
Regression and Value Estimation 20
20.1 Statistical Learning 1201

Supervised Framework . . 1201
Systematic Component . . 1203
Model Evaluation 1208
Bias-Variance Trade-O� . 1209

20.2Regression Modeling . . . 1212
Formalism 1214
Least Squares Properties . 1218
Generalizations of OLS . 1224
Shrinkage Methods 1225

20.3Resampling Methods . . . 1230
Cross-Validation 1231
Bootstrap 1238
Jackknife 1240

20.4Model Selection 1242
Best Subset Selection . . . 1243
Stepwise Selection 1243
Optimal Models 1244

20.5Nonlinear Modeling 1251
Basis Function Models . . 1252
Splines 1259
GAMs 1273

20.6Example: Algae Blooms . 1275
Value Estimation Models 1275
Model Evaluation 1287
Model Predictions 1296

20.7 Exercices 1299
Chapter References 1300

by Patrick Boily

In Chapter 19 (Machine Learning 101), we provided a (basically) math-free
general overview of machine learning. In this chapter, we present an
introductory mathematical treatment of the discipline, with a focus on
regression and value estimation methods (in particular, on parametric
methods).

Our approach borrows heavily from [3, 5]; explanations and examples
are also available in [1].

We will continue the ML treatment in Chapters 21 and 22 (and 23, to a
lesser extent).

20.1 Statistical Learning

Statistical learning is a series of procedures and approaches that allows
analysts to tackle problems such as:

identifying risk factors associated to breast/prostate cancer;
predicting whether a patient will have a second, fatal heart attack
within 30 days of the �rst on the basis of demographics, diet,
clinical measurements, etc.;
establishing the relationship between salary and demographic
information in population survey data;
predicting the yearly in�ation rate using various indicators, etc.

Statistical learning tasks are typically divided into 2 main classes: super-
vised learning and unsupervised learning.1 1: There are other types, such as semi-

supervised or reinforcement learning, but
these are topics for future chapters.

20.1.1 Supervised Learning Framework

In the supervised learning environment, the outcome (response, target,
dependent variable, etc.) is denoted by ., and the vector of ? predictors
(features) by fi- = „-1 � � � � � -?”.

If. is quantitative (price, height, etc.), then the problem of predicting. in
terms of fi- is a regression task; if . takes on values in a �nite unordered
set (survived/died, colours, vegetation types, etc.), it is a classi�cation
task. This is typically achieved with the use of training data, which is to
say historical observations or instances, which we often denote by »X j Y…
(the column denoting the observation IDs is dropped).

1202 20 Regression and Value Estimation

obs. predictors predictors predictors resp.

1 G1�1 � � � G1�?�1 H1
���

���
���

���
= G=�1 � � � G=�?�1 H=

The objectives of supervised learning are usually to:

accurately predict unseen test cases;
understand which inputs a�ect the outcomes (if any), and how;
assess the quality of predictions and/or inferences made on the
basis of the training data, etc.

In unsupervised learning, on the contrary, there are no outcome variables,
only features on a set of observations X.22: The response variable Y that was seg-

regated away from X in the supervised
learning case could now be one of the
variables in X.

The objectives are much more vague � analysts could seek to:

�nd sets of features that behave similarly across observations;
�nd combinations of features with the most variation;
�nd natural groups of similar observations, etc.

We will discuss such methods in detail in Chapter 22.

Statistical Learning vs. Machine Learning The term �statistical learning�
is not used frequently in practice;3 we speak instead ofmachine learning.3: Except by mathematicians and statisti-

cians, perhaps. If a distinction must be made, we could argue that:

statistical learning arises from statistical-like models, and the em-
phasis is usually placed on interpretability, precision, and uncer-
tainty, whereas
machine learning arise from arti�cial intelligence studies, with
emphasis on large scale applications and prediction accuracy.

The dividing line between the terms is blurry � the vocabulary used by
practitioners mostly betrays their educational backgrounds (but see [7]
for another take on this).

Motivating Example Throughout, we will illustrate the concepts and no-
tions via the gapminder.csv dataset, which records socio-demographic
information relating to the planet’s nations, from 1960 to 2011 [9, 8].

We will be interested in determining if there is a link between life
expectancy, at various moments in time, and the rest of the predictors.

The dataset contains 7139 observations of 9 columns:

a country � year identi�er (2 variables, 8 and -1);
a region and continent pair of categorical predictors (2 variables,
-2 and -3);
four numerical predictors: population -4, infant mortality -5,
fertility -6, gross domestic product in 1999 dollars -7, and
life expectancy ., the numerical response.

https://www.data-action-lab.com/wp-content/uploads/2021/08/gapminder.csv

20.1 Statistical Learning 1203

Setting up the Gapminder dataset

library(dplyr)
gapminder.ML = read.csv("gapminder.csv",

stringsAsFactors=TRUE)
gapminder.ML <- gapminder.ML[complete.cases(gapminder.ML),]
gapminder.ML <- gapminder.ML[,c("country","year","region",

"continent","population","infant_mortality",
"fertility","gdp","life_expectancy")]

The structure is provided below:

str(gapminder.ML)

’data.frame’: 7139 obs. of 9 variables:
$ country : Factor w/ 185 levels "Albania","Algeria",..: 2 5 8 9 11 13 14 16 18 20 ...
$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
$ region : Factor w/ 22 levels "Australia and New Zealand",..: 11 15 1 22 2 18 2 ...
$ continent : Factor w/ 5 levels "Africa","Americas",..: 1 2 5 4 2 3 2 4 1 2 ...
$ population : int 11124892 20619075 10292328 ...
$ infant_mortality: num 148.2 59.9 20.3 37.3 51 ...
$ fertility : num 7.65 3.11 3.45 2.7 4.5 6.73 4.33 2.6 6.28 6.7 ...
$ gdp : num 1.38e+10 1.08e+11 9.67e+10 5.24e+10 1.31e+09 ...
$ life_expectancy : num 47.5 65.4 70.9 68.8 62 ...

In other words, we will be looking formodels of the form

. = 5 „-1 � � � � � -7” ‚ � � 5 „ fi-” ‚ ��

where 5 is the systematic component of . explained by -, and � is the
random error term, which accounts for measurement errors and other
deviations and discrepancies.4 4: Generally, we require E„�” = 0.

20.1.2 Systematic Component and Regression

It is the systematic component that is used for predictions and inferences.
As long as 5 is �good�, we can:

make predictions for the response . at new points fi- = x;
understand which features of fi- = „-1 � � � � � -?” are important to
explain the variation in ., and
depending on the complexity of 5 , understand the e�ect of each
feature -9 on ..

Imagine a model with one predictor - and a target ., with systematic
component 5 , so that

. = 5 „-” ‚ ��

For instance, consider the following subset of the Gapminder dataset.

1204 20 Regression and Value Estimation

attach(gapminder.ML)
x=log(fertility[10*(1:730)]/infant_mortality[10*(1:730)])
y=life_expectancy[10*(1:730)]
x=x[!is.na(x)]
y=y[!is.na(y)]
plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

What is the ideal 5 in this case? How can we �nd it?

Figure 20.1: Regression model for a subset
of the Gapminder data.

In that case, what would be a good value of 5 „�2”, say?

Figure 20.2: Regressionmodel for a subset
of the Gapminder data, with vertical line
at - = �2.

Ideally, we would like to have 5 „�2” = E». j - = �2….5 For any G in the5: Why?

range of -, the function

5 „G” = E». j - = G…

20.1 Statistical Learning 1205

is the regression function of . on -. In the general setting with ?
predictors, the regression function is

5 „x” = 5 „G1 � � � � � G?” = E». j -1 = G1 � � � � � -? = G?… = E». j fi- = x…�

It is optimal in the sense that this regression function minimizes the
average square deviation from the response variable, that is to say,

5 = arg min
6

n
E
�
„. � 6„ fi-””2 j fi- = x

�o
�

The term
� = � fi- = . � 5 „ fi-”

is the irreducible error of the regression. Typically, � fi- < 0 for all fi-,
since, even when 5 is known exactly, there will still be some uncertainty
in the predictions due to some noise-generating mechanism in the �real
world�.

If 5 is any estimate of the regression function 5 ,6 then 6: In particular, 5 „ fi-” = . � . = 5 „ fi-”‚�.

E»„. � .”2 j fi- = x… = E»„ 5 „ fi-” ‚ � � 5 „ fi-””2 j fi- = x…

= » 5 „x” � 5 „x”…2
| {z }

reducible

‚ Var„�”
|{z}

irreducible

�

Since the irreducible component is not a property of the estimate 5 , the
objective of minimizing E»„. � .”2… can only be achieved by working
through the reducible component. When we speak of learning a model,
we mean that we use the training data to �nd an estimate 5 of 5 that
minimizes this reducible component, in some way.

Estimating the Regression Function In theory, we know that the regres-
sion function is

5 „x” = E». j fi- = x…;

in practice, however, there might be too few (or even no) observations at
fi- = x to trust the estimate provided by the sample mean. One solution
is to approximate the expectation by a nearest neighbour average

 5 „x” = Avgf. j fi- 2 #„x”g�

where #„x” is a neighbourhood of x.

Figure 20.3: Regressionmodel for a subset
of the Gapminder data, with vertical line
at - = �2 and neighbourhood #„�2”.

1206 20 Regression and Value Estimation

In general, this approach works reasonably well when ? is �small�
(? � 4?) and # is �large�, but it fails when ? is too large because of the
curse of dimensionality. The problem is that nearest neighbours are
usually far when ? is large. Indeed, if #„x” is de�ned as the nearest 5% of
observations to x, say,7 then we need to leave the �local� neighbourhood7: The proportion must be large enough

to bring the variance down. of x to build #„x”, which could compromise the quality of 5 „x” as an
approximation to 5 „x”.

We provide more details in Chapter 23, but this is a topic about which it
is worth being well-read (see [3] for a formal treatment).

The various statistical learning methods attempt to provide estimates
of the regression function by minimizing the reducible component
through parametric or non-parametric approaches.8 For instance, the8: In this context, �parametric� means

that assumptions are made about the
form of the regression function 5 ; �non-
parametric� means that no such assump-
tions are made.

classical linear regression approach is parametric: it assumes that the
true regression function 5 is linear and suggests the estimate

5!„x” = �0 ‚ �1G1 ‚ � � � ‚ �?G? �

The objective, in this case, is to learn the ? ‚ 1 parameters �0 � �1 � � � � � �?
with the help of the training data.

In practice, this assumption almost never holds, but it often provides
an interpretable9 approximation to the true regression function 5 (see9: We will revisit this concept at a later

stage. below for an example).

Gapminder subset and linear regression

lin.reg = lm(y~x)
plot(x,y,ylab="response Y", xlab="predictor X", pch=20)
abline(lin.reg, col="red", lwd=3)

As an example, if the true �t of the motivating example was

life expectancy = 5 „fertility� infant mortality� gdp” ‚ ��

say, then the linear regression approach would assume that

5 „fertility�infant mortality� gdp” � 5!„fertility� infant mortality� gdp”
= �0 ‚ �1 � fertility ‚ �2 � infant mortality ‚ �3 � gdp�

20.1 Statistical Learning 1207

The main advantages of the linear model are that it is interpretable and
that it is easier to learn ? ‚ 1 parameters than it is to learn a whole
function 5 . On the �ip side, the linear model does not usually match the
true regression function 5 ; if 5! 0 5 , then predictions will su�er.

We could decide to consider more complex functions in order to get
better estimates (and thus better prediction accuracy), but this comes at
a cost � the resulting functions are usually more di�cult to learn and
they tend to over�t the data.10 10: Which is to say, they mistake noise in

the data for a signal to model, see Section
20.1.4 for details.Splines provide examples of non-parametric models (see Section 20.5.2):

they make no assumption about the form of 5 � they simply seek to
estimate 5 by getting close to the data points without being too rough or
too wiggly, as below.

Gapminder subset and smoothing spline

smoothingSpline = smooth.spline(x, y, spar=0.7)
plot(x,y,ylab="response Y", xlab="predictor X", pch=20)
lines(smoothingSpline, col="red", lwd=3)
detach(gapminder.ML)

The main advantage of non-parametric approaches is that they have the
potential to �t awider range of regression shapes. But since estimating
5 is not reduced to learning a small number of parameters, substantially
more data is required to obtain accurate estimates.11 11: And the whole situation is susceptible

to over�tting.
Non-parametric methods are usually more �exible (they can produce a
large range of shapes when estimating the true regression function 5);
parametric models are usually more interpretable.12 12: The set of parameters to learn is small

and we can more easily make sense of
them, which leads us to a better under-
standing of how the predictors interact to
produce outputs.

Approaches that provide:

high �exibility, but low interpretability include ensemble learning,
support vector machines, neural networks, and splines;
low �exibility, but high interpretability include the LASSO and
OLS, and
medium �exibility and medium interpretability include general-
ized additive models and regression trees.

1208 20 Regression and Value Estimation

There are no high-�exibility/high-interpretability approaches. The
trade-o� between two competing desirable properties is the calling card
of machine learning; we will encounter such trade-o�s time and time
again; they dictate what the discipline can and cannot hope to achieve.

20.1.3 Model Evaluation

In an ideal world,13 we would want to identify the modeling approach13: From a model performance point of
view. that performs �best�, and use it for all problems.

The discussion on trade-o�s shows that the concept of �best performance�
is impossible to de�ne in practice in a way that meets all desired require-
ments, and a balance must be struck. Another issue lurks around the
corner, even when we settle on an �optimal� performance evaluation
measure: no single method is optimal over all possible datasets.1414: In reality, machine learning is simply

applied optimization; the proof of this
No-Free Lunch Theorem falls outside the
scope of this document (but see [13, 12] for
details).

Given a speci�c task and dataset, then, how do we select the approach
that will yield the best results (for a given value of �best�)? In practice,
this is the main machine learning challenge.

In order to evaluate a model’s performance at a speci�c task, we must
be able to measure how well predictions match the observed data. In a
regression/value estimation setting, various metrics are used:

mean squared error (MSE):

1
#

#X

8=1
„H8 � 5 „x8””2;

mean absolute error (MAE):

1
#

#X

8=1
jH8 � 5 „x8”j;

normalized mean squared error (NMSE):

#X

8=1
„H8 � 5 „x8””2

#X

8=1
„H8 � H”2

;

normalized mean absolute error (NMAE):

#X

8=1
jH8 � 5 „x8”j

#X

8=1
jH8 � H j

;

mean average percentage error (MAPE):

1
#

#X

8=1

jH8 � 5 „x8”j
H8

;

correlation � H�H , etc.

20.1 Statistical Learning 1209

The MSE has convenient mathematical properties, and we will follow
the lead of just about every reference in making it our go-to metric, but
note that the conceptual notions we will discuss would be qualitatively
similar for all performance evaluation tools.

Note that in order to evaluate the suitability of a model for predictive
purposes, these metrics should be evaluated on testing data (or unseen
data), not on the training data.15 15: Failure to do so means that the model

can at best be used to describe the training
dataset (which might still be a valuable
contribution).

For instance, if we are trying to determine whether any clinical measure-
ment in patients are likely to predict the onset of Alzheimer’s disease,
we do not particularly care if the algorithm does a good job of telling us
that the patients we have already tested for the disease have it or not � it
is new patients that are of interest.16 16: Although it would be surprising if the

performance on the test data is any good
if the performance on the training data is
middling. We shall see at a later stage that
the training/testing paradigm can also
help with problems related to over�tting.

Let Tr = f„x8 � H8” j 8 = 1� � � � � #g be the training set and suppose that we
use some statistical learning method to estimate the true relationship
. = 5 „ fi-” ‚ � by . = 5 „ fi-”, i.e., we �t 5 over Tr.

Hopefully, we have 5 „x8” � H8 for all 8 = 1� � � � � # , and

MSETr =
1
#

#X

8=1
„H8 � 5 „x8””2

is small.

If it is indeed small, then the model does a good job of describing Tr.
But, as discussed above, this is largely irrelevant to (if not uncorrelated
with) our ability to make good predictions; what we would really like to
know is if

 5 „x�” � 5 „x�” = H�

for observations „x� � H�” 8 Tr.

An optimal statistical learning method for a given combination of task
and dataset is one that minimizes

MSETe =
1
"

#‚"==X

9=#‚1
„H 9 � 5 „x9””2

over the testing set Te = f„x9 � H9” j 9 = # ‚ 1� � � � � # ‚" = =g, where, a
priori, none of the test observations were in Tr.17 The general situation is 17: New test observations may end up as-

suming the same values as some of the
training observations, but that is an acci-
dent of sampling and/or it is due to the
reality of the scenario under considera-
tion.

illustrated in Figures 20.4 and 20.5.

20.1.4 Bias-Variance Trade-O�

The �U� shape of the testing MSE in Figure 20.5 is generic � something of
this nature occurs for nearly all datasets and choice of supervised learning
family of methods (for regression and for classi�cation): under�tting
and over�tting is a fact of machine learning life.18 18: Although, some recent �ndings are

casting the bias-variance trade-o� in a new
light (see double descent , for instance).
We will discuss this further in Chapter 31.

The generic shape can be explained by two properties of SL methods: the
bias and the variance. Consider a test observation „x� � H�”, and a �tted
model 5 (trained on Tr), which approximates the true model

. = 5 „ fi-” ‚ �� where 5 „x” = E». j fi- = x…�

https://mlu-explain.github.io/double-descent/

1210 20 Regression and Value Estimation

Figure 20.4: The training/testing paradigm. Training data is fed into a variety of statistical learning methods, possibly arranged in increasing
order of complexity, yielding a sequence of models. These models are then used to make predictions on the testing set (using only the
predictors variables); the predictions are then compared with the actual values to evaluate the performance of the models on the testing set.
The performance of the models on the training set can also be evaluated.

Figure 20.5: Generic illustration of the bias-variance trade-o�; when the complexity of the model increases, the training error decreases, but
the testing error eventually starts increasing. Generally, models that are too simple will have ’large’ prediction errors on both the training
and the testing sets (under�tting), whereas for models that are too complex, the training error tends to be �small� while the testing error
tends to be �large� (over�tting). Based on [5, 3].

20.1 Statistical Learning 1211

The expected test MSE at x� can be decomposed into 3 fundamental
quantities

E »MSETe„x�”… = E
h
„H� � 5 „x�””2

i

= Var„ 5 „x�””
| {z }

variance

‚
n
E

h
 5 „x�” � 5 „x�”

io2

| {z }
squared bias

‚Var„�”�

As before, Var„�” is the irreducible error (due to the inherent noise in
the data); the variance component error Var„ 5 „x�”” arises since di�erent
training sets would yield di�erent �tted models 5 , and the (squared)
bias component error arises, in part, due to the �di�cult� problem being
approximated by a �simple� model (see [5, 3] for details).

The overall expected test MSE E»MSETe… is the average of E»MSETe„x�”…
over all allowable x� in the testing space. Note that

E»MSETe… � Var„�”�

by construction.

In general, more �exible methods (i.e., more complex methods) tend to
have higher variance and lower bias, and vice-versa: simpler methods
have higher bias and lower variance. It is this interplay between bias
and variance that causes models to under�t (high bias) or over�t (high
variance) the data (see bias-variance trade-o� diagram below).

Figure 20.6: Expected test error decompo-
sition, arti�cial dataset [5].

Let us summarize the main take-aways from the �rst section:

the optimal regression function . = 5 „ fi-” ‚ � for numerical re-
sponses is

5 „G” = E». j fi- = x…;

models are learned on training data Tr;

1212 20 Regression and Value Estimation

in practice, we learn the best model from a restricted group of
model families;
the best model 5 „x”minimizes the reducible part of the prediction
error MSETe, evaluated on testing data Te;
the bias-variance trade-o� tells us that models that are too simple
(or too rigid)under�t the data, and thatmodels that are too complex
(or too �loose�) over�t the data;
the total prediction error on Te is bounded below by the irreducible
error.

Finally, remember that a predictive model’s performance can only be
evaluated onunseendata (i.e., on data not drawn from the training set Tr);
if this requirement is not met, the model is at best descriptive.

20.2 Regression Modeling

In the regression setting, the goal is to estimate the regression function

5 „x” = E». j fi- = x…�

the solution to the regression problem

. = 5 „ fi-” ‚ ��

The best estimate 5 is the model that minimizes

MSETe„ 5 ” = Avgx�2TeE
h
„H� � 5 „x�””2

i
�

In practice, this can be hard to achieve without restrictions on the
functional form of 5 , so we try to learn the best 5 from speci�c families
of models. Remember, however, that no matter what the approximation
function 5 is, we have:1919: Assuming that Var„�” is constant in x.

MSETe„ 5 ” � Var„�”�

What else can we say about 5 ? In the ordinary least square framework
(OLS), we assume that

 5OLS„x” � x># �

which is to say that we assume that 5OLS is nearly globally linear.2020: We neglect the intercept term, in this
interpretation.

The true regression function is almost never linear, but the linear assump-
tion yields models 5 that are both conceptually and practically useful �
the model 5 is easily interpretable, and the associated prediction error
MSETe„ 5 ” is often �small-ish�.

The most common data modeling methods are linear and logistic regres-
sion methods. By some estimation, 90% of real-world data applications
end up using these as their �nal model, typically after very carefully
preparing the data (cleaning, encoding, creation of new variables, trans-
formation of variables, etc.).

That is mostly due to the:

regression models being straightforward to interpret and to train;

20.2 Regression Modeling 1213

MSETe having a closed-form linear expression, and
OLS solution being computable using simplematrix manipulations.

Gapminder Example Let us revisit the Gapminder dataset, focusing on
observations from 2011.

Is there a relationship between gross domestic product and life
expectancy?
How strong is the relationship?
Which factors contribute to the life expectancy?
How accurately could we predict life expectancy given a set of new
observations?
Is the relationship linear?
Are there combinations of factors that are linked with life ex-
pectancy?

Can the scatterplots of various predictors against life expectancy for
the 2011 Gapminder data, shown below with line of best �t, be used to
answer these questions?

gapminder.2011 <- gapminder.ML |> filter(year==2011)
attach(gapminder.2011)

x=population
y=life_expectancy
plot(x,y, xlab="Population", ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

x=infant_mortality
y=life_expectancy
plot(x,y, xlab="Infant Mortality", ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

x=fertility
y=life_expectancy
plot(x,y, xlab="Fertility", ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

x=gdp
y=life_expectancy
plot(x,y, xlab="Gross Domestic Product",

ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

x=gdp/population
y=life_expectancy
plot(x,y, xlab="GDP per capita", ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

x=log(gdp/population)
y=life_expectancy
plot(x,y, xlab="GDP per capita (log scale)",

1214 20 Regression and Value Estimation

ylab="Life Expectancy")
abline(lm(y~x), col="red",lwd=3)

detach(gapminder.2011)

20.2.1 Formalism

Consider a dataset Tr = f„x1 � H1”� � � � � „x# � H# ”g with # observations
and ? � 1 features. The corresponding design matrix, response vector,
and coe�cient vector are, respectively,

X =
'››
«

1 G1�1 � � � G1�?�1
���

���
���

1 G#�1 � � � G#�?�1

“fifi
‹

� Y =
'››
«

H1
���
H#

“fifi
‹

� # =
'››››
«

�0
�1
���

�?�1

“fifififi
‹

�

The objective is to �nd 5 such thatY = 5 „X”‚9. TheOLS solution assumes
that 5 „X” = X#; we must thus learn # using the training data Tr.

If # is an estimate of the true coe�cient vector #, the linear regression
model associated with Tr is

 5 „x” = �0 ‚ �1G1 ‚ � � � ‚ �?�1G?�1�

How do we �nd #? The OLS estimate minimizes the loss function

L „#” = kY � X#k22 = „Y � X#”>„Y � X#”
= Y>Y � „„X#”>Y ‚ Y>X#” ‚ „X#”>X#

= Y>Y � „#>X>Y ‚ Y>X#” ‚ #>X>X#�

The loss function is a non-negative symmetric quadratic form in #, with
no restriction on the coe�cients, so any minimizer of L must also be one
of its critical points (assuming certain regularity conditions on the data).
We are thus looking for coe�cients for which rL „#” = 0. Since

rL „#” = �2„X>Y � X>X#”�

20.2 Regression Modeling 1215

any minimizer # must satisfy the canonical (normal) equations:

X>Y = X>X #�

If X>X is invertible, the minimizer # is unique and is given by

 # = „X>X”�1X>Y� with Var„ #” = �2„X>X”�1 �

where �2 is the variance of the residuals.21 We say that �we have learned 21: Note that X>X is a ? � ? matrix, which
makes the inversion relatively easy to com-
pute even when # is large.

the coe�cients # on the training data Tr using linear regression�.

In what follows, we sometimes write x to represent the observation
vector

„1� G1 � � � � � G?�1”>;

it should be clear what is meant from the context.

The �tted value of the model 5 at input x8 2 Tr is

 H8 = 5 „x8” = x>8 # �

and the predicted value at an arbitrary x� is

 H� = 5 „x�” = x�> #�

The �tted surface is thus entirely described by the ? ‚ 1 parameters #;
the number of (e�ective) parameters is a measure of the complexity of
the learner.

Motivating Example We study a subset of the Gapminder dataset: the
observations for 2011, the predictor variables infant mortality -1 and
fertility -2, and the response variable life expectancy .. The training
data Tr contains # = 166 observations and ? = 2 predictor features.

The design matrix X is thus of dimension 166 � 3.

library(matlib)
gapminder.2011 <- gapminder.2011 |> dplyr::mutate(const=1)
design.X = gapminder.2011[,c("const","infant_mortality",

"fertility")]
str(design.X)

’data.frame’: 166 obs. of 3 variables:
$ const : num 1 1 1 1 1 1 1 1 1 1 ...
$ infant_mortality: num 14.3 22.8 106.8 7.2 12.7 ...
$ fertility : num 1.75 2.83 6.1 2.12 2.2 1.5 1.88 1.44 1.96 1.9 ...

The response is a 166 � 1 vector.

resp.Y = gapminder.2011[,c("life_expectancy")]

The constituents of the canonical equations are:

1216 20 Regression and Value Estimation

(X.t.X = t(as.matrix(design.X)) %*% as.matrix(design.X))
(X.t.Y = t(as.matrix(design.X)) %*% as.matrix(resp.Y))

We thus see that

X>X = '›
«

166�0 4537�3 486�54
4537�3 225043�25 18445�28
486�54 18445�28 1790�238

“fi
‹

and

X>Y = '›
«

11756�7
291153�33
32874�95

“fi
‹
�

We can now compute #:

(beta.hat = inv(X.t.X) %*% X.t.Y)

Thus,

 # = „X>X”�1X>Y = '›
«

79�677
�0�276
�0�443

“fi
‹
�

We have seen that the �tted surface is

H� = 5 „x�” = 79�677 � 0�276G�1 � 0�443G�2

for an observation x� = „G�1 � G
�
2”.

Warning: predictions should not be made for observations outside the
range (or the envelope) of the training predictors. In this example, the
predictor envelope is shown in red in the �gure below � one should resist
the temptation to predict H� for x� = „100� 2”, say.

Least Squares Assumptions Since the family of OLS learners is a subset
of all possible learners, the best we can say about 5OLS is that

MSETe„ 5OLS” � min
 5

n
MSETe„ 5 ”

o
� Var„�”�

In practice, we are free to approximate 5 with any learner 5 . If we
want 5 to be useful, however, we need to verify that it is a �decent�
approximation.

There is another trade-o� at play: when we restrict learners to speci�c
families of functions,22 we typically also introduce a series of assumptions22: That is, when we impose structure on

the learners. on the data.

The OLS assumptions are

linearity: the response variable is a linear combination of the
predictors;
homoscedasticity: the error variance is constant for all predictor
levels;

20.2 Regression Modeling 1217

Figure 20.7: Predictor envelope for the
Gapminder subset.

uncorrelated errors: the error is uncorrelated from one observation
to the next;
full column rank for design matrix X: the predictors are not
perfectly multi-collinear;
weak exogeneity: predictor values are free of measurement error.

Mathematically, the assumptions translate to

Y = X# ‚ 9�

where # 2 R?‚1 is determined on a training set Tr without measurement
error, and for which

E»9 j X… = 0 and E»99> j X… = �2�= �

Although it is not a requirement, it is also often further assumed that

9 j X � N „0� �2�=”�

Wewill discuss how these assumptions can be generalized at a later stage.
In the meantime, however, how can we determine if the choice of model
is valid? In the traditional statistical analysis context, there is a number
of tests available to the analyst (we will discuss them shortly). In the
machine learning context, there is only one real test:

does the model make good predictions?

1218 20 Regression and Value Estimation

20.2.2 Least Squares Properties

Let us assume that the OLS assumptions are satis�ed. What can we say
about the linear regression results? (see Chapter 8 and [6], say, for a
refresher).

For the Gapminder example above, for instance, we could us R’s lm().

f.model = lm(life_expectancy~infant_mortality+fertility)
summary(f.model)

Residuals:
Min 1Q Median 3Q Max

-15.3233 -2.0057 0.2003 2.9570 10.6370

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 79.6759 0.7985 99.786 <2e-16 ***
infant_mortality -0.2763 0.0248 -11.138 <2e-16 ***
fertility -0.4440 0.4131 -1.075 0.284

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.172 on 163 degrees of freedom
Multiple R-squared: 0.7612, Adjusted R-squared: 0.7583
F-statistic: 259.8 on 2 and 163 DF, p-value: < 2.2e-16

Coe�cient of Determination Let

SSE = Y>»�= � X„X>X”�1X>…Y = Y>»�= �H…Y

and
SST = Y>Y � =H2�

In the Gapminder example, we have:

(SSE=anova(f.model)[[2]][3])

[1] 2837.69

(SST=as.vector(t(as.matrix(resp.Y)) %*% as.matrix(resp.Y)
- nrow(as.matrix(resp.Y))*(mean(resp.Y))^2))

[1] 11882.18

The coe�cient of determination of the OLS regression is the quotient

’2 =
SST � SSE

SST
=

Cov2„Y�X #”
�2
H�2
 H

�

In the Gapminder example, we have:

20.2 Regression Modeling 1219

(R.2 = 1-SSE/SST)

[1] 0.761181

The coe�cient of determination identi�es the proportion of the variation
of the data explained by the linear regression; as such, 0 � ’2 � 1.

If ’2 � 0, then the predictor variables have little explanatory power on
the response; if ’2 � 1, then the linear �t is deemed to be �good�, as a
lot of the variability in the response is explained by the predictors. In
practice, the number of predictors also a�ects the goodness-of-�t (this is
related to the curse of dimensionality discussed previously).

The quantity

’2
0 = 1 �

� 1
� ?

„1 � ’2” = 1 �
SSE�„# � ?”
SST�„# � 1”

is the adjusted coe�cient of determination of the linear regression.
While ’2

0 can be negative, it is always smaller than ’2. It also plays a role
in the feature selection process.

In the Gapminder example, we have:

(R.a.2 = 1-(nrow(as.matrix(resp.Y))-1)
/(nrow(as.matrix(resp.Y))-nrow(X.t.X))*(1-R.2))

[1] 0.7584

This suggests that a fair proportion of the variability in the life expectancy
(about 75.7%) is explained by infant mortality and fertility.

Signi�cance of Regression We can determine if at least one of the
predictors-1 � � � � � -?�1 is useful in predicting the response. bypitting

�0 : „�1 � � � � � �?�1” = 0 against �1 : „�1 � � � � � �?�1” < 0�

Under the null hypothesis �0, the ��statistic

�� =
„SST � SSE”�?
SSE�„# � ?”

� �?�#�? �

At signi�cance level
, if �� � �?�#�?;
 (the 1 �
 quantile of the �
distribution with ? and # � ? degrees of freedom), then we reject the
null hypothesis in favour of the alternative.

In the Gapminder model

. = 79�677 � 0�276-1 � 0�443-2 ‚ �� # = 166� ? = 2�

we have:

1220 20 Regression and Value Estimation

(F.star = ((SST-SSE)/(nrow(X.t.X)))
/(SSE/(nrow(as.matrix(resp.Y))-nrow(X.t.X))))

[1] 258.169

At a signi�cance level
 = 0�05, the critical value of the �2�164 distribution
is:

qf(0.05,nrow(X.t.X),nrow(as.matrix(resp.Y))
-nrow(X.t.X),lower.tail=FALSE)

[1] 3.051127

Since �� � �2�164;0�05, at least one of �1 � �2 < 0, with probability 95% (in
the frequentist interpretation).

Interpretation of the Coe�cients For 9 = 1� � � � � ?, the coe�cient � 9
is the average e�ect on . of a 1-unit increase in -9 , holding all other
predictors �xed. Ideally, the predictors are uncorrelated (such as would
be the case in a balanced design [10]). Each coe�cient can then be
tested (and estimated) separately, and the above interpretation is at least
reasonable in theory.

In practice, however, we can not always control the predictor variables,
and it might be impossible to �hold all other predictors �xed.� When the
predictors are correlated, there are potential variance in�ation issues
for the estimated regression coe�cients, and the interpretation is risky,
since when -9 changes, so do the other predictors.23 More importantly,23: If . represents the total monetary

value in a piggy bank, -1 the number
of coins, and -2 the number of pennies,
what is likely to be the sign of �2 in the
model . = �0 ‚ �1-1 ‚ �2-2 ‚ �? Are
-1 and -2 correlated? What would the
interpretation look like, in this case?

the interpretation can also be read as a claim of causality, which should
be avoidedwhen dealing with observational data.

�The only way to �nd out what will happen when a complex
system is disturbed is to disturb the system, not merely to
observe it passively.� (paraphrased from [2])

In the Gapminder example, the correlation between -1 and -2 is:

cor(infant_mortality,life_expectancy)

[1] -0.8714863

The predictors are thus strongly correlated, and the standard interpreta-
tion is not available to us.

20.2 Regression Modeling 1221

Hypothesis Testing We can also determine if a speci�c predictor -9 is
useful in predicting the response ., by testing for

�0 : � 9 = 0 against �1 : � 9 < 0�

Under the null hypothesis �0, the test statistic

C� =
 � 9

se„ � 9”
�)#�2 �

where se„ � 9” =
q
 �2„X>X”�1

9‚1� 9‚1, and �
2 = SSE

#�? , and)=�2 is the Student
) distribution with # � 2 degrees of freedom.

At a signi�cance level
, if jC� j � jC=�2;
�2 j (the 1 �
�2 quantile of the
) distribution with # � 2 degrees of freedom), then we reject the null
hypothesis in favour of the alternative.

In the Gapminder model, we have: # = 166, ? = 2, and �1 = �0�276 so
that

(sigma.hat.2=SSE/(nrow(as.matrix(resp.Y))
-nrow(X.t.X)))

[1] 17.51661

(se.beta.hat.1=sqrt(sigma.hat.2*inv(X.t.X)[2,2]))

[1] 0.02488045

Thus

(t.star=(inv(X.t.X) %*% X.t.Y)[2]/se.beta.hat.1)

[1] -11.08275

At a signi�cance level
 = 0�05, the critical value of the)164 distribu-
tion is:

qt(0.025,nrow(as.matrix(resp.Y))-2)

[1] -1.974535

Since jC� j � jC164;0�025 j, �1 < 0 with probability 95% (in the frequentist
interpretation).

1222 20 Regression and Value Estimation

Con�dence Intervals The standard error of � 9 re�ects how the estimate
would vary under various Tr; it can be used to compute a „1 �
”%
con�dence interval for the true � 9 :

CI„� 9 ; 1 �
” � � 9 � I
�2 � se„ � 9”;

at
 = 0�05, I
�2 = 1�96 � 2, so that

CI„� 9 ; 0�95” � � 9 � 2se„ � 9”�

In the Gapminder example, we have

coe�. est. s.e. t� 95% CI

�0 79�677 0�7985 99�786 »78�1� 81�3� …
�1 �0�276 0�0248 �11�138 »�0�33��0�23…
�2 0�443 0�4131 �1�075 »�1�27� 0�38…

In frequentist statistics, the con�dence interval has a particular inter-
pretation � it does not mean, as one might wish, that there is a 95%
chance, say, that the true � 9 is found in the CI; rather, it suggests that the
approach used to build the 95% CI will yield an interval in which the
true � 9 will reside approximately 95% of the time.2424: Compare with the Bayesian notion of

a credible interval (see Chapter 25).
The resulting con�dence intervals also depend on the underlying model.
For instance, the 95% CI for �1 in the full model is »�0�33��0�23… (see
above), whereas the corresponding CI in the reduced model

 . = �0 ‚ �1-1

is »�0�33��0�27….

The estimates are necessarily distinct as well:

reduced.model = lm(life_expectancy ~ infant_mortality)
summary(reduced.model)

Residuals:
Min 1Q Median 3Q Max

-14.9729 -1.9716 0.1726 2.9727 11.0275

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.99279 0.48357 163.35 <2e-16 ***
infant_mortality -0.29888 0.01313 -22.76 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.174 on 164 degrees of freedom
Multiple R-squared: 0.7595, Adjusted R-squared: 0.758
F-statistic: 517.9 on 1 and 164 DF, p-value: < 2.2e-16

Note that �1 = �0�2763 < �0�2989 = �1.

20.2 Regression Modeling 1223

Feature Selection How would we determine if all the predictors help
explain the response ., or if only a (proper) subset of the predictors is
needed? The most direct approach to solve this problem (in the linear
regression context) is to run best subsets regression.

The procedure is as follows: �t an OLS model for all possible subsets
of predictors and select the optimal model based on a criterion that
balances training errorwithmodel size.

There are 2?‚1 such models (a quantity that quickly becomes unmanage-
able). In practice, we need to automate and speed-up the search through
a collection of predictor subsets. OLS approaches include forward selec-
tion and backward selection (we discuss these in detail in Chapter 23,
Feature Selection and Dimension Reduction).

Forward selection is a bottom-up approach:

1. start with the null model M 0 : . = �0 ‚ �;
2. �t ? simple linear regressions . = �0 ‚ � 9-9 ‚ � and add to the

null model the predictor -91 resulting in the lowest SSE:

M 1 : . = �0 ‚ � 91-91 ‚ �;

3. add to that model the predictor -92 that results in the lowest SSE
among all the two-variable models:

M 2 : . = �0 ‚ � 91-91 ‚ � 92-92 ‚ �;

4. the process continues until a stopping criterion is met.

Backward selection is a top-down approach, and it works in reverse,
removing predictors from the full model.

In both approaches, there are at most

? ‚ „? � 1” ‚ � � � ‚ 2 ‚ 1 =
?„? ‚ 1”

2
� 2?‚1 (when ? is large)

regressions to run. These methods are, frankly, not ideal in the machine
learning framework (we will shortly see alternatives).

Other Questions

Howdowe handle qualitative variables? (dummybinary variables);
How do we handle interaction terms? (add features);
How do we handle outliers? (median regression, Theil-Sen esti-
mate);
How do we handle non-constant variance of error terms? (data
transformations, weighted least square regression, Bayesian regres-
sion);
How dowe handle high-leverage observations? (robust regression);
How do we handle collinearity? (principal component analysis,
generalized linear models, partial least square regression);
How do we handle multiple tests? (Bonferroni correction: for @
independent tests with the same data, set signi�cance level to
�@
to get joint signi�cance equivalent to
 for a single test).

1224 20 Regression and Value Estimation

20.2.3 Generalizations of OLS

The OLS assumptions are convenient from a mathematical perspective,
but they are not always met in practice.

One way out of this problem is to use remedial measures to transform
the data into a compliant set; another one is to extend the assumptions
and to work out the corresponding mathematical formalism:

generalized linear models (GLM) implement responses with non-
normal conditional distributions;
classi�ers (logistic regression, decision trees, support vector ma-
chines, naïve Bayes, neural networks) extend regression to categor-
ical responses (see Chapter 21);
non-linear methods such as splines, generalized additive models
(GAM), nearest neighbour methods, kernel smoothing methods
are used for responses that are not linear combinations of the
predictors (see Section 20.5);
tree-based methods and ensemble learning methods (bagging,
random forests, boosting) are used for predictor interactions (see
Chapter 21);
regularization methods (ridge regression, LASSO, elastic net)
facilitate the process of model selection and feature selection (see
the subsection on Shrinkage Methods).

Generalized Linear Models GLM extend the OLS paradigm25 by accom-25: Ordinary least squares.

modating response variables with non-normal conditional distributions.
Apart from the error structure, a GLM is essentially a linear model:

.8 � D„�8”� where 6„�8” = x>8 #�

A GLM consists of:

a systematic component x>8 #;
a random component speci�ed by the distribution D for .8 , and
a link function 6.

The systematic component is speci�ed in terms of the linear predictor
for the 8th observation �8 = x>8 #; the general ideas and concepts of OLS
carry over to GLM, with the added presence of the link function and the
distribution of the response H8 .

In principle, the link function 6 could be any function linking the linear
predictor �8 to the distribution of the response .8 ; in practice, however, 6
should be smooth and monotonic.2626: Or at least di�erentiable and invert-

ible.
We could specify any distribution D for the response .8 , but they are
usually selected from the exponential family of distributions.27 OLS is27: These are distributions have probabil-

ity density functions that satisfy

5 „x j fi�” = �„x”6„ fi�” exp„ fi)„ fi�” � fi)„x””�

This includes the normal, binomial, Pois-
son, Gamma distributions, etc. These are
all distributionswith conjugatepriors (see
Chapter 25).

an example of GLM, with:

systematic component �8 = x>8 #;
random component .8 � N „�8 � �2”;
link function 6„�” = �.

20.2 Regression Modeling 1225

For a more substantial example, consider the following situation. In the
early stages of a rumour spreading, the rate at which new individual learn
the information increases exponentially over time. If �8 is the expected
number of people who have heard the rumour on day C8 , a model of the
form �8 = � exp„�C8”might be appropriate:

ln„�8”
|{z}
link

= ln � ‚ �C8 = �0 ‚ �1C8 = „1� C8”>„�0 � �1”
| {z }

systematic component

�

Furthermore, since we measure a count of individuals, the Poisson
distribution could be a reasonable choice:

.8 � Poisson„�8”�
| {z }

random component

ln„�8” = „1� C8”>„�0 � �1”�

The main advantages of GLM are that:

there is no need to transform the response . if it does not follow a
normal distribution;
if the link produces additive e�ects, the assumption of homoscedas-
ticity does not need to be met;
the choice of the link is separate from the choice of random compo-
nent, providing modeling �exibility;
models are still �tted via a maximum likelihood procedure;
inference tools and model checks (Wald ratio test, likelihood ratio
test, deviance, residuals, CI, etc.) still apply;
they are easily implemented (proc genmod, glm(), etc.), and
the framework unites various regression modeling approaches
(OLS, logistic, Poisson, etc.) under a single umbrella.

20.2.4 Shrinkage Methods

We will discuss the curse of dimensionality (CoD), subset selection, and
dimension reduction in Chapter 23. Another approach to dealing with
high-dimensionality is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants.

In what follows, assume that the training set consists of # centered and
scaled observations x8 = „G8 �1 � � � � � G8 �?�1”, with responses H8 .

Let �OLS� 9 be the 9th OLS coe�cient, and set a threshold � 7 0, whose
value depends on the training dataset Tr. Recall that #OLS is the exact
solution to the OLS problem

 #OLS = arg min
#
fkY � X#k22g = arg min

#
fSSEg�

In general, no restrictions are assumed on the values of the coe�cients
 �OLS� 9 � large magnitudes imply that corresponding features play an
important role in predicting the target. This observation forms the basis
of a series of useful OLS variants.

1226 20 Regression and Value Estimation

Figure 20.8: Ridge regression coe�cients in a generic problem; note how the coe�cients converge to 0 when the threshold lambda increases
(left); the ratio between the magnitude of the ridge regression parameter and the corresponding OLS parameter is shown on the right [5].

Ridge Regression RR is amethod to regularize the OLS regression coef-
�cients. E�ectively, it shrinks the OLS coe�cients by penalizing solutions
with large magnitudes � if the magnitude of a speci�c coe�cient is large,
then it must have great relevance in predicting the target variable.

This leads to a modi�ed OLS problem:

 #RR = arg min
#
f kY � X#k22| {z }

SSE

‚ #�k#k22| {z }
shrinkage penalty

g�

This quantity is small when SSE is small (i.e., the model is a good �t to
the data) and when the shrinkage penalty is small (i.e., when each � 9 is
small). RR solutions are typically obtained via numerical methods.2828: For orthonormal covariates (which is

to say, X>X = �?), we have, in fact:

 �RR� 9 =
 �OLS� 9

1 ‚ #�
�

The hyperparameter � controls the relative impact of both components.
If � is small, then the shrinkage penalty is small even if the individual
coe�cients � 9 are large; if � is large, then the shrinkage penalty is only
small when all coe�cients � 9 are small (see Figure 20.8).

Setting the �right� value for� is crucial; it can be done via cross-validation
(see [5, pp.227-228] and Section 20.3 (Cross-Validation) for details). The
OLS estimates are equivariant: if � 9 is the estimate for the coe�cient � 9
of -9 , then � 9�2 is the estimate for the coe�cient of the scaled variable
2-9 . RR coe�cients do not have this property, however, which is why
the dataset must be centered and scaled to start with.

Finally, note that RR estimates help to mitigate the bias-variance trade-o�
and reduce issues related to over�tting.2929: Even if they do not reduce the dimen-

sions of the dataset.

Regression With Best Subset Selection BS runs on the same principle
but uses a di�erent penalty term, which e�ectively sets some of the
coe�cients to 0 (this could be used to select the features with non-zero
coe�cients, potentially).

20.2 Regression Modeling 1227

Figure 20.9: LASSO coe�cients in a generic problem; note how the coe�cients goes directly to 0 after a certain threshold lambda (left); the
ratio between the magnitude of the LASSO parameter and the corresponding OLS parameter is shown on the right [5].

The problem consists in solving another modi�ed version of the OLS
scenario, namely

 #BS = arg min
#
fkY � X#k22| {z }

SSE

‚#�k#k0
| {z }
shrinkage

g� k#k0 =
X

9
sgn„j� 9 j”�

Solving the BS problem typically (also) requires numerical methods and
cross-validation.30 A slight modi�cation to the RR shrinkage penalty 30: For orthonormal covariates, we have

 �BS� 9 =

(
0 if j �LS,j j 5

p
#�

 �LS,j if j �LS,j j �
p
#�

can overcome the lack of equivariance.

LASSO This approach is an alternative to RR obtained by solving

 #L = arg min
#
fkY � X#k22| {z }

SSE

‚#�k#k1
| {z }
shrinkage

g;

the penalty e�ectively forces coe�cients which combine the propertiesof
RR and BS, selecting at most maxf?� #g features, and usually no more
than one per group of highly correlated variables (the other coe�cients
are forced down to 0 when � is large enough, see Figure 20.9).31 31: For orthonormal covariates, we have

 �L� 9 = �OLS� 9 �max

0� 1 �
#�
j �OLS� 9 j

!

�Why do we get �L� 9 = 0 for some 9, but not for the RR coe�cients? The
RR and LASSO formulations are equivalent to

 #RR = arg min
#
fSSE j k#k22 � Bg� for some B;

 #L = arg min
#
fSSE j k#k1 � Bg� for some B�

Graphically, this looks like the images shown in Figure 20.10.

The RR coe�cients #RR are found at the �rst intersection of the ellipses of
constant SSE around the OLS coe�cient # with the 2�sphere k#k22 � B;
that intersection is usually away from the axes;32 this is not usually the 32: Due to the lack of �sharp� points.

case for the intersection of the 1�sphere k#k1 � B.

1228 20 Regression and Value Estimation

Figure 20.10: Level curves and neighbourhoods for LASSO (left) and ridge regression (right) [5].

The LASSO thus typically produces simpler models, but predictive
accuracy matters too (in the form of MSETe, say).3333: Depending on the data, either of the

two approaches can be optimal, thanks to
the No Free Lunch Theorem.

Generalizations If the response is related to a relatively small number
of predictors (whether this is the case or not is not something we usually
know a priori), LASSO is recommended. Theuse of other penalty functions
(or combinations thereof) provides various extensions, such as: elastic
nets; group, fused and adaptive lassos; bridge regression, etc.

The modi�cations described above were de�ned assuming an underlying
linear regression model, but they generalize to arbitrary regression/clas-
si�cation models as well. For a loss (cost) function L „Y� y„W”” between
the actual target and the values predicted by the model parameterized by
W, and a penalty vector R„W” = „’1„W”� � � � � ’:„W””>, the regularized
parametrization W� solves the general regularization problem

W� = argmin
W
fL „Y� y„W”” ‚ #, >R„W”g�

which can be solved numerically, assuming some nice properties on
L and R [4]; as before, cross-validation can be used to determine the
optimal vector , [3].

Gapminder Example In R, regularization is implemented in the package
glmnet (among others). In glmnet() the parameter alpha controls the
elastic net mixture: LASSO (alpha = 1), RR (alpha = 0).

Saywe are interested inmodeling life expectancy. in the 2011Gapminder
dataset as a function of population, infant mortality, fertility, gdp, and
continental membership (we use the entire set as a training set Tr).

20.2 Regression Modeling 1229

A priori, an OLS model on this data would take the form

. =
0 ‚
1population ‚
2infant mortality ‚
3fertility ‚
4gpd

‚
5Africa ‚
6Americas ‚
7Asia ‚
8Europe ‚
9Oceania�

We start by creating dummy variables for the continents:

gapminder.2011.f <- fastDummies::dummy_cols(gapminder.2011,
select_columns = ’continent’)

Next, we select the appropriate variables for the response and the training
set, and scale and center the data (it must be in a matrix format to be
compatible with glmnet():

Setting up the Gapminder dataset

library(dplyr)
y <- gapminder.2011.f |> select(life_expectancy) |>

as.matrix()
x <- gapminder.2011.f |> select(c("population",

"infant_mortality","fertility","gdp",
"continent_Africa","continent_Americas",
"continent_Asia","continent_Europe",
"continent_Oceania")) |>
scale(center = TRUE, scale = TRUE) |>
as.matrix()

Finally, we run the regression and extract the LASSO coe�cients for
hyperparameter � = 1:

LASSO coe�cients

glmnet1 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=1)
(c1 <- coef(glmnet1, x=xx, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) 70.82349398
population .
infant_mortality -5.57897055
fertility .
gdp .
continent_Africa -1.13074639
continent_Americas .
continent_Asia .
continent_Europe .
continent_Oceania -0.03096299

Thus

. = 70�82 � 5�58„infant mortality” � 1�13„Africa” � 0�03„Oceania”�

1230 20 Regression and Value Estimation

For RR (
 = 0), we obtain, with the same hyperparameter � = 1:

Ridge regression

glmnet0 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=0)
(c0 <- coef(glmnet0, x=xx, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) 70.8234940
population -0.3471671
infant_mortality -4.4002779
fertility -0.6348077
gdp 0.5803223
continent_Africa -1.6275714
continent_Americas 0.5475769
continent_Asia 0.6117358
continent_Europe 1.0141934
continent_Oceania -0.6855980

which is to say:

. = 70�82 � 0�34„population” � 4�4„infant mortality” � 0�63„fertility” ‚ 0�58„gdp)
� 1�62„Africa” ‚ 0�55„Americas” ‚ 0�61„Asia” ‚ 1�01„Europe” � 0�68„Oceania”�

which is compatible with the above discussion.

The coe�cient values themselves are not as important as their signs and
the fact that they are roughly similar in both models.

It is important to note, however, that the choice of � = 1 was arbitrary,
and that we have not been evaluating the result on test data Te. We will
revisit these issues in Section 20.3 (Cross-Validation).

20.3 Resampling Methods

How do we determine the variability of a regression �t? It can be done
by drawing di�erent samples from the available data, �tting a regression
model to each sample, and then examining the extent to which the
various �ts di�er from one another.

Resampling methods provide additional information about a �tted
model, by applying the same �tting approach to various sub-samples of
the training set Tr. We will consider three such methods:

cross-validation, which estimates the test error associated with a
modeling approach in order to evaluate model performance;
the bootstrap, which provides a measure of accuracy, standard
deviation, bias, etc. of various model parameter estimates, and
the jackknife, which is a simpler approach with the same aims as
the bootstrap.

20.3 Resampling Methods 1231

The test error associated with a statistical learning model is the average
error arising when predicting the response for observations that were
not used to train the model.

The training error, on the other hand, is computed directly by comparing
the model’s predictions to the actual responses in Tr. In general, the
training error underestimates the test error, dramatically so when the
model complexity increases (see variance-bias trade-o�, Figure 20.5).

A possible way out of this conundrum is to set aside a large-enough
testing set Te, but that’s not always possible if the original dataset is not
that large in the �rst place.34 34: Some methods make direct adjust-

ments to the training error rate in order to
estimate the test error (e.g., Mallow’s �?
statistic, ’2

0 , AIC, BIC, etc.)
In the statistical learning framework, we estimate the test error by holding
a subsetVa � Tr out from the �tting process (which takes place on TrnVa).
The validation approach is a simple strategy that is used to estimate
the test error associated with a particular statistical model on a set of
observations.

Formally, the latter is split into a training set Tr and a validation set Va
(the hold-out set). The model is �t on the training set; the �tted model is
used to make predictions on the validation set. The resulting validation
set error provides an estimate for the test error.

This approach is easy to implement and interpret, but it has a number of
drawbacks, most importantly:

the validation error is highly dependent on the choice of the
validation set, and is thus quite volatile;
the model is �tted on a proper subset of the available observations,
and we might expect that this would lead to the validation error
being larger than the test error in general, and
a number of classical statistical models can provide test error
estimates without having to resort to the validation set approach.

20.3.1 Cross-Validation

 -fold cross-validation is a widely-used approach to estimate the test
error without losing some observations to a hold-out set.35 35: It can also provide a basis for model

selection.
The procedure is simple:

1. Divide the dataset randomly into (roughly) equal-sized folds
(typically, = 4� 5� 10).

2. Each fold plays, in succession, the role of the validation set. If there
are # observations in the dataset, partition

f1� � � � � #g = C1|{z}
fold 1

t � � � t C |{z}
fold

�

If jC: j = =: , we expect =: � #
 for all : = 1� � � � � .

3. For all : = 1� � � � � , �t a model on observations f1� � � � � #g n C:
and denote the error on C: by �: .36 36: For a regressionmodel, there aremany

options but we typically use

�: =
X

82C:

„H8 � H8”2

=:
�

4. Write � for the average of the �: .

1232 20 Regression and Value Estimation

5. The cross-validation estimate of the test error is

CV„ ” =
 X

:=1

=:
#
�: �

with standard error

bse
�
CV„ ”

�
=

s
1

 � 1

 X

:=1
„�: � �”2�

These steps could also be replicated = times to generate a distribution of
an evaluation metric, such as the standard error.3737: See Figure 19.33 for an illustration.

The resulting mean can prove useful in order to determine how well a
statistical learning procedure will perform on unseen data. If, however,
we are interested in selecting a method from a list of methods, or a
�exibility level among a family of approaches, we do not care about the
speci�c value of CV„ ” so much as where it is minimized.3838: The estimate is usually biased, any-

way.
From the perspective of bias reduction (in the estimate for the test error),
the best choice is = # , but this is mitigated by the variance-bias
trade-o�. With = # , we have # models and # estimates for the test
error, but these estimates are highly correlated and the mean of highly
correlated estimates has high variance.3939: See Section 20.3, Jackknife, for details.

Gapminder Example We use cross-validation in the Gapminder dataset
to estimate the test error MSETe when predicting life expectancy as a
regression against the logarithm of the GDP per capita for the 2011 data.

Gapminder subset

gapminder.2011.cv <- gapminder.2011 |>
dplyr::mutate(lgdppc = log(gdp/population)) |>
select(life_expectancy,lgdppc)

ggpubr::ggscatter(gapminder.2011.cv, x="lgdppc",
y="life_expectancy", palette="jco", size = 2,
xlab="GDP per capita (log-scale)", xlim=c(0,12),
ylab = "Life Expectancy", ylim=c(0,85),
title = "Gapminder 2011 Data")

20.3 Resampling Methods 1233

We split the dataset into = 10 random folds, each containing 16 or 17
observations, and �t 10 linear regression models using the 149 or 150
remaining observations.40 40: Note that the estimates for �0, �1, and

MSETe are likely to be correlated from
one fold to the next, since the respective
training sets share a fair number of obser-
vations.

The indices for each of the folds are computed below:

Setting-up the folds

set.seed(0) # for replicability
true.order = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=FALSE)

index=list()
for(k in 1:6){

index[[k]] = true.order[((k-1)*17+1):(k*17)]
}
for(k in 7:10){

index[[k]] = true.order[(102+(k-6-1)*16+1):(k*16+6)]
}

Each fold is used, in turn, as a testing set while the remaining folds form
the training set. We �t an OLS model on each training set, and evaluate
the MSE performance of the model on the appropriate fold testing set.

Compute the test MSE for each fold

training.gap = list()
testing.gap = list()
model.lm.gap = list()
pred.lm.gap = list()
beta.0 = c()
beta.1 = c()
MSE.cv = c()
n.row = c()

for(k in 1:10){
n.row[k]=length(index[[k]])
training.gap[[k]] = gapminder.2011.cv[-index[[k]],]
testing.gap[[k]] = gapminder.2011.cv[index[[k]],]
model.lm.gap[[k]] = lm(life_expectancy~lgdppc,

data=training.gap[[k]])
beta.0[k] = model.lm.gap[[k]][[1]][1]
beta.1[k] = model.lm.gap[[k]][[1]][2]
pred.lm.gap[[k]] = predict(model.lm.gap[[k]],

newdata=testing.gap[[k]])
tmp = data.frame(pred.lm.gap[[k]],testing.gap[[k]][1])
MSE.cv[k] = 1/nrow(tmp)*sum((tmp[,1]-tmp[,2])^2)

}

The number of observations in each fold, as well as the regression
parameters and the MSE on each fold testing set are shown below:

1234 20 Regression and Value Estimation

(results = data.frame(n.row,beta.0,beta.1,MSE.cv))

n.row beta.0 beta.1 MSE.cv

17 37.69812 4.254105 33.859051
17 36.22257 4.442061 21.415376
17 37.59386 4.247255 45.620933
17 36.66761 4.345484 29.584469
17 37.49685 4.268917 24.127300
17 36.49849 4.386124 19.398769
16 36.78991 4.380887 48.157391
16 36.91113 4.331365 23.142625
16 37.41767 4.274771 7.837172
16 37.68955 4.254600 19.743046

The 10�fold cross-validation estimate of MSETe is thus

MSETe =
1
10

10X

:=1
MSETe: = 27�29;

CV„ ” =
10X

:=1

=:
166

MSETe: = 27�35;

bse
�
CV„ ”

�
=

s
1

10 � 1

10X

:=1
„MSETe: �MSETe”2 = 12�38;

these can be computed as below.

CV results

mean.MSE = mean(results$MSE.cv)
cv.k = sum(results$n.row*results$MSE.cv/sum(results$n.row))
se.cv.k = sqrt(1/(nrow(results)-1)*sum((results$MSE.cv-

mean.MSE)^2))

Thus, 27�35 � 2„12�38” � „2�59� 52�11” is a 95% CI for the MSETe.

We can also get 10�fold cross-validation estimates of �0 � �1: we have

�0„ ” =
10X

:=1

=:
166

�0;: = 37�10

bse
�
�0„ ”

�
=

s
1

10 � 1

10X

:=1
„�0;: � �0”2 = 0�54�

�

so CI„�0; 0�95” � 37�10 � 2„0�54” � „36�00� 38�18” and

�1„ ” =
10X

:=1

=:
166

�1;: = 4�32

bse
�
�1„ ”

�
=

s
1

10 � 1

10X

:=1
„�1;: � �1”2 = 0�07�

so CI„�1; 0�95” � 4�32 � 2„0�07” � „4�18� 4�56”, as computed below.

20.3 Resampling Methods 1235

CV estimates for the regression coe�cients

mean.beta_0 = mean(results$beta_0)
cv.beta_0.k = sum(results$n.row*results$beta_0/

sum(results$n.row))
se.cv.beta_0.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta_0-mean.beta_0)^2))

mean.beta_1 = mean(results$beta_1)
cv.beta_1.k = sum(results$n.row*results$beta_1/

sum(results$n.row))
se.cv.beta_1.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta_1-mean.beta_1)^2))

LASSO and Regression Ridge Revisited How would we pick the op-
timal hyperparameter � in shrinkage regressions? Let us revisit the
example from Section 20.2 (Shrinkage Methods).

As before, we are interested in modeling life expectancy . in the 2011
Gapminder dataset as a function of population, infant mortality, fertility,
gdp, and continental membership.41 We run a 5-fold cross-validation 41: We use gapminder.2011.f, x, and y

as in that section.LASSO regression for a variety of hyperparameter values �, and evaluate
the CV test error for each � using MSE. The optimal � is the one that
minimizes the CV test error.

Let us start with the LASSO (alpha=1):

glmnet1 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,
nfolds=5, alpha=1)

(c1 <- coef(glmnet1, s=’lambda.min’, exact=TRUE))

s1
(Intercept) 70.8234940
population .
infant_mortality -5.7375945
fertility .
gdp 0.1616446
continent_Africa -1.7592037
continent_Americas .
continent_Asia .
continent_Europe 0.1219114
continent_Oceania -0.7977736

The optimal � in this case is:

(lambda1 = glmnet1$lambda.min)

[1] 0.3118295

We repeat the process for RR (alpha = 0):

1236 20 Regression and Value Estimation

glmnet0 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,
nfolds=5, alpha=0)

(c0 <- coef(glmnet0, s=’lambda.min’, exact=TRUE))

s1
(Intercept) 70.8234940
population -0.3466483
infant_mortality -4.6968992
fertility -0.4240814
gdp 0.5813385
continent_Africa -1.6192452
continent_Americas 0.5467797
continent_Asia 0.6295896
continent_Europe 1.0091460
continent_Oceania -0.7207190

The optimal � in this case is:

(lambda0 = glmnet0$lambda.min)

[1] 0.7373175

Cross-Validation with Python Let us take a look at how we could esti-
mate the test error via cross-validationmanually in Python. The following
modules will be necessary: statsmodels to run linear models (in par-
ticular to de�ne formulas for linear regression), numpy for numerical
operations, and pandas for data frame manipulations.

Python modules for CV

import statsmodels.formula.api as smf
import numpy as np
import pandas as pd
import random
random.seed(0) # for replicability

We use the calculus.csv dataset from Section 1.6, whose structure is
as shown below. We will try to predict students’ grades in terms of the
other predictors, using linear regression. In particular, we are interested
in which model does a better job of predicting the grades.

df = pd.read_csv(’calculus.csv’)
df.head()

ID Sex Grade GPA Year
0 10001 F 47 5.02 2
1 10002 M 57 3.82 1
2 10003 M 91 7.70 1
3 10004 M 71 4.82 1
4 10005 F 83 7.91 1

20.3 Resampling Methods 1237

We start by obtaining a random permutation of the observations (the
pandas method iloc() selects values for speci�ed indices).

nrows = len(df)
permuted = df.iloc[np.random.permutation(nrows)]
permuted.head()

ID Sex Grade GPA Year
60 10061 F 97 11.45 2
61 10062 M 70 3.65 1
28 10029 M 98 11.90 1
49 10050 F 92 11.05 1
50 10051 M 79 6.87 2

In this example, we separate the sample indices into : = 5 folds for
cross-validation using the numpy function array_split().

k = 5
chunks = np.array_split(range(nrows), k)

We iterate over each fold as a test set while using the remaining folds as
a training set.

Say chunk[i] is the current test set; we can obtain the corresponding
training set as follows:

training = permuted.iloc[np.concatenate([chunks[j]
for j in range(k) if j != i])]

We then perform a linear regression over this training set (with the
statsmodels methods ols() and fit()) and compute the MSE over the
test set using the predicted values. Remember, this is for a single fold:

fit = smf.ols(formula=m, data = training).fit()
test = permuted.iloc[chunks[i]]
pred = fit.predict(test)
testerror = ((pred - test[’Grade’])**2).mean()

In the chunk of code above, formula=m is an R-style formula. In the
following, we go through a number of possible formulas, for all folds.

f = [’Grade ~ GPA + C(Year) + C(Sex)’,
’Grade ~ GPA + C(Year)’,
’Grade ~ GPA + C(Sex)’, ’Grade ~ GPA’]

for m in f:
testerror = 0.0
for i in range(k):

training = permuted.iloc[np.concatenate(
[chunks[j] for j in range(k) if j != i])]

1238 20 Regression and Value Estimation

fit = smf.ols(formula=m, data = training).fit()
test = permuted.iloc[chunks[i]]
pred = fit.predict(test)
testerror += ((pred - test[’Grade’])**2).mean()

testerror /= k
print(testerror, m)

118.2165188650409 Grade ~ GPA + C(Year) + C(Sex)
117.4815061224269 Grade ~ GPA + C(Year)
115.77980266850878 Grade ~ GPA + C(Sex)
114.87270405373037 Grade ~ GPA

The best model is given by the formula Grade ~ GPA.

20.3.2 Bootstrap

The bootstrap procedure uses re-sampling of the available data tomimic
the process of obtaining new replicates, which allows us to estimate the
variability of a statistical model parameter of interestwithout the need
to generate new observations.

Replicates are obtained by repeatedly sampling observations from the
original datasetwith replacement. A bootstrap dataset Tr� for a training
set Tr with # observations is a sample of # such observations, drawn
with replacement.

The process is repeated " times to obtain bootstrap samples Tr�8 and
parameter estimates
�8 , for 8 = 1� � � � � ", from which we derive a
bootstrap estimate

� =
1
"

"X

8=1

�8 �

with standard error

bse „
�” =

s
1

" � 1

"X

8=1
„
�8 �

�”2�

The bootstrap can also be used to build approximate frequentist con�-
dence intervals for the parameter
.42 Wecan even construct a covariance42: Note that this is not as straightforward

as one might think, so caution is advised. structure for the parameters, given enough replicates.

Finally, it should be noted that inmore complex scenarios, the appropriate
bootstrap procedure might be more sophisticated than what has been
described here.4343: For instance, sampling with replace-

ment at the observation level would not
preserve the covariance structure of time
series data. Gapminder Example We use the bootstrap procedure for the regression

problem with life expectancy and the log of the GDP per capita in the
2011 Gapminder data.

We draw, with replacement," = 200 bootstrap samples of size # = 166
from the original dataset. For each sample 1 � 8 � ", we �nd the OLS
�t and retain the intercept �0�8 and slope �1�8 .

20.3 Resampling Methods 1239

beta_0 = c()
beta_1 = c()

set.seed(0) # for replicability
for(k in 1:200){

index = sample.int(nrow(gapminder.2011.cv),
nrow(gapminder.2011.cv),replace=TRUE)

training.gap = gapminder.2011.cv[-index,]
model.lm.gap = lm(life_expectancy~lgdppc,

data=training.gap)
beta_0[k] = model.lm.gap[[1]][1]
beta_1[k] = model.lm.gap[[1]][2]

}

results.boot = data.frame(beta_0,beta_1)

We display the joint distribution of # = „�0 � �1”>, together with the
marginal distributions for each parameter.

library(ggplot2)
p <- ggplot(results.boot, aes(x=beta_0, y=beta_1)) +

geom_point() +
theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")

We see that # roughly follows a multivariate normal N „- � � ”, with

- � - � =
�
37�22
4�31

�
� � � �

�
=

�
6�32 �0�72
�0�72 0�08

�
�

as computed below:

1240 20 Regression and Value Estimation

boot.beta_0 = mean(results.boot$beta_0)
boot.beta_1 = mean(results.boot$beta_1)
cov(results.boot)

The vector - � provides the bootstrap estimates; the corresponding esti-
mates for the standard errors are bse„ - �” = „2�51� 0�29”>, and

CI„�0; 0�95” = 37�22 � 2„2�51” � „32�19� 42�25”�
CI„�1; 0�95” = 4�31 � 2„0�29” � „3�73� 4�89”;

the standard errors are computed as below:4444: Note that the bootstrap CI are wider
than the corresponding cross-validation
CI.

se.boot.beta_0 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_0-mean(results.boot$beta_0))^2))

se.boot.beta_1 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_1-mean(results.boot$beta_1))^2))

20.3.3 Jackknife

The jackknife estimator arises from cross-validation when = # ;45 the45: The jackknife procedure is also known
as leave one out validation. sole di�erence being in the standard error estimate

bse„
�” =

s
� 1
#

#X

8=1
„
�8 �

�”2�

Gapminder Example We use the jackknife procedure on the same task
as in the previous section.

For each fold 1 � : � # , we �nd the OLS �t on TR: and retain the
intercept �0�: and slope �1�: . The code is exactly as in the bootstrap case,
with one exception: we replace the line

index = sample.int(nrow(gapminder.2011.cv),
nrow(gapminder.2011.cv),replace=TRUE)

by

index = k

We display the joint distribution of # = „�0 � �1”>, together with the
marginal distributions for each parameter.

library(ggplot2)
p <- ggplot(results.jack, aes(x=beta_0, y=beta_1)) +

geom_point() +
theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")

20.3 Resampling Methods 1241

We see that # roughly a multivariate normal N „- � � ”, with

- � - � =
�
37�11
4�32

�
� � � �

�
=

�
0�021 �0�002
�0�002 0�0003

�
�

as can be computed below:

jack.beta_0 = mean(results.jack$beta_0)
jack.beta_1 = mean(results.jack$beta_1)
cov(results.jack)

The vector - � provides the jackknife estimates; the corresponding esti-
mates for the standard errors are bse„ - �” = „1�86� 0�21”>, and

CI„�0; 0�95” = 37�11 � 2„1�86” � „33�38� 40�83”;
CI„�1; 0�95” = 4�32 � 2„0�21” � „3�890� 4�744”�

The standard errors are computed as below:

se.jack.beta_0 = sqrt(1/nrow(results.jack)*
(nrow(results.jack)-1)*sum((results.jack$beta_0-

mean(results.jack$beta_0))^2))
se.jack.beta_1 = sqrt(1/nrow(results.jack)*

(nrow(results.jack)-1)*sum((results.jack$beta_1-
mean(results.jack$beta_1))^2))

In this case, the jackknife estimates are tighter than the corresponding
bootstrap estimates, but looser than the cross-validation estimates. Will
this always be the case?

1242 20 Regression and Value Estimation

20.4 Model Selection

A linear model
. = fi-># ‚ �

should be seen as an attempt to approximate the regression function

H = 5 „x” = E». j fi- = x…�

But what we gain in convenience of �t (and structure) by using a linear
model, we may lose in modeling accuracy.

In this context, we assume a linear relationship between the response
. and the predictors -1 � � � � � -? , which we (typically) �t using the
(ordinary) least squares (OLS) framework, which is to say

 # = arg min
#
fkY � X#k22g�

for the response vector Y and design matrix X provided by a training set
Tr; additional assumptions on the error components 9usually require

9� N „0� �I# ”�

where = represents the number of observations in Tr.

Fundamentally, there are 3 ways in which the OLS framework can be
extended:

1. additive but non-linearmodels (see Section20.5,GeneralizedAdditive
Models);

2. non-linear models (see Section 20.5 and Chapter 21), and
3. replacing LS with alternative �tting procedures (see Section 20.2,

Shrinkage Methods).

The latter approach can produce better accuracy than OLS without
sacri�cing too much in the way of model interpretability.4646: In practice, linear models have dis-

tinct advantages over more sophisticated
models, mainly in the areas of superior
interpretability and (frequently) appropri-
ate predictive performances (especially for
linearly separable data). These �Old Faith-
ful� models will still be there if fancy deep
learning models fail analysts in the future.

But in the OLS framework, prediction accuracy su�ers when ? 7 =, due
to curse of dimensionality (see Section 23.2.2, Curse of Dimensionality);
model interpretability can be improved by removing irrelevant features
or by reducing ?.

The 3 classes of methods to do so are:

shrinkage and regularization methods;
dimension reduction, and
subset selection/feature selection.

For shrinkage/regularization methods, we �t a model involving all ?
predictors, but the estimated coe�cients are shrunk towards 0 relative to
the OLS parameter estimates, which has the e�ect of reducing variance
and simultaneously perform variable selection (see Section 20.2, Shrinkage
Methods).

In dimension reduction, we project the ? predictors onto a manifold H ,
with dim„H ” = < � ?; in numerous circumstances, H is a subspace of
R? and we can �t an OLS model on the projected coordinates (see Section
23.2, Dimension Reduction).

20.4 Model Selection 1243

In subset selection, we identify a subset of the ? predictors for which
there is evidence of a (strong-ish) link with the response, and we �t a
model to this reduced set using the OLS framework. Given ? predictors
(some of which may be interaction terms), there are 2? OLS models that
can be �t on a training set Tr.

Which of those models should be selected as the best model?

20.4.1 Best Subset Selection

In the best subset selection BSS approach, the search for the best model
is usually broken down into 3 stages:

1. let M 0 denote the null model (without predictor) which simply
predicts the sample mean for all observations;

2. for : = 1� � � � � ? (as long as the model can be �t):

a) �t every model that contains exactly : predictors (there are�?
:

�
of them);

b) pick the model with smallest SSE (largest ’2) and denote it
by M : ;

3. select a unique model from fM 0 � � � � �M ?g using CV„ ”, �? (AIC),
BIC, ’2

0 , or any other appropriate metric.47 47: We cannot use SSE or ’2 as metrics
in this last step, as we would always se-
lect M ? since SSE decreasesmonotonically
with : and ’2 increases monotonically
with :. Low SSE/high ’2 are associated
with a low training error, whereas the
other metrics attempt to say something
about the test error, which is what we are
after: after all, a model is good if it makes
good predictions!

BSS is conceptually simple, but with 2? models to try out, it quickly
becomes computationally infeasible for large ? (? 7 40, say). When ? is
large, the chances of �nding a model that performs well according to
step 3 but poorly for new data increase, which can lead to over�tting
and high-variance estimates, which were exactly the problems we were
trying to avoid in the �rst place.48

48: Here, we are assuming that all mod-
els are OLS models, but subset selection
algorithms can be used for other families
of supervised learning methods; all that is
required are appropriate training error es-
timates for step 2b and test error estimates
for step 3.

20.4.2 Stepwise Selection

Stepwise selection (SS) methods attempt to overcome this challenge by
only looking at a restricted set of models. Forward stepwise selection
(FSS) starts with the null model M 0 and adding predictors one-by-one
until it reaches the full model M ? :

1. Let M 0 denote the null model;
2. for : = 0� � � � � ? � 1 (as long as the model can be �t):

a) consider the ? � : models that add a single predictor to M : ;
b) pick the model with smallest SSE (largest ’2) and denote it

by M :‚1;

3. select a unique model from fM 0 � � � � �M ?g using CV„ ”, �? (AIC),
BIC, ’2

0 , or any other appropriate metric.

Backward stepwise selection (also BSS, unfortunately) works the other
way, starting with the full model M ? and removing predictors one-by-one
until it reaches the null model M 0:

1. Let M ? denote the full model;
2. for : = ?� � � � � 1 (as long as the model can be �t):

a) consider the :models that remove a single predictor from M : ;

1244 20 Regression and Value Estimation

b) pick the model with smallest SSE (largest ’2) and denote it
by M :�1;

3. select a unique model from fM 0 � � � � �M ?g using CV„ ”, �? (AIC),
BIC, ’2

0 , or any other appropriate metric.

The computational advantage of SS over B(est)SS is evident: instead of
having to �t 2? models, SS only requires

1 ‚ ? ‚ „? � 1” ‚ � � � ‚ 2 ‚ 1 =
?2 ‚ ? ‚ 2

2

models to be �t to Tr. However, there is no guarantee that the �best�
model (among the 2? BSS models) is found in the reduced set of SS
models.

SS canbeused in settingswhere ? is too large forBSS tobe computationally
feasible. Note that for OLS models, backward stepwise selection only
works if ? � = (otherwise OLS might not have a unique parameter
solution); if ? 7 =, only forward stepwise selection is viable.

Hybrid selection (HS) methods attempt to mimic BSS while keeping
model computation in a manageable range, not unlike in SS. More
information on this topic is available in [5].

20.4.3 Selecting the Optimal Model

The full model always has largest ’2/smallest SSE.49 In order to estimate49: As it is a measure of the training error,
and as such, is subject to the over�tting
property found in the bias-variance trade-
o� diagram of Figure 20.5.

the test error,50 we can either:

50: And thus pick the optimal model in
the list fM 0 � � � � �M ?g.

adjust the training error to account for the bias induced by over�t-
ting, or
directly estimate the test error using a validation set or cross-
validation.

Adjustment Statistics Commonly, we use one of the following adjust-
ment statistics: Mallow’s �? , the Akaike information criterion (AIC),
the Bayesian information criteria (BIC), or the adjusted coe�cient of
determination ’2

0 ; �? , AIC, and BIC must be minimized, while ’2
0 must

bemaximized.

The adjustment statistics require the following quantities:

, the number of observations in Tr;
?, the number of predictors under consideration;
3 = ? ‚ 2,
 �2, the estimate of Var„�” (irreducible error);
SSE and SST, the residual and the total sum of squares.

Mallow’s �? statistic is given by

�? =
1
#
„SSE ‚ 23 �2” = MSETr ‚

23 �2

#|{z}
adjustment

�

20.4 Model Selection 1245

As 3 increases, so does the adjustment term. Note that if �2 is an unbiased
estimate of Var„�”, �? is an unbiased estimate of MSETe.

The Akaike information criterion (AIC) is given by

AIC = �2 ln ! ‚ 23|{z}
adjustment

�

where ! is the maximized value of the likelihood function for the
estimated model. If the errors are normally distributed, this requires
�nding the maximum of

! =
#Y

8=1

1
p

2� �
exp

�
„.8 � X>8 #”

2

2 �2

!

=
1

„2�”#�2 �#
exp

�
1

2 �2

#X

8=1
„.8 � X>8 #”

2

!

�

or, upon taking the logarithm,

ln ! = constant �
1

2 �2 kY � X#k22 �

and so
arg max

#
fln !„#”g = arg min

#
fkY � X#k22g�

However,

AIC = �2 ln ! ‚ 23 = constant ‚
1
 �2 kY � X#k22 ‚ 23

= constant ‚
SSE
 �2 ‚ 23

= constant ‚
#
 �2 �

1
#

�
SSE ‚ 23 �2� = constant ‚

#
 �2�? �

Evidently, when the error structure is normal, minimizing AIC is equiva-
lent to minimizing �? .

The Bayesian information criterion uses a di�erent adjustment term:

BIC =
1
#
„SSE ‚ 3 �2 ln#” = MSETr ‚ 3 �2 ln#

#| {z }
adjustment

�

This adjustment penalizes models with large number of predictors;
minimizing BIC results in selecting models with fewer variables than
those obtained by minimizing �? , in general.

The adjusted coe�cient of determination ’2
0 is the Ur-example of an

adjusted statistic:

’2
0 = 1 �

SSE�„# � ? � 1”
SST�„# � 1”

= 1 � „1 � ’2”
� 1

� ? � 1
�

Maximizing ’2
0 is equivalent to minimizing SSE�„# � ? � 1”; note that

’2
0 penalizes models with unnecessary variables.51 51: Note that in this subsection’s formal-

ism, we have ?‚1 predictors for the linear
model: -1 � � � � � - ‚ ? and a constant term
-0.

1246 20 Regression and Value Estimation

Validation and Cross-Validation (Reprise) As above, we want to select
M :� from a sequence of models fM 1 �M 2 � � � �g. The procedure is simple:
we compute MSEVa on some validation set or CV„ ” for each M : , and
we �nd the :� for which the value is smallest (see Section 20.3, Cross-
Validation).

The main advantages of this approach are that:

there is no need to estimate the irreducible error Var„�” = �2;
the method produces an estimate for MSETe �for free,� and
it can be used when the number of parameters is hard to pinpoint
(in deep learning networks, for instance).

Historically, adjustment approaches have been preferred because cross-
validation was computationally demanding, especially when ?� = were
large, but that is not as much of a problem in modern times.

Consequently, cross-validation is championed as the optimal model
selection approach, using the one standard error rule: calculate the
standard error of [MSETe for each model size, and select the smallest
model for which [MSETe is within one standard error from the lowest
point on the cross-validation error curve.

Roughly speaking, this is equivalent toOccam’s Razor52 on models that52: �When presented with competing hy-
potheses about the same prediction, one
should select the solution with the fewest
assumptions.�

have similar predictive power.

In the image below (modi�ed from [5]), the lowest point is reached when
? = 6 (blue �X�) and the dashed red lines represent the 1-standard error
limits; according to the rule described above, we would select the model
with ? = 4 parameters (red dot).

SS methods are used extensively in practice, but there are serious limita-
tions to this approach:

all intermediate tests are biased, as they are based on the same
data;
’2
0 only takes into account the number of features in the �nal

model, not the degrees of freedom that have been used up during
the entire process;
if the cross-validation error is used, stepwise selection should be
repeated for each sub-model.

All in all, SS is a classic example of ?�hacking: we are getting results
without setting hypotheses up �rst.

20.4 Model Selection 1247

Example In spite of the warning mentioned above, it could still be
useful to know how to perform stepwise selection. In what follows, we
search for the best FSS and BSS linear models to predict the credit card
balance for observations contained in the training set Credit.csv .

Credit <- read.csv("Credit.csv", stringsAsFactors = TRUE)
str(Credit)

’data.frame’: 400 obs. of 12 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ Income : num 14.9 106 104.6 148.9 55.9 ...
$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 ...
$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...
$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...
$ Age : int 34 82 71 36 68 77 37 87 66 41 ...
$ Education: int 11 15 11 11 16 10 12 9 13 19 ...
$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 ...
$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 ...
$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 ...
$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 ...
$ Balance : int 333 903 580 964 331 1151 203 872 279 ...

We remove the id variable X, and create dummy variables for the categor-
ical levels.

Credit <- Credit[,-c(1)]
Credit$Gender.dummy <- ifelse(Credit$Gender == "Female",1,0)
Credit$Student.dummy <- ifelse(Credit$Student == "Yes",1,0)
Credit$Married.dummy <- ifelse(Credit$Married == "Yes",1,0)
Credit$Ethnicity.AA.dummy <- ifelse(Credit$Ethnicity == "African American",1,0)
Credit$Ethnicity.A.dummy <- ifelse(Credit$Ethnicity == "Asian",1,0)
Credit <- Credit[,c(1:6,12:16,11)]
summary(Credit)

Income Limit Rating Cards
Min. : 10.35 Min. : 855 Min. : 93.0 Min. :1.000
1st Qu.: 21.01 1st Qu.: 3088 1st Qu.:247.2 1st Qu.:2.000
Median : 33.12 Median : 4622 Median :344.0 Median :3.000
Mean : 45.22 Mean : 4736 Mean :354.9 Mean :2.958
3rd Qu.: 57.47 3rd Qu.: 5873 3rd Qu.:437.2 3rd Qu.:4.000
Max. :186.63 Max. :13913 Max. :982.0 Max. :9.000

Age Education Gender.dummy Student.dummy
Min. :23.00 Min. : 5.00 Min. :0.0000 Min. :0.0
1st Qu.:41.75 1st Qu.:11.00 1st Qu.:0.0000 1st Qu.:0.0
Median :56.00 Median :14.00 Median :1.0000 Median :0.0
Mean :55.67 Mean :13.45 Mean :0.5175 Mean :0.1
3rd Qu.:70.00 3rd Qu.:16.00 3rd Qu.:1.0000 3rd Qu.:0.0
Max. :98.00 Max. :20.00 Max. :1.0000 Max. :1.0

https://www.data-action-lab.com/wp-content/uploads/2023/02/Credit.csv

1248 20 Regression and Value Estimation

Married.dummy Ethnicity.AA.dummy Ethnicity.A.dummy Balance
Min. :0.0000 Min. :0.0000 Min. :0.000 Min. : 0.00
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.: 68.75
Median :1.0000 Median :0.0000 Median :0.000 Median : 459.50
Mean :0.6125 Mean :0.2475 Mean :0.255 Mean : 520.01
3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.: 863.00
Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1999.00

We will work with a scaled version of the dataset.

Credit.scaled <- scale(Credit)
parameters <- attributes(Credit.scaled)
Credit.scaled <- data.frame(Credit.scaled)
var.names <- colnames(Credit.scaled)

We start by implementing step 2 of the FSS algorithm.

model <- c()
ind <- c()

for(i in 1:(ncol(Credit.scaled)-1)){
r2 <- c()

for(j in setdiff((1:(ncol(Credit.scaled)-1)),c(ind))){
model <- lm(Balance ~ .,

data = Credit.scaled[,c(ind,j,12)])
r2[j] <- summary(model)$r.squared

}
ind[i] <- which.max(r2)
}

var.names[ind]

[1] "Rating" "Income" "Student.dummy"
[4] "Limit" "Cards" "Age"
[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

[10] "Education" "Ethnicity.A.dummy"

Thebest 1-parametermodelM 1 usesRating, the best 2-parametermodelM 2
built from M 1 uses Rating and Income, and so on.

Next, we implement step 3 by computing the adjustment statistics (AIC,
BIC, ’2

0) and the cross-validation error (with = 5 folds) for each of
M 0 �M 1 � � � �.5353: The latter uses the function cv.lm()

available in the lmvar package in R.
We deal with M 0 �rst.

model <- c()
aic <- c()
bic <- c()
r2a <- c()
cv.m <- c()

20.4 Model Selection 1249

model[[1]] <- lm(Balance ~ 1,
data=Credit.scaled, y=TRUE, x=TRUE)

cv.m[1] <- lmvar::cv.lm(model[[1]],k=5)$MSE[[1]]
r2a[1] <- summary(model[[1]])$adj.r.squared
aic[1] <- AIC(model[[1]])
bic[1] <- BIC(model[[1]])

The remaining models are similarly handled:

for(i in 1:(ncol(Credit.scaled)-1)){
model[[i+1]] <- lm(Balance ~., data=Credit.scaled[,

c(ind[c(1:i)],12)], y=TRUE, x=TRUE)
cv.m[i+1] <- lmvar::cv.lm(model[[i+1]],k=5)$MSE[[1]]
r2a[i+1] <- summary(model[[i+1]])$adj.r.squared
aic[i+1] <- AIC(model[[i+1]])
bic[i+1] <- BIC(model[[1+1]])

}

Let us plot the outcome for each adjustment statistic (and the CV estima-
tion of the test error):

plot(cv.m)
plot(r2a)
plot(aic)
plot(bic)

The best FSS model using the CV estimate of the test error is:

1250 20 Regression and Value Estimation

ind.cv <- which.min(cv.m)
var.names[ind[1:ind.cv]]

[1] "Rating" "Income" "Student.dummy" "Limit"
[5] "Cards" "Age"

The best FSS model using ’2
0 is:

ind.r2a <- which.max(r2a)
var.names[ind[1:ind.r2a]]

[1] "Rating" "Income" "Student.dummy"
[4] "Limit" "Cards" "Age"
[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

The best FSS model using AIC is:

ind.aic <- which.min(aic)
var.names[ind[1:ind.aic]]

[1] "Rating" "Income" "Student.dummy" "Limit"
[5] "Cards" "Age" "Gender.dummy"

The best FSS model using BIC is:

ind.bic <- which.min(bic)
var.names[ind[1:ind.bic]]

[1] "Rating" "Income"

Are there overlaps? The same can be done for BSS, instead:

model.BSS <- c()
ind.BSS <- list()

for(i in 1:(ncol(Credit.scaled)-1)){
r2 <- c()
list.of.indices <- combn(1:(ncol(Credit.scaled)-1), i)
for(j in 1:ncol(list.of.indices)){

model.BSS <- lm(Balance ~ .,
data=Credit.scaled[,c(list.of.indices[,j],12)])

r2[j] <- summary(model.BSS)$r.squared
}
ind.BSS[[i]] <- list.of.indices[,which.max(r2)]

}

model.BSS <- c()
aic.BSS <- c()
bic.BSS <- c()
r2a.BSS <- c()

20.5 Nonlinear Modeling 1251

cv.m.BSS <- c()

model.BSS[[1]] <- lm(Balance ~ 1, data=Credit.scaled,
y=TRUE, x=TRUE)

cv.m.BSS[1] <- lmvar::cv.lm(model.BSS[[1]],
k=5)$MSE[[1]]

r2a.BSS[1] <- summary(model.BSS[[1]])$adj.r.squared
aic.BSS[1] <- AIC(model.BSS[[1]])
bic.BSS[1] <- BIC(model.BSS[[1]])

for(i in 1:(ncol(Credit.scaled)-1)){
model.BSS[[i+1]] <- lm(Balance ~.,

data=Credit.scaled[,c(ind.BSS[[i]],12)], y=TRUE, x=TRUE)
cv.m.BSS[i+1] <- lmvar::cv.lm(model.BSS[[i+1]],k=5)$MSE[[1]]
r2a.BSS[i+1] <- summary(model.BSS[[i+1]])$adj.r.squared
aic.BSS[i+1] <- AIC(model.BSS[[i+1]])
bic.BSS[i+1] <- BIC(model.BSS[[1+1]])

}

ind.cv.BSS <- which.min(cv.m.BSS)
var.names[ind.BSS[[ind.cv.BSS]]]
ind.r2a.BSS <- which.max(r2a.BSS)
var.names[ind.BSS[[ind.r2a.BSS]]]
ind.aic.BSS <- which.min(aic.BSS)
var.names[ind.BSS[[ind.aic.BSS]]]
ind.bic.BSS <- which.min(bic.BSS)
var.names[ind.BSS[[ind.bic.BSS]]]

[1] "Income" "Limit" "Rating" "Cards"
[5] "Age" "Student.dummy"

[1] "Income" "Limit" "Rating"
[4] "Cards" "Age" "Gender.dummy"
[7] "Student.dummy" "Married.dummy" "Ethnicity.AA.dummy"

[1] "Income" "Limit" "Rating" "Cards"
[5] "Age" "Gender.dummy" "Student.dummy"

[1] "Income" "Rating"

Any surprises?

20.5 Nonlinear Modeling

Inpractice the linearity assumption is almostnevermet and the regression
function

H = 5 „x” = E». j fi- = x…

has to be approximated by some other technique. Or does it?

1252 20 Regression and Value Estimation

The linearity assumption is often �good enough� in spite of it not being
met, and, coupled with its convenience of use and its multiple extensions,
it is rarely a waste of time to give that approach a try.

When heavier machinery is required, it pays to consider the following
OLS generalizations, which o�er a lot of �exibility without sacri�cing
ease of interpretability, before jumping to so-called black box models
(SVM, ANN, ensemble learning, etc.) of Chapter 21:

curve �tting (polynomial regression, step functions, splines, etc.);
local regression methods, or
generalized additive models.

20.5.1 Basis Function Models

Ifwe have reason to suspect that the response. is not a linear combination
of the predictors, we might bene�t from using a derived set of predictors
(see [5, Section 7.3]).

Polynomial Regression We can extend the simple linear regression
model H8 = �0‚�1G8 ‚ �8 , 8 = 1� � � � � # , by allowing for polynomial basis
terms in the regression function:

H8 = �0 ‚ �1G8 ‚ �2G2
8 ‚ � � � ‚ �3G

3
8 ‚ �8 � 8 = 1� � � � � #�

The regression function is non-linear in terms of the observations G8 , but
it is linear in terms of the coe�cients � 9 .54 We thus create new variables54: In terms of fG� G2 � � � � � G3g.

-1 = -, -2 = -2, and so on, and estimate the regression function
H = 5 „x” via 5 „x” = x> #, where the coe�cients # are learned using the
training set Tr.

Typically, the coe�cient values are of little interest � it is the predictions
 5 „x” that are sought.

It is easy to obtain and estimate for Var„ 5 „x”” since 5 „x” is linear in the
coe�cients �8 , 8 = 0� � � � � 3:

Var„ 5 „x”” = Var„x> #” =
3X

8 � 9=0
Cov„ �8 ¡G8 � � 9 ¡G 9”

=
3X

8 � 9=0
¡G8 ¡G 9Cov„ �8 � � 9” = x>Cov„ #”x = �2x>„X>X”�1x�

The estimated variance of the approximation at x is thus

 Var„ 5 „x”” =
SSRes

� 3 � 1
x>„X>X”�1x =

kY � X #k22
� 3 � 1

x>„X>X”�1x�

with se„ 5 „x”” =
q
 Var„ 5 „x””, so that

 5 „x” � 2 � se„ 5 „x””

constitutes a 95% C.I. for 5 „x”, assuming normality of the error terms.

20.5 Nonlinear Modeling 1253

Gapminder Example The charts below show polynomial regressions
(3 = 4) and con�dence intervals for life expectancy against 4 di�erent
predictors in the 2011 Gapminder data (assuming that the training set Tr
is the entire dataset).55 55: In this section, we assume that

ggplot2 and dplyr have already been
loaded.

plot1 <- ggplot(gapminder.2011, aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_smooth(method=’lm’, formula = y~poly(x,4)) +
ggtitle("Polynomial regression - d=4")

plot2 <- ggplot(gapminder.2011, aes(x=infant_mortality,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_smooth(method=’lm’, formula = y~poly(x,4)) +
ggtitle("Polynomial regression - d=4")

plot3 <- gapminder.2011 |>
mutate(lgdppc=log(gdp/population)) |>
ggplot(aes(x=lgdppc, y=life_expectancy)) +
geom_point(color=’red’, alpha=0.3) +
stat_smooth(method=’lm’, formula = y~poly(x,4)) +
ggtitle("Polynomial regression - d=4") +
theme_bw()

plot4 <- ggplot(gapminder.2011, aes(x=gdp,
y=life_expectancy)) +

geom_point(color=’red’, alpha=0.3) +
stat_smooth(method=’lm’, formula = y~poly(x,4)) +
ggtitle("Polynomial regression - d=4") +
theme_bw()

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

1254 20 Regression and Value Estimation

In this example, we picked 3 = 4. How do we select 3, in general? We can
either pick a reasonable small 3 (often below 4) or use cross-validation to
select a 3 that minimizes the estimated MSETe.

Note that it is easy to incorporate more than one predictor and interaction
terms into the model.

The nature of polynomials (j 5 „x”j ! 1 when kxk ! 1) is such that tail
behaviour is usually quite horrible (look at the bottom-right example
above). Consequently, polynomial regression should be used very care-
fully, stayingwithin the domain andmaking sure to centre the predictors
to reduce variance in�ation.

Step Functions Polynomial regression is an attractive approach because
of the ease with which we can use the apparatus of OLS, but the elephant
in the room is that we are imposing a global structure on the non-linear
function H = 5 „x”, and that cannot always be justi�ed.

Step functions can be used to keep things �local�. Let 28 , 8 = 1� � � � � lie
in range„-” and consider the following ‚ 1 new predictors:

�0„-” = I „- 5 21”
�8„-” = I „28 � - 5 28‚1”� 8 = 1� � � � � � 1

� „-” = I „2: � -”�

where I is the indicator function

I „
” =

(
0�
 is false
1�
 is true

For any -, �0„-” ‚ �1„-” ‚ � � � ‚ � „-” = 1, since - lies in exactly one
of the intervals

„�1� 21”� »21 � 22”� � � � � »2 �1 � � ”� »� �1”�

The step function regression model is

.8 = �0 ‚ �1�1„-8” ‚ � � � ‚ � � „-8” ‚ �8 � 8 = 1� � � � � # ;

it can also be obtained using the OLS framework.5656: Thus a 95% C.I. can be built just as
with polynomial and other regressions.

For a given- , at most one of �1„-”� � � � � � „-” is< 0; thus, when- 5 21,
� 9„-” = 0 for all 9 = 1� � � � � , and so

�0 = Avgf. j - 5 21g�

For - 2 »2 9 � 2 9‚1”, H = �0 ‚ � 9 , so � 9 represents the average increase in .
for »2 9 � 2 9‚1” relative to „�1� 21”.

The only major challenge with step function regression is that there is no
easy way to �nd the number and select the position of the breakpoints
21 � � � � � 2 , unless there are natural gaps in the predictors. Wewill discuss
a strategy to determine the number and location of knots when we
discuss classi�cation and regression trees in Chapter 21.

20.5 Nonlinear Modeling 1255

Wedid not discuss how step function regression or polynomial regression
could be achieved in higher dimensions, but the principle remains the
same (except that the number of parameters increases drastically, which
can create some over�tting issues).

Gapminder Example The charts below show step function regressions
and con�dence intervals for life expectancy against 4 di�erent predictors
in the 2011 Gapminder data .57 57: Assuming that the training set Tr is

the entire dataset.
We start by building a = 3 knots step functionmodel for life expectancy
against fertility, using the (arbitrary) knot values at 2, 4, and 6:

gapminder.2011 <- gapminder.2011 |>
mutate(fert0=I(fertility<2),

fert1=I(2<=fertility & fertility<4),
fert2=I(4<=fertility & fertility<6),
fert3=I(6<=fertility))

model.sf.1 = lm(life_expectancy ~ fert0 + fert1 + fert2,
data=gapminder.2011)

summary(model.sf.1)

Residuals:
Min 1Q Median 3Q Max

-24.0485 -2.8300 0.2515 3.9669 12.1515

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.5444 1.9554 30.963 < 2e-16 ***
fert0TRUE 16.8106 2.0969 8.017 2.04e-13 ***
fert1TRUE 10.2040 2.0845 4.895 2.36e-06 ***
fert2TRUE 0.7814 2.2212 0.352 0.725

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.866 on 162 degrees of freedom
Multiple R-squared: 0.5308, Adjusted R-squared: 0.5221
F-statistic: 61.09 on 3 and 162 DF, p-value: < 2.2e-16

The corresponding step function is de�ned with:

g.1 <- function(x){
model.sf.1$coefficients[1] +
model.sf.1$coefficients[2]*I(x<2) +
model.sf.1$coefficients[3]*I(2<=x & x<4) +
model.sf.1$coefficients[4]*I(6<=x)

}

We next build a = 4 knots step function model for life expectancy
against infant mortality, using the (arbitrary) knot values 10, 20, 40, 70:

1256 20 Regression and Value Estimation

gapminder.2011 <- gapminder.2011 |>
mutate(inf0=I(infant_mortality<10),

inf1=I(10<=infant_mortality & infant_mortality<20),
inf2=I(20<=infant_mortality & infant_mortality<40),
inf3=I(40<=infant_mortality & infant_mortality<70),
inf4=I(70<=infant_mortality))

model.sf.2 = lm(life_expectancy ~ inf0 + inf1 + inf2 +
inf3, data=gapminder.2011)

summary(model.sf.2)

g.2 <- function(x){
model.sf.2$coefficients[1] +
model.sf.2$coefficients[2]*I(x<10) +
model.sf.2$coefficients[3]*I(10<=x & x<20) +
model.sf.2$coefficients[4]*I(20<=x & x<40) +
model.sf.2$coefficients[5]*I(40<=x & x<70)

}

Residuals:
Min 1Q Median 3Q Max

-13.9800 -2.3800 0.3725 2.7622 9.3200

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.675 1.207 46.939 < 2e-16 ***
inf0TRUE 22.017 1.340 16.437 < 2e-16 ***
inf1TRUE 17.963 1.390 12.928 < 2e-16 ***
inf2TRUE 11.782 1.429 8.247 5.46e-14 ***
inf3TRUE 5.305 1.399 3.791 0.000211 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.183 on 161 degrees of freedom
Multiple R-squared: 0.763, Adjusted R-squared: 0.7571
F-statistic: 129.5 on 4 and 161 DF, p-value: < 2.2e-16

We next build a = 3 knots step function model for life expectancy
against the log of gdp per capita, using the (arbitrary) knot values at 6, 8,
10:

gapminder.2011 <- gapminder.2011 |>
mutate(lgdppc=log(gdp/population)) |>
mutate(lgdppc0=I(lgdppc<6),

lgdppc1=I(6<=lgdppc & lgdppc<8),
lgdppc2=I(8<=lgdppc & lgdppc<10),
lgdppc3=I(10<=lgdppc))

model.sf.3 = lm(life_expectancy ~ lgdppc0 + lgdppc1 + lgdppc2,
data=gapminder.2011)

summary(model.sf.3)

20.5 Nonlinear Modeling 1257

g.3 <- function(x){
model.sf.3$coefficients[1] +
model.sf.3$coefficients[2]*I(x<6) +
model.sf.3$coefficients[3]*I(6<=x & x<8) +
model.sf.3$coefficients[4]*I(8<=x & x<10)

}

Residuals:
Min 1Q Median 3Q Max

-21.771 -1.831 0.550 3.691 9.789

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.270 63.857 < 2e-16 ***
lgdppc0TRUE -20.788 1.708 -12.174 < 2e-16 ***
lgdppc1TRUE -12.629 1.453 -8.692 3.75e-15 ***
lgdppc2TRUE -6.012 1.509 -3.984 0.000102 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.82 on 162 degrees of freedom
Multiple R-squared: 0.5382, Adjusted R-squared: 0.5296
F-statistic: 62.93 on 3 and 162 DF, p-value: < 2.2e-16

Finally, we build a = 6 knots step function model for life expectancy
against the log of gdp per capita, using the (arbitrary) knot values at 5, 6,
7, 8, 9, 10:

gapminder.2011 <- gapminder.2011 |>
mutate(lgdppc=log(gdp/population)) |>
mutate(lgdppc0=I(lgdppc<5),

lgdppc1=I(5<=lgdppc & lgdppc<6),
lgdppc2=I(6<=lgdppc & lgdppc<7),
lgdppc3=I(7<=lgdppc & lgdppc<8),
lgdppc4=I(8<=lgdppc & lgdppc<9),
lgdppc5=I(9<=lgdppc & lgdppc<10),
lgdppc6=I(10<=lgdppc))

model.sf.4 = lm(life_expectancy ~ lgdppc0 + lgdppc1 +
lgdppc2 + lgdppc3 + lgdppc4 + lgdppc5,
data=gapminder.2011)

summary(model.sf.4)

g.4 <- function(x){
model.sf.4$coefficients[1] +
model.sf.4$coefficients[2]*I(x<5) +
model.sf.4$coefficients[3]*I(5<=x & x<6) +
model.sf.4$coefficients[4]*I(6<=x & x<7) +
model.sf.4$coefficients[5]*I(7<=x & x<8) +
model.sf.4$coefficients[6]*I(8<=x & x<9) +
model.sf.4$coefficients[7]*I(9<=x & x<10)

}

1258 20 Regression and Value Estimation

Residuals:
Min 1Q Median 3Q Max

-22.8250 -1.3500 0.5964 3.1841 12.2929

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.204 67.367 < 2e-16 ***
lgdppc0TRUE -21.300 4.082 -5.217 5.59e-07 ***
lgdppc1TRUE -20.746 1.648 -12.585 < 2e-16 ***
lgdppc2TRUE -15.993 1.593 -10.042 < 2e-16 ***
lgdppc3TRUE -10.275 1.487 -6.912 1.10e-10 ***
lgdppc4TRUE -7.187 1.559 -4.610 8.24e-06 ***
lgdppc5TRUE -4.190 1.724 -2.431 0.0162 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.517 on 159 degrees of freedom
Multiple R-squared: 0.5927, Adjusted R-squared: 0.5774
F-statistic: 38.57 on 6 and 159 DF, p-value: < 2.2e-16

The step functions in each of the 4 cases are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_function(fun=g.1) +
ggtitle("Step Function Regression - K=3")

plot2 <- ggplot(gapminder.2011,aes(x=infant_mortality,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_function(fun=g.2) +
ggtitle("Step Function Regression - K=4")

plot3 <- ggplot(gapminder.2011,aes(x=lgdppc,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_function(fun=g.3) +
ggtitle("Step Function Regression - K=3")

plot4 <- ggplot(gapminder.2011,aes(x=lgdppc,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
stat_function(fun=g.4) +
ggtitle("Step Function Regression - K=6")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

20.5 Nonlinear Modeling 1259

The step functions do capture the general trends, but how easily inter-
pretable are they?

20.5.2 Splines

We can combine polynomial regression and step functions to obtain a
more �exible curve �tting approach.

Regression Splines Instead of �tting a polynomial over the entire range
of the predictor -, we use di�erent polynomials (of degree up to 3,
usually) in regions ’: ,58 such as: 58: De�ned by knots in the 1-dimensional

case.

.8 =

(
�0�1 ‚ �1�1-8 ‚ �2�1-2

8 ‚ �3�1-3
8 ‚ �8 � if -8 2 ’1

�0�2 ‚ �1�2-8 ‚ �2�2-2
8 ‚ �3�2-3

8 ‚ �8 � if -8 2 ’2

Various constraints can be imposed on the polynomials:

none;
continuity at each region’s borders;
�1 (continuously di�erentiable) at each region’s borders; etc.

In a sense to be de�ned shortly, splines have the �maximum� amount of
continuity. Note that using more regions leads to a more �exible �t.

In what follows, we assume that the domain is split into ‚ 1 regions,
bounded by knots (there are thus such knots). If we impose no
restriction on the functions, we are trying to �t ‚ 1 piecewise cubic
functions to the data; each polynomial has 4 parameters to be estimated,
leading to 4„ ‚ 1” e�ective parameters.

If we impose a continuous �t,59 we reduce the number of e�ective 59: The polynomials must agree at the
knots.parameters. We can also require a continuously di�erentiable �t,60
60: The derivatives must also agree at the
knots.

further reducing the number of e�ective parameters.

A cubic spline (with only ‚ 4 parameters to �t) is a regression spine
which is �2 on its domain.

1260 20 Regression and Value Estimation

Let � be a knot and - be a predictor value. The positive part function is
de�ned by

F‚ =

(
F if F 7 0
0 else

Formally, the linear spline requires �1 � � � � � � knots and has ‚ 1
e�ective parameters. The model can be expressed simply using positive
parts:

.8 = �0 ‚ �1-8 ‚ �2„-8 � �1”‚ ‚ � � � ‚ � ‚1„-8 � � ”‚ ‚ �8 ;

the cubic spline is:

.8 = �0 ‚ �1-8 ‚ �2-2
8 ‚ �3-3

8 ‚ �4„-8 � �1”3‚ ‚ � � � ‚ � ‚3„-8 � � ”3‚ ‚ �8 �

and the natural cubic spline is a cubic spline between �1 and � , with
linear extrapolation beyond �1 and � ; this adds 4 extra constraints to
the cubic spline and allows for more knots while keeping the number of
e�ective parameters identical to that of the linear spline.

In all instances, the machinery of OLS remains available: predictions,
diagnostics, remedial measures, con�dence intervals, and extension to
logistic regression, as needed.

Figure 20.11: Various splines on a 1-
dimensional dataset, with a single knot
[5].

Gapminder Example The charts below show cubic splines for life ex-
pectancy against fertility in the 2011 Gapminder data.6161: Assuming again that the training set

Tr is the entire dataset.
Cubic splines are modeled using the splines package bs() function. In
theory, we place more knots in locations where the spline function is
believed to vary more rapidly, and fewer knots where it is more stable.62

62: In practice, the knots are placed uni-
formly at quantiles of the predictor vari-
able -, based on their number. The syntax for the OLS model formula in R follows the form

response ~ splines::bs(predictor, df)

20.5 Nonlinear Modeling 1261

where the degrees of freedom df are linked to the number of parameters
to estimate (in the case of cubic spline, df = ‚ 3). We start by building
a cubic spline with = 0 knot.63 63: So ‚ 3 = 3 degrees of freedom.

lm(life_expectancy ~ splines::bs(fertility, df = 3))

Coefficients:
(Intercept) splines::bs(fertility, df = 3)1

79.28 -11.47
splines::bs(fertility, df = 3)2 splines::bs(fertility, df = 3)3

-27.41 -16.65

Here is a cubic spline with = 10 knots, with their locations:64 64: We can �nd the knot locations of a
cubic spline with = 1� 2 knots by com-
puting fm1, fm2, test1, test2, g1, and g2
in the same manner (these quantities are
required in the display code on the next
few pages).

fm10 <- lm(life_expectancy ~ splines::bs(fertility, df = 13))
test10 <- eval(attr(fm10$terms, "predvars"))
(g10 <- as.numeric(attr(test10[[2]],"knots")))

[1] 1.45 1.53 1.83 2.00 2.31 2.53 2.93 3.64 4.73 5.09

We can display cubic splines with = 0� 1� 2� 10 knots as below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm", formula=y~splines::bs(x,df=3)) +
ggtitle("Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm", formula=y~splines::bs(x,df=4)) +
geom_vline(xintercept = g1, colour = "deepskyblue") +
ggtitle("Cubic Spline - K=1")

plot3 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm", formula=y~splines::bs(x,df=5)) +
geom_vline(xintercept = g2, colour = "deepskyblue") +
ggtitle("Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm", formula=y~splines::bs(x,df=13)) +
geom_vline(xintercept = g10, colour = "deepskyblue") +
ggtitle("Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

1262 20 Regression and Value Estimation

Natural cubic splines are modeled using the splines package ns()
function; the knots are, again, placed uniformly at quantiles of the
predictor variable -, based on their number.6565: The knot locations are thus the same

as in the cubic spline case.
The syntax for the OLS model formula in R follows the form

response ~ splines::ns(predictor, df)

where the degrees of freedom df are linked to the number of parameters
to estimate (in the case of natural cubic spline, df = ‚ 1). We start by
building a natural cubic spline with = 0 knot.6666: So ‚ 1 = 1 degrees of freedom.

lm(life_expectancy ~ splines::ns(fertility, df = 1))

Coefficients:
(Intercept) splines::ns(fertility, df = 1)

78.09 -34.27

The natural cubic splines with = 0� 1� 2� 10 are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm", formula=y~splines::ns(x,df=2)) +
ggtitle("Natural Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g1, df = 2)) +
geom_vline(xintercept = g1, colour = "deepskyblue") +
ggtitle("Natural Cubic Spline - K=1")

20.5 Nonlinear Modeling 1263

plot3 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g2, df = 3)) +
geom_vline(xintercept = g2, colour = "deepskyblue") +
ggtitle("Natural Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,
y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +
geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g10, df = 11)) +
geom_vline(xintercept = g10, colour = "deepskyblue") +
ggtitle("Natural Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Do you notice any di�erence in the shape of the cubic splines vs. that of
the natural cubic splines?67 67: Cross-validation (again!) can be used

to determine the optimal : compute the
estimated error for various (10-fold CV,
say), and pick the � that minimizes the
error.

Regression splines often give better results than polynomial regression
because they induce �exibility via a large number of parameters with
low polynomial degree 3 � 3, rather than through high 3 of the latter
(and the wild variability that such polynomials have, especially near the
boundaries of the predictor’s range, as can be observed in the polynomial
regression examples above).

Multivariate Adaptive Regression Splines Wecan reduce thepolynomial
degree to 3 � 2 without losing too much curve �tting accuracy by
considering bases consisting of functions of the forms:

1� „G � �:”� � „G � �:1”�„G � �:2”� �

1264 20 Regression and Value Estimation

where „G � C”� is one of the two hinge functions:

„G � C”‚ =

(
G � C if G 7 C
0 else

„G � C”� =

(
C � G if G 5 C
0 else

„G � 1”�, „G � 1”‚„G � 5”‚, „G � 1”‚„G � 8”� are shown in Figure 20.12.

Figure 20.12: A few hinge functions.

A multivariate adaptive regression spline (MARS) is expressed as

H8 =
 X

:=1
�: �:„G8” ‚ �8 � 8 = 1� � � � � # �

where �: is either a constant function, a hinge function, or a product of
hinge functions.

MARS adds terms to its model in an iterative fashioin; once a stopping
criterion is met, unwanted terms are removed. The model growth’s
parallels the growth of tree-based models, which we will discuss in
Chapter 21, and it has the same advantage that the knots are selected
automatically.

Arti�cial Dataset Example Let us take a look at a synthetic dataset,
based o� of:

H = 5 „G” =
sin„�G”

10
�
p
G ‚ exp„G�10” ‚ ��

where � � N „0� 0�042”.

set.seed(1234)
fx=function(x){

sin(pi*x)/10-sqrt(x)+exp(x/10)
}

x=sort(runif(50, 0, 5))
noise=rnorm(50, 0, 0.04)
y=fx(x)+noise

plot(x, y, col=4)
x.vec=seq(0,6, length.out=100)
lines(x.vec, fx(x.vec), col="grey", lty=2)

20.5 Nonlinear Modeling 1265

We can �t the data using package mda’s mars() function, in R.68 Let us 68: This is a licensed implementation of
MARS. There is another implementation
in the earth package: enhanced adaptive
regression through hinges, or EARTH.

use only functions of degree 1 (linear functions and linear hinges, but no
interaction terms) for the time being:

MARS.1 = mda::mars(x, y, degree=1)

The output is rather lengthy and is suppressed for readability.69 69:

$call provides the model;
$fitted.values contains the esti-
mated values H8 ;
$residuals contain the residuals
 H8 � H8 , and
$x gives the hinge functions used
in the �nal model.

Let’s see how good a job MARS did:

plot(x, y, col=4, main="MARS with no interaction terms")
x.vec=seq(0,6, length.out=100)
lines(x.vec, fx(x.vec), col="grey", lty=2)
points(x, MARS.1$fitted.values, col=2, pch=16)
abline(v = MARS.1$cuts[MARS.1$selected.terms[-1]],

col = "light grey")

Not bad, all things considered.

1266 20 Regression and Value Estimation

The EARTH output is identical, and would be obtained thus:

EARTH.1 = earth::earth(x, y, degree=1)
summary(EARTH.1)

coefficients
(Intercept) -0.16254461
h(1.3341-x) 0.70785002
h(x-1.3341) -0.05502561
h(x-2.53653) -0.27853205
h(x-3.38547) 0.37209809

Selected 5 of 6 terms, and 1 of 1 predictors
Termination condition: RSq changed by less than 0.001 at 6 terms
Importance: x
Number of terms at each degree of interaction: 1 4 (additive model)
GCV 0.002341396 RSS 0.07871774 GRSq 0.9759754 RSq 0.9831798

What about interaction terms? In order for MARS or EARTH to consider
such terms, we must �rst provide a second predictor.

xnew = x*x
data = data.frame(x,xnew,y)
EARTH.2 = earth::earth(y ~ x + xnew , data=data, degree=2)
summary(EARTH.2)

coefficients
(Intercept) -0.21273261
h(1.43112-x) 0.68806424
h(x-2.62849) -0.43057541
h(xnew-10.446) 0.05531043

Selected 4 of 6 terms, and 2 of 2 predictors
Termination condition: RSq changed by less than 0.001 at 6 terms
Importance: x, xnew
Number of terms at each degree of interaction: 1 3 (additive model)
GCV 0.00273995 RSS 0.09437758 GRSq 0.971886 RSq 0.9798336

What does the plot look like? Can you spot the non-linear components?

plot(x, y, col=4, main="MARS with interaction terms")
x.vec=seq(0,6, length.out=100)
points(x, EARTH.2$fitted.values, col=2, pch=16)
abline(v = EARTH.2$cuts[EARTH.2$selected.terms[-1]],

col = "light grey")
EARTH.2$cuts

20.5 Nonlinear Modeling 1267

Housing Dataset Example In this section, we analyze a housing dataset
related to house selling prices in Ames, Iowa (VE_Housing.csv , modi-
�ed from [1]). We start by reading in the data:

dat.Housing=read.csv("VE_Housing.csv", header=TRUE,
stringsAsFactors = TRUE)

dim(dat.Housing)

[1] 1460 81

Next, we count the number of missing values for each variable, excluding
those variables with complete rows.

missing = attributes(which(apply(is.na(dat.Housing), 2,
sum)>0))$names

apply(is.na(dat.Housing[,missing]), 2, sum)

LotFrontage Alley MasVnrType MasVnrArea BsmtQual BsmtCond
259 1369 8 8 37 37

BsmtExposure BsmtFinType1 BsmtFinType2 Electrical FireplaceQu GarageType
38 37 38 1 690 81

GarageYrBlt GarageFinish GarageQual GarageCond PoolQC Fence
81 81 81 81 1453 1179

MiscFeature
1406

The housing dataset thus consists of = = 1460 observations with ? = 79
predictors. There are two other variables: Id and SalePrice, repre-
senting the index variable and the response variable, respectively.70 70: Use colnames() or str() to list all the

variables.Furtheremore, the variables

LotFrontage
Alley

https://www.data-action-lab.com/wp-content/uploads/2023/02/VE_Housing.csv

1268 20 Regression and Value Estimation

FireplaceQu
PoolQC
Fence, and
MiscFeature

all have anywhere from259 to 1406missing observations. The proportions
of missing values in these variables are probably too high for imputation
(see Chapter 15 for details), so we elect to remove them from further
analyses.

Note that the remaining major missing variables are all related to Garage
and Basement, with corresponding variables missing for the same houses.
Given that there are other variables associated with these, we suspect
these variables will not play a crucial role in model building, and we also
elect to remove them from the analyses.

For the remaining three variables with missing values (MasVnrType,
MasVnrArea, and Electrical), the number of missing observations are
so small that we could easily

impute these values, or
perform list-wise deletion.

For the purposes of this example, we will select the latter options and
delete all columns with missing values.

dat.Housing.new = dat.Housing[,
!colnames(dat.Housing)%in%missing]

dim(dat.Housing.new)

[1] 1460 62

We also remove the index variable ID:

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

In order to evaluate the e�ectiveness of the eventual model (i.e., to have
good predictive power without over�tting the data), we split the Housing
dataset into training and testing sets. The model is then developed using
the training set (i.e., optimized using a subset of data), and then later
tested for its prediction power using the testing set.

We select roughly 80% of the observations (1160) for the training set:

set.seed(1234) # for replicability
n.train=1160
ind.train=sample(1:nrow(dat.Housing.new), n.train)

The training and testing sets are thus:

dat.train=dat.Housing.new[ind.train,]
dat.test=dat.Housing.new[-ind.train,]

20.5 Nonlinear Modeling 1269

We train EARTH (with interactions) on the training data:

EARTH.3 <- earth::earth(SalePrice~., data=dat.train,
degree=2)

summary(EARTH.3)

coefficients
(Intercept) 317.95604
Exterior1stBrkFace 18.17930
FoundationPConc 34.63490
h(14442-LotArea) -0.00198
h(LotArea-14442) 0.00048
...
h(7-OverallCond) * h(316-WoodDeckSF) -0.01602
h(2005-YearBuilt) * h(1056-BsmtFinSF1) 0.00030
h(YearBuilt-2005) * h(1056-BsmtFinSF1) -0.00928

Selected 36 of 39 terms, and 19 of 188 predictors
Termination condition: RSq changed by less than 0.001 at 39 terms
Importance: OverallQual, GrLivArea, YearBuilt, SaleTypeWD, BsmtFinSF1, ...
Number of terms at each degree of interaction: 1 18 17
GCV 396.2527 RSS 392191.8 GRSq 0.9377484 RSq 0.9467931

We now predict SalePrice on the testing data:

yhat.EARTH.3 = predict(EARTH.3, dat.test)

We can evaluate the quality of the predictions on the testing set either by
computing MSETe directly (� 628), but this value is more or less useless
on its own.

We get a better sense for the quality of the prediction on the testing
set by comparing the actual SalePrice values to the EARTH predicted
SalePrice values:

xlimit = ylimit = c(0,600)
plot(NA, col=2, xlim=xlimit, ylim=ylimit,

ylab="Predicted Price ($1,000)",
xlab="Actual Price ($1,000)",
main="MARS/EARTH SalePrice predictions

(w column-wise deletion)")
abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))
abline(a=0, b=1)
points(dat.test$SalePrice, yhat.EARTH.3, col=2)

(see plot on the next page) What do you think? Is the model likely to
prove useful?

1270 20 Regression and Value Estimation

Smoothing Splines Given a training set Tr with # observations, we
have seen that regression splines use the following approach:

1. identify knots �1 � � � � � � ;
2. produce some basis functions f11„G”� � � � � 1 „G”g, and
3. use OLS to estimate the coe�cients of

.8 = �0 ‚ �111„-8” ‚ � � � ‚ � 1:„-8” ‚ �8 � 8 = 1� � � � � #�

But we can use another mathematical approach in order to produce a
spline. In general, we need to �nd a function 6 that provides a good �t
for the available data; in other words, we are looking for a 6 for which

SSE =
#X

8=1
„.8 � 6„-8””2 is "small".

But we also need 6 to be constrained, otherwise any smooth function
interpolating „-H � .8”, 8 = 1� � � � � # would yield SSE = 0, at the cost of
severe over�tting and loss of interpretability, as in Figure 20.13. The �ip
side is that too many constraints can result in the data being under�t.

The smoothing spline approach seeks to solve the following problem:

6� = arg min
�

(
#X

8=1
„.8 � �„-8””2

| {z }
SSE loss

‚�
„

„-”
»�00„C”…2 3C

| {z }
penalty term

)

�

where � � 0 is a tuning parameter and
„-” represents the range of the
predictor -.

20.5 Nonlinear Modeling 1271

Figure 20.13: A spline with too few constraint over�ts the data (right).

The penalty termmeasures the roughness of the spline function �; if � is
quite �wiggly�, the penalty will be (relatively) large, and vice-versa (and
similarly for 6).71 71: If � represents a straight line, say, the

penalty term would be zero.
When �! 0, the penalty term has little e�ect, so we would expect 6� to
be �jumpy� in such cases and that it would interpolate the observations
exactly, leading to over�tting.

When �!1, the penalty term dominates and 6� is a function for whichfl
»600� „C”…

23C ! 0 over
„-”, so 6� ! linear OLS solution over
„-”,
leading to under�tting.

As we have seen over and over again, the tuning parameter � controls
the bias-variance trade-o�, expressed, in this case, as a battle between
rigidity and model complexity.

The optimal smoothing spline 6� is a natural cubic spline with a knot
at every data point �8 = G8 , 8 = 1� � � � � # , with continuous 0th, 1st, 2nd
derivatives throughout the range
„-” = »min �8 �max �8…, and is linear
outside
„-”, but, importantly, it is not the one that would be obtained
from building a regression spline, as it also depends on the turning
parameter �.

What is the best choice for �? At �rst glance, this would seem to be
another job for cross-validation, but there is another option: we can
specify the smoothing spline through the e�ective degrees of freedom,
which decrease from # to 2 as � goes from 0 to1 (note, however, that
R’s smooth.spline() uses a di�erent parameterization).

Gapminder Example The charts below show the smoothing spline for
life expectancy against fertility in the 2011 Gapminder data, for 4 di�erent
smoothing parameter values, using stats’s smooth.spline() function.
Note that the entire set is used as training data.

x=gapminder.2011$fertility
y=gapminder.2011$life_expectancy

ss00 = stats::smooth.spline(x, y, spar=0)
ss05 = stats::smooth.spline(x, y, spar=0.5)
ss10 = stats::smooth.spline(x, y, spar=1)
ss15 = stats::smooth.spline(x, y, spar=1.5)

1272 20 Regression and Value Estimation

In order to be able to display the smoothing splines over the datapoints,
we use the broom::augment() function, which provide the value of the
spline at the various fertility values in the dataset.

plot1 <- ggplot(broom::augment(ss00, gapminder.2011),
aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +
geom_line(aes(y = .fitted), colour="blue", size=1.1) +
ggtitle("Smoothing Spline - spar=0")

plot2 <- ggplot(broom::augment(ss05, gapminder.2011),
aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +
geom_line(aes(y = .fitted), colour="blue", size=1.1) +
ggtitle("Smoothing Spline - spar=0.5")

plot3 <- ggplot(broom::augment(ss10, gapminder.2011),
aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +
geom_line(aes(y = .fitted), colour="blue", size=1.1) +
ggtitle("Smoothing Spline - spar=1")

plot4 <- ggplot(broom::augment(ss15, gapminder.2011),
aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +
geom_line(aes(y = .fitted), colour="blue", size=1.1) +
ggtitle("Smoothing Spline - spar=1.5")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Note the evolution of a �exible but highly non-interpretable model (the
wiggly curve associated to spar=0) into a rigid but highly interpretable
model (the line associated to spar=1.5) as the spar values increase.

20.5 Nonlinear Modeling 1273

20.5.3 Generalized Additive Models

While polynomial regression and splines can be applied to predictor sets,
they are best-suited to predicting a response . on the basis of a single
predictor - (the model complexity increases quickly if more than one
predictor is present).

Generalized additive models (GAM) allow for �exible non-linearities
in several variables while retaining the additive structure of linear
models:

H8 = �0 ‚ 51„G8 �1” ‚ � � � ‚ 5?„G8 �?” ‚ �8 � 8 = 1� � � � � #

where each of the 59 can be derived using any of the methods previously
discussed; if

51„G8” = �1�111�1„G8 �1” ‚ � � � ‚ �1�!111�!1„G8 �1”
���

5?„G8” = �?�11?�1„G8 �?” ‚ � � � ‚ �?�!?1?�!? „G8 �?”�

say, we would �t the data using OLS (but this cannot be done if one of
the components is a smoothing spline, for instance, or if it is non-linear
in some other way).

In practice, using natural cubic splines for the quantitative components
seem to work as well as smoothing spline, when it comes to making
predictions.72 72: GAM can also be used for classi�ca-

tion via log-odds:

ln
�

?1„x”
1 � ?1„x”

�
= �0‚ 51„G1”‚� � �‚ 5?„G?”�

GAM are implemented in R using the mgcv::gam() function; a typical
call might look like:

mgcv::gam(y ~ s(x1,df=5) +
lo(x2,spar=0.5) +
bs(x3,df=4) +
ns(x4,df=5):ns(x5,df=5) +
x6, data=dat)

which would indicate that the contribution of:

-1 is given by smoothing spline with 5 degrees of freedom,
-2 is given by a local regression with spar=0.5,
-3 is given by a cubic spline with 4 degrees of freedom,
the fourth component is an interaction term based on natural
splines for -4 and -5 (each with 5 degrees of freedom), and
-6 is directly added to the model.

GAM provide a useful compromise between linear models and fully
non-parametric models.

Advantages:

GAM can �t a non-linear 59 to each predictor -9 , so that they could
capture trends that linear regression would miss;
GAM can reduce the number of data transformations to try out
manually on each predictor -9 ;

1274 20 Regression and Value Estimation

non-linear �ts may improve accuracy of predictions for the re-
sponse .;
GAM are useful for inference due to their additivity � the e�ect
of -9 on . (while keeping other predictors �xed) can be analyzed
separately;
the overall smoothness of themodel can be summarized via e�ective
degrees of freedom/parameters.

Disadvantages:

GAM still su�er from the curse of dimensionality;
GAM are restricted to additive models � interaction terms can be
added manually by introducing new predictors -9 � -: , as can
interaction functions 59 �:„-9 � -:” (using local regression or MARS,
say), but they quickly get out of hand (due to Curse of Dimensionality
issues).

Gapminder Example The charts below show the individual contribu-
tions of fertility, infant mortality, GDP, and continental membership to
life expectancy in the 2011 Gapminder data.7373: Using the entire set as training data.

library(mgcv)
b <- gam(gapminder.2011$life_expectancy ~

s(gapminder.2011$fertility) +
s(gapminder.2011$infant_mortality) +
s(gapminder.2011$gdp) +
gapminder.2011$continent)

summary(b)

Family: gaussian
Link function: identity

Formula:
gapminder.2011$life_expectancy ~ s(gapminder.2011$fertility) +

s(gapminder.2011$infant_mortality) + s(gapminder.2011$gdp) +
gapminder.2011$continent

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.1186 0.7470 91.190 < 2e-16 ***
continentAmericas 4.4787 1.1161 4.013 9.30e-05 ***
continentAsia 4.7110 0.9993 4.714 5.35e-06 ***
continentEurope 3.4179 1.3209 2.588 0.0106 *
continentOceania -0.2891 1.3798 -0.210 0.8343

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(gapminder.2011$fertility) 1.000 1.000 4.474 0.036 *
s(gapminder.2011$infant_mortality) 3.027 3.800 40.541 <2e-16 ***
s(gapminder.2011$gdp) 1.478 1.779 0.367 0.575

20.6 Example: Algae Blooms 1275

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.828 Deviance explained = 83.8%
GCV = 13.199 Scale est. = 12.363 n = 166

We see in the outcome that the intercept is �0 = 68�1186 and that

�continent =

8>>>>>>>><
>>>>>>>>:

0 Africa
4�4787 America
4�7110 Asia
3�4179 Europe
�0�2891 Oceania

so that predictions take the form

life expectancy � �0 ‚ 51„fertility” ‚ 52„infant mortality”
‚ 53„gdp” ‚ �continent�

plot.gam(b)

For instance, the life expectancy for anAmerican countrywith fertility= 3,
infant mortality= 1, GDP= 6 � 1012 would be approximately

68�1 ‚ 0 ‚ 10 ‚ 2 ‚ 4�5 = 84�6�

Take the time to read the mgcv and the gam documentation to better
understand how these work in practice (in particular, how to make
predictions on test/new observations).

20.6 Example: Algae Blooms

We continue the algae blooms analysis started in Section 15.7 (based on
a case study by L.Torgo [11]). The objective is to predict various algae
levels in water samples; we continue the analysis with the data frame
algae_blooms.sna2.

20.6.1 Value Estimation Modeling

For supervised learning tasks, the bias-variance trade-o� means that we
need to set aside a testing set on which the models (which were learned
on the training set) are evaluated.

1276 20 Regression and Value Estimation

There are no hard-and-fast rules to determine how to split the data; if the
signal is very strong, a small training set should capture its important
features, but we do not typically know how strong the signal is before
we start the modeling process. On the other hand, if the training set is
too large, we run the risk of over�tting the data. Weighing both of these
considerations, we elect to use a 65%/35% training/testing split.

The training data should also be representative, to avoid injecting biases
in the model (in case the data was provided according to some systematic
but unknown rule).

There are numerous ways to do this,74 but we can do so using a simple74: See Chapter 10, Survey Sampling Meth-
ods, for instance. random sample of 218 observations.75
75: We could also have strati�ed accord-
ing to season, size, etc. To avoid issues related to replicability, we use a single training set.76

76: The code that would allow for a di�er-
ent random sample every time the code
is run has been commented out in the
following code box.

ind <- sample(1:dim(algae_blooms.sna2)[1], 218)
ind <- 1:218
algae.train <- algae_blooms.sna2[ind,] # training set
algae.test <- algae_blooms.sna2[-ind,] # testing set
set.seed(0) # for replicability

Generalized Linear Model We implement a linearmodel to predict a2 (to
pick but one of the response variables) against all the predictor variables,
but only using the training set.7777: Before getting too excited about us-

ing various machine learning methods, it
is worth seeing what the traditional ap-
proaches yield. linear.model.a2 <- lm(a2 ~ season + size + speed + mxPH +

mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla,
data=algae.train)

A summary of the results can be given by calling the summary method
on the resulting object.

summary(linear.model.a2)

Residuals:
Min 1Q Median 3Q Max

-17.436 -5.281 -2.613 2.026 62.712

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.083e+01 1.257e+01 -2.452 0.015056 *
seasonsummer -1.166e-01 2.112e+00 -0.055 0.956035
seasonautumn 1.071e+00 2.370e+00 0.452 0.651934
seasonwinter -1.451e+00 2.000e+00 -0.726 0.468935
sizemedium -2.628e+00 1.895e+00 -1.387 0.166896
sizelarge -3.210e+00 2.412e+00 -1.331 0.184767
speedmedium 3.887e+00 2.485e+00 1.564 0.119325
speedhigh -1.104e+00 2.772e+00 -0.398 0.690751
mxPH 4.859e+00 1.559e+00 3.117 0.002092 **
mnO2 -1.841e-01 3.924e-01 -0.469 0.639474
Cl -7.432e-03 2.006e-02 -0.371 0.711351

20.6 Example: Algae Blooms 1277

NO3 2.132e-01 3.028e-01 0.704 0.482249
NH4 -5.979e-04 5.355e-04 -1.117 0.265510
oPO4 2.290e-03 9.876e-03 0.232 0.816875
PO4 -1.559e-03 5.936e-03 -0.263 0.793090
Chla 1.652e-01 4.614e-02 3.579 0.000432 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.74 on 202 degrees of freedom
Multiple R-squared: 0.206, Adjusted R-squared: 0.147
F-statistic: 3.493 on 15 and 202 DF, p-value: 2.498e-05

We see that the adjusted ’2 coe�cient is fairly small, which is not ideal.
Furthermore, the residuals should have amean of 0 and be �small�, which
is not quite what we are seeing here; the ��statistic seems to indicate
that there is some (linear) dependence on the predictor variables.

We can get a better handle on the regression diagnostics by calling the
plot() method on the object.

plot(linear.model.a2)

All in all, the linear model is ... not great. The signi�cance of some of the
coe�cients is questionable, however, and we might wonder what e�ect
their inclusion might have.

anova(linear.model.a2)

1278 20 Regression and Value Estimation

Analysis of Variance Table
Response: a2

Df Sum Sq Mean Sq F value Pr(>F)
season 3 112.3 37.42 0.3243 0.8078029
size 2 436.0 217.99 1.8892 0.1538604
speed 2 1552.8 776.42 6.7287 0.0014825 **
mxPH 1 2223.5 2223.54 19.2698 1.829e-05 ***
mnO2 1 0.5 0.54 0.0047 0.9455025
Cl 1 0.3 0.33 0.0029 0.9572795
NO3 1 43.9 43.91 0.3806 0.5380001
NH4 1 193.8 193.82 1.6797 0.1964428
oPO4 1 0.1 0.09 0.0008 0.9775762
PO4 1 4.8 4.82 0.0417 0.8383141
Chla 1 1478.2 1478.18 12.8103 0.0004316 ***
Residuals 202 23308.8 115.39

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We might be interested in the results of a linear regression with the NH4
predictor removed, say.

linear.model.a2.mod <- update(linear.model.a2, . ~ . -NH4)
summary(linear.model.a2.mod)

Residuals:
Min 1Q Median 3Q Max

-16.801 -5.500 -2.647 2.504 63.259

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.996221 12.580354 -2.464 0.014577 *
seasonsummer -0.107996 2.113697 -0.051 0.959301
seasonautumn 0.806683 2.359593 0.342 0.732799
seasonwinter -1.397244 2.000275 -0.699 0.485648
sizemedium -2.378831 1.882645 -1.264 0.207838
sizelarge -3.086404 2.411377 -1.280 0.202029
speedmedium 3.637403 2.476278 1.469 0.143408
speedhigh -1.382060 2.762133 -0.500 0.617364
mxPH 4.821140 1.559264 3.092 0.002268 **
mnO2 -0.074216 0.380118 -0.195 0.845398
Cl -0.001602 0.019376 -0.083 0.934181
NO3 -0.013968 0.224437 -0.062 0.950437
oPO4 -0.001285 0.009348 -0.137 0.890775
PO4 -0.001518 0.005940 -0.256 0.798576
Chla 0.165865 0.046166 3.593 0.000411 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.75 on 203 degrees of freedom
Multiple R-squared: 0.2011, Adjusted R-squared: 0.146
F-statistic: 3.649 on 14 and 203 DF, p-value: 2.009e-05

20.6 Example: Algae Blooms 1279

The �t is not that much better, but an ANOVA on the 2 suggested models
shows that we are at least � 88% certain that the models are di�erent.

anova(linear.model.a2,linear.model.a2.mod)

Analysis of Variance Table
Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla
Model 2: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 +

oPO4 + PO4 + Chla
Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309
2 203 23453 -1 -143.86 1.2467 0.2655

The step() function uses AIC to perform amodel search (using back-
ward elimination). The �best� linear model for a2 is thus:

final.linear.model.a2 <- step(linear.model.a2)
summary(final.linear.model.a2)

Start: AIC=1050.52
a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC
- season 3 157.44 23466 1046.0
- oPO4 1 6.20 23315 1048.6
- PO4 1 7.96 23317 1048.6
- Cl 1 15.85 23325 1048.7
- mnO2 1 25.40 23334 1048.8
- NO3 1 57.19 23366 1049.0
- size 2 282.28 23591 1049.1
- NH4 1 143.86 23453 1049.9
<none> 23309 1050.5
- speed 2 967.47 24276 1055.4
- mxPH 1 1121.22 24430 1058.8
- Chla 1 1478.18 24787 1061.9

Step: AIC=1045.98
a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC
- oPO4 1 2.54 23469 1044.0
- PO4 1 4.10 23470 1044.0
- mnO2 1 6.61 23473 1044.0
- Cl 1 15.59 23482 1044.1
- size 2 257.60 23724 1044.4
- NO3 1 47.04 23513 1044.4
- NH4 1 114.06 23580 1045.0
<none> 23466 1046.0
- speed 2 1035.56 24502 1051.4
- mxPH 1 1052.01 24518 1053.5
- Chla 1 1477.06 24943 1057.3

1280 20 Regression and Value Estimation

Step: AIC=1044.01
a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + PO4 + Chla

Df Sum of Sq RSS AIC
- PO4 1 1.62 23470 1042.0
- mnO2 1 7.17 23476 1042.1
- Cl 1 14.19 23483 1042.1
- NO3 1 44.93 23514 1042.4
- size 2 266.73 23736 1042.5
- NH4 1 114.91 23584 1043.1
<none> 23469 1044.0
- speed 2 1050.55 24519 1049.5
- mxPH 1 1099.78 24569 1052.0
- Chla 1 1480.47 24949 1055.3

Step: AIC=1042.02
a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC
- mnO2 1 6.59 23477 1040.1
- Cl 1 17.42 23488 1040.2
- size 2 265.19 23736 1040.5
- NO3 1 51.04 23521 1040.5
- NH4 1 140.72 23611 1041.3
<none> 23470 1042.0
- speed 2 1050.42 24521 1047.6
- mxPH 1 1105.21 24576 1050.0
- Chla 1 1482.34 24953 1053.4

Step: AIC=1040.08
a2 ~ size + speed + mxPH + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC
- Cl 1 13.41 23490 1038.2
- size 2 260.65 23738 1038.5
- NO3 1 44.48 23522 1038.5
- NH4 1 135.66 23613 1039.3
<none> 23477 1040.1
- speed 2 1121.64 24599 1046.3
- mxPH 1 1103.17 24580 1048.1
- Chla 1 1492.55 24970 1051.5

Step: AIC=1038.21
a2 ~ size + speed + mxPH + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC
- NO3 1 36.13 23526 1036.5
- size 2 275.91 23766 1036.8
- NH4 1 128.31 23619 1037.4
<none> 23490 1038.2
- speed 2 1172.78 24663 1044.8
- mxPH 1 1089.85 24580 1046.1
- Chla 1 1490.94 24981 1049.6

20.6 Example: Algae Blooms 1281

Step: AIC=1036.54
a2 ~ size + speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC
- size 2 244.91 23771 1034.8
- NH4 1 93.48 23620 1035.4
<none> 23526 1036.5
- speed 2 1164.36 24691 1043.1
- mxPH 1 1053.88 24580 1044.1
- Chla 1 1611.04 25138 1049.0

Step: AIC=1034.8
a2 ~ speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC
- NH4 1 82.62 23854 1033.6
<none> 23771 1034.8
- mxPH 1 850.56 24622 1040.5
- speed 2 1085.45 24857 1040.5
- Chla 1 1540.50 25312 1046.5

Step: AIC=1033.56
a2 ~ speed + mxPH + Chla

Df Sum of Sq RSS AIC
<none> 23854 1033.6
- speed 2 1021.27 24875 1038.7
- mxPH 1 928.72 24783 1039.9
- Chla 1 1479.59 25334 1044.7

Call:
lm(formula = a2 ~ speed + mxPH + Chla, data = algae.train)

Residuals:
Min 1Q Median 3Q Max

-16.195 -6.008 -2.530 2.024 63.589

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.13270 11.07921 -2.449 0.015134 *
speedmedium 4.17176 2.34330 1.780 0.076453 .
speedhigh -0.32929 2.41899 -0.136 0.891850
mxPH 3.89794 1.35358 2.880 0.004387 **
Chla 0.15945 0.04387 3.635 0.000349 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.58 on 213 degrees of freedom
Multiple R-squared: 0.1874, Adjusted R-squared: 0.1721
F-statistic: 12.28 on 4 and 213 DF, p-value: 5.289e-09

It is still not a great �t (the adjusted ’2 is quite small); we conclude that
the linear model is not ideal to predict a2.

1282 20 Regression and Value Estimation

anova(final.linear.model.a2)

Analysis of Variance Table
Response: a2

Df Sum Sq Mean Sq F value Pr(>F)
speed 2 1994.8 997.42 8.9063 0.0001929 ***
mxPH 1 2026.6 2026.63 18.0964 3.145e-05 ***
Chla 1 1479.6 1479.59 13.2117 0.0003488 ***
Residuals 213 23854.1 111.99

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In spite of the �nal model’s poor quality, it is signi�cantly di�erent from
the full model.

anova(linear.model.a2,final.linear.model.a2)

Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl +
NO3 + NH4 + oPO4 + PO4 + Chla

Model 2: a2 ~ speed + mxPH + Chla
Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309
2 213 23854 -11 -545.26 0.4296 0.9416

plot(final.linear.model.a2)

20.6 Example: Algae Blooms 1283

Regression Tree Model An alternative to regression is the use of regres-
sion trees, implemented in the function rpart().78 78: Its syntax is similar to lm().

regression.tree.a2 <-rpart::rpart(a2 ~ season + size +
speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +
Chla, data=algae.train)

The outcome can be displayed by calling the object directly.

regression.tree.a2

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.1300 7.6366970
2) Cl< 16.6875 83 1193.6400 1.8891570

4) size=small,medium 67 398.6457 0.9447761 *
5) size=large 16 485.0194 5.8437500 *

3) Cl>=16.6875 135 23733.9200 11.1703700
6) mxPH< 8.065 59 3831.8290 5.3864410

12) season=autumn,winter 29 561.8414 2.5172410 *
13) season=spring,summer 30 2800.4720 8.1600000

26) mxPH< 7.9375 23 889.9730 5.3173910 *
27) mxPH>=7.9375 7 1114.0000 17.5000000 *

7) mxPH>=8.065 76 16396.0400 15.6605300
14) Chla>=2.65 68 9694.0890 13.8544100

28) Chla< 14.8875 29 2747.5810 8.7172410
56) NH4< 226.875 21 558.4257 5.7857140 *
57) NH4>=226.875 8 1534.9490 16.4125000 *

29) Chla>=14.8875 39 5612.0940 17.6743600
58) mnO2< 11.05 30 3139.0940 15.4233300

116) NH4>=158.409 8 577.1000 8.9000000 *
117) NH4< 158.409 22 2097.7700 17.7954500

234) season=spring,autumn 14 674.7521 14.6642900 *
235) season=summer,winter 8 1045.5550 23.2750000 *

59) mnO2>=11.05 9 1814.2760 25.1777800 *
15) Chla< 2.65 8 4594.6690 31.0125000 *

The tree structure can be hard to determine when there is a large
number of nodes; we can improve on the visuals by using the R library
rpart.plot.

rpart.plot::prp(regression.tree.a2, extra=101,
box.col="orange", split.box.col="gray")

1284 20 Regression and Value Estimation

Details on the regression tree can be obtained by calling the summary()
method on the object.

summary(regression.tree.a2)

CP nsplit rel error xerror xstd
1 0.15082765 0 1.0000000 1.0059069 0.1990911
2 0.11943572 1 0.8491724 0.9492709 0.1815913
3 0.07178590 2 0.7297366 0.8655117 0.1688012
4 0.04545758 3 0.6579507 0.9007445 0.1699016
5 0.02243987 4 0.6124932 0.9597254 0.1737117
6 0.02228595 5 0.5900533 0.9472199 0.1658890
7 0.02156378 6 0.5677673 0.9472199 0.1658890
8 0.01581407 8 0.5246398 0.9287217 0.1629262
9 0.01285848 9 0.5088257 0.9255472 0.1613858
10 0.01055949 10 0.4959672 0.9320459 0.1622581
11 0.01000000 11 0.4854077 0.9389544 0.1625727

Variable importance
Chla NH4 Cl mxPH oPO4 PO4 NO3 speed

19 14 14 13 11 9 6 5
mnO2 season size

4 3 2

Note that rpart() grows a tree on the training data until one of the
following criterion is met: - decrease in deviance goes below a certain
threshold (cp) - number of samples in a node is below some other
threshold (minsplit) - depth of the tree crosses yet another threshold
(maxdepth)

The library also implements a pruning method based on cost complexity:
�nding the value of cp which best balances predictive accuracy and tree
size.7979: Wewill revisit these notions in Section

21.4.1, Tree-Based Methods.

20.6 Example: Algae Blooms 1285

rpart::printcp(regression.tree.a2)

Variables actually used in tree construction:
[1] Chla Cl mnO2 mxPH NH4 season size

Root node error: 29355/218 = 134.66

n= 218

CP nsplit rel error xerror xstd
1 0.150828 0 1.00000 1.00591 0.19909
2 0.119436 1 0.84917 0.94927 0.18159
3 0.071786 2 0.72974 0.86551 0.16880
4 0.045458 3 0.65795 0.90074 0.16990
5 0.022440 4 0.61249 0.95973 0.17371
6 0.022286 5 0.59005 0.94722 0.16589
7 0.021564 6 0.56777 0.94722 0.16589
8 0.015814 8 0.52464 0.92872 0.16293
9 0.012858 9 0.50883 0.92555 0.16139
10 0.010559 10 0.49597 0.93205 0.16226
11 0.010000 11 0.48541 0.93895 0.16257

The tree returned by rpart() is the �nal one (cp= 0�01 is the default
value); it requires 11 decision tests, and has a relative error of 0.485.
Internally, rpart() uses 10-fold cross-validation to estimate that the tree
has an average relative error of 0�98 � 0�18.80 80: These valuesmight changewhen from

one run to the next due to the stochastic
nature of the internal cross-validation rou-
tines.

In this framework, the optimal tree minimizes the value of xerror.
Alternatively, one could use the 1 � SE rule to �nd the minimal xerror +
xstd tree.

rpart::plotcp(regression.tree.a2)

1286 20 Regression and Value Estimation

The scree plot above suggests that cp= 0�08 (that value may change when
you run yours due to the stochastic nature of the internal cross-validation
algorithm) is a special value for tree growth, so we could prune the tree
using that speci�c value.

(regression.tree.a2.mod <- rpart::prune(
regression.tree.a2,cp=0.05))

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.130 7.636697
2) Cl< 16.6875 83 1193.640 1.889157 *
3) Cl>=16.6875 135 23733.920 11.170370

6) mxPH< 8.065 59 3831.829 5.386441 *
7) mxPH>=8.065 76 16396.040 15.660530

14) Chla>=2.65 68 9694.089 13.854410 *
15) Chla< 2.65 8 4594.669 31.012500 *

rpart.plot::prp(regression.tree.a2.mod, extra=101,
box.col="orange", split.box.col="gray")

The entire process is automated in the wrapper method rpartXse()
provided with the DMwR library;81 we (abitrarily) use se= 0�2.81: This library had to be installed from

source �les as it was not available on the
Comprehensive R Archive Network as of
January 2023. library(DMwR)

(regression.tree.a2.final <- DMwR::rpartXse(a2 ~ season +
size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +
PO4 + Chla, data=algae.train, se=0.2))

summary(regression.tree.a2.final)

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.13 7.636697
2) Cl< 16.6875 83 1193.64 1.889157 *
3) Cl>=16.6875 135 23733.92 11.170370 *

Call:

20.6 Example: Algae Blooms 1287

rpart(formula = form, data = data, cp = cp, minsplit = minsplit)
n= 218

CP nsplit rel error xerror xstd
1 0.1508276 0 1.0000000 1.0130822 0.2001495
2 0.1194357 1 0.8491724 0.9320224 0.1752140

Variable importance
Cl PO4 oPO4 Chla NH4 speed
28 17 16 14 14 12

Node number 1: 218 observations, complexity param=0.1508276
mean=7.636697, MSE=134.6565
left son=2 (83 obs) right son=3 (135 obs)
Primary splits:

Cl < 16.6875 to the left, improve=0.15082760, (0 missing)
mxPH < 7.94 to the left, improve=0.14900670, (0 missing)
NO3 < 0.18 to the right, improve=0.11564070, (0 missing)
oPO4 < 45.1 to the left, improve=0.11106510, (0 missing)
Chla < 12.21 to the left, improve=0.09817759, (0 missing)

Surrogate splits:
PO4 < 70.465 to the left, agree=0.844, adj=0.590, (0 split)
oPO4 < 19.8635 to the left, agree=0.835, adj=0.566, (0 split)
NH4 < 46.35 to the left, agree=0.807, adj=0.494, (0 split)
Chla < 2.225 to the left, agree=0.807, adj=0.494, (0 split)
speed splits as RRL, agree=0.775, adj=0.410, (0 split)

Node number 2: 83 observations
mean=1.889157, MSE=14.38121

Node number 3: 135 observations
mean=11.17037, MSE=175.8068

rpart.plot::prp(regression.tree.a2.final, extra=101,
box.col="orange", split.box.col="gray")

The resulting tree is not nearly as complex as the original tree (hence
discourages over�tting) but is still more complex than the pruned tree
(which should improve predicting accuracy).

20.6.2 Model Evaluation

At this stage, we know that the linear model is not great for a2, and
we have seen how to grow a regression tree for a2 but we have not

1288 20 Regression and Value Estimation

yet discussed whether this model is a good �t, to say nothing of the
remaining 6 algae concentrations. Can we get a better handle on these
models’ performance (i.e., comparing the model predictions to the real
values of the target variable in the test data)?

We have discussed various metrics that can be used to determine how the
values compare in Chapter 19; in this case, we elect to use the normalized
mean squared error (NMSE):

MSE

mean
��

real � real8
�2

; 8 = 1� ���� #
� �

As the ratio of MSE to a baseline predictor (the mean of the value of
the target), NMSE is unitless. NMSE values between 0 and 1 (smaller is
better) indicate that the model performs better than the baseline; greater
than 1 indicate that the model’s performance is sub-par.

We use the performanceEstimation library to run 5 � 10�fold cross-
validations to determine which of the models (linear model and 4
regression trees parametrized by se) yields an optimal (smaller) NMSE
value when trying to predict a2.

library(performanceEstimation)
kCV.results.algae.a2 <- performanceEstimation(

PredTask(a2 ~ season + size + speed + mxPH + mnO2 + Cl +
NO3 + NH4 + oPO4 + PO4 + Chla, data=algae.train, "a2"),

c(Workflow(learner="lm",post="onlyPos"),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.25,0.5,0.75,1)))),
EstimationTask(metrics="nmse",

method=CV(nReps=5,nFolds=10))
)

A summary and plot of the cross-validation results for NMSE can be
displayed using calls to summary() and plot().

summary(kCV.results.algae.a2)

== Summary of a Cross Validation Performance Estimation Experiment ==
Task for estimating nmse using 5 x 10-Fold Cross Validation (seed=1234)

* Predictive Tasks :: a2

* Workflows :: lm, rpartXse.v1, rpartXse.v2, rpartXse.v3,
rpartXse.v4, rpartXse.v5

-> Task: a2

*Workflow: lm
nmse

avg 0.9723125
std 0.2221976
med 0.9634147
iqr 0.1771688

20.6 Example: Algae Blooms 1289

min 0.5878283
max 2.0801221
invalid 0.0000000

*Workflow: rpartXse.v1
nmse

avg 1.1148436
std 0.3871551
med 1.0000000
iqr 0.2226673
min 0.5701226
max 2.8186400
invalid 0.0000000

*Workflow: rpartXse.v2
nmse

avg 1.08587675
std 0.35111303
med 1.00000000
iqr 0.07178237
min 0.76004730
max 2.81864005
invalid 0.00000000

*Workflow: rpartXse.v3
nmse

avg 1.035773e+00
std 1.470430e-01
med 1.000000e+00
iqr 2.220446e-16
min 8.044770e-01
max 1.701835e+00
invalid 0.000000e+00

*Workflow: rpartXse.v4
nmse

avg 1.011250e+00
std 1.214329e-01
med 1.000000e+00
iqr 2.220446e-16
min 6.800497e-01
max 1.701835e+00
invalid 0.000000e+00

*Workflow: rpartXse.v5
nmse

avg 1.004167e+00
std 5.174279e-02
med 1.000000e+00
iqr 2.220446e-16
min 8.692699e-01
max 1.339067e+00
invalid 0.000000e+00

1290 20 Regression and Value Estimation

plot(kCV.results.algae.a2)

It is not obvious which of the models has smaller values of NMSE,
although it does seem that the latter versions of the regression tree
models are not substantially better than the baseline model.

The �rst regression tree model sometimes produces very small NMSE
values, but that is o�set by some of the larger values it also produces.82

82: Similarly for the linear model.

At any rate, visual evidence seems to suggest that the linear model is the
best predictive model for a2 given the training data (in this version of
:CV), which is corrobated by a call to topPerformers().

topPerformers(kCV.results.algae.a2)

$a2
Workflow Estimate

nmse lm 0.972

This might seem disheartening at �rst given how poorly the linear model
performed, but it might be helpful to remember that there is no guarantee
that a decent predictive model even exists in the �rst place.

Furthermore, regression trees and linear models are only two of a whole
collection of possible models. How do support vector machines perform
the task, for instance?8383: See Chapter 21 for an in-depth discus-

sion on the topic.
This time, however, we will learn models and perform evaluation for all
target variables (a1-a7) simultaneously. This does not mean that we are
looking for a single model which will optimize all learning tasks at once,
but rather that we can prepare and evaluate the models for each target
variable with the same bit of code.

This �rst require some code to create the appropriate model formulas
(a1 ~ . , ... ,a7 ~ .) and the appropriate training data.

20.6 Example: Algae Blooms 1291

gg <- function(x,list.of.variables){
PredTask(as.formula(paste(x,"~ .")), algae.train[,c(list.of.variables,x)],

x, copy=TRUE)}
(data.sources <- sapply(names(algae.train[12:18]), gg, names(algae.train[1:11])))

$a1
Prediction Task Object:

Task Name :: a1
Task Type :: regression
Target Feature :: a1
Formula :: a1 ~ .

$a2
Prediction Task Object:

Task Name :: a2
Task Type :: regression
Target Feature :: a2
Formula :: a2 ~ .

$a3
Prediction Task Object:

Task Name :: a3
Task Type :: regression
Target Feature :: a3
Formula :: a3 ~ .

$a4
Prediction Task Object:

Task Name :: a4
Task Type :: regression
Target Feature :: a4
Formula :: a4 ~ .

$a5
Prediction Task Object:

Task Name :: a5
Task Type :: regression
Target Feature :: a5
Formula :: a5 ~ .

$a6
Prediction Task Object:

Task Name :: a6
Task Type :: regression
Target Feature :: a6
Formula :: a6 ~ .

$a7
Prediction Task Object:

Task Name :: a7
Task Type :: regression
Target Feature :: a7
Formula :: a7 ~ .

1292 20 Regression and Value Estimation

We shall use e1071’s implementation of svm(), with various values of
the svm()-speci�c parameters cost and gamma.

library(e1071)
kCV.results.algae.all <- performanceEstimation(

data.sources,
c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(
cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse", learner.pars=list(
se=c(0,0.7,1)))),

EstimationTask(metrics="nmse",
method=CV(nReps=5, nFolds=10)))

The rest of the evaluation proceeds much as before, except that we can
display results for the 7 target variables simultaneously.

plot(kCV.results.algae.all)

rankWorkflows(kCV.results.algae.all,top=3)

$a1$nmse
Workflow Estimate

1 rpartXse.v1 0.6163406
2 rpartXse.v2 0.6278027
3 rpartXse.v3 0.6430736

$a2$nmse
Workflow Estimate

1 lm 0.9723125
2 svm 0.9954432
3 rpartXse.v3 1.0041667

20.6 Example: Algae Blooms 1293

$a3$nmse
Workflow Estimate

1 svm 0.9497730
2 lm 0.9801662
3 rpartXse.v2 1.0000000

$a4$nmse
Workflow Estimate

1 rpartXse.v3 1.001453
2 rpartXse.v2 1.351494
3 lm 1.357243

$a5$nmse
Workflow Estimate

1 svm 0.9968475
2 rpartXse.v3 0.9990465
3 rpartXse.v2 1.0194733

$a6$nmse
Workflow Estimate

1 rpartXse.v2 1.010069
2 rpartXse.v3 1.010069
3 svm 1.054975

$a7$nmse
Workflow Estimate

1 rpartXse.v2 1.00000
2 rpartXse.v3 1.00000
3 rpartXse.v1 1.00797

topPerformers(kCV.results.algae.all)

$a1
Workflow Estimate

nmse rpartXse.v1 0.616

$a2
Workflow Estimate

nmse lm 0.972

$a3
Workflow Estimate

nmse svm 0.95

$a4
Workflow Estimate

nmse rpartXse.v3 1.001

$a5
Workflow Estimate

nmse svm 0.997

1294 20 Regression and Value Estimation

$a6
Workflow Estimate

nmse rpartXse.v2 1.01

$a7
Workflow Estimate

nmse rpartXse.v2 1

For a1, the models seem to perform reasonably well, but it is not as rosy
for the other target variables, where the baseline model is sometimes
better.8484: Again, this could be built-in in the

data, but we might bene�t from incorpo-
rating more models.

library(randomForest)
kCV.algae.all.rf <- performanceEstimation(

data.sources,
c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(
cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse",
learner.pars=list(se=c(0,0.7,1))),

workflowVariants(learner="randomForest",
learner.pars=list(ntree=c(200,500,700)))),

EstimationTask(metrics="nmse", method=CV(nReps=5,
nFolds=10))

)

rankWorkflows(kCV.algae.all.rf,top=3)

$a1$nmse
Workflow Estimate

1 randomForest.v2 0.5217204
2 randomForest.v3 0.5228744
3 randomForest.v1 0.5264328

$a2$nmse
Workflow Estimate

1 randomForest.v3 0.7798749
2 randomForest.v2 0.7806831
3 randomForest.v1 0.7849360

$a3$nmse
Workflow Estimate

1 randomForest.v3 0.9377108
2 randomForest.v2 0.9400108
3 randomForest.v1 0.9431801

$a4$nmse
Workflow Estimate

1 rpartXse.v3 1.001453
2 randomForest.v3 1.006496
3 randomForest.v1 1.006806

20.6 Example: Algae Blooms 1295

$a5$nmse
Workflow Estimate

1 randomForest.v1 0.7626241
2 randomForest.v2 0.7675794
3 randomForest.v3 0.7681834

$a6$nmse
Workflow Estimate

1 randomForest.v2 0.8590227
2 randomForest.v3 0.8621478
3 randomForest.v1 0.8663869

$a7$nmse
Workflow Estimate

1 rpartXse.v2 1.00000
2 rpartXse.v3 1.00000
3 rpartXse.v1 1.00797

rankWorkflows() does not report on the standard error, so we cannot
tell whether the di�erences between the score of the best model and the
other models is statistically signi�cant.

randomForest.v3 seems to have the best ranking across all learning
tasks, so we will use it as the baseline model.

p <- pairedComparisons(kCV.algae.all.rf,
baseline="randomForest.v3")

p$nmse$F.test
p$nmse$BonferroniDunn.test

$chi
[1] 22.86905

$FF
[1] 5.251025

$critVal
[1] 0.7071231

$rejNull
[1] TRUE

$critDif
[1] 3.52218

$baseline
[1] "randomForest.v3"

$rkDifs
lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

4.1428571 2.8571429 4.1428571 2.6428571 1.9285714
randomForest.v1 randomForest.v2

0.8571429 0.0000000

1296 20 Regression and Value Estimation

$signifDifs
lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

TRUE FALSE TRUE FALSE FALSE
randomForest.v1 randomForest.v2

FALSE FALSE

We can reject with 95% certainty the hypothesis that the performance of
the baseline method (randomForest.v3) is the same as that of the linear
model and the �rst 2 regression trees, but not that it is better than svm,
rpartXse.v3, and the other 2 random forests.

The information is also displayed in the Bonferroni-Dunn CD diagram
below.

CDdiagram.BD(p)

20.6.3 Model Predictions

Finally, we might actually be interested in generating predictions for each
of the target variables in the testing set. This simply requires that the best
performers for each target response be brought together in an R object.

best.performers <- sapply(taskNames(kCV.algae.all.rf),
function(x) topPerformer(kCV.algae.all.rf,

metric="nmse", task=x)
best.performers

$a1
Workflow Object:

Workflow ID :: randomForest.v2
Workflow Function :: standardWF

Parameter values:
learner.pars -> ntree=500
learner -> randomForest

$a2
Workflow Object:

Workflow ID :: randomForest.v3
Workflow Function :: standardWF

Parameter values:
learner.pars -> ntree=700
learner -> randomForest

20.6 Example: Algae Blooms 1297

$a3
Workflow Object:

Workflow ID :: randomForest.v3
Workflow Function :: standardWF

Parameter values:
learner.pars -> ntree=700
learner -> randomForest

$a4
Workflow Object:

Workflow ID :: rpartXse.v3
Workflow Function :: standardWF

Parameter values:
learner.pars -> se=1
learner -> rpartXse

$a5
Workflow Object:

Workflow ID :: randomForest.v1
Workflow Function :: standardWF

Parameter values:
learner.pars -> ntree=200
learner -> randomForest

$a6
Workflow Object:

Workflow ID :: randomForest.v2
Workflow Function :: standardWF

Parameter values:
learner.pars -> ntree=500
learner -> randomForest

$a7
Workflow Object:

Workflow ID :: rpartXse.v2
Workflow Function :: standardWF

Parameter values:
learner.pars -> se=0.7
learner -> rpartXse

The observations that form the testing set are placed in an object, as
below:

test.observations <- array(dim=c(nrow(algae.test),7,2),
dimnames=list(rownames(algae.test), paste("a",1:7),

c("actual","predicted")))

The function runWorkflow() will compute the predicted values for each
of the targets’ best performers. We can then plot the predicted and actual
values for each of the testing set targets.

1298 20 Regression and Value Estimation

for(j in 1:7){
results <- runWorkflow(best.performers[[j]],

as.formula(paste(names(best.performers)[j],"~ .")),
algae.train[,c(1:11,11+j)],
algae.test[,c(1:11,11+j)])

test.observations[,j,"actual"] <- results$trues
test.observations[,j,"predicted"] <- results$preds

}

df.a1 <- as.data.frame(test.observations[,1,])
df.a2 <- as.data.frame(test.observations[,2,])
df.a3 <- as.data.frame(test.observations[,3,])
df.a4 <- as.data.frame(test.observations[,4,])
df.a5 <- as.data.frame(test.observations[,5,])
df.a6 <- as.data.frame(test.observations[,6,])
df.a7 <- as.data.frame(test.observations[,7,])

plot(df.a1,main="a1 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a2,main="a2 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a3,main="a3 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a4,main="a4 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a5,main="a5 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a6,main="a6 - predicted vs. actual")
abline(0,1,col="red")
plot(df.a7,main="a7 - predicted vs. actual")
abline(0,1,col="red")

The models simply are not that great, but we already expected that. The
average prediction for each target is shown below.

(average.prediction <- apply(algae.train[,12:18],2, mean))

a1 a2 a3 a4 a5 a6 a7
17.47 7.64 4.13 1.98 4.96 5.81 2.50

20.7 Exercices 1299

Finally, you might be interested in the NMSE metrics for the predicted
values and how they compare to the NMSE metrics on the training set. Is
any of this surprising?

apply((test.observations[,,"actual"] - test.observations[,,"predicted"])^2, 2, sum) /
apply((scale(test.observations[,,"actual"], average.prediction,FALSE))^2, 2, sum)

a1 a2 a3 a4 a5 a6 a7
0.40 0.88 0.78 1.00 0.71 0.84 1.00

20.7 Exercises

1. Let „-�.” be a bivariate normal random variable with parameters

�- = 12� �. = �7� �2
- = 1� �2

. = 2� �-. = 4�

Consider the parameter

 =
�2
. � �-.

�2
- ‚ �

2
. � 2�-.

�

Using a bootstrap procedure with # = 100 samples and" = 200 replicates, provide a con�dence interval
for the true value of
. [5]

2. Explicitly obtain the polynomial regression models in the Gapminder Example, for 3 = 2� 3� 4.
3. Play around with a variety of knots in the step function regression models for the Gapminder Example,

and build the corresponding con�dence intervals (including those of the example). How would you
determine the number and location of the knots?

4. Determine the optimal number of knots for cubic splines and natural cubic splines for the Gapminder
Example, using cross-validation.

5. Build piecewise cubic splines and continuous piecewise cubic splines for the Gapminder Example. Use
cross-validation to determine the optimal number of knots.

6. Predict life expectancy of countries in 2011 using the various spline models (in the text and in the exercises)
on the Gapminder dataset, with training/testing pairs. Evaluate your models. Which ones perform best?

7. Predict life expectancy of countries in 2011 using various GAMmodels on the Gapminder dataset, with
training/testing pairs. Evaluate your models. Which ones perform best?

8. Consider the dataset algae_blooms.csv, as in Section 20.6. Run the analysis with a scaled dataset. Run
the analysis with a PCA-reduced dataset. Do the results change signi�cantly?

9. Consider the following datasets:

GlobalCitiesPBI.csv
2016collisionsfinal.csv
polls_us_election_2016.csv
HR_2016_Census_simple.xlsx , and
UniversalBank.csv .

For each of these datasets, identify a response variable (or more than one, if the fancy strikes you) and
predictors, and build models to predict the response(s) using the various methods discussed in this
chapter. Evaluate and rank the resulting models. You may need to clean, transform, and visualize the data
along the way.

10. Complete the de�nition of the Python function kfoldCV(k, data, yname, formulas) where k is the
number of folds, data is the data set, yname is the column name of the dependent variable, and formulas
is a list of formulas. The function should return the tuple fit, f where fit is the OLS model for the
formula f in formulas that has the minimum :�fold CV estimate. Use it on the mpg data set with : = 10
to obtain a good model for predicting mpg.

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv

1300 20 Regression and Value Estimation

import seaborn as sns

df = sns.load_dataset(’mpg’)
df.head()

def kfoldCV(k, data, yname, formulas):
fit = None
Your code here. Don’t forget to obtain a
random permutation of the observations

for f in formulas:
Your code here
None

return fit, f

Chapter References

[1] B. Boehmke and B. Greenwell. Hands on Machine Learning with R . CRC Press.

[2] G.E.P. Box. ‘Use and Abuse of Regression’. In: Journal of Technometrics 8.4 (Nov. 1966), pp. 625�629.

[3] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction , 2nd ed. Springer, 2008.

[4] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity : the LASSO and Generaliza-
tions. Monographs on statistics and applied probability, no. 143. CRC Press, 2015.

[5] G. James et al. An Introduction to Statistical Learning: With Applications in R . Springer, 2014.

[6] M.H. Kutner et al. Applied Linear Statistical Models. McGraw Hill Irwin, 2004.

[7] D. Robinson. ‘What’s the di�erence between data science, machine learning, and arti�cial intelligence?
’. In: Variance Explained (Jan. 2018).

[8] H. Rosling. The Health and Wealth of Nations . Gapminder Foundation, 2012.

[9] H. Rosling, O. Rosling, and A.R. Rönnlund. Factfulness: Ten Reasons We’re Wrong About The World - And
Why Things Are Better Than You Think . Hodder & Stoughton, 2018.

[10] H. Sahai and M.I. Ageel. The Analysis of Variance: Fixed, Random and Mixed Models. Birkhäuser, 2000.

[11] L. Torgo. Data Mining with R, 2nd ed. CRC Press, 2016.

[12] D.H. Wolpert and W.G. Macready. ‘Coevolutionary free lunches’. In: IEEE Transactions on Evolutionary
Computation 9.6 (2005), pp. 721�735. doi : 10.1109/TEVC.2005.856205.

[13] D.H. Wolpert and W.G. Macready. ‘No free lunch theorems for optimization’. In: IEEE Transactions on
Evolutionary Computation (1997).

https://bradleyboehmke.github.io/HOML/
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/ElemStatLearn/
https://www.statlearning.com/
http://varianceexplained.org/r/ds-ml-ai/
http://varianceexplained.org/r/ds-ml-ai/
https://www.gapminder.org/tools/
https://books.google.ca/books?id=N94sDwAAQBAJ
https://books.google.ca/books?id=N94sDwAAQBAJ
https://doi.org/10.1109/TEVC.2005.856205

	Regression and Value Estimation
	Statistical Learning

