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Data mining is the collection of processes by which we can extract useful
insights from data. Hidden in this definition is the idea of data reduction:

useful insights (whether in the form of summaries, sentiment analyses,

and so on) should be “smaller” and “more organized” than the original

raw data.

But the challenges presented by high data dimensionality (the so-called

curse of dimensionality) must be addressed in order to achieve insightful

and interpretable analytical results.

In this chapter, we introduce the basic principles of dimensionality
reduction and a number of feature selection methods (filter, wrapper,

regularization); we also discuss related advanced topics (SVD, spectral

feature selection, UMAP).

23.1 Data Reduction for Insight

For small datasets, the benefits of data mining may not always be

evident. Consider, for instance, the following excerpt from a lawn mowing

instruction manual (which we consider to be data for the time being):

Before starting your mower inspect it carefully to ensure that

there are no loose parts and that it is in good working order.

It is a short and organized way to convey a message. It could be further

shortened and organized, perhaps, but what one would gain from such

a process is not entirely clear.

23.1.1 Reduction of an NHL Game

For a meatier example, consider the NHL game that took place between

the Ottawa Senators and the Toronto Maple Leafs on February 18, 2017

[21].

As a first approximation, we shall think of a hockey game as a series of

sequential and non-overlapping “events” involving two teams of skaters.

What does it mean to have extracted useful insights from such a series of

events?

At some level, the most complete raw understanding of that night’s game

belongs to the game’s active and passive participants (players, referees,

coaches, general managers, official scorer and time-keeper, etc.).
1

1: This simple assumption is rather old-

fashioned and would be disputed by many

in the age of hockey analytics, but we let

it stand for now.
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Figure 23.1: A schematic diagram of data reduction as it could apply to a professional hockey game.

The larger group of individuals who attended the game in person,

watched it on TV/Internet, or listened to it on the radio presumably also

have a lot of the facts at their disposal, with some contamination, as it

were, by commentators (in the two latter cases).

Presumably, the participants and the witnesses also possess insights

into the specific game: how could that information best be relayed to

members of the public who did not catch the game? There are many

ways to do so, depending on the intended level of abstraction and on the

target audience (see Figure 23.1).

Play-by-Play Text File If a hockey game is a series of events, why not

simply list the events, in the order in which they occurred? Of course,

not everything that happens in the “raw” game requires reporting – it

might be impressive to see Auston Matthews skate by Dion Phaneuf

on his way to the Senators’ net at the 8:45 mark of the 2nd period, say,

but reporting this “event” would only serve to highlight the fact that

Matthews is a better skater than Phaneuf. It is true, to be sure, but some

level of filtering must be applied in order to retain only relevant (or

“high-level”) information, such as:

blocked shots, face-off wins, giveaways, goals, hits, missed

shots, penalties, power play events, saves, shorthanded events,

shots on goal, stoppage (goalie stopped, icing, offside, puck

in benches), takeaways, etc.

In a typical game, between 300 and 400 events are recorded (see Figure

23.2 for an extract of the play-by-play file for the game under considera-

tion; the full list is found at [21]).
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Figure 23.2: Play-by-play extract, Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].

Some knowledge about the sport is required to make sense of some of

the entries (colouring, use of bold text, etc.), but with patience we can

rather easily
2

re-constitute the flow of the game. 2: That is to say, mechanically.

This approach, as we can see, is fully descriptive.

Boxscore The play-by-play does convey the game’s events, but the

relevance of its entries is sometimes questionable. In the general context

of the game, how useful is to know that Nikita Zaitsev blocked a shot by

Erik Karlsson at the 2:38 mark of the 1st period? Had this blocked shot

saved a guaranteed Senators goal or directly lead to a Maple Leafs goal,

one could have argued for its inclusion in the list of crucial events to

report, but only the most fastidious observer
3

would bemoan its removal 3: Or a statistical analyst

from the game’s report.

The game’s boxscore provides relevant information, at the cost of com-
pleteness: it distills the play-by-play file into a series of meaningful

statistics and summaries, providing insights into the game that even a

fan in attendance might have missed while the game was going on (see

Figures 23.3-23.5).

Once again, a certain amount of knowledge about the sport is required

to make sense of the statistics – to place them in the right context: is it

meaningful that the Senators won 36 faceoffs to the Maple Leafs’ 31?

That Mark Stone was a +4 on the night? That both teams went “1-for-4’ ’

on the powerplay?

We cannot re-constitute the full flow of the game from the boxscore alone,

but the approach is not solely descriptive – questions can be asked, and

answers provided... the analytical game is afoot!
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Figure 23.3: Advanced Boxscore (I), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].
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Figure 23.4: Advanced Boxscore (II), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].
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Figure 23.5: Advanced Boxscore (III), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].

Recap/Highlights One of the boxscore’s shortcomings is that it does

not provide much in the way of narrative, which has become a staple of

sports reporting – what really happened during that game? How does it

impact the current season for either team?

Associated Press, 19 February 2017 TORONTO
The Ottawa Senators have the Atlantic Division lead in their sights.

Mark Stone had a goal and four assists, Derick Brassard scored

twice in the third period and the Senators recovered after blowing

a two-goal lead to beat the Toronto Maple Leafs 6-3 on Saturday

night.

The Senators pulled within two points of Montreal for first place

in the Atlantic Division with three games in hand. “We like where

we’re at. We’re in a good spot,” Stone said. “But there’s a little bit

more that we want. Obviously, there’s teams coming and we want to

try and create separation, so the only way to do that is keep winning

hockey games.”

Ottawa led 2-0 after one period but trailed 3-2 in the third before

getting a tying goal from Mike Hoffman and a power-play goal

from Brassard. Stone and Brassard added empty-netters, and Chris

Wideman and Ryan Dzingel also scored for the Senators. Ottawa

has won four of five overall and three of four against the Leafs this

season. Craig Anderson stopped 34 shots.

Morgan Rielly, Nazem Kadri and William Nylander scored and

Auston Matthews had two assists for the Maple Leafs. Frederik

Andersen allowed four goals on 40 shots. Toronto has lost eight of

11 and entered the night with a tenuous grip on the final wild-card

spot in the Eastern Conference.

“The reality is we’re all big boys, we can read the standings. You’ve

got to win hockey games,” Babcock said. After Nylander made it

3-2 with a power-play goal 2:04 into the third, Hoffman tied it by

rifling a shot from the right faceoff circle off the post and in. On

a power play 54 seconds later, Andersen stopped Erik Karlsson’s

point shot, but Brassard jumped on the rebound and put it in for a

4-3 lead.

Wideman started the scoring in the first, firing a point shot through

traffic moments after Stone beat Nikita Zaitsev for a puck behind
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the Leafs goal. Dzingel added to the lead when he deflected Marc

Methot’s point shot 20 seconds later.

Andersen stopped three shots during a lengthy 5-on-3 during the

second period, and the Leafs got on the board about three minutes

later. Rielly scored with 5:22 left in the second by chasing down

a wide shot from Matthews, carrying it to the point and shooting

through a crowd in front.

About three minutes later, Zaitsev fired a shot from the right point

that sneaked through Anderson’s pads and slid behind the net.

Kadri chased it down and banked it off Dzingel’s helmet and in for

his 24th goal of the season. Dzingel had fallen in the crease trying

to prevent Kadri from stuffing the rebound in.

“Our game plan didn’t change for the third period, and that’s just

the maturity we’re gaining over time,” Senators coach Guy Boucher

said. “Our leaders have been doing a great job, but collectively, the

team has grown dramatically in terms of having poise, executing

under pressure.”

Game notes: Mitch Marner sat out for Toronto with an upper-body

injury. Marner leads Toronto with 48 points and is also expected to

sit Sunday night against Carolina.

UP NEXT Senators: Host Winnipeg on Sunday night. Maple Leafs:

Travel to Carolina for a game Sunday night.

Simple Boxscore A gambler or a member of a hockey pool might be

interested in the fact that Auston Matthews spent nearly 4 minutes on

the powerplay (see Figure 23.4), but a casual observer is likely to find

the full boxscore a monstrous overkill. How much crucial information is

lost/provided by the simple boxscore of Figure 23.6, instead?

Figure 23.6: Simple boxscore, Ottawa Sen-

ators Toronto Maple Leafs, February 18,

2017 [21].

Headline If we take the view that humans impose a narrative on

sporting events (rather than unearth it), we could argue that the only

“true” informational content is found in the following headline:

Sens rally after blowing lead, beat Leafs, gain on Habs. [21]

Visualization It is easy to get lost in row after row of statistics and

events description, or in large bodies of text.
4

Visualizations can help 4: Doubly so for a machine in the latter

case.
complement our understanding of any data analytic situation.

While they can be appealing on their own, a certain amount of external

context is required to make sense of most of them (see Figure 23.7).
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Figure 23.7: Visualizations, Ottawa Senators Toronto Maple Leafs, February 18, 2017: offensive zone unblocked shots heat map (top left),

gameflow chart, Corsi +/- , all situations (top right), player shift chart (bottom left), shots and goals (bottom right) [17].

General Context A document which is prepared for analysis is often

part of a more general context (or a collection).

Can the analysis of all the games between the Senators and the Maple

Leafs shed some light on their rivalry on the ice? Obviously, the more

arcane the representation method, the more in-depth knowledge of the

game and its statistics is required, but to those in the know, summaries
and visualizations can provide valuable insight (see Figure 23.8).

There are thus various ways to understand a single hockey game – and

a series of games – depending on the desired (or required) levels of

abstraction and complexity.

But as is the case for all quantitative methods, data reduction for insight is

subject to analytic choices – you may have noticed that we conspicuously

averted reporting on playoff results, and on post-2017 results. Would

the overall “understanding” of the game in question (and the rivalry, in

general) change if they were included?
5

5: Unfortunately for this lifelong Sens fan,

it most definitely would...

The specific details of data reduction as it applies to a professional

hockey game are not usually portable to general situations, but the main
concepts are, as we illustrate presently.
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Figure 23.8: A schematic diagram of data reduction as it applies to a corpus of professional hockey games, with visualization and

summarizing of regular season games between the Ottawa Senators and Toronto Maple Leafs (1993-2017).

23.1.2 Meaning in Macbeth

It is a tale told by an idiot, full of sound and fury, signifying

nothing. [Macbeth, V.5, line 30]

In a sense, in order to extract the full meaning out of a document, said

document needs to be read and understood in its entirety.
6

But even if 6: This section also serves as an introduc-

tion to Chapter 27 (Text Analysis and Text
Mining).

we have the luxury of doing so, some issues appear:

do all readers extract the same meaning?

does meaning stay constant over time?

is meaning retained by the language of the document?

do the author’s intentions constitute the true (baseline) meaning?

does re-reading the document change its meaning?

Given the uncertain nature of what a document’s meaning actually is, it

is counter-productive to talk about insight or meaning (in the singular);
rather we look for insights and meanings (in the plural).

Consider the following passage from Macbeth (Act I, Scene 5, Lines

45-52):

[Enter MACBETH]

LADY MACBETH: Great Glamis, worthy Cawdor,

Greater than both, by the all-hail hereafter,

Thy letters have transported me beyond

This ignorant present, and I feel now

The future in the instant

MACBETH: My dearest love, Duncan comes here tonight.

LADY MACBETH: And when goes hence?

MACBETH: Tomorrow, as he purposes.

What is the “meaning” of this scene? What is the “meaning” of Macbeth
as a whole? As a starting point, it’s crucial to note that the “meaning” of

the scene is likely not independent of the play’s context up to this scene.
7

7: A description of the plot in modern

prose is provided in [27].

Does the plot description carry the same “meaning” as the play itself?

What about TVTropes ’s laconic description of Macbeth [25]:

Hen-pecked Scottish nobleman murders his king and spends

the rest of the play regretting it.

https://tvtropes.org
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Or Mister Apple’s haiku description (same site)?

Macbeth and his wife

Want to become the royals

So they kill ’em all.

Or this literary description, from an unknown author?

Macbeth dramatizes the battle between good and evil, ex-

ploring the psychological effects of King Duncan’s murder

on Macbeth and Lady Macbeth. His conflicting feelings of

guilt and ambition embody this timeless battle of good vs

evil.

Or yet again the (fantastic) 2001 movie Scotland, PA , featuring James

LeGros, Maura Tierney, and Christopher Walken [16]?

For non-native English speakers (and for a number of native speakers as

well, it should be said...), the play (to say nothing of the quoted passage

above) might prove difficult to parse and understand.

A modern translation (which is a form of data reduction) is available

at No Fear Shakespeare, shedding some light on the semantic role of the

scene:

MACBETH enters.
LADY MACBETH: Great thane of Glamis! Worthy thane of

Cawdor! You’ll soon be greater than both those titles, once

you become king! Your letter has transported me from the

present moment, when who knows what will happen, and

has made me feel like the future is already here.

MACBETH: My dearest love, Duncan is coming here tonight.

LADY MACBETH: And when is he leaving?

MACBETH: He plans to leave tomorrow.

Consider, also, the French translation by F. Victor Hugo:

Entre MACBETH.
LADY MACBETH, continuant: Grand Glamis! Digne Cawdor!

plus grand que tout cela par le salut futur! Ta lettre m’a

transportée au delà de ce présent ignorant, et je ne ne sens

plus dans l’instant que l’avenir.

MACBETH: Mon cher amour, Duncan arrive ici ce soir.

LADY MACBETH: Et quand repart-il?

MACBETH: Demain... C’est son intention.

Do these all carry the same Macbeth essence? Do they all even carry

a Macbeth essence? Are they all Macbeth? How much, if anything, of

Macbeth do they preserve? The French translation, for instance, adds a

very ominous tone to Macbeth’s last retort to his wife.

Those of us who have read the rest of the play know that the tone is

in keeping with the events that will eventually transpire, but does the

translation add some foreshadowing that is simply not present up to that

point in the original? If so, does it matter?

https://www.youtube.com/watch?v=Tci06ND7qzQ
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23.2 Dimension Reduction

There are advantages to working with reduced, low-dimensional data:

visualisation methods of all kinds are available and (more) readily

applicable to such data in order to extract and present insights;

high-dimensional data is subject to the curse of dimensionality
(CoD), which asserts (among other things) that multi-dimensional

spaces are ... well, vast, and when the number of features in a

model increases, the number of observations required to maintain

predictive power also increases, but at a substantially larger rate;

a consequence of CoD is that in high-dimension sets, all observa-

tions are roughly dissimilar to one another – observations tend to

be nearer the dataset’s boundaries than to one another.

Dimension reduction techniques such as the ubiquitous principal com-
ponent analysis, independent component analysis, factor analysis,

8
or 8: For numerical data.

multiple correspondence analysis9
project multi-dimensional datasets 9: For categorical data.

onto low-dimensional but high-information spaces.
10

10: The so-called Manifold Hypothesis,

see Section 23.2.4.

Some information is necessarily lost in the process, but in many instances

the drain can be kept under control and the gains made by working with

smaller datasets can offset the loss of completeness.

23.2.1 Sampling Observations

Datasets can be “big” in a variety of ways:

they can be too large for the hardware to handle,
11

or 11: That is to say, they cannot be stored or

accessed properly due to the number of

observations, the number of features, or

the overall size of the dataset.

the dimensions can go against specific modeling assumptions.12

12: Such as the number of features being

much larger than the number of observa-

tions, say.

For instance, multiple sensors which record 100+ observations per second

in a large geographical area over a long time period can lead to excessively

big datasets, say.

A natural question, regarding such a dataset, is whether every one of its

row needs to be used: if rows are selected randomly (with or without

replacement), the resulting sample might be representative13
of the 13: An entire field of statistical endeavour

– statistical survey sampling – has been

developed to quantify the extent to which

the sample is representative of the pop-

ulation, see Chapter 10 (Survey Sampling
Methods).

entire dataset, and the smaller set might be easier to handle.

There are some drawbacks to the sampling approach, however:

if the signal of interest is rare, sampling might lose its presence

altogether;

if aggregation happens at some point in the reporting process,

sampling will necessarily affect the totals,
14

and 14: For instance, if we are interested in

predicting the number of passengers per

flight leaving YOW (Macdonald-Cartier

International Airport) and the total popu-

lation of passengers is sampled, then the

sampled number of passengers per flight

is necessarily below the actual number of

passengers per flight. Estimation methods

exist to overcome these issues (see Chapter

10).

even simple operations on large files (finding the # of rows, say) can

be taxing on the memory or computation time – some knowledge

or prior information about the dataset structure can help.

Sampled datasets can also be used to work the kinks out of the data

analysis workflows, but the key take-away is that if data is too big to

store, access, and manipulate in a reasonable amount of time, the issue

is mostly a Big Data problem – this is the time to start considering the

use of distributed computing (see Chapter 30, What’s the Big Deal with Big
Data?).
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Figure 23.9: Illustration of the curse of dimensionality; 𝑁 = 100 observations are uniformly distributed on the unit hypercube [0, 1]𝑑 ,
𝑑 = 1, 2, 3. The red regions represent the smaller hypercubes [0, 0.5]𝑑 , 𝑑 = 1, 2, 3. The percentage of captured data points is seen to decrease

with an increase in 𝑑 [11].

23.2.2 The Curse of Dimensionality

A model is said to be local if it depends solely on the observations

near the input vector (𝑘 nearest neigbours classification is local, whereas

linear regression is global). With a large training set, increasing 𝑘 in

a 𝑘NN model, say, will yield enough data points to provide a solid

approximation to the theoretical classification boundary.

The curse of dimensionality (CoD) is the breakdown of this approach

in high-dimensional spaces: when the number of features increases,

the number of observations required to maintain predictive power also

increases, but at a substantially higher rate (see Figure 23.9 for an

illustration of the CoD in action).

Manifestations of CoD Let 𝑥𝑖 ∼ 𝑈1(0, 1) be i.i.d. for 𝑖 = 1, . . . , 𝑛. For

any 𝑧 ∈ [0, 1] and 𝜀 ∈ (0, 1] such that

𝐼1(𝑧; 𝜀) = {𝑦 ∈ ℝ : |𝑧 − 𝑦 |∞ < 𝜀/2} ⊆ [0, 1],

the expected number of observations 𝑥𝑖 in 𝐼1(𝑧; 𝜀) is��𝐼1(𝑧; 𝜀) ∩ {𝑥𝑖}𝑛𝑖=1

�� ≈ 𝜀 · 𝑁,

so an 𝜀∞−ball subset of [0, 1]1 contains approximately 𝜀 of the observa-

tions in {𝑥𝑖}𝑛𝑖=1
⊆ ℝ, on average.

Let x𝑖 ∼ 𝑈2(0, 1) be i.i.d. for all 𝑖 = 1, . . . , 𝑛. For any z ∈ [0, 1]2 and

𝜀 ∈ (0, 1] such that

𝐼2(z; 𝜀) = {Y ∈ ℝ2

: ∥z − Y∥∞ < 𝜀/2} ⊆ [0, 1]2 ,

the expected number of observations x𝑖 in 𝐼2(z; 𝜀) is��𝐼1(z; 𝜀) ∩ {x𝑖}𝑛𝑖=1

�� ≈ 𝜀2 · 𝑁,

so an 𝜀∞−ball subset of [0, 1]2 contains approximately 𝜀2
of the observa-

tions in {x𝑖}𝑛𝑖=1
⊆ ℝ2

, on average.

In general, this reasoning shows that an 𝜀∞−ball subset of [0, 1]𝑝 ⊆ ℝ𝑝

contains approximately 𝜀𝑝 of the observations in {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

, on
average.
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To capture 𝑟% of uniformly distributed observations in a unit 𝑝−hypercube,

we need a 𝑝−hypercube with edge 𝜀𝑝(𝑟) = 𝑟1/𝑝 , on average. For instance,

to capture 𝑟 = 1/3 of the observations in a unit 𝑝−hypercube in ℝ, ℝ2
,

and ℝ10
, a hyper-subset with edge 𝜀1(1/3) ≈ 0.33, 𝜀2(1/3) ≈ 0.58, and

𝜀10(1/3) ≈ 0.90, respectively.

The inference is simple, but far-reaching: in general, as 𝑝 increases, the

nearest observations to a given point x𝑗 ∈ ℝ𝑝
are in fact quite distant

from x𝑗 , in the Euclidean sense, on average – locality is lost!15 15: The situation may not be as stark if the

observations are not i.i.d., but the principle

remains the same – in high-dimensional

spaces, it is harder for observations to

be near one another than it is so in low-

dimensional spaces.

This can wreak havoc on models and algorithms that rely on the (Eu-

clidean) nearness of observations (𝑘 nearest neighbours, 𝑘−means clus-

tering, etc.). The CoD manifests itself in various ways.

In datasets with a large number of features:

most observations are nearer the edge of the sample than they are
to other observations, and

realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the effects of the CoD,

but if they are not warranted the end result may be catastrophic.

23.2.3 Principal Component Analysis

Principal component analysis (PCA) can be used to find the combinations

of variables along which the data points are most spread out; it attempts

to fit a 𝑝−ellipsoid to a centered representation of the data. The ellipsoid

axes are the principal components of the data.

Small axes are components along which the variance is “small”; remov-

ing these components leads, in an ideal setting, to a “small” loss of

information
16

(see Figure 23.10). The procedure is simple: 16: Although there are scenarios where it

could be those “small” axes that are more

interesting – such as is the case with the

“pancake stack” problem.

1. centre and “scale” the data to obtain a matrix X;
17

17: This is NOT the design matrix as de-

fined in regression analysis.

2. compute the data’s covariance matrix K = X⊤X;

3. find K’s eigenvalues Λ and its orthonormal eigenvectors matrix W;

4. each eigenvector w (also known as loading) represents an axis,

whose variance is given by the associated eigenvalue 𝜆.

The loading that explains the most variance along a single axis (the 1st
PC) is the eigenvector of the empirical covariance matrix corresponding to

the largest eigenvalue, and that variance is proportional to the eigenvalue;

the 2nd largest eigenvalue and its corresponding eigenvector yields the

2nd PC and variance pair, and so on, yielding orthonormal principal

components PC1 , . . . , PC𝑟 , where 𝑟 = rank(X).18 18: If some of the eigenvalues are 0, then

𝑟 < 𝑝, and vice-versa, implying that the

data was embedded in a 𝑟−dimensional

manifold to begin with.

PCA can provide an avenue for dimension reduction, by “removing”

components with small eigenvalues (as in Figure 23.10). The proportion
of the spread in the data which can be explained by each principal

component can be placed in a scree plot (a plot of eigenvalues against

ordered component indices), and we retain the ordered PCs:

for which the eigenvalue is above some threshold (say, 25%);

for which the cumulative proportion of the spread falls below some

threshold (say 95%), or

prior to a kink in the scree plot.
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Figure 23.10: Illustration of PCA on an artificial 2D dataset (top left). The red axes (top right) represent the axes of the best elliptic fit.

Removing the minor axis by projecting the points on the major axis (bottom left) leads to a dimension reduction and a (small) loss of

information (bottom right).

Figure 23.11: Selecting the number of principal component – the proportion of the variance explained by each (ordered) component is

shown in the first 3 charts; the cumulative proportion is shown in the last chart. The kink method is shown in the top right image, the

individual threshold component in the bottom left image, and the cumulative proportion in the bottom right image.

For instance, consider an 8−dimensional dataset for which the ordered

PCA eigenvalues are provided below:

PC 1 2 3 4 5 6 7 8

Var 17 8 3 2 1 0.5 0.25 0

Prop 54 25 9 6 3 2 1 0

Cumul 54 79 88 94 98 99 100 100

If the only PCs that are retained are those that explain up to 95%

of the cumulative variation, say, then the original data reduces to a

4-dimensional subset; if only the PCs that individually explain more

than 25% of the variation are retained, say, then the data reduces to a

2-dimensional subset; if only the PCs that lead into the first kink in the

scree plot are retained, to a 3-dimensional subset (see Figure 23.11).
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PCA is commonly-used, but often without regard to its inherent limita-
tions, unfortunately:

it is dependent on scaling, and so is not uniquely determined;

with little domain expertise, it may be difficult to interpret the PCs;

it is quite sensitive to outliers;

the analysis goals are not always aligned with the principal com-

ponents, and

the data assumptions are not always met – in particular, does it

always make sense that important data structures and data spread

be correlated (the so-called counting pancakes problem), or that

the components be orthogonal?

There are other methods to find the principal manifolds of a dataset,

including UMAP, self-organizing maps, auto-encoders, curvilinear com-

ponent analysis, manifold sculpting, kernel PCA, etc.

Formalism Because K is positive semi-definite (K ≥ 0), the eigenvalues

𝜆𝑖 = 𝑠2

𝑖
are non-negative and they can be ordered in a decreasing

sequence

𝚲 = diag(𝜆1 , . . . ,𝜆𝑝), where 𝜆1 ≥ · · ·𝜆𝑝 ≥ 0

and W = [w1 | · · · |w𝑝].

If 𝑘 = rank(X), then there are 𝑝 − 𝑘 “empty” principal component

(corresponding to null eigenvalues) and 𝑘 “regular” principal components

(corresponding to zero eigenvalues). We write W∗ = [w1 | · · · |w𝑘] and

𝚲∗ = diag(𝜆1 , . . . ,𝜆𝑘). If 𝑝 − 𝑘 ≠ 0, then the eigenvalue decomposition

of K is

K =
[
W∗ 0

] [
𝚲∗ 0
0 0

] [
(W∗)⊤

0

]
= W𝚲W⊤;

if X is of full rank, then W∗ = W and 𝚲∗ = 𝚲.

The eigenvectors of 𝐾 (the w𝑗) are the singular vectors of X: there exist

U𝑛×𝑛 and 𝚺𝑛×𝑝 such that

X = U𝚺W⊤ ,

where

U =
(
U∗ 0

)
and 𝚺 =

(
diag(𝑠𝑖)

0

)
.

If X is of full rank, then W is orthonormal and so represents a rotation
matrix. As W−1 = W⊤, we must then have XW = U𝚺, the principal
component decomposition of X:

T𝑛×𝑝 = XW,
[
t1 · · · t𝑝

]
=

[
x1 · · · x𝑛

]⊤ [
w1 · · · w𝑝

]
.

The link between the principal components and the eigenvectors can be

made explicit: the first principal component PC1 is the loading w1 (with

∥w1∥2 = 1) which maximizes the variance of the first column of T:

w1 = arg max

∥w∥2=1

{Var(t1)} = arg max

∥w∥2=1

{
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑡1,𝑖 − 𝑡1)2
}
.
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Since

𝑡1 =
1

𝑛

𝑛∑
𝑗=1

E[x⊤𝑗 w1] =
1

𝑛

𝑛∑
𝑗=1

E

[
𝑝∑
𝑖=1

𝑥 𝑗 ,𝑖𝑤𝑖 ,1

]
=

1

𝑛

𝑛∑
𝑗=1

𝑝∑
𝑖=1

𝑤𝑖 ,1 E[𝑥 𝑗 ,𝑖]︸︷︷︸
= 0

= 0,

then Var(t1) = 1

𝑛−1
(𝑡2

1,1
+ · · · + 𝑡2

𝑛,1
) and the problem is equivalent to

w1 = arg max

∥w∥2=1

{𝑡2
1,1 + · · · + 𝑡2𝑛,1},

By construction, 𝑡2
𝑖 ,1

= (x⊤
𝑖
w1)2 for all 𝑖, so

𝑡2
1,1 + · · · + 𝑡2𝑛,1 = (x⊤

1
w1)2 + · · · + (x⊤𝑛w1)2 = ∥Xw1∥2 = w1X⊤Xw1.

Hence,

w1 = arg max

∥w∥2=1

{wX⊤Xw} = arg max

∥w∥2=1

{w⊤Kw};

this is equivalent to finding the maximizer of 𝐹(w) = w⊤Kw subject to

the constraint

𝐺(w) = 1 −w⊤w = 0.

We solve this problem by using the method of Lagarange multipliers;

any optimizer w∗ must be either:

1. a critical point of 𝐹, or

2. a solution of ∇𝐹(w) + 𝜆∇𝐺(w) = 0, 𝜆 ≠ 0.

But ∇𝐹(w) = 2Kw and ∇𝐺(w) = −2w; either w∗ ∈ ker(K) (case 1) or

2Kw∗ − 2𝜆∗w∗ = 0 (case 2); either

Kw∗ = 0 or (K − 𝜆∗𝐼)w∗ = 0, 𝜆∗ ≠ 0.

In either case, 𝜆∗ ≥ 0 is an eigenvalue of 𝐾, with associated eigenvector

w∗. There are at most 𝑝 distinct possibilities {(𝜆 𝑗 ,w𝑗)}𝑝𝑗=1
, and for each

of them

w⊤𝑗 Kw𝑗 = w⊤𝑗 𝜆 𝑗w𝑗 = 𝜆 𝑗w⊤𝑗 w𝑗 = 𝜆 𝑗 ,

since w⊤
𝑗
w𝑗 = 1.

Thus,

arg max

∥w∥2=1

{Var(t1)} = arg max

∥w∥2=1

{𝜆 𝑗} = w1 = PC1 ,

since 𝜆1 ≥ 𝜆 ≥ 0 for all eigenvalues 𝜆 of K.

A similar argument shows that w𝑗 , 𝑗 = 2, . . . , 𝑝, is the direction along

which the variance is the 𝑗th highest, assuming that w𝑗 is orthonormal to

all the preceding wℓ , ℓ = 1, . . . , 𝑗−1, and that the variance is proportional

to 𝜆 𝑗 .

The process is repeated at most 𝑝 times, yielding 𝑟 non-trivial principal

components PC1 , . . . , PC𝑟 , where 𝑟 ≤ 𝑝 is the rank(X). Thus, we see that

the rotation matrix W that maximizes the variance sequentially in the

columns of T = XW is the matrix of eigenvectors of K = X⊤X.

We show how to implement principal component analysis in Sections

19.7.3 and 21.4.3 (in the Wine example).
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23.2.4 The Manifold Hypothesis

Manifold learning involves mapping high-dimensional data to a lower

dimensional manifold, such as mapping a set of points in ℝ3
to a torus

shape, which can then be unfolded (or embedded) into a 2D object.

Techniques for manifold learning are commonly-used because data is

often (usually?) sampled from unknown and underlying sources which

cannot be measured directly.

Learning a suitable “low-dimension” manifold from a higher-dimensional

space is approximately as complicated as learning the sources (in a ML

sense). This problem can also be re-cast as finding a set of degrees of
freedom which can reproduce most of the variability in a dataset.

For instance, a set of multiple photographs of a 3D object taken from

different positions but at the same distance from the object can be

represented by two degrees of freedom: the horizontal and vertical
angles from which the picture was taken.

As another example, consider a set of hand-written drawings of the digit

“2” [24]. Each of these drawings can also be represented using a small

number of degrees of freedom:

the ratio of the length of the lowest horizontal line to the height

of the hand-written digit;
the ratio of the length of the arch in the curve at the top to the

smallest horizontal distance from the end point of the arch to the

main vertical curve;

the angle of rotation of the digit as a whole with respect to some

baseline orientation, etc.

These two scenarios are illustrated in Figure 23.12.

Dimensionality reduction and manifold learning are often used for one

of three purposes:

to reduce the overall dimensionality of the data while trying to

preserve the variance in the data;

to display high-dimensional datasets, or

to reduce the processing time of supervised learning algorithms

by lowering the dimensionality of the data.

PCA, for instance, provides a sequence of best linear approximations to

high-dimensional observations (see previous section); the process has

fantastic theoretical properties for computation and applications, but

data is not always well-approximated by a fully linear process.

In this section, the focus is on non-linear dimensionality reduction

methods, most of which are a variant of kernel PCA:

LLE;

Laplacian eigenmap;

isomap;

semidefinite embedding, and

𝑡−SNE.

By way of illustration, the different methods are applied to an “S”-shaped

coloured 2D object living in 3D space (see Figure 23.15).
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Figure 23.12: Plots showing degrees of freedom manifolds for images of faces (3D object) and handwritten digits [24].
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Kernel Principal Component Analysis High-dimensional datasets often

have a non-linear nature, in the sense that a linear PCA may only weakly

capture/explain the variance across the entire dataset.

This is, in part, due to PCA relying on Euclidean distance as opposed to

geodesic distance – the distance between two points along the manifold,

that is to say, the distance that would be recorded if the high-dimensional

object was first unrolled (see Figure 23.13).

Figure 23.13: High-dimensional manifold

unfolding; theoretical 2D manifold em-

bedded in ℝ3
(left), sample (middle), un-

folding into ℝ2
(right) [24].

Residents of Earth
19

are familiar with this concept: the Euclidean distance 19: Which we assume encompasses all of

this work’s readership. . .
(“as the mole burrows”) between Sao Paulo and Reykjavik is the length of

the shortest tunnel joining the two cities, whereas the geodesic distance

(“as the crow flies”) is the arclength of the great circle through the two

locations (see Figure 23.14).

Figure 23.14: Geodesic (red, solid) and

Euclidean (orange, dash) paths between

Sao Paulo and Reykjavik, Great Circle Map

.

High-dimensional manifolds can be unfolded with the use of transfor-
mations Φ which map the input set of points

{x1 , . . . , x𝑛} ⊆ ℝ𝑝

onto a new set of points

{Φ(x1), . . . ,Φ(x𝑛)} ⊆ ℝ𝑚 ,

with 𝑚 ≥ 𝑛.

https://www.greatcirclemap.com/globe?routes=RKV-GRU
https://www.greatcirclemap.com/globe?routes=RKV-GRU
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If Φ is chosen so that

∑𝑛
𝑖=1

Φ(x𝑖) = 0 (i.e., the transformed data is also

centered in ℝ𝑚
), we can formulate the kernel PCA objective in ℝ𝑝

as a

linear PCA objective in ℝ𝑚
:

min

{
𝑛∑
𝑖=1

∥Φ(x𝑖) −𝑉𝑞𝑉⊤𝑞 Φ(x𝑖)∥2
}
,

over the set of 𝑚 × 𝑞 matrices 𝑉𝑞 with orthonormal columns, where 𝑞 is

the desired dimension of the manifold.
20

20: This error reconstruction approach

to PCA yields the same results as the co-
variance approach of the previous section

[8].

In practice, it can be difficult to determine Φ explicitly; in many instances,

it is inner-product-like quantities that are of interest to the analyst.

The problem can be bypassed by working with positive-definite kernel
functions 𝐾 : ℝ𝑝 × ℝ𝑝 → ℝ+ which satisfy 𝐾(x, y) = 𝐾(y, x) for all

x, y ∈ ℝ𝑝
and

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑐𝑖𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0

for any integer 𝑘, coefficients 𝑐1 , . . . , 𝑐𝑘 ∈ ℝ and vectors x1 , . . . , x𝑘 ∈ ℝ𝑝
,

with equality if and only if 𝑐1 , · · · , 𝑐𝑘 = 0.
21

21: These kernels also appear in support
vector machines (see Section 21.4.2).

Popular data analysis kernels include:

linear kernel 𝐾(x, y) = x⊤y;

ploynomial kernel 𝐾(x, y) = (x⊤y + 𝑟)𝑘 , 𝑛 ∈ ℕ, 𝑟 ≥ 0, and

Gaussian kernel 𝐾(x, y) = exp

{
−∥x−y∥

2𝜎2

}
, 𝜎 > 0.

Most dimension reduction algorithms can be re-expressed as some form

of kernel PCA, as we will see shortly.

Locally Linear Embedding LLE is a manifold learning approach which

addresses the problem of nonlinear dimension reduction by computing

a low-dimensional, neighbourhood-preserving embedding of high-

dimensional data.

The main assumption is that for any subset {x𝑖} ⊆ ℝ𝑝
lying on some suf-

ficiently well-behaved underlying 𝑑−dimensional manifold M, each data

point and its neighbours lie on a locally linear patch of M. Using transla-

tions, rotations, and rescaling, the (high-dimensional) coordinates of each

locally linear neighbourhood can be mapped to a set of 𝑑−dimensional

global coordinates of M.

This needs to be done in such a way that the relationships between

neighbouring points are preserved. This can be achieved in 3 steps:

1. identify the punctured neighbourhood 𝑁𝑖 = {𝑖1 , . . . , 𝑖𝑘} of each

data point x𝑖 via 𝑘 nearest neighbours;
22

22: This could also be done by selecting

all points within some fixed radius 𝜀, but

𝑘 is not a constant anymore, and that com-

plicates matters.

2. find the weights 𝑧𝑖 , 𝑗 that provide the best linear reconstruction of

each x𝑖 ∈ ℝ𝑝
from their respective punctured neighbourhoods

23
,

23: Excluding x𝑖 itself.

i.e., solve

min

W


𝑛∑
𝑖=1

x𝑖 −
∑
𝑗∈𝑁𝑖

𝑧𝑖 , 𝑗x𝑁𝑖 (𝑗)

2 ,
where Z =

(
𝑧𝑖 , 𝑗

)
is an 𝑛 × 𝑛 matrix (𝑧𝑖 , 𝑗 = 0 if 𝑗 ∉ 𝑁𝑖), and
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3. find the low-dimensional embedding vectors y𝑖 ∈ M(⊆ ℝ𝑑) and

neighbours y𝑁𝑖 (𝑗) ∈M for each 𝑖 which are best reconstructed by

the weights determined in the previous step, i.e., solve

min

Y


𝑛∑
𝑖=1

y𝑖 −
∑
𝑗∈𝑁𝑖

𝑤𝑖 , 𝑗y𝑁𝑖 (𝑗)

2 = min

Y

{
Tr

(
Y⊤Y𝐿

)}
,

where 𝐿 = (𝐼 − Z)⊤(𝐼 − Z) and Y is an 𝑛 × 𝑑 matrix.

If the global coordinates of the sampled points are centered at the origin
and have unit variance,

24
it can be shown that 𝐿 has a null eigenvalue 24: Which can always be achieved with

an appropriate set of restrictions.
with associated eigenvector.

The 𝑗th column of Y is the eigenvector associated with the 𝑗th smallest

non-zero eigenvalue of 𝐿 [18].

Laplacian Eigenmap LE is similar to LLE, except that the first step

consists in constructing a weighted graph Gwith 𝑛 nodes (number of

𝑝−dimensional observations) and a set of edges connecting the neigh-

bouring points.
25

25: As with LLE, the edges of Gcan be ob-

tained by finding the 𝑘 nearest neighbours

of each node, or by selecting all points

within some fixed radius 𝜀.

In practice, the edges’ weights are determined either:

by using the inverse exponential with respect to the Euclidean

distance

𝑤𝑖 , 𝑗 = exp

(
−
∥x𝑖 − x𝑗 ∥2

𝑠

)
,

for all 𝑖 , 𝑗, for some parameter 𝑠 > 0, or

by setting 𝑤𝑖 , 𝑗 = 1, for all 𝑖 , 𝑗.

The embedding map is then provided by the following objective

min

Y

{
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑤𝑖 , 𝑗(y𝑖 − y𝑗)2
}
= min

Y

{
Tr(Y𝐿Y⊤)

}
,

subject to appropriate constraints, with the Laplacian 𝐿 = 𝐷 −𝑊 , where

𝐷 is the (diagonal) degree matrix of G,
26

and𝑊 its weight matrix. 26: The sum of weights emanating from

each node.

The Laplacian eigenmap construction is identical to the LLE construction,

save for their definition of 𝐿.

Isomap This approach follows the same steps as LLE except that it uses

geodesic distance instead of Euclidean distance when looking for each

point’s neighbours.
27

27: As always, neighbourhoods can be

selected with 𝑘NN or with a fixed 𝜀.

These neighbourhood relations are represented by a graph G in which

each observation is connected to its neighbours via edges with weight

𝑑𝑥(𝑖 , 𝑗) between neighbours.

The geodesic distances 𝑑M(𝑖 , 𝑗) between all pairs of points on the manifold

M are then estimated in the second step.
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Semidefinite Embedding SDE requires learning 𝐾(x, z) = Φ(x)⊤Φ(z)
from the data before applying the kernel PCA transformation Φ, which

is achieved by formulating the problem of learning 𝐾 as an instance of

semidefinite programming.

The distances and angles between observations and their neighbours are

preserved under transformations by Φ: ∥Φ(xi) −Φ(x𝑗)∥2 = ∥x𝑖 − x𝑗 ∥2 , for

all x𝑖 , x𝑗 ∈ ℝ𝑝
.

In terms of the kernel matrix, this constraint can be written as

𝐾(x𝑖 , x𝑖) − 2𝐾(x𝑖 , x𝑗) + 𝐾(x𝑗 , x𝑗) = ∥x𝑖 − x𝑗 ∥2 ,

for all x𝑖 , x𝑗 ∈ ℝ𝑝
.

By adding an objective function to maximize Tr(𝐾), that is, the vari-

ance of the observations in the learned feature space, SDE constructs a

semidefinite program for learning the kernel matrix

𝐾 =
(
𝐾𝑖 , 𝑗

)𝑛
𝑖,𝑗=1

=
(
𝐾(x𝑖 , x𝑗)

)𝑛
𝑖,𝑗=1

,

from which we can proceed with kernel PCA.

Unified Framework All of the above algorithms (LLE, Laplacian Eigen-

maps, Isomap, SDE) can be rewritten in the kernel PCA framework:

in the case of LLE, if 𝜆max is the largest eigenvalue of

𝐿 = (𝐼 −W)⊤(𝐼 −W),

then 𝐾LLE = 𝜆max𝐼 − 𝐿;

with 𝐿 = 𝐷−𝑊 ,𝐷 a (diagonal) degree matrix with𝐷𝑖 ,𝑖 =
∑𝑛
𝑗=1
𝑊𝑖 , 𝑗 ,

then the corresponding 𝐾LE is related to commute times of diffu-
sion on the underlying graph, and

with the Isomap element-wise squared geodesic distance matrix D2
,

𝐾Isomap = −1

2

(
𝐼 − 1

𝑝
ee⊤

)
D2

(
𝐼 − 1

𝑝
ee⊤

)
,

where e is a 𝑝−dimensional vector consisting solely of 1’s (note that

this kernel is not always positive semi-definite).

𝑡−SNE There are a few relatively new manifold learning techniques

that do not fit neatly in the kernel PCA framework: Uniform Manifold

Approximation and Projection (UMAP, Section 23.4.4) and 𝑡−Distributed
Stochastic Neighbour Embedding (𝑡−SNE).

For a dataset {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

, the latter involves calculating probabilities

𝑝𝑖 , 𝑗 =
1

2𝑛

{
exp(−∥x𝑖 − x𝑗 ∥2/2𝜎2

𝑖
)∑

𝑘≠𝑖 exp(−∥x𝑖 − x𝑘 ∥2/2𝜎2

𝑖
)
+

exp(−∥x𝑖 − x𝑗 ∥2/2𝜎2

𝑗
)∑

𝑘≠𝑗 exp(−∥x𝑗 − x𝑘 ∥2/2𝜎2

𝑗
)

}
,

which are proportional to the similarity of points in high-dimensional

space ℝ𝑝
for all 𝑖 , 𝑗, and 𝑝𝑖 ,𝑖 is set to 0 for all 𝑖.28

The bandwidths 𝜎𝑖 are28: The first component in the similarity

metric measures how likely it is that x𝑖
would choose x𝑗 as its neighbour if neigh-

bours were sampled from a Gaussian cen-

tered at x𝑖 , for all 𝑖 , 𝑗.

selected in such a way that they are smaller in denser data areas.
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Figure 23.15: Comparison of manifold learning methods on an artificial dataset [20].

The lower-dimensional manifold {y𝑖}𝑛𝑖=1
⊆ M ⊆ ℝ𝑑

is selected in such a

way as to preserve the similarities 𝑝𝑖 , 𝑗 as much as possible; this can be

achieved by building the (reduced) probabilities

𝑞𝑖 , 𝑗 =
(1 + ∥y𝑖 − y𝑗 ∥2)−1∑
𝑘≠𝑖(1 + ∥y𝑖 − y𝑘 ∥2)−1

for all 𝑖 , 𝑗 (note the asymmetry) and minimizing the Kullback-Leibler
divergence of 𝑄 from 𝑃:

KL(𝑃 | |𝑄) =
∑
𝑖≠𝑗

𝑝𝑖 , 𝑗 log

𝑝𝑖 , 𝑗

𝑞𝑖 , 𝑗

over possible coordinates {y𝑖}𝑛𝑖=1
[31].

MNIST Example In [20], the methods above are used to learn 2𝐷 mani-

folds for the MNIST dataset [13], a database of handwritten digits. The

results for 4 of those are shown in Figure 23.17. The analysis of optimal

manifold learning methods remains fairly subjective, as it depends not

only on the outcome, but also on how much computing power is used

and how long it takes to obtain the mapping.

Naïvely, one would expect to see the coordinates in the reduced manifold

congregate in 10 (or more) distinct groups; in that regard, 𝑡−SNE seems

to perform admirably on MNIST.
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Figure 23.16: Sample of the MNIST dataset [20, 13].

Figure 23.17: Manifold learning on the 0 − 5 subset of MNIST: LLE, Hessian LLE, Isomap, 𝑡−SNE [20, 19].
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23.3 Feature Selection

As seen in the previous section, dimension reduction methods can be

used to learn low-dimensional manifolds for high-dimensional data, with

the hope that the resulting loss in information content can be kept small.

Unfortunately, this is not always feasible.

There is a non-technical, yet more problematic, issue with manifold learn-

ing techniques: the reduction often fails to provide an easily interpretable
set of coordinates in the context of the original dataset.

For instance, in a dataset with the 4 features

𝑋1 = Age, 𝑋2 = Height, 𝑋3 = Weight, and 𝑋4 = Rural ∈ {0, 1},

say, it is straightforward to justify a data-driven decision based on the

rule 𝑋1 = Age > 25, for example, but perhaps substantially harder to do

so for a reduced rule such as

𝑌2 = 3(Age−Age)−(Height−Height)+4(Weight−Weight)+Rural > 7,

even if there is nothing wrong with the rule from a technical perspective.

Furthermore, datasets often contain irrelevant and/or redundant fea-

tures; identifying and removing these variables is a common data pro-

cessing task. The motivations for doing so are varied, but usually fall

into one of two categories:

the modeling tools do not handle redundant variables well, due to

variance inflation or similar issues, and

as an attempt by analysts to overcome the curse of dimensionality
or to avoid situations where the number of variables is larger than

the number of observations.

In light of the comment above, the goal of feature selection is to remove

(and not to transform or project) any attribute that adds noise and reduces

the performance of a model, that is to say, to retain a subset of the most

relevant features29
, which can help create simpler models, decrease a 29: This usually requires there to be a

value to predict, against which the fea-

tures can be evaluated for relevance; this

is discussed further in Chapters 20 and 21.

statistical learner’s training time, and reduce overfitting.

There are various feature selection methods, typically falling in one

of three families – filter methods, wrapper methods, and embedded
methods (the next two sections are inspired by [2]):

filter methods focus on the relevance of the features, applying a

specific ranking metric to each feature, individually. The variables

that do not meet a preset benchmark
30

are then removed from 30: Either a threshold on the ranking or

on the ranking metric value itself.
consideration, yielding a subset of the most relevant features

according to the selected ranking metric; different metrics, and

different thresholds, might retain different relevant features;

wrapper methods focus on the usefulness of each feature to the

task of interest (usually classification or regression), but do not

consider features individually; rather, they evaluate and compare

the performance of different combinations of features in order to

select the best-performing subset of features, and

embedded methods are a combination of both, using implicit

metrics to evaluate the performance of various subsets.
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Feature selection methods can also be categorized as unsupervised or

supervised:

unsupervised methods determine the importance of features using

only their values (with potential feature interactions), while

supervised methods evaluate each feature’s importance in rela-

tionship with the target feature.

Wrapper methods are typically supervised. Unsupervised filter methods

search for noisy features and include the removal of constant variables,

of ID-like variables (i.e. different on all observations), and of features

with low variability.

23.3.1 Filter Methods

Filter methods evaluate features without resorting to the use of a classifi-

cation/regression algorithm. These methods can either be

univariate, where each feature is ranked independently, or

multivariate, where features are considered jointly.

A filter criterion is chosen based on which metric suits the data or problem

best.
31

The selected criterion is used to assign a score to, and rank, the31: This can be quite difficult to determine.

features which are then retained or removed in order to yield a relevant
subset of features.

Features whose score lies above (or below, as the case may be) some

pre-selected threshold 𝜏 are retained (or removed); alternatively, features

whose rank lies below (or above as the case may be) some pre-selected

threshold 𝜈 are retained (or removed).

Such methods are advantageous in that they are computationally efficient.

They also tend to be robust against overfitting as they do not incorporate

the effects of the feature subset selection on classification/regression

performance.

There are a number of commonly-used filter criteria, including the Pear-
son correlation coefficient, information gain (or mutual information),

and relief [2].

Throughout, let 𝑌 be the target variable (assuming that there is one), and

𝑋1 , . . . , 𝑋𝑝 be the predictors.

Pearson Correlation Coefficient This value quantifies the linear rela-

tionship between two continuous variables [29].

For a predictor 𝑋𝑖 , the Pearson correlation coefficient between 𝑋𝑖 and 𝑌

is

𝜌𝑖 =
Cov(𝑋𝑖 , 𝑌)

𝜎𝑋𝑖𝜎𝑌
.

Features for which |𝜌𝑖 | is large (near 1) are linearly (or anti-) correlated

with 𝑌, those for which |𝜌𝑖 | ≈ 0 are not linearly (nor anti-linearly)

correlated with 𝑌.
32

32: Which could mean that they are un-

correlated with 𝑌, or that the correlation

is not linear or anti-linear. Only those features with (relatively) strong linear (or anti-linear) correla-

tion are retained.
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This correlation 𝜌𝑖 is only defined if both the predictor 𝑋𝑖 and the

outcome 𝑌 are numerical; there are alternatives for categorical 𝑋𝑖 and 𝑌,

or mixed categorical-numerical 𝑋𝑖 and 𝑌 [30, 9, 12].

In order to get a better handle on what filter feature selection looks like

in practice, consider the Global Cities Index dataset [26], which ranks

prominent cities around the globe on a general scale of “Alpha”, “Beta”,

“Gamma”, and “Sufficiency” (1, 2, 3, 4, respectively).

This dataset contains geographical, population, and economics data for

68 ranked cities.

globalcities <- data.frame(read.csv("globalcities.csv",

stringsAsFactors = TRUE))

colnames(globalcities)[2:7] <- c("City.Area","Metro.Area",

"City.Pop","Metro.Pop", "Ann.Pop.Growth", "GDPpc")

colnames(globalcities)[12:17] <- c("Higher.Ed.Insts",

"Life.Exp.M","Life.Exp.F","Hospitals", "Museums",

"Air.Quality")

str(globalcities)

’data.frame’: 68 obs. of 18 variables:

$ Rating : int 1 3 2 1 1 1 2 1 2 1 ...

$ City.Area : num 165 30.7 38.9 1569 102.6 ...

$ Metro.Area : num 807 25437 381 7762 3236 ...

$ City.Pop : num 0.76 3.54 0.66 5.72 1.62 ...

$ Metro.Pop : num 1.4 4.77 4.01 6.5 3.23 ...

$ Ann.Pop.Growth : num 0.01 0.26 0 0.03 0.01 0.04 0 0.01 0.01 0.01 ...

$ GDPpc : num 46 21.2 30.5 23.4 36.3 20.3 33.3 15.9 69.3 45.6 ...

$ Unemployment.Rate: num 0.05 0.12 0.16 0.02 0.15 0.01 0.16 0.1 0.07 0.16 ...

$ Poverty.Rate : num 0.18 0.2 0.2 0 0.2 0.01 0.22 0.22 0.17 0.26 ...

$ Major.Airports : int 1 1 1 2 1 1 2 1 1 2 ...

$ Major.Ports : int 1 0 1 1 1 0 2 0 1 1 ...

$ Higher.Ed.Insts : int 23 10 21 37 8 89 30 19 35 25 ...

$ Life.Exp.M : num 76.3 75.3 78 69 79 79 82 74.6 74.8 77 ...

$ Life.Exp.F : num 80.8 80.8 83.7 74 85.2 83 88 79.7 81.1 82.6 ...

$ Hospitals : int 7 7 23 173 45 551 79 22 12 43 ...

$ Museums : int 68 36 47 27 69 156 170 76 30 25 ...

$ Air.Quality : int 24 46 41 54 35 121 26 77 17 28 ...

$ Life.Expectancy : num 78.5 78 80.8 71.5 82.1 ...

The R package FSelector contains feature selection tools, including

various filter methods (such as chi-squared score, consistency, various

entropy-based filters, etc.). Using its filtering functions, we extract the

most relevant features to the ranking of a global city (we treat the Rating

variable as a numerical response: is this justifiable?).

For instance, if we retain the 5 top predictors for linear correlation
(Pearson’s correlation coefficient) with the response Rating, we obtain:

(lincor <- FSelector::linear.correlation(

formula = ‘Rating‘ ~ ., data = globalcities))
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attr_importance

City.Area 0.0007479646

Metro.Area 0.0055023564

City.Pop 0.1196632421

Metro.Pop 0.2030923952

Ann.Pop.Growth 0.1935336738

GDPpc 0.2090866065

Unemployment.Rate 0.2173999333

Poverty.Rate 0.0536585758

Major.Airports 0.2263265771

Major.Ports 0.0563507487

Higher.Ed.Insts 0.0547453393

Life.Exp.M 0.1302972404

Life.Exp.F 0.1412093767

Hospitals 0.1195832079

Museums 0.1553072283

Air.Quality 0.1382099362

Life.Expectancy 0.1380603739

(subset_lincor <- FSelector::cutoff.k(lincor, k = 5))

[1] "Major.Airports" "Unemployment.Rate" "GDPpc"

[4] "Metro.Pop" "Ann.Pop.Growth"

According to the linear correlation feature selection method, the 5 “best’ ’

features that relate to a city’s global ranking are the number of major

airports it has, its unemployment rate, its GDP per capita, its metropolitan

population, and its annual population growth.
33

33: As filtering is a pre-processing step,

proper analysis would also require build-

ing a model using this subset of features.

Mutual Information Information gain is a popular entropy-based
method of feature selection that measures the amount of dependence

between features by quantifying the amount of mutual information

between them. In general, this quantifies the amount of information
obtained about a predictor 𝑋𝑖 by observing the target feature 𝑌.

Mutual information can be expressed as

IG(𝑋𝑖 ;𝑌) = 𝐻(𝑋𝑖) − 𝐻(𝑋𝑖 | 𝑌),

where 𝐻(𝑋𝑖) is the marginal entropy of 𝑋𝑖 and 𝐻(𝑋𝑖 | 𝑌) is the condi-
tional entropy of 𝑋𝑖 given 𝑌 [28], an

𝐻(𝑋𝑖) = E𝑋𝑖 [− log 𝑝(𝑋𝑖)], 𝐻(𝑋𝑖 | 𝑌) = E(𝑋𝑖 ,𝑌)[− log 𝑝(𝑋𝑖 | 𝑌)],

where 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖 | 𝑌) are the probability density functions of the

random variables 𝑋𝑖 and 𝑋𝑖 | 𝑌, respectively.

How is IG interpreted? Consider the following example: let 𝑌 represent

the salary of an individual (continuous),𝑋1 their hair colour (categorical),

𝑋2 their age (continuous), 𝑋3 their height (continuous), and 𝑋4 their

self-reported gender (categorical). A sample of 𝑛 = 2144 individuals is

found in demo1.csv.
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salary <- data.frame(read.csv("demo1.csv",

stringsAsFactors = TRUE))

colnames(salary)[1] <- c("Hair")

Some summary statistics are shown below:

In a general population, one would expect that the distribution of salaries,

among others, is likely to be fairly haphazard, and it might be hard to

explain why it has the shape that it does, specifically.

Distributions of the predictors and the response

library(ggplot2)

par(mfrow=c(3,2))

plot1 <- ggplot(salary, aes(x=Hair)) +

geom_bar(color=’red’, fill=’white’) +

theme_bw()

plot2 <- ggplot(salary, aes(x=Gender)) +

geom_bar(color=’red’, fill=’white’) +

theme_bw()

plot3 <- ggplot(salary, aes(x=Age)) +

geom_histogram(aes(y=..density..),

color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

plot4 <- ggplot(salary, aes(x=Height)) +

geom_histogram(aes(y=..density..),
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color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

plot5 <- ggplot(salary, aes(x=Salary)) +

geom_histogram(aes(y=..density..),

color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, plot5, ncol=2)

Perhaps it could be explained by knowing the relationship between the

salary and the other variables? It is this idea that forms the basis of

mutual information feature selection.

Applying the definition, one sees that

𝐻(𝑋1) = −
∑

colour

𝑝(colour) log 𝑝(colour)

𝐻(𝑋2) = −
∫

𝑝(age) log 𝑝(age) 𝑑age

𝐻(𝑋3) = −
∫

𝑝(height) log 𝑝(height) 𝑑height

𝐻(𝑋4) = −
∑

gender

𝑝(gender) log 𝑝(gender)
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𝐻(𝑋1 | 𝑌) = −
∫

𝑝(𝑌)
{ ∑

colour

𝑝(colour | 𝑌) log 𝑝(colour | 𝑌)
}
𝑑𝑌

𝐻(𝑋2 | 𝑌) = −
∬

𝑝(𝑌)𝑝(age | 𝑌) log 𝑝(age | 𝑌) 𝑑age 𝑑𝑌

𝐻(𝑋3 | 𝑌) = −
∬

𝑝(𝑌)𝑝(ht | 𝑌) log 𝑝(ht | 𝑌) 𝑑ht 𝑑𝑌

𝐻(𝑋4 | 𝑌) = −
∫

𝑝(𝑌)
{ ∑

gender

𝑝(gender | 𝑌) log 𝑝(gender | 𝑌)
}
𝑑𝑌

If the theoretical distributions are known, the entropy integrals can be

computed directly (or approximated using standard numerical integra-

tion methods).

Gender and hair colour can be fairly easily be modeled using multino-

mial distributions, but there is more uncertainty related to the numerical

variables. A potential approach is to recode the continuous variables

age, height, and salary as decile variables 𝑎𝑑, ℎ𝑑, and 𝑌𝑑 taking val-

ues {1, . . . , 10} according to which decile of the original variable the

observation falls (see decile breakdown above).

The integrals can then be replaced by sums:

𝐻(𝑋1) = −
∑

colour

𝑝(colour) log 𝑝(colour)

𝐻(𝑋2) ≈ −
10∑
𝑘=1

𝑝(a𝑑 = 𝑘) log 𝑝(a𝑑 = 𝑘)

𝐻(𝑋3) ≈ −
10∑
𝑘=1

𝑝(ht𝑑 = 𝑘) log 𝑝(ht𝑑 = 𝑘)

𝐻(𝑋4) = −
∑

gender

𝑝(gender) log 𝑝(gender)

𝐻(𝑋1 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
∑

𝑐∈colour

𝑝(𝑐 | 𝑌𝑑 = 𝑗) log 𝑝(𝑐 | 𝑌𝑑 = 𝑗)

𝐻(𝑋2 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
10∑
𝑘=1

𝑝(𝑎𝑑 = 𝑘 | 𝑌𝑑 = 𝑗) log 𝑝(𝑎𝑑 = 𝑘 | 𝑌𝑑 = 𝑗)

𝐻(𝑋3 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
10∑
𝑘=1

𝑝(ℎ𝑑 = 𝑘 | 𝑌𝑑 = 𝑗) log 𝑝(ℎ𝑑 = 𝑘 | 𝑌𝑑 = 𝑗)

𝐻(𝑋4 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑘)
∑

𝑔∈gender

𝑝(𝑔 | 𝑌𝑑 = 𝑗) log 𝑝(𝑔 | 𝑌𝑑 = 𝑗)

The results are shown below (using base 10 logarithms, and rounded out

to the nearest hundredth):

X H(X) H(X|Y) IG(X;Y) Ratio

Hair 0.24 0.24 0.00 0.00

Age 1.00 0.74 0.26 0.26

Height 1.00 0.96 0.03 0.03

Gender 0.30 0.22 0.08 0.26
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The percentage decrease in entropy after having observed 𝑌 is shown

in the column “Ratio.” Raw IG numbers would seem to suggest that

Gender has a small link to Salary; the Ratio numbers suggest that this

could be due to the way the Age and Height levels have been categorized

(as deciles).

Relief This approach scores (numerical) features based on the identifi-

cation of feature value differences between nearest-neighbour instance

pairs.

If there is a feature value difference in a neighbouring instance pair of
the same class, the score of the feature decreases; on the other hand, if

there exists a feature value difference in a neighbouring instance pair

with different class values, the feature score increases.

More specifically, let

𝐷 = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1
⊂ ℝ𝑝 × {±1}

be a dataset where x𝑖 is the 𝑖-th data sample and 𝑦𝑛 is its corresponding

class label.

For each feature 𝑗 and observation 𝑖, two values are selected: the near hit
𝐻(𝑥𝑖 , 𝑗) is the value of 𝑋𝑗 which is nearest to 𝑥𝑖 , 𝑗 among all instances in

the same class as x𝑖 , while the near miss 𝑀(𝑥𝑖 , 𝑗) is the value of 𝑋𝑗 which

is nearest to 𝑥𝑖 , 𝑗 among all instances in the opposite class of x𝑖 .

The Relief score of the 𝑗th feature is

𝑆𝑑𝑗 =
1

𝑛

𝑛∑
𝑖=1

{
𝑑(𝑥𝑖 , 𝑗 , 𝑀(𝑥𝑖 , 𝑗)) − 𝑑(𝑥𝑖 , 𝑗 , 𝐻(𝑥𝑖 , 𝑗))

}
,

for some pre-selected distance 𝑑 : ℝ ×ℝ→ ℝ+
0
.

A feature for which near-hits tend to be nearer to their instances than

near-misses are (i.e., for which

𝑑(𝑥𝑖 , 𝑗 , 𝑀(𝑥𝑖 , 𝑗)) > 𝑑(𝑥𝑖 , 𝑗 , 𝐻(𝑥𝑖 , 𝑗)),

on average) will yield larger Relief scores than those for which the

opposite is true. Features are deemed relevant when their relief score is

greater than some threshold 𝜏.

There are a variety of Relief-type measurements to accommodate po-

tential feature interactions or multi-class problems
34

(ReliefF), but in34: For instance, for a 𝑝−distance 𝛿, set

𝐻𝛿(𝑥𝑖 , 𝑗) = arg min

𝜋𝑗 (z)
{𝛿(x𝑖 , z) | C(x𝑖) = C(z)}

and

𝑀𝛿(𝑥𝑖 , 𝑗) = arg min

𝜋𝑗 (z)
{𝛿(x𝑖 , z) | C(x𝑖) ≠ C(z)} .

general Relief is noise-tolerant and robust to interactions of attributes; its

effectiveness decreases for small training sets, however [23].

The Relief algorithm is also implemented in the R package CORElearn, as

are numerous other methods:

CORElearn::infoCore(what="attrEval") # Classification

[1] "ReliefFequalK" "ReliefFexpRank" "ReliefFbestK"

[4] "Relief" "InfGain" "GainRatio"

[7] "MDL" "Gini" "MyopicReliefF"
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[10] "Accuracy" "ReliefFmerit" "ReliefFdistance"

[13] "ReliefFsqrDistance" "DKM" "ReliefFexpC"

[16] "ReliefFavgC" "ReliefFpe" "ReliefFpa"

[19] "ReliefFsmp" "GainRatioCost" "DKMcost"

[22] "ReliefKukar" "MDLsmp" "ImpurityEuclid"

[25] "ImpurityHellinger" "UniformDKM" "UniformGini"

[28] "UniformInf" "UniformAccuracy" "EqualDKM"

[31] "EqualGini" "EqualInf" "EqualHellinger"

[34] "DistHellinger" "DistAUC" "DistAngle"

[37] "DistEuclid"

CORElearn::infoCore(what="attrEvalReg") # Regression

[1] "RReliefFequalK" "RReliefFexpRank" "RReliefFbestK"

[4] "RReliefFwithMSE" "MSEofMean" "MSEofModel"

[7] "MAEofModel" "RReliefFdistance" "RReliefFsqrDistance"

Again working on the Global Cities Dataset, we start by declaring the target

variable Rating as a categorical variable.

globalcities.cat <- globalcities

globalcities.cat$Rating <- as.factor(globalcities.cat$Rating)

Now, let’s evaluate the predictors relevance, usingInfGain andReliefFpe,

say:

InfGain.wts <- CORElearn::attrEval(

Rating ~ ., globalcities.cat, estimator="InfGain")

ReliefF.wts <- CORElearn::attrEval(

Rating ~ ., globalcities.cat, estimator="ReliefFpe")

data.frame(InfGain.wts,ReliefF.wts)

InfGain.wts ReliefF.wts

City.Area 0.05898196 0.035227591

Metro.Area 0.10501737 0.020691027

City.Pop 0.10422894 0.050779784

Metro.Pop 0.13022307 0.006038070

Ann.Pop.Growth 0.04624721 0.005785050

GDPpc 0.12909419 0.038870952

Unemployment.Rate 0.08824268 0.069113116

Poverty.Rate 0.06966089 0.004854548

Major.Airports 0.03565266 0.015932195

Major.Ports 0.04175416 0.014967595

Higher.Ed.Insts 0.02868171 0.008031587

Life.Exp.M 0.09504723 0.119356004

Life.Exp.F 0.04937724 0.073946982

Hospitals 0.18080212 0.011268651

Museums 0.10732739 0.017808737

Air.Quality 0.05838298 0.057001715

Life.Expectancy 0.07730300 0.101021497
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Figure 23.18: Feature selection process for

wrapper methods in classification prob-

lems [2].

For classification tasks (categorical targets), the more relevant features

are those for which the scores are higher.35
How do the top-5 for each35: This is not necessarily the case for

regression tasks, however – be sure to

read the documentation for each method.

method compare in the previous example? Should this be surprising?

There is a multitude of other filter methods, including [2, 3]:

correlation metrics (Kendall, Spearman, point-biserial, etc.);

entropy-based metrics (gain ratio, symmetric uncertainty, etc.);

relief-type algorithms (ReliefF, Relieved-F, etc.);

𝜒2−test;

ANOVA;

Fisher Score;

Gini Index;

etc.

The list is by no means exhaustive, but it provides a fair idea of the

various types of filter-based feature selection metrics.

23.3.2 Wrapper Methods

Wrapper methods offer a powerful way to address problem of variable

selection. Wrapper methods evaluate the quality of subsets of features for

predicting the target output under the selected predictive algorithm

and select the optimal combination (for the given training set and

algorithm).

In contrast to filter methods, wrapping methods are integrated directly

into the classification or clustering process (see Figure 23.18 for an

illustration of this process).

Wrapper methods treats feature selection as a search problem in which

different subsets of features are explored. This process can be computa-

tionally expensive as the size of the search space increases exponentially

with the number of predictors; even for modest problems an exhaustive

search can quickly become impractical.
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In general, wrapper methods iterate over the following steps, until an

“optimal” set of features is identified:

select a feature subset, and

evaluate the performance of the selected feature subset.

The search ends once some desired quality is reached (such as adjusted

𝑅2
, accuracy, etc.). Various search methods are used to traverse the

feature phase space and provide an approximate solution to the optimal
feature subset problem, including: hill-climbing, best-first, and genetic

algorithms.

Wrapper methods are not as efficient as filter methods and are not as

robust against over-fitting. However, they are very effective at improving

the model’s performance due to their attempt to minimize the error

rate.
36

36: Which unfortunately can also lead to

the introduction of implicit bias in the

problem [2].

23.3.3 Subset Selection Methods

Stepwise selection is a form of Occam’s Razor: at each step, a new feature

is considered for inclusion or removal from the current features set based

on some criterion (𝐹−test, 𝑡−test, etc.). Greedy search methods such

as backward elimination and forward selection have proven to be both

quite robust against over-fitting and among the least computationally

expensive wrapper methods.

Backward elimination begins with the full set of features and sequentially

eliminates the least relevant ones until further removals increase the

error rate of the predictive model above some utility threshold.

Forward selection works in reverse, beginning the search with an empty

set of features and progressively adding relevant features to the ever

growing set of predictors. In an ideal setting, model performance should

be tested using cross-validation.

Stepwise selection methods are extremely common, but they have severe

limitations (which are not usually addressed) [7, 10]:

the tests are biased, since they are all based on the same data;

the adjusted 𝑅2
only takes into account the number of features in

the final fit, and not the degrees of freedom that have been used in

the entire model;

if cross-validation is used, stepwise selection has to be repeated for

each sub-model but that is not usually done, and

it represents a classic example of 𝑝-hacking.

Consequently, the use of stepwise methods is contra-indicated in the

machine learning context.

23.3.4 Regularization (Embedded) Methods

An interesting hybrid is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants, which are discussed in

Section 20.2.4.
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23.3.5 Supervised and Unsupervised Feature Selection

While feature selection methods are usually categorised as filter, wrapper,

or embedded, they can also be categorised as supervised or unsupervised
methods. Whether a feature selection method is supervised or not boils

down to whether the labels of objects/instances are incorporated into

the feature reduction process (or not).

The methods that have been described in this section were all super-

vised.

In unsupervised methods, feature selection is carried out based on the

characteristics of the attributes, without any reference to labels or a target

variable. In particular, for clustering problems (see Section 22), only

unsupervised feature selection methods can be used [1].

Unsupervised feature selection methods include:

identifying ID-like predictors;

identifying constant (or nearly constant) predictors;

identifying predictors that are in a multicolinear relationship with

other variables;

identifying clusters of predictors, etc.

23.4 Advanced Topics

When used appropriately, the approaches to feature selection and dimen-

sion reduction methods presented in the last two sections provide a solid

toolkit to help mitigate the effects of the curse of dimensionality.

However, they remain (for the most part) rather straightforward. The

methods discussed in this section are decidedly more sophisticated, from

a mathematical perspective; an increase in conceptual complexity can

lead to insights that are out of reach of more direct approaches.

23.4.1 Singular Value Decomposition

From a database management perspective, it pays not to view datasets

simply as flat file arrays; from an analytical perspective, however, viewing

datasets as matrices allows analysts to use the full machinery of linear

algebra and matrix factorization techniques, of which singular value
decomposition (SVD) is a well-known component.

37
37: Matrix factorization techniques have

applications to other data analytic tasks;

notably, they can be used to impute miss-

ing values and to build recommender sys-

tems.

As before, let {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

and denote the matrix of observations by

X =


x1

x2

...

x𝑛


∈ 𝕄𝑛,𝑝(ℝ) = ℝ𝑛×𝑝 .

Let 𝑑 ≥ min 𝑝, 𝑛. From a dimension reduction perspective, the goal of

matrix factorization is to find two narrow matrices W𝑑 ∈ ℝ𝑛×𝑑
(the cases)
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and C𝑑 ∈ ℝ𝑝×𝑑
(the concepts) such that the product W𝑑C⊤

𝑑
= X̃𝑑 is the

best rank 𝑑 approximation of X, i.e.

X̃𝑑 = arg min

X′
{∥X − X′∥𝐹}, with rank(X′) = 𝑑,

where the Frobenius norm 𝐹 of a matrix is

∥A∥2𝐹 =
∑
𝑖 , 𝑗

|𝑎𝑖 , 𝑗 |2.

In a sense, X̃𝑑 is a “smooth” representation of X; the dimension reduction

takes place when W𝑑 is used as a dense 𝑑−representation of X.The link

with the singular value decomposition of X can be made explicit: there

exist orthonormal matrices U ∈ ℝ𝑛×𝑛
, V ∈ ℝ𝑝×𝑝

, and a diagonal matrix

Σ ∈ ℝ𝑛×𝑝
with 𝜎𝑖 , 𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝜎𝑖 ,𝑖 ≥ 𝜎𝑖+1,𝑖+1 ≥ 0 for all 𝑖,38

such 38: Each singular value is the principal

square root of the corresponding eigen-

value of the covariance matrix X⊤X (see

Section 23.2.3).

that

X = UΣV⊤;

the decomposition is unique if and only if 𝑛 = 𝑝.

Let Σ𝑑 ∈ ℝ𝑑×𝑑
be the matrix obtained by retaining the first 𝑑 rows and the

the first 𝑑 columns of Σ; U𝑑 ∈ ℝ𝑛×𝑑
be the matrix obtained by retaining

the first 𝑑 columns of U, and V⊤
𝑑
∈ ℝ𝑑×𝑝

be the matrix obtained by

retaining the first 𝑑 rows of V⊤.

Then

X̃𝑑 = U𝑑Σ𝑑︸︷︷︸
W𝑑

V⊤𝑑 ,

and the 𝑑-dimensional rows of W𝑑 are approximations of the 𝑝−dimensional

rows of X in the sense that

⟨W𝑑[𝑖],W𝑑[𝑗]⟩ =
〈
X̃𝑑[𝑖], X̃𝑑[𝑗]

〉
≈ ⟨X𝑑[𝑖],X𝑑[𝑗]⟩ for all 𝑖 , 𝑗.

Applications

1. One of the advantages of SVD is that it allows for substantial

savings in data storage (modified from [14]):

Storing X requires 𝑛𝑝 saved entries, but an approximate version of

the original requires only 𝑑(𝑛 + 𝑝 + 𝑑) saved entries; if X represents

a 2000 × 2000 image (with 4 million entries) to be transmitted, say,

a decent approximation can be sent via 𝑑 = 10 using only 40100
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Figure 23.19: SVD image reconstruction: 𝑑 = 1400 (left), 𝑑 = 10 (middle), 𝑑 = 50 (right); Llewellyn and Gwynneth Rayfield.

entries, roughly 1% of the original number of entries (see Figure

23.19 for an illustration).

2. SVD can also be used to learn word embedding vectors. In the

traditional approach to text mining and natural language processing

(NLP) (see Sections 27 and 32), words and associated concepts are

represented using one-hot encoding.
39

39: Sparse vectors whose entries are 0 or

1, based on the identity of the words and

POS tags under consideration. For instance, if the task is to predict the part-of-speech (POS) tag of a

word given its context in a sentence (current and previous word identities

𝑤 and 𝑝𝑤, as well as the latter’s part-of-speech (POS) tag 𝑝𝑡), the input

vector could be obtained by concatenation of the one-hot encoding of 𝑤,

the one-hot encoding of 𝑝𝑤, and the one-hot encoding of 𝑝𝑡.

The input vector that would be fed into a classifier to predict the POS of

the word “house” in the sentence fragment “my house”, say, given that

“my” has been tagged as a ‘determiner’ could be:

The sparsity of this vector is a major CoD liability: a reasonably restrictive

vocabulary subset of English might contain |𝑉𝑊 | ≈ 20, 000 words, while

the Penn Treebank project recognizes ≈ 40 POS tags, which means that

x ∈ ℝ40,040
(at least).

Another issue is that the one-hot encoding of words does not allow for

meaningful similarity comparisons between words: in NLP, words are

considered to be similar if they appear in similar sentence contexts.
40

40: “Ye shall know a word by the company

it keeps”, as the distributional semantics
saying goes. The term “kumipwam” is not

found in any English dictionary, but its

probable meaning as “a small beach/sand

lizard” could be inferred from its presence

in sentences such as “Elowyn saw a tiny

scaly kumipwam digging a hole on the

beach”. It is easy to come up with exam-

ples where the context is ambiguous, but

on the whole the contextual approach has

proven itself to be mostly reliable.

The terms “black” and “white” are similar in this framework as they

both often occur immediately preceding the same noun (such as “car”,

“dress”, etc.); human beings recognize that the similarity goes further

than both of the terms being adjectives – they are both colours, and are

often used as opposite poles on a variety of spectra. This similarity is

impossible to detect from the one-hot encoding vectors, however, as all

its word representations are exactly as far from one another.



23.4 Advanced Topics 1545

SVD proposes a single resolution to both of these issues. Let M 𝑓 ∈
ℝ|𝑉𝑊 |×|𝑉𝐶 | be the word-context matrix of the association measure 𝑓 ,

derived from some appropriate corpus, that is, if 𝑉𝑊 = {𝑤1 , . . . , 𝑤 |𝑉𝑊 |}
and 𝑉𝐶 = {𝑐1 , . . . , 𝑐 |𝑉𝐶 |} are the vocabulary and contexts of the corpus,

respectively, then 𝑀
𝑓

𝑖 , 𝑗
= 𝑓 (𝑤𝑖 , 𝑐 𝑗) for all 𝑖 , 𝑗.

For instance, one could have

𝑉𝑊 = {aardvark, . . . , zygote} ,
𝑉𝐶 = {. . . ,word appearing before "cat", . . .},

and 𝑓 given by positive pointwise mutual information for words and

contexts in the corpus (the specifics of which are not germane to the

discussion at hand; see [5] for details).

The SVD

M 𝑓 ≈M 𝑓

𝑑
= U𝑑Σ𝑑V⊤𝑑

yields 𝑑−dimensional word embedding vectors U𝑑Σ𝑑 which preserve the

context-similarity property discussed above. The decomposition of the

POS-context matrix, where words are replaced by POS tags, produces

POS embedding vectors.

Perhaps a pre-calculated 4-dimensional word embedding of 𝑉𝑊 is:

while a 3-dimensional POS embeddings could be:

leading to a 11-dimensional representation x′ of x

which provides a substantial reduction in the dimension of the input

space.
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23.4.2 PCA Regression and Partial Least Squares

For 𝑚 = 1, . . . , 𝑀 ≤ 𝑝, we let 𝑧𝑚 = ®𝑋⊤𝝓𝑚 be linear combinations of the

original predictors {𝑋1 , . . . , 𝑋𝑝}.

If we are fitting 𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x] using OLS, we can also fit

𝑦𝑖 = 𝜃0 + z⊤
𝑖
𝜽 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛 using OLS. If the constants 𝜙𝑚,𝑗 are

selected wisely, then transforming the variables can yield a model that

outperforms OLS regression – the predictions might be better than those

obtained by fitting 𝑦𝑖 = 𝛽0 + x⊤
𝑖
𝜷 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 .

By definition, 𝜃0 = 𝛽0 and

z⊤𝑖 𝜽 =

𝑀∑
𝑚=1

𝜃𝑚𝑧𝑖 ,𝑚 =

𝑀∑
𝑚=1

𝜃𝑚x⊤𝑖 𝝓 =

𝑀∑
𝑚=1

𝜃𝑚

𝑝∑
𝑗=1

𝜙𝑚,𝑗𝑥𝑖 , 𝑗

=

𝑝∑
𝑗=1

𝑀∑
𝑚=1

𝜃𝑚𝜙𝑚,𝑗𝑥𝑖 , 𝑗 =
𝑝∑
𝑗=1

𝛽 𝑗𝑥𝑖 , 𝑗 = x⊤𝑖 𝜷,

where 𝛽 𝑗 =
∑𝑀
𝑚=1

𝜃𝑚𝜙𝑚,𝑗 , which is to say that the dimension reduction

regression is a special case of the original linear regression model, with

constrained coefficients 𝛽 𝑗 .

Such constraints can help with the bias-variance trade-off (when 𝑝 ≫ 𝑛,

picking 𝑀 ≪ 𝑝 can reduce the variance of the fitted coefficients).

The challenge then is to find an appropriate way to pick the 𝜙𝑚,𝑗 . We

will consider two approaches: principal components and partial least
squares.

Principal Components Regression Let us assume that𝑀 principal com-
ponents {𝑍1 , . . . , 𝑍𝑀} have been retained (see Section 23.2.3), where

𝑍𝑖 = w⊤𝑖 (𝑋1 , . . . , 𝑋𝑝),

assuming that the eigenvectors w𝑖 are ordered according to the corre-

sponding eigenvalues (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 ≥ 0):

the first principal component is the normalized (centered and

scaled) linear combination of variables with the largest variance;

the second principal component is the normalized linear combi-

nation of variables with the largest variance, subject to having no

correlation with all previous components (the first);

. . .

the 𝑀th principal component is the normalized linear combina-

tion of variables with the largest variance, subject to having no

correlation with all previous components.

The regression function 𝑓 (x) = E[𝑌 | ®𝑋 = x] is hopefully well approxi-

mated by the function 𝑔(z) = E[𝑌 | ®𝑍 = z], i.e.,

�̂�𝑧 = 𝑔(z) = 𝛾0 + 𝛾1𝑧1 + · · · + 𝛾𝑀𝑧𝑀

should compare “reasonably well” to

�̂�𝑧 = 𝑓 (z) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 .
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The main challenge is to determine the optimal 𝑀. If 𝑀 is too small, we

run the risk of having a model with high squared bias and low variance

(underfitting); if 𝑀 is too large, not only we we not achieve much in the

way of dimension reduction, but we might produce a model with low

squared bias and high variance (overfitting).

Any method that allows for the estimation of MSETe (such as cross-

validation) could be used to select 𝑀, but there are other approaches as

well (again, see Section 23.2.3).

Partial Least Squares In principal component regression (PCR), the

identified directions (linear combinations) that best represent the pre-

dictors {𝑋1 , . . . , 𝑋𝑝} are determined in an unsupervised manner: the

response 𝑌 plays no role in determining the principal components.

As such, there is no guarantee that the directions that best explain the

predictors are also the best directions to use to predict the response. The

framework for partial least squares is the same as that for PCR, except

that the directions 𝑍𝑖 are selected both to explain the predictors and to

be related to the response 𝑌.

As in PCR, we start by normalizing (centering and scaling) the predictor

part of the training set Tr. The first direction 𝑍1 is computed using the

OLS coefficient estimates of

𝑌𝑖 = 𝜙1

0, 𝑗 + 𝜙1, 𝑗𝑋𝑖 , 𝑗 + 𝛾𝑖 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑁.

Note that each 𝜙1, 𝑗 is proportional to 𝜌𝑋𝑗 ,𝑌 and that the direction

𝑍1 =

𝑝∑
𝑗=1

𝜙1, 𝑗𝑋𝑗 = 𝝓⊤
1

®𝑋

places the highest weights on the predictors that are most strongly linked

to the response. Now, we run an OLS regression of 𝑌 using 𝑍1 as a

predictor:

𝑌𝑖 = 𝜓0 + 𝜓1𝑧1,𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁

and let 𝜀𝑖 = 𝑌𝑖 −𝜓0−𝜓1𝑧1,𝑖 be the component of the data not “explained”

by 𝑍1.

The second direction 𝑍2 is computed using the OLS coefficient estimates

of

𝜀𝑖 = 𝜙2

0, 𝑗 + 𝜙2, 𝑗𝑋𝑖 , 𝑗 + 𝛾𝑖 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑁.

Note that each 𝜙2, 𝑗 is proportional to 𝜌𝑋𝑗 ,𝜀 and that the direction

𝑍2 =

𝑝∑
𝑗=1

𝜙2, 𝑗𝑋𝑗 = 𝝓⊤
2

®𝑋

places higher weights on the predictors that are most strongly linked to

the first residual (which is to say, the component that does not explain 𝑍1).

The process continues in the same way, building directions 𝑍3 , . . . , 𝑍𝑝
that are strongly linked, in sequence, to the preceding residuals; as the

chain starts with the response 𝑌, the directions do take into account both

the related response and the predictor structure.
41

41: The problem of selecting 𝑀 is tackled

as it is in PCA regression.
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Summary Due to the bias-variance trade-off (see Chapters 19 and 21),

we must often strike the right balance in terms of model complexity,

which is usually measured in terms of the number of parameters that

must be estimated from Tr.

While this allows us to compare completely different models with one

another, it also suggests that models that use fewer predictors as inputs

are not as complex as those that use the full set of predictors. The full

models are not necessarily the ones that perform best (in term of Te
error), thanks to the curse of dimensionality.

Thankfully, predictor subset selection methods can be used to select the

best model: while the cross-validation approach is strongly encouraged,

other approaches (including shrinkage, feature selection, dimension

reduction) could also prove competitive.

23.4.3 Spectral Feature Selection

Text mining tasks often give rise to datasets which are likely to be

affected by the CoD; the problem also occurs when dealing with-high

resolution images, with each of the millions of pixels it contains viewed

as a feature.
42

42: Such images contain millions of pixels,

if not more.

Spectral feature selection attempts to identify “good” or “useful” training

features in such datasets by measuring their relevance to a given task via
spectral analysis of the data.

General Formulation for Feature Selection Let X ∈ ℝ𝑛×𝑝
be a data set

with 𝑝 features and 𝑛 observations. The problem of ℓ−feature selection,

with 1 ≤ ℓ ≤ 𝑝, can be formulated as an optimization problem [33]:

max

W
𝑟(X̂)

s.t. X̂ = XW, W ∈ {0, 1}𝑝×ℓ

W⊤1𝑝×1 = 1ℓ×1 , ∥W1ℓ×1∥0 = ℓ

The score function 𝑟(·) is the objective which evaluates the relevance

of the features in X̂, the data set containing only the features selected

by the selection matrix W with entries either 0 or 1. To ensure that

only the original feature are selected (and not a linear combination of

features), the problem stipulates that each column of W contains only

one 1 (W⊤1𝑝×1 = 1ℓ×1); to ensure that exactly ℓ rows contain one 1, the

constraint ∥W1ℓ×1∥0 = 𝑙 is added.

The selected features are often represented by

X̂ = XW = ( 𝑓𝑖1 , . . . , 𝑓𝑖ℓ ) with {𝑖1 , . . . , 𝑖ℓ } ⊂ {1, . . . , 𝑝}.

If 𝑟(·)does not evaluate features independently, this optimization problem

is NP-hard. To make to problem easier to solve, the features are assumed

to be independent of one another.
43

In that case, the objective function43: Or that their interactions are negligi-

ble.
reduces to

max

W
𝑟(X̂) = max

W

(
𝑟( 𝑓𝑖1) + · · · + 𝑟( 𝑓𝑖𝑙 )

)
;
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the optimization problem can then be solved by selecting the ℓ features

with the largest individual scores. The link with spectral analysis will

now be explored.
44

44: We have encountered some of these

concepts in Section 22.4.2.

Similarity Matrix Let 𝑠𝑖 , 𝑗 denote the pairwise similarity between ob-

servations x𝑖 and x𝑗 . If class labels 𝑦(x) ∈ {1, . . . , 𝐾} are known for all

instances x, the following function can be used

𝑠𝑖 , 𝑗 =

{
1

𝑛𝑘
, 𝑦(x𝑖) = 𝑦(x𝑗) = 𝑘

0, otherwise

where 𝑛𝑘 is the number of observations with class label 𝑘.

If class labels are not available, a popular similarity function is the

Gaussian radial basis function (RBF) kernel, given by

𝑠𝑖 , 𝑗 = exp

(
−
∥𝑥𝑖 − 𝑥 𝑗 ∥2

2𝜎2

)
,

where 𝜎 is a parameter that is used to control the Gaussian’s width.
45

45: One can think of this as the “reach” of

each point.
For a given 𝑠𝑖 , 𝑗 and 𝑛 observations, the similarity matrix 𝑆 is an 𝑛 × 𝑛
matrix containing the observations’ pairwise similarities, 𝑆(𝑖 , 𝑗) = 𝑠𝑖 , 𝑗 ,

𝑖 , 𝑗 = 1, . . . , 𝑛.

By convention, diag(𝑆) = 0. Other similarity functions include the

following kernels [4]:

1. linear – 𝑠𝑖 , 𝑗 = x⊤
𝑖
x𝑗 + 𝑐, 𝑐 ∈ ℝ;

2. polynomial – 𝑠𝑖 , 𝑗 = (𝛼x⊤
𝑖
x𝑗 + 𝑐)𝑑, 𝛼, 𝑐 ∈ ℝ,

46 𝑑 ∈ ℕ, and 46: For image processing, this kernel is

often used with 𝛼 = 𝑐 = 1.

3. cosine – 𝑠𝑖 , 𝑗 =
x⊤
𝑗
x𝑖

∥x𝑖 ∥∥x𝑗 ∥ , which measures the similarity of 2 vectors

by determining the angle between them.
47

47: It is often used in high-dimensional

applications such as text mining.

Similarity Graph For each similarity matrix 𝑆, one can construct a

weighted graph 𝐺(𝑉, 𝐸) in which each observation corresponds to a

node and the associated pairwise similarities correspond to the respective

edge weights;𝑉 is the set of all vertices (nodes) and 𝐸 the set of all graph

edges. As an example, consider the simple dataset:

X =

[
1 0 3 6 7 6

1 2 2 4 4 8

]⊤
;

for validation purposes, we will assume that the first three belong to one

group, the last three, to another. The scatter plot is obtained below:

from matplotlib import ticker, cm

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial.distance import pdist, squareform, cdist

import networkx as nx

from numpy.linalg import eigh,norm

import random # for replicability
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# Data

X = np.array([[1,1,1],[0,2,1],[3,2,1],[6,4,1],[7,5,1],[6,8,1]])

Y = np.array([0,0,0,1,1,1])

# Plot

plt.scatter(X[:,0],X[:,1], c=Y)

Next, we compute the similarity (adjacency matrix). We use the Gaussian

RBF kernel with 𝜎 = 0.5, and pdist() from scipy.spatial.distance

which computes the pairwise distance of each row from an input data

matrix. pdist() return a vector, which allows a speed boost for the

following computation, but it needs to be converted back to a matrix for

the next steps.
48

48: This is done via squareform(), also

from scipy.spatial.distance.

S = squareform(np.exp(-pdist(X))/((0.5)**2))

plt.matshow(S)

plt.show()
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or

𝑆 =



0 0.972 0.428 0.012 0.003 0.001

0.972 0 0.199 0.007 0.002 0.001

0.428 0.199 0 0.109 0.027 0.005

0.012 0.007 0.109 0 0.972 0.073

0.003 0.002 0.027 0.972 0 0.169

0.001 0.001 0.005 0.073 0.169 0


,

and the resulting graph 𝐺 is shown below:

G = nx.from_numpy_matrix(S)

# Add the weight (similarity) attribute to the graph

pos = {i : [X[i,0],5*X[i,1]] for i in range(6)}

labels = nx.get_edge_attributes(G,’weight’)

# round the similarity (for display)

labels = {k: round(v,2) for k, v in labels.items()}

# Create the edge list and labels. Remove null edges

edge_list = [k for k, v in labels.items() if v != 0]

labels = {k: v for k, v in labels.items() if v != 0}

# Draw it using the edge and labels list, at the right position

nx.draw_networkx_nodes(G,pos)

nx.draw_networkx_edges(G,pos, edgelist=edge_list)

nx.draw_networkx_edge_labels(G,pos, edge_labels=labels)

plt.axis(’off’)

plt.show()

Laplacian Matrix of a Graph The similarity matrix 𝑆 is also known as

the adjacency matrix 𝐴 of the graph 𝐺,
49

from which the degree matrix 49: In certain formulations, the entries

of the adjacency matrix 𝐴 are instead

defined to take on the value 1 or 0,

depending as to whether the similiarity

between the corresponding observations

is greater than (or smaller than) some

pre-determined threshold 𝜏.

𝐷 can be constructed:

𝐷(𝑖 , 𝑗) =


𝑑𝑖 ,𝑖 =

𝑛∑
𝑘=1

𝑎𝑖 ,𝑘 , 𝑖 = 𝑗

0, otherwise
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By definition,𝐷 is diagonal; the element 𝑑𝑖 ,𝑖 can be viewed as an estimate

of the density around x𝑖 ; as 𝑎𝑖 ,𝑘(= 𝑠𝑖 ,𝑘) is a measure of similarity between

x𝑖 and x𝑘 , the larger 𝑎𝑖 ,𝑘 is, the more similar the two observations are.

A large value of 𝑑𝑖 ,𝑖 indicates the presence of one or more observations

“near” x𝑖 ; conversely, a small value of 𝑑𝑖 ,𝑖 suggests that x𝑖 is isolated.

The Laplacian and normalized Laplacian matrices are defined as

𝐿 = 𝐷 − 𝐴 and L= 𝐷−1/2𝐿𝐷−1/2 ,

respectively. Since 𝐷 is diagonal, 𝐷−1/2 = diag

(
𝑑
−1/2
𝑖 ,𝑖

)
.

It can be shown that 𝐿 and Lare both positive semi-definite matrices. By

construction, the smallest eigenvalue of 𝐿 is 0, with associated eigenvector

1, since

𝐿1 = (𝐷 − 𝐴)1 = 𝐷1 − 𝐴1 (23.1)

=
©«
𝑑1,1

...

𝑑𝑛,𝑛

ª®®¬ −
©«

𝑛∑
𝑘=1

𝑎1,𝑘

...
𝑛∑
𝑘=1

𝑎𝑛,𝑘

ª®®®®®®®¬
=

©«

𝑑1,1 −
𝑛∑
𝑘=1

𝑎1,𝑘

...

𝑑𝑛,𝑛 −
𝑛∑
𝑘=1

𝑎𝑛,𝑘

ª®®®®®®®¬
=

©«
0

...

0

ª®®¬ = 0 · 1. (23.2)

For L, the corresponding eigenpair is 0 and diag(𝐷1/2) (the proof is

similar).

We can compute the degree matrix 𝐷 and the Laplacian 𝐿 for the toy

example above. For the degree matrix, we use the method sum() from

numpy with the argument axis=1 to sum over the columns and diag()

to convert the result into a diagonal matrix.

The Laplacian is simply 𝐿 = 𝐷 − 𝑆.

rowsum = S.sum(axis=1)

D = np.diag(rowsum)

L = D - S

plt.matshow(L)

plt.show()
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Eigenvectors as Cluster Separators The eigenvectors of the Laplacian

matrices have some very useful properties relating to features selection.

If 𝝃 ∈ ℝ𝑛
is an eigenvector of 𝐿 or L, then 𝝃 can be viewed as a function

that assigns a value to each observation in X.

This point-of-view can prove quite useful, as the following simple example

from [33] shows. Let X be constructed of three two-dimensional Gaussians,

each with unit variance (and no covariance) but with different means.

We start by generating 30 observations for each of the 3 mechanisms, and

re-shuffle them into a “random” dataset.

random.seed(1234) # for replicability

mean1 = [0,5]

cov1 = [[1,0],[0,1]]

X1 = np.random.multivariate_normal(mean1,cov1,30)

mean2 = [5,0]

cov2 = [[1,0],[0,1]]

X2 = np.random.multivariate_normal(mean2,cov2,30)

mean3 = [-5,-5]

cov3 = [[1,0],[0,1]]

X3 = np.random.multivariate_normal(mean3,cov3,30)

plt.scatter(X1[:,0],X1[:,1])

plt.scatter(X2[:,0],X2[:,1])

plt.scatter(X3[:,0],X3[:,1])

X = np.concatenate((X1,X2,X3), axis=0)

Y = np.array([0] * 30 + [1] * 30 + [2] * 30).reshape((90,1))

df = np.concatenate((X,Y), axis = 1)

np.random.shuffle(df)

X,Y = df[:,:2],df[:,2]

We can then compute the similarity (using Guassian RBF with 𝜎 = 1),

adjacency, degree and Laplacian matrix. Using eigh() from numpy we

can find the eigenvalue and eigenvectors of 𝐿. This function returns a

vector of all the eigenvalues of 𝐿 and a matrix of all its eigenvectors as

columns. According to the convention, the eigenspace is sorted so that

the eigenvalues satisfy 0 = 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ . . .

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

# Find eigenspace of L (vs: eigenvalue vector, es: eigenvector matrix)

vs,es = eigh(L)

# Sort the eigenvalue

arg_sort = vs.argsort()

vs = vs[arg_sort]

es = es[:,arg_sort]
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We show properties of 𝐿’s spectrum by providing the contour plot of the

second eigenvector/eigenvalue pair.
50

50: Remember, the eigenvectors act as

functions in this viewpoint. For a given

eigenvector 𝜆𝑗 , the contour value at each

point x𝑖 is the value of the associated eigen-

vector 𝝃𝑗 in the 𝑖th position, namely 𝜉𝑗 ,𝑖 .
For any point x not in the dataset, the con-

tour value is given by averaging the 𝜉𝑗 ,𝑘
of the observations x𝑘 near x, inversely

weighted by the distances ∥x𝑘 − x∥.

def gen_z(lam = 1):

""" Compute the meshgrid for z

"""

for i in range(len(x)):

for j in range(len(y)):

dist = cdist([[x_[i,j],y_[i,j]]],X)[0]

z[i,j] = np.average(es[:,lam], weights= 1/dist)

# Setup the meshgrid

x = np.arange(-8.5,8.5,0.05)

y = np.arange(-8.5,8.5,0.05)

x_, y_ = np.meshgrid(x,y, indexing=’ij’)

z = 0*x_

# Index of the eigenvalue to be plotted (0 is the first, etc)

l = 1

# Compute the meshgrid with the gen_z function

gen_z(l)

# Setup and plot

fig,ax = plt.subplots()

cs = ax.contourf(x_, y_, z)

ax.contour(cs,colors=’k’)

ax.grid(c=’k’, ls=’-’, alpha=0.3)

fig.colorbar(cs)

ax.scatter(X[:,0],X[:,1], c=Y)

ax.set_title(’lambda{0}’.format(l+1))

plt.show()
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The next block accomplishes the same tasks, but it does so for potentially

more than one eigenvector/eigenvalue pair, and , and aranges the plots in

a grid. The contour plot of the ranked eigenvectors 𝝃1 , 𝝃2 , 𝝃3 , 𝝃4 , 𝝃5 and

𝝃20, corresponding to the eigenvalues 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ 𝜆4 ≤ 𝜆5 ≤ 𝜆20 are

computed and displayed below.

x = np.arange(-8.5,8.5,0.5)

y = np.arange(-8.5,8.5,0.5)

x_, y_ = np.meshgrid(x,y, indexing=’ij’)

z = 0*x_

# List of index of the eig to be plotted

ls = [0,1,2,3,4,19]

grid_length = 3

grid_width = 2

plt.figure(figsize=(12,12))

for i in range(len(ls)):

ax = plt.subplot(grid_length,grid_width,i+1)

z = 0*x_

gen_z(ls[i])

cs = ax.contourf(x_, y_, z)

ax.contour(cs,colors=’k’)

ax.grid(c=’k’, ls=’-’, alpha=0.3)

ax.scatter(X[:,0],X[:,1], c=Y)

ax.set_title(’lambda{0}’.format(ls[i]+1))
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From those plots, it seems as though the first eigenvector does a better job

at capturing the cluster structure in the data, while larger values tends

to capture more of the sub-cluster structure. One thing to note is that it

might appear that 𝜆1 is as good (or better) as 𝜆2 and 𝜆3 to separate the

groups, but a closer look at the scale of the contour plot of 𝜆1 shows that

its values have a miniscule range.

The fact that there is any variation at all is due to floating point errors in

the practical computation of the eigenvalue 𝜆1 and the eigenvector 𝝃1; as

seen previously, these should be exactly 0 and 1, respectively.

At any rate, this process shows how the eigenpairs of the Laplacian matrix

contains information about the structure of X.

In spectral graph theory, the eigenvalues of the Laplacian measure the

smoothness of the eigenvectors. An eigenvector is said to be smooth if it

assigns similar values to points that are near one another.

In the previous example, assume that the data is unshuffled, that is, the

first 𝑘1 points are in the same cluster, the next 𝑘2 are also in the same,

albeit different, cluster, and so on. The next plot shows the smoothness

of the eigenvector over each cluster; colour is added to emphasize the

cluster limits.

# Recompute everything without the shuffling and sorting part

X = np.concatenate((X1,X2,X3), axis=0)

Y = np.array([0] * 30 + [1] * 30 + [2] * 30).reshape((90,1))

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

vs,es = eigh(L)

# List of index of selected eigenvalue.

ls = [0,1,2,19]

# Plot a line for each index in ls

for l in ls:

plt.plot(es[:,l], label = ’lambda{0}’.format(l+1))

# Color the cluster limits

plt.axvspan(0,30, alpha = 0.5)

plt.text(15,-0.4, ’Cluster 1’, fontsize=12)

plt.axvspan(30,60, alpha = 0.5, facecolor=’g’)

plt.text(45,-0.4, ’Cluster 2’, fontsize=12)

plt.axvspan(60,90, alpha = 0.5, facecolor=’orange’)

plt.text(75,-0.4, ’Cluster 3’, fontsize=12)

plt.legend()

plt.ylabel(’Value’)

plt.xlabel(’Component k of the eigenvector’)

plt.show()
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Both 𝜆2 and 𝜆3 are fairly smooth, as they seem to be piece-wise constant

on each cluster, whereas 𝜆20 is all over the place on cluster 1 and constant

on the rest of the data. As discussed previously 𝜆1 is constant over the

entirety of the dataset, marking it as maximally smooth but not very

useful from the perspective of differentiating data structure.
51

51: As a reminder, the eigenvalues them-

selves are ordered in increasing sequence:

for the current example,

𝜆1 = 0 ≤ 𝜆2 = 1.30 × 10
−2 ≤ 𝜆3 = 3.94 × 10

−2

≤ · · ·𝜆20 = 2.95 ≤ · · ·

Indeed, let x ∈ ℝ𝑛
. then

x⊤𝐿x = x⊤𝐷x − x⊤𝐴x =

𝑛∑
𝑖=1

𝑑𝑖𝑥
2

𝑖 −
𝑛∑

𝑖 , 𝑗=1

𝑎𝑖 , 𝑗𝑥𝑖𝑥 𝑗

=
1

2

(
𝑛∑
𝑖=1

𝑑𝑖𝑥
2

𝑖 − 2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +
𝑛∑
𝑗=1

𝑑 𝑗𝑥
2

𝑗

)
=

1

2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗(𝑥𝑖 − 𝑥 𝑗)2

If x = 𝝃 is a normalized eigenvector of 𝐿, then 𝝃⊤𝐿𝝃 = 𝜆𝝃⊤𝝃 = 𝜆, thus

𝜆 = 𝝃⊤𝐿𝝃 =
1

2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗(𝜉𝑖 − 𝜉𝑗)2.

Instinctively, if the eigenvector component does not vary a lot for obser-

vations that are near one another, one would expect the corresponding

eigenvalue to be small; this result illustrates why the small magnitude

of the eigenvalue is a good measure of the smoothness of its associated

eigenvector.
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Feature Ranking We can use the above discussion as a basis for feature

selection. If x is not en eigenvector of 𝐿, the value x⊤𝐿x can also be seen

as a measure of how much x varies locally. This can be used to measure

how meaningful a feature f ∈ ℝ𝑛
is.

In the current example, the only two features are the Euclidean coordi-

nates of the observations: f1 and f2. We also add a useless feature f3 to

the dataset (distributed uniformly across the clusters).

# Add a random feature

U1 = np.random.uniform(size=(90,1))

X = np.concatenate((X,U1), axis=1)

f = [0,1,2]

for i in f:

plt.plot(X[:,i], label = ’F{0}’.format(i+1))

plt.axvspan(0,30, alpha = 0.5)

plt.text(15,2, ’Cluster 1’, fontsize=12)

plt.axvspan(30,60, alpha = 0.5, facecolor=’g’)

plt.text(45,2, ’Cluster 2’, fontsize=12)

plt.axvspan(60,90, alpha = 0.5, facecolor=’orange’)

plt.text(75,2, ’Cluster 3’, fontsize=12)

plt.legend()

plt.ylabel(’Value’)

plt.xlabel(’Component k of feature’)

plt.show()
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The plot shows that the third feature is not able to distinguish between

the clusters. However, we also have:

for i in [0,1,2]:

f = X[:,i]

print("F{0}".format(i+1), "->",f.T.dot(f.dot(L)))

F1 -> 105.35092482283625

F2 -> 110.6011478717457

F3 -> 46.90787692252817

Thus

f⊤
1
𝐿f1 = 94.3, f⊤

2
𝐿f2 = 102.5, f⊤

3
𝐿f3 = 41.7;

by the previous assumption relating the magnitude of 𝝃⊤𝐿𝝃 to the

smoothness of 𝝃, this would seem to indicate that f3 is a “better” feature

than the other two.

The problem is that the value of f⊤
𝑖
𝐿f𝑖 is affected by the respective norms

of f𝑖 and 𝐿. This need to be addressed.

The relation between 𝐿 and Lyields

f⊤𝑖 𝐿f𝑖 = f⊤𝑖 𝐷
1/2L𝐷1/2f𝑖 = (𝐷1/2f𝑖)𝑇L(𝐷1/2f𝑖).

Set f̃𝑖 = (𝐷1/2f𝑖) and f̂𝑖 = f̃𝑖/∥f̃𝑖 ∥. The feature score metric 𝜑1 is a

normalized version of the smoothness measure:

𝜑1(f𝑖) = f̂𝑖
⊤
Lf̂𝑖 , 𝑖 = 1, . . . , 𝑝.

For 𝜑1, smaller values are better. The scoring function can also be defined

using the spectral decomposition of L.

Suppose that (𝜆𝑘 , 𝝃𝑘), 1 ≤ 𝑘 ≤ 𝑛 are eigenpairs of L and let 𝛼𝑘 = f̂𝑖
⊤
𝝃𝑘 ,

for a given 𝑖. Then

𝜑1(f𝑖) =
𝑛∑
𝑘=1

𝛼2

𝑘
𝜆𝑘 , with

𝑛∑
𝑘=1

𝛼2

𝑘
= 1.

Indeed, let L= UΣU⊤ be the eigen-decomposition of L. By construction,

U = [𝝃1 |𝝃2 | · · · |𝝃𝑛] and Σ = diag(𝜆𝑘), so that

𝜑1(f𝑖) = f̂𝑖
⊤
Lf̂𝑖 = f̂𝑖

⊤
UΣU⊤f̂𝑖

= (𝛼1 , . . . , 𝛼𝑛)𝚺(𝛼1 , . . . , 𝛼𝑛)⊤ =

𝑛∑
𝑘=1

𝛼2

𝑘
𝜆𝑘 .

This representation allows for a better comprehension of the 𝜑1 score;

𝛼𝑘 is the cosine of the angle between the normalized feature f̂𝑖 and

eigenvector 𝝃𝑘 . If a feature aligns with “good” eigenvectors (i.e., those

with small eigenvalues), its 𝜑1 score will also be small.

The larger 𝛼2

1
is, the smaller

∑𝑛
𝑘=2

𝛼2

𝑘
is; this is problematic because, in

such cases, a small value of 𝜑1 indicates smoothness but not separability.
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To overcome this issue, 𝜑1 can be normalized by

∑𝑛
𝑘=2

𝛼2

𝑘
, which yields a

new scoring function:

𝜑2(f𝑖) =
∑𝑛
𝑘=1

𝛼2

𝑘
𝜆𝑘∑𝑛

𝑘=2
𝛼2

𝑘

=
f̂𝑖
⊤
Lf̂𝑖

1 −
(
f̂𝑖
⊤
𝝃1

)
A small value for 𝜑2 once again indicates that a feature closely aligns

with “good” eigenvectors.

Another ranking feature is closely related to the other two. According to

spectral clustering, the first 𝑘 non-trivial eigenvectors form an optimal

set of soft cluster indicators that separate the graph 𝐺 into 𝑘 connected

parts. Therefore, we define 𝜑3 as

𝜑3(f𝑖 , 𝑘) =
𝑘∑
𝑗=2

(2 − 𝜆 𝑗)𝛼2

𝑗 .

Contrary to the other scoring functions, 𝜑3 assigns larger value to feature

that are more relevant. It also prioritizes the leading eigenvectors, which

helps to reduce noise. Using this ranking function requires a number

of categories or clusters 𝑘 to be selected (depending on the nature

of the ultimate task at hand); if this value is unknown, 𝑘 becomes a

hyper-parameter to be tuned.

The feature score metrics are implemented as below:

D_sq = np.sqrt(D)

L_norm = D_sq.dot(L).dot(D_sq)

def score_1(i):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

return f_hat.dot(L_norm).dot(f_hat)

def score_2(i):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

phi_1 = f_hat.dot(L_norm).dot(f_hat)

return phi_1 / (1 - (f_hat.dot(es[:,0])**2))

def score_3(i,k):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

alpha = f_hat.dot(es)

temp = (2 - vs[1:k]) * (alpha[1:k])**2

return np.sum(temp)

from tabulate import tabulate

n_feature = X.shape[1]

results = {’phi_1’:[], ’phi_2’:[], ’phi_3’: []}

k = 3
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for i in range(n_feature):

results[’phi_1’].append(score_1(i))

results[’phi_2’].append(score_2(i))

results[’phi_3’].append(score_3(i,k))

print(tabulate(results,

headers="keys",

showindex=True,

tablefmt="simple",

numalign="left"))

phi_1 phi_2 phi_3

-- ------- ------- --------

0 2.5516 3.28365 1.37706

1 2.71268 3.47861 1.40086

2 17.0148 31.8369 0.433994

This make more sense, as the pattern is similar to the pattern obtained

for the eigenvalues: f1 , f2, being able to differentiate the clusters, have

smaller 𝜑1 scores than f3. Returning to the current example, while the

score of the useless feature 3, 𝜑1(f3) is larger than the other scores, it is

still small when compared to the eigenvalues of 𝐿. This is due to the fact

the f3 and 𝝃1 are nearly co-linear.

Computing 𝜑2 for our three features yields a larger distinction between

the real features and the random, useless one than with 𝜑1.

Regularization There is one glaring problem with the ranking functions

that have been defined previously: they all assume the existence of a gap

between subsets of “large” and “small” eigenvalues. For clearly separated

data, that is to be expected; but in noisy data, this gap may be negligible,

which leads to an increase in the score value of poor features [32].

This issue can be tackled by applying a spectral matrix function 𝛾(·)
to the Laplacian L, replacing the original eigenvalues by regularized
eigenvalues as follows:

𝛾(L) =
𝑛∑
𝑗=1

𝛾(𝜆 𝑗)𝜉𝑗𝜉⊤𝑗 .

In order for this to work properly, 𝛾 needs to be (strictly) increasing.

Examples of such regularization functions include:

𝛾(𝜆) (name)

1 + 𝜎2𝜆 (regularized Laplacian)

exp(𝜎2/2𝜆) (diffusion Process)

𝜆𝜈 , 𝜈 ≥ 2 (high-order polynomial)

(𝑎 − 𝜆)−𝑝 , 𝑎 ≥ 2 (𝑝-step random walk)

(cos𝜆𝜋/4)−1
(inverse cosine)
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The ranking function 𝜑1 , 𝜑2 , 𝜑3 can be regularized via

�̂�1(f𝑖) =
𝑛∑
𝑘=1

𝛼2

𝑘
𝛾(𝜆𝑘)

�̂�2(f𝑖) =
f̂𝑖
⊤
𝛾(L)f̂𝑖

1 −
(
f̂𝑖
⊤
𝝃1

)
�̂�3(f𝑖) =

𝑘∑
𝑗=2

(𝛾(2) − 𝛾(𝜆 𝑗))𝛼2

𝑗

To illustrate how this regularization process can help reduce noise (still

using the framework from the previous example), X was contaminated

with random values from a normal distribution with a variance of 1.5.

random.seed(5678) # for replicability

noise = np.random.normal(0, 1.3, 90*3).reshape(90,3)

X_noise = X + noise

plt.scatter(X_noise[:,0], X_noise[:,1])

plt.show()

We plot the components of the eigenvalues of three normalized Laplacians:

one from the original data, one from the noisy data, and one from the

noisy data with a 3rd order polynomial regularization.
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def isqrt(x):

if x == 0:

return 0

else:

return x**(-0.5)

v_isqrt = np.vectorize(isqrt)

def find_eig(X, k = lambda x:x):

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

D_is = v_isqrt(D)

L_norm = k(D_is.dot(L).dot(D_is))

vs,es = eigh(L_norm)

arg_sort = vs.argsort()

vs = vs[arg_sort]

es = es[:,arg_sort]

return vs,es, L_norm

vs,es,L = find_eig(X)

vs_n,es_n,L_noise = find_eig(X_noise)

vs_k,es_k, L_k = find_eig(X_noise, k = lambda x:x**3)

plt.plot(vs, ’.’, label = ’Real’)

plt.plot(vs_n, ’x’, label = ’Noise’)

plt.plot(vs_k, "+", label = ’3 order poly’)

plt.title(’eigenvalue lambda’)

plt.legend()



1564 23 Feature Selection and Dimension Reduction

The preceding plot shows the effect of noise onL’s: it tends to linearize the

eigenvalues, and this provides much support to the poorer eigenvectors.

The eigenvalues of the noisy Laplacian have been regularized using the

standard cubic 𝛾(𝜆) = 𝜆3
; the distinction between the first eigenvalues

and the rest is clear.

We can compare different kernels:

regularized Laplacian – 𝛾(𝜆) = 1 + (0.9)2𝜆
high-order polynomial – 𝛾(𝜆) = 𝜆3

diffusion process – 𝛾(𝜆) = exp((0.3)2/2𝜆)
𝑝−step random walk – 𝛾(𝜆) = (2 − 𝜆)−1

inverse cosine – 𝛾(𝜆) = cos(𝜆𝜋/4)−1

vs_n,es_n,_ = find_eig(X_noise)

vs_reg, es_reg,_ = find_eig(X_noise, k = lambda x:1 + (0.9)**2 * x)

vs_k3,es_k3,_ = find_eig(X_noise, k = lambda x:x**3)

vs_diff, es_diff,_ = find_eig(X_noise, k = lambda x: np.exp((0.3)**2/(2*x)))

vs_1step, es_1step,_ = find_eig(X_noise, k = lambda x: (2-x)**(-1))

vs_cos, es_cos, _ = find_eig(X_noise, k = lambda x: np.cos(x * (3.1416/4))**(-1))

plt.plot(vs_n, ’.’, label = ’Noise’)

plt.plot(vs_k, ’.’, label = ’3 order poly’)

plt.plot(vs_reg, ’.’, label = ’Regularized (0.9)’)

plt.plot(vs_diff, ’.’, label = ’Diffusion (0.5)’)

plt.plot(vs_1step, ’.’, label = ’1-Step (2)’)

plt.plot(vs_cos, ’.’, label = ’Inverse Cos’)

plt.ylim(0,3)

plt.title(’eigenvalues lambda’)

plt.legend()

plt.show()
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The choice of a specific regularization function depends on the context

and the goals of the data analysis task; for large datasets, considerations

of ease of computation may also form part of the selection strategy.

Spectral Feature Selection with SPEC The remarks from the previous

subsections can be combined to create a feature selection framework

called SPEC [22]:

1. using a specified similarity function 𝑠, construct a similarity matrix

𝑆 of the data X (optionally with labels Y);

2. construct the graph 𝐺 of the data;

3. extract the normalized Laplacian L from this graph;

4. compute the eigenpairs (eigenvalues and eigenvectors) of L;

5. select a regularization function 𝛾(·);
6. for each feature f𝑖 , 𝑖 = 1, . . . , 𝑝, compute the relevance �̂�(f𝑖), where

�̂� ∈ {�̂�1 , �̂�2 , �̂�3}, and

7. return the features in descending order of relevance.

In order for SPEC to provide “good” results, proper choices for the

similarity, ranking, and regularization functions are needed. Among other

considerations, the similarity matrix should reflect the true relationships

between the observations.

Furthermore, if the data is noisy, it might be helpful to opt for �̂� = �̂�3

and/or 𝛾(𝜆) = 𝜆𝜈
, 𝜈 ≥ 2. When the gap between the small and the large

eigenvalues is wide, �̂� = �̂�2 or �̂� = �̂�3 usually provide good choices,

although �̂�2 has been shown to be more robust [33].

23.4.4 Uniform Manifold Approximation and Projection

The feature selection and dimension reduction landscape is in flux,

and there are more recent (and sophisticated) developments that are

generating a lot of interest. Case in point, consider Uniform Manifold
Approximation and Projection (UMAP) methods.

Dimensionality Reduction and UMAP A mountain is a 3-dimensional

object.
52

And the surface of a mountain range is 2-dimensional – it can 52: When we consider the world at a low

resolution, at least.
be represented with a flat map – even though the surface, and the map

for that matter, still exist in 3-dimensional space.
53

53: In the parlance of the field, we say that

the surface is embedded in ℝ3
.

What does it mean to say that a shape is 𝑞-dimensional for some 𝑞? What

is a shape, even?

Shapes could be lines, cubes, spheres, polyhedrons, or more complicated

things. In geometry, the customary way to represent a shape is via a set

of points 𝑆 ⊆ ℝ𝑝
.

A circle is the set of points whose distance to a fixed point (the centre)

is exactly equal to the radius 𝑟, say, whereas a disk is the set of points

whose distance to the centre is at most the radius.

In the mountain example, 𝑝 = 3 for both the mountains 𝑆𝑚 and the

mountain surface 𝑆𝑠 . So the question is, when is the (effective) dimension
of a set 𝑆 less than 𝑝, and how is that dimension calculated?
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It turns out that there are multiple definitions of the dimension 𝑞 of a

set 𝑆 ⊆ ℝ𝑝
[6]:

the smallest 𝑞 for which 𝑆 is 𝑞-dimensional manifold;

how many nontrivial 𝑛th
homology groups of 𝑆 there are;

how the “size” of the set scales as the coordinates scale.

A 𝑞-dimensional manifold is a set where each small region is approxi-

mately the same as a small region of ℝ𝑞
. For instance, if a small piece of a

(stretchable) sphere is cut out with a cookie cutter, it could theoretically

be bent so that it looks like it came from a flat plane, without changing

its “essential” shape.

Dimensionality reduction is more than just a matter of selecting a defini-

tion and computing 𝑞, however. Indeed, any dataset X is necessarily finite

and is thus, by definition, actually 0−dimensional; the object of interest

is the shape that the data would form if there were infinitely many

available data points, or, in other words, the support of the distribution
generating the data.

Furthermore, any dataset is probably noisy and may only approximately
lie in a lower-dimensional shape.

Lastly, it is not clear how to build an algorithm that would, for example,

determine what all the homology groups of some set 𝑆 are. The problem

is quite thorny. Let 𝑋 ⊆ ℝ𝑝
be a finite set of points. A dimensionality

reducer for X is a function 𝑓X : X → ℝ𝑞
, where 𝑞 < 𝑝, which satisfies

certain properties that imply that 𝑓X(X) has similar structure to X.
54

54: In the remainder of this section, the

subscript is dropped. Note that 𝑞 is as-

sumed, not found by the process. Various dimensionality reducers were discussed in Section 23.2; they

each differ based on the relationship between X and 𝑓X(X).

For instance, in PCA, the dataset X is first translated so that its points (or

at least its “principal components”) lie in a linear subspace. Then 𝑞 unit-

length linear basis elements are chosen to span a subspace, projection

onto which yields an affine map 𝑓 from X to ℝ𝑞
that preserves Euclidean

distances between points (a rigid transformation), assuming that the

non-principal dimensions are ignored.

PCA seems reasonable but what if a rigid transformation down to ℝ𝑞

is not possible? As an example, consider the swiss roll of Figure 23.13,

which is a loosely rolled up rectangle in 3-dimensional space. What can

be preserved when we “reduce” this space? Only the local structure? The

global structure?

UMAP is a dimension reduction method that attempts to approximately

preserve both the local and global structure. It can be especially useful

for visualization purposes, i.e., reducing to 𝑞 = 3 or fewer dimensions.

While the semantics of UMAP can be stated in terms of graph layouts,

the method was derived from abstract topological assumptions. For a

full treatment and mathematical properties, see [15].

Note that UMAP works best when the data X is evenly distributed on

its support S. In this way, the points of X “cover” S and UMAP can

determine where the true gaps or holes in 𝑆 are.
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UMAP Semantics Let the (scaled) data be denoted by X = {x1 , . . . , x𝑛},
where x𝑖 ∈ ℝ𝑝

for all 𝑖; let 𝑑 : X × X→ ℝ≥0 be a distance function, and

let 𝑘 ≥ 1 be an integer.

Consider a directed graph graph 𝐷 = (𝑉, 𝐸, 𝐴), with

vertices 𝑉(𝐷) = X;

edges 𝐸(𝐷) consisting of the ordered pairs (x𝑖 , x𝑗) such that x𝑗 is

one of the 𝑘 nearest neighbours of x𝑖 according to 𝑑;

weight function𝑊 : 𝐸(𝐷) → ℝ such that

𝑤(x𝑖 , x𝑖 , 𝑗) = exp

(−max(0, 𝑑(x𝑖 , x𝑖 , 𝑗) − 𝜌𝑖)
𝜎𝑖

)
,

where x𝑖 ,1 , . . . , x𝑖 ,𝑘 are the 𝑘 nearest neighbours of x𝑖 according

to 𝑑, 𝜌𝑖 is the minimum nonzero distance from x𝑖 to any of its

neighbours, and 𝜎𝑖 is the unique real solution of

𝑘∑
𝑗=1

exp

(−max(0, 𝑑(𝑥𝑖 , 𝑥𝑖 , 𝑗) − 𝜌𝑖)
𝜎𝑖

)
= log

2
(𝑘),

and

𝐴 is the weighted adjacency matrix of 𝐷 with vertex ordering

x1 , . . . , x𝑛 .

Define a symmetric matrix

𝐵 = 𝐴 + 𝐴⊤ − 𝐴 ◦ 𝐴⊤ ,

where ◦ is Hadamard’s component-wise product.

The graph 𝐺 = (𝑉,𝑊, 𝐵) has the same vertex set, the same vertex

ordering, and the same edge set as 𝐷, but its edge weights are given by

𝐵. Since 𝐵 is symmetric, 𝐺 can be considered to be undirected.

UMAP returns the (reduced) points 𝑓 (x1), . . . , 𝑓 (x𝑛) ∈ ℝ𝑞
by finding the

position of each vertex in a force directed graph layout, which is defined

via a graph, an attractive force function defined on edges, and a repulsive

force function defined on all pairs of vertices.

Both force functions produce force values with a direction and magnitude

based on the pair of vertices and their respective positions in ℝ𝑞
.

To compute the layout, initial positions in ℝ𝑞
are chosen for each vertex,

and an iterative process of translating points based on their attractive

and repulsive forces is carried out until a convergence criterion is met. In

UMAP, the attractive force between vertices x𝑖 , x𝑗 at positions 𝑦𝑖 , 𝑦𝑗 ∈ ℝ𝑞
,

respectively, is

−2𝑎𝑏∥𝑦𝑖 − 𝑦 𝑗 ∥2(𝑏−1)
2

1 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2
2

𝑤(𝑥𝑖 , 𝑥 𝑗)(𝑦𝑖 − 𝑦 𝑗),

where 𝑎 and 𝑏 are parameters, and the repulsive force is

𝑏(1 − 𝑤(𝑥𝑖 , 𝑥 𝑗))(𝑦𝑖 − 𝑦 𝑗)
(0.001 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2

2
)(1 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2

2
)
.
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There are a number of important free parameters to select, namely

𝑘: nearest neighbor neighborhood count;

𝑞: target dimension;

𝑑: distance function, e.g. Euclidean metric.

The UMAP documentation states,

low values of 𝑘 will force UMAP to concentrate on very local

structure (potentially to the detriment of the big picture),

while large values will push UMAP to look at larger neigh-

borhoods of each point . . . losing fine detail structure for the

sake of getting the broader structure of the data [15].

The user may set these parameters to appropriate values for the dataset.

The choice of a distance metric plays the same role as in clustering, where

closer pairs of points are considered to be more similar than farther pairs.

There is also a minimum distance value used within the force directed

layout algorithm which says how close together the positions may be.

Example We compare various dimensionality reducers for a number

of datasets (adapted from the UMAP documentation).
55

Let us start by55: Careful: the correct Python package

to install is umap-learn, not umap.
installing the required Python modules.

import warningswarnings.filterwarnings(’ignore’)

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets, decomposition, manifold, preprocessing

from colorsys import hsv_to_rgb

import umap.umap_ as umap

We will plot the two-dimensional reduction of five different datasets; the

points will be coloured to get a sense of which points got sent where

(otherwise we would only know the shape of the reduced dataset, but

have no way to tell how the local structure is affected by the reducers).

We use 𝑡−SNE, Isomap, MDS (multidimensional scaling), PCA, and

UMAP. The 5 datasets are:

a set consisting of 4 distinct 10-dimensional Gaussian distributions;

the digit classification dataset;

the wine characteristics dataset (essentially 1D);

a 2D rectangle rolled up in 3D space (colours indicate the position

along the unrolled rectangle), and

points on the 2D surface of a 3D sphere (which is not homeomorphic

to ℝ2
)); even with the north pole removed, the stereographic

projection would map points close to the north pole arbitrarily far

from the origin (colour hue indicates the angle around the equator

and darkness indicates distance from south pole).

blobs, blob_labels = datasets.make_blobs(

n_samples=500, n_features=10, centers=4

)

https://umap-learn.readthedocs.io/en/latest/auto_examples/plot_algorithm_comparison.html
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digits = datasets.load_digits(n_class=10)

wine = datasets.load_wine()

swissroll, swissroll_labels = datasets.make_swiss_roll(

n_samples=1000, noise=0.1

)

sphere = np.random.normal(size=(600, 3))

# scale points to have same distance from origin

sphere = preprocessing.normalize(sphere)

# compute colours in HSV format

sphere_hsv = np.array([

(

(np.arctan2(c[1], c[0]) + np.pi) / (2 * np.pi),

np.abs(c[2]), min((c[2] + 1.1), 1.0),

)

for c in sphere

])

# convert colours to RGB format

sphere_colors = np.array([hsv_to_rgb(*c) for c in sphere_hsv])

Next we set parameters for the reducer algorithms. For UMAP, we set

min_dist to 0.3 which will spread out the points to a noticable degree.

We also set the number 𝑘 of nearest neighbours to 30.

The choices for the other reduces are shown in the code block.

In practice, we would typically set these parameters on a dataset-by-

dataset basis, but for illustration purposes, we do not need to fine tune

the choices.

reducers = [

(manifold.TSNE, {"perplexity": 50}),

(manifold.Isomap, {"n_neighbors": 30}),

(manifold.MDS, {}),

(decomposition.PCA, {}),

(umap.UMAP, {"n_neighbors": 30, "min_dist": 0.3}),

]

test_data = [

(blobs, blob_labels),

(digits.data, digits.target),

(wine.data, wine.target),

(swissroll, swissroll_labels),

(sphere, sphere_colors),

]

dataset_names = ["Blobs", "Digits", "Wine", "Swiss Roll",

"Sphere"]
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Now, we compute the 2D reductions for every reducer-dataset pair (this

step is time-consuming):

reductions_and_labels = [(reducer(n_components=2,

**args).fit_transform(data),

labels)

for data, labels in test_data

for reducer, args in reducers

]

And we display the results:

n_rows = len(test_data)

n_cols = len(reducers)

fig = plt.figure(figsize=(16, 16))

fig.subplots_adjust(left=.02, right=.98, bottom=.001,

top=.96, wspace=.05, hspace=.02)

ax_index = 1

ax_list = []

for reduction, labels in reductions_and_labels:

ax = fig.add_subplot(n_rows, n_cols, ax_index)

if isinstance(labels[0], tuple):

# if labels are colours, use them

ax.scatter(*reduction.T, s=10, c=labels, alpha=0.5)

else:

# otherwise, use "spectral" map from labels to colours

ax.scatter(*reduction.T, s=10, c=labels,

cmap="Spectral", alpha=0.5)

ax_list.append(ax)

ax_index += 1

plt.setp(ax_list, xticks=[], yticks=[])

for i in np.arange(n_rows) * n_cols:

ax_list[i].set_ylabel(dataset_names[i // n_cols], size=16)

for i in range(n_cols):

ax_list[i].set_xlabel(repr(reducers[i][0]()).split("(")[0],

size=16)

ax_list[i].xaxis.set_label_position("top")

fig.show()

Notice that Isomap removes exactly the wrong dimension in the swiss

roll; 𝑡−SNE (and MDS to some extent) reduces the wine data down to

one dimension (its true dimensionality) even though it was only asked

for a reduction to two dimensions. UMAP manages to give the most

sensible output for the swiss roll.
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23.5 Exercises

Consider the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest (as long as they have a sufficiently large number of predictors).

1. Establish 2-3 questions that you could try to answer with each dataset.

2. Based on the questions obtained in 1, provide 3-5 subsets of features that would do a good job of

representing each dataset (use some of the methods described in this module, or other methods as

needed).

3. Learn 3-5 reduced manifolds for each dataset (use some of the methods described in this module, or

other methods as needed).

4. How would you validate your results?
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