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by Patrick Boily and Ehssan Ghashim

Bayesian analysis is sometimes maligned by data analysts, due in part to

the perceived element of arbitrariness associated with the selection of a

meaningful prior distribution for a specific problem and the (formerly

formidable) difficulties involved with producing posterior distributions

for all but the simplest situations.

On the other hand, it has been said that “while classical data analysts

need a large bag of clever tricks to unleash on their data, Bayesians only

ever really need one.” With the advent of efficient numerical samplers,

modern data analysts cannot shy away from adding the Bayesian arrow

to their quiver.

In this chapter, we introduce the basic concepts underpinning Bayesian

analysis, and we present a small number of examples that illustrate the

strengths of the approach.

25.1 Plausible Reasoning

“A decision was wise, even though it lead to disastrous

consequences, if the evidence at hand indicated it was the best

one to make; and a decision was foolish, even though it lead

to the happiest possible consequences, if it was unreasonable

to expect those consequences.” Herodotus, in Antiquity

Consider the following scenario [9]: while walking down a deserted

street at night, you hear a security alarm, look across the street, and see a

store with a broken window, from which a person wearing a mask crawls

out with a bag full of smart phones.

The natural reaction might be to conclude that the person crawling out

of the store is stealing merchandise from the store.

It might be the natural reaction, but how do we actually come to this

conclusion? It cannot come from a logical deduction based on evidence.
1

1: Such as would be used in mathematical

reasoning.

Indeed, the person crawling out of the store could have been its owner

who, upon returning from a costume party, realized that they had

misplaced their keys just as a passing truck was throwing a brick in the

store window, triggering the security alarm. Perhaps the owner then

went into the store to retrieve items before they could be stolen, which is

when you happened unto the scene.
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Table 25.1: Deductive (left) vs. inductive

(right) syllogisms.

But while the original reasoning process is not deductive, it is at least

plausible, which in the logical context is called inductive.

We might also want to use a weaker version of inductive reasoning: let us

say that we know that when 𝐴 is true, then 𝐵 is more plausible, and we

also know that 𝐵 is true. Then, we conclude that 𝐴 is more plausible.

In the scenario described at the start of the section, if “the person is a

thief” (𝐴 is true), you would not be surprised to “see them crawling out

of the store with a bag of phones” (𝐵 is plausible). As you do “see them

crawling out of the store with a bag of phones” (𝐵 is true), you would

therefore not be surprised to find out that “the person is a thief” (𝐴 is

plausible).

In deductive reasoning, we work from a cause to possible consequences;

in inductive reasoning, we work from observations to possible causes.

Figure 25.1: Deductive (left) vs. inductive (right) reasoning.

Plausibility relies on the notion of “surprise”. In Tom Stoppard’s 1966

play Rosencrantz and Guildenstern are Dead [15], Rosencrantz flips 92 heads

in a row. This result is of course not impossible, but is it plausible? If this

happened to you, what would you conclude?

25.1.1 Rules of Probability

Inductive reasoning requires methods to evaluate the validity of various

propositions.

In 1763, Thomas Bayes [1] published a paper on the problem of induction,

that is, on arguing from the specific to the general. In modern language

and notation, Bayes wanted to use binomial data comprising 𝑟 successes
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out of 𝑛 attempts to learn about the underlying chance 𝜽 of each attempt

succeeding. Bayes’ key contribution was to use a probability distribution

to represent uncertainty about 𝜽. This distribution represents epistemio-
logical uncertainty, due to lack of knowledge about the world, rather than

aleatory (random) probability arising from the essential unpredictability

of future events, as may be familiar from games of chance.

In this framework, a probability (plausibility) represents a ‘degree-of-

belief’ about a proposition; the probability of an event will be recorded

differently by two different observers, based on the respective background

information to which they have access. This Bayesian position was the

commonplace view of probabilities in the late 1700s and early 1800s, a

view shared by such luminaries as Bernoulli and Laplace.
2

2: Modern Bayesian statistics is still based

on formulating probability distributions to

express uncertainty about unknown quan-

tities. These can be underlying parameters

of a system (induction) or future observa-

tions (prediction). Bayesian statistics is

a system for describing epistemiological

uncertainty using the mathematical lan-

guage of probability; Bayesian inference
is the process of fitting a probability model

to a set of data and summarizing the result

with a probability distribution on the pa-

rameters of the model and on unobserved

quantities (such as predictions).

Subsequent scholars found this vague and subjective,
3

and they redefined

3: How can you be sure that my degree-

of-belief matches yours?

the probability of an event as its long-run relative frequency, given

infinite repeated trials (the so-called frequentist position).

A forecast calling for rain with 90% probability doesn’t mean the same

thing to Bayesians and frequentists:

in the Bayesian framework, this means that the forecaster is 90%

certain that it will rain on the next day, say;

in the frequentist framework, this means that it will rain on 90% of

the days for which the model gives this forecast, in the long run.

The Bayesians framework is more aligned with how humans understand

probabilities,
4

but how can we be certain that the degree-of-belief is a 4: 92 heads in a row must mean that that

the coin is biased, right?
well-defined concept?

As it happens, there is a well-defined way to determine the rules of

probability, based on a small list of axioms [3, 9]:

1. if a conclusion can be reasoned out in more than one way, then

every possible way must lead to the same result;

2. all (known) evidence relevant to a question must be taken into

consideration;

3. equivalent states of knowledge must be assigned the same proba-

bilities;

4. if we specify how much we believe something is true, we have

implicitly specified how much we believe it’s false, and

5. if we have specified our degree-of-belief in a first proposition, and

then our degree-of-belief in a second proposition if we assume the

first one is true, then we have implicitly specified our simultaneous

degree-of-belief in both propositions being true.

In what follows, we let 𝐼 denote relevant background information; 𝑋, 𝑌,

and 𝑌𝑘 denote various propositions, and −𝑋 or 𝑋 denote the negation of

proposition 𝑋.

The plausibility of 𝑋 given 𝐼 is denoted by 𝑃(𝑋 | 𝐼); it is a real number

whose value can range from 0 (false) to 1 (true). The rules of probability

are quite simple:

Sum Rule: for all propositions 𝑋, 𝑃(𝑋 | 𝐼) + 𝑃(−𝑋 | 𝐼) = 1;

Product Rule: for all 𝑋, 𝑌, 𝑃(𝑋,𝑌 | 𝐼) = 𝑃(𝑋 | 𝑌; 𝐼) × 𝑃(𝑌 | 𝐼).

From these two rules, we can also derive two useful corollaries:
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Bayes’ Theorem: 𝑃(𝑋 | 𝑌; 𝐼) × 𝑃(𝑌 | 𝐼) = 𝑃(𝑌 | 𝑋; 𝐼) × 𝑃(𝑋 | 𝐼)
(see next section);

Marginalization Rule: 𝑃(𝑋 | 𝐼) = ∑
𝑘 𝑃(𝑋,𝑌𝑘 | 𝐼), where {𝑌𝑘} are

exhaustive and disjoint.
5

5: Which is to say,

∑
𝑘 𝑃(𝑌𝑘 | 𝐼) = 1 and

𝑃(𝑌𝑗 , 𝑌𝑘 | 𝐼) = 0 for all 𝑗 ≠ 𝑘).

For continuous variables, the marginalization rule becomes

𝑃(𝑋 | 𝐼) =
∫
Ω(𝑌)

𝑃(𝑋,𝑌 | 𝐼) 𝑑𝑌.

The conditional probability of 𝐴 given 𝐵, 𝑃(𝐴 | 𝐵) is the probability of

𝐴 taking place given that another event 𝐵 has occurred:

𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴, 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) =

𝑃(𝐴 ∩ 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) .

The probability that two events 𝐴 and 𝐵 both occur simultaneously is

obtained by applying the multiplication rule:

𝑃(𝐴, 𝐵 | 𝐼) = 𝑃(𝐵 | 𝐼) × 𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴 | 𝐼) × 𝑃(𝐵 | 𝐴; 𝐼),

which we recognize as Bayes’ Rule.

Classical Example: a family has two puppies that are not twins. What is

the probability that the youngest puppy is female given that at least one

of the puppies is female?
6

6: Assume that male and female puppies

are equally likely to be born.

Solution: our answer to this question follows a frequentist approach – we

generate trials and identify successful events. There are 4 possibilities:

{MM,MF, FM, FF}.

Let 𝐴 and 𝐵 be the events that the youngest puppy is female and that at

least one puppy is female, respectively; then

𝐴 | 𝐼 = {FF,MF} and 𝐵 | 𝐼 = {FF,MF, FM},

=⇒ 𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴 ∩ 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) =

2/4

3/4

= 2/3.

25.1.2 Bayes’ Theorem

Bayes’ Theorem provides an expression for the conditional probability

of 𝐴 given 𝐵, that is:

𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼)
𝑃(𝐵 | 𝐼)

=
𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼)

𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼) + 𝑃(𝐵 | −𝐴; 𝐼) × 𝑃(−𝐴 | 𝐼) ,

which is a direct application of the Law of Total Probability.

Bayes’ Theorem can be thought of as a way of coherently updating
our uncertainty in the light of new evidence. The use of a probability

distribution as a ‘language’ to express our uncertainty is not an arbitrary

choice: it can in fact be determined from deeper principles of logical

reasoning or rational behaviour.
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Example: consider a medical clinic (in what follows, we drop the explicit

dependence on 𝐼 to lighten the notation, but it is important to remember

that it is there nonetheless).

𝐴 could represent the event “Patient has liver disease.” Past data

suggests that 10% of patients entering the clinic have liver disease:

𝑃(𝐴) = 0.10.

𝐵 could represent the litmus test “Patient is alcoholic.” Perhaps 5%

of the clinic’s patients are alcoholics: 𝑃(𝐵) = 0.05.

𝐵 | 𝐴 could represent the scenario that a patient is alcoholic, given

that they have liver disease: perhaps we have 𝑃(𝐵 | 𝐴) = 0.07, say.

According to Bayes’ Theorem, then, the probability that a patient has

liver disease assuming that they are alcoholic is

𝑃(𝐴 | 𝐵) = 0.07 × 0.10

0.05

= 0.14

While this is a (large) increase over the original 10% suggested by past

data, it remains unlikely that any particular patient has liver disease.

Bayes’ Theorem with Multiple Events Let 𝐷 represent some observed

data and let 𝐴, 𝐵, and 𝐶 be mutually exclusive (and exhaustive) events

conditional on 𝐷. Note that

𝑃(𝐷) = 𝑃(𝐴 ∩ 𝐷) + 𝑃(𝐵 ∩ 𝐷) + 𝑃(𝐶 ∩ 𝐷)
= 𝑃(𝐷 | 𝐴)𝑃(𝐴) + 𝑃(𝐷 | 𝐵)𝑃(𝐵) + 𝑃(𝐷 | 𝐶)𝑃(𝐶).

According to Bayes’ theorem,

𝑃(𝐴 | 𝐷) = 𝑃(𝐷 | 𝐴)𝑃(𝐴)
𝑃(𝐷)

=
𝑃(𝐷 | 𝐴)𝑃(𝐴)

𝑃(𝐷 | 𝐴)𝑃(𝐴) + 𝑃(𝐷 | 𝐵)𝑃(𝐵) + 𝑃(𝐷 | 𝐶)𝑃(𝐶) .

In general, if there are 𝑛 exhaustive and mutually exclusive outcomes

𝐴1 , ..., 𝐴𝑛 , we have, for any 𝑖 ∈ {1, ..., 𝑛}:

𝑃(𝐴𝑖 | 𝐷) = 𝑃(𝐴𝑖)𝑃(𝐷 | 𝐴𝑖)∑𝑛
𝑘=1

𝑃(𝐴𝑘)𝑃(𝐷 | 𝐴𝑘)

The denominator is simply 𝑃(𝐷), the marginal distribution of the data.

Note that, if the values of 𝐴𝑖 are portions of the continuous real line, the

sum may be replaced by an integral.

Example: In the 1996 General Social Survey, for males (age 30+):

11% of those in the lowest income quartile were college graduates.

19% of those in the second-lowest income quartile were college

graduates.

31% of those in the third-lowest income quartile were college

graduates.

53% of those in the highest income quartile were college graduates.

What is the probability that a college graduate falls in the lowest income

quartile?
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Solution: let 𝑄𝑖 represent the income quartiles (𝑃(𝑄𝑖) = 0.25) and 𝐷

represent the event that a male over 30 is a college graduate. Then

𝑃(𝑄1 | 𝐷) = 𝑃(𝐷 | 𝑄1)𝑃(𝑄1)∑
4

𝑘=1
𝑃(𝑄𝑘)𝑃(𝐷 | 𝑄𝑘)

=
(0.11)(0.25)

(0.11 + 0.19 + 0.31 + 0.53)(0.25) = 0.09.

25.1.3 Bayesian Inference Basics

Bayesian statistical methods start with existing prior beliefs, and update

these using data to provide posterior beliefs, which may be used as the

basis for inferential decisions:

𝑃(𝜽 | 𝐷)︸    ︷︷    ︸
posterior

= 𝑃(𝜽)︸︷︷︸
prior

×𝑃(𝐷 | 𝜽)︸    ︷︷    ︸
likelihood

/𝑃(𝐷)︸︷︷︸
evidence

,

where the evidence is

𝑃(𝐷) =
∫

𝑃(𝐷 | 𝜽)𝑃(𝜽)𝑑𝜽 or 𝑃(𝐷) =
∑
𝑘

𝑃(𝐷 | 𝐴𝑘)𝑃(𝐴𝑘),

where {𝐴𝑘} is mutually exclusive and exhaustive.

In the vernacular of Bayesian data analysis (BDA),

the prior, 𝑃(𝜽), represents the strength of the belief in 𝜽 without

taking the observed data 𝐷 into account;

the posterior, 𝑃(𝜽 | 𝐷), represents the strength of our belief in 𝜽
when the observed data 𝐷 is taken into account;

the likelihood, 𝑃(𝐷 | 𝜽), is the probability that the observed data

𝐷 would be generated by the model with parameter values 𝜽, and

the evidence, 𝑃(𝐷), is the probability of observing the data 𝐷

according to the model, determined by summing (or integrating)

across all possible parameter values and weighted by the strength

of belief in those parameter values.

Central Data Analysis Question Bayes’ Theorem allows is an essential

component of the scientific method and knowledge discovery in general.

Indeed, assume that an experiment has been conducted to determine

the degree of validity of a particular hypothesis, and that corresponding

experimental data has been collected.

The central data analysis question is the following: given everything

that was known prior to the experiment, does the collected data support

(or invalidate) the hypothesis?

Given everything that was known prior to the experiment, does the

collected/observed data support (or invalidate) the hypothesis/presence

of a certain condition?

The problem is that this is usually impossible to compute directly. Bayes’

Theorem offers a possible solution:

𝑃(hypothesis | data; 𝐼) = 𝑃(data | hypothesis; 𝐼) × 𝑃(hypothesis | 𝐼)
𝑃(data | 𝐼)

∝ 𝑃(data | hypothesis; 𝐼) × 𝑃(hypothesis | 𝐼);
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the hope is that the terms on the right might be easier to compute than

those on the left:

𝑃(hypothesis | 𝐼) is the degree-of-belief that the hypothesis is true,

prior to the experiment;
𝑃(hypothesis | data; 𝐼) is the degree-of-belief that the hypothesis

is true, after the experimental data is taken into account;
𝑃(data | hypothesis; 𝐼) is the probability of observing experimental

data, assuming that the hypothesis is true, and

𝑃(data | 𝐼) is the probability of the experimental data being ob-

served, independently of the hypothesis.

The theorem is often presented as

posterior =
likelihood × prior

evidence

∝ likelihood × prior,

i.e., beliefs should be updated in the presence of new information.

Example: “Most of us would have assigned almost no probability to

terrorists crashing planes into buildings in Manhattan when we woke up

on 9/11. But we recognized that a terror attack was an obvious possibility

once the first hit the World Trade Center. And we had no doubt we were

being attacked once the second tower was hit.” [14]

Let 𝐴 represent the proposition that a plane crashes into Manhattan

skyscrapers. Let 𝐵 represent the proposition that terrorists would attack

Manhattan skyscrapers; before 2001, most people would only have

assigned a miniscule probability to such an event, say 0.005%. There had

been two incidents of planes crashing into Manhattan skyscrapers in

the previous 25,000 days before September 11, 2001, so we might assign

𝑃(𝐴 | −𝐵; 𝐼) = 0.008%.

We could also assign a fairly high probability of a plane hitting a

Manhattan skyscraper if terrorists were attacking said skyscrapers, say

𝑃(𝐴 | 𝐵; 𝐼) = 95%.

After one plane hitting the World Trade Center, our revised estimate of

the probability of a terror attack now stands at roughly 37%. If a second

plane hits the World Trade Center shortly after the first one, the posterior

probability of a terror attack now jumps to a whopping 99.99%.

Determining an appropriate prior is a source of considerable controversy.

Conservative estimates (uninformative priors) often lead to reasonable
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results, but in the absence of relevant information, it might be preferable

to use maximum entropy priors (see Section 25.3).

The evidence is harder to compute on theoretical grounds – evaluating

the probability of observing data requires access to some model as part

of 𝐼. Either that model was good, so there’s no need for a new hypothesis,

or that model was bad, so we dare not trust our computation.
7

7: Thankfully, the evidence is rarely re-

quired on problems of parameter estima-
tion: prior to the experiment, there are

numerous competing hypotheses; while

the priors and likelihoods will differ, the

evidence will not, so it is not needed to

differentiate the various hypotheses.

25.1.4 Bayesian Data Analysis

The main characteristic of Bayesian methods is their explicit use of

probability for quantifying uncertainty in inferences based on statistical

data analysis. The process of Bayesian data analysis (BDA) can be

idealized by dividing it into the following 3 steps:

1. Setting up a full probability model (the prior) – a joint probability

distribution for all observable and unobservable quantities in a

problem. The model should be consistent with knowledge about

the underlying scientific problem and the data collection process

(when available).

2. Conditioning on observed data (new data) – calculating and inter-

preting the appropriate posterior distribution (i.e., the conditional

probability distribution of the unobserved quantities of ultimate

interest, given the observed data).

3. Evaluating the fit of the model and the implications of the resulting

posterior distribution (the posterior) – how well does the model

fit the data? Are the substantive conclusions reasonable? How

sensitive are the results to the modeling assumptions made in step 1?

Depending on the responses, one can alter or expand the model

and repeat the 3 steps.

The essence of Bayesian methods consists in identifying the prior beliefs
about what results are likely, and then updating those according to the

collected data.

For example, if the current success rate of a gambling strategy is 5%,

we may say that it’s reasonably likely that a small strategy modification

could further improve that rate by 5 percentage points, but that it is most

likely that the change will have little effect, and that it is entirely unlikely

that the success rate would shoot up to 30%.
8

8: After all, it is only a small modification.
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As the data comes in, we update our beliefs. If the incoming data points

to an improvement in the success rate, we move our prior estimate of the

effect upwards; the more data we collect, the more confident we are in

the estimate of the effect and the further we can leave the prior behind.

The end result is called the posterior – a probability distribution describ-

ing the likely effect of the strategy.

25.2 Simple Examples

We take a look at three scenarios that will shed some light on the whole

Bayesian entreprise:
9

9: These examples will showcase how pri-

ors, likelihood, and posteriors interact.

determining if a coin is fair (or not),

finding a link between demographic information and salary, and

estimating the number of dollar bills in circulation.

25.2.1 The Mysterious Coin

A mysterious stranger brings back a souvenir coin from a trip to a strange

and distant land. They have been flipping it non-stop since their return.

You can see the proportion of heads they obtained for 4, 8, and 16 tosses.

It might seem at first that the coin is biased, but the proportion of heads

seems to inch its way towards 50%. What is truly going on?
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Priors Perhaps the coin is not fair, coming as it does from a strange

and distant land. Let us denote the coin’s bias by 𝐻, i.e., the probability

of flipping a head on a toss (𝐻 ≈ 0.5: regular unbiased coins; 𝐻 ≈ 0, 1:

highly biased coins). A prior for this scenario is a probability density
function (p.d.f.)

𝑃(bias = 𝐻) = 𝑃(𝐻 | 𝐼).

Four such priors are shown below.

Figure 25.2: 4 priors for the fair coin prob-

lem: no idea (top left); suspect foul play

(top right); just a regular coin (bottom left);

probably just a regular coin, but the fact

that somebody is even talking about this

is suspicious (bottom right).

Why are we working with functions for the prior, when in the previous

example (9/11 attacks), we only provided a number, 𝑃(𝐵 | 𝐼) = 0.005%?

In fact, we provided a (discrete) function as a prior:

𝑃(𝐵 = 𝑥 | 𝐼) =
{

0.005% if 𝑥 = TRUE

99.995% if 𝑥 = FALSE

Likelihood Let us assume that the coin has been tossed 𝑁 times in total,

and that 𝐾 heads have been recorded. In this scenario, Bayes’ Theorem

takes the form:

𝑃(bias = 𝐻 | 𝐾 heads, 𝑁 tosses; 𝐼) ∝ 𝑃(𝐾 heads, 𝑁 tosses | bias = 𝐻; 𝐼)
× 𝑃(bias = 𝐻 | 𝐼).

The likelihood is the probability of observing 𝐾 heads in 𝑁 tosses if the

bias is 𝐻. If, as part of 𝐼, the tosses are independent (i.e., the result of

one toss does not affect the others), then the likelihood is given by the

binomial distribution

𝑃(𝐾 heads, 𝑁 tosses | bias = 𝐻; 𝐼) =
(
𝑁

𝐾

)
𝐻𝐾(1 − 𝐻)𝑁−𝐾 .



25.2 Simple Examples 1603

Posteriors Combining the prior and the likelihood, we get:

𝑃(bias = 𝐻 | 𝐾 heads, 𝑁 tosses; 𝐼) ∝ 𝐻𝐾(1 − 𝐻)𝑁−𝐾 × 𝑃𝑖(bias = 𝐻 | 𝐼),

where 𝑖 indexes the various prior scenarios described above.

We should thus be able to estimate the bias 𝐻∗
by studying the posterior

distribution for each of the 4 priors, for various number of throws 𝑁 (see

Figure 25.3):

with the non-committal prior (blue p.d.f.)

𝑃1(bias = 𝐻 | 𝐼) ∝ 1,

the posterior is simply proportional to the likelihood; the central

limit theorem seems to kick in after ≈ 30 tosses;

with the foul play prior (green p.d.f.), we suspect early on that the

bias is smaller than 0.5; the subsequent series of tosses moves the

bias to a value 0.25 ≤ 𝐻∗ ≤ 0.40 quickly, as was the case with the

non-informative prior – note the shrinking of the posterior with an

increasing number of tosses;

with the regular coin prior (orange p.d.f.)

𝑃1(bias = 𝐻 | 𝐼) ∼ N(0.5, 𝜎2),

early results do not strongly suggest that the coin is biased (the

prior gives little credence to the notion that the bias could lie in

0.25 ≤ 𝐻∗ ≤ 0.40), but the series of tosses forces the posterior to a

biased distribution (note the smoother convergence of the posterior;

with the doubtful prior (yellow p.d.f.), the competing hypotheses

compete before converging to a bias, again in 0.25 ≤ 𝐻∗ ≤ 0.40.

The convergence is more haphazard: as soon as one head or one

tail is observed, the process nixes the two-sided coin option. Note

the slower (and weirder) convergence to a gaussian posterior.

In the fair coin example, it would seem that the choice of a prior does not

have much of an effect on the posterior . . . given enough data.

This will not always be the case.

25.2.2 The Salary Question

Income information has been collected for 4782 individuals, together

with demographic details: self-reported gender, age group, and education

level (1 for post-secondary degree, 0 otherwise). The table below shows

some of the summary statistics for the dataset; the dataset is available in

Salary.xlsx .

Question: is there a link between demographic information and income?

How would we answer this question using classical statistical methods?

What if we had reason to suspect that reported incomes follow a (po-

tentially) different distribution for each group? Would that change the

approach?

https://www.data-action-lab.com/wp-content/uploads/2019/04/Salaries.xlsx
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Figure 25.3: Posteriors for a different numbers of tosses; 4 priors, same data. After 128 tosses starting with the non-committal prior, we are

fairly certain that the coin must be biased, with 0.25 ≤ 𝐻∗ ≤ 0.40 (top left); it takes roughly 256 tosses starting with the foul play prior for

the same notion to arise (top right); after 512 tosses starting with the regular coin prior, we are fairly certain that the coin must be biased,

with 0.33 ≤ 𝐻∗ ≤ 0.40 (bottom left); which is more or less the same when starting with the doubtful prior (bottom right).

In the Bayesian framework, we are interested in the posterior distribu-

tion

𝑃(parameters | data; 𝑖 , 𝐼), 𝑖 = 1, . . . , 12.

If we assume (for no particular good reason) that the reported incomes

are normally distributed for each group, then we seek

𝑃(𝜇𝑖 , 𝜎𝑖 | reported salaries in group 𝑖; 𝐼), 𝑖 = 1, . . . , 12.
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Figure 25.4: Two priors for the salary problem. Green represents large probabilities; red, low probabilities. The blue zones represent

marginal probabilities of higher values.

Priors Determining a reasonable collection of priors

𝑃(𝜇𝑖 , 𝜎𝑖 | 𝐼), for 𝑖 = 1, . . . , 12,

is no easy task. One could naively pick a joint distribution which

“peaks” at the sample mean 𝑥 𝑖 , with standard deviation 𝑠𝑖 , for each 𝑖,

but there are sampling design issues associated with this approach.

Why not select, instead, a prior “which expresses complete ignorance
except for the fact that 𝜇𝑖 is a location parameter and 𝜎𝑖 is a scale
parameter” [9, 11]. This translates into using a non-informative prior

𝑃1(𝜇𝑖 , 𝜎𝑖 | 𝐼) ∝ 𝜎−1

𝑖 , 𝑖 = 1, . . . , 12

(we will discuss these further in the next section).

For comparison’s sake, we will also consider the prior

𝑃2(𝜇𝑖 , 𝜎𝑖 | 𝐼) ∝ 𝜇500

𝑖 𝜎−4

𝑖 , 𝑖 = 1, . . . , 12.

The two priors are illustrated in Figure 25.4.

What could those priors represent, in the real world? What happens to

the probabilities when 𝜎𝑖 increases? When 𝜇𝑖 increases? Note, as well,

that these ”priors” are not normalizable over the positive quadrant in

(𝜇, 𝜎)−space.
10

10: The integral of these priors over the

positive quadrant is infinite.

Instead, we could only consider them over a suitable finite sub-region; or

use the fact that the product of the likelihood and the prior is normaliz-

able.

Likelihood Let us denote the number of observations in group 𝑖 by 𝑁𝑖 .

The likelihood is the probability

𝑃(reported incomes {𝑥𝑘,𝑖} in group 𝑖 | 𝜇𝑖 , 𝜎𝑖 ; 𝐼), 𝑖 = 1, . . . , 12.

We have assumed normality for any given observation. If we assume

further that all observations are independent, then

𝑃({𝑥𝑘,𝑖} | 𝜇𝑖 , 𝜎𝑖 ; 𝐼) ∝
𝑁𝑖∏
𝑘=1

𝜎−1

𝑖 exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12.



1606 25 Bayesian Data Analysis

Figure 25.5: Posteriors for the salary problem (one per prior), for group 𝑖 = 1. Green represents large probabilities; red, low probabilities.

Note the shape of the posteriors. The blue zones represent marginal probabilities of higher values.

Figure 25.6: Marginal posteriors for the salary problem (one for each of the priors), for group 𝑖 = 1. Note the differences in the distributions

for each scenario.

Posteriors Combining the prior and the likelihood, we get, for the first

prior:

𝑃1(𝜇𝑖 , 𝜎𝑖 | {𝑥𝑘,𝑖}; 𝐼)

∝ 𝜎−(𝑁𝑖+1)
𝑖

𝑁𝑖∏
𝑘=1

exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12,

while for the second prior:

𝑃2(𝜇𝑖 , 𝜎𝑖 | {𝑥𝑘,𝑖}; 𝐼)

∝ 𝜇500

𝑖 𝜎−(𝑁𝑖+4)
𝑖

𝑁𝑖∏
𝑘=1

exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12,

over some suitable sub-region in parameter space.

The joint posterior distributions for (𝜇1 , 𝜎1) (one for each of the priors)

when 𝑖 = 1 are shown in Figure 25.5.

We can read the likely values of each parameters for each scenario by

looking at the spikes in the marginal posteriors of Figure 25.6.

The first two examples were (somehow ashamedly) conducted with Excel;

the next example shows how we can use programmatical tools (like R) to

answer questions using Bayesian analysis.
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25.2.3 Money ($ Bill Y’All)

The question: how many 5$ dollar bills are there in circulation?

The problem: we cannot count them all – so what do we do?

The solution: “catch-and-release”

1. Capture a few 5$ bills.

2. Mark them and put them back in circulation.

3. At some later point, capture a few 5$ bills.

4. Count how many are marked.

𝑥 = 500 bills might have been marked initially, say; 𝑦 = 300 bills might

have been re-captured at stage 3, of which 𝑤 = 127 were marked.

What is the most probable number of bills 𝑁 in circulation?

Unlike the previous examples where we were trying to estimate the

parameters from the data, we are trying to estimate data from parameters

(generative model) – we do not compute the likelihood directly.

Simple Model In the simplest model, we might proceed as follows:

Figure 25.7: Catch-and-release schematics

in the simple model.

1. We start by drawing a large random sample of # of bills 𝑁 from an

acceptable “prior” distribution on the parameters.

2. Using the 𝑁s and the generative model (with 𝑥 and 𝑦 given – the

observed values), we produce a (synthetic) # of marked bills 𝑧 in

each sample.

3. Finally, we only retain those values of 𝑁 for which 𝑧 = 𝑤.

Let us implement this in R using the values of 𝑥, 𝑦, and𝑤 provided above.

We will generate priors using 500,000 replicates:

set.seed(1) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the second capture

Since 𝑥 = 500 were first “captured”, we know that there are at least 500

bills in circulation. To keep things from getting out of hands, we select a

theoretical maximum for the number of bills in circulation.
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upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

We now draw to create the prior distribution on the possible number of

bills 𝑁bills in circulation:

N.bills = sample (x:1500, N.draw, replace=TRUE)

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

A priori, all of these are “equally likely”. Now, we use the observed

“catch-and-release” data to define the generative model, in which we

capture 𝑥 = 500 bills in the first round, and 𝑦 = 300 in the second:

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x)) # 0 for un-marked

# 1 for marked in the inital capture

sum(sample(bills, y)) # sampling y bills in the 2nd round

}

The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {

N.marked[i] <- pick.bills(N.bills[i])

}

In the language of the generative model, N.marked is 𝑧. Now, we only

keep those trials for which there were 𝑤 = 127 re-captured marked bills,

and retain the number of bills in circulation for these trials:

post.bills <- N.bills[N.marked == w]

Finally, we plot the posterior distribution:

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")
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The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 4754

Min. 1st Qu. Median Mean 3rd Qu. Max.

979 1143 1188 1193 1236 1492

In other words, out of 500,000 trials, a little fewer than 5000 had the right

characteristics (𝑥, 𝑦, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset of

trials is a tad below 1200. The Bayesian situation is illustrated below.
11

11: We used a different seed, so the charts

are slightly different, but the main ideas

hold.

Model: Marked Bills are Brittle It may be the case that the process of

marking the bills might damage them somehow, so that they may be

retired sooner than one would expect (with probability 𝑢 = 90%, say).

In this case, we might proceed as follows:

1. We start by drawing a large random sample of # of bills 𝑁 from an

acceptable “prior” distribution on the parameters.

2. Using the 𝑁s and the generative model (with 𝑥, 𝑦, and 𝑢 given –

the observed values), we produce a (synthetic) # of marked bills 𝑧

in each sample.

3. Finally, we only retain those values of 𝑁 for which 𝑧 = 𝑤.
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Figure 25.8: Catch-and-release schematics

in the brittle model.

Let us implement this in R using the values of 𝑥, 𝑦, 𝑢, and 𝑤 provided

above. We will generate priors using 500,000 replicates:

set.seed(10) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the second capture

u = 0.9 # probability that marked bills will be retired

upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

N.bills = sample (x:1500, N.draw, replace=TRUE)

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

A priori, all of these are “equally likely” in the brittle scenario too. Now,

we use the observed “catch-and-release” data to define the generative

model, in which we capture 𝑥 = 500 bills in the first round, and 𝑦 = 300

in the second round, knowing that 𝑢 = 0.9 of first round marked bills

will be retired.
12

12: Would we expect there to be more bills

in circulation, given these observations, in

the brittle case or the simple case?

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x))

prob.pick <- ifelse(bills == 0, 1.0, u) # brittleness

sum(sample(bills, y, prob = prob.pick))

}

The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {
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N.marked[i] <- pick.bills(N.bills[i])

}

# Posterior distribution

post.bills <- N.bills[N.marked == w]

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")

The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 4410

Min. 1st Qu. Median Mean 3rd Qu. Max.

935 1089 1129 1132 1172 1411

In other words, out of 500,000 trials, about 4400 had the right char-

acteristics (𝑥, 𝑦, 𝑢, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset

of trials is a roughly 1130. Does this make sense, given the brittleness

assumption?

The Bayesian situation is illustrated below.
13

13: Again, the charts are slightly different

due the use of a different seed.
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Model: Listen to the Banker Let us say that an old banker thinks that

there should be about 1000 bills in circulation. How can we incorporate

this piece of information?

In this case, we might proceed as follows:

Figure 25.9: Catch-and-release schematics

in the expert model.

Let us implement this in R using the values of 𝑥, 𝑦, 𝑢, and 𝑤 provided

above, as well as the expert’s best guess. We will generate priors using

500,000 replicates:

set.seed(100) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the sample

u = 0.9 # probability that marked bills will be retired

banker.mean = 1000 # banker guess

upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

We now draw to create the prior distribution on the possible number

of bills 𝑁bills in circulation, using the banker’s experience (instead of a

uniform distribution, the prior might follow a binomial distribution with

mean 1000$, say).

N.bills = rnbinom(N.draw, mu = banker.mean - x, size = w) + x

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x))

prob.pick <- ifelse(bills == 0, 1.0, u)

sum(sample(bills, y, prob = prob.pick)) second capture

}
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The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {

N.marked[i] <- pick.bills(N.bills[i])

}

# Posterior

post.bills <- N.bills[N.marked == w]

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")

The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 5258

Min. 1st Qu. Median Mean 3rd Qu. Max.

893 1031 1057 1058 1083 1209

In other words, out of 500,000 trials, about 5250 had the right char-

acteristics (𝑥, 𝑦, 𝑢, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset of

trials is a roughly 1050. Does this make sense, given the banker’s opinion

and the observations? The Bayesian situation is illustrated below.
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25.3 Prior Distributions

Specifying a model means, by necessity, providing a prior distribution

for the unknown parameters 𝜽. The prior plays a critical role in Bayesian

inference through the updating statement:

𝑃(𝜽 | 𝐷) ∝ 𝑃(𝜽) × 𝑃(𝐷 | 𝜽).

In the Bayesian approach, all unknown quantities are described proba-

bilistically, even before the data has been observed.

All priors are subjective in the sense that the decision to use a prior is

left completely up to the researcher. But the choice of priors is no more
subjective than the choice of likelihood, the selection or collection of
a sample, the estimation, or the statistic used for data reduction. The

choice of a prior can substantially affect posterior conclusions, however,

especially with small sample sizes.

25.3.1 Conjugate Priors

The main challenge of Bayesian methods is that the posterior distribution

of the vector 𝜽 might not have an analytical form. Specifically, produc-

ing marginal posterior distributions from high-dimensional posteriors

by repeated analytical integration may be difficult or even impossible

mathematically.

There are exceptions however, providing easily obtainable computational

posteriors through the use of a conjugate prior. Conjugacy is a joint

property of a prior and a likelihood implying that the posterior has the

same distributional form as the prior, but with different parameter(s).

The table below represents some common likelihoods and their conjugate

priors (an extensive list can be found in [16]).

Likelihood Prior Hyperparameters

Bernoulli Beta 𝛼 > 0, 𝛽 > 0

Binomial Beta 𝛼 > 0, 𝛽 > 0

Poisson Gamma 𝛼 > 0, 𝛽 > 0

Normal for 𝜇 Normal 𝜇 ∈ ℝ, 𝜎2 > 0

Normal for 𝜎2
Inverse Gamma 𝛼 > 0, 𝛽 > 0

Exponential Gamma 𝛼 > 0, 𝛽 > 0

For instance, if the probability of 𝑠 successes in 𝑛 trials (the likelihood)

is given by

𝑃(𝑠, 𝑛 | 𝑞) = 𝑛!

𝑠!(𝑛 − 𝑠)! 𝑞
𝑠(1 − 𝑞)𝑛−𝑠 , 𝑞 ∈ [0, 1],

and the prior probability for 𝑞 follows a Beta(𝛼, 𝛽) distribution with

𝛼 > 0, 𝛽 > 0, so that

𝑃(𝑞) = 𝑞𝛼−1(1 − 𝑞)𝛽−1

𝐵(𝛼, 𝛽) , for 𝑞 ∈ [0, 1],



25.3 Prior Distributions 1615

then the posterior distribution for 𝑞 given 𝑠 successes in 𝑛 trials follows

a Beta(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠) distribution, so that

𝑃(𝑞 | 𝑠, 𝑛) = 𝑃(𝑠, 𝑛 | 𝑞) × 𝑃(𝑞)
𝑃(𝑠, 𝑛) =

𝑞𝛼+𝑠−1(1 − 𝑞)𝛽+𝑛−𝑠−1

𝐵(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠) , for 𝑞 ∈ [0, 1].

Conjugate priors are mathematically convenient, and they can be quite

flexible, depending on the specific hyperparameters we use; but they
reflect very specific prior knowledge and should be eschewed unless
we truly possess that prior knowledge.

25.3.2 Uninformative Priors

An uninformative prior (or objective prior) is one which intentionally

provides very little specific information about the parameters of interest.

Uninformative priors are very useful from the perspective of traditional

Bayesianism seeking to mitigate the frequentist criticism of intentional
subjectivity.

The rationale for using uninformative prior distributions is often said to

be ‘to let the data speak for itself,’ so that inferences are unaffected by

information external to the current data.

A classic uninformative prior is the uniform prior. A proper uniform

prior integrates to a finite quantity and is thus normalizable. For example,

for data following a Bernoulli(𝜃) distribution, a uniform prior on 𝜃 is

𝑃(𝜃) = 1, 0 ≤ 𝜃 ≤ 1.

For data following a 𝑁(𝜇, 1) distribution, say,
14

the uniform prior on the 14: Or any data with unbounded support.
support of 𝜇 is improper as

𝑃(𝜇) = 1, −∞ < 𝜇 < ∞

diverges; however, such a choice could still be acceptable as long as the

resulting posterior is normalizable.
15

As there are instances where an 15: Which is to say, the integral of the

posterior converges on its support.
improper prior yields an improper posterior, care is warranted.

This is also called the principle of indifference, which states that with

no evidence one way or another, degrees of belief should be distributed

equally among all the considered outcomes.
16

16: But Bertrand’s Paradox provides

doubt as to the validity of this principle.

There are plenty of situations where the uniform prior is not an appropri-

ate prior; such a prior makes assumptions about the distribution of the

parameters of interest that fall squarely in the subjective camp. The use

of uniform priors is often justified solely on the basis of convenience.
17

17: Since the posterior is then simply pro-

portional to the likelihood.

The Jeffreys prior is an approach to generate uninformative priors. For a

given random parameter 𝜽, the Jeffreys prior is

𝑃(𝜽 | 𝐼) ∝
√

det I(𝜽),

where I(𝜽) represents the Fisher information, which measures the

amount of information that an observable random variable 𝑋 implies

about an unknown parameter vector 𝜽 (i.e., we are interested in 𝑃(𝑋 | 𝜽)).

https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
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Let 𝑓 (𝑋 | 𝜽) be the corresponding p.d.f./p.m.f.;

[
I(𝜽)

]
𝑖 , 𝑗

= −E

[
𝜕2

𝜕𝜃𝑖 𝜕𝜃𝑗
log 𝑓 (𝑋 | 𝜽)

���� 𝜽]
.

Note that the Jeffreys prior depends on underlying statitistical model:

if 𝑋 follows a normal distribution N(𝜇, 𝜎2), with 𝜎 fixed, and all

we assume is that 𝜇 is a location parameter, then the Jeffreys prior

would be

𝑃(𝜇 | 𝐼) ∝ 1,

an improper uniform distribution (all locations are equally likely

to be the mean);

if 𝑋 follows a normal distribution N(𝜇, 𝜎2), with 𝜇 fixed, and all

we assume is that 𝜎 > 0 is a scale parameter, then it would be

𝑃(𝜎 | 𝐼) ∝ 1

𝜎
,

again an improper distribution, but one for which a dispersion 𝜎
becomes progressively less likely as it increases;

if 𝑋 follows a Poisson distribution P(𝜆) and all we assume is that

𝜆 ≥ 0, then it would be the improper distribution

𝑃(𝜆 | 𝐼) ∝ 1√
𝜆
.

In contrast, a weakly informative prior is one for which only partial
information about a variable is available; the choice of a uniform prior is

often weakly informative.

We will discuss another uninformative approach, the Maximum Entropy
prior, shortly.

25.3.3 Informative Priors

Informative priors are those that deliberately insert information that

researchers have at hand. This seems like a reasonable approach since

previous scientific knowledge should play a role in statistical inference.

However, there are two important requirements for researchers:

1. the overt declaration of prior specification, and

2. a detailed sensitivity analysis to show the effect of these priors

relative to uninformed types.

Transparency is required to avoid the common pitfall of data fishing;

sensitivity analysis can provide a sense of exactly how informative the

prior is. But where do informative priors come from, in the first place?

Generally these priors are derived from:

past studies, published work, researcher intuition;

interviewing domain experts;

convenience with conjugacy, and

non-parametric and other data-derived sources.
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Prior information from past studies need not be in agreement. One

useful strategy is to construct prior specifications from competing school-
of-thoughts in order to contrast the resulting posteriors and produce

informed statements about the relative strength of each of them.

Example: we have noted previously that a Bernoulli likelihood and a

Beta prior form a set of conjugate priors. For this exercise, we use the R

function BernBeta() defined in the excellent [10].
18

18: This function uses the conjugacy be-

tween the Bernoulli (likelihood) and the

Beta (prior) distributions to determine the

posterior distribution Beta for the uncer-

tainty in the fairness of the coin (1 repre-

sents a H(ead) on the flip, 0 a T(ail)). Note

that the function returns the posterior beta

values each time it is called, so returned

values can be fed back into the prior in a

subsequent function call.

1. Start with a prior distribution that expresses some uncertainty that

a coin is fair: Beta(𝜃 | 4, 4). Flip the coin once; assume that a Head

is obtained. What is the posterior distribution of the uncertainty in

the coin’s fairness 𝜃?

Solution: we know, on theoretical grounds, that the posterior

follows a

Beta(𝜃 | 4 + 1, 4 + 1 − 1; 𝐼) = Beta(𝜃 | 5, 4; 𝐼)

distribution.
19

19: The label on the 𝑦−axis of the pos-

terior distribution provides the posterior

parameters.

post = BernBeta( c(4,4) , c(1) )

show(post)

[1] 5 4
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2. Use the posterior parameters from the previous flip as the prior

for the next flip. Suppose we flip again and get a H. What is the

new posterior on the uncertainty in the coin’s fairness?

Solution: on theoretical grounds, the posterior is

Beta(𝜃 | 6, 4; 𝐼),

which is shown below.

post = BernBeta( post , c(1) )

show(post)

[1] 6 4

3. Using the most recent posterior as the prior for the next flip, flip a

third time and obtain yet again a H. What is the new posterior?

Solution: in this case, we know that the posterior for the coin’s

fairness follows a Beta(𝜃 | 7, 4; 𝐼) distribution.

post = BernBeta( post , c(1) )

show(post)

[1] 7 4
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Should flipping 3 H in a row give us pause? Is there enough

evidence to suggest that 𝜃 ≠ 0.5 (i.e, that the coin is not fair)? What

if we were to flip 18 H in a row from this point on?
20

20: The modified code would yield:

Note the posterior’s bias.

When working on a problem, it can be easy to get side-tracked and

confused with the notation. In those cases, it is useful to return to the

definition of each of the terms in Bayes’ theorem (i.e., 𝑃(𝜃 | 𝐷; 𝐼), 𝑃(𝐷 | 𝐼),
𝑃(𝐷 | 𝜃; 𝐼), etc.).

Example: suppose that a friend has a coin that we know comes from

a magic store; as a result, we believe that the coin is strongly biased in

either of the two directions (it could be a trick coin with both sides being

H, for instance), but we don’t know which one it favours. We will express

the belief of this prior as a Beta distribution. Let’s say that our friend

flips the coin five times; resulting in 4 H and 1 T. What is the posterior

distribution of the coin’s fairness 𝜃?

Solution: we start with a prior that corresponds with our assumptions,

and assume 4 H and 1 T:

post = BernBeta( c(1,1)/100 , c(1,1,1,1,0) )

show(post)

[1] 4.01 1.01
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This prior captures our belief that the coin is strongly biased, although

we do not know in which direction the bias lies before seeing data. The

use of 0.01 is arbitrary, in a sense; 0.1 would have worked as well, say.

The posterior distribution is

Beta(𝜃 | 4.01, 1.01; 𝐼),

which, as shown above, has its mode essentially at 1.0, and not near the

mean ≈ 0.8. Is the coin indeed biased? In which direction?

How would the answer change if we had no reason to suspect that the

coin was biased in the first place? These are all questions that could be

answered by playing with BernBeta().

25.3.4 Maximum Entropy Priors

Whether the priors are uninformative or informative, we search for the

distribution that best encodes the prior state of knowledge from a set of

trial distributions.

Consider a discrete space 𝑋 of cardinality 𝑀 with probability density

𝑃(𝑋) = p = (𝑝1 , ..., 𝑝𝑀). The entropy of such a p, denoted by 𝐻(p), is
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given by

𝐻(p) = −
𝑀∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 , with 0 · log(0) = 0.

In the case of a continuous p.d.f. 𝑃(X) = 𝑃(𝑋1 , . . . , 𝑋𝑛) on some domain

Ω ⊆ ℝ𝑛
, the entropy is given by

𝐻(𝑃) = −
∫
Ω

𝑃(Z) log(𝑃(Z)) 𝑑Z.

The maximum entropy principle (MaxEnt) states that, given a class of trial

distributions with constraints, the optimal prior is the trial distribution

with the largest entropy. As an example, the most basic constraint is for p
to lie in the probability simplex, that is,

∑
𝑖 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0 for all 𝑖 in

the discrete case, or

∫
Ω
𝑃(Z) 𝑑Z = 1 and 𝑃(Z) ≥ 0 on Ω in the continuous

case.

Example: with no added constraint, the MaxEnt principle yields a prior

which solves the optimization problem

max −𝑝1 log 𝑝1 − · · · − 𝑝𝑀 log 𝑝𝑀
s.t. 𝑝1 + · · · + 𝑝𝑀 = 1 and 𝑝1 , . . . , 𝑝𝑀 ≥ 0.

With the method of Lagrange multipliers, the optimization reduces to

p∗ = argp max{𝐻(p) − 𝜆(𝑝1 + · · · + 𝑝𝑀 − 1)},

whose solution is p∗ ∝ constant. Hence, subject to no additional con-

straints, the uniform distribution is the maximum entropy prior.

Example: we use Bayesian analysis to predict cab waiting times.

“The joke about New York is that you can never get a cab,

except when you don’t need a cab, and then there are cabs

everywhere” (quote and example from S.DeDeo’s Maximum
Entropy Methods tutorial [4]).

At various moments, we head out to the street to hail a cab, and we

keep track of how long it took before a cab was available. Perhaps the

observations (in minutes) look like this

6, 3, 4, 6, 2, 3, 2, 6, 4, 4.

What can you conclude about the waiting time for a New York cab?

Solution: in the best case scenario a cab is waiting for us as we get to

the curb (𝑗 = 0), while in the worst case scenario (a zombie apocalypse,

say?), no cab ever comes (𝑗 → ∞). But can anything else be said?

To use MaxEnt in this situation, we need to find – among all of the trial

distributions that could have generated the observed waiting times – the

one with the highest entropy. Unfortunately, there are infinitely many

such distributions.

We can narrow the search, however, by including a constraint stating that

the expected value of the trial distributions should be the same as the

mean of the sample: in this case, 4.



1622 25 Bayesian Data Analysis

The two constraints translate to

𝑔1(p) =
∞∑
𝑗=0

𝑗 · 𝑝 𝑗 − 4 = 0 and 𝑔2(p) =
∞∑
𝑗=0

𝑝 𝑗 − 1 = 0,

where 𝑝 𝑗 is the probability of having to wait 𝑗 minutes for a cab.

The method of Lagrange multipliers reduces the problem to solving

argp max {𝐻(p) − 𝜆1𝑔1(p) − 𝜆2𝑔2(p)} .

This requires solving the gradient equation

∇p𝐻(p) = 𝜆1∇p𝑔1(p) + 𝜆2∇p𝑔2(p),

which gives rise to equations of the form

−(ln 𝑝 𝑗 + 1) = 𝜆1 𝑗 + 𝜆2 , 𝑗 = 0, 1, . . . ,

or simply 𝑝 𝑗 = exp(−𝜆1 𝑗) exp(−1 − 𝜆2) for 𝑗 = 0, 1, . . ..

Since

1 =

∞∑
𝑗=0

𝑝 𝑗 = exp(−1 − 𝜆2)
∞∑
𝑗=0

exp(−𝜆1 𝑗),

we have

exp(1 + 𝜆2) =
∞∑
𝑗=0

exp(−𝜆1 𝑗) =
1

1 − exp(−𝜆1)
,

assuming that | exp(−𝜆1)| < 1.

Similarly,

4 =

∞∑
𝑗=0

𝑗𝑝 𝑗 = exp(−1 − 𝜆2)
∞∑
𝑗=0

𝑗 exp(−𝜆1 𝑗),

so that

4 exp(1 + 𝜆2) =
∞∑
𝑗=0

𝑗 exp(−𝜆1 𝑗) =
exp(−𝜆1)

(1 − exp(−𝜆1))2
.

Substituting the first of these into the latter, and solving for 𝜆1, we see

that 𝜆1 = ln(5/4). Substituting that result back into the first equation, we

further obtain exp(−1 − 𝜆2) = 1

5
, so that

𝑝 𝑗 = exp(−1 − 𝜆2) exp(−𝜆1 𝑗) =
1

5

(
4

5

) 𝑗
, 𝑗 = 0, . . .

It is easy to see that this defines a distribution; a “verification” is provided

by the following code.

pmf_maxent <- function(x,lambda=4/5) (1-lambda)*(lambda)^x

sum(pmf_maxent(0:100)) # check if it’s a distribution

mp <- barplot(pmf_maxent(0:15), ylim=c(0,.25),

xlab="waiting minutes")

axis(1,at=mp,labels=paste(0:15))
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This distribution could be used as a prior in a Bayesian analysis of the

situation. Notice that some information about the data (in this case, only

the sample mean) is used to define the MaxEnt prior.

Crucially, however, the data that is used to build the MaxEnt prior cannot
be re-used as part of the likelihood computations. The situation is not

unlike that of the training/testing paradigm of machine learning.

25.4 Posterior Distributions

The posterior distribution is used to estimate a variety of model parame-
ters of interest, such as the mean, the median, the mode, etc.

It is possible to construct credible intervals/regions directly from the pos-

terior (in contrast to the “confidence” intervals of frequentist inference).

Given a posterior distribution on a parameter 𝜃 ∈ ℝ, a 1 − 𝛼 credible
region 𝐶 is a subset of ℝ such that

𝑃(𝜃 ∈ 𝐶 | 𝐷; 𝐼) ≥ 1 − 𝛼.

A similar construction can be used for a joint credible region for𝜽 ∈ ℝ𝑛 .

Because the posterior is a full distribution on the parameters, it is possible

to make all sorts of probabilistic statements about their values, such as:

“I am 95% sure that the true parameter value is bigger than 0.5”;

“There is a 50% chance that 𝜃1 is larger than 𝜃2”;

etc.
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25.4.1 High-Density Regions

We can build the credible interval of 𝜃-values using the highest density
region (HDR); i.e., we define a region C𝑘 in parameter space with

C𝑘 = {𝜃 | 𝑃(𝜃 | 𝐷; 𝐼) ≥ 𝑘} ,

where 𝑘 is the largest number such that∫
C𝑘

𝑃(𝜃 | 𝐷; 𝐼) 𝑑𝜃 = 1 − 𝛼.

This typically has the effect of finding the smallest region C𝑘 (in measure)

meeting the criterion.
21

21: The value 𝑘 can be thought of the

height of a horizontal line (or hyperplane,

in the case of multivariate posteriors) over-

laid on the posterior, whose intersection(s)

with the latter define a region over which

the integral of the posterior is 1 − 𝛼. In

most cases, it must be found numerically.

Example: it is an election year and we are interested in knowing whether

the general population prefers candidate 𝐴 or candidate 𝐵. A recently

published poll states that of 400 randomly sampled voters, 232 preferred

candidate 𝐴, while the remainder preferred candidate 𝐵.

1. Suppose that we had no particular belief about the preference

before the poll was published.
22

What is the 95% HDI on this22: A non-informative uniform prior on

the preference, which is to say, a Beta dis-

tribution with both parameters equal to 1.

belief after learning of the poll result?

Solution: let preference for candidate 𝐴 be denoted by 1, and

preference for candidate 𝐵 by 0. We can think of each voter’s

preference as arising from an independent Bernoulli trial.
23

23: Assuming that the polled voters are

selected randomly.

post = BernBeta(c(1,1), c(rep(1,232), rep(0,168)))

We see that the posterior distribution’s 95% HDI ranges from 0.531

to 0.628, in favour of candidate 𝐴.
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2. Based on the poll, is it credible to believe that the population is

equally divided in its preferences among candidates?

Solution: the 95% HDI from the previous part shows that 𝜃 = 0.5

is not among the credible values, hence it is not credible to believe

that the population is equally divided in its preferences (at the

95%) level.

3. Say we conduct a follow-up poll to narrow our estimate of the

population’s preference. We randomly sample 100 people and find

that 57 prefer candidate 𝐴. Assuming that the opinion of voters has

not changed between polls, what is the 95% HDI on the posterior?

Solution: using the previous posterior as a new prior, we obtain

the following results.

post = BernBeta( post, c(rep(1,57), rep(0,43)))

[1] 290 212

The 95% HDI for the preference still leans towards candidate 𝐴,

but is a bit narrower, ranging from 0.534 to 0.621.

4. Based on the follow-up poll, is it credible to believe that the popu-

lation is equally divided in its preferences among candidates?

Solution: the 95% HDI from the previous results excludes 𝜃 = 0.5;

both the follow-up poll and the original poll suggest that the popu-

lation is not equally divided (and actually prefers candidate 𝐴).
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25.4.2 MCMC Methods

The true power of Bayesian inference is most keenly felt when the model

specifications lead to a posteriors that cannot be manipulated analytically;

in that case, it is usually possible to recreate a synthetic (or simulated) set

of values that share the properties with a given posterior. Such processes

are known as Monte Carlo simulations.

A Markov chain is an ordered, indexed set of random variables (a

stochastic process) in which the values of the quantities at a given state

depends probabilistically only on the values of the quantities at the

preceding state.

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms

for sampling from a probability distribution based on the construction of a

Markov chain with the desired distribution as its equilibrium distribution.

The state of the chain after a number of steps is then used as a sample of

the desired distribution.
24

MCMC techniques are often applied to solve24: The quality of the sample improves as

a function of the number of steps.
integration and optimization problems in large-dimensional spaces.

These two types of problem play a fundamental role in machine learning,

physics, statistics, econometrics and decision analysis. For instance,

given variables 𝜽 ∈ 𝚯 and data 𝐷, the following (typically intractable)

integration problems are central to Bayesian inference:

normalization – in order to obtain the posterior 𝑃(𝜽 | 𝐷; 𝐼) given

the prior 𝑃(𝜽 | 𝐼) and likelihood 𝑃(𝐷 | 𝜽; 𝐼), the normalizing

(denominator) factor in Bayes’ theorem needs to be computed

𝑃(𝜽 | 𝐷; 𝐼) = 𝑃(𝜽 | 𝐼)𝑃(𝐷 | 𝜽; 𝐼)∫
𝚯
𝑃(𝐷 | 𝜽; 𝐼)𝑃(𝜽 | 𝐼) 𝑑𝜽

;

marginalization – given the joint posterior of (𝜽, x) ∈ 𝚯 ×𝛀, we

may often be interested in the marginal posterior

𝑃(𝜽 | 𝐷; 𝐼) =
∫

𝑃(𝜽, x | 𝐷; 𝐼) 𝑑x;

expectation – the final objective of the analysis is often to obtain

summary statistics of the form

𝐸[ 𝑓 (𝜽)] =
∫
𝚯
𝑓 (𝜽)𝑃(𝜽 | 𝐷; 𝐼) 𝑑𝜽

for some function of interest (i.e., 𝑓 (𝜽) = 𝜽 or 𝑓 (𝜽) = (𝜽 − 𝐸[𝜽])2,

which represent the mean and the variance, respectively).

25.4.3 The MH Algorithm

The Metropolis-Hastings (MH) algorithm is a specific type of Monte Carlo

process; it is likely among the ten algorithms that have had the greatest

influence on the development and practice of science and engineering in

recent years.
25

25: The celebrated Gibbs sampler can be

viewed as a special case of MH.

MH generates a random walk (that is, it generates a succession of

posterior samples) in such a way that each step in the walk is completely
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independent of the preceding steps; the decision to reject or accept the

proposed step is also independent of the walk’s history.

Any process for which the current step is independent (forgetful) of the

previous states, namely

𝑃(𝑋𝑛+1 = 𝑥 | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 ; 𝐼) = 𝑃(𝑋𝑛+1 = 𝑥 | 𝑋𝑛 = 𝑥𝑛 ; 𝐼)

for all 𝑛, 𝑋𝑗 and 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑛, is called a (first order) Markov process,

and a succession of such steps is a (first order) Markov chain.

MH uses a candidate or proposal distribution for the posterior, say

𝑞(·, 𝜽), where 𝜽 is a vector of parameters that is fixed by the user-called

tuning parameters; MH then constructs a Markov Chain by proposing a

value for 𝜽 from this candidate distribution, and then either accepting or

rejecting this value (with a certain probability).

Theoretically the proposal distributions can be nearly any distribution,

but in practice it is recommended to keep to simple ones: a normal if the

parameter of interest can be any real number (e.g., 𝜇), or a log-normal if

it has positive support (e.g., 𝜎2
), say.

The MH algorithm simulates samples from a probability distribution by

making use of the full joint density function and (independent) proposal

distributions for each of the variables of interest.

The first step is to initialize the sample value for each random variable

(often obtained by sampling from the variable’s prior distribution). The

main loop of the algorithm consists of three components:

1. generate a candidate sample 𝑥∗ from the proposal distribution

𝑞(𝑥(𝑖) |𝑥(𝑖−1));
2. compute the acceptance probability via the acceptance function

𝛼(𝑥∗ |𝑥(𝑖−1)) based on the proposal distribution and the full joint

density 𝜋(·);
3. accept the candidate sample with probability 𝛼, the acceptance

probability, or reject it otherwise.
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Example (modified from [10, 6]): we use the MH algorithm to “learn”

linear model parameters from a dataset. The test data for this example is

generated as follows.

First, we establish the true model parameters.

set.seed(0) # for replicability

t.A <- 10 # true slope

t.B <- 0 # true intercept

t.sd <- 20 # true noise

s.Size <- 50 # sample size

We will use equally spaced 𝑥 values:

x <- (-(s.Size-1)/2):((s.Size-1)/2)

The corresponding 𝑦 values are such that 𝑦 ∼ N(𝑎𝑥 + 𝑏, 𝜎2):

y <- t.A * x + t.B + rnorm(n=s.Size,mean=0,sd=t.sd)

The 𝑥 values are balanced around zero in order to “de-correlate” the

slope and the intercept.

plot(x,y, main="Test Data")

Defining the statistical model. The next step is to specify the statistical

model. We already know that the data was created with a linear rela-

tionship 𝑦 = 𝑎𝑥 + 𝑏 together with a normal error model N(0, 𝜎2), so we

might as well use the same model for the fit and see if we can retrieve our

original parameter values. Note however that, in general, the generating

model is unknown.

Deriving the likelihood function from the model. A linear model of

the form 𝑦 = 𝑎𝑥 + 𝑏 +N(0, 𝜎2) takes the parameters (𝑎, 𝑏, 𝜎) as inputs.

The output should be the probability of obtaining the test data under
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this model: in this case, we only need to calculate the difference between

the predictions 𝑦 = 𝑎𝑥 + 𝑏 and the observed 𝑦, and then look up the

probability (using dnorm) for such deviations to occur.

likehd <- function(param){

a = param[1]

b = param[2]

sd = param[3]

pred = a*x + b

singlelikelihoods = dnorm(y, mean=pred, sd=sd, log=T)

sumll = sum(singlelikelihoods)

return(sumll)

}

For instance, we can find and plot the likelihood profile of the slope:

s.values <- function(x){return(likehd(c(x, t.B, t.sd)))}

s.likehds <- lapply(seq(1/2*t.A, 3/2*t.A, by=.05), s.values )

plot (seq(1/2*t.A, 3/2*t.A, by=.05), s.likehds , type="l",

xlab = "values of slope parameter a", ylab = "Log likelihood")

Defining the priors. In Bayesian analysis, the next step is always required:

we have to specify a prior distribution for each of the model parameters.

To keep things simple, we will use a uniform distribution for the slope,

and normal distributions for the noise and the intercept.
26

26: We will work with the logarithms of

all quantities, so that the likelihood is a

sum and not a product as would usually

be the case.prior <- function(param){

a = param[1]

b = param[2]

sd = param[3]

aprior = dunif(a, min=0, max=2*t.A, log = T)

bprior = dnorm(b, mean=t.B, sd = 5, log = T)

sdprior = dunif(sd, min=0, max=2*t.sd, log = T)

return(aprior+bprior+sdprior)

}
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The posterior. The product of prior by likelihood is the actual quantity

that MCMC works with (it is not, strictly speaking, the posterior as it is

not normalized).

posterior <- function(param){

return (likehd(param) + prior(param))

}

Applying the MH algorithm. One of the most frequent applications

of MH (as in this example) is sampling from the posterior density in

Bayesian statistics.
27

27: The algorithm may be used to sample

from any integrable function.

The aim of the algorithm is to jump around in parameter space, but in such

a way as to have the probability to land at a point be proportional to the

function we sample from (this is usually called the target function). In this

case, the target function is the posterior that was defined previously.

This is achieved by

1. starting with a random parameter vector;

2. choosing a new parameter vector near the old value based on some

probability density (the proposal function), and

3. jumping to this new point with a probability

𝛼 = min{1, 𝑔(new)/𝑔(old)},

where 𝑔 is the target.

The distribution of the parameter vectors MH visits converges to the

target distribution 𝑔.

proposalfunction <- function(param){

return(rnorm(3,mean = param, sd= c(0.1,0.5,0.3)))

}

run_metropolis_MCMC <- function(startvalue, iterations){

chain = array(dim = c(iterations+1,3))

chain[1,] = startvalue

for (i in 1:iterations){

proposal = proposalfunction(chain[i,])

probab = exp(posterior(proposal) - posterior(chain[i,]))

if (runif(1) < probab){

chain[i+1,] = proposal

}

else{

chain[i+1,] = chain[i,]

}

}

return(chain)

}

startvalue = c(4,1,10) # random choice

chain = run_metropolis_MCMC(startvalue, 10000)
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The first steps of the algorithm may be biased by the initialization

process; they are usually discarded for the analysis (this is referred to as

the burn-in time).

burnIn = 5000

acceptance = 1-mean(duplicated(chain[-(1:burnIn),]))

The acceptance rate is an interesting output to study: how often was a

proposal rejected by the MH acceptance criterion? The acceptance rate

can be influenced by the proposal function: generally, the nearer the

proposal is to the latest value, the larger the acceptance rate.
28

28: Very high acceptance rates, however,

are usually not beneficial, as this implies

that the algorithms is “staying” in the

same neighbourhood, which results in

sub-optimal probing of the parameter
space (there is very little mixing). Accep-

tance rates between 20% and 30% are con-

sidered optimal for typical applications

[7].

We plot the results below (the true parameter values are shown in red).

par(mfrow = c(2,3))

hist(chain[-(1:burnIn),1],nclass=30, main="Posterior of a")

abline(v = mean(chain[-(1:burnIn),1]))

abline(v = t.A, col="red" )

hist(chain[-(1:burnIn),2],nclass=30, main="Posterior of b")

abline(v = mean(chain[-(1:burnIn),2]))

abline(v = t.B, col="red" )

hist(chain[-(1:burnIn),3],nclass=30, main="Posterior of sd")

abline(v = mean(chain[-(1:burnIn),3]) )

abline(v = t.sd, col="red" )

plot(chain[-(1:burnIn),1], type = "l", main = "Chain values of a")

abline(h = t.A, col="red" )

plot(chain[-(1:burnIn),2], type = "l", main = "Chain values of b")

abline(h = t.B, col="red" )

plot(chain[-(1:burnIn),3], type = "l", main = "Chain values of sd")

abline(h = t.sd, col="red" )
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The upper row shows posterior estimates for the slope 𝑎, intercept 𝑏, and

standard deviation of the error 𝜎; the lower row shows the Markov Chain

of parameter values. We retrieve (more or less) the original parameters

that were used to create the data, and there is a certain area around the

highest posterior values that also show some support by the data, which

is the Bayesian equivalent of confidence intervals.

These posterior distributions are marginal distributions; the pairwise

joint distributions are shown below (again, with true parameter values

in red – the horizontal and vertical lines).

plot(chain[-(1:burnIn),1:2], main="Scatter plot of a and b",

xlab="Estimates for a", ylab="Estimates for b")

abline(v = t.A, col="red" )

abline(h = t.B, col="red" )

plot(chain[-(1:burnIn),2:3], main="Scatter plot of b and sd",

xlab="Estimates for b", ylab="Estimates for sd")

abline(v = t.B, col="red" )

abline(h = t.sd, col="red" )

plot(chain[-(1:burnIn),c(1,3)], main="Scatter plot of a and sd",

xlab="Estimates for a", ylab="Estimates for sd")

abline(v = t.A, col="red" )

abline(h = t.sd, col="red" )

The posterior distributions certainly do seem to contain the true parameter

values. By way of comparison, a simple linear regression analysis would

yield the following estimates:

summary(lm(y~x))

Residuals:

Min 1Q Median 3Q Max

-33.067 -12.201 -3.733 14.562 46.192

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4786 2.6115 0.183 0.855

x 9.9082 0.1810 54.751 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 18.47 on 48 degrees of freedom

Multiple R-squared: 0.9842, Adjusted R-squared: 0.9839

F-statistic: 2998 on 1 and 48 DF, p-value: < 2.2e-16

Which method is best, in this context? What are the advantages and

disadvantages of each?
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25.5 Additional Topics

According to [5],

the central feature of Bayesian inference is the direct quantifi-

cation of uncertainty.

Bayesian approach to modeling uncertainty is particularly useful when:

the available data is limited;

there is some concern about overfitting;

some facts are more likely to be true than others, but that informa-

tion is not contained in the data, or

the precise likelihood of certain facts is more important than solely

determining which fact is most likely (or least likely).

As discussed previously, Bayesian methods have a number of powerful

features. They allow analysts to:

incorporate specific knowledge about parameters of interest;

logically update knowledge about the parameter after observing

sample data;

make formal probability statements about parameters of interest;

specify model assumptions and check model quality and sensitivity

to these assumptions in a straightforward manner, and

provide probability distributions rather than point estimates.

25.5.1 Uncertainty

The following example represents a Bayesian approach to dealing with

the uncertainty of the so-called envelope paradox.

Example: you are given two indistinguishable envelopes, each containing

a cheque, one being twice as much as the other. You may pick one

envelope and keep the money it contains. Having chosen an envelope at

will, but before inspecting it, you are given the chance to switch envelopes.

Should you switch? What is the expected outcome in doing so? Explain

how this game leads to infinite cycling.

Solution: let 𝑉 be the (unknown) value found in the envelope after the

first selection. The other envelope then contains either
1

2
𝑉 or 2𝑉 , both

with probability 0.5, and the expected value of trading is

𝐸[trade] = 0.5 × 1

2

𝑉 + 0.5 × 2𝑉 =
5

4

𝑉 > 𝑉 ;

and so it appears that trading is advantageous.

Let the (still unknown) value of the cheque in the new envelope be𝑊 . The

same argument shows that the expected value of trading that envelope is

5

4
𝑊 >𝑊 , so it would make sense to trade the envelope once more, and

yet once more, and so on, leading to infinite cycling.

There is a Bayesian approach to the problem, however. Let 𝑉 be the

(uncertain) value in the original selection, and𝑊 be the (also uncertain)

value in the second envelope. A proper resolution requires a joint (prior)

distribution for 𝑉 and𝑊 . Now, in the absence of any other information,



1634 25 Bayesian Data Analysis

the most we can say about this distribution using the maximum entropy

principle is that 𝑃(𝑉 <𝑊) = 𝑃(𝑉 >𝑊) = 0.5.

By definition, if𝑉 <𝑊 , then𝑊 = 2𝑉 ; if, on the other hand,𝑉 >𝑊 then

𝑊 = 𝑉
2

. We now show that the expected value in both envelopes is the

same, and thus that trading envelope is no better strategy than keeping

the original selection. Using Bayes’ Theorem, we compute that

𝐸[𝑊] = 𝐸[𝑊 |𝑉 <𝑊]𝑃(𝑉 <𝑊) + 𝐸[𝑊 |𝑉 >𝑊]𝑃(𝑉 >𝑊)
= 𝐸[2𝑉 |𝑉 <𝑊] · 0.5 + 𝐸[0.5𝑉 |𝑉 >𝑊] · 0.5

= 𝐸[𝑉 |𝑉 <𝑊] + 0.25 · 𝐸[𝑉 |𝑉 >𝑊],

while

𝐸[𝑉] = 𝐸[𝑉 |𝑉 <𝑊]𝑃(𝑉 <𝑊) + 𝐸[𝑉 |𝑉 >𝑊]𝑃(𝑉 >𝑊)
= 0.5 · 𝐸[𝑉 |𝑉 <𝑊] + 0.5 · 𝐸[𝑉 |𝑉 >𝑊].

Before we can proceed any further, we must have some information

about the joint distribution 𝑃(𝑉,𝑊) (note, however, that 𝐸[𝑊] will not

typically be equal to
5

4
𝑉 , as had been assumed at the start of the solution).

The domain Ω of the joint probability consists of those pairs (𝑉,𝑊)
satisfying 𝑉 = 2𝑊 (𝑉 > 𝑊) or 𝑊 = 2𝑉 (𝑉 < 𝑊) for 0 < 𝑉,𝑊 < 𝑀,

where 𝑀 < ∞ is some upper limit on the value of each cheque.
29

29: In the worst case scenario, 𝑀 would

have to be smaller than the total amount of

wealth available to humanity throughout

history, although in practice 𝑀 should be

substantially smaller. Obviously, a differ-

ent argument will need to be made in the

case 𝑀 = ∞.

We have assumed that the probability weight on each branch of Ω is 1/2;

if we further assume, say, that the cheque value is as likely to be any of

the allowable values on these branches, then the joint distribution is

𝑃(𝑉,𝑊) =


1

𝑀 if 𝑉 <𝑊
1

2𝑀 if 𝑉 >𝑊

0 otherwise

and the expectations listed above are

𝐸[𝑉 |𝑉 <𝑊] =
∫
𝑉<𝑊
𝑉 · 𝑃(𝑉,𝑊) 𝑑Ω =

∫ 𝑀/2

0

𝑉 · 1

𝑀
𝑑𝑉 =

𝑀

8

and

𝐸[𝑉 |𝑉 >𝑊] =
∫
𝑉>𝑊
𝑉 · 𝑃(𝑉,𝑊) 𝑑Ω =

∫ 𝑀

0

𝑉 · 1

2𝑀
𝑑𝑉 =

𝑀

4

.
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Therefore,

𝐸[𝑊] = 𝑀

8

+ 0.25 · 𝑀
4

=
3𝑀

16

and

𝐸[𝑉] = 0.5 · 𝑀
8

+ 0.5 · 𝑀
4

=
3𝑀

16

,

and switching the envelope does not change the expected value of the

outcome. There is no paradox; no infinite cycling.

Example: After the sudden death of her two baby sons, Sally Clark

was sentenced by a U.K. court to life in prison in 1996. Among other

errors, expert witness Sir Roy Meadow had wrongly interpreted the

small probability of two cot deaths as a small probability of Clark’s

innocence. After a long campaign, which included the refutation of

Meadow’s statistics using Bayesian statistics, Clark was released in 2003.

While Clark’s innocence could not be proven beyond the shadow of a

doubt using such methods, her culpability could also not be established

beyond reasonable doubt and she was cleared.
30

30: An informative write-up of the situa-

tion can be found online [2].

25.5.2 Bayesian A/B Testing

𝐴/𝐵 testing is an excellent tool for deciding whether or not to roll out

incremental features. To perform an 𝐴/𝐵 test, we divide users randomly

into a test group and into a control group, then provide the new feature

to the test group while letting the control group continue to experience

the current version of the product.

If the randomization procedure is appropriate, we may be able to attribute

any difference in outcomes between the two groups to the changes we

are rolling out without having to account for other sources of variation

affecting the user behaviour. Before acting on these results, however, it is

important to understand the likelihood that any observed differences is

merely due to chance rather than to product modification.

For example, it is perfectly possible to obtain different𝐻/𝑇 ratios between

two fair coins if we only conduct a limited number of tosses; In the same

manner, it is possible to observe a change between the 𝐴 and 𝐵 groups

even if the underlying user behavior is identical.

Example: (modified from [13]) Wakefield Tiles is a company that sells floor

tiles by mail order. They are trying to become an active player into the

lucrative Chelsea market by offering a new type of tile to the region’s

contractors.

The marketing department have conducted a pilot study and tried two

different marketing methods:

𝐴 – sending a colourful brochure in the mail to invite contractors

to visit the company’s showroom;

𝐵 – sending a colourful brochure in the mail to invite contractors to

visit the company’s showroom, while including free tile samples.

The marketing department sent out 16 mail packages of type 𝐴 and 16

mail packages of type 𝐵. Four Chelseaites that received a package of type

𝐴 visited the showroom, while 8 of those receiving a package of type 𝐵

did the same.
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The company is aware that:

a mailing of type 𝐴 costs 30$ (printing cost and postage);

a mailing of type 𝐵 costs 300$ (also includes the cost of the free tile

samples);

a visit to the showroom yields, on average, 1000$ in revenue during

the next year.

Which of the methods (𝐴 or 𝐵) is most advantageous to Wakefield Tiles?

Solution: the Bayesian solution requires the construction of a prior

distribution and of a generative model; as part of the generative model,

we will need to produce 𝑛 replicates of samples from the binomial

distribution.
31

31: Which can be achieved in R using

rbinom(n,size,prob).

The binomial distribution simulates n times the number of “successes”

when performing size trials (mailings), where the probability of a “suc-

cess” is prob. A commonly used prior for prob is the uniform distribution

𝑈(0, 1), from which we sample in R via runif(1, min = 0, max = 1).

We start by setting a seed for replicability, and set the number of replicates

(trials).

set.seed(1111) # for replicability

n.draws <- 200000

Next, we generate a probability of success for mailings 𝐴 and 𝐵, for each

of the replicates.

prior <- data.frame(p.A = runif(n.draws, 0, 1),

p.B = runif(n.draws, 0, 1))

The generative model tells us how many visitors to expect for mailing

types 𝐴, 𝐵, for each replicate.

generative.model <- function(p.A, p.B) {

visitors.A <- rbinom(1, 16, p.A)

visitors.B <- rbinom(1, 16, p.B)

c(visitors.A = visitors.A, visitors.B = visitors.B)

}

We then simulate data using the parameters from the prior and the

generative model. This yields the actual number of visitors for each

replicate.

sim.data <- as.data.frame( t(sapply(1:n.draws, function(i) {

generative.model(prior$p.A[i], prior$p.B[i])})))

Only those prior probabilities for which the generative model match the

observed data are retained.
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posterior <- prior[sim.data$visitors.A == 4 &

sim.data$visitors.B == 8, ]

In this case, there are enough trials to ensure that the posterior is non-

empty; what could be done if that was not the case?

Finally, we visualize the posteriors:

par(mfrow = c(1,3))

hist(posterior$p.A, main = "Posterior -- mailing A",

xlab="p.A")

hist(posterior$p.B, main = "Posterior -- mailing B",

xlab="p.B")

plot(posterior,main = "Success for mailing types A and B",

xlab="p.A", ylab="p.B")

The posterior distributions for the probability of success for each mailing

types are produced as below (see next page for display).

par(mfrow = c(1,2))

avg.profit.A <- -30 + posterior$p.A * 1000

avg.profit.B <- -300 + posterior$p.B * 1000

hist(avg.profit.A, main = "Average Profit -- mailing A",

xlab="profit.A")

hist(avg.profit.B, main = "Average Profit -- mailing B",

xlab="profit.B")

In order to estimate the average profit for each mailing type, we use the

posterior distributions for the probability of success (see next page).

hist(avg.profit.A - avg.profit.B, main="Posterior --

profit A - profit B")

(expected.avg.profit.diff <- mean(avg.profit.A - avg.profit.B))

abline(v = expected.avg.profit.diff , col = "red", lwd =2)
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[1] 59.13869

The expected profit for mailing type 𝐴 is about 60$ higher than for

mailing type 𝐵 (numbers may vary, depending on the seed). Keeping it

simple seems to be a better idea in this context.
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25.6 Exercises

1. In many situations, researchers observe that a certain region of the brain is active and infer that a

particular cognitive function is therefore being carried out; [12] cautioned that such inferences are not

necessarily firm and need to be made with Bayes’ rule in mind. The same paper reports the following

frequency table of previous studies that involved any language-related task (specifically phonological

and semantic processing) and whether or not a particular region of interest (ROI) in the brain was

activated (see table below). Suppose that a new study is conducted and finds that the ROI is activated

(𝐴). If the prior probability that the task involves language processing is 𝑃(𝐿) = 0.5, what is the posterior

probability, 𝑃(𝐿 | 𝐴), given that the ROI is activated?

Language (𝐿) Other (𝐿)
Activated (𝐴) 166 199

Not Activated (𝐴) 703 2154

2. Suppose that, in 1975, 52% of UK voters supported the Labour Party and 48% the Conservative Party.

Suppose further that 55% of Labour voters wanted the UK to remain part of the EEC and 85% of

Conservative voters were also in favour. What is the probability that a person voting “Yes” (in favour of

remaining in the EEC) in the 1975 referendum is a Labour voter? [8]

3. Given the following statistics, what is the probability that a woman over 50 years of age has breast cancer

if she receives a positive mammogram result? [Bayes’ Theorem Problems, Definition and Examples ]

a) 1% of women over 50 have breast cancer;

b) 90% of women over 50 who have breast cancer test positive on mammograms;

c) 8% of women over 50 will obtain a false positive result on a breast cancer test.

4. What would it take for you to update ...

a) your belief in the existence/non-existence of a deity?

b) your belief in the shape of the Earth?

c) your political affiliation?

d) your allegiance to a sport team? (Go Sens!)

e) your belief in the effectiveness of homeopathic remedies?

f) your belief in the effectiveness of Bayesian analysis?

5. Suppose that a test for a particular disease has a very high success rate. When a patient has the disease,

the test accurately reports a ‘positive’ with probability 0.99; when they do not, the test accurately

reports a ‘negative’ with probability 0.95. Assume further that only 0.1% of the population has the

disease. What is the probability that a patient who tests positive does not in fact have the disease?

6. A road safety analyst has access to a dataset of fatal vehicle collisions (such as Canada’s National
Collision Database) on roads in a specific region. The dataset is built using police reports, and it contains

relevant collision information such as: the severity of the collision, the age of the drivers, the number

of passengers in each vehicle, the date and time of the collision, weather and road conditions, blood

alcohol content (BAC), etc. Let us further assume that the analyst has access to aggregated weather data

and R.I.D.E. (sobriety checkpoint) reports for that region. Some information may be missing from the

police reports at a given moment (perhaps the coroner has not yet had the chance to determine the BAC

level, or some of the data may have been mistakenly erased and/or corrupted). For some collisions, we

may need to answer either or both of the following questions: did alcohol play a role in the collision?

did “bad” weather play a role in the collision? As usual, let 𝐼 denote all relevant information relating to

the situation, such as the snowy months of the year, the incidence of impaired driving in that region,

etc. The analyst will consider 3 propositions:

a) 𝐴: a fatal collision has occurred

b) 𝐵: the weather and road conditions were bad

c) 𝐶: the BAC level of one of the drivers involved in a collision was above 0.08% per volume

http://www.statisticshowto.com/bayes-theorem-problems/
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The analysts may have an interest in 𝑃(𝐵 | 𝐴; 𝐼), 𝑃(𝐶 | 𝐴; 𝐼), 𝑃(𝐵, 𝐶 | 𝐴; 𝐼), 𝑃(𝐵,−𝐶 | 𝐴; 𝐼), or

𝑃(−𝐵, 𝐶 | 𝐴; 𝐼). Derive an expression to compute the probability that “bad” weather and road

conditions were present at the time of the collision.

7. A Mild Winter scenario (we use the set-up of question 6): during a mild winter, “bad” weather affected

regional road conditions 5% of the time. The analyst knows from other sources that the probabilities of

fatal collisions given “bad” and “good” weather conditions in the region over the winter are 0.01% and

0.002%, respectively. If a fatal collision occurred on a regional road that winter, what is the probability

that the weather conditions were “bad” on that road at that time? Is the result surprising?

8. Not Quite as Mild a Winter scenario (we use the set-up of questions 6 and 7): assume that the winter

was not quite as mild (perhaps “bad” weather affected regional road conditions 10% of the time, say).

If a fatal collision occurred on a regional road that winter, what is the probability that the weather

conditions were “bad” on that road at that time? How much of a jump are you expecting compared to

question 7?

9. Use the set-up of questions 6-8. Just how rough of a winter would be necessary before we conclude

that a given fatal collision was more likely to have occurred in “bad” weather?

10. Use the set-up of questions 6-9. In what follows, we assume that the analyst does not have access to

other sources from which to derive the individual probabilities of fatal collisions given “bad” and

“good” weather conditions in the region. Instead, the analyst has access to data that suggests that the

probability of a fatal collision in “bad” weather is 𝑘 times as high as the probability of a fatal collision

in “good” weather. Let the probability of “bad” weather be 𝑤 ∈ (0, 1). Derive an expression for the

probability that the weather conditions were “bad” on that road at that time, given that a fatal collision

occurred, in terms of 𝑘 and 𝑤.

11. Really Rough Winter scenario (see questions 6-10): during a really rough winter, “bad” weather affected

road conditions with probability 𝑤 = 0.2. Determine the probabilities that there were “bad” weather

conditions given a fatal collision under 4 different values: 𝑘 = 0.1, 1, 10, 100. Which of these scenarios

is most likely?

12. Use the set-up of questions 6-11. In the next scenario, we assume that the traffic flow changes depending

on the weather; while some individuals need to be on the roads no matter the conditions, others might

tend to avoid the roads when the conditions are “bad”. Make whatever assumptions are necessary and

analyze the situation as you have done in the previous questions.

13. Use the set-up of questions 6-12. Repeat the process for the other conditional probabilities of interest.

14. A lifetime’s supply of poutine is placed randomly behind one of three identical doors. The other two

doors lead to empty rooms. You are asked to pick a door. One of the doors you have not selected

is opened, revealing an empty room. You are given the option of changing your pick. What is your

optimal strategy?

a) Determine the ideal strategy using a simulation.

b) Analyze a similar situation (for 100 doors instead of 3) using Bayes’ Theorem.

c) Analyze the situation using Bayes’ Theorem.

15. How many heads in a row would you need to observe before you would start doubting whether a coin

is fair or not?

16. Estimate the parameters (𝜇𝑖 , 𝜎𝑖) for 𝑖 = 1, . . . , 12 in the Salary example.

17. Play with the parameters and implement new scenarios for the Money (Dollar Bill Y’All) example.

18. Play with the BernBeta() function. Do you spot anything surprising?

19. Suppose you have in your possession a coin that you know was minted by the federal government and

for which you have no reason to suspect tampering of any kind. Your prior belief about fairness of the

coin is thus strong. You flip the coin 10 times and record 9 H(eads). What is your predicted probability

of obtaining 1H on the 11th flip? Explain your answer carefully; justify your choice of prior. How would

your answer change (if at all) if you use a frequentist viewpoint?

20. A mysterious stranger hands you a different coin, this one made of some strange-to-the-touch material,

on which the words “Global Tricksters Association” You flip the coin 10 times and once again record

9H. What is your predicted probability of obtaining 1H on the 11th flip? Explain your answer carefully;

justify your choice of prior. Hint: what would be a reasonable prior for this scenario?
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21. A group of adults are doing a simple learning experiment: when they see the two words “radio” and

“ocean” appear simultaneously on a computer screen, they are asked to press the F key on the keyboard;

whenever the words “radio” and “mountain” appear on the screen, they are asked to press the J key.

After several practice repetitions, two new tasks are introduced: in the first, the word “radio” appears

by itself and the participants are asked to provide the best response (F or J) based on what they learned

before; in the second, the words “ocean” and “mountain” appear simultaneously and the participants

are once again asked to provide the best response. This is repeated with 50 people. The data shows that,

for the first test, 40 participants answered with F and 10 with J; while for the second test, 15 responded

with F and 35 with J. Are people biased toward F or toward J for either of the two tests? To answer this

question, assume a uniform prior, and use a 95% HDI to decide which biases can be declared to be

credible.

22. Suppose that the marketing group of a company is testing a new web page, with the hope of increasing

the conversion rate (proportion of visitors who sign up or take some other action). The data is collected

in the file ab_data.csv , which lists user visits with whether they were sent to the new page or the

old page, and whether there was a conversion.

a) Explore and visualize the dataset.

b) We conduct Bayesian A/B testing, by defining and updating independent priors on the old and

new conversion rates, to arrive at respective posterior distributions for the old page and the

new page. Try a prior of Beta(alpha=2, beta=20) for the old rate, which represents what has

been observed in the past. Start with a subset of 100 data points and perform inference. Find the

posterior probability that the new page has a higher conversion rate. Hint: use random samples

from the independent posteriors to estimate the probability. Update the posteriors with another

100 data points. At what data size do the priors become irrelevant?

23. Sometimes we don’t just want to estimate a dependent variable, we want a probability distribution for

it. For instance, if one’s life expectancy is 80 years, we might want to know whether it’s a 50/50 split

between 0 years and 160 years, or some other distribution.

a) Load the mimic3d.csv dataset which lists the length of stay in a hospital (LOSdays) along with

a number of other variables. Explore and visualize this dataset.

b) Construct a dataset patients.csv containing information about 10 or so (or more) “patients”, for

all but the LOSdays variable (you may use friends and family members, classmates, etc. as a basis

for your observations).

c) Predict the length of the hospital stay for the patients in the dataset by conducting a Bayesian

linear regression analysis. What’s the probability of staying longer than 2 days and therefore

definitely missing work? Use normal priors for simplicity.

https://www.data-action-lab.com/wp-content/uploads/2020/09/ab_data.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/mimic3d.csv
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