
Focus on Classification and
Supervised Learning 21

21.1 Overview 1301
Formalism 1301
Model Evaluation 1303
Bias-Variance Trade-Off . 1303

21.2 Simple Classifiers 1306
Logistic Regression 1310
Discriminant Analysis . . 1315
ROC Curve 1322

21.3 Rare Occurrences 1325
21.4 Other Approaches 1327

Tree-Based Methods . . . 1327
Support Vector Machines 1342
Artificial Neural Networks 1358
Naïve Bayes Classifiers . . 1383

21.5 Ensemble Learning 1391
Bagging 1392
Random Forests 1396
Boosting 1398

21.6 Exercises 1410
Chapter References 1411

by Patrick Boily, with contributions from Olivier Leduc and Shintaro
Hagiwara

In Chapter 19 (Machine Learning 101), we provided a (mostly) math-free

general overview of machine learning. In this chapter, we present an

introductory mathematical treatment of the discipline, with a focus

on classification, ensemble learning, and non-parametric supervised

methods.

Our approach once again borrows heavily from [14, 18]; explanations

and examples are also available in [3, 6]. It provides a continuation of the

treatment found in Chapter 20 (Regression and Value Estimation) and is a

companion piece to Chapter 22 (Focus on Clustering).

21.1 Overview

We will discuss classification in the same context as we discussed re-

gression/value estimation in Section 20.1; the latter should have been

read before embarking on this chapter.
1

In particular, it is expected that 1: Or, at the very least, should be read

concurrently.
readers are familiar with training sets Tr and testing sets Te for a dataset

with 𝑛 observations x1 , . . . , x𝑛 , 𝑝 predictors 𝑋1 , . . . , 𝑋𝑝 and response

variable 𝑌 (see Figure 20.4 for details).

One important note about this chapter’s notation: in the design matrix X,

a row corresponds to the signature vector of an observation (the values of

the predictors); when we write x or 𝜷, we typically understand those to

be column vectors. When in doubt, remember that all matrices/vectors

involved must have compatible dimensions when multiplied or compared;

that will sometimes mean that vectors must be viewed as row-vectors

rather than column vectors, and vice-versa, depending on the context.

21.1.1 Formalism

In a classification setting, the response 𝑌 is categorical, which is to

say that 𝑌 ∈ C, where C = {𝐶1 , . . . , 𝐶𝐾}, but the supervised learning

objectives remain the same:

build a classifier 𝐶(x∗) that assigns a label 𝐶𝑘 ∈ C to test observa-

tions x∗;
understand the role of the predictors in this assignment, and

assess the uncertainty and the accuracy of the classifier.

1302 21 Focus on Classification and Supervised Learning

The main difference with the regression setting (and to be fair, it’s a big

one) is that we do not have access to an MSE-type metric to evaluate the

classifier’s performance.

The counterpart of the regression function

𝑓 (x) = E[𝑌 | ®𝑋 = x]

is defined as follows. For 1 ≤ 𝑘 ≤ 𝐾, let 𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x);2 the2: In other words, pick the most numerous

categorical label of observations for which

the signature vector is x.

Bayes optimal classifier at x is the function

𝐶(x) = 𝐶 𝑗 where 𝑝 𝑗(x) = max{𝑝1(x), . . . , 𝑝𝐾(x)}.

As was the case or regression, it could be that there are too few observa-

tions at
®𝑋 = x to estimate the probability exactly, in which case we might

want to allow for nearest neighbour averaging:

𝐶̂(x) = 𝐶 𝑗 , where 𝑝̃ 𝑗(x) = max{𝑝̃1(x), . . . , 𝑝̃𝐾(x)},

and 𝑝̃𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 ∈ 𝑁(x)) and 𝑁(x) is a neighbourhood of x.
3

3: The curse of dimensionality is also in

play when 𝑝 becomes too large.

The quantity that plays an analogous role to the MSE for 𝐶̃(x) is the

misclassification error rate:

ERRTe =
1

𝑀

𝑁+𝑀∑
𝑗=𝑁+1

I[𝑦 𝑗 ≠ 𝐶̃(x𝑗)],

where I is the indicator function

I[condition] =
{

0 if the condition is false

1 otherwise

The Bayes optimal classifier 𝐶(x) is the optimal classifier with respect to

ERRTe; the Bayes error rate

𝜂x = 1 − E

[
max

𝑘
𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x)

]
corresponds to the irreducible error and provides a lower limit on any

classifier’s expected error.

Most classifiers build structured models 𝐶̂(x)which directly approximate

the Bayes optimal classifier 𝐶(x) (such as support vector machines or

naïve Bayes classifiers), but some classifiers build structured models 𝑝̂𝑘(x)
for the conditional probabilities 𝑝𝑘(x), 1 ≤ 𝑗 ≤ 𝐾, which are then used

to build 𝐶̂(x), such as logistic regression, generalized additive models,

and 𝑘−nearest neighbours.

The latter models are said to be calibrated (i.e., the relative values of 𝑝̂𝑘(x)
represent relative probabilities), whereas the former are non-calibrated.

4

4: Only the most likely outcome is pro-

vided; it is impossible to say to what ex-

tent a given outcome is more likely than

another.

21.1 Overview 1303

21.1.2 Model Evaluation

The confusion matrix of a classifier on Te is a tool to evaluate the model’s

performance:

prediction
0 1

actual 0 TP FN

1 FP TN

Here, TP stands for true positive, FN for true negative, FP for false
positive, and TN for true negative. There are various classifier evaluation
metrics; if the testing set Te has 𝑀 observations, then:

accuracy measures the correct classification rate
TP+TN

𝑀 ;

misclassification is
FP+FN

𝑀 = 1 − accuracy;

false positive rate (FPR) is
FP

FP+TN
;

false negative rate (FNR) is
FN

TP+FN
;

true positive rate (TPR) is
TP

TP+FN
;

true negative rate (TNR) is
TN

FP+TN
;

There are other measures, including the 𝐹1−score, the Matthews’ correla-

tion coefficient, etc. [28].

One thing to remember is that we should not put all the performance

evaluation eggs in the same metric basket!

21.1.3 Bias-Variance Trade-Off

The bias-variance trade-off (see Section 20.1) is also observed in classifiers,

although the decomposition is necessarily different (see [14] for details).

In a 𝑘−nearest neighbours classifier, for instance, the prediction for a

new observation with predictors x∗ ∈ Te is obtained by finding the most

frequent class label of the 𝑘 nearest neighbours to x∗ in Tr on which the

model 𝐶̂𝑘NN(x) is built.

As the number of nearest neighbours under consideration increases, the

complexity of the model 𝐶̂𝑘NN(x) decreases, and vice-versa.

We would thus expect:

a model with a large 𝑘 to underfit the data;

a model with a small 𝑘 to overfit the data, and

models in the “Goldilock zone” to strike a balance between predic-
tion accuracy and interpretability of the decision boundary (see

Figures 20.5 and 21.1).

As it happens, the optimal classifier 𝑌 = 𝐶(®𝑋) is, in fact, the Bayes

optimal classifier.

1304 21 Focus on Classification and Supervised Learning

Figure 21.1: Illustration of the accuracy-boundary interpretability trade-off for classifiers on an artificial dataset; Bayes optimal classifier

𝐶(x) (leftmost), underfit 𝐶̂100NN(x)model (2nd leftmost), Goldilock 𝐶̂10NN(x)model (3rd leftmost), overfit 𝐶̂1NN(x)model (4th leftmost).

Notice the interplay between prediction accuracy and complexity of the decision boundary (the dashed curve in the last three graphs shows

the Bayes optimal boundary). [18, 14]

Comparison Between 𝑘NN and OLS We are going to try to get a better

intuitive sense of the bias-variance trade-off by comparing ordinary least

squares (OLS), a rigid yet simple model (as measured by the number of

effective parameters), with 𝑘−nearest neighbours (𝑘NN), a very flexible

yet more complex model (again, according to the number of effective

parameters).

Given an input vector z ∈ ℝ𝑝
, the 𝑘−nearest neighbours (𝑘NN) model

predicts the response 𝑌 as the average

𝑌̂ = Avg{𝑌(x) | x ∈ 𝑁𝑘(z)} =
1

𝑘

∑
x∈𝑁(z)

𝑌(x),

where 𝑌(x) is the known response for predictor x ∈ Tr and 𝑁𝑘(z) is

the set of the 𝑘 training observations nearest to z. Another approach to

neighbourhoods, which we will use at a later stage, is that they contain

all training observations within a certain (fixed) distance of z.
5

5: The notion of proximity depends on

the distance metric in use; the Euclidean

case is the most common, but it does not

have to be that one.

For classification problems, 𝑘NN models use the mode instead of the

average. Of course, the prediction may depend on the value of 𝑘: in

the classification image below, the 6NN prediction would be a red star,

whereas the 19NN model prediction would be a blue disk.

Figure 21.2: Illustration of 𝑘NN classifiers.

21.1 Overview 1305

Figure 21.3: Classification based on OLS (left), 1NN (middle), and 15NN (right). [18, 14]

The following classification example (based on [14]) illustrates some of

the bias-variance trade-off consequences. Consider a training dataset Tr

consisting of 200 observations with features (𝑥1 , 𝑥2) ∈ ℝ2
and responses

𝑦 ∈ {BLUE(=0) ,ORANGE(=1)}. Let [·] : ℝ→ {BLUE,ORANGE} denote

the function

[𝑤] =
{

BLUE 𝑤 ≤ 0.5

ORANGE 𝑤 > 0.5

Linear Fit Fit an OLS model

𝑦̂(x) = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2

on Tr; the class prediction is 𝑔̂(x) = [𝑦̂(x)]. The decision boundary

𝜕OLS = {(𝑥1 , 𝑥2) | 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 = 0.5}

is shown in Figure 21.3 (on the left); it is a straight line which can be

described using only 2 effective parameters.
6

6: Their number is a measure of a model’s

complexity.

There are several misclassifications on both sides of 𝜕OLS; even though

errors seem to be unavoidable, the OLS model is likely to be too rigid.

𝑘NN Fit If 𝑦̂(x) represents the proportion of ORANGE points in 𝑁𝑘(x),
then the class prediction is 𝑔̂(x) = [𝑦̂(x)]. The decision boundaries 𝜕1NN

and 𝜕15NN are displayed in Figure 21.3.

They are both irregular: 𝜕1NN is overfit, whereas 𝜕15NN is less likely to

be.
7

The effective parameters are not as obviously defined for this model; 7: Although neither is great for inter-
pretability.

one approach is to view 𝑘NN as a model that fits 1 parameter (a mean)

to each ideal (non-overlapping) neighbourhood in the data, so that the

number of effective parameters is roughly equal to the number of such

neighbourhoods:

𝑁

𝑘
≈

{
13 when 𝑘 = 15

200 when 𝑘 = 1

The 𝑘NN models are thus fairly complex, in comparison with the OLS

model. There are no misclassification for 𝑘 = 1, and several in the case

𝑘 = 15.
8

The 15NN model seems to strike a balance between various 8: But not as many as with the OLS model.

competing properties; it is likely nearer the “sweet spot” of the test error

curve.
9

9: Remember however that we have not

evaluated the performance of the models

on a testing set Te; we have only described

some of their behaviours on the train-

ing set Tr.

1306 21 Focus on Classification and Supervised Learning

Conclusions The OLS model is stable as adding a few training obser-

vations is unlikely to alter the fit substantially, but also biased since the

assumptions of a valid linear fit is questionable; the 𝑘NN models are

unstable as adding a few training observations is quite likely to alter the

fit substantially (especially for small values of 𝑘)), but it is also unbiased
since no apparent assumptions are made about the data.

So which approach is best? That depends entirely on what the ultimate

task is: description, prediction, etc. In predictive data science, machine

learning, and artificial intelligence, the validity of modeling assumptions

takes a backseat to a model’s ability to make good predictions on new
(and unseen) observations.

Naturally, we would expect that models whose assumptions are met are

more likely to make good predictions than models for whom that is not

the case, but it does not need to be the case. The theory of linear models

is mature and extensive, and we could have discussed a number of their

other features and extensions (see Chapter 8 for details).

Keep in mind, then, that machine learning methods are not meant to

replace or supplant classical statistical analysis methods, but rather, to

complement them. They simply provide different approaches to gain
insights from data.

21.2 Simple Classification Methods

Qualitative variables take values in an unordered set C= {𝐶1 , . . . , 𝐶𝐾}.
For instance,

hair colour ∈ {black, red, blond, grey, other}
email message ∈ {ham, spam}
life expectancy ∈ {high, low}

For a training set Tr with observations (®𝑋,𝑌) ∈ ℝ𝑝 × C, the classification
problem is to build a classifier 𝐶̂ : ℝ𝑝 → C to approximate the optimal

Bayes classifier 𝐶 : ℝ𝑝 → C (as discussed in the previous section).

In many instances, we might be more interested in the probabilities

𝜋𝑘(x) = 𝑃{𝐶̂(x) = 𝐶𝑘}, 𝑘 = 1, . . . , 𝐾

than in the classification predictions themselves. Typically, the classifier

𝐶̂ is built on a training set

Tr = {(x𝑗 , 𝑦𝑗)}𝑁𝑗=1

and evaluated on a testing set

Te = {(x𝑖 , 𝑦𝑖)}𝑁+𝑀𝑖=𝑁+1
.

Example Let us revisit the gapminder.csv dataset, again focusing

on observations from 2011, with the difference that life expectancy is now

recorded as “high” (1) if it falls above 72.45 (the median in 2011), and as

“low” (0) otherwise.

https://www.data-action-lab.com/wp-content/uploads/2021/08/gapminder.csv

21.2 Simple Classifiers 1307

Setting up the Gapminder dataset

library(dplyr)

gapminder.ML = read.csv("gapminder.csv",

stringsAsFactors=TRUE)

gapminder.ML <- gapminder.ML[complete.cases(gapminder.ML),]

gapminder.ML <- gapminder.ML[,c("country","year","region",

"continent","population","infant_mortality",

"fertility","gdp","life_expectancy")]

gapminder.2011 <- gapminder.ML |> filter(year==2011) |>

mutate(LE=as.factor(ifelse(life_expectancy <

median(life_expectancy),"low","high")))

The structure and summary are provided below:

summary(gapminder.2011[,c("infant_mortality",

"fertility", "LE")])

infant_mortality fertility LE

Min. : 1.800 Min. :1.260 high:83

1st Qu.: 7.275 1st Qu.:1.792 low :83

Median : 16.900 Median :2.420

Mean : 27.333 Mean :2.931

3rd Qu.: 41.125 3rd Qu.:3.908

Max. :106.800 Max. :7.580

Let us assume that we are interested in modeling the response LE (𝑌) as

a linear response of the predictors 𝑋1 (infant mortality) and 𝑋2 (fertility),

using ordinary linear regression (OLS).
10

10: See Chapter 8 for a detailed discussion

of such models.

p1 <- ggpubr::ggboxplot(gapminder.2011, x = "LE",

y = "infant_mortality", fill = "LE", palette = "jco",

xlab="Life Expectancy", ylab="Infant Mortality") +

ggpubr::rremove("legend")

p2 <- ggpubr::ggboxplot(gapminder.2011, x = "LE",

y = "fertility", fill = "LE", palette = "jco",

xlab="Life Expectancy", ylab="Fertility") +

ggpubr::rremove("legend")

grid::pushViewport(grid::viewport(

layout = grid::grid.layout(nrow = 1, ncol = 2)))

helper function to define a region on the layout

define_region <- function(row, col){

grid::viewport(layout.pos.row = row, layout.pos.col = col)

}

print(p1, vp = define_region(row = 1, col = 1))

print(p2, vp = define_region(row = 1, col = 2))

1308 21 Focus on Classification and Supervised Learning

We run an OLS regression of 𝑌 on
®𝑋 over Tr and obtain the model

𝑌̂ = 𝛽̂0 + 𝛽̂1 · infant mortality + 𝛽̂2 · fertility,

from which we would classify an observation’s life expectancy as

𝐶̂(®𝑋) =
{
high if 𝑌̂ > 0.5

low else

gapminder.2011 <- gapminder.2011 |>

mutate(LE.resp=ifelse(LE=="high",1,0))

model.class <- lm(LE.resp ~ infant_mortality + fertility,

data=gapminder.2011)

beta_0=as.numeric(model.class[[1]][1])

beta_1=as.numeric(model.class[[1]][2])

beta_2=as.numeric(model.class[[1]][3])

model.class[[1]]

(Intercept) infant_mortality fertility

1.00102979 -0.01188533 -0.06010533

Thus,

𝑌̂ = 1.001 − 0.012 · infant mortality − 0.060 · fertility.

We plot the decision boundary on the scatterplot of the domain:
11

11: If the boundary splits the observations

at 𝑌̂ = 𝛾 ∈ [0, 1], then it solves

𝛾 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 , 𝛽2 ≠ 0,

so that

𝑋2 =

(
𝛾 − 𝛽0

𝛽2

)
−

𝛽1

𝛽2

𝑋1 .

slope = -beta_1/beta_2

intercept = 0.5*(1-2*beta_0)/beta_2

ggpubr::ggscatter(gapminder.2011, x="infant_mortality",

y="fertility", shape="LE", color="LE", palette="jco",

size = 2, xlab="Infant Mortality", ylab = "Fertility",

21.2 Simple Classifiers 1309

title = "Gapminder 2011 Data") +

ggplot2::geom_abline(intercept = intercept,

slope = slope, color="red", linetype="dashed", size=1.5)

The OLS approach is likely to do a decent job here since the data is

roughly linearly separable over the predictors. This will not usually be

the case, however.

In the example above, the optimal regression function is

𝑓 (x) = E[𝑌 | ®𝑋 = x] = 𝑃(𝑌 = 1 | ®𝑋 = x) = 𝑝1(x)

because𝑌 is a binary variable; this might lead us to believe that 𝑓 (x) could

also be used to directly classify and determine the class probabilities for

the data, in which case there would be no need for a separate classification
apparatus.

12
12: There is one major drawback with this

approach: if linear regression is used to

model the data (which is to say, if we as-

sume that 𝑓 (x) ≈ x⊤𝜷), we need to insure

that 𝑓OLS(x) ∈ [0, 1] for all x ∈ Te. This, in

general, cannot be guaranteed.

A problem arises if we study the residual situation further. If we model

𝑌 = {0, 1} with an OLS regression, we have

𝑌𝑖 = x⊤𝑖 𝜷 + 𝜀𝑖 .

Thus

𝜀𝑖 = 𝑌𝑖 − x⊤𝑖 𝜷 =

{
1 − x⊤

𝑖
𝜷 if 𝑌𝑖 = 1

−x⊤
𝑖
𝜷 if 𝑌𝑖 = 0

But OLS assumes that 𝜺 ∼N(0, 𝜎2𝐼), which is clearly not the case here,

as 𝜀𝑖 can only take two values. OLS is thus not an appropriate way to

model the response.

Furthermore,

Var(𝑌𝑖) = 𝑝1(x𝑖)(1 − 𝑝1(x𝑖)),

since 𝑌𝑖 is a binomial random variable, and

Var(𝜀𝑖) = Var(𝑌𝑖 − 𝑝1(x𝑖)) = Var(𝑌𝑖) = 𝑝1(x𝑖)(1 − 𝑝1(x𝑖)),

which is not constant as it depends on x𝑖 .

1310 21 Focus on Classification and Supervised Learning

The OLS assumptions are thus violated at every turn
13

– OLS is simply13: There is another way in which OLS

could fail, but it has nothing to do with the

OLS assumptions per se. When the set of

qualitative responses contains more than

2 level (such as C= {low, medium, high},
for instance), the response is usually en-

coded using numerals to facilitate the im-

plementation of the analysis:

𝑌 =


0 if low

1 if medium

2 if high

This encoding suggests an ordering
and a scale between the levels (for in-

stance, the difference between “high” and

“medium” is equal to the difference be-

tween “medium” and “low”, and half

again as large as the difference between

“high” and “low”). OLS is not appropriate

in this context.

not a good fit/modeling approach to estimate

𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x).

We start by introducing two simple classification methods (see [18] for

more details).

21.2.1 Logistic Regression

The problems presented above point to OLS not being an ideal method for

classification, but the linear regression still provided a good separator in

the Gapminder example. This suggests that we should not automatically

reject the possibility of first transforming the data and then seeing if OLS

might not provide an appropriate modeling strategy on the transformed

data.

Formulations In logistic regression, we are seeking an invertible trans-

formation 𝑔 : ℝ→ [0, 1], with 𝑔(𝑦∗) = 𝑦 and 𝑔−1(𝑦) = 𝑦∗. The variable

𝑦 must behave like a probability; in the 2-class setting, we use 𝑔𝐿(𝑦∗) to
approximate the probability

𝑝1(x) = 𝑃(𝑌 = 1 | ®𝑋 = x).

The idea is to run OLS on a transformed training set

Tr
∗ = {(x𝑖 , 𝑦∗𝑖)}

𝑁
𝑖=1
,

and to transform the results back using 𝑦𝑖 = 𝑔(𝑦∗
𝑖
).

There are many such functions: the probit model,
14

which we will14: The probit transformation uses

𝑔𝑃(𝑦∗) = Φ(𝑦∗), whereΦ is the cumulative

distribution function of N(0, 1).
not discuss, and the logit model regression model are two common

approaches.

Logit Model The logit model uses the transformation

𝑦 = 𝑔𝐿(𝑦∗) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ .

It is such that

𝑔−1

𝐿 (0) = −∞, 𝑔−1

𝐿 (1) = ∞, 𝑔−1

𝐿 (0.5) = 0, etc.

We solve for 𝑦∗ in order to get a transformed response 𝑦∗ ∈ ℝ (instead of

one restricted to [0, 1]):

𝑝1(x) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ ⇐⇒ 𝑦∗ = 𝑔−1

𝐿 (𝑦) = ln

(
𝑝1(x)

1 − 𝑝1(x)

)
.

It is the log-odds transformed observations that we attempt to fit with

an OLS model:

𝑌̂∗ = ln

(
𝑝1(x)

1 − 𝑝1(x)

)
= 𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑝𝑋𝑝 = x⊤𝜷.

21.2 Simple Classifiers 1311

In order to make a prediction for 𝑝1(x), we estimate 𝑦∗ and use the logit

transformation to recover 𝑦. For instance, if x⊤𝜷̂ = 0.68, then

𝑦̂∗ = ln

(
𝑝̂1(x)

1 − 𝑝̂1(x)

)
= 0.68

and

𝑝̂1(x) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ =
𝑒0.68

1 + 𝑒0.68

= 0.663.

Depending on the decision rule threshold 𝛾, we may thus predict that

𝐶̂(x) = 𝐶1 if 𝑝1(x) > 𝛾 or 𝐶̂(x) = 𝐶2, otherwise.

The technical challenge is in obtaining the coefficients 𝜷̂; they are found

by maximizing the likelihood (see [17])

𝐿(𝜷) =
∏
𝑦𝑖=1

𝑝1(x𝑖)
∏
𝑦𝑖=0

(1 − 𝑝1(x𝑖))

=
∏
𝑦𝑖=1

exp(xi
⊤𝜷)

1 + exp(xi⊤𝜷)
∏
𝑦𝑖=0

1

1 + exp(xi⊤𝜷)
,

or, more simply:

𝜷̂ = arg max

𝜷
{𝐿(𝜷)} = arg max

𝜷
{ln 𝐿(𝜷)}

= arg max

𝜷

{∑
𝑦𝑖=1

ln 𝑝1(x𝑖) +
∑
𝑦𝑖=0

ln(1 − 𝑝1(x𝑖))
}

= ... (terms in 𝜷 and the observations x𝑖).

The optimizer 𝜷̂ is then found using numerical methods; in R, the function

glm() computes the maximum likelihood estimate directly.

Example Using the Gapminder data from this section’s start, we obtain

the following model:

model.LR <- glm(LE.resp ~ infant_mortality + fertility,

data=gapminder.2011, family=binomial)

model.LR

Coefficients:

(Intercept) infant_mortality fertility

4.58733 -0.22499 -0.06495

Degrees of Freedom: 165 Total (i.e. Null); 163 Residual

Null Deviance: 230.1

Residual Deviance: 78.17 AIC: 84.17

Thus

𝑦̂∗ = ln

(
𝑃(𝑌 = high | ®𝑋)

1 − 𝑃(𝑌 = high | ®𝑋)

)
= 4.59 − 0.22𝑋1 − 0.06𝑋2.

For a decision rule threshold of 𝛾 = 0.5, the decision boundary is shown

below (compare with the linear regression boundary on page 1309).

1312 21 Focus on Classification and Supervised Learning

beta_0 = as.numeric(model.LR[[1]][1])

beta_1 = as.numeric(model.LR[[1]][2])

beta_2 = as.numeric(model.LR[[1]][3])

slope = -beta_1/beta_2

intercept = 0.5*(1-2*beta_0)/beta_2

ggpubr::ggscatter(gapminder.2011, x="infant_mortality",

y="fertility", shape="LE", color="LE", palette="jco",

size = 2, xlab="Infant Mortality", ylab = "Fertility",

title = "Gapminder 2011 Data") +

ggplot2::geom_abline(intercept = intercept,

slope = slope, color="red", linetype="dashed", size=1.5)

What is the estimated probability that the life expectancy is high in

a country whose infant mortality is 15 and whose fertility is 4? By

construction,

𝑝1(𝑌 = high | 𝑋1 = 15, 𝑋2 = 4) ≈ 𝑔𝐿([1, 15, 24]⊤𝜷̂)

=
exp(4.59 − 0.22(15) − 0.06(4))

1 + exp(4.59 − 0.22(15) − 0.06(4))

=
exp(0.9526322)

1 + exp(0.9526322) = 0.72.

How does all of this square up with the statistical learning framework of

Sections 19 and 20: no testing set has made an appearance, no misclassifi-

cation or mean squared error rate has been calculated.

Next, we randomly select 116 observations, say, and train a logistic

regression model on this training set Tr to obtain:

set.seed(0)

ind.train = sample(nrow(gapminder.2011),

round(0.7*nrow(gapminder.2011)),replace=FALSE)

21.2 Simple Classifiers 1313

gapminder.2011.tr = gapminder.2011[ind.train,]

gapminder.2011.te = gapminder.2011[-ind.train,]

model.LR.tr <- glm(LE.resp ~ infant_mortality + fertility,

family=binomial, data=gapminder.2011.tr)

model.LR.tr

Coefficients:

(Intercept) infant_mortality fertility

6.1194 -0.2050 -0.6653

Degrees of Freedom: 115 Total (i.e. Null); 113 Residual

Null Deviance: 159.1

Residual Deviance: 50.83 AIC: 56.83

Thus,

𝑦̂∗ = 6.12 − 0.21𝑥1 − 0.67𝑥2.

Now, compute

𝑝̂𝑖 = 𝑃(𝑌𝑖 = high | 𝑋1 = 𝑥1,𝑖 , 𝑋2 = 𝑥2,𝑖) =
exp(𝑦̂∗

𝑖
)

1 + exp(𝑦̂∗
𝑖
)

on the observations in the testing set Te (see below).
15

15: The observations in the original

dataset not in Tr.

beta_0 = as.numeric(model.LR[[1]][1])

beta_1 = as.numeric(model.LR[[1]][2])

beta_2 = as.numeric(model.LR[[1]][3])

gapminder.2011.te$y.star = beta_0 +

beta_1*gapminder.2011.te$infant_mortality +

beta_2*gapminder.2011.te$fertility

gapminder.2011.te$p.1 = exp(gapminder.2011.te$y.star)/

(1+exp(gapminder.2011.te$y.star))

gapminder.2011.te$MSE = (gapminder.2011.te$p.1 -

gapminder.2011.te$LE.resp)^2

summary(gapminder.2011.te$LE.resp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 0.00 0.36 1.00 1.00

We obtain

MSETe =
1

50

50∑
𝑖=1

(𝑝̂𝑖 −I[𝑌𝑖 = high])2 = 0.075.

Is that a good test error? It is difficult to answer without more context.

Perhaps a more intuitive way to view the situation is to make actual

predictions and to explore their quality.

1314 21 Focus on Classification and Supervised Learning

ggpubr::ggscatter(gapminder.2011.te, x="p.1", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Testing Set Predictions")

For 𝛼 ∈ [0, 1], we further define

pred𝑖(𝛼) =
{
high if 𝑝̂𝑖 > 𝛼

low else

In the specific version of Te used in this example, 36% of the nations had

a high life expectancy.

gapminder.2011.te$pred81 = ifelse(gapminder.2011.te$p.1 > 0.81,

1, 0)

table(gapminder.2011.te$LE.resp,gapminder.2011.te$pred81)

If we set 𝛼 = 0.81, then the model predicts that 36% of the test nations

will have a high life expectancy, and the confusion matrix on Te is shown

below:

𝛼 = 0.81 prediction
0 1

actual 0 30 2

1 2 16

But why pick 𝛼 = 0.81 instead of 𝛼 = 0.5, say?
16

In the latter case, 42%16: In a sense, this could prove to be the

only rational choice in the absence of in-

formation.

of nations are predicted to have high life expectancy, and the confusion

matrix on Te is as in the next page.

21.2 Simple Classifiers 1315

gapminder.2011.te$pred50 = round(gapminder.2011.te$p.1, 0)

table(gapminder.2011.te$LE.resp,gapminder.2011.te$pred50)

𝛼 = 0.5 prediction
0 1

actual 0 28 4

1 1 17

We will revisit this question at the end of this section (ROC Curve).

21.2.2 Discriminant Analysis

In logistic regression, we model 𝑃(𝑌 = 𝐶𝑘 | x) directly via the logistic

function

𝑝1(x) =
exp(x⊤𝜷̂)

1 + exp(x⊤𝜷̂)
.

We have discussed some of the properties of the process in the previous

section, but it should be noted that logistic regression is sometimes

contra-indicated:

when the classes are well-separated, the coefficient estimates may

be unstable (adding as little as one additional point to Tr could

change the coefficients substantially);

when Tr is small and the distribution of the predictors is roughly

Gaussian in each of the classes 𝑌 = 𝐶𝑘 , the coefficient estimates

may be unstable too;

when there are more than 2 response levels, it is not always obvious

how to select an extension of logistic regression.

In discriminant analysis (DA), we instead model

𝑃(x | 𝑌 = 𝐶𝑘),

the distribution of the predictors
®𝑋 conditional on the level of 𝑌, and use

Bayes’ Theorem to obtain

𝑃(𝑌 = 𝐶𝑘 | x),

the probability of observing the response conditional on the predictors.

Let C= {𝐶1 , . . . , 𝐶𝐾} be the 𝐾 response levels, 𝐾 ≥ 2, and denote by 𝜋𝑘
the probability that a random observation lies in 𝐶𝑘 , for 𝑘 ∈ {1, . . . , 𝐾};
𝜋𝑘 is the prior

𝜋𝑘 = 𝑃(𝑌 = 𝐶𝑘) =
|𝐶𝑘 |
𝑁

.

Let 𝑓𝑘(x) = 𝑃(x | 𝑌 = 𝐶𝑘) be the conditional density function of the

distribution of
®𝑋 in 𝐶𝑘 ; we would expect 𝑓𝑘(x) to be large if there is a

high probability that an observation in 𝐶𝑘 has a corresponding predictor

®𝑋 ≈ x, and small otherwise.

1316 21 Focus on Classification and Supervised Learning

According to Bayes’ Theorem,

𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | x)

=
𝑃(x | 𝑌 = 𝐶𝑘) · 𝑃(𝑌 = 𝐶𝑘)

𝑃(x)

=
𝑃(x | 𝑌 = 𝐶𝑘) · 𝑃(𝑌 = 𝐶𝑘)

𝑃(x | 𝑌 = 𝐶1) · 𝑃(𝑌 = 𝐶1) + · · · + 𝑃(x | 𝑌 = 𝐶𝐾) · 𝑃(𝑌 = 𝐶𝐾)

=
𝜋𝑘 𝑓𝑘(x)

𝜋1 𝑓1(x) + · · · + 𝜋𝐾 𝑓𝐾(x)
.

Given an observation x ∈ Te, the DA classifier is

𝐶̂DA(x) = 𝐶
arg max𝑗 {𝑝 𝑗(x)} .

In order to say more about discriminant analysis, we need to make

additional assumptions on the nature of the underlying distributions.

Linear Discriminant Analysis If there is only one predictor (𝑝 = 1), we

make the Gaussian assumption,

𝑓𝑘(𝑥) =
1√

2𝜋𝜎𝑘
exp

[
−1

2

(
𝑥 − 𝜇𝑘
𝜎𝑘

)
2

]
,

where 𝜇𝑘 and 𝜎𝑘 are the mean and the standard deviation, respectively,

of the predictor for all observations in class 𝐶𝑘 .
17

17: Any other predictor distribution could

be used if it is more appropriate for Tr, and

we could assume that the standard devia-

tions or the means (or both) are identical

across classes.

If we further assume that 𝜎𝑘 ≡ 𝜎 for all 𝑘, then

𝑝𝑘(𝑥) =
𝜋𝑘

1√
2𝜋𝜎

exp

[
−1

2

(𝑥 − 𝜇𝑘
𝜎

)
2

]
𝜋1

1√
2𝜋𝜎

exp

[
−1

2

(𝑥 − 𝜇1

𝜎

)
2

]
+ · · · + 𝜋𝐾

1√
2𝜋𝜎

exp

[
−1

2

(𝑥 − 𝜇𝐾
𝜎

)
2

]

=

𝜋𝑘 exp

[
−1

2

(𝑥 − 𝜇𝑘
𝜎

)
2

]
𝜋1 exp

[
−1

2

(𝑥 − 𝜇1

𝜎

)
2

]
+ · · · + 𝜋𝐾 exp

[
−1

2

(𝑥 − 𝜇𝐾
𝜎

)
2

]

=

𝜋𝑘 exp

[𝜇𝑘
𝜎2

(
𝑥 − 𝜇𝑘

2

)]
exp

(
− 𝑥

2

2𝜎2

)
{
𝜋1 exp

[𝜇1

𝜎2

(
𝑥 − 𝜇1

2

)]
+ · · · + 𝜋𝐾 exp

[𝜇𝐾
𝜎2

(
𝑥 − 𝜇𝐾

2

)]}
exp

(
− 𝑥

2

2𝜎2

)
= 𝜋𝑘 exp

[𝜇𝑘
𝜎2

(
𝑥 − 𝜇𝑘

2

)]
· 𝐴(𝑥).

We do not need to compute the actual probabilities 𝑝𝑘(𝑥) directly if we

are only interested in classification; in that case, the discriminant score
for each class may be more useful:

𝛿𝑘(𝑥) = ln 𝑝𝑘(𝑥) = ln𝜋𝑘 + 𝑥
𝜇𝑘
𝜎2

− 𝜇𝑘
2𝜎2

+ ln𝐴(𝑥).

As ln𝐴(𝑥) is the same for all 𝑘, we can drop it from the score as it does

not contribute to relative differences in class scores; given an observation

21.2 Simple Classifiers 1317

Figure 21.4: Midpoint of two theoretical normal distributions (dashed line); midpoint of two empirical normal distributions (solid line).

Observations to the left of the decision boundary are classified as green, those to the right as purple. [18]

𝑥 ∈ Te, the linear discriminant analysis (LDA) classifier with 𝑝 = 1 is

𝐶̂LDA(x) = 𝐶
arg max𝑗 {𝛿̂ 𝑗(x)} .

Under other assumptions on the density function, the discriminant score

formulation may change.

The “linear” in LDA comes from the linearity of the discriminant scores

𝛿𝑘 .18 18: After the ln𝐴(𝑥) term has been

dropped.

If 𝐾 = 2 and 𝜋1 = 𝜋2 = 0.5, the midpoint 𝑥∗ = 1

2
(𝜇1 +𝜇2) of the predictor

means in 𝐶1 and 𝐶2 plays a crucial role. Indeed, the discriminant scores

𝛿1(𝑥) and 𝛿2(𝑥)meet when

𝑥∗
𝜇1

𝜎2

−
𝜇2

1

2𝜎2

= 𝑥∗
𝜇2

𝜎2

−
𝜇2

2

2𝜎2

=⇒ 𝑥∗ =
𝜇1 + 𝜇2

2

,

as long as 𝜇1 ≠ 𝜇2. If 𝜇1 < 𝜇2, say, then the decision rule simplifies to

𝐶̂(𝑥) =
{
𝐶1 if 𝑥 ≤ 𝑥∗

𝐶2 if 𝑥 > 𝑥∗

The principle is illustrated in Figure 21.4.

In practice, we estimate 𝜋𝑘 , 𝜇𝑘 and 𝜎 from Tr:

𝜋̂𝑘 =
𝑁𝑘

𝑁
, 𝜇̂𝑘 =

1

𝑁𝑘

∑
𝑦𝑖∈𝐶𝑘

𝑥𝑖

𝜎̂2 =

𝐾∑
𝑘=1

𝑁𝑘 − 1

𝑁 − 𝐾

(
1

𝑁𝑘 − 1

∑
𝑦𝑖∈𝐶𝑘
(𝑥𝑖 − 𝜇̂𝑘)2

)
.

If there are 𝑝 > 1 predictors, we can still make the Gaussian assumption,

but adapted to ℝ𝑝
:

𝑓𝑘(x) =
1

(2𝜋)𝑝/2 |𝚺𝑘 |1/2
exp

[
−1

2

(x − 𝝁𝑘)⊤𝚺−1

𝑘
(x − 𝝁𝑘),

]
,

1318 21 Focus on Classification and Supervised Learning

where 𝝁𝑘 = (𝑋1 , . . . , 𝑋𝑝) and 𝚺𝑘(𝑗 , 𝑖) = Cov(𝑋𝑖 , 𝑋𝑗) for all
®𝑋 with

𝑌 = 𝐶𝑘 .

If we further assume that 𝜎𝑘 ≡ 𝚺 for all 𝑘, then we can show that the

discriminant score is, again, linear (in x):

𝛿𝑘;LDA(x) = x⊤𝚺−1𝝁𝑘 −
1

2

𝝁⊤𝑘𝚺
−1𝝁𝑘 + ln𝜋𝑘 = 𝑐𝑘,0 + c⊤𝑘x.

We can estimate 𝝁𝑘 and 𝚺 from the data, from which we can recover the

estimates

𝑃(𝑌 = 𝐶𝑘 | x) ≈ 𝑝̂𝑘(x) =
exp(𝛿̂𝑘;LDA(x))∑𝐾
𝑗=1

exp(𝛿̂ 𝑗;LDA(x))
.

The decision rule is as before: given an observation x ∈ Te, the LDA

classifier with 𝑝 > 1 is

𝐶̂LDA = 𝐶
arg max𝑗 {𝛿̂ 𝑗;𝐿𝐷𝐴(x)} .

Quadratic Discriminant Analysis The assumption that the conditional

probability functions be Gaussians with the same covariance in each

training class may be a stretch in some situations.

If 𝚺𝑖 ≠ 𝚺𝑗 for at least one pair of classes (𝑖 , 𝑗), then a similar process

gives rise to quadratic discriminant analysis (QDA), which reduces to

discriminant scores

𝛿𝑘;QDA(x) = −
1

2

(x − 𝝁𝑘)⊤𝚺−1

𝑘
(x − 𝝁𝑘) + ln𝜋𝑘

= −1

2

x⊤𝚺−1

𝑘
x + x⊤𝚺−1

𝑘
𝝁𝑘 −

1

2

𝝁⊤𝑘𝚺
−1

𝑘
𝝁𝑘 + ln𝜋𝑘 .

To learn the LDA model, we must estimate 𝐾𝑝 + 𝑝(𝑝+1)
2

parameters from

Tr;
19

to learn QDA, 𝐾
(
𝑝 + 𝑝(𝑝+1)

2

)
.
20

QDA is thus more complex (and19: 𝑝 parameters for each 𝝁̂𝑘 and 1+· · ·+𝑝
parameters for 𝚺̂.

20: 𝑝 parameters for each 𝝁̂𝑘 and 1+· · ·+𝑝
parameters for each 𝚺̂𝑘 .

more flexible) than LDA.

The latter is recommended if Tr is small; the former if Tr is large, but

LDA will yield high bias if the 𝚺𝑘 ≡ 𝚺 assumption is invalid. Note that

LDA gives rise to nearly linear separating hypersurfaces and QDA to

quadratic ones.

Gaussian Naïve Bayes Classification If we assume further that each 𝚺𝑘
is diagonal (that is, if we assume that the features are independent from

each other in each class), we obtain the Gaussian naïve Bayes classifier
(GNBC), with discriminant scores given by

𝛿𝑘;GNBC(x) = −
1

2

𝑝∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑘,𝑗)2

𝜎2

𝑘,𝑗

+ ln𝜋𝑘 .

The classification process continues as before. Note that the assumption

of independence is usually not met, hence the “naïve” part in the name.

21.2 Simple Classifiers 1319

In spite of this, GNBC can prove very useful when 𝑝 is too large, where

both LDA and QDA break down.

Note that this approach can also be used for mixed feature vectors, by

using combinations of probability mass functions and probability density

functions in 𝑓𝑘,𝑗(𝑥 𝑗), as required. We will re-visit NBC in Section 21.4

(Naïve Bayes Classifiers).

Logistic Regression (Reprise) We can also recast the 2−class LDA

model as

ln

(
𝑝0(x)

1 − 𝑝0(x)

)
= ln(𝑝0(x)) − ln(𝑝1(x)) = 𝛿0(x) − 𝛿1(x) = 𝑎0 + a⊤x,

which has the same form as logistic regression.

It is not the same model, however:

in logistic regression, the parameters are estimated using the

maximum likelihood 𝑃(𝑌 | x);
in LDA, the parameters are estimated using the full likelihood

𝑃(x | 𝑌)𝑃(x) = 𝑃(x, 𝑌).

Example We finish this section by giving an example of LDA and QDA

on the 2011 Gapminder data (we will use the same training set Tr with

𝑁 = 116 observations and testing set Te with 𝑀 = 50 observations).

Given an observation x ∈ Te, we use a decision rule based on the

probabilities 𝑝̂0(x), 𝑝̂1(x) and a decision threshold 𝛼 ∈ (0, 1). On the

training set Tr, we find:

library(dplyr)

tmp = gapminder.2011.tr |> group_by(LE.resp) |>

summarise(N.k=n(), mean.im=mean(infant_mortality),

mean.f=mean(fertility))

N.0 = tmp[[2]][1]

N.1 = tmp[[2]][2]

N = N.0 + N.1

mu.0 = t(matrix(cbind(tmp[[3]][1],tmp[[4]][1])))

mu.1 = t(matrix(cbind(tmp[[3]][2],tmp[[4]][2])))

mu = (N.0*mu.0+N.1*mu.1)/N

tmp <- gapminder.2011.tr |>

split(gapminder.2011.tr$LE.resp) |>

purrr::map(select, c("infant_mortality","fertility")) |>

purrr::map(cov)

Sigma.0 <- tmp[[1]]

Sigma.1 <- tmp[[2]]

Sigma <- cov(gapminder.2011.tr[,c("infant_mortality",

"fertility")])

1320 21 Focus on Classification and Supervised Learning

which yields

𝑁0 = 51, 𝑁1 = 65, 𝜋̂0 = 51/116, 𝜋̂1 = 65/116,

𝝁̂0 = (45.40, 4.08)⊤ , 𝝁̂1 = (9.57, 1.92)⊤

𝚺0 =

(
496.51 23.38

23.38 2.17

)
, 𝚺1 =

(
42.79 2.14

2.14 0.31

)
𝝁̂ = (25.30, 2.87)⊤ , 𝚺 =

(
557.89 30.51

30.51 2.27

)
We invert the matrices 𝚺1 ,𝚺2 ,𝚺 using R’s matlib::inv(), and plug in

the results in the LDA and QDA score formulas to obtain:
21

21: Is this the best way to store the

LDA/QDA functions in R?

gapminder.2011.te$d.0.LDA = -4.780979901 -

0.0633308892*gapminder.2011.te$infant_mortality +

2.645503201*gapminder.2011.te$fertility

gapminder.2011.te$d.1.LDA = -2.277022950 -

0.1094188053*gapminder.2011.te$infant_mortality +

2.313946886*gapminder.2011.te$fertility

gapminder.2011.te$d.0.QDA = -4.657130536 -

0.002040555604*gapminder.2011.te$infant_mortality^2 +

0.00614539606*gapminder.2011.te$infant_mortality +

0.04390614038*gapminder.2011.te$infant_mortality*
gapminder.2011.te$fertility +

1.811698768*gapminder.2011.te$fertility -

0.4663036203*gapminder.2011.te$fertility^2

gapminder.2011.te$d.1.QDA = -6.700309855 -

0.01775013332*gapminder.2011.te$infant_mortality^2 -

0.1263473930*gapminder.2011.te$infant_mortality +

0.2427525754*gapminder.2011.te$infant_mortality*
gapminder.2011.te$fertility +

7.005915844*gapminder.2011.te$fertility -

2.429442185*gapminder.2011.te$fertility^2

Thus,

𝛿̂0;LDA = −4.78 − 0.06𝑥1 + 2.65𝑥2

𝛿̂1;LDA = −2.28 − 0.11𝑥1 + 2.31𝑥2

𝛿̂0;QDA = −4.66 − 0.002𝑥2

1
+ 0.01𝑥1 + 0.04𝑥1𝑥2 + 1.81𝑥2 − 0.47𝑥2

2

𝛿̂1;QDA = −6.70 − 0.02𝑥2

1
− 0.13𝑥1 + 0.24𝑥1𝑥2 + 7.01𝑥2 − 2.43𝑥2

2

With the class probability estimates

𝑝̂1;LDA =
exp(𝛿̂1;LDA)

exp(𝛿̂0;LDA) + exp(𝛿̂1;LDA)
,

𝑝̂1,QDA =
exp(𝛿̂1;QDA)

exp(𝛿̂0;QDA) + exp(𝛿̂1;QDA)

21.2 Simple Classifiers 1321

gapminder.2011.te$p.1.LDA = exp(gapminder.2011.te$d.1.LDA)/

(exp(gapminder.2011.te$d.0.LDA)+exp(gapminder.2011.te$d.1.LDA))

gapminder.2011.te$p.1.QDA = exp(gapminder.2011.te$d.1.QDA)/

(exp(gapminder.2011.te$d.0.QDA)+exp(gapminder.2011.te$d.1.QDA))

and the decision threshold set at 𝛼 = 0.5, the LDA and QDA life ex-

pectancy classifiers are defined on Te by

𝐶̂𝛼;LDA(x) =
{

1 (high) if 𝑝1;LDA(x) ≥ 0.5

0 (low) else

𝐶̂𝛼;QDA(x) =
{

1 (high) if 𝑝1;QDA(x) ≥ 0.5

0 (low) else

ggpubr::ggscatter(gapminder.2011.te, x="p.1.LDA", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Test Predictions - LDA")

ggpubr::ggscatter(gapminder.2011.te, x="p.1.QDA", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Test Predictions - QDA")

The 𝛼 = 0.5 confusion matrices for the LDA and QDA classifiers are:

LDA.table = function(x,alpha){

tmp = ifelse(x$p.1.LDA > alpha, 1, 0)

LDA.table = table(factor(x$LE.resp, levels = 0:1),

factor(tmp, levels = 0:1)) }

QDA.table = function(x,alpha){

tmp = ifelse(x$p.1.QDA > alpha, 1, 0)

QDA.table = table(factor(x$LE.resp, levels = 0:1),

factor(tmp, levels = 0:1)) }

1322 21 Focus on Classification and Supervised Learning

test.LDA=LDA.table(gapminder.2011.te,0.5)

test.QDA=QDA.table(gapminder.2011.te,0.5)

LDA prediction QDA prediction
𝛼 = 0.5 0 1 𝛼 = 0.5 0 1

actual 0 22 10 actual 0 28 4

1 0 18 1 2 16

In the LDA case, we further have

accuracy = 22+18

22+10+0+18
= 80%

misclassification rate = 10+0

22+10+0+18
= 20%

FPR = 0

0+18
= 0%

FNR = 10

22+10
= 31.25%

TPR = 22

22+10
= 68.75%

TNR = 18

0+18
= 100%

In the QDA case:

accuracy = 28+16

28+4+2+16
= 88%

misclassification rate = 4+2

28+4+2+16
= 12%

FPR = 2

2+16
= 11.1%

FNR = 4

28+4
= 12.5%

TPR = 28

28+4
= 87.5%

TNR = 16

2+16
= 88.9%

At first glance, it would certainly seem that the QDA model performs

better (at a decision threshold of 𝛼 = 0.5), but the FPR is not ideal. What

would be the ideal value of 𝛼? How would we find it?

21.2.3 ROC Curve

The receiver operating characteristic (ROC) curve plots the true positive

rate against the false positive rate for classifiers obtained by varying the

decision threshold 𝛼 in [0, 1]. The important realization is that a classifier

that is completely random would lie on the line TPR = FPR. Thus, the

ideal threshold would be the one associated with the model which is

farthest from that line.

Figure 21.5: Illustration of ROC curve con-

cepts.

21.2 Simple Classifiers 1323

Let u(𝛼) be the vector from 0 to the (FPR(𝛼), TPR(𝛼)) coordinates of

the classifier with threshold 𝛼, and let v(𝛼) be the vector through

(FPR(𝛼), TPR(𝛼)) and perpendicular to the line TPR = FPR. The ideal 𝛼∗

satisfies:

𝛼∗ = arg max

𝛼
{∥v(𝛼)∥}

= arg max

𝛼
{∥v(𝛼)∥2}

= arg max

𝛼

{

u(𝛼) − proj(1,1)u(𝛼)

2

}
= arg max

𝛼

{

(FPR(𝛼), TPR(𝛼)) − proj(1,1)(FPR(𝛼), TPR(𝛼))

2

}
= arg max

𝛼

{
∥(FPR(𝛼) − TPR(𝛼), TPR(𝛼) − FPR(𝛼))∥2

}
= arg max

𝛼
{(FPR(𝛼) − TPR(𝛼))2}.

Example For the LDA and QDA classifiers built with the 2011 Gapminder

data (see preceding section), the false positive rates (FPR), false negative

rates (FNR), true positive rates (TPR), true negative rates (TNR), and

misclassification rates (MCR) when the decision threshold 𝛼 varies from

0.01 to 0.99 by steps of length 0.01 are computed below:

fpr=c()

fnr=c()

tpr=c()

tnr=c()

mcr=c()

for(alpha in 1:99){

tmp=LDA.table(gapminder.2011.te,alpha/100)

mcr[alpha]=(tmp[1,2]+tmp[2,1])/sum(tmp)

fpr[alpha]=tmp[2,1]/(tmp[2,1]+tmp[2,2])

fnr[alpha]=tmp[1,2]/(tmp[1,1]+tmp[1,2])

tnr[alpha]=tmp[2,2]/(tmp[2,1]+tmp[2,2])

tpr[alpha]=tmp[1,1]/(tmp[1,1]+tmp[1,2]) }

plot(c(0,fpr),c(0,tpr), type = "b", pch = 21,

col = "red", xlim=c(0,1), ylim=c(0,1),

xlab="FPR",ylab="TPR",

main="Receiver Operating Characteristic Curve - LDA")

abline(0,1)

(index=which((fpr-tpr)^2==max((fpr-tpr)^2)))

abline(fpr[index[1]]+tpr[index[1]],-1, col="green")

for(alpha in 1:99){

tmp=QDA.table(gapminder.2011.te,alpha/100)

mcr[alpha]=(tmp[1,2]+tmp[2,1])/sum(tmp)

fpr[alpha]=tmp[2,1]/(tmp[2,1]+tmp[2,2])

fnr[alpha]=tmp[1,2]/(tmp[1,1]+tmp[1,2])

tnr[alpha]=tmp[2,2]/(tmp[2,1]+tmp[2,2])

tpr[alpha]=tmp[1,1]/(tmp[1,1]+tmp[1,2]) }

1324 21 Focus on Classification and Supervised Learning

plot(c(0,fpr),c(0,tpr), type = "b", pch = 21,

col = "red", xlim=c(0,1), ylim=c(0,1),

xlab="FPR",ylab="TPR",

main="Receiver Operating Characteristic Curve - QDA")

abline(0,1)

(index=which((fpr-tpr)^2==max((fpr-tpr)^2)))

abline(fpr[index[1]]+tpr[index[1]],-1, col="green")

[1] 73 74

[1] 28

In both frameworks, a number of models have identical (FPR, TPR)
coordinates. With the LDA model, the ideal threshold is 𝛼∗

LDA
= 0.73

(coordinates (0.056, 0.906)); with the QDA model, it is 𝛼∗
QDA

= 0.28

(coordinates (0, 0.844)).

The corresponding confusion matrices are shown below.

LDA prediction QDA prediction
𝛼∗

LDA
= 0.73 0 1 𝛼∗

QDA
= 0.28 0 1

actual 0 29 3 actual 0 27 5

1 1 17 1 0 18

Which model is best? It depends on the context of the task, and on the

consequences of the choice. What makes the most sense here? Is there

a danger of overfitting? Is parameter tuning acceptable, from a data

massaging perspective? What effect does the choice of priors have?

While we can find the optimal 𝛼 according to the procedure highlighted

above, there is another aspect of the ROC curve that may be of interest:

in general, the larger the area under the curve is, the better the model

may behave for non-optimal decision thresholds.

The metric is known as ROC AUC; technically, it varies between 0 and 1,

but we since a classifier that is wrong more often than expected indirectly

provides a classifier that is right more often than expected,
22

we focus22: Simply predict the opposite of what it

predicts.
instead on the area between the curve and the line TPR = FPR.

21.3 Rare Occurrences 1325

21.3 Rare Occurrences

Before we continue and discuss other supervised approaches, we briefly

touch on the problem of rare occurrences (or unbalanced dataset). Say we

are looking to detect fraudulent transactions. We can build classifiers to

approach this task using any number of methods, but there is a potential

problem. If (100 − 𝜀)% of observations belong to the normal category,

and 𝜀% to the special category, the model that predicts that EVERY

observation is normal has (100 − 𝜀)% accuracy.

In practice, the vast majority of transactions are legitimate, so that

0 < 𝜀 ≪ 1; the model in question has tremendous accuracy, even if it

misses the point of the exercise altogether.

There are two general approaches to overcome this issue: either we

modify the algorithms to take into account the asymmetric cost of

making a classification error (through so-called cost-sensitive classifiers
or one-class models), or we modify the training data to take into account

the imbalance in the data. In the former case, we invite you to read the

documentation of the methods that interest you to see how this could be

achieved.

In the latter case, we could try to obtain more training data. This is the

simplest method, but it is not always possible to do so, and it could be

that the new data would follow the same pattern as the original data,

which would leave us no better off than we were to start with.

Another alternative is to create a new training set by either undersampling
the majority class(es) or oversampling the under-represented class(es).

We assume for now that there are only two classes in the data (the

strategies can easily be adapted to multi-class problems).

Undersampling Let Tr = 𝐿 ⊔𝑀𝑐 , where 𝐿 consists of all observations

in the majority case, and 𝑀𝑐 of all observations in the minority case;

by assumption, |𝐿| ≫ |𝑀𝑐 | (and 𝐿 ∩ 𝑀𝑐 = ∅). Split 𝐿 into 𝐾 subsets

𝐿1 , . . . , 𝐿𝐾 , each roughly of the same size; 𝐾 should be selected so that

|𝑀𝑐 | 3 |𝐿𝑖 |, for all 𝑖 (in other words, even though |𝐿𝑖 | could be larger

than |𝑀𝑐 |, it is not going to be substantially so).

We then construct 𝐾 training sets

Tr1 = 𝐿1 ⊔𝑀𝑐 , . . . , Tr𝐾 = 𝐿𝐾 ⊔𝑀𝑐 ;

for all 1 ≤ 𝑖 ≤ 𝐾, we train a classifier 𝐶𝑖 (using a given algorithm) on Tr𝑖 .

Once that is done, we combine the predictions using bagging or other

ensemble learning methods (see Section 21.5).

Figure 21.6: Illustration of undersampling

[author unknown].

1326 21 Focus on Classification and Supervised Learning

Figure 21.7: Illustration of oversampling (SMOTE) [author unknown].

Oversampling We can oversample the minority cases to create balanced

datasets, but that introduces a dependency in the data that can have

far-reaching effect when it comes to bias and variability.

Synthetic Minority Oversampling Technique (SMOTE) is a common

approach which creates “synthetic” examples rather than oversampling

with replacement – the same idea is used to create samples for handwrit-

ing recognition by perturbing training data (e.g., rotating, skewing, etc.)

[5]:

1. select random integers 𝑘 ≪ ℓ ;

2. draw a random sample Vℓ of size ℓ from the minority class 𝑀𝑐 ;

3. for each x ∈ Vℓ , find the 𝑘 nearest neighbors of x in 𝑀𝑐 , say

zx,1 , . . . , zx,𝑘 ;

4. compute the vectors vx,1 , . . . , vx,𝑘 , originating from x and ending

at each of the zx,1 , . . . , zx,𝑘 ;

5. draw random values 𝛾1 , . . . , 𝛾𝑘 ∼ U(0, 1), and multiply vx,𝑖 by 𝛾𝑖 ,
for each 1 ≤ 𝑖 ≤ 𝑘;

6. the points found at x + 𝛾𝑖vx,𝑖 , 1 ≤ 𝑖 ≤ 𝑘, are added to the set 𝑀𝑐 .

This procedure is repeated until |𝑀𝑐 | 3 |𝐿| (see Figure 21.7).

There are variants, where we always use the same 𝑘, ℓ , Vℓ , or where

we only pick one of the 𝑘 nearest neighbours, etc. In general, SMOTE

increases recall, but it comes at the cost of lower precision.

We will have more to say about rare occurrences in Chapter 26, Anomaly
Detection and Outlier Analysis.

21.4 Other Approaches 1327

21.4 Other Supervised Approaches

In this section, we present a number of non-parametric approaches,

with a focus on classification methods (although we will also discuss

regression problems):

classification and regression trees (CART) [2, 18, 14, 25];

support vector machines (SVW) [2, 18, 14, 15, 9];

artificial neural networks (ANN) [6, 12, 1], and

naïve Bayes classification (NBC).

21.4.1 Tree-Based Methods

This family of methods involves stratifying or segmenting the predictor

space into a small number of “simple” regions.

The set of splitting rules used to segment the space can be summarized

using a tree, whence their name. Tree-based methods are simple and

easy to interpret; but they don’t tend to be competitive with the best

supervised learning methods when it comes to predictive accuracy.

Nevertheless, there are instances when the ease of interpretability over-

rules the lessened accuracy. Tree-based methods are applicable both to

regression and to classification problems.

Regression Trees We introduce the important concepts via the 2011

Gapminder dataset.
23

In the figure on page 1308, we saw that when 𝑋1 23: The response 𝑌 is once again the life

expectancy of nations, and the predictors

𝑋1 and 𝑋2 are the fertility rates and infant

mortality rates per nation.

and 𝑋2 are both high, 𝑌 is low, and when 𝑋1 and 𝑋2 are both low, 𝑌 is

high. But what is the pattern “in the middle”?

Below, we see a possible regression tree for the (full) dataset (𝑁 = 166

observations).

1328 21 Focus on Classification and Supervised Learning

The tree can also be displayed as:

1) root (166) 70.82349

2) infant_mortality>=35.65 (54) 60.85370

4) infant_mortality>=52.9 (28) 58.30714 *
5) infant_mortality< 52.9 (26) 63.59615 *

3) infant_mortality< 35.65 (112) 75.63036

6) infant_mortality>=9.35 (62) 72.89516

12) infant_mortality>=22.85 (18) 69.50000 *
13) infant_mortality< 22.85 (44) 74.28409 *

7) infant_mortality< 9.35 (50) 79.02200

14) infant_mortality>=4.25 (23) 76.86087 *
15) infant_mortality< 4.25 (27) 80.86296 *

Node 1 is the tree’s root (initial node) with 166 (100%) observations; the

average life expectancy for these observations is 70.82.

The root is also the tree’s first branching point, separating the observa-

tions into two groups: node 2 with 54 observations (33%), given by “infant

mortality ≥ 35.65”, for which the average life expectancy is 60.85, and

node 3 with 112 observations (67%), given by “infant mortality < 35.65”,

for which the average life expectancy is 75.63.

Note that 54 + 112 = 166 and that

54(60.81) + 112(75.63)
54 + 112

= 70.82.

Node 2 is an internal node – it is further split into two groups: node

4 with 28 observations (17%), given with the additional rule “infant

mortality ≥ 52.9”, for which the average life expectancy is 58.31, and

node 5 with 26 observations (16%), given with the additional rule “infant

mortality < 52.9”, for which the average life expectancy is 63.60.

Note that 28 + 26 = 54 and that

28(58.31) + 26(63.60)
28 + 26

= 60.85.

Both nodes 4 and 5 are leaves (final nodes, terminal nodes); the tree does

not grow any further on that branch.

The tree continues to grow from node 3, eventually leading to 4 leaves on

that branch (there are intermediate branching points). There are 6 leaves

in total, 5 branching points (including the root) and the tree’s depth is 3

(excluding the root).

Only one feature is used in the regression tree in this example: to make

a prediction for a new observation, only infant mortality is needed. If

it was 21, say, the observation’s leaf would be node 13 and we would

predict that the life expectancy of that nation would be 74.28.

The tree diagram is a useful heuristic, especially since it allows the results

to be displayed without resorting to a multi-dimensional chart, but it

obscures the predictor space’s stratification.

21.4 Other Approaches 1329

We can also write

𝑅4 = {(infant mortality, fertility) | infant mortality ≥ 52.9}
𝑅5 = {(infant mortality, fertility) | 36.65 ≤ infant mortality < 52.9}
𝑅12 = {(infant mortality, fertility) | 22.85 ≤ infant mortality < 35.65}
𝑅13 = {(infant mortality, fertility) | 9.35 ≤ infant mortality < 22.85}
𝑅14 = {(infant mortality, fertility) | 4.25 ≤ infant mortality < 9.35}
𝑅15 = {(infant mortality, fertility) | infant mortality < 4.25}

It turns out that only infant mortality is involved in the definition of the

tree’s terminal nodes. The regions are shown below:

Figure 21.8: Stratification of the predictor

space for the 2011 Gapminder data regres-

sion tree.

The regression tree model for life expectancy would thus be

𝑦̂𝑖 = 𝑓 (x𝑖) = Avg{𝑦 | x ∈ 𝑅 𝑗(𝑖)} =



58.3, 𝑗(𝑖) = 4

63.6, 𝑗(𝑖) = 5

69.5, 𝑗(𝑖) = 12

74.3, 𝑗(𝑖) = 13

76.9, 𝑗(𝑖) = 14

80.9, 𝑗(𝑖) = 15

where 𝑅 𝑗(𝑖) is the region in which x𝑖 falls. This tells us that infant

mortality is the most important factor in determining life expectancy,

with a negative correlation.
24

But it is not the only way to stratify the 24: This interpretation is, of course, a

coarse oversimplification, but it highlights

the advantage of using a regression tree

when it comes to displaying, interpreting,

and explaining the results.

data: how is it an optimal tree?
25

25: Recall that all supervised learning

tasks are optimization problems.

Building A Regression Tree The process is quite simple:

1. divide the predictor space X⊆ ℝ𝑝
into a disjoint union of 𝐽 regions:

X= 𝑅1 ⊔ · · · ⊔ 𝑅𝐽 ;

2. for any x ∈ 𝑅 𝑗 ,

𝑦̂(x) = Avg{𝑦(z) | z ∈ 𝑅 𝑗 ∩ Tr}.

1330 21 Focus on Classification and Supervised Learning

The second step tells us that trees are locally constant.26
26: It would be possible to define trees

that are not locally constant, if required.

In theory, the regions 𝑅 𝑗 could have any shape as long as they form a

disjoint cover of X; in practice, we use hyperboxes with 𝑝−1-dimensional

affine boundaries that are perpendicular/parallel to the 𝑝 hyperplanes

𝑋1 . . . 𝑋̂𝑘 . . . 𝑋𝑝 , 𝑘 = 1, . . . , 𝑝.

We find the optimal (𝑅1 , . . . , 𝑅𝐽) by minimizing

SSE =

𝐽∑
𝑗=1

∑
x𝑖∈𝑅 𝑗
(𝑦𝑖 − 𝑦̂𝑅 𝑗)2 ,

where 𝑦̂𝑅 𝑗 is the mean response of 𝑦 in 𝑅 𝑗 ∩ Tr. In an ideal world, we

would compute SSE for all partitions of X into hyperboxes, and pick

the one that minimizes SSE, but that is not computationally feasible, in

general.

Instead, we use a growth algorithmic approach known as recursive binary
splitting, which is both top-down (starts at the root and successively

splits Xvia 2 new branches down the tree) and greedy (at each step of

the splitting process, the best choice is made there and now, rather than

by looking at long-term consequences).

Regression Tree Algorithm The algorithm has 10 steps, but it is fairly

straightforward.

1. Let 𝑦̂0 = Avg{𝑦(x𝑖) | 𝑖 = 1, . . . , 𝑁 and x𝑖 ∈ Tr}.
2. Set the baseline SSE0 =

∑𝑁
𝑖=1
(𝑦𝑖 − 𝑦̂0)2.

3. For each 1 ≤ 𝑘 ≤ 𝑝, order the predictor values of 𝑋𝑘 in Tr:

min1≤𝑖≤𝑁 {𝑥𝑖 ,𝑘} = 𝑣𝑘,1 ≤ 𝑣𝑘,2 ≤ · · · ≤ 𝑣𝑘,𝑁 = max1≤𝑖≤𝑁 {𝑥𝑖 ,𝑘}.
4. For each 𝑋𝑘 , set 𝑠𝑘,ℓ =

1

2
(𝑣𝑘,ℓ + 𝑣𝑘,ℓ+1), ℓ = 1, . . . , 𝑁 − 1.

5. For each 𝑘 = 1, . . . , 𝑝, ℓ = 1, . . . , 𝑁 − 1, define

𝑅1(𝑘, ℓ) = { ®𝑋 ∈ ℝ𝑝 | 𝑋𝑘 < 𝑠𝑘,ℓ }, 𝑅2(𝑘, ℓ) = { ®𝑋 ∈ ℝ𝑝 | 𝑋𝑘 ≥ 𝑠𝑘,ℓ }.

Note that X= 𝑅1(𝑘, ℓ) ⊔ 𝑅2(𝑘, ℓ) for all 𝑘, ℓ .

6. For each 𝑘 = 1, . . . , 𝑝, ℓ = 1, . . . , 𝑁 − 1, set

SSE
𝑘,ℓ
1

=

2∑
𝑚=1

∑
®𝑋𝑖∈𝑅𝑚 (𝑘,ℓ)

(𝑦𝑖 − 𝑦̂𝑅𝑚 (𝑘,ℓ))2 ,

where 𝑦̂𝑅𝑚 (𝑘,ℓ) = Avg{𝑦(x) | x ∈ Tr ∩ 𝑅𝑚(𝑘, ℓ)}.
7. Find 𝑘∗ , ℓ ∗ for which SSE

𝑘,ℓ
1

is minimized.

8. Define the children sets 𝑅𝐿
1
= 𝑅1(𝑘∗ , ℓ ∗) and 𝑅𝑅

1
= 𝑅2(𝑘∗ , ℓ ∗).

9. While some children sets 𝑅𝜈
𝜇 still do not meet a stopping criterion,

repeat steps 3 to 8, searching and minimizing SSE over X∩ 𝑅𝜈
𝜇,

and producing a binary split 𝑅𝐿𝜇+1
, 𝑅𝑅𝜇+1

.
27

27: Multiple stopping criteria are used

in practice, such as insisting that all final

nodes contain 10 or fewer observations,

etc.

10. Once the stopping criterion is met for all children sets, the tree’s

growth ceases, and Xhas been partitioned into 𝐽 regions (renum-

bering as necessary)

X= 𝑅1 ⊔ · · · ⊔ 𝑅𝐽 ,

on which the regression tree predicts the 𝐽 responses {𝑦̂1 , . . . , 𝑦̂𝐽},
according to 𝑦̂ 𝑗 = Avg{𝑦(x) | x ∈ 𝑅 𝑗}.

21.4 Other Approaches 1331

For instance, if the training set was Tr = {(𝑥1,𝑖 , 𝑥2,𝑖 , 𝑦𝑖)}𝑁𝑖=1
, the algorithm

might provide the regression tree in Figure 21.9.

Figure 21.9: Generic recursive binary parti-

tion regression tree for a two-dimensional

predictor space, with 5 leaves.

In R, the recursive binary partition algorithm is implemented in package

rpart’s function rpart().

Tree Pruning Regression trees grown with the algorithm are prone to

overfitting; they can provide good predictions on Tr, but they usually

make shoddy predictions on Te.
28

28: Because the resulting tree might be

too complex – it captures noise as well as

the signal.A smaller tree with fewer splits might lead to lower variance and better

interpretability, at the cost of a little bias. Instead of simply growing a

tree 𝑇0 until each leaf contains at most 𝑀 observations, say,
29

it could be 29: Or whatever other stopping criterion

might be appropriate.
beneficial to prune it in order to obtain an optimal subtree.

We use cost complexity pruning (CCP) to build a sequence of candidate

subtrees indexed by the complexity parameter 𝛼 ≥ 0. For each such 𝛼,

find a subtree 𝑇𝛼 ⊆ 𝑇0 which minimizes

SSE + complexity penalty =

|𝑇 |∑
𝑚=1

∑
x𝑖∈𝑅𝑚
(𝑦𝑖 − 𝑦̂𝑅𝑚)2 + 𝛼 |𝑇 |,

where |𝑇 | represents the number of final nodes in 𝑇; when 𝛼 is large, it

is costly to have a complex tree.

This is similar to the bias-variance trade-off or the regularization frame-

work: a good tree balances considerations of fit and complexity.

Pruning Algorithm Assume that a recursive binary splitting regression

tree 𝑇0 has been grown on Tr, using a given stopping criterion:

1. apply CCP to 𝑇0 to obtain a “sequence” 𝑇𝛼 of subtrees of 𝑇0;

2. divide Tr into 𝐾 folds;

3. for all 𝑘 = 1, . . . , 𝐾, build a regression tree 𝑇𝛼;𝑘 on Tr \ Fold𝑘 and

evaluate

M̂SE(𝛼) = Avg
1≤𝑘≤𝐾{MSE𝑘(𝛼) of 𝑇𝛼;𝑘 on Fold𝑘};

4. return 𝑇𝛼∗ from step 1, where 𝛼∗ = arg min𝛼{M̂SE(𝛼)}.

The Gapminder 2011 tree is pruned in the Figures below, using the rpart

functions plotcp() (the complexity parameter 𝛼 is denoted by cp in the

code below) and rpart().

1332 21 Focus on Classification and Supervised Learning

rpart::plotcp(reg.tree.1)

reg.tree.1.pruned.2 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.06)

rpart.plot::rpart.plot(reg.tree.1.pruned.2,

box.palette="RdBu", shadow.col="gray", nn=TRUE)

reg.tree.1.pruned.3 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.028)

rpart.plot::rpart.plot(reg.tree.1.pruned.3,

box.palette="RdBu", shadow.col="gray", nn=TRUE)

21.4 Other Approaches 1333

reg.tree.1.pruned.4 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.02)

rpart.plot::rpart.plot(reg.tree.1.pruned.4,

box.palette="RdBu", shadow.col="gray", nn=TRUE)

We plotted the complexity pruning parameter, and the pruned trees for

cp = 0.06, cp = 0.028, and cp = 0.02 in the Gapminder 2011 example.

Note that the tree’s complexity increases when cp decreases.

Classification Trees The approach for classification is much the same,

with a few appropriate substitutions:

1. prediction in a terminal node is either the class label mode or the

relative frequency of the class labels;

1334 21 Focus on Classification and Supervised Learning

2. SSE must be replaced by some other fit measure:

the classification error rate:

𝐸 =

𝐽∑
𝑗=1

(1 −max

𝑘
{𝑝̂ 𝑗 ,𝑘}),

where 𝑝̂ 𝑗 ,𝑘 is the proportion of Tr observations in 𝑅 𝑗 of class

𝑘 (this measure is not a recommended choice, however);

the Gini index, which measures the total variance across

classes

𝐺 =

𝐽∑
𝑗=1

∑
𝑘

𝑝̂ 𝑗 ,𝑘(1 − 𝑝̂ 𝑗 ,𝑘),

which should be small when the nodes are pure (𝑝̂ 𝑗 ,𝑘 ≈ 0 or 1

throughout the regions), and

the cross-entropy deviance

𝐷 = −
𝐽∑
𝑗=1

∑
𝑘

𝑝̂ 𝑗 ,𝑘 ln 𝑝̂ 𝑗 ,𝑘 ,

which behaves like the Gini index, numerically.

One thing to note is that classification and regression trees (jointly known

as CART) suffer from high variance and their structure is unstable –

using different training sets typically gives rise to wildly varying trees.

As an extreme example, simply modifying the level of only one of the

predictors in only two observations can yield a tree with a completely

different topology, as in Figure 21.10.

Figure 21.10: Different tree topologies with

small changes in the training set (data

modified from [19]).

This lack of robustness is a definite strike against the use of CART; despite

this, the relative ease of their implementation makes them a popular

classification tool.

Examples A classification tree for the response LE in the Gapminder

2011 dataset is shown below:

reg.tree.2 <- rpart::rpart(LE~fertility +

infant_mortality + gdp, data=gapminder.2011)

rpart.plot::rpart.plot(reg.tree.2, box.palette="RdBu",

shadow.col="gray", nn=TRUE)

21.4 Other Approaches 1335

1) root (166) high/low (0.5 0.5)

2) infant_mortality< 23 (94) high (0.862 0.138)

3) infant_mortality>=23 (72) low (0.028 0.972)

The stratification in the scatter plot is shown below.

library(ggplot2)

ggplot(gapminder.2011) +

geom_point(aes(fill=LE, x=infant_mortality, y=fertility),

pch=22) + theme_bw() +

theme(legend.position = "bottom") +

geom_vline(xintercept = c(23), linetype="dashed",

color = "blue", size=1) + xlab("Infant Mortality") +

ylab("Fertility")

Note that this tree should not be used for predictions as it was not built

on a training subset of the data.

We now revisit the Iowa Housing Price (VE_Housing.csv , modified

from [3]) example of Section 20.5 (Splines). We build a CART for the sale

price, requiring at least 5 observations per leaf.
30

30: Recall that we had built a training set

dat.train with 𝑛 = 1160 observations

relating to the selling price SalePrice of

houses in Ames, Iowa.

We only keep those columns for which there are no missing values,

for simplicity’s sake; in real-world applications, this is not usually a

reasonable strategy (see Chapter 15, Data Preparation).

https://www.data-action-lab.com/wp-content/uploads/2023/02/VE_Housing.csv

1336 21 Focus on Classification and Supervised Learning

n= 1160

node), split, n, deviance, yval

* denotes terminal node

1) root 1160 7371073.00 180.1428
2) OverallQual< 7.5 985 2301952.00 157.4737
4) Neighborhood=Blueste,BrDale,BrkSide,Edwards,IDOTRR,MeadowV,Mitchel,NAmes,NPkVill,OldTown,

Sawyer,SWISU 580 672022.40 132.2839
8) X1stFlrSF< 1050.5 332 240468.90 118.2474 *
9) X1stFlrSF>=1050.5 248 278574.40 151.0747 *

5) Neighborhood=Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,
Somerst,StoneBr,Timber,Veenker 405 734856.30 193.5480

10) GrLivArea< 1732.5 281 296100.70 178.2365
20) GrLivArea< 1204 56 25438.63 143.0286 *
21) GrLivArea>=1204 225 183967.70 186.9993 *

11) GrLivArea>=1732.5 124 223588.10 228.2459 *
3) OverallQual>=7.5 175 1713865.00 307.7376
6) OverallQual< 8.5 126 498478.90 273.6180
12) GrLivArea< 1925.5 71 167331.90 246.3000 *
13) GrLivArea>=1925.5 55 209762.20 308.8831 *

7) OverallQual>=8.5 49 691521.30 395.4736
14) Neighborhood=CollgCr,Edwards,Gilbert,NridgHt,Somerst,StoneBr,Timber,Veenker

44 358089.40 373.9441
28) Neighborhood=CollgCr,Edwards,Somerst,Timber 11 39962.11 293.0025 *
29) Neighborhood=Gilbert,NridgHt,StoneBr,Veenker 33 222038.20 400.9246
58) GrLivArea< 2260 20 42801.90 358.2032 *
59) GrLivArea>=2260 13 86576.40 466.6498 *

15) Neighborhood=NoRidge 5 133561.60 584.9336 *

dat.Housing = read.csv("VE_Housing.csv",

header=TRUE, stringsAsFactors = TRUE)

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum) > 0))$names

dat.Housing.new = dat.Housing[,!colnames(dat.Housing) %in%

missing]

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

set.seed(1234) # for replicability

n.train = 1160

ind.train = sample(1:nrow(dat.Housing.new), n.train)

dat.train = dat.Housing.new[ind.train,]

dat.test = dat.Housing.new[-ind.train,]

(RT = rpart::rpart(SalePrice ~ ., data=dat.train,

minbucket=5))

The tree is reasonably complex and fairly difficult to read, especially since

there are so many categorical levels in some of the branching nodes.

There are multiple ways to provide a visual display that makes it easier

to read the tree.

plot(RT, margin=0.05, uniform=TRUE)

text(RT, all=TRUE, use.n=TRUE, fancy=FALSE, cex=0.6)

21.4 Other Approaches 1337

rpart.plot::prp(RT,extra=101,

box.col="orange",split.box.col="gray")

rattle::fancyRpartPlot(RT, main="Sale Price Regression Tree

(Iowa Housing)")

1338 21 Focus on Classification and Supervised Learning

These are fully grown trees. Next we use rpart’s plotcp() to determine

how to control the tree’s growth (i.e., we prune the tree).

set.seed(1234) # for replicability

rpart::plotcp(RT)

From this plot, we see that the tuning parameter should be around 0.024,

so we prune the tree as follows:

21.4 Other Approaches 1339

(RT.p = rpart::prune(RT, cp=0.024))

n= 1160

node), split, n, deviance, yval

* denotes terminal node

1) root 1160 7371073.0 180.1428

2) OverallQual< 7.5 985 2301952.0 157.4737

4) Neighborhood=Blueste,BrDale,BrkSide,Edwards,IDOTRR,MeadowV,Mitchel,NAmes,NPkVill,OldTown,

Sawyer,SWISU 580 672022.4 132.2839 *
5) Neighborhood=Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,

Somerst,StoneBr,Timber,Veenker 405 734856.3 193.5480

10) GrLivArea< 1732.5 281 296100.7 178.2365 *
11) GrLivArea>=1732.5 124 223588.1 228.2459 *

3) OverallQual>=7.5 175 1713865.0 307.7376

6) OverallQual< 8.5 126 498478.9 273.6180 *
7) OverallQual>=8.5 49 691521.3 395.4736

14) Neighborhood=CollgCr,Edwards,Gilbert,NridgHt,Somerst,StoneBr,Timber,Veenker

44 358089.4 373.9441 *
15) Neighborhood=NoRidge 5 133561.6 584.9336 *

We go from 11 to 6 leaves. The structure of the pruned tree is plotted

below.

plot(RT.p, margin=0.05, uniform=TRUE)

text(RT.p, all=TRUE, use.n=TRUE, fancy=FALSE, cex=0.6)

1340 21 Focus on Classification and Supervised Learning

rpart.plot::prp(RT.p,extra=101, box.col="orange",

split.box.col="gray")

rattle::fancyRpartPlot(RT.p, main="Sale Price Pruned

Regression Tree (Iowa Housing)")

21.4 Other Approaches 1341

Now that we have a full regression tree and a pruned tree, our last task

is to see how well they perform as predictive models on the test data

dat.test.

For the full tree, we compute the reduction in SSE using the predictions:

yhat.RT = predict(RT, dat.test)

SSE.RT = sum((yhat.RT-dat.test$SalePrice)^2)

SSE.average = sum((mean(dat.test$SalePrice) -

dat.test$SalePrice)^2)

round((1-SSE.RT/SSE.average), digits=3)

[1] 0.703

For the pruned tree, the corresponding reduction is:

yhat.RT.p = predict(RT.p, dat.test)

SSE.RT.p = sum((yhat.RT.p-dat.test$SalePrice)^2)

round((1-SSE.RT.p/SSE.average), digits=3)

[1] 0.646

This suggests that pruning is a reasonable approach, in this case (based on

Tr). The predictions of both trees are plotted against the actual SalePrice

values in the next plots.

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.RT, dat.test$SalePrice, col=2)

legend(0,600, legend=c("Full Tree"), col=c(2),

pch=rep(1), bg=’light grey’)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.RT.p, dat.test$SalePrice, col=3)

legend(0,600, legend=c("Pruned Tree"), col=c(3),

pch=rep(2), bg=’light grey’)

Obviously, there are some departures from the actual response values,

but given that the regression trees can only predict a small number of

selling prices (corresponding to the tree leaves), these predictions are

reasonably accurate.

1342 21 Focus on Classification and Supervised Learning

cor(yhat.RT, dat.test$SalePrice)

cor(yhat.RT.p, dat.test$SalePrice)

[1] 0.8412035

[1] 0.8047534

How do these CART predictions compare with the MARS predictions of

Section 20.6? The Iowa Housing dataset contains information about sale

prices from 2006 to 2010; would you use the model to make predictions

about 2022 sale prices?

Classification trees work in the same manner, although the evaluation

step can be conducted in two ways: we can build trees that predict

class membership (type="class") or probability of class membership

(type="prob"). Examples of how to work with these predict() options

are provided in Section 19.7, Classification: Kyphosis Dataset.

21.4.2 Support Vector Machines

This next classifier is more sophisticated, from a mathematical perspective.

It was invented by computer scientists in the 1990s.

Support vector machines (SVM) attempt to find hyperplanes that separate

the classes in the feature space. On the left in Figure 21.11, we see an

artificial data with 3 features: 𝑋1 and 𝑋2 (numerical), 𝑌 (categorical,

represented by different symbols).

We grow a classification tree (perhaps the one shown on the right in

Figure 21.11): two of the leaves are pure, but the risk of misclassification

is fairly large in the other 2 (at least for that tree).
31

Without access to31: The tree is not unique, obviously, but

any other tree with separators parallel to

the axes will only be marginally better, at

best.

more features, that tree is as good as it gets.
32

32: To be sure, we could create an intri-

cate decision tree with more than 2
2 = 4

separating lines, but that is undesirable

for a well-fitted tree.

21.4 Other Approaches 1343

Figure 21.11: Two-class artificial dataset

(left) and classification tree (right) [22].

But it is easy to draw a decision curve which improves on the effectiveness

of the decision tree (see Figure 21.12): a single observation is misclassified

by this rule.
33

33: Perfect separation could lead to over-

fitting.

Figure 21.12: Separating hyperplane on a

two-class artificial dataset [22].

Separating hyperplanes do not always exist; we may need to:

extend our notion of separability, and/or

extend the feature space so separation becomes possible.

A hyperplane 𝐻𝜷,𝛽0
⊆ ℝ𝑝

is an affine (“flat”) subset of ℝ𝑝
, with

dim

(
𝐻𝜷,𝛽0

)
= 𝑝 − 1;

in other words, it can be described by

𝐻𝜷,𝛽0
: 𝛽0 + 𝜷⊤x = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 = 0.

The vector 𝜷 is normal to 𝐻𝜷,𝛽0
; if 𝛽0 = 0, 𝐻𝜷,𝛽0

goes through the origin

in ℝ𝑝
. Set 𝐹(x) = 𝛽0+𝜷⊤x; then 𝐹(x) > 0 for points on one “side” of𝐻𝜷,𝛽0

and 𝐹(x) < 0 for points on the other.
34

34: 𝐹(x) = 0 for points on 𝐻𝜷,𝛽
0
.

In a binary classification problem with C= {𝐶1 , 𝐶2} = {±1}, if

𝑦𝑖𝐹(x𝑖) > 0, for all (x𝑖 , 𝑦𝑖) ∈ Tr

(or, 𝑦𝑖𝐹(x𝑖) < 0 for all (x𝑖 , 𝑦𝑖) ∈ Tr), then 𝐹(x) = 0 determines a separating
hyperplane for Tr (which does not need to be unique, see Figure 21.12),

and we say that Tr is linearly separable.

Among all separating hyperplanes, the one which provides the widest

separation between the two classes is the maximal margin hyperplane
(MMH); training observations on the boundary of the separating strip
are called the support vectors (see observations in Figure 21.13).

1344 21 Focus on Classification and Supervised Learning

Figure 21.13: Artificial linearly separable subset of a two-class dataset (left), with separating hyperplanes (centre), maximal margin

hyperplane with support vectors (right) [22].

The classification problem simplifies, as always, to a constrained opti-

mization problem:

(𝜷∗ , 𝛽∗
0
) = arg max

(𝜷,𝛽0)
{𝑀(𝜷,𝛽0)} s.t. 𝑦𝑖(𝛽0 + 𝜷x𝑖) ≥ 𝑀(𝜷,𝛽0)

for all (x𝑖 , 𝑦𝑖) ∈ Tr, with MMH given by 𝐹(x) = 𝛽∗
0
+ 𝜷∗x = 0.

Any hyperplane can be expressed in an uncountable number of ways;

the MMH for which |𝐹(x∗)| = 1 for all support vectors x provides a

canonical representation). From geometry, we know that the distance

from the canonical maximal margin hyperplane 𝐻𝜷,𝛽0
to any point z can

be computed using vector projections.

Let x0 be a point on MMH, i.e., 𝐹(x0) = 𝛽0 + 𝜷⊤x0 = 0, as shown below:

In particular, note that 𝛽0 = −𝜷⊤x0. Then,

𝑀

2

= dist

(
z, 𝐻𝜷,𝛽0

)
=

proj𝜷(z − x0)

 =

𝜷⊤(z − x0)
∥𝜷∥2 𝜷

=
|𝜷⊤(z − x0)|
∥𝜷∥2 ∥𝜷∥ =

|𝜷⊤z − 𝜷⊤x0 |
∥𝜷∥ =

|𝐹(z)|
∥𝜷∥ .

If z is a support vector, then |𝐹(z)| = 1, and

𝑀

2

= dist

(
z, 𝐻𝜷,𝛽0

)
=

1

∥𝜷∥ .

21.4 Other Approaches 1345

Maximizing the margin 𝑀 is thus equivalent to minimizing

∥𝜷∥
2

, and,

since the square function is monotonic,

arg max

(𝜷,𝛽0)
{𝑀 | 𝑦𝑖(𝛽0 + 𝛽⊤x𝑖) ≥ 1, ∀x𝑖 ∈ Tr}

is equivalent to

arg min

(𝜷,𝛽0)

{
1

2

∥𝜷∥2
���� 𝑦𝑖(𝛽0 + 𝛽⊤x𝑖) ≥ 1, ∀x𝑖 ∈ Tr

}
.

This constrained quadratic problem (QP) can be solved by Lagrange

multipliers (in implementations, it is solved numerically), but a key

observation is that it is possible to rewrite

𝜷 =

𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑖 , with

𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

thanks to the representer theorem.
35

35: Technically speaking we do not need

to invoke the representer theorem in the

linear separable case. At any rate, the result

is out-of-scope for this document.

The original QP becomes

arg min

(𝜷,𝛽0)

{
1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗x⊤𝑖 x𝑗 −
𝑁∑
𝑖=1

𝛼𝑖

����� 𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, ∀x𝑖 , x𝑗 ∈ Tr

}
.

Ultimately, it can be shown that all but 𝐿 of the coefficients 𝛼𝑖 are 0,

typically, 𝐿 ≪ 𝑁 .
36

The decision function is defined by 36: The support vectors are those training

observations x𝑖𝑘 , 𝑘 = 1, . . . , 𝐿, for which

𝛼𝑖𝑘 ≠ 0.

𝑇(x; 𝜶) =
𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑖 + 𝛽0 =

𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘x
⊤
𝑖𝑘

x + 𝛽0 ,

scaled so that 𝑇(x𝑖𝑘 ; 𝛼) = 𝑦𝑖𝑘 = ±1 for each support vector x𝑖𝑘 .

The class assignment for any x ∈ Te is thus

class(x) =
{
+1 if 𝑇(x; 𝛼) ≥ 0

−1 if 𝑇(x; 𝛼) < 0

In practice (especially when 𝑁 < 𝑝), the data is rarely linearly separable

into distinct classes (as below, for instance).

Additionally, even when the classes are linearly separable, the data

may be noisy, which could lead to overfitting, with technically opti-

mal but practically sub-optimal maximal margin solutions (see [22] for

examples).

In applications, support vector classifiers optimize instead a soft margin,

one for which some misclassifications are permitted (as in Figure 21.15).

The soft margin problem can be written as

arg min

(𝜷,𝛽0)

{
1

2

𝜷⊤𝜷

���� 𝑦𝑖(𝛽0 + 𝜷⊤x𝑖) ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0,∀x𝑖 ∈ Tr, ∥𝜺∥ < 𝐶

}
,

where 𝐶 is a (budget) tuning parameter, 𝜺 is a vector of slack variables,

canonically scaled so that |𝐹(x∗)| = |𝛽0 + 𝜷⊤x∗ | = 1 for any eventual

support vector x∗.

1346 21 Focus on Classification and Supervised Learning

Figure 21.14: Non-linearly separable two-class datasets.

Figure 21.15: Hard margin for a linearly separable classifier (left); soft margin for a linearly separable classifier (middle); soft margin for a

non-linearly separable classifier (right).

Such a model offers greater robustness against unusual observations,

while still classifying most training observations correctly:

if 𝜀𝑖 = 0, then x𝑖 ∈ Tr is correctly classified;
37

37: It falls on the correct side of the hyper-

plane, and outside the maximum margin.
if 0 < 𝜀𝑖 < 1, then x𝑖 ∈ Tr is acceptably classified;

38

38: It falls on the correct side of the hyper-

plane, but within the margin.

if 𝜀𝑖 ≥ 1, it is incorrectly classified.

If 𝐶 = 0, then no violations are allowed (∥𝜺∥ = 0) and the problem

reduces to the hard margin SVM classifier; a solution may not even exist

if the data is not linearly separable.

If 𝐶 > 0 is an integer, no more than 𝐶 training observations can be

misclassified; indeed, if 𝑖1 , . . . , 𝑖𝐶 are the misclassified indices, then

𝜀𝑖1 , . . . , 𝜀𝑖𝐶 ≥ 1 and

𝐶 ≥
𝑁∑
𝑖=1

𝜀𝑖 ≥
𝐶∑
𝑘=1

𝜀𝑖𝑘 ≥ 𝐶.

As 𝐶 increases, tolerance for violations also increases, as does the width

of the soft margin; 𝐶 plays the role of a regularization parameter, and is

usually selected via cross-validation.

21.4 Other Approaches 1347

Low values of 𝐶 are associated with harder margins, which leads to

low bias but high variance (a small change in the data could create

qualitatively different margins); large values of 𝐶 are associated with

wider (softer) margins, leading to more potential misclassifications and

higher bias, but also lower variance as small changes in the data are

unlikely to change the margin significantly.

We can build a classifier through the representer theorem formulation

as before, the only difference being that the decision function 𝑇(x; 𝜶) is
scaled so that |𝑇(x𝑖𝑘 ; 𝜶)| ≥ 1−𝜀𝑖𝑘 for every support vector x𝑖𝑘 . It is difficult

to determine what the value of the regularization parameter 𝐶 should

be at first glance; an optimal value can be obtained via a tuning process,

which tries out various values and identifies the one that produces an

optimal model.

Example We train a SVM with 𝐶 = 0.1 (obtained via a tuning procedure

for 𝐶) for the 2011 Gapminder dataset to predict the life expectancy class

𝑌 in terms of the fertility rate 𝑋1 and the logarithm of GDP per capita 𝑋2;

𝑛 = 116 observations are used in the training set gapminder.2011.tr,

the rest are set aside in the test set gapminder.2011.te.

set.seed(0)

ind.train = sample(nrow(gapminder.2011),

round(0.7*nrow(gapminder.2011)),

replace=FALSE)

gapminder.2011.tr = gapminder.2011[ind.train,]

gapminder.2011.te = gapminder.2011[-ind.train,]

x <- gapminder.2011.tr[,c("fertility","gdp","population")]

w <- log(x[,2]/x[,3])

x <- data.frame(x[,1],w)

y <- gapminder.2011.tr[,c("LE")]

dat = data.frame(x,y)

plot(w,x[,1],col=y,bg=y,pch=(as.numeric(y)+23),

xlab="Log GDPPC", ylab="fertility")

1348 21 Focus on Classification and Supervised Learning

The red triangles represent countries with low life expectancy; the black

ones, countries with high life expectancy. Notice the class overlap in the

training data.

We run 7 linear SVM models with various cost parameters (through

e1071’s tune() function), the optimal model has 𝐶 = 0.1.

library(e1071)

tuned.model <- tune(svm, y~., data = dat, kernel = "linear",

ranges = list(cost = c(0.001, 0.01, 0.1,

1, 5, 10, 100)))

(best.mod <- tuned.model$best.model)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 0.1

Number of Support Vectors: 50

The corresponding SVM model is obtained via the svm() function (note

the parameters). The SVM decision boundary is shown below:

svmfit <- svm(y~., data = dat, kernel = "linear", cost=0.1)

plot(svmfit, dat, main="Linear Kernel")

We can evaluate the model’s performance on Te (dat.te); the confusion

matrix of the model on the test set is:

x <- gapminder.2011.te[,c("fertility","gdp","population")]

w <- log(x[,2]/x[,3])

x <- data.frame(x[,1],w)

y <- gapminder.2011.te[,c("LE")]

Test data

21.4 Other Approaches 1349

dat.te = data.frame(x,y)

Class prediction on test data

results = predict(svmfit,dat.te)

Confusion matrix

table(actual=gapminder.2011.te$LE,pred=results)

𝛼 = 0.5 prediction
0 1

actual 0 22 10

1 1 17

It is not a perfectly accurate model, but it is certainly acceptable given

the class overlap in Tr.

Nonlinear Boundaries If the boundary between two classes is linear,

the SVM classifier of the previous section is a natural way to attempt to

separate the classes. In practice, however, the classes are rarely so cleanly

separated, as below, say.

set.seed(0)

x <- matrix(rnorm(600*2), ncol = 2)

y <- c(rep(-1,200), rep(0,200),rep(1,200))

x[y==1,] <- x[y==1,] + 2

x[y==-1] <- x[y==-1,] - 2

y <- y^2

dat <- data.frame(x=x, y=as.factor(y))

plot(dat[,1], dat[,2], col=dat[,3], bg=dat[,3],

pch=(as.numeric(dat[,3])+23), xlab="X1", ylab="X2")

In both the hard and the soft margin support vector classifiers, the

function to optimize takes the form

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗x⊤𝑖 x𝑗 −
𝑁∑
𝑖=1

𝛼𝑖 ,

1350 21 Focus on Classification and Supervised Learning

and the decision function, the form

𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘x
⊤
𝑖𝑘

x + 𝛽0.

However, we do not actually need to know the support vectors x𝑖𝑘 (or

even the observations x𝑖 , for that matter) in order to compute the decision

function values – it is sufficient to have access to the inner products x⊤
𝑖
x𝑗

or x⊤
𝑖𝑘

x, which are usually denoted by ⟨x𝑖𝑘 , x⟩ or ⟨x𝑖 , x𝑗⟩.

The objective function and the decision function can thus be written as

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗 ⟨x𝑖 , x𝑗⟩ −
𝑁∑
𝑖=1

𝛼𝑖 , 𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘 ⟨x𝑖𝑘 , x⟩ + 𝛽0.

This seemingly innocuous remark opens the door to the kernel approach;

we could conceivably replace the inner products ⟨x,w⟩ by generalized

inner products 𝐾(x,w), which provide a measure of similarity between

the observations x and w.

Formally, a kernel is a symmetric (semi-)positive definite operator 𝐾 :

ℝ𝑝 ×ℝ𝑝 → ℝ+
0
.
39

Common statistical learning kernels include:39: By analogy with positive defi-

nite square matrices, this means that∑𝑁
𝑖,𝑗=1

𝑐𝑖 𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0 ∀x𝑖 ∈ ℝ𝑝
, 𝑐 𝑗 ≥ 0. linear – 𝐾(x,w) = x⊤w;

polynomial of degree 𝑑 – 𝐾𝑑(x,w) = (1 + x⊤w)𝑑;
Gaussian (or radial) – 𝐾𝛾(x,w) = exp(−𝛾∥x −w∥2

2
), 𝛾 > 0;

sigmoid – 𝐾𝜅,𝛿(x,w) = tanh(𝜅x⊤w − 𝛿), for allowable 𝜅, 𝛿.

For instance, a linear kernel SVM and a radial kernel SVM with 𝛾 = 1,

𝐶 = 0.5 yield the following classifications on the previous dataset.
40

40: We are using kernlab’s ksvm() func-

tion and display the linear SVM output

for comparison, whose performance we

expect to be crap-tastic library(kernlab)

linear SVM

kernfit.lin <- ksvm(x,y, type = "C-svc",

kernel = ’vanilladot’, C = 10)

kernlab::plot(kernfit.lin, data=x)

21.4 Other Approaches 1351

Not that great, to be honest...

Gaussian SVM

kernfit.rbf <- ksvm(x,y, type = "C-svc", kernel = ’rbfdot’,

sigma=1, C = 0.5)

kernlab::plot(kernfit.rbf, data=x)

How is the decision boundary computed? The principle is the same as

with linear SVM: the objective function and the decision function are

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝐾(x𝑖 , x𝑗) −
𝑁∑
𝑖=1

𝛼𝑖 , 𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘𝐾(x𝑖𝑘 , x) + 𝛽0.

For the radial kernel, for instance, if a test observation x is near a training

observation x𝑖 , then ∥x − x𝑖 ∥2
2

is small and 𝐾𝛾(x, x𝑖) ≈ 1; if they are far

from one another, then ∥x − x𝑖 ∥2
2

is large and 𝐾𝛾(x, x𝑖) ≈ 0.

In other words, in the radial kernel framework, only those observations

close to a test observation play a role in class prediction.

Kernel Trick But why even use kernels in the first place? While the

linear kernel is easier to interpret and implement, not all data sets are

linearly separable, as we have just seen. Consider the toy classification

problem on the left of Figure 21.16 (adapted from an unknown online

source).

The optimal margin separating “strip” is obviously not linear. One

way out of this problem is to introduce a transformation Φ from the

original 𝑋−feature space to a higher-dimensional (or at least, of the

same dimension) 𝑍−feature space in which the data is linearly separable,

and to build a linear SVM on the transformed training observations

z𝑖 = Φ(x𝑖).41
41: This might seem to go against reduc-

tion strategies used to counter the curse of

dimensionality; the added dimensions are

needed to “unfurl” the data, so to speak.

In this example, we use some Φ : ℝ2 → ℝ3
; the projection of the

transformation into the 𝑍1𝑍3−plane could be as in Figure 21.16 (right).

1352 21 Focus on Classification and Supervised Learning

Figure 21.16: Toy classification problem (left); corresponding projection of the linear problem in 𝑍−space [author unknown].

The objective function and the decision function take the form

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗Φ(x𝑖)⊤Φ(x𝑗) −
𝑁∑
𝑖=1

𝛼𝑖 ,

𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘Φ(x𝑖𝑘)⊤Φ(x) + 𝛽0 ,

and the linear SVM is built as before (but in 𝑍−space, not in 𝑋−space).

It sounds straightforward, but it does take a fair amount of experience to

recognize that one way to separate the data is to use

z = Φ(x) = (𝑥2

1
,
√

2𝑥1𝑥2 , 𝑥
2

2
).

And this is one of the easy transformations: what should be used in the

case below (image taken from Wikipedia)?

The kernel trick simply states that Φ can remain unspecified if we replace

Φ(x)⊤Φ(w) by a “reasonable” (often radial) kernel 𝐾(x,w).

21.4 Other Approaches 1353

General Classification What do we do if the response variable has

𝐾 > 2 classes? In the one-versus-all (OVA) approach, we fit 𝐾 different

2−class SVM decision functions 𝑇𝑘(x; 𝜶), 𝑘 = 1, . . . , 𝐾; in each, one class

versus the rest. The test observation x∗ is assigned to the class for which

𝑇𝑘(x∗; 𝜶) is largest.

In the one-versus-one (OVO) approach, we fit all

(𝐾
2

)
pairwise 2−class

SVM classifiers class𝑘,ℓ (x), for training observations with levels 𝑘, ℓ ,

where 𝑘 > ℓ = 1, . . . , 𝐾 − 1. The test observation x∗ is assigned to the

class that wins the most pairwise “competitions”.

If𝐾 is large,

(𝐾
2

)
might be too large to make OVO computationally efficient;

when it is small enough, OVO is the recommended approach.

Example The vowel dataset was taken from the openML website .

This modified version, by Turney, is based on Robinson’s Deterding Vowel
Recognition Data, which is a speaker-independent recognition of the

eleven steady state vowels of British English using a specified training

set of lpc-derived log area ratios.
42

42: Real talk: we don’t actually know

what any of that means. But does it mat-

ter? Yes, any conclusion we can draw from

this dataset will need to be scrutinized by

subject matter experts before we can hope

to apply them to real-world situations. On

the other hand, data is simply marks on pa-

per (or perhaps electromagnetic patterns

on the cloud). We can analyze the data

without really knowing what the under-

lying meaning is. The latter approach is

usually sterile, but we can always use it to

illustrate basic concepts.

We start by reading in the data and summarizing it – the dataset has

𝑛 = 990 observations and 𝑝 = 14 variables.

vowel <- read.csv("datasets-uci-vowel.csv", header=TRUE,

sep=",", stringsAsFactors=TRUE)

str(vowel)

’data.frame’: 990 obs. of 14 variables:

$ Train.or.Test: Factor w/ 2 levels "Test","Train": 2 2 2 2 2 2 2 2 2 2 ...

$ Speaker.Name : Factor w/ 15 levels "Andrew","Bill",..: 1 1 1 1 1 1 1 1 1 1 ...

$ Speaker.Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...

$ Feature.0 : num -3.64 -3.33 -2.12 -2.29 -2.6 ...

$ Feature.1 : num 0.418 0.496 0.894 1.809 1.938 ...

$ Feature.2 : num -0.67 -0.694 -1.576 -1.498 -0.846 ...

$ Feature.3 : num 1.779 1.365 0.147 1.012 1.062 ...

$ Feature.4 : num -0.168 -0.265 -0.707 -1.053 -1.633 ...

$ Feature.5 : num 1.627 1.933 1.559 1.06 0.764 ...

$ Feature.6 : num -0.388 -0.363 -0.579 -0.567 0.394 0.217 0.322 -0.435 -0.512 -0.466 ...

$ Feature.7 : num 0.529 0.51 0.676 0.235 -0.15 -0.246 0.45 0.992 0.928 0.702 ...

$ Feature.8 : num -0.874 -0.621 -0.809 -0.091 0.277 0.238 0.377 0.575 -0.167 0.06 ...

$ Feature.9 : num -0.814 -0.488 -0.049 -0.795 -0.396 -0.365 -0.366 -0.301 -0.434 -0.836 ...

$ Class : Factor w/ 11 levels "had","hAd","hed",..: 5 6 4 2 11 1 8 7 10 9 ...

There is some imbalance in the training/testing set-up (especially as it

relates to the speaker sex):

table(vowel$Train.or.Test, vowel$Speaker.Sex)

Female Male

Test 198 264

Train 264 264

https://www.openml.org/search?type=data&sort=runs&id=307&status=active

1354 21 Focus on Classification and Supervised Learning

All-in-all, the numerical features seem to be generated from a multivariate

normal distribution, with mean vector:

colMeans(vowel[,c(4:13)], dims = 1)

Feature.0 Feature.1 Feature.2 Feature.3 Feature.4

-3.203740404 1.881763636 -0.507769697 0.515482828 -0.305657576

Feature.5 Feature.6 Feature.7 Feature.8 Feature.9

0.630244444 -0.004364646 0.336552525 -0.302975758 -0.071339394

and correlation matrix:

corrplot::corrplot.mixed(cor(vowel[,c(4:13)]))

Can we get any information from the paired plots?

psych::pairs.panels(vowel[,4:13], pch = 21, bg = vowel$Class)

21.4 Other Approaches 1355

Perhaps if we focus only on certain variables?

library(psych)

pairs.panels(vowel[,c(4,6,7,9,13)], pch = 21, bg = vowel$Class)

pairs.panels(vowel[,c(5,8,14)], pch = 21, bg = vowel$Class)

The response variable is the Class, with 11 levels, and the 𝑝 = 10

predictors are Feature.0, . . . , Feature.9. We train an SVM model on a

subset of the vowel dataset. In this instance, we use the training/testing

split provided with the data (Train.or.Test), but any randomly selected

split would be appropriate.

training = vowel[vowel$Train.or.Test=="Train",4:14]

testing = vowel[vowel$Train.or.Test=="Test",4:14]

c(nrow(training),nrow(testing)) # training/testing split

[1] 528 462

We use the support vector machine implementation found in the R library

e1071.

First we tune the hyper-parameters on a subsample of the training data by

using the tune() function, which selects optimal parameters by carrying

out a grid search over the specified parameters (otherwise we might

spend a lot of time trying to find a good combination of parameters).

For C-classification with a Gaussian kernel, the parameters are

𝐶, the cost of constraint violation (which controls the penalty paid

by the SVM model for misclassifying a training point), and

𝛾, the parameter of the Gaussian kernel (used to handle non-linear

classification).

If 𝐶 is “high”, then misclassification is costly, and vice-versa. If 𝛾 is “high”,

than the Gaussian bump around the points are narrow, and vice-versa.

Let us run a grid search with 𝐶 varying from 0.1 to 100 by powers of 10,

and 𝛾 = 0.5, 1, 2.

1356 21 Focus on Classification and Supervised Learning

vowel.svm.tune.1 <- e1071::tune(e1071::svm,

train.x=training[,1:10],

train.y=training[,11],

kernel="radial",

ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)))

print(vowel.svm.tune.1)

Parameter tuning of ’e1071::svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

10 0.5

- best performance: 0.007619739

The minimal misclassfication error (best performance) in this run is

reached when the best parameters have the values listed in the output

above. Obviously, that search was fairly coarse: searching at a finer level

can be very demanding, time-wise.

For comparison’s sake, let us see if tuning with finer intervals and larger

ranges gives substantially different results.

vowel.svm.tune.2 <- e1071::tune(e1071::svm,

train.x=training[,1:10],

train.y=training[,11],

kernel="radial",

ranges=list(cost=10^(-2:2), gamma=1:20*0.1))

print(vowel.svm.tune.2)

Parameter tuning of ’e1071::svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

10 0.8

- best performance: 0.003773585

The optimal parameters are sensibly the same, so we might as well stick

with the optimal parameters values from the first tuning. Training the

model with these values yields:

vowel.svm.model = e1071::svm(training[,11] ~ ., data = training,

type="C-classification",

cost=10, kernel="radial", gamma=0.5)

summary(vowel.svm.model)

21.4 Other Approaches 1357

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 10

Number of Support Vectors: 351

(27 32 32 26 30 36 37 29 40 32 30)

Number of Classes: 11

Levels:

had hAd hed hEd hid hId hod hOd hud hUd hYd

Note the number of support vectors. How accurately can this model

predict the class of new observations?

predicted = predict(vowel.svm.model, testing)

(confusion.matrix = table(pred = predicted, true = testing[,11]))

e1071::classAgreement(confusion.matrix,match.names=TRUE)

true

pred had hAd hed hEd hid hId hod hOd hud hUd hYd

had 36 0 0 0 0 0 0 0 0 0 0

hAd 0 40 0 0 0 0 0 0 0 0 0

hed 0 0 42 0 0 0 0 0 0 0 0

hEd 0 0 0 37 0 0 0 0 0 0 0

hid 0 0 0 0 39 0 0 0 0 0 0

hId 0 0 0 0 2 42 0 0 1 0 0

hod 0 0 0 0 0 0 36 0 0 0 0

hOd 0 0 0 0 0 0 0 35 0 0 0

hud 0 0 0 0 0 0 0 0 23 0 0

hUd 6 2 0 5 1 0 6 7 18 42 16

hYd 0 0 0 0 0 0 0 0 0 0 26

$diag

[1] 0.8614719

$kappa

[1] 0.847619

$rand

[1] 0.9425585

$crand

[1] 0.6798992

What do you think?

Final Comments In practice, it is not always obvious whether one

should use SVM, logistic regression, linear discriminant analysis (LDA),

decision trees, etc:
43

43: In Section 21.5, we argue that it is

usually preferable to train a variety of

models, rather than just the one.

1358 21 Focus on Classification and Supervised Learning

Figure 21.17: Conceptual timeline of the interest and optimism regarding AI; important milestones are indicated below the dates.

if classes are (nearly) separable, SVM and LDA are usually prefer-

able to logistic regression;

otherwise, using logistic regression together with a ridge penalty

(see Section 20.2, Shrinkage Methods) is roughly equivalent to using

SVM;

if the aim is to estimate class membership probabilities, it is prefer-

able to use logistic regression as SVM is not calibrated;
44

44: The actual values of 𝑇(x; 𝜶) have no

intrinsic meaning, other than their relative

ordering.

it is possible to use kernels in the logistic regression and LDA

frameworks, but at the cost of increased computational complexity.

All in all, it remains crucial to understand that the No Free Lunch Theorem
remains in effect [31, 29, 30]. There is simply no magical recipe... although

the next technique we discuss is often viewed (and used) as one.

21.4.3 Artificial Neural Networks

When practitioners discuss using Artificial Intelligence (AI) techniques

[23] to solve a problem, the implicit assumption is often (but not always)

that a neural network (or some other variant of deep learning) will be

used, and for good reason: “neural networks blow all previous techniques

out of the water in terms of performance” [11]. But there are some skeletons

in the closet: “[...] given the existence of adversarial examples, it shows

we really don’t understand what’s going on” [11].

At various times since Turing’s seminal 1950 paper (in which he proposed

the celebrated Imitation Game [26]), complete artificial intelligence has

been announced to be “just around the corner” (see Figure 21.17).

With the advent of deep learning and Big Data processing, optimism is

as high as it’s ever been, but opinions on the topic are varied – to some

21.4 Other Approaches 1359

commentators, AI is a brilliant success, while to others it is a spectacular

failure (see the headlines in Section 14.1.3). So what is really going on?

It is far from trivial to identify the essential qualities and skills of an
intelligence. There have been multiple attempts to solve the problem by

building on Turing’s original effort. An early argument by Hofstadter

[16] is that any intelligence should:

provide flexible responses in various scenarios;

take advantage of lucky circumstances;

make sense out of contradictory messages;

recognize the relative importance of a situation’s elements;

find similarities between different situations;

draw distinctions between similar situations, and

come up with new ideas from scratch or by re-arranging previous

known concepts.

This is not quite the approach taken by modern AI researchers, which

define the discipline as the study of intelligent agents – any device that

perceives its environment and takes actions to maximize its chance of

success at some task/goal [27].

Examples include:

expert systems – TurboTax, WebMD, technical support, insurance

claim processing, air traffic control, etc.;

decision-making – Deep Blue, auto-pilot systems, “smart” meters,

etc.;

natural Language Processing – machine translation, Siri, named-

entity recognition, chatGPT, etc.;

recommenders – Google, Expedia, Facebook, LinkedIn, Netflix,

Amazon, etc.;

content generators – music composer, novel writer, animation

creator, etc.;

classifiers – facial recognition, object identification, fraud detection,

etc.

A trained artificial neural network (ANN) is a function that maps

inputs to outputs in a useful way: it uses a Swiss-army-knife approach to

providing outputs – plenty of options are available in the architecture,

but it’s not always clear which ones should be used.

One of the reasons that ANNs are so popular is that the user does not

need to decide much about the function or know much about the problem

space in advance – ANNs are quiet models.

Algorithms allow ANNs to learn (i.e. to generate the function and its

internal values) automatically; technically, the only requirement is the

user’s ability to minimize a cost function (which is to say, to be able to

solve optimization problems).

Overview The simplest definition of an artificial neural network is

provided by the inventor of one of the first neuro-computers, R. Hecht-

Nielsen, as:

1360 21 Focus on Classification and Supervised Learning

Figure 21.18: Artificial neural network topology – conceptual example. The number of hidden layers is arbitrary, as is the size of the signal

and output vectors.

“[...] a computing system made up of a number of simple,

highly interconnected processing elements, which process

information by their dynamic state response to external

inputs. [4]”

An artificial neural network is an interconnected group of nodes, inspired

by a simplification of neurons in a brain but on much smaller scales.

Neural networks are typically organized in layers. Layers are made

up of a number of interconnected nodes which contain an activation
function.

A pattern x (input, signal) is presented to the network via the input layer,
which communicates with one or more hidden layers, where the actual

processing is done via a system of weighted connections W (edges).

The hidden layers then link to an output layer, which outputs the

predicted response ŷ (see Figure 21.18).

Neural Networks Architecture In order to train a neural network, we

need the following objects [6]:

some input data,

a number of layers,

a model, and

a learning process (loss function and optimizer).

The object interactions is visualized in Figure 21.19.

A network (model), which is composed of layers that are chained together,

maps the input data into predictions.
45

The loss function then compares45: In essence, a neural network is a func-
tion.

these predictions to the targets, producing a loss value: a measure of how

21.4 Other Approaches 1361

Figure 21.19: Relationship between the net-

work, layers, loss function, and optimizer

[6].

well the network’s predictions match what was expected. The optimizer

uses this loss value to update the network’s weights.

Input Data Neural networks start with the input training data (and

corresponding targets) in the form of a tensor. Generally speaking,

most modern machine learning systems use tensors as their basic data

structure. At its core, a tensor is a container for data – and it is almost

always numerical.

Tensors are defined by three key attributes: their

rank (number of axes) – for instance, a 3D tensor has three axes,

while a matrix (2D tensor) has two axes;

shape, a tuple of integers that describes how many dimensions

the tensor has along each axis – for instance, a matrix’s shape is

described using two elements, such as (3,5), a 3D tensor’s shape

has three elements, such as (3,5,5), a vector (1D tensor)’s shape

is given by a single element, such as (5), whereas a scalar has an

empty shape, ();

data type – for instance, a tensor’s type could be float32, uint8,

float64, etc.

Data tensors almost always fall into one of the following categories:

the most common case is vector data; in such datasets, each single

data point can be encoded as a vector, and a batch of data will be

encoded as a matrix or 2D tensor of shape (#samples,#features),

or more simply, as an array of vectors where the first axis is the

samples axis and the second axis is the features axis;

time series or sequence data, whenever the passage of time is

crucial to the observations in the dataset (or the notion of sequence

order), can be stored in a 3D tensor with an explicit time axis; each

sample can be encoded as a sequence of vectors (a 2D tensor), and

1362 21 Focus on Classification and Supervised Learning

a batch of data will be encoded as a 3D tensor of shape (#samples,

#timesteps, #features), as in Figure 21.20;

Figure 21.20: A 3D time series data tensor

[6].

images typically have three dimensions: height, width, and colour

depth;
46

a batch of image data could thus be stored in a 4D tensor of46: Although grayscale images have only

a single colour channel and could thus

be stored in 2D tensors, by convention

image tensors are always 3D, with a one-

dimensional colour channel for grayscale

images.

shape (#samples, #height, #width, #channels), as in Figure

21.21;

Figure 21.21: A 4D image data tensor [6].

video data is one of the few types of real-world data for which 5D

tensors are needed – a video can be understood as a sequence of

frames, each frame being a colour image; a sequence of frames can be

stored in a 4D tensor (#frames, #height, #width, #channels),

and so a batch of different videos can be stored in a 5D tensor of

shape (#samples, #frames, #height, #width, #channels).

Layers The core building block of neural networks is the layer, a data-

processing module that is, in a sense, a filter for data: some data goes

into the layer and comes out in a more useful form.

Specifically, layers extract representations out of the data fed into them –

hopefully, representations that are more meaningful for the problem at

hand. A layer takes as input 1+ tensors and outputs 1+ tensors. Different

21.4 Other Approaches 1363

layers are appropriate for different tensor formats and different types of

data processing.

For instance, simple vector data, stored in 2D tensors, is often processed

by densely connected layers, also called fully connected or dense layers.

Sequence data, stored in 3D tensors, is typically processed by recurrent
layers. Image data, stored in 4D tensors, is usually processed by 2D

convolution layers.

Most of deep learning consists of chaining together simple layers that will

implement a form of progressive data distillation. However, to build deep

learning models in tensor-based modules like Keras [6], it is important

to clip together compatible layers to form useful data-transformation

pipelines.

The notion of layer compatibility refers specifically to the fact that every

layer can only accept input tensors of a certain shape and return output

tensors of a certain shape.

We will discuss tensors in greater detail in Chapter 31.

Model: Networks of Layers An artificial neural network model is es-

sentially a data processing sieve, made of a succession of increasingly

refined data filters – the layers. The most common example of a model is

a linear stack of layers, mapping a single input to a single output. Other

network topologies include: two-branch networks, multihead networks,

and inception blocks. The topology of a network defines a hypothesis
space.

Since machine learning is basically

“[...] searching for useful representations of some input data,

within a predefined space of possibilities, using guidance

from a feedback signal [6],”

by choosing a network topology, we constrain the space of possibilities

(hypothesis space) to a specific series of tensor operations, mapping input

data to output data.

From a ML perspective, what we are searching for is a good set of values

for the weight tensors involved in these tensor operations. Picking the

right network architecture is more an art than a science; and although

there are some best practices and principles we can rely on, practical

experience is the main factor in becoming a proper neural network

architect.

Learning Process: Loss Function and Optimizer After a network archi-

tecture has been selected, two other objects need to be chosen:

the (objective) loss function is the quantity that is minimized

during training – it represents a measure of success for the task at

hand, and

the optimizer determines how the network is updated based on

the loss function.

1364 21 Focus on Classification and Supervised Learning

In this context, learning means finding a combination of model param-

eters that minimizes the loss function for a given set of training data

observations and their corresponding targets.

Learning happens by drawing random batches of data samples and

their targets, and computing the gradient of the network parameters

with respect to the loss on the batch. The network parameters are then

updated by a small amount (the magnitude of the move is defined by

the learning rate) in the opposite direction from the gradient.

The entire learning process is made possible by the fact that under a

network disguise, neural networks are simply chains of differentiable
tensor operations, to which it is possible to apply the chain rule of differ-

entiation to find the gradient function mapping the current parameters

and current batch of data to a gradient value.

Choosing the right objective function for a given problem is extremely

important: the network is ruthless when it comes to lowering its loss

function, and it will take any shortcut it can to achieve that objective. If

the latter does not fully correlate with success for the task at hand, the

network may face unintended side effects.

Simple guidelines exist to help analysts select an appropriate loss function

for common problems such as classification, regression, and sequence

prediction. We typically use:

binary cross entropy for a binary classification;

categorical cross entropy for a 𝑛−ary classification;

mean squared error for a regression;

connectionist temporal classification (CTC) for sequence-learning,

etc.

In most cases, one of these will do the trick – only when analysts are

working on truly new research problems do they have to develop their

own objective functions. Let us first illustrate the principles underlying

ANNs with a simple example.

We have seen that ANNs are formed from an input layer from which the

signal vector x is inputted, an output layer which produces an output
vector ŷ, and any number of hidden layers; each layer consists of a

number of nodes which are connected to the nodes of other layers via
directed edges with associated weights w, as seen below.

Nodes from the hidden and output layers are typically activation nodes –

the output 𝑎(z) is some function of the input z. Signals propagate through

the ANN using simple arithmetic, once a set of weights w and activation

functions 𝑎(·) have been selected (see Figure 21.22).

In a nutshell, at each node, the neural net computes a weighted sum of

inputs, applies an activation function, and sends a signal. This is repeated

until the various signals reach the final output nodes.

That part is easy – given a signal, an ANN can produce an output, as long

as the weights are specified. Matrix notation can simplify the expression

for the output ŷ in terms of the signal x, weights w, and activation

function 𝑎(·).

21.4 Other Approaches 1365

Figure 21.22: Signal propagating forward through an ANN; weights (in blue), activation functions (in yellow), inputs (in green), and output

(in black).

1366 21 Focus on Classification and Supervised Learning

For instance, consider the network of Figure 21.22; if

𝑎(𝑧) = (1 + exp(−𝑧))−1 ,

the network topology can be re-written as:

input layer with 𝑝 nodes

X𝑁×𝑝 = X𝑛×2 =


𝑥𝐴,1 𝑥𝐵,1
...

...

𝑥𝐴,𝑁 𝑥𝐵,𝑁

 ;

weights from input layer to hidden layer with 𝑀 nodes

W(1)
𝑝×𝑀 = W(1)

2×2
=

[
𝑤𝐴𝐶 𝑤𝐴𝐷
𝑤𝐵𝐶 𝑤𝐵𝐷

]
;

hidden layer with 𝑀 nodes

Z(2)
𝑁×𝑀 = Z(2)

𝑁×2
=


𝑧𝐶,1 𝑧𝐷,1
...

...

𝑧𝐶,𝑁 𝑧𝐷,𝑁

 = XW(1);

activation function on hidden layer

a(2) =


(1 + exp(−𝑧𝐶,1))−1 (1 + exp(−𝑧𝐷,1))−1

...
...

(1 + exp(−𝑧𝐶,𝑁))−1 (1 + exp(−𝑧𝐷,𝑁))−1

 = 𝑔(Z(2));

weights from hidden layer with 𝑀 nodes to output layer with 𝐾
nodes

W(2)
𝑀×𝐾 = W(2)

2×1
=

[
𝑤𝐶𝐸
𝑤𝐷𝐸

]
;

output layer with 𝐾 nodes

Z(3)
𝑁×𝐾 = Z(3)

𝑁×1
=


𝑧𝐸,1
...

𝑧𝐸,𝑁

 = a(2)W(2);

activation function on output layer

ŷ = a(3) =


(1 + exp(−𝑧𝐸,1))−1

...

(1 + exp(−𝑧𝐸,𝑁))−1

 = 𝑔(Z(3));

The main problem is that unless the weights are judiciously selected,

the output that is produced is unlikely to have anything to do with the

desired output. For SL tasks (i.e., when an ANN attempts to emulate the

results of training examples), there has to be some method to optimize

the choice of the weights against an error function

𝑅(W) =
𝑁∑
𝑖=1

𝑘∑
ℓ=1

(𝑦̂𝑖 ,ℓ (W) − 𝑦𝑖 ,ℓ)2 or 𝑅(W) = −
𝑁∑
𝑖=1

𝑘∑
ℓ=1

𝑦𝑖 ,ℓ ln 𝑦̂𝑖 ,ℓ (W)

21.4 Other Approaches 1367

(for value estimation and classification, respectively), where 𝑁 is the

number of observations in the training set, 𝐾 is the number of output

nodes in the ANN, 𝑦𝑖 ,ℓ is the known value or class label for the ℓ th
output

of the 𝑖th observation in the training set.

Enter backpropagation, which is simply an application of calculus’

chain rule to 𝑅(W). Under reasonable regularity condition, the desired

minimizer W∗ satisfies ∇𝑅(W∗) = 0 and is found using numerical
gradient descent.

Gradient-Based Optimization Initially, the weight matrix W is filled

with small random values (a step called random initialization). The

weights are then gradually trained (or learned), based on a feedback
signal. This occurs within a training loop, which works as follows:

1. draw a batch of training samples x and corresponding targets y;

2. run the network on x (the forward pass) to obtain predictions ŷ;

3. compute the loss of the network on the batch, a measure of the

mismatch between ŷ and y;

4. update all weights of the network in a way that slightly reduces

the loss on this batch.

Repeat these steps in a loop, as often as necessary. Hopefully, the process

will eventually converge on a network with very low training loss, which

is to say that there will be a low mismatch between the predictions ŷ and

the target y. In the vernacular, we say that the ANN has learned to map

its inputs to correct targets.

Step 1 is easy enough. Steps 2 and 3 are simply the application of a

handful of tensor operations (or matrix multiplication, as above). Step

4 is more difficult: how do we update the network’s weights? Given

an individual weight coefficient in the network, how can we compute

whether the coefficient should be increased or decreased, and by how

much?

One solution is to successively minimize the objective function along

coordinate directions to find the minimum of a function; this algorithm is

called coordinate descent and at each iteration determines a coordinate,

then minimizes over the corresponding hyperplane while fixing all other

coordinates [6].

It is based on the idea that optimization can be achieved by minimizing

along one direction at a time. Coordinate descent is useful in situations

where the objective function is not differentiable, as is the case for most

regularized regression models, say. But this approach would be inefficient

in deep learning networks, where there is a large collection of individual

weights to update. A smarter approach is use the fact that all operations

used to propagate a signal in the network are differentiable, and compute

the gradient of the objective function (loss) with regard to the network’s

coefficients.

Following a long-standing principle of calculus, we can decrease the

objective function by updating the coefficients in the opposite direction
to the gradient.47

For an input vector X, a weight matrix W, a target Y, 47: The gradient is the derivative of a ten-

sor operation; it generalizes the notion of

the derivative to functions of multidimen-

sional inputs.

and a loss function 𝐿, we predict a target candidate Ŷ(W), and compute

the loss when approximating Y by Ŷ(W).

1368 21 Focus on Classification and Supervised Learning

If X and Y are fixed, the loss function maps weights W to loss values:

𝑓 (W) = 𝐿(Ŷ(W),Y).

In much the same way that the derivative of a univariate function 𝑓 (𝑥) at

a point 𝑥0 is the slope of the tangent at 𝑓 at 𝑥0, the gradient ∇ 𝑓 (W0) is
the tensor describing the curvature of 𝑓 (W) around W0. As is the case

with the derivative, we can reduce 𝑓 (W) by moving W0 to

W1 = W0 − 𝑠∇ 𝑓 (W0),

where 𝑠 is the learning rate, a small scalar needed to approximate the

curvature of the hypersurface close to W0.

Stochastic Gradient Descent When dealing with ANNs, we can take

advantage of the differentiability of the gradient by finding its critical
points ∇ 𝑓 (W) = 0 analytically.

If the neural network contains𝑄 edges, this requires solving a polynomial

equation in 𝑄 variables. However, real-world ANNs often have over

a few thousand such connections (if not more), and so this analytical

approach is not reasonable.

Instead, we modify the parameters slightly based on the current loss

value on a random batch of data. Since we are dealing with a differentiable

function, we can use a mini-batch stochastic gradient descent (minibatch

SGD) to update the weights, simply by modifying Step 4 of the gradient

descent algorithm as follows:

4a. compute the gradient of the loss with regard to the weights (the

backward pass);

4b. update the weights “a little” in the direction opposite the gradient.

Figure 21.23 illustrates how SGD works when the network only has the

one parameter to learn, with a single training sample.

Figure 21.23: SGD with one parameter [6].

21.4 Other Approaches 1369

We automatically see why it is important to choose a reasonable learning

rate (the step size); too small a value leads to either slow convergence

or running the risk of staying stuck at some local minimum; too large a

value may send the descent to essentially random locations on the curve

and overshooting the global minimum altogether.

SGD Challenges The main issue with minibatch SGD is that “good”

convergence rates are not guaranteed, but there are other challenges:

selecting a reasonable learning rate can be difficult. Too small a

rate leads to painfully slow convergence, too large a rate can hinder

convergence and cause the loss function to fluctuate around the

minimum or even to diverge [6];

the same learning rate applies to all parameter updates, which

might not be ideal when the data is sparse;

a key challenge is in minimizing highly non-convex loss functions

that commonly occur in ANNs and avoiding getting trapped in

sub-optimal local minima or saddle points. It is hard for SGD

to escape these sub-optimal local minima and even wors for the

saddle points [8].

SGD Variants There are several SGD variants that are commonly used by

the deep learning community to overcome the aforementioned challenges.

They take into account the previous weight updates when computing

the next weight update, rather than simply considering the current

value of the gradients. Popular optimzers include SGD with momentum,

Nesterov accelerated gradient, Adagrad, Adadelta, RMSProp, and many

more [7, 24].
48

48: A beautiful animation (created by A.

Radford) compares the performance of dif-

ferent optimization algorithms and shows

that the methods usually take different

paths to reach the minimum.

ANNs can be quite accurate when making predictions – more than other

algorithms, if given a proper set up (but this can be hard to achieve).

They degrade gracefully, and they often work when other things fail:

when the relationship between attributes is complex;

when there are a lot of dependencies/nonlinear relationships;

when the inputs are messy and highly-connected (images, text and

speech), and

when dealing with non-linear classification.

But they are relatively slow and prone to overfitting (unless they have

access to large and diverse training sets), they are notoriously hard to

interpret due to their blackbox nature, and there is no algorithm in place

to select the optimal network topology.

Finally, even when they do perform better than other options, ANNs may

not perform that much better due to the No Free-Lunch theorems; and

they always remain susceptible to various forms of adversarial attacks
[13], so they should be used with caution.

49
49: For now, at least. . . who knows what

the future holds.

Example: Wine Dataset In this example, we explore the wine dataset

with the ANN architecture implemented in the R package neuralnet.

We will revisit deep learning networks, and more complicated topologies,

in Chapter 31.

https://imgur.com/a/Hqolp

1370 21 Focus on Classification and Supervised Learning

wine = read.csv("wine.csv", header=TRUE)

wine = as.data.frame(wine)

str(wine)

’data.frame’: 178 obs. of 14 variables:

$ Class : int 1 1 1 1 1 1 1 1 1 1 ...

$ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...

$ Malic.acid : num 1.71 1.78 2.36 1.95 2.59 ...

$ Ash : num 2.43 2.14 2.67 2.5 2.87 ...

$ Alcalinity.of.ash : num 15.6 11.2 18.6 16.8 21 ...

$ Magnesium : int 127 100 101 113 118 112 ...

$ Total.phenols : num 2.8 2.65 2.8 3.85 2.8 ...

$ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 ...

$ Nonflavanoid.phenols: num 0.28 0.26 0.3 0.24 0.39 ...

$ Proanthocyanins : num 2.29 1.28 2.81 2.18 1.82 ...

$ Colour.intensity : num 5.64 4.38 5.68 7.8 4.32 ...

$ Hue : num 1.04 1.05 1.03 0.86 1.04 ...

$ OD280.OD315 : num 3.92 3.4 3.17 3.45 2.93 ...

$ Proline : int 1065 1050 1185 1480 735 ...

table(wine$Class)

1 2 3

59 71 48

We notice that there are only 3 classes: 1, 2, 3. These classes will be the

level of the categorical response variable for a classification task.

We set-up the model parameters/inputs as follows:

Number of instances

n = nrow(wine)

Dependent variable - Class

Y = wine$Class

Independent variables (full)

X = wine[,-1]

Indices for Class=1,2,3

C1.loc = which(Y==1)

C2.loc = which(Y==2)

C3.loc = which(Y==3)

We begin data exploration by taking a look at the variables’ boxplots, an

excellent way to understand the distribution of each variable.

plot.title = "Boxplot of Variables in the Wine dataset

(original scale)"

boxplot(X, main=plot.title, xaxt="n")

axis(1,at=1:dim(X)[2],labels=colnames(X),las=2,cex.axis=0.5)

21.4 Other Approaches 1371

We clearly see that Proline has higher magnitudes in mean value and

variability. This suggests that if we apply reduction techniques like PCA

to the wine dataset, the 1st principal component will be based almost

entirely on the Proline value. In order to reduce undue effects, we need

to standardize the data first (see Chapter 23 for details).

Standardized predictor variables (full)

X.std = scale(X)

plot.title = "Boxplot of Variables in the Wine dataset

(standardized)"

boxplot(X.std, main=plot.title, xaxt="n")

axis(1,at=1:dim(X)[2],labels=colnames(X),las=2,cex.axis=0.5)

1372 21 Focus on Classification and Supervised Learning

We now shift our focus on understanding the relationships amongst the

explanatory variables. This is important because:

scatter plots show us whether classification is a relatively simple

task for our data;

they let us visually inspect potential outliers or influential points;

correlations amongst variables tell us whether it is necessary to

retain all of them, and

the variance inflation factor (VIF) helps us determine which vari-

ables can be removed in order to obtain more stable models, etc.

Let us first take a look at the scatterplot matrix:

plot.title = "Scatterplot matrix"

pairs(X.std, main=plot.title, col=Y+1, cex=0.5, pch=".")

21.4 Other Approaches 1373

We can also calculate and display the correlation matrix:

X.cor = cor(X.std)

corrplot::corrplot.mixed(X.cor)

We write a little function that will compute the VIF of each variable in a

design matrix

vif <- function(X){

vif=rep(0,dim(X)[2])

for (i in 1:dim(X)[2]){

expl=X[,-c(i)]

y=lm(X[,i]~expl)

vif[i]=1/(1-summary(y)$r.squared)}

return(vif)

}

vif.X = matrix(vif(X.std), nrow=1)

colnames(vif.X) = colnames(X)

rownames(vif.X) = "VIF"

round(t(vif.X),2)

VIF VIF

Alcohol 2.46 Nonflavanoid.phenols 1.80

Malic.acid 1.66 Proanthocyanins 1.98

Ash 2.19 Colour.intensity 3.03

Alcalinity.of.ash 2.24 Hue 2.55

Magnesium 1.42 OD280.OD315 3.79

Total.phenols 4.33 Proline 2.82

Flavanoids 7.03

We see that Flavonoids has high multicollinearity with respect to the

other variables, as its VIF is greater than 5; as such we have reasonable

grounds to remove that variable from further analyses as the other

variables can explain how Flavonoids would behave and doing so might

reduce the risk of creating unstable models.

1374 21 Focus on Classification and Supervised Learning

X = X[,-7]

X.std = X.std[,-7]

Now we apply a PCA reduction (see Chapter 23 for details) to fur-

ther reduce the problem complexity. We start by performing principal

component analysis on the standardized data:

pca.std = prcomp(X.std)

summary(pca.std)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.9757 1.5802 1.1870 0.94820

Proportion of Variance 0.3253 0.2081 0.1174 0.07492

Cumulative Proportion 0.3253 0.5334 0.6508 0.72569

PC5 PC6 PC7 PC8

Standard deviation 0.91472 0.80087 0.74082 0.58095

Proportion of Variance 0.06973 0.05345 0.04573 0.02813

Cumulative Proportion 0.79541 0.84886 0.89460 0.92272

PC9 PC10 PC11 PC12

Standard deviation 0.53687 0.49487 0.4750 0.41059

Proportion of Variance 0.02402 0.02041 0.0188 0.01405

Cumulative Proportion 0.94674 0.96715 0.9859 1.00000

The scree plot for proportions of variance explained by each PC is:

scree.y = eigen(t(X.std)%*%X.std)$values/

sum(eigen(t(X.std)%*%X.std)$values)

barplot(scree.y, main=plot.title,ylim=c(0, 0.35),

ylab="% explained", xlab="PC",col=heat.colors(12))

test = seq(0.7, 13.9, length.out=12)

axis(1, at=test, labels=1:12)

21.4 Other Approaches 1375

Based on the summary table, the first 6 PC would be required to retain

80% of the explanatory power; the scree plot, on the other hand, shows a

knee at the 4th component.

We can explore this further: let us take a look at the scatterplot of the first

two PC. We start by transforming X.std into its principal coordinates:

PC = X.std %*% pca.std$rotation

PCnames = c("PC1","PC2","PC3","PC4","PC5","PC6","PC7",

"PC8","PC9","PC10","PC11","PC12")

colnames(PC) <- PCnames

plot.title = "PC1 vs. PC2"

plot(PC[,1], PC[,2], cex=1.2, main=plot.title, col=Y+1,

xlab="PC1", ylab="PC2")

The scatterplot shows that the three classes are separated reasonably well

by PC1 and PC2 (although, not linearly).

plot.title = "Boxplots (in Principal Coordinates)"

par(mfrow = c(3,4))

for (i in 1:12){

plot.title.ind = paste("PC ", i, sep="")

boxplot(PC[,i]~Y, main=plot.title.ind,

col=c("red","green","blue"))

}

1376 21 Focus on Classification and Supervised Learning

21.4 Other Approaches 1377

The boxplots further leave the impression that PC3 to PC12 do not provide

as clear a separation as do PC1 and PC2. We will thus use only the latter to

visually evaluate the effectiveness of ANN (and its prediction regions).

In order to evaluate the effectiveness of the model (i.e., does it have good

predictive power without overfitting the data?), we split the data into

training and testing sets.

The model is then developed using the training set (i.e., optimized using

a subset of data), and then evaluated for its prediction power using the

testing set.

There are 𝑛 = 178 observations in total: we sample 140 of them for

the training set (say, 46 of class 1, 56 of class 2, and 38 of class 3). The

remaining 38 observations form the testing set.

set.seed(1111) # for replicabilty

C1.train.loc = sort(sample(C1.loc, size=46))

C2.train.loc = sort(sample(C2.loc, size=56))

C3.train.loc = sort(sample(C3.loc, size=38))

train.loc = c(C1.train.loc, C2.train.loc, C3.train.loc)

test.loc = which(!(1:length(Y) %in% train.loc))

training data

PC.train = PC[train.loc,]

Y.train = Y[train.loc]

dat.train = as.data.frame(cbind(nnet::class.ind(Y.train),

PC.train))

colnames(dat.train)[1:3] = c("C1", "C2", "C3")

testing data

PC.test = PC[test.loc,]

Y.test = Y[test.loc]

dat.test = as.data.frame(cbind(nnet::class.ind(Y.test),

PC.test))

colnames(dat.test)[1:3] = c("C1", "C2", "C3")

We display the training dataset (circles) and testing dataset (triangles) on

the PC1/PC2 scatterplot.

plot.title = "Training and Testing data"

xlimit = c(-4,4)

ylimit = c(-3,3)

plot(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1,

main=plot.title, xlab="PC1", ylab="PC2", xlim=xlimit,

ylim=ylimit)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5,

col=Y.test+1)

1378 21 Focus on Classification and Supervised Learning

If we only use the PC1/PC2-reduced data, we would expect that at least

two of the test observations would be misclassified (the left-most and

right-most green triangles, respectively).

We are finally ready to build an ANN via the R package neuralnet (the

main function is also called neuralnet()). We run three analyses:

1. using only the first two principal components as inputs;

2. useing the first six principal components as inputs, and

3. using all 12 principal components as inputs.

We start by forming a grid in the PC1/PC2 space on which we can colour

the prediction regions.

predict.region.PC1=seq(-5,5, length.out=100)

predict.region.PC2=seq(-4,4, length.out=100)

predict.region=expand.grid(x=predict.region.PC1,

y=predict.region.PC2)

We will also use an expanded form of the confusion matrix:

A souped-up version of the confusion matrix

confusion.expand <- function (pred.c, class) {

temp <-mda::confusion(pred.c,class)

row.sum <- apply(temp,1,sum)

col.sum <- apply(temp,2,sum)

t.sum <- sum(col.sum)

tmp <- rbind(temp, rep("----", dim(temp)[2]), col.sum)

tmp <- noquote(cbind(tmp, rep("|",dim(tmp)[1]),

c(row.sum, "----", t.sum)))

dimnames(tmp)<-list(object =

c(dimnames(temp)[[1]],"-------","Col Sum"),

true = c(dimnames(temp)[[2]],"|","Row Sum"))

21.4 Other Approaches 1379

attr(tmp, "error") <- attr(temp, "error")

attr(tmp, "mismatch") <- attr(temp, "mismatch")

return(tmp)

}

In what follows, we build an ANN model using neuralnet, with PC1

and PC2 as inputs. The parameter model.structure, which defines the

number of hidden nodes in each hidden layer, is modifiable:

a model with no hidden layer would have model.structure = 0;

1 hidden layer of 3 nodes would require model.structure = 3;

2 hidden layers of 5 and 10 nodes, respectively, would require

model.structure = c(5,10), and so on.

We will use 2 hidden layers of 10 nodes each.

model.structure = c(10,10)

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ PC1 + PC2,

data = dat.train, hidden = model.structure,

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1, PC.test[,1:2])

predict.model1.test = max.col(prob.model1.test$net.result)

print(paste("Confusion matrix (testing) for model = ",

list(model.structure)[1], sep=""))

(conf.test=confusion.expand(predict.model1.test, Y.test))

[1] "Confusion matrix (testing) for model = c(10, 10)"

true

object 1 2 3 | Row Sum

1 13 1 0 | 14

2 0 13 1 | 14

3 0 1 9 | 10

------- ---- ---- ---- | ----

Col Sum 13 15 10 | 38

attr(,"error")

[1] 0.07894737

We can compute the prediction region for the two-input model and

display it as follows:

prob.model1.region <- neuralnet::compute(model1,

predict.region[,1:2])

predict.model1.region = max.col(prob.model1.region$net.result)

plot.title=paste("Prediction region for ANN with structure = ",

list(model.structure)[1], sep="")

plot(predict.region[,1], predict.region[,2],

main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2",

col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2,

col=Y.train+1)

1380 21 Focus on Classification and Supervised Learning

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5,

col=Y.test+1)

Note the complex decision boundary.

Since the error function we seek to minimize (e.g., SSE) is non-convex, it

is possible for ANN to get stuck at local minima, rather than converge to

the global minimum. We can run the model a number of times (say, 50

replicates) and find the average prediction.
50

50: Note: this code may produce an error

saying that ANN has issues converging

(especially for simpler models). If this hap-

pens, the simple solution is to re-run the

code again or change the seed.

model.structure = c(10,10)

n.j = 50

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ PC1 + PC2,

data = dat.train, hidden = model.structure,

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:2])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test = confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

number of misclassifications

conf.test.vector = round(conf.test.vector*length(Y.test))

print(paste("Summary of number of misclassifications

in testing data out of", n.j, "trials", sep=" "))

21.4 Other Approaches 1381

round(summary(conf.test.vector), digits=2)

[1] "Summary of number of misclassifications in testing data out of 50 trials"

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 3.00 3.00 2.92 3.00 4.00

We build ANN for the PCA-reduced 6-input dataset.
51

For each ANN 51: We will try 11 different topologies: no

hidden layer; 1 hidden layer with 2, 6,

10, and 30 nodes; 2-hidden layers with

(6,6), (10,10), (30,30) nodes, and 30-hidden

layers with (6,6,6), (10,10,10) and (30,30,30)

nodes.

topology, we replicate the process 25 times. It should be noted that

prediction regions are not computed, as our input is in more than 2

dimensional space.

model.structure = list(0, # no hidden layer

2, 6, 10, 30, # 1 hidden layer

rep(6,2), rep(10,2), rep(30,2), # 2 hidden layers

rep(6,3), rep(10,3), rep(30,3)) # 3 hidden layers

set.seed(1)

results = NULL

n.loop = length(model.structure)

n.j = 25

for (i in 1:n.loop){

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~

PC1 + PC2 + PC3 + PC4 + PC5 + PC6,

data = dat.train, hidden = model.structure[[i]],

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:6])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test=confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

results[[i]] = summary(round(conf.test.vector*length(Y.test)))

}

results = as.data.frame(dplyr::bind_rows(results,

.id = "column_label"))

colnames(results) <- c("hidden", "min", "Q1", "med", "mean",

"Q3", "max")

results$hidden <- model.structure

hidden min Q1 med mean Q3 max

0 2 2 2 2.00 2 2

2 1 2 2 1.92 2 3

6 1 2 2 1.92 2 2

1382 21 Focus on Classification and Supervised Learning

10 1 2 2 1.96 2 2

30 2 2 2 2.00 2 2

6, 6 1 2 2 1.96 2 2

10, 10 1 2 2 1.88 2 2

30, 30 2 2 2 2.00 2 2

6, 6, 6 1 2 2 1.88 2 2

10, 10, 10 1 2 2 1.88 2 2

30, 30, 30 1 2 2 1.96 2 2

We can repeat this process once more, using all 12 PC.

for (i in 1:n.loop){

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ .,

data = dat.train,

hidden = model.structure[[i]],

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:12])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test=confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

results[[i]] = summary(round(conf.test.vector*length(Y.test)))

}

results = as.data.frame(dplyr::bind_rows(results,

.id = "column_label"))

colnames(results) <- c("hidden", "min", "Q1", "med", "mean",

"Q3", "max")

results$hidden <- model.structure

hidden min Q1 med mean Q3 max

0 2 2 2 2.00 2 2

2 1 1 1 1.80 3 4

6 1 2 2 2.04 2 3

10 1 2 2 1.96 2 2

30 2 2 2 2.00 2 2

6, 6 1 2 2 2.00 2 3

10, 10 1 2 2 1.92 2 3

30, 30 1 2 2 1.84 2 2

6, 6, 6 1 1 2 1.76 2 3

10, 10, 10 1 2 2 1.84 2 2

30, 30, 30 1 1 2 1.68 2 2

Comparing the mean number of misclassifications, what can we con-

clude?

21.4 Other Approaches 1383

21.4.4 Naïve Bayes Classifiers

In classical statistics, model parameters (such as 𝜇 and 𝜎, say) are treated

as constants; Bayesian statistics, on the other hand assume that model

parameters are random variables.

Bayes’ Theorem lies at the foundation of this approach:

𝑃(hypothesis | data) = 𝑃(data | hypothesis) × 𝑃(hypothesis)
𝑃(data) ,

or simply

𝑃(𝐻 | 𝐷) = 𝑃(𝐷 | 𝐻) × 𝑃(𝐻)
𝑃(𝐷) .

This is sometimes written in shorthand as 𝑃(𝐻 | 𝐷) ∝ 𝑃(𝐷 | 𝐻) × 𝑃(𝐻);
in other words, our degree of belief in a hypothesis should be updated
by the evidence provided by the data.

52
52: Nobody disputes the validity of Bayes’

Theorem, and it has proven to be a useful

component in various models and algo-

rithms, such as email spam filters, and the

following example, but the use of Bayesian

statistics is controversial in many quarters.

We will discuss Bayesian data analysis in

depth in Chapter 25.

Naïve Bayes Classification for Tumor Diagnoses Suppose we are inter-

ested in diagnosing whether a tumor is benign or malignant, based on

several measurements obtained from video imaging.

Bayes’ Theorem can be recast as

posterior =
likelihood × prior

evidence

∝ likelihood × prior,

where

posterior: 𝑃(𝐻 | 𝐷) = based on collected data, how likely is a given

tumor to be benign (or malignant)?

prior: 𝑃(𝐻) = in what proportion are tumors benign (or malignant)

in general?

likelihood: 𝑃(𝐷 | 𝐻) = knowing a tumor is benign (or malignant),

how likely is it that these particular measurements would have

been observed?

evidence: 𝑃(𝐷) = regardless of a tumor being benign or malignant,

what is the chance that a tumor has the observed characteristics?

The naïve Bayes classifiers (NBC) procedure is straightforward.

1. Objective function: a simple way to determine whether a tumor

is benign or malignant is to compare posterior probabilities and

choose the one with highest probability. That is, we diagnose a

tumor as malignant if

𝑃(malignant | 𝐷)
𝑃(benign | 𝐷) =

𝑃(𝐷 | malignant) × 𝑃(malignant)
𝑃(𝐷 | benign) × 𝑃(benign) > 1,

and as benign otherwise.

2. Dataset: there are 𝑛 = 699 observations (from the [in]famous

BreastCancer-Wisconsin.csv dataset) with nine predictor mea-

surements, each scored on a scale of 1 to 10, a score of 0 being

reserved for missing values. The predictors include items such

as Clump_Thickness and Bare_Nuclei; the categorical response

variable is the Class (Benign, Malignant).

https://www.data-action-lab.com/wp-content/uploads/2023/04/BreastCancer-Wisconsin.csv

1384 21 Focus on Classification and Supervised Learning

dat.BC = read.csv("BreastCancer-Wisconsin.csv",

header=TRUE, stringsAsFactors = TRUE)

str(dat.BC)

’data.frame’: 699 obs. of 10 variables:
$ Clump_Thickness : int 5 5 3 6 4 8 1 2 2 4 ...
$ Uniformity_of_Cell_Size : int 1 4 1 8 1 10 1 1 1 2 ...
$ Uniformity_of_Cell_Shape : int 1 4 1 8 1 10 1 2 1 1 ...
$ Marginal_Adhesion : int 1 5 1 1 3 8 1 1 1 1 ...
$ Single_Epithelial_Cell_Size: int 2 7 2 3 2 7 2 2 2 2 ...
$ Bare_Nuclei : int 1 10 2 4 1 10 10 1 1 1 ...
$ Bland_Chromatin : int 3 3 3 3 3 9 3 3 1 2 ...
$ Normal_Nucleoli : int 1 2 1 7 1 7 1 1 1 1 ...
$ Mitoses : int 1 1 1 1 1 1 1 1 5 1 ...
$ Class : Factor w/ 2 levels "Benign","Malignant": 1 1 1 1 1 2 1 1 1 1 ...

In table layout, the first 6 observations look like:

head(dat.BC)

We create a training/testing split for the data, by selecting roughly

80%/20% of the observations.

set.seed(1234) # for reproducibility

ind = 1:nrow(dat.BC)

prop.train = 0.8

n.train = floor(nrow(dat.BC)*prop.train)

indices of training observations

loc.train = sort(sample(ind, n.train, replace=FALSE))

indices of testing observations

loc.test = ind[-which(ind %in% loc.train)]

training data

dat.BC.train = dat.BC[loc.train,]

test data

dat.BC.test = dat.BC[loc.test,]

We separate the Benign and Malignant subsets of the training data

for graphing purposes.

location.Benign = which(dat.BC.train$Class=="Benign")

location.Malignant = which(!(1:nrow(dat.BC.train)

%in% location.Benign))

cols_remove = c("Class")

21.4 Other Approaches 1385

dat.Benign=dat.BC.train[location.Benign,!colnames(dat.BC)

%in% cols_remove]

dat.Malignant=dat.BC.train[location.Malignant,

!colnames(dat.BC) %in% cols_remove]

The boxplots of the training measurements are shown below.

library(gpplot2)

dat.BC2 = reshape2::melt(dat.BC.train, id.var="Class")

ggplot(data = dat.BC2, aes(x=variable, y=value)) +

geom_boxplot(aes(fill=Class)) +

scale_y_discrete(limits = 1:10) +

theme(axis.text.x = element_text(angle = 90, hjust = 1))

From these plots, we learn that benign tumors have lower scores

on average, while malignant tumors have much higher scores and

variabilities.
53

53: In what follows, we treat the test ob-

servations as undiagnosed cases.
3. Assumptions: we assume that the scores of each measurement in a

class are independent of one another (hence the naive qualifier);

this assumption reduces the likelihood to

𝑃(𝐻 | 𝐷) = 𝑃(𝐻 | 𝑥1 , 𝑥2 , · · · , 𝑥9) ∝ 𝑃(𝑥1 , 𝑥2 , · · · , 𝑥9 | 𝐻) × 𝑃(𝐻)
= 𝑃(𝑥1 | 𝐻) × · · · × 𝑃(𝑥9 | 𝐻) × 𝑃(𝐻).

Note that this assumption of conditional independence is not

usually satisfied.

1386 21 Focus on Classification and Supervised Learning

4. Prior distribution: we can ask subject matter experts to provide a

rough estimate for the general ratio of benign to malignant tumors,

or use the proportion of benign tumors in the sample as our prior.
54

54: In situations where we have no knowl-

edge about the distribution of priors, we

may simply assume a non-informative
prior. In this case, the prevalence rates

would be the same for both responses.

In this example, we will assume that the training data represents the

tumor population adequately, and we use the observed proportions

as estimated prior probabilities.

n.Benign.train = nrow(dat.Benign)

n.Malignant.train = nrow(dat.Malignant)

(prior.Benign = n.Benign.train/(n.Benign.train +

n.Malignant.train))

(prior.Malignant = 1 - prior.Benign)

[1] 0.6529517

[1] 0.3470483

5. Computation of likelihoods: under conditional independence,

each measurement is assumed to follow a multinomial distribution

(since scores are provided on a 1 to 10 scale): for each predictor, for

each class, we must estimate 𝑝1 , . . . , 𝑝10, with 𝑝1 + · · · + 𝑝10 = 1.
55

55: In other problems, the predictors

could be continuous rather than discrete,

in which case we would use continuous

distributions instead; even in discrete case,

the multinomial assumption might not be

appropriate.

The best estimates are thus

𝑝̂ℓ ,pred =
of training cells in the class with pred score ℓ

of training cells in the class

, ℓ = 1, . . . , 10.

This is done in the code below; note that count.xyz is a count

matrix, while freq.xyz is a frequency matrix.

Benign cells

count.Benign = freq.Benign = NULL

for (i in 1:(ncol(dat.BC.train)-1)){

test.count = table(c(dat.Benign[,i],0:10))-1

test.freq = test.count/sum(test.count)

count.Benign = cbind(count.Benign, test.count)

freq.Benign = cbind(freq.Benign, test.freq)

}

colnames(count.Benign) = colnames(freq.Benign)

= colnames(dat.Benign)

p.Benign = freq.Benign

p.Benign[1,] = 1

Malignant cells

count.Malignant = freq.Malignant = NULL

for (i in 1:(ncol(dat.BC.train)-1)){

test.count = table(c(dat.Malignant[,i],0:10))-1

test.freq = test.count/sum(test.count)

count.Malignant = cbind(count.Malignant, test.count)

freq.Malignant = cbind(freq.Malignant, test.freq)

}

colnames(count.Malignant) = colnames(freq.Malignant)

= colnames(dat.Malignant)

p.Malignant = freq.Malignant

p.Malignant[1,] = 1

21.4 Other Approaches 1387

These are then the best estimates for the multinomial parameters,

for the benign tumors:

table(p.Benign)

For the malignant tumors, we have:

table(p.Malignant)

barplot(p.Benign[2:11,4],

xlab = "Score", ylab = "Relative Frequency",

main = "Marginal Adhesion Scores - Benign Cells")

1388 21 Focus on Classification and Supervised Learning

barplot(p.Malignant[2:11,4],

xlab = "Score", ylab = "Relative Frequency",

main = "Marginal Adhesion Scores - Malignant Cells")

Multiplying probabilities across predictors from each multino-

mial distribution (one each for both classes) provides the overall

likelihoods for benign and malignant tumors, respectively.

For instance, if the signature of an undiagnosed case was

(1, 1, 3, 1, 0, 2, 3, 2, 2),

then we would multiply the probabilities corresponding to each

score across predictors, once assuming that the cell was benign,

and once assuming it was malignant:

𝑃(𝐷 | 𝐻) = 𝑃(x = (1, 1, 3, 1, 0, 2, 3, 2, 2) | 𝐻)
= 𝑃(𝑥1 = 1 | 𝐻) × 𝑃(𝑥2 = 1 | 𝐻) × 𝑃(𝑥3 = 3 | 𝐻)
× 𝑃(𝑥4 = 1 | 𝐻) × 𝑃(𝑥5 = 0 | 𝐻) × 𝑃(𝑥6 = 2 | 𝐻)
× 𝑃(𝑥7 = 3 | 𝐻) × 𝑃(𝑥8 = 2 | 𝐻) × 𝑃(𝑥9 = 2 | 𝐻).

We can extract the signature vector of probabilities as follows:

x = c(1,1,3,1,0,2,3,2,2) + 1

y = c(1,2,3,4,5,6,7,8,9)

For the benign class, we have:

p.Benign[as.matrix(data.frame(x,y))]

[1] 0.33424658 0.83561644 0.08219178 0.82739726

[5] 1.00000000 0.04657534 0.26575342

[8] 0.05753425 0.01369863

(l.Benign = prod(p.Benign[as.matrix(data.frame(x,y))]))

[1] 1.852912e-07

For the malignant class, we have:

21.4 Other Approaches 1389

p.Malignant[as.matrix(data.frame(x,y))]

[1] 0.01546392 0.01030928 0.09793814 0.14948454

[5] 1.00000000 0.02577320 0.15463918

[8] 0.03092784 0.10824742

(l.Malignant = prod(p.Malignant[as.matrix(data.frame(x,y))]))

[1] 3.114231e-11

Based on the multinomial probabilities given in p.Benign and

p.Malignant, the (naïve) likelihood of the undiagnosed case being

a benign tumor would thus be 1.86 × 10
−7

, while the likelihood of

it being a malignant tumor would be 3.11 × 10
−11

.
56

56: Careful! These are the likelihoods, not

the posteriors.
6. Computation of posterior: multiplying the corresponding prior

probabilities and likelihoods, we get a quantity that is proportional

to the respective posterior probabilities:

𝑃(𝐻 | x) ∝ 𝑃(𝐻) × 𝑃(x | 𝐻) ≈ 𝑃(𝐻) ×
9∏
𝑗=1

𝑃(𝑥 𝑗 | 𝐻).

The “likelihoods” can be computed as follows:

test.Benign = test.Malignant = NULL

likelihood.Benign = likelihood.Malignant = NULL

for (i in 1:nrow(dat.BC.test)){

location = rapply(dat.BC.test[i,-10]+1,c)

for(j in 1:length(location)){

test.Benign[j] = p.Benign[location[j],j]

test.Malignant[j] = p.Malignant[location[j],j]

}

likelihood.Benign.i = prod(test.Benign)

likelihood.Malignant.i = prod(test.Malignant)

likelihood.Benign = c(likelihood.Benign,

likelihood.Benign.i)

likelihood.Malignant = c(likelihood.Malignant,

likelihood.Malignant.i)

}

The “posteriors” can then be computed as follows:

posteriors=cbind(likelihood.Benign*prior.Benign,

likelihood.Malignant*prior.Malignant)

For the undiagnosed case x = (1, 1, 3, 1, 0, 2, 3, 2, 2), we obtain:

l.Benign*prior.Benign

l.Malignant*prior.Malignant

1390 21 Focus on Classification and Supervised Learning

[1] 1.209862e-07

[1] 1.080789e-11

Comparing the posteriors

𝑃(Malignant | x) < 𝑃(Benign | x),

we conclude that the tumor in the undiagnosed case is likely
benign.

57
We can complete the procedure for all observations in57: Note that we have no measurement

on how much more likely it is to be benign

than to be malignant – the classifier is not
calibrated.

the test set:

n.test=nrow(dat.BC.test)

prediction=rep(NA, n.test)

prediction[which(posteriors[,1]>posteriors[,2])]="Benign"

prediction[which(posteriors[,1]<posteriors[,2])]="Malignant"

prediction=as.factor(prediction)

table(prediction)

prediction

Benign Malignant

85 55

Since we actually know the true outcome for the test subjects, we

can take a look at the NBC’s performance on the data.

table(dat.BC.test$Class,prediction)

NBC

prediction
Benign Malignant

actual Benign 85 8

Malignant 0 47

Let’s take a look at cases where NBC misclassified, and their

corresponding posteriors:

dat.misclassified = dat.BC.test[

which(dat.BC.test$Class!=prediction),]

missed.class = prediction[

which(dat.BC.test$Class!=prediction)]

wrong.classifications = cbind(posteriors[

which(dat.BC.test$Class!=prediction),])

colnames(wrong.classifications) =

c("Posterior.Benign","Posterior.Malignant")

wrong.classifications =

cbind(dat.misclassified, wrong.classifications)

table(wrong.classifications)

The confusion matrix tells us that 8 out of 140 cases (5.7%) are

misclassified. A closer look at misclassified cases reveals that 3 of

the 8 false positives are a result of a posterior probability being 0 (a

score level that was not observed in the training set). Taking a close

look at ID 130, for instance, all but Single_Epithelial_Cell_Size

21.5 Ensemble Learning 1391

have scores of 1, strongly indicating that tumor is likely benign

(perhaps the 10 is a typo?).

Can we prevent misclassification similar to case in ID 130? One way

to do so is to replace all 0 probabilities in the likelihood matrices

by a small 𝜀 (obtained by multiplying a base probability with the

smallest non-zero probability), and by re-scaling the columns so

that they all add up to 1 (excluding the missing values from the

process). If 𝜀 is small enough, the larger probabilities will not be

affected, in practice.
58

58: Using a base probability of 10
−8

%, for

instance, would reduce the misclassifica-

tion rate on the test data to 6/140 (4.3%).

Notes and Comments In practice, various prior distributions or condi-

tional distributions (for the features) can be used; domain matter expertise

can come in handy during these steps:

the naive assumption is made out of convenience, as it renders the

computation of the likelihood much simpler;

the variables in a dataset are not typically independent of one

another, but NBC still works well with test data (usually) – the

method seems to be robust against departure from the indepen-

dence assumption;

dependency among variables may change the true posterior values,

but the class with maximum posterior probabilities is often left

unchanged;

in the classification context, we typically get more insight from

independent/correlated data than from correlated data;

NBC works best for independent cases, but optimality can also be

reached when dependency among variables inconsistently support

one class over another;

the choice of a prior may have a great effect on the classification

predictions, as can the presence of outlying observations, especially

when |Tr| is small);

it is not practical to conduct NBC manually, as we have done in

this section – a complete implementation can be called by using

the method naiveBayes() from the R package e1071 (make sure

to read the documentation first!), and

a final reminder that, like the SVM models, NBC is not calibrated
and should not be used to estimate probabilities.

21.5 Ensemble Learning

In practice, individual learners are often weak – they perform better

than random guessing would, but not necessarily that much better, or

1392 21 Focus on Classification and Supervised Learning

sufficiently so for specific analytical purposes. In the late 80’s, Kearns

and Valiant asked the following question: can a set of weak learners be

used to create a strong learner? The answer, as it turn out, is yes – via
ensemble learning methods.

As an example, scientists trained 16 pigeons (weak learners, one would

assume) to identify pictures of magnified biopsies of possible breast

cancers. On average, each pigeon had an accuracy of about 85%, but when

the most popular answer among the group was selected, the accuracy

jumped to 99% [21].
59

59: The material of this section closely

follows [18].

21.5.1 Bagging

Bootstrap aggregation (also known as bagging) is an extension of

bootstrapping. Originally, bootstrapping was used in situations where it

is nearly impossible to compute the variance of a quantity of interest by

exact means (see Section 20.3.2).

But it can also be used to improve the performance of various statistical

learners, especially those that exhibit high variance (such as CART).
60

60: Low variance methods, in comparison,

are those for which the results, structure,

predictions, etc. remain roughly similar

when using different training sets, such as

OLS when 𝑁/𝑝 ≫ 1, and are less likely to

benefit from the use of ensemble learning.

Given a learning method, bagging can be used to reduce the variance of

that method.

If 𝑍1 , . . . , 𝑍𝐵 are independent predictions at x ∈ Te, say, with

Cov(𝑍𝑖 , 𝑍 𝑗) =
{
𝜎2

if 𝑖 = 𝑗

0 else

the central limit theorem states that

Var(𝑍) = Var

(
𝑍1 + · · · + 𝑍𝐵

𝐵

)
=

1

𝐵2

Var(𝑍1 + · · · + 𝑍𝐵)

=
1

𝐵2

𝐵∑
𝑖 , 𝑗=1

Cov(𝑍𝑖 , 𝑍 𝑗) =
1

𝐵2

𝐵∑
𝑘=1

Var(𝑍𝑖) =
𝜎2

𝐵
.

In other words, averaging a set of observations reduces the variance as

𝜎2 ≥ 𝜎2

𝐵 for all 𝐵 ∈ ℕ. In practice, this conclusion seems, at first, not to

be as interesting as originally intended since we do not usually have

access to multiple training sets. However, resampling methods can be

used to generate multiple bagging training sets from the original train-

ing set Tr.

Let 𝐵 > 1 be an integer. We generate 𝐵 bootstrapped training sets from Tr

by sampling 𝑁 = |Tr| observations from Tr, with replacement, to yield

Tr1 , . . . , Tr𝐵 ,

and train a model 𝑓𝑖 (for regression) or 𝐶̂𝑖 (for classification) on each Tr𝑖 ,

𝑖 = 1, . . . , 𝐵; for each x∗ ∈ Te, we then have 𝐵 predictions

𝑓1(x∗), . . . , 𝑓𝐵(x∗) (for regression)

𝐶̂1(x∗), . . . , 𝐶̂𝐵(x∗) (for classification).

21.5 Ensemble Learning 1393

The bagging prediction at x∗ ∈ Te is the average of all predictions

𝑓Bag(x∗) =
1

𝐵

𝐵∑
𝑖=1

𝑓𝑖(x∗) (for regression),

or the most frequent prediction

𝐶̂Bag(x∗) = Mode{𝐶̂1(x∗), . . . , 𝐶̂𝐵(x∗)} (for classification).

Bagging is particularly helpful in the CART framework; to take full

advantage of bagging, however, the trees should be grown deep (i.e.,

no pruning), as their complexity will lead to high variance but low bias

(thanks to the bias-variance trade-off).

In practice, the bagged tree predictions would also have low bias, but the

variance will be reduced by the bagging process; bagging with 100s/1000s

of trees typically produces greatly improved predictions (at the cost of

interpretability, however).

Out-of-Bag Error Estimation As is usually the case with supervised

models, we will need to estimate the test error for a bagged model. There

is an easy way to provide the estimate without relying on cross-validation,

which is computationally expensive when 𝑁 is large.

The 𝑗th model is fit to the bootstrapped training set Tr𝑗 , 𝑗 = 1, . . . , 𝐵.

We can show that, on average, each of the Tr𝑗 contains ≈ 2/3 distinct

observations of Tr, which means that ≈ 1/3 of the training observations

are not used to build the model (we refer to those observations are

out-of-bag (OOB) observations).

We can then predict the response 𝑦𝑖 for the 𝑖th observation in Tr using

only those models for which x𝑖 was OOB; there should be about 𝐵/3
such predictions, and

𝑦̂𝑖 = Avg{ 𝑓𝑗(x𝑖) | x𝑖 ∈ OOB(Tr𝑗) = Tr \ Tr𝑗} (for regression)

𝑦̂𝑖 = Mode{𝐶̂ 𝑗(x𝑖) | x𝑖 ∈ OOB(Tr𝑗)} (for classification).

The OOB MSE (or the OOB misclassification rate) are thus good Te error

estimates since none of the predictions are given by models that used

the test observations in their training.

Variable Importance Measure Bagging improves the accuracy of stand-

alone models, but such an improvement comes at the cost of reduced
interpretability, especially in the case of CART: the bagged tree pre-

dictions cannot, in general, be expressed with the help of a single tree.

In such a tree, the relative importance of the features is linked to the

hierarchy of splits.
61

61: Namely, the most “important” vari-

ables appear in the earlier splits.

For bagged regression trees, a measure such as the total amount in

decreased SSE due to splits over a given predictor, in which we compare

SSE in trees with these splits against SSE in trees without these splits,

averaged over the 𝐵 bagged trees, provides a summary of the importance

of each variable (large scores indicate important variables). For bagged

classification trees, we would replace SSE with the Gini index, instead.

1394 21 Focus on Classification and Supervised Learning

Another approach might be to weigh the importance of a factor inversely
proportionally to the level in which it appears (if at all) in each bagging

tree and to average over all bagging trees.

For instance, if predictor 𝑋1 appears in the 1st split level of bagged tree

1, the 4th split level of bagged tree 2, and the 3rd split level of bagged

tree 5, whereas predictor 𝑋2 appears in the 2nd, 2nd, 3rd, and 5th split

levels of bagged trees 2, 3, 4, 5 (resp.), then the relative importance of

each predictor over the 5 bagged trees is

𝑋1 : (1 + 1/4 + 0 + 0 + 1/3) · 1/5 = 19/60 = 0.32

𝑋2 : (0 + 1/2 + 1/2 + 1/3 + 1/5) · 1/5 = 23/75 = 0.31;

the first variable is nominally more important than the second.

Example We once again revisit the Iowa Housing Price example of

Sections 20.5.2 and 21.4.1. Recall that we had built a training set dat.train

with 𝑛 = 1160 observations relating to the selling price SalePrice of

houses in Ames, Iowa.

dat.Housing = read.csv("VE_Housing.csv", header=TRUE,

stringsAsFactors = TRUE)

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum)>0))$names

dat.Housing.new = dat.Housing[,!colnames(dat.Housing)

%in% missing]

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

set.seed(1234) # for replicability

n.train = 1160

ind.train = sample(1:nrow(dat.Housing.new), n.train)

dat.train = dat.Housing.new[ind.train,]

dat.test = dat.Housing.new[-ind.train,]

We build a regression tree bagging model using the R package ipred,

with 150 bags, and using an OOB error estimate.

set.seed(1234)

library(ipred)

(bag <- bagging(formula = SalePrice ~ ., data = dat.train,

nbagg = 150, coob = TRUE, control =

rpart::rpart.control(minsplit = 5, cp = 0),

importance = TRUE))

Bagging regression trees with 150 bootstrap replications

Out-of-bag estimate of root mean squared error: 29.2526

We can display the 5 most important variables:

p=ncol(dat.train)-1

vim <- data.frame(var=names(dat.train[,1:p]),

imp=caret::varImp(bag))

21.5 Ensemble Learning 1395

vim.plot <- vim[order(vim$Overall, decreasing=TRUE),]

vim.plot <- vim.plot[1:5,]

barplot(vim.plot$Overall, names.arg=rownames(vim.plot),

col=heat.colors(5), xlab=’Variable Importance’)

The predictions on the testing data are obtained (and plotted) as follows:

yhat.bag = predict(bag, newdata=dat.test)

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.bag, dat.test$SalePrice, col=2)

legend(0,600, legend=c("Bagged Tree - (150 bags)"),

col=c(2), pch=rep(1), bg=’light grey’)

1396 21 Focus on Classification and Supervised Learning

The correlation measure between predicted and actual sale prices on the

dat.test is:

cor(yhat.bag, dat.test$SalePrice)

[1] 0.9413044

How does that compare to the previous MARS and CART models?

21.5.2 Random Forests

In a bagging procedure, we fit models on various training sets, and we

use the central limit theorem, assuming independence of the models, to

reduce the variance.

In practice, however, the independence assumption is rarely met: if there

are only a few strong predictors in Tr, each of the bagged models (built

on the bootstrapped training sets Tr𝑖) is likely to be similar to the others,

and the various bagging predictions are unlikely to be un-correlated, so

that

Var(𝑦̂∗
Bag
) ≠ 𝜎2

𝐵
, x∗ ∈ Te;

averaging highly correlated quantities does not reduce the variance

significantly.
62

62: The central limit theorem assumption

of independence of observations is neces-

sary. With a small tweak, however, we can decorrelate the bagged models,

leading to variance reduction when we average the (bagged) predictions.

Random forests also build models on 𝐵 bootstrapped training samples,

but each model is built out of a random subset of predictors.

For decision trees, every time a split is considered, the set of allowable

predictors is selected from a random subset of𝑚 predictors out of the full

𝑝 predictors. By selecting predictors randomly for each model, we lose

out on building the best possible model on each training sample, but we

also reduce the chance of them being correlated. For a test observation x∗,
the 𝐵 predictions are combined as in bagging to yield the random forest
prediction.

If 𝑚 = 𝑝, random forests reduce to bagged models; in practice we use

𝑚 ≈ √𝑝 for classification and𝑚 ≈ 𝑝/3 for regression. When the predictors

are highly correlated, however, smaller values of 𝑚 are recommended.

Example We revisit the Wine example of Section 21.4.3, using the R

package randomForest.

wine = read.csv("wine.csv", header=TRUE,

stringsAsFactors = TRUE)

wine$Class = as.factor(wine$Class)

Let’s implement a 70%/30% training/testing split:

21.5 Ensemble Learning 1397

set.seed(1111)

ind.train <- sample(nrow(wine), 0.8*nrow(wine),

replace = FALSE)

dat.train <- wine[ind.train,]

dat.test <- wine[-ind.train,]

There are 𝑝 = 13 predictors in the dataset, so we should use 𝑚 ≈
√

13 ≈ 4

predictors at each split. Keep in mind, however, that we have seen that

some of the variables are correlated, so we will try models for 𝑚 = 1,

𝑚 = 2, 𝑚 = 3, and 𝑚 = 4.

wine.rf.1 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 1,

importance = TRUE)

wine.rf.1

No. of variables tried at each split: 1

OOB estimate of error rate: 0.7%

Confusion matrix:

1 2 3 class.error

1 47 0 0 0.00000000

2 0 54 1 0.01818182

3 0 0 40 0.00000000

wine.rf.2 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 2,

importance = TRUE)

wine.rf.2

No. of variables tried at each split: 2

OOB estimate of error rate: 0.7%

Confusion matrix:

1 2 3 class.error

1 47 0 0 0.00000000

2 0 54 1 0.01818182

3 0 0 40 0.00000000

wine.rf.3 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 3,

importance = TRUE)

wine.rf.3

No. of variables tried at each split: 3

OOB estimate of error rate: 1.41%

Confusion matrix:

1 2 3 class.error

1 46 1 0 0.02127660

2 0 54 1 0.01818182

3 0 0 40 0.00000000

1398 21 Focus on Classification and Supervised Learning

wine.rf.4 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 4,

importance = TRUE)

wine.rf.4

No. of variables tried at each split: 4

OOB estimate of error rate: 1.41%

Confusion matrix:

1 2 3 class.error

1 46 1 0 0.02127660

2 0 54 1 0.01818182

3 0 0 40 0.00000000

In this example, then, the choice of 𝑚 only introduces slight differences.

Obviously, this will not always be the case.

21.5.3 Boosting

Another general approach to improving prediction results for statistical

learners involves creating a sequence of models, each improving over

the previous model in the series. Boosting does not involve bootstrap

sampling; instead, it fits models on a hierarchical sequence of residuals,

but it does so in a slow manner.

For regression problems, we proceed as follows:

1. set 𝑓 (x) = 0 and 𝑟𝑖 = 𝑦𝑖 for all x𝑖 ∈ Tr;

2. for 𝑏 = 1, 2, . . . , 𝐵:

a) fit a model 𝑓 𝑏 to the training set (X, r);
b) update the regression function 𝑓 := 𝑓 + 𝜆 𝑓 𝑏 ;
c) update the residuals 𝑟𝑖 := 𝑟𝑖 − 𝜆 𝑓 𝑏(x𝑖) for all x𝑖 ∈ Tr;

3. output the boosted model 𝑓 (x) = 𝜆(𝑓 1(x) + · · · + 𝑓 𝐵(x)).

In this version of the algorithm, boosting requires three tuning parame-

ters:

the number of models 𝐵, which can be selected through cross-

validation (boosting can overfit if 𝐵 is too large);

the shrinkage parameter 𝜆 (typically, 0 < 𝜆 ≪ 1), which controls

the boosting learning rate (a small 𝜆 needs a large 𝐵, in general);

the optimal 𝜆 and 𝐵 can be found via cross-validation, and

although not explicitly stated, we also need the learning models to

reach some complexity threshold.

Variants of the boosting algorithm allowing for classification and for

varying weights depending on performance regions in predictor space

also exist and are quite popular. While the various No Free Lunch theorems

guarantee that no supervised learning algorithm is always best regardless

of context/data, the combination of AdaBoost with weak CART learners

is seen by many as the best “out-of-the-box” classifier.

21.5 Ensemble Learning 1399

Example Consider the Credit.csv dataset [18]; the task is to deter-

mine the credit card balance based on a number of other factors.

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education: int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 1 2 1 1 ...

$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 2 ...

$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 2 ...

$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 2 3 3 1 2 3 1 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 1350 ...

We remove the index variable, and create binary variables for all categor-

ical levels in the data.

Credit <- Credit[,-c(1)]

Credit$Gender.dummy <- ifelse(

Credit$Gender == "Female",1,0)

Credit$Student.dummy <- ifelse(

Credit$Student == "Yes",1,0)

Credit$Married.dummy <- ifelse(

Credit$Married == "Yes",1,0)

Credit$Ethnicity.AA.dummy <- ifelse(

Credit$Ethnicity == "African American",1,0)

Credit$Ethnicity.A.dummy <- ifelse(

Credit$Ethnicity == "Asian",1,0)

The dataset under consideration will then have the following shape:

Credit <- Credit[,c(1:6,12:16,11)]

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education : int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender.dummy : num 0 1 0 1 0 0 1 0 1 1 ...

$ Student.dummy : num 0 1 0 0 0 0 0 0 0 1 ...

$ Married.dummy : num 1 1 0 0 1 0 0 0 0 1 ...

$ Ethnicity.AA.dummy: num 0 0 0 0 0 0 1 0 0 1 ...

$ Ethnicity.A.dummy : num 0 1 1 1 0 0 0 1 0 0 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 1350 ...

https://www.data-action-lab.com/wp-content/uploads/2023/02/Credit.csv

1400 21 Focus on Classification and Supervised Learning

We pick 300 of the 400 observations to be part of the training set:

set.seed(1234)

ind = sample(1:nrow(Credit), size = 300)

Credit.train = Credit[ind,]

Credit.test = Credit[-ind,]

We use 𝜆 = 0.005 as a shrinkage parameter and 𝐵 = 2000 models.

lambda = 0.005

X <- Credit.train[,1:11] # predictors

r <- Credit.train[,12] # response

X.test <- Credit.test[,1:11]

Y.test = Credit.test[,12]

We start by building the first iteration of the boosting model, using R’s

tree package, and look at its predictions on the test data:

tree.f <- tree::tree(r ~ ., data = data.frame(cbind(X,r)),

na.action=na.pass)

r <- r - lambda * predict(tree.f, X)

plot(Y.test,predict(tree.f, X.test))

abline(0,1,col="red")

Visually, the performance seems middling, which is born by the correla-

tion metric between the actual test observations and the predicted test

observations.

21.5 Ensemble Learning 1401

cor(Y.test,predict(tree.f, X.test))

[1] 0.8640351

Let us compare with the results of boosting with 2000 models.

results.boost <- 0*Y.test

B=2000

tree.full <- c()

tree.snipped <- c()

for(b in 1:B){

tree.full[[b]] <- tree::tree(r ~ .,

data = data.frame(cbind(X,r)), na.action=na.pass)

tree.snipped[[b]] <- tree::tree(r ~ .,

data = data.frame(cbind(X,r)), na.action=na.pass)

r <- r - lambda * predict(tree.snipped[[b]], X)

results.boost = results.boost + lambda *
predict(tree.snipped[[b]], X.test)

}

plot(Y.test,results.boost)

abline(0,1,col="red")

Visually, the performance is much improved; the correlation metric also

agrees:

1402 21 Focus on Classification and Supervised Learning

cor(Y.test,results.boost)

[1] 0.9734103

We can also use the pre-built gbm package to achieve sensibly the same

results, and get the influential predictors as a bonus:

boost.credit = gbm::gbm(Balance~., data = Credit.train,

distribution = "gaussian", n.trees = 10000,

shrinkage = 0.01, interaction.depth = 4)

summary(boost.credit)

var rel.inf

Limit 42.87367610

Rating 34.15766697

Income 12.72692829

Student.dummy 5.04913001

Age 2.48572012

Education 1.13432102

Cards 0.78545388

Ethnicity.AA.dummy 0.30692238

Married.dummy 0.25299822

Gender.dummy 0.15135520

Ethnicity.A.dummy 0.07582781

21.5 Ensemble Learning 1403

Not surprisingly, ethnicity and gender have very little influence on the

model.

In order to determine the optimal number of models 𝐵 to use,
63

we seek 63: Is it really necessary to run 10,000

models?
to minimize the prediction MSE:

n.trees = seq(from = 100, to = 10000, by = 100)

predmat = predict(boost.credit, newdata = Credit.test,

n.trees = n.trees)

boost.err = with(Credit.test,

apply((predmat - Balance)^2, 2, mean))

plot(n.trees, boost.err, pch = 23, xlab = "# Trees",

ylab = "MSE", main = "Boosting Test Error")

abline(h = min(boost.err), col = "red")

which(boost.err==min(boost.err))

1200

12

The optimal gbm boosted model (with parameters as in the gbm() call

above) is thus:

results.boost.gbm = predict(boost.credit,

newdata = Credit.test, n.trees = 1200)

plot(Y.test,results.boost)

abline(0,1,col="red")

1404 21 Focus on Classification and Supervised Learning

cor(Y.test,results.boost)

[1] 0.9734103

AdaBoost Adaptive Boosting (AdaBoost) adapts dynamic boosting to a

set of models in order to minimize the error made by the individual weak

models.
64

The “adaptive” part means that any new weak learner that is64: Such as “stubby” trees or “coarse” lin-

ear models.
added to the boosted model is modified to improve the predictive power
on instances which were “mis-predicted” by the (previous) boosted

model.

The main idea behind dynamic boosting is to consider a weighted sum
of weak learners whose weights are adjusted so that the prediction error

is minimized.

Consider a binary classification context, where

Tr = {(x𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}, and 𝑦𝑖 ∈ {−1,+1} ∀𝑖 = 1, . . . , 𝑁.

The boosted classifier is a function

𝐹(x) =
𝐵∑
𝑏=1

𝑐𝑏 𝑓𝑏(x),

where 𝑓𝑏(x) ∈ {−1,+1} and 𝑐𝑏 ∈ ℝ for all 𝑏 and all x. The class prediction
at x is simply sign(𝐹(x)).

The AdaBoost contribution comes in at the modeling stage, where, for

each 𝜇 ∈ {1, . . . , 𝐵} the weak learner 𝑓𝜇 is trained on a weighted version

21.5 Ensemble Learning 1405

of the original training data, with observations that are misclassified by

the partial boosted model

𝐹𝜇(x) =
𝜇−1∑
𝑏=1

𝑐𝑏 𝑓𝑏(x)

given larger weights; AdaBoost estimates the weights 𝑤𝑖 , 𝑖 = 1, . . . , 𝑁 at

each of the boosting steps 𝑏 = 1, . . . , 𝐵.

Real AdaBoost [10] is a generalization of this approach which does away

with the constants 𝑐𝑏 :

1. initialize the weights w, with 𝑤𝑖 = 1/𝑁 , for 1 ≤ 𝑖 ≤ 𝑁 ;

2. for 𝑏 = 1, . . . , 𝐵, repeat the following steps:

a) fit the class probability estimate 𝑝𝑚(x) = 𝑃(𝑦 = 1 | x,w),
using the weak learner algorithm of interest;

b) define 𝑓𝑏(x) = 1

2
log

𝑝𝑏 (x)
1−𝑝𝑏 (x) ;

c) set 𝑤𝑖 ← 𝑤𝑖 exp{−𝑦𝑖 𝑓 (x𝑖)}, for 1 ≤ 𝑖 ≤ 𝑁 ;

d) re-normalize so that ∥w∥1 = 1;

3. output the classifier

𝐹(x) = sign

{
𝐵∑
𝑏=1

𝑓𝑏(x)
}
.

For regression tasks, this procedure must be modified to some extent (in

particular, the equivalent task of assigning larger weights to currently

misclassified observations at a given step is to train the model to predict

(shrunken) residuals at a given step. . . more or less).

Since boosting is susceptible to overfitting (unlike bagging and random

forests), the optimal number of boosting steps 𝐵 should be derived from

cross-validation.

Example The Python library scikit-learn provides a useful imple-

mentation of AdaBoost. In order to use it, a base estimator (that is to say,

a week learner) must first be selected.

In what follows, we will use a decision tree classifier. Once this is achieved,

a AdaBoostClassifier object is created, to which is fed the weak learner,

the number of estimators and the learning rate (a.k.a. the shrinkage

parameter, which we have seen is a small positive number).

In general, small learning rates require a large number of estimators to

provide adequate performance. By default, scikit-learn’s implementa-

tion uses 50 estimators with a learning rate of 1.

We use the classic Two-Moons dataset consisting of two interleaving half

circles with added noise, in order to test and compare classification

results for AdaBoost (and eventually Gradient Boosting, see below).

This dataset is conveniently built into scikit-learn and accessible via
make_moons(), which returns a data matrix X and a label vector y. We

can treat the dataset as a complete training set as we eventually use

cross-validation to estimate the test error.
65

65: The AdaBoost code on the Two-Moons

dataset was lifted from an online source

whose location cannot be recovered at the

moment.

1406 21 Focus on Classification and Supervised Learning

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_moons

N = 1000

X,Y = make_moons(N,noise=0.2)

plt.scatter(X[:,0],X[:,1], c=Y)

plt.show()

We first attempt to classify the data using DecisionTreeClassifier()

with a maximum depth of 3.
66

66: This same structure will later be used

for our weak learners.

clf = DecisionTreeClassifier(max_depth=3)

clf.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

21.5 Ensemble Learning 1407

As can be seen from the display, this single decision tree does not provide

the best of fits.

Next, we build an AdaBoost classifier. We first consider a model with

𝐵 = 5 decision trees, and with a learning rate 𝜆 = 1/10.

ada = AdaBoostClassifier(clf, n_estimators=5,

learning_rate=0.1)

ada.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

Finally, we build an AdaBoost classifier with 𝐵 = 10 decision trees and

with a learning rate 𝜆 = 1/10.

ada = AdaBoostClassifier(clf, n_estimators=10,

learning_rate=0.1)

ada.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

1408 21 Focus on Classification and Supervised Learning

The AdaBoosted tree is better at capturing the dataset’s structure. Of

course, until we evaluate the performance on an independent test set,

this could simply be a consequence of overfitting (one of AdaBoost’s

main weaknesses, as the procedure is sensitive to outliers and noise). We

can guard against this eventuality by adjusting the learning rate (which

provides a step size for the algorithm’s iterations).

To find the optimal value for the learning rate and the number of

estimators, one can use the GridSearchCVmethod from sklearn.model_-

selection, which implements cross-validation on a grid of parameters.

It can also be parallelized, in case the efficiency of the algorithm should

ever need improving (that is not necessary on such a small dataset, but

could prove useful with larger datasets).

import random

random.seed(10)

from sklearn.model_selection import GridSearchCV

params = {

’n_estimators’: np.arange(10,300,10),

’learning_rate’: [0.01, 0.05, 0.1, 1],

}

grid_cv = GridSearchCV(AdaBoostClassifier(),

param_grid= params, cv=5, n_jobs=1)

grid_cv.fit(X,Y)

grid_cv.best_params_

{’learning_rate’: 0.05, ’n_estimators’: 200}

The results show that, given the selected grid search ranges, the optimal

parameters (those that provide the best cross-validation fit for the data)

are 200 estimators with a learning rate of 0.05 (these parameters change

if cv and n_jobs are modified, and with different random seeds).

The plot of the model with these parameters indeed shows that the fit

looks quite acceptable.

21.5 Ensemble Learning 1409

ada = grid_cv.best_estimator_

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

Gradient Boosting The implementation of gradient boosting is simpler

than that of AdaBoost. The idea is to first fit a model, then to compute

the residuals generated by this model. Next, a new model is trained, but

on the residuals instead of on the original response. The resulting model

is added to the first one. Those steps are repeated a sufficient number

of times. The final model will be a sum of the initial model and of the

subsequent models trained on the chain of residuals.

We will not go into the nitty-gritty of gradient boosting here (see [20] for

details), but we showcase how it would be applied on the Two-Moons

dataset.
67

67: Remember that without an estimate

of the test error, we cannot use these classi-

fiers for predictive purposes due to avoid

overfitting issues.
from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=9,

learning_rate=0.5)

gbc.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = gbc.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

1410 21 Focus on Classification and Supervised Learning

21.6 Exercises

1. Repeat the vowel classification example on PCA-reduced data.

2. Conduct a pre-analysis exploration as in the Wine example to

remove variables in the 2011 Gapminder, the Iowa Housing, and the

Vowel datasets before conducting the analyses, as in the examples.

3. Construct and evaluate naïve Bayes classifiers for the Wine and for

the 2011 Gapminder dataset.

4. Construct and evaluate CART models for the Wine and for the

Wisconsin Breast Cancer datasets.

5. Construct and evaluate ANN models for the 2011 Gapminder, for

the Iowa Housing, for the Vowel, and for the Wisconsin Breast

Cancer datasets.

6. Re-run the ANN models incorporating 10 hidden layers with 30

nodes. How much more time does it take to run a “bigger” neural

network on the Wine dataset?

7. Build bagging models for the 2011 Gapminder, Wisconsin Breast

Cancer, and Wine datasets.

8. Build random forest models for the 2011 Gapminder, Wisconsin

Breast Cancer, and Iowa Housing datasets.

9. Build boosted models for the 2011 Gapminder, Wisconsin Breast

Cancer, Wine, and Iowa Housing datasets.

10. Build classification models for the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest. You may need to identify/de-

fine a categorical response variable first.

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv

Chapter References 1411

Chapter References
[1] 3Blue1Brown. Deep Learning .

[2] C.C. Aggarwal and C.K. Reddy, eds. Data Clustering: Algorithms and Applications . CRC Press, 2014.

[3] B. Boehmke and B. Greenwell. Hands on Machine Learning with R . CRC Press.

[4] M. Caudill. ‘Neural Networks Primer, Part 1’. In: AI Expert 2.12 (Dec. 1987), pp. 46–52.

[5] N. V. Chawla et al. ‘SMOTE: Synthetic Minority Over-sampling Technique ’. In: Journal of Artificial
Intelligence Research 16 (2002), pp. 321–357.

[6] F. Chollet. Deep Learning with Python. 1st. USA: Manning Publications Co., 2017.

[7] R.S. Sutton. ‘Two Problems with Backpropagation and Other Steepest-Descent Learning Procedures

for Networks’. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Hillsdale,

NJ: Erlbaum, 1986.

[8] Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization.

2014.

[9] N. Deng, Y. Tian, and C. Zhang. Support Vector Machines: Optimization Based Theory, Algorithms, and
Extensions. CRC Press/Chapman and Hall, 2013.

[10] J. Friedman, T. Hastie, and R. Tibshirani. ‘Additive Logistic Regression: a Statistical View of Boosting’.

In: Annals of Statistics 28 (1998), p. 2000.

[11] D. Gershgorn. ‘There’s a glaring mistake in the way AI looks at the world ’. In: (2017).

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press Cambridge, 2016.

[13] I.J. Goodfellow, J. Shlens, and C. Szegedy. ‘Explaining and harnessing adversarial examples’. In: ICLR
(2015).

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction , 2nd ed. Springer, 2008.

[15] T. Hofmann, B. Schölkopf, and A.J. Smola. ‘Kernel Methods in Machine Learning’. In: Annals of Statistics
36.3 (2008), pp. 1171–1220.

[16] D. Hoftsadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, 1979.

[17] R.V. Hogg and E.A Tanis. Probability and Statistical Inference. 7th. Pearson/Prentice Hall, 2006.

[18] G. James et al. An Introduction to Statistical Learning: With Applications in R . Springer, 2014.

[19] M.H. Kutner et al. Applied Linear Statistical Models. McGraw Hill Irwin, 2004.

[20] O. Leduc and P. Boily. ‘Boosting with AdaBoost and Gradient Boosting ’. In: Data Action Lab Blog
(2019).

[21] R.M. Levenson et al. ‘Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology

Breast Cancer Images’. In: PLOS ONE 10.11 (Nov. 2015), pp. 1–21. doi: 10.1371/journal.pone.0141357.

[22] F. Provost and T. Fawcett. Data Science for Business. O’Reilly, 2015.

[23] D. Robinson. ‘What’s the difference between data science, machine learning, and artificial intelligence?

’. In: Variance Explained (Jan. 2018).

[24] S. Ruder. An overview of gradient descent optimization algorithms. 2016.

[25] C. Sheppard. Tree-Based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting.

CreateSpace Independent Publishing Platform, 2017.

[26] A. Turing. ‘Computing Machinery and Intelligence’. In: Mind (1950).

[27] Wikipedia. ‘Artificial Intelligence ’. In: (2020).

[28] Wikipedia. ‘Binary classification ’. In: (2021).

[29] D.H. Wolpert. ‘The Lack of A Priori Distinctions Between Learning Algorithms’. In: Neural Computation
8.7 (1996), pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341.

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://www.charuaggarwal.net/clusterbook.pdf
https://bradleyboehmke.github.io/HOML/
https://www.jair.org/index.php/jair/article/view/10302
https://qz.com/1117494/theres-a-glaring-mistake-in-the-way-ai-looks-at-the-world
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/ElemStatLearn/
https://www.statlearning.com/
https://www.data-action-lab.com/2019/07/31/boosting-with-adaboost-and-gradient-boosting/
https://doi.org/10.1371/journal.pone.0141357
http://varianceexplained.org/r/ds-ml-ai/
http://varianceexplained.org/r/ds-ml-ai/
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Binary_classification
https://doi.org/10.1162/neco.1996.8.7.1341

1412 21 Focus on Classification and Supervised Learning

[30] D.H. Wolpert and W.G. Macready. ‘Coevolutionary free lunches’. In: IEEE Transactions on Evolutionary
Computation 9.6 (2005), pp. 721–735. doi: 10.1109/TEVC.2005.856205.

[31] D.H. Wolpert and W.G. Macready. ‘No free lunch theorems for optimization’. In: IEEE Transactions on
Evolutionary Computation (1997).

https://doi.org/10.1109/TEVC.2005.856205

	Focus on Classification and Supervised Learning
	Overview
	Simple Classifiers
	Rare Occurrences
	Other Approaches
	Ensemble Learning
	Exercises
	Chapter References

