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In Chapter 19 (Machine Learning 101), we provided a (mostly) math-free

general overview of machine learning.

Supervised learning methods can be presented in a formalism which

generalizes statistical and regression analysis, and their performance are

easy to evaluate; consequently, they have been studied extensively and

often form the backbone of machine learning training.

On the other hand, apart from a select few classical models, unsupervised
learning tasks are not usually presented with quite the same depth,

primarily due to the vagueness which infect their core – some of the

concepts are defined ambiguously; results validation is at times elusive,

and the actionable applications of the outcomes are not always clear.

The interest in such methods and tasks (clustering and segmentation,

association rules mining, link profiling, etc.) is mounting, however,

with the recent advances in artificial intelligence and machine learning

research. In this chapter, we describe various clustering algorithms, and

discuss related issues and challenges.

This is a continuation of the treatment started in Chapter 20 (Regression
and Value Estimation) and is a companion piece to Chapter 21 (Focus on
Classification and Supervised Learning).

22.1 Overview

We introduced some of the basic notions of unsupervised learning in

Chapter 19, Introduction to Machine Learning; in this chapter, we review

some of these concepts in the context of clustering, discuss the prob-

lems of validation and model selection, and present some simple and

sophisticated clustering algorithms.

22.1.1 Unsupervised Learning

In supervised learning (SL), we differentiate a dataset’s response vari-
ables𝑌1 , . . . , 𝑌𝑚 from its predictor variables𝑋1 , . . . , 𝑋𝑝 . Which variables

are predictors and which are responses depend on the context – for some

questions, a given variable could be a predictor, for others, a response.

Unsupervised learning tasks do away with the responses altogether,

which means that prediction is off the table; the variables that would have
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been deemed response variables in a SL framework are not necessarily

removed from the dataset during the analysis – they are simply not

viewed as an outcome to predict, and the predictor variables are just

observation features.

In UL, the objective is to identify and uncover interesting insights
about the dataset and the system that it represents (see Section 14.2.2,

Information Gathering), such as:

informative ways of visualizing the dataset (often associated with

Feature Selection and Dimension Reduction, see Chapter 23);

highlighting subgroups among the dataset’s variables or observa-

tions (clustering), or

finding links between variables (association rules mining, link

profiling, etc.), say.

22.1.2 Clustering Framework

Clustering consists of a large family of algorithms and methods used

to discover so-called latent groups in the datasets – natural groups that

exist but have not been identified or labeled as such.

Clustering is a subjective analytical task; unlike classification and regres-

sion, clustering analysis does not have as “simple” a goal as predicting a

response for a new observation based on historical data patterns, and

there is no “solution key” against which to compare analysis results.

Applications:

finding subgroups of breast and/or prostate cancer patients based

on their gene expression measurements or their socio-demographic

characteristics in order to better understand the disease and poten-

tial treatment side-effects;

grouping products in an online shop based on ratings and reviews

assigned by customers, or grouping customers based on their

purchasing history, in order to make product recommendations;

finding documents that apply to search queries, and finding similar

queries to those entered by a user to increase the odds of finding

the documents they are really looking for;

identifying population segments to test various incentives for

vaccination;

etc.

In each of these cases, the number of these latent groups is unknown (and

can in fact be taken as a true unknown of the problem). The subjectivity
of unsupervised learning tasks may seem to be an insurmountable flaw:

analysts attempting to find latent groups in a dataset, say, may obtain

a different number of such groups, or assign different observations to

their groups if their numbers are identical, without one of them being

necessarily “wrong”.
1

1: Although it is conceivable that some of

them could produce sub-optimal groups;

see Section 22.3 for a detailed discussion

on this topic.

In spite of this, clustering is a popular analytical task, in part because it

is much easier (and cheaper), typically, to obtain unlabeled data than it

is to obtain labeled data (against which supervised methods could be

evaluated). A cluster is a subset of observations that all have something

in common – they are similar, according to some measure of similarity.
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Furthermore, a cluster’s observations should be dissimilar to other

clusters’ observations.

Clusters do not necessarily need to be disjoint (as in so-called hard
clustering) – in some cases, it might be sufficient to quantify the likeli-

hood or the degree to which an observation belongs to a cluster (soft
clustering).

The choice of a similarity/dissimilarity measure is also entirely subjec-
tive; there are contexts for which proximity could be used as a decent

proxy for similarity, and others where it could not. Even in the former

case, a distance measure (metric) has to be selected, and infinitely many

choices are available to analysts.

Without domain-specific considerations (this requires thorough data

and context understanding), the choice of measure is arbitrary; but

understanding the data and the context does not guarantee that all

reasonable analysts would agree on such a measure.

For instance, in any group of human beings, which of

age, ethnic background, gender, postal code, sexual orien-

tation, linguistic abilities, mathematical skills, career, social

class, political affiliation, operating system preferences, edu-

cational achievements, hockey club fandom, etc.

is responsible for separating its members into “US” vs. ”THEM” groups?

Is it some combination of these characteristics? Are the groups fixed? Is

everybody in the “US” group based on age also in the “US” group based

on “gender”?

We could bypass the problem by creating more groups; given an age

group and gender, we could create the clusters: “same age group and

gender” (US), “same age group, different gender” (THEM1), “different

age group, same gender’ (THEM2)’, ”different age group and gender”

(THEM3).

It is clear how the process can be expanded to include more combinations

of feature levels, but at the price of introducing an ever increasing number

of clusters – how many “THEM” groups are too many for analysts or

human brains to process?

Clustering algorithms are designed to try to model various aspects of this

problem, but the latter’s complexity gives rise to an enormous number

of algorithms: at least 100 have been published, as of January 2022 [48].

Most of these belong to one of six main families [2]:

partitional (𝑘−means and variants, CLARA, etc.);

hierarchical (AGNES, DIANA, BIRCH, etc.);

density-based (DBSCAN, DENCLUE, OPTICS, etc.);

connectivity-based (spectral and variants, etc.);

grid-based (GRIDCLUS, STING and variants, etc.);

model-based (mixture models, latent Dirichlet allocation, expectation-

maximization, etc.).

As is the case for all analytical methods, some modifications are required

when dealing with “Big Datasets”, for high-dimensional data, or for

specific types of datasets, such as stream data, network data, categorical
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data, text and multimedia data, time series data, and so on. Ensemble
methods, which combine various clustering results, can also prove

useful.

Distance, Similarity, and Dissimilarity Measures Although the choice of

how to interpret and compute similarity between observations is, to all

intents and purposes, completely up to the analysts, all such measures

must satisfy certain properties: they must take on

large values for similar objects, and

small (or even negative) values for dissimilar objects.

Dissimilarity measures function in the opposite manner. The kernel
functions2

of machine learning (see Section 21.4.2) are examples of2: Formally, a kernel is a symmetric

(semi-)positive definite operator 𝐾 : ℝ𝑝 ×
ℝ𝑝 → ℝ+

0
. By analogy with positive def-

inite square matrices, this means that∑𝑁
𝑖,𝑗=1

𝑐𝑖 𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0 for all x𝑖 ∈ ℝ𝑝

and all 𝑐 𝑗 ∈ ℝ+, and 𝐾(x,w) = 𝐾(w, x)
for all x,w ∈ ℝ𝑝

.

similarity (or dissimilarity) measures, most notably the Gaussian (or

radial) kernel

𝐾𝛾(x, y) = exp(−𝛾∥x − y∥2
2
),

for a given 𝛾 > 0, for which points near one another (in the ∥ · ∥2 sense)

have a similarity measure 𝑤 = 𝐾(x, y) ≈ 1 (and thus are similar), and

points far from one another have a similarity measure near 0 (and thus

are dissimilar).

Some similarity measures are derived from distance (metrics) functions

𝑑 : ℝ𝑝 ×ℝ𝑝 → ℝ+
0
, with special properties:

1. 𝑑(x, y) = 0 ⇐⇒ x = y;

2. 𝑑(x, y) ≥ 0 for all x, y ∈ ℝ𝑝
;

3. 𝑑(x, y) = 𝑑(y, x) for all x, y ∈ ℝ𝑝
;

4. 𝑑(x, y) ≤ 𝑑(x, z) + 𝑑(z, y) for all x, y ∈ ℝ𝑝
.

In effect, distances are positive-definite symmetric functions ℝ𝑝 ×ℝ𝑝 →
ℝ+

0
satisfying the Triangle Inequality. Commonly used distances include

the:

Euclidean distance 𝑑2(x, y) = ∥x − y∥2;

Manhattan distance 𝑑1(x, y) = ∥x − y∥1;

supremum distance 𝑑∞(x, y) = ∥x − y∥∞;

more general Minkowski distance 𝑑𝑝(x, y) = ∥x − y∥𝑝 , for 𝑝 ≥ 1,

of which the first three examples are special cases;

and more esoteric distances such as the Jaccard distance for binary

vectors, the Hamming distance for categorical vectors, the Canberra
distance for ranked lists, the cosine distance for text data, mixed
distances for mixed variables, and so on [13, 16].

Given a distance 𝑑, a common construction is to define the associated

similarity measures

𝑤 = ℓ − 𝑑, 𝑤 = exp(−𝑘𝑑2), or 𝑤 =
1

1 + 𝑑 .

Note that there are similarity measures that cannot be derived from

distance measures, however.
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Data Transformations Prior to Clustering Prior to clustering, it is crucial

that the data be scaled (and potentially centered) so that none of the

variables unduly influence the outcomes, or, as the expression prosaically

puts it, so that we do not have to compare apples with oranges – if age in

years and height in cm are dataset variables, a 10-unit difference in age is

likely to be more significant (in real terms) than a 10-unit difference in

height.

Putting everything on a (min,max) scale, for instance, guarantees that

relative differences (relative to the distributions of each variables), and

not absolute distances, play the important role. However, there are many

ways to scale the data, and the scaling approach may have an effect on

the clustering results.
3

3: As we are sure you will not be surprised

to find out, by this point – that is the way,

with clustering: out of the frying pan and

into the fire.Common Difficulties There are issues related to clustering other than

the vagueness we have already discussed:

in many instances, the underlying assumption is that nearness of
observations (in whatever metric) is linked with object similarity,

and that large distances are linked with dissimilarity;

the lack of a clear-cut definition of what a cluster actually is makes

it difficult to validate clustering results;

various clustering algorithms are non-deterministic;

the number of clusters cannot usually be known before the analysis;

even when a cluster scheme has been accepted as valid, a cluster
description might be difficult to come by;

most methods will find clusters in the data even if there are none;

once clusters have been found, it is tempting to try to “explain”

them, but that is a job for domain experts.

22.1.3 A Philosophical Approach to Clustering

In the context of artificial general intelligence,
4

clustering provides a 4: Think free-ranging robots, roughly

speaking.
basic way for intelligences to structure their experience of the world.

Clustering techniques can allow such machines to identify object in-
stances in the world around them and then, on the basis of this identifi-

cation, to identify or define types of objects by grouping together the

object instances they have discovered. With this in mind, we can view

creating concepts as the fundamental purpose of identifying groupings

of similar datapoints; these concepts allow an intelligent agent (whether

machine or person) to:

work in shorthand when dealing with objects (i.e., it is easier to

deal with 10 ‘cats’ than with 10 unique objects), and

make assumptions about the object instances in a cluster associated

with the concept (if an object is a cat, then that object probably likes

fish).

If the existence of some “ground truth” about what should be clustered

together (and by extension what should be counted as a concept) can be

presupposed, then regardless of what is currently known about that truth,

neither the choice of algorithms nor of clustering algorithm parameters

is wholly subjective, in the psychological sense of the term (where it has
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the connotation of “coming from a person’s experience”, which tends

to indicate that whatever it is that is being talked about does not exist

separate from such an experience); choosing one algorithm over another

(or one set of parameters over another) may lead to a “better” or “worse”

reflection of the underlying ground truth.

But what counts as a ground truth? There are, of course, debates about

this in philosophical circles. Suppose that natural kinds exist, that is to

say, suppose that there is a privileged and objectively essential way in

which objects are properly grouped in nature.

This assumption is very commonly made in the sciences, where uncover-

ing or discovering universal truths about natural kinds of objects is a

major objective. In such a case, natural kinds can count as a ground truth,

with some clusterings more closely reflecting this reality than others.

The fact that the ground truth is not known by the clustering agent does

not mean that it does not exist, or that it cannot be sought out using

various techniques. Indeed, this is arguably what scientists do when they

are using the scientific method; they do not know, a priori, which of their

hypotheses are true or which are false, but they nonetheless engage in

various techniques to try to get a better sense of what is true and false.

Even if the existence of natural kinds is rejected, it can still be the case that,

relative to a particular circumstance, some clustering results are of higher
quality than others. Or, stated in terms of goals, some clustering results

could achieve a stated goal to a greater or lesser extent than others.

This does appear to be more subjective, in the sense that the goal, and

the success of the outcome relative to the goal, are both defined by an

individual or individuals, rather than being independent of them.

Outside of clustering, it is not unusual for people to create contextual
definitions of what counts as ‘good’. Consider as an example the concept

of a ‘good meal’. What qualifies as a good meal when camping in the

backcountry is not the same as what counts as a good meal when staying

at a four-star resort. Context matters.

This does not mean that it is impossible to have a bad meal under either

of these circumstances, or that anything counts as a good meal – we do

not use subjective in the stultifying post-modernist sense that there are

no constraints whatsoever and everything is a social construct.
5

5: This might be a bit of a straw-man def-

inition of “post-modernist subjectivity”,

but perhaps not that much of one, in the fi-

nal analysis; all things being equal, we lean

more toward the objective side of things,

both in nature and in data analysis.

Nonetheless, such situations are difficult to pin down or define in a

rigorous fashion. Even if there were some more abstract or subjective

sense in which something could be said to be common to all types of

good meals – or to all types of good clustering results, in this analogy – it

is difficult to imagine how this could be stated with any precision. This is,

frustratingly, a typically human limitation to dealing with the world.

However, since the underlying objective of machine learning and artificial

intelligence is to create machines with abilities similar to those of humans,

perhaps it is worth trying to capture this less than rigorous approach

within the context of machine learning.

Given this inherent lack of rigour, are there applied situations where

clustering is useful? More concretely, suppose we desire to cluster furni-

ture, based on data about the furniture. We could make measurements
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of various kinds on physical objects, either selected randomly or haphaz-

ardly; perhaps, rather than working with the furniture itself, we could

use a website catalogue in which each page showcases a particular type

of furniture available for sale.

In this scenario, there may be one grouping (created by tagging and

linking pages, for instance) of the furniture pages that allows users to

visit the website with maximum efficiency, and another that helps the

store maximize its sales.

Moreover, if we believe that natural kinds exist (which, as noted, is

debated by philosophers but is a common assumption in science), there

might also be one grouping of the furniture that best matches the

underlying furniture natural kinds.

When considering outcomes relative to a particular situation, the most

appropriate strategy for a particular clustering will depend, broadly

speaking, on two considerations:

the chosen goal it is intended to support, and

the underlying structure of the data itself.

The first can be explicitly known and stated, but the second will likely

not be known in advance, which leads to numerous technical issues
when applying clustering algorithms.

A multitude of clustering algorithms can be applied to problems like

the website furniture problems described above, and for each of those,

many different parameter settings exist. Suppose six different clustering

process are carried out in the case of the furniture website example and

they generate six (potentially) different clustering outcomes.

Presumably, some will be more effective than others if the objective is to

get people to spend a maximum amount of money on the online store. If

the objective is to allow customers to make their purchases most quickly,

the “optimal” clustering might not be the one that leads customers to

spend the most money.

It is difficult to say ahead of time which of the six groupings will be the

most effective one, in each of these cases. However, it might be possible to

carry out A/B testing to determine which one is the most effective, once

they have been generated. But can the A/B testing step be avoided?

If the applied goal (e.g. the goal to group furniture pages in order

to maximize profits) can be operationalized more directly in terms of

similarity and difference, then it can be more directly tied to clustering

approaches.

If we think that the best way to increase sales is to have loose clusters

where people are forced to browse a certain amount, while being exposed

to somewhat similar (but still interesting) pieces of furniture to find what

they want, it might be possible to select a clustering approach to generate

clusters with this desirable property.

Returning for a moment to the less applied general artificial intelligence

scenario introduced earlier, if the fundamental functionality of clustering

is viewed as creating concepts, then it would seem to make sense to

operationalize this goal in terms of creating groupings where the ob-
servations in a group are similar to each other and different from those
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in other groups. In this context, a poor grouping would de facto be one

where multiple observations are similar to those in other clusters, or

very different from those in their own cluster. This could happen if a

clustering process runs into technical difficulties, but it can also happen

if there is no such strongly grouped structure in the data itself.

To eliminate the possibility that the problem is not linked with the

chosen clustering procedure, one strategy is to use multiple clustering
techniques, as well as multiple parameter settings for each technique.

If the issue remains, then we could conclude that it is likely that there is

no good clustering structure in the data and by extension, in the objects

being represented by the data.

Interested readers can get more information on clustering, as well as

examples of applications, in [2, 1, 38, 9, 15, 32, 35, 33, 21, 37, 23, 5, 48, 17,

20, 40, 46, 31, 39, 19, 42, 29, 8].

22.2 Simple Clustering Algorithms

We start by briefly discussing two of the simplest clustering algorithms:

𝑘−means and hierarchical clustering.
6

6: In this section, we borrow heavily from

[20].

22.2.1 𝑘−Means and Variants

One potential clustering objective could be to achieve minimal within-
cluster variation – observations within a cluster should be very similar

to one another, and the total variation over all clusters should be small.

Assume that there are 𝑘 clusters in the (scaled) dataset

X𝑛×𝑝 =


x1

...

x𝑛

 .
Let 𝐶1 , . . . , 𝐶𝑘 denote the set of indices in each cluster, so that

{1, . . . , 𝑛} = 𝐶1 ⊔ · · · ⊔ 𝐶𝑘 (hard clustering);

we use the notation x𝑖 ∈ 𝐶ℓ to indicate that observation 𝑖 lies in cluster

ℓ . The within-cluster variation WCV(𝐶ℓ )measures the degree to which

the observations in 𝐶ℓ differ from one another.

The approach is partition-based; we look for a partition {𝐶∗
ℓ
}𝑘
ℓ=1

such

that the total within cluster variation is minimized:

{𝐶∗ℓ } = arg min

{𝐶ℓ }

{
𝑘∑
ℓ=1

WCV(𝐶ℓ )
}
.
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The first challenge is that there are numerous ways to define WCV(𝐶ℓ ),
and that they do not necessarily lead to the same results;

7
most definitions, 7: As one would expect from clustering.

however, fall in line with expressions looking like

WCV(𝐶ℓ ) =
1

(|𝐶ℓ | − 𝑔)𝜇
∑

x𝑖 ,x𝑗∈𝐶ℓ
variation(x𝑖 , x𝑗),

where it is understood that variation(x, x) = 0.

Common choices for the variation include

variation(x𝑖 , x𝑗) = ∥x𝑖 − x𝑗 ∥2
2
=

𝑝∑
𝑚=1

(𝑥𝑖 ,𝑚 − 𝑥 𝑗 ,𝑚)2

variation(x𝑖 , x𝑗) = ∥x𝑖 − x𝑗 ∥1 =

𝑝∑
𝑚=1

|𝑥𝑖 ,𝑚 − 𝑥 𝑗 ,𝑚 |;

these are typically used because of the ease of vectorizing the distance

measurements, and not necessarily because they make the most sense in

context.

With these choices, if all observations x within a cluster 𝐶 are near

one another, we would expect WCV(𝐶) to be small. The values of the

parameter 𝜇 can be adjusted to influence the cluster sizes.

Traditionally, we use 𝜇 = 0 (or 𝜇 = 1) and 𝑔 = 0, and the partition

problem reduces to

{𝐶∗ℓ } = arg min

{𝐶ℓ }

{
𝑘∑
ℓ=1

1

|𝐶ℓ |𝜇
∑

x𝑖 ,x𝑗∈𝐶ℓ
variation(x𝑖 , x𝑗)

}
.

As an optimization problem, obtaining {𝐶∗
ℓ
}𝑘
ℓ=1

is NP−hard due to the

combinatorial explosion of possible partitions {𝐶ℓ }𝑘ℓ=1
when 𝑛 is large.

8

8: Computing the number of such parti-

tions in general cannot be done by elemen-

tary means, but it is easy to show that the

number is bounded above by 𝑛𝑘 .Algorithm: 𝑘−Means We can obtain a partition which is reasonably

close to the optimal one,
9

without having to go through all possible 9: Hopefully...

partitions:

1. randomly assign a cluster number {1, . . . , 𝑘} to each observation

in the dataset;

2. for each 𝐶ℓ , compute the cluster centroid;

3. assign each observation to the cluster whose centroid is nearest to

the observation;

4. repeat steps 2-3 until the clusters are stable.

Three choices need to be made in order for the algorithm to run:

the number of clusters 𝑘 in step 1;

the centroid computation measure in step 2;

the distance metric used in step 3.

The most common choice of centroid measure for numerical data is to

use the vector of means along each feature of the observations in each

cluster (hence, 𝑘−means); using other centrality measures yield different
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methods (such as 𝑘−medians, for instance). For categorical data, the

algorithm becomes 𝑘−modes.

The distance used in step 3 is usually aligned with the centroid measure

of step 2 (and with the choice of a variation function in the problem

statement): Euclidean for 𝑘−means, Manhattan for 𝑘−medians, Hamming

for 𝑘−modes. Variants of these approaches may use a different random

initialization step: the first iteration centroids may be selected randomly

from the list of observations, say.
10

10: Unfortunately, the clustering results

depend very strongly on the initial ran-

domization – a “poor” selection can yield

arbitrarily “bad” (sub-optimal) results;

𝑘−means++ selects the initial centroids so

as to maximize the chance that they will

be well-spread in the dataset (which also

speeds up the run-time).

Other variants indicate how to process computations in parallel (for Big

Data, see Chapter 30) or for data streams (with an updating rule, see

Chapter 28). The algorithm can be shown to converge to a stable cluster
assignment, but there is no guarantee that this assignment is the global
minimizer of the objective function; indeed, different initial conditions

can find different local minima, i.e., different clustering schemes.

Example We have worked with the Gapminder data in Chapters 20 and

21; we will use a variant (gapminder_all.csv ) to illustrate some of the

notions in this chapter. The 2011 data contains observations on 𝑛 = 184

countries, for the following variables:

life expectancy (in years);

infant mortality rate (per 1000 births);

fertility rate (in children per woman);

population (we use the logarithm for clustering), and

GDP per capita (same).

library(dplyr)
library(tidyverse) # remove_rownames(), column_to_rownames()

gapminder.SoCL = read.csv("gapminder_all.csv",
stringsAsFactors=TRUE)

gapminder.SoCL.2011 = gapminder.SoCL |>
filter(time==2011) |>
select(geo,

population_total,
income_per_person_gdppercapita_ppp_inflation_adjusted,
life_expectancy_years,
infant_mortality_rate_per_1000_births,
children_per_woman_total_fertility) |>

mutate(log10_pop=log10(population_total),
log10_gdppc=log10(income_per_person_gdppercapita_ppp_inflation_adjusted)) |>

na.omit() |>
remove_rownames() |>
column_to_rownames(var="geo")

colnames(gapminder.SoCL.2011)<- c("Pop","GDPpc","Life Exp",
"Inf Mort", "Fert","log10 Pop","log10 GDPpc")

A scatter plot of the original and transformed datasets are shown below.

We use the logarithm of the population and the logarithm of GDP per

capita due to outlying observations in the population variable (China

and India).

https://www.data-action-lab.com/wp-content/uploads/2023/04/gapminder_all.csv
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GGally::ggpairs(gapminder.SoCL.2011[,c(3:5,1:2)])

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)])

Throughout, we work with the scaled dataset.

gapminder.SoCL.2011.s <- data.frame(scale(gapminder.SoCL.2011[,c(3:7)]))
str(gapminder.SoCL.2011.s)

’data.frame’: 184 obs. of 5 variables:
$ Life.Exp : num -1.647 -1.151 0.635 0.377 1.366 ...
$ Inf.Mort : num 1.834 3.175 -0.602 -0.498 -0.959 ...
$ Fert : num 1.77 2.093 -0.404 -0.981 -0.7 ...
$ log10.Pop : num 0.742 0.635 0.921 -0.49 0.595 ...
$ log10.GDPpc: num -1.336 -0.304 0.672 -0.164 1.286 ...

The following function will allow us to plot the distributions of each of the

variables in each of the clusters (plots appearing on the diagonal):

library(ggplot2)

my_dens <- function(data, mapping, ..., low = "#132B43",

high = "#56B1F7") {

ggplot(data = data, mapping=mapping) +

geom_density(..., alpha=0.7)

}

We run 𝑘−means for 𝑘 = 2, 3, 4 and obtain the results shown in Figure

22.1.

set.seed(1) # for replicability

# k=2

gapminder.SoCL.2011.s.k2 = kmeans(gapminder.SoCL.2011.s,2,

iter.max=250,nstart=1)
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GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k2$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k2$cluster)

1 2

64 120

# k=3

gapminder.SoCL.2011.s.k3 = kmeans(gapminder.SoCL.2011.s,3,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k3$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k3$cluster)

1 2 3

46 84 54

# k=4

gapminder.SoCL.2011.s.k4 = kmeans(gapminder.SoCL.2011.s,4,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k4$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k4$cluster)

1 2 3 4

26 50 61 47

The colours (cluster labels) are not used by the clustering algorithm –

they are the outputs.
11

This next block shows the result of a different11: The actual cluster label value is entirely

irrelevant.
initialization for 𝑘 = 3, leading to a different cluster assignment.

set.seed(1234) # different initialization

gapminder.SoCL.2011.s.k3 = kmeans(gapminder.SoCL.2011.s,3,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k3$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k3$cluster)

1 2 3

56 74 54

Another 𝑘−means example is provided in Section 19.7.3.
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Figure 22.1: Realizations of 𝑘−means on the 2011 Gapminder data: 𝑘 = 2 (top left); 𝑘 = 3 (top right); 𝑘 = 4 (bottom left); 𝑘 = 3 with a

different seed (bottom right). Are the two 𝑘 = 3 clustering outcomes clearly distinct, to your eye?
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22.2.2 Hierarchical Clustering

One of the issues surrounding the use of 𝑘−means (and its variants) is

that nothing in the result of a single run of the algorithm indicates if the

choice of 𝑘 was a good one.
12

12: The results might look good on a 2-

dimensional representation of the data,

but how do we know it could not look

better?

Determining a “good” value of 𝑘 can only be achieved by repeatedly

running the algorithm over a range of “reasonable” values of 𝑘 (to account

for initialization variability), and by comparing the outputs using some

of the methods discussed in Section 22.3. This process can be memory-

(and time-)extensive.

Hierarchical clustering (HC) can sidestep this difficulty altogether by

building a deterministic global clustering structure (for a given choice

of parameters), from which we can select a specific number of clusters

after the algorithm has converged; the advantage of this approach is that

if we want to use a different number of clusters, we do not need to re-run

the clustering algorithm – we simply read off the new clusters from the

global clustering structure.

There are two main conceptual approaches:

bottom-up/agglomerative (AGNES) – initially, each observation

sits in its own separate cluster, which are then merged (in pairs) as

the hierarchy is climbed, leading (after the last merge) to a large

cluster containing all observations;

top-down/divisive (DIANA) – initially, all observations lie in the

same cluster, which is split (and re-split) in pairs as the hierar-

chy is traversed downward, leading (after the last split) to each

observation sitting in its own separate cluster.

Both approaches are illustrated in Figure 22.2: the first one is an illustra-

tion of AGNES and DIANA. The corresponding hierarchical structure is

shown in the second image; the dendrogram in the third.

In theory, the two approaches are equivalent;
13

in practice, we use AGNES13: They produce the same hierarchical

structure given a similarity metric and a

linkage strategy (more on this later).

over DIANA for anything but small datasets as the former approach runs

in polynomial time,
14

whereas the latter runs in exponential time.

14: With respect to the number of obser-

vations. With AGNES, the clustering dendrogram is built starting from the leaves,

and combining clusters by pairs, up to the root, as in Figure 22.3.

Algorithm: AGNES The global clustering structure is built as follows:

1. each observation is assigned to its own cluster (there are 𝑛 clusters,

initially);

2. the two clusters that are the least dissimilar are merged into a

supra-cluster;
3. repeat step 2 until all of the observations belong to a single large

merged cluster (with 𝑛 observations).

Three decisions need to be made in order for the algorithm to run:

the choice of a linkage strategy in steps 2 and 3;

the dissimilarity measure used in step 2;

the dissimilarity threshold required to “cut” the dendrogram into

clusters.



22.2 Simple Algorithms 1427

Figure 22.2: Conceptual representation of AGNES and DIANA on a simple artificial dataset.

Figure 22.3: Cluster dendrogram for the hierarchical cluster structure of a dataset with 50 observations and 3 variables, with average linkage

(UPGMA) and using the Euclidean distance as the dissimilarity measure [author unknown]. The dendrogram is cut at a dissimilarity level

≈ 0.6 so that 5 clusters emerge (ordered and coloured in red, magenta, blue, green, and red); the observations profiles are shown in the

stacked bar chart and provide potential descriptions of the clusters (magenta = small total height, with mostly dominant 3rd components,

say). Based on the profiles, we might also have elected to cut a slightly lower dissimilarity level (≈ 0.55), so that the yellow and green clusters

would have been further split into two clusters apiece (between observations 35 and 13, and 30 and 10, perhaps?).



1428 22 Focus on Clustering

In Figure 22.3, the dataset is first split into 𝑛 = 50 clusters; observations

13 and 34 are then found to be most similar, and merged into a single

cluster, and the 50 observations are grouped into 49 clusters. The next two

observations which are most similar are 14 and 37, which are themselves

merged, so that there are 48 clusters at that level.

The process is continued until all observations are merged into a single

cluster, leading to the global clustering structure (clustering dendrogram)

for the dataset. In order to obtain actual clusters (as opposed to the global

structure), we cut the dendrogram at the selected dissimilarity level, with

the resulting groups of observations yielding the dataset clusters (5, in

the example).

Increasing the dissimilarity threshold decreases the number of clusters,

and vice-versa.

Linkage Strategy In the first AGNES stage, we compare all pairs of

observations to determine which two are least dissimilar; these are then

merged into a cluster.
15

15: With 𝑛 observations, there are 1+· · ·+
(𝑛 − 1) = (𝑛−1)𝑛

2
such pairs.

In the second stage, we must also compare each of the non-merged

observations with a cluster of two observations to determine their

dissimilarity (the other dissimilarities have been computed in the first

stage and do not need to be computed anew).

In subsequent stages, we might also need to compare two clusters with

any number of observations for overall similarity. How can this be

achieved? Let 𝐴 and 𝐵 be clusters in the data, with |𝐴| = 𝑛𝐴, |𝐵| = 𝑛𝐵.

The dissimilarity between 𝐴 and 𝐵 can be computed in multiple ways:

complete linkage – the largest dissimilarity among all pairwise

dissimilarities between the observations in 𝐴 and those in 𝐵 (𝑛𝐴𝑛𝐵
computations);

single linkage – the smallest dissimilarity among all pairwise

dissimilarities as in complete linkage;

average linkage – the average dissimilarity among all pairwise

dissimilarities as in complete (or single) linkage;

centroid linkage – the dissimilarity between the centroids of𝐴 and

𝐵 (found using whatever method is appropriate for the context);

Ward’s method (and its variants) uses any reasonable objective
function which reflects domain knowledge [4, 47];

etc.

The choice of a linkage strategy (and of a dissimilarity measure) affects

not only how clusters are compared and merged, but also the topology
(shape/structure) of the resulting dendrogram (are the clusters tight,

loose, blob-like, etc.). The various linkage strategies are illustrated in

Figure 22.4, assuming Euclidean dissimilarity.

Example We show the results of hierarchical clustering on the Gap-

minder 2011 data, using complete linkage and Euclidean dissimilarity,

and Ward 𝐷 linkage and the maximum dissimilarity. In each case, we

consider 𝑘 = 2, 3, 4 clusters.
16

The cluster charts are in Figure 22.5.16: Reminder: we work on the scaled data.

Assume that library(ggplot2) has al-

ready been loaded.
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Figure 22.4: Conceptual notions of linkage,

assuming Euclidean dissimilarity.

We first need to create the AGNES structure for the data using complete

linkage and Euclidean dissimilarity.

# global, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 <- hclust(dist(gapminder.SoCL.2011.s))

plot(hclust.gapminder.SoCL.2011, hang = -1, cex=0.7,

main = "Gapminder 2011 Data \n HC - Global Structure

- Euclidean - Complete", ylab="")

Let us find the breakdown for 𝑘 = 2, 3, 4 clusters for complete linkage

and Euclidean dissimilarity.

# k=2, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color", value = c("red", "blue"), k = 2) |>

plot(main = "Gapminder 2011 Data \n HC - 2 clusters - Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=2, border = 8, lty = 5, lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011, k = 2))),

diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 2))

1 2

66 118
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# k=3, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color",

value = c("red", "blue", "darkgreen"), k = 3) |>

plot(main = "Gapminder 2011 Data \n HC - 3 clusters -

Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=3, border = 8, lty = 5,

lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011,

k = 3))), diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 3))

1 2 3

66 24 94

# k=4, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color",

value = c("red", "blue", "darkgreen", "gray"), k = 4) |>

plot(main = "Gapminder 2011 Data \n HC - 4 clusters -

Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=3, border = 8, lty = 5,

lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011,

k = 4))), diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 4))

1 2 3 4

35 24 94 31

Notice how the number of observations in each cluster follows a hierar-

chical structure: when we go from 𝑘 = 2 to 𝑘 = 3 clusters, the new cluster

is a subset of one of the old clusters (and similarly when we go from

𝑘 = 3 to 𝑘 = 4).

We can see how the results change when we use a different distance

metric (maximum) and a different linkage strategy (Ward D): the line

hclust.gapminder.SoCL.2011 <- hclust(dist(gapminder.SoCL.2011.s))is

substituted throughout by hclust.gapminder.SoCL.2011.2 <- hclust(dist(

gapminder.SoCL.2011.s,method="maximum"), method="ward.D").
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Figure 22.5: Realizations of hierarchical clustering (AGNES) on the 2011 Gapminder data: complete linkage, Euclidean dissimilarity for

𝑘 = 2, 3, 4 clusters (top 2 rows); Ward 𝐷 linkage, maximum dissimilarity for 𝑘 = 2, 3, 4 clusters (bottom 2 rows).
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22.3 Clustering Evaluation

Hierarchical clustering (HC) and 𝑘−means (and its variants) both attempt

to separate the data into natural groups, using different conceptual

approaches; 𝑘−means tries to minimize within-cluster variation while

HC builds a global clustering structure.

We have discussed some of their shortcomings in the previous section;

the fact that they may yield different clustering outcomes depending on

the choices made along the way (initialization, similarity/dissimilarity

measures, linkage strategy, number of clusters, etc.) reinforces the notion

that unsupervised learning is difficult.

We will discuss advanced algorithms that sidestep some of these issues

in Section 22.4, but we make an important observation in the meantime:

a hallmark of clustering is that whenever a new approach manages to

overcome a previously-identified difficulty, it usually does so at the cost

of introducing holes in hitherto sound aspects.

We may thus not be able to ever find a “best” clustering approach/out-

come,
17

but is it possible to identify which of several clustering scheme17: An updated take on the No Free Lunch

theorem, perhaps? [49]
is “optimal” (or best-suited for an eventual task)?

22.3.1 Clustering Assessment

In machine learning, clustering is defined as grouping objects based

on their over-all similarity (or dissimilarity) to each other.
18

It can be18: Note that each object has multiple di-

mensions, or attributes available for com-

parison.

tempting to focus on just one or two attributes (especially for visual or

“eyeball” clustering), but keep in mind that even if we were to focus on

one or two particular attribute, all of the other attributes must still come

along for the ride.

For instance, consider the objects shown below.
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What is the same about these objects? What is different? Do they belong

in the same group? If not, how many groups are there?

As a start, they are all pictorial representations of apples;
19

they all 19: While we cannot forget that they are

not actual apples, we will assume that

this is understood and simply refer to the

objects as fruit, or apples.

possess stems, and appear to be of similar size. On the other hand, two

of them are (mostly) red while the other is green(ish); one of the stems

has a leaf while the other two do not, and one of them is spherical, while

the other two are “tapered” at the bottom.

While we do recognize them all as apples, we could make the argument

that each of them is unlike the other two (and thus also that each of them

is similar to exactly one of the other two).

Fruit Image Dataset In order to appreciate the challenges presented by

clustering validation, it will be helpful to relate the concepts to something

tangible. We will explore some of these notions through an artificial

dataset of 20 fruit images (see Figure 22.6):

are there right or wrong clusterings of this dataset?

are there multiple possible ‘natural’ clusterings?

could different clusterings be used for different tasks?

will some clusterings be of (objectively) higher quality than others?

Key Notions At a fundamental level, clustering relies on the notion of

representativeness; ideally, the essence of instances (observations) in a

cluster would be faithfully captured by the cluster concept (examplar,

representative), and differentiated from those of other clusters by the

same token.

As an example, the image below is a concept for “apples”:

as is the Mirriam-Webster definition:

“The fleshy, usually rounded red, yellow, or green edible

pome fruit of a usually cultivated tree (genus Malus) of the

rose family.”
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Of course, this is not all that an apple is, but most people who have seen or

eaten an apple at some point in the past will have no trouble recognizing

what is being alluded to by the concept, even if the corresponding mental

image differs from one person to the next.

The cluster concepts offer a generalized representation – they capture

“something” of their corresponding cluster’s instances. For a given cluster,

then, can we clearly identify a concept capturing its (and solely its)

essence? If so, does that make the entire clustering scheme a good one?

For machine learning purposes, we use signature vectors to represent

instance properties. Each vector element represents an instance attribute;

the element’s value is the measured value of the corresponding object’s

property (for instance, the colour of the apple).

The apple below, as an example, could perhaps be described by the

signature vector

(12, 9.12, tapered, golden delicious),

where the components are the instance’s colour (ordinal), height (contin-

uous), shape, and variety (both categorical).
20

20: An important consideration, from

a general data science perspective, is

whether the signature vector provides a

sufficient description of the associated ob-

ject or whether it is too crude to be of use.

This is usually difficult to ascertain prior

to obtaining analysis results, and compar-

ing them to the “reality” of the underling

system (see Chapters 13 and 14 for details).

Signature vectors are used to compare objects (instance-to-instance
relationships); such comparisons could yield, among others, a measure

of similarity between instances.

While similarity can be measured against a single dimension (compo-

nent), the comparisons of interest for clustering task require an overall

similarity measure, across all dimensions. We would compare the two

apples below, say, by comparing their signature vectors

v1 = (12, 9.12, tapered, golden delicious)
v2 = (2, 10.43, spherical,macintosh)

with the help of some similarity measure 𝑤(v1 , v2).21
21: Keep in mind that different similarity

measures may yield various results, in

some cases showing the two apples to be

similar, in others to be dissimilar.
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As we have discussed in Section 22.1, the use of a distance measure
(or metric) is a popular strategy for defining how similar (or dissimilar)

two objects are to each other. Importantly, a distance takes into account

all of the properties of the objects in question, not just a few of them.

Traditionally, only numeric attributes are allowed as input (see Chapter

26 for an in-depth discussion of distance metrics), but it is technically

possible to convert categorical attributes to numeric ones, or to define

mixed distances.
22

22: While the moniker “distance” harkens

back to the notion of Eulidean (physical)

distance between points in space, it is im-

portant to remember that the measure-

ments refer to the distance between the

associated signature vectors, which do not

necessarily correspond to their respective

physical locations.

In the clustering framework, we are often interested in all pairwise

similarities between objects, not just in the similarity between two objects,

which is to say that pairs of objects are not solely interesting in and of

themselves, but also in relation to other pairs of objects.

In a dataset with 4 objects, for instance, we might require the computation

of (up to) 6 pairwise similarities (as shown below).

As is the case with objects, clusters also have properties. These could

include:

the number of instances in a cluster;

similarity statistics across instances within a cluster (minimum,

maximum, average, median, standard deviation, mean absolute

deviation, variance, etc.);

the cluster representative, which may be an actual instance, or an

amalgamation of multiple instances (exemplar).

How many instances are there in the cluster at the top of the next page,

for instance? What pair of observations is most similar? The least similar?

What are the similarity values? Which instance is most representative?
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We can also define cluster-to-instance relationships. A specific instance

can be:

compared to a cluster representative, and/or

compared to specific instances in a cluster (as in instance-to-instance

relationships), such as the most similar instance or the most distant

instance.

This allows for membership questions: is the green apple similar to the

cluster below? Does it belong in the cluster, or is it most likely to belong

to another cluster? Or perhaps to no cluster in particular?

Finally, we might be interested in cluster-to-cluster relationships, where

we compare cluster-level properties, such as:

number of instances;

within-cluster similarities;

cluster representatives.

To these, we can also add between-cluster (or across-cluster) similarities,

as a way to determine if the instances are notably different from one

cluster to the next. This allows for validity questions: are the two clusters
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below significantly different? Should they be joined into a mega-cluster?

Does it make sense to have them as separate clusters in the dataset?

How would we qualify the clustering outcome of Figure 22.7, for instance,

as it relates to colour, height, and shape? Could there be clusterings of

higher quality? Of lower quality? How could this be quantified?

Cluster and instance comparisons can be combined in many different

ways, which can then be used to generate a vast number of clustering
validation functions.

The central cluster validation question becomes: what can these tell us

about the quality of a particular clustering outcome relative to some ob-

jective criteria about “good” clustering schemes (internal validation), to

another clustering option (relative validation), or to external information

(external validation)?

Clustering Quality Measures In general, clustering involves two main

activities:

creating/building the clusters, and

assessing their quality, individually and as a whole.

From a practical perspective, clustering requires two functions: one which

assigns each instance to a cluster,
23

and one which assigns each clustering 23: Or in the case of soft clustering, assign

each instance a “probability” of belonging

to each cluster.

scheme to a cluster quality measurement.24

24: The similarity matrix is typically re-

quired at both stages.

An illustration is provided in Figure 22.8, on an artificial dataset con-

taining two variables, with dissimilarity between instances given by the

corresponding Euclidean distance.
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Figure 22.6: Toy dataset with which the key concepts of clustering validation will be illustrated.

Figure 22.7: Two clusters in a subset of the fruit image toy dataset.
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Figure 22.8: Cluster quality measurements

on an artificial dataset.

We obtain three different clustering schemes, and their quality is assessed

with the help of some clustering validation function:
25

25: The specifics of that function are not

germane to the current discussion and so

are omitted.top – two clusters are found in the data (with outliers), and the

quality of the clustering is assessed as 0.61;

middle – three clusters are found (no outliers), with quality assess-

ment at 0.41;

bottom – two clusters are found (no outliers), with quality assess-

ment at 0.53.

With this choice of clustering validation function, the top scheme would

be preferred, followed by the bottom scheme; the middle one brings

up the rear. We have already mentioned the abundance of clustering

algorithms [48]; it will come as no surprise that a tremendous number

of clustering validation function in practice as well (for much the same

reasons as those discussed in Section 22.1.2).

They are, however, all built out of the basic measures relating to instance or

cluster properties we have already reviewed, as illustrated schematically

in Figure 22.9:

instance properties;

cluster properties;

instance-to-instance relationship properties;

cluster-to-instance relationship properties, and

cluster-to-cluster relationship properties.
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Figure 22.9: Schematic illustrations of various instance/cluster properties and relationships.

Internal Validation Context is quite relevant to the quality of a given

clustering result. But what if no context is readily available? Internal val-
idation methods attempt to measure cluster quality objectively, without

context.
26

26: “Clustering validation” suggests that

there is an ideal clustering result against

which to compare the various algorithmic

outcomes, and all that is needed is for ana-

lysts to determine how much the outcomes

depart from the ideal result. “Cluster qual-

ity” is a better way to refer to the process.

We could elect to validate the clustering outcome using only the properties

of the obtained clusters, such as, say, the distance between all clusters: if

the average between-cluster distance is large, we might feel that there

is some evidence to suggest that the resulting clusters provide a good

segmentation of the data into natural groups, as in the image below.

Alternatively, we might validate cluster quality by tempering the average

between-cluster distance against the average within-cluster distance be-

tween the instances, which would reward “tight” and “isolated clusters”,

as opposed to simply “isolated” ones, as below.
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There are multiple ways of including both between-cluster and within-

cluster similarities in a cluster quality metric (CQM): both the Davies-
Bouldin index and Dunn’s index do so, to name but two examples. The

broad objectives of clustering remain universal: instances within a cluster

should be similar; instances in different clusters should be dissimilar.

The problem is that there are many ways for clusters to deviate from this

ideal: in specific clustering cases, how do we weigh the “good” aspects

(such as high within-cluster similarity) relative to the “bad” ones (such

as low between-cluster separation)?

Other internal properties and relationships can also be used and com-

bined in various ways, leading to an embarrassment of riches when it

comes to CQMs. The following indices are all available in the R package

clusterCrit, for instance [10]:

Ball-Hall

Banfeld-Raftery

C

Calinski-Harabasz

*Davies-Bouldin
Det Ratio and LogDetRatio

*Dunn
Baker-Hubert Gamma

GDI

Gplus

KsqDetW

McClain-Rao

PBM

Point-Biserial

Ratkowsky-Lance

Ray-Turi

Scott-Symons

SD

SDbw

*Silhouette
Tau

TraceW and TraceWiB

Wemmert-Gancarski

*WSS
LogSSRatio

Xie-Beni

While it is useful to have access to so many CQMs, we should remain

aware that the No-Free Lunch theorem is still in play: none of them is

universally superior to any of the others.
27

27: Given that all of them are suppos-

edly provide context-free assessments of

clustering quality, that is problematic (al-

though emblematic of unsupervised en-

deavours).

In practice, certain approaches (weightings) may prove more relevant

given the eventual specific analysis goals, but what these could prove to

be is not always evident from the context; consequently, we recommend

assessing the quality of the clustering outcomes using a variety of CQMs.

Studies have been performed to compare a large number of internal

validation measures, relative to one another and against human evalu-

ation; generally speaking, variants of the silhouette index performed

reasonably well (but see previous NFLT comment) [44, 26].

One possible interpretation of these results is that internal validation

via CQMs may be providing information about clustering across all

contexts, and that it is usually easier to identify clustering outcomes that

clearly miss the mark than it is to objectively differentiate amongst “good”

outcomes, for reasons that are not fully understood yet.

Details on the CQMs are readily available from a multitude of sources

(see [2, 26, 44]); we provide more information for 4 CQMs:

(within) sum of squared error;

Davies-Bouldin;

Dunn, and

silhouette;
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Within Sum of Squares Let C= {𝐶1 , . . . , 𝐶𝐾} be the𝐾 clusters obtained

from a dataset X via some algorithm A. Denote the centroid (or some

other central representative) of cluster 𝐶𝑘 by c𝑘 . The (within) sum of
error for C is

WSE =

𝐾∑
𝑘=1

∑
x∈𝐶𝑘

dissimilarity(x, c𝑘).

The dissimilarity is often selected to be the square of the Euclidean
distance (thence “sum of squared error”), but the choice of the Euclidean

distance (and of the square exponent) is arbitrary – it would make more

sense, in practice, to use a dissimilarity related to the similarity measure

used by A.

Note that WSE decreases with the number of clusters 𝐾, and optimality

is obtained at points of diminishing returns (see the next section for

details); from a validation perspective, it might be easier to interpret the

(within) average error:

WAE = Avg
𝐾
𝑘=1

{
Avgx∈𝐶𝑘 {dissimilarity(x, c𝑘)}

}
= Avg

𝐾
𝑘=1
{𝑠𝑘} .

Davies-Bouldin Index With 𝑠𝑘 , 𝑘 = 1, . . . , 𝐾 as above, the Davies-
Bouldin index (DBI) is defined as

DBI =
1

𝐾

𝐾∑
𝑘=1

max

ℓ≠𝑘

{
𝑠𝑘 + 𝑠ℓ

dissimilarity(c𝑘 , cℓ )

}
.

If the clusters {𝐶𝑘} are tight and dissimilar to one another, we expect the

numerators 𝑠𝑘 + 𝑠ℓ to be small and the denominators dissimilarity(c𝑘 , cℓ )
to be large, so that the DBI would be small.

Dunn’s Index With clusters that are loose or somewhat similar to
one another, we expect the DBI to be large. There are other ways to

assess separation and tightness; Dunn’s index is the ratio of the smallest
between-cluster dissimilarity (for pairs of observations not in the same

cluster) to the largest cluster diameter (within-cluster dissimilarity).

If the clusters {𝐶𝑘} are tight and dissimilar to one another, we expect the

smallest between-cluster dissimilarity to be large and the largest cluster

diameter to be small, leasing to a large Dunn ratio.

Conversely, with clusters that are loose or somewhat similar to one
another, the Dunn ratio will be small. As is the case with the sum of errors

and the DBI, the choice of the dissimilarity (or distance) measure leads

to different variants of the Dunn index, but all of them take non-negative

values.
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Silhouette Metric The three previous CQMs provide examples of val-

idation metrics that are computed for the entire clustering outcome;

the silhouette metric instead assigns a score to each observation, and

aggregates the scores at a cluster level and at the dataset level: for a

dissimilarity 𝑑 and a point x in a cluster 𝐶, set

𝑏(x) = min

𝐶′≠𝐶

{
Avgy∈𝐶′ {𝑑(x, y)}

}
, 𝑎(x) = Avgw∈𝐶

w≠x
{𝑑(x,w)} .

Small values of 𝑎(x) imply that x is similar to the instances in its cluster,

large values of 𝑏(x) imply that it is dissimilar to instances in other

clusters.

The silhouette metric at x is

silhouette(x) = 𝑏(x) − 𝑎(x)
max{𝑎(x), 𝑏(x)} =


1 − 𝑎(x)/𝑏(x) if 𝑎(x) < 𝑏(x)
0 if 𝑎(x) = 𝑏(x)
𝑏(x)/𝑎(x) − 1 if 𝑎(x) > 𝑏(x)

Consequently, −1 ≤ silhouette(x) ≤ 1 for all x. Thus, when silhouette(x)
is large (≈ 1), the ratio 𝑎(x)/𝑏(x) is small and we interpret x to be correctly

assigned to cluster 𝐶 (and conversely, when silhouette(x) is small (≈ −1),

we interpret x’s assignment to 𝐶 to be “incorrect”).

The silhouette diagram corresponding to the clustering results displays

the silhouette scores for each observation, and averages out the scores in

each cluster. The mean over all observations (and the number of instances

that have been poorly assigned to a cluster) gives an indication of the

appropriateness of the clustering outcome.

In the example below, 65 observations are separated into 5 clusters:

6 observations are poorly assigned (those with negative silhouette

scores) and the average silhouette score over the entire dataset is 0.2,

which suggests that the clustering is more successful than unsuccessful,

overall.
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Note, however that it could prove difficult to associate intrinsic meaning to

a lone numerical score – there could be contexts where 0.2 is considered

to be a fantastic silhouette score, and others where it is viewed as an abject

failure. It is in comparison to the scores obtained by different clustering

schemes that this score (and those of the other CQMs) can best serve as

an indicator of a strong (or a poor) clustering outcome.

Relative Validation Obtaining a single validation measure for a single
clustering outcome is not always that useful – how would we really

characterize the silhouette score of 0.2 in the previous example? Could

the results be better? Is this the best that can be achieved?

One approach is to compare clustering outcomes across multiple runs to

take advantage of non-deterministic algorithms or various parameters’

values (see image below, and schematics in Figure 22.10).

If the outcomes of different clustering algorithms on the same dataset

are “similar”, this provides evidence in favour of the resulting clusters

being efficient, natural, or valid, in some sense.
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Figure 22.10: Schematics of relative clustering validation.
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Consider, for instance, a dataset with 6 instances, which is clustered in

two different manners (Aand B, with |A| = 3 and |B| = 2), as shown

below. The clusterings are clearly not identical; how similar are they?

One way to approach relative validation for two outcomes is by computing

“correlations” between cluster outcomes. Intuitively, we would expect

the similarity between both clustering schemes to be high, seeing as the

two outcomes are not that different from one another.
28

28: In B, the two smallest clusters of A

have been merged into a single, larger

cluster. This can be represented in the form of matrices:

How can this be quantified? Correlation measures include the Rand,

Jaccard (see Chapter 26), and Gamma (see [51]) indices.

Let A = {𝐴1 , . . . , 𝐴𝑘} and B = {𝐵1 , . . . , 𝐵ℓ } be two clusterings of a

dataset X. If X consists of 𝑛 instances, there are thus(
𝑛

2

)
=
𝑛(𝑛 − 1)

2

pairs of observations in the data. Denote the number of pairs of observa-

tions that are in:

the same cluster in Aand the same cluster in Bby ss,

different clusters in Aand different clusters in Bby dd;

the same cluster in Abut different clusters in Bby sd, and

different clusters in Abut the same cluster in Bby ds.
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Thus, (
𝑛

2

)
= ss + dd + sd + ds,

and we define the Rand index of Aand B as

RI(A,B) = ss + dd

ss + dd + sd + ds

=
ss + dd(𝑛

2

) .

Large values of the index are indicative of similarity of clustering out-

comes.
29

Unfortunately, the Rand index does not satisfy the constant 29: The formula for RI(A,B) reminds one

of the definition of accuracy, a perfor-

mance evaluation measure for (binary)

classifiers.

baseline property.
30

30: In a nutshell, the expected value of

RI(A,B) for independent, random clus-

terings Aand B is not 0 [45].

The adjusted Rand index (as well as several other pair-counting, set-

matching, and information theoretic measures) relies on the contingency
table between Aand B, a method to summarize the outcomes of two

clustering results on the same dataset:

𝐵1 · · · 𝐵ℓ Total

𝐴1 𝑛1,1 · · · 𝑛1,ℓ 𝜇1

...
...

. . .
...

...

𝐴𝑘 𝑛𝑘,1 · · · 𝑛𝑘,ℓ 𝜇𝑘
Total 𝜈1 · · · 𝜈ℓ 𝑛

In this array, 𝑛𝑖 , 𝑗 = |𝐴𝑖 ∩ 𝐵 𝑗 | represents the number of instances that are

found in both the cluster 𝐴𝑖 ∈ Aand 𝐵 𝑗 ∈ B. The adjusted Rand index

(∈ [−1, 1]) is given by

ARI(A,B) =
∑
𝑖 𝑗

(𝑛𝑖 𝑗
2

)
−

[∑
𝑖

(𝜇𝑖
2

) ∑
𝑗

(𝜈𝑗
2

) ] / (𝑛
2

)
1

2

[∑
𝑖

(𝜇𝑖
2

)
+∑

𝑗

(𝜈𝑗
2

) ]
−

[∑
𝑖

(𝜇𝑖
2

) ∑
𝑗

(𝜈𝑗
2

) ] / (𝑛
2

) ,
which can also be re-written as

ARI(A,B) = 2(ss · dd − sd · ds)
(ss + sd)(ds + dd) + (ss + ds)(sd + dd) .

It is straightforward to compute RI and ARI for the two clusterings of

the artificial example with 6 instances. Since 𝑛 = 6, there are 6 · 5/2 = 15

pairs of observations in the data, and we have:

ss = 4 (𝑥1 and 𝑥3; 𝑥1 and 𝑥4; 𝑥3 and 𝑥4; 𝑥2 and 𝑥5);

ds = 2 (𝑥2 and 𝑥6; 𝑥5 and 𝑥6);

sd = 0 (none);

dd = 9 (all remaining pairs).

Thus,

RI(A,B) = 4 + 9

4 + 9 + 0 + 2

=
13

15

= 0.87

ARI(A,B) = 2(4 · 9 − 0 · 2)
(4 + 0)(2 + 9) + (4 + 2)(0 + 9) = 0.73.

Both of these values are indicative of high similarity between the cluster-

ing outcomes Aand B.
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Cluster stability can also be used to assess the appropriateness of

the choice of algorithm for the data. Assume that we apply a clus-

tering algorithm G to a dataset X, resulting in a clustering scheme

C= {𝐶1 , . . . , 𝐶𝐾}.

In general, a dataset X is a realization of a (potentially unknown) under-

lying data generating mechanism related to the situation of interest; a

different realization X′, which could arise from the collection of new data,

may yield a distinct clustering scheme C′. How stable is the clustering

outcome of G, relative to the realization X?

We can get a sense for the underlying stability by sampling multiple row

subsets from X;
31

however this is achieved, we have obtained ℓ subsets31: Alternatively, we could also sample

from X’s columns, or sample columns

from a variety of sampled rows of X.

X1 , . . . ,Xℓ ⊆ X, on which we apply the algorithm G, with parameters P,

yielding the corresponding clustering schemes C1 , . . . , Cℓ .

Let Wbe the similarity matrix for the various clustering schemes:

W=
©­­«
𝑤(C1 , C1) · · · (C1 , Cℓ )

...
. . .

...

𝑤(Cℓ , C1) · · · (Cℓ , Cℓ )

ª®®¬ ;

this Wcan be used as the basis of a meta-clustering scheme in which

C1 , . . . , Cℓ play the role of instances, using a graph-based meta-clustering

method such as DBSCAN (which we will discuss in Section 22.4.1). If the

clustering results obtained from X by applying Gare stable, we might

expect the meta-clustering results to yield a single meta-cluster.32

32: If multiple meta-clusters are found

from W, this supports the position that

Gdoes not produce stable clusters in X,

although this does not necessarily imply

instability as the number of meta-clusters

could be an artefact related to the choice

of the meta-clustering method. This ap-

proach seems simple in theory, but in

practice it often simply pushes the issues

and challenges of clustering to the meta-

clustering activity; a more sophisticated

treatment of the problem of cluster stabil-

ity assessment is presented in [27].
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External Validation In everyday applications, we tend to gauge cluster-

ing results against some (often implicit) external expectation: we cannot

help but bring in outside information to evaluate the clusters.

The outside information is typically what is deemed to be the ‘correct’

groups to which the instances belong.
33

In the example below, for 33: This is starting to look a lot like classi-
fication, a supervised learning approach.

instance, we might be interested in finding natural groups in a dataset

of objects, but we might hold the pre-conceived notion that the natural

groups are linked to the underlying shape (square, triangle, circle).

If the outcome agrees with this (external) notion, we naturally feel that

the clustering was successful; if, the outcome seems to pick up something

about the sharpness of the shapes’ vertices, say (as in the image below),

we might conclude that the algorithm does not do a good job of capturing

the essential nature of the objects, or, more rarely, that we need to revisit

our pre-conceived notions about the dataset and its natural groups.
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This validation strategy is often used to build confidence in the overall

approach, based on preliminary or sample results, but it rests on a

huge assumption (which often conflicts with the unsupervised learning

framework), namely, that the natural groups in the data are identifiable,

explicitly or implicitly.

Due to the conceptual similarity to classification,
34 external validation34: Which it is emphatically not, it bears

repeating. measures often resemble classification performance measures. Case in

point, the purity metric. In the presence of an external classification

variable, this metric assign a label to a cluster 𝐶 according to the most

frequent classes of the instances in 𝐶, and

purity(𝐶) = # correctly assigned points in 𝐶

|𝐶 | ,

as in the example below:

The clustering purity score for C = {𝐶1 , . . . , 𝐶𝐾} is obtained as the

average of the cluster purity scores, or as a weighted average of purity

scores:

weighted purity(C) = 1

𝑛

𝐾∑
ℓ=1

|𝐶ℓ | · purity(𝐶ℓ ),

where 𝑛 represents the number of instances in the data.

In the image above, the green cluster is labeled as the square cluster

(since 4 of its 6 instances are classified as squares), and the blue cluster

is labeled as the circle cluster (since 5 of its 7 instances are classified as

circles). At the cluster level, the purity scores are thus:

purity(𝐶□) =
2

3

, purity(𝐶⃝) =
5

7

;

the average and weighted purity scores are

average purity(C) = 1

2

(
2

3

+ 5

7

)
= 69.0%

weighted purity(C) = 1

6 + 7

(
6 · 2

3

+ 7 · 5
7

)
= 69.2%.
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Figure 22.11: Useful external quality metric considerations: homogeneity (top left), completeness (top right), noisy and outlying data

(bottom left), size and quantity (bottom right).

These two numbers are very nearly identical because the clusters have

roughly the same size; if the size variance is large, the two measurements

would be quite different. The purity is an obvious analogue to accuracy;

other measures based on precision and recall are also popular [3].

Useful external quality metrics take advantage of the natural classes (if

they are aligned with the clustering results), and take into account cluster

homogeneity (top left, Figure 22.11), completeness, (top right), noisy
and outlying data (bottom left), and size vs. quantity considerations

(bottom right): the preferred behaviour is shown on the right [3].

Example Let us illustrate some of these notions using various 𝑘−means

and hierarchical clusters of the Gapminder data used in the previous sec-

tions. In all instances, we use Euclidean distance on the scaled dataset.

Internal Validation We use theRpackagescluster,fpc, andclusterCrit

to compute 3 CQMs: the Dunn index, the average silhouette width, and

the Calinski-Harabasz index, which is simply the ratio of the sum

of between-clusters dispersion to the inter-cluster dispersion for all

clusters (higher is better).

We start by clustering the data using 4−means; we then use hierarchical

clustering with complete linkage and 3 clusters (the global structure has

already been computed).

set.seed(123) # for replicability

kmeans.4 = kmeans(gapminder.SoCL.2011.s,4,iter.max=2509,nstart=1)

stats.kmeans.4 <- as.numeric(

clusterCrit::intCriteria(as.matrix(gapminder.SoCL.2011.s),

kmeans.4$cluster,

c("Dunn","Silhouette","Calinski_Harabasz")))

dist.all <- cluster::daisy(gapminder.SoCL.2011.s,metric="euclidean",stand=FALSE)

hc.1.3 <- cutree(hclust.gapminder.SoCL.2011, k = 3)

stats.hc.1.3 <- c(fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$dunn,

fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$avg.silwidth,

fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$ch)
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The results are summarized below:

stats <-rbind(stats.kmeans.4,stats.hc.1.3)

colnames(stats) <- c("Dunn",

"Silhouette",

"Calinski-Harabasz")

stats

method Dunn Avg. Sil. C.-H.

4−means 0.097 0.315 139.0

HC(comp; 3) 0.091 0.274 125.4

Both of the Dunn values are low, although the 4−means result is

marginally superior; while the average silhouette widths are also low,

they are least positive in both cases, with a slight advantage in favour of

4−means; the Calinski-Harabasz values are not very indicative on their

own, but once again, 4−means comes out ahead of HC.

The average silhouette width is an intriguing metric. On the one hand, we

attempt to gauge the quality of the entire clustering with a single number,

but the average is a fickle summary measurement and potentially affected

by outlying values; on the other, we do have access to a silhouette score

for each observation, and can thus get a better idea of the performance

by studying the silhouette profile.

We show the silhouette results for hierarchical clustering with complete

linkage for 4 (average width= 0.23) and 6 clusters (average width= 0.22).

plot(cluster::silhouette(cutree(hclust.gapminder.SoCL.2011, k = 4), dist.all))

plot(cluster::silhouette(cutree(hclust.gapminder.SoCL.2011, k = 6), dist.all))
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The average silhouette width seems to favour the 4-cluster result, the

profile for the 6-cluster result seems more in-line with desirable proper-

ties: in both instances, some observations are “mis-clustered” (negative

silhouette scores), but these seem to be more broadly distributed in the

latter case.
35

35: in the 4-cluster case, half a cluster

seems to have been mis-assigned, for in-

stance.

Relative Validation We compute the Rand index (RI) and the adjusted

Rand index (ARI) to compare the outcomes of a single run of 2−means

(A2), 3−means (A3), and 4−means (A4), respectively.

set.seed(1) # for replicability

kmeans.2 = kmeans(gapminder.SoCL.2011.s,2,iter.max=250,nstart=1)

kmeans.3 = kmeans(gapminder.SoCL.2011.s,3,iter.max=250,nstart=1)

kmeans.4 = kmeans(gapminder.SoCL.2011.s,4,iter.max=250,nstart=1)

We can compute the Rand index and the adjusted Rand index using the

following function:

# create a matrix of 1s and 0s depending as to whether

# observations i and j are in the same cluster or not

w2=kmeans.2$cluster

mat2=floor(1 - abs(sqrt(w2%*%t(w2))) %% 1)

w3=kmeans.3$cluster

mat3=floor(1 - abs(sqrt(w3%*%t(w3))) %% 1)

w4=kmeans.4$cluster

mat4=floor(1 - abs(sqrt(w4%*%t(w4))) %% 1)

# build the rand index from these matrices

randindices <- function(W1,W2) {

diag(W1) <- -1

diag(W2) <- -1

W=table(W1+2*W2)

W=W[-c(1)]

dd=W[1]

sd=W[2]

ds=W[3]

ss=W[4]

RI=(ss+dd)/(ss+dd+sd+ds)

ARI=2*(ss*dd-sd*ds)/((ss+sd)*(ds+dd)+(ss+ds)*(sd+dd))

randindices=data.frame(cbind(RI[[1]],ARI[[1]]))

}

# compute RI and ARI for the 3 comparisons

(randindices(mat2,mat3))

(randindices(mat2,mat4))

(randindices(mat3,mat4))

RI ARI RI ARI RI ARI

0.7327 0.5152 0.6407 0.3285 0.7549 0.4584
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There are

(
184

2

)
= 16836 pairs of distinct observations in the 2011 Gapmin-

der dataset; the full pair types and indices break down as below:

Schemes ss dd sd ds RI ARI

A2 ,A3 5304 7032 3852 648 0.73 0.52

A2 ,A4 4395 6392 4761 1288 0.64 0.33

A3 ,A4 3754 8955 2198 1929 0.75 0.46

A2 ,A3 are relatively similar according to RI, as are A3 ,A4, but the ARI

suggests that A2 ,A3 are more similar to one another than A3 ,A4 are;

A2 ,A4 are not as similar, according to both indices, which is not that

surprising as the number of clusters in this case jumps from 2 to 4.

External Validation Finally, we compare the clustering results of hierar-

chical clustering, for 4 and 8 clusters, with a variety of external grouping:

6 world regions, as determined by the Gapminder Foundation, and

OECD/G77 membership (see Figure 22.12).

Figure 22.12: 6 world regions (left): America (yellow, 33 countries), East Asia Pacific (red, 26), Europe Central Asia (orange, 49), Middle East

North Africa (green, 20), South Asia (turquoise, 8), Sub Saharan Africa (blue, 48); memberships (right): OECD (green, 30), G77 (purple, 128),

other (red, 26); bubble size represents population [36].

We start by importing the external groupings.

gapminder.regions = read.csv("gapminder_regions.csv",

stringsAsFactors=TRUE)

colnames(gapminder.regions)[1] <- c("geo")

Then, we cluster the data using HC with complete linkage, for 𝑘 = 4 and

𝑘 = 8 clusters (using Euclidean dissimilarity). Recall that the dendrogram

structure was originally stored in hclust.gapminder.SoCL.2011.

hc.4.ce <- as.factor(cutree(hclust.gapminder.SoCL.2011, k = 4)) # complete, Euclidean

hc.8.ce <- as.factor(cutree(hclust.gapminder.SoCL.2011, k = 8)) # complete, Euclidean

geo = names(hc.4.ce)

clusters=data.frame(geo,hc.4.ce,hc.8.ce)

external.results <- merge(gapminder.regions,clusters, by="geo")

The first 3 entries of the external.results are shown on the next page.
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head(external.results,3)

geo name four_regions eight_regions six_regions members_oecd_g77 hc.4.ce hc.8.ce

afg Afghanistan asia asia_west south_asia g77 1 1

ago Angola africa africa_sub_saharan sub_saharan_africa g77 1 1

alb Albania europe europe_east europe_central_asia others 3 3

The clusters are then labeled with their most frequent cluster assignment,

which can be extracted with the following function:

mode <- function(x) { names(which.max(table(x))) }

tab <- external.results |> group_by(hc.4.ce) |>

summarise(mode = mode(six_regions), n=n())

n.mode <- external.results |> group_by(hc.4.ce) |>

count(six_regions) |>

summarise(n.mode = max(n))

info <- merge(tab,n.mode, by="hc.4.ce")[,2:4]

Are there any reasons to suspect that the clusters would be aligned with

these external classes? For the 6 world regions classes, the clusters labels

(the most frequent class per cluster) for HC(4) are shown below:

Cluster Label Size Frequency

1 Sub Saharan Africa 35 31

2 East Asia Pacific 24 9

3 Europe Central Asia 94 42

4 Sub Saharan Africa 31 14

info[,4] <- info$n.mode/info$n

(purity <- mean(info$V4))

(weighted.purity <- weighted.mean(info$V4,info$n))

This clustering scheme yields a purity of 0.54 and a weighted purity of

0.52 – the overall score is not great, but the Sub Saharan countries are

fairly well captured by clusters 1 and 4.

We repeat the same process for HC(8) (the code is omitted). The clusters

labels in that case are found below:

Cluster Label Size Frequency

1 Sub Saharan Africa 35 31

2 America 17 6

3 Europe Central Asia 65 34

4 East Asia Pacific 7 3

5 america 29 10

6 Sub Saharan Africa 18 7

7 East Asia Pacific 10 5

8 Sub Saharan Africa 3 3
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This now yields a purity of 0.55 and a weighted purity of 0.54; which

is still . . . . not that great. Perhaps the clusters have little to do with

geography, in the end.

Are they aligned with OECD/G77/other membership? The labels for

HC(8)with this external grouping are found below:

Cluster Label Size Frequency

1 G77 27 27

2 G77 29 22

3 OECD 28 17

4 G77 20 18

5 G77 12 11

6 OECD 23 11

7 G77 25 24

8 G77 20 10

The purity values are 0.77 and 0.76, respectively: these are better values

than the previous external validation attempts, but they might not really

be meaningful given the preponderance of G77 countries in the data.

It seems, then, that neither of the external classifications is a good gauge

of cluster validity for this data.

For the most part, the cluster validation yields middling results. The

few algorithms we have tried with the data suggest that there is some

low-level grouping at play, but nothing we have seen so far would suggest

that the data segments are all that “natural.”

While this result is somewhat disappointing, we should note that this is

often the case with real-world data: there is no guarantee that natural

groups even exist in the data. However, we have not been directing our

choices of algorithms and parameters – up to now, they have been made

fairly arbitrary. Can anything be done to help with model selection?

22.3.2 Model Selection

How do we pick the number of clusters and the various other parameters

(including choice of algorithm) to use for “optimal” results? A common

approach is to look at all the outcomes obtained from various parameter

runs and replicates (for a given algorithm), and to select the parameter

values that optimize a set of QCMs, such as Davies-Bouldin, Dunn, CH,

etc.

Optimization is, of course, dependent on each QCM’s properties: in

some cases, we are searching for parameters that maximizes the index,

in other cases, those that minimize it, and yet in other cases, for “knees”

or “change points” in various associated plots.

Note, however, that the parameter values that optimize a QCM may

not optimize others; when they coincide, this reinforces the support

for the existence of natural groups; when they do not, they provide a

smaller collection of models from which to select, removing some of the

arbitrariness discussed above.
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This can also be done for clustering outcomes arising from different

algorithms, although in this case we are not selecting parameter values

so much as identifying the model that best describes the natural groups

in the data among all results, according to some metric(s).

The metrics presented in Section 22.3.1 all provide frameworks to achieve

this. There are additional approaches, such as: seeking the clustering

C= {𝐶1 , . . . , 𝐶𝑘}, among a list of such outcomes, which minimizes the

quadratic cost

ΛW(C) = −trace

(
𝑍⊤(C)W𝑍(C)

)
,

where 𝑧𝑖 ,ℓ = 1 is x𝑖 ∈ 𝐶ℓ and 0 otherwise, associated with a similarity
matrix W; or methods relying on stability assessment [27, 25]. Model

assessment and selection remains a popular research topic.

But it remains important to remember that there is a lot of diversity in

clustering validation techniques. The various types of validation methods

do not always give concordant results; this variation within the types can

be demoralizing at times, but it can also be leveraged to extract useful

information about the data’s underlying structure.

In general, we should avoid using a single assessment method; it is

preferable to seek “signals of agreement” across a variety of strategies
(both in the choices of clustering algorithms and evaluation methods).

Finally, remember that clustering results may just be ‘ok’ . . . but that is

ok too! We can study the situation and decide what is important and

what can safely be ignored – as always, a lot depends on the context.

Example How many clusters 𝑘 should we seek when clustering the

(scaled) 2011 Gapminder dataset using Euclidean distance? For each

𝑘 = 2, . . . , 15, we compute the outcome of 𝑚 = 40 runs of 𝑘−means,

and average the within sum of squares (WSS) and a (modified) Davies-
Bouldin index (DBI) over the runs. The optimal number of parameters is

obtained at a DBI maximum or a WSS “knee”.

We start by computing the principal components for displaying purposes

– although we could also use them to cluster the data, at the cost of some

information about the dataset.

Principal component distribution

decomposition

pc.agg.data = princomp(gapminder.SoCL.2011.s)

summary(pc.agg.data)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.850624 0.9973737 0.49950729 0.45130387 0.3163521

Proportion of Variance 0.688705 0.2000380 0.05017419 0.04095763 0.0201251

Cumulative Proportion 0.688705 0.8887431 0.93891726 0.97987490 1.0000000
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pc.df.agg.data = cbind(pc.agg.data$scores[,1],

pc.agg.data$scores[,2])

plot(pc.df.agg.data, xlab="PC1", ylab="PC2")

title(’PCA plot of Gapminder Data - 2 Main PCs’)

The Davies-Bouldin index is computed using the following formula.

Davies.Bouldin <- function(A, SS, m) {

# A - the centres of the clusters

# SS - the within sum of squares

# m - the sizes of the clusters

N <- nrow(A) # number of clusters

# intercluster distance

S <- sqrt(SS/m)

# Get the distances between centres

M <- as.matrix(dist(A))

# Get the ratio of intercluster/centre.dist

R <- matrix(0, N, N)

for (i in 1:(N-1)) {

for (j in (i+1):N) {

R[i,j] <- (S[i] + S[j])/M[i,j]

R[j,i] <- R[i,j]

}

}

return(mean(apply(R, 1, max)))

}

For each 𝑘 = 2, . . . , 15, we run 𝑘−means 𝑁 = 40 times (using Euclidean

dissimilarity). One realization is displayed for each 𝑘, as are the DBI

curves and the WSS curves (with confidence bands). The clusters are

displayed on the first 2 principal components of the dataset, which

explain 88% of the variation in the data.
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N = 40 # Number of repetitions

max.cluster = 15 # Number of maximum number of desired clusters

# initializing values

m.errs = m.DBI = s.errs = s.DBI <- rep(0, max.cluster)

# clustering and plotting

set.seed(1)

for (i in 2:max.cluster) {

errs = DBI <- rep(0, max.cluster)

for (j in 1:N) {

# data, number of internal shifts of the cluster centres, number of clusters

KM <- kmeans(gapminder.SoCL.2011.s,i,iter.max=2509,nstart=1)

errs[j] <- sum(KM$withinss)

DBI[j] <- Davies.Bouldin(KM$centers, KM$withinss, KM$size)

}

m.errs[i - 1] = mean(errs)

s.errs[i - 1] = sd(errs)

m.DBI[i - 1] = mean(DBI)

s.DBI[i - 1] = sd(DBI)

plot(pc.df.agg.data,col=KM$cluster, pch=KM$cluster, main=paste(i,"clusters"),

xlab="PC1", ylab="PC2")

}
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The average within sum of squares curve and the average Davies-Bouldin

curves are also provided, with 95% confidence intervals.

# WSS

MSE.errs_up = m.errs + 1.96 * s.errs / sqrt(N)

MSE.errs_low = m.errs - 1.96 * s.errs / sqrt(N)

plot(2:(max.cluster), m.errs[1:(length(m.errs)-1)], main = "Within SS", xlab="", ylab="")

lines(2:(max.cluster), m.errs[1:(length(m.errs)-1)])

par(col = "red")

lines(2:(max.cluster), MSE.errs_up[1:(length(MSE.errs_up)-1)])

lines(2:(max.cluster), MSE.errs_low[1:(length(MSE.errs_low)-1)])

# DBI

MSE.DBI_up = m.DBI + 1.96 * s.DBI / sqrt(N)

MSE.DBI_low = m.DBI - 1.96 * s.DBI / sqrt(N)

par(col = "black")

plot(2:(max.cluster), m.DBI[1:(length(m.DBI)-1)], main = "Davies-Bouldin", xlab="", ylab="")

lines(2:(max.cluster), m.DBI[1:(length(m.DBI)-1)])

par(col="red")

lines(2:(max.cluster), MSE.DBI_up[1:(length(MSE.DBI_up)-1)])

lines(2:(max.cluster), MSE.DBI_low[1:(length(MSE.DBI_low)-1)])

Where is the Davies-Bouldin index maximized?

(i_choice <- which(m.DBI==max(m.DBI[1:(length(m.DBI)-1)]))+1)

[1] 9

The WSS curve does not yield much information, but the DBI curve

suggests that both 𝑘 = 3 and 𝑘 = 9 could be good parameter choices.

With parsimony considerations in mind, we might elect to use 𝑘 = 3,

but if the results are too simple or if signs of instability appear,
36 𝑘 = 936: Recall that 𝑘−means is a stochastic

algorithm.
might prove to be a better choice in the end.
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22.4 Advanced Clustering Methods

In the rest of this chapter, we present representative clustering algorithms

from the remaining families.
37

37: Substantially more information on the

topic can be found in [2, 18, 48].

22.4.1 Density-Based Clustering

The assumptions of the 𝑘−means algorithm imply that the clusters that it

finds are usually Gaussian.
38

But this is not always a desired outcome. 38: That is, blob-like.

In density-based clustering, it is the density of observations and the

connectivity of the accompanying clustering network that determine

the number and location of clusters.
39

Popular density-based clustering 39: We will discuss these further in the

next section.
algorithms include DBSCAN, DENCLUE, OPTICS, CHAMELEON, etc.

Once density has been defined in a meaningful way,
40

density-based 40: Which depends on a number of con-

textual factors.
algorithms are straightforward to apply (see [2, 38, 34, 37, 17]).

Density How do we measure density? Intuitively, we can recognize

areas of low density and high density in the (artificial) dataset below.

As the saying goes, “birds of a feather flock together”; it should not come

as a surprise that areas of higher density could be viewed as clusters in

the data. In that context, if Ψ ⊆ ℝ𝑛
is an 𝑛−dimensional sub-manifold

of ℝ𝑛
, we could define the density of Ψ around x by, say,

densityΨ(x; 𝑑) = lim

𝜀→0
+

Vol𝑛(𝐵𝑑(x, 𝜀) ∩ Ψ)
Vol𝑛(𝐵𝑑(x, 𝜀))

,

where

𝐵𝑑(x, 𝜀) = {y ∈ ℝ𝑛 | 𝑑(x, y) < 𝜀}

and

Vol𝑛(𝐴) = 𝑛 − volume of 𝐴 in R𝑛 .
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DBSCAN In practice, the dataset X is usually a discrete subset of

ℝ𝑛
, and the limit definition above cannot apply. Density-based spatial

clustering of applications with noise (DBSCAN) estimates the density

at an observations x ∈ X as follows: we pick a “reasonable” value of

𝜀∗ > 0 and set

densityX(x; 𝑑) = |𝐵𝑑(x, 𝜀∗) ∩ X| .

The outcome depends, of course, on the choice of 𝜀∗ and the distance 𝑑.

DBSCAN also requires a connectivity parameter: the minimum number
of points minPts in

𝑉x = 𝐵𝑑(x, 𝜀∗) ∩ [X \ {x}]

(excluding x). If |𝑉x | ≥ minPts, the observations in 𝑉x are said to be

within reach of (or reachable from) x.

In other words, for a given choice of 𝑑, 𝜀∗, and minPts, there are three

types of observations in X:

outliers are observations that are not within reach of any of the

other observations, such as x1 below:
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reachable (non-core) observations are observations that are within

reach of fewer than minPts other observations, such as x2 and x3

below (with minPts = 3):

core observations are within reach of at least minPts other obser-

vations, such as x4 below (with minPts = 3):

There are other core points: x5, x6, x7, x8, and x9.
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Figure 22.13: Density path connection in a DBSCAN cluster 𝐶.

Reachability is not a symmetric relation: no observation is reachable

from a non-core point (a non-core point may be reachable, but nothing

can be reached from it).

We can build a new symmetric relation on non-outlying observations on

the basis of reachability, however:

p, q ∈ X \ {outliers(X)}

are said to be density-connected for 𝜀∗ > 0 and 𝑑 if there is an observation

o ∈ X such that p, q ∈ 𝑉o, with |𝑉o | ≥ minPts.

The same p, q are said to be density-connected in a path if either they

are density-connected or if there is a sequence of observations

p = r0 , r1 , . . . , r𝑘−1 , r𝑘 = q

such that r𝑖−1 , r𝑖 is density-connected for all 𝑖 = 1, . . . , 𝑘.

That the latter is a relation on X \ {outliers(X)} is clear:

it is reflexive as every x ∈ X \ {outliers(X)} is either reachable or a

core observation, so that ∃ox ∈ X with x ∈ 𝑉ox and |𝑉ox | ≥ minPts,

and so x is density-connected to itself;

it is symmetric and transitive by construction.

DBSCAN clusters are, essentially, composed of observations that are

density-connected in a path.

In the image above, arrows represent density-connection: each orange

observation is within reach of a red one, but no observation can be

reached from the orange points.
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Algorithm DBSCAN clusters are grown as follows:

1. select an observation at random that has yet to be assigned to a

cluster, from the list of not previously selected observations;

2. determine the selected observation’s type (outlier, non-core, core);

3. if the observation is an outlier or a non-core point, assign it to the

noise cluster;
4. else, build its network of density-connected paths;

5. assign all observations in the network to a stand-alone cluster;
6. repeat steps 1 to 5 until all points have been assigned to a cluster.

All points within a cluster are mutually density-connected in a path. If

a point is reachable from any point of the cluster, it is part of the cluster

as well. An illustration of the DBSCAN algorithm is provided in Figure

22.14.

Figure 22.14: Illustration of DBSCAN on an artificial dataset (top, left). The parameters 𝜀 and minPts are shown in each display. We select a

point at random (second image, top row); it is not a core point as its 𝜀−neighbourhood does not contain more than minPts observations

(excluding the selected point itself); it is assigned to the noise cluster. We select another point at random (top, right); that one is core point,

as its 𝜀−neighbourhood contains 4 observations. All its density-connected observations are shown in green (bottom, left). Its network of

density-connected paths is shown in green, for the core observations, and in light green, for the reachable observations (bottom row, second

image); they make up cluster 1 (bottom row, third image). Continuing on this way, we obtain 2 clusters and noisy observations (bottom,

right).

The observations in the noise cluster are typically identified as outliers,

making DBSCAN a reasonable unsupervised learning approach for

anomaly detection (see Chapter 26).

Note that clusters, by definition, must contain at least one core point.

Small groups of observations that are not density-connected to any core

points will then also be assigned to the noise cluster. A non-core point

that has been assigned to the noise cluster may end up being assigned to

a stand-alone cluster at a later stage (but the opposite cannot occur).

It is possible for two clusters to share non-core points, in which case the

points in question are randomly assigned (the random order of selection

in step 1 may affect the results); consequently, some clusters may end up

containing fewer than minPts observations.
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Comments The main advantages of DBSCAN are that:

there is no need to specify the number of clusters to find in the

data;

clusters of arbitrary shapes can be discovered;

observations that are "noisy"/outlying are not forced into a cluster;

the clusters are robust with respect to outliers, and

it only requires two parameters (𝜀∗ > 0 and minPts) to run properly,

which can be set by domain experts if the data is well understood.

In general, it is suggested to use minPts ≥ 𝑝 + 1, with larger values being

preferable for noisy datasets, or minPts ≥ 2𝑝 for large datasets or sets

with duplicates. Meanwhile, the choice of 𝜀∗ > 0 should take into account

that if it is too small, a large portion of the observations will be assigned
to the noise cluster; but if it is too large, a majority of observations will

be found in a single cluster. Small values are preferable, but how small

is too small?

The parameter choices have a large impact on the DBSCAN results,

as does the choice of the distance function, which should take place

before 𝜀∗ is selected to avoid data dredging and “begging the question”.

Given that DBSCAN can handle globular clusters as well as non-globular

clusters, why would we not always use it?

One important reason relates to computational efficiency. For a dataset

X with 𝑛 observations, the basic 𝑘−means algorithm has order 𝑂(𝑛𝑘),
whereas the most efficient versions of DBSCAN algorithm has order

𝑂(𝑛 log 𝑛). Thus, when 𝑛 increases, the DBSCAN runtime increases

faster than the 𝑘−means runtime.

Another reason is that DBSCAN works well when the density of clusters

is assumed to be constant.

Most of us would agree that there are two clusters in the image above – a

loose one in the bottom/left corner, and a tight one in the top/right corner

– as well as some outliers around the tight cluster, but no combination of

𝜀∗ > 0 and minPts can allow DBSCAN to discover this structure: either it

finds no outliers, or it only finds the one tight cluster.
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Example We re-visit the (scaled) 2011 Gapminder dataset: we use

Euclidean dissimilarity in this example, but the dbscan() function from

the fpc package in R can accommodate other metrics: we first compute

the corresponding distance matrix and specify method="dist" instead

of method="raw" in the function call.

We will use 9 combinations of parameters

(𝜀∗ ∈ {0.75, 1, 1.25}) × (minPts ∈ {6, 10, 15}).

set.seed(0) # for replicability

dbscan1 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 6)

dbscan2 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 6)

dbscan3 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 6)

dbscan4 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 10)

dbscan5 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 10)

dbscan6 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 10)

dbscan7 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 15)

dbscan8 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 15)

dbscan9 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 15)

No doubt there are more efficient ways to go through the 9 combinations,

but this will do for the purpose of illustration.

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan1$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan2$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan3$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan4$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan5$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan6$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan7$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan8$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan9$cluster)),

diag=list(continuous=my_dens))



1468 22 Focus on Clustering

Figure 22.15: Realizations of DBSCAN on the (scaled) 2011 Gampinder data: 𝜀 = 0.75 (first column), 1 (second column), 1.25 (third column);

minPts = 6 (first row), 10 (second row), 15 (third row).
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The noisy observations are shown in red: one immediate insight is that

the number of outlying observations decreases as 𝜀∗ increases, which is

as expected. Another insight is that the number of noisy observations

increases as minPts increases, which is again not surprising.

If we compare the shape of the DBSCAN clusters with those of the

𝑘−means and HC clusters, we notice that the option of identifying obser-

vations as noisy – coupled with the "right" combination of parameters

– creates "reasonable" clusters, that is to say, clusters for which we do

not have to stretch our ideas about what clusters ought to look like: the

problematic observations
41

are simply explained away as outliers. 41: Like China and India in regards to

population, say.

The various runs find either 1 or 2 stand-alone clusters (as well as noisy

observations), but that can change if we use different parameter values.

We can also determine if the cluster observations are core or non-core

observations. In the realization with 𝜀∗ = 1 and minPts = 6, we have:

noise cluster 1 cluster 2

outlier 34 – –

reachable – 10 17

core – 20 103

total 34 30 120

22.4.2 Spectral Clustering

At a fairly coarse level, clustering algorithms are divided along those

focusing on compactness and those focusing on connectivity.

Compactness methods are usually variants of 𝑘 Nearest Neighbours
(𝑘NN) methods (see Section 21.1.3), and are effective when there are

distinct clumps in the data. We can make specific assumptions about the

distribution of the different clusters ahead of time (as in the next section),

but compact methods struggle to achieve meaningful results in scenarios

where groups are not linearly separable.

In cases where we have little to no knowledge of the dataset, making

assumptions about the distributions of clusters can lead to invalid clus-

tering schemes; in such cases, connectivity-based methods have been

shown to work reasonably well [30, 18].

Connectivity methods, such as DBSCAN, focus on dividing observations

into groups based on their similarity graphs; observations that are quite

different in their features
42

may end up in the same cluster if there is a 42: And as such would be differentiated

using compactness methods.
chain of sufficiently similar observations linking them.

Connectivity methods require fewer initial assumptions, but their use

can be harder to justify mathematically. The validity of such methods

can only be determined post hoc.

Spectral clustering is a connectivity method that has become quite

popular in practice; in a nutshell, we transform the dataset into its

similarity graph and convert the latter into an eigenvalue problem. We

then solve the eigenvalue problem, convert the solution into a graph cut,
and then translate the cut back into dataset clusters (as illustrated in

Figure 22.16).
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Figure 22.16: Schematics of spectral clustering. We extract the similarity graph of a dataset, which gives rise to an eigenvalue problem (top).

The eigenenvalue problem is then solved, which suggests an ‘optimal’ graph cut, which in turns leads to data clusters (bottom).
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Before we start delving into the spectral clustering algorithm, we must

discuss a few concepts relating to graphs and linear algebra.
43

43: These concepts are covered in just

enough depth to provide an intuition

about the algorithm.

Graphs and Cuts A graph is an object which connects nodes (or vertices)

together through edges. The edges have weights and can also be directed.

In certain cases, we may assume that all edge weights are identical and

bidirectional, which is equivalent to saying that the edges just represent

that a relationship exists.

Airports (vertices) and flight paths (edges) form a graph in transportation

networks, as do people (vertices) and relationships (edges) in social

networks; the edges can be weighted according to flight frequency

and/or directed according to their origin and destination, say, in the

transportation example.

In the social network example, they could be weighted according to

frequency of communication and/or directed according to who follows

who on some app.

The link with clustering is that once a similarity measure 𝑤 has been

selected, a dataset can be represented by a similarity graph 𝐺 =

(𝑉, 𝐸,𝑊):

1. observations x correspond to vertices 𝑣 ∈ 𝑉 ;

2. if 𝑖 ≠ 𝑗, vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 are connected by an edge 𝑒𝑖 , 𝑗 = 1 if

the similarity weight 𝑤𝑖 , 𝑗 = 𝑤(x𝑖 , x𝑗) > 𝜏 for a predetermined

threshold 𝜏 ∈ [0, 1), and by no edge (𝑒𝑖 , 𝑗 = 0) otherwise;
44

44: Note that, by convention, 𝑤𝑖 ,𝑖 = 0 for

all 𝑖.
3. the edges (𝑒𝑖 , 𝑗) form the adjacency matrix 𝐸;

4. the weights (𝑤𝑖 , 𝑗) form the similarity matrix𝑊 ;

5. the (diagonal) degree matrix 𝐷 provides information about the

number of edges attached to a vertex: 𝑑𝑖 ,𝑖 =
∑𝑛
𝑗=1
𝑒𝑖 , 𝑗 .

As an example, we could use the Gower similarity measure

𝑤(x𝑖 , x𝑗) = 1 − 1

𝑝

𝑝∑
𝑘=1

|𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘 |
range of 𝑘th feature in X

on the dataset found in Figure 22.16; the ranges of 𝑋1 and 𝑋2 are both

𝑟1 = 𝑟2 = 3, so that

𝑤3,4 = 𝑤4,3 = 𝑤(x3 , x4) = 1 − 1

2

(
|𝑥3,1 − 𝑥4,1 |

𝑟1
+ |𝑥3,2 − 𝑥4,2 |

𝑟2

)
= 1 − 1

2

(
|2 − 2|

3

+ |0 − 2|
3

)
= 1 − 1

2

· 2
3

=
2

3

;

the similarity matrix as a whole is

𝑊 =

©­­­­­­­«

0 5/6 1/2 1/2 5/6 1/6
5/6 0 2/3 1/3 2/3 0

1/2 2/3 0 2/3 1/3 1/3
1/2 1/3 2/3 0 2/3 2/3
5/6 2/3 1/3 2/3 0 1/3
1/6 0 1/3 2/3 1/3 0

ª®®®®®®®¬
.
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If we use a threshold value of 𝜏 = 0.6, say, then the adjacency matrix is

𝐸 =

©­­­­­­­«

0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0

ª®®®®®®®¬
,

and the degree matrix is

𝐷 =

©­­­­­­­«

2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1

ª®®®®®®®¬
.

The degree matrix can also be read directly from the similarity graph

(which depends on the threshold 𝜏), by counting the number of edges at

each node (see Figure 22.16).

A graph cut is the process by which we remove edges from the graph

and separate the vertices into into groups (or sub-graphs).

The clustering task is to separate the nodes into multiple groups by

minimizing the total weight of the edges we have to break in the process

(i.e., making sure that the groups are as dissimilar as possible). This is

also known as the minimum cut problem (MinCut).
45

45: This cannot be the entire story, how-

ever, as we can minimize the total weight

of broken edges by simply . . . not cut-

ting any edges. Indeed, there are other ap-

proaches: Normalized Cut (actually used

in practice), Ratio Cut, Min-Max Cut, etc.

This task is NP-Hard, which means that there is no theoretically guaran-

teed efficient way to do so, in comparison to simply testing every possible

cut and finding the minimum weight. This is problematic: for datasets

with 𝑛 observations, the number of cuts is bounded below by 2
𝑛

(when

we only consider 2−cuts); when 𝑛 is relatively small, the overall number

of cuts to consider remains manageable, but for nearly all reasonable

datasets, the size of 𝑛 turns this task into an exercise in futility.

The clustering approach generalizes the MinCut problem (or any of

the other problems) by imposing some properties on the similarity

graph to ensure that we can approximate the true MinCut solution in a

computationally efficient manner.
46

46: The spectral MinCut solution is not

guaranteed to be the true MinCut solution,

but it usually is close enough to be an

acceptable approximation.

Formally, the MinCut problem involves finding a partition {𝐴1 , ..., 𝐴𝑘}
of 𝐺 which minimizes the objective function

Cut(𝐴1 , ..., 𝐴𝑘) =
1

2

𝑘∑
𝑖=1

W(𝐴𝑖 , 𝐴𝑖),

where

W(𝐴, 𝐵) =
∑

𝑖∈𝐴,𝑗∈𝐵
𝑤𝑖 , 𝑗

and 𝐴 is the (set-theoretic) complement of 𝐴. The factor
1

2
is there to

remove double-counted edges.

The spectral clustering approach instead solves the Normalized Cut
(NCut) problem, which is similar to the MinCut problem except that we
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are minimizing the weight of edges escaping a cluster relative to the total

weights in the cluster.
47

47: For more information about this ab-

straction, which actually links a variant of

Kernel PCA to spectral clustering, consult

[7].

In the NCut problem, the objective function is

𝐽NCut(𝐴, 𝐵) = Cut(𝐴, 𝐵)
(

1

Vol(𝐴) +
1

Vol(𝐵)

)
,

where

Vol(𝐶) =
∑
𝑖∈𝐶

𝑤𝑖 ,∗;

in a first pass, we seek to minimize 𝐽NCut against the set of all possible
partitions (𝐴, 𝐵)of𝐺. The procedure can be repeated as often as necessary

on the cluster sub-graphs.

Intuitively, 𝐽NCut is small when the observations within each sub-graph

are similar to one another (Vol(𝐴),Vol(𝐵) are large) and the observations

across are dissimilar to one another (Cut(𝐴, 𝐵) is small).

On the plus side, takes into consideration the size of the partitioned
groups and intra-group variance, and tends to avoid isolating vertices,

but it is not any easier to solve than the MinCut problem. So why do

we even bring it up in the first place? As it happens, we can provide an

approximation to the NCut solution using purely algebraic means.

Similarity, Degree, and Laplacian Matrices There are different ways to

construct a graph representing the relationships between the dataset’s

observations. We can use:

fully connected graphs, where all vertices having non-zero simi-

larities are connected to each other;

𝑟−neighbourhood graphs, where each vertex is only connected

to the vertices falling inside a ball of radius 𝑟 (according to some

distance metric 𝑑), where 𝑟 has to be tuned to capture the local

structure of data;

𝑘 nearest neighbours graphs (and variants), where each vertex is

connected to its 𝑘 nearest neighbours (again, according to some

distance metric 𝑑), with 𝑘 pre-selected, and

mixtures of 𝑟−neighbourhood and 𝑘NN graphs, to better capture

sparsity in the data.

The similarity measure 𝑤 is usually picked from a list that includes:

Gaussian (most common), cosine, fuzzy, Euclidean, Gower, etc. The

similarity matrix 𝑊 is symmetric and has zeros along the diagonal;

its non-diagonal entries represent the similarity strength between the

corresponding graph vertices.
48

48: And so beteween the corresponding

observations in the dataset.

We have discussed previously how to build the adjacency matrix 𝐸

from𝑊 and a threshold 𝜏 ∈ [0, 1). The only component of a graph that

similarity matrices do not directly capture are the degrees of each vertex,

the number of edges that enter it.
49

49: We are viewing the similarity graph

as undirected.

The diagonal of the degree matrix 𝐷 holds that information for each

vertex. We can combine 𝑊 and 𝐷 (or 𝐸 and 𝐷) to create a matrix 𝐿

known as the Laplacian, which has properties linked to the topology of

the similarity graph.



1474 22 Focus on Clustering

The Laplacian of a graph is defined by

𝐿0 = 𝐷 − Θ, Θ ∈ {𝐸,𝑊};

the symmetric Laplacian by

𝐿𝑆 = 𝐷−1/2𝐿𝐷−1/2 = I𝑛 − 𝐷−1/2Θ𝐷−1/2 ,

and the asymmetric Laplacian by

𝐿𝐴 = 𝐷−1𝐿 = I𝑛 − 𝐷−1Θ.

In all cases, the off-diagonal entries are non-positive, and the diagonal
entries contain the degree of each node.

The Laplacians have the following useful properties:

𝐿0, 𝐿𝑆 are symmetric; 𝐿𝐴 is not necessarily so;
50

50: Since the product of symmetric matri-

ces is not necessarily symmetric.
all their eigenvalues are real and non-negative;

every row and column adds up to 0, which means that 𝜆0 = 0 is

the smallest eigenvalue of each Laplacian (hence they are singular

and cannot be inverted);

the number of connected components in the graph is the dimension
of the nullspace of the Laplacian associated to 𝜆0 = 0 (which may

provide a first approximation to the number of clusters in X), and

the second smallest eigenvalue gives the graph’s sparsest cut.51
51: This is not the same as the minimum

cut which represents the cut that mini-

mizes the number of edges separating two

vertices, but instead represents the mini-

mum ratio of edges across the cut divided

by the number of vertices in the smaller

half of the partition.

Algorithm In the case of two clusters, the objective function 𝐽NCut is

minimized when finding the eigenvector f corresponding to the smallest

positive eigenvalue of 𝐿, also known as the spectral gap.
52

52: This notion will also play a role in

Section 23.4.3.

The clustering in the original data is recovered by sending x𝑖 to 𝐴 when

𝑓𝑖 > 0 and x𝑗 to 𝐵 otherwise. This deterministic algorithm is a special

case of the spectral clustering algorithm [28].

To split X into 𝑘 clusters, we follow the steps below:

1. form a similarity matrix𝑊 and a degree matrix𝐷 using a threshold

𝜏 ∈ [0, 1);
2. construct a Laplacian 𝐿𝜉, 𝜉 ∈ {0, 𝑆, 𝐴}, using Θ =𝑊 ;

3. compute the first 𝑘 eigenvectors {u1 , ..., u𝑘} of 𝐿𝜉 corresponding

to the 𝑘 smallest positive eigenvalues of 𝐿𝜉;

4. construct the 𝑛 × 𝑘 matrix U containing the vectors {u1 , ..., u𝑘} as

columns;

5. normalize the rows of U into a matrix Y with rows {y1 , . . . , y𝑛}
having unit length;

6. cluster the rows of Y into 𝑘 clusters;

7. assign x𝑖 to cluster 𝑗 of X if y𝑖 was assigned to cluster 𝑗 in the

preceding step.

Spectral clusters for the dataset of Figure 22.16, computed using the

Laplacian and symmetric Laplacian, are shown in Figure 22.17.

From an experimental perspective, spectral clustering provides an at-

tractive approach because it is easy to implement and reasonably fast,

especially for sparse datasets: it is a graph partitioning problem that

makes no initial assumptions on the form of the data clusters.
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Figure 22.17: Two clusters for the artificial dataset: simple Laplacian (left); symmetric Laplacian (right).

Figure 22.18: Comparing 2−means (middle) and spectral clustering with 𝑘 = 2 (right) on the spirals dataset (left).

Spectral clustering has variants, which depend on the many choices that

can be made at various points in the process:

1. pre-processing (choice of: number of cluster 𝑘, similarity mea-

sure 𝑤, threshold 𝜏);

2. spectral representation (choice of Laplacian);

3. clustering algorithm (choice of compact-based, potentially non-

deterministic algorithm to unleash on the rows of the representa-

tion Y).

The NJW algorithm uses 𝐿𝑆 for the spectral representation and 𝑘−means

as a clustering approach. It can be interpreted as kernalized 𝑘−means:

if we select a kernel which transforms the points to their mapped value

in the Laplacian of the graph, then we (almost directly) recover spectral

clustering [7].
53

53: DBSCAN can also fit within that

framework, by picking a similarity method

based on the radius that allows the graph

to separate into different components.

Then the multiplicity of 𝜆0 = 0 in the

Laplacian gives the number of graph com-

ponents, and these can be further clus-

tered, as above.

In Figure 22.18, the different outcomes of 𝑘−means and NJW are illus-

trated on the spirals dataset (available in R).

Practical Details and Limitations The most obvious practical detail in the

implementation of spectral clustering is related to the construction of the

similarity graph. In general, there is virtually no theoretical justification

for determining what type of clustering approach to use; even after an

approach has been selected, it can be quite difficult to choose appropriate

parameter values.
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In spectral clustering, there are considerations in favour of using sparse
similarity/adjacency matrix: we seek to strike a balance between a

Laplacian which is too densely connected, and one for which almost all

of the observations are seen as dissimilar to one another. Another issue

relates to the computational challenge of finding the eigenvalues of the

Laplacian.

This can be done relatively efficiently if the matrix is sparse enough,

however, which suggests using a relatively-high threshold 𝜏; there are

methods which help spectral clustering automatically tune for the best

parameter values (including 𝜏), but they take up a significant amount of

resources [28].

Spectral clustering methods are extremely effective because they do not

require assumptions about distributions and centres, are fairly easy to
implement, and are transparent and interpretable.

However, they suffer from some of the same drawbacks as other clustering

methods, namely when it comes to:

selecting initial parameter values,

run-times that do not scale with larger datasets, and

determining optimal ways to visualize the results.

As in all clustering scenarios, analysts are faced with decisions at various

levels of the process; they must be prepared to run multiple algorithms,

in multiple configurations, in order to get a sense for the data structure.
54

54: Some strategies specific to spectral

clustering are presented in [28].

Examples In a first example, spectral clustering is used to segment

greyscale images into different segments based on contrasting colours

[43]. Figure 22.19 shows instances with high contrast, with fairly decent

segmentation performance using NCut, Self-Tuning SC [52], and a pro-

posed SC algorithm [43]; Figure 22.20 shows other instances with less

contrast (resulting in a poorer segmentation with the same methods); Fig-

ure 22.21 shows the comparison in segmentations using the proposed SC

algorithm when the same image is presented at different resolutions.

In the second example, consider a dataset of 𝑛 = 250 times series, with

𝑁 = 60 entries each (see below).
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Figure 22.19: High-contrast image segmentation with spectral clustering [43].
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Figure 22.20: Low-contrast image segmentation with spectral clustering [43].
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Figure 22.21: Spectral clustering image segmentation of images at different resolutions [43].

We use the average absolute gap as distance 𝑑:

𝑑(x𝑖 , x𝑗) =
1

60

60∑
ℓ=1

|𝑥𝑖 ,ℓ − 𝑥 𝑗 ,ℓ |.

We build the Gaussian similarity measure

𝑤(x𝑖 , x𝑗) = exp

(
−
𝑑2(x𝑖 , x𝑗)

2𝜎2

)
,

and we use the following parameter values

𝜎2 = 300, 𝜏 = 0.9, 𝑘 = 5.

The spectral clustering results are quite appealing, as can be seen in the

first realization of the NJW algorithm with 𝑘 = 5 clusters. Note however

that not every run of the algorithm yields an outcome that we would

consider meaningful (see Figure 22.22).

Figure 22.22: Two realizations of spectral clustering, using the NJW algorithm with 𝑘 = 5; the original dataset is shown in blue. We see that

the NJW algorithm has captured 5 clusters with different times series characteristics, which is an encouraging result (two leftmost columns);

the 𝑘−means portion of the algorithm leads to different clusters, which appear to be of lower quality (two rightmost columns).

In the final example, we once again revisit the (scaled) 2011 Gapminder

dataset using Euclidean dissimilarity. We use the kernlab implementa-

tion of the NJW algorithm found in specc(), with the default settings.

We run one instance of the algorithm for 𝑘 = 2 to 𝑘 = 7 clusters.
55

55: Assume that the libraries ggplot2 and

GGally hgave already been loaded.
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sc.gapminder.2 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 2)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.2)), diag=list(continuous=my_dens))

sc.gapminder.3 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 3)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.3)), diag=list(continuous=my_dens))

sc.gapminder.4 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 4)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.4)), diag=list(continuous=my_dens))

sc.gapminder.5 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 5)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.5)), diag=list(continuous=my_dens))

sc.gapminder.6 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 6)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.6)), diag=list(continuous=my_dens))

sc.gapminder.7 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 7)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.7)), diag=list(continuous=my_dens))

None of our clustering attempts have found what one might call natural
groups in the 2011 Gapminder data. We might not have hit on the right

method yet... but at what point do we decide that the task is futile and

no such groups exist in the first place?
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22.4.3 Probability-Based Clustering

In contrast with the model-free approach of density-based clustering and

spectral clustering, probabilistic-based clustering attempts to optimize

the fit between the observed data and some mathematical model of

clustering, with the assumption that the data is generated via a number

of underlying probability distributions.

In practice, we assume that clusters are represented by parametric
probability distributions, and the objective is to learn the parameters for

each of these distributions. This assumption allows us to use probability

theory to derive learning formulas for the parameters.
56

56: We borrow extensively from Deng

and Han’s Probabilistic Models for Clustering
chapter in [2].

Mixture Models The main underlying assumption of mixture models
is that each observation is drawn (or generated) from one of several

mechanisms (or components). In model-based clustering, we learn the

parameters that provide the optimal fit to the data; in other words, we

make a series of predictions about which component(s) generated each

of the observations.

This naturally leads to clusters, all observations generated by a given

component belonging to the same cluster. Formally, we let

X =


x1

...

x𝑛

 ∈ 𝑀𝑛,𝑝(ℝ).

Assume that there are 𝑘 mechanisms that generate data, and that each of

them is determined by a vector of parameters 𝜽ℓ , 1 ≤ ℓ ≤ 𝑘.

For 1 ≤ 𝑗 ≤ 𝑛, denote the probability of x𝑗 being generated by the ℓ−th
mechanism, 1 ≤ ℓ ≤ 𝑘, by

𝑃(x𝑗 | 𝜽ℓ ).

The mixture vector 𝝅 = (𝜋1 , . . . ,𝜋𝑘) is a vector such that 𝜋ℓ ∈ [0, 1] for

all 1 ≤ ℓ ≤ 𝑘 and 𝜋1 + · · · + 𝜋𝑘 = 1.

If 𝑃(𝑧 𝑗 = ℓ ) = 𝜋ℓ , for 1 ≤ ℓ ≤ 𝑘, and if

𝑃(x𝑗 | 𝑧 𝑗 = ℓ ) = 𝑃(x𝑗 | 𝜽ℓ ) ∀𝑗 , ℓ ,

then the probability of observing x𝑗 is

𝑃(x𝑗) =
𝑘∑
ℓ=1

𝜋ℓ𝑃(x𝑗 | 𝜽ℓ ) =
𝑘∑
ℓ=1

𝑃(𝑧 𝑗 = ℓ )𝑃(x𝑗 | 𝑧 𝑗 = ℓ ),

according to the Law of Total Probability.

In this set-up, we interpret 𝑧 𝑗 as the cluster label for x𝑗 . Alternatively, we

could use

z𝑗 ∈ {0, 1}𝑘 , ∥z𝑗 ∥2 = 1

to denote the cluster signature of x𝑗 . The norm condition implies that

exactly one of the components of z𝑗 is 1; all others are 0. For instance,



1482 22 Focus on Clustering

if there are 𝑘 = 5 mechanisms (clusters) in the data and x𝑗 ∈ 𝐶4, then

z𝑗 = (0, 0, 0, 1, 0).57
57: This notation can be generalized to

fuzzy clusters: the cluster signature of x𝑗
is

z𝑗 ∈ [0, 1]𝑘 , ∥z𝑗 ∥2 = 1;

if z𝑗 = (0, 0, 1√
2

, 1√
2

, 0), say, then we would

interpret x𝑗 as belonging equally to clus-

ters 𝐶3 and 𝐶4 or as having probability

1/2 of belonging to either 𝐶3 or 𝐶4.

If we write

𝑃(z𝑗) = 𝜋
𝑧 𝑗 ,1

1
× · · · × 𝜋𝑧 𝑗 ,𝑘

𝑘
=

𝑘∏
ℓ=1

𝜋
𝑧 𝑗 ,ℓ

ℓ

and

𝑃(x𝑗 | z𝑗) = 𝑃(x𝑗 | 𝜽1) 𝑧 𝑗 ,1 × · · · × 𝑃(x𝑗 | 𝜽𝑘) 𝑧 𝑗 ,𝑘 =
𝑘∏
ℓ=1

𝑃(x𝑗 | 𝜽ℓ ) 𝑧 𝑗 ,ℓ ,

we recover the mixture model:

𝑃(x𝑗) =
𝑘∑
ℓ=1

𝜋ℓ𝑃(x𝑗 | 𝜽ℓ ) =
𝑘∑
ℓ=1

𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ ).

Generative Process In practice, then, we can imagine that the dataset X
is generated as follows. For 1 ≤ 𝑗 ≤ 𝑛:

1. draw a cluster signature z𝑗 ∼ G𝑘(𝝅) = Mult𝑘(𝝅), and

2. draw an observation x𝑗 from the corresponding mechanism accord-

ing to 𝑃(x𝑗 | z𝑗).

But we usually do not have access to this generative process; instead, we

are given X and the clustering task is to determine how likely it is that

component 𝐶ℓ , 1 ≤ ℓ ≤ 𝑘, is responsible for observation x𝑗 , 1 ≤ 𝑗 ≤ 𝑛.

To do so, we need to compute the probabilities

𝛾(𝑧 𝑗 ,ℓ ) = 𝑃(z𝑗 ∈ 𝐶ℓ | x𝑗), ∀𝑗 , ℓ .

This is difficult to do directly; we use Bayes’ Theorem to provide an

easier handle on the computations:

𝛾(𝑧 𝑗 ,ℓ ) = 𝑃(z𝑗 ∈ 𝐶ℓ | x𝑗) =
𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ )

𝑃(x𝑗)

=
𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ )∑𝑘

𝜈=1
𝑃(z𝑗 ∈ 𝐶𝜈)𝑃(x𝑗 | z𝑗 ∈ 𝐶𝜈)

=
𝜋ℓ𝑃(x𝑗 | 𝜽ℓ )∑𝑘
𝜈=1

𝜋𝜈𝑃(x𝑗 | 𝜽𝜈)
.

The clustering objective is to infer {𝜋ℓ }𝑘ℓ=1
, {𝜽ℓ }𝑘ℓ=1

from X for a fixed 𝑘,

to obtain the desired probabilities 𝛾(𝑧 𝑗 ,ℓ ).

Denote

𝚯 = {𝜋1 , . . . ,𝜋𝑘 , 𝜽1 , . . . , 𝜽ℓ }.

If we further assume that the x𝑗 are independently drawn by the genera-

tive process, then, by construction:

𝑃(X | 𝚯) =
𝑛∏
𝑗=1

𝑘∑
ℓ=1

𝜋𝑘𝑃(x𝑗 | 𝜽ℓ ),

or

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋𝑘𝑃(x𝑗 | 𝜽ℓ )
)
.
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The maximum likelihood estimator (MLE) of 𝚯 is

𝚯MLE = arg max

𝚯

{
ln𝑃(X | 𝚯)

}
;

if we have information about the prior 𝑃(𝚯), then we may use the

maximum a posteriori estimator (MAP) instead:

𝚯MAP = arg max

𝚯

{
ln𝑃(X | 𝚯) + ln𝑃(𝚯)

}
.

Whether we use MLE or MAP depend, in large part, on the form taken

by the component distributions.

Gaussian Mixture Models A standard assumption is that all clusters are

generated by Gaussian mechanisms, which is to say that 𝑃(x𝑗 | 𝜽ℓ ) arises

from a multivariate Gaussian distribution (GMM):

N(x𝑗 | 𝝁ℓ ,𝚺ℓ ) =
1√

(2𝜋)𝑝 |𝚺ℓ |
exp

(
− 1

2
(x𝑗 − 𝝁ℓ )⊤𝚺−1

ℓ (x𝑗 − 𝝁ℓ )
)
,

where 𝝁ℓ ∈ ℝ𝑝
and 𝚺ℓ is a symmetric positive semi-definite matrix. Thus,

if there are 𝑘 components, then

𝑃(x𝑗 | 𝚯) =
𝑘∑
ℓ=1

𝜋ℓN(x𝑗 | 𝝁ℓ ,𝚺ℓ )

and

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋ℓN(x𝑗 | 𝝁ℓ ,𝚺ℓ )
)
.

It is straightforward to show that

∇LL𝝁ℓ (𝚯) = 𝚺−1

ℓ

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )(x𝑗 − 𝝁ℓ ),

so that the MLE estimators for the mean vectors are

𝝁̂ℓ =

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ ) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )
.

Thus 𝝁̂ℓ is a weighted mean of the observations of X, with weights corre-

sponding to the posterior probability 𝛾(𝑧 𝑗 ,ℓ ) that the ℓ−th component

was responsible for generating x𝑗 .

Simultaneously, we can show that

∇LL𝚺ℓ (𝚯) =
𝑛∑
𝑗=1

𝜋ℓ
𝑃(x𝑗 | 𝚯)

·
𝜕N(x𝑗 | 𝝁ℓ ,𝚺ℓ )

𝜕𝚺ℓ
;

slightly more complicated manipulations show that the MLE estimators



1484 22 Focus on Clustering

for the covariance matrices are also weighted averages:

𝚺̂ℓ =

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )(x𝑗 − 𝝁̂ℓ )(x𝑗 − 𝝁̂ℓ )⊤

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )
.

Finally, to obtain the mixture probabilities 𝜋ℓ , we must maximize LL(𝚯)
with respect to 𝝅, subject to 𝜋ℓ ∈ [0, 1] and 𝜋1 + · · · + 𝜋𝑘 = 1; we can use

Lagrange multipliers to show that the MLE estimates of the mixture

probabilities are also an average:

𝜋̂ℓ =
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ ).

So we have nice expressions for the MLE estimates 𝚯̂.
58

58: There is a problem, however: we need

the clustering probabilities 𝛾(𝑧 𝑗 ,ℓ ) in order

to provide the MLE estimates ... but the

former depend on the MLE estimates! Expectation-Maximization Algorithm While there is no closed-form
solution allowing us to express the cluster signatures directly in terms

of the observed data X, there is a simple iterative solution based on the

Expectation-Maximization algorithm for GMM.

Input: X
Output: 𝚯∗ which maximizes LL(𝚯)

0. Initialize 𝚯[0] =
{
𝝁[0]
ℓ
,𝚺[0]

ℓ
,𝜋[0]

ℓ

}𝑘
ℓ=1

and set

LL
[0] = LL(𝚯[0]);

For 𝑖 = 0 to max_step, do:

1. E(xpectation)-step: compute the responsibilities

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) =

𝜋[𝑖]
ℓ
N(x𝑗 | 𝝁[𝑖]ℓ ,𝚺

[𝑖]
ℓ
)∑𝑘

𝜈=1
𝜋[𝑖]𝜈 N(x𝑗 | 𝝁[𝑖]𝜈 ,𝚺[𝑖]𝜈 )

, ∀𝑗 , ℓ ;

2. M(aximization)-step: update the parameters

𝝁[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)
, ∀ℓ ;

𝚺[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)(x𝑗 − 𝝁[𝑖]ℓ )(x𝑗 − 𝝁

[𝑖]
ℓ
)⊤

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

, ∀ℓ ,

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
), ∀ℓ ;
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3. Set LL
[𝑖+1] = LL(𝚯[𝑖]) and check for convergence according to some

convergence criterion

(∥𝚯[𝑖] −𝚯[𝑖+1]∥ < 𝜀, say) :

if satisfied, set 𝚯∗ = 𝚯[𝑖+1]
; otherwise, set 𝑖 := 𝑖+1 and repeat steps

1 to 3.

There are two main limitations to using EM for GMM:

EM is costlier (has a longer run-time) than 𝑘−means, and depend-

ing on the initialization, the algorithm may converge to a local
critical point which is not necessarily the global maximizer;

as the algorithm iterates, two (or more) GMM clusters can collapse
into a single GMM cluster.

Note that the EM algorithm can be sped-up by first running 𝑘−means and

using the mean vector, covariance matrix, and proportion of observations

in the 𝑘−means cluster 𝐶ℓ for the initialization of 𝝁[0]
ℓ

, 𝚺[0]
ℓ

, and 𝜋ℓ for

1 ≤ ℓ ≤ 𝑘.

The collapsing of clusters can be mitigated by monitoring ∥𝚺𝑖ℓ ∥2 and

randomly resetting 𝝁[𝑖]
ℓ

, 𝚺[𝑖]
ℓ

when some threshold is reached.

Special Cases and Variants In a GMM with 𝑘 components, if 𝚺ℓ = 𝚺 =

𝜎2I𝑛 for all ℓ , then

𝑃(x𝑗 | 𝝁ℓ ,𝚺) =
1√
(2𝜋)𝑝𝜎

· exp

(
− 1

2𝜎2

∥(x − 𝝁ℓ )∥2
2

)
;

the EM algorithm applied to this special case leads to

E-step: 𝛾(𝑧[𝑖]
𝑗 ,ℓ
) =

𝜋[𝑖]
ℓ

exp

(
−∥x𝑗 − 𝝁[𝑖]ℓ ∥

2

2
/2𝜎2

)
∑𝑘

𝜈=1
𝜋[𝑖]𝜈 exp

(
−∥x𝑗 − 𝝁[𝑖]𝜈 ∥22/2𝜎2

)
M-step: 𝝁[𝑖+1]

ℓ
=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
).

When 𝜎→ 0, we can show that

𝛾(𝑧 𝑗 ,ℓ ) →
{

1 if ℓ = arg min𝜈
{
∥x𝑗 − 𝝁𝜈∥2

2

}
0 otherwise

which is simply the formulation for 𝑘−means. Note that the components

do not need to be multivariate Gaussians; there is a general EM algorithm
that takes advantage of the concavity of the ln function [2].

If the dataset of observations is binary, as may occur in image datasets

(each pixel taking on the values 0 or 1, depending as to whether the pixel



1486 22 Focus on Clustering

is white or black, say), we can modify GMM so that 𝑃(x𝑗 | 𝝁ℓ ) arises from

a multivariate Bernoulli distribution:

B(x𝑗 | 𝝁ℓ ) =
𝑝∏

𝜈=1

𝜇
𝑥 𝑗 ,𝜈

ℓ ,𝜈 (1 − 𝜇ℓ ,𝜈)
1−𝑥 𝑗 ,𝑖 ,

where 𝝁ℓ ∈ [0, 1]𝑝 . Thus, if there are 𝑘 components, then

𝑃(x𝑗 | 𝚯) =
𝑘∑
ℓ=1

𝜋ℓB(x𝑗 | 𝝁ℓ )

and

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋ℓ

𝑝∏
𝜈=1

𝜇
𝑥 𝑗 ,𝜈

ℓ ,𝜈 (1 − 𝜇ℓ ,𝜈)
1−𝑥 𝑗 ,𝑖

)
.

We can find 𝚯∗ that maximizes LL(𝚯) by using the EM algorithm for

the Bernoulli Mixture Model (BMM): the EM algorithm applied to this

special case leads to

E-step: 𝛾(𝑧[𝑖]
𝑗 ,ℓ
) = 𝜋[𝑖]

ℓ

𝑝∏
𝜈=1

(
𝜇[𝑖]
ℓ ,𝜈

) 𝑥 𝑗 ,𝜈
(1 − 𝜇[𝑖]

ℓ ,𝜈)
1−𝑥 𝑗 ,𝑖

M-step: 𝝁[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
),

with initialization 𝜋[0]
ℓ

= 1

𝑘
and

𝝁[0]
ℓ
∼

𝑝∏
𝜈=1

U(0.25, 0.75)

for 1 ≤ ℓ ≤ 𝑘.

Other variants include Generalized EM, Variational EM, and Stochastic
EM [2]. Note that the essence of EM methods remains the same for

all algorithms: we attempt to “guess” the value of the "hidden" cluster

variable 𝑧 𝑗 ,ℓ in the E-step, and we update the model parameters in

the M-step, based on the approximated responsibilities found in the

𝐸−step.

Interestingly, EM can detect overlapping clusters (unlike 𝑘−means).

But most variants share the same limitations: convergence to a global

maximizer is not guaranteed; it may be quite slow even when it does

converge, and the correct number of components is assumed to be known

prior to analysis.

Example: Gapminder Dataset We cluster the 2011 Gapminder dataset

using the mclust implementation of EM in R; no parameters need be

specified (unless we want to use a different dissimilarity measure).
59

59: The mclust vignette contains more

information.

https://cran.r-project.org/web/packages/mclust/vignettes/mclust.html
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This implementation determines the optimal number of clusters using

BIC (see Section 20.4.3).

We cluster both the raw data and the scaled data, to showcase the impact

scaling can have.

We start by determining the number of sources in the raw data:

library(mclust)

set.seed(0)

BIC <- mclustBIC(gapminder.SoCL.2011[,c(3:7)])

plot(BIC)

summary(BIC)

Best BIC values:

VVE,5 VVV,2 VVE,4

BIC -3545.915 -3573.00451 -3577.50705

BIC diff 0.000 -27.08943 -31.59198

This suggests that there are 5 clusters, which we display on the next

page.

mod1 <- Mclust(gapminder.SoCL.2011[,c(3:7)], x = BIC)

plot(mod1, what = "classification")
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The MLE estimators for the mean vectors and the covariance matrices for

each cluster are computed as below.

summary(mod1, parameters = TRUE)

Clustering table:

1 2 3 4 5

51 27 52 41 13

Mixing probabilities:

1 2 3 4 5

0.28320179 0.14590868 0.27317375 0.22804391 0.06967186

Means:

[,1] [,2] [,3] [,4] [,5]

Life Exp 59.834937 81.134281 75.998817 71.888971 67.179530

Inf Mort 58.426776 3.254371 9.913182 24.238438 35.027409

Fert 4.798189 1.691375 1.800049 2.566219 4.014588

log10 Pop 7.061637 7.016423 6.695346 7.133957 5.492939

log10 GDPpc 3.419639 4.606936 4.257569 3.889928 3.491324

Variances:

[,,1]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 28.3344610 -55.700455 -0.7444078 0.38472919 1.15550574

Inf Mort -55.7004554 423.909389 11.8241909 1.11117987 -4.78143371

Fert -0.7444078 11.824191 1.1663137 0.13060543 -0.21270286

log10 Pop 0.3847292 1.111180 0.1306054 0.26127270 -0.01805256

log10 GDPpc 1.1555057 -4.781434 -0.2127029 -0.01805256 0.19296195
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[,,2]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 0.77045283 0.012104972 0.02774975 0.011407709 0.019766044

Inf Mort 0.01210497 0.679738470 0.01905169 0.003200837 -0.004476642

Fert 0.02774975 0.019051687 0.12771916 -0.042927224 -0.012328032

log10 Pop 0.01140771 0.003200837 -0.04292722 0.416389572 -0.018157675

log10 GDPpc 0.01976604 -0.004476642 -0.01232803 -0.018157675 0.015998859

[,,3]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 4.9940940 -1.72216863 0.142340294 0.10257591 0.137637940

Inf Mort -1.7221686 17.19416942 0.499861409 0.05750027 -0.180062410

Fert 0.1423403 0.49986141 0.115694181 -0.09747328 0.001937248

log10 Pop 0.1025759 0.05750027 -0.097473276 0.79668779 -0.027754402

log10 GDPpc 0.1376379 -0.18006241 0.001937248 -0.02775440 0.071168246

[,,4]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 9.91288695 -14.4994297 -0.09127317 0.15574758 0.36288775

Inf Mort -14.49942972 112.8663448 3.16128196 0.30356930 -1.26453815

Fert -0.09127317 3.1612820 0.33684903 -0.03319199 -0.04501104

log10 Pop 0.15574758 0.3035693 -0.03319199 0.57090101 -0.02068610

log10 GDPpc 0.36288775 -1.2645382 -0.04501104 -0.02068610 0.10900700

[,,5]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 18.0275970 -35.9634327 -0.5031561 0.24042845 0.74329472

Inf Mort -35.9634327 273.4386404 7.6150659 0.71441466 -3.08374929

Fert -0.5031561 7.6150659 1.0499241 0.12825306 -0.19073273

log10 Pop 0.2404284 0.7144147 0.1282531 0.15122047 -0.02103882

log10 GDPpc 0.7432947 -3.0837493 -0.1907327 -0.02103882 0.06307893

Let us repeat the procedure on the scaled dataset.

BIC.s <- mclustBIC(scale(gapminder.SoCL.2011[,c(3:7)]))

plot(BIC.s)
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summary(BIC.s)

Best BIC values:

VVV,2 VVE,4 VVI,5

BIC -1760.55 -1779.31339 -1785.64061

BIC diff 0.00 -18.76374 -25.09096

This suggests that there are 2 clusters, as seen below.

mod2 <- Mclust(gapminder.SoCL.2011[,c(3:7)], x = BIC.s)

plot(mod2, what = "classification")

The MLE estimators for the mean vectors and covariance matrices for

each cluster are computed as below.

summary(mod2, parameters = TRUE)

Clustering table:

1 2

91 93

Mixing probabilities:

1 2

0.5059039 0.4940961
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Means:

[,1] [,2]

Life Exp 64.226346 77.164028

Inf Mort 45.696249 9.268183

Fert 4.038171 1.860683

log10 Pop 6.906989 6.816294

log10 GDPpc 3.566453 4.310365

Variances:

[,,1]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 46.94600319 -112.051411 -5.17027793 -0.06217152 1.55664144

Inf Mort -112.05141081 531.145010 22.59825954 2.37700481 -5.67438362

Fert -5.17027793 22.598260 1.84974433 0.03491542 -0.37634844

log10 Pop -0.06217152 2.377005 0.03491542 0.62342443 -0.01356435

log10 GDPpc 1.55664144 -5.674384 -0.37634844 -0.01356435 0.17508305

[,,2]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 10.7636945 -13.79843667 -0.40969404 0.508375039 0.789463554

Inf Mort -13.7984367 34.33063934 1.47575086 -0.094412049 -1.497455669

Fert -0.4096940 1.47575086 0.17525844 -0.037372594 -0.032046730

log10 Pop 0.5083750 -0.09441205 -0.03737259 0.719418611 0.002308201

log10 GDPpc 0.7894636 -1.49745567 -0.03204673 0.002308201 0.115062583

22.4.4 Affinity Propagation

Affinity propagation (AP) is a fairly recent arrival on the clustering stage

[11, 12]; it takes a somewhat novel perspective on clustering although, as

might be expected, there are still similarities to other clustering methods,

in particular, DBSCAN and 𝑘−means.

AP takes the 𝑘−medoids algorithm as a jumping off point. Unlike

𝑘−means or EM, this algorithm does not operate on statistical principles;

rather, it selects existing observations to act as the exemplar for a particular

cluster (rather than a mean vector, as in 𝑘−means; see Figure 22.23 for

an illustration).

The 𝑘−mediods algorithm refines the selection of these exemplars so

that in the final (stable) configuration, the observations assigned to an

exemplar are quite similar to it, relative to other exemplars. As the name

suggests, the number of clusters 𝑘 must be selected prior to running the

algorithm; as is the case with 𝑘−means, 𝑘−medoids is non-deterministic
and is sensitive to the initial choice of exemplars and similarity metric.

The AP algorithm attempts to overcome the issues arising with 𝑘−medoids,

using Bayesian network theory (in particular, belief propagation networks

and factor graphs), and treats observations as a connected graph. In this

approach, each graph vertex can:

communicate with any other vertex, and

act as a possible exemplar for other observations.

The selection of exemplars is determined by exchanging real-valued

messages between points. Eventually, sets of exemplars and data points

associated with each exemplar are generated from this iterative process,

forming clusters. Messages are updated on the basis of fairly simple

formulae. As in all clustering contexts, a similarity measure 𝑠 must first
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Figure 22.23: Illustration of 3−mediods on an artificial dataset (modified from [11]).

be selected prior to clustering: for distinct pairs (𝑖 , 𝑘), 𝑠(𝑖 , 𝑘) represents

initially the suitability of 𝑘 as an exemplar of 𝑖 (this suitability will be

updated as “messages” are passed between observations).

Each observation 𝑘 is further assigned a preference 𝑠(𝑘, 𝑘) that it be

chosen as an exemplar. The preference can be constant, to indicate no

particular initial preference.

Two types of messages get sent:

the availability 𝑎(𝑖 , 𝑘) sent from 𝑘 to 𝑖, which reports on the

suitability of 𝑘 to be an exemplar of 𝑖;

the responsibility 𝑟(𝑖 , 𝑘) sent from 𝑖 to 𝑘, which reports on the

suitability of 𝑖 to be represented by 𝑘.

The availabilities are initialized to 𝑎(𝑖 , 𝑘) ← 0, the responsibilities to

𝑟(𝑖 , 𝑘) ← 𝑠(𝑖 , 𝑘) −max

𝑘′≠𝑘
{𝑎(𝑖 , 𝑘′) + 𝑠(𝑖 , 𝑘′)}.

This calculation allows eligible exemplars of an observation to “compete”

for each observations, in a sense, so they can become that observation’s

exemplar.
60

After the initial assignment, an availability 𝑎(𝑖 , 𝑘) = 0 means60: As candidate exemplars are them-

selves observations, we can also compute

self-responsibility: 𝑟(𝑘, 𝑘) ← 𝑠(𝑘, 𝑘) −
max𝑘≠𝑘′{𝑠(𝑘, 𝑘′)}.

that observation 𝑖 has no affinity for 𝑘 as its exemplar).

Subsequently, the focus switches back and forth between the exemplar

and the observation perspective, with observations looking for available

exemplars:

𝑎(𝑖 , 𝑘) ←


min

{
0, 𝑟(𝑘, 𝑘) +

∑
𝑖′∉{𝑖 ,𝑘}

max{0, 𝑟(𝑖 , 𝑘)}
}

𝑖 ≠ 𝑘∑
𝑖′≠𝑘

max{0, 𝑟(𝑖′, 𝑘)} 𝑖 = 𝑘

The case 𝑖 = 𝑘 is intended to reflect current evidence that observation

𝑘 is an exemplar. The responsibilities and availabilities are updated,
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reflecting the current affinity that one observation has for choosing

another observation as its exemplar (hence the name), until the quantities

converge to 𝑟(𝑖 , 𝑘) and 𝑎(𝑖 , 𝑘), respectively, for all pairs of observations

(𝑖 , 𝑘).

This leads to the cluster assignment {𝑐1 , . . . , 𝑐𝑛}, where

𝑐𝑖 = arg max

𝑘
{𝑎(𝑖 , 𝑘) + 𝑟(𝑖 , 𝑘)}, 1 ≤ 𝑖 ≤ 𝑛;

if 𝑖 is an observation with associated exemplar 𝑘, then 𝑐𝑖 = 𝑐𝑘 = 𝑘.

The fact that any observation can become an exemplar when the quantities

are updated, and thus that the number of clusters is not an algorithm

parameter, is an important distinction between AP and 𝑘−medoids (and

other segmentation clustering approaches). The process is illustrated

below.

Figure 22.24: Illustration of affinity propagation on an artificial dataset (top); illustration of availability and responsibility (bottom); modified

from [11].

Setting Algorithm Parameters Two parameters impact AP’s clustering

behaviour: the input preference (which influences the eventual number

of clusters) and the dampening parameter.

The input preference determines the suitability of each observation to act

as an exemplar; this is often set as the median similarity in the data, but

it can be tweaked. In principle, certain observations could be assigned

preference values in a different manner, perhaps relating to domain

knowledge (or previous results).

The dampening parameter is slightly more technical. Because affinity

propagation creates a directed graph to generate clusters, it can become

vulnerable to graph loops, which could result in algorithmic oscillations

(the algorithm may not converge to a particular solution). The dampening

factor acts to control this oscillation problem.
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Comparison with Other Algorithms Performance of clustering algo-

rithms can be considered both in general (e.g., based on best/worst

cases of an implemented algorithm) or in the context of applications in

particular domains – one major drawback of AP is the calculation cost of

the similarity matrix, which is 𝑂(𝑛2).

Once the similarity matrix has been calculated, the number of scalar

computations scales linearly in the number of similarities or quadratically

in the number of observations if all possible pairwise similarities are

used [11]. In other words, AP is slow on larger datasets.

Arguably, one of the key advantages of AP (other than not having to

specify the number of clusters up front) is its ability to use any similarity

measure. As a result, we do not need to alter the dataset to ‘fit’ with a

distance/similarity framework.
61

61: Such as by changing categorical vari-

ables into numeric variables in some

way, or ignoring categorical variables alto-

gether. Example We once again re-visit the 2011 (scaled) Gapminder dataset.

We use the AP implementation found in the R package apcluster, with

similarity 𝑠(𝑖 , 𝑘) = −∥x𝑖 − x𝑘 ∥2. We start by setting the input preference

as the median similarity and obtain 14 clusters.

library(apcluster)

ap.gap.1 <- apcluster(negDistMat(r=2),

scale(gapminder.SoCL.2011[,c(3:7)]))

ap.gap.1

Number of clusters = 14

Exemplars:

bfa brb col com dnk gha hrv idn ita nam npl pry tcd vut

Clusters:

Cluster 1, exemplar bfa:

afg bdi ben bfa civ cmr gin lbr moz mwi ner nga ssd tgo uga zmb cod

Cluster 2, exemplar brb:

bhs blz brb cpv isl mdv mlt sur brn lca mne vct atg grd syc

Cluster 3, exemplar col:

arg bra chl col dza irn lka mar mex mys per rou tha tur ukr ven vnm

Cluster 4, exemplar com:

com dji gmb gnb mrt tls

Cluster 5, exemplar dnk:

aut bel che dnk fin grc irl isr lux nld nor nzl omn prt qat sgp swe are

bhr cyp kwt sau

Cluster 6, exemplar gha:

eri eth gha hti ken lao mdg pak png rwa sdn sen tza yem zaf zwe irq

Cluster 7, exemplar hrv:

bgr blr cri cub cze est hrv hun lbn ltu lva mus srb svk svn tto ury alb

mkd bih

Cluster 8, exemplar idn:

chn egy idn ind phl rus

Cluster 9, exemplar ita:

aus can deu esp fra gbr ita jpn kor pol usa

Cluster 10, exemplar nam:

bwa cog gab gnq lso nam swz lby tkm

Cluster 11, exemplar npl:

bgd khm mmr npl tjk uzb prk
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Cluster 12, exemplar pry:

arm aze bol btn dom ecu geo gtm hnd jam kaz kgz mda mng nic pan pry slv

tun jor pse syr

Cluster 13, exemplar tcd:

ago caf mli sle som tcd

Cluster 14, exemplar vut:

fji guy stp slb ton vut wsm kir fsm

plot(ap.gap.1, gapminder.SoCL.2011[,c(3:7)])

If instead we use the minimum similarity, we obtain 4 clusters (exemplars:
Guinea, Guyana, Croatia, Morocco).

ap.gap.2 <- apcluster(negDistMat(r=2),

scale(gapminder.SoCL.2011[,c(3:7)]), q=0)

ap.gap.2

Number of clusters = 4

Exemplars:

gin guy hrv mar

Clusters:

Cluster 1, exemplar gin:

afg ago bdi ben bfa caf civ cmr cog com eri eth gha gin gmb gnb hti ken

lbr lso mdg mli moz mrt mwi ner nga pak png rwa sdn sen sle som ssd tcd

tgo tza uga zmb zwe cod tls
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Cluster 2, exemplar guy:

blz btn bwa cpv dji fji gab gnq guy lao mng nam stp sur swz lby slb tkm

ton vct vut wsm grd kir syc fsm

Cluster 3, exemplar hrv:

arm aus aut bel bgr bhs blr brb can che chl cri cub cze deu dnk esp est

fin fra gbr geo grc hrv hun irl isl isr ita jam jpn kor lbn ltu lux lva

mda mdv mlt mus mys nld nor nzl omn pan pol prt qat rou sgp srb svk svn

swe tto tun ury alb are bhr brn cyp kwt lca mkd mne sau bih atg

Cluster 4, exemplar mar:

arg aze bgd bol bra chn col dom dza ecu egy gtm hnd idn ind irn kaz kgz

khm lka mar mex mmr nic npl per phl pry rus slv tha tjk tur ukr usa uzb

ven vnm yem zaf irq jor pse syr prk

plot(ap.gap.2, gapminder.SoCL.2011[,c(3:7)])

Which of these two schemes seems to provide a better segmentation?

22.4.5 Fuzzy Clustering

Fuzzy clustering (FC) is also called “soft” clustering (in opposition to

“hard” clustering). Rather than assigning each observation to a cluster,

they are assigned a cluster signature, a set of values that indicate their

relative membership in each of the clusters.

The signature vector is often interpreted as a probability vector: obser-

vation x𝑖 belongs to cluster ℓ with probability 𝑝𝑖 ,ℓ ≥ 0, with

𝑝𝑖 ,1 + · · · + 𝑝𝑖 ,𝑐 = 1, for all 1 ≤ 𝑖 ≤ 𝑛.
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Fuzzy 𝑐−Means: the Typical Approach The most prevalent algorithm

for carrying out FC is called fuzzy 𝑐−means (FCM). It is a variant of

𝑘−means with two modifications:

the presence of a new parameter 𝑚 > 1, called the fuzzyfier, which

determines the degree of "fuzziness" of the clusters, and

cluster membership is output as a weight vector, with weights in

[0, 1] adding to 1.

As in 𝑘−means, 𝑐 observations are selected randomly as the initial

cluster centroids, as are the membership weights of each observation.

The membership weights of each observations, relative to the current

centroid, are re-calculated based on how “close” the point is to the given

centroid in comparison to the distance to all of the other centroids.
62

62: The centroid of the ℓ th cluster is the

weighted average of ALL observations by

the degree to which they belong to clus-

ter ℓ .

Effectively, we look for clusters that minimize the objective function

𝑐∑
ℓ=1

∑
x𝑖∈𝐶ℓ

𝑢𝑚𝑖,ℓvariation(x𝑖 , 𝝁ℓ ),

where the degree 𝑢𝑚
𝑖,ℓ

to which observation x𝑖 belongs to cluster 𝐶ℓ is

𝑢𝑚𝑖,ℓ =
1

𝑐∑
𝑗=1

(
variation(x𝑖 , 𝝁ℓ )
variation(x𝑖 , 𝝁𝑗)

)
2/(𝑚−1) .

The value of 𝑚 effectively determines the width of fuzziness bands
around clusters, where clusters may overlap with other clusters. Within

these bands, if there are overlaps, points will have weights between 0

and 1.

Outside of these bands, points will have a membership of 1 for a particular

cluster (that it is close to) and a membership of 0 for other bands.

As with 𝑘−means, the algorithm is generally run until the change in

membership values, or in this case the weights, falls below a particular

threshold. In practice, we typically use 𝑚 = 2 and

variation(x𝑖 , 𝝁ℓ ) = ∥x𝑖 − 𝝁ℓ ∥2.

As 𝑚 → 1, FCM converges to 𝑘−means.

Comparison Between Fuzzy 𝑐−Means and 𝑘−Means To gain an appreci-

ation for how FCM works, it can be useful to compare its results to those

provided by 𝑘−means. Figure 22.25 shows the same dataset clustered by

𝑘−means (left) and fuzzy 𝑐−means (right) [6].

On the right, we can see observations that “belong” to the 2 clusters.

FCM is useful in this context because it would seem almost arbitrary for

some of the points to be assigned to one or the other cluster (which is

what 𝑘−means does).
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Figure 22.25: Fuzzy 𝑐−means vs.

𝑘−means clustering (author unknown).

Other Fuzzy Clustering Options Although FCM is the most popular

fuzzy clustering algorithm, it is not a particularly nuanced algorithm. Like

𝑘−means, the resulting clusters are essentially blob-shaped. Sophisticated

results can be gained by using more complex algorithms.

The Gustafson–Kessel (GK) clustering algorithm [14] is an early extension

of FCM which replaces the simple distance measure used in FCM with a

(covariance) matrix. This brings FCM more in-line with EM clustering,

which also provides fuzzy results, and can be carried out with a variety

of statistical models, resulting in a more mature clustering results, albeit

at the cost of heavier processing. FANNY [22] is another fuzzy approach;

it is less sensitive to outliers than FCM is.

Fuzzy Clustering Validation As with hard clustering, it is important

to validate fuzzy clusters. A number of validation strategies have been

developed; the Xie-Beni index is a popular choice. It can be calculated

for non-fuzzy clusters as well as for fuzzy clusters. However, it takes into

accounts the weights of the points for each clustering by weighting the

clustering separation and compactness measures using the membership

matrix (i.e., the matrix that contains the weights for each observation

with respect to each cluster). Other metrics include the Tang index and

the Kwon index [24, 41, 50].

Example We show some results of FANNY (with 𝑐 = 2, 3, 4, and 6

clusters, implemented in cluster’s fanny()) and FCM (with 𝑐 = 4 clus-

ters, implemented in e1071’s cmeans()) on the (scaled) 2011 Gapminder

dataset (again, using Euclidean dissimilarity).

We start with FANNY(2).

set.seed(987) # for replicability

fuzzy.gap <- cluster::fanny(scale(gapminder.SoCL.2011[,c(3:7)]),

k=2, metric="euclidean", maxit=20000)

attributes(fuzzy.gap)

factoextra::fviz_cluster(fuzzy.gap, ellipse.type = "norm", repel = TRUE,

palette = "jco", ggtheme = theme_minimal(),

legend = "right")

factoextra::fviz_silhouette(fuzzy.gap, palette = "jco",

ggtheme = theme_minimal())
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$names

[1] "membership" "coeff" "memb.exp" "clustering" "k.crisp"

[6] "objective" "convergence" "diss" "call" "silinfo"

[11] "data"

$class

[1] "fanny" "partition"

cluster size ave.sil.width

1 1 75 0.32

2 2 109 0.52

The plots for FANNY(3), FANNY(4), and FANNY(5), are displayed in

Figure 22.26.
63

63: We simply replace k=2 by k=3, k=4,

and k=6 in the call to fanny().

FANNY(3)

cluster size ave.sil.width

1 1 64 0.26

2 2 74 0.34

3 3 46 0.15

FANNY(4)

cluster size ave.sil.width

1 1 53 0.33

2 2 80 -0.01

3 3 50 -0.17

4 4 1 0.00

FANNY(5)

cluster size ave.sil.width

1 1 30 0.35

2 2 83 0.06

3 3 34 -0.21

4 4 34 0.03

5 5 3 0.60
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Figure 22.26: Clusters and silhouette profiles for the 2011 Gampinder dataset; FANNY(3) (top row), FANNY(4) (middle row), FANNY(5)

(bottom row). The scatterplots are displayed on the data’s first two principal components.
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The corresponding results for F4M are computed below.

cm.gap <- e1071::cmeans(scale(gapminder.SoCL.2011[,c(3:7)]), 4)

attributes(cm.gap)

$names

[1] "centers" "size" "cluster" "membership" "iter"

[6] "withinerror" "call"

$class

[1] "fclust"

factoextra::fviz_cluster(list(data = scale(gapminder.SoCL.2011[,c(3:7)]),

cluster=cm.gap$cluster),

ellipse.type = "norm",

ellipse.level = 0.68,

palette = "jco",

ggtheme = theme_minimal())

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(cm.gap$cluster)),

diag=list(continuous=my_dens))

How does that compare to all the other approaches we have used so far?

Based on those, how many clusters do you think there are in the 2011

Gapminder dataset?

22.4.6 Cluster Ensembles

We have seen that the choice of clustering method and algorithm param-

eters may have an impact on the nature and number of clusters in the

data; quite often, the resulting clusters are volatile. This is aligned with

the idea that the ability to accurately assess the quality of a clustering

outcome remains elusive, for the most part.
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The goal of ensemble clustering is to combine the results of multiple

clustering runs to create a more robust outcome.

Most ensemble models use the following two steps to generate an

outcome:

1. generate different clustering schemes, using different models, pa-

rameters, or data selection mechanisms (the ensemble compo-
nents), and

2. combine the different results into a single outcome.

Selecting Different Ensemble Components The ensemble components

are either model-based or data selection-based.

In model-based ensembles, the different components of the ensemble

reflect different models, such as the use of

different clustering approaches;

different parameter settings for a given approach;

different randomizations (for stochastic algorithms),

or some combination of these.

For instance, an ensemble’s components could be built from:

1. 5 runs of 𝑘−means for each of 𝑘 = 2, . . . , 10, for each of the

Euclidean and Manhattan similarities (90 components);

2. the hierarchical clustering outcome for each of the complete, single,

average, centroid, and Ward linkage, for each of the Euclidean

and Manhattan distances, for each of 𝑘 = 2, . . . , 10 clusters (90

components);

3. the DBSCAN outcome for each of 5 values of 𝜀∗, for each of

minPts = 2, . . . , 10, for each of the Euclidean and Manhattan

distances (90 components), and

4. the spectral clustering outcome for each of 3 threshold values 𝜏,

for each of the 3 types of Laplacians, for 𝑘 = 2, 4, 6, 8, 10, for each

of the Euclidean and Manhattan distances (90 components),

This provides a total of 4 × 90 = 360 components. Note that we could

also pick algorithms, settings, and similarity measures randomly, from a

list of reasonable options.

In data selection-based ensembles, we might select a specific clustering

approach, combined with a set of parameters, and a given randomization

(if the approach is stochastic) and instead build the different components

of the model by running the algorithm on different subsets of the data,

either via:

selecting subsets of observations using random or other proba-

bilistic sampling scheme;

selecting subsets of variables, again using probabilistic sampling,

or

some combination of both.

For instance, an ensemble’s components could be built using affinity

propagation with Euclidean distance and a specific combination of

input preference and dampening parameter, and 360 subsets of the data,

obtained as follows:
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1. for each component, draw a % of observations to sample and a # of

variables to select from the data;

2. randomly select a subset with these properties;

3. run affinity propagation on the subset to obtain a clustering out-

come.

We could also combine model-based and data selection-based approaches

to create the components.

Combining Different Ensemble Components However the components

are obtained, we need to find a way to combine them to obtain a robust
clustering consensus. There are three basic methods to do this:

general affiliation;

hypergraph partitioning, and

meta-clustering.

In the general affiliation approach, we consider each pair of observations

and determine how frequently they are found in the same clusters in

each of the ensemble components. The corresponding proportions create

a similarity matrix, which can then be used to cluster the data using

some graph-based method, such as DBSCAN.

In the hypergraph partitioning approach, each observation in the data

is represented by a hypergraph vertex. A cluster in any of the ensemble

components is represented as a hypergraph hyperedge, a generalization

of the notion of edge which connects (potentially) more than two vertices

in the form of a complete clique. This hypergraph is then partitioned

using graph clustering methods.
64

64: One major challenge with hypergraph

partitioning is that a hyperedge can be

“broken” by a partitioning in many dif-

ferent ways, not all of which are qualita-

tively equivalent. Most hypergraph parti-

tioning algorithms use a constant penalty

for breaking a hyperedge.

The meta-clustering approach is also a graph-based approach, except

that vertices are associated with each cluster in the ensemble components;

each vertex therefore represents a set of data objects. A graph partitioning

algorithm is then applied to this graph.
65 Balancing constraints may be

65: The distribution of the membership of

different instances to the meta-partitions

can be used to determine its meta-cluster

membership, or soft assignment probabil-

ity.

added to the meta-clustering phase to ensure that the resulting clusters

are balanced.

Cluster ensembles are implemented in R via the packages diceR and clue.

More information is available in [2, 1, 45].
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22.5 Exercises

1. Complete the Ward D linkage, maximum dissimilarity hierarchical clustering results for the 2011 data

from gapminder_all.csv .

2. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using 𝑘−means, for

various distance metrics and algorithm parameters. What is your best estimation for the number of

clusters in each case? Validate your results.

3. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using hierarchical

clustering, for various algorithm parameters. Validate your results.

4. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using DBSCAN, for

various algorithm parameters. Validate your results.

5. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using spectral clustering,

for various algorithm parameters. Validate your results.

6. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using expectation-

maximization clustering, for various algorithm parameters. Validate your results.

7. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using affinity propagation

clustering, for various algorithm parameters. Validate your results.

8. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using fuzzy clustering,

for various algorithm parameters. Validate your results.

9. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using the combined

results of problems 2 to 8. Validate your results.

10. Cluster the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest, using the approaches discussed in this module (or other other

appropriate approaches). Validate your results. Where are there difficulties? What decisions must you

make along the way? How could you use the results?
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