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by Ehssan Ghashim and Patrick Boily

Queueing theory focuses on waiting in lines (or queues). As a topic in

operational research, it combines elements of a variety of quantitative

disciplines, but it is rarely found in the data analyst’s toolbox. In this

chapter, we introduce the terminology and basic framework of queueing

models (including Kendall-Lee notation, birth-death processes, and

Little’s formula), as well as the most commonly-used queueing system:

𝑀/𝑀/𝑐.

24.1 Background

Queueing theory is a branch of mathematics that studies and models

the act of waiting in lines. The seminal paper on queueing theory [3]

was published in 1909 by Danish mathematician A.K. Erlang; in it, he

studied

the problem of determining how many telephone circuits

were necessary to provide phone service that would prevent

customers from waiting too long for an available circuit. In

developing a solution to this problem, he began to realize

that the problem of minimizing waiting time was applicable

to many fields, and began developing the theory further.

Erlang’s switchboard problem laid the path for modern

queueing theory [1].

Queueing theory boils down to answering simple questions:

How likely is it that objects/units/persons will queue up and wait

in line?

How long will the line be?

How long will the wait be?

How busy will the system be?

How much capacity is needed to meet an expected level of demand?

Knowing how to think about these kinds of questions will help analysts

and stakeholder anticipate bottlenecks. As a result, they will build

systems and teams to be more efficient and more scalable, to have higher

performance and lower costs, and to ultimately provide better service to

their customers and end users.

Queueing theory also allows for the quantitative treatment of bottlenecks

and their effect on performance. For instance, a question such as “how

long will the wait be, on average?” will have an answer, but so will other
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questions concerning the variability of wait times, the distribution of

wait times, and the likelihood that a customer will receive extremely

poor service, and so on [5].

Let us consider a simple example. Suppose a grocery store has a single

checkout line and a single cashier. If, on average, one shopper arrives

at the line to pay for their groceries every 5 minutes and if scanning,

bagging, and paying takes 4.5 minutes, on average, would we expect

customers to have to wait in line?

When the problem is presented this way, our intuition says that there

should be no waiting in line, and that the cashier should be idle, on

average, 30 seconds every 5 minutes, only being busy 90% of the time.

No one ever has to wait before being served!

If you have ever been in a grocery store, however, you know that this is

not what happens in reality; many shoppers will wait in line, and they

will have to wait a long time before being processed.

Fundamentally, queueing happens for three reasons:

irregular arrivals – shoppers do not arrive at the checkout line

on a regular schedule; they are sometimes spaced far apart and

sometimes close together, so they overlap (an overlap automatically

causes queueing and waiting);

irregular job sizes – shoppers do not all get processed in 4.5

minutes; someone shopping for a large family will require much

more time than someone shopping only for themselves, for instance

(when this happens, overlap is again a problem because new

shoppers will arrive and be ready to check out while the existing

ones are still in progress), and

waste – lost time can never be regained; shoppers overlap because

the second shopper arrived too soon, before the first had the time to

finish being served, but looking at it the other way, perhaps it’s not

the second shopper’s fault; perhaps the first shopper should have

arrived earlier, but they wasted time reading a magazine while the

cashier was idle! They missed their chance for quick service and,

as a result, made the second shopper have to wait.

Irregular arrival times and job sizes are guaranteed to cause queueing.

The only time there is no queueing is when the job sizes are uniform, the

arrivals are timed evenly, and there is little enough work for the cashier to

keep up with the arrival. Even when the cashier is barely busy, irregular

arrivals or arrivals in bursts will cause some queueing.

In general, queueing gets worse when the following hold:

high utilisation – the busier the cashier is, the longer it takes to

recover from wasted time;

high variability – the more variability in arrivals or job sizes, the

more waste and the more overlap (queueing) occurs, and

insufficient number of servers – fewer cashiers means less capacity

to absorb arrival spikes, leading to more wasted time and higher

utilisation.

In order to describe queues, we must first know and understand some

useful probability distributions, as well as input and output processes.
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24.2 Terminology

Queueing theory studies processes in terms of three key concepts:

customers are the units of work that the system serves – a customer

can be a real person, or it can be whatever the system is supposed

to process and complete: a web request, a database query, a part to

be milled by a machine, etc.;

servers are the objects that do the processing work – a server might

be the cashier at the grocery store, a web server, a database server,

a milling machine, etc., and

queues are where the units of work wait if the server is busy and

can not start the work as they arrive – a queue may be a physical

line, reside in memory, etc.

Figure 24.1: Components of a generic

queueing system, by D. Hare .

Useful Distributions Three distributions play a central role in queueing

theory: Poisson, exponential, and Erlang distributions.

Poisson Distribution The Poisson distribution counts the number of

discrete events occurring in a fixed time period; it is closely connected to

the exponential distribution, which describes the time between arrivals of

the events. The Poisson distribution is a discrete distribution; the random

variable can only take non-negative integer values. The exponential

distribution is negative; the random variable can take any real (non-

negative) value.

Consider the problem of determining the probability of 𝑛 arrivals be-

ing observed during a time interval of length 𝑡, where the following

assumptions are made:

the probability that an arrival is observed during a small time

interval (say of length 𝜈) is proportional to the length of interval;

let the proportionality constant be 𝜆, so that the probability is 𝜆𝜈;

the probability of two or more arrivals in a small interval is zero;

https://community.alteryx.com/t5/Engine-Works/Tackling-Queued-Jobs-With-Queueing-Theory-Part-1/ba-p/475036


1576 24 Queueing Models

the number of arrivals in any time interval is independent of the

number of arrivals in other non-overlapping time intervals – for

example, the number of arrivals occurring between times 5 and

25 does not provide information about the number of arrivals

occurring between times 30 and 50.

Let 𝑃(𝑛; 𝑡) be the probability of observing 𝑛 arrivals in a time interval of

length 𝑡. Then, for some 𝜆 > 0,

𝑃𝜆(𝑛; 𝑡) = (𝜆𝑡)𝑛
𝑛!

𝑒−𝜆𝑡 , 𝑛 = 0, 1, 2, . . .

is the probability mass function of the Poisson distribution for the discrete

random variable 𝑛 – the number of arrivals – for a given length of time

interval 𝑡 (see Figure 24.2).

Example: on average, 50 customers arrive in a coffee shop every hour.

What is the probability that exactly 20 customers will arrive in a 30-minute

period, if the arrivals follow a Poisson distribution?

Solution: given 𝜆 = 50 customers per hour, 𝑡 = 30 min = 0.5 hr and

𝑛 = 20, we have

𝑃50(20; 0.5) = (50 · 0.5)20

20!

𝑒−50·0.5 ≈ 5.2%.

We can evaluate the probability directly in R via

n=20

lambda=50

t=0.5

dpois(n,lambda*t)

[1] 0.05191747

In a queueing system, such arrivals are referred to as Poisson arrivals.

The time between successive arrivals is called the inter-arrival time.

Exponential Distribution If the number of arrivals in a given time

interval follows a Poisson distribution with parameter 𝜆𝑡, the inter-

arrival times follow an exponential distribution with probability density

function

𝑓𝜆(𝑡) = 𝜆𝑒−𝜆𝑡 , for 𝑡 > 0,

and the probability 𝑃(𝑊 ≤ 𝑡) that a customer’s waiting time𝑊 is smaller

than the length of the time interval 𝑡 is

𝑃(𝑊 ≤ 𝑡) = 1 − 𝑒−𝜆𝑡

(see Figure 24.2). We would write𝑊 ∼ Exp(𝜆).

Example: a fast-food restaurant’s manager’s manager observes that an

average of 9 customers are served by a waiter in a one-hour time period.

Assuming that the service time follows an exponential distribution, what

is the probability that a customer will be served within 15 minutes?
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Figure 24.2: Poisson (with 𝜆𝑡 = 2.3) and

exponential distributions (with parameter

𝜆). The shaded area (right) represents the

probability that a customer will wait up 𝑡
time units.

Solution: let 𝑤 be the average waiting time. Given 𝜇 = 9 customers per

hours, 𝑡 = 15 min = 0.25 hr, we have

𝑃(𝑤 ≤ 15 min) = 1 − 𝑒−9·0.25 ≈ 89.5%.

We can evaluate the probability directly in R.

t=0.25

mu=9

pexp(t,rate=mu)

[1] 0.8946008

In general, if the arrival rate is stationary, if bulk arrivals (two or more

simultaneous arrivals) cannot occur, and if past arrivals do not affect

future arrivals, then inter-arrival times follow an exponential distribution

with parameter 𝜆, and the number of arrivals in any interval of length 𝑡

is Poisson with parameter 𝜆𝑡.

One of the most attractive features of the exponential distribution relating

to inter-arrival times is that it is memoryless – if 𝑋 follows an exponential

distribution, then for all non-negative values of 𝑡 , ℎ,

𝑃(𝑋 ≥ 𝑡 + ℎ | 𝑋 ≥ 𝑡) = 𝑃(𝑋 ≥ ℎ).

No other density function satisfies this property [8].

The memoryless property of the exponential distribution is important

because it implies that the probability distribution of the time until the

next arrival is independent of the time since the last arrival. This is clearly

not always the case – imagine if that was so when waiting for public

transportation!

For instance, if we know that at least 𝑡 time units have elapsed since the

last arrival, then the distribution of the time ℎ until the next arrival is

independent of 𝑡. If ℎ = 4, say, then we must have

𝑃(𝑋 > 9 | 𝑋 > 5) = 𝑃(𝑋 > 7 | 𝑋 > 3) = 𝑃(𝑋 > 4).

Example: the time 𝑊 a customer spends waiting in a bank queue is

exponentially distributed with mean 𝜆 = 10 min, say. If they’ve already
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waited 10 minutes, what is the probability that they will have had to wait

more than 15 minutes in total, when all is said and done?

Solution: thanks to the memory-less property of the exponential distri-

bution, we have

𝑃(𝑊 > 15 | 𝑊 > 10) = 𝑃(𝑊 > 15−10 = 5) = exp(−5/𝜆) = exp(−1/2) ≈ 60.6%.

We can evaluate the probability directly in R.

w=5

lambda=10

1-pexp(w,rate=1/lambda)

[1] 0.6065307

Erlang Distribution The exponential distribution is not always an appro-

priate model of inter-arrival times, however (perhaps the process should

not be memoryless, say).

A common alternative is to use the Erlang distribution E(𝑅, 𝑘), a continu-

ous random variable with rate and shape parameters 𝑅 > 0 and 𝑘 ∈ ℤ+
,

respectively, whose probability density function is

𝑓𝑅,𝑘(𝑡) =
𝑅(𝑅𝑡)𝑘−1𝑒−𝑅𝑡

(𝑘 − 1)! , 𝑡 ≥ 0.

If 𝑘 = 1, the Erlang distribution reduces to an exponential distribution

with parameter 𝑅. It can further be shown that if 𝑋 ∼ E(𝑅, 𝑘), where

𝑅 = 𝑘𝜆, then 𝑋 ∼ 𝑋1 + 𝑋2 + · · · + 𝑋𝑘 , where each 𝑋𝑖 ∼ Exp(𝑅) is an

independent random variable.

When we model the inter-arrival process as an Erlang distribution

E(𝑘𝜆, 𝑘), we are really saying that it is equivalent to customers going

through 𝑘 phases (each of which is memoryless) before being served.

For this reason, the shape parameter is often referred to as the number of

phases of the Erlang distribution [7].

24.2.1 Input/Arrival Processes

The input process is usually called the arrival process. Arrivals are

called customers. In the models under consideration, we assume that

arrivals cannot be simultaneous (this might be unrealistic when modeling

arrivals at a restaurant, say). If simultaneous arrivals are possible (in

theory and/or in practice), we say that bulk arrivals are allowed.

Usually, we assume that the arrival process is unaffected by the number
of customers in the system. In the context of a bank, this would imply

that whether there are 500 or 5 people at the bank, the process governing

arrivals remains unchanged. There are two common situations in which

the arrival process may depend on the number of customers present.

The first occurs when arrivals are drawn from a small population – the
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Figure 24.3: Probability distribution func-

tions for various Erlang random variables

[Wikipedia].

so-called finite source models – if all members of the population are

already in the system, there cannot be another arrival!

Another such situation arises when the rate at which customers arrive

at the facility decreases when the facility becomes too crowded. For

example, when customers see that a restaurant’s parking lot is full, they

might very well decide to go to another restaurant or forego eating out

altogether. If a customer arrives but fails to enter the system, we say that

the customer has balked.

24.2.2 Output/Service Processes

To describe the output process (often called the service process) of a

queueing system, we usually specify a probability distribution – the

service time distribution – which governs the customers’ service time.

In most cases, we assume that the service time distribution is independent

of the number of customers present in the system. This implies, for

example, that the server does not work faster when more customers

are present. We can distinguish two types of servers: in parallel and in
series.

Servers are in parallel if they all provide the same type of service and

a customer only needs to pass through one of them to complete their

service. For example, the tellers in a bank are usually arranged in parallel;

typically, customers only need to be serviced by one teller, and any teller

can perform the desired service.

Servers are in series if a customer must pass through several servers

before their service is complete. An assembly line is an example of such

a queueing system. Input and output processes occur in a variety of

situations:
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situation: purchasing Blue Jays tickets at the Rogers Centre

input: baseball fans arrive at the ticket office

output: tellers serve the baseball fans

situation: pizza parlour

input: requests for pizza delivery are received

output: pizza parlour prepares and bakes pizzas, and sends them

to be delivered

situation: government service centre

input: citizen/residents enter the service centre

output: receptionist assigns them to a specific queue based on their

needs:

− input: citizen/residents enter a specific queue based on their

needs

output: public servant addresses their needs

situation: hospital blood bank

input: pints of blood arrive

output: patients use up pints of blood

situation: garage

input: cars break down and are sent to the garage for repairs

output: cars are repaired by mechanics and sent back on the streets

The relevant computations are fairly easy to execute, as the following

examples demonstrate.

Example: On average, 4.6 customers enter a coffee shop each hour. If the

arrivals follow a Poisson process, what is the probability that at most two

customers will enter in a 30 minute period?

Solution: since 30 min = 0.5 hr, we have

𝑃𝜆=4.6(𝑛 ≤ 2; 𝑡 = 0.5) = 𝑃4.6(0, 0.5) + 𝑃4.6(1, 0.5) + 𝑃4.6(2, 0.5)

= 𝑒−4.6·0.5
[
(4.6 · 0.5)0

0!

+ (4.6 · 0.5)1
1!

+ (4.6 · 0.5)2
2!

]
≈ 0.5960;

the corresponding Poisson distribution is shown in Figure 24.2.

We can evaluate the probability directly in R.

n=2

lambda=4.6

t=0.5

ppois(n,lambda*t)

[1] 0.5960388

Example: in a fast food restaurant, a cashier serves on average 9 customers

in a one-hour time period. If the service time follows an exponential

distribution, what percentage of customers will be served in 10 minutes

or less? After 30 minutes?
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Solution: since 1 hr = 60 mins, we have 𝜇 = 9 customers/60 minutes,

and so

𝑃(𝑊 ≤ 10/60) = 1 − 𝑒−9·10/60 ≈ 0.7769

𝑃(𝑊 > 30/60) = 𝑒−9·30/60 ≈ 0.0111.

24.2.3 Queue Discipline

To describe a queueing system completely, we must also describe the

queue discipline and the manner in which customers join lines. The

queue discipline describes the method used to determine the order in

which customers are served:

the most common queue discipline is the first come, first served
(FCFS) discipline, in which customers are served in the order of

their arrival, as one would expect to see in an Ottawa coffee shop;

under the last come, first served (LCFS) discipline, the most recent

arrivals are the first to enter service; for example, if we consider

exiting from an elevator to be the service, then a crowded elevator

illustrates such a discipline;

sometimes the order in which customers arrive has no effect on the

order in which they are served; this would be the case if the next

customer to enter service is randomly chosen from those customers

waiting for service, a situation referred to as service in random
order (SIRO) discipline; when callers to an inter-city bus company

are put on hold, the luck of the draw often determines which caller

will next be serviced by an operator;

finally, priority discipline classifies each arrival into one of several

categories, each of which is assigned a priority level (a triage
process); within each priority level, customers enter the queue on

a FCFS basis; such a discipline is often used in emergency rooms

to determine the order in which customers receive treatment, and

in copying and computer time-sharing facilities, where priority is

usually given to jobs with shorter processing times.

24.2.4 Method Used by Arrivals to Join Queue

Another important factor for the behaviour of the queueing system is the

method used by customers to determine which line to join. For example,

in some banks, customers must join a single line, but in other banks,

customers may choose the line they want to join.

When there are several lines, customers often join the shortest line.

Unfortunately, in many situations (such as at the supermarket), it is

difficult to define the shortest line. If there are several lines at a queueing

facility, it is important to know whether or not customers are allowed to

switch, or jockey, between lines. In most queueing systems with multiple

lines, jockeying is permitted, but jockeying at a custom inspection booth

would not be recommended (if it is even allowed), for instance.
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24.3 Queueing Theory Framework

There is a standard notation that is used to describe large families of

queueing systems: the Kendall-Lee notation [4].

24.3.1 Kendall-Lee Notation

queueing systems can be described via six characteristics:

𝑥1/𝑥2/𝑥3/𝑥4/𝑥5/𝑥6.

The 1st characteristic 𝑥1 specifies the nature of the arrival process. The

following standard abbreviations are used:

𝑀 inter-arrival times are independent identically distributed (iid) exponentials

𝐷 inter-arrival times are iid and deterministic

𝐸𝑘 inter-arrival times are iid Erlangs with shape parameter 𝑘

𝐺 inter-arrival times are iid and governed by some general distribution

The 2nd characteristic 𝑥2 specifies the nature of the service times:

𝑀 service times are iid and exponential

𝐷 service times are iid and deterministic

𝐸𝑘 service times are iid Erlang with shape parameter 𝑘

𝐺 service times are iid and follow some general distribution

The 3rd characteristic 𝑥3 represents the number of parallel servers.

The 4th characteristic 𝑥4 describes the queue discipline:

FCFS first come, first served

LCFS last come, first served

SIRO service in random order

GD general queue discipline

The 5th characteristic 𝑥5 specifies the maximum allowable number of
customers in the system.

1
1: Including customers who are waiting

and customers who are in service.

The 6th characteristic 𝑥6 gives the size of the population from which

customers are drawn. Unless the number of potential customers is of the

same order of magnitude as the number of servers, the population size

is considered to be infinite.

In many important models 𝑥4/𝑥5/𝑥6 is GD/∞/∞.
2

As an example,2: When that is the case, the string is often

omitted. 𝑀/𝑀/3/FCFS/20/∞ could represent a bank with 3 tellers, exponential

arrival times, exponential service times, a “first come, first served” queue

discipline, a total capacity of 20 customers, and an infinite population

pool from which to draw. The situation is illustrated in Figure 24.4.

Examples: here are some commonly-used/studied queueing systems:
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Figure 24.4: Single line at bank with three

tellers – 𝑀/𝑀/3/FCFS/20/∞.

Name Notation Example

simple system 𝑀/𝑀/1 customer service desk in a small store

multi-server system 𝑀/𝑀/𝑐 airline ticket counter

constant service 𝑀/𝐷/1 automated car wash

general service 𝑀/𝐺/1 auto repair shop

limited capacity 𝑀/𝑀/1/𝑁 barber shop with 𝑁 waiting seats

24.3.2 Birth-Death Processes

The state of a queueing system at time 𝑡 is defined to be the number of

customers in the queueing system, either waiting in line or in service, at

time 𝑡. At 𝑡 = 0, the state of the system is the initial number of customers

in the system. This state is worth recording because it clearly affects the

state at future times 𝑡.

Knowing this, we define 𝑃𝑖 , 𝑗(𝑡) as the probability that the state at time

𝑡 is 𝑗, given that the state at 𝑡 = 0 was 𝑖. For large 𝑡, 𝑃𝑖 , 𝑗(𝑡) becomes

independent of 𝑖 and approaches a limit 𝜋 𝑗 . This limit is known as the

steady-state of state 𝑗.

It is generally quite difficult to determine the steps of arrivals and services

that lead to a steady-state 𝜋 𝑗 . Likewise, starting from an early 𝑡, it is

difficult to determine exactly when a system will reach its steady state

𝜋 𝑗 , if such a state even exists.

For simplicity’s sake, when a queueing system is studied, we begin by

assuming that the steady-state has already been reached. A birth-death
process is a Markov process in which states are indexed by non-negative

integers, and transitions are only permitted between “neighbouring”

states. After a “birth”, the state increases from 𝑛 to 𝑛 + 1; after a “death”,

the state decreases from 𝑚 to 𝑚 − 1.

Typically, we denote the set of birth rates and death rates by 𝜆𝑛 and 𝜇𝑚 ,

respectively (see Figure 24.5).

Figure 24.5: Birth-death process; queue-

ing states indexed by integers; birth rates

and death rates indicated by 𝜆𝑛 and 𝜇𝑚 ,

respectively (source unknown).
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Pure birth processes are those for which 𝜇𝑚 = 0 for all 𝑚; pure death
processes, those for which 𝜆𝑛 = 0 for all 𝑛. The steady-state solution
of a birth-death process, i.e., the probability 𝜋𝑛 of being in state 𝑛, can
actually be computed:

𝜋𝑛 = 𝜋0

𝜆0𝜆1 · · ·𝜆𝑛−1

𝜇1𝜇2 · · ·𝜇𝑛
, for 𝑛 = 1, 2, . . .

where 𝜋0 is the probability of being in state 0 (i.e., without users). It can

further be shown [5] that:

𝜋0 =
1

1 +
∞∑
𝑛=1

𝑛−1∏
𝑗=0

𝜆 𝑗
𝜇𝑗+1

.

24.3.3 Little’s Queueing Formula

It is often the case that clients and end users are interested in determining

the amount of time that a typical customer spends in the queueing

system. Let 𝑊 be the expected waiting time spent in the queueing

system, including time in line plus time in service, and 𝑊𝑞 be the

expected time a customer spends waiting in line.

Both𝑊 and𝑊𝑞 are computed under the assumption that the steady state

has been reached. By using a powerful result known as Little’s queueing
formula,𝑊 and𝑊𝑞 are easily related to the number of customers in the

queue and those waiting in line. For any queueing system (or any subset

of a queueing system), consider the following quantities:

𝜆 = average number of arrivals entering the system per unit time;

𝐿 = average number of customers present in the queueing system;

𝐿𝑞 = average number of customers waiting in line;

𝐿𝑠 = average number of customers in service;

𝑊 = average time a customer spends in the system;

𝑊𝑞 = average time a customer spends in line, and

𝑊𝑠 = average time a customer spends in service.

Customers in the system can only be found in the queue or being serviced,

so that 𝐿 = 𝐿𝑞 + 𝐿𝑠 and𝑊 =𝑊𝑞 +𝑊𝑠 . In these definitions, all averages

are steady-state averages.

Figure 24.6: Schematics of steady state vs.

transient behaviour (source unknown).
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For most queueing systems in which a steady-state exists, Little’s queue-
ing formula are summarized by:

𝐿 = 𝜆𝑊, 𝐿𝑞 = 𝜆𝑊𝑞 , and 𝐿𝑠 = 𝜆𝑊𝑠 .

Example: if, on average, 46 customers enter a restaurant each hour it is

opened, and if they spend, on average, 10 minutes (1/6 hours) waiting to

be served, then we should expect 46 · 1/6 ≈ 7.7 customers in the queue

at all time (on average).

24.4 𝑀/𝑀/1 Queueing Systems

We now discuss the simplest non-trivial queueing system.

24.4.1 Basics

An 𝑀/𝑀/1/GD/∞/∞ queueing system has exponential inter-arrival

times, exponential service times, and a single server. It can be modeled

as a birth-death process with

𝜆 𝑗 = 𝜆, 𝑗 = 0, 1, 2, . . .

𝜇0 = 0

𝜇𝑗 = 𝜇, 𝑗 = 1, 2, 3, . . .

Substituting these rates in the steady-state solution of a birth-death

process yields

𝜋 𝑗 =
𝜆 𝑗𝜋0

𝜇𝑗
= 𝜌 𝑗𝜋0 ,

where 𝜌 = 𝜆/𝜇 is the traffic intensity of the system.

Since the system has to be in exactly one of the states at any given moment,

the sum of all probabilities is 1:

𝜋0 + 𝜋1 + 𝜋2 + · · · = 𝜋0(1 + 𝜌 + 𝜌2 + · · · ) = 1.

If 0 ≤ 𝜌 < 1, the infinite series converges to
1

1−𝜌 from which we derive

𝜋0 ·
1

1 − 𝜌
= 1 =⇒ 𝜋0 = 1 − 𝜌 =⇒ 𝜋 𝑗 = 𝜌 𝑗𝜋0 = 𝜌 𝑗(1 − 𝜌)

as the steady-state probability of state 𝑗.

If 𝜌 ≥ 1, the infinite series diverges and no steady-state exists. Intuitively,

this happens when 𝜆 ≥ 𝜇, that is, if the arrival rate is greater than the

service rate, then the state of the system grows without bounds and the

queue is never cleared. From this point on, we assume 𝜌 < 1 to guarantee

that the steady-state probabilities 𝜋 𝑗 exist, from which we can determine

several quantities of interest.



1586 24 Queueing Models

Assuming that the steady state has been reached, it can be shown that 𝐿,

𝐿𝑠 , and 𝐿𝑞 are given respectively by:

𝐿 =
𝜆

𝜇 − 𝜆
=

𝜌

1 − 𝜌
, 𝐿𝑠 = 𝜌, 𝐿𝑞 =

𝜌2

1 − 𝜌
.

Using Little’s queueing formula, we can also solve for𝑊 ,𝑊𝑠 , and𝑊𝑞 by

dividing each of the corresponding 𝐿 values by 𝜆:

𝑊 =
1

𝜇 − 𝜆
, 𝑊𝑠 =

1

𝜇
, 𝑊𝑞 =

𝜆

𝜇(𝜇 − 𝜆) .

Note that, as expected, both 𝑊,𝑊𝑞 → +∞ when 𝜌 → 1. On the other

hand,𝑊𝑞 → 0 and𝑊 → 1

𝜇 (the mean service time) as 𝜌 → 0.

Example: (based on [9]) an average of 10 cars arrive at a single-server

drive-in teller every hour. Assume that the average customer is served

in 4 minutes, and that both inter-arrival times and service times are

exponentially distributed.

1. What is the probability that the teller is idle?

2. Excluding the car that is being served, what is the average number

of cars waiting in line at the teller?

3. What is the average amount of time a drive-in customer spends in

the bank parking lot (including time in service)?

4. On average, how many customers per hour are served by the teller?

Solution: by assumption, we are dealing with an 𝑀/𝑀/1/GD/∞/∞
queueing system for which 𝜆 = 10 cars/hr and 𝜇 = 15 cars/hr, and as

such 𝜌 = 10/15 = 2/3.

1. The teller is idle one third of the time on average because 𝜋0 =

1 − 𝜌 = 1/3.

2. There are 𝐿𝑞 = 𝜌2/(1 − 𝜌) = 4/3 cars waiting in line for the teller.

3. We know that 𝐿 = 𝜆/(𝜇−𝜆) = 10/(15−10) = 2, and so𝑊 = 𝐿/𝜆 =

0.2 hr = 12 min.

4. If the teller were always busy, it would serve an average of 𝜇 = 15

customers per hour. From part 1., we know that the teller is only

busy two-thirds of the time, thus during each hour, the teller serves

an average of 15 · 2/3 = 10 customers. This is reasonable since, in a

steady-state, 10 customers are arriving each hour and 10 customers

must leave the system every hour.

Example: (based on [6]) suppose that all car owners fill up when their

tanks are exactly half full. On average, 7.5 customers arrive every hour at

a single-pump gas station. It takes an average of 4 minutes to fuel a car.

Assume that inter-arrival times and service times are both exponential.

1. What are the values of 𝐿 and𝑊 in this scenario?

2. Suppose that a gas shortage occurs and panic buying takes place. To

model this phenomenon, assume that all car owners now purchase

gas when their tanks are exactly three-quarters full. Since each car

owner is now putting less gas into the tank during each visit to the

station, we assume that the average service time has been reduced

to 10/3 minutes. How has panic buying affected the values of 𝐿

and𝑊?
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Solution: by assumption, we again have an 𝑀/𝑀/1/GD/∞/∞ queueing

system, with 𝜆 = 7.5 cars/hr and 𝜇 = 60/4 = 15 cars/hr. Thus, 𝜌 =

7.5/15 = 1/2.

1. By definition, 𝐿 = 𝜆/(𝜇− 𝜆) = 7.5/(15 − 7.5) = 1 and𝑊 = 1/7.5 ≈
0.13 hr = 7.8 min. Hence, in this situation, everything is under

control, and long lines appear to be unlikely.

2. Under the panic buying scenario, 𝜆 = 2(7.5) = 15 cars/hr as each

car owner now fills up twice as often, and 𝜇 = 60 · 3/10 = 18

cars/hr, so 𝜌 = 𝜆/𝜇 = 5/6. In that scenario,

𝐿 =
𝜌

1 − 𝜌
= 5 cars, and 𝑊 =

𝐿

𝜆
=

5

15

= 20 min.

Thus, panic buying has more than doubled the wait time in line. In

a 𝑀/𝑀/1 queueing system, we have

𝐿 =
𝜌

1 − 𝜌
= −1 + 1

1 − 𝜌
,

and it is easy to see that 𝐿→ ∞ as 𝜌 → 1. The 5−fold increase in 𝐿

when 𝜌 jumps from 1/2 to 5/6 (with accompanying jumps in𝑊)

illustrates that fact.

𝜌 𝐿 in a 𝑀/𝑀/1 queue

0.30 0.43

0.60 1.50

0.80 4.00

0.90 9.00

0.95 19.00

0.99 99.00

24.4.2 Limited Capacity

In the real world, queues never become infinite – they are limited due to

requirements of space and/or time, or service operating policy. Such a

queueing model falls under the purview of finite queues.

Finite queue models restrict the number of customers allowed in the

service system. Let 𝑁 represent the maximum allowable number of

customers in the system. If the system is at capacity, the arrival of a

(𝑁 + 1)th customer results in a failure to enter the queue – the customer

is assumed to balk and depart without seeking service.

Finite queues can also be modeled as a birth-death process, but with a

slight modification in its parameters:

𝜆 𝑗 = 𝜆, 𝑗 = 0, 1, 2, . . . , 𝑁 − 1

𝜆𝑁 = 0, 𝜇0 = 0

𝜇𝑗 = 𝜇, 𝑗 = 1, 2, 3, . . . , 𝑁.

The restriction 𝜆𝑁 = 0 is what sets this model apart from the 𝑀/𝑀/1/∞.

It makes it impossible to reach a state greater than 𝑁 . Because of this
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restriction, a steady-state always exist because even if 𝜆 ≥ 𝜇, there can

never be more than 𝑁 customers in the system.

Mathematically, this has the effect of replacing the infinite series linking

the 𝜋 𝑗 ’s by a finite geometric series, which always converges:

𝜋0 + 𝜋1 + · · · + 𝜋𝑁 = 𝜋0(1 + 𝜌 + · · · + 𝜌𝑁 ) = 1,

from which we can derive

𝜋0 ·
1 − 𝜌𝑁+1

1 − 𝜌
= 1 =⇒ 𝜋0 =

1 − 𝜌

1 − 𝜌𝑁+1

=⇒ 𝜋 𝑗 =

{
𝜌 𝑗

1−𝜌
1−𝜌𝑁+1

for 𝑗 = 0, . . . , 𝑁

0 for 𝑗 > 𝑁

Since 𝐿 =
∑𝑁
𝑗=0

𝑗 · 𝜋 𝑗 (why?),

𝐿 =
𝜌[1 + 𝑁𝜌𝑁+1 − (𝑁 + 1)𝜌𝑁 ]

(1 − 𝜌)
(
1 − 𝜌𝑁+1

)
when 𝜆 ≠ 𝜇. As in 𝑀/𝑀/1/∞, 𝐿𝑠 = 𝜆(1 − 𝜋0), and 𝐿𝑞 = 𝐿 − 𝐿𝑠 .

In a finite capacity model, only 𝜆 − 𝜆𝜋𝑁 = 𝜆 (1 − 𝜋𝑁 ) arrivals per unit

time actually enter the system on average (𝜆 arrive, but 𝜆𝜋𝑁 find the

system full). With this fact,

𝑊 =
𝐿

𝜆 (1 − 𝜋𝑁 )
and 𝑊𝑞 =

𝐿𝑞

𝜆 (1 − 𝜋𝑁 )
.

What does that look like in practice?

Example: consider a one-man barber shop with a total of 10 seats. Assume,

as has always been the case so far (but need not be), that inter-arrival

times are exponentially distributed with an average of 20 prospective

customers arriving each hour at the shop. Those customers who find the

shop full do not enter (perhaps they do not like standing). The barber

takes an average of 12 minutes to cut each customer’s hair; assume that

haircut times are also exponentially distributed.

1. On average, how many haircuts per hour will the barber complete?

2. On average, how much time will be spent in the shop by a customer

who enters?

Solution:

1. A fraction 𝜋10 of all arrivals will find the shop full, so that only an

average of 𝜆 (1 − 𝜋10) will actually enter the shop each hour. All

entering customers receive a haircut, so the barber will give an

average of 𝜆 (1 − 𝜋10) haircuts per hour. In this scenario, 𝑁 = 10,

𝜆 = 20 customers/hr, and 𝜇 = 60/12 = 5 customers/hr. Thus

𝜌 = 20/5 = 4 and we have

𝜋0 =
1 − 𝜌

1 − 𝜌𝑁+1

=
1 − 4

1 − 4
11

≈ 7.15 × 10
−7

and

𝜋10 = 4
10𝜋0 =

3

4

(verify!).
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In that case, an average of 20(1 − 3/4) = 5 customers per hour

will receive haircuts. This means that an average of 20 − 5 = 15

prospective customers per hour will not enter the shop.

2. To determine𝑊 , we must first compute

𝐿 =
4[1 + (10)411 − (11)410]

(1 − 4) (1 − 4
11)

= 9.67.

Using the formulas described above, we obtain

𝑊 =
𝐿

𝜆 (1 − 𝜋10)
=

9.67

5

= 1.93 hr.

This barber shop is quite crowded – the barber would be well-

advised to hire at least one more worker!

But what would be the effect of hiring a second barber?

In order to answer this question, we need to look into 𝑀/𝑀/𝑐 queueing

systems.

24.5 𝑀/𝑀/𝑐 Queueing Systems

An 𝑀/𝑀/𝑐/GD/∞ queueing system also has exponential inter-arrival

and service times, with rates 𝜆 and 𝜇, respectively. What sets this system

apart is that there are now 𝑐 > 1 servers willing to serve from a single line

of customers, perhaps like one would find in a bank (see Figure 24.7).

If 𝑗 ≤ 𝑐 customers are present in the system, then every customer is being

served and there is no wait time; if 𝑗 > 𝑐 customers are in the system,

then 𝑐 customers are being served and the remaining 𝑗 − 𝑐 customers are

waiting in the queue. To model this as a birth-death process, we have

to observe that the death rate is dependent on how many servers are

actually being used.

If each server completes service at a rate of 𝜇 (which may not be the case

in practice as there might be variations in servers, at least for human

servers), then the actual death rate is 𝜇× the number of customers

actually being served. The parameters for this process are

𝜆𝑛 = 𝜆, 𝑛 = 0, 1, 2, . . .

𝜇𝑛 =

{
𝑛𝜇, 𝑛 = 0, 1, 2, . . . , 𝑐

𝑐𝜇, 𝑛 = 𝑐 + 1, 𝑐 + 2, . . .

The traffic intensity for the 𝑀/𝑀/𝑐 system is 𝜌 = 𝜆/(𝑐𝜇) and the steady-

state solution is

𝜋𝑛 =

{
(𝑐𝜌)𝑛
𝑛!

𝜋0 , 1 ≤ 𝑛 ≤ 𝑐
𝑐𝑐𝜌𝑛

𝑐! 𝜋0 , 𝑛 ≥ 𝑐

where

𝜋0 =

[
1 + (𝑐𝜌)𝑐

𝑐! (1 − 𝜌) +
𝑐−1∑
𝑛=1

𝑐𝜌𝑛

𝑛!

]−1

.
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Figure 24.7: Generic 𝑀/𝑀/𝑐 queue.

Note that, as was the case in a 𝑀/𝑀/1 system, if 𝜌 ≥ 1, there can be no

steady state – in other words, if the arrival rate is at least as large as the

maximum possible service rate (𝜆 ≥ 𝑐𝜇), then the system “blows up”.

There might be a desire to ensure that customers do not wait in line an

inordinate amount of time, but there might also be a desire to minimize

the amount of time for which at least one of the server is idle. In a𝑀/𝑀/𝑐
queueing system, this steady-state probability is given by

𝑃(𝑛 ≥ 𝑐) = (𝑐𝜌)𝑐

𝑐! (1 − 𝜌)𝜋0.

This table shows the probabilities 𝑃(𝑛 ≥ 𝑐) that all servers are busy in an

𝑀/𝑀/𝑐 system for 𝑐 = 2, . . . , 7 and 0.1 ≤ 𝜌 ≤ 0.95 [9, p.1088].

𝜌 𝑐 = 2 𝑐 = 3 𝑐 = 4 𝑐 = 5 𝑐 = 6 𝑐 = 7

.10 .02 .00 .00 .00 .00 .00

.20 .07 .02 .00 .00 .00 .00

.30 .14 .07 .04 .02 .01 .00

.40 .23 .14 .09 .06 .04 .03

.50 .33 .24 .17 .13 .10 .08

.55 .39 .29 .23 .18 .14 .11

.60 .45 .35 .29 .24 .20 .17

.65 .51 .42 .35 .30 .26 .21

.70 .57 .51 .43 .38 .34 .30

.75 .64 .57 .51 .46 .42 .39

.80 .71 .65 .60 .55 .52 .49

.85 .78 .73 .69 .65 .62 .60

.90 .85 .83 .79 .76 .74 .72

.95 .92 .91 .89 .88 .87 .85

Cumbersome calculations, using𝑊𝑠 =
1

𝜇 , yield

𝐿𝑞 =
𝜌

1 − 𝜌
𝑃(𝑛 ≥ 𝑐), 𝑊𝑞 =

𝐿𝑞

𝜆
, 𝑊 =

1

𝜇
+𝑊𝑞 , 𝐿 =

𝜆
𝜇
+ 𝐿𝑞 .
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Example: consider, for instance, a bank with two tellers. An average

of 80 customers arrive at the bank each hour and wait in a single

line for an idle teller. For this specific bank, the average service time

is 1.2 minutes. Assume that inter-arrival times and service times are

exponential. Determine:

1. The expected number of customers in the bank.

2. The expected length of time a customer spends in the bank.

3. The fraction of time that a particular teller is idle.

Solution: we are dealing with an 𝑀/𝑀/2 system with 𝜆 = 80 customer-

s/hr and 𝜇 = 50 customers/hr. Thus, 𝜌 = 80

2·50
= 0.80 < 1 and the

steady-state exists.

1. From the above table, 𝑃(𝑛 ≥ 2) = 0.71, from which we compute

𝐿𝑞 = 𝑃(𝑛 ≥ 2) · 0.8

1 − 0.8
= 2.84 customers

𝐿 =
80

50

+ 𝐿𝑞 = 4.44 customers.

2. We know that𝑊 = 𝐿
𝜆 = 4.44

80
= 0.055 hr = 3.3 min.

3. To determine the fraction of time that a particular server is idle,

note that tellers are idle during all moments when 𝑛 = 0, and half

the time (by symmetry) when 𝑛 = 1. The probability that a server

is idle is thus given by 𝜋0 + 0.5𝜋1. But

𝜋0 =

[
1 + (2 · 0.8)2

2! (1 − .8) +
2−1∑
𝑛=1

2 · 0.8𝑛

𝑛!

]−1

=
1

9

and

𝜋1 =
1.6

1!

𝜋0 = 0.176

and so the probability that particular teller is idle is 0.111 +
0.5(0.176) = 0.199.

Important Note: general queueing models are not understood to the

same extent as 𝑀/𝑀/1 (and 𝑀/𝑀/𝑐 to a lesser extent), and their

given performance measurements may only be approximate and highly-

dependent on the specifics of the problem at hand.

For this reason, 𝑀/𝑀/𝑐 models are sometimes used even when their use

is not supported by the data (the situation is not unlike the widespread

use of the normal distribution in a variety of probability and statistics

problems).

In numerous applications, the empirical distributions of arrivals and

service times are nearly Poisson and exponential, respectively, so that

the assumption is not entirely off the mark, but numerical simulations

should not be eschewed when departures from the 𝑀/𝑀/𝑐 model are

too pronounced.
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24.6 Exercises

The Borealian Aeronautic Security Agency (BASA) runs pre-board screening of passengers and crew for all

flights departing the nation’s airfields. There are 4 Major Airfields:

Auckland

Chebucto

Saint-François

Queenston

The screening process (PBS) is structurally similar at each airfield:

1. Passengers arrive at the beginning of the main queue

2. Boarding passes may or may not be scanned at S_1

3. Passengers enter the main queue

4. Boarding passes are scanned at S_2

5. Passengers are directed to a server entry position

6. Passengers and carry-on luggage are screened by a server

Some factors influence the PBS wait time, including:

schedule intensity of departing flights

passenger volume on these flights

number of servers and processing rates at a given airfield, etc.

There might also be:

yearly, seasonal, time-of-day, day-of-week interaction effects (among others) depending on the airfield,

the flight destination, etc.

trend level shifts in the number of passengers, flights, destinations, etc.

Datasets: 20262030.csv , BASA_AUC_2028_912.csv , dat_F_sub.csv , dat_P_sub_c.csv .

1. Build a data dictionary for the datasets

2. Explore and visualize the datasets

3. Perform a queueing model analysis to predict the wait times at each airfield for which you have data.

Use the CATSA case study to inform your analysis [2].
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