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In this chapter, we introduce the basic notions of text mining so that we

can learn how to extract insight from text data. We also present some

elementary applications (drawn from the world of machine learning),

including sentiment analysis, setting the stage for a more sophisticated

treatment of natural language processing and large language models
(see Chapters 31 and 32).

27.1 Introduction

We start our foray into text analysis by discussing a use case for text

mining which made the news early in 2017.

27.1.1 Case Study: BOTUS

In 2013, the BBC reported on various ways in which social media giant

Twitter was changing the world, detailing specific instances in the fields

of business, politics, journalism, sports, entertainment, activism, arts,

and law [27].

It is not always clear what influence Twitter users have, if any, on world

events or business and cultural trends; it was once thought (perhaps with-

out appropriate evidence) that entertainers, athletes, and celebrities, that

is to say, users with extremely high followers to following ratios, wielded

more “influence” on the platform than world leaders [4]. Certainly, such

users continue to be among the most popular – as of September 13,

2017, Twitter’s 40 most-followed accounts tend to belong to entertainers,

celebrities, and athletes, with a few exceptions [11].

One account has recently bridged the gap between celebrity and politics

in an explosive manner: @realDonaldTrump, which belongs to the 45th

President of the United States of America, has maintained a very strong

presence on Twitter. As of September 13, 2017, the account had 38,205,766

followers, and it was the 26th most-followed account on the planet,

producing 35,755 tweets since it was activated in March 2009, and

roughly 6 tweets a day in August of 2017 [11].

Titles BOTUS [15], Trump & Dump Bot [42]

Authors Tradeworx (BOTUS), T3 (Trump & Dump)
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Date 2017

Sponsor NPR’s podcast Planet Money (BOTUS)

Methods sentiment analysis, social media monitoring, AI, real-time

analysis, simulations

Objective There is some evidence to suggest that tweets from the 45th

POTUS may have an effect on the stock market [21]. Can sentiment analysis

and AI be used to take real-time advantage of the tweets’ unpredictable

nature? Let’s take a look at bots built for that purpose by NPR’s Planet
Money and by T3 (an Auston advertising agency).

Methodology Tradeworx followed these steps:

1. Data collection: tweets from @realDonaldTrump are collected for

analysis.

2. Sentiment analysis of tweets: each tweet is given a sentiment score on

the positive/negative axis.

3. Validation: the sentiment analysis scoring must be validated by ob-

servers: are human-identified positive or negative tweets correctly

identified by BOTUS?

4. Identification of the company in a tweet: is the tweet even about a

company? If so, which one?

5. Determining the trading universe: are there companies that should

be excluded from the bot’s trading algorithms?

6. Classifying tweets as “applicable” or “unapplicable”: is a tweet’s senti-

ment strong enough for BOTUS to engage the trading strategy?

7. Determining a trading strategy: how soon after a flagged tweet does

BOTUS buy a company’s stock, and how long does it hold it for?

8. Testing the trading strategy on past data: how would BOTUS have

fared from the U.S. Presidential Election to April 2017? What are

BOTUS’ limitations?

T3’s Trump and Dump uses a similar process (see Figure 27.1).

Data The data consists of:

tweets by @realDonaldTrump (from around Election Day 2016

through the end of March 2017 for BOTUS; no details are given for

T3) (see Figure 27.2 for sample);

a database of publicly traded companies, such as can be found

at [17, 18, 14], although which of these were used, if any, is not

specified (no explicit mention is made for BOTUS), and

stock market data for real-time pricing (Google Finance for T3) and

backcasting simulation (for BOTUS, source unknown).

It is not publicly known whether the 2 bots are upgrading their algorithms

by including new data as time passes.
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Figure 27.1: T3’s Trump and Dump pro-

cess [42].

Strengths and Limitations of Algorithms and Procedure

In sentiment analysis, an algorithm analyzes documents in an

attempt to identify the attitude they express or the emotional

response they seek. It presents numerous challenges, mostly re-

lated to the richness and flexibility of human languages and their

syntax variations, the context-dependent meaning of words and

lexemes, the use of sarcasm and figures of speech, and the lack of

perfect inter-rater reliability among humans [35]. As it happens,

@realDonaldTrump is not much of an ironic tweeter – “sad” and

“great” are usually meant in their most general sense. This greatly

simplifies the analysis.

The bots have to learn to recognize whether a tweet is directed at

a publicly traded company or not. In certain cases, the ambiguity

can be resolved relatively easily with an appropriate training set

(Apple the company vs. apple the food-item, say), but no easy

solutions were found in others (Tiffany the company vs. Tiffany

the daughter, for example). Rather than have humans step in and

instruct BOTUS when it faces uncertainty (which would go against

the purpose of the exercise), a decision was made to exclude these

cases from the trading universe. The T3 documentation does not

describe such details.
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Figure 27.2: Examples of @realDonaldTrump tweets involving Delta, Toyota Motor, L.L.Bean, Ford, and Boeing.

Once the bot knows how to rate @realDonaldTrump’s tweets and to

identify when he tweets about publicly-traded companies, the next

question is to determine what the trading strategy should be. If

the tweet’s sentiment is negative enough T3 shorts the company’s

stock.
1

Of course, this requires first purchasing the stock (so that it1: It sells the stock when the price is high,

that is, before the tweet has had the chance

to bring the stock down, and it repurchases

it once the price has been lowered by the

tweet, but before the stock has had the

chance to recover.

can be shorted). Planet Money’s decision was similar: buy once the

tweet is flagged, and sell right away... but what does “right away”

mean in this context? There is a risk involved: if the stock goes back

up before BOTUS has had a chance to purchase the low-priced stock,

it will lose money. To answer that question, Tradeworx simulated

the stock market over the last few months, introducing the tweets,

and trying out different trading strategies. It turns out that, in this

specific analysis, “right away” can be taken to be 30 minutes after

the tweet.

Results, Evaluation and Validation For a trading bot, the validation is

in the pudding, as they say – do they make money? T3’s president says

that their bot is profitable (they donate the proceeds to the ASPCA) [42]:

for instance, they netted a return of 4.47% on @realDonaldTrump’s Delta

tweet (see Figure 27.2); however, he declined to provide specific numbers

(and made vague statements about providing monthly reports, which I

have not been able to locate) [31].
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The BOTUS process was more transparent, and we can point to Planet

Money’s transcript for a discussion on sentiment analysis validation

(comparing BOTUS’s sentiment rankings with those provided by human

observers, or running multiple simulations to determine the best trading

scenario) [15] – but it suffers from a serious impediment: as of roughly 4

months after going online, it still had not made a single trade [13]!

The reasons are varied (see Figures 27.3 and 27.4), but the most important

setback was that @realDonaldTrump had not made a single valid tweet

about a public company whose stock BOTUS could trade during the stock

market business hours. Undeterred, Planet Money relaxed its trading

strategy: if @realDonaldTrump tweets during off-hours, BOTUS will short

the stock at the market’s opening bell.

This is a risky approach, and so far it has not proven very effective: a

single trade of Facebook’s trade, on August 23rd, which resulted in a loss

of 0.30$ (see Figure 27.4).

Figure 27.3: BOTUS reporting on its trades (part 1).

Take-Aways As a text analysis and scenario analysis project, both

BOTUS and Trump & Dump are successful – they present well-executed

sentiment analyses, and a simulation process that finds an optimal trading

strategy. As predictive tools, they are sub-par (as far as we can tell), but

for reasons that (seem to) have little to do with data analysis per se.
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Figure 27.4: BOTUS reporting on its trades (part 2).

Unfortunately, this is not an atypical feature of descriptive data anal-

ysis: we can explain what has happened (or what is happening), but

the modeling assumptions are not always applicable to the predictive

domain.

27.1.2 Text Analysis

It has been said that “the only valid model of the universe might just

be the universe itself” [author unknown]. With that maxim in mind, it

would appear that there is simply no substitute – in order to get meaning

out of documents, we first need to read them in their entirety.

This interpretation is overly simplistic, however. Consider the works of

William Shakespeare, for instance, to whom 38 plays (or so) and over 150

sonnets and poems written in the late 1600s and early 1700s have been

attributed [48]. It is fairly straightforward to have a go at Macbeth, say;

one only needs to pick up a printed or digital copy, or sit through any of

the numerous stagings of the Scottish play, and voilà! – instant meaning

and themes: ambition, lust for power, appearances vs. reality, temptation,

and guilt haunting evildoers [6].

Of course, current readers might find Early Modern English verses

difficult to follow without annotation, and those themes might only



27.1 Introduction 1711

reveal themselves upon repeated readings or viewings. Lovers of English

verse might fully enjoy this arduous process, but non-native speakers

might wonder if data analysis methods could provide a complete (or

near enough) Shakespeare experience without having to go through

The Complete Works of Shakespeare, or even The Complete Works of William
Shakespeare (Abridged) [7, 28]? Is there some “essential” Shakespeare-ness

that lurks in his plays and sonnets? Common threads, common humour,

common structure, common themes?

These questions (and others, such as authorship questions [10, 19, 49, 12])

may only be of interest to scholars, but there is a more compelling reason

to study automated text analysis, if only as a first pass – in the age of

“fake news” [30, 22, 29, 2], social media, and Amazon reviews, when

the tweets of high-profile politicians have a definite and measurable

influence on the stock market [13, 15, 16, 5, 33, 34] or when live analysis

of panic conversations can drive automated emergency responses [38],

we simply produce too much text data for any group of individuals to

analyze and understand without technological assistance.
2

2: In other words, the genie is out of the

bottle – what can we do to make sure we

understand what it’s really saying?

27.1.3 Text Mining vs. Natural Language Processing

Text mining is the collection of processes by which we can extract useful

insights from text. Inherent in this definition is the idea of automated data
reduction: useful insights (whether in the form of summaries, sentiment

analyses, or word counts) ought to be “smaller” and “more organized”

(from a data point of view) than the original text.

For short texts, however, the benefits of text analysis may not always

be evident. Consider, for instance, the following excerpt from a lawn

mowing instruction manual:

Before starting your mower inspect it carefully to ensure that

there are no loose parts and that it is in good working order.

This is a fairly concise and structured way to convey a message. It could

be further shortened and organized, perhaps, but it’s not clear that one

would gain much from the process. In more complex case, the process

is less obvious; we discussed data reduction in a more general context

previously and encourage readers of this chapter to first take a look at

Section 23.1 (Data Reduction for Insight).

Ted Kwartler suggests the following text mining workflow [26]:

1. problem definition and goals;

2. identify text to be collected;

3. text organization;

4. feature extraction;

5. analysis, and

6. reach an insight, conclusion, or output.

In this chapter, we will further take the position that text mining is

the application of data science and machine learning tasks to text
documents, such as:

supervised learning (classification and class probability estimation,

value estimation);
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Figure 27.5: A poutine (on the left); an

abomination in the eyes of all right-

thinking sentient beings (on the right).

unsupervised learning (association rules and hypothesis discovery,

similarity matching, clustering);

semi-supervised learning (profiling, link prediction, data reduc-

tion, etc.), and

visualization and representation.

Typical applications include authorship questions (classification), senti-
ment analysis (value estimation), taxonomy creation and topic modeling
(clustering), text description, and text visualization.

3
3: In order to take full advantage of the

underlying data science machinery, docu-

ments may first need to be mapped into

numerical or categorical features, via ker-
nel transformations.

We will explore the data preparation process and simple text mining

models in Sections 27.2 and 27.3, respectively.

Natural language processing (NLP), in contrast, has a long history of lofty

goals, which more or less boil down to developing machines that react
“appropriately” while interacting with (natural) human languages.

4
4: Think of ChatGPT, as a recent example.

The focus of NLP tasks tends towards “understanding” languages; with

common tasks including:

syntax (lemmatization, part-of-speech tagging, parsing, terminol-

ogy extraction, sentence boundary disambiguation, stemming,

word segmentation, etc.);

semantics (machine translation, language generation, named entity

recognition, optical character recognition, questions and answers,

sentiment analysis, textual entailment, topic segmentation, word

sense disambiguation, etc.);

discourse (coreference resolution, discourse analysis, summariza-

tion, etc.), and

speech (recognition, segmentation, text-to-speech, etc.). [47]

Most natural human languages rules are dynamic, and usage may change

drastically in space and time – a poutine is not the same dish in New

Brunswick as it is in Québec, for instance (see Figure 27.5). For another

example, consider the meaning of the word awful, which drifted from

“commanding profound respect or reverential fear”

to

“frightful, very ugly, monstrous”

from 1000 AD onward.

Other issues arise from dialect variations and individual-specific speech

patterns, either due to linguistic drift, influence from other languages,

sarcasm, idioms, figures of speech, and so forth. The intended meaning is

often clear to experienced human speakers based on the specific context,

but it is believed that natural language understanding is AI-hard – a
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Figure 27.6: Syntactic parsing of a sentence using the Stanford parser [41].

complete resolution of the issues would require the ability to make

computers as “smart” as humans [20], in ways that we haven’t seen from

our machines yet.
5

Thankfully, we rarely need a resolution at the most 5: Scratching the surface of large language

models shows how far we remain, in spite

of recent progresses.

general level; in many areas, the current state of the art produces results

which are acceptable to a large class of users.

Since the 1990s, the NLP community has adopted a machine learning

paradigm, which has provided advantages over the classical hard-coded

hand-produced rules. Statistical machine translation, for instance, can

take advantage of domain constraints and formal language habits to

reduce the space of outputs and produce accurate translations of technical

documents [45]. We will take a more detailed look at NLP concepts and

tasks in Chapter 32.

The distinction between text mining and NLP may seem spurious; most

researchers and practitioners do not get bogged down in such details.

When we focus on the data science side of the equation, we’ll refer to

text analysis as text mining; when we focus on language analysis and
understanding, we’ll refer to it as natural language processing.

27.2 Basics of Text Analysis

Let’s take a look at two schools of thought regarding text mining: semantic

parsing and bag-of-words mining.

Semantic Parsing In this view of text mining, word order and word

type play a crucial role. The idea is to use a large number of hand-parsed

sentences to train a model that outputs the most likely grammatical

analysis of a sentence. Words are tagged along a tree structure, and may

have multiple features. This information can then be used to extract

insights about the sentence or document.

For instance, consider the sentence

(S1) Dzingel added to the lead when he deflected Marc

Methot’s point shot 20 seconds later [37],

a syntactic parsing of which is shown in Figure 27.6.
6

6: The output of the Stanford parser [41].
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Another display is provided below:

(ROOT

(S

(NP (NNP Dzingel))

(VP (VBD added)

(PP (TO to)

(NP (DT the) (NN lead)))

(SBAR

(WHADVP (WRB when))

(S

(NP (PRP he))

(VP (VBD deflected)

(NP

(NP (NNP Marc) (NNP Methot) (POS ’s))

(NN point) (NN shot))

(ADVP

(NP (CD 20) (NNS seconds))

(RB later))))))))

From the tree diagram, a human observer can clearly see that “Marc

Methot” is correctly parsed as a noun phrase (NP), that the “’s” is correctly

identified as a possessive marker (POS), and that “Marc Methot’s point

shot” is correctly shown as a NP (built from 2 singular proper nouns, NNP),

but the parser fails to recognize “point shot” as an NP.
7

7: The two displays are, of course, equiva-

lent. A computer program can be used to

easily go from one to the other; a human

with the right experience would find both

as insightful. But it’s certainly easier for a

neophyte to comprehend the tree diagram.

Why is that? Is it simply because we are a

visual species? Or because most of us have

parsed sentence fragments in our native

languages as youths?

In another parsing (using the Enju parser, see Figure 27.7), “Marc Methot’s

point shot 20 seconds later” is tagged as a simple declarative clause (S), but

“Marc Methot’s point” and “shot 20 seconds later” are wrongly identified

as a NP and a verb phrase (VP), respectively, underscoring the importance

of parsing to our understanding of a sentence.

The part-of-speech tagging for the sentence is shown in the table below:

Word Tag Word Tag
Dzingel NNP Marc NNP

added VBD Methot NNP

to TO ’s POS

the DT point NN

lead NN shot NN

when WRB 20 CD

he PRP seconds NNS

deflected VBD later RB

The meaning of common tags are provided in Tables 27.1 and 27.2. Notice

how relational insight between the parts-of-speech has gotten lost (or is

not displayed, at the very least).

The Stanford parser provides a list of universal dependencies:

nsubj(added-2, Dzingel-1)

root(ROOT-0, added-2)

case(lead-5, to-3)

det(lead-5, the-4)

nmod(added-2, lead-5)
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advmod(deflected-8, when-6)

nsubj(deflected-8, he-7)

advcl(added-2, deflected-8)

compound(Methot-10, Marc-9)

nmod:poss(shot-13, Methot-10)

case(Methot-10, ’s-11)

compound(shot-13, point-12)

dobj(deflected-8, shot-13)

nummod(seconds-15, 20-14)

nmod:npmod(later-16, seconds-15)

advmod(deflected-8, later-16)

For instance, “he” (the 7th token in the sentence) is he nominal subject
(nsubj) of “deflected” (the 8th token), “point shot” is recognized as

a compound, and “shot” (the 13th token) is the direct object (dobj, the

second most core argument of a verb after the subject) of “deflected” (the

8th token). A list of codes and meanings for UD (v2) can be found in

Tables 27.3 and 27.4, on pp. 1718-1719.

Bag of Words In this view of text mining, only the words are important

– it is frequency (and relative frequency) that wins the day. In semantic

parsing, the words have attributes depending on their position and

role in the document’s sentences; in bag of words analysis, the words
themselves are attributes of the document. Our sentence S1 is simply a

collection of words, arranged here alphabetically:

’s, 20, added, deflected, Dzingel, he, later, lead, Marc, Methot,

point, seconds, shot, the, to, when.

The fact that “point shot” is a noun phrase is not significant, but the fact

that “point” and “shot” appear in the list is significant – it is the relative
frequencies of the terms that provide information about the document

or collection of documents (such as intent and themes).

In the rest of the section, we will take a look at the fundamental concepts

underlying text preparation.
8

Concrete illustrations of these notions are 8: Some of the topics will be revisited in

Chapter 32.
provided in Section 27.4.

27.2.1 Text Collection

Nowadays, text data is typically collected from the Web, either through

web scraping or with the help of a specialized application programming
interface (API), as we discussed in Chapter 16. Manual collection is

another option (although strongly discouraged when faced with more

than a few dozen documents to collect).

Optical character readers (OCR) can also digitize scanned images and the

technology has improved tremendously over the last 20 years; manual
entry of non-digital text data can be used as a last resort, but it is tedious

and likely to introduce infelicities and transcription errors.
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Figure 27.7: Abridged syntactic parsing of a sentence using the Enju English parser [32].

27.2.2 Text Representation

No matter where data comes from and what analyses we hope to run on

it, the crucial first step requires extraction, formatting, and storage to a

data structure with appropriate numerical properties [39]:

a string or vector of characters, with language-specific encoding;

a collection of text documents (with meta information) called a

corpus (‘permanent’ when stored on disk; ‘volatile’ when held in

RAM);

a document-term matrix (DTM) – or the transposed term-document
matrix (TDM) – where the rows are the documents, the columns

are the terms (see Figure 27.8), and the entries represent some text

statistic;

a tidy text dataset containing one token (single word, 𝑛-gram,

sentence, paragraph) per row.

The DTM/TDM representations are essential to any statistical analysis

of text data – it is on these entities that machine learning algorithms are

unleashed.

27.2.3 Text Processing

As with every form of data, text data requires extensive cleaning and

processing. Cleaning text data is, to put it mildly, even less pleasant a

process than cleaning numeric or categorical data. There are challenges

due to the nature of the data: how would one go about finding anomalies

in the text? Outliers? Is the concept even definable for text data?
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part-of-speech tagset

syntactic tagset

Table 27.1: Penn treebank tagset (part 1) [43].

Character encoding may also produces surprises: a text (or a part of text)

that looks completely normal to the human eye may be unreadable to a

computer because it was expecting a different encoding system. There

are probabilistic ways to detect a document’s encoding, and ways to

coerce a specified encoding – if you are working with text data and your

code balks at doing something it should be able to do and none of the

usual fixes apply, look into the encoding situation.

Another issue is that legitimate spelling mistakes and typographical
errors are hard to catch in large documents (even with spell-checkers), to

say nothing of:

accent representation (ya new cah’s wicked pissa!);
neologisms and portemanteaus (ruthfull; can’t you tell that I’m
planning prevenge?);

poor translations or foreign words (business goose; llongyfarchiadau);

puns and play-on-words (they were jung and easily freudened!);
specialized vocabulary (clopen; poset);
fictional names and places (Qo’noS; Kilgore Trout);
slang and curses (skengfire; #$&#!);
mark-up and tags (<b>; \includegraphics);
uninformative text information (page number; ISBN blurb), etc.
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functional tagset

pseudo-attachments tagset

disfluency annotations

Table 27.2: Penn treebank tagset (part 2) [43].

Table 27.3: The 37 universal syntactic relations used in Universal Dependencies v2. The upper part of the table follows the main organizing

principles of the UD taxonomy such that rows correspond to functional categories in relation to the head (core arguments of clausal

predicates, non-core dependents of clausal predicates, and dependents of nominals) while columns correspond to structural categories of

the dependent (nominals, clauses, modifier words, function words). The lower part of the table lists relations that are not dependency

relations in the narrow sense [44].
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Code Relation
acl clausal modifier of noun (adjectival clause)

advcl adverbial clause modifier

advmod adverbial modifier

amod adjectival modifier

appos appositional modifier

aux auxiliary

case case marking

cc coordinating conjunction

ccomp clausal complement

clf classifier

compound compound

conj conjunct

cop copula

csubj clausal subject

dep unspecified dependency

det determiner

discourse discourse element

dislocated dislocated elements

expl expletive

fixed fixed multiword expression

flat flat multiword expression

goeswith goes with

iobj indirect object

list list

mark marker

nmod nominal modifier

nsubj nominal subject

nummod numeric modifier

obj object

obl oblique nominal

orphan orphan

parataxis parataxis

punct punctuation

reparandum overridden disfluency

root root

vocative vocative

xcomp open clausal complement

Table 27.4: Universal dependency relations, alphabetical listing [44].

The process can be simplified to some extent with the help of regular
expressions and text pre-processing functions (see Section 27.4):

Specific pre-processing steps will vary based on the project.

For example, the words used in tweets are vastly different

than those used in legal documents, so the cleaning process
can also be quite different [26].

We shall illustrate the pre-processing function with the help of the

following string:

<i>He</i> went to bed at 2 A.M. It\’s way too late! He was

only 20% asleep at first, but sleep eventually came.

What can we do with this string?
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Figure 27.8: Term-document matrix/

document-term matrix for a hypotheti-

cal corpus, with Row Sums and Column

Sums.

Modify every upper case character to its corresponding lower case
version (avoid if seeking proper nouns and names)

<i>he</i> went to bed at 2 a.m. it\’s way too late! he

was only 20% asleep at first, but sleep eventually came.

Remove all punctuation marks (avoid if seeking emojis):

iHei went to bed at 2 AM Its way too late He was only

20 asleep at first but sleep eventually cam

Remove all numerals (not ideal when text mining quantities):

<i>He</i> went to bed at A.M. It\’s way too late! He

was only % asleep at first, but sleep eventually came.

Remove all extraneous white space:

<i>He</i> went to bed at 2 A.M. It\’s way too late! He

was only 20% asleep at first, but sleep eventually came.

Remove characters within brackets (and the brackets):

He went to bed at 2 A.M. It\’s way too late! He was

only 20% asleep at first, but sleep eventually came.

Replace all numerals with words:

<i>He</i> went to bed at two A.M. It\’s way too late!

He was only twenty% asleep at first, but sleep eventually

came.

Replace abbreviations:

<i>He</i> went to bed at 2 AM Itś way too late! He

was only 20% asleep at first, but sleep eventually came.

Replace contractions (avoid if seeking non-formal speech):

<i>He</i> went to bed at 2 A.M. It is way too late! He

was only 20% asleep at first, but sleep eventually came.

Replace symbols with words:

<i>He</i> went to bed at 2 A.M. Itś way too late! He

was only 20 percent asleep at first, but sleep eventually

came.

We typically also remove stop words (“a”, “an”, “the”, etc.) and unin-
formative words (which tend to be highly context-dependent), as these

unnecessarily increase the number of columns in the DTM.
9

We also9: See the curse of dimensionality, Chap-

ter 23.
usually stem words and complete the stems to remove unnecessary

variation in the text: “sleepful”, “sleeping”, “sleeps”, “slept” all convey
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the meaning of “sleep” and might as well be replaced by the latter term

(which is a completed stem or a lemma).
10

10: But there are complications, as we will

discuss in Chapter 32: in “operations re-

search”, “operating system” and “oper-

ative dentistry”, the stem “operati” has

different meanings.

In the BoW approach, then, the text string on which we have been working

could be pre-processed to:

he go bed 2 am way late he 20 percent sleep first sleep

eventually come

Note that this is not the only reasonable BoW preparation – as always,

context matters.

27.2.4 Text Statistics

The problem of how to represent a corpus as BoW DTM is simple to

solve, but it requires analysts to make use of their agency.

Consider a corpus C= {𝑑1 , . . . , 𝑑𝑁 } consisting of 𝑁 documents, with a

BoW dictionary DC = 𝑡1 , . . . , 𝑡𝑀 consisting of 𝑀 distinct terms.
11

11: For 𝑖 = 1, . . . , 𝑁 , the 𝑖th document’s

dictionary DC;𝑖 = {𝑡𝑖;1 , . . . , 𝑡𝑖;𝑀𝑖
} con-

sists of the distinct terms of DC found

in 𝑑𝑖 .

For

instance, if the corpus is

C= {“the dogs who have been let out”, “who did that”, “my dogs breath smells like dogs food”)},

then𝑁 = 3, 𝑑1 = “the dogs who have been let out”, 𝑑2 = “who did that”,

and 𝑑3 = “my dogs breath smells like dogs food”, 𝑀1 = 7, 𝑀2 = 3,

𝑀3 = 7, 𝑀 = 14, and the BoW dictionary terms are:

𝑡1 = “been”,

𝑡2 = “breath”,

𝑡3 = “did”,

𝑡4 = “dogs”,

𝑡5 = “food”,

𝑡6 = “have”,

𝑡7 = “let”,

𝑡8 = “like”,

𝑡9 = “my”,

𝑡10 = “out”,

𝑡11 = “smells”,

𝑡12 = “that”,

𝑡13 = “the”, and

𝑡14 = “who”.

We could further pre-process the corpus (remove stopwords, stem the

words, etc.), but for the purposes of illustrating text statistics, we will

leave the documents as they are.

The purest bag of word information about a term 𝑡 in a document 𝑑 is

the raw term frequency count

tf 𝑡 ,𝑑 = # times 𝑡 occurs in 𝑑,

but its relative usefulness is impacted by the documents’ sizes.
12

12: And size variation among documents.
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The relative term frequency (or term proportion)

tf ∗𝑡 ,𝑑 =
tf 𝑡 ,𝑑
𝑀𝑑

typically provides a more useful representation of the BoW.

At a simpler level, we could also look at the document frequency df 𝑡 ,
which is to say, the number of documents in which the term 𝑡 occurs. To

compare a term’s usage across different corpora, however, it might be

preferable to compute the relative document frequency

df ∗𝑡 =
df 𝑡
𝑁
.

This text statistic is only of limited usefulness if 𝑁 is “too small”.

Another approach is to use the term frequency-inverse document fre-
quency (tf-idf) of term 𝑡 in document 𝑑:

tf-idf ∗𝑡 ,𝑑 = −tf ∗𝑡 ,𝑑 × ln df ∗𝑡 .

This text statistic is a heuristic; although it has no solid theoretical

backing, it is nevertheless commonly-used.
13

13: Silge (an early backer of tf-idf) and

Schnoebelen suggest an alternative in the

form of weighted log odds , which can

also be used with non-text data.

The rationalization for its use is that if most of the documents contain the

term 𝑡, then df ∗𝑡 ≈ 1 and the presence of that term in a document does

not provide a lot of information about said document (since it shows up

in most documents):

tf-idf ∗𝑡 ,𝑑 ≈ −tf ∗𝑡 ,𝑑 × ln 1 = 0.

Furthermore, if the term 𝑡 does not occur often in a document 𝑑 for which

𝑀𝑑 is large, then tf ∗𝑡 ,𝑑 ≈ 0 and

tf-idf ∗𝑡 ,𝑑 ≈ −0 × ln df ∗𝑡 = 0.

In this BoW approach, it is the terms that appear relatively often only
in a small subset of documents (with large values) that are crucial to

understanding those documents in the general context of the corpus.

https://juliasilge.com/blog/introducing-tidylo/
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27.2.5 Text Visualization

One of the major differences between text analysis and plain numerical

data analysis is that even though we are able to interpret numerical

results with some (often minimal) effort, we can easily interpret text

analysis results with no effort: we have a built-in semantics detector –

text is not just a label for data, it has meaning (derived from the context)

that is automatically available to us.
14

14: My son Llewellyn, upon learning how

to read, complained that he couldn’t help
but read text when he saw it – the blissful

ignorance of the past is forever gone.

In truth, we can train ourselves to read numerical data and results,

especially with the help of data visualizations (see Chapter 18 and [9],

for instance). Somewhat paradoxically, we can also visualize text data.

Common methods include barcharts, scatterplots, word clouds, and

phrase nets (see Figure 27.9 and Section 27.4).
15

15: These can be quite handy when con-

ducting a BoW analysis on a subject of

which the analysts know very little, or if

the text is in a language that they do not

master yet.

Figure 27.9: Examples of text visualiza-

tions: barchart (top left, from Section

27.4.1), scatterplot (top right, from Section

27.4.2), word cloud (from Section 27.4.3),

and phrase net (from Section 27.4.2).
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27.3 Text Mining Tasks

“If the computer can successfully tell a joke as well as Henry

Youngman, then that’s the voice I want.” [Roger Ebert, TED

Talk, 2011]

We can easily leverage machine learning (ML) techniques to improve

the BoW (this section) and semantics (see Chapter 32) approaches to text

analysis.

We have seen that text usually enters the text analysis pipeline in un-
structured and unorganized formats, from a variety of sources. Through

pre-processing, text becomes clean (yet remains unstructured).

The BoW approach provides a framework for a structured numerical
representation of text data, either in the form of DTM/TDM or tidy data
(see Section 27.4 for examples of the latter). It is on these representations

that ML algorithms are unleashed.

At the ML stage, it is important to remember where the data comes from

and the context in which it applies. The text mining/NLP pipeline of

Figure 27.10 applies in most (if not all) text analysis situations.

Figure 27.10: Text mining and NLP pipeline [author unknown].

We have discussed document extraction in Chapter 16, feature extraction
in Chapter 23, and machine learning in Chapters 19–22.
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In supervised learning (SL), there is a target/response against which to

train and test the models; typical tasks include classification and class
probability estimation, regression and value estimation, etc.

In unsupervised learning (UL), there is no target; UL could be used to

discover potential target/response levels that could eventually be used

in SL tasks with new data, say; typical tasks include association rules
and hypothesis discovery, similarity matching and clustering, etc.

Other ML tasks include profiling, link prediction, and so on. In text

mining, the most commonly used ML tasks are classification and clus-
tering.

27.3.1 Classification

In classification, a sample set of data (the training set) is used to determine

rules (or a model) that can be used to divide the data into pre-determined
groups (also known as classes). The model is then validated by examining

its performance on a test set.

In text classification, the data must first be given a numerical represen-
tation (DTM/TDM/tidy data) – it is on this object that classifiers are

trained.

For instance, we may wish to answer questions such as:

Based on the terms that appear in a text, can we determine who its

author is likely to be?

Based on the words that appear in a news story, is it propaganda?

Is the email that was just received legitimate or malicious?

Should a city trigger its emergency response system based on social

media conversations?

What is a tweet’s main sentiment?

etc.

Text Classification Workflow In particular, the text classification pro-

cess should follow the regular classification pipeline, with the exception

of the conversion from text data to numerical representation:

1. data collection;

2. data pre-processing;

3. exploration and text visualization;

4. text representation;

5. training the model, and

6. testing and evaluation.

Notes and Comments Remember that in order to train and test a

classifier, the true labels have to be known for at least some of the data –

this might not be achieved easily.
16

16: It is usually quite costly to obtain these

labels, especially with large text or image

datasets.Classification is also affected by the No Free-Lunch Theorem stating,

in effect, that no single classifier is always the best option – we have to

consider a number of models, on a case-by-case basis.
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In situations where at least one of the class labels occurs rarely in the

training data, the classifiers may be swamped by the frequent labels:

how would an e-mail spam filter handle a term it has never encountered

before? This hurdle is tricky to overcome, technically-speaking, especially

as rare occurrences are often more interesting and/or important in the

problem context.
17

17: We discuss these briefly in Section 21.3.

Since it is recommended that we try out different classifiers, how can we

determine if a model is preferable to another? The theory of performance
metrics is richer for binary classifiers than general classifiers: ideally, a

good model would have high rates of true positives and true negatives,

and low rates both of false positives and false negatives.
18

18: There are complications, as expected:

see Sections 19.4.4 and 21.1.2 for more de-

tails.

Multinomial naïve Bayes Classification We will showcase a classifica-

tion approach which has found quite a bit of success as an e-mail spam

filter.
19 Multinomial naïve Bayes is a classifier for which the feature19: It is a variant of the algorithm pre-

sented in Section 21.4.4. vectors in each class are assumed to have a multinomial distribution.

Consider a training set 𝑛 of email messages – the records. Each record

has ℓ features, the frequencies (or relative frequencies) of ℓ pre-selected

terms in the email message body. Each record can then be represented

by its signature x = (𝑥1 , . . . , 𝑥ℓ ).

We assume that there are 𝐾 categories in which a record could be

classified.
20

Let {𝐶𝑘 | 𝑘 = 1, . . . , 𝐾} denote the categories.20: Perhaps the class labels are: spam,

quarantined, personal, business, etc.

For any incoming e-mail message, the classification problem is to deter-

mine the posterior distribution

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ )

for each label 𝑘. The predicted class of x is the class 𝐶𝑘 for which the

posterior is largest.

Fix 𝑘. From Bayes’ Theorem, we have

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ ) ∝ 𝑃(x ∈ 𝐶𝑘) × 𝑃(𝑥1 , . . . , 𝑥ℓ | x ∈ 𝐶𝑘).

The naïve assumption is that

𝑃(𝑥1 , . . . , 𝑥ℓ | x ∈ 𝐶𝑘) = 𝑃(𝑥1 | x ∈ 𝐶𝑘) × · · · 𝑃(𝑥ℓ | x ∈ 𝐶𝑘),

so that

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ ) ∝ 𝑃(x ∈ 𝐶𝑘) ×
ℓ∏
𝑖=1

𝑃(𝑥𝑖 | x ∈ 𝐶𝑘).

The multinomial assumption is that

𝑃(𝑥𝑖 | x ∈ 𝐶𝑘) = 𝑝
𝑥𝑖
𝑘,𝑖
,

where 𝑝𝑘,𝑖 ∈ [0, 1] for each feature (word) 1 ≤ 𝑖 ≤ ℓ .

Combining these assumptions, the posterior “probabilities” are then

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ ) ∝ 𝑃(x ∈ 𝐶𝑘) ×
ℓ∏
𝑖=1

𝑝
𝑥𝑖
𝑘,𝑖
.
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The model can be further linearized by taking logarithms on both sides:

log𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ ) ∝ 𝑏𝑘 +
ℓ∑
𝑖=1

𝑥𝑖 log 𝑝𝑘,𝑖 .

The classifier is trained by estimating the parameters 𝑝𝑘,𝑖 on a subset of

all records and by specifying the “priors” 𝑏𝑘 . The predicted class 𝐶(x) is

the 𝐶𝑘 for which 𝑏𝑘 +
∑ℓ
𝑖=1
𝑥𝑖 log 𝑝𝑘,𝑖 is maximized.

21
21: Recall that this classifier is not cali-
brated – the relative values of the posterior

“probabilities” have no intrinsic value in

and of themselves.

If a message encounters terms (tokens, words) that were not seen in the

training data, it is impossible to predict its most likely class membership

using (non-existent) past behaviour. In that case, to avoid divisions by 0,

we make use of the corrected estimate

𝑝̂𝑘,𝑖 =

∑
x∈𝐶𝑘

𝑥𝑖 + 1∑
x∈𝐶𝑘

(𝑥1 + · · · + 𝑥ℓ ) + |𝑣 |
=

(#𝑤𝑖 ∈ 𝐶𝑘) + 1

𝑊𝑘 + |𝑣 | ,

where |𝑣 | is the size of the vocabulary, #𝑤𝑖 ∈ 𝐶𝑘 is the frequency of the

word 𝑤𝑘 in the training documents belonging to class 𝐶𝑘 , and𝑊𝑘 is the

count of all words appearing in training documents in class 𝐶𝑘 .

As an example, consider the training set and testing set below (raw and

processed), describing the sentiment (class: + or −) associated with 6

reviews for a specific phone.

For the priors of each class, we use the proportions of positive and

negative reviews in the training data. In the processed data, there are 8

distinct vocabulary terms, and there are 8 (resp. 5) terms in the positive

(resp. negative) reviews. The corrected estimates for the vocabulary word

“amazing” are computed below.
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The corrected estimates for each vocabulary word in the training doc-

uments are shown below, as is the signature vector x for the lone test

record.

Simple computations show that

𝑃(+ | x)“ =′′
2.9 × 10

−6 < 𝑃(− | x) = 9.7 × 10
−6 ,

from which we conclude that the test review is negative.
22

22: Hopefully, that is not much of a sur-

prise in light of the original test review.

Of course, any classification algorithm may be used. Common methods

also include support vector machines and artificial neural networks (see

Chapter 21), not only multinomial naïve Bayes. We will have more to say

on the topic in Section 27.4.4.

27.3.2 Clustering

The aim of clustering is to divide the data into latent groups (also

known as clusters). Within a cluster, data points are seen as similar
to one another; between clusters, they are seen as dissimilar. As befits

the unsupervised learning nature of the task, the cluster labels are not
pre-determined.

For instance, we may wish to:

divide existing social media users into subgroups based on the

shared characteristics of their posts;

create (new) taxonomies on the fly, as new items are added to a

group of items to ease product navigation;

cluster terms within a corpus of document (topic modeling);

cluster documents within a corpus based on their use of terms;

identify keywords in a document;

etc.

Text Clustering Workflow The steps are quite similar to those of text

classification:

1. data collection;

2. data pre-processing;

3. exploration and text visualization;

4. text representation;

5. run multiple clustering algorithms with parameter variations, and

6. compare and validate the results.



27.3 Text Mining Tasks 1729

Notes and Comments Conceptually, clustering is relatively intuitive

for people: we recognize clusters when we see them.

But there are issues, chiefly:

there is no agreed-upon definition of what a cluster is;

there is no “magic” recipe to determine which similarity measure

to use;

the number of cluster is not usually specified, and

due to the non-deterministic nature of many clustering algorithms,

the results are often unreplicable.

And what does it mean to cluster text data? With a DTM text represen-

tation, we can cluster the documents with respect to the terms, which

is to say that we look for documents that have similar term signatures.

With a TDM text representation, we can cluster the terms with respect to
the documents, which is to say that we look for terms that have similar
document signatures.

We will have more to say on the topic in Section 27.4.5.

27.3.3 Sentiment Analysis

Most of us have a good native understanding of the emotional intent of

words, which leads us to infer surprise, disgust, joy, pain, and so on

from a text segment.
23

When applied by machines to a block of text, 23: Although sarcasm or lies are not al-

ways obvious without other contextual

cues.

the (somewhat subjective) process of identifying emotions is known as

sentiment analysis (or opinion mining).

Typical sentiment questions could include:

Is this movie review positive or negative?

Is this customer email a complaint?

How have newspapers’ attitudes about the PM changed since the

election?

etc.

Most humans would typically be able to answer these questions when

presented with the appropriate text documentation, but there is no

guarantee that each individual’s reading of the situation would be the

same. For text processing machines (even modern LLMs), questions of

this nature may be quite difficult to answer.

Challenges Data analysis is not easy, in general, but sentiment analysis

is even more complicated, as:

the topic may change halfway through the text;

the author may be using rhetorical devices ;

we do not always agree on the emotional content of text (due

to cultural context, or lack of familiarity with the language, or

different political affiliations, etc.);

words may have different meanings/emotional values depending

on the context (stolen goods may be hot, in which case we would

want nothing to do with them; a new song may be hot, in which

case we would probably stream it right away);

https://www.merriam-webster.com/grammar/rhetorical-devices-list-examples


1730 27 Text Analysis and Text Mining

qualifiers can drastically change a term’s emotional value (note

the emotional difference between he was really happy today vs.

he was not really happy today, which may only differ in one term,

but has a completely different meaning), etc.

Sentiment analysis is a supervised learning problem, requiring dictio-

naries of emotional content to have been compiled ahead of time or

sentiment labels to have been assigned to a training text dataset.
24

The24: Related tasks include:

discarding subjective information

(information extraction);

recognizing opinion-oriented

questions (question answering);

accounting for multiple view-

points (summarization);

identifying suitability of videos for

kids;

identifying bias in news sources;

identifying appropriate content for

ad placement, etc.

following reviews were taken from Amazon: there is a 5−star, a 3−star,

and a 1−star review – but which is which?

Review 1: "Love the jeans, price, fit, but even more, love the

suppliers. Simple concerns were not only answered immedi-

ately, they went beyond any expectations I had! Will definitely

be buying through this supplier, highly recommended!"

Review 2: "DON’T BUY. Great series aside, this special addi-

tion is pathetic. They’re basically mass-market paperbacks:

small and uncomfortable to hold. The regular paperback

versions are far superior for basically the same price."

Review 3: "Beginning the second use, the bowl keeps falling

out 30 seconds after the mixing starts. A bit disappointed."

This is how the AIPlaybook at a16z.com/ai saw the situation in 2021:

https://a16z.com/ai/
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There is a fair amount of variation, both within and across reviews. What

would a modern tool like GPT make of these?

Patrick: Good evening, GPT. I am going to post three

product reviews. One is a 5-star review, one is a 3-star

review, and one is a 1-star review. I would like you to tell

me which review matches with which score.

GPT: Absolutely, that sounds like an interesting exercise!

Go ahead and post the three reviews, and I’ll do my best

to match each review with the correct star rating.

Review 1: "Love the jeans, [...]"

Review 2: "DON’T BUY. [...]"

Review 3: "Beginning [...]"

Based on the content and tone of each review, here’s how

I would match them with their respective star ratings.

Review 1: This review is overwhelmingly positive, empha-

sizing satisfaction with both the product (jeans) and the

supplier’s customer service. The reviewer mentions loving

the product and having their expectations exceeded, and

they even recommend the supplier. This review aligns

with a 5-star rating.

Review 3: This review expresses disappointment, but it’s

not entirely negative. The reviewer seems to have had a

specific issue with the product (a bowl falling out during

use). However, they don’t express complete dissatisfaction

or advise against purchasing the product. This seems more

in line with a 3-star rating – not completely dissatisfied,

but not fully satisfied either.
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Review 2: This review is clearly negative. The reviewer

strongly advises against purchasing the product, using

phrases like "DON’T BUY" and describing the product as

"pathetic." They also compare it unfavorably to another

version, suggesting the other is a better choice. This tone

and content are indicative of a 1-star rating.

Let me know if you agree with these assessments!

Thank you, I think that this is indeed what intelligent

agents would conclude.

For the sake of completeness, I should mention that Review

1 was the 5-star review; Review 2, the 3-star review, and

Review 3, the 1-star review. There is nothing you could

have done differently to obtain these results... humans are

not always logical when it comes to rating things.

Thank you for sharing the actual ratings, and you’re ab-

solutely right! Human reviews can be quite subjective

and not always follow a logical pattern. People’s rating

criteria can vary greatly, and what might be a minor in-

convenience to one person could be a major drawback to

another. It’s an interesting reminder of the diversity in

human experiences and expectations.

Perhaps GPT’s ratings were skewed because it was told that one of the

reviews was a 5-star review, and so on. What if we prompt it differently,

in a new conversation? As it turns out, GPT comes to the same conclusion,

as we can see below.

Patrick: Good evening, GPT. I am going to provide you

with 3 product reviews. I would like for you to rate them,

on a scale from 1 (poor) to 5 (great).

GPT: Sure, I’d be happy to help with that. Please go ahead

and share the three product reviews, and I’ll rate each of

them on a scale from 1 to 5 based on their content.

Review 1: "Love the jeans, [...]"

Review 2: "DON’T BUY. [...]"

Review 3: "Beginning [...]"
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Based on the content of each review, here are the ratings I

would assign.

Review 1: This review is very positive. The customer

expresses satisfaction with multiple aspects of the product

(jeans) and exceptional satisfaction with the supplier’s

customer service. The enthusiasm and recommendation

suggest a high level of satisfaction. I would rate this as a 5
(great).

Review 2: This review is highly negative. The customer

advises against purchasing the product and describes it as

"pathetic," indicating significant dissatisfaction. The com-

parison with a superior version of the product emphasizes

their disappointment. I would rate this as a 1 (poor).

Review 3: This review expresses a specific problem and

disappointment, but it doesn’t completely condemn the

product. It seems like a moderate level of dissatisfaction,

possibly due to a single but significant issue. I would

rate this as a 3 (average), assuming the problem is not

widespread or indicative of overall poor quality.

These ratings are based on the tone and content of the

reviews, reflecting the customers’ levels of satisfaction or

dissatisfaction with their purchases.

Thank you!

Term-by-Term and Document-by-Document Sentiment Analysis In

this chapter, we differentiate 2 types of sentiment analyses:

term-by-term (TBT) sentiment analysis looks at the emotional

content of individual tokens (terms in the text) and deduces an

emotional score for passages containing them;

document-by-document (dbd) sentiment analysis looks at scored
passages and tries to find tokens which carry the emotional load
to predict how a new passage would score on some emotional

spectrum.
25

25: Note that these terms are not widely-

used in the analyst community.

TBT is not a complicated technical task: it only requires the ability to

match a lexicon score to each term, and to add the scores; DBD is basically

a classification problem.

Sentiment Lexicons TBT sentiment analysis relies heavily on lexicons,

which is to say, lists of terms which have been ranked (by experts) on

some emotional scale. Commonly-used lexicons include:

AFINN: words are ranked on a scale from -5 (negative) to 5

(positive);

BING: words are given a binary score (negative/positive);

NRC: words are assigned category(ies) of sentiments;

LOUGHRAN: words are placed in categorical bins.
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"abandon"

AFINN: -2

BING: NA

NRC: fear, negative, sadness

LOUGHRAN: negative

"bad"

AFINN: -3

BING: negative

NRC: anger, disgust, fear, etc.

LOUGHRAN: negative

"not"

AFINN: NA

BING: NA

NRC: NA

LOUGHRAN: NA

"egregious"

AFINN: ?

BING: ?

NRC: ?

LOUGHRAN: ?

What’s the best lexicon to use? As always, context matters. Is there any

reason to expect the various lexicons to give the same scores? Each of

these lexicons contains a majority of negative terms (keeping in mind

that most words in the English language are neutral), so there could at

least be some correlation.

Once a lexicon has been selected, TBT is simply a matter of chunking
the text and computing sentiment scores on each block (every 100 words,

every 100 lines, every chapter, etc.). Does the sectioning approach matter?

Again, context matters.

We provide examples of TBT and DBD in Sections 27.4.6 and 27.4.8.

For a more in-depth discussion on text mining and natural language

processing, interested readers are advised to also consult Chapter 32 and

[40, 39, 24, 3, 1, 25, 8].

27.4 Examples

Various concepts of text analysis and text mining are illustrated using R

and Python in the following examples, some of which are inspired by

the excellent [39] and [26].

27.4.1 NHL Game Recaps

In this example, we introduce the basic notions of text mining using

the tm (text mining) and qdap (quantitative discourse analysis package)

libraries in R.

The main dataset we work with is the text content of Associated Press

game recaps involving the Ottawa Senators during the 2016-2017 NHL

season.
26

26: All of this section’s datasets are

available at github.com/potrbollvy/Data-

Training .

Initializing the Environment

install.packages("tm")

install.packages("qdap")

https://github.com/potrbollvy/Data-Training
https://github.com/potrbollvy/Data-Training
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Preliminaries

We start with a simple example to showcase the possibilities.

new_text <- "The Ottawa Senators have the Atlantic Division lead in their sights. Mark

Stone had a goal and four assists, Derick Brassard scored twice in the third period and

the Senators recovered after blowing a two-goal lead to beat the Toronto Maple Leafs 6-3

on Saturday night. The Senators pulled within two points of Montreal for first place in

the Atlantic Division with three games in hand. We like where we’re at. We’re in a good

spot, Stone said. But there’s a little bit more that we want. Obviously, there’s teams

coming and we want to try and create separation, so the only way to do that is keep

winning hockey games. Ottawa led 2-0 after one period but trailed 3-2 in the third

before getting a tying goal from Mike Hoffman and a power-play goal from Brassard. Stone

and Brassard added empty-netters, and Chris Wideman and Ryan Dzingel also scored for the

Senators. Ottawa has won four of five overall and three of four against the Leafs this

season. Craig Anderson stopped 34 shots. Morgan Rielly, Nazem Kadri and William Nylander

scored and Auston Matthews had two assists for the Maple Leafs. Frederik Andersen allowed

four goals on 40 shots. Toronto has lost eight of 11 and entered the night with a tenuous

grip on the final wild-card spot in the Eastern Conference. The reality is we’re all big

boys, we can read the standings. You’ve got to win hockey games, Babcock said. After

Nylander made it 3-2 with a power-play goal 2:04 into the third, Hoffman tied it by rifling

a shot from the right faceoff circle off the post and in. On a power play 54 seconds later,

Andersen stopped Erik Karlsson’s point shot, but Brassard jumped on the rebound and put

it in for a 4-3 lead. Wideman started the scoring in the first, firing a point shot

through traffic moments after Stone beat Nikita Zaitsev for a puck behind the Leafs goal.

Dzingel added to the lead when he deflected Marc Methot’s point shot 20 seconds later.

Andersen stopped three shots during a lengthy 5-on-3 during the second period, and the

Leafs got on the board about three minutes later. Rielly scored with 5:22 left in the

second by chasing down a wide shot from Matthews, carrying it to the point and shooting

through a crowd in front. About three minutes later, Zaitsev fired a shot from the right

point that sneaked through Anderson’s pads and slid behind the net. Kadri chased it down

and banked it off Dzingel’s helmet and in for his 24th goal of the season. Dzingel had

fallen in the crease trying to prevent Kadri from stuffing the rebound in. Our game plan

didn’t change for the third period, and that’s just the maturity we’re gaining over time,

Senators coach Guy Boucher said. Our leaders have been doing a great job, but collectively,

the team has grown dramatically in terms of having poise, executing under pressure. Game

notes: Mitch Marner sat out for Toronto with an upper-body injury. Marner leads Toronto

with 48 points and is also expected to sit Sunday night against Carolina."

We find the 20 most frequent terms using qdap’s term_count().

(term_count <- qdap::freq_terms(new_text,20))

WORD FREQ WORD FREQ WORD FREQ WORD FREQ

1 the 38 9 goal 6 17 three 5 25 scored 4

2 and 21 10 it 6 18 after 4 26 stone 4

3 a 18 11 of 6 19 brassard 4 27 third 4

4 in 16 12 shot 6 20 but 4 28 toronto 4

5 for 8 13 with 6 21 four 4 29 we 4

6 to 8 14 leafs 5 22 later 4 30 we’re 4

7 on 7 15 point 5 23 lead 4

8 from 6 16 senators 5 24 period 4
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There are more than 20 entries because of ties (at 4 occurrences apiece).

This information can also be displayed as a chart.

plot(term_count)

Sens Recaps Data

We now import the data for all games during the season.

recaps <- read.csv(file="Recap_data.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)

nrow(recaps)

str(recaps)

[1] 101

’data.frame’: 101 obs. of 34 variables:

$ GP : int 1 2 3 4 5 6 7 8 9 10 ...

$ X0_Type : chr "1_Regular" "1_Regular" "1_Regular" "1_Regular" ...

$ Date : chr "10/12/2016" "10/15/2016" "10/17/2016" "10/18/2016" ...

$ Time : chr "7:00 PM" "7:00 PM" "7:30 PM" "7:30 PM" ...

$ X : chr "" "" "A" "" ...

$ Opponent : chr "Toronto Maple Leafs" "Montreal Canadiens" "Detroit Red Wings" ...

$ GF : int 5 4 1 7 1 3 2 2 2 1 ...

$ GA : int 4 3 5 4 4 0 5 0 1 0 ...

$ Result : chr "W" "W" "L" "W" ...

$ OT_SO : chr "OT" "SO" "" "" ...
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$ W_Record : int 1 2 2 3 3 4 4 5 6 7 ...

$ L_Record : int 0 0 1 1 2 2 3 3 3 3 ...

$ OL_Record : int 0 0 0 0 0 0 0 0 0 0 ...

$ Streak : chr "W 1" "W 2" "L 1" "W 1" ...

$ OTT_S : int 30 38 32 42 28 28 33 22 32 24 ...

$ OTT_PIM : int 13 10 22 14 8 2 4 11 13 20 ...

$ OTT_PPG : int 0 0 0 1 0 0 2 0 0 0 ...

$ OTT_PPO : int 2 4 3 2 3 1 4 2 2 4 ...

$ OTT_SHO : int 0 0 1 1 0 0 0 0 0 0 ...

$ OPP_S : int 38 24 25 35 35 22 19 37 33 27 ...

$ OPP_PIM : int 11 10 20 6 6 2 8 9 11 22 ...

$ OPP_PPG : int 0 1 2 1 2 0 0 0 0 0 ...

$ OPP_PPO : int 4 4 4 5 4 1 2 4 3 2 ...

$ OPP_SHG : int 0 0 0 0 0 0 0 0 0 0 ...

$ ATT : chr "17,618" "18,195" "20,027" "11,061" ...

$ LOG : chr "2:36" "2:44" "2:33" "2:43" ...

$ AP_Headline : chr "Maple Leafs\xcd Matthews has modern record" ...

$ AP_Recap : chr "Auston Matthews needed 40 minutes to get into"| __truncated__ ...

$ SSS_Author : chr "Ross A" "Ary M" "Michaela Schreiter" "Ary M" ...

$ SSS_Headline: chr "Auston Matthews Loses 5-4 to Sens in OT" ...

$ SSS_Recap : chr "The NHL.com headline for the game was \xd2Auston Matthews scores"| __truncated__ ...

$ OPP_Blog : chr "Pension Plan Puppet" "Eyes on the Prize" ...

$ OPP_Title : chr "Sens 5, Auston Matthews 4 (OT)" ...

$ OPP_Recap : chr "The first period started exactly the way that Leafs’ fans wanted"| __truncated__ ...

It is child’s play to isolate the text from individual game recaps.

AP.recaps <- recaps$AP_Recap

head(AP.recaps,2)

’Auston Matthews needed 40 minutes to get into the NHL record book. In the highest-scoring debut

in modern NHL history, Matthews scored four goals for the Toronto Maple Leafs, but Kyle Turris

scored 37 seconds into overtime to give the Ottawa Senators to a 5-4 victory Wednesday night.

Matthews got his fourth with 3 seconds left in the second period, bringing his mother to

tears in the stands. He called it a \xf1surreal\xee moment, adding that \xf1I couldn\xcdt

believe that was happening out there.\xee [...] UP NEXT Maple Leafs: Host Boston on Saturday

night for their home opener. Senators: Host Montreal on Saturday night.’

’Guy Boucher trusted his instincts when selecting skaters for the shootout and it paid off for the

Ottawa Senators. The Senators\’ head coach opted to go with defenseman Erik Karlsson and the

captain scored the game winner to give Ottawa a 4-3 victory over the Montreal Canadiens on Saturday

night to open the season with back-to-back wins. \’\’Sometimes it\’s just small things and you

follow a gut feeling,\’\’ Boucher said. [...]’

There are odd characters in the game recaps (xf1, xee, etc.), which

highlight some issue with text encoding and formatting. We revisit the

last few steps with a slightly different data file.

recaps <- read.csv(file="Recap_data_first_pass.csv", header=TRUE,

sep=",", stringsAsFactors=FALSE)

AP.recaps <- recaps$AP.recaps

head(AP.recaps,2)
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’Auston Matthews needed 40 minutes to get into the NHL record book. In the highest-scoring debut

in modern NHL history, Matthews scored four goals for the Toronto Maple Leafs, but Kyle Turris

scored 37 seconds into overtime to give the Ottawa Senators to a 5-4 victory Wednesday night.

Matthews got his fourth with 3 seconds left in the second period, bringing his mother to tears

in the stands. He called it a "surreal" moment, adding that "I couldn\’t believe that was

happening out there." [...]’

‘Guy Boucher trusted his instincts when selecting skaters for the shootout and it paid off for the

Ottawa Senators. The Senators\’ head coach opted to go with defenseman Erik Karlsson and the captain

scored the game winner to give Ottawa a 4-3 victory over the Montreal Canadiens on Saturday night

to open the season with back-to-back wins. "Sometimes it\’s just small things and you follow a gut

feeling," Boucher said. [...]’

The results are easier to read, for sure, but for reasons that are too

technical to get into here, the encoding of Recap_data_first_pass.csv

creates issues with tm and qdap down the road, but the issues disappear

when we use a different encoding (UTF-8).

recaps <- read.csv(file="Recap_data_first_pass_utf8.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

AP.recaps <- recaps$AP.recaps

VCorpus from Vector with tm

The tm package makes it easy to work with vector sources and volatile

corpora. For instance, we can make a vector source as follows.

AP.recaps.source <- tm::VectorSource(AP.recaps)

This vector source can be converted to a volatile corpus.

AP.recaps.corpus <- tm::VCorpus(AP.recaps.source)

At a fundamental level, the volatile corpus contains the following infor-

mation.

AP.recaps.corpus

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 101

This is not entirely useful, to be honest, although we do recover the 101

games played by the Senators during the season. Let’s say we wanted

more details on the 15th game.

AP.recaps.corpus[[15]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 2871



27.4 Examples 1739

There are two entries in the list; the first is the game recap text.

AP.recaps.corpus[[15]][1]

$content = ’For a team playing its third game in four nights, the Minnesota Wild looked plenty

fresh on Sunday night -- even in overtime. Matt Dumba scored late in the extra session and

Darcy Kuemper stopped 35 shots, helping Minnesota beat the Ottawa Senators 2-1. The Wild [...]’

The entry’s metadata can be queried as follows.

AP.recaps.corpus[[15]][2]

$meta

author : character(0)

datetimestamp: 2019-09-15 13:29:16

description : character(0)

heading : character(0)

id : 15

language : en

origin : character(0)

We can also take a look at some basic statistics regarding the number of
characters and the number of words in the game recaps.

length_of_recaps_char <- vector(mode="numeric", length=nrow(recaps))

for(j in 1:nrow(recaps)){

length_of_recaps_char[j]=nchar(AP.recaps.corpus[[j]][1])

}

hist(length_of_recaps_char, freq=F,

main="Distribution of # of characters in Senators game recaps (16-17)")

summary(length_of_recaps_char)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2027 3223 3689 3683 4227 5087
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length_of_recaps_word <- vector(mode="numeric", length=nrow(recaps))

for(j in 1:nrow(recaps)){

length_of_recaps_word[j]=length(strsplit(gsub(’ {2,}’,’ ’,

AP.recaps.corpus[[j]][1]),’ ’)[[1]])

}

hist(length_of_recaps_word, freq=F,

main="Distribution of # of words in Senators game recaps (16-17)")

summary(length_of_recaps_word)

Min. 1st Qu. Median Mean 3rd Qu. Max.

375 565 665 664 774 921

Pre-Processing a Document with tm

To get the most of this corpus, we must first transform it into a bag-of-
words (BoW). We first show how to implement the various text processing

functionalities on the text string used in Section 27.2.3.

(text <- "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20%

asleep at first, but sleep eventually came.")

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

All characters can be converted to lower case with the tolower() func-

tion.

tolower(text)

[1] "<i>he</i> went to bed at 2 a.m. it\’s way too late! he was only 20% asleep at first,

but sleep eventually came."

The output of the following three tm functions should be clear from their

name.



27.4 Examples 1741

tm::removePunctuation(text)

[1] "iHei went to bed at 2 AM Its way too late He was only 20 asleep at first

but sleep eventually came"

tm::removeNumbers(text)

[1] "<i>He</i> went to bed at A.M. It\’s way too late! He was only % asleep at first,

but sleep eventually came."

tm::stripWhitespace(text)

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

Pre-Processing a Document with qdap

Some of the more sophisticated processes are implemente in qdap. The

functionality should be clear from the function’s name (as well as its

output).
27

27: Note that all of these also strip unnec-

essary spaces in the string.

# Remove text within brackets

qdap::bracketX(text)

# Replace numbers with words

qdap::replace_number(text)

# Replace abbreviations

qdap::replace_abbreviation(text)

# Replace contractions

qdap::replace_contraction(text)

# Replace symbols with words

qdap::replace_symbol(text)

[1] "He went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at two A.M. It\’s way too late! He was only twenty% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 AM It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 A.M. it is way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20 percent asleep at first,

but sleep eventually came."
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Stopwords

Stopwords are those words that do not carry semantic content, partly

because they occur too frequently to really be “seen” by speakers/readers,

such as the “said” tag in a novel. They are often removed from the text

prior to BoW analysis.

# List standard English stop words

tm::stopwords("en")

# Print text without standard stop words

tm::removeWords(text,tm::stopwords("en"))

[1] "<>He</> went bed 2 A.M. It’s way late! He 20% asleep first,

sleep eventually came."

Of course, stopwords may vary from one context to the next,
28

and it is28: Or from one language to the next.

possible to add or subtract words fromt he stopwords list.

# Add "sleep" and "asleep" to the list: new_stops

new_stops <- c("sleep","asleep",tm::stopwords("en"))

# Remove stop words from text

tm::removeWords(text,new_stops)

[1] "<>He</> went bed 2 A.M. It’s way late! He 20% first, eventually came."

Putting it All Together

We can combine some pre-processing steps into one call (there are, of

course multiple ways to do this) – note that the order of implementation

matters: a different order may very well lead to a different outcome.

tolower(

tm::stripWhitespace(

tm::removeWords(

tm::removePunctuation(

qdap::replace_symbol(

qdap::replace_contraction(

qdap::replace_abbreviation(

qdap::bracketX(text)

)

)

)

)

,tm::stopwords("en"))

)

)

[1] "he went bed 2 am way late he 20 percent asleep first sleep eventually came"
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Word Stemming and Stem Completion

Stemming is also implemented in tm.

# Create sleep

(sleep <- c("sleepful","sleeps","sleeping"))

# Perform word stemming: stem_doc

(stem_doc <- tm::stemDocument(sleep))

[1] "sleepful" "sleeps" "sleeping"

[1] "sleep" "sleep" "sleep"

# Create the completion dictionary: sleep_dict

sleep_dict <- c("sleep")

# Perform stem completion: complete_text

(complete_text <- tm::stemCompletion(stem_doc,sleep_dict))

sleep sleep sleep

"sleep" "sleep" "sleep"

For illustrative purposes, let us take a quick look at a string with more

substance.

text_data <- "In sleepful nights, Katia sleeps to achieve sleeping."

comp_dict <- c("In","sleep","nights","Katia","to","achieve")

# Remove punctuation

rm_punc <- tm::removePunctuation(text_data)

# Create character vector

n_char_vec <- unlist(strsplit(rm_punc, split = ’ ’))

# Perform word stemming: stem_doc

(stem_doc <- tm::stemDocument(n_char_vec))

# Re-complete stemmed document: complete_doc

(complete_doc <- tm::stemCompletion(stem_doc,comp_dict))

[1] "In" "sleep" "night" "Katia" "sleep" "to" "achiev" "sleep"

In sleep night Katia sleep to achiev sleep

"In" "sleep" "nights" "Katia" "sleep" "to" "achieve" "sleep"

Notice the slight difference between the stemmed string and the com-

pleted string.
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Pre-Processing a Corpus

In practice, we never work with a single string or with a single document;

how would we pre-process an entire corpus of text documents? The

function tm_map maps the processing step to all documents in the corpus;

if the processing function is not implemented in the package tm, it must

be wrapped by the content_transformer.

As an example, consider the following customized pre-processing cleaner,

which mixes base, tm and qdap functions.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en")))

return(corpus)

}

We apply it to the Sens game recaps corpus AP.recaps.corpus.

clean_corp.AP.recaps <- clean_corpus(AP.recaps.corpus)

As an example, let’s print the cleaned up recap for game 15 (compare

with the raw text obtained previously).

clean_corp.AP.recaps[[15]][1]

$content = ’team play third game four night minnesota wild look plenti fresh sunday night

even overtim matt dumba score late extra session darci kuemper stop shot help minnesota

beat ottawa senat wild come loss philadelphia saturday beat pittsburgh thursday end

world play backtoback thought held good job wild coach bruce boudreau said ryan suter

score shorthand goal first period kuemper help wild kill three earli power play team [...]’

It is obviously not a proper English document, but the “meaning” can be

gleamed fairly easily.
29

One important thing to keep in mind: there is no29: In no small part, due to the size of

the document; with too few terms, it can

be harder to make sense of the processed

text.

secret pre-processing formula that will work with all corpora. Context

remains king/queen.

We can revisit the first game recap we considered (game 56), and look at

the new word counts. Originally, the eight most frequent terms (“the”,

“and”, “a”, “in”, “for”, “to”, “on”, “from”) were English stopwords; what

are the most frequent terms in the cleaned up corpus?

term_count <- freq_terms(clean_corp.AP.recaps[[56]][1],20)

plot(term_count)
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Document-Term and Term-Document Matrices

The DTM and TDM can also be obtained from tm; we show how to create

them from the clean game recaps corpus, starting with the DTM.

(AP.recaps_dtm <- tm::DocumentTermMatrix(clean_corp.AP.recaps))

<<DocumentTermMatrix (documents: 101, terms: 3293)>>

Non-/sparse entries: 22187/310406

Sparsity : 93%

Maximal term length: 15

Weighting : term frequency (tf)

Next, we convert AP.recaps_dtm to a matrix.

AP.recaps_m <- as.matrix(AP.recaps_dtm)

dim(AP.recaps_m)

[1] 101 3293

We can review a portion of the matrix (keep in mind that the default text

statistic is the term frequency 𝑡 𝑓 ).
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AP.recaps_m[79:84, 1005:1010]

Terms

Docs ferland fewer fibula field fifth fifthround

79 0 0 0 0 1 0

80 0 0 0 0 0 0

81 0 0 0 0 0 0

82 0 0 0 0 0 0

83 0 0 0 0 0 0

84 0 0 0 0 0 0

We can do the same thing for the TDM.

(AP.recaps_tdm <- tm::TermDocumentMatrix(clean_corp.AP.recaps))

AP.recaps_m <- as.matrix(AP.recaps_tdm)

dim(AP.recaps_m)

AP.recaps_m[1005:1010, 79:84]

<<TermDocumentMatrix (terms: 3293, documents: 101)>>

Non-/sparse entries: 22187/310406

Sparsity : 93%

Maximal term length: 15

Weighting : term frequency (tf)

[1] 3293 101

Docs

Terms 79 80 81 82 83 84

ferland 0 0 0 0 0 0

fewer 0 0 0 0 0 0

fibula 0 0 0 0 0 0

field 0 0 0 0 0 0

fifth 1 0 0 0 0 0

fifthround 0 0 0 0 0 0

Barchart of Frequent Terms with tm

These objects can be used to provide a BoW interpretation of the Senators’

2016-2017 season (regular season and playoffs).

We start by computing how often the terms appear in the entire cor-

pus.

term_frequency <- rowSums(AP.recaps_m)

Next, we sort the term frequencies in descending order.

term_frequency <- sort(term_frequency, decreasing=TRUE)

The top 20 most common words in the cleaned corpus are shown below

(should we expect ties, as was the case when we looked at a single game

recap?).
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term_frequency[1:20]

game score period anderson

843 497 370 237

senat said just third

720 493 277 233

goal second night get

584 417 257 230

play first two made

512 402 240 218

ottawa shot season point

502 398 238 200

We can plot a barchart of the 20 most common words, or a word cloud of

the (at most) 100 most common words.

barplot(term_frequency[1:20], col = "tan", las = 2)

word_freqs = data.frame(term_frequency)

word_freqs$term = rownames(word_freqs)

word_freqs = word_freqs[,c(2,1)]

colnames(word_freqs)=c("term","num")

wordcloud::wordcloud(word_freqs$term, word_freqs$num, max.words=100, colors="red")

In practice, we already know that the corpus’ documents are Ottawa

Senators hockey game recaps, so we can remove frequent terms that do

not add a lot of information due to the context.

clean_corpus_Sens <- function(corpus){

corpus <- tm::tm_map(corpus, content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)
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corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en"), "game", "first",

"second", "third", "Ottawa", "Senators"))

return(corpus)

}

clean_corp2.AP.recaps <- clean_corpus_Sens(AP.recaps.corpus)

AP.recaps2_tdm <- tm::TermDocumentMatrix(clean_corp2.AP.recaps)

AP.recaps2_m <- as.matrix(AP.recaps2_tdm)

term_frequency2 <- rowSums(AP.recaps2_m)

term_frequency2 <- sort(term_frequency2, decreasing=TRUE)

barplot(term_frequency2[1:20], col = "tan", las = 2)

word_freqs2 = data.frame(term_frequency2)

word_freqs2$term = rownames(word_freqs2)

word_freqs2 = word_freqs2[,c(2,1)]

colnames(word_freqs2)=c("term","num")

wordcloud::wordcloud(word_freqs2$term, word_freqs2$num, max.words=100, colors="red")

Do we get a better sense for how the season went? Assuming that you

knew nothing about how things played out, would you be able to “predict”

how close to winning the Stanley Cup the team came?

Finally, we will try to see if the recaps can help us determine the key

players in the Senators’ season.

keep=c("anderson","borowiecki","boucher","brassard","burrows","ceci","chabot","chiasson",

"claesson","condon","didomenico","drieger","hammond","hoffman","jokipakka","karlsson",

"lazar","macarthur","mccormick","methot","moore","pageau","phaneuf","puempel","pyatt",

"ryan","ryans","smith","stalberg","stone","white","wideman","wingels")
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word_freqs3 = word_freqs2[word_freqs2$term %in% keep, ]

barplot(term_frequency2[word_freqs2$term %in% keep], col = "tan", las = 2)

wordcloud::wordcloud(word_freqs3$term, word_freqs3$num, max.words=100, colors="red")

The beauty of the BoW approach is that even without any knowledge of

the sport, it is rather straightforward to determine the players/personnel

who were instrumental to the team’s success that year.

27.4.2 Shakespeare vs. Marlowe

In this example, we introduce the basics of tidy text mining using the

tidytext library in R, which shares syntax with H. Wickham’s popular

tidyverse suite of packages, which includes ggplot2, a powerful graphic

library (see Chapter 1 and [9, ch. 13]).

Following [39], we will work with:

a selection of Shakespeare’s plays,

a selection of Christopher Marlowe’s play, and

the Sens game recaps we work with in the preceding example.

The tidytext format (as do the other tidy formats) rely on the program-

ming concept of pipelines.

The Pipeline Operator |>

(This section is a repeat of Section 1.4.1)

R is a functional language, which means that it uses nested parentheses,

which can make code difficult to read. The pipeline operator |> (for-

merly %>%) and the dplyr package can be used to remedy the situation.

Wickham
30

provided an example to illustrate how it works: 30: See [46] for everything there is to know

about pipelines and tidy data.
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hourly_delay <- filter(

summarise(

group_by(

filter(

flights,

!is.na(dep_delay)

),

date, hour

),

delay = mean(dep_delay),

n = n()

),

n > 10

)

Without necessarily knowing how each of the internal functions works,

we can still get a sense for what the overall nested structure does, and

realize (albeit, with a fair amount of work) that the basic object on which

we operate is the flights data frame.

The pipeline operator |> removes the need for nesting function calls, in

favor of passing data from one function to the next:

library(dplyr)

hourly_delay <- flights |>

filter(!is.na(dep_delay)) |>

group_by(date, hour) |>

summarise(delay = mean(dep_delay),n = n()) |>

filter(n > 10)

It is now obvious that the flights data frame is the base object, for instance

– the gap between pseudo-code and “code that runs” is significantly

reduced. The beauty of this approach is that the block of code can now

be ‘read’ directly: the flights data frame is

1. filtered (to remove missing values of the dep_delay variable);

2. grouped by hours within days;

3. the mean delay is calculated within groups, and

4. the mean delay is returned for those hours with more than n >

10 flights.

The pipeline rules are simple – the object immediately to the left of the

pipeline is passed as the first argument to the function immediately to

its right:

data |> function is equivalent to function(data)

data |> function(arg=value) is equivalent to function(data,

arg=value)

For instance:

library(dplyr)

swiss |> summary()
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Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality threshold

Min. : 2.150 Min. :10.80 Min. :0.0000

1st Qu.: 5.195 1st Qu.:18.15 1st Qu.:1.0000

Median : 15.140 Median :20.00 Median :1.0000

Mean : 41.144 Mean :19.94 Mean :0.9362

3rd Qu.: 93.125 3rd Qu.:21.70 3rd Qu.:1.0000

Max. :100.000 Max. :26.60 Max. :1.0000

Themagrittrvignette provides additional information on themagrittr

package, on which dplyr is based.

Tidy Text Structure

Tidy data has specific structure:
31

31: See 1.4 for more information.

each column represents a unique variable;

each row represents a unique observation;

each table represents a unique type of observational unit.

Tidy text is a table with one token (single word, 𝑛−gram, sentence, para-

graph) per row, assuming that words have been tokenized to commonly-

used units of text.

As an example, consider the following haiku by master Matsuo Basho.

haiku <- c(’In the twilight rain’,

’these brilliant-hued hibiscus -’,

’A lovely sunset’)

haiku

[1] "In the twilight rain" "these brilliant-hued hibiscus -"

[3] "A lovely sunset"

We turn it into a data frame.

(haiku.df <- data.frame(text=haiku,

stringsAsFactors = FALSE))

text

1 In the twilight rain

2 these brilliant-hued hibiscus -

3 A lovely sunset

In the data.frame() call above, the last parameter is important as we

want to be able to separate the text into constituents tokens (words). We

can unnest the tokens of the haiku as follows.

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html
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library(tidytext)

haiku.df |> unnest_tokens(word,text)

word

1 in

2 the

3 twilight

4 rain

5 these

6 brilliant

7 hued

8 hibiscus

9 a

10 lovely

11 sunset

The tidytext function unnest_token() separates the tokens (words, in

this example), strips away the punctuation, and converts to lowercase.

Tidy Text Flow

In the tidy text framework, we generally:

1. start with text data;

2. unnest the tokens to produce the first iteration of tidy text;

3. clean the tidy text as required;

4. summarize the tidy text into a first iteration of summarized text;

5. clean and analyze the summarized text, and

6. visualize and present the text mining results.

Tidy Text Analysis

We illustrate the flow with the help of some of Shakespeare’s plays,

available at the Gutenberg Project (Project ID – Romeo and Juliet: 1112;

Hamlet: 1524; Macbeth: 2264; A Midsummer Night’s Dream: 2242, etc.).

library(gutenbergr)

will_shakespeare <- gutenberg_download(c(1790,2240,2242,

2243,2246,2250,2251,2253,2262,

2264,2267,2268,23042,23046))

head(will_shakespeare,20)

# A tibble: 20 x 2

gutenberg_id text

<int> <chr>

1 1790 "*******************************************************************"

2 1790 "THIS EBOOK WAS ONE OF PROJECT GUTENBERG’S EARLY FILES PRODUCED AT A"

3 1790 "TIME WHEN PROOFING METHODS AND TOOLS WERE NOT WELL DEVELOPED. THERE"

4 1790 "IS AN IMPROVED EDITION OF THIS TITLE WHICH MAY BE VIEWED AS EBOOK"

5 1790 "(#1528) at https://www.gutenberg.org/ebooks/1528"

6 1790 "*******************************************************************"

http://www.gutenberg.org/ebooks/search/?query=Shakespeare
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7 1790 ""

8 1790 ""

9 1790 "Troilus and Cressida, World Library edition, several typos fixed."

10 1790 ""

11 1790 "This Etext file is presented by Project Gutenberg, in"

12 1790 "cooperation with World Library, Inc., from their Library of the"

13 1790 "Future and Shakespeare CDROMS. Project Gutenberg often releases"

14 1790 "Etexts that are NOT placed in the Public Domain!!"

15 1790 ""

16 1790 "*This Etext has certain copyright implications you should read!*"

17 1790 ""

18 1790 "<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM"

19 1790 "SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC., AND IS"

20 1790 "PROVIDED BY PROJECT GUTENBERG WITH PERMISSION. ELECTRONIC AND"

Not the most stirring literature, to be sure. We now produce (and clean)

the corresponding tidy text dataset.

library(stringr) # necessary to use str_extract

tidy_ws <- will_shakespeare |>

unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |> # removing stray punctuation, etc.

dplyr::anti_join(stop_words) |> # removing the heading business

na.omit() # removing NAs

head(tidy_ws)

# A tibble: 6 x 2

gutenberg_id word

<int> <chr>

1 1790 ebook

2 1790 project

3 1790 gutenberg’s

4 1790 files

5 1790 produced

6 1790 time

We can easily produce a word count for this data frame.

library(ggplot2)

tidy_ws |> dplyr::count(word, sort=TRUE)

tidy_ws |> dplyr::count(word, sort=TRUE) |>

dplyr::filter(n > 500) |>

dplyr::mutate(word=reorder(word,n)) |>

ggplot(aes(word,n)) +

geom_col() +

xlab("Frequent words in selected Shakespeare plays") +

ylab("Word count") +

coord_flip()
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# A tibble: 20,297 x 2

word n

<chr> <int>

1 thou 2014

2 haue 1718

3 thy 1311

4 thee 1185

5 enter 1030

6 lord 999

7 hath 717

8 king 703

9 sir 700

10 loue 593

# ... with 20,287 more rows

Shakespeare and Marlowe

We can do the same for Christopher Marlowe, a contemporary of Shake-

speare.

kit_marlowe <-gutenberg_download(c(901,1094,1496,1589,

16169,18781,20288))

tidy_km <- kit_marlowe |> unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |>

dplyr::anti_join(stop_words) |>

na.omit() # remove NAs

head(tidy_km)
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# A tibble: 6 x 2

gutenberg_id word

<int> <chr>

1 901 jew

2 901 malta

3 901 christopher

4 901 marlowe

5 901 edited

6 901 rev

Next, we look at both of these datasets simultaneously. In order to do so,

we build a word count data set with the help of the pipeline operator.

One of its advantages is that we can build the query sequentially and

easily see the output at various stages.

We start by binding tidy_ws and tidy_km into a single data frame.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe"))

head(word_count)

tail(word_count)

# A tibble: 6 x 3

gutenberg_id word author

<int> <chr> <chr>

1 1790 ebook WillShakespeare

2 1790 project WillShakespeare

3 1790 gutenberg’s WillShakespeare

4 1790 files WillShakespeare

5 1790 produced WillShakespeare

6 1790 time WillShakespeare

# A tibble: 6 x 3

gutenberg_id word author

<int> <chr> <chr>

1 20288 mine KitMarlowe

2 20288 eyes KitMarlowe

3 20288 witness KitMarlowe

4 20288 grief KitMarlowe

5 20288 innocency KitMarlowe

6 20288 exeunt KitMarlowe

Next, we execute a word count for each of the authors (note the sorting

of the outputs, and the new field n).

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author)

head(word_count)

tail(word_count)
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# A tibble: 6 x 3

# Groups: author [1]

author word n

<chr> <chr> <int>

1 KitMarlowe abandon 3

2 KitMarlowe abandon’d 1

3 KitMarlowe abandons 1

4 KitMarlowe abate 2

5 KitMarlowe abated 1

6 KitMarlowe abb 1

# A tibble: 6 x 3

# Groups: author [1]

author word n

<chr> <chr> <int>

1 WillShakespeare zeal 2

2 WillShakespeare zeale 9

3 WillShakespeare zeales 1

4 WillShakespeare zealous 1

5 WillShakespeare zenith 1

6 WillShakespeare zip 1

In order to use the tidy approach, we need word_count to have a unique

value for each word for each author. Note that the size of each of the author

datasets is different, as we are using a higher number of Shakespeare

plays. Rather than look at raw counts (which would naturally favour the

Bard’s output), we consider proportions:

number of occurrences of a specific term in an author’s dataset

total number of terms in an author’s dataset

.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n))

head(word_count)

tail(word_count)

# A tibble: 6 x 4

# Groups: author [1]

author word n proportion

<chr> <chr> <int> <dbl>

1 KitMarlowe abandon 3 0.0000513

2 KitMarlowe abandon’d 1 0.0000171

3 KitMarlowe abandons 1 0.0000171

4 KitMarlowe abate 2 0.0000342

5 KitMarlowe abated 1 0.0000171

6 KitMarlowe abb 1 0.0000171

# A tibble: 6 x 4

# Groups: author [1]

author word n proportion
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<chr> <chr> <int> <dbl>

1 WillShakespeare zeal 2 0.0000136

2 WillShakespeare zeale 9 0.0000611

3 WillShakespeare zeales 1 0.00000679

4 WillShakespeare zealous 1 0.00000679

5 WillShakespeare zenith 1 0.00000679

6 WillShakespeare zip 1 0.00000679

We can now remove the raw counts and focus solely on the proportions.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n))

word_count

# A tibble: 31,489 x 3

# Groups: author [2]

author word proportion

<chr> <chr> <dbl>

1 KitMarlowe abandon 0.0000513

2 KitMarlowe abandon’d 0.0000171

3 KitMarlowe abandons 0.0000171

4 KitMarlowe abate 0.0000342

5 KitMarlowe abated 0.0000171

6 KitMarlowe abb 0.0000171

...

31484 WillShakespeare zeal 0.0000136

31485 WillShakespeare zeale 0.0000611

31486 WillShakespeare zeales 0.00000679

31487 WillShakespeare zealous 0.00000679

31488 WillShakespeare zenith 0.00000679

31489 WillShakespeare zip 0.00000679

Next, we reshape word_count to facilitate the analysis: each word is now

represented by a row, and the proportion of the time it appears in each

author’s writings is shown in the corresponding column.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n)) |>

tidyr::spread(author,proportion)

word_count

# A tibble: 25,020 x 3

word KitMarlowe WillShakespeare

<chr> <dbl> <dbl>

1 a’kin NA 0.00000679

2 a’th NA 0.0000814
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3 a’that NA 0.00000679

4 abandon 0.0000513 0.0000136

5 abandon’d 0.0000171 0.0000136

6 abandons 0.0000171 NA

7 abash’d NA 0.00000679

8 abate 0.0000342 0.0000475

9 abated 0.0000171 NA

10 abates NA 0.00000679

# ... with 25,010 more rows

We can easily see what proportion of each author’s output is not found

in the other’s.

# % of Shakespeare’s output terms not in Marlowe’s

(WS_nKM <- sum(word_count$WillShakespeare[is.na(word_count$KitMarlowe)]))

# % of Marlowe’s output terms not in Shakespeare’s

(KM_nWS <- sum(word_count$KitMarlowe[is.na(word_count$WillShakespeare)]))

[1] 0.3092499

[1] 0.2497649

Do these proportions seem high, given that they were contemporaries?

Finally, we re-organize the table for use with ggplot() (strictly-speaking,

this step is not mandatory, but the charts we produce will look nicer).

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘WillShakespeare‘)

Here is a logarithmic scale scatterplot of word usage by both authors (for

words that were used by both).

library(scales)

ggplot(word_count, aes(x = proportion, y = ‘KitMarlowe‘,

color = abs(‘KitMarlowe‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "red", high = "gray75") +

theme(legend.position="none") +

labs(y = "Kit Marlowe", x = "Will Shakespeare")

Warning messages:

1: Removed 24363 rows containing missing values

(geom_point).

2: Removed 24205 rows containing missing values

(geom_text).
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Words near the straight line are used with roughly the same frequency

by both authors. For instance: “king”, “thou”, and “thy” in the high-

frequency spectrum, and “angry”, “alas”, and “behold” in the low-

frequency spectrum.

Words away from the straight line are used more frequently by one of the

authors: “lady” and “achilles” seem to be used relatively more often by

Shakespeare than by Marlowe, while “aeneas” is in the opposite situation

(these terms are specific to plays).

The colour is related to the (real) distance between the relative frequencies

of a term for each author (red is near, gray is far) – the logarithmic scales

of both axes explain the shape of the red cloud (large at the bottom, thin

at the top).
32

32: Do you see why this needs to be the

case?

Note the presence of “armes”, “arms”, and “armed”, or of “love” and

“loue” – what does that tell us about the text (and the English used)?

Should we be surprised about the prevalence of terms like “enter”, “exit”,

and “exeunt”?
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Finally, let’s see if we can quantify the similarity in word usage.

cor.test(data = word_count, ~ proportion + ‘KitMarlowe‘)

Pearson’s product-moment correlation

data: proportion and KitMarlowe

t = 89.335, df = 6467, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7321162 0.7539396

sample estimates:

cor

0.7432256

There’s a fairly strong correlation (0.74) between the relative term fre-

quencies for the two wordsmiths (among those terms which are found

in both text outputs – recall KM_nWS and WS_nKM). That should not be

entirely unexpected, since they were contemporaries: one would naïvely

predict that the depth of their vocabulary and the way they deployed it

would be linked, to some extent.

But without comparisons to other texts, it is difficult to really put this

value in perspective.

Shakespeare and Sens Game Recaps

Let’s see how Shakespeare and Marlowe compare to a modern body of

work, the NHL Senators’ game recaps from the previous section.

recaps <- read.csv(file="Recap_data.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)

AP.recaps <- recaps$AP_Recap

recaps.df <- data.frame(text=AP.recaps, stringsAsFactors = FALSE)

tidy_AP <- recaps.df |>

tidytext::unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |>

dplyr::anti_join(stop_words) |>

na.omit() # remove NAs

head(tidy_AP) # inspect

word_count_2 <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_AP,author="AP_recaps")) |>

dplyr::count(author,word) |>

dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |>

dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘WillShakespeare‘)
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word_count_3 <- dplyr::bind_rows(dplyr::mutate(tidy_km,author="KitMarlowe"),

dplyr::mutate(tidy_AP,author="AP_recaps")) |>

dplyr::count(author,word) |>

dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |>

dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘KitMarlowe‘)

ggplot(word_count_2, aes(x = proportion, y = ‘AP_recaps‘,

color = abs(‘AP_recaps‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "blue", high = "gray75") +

theme(legend.position="none") +

labs(y = "AP Recaps", x = "Will Shakespeare")

ggplot(word_count_3, aes(x = proportion, y = ‘AP_recaps‘,

color = abs(‘AP_recaps‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "green", high = "gray75") +

theme(legend.position="none") +

labs(y = "AP Recaps", x = "Kit Marlowe")

We can see the proportion of terms not found in the other corpora.

# % of Shakespeare’s terms not in the game recaps

(WS_nAP <- sum(word_count_2$proportion[is.na(word_count_2$AP_recaps)]))
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# % of game recaps’ terms not in the selected Shakespeare plays

(AP_nWS <- sum(word_count_2$AP_recaps[is.na(word_count_2$proportion)]))

# % of Shakespeare’s terms not in the game recaps

(KM_nAP <- sum(word_count_3$proportion[is.na(word_count_3$AP_recaps)]))

# % of game recaps’ terms not in the selected Marlowe plays

(AP_nKM <- sum(word_count_3$AP_recaps[is.na(word_count_3$proportion)]))

[1] 0.8026031

[1] 0.4804179

[1] 0.7732845

[1] 0.5588203

The proportions are much higher than when comparing Marlowe’s and

Shakespeare’s outputs. In light of the differences in terms of topics,

style, and linguistic drift over the centuries, should any of these be

surprising?

The corresponding correlations are shown below.

cor.test(data = word_count_2, ~ proportion + ‘AP_recaps‘)

cor.test(data = word_count_3, ~ proportion + ‘AP_recaps‘)

Pearson’s product-moment correlation

data: proportion and AP_recaps

t = 2.8059, df = 1377, p-value = 0.005089

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.02270094 0.12767835

sample estimates:

cor

0.07539856

Pearson’s product-moment correlation

data: proportion and AP_recaps

t = 1.2599, df = 1142, p-value = 0.208

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.02074664 0.09501030

sample estimates:

cor

0.03725681

Again, it should come as no surprise that the recap writers do not use

English in the same BoW way that Shakespeare and Marlowe did.

It would be interesting to see if these results are stable under a different

subset of Shakespeare and Marlowe plays.
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𝑛−Grams

Up to this point, we have been using word, term, token, unit interchange-

ably when analyzing text, as befits the BoW approach.

It’s not too difficult to think of applications where the basic numerical

unit is not the relative frequency (or tf-idf) of single words, however, but

the links between 2 or more words, in succession or in co-occurrence.

Rather than tokenize some text by words, we can tokenize it by series of

𝑛 consecutive words (also called 𝑛−grams).

In what follows, we focus on 𝑛 = 2. Are there interesting bigrams in Shake-

speare’s plays? What would we expect his common bigrams to be?

tidy_ws.2 <- will_shakespeare |>

tidytext::unnest_tokens(bigram,text,token="ngrams",n=2) |>

dplyr::mutate(bigram = stringr::str_extract(bigram,"[0-9a-zA-Z’\ ]+")) |>

dplyr::count(bigram,sort=TRUE) |>

na.omit() # produce a count and sort on decreasing frequency

tidy_ws.2

# A tibble: 143,344 x 2

bigram n

<chr> <int>

1 i am 671

2 in the 636

3 my lord 604

4 i will 584

5 of the 581

6 to the 528

7 i haue 517

8 it is 424

9 that i 319

10 and the 305

11 to be 304

12 and i 287

13 is the 284

14 i would 256

15 of my 253

16 i know 244

17 i do 240

18 you are 234

19 if you 222

20 is not 220

# ... with 143,324 more rows

There are a lot more bigrams than there were individual terms, which

makes sense from a combinatorial perspective. At first glance, among

the top 10 most frequent bigrams, only one conveys even a sliver of

information: “my lord”. Everything else is stopword material.

However, what about the 11th most frequent bigram? In a general context,

“to be” is a stopword bigram – but there is at least a few specific instance
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in the Shakespearean context where that specific bigram is emphatically

not just a "stopword".
33

33: “To be, or not to be, that is the ques-

tion:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous for-

tune,

Or to take Arms against a Sea of troubles,

And by opposing end them: to die, to sleep

No more; and by a sleep, to say we end

The heart-ache, and the thousand natural

shocks

That Flesh is heir to?

a − Hamlet (Act 3, Scene 1)

Removing bigram stopwords is simple, although not as straigthforward

as in the unigram case:

1. split the two members of the bigrams into 2 columns;

2. verify if each, separately, is a regular stopword, and

3. remove the bigrams for which one of the components is a stopword.

For the sake of this exercise, let’s also remove words related to the printing

business, and theatre terms.

word = c("gutenberg","shakespeare","","etext","1990","1993","public","print","copies"

,"membership","commercial","commercially","electronic","download","distribution"

,"ff","f1","f2","f3","f4","NA","collier","ms","cap","txt","zip"

,"library","printed", "text","editions"

,"executive", "pobox", "fees", "million", "ascii", "legal", "61825", "2782"

,"director", "machine","readable","carnegie","mellon","university"

,"exit", "exeunt", "enter", "scene", "act", "folio", "dramatis"

,"mine","tis", "thine","thy", "thou","art","hast", "shalt","dost","thee"

,"act_4","act_1","act_2","act_3","act_5","sc_1","sc_2","sc_3","sc_4","sc_5"

,"sc_6","sc_7","sc_8","sc_9","sc_10","sc_11")

lexicon = rep("modern",length(word)) # let’s call it the modern lexicon

addition = data.frame(word,lexicon)

stop_words_ws = rbind(stop_words,addition)

tidy_ws.2_cleaned <- tidy_ws.2 |>

tidyr::separate(bigram, c("FirstTerm","SecondTerm"), sep=" ") |>

dplyr::filter(!FirstTerm %in% stop_words_ws$word) |>

dplyr::filter(!SecondTerm %in% stop_words_ws$word)

tidy_ws.2_cleaned <- tidy_ws.2_cleaned[!is.na(tidy_ws.2_cleaned$FirstTerm) &

!is.na(tidy_ws.2_cleaned$SecondTerm), ]

tidy_ws.2_cleaned <- tidy_ws.2_cleaned |>

tidyr::unite(bigram,FirstTerm,SecondTerm, sep=" ")

tidy_ws.2_cleaned

# A tibble: 31,721 x 2

bigram n

<chr> <int>

1 haue beene 32

2 sir iohn 30

3 ha ha 27

4 om pope 27

5 anon conj 23

6 haue heard 23

7 haue lost 22

8 haue seene 22

9 noble lord 21

10 hath beene 17

# ... with 31,711 more rows

Other bigram and 𝑛−gram ideas can be found in Section 27.5.
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27.4.3 The Play’s the Thing

In this section, we will take a more in-depth look at text visualizations,

which play a role just as important in text analysis as visualizations do

in numerical data science. We are somewhat hampered by the lack of

numerical values, but there are workarounds.

We will work with a set of Shakespearean plays, categorized into come-
dies, tragedies, and histories. We will use the tm and qdap libraries in R,

among others.

Loading the Data

We start by loading the data into three corpora.

corpus_C <- tm::Corpus(tm::DirSource("ShakespeareComedies/"),

readerControl=list(language="lat"))

corpus_T <- tm::Corpus(tm::DirSource("ShakespeareTragedies/"),

readerControl=list(language="lat"))

corpus_H <- tm::Corpus(tm::DirSource("ShakespeareHistories/"),

readerControl=list(language="lat"))

summary(corpus_C)

summary(corpus_T)

summary(corpus_H)

# corpus C

Length Class Mode

A_Midsummer_Nights_Dream_first_pass.txt 2 PlainTextDocument list

Alls_Well_That_Ends_Well_first_pass.txt 2 PlainTextDocument list

As_You_Like_It_first_pass.txt 2 PlainTextDocument list

Cymbeline_first_pass.txt 2 PlainTextDocument list

Loves_Labours_Lost_first_pass.txt 2 PlainTextDocument list

Measure_for_Measure_first_pass.txt 2 PlainTextDocument list

Much_Ado_About_Nothing_first_pass.txt 2 PlainTextDocument list

Pericles_Prince_of_Tyre_first_pass.txt 2 PlainTextDocument list

Taming_of_the_Shrew_first_pass.txt 2 PlainTextDocument list

The_Comedy_of_Errors_first_pass.txt 2 PlainTextDocument list

The_Merchant_of_Venice_first_pass.txt 2 PlainTextDocument list

The_Merry_Wives_of_Windsor_first_pass.txt 2 PlainTextDocument list

The_Tempest_first_pass.txt 2 PlainTextDocument list

Troilus_and_Cressida_first_pass.txt 2 PlainTextDocument list

Twelfth_Night_first_pass.txt 2 PlainTextDocument list

Two_Gentlemen_of_Verona_first_pass.txt 2 PlainTextDocument list

Winters_Tale_first_pass.txt 2 PlainTextDocument list

# corpus_T

Length Class Mode

Antony_and_Cleopatra_first_pass.txt 2 PlainTextDocument list

Coriolanus_first_pass.txt 2 PlainTextDocument list

Hamlet_first_pass.txt 2 PlainTextDocument list

Julius_Caesar_first_pass.txt 2 PlainTextDocument list

King_Lear_second_pass.txt 2 PlainTextDocument list

Macbeth_first_pass.txt 2 PlainTextDocument list
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Othello_first_pass.txt 2 PlainTextDocument list

Romeo_and_Juliet_first_pass.txt 2 PlainTextDocument list

Timon_of_Athens_first_pass.txt 2 PlainTextDocument list

Titus_Andronicus_first_pass.txt 2 PlainTextDocument list

# corpus_H

Length Class Mode

Henry_IV_part_1_first_pass.txt 2 PlainTextDocument list

Henry_IV_part_2_first_pass.txt 2 PlainTextDocument list

Henry_V_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_1_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_2_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_3_first_pass.txt 2 PlainTextDocument list

Henry_VIII_first_pass.txt 2 PlainTextDocument list

King_John_first_pass.txt 2 PlainTextDocument list

Richard_II_first_pass.txt 2 PlainTextDocument list

Richard_III_first_pass.txt 2 PlainTextDocument list

Cleaning the Data

Next, we build a cleaning function for the text and apply it to each corpus.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument, language="english")

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords,

c(tm::stopwords("english"),

c("I", "and", "the", "that", "thou", "thee", "thi", "â")))

return(corpus)

}

clean_C = clean_corpus(corpus_C)

clean_T = clean_corpus(corpus_T)

clean_H = clean_corpus(corpus_H)

We find the 20 most frequent terms in each corpus.

term_count_C <- qdap::freq_terms(clean_C,20)

term_count_T <- qdap::freq_terms(clean_T,20)

term_count_H <- qdap::freq_terms(clean_H,20)

plot(term_count_C)

plot(term_count_T)

plot(term_count_H)
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comedies tragedies histories

Basic Statistics

We can also take a look at some basic statistics regarding the number of

characters (letters, not people) and the number of words in each play.

length_of_plays_char_C <- vector(mode="numeric", length=17)

for(j in 1:17){length_of_plays_char_C[j]=nchar(clean_C[[j]][1])}

hist(length_of_plays_char_C, freq=F, main="Distribution of # of char in Shakespeare’s Comedies")

summary(length_of_plays_char_C)

length_of_plays_char_T <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_char_T[j]=nchar(clean_T[[j]][1])}

hist(length_of_plays_char_T, freq=F, main="Distribution of # of char in Shakespeare’s Tragedies")

summary(length_of_plays_char_T)

length_of_plays_char_H <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_char_H[j]=nchar(clean_H[[j]][1])}

hist(length_of_plays_char_H, freq=F, main="Distribution of # of char in Shakespeare’s Histories")

summary(length_of_plays_char_H)

length_of_plays_word_C <- vector(mode="numeric", length=17)

for(j in 1:17){length_of_plays_word_C[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_C[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_C, freq=F, main="Distribution of # of words in Shakespeare’s Comedies")

summary(length_of_plays_word_C)

length_of_plays_word_T <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_word_T[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_T[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_T, freq=F, main="Distribution of # of words in Shakespeare’s Tragedies")

summary(length_of_plays_word_T)

length_of_plays_word_H <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_word_H[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_H[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_H, freq=F, main="Distribution of # of words in Shakespeare’s Histories")

summary(length_of_plays_word_H)
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# summary(length_of_plays_char_C)

Min. 1st Qu. Median Mean 3rd Qu. Max.

47368 61656 70294 69295 74133 91107

# summary(length_of_plays_char_T)

Min. 1st Qu. Median Mean 3rd Qu. Max.

62703 67876 82889 79677 87843 100786

# summary(length_of_plays_char_H)

Min. 1st Qu. Median Mean 3rd Qu. Max.

71811 78630 83089 84155 89740 99953

# summary(length_of_plays_word_C)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6930 9056 10198 10090 10849 13260

# summary(length_of_plays_word_T)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9301 10246 12360 11759 12905 14718

# summary(length_of_plays_word_H)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10488 11535 12142 12270 13089 14475
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Term-Document Matrices

We convert the corpora to TDM and remove terms that are sparse (too

infrequent).

# Create TDMs

C_tdm <- tm::TermDocumentMatrix(clean_C)

T_tdm <- tm::TermDocumentMatrix(clean_T)

H_tdm <- tm::TermDocumentMatrix(clean_H)

# Remove sparse terms, with sparsity factor 75%

C_tdm <- tm::removeSparseTerms(C_tdm, 0.75)

T_tdm <- tm::removeSparseTerms(T_tdm, 0.75)

H_tdm <- tm::removeSparseTerms(H_tdm, 0.75)

# Print meta data

C_tdm

T_tdm

H_tdm

# Convert to matrices

C_m <- as.matrix(C_tdm)

T_m <- as.matrix(T_tdm)

H_m <- as.matrix(H_tdm)

<<TermDocumentMatrix (terms: 2945, documents: 17)>>

Non-/sparse entries: 29556/20509

Sparsity : 41%

Maximal term length: 12

Weighting : term frequency (tf)

<<TermDocumentMatrix (terms: 3491, documents: 10)>>

Non-/sparse entries: 20699/14211

Sparsity : 41%

Maximal term length: 12

Weighting : term frequency (tf)

<<TermDocumentMatrix (terms: 3757, documents: 10)>>

Non-/sparse entries: 22335/15235

Sparsity : 41%

Maximal term length: 14

Weighting : term frequency (tf)

Barcharts

Next, we produce barcharts of the 20 most-frequent (sparsity-removed)

terms in each corpus.

term_frequency_C <- rowSums(C_m)

term_frequency_T <- rowSums(T_m)

term_frequency_H <- rowSums(H_m)
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# Sort term_frequency in descending order

term_frequency_C <- sort(term_frequency_C, decreasing=TRUE)

term_frequency_T <- sort(term_frequency_T, decreasing=TRUE)

term_frequency_H <- sort(term_frequency_H, decreasing=TRUE)

# Plot a barchart of the 20 most common words

barplot(term_frequency_C[1:20], col = "tan", las = 2)

barplot(term_frequency_T[1:20], col = "tan", las = 2)

barplot(term_frequency_H[1:20], col = "tan", las = 2)

comedies tragedies histories

Word Clouds, Commonality Clouds, and Comparison Clouds

It isn’t always easy to read off the terms (we could also list them, of

course) or to get a sense for how the corpora differ from one another

with barcharts; word clouds (where the size of the word is linked to its

frequency in the text) can help.

# Create word_freqs

word_freqs_C = data.frame(term_frequency_C)

word_freqs_C$term = rownames(word_freqs_C)

word_freqs_C = word_freqs_C[,c(2,1)]

colnames(word_freqs_C)=c("term","num")

word_freqs_T = data.frame(term_frequency_T)

word_freqs_T$term = rownames(word_freqs_T)

word_freqs_T = word_freqs_T[,c(2,1)]

colnames(word_freqs_T)=c("term","num")

word_freqs_H = data.frame(term_frequency_H)

word_freqs_H$term = rownames(word_freqs_H)

word_freqs_H = word_freqs_H[,c(2,1)]

colnames(word_freqs_H)=c("term","num")

# Create wordclouds

wordcloud::wordcloud(word_freqs_C$term, word_freqs_C$num, max.words=100, colors="red")

wordcloud::wordcloud(word_freqs_T$term, word_freqs_T$num, max.words=100, colors="blue")

wordcloud::wordcloud(word_freqs_H$term, word_freqs_H$num, max.words=100, colors="black")
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comedies tragedies histories

To create commonality clouds and comparison clouds, we first create a

list of all (cleaned) words in the comedies, tragedies, and histories, from

the corpora clean_C, clean_T, and clean_H.

all_c = paste(clean_C[[1]][1],clean_C[[2]][1],clean_C[[3]][1],clean_C[[4]][1],

clean_C[[5]][1],clean_C[[6]][1],clean_C[[7]][1],clean_C[[8]][1],

clean_C[[9]][1],clean_C[[10]][1],clean_C[[11]][1],clean_C[[12]][1],

clean_C[[13]][1],clean_C[[14]][1],clean_C[[15]][1],clean_C[[16]][1],

clean_C[[17]][1],collapse=" ")

all_t = paste(clean_T[[1]][1],clean_T[[2]][1],clean_T[[3]][1],clean_T[[4]][1],

clean_T[[5]][1],clean_T[[6]][1],clean_T[[7]][1],clean_T[[8]][1],

clean_T[[9]][1],clean_T[[10]][1],collapse=" ")

all_h = paste(clean_H[[1]][1],clean_H[[2]][1],clean_H[[3]][1],clean_H[[4]][1],

clean_H[[5]][1],clean_H[[6]][1],clean_H[[7]][1],clean_H[[8]][1],

clean_H[[9]][1],clean_H[[10]][1],collapse=" ")

We join the terms as strings and put them into a single corpus.

ws_corpus = tm::VCorpus(tm::VectorSource(c(all_c,all_t,all_h))

tm::inspect(ws_corpus)

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 3

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 1178027

[[2]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 796779

[[3]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 841554
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Now we create a TDM for this corpus, which we cast as a matrix object

before printing the commonality clouds (words shared across the three

corpora), with 100, 200, and 500 words.

ws_tdm = tm::TermDocumentMatrix(ws_corpus)

colnames(ws_tdm) = c("Com.","Trag.","Hist.")

ws_m = as.matrix(ws_tdm)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 100)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 200)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 500)

100 words 200 words 500 words

Comparison clouds can be produced using the same syntax.

comp.colours = c("darkred","darkgreen","darkblue")

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 100)

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 200)

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 500)

100 words 200 words 500 words

Pyramid Plots

We can also produce pyramid plots by first finding the terms that are

common to any two corpora.
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common_words_CT = subset(ws_m, ws_m[,1] > 0 & ws_m[,2] > 0)

dim(common_words_CT)

head(common_words_CT)

common_words_CH = subset(ws_m, ws_m[,1] > 0 & ws_m[,3] > 0)

dim(common_words_CH)

head(common_words_CH)

common_words_TH = subset(ws_m, ws_m[,2] > 0 & ws_m[,3] > 0)

dim(common_words_TH)

head(common_words_TH)

# common_words_CT

[1] 6438 3

Docs

Terms Com. Trag. Hist.

abandon 2 3 0

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abhor 14 16 3

# common_words_CH

[1] 6325 3

Docs

Terms Com. Trag. Hist.

abandond 5 0 1

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abet 1 0 1

# common_words_TH

[1] 5702 3

Docs

Terms Com. Trag. Hist.

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abhor 14 16 3

abhorrd 5 4 1

The differences in the number of times each token is used in each corpora

can be computed as follows.

difference_CT = abs(common_words_CT[,1] - common_words_CT[,2])

difference_CH = abs(common_words_CH[,1] - common_words_CH[,3])

difference_TH = abs(common_words_TH[,2] - common_words_TH[,3])

Next, we bind these new counts to the respective common_word corpora,

and order them along the differences.

common_words_CT = cbind(common_words_CT,difference_CT)

common_words_CT = common_words_CT[order(common_words_CT[,4],decreasing=TRUE),]

common_words_CH = cbind(common_words_CH,difference_CH)

common_words_CH = common_words_CH[order(common_words_CH[,4],decreasing=TRUE),]

common_words_TH = cbind(common_words_TH,difference_TH)

common_words_TH = common_words_TH[order(common_words_TH[,4],decreasing=TRUE),]

If we want to plot the top 𝑛 = 30 words whose usage was the most

different in each pair of corpora, we proceed as follows.

n=30

top_df_CT = data.frame(x = common_words_CT[1:n,1], y = common_words_CT[1:n,2],

labels = rownames(common_words_CT[1:n,]))

top_df_CH = data.frame(x = common_words_CH[1:n,1], y = common_words_CH[1:n,3],

labels=rownames(common_words_CH[1:n,]))

top_df_TH = data.frame(x = common_words_TH[1:n,2], y = common_words_TH[1:n,3], l

abels=rownames(common_words_TH[1:n,]))

top_df_CT; top_df_CH; top_df_TH
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# top_df_CT

x y labels

2378 1300 will

1554 581 sir

1343 688 love

1369 818 good

1518 984 come

1454 964 shall

622 142 master

1159 700 well

921 476 one

973 552 man

940 534 ill

1161 759 now

909 540 say

26 380 caesar

922 587 know

830 499 hath

777 496 like

688 413 whi

447 180 ladi

424 164 ani

865 608 make

422 170 sweet

407 158 fair

13 262 rome

569 321 can

676 429 see

696 452 may

309 67 mistress

519 294 mine

537 316 think

# top_df_CH

x y labels

1554 434 sir

2378 1394 will

1343 451 love

317 1103 king

1518 798 come

1369 829 good

922 404 know

921 407 one

973 460 man

1159 650 well

900 1400 lord

622 186 master

940 513 ill

909 507 say

688 359 whi

1454 1154 shall

865 567 make

940 649 let

1161 880 now

447 171 ladi

36 310 franc

309 37 mistress

583 319 tis

306 44 fool

676 414 see

9 269 england

830 570 hath

412 152 veri

537 279 think

652 395 must

# top_df_TH

x y labels

231 1103 king

861 1400 lord

380 14 caesar

42 327 duke

27 310 franc

54 305 princ

31 269 england

688 451 love

262 25 rome

318 527 god

200 1 antoni

112 309 grace

4 194 john

964 1154 shall

984 798 come

1 187 edward

587 404 know

43 223 crown

483 319 tis

43 196 majesti

152 2 brutus

77 226 unto

581 434 sir

293 154 night

206 70 natur

236 368 day

157 28 doe

777 649 let

104 230 arm

176 298 blood

Finally, we produce the pyramid plots themselves for the common terms

that had the largest difference in usage for each pair of copora.

plotrix::pyramid.plot(top_df_CT$x,top_df_CT$y,labels=top_df_CT$labels,

gap=500,top.labels=c("Comedies", "Terms", "Tragedies"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)

plotrix::pyramid.plot(top_df_CH$x,top_df_CH$y,labels=top_df_CH$labels,

gap=500,top.labels=c("Comedies", "Terms", "Histories"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)

plotrix::pyramid.plot(top_df_TH$x,top_df_TH$y,labels=top_df_TH$labels,

gap=500,top.labels=c("Tragedies", "Terms", "Histories"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)
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27.4.4 Ham or Spam

In this example, we are going to use a classical SMS dataset where texts

have been classified as ham/spam in order to build a model which can

predict whether an incoming SMS is spam or ham based on its content.

Initializing the Environment

We will use the following R libraries:

tm for text mining functions;

qdap for some text processing functions;

e1071 for the naive Bayes and support vector machines methods;

dplyr for tidyverse processing;

tidytext for tidyverse analysis;

ggplot2 for tidyverse plotting, and

psych for regular plotting.

Importing and Exploring the Data

We load the dataset as usual.

ham.spam <- read.csv("SMSSpamCollection.csv", sep=",")

ham.spam$Msg <- as.character(ham.spam$Msg)

The dataset consists of 5574 observations and 3 variables/features: SMS

messages, length of the messages, and whether they are ham (+) or spam

(−).

str(ham.spam)

’data.frame’: 5574 obs. of 3 variables:

$ SpamOrHam: Factor w/ 2 levels "ham","spam": 1 1 2 1 1 2 1 1 2 2 ...

$ Msg : chr "Go until jurong point, crazy.. Available only in bugis n great world la ..." ...

$ length : int 111 29 155 49 61 148 77 160 158 154 ...
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We print a few SMS (one spam and one ham) to get a better idea as to the

contents of the text.

ham.spam$Msg[12]

ham.spam$Msg[4444]

[1] "SIX chances to win CASH! From 100 to 20,000 pounds txt>

CSH11 and send to 87575. Cost 150p/day, 6days, 16+

TsandCs apply Reply HL 4 info"

[1] "Dear i am not denying your words please"

No human would send the first SMS to another person – we all recognize

it as spam; the second one seems more legitimate – we have all had

conversations of this nature with our partners. The SMS labels confirms

the suspicion.

ham.spam$SpamOrHam[12]

ham.spam$SpamOrHam[4444]

[1] "spam"

[1] "ham"

What is the distribution of ham/spam messages in the dataset?

table(ham.spam$SpamOrHam)

prop.table(table(ham.spam$SpamOrHam))

ham spam

4827 747

ham spam

0.8659849 0.1340151

Before we dive right into text analysis, can we say anything about the SMS

categories just by looking at the lengths of the SMS? Are the examples

above representative of spam and ham messages?

Should we expect spam messages to be longer than ham messages, in

general? The distribution of message lengths is bimodal – does that mean

anything?

library(ggplot2)

ggplot(ham.spam, aes(length)) +

geom_histogram(binwidth=10)

ggplot(ham.spam, aes(length, fill = SpamOrHam)) +

geom_histogram(binwidth=10) +

facet_wrap(~SpamOrHam)
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There are more ham messages than spam messages in the dataset,

obviously but the height of the distributions is not as important as the

shape: in the absence of more information, if the SMS has 150 characters

or more, say, it would not be the most unreasonable thing in the world to

suspect that it could be spam... but the contents of the message also have

to count for something, right?

Creating the Corpus

In order to do text classification, we first need to prepare a document-term

matrix. The tm functionality from the previous examples does the trick.

(SMS.corpus <- tm::VCorpus(tm::VectorSource(ham.spam$Msg)))

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 5574

We take a quick peek at the first 4 entries to make sure that everything is

as it should be.

sapply(SMS.corpus[1:4], function(x){x$content})

[1] Go until jurong point, crazy.. Available only in bugis n great world la e buffet...

Cine there got amore wat...

[2] Ok lar... Joking wif u oni...

[3] Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121

to receive entry question(std txt rate)T&C’s apply 08452810075over18’s

[4] U dun say so early hor... U c already then say...
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Cleaning the Data

As is almost always the case, the next step is to clean the corpus. Note

that the order in which the cleaning steps are performed may affect the

final form of the cleaned corpus.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en")))

return(corpus)

}

SMS.corpus.clean <- clean_corpus(SMS.corpus)

sapply(SMS.corpus.clean[1:4], function(x){x$content})

[1] go jurong point crazi availabl onli bugi n great world la e buffet cine got amor wat

[2] ok lar joke wif u oni

[3] free entri wkli comp win fa cup final tkts st may text fa receiv entri questionstd

txt ratetc appli

[4] u dun say earli hor u c alreadi say

In the case of spam detection, there could be reasons why we might not

want to be too drastic at the cleaning stage: removing the numerals in

08452810075over18’s in the 3rd SMS, for instance, removes an important

indicator of spam.

Creating the DTM

We want to classify documents, so we need a DTM (and not a TDM)

representation of the text dataset on which to apply classifiers.

SMS.DTM <- tm::DocumentTermMatrix(SMS.corpus.clean)

tm::inspect(SMS.DTM[1:15,20:30])

<<DocumentTermMatrix (documents: 20, terms: 11)>>

Non-/sparse entries: 17/203

Sparsity : 92%

Maximal term length: 11

Weighting : term frequency (tf)

Sample :

Terms

Docs aaniy aaooooright aathilov aathiwher abbey abdomen abeg abelu aberdeen abi abil

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

Text Visualization

Before we start with classification proper, let us visualize the frequent

terms of both the spam and the ham classes.

spam.cloud <- which(ham.spam$SpamOrHam == "spam")

ham.cloud <- which(ham.spam$SpamOrHam == "ham")

wordcloud::wordcloud(SMS.corpus.clean[ham.cloud],

min.freq=50,colors="steelblue")

wordcloud::wordcloud(SMS.corpus.clean[spam.cloud],

min.freq=50,colors="darkred")

a ham SMS spam SMS a

We can also identify document-specific high-information terms using

the tf-idf weighting.

SMS_words <- ham.spam |>

tidytext::unnest_tokens(word,Msg) |>

dplyr::count(SpamOrHam,word, sort=TRUE) |>

dplyr::ungroup()
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SMS_distinctive <- SMS_words |>

tidytext::bind_tf_idf(word,SpamOrHam,n) |>

dplyr::arrange(desc(tf_idf)) |>

dplyr::mutate(word = factor(word,

levels = rev(unique(word)))) |>

dplyr::group_by(SpamOrHam) |>

dplyr::top_n(15,tf_idf) |> dplyr::ungroup()

head(SMS_distinctive)

# A tibble: 6 × 6

SpamOrHam word n tf idf tf_idf

<chr> <fct> <int> <dbl> <dbl> <dbl>

1 spam claim 113 0.00611 0.693 0.00424

2 spam prize 92 0.00498 0.693 0.00345

3 ham gt 318 0.00459 0.693 0.00318

4 ham lt 316 0.00456 0.693 0.00316

5 spam won 73 0.00395 0.693 0.00274

6 spam 150p 71 0.00384 0.693 0.00266

A simple visual identifies terms that are specific to spam/ham SMS.

library(ggplot2)

ggplot(SMS_distinctive, aes(word,tf_idf, fill = SpamOrHam)) +

geom_col(show.legend=TRUE) + labs(x=NULL, y="tf_idf") +

facet_wrap(~SpamOrHam) + coord_flip()
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Training/Testing Data

Classifiers need to be trained on a subset of the data and tested/evaluated

on the complement to avoid overfitting the model. There’s no steadfast

rule, but a 70%/30% split is often applied.
34

34: When attempting to replicate what

follows, remember that we did not set a

seed, and so that your results could be

somewhat different.ind = sample(1:nrow(ham.spam), size=0.7*nrow(ham.spam))

spam.train = subset(ham.spam[ind,], SpamOrHam == "spam")

ham.train = subset(ham.spam[ind,], SpamOrHam == "ham")

ham.spam.train.labels <- ham.spam[ind,]$SpamOrHam

ham.spam.test.labels <- ham.spam[-ind,]$SpamOrHam

We can verify that the training/testing sets are representative of the full

dataset (in terms of the target labels, at least).

prop.table(table(ham.spam.train.labels))

prop.table(table(ham.spam.test.labels))

prop.table(table(ham.spam$SpamOrHam))

ham.spam.train.labels

ham spam

0.8664445 0.1335555

ham.spam.test.labels

ham spam

0.8649133 0.1350867

ham spam

0.8659849 0.1340151

Next, we convert the training/testing messages to DTM and corpora.

SMS.DTM.train <- SMS.DTM[ind,]

SMS.DTM.test <- SMS.DTM[-ind,]

SMS.corpus.clean.train <- SMS.corpus.clean[ind]

SMS.corpus.clean.test <- SMS.corpus.clean[-ind]

We also need to select the features (in this case, the terms) to include in

the model – otherwise, there would be too much information to consider

and the curse of dimensionality rears is ugly head (see Chapter 23).

We can use the list of all terms that appear at least 10 times, say, in the

training messages, for instance.
35

35: Another approach could be to remove

sparse terms.

Freq.Terms <- tm::findFreqTerms(SMS.DTM.train,10)

SMS.DTM.Freq.Terms.train <- SMS.DTM.train[,Freq.Terms]

SMS.DTM.Freq.Terms.test <- SMS.DTM.test[,Freq.Terms]

length(Freq.Terms)

Freq.Terms[1:100]
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[1] 614

[1] ’crazi’ ’got’ ’great’ ’onli’ ’point’ ’wat’ ’world’ ’joke’ ’lar’ ’wif’ ’appli’ ’entri’

[13] ’final’ ’free’ ’may’ ’receiv’ ’text’ ’txt’ ’win’ ’wkli’ ’alreadi’ ’dun’ ’earli’ ’say’

[25] ’around’ ’dont’ ’goe’ ’live’ ’think’ ’though’ ’back’ ’freemsg’ ’fun’ ’hey’ ’like’

[36] ’now’ ’send’ ’still’ ’week’ ’word’ ’xxx’ ’brother’ ’even’ ’speak’ ’treat’ ’caller’

[47] ’copi’ ’friend’ ...

We also need to categorize the features so that the data can eventually

be fed into a naïve Bayes classifier, say; the absence of a frequent term

in a SMS message is denoted by "No", while it’s presence is denoted by

"Yes".

yes.no <- function(x){

y <- ifelse(x>0,1,0)

y <- factor(y,levels=c(0,1),labels=c("No","Yes"))

return(y)

}

The (reduced) training/testing sets thus look like:

SMS.train <- apply(SMS.DTM.Freq.Terms.train,2,yes.no)

SMS.test <- apply(SMS.DTM.Freq.Terms.test,2,yes.no)

head(SMS.train)

head(SMS.test)

# SMS.train

crazi got great onli point wat ... auction lei

3151 No No No No No No ... No No

1572 No Yes No No No No ... No No

3200 No No No No No Yes ... No No

1805 No No No No No No ... No No

1201 No No No No No No ... No No

534 No No No No No No ... No No

# SMS.text

crazi got great onli point wat ... auction lei

3 No No No No No No ... No No

7 No No No No No No ... No No

9 No No Yes No No No ... No No

11 No No No No No No ... No No

13 No No No No No No ... No No

14 No No No No No No ... No No

Naive Bayes Classifier

We now apply the naiveBayes() function from the R library e1071.
36

36: See Section 21.4.4 for details.

Notice the syntax: we apply naiveBayes to the training data SMS.train

and the target variable is the ham/spam label in the training subset

(ham.spam.train.labels). Thelaplace=1option instructsnaiveBayes()

to look "a little bit harder" into the data, while the CV=10 option selects

10 cross-validations replicates.
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SMS.classifier.NB <- e1071::naiveBayes(SMS.train,ham.spam.train.labels,laplace=1,CV=10)

summary(SMS.classifier.NB)

attributes(SMS.classifier.NB)

Length Class Mode

apriori 2 table numeric

tables 614 -none- list

levels 2 -none- character

isnumeric 614 -none- logical

call 5 -none- call

$names

’apriori’ ’tables’ ’levels’ ’isnumeric’ ’call’

$class

’naiveBayes’

We can now feed the testing data (SMS.test) into the model (SMS.classifier.NB)

with the help of the predict() function.

SMS.test.pred.NB <- predict(SMS.classifier.NB,

newdata = SMS.test)

table(SMS.test.pred.NB,ham.spam.test.labels)

prop.table(table(SMS.test.pred.NB,ham.spam.test.labels))

ham.spam.test.labels

SMS.test.pred.NB ham spam

ham 1444 26

spam 3 200

ham.spam.test.labels

SMS.test.pred.NB ham spam

ham 0.863120143 0.015540944

spam 0.001793186 0.119545726

These confusion matrices are not bad at all! Is there a difference in the

representations of mislabeled and sucessfully labeled test SMS?

Missed=SMS.test[which(SMS.test.pred.NB!=ham.spam.test.labels),]

Succesful=SMS.test[which(SMS.test.pred.NB==ham.spam.test.labels),]

table(Missed)

table(Succesful)

Missed

No Yes

17653 153

Succesful

No Yes

1000706 8710

The ratios are basically the same in both instances. We can also take a

look at the original text of a few mislabeled and successfully labeled test

SMS.
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head(ham.spam[as.numeric(rownames(Missed)),]$Msg)

head(ham.spam[as.numeric(rownames(Succesful)),]$Msg)

# some mispredicted SMS

[1] ’England v Macedonia - dont miss the goals/team news. Txt ur national team to 87077 eg

ENGLAND to 87077 Try:WALES, SCOTLAND 4txt/ú1.20 POBOXox36504W45WQ 16+’

[2] ’U 447801259231 have a secret admirer who is looking 2 make contact with U-find out who

they R*reveal who thinks UR so special-call on 09058094597’

[3] ’SMS. ac Blind Date 4U!: Rodds1 is 21/m from Aberdeen, United Kingdom. Check Him out

http://img. sms. ac/W/icmb3cktz8r7!-4 no Blind Dates send HIDE’

[4] ’XCLUSIVE@CLUBSAISAI 2MOROW 28/5 SOIREE SPECIALE ZOUK WITH NICHOLS FROM PARIS.FREE ROSES

2 ALL LADIES !!! info: 07946746291/07880867867 ’

[5] ’Its a valentine game. . . Send dis msg to all ur friends. .. If 5 answers r d same then

someone really loves u. Ques- which colour suits me the best?rply me’

[6] ’Hi I\’m sue. I am 20 years old and work as a lapdancer. I love sex. Text me live - I\’m

i my bedroom now. text SUE to 89555. By TextOperator G2 1DA 150ppmsg 18+’

# some correctly predicted SMS

[1] ’Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to

receive entry question(std txt rate)T&C\’s apply 08452810075over18\’s’

[2] ’Even my brother is not like to speak with me. They treat me like aids patent.’

[3] ’WINNER!! As a valued network customer you have been selected to receivea £900 prize reward!

To claim call 09061701461. Claim code KL341. Valid 12 hours only.’

[4] ’I\’m gonna be home soon and i don\’t want to talk about this stuff anymore tonight, k? I\’ve

cried enough today.’

[5] ’URGENT! You have won a 1 week FREE membership in our £100,000 Prize Jackpot! Txt the word:

CLAIM to No: 81010 T&C www.dbuk.net LCCLTD POBOX 4403LDNW1A7RW18’

[6] ’I\’ve been searching for the right words to thank you for this breather. I promise i wont

take your help for granted and will fulfil my promise. You have been wonderful and a blessing

at all times.’

Support Vector Machines

We can use other classifiers – e1071 also implements support vector

machines.
37

The principle is the same, although we do not need to first37: See Section for 21.4.2 for details.

categorize the features (as we had to do for naïve Bayes.

The cost parameter is related to the price of allowing misclassifica-
tions: higher values attempt to minimize such misclassifications, but

the resulting model tends to lead to overfitting (a little flexibility in re:

misclassfications is a good thing in the long run).

There is some evidence to suggest that the choice of the "linear" kernel

is preferable when dealing with text data (as opposed to gaussian for

some numerical data), but other kernels can also be used.

The steps proceeds as in naïve Bayes (although we demonstrate the

classAgreement functionality for evaluation the classifier). You can get

details on the method by querying the help files.

SMS.classifier.SVM <- e1071::svm(as.factor(ham.spam.train.labels) ~.,

data=as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

type="C-classification", cost=10, kernel="linear")
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summary(SMS.classifier.SVM)

attributes(SMS.classifier.SVM)

Call:

svm(formula = ham.spam.train.labels ~ ., data = as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

type = "C-classification", cost = 10, kernel = "linear")

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.001628664

Number of Support Vectors: 424

( 299 125 )

Number of Classes: 2

Levels:

ham spam

$names

’call’ ’type’ ’kernel’ ’cost’ ’degree’ ’gamma’ ’coef0’ ’nu’ ’epsilon’ ’sparse’ ’scaled’

’x.scale’ ’y.scale’ ’nclasses’ ’levels’ ’tot.nSV’ ’nSV’ ’labels’ ’SV’ ’index’ ’rho’ ’compprob’

’probA’ ’probB’ ’sigma’ ’coefs’ ’na.action’ ’fitted’ ’decision.values’ ’terms’

$class

’svm.formula’ ’svm’

We can now feed the testing data into the model with the help of the

predict() function.

SMS.test.pred.SVM <- predict(SMS.classifier.SVM,as.data.frame(as.matrix(SMS.DTM.Freq.Terms.test)))

summary(SMS.test.pred.SVM)

ham spam

1430 243

Of course, it may not be sufficient to know how many SMS are predicted

to be ham and/or spam – we might want to know if individual SMS are

correctly predicted.

(confusion.matrix = table(pred = SMS.test.pred.SVM, true = ham.spam.test.labels))

e1071::classAgreement(confusion.matrix,match.names=TRUE)

true

pred ham spam

ham 1401 29

spam 46 197
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$diag

[1] 0.95517

$kappa

[1] 0.81406

$rand

[1] 0.91431

$crand

[1] 0.76592

More information on this last function can be obtained by typing in

?e1071::classAgreement at the prompt.

SVMs with PCA

Finally, we re-visit the SVM model by first reducing the DTM data to its

first 4 principal components in order to try to mitigate the effects of the

curse of dimensionality and to introduce a more complete classification

workflow:
38

38: See Chapter 23 for more details.

1. compute the principal composition of the training data;

2. set-up the formulas for going back and forth between the original

data and the rotated (reduced) data;

3. plot the classes against the first 4 principal components (arbitrary);

4. express the test data in the training PCA universe;

5. tune the SVM model (run some preliminary code to determine the

optimal choice of model parameters);

6. train the SVM model;

7. fit the SVM model to testing data, and

8. evaluate the model.

# 1: find the PCs of the training data and only keep the first 4, say

SMS.train.pca <- prcomp(as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

center = TRUE, scale = TRUE)

SMS.train.pca.reduced = SMS.train.pca$x

SMS.train.pca.reduced[,5:ncol(SMS.train.pca.reduced)] = 0 # setting PCs 5-end to 0

# 2: going back and forth between the original data and the rotated data

SMS.train.recover.full = exp(t(t(SMS.train.pca$x %*% t(SMS.train.pca$rotation)) *
SMS.train.pca$scale + SMS.train.pca$center))

SMS.train.recover.pca = exp(t(t(SMS.train.pca.reduced %*% t(SMS.train.pca$rotation)) *
SMS.train.pca$scale + SMS.train.pca$center))

# put the data in a data frame

SMS.train.pca.reduced.model = SMS.train.pca.reduced

SMS.train.pca.reduced.model = data.frame(SMS.train.pca.reduced, ham.spam.train.labels)

training.pca = SMS.train.pca.reduced.model[,c(1,2,3,4)]
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# 3: plot the classes in the training data set against the first 4 PCs

psych::pairs.panels(SMS.train.pca$x[,1:4], pch=21,

bg=rainbow(11)[unclass(ham.spam.train.labels)])

# 4: put test data in the PCA context

SMS.test.pca <- scale(as.data.frame(as.matrix(SMS.DTM.Freq.Terms.test)),

SMS.train.pca$center, SMS.train.pca$scale) %*% SMS.train.pca$rotation

SMS.test.pca.reduced <- SMS.test.pca

SMS.test.pca.reduced[,5:ncol(SMS.train.pca.reduced)] = 0

SMS.test.pca.reduced.model = data.frame(SMS.test.pca.reduced)

# 5: tune SVM model to find a good choice for the cost parameter C

tuning.pca <- e1071::tune(e1071::svm, train.x=training.pca,

train.y=as.factor(ham.spam.train.labels), kernel="linear",

ranges=list(cost=10^(-3:3)))

print(tuning.pca) # optimal parameters

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost

10

- best performance: 0.0302492
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# 6: train the SVM model

SMS.classifier.SVM.pca <- e1071::svm(as.factor(ham.spam.train.labels) ~., data=training.pca,

type="C-classification", cost=10, kernel="linear")

summary(SMS.classifier.SVM.pca)

Call: svm(formula = ham.spam.train.labels ~ ., data = training.pca, type = "C-classification",

cost = 10, kernel = "linear")

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.25

Number of Support Vectors: 316

( 158 158 )

Number of Classes: 2

Levels:

ham spam

# 7: fit SVM to test data

SMS.test.pred.SVM.pca <- predict(SMS.classifier.SVM.pca,SMS.test.pca.reduced)

summary(SMS.test.pred.SVM.pca) # provide a summary of the predicted values

ham spam

1430 243

# 8: evaluate the fitted model

(confusion.matrix.pca = table(pred = SMS.test.pred.SVM.pca, true = ham.spam.test.labels))

e1071::classAgreement(confusion.matrix.pca,match.names=TRUE)

true

pred ham spam

ham 1438 40

spam 9 186

$diag

[1] 0.97071

$kappa

[1] 0.86696

$rand

[1] 0.94310

$crand

[1] 0.83437

How does the model on the reduced data compare to the original SVM

model?
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27.4.5 NHL Game Recaps (Reprise)

In this section, we revisit the NHL game recaps of Section 27.4.1, this time

to cluster the terms in the documents. Clustering is an unsupervised

learning technique that can be used to determine which entities or objects,

typically represented by rows in the data, are similar to each other. For

text mining, we can use clustering to determine which documents are

similar to one another (based on their term signature), for instance.
39

39: We will discuss topic modeling, an-

other unsupervised learning application

to text data, in Chapter 32.For the purpose of this example, we will use hierarchical clustering, but

any other clustering approach would be just as acceptable.
40

40: See Chapter 22 for details.

Review of Hierarchical Clustering in R

Let’s start with a simple example of hierarchical clustering using numeric

data. The three lines of data below represent days of rainfall in a number

of Canadian cities. Can we use hierarchical clustering to get a sense of

which cities are similar to each other?

city = c("Montreal","Ottawa","Toronto","Quebec City","Kingston","Trois-Rivieres","Windsor",

"Hamilton","London","Halifax","Moncton","Saint John","St. John’s","Sudbury",

"Thunder Bay","Winnipeg","Saskatoon","Regina","Calgary","Edmonton","Kelowna",

"Vancouver","Victoria")

rainfall = c(1000,920,831,1184,960,1123,935,897,1012,1468,1124,1295,1534,903,684,521,365,

390,456,419,345,1457,705)

days = c(163,161,145,175,159,161,150,149,168,162,161,158,212,167,143,125,87,118,112,123,

120,168,148)

The code below starts by creating and scaling a data frame for the data.

Then hclust() builds the clustering information, which plot() then

uses to display the clustering dendrogram.
41

41: We use hclust’s Euclidean dissimilar-

ity and complete linkage defaults.

rain.data <- data.frame(city, rainfall,days)

dist.rain <- dist(scale(rain.data[,2:3]))

hc <- hclust(dist.rain) # distances as hc object

plot(hc, labels = rain.data$city)
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It is not surprising to see that Ottawa and Kingston are very similar when

it comes to rainfall totals and number of rainy days, as are Hamilton,

Windsor, and Toronto (each group of cities being in the same general

region), but it might be surprising to see Halifax and Vancouver as being

similar – until we remember that they are both coastal cities.

The Return of the Text-Rich Hockey Dataset

Now that we have seen a simple example of how hierarchical clustering

works with numerical data, we turn our attention back to text data, and

the hockey dataset of Section 27.4.1.

As we did then, we clean the data (removing stop words, etc.) from the

Sens games, at which point we create a term-document matrix (TDM)

from the cleaned text data.

With the TDM in hand, we can switch over to clustering the data, once we

have generated a distance matrix (DM),
42

which we use to hierarchically42: We could consider either document or

term similarity for the DM; here we will

use term similarity.

cluster the data, and generate the text data’s cluster dendrogram.

recaps <- read.csv(file="Recap_data_first_pass_utf8.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

# Isolate the text recaps

AP.recaps <- recaps$AP.Recap

# Make a vector source

AP.recaps.source <- tm::VectorSource(AP.recaps)

# Make a volatile corpus

AP.recaps.corpus <- tm::VCorpus(AP.recaps.source)

# Create a customized function to clean the corpus

clean_corpus_Sens <- function(corpus){

corpus <- tm::tm_map(corpus, content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en"), "game", "first",

"second", "third", "Ottawa", "Senators"))

return(corpus)

}

# Apply the customized function to the corpus

clean_corp.AP.recaps <- clean_corpus_Sens(AP.recaps.corpus)

# Create a TDM from the corpus

AP.recaps_tdm <- tm::TermDocumentMatrix(clean_corp.AP.recaps)

# Remove sparse terms

AP.recaps_tdm_50 <- tm::removeSparseTerms(AP.recaps_tdm,sparse=.5)
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# What effect did this have on the number of terms?

AP.recaps_tdm_50

<<TermDocumentMatrix (terms: 82, documents: 101)>>

Non-/sparse entries: 5806/2476

Sparsity : 30%

Maximal term length: 8

Weighting : term frequency (tf)

# Convert AP.recaps_tdm to a matrix: AP.recaps_m

AP.recaps_tdm_50_m <- as.matrix(AP.recaps_tdm_50)

# Save the term document matrix as a data frame

TDM_50.df <- as.data.frame(AP.recaps_tdm_50_m)

TDM_50.df

1 2 3 4 5 6 7 8 9 10 ... 92 93 94 95 96 97 98 99 100 101

also 2 0 1 2 1 1 1 1 2 1 ... 4 1 1 1 0 2 0 1 2 0

anderson 3 3 0 2 3 5 1 13 6 1 ... 4 3 5 4 5 2 2 2 10 6

assist 1 0 1 2 0 2 2 0 2 0 ... 4 1 2 1 1 0 2 4 0 2

back 0 3 0 1 0 0 2 1 1 0 ... 4 5 1 1 3 2 1 1 4 1

beat 1 3 1 3 1 1 1 1 1 0 ... 2 1 2 0 0 3 1 3 2 0

befor 1 0 1 4 0 3 2 0 0 1 ... 1 0 0 1 0 2 0 0 0 1

boucher 2 2 0 0 3 2 0 0 2 1 ... 4 3 0 4 1 2 1 3 3 1

came 2 1 0 1 2 2 0 1 0 3 ... 2 2 1 1 2 2 0 1 1 1

chanc 0 2 0 0 0 0 2 1 1 2 ... 2 0 5 2 0 2 0 1 1 0

coach 4 3 0 1 2 1 1 0 3 5 ... 2 2 1 2 1 3 2 2 2 2

come 1 0 0 1 0 1 1 0 1 2 ... 2 1 1 1 0 0 0 0 1 1

craig 1 1 0 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 2

didnt 1 2 0 1 2 2 1 2 0 0 ... 1 1 1 1 3 1 1 1 5 1

end 0 0 0 0 0 0 0 1 2 0 ... 1 1 0 0 4 1 0 0 0 1

erik 2 1 0 1 1 0 1 1 0 2 ... 1 1 1 0 0 1 1 1 1 2

final 0 0 0 1 0 0 0 2 0 1 ... 2 2 4 4 3 2 1 6 3 5

five 1 0 0 1 0 1 3 0 1 2 ... 0 1 0 1 1 0 1 1 0 0

four 2 0 1 1 0 1 0 0 2 1 ... 3 1 0 2 0 2 1 3 2 3

gave 0 1 1 2 0 0 2 1 0 0 ... 0 2 0 2 0 1 1 0 2 0

get 3 2 0 3 2 3 1 0 1 2 ... 2 3 2 5 3 3 3 2 4 2

give 1 1 0 4 1 0 0 1 0 0 ... 0 1 0 3 1 2 0 2 0 2

goal 9 2 9 17 4 4 6 1 3 4 ... 8 13 5 5 1 13 5 4 5 4

good 1 0 0 2 1 4 1 0 3 3 ... 3 1 2 2 1 0 5 3 1 0

got 1 2 0 3 5 0 1 1 0 1 ... 4 2 5 1 0 4 2 1 2 1

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

two 1 2 3 4 0 4 4 3 0 2 ... 9 5 2 2 2 1 6 3 4 3

way 1 3 0 0 1 2 1 1 2 1 ... 0 2 1 2 2 0 1 1 1 5

went 0 0 0 1 0 1 1 0 1 0 ... 1 1 1 1 2 1 3 1 0 0

win 1 4 0 2 0 0 2 2 1 0 ... 3 6 0 1 2 3 0 1 1 1

The document signatures of the terms have a fair number of non-zero

entries, as we would expect since we eliminated sparse terms.
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# Compute distance matrices

dist_50 = dist(TDM_50.df)

also anderson assist back beat befor boucher ...

anderson 28.160256

assist 14.798649 30.594117

back 15.874508 26.095977 18.947295

beat 15.524175 27.313001 18.000000 15.066519

befor 12.529964 30.331502 16.613248 17.464249 14.142136

boucher 14.247807 27.676705 16.431677 16.583124 15.362291 16.613248

came 14.387495 28.879058 16.792856 16.643317 16.552945 13.341664 16.000000 ...

... ... ... ... ... ... ... ... ...

With the distance matrix created, the next step is to cluster the terms

using the distance matrix.

# Build the hc object

hc.50 = hclust(dist_50)

# Plot the dendograms

plot(hc.50)

The dendrogram is not easy to read, but we can get the labels directly, if

needed.

# Build hcd

hcd.50 = as.dendrogram(hc.50)

# labels

labels(hcd.50)
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[1] ’anderson’ ’point’ ’night’ ’team’ ’got’ ’hoffman’ ’lead’ ’tie’ ’win’ ’net’ ’puck’

[12] ’left’ ’karlsson’ ’right’ ’four’ ’stop’ ’way’ ’ryan’ ’final’ ’last’ ’one’ ’guy’

[23] ’boucher’ ’coach’ ’minut’ ’back’ ’didnt’ ’think’ ’time’ ’power’ ’beat’ ’chanc’

[33] ’injuri’ ’miss’ ’straight’ ’gave’ ’mark’ ’like’ ’saturday’ ’scratch’ ’also’ ’mike’

[43] ’came’ ’make’ ’open’ ’befor’ ’kyle’ ’erik’ ’craig’ ’notes’ ’host’ ’next’ ’past’

[54] ’pass’ ’put’ ’thursday’ ’come’ ’five’ ’great’ ’tuesday’ ’end’ ’went’ ’give’ ’nhl’

[65] ’start’ ’assist’ ’three’ ’get’ ’good’ ’made’ ’save’ ’season’ ’just’ ’two’ ’period’

[76] ’shot’ ’play’ ’score’ ’ottawa’ ’said’ ’goal’ ’senat’

Say we are looking for 𝑘 = 2 clusters.

result = cutree(hc.50, k=2)

# cluster 1

rownames(TDM_50.df)[result==1]

# cluster 2

rownames(TDM_50.df)[result==2]

# cluster 1

[1] ’anderson’ ’point’ ’night’ ’team’ ’got’ ’hoffman’ ’lead’ ’tie’ ’win’ ’net’ ’puck’

...

[65] ’start’ ’assist’ ’three’ ’get’ ’good’ ’made’ ’save’ ’season’ ’just’ ’two’

# cluster 2

[1] ’period’ ’shot’ ’play’ ’score’ ’ottawa’ ’said’ ’goal’ ’senat’

The terms found in a cluster are those for whom the document signatures

are similar to one another in the corpus.

Using the TDM to find Associations

The TDM can also be used to find terms that are associated with each
other (i.e., terms that appear with each other) across documents. Here

we see which other terms are associated with the term ’karlsson’,
43

as 43: Former Senators player Erik Karlsson.

visualized using a dotplot.

(associations_EK <- tm::findAssocs(AP.recaps_tdm, "karlsson", 0.33)) # 0.33: lower correlation limit

$karlsson =

erik

0.68

lundqvist

0.44

toward

0.42

kreider

0.41

tough

0.39

ever

0.38

terrif

0.38

bounc

0.37

brendan

0.37

forget

0.37

log

0.37

foot

0.35

two

0.34

bradi

0.33

burn

0.33

contest

0.33

dillon

0.33

leblanc

0.33

martinrecord

0.33

method

0.33

pavelskisaid

0.33

pop

0.33

safe

0.33

sharkson

0.33

skjei

0.33

struck

0.33

toss

0.33

tremend

0.33
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associations_EK.df <- qdap::list_vect2df(associations_EK)[,2:3]

library(ggplot2)

ggplot(associations_EK.df,aes(y=associations_EK.df[,1])) +

geom_point(aes(x=associations_EK.df[,2]), data=associations_EK.df, size = 3)

It is not really surprising that the word with the highest co-occurrence

frequency is ‘erik’ (since that is the player’s full name), but some of the

other counts are perhaps a bit more surprising: Henrik Lundqvist, a

fellow Swede, and Chris Kreider played for the New York Rangers that

year, a team the Senators faced 10 times in 2016-2017. This may explain

why their last names show up in the dotplot.

27.4.6 The Scottish Play

In this section, we analyze the emotional content in Shakespeare’s

Macbeth.
44

44: This example borrows even more heav-

ily than usual from [39].

Sentiment Analysis Workflow

In general, we conduct term-by-term sentiment analysis of text as fol-

lows:

1. start with text data;

2. un-nest the tokens to produce a first iteration of tidy text;
3. clean and process the tidy text as required by the context;
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4. join the tidy text to an appropriate sentiment lexicon;

5. summarize the tidy text/sentiment lexicon into a first iteration of

summarized text;
6. clean and analyze the summarized text, and

7. visualize and present the text mining results.

Sentiment Lexicons

Throughout, we will use the sentiment lexicons included with the

tidytext package: AFINN, nrc, bing, loughran.

library(tidytext)

library(textdata) # to obtain the Lexicons

AFINN = get_sentiments("afinn") # words on a scale from -5 (negative) to 5 (positive)

BING = get_sentiments("bing") # binary negative/positive

NRC = get_sentiments("nrc") # assigns categories of sentiments (possibly 1+ to a term)

LOUGHRAN = get_sentiments("loughran")

We can take a quick look at the 4 lexicons – the first thing to notice is that

they do not all contain the same number of observations.

str(AFINN)

table(AFINN$value)

head(AFINN)

tail(AFINN)

spec_tbl_df [2,477 x 2] (S3: spec_tbl_df/tbl_df/tbl/data.frame)

$ word : chr [1:2477] "abandon" "abandoned" "abandons" "abducted" ...

$ value: num [1:2477] -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 ...

- attr(*, "spec")=

.. cols(

.. word = col_character(),

.. value = col_double()

.. )

- attr(*, "problems")=<externalptr>

-5 -4 -3 -2 -1 0 1 2 3 4 5

16 43 264 966 309 1 208 448 172 45 5

# A tibble: 6 x 2

word value

<chr> <dbl>

1 abandon -2

2 abandoned -2

3 abandons -2

4 abducted -2

5 abduction -2

6 abductions -2

# A tibble: 6 x 2

word value

<chr> <dbl>

1 youthful 2

2 yucky -2

3 yummy 3

4 zealot -2

5 zealots -2

6 zealous 2
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str(BING)

table(BING$sentiment)

head(BING)

tail(BING)

tibble [6,786 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:6786] "2-faces" "abnormal" "abolish" "abominable" ...

$ sentiment: chr [1:6786] "negative" "negative" "negative" "negative" ...

negative positive

4781 2005

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 2-faces negative

2 abnormal negative

3 abolish negative

4 abominable negative

5 abominably negative

6 abominate negative

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 zealous negative

2 zealously negative

3 zenith positive

4 zest positive

5 zippy positive

6 zombie negative

str(NRC)

table(NRC$sentiment)

head(NRC)

tail(NRC)

tibble [13,872 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:13872] "abacus" "abandon" "abandon" "abandon" ...

$ sentiment: chr [1:13872] "trust" "fear" "negative" "sadness" ...

anger anticipation disgust fear joy

1245 837 1056 1474 687

negative positive sadness surprise trust

3316 2308 1187 532 1230

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 abacus trust

2 abandon fear

3 abandon negative

4 abandon sadness

5 abandoned anger

6 abandoned fear

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 zealous trust

2 zest anticipation

3 zest joy

4 zest positive

5 zest trust

6 zip negative
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str(LOUGHRAN)

table(LOUGHRAN$sentiment)

head(LOUGHRAN)

tail(LOUGHRAN)

tibble [4,150 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:4150] "abandon" "abandoned" "abandoning" "abandonment" ...

$ sentiment: chr [1:4150] "negative" "negative" "negative" "negative" ...

constraining litigious negative positive superfluous uncertainty

184 904 2355 354 56 297

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 abandon negative

2 abandoned negative

3 abandoning negative

4 abandonment negative

5 abandonments negative

6 abandons negative

# A tibble: 6 x 2

word sentiment

<chr> <chr>

1 stratum superfluous

2 superannuation superfluous

3 theses superfluous

4 ubiquitous superfluous

5 wheresoever superfluous

6 whilst superfluous

At a first glance, it seems that there are more terms in the negative end of

the "sentimental spectrum". What kind of an effect might this have on

sentiment analysis?
45

45: Is that the same for every language?

French seems to have more room for posi-

tive terms, but is that simply confirmation

bias at play?

We can also compare how the various lexicons grade specific words –

let’s take a look at a few possibilities.

words = c("abandon","bad","not","cool","egregious","strike")

A.w = AFINN[AFINN$word %in% words,]

A.w$lexicon = "AFINN"

colnames(A.w)[2] = "sentiment"

B.w = BING[BING$word %in% words,]

B.w$lexicon = "BING"

N.w = NRC[NRC$word %in% words,]

N.w$lexicon = "NRC"

L.w = LOUGHRAN[LOUGHRAN$word %in% words,]

L.w$lexicon = "LOUGHRAN"

T.w = rbind(A.w,B.w,N.w,L.w)

dplyr::arrange(T.w,word) |> print(n = Inf)

# A tibble: 25 x 3

word sentiment lexicon

<chr> <chr> <chr>

1 abandon -2 AFINN

2 abandon fear NRC

3 abandon negative NRC

4 abandon sadness NRC

5 abandon negative LOUGHRAN
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6 bad -3 AFINN

7 bad negative BING

8 bad anger NRC

9 bad disgust NRC

10 bad fear NRC

11 bad negative NRC

12 bad sadness NRC

13 bad negative LOUGHRAN

14 cool 1 AFINN

15 cool positive BING

16 cool positive NRC

17 egregious negative BING

18 egregious anger NRC

19 egregious disgust NRC

20 egregious negative NRC

21 egregious negative LOUGHRAN

22 strike -1 AFINN

23 strike negative BING

24 strike anger NRC

25 strike negative NRC

Notes and Comments

Does it make sense to use a social media lexicon to analyze emo-

tional content in Shakespeare’s plays? Context-specific lexicons
can always be used, instead, but they first need to be built (time-

consuming) and validated (requires domain expertise).

Beware the no-free lunch theorem: the most suitable lexicon may

change from project to project.

As a rule of thumb, it appears that applying sentiment analysis to

any text that is intelligible without a slew of annotations is likely to

yield more insight than text that requires annotation, but the latter

can still be valuable.

In general, it seems easier to identify a clear sentiment in a short

text than in a long one.

The unigram term “bad” is identified as a negative word, whereas

“not” is seen as neutral, but “not bad” would be a mostly positive

bigram. We have discussed bigrams in Section 27.4.2; there is a lot

more to be said on the topic (see Chapter 32).

Matching Sentiments to Words

Let’s take a quick look at how we can set-up the matching between senti-

ments and terms using a lexicon. For the purposes of this example, we

will use the NRC lexicon, together with A Midsummer Night’s Dream, one

of the more whimsical of Shakespeare’s comedies. We start by creating a

custom lexicon for the works of Shakespeare at the Gutenberg Project.

word = c("etext", "copyright", "implications", "electronic", "version", "william",

"shakespeare", "inc", "gutenberg", "electronic", "machine", "distributed",

"commercially", "commercial", "distribution", "download", "shareware")
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lexicon = rep("custom",17)

custom = data.frame(word,lexicon)

stop_words_custom_gut = rbind(tidytext::stop_words,custom)

Next, we extract the play and put it into a tidy dataset.

my_mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/"

msnd <- gutenbergr::gutenberg_download(c(1514),my_mirror)

tidy_msnd <- msnd |>

tidytext::unnest_tokens(word,text) |>

dplyr::mutate(word = stringr::str_extract(word,"[a-z’]+")) |> # removing odd encodings

dplyr::anti_join(stop_words_custom_gut) |> # removing the non-play terms

na.omit() # remove NAs

Now, let’s extract the surprise words (and attendent frequencies) from

A Midsummer Night’s Dream (according to the NRC lexicon):

nrc_surprise <- NRC |>

dplyr::filter(sentiment == "surprise")

tidy_msnd |>

dplyr::inner_join(nrc_surprise) |>

dplyr::count(word, sort = TRUE) |> print(n = Inf)

# A tibble: 58 x 2

word n

<chr> <int>

1 sweet 48

2 art 16

3 leave 15

4 death 14

5 pray 13

6 break 7

7 lovely 7

8 marry 7

9 youth 7

10 catch 5

11 wild 5

12 jest 4

13 kiss 4

14 lose 4

15 spirits 4

16 cheer 3

17 fright 3

18 hope 3

19 judgment 3

20 luck 3

21 perchance 3

22 teach 3

23 chance 2

24 mouth 2

25 musical 2

26 revenge 2

27 stealth 2

28 sun 2

29 trip 2

30 worm 2

31 advance 1

32 angel 1

33 ceremony 1

34 conjure 1

35 frantic 1

36 gift 1

37 illusion 1

38 laughter 1

39 lightning 1

40 marvel 1

41 merriment 1

42 murder 1

43 palpable 1

44 precious 1

45 saint 1

46 scare 1

47 screech 1

48 senseless 1

49 shot 1

50 shout 1

51 shriek 1

52 slip 1

53 smile 1

54 sunny 1

55 tempest 1

56 thief 1

57 tickle 1

58 vanished 1

We can do the same for the anger terms.

nrc_anger <- NRC |>

dplyr::filter(sentiment == "anger")

tidy_msnd |>

dplyr::inner_join(nrc_anger) |>

dplyr::count(word, sort = TRUE) |> print(n = Inf)
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# A tibble: 133 x 2

word n

<chr> <int>

1 fear 17

2 death 14

3 bear 10

4 hate 9

5 scorn 9

6 lie 7

7 youth 7

8 mistress 6

9 hell 5

10 spite 5

11 strike 5

12 cross 4

13 derision 4

14 force 4

15 lose 4

16 steal 4

17 words 4

18 adder 3

19 beast 3

20 bellows 3

21 bloody 3

22 cruel 3

23 fierce 3

24 hateful 3

25 honest 3

26 ill 3

27 injury 3

28 offend 3

29 wound 3

30 angry 2

31 bully 2

32 confusion 2

33 curse 2

34 dame 2

35 darkness 2

36 delay 2

37 deny 2

38 deserve 2

39 discord 2

40 dreadful 2

41 fight 2

42 grim 2

43 hatred 2

44 hurt 2

45 jealous 2

46 jealousy 2

47 liquor 2

48 loath 2

49 loathe 2

50 lying 2

51 mad 2

52 murderer 2

53 musical 2

54 rage 2

55 revenge 2

56 tyrant 2

57 wasted 2

58 anger 1

59 anguish 1

60 argument 1

61 bark 1

62 battle 1

63 bee 1

64 burial 1

65 complaint 1

66 cruelty 1

67 cur 1

68 damn 1

69 deceive 1

70 defect 1

71 desert 1

72 despise 1

73 detest 1

74 disgrace 1

75 disobedience 1

76 disparage 1

77 dissension 1

78 distracted 1

79 elf 1

80 enmity 1

81 exile 1

82 fee 1

83 foe 1

84 foul 1

85 fury 1

86 gore 1

87 guilty 1

88 harbinger 1

89 harshness 1

90 hit 1

91 hot 1

92 hunting 1

93 injurious 1

94 insufficiency 1

95 killing 1

96 lightning 1

97 lunatic 1

98 madman 1

99 mighty 1

100 miserable 1

101 mislead 1

102 moral 1

103 murder 1

104 odious 1

105 offended 1

106 pare 1

107 prison 1

108 prosecute 1

109 raging 1

110 rail 1

111 riot 1

112 scar 1

113 scare 1

114 senseless 1

115 shiver 1

116 shot 1

117 shout 1

118 shriek 1

119 shun 1

120 sinister 1

121 slay 1

122 stone 1

123 strife 1

124 tempest 1

125 thief 1

126 throttle 1

127 torment 1

128 ungrateful 1

129 unkind 1

130 warrior 1

131 whip 1

132 wrath 1

133 wretch 1

Note that there are overlaps: “revenge”, for instance, is in both collections.

In total, there are 286 occurrences of anger terms in the cleaned up

text data, and 225 occurrences of surprise terms. Does this fit with the

nature of the play?
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term-by-term Sentiment Analysis of Macbeth

Instead of finding words that express specific sentiments, we are going

to compute a score for various sections of Macbeth.

First, we load a processed version of the text.

macbeth = read.csv("Macbeth.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

str(macbeth)

’data.frame’: 15221 obs. of 6 variables:

$ Act : int 1 1 1 1 1 1 1 1 1 1 ...

$ Scene : int 1 1 1 1 1 1 1 1 1 1 ...

$ Speaker : chr "First Witch" "First Witch" "Second Witch" "Second Witch" ...

$ Text : chr "When shall we three meet again" "In thunder, lightning, or in rain?" ...

$ Scene_Line: int 1 2 3 4 5 6 7 8 9 10 ...

$ Play_Line : int 1 2 3 4 5 6 7 8 9 10 ...

The Act and Scene variables could be combined to provide an increasing

identifier for the play’s sections. For the purpose of this example, we only

want to keep information on the text, the line number, and the section.

macbeth$section = macbeth$Act*10 + macbeth$Scene

macbeth <- macbeth |>

dplyr::select(c("Text","Play_Line","section"))

head(macbeth)

Text Play_Line section

1 When shall we three meet again 1 11

2 In thunder, lightning, or in rain? 2 11

3 When the hurlyburly’s done, 3 11

4 When the battle’s lost and won. 4 11

5 That will be ere the set of sun. 5 11

6 Where the place? 6 11

Next, we unnest the tokens into a tidy format, using word as the basic unit.

tidy_macbeth <- macbeth |> tidytext::unnest_tokens(word, Text)

head(tidy_macbeth,20)

Play_Line section word

1 1 11 when

2 1 11 shall

3 1 11 we

4 1 11 three

5 1 11 meet

6 1 11 again

7 2 11 in

8 2 11 thunder

9 2 11 lightning
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10 2 11 or

11 2 11 in

12 2 11 rain

13 3 11 when

14 3 11 the

15 3 11 hurlyburly’s

16 3 11 done

17 4 11 when

18 4 11 the

19 4 11 battle’s

20 4 11 lost

At this point, we get a sentiment score for each word using the BING

lexicon (words that don’t appear in the lexicon are assumed to be

neutral).

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING)

head(macbeth_SA)

Play_Line section word sentiment

1 4 11 lost negative

2 4 11 won positive

3 12 11 fair positive

4 12 11 foul negative

5 12 11 foul negative

6 12 11 fair positive

Next, we count the positive and negative words in each grouping of

𝐿 = 30 lines of text, say.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment)

head(macbeth_SA)

index sentiment n

1 0 negative 11

2 0 positive 10

3 1 negative 12

4 1 positive 10

5 2 negative 17

6 2 positive 11

The counts are stored in the variable n. We reshape the tibble into a tidy
dataset, one for which each column hosts 1 variable, and each row, 1

observation.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0)

head(macbeth_SA)
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index negative positive

1 0 11 10

2 1 12 10

3 2 17 11

4 3 7 2

5 4 7 14

6 5 8 9

Finally, we compute the overall sentiment for each block of lines as the

difference between its positive and negative term counts.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

head(macbeth_SA)

index negative positive sentiment

1 0 11 10 -1

2 1 12 10 -2

3 2 17 11 -6

4 3 7 2 -5

5 4 7 14 7

6 5 8 9 1

That’s it! – although it might be more meaningful to plot the results.

library(ggplot2)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()
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The overall picture seems to be somewhat negative – but is that surprising?

Macbeth is a tragedy, after all, arguably Shakespeare’s darkest. Perhaps

what we’re seeing is an artifact of the way we have blocked (grouped)

the play, or of the length of the blocks, or even of the sentiment lexicon

that we’ve elected to use. We look into this a little bit more.

Smaller Number of Blocks What happens if we use 𝐿 = 50 instead of

𝐿 = 30?

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 50, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()

There isn’t much of a difference.

Different Blocking Mechanism We could use Act and Scene as sepa-

ration instead of an arbitrary number of lines 𝐿.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = section, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()
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Acts II, IV, and V are pretty bleak, seems like...

Different Lexicons We go back to 𝐿 = 30 and run term-by-term senti-

ment analysis for the four lexicons.

afinn_macbeth <- tidy_macbeth |> dplyr::inner_join(AFINN) |>

dplyr::group_by(index = Play_Line %/% 30) |>

dplyr::summarise(sentiment = sum(value)) |> dplyr::mutate(method = "AFINN")

bing_nrc_loughran_macbeth <- dplyr::bind_rows(

tidy_macbeth |>

dplyr::inner_join(BING) |>

dplyr::mutate(method = "BING"),

tidy_macbeth |>

dplyr::inner_join(NRC |> dplyr::filter(sentiment %in% c("positive","negative"))) |>

dplyr::mutate(method = "NRC"),

tidy_macbeth |>

dplyr::inner_join(LOUGHRAN |> dplyr::filter(sentiment %in% c("positive","negative"))) |>

dplyr::mutate(method = "LOUGHRAN")) |>

dplyr::count(method, index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

library(ggplot2)

dplyr::bind_rows(afinn_macbeth, bing_nrc_loughran_macbeth) |>

ggplot(aes(index, sentiment, fill = method)) +

geom_col(show.legend = FALSE) +

facet_wrap(~method, ncol = 1, scales = "free_y")
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With BING and LOUGHRAN, the “tragedy” of Macbeth is “preserved”,

but that pattern is not as obvious with AFINN and NRC (although there

is plenty of negative sentiment in those two as well).

Perhaps we should question the wisdom of using modern lexicons on

450 year old plays?

Text Visualizations Finally, we can also look at how often specific

words contribute to positive and negative sentiments in the text of the

play, using the BING lexicon.

bing_word_counts <- tidy_macbeth |>

dplyr::inner_join(get_sentiments("bing")) |>

dplyr::count(word, sentiment, sort = TRUE) |> dplyr::ungroup()
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library(ggplot2)

#bar charts

bing_word_counts |>

dplyr::group_by(sentiment) |> # will create 2 graphs

dplyr::top_n(10) |> # pick only the top 10 in each category

dplyr::ungroup() |> # required to avoid a warning message below

dplyr::mutate(word = reorder(word, n)) |>

ggplot(aes(word, n, fill = sentiment)) + # plot a bar chart of word count

geom_col(show.legend = FALSE) +

facet_wrap(~sentiment, scales = "free_y") + # there will 2 such bar charts

labs(y = "Contribution to sentiment",x = NULL) +

coord_flip() # horizontal bar charts

# wordcloud

word = c("thou", "thy", "thee", "tis", "hath")

lexicon = rep("custom",5)

custom2 = data.frame(word,lexicon)

stop_words_custom_macbeth = rbind(tidytext::stop_words,custom2)

tidy_macbeth |> dplyr::anti_join(stop_words_custom_macbeth) |>

dplyr::count(word) |>

with(wordcloud::wordcloud(word, n, max.words = 100))

# comparison cloud

tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(word, sentiment, sort = TRUE) |> # counting words for the whole play

reshape2::acast(word ~ sentiment, value.var = "n", fill = 0) |> # reshaping as a matrix

wordcloud::comparison.cloud(colors = c("#660000", "#000066"), max.words = 100)

Nothing should jump at us as being amiss – which is no guarantee that

there’s no problem, but it’s at least a good sign.

Notes and Comments We see that the choice of lexicon and of the

blocking window may have an impact on the sentiment analysis outcome.

This is aligned with data anlaysis as we have seen it so far: it’s easy to

run a sentiment analysis (a few lines of code at most), but it’s difficult to

pick (or build) the right window and the right lexicon.
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27.4.7 Regular Expressions

(This section is a repeat of 16.6.4)

Regular expressions can be used to achieve to extract relevant information

from reams of data. Among this mostly unstructured data lurk systematic
elements, which can be used to help the automation process, especially

if quantitative methods are eventually going to be applied to the scraped

data.

Systematic structures include numbers, names (countries, etc.), addresses

(mailing, e-mailing, URLs, etc.), specific character strings, etc. Regular

expressions (regexps) are abstract sequences of strings that match concrete

recurring patterns in text; they allow for the systematic extraction of the

information components from plain text, HTML, and XML.

The examples in this section are based on [23].

Initializing the Environment

The Python module for regular expressions is re.

import re

Let us take a quick look at some basics, through the re method match().

We can try to match a pattern from the beginning of a string, as below:

re.match(’super’,’supercalifragilisticexpialidocious’)

<re.Match object; span=(0, 5), match=’super’>

No such match occurs in the following chunk of code, however.

re.match(’super’,’Supercalifragilisticexpialidocious’)

The regular expression pattern (more on this in a moment) for “word” is

\w+. The following bit of code would match the first word in a string:

w_regex = ’\w+’

re.match(w_regex,’Hello World!’)

<re.Match object; span=(0, 5), match=’Hello’>
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Common Regular Expression Patterns

A regular expression pattern is a short form used to indicate a type of

(sub)string:

\w+: word

\d: digit

\s: space

.: wildcard

+ or *: greedy match

\W: not word

\D: not digit

\S: not space

[a-z]: lower case group

[A-Z]: upper case group

There are a few re functions which, combined with regexps, can make it

easier to extract information from large, unstructured text documents:

split(): splits a string on a regexp;

findall(): finds all substrings matching a regexp in a string;

search(): searches for a regexp in a string, and

match(): matches an entire string based on a regexp

Each of these functions takes two arguments: a regexp (first) and a string
(second). For instance, we can split a string on the spaces (and remove

them):

re.split(’\s+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split?’]

The \ in the regexp above is crucial. The following code splits the sentence

on the s (and removes them):

re.split(’s+’,’Can you do the split?’)

[’Can you do the ’, ’plit?’]

We can also split on single spaces and remove them:

re.split(’\s’,’Can you do the split?’)

[’Can’, ’’, ’you’, ’do’, ’the’, ’split?’]

Alternatively, we can also split on the words and remove them:

re.split(’\w+’,’Can you do the split?’)

[’’, ’ ’, ’ ’, ’ ’, ’ ’, ’?’]

Or better yet, split on the non-words and remove them:
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re.split(’\W+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split’, ’’]

Let us take some time to study a silly sentence, saved as a string.

test_string = ’Oh they built the built the ship Titanic.

It was a mistake. It cost more than 1.5 million dollars.

Never again!’

test_string

’Oh they built the built the ship Titanic. It was a mistake.

It cost more than 1.5 million dollars. Never again!’

In English, only three characters can end a sentence: ., ?, !.
46

We create46: Apparently, nobody’s heard of the in-

terrobang...
a regexp group (more on those in a moment) as follows:

47

47: In Python, regular expression patterns

must be prefixed with an r to differentiate

between the raw string and the string’s
interpretation.

sent_ends = r"[.?!]"

We could then split the string into its constituent sentences:

print(re.split(sent_ends,test_string))

[’Oh they built the built the ship Titanic’, ’ It was a mistake’,

’ It cost more than 1’, ’5 million dollars’, ’ Never again’, ’’]

If we wanted to know how many such sentences there were, we simply

use the len() function:

print(len(re.split(sent_ends,test_string)))

6

The regexp range consisting of words with an uppercase initial letter is

easy to build:

cap_words = r"[A-Z]\w+" # Upper case characters

We can find all such words (and how many there are in the string)

through:

print(re.findall(cap_words,test_string))

print(len(re.findall(cap_words,test_string)))

[’Oh’, ’Titanic’, ’It’, ’It’, ’Never’]

5

The regexp for spaces is:
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spaces = r"\s+" # spaces

We can then split the string on spaces, and count the number of tokens
(see Chapter 27, Text Analysis and Text Mining):

print(re.split(spaces,test_string))

print(len(re.split(spaces,test_string)))

[’Oh’, ’they’, ’built’, ’the’, ’built’, ’the’, ’ship’, ’Titanic.’,

’It’, ’was’, ’a’, ’mistake.’, ’It’, ’cost’, ’more’, ’than’, ’1.5’,

’million’, ’dollars.’, ’Never’, ’again!’]

21

The regexp for numbers (contiguous strings of digits) is:

numbers = r"\d+"

We can find all the numeric characters using:

print(re.findall(numbers,test_string))

print(len(re.findall(numbers,test_string)))

[’1’, ’5’]

2

The main difference between search() and match() is that match() tries

to match from the beginning of a string, whereas search() looks for a

match anywhere in the string.

Regular Expressions Groups ‘( )‘ and Ranges ‘[ ]‘ With OR ‘|‘

We can create more complicated regexps using groups, ranges, and/or

“or” statements:

[a-zA-Z]+: an unlimited number of lower and upper case En-

glish/French (unaccented) letters;

[0-9]: the digits from 0 to 9;

[a-zA-Z'\.\-]+: any combination of lower and upper case En-

glish/French (unaccented) letters, ', ., and -;

(a-z): the characters a, -, and z;

(\s+|,): any number of spaces, or a comma;

(\d+|\w+): words or numerics.

For instance, consider the following text string and regexps groups:

text = ’On the 1st day of xmas, my boat sank.’

numbers_or_words = r"(\d+|\w+)"

spaces_or_commas = r"(\s+|,)"

This next chunk of code does exactly what one would expect:
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print(re.findall(numbers_or_words,text))

[’On’, ’the’, ’1’, ’st’, ’day’, ’of’, ’xmas’, ’my’, ’boat’, ’sank’]

What about this one?

print(re.findall(spaces_or_commas,text))

[’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’,’, ’ ’, ’ ’, ’ ’]

27.4.8 Movie Reviews

"This is a failure of epic proportions. You’ve got to be a genius

to make a movie this bad." (J. Seigel’s review of The Bonfire of
the Vanities)

In this section, we will re-visit sentiment analysis, this time using Python

and the Natural Language Toolkit (NLTK).
48

48: See Chapter 32 for more examples of

NLTK in action.

Our goal is to develop a sentiment analysis model for movie reviews.

The dataset contains 50,000 movie reviews labeled as either positive or

negative. With an accurate sentiment model, we’ll have the ability to

automatically classify new reviews in order to aggregate review data.

Dataset Information

TheLarge Movie Review Dataset v1.0 is described in [36] – the details

below are taken verbatim from the same source (the data is also available

in the R package textdata, in the object dataset_imdb).

Overview This dataset contains movie reviews along with their as-

sociated binary sentiment polarity labels. It is intended to serve as a

benchmark for sentiment classification. This document outlines how the

dataset was gathered, and how to use the files provided.

Dataset The core dataset contains 50,000 reviews split evenly into 25K

train and 25K test sets. The overall distribution of labels is balanced

(25K pos and 25K neg). We also include an additional 50,000 unlabeled

documents for unsupervised learning.

In the entire collection, no more than 30 reviews are allowed for any

given movie because reviews for the same movie tend to have correlated

ratings. Further, the training and test sets contain a disjoint set of movies,

so no significant performance is obtained by memorizing movie-unique

terms and their associated with observed labels. In the labeled train/test

sets, a negative review has a score ≤ 4 out of 10, and a positive review

has a score ≥ 7 out of 10. Thus reviews with more neutral ratings are not

included in the train/test sets. In the unsupervised set, reviews of any

rating are included and there are an even number of reviews > 5 and

≤ 5.
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Files There are two top-level directories [train/, test/] corresponding

to the training and test sets. Each contains [pos/, neg/] directories for the

reviews with binary labels positive and negative. Within these directories,

reviews are stored in text files named following the convention [[id]_-

[rating].txt] where [id] is a unique id and [rating] is the star rating

for that review on a 1-10 scale. For example, the file [test/pos/200_-

8.txt] is the text for a positive-labeled test set example with unique id

200 and star rating 8/10 from IMDb. The [train/unsup/] directory has

0 for all ratings because the ratings are omitted for this portion of the

dataset.

Preamble

We first need to import the appropriate Python modules. For this exercise,

we’ll use NLTK.

The stemmer() and tokenize() functions are used for text processing.

The vader lexicon is used to analyze the intensity of the sentiments.

import nltk

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews

from nltk.sentiment import SentimentAnalyzer

from nltk.sentiment.util import mark_negation, extract_unigram_feats

from nltk.tokenize import word_tokenize, sent_tokenize

from nltk.stem.lancaster import LancasterStemmer

stemmer = LancasterStemmer()

import glob

data_path = ’Data/aclImdb/’

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn import metrics

from nltk.sentiment.vader import SentimentIntensityAnalyzer

nltk.download(’all’)

Data Preparation

The reviews are individually stored in text files, and there are four folders

for every combination of training/test and positive/negative.

train_docs = []

train_labels = []

pos_file_names = glob.glob(’{}train/pos/*.txt’.format(data_path))

for file_name in pos_file_names:

train_docs.append(open(file_name).read())

train_labels.append(1)
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neg_file_names = glob.glob(’{}train/neg/*.txt’.format(data_path))

for file_name in neg_file_names:

train_docs.append(open(file_name).read())

train_labels.append(0)

The names of the positive reviews are found in an array, just as the names

of the negative reviews are.

pos_file_names

[’Data/aclImdb/train/pos/0_9.txt’,

’Data/aclImdb/train/pos/10000_8.txt’,

’Data/aclImdb/train/pos/10001_10.txt’,

’Data/aclImdb/train/pos/10002_7.txt’,

...]

We read-in a (random) sample negative review, for the movie Haunted
Boat, whose file number is 3446_1.txt. The ’_1’ in the file title lets us

know that this is a 1-star review. Does the text support the rating?

sample_text_neg = open(’{}train/neg/3446_1.txt’.format(data_path)).read()

print(sample_text_neg)

This film on paper looked like it could possibly be good, after watching though i realised

that this film was completely terrible!! The plot has no meaning, and i think i counted the

best part of 5000 cut scenes each one making the film more annoying boring and ridiculous. I

watched this late night pitch black no noise at all just to add to the SCARINESS of it but

the truth is the only thing that scared me was the music, what they would call tragic music,

they play opera i mean be serious!! This film sums up all of what is not good about this type

of film. To be honest ill say no more but watch at your own risk this film is just complete

rubbish, ENJOY!!

Next, we read-in a positive review, now, for a movie called The Night
Listener, whose file number is 10015_8.txt. This review is supposed to

be an 8-star review – does the text support the rating?

sample_text_pos = open(’{}train/pos/10015_8.txt’.format(data_path)).read()

print(sample_text_pos)

Popular radio storyteller Gabriel No one(Robin Williams,scraggy and speaking in hushed,

hypnotic tones) becomes acquainted and friends with a fourteen-year-old boy from Wisconsin

named Pete Logand(Rory Culkin),who has written a book detailing sexual abuse from his parents.

To boot,Pete has AIDS and this compels Gabriel further still,since his partner Jess(Bobby

Cannavale, good)happens to be a survivor of HIV himself. <br /><br />He also acquaints himself

with Pete’s guardian,a woman named Donna(Toni Collette, brilliant!)and when Gabriel decides he

wants to meet and talk to the two of them in person and goes to Wisconsin, [...]

Bag-of-Words Processing

We will be using a BoW model, so let’s explore how we could tokenize

(that is, separate) the text into words (the tokens).
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First, to split a review into sentences we can use the standard sent_-

tokenize() function from NLTK. For instance, the following piece of

code will extract the 4th sentence that the tokenizer recognizes (in Python,

indexing starts with 0).

sample_sent = sent_tokenize(sample_text_neg)[3]

print(sample_sent)

This film sums up all of what is not good about this type of film.

We can also try the word_tokenize() function to split into words, and

do a stemming operation (finding the roots) to normalize word forms.

The following code will stem all the words in the sample_sent sentence

from above.

sample_words = [ stemmer.stem(word)

for word in word_tokenize(sample_sent) ]

print(sample_words)

[’thi’, ’film’, ’sum’, ’up’, ’al’, ’of’, ’what’, ’is’, ’not’,

’good’, ’about’, ’thi’, ’typ’, ’of’, ’film’, ’.’]

One serious problem with a bag of words approach, especially for

sentiment analysis, is that the presence of negative/positive words does

not imply negative/positive sentiment if the words are negated in the

sentence (e.g., "not bad" actually means "good" even though in general

an occurrence of "bad" means "bad").

NLTK includes the function mark_negation() which takes a tokenized

sentence and marks negated words with a ’_NEG’ suffix. Specifically, it

marks all words that come after a negation word and before the next

punctuation mark. Now ’good’ becomes the word ’good_NEG’ so a BoW

model can pick up on the context of the word.
49

49: More on this topic in Chapter 32.

mark_negation(sample_words)

[’thi’,

’film’,

’sum’,

’up’,

’al’,

’of’,

’what’,

’is’,

’not’,

’good_NEG’,

’about_NEG’,

’thi_NEG’,

’typ_NEG’,

’of_NEG’,

’film_NEG’,

’.’]
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Here is the complete tokenizer function:

1. it tokenizes the text into sentences;

2. for each tokenized sentence, it tokenizes it into words;

3. it keeps only those words of length ≥ 2;

4. it stems the words to only retain the roots, and

5. it marks the negation of certain words.

def tokenizer(text):

sents = sent_tokenize(text)

tokens = []

for sent in sents:

words = word_tokenize(sent)

words = [ word for word in words if len(word) >= 2 ]

words = [ stemmer.stem(word) for word in words ]

words = mark_negation(words)

tokens += words

return tokens

Now that we have a tokenizer, we can use standard feature extraction

methods to get feature vectors for each document.

We use the scikit-learn module for the rest of the feature extraction

and training; it contains TfidfVectorizer class which allows us to define

a custom tokenizer and returns a TFIDF matrix.
50

50: We use this class to convert all of the

training documents to DTM feature vec-

tors, using the tokenizer defined above

(this step can take a few minutes to run).
vectorizer = TfidfVectorizer(min_df=1, tokenizer=tokenizer)

train_matrix = vectorizer.fit_transform(train_docs)

We can explore the matrix to get an idea of what it contains. It should

contain 25,000 documents (as per the introduction), but how many

features have been retained?

train_matrix.shape

(25000, 105350)

A fair number, as it happens: 25,000 documents and 105,494 features. We

can also find the non-zero entries among a subset of the DTM matrix,

but that doesn’t give us much information at this stage (it will only print

the non-zero entries, but we don’t know what the features are).

print(train_matrix[0:9,0:9])

(0, 2) 0.0553631491077

(1, 3) 0.0250716608331

(2, 2) 0.0341384144135

(4, 2) 0.100478224693

(7, 2) 0.141603801927

(7, 3) 0.0266220723609
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Multinomial Naïve Bayes

Multinomial naïve Bayes (MultinomialNB()) is one of various classifi-

cation models in scikit-learn (if we wanted to find the best possible

classifier, we’d have to try some of the others, but at this stage we just

want to show you how the sentiment analysis works).

The fit function takes the feature matrix as well as the vector of labels

we made when we read the data files.

model = MultinomialNB().fit(train_matrix, train_labels)

Now that we’ve trained a model, we can try it out on a 1-star review (but

we pick a review in the test set to avoid overfitting).

neg_sample_text = open(

’{}test/neg/9999_1.txt’.format(data_path)).read()

print(neg_sample_text)

When all we have anymore is pretty much reality TV shows with people making fools of

themselves for whatever reason be it too fat or can’t sing or cook worth a damn than I

know Hollywood has run out of original ideas. I can not recall a time when anything original

or intelligent came out on TV in the last 15 years. What is our obsession with watching

bums make fools of themselves? I would have thought these types of programs would have

run full circle but every year they come up with something new that is more strange

then the one before. OK so people in this one need to lose weight...most Americans need

to lose weight. I just think we all to some degree enjoy watching people humiliated.

Maybe it makes us feel better when we see someone else looking like a jerk. I don’t know

but I just wish something intelligent would come out that did not insult your intelligence.

The overall sentiment seems fairly negative. Let’s see if our model agrees

by computing the class probabilities (negative first, then positive).

neg_sample_vec = vectorizer.transform([neg_sample_text])

model.predict_proba(neg_sample_vec)

array([[ 0.81292637, 0.18707363]])

That seems fairly conclusive. Now let’s do the same thing for a 10-star

movie review in the test set.

pos_sample_text = open(

’{}test/pos/9999_10.txt’.format(data_path)).read()

print(pos_sample_text)

Although I’m not a golf fan, I attended a sneak preview of this movie and absolutely loved it. The

historical settings, the blatant class distinctions, and seeing the good and the bad on both sides

of the dividing line held my attention throughout. The actors and their characterizations were

all mesmerizing. And I was on the edge of my seat during the golf segments, which were not only

dramatic and exciting but easy to follow. Toward the end of this movie, "Seabiscuit" came strongly

to mind, although "The Greatest Game Ever Played" is far less complex a story than that film.

In both cases, the fact that the events really happened deepened my interest.



1818 27 Text Analysis and Text Mining

We would expect this review to be fairly clearly positive, based on the

text alone. What does the model say?

pos_sample_vec = vectorizer.transform([pos_sample_text])

model.predict_proba(pos_sample_vec)

array([[ 0.33913831, 0.66086169]])

The class probabilities are closer to one another than with the previous

test review, but the positive sentiment is strongest, which is a good sign.

Even though it’s not from a review, let’s see how the model would deal

with a tricky sentence with a "not" in it.

stuff = vectorizer.transform(

[’A ten pound laptop is not a good travel companion.’])

model.predict_proba(stuff)

array([[ 0.5583131, 0.4416869]])

We don’t have the greatest confidence in the prediction, but it yields the

correct classification.

Performance Evaluation

But it’s not enough to try out the sentiment analysis on 1 or 2 reviews: we

need to know how well the model performs on the 25,000 test cases?

We’ll need to load the test documents before we can compute some

evaluation metrics.

test_docs = []

test_labels = []

pos_file_names = glob.glob(’{}test/pos/*.txt’.format(data_path))

for file_name in pos_file_names:

test_docs.append(open(file_name).read())

test_labels.append(1)

neg_file_names = glob.glob(’{}test/neg/*.txt’.format(data_path))

for file_name in neg_file_names:

test_docs.append(open(file_name).read())

test_labels.append(0)

We get the feature vectors for the test data and the model’s predic-

tions. Note that we use transform() on testing data rather than fit_-

transform().

test_matrix = vectorizer.transform(test_docs)

predicted = model.predict(test_matrix)
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We can evaluate the precision, the recall, and the 𝐹1−score on the test

set. Precision is the fraction of predicted positive results that are actually

true positives, whereas recall is the proportion of true positives that are

recognized as such by the classification model. Ideally, both of these

values would be near 1.

The F1-score is the harmonic mean of these quantities.

print(metrics.classification_report(

test_labels, predicted, target_names=[’neg’, ’pos’]))

precision recall f1-score support

neg 0.77 0.87 0.82 12500

pos 0.85 0.74 0.79 12500

avg / total 0.81 0.81 0.80 25000

The performance metrics are actually quite good!

Vader

NLTK comes with a pre-trained sentiment analyzer called vader. Pre-

trained in this context means that it has been trained on a dataset that

does not necessarily contain positive and negative movie reviews.

We’ll see how it performs on the testing set, but first we’ll try it on the

trick sentence from above.

sia = SentimentIntensityAnalyzer()

sia.polarity_scores(’A ten pound laptop is not a good travel companion.’)

{’compound’: -0.3412, ’neg’: 0.256, ’neu’: 0.744, ’pos’: 0.0}

We see that vaderwasn’t fooled: it recognizes that it’s likely to be a neutral

sentence, or possibly a negative sentence, but not a positive sentence.

To evaluate on the test data, we find the prediction for each test document,

and load them into classification_report (remember that it hasn’t

been trained on the movie review data).

vader_predicted = []

for doc in test_docs:

scores = sia.polarity_scores(doc)

if scores[’pos’] > scores[’neg’]:

vader_predicted.append(1)

else:

vader_predicted.append(0)

We get the following performance metrics.
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print(metrics.classification_report(

test_labels, vader_predicted, target_names=[’neg’, ’pos’]))

precision recall f1-score support

neg 0.79 0.52 0.63 12500

pos 0.64 0.86 0.74 12500

avg / total 0.72 0.69 0.68 25000

It is not surprising to see that the results are not quite as good, as the

model has not been trained on movie reviews. Still, it is not the worst

model in the world.

27.5 Exercises

1. How important are visual cues in communications and business negotiations? How important is context?

How easy is it to learn from someone whose context is different from yours (culturally AND professionally)?

2. Conduct a BoW analysis of the Ottawa Senators’ 2016-2017 NHL season (as in Section 27.4.1) using the

fields SSS_Recap and/or OPP_Recap.

3. Conduct a BoW analysis of the Ottawa Senators’ 2016-2017 NHL season (as in Section 27.4.1) using the

fields AP_Headline, SSS_Headline, and/or OPP_Title.

4. Identify the plays linked to each Gutenberg Project ID in Section 27.4.2.

5. Build a Shakespeare word cloud for the Marlowe NAs, and vice-versa, as found in Section 27.4.2.

6. Re-run the relevant analyses of Section 27.4.2 after having cleaned the datasets of theatre instructions

(exit, exeunt, enter, scene, act, folio, dramatis, personae, etc. ) and of copyright/licensing information and/or

modern contaminating terms, and with a slightly more restrictive list of early modern english stopwords,

removing ancient spelling conventions (“haue” instead of “have”, “goode” instead of “good”, etc.).

7. Conduct a count of bigrams per play with the Shakespeare corpus of Section 27.4.2.

8. Find the most common title of nobility in each of the Shakespeare plays of Section 27.4.2.

9. Re-run the 𝑛−gram code of Section 27.4.2 for 𝑛 = 3.

10. Create a classifier for real news/fake news, as in Section 27.4.4, using the fake_or_real_news1_utf8.csv

file (found in the usual location).

11. Conduct the cluster analysis of Section 27.4.5 using stricter sparsity levels: 90%, 95%, 99%.

12. Conduct a cluster analysis on the data of Section 27.4.5 using the tf-idf weightings (without removing

"Ottawa" or "Senators" from the cleaned up recap, using the following as a starting point.

# Apply tf-idf weighting

AP.recaps.tfidf_tdm.1 = tmLLTermDocumentMatrix(clean_corp.AP.recaps.1,

control=list(weighting=weightTfIdf))

# Remove sparse terms

AP.recaps.tfidf_tdm.1 <- tm::removeSparseTerms(AP.recaps.tfidf_tdm.1,sparse=.7)

13. Conduct the cluster analyses of Section 27.4.5 using a DTM instead of a TDM (in essence, finding similar

games during the 2016-2017 season).

14. Conduct the cluster analyses of Section 27.4.5 using 𝑘−means instead of hierarchical clustering.

15. Run a sentiment analysis of Macbeth for categories of sentiments other than positive or negative.

16. Run a sentiment analysis of Trump’s tweets in the BOTUS case study.

17. Run a sentiment analysis of the field SSS_Recap from the Senators game recap example.
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