𝑝).

If𝑌 is quantitative (price, height, etc.), then the problem of predicting𝑌 in

terms of
®𝑋 is a regression task; if 𝑌 takes on values in a finite unordered

set (survived/died, colours, vegetation types, etc.), it is a classification
task. This is typically achieved with the use of training data, which is to

say historical observations or instances, which we often denote by [X | Y]
(the column denoting the observation IDs is dropped).
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obs. predictors predictors predictors resp.

1 𝑥1,1 · · · 𝑥1,𝑝−1 𝑦1

...
...

...
...

𝑛 𝑥𝑛,1 · · · 𝑥𝑛,𝑝−1 𝑦𝑛

The objectives of supervised learning are usually to:

accurately predict unseen test cases;

understand which inputs affect the outcomes (if any), and how;

assess the quality of predictions and/or inferences made on the

basis of the training data, etc.

In unsupervised learning, on the contrary, there are no outcome variables,

only features on a set of observations X.
2

2: The response variable Y that was seg-

regated away from X in the supervised

learning case could now be one of the

variables in X.

The objectives are much more vague – analysts could seek to:

find sets of features that behave similarly across observations;

find combinations of features with the most variation;

find natural groups of similar observations, etc.

We will discuss such methods in detail in Chapter 22.

Statistical Learning vs. Machine Learning The term “statistical learning”

is not used frequently in practice;
3

we speak instead of machine learning.3: Except by mathematicians and statisti-

cians, perhaps.
If a distinction must be made, we could argue that:

statistical learning arises from statistical-like models, and the em-

phasis is usually placed on interpretability, precision, and uncer-
tainty, whereas

machine learning arise from artificial intelligence studies, with

emphasis on large scale applications and prediction accuracy.

The dividing line between the terms is blurry – the vocabulary used by

practitioners mostly betrays their educational backgrounds (but see [7]

for another take on this).

Motivating Example Throughout, we will illustrate the concepts and no-

tions via the gapminder.csv dataset, which records socio-demographic

information relating to the planet’s nations, from 1960 to 2011 [9, 8].

We will be interested in determining if there is a link between life

expectancy, at various moments in time, and the rest of the predictors.

The dataset contains 7139 observations of 9 columns:

a country × year identifier (2 variables, 𝑖 and 𝑋1);

a region and continent pair of categorical predictors (2 variables,

𝑋2 and 𝑋3);

four numerical predictors: population 𝑋4, infant mortality 𝑋5,

fertility 𝑋6, gross domestic product in 1999 dollars 𝑋7, and

life expectancy 𝑌, the numerical response.

https://www.data-action-lab.com/wp-content/uploads/2021/08/gapminder.csv
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Setting up the Gapminder dataset

library(dplyr)

gapminder.ML = read.csv("gapminder.csv",

stringsAsFactors=TRUE)

gapminder.ML <- gapminder.ML[complete.cases(gapminder.ML),]

gapminder.ML <- gapminder.ML[,c("country","year","region",

"continent","population","infant_mortality",

"fertility","gdp","life_expectancy")]

The structure is provided below:

str(gapminder.ML)

’data.frame’: 7139 obs. of 9 variables:

$ country : Factor w/ 185 levels "Albania","Algeria",..: 2 5 8 9 11 13 14 16 18 20 ...

$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

$ region : Factor w/ 22 levels "Australia and New Zealand",..: 11 15 1 22 2 18 2 ...

$ continent : Factor w/ 5 levels "Africa","Americas",..: 1 2 5 4 2 3 2 4 1 2 ...

$ population : int 11124892 20619075 10292328 ...

$ infant_mortality: num 148.2 59.9 20.3 37.3 51 ...

$ fertility : num 7.65 3.11 3.45 2.7 4.5 6.73 4.33 2.6 6.28 6.7 ...

$ gdp : num 1.38e+10 1.08e+11 9.67e+10 5.24e+10 1.31e+09 ...

$ life_expectancy : num 47.5 65.4 70.9 68.8 62 ...

In other words, we will be looking for models of the form

𝑌 = 𝑓 (𝑋1 , . . . , 𝑋7) + 𝜀 ≡ 𝑓 ( ®𝑋) + 𝜀,

where 𝑓 is the systematic component of 𝑌 explained by 𝑋, and 𝜀 is the

random error term, which accounts for measurement errors and other

deviations and discrepancies.
4

4: Generally, we require E(𝜀) = 0.

20.1.2 Systematic Component and Regression

It is the systematic component that is used for predictions and inferences.

As long as 𝑓 is “good”, we can:

make predictions for the response 𝑌 at new points
®𝑋 = x;

understand which features of
®𝑋 = (𝑋1 , . . . , 𝑋𝑝) are important to

explain the variation in 𝑌, and

depending on the complexity of 𝑓 , understand the effect of each

feature 𝑋𝑗 on 𝑌.

Imagine a model with one predictor 𝑋 and a target 𝑌, with systematic

component 𝑓 , so that

𝑌 = 𝑓 (𝑋) + 𝜀.

For instance, consider the following subset of the Gapminder dataset.
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attach(gapminder.ML)

x=log(fertility[10*(1:730)]/infant_mortality[10*(1:730)])

y=life_expectancy[10*(1:730)]

x=x[!is.na(x)]

y=y[!is.na(y)]

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

What is the ideal 𝑓 in this case? How can we find it?

Figure 20.1: Regression model for a subset

of the Gapminder data.

In that case, what would be a good value of 𝑓 (−2), say?

Figure 20.2: Regression model for a subset

of the Gapminder data, with vertical line

at 𝑋 = −2.

Ideally, we would like to have 𝑓 (−2) = E[𝑌 | 𝑋 = −2].5 For any 𝑥 in the5: Why?

range of 𝑋, the function

𝑓 (𝑥) = E[𝑌 | 𝑋 = 𝑥]
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is the regression function of 𝑌 on 𝑋. In the general setting with 𝑝

predictors, the regression function is

𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑝) = E[𝑌 | 𝑋1 = 𝑥1 , . . . , 𝑋𝑝 = 𝑥𝑝] = E[𝑌 | ®𝑋 = x].

It is optimal in the sense that this regression function minimizes the

average square deviation from the response variable, that is to say,

𝑓 = arg min

𝑔

{
E

[
(𝑌 − 𝑔( ®𝑋))2 | ®𝑋 = x

]}
.

The term

𝜀 = 𝜀 ®𝑋 = 𝑌 − 𝑓 ( ®𝑋)

is the irreducible error of the regression. Typically, 𝜀 ®𝑋 ≠ 0 for all
®𝑋,

since, even when 𝑓 is known exactly, there will still be some uncertainty

in the predictions due to some noise-generating mechanism in the “real

world”.

If 𝑓 is any estimate of the regression function 𝑓 ,6 then 6: In particular, 𝑓 ( ®𝑋) = �̂� ≈ 𝑌 = 𝑓 ( ®𝑋)+𝜀.

E[(𝑌 − �̂�)2 | ®𝑋 = x] = E[( 𝑓 ( ®𝑋) + 𝜀 − 𝑓 ( ®𝑋))2 | ®𝑋 = x]
= [ 𝑓 (x) − 𝑓 (x)]2︸          ︷︷          ︸

reducible

+ Var(𝜀)︸︷︷︸
irreducible

.

Since the irreducible component is not a property of the estimate 𝑓 , the

objective of minimizing E[(𝑌 − �̂�)2] can only be achieved by working

through the reducible component. When we speak of learning a model,

we mean that we use the training data to find an estimate 𝑓 of 𝑓 that

minimizes this reducible component, in some way.

Estimating the Regression Function In theory, we know that the regres-

sion function is

𝑓 (x) = E[𝑌 | ®𝑋 = x];

in practice, however, there might be too few (or even no) observations at

®𝑋 = x to trust the estimate provided by the sample mean. One solution

is to approximate the expectation by a nearest neighbour average

𝑓 (x) = Avg{𝑌 | ®𝑋 ∈ 𝑁(x)},

where 𝑁(x) is a neighbourhood of x.

Figure 20.3: Regression model for a subset

of the Gapminder data, with vertical line

at 𝑋 = −2 and neighbourhood 𝑁(−2).
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In general, this approach works reasonably well when 𝑝 is “small”

(𝑝 ≤ 4?) and 𝑁 is “large”, but it fails when 𝑝 is too large because of the

curse of dimensionality. The problem is that nearest neighbours are

usually far when 𝑝 is large. Indeed, if 𝑁(x) is defined as the nearest 5% of

observations to x, say,
7

then we need to leave the “local” neighbourhood7: The proportion must be large enough

to bring the variance down.
of x to build 𝑁(x), which could compromise the quality of 𝑓 (x) as an

approximation to 𝑓 (x).

We provide more details in Chapter 23, but this is a topic about which it

is worth being well-read (see [3] for a formal treatment).

The various statistical learning methods attempt to provide estimates

of the regression function by minimizing the reducible component

through parametric or non-parametric approaches.
8

For instance, the8: In this context, “parametric” means

that assumptions are made about the

form of the regression function 𝑓 ; “non-

parametric” means that no such assump-

tions are made.

classical linear regression approach is parametric: it assumes that the

true regression function 𝑓 is linear and suggests the estimate

𝑓𝐿(x) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 .

The objective, in this case, is to learn the 𝑝 + 1 parameters 𝛽0 , 𝛽1 , . . . , 𝛽𝑝
with the help of the training data.

In practice, this assumption almost never holds, but it often provides

an interpretable9
approximation to the true regression function 𝑓 (see9: We will revisit this concept at a later

stage.
below for an example).

Gapminder subset and linear regression

lin.reg = lm(y~x)

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

abline(lin.reg, col="red", lwd=3)

As an example, if the true fit of the motivating example was

life expectancy = 𝑓 (fertility, infant mortality, gdp) + 𝜀,

say, then the linear regression approach would assume that

𝑓 (fertility,infant mortality, gdp) ≈ 𝑓𝐿(fertility, infant mortality, gdp)
= 𝛽0 + 𝛽1 · fertility + 𝛽2 · infant mortality + 𝛽3 · gdp.
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The main advantages of the linear model are that it is interpretable and

that it is easier to learn 𝑝 + 1 parameters than it is to learn a whole

function 𝑓 . On the flip side, the linear model does not usually match the

true regression function 𝑓 ; if 𝑓𝐿 0 𝑓 , then predictions will suffer.

We could decide to consider more complex functions in order to get

better estimates (and thus better prediction accuracy), but this comes at

a cost – the resulting functions are usually more difficult to learn and

they tend to overfit the data.
10

10: Which is to say, they mistake noise in

the data for a signal to model, see Section

20.1.4 for details.Splines provide examples of non-parametric models (see Section 20.5.2):

they make no assumption about the form of 𝑓 – they simply seek to

estimate 𝑓 by getting close to the data points without being too rough or

too wiggly, as below.

Gapminder subset and smoothing spline

smoothingSpline = smooth.spline(x, y, spar=0.7)

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

lines(smoothingSpline, col="red", lwd=3)

detach(gapminder.ML)

The main advantage of non-parametric approaches is that they have the

potential to fit a wider range of regression shapes. But since estimating

𝑓 is not reduced to learning a small number of parameters, substantially

more data is required to obtain accurate estimates.
11

11: And the whole situation is susceptible

to overfitting.

Non-parametric methods are usually more flexible (they can produce a

large range of shapes when estimating the true regression function 𝑓 );

parametric models are usually more interpretable.
12

12: The set of parameters to learn is small

and we can more easily make sense of

them, which leads us to a better under-

standing of how the predictors interact to

produce outputs.

Approaches that provide:

high flexibility, but low interpretability include ensemble learning,

support vector machines, neural networks, and splines;

low flexibility, but high interpretability include the LASSO and

OLS, and

medium flexibility and medium interpretability include general-

ized additive models and regression trees.
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There are no high-flexibility/high-interpretability approaches. The

trade-off between two competing desirable properties is the calling card

of machine learning; we will encounter such trade-offs time and time

again; they dictate what the discipline can and cannot hope to achieve.

20.1.3 Model Evaluation

In an ideal world,
13

we would want to identify the modeling approach13: From a model performance point of

view.
that performs “best”, and use it for all problems.

The discussion on trade-offs shows that the concept of “best performance”

is impossible to define in practice in a way that meets all desired require-

ments, and a balance must be struck. Another issue lurks around the

corner, even when we settle on an “optimal” performance evaluation

measure: no single method is optimal over all possible datasets.
14

14: In reality, machine learning is simply

applied optimization; the proof of this

No-Free Lunch Theorem falls outside the

scope of this document (but see [13, 12] for

details).

Given a specific task and dataset, then, how do we select the approach

that will yield the best results (for a given value of “best”)? In practice,

this is the main machine learning challenge.

In order to evaluate a model’s performance at a specific task, we must

be able to measure how well predictions match the observed data. In a

regression/value estimation setting, various metrics are used:

mean squared error (MSE):

1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2;

mean absolute error (MAE):

1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|;

normalized mean squared error (NMSE):

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦)2
;

normalized mean absolute error (NMAE):

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦 |
;

mean average percentage error (MAPE):

1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|
𝑦𝑖

;

correlation 𝜌�̂� ,𝑦 , etc.
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The MSE has convenient mathematical properties, and we will follow

the lead of just about every reference in making it our go-to metric, but

note that the conceptual notions we will discuss would be qualitatively

similar for all performance evaluation tools.

Note that in order to evaluate the suitability of a model for predictive
purposes, these metrics should be evaluated on testing data (or unseen

data), not on the training data.
15

15: Failure to do so means that the model

can at best be used to describe the training

dataset (which might still be a valuable

contribution).

For instance, if we are trying to determine whether any clinical measure-

ment in patients are likely to predict the onset of Alzheimer’s disease,

we do not particularly care if the algorithm does a good job of telling us

that the patients we have already tested for the disease have it or not – it

is new patients that are of interest.
16

16: Although it would be surprising if the

performance on the test data is any good

if the performance on the training data is

middling. We shall see at a later stage that

the training/testing paradigm can also

help with problems related to overfitting.

Let Tr = {(x𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} be the training set and suppose that we

use some statistical learning method to estimate the true relationship

𝑌 = 𝑓 ( ®𝑋) + 𝜀 by �̂� = 𝑓 ( ®𝑋), i.e., we fit 𝑓 over Tr.

Hopefully, we have 𝑓 (x𝑖) ≈ 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑁 , and

MSETr =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2

is small.

If it is indeed small, then the model does a good job of describing Tr.

But, as discussed above, this is largely irrelevant to (if not uncorrelated

with) our ability to make good predictions; what we would really like to

know is if

𝑓 (x∗) ≈ 𝑓 (x∗) = 𝑦∗

for observations (x∗ , 𝑦∗) ∉ Tr.

An optimal statistical learning method for a given combination of task

and dataset is one that minimizes

MSETe =
1

𝑀

𝑁+𝑀=𝑛∑
𝑗=𝑁+1

(𝑦 𝑗 − 𝑓 (x𝑗))2

over the testing set Te = {(x𝑗 , 𝑦𝑗) | 𝑗 = 𝑁 + 1, . . . , 𝑁 +𝑀 = 𝑛}, where, a
priori, none of the test observations were in Tr.

17
The general situation is 17: New test observations may end up as-

suming the same values as some of the

training observations, but that is an acci-

dent of sampling and/or it is due to the

reality of the scenario under considera-

tion.

illustrated in Figures 20.4 and 20.5.

20.1.4 Bias-Variance Trade-Off

The “U” shape of the testing MSE in Figure 20.5 is generic – something of

this nature occurs for nearly all datasets and choice of supervised learning

family of methods (for regression and for classification): underfitting
and overfitting is a fact of machine learning life.

The generic shape can be explained by two properties of SL methods: the

bias and the variance. Consider a test observation (x∗ , 𝑦∗), and a fitted

model 𝑓 (trained on Tr), which approximates the true model

𝑌 = 𝑓 ( ®𝑋) + 𝜀, where 𝑓 (x) = E[𝑌 | ®𝑋 = x].
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Figure 20.4: The training/testing paradigm. Training data is fed into a variety of statistical learning methods, possibly arranged in increasing

order of complexity, yielding a sequence of models. These models are then used to make predictions on the testing set (using only the

predictors variables); the predictions are then compared with the actual values to evaluate the performance of the models on the testing set.

The performance of the models on the training set can also be evaluated.

Figure 20.5: Generic illustration of the bias-variance trade-off; when the complexity of the model increases, the training error decreases, but

the testing error eventually starts increasing. Generally, models that are too simple will have ’large’ prediction errors on both the training

and the testing sets (underfitting), whereas for models that are too complex, the training error tends to be “small” while the testing error

tends to be “large” (overfitting). Based on [5, 3].
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The expected test MSE at x∗ can be decomposed into 3 fundamental

quantities

E [MSETe(x∗)] = E

[
(𝑦∗ − 𝑓 (x∗))2

]
= Var( 𝑓 (x∗))︸      ︷︷      ︸

variance

+
{
E

[
𝑓 (x∗) − 𝑓 (x∗)

]}
2︸                    ︷︷                    ︸

squared bias

+Var(𝜀).

As before, Var(𝜀) is the irreducible error (due to the inherent noise in

the data); the variance component error Var( 𝑓 (x∗)) arises since different

training sets would yield different fitted models 𝑓 , and the (squared)
bias component error arises, in part, due to the “difficult” problem being

approximated by a “simple” model (see [5, 3] for details).

The overall expected test MSE E[MSETe] is the average of E[MSETe(x∗)]
over all allowable x∗ in the testing space. Note that

E[MSETe] ≥ Var(𝜀),

by construction.

In general, more flexible methods (i.e., more complex methods) tend to

have higher variance and lower bias, and vice-versa: simpler methods

have higher bias and lower variance. It is this interplay between bias

and variance that causes models to underfit (high bias) or overfit (high

variance) the data (see bias-variance trade-off diagram below).

Figure 20.6: Expected test error decompo-

sition, artificial dataset [5].

Let us summarize the main take-aways from the first section:

the optimal regression function 𝑌 = 𝑓 ( ®𝑋) + 𝜀 for numerical re-
sponses is

𝑓 (𝑥) = E[𝑌 | ®𝑋 = x];

models are learned on training data Tr;
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in practice, we learn the best model from a restricted group of

model families;

the best model 𝑓 (x)minimizes the reducible part of the prediction

error MSETe, evaluated on testing data Te;

the bias-variance trade-off tells us that models that are too simple

(or too rigid) underfit the data, and that models that are too complex

(or too “loose”) overfit the data;

the total prediction error on Te is bounded below by the irreducible

error.

Finally, remember that a predictive model’s performance can only be
evaluated on unseen data (i.e., on data not drawn from the training set Tr);

if this requirement is not met, the model is at best descriptive.

20.2 Regression Modeling

In the regression setting, the goal is to estimate the regression function

𝑓 (x) = E[𝑌 | ®𝑋 = x],

the solution to the regression problem

𝑌 = 𝑓 ( ®𝑋) + 𝜀.

The best estimate 𝑓 is the model that minimizes

MSETe( 𝑓 ) = Avgx∗∈Te
E

[
(𝑦∗ − 𝑓 (x∗))2

]
.

In practice, this can be hard to achieve without restrictions on the

functional form of 𝑓 , so we try to learn the best 𝑓 from specific families
of models. Remember, however, that no matter what the approximation

function 𝑓 is, we have:
18

18: Assuming that Var(𝜀) is constant in x.

MSETe( 𝑓 ) ≥ Var(𝜀).

What else can we say about 𝑓 ? In the ordinary least square framework
(OLS), we assume that

𝑓OLS(x) ≈ x⊤𝜷,

which is to say that we assume that 𝑓OLS is nearly globally linear.
19

19: We neglect the intercept term, in this

interpretation.

The true regression function is almost never linear, but the linear assump-

tion yields models 𝑓 that are both conceptually and practically useful –

the model 𝑓 is easily interpretable, and the associated prediction error

MSETe( 𝑓 ) is often “small-ish”.

The most common data modeling methods are linear and logistic regres-
sion methods. By some estimation, 90% of real-world data applications

end up using these as their final model, typically after very carefully

preparing the data (cleaning, encoding, creation of new variables, trans-

formation of variables, etc.).

That is mostly due to the:

regression models being straightforward to interpret and to train;
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MSETe having a closed-form linear expression, and

OLS solution being computable using simple matrix manipulations.

Gapminder Example Let us revisit the Gapminder dataset, focusing on

observations from 2011.

Is there a relationship between gross domestic product and life

expectancy?

How strong is the relationship?

Which factors contribute to the life expectancy?

How accurately could we predict life expectancy given a set of new

observations?

Is the relationship linear?

Are there combinations of factors that are linked with life ex-

pectancy?

Can the scatterplots of various predictors against life expectancy for

the 2011 Gapminder data, shown below with line of best fit, be used to

answer these questions?

gapminder.2011 <- gapminder.ML |> filter(year==2011)

attach(gapminder.2011)

x=population

y=life_expectancy

plot(x,y, xlab="Population", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=infant_mortality

y=life_expectancy

plot(x,y, xlab="Infant Mortality", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=fertility

y=life_expectancy

plot(x,y, xlab="Fertility", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=gdp

y=life_expectancy

plot(x,y, xlab="Gross Domestic Product",

ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=gdp/population

y=life_expectancy

plot(x,y, xlab="GDP per capita", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=log(gdp/population)

y=life_expectancy

plot(x,y, xlab="GDP per capita (log scale)",
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ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

detach(gapminder.2011)

20.2.1 Formalism

Consider a dataset Tr = {(x1 , 𝑦1), . . . , (x𝑁 , 𝑦𝑁 )} with 𝑁 observations

and 𝑝 − 1 features. The corresponding design matrix, response vector,
and coefficient vector are, respectively,

X =
©«
1 𝑥1,1 · · · 𝑥1,𝑝−1

...
...

...

1 𝑥𝑁,1 · · · 𝑥𝑁,𝑝−1

ª®®¬ , Y =
©«
𝑦1

...

𝑦𝑁

ª®®¬ , 𝜷 =

©«
𝛽0

𝛽1

...

𝛽𝑝−1

ª®®®®¬
.

The objective is to find 𝑓 such that Y = 𝑓 (X)+𝜺. The OLS solution assumes

that 𝑓 (X) = X𝜷; we must thus learn 𝜷 using the training data Tr.

If �̂� is an estimate of the true coefficient vector 𝜷, the linear regression
model associated with Tr is

𝑓 (x) = �̂�0 + �̂�1𝑥1 + · · · + �̂�𝑝−1𝑥𝑝−1.

How do we find �̂�? The OLS estimate minimizes the loss function

L(𝜷) = ∥Y − X𝜷∥2
2
= (Y − X𝜷)⊤(Y − X𝜷)

= Y⊤Y − ((X𝜷)⊤Y + Y⊤X𝜷) + (X𝜷)⊤X𝜷
= Y⊤Y − (𝜷⊤X⊤Y + Y⊤X𝜷) + 𝜷⊤X⊤X𝜷.

The loss function is a non-negative symmetric quadratic form in 𝜷, with

no restriction on the coefficients, so any minimizer of Lmust also be one

of its critical points (assuming certain regularity conditions on the data).

We are thus looking for coefficients for which ∇L(𝜷) = 0. Since

∇L(𝜷) = −2(X⊤Y − X⊤X𝜷),
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any minimizer �̂� must satisfy the canonical (normal) equations:

X⊤Y = X⊤X�̂�.

If X⊤X is invertible, the minimizer �̂� is unique and is given by

�̂� = (X⊤X)−1X⊤Y, with Var(�̂�) = �̂�2(X⊤X)−1 ,

where �̂�2
is the variance of the residuals.

20
We say that “we have learned 20: Note that X⊤X is a 𝑝× 𝑝 matrix, which

makes the inversion relatively easy to com-

pute even when 𝑁 is large.

the coefficients �̂� on the training data Tr using linear regression”.

In what follows, we sometimes write x to represent the observation

vector

(1, 𝑥1 , . . . , 𝑥𝑝−1)⊤;

it should be clear what is meant from the context.

The fitted value of the model 𝑓 at input x𝑖 ∈ Tr is

�̂�𝑖 = 𝑓 (x𝑖) = x⊤𝑖 �̂�,

and the predicted value at an arbitrary x∗ is

�̂�∗ = 𝑓 (x∗) = x∗⊤�̂�.

The fitted surface is thus entirely described by the 𝑝 + 1 parameters �̂�;

the number of (effective) parameters is a measure of the complexity of

the learner.

Motivating Example We study a subset of the Gapminder dataset: the

observations for 2011, the predictor variables infant mortality 𝑋1 and

fertility 𝑋2, and the response variable life expectancy 𝑌. The training

data Tr contains 𝑁 = 166 observations and 𝑝 = 2 predictor features.

The design matrix X is thus of dimension 166 × 3.

library(matlib)

gapminder.2011 <- gapminder.2011 |> dplyr::mutate(const=1)

design.X = gapminder.2011[,c("const","infant_mortality",

"fertility")]

str(design.X)

’data.frame’: 166 obs. of 3 variables:

$ const : num 1 1 1 1 1 1 1 1 1 1 ...

$ infant_mortality: num 14.3 22.8 106.8 7.2 12.7 ...

$ fertility : num 1.75 2.83 6.1 2.12 2.2 1.5 1.88 1.44 1.96 1.9 ...

The response is a 166 × 1 vector.

resp.Y = gapminder.2011[,c("life_expectancy")]

The constituents of the canonical equations are:
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(X.t.X = t(as.matrix(design.X)) %*% as.matrix(design.X))

(X.t.Y = t(as.matrix(design.X)) %*% as.matrix(resp.Y))

We thus see that

X⊤X =
©«

166.0 4537.3 486.54

4537.3 225043.25 18445.28

486.54 18445.28 1790.238

ª®¬
and

X⊤Y =
©«

11756.7

291153.33

32874.95

ª®¬ .
We can now compute �̂�:

(beta.hat = inv(X.t.X) %*% X.t.Y)

Thus,

�̂� = (X⊤X)−1X⊤Y =
©«

79.677

−0.276

−0.443

ª®¬ .
We have seen that the fitted surface is

𝑦∗ = 𝑓 (x∗) = 79.677 − 0.276𝑥∗
1
− 0.443𝑥∗

2

for an observation x∗ = (𝑥∗
1
, 𝑥∗

2
).

Warning: predictions should not be made for observations outside the

range (or the envelope) of the training predictors. In this example, the

predictor envelope is shown in red in the figure below – one should resist

the temptation to predict 𝑦∗ for x∗ = (100, 2), say.

Least Squares Assumptions Since the family of OLS learners is a subset

of all possible learners, the best we can say about 𝑓OLS is that

MSETe( 𝑓OLS) ≥ min

𝑓

{
MSETe( 𝑓 )

}
≥ Var(𝜀).

In practice, we are free to approximate 𝑓 with any learner 𝑓 . If we

want 𝑓 to be useful, however, we need to verify that it is a “decent”

approximation.

There is another trade-off at play: when we restrict learners to specific

families of functions,
21

we typically also introduce a series of assumptions21: That is, when we impose structure on

the learners.
on the data.

The OLS assumptions are

linearity: the response variable is a linear combination of the

predictors;

homoscedasticity: the error variance is constant for all predictor

levels;
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Figure 20.7: Predictor envelope for the

Gapminder subset.

uncorrelated errors: the error is uncorrelated from one observation

to the next;

full column rank for design matrix X: the predictors are not

perfectly multi-collinear;

weak exogeneity: predictor values are free of measurement error.

Mathematically, the assumptions translate to

Y = X𝜷 + 𝜺,

where 𝜷 ∈ ℝ𝑝+1
is determined on a training set Tr without measurement

error, and for which

E[𝜺 | X] = 0 and E[𝜺𝜺⊤ | X] = 𝜎2𝐼𝑛 .

Although it is not a requirement, it is also often further assumed that

𝜺 | X ∼N(0, 𝜎2𝐼𝑛).

We will discuss how these assumptions can be generalized at a later stage.

In the meantime, however, how can we determine if the choice of model

is valid? In the traditional statistical analysis context, there is a number

of tests available to the analyst (we will discuss them shortly). In the

machine learning context, there is only one real test:

does the model make good predictions?
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20.2.2 Least Squares Properties

Let us assume that the OLS assumptions are satisfied. What can we say

about the linear regression results? (see Chapter 8 and [6], say, for a

refresher).

For the Gapminder example above, for instance, we could us R’s lm().

f.model = lm(life_expectancy~infant_mortality+fertility)

summary(f.model)

Residuals:

Min 1Q Median 3Q Max

-15.3233 -2.0057 0.2003 2.9570 10.6370

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 79.6759 0.7985 99.786 <2e-16 ***
infant_mortality -0.2763 0.0248 -11.138 <2e-16 ***
fertility -0.4440 0.4131 -1.075 0.284

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.172 on 163 degrees of freedom

Multiple R-squared: 0.7612, Adjusted R-squared: 0.7583

F-statistic: 259.8 on 2 and 163 DF, p-value: < 2.2e-16

Coefficient of Determination Let

SSE = Y⊤[𝐼𝑛 − X(X⊤X)−1X⊤]Y = Y⊤[𝐼𝑛 −H]Y

and

SST = Y⊤Y − 𝑛𝑦2

.

In the Gapminder example, we have:

(SSE=anova(f.model)[[2]][3])

[1] 2837.69

(SST=as.vector(t(as.matrix(resp.Y)) %*% as.matrix(resp.Y)

- nrow(as.matrix(resp.Y))*(mean(resp.Y))^2))

[1] 11882.18

The coefficient of determination of the OLS regression is the quotient

𝑅2 =
SST − SSE

SST

=
Cov

2(Y,X�̂�)
𝜎2

𝑦𝜎
2

�̂�

.

In the Gapminder example, we have:



20.2 Regression Modeling 1219

(R.2 = 1-SSE/SST)

[1] 0.761181

The coefficient of determination identifies the proportion of the variation

of the data explained by the linear regression; as such, 0 ≤ 𝑅2 ≤ 1.

If 𝑅2 ≈ 0, then the predictor variables have little explanatory power on

the response; if 𝑅2 ≈ 1, then the linear fit is deemed to be “good”, as a

lot of the variability in the response is explained by the predictors. In

practice, the number of predictors also affects the goodness-of-fit (this is

related to the curse of dimensionality discussed previously).

The quantity

𝑅2

𝑎 = 1 − 𝑁 − 1

𝑁 − 𝑝 (1 − 𝑅
2) = 1 − SSE/(𝑁 − 𝑝)

SST/(𝑁 − 1)

is the adjusted coefficient of determination of the linear regression.

While 𝑅2

𝑎 can be negative, it is always smaller than 𝑅2
. It also plays a role

in the feature selection process.

In the Gapminder example, we have:

(R.a.2 = 1-(nrow(as.matrix(resp.Y))-1)

/(nrow(as.matrix(resp.Y))-nrow(X.t.X))*(1-R.2))

[1] 0.7584

This suggests that a fair proportion of the variability in the life expectancy

(about 75.7%) is explained by infant mortality and fertility.

Significance of Regression We can determine if at least one of the

predictors𝑋1 , . . . , 𝑋𝑝−1 is useful in predicting the response𝑌 by pitting

𝐻0 : (𝛽1 , . . . , 𝛽𝑝−1) = 0 against 𝐻1 : (𝛽1 , . . . , 𝛽𝑝−1) ≠ 0.

Under the null hypothesis 𝐻0, the 𝐹−statistic

𝐹∗ =
(SST − SSE)/𝑝
SSE/(𝑁 − 𝑝) ∼ 𝐹𝑝,𝑁−𝑝 .

At significance level 𝛼, if 𝐹∗ ≥ 𝐹𝑝,𝑁−𝑝;𝛼 (the 1 − 𝛼 quantile of the 𝐹

distribution with 𝑝 and 𝑁 − 𝑝 degrees of freedom), then we reject the

null hypothesis in favour of the alternative.

In the Gapminder model

𝑌 = 79.677 − 0.276𝑋1 − 0.443𝑋2 + 𝜀, 𝑁 = 166, 𝑝 = 2,

we have:
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(F.star = ((SST-SSE)/(nrow(X.t.X)))

/(SSE/(nrow(as.matrix(resp.Y))-nrow(X.t.X))))

[1] 258.169

At a significance level 𝛼 = 0.05, the critical value of the 𝐹2,164 distribution

is:

qf(0.05,nrow(X.t.X),nrow(as.matrix(resp.Y))

-nrow(X.t.X),lower.tail=FALSE)

[1] 3.051127

Since 𝐹∗ ≥ 𝐹2,164;0.05, at least one of 𝛽1 , 𝛽2 ≠ 0, with probability 95% (in

the frequentist interpretation).

Interpretation of the Coefficients For 𝑗 = 1, . . . , 𝑝, the coefficient 𝛽 𝑗
is the average effect on 𝑌 of a 1-unit increase in 𝑋𝑗 , holding all other
predictors fixed. Ideally, the predictors are uncorrelated (such as would

be the case in a balanced design [10]). Each coefficient can then be

tested (and estimated) separately, and the above interpretation is at least

reasonable in theory.

In practice, however, we can not always control the predictor variables,

and it might be impossible to “hold all other predictors fixed.” When the

predictors are correlated, there are potential variance inflation issues

for the estimated regression coefficients, and the interpretation is risky,

since when 𝑋𝑗 changes, so do the other predictors.
22

More importantly,22: If 𝑌 represents the total monetary

value in a piggy bank, 𝑋1 the number

of coins, and 𝑋2 the number of pennies,

what is likely to be the sign of 𝛽2 in the

model 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀? Are

𝑋1 and 𝑋2 correlated? What would the

interpretation look like, in this case?

the interpretation can also be read as a claim of causality, which should
be avoided when dealing with observational data.

“The only way to find out what will happen when a complex

system is disturbed is to disturb the system, not merely to

observe it passively.” (paraphrased from [2])

In the Gapminder example, the correlation between 𝑋1 and 𝑋2 is:

cor(infant_mortality,life_expectancy)

[1] -0.8714863

The predictors are thus strongly correlated, and the standard interpreta-

tion is not available to us.
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Hypothesis Testing We can also determine if a specific predictor 𝑋𝑗 is

useful in predicting the response 𝑌, by testing for

𝐻0 : 𝛽 𝑗 = 0 against 𝐻1 : 𝛽 𝑗 ≠ 0.

Under the null hypothesis 𝐻0, the test statistic

𝑡∗ =
�̂� 𝑗

se(�̂� 𝑗)
∼ 𝑇𝑁−2 ,

where se(�̂� 𝑗) =
√
�̂�2(X⊤X)−1

𝑗+1, 𝑗+1
, and �̂�2 = SSE

𝑁−𝑝 , and 𝑇𝑛−2 is the Student

𝑇 distribution with 𝑁 − 2 degrees of freedom.

At a significance level 𝛼, if |𝑡∗ | ≥ |𝑡𝑛−2;𝛼/2 | (the 1 − 𝛼/2 quantile of the

𝑇 distribution with 𝑁 − 2 degrees of freedom), then we reject the null

hypothesis in favour of the alternative.

In the Gapminder model, we have: 𝑁 = 166, 𝑝 = 2, and �̂�1 = −0.276 so

that

(sigma.hat.2=SSE/(nrow(as.matrix(resp.Y))

-nrow(X.t.X)))

[1] 17.51661

(se.beta.hat.1=sqrt(sigma.hat.2*inv(X.t.X)[2,2]))

[1] 0.02488045

Thus

(t.star=(inv(X.t.X) %*% X.t.Y)[2]/se.beta.hat.1)

[1] -11.08275

At a significance level 𝛼 = 0.05, the critical value of the 𝑇164 distribu-

tion is:

qt(0.025,nrow(as.matrix(resp.Y))-2)

[1] -1.974535

Since |𝑡∗ | ≥ |𝑡164;0.025 |, 𝛽1 ≠ 0 with probability 95% (in the frequentist

interpretation).
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Confidence Intervals The standard error of �̂� 𝑗 reflects how the estimate

would vary under various Tr; it can be used to compute a (1 − 𝛼)%
confidence interval for the true 𝛽 𝑗 :

CI(𝛽 𝑗 ; 1 − 𝛼) ≡ �̂� 𝑗 ± 𝑧𝛼/2 · se(�̂� 𝑗);

at 𝛼 = 0.05, 𝑧𝛼/2 = 1.96 ≈ 2, so that

CI(𝛽 𝑗 ; 0.95) ≡ �̂� 𝑗 ± 2se(�̂� 𝑗).

In the Gapminder example, we have

coeff. est. s.e. t∗ 95% CI

𝛽0 79.677 0.7985 99.786 [78.1, 81.3, ]
𝛽1 −0.276 0.0248 −11.138 [−0.33,−0.23]
𝛽2 0.443 0.4131 −1.075 [−1.27, 0.38]

In frequentist statistics, the confidence interval has a particular inter-

pretation – it does not mean, as one might wish, that there is a 95%

chance, say, that the true 𝛽 𝑗 is found in the CI; rather, it suggests that the

approach used to build the 95% CI will yield an interval in which the

true 𝛽 𝑗 will reside approximately 95% of the time.
23

23: Compare with the Bayesian notion of

a credible interval (see Chapter 25).

The resulting confidence intervals also depend on the underlying model.

For instance, the 95% CI for 𝛽1 in the full model is [−0.33,−0.23] (see

above), whereas the corresponding CI in the reduced model

�̂� = 𝛾0 + 𝛾1𝑋1

is [−0.33,−0.27].

The estimates are necessarily distinct as well:

reduced.model = lm(life_expectancy ~ infant_mortality)

summary(reduced.model)

Residuals:

Min 1Q Median 3Q Max

-14.9729 -1.9716 0.1726 2.9727 11.0275

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.99279 0.48357 163.35 <2e-16 ***
infant_mortality -0.29888 0.01313 -22.76 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.174 on 164 degrees of freedom

Multiple R-squared: 0.7595, Adjusted R-squared: 0.758

F-statistic: 517.9 on 1 and 164 DF, p-value: < 2.2e-16

Note that �̂�1 = −0.2763 ≠ −0.2989 = �̂�1.



20.2 Regression Modeling 1223

Feature Selection How would we determine if all the predictors help

explain the response 𝑌, or if only a (proper) subset of the predictors is

needed? The most direct approach to solve this problem (in the linear

regression context) is to run best subsets regression.

The procedure is as follows: fit an OLS model for all possible subsets

of predictors and select the optimal model based on a criterion that

balances training error with model size.

There are 2
𝑝+1

such models (a quantity that quickly becomes unmanage-

able). In practice, we need to automate and speed-up the search through

a collection of predictor subsets. OLS approaches include forward selec-
tion and backward selection (we discuss these in detail in Chapter 23,

Feature Selection and Dimension Reduction).

Forward selection is a bottom-up approach:

1. start with the null model M0 : 𝑌 = 𝛽0 + 𝜀;

2. fit 𝑝 simple linear regressions 𝑌 = 𝛽0 + 𝛽 𝑗𝑋𝑗 + 𝜀 and add to the

null model the predictor 𝑋𝑗1 resulting in the lowest SSE:

M1 : 𝑌 = 𝛽0 + 𝛽 𝑗1𝑋𝑗1 + 𝜀;

3. add to that model the predictor 𝑋𝑗2 that results in the lowest SSE

among all the two-variable models:

M2 : 𝑌 = 𝛽0 + 𝛽 𝑗1𝑋𝑗1 + 𝛽 𝑗2𝑋𝑗2 + 𝜀;

4. the process continues until a stopping criterion is met.

Backward selection is a top-down approach, and it works in reverse,

removing predictors from the full model.

In both approaches, there are at most

𝑝 + (𝑝 − 1) + · · · + 2 + 1 =
𝑝(𝑝 + 1)

2

≪ 2
𝑝+1

(when 𝑝 is large)

regressions to run. These methods are, frankly, not ideal in the machine

learning framework (we will shortly see alternatives).

Other Questions

How do we handle qualitative variables? (dummy binary variables);

How do we handle interaction terms? (add features);

How do we handle outliers? (median regression, Theil-Sen esti-

mate);

How do we handle non-constant variance of error terms? (data

transformations, weighted least square regression, Bayesian regres-

sion);

How do we handle high-leverage observations? (robust regression);

How do we handle collinearity? (principal component analysis,

generalized linear models, partial least square regression);

How do we handle multiple tests? (Bonferroni correction: for 𝑞

independent tests with the same data, set significance level to 𝛼/𝑞
to get joint significance equivalent to 𝛼 for a single test).
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20.2.3 Generalizations of OLS

The OLS assumptions are convenient from a mathematical perspective,

but they are not always met in practice.

One way out of this problem is to use remedial measures to transform

the data into a compliant set; another one is to extend the assumptions

and to work out the corresponding mathematical formalism:

generalized linear models (GLM) implement responses with non-

normal conditional distributions;

classifiers (logistic regression, decision trees, support vector ma-

chines, naïve Bayes, neural networks) extend regression to categor-

ical responses (see Chapter 21);

non-linear methods such as splines, generalized additive models

(GAM), nearest neighbour methods, kernel smoothing methods

are used for responses that are not linear combinations of the

predictors (see Section 20.5);

tree-based methods and ensemble learning methods (bagging,

random forests, boosting) are used for predictor interactions (see

Chapter 21);

regularization methods (ridge regression, LASSO, elastic net)

facilitate the process of model selection and feature selection (see

the subsection on Shrinkage Methods).

Generalized Linear Models GLM extend the OLS paradigm
24

by accom-24: Ordinary least squares.

modating response variables with non-normal conditional distributions.

Apart from the error structure, a GLM is essentially a linear model:

𝑌𝑖 ∼ D(𝜇𝑖), where 𝑔(𝜇𝑖) = x⊤𝑖 𝜷.

A GLM consists of:

a systematic component x⊤
𝑖
𝜷;

a random component specified by the distribution D for 𝑌𝑖 , and

a link function 𝑔.

The systematic component is specified in terms of the linear predictor

for the 𝑖th observation 𝜂𝑖 = x⊤
𝑖
𝜷; the general ideas and concepts of OLS

carry over to GLM, with the added presence of the link function and the

distribution of the response 𝑦𝑖 .

In principle, the link function 𝑔 could be any function linking the linear

predictor 𝜂𝑖 to the distribution of the response 𝑌𝑖 ; in practice, however, 𝑔

should be smooth and monotonic.
25

25: Or at least differentiable and invert-

ible.

We could specify any distribution D for the response 𝑌𝑖 , but they are

usually selected from the exponential family of distributions.
26

OLS is26: These are distributions have probabil-

ity density functions that satisfy

𝑓 (x | ®𝜃) = ℎ(x)𝑔( ®𝜃) exp( ®𝜙( ®𝜃) · ®𝑇(x)).

This includes the normal, binomial, Pois-

son, Gamma distributions, etc. These are

all distributions with conjugate priors (see

Chapter 25).

an example of GLM, with:

systematic component 𝜂𝑖 = x⊤
𝑖
𝜷;

random component 𝑌𝑖 ∼N(𝜇𝑖 , 𝜎2);
link function 𝑔(𝜇) = 𝜇.
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For a more substantial example, consider the following situation. In the

early stages of a rumour spreading, the rate at which new individual learn

the information increases exponentially over time. If 𝜇𝑖 is the expected

number of people who have heard the rumour on day 𝑡𝑖 , a model of the

form 𝜇𝑖 = 𝛾 exp(𝛿𝑡𝑖)might be appropriate:

ln(𝜇𝑖)︸︷︷︸
link

= ln 𝛾 + 𝛿𝑡𝑖 = 𝛽0 + 𝛽1𝑡𝑖 = (1, 𝑡𝑖)⊤(𝛽0 , 𝛽1)︸           ︷︷           ︸
systematic component

.

Furthermore, since we measure a count of individuals, the Poisson

distribution could be a reasonable choice:

𝑌𝑖 ∼ Poisson(𝜇𝑖),︸        ︷︷        ︸
random component

ln(𝜇𝑖) = (1, 𝑡𝑖)⊤(𝛽0 , 𝛽1).

The main advantages of GLM are that:

there is no need to transform the response 𝑌 if it does not follow a

normal distribution;

if the link produces additive effects, the assumption of homoscedas-

ticity does not need to be met;

the choice of the link is separate from the choice of random compo-

nent, providing modeling flexibility;

models are still fitted via a maximum likelihood procedure;

inference tools and model checks (Wald ratio test, likelihood ratio

test, deviance, residuals, CI, etc.) still apply;

they are easily implemented (proc genmod, glm(), etc.), and

the framework unites various regression modeling approaches

(OLS, logistic, Poisson, etc.) under a single umbrella.

20.2.4 Shrinkage Methods

We will discuss the curse of dimensionality (CoD), subset selection, and

dimension reduction in Chapter 23. Another approach to dealing with

high-dimensionality is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants.

In what follows, assume that the training set consists of 𝑁 centered and

scaled observations x𝑖 = (𝑥𝑖 ,1 , · · · , 𝑥𝑖 ,𝑝−1), with responses 𝑦𝑖 .

Let �̂�OLS, 𝑗 be the 𝑗th OLS coefficient, and set a threshold 𝜆 > 0, whose

value depends on the training dataset Tr. Recall that �̂�OLS is the exact

solution to the OLS problem

�̂�OLS = arg min

𝜷
{∥Y − X𝜷∥2

2
} = arg min

𝜷
{SSE}.

In general, no restrictions are assumed on the values of the coefficients

�̂�OLS, 𝑗 – large magnitudes imply that corresponding features play an
important role in predicting the target. This observation forms the basis

of a series of useful OLS variants.
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Figure 20.8: Ridge regression coefficients in a generic problem; note how the coefficients converge to 0 when the threshold lambda increases

(left); the ratio between the magnitude of the ridge regression parameter and the corresponding OLS parameter is shown on the right [5].

Ridge Regression RR is a method to regularize the OLS regression coef-

ficients. Effectively, it shrinks the OLS coefficients by penalizing solutions

with large magnitudes – if the magnitude of a specific coefficient is large,

then it must have great relevance in predicting the target variable.

This leads to a modified OLS problem:

�̂�RR = arg min

𝜷
{ ∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+ 𝑁𝜆∥𝜷∥2
2︸   ︷︷   ︸

shrinkage penalty

}.

This quantity is small when SSE is small (i.e., the model is a good fit to

the data) and when the shrinkage penalty is small (i.e., when each 𝛽 𝑗 is

small). RR solutions are typically obtained via numerical methods.
27

27: For orthonormal covariates (which is

to say, X⊤X = 𝐼𝑝 ), we have, in fact:

�̂�
RR, 𝑗 =

�̂�
OLS, 𝑗

1 + 𝑁𝜆
.

The hyperparameter 𝜆 controls the relative impact of both components.

If 𝜆 is small, then the shrinkage penalty is small even if the individual

coefficients 𝛽 𝑗 are large; if 𝜆 is large, then the shrinkage penalty is only

small when all coefficients 𝛽 𝑗 are small (see Figure 20.8).

Setting the “right” value for𝜆 is crucial; it can be done via cross-validation

(see [5, pp.227-228] and Section 20.3 (Cross-Validation) for details). The

OLS estimates are equivariant: if �̂� 𝑗 is the estimate for the coefficient 𝛽 𝑗
of 𝑋𝑗 , then �̂� 𝑗/𝑐 is the estimate for the coefficient of the scaled variable

𝑐𝑋𝑗 . RR coefficients do not have this property, however, which is why

the dataset must be centered and scaled to start with.

Finally, note that RR estimates help to mitigate the bias-variance trade-off

and reduce issues related to overfitting.
28

28: Even if they do not reduce the dimen-

sions of the dataset.

Regression With Best Subset Selection BS runs on the same principle

but uses a different penalty term, which effectively sets some of the

coefficients to 0 (this could be used to select the features with non-zero

coefficients, potentially).
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Figure 20.9: LASSO coefficients in a generic problem; note how the coefficients goes directly to 0 after a certain threshold lambda (left); the

ratio between the magnitude of the LASSO parameter and the corresponding OLS parameter is shown on the right [5].

The problem consists in solving another modified version of the OLS

scenario, namely

�̂�BS = arg min

𝜷
{∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+𝑁𝜆∥𝜷∥0︸   ︷︷   ︸
shrinkage

}, ∥𝜷∥0 =
∑
𝑗

sgn(|𝛽 𝑗 |).

Solving the BS problem typically (also) requires numerical methods and

cross-validation.
29

A slight modification to the RR shrinkage penalty 29: For orthonormal covariates, we have

�̂�
BS, 𝑗 =

{
0 if |�̂�LS,j | <

√
𝑁𝜆

�̂�LS,j if |�̂�LS,j | ≥
√
𝑁𝜆

can overcome the lack of equivariance.

LASSO This approach is an alternative to RR obtained by solving

�̂�L = arg min

𝜷
{∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+𝑁𝜆∥𝜷∥1︸   ︷︷   ︸
shrinkage

};

the penalty effectively forces coefficients which combine the propertiesof

RR and BS, selecting at most max{𝑝, 𝑁} features, and usually no more

than one per group of highly correlated variables (the other coefficients

are forced down to 0 when 𝜆 is large enough, see Figure 20.9).
30

30: For orthonormal covariates, we have

�̂�
L, 𝑗 = �̂�

OLS, 𝑗 ·max

(
0, 1 − 𝑁𝜆

|�̂�
OLS, 𝑗 |

)
.

Why do we get �̂�L, 𝑗 = 0 for some 𝑗, but not for the RR coefficients? The

RR and LASSO formulations are equivalent to

�̂�RR = arg min

𝜷
{SSE | ∥𝜷∥2

2
≤ 𝑠}, for some 𝑠;

�̂�L = arg min

𝜷
{SSE | ∥𝜷∥1 ≤ 𝑠}, for some 𝑠.

Graphically, this looks like the images shown in Figure 20.10.

The RR coefficients �̂�RR are found at the first intersection of the ellipses of

constant SSE around the OLS coefficient �̂� with the 2−sphere ∥𝜷∥2
2
≤ 𝑠;

that intersection is usually away from the axes;
31

this is not usually the 31: Due to the lack of “sharp” points.

case for the intersection of the 1−sphere ∥𝜷∥1 ≤ 𝑠.
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Figure 20.10: Level curves and neighbourhoods for LASSO (left) and ridge regression (right) [5].

The LASSO thus typically produces simpler models, but predictive

accuracy matters too (in the form of MSETe, say).
32

32: Depending on the data, either of the

two approaches can be optimal, thanks to

the No Free Lunch Theorem.

Generalizations If the response is related to a relatively small number

of predictors (whether this is the case or not is not something we usually

know a priori), LASSO is recommended. The use of other penalty functions

(or combinations thereof) provides various extensions, such as: elastic
nets; group, fused and adaptive lassos; bridge regression, etc.

The modifications described above were defined assuming an underlying

linear regression model, but they generalize to arbitrary regression/clas-

sification models as well. For a loss (cost) function L(Y, y(W)) between

the actual target and the values predicted by the model parameterized by

W, and a penalty vector R(W) = (𝑅1(W), · · · , 𝑅𝑘(W))⊤, the regularized
parametrization W∗ solves the general regularization problem

W∗ = arg min

W
{L(Y, y(W)) + 𝑁𝝀⊤R(W)},

which can be solved numerically, assuming some nice properties on

L and R [4]; as before, cross-validation can be used to determine the

optimal vector 𝝀 [3].

Gapminder Example In R, regularization is implemented in the package

glmnet (among others). In glmnet() the parameter alpha controls the

elastic net mixture: LASSO (alpha = 1), RR (alpha = 0).

Say we are interested in modeling life expectancy𝑌 in the 2011 Gapminder

dataset as a function of population, infant mortality, fertility, gdp, and

continental membership (we use the entire set as a training set Tr).
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A priori, an OLS model on this data would take the form

𝑌 = 𝛼0 + 𝛼1population + 𝛼2infant mortality + 𝛼3fertility + 𝛼4gpd

+ 𝛼5Africa + 𝛼6Americas + 𝛼7Asia + 𝛼8Europe + 𝛼9Oceania.

We start by creating dummy variables for the continents:

gapminder.2011.f <- fastDummies::dummy_cols(gapminder.2011,

select_columns = ’continent’)

Next, we select the appropriate variables for the response and the training

set, and scale and center the data (it must be in a matrix format to be

compatible with glmnet():

Setting up the Gapminder dataset

library(dplyr)

y <- gapminder.2011.f |> select(life_expectancy) |>

as.matrix()

x <- gapminder.2011.f |> select(c("population",

"infant_mortality","fertility","gdp",

"continent_Africa","continent_Americas",

"continent_Asia","continent_Europe",

"continent_Oceania")) |>

scale(center = TRUE, scale = TRUE) |>

as.matrix()

Finally, we run the regression and extract the LASSO coefficients for

hyperparameter 𝜆 = 1:

LASSO coefficients
glmnet1 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=1)

(c1 <- coef(glmnet1, x=xx, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"

s1

(Intercept) 70.82349398

population .

infant_mortality -5.57897055

fertility .

gdp .

continent_Africa -1.13074639

continent_Americas .

continent_Asia .

continent_Europe .

continent_Oceania -0.03096299

Thus

𝑌 = 70.82 − 5.58(infant mortality) − 1.13(Africa) − 0.03(Oceania).



1230 20 Regression and Value Estimation

For RR (𝛼 = 0), we obtain, with the same hyperparameter 𝜆 = 1:

Ridge regression

glmnet0 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=0)

(c0 <- coef(glmnet0, x=xx, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"

s1

(Intercept) 70.8234940

population -0.3471671

infant_mortality -4.4002779

fertility -0.6348077

gdp 0.5803223

continent_Africa -1.6275714

continent_Americas 0.5475769

continent_Asia 0.6117358

continent_Europe 1.0141934

continent_Oceania -0.6855980

which is to say:

𝑌 = 70.82 − 0.34(population) − 4.4(infant mortality) − 0.63(fertility) + 0.58(gdp)

− 1.62(Africa) + 0.55(Americas) + 0.61(Asia) + 1.01(Europe) − 0.68(Oceania),

which is compatible with the above discussion.

The coefficient values themselves are not as important as their signs and

the fact that they are roughly similar in both models.

It is important to note, however, that the choice of 𝜆 = 1 was arbitrary,

and that we have not been evaluating the result on test data Te. We will

revisit these issues in Section 20.3 (Cross-Validation).

20.3 Resampling Methods

How do we determine the variability of a regression fit? It can be done

by drawing different samples from the available data, fitting a regression

model to each sample, and then examining the extent to which the

various fits differ from one another.

Resampling methods provide additional information about a fitted

model, by applying the same fitting approach to various sub-samples of

the training set Tr. We will consider three such methods:

cross-validation, which estimates the test error associated with a

modeling approach in order to evaluate model performance;

the bootstrap, which provides a measure of accuracy, standard

deviation, bias, etc. of various model parameter estimates, and

the jackknife, which is a simpler approach with the same aims as

the bootstrap.
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The test error associated with a statistical learning model is the average

error arising when predicting the response for observations that were

not used to train the model.

The training error, on the other hand, is computed directly by comparing

the model’s predictions to the actual responses in Tr. In general, the

training error underestimates the test error, dramatically so when the

model complexity increases (see variance-bias trade-off, Figure 20.5).

A possible way out of this conundrum is to set aside a large-enough

testing set Te, but that’s not always possible if the original dataset is not

that large in the first place.
33

33: Some methods make direct adjust-

ments to the training error rate in order to

estimate the test error (e.g., Mallow’s 𝐶𝑝
statistic, 𝑅2

𝑎 , AIC, BIC, etc.)

In the statistical learning framework, we estimate the test error by holding
a subset Va ⊆ Tr out from the fitting process (which takes place on Tr\Va).

The validation approach is a simple strategy that is used to estimate

the test error associated with a particular statistical model on a set of

observations.

Formally, the latter is split into a training set Tr and a validation set Va

(the hold-out set). The model is fit on the training set; the fitted model is

used to make predictions on the validation set. The resulting validation

set error provides an estimate for the test error.

This approach is easy to implement and interpret, but it has a number of

drawbacks, most importantly:

the validation error is highly dependent on the choice of the

validation set, and is thus quite volatile;

the model is fitted on a proper subset of the available observations,

and we might expect that this would lead to the validation error
being larger than the test error in general, and

a number of classical statistical models can provide test error

estimates without having to resort to the validation set approach.

20.3.1 Cross-Validation

𝐾-fold cross-validation is a widely-used approach to estimate the test

error without losing some observations to a hold-out set.
34

34: It can also provide a basis for model

selection.

The procedure is simple:

1. Divide the dataset randomly into 𝐾 (roughly) equal-sized folds
(typically, 𝐾 = 4, 5, 10).

2. Each fold plays, in succession, the role of the validation set. If there

are 𝑁 observations in the dataset, partition

{1, . . . , 𝑁} = C1︸︷︷︸
fold 1

⊔ · · · ⊔ C𝐾︸︷︷︸
fold 𝐾

.

If |C𝑘 | = 𝑛𝑘 , we expect 𝑛𝑘 ≈ 𝑁
𝐾 for all 𝑘 = 1, . . . , 𝐾.

3. For all 𝑘 = 1, . . . , 𝐾, fit a model on observations {1, . . . , 𝑁} \ C𝑘
and denote the error on C𝑘 by 𝐸𝑘 .

35
35: For a regression model, there are many

options but we typically use

𝐸𝑘 =
∑
𝑖∈C𝑘

(𝑦𝑖 − �̂�𝑖)2
𝑛𝑘

.

4. Write 𝐸 for the average of the 𝐸𝑘 .
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5. The cross-validation estimate of the test error is

CV(𝐾) =
𝐾∑
𝑘=1

𝑛𝑘
𝑁
𝐸𝑘 ,

with standard error

ŝe

(
CV(𝐾)

)
=

√
1

𝐾 − 1

𝐾∑
𝑘=1

(𝐸𝑘 − 𝐸)2.

These steps could also be replicated 𝑛 times to generate a distribution of

an evaluation metric, such as the standard error.
36

36: See Figure 19.33 for an illustration.

The resulting mean can prove useful in order to determine how well a

statistical learning procedure will perform on unseen data. If, however,

we are interested in selecting a method from a list of methods, or a

flexibility level among a family of approaches, we do not care about the

specific value of CV(𝐾) so much as where it is minimized.
37

37: The estimate is usually biased, any-

way.

From the perspective of bias reduction (in the estimate for the test error),

the best choice is 𝐾 = 𝑁 , but this is mitigated by the variance-bias

trade-off. With 𝐾 = 𝑁 , we have 𝑁 models and 𝑁 estimates for the test

error, but these estimates are highly correlated and the mean of highly

correlated estimates has high variance.
38

38: See Section 20.3, Jackknife, for details.

Gapminder Example We use cross-validation in the Gapminder dataset

to estimate the test error MSETe when predicting life expectancy as a

regression against the logarithm of the GDP per capita for the 2011 data.

Gapminder subset

gapminder.2011.cv <- gapminder.2011 |>

dplyr::mutate(lgdppc = log(gdp/population)) |>

select(life_expectancy,lgdppc)

ggpubr::ggscatter(gapminder.2011.cv, x="lgdppc",

y="life_expectancy", palette="jco", size = 2,

xlab="GDP per capita (log-scale)", xlim=c(0,12),

ylab = "Life Expectancy", ylim=c(0,85),

title = "Gapminder 2011 Data")
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We split the dataset into 𝐾 = 10 random folds, each containing 16 or 17

observations, and fit 10 linear regression models using the 149 or 150

remaining observations.
39

39: Note that the estimates for 𝛽0, 𝛽1, and

MSETe are likely to be correlated from

one fold to the next, since the respective

training sets share a fair number of obser-

vations.

The indices for each of the folds are computed below:

Setting-up the folds

set.seed(0) # for replicability

true.order = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=FALSE)

index=list()

for(k in 1:6){

index[[k]] = true.order[((k-1)*17+1):(k*17)]

}

for(k in 7:10){

index[[k]] = true.order[(102+(k-6-1)*16+1):(k*16+6)]

}

Each fold is used, in turn, as a testing set while the remaining folds form

the training set. We fit an OLS model on each training set, and evaluate

the MSE performance of the model on the appropriate fold testing set.

Compute the test MSE for each fold

training.gap = list()

testing.gap = list()

model.lm.gap = list()

pred.lm.gap = list()

beta.0 = c()

beta.1 = c()

MSE.cv = c()

n.row = c()

for(k in 1:10){

n.row[k]=length(index[[k]])

training.gap[[k]] = gapminder.2011.cv[-index[[k]],]

testing.gap[[k]] = gapminder.2011.cv[index[[k]],]

model.lm.gap[[k]] = lm(life_expectancy~lgdppc,

data=training.gap[[k]])

beta.0[k] = model.lm.gap[[k]][[1]][1]

beta.1[k] = model.lm.gap[[k]][[1]][2]

pred.lm.gap[[k]] = predict(model.lm.gap[[k]],

newdata=testing.gap[[k]])

tmp = data.frame(pred.lm.gap[[k]],testing.gap[[k]][1])

MSE.cv[k] = 1/nrow(tmp)*sum((tmp[,1]-tmp[,2])^2)

}

The number of observations in each fold, as well as the regression

parameters and the MSE on each fold testing set are shown below:
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(results = data.frame(n.row,beta.0,beta.1,MSE.cv))

n.row beta.0 beta.1 MSE.cv

17 37.69812 4.254105 33.859051

17 36.22257 4.442061 21.415376

17 37.59386 4.247255 45.620933

17 36.66761 4.345484 29.584469

17 37.49685 4.268917 24.127300

17 36.49849 4.386124 19.398769

16 36.78991 4.380887 48.157391

16 36.91113 4.331365 23.142625

16 37.41767 4.274771 7.837172

16 37.68955 4.254600 19.743046

The 10−fold cross-validation estimate of MSETe is thus

MSETe =
1

10

10∑
𝑘=1

MSETe𝑘
= 27.29;

CV(𝐾) =
10∑
𝑘=1

𝑛𝑘
166

MSETe𝑘
= 27.35;

ŝe

(
CV(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(MSETe𝑘
−MSETe)2 = 12.38;

these can be computed as below.

CV results
mean.MSE = mean(results$MSE.cv)

cv.k = sum(results$n.row*results$MSE.cv/sum(results$n.row))

se.cv.k = sqrt(1/(nrow(results)-1)*sum((results$MSE.cv-

mean.MSE)^2))

Thus, 27.35 ± 2(12.38) ≡ (2.59, 52.11) is a 95% CI for the MSETe.

We can also get 10−fold cross-validation estimates of 𝛽0 , 𝛽1: we have

𝛽0(𝐾) =

10∑
𝑘=1

𝑛𝑘
166

𝛽0;𝑘 = 37.10

ŝe

(
𝛽0(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(𝛽0;𝑘 − 𝛽0)2 = 0.54,

,

so CI(𝛽0; 0.95) ≡ 37.10 ± 2(0.54) ≡ (36.00, 38.18) and

𝛽1(𝐾) =

10∑
𝑘=1

𝑛𝑘
166

𝛽1;𝑘 = 4.32

ŝe

(
𝛽1(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(𝛽1;𝑘 − 𝛽1)2 = 0.07,

so CI(𝛽1; 0.95) ≡ 4.32 ± 2(0.07) ≡ (4.18, 4.56), as computed below.
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CV estimates for the regression coefficients

mean.beta_0 = mean(results$beta_0)

cv.beta_0.k = sum(results$n.row*results$beta_0/

sum(results$n.row))

se.cv.beta_0.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta_0-mean.beta_0)^2))

mean.beta_1 = mean(results$beta_1)

cv.beta_1.k = sum(results$n.row*results$beta_1/

sum(results$n.row))

se.cv.beta_1.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta_1-mean.beta_1)^2))

LASSO and Regression Ridge Revisited How would we pick the op-

timal hyperparameter 𝜆 in shrinkage regressions? Let us revisit the

example from Section 20.2 (Shrinkage Methods).

As before, we are interested in modeling life expectancy 𝑌 in the 2011

Gapminder dataset as a function of population, infant mortality, fertility,

gdp, and continental membership.
40

We run a 5-fold cross-validation 40: We use gapminder.2011.f, x, and y

as in that section.
LASSO regression for a variety of hyperparameter values 𝜆, and evaluate

the CV test error for each 𝜆 using MSE. The optimal 𝜆 is the one that

minimizes the CV test error.

Let us start with the LASSO (alpha=1):

glmnet1 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,

nfolds=5, alpha=1)

(c1 <- coef(glmnet1, s=’lambda.min’, exact=TRUE))

s1

(Intercept) 70.8234940

population .

infant_mortality -5.7375945

fertility .

gdp 0.1616446

continent_Africa -1.7592037

continent_Americas .

continent_Asia .

continent_Europe 0.1219114

continent_Oceania -0.7977736

The optimal 𝜆 in this case is:

(lambda1 = glmnet1$lambda.min)

[1] 0.3118295

We repeat the process for RR (alpha = 0):
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glmnet0 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,

nfolds=5, alpha=0)

(c0 <- coef(glmnet0, s=’lambda.min’, exact=TRUE))

s1

(Intercept) 70.8234940

population -0.3466483

infant_mortality -4.6968992

fertility -0.4240814

gdp 0.5813385

continent_Africa -1.6192452

continent_Americas 0.5467797

continent_Asia 0.6295896

continent_Europe 1.0091460

continent_Oceania -0.7207190

The optimal 𝜆 in this case is:

(lambda0 = glmnet0$lambda.min)

[1] 0.7373175

Cross-Validation with Python Let us take a look at how we could esti-

mate the test error via cross-validation manually in Python. The following

modules will be necessary: statsmodels to run linear models (in par-

ticular to define formulas for linear regression), numpy for numerical

operations, and pandas for data frame manipulations.

Python modules for CV

import statsmodels.formula.api as smf

import numpy as np

import pandas as pd

import random

random.seed(0) # for replicability

We use the calculus.csv dataset from Section 1.6, whose structure is

as shown below. We will try to predict students’ grades in terms of the

other predictors, using linear regression. In particular, we are interested

in which model does a better job of predicting the grades.

df = pd.read_csv(’calculus.csv’)

df.head()

ID Sex Grade GPA Year

0 10001 F 47 5.02 2

1 10002 M 57 3.82 1

2 10003 M 91 7.70 1

3 10004 M 71 4.82 1

4 10005 F 83 7.91 1
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We start by obtaining a random permutation of the observations (the

pandas method iloc() selects values for specified indices).

nrows = len(df)

permuted = df.iloc[np.random.permutation(nrows)]

permuted.head()

ID Sex Grade GPA Year

60 10061 F 97 11.45 2

61 10062 M 70 3.65 1

28 10029 M 98 11.90 1

49 10050 F 92 11.05 1

50 10051 M 79 6.87 2

In this example, we separate the sample indices into 𝑘 = 5 folds for

cross-validation using the numpy function array_split().

k = 5

chunks = np.array_split(range(nrows), k)

We iterate over each fold as a test set while using the remaining folds as

a training set.

Say chunk[i] is the current test set; we can obtain the corresponding

training set as follows:

training = permuted.iloc[ np.concatenate( [ chunks[j]

for j in range(k) if j != i]) ]

We then perform a linear regression over this training set (with the

statsmodels methods ols() and fit()) and compute the MSE over the

test set using the predicted values. Remember, this is for a single fold:

fit = smf.ols(formula=m, data = training).fit()

test = permuted.iloc[chunks[i]]

pred = fit.predict( test )

testerror = ((pred - test[’Grade’])**2).mean()

In the chunk of code above, formula=m is an R-style formula. In the

following, we go through a number of possible formulas, for all folds.

f = [’Grade ~ GPA + C(Year) + C(Sex)’,

’Grade ~ GPA + C(Year)’,

’Grade ~ GPA + C(Sex)’, ’Grade ~ GPA’ ]

for m in f:

testerror = 0.0

for i in range(k):

training = permuted.iloc[ np.concatenate(

[ chunks[j] for j in range(k) if j != i]) ]
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fit = smf.ols(formula=m, data = training).fit()

test = permuted.iloc[chunks[i]]

pred = fit.predict( test )

testerror += ((pred - test[’Grade’])**2).mean()

testerror /= k

print(testerror, m)

118.2165188650409 Grade ~ GPA + C(Year) + C(Sex)

117.4815061224269 Grade ~ GPA + C(Year)

115.77980266850878 Grade ~ GPA + C(Sex)

114.87270405373037 Grade ~ GPA

The best model is given by the formula Grade ~ GPA.

20.3.2 Bootstrap

The bootstrap procedure uses re-sampling of the available data to mimic
the process of obtaining new replicates, which allows us to estimate the

variability of a statistical model parameter of interest without the need
to generate new observations.

Replicates are obtained by repeatedly sampling observations from the

original dataset with replacement. A bootstrap dataset Tr
∗

for a training

set Tr with 𝑁 observations is a sample of 𝑁 such observations, drawn

with replacement.

The process is repeated 𝑀 times to obtain bootstrap samples Tr
∗
𝑖 and

parameter estimates �̂�∗
𝑖
, for 𝑖 = 1, . . . , 𝑀, from which we derive a

bootstrap estimate

�̂�∗ =
1

𝑀

𝑀∑
𝑖=1

�̂�∗𝑖 ,

with standard error

ŝe (�̂�∗) =

√
1

𝑀 − 1

𝑀∑
𝑖=1

(�̂�∗
𝑖
− �̂�∗)2.

The bootstrap can also be used to build approximate frequentist confi-
dence intervals for the parameter 𝛼.

41
We can even construct a covariance41: Note that this is not as straightforward

as one might think, so caution is advised.
structure for the parameters, given enough replicates.

Finally, it should be noted that in more complex scenarios, the appropriate

bootstrap procedure might be more sophisticated than what has been

described here.
42

42: For instance, sampling with replace-

ment at the observation level would not

preserve the covariance structure of time

series data. Gapminder Example We use the bootstrap procedure for the regression

problem with life expectancy and the log of the GDP per capita in the

2011 Gapminder data.

We draw, with replacement, 𝑀 = 200 bootstrap samples of size 𝑁 = 166

from the original dataset. For each sample 1 ≤ 𝑖 ≤ 𝑀, we find the OLS

fit and retain the intercept 𝛽0,𝑖 and slope 𝛽1,𝑖 .
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beta_0 = c()

beta_1 = c()

set.seed(0) # for replicability

for(k in 1:200){

index = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=TRUE)

training.gap = gapminder.2011.cv[-index,]

model.lm.gap = lm(life_expectancy~lgdppc,

data=training.gap)

beta_0[k] = model.lm.gap[[1]][1]

beta_1[k] = model.lm.gap[[1]][2]

}

results.boot = data.frame(beta_0,beta_1)

We display the joint distribution of 𝜷 = (𝛽0 , 𝛽1)⊤, together with the

marginal distributions for each parameter.

library(ggplot2)

p <- ggplot(results.boot, aes(x=beta_0, y=beta_1)) +

geom_point() +

theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")

We see that 𝜷 roughly follows a multivariate normal N(𝝁,𝚺), with

𝝁 ≈ �̂�∗ =

(
37.22

4.31

)
, 𝚺 ≈ �̂�

∗
=

(
6.32 −0.72

−0.72 0.08

)
,

as computed below:
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boot.beta_0 = mean(results.boot$beta_0)

boot.beta_1 = mean(results.boot$beta_1)

cov(results.boot)

The vector �̂�∗ provides the bootstrap estimates; the corresponding esti-

mates for the standard errors are ŝe(�̂�∗) = (2.51, 0.29)⊤, and

CI(𝛽0; 0.95) = 37.22 ± 2(2.51) ≡ (32.19, 42.25),
CI(𝛽1; 0.95) = 4.31 ± 2(0.29) ≡ (3.73, 4.89);

the standard errors are computed as below:
43

43: Note that the bootstrap CI are wider

than the corresponding cross-validation

CI.

se.boot.beta_0 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_0-mean(results.boot$beta_0))^2))

se.boot.beta_1 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_1-mean(results.boot$beta_1))^2))

20.3.3 Jackknife

The jackknife estimator arises from cross-validation when 𝐾 = 𝑁 ;
44

the44: The jackknife procedure is also known

as leave one out validation.
sole difference being in the standard error estimate

ŝe(�̂�∗) =

√
𝑁 − 1

𝑁

𝑁∑
𝑖=1

(�̂�∗
𝑖
− �̂�∗)2.

Gapminder Example We use the jackknife procedure on the same task

as in the previous section.

For each fold 1 ≤ 𝑘 ≤ 𝑁 , we find the OLS fit on TR𝑘 and retain the

intercept 𝛽0,𝑘 and slope 𝛽1,𝑘 . The code is exactly as in the bootstrap case,

with one exception: we replace the line

index = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=TRUE)

by

index = k

We display the joint distribution of 𝜷 = (𝛽0 , 𝛽1)⊤, together with the

marginal distributions for each parameter.

library(ggplot2)

p <- ggplot(results.jack, aes(x=beta_0, y=beta_1)) +

geom_point() +

theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")
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We see that 𝜷 roughly a multivariate normal N(𝝁,𝚺), with

𝝁 ≈ �̂�∗ =

(
37.11

4.32

)
, 𝚺 ≈ �̂�

∗
=

(
0.021 −0.002

−0.002 0.0003

)
,

as can be computed below:

jack.beta_0 = mean(results.jack$beta_0)

jack.beta_1 = mean(results.jack$beta_1)

cov(results.jack)

The vector �̂�∗ provides the jackknife estimates; the corresponding esti-

mates for the standard errors are ŝe(�̂�∗) = (1.86, 0.21)⊤, and

CI(𝛽0; 0.95) = 37.11 ± 2(1.86) ≡ (33.38, 40.83);
CI(𝛽1; 0.95) = 4.32 ± 2(0.21) ≡ (3.890, 4.744).

The standard errors are computed as below:

se.jack.beta_0 = sqrt(1/nrow(results.jack)*
(nrow(results.jack)-1)*sum((results.jack$beta_0-

mean(results.jack$beta_0))^2))

se.jack.beta_1 = sqrt(1/nrow(results.jack)*
(nrow(results.jack)-1)*sum((results.jack$beta_1-

mean(results.jack$beta_1))^2))

In this case, the jackknife estimates are tighter than the corresponding

bootstrap estimates, but looser than the cross-validation estimates. Will

this always be the case?
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20.4 Model Selection

A linear model

𝑌 = ®𝑋⊤𝜷 + 𝜀

should be seen as an attempt to approximate the regression function

𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x].

But what we gain in convenience of fit (and structure) by using a linear

model, we may lose in modeling accuracy.

In this context, we assume a linear relationship between the response
𝑌 and the predictors 𝑋1 , . . . , 𝑋𝑝 , which we (typically) fit using the

(ordinary) least squares (OLS) framework, which is to say

�̂� = arg min

𝜷
{∥Y − X𝜷∥2

2
},

for the response vector Y and design matrix X provided by a training set
Tr; additional assumptions on the error components 𝜺 usually require

𝜺 ∼N(0, 𝜎I𝑁 ),

where 𝑛 represents the number of observations in Tr.

Fundamentally, there are 3 ways in which the OLS framework can be

extended:

1. additive but non-linear models (see Section 20.5, Generalized Additive
Models);

2. non-linear models (see Section 20.5 and Chapter 21), and

3. replacing LS with alternative fitting procedures (see Section 20.2,

Shrinkage Methods).

The latter approach can produce better accuracy than OLS without

sacrificing too much in the way of model interpretability.
45

45: In practice, linear models have dis-

tinct advantages over more sophisticated

models, mainly in the areas of superior

interpretability and (frequently) appropri-

ate predictive performances (especially for

linearly separable data). These “Old Faith-

ful” models will still be there if fancy deep

learning models fail analysts in the future.

But in the OLS framework, prediction accuracy suffers when 𝑝 > 𝑛, due

to curse of dimensionality (see Section 23.2.2, Curse of Dimensionality);

model interpretability can be improved by removing irrelevant features
or by reducing 𝑝.

The 3 classes of methods to do so are:

shrinkage and regularization methods;

dimension reduction, and

subset selection/feature selection.

For shrinkage/regularization methods, we fit a model involving all 𝑝

predictors, but the estimated coefficients are shrunk towards 0 relative to

the OLS parameter estimates, which has the effect of reducing variance

and simultaneously perform variable selection (see Section 20.2, Shrinkage
Methods).

In dimension reduction, we project the 𝑝 predictors onto a manifold H,

with dim(H) = 𝑚 ≪ 𝑝; in numerous circumstances, H is a subspace of

R𝑝
and we can fit an OLS model on the projected coordinates (see Section

23.2, Dimension Reduction).



20.4 Model Selection 1243

In subset selection, we identify a subset of the 𝑝 predictors for which

there is evidence of a (strong-ish) link with the response, and we fit a

model to this reduced set using the OLS framework. Given 𝑝 predictors

(some of which may be interaction terms), there are 2
𝑝

OLS models that

can be fit on a training set Tr.

Which of those models should be selected as the best model?

20.4.1 Best Subset Selection

In the best subset selection BSS approach, the search for the best model

is usually broken down into 3 stages:

1. let M0 denote the null model (without predictor) which simply

predicts the sample mean for all observations;

2. for 𝑘 = 1, . . . , 𝑝 (as long as the model can be fit):

a) fit every model that contains exactly 𝑘 predictors (there are(𝑝
𝑘

)
of them);

b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘 ;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.
46

46: We cannot use SSE or 𝑅2
as metrics

in this last step, as we would always se-

lect M𝑝 since SSE decreases monotonically

with 𝑘 and 𝑅2
increases monotonically

with 𝑘. Low SSE/high 𝑅2
are associated

with a low training error, whereas the

other metrics attempt to say something

about the test error, which is what we are

after: after all, a model is good if it makes

good predictions!

BSS is conceptually simple, but with 2
𝑝

models to try out, it quickly

becomes computationally infeasible for large 𝑝 (𝑝 > 40, say). When 𝑝 is

large, the chances of finding a model that performs well according to

step 3 but poorly for new data increase, which can lead to overfitting
and high-variance estimates, which were exactly the problems we were

trying to avoid in the first place.
47

47: Here, we are assuming that all mod-

els are OLS models, but subset selection

algorithms can be used for other families

of supervised learning methods; all that is

required are appropriate training error es-

timates for step 2b and test error estimates

for step 3.

20.4.2 Stepwise Selection

Stepwise selection (SS) methods attempt to overcome this challenge by

only looking at a restricted set of models. Forward stepwise selection
(FSS) starts with the null model M0 and adding predictors one-by-one

until it reaches the full model M𝑝 :

1. Let M0 denote the null model;

2. for 𝑘 = 0, . . . , 𝑝 − 1 (as long as the model can be fit):

a) consider the 𝑝 − 𝑘 models that add a single predictor to M𝑘 ;

b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘+1;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.

Backward stepwise selection (also BSS, unfortunately) works the other

way, starting with the full model M𝑝 and removing predictors one-by-one

until it reaches the null model M0:

1. Let M𝑝 denote the full model;

2. for 𝑘 = 𝑝, . . . , 1 (as long as the model can be fit):

a) consider the 𝑘 models that remove a single predictor from M𝑘 ;
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b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘−1;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.

The computational advantage of SS over B(est)SS is evident: instead of

having to fit 2
𝑝

models, SS only requires

1 + 𝑝 + (𝑝 − 1) + · · · + 2 + 1 =
𝑝2 + 𝑝 + 2

2

models to be fit to Tr. However, there is no guarantee that the “best”

model (among the 2
𝑝

BSS models) is found in the reduced set of SS

models.

SS can be used in settings where 𝑝 is too large for BSS to be computationally

feasible. Note that for OLS models, backward stepwise selection only

works if 𝑝 ≤ 𝑛 (otherwise OLS might not have a unique parameter

solution); if 𝑝 > 𝑛, only forward stepwise selection is viable.

Hybrid selection (HS) methods attempt to mimic BSS while keeping

model computation in a manageable range, not unlike in SS. More

information on this topic is available in [5].

20.4.3 Selecting the Optimal Model

The full model always has largest 𝑅2
/smallest SSE.

48
In order to estimate48: As it is a measure of the training error,

and as such, is subject to the overfitting

property found in the bias-variance trade-

off diagram of Figure 20.5.

the test error,
49

we can either:

49: And thus pick the optimal model in

the list {M0 , . . . ,M𝑝}.

adjust the training error to account for the bias induced by overfit-

ting, or

directly estimate the test error using a validation set or cross-

validation.

Adjustment Statistics Commonly, we use one of the following adjust-

ment statistics: Mallow’s 𝐶𝑝 , the Akaike information criterion (AIC),

the Bayesian information criteria (BIC), or the adjusted coefficient of

determination 𝑅2

𝑎 ; 𝐶𝑝 , AIC, and BIC must be minimized, while 𝑅2

𝑎 must

be maximized.

The adjustment statistics require the following quantities:

𝑁 , the number of observations in Tr;

𝑝, the number of predictors under consideration;

𝑑 = 𝑝 + 2,

�̂�2
, the estimate of Var(𝜀) (irreducible error);

SSE and SST, the residual and the total sum of squares.

Mallow’s 𝐶𝑝 statistic is given by

𝐶𝑝 =
1

𝑁
(SSE + 2𝑑�̂�2) = MSETr +

2𝑑�̂�2

𝑁︸︷︷︸
adjustment

.
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As 𝑑 increases, so does the adjustment term. Note that if �̂�2
is an unbiased

estimate of Var(𝜀), 𝐶𝑝 is an unbiased estimate of MSETe.

The Akaike information criterion (AIC) is given by

AIC = −2 ln 𝐿 + 2𝑑︸︷︷︸
adjustment

,

where 𝐿 is the maximized value of the likelihood function for the

estimated model. If the errors are normally distributed, this requires

finding the maximum of

𝐿 =

𝑁∏
𝑖=1

1√
2𝜋�̂�

exp

(
−
(𝑌𝑖 − X⊤

𝑖
𝜷)2

2�̂�2

)
=

1

(2𝜋)𝑁/2�̂�𝑁
exp

(
− 1

2�̂�2

𝑁∑
𝑖=1

(𝑌𝑖 − X⊤𝑖 𝜷)
2

)
,

or, upon taking the logarithm,

ln 𝐿 = constant − 1

2�̂�2

∥Y − X𝜷∥2
2
,

and so

arg max

𝜷
{ln 𝐿(𝜷)} = arg min

𝜷
{∥Y − X𝜷∥2

2
}.

However,

AIC = −2 ln 𝐿 + 2𝑑 = constant + 1

�̂�2

∥Y − X𝜷∥2
2
+ 2𝑑

= constant + SSE

�̂�2

+ 2𝑑

= constant + 𝑁
�̂�2

· 1

𝑁

(
SSE + 2𝑑�̂�2

)
= constant + 𝑁

�̂�2

𝐶𝑝 .

Evidently, when the error structure is normal, minimizing AIC is equiva-

lent to minimizing 𝐶𝑝 .

The Bayesian information criterion uses a different adjustment term:

BIC =
1

𝑁
(SSE + 𝑑�̂�2

ln𝑁) = MSETr + 𝑑�̂�2
ln𝑁

𝑁︸    ︷︷    ︸
adjustment

.

This adjustment penalizes models with large number of predictors;

minimizing BIC results in selecting models with fewer variables than

those obtained by minimizing 𝐶𝑝 , in general.

The adjusted coefficient of determination 𝑅2

𝑎 is the Ur-example of an

adjusted statistic:

𝑅2

𝑎 = 1 − SSE/(𝑁 − 𝑝 − 1)
SST/(𝑁 − 1) = 1 − (1 − 𝑅2) 𝑁 − 1

𝑁 − 𝑝 − 1

.

Maximizing 𝑅2

𝑎 is equivalent to minimizing SSE/(𝑁 − 𝑝 − 1); note that

𝑅2

𝑎 penalizes models with unnecessary variables.
50

50: Note that in this subsection’s formal-

ism, we have 𝑝+1 predictors for the linear

model: 𝑋1 , . . . , 𝑋 + 𝑝 and a constant term

𝑋0.
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Validation and Cross-Validation (Reprise) As above, we want to select

M𝑘∗ from a sequence of models {M1 ,M2 , . . .}. The procedure is simple:

we compute MSEVa on some validation set or CV(𝐾) for each M𝑘 , and

we find the 𝑘∗ for which the value is smallest (see Section 20.3, Cross-
Validation).

The main advantages of this approach are that:

there is no need to estimate the irreducible error Var(𝜀) = 𝜎2
;

the method produces an estimate for MSETe “for free,” and

it can be used when the number of parameters is hard to pinpoint

(in deep learning networks, for instance).

Historically, adjustment approaches have been preferred because cross-

validation was computationally demanding, especially when 𝑝, 𝑛 were

large, but that is not as much of a problem in modern times.

Consequently, cross-validation is championed as the optimal model

selection approach, using the one standard error rule: calculate the

standard error of M̂SETe for each model size, and select the smallest
model for which M̂SETe is within one standard error from the lowest

point on the cross-validation error curve.

Roughly speaking, this is equivalent to Occam’s Razor51
on models that51: “When presented with competing hy-

potheses about the same prediction, one

should select the solution with the fewest

assumptions.”

have similar predictive power.

In the image below (modified from [5]), the lowest point is reached when

𝑝 = 6 (blue “X”) and the dashed red lines represent the 1-standard error

limits; according to the rule described above, we would select the model

with 𝑝 = 4 parameters (red dot).

SS methods are used extensively in practice, but there are serious limita-

tions to this approach:

all intermediate tests are biased, as they are based on the same

data;

𝑅2

𝑎 only takes into account the number of features in the final

model, not the degrees of freedom that have been used up during

the entire process;

if the cross-validation error is used, stepwise selection should be

repeated for each sub-model.

All in all, SS is a classic example of 𝑝−hacking: we are getting results

without setting hypotheses up first.
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Example In spite of the warning mentioned above, it could still be

useful to know how to perform stepwise selection. In what follows, we

search for the best FSS and BSS linear models to predict the credit card

balance for observations contained in the training set Credit.csv .

Credit <- read.csv("Credit.csv", stringsAsFactors = TRUE)

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education: int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 ...

$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 ...

$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 ...

$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 ...

We remove the id variable X, and create dummy variables for the categor-

ical levels.

Credit <- Credit[,-c(1)]

Credit$Gender.dummy <- ifelse(Credit$Gender == "Female",1,0)

Credit$Student.dummy <- ifelse(Credit$Student == "Yes",1,0)

Credit$Married.dummy <- ifelse(Credit$Married == "Yes",1,0)

Credit$Ethnicity.AA.dummy <- ifelse(Credit$Ethnicity == "African American",1,0)

Credit$Ethnicity.A.dummy <- ifelse(Credit$Ethnicity == "Asian",1,0)

Credit <- Credit[,c(1:6,12:16,11)]

summary(Credit)

Income Limit Rating Cards

Min. : 10.35 Min. : 855 Min. : 93.0 Min. :1.000

1st Qu.: 21.01 1st Qu.: 3088 1st Qu.:247.2 1st Qu.:2.000

Median : 33.12 Median : 4622 Median :344.0 Median :3.000

Mean : 45.22 Mean : 4736 Mean :354.9 Mean :2.958

3rd Qu.: 57.47 3rd Qu.: 5873 3rd Qu.:437.2 3rd Qu.:4.000

Max. :186.63 Max. :13913 Max. :982.0 Max. :9.000

Age Education Gender.dummy Student.dummy

Min. :23.00 Min. : 5.00 Min. :0.0000 Min. :0.0

1st Qu.:41.75 1st Qu.:11.00 1st Qu.:0.0000 1st Qu.:0.0

Median :56.00 Median :14.00 Median :1.0000 Median :0.0

Mean :55.67 Mean :13.45 Mean :0.5175 Mean :0.1

3rd Qu.:70.00 3rd Qu.:16.00 3rd Qu.:1.0000 3rd Qu.:0.0

Max. :98.00 Max. :20.00 Max. :1.0000 Max. :1.0

https://www.data-action-lab.com/wp-content/uploads/2023/02/Credit.csv
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Married.dummy Ethnicity.AA.dummy Ethnicity.A.dummy Balance

Min. :0.0000 Min. :0.0000 Min. :0.000 Min. : 0.00

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.: 68.75

Median :1.0000 Median :0.0000 Median :0.000 Median : 459.50

Mean :0.6125 Mean :0.2475 Mean :0.255 Mean : 520.01

3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.: 863.00

Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1999.00

We will work with a scaled version of the dataset.

Credit.scaled <- scale(Credit)

parameters <- attributes(Credit.scaled)

Credit.scaled <- data.frame(Credit.scaled)

var.names <- colnames(Credit.scaled)

We start by implementing step 2 of the FSS algorithm.

model <- c()

ind <- c()

for(i in 1:(ncol(Credit.scaled)-1)){

r2 <- c()

for(j in setdiff((1:(ncol(Credit.scaled)-1)),c(ind))){

model <- lm(Balance ~ .,

data = Credit.scaled[,c(ind,j,12)])

r2[j] <- summary(model)$r.squared

}

ind[i] <- which.max(r2)

}

var.names[ind]

[1] "Rating" "Income" "Student.dummy"

[4] "Limit" "Cards" "Age"

[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

[10] "Education" "Ethnicity.A.dummy"

The best 1-parameter modelM1 usesRating, the best 2-parameter modelM2

built from M1 uses Rating and Income, and so on.

Next, we implement step 3 by computing the adjustment statistics (AIC,

BIC, 𝑅2

𝑎) and the cross-validation error (with 𝐾 = 5 folds) for each of

M0 ,M1 , . . ..
52

52: The latter uses the function cv.lm()

available in the lmvar package in R.

We deal with M0 first.

model <- c()

aic <- c()

bic <- c()

r2a <- c()

cv.m <- c()



20.4 Model Selection 1249

model[[1]] <- lm(Balance ~ 1,

data=Credit.scaled, y=TRUE, x=TRUE)

cv.m[1] <- lmvar::cv.lm(model[[1]],k=5)$MSE[[1]]

r2a[1] <- summary(model[[1]])$adj.r.squared

aic[1] <- AIC(model[[1]])

bic[1] <- BIC(model[[1]])

The remaining models are similarly handled:

for(i in 1:(ncol(Credit.scaled)-1)){

model[[i+1]] <- lm(Balance ~., data=Credit.scaled[,

c(ind[c(1:i)],12)], y=TRUE, x=TRUE)

cv.m[i+1] <- lmvar::cv.lm(model[[i+1]],k=5)$MSE[[1]]

r2a[i+1] <- summary(model[[i+1]])$adj.r.squared

aic[i+1] <- AIC(model[[i+1]])

bic[i+1] <- BIC(model[[1+1]])

}

Let us plot the outcome for each adjustment statistic (and the CV estima-

tion of the test error):

plot(cv.m)

plot(r2a)

plot(aic)

plot(bic)

The best FSS model using the CV estimate of the test error is:
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ind.cv <- which.min(cv.m)

var.names[ind[1:ind.cv]]

[1] "Rating" "Income" "Student.dummy" "Limit"

[5] "Cards" "Age"

The best FSS model using 𝑅2

𝑎 is:

ind.r2a <- which.max(r2a)

var.names[ind[1:ind.r2a]]

[1] "Rating" "Income" "Student.dummy"

[4] "Limit" "Cards" "Age"

[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

The best FSS model using AIC is:

ind.aic <- which.min(aic)

var.names[ind[1:ind.aic]]

[1] "Rating" "Income" "Student.dummy" "Limit"

[5] "Cards" "Age" "Gender.dummy"

The best FSS model using BIC is:

ind.bic <- which.min(bic)

var.names[ind[1:ind.bic]]

[1] "Rating" "Income"

Are there overlaps? The same can be done for BSS, instead:

model.BSS <- c()

ind.BSS <- list()

for(i in 1:(ncol(Credit.scaled)-1)){

r2 <- c()

list.of.indices <- combn(1:(ncol(Credit.scaled)-1), i)

for(j in 1:ncol(list.of.indices)){

model.BSS <- lm(Balance ~ .,

data=Credit.scaled[,c(list.of.indices[,j],12)])

r2[j] <- summary(model.BSS)$r.squared

}

ind.BSS[[i]] <- list.of.indices[,which.max(r2)]

}

model.BSS <- c()

aic.BSS <- c()

bic.BSS <- c()

r2a.BSS <- c()
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cv.m.BSS <- c()

model.BSS[[1]] <- lm(Balance ~ 1, data=Credit.scaled,

y=TRUE, x=TRUE)

cv.m.BSS[1] <- lmvar::cv.lm(model.BSS[[1]],

k=5)$MSE[[1]]

r2a.BSS[1] <- summary(model.BSS[[1]])$adj.r.squared

aic.BSS[1] <- AIC(model.BSS[[1]])

bic.BSS[1] <- BIC(model.BSS[[1]])

for(i in 1:(ncol(Credit.scaled)-1)){

model.BSS[[i+1]] <- lm(Balance ~.,

data=Credit.scaled[,c(ind.BSS[[i]],12)], y=TRUE, x=TRUE)

cv.m.BSS[i+1] <- lmvar::cv.lm(model.BSS[[i+1]],k=5)$MSE[[1]]

r2a.BSS[i+1] <- summary(model.BSS[[i+1]])$adj.r.squared

aic.BSS[i+1] <- AIC(model.BSS[[i+1]])

bic.BSS[i+1] <- BIC(model.BSS[[1+1]])

}

ind.cv.BSS <- which.min(cv.m.BSS)

var.names[ind.BSS[[ind.cv.BSS]]]

ind.r2a.BSS <- which.max(r2a.BSS)

var.names[ind.BSS[[ind.r2a.BSS]]]

ind.aic.BSS <- which.min(aic.BSS)

var.names[ind.BSS[[ind.aic.BSS]]]

ind.bic.BSS <- which.min(bic.BSS)

var.names[ind.BSS[[ind.bic.BSS]]]

[1] "Income" "Limit" "Rating" "Cards"

[5] "Age" "Student.dummy"

[1] "Income" "Limit" "Rating"

[4] "Cards" "Age" "Gender.dummy"

[7] "Student.dummy" "Married.dummy" "Ethnicity.AA.dummy"

[1] "Income" "Limit" "Rating" "Cards"

[5] "Age" "Gender.dummy" "Student.dummy"

[1] "Income" "Rating"

Any surprises?

20.5 Nonlinear Modeling

In practice the linearity assumption is almost never met and the regression

function

𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x]

has to be approximated by some other technique. Or does it?



1252 20 Regression and Value Estimation

The linearity assumption is often “good enough” in spite of it not being

met, and, coupled with its convenience of use and its multiple extensions,

it is rarely a waste of time to give that approach a try.

When heavier machinery is required, it pays to consider the following

OLS generalizations, which offer a lot of flexibility without sacrificing

ease of interpretability, before jumping to so-called black box models
(SVM, ANN, ensemble learning, etc.) of Chapter 21:

curve fitting (polynomial regression, step functions, splines, etc.);

local regression methods, or

generalized additive models.

20.5.1 Basis Function Models

If we have reason to suspect that the response𝑌 is not a linear combination

of the predictors, we might benefit from using a derived set of predictors
(see [5, Section 7.3]).

Polynomial Regression We can extend the simple linear regression

model 𝑦𝑖 = 𝛽0+𝛽1𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 , by allowing for polynomial basis
terms in the regression function:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥
2

𝑖 + · · · + 𝛽𝑑𝑥
𝑑
𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁.

The regression function is non-linear in terms of the observations 𝑥𝑖 , but

it is linear in terms of the coefficients 𝛽 𝑗 .53
We thus create new variables53: In terms of {𝑥, 𝑥2 , . . . , 𝑥𝑑}.

𝑋1 = 𝑋, 𝑋2 = 𝑋2
, and so on, and estimate the regression function

𝑦 = 𝑓 (x) via 𝑓 (x) = x⊤�̂�, where the coefficients �̂� are learned using the

training set Tr.

Typically, the coefficient values are of little interest – it is the predictions

𝑓 (x) that are sought.

It is easy to obtain and estimate for Var( 𝑓 (x)) since 𝑓 (x) is linear in the

coefficients �̂�𝑖 , 𝑖 = 0, . . . , 𝑑:

Var( 𝑓 (x)) = Var(x⊤�̂�) =
𝑑∑

𝑖 , 𝑗=0

Cov(�̂�𝑖 �̃�𝑖 , �̂� 𝑗 �̃� 𝑗)

=

𝑑∑
𝑖 , 𝑗=0

�̃�𝑖 �̃� 𝑗Cov(�̂�𝑖 , �̂� 𝑗) = x⊤Cov(�̂�)x = 𝜎2x⊤(X⊤X)−1x.

The estimated variance of the approximation at x is thus

V̂ar( 𝑓 (x)) = SSRes

𝑁 − 𝑑 − 1

x⊤(X⊤X)−1x =
∥Y − X�̂�∥2

2

𝑁 − 𝑑 − 1

x⊤(X⊤X)−1x,

with se( 𝑓 (x)) =
√

V̂ar( 𝑓 (x)), so that

𝑓 (x) ± 2 · se( 𝑓 (x))

constitutes a 95% C.I. for 𝑓 (x), assuming normality of the error terms.
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Gapminder Example The charts below show polynomial regressions

(𝑑 = 4) and confidence intervals for life expectancy against 4 different

predictors in the 2011 Gapminder data (assuming that the training set Tr

is the entire dataset).
54

54: In this section, we assume that

ggplot2 and dplyr have already been

loaded.

plot1 <- ggplot(gapminder.2011, aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4")

plot2 <- ggplot(gapminder.2011, aes(x=infant_mortality,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4")

plot3 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

ggplot(aes(x=lgdppc, y=life_expectancy)) +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4") +

theme_bw()

plot4 <- ggplot(gapminder.2011, aes(x=gdp,

y=life_expectancy)) +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4") +

theme_bw()

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)
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In this example, we picked 𝑑 = 4. How do we select 𝑑, in general? We can

either pick a reasonable small 𝑑 (often below 4) or use cross-validation to

select a 𝑑 that minimizes the estimated MSETe.

Note that it is easy to incorporate more than one predictor and interaction

terms into the model.

The nature of polynomials (| 𝑓 (x)| → ∞ when ∥x∥ → ∞) is such that tail

behaviour is usually quite horrible (look at the bottom-right example

above). Consequently, polynomial regression should be used very care-
fully, staying within the domain and making sure to centre the predictors

to reduce variance inflation.

Step Functions Polynomial regression is an attractive approach because

of the ease with which we can use the apparatus of OLS, but the elephant

in the room is that we are imposing a global structure on the non-linear

function 𝑦 = 𝑓 (x), and that cannot always be justified.

Step functions can be used to keep things “local”. Let 𝑐𝑖 , 𝑖 = 1, . . . , 𝐾 lie

in range(𝑋) and consider the following 𝐾 + 1 new predictors:

𝐶0(𝑋) = I(𝑋 < 𝑐1)
𝐶𝑖(𝑋) = I(𝑐𝑖 ≤ 𝑋 < 𝑐𝑖+1), 𝑖 = 1, . . . , 𝐾 − 1

𝐶𝐾(𝑋) = I(𝑐𝑘 ≤ 𝑋),

where I is the indicator function

I(𝛼) =
{

0, 𝛼 is false

1, 𝛼 is true

For any 𝑋, 𝐶0(𝑋) + 𝐶1(𝑋) + · · · + 𝐶𝐾(𝑋) = 1, since 𝑋 lies in exactly one

of the intervals

(−∞, 𝑐1), [𝑐1 , 𝑐2), · · · , [𝑐𝐾−1 , 𝐶𝐾), [𝐶𝐾 ,∞).

The step function regression model is

𝑌𝑖 = 𝛽0 + 𝛽1𝐶1(𝑋𝑖) + · · · + 𝛽𝐾𝐶𝐾(𝑋𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 ;

it can also be obtained using the OLS framework.
55

55: Thus a 95% C.I. can be built just as

with polynomial and other regressions.

For a given𝑋 , at most one of 𝐶1(𝑋), . . . , 𝐶𝐾(𝑋) is≠ 0; thus, when𝑋 < 𝑐1,

𝐶 𝑗(𝑋) = 0 for all 𝑗 = 1, . . . , 𝐾, and so

𝛽0 = Avg{𝑌 | 𝑋 < 𝑐1}.

For 𝑋 ∈ [𝑐 𝑗 , 𝑐 𝑗+1), �̂� = 𝛽0 + 𝛽 𝑗 , so 𝛽 𝑗 represents the average increase in 𝑌
for [𝑐 𝑗 , 𝑐 𝑗+1) relative to (−∞, 𝑐1).

The only major challenge with step function regression is that there is no

easy way to find the number 𝐾 and select the position of the breakpoints

𝑐1 , . . . , 𝑐𝐾 , unless there are natural gaps in the predictors. We will discuss

a strategy to determine the number and location of knots when we

discuss classification and regression trees in Chapter 21.
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We did not discuss how step function regression or polynomial regression

could be achieved in higher dimensions, but the principle remains the

same (except that the number of parameters increases drastically, which

can create some overfitting issues).

Gapminder Example The charts below show step function regressions

and confidence intervals for life expectancy against 4 different predictors

in the 2011 Gapminder data .
56

56: Assuming that the training set Tr is

the entire dataset.

We start by building a 𝐾 = 3 knots step function model for life expectancy

against fertility, using the (arbitrary) knot values at 2, 4, and 6:

gapminder.2011 <- gapminder.2011 |>

mutate(fert0=I(fertility<2),

fert1=I(2<=fertility & fertility<4),

fert2=I(4<=fertility & fertility<6),

fert3=I(6<=fertility))

model.sf.1 = lm(life_expectancy ~ fert0 + fert1 + fert2,

data=gapminder.2011)

summary(model.sf.1)

Residuals:

Min 1Q Median 3Q Max

-24.0485 -2.8300 0.2515 3.9669 12.1515

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.5444 1.9554 30.963 < 2e-16 ***
fert0TRUE 16.8106 2.0969 8.017 2.04e-13 ***
fert1TRUE 10.2040 2.0845 4.895 2.36e-06 ***
fert2TRUE 0.7814 2.2212 0.352 0.725

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.866 on 162 degrees of freedom

Multiple R-squared: 0.5308, Adjusted R-squared: 0.5221

F-statistic: 61.09 on 3 and 162 DF, p-value: < 2.2e-16

The corresponding step function is defined with:

g.1 <- function(x){

model.sf.1$coefficients[1] +

model.sf.1$coefficients[2]*I(x<2) +

model.sf.1$coefficients[3]*I(2<=x & x<4) +

model.sf.1$coefficients[4]*I(6<=x)

}

We next build a 𝐾 = 4 knots step function model for life expectancy

against infant mortality, using the (arbitrary) knot values 10, 20, 40, 70:



1256 20 Regression and Value Estimation

gapminder.2011 <- gapminder.2011 |>

mutate(inf0=I(infant_mortality<10),

inf1=I(10<=infant_mortality & infant_mortality<20),

inf2=I(20<=infant_mortality & infant_mortality<40),

inf3=I(40<=infant_mortality & infant_mortality<70),

inf4=I(70<=infant_mortality))

model.sf.2 = lm(life_expectancy ~ inf0 + inf1 + inf2 +

inf3, data=gapminder.2011)

summary(model.sf.2)

g.2 <- function(x){

model.sf.2$coefficients[1] +

model.sf.2$coefficients[2]*I(x<10) +

model.sf.2$coefficients[3]*I(10<=x & x<20) +

model.sf.2$coefficients[4]*I(20<=x & x<40) +

model.sf.2$coefficients[5]*I(40<=x & x<70)

}

Residuals:

Min 1Q Median 3Q Max

-13.9800 -2.3800 0.3725 2.7622 9.3200

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.675 1.207 46.939 < 2e-16 ***
inf0TRUE 22.017 1.340 16.437 < 2e-16 ***
inf1TRUE 17.963 1.390 12.928 < 2e-16 ***
inf2TRUE 11.782 1.429 8.247 5.46e-14 ***
inf3TRUE 5.305 1.399 3.791 0.000211 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.183 on 161 degrees of freedom

Multiple R-squared: 0.763, Adjusted R-squared: 0.7571

F-statistic: 129.5 on 4 and 161 DF, p-value: < 2.2e-16

We next build a 𝐾 = 3 knots step function model for life expectancy

against the log of gdp per capita, using the (arbitrary) knot values at 6, 8,

10:

gapminder.2011 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

mutate(lgdppc0=I(lgdppc<6),

lgdppc1=I(6<=lgdppc & lgdppc<8),

lgdppc2=I(8<=lgdppc & lgdppc<10),

lgdppc3=I(10<=lgdppc))

model.sf.3 = lm(life_expectancy ~ lgdppc0 + lgdppc1 + lgdppc2,

data=gapminder.2011)

summary(model.sf.3)
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g.3 <- function(x){

model.sf.3$coefficients[1] +

model.sf.3$coefficients[2]*I(x<6) +

model.sf.3$coefficients[3]*I(6<=x & x<8) +

model.sf.3$coefficients[4]*I(8<=x & x<10)

}

Residuals:

Min 1Q Median 3Q Max

-21.771 -1.831 0.550 3.691 9.789

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.270 63.857 < 2e-16 ***
lgdppc0TRUE -20.788 1.708 -12.174 < 2e-16 ***
lgdppc1TRUE -12.629 1.453 -8.692 3.75e-15 ***
lgdppc2TRUE -6.012 1.509 -3.984 0.000102 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.82 on 162 degrees of freedom

Multiple R-squared: 0.5382, Adjusted R-squared: 0.5296

F-statistic: 62.93 on 3 and 162 DF, p-value: < 2.2e-16

Finally, we build a 𝐾 = 6 knots step function model for life expectancy

against the log of gdp per capita, using the (arbitrary) knot values at 5, 6,

7, 8, 9, 10:

gapminder.2011 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

mutate(lgdppc0=I(lgdppc<5),

lgdppc1=I(5<=lgdppc & lgdppc<6),

lgdppc2=I(6<=lgdppc & lgdppc<7),

lgdppc3=I(7<=lgdppc & lgdppc<8),

lgdppc4=I(8<=lgdppc & lgdppc<9),

lgdppc5=I(9<=lgdppc & lgdppc<10),

lgdppc6=I(10<=lgdppc))

model.sf.4 = lm(life_expectancy ~ lgdppc0 + lgdppc1 +

lgdppc2 + lgdppc3 + lgdppc4 + lgdppc5,

data=gapminder.2011)

summary(model.sf.4)

g.4 <- function(x){

model.sf.4$coefficients[1] +

model.sf.4$coefficients[2]*I(x<5) +

model.sf.4$coefficients[3]*I(5<=x & x<6) +

model.sf.4$coefficients[4]*I(6<=x & x<7) +

model.sf.4$coefficients[5]*I(7<=x & x<8) +

model.sf.4$coefficients[6]*I(8<=x & x<9) +

model.sf.4$coefficients[7]*I(9<=x & x<10)

}
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Residuals:

Min 1Q Median 3Q Max

-22.8250 -1.3500 0.5964 3.1841 12.2929

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.204 67.367 < 2e-16 ***
lgdppc0TRUE -21.300 4.082 -5.217 5.59e-07 ***
lgdppc1TRUE -20.746 1.648 -12.585 < 2e-16 ***
lgdppc2TRUE -15.993 1.593 -10.042 < 2e-16 ***
lgdppc3TRUE -10.275 1.487 -6.912 1.10e-10 ***
lgdppc4TRUE -7.187 1.559 -4.610 8.24e-06 ***
lgdppc5TRUE -4.190 1.724 -2.431 0.0162 *
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.517 on 159 degrees of freedom

Multiple R-squared: 0.5927, Adjusted R-squared: 0.5774

F-statistic: 38.57 on 6 and 159 DF, p-value: < 2.2e-16

The step functions in each of the 4 cases are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.1) +

ggtitle("Step Function Regression - K=3")

plot2 <- ggplot(gapminder.2011,aes(x=infant_mortality,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.2) +

ggtitle("Step Function Regression - K=4")

plot3 <- ggplot(gapminder.2011,aes(x=lgdppc,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.3) +

ggtitle("Step Function Regression - K=3")

plot4 <- ggplot(gapminder.2011,aes(x=lgdppc,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.4) +

ggtitle("Step Function Regression - K=6")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)
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The step functions do capture the general trends, but how easily inter-

pretable are they?

20.5.2 Splines

We can combine polynomial regression and step functions to obtain a

more flexible curve fitting approach.

Regression Splines Instead of fitting a polynomial over the entire range

of the predictor 𝑋, we use different polynomials (of degree up to 3,

usually) in regions 𝑅𝑘 ,
57

such as: 57: Defined by knots in the 1-dimensional

case.

𝑌𝑖 =

{
𝛽0,1 + 𝛽1,1𝑋𝑖 + 𝛽2,1𝑋

2

𝑖
+ 𝛽3,1𝑋

3

𝑖
+ 𝜀𝑖 , if 𝑋𝑖 ∈ 𝑅1

𝛽0,2 + 𝛽1,2𝑋𝑖 + 𝛽2,2𝑋
2

𝑖
+ 𝛽3,2𝑋

3

𝑖
+ 𝛿𝑖 , if 𝑋𝑖 ∈ 𝑅2

Various constraints can be imposed on the polynomials:

none;

continuity at each region’s borders;

𝐶1
(continuously differentiable) at each region’s borders; etc.

In a sense to be defined shortly, splines have the “maximum” amount of

continuity. Note that using more regions leads to a more flexible fit.

In what follows, we assume that the domain is split into 𝐾 + 1 regions,

bounded by knots (there are thus 𝐾 such knots). If we impose no
restriction on the functions, we are trying to fit 𝐾 + 1 piecewise cubic

functions to the data; each polynomial has 4 parameters to be estimated,

leading to 4(𝐾 + 1) effective parameters.

If we impose a continuous fit,58
we reduce the number of effective 58: The polynomials must agree at the

knots.
parameters. We can also require a continuously differentiable fit,

59

59: The derivatives must also agree at the

knots.

further reducing the number of effective parameters.

A cubic spline (with only 𝐾 + 4 parameters to fit) is a regression spine

which is 𝐶2
on its domain.
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Let 𝜉 be a knot and 𝑋 be a predictor value. The positive part function is

defined by

𝑤+ =

{
𝑤 if 𝑤 > 0

0 else

Formally, the linear spline requires 𝜉1 , . . . , 𝜉𝐾 knots and has 𝐾 + 1

effective parameters. The model can be expressed simply using positive

parts:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 − 𝜉1)+ + · · · + 𝛽𝐾+1(𝑋𝑖 − 𝜉𝐾)+ + 𝜀𝑖 ;

the cubic spline is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋
2

𝑖 + 𝛽3𝑋
3

𝑖 + 𝛽4(𝑋𝑖 − 𝜉1)3+ + · · · + 𝛽𝐾+3(𝑋𝑖 − 𝜉𝐾)3+ + 𝜀𝑖 ,

and the natural cubic spline is a cubic spline between 𝜉1 and 𝜉𝐾 , with

linear extrapolation beyond 𝜉1 and 𝜉𝐾 ; this adds 4 extra constraints to

the cubic spline and allows for more knots while keeping the number of

effective parameters identical to that of the linear spline.

In all instances, the machinery of OLS remains available: predictions,

diagnostics, remedial measures, confidence intervals, and extension to

logistic regression, as needed.

Figure 20.11: Various splines on a 1-

dimensional dataset, with a single knot

[5].

Gapminder Example The charts below show cubic splines for life ex-

pectancy against fertility in the 2011 Gapminder data.
60

60: Assuming again that the training set

Tr is the entire dataset.

Cubic splines are modeled using the splines package bs() function. In

theory, we place more knots in locations where the spline function is

believed to vary more rapidly, and fewer knots where it is more stable.
61

61: In practice, the knots are placed uni-

formly at quantiles of the predictor vari-

able 𝑋, based on their number. The syntax for the OLS model formula in R follows the form

response ~ splines::bs(predictor, df)
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where the degrees of freedom df are linked to the number of parameters

to estimate (in the case of cubic spline, df = 𝐾 + 3). We start by building

a cubic spline with 𝐾 = 0 knot.
62

62: So 𝐾 + 3 = 3 degrees of freedom.

lm(life_expectancy ~ splines::bs(fertility, df = 3))

Coefficients:

(Intercept) splines::bs(fertility, df = 3)1

79.28 -11.47

splines::bs(fertility, df = 3)2 splines::bs(fertility, df = 3)3

-27.41 -16.65

Here is a cubic spline with 𝐾 = 10 knots, with their locations:
63

63: We can find the knot locations of a

cubic spline with 𝐾 = 1, 2 knots by com-

puting fm1, fm2, test1, test2, g1, and g2

in the same manner (these quantities are

required in the display code on the next

few pages).

fm10 <- lm(life_expectancy ~ splines::bs(fertility, df = 13))

test10 <- eval(attr(fm10$terms, "predvars"))

(g10 <- as.numeric(attr(test10[[2]],"knots")))

[1] 1.45 1.53 1.83 2.00 2.31 2.53 2.93 3.64 4.73 5.09

We can display cubic splines with 𝐾 = 0, 1, 2, 10 knots as below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=3)) +

ggtitle("Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=4)) +

geom_vline(xintercept = g1, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=1")

plot3 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=5)) +

geom_vline(xintercept = g2, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=13)) +

geom_vline(xintercept = g10, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)
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Natural cubic splines are modeled using the splines package ns()

function; the knots are, again, placed uniformly at quantiles of the

predictor variable 𝑋, based on their number.
64

64: The knot locations are thus the same

as in the cubic spline case.

The syntax for the OLS model formula in R follows the form

response ~ splines::ns(predictor, df)

where the degrees of freedom df are linked to the number of parameters

to estimate (in the case of natural cubic spline, df = 𝐾 + 1). We start by

building a natural cubic spline with 𝐾 = 0 knot.
65

65: So 𝐾 + 1 = 1 degrees of freedom.

lm(life_expectancy ~ splines::ns(fertility, df = 1))

Coefficients:

(Intercept) splines::ns(fertility, df = 1)

78.09 -34.27

The natural cubic splines with 𝐾 = 0, 1, 2, 10 are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::ns(x,df=2)) +

ggtitle("Natural Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g1, df = 2)) +

geom_vline(xintercept = g1, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=1")
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plot3 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g2, df = 3)) +

geom_vline(xintercept = g2, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g10, df = 11)) +

geom_vline(xintercept = g10, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Do you notice any difference in the shape of the cubic splines vs. that of

the natural cubic splines?
66

66: Cross-validation (again!) can be used

to determine the optimal 𝐾: compute the

estimated error for various 𝐾 (10-fold CV,

say), and pick the 𝐾∗ that minimizes the

error.

Regression splines often give better results than polynomial regression

because they induce flexibility via a large number of parameters 𝐾 with

low polynomial degree 𝑑 ≤ 3, rather than through high 𝑑 of the latter

(and the wild variability that such polynomials have, especially near the

boundaries of the predictor’s range, as can be observed in the polynomial

regression examples above).

Multivariate Adaptive Regression Splines We can reduce the polynomial

degree to 𝑑 ≤ 2 without losing too much curve fitting accuracy by

considering bases consisting of functions of the forms:

1, (𝑥 − 𝜉𝑘)± , (𝑥 − 𝜉𝑘1
)±(𝑥 − 𝜉𝑘2

)± ,
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where (𝑥 − 𝑡)± is one of the two hinge functions:

(𝑥 − 𝑡)+ =
{
𝑥 − 𝑡 if 𝑥 > 𝑡

0 else

(𝑥 − 𝑡)− =
{
𝑡 − 𝑥 if 𝑥 < 𝑡

0 else

(𝑥 − 1)±, (𝑥 − 1)+(𝑥 − 5)+, (𝑥 − 1)+(𝑥 − 8)− are shown in Figure 20.12.

Figure 20.12: A few hinge functions.

A multivariate adaptive regression spline (MARS) is expressed as

𝑦𝑖 =
𝐾∑
𝑘=1

𝛽𝑘 ℎ𝑘(𝑥𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 ,

where ℎ𝑘 is either a constant function, a hinge function, or a product of

hinge functions.

MARS adds terms to its model in an iterative fashioin; once a stopping

criterion is met, unwanted terms are removed. The model growth’s

parallels the growth of tree-based models, which we will discuss in

Chapter 21, and it has the same advantage that the knots are selected

automatically.

Artificial Dataset Example Let us take a look at a synthetic dataset,

based off of:

𝑦 = 𝑓 (𝑥) = sin(𝜋𝑥)
10

−
√
𝑥 + exp(𝑥/10) + 𝜀,

where 𝜀 ∼N(0, 0.04
2).

set.seed(1234)

fx=function(x){

sin(pi*x)/10-sqrt(x)+exp(x/10)

}

x=sort(runif(50, 0, 5))

noise=rnorm(50, 0, 0.04)

y=fx(x)+noise

plot(x, y, col=4)

x.vec=seq(0,6, length.out=100)

lines(x.vec, fx(x.vec), col="grey", lty=2)
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We can fit the data using package mda’s mars() function, in R.
67

Let us 67: This is a licensed implementation of

MARS. There is another implementation

in the earth package: enhanced adaptive
regression through hinges, or EARTH.

use only functions of degree 1 (linear functions and linear hinges, but no

interaction terms) for the time being:

MARS.1 = mda::mars(x, y, degree=1)

The output is rather lengthy and is suppressed for readability.
68

68:

$call provides the model;

$fitted.values contains the esti-

mated values �̂�𝑖 ;

$residuals contain the residuals

�̂�𝑖 − 𝑦𝑖 , and

$x gives the hinge functions used

in the final model.

Let’s see how good a job MARS did:

plot(x, y, col=4, main="MARS with no interaction terms")

x.vec=seq(0,6, length.out=100)

lines(x.vec, fx(x.vec), col="grey", lty=2)

points(x, MARS.1$fitted.values, col=2, pch=16)

abline(v = MARS.1$cuts[MARS.1$selected.terms[-1]],

col = "light grey")

Not bad, all things considered.



1266 20 Regression and Value Estimation

The EARTH output is identical, and would be obtained thus:

EARTH.1 = earth::earth(x, y, degree=1)

summary(EARTH.1)

coefficients

(Intercept) -0.16254461

h(1.3341-x) 0.70785002

h(x-1.3341) -0.05502561

h(x-2.53653) -0.27853205

h(x-3.38547) 0.37209809

Selected 5 of 6 terms, and 1 of 1 predictors

Termination condition: RSq changed by less than 0.001 at 6 terms

Importance: x

Number of terms at each degree of interaction: 1 4 (additive model)

GCV 0.002341396 RSS 0.07871774 GRSq 0.9759754 RSq 0.9831798

What about interaction terms? In order for MARS or EARTH to consider

such terms, we must first provide a second predictor.

xnew = x*x

data = data.frame(x,xnew,y)

EARTH.2 = earth::earth(y ~ x + xnew , data=data, degree=2)

summary(EARTH.2)

coefficients

(Intercept) -0.21273261

h(1.43112-x) 0.68806424

h(x-2.62849) -0.43057541

h(xnew-10.446) 0.05531043

Selected 4 of 6 terms, and 2 of 2 predictors

Termination condition: RSq changed by less than 0.001 at 6 terms

Importance: x, xnew

Number of terms at each degree of interaction: 1 3 (additive model)

GCV 0.00273995 RSS 0.09437758 GRSq 0.971886 RSq 0.9798336

What does the plot look like? Can you spot the non-linear components?

plot(x, y, col=4, main="MARS with interaction terms")

x.vec=seq(0,6, length.out=100)

points(x, EARTH.2$fitted.values, col=2, pch=16)

abline(v = EARTH.2$cuts[EARTH.2$selected.terms[-1]],

col = "light grey")

EARTH.2$cuts
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Housing Dataset Example In this section, we analyze a housing dataset

related to house selling prices in Ames, Iowa (VE_Housing.csv , modi-

fied from [1]). We start by reading in the data:

dat.Housing=read.csv("VE_Housing.csv", header=TRUE,

stringsAsFactors = TRUE)

dim(dat.Housing)

[1] 1460 81

Next, we count the number of missing values for each variable, excluding

those variables with complete rows.

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum)>0))$names

apply(is.na(dat.Housing[,missing]), 2, sum)

LotFrontage Alley MasVnrType MasVnrArea BsmtQual BsmtCond

259 1369 8 8 37 37

BsmtExposure BsmtFinType1 BsmtFinType2 Electrical FireplaceQu GarageType

38 37 38 1 690 81

GarageYrBlt GarageFinish GarageQual GarageCond PoolQC Fence

81 81 81 81 1453 1179

MiscFeature

1406

The housing dataset thus consists of 𝑛 = 1460 observations with 𝑝 = 79

predictors. There are two other variables: Id and SalePrice, repre-

senting the index variable and the response variable, respectively.
69

69: Use colnames() or str() to list all the

variables.
Furtheremore, the variables

LotFrontage

Alley

https://www.data-action-lab.com/wp-content/uploads/2023/02/VE_Housing.csv


1268 20 Regression and Value Estimation

FireplaceQu

PoolQC

Fence, and

MiscFeature

all have anywhere from 259 to 1406 missing observations. The proportions

of missing values in these variables are probably too high for imputation

(see Chapter 15 for details), so we elect to remove them from further

analyses.

Note that the remaining major missing variables are all related to Garage
and Basement, with corresponding variables missing for the same houses.

Given that there are other variables associated with these, we suspect

these variables will not play a crucial role in model building, and we also

elect to remove them from the analyses.

For the remaining three variables with missing values (MasVnrType,

MasVnrArea, and Electrical), the number of missing observations are

so small that we could easily

impute these values, or

perform list-wise deletion.

For the purposes of this example, we will select the latter options and

delete all columns with missing values.

dat.Housing.new = dat.Housing[,

!colnames(dat.Housing)%in%missing]

dim(dat.Housing.new)

[1] 1460 62

We also remove the index variable ID:

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

In order to evaluate the effectiveness of the eventual model (i.e., to have

good predictive power without overfitting the data), we split the Housing

dataset into training and testing sets. The model is then developed using

the training set (i.e., optimized using a subset of data), and then later

tested for its prediction power using the testing set.

We select roughly 80% of the observations (1160) for the training set:

set.seed(1234) # for replicability

n.train=1160

ind.train=sample(1:nrow(dat.Housing.new), n.train)

The training and testing sets are thus:

dat.train=dat.Housing.new[ind.train,]

dat.test=dat.Housing.new[-ind.train,]
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We train EARTH (with interactions) on the training data:

EARTH.3 <- earth::earth(SalePrice~., data=dat.train,

degree=2)

summary(EARTH.3)

coefficients

(Intercept) 317.95604

Exterior1stBrkFace 18.17930

FoundationPConc 34.63490

h(14442-LotArea) -0.00198

h(LotArea-14442) 0.00048

...

h(7-OverallCond) * h(316-WoodDeckSF) -0.01602

h(2005-YearBuilt) * h(1056-BsmtFinSF1) 0.00030

h(YearBuilt-2005) * h(1056-BsmtFinSF1) -0.00928

Selected 36 of 39 terms, and 19 of 188 predictors

Termination condition: RSq changed by less than 0.001 at 39 terms

Importance: OverallQual, GrLivArea, YearBuilt, SaleTypeWD, BsmtFinSF1, ...

Number of terms at each degree of interaction: 1 18 17

GCV 396.2527 RSS 392191.8 GRSq 0.9377484 RSq 0.9467931

We now predict SalePrice on the testing data:

yhat.EARTH.3 = predict(EARTH.3, dat.test)

We can evaluate the quality of the predictions on the testing set either by

computing MSETe directly (≈ 628), but this value is more or less useless

on its own.

We get a better sense for the quality of the prediction on the testing

set by comparing the actual SalePrice values to the EARTH predicted

SalePrice values:

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

ylab="Predicted Price ($1,000)",

xlab="Actual Price ($1,000)",

main="MARS/EARTH SalePrice predictions

(w column-wise deletion)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(dat.test$SalePrice, yhat.EARTH.3, col=2)

(see plot on the next page) What do you think? Is the model likely to

prove useful?
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Smoothing Splines Given a training set Tr with 𝑁 observations, we

have seen that regression splines use the following approach:

1. identify 𝐾 knots 𝜉1 , . . . , 𝜉𝐾 ;

2. produce some basis functions {𝑏1(𝑥), . . . , 𝑏𝐾(𝑥)}, and

3. use OLS to estimate the coefficients of

𝑌𝑖 = 𝛽0 + 𝛽1𝑏1(𝑋𝑖) + · · · + 𝛽𝐾𝑏𝑘(𝑋𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁.

But we can use another mathematical approach in order to produce a

spline. In general, we need to find a function 𝑔 that provides a good fit

for the available data; in other words, we are looking for a 𝑔 for which

SSE =

𝑁∑
𝑖=1

(𝑌𝑖 − 𝑔(𝑋𝑖))2 is "small".

But we also need 𝑔 to be constrained, otherwise any smooth function

interpolating (𝑋𝑦 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑁 would yield SSE = 0, at the cost of

severe overfitting and loss of interpretability, as in Figure 20.13. The flip

side is that too many constraints can result in the data being underfit.

The smoothing spline approach seeks to solve the following problem:

𝑔𝜆 = arg min

ℎ

{
𝑁∑
𝑖=1

(𝑌𝑖 − ℎ(𝑋𝑖))2︸              ︷︷              ︸
SSE loss

+𝜆
∫
Ω(𝑋)
[ℎ′′(𝑡)]2 𝑑𝑡︸            ︷︷            ︸

penalty term

}
,

where 𝜆 ≥ 0 is a tuning parameter and Ω(𝑋) represents the range of the

predictor 𝑋.
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Figure 20.13: A spline with too few constraint overfits the data (right).

The penalty term measures the roughness of the spline function ℎ; if ℎ is

quite “wiggly”, the penalty will be (relatively) large, and vice-versa (and

similarly for 𝑔).
70

70: If ℎ represents a straight line, say, the

penalty term would be zero.

When 𝜆→ 0, the penalty term has little effect, so we would expect 𝑔𝜆 to

be “jumpy” in such cases and that it would interpolate the observations

exactly, leading to overfitting.

When 𝜆→∞, the penalty term dominates and 𝑔𝜆 is a function for which∫
[𝑔′′𝜆 (𝑡)]2𝑑𝑡 → 0 over Ω(𝑋), so 𝑔𝜆 → linear OLS solution over Ω(𝑋),

leading to underfitting.

As we have seen over and over again, the tuning parameter 𝜆 controls

the bias-variance trade-off, expressed, in this case, as a battle between

rigidity and model complexity.

The optimal smoothing spline 𝑔𝜆 is a natural cubic spline with a knot

at every data point 𝜉𝑖 = 𝑥𝑖 , 𝑖 = 1, . . . , 𝑁 , with continuous 0th, 1st, 2nd

derivatives throughout the range Ω(𝑋) = [min 𝜉𝑖 ,max 𝜉𝑖], and is linear

outside Ω(𝑋), but, importantly, it is not the one that would be obtained
from building a regression spline, as it also depends on the turning

parameter 𝜆.

What is the best choice for 𝜆? At first glance, this would seem to be

another job for cross-validation, but there is another option: we can

specify the smoothing spline through the effective degrees of freedom,

which decrease from 𝑁 to 2 as 𝜆 goes from 0 to∞ (note, however, that

R’s smooth.spline() uses a different parameterization).

Gapminder Example The charts below show the smoothing spline for

life expectancy against fertility in the 2011 Gapminder data, for 4 different

smoothing parameter values, using stats’s smooth.spline() function.

Note that the entire set is used as training data.

x=gapminder.2011$fertility

y=gapminder.2011$life_expectancy

ss00 = stats::smooth.spline(x, y, spar=0)

ss05 = stats::smooth.spline(x, y, spar=0.5)

ss10 = stats::smooth.spline(x, y, spar=1)

ss15 = stats::smooth.spline(x, y, spar=1.5)
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In order to be able to display the smoothing splines over the datapoints,

we use the broom::augment() function, which provide the value of the

spline at the various fertility values in the dataset.

plot1 <- ggplot(broom::augment(ss00, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=0")

plot2 <- ggplot(broom::augment(ss05, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=0.5")

plot3 <- ggplot(broom::augment(ss10, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=1")

plot4 <- ggplot(broom::augment(ss15, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=1.5")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Note the evolution of a flexible but highly non-interpretable model (the

wiggly curve associated to spar=0) into a rigid but highly interpretable

model (the line associated to spar=1.5) as the spar values increase.
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20.5.3 Generalized Additive Models

While polynomial regression and splines can be applied to predictor sets,

they are best-suited to predicting a response 𝑌 on the basis of a single
predictor 𝑋 (the model complexity increases quickly if more than one

predictor is present).

Generalized additive models (GAM) allow for flexible non-linearities

in several variables while retaining the additive structure of linear

models:

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥𝑖 ,1) + · · · + 𝑓𝑝(𝑥𝑖 ,𝑝) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁

where each of the 𝑓𝑗 can be derived using any of the methods previously

discussed; if

𝑓1(𝑥𝑖) = 𝛽1,1𝑏1,1(𝑥𝑖 ,1) + · · · + 𝛽1,𝐿1
𝑏1,𝐿1
(𝑥𝑖 ,1)

...

𝑓𝑝(𝑥𝑖) = 𝛽𝑝,1𝑏𝑝,1(𝑥𝑖 ,𝑝) + · · · + 𝛽𝑝,𝐿𝑝𝑏𝑝,𝐿𝑝 (𝑥𝑖 ,𝑝),

say, we would fit the data using OLS (but this cannot be done if one of

the components is a smoothing spline, for instance, or if it is non-linear

in some other way).

In practice, using natural cubic splines for the quantitative components

seem to work as well as smoothing spline, when it comes to making

predictions.
71

71: GAM can also be used for classification

via log-odds:

ln

(
𝑝1(x)

1 − 𝑝1(x)

)
= 𝛽0+ 𝑓1(𝑥1)+· · ·+ 𝑓𝑝(𝑥𝑝).

GAM are implemented in R using the mgcv::gam() function; a typical

call might look like:

mgcv::gam(y ~ s(x1,df=5) +

lo(x2,spar=0.5) +

bs(x3,df=4) +

ns(x4,df=5):ns(x5,df=5) +

x6, data=dat)

which would indicate that the contribution of:

𝑋1 is given by smoothing spline with 5 degrees of freedom,

𝑋2 is given by a local regression with spar=0.5,

𝑋3 is given by a cubic spline with 4 degrees of freedom,

the fourth component is an interaction term based on natural

splines for 𝑋4 and 𝑋5 (each with 5 degrees of freedom), and

𝑋6 is directly added to the model.

GAM provide a useful compromise between linear models and fully

non-parametric models.

Advantages:

GAM can fit a non-linear 𝑓𝑗 to each predictor 𝑋𝑗 , so that they could

capture trends that linear regression would miss;

GAM can reduce the number of data transformations to try out

manually on each predictor 𝑋𝑗 ;
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non-linear fits may improve accuracy of predictions for the re-

sponse 𝑌;

GAM are useful for inference due to their additivity – the effect

of 𝑋𝑗 on 𝑌 (while keeping other predictors fixed) can be analyzed

separately;

the overall smoothness of the model can be summarized via effective

degrees of freedom/parameters.

Disadvantages:

GAM still suffer from the curse of dimensionality;

GAM are restricted to additive models – interaction terms can be

added manually by introducing new predictors 𝑋𝑗 × 𝑋𝑘 , as can

interaction functions 𝑓𝑗 ,𝑘(𝑋𝑗 , 𝑋𝑘) (using local regression or MARS,

say), but they quickly get out of hand (due to Curse of Dimensionality
issues).

Gapminder Example The charts below show the individual contribu-

tions of fertility, infant mortality, GDP, and continental membership to

life expectancy in the 2011 Gapminder data.
72

72: Using the entire set as training data.

library(mgcv)

b <- gam(gapminder.2011$life_expectancy ~

s(gapminder.2011$fertility) +

s(gapminder.2011$infant_mortality) +

s(gapminder.2011$gdp) +

gapminder.2011$continent)

summary(b)

Family: gaussian

Link function: identity

Formula:

gapminder.2011$life_expectancy ~ s(gapminder.2011$fertility) +

s(gapminder.2011$infant_mortality) + s(gapminder.2011$gdp) +

gapminder.2011$continent

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.1186 0.7470 91.190 < 2e-16 ***
continentAmericas 4.4787 1.1161 4.013 9.30e-05 ***
continentAsia 4.7110 0.9993 4.714 5.35e-06 ***
continentEurope 3.4179 1.3209 2.588 0.0106 *
continentOceania -0.2891 1.3798 -0.210 0.8343

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(gapminder.2011$fertility) 1.000 1.000 4.474 0.036 *
s(gapminder.2011$infant_mortality) 3.027 3.800 40.541 <2e-16 ***
s(gapminder.2011$gdp) 1.478 1.779 0.367 0.575

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.828 Deviance explained = 83.8%

GCV = 13.199 Scale est. = 12.363 n = 166

We see in the outcome that the intercept is 𝛽0 = 68.1186 and that

𝛽continent =



0 Africa

4.4787 America

4.7110 Asia

3.4179 Europe

−0.2891 Oceania

so that predictions take the form

life expectancy ≈ 𝛽0 + 𝑓1(fertility) + 𝑓2(infant mortality)
+ 𝑓3(gdp) + 𝛽continent.

plot.gam(b)

For instance, the life expectancy for an American country with fertility= 3,

infant mortality= 1, GDP= 6 × 10
12

would be approximately

68.1 + 0 + 10 + 2 + 4.5 = 84.6.

Take the time to read the mgcv and the gam documentation to better

understand how these work in practice (in particular, how to make

predictions on test/new observations).

20.6 Example: Algae Blooms

We continue the algae blooms analysis started in Section 15.7 (based on

a case study by L.Torgo [11]). The objective is to predict various algae

levels in water samples; we continue the analysis with the data frame

algae_blooms.sna2.

20.6.1 Value Estimation Modeling

For supervised learning tasks, the bias-variance trade-off means that we

need to set aside a testing set on which the models (which were learned

on the training set) are evaluated.
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There are no hard-and-fast rules to determine how to split the data; if the

signal is very strong, a small training set should capture its important

features, but we do not typically know how strong the signal is before

we start the modeling process. On the other hand, if the training set is

too large, we run the risk of overfitting the data. Weighing both of these

considerations, we elect to use a 65%/35% training/testing split.

The training data should also be representative, to avoid injecting biases

in the model (in case the data was provided according to some systematic

but unknown rule).

There are numerous ways to do this,
73

but we can do so using a simple73: See Chapter 10, Survey Sampling Meth-
ods, for instance.

random sample of 218 observations.
74

74: We could also have stratified accord-

ing to season, size, etc. To avoid issues related to replicability, we use a single training set.
75

75: The code that would allow for a differ-

ent random sample every time the code

is run has been commented out in the

following code box.

# ind <- sample(1:dim(algae_blooms.sna2)[1], 218)

ind <- 1:218

algae.train <- algae_blooms.sna2[ind,] # training set

algae.test <- algae_blooms.sna2[-ind,] # testing set

set.seed(0) # for replicability

Generalized Linear Model We implement a linear model to predict a2 (to

pick but one of the response variables) against all the predictor variables,

but only using the training set.
76

76: Before getting too excited about us-

ing various machine learning methods, it

is worth seeing what the traditional ap-

proaches yield. linear.model.a2 <- lm(a2 ~ season + size + speed + mxPH +

mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla,

data=algae.train)

A summary of the results can be given by calling the summary method

on the resulting object.

summary(linear.model.a2)

Residuals:

Min 1Q Median 3Q Max

-17.436 -5.281 -2.613 2.026 62.712

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.083e+01 1.257e+01 -2.452 0.015056 *
seasonsummer -1.166e-01 2.112e+00 -0.055 0.956035

seasonautumn 1.071e+00 2.370e+00 0.452 0.651934

seasonwinter -1.451e+00 2.000e+00 -0.726 0.468935

sizemedium -2.628e+00 1.895e+00 -1.387 0.166896

sizelarge -3.210e+00 2.412e+00 -1.331 0.184767

speedmedium 3.887e+00 2.485e+00 1.564 0.119325

speedhigh -1.104e+00 2.772e+00 -0.398 0.690751

mxPH 4.859e+00 1.559e+00 3.117 0.002092 **
mnO2 -1.841e-01 3.924e-01 -0.469 0.639474

Cl -7.432e-03 2.006e-02 -0.371 0.711351
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NO3 2.132e-01 3.028e-01 0.704 0.482249

NH4 -5.979e-04 5.355e-04 -1.117 0.265510

oPO4 2.290e-03 9.876e-03 0.232 0.816875

PO4 -1.559e-03 5.936e-03 -0.263 0.793090

Chla 1.652e-01 4.614e-02 3.579 0.000432 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.74 on 202 degrees of freedom

Multiple R-squared: 0.206, Adjusted R-squared: 0.147

F-statistic: 3.493 on 15 and 202 DF, p-value: 2.498e-05

We see that the adjusted 𝑅2
coefficient is fairly small, which is not ideal.

Furthermore, the residuals should have a mean of 0 and be “small”, which

is not quite what we are seeing here; the 𝐹−statistic seems to indicate

that there is some (linear) dependence on the predictor variables.

We can get a better handle on the regression diagnostics by calling the

plot() method on the object.

plot(linear.model.a2)

All in all, the linear model is ... not great. The significance of some of the

coefficients is questionable, however, and we might wonder what effect

their inclusion might have.

anova(linear.model.a2)
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Analysis of Variance Table

Response: a2

Df Sum Sq Mean Sq F value Pr(>F)

season 3 112.3 37.42 0.3243 0.8078029

size 2 436.0 217.99 1.8892 0.1538604

speed 2 1552.8 776.42 6.7287 0.0014825 **
mxPH 1 2223.5 2223.54 19.2698 1.829e-05 ***
mnO2 1 0.5 0.54 0.0047 0.9455025

Cl 1 0.3 0.33 0.0029 0.9572795

NO3 1 43.9 43.91 0.3806 0.5380001

NH4 1 193.8 193.82 1.6797 0.1964428

oPO4 1 0.1 0.09 0.0008 0.9775762

PO4 1 4.8 4.82 0.0417 0.8383141

Chla 1 1478.2 1478.18 12.8103 0.0004316 ***
Residuals 202 23308.8 115.39

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We might be interested in the results of a linear regression with the NH4

predictor removed, say.

linear.model.a2.mod <- update(linear.model.a2, . ~ . -NH4)

summary(linear.model.a2.mod)

Residuals:

Min 1Q Median 3Q Max

-16.801 -5.500 -2.647 2.504 63.259

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.996221 12.580354 -2.464 0.014577 *
seasonsummer -0.107996 2.113697 -0.051 0.959301

seasonautumn 0.806683 2.359593 0.342 0.732799

seasonwinter -1.397244 2.000275 -0.699 0.485648

sizemedium -2.378831 1.882645 -1.264 0.207838

sizelarge -3.086404 2.411377 -1.280 0.202029

speedmedium 3.637403 2.476278 1.469 0.143408

speedhigh -1.382060 2.762133 -0.500 0.617364

mxPH 4.821140 1.559264 3.092 0.002268 **
mnO2 -0.074216 0.380118 -0.195 0.845398

Cl -0.001602 0.019376 -0.083 0.934181

NO3 -0.013968 0.224437 -0.062 0.950437

oPO4 -0.001285 0.009348 -0.137 0.890775

PO4 -0.001518 0.005940 -0.256 0.798576

Chla 0.165865 0.046166 3.593 0.000411 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.75 on 203 degrees of freedom

Multiple R-squared: 0.2011, Adjusted R-squared: 0.146

F-statistic: 3.649 on 14 and 203 DF, p-value: 2.009e-05
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The fit is not that much better, but an ANOVA on the 2 suggested models

shows that we are at least ≈ 88% certain that the models are different.

anova(linear.model.a2,linear.model.a2.mod)

Analysis of Variance Table

Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla

Model 2: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 +

oPO4 + PO4 + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309

2 203 23453 -1 -143.86 1.2467 0.2655

The step() function uses AIC to perform a model search (using back-
ward elimination). The “best” linear model for a2 is thus:

final.linear.model.a2 <- step(linear.model.a2)

summary(final.linear.model.a2)

Start: AIC=1050.52

a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC

- season 3 157.44 23466 1046.0

- oPO4 1 6.20 23315 1048.6

- PO4 1 7.96 23317 1048.6

- Cl 1 15.85 23325 1048.7

- mnO2 1 25.40 23334 1048.8

- NO3 1 57.19 23366 1049.0

- size 2 282.28 23591 1049.1

- NH4 1 143.86 23453 1049.9

<none> 23309 1050.5

- speed 2 967.47 24276 1055.4

- mxPH 1 1121.22 24430 1058.8

- Chla 1 1478.18 24787 1061.9

Step: AIC=1045.98

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC

- oPO4 1 2.54 23469 1044.0

- PO4 1 4.10 23470 1044.0

- mnO2 1 6.61 23473 1044.0

- Cl 1 15.59 23482 1044.1

- size 2 257.60 23724 1044.4

- NO3 1 47.04 23513 1044.4

- NH4 1 114.06 23580 1045.0

<none> 23466 1046.0

- speed 2 1035.56 24502 1051.4

- mxPH 1 1052.01 24518 1053.5

- Chla 1 1477.06 24943 1057.3
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Step: AIC=1044.01

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + PO4 + Chla

Df Sum of Sq RSS AIC

- PO4 1 1.62 23470 1042.0

- mnO2 1 7.17 23476 1042.1

- Cl 1 14.19 23483 1042.1

- NO3 1 44.93 23514 1042.4

- size 2 266.73 23736 1042.5

- NH4 1 114.91 23584 1043.1

<none> 23469 1044.0

- speed 2 1050.55 24519 1049.5

- mxPH 1 1099.78 24569 1052.0

- Chla 1 1480.47 24949 1055.3

Step: AIC=1042.02

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- mnO2 1 6.59 23477 1040.1

- Cl 1 17.42 23488 1040.2

- size 2 265.19 23736 1040.5

- NO3 1 51.04 23521 1040.5

- NH4 1 140.72 23611 1041.3

<none> 23470 1042.0

- speed 2 1050.42 24521 1047.6

- mxPH 1 1105.21 24576 1050.0

- Chla 1 1482.34 24953 1053.4

Step: AIC=1040.08

a2 ~ size + speed + mxPH + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- Cl 1 13.41 23490 1038.2

- size 2 260.65 23738 1038.5

- NO3 1 44.48 23522 1038.5

- NH4 1 135.66 23613 1039.3

<none> 23477 1040.1

- speed 2 1121.64 24599 1046.3

- mxPH 1 1103.17 24580 1048.1

- Chla 1 1492.55 24970 1051.5

Step: AIC=1038.21

a2 ~ size + speed + mxPH + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- NO3 1 36.13 23526 1036.5

- size 2 275.91 23766 1036.8

- NH4 1 128.31 23619 1037.4

<none> 23490 1038.2

- speed 2 1172.78 24663 1044.8

- mxPH 1 1089.85 24580 1046.1

- Chla 1 1490.94 24981 1049.6
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Step: AIC=1036.54

a2 ~ size + speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC

- size 2 244.91 23771 1034.8

- NH4 1 93.48 23620 1035.4

<none> 23526 1036.5

- speed 2 1164.36 24691 1043.1

- mxPH 1 1053.88 24580 1044.1

- Chla 1 1611.04 25138 1049.0

Step: AIC=1034.8

a2 ~ speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC

- NH4 1 82.62 23854 1033.6

<none> 23771 1034.8

- mxPH 1 850.56 24622 1040.5

- speed 2 1085.45 24857 1040.5

- Chla 1 1540.50 25312 1046.5

Step: AIC=1033.56

a2 ~ speed + mxPH + Chla

Df Sum of Sq RSS AIC

<none> 23854 1033.6

- speed 2 1021.27 24875 1038.7

- mxPH 1 928.72 24783 1039.9

- Chla 1 1479.59 25334 1044.7

Call:

lm(formula = a2 ~ speed + mxPH + Chla, data = algae.train)

Residuals:

Min 1Q Median 3Q Max

-16.195 -6.008 -2.530 2.024 63.589

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.13270 11.07921 -2.449 0.015134 *
speedmedium 4.17176 2.34330 1.780 0.076453 .

speedhigh -0.32929 2.41899 -0.136 0.891850

mxPH 3.89794 1.35358 2.880 0.004387 **
Chla 0.15945 0.04387 3.635 0.000349 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.58 on 213 degrees of freedom

Multiple R-squared: 0.1874, Adjusted R-squared: 0.1721

F-statistic: 12.28 on 4 and 213 DF, p-value: 5.289e-09

It is still not a great fit (the adjusted 𝑅2
is quite small); we conclude that

the linear model is not ideal to predict a2.
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anova(final.linear.model.a2)

Analysis of Variance Table

Response: a2

Df Sum Sq Mean Sq F value Pr(>F)

speed 2 1994.8 997.42 8.9063 0.0001929 ***
mxPH 1 2026.6 2026.63 18.0964 3.145e-05 ***
Chla 1 1479.6 1479.59 13.2117 0.0003488 ***
Residuals 213 23854.1 111.99

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In spite of the final model’s poor quality, it is significantly different from

the full model.

anova(linear.model.a2,final.linear.model.a2)

Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl +

NO3 + NH4 + oPO4 + PO4 + Chla

Model 2: a2 ~ speed + mxPH + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309

2 213 23854 -11 -545.26 0.4296 0.9416

plot(final.linear.model.a2)
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Regression Tree Model An alternative to regression is the use of regres-
sion trees, implemented in the function rpart().

77
77: Its syntax is similar to lm().

regression.tree.a2 <-rpart::rpart(a2 ~ season + size +

speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +

Chla, data=algae.train)

The outcome can be displayed by calling the object directly.

regression.tree.a2

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.1300 7.6366970

2) Cl< 16.6875 83 1193.6400 1.8891570

4) size=small,medium 67 398.6457 0.9447761 *
5) size=large 16 485.0194 5.8437500 *

3) Cl>=16.6875 135 23733.9200 11.1703700

6) mxPH< 8.065 59 3831.8290 5.3864410

12) season=autumn,winter 29 561.8414 2.5172410 *
13) season=spring,summer 30 2800.4720 8.1600000

26) mxPH< 7.9375 23 889.9730 5.3173910 *
27) mxPH>=7.9375 7 1114.0000 17.5000000 *

7) mxPH>=8.065 76 16396.0400 15.6605300

14) Chla>=2.65 68 9694.0890 13.8544100

28) Chla< 14.8875 29 2747.5810 8.7172410

56) NH4< 226.875 21 558.4257 5.7857140 *
57) NH4>=226.875 8 1534.9490 16.4125000 *

29) Chla>=14.8875 39 5612.0940 17.6743600

58) mnO2< 11.05 30 3139.0940 15.4233300

116) NH4>=158.409 8 577.1000 8.9000000 *
117) NH4< 158.409 22 2097.7700 17.7954500

234) season=spring,autumn 14 674.7521 14.6642900 *
235) season=summer,winter 8 1045.5550 23.2750000 *

59) mnO2>=11.05 9 1814.2760 25.1777800 *
15) Chla< 2.65 8 4594.6690 31.0125000 *

The tree structure can be hard to determine when there is a large

number of nodes; we can improve on the visuals by using the R library

rpart.plot.

rpart.plot::prp(regression.tree.a2, extra=101,

box.col="orange", split.box.col="gray")
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Details on the regression tree can be obtained by calling the summary()

method on the object.

summary(regression.tree.a2)

CP nsplit rel error xerror xstd

1 0.15082765 0 1.0000000 1.0059069 0.1990911

2 0.11943572 1 0.8491724 0.9492709 0.1815913

3 0.07178590 2 0.7297366 0.8655117 0.1688012

4 0.04545758 3 0.6579507 0.9007445 0.1699016

5 0.02243987 4 0.6124932 0.9597254 0.1737117

6 0.02228595 5 0.5900533 0.9472199 0.1658890

7 0.02156378 6 0.5677673 0.9472199 0.1658890

8 0.01581407 8 0.5246398 0.9287217 0.1629262

9 0.01285848 9 0.5088257 0.9255472 0.1613858

10 0.01055949 10 0.4959672 0.9320459 0.1622581

11 0.01000000 11 0.4854077 0.9389544 0.1625727

Variable importance

Chla NH4 Cl mxPH oPO4 PO4 NO3 speed

19 14 14 13 11 9 6 5

mnO2 season size

4 3 2

Note that rpart() grows a tree on the training data until one of the

following criterion is met: - decrease in deviance goes below a certain

threshold (cp) - number of samples in a node is below some other

threshold (minsplit) - depth of the tree crosses yet another threshold

(maxdepth)

The library also implements a pruning method based on cost complexity:

finding the value of cp which best balances predictive accuracy and tree
size.

78
78: We will revisit these notions in Section

21.4.1, Tree-Based Methods.
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rpart::printcp(regression.tree.a2)

Variables actually used in tree construction:

[1] Chla Cl mnO2 mxPH NH4 season size

Root node error: 29355/218 = 134.66

n= 218

CP nsplit rel error xerror xstd

1 0.150828 0 1.00000 1.00591 0.19909

2 0.119436 1 0.84917 0.94927 0.18159

3 0.071786 2 0.72974 0.86551 0.16880

4 0.045458 3 0.65795 0.90074 0.16990

5 0.022440 4 0.61249 0.95973 0.17371

6 0.022286 5 0.59005 0.94722 0.16589

7 0.021564 6 0.56777 0.94722 0.16589

8 0.015814 8 0.52464 0.92872 0.16293

9 0.012858 9 0.50883 0.92555 0.16139

10 0.010559 10 0.49597 0.93205 0.16226

11 0.010000 11 0.48541 0.93895 0.16257

The tree returned by rpart() is the final one (cp= 0.01 is the default

value); it requires 11 decision tests, and has a relative error of 0.485.

Internally, rpart() uses 10-fold cross-validation to estimate that the tree

has an average relative error of 0.98 ± 0.18.
79

79: These values might change when from

one run to the next due to the stochastic

nature of the internal cross-validation rou-

tines.

In this framework, the optimal tree minimizes the value of xerror.

Alternatively, one could use the 1 − SE rule to find the minimal xerror +

xstd tree.

rpart::plotcp(regression.tree.a2)
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The scree plot above suggests that cp= 0.08 (that value may change when

you run yours due to the stochastic nature of the internal cross-validation

algorithm) is a special value for tree growth, so we could prune the tree

using that specific value.

(regression.tree.a2.mod <- rpart::prune(

regression.tree.a2,cp=0.05))

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.130 7.636697

2) Cl< 16.6875 83 1193.640 1.889157 *
3) Cl>=16.6875 135 23733.920 11.170370

6) mxPH< 8.065 59 3831.829 5.386441 *
7) mxPH>=8.065 76 16396.040 15.660530

14) Chla>=2.65 68 9694.089 13.854410 *
15) Chla< 2.65 8 4594.669 31.012500 *

rpart.plot::prp(regression.tree.a2.mod, extra=101,

box.col="orange", split.box.col="gray")

The entire process is automated in the wrapper method rpartXse()

provided with the DMwR library;
80

we (abitrarily) use se= 0.2.80: This library had to be installed from

source files as it was not available on the

Comprehensive R Archive Network as of

January 2023. library(DMwR)

(regression.tree.a2.final <- DMwR::rpartXse(a2 ~ season +

size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla, data=algae.train, se=0.2))

summary(regression.tree.a2.final)

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.13 7.636697

2) Cl< 16.6875 83 1193.64 1.889157 *
3) Cl>=16.6875 135 23733.92 11.170370 *

Call:
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rpart(formula = form, data = data, cp = cp, minsplit = minsplit)

n= 218

CP nsplit rel error xerror xstd

1 0.1508276 0 1.0000000 1.0130822 0.2001495

2 0.1194357 1 0.8491724 0.9320224 0.1752140

Variable importance

Cl PO4 oPO4 Chla NH4 speed

28 17 16 14 14 12

Node number 1: 218 observations, complexity param=0.1508276

mean=7.636697, MSE=134.6565

left son=2 (83 obs) right son=3 (135 obs)

Primary splits:

Cl < 16.6875 to the left, improve=0.15082760, (0 missing)

mxPH < 7.94 to the left, improve=0.14900670, (0 missing)

NO3 < 0.18 to the right, improve=0.11564070, (0 missing)

oPO4 < 45.1 to the left, improve=0.11106510, (0 missing)

Chla < 12.21 to the left, improve=0.09817759, (0 missing)

Surrogate splits:

PO4 < 70.465 to the left, agree=0.844, adj=0.590, (0 split)

oPO4 < 19.8635 to the left, agree=0.835, adj=0.566, (0 split)

NH4 < 46.35 to the left, agree=0.807, adj=0.494, (0 split)

Chla < 2.225 to the left, agree=0.807, adj=0.494, (0 split)

speed splits as RRL, agree=0.775, adj=0.410, (0 split)

Node number 2: 83 observations

mean=1.889157, MSE=14.38121

Node number 3: 135 observations

mean=11.17037, MSE=175.8068

rpart.plot::prp(regression.tree.a2.final, extra=101,

box.col="orange", split.box.col="gray")

The resulting tree is not nearly as complex as the original tree (hence

discourages overfitting) but is still more complex than the pruned tree

(which should improve predicting accuracy).

20.6.2 Model Evaluation

At this stage, we know that the linear model is not great for a2, and

we have seen how to grow a regression tree for a2 but we have not
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yet discussed whether this model is a good fit, to say nothing of the

remaining 6 algae concentrations. Can we get a better handle on these

models’ performance (i.e., comparing the model predictions to the real

values of the target variable in the test data)?

We have discussed various metrics that can be used to determine how the

values compare in Chapter 19; in this case, we elect to use the normalized
mean squared error (NMSE):

MSE

mean

{(
real − real𝑖

)
2

; 𝑖 = 1, ..., 𝑁

} .
As the ratio of MSE to a baseline predictor (the mean of the value of

the target), NMSE is unitless. NMSE values between 0 and 1 (smaller is

better) indicate that the model performs better than the baseline; greater

than 1 indicate that the model’s performance is sub-par.

We use the performanceEstimation library to run 5 × 10−fold cross-

validations to determine which of the models (linear model and 4

regression trees parametrized by se) yields an optimal (smaller) NMSE

value when trying to predict a2.

library(performanceEstimation)

kCV.results.algae.a2 <- performanceEstimation(

PredTask(a2 ~ season + size + speed + mxPH + mnO2 + Cl +

NO3 + NH4 + oPO4 + PO4 + Chla, data=algae.train, "a2"),

c(Workflow(learner="lm",post="onlyPos"),

workflowVariants(learner="rpartXse",

learner.pars=list( se=c(0,0.25,0.5,0.75,1) ))),

EstimationTask(metrics="nmse",

method=CV(nReps=5,nFolds=10))

)

A summary and plot of the cross-validation results for NMSE can be

displayed using calls to summary() and plot().

summary(kCV.results.algae.a2)

== Summary of a Cross Validation Performance Estimation Experiment ==

Task for estimating nmse using 5 x 10-Fold Cross Validation (seed=1234)

* Predictive Tasks :: a2

* Workflows :: lm, rpartXse.v1, rpartXse.v2, rpartXse.v3,

rpartXse.v4, rpartXse.v5

-> Task: a2

*Workflow: lm

nmse

avg 0.9723125

std 0.2221976

med 0.9634147

iqr 0.1771688
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min 0.5878283

max 2.0801221

invalid 0.0000000

*Workflow: rpartXse.v1

nmse

avg 1.1148436

std 0.3871551

med 1.0000000

iqr 0.2226673

min 0.5701226

max 2.8186400

invalid 0.0000000

*Workflow: rpartXse.v2

nmse

avg 1.08587675

std 0.35111303

med 1.00000000

iqr 0.07178237

min 0.76004730

max 2.81864005

invalid 0.00000000

*Workflow: rpartXse.v3

nmse

avg 1.035773e+00

std 1.470430e-01

med 1.000000e+00

iqr 2.220446e-16

min 8.044770e-01

max 1.701835e+00

invalid 0.000000e+00

*Workflow: rpartXse.v4

nmse

avg 1.011250e+00

std 1.214329e-01

med 1.000000e+00

iqr 2.220446e-16

min 6.800497e-01

max 1.701835e+00

invalid 0.000000e+00

*Workflow: rpartXse.v5

nmse

avg 1.004167e+00

std 5.174279e-02

med 1.000000e+00

iqr 2.220446e-16

min 8.692699e-01

max 1.339067e+00

invalid 0.000000e+00
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plot(kCV.results.algae.a2)

It is not obvious which of the models has smaller values of NMSE,

although it does seem that the latter versions of the regression tree

models are not substantially better than the baseline model.

The first regression tree model sometimes produces very small NMSE

values, but that is offset by some of the larger values it also produces.
81

81: Similarly for the linear model.

At any rate, visual evidence seems to suggest that the linear model is the

best predictive model for a2 given the training data (in this version of

𝑘CV), which is corrobated by a call to topPerformers().

topPerformers(kCV.results.algae.a2)

$a2

Workflow Estimate

nmse lm 0.972

This might seem disheartening at first given how poorly the linear model

performed, but it might be helpful to remember that there is no guarantee

that a decent predictive model even exists in the first place.

Furthermore, regression trees and linear models are only two of a whole

collection of possible models. How do support vector machines perform

the task, for instance?
82

82: See Chapter 21 for an in-depth discus-

sion on the topic.

This time, however, we will learn models and perform evaluation for all

target variables (a1-a7) simultaneously. This does not mean that we are

looking for a single model which will optimize all learning tasks at once,

but rather that we can prepare and evaluate the models for each target

variable with the same bit of code.

This first require some code to create the appropriate model formulas

(a1 ~ . , ... ,a7 ~ . ) and the appropriate training data.
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gg <- function(x,list.of.variables){

PredTask(as.formula(paste(x,"~ .")), algae.train[,c(list.of.variables,x )],

x, copy=TRUE)}

(data.sources <- sapply(names(algae.train[12:18]), gg, names(algae.train[1:11])))

$a1

Prediction Task Object:

Task Name :: a1

Task Type :: regression

Target Feature :: a1

Formula :: a1 ~ .

$a2

Prediction Task Object:

Task Name :: a2

Task Type :: regression

Target Feature :: a2

Formula :: a2 ~ .

$a3

Prediction Task Object:

Task Name :: a3

Task Type :: regression

Target Feature :: a3

Formula :: a3 ~ .

$a4

Prediction Task Object:

Task Name :: a4

Task Type :: regression

Target Feature :: a4

Formula :: a4 ~ .

$a5

Prediction Task Object:

Task Name :: a5

Task Type :: regression

Target Feature :: a5

Formula :: a5 ~ .

$a6

Prediction Task Object:

Task Name :: a6

Task Type :: regression

Target Feature :: a6

Formula :: a6 ~ .

$a7

Prediction Task Object:

Task Name :: a7

Task Type :: regression

Target Feature :: a7

Formula :: a7 ~ .
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We shall use e1071’s implementation of svm(), with various values of

the svm()-specific parameters cost and gamma.

library(e1071)

kCV.results.algae.all <- performanceEstimation(

data.sources,

c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(

cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse", learner.pars=list(

se=c(0,0.7,1)))),

EstimationTask(metrics="nmse",

method=CV(nReps=5, nFolds=10)))

The rest of the evaluation proceeds much as before, except that we can

display results for the 7 target variables simultaneously.

plot(kCV.results.algae.all)

rankWorkflows(kCV.results.algae.all,top=3)

$a1$nmse

Workflow Estimate

1 rpartXse.v1 0.6163406

2 rpartXse.v2 0.6278027

3 rpartXse.v3 0.6430736

$a2$nmse

Workflow Estimate

1 lm 0.9723125

2 svm 0.9954432

3 rpartXse.v3 1.0041667
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$a3$nmse

Workflow Estimate

1 svm 0.9497730

2 lm 0.9801662

3 rpartXse.v2 1.0000000

$a4$nmse

Workflow Estimate

1 rpartXse.v3 1.001453

2 rpartXse.v2 1.351494

3 lm 1.357243

$a5$nmse

Workflow Estimate

1 svm 0.9968475

2 rpartXse.v3 0.9990465

3 rpartXse.v2 1.0194733

$a6$nmse

Workflow Estimate

1 rpartXse.v2 1.010069

2 rpartXse.v3 1.010069

3 svm 1.054975

$a7$nmse

Workflow Estimate

1 rpartXse.v2 1.00000

2 rpartXse.v3 1.00000

3 rpartXse.v1 1.00797

topPerformers(kCV.results.algae.all)

$a1

Workflow Estimate

nmse rpartXse.v1 0.616

$a2

Workflow Estimate

nmse lm 0.972

$a3

Workflow Estimate

nmse svm 0.95

$a4

Workflow Estimate

nmse rpartXse.v3 1.001

$a5

Workflow Estimate

nmse svm 0.997
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$a6

Workflow Estimate

nmse rpartXse.v2 1.01

$a7

Workflow Estimate

nmse rpartXse.v2 1

For a1, the models seem to perform reasonably well, but it is not as rosy

for the other target variables, where the baseline model is sometimes

better.
83

83: Again, this could be built-in in the

data, but we might benefit from incorpo-

rating more models.

library(randomForest)

kCV.algae.all.rf <- performanceEstimation(

data.sources,

c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(

cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.7,1))),

workflowVariants(learner="randomForest",

learner.pars=list(ntree=c(200,500,700)))),

EstimationTask(metrics="nmse", method=CV(nReps=5,

nFolds=10))

)

rankWorkflows(kCV.algae.all.rf,top=3)

$a1$nmse

Workflow Estimate

1 randomForest.v2 0.5217204

2 randomForest.v3 0.5228744

3 randomForest.v1 0.5264328

$a2$nmse

Workflow Estimate

1 randomForest.v3 0.7798749

2 randomForest.v2 0.7806831

3 randomForest.v1 0.7849360

$a3$nmse

Workflow Estimate

1 randomForest.v3 0.9377108

2 randomForest.v2 0.9400108

3 randomForest.v1 0.9431801

$a4$nmse

Workflow Estimate

1 rpartXse.v3 1.001453

2 randomForest.v3 1.006496

3 randomForest.v1 1.006806
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$a5$nmse

Workflow Estimate

1 randomForest.v1 0.7626241

2 randomForest.v2 0.7675794

3 randomForest.v3 0.7681834

$a6$nmse

Workflow Estimate

1 randomForest.v2 0.8590227

2 randomForest.v3 0.8621478

3 randomForest.v1 0.8663869

$a7$nmse

Workflow Estimate

1 rpartXse.v2 1.00000

2 rpartXse.v3 1.00000

3 rpartXse.v1 1.00797

rankWorkflows() does not report on the standard error, so we cannot

tell whether the differences between the score of the best model and the

other models is statistically significant.

randomForest.v3 seems to have the best ranking across all learning

tasks, so we will use it as the baseline model.

p <- pairedComparisons(kCV.algae.all.rf,

baseline="randomForest.v3")

p$nmse$F.test

p$nmse$BonferroniDunn.test

$chi

[1] 22.86905

$FF

[1] 5.251025

$critVal

[1] 0.7071231

$rejNull

[1] TRUE

$critDif

[1] 3.52218

$baseline

[1] "randomForest.v3"

$rkDifs

lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

4.1428571 2.8571429 4.1428571 2.6428571 1.9285714

randomForest.v1 randomForest.v2

0.8571429 0.0000000
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$signifDifs

lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

TRUE FALSE TRUE FALSE FALSE

randomForest.v1 randomForest.v2

FALSE FALSE

We can reject with 95% certainty the hypothesis that the performance of

the baseline method (randomForest.v3) is the same as that of the linear

model and the first 2 regression trees, but not that it is better than svm,

rpartXse.v3, and the other 2 random forests.

The information is also displayed in the Bonferroni-Dunn CD diagram

below.

CDdiagram.BD(p)

20.6.3 Model Predictions

Finally, we might actually be interested in generating predictions for each

of the target variables in the testing set. This simply requires that the best

performers for each target response be brought together in an R object.

best.performers <- sapply(taskNames(kCV.algae.all.rf),

function(x) topPerformer(kCV.algae.all.rf,

metric="nmse", task=x)

best.performers

$a1

Workflow Object:

Workflow ID :: randomForest.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=500

learner -> randomForest

$a2

Workflow Object:

Workflow ID :: randomForest.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=700

learner -> randomForest
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$a3

Workflow Object:

Workflow ID :: randomForest.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=700

learner -> randomForest

$a4

Workflow Object:

Workflow ID :: rpartXse.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> se=1

learner -> rpartXse

$a5

Workflow Object:

Workflow ID :: randomForest.v1

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=200

learner -> randomForest

$a6

Workflow Object:

Workflow ID :: randomForest.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=500

learner -> randomForest

$a7

Workflow Object:

Workflow ID :: rpartXse.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> se=0.7

learner -> rpartXse

The observations that form the testing set are placed in an object, as

below:

test.observations <- array(dim=c(nrow(algae.test),7,2),

dimnames=list(rownames(algae.test), paste("a",1:7),

c("actual","predicted")))

The function runWorkflow() will compute the predicted values for each

of the targets’ best performers. We can then plot the predicted and actual

values for each of the testing set targets.
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for(j in 1:7){

results <- runWorkflow(best.performers[[j]],

as.formula(paste(names(best.performers)[j],"~ .")),

algae.train[,c(1:11,11+j)],

algae.test[,c(1:11,11+j)])

test.observations[,j,"actual"] <- results$trues

test.observations[,j,"predicted"] <- results$preds

}

df.a1 <- as.data.frame(test.observations[,1,])

df.a2 <- as.data.frame(test.observations[,2,])

df.a3 <- as.data.frame(test.observations[,3,])

df.a4 <- as.data.frame(test.observations[,4,])

df.a5 <- as.data.frame(test.observations[,5,])

df.a6 <- as.data.frame(test.observations[,6,])

df.a7 <- as.data.frame(test.observations[,7,])

plot(df.a1,main="a1 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a2,main="a2 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a3,main="a3 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a4,main="a4 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a5,main="a5 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a6,main="a6 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a7,main="a7 - predicted vs. actual")

abline(0,1,col="red")

The models simply are not that great, but we already expected that. The

average prediction for each target is shown below.

(average.prediction <- apply(algae.train[,12:18],2, mean))

a1 a2 a3 a4 a5 a6 a7

17.47 7.64 4.13 1.98 4.96 5.81 2.50
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Finally, you might be interested in the NMSE metrics for the predicted

values and how they compare to the NMSE metrics on the training set. Is

any of this surprising?

apply((test.observations[,,"actual"] - test.observations[,,"predicted"])^2, 2, sum) /

apply((scale(test.observations[,,"actual"], average.prediction,FALSE))^2, 2, sum)

a1 a2 a3 a4 a5 a6 a7

0.40 0.88 0.78 1.00 0.71 0.84 1.00

20.7 Exercises

1. Let (𝑋,𝑌) be a bivariate normal random variable with parameters

𝜇𝑋 = 12, 𝜇𝑌 = −7, 𝜎2

𝑋 = 1, 𝜎2

𝑌 = 2, 𝜎𝑋𝑌 = 4.

Consider the parameter

𝛼 =
𝜎2

𝑌
− 𝜎𝑋𝑌

𝜎2

𝑋
+ 𝜎2

𝑌
− 2𝜎𝑋𝑌

.

Using a bootstrap procedure with 𝑁 = 100 samples and 𝑀 = 200 replicates, provide a confidence interval

for the true value of 𝛼. [5]

2. Explicitly obtain the polynomial regression models in the Gapminder Example, for 𝑑 = 2, 3, 4.

3. Play around with a variety of knots in the step function regression models for the Gapminder Example,

and build the corresponding confidence intervals (including those of the example). How would you

determine the number and location of the knots?

4. Determine the optimal number of knots 𝐾 for cubic splines and natural cubic splines for the Gapminder

Example, using cross-validation.

5. Build piecewise cubic splines and continuous piecewise cubic splines for the Gapminder Example. Use

cross-validation to determine the optimal number of knots.

6. Predict life expectancy of countries in 2011 using the various spline models (in the text and in the exercises)

on the Gapminder dataset, with training/testing pairs. Evaluate your models. Which ones perform best?

7. Predict life expectancy of countries in 2011 using various GAM models on the Gapminder dataset, with

training/testing pairs. Evaluate your models. Which ones perform best?

8. Consider the dataset algae_blooms.csv, as in Section 20.6. Run the analysis with a scaled dataset. Run

the analysis with a PCA-reduced dataset. Do the results change significantly?

9. Consider the following datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx , and

UniversalBank.csv .

For each of these datasets, identify a response variable (or more than one, if the fancy strikes you) and

predictors, and build models to predict the response(s) using the various methods discussed in this

chapter. Evaluate and rank the resulting models. You may need to clean, transform, and visualize the data

along the way.

10. Complete the definition of the Python function kfoldCV(k, data, yname, formulas) where k is the

number of folds, data is the data set, yname is the column name of the dependent variable, and formulas

is a list of formulas. The function should return the tuple fit, f where fit is the OLS model for the

formula f in formulas that has the minimum 𝑘−fold CV estimate. Use it on the mpg data set with 𝑘 = 10

to obtain a good model for predicting mpg.

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
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import seaborn as sns

df = sns.load_dataset(’mpg’)

df.head()

def kfoldCV(k, data, yname, formulas):

fit = None

# Your code here. Don’t forget to obtain a

# random permutation of the observations

for f in formulas:

# Your code here

None

return fit, f
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