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With the advent of automatic data collection, it is now possible to store

and process large troves of data. There are technical issues associated to

massive data sets, such as the speed and efficiency of analytical meth-

ods, but there are also problems related to the detection of anomalous

observations and the analysis of outliers.

Extreme and irregular values behave very differently from the majority

of observations. For instance, they can represent criminal attacks, fraud

attempts, targeted attacks, or data collection errors. As a result, anomaly

detection and outlier analysis play a crucial role in cybersecurity, quality

control, etc. [1, 24, 11]. The (potentially) heavy human price and technical

consequences related to the presence of such observations go a long way

towards explaining why the topic has attracted attention recently.

In this chapter, we review various detection methods, with particular

attention paid to both supervised and unsupervised methods.

26.1 Overview1
1: This section is an extension of Section

15.5.

Isaac Asimov, the prolific American author, once wrote that

The most exciting phrase to hear [...], the one that heralds the

most discoveries, is not “Eureka!” but “That’s funny ... ”.

However, anomalous observations are not only harbingers of great

scientific discoveries – unexpected observations can spoil analyses or

be indicative of the presence of issues related to data collection or data

processing.
2

2: Throughout, the definitions of terms

like normal and anomalous will be kept

purposely vague, to allow for increased

flexibility.

Either way, it becomes imperative for decision-makers and analysts to

establish anomaly detection protocols, and to identify strategies to deal

with such observations.

26.1.1 Basic Notions and Concepts

Outlying observations are data points which are atypical in comparison

to the unit’s remaining features (within-unit), or in comparison to the

measurements for other units (between-units), or as part of a collective

subset of observations. Outliers are thus observations which are dissimi-
lar to other cases or which contradict known dependencies or rules.

3

3: Outlying observations may be anoma-

lous along any of the individual variables,

or in combinations of variables.
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Observations could be anomalous in one context, but not in another.

Consider, for instance, an adult male who is 6-side tall. Such a man would

fall in the 86th percentile among Canadian males [16], which, while on

the tall side, is not unusual; in Bolivia, however, the same man would

land in the 99.9th percentile, which would mark him as extremely tall

and quite dissimilar to the rest of the population.

Anomaly detection points towards interesting questions for analysts and

subject matter experts: in this case, why is there such a large discrepancy

in the two populations?

In practice, an outlier/anomalous observation may arise as

a “bad” object/measurement: data artifacts, spelling mistakes,

poorly imputed values, etc.

a misclassified observation: according to the existing data patterns,

the observation should have been labeled differently;

an observation whose measurements are found in the distribution
tails, of a large enough number of features;

an unknown unknowns: a completely new type of observations

whose existence was heretofore unsuspected.

A common mistake that analysts make when dealing with outlying

observations is to remove them from the dataset without carefully

studying whether they are influential data points, that is, observations

whose absence leads to markedly different analysis results.

When influential observations are identified, remedial measures4
may4: Such as data transformation strategies.

need to be applied to minimize any undue effect. Note that outliers

may be influential, and influential data points may be outliers, but the

conditions are neither necessary nor sufficient.

Anomaly Detection By definition, anomalies are infrequent,5 which5: And shrouded in uncertainty due to

their relatively low numbers.
makes it difficult to distinguish them from banal noise or data collection
errors.

Furthermore, the boundary between normal and deviant observations

is usually fuzzy; with the advent of e-shops, for instance, a purchase

which is recorded at 3AM local time does not necessarily raise a red flag

anymore.

When anomalies are actually associated to malicious activities, they are

more than often disguised in order to blend in with normal observations,

which obviously complicates the detection process. Numerous methods

exist to identify anomalous observations; none of them are foolproof
and judgement must be used.

Methods that employ graphical aids (such as box-plots, scatterplots,

scatterplot matrices, and 2D tours) to identify outliers are particularly

easy to implement, but a low-dimensional setting is usually required for

ease of interpretability. These methods usually find the anomalies that

shout the loudest [6].

Analytical methods also exist (using Cooke’s or Mahalanobis’ distances,

say), but in general some additional level of analysis must be performed,

especially when trying to identify influential observations (cf. leverage).
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Figure 26.1: A school of fish: what jumps at you here? [author unknown]

With small datasets, anomaly detection can be conducted on a case-by-

case basis, but with large datasets, the temptation to use automated
detection/removal is strong – care must be exercised before the analyst

decides to go down that route. This stems partly from the fact that once

the “anomalous” observations have been removed from the dataset,

previously “regular” observations can become anomalous in turn in the

smaller dataset; it is not clear when that runaway train will stop.

In the early stages of anomaly detection, simple data analyses (such as

descriptive statistics, 1- and 2-way tables, and traditional visualizations)

may be performed to help identify anomalous observations, or to obtain

insights about the data, which could eventually lead to modifications of

the analysis plan.
6

6: Which, by the way, should always be

seen as a welcomed development.

How are outliers actually detected? Most methods come in one of two

flavours: supervised and unsupervised (we will discuss those in detail

in later sections).

Supervised learning (SL) methods use a historical record of labeled
(that is to say, previously identified) anomalous observations to build

a predictive classification or regression model which estimates the

probability that a unit is anomalous; domain expertise is required to tag

the data.

Since anomalies are typically infrequent, these models often also have to

accommodate the rare occurrence (or class imbalance) problem.
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Supervised models are built to minimize a cost function; in default

settings, it is often the case that the mis-classification cost is assumed

to be symmetrical, which can lead to technically correct but useless

solutions.

For instance, the vast majority (99.999+%) of air passengers emphatically

do not bring weapons with them on flights; a model that predicts that no

passenger is attempting to smuggle a weapon on board a flight would be

99.999+% accurate, but it would miss the point completely.

For the security agency, the cost of wrongly thinking that a passenger:

is smuggling a weapon =⇒ cost of a single search;

is NOT smuggling a weapon =⇒ catastrophe (potentially).

The wrongly targeted individuals may have a . . . somewhat different

take on this, however, either from a societal or a personal perspective.
7

7: Or both.

Unsupervised methods, on the other hand, use no previously labeled

information (anomalous/non-anomalous) or data, and try to determine

if an observation is an outlying one solely by comparing its behaviour to

that of the other observations.

As an example, if all participants in a workshop except for one can

view the video conference lectures, then the one individual/internet

connection/computer is anomalous – it behaves in a manner which is

different from the others.

It is very important to note that this DOES NOT mean that the different

behaviour is the one we are actually interested in/searching for! In Figure

26.1, perhaps we were interested in the slightly larger red fish that swims

in a different direction than the rest of the school, but perhaps we were

really interested in the regular-sized teal fish that swims in the same

direction as the others but that has orange eyes (can you spot it?).

Outlier Tests The following traditional methods and tests of outlier

detection fall into this category:
8

8: Note that normality of the data is an

assumption for some of them; how robust

these tests are against departures from this

assumption depends on the situation.

Perhaps the most commonly-used test is Tukey’s boxplot test;
for normally distributed data, regular observations typically lie

between the inner fences

𝑄1 − 1.5(𝑄3 −𝑄1) and 𝑄3 + 1.5(𝑄3 −𝑄1).

Suspected outliers lie between the inner fences and their respective

outer fences

𝑄1 − 3(𝑄3 −𝑄1) and 𝑄3 + 3(𝑄3 −𝑄1).

Points beyond the outer fences are identified as outliers (𝑄1 and

𝑄3 represent the data’s 1
st

and 3
rd

quartile, respectively; see Figure

26.2 (a concrete example is provided in Section 15.5).

The Grubbs test is another univariate test, which takes into consid-

eration the number of observations in the dataset:

𝐻0 : no outlier in the data against 𝐻1 : exactly one outlier in the data.
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Figure 26.2: Tukey’s boxplot test; sus-

pected outliers are marked by white disks,

outliers by black disks.

Let 𝑥𝑖 be the value of feature 𝑋 for the 𝑖th unit, 1 ≤ 𝑖 ≤ 𝑛, let

(𝑥, 𝑠𝑥) be the mean and standard deviation of feature 𝑋, let 𝛼 be

the desired significance level, and let 𝑇( 𝛼
2𝑛 , 𝑛) be the critical value

of the Student 𝑡-distribution at significance
𝛼
2𝑛 . The test statistic is

𝐺 =
max{|𝑥𝑖 − 𝑥 | : 𝑖 = 1, . . . , 𝑛}

𝑠𝑥
=

|𝑥𝑖∗ − 𝑥 |
𝑠𝑥

.

Under 𝐻0, 𝐺 follows a special distribution with critical value

ℓ (𝛼; 𝑛) = 𝑛 − 1√
𝑛

√
𝑇2( 𝛼

2𝑛 , 𝑛)
𝑛 − 2 + 𝑇2( 𝛼

2𝑛 , 𝑛)
.

At significance level 𝛼 ∈ (0, 1), we reject the null hypothesis 𝐻0 in

favour of the alternative hypothesis that 𝑥𝑖∗ is the unique outlier
along feature if 𝐺 ≥ ℓ (𝛼; 𝑛). If we are looking for more than one

outlier, it can be tempting to classify every observation x𝑖 for which

|𝑥𝑖 − 𝑥 |
𝑠𝑥

≥ ℓ (𝛼; 𝑛)

as an outlier, but this approach is contra-indicated.

Other common tests include:

− the Mahalanobis distance, which is linked to the leverage of

an observation (a measure of influence), can also be used to

find multi-dimensional outliers, when all relationships are

linear (or nearly linear);

− the Tietjen-Moore test, which is used to find a specific number

of outliers;

− the generalized extreme studentized deviate test, if the num-

ber of outliers is unknown;

− the chi-square test, when outliers affect the goodness-of-fit,

as well as

− DBSCAN and other clustering-based outlier detection meth-

ods;

− visual outlier detection (see Section 15.5 for some simple

examples).
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26.1.2 Statistical Learning Framework

Fraudulent behaviour is not always easily identifiable, even after the fact.

Credit card fraudsters, for instance, will try to disguise their transactions

as regular and banal, rather than as outlandish; to fool human observers

into confusing what is merely plausible with what is probable (or at

least, not improbable).

At its most basic level, anomaly detection is a problem in applied probabil-
ity: if 𝐼 denotes what is known about the dataset (behaviour of individual

observations, behaviour of observations as a group, anomalous/normal

verdict for a number of similar observations, etc.), is

𝑃(observation is anomalous | 𝐼) > 𝑃(observation is not anomalous | 𝐼)?

Anomaly detection models usually assume stationarity for normal
observations, which is to say, that the underlying mechanism that

generates data does not change in a substantial manner over time, or, if it

does, that its rate of change (or cyclicity) is known.

A Time Series Detour For time series data, this means that it may be

necessary to first perform trend and seasonality extraction.
9

9: More information on these topics can

be obtained in Chapter 11.

Example: supply chains play a crucial role in the transportation of goods

from one part of the world to another. As the saying goes, “a given

chain is only as strong as its weakest link” – in a multi-modal context,

comparing the various transportation segments is far from an obvious

endeavour.

If shipments departing Shanghai in February 2013 took two more days,

on average, to arrive in Vancouver than those departing in July 2017, can it

be said with any certainty that the shipping process has improved in the

intervening years? Are February departures always slower to cross the

Pacific Ocean? Are either of the Feb 2013 or the July 2017 performances

anomalous?

The seasonal variability of performance is relevant to supply chain

monitoring; the ability to quantify and account for the severity of its

impact on the data is thus of great interest.

One way to tackle this problem is to produce an index to track container

transit times. This index should depict the reliability and the variability
of transit times but in such a way as to be able to allow for performance

comparison between differing time periods.

To simplify the discussion, assume that the ultimate goal is to compare

quarterly and/or monthly performance data, irrespective of the transit

season, in order to determine how well the network is performing on the

Shanghai → Port Metro Vancouver/Prince Rupert → Toronto corridor, say.

The supply chain under investigation has Shanghai as the point of origin

of shipments, with Toronto as the final destination; the containers enter

the country either through Vancouver or Prince Rupert. Containers leave

their point of origin by boat, arrive and dwell in either of the two ports

before reaching their final destination by rail.
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Figure 26.3: Multi-modal supply chain

corridor.

For each of the three segments (Marine Transit, Port Dwell, Rail Transit),

the data consists of the monthly empirical distribution of transit times,

built from sub-samples (assumed to be randomly selected and fully

representative) of all containers entering the appropriate segment.

Each segment’s performance is measured using fluidity indicators,
10

10: In this case, compiled at a monthly

scale.
which are computed using various statistics of the transit/dwelling time

distributions for each of the supply chain segments, such as:

Reliability Indicator (RI) the ratio of the 95
th

percentile to the 5
th

per-

centile of transit/dwelling times (a high RI indicates high volatility,

whereas a low RI (≈ 1) indicates a reliable corridor);

Buffer Index (BI) the ratio of the positive difference between the 95
th

percentile and the mean, to the mean. A small BI (≈ 0) indicates only

slight variability in the upper (longer) transit/dwelling times; a

large BI indicates that the variability of the longer transit/dwelling

times is high, and that outliers might be found in that domain;

Coefficient of Variation (CV) the ratio of the standard deviation of tran-

sit/dwelling times to the mean transit/dwelling time.

Figure 26.4: Illustration of how to derive

the various monthly fluidity indicators.

The time series of monthly indicators (which are derived from the

monthly transit/dwelling time distributions in each segment) are then

decomposed into their:

trend;

seasonal component (seasonality, trading-day, moving-holiday);
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Figure 26.5: Conceptual time series decom-

position; potential anomalous behaviour

should be searched for in the irregular

component.

irregular component.

The trend and the seasonal components provide the expected behaviour
of the indicator time series;ˆ[Before carrying out seasonal adjustment,

it is important to identify and pre-adjust for structural breaks (using

the Chow test, for instance), as their presence can give rise to severe

distortions in the estimation of the Trend and Seasonal effects.

Seasonal breaks occur when the usual seasonal activity level of a particu-

lar time reporting unit changes in subsequent years. Trend breaks occurs

when the trend in a data series is lowered or raised for a prolonged period,

either temporarily or permanently.
11

The irregular component arises as11: Sources of these breaks may come from

changes in government policies, strike

actions, exceptional events, inclement

weather, etc.

a consequence of supply chain volatility; a high irregular component at

a given time point indicates a poor performance against expectations for

that month, which is to say, an anomalous observation.

In general, the decomposition follows a model which is

multiplicative;

additive, or

pseudo-additive.

The choice of a model is driven by data behaviour and choice of assump-

tions; the X12 model automates some of the aspects of the decomposition,

but manual intervention and diagnostics are still required.
12

The additive12: X12 is implemented in SAS and R,

among other platforms.
model, for instance, assumes that:

1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

independent of the trend 𝑇𝑡 ;

2. the seasonal component 𝑆𝑡 remains stable from year to year; and

3. there is no seasonal fluctuation:

∑
12

𝑗=1
𝑆𝑡+𝑗 = 0.

Mathematically, the model is expressed as:

𝑂𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐼𝑡 .

All components share the same dimensions and units. After seasonality

adjustment,the seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑂𝑡 − 𝑆𝑡 = 𝑇𝑡 + 𝐼𝑡 .

The multiplicative and pseudo-additive models are defined in similar

ways (again, consult Chapter 11 for details).
13

13: The simplest way to determine

whether to use multiplicative or additive

decomposition is by graphing the time se-

ries. If the size of the seasonal variation

increases/decreases over time, multiplica-

tive decomposition should be used. On the

other hand, if the seasonal variation seems

to be constant over time, additive model

should be used. A pseudo-additive model

should be used when the data exhibits the

characteristics of the multiplicative series,

but parameter values are close to zero.
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Figure 26.6: Marine transit CV data, from

2010 to 2013.

Figure 26.7: Diagnostic plot for marine

transit CV data, from 2010 to 2013 (left); SI

chart (right).

The data decomposition/preparation process is illustrated with the

40-month time series of marine transit CVs from 2010-2013, whose values

are shown in Figure 26.6. The size of the peaks and troughs seems fairly

constant with respect to the changing trend; the SAS implementation of

X12 agrees with that assessment and suggests the additive decomposition

model, with no need for further data transformations.

The diagnostic plots are shown in Figure 26.7: the CV series is prior-

adjusted from the beginning until OCT2010 after the detection of a level

shift. The SI (Seasonal Irregular) chart shows that there are more than

one irregular component which exhibits volatility.

The adjusted series is shown in Figure 26.8.
14

It is on the irregular 14: The trend and irregular components

are also shown separately for readability.
component that detection anomaly would be conducted.

This example showcases the importance of domain understanding and

data preparation to the anomaly detection process. As the vast majority

of observations in a general problem are typically “normal”, we can

also view anomaly detection as a rare occurrence learning classification

problem or as a novelty detection data stream problem.
15

15: We discussed the former in Chapter

21; the latter will be tackled in Chapter 28.

Figure 26.8: Adjusted plot for marine tran-

sit CV data, from 2010 to 2013.
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While there a number of strategies that use regular classification/cluster-

ing algorithms for anomaly detection, they are rarely successful unless

they are adapted or modified for the anomaly detection context.

Basic Concepts A generic system (such as the monthly transit times

example) may be realized in normal states or in abnormal states. Normal-

ity, perhaps counter-intuitively, is not confined to finding the most likely

state, however, as infrequently occurring states could still be normal or

plausible under some interpretation of the system.

As the authors of [26] see it, a system’s states are the results of processes

or behaviours that follow certain natural rules and broad principles; the

observations are a manifestation of these states. Data, in general, allows

for inferences to be made about the underlying processes, which can

then be tested or invalidated by the collection of additional data.

When the inputs are perturbed, the corresponding outputs are likely to

be perturbed as well; if anomalies arise from perturbed processes, being

able to identify when the process is abnormal,
16

may lead to useful16: That is to say, being able to capture the

various normal and abnormal processes. anomaly detection.

Any supervised anomaly detection algorithm requires a training set of

historical labeled data (which may be costly to obtain) on which to build

the prediction model, and a testing set on which to evaluate the model’s

performance in terms of:

True Positives (TP, detected anomalies that actually arise from

process abnormalities);

True Negatives (TN, predicted normal observations that indeed

arise from normal processes);

False Positives (FP, detected anomalies corresponding to regular

processes), and

False Negatives (FN, predicted normal observations that are in

fact the product of an abnormal process).

Table 26.1: Confusion matrix for an

anomaly detection problem.

As discussed previously, the rare occurrence problem makes optimizing

for maximum accuracy

𝑎 =
TN + TP

TN + TP + FN + FP

a losing strategy; instead, algorithms attempt to minimize the FP rate

and the FN rate under the assumption that the cost of making a false

negative error could be substantially higher than the cost of making a

false positive error.

Assume that for a testing set with 𝛿 = FN+ TP true outliers, an anomaly

detection algorithm identifies 𝜇 = FP + TP suspicious observations, of
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which 𝜈 = TP are known to be true outliers. Performance evaluation in

this context is often measured using precision and recall.

Precision is the proportion of true outliers among the suspicious ones:

𝑝 =
𝜈
𝜇

=
TP

FP + TP

;

when most of the observations identified by the algorithm are true

outliers, 𝑝 ≈ 1; recall is the proportion of true outliers detected:

𝑟 =
𝜈
𝛿
=

TP

FN + TP

;

when most of the true outliers are identified by the algorithm, 𝑟 ≈ 1, and

the 𝐹1−score is the harmonic mean of the precision and the recall:

𝐹1 =
2𝑝𝑟

𝑝 + 𝑟 =
2TP

2TP + FP + FN

.

One drawback of using precision, recall, and the 𝐹1−score is that they

do not incorporate TN in the evaluation process, but this is unlikely

to be problematic as regular observations that are correctly seen as

unsuspicious are not usually the observations of interest.
17

17: Nevertheless, the analyst for whom the

full picture is important might want to fur-

ther evaluate the algorithm with the help

of the Matthews Correlation Coefficient
[37] or the specificity 𝑠 = TN

FP+TN
.

Example: consider a test dataset Te with 5000 observations, 100 of which

are anomalous. An algorithm which predicts all observations to be

anomalous would score 𝑎 = 𝑝 = 0.02, 𝑟 = 1, and 𝐹1 ≈ 0.04, whereas an

algorithm that detects 10 of the true outliers would score 𝑟 = 0.1.
18 □ 18: The other metric values would change

according to the TN and FN counts.

Table 26.2: Metric values for various supervised anomaly detection models.

Another supervised approach is to estimate the relative abnormality of

various observations: it is usually quite difficult to estimate the probability

that an observation x1 is anomalous with any certainty, but it might be

possible to determine that it is more likely to be anomalous than another

observation x2, say (denoted by x1 ⪰ x2).

This paradigm allows the suspicious observations to be ranked; let

𝑘𝑖 ∈ {1, . . . , 𝜇} be the rank of the 𝑖th true outlier, 𝑖 ∈ {1, . . . , 𝜈}, in the

sorted list of suspicious observations

x1 ⪰ x𝑘1
⪰ · · · ⪰ x𝑘𝑖 ⪰ · · · x𝑘𝜈 ⪰ x𝜇;

the rank power of the algorithm is

𝑅𝑃 =
𝜈(𝜈 + 1)
2

∑𝜈
𝑖=1

𝑘𝑖
.

When the 𝛿 actual anomalies are ranked near the top 𝛿 suspicious ones,

RP ≈ 1. The metric is well-defined only when 𝜇 ≥ 𝛿; as with most
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Figure 26.9: Oversampling, undersampling, and hybrid strategy for anomaly detection [22].

performance evaluation metrics, it is meaningful only in comparison
with the performance of other algorithms.

19
19: Other SL performance evaluation met-

rics include:

AUC – the probability of ranking a

randomly chosen anomaly higher

than a randomly chosen normal

observation (higher is better);

probabilistic AUC – a calibrated

version of AUC.

The rare occurrence problem can be tackled by using:

a manipulated training set (oversampling, undersampling, gener-

ating artificial instances);

specific SL AD algorithms (CREDOS, PN, SHRINK);

boosting algorithms (SMOTEBoost, RareBoost);

cost-sensitive classifiers (MetaCost, AdaCost, CSB, SSTBoost),

etc. [21]

The rare (anomalous) class can be oversampled by duplicating the rare

events until the data set is balanced (roughly the same number of

anomalies and normal observations). This does not increase the overall

level of information, but it will increase the misclassification cost.

The majority class (normal observations) can also be undersampled by

randomly removing:

“near miss” observations or

observations that are “far” from anomalous observations.

Some loss of information has to be expected, as are “overly general” rules.

Common strategies are illustrated in Figures 26.9 and Figure 26.10.

Another modern approach rests on the concept of dimension reduction
(see Chapter 23); autoencoders learn a compressed representation of the

data. In a sense, the reconstruction error measures how much information

is lost in the compression.

Anomaly detection algorithms are then applied to the compressed data:

we look for anomalous patterns or anomalous reconstruction errors.
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Figure 26.10: Generating artificial cases with SMOTE and DRAMOTE [33].

In the example of Figure 26.11, one observation is anomalous because

its compressed representation does not follow the pattern of the other

8 observations, whereas another observation is anomalous because its

reconstruction error is substantially higher than that of the other 8

observations.
20

We discuss autoencoders in more detail in Chapter 31. 20: Can you hazard a guess as to which

one is which?

On the unsupervised front, where anomalous/normal labels are not

known or used, if anomalies are those observations that are dissimilar

to other observations, and if clusters represent groupings of similar

observations, then observations that do not naturally fit into a cluster

could be potential anomalies.
21

21: There are a number of challenges asso-

ciated to unsupervised anomaly detection,

not the least of which being that most

clustering algorithms do not recognize po-

tential outliers (DBSCAN is a happy excep-

tion) and that some appropriate measure

of similarity/dissimilarity of observations

has to be agreed upon. Different measures

may lead to different cluster assignments,

as discussed in Chapter 22.

26.1.3 Motivating Example

In this chapter, we will illustrate the concepts and the algorithms of

anomaly detection on an artificial dataset.

Consider a dataset of 102 observations in ℝ4
; the first 100 observations

p1 , . . . , p100 are drawn from a multivariate N(𝝁,𝚺), with

𝝁 = (1,−2, 0, 1), 𝚺 =

©«
1 0.5 0.7 0.5

0.5 1 0.95 0.3

0.7 0.95 1 0.3

0.5 0.3 0.3 1

ª®®®¬ .

Setting-up the data

nobs = 100

mu = matrix(rep(c(1,-2,0,1),100), nrow=4)

Sigma = matrix(c(1, 0.5, 0.7, 0.5,

0.5, 1, 0.95, 0.3,

0.7, 0.95, 1, 0.3,

0.5, 0.3, 0.3, 1), nrow=4, ncol=4)

We use 𝚺’s Cholesky decomposition to generate random observations.
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Figure 26.11: Illustration of autoencoder compression/reconstruction for anomaly detection, modified from [6].

Cholesky decomposition

L = chol(Sigma)

nvars = dim(L)[1]

set.seed(0) # for replicability

r = t(mu + t(L) %*% matrix(rnorm(nvars*nobs),

nrow=nvars, ncol=nobs))

The summary statistics for the 100 “regular” observations are given

below:

Summarizing data

rdata = as.data.frame(r)

names(rdata) = c(’x1’, ’x2’, ’x3’, ’x4’)

summary(rdata)

x1 x2 x3 x4

Min. :-1.90 Min. :-4.41 Min. :-2.53 Min. :-1.99

1st Qu.: 0.38 1st Qu.:-2.65 1st Qu.:-0.62 1st Qu.: 0.34

Median : 0.93 Median :-2.02 Median :-0.05 Median : 0.94

Mean : 0.94 Mean :-1.98 Mean : 0.01 Mean : 0.94

3rd Qu.: 1.46 3rd Qu.:-1.40 3rd Qu.: 0.63 3rd Qu.: 1.59

Max. : 3.44 Max. : 0.52 Max. : 2.03 Max. : 2.81

We now add two observations z1 = (1, 1, 1, 1) and z4 = (4, 4, 4, 4) not

arising from N(𝝁,𝚺).
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Setting-up some outliers

pt.1 = c(1,1,1,1)

pt.2 = c(4,4,4,4)

rdata = rbind(rdata,pt.1,pt.2)

group = c(rep(1,nobs),2,3)

rdata = cbind(rdata,group)

The complete dataset is displayed below, with z1 in pink and z4 in green.

But since we will not usually know which observations are “regular” and

which are “anomalous”, let us remove the colouring.

Plotting and anonymizing the data

lattice::splom(rdata[,1:4], groups=group, pch=22)

lattice::splom(rdata[,1:4], pch=22)

Evidently, a visual inspection suggests that there are in fact 3 outliers

in the dataset: the two that were specifically added as such, but a 3rd

observation that was naturally outlying!

Multiple references were consulted in the preparation of this chapter,

in particular [1, 26]. Other good survey documents include [32, 17].

Specific methods and approaches are the focus of other papers: [3, 34,

30] (high-dimensional data), [18] (DOBIN), [2] (outlier ensembles), [23,

12] (isolation forest), [10, 8] (DBSCAN), [7] (LOF), [39, 19, 29, 27, 28]

(subspace method), [9] (time series data).

On the practical side, we would be remiss if we did not also mention

[5], but keep in mind that there is a plethora of quality online anomaly
detection tutorials in the programming language of your choice.
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26.2 Quantitative Approaches

Cluster-based methods are not the only types of UL anomaly detection

methods. Generally, they come in two flavours: distance-based and

density-based.

Distance-based methods include distance to all observations,

distance to 𝑘 nearest neighbours (𝑘NN), average distance to 𝑘NN,

median distance to 𝑘NN, etc.

Density-based methods include local outlier factor (LOF), isolation

forest, HDBSCAN, etc.

26.2.1 Distance Methods

In order to determine whether an observation is anomalous or not,

it must be compared to a set of other observations (anomalies are

relative, not absolute). In the distance-based context, one natural way

to compare observations is to consider their distance from one another,

with increasing distance from the others being increasingly suggestive of

anomalous status.

This approach works both in continuous and discrete cases, as long as

a distance function or a pre-computed table of pair-wise distances
between observations is given.

The choice of which sets of observations to use in this comparison

distinguishes the different distance-based algorithms.

Notation Let 𝐷 ⊂ ℝ𝑛
be an 𝑛-dimensional dataset, p, q ∈ 𝐷, 𝑃 ⊂ 𝐷 be

a subset of 𝐷. Assume that 𝑑 : 𝐷 × 𝐷 → ℝ gives the distance between p
and q, written 𝑑(p, q).

An anomaly detection algorithm provides a function 𝑎 : 𝐷 → ℝ that

describes how anomalous a given observation is. This induces an ordering

on the observations of 𝐷: if 𝑎(p) < 𝑎(q) for p, q ∈ 𝐷, then p is less
anomalous than q.

It could be necessary to define a threshold beyond which an observation

is considered anomalous; if 𝛼 ∈ ℝ is such a threshold, then any p ∈ 𝐷 is

absolutely anomalous if 𝑎(p) > 𝛼.

Similarity Measures A similarity measure is a real-valued function that

describes the similarity between two objects. A common construction is

to define the similarity 𝑤 between two observations p, q as

𝑤(p, q) = 1

1 + 𝑑(p, q) , for some distance 𝑑,

so that 𝑤 → 1 as 𝑑 → 0, and 𝑤 → 0 as 𝑑 → ∞.

A similarity measure can also be constructed between probability distri-

butions. Let 𝑋 and 𝑌 be two 𝑛-dimensional random vectors of (possibly)

different distribution with p.m.f./p.d.f. 𝑓𝑋 and 𝑓𝑌 , respectively.
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Let Ω be their shared domain. For discrete random variables, the

Hellinger distance is defined by

𝐻(𝑋,𝑌) =
(
1 −

∑
z∈Ω

√
𝑓𝑋(z) 𝑓𝑌(z)

)
1/2

;

for continuous random variables, it is defined by

𝐻(𝑋,𝑌) =
(
1 −

∫
Ω

√
𝑓𝑋(z) 𝑓𝑌(z) 𝑑z

)
1/2

.

If 𝑓𝑋 = 𝑓𝑌 (or 𝑓𝑋 = 𝑓𝑌 almost everywhere in the continuous case, that is,

except over a countable set), then∑
Ω

√
𝑓𝑥 𝑓𝑌 = 1 or

∫
Ω

√
𝑓𝑋 𝑓𝑌 𝑑z = 1

and 𝐻(𝑋,𝑌) = 0. The fact that 𝐻(𝑋,𝑌) ∈ [0, 1] is a consequence of

Cauchy’s inequality, with 𝑓 ∗
𝑋
=

√
𝑓𝑋 and 𝑓 ∗

𝑌
=

√
𝑓𝑌 :

0 ≤
∫
Ω

√
𝑓𝑋 𝑓𝑌 𝑑z =

∫
Ω

𝑓 ∗𝑋 𝑓
∗
𝑌 𝑑z

≤
(∫

Ω

| 𝑓 ∗𝑋 |
2 𝑑z

)
1/2

(∫
Ω

| 𝑓 ∗𝑌 |
2 𝑑z

)
1/2

=

(∫
Ω

𝑓𝑋 𝑑z
)

1/2
(∫

Ω

𝑓𝑌 𝑑z
)

1/2

= 1;

a similar argument holds for discrete random variables.

Recall that the covariance matrices 𝚺𝑋 and

𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑆𝑖𝑔𝑚𝑎𝑌 are 𝑛 × 𝑛-matrices whose (𝑖 , 𝑗)-th entries are the

covariance between the 𝑖-th and 𝑗-th positions of 𝑋 and 𝑌, respectively.

Given a collection of identically distributed samples, these covariance

matrices can be estimated.

We can also consider a single observation p to represent a probability

distribution. In that case, the Hellinger distance between that observation

and any other distribution with mean 𝝁 and covariance matrix 𝚺 can be

studied using the framework above, using the Mahalanobis distance:

𝑀(p) =
√
(p − 𝝁)⊤𝚺−1(p − 𝝁).

Alternatively, if p and q are drawn from the same distribution with

covariance 𝚺, then the Mahalanobis distance is a dissimilarity measure

between p and q:

𝑑𝑀(p, q) =
√
(p − q)⊤𝚺−1(p − q).

Example In general, we do not know the true mean vector 𝝁 and

covariance matrix𝚺 from which the data could arise, and the mean vector

and the covariance structure must be estimated from the data. In the

example of Section 26.1, we have:
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(mu.1 <- colMeans(rdata[,1:4]))

cov(rdata[,1:4])

x1 x2 x3 x4

0.96801577 -1.89096069 0.05602349 0.97433766

x1 x2 x3 x4

x1 0.8999038 0.5690744 0.6646093 0.5033570

x2 0.5690744 1.3124241 1.0685066 0.4694309

x3 0.6646093 1.0685066 0.9921537 0.3969461

x4 0.5033570 0.4694309 0.3969461 0.9043493

These are distinct from the true underlying collection of parameters 𝝁
and 𝚺, but close enough to be explained by sampling variation and

because z1 , z4 ≁ N(𝝁,𝚺).

We first attempt to identify the anomalous observations by computing the

Mahalanobis distance from the empirical distribution to all observations

in the dataset.

Sigma.inv = matlib::inv(cov(rdata[,1:4]))

M_d<-vector()

for(j in 1:nrow(rdata)){

M_d[j] <- sqrt(as.matrix(rdata[j,1:4]-mu.1) %*%

Sigma.inv %*%

t(as.matrix(rdata[j,1:4]-mu.1)))

}

rdata <- data.frame(rdata,M_d)

summary(M_d)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4622 1.3479 1.6764 1.7980 2.1010 6.6393

The summary suggests that there is (at least) one observation for which

the Mahalanobis distance to the empirical distribution is quite high.

library(dplyr) # we always assume that these

library(ggplot2) # two packages have been loaded

rdata |> ggplot(aes(x=M_d)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

rdata |> ggplot(aes(x=M_d)) +

geom_boxplot() + geom_rug(color="black")
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The histogram of Mahalanobis distances shows that most observations

are fairly “regular”, but that two of the observations have substantially

larger distances. The boxplot confirms it, but identifies a potential third

outlying observation.

Below, we display the scatter plot matrix of the 102 observations, with

colour intensity mapped to the Mahalanobis distance of the observation

from the empirical distribution (the code is omitted for readability).

It certainly seems as though z1 and z4 could be the two anomalies.
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Next, we plot the Mahalanobis distance from each observation to every

other observation.

M_pq<-matrix(nrow=nrow(rdata), ncol=nrow(rdata))

for(j in 1:nrow(rdata)){

for(i in 1:nrow(rdata)){

M_pq[j,i]<-sqrt(as.matrix(rdata[j,1:4]-rdata[i,1:4]) %*%

Sigma.inv %*%

t(as.matrix(rdata[j,1:4]-rdata[i,1:4])))

}

}

M_pq<-as.data.frame.table(M_pq)

M_pq[,1:2]<-lapply(M_pq[,1:2],as.numeric)

M_pq |> ggplot(aes(x=Var1,y=Freq)) +

geom_point(aes(fill=Freq,colour=Freq),pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#FFFFFF") +

scale_colour_continuous(high = "#0033FF", low = "#FFFFFF") +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Distance") +

theme_bw() + theme(legend.position = "none")

Note the differing patterns for observations 101 and 102, as well as the

diffuse cloud of points above the distance 5.0 for the other observations.

There are a few other observations for which the distances to other

observations seem to be larger than in a majority of the cases.

Next, we display the same distributions with the help of boxplots.

median.value <- M_pq |>

group_by(Var1) |>

summarise(meanDist=mean(Freq)) |>

summarise(median_value=median(meanDist))

test <- M_pq |>

group_by(Var1) |>

summarise(meanDist=mean(Freq)) |>

summarise(std=sd(meanDist))
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med.sd = test+median.value

M_pq |> ggplot(aes(x=as.factor(Var1),y=Freq)) +

geom_boxplot() +

scale_x_discrete(name="Observations") +

scale_y_continuous(name="Distance") +

theme_bw() + theme(legend.position = "none") +

geom_hline(yintercept=as.numeric(median.value),

linetype = "dashed", color = "red") +

geom_hline(yintercept=as.numeric(med.sd),

linetype = "dotted", color = "red") +

theme(axis.text.x = element_text(angle=90))

The long-dashed red line (see below) represents the median of all the

mean distances per observation; the short-dashed red line lies 1 standard

deviation above the median.

To simplify the reading of the situation, we plot only the mean distance

per observation, linking the colour intensity and the marker size to

the mean distance (blue corresponding to larger distances, as do larger

markers).

M_pq |> group_by(Var1) |> summarise(meanDist=mean(Freq)) |>

ggplot(aes(x=Var1,y=meanDist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Mean Distance") +

geom_point(aes(fill=meanDist,colour=meanDist,

size=meanDist),pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none") +

geom_hline(yintercept=as.numeric(median.value),

linetype = "dashed", color = "red") +

geom_hline(yintercept=as.numeric(med.sd),

linetype = "dotted", color = "red")

Do any other observations strike you as potential outliers?
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Similarity Measures (Reprise) If 𝚺 is diagonal, then

𝑑𝑀(p, q) =
√

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2
𝜎2

𝑖

,

where 𝜎2

𝑖
is the variance along the 𝑖-th dimension. If Σ is the identity

matrix, then we recover the Euclidean distance

𝑑2(p, q) =
√

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2.

When using the Euclidean distance in an anomaly detection context, a

linear normalization is usually applied to each dimension so that each

entry lies in the hypercube [−1, 1]𝑛 . The Minkowski distance of order 𝑝

is a generalization of the Euclidean distance:

𝑑𝑝(p, q) =
(
𝑛∑
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |𝑝
)

1/𝑝

.

For 𝑝 = 2 we recover the Euclidean distance 𝑑2, for 𝑝 = 1 the Manhattan
distance

𝑑1(p, q) =
𝑛∑
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |,

and for 𝑝 = ∞ the supremum distance (also called the Chebychev
distance)

𝑑∞(p, q) =
𝑛

max

𝑖=1

|𝑝𝑖 − 𝑞𝑖 |.

Note that the Minkowski distance 𝑑𝑝 is only a distance function (i.e., a

metric) when 𝑝 ≥ 1.
22

22: But an exception is made for

𝑑−∞(p, q) =
𝑛

min

𝑖=1

|𝑝𝑖 − 𝑞𝑖 |

to fall within the same framework.

The Jaccard similarity of two datasets 𝑃 and 𝑄, is defined as the size of

their intersection divided by the size of their union

𝐽(𝑃, 𝑄) = |𝑃 ∩𝑄 |
|𝑃 ∪𝑄 | =

|𝑃 ∩𝑄 |
|𝑃 | + |𝑄 | − |𝑃 ∩𝑄 | .

Their Jaccard distance is then taken to be 1 − 𝐽(𝑃, 𝑄).23
23: This definition can be extended to

compare binary vectors (i.e. vectors with

entries in {0, 1}) of the same length. Given

two binary vectors p and q of length 𝑛,

consider an arbitrary set 𝐷 of size 𝑛. Then

p and q can be viewed as subsets of 𝐷: if

𝑝𝑖 = 1 then p is said to contain the 𝑖-th

element of 𝐷, while if 𝑝𝑖 = 0 then it does

not. Viewing p and q in this way allows

us to compute their Jaccard similarity, and

thus their Jaccard distance.

Finally, let p, q ≠ 0. Recall that p ·q = ∥𝑝∥∥𝑞∥ cos𝜃, where 𝜃 is the angle

between p and q. The cosine similarity between p and q is the cosine of

𝜃, which can be computed as

cos𝜃 =
𝑝 · 𝑞

∥𝑝∥∥𝑞∥ =

∑𝑛
𝑖=1
𝑝𝑖𝑞𝑖√∑𝑛

𝑖=1
𝑝2

𝑖

√∑𝑛
𝑖=1

𝑞2

𝑖

.

This value ranges between 1 and −1, with 1 attained when p = q, −1

when p = −q, and 0 when p and q are perpendicular. Armed with

these concepts, we can now explore distance-based methods for anomaly

detection; they will also eventually be useful for density-based anomaly

detection.
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Figure 26.12: 2D visualization of various

similarity metrics [36].

Distance-Based Anomaly Detection All these distance functions (simi-

larity measures) can be used to create basic anomaly detection algorithms

(the ideas can also be extended to more complex algorithms).

Given some distance function 𝑑, dataset 𝐷, and integers 𝑘, 𝜈 ≤ |𝐷 |, the

distance to all points (DTAP) anomaly detection algorithm considers

each observation p in 𝐷 and adds the distance from p to every other

observation in 𝐷, i.e.

𝑎(p) =
∑

q≠p∈𝐷
𝑑(q, p).

The 𝜈 observations with largest values for 𝑎 are then said to be anomalous
according to 𝑎. This approach often selects the most extreme observations

as anomalous, which may be of limited use in practice.

The distance to nearest neighbour (DTNN) algorithm defines

𝑎(p) = min

q≠p∈𝐷
𝑑(q, p),

with a similar definition for the 𝜈 anomalous observations. The average
distance to 𝑘 nearest neighbours and median distance to 𝑘 nearest
neighbours are defined similarly.

Example: Distance to All Points We start by building the DTAP anomaly

detector for the Euclidean distance (method="euclidean") on the scaled
artificial data, which is shown below.

rdata.scaled=data.frame(matrix(ncol = 4, nrow = nobs+2))

for(i in 1:4){

rdata.scaled[,i] <-

2/(max(rdata[,i]) - min(rdata[,i])) * rdata[,i] - 1

}

lattice::splom(rdata.scaled[,1:4], pch=22)
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The top 𝜈 = 6 anomalous observations are obtained as follows, with

accompanying plot:

m.L2 <- as.matrix(dist(rdata.scaled[,1:4],

method="euclidean"))

adoa.L2 <- data.frame(1:(nobs+2), rowSums(m.L2))

colnames(adoa.L2) <- c("obs","dist")

adoa.L2 <- adoa.L2[order(-adoa.L2$dist),]

rownames(adoa.L2) <- NULL

head(adoa.L2)

adoa.L2 |>

ggplot(aes(x=obs,y=dist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Sum of Euclidean Distances") +

geom_point(aes(fill=dist, colour=dist, size=dist),

pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs dist

102 241.7556

62 177.6135

14 113.9903

49 108.6464

55 106.5156

67 104.7870
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We can repeat this process for a variety of metrics.
24

24: We do not display the code that is

used for these other metrics; it can be

obtained with simple modifications from

the Euclidean code.

Chebychev (replace method="euclidean" by method="maximum")

obs dist

102 144.85387

62 114.83273

14 88.25016

55 81.47169

49 80.33274

101 73.11895

Manhattan (method="euclidean" ↦→ method="manhattan")

obs dist

102 473.7469

62 342.2531

14 197.7493

67 193.9257

49 191.7707

55 183.6509

Minkowski, 𝑝 = 1/2 ("euclidean" ↦→ "manhattan", p=0.5):

obs dist

102 1873.7488

62 1341.9020

67 731.9811

14 717.3451

49 700.5557

11 669.4313

Minkowski, 𝑝 = 4 ("euclidean" ↦→ "manhattan", p=4):

obs dist

102 3738.781

62 2672.940

67 1444.177

14 1403.799

49 1372.067

11 1318.830

We see that while observation 102 is always the most anomalous according

to DTAP, the ranking is affected by the choice of distance metric. Is this

surprising?

Example: Distance to Nearest Neighbour We next build the DTNN

anomaly detector for the Euclidean distance, again on the scaled artificial

data.

As before, we display the top 𝜈 = 6 anomalous observations and the

accompanying charts for 5 different metrics.
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As above, we only present the code in the Euclidean case; the remaining

metrics require only slight modifications. The factor 1000000 is used to

create a matrix with a strongly dominant diagonal, to exclude observa-

tions being found nearest to themselves. Depending on the dataset, this

factor could be reduced or may need to be increased.

m.L2 <- m.L2 + 1000000*diag(nobs+2)

adoa.L2 <- data.frame(1:(nobs+2),apply(m.L2,1,min))

colnames(adoa.L2) <- c("obs","dist")

adoa.L2 <- adoa.L2[order(-adoa.L2$dist),]

rownames(adoa.L2) <- NULL

head(adoa.L2)

adoa.L2 |>

ggplot(aes(x=obs,y=dist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Minimum of Euclidean Distances") +

geom_point(aes(fill=dist, colour=dist, size=dist),

pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs dist

102 1.4549129

62 0.8667313

101 0.3746565

12 0.3611265

11 0.3186967

43 0.3145305

Chebychev (replace method="euclidean" by method="maximum")

obs dist

102 0.8269178

62 0.5203870

12 0.2449443

101 0.2368307

68 0.2356369

43 0.2214142

Manhattan (method="euclidean" ↦→ method="manhattan")

obs dist

102 2.8914743

62 1.6745725

12 0.6499116

101 0.6082916

11 0.5702036

23 0.4903152
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Minkowski, 𝑝 = 1/2 ("euclidean" ↦→ "manhattan", p=0.5):

obs dist

102 10.534441

62 6.559370

101 1.857222

11 1.704864

23 1.618388

12 1.591956

Minkowski, 𝑝 = 4 ("euclidean" ↦→ "manhattan", p=4):

obs dist

102 20.605432

62 13.059856

101 3.521821

11 3.081000

23 2.979090

12 2.809583

There are commonalities: certain observations come back repeatedly as

likely anomalous observations.

Note, however, that the anomaly rankings change according to the

selected distance function and the choice of algorithm; the choice of

data scaling approach could also have an impact.

This is par for the course in the anomaly detection context.

26.2.2 Density Methods

Density-based approaches view observations as anomalous if they occur

in low-density regions.

Figure 26.13: Low-density areas as outlier

nurseries [6].
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Density-based methods include:

local outlier factors;

DBSCAN, and

isolation forests.

Local Outlier Factor The Local Outlier Factor (LOF) algorithm was

proposed in 2000 by [7] (a summary can be found in Section 6.4.2 of [26]).

LOF works by measuring the local deviation of each observation in a

dataset from its 𝑘 nearest neighbours, with a point said to be anomalous

if this deviation is large.

A local 𝑘−region 𝑁𝑘(p) around an observation p is defined as the 𝑘

nearest neighbours of p. The density of observations in each of their

respective local 𝑘−neighbourhoods is estimated (the local density),

and compared to the density of the local 𝑘−neighbourhoods of the

observations within their own 𝑘−neighbourhood.

This can then be used to identify outliers that inhabit regions of lower

density than their neighbours, as p would be in Figure 26.14.

Figure 26.14: In this example, p has lower

𝑘−local density than its 2−neighbours

q1 , q2.

The formal procedure is implemented in the algorithm of Figure 26.15.

Any observation with a LOF 𝑎𝑘(p) above some threshold 𝜏 is a local out-
lier, but selecting is not obvious. LOF introduces the idea of a reachability
distance, which improves the stability of results within clusters/regions:

within 𝑁𝑘(p), it is

𝑑reach(p, q) = max

ℓ
{𝑑(p, qℓ ); qℓ ∈ 𝑁𝑘(p)},

the maximal distance to its 𝑘−neighbours; outside of 𝑁𝑘(p), it is

𝑑reach(p, q) = 𝑑(p, q),

the actual distance.

In Figure 26.16, assuming 𝑘 = 3, the observations q1 , q2 , q3 all have the

same reachability distance from p as they are all 3-neighbours of p, that

is,

𝑑reach(p, q1) = 𝑑reach(p, q2) = 𝑑reach(p, q3) = 𝑑(p, q3).

The observation q4, on the other hand, has 𝑑reach(p, q4) = 𝑑(p, q4) as it is

not a 𝑘-neighbour of p.
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Figure 26.15: LOF algorithm.

Example LOF is implemented in R via the Rlof package; we apply it to

the scaled data using the Euclidean and the Chebychev distances.

dist.L2 = dist(rdata.scaled[,1:4], method="euclidean")

lof <- Rlof::lof(dist.L2, k=4)

rdata.lof.L2 = data.frame(rdata.scaled[,1:4],lof)

rdata.lof.obs.L2 = data.frame(1:(nobs+2),lof)

names(rdata.lof.obs.L2) = c("obs",’lof’)

rdata.lof.obs.L2 <-

rdata.lof.obs.L2[order(-rdata.lof.obs.L2$lof),]

rownames(rdata.lof.obs.L2) <- NULL

head(rdata.lof.obs.L2)

rdata.lof.obs.L2 |>

ggplot(aes(x=obs,y=lof)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Local outlier factor

(k=4, d=Euclidean)") +

geom_point(aes(fill=lof, colour=lof, size=lof), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")
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Figure 26.16: Illustration of reachability

with 𝑘 = 3.

obs lof

102 5.377542

62 5.100218

12 1.609463

55 1.481152

27 1.475414

14 1.402112

dist.sup = dist(rdata.scaled[,1:4], method="maximum")

lof <- Rlof::lof(dist.sup, k=4)

rdata.lof.sup = data.frame(rdata.scaled[,1:4],lof)

rdata.lof.obs.sup = data.frame(1:(nobs+2),lof)

names(rdata.lof.obs.sup) = c("obs",’lof’)

rdata.lof.obs.sup <-

rdata.lof.obs.sup[order(-rdata.lof.obs.sup$lof),]

rownames(rdata.lof.obs.sup) <- NULL

head(rdata.lof.obs.sup)

rdata.lof.obs.sup |>

ggplot(aes(x=obs,y=lof)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Local outlier factor

(k=4, d=Supremum)") +

geom_point(aes(fill=lof, colour=lof, size=lof), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs lof

102 2.984990

62 2.917587

14 1.636228

27 1.542470

12 1.466011

79 1.342456
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DBSCAN Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) was proposed in 1996 by [10] (a summary can be found in

Section 4.1.5 of [26], as well as in Section 22.4.1). As its name suggests,

it is a density-based clustering algorithm that groups nearby observa-

tions together and labels observations that do not fall in the clusters as

anomalies/outliers.

Hierarchical DBSCAN (HDBSCAN) [8] was introduced in 2013. It notably

removes the problem of choosing the parameter for the radius of a neigh-

bourhood by considering all “possible” radii. Further documentation

can be found at [25].

In DBSCAN,

an observation p is a core point if there is a minimum of 𝑚

observations within distance 𝑟 of p;

an observation q is a border point (or non-core point) if it is not

itself a core point but is within distance 𝑟 of one, and

an observation o is an outlier if it is neither a core point nor a

border point.

Figure 26.17: For minimum neighbour-

hood size 𝑚 = 2 and the fixed radius 𝑟 as

displayed, o is an outlier, p is a core point,

and q1 , q2 are border points.

DBSCAN considers each observation in the dataset individually. If that

observation is an outlier, then it is added to a list of outliers. Otherwise if

it is a core point, then its 𝑟-neighbourhood forms the beginning of a new

cluster. Each observation in this 𝑟-neighbourhood is then considered in

turn, with the 𝑟-neighbourhoods of other core observations contained in

the neighbourhood being added to the cluster.

This expansion repeats until all observations have been examined. During

this step, observations that were previously labelled as outliers may be

updated as they become border points in the new cluster. This process

continues until every observation has either been assigned to a cluster or

labelled as an outlier.

The formal procedure is implemented in the algorithm of Figure 26.18.

While DBSCAN’s dual use as a clustering algorithm may seem irrelevant

in the outlier detection setting, it is its ability to succesfully identify clus-

ters that is crucial for labeling the remaining observations as outliers.

DBSCAN/HDSBCAN Strengths:

the number of clusters does not need to be known beforehand

(unlike in 𝑘−means and other clustering algorithms);

clusters of arbitrary shape can be detected;

when using HDBSCAN, only the parameter for the minimum
cluster size 𝑚 is required, which can be set fairly intuitively.

25
25: This is not the case for the parameters

in general clustering algorithms: if the

elements of𝐷 are 𝑛−dimensional, the only

restriction is that 𝑚 ≥ 𝑛 + 1 (larger values

of 𝑚 allow for better noise identification).
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Figure 26.18: DBSCAN algorithm.

DBSCAN/HDBSCAN Limitations:

it is not deterministic, as border points can be assigned to different

clusters depending on the order in which core observations are

considered – this does not affect its use as an anomaly detection

algorithm, however;

in high-dimensional spaces, the ability of any Euclidean-based

distance function to distinguish near and distant observations

diminishes due to the Curse of Dimensionality; in such spaces, it

becomes ineffective (as do other clustering algorithms);
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it cannot handle differences in local densities as the radius of a

neighbourhood 𝑟 is fixed; this could lead to sparser clusters being

labelled as outliers, or to outliers surrounding a denser cluster

being included in the cluster (this issue is overcome in HDBSCAN).

Example We use the R implementation of DBSCAN, HDBSCAN, and

OPTICS (another density-based clustering algorithm) found in the dbscan

package; we apply various parameters to the scaled artificial data, using

the Euclidean distance in all instances.
26

26: We display all the accompanying

charts in Figures 26.19 and 26.20.

scaled = scale(rdata[,1:4])

set.seed(1) # for replicability

DSBCAN, eps = 0.4, minPts = 4

(db.1 <- dbscan::dbscan(scaled, eps = .4, minPts = 4))

lattice::splom(scaled, groups=db.1$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 96 noise points.

0 1

96 6

Evidently, 0.4 is too small a value for eps or 4 is too large a value for

minPts (or both).

DSBCAN, eps = 1, minPts = 4

(db.2 <- dbscan::dbscan(scaled, eps = 1, minPts = 4))

lattice::splom(scaled, groups=db.2$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 6 noise points.

0 1

6 96

The results are reversed with a larger value of eps.
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DSBCAN, eps = 1, minPts = 10

(db.3 <- dbscan::dbscan(scaled, eps = 1, minPts = 10))

lattice::splom(scaled, groups=db.3$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 24 noise points.

0 1

24 78

Are the clustering results (i.e., the anomaly discovery rate) as expected?

The interaction between the parameters can have unpredictable effects.

DSBCAN, eps = 2, minPts = 10

(db.4 <- dbscan::dbscan(scaled, eps = 2, minPts = 10))

lattice::splom(scaled, groups=db.4$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 2 noise points.

0 1

2 100

HDBSCAN, minPts = 4

(hdb <- dbscan::hdbscan(scaled, minPts = 4))

lattice::splom(scaled, groups=hdb$cluster + 1L, pch=22)

The clustering contains 4 cluster(s) and 71 noise points.

0 1 2 3 4

71 10 6 4 11

Note the absence of the eps parameter.

OPTICS, eps = 1, minPts = 4, eps_cl = 1, xi=.0527
27: Read the dbscan package documenta-

tion for details.

opt <- dbscan::optics(scaled, eps = 1, minPts = 4)

(opt.1 <- dbscan::extractDBSCAN(opt, eps_cl = 1))

lattice::splom(rdata[,1:4], groups=opt.1$cluster + 1L, pch=22)

(opt.2 <- dbscan::extractXi(opt, xi = .05))

lattice::splom(scaled, groups=opt.2$cluster + 1L, pch=22)

The clustering contains 1 The clustering contains 4

cluster(s) and 6 noise points. cluster(s) and 7 noise points.

0 1 0 1 2 3 4

6 96 7 4 4 11 76

Are there any suprises?
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Figure 26.19: Clustering outcomes (outliers in blue): DBSCAN, top left (eps = 0.4, minPts = 4); DBSCAN, top right (eps = 1, minPts =
4); DBSCAN, bottom left (eps = 1, minPts = 10); DBSCAN, bottom right (eps = 2, minPts = 10).
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Figure 26.20: Clustering outcomes (outliers in blue): HDBSCAN, top (minPts = 4); OPTICS, bottom left (eps = 0.4, minPts = 4, eps_cl
= 1, xi = 0.05); OPTICS, bottom right (eps = 0.4, minPts = 4, eps_cl = 1, xi = 0.05).
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Isolation Forest The approaches that were previously discussed first

construct models of what normal observations look like, and then identify

observations that do not fit this model.

The Isolation Forest algorithm [23] introduced in 2008 instead tries to

explicitly identify outliers under the assumptions that there are few
outliers in the data and that these outliers have very different attributes
compared to normal (or regular) observations.

This allows the use of sampling techniques that increase algorithmic

speed while decreasing memory requirements.

The algorithm attempts to isolate anomalous observations by randomly
selecting an attribute and then randomly selecting a split between

that attribute’s min and max values. This recursively partitions the

observations until every observation is isolated in its own partition

component.

Recursive partitioning yields a binary tree called an Isolation Tree
(IsoTree):

the root of this tree is the entire dataset;

each node is a subset of the observations;

each branch corresponds to one of the generated partitions, and

the leaves are sets containing a single isolated observation.

Each observation is then assigned a score derived from how deep in the
tree its singleton partition appears. Observations that are shallower in

the tree are easier to separate from the rest – these are likely outliers.

Since only shallow observations are of interest, once the height of the

tree has reached a given threshold,
28

further construction of the tree 28: The expected height of a random bi-

nary tree, say.
can be stopped to decrease computational cost.

Instead of building a tree from the entire dataset, a tree can be constructed

from a subset. The location of any observation within this smaller tree can

then be estimated, again saving computational and memory resources.

These two improvements are detailed in the original paper [23].

The formal procedure is implemented in the algorithm of Figure 26.21.

Once a number of Isolation Trees have been randomly generated (an

Isolation Forest), a score can be computed for each point. This is done by

searching each tree for the location of a given point and noting the path

length required to reach it. Once an observation’s path length in each
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Figure 26.21: Isolation Tree algorithm.

tree has been computed, the average path length is taken to be its score.

In isolated forests, low scores are indicative of outlying behaviour.

The formal procedure is implemented in the algorithm of Figure 26.23.

It can be desirable to construct a normalized anomaly score independent

of the size of the dataset. In order to do this, the expected path length

of a random observation in an Isolation Tree (i.e. binary tree) must be

estimated. With |𝐷 | = 𝑛, it can be shown that the expected length is

𝑐(𝑛) = 2𝐻(𝑛 − 1) − 2(𝑛 − 1)
𝑛

,

where 𝐻(𝑛 − 1) is the (𝑛 − 1)th harmonic number, which can be ap-

proximated by ln(𝑛 − 1) + 0.577; 𝑐(𝑛) is then used to normalize the final

anomaly score 𝑎(p) for p ∈ 𝐷, which is given by

log
2
𝑎(p) = −average path length to p in the Isolation Trees

𝑐(𝑛) .

Thus defined, 𝑎(p) ∈ [0, 1], with 𝑎(p) ≈ 1 suggesting p is an anomaly,

𝑎(p) ≤ 0.5 suggesting p is a normal observation; if all observations

receive a score ≈ 0.5, this suggests that there are no anomalies present.

IsoForest Strengths:

small time and memory requirements;

can handle high dimensional data, and

do not need observations to have been labeled anomalies in the

training set.
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Figure 26.22: Isolation Forest schematics [6].

IsoForest Main Limitation:

the anomaly score assigned to a given point can have high variance

over multiple runs of the algorithm. The authors of [12] propose

some solutions.

Example We use the R implementation of IsoForest found in the

solitude package; we apply various parameters to the scaled artifi-

cial data, using the Euclidean distance in all instances. Note that this

implementation uses a different scoring system, in which high scores are

indicative of anomalous observations.

#library(solitude)

set.seed(1) # for replicability

index = 1:102

We initiate an isolation forest:

iso = solitude::isolationForest$new(

sample_size = length(index))

iso$fit(dataset = rbind(scaled[index,1:4],c(0,0,0,0)))

test<-iso$predict(scaled[index,1:4]) # scores for Tr data

The top 𝜈 = 6 IsoForest anomaly scores are given below:

rdata.iso = data.frame(1:(nobs+2),test$anomaly_score)

names(rdata.iso) = c("obs","anomaly_score")

rdata.iso <- rdata.iso[order(-rdata.iso$anomaly_score),]

rownames(rdata.iso) = NULL

head(rdata.iso)

rdata.iso |>

ggplot(aes(x=obs,y=anomaly_score)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="IsoForest Anomaly Score") +
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Figure 26.23: Isolation Forest algorithm.

geom_point(aes(fill=anomaly_score, colour=anomaly_score,

size=anomaly_score), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs anomaly_score

102 0.7795207

62 0.7480289

55 0.6379525

29 0.6228751

49 0.6218485

67 0.6182687

The profile of anomaly scores has a fairly distinct look (although we

recognize quite a few of the usual suspects).

In general, density-based schemes are more powerful than distance-based

schemes when a dataset contains patterns with diverse characteristics,

but less effective when the patterns are of comparable densities with
the outliers [35].
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Figure 26.24: 3−way, 2−way, and 1−way tables for the artificial example; the percentages of the levels above certain thresholds provide

information about the spread of each of the categorical variables.

26.3 Qualitative Approaches

Non-numerical variables present new challenges when it comes to

anomaly detection. A categorical variable29
is one whose levels are 29: Or qualitative variable.

measured on a nominal scale; examples include an object’s colour, an

individual’s mother tongue, her favourite meal, and so on.

The central tendency of a categorical variable is usually given by its

mode; measures of spread are harder to define consistently.
30

30: One possibility is to use the propor-

tion of levels with more than a certain

percentage of the observations above a

given threshold.

Consider a dataset with 𝑛 = 517 observations and 𝑝 = 3 predictors:

age (24−, 24 − 44, 45 − 64, 65+);

mother tongue (French, English, Mandarin, Arabic, Other), and

hair colour (black, brown, blond, red).

The respective modes are 24 − 44, English, and brown. We can see the

distribution tables in Figure 26.24, as well as the number of levels that

contain more than 15% and more than 25% of the observations.

We often associate qualitative features to numerical values, but with the

caveat that these should not be interpreted as numerals.
31

31: If we use the code “red” = 1, “blond”

= 2, “brown” = 3, and “black” = 4 to

represent hair colour, we cannot conclude
that “blond” > “red”, even though 2 > 1,

or that “black” − “brown” = “red”, even

though 4 − 3 = 1.

A categorical variable that has exactly two is called a dichotomous
feature (or a binary variable); those with more than two levels are called

polytomous variables.
32

32: While we are on the topic, regression

on categorical variables is called multino-
mial logistic regression.

Commonly-used distances (apart from the 0 − 1 distance and the related

Hamming distance) typically require numerical inputs. Anomaly detec-

tion methods based on distance or on density are not recommended in

the qualitative context.
33

Another option is to look at combinations of 33: Unless the distance function has been

modified appropriately, but that is harder

to do than one may expect.

feature levels, but this can prove computationally expensive.

We present two specific categorical anomaly detection methods below:

the attribute value frequency algorithm, and the greedy algorithm.
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26.3.1 Attribute Value Frequency Algorithm

The Attribute Value Frequency (AVF) algorithm offers a fast and simple

way to detect outlying observations in categorical data; it can be conducted

without having to create ir which minimizes the amount of data analyses,

without having to create or search through various combinations of

feature levels, which reduces the overall runtime.

Intuitively, outlying observations are points which occur relatively infre-

quently in the (categorical) dataset; an “ideal” anomalous point is one for

which each feature value is anomalous (or relatively infrequent). The

rarity of an attribute level can be measured by adding the number of

times the corresponding feature takes that value in the dataset.

Consider a 𝑝−dimensional dataset with 𝑛 observations: {x𝑖}, 𝑖 = 1, . . . , 𝑛

(each observation is a vector of 𝑝 features). We write

x𝑖 = (𝑥𝑖 ,1 , · · · , 𝑥𝑖 ,ℓ , · · · , 𝑥𝑖 ,𝑝),

where 𝑥𝑖 ,ℓ is x𝑖 ’s ℓ th feature’s level.

In the artificial categorial dataset presented previously above, we (per-

haps) have

x1 = (𝑥1,1 , 𝑥2,1 , 𝑥3,1) = (24−, French, brown)
...

x517 = (𝑥517,1 , 𝑥517,1 , 𝑥517,1) = (24−,Mandarin, black).

Using the reasoning presented above, the AVF score is a good tool to

determine whether x𝑖 should be considered an outlier or not:

AVFscore(x𝑖) =
1

𝑝

𝑝∑
ℓ=1

𝑓 (𝑥𝑖 ,ℓ ),

where 𝑓 (𝑥𝑖 ,ℓ ) is the number of observations x for which the ℓ th feature

takes on the level 𝑥𝑖 ,ℓ .

A low AVF score indicates that the observation is more likely to be an

outlier. Since AVFscore(x𝑖) is essentially a sum of 𝑝 positive values, it is

minimized when each of the sum’s term is minimized, individually.
34

34: What does this assume, if anything at

all, about the features’ independence.

Thus, the “ideal” anomalous observation (in the sense described above)

minimizes the AVF score; the minimal score is reached when each of the

observation’s features’ levels occur only once in the dataset.
35

35: Strictly speaking, the AVF score would

be minimized when each of the observa-

tion’s features’ levels occur zero time in

the dataset, but then . . . the observation

would not actually be in the dataset.

For an integer 𝜈, the suggested outliers are the 𝜈 observations signatures

with smallest AVF score; the algorithm’s complexity is 𝑂(𝑛𝑝).

The formal procedure is implemented in the algorithm of Figure 26.25.

The 10 lowest AVF scores in the artificial categorical dataset are high-

lighted on the next page.
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Figure 26.25: AVF algorithm.

For instance,

AVFscore(24−, French, blond) = 1

3
( 𝑓 (24−) + 𝑓 (French) + 𝑓 (blond))

= 1

3
(175 + 141 + 79) = 131.7

For anomaly detection purposes, individual raw AVF scores are not as

meaningful as relative AVF scores.

26.3.2 Greedy Algorithm

The greedy algorithm “greedyAlg1” is an algorithm which identifies

the set of candidate anomalous observations in an efficient manner.
36

36: Greedy in the sense that the algorithm

picks the next step according to what is

best there-and-now, and not with a long-

term view.

The mathematical formulation of the problem is simple – given a dataset

𝐷 and a number 𝜈 of anomalous observations to identify, we solve the

optimization problem

OS = arg min

𝑂⊆𝐷
{𝐻(𝐷 \ 𝑂)}, subject to |𝑂 | = 𝜈,
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where the entropy of the subset 𝐷 \ 𝑂 is the sum of the entropy of each

feature on 𝐷 \ 𝑂 (see Section @ref(ML-CVE-dt)):

𝐻(𝐷 \ 𝑂) = 𝐻(𝑋1;𝐷 \ 𝑂) + · · · + 𝐻(𝑋𝑚 ;𝐷 \ 𝑂)

and

𝐻(𝑋ℓ ;𝐷 \ 𝑂) = −
∑

𝑧ℓ ∈𝑆(𝑋ℓ ;𝐷\𝑂)
𝑝(𝑧ℓ ) log 𝑝(𝑧ℓ ),

where 𝑆(𝑋ℓ ;𝐷 \𝑂) is the set of levels that the ℓ th feature takes in𝐷 \𝑂.

The “greedyAlg1” algorithm solves the problem as follows:

1. The set of outlying and/or anomalous observations OS is initially

set to be empty, and all observations of 𝐷 \ OS are identified as

normal (or regular).

2. Compute 𝐻(𝐷 \ OS).
3. Scan the dataset in order to select a candidate anomalous observa-

tion: every normal observation x is temporarily taken out of 𝐷 \OS

to create a subset 𝐷′
x, whose entropy 𝐻(𝐷′

x) is also computed.

4. The observation z which provides the maximal entropy impact,
i.e. the one that minimizes

𝐻(𝐷 \ OS) − 𝐻(𝐷′
x), x ∈ 𝐷 \ OS,

is added to OS.

5. Repeat steps 2-4 another 𝜈 − 1 times to obtain a set of 𝜈 candidate

anomalous observations.

More details can be found in the source article [15]; an interesting detail

is that it is scalable – it will also work for big datasets, provided the right

framework is used.

26.4 Anomalies in High-Dimensional Data

Nowadays, real datasets are often quite large; in some scenarios, the

observations may contain 100s or 1000s of features (or dimensions).

Many classical methods use proximity (distance) concepts for anomaly

detection (see Section 26.2) and can only be expected to work reasonably

well in cases where the sample size 𝑛 is larger than the dimension 𝑝.

The management of high-dimensional data (𝑛 < 𝑝) offers specific

difficulties: in such spaces observations are often isolated and scattered
(or sparse) and the notion of proximity fails to maintain its relevance.

In that case, the notion of defining significant outliers is much more

complex: many conventional methods of detecting outliers are simply

not efficient in the high-dimensional context, due to the curse of dimen-
sionality. Consequently, high-dimensional anomaly detection methods
are linked with dimension reduction and feature selection.

The remainder of this section is organized as follows: first, an attempt is

made to define the concept and the challenges; then, anomaly detection

techniques are discussed; finally, we end with a detailed description of

ensembles and subspace methods. Our approach mainly follows those

found in [1, 2, 26, 20, 4].
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26.4.1 Definitions and Challenges

As we have seen previously, an anomalous observation is one that deviates

or behaves differently from other the observations in the dataset, which

makes us suspect that it was generated by some other mechanism [1];

such an observation would, of course, be considered to be irregular.

The challenges of anomaly and outlier detection in high-dimensional
data (HDD) are due to:

the notion of distance becoming irrelevant due to the curse of

dimensionality (whence “the problem of detecting outliers is like

finding a needle in a haystack” [20]);

every point in such datasets has a tendency to be an outlier, and

datasets become more sparse as the dimension of the feature space

increases.

The authors of [3] consider that in order to deal properly with large

datasets, detection methods should:

1. allow for effective management of sparse data issues;

2. provide interpretability of the discrepancies (i.e., how the be-

haviour of such observations is different);

3. allow anomaly measurements to be compared (“apples-to-apples”);

4. consider the local data behaviour to determine whether an obser-

vation is abnormal or not.

26.4.2 Projection Methods

HDLSS (high dimension, low sample size) datasets can contain 100+

variables; the curse of dimensionality affects the efficiency of conventional

anomaly/outlier detection methods.

One way to counter the problem is to reduce the dataset’s dimensionality
while preserving its essential characteristics. We have discussed such

projection methods in Chapter 23. Let us see how one of them, principal
components analysis, can be applied to anomaly detection.

37
37: We take advantage of this reprise to

present PCA using a different formalism.

PCA (Reprise) As we know, principal components analysis (PCA) aims

to find a representation of the original dataset in a lower-dimensional

subspace (such as a line or a plane) containing the greatest possible

variation.

PCA corresponds to an orthogonal linear transformation of the data into

a new coordinate system, such that the largest variance resulting from a

scalar projection of the data is on the first coordinate (the first principal
component), the second largest variance on the second coordinate, etc.

PCA is used in various contexts:

as a dimension reduction method used during the data pre-

processing step;

as a data visualization aid, and, in the scenario of interest for this

section,

as an anomaly and outlier detection approach.
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Let the dataset be represented by a numerical, centered, and scaled 𝑛 × 𝑝
matrix X = [X1 , · · · ,X𝑝] with 𝑛 observations (number of rows) and 𝑝

features (number of columns).

The principal components are linear combinations of the variables:

Y𝑖 = ℓ⊤𝑖 X = ℓ1,𝑖X1 + · · · + ℓ𝑝,𝑖X𝑝 ; 𝑖 = 1, · · · , 𝑘,

with 𝑘 ≤ 𝑝, yielding the largest variance subjet to the constraint ∥ℓ𝑖 ∥ = 1

(where ∥ · ∥ represents the Euclidean norm).

We can thus deduce that

Var (Y𝑖) = Var

(
ℓ⊤𝑖 X

)
= ℓ⊤𝑖 X⊤Xℓ𝑖 = ℓ⊤𝑖 X⊤Xℓ𝑖

Cov (Y𝑖 ,Y𝑘) = Cov

(
ℓ⊤𝑖 X, ℓ⊤𝑘 X

)
= ℓ⊤𝑖 X⊤Xℓ𝑘 .

PCA finds the loadings vector ℓ1 which maximizes the variance of Y1:

ℓ1 = arg max

∥ℓ1∥=1

{
ℓ⊤X⊤Xℓ

}
,

then the uncorrelated loadings vector ℓ2 which maximizes the variance

of Y2:

ℓ2 = arg max

∥ℓ2∥=1, ℓ⊤
1
ℓ2=0

{
ℓ⊤X⊤Xℓ

}
.

Similarly, the loadings vector ℓ𝑘 is not correlated with any of the ℓ𝑖 , 𝑖 < 𝑘,

and maximizes the variance of Y𝑘 :

ℓ𝑘 = arg max

∥ℓ𝑘 ∥=1,
ℓ⊤
𝑖
ℓ𝑘=0, ∀ 𝑖<𝑘

{
ℓ⊤X⊤Xℓ

}
.

We solve this optimization problem for all 𝑖 < 𝑘 through the Lagrangian

𝐿 = ℓ⊤𝑘 X⊤Xℓ𝑘 − 𝜆𝑘(ℓ⊤𝑘 ℓ𝑘 − 1) − 𝑤ℓ⊤𝑖 ℓ𝑘 .

The critical points are found by differentiating with respect to each of the

entries of ℓ𝑘 , 𝜆𝑘 and 𝑤, and setting the result to 0, which translates to:

X⊤Xℓ𝑘 = 𝜆𝑘ℓ𝑘

ℓ⊤𝑘 ℓ𝑘 = 1 and ℓ⊤𝑘 ℓ𝑖 = 0, for all 𝑖 < 𝑘.

The loadings vector ℓ𝑘 is thus the eigenvector of the covariance matrix

X⊤X associated to the 𝑘th largest eigenvalue. The proportion of the
variance which can be explained by the PCA can be calculated by first

noting that

𝑝∑
𝑖=1

Var (Y𝑖) =
𝑝∑
𝑖=1

ℓ⊤𝑖 X⊤Xℓ𝑖 =
𝑝∑
𝑖=1

𝜆𝑖 .

Consequently, the proportion of the total variance explained by the 𝑖th

principal component is

0 ≤ 𝜆𝑖∑𝑝

𝑖=1
𝜆𝑖

≤ 1.
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The quality of the PCA results is strongly dependent on the number

of retained principal components, that is, on the dimension 𝑘 of the

subspace on which the observations are projected. There are multiple

ways to select the “right” 𝑘 – we will briefly present two of them.

The proportion of the total variance explained by the first 𝑘 principal

components is given by

𝑝𝑘 =

∑𝑘
𝑖=1

𝜆𝑖∑𝑝

𝑖=1
𝜆𝑖
.

One approach is to retain 𝑘 principal components, where 𝑘 is the smallest

value for which 𝑝𝑘 surpasses some pre-established threshold.
38

38: Often taken between 80% and 90%.

The scree plot method, on the other hand, consists in drawing the curve

given by the decreasing eigenvalues (the scree plot), and to identify the

curve’s “elbows”. These points correspond to principal components for

which the variance decreases at a slower rate with added components. If

such an elbow exists, we would retain the eigenvalues up to it.
39

39: And thus, the corresponding principal

components.

Example The leukemia_big.csv contains genetic expression mea-

surements for 𝑛 = 72 leukemia patients and 𝑝 = 7128 genes [13].

leukemia.big <- read.csv("leukemia_big.csv")

# scale and format data

leukemia.big <- t(leukemia.big)

leukemia.big.scaled <- scale(leukemia.big)

We find the PCA decomposition and display the plots.

pca.leukemia <- prcomp(leukemia.big.scaled)

plot(pca.leukemia)

pca.leukemia.s <- summary(pca.leukemia)

plot(pca.leukemia.s$importance[3,])

https://www.data-action-lab.com/wp-content/uploads/2023/04/leukemia_big.csv
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The scree plot suggests that only two principal components should be

retained, but that does not explain an awful lot of the variation. Even

keeping the first 3 principal components only explains roughly 20% of

the variation.

The projection on the first 3 PC is shown below [author unknown]:

It is not obvious, however, that the methods presented here to find an

optimal 𝑘 are appropriate for anomaly detection purposes: simply put,

a good 𝑘 is one which allows for good anomaly detection.

There are other PCA-associated dimension reduction methods: indepen-

dent components analysis, singular value decomposition, kernel PCA,

etc. (see Chapter 23).

But what is the link with anomaly and/or outlier detection?

Once the dataset has been projected on a lower-dimensional subspace,

the curse of dimensionality is (hopefully) mitigated – traditional methods

are then applied to the projected data.

Dimension reduction usually leads to a loss of information, however,

which can affect the accuracy of the detection procedure – especially

if the presence/absence of anomalies is not aligned with the dataset’s

principal components.

Figure 26.26: Examples of data analyti-

cal tasks that are out of alignment with

PCA: pancake problem (left), in which the

interesting problem might be to find the

number of pancakes, but the PCA might

focus on the pile’s base; non-orthogonal

components (right), where the data does

not follow an orthogonality relation. Mod-

ified from [31].
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Example Let us re-visit the artificial dataset from the earliest sections.

We start by computing the PCA decomposition of the scaled dataset.

pca.rdata <- prcomp(scaled)

plot(pca.rdata)

This suggests that data is almost 1-dimensional.
40

We display the data 40: Although the kink is on the 2nd prin-

cipal component; we will revisit this soon.
on the first PC and highlight the “true” anomalies in the data.

plot(pca.rdata$x[,1])

pca.rdata.2=data.frame(pca.rdata$x[,1:4],rdata[,5])

plot(pca.rdata.2[,1], col=group, pch=22)

We now recreate the Mahalanobis framework on the reduced 1D data. First,

we compute the empirical parameters. Next, we display the Mahalanobis

distances of observations to the empirical distribution.

mu.2 <- mean(pca.rdata.2[,1])

Sigma.inv.2 = 1/var(pca.rdata.2[,1])

M_d.2<-vector()

for(j in 1:nrow(rdata)){

M_d.2[j]<-sqrt(as.matrix(pca.rdata.2[j,1]-mu.2) %*%

Sigma.inv.2 %*%

t(as.matrix(pca.rdata.2[j,1]-mu.2)))

}

pca.rdata.3 <- data.frame(pca.rdata.2,M_d.2)

summary(M_d)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4622 1.3479 1.6764 1.7980 2.1010 6.6393

The corresponding histogram is given below.

pca.rdata.3 |> ggplot(aes(x=M_d.2)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

One outlier (observation 102, as it turns out) is still clearly visible, but

observation 101 (which the Mahalanobis approach on the full unscaled

dataset cleanly picks out, see Section 26.2}) gets lost in the cloud of points

when we only focus on the first PC. Whatever makes the latter an outlier

is out of alignment with PC1.

Let us use PC1 and PC2 to see if we can find out what is going on. The

anomalies are highlighted below:

pca.rdata.2=data.frame(pca.rdata$x[,1:4],rdata[,5])

lattice::splom(pca.rdata.2[,1:2], groups=group, pch=22)
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We now recreate the Mahalanobis framework on the reduced 2D data.

First, we compute the empirical parameters. Next, we display the his-

togram of Mahalanobis distances of observations to the empirical distri-

bution.

mu.2 <- colMeans(pca.rdata.2[,1:2])

Sigma.inv.2 = matlib::inv(cov(pca.rdata.2[,1:2]))

M_d.2<-vector()

for(j in 1:nrow(rdata)){

M_d.2[j]<-sqrt(as.matrix(pca.rdata.2[j,1:2]-mu.2) %*%

Sigma.inv.2 %*%

t(as.matrix(pca.rdata.2[j,1:2]-mu.2)))

}

pca.rdata.3 <- data.frame(pca.rdata.2,M_d.2)

pca.rdata.3 |> ggplot(aes(x=M_d.2)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

This suggests (again) that there are 2 anomalies in the data.
41

41: The chart code is omitted – see previ-

ous examples for a baseline.

pca.rdata.4 = data.frame(1:(nobs+2),pca.rdata.3$M_d.2)

names(pca.rdata.4) = c("obs","PCA_Mahalanobis")

pca.rdata.4 <- pca.rdata.4[order(-pca.rdata.4$PCA_Mahalanobis),]

rownames(pca.rdata.4) <- NULL

head(pca.rdata.4)

obs PCA_Mahalanobis

102 4.681526

62 3.521898

3 2.556683

12 2.418989

55 2.405540

39 2.295610

This again fails to capture observation 101 as an anomaly.
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Perhaps if we use 3 PC? The anomalies are highlighted below.
42

42: We omit the code as it is similar to the

previous examples. Modify it as needed.

The histogram once against suggests that there are 2 anomalies in the

data.

Unfortunately, the reduced 3D data once again fails to capture observation

101 as an anomaly.

obs PCA_Mahalanobis

102 4.896637

62 3.523881

14 2.867856

12 2.822241

27 2.656084

3 2.575923

Is the fact that observation 101 not captured here related to dimension
reduction, or is it an issue related to scaling? Is there something that can

be done to separate the two procedures? Can we get the benefits of PCA

dimension reduction without having to scale the data?
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Distance-Based Outlier Basis Using Neighbours As we have seen, us-

ing PCA for anomaly detection is potentially problematic: whether an

observation is anomalous or not does not figure in the construction of

the principal component basis {PC1 , . . . , PC𝑘} – there is not necessarily

a correlation between the axes of heightened variance and the presence

or absence of anomalies.

The distance-based outlier basis using neighbours algorithm (DOBIN)

builds a basis which is better suited for the eventual detection of outlying

observations. DOBIN’s main concept is to search for nearest neighbours

that are in fact relatively distant from one another:

1. We start by building a space Y = {yℓ } which contains 𝑀 ≪
𝑛(𝑛 + 1)/2 vectors of the form

yℓ = (x𝑖 − x𝑗) ⊙ (x𝑖 − x𝑗),

where ⊙ is the element-by-element Hadamard multiplication, and

for which the 1−norm

∥yℓ ∥1 = (𝑥1,1 − 𝑥2,1)2 + · · · + (𝑥1,𝑝 − 𝑥2,𝑝)2

is the square of the distance between x𝑖 , x𝑗 ∈ X (the selection of

each of the 𝑀 observation pairs is made according to a rather

complex procedure which only considers x𝑖 and x𝑗 if they are part

of one another’s 𝑘−neighbourhood, for 𝑘 ∈ {𝑘1 , . . . , 𝑘2}); the set Y
thus contains points for which ∥yℓ ∥1 is relatively large, which is to

say that the observations x𝑖 are x𝑗 fairly distant from one another

even if they are 𝑘−neighbours of each other;

2. we next build a basis {𝜼1 , . . . , 𝜼𝑝} ⊂ ℝ𝑝
where each 𝜂𝑖 is a unit

vector given by a particular linear combination of points in Y; they

can be found using a Gram-Schmidt-like procedure:

yℓ0 = yℓ , ℓ = 1, . . . , 𝑀

𝜼1 =

∑𝑀
ℓ=1

yℓ∑𝑀
ℓ=1

yℓ


2

yℓ1 = yℓ − ⟨𝜼1 | yℓ ⟩, ℓ = 1, . . . , 𝑀

𝜼2 =

∑𝑀
ℓ=1

yℓ1∑𝑀
ℓ=1

yℓ1


2

...

yℓ𝑏−1
= yℓ𝑏−2

− ⟨𝜼𝑏−1 | yℓ𝑏−2
⟩, ℓ = 1, . . . , 𝑀

𝜼𝑏 =

∑𝑀
ℓ=1

yℓ𝑏−1∑𝑀
ℓ=1

yℓ𝑝−1


2

,

for 𝑏 = 1, . . . , 𝑝,

3. and we transform the original dataset X via X̂ = T(X)𝚯, where

T(X) normalizes each feature of X according to a problem-specific

scheme (Min-Max or Median-IQR, say), and

𝚯 = [𝜼1 | · · · | 𝜼𝑝]

is an orthogonal 𝑝 × 𝑝 matrix.
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It is on the transformed space (which plays an analogous role to the

subspace projection of X in PCA) that we apply the various outlier and

anomaly detection algorithms.

The full details contain a fair number of technical complications; the

interested reader is invited to consult the original documentation [18].

Example DOBIN is implemented in R via the dobin package. In the

example below, note that the data is not scaled.

out <- dobin::dobin(rdata[,1:4], frac=0.9, norm=3)

# arbitrary choice to keep kk not too large

# but respond to dataset size

kk <- min(ceiling(dim(rdata)[1]/10),25)

# dimension reduction

knn_dist <- FNN::knn.dist(out$coords[, 1:3], k = kk)

knn_dist <- knn_dist[ ,kk]

ord <- order(knn_dist, decreasing=TRUE)

knn_dist.dobin <- data.frame(1:(nobs+2),knn_dist)

names(knn_dist.dobin) = c("obs","knn_dobin")

knn_dist.dobin <-

knn_dist.dobin[order(-knn_dist.dobin$knn_dobin),]

rownames(knn_dist.dobin) <- NULL

head(knn_dist.dobin)

knn_dist.dobin |>

ggplot(aes(x=obs,y=knn_dobin)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="11NN Distance - DOBIN") +

geom_point(aes(fill=knn_dobin, colour=knn_dobin,

size=knn_dobin), pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs knn_dobin

102 5.029217

62 2.982912

14 1.700037

49 1.540807

101 1.453970

67 1.375444

Look: observation 101 got caught in the DOBIN net!
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Figure 26.27: Feature bagging algorithm.

26.4.3 Subspace Methods

Subspace methods have been used particularly effectively by analysts

for anomaly and outlier detection in high-dimensional datasets [2, 14,

20]; it is often easier to find the sought-after observations by exploring

lower-dimensional subspaces (rather than the original set) – in that

sense, subspace methods are akin to feature selection methods, whereas

projection methods are closer to dimension reduction methods.

There is thus an intrinsic interest in exploring subspaces in their own

right [1, 4]. This approach eliminates additive noise effects often found

in high dimensional spaces and leads to more robust outliers (that is,

outliers which are identified as such by multiple methods).

The problem is rather difficult to solve effectively and efficiently, since

the potential number of subspace projections of high-dimensional data

is related exponentially to the number of features in the dataset. The

Feature Bagging algorithm formally uses the LOF algorithm of Section

26.2, but any fast anomaly detection algorithm could also be used instead.

The anomaly scores and rankings from each run are aggregated as they

are in the Independent Ensemble approach (see Section 26.4.4).

There are other, more sophisticated, subspace anomaly detection methods,

including:

High-dimensional Outlying Subspaces (HOS) [39];

Subspace Outlier Degree (SOD) [19];

Projected Clustering Ensembles (OutRank) [29];

Local Selection of Subspace Projections (OUTRES) [27].

Example The feature bagging algorithm is implemented in R via the

HighDimOut package (not available on CRAN as of May 2022, but it has

been archived . We apply it to our trusty artificial dataset.

https://cran.r-project.org/src/contrib/Archive/HighDimOut/
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res.FBOD <- HighDimOut::Func.FBOD(data = rdata[,1:4],

iter=10, k.nn=5)

rdata.FBOD <- data.frame(1:(nobs+2),res.FBOD)

names(rdata.FBOD) = c("obs","FBOD")

rdata.FBOD <- rdata.FBOD[order(-rdata.FBOD$FBOD),]

head(rdata.FBOD)

rdata.FBOD %>%

ggplot(aes(x=obs,y=FBOD)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Feature Bagging Anomaly Score,

k=5, M=10") +

geom_point(aes(fill=FBOD, colour=FBOD, size=FBOD),

pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs FBOD

102 3.82

62 3.45

55 1.64

67 1.61

33 1.58

74 1.52

26.4.4 Ensemble Methods

In the preceding sections, we have described various anomaly detection

algorithms whose relative performance varies with the type of data being

considered. As is the case with pretty much of all of data science, it is

impossible to come up with an algorithm that outperforms all the others

[38].

This is because a particular anomaly detection algorithm may be well-

adapted to a dataset and may be successful in detecting abnormal or

outlier observations, but it may not work with other datasets whose

characteristics do not match the first dataset. The impact of such a

mismatch between algorithms can be mitigated by using ensemble
methods, where the results of several algorithms are considered before

making a final decision. Such an approach often provides the best results

and thus improves the performance of the base anomaly detection

algorithms [26].

We will consider two types of ensemble methods: sequential ensembles
(boosting) and independent ensembles.
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Figure 26.28: Sequential ensemble algo-

rithm.

Sequential Ensembles Sequential ensembles require a given algorithm

(or a set of algorithms) to be applied to a dataset in a sequential manner,

each time on slightly different dataset derived from the previous step’s

dataset based on the previous steps’ results, and so forth. At each step,

the weight associated with each observation is modified according to the

preceding results using some “boosting” method.
43

The final result is 43: Such as AdaBoost or XGBoost, for in-

stance.
either some weighted combination of all preceding results, or simply the

results output by the last step in the sequence.

The formal procedure is provided in Figure 26.28.
44

44: The details are out-of-scope for this

chapter, but they are available in Section

21.5.3.

Independent Ensembles In an independent ensemble, we instead apply

different algorithms (or different instances of the same algorithm) to the

dataset (or a resampled dataset). Choices made at the data and algorithm

level are independent of the results obtained in previous runs.
45

The 45: Unlike in a sequential ensemble.

results are then combined to obtain more robust outliers.

Every base anomaly detection algorithm provides an anomaly score for

each observation in 𝐷; observations with higher scores are considered to

be more anomalous, observations with lower scores more normal.

The results are then combined using a task-specific method in order to pro-

vide a more robust classification of anomalous or outlying observations.

Many such combination techniques used in practice:

majority vote,

average,

minimal rank, etc.

Let 𝛼𝑖(p) represent the (normalized) anomaly score of p ∈ 𝐷, according

to algorithm 𝐴𝑖 . If 𝛼𝑖(p) ≈ 0, it is unlikely that p is an anomaly according

to 𝐴𝑖 , whereas if 𝛼𝑖(p) ≈ 1, it is quite likely that p according to 𝐴𝑖 .

The rank of p ∈ 𝐷 according to 𝐴𝑖 , on the other hand, is denoted by 𝑟𝑖(p):
the higher the rank (smaller number), the higher the anomaly score and

vice versa. In a dataset with 𝑛 observations, the rank varies from 1 to 𝑛.
46

46: Ties are allowed.
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Figure 26.29: Independent ensemble algo-

rithm.

If the base detection algorithms are 𝐴1 , . . . , 𝐴𝑚 , the anomaly score and

the rank of an observation p ∈ 𝐷 according to the independent ensemble

method are, respectively,

𝛼(p) = 1

𝑚

𝑚∑
𝑖=1

𝛼𝑖(p) and 𝑟(p) = min

1≤𝑖≤𝑚
{𝑟𝑖(p)}.

If 𝑛 = 𝑚 = 3, for instance, we could end up with

𝛼1 (p1) = 1.0, 𝛼1 (p2) = 0.9, 𝛼1 (p3) = 0.0;

𝛼2 (p1) = 1.0, 𝛼2 (p2) = 0.8, 𝛼2 (p3) = 0.0;

𝛼3 (p1) = 0.1, 𝛼3 (p2) = 1.0, 𝛼3 (p3) = 0.0.

Using the mean as the combination techniques, we obtain

𝛼 (p1) = 0.7, 𝛼 (p2) = 0.9, 𝛼 (p3) = 0.0,

whence

p2 ⪰ p1 ⪰ p3 ,

that is, p2 is more anomalous than p1, which is more anomalous than

p3.
47

47: We are using the notation introduced

in Section 26.1.2.

Using the minimal rank method, we obtain

𝑟1 (p1) = 1, 𝑟1 (p2) = 2, 𝑟1 (p3) = 3;

𝑟2 (p1) = 1, 𝑟2 (p2) = 2, 𝑟2 (p3) = 3;

𝑟3 (p1) = 2, 𝑟3 (p2) = 1, 𝑟3 (p3) = 3,

from which

𝑟 (p1) = 𝑟 (p2) = 1, 𝑟 (p3) = 3,

and so p1 ⪰ p3 and p2 ⪰ p3, but p1, p2 have the same anomaly levels.

Evidently, the results depend not only on the dataset under consideration

and on the base algorithms that are used in the ensemble, but also on

how they are combined.
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In the context of HDLSS data, ensemble methods can sometimes allow

the analyst to mitigate some of the effects of the curse of dimensionality

by selecting fast base algorithms (which can be run multiple times) and

focusing on building robust relative anomaly scores.

Another suggested approach is to use a different sub-collection of the

original dataset’s features at each step, in in order to de-correlate the

base detection models (see feature bagging, in Section 26.4.3).

Even without combining the results, it may be useful to run multiple

algorithms on different subspaces to produce an Overview of Outliers
(O3), implemented in the R package OutliersO3, by A. Unwin .

O3d <- OutliersO3::O3prep(rdata[,1:4],

method=c("HDo", "PCS", "BAC", "adjOut", "DDC", "MCD"))

O3d1 <- OutliersO3::O3plotM(O3d)

cx <- data.frame(outlier_method=names(O3d1$nOut),

number_of_outliers=O3d1$nOut)

table(cx, row.names=FALSE)

O3d1$gO3

outlier_method number_of_outliers

HDo 8

PCS 1

BAC 2

adjOut 2

DDC 1

MCD 2

The columns on the left indicate the subspace variables (see row colour-

ing). The columns on the right indicate which observations were identi-
fied as outliers by at least 1 method in at least 1 subspace.

48
48: The available methods are all

methods that we have not discussed:

HDoutliers() from the package

HDoutliers, FastPCS() from the package

FastPCS, mvBACON() from robustX,

adjOutlyingness(), covMcd() from

robustbase, DectectDeviatingCells()

from cellWise.

The colours depict the number of methods that identify each observation

in each subspace as an outlier. For instance, Observation 102 is identified

as an outlier by 6 methods in 2 subspaces, 5 methods in 3 subspaces,

https://cran.r-project.org/web/packages/OutliersO3/index.html
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4 methods in 2 subspaces, 3 methods in 1 subspace, 2 methods in 4

subspaces, and 1 method in 3 subspaces – it is clearly the most anomalous
observation in the dataset. Observations 62 and 101 are also commonly

identified as outliers.

Are the results aligned with those we have obtained throughout the

chapters?

Ensemble approaches allow analysts to take a big picture view of the

anomaly landscape, but it should be recalled that anomaly detection and

outlier analysis is still very active as an area of research, with numerous

challenges. The No Free Lunch Theorem suggests that, importantly, there
is no magic method: all methods have strengths and limitations, and the

results depend heavily on the data.

26.5 Exercises

1. Use other metrics and parameter values to find distance-based anomalies, LOF outliers, DBSCAN/HDB-

SCAN/OPTICS outliers, and Isolation Forest outliers in the artificial dataset.

2. Consider the datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv

algae_blooms.csv

a) Find distance-based anomalies in the datasets

b) Find density-based anomalies in the datasets.

c) Find categorical anomalies in the datasets that have categorical features.

d) Find projection-based anomalies in the datasets.

e) Find subspace-based anomalies in the datasets

f) Find ensemble-based anomalies in the datasets.

3. Conduct an analysis of anomalous observations in the 2011 Gapminder data (as described in Chapters 20,

21, 22, and 23).

4. Consider the dataset flights1_2019_1.csv .

a) Explore and visualize the dataset.

b) Do any observations appear to be anomalous or outlying? Justify your answer.

c) If necessary, reduce the dimension of the dataset prior to analysis.

d) Using at least 4 anomaly detection algorithms, identify anomalous observations in the dataset.

e) Can you validate the results?

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/algae_blooms.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/Flights1_2019_1.csv
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