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by Kevin Cheung and Patrick Boily

In pedagogical settings, we typically treat the data as “complete” in the

sense that we assume that the data collection process is over – no new

data will be added to our trove, and all of the past (available) data is used

in the analyses. In a nutshell, data collection lies in the past, and data

analysis lies in the future.

In practice, data is often collected continuously (or at least, in batches),

and older data typically become stale and should perhaps not be weighed

as heavily as more recent data when the analyses are updated.
*

In complex analytical scenarios, however, it can be inefficient to replicate

multiple analyses with sensibly the same data from one time point to the

next. In this chapter, we discuss data streams and how to extract insights

in such situations. More information is available in [7, 15].

28.1 Overview

We start by introducing the fundamental notions of the discipline.

28.1.1 Motivating Examples

Consider the owner of a gift shop at the Ottawa Macdonald-Cartier

International Airport (YOW). She would like to keep track of the most

popular items sold on each day – perhaps there are a few “hot items” that

show up daily, and some outliers that only show up in the list sporadically.

How could she approach this task?

Assuming that she uses some sort of electronic inventory system, she

can export the daily transactions to a file for data analysis. As YOW is

not a very busy airport, she might expect the file to contain only a small

number of sales. Let’s take a look at the data for one day.

df <- read.csv("dailysales.csv", stringsAsFactors = TRUE)

str(df)

df

df2 <- df[’sku’] # Take just the sku column

ag <- aggregate(df2, by=list(item = df2$sku), FUN=length)

ag[ order(-ag$sku), ] # Sort in descending order

*
When does Netflix recognize that a user’s taste in comedy have changed, say?
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’data.frame’: 20 obs. of 3 variables:

$ sku : Factor w/ 4 levels "A","B","C","D": 3 2 3 1 3 4 3 2 2 3 \ldots

$ time : Factor w/ 20 levels "08:30","08:35",..: 1 2 3 4 5 6 7 8 9 10 \ldots

$ amount: num 9.99 4.49 9.99 12.99 9.99 \ldots

sku time amount

1 C 08:30 9.99

2 B 08:35 4.49

3 C 08:40 9.99

4 A 08:50 12.99

5 C 09:10 9.99

6 D 10:20 24.99

7 C 10:24 9.99

8 B 11:05 4.49

9 B 13:46 4.49

10 C 13:57 9.99

11 C 14:07 9.99

12 B 14:36 4.49

13 C 14:48 9.99

14 B 14:50 4.49

15 C 15:08 9.99

16 B 15:46 4.49

17 D 15:47 24.99

18 D 15:52 24.99

19 A 16:10 12.99

20 A 16:17 12.99

item sku

3 C 8

2 B 6

1 A 3

4 D 3

But if instead of owning a small gift store at a medium-sized airport, she

was the product manager of Amazon USA. She might want to see the

top sold items since the beginning of the day every 10 minutes. But the

solution for the YOW gift shop would be unlikely to work. Why? Well,

in 2016,
1

Amazon USA had 500+ million items in their catalogue, and1: And it has only increased since.

the site was conducting, on average, 200,000+ transactions per hour. This

quickly becomes a big data problem.
2

2: See Chapter 30 for additional details.

28.1.2 Basic Notions

In the gift shop example, all the daily transactions can be processed in

one go at the end of the day – this is an example of batch processing.

In the Amazon USA example, the transactions are not available all at

once for processing and results need to be updated in time increments;

whether the volume of transactions is high or not, the need for (near)
real-time updates is a characteristic of online processing.

Data stream mining algorithms are invariably online algorithms,
3

3: “In computer science, an online algo-
rithm is one that can process its input

piece-by-piece in a serial fashion, i.e., in

the order that the input is fed to the al-

gorithm, without having the entire input

available from the start. In contrast, an

offline algorithm is given the whole prob-

lem data from the beginning and is re-

quired to output an answer which solves

the problem at hand.” [31]

some

of which might exploit intermittent batch processing over time windows.

We will be looking at examples throughout this chapter.
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Big data is typically characterized by the 5V framework:

we are dealing with large amounts of data (volume);

with observations of different types which may not all be saved in

relational databases (variety);

created at high speed, but with accessibility and processing bottle-

necks (velocity);

whose quality and accuracy are harder to control (veracity), and

which we hope to be able to turn into actionable, insightful results

(value).

To react to information in real-time, the most critical component to tame

is velocity [13]. High-velocity data streams arise, among others, in:

communication channels;

sensors;

financial or sales transactions, and

user-generated content.

Important applications (and fields of applications) include:

autonomous vehicles;

cybersecurity;

fraud detection;

health care;

smart homes;

mobile communication, etc.

Data Stream Models We can study data streams via formal mathemati-

cal models, such as an ordered pair (𝑠, Δ) where 𝑠 is a sequence of data
objects and Δ is a sequence of time intervals.

Loosely speaking, a data stream is a sequence of data objects (usually a

vector of numerical values) that arrive online, one at a time; we have no
control over the order in which the data elements arrive. Data streams are

potentially infinite in length. Access to the data objects is thus sequential;
it is also one-time, meaning that once a data object has been processed,

it is archived or discarded.
4

4: Although a small number of data ob-

jects can be held in memory for debugging

or validation purposes.Another important practical issue is the presence of noise in the data:

thermostat readings from (cheap) sensors can fluctuate wildly even

when the ambient temperature is constant, for instance. When real-time

responses are expected (such as may be the case in autonomous vehicles,

say), noisy data has to be carefully handled: smoothing techniques such

as Kalman filters might be required.
5

5: We will not, however be covering

smoothing techniques in detail; see Chap-

ter 9 (DUDADS, Volume 1) and [7, 15] for

more information.

In practice, analysts use data management systems (DMS) to extract

insight from data streams:

1. a stream processor (such as Apache Kafka) to manage input and

output streams;

2. a working storage (limited in size) to hold recent/current data

elements;

3. an archival storage (such as Apache Hadoop) to store past data

elements;

4. a query processor, and

5. an analytics API.
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Note that we will not be using a DMS in this chapter’s example.

Because of the velocity and volume of data in a typical data stream, exact

analysis methods are often contra-indicated; instead, we use probabilistic
or approximation algorithms.

Filtering Say we run a domain name (DNS) server for Internet protocol

(IP) address lookup; we might need to filter millions of URLs for malicious

websites. It becomes quite impractical to look up the database for every

DNS query. A simple, well-known, and practical approach for this task

is to employ a Bloom filter.

A probabilistic memory-efficient procedure that allows for fast querying,

a Bloom filter is primarily used to test whether an element 𝑠 ∈ 𝑇 is also
a member of a set 𝑆; Bloom filters can result in false positives (falsely

indicating that an element is in the set when it actually isn’t), but they

cannot produce false negatives – if a query indicates an element is not in

the set, then it definitely is not.

Bloom filters are particularly useful in situations where the set of keys

is large and expensive to enumerate; they are often used in situations

where the speed and efficiency of the query process are more critical

than the absolute accuracy of the result.

Bloom filters use hash functions ℎ1 , . . . , ℎ𝑘 : 𝑇 → {0, . . . , 𝑚 − 1} to map

elements 𝑠 ∈ 𝑇 to positions in an array𝐹 of𝑚 bits, where𝑚 ≫ 1.
6

For each6: Hash functions are deterministic, ef-
ficient (the hash value can be computed

quickly), non-invertible (it should be dif-

ficult to reverse-engineer the original in-

put from the hash value), and collision-
resistant (it should be improbable for two

different inputs to produce the same out-

put).

known 𝑠 ∈ 𝑆, we compute the 𝑘 hashes ℎ1(𝑠), . . . , ℎ𝑘(𝑠) ∈ {0, . . . , 𝑚−1};
these values become the indices of 𝐹 for which the bit entry is 1.

For instance, say 𝑚 = 12 and there are 𝑘 = 3 hash functions, with the set

𝑆 of malicious IP containing only 4 elements.

The set of hash values on all known malicious URLs is thus

{ℎ1(𝑠1), . . . , ℎ3(𝑠4)} = {0, 1, 2, 4, 6, 7, 10}

and the array 𝐹 (we count from index 0) is:

Consider an element 𝑡 ∈ 𝑇. If any of the bits of 𝐹 indexed by the hash

values ℎ1(𝑡), . . . , ℎ𝑘(𝑡) is 0, then 𝑡 ∉ 𝑆; otherwise, we “predict” 𝑡 ∈ 𝑆 (but

this could be a false positive).

For instance, say that a new URL 𝑡 is received for DNS lookup; we

compute ℎ1(𝑡) = 1, ℎ2(𝑡) = 3 and ℎ3(𝑡) = 7:

As 𝐹(3) = 0, we would conclude that 𝑡 is not malicious.
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The size 𝑚 of the Bloom filter and the number 𝑘 of hash functions used

affect its efficiency and the probability of obtaining false positives; a larger

filter size generally results in a lower error rate, but the likelihood of false

positives increases as more elements are tested. For more information,

refer to [16, 22, 28].

Sampling Sampling from a data stream differs significantly from sam-

pling from static storage, mostly with respect to data accessibility and

methods.
7

7: See Chapter 10 (DUDADS, Volume 1).

In static contexts,

the data is stable and the dataset size is known, which simplifies

sample size and estimator variance computations;

the same dataset can be sampled multiple times, using traditional

and straightforward sampling methods, and

there is typically no urgency to analyze the data, as it does not

change in real-time.

In streaming contexts,

the data is transient, flowing in (near) real-time, and is not typically

stored long-term (unless it is captured/archived during the stream);

items often have a single chance to be sampled because they may

not be seen again, necessitating one-pass algorithms;

the sample may need to be continuously updated to reflect the

most recent data;

the total size of the data is not known in advance, which affects

sample size considerations, and

typically, the data must be analyzed immediately, since stor-

ing/archiving large amounts of streaming data may prove im-

practical or impossible.

Different sampling methods exist depending on the application. We

illustrate two common sampling methods for data streams: reservoir
sampling and sampling via a hash function.

Consider a credit card company, say, that wants to obtain a sample of

1000 transactions over the next hour drawn uniformly at random. But

the company doesn’t know how many transactions will occur during the

hour, they cannot save too many transactions in memory, and accessing

the archive of saved transactions may be too costly. How could they

approach the task?

Assuming that the number of transactions is sufficiently larger than

the reservoir capacity Λ(= 1000), reservoir sampling can be shown

mathematically to produce a uniform sample of all transactions. Start by

preparing a reservoir storage 𝑅 for Λ(= 1000) transactions, and insert

the first Λ transactions in 𝑅.

For each transaction 𝑡 that follows in the specific time frame:

1. draw a random integer 𝑀 in {1, . . . , 𝑡};
2. if 𝑀 ≤ Λ, randomly delete a transaction from 𝑅 and replace it with

the transaction 𝑡.

The transactions in 𝑅 after the final transaction form the reservoir
sample.
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If instead we want to sample 𝑟 = 1%, say, of the credit card users and

compute each sampled user’s total spending over a specific time frame,

we could use the following approach. Assume that we have a reasonably

accurate estimate 𝑁̂ of the total number of users who will conduct a

credit card transaction during the time-frame.

As a transaction arrives, we check if the user is already in the sample:

if they are, we simply add the transaction amount to the running

total for that user;

if they are not, then with probability 𝑟, we add the user (and the

transaction value) to the sample.

The sampling procedure stops once there are more than 𝑟𝑁̂ users in the

sample.

This method has a huge drawback, however: checking if a transaction’s

user matches one in the sample could take too much time relative to

the rate at which the transactions arrive – data base lookup needs to be

avoided as much as possible.

Instead, let ℎ be a (quickly computable) hash function mapping credit

card users to an integer in the range {0, . . . , 𝑁̂ − 1} and set up an array

𝐴 of size 𝑟𝑁̂ to track the sampled users’ total spendings.

When a transaction (𝑢, 𝑎) arrives, we compute ℎ(𝑢), where 𝑢 is the user. If

ℎ(𝑢) < 𝑟𝑁̂ , we add the transaction amount 𝑎 to the element of 𝐴 indexed

by ℎ(𝑢). Otherwise, we leave 𝐴 unchanged.

For example, say we expect 𝑁̂ = 1000 users to conduct transactions in the

specified time frame. Then the array 𝐴 is of size 𝑟𝑁̂ = 0.01(1000) = 10

and only the spending amounts of users hashed to a value in the range

{0, . . . , 9} would be tracked.

Time Windows In theory, data streams are potentially infinite.
8

In8: Data streams must necessarily be fi-

nite, but their size could be so large that

it makes more sense to model them as

infinite.

practice, we often use a window (i.e., a contiguous subset of the data) on

the stream for analysis.

The most commonly time windows are:

1. landmark windows, which consider data from the beginning of

the stream to the present;

2. sliding windows, which consider data from 𝑤 time units before

the present to the present;

3. fading windows, which assign smaller weights to older data, and

4. tilted time windows, which use different time granularities.
9

9: The fundamental idea is to create a hi-

erarchy of time windows of varying sizes

that reflect the different ages of the data.

In more recent time periods, the windows

are smaller, capturing data at a fine granu-

larity, which allows for detailed analysis of

the most recent events. As time progresses,

the windows become larger, encapsulating

older data at a coarser granularity. This

approach allows for efficient storage and

query of data streams, retaining more de-

tail for recent data while still maintaining

a summary of older data.

Instead of figuring out the most popular items each hour (as in Section

28.1.1, for instance), we could monitor the situation continuously by

assigning scores to items in such a way that the score of an item decreases

over time if it is not purchased again. The popularity of an item can then

be simply measured as the total score of the item, with popular items

having the highest scores. We illustrate how a fading window could be

used to accomplish the task.

Let 𝑐 be a very small number, such as 0.0001 or 1/𝑁 , where 𝑁 is the

number of items in the catalogue. Assume that there is a list of items
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whose popularity we are tracking, each of which is assigned the initial

score of 0. When a purchase takes place:

1. multiply each list item’s score by 1 − 𝑐;
2. if the purchased item is in the list of items, add 1 to its score;

3. for any item whose score falls below a threshold 𝑡, set the score to 0.

For instance, suppose that 𝑐 = 0.2 and 𝑡 = 0.5, and that the current list

stands at:

If the next purchase in the specified time frame is bread, then the list is

updated to:

If the next purchase in the specified time frame is milk, then the list

becomes:

As the eggs’ score falls below 𝑡 = 0.5, it is set to 0.

If this was the end of the specified period, the most popular purchased

item would be milk, followed by bread, and then jam. Note that a score

of 0 does not necessarily mean that the item in question has not been

purchased (as was the case with eggs).

This algorithm is such that the sum of all scores prior to a purchase is at

most 1/𝑐, and that there cannot be more than 2/𝑐 items in the list with a

score above 0.

Learning and Validation Since the data objects in a data stream are

unavailable for analysis or machine learning all at once, we need different

approaches than those suggested in Chapters 6-11 ([8, vol. 1]) and Chapters

19-23 ([8, vol. 3]); instead, to get around this limitation, we typically use:

incremental learning, in which the model is updated as new data

arrive, or

two-phase learning, where we periodically conduct (offline) learn-

ing on a synopsis/subset/summary of the data, and then update

the model appropriately.
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For similar reasons, the traditional model validation approaches (such

as 𝑘−fold and leave-one-out validation methods) do not apply to data

streams; instead, we may use hold-out or prequential validation.

In hold-out validation, we set aside a portion of the incoming data as a

test set and use the the remainder to train the model. Since data streams

are infinite (in theory) and non-stationary;
10

10: The underlying distribution of the data

changes over time (see [8, vol. 1, ch. 9]).

as such, the model may

need to update continuously.

The hold-out method is often used as a foundation for experimental

frameworks in data stream analysis because it allows for flexibility in

capturing various statistics of interest and can be adapted to track many

behaviours of the model under evaluation.
11

11: For instance, it can be set up to monitor

the model’s accuracy against the number

of training instances processed or the ac-

tual training time, which can then be repre-

sented in learning curves or performance
tables.

In practice, the hold-out method measures the immediate accuracy
of the model at specific points in the stream (sampled according to

some appropriate model) without considering the history of previous

performance, which can be problematic since early poor performance

can affect the accuracy measurement, even if the algorithm improves

significantly over time.

But with a “large enough” hold-out test, we can hope to improve the

reliability of the accuracy estimates; averaging the evaluation procedure

multiple times over different test sets may also help in reducing the

variance in the estimates.

Data mining analysts also test the performance of models on historical

data. However, in real-life applications, what works well on historical

data might not work well in production. When concept/model drift
is likely to be encountered,

12 prequential validation (also known as12: That is, when the trained model might

have been great for historical data, but is

unlikely to be useful for new observations

due to a shift in the data distribution or

the way the various features interact in the

data over time.

the interleaved test-then-train method), which attempt to maintain

a summary of recent samples while discarding older ones to better

reflect the current distribution of the data stream, might provide a better

framework for model validation.

Prequential validation works as follows:

1. as each instance from the data stream arrives, it is first used to

test the model, meaning the current model’s prediction for this

instance is evaluated before it is incorporated in the training set;

2. after the prediction and its evaluation, the same instance is used to

further train or update the model, reflecting a real-world scenario

where models must predict future or unseen data;

3. the performance of the model is tracked continuously over time,

after each each prediction, using any relevant evaluation metrics.

Some variations of the prequential method involve using a sliding
window or fading factors to give more weight to recent data, helping

the model adapt quickly to concept drifts by "forgetting" older data.
13

13: Even without these variations, the pre-

quential approach allows the model to be

constantly updated with the most recent

data, which also protects against model

drift.

One major advantage of using the prequential method is that it simulates

a scenario where each instance can only be used once, due to the potential

infinite length and high-velocity nature of streams. It mimics the way
models are used in the real world, continuously learning and adapting

from a stream of incoming data and may provide a realistic assessment

of a model’s predictive performance and its ability to adapt over time.
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28.2 Change Detection and Maintaining Statistics

There are many phenomena/situations that exhibit statistical change

over time:

the demographics of a neighbourhood;

the average room temperature in a house;

weekly movie theatre attendance;

the vital signs of an individual.

For each of these examples, we could expect the summary statistics to

remain relatively stable over a “small enough” time window. However,

it is clear that there are events that will cause noticeable changes in the

summary statistics over a long time period.

For example, in the case of vital signs, illnesses ranging from a flu to a

heart attack can trigger changes that vary from mild to wild (including

the sudden disappearance of any sign).

Time Series Analysis vs. Data Streams Mining In [8, vol. 1, ch. 9], we

would have tackled such situations using time series analysis – how

does data streams mining differ? Broadly-speaking, the focus of time

series analysis is on understanding historical data and predicting future
values in a fixed dataset, while data streams mining is concerned with

handling and extracting knowledge from an ongoing flow of data that

may change unpredictably over time.
14

14: In particular, time series analysis
involves ordered sequences of stationary
values typically measured at successive
points in time spaced at uniform time
intervals; the analytical aims are to

understand or model the underlying
structure and behaviour of the data,

often to forecast future points in the series.

Time series analysis uses methods that

exploit temporal correlations (ARIMA,

exponential smoothing, Fourier analysis,

etc.); in general, the analysis is performed

on a complete dataset, and it is usually

retrospective.

In contrast, data streams mining
deals with large volumes of (possibly

non-stationary) data that arrive continu-
ously over time, often at high velocity,

in a potentially never-ending process;

it aims to extract actionable insights
from live data as it is generated. Data

streams mining uses algorithms that

process and summarize data on the fly
(online learning, sliding windows, and

approximation algorithms); in general,

mining is performed in real-time and is

often prospective, focusing on immediate

insights and rapid decision-making.

28.2.1 Change Detection

In this section, we will take a look at change detection (or concept drift
detection) over data streams. The main challenge in change detection is

determining when a significant change occurs and modifying the data

stream model appropriately to reflect the change – part of the difficulty

is that noise may wrongly be seen as change by the untrained eye.

Change detection then needs to balance sensitivity to change and

robustness to noise.

Technical Framework A data stream is typically modeled as a se-

quence of data-generating distributions from which instances (data

objects/items) are drawn.

We denote by D𝑖 the distribution for the 𝑖−th item in the data stream;

the actual item generated from D𝑖 is denoted by 𝑥𝑖 – in other words, 𝑥𝑖
is obtained by sampling from D𝑖 . Note that 𝑥𝑖 could be a vector, and not

necessarily just a scalar.
15

15: In other chapters, we differentiated

the scalar 𝑥 from the vector x by using

a bold font. In this chapter, we will stick

to the regular font weight – if a vector is

intended, the context should make it clear.

For instance, if the distributions D𝑖 are independent N(0, 1) for 𝑖 ≤ 6,

while the (remaining) distributions D𝑖 are independent U(0, 1) for 𝑖 ≥ 7,

then a realization of the data stream could be

0.56,−2.43, 0.05, 1.78,−0.82,−0.21, 0.2, 0.9, 0.07, 0.54, 0.49, . . .
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We would like to be able to detect that the initial portion (𝑖 ≤ 6) and the

tail (𝑖 ≥ 7) of this sequence arise from different distributions – in other

words, that a change has occurred in the mechanism to generate the data

between 𝑖 = 6 and 𝑖 = 7.

Learning Distributions In practice, the distributions D𝑖 are unknown

and need to be learned from the instances 𝑥𝑖 . When the distributions

change from one instance to another in an haphazard manner, which is

an extreme case, learning is not possible.

The other extreme case is when the distributions remain the same
throughout the data stream. In this case, once we have “enough” data

instances, we can obtain a model whose accuracy is bounded below by

the theoretical limit of the Bayes error.1616: See Chapter 21 (DUDADS, Volume 3).

In either of these extremes, there is no need for change detection algorithm

(although for different reasons).

Concepts and Terminology What typically happens in a data stream

is that there are stretches of the sequence in which the distributions are

(nearly) identical so that a model for the underlying distribution can be

learned from the examples.

We can then partition the (nearly) identical distributions into sequences

of distributions.
17

17: Of course, this may be easier said than

done...

In the following sequence of distributions, let’s say that the ones with

the same colour are (nearly) identical:

D1 , D2 , D3 , D4 , D5 , D6 , D7 , D8 , D9 , D10 , D11 , D12 , . . .

Denote the sequences of distributions by

S1 ,S2 ,S3 , . . .

A model that is trained with training instances from S1 will perform

poorly on S2. More generally, the distributions in S𝑗 will have different
characteristics from those of the distributions S𝑗+1. We say that each S𝑗
corresponds to a data stream concept; the transition from S𝑗 to S𝑗+1 is

where a concept drift appears.

Of course, it might not be easy to distinguish a truce concept drift from

the presence of temporary noise. In [17], the authors define concept drift

in terms of consistency and persistency.

Loosely speaking, consistency means that the changes between consecu-

tive instances in the same concept are small enough to stay under some

pre-sepecified threshold.

Persistency, on the other hand, means that the concept is present for at

least 𝑝 consecutive instances where 𝑝 ≥ 𝑤/2 from some pre-specified

window size 𝑤.

A concept drift is permanent if it is both consistent and persistent.
18

18: Note that concepts may re-occur: in

the concept sequence S1 ,S2 ,S3 , . . ., it is

possible for the first and third concept to

be identical, for instance.
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Drift Detection In practice, there are two main approaches to drift

detection:

monitoring the evolution of performance indicators, and/or

monitoring distributions on two (or more) different time-windows.

Common algorithms include: floating rough approximations (FLORA),

cumulative sum (CUSUM), and the Page-Hinkley test (PH).

FLORA: the details of the algorithm are outside the scope of the chapter

but can be found in [5, 7, 27]. Note, however, that FLORA:

uses “rough” set theory (a generalization of regular or “crisp”

sets from computer science);

can adapt to changing data patterns, which is crucial for

handling concept drift in streaming data;

supports incremental learning, updating its model as new

data comes in;

is designed to identify significant deviations from existing

models;

is efficient and scalable, making it suitable for big data
streams;

is capable of handling noise and uncertainty effectively, and

allows user-defined parameters to tailor detection sensitivity.

CUSUM is particularly effective in identifying shifts in the mean or

variance. More details about the algorithm can be found in [5, 7,

14]. As an algorithm, CUSUM:

is aimed at detecting shifts in statistical properties of a data

stream (especially the mean);

tracks the cumulative sum of deviations from a target or

reference value;

involves threshold setting for change detection – exceeding

these thresholds indicates potential drift;

implements a two-sided approach for detecting both positive

and negative shifts;

includes a reset mechanism after detecting a change, allowing

for continuous monitoring;

is simple, has minimal computational requirement, and is

effective in detecting gradual changes, but

can be sensitive to parameter settings and may require tuning.

PH focuses on identifying changes in the mean [7]:

its primary objective is to detect shifts in the mean of a

sequence of observations;

it is based on a cumulative sum approach, but focuses on

rapid detection of mean changes;

it computes the cumulative sum of differences from the mean

and adjusts it over time;

it uses a threshold for change detection; exceeding this thresh-

old indicates a potential mean shift;

its implementation is straightforward and it offers timely
(rapid) detection, but

its effectiveness depends on the choice of threshold and mean

estimates.
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28.2.2 Maintaining Statistics

It most applications, analysts are interested in tracking data stream

statistics over time. In theory, as long as we have saved all of the stream’s

numerical values, we can compute the mean and variance (to name but

two); in practice, the direct approach is often fraught with issues – even

something as simple as identifying the number of instances in a stream

can quickly devolve into a big data problem.

We would much rather be able to obtain a data stream’s statistics on
demand – in the lingo of data mining, this is called maintaining the

stream’s statistics – without having to compute it from scratch at any

desired moment.

If we are only interested in the mean and the variance of a numeric data

stream over a landmark window (that is, from time 0 to now), it suffices

to maintain a triple of numbers (𝑁, 𝑆, 𝑄) where:

𝑁 is the total number of instances seen up to now;

𝑆 is the sum of all the isntances seen up to now, and

𝑄 is the sum of the squares of the instances seen up to now.

We can use the basic formulas to compute the desired statistics: the mean
is simply 𝑆/𝑁 , while the variance is𝑄/𝑁−(𝑆/𝑁)2. As a new data stream

instance 𝑥 comes in, we only need to update the triple as follows:

increment 𝑁 by 1;

increment 𝑆 by 𝑥, and

increment 𝑄 by 𝑥2
,

and use the basic formulas to get the mean and variance. By keeping

(𝑁, 𝑆, 𝑄) current with the above mechanism, we get the (current) mean

and variance on demand.
19

19: If we are interested in the progres-
sion of the mean and variance over time,

we could maintain (and store) a 4−tuple

(𝑡 , 𝑁(𝑡), 𝑆(𝑡), 𝑄(𝑡)), where 𝑡 represents

the time stamp at which new instances

come in, with 𝑁(𝑡), 𝑆(𝑡), and 𝑄(𝑡) repre-

senting 𝑁 , 𝑆, and 𝑄 at 𝑡, and the mean

and the variance at 𝑡 being defined by

𝑆(𝑡)/𝑁(𝑡) and 𝑄(𝑡)/𝑁(𝑡) − (𝑆(𝑡)/𝑁(𝑡))2.

We may still need to store a rather large

object to plot the data, say, but the mean

and variance computations are not any

more demanding than in the text.

Unfortunately, in most data stream applications, summary statistics

over landmark windows are not suitable. Instead, we might be looking

for summary statistics over a recent time-window. A mechanism for

forgetting, devaluing, or suppressing old data is required.

ADWIN The adaptive sliding window (ADWIN) is an algorithm used

to compute statistics over sliding windows [7].

It keeps a variable-length window of recent values, with the property

that the window has the maximal length which remains statistically

consistent with the hypothesis that there has been no change in the

average value inside the window. ADWIN can thus be used to detect

change in the average value of the data stream (non-stationarity). The

basic idea is the following one.

Let 𝑊 denote the window of recent values. We search for a splitting
point that will divide 𝑊 into two sub-windows 𝑊0 and 𝑊1, where

𝑊0 represents older instances and𝑊1 the recent ones. We would then

consider removing𝑊0 from𝑊 if the average value of instances over𝑊0

is “substantially different” from those over𝑊1.
20

20: The search for a split point (which

we will describe shortly) does not need to

take place upon every new arrival; it could

take place every 𝑘 new arrivals, for some

positive integer 𝑘.

Consequently, we can confidently declare a change whenever the window

𝑊 shrinks, and the mean over the existing window 𝑊 is a reliable
estimate of the current mean in the stream.
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ADWIN Algorithm ADWIN requires specifying a confidence value
0 < 𝛿 < 1. We denote the sequence of data stream values by 𝑥1 , 𝑥2 , 𝑥3 , . . .,

where 𝑥 𝑗 only becomes available at time 𝑡 𝑗 . For simplicity’s sake, we will

further assume that 0 ≤ 𝑥 𝑗 ≤ 1 and that 𝑥 𝑗 is drawn from a distribution

𝐷𝑗 with expected value E(𝑥 𝑗) = 𝜇𝑗 ; in practice, of course, we know

neither 𝐷𝑗 nor its expected value.

ADWIN uses a sliding window𝑊(=𝑊 𝑖), with the most recent arrival

𝑥𝑖 going to the head of the window. We will denote the mean of the
instances over the window𝑊 by 𝜇̂𝑊 . The size of a window𝑊 (which is

to say, the number of observations in𝑊) is denoted by |𝑊 |.

1. Initialize window𝑊 ;

2. for each time 𝑡 𝑗 ,

a) add 𝑥 𝑗 to the head of𝑊(=𝑊 𝑗);
b) while 𝑊 can be split into 𝑊 = 𝑊0 ⊔𝑊1 as in the previous

discussion, with

|𝜇̂𝑊0
− 𝜇̂𝑊1

| >
√

ln(4|𝑊 |/𝛿)
2𝑚

, where 𝑚 =
2

1

|𝑊0 | +
1

|𝑊1 |
,

then set𝑊 =𝑊1;
21

21: In other words, 𝑚 is the harmonic
mean of𝑊0 and𝑊1.

c) output 𝜇̂𝑊 𝑗 .

Theorem: with the threshold 𝛿, the following hold at every step 𝑡.

False positive rate bound: if 𝜇𝑗 has remained constant within𝑊 up

to time 𝑡, the probability that the window is shrunk is at most 𝛿.

False negative rate bound: if for some partition of𝑊 into𝑊0 ⊔𝑊1

we have

|𝜇̂𝑊0
− 𝜇̂𝑊1

| > 2

√
ln(4|𝑊 |/𝛿)

2𝑚
,

then ADWIN shrinks𝑊 to𝑊1 (or shorter) with probability 1 − 𝛿.

Histograms Loosely speaking, a histogram is a visual representation of

frequency data as a bar graph.
22

Histograms are often used in reporting 22: We have discussed such charts in

Chapter 7 (DUDADS, Volume 1), Chap-

ter 18 (DUDADS, Volume 2), and [9].

and exploratory data analysis. Constructing a histogram involves putting

the observed values into non-overlapping bins.

In a data stream context, up-to-date histograms could lead to actionable

insights in real-time. But constructing histograms from data streams can

be challenging:

since we do not know ahead of time what values new instances

could take, the histogram’s (long-term) range is unknown;

consequently, its number of bins might need to be determined

dynamically (which is to say, it may change as new instances arrive);

equal-frequency bins require sorting, which cannot be achieved in

linear time, and

up-to-date histograms need to be available on demand, should the

user request them.

In practice, we must settle for approximate histograms – as long as the

approximations remain “decent”, we can overlook the lack of exactness

as the cost of obtaining real-time “insights” when requested.
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Figure 28.1: The same data is represented in two different types of histograms: equal-width (on the left), for which the height of the bar is

proportional to the number of values in the bin, and equal-frequency (on the right), for which the width of the bar is proportional to the

number of values in the bin.

PID The partition incremental discretization (PID) algorithm provides

one way to maintain a data stream’s histogram.

PID uses a two-layer (two-phase) approach:

layer 1 obtains a fine-grained summary of the data objects as they

arrive, while

layer 2 aggregates the summary.

The idea of first obtaining a summary of the data and then performing

an aggregation at lower granularity for the final result is quite common

and will appear again in Sections 28.4 and 28.3.

Layer 1 We can think of layer 1 as an intermediate histogram summa-

rizing the incoming data at a relatively fine granularity. It is initialized

before any data is seen as follows:

1. pick a tentative but sufficiently wide range for the values (it can

be extended later, as needed), and

2. partition the range into a high number of equal-width intervals
(i.e., the histogram will have a large number of bins), with the first

bin extending to ∞ to the left and the last bin to ∞ to the right.

Upon receiving a new instance 𝑥, we find the bin in which it falls

and add 1 to that bin’s count. If the bin count exceeds a pre-specified
threshold (that is, if it contains more than a pre-specified percentage of

the total number of values seen so far), then:

1. if the bin in question is the first bin, insert a bin with default width

to the left of the first break point and distribute the count evenly

between this new bin and the left-most bin;

2. if it is the last bin, insert a bin with default width to the right of

the last break point and distribute the count evenly between this

new bin and the right-most bin;

3. otherwise, split the bin into two bins with equal width and dis-

tribute the count evenly between the two bins.

The process of updating layer 1 is illustrated in Figure 28.2. As more and

more instances arrive, the bins in the updated first layer are unlikely to
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Figure 28.2: Maintaining a histogram: updating layer 1. Assume that the histogram on the left has bin (6, 8] at threshold. If the next value

arriving from the stream is 7.5, a bin split is triggered: the updated layer 1 is shown on the right.

be of equal width, and their number will far exceed the actual number

of bins that would ever be displayed, both of which are acceptable as

layer 1 is updated incrementally and typically stays hidden from the user;

recall that layer 2 is only constructed from layer 1 upon request.

Layer 2: Equal-Width Histograms To build an equal-width layer 2

histogram, we select a bin width that is an integer multiple of the

default width used for layer 1; layer 2 thus has fewer bins than the layer 1

histogram. For each bin 𝐵 in the layer 2, we set the bin count to the tally

of the bin counts in layer 1 for bins that are within the interval defined by

𝐵. For instance, consider the layer 1 histogram below.

Table 28.1: Layer 1 histogram for a data

stream at the time of a display request

from user.

Each bin in the first layer is of length 1 (apart from the first and last bin,

which are of infinite length); we chose a layer 2 bin length of 3 × 1 = 3;

the layer 2 equal-width histogram is thus as shown in Table 28.2.

Table 28.2: Equal-width layer 2 histogram

for a data stream at the time of a display

request from user.
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Layer 2: Equal-Frequency Histograms To build an equal-frequency
layer 2 histogram, we select a desired number of bins 𝑘. Let 𝐶 = 𝑁/𝑘,
where 𝑁 is the total number of instances captured by layer 1.

The bins in the second layer 2 are created as follows:

1. tally the bin counts in Layer 1 starting from the left-most bin;

2. as soon as the tally meets or exceeds 𝐶, insert a new breakpoint at

the right breakpoint of the last bin of layer 1 used in the tally;

3. resume tallying bin counts starting at the next bin in layer 1;

4. repeat this process until all the bins in Layer 1 have been processed.

With the layer 1 histogram of Table 28.1 and 𝑘 = 3, we have

𝐶 = 𝑁/𝑘 = 60/3 = 20;

the equal-frequency layer 2 histogram is thus as shown in Table 28.3.

Table 28.3: Equal-frequency layer 2 his-

togram for a data stream at the time of a

display request from user.

PID Revisited The bad news is that PID does not generate exact
histograms in general because of the granularity of the first layer.

In particular, there could be issues with the set of boundaries (layer 2

breakpoints are restricted to the set of breakpoints available in layer 1)

and the frequency counts (in layer 1, the bin counts are exact only if no
splitting takes place).

The good news is that both layers can be constructed efficiently, however.

When mining data streams then, as in life in general, you win some and

you lose some.

PID and Change Detection One way to detect change via data stream

histograms is to maintain a layer 2 histogram over a reference time
window and compare with a layer 2 histogram over a recent time
window, as distributions.

Provided that the number of bins and the widths of the two histograms are

the same, the Kolmogorov-Smirnov test [29] can be used. Alternatively,

one can also compute the Kullback-Leibler divergence [30] which

measures the “distance” between two probability distributions.

If the histograms are deemed to be statistically different, then concept

drift has occurred.
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28.3 Clustering

Clustering is the process of partitioning data points into different groups

so that data points within each group have high similarity whereas those

from different groups have low similarity.

We have discussed these notions and presented various algorithms to

cluster offline data in Chapters 19 and 22 of [8, vol. 3] (see also [2]).

28.3.1 Basics and Challenges

But when data is arriving continuously (or in small chunks), it might

be useful to incorporate the new data into the existing models without

re-computing everything from scratch (especially when the underlying

data sets are large).

This is often conducted in batches: the data is collected until some

threshold quantity is met, and each batch of new data is then combined
with the existing model to create a new model.

But there are technical challenges, as we have seen: if the data arrive

continuously in real-time (and at high velocity), then there could be time

constraints. More worryingly, clusters could evolve over time, which is

to say that new clusters might emerge or old clusters might merge or

disappear altogether.

28.3.2 Approaches

There are two main approaches for clustering over data streams.

Partitioning In this approach, we start with 𝑘 clusters obtained from

an initial batch of data from the stream and we continuously update

the clusters as new data points arrive, thus maintaining 𝑘 clusters

throughout.

In the 𝑘−means context, for instance, after batch 𝑡 have been processed

and clustered, let:

𝑐𝑖(𝑡) be the 𝑖th cluster centroid;

𝑛𝑖(𝑡) be the number of points assigned to the 𝑖th cluster;

𝑥𝑖(𝑡) be the centroid of the points batch 𝑡 + 1 closer to 𝑐𝑖(𝑡) than to

any other centroid 𝑐 𝑗(𝑡), and

𝑚𝑖(𝑡) be the number of points in batch 𝑡 + 1 closer to 𝑐𝑖(𝑡) than to

any other centroid 𝑐 𝑗(𝑡).

The streaming 𝑘−means algorithm updates 𝑐𝑖(𝑡) and 𝑛𝑖(𝑡) as follows:

𝑐𝑖(𝑡 + 1) = 𝛼𝑐𝑖(𝑡)𝑛𝑖(𝑡) + 𝑥𝑖(𝑡)𝑚𝑖(𝑡)
𝛼𝑛𝑖(𝑡) + 𝑚𝑖(𝑡)

𝑛𝑖(𝑡 + 1) = 𝑛𝑖(𝑡) + 𝑚𝑖(𝑡),

where 𝛼 ∈ (0, 1] is a decay factor used to weigh older data less relative

to new data.
23

23: Some other popular algorithms allow

the number of clusters to deviate from

𝑘 within a small multiplicative factor to

obtain better clustering performance.
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Two-Phase In this approach, we maintain many small clusters (some-

times called micro-clusters) that summarize the incoming data, and

perform offline clustering on these small clusters, treating them as

weighted virtual data points.

We will consider two methods in particular: CluStream and DenStream.

Technical Assumptions Throughout, we assume that:

data points belong to ℝ𝑑
for some positive integer 𝑑;

24
24: Thus, we must embed nonnumerical

data (such as text) before we can cluster

the data – see Chapter 32 for examples.

the Euclidean distance is used to measure the dissimilarity between

points,
25

and

25: Other options are available, of course.

we describe clusters using a representative, the number of points
in the cluster, its density and/or shape, and its distances to other

clusters.
26

26: We typically use cluster-level sum-

mary statistics to do so.

Distance-based methods usually result in spherical (blob-like) clusters;

density-based methods can result in non-convex clusters.
27

The applica-27: Convex clusters (left) vs. non-convex

clusters (right), below.
tion at hand dictates which type of cluster is most desirable.

In a data stream setting, we are unlikely to keep all the data in memory;

we work instead with data summaries. One key idea found in many

clustering algorithms is the concept of cluster features (CF). The simplest

CF structure in use is a triple (𝑁, S,Q), one per cluster, where:

𝑁 is the number of points assigned to a cluster;

S ∈ ℝ𝑑
is vector of the sum of the variables for the 𝑁 observations

in the cluster, and

Q ∈ ℝ𝑑
is the vector of the sum of the squares of the variables for

the 𝑁 observations in the cluster.

For instance, suppose that the 𝑁 = 3 points (1, 2), (2,−1), (0, 1) are

assigned to the same cluster. Then

S = (1 + 2 + 0, 2 + (−1) + 1) = (3, 2)
Q = (12 + 2

2 + 0
2 , 22 + (−1)2 + 1

2) = (5, 6),

so the cluster’s CF is (3, (3, 2), (5, 6)), and that is the cluster summary

that would be stored, the actual points being discarded or archived.

However the CF is defined, it should have two properties: incrementality
and additivity. If a new point 𝑥 is assigned to an existing cluster with CF

(𝑁, S,Q), then the new CF for the cluster is simply (𝑁 + 1, S+ 𝑥,Q+ 𝑥2)
where 𝑥2

is obtained from 𝑥 by squaring each component.
28

If we merge28: Remember that 𝑥 is a vector observa-

tion.
clusters 𝐴 and 𝐵, with corresponding CF (𝑁𝐴 , S𝐴 ,Q𝐴) and (𝑁𝐵 , S𝐵 ,Q𝐵),
then (𝑁𝐴 + 𝑁𝐵 , S𝐴 + S𝐵 ,Q𝐴 + Q𝐵) is the CF of the merged cluster.

Being able to update CF quickly when new points are added to a cluster

or when clusters merge is critical for being able to cluster high-velocity

data streams. The importance of additivity will become apparent when

we discuss CluStream.
29

29: In a nutshell, the property allows us to

“subtract” older micro-clusters from recent

micro-clusters when clustering over a time

window.

The simple CF defined above provides sufficient information to compute

some cluster metrics that can help us decide when to merge or create

new clusters.

The centroid (mean) of a cluster is S/𝑁 .
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The radius of a cluster is√
𝑠(Q)
𝑁

−




 S
𝑁





2

,

where 𝑠(X) = 𝑋1 + · · · + 𝑋𝑑.
The diameter of a cluster is√

𝑠(Q)𝑁 − (𝑠(S))2(𝑁
2

) .

Note that these differ from the usual geometrical definitions of the radius

(the average distance of the points to the centroid) and the diameter (the

maximum distance between any two points in the set).

28.3.3 Evaluation

Evaluating the quality of a clustering outcome is of course important –

we would definitely like to know how “good” the clusters returned by a

clustering method are. Unfortunately, it can be difficult to come up with

evaluation measures in unsupervised learning settings.

Many evaluation measures have been proposed, including internal
measures and external measures.

30
30: See discussion in Section 22.3 (see [8,

vol. 3]) for more details.

Internal Measures

Cohesion: the average distance from a point to the centroid of the

cluster to which it is assigned (the smaller the better).

WSS: the sum of squared distances from data points to their

assigned centroids (the smaller the better).

Separation: the average distance from a point to the points assigned

to other clusters (the larger the better).

External Measures External measures require knowledge of the ground
truth, which is to say, the “true” clustering of the data points. In practice,

the ground truth is usually unavailable (assuming that there is even one

in the first place); in research settings, known clusters are generated to

test clustering methods.

Accuracy: the fraction of the points assigned to their correct cluster.

Recall: the fraction of the points of a cluster that are actually

assigned to it.

Precision: the fraction of the points assigned to a cluster that truly

belong to it.

Purity: ( 𝑓1 + 𝑓2 + · · · + 𝑓𝑐)/𝑁 where 𝑓𝑖 is the maximum number of

points in the computed cluster 𝑖 belonging to the same true cluster;

the highest possible value is 1.
31

31: A drawback of this measure is that it

can be gamed by assigning each point to

its own cluster.
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28.3.4 Algorithms

Current popular data stream clustering methods follow a framework

similar to the one proposed in [3]. The framework consists of two
phases:

1. we first create and maintain a data abstraction (summary structure,

sketch, microclusters, etc.) to hold a summary of the incoming data

at a reasonably fine granularity;
32

32: For example, there can be millions of

micro-clusters even though we may want

no more than 10 clusters in the end.

2. next, we invoke a traditional clustering algorithm on the data

abstraction to obtain a small number of global macro-clusters,

upon request by the user.

CluStream The original algorithm of [3] maintains multiple micro-
clusters and it clusters over an approximate time window.

33
33: We describe an updated version of

CluStream which uses the geometric time
frame, which is simpler to implement than

the original pyramidal time frame. The

former is described in [4].

CluStream requires an extended CF which includes temporal summary
statistics; for each micro-cluster, 𝑇 is the sum of the time stamps of the

points assigned to the micro-cluster and 𝑇𝑄 is the sum of the squares of

those same time stamps.

At any given time, CluStream maintains 𝑞 micro-clusters, where 𝑞 could

be quite large, as long as we can store the micro-clusters in memory. The

𝑞 micro-clusters are initialized by applying an offline clustering method

(such as 𝑘−means, say) to the first batch in the data stream, and they are

assigned a unique ID.

After initialization, whenever a new data point arrives, it is either

absorbed into an existing micro-cluster, or

a micro-cluster is created solely for this point.

Which of these options is selected depends on the distance of the new

point to the existing micro-clusters.

When a new micro-cluster is called for, we need to either delete an old
cluster or merge two neighbouring micro-clusters into a single one so

that we do not exceed the total number of maintained micro-clusters.
34

34: A merged micro-cluster contains the

IDs of the micro-clusters that were merged

– these IDs are needed when clustering

over a time window.

The decision to delete an old cluster is based on the temporal summary

statistics in the extended CF of the micro-clusters.

Every once in a while, a snapshot of the micro-clusters is taken and is

stored away. The snapshot schedule follows a geometric time frame,

leading to snapshots stored at different levels of granularity depending

on how recent the data is.

If one unit of clock time (say 1 second) is the finest granularity, then each

snapshot is classified with a frame number, a value from 0 to log
2
(𝑇),

where 𝑇 is the maximum length of the stream (such as 𝑇 = 20 yrs ≈
6.3 × 10

8
sec).

The snapshots with frame number 𝑖 are then stored at clock times

divisible by 2
𝑖

but not by 2
𝑖+1

. For instance, frame number 0 would

contain snapshots at odd clock times, frame number 1 would contain

even clock times not divisible by 4, frame number 2 would contain

snapshots at clock times divisible by 4 but not by 8, frame number 3

would contain snapshots at clock times divisible by 8 but not by 16, and

so on.



28.3 Clustering 1843

Let𝑀 be a relatively small positive integer. We retain/store only up to the

𝑀 most recent snapshots for each frame number that will be stored; the

older ones are deleted. For instance, suppose that 𝑀 = 3 and the current

clock time is 70. The table below shows the clock times of snapshots for

various frame numbers.

This approach maintains a large number of micro-clusters on-line, takes

intermittent snapshots of the micro-clusters and stores them away

according to a geometric time frame, and uses an offline clustering

algorithm on the micro-clusters to obtain macro clusters when requested

by the user.

An important property of the geometric time window is that for any time

window, at least one stored snapshot can be found within a factor of 2 of

the specified horizon.

Lemma: let [ℎ, 𝑡𝑐] be a user-specified time window where 𝑡𝑐 is the

current time. If 𝑀 ≥ 2, then a snapshot exists at a time 𝑡𝑠 for which

ℎ/2 ≤ 𝑡𝑐 − 𝑡𝑠 ≤ 2ℎ.

To cluster over the time window [ℎ, 𝑡𝑐] where 𝑡𝑐 is the current time, we

find a snapshot at a time 𝑡𝑠 for which ℎ/2 ≤ 𝑡𝑐 − 𝑡𝑠 ≤ 2ℎ (whose existence

is guaranteed by the lemma) and consider the micro-clusters at 𝑡𝑐 .

For each micro-cluster 𝐴 at 𝑡𝑐 , we identify all the micro-cluster ID

associated with this micro-cluster and subtract away the CF summary

stats of the corresponding micro-clusters in the older snapshot from the

CF of 𝐴.

For instance, let’s assume that micro-cluster 𝐴 contains the micro-cluster

ID 2 and 9 at 𝑡𝑐 .
35

Next, we look up the micro-clusters with ID 2 and 9: 35: That is, 𝐴 was formed by merging

micro-clusters with IDs 2 and 9 at some

point in the past.

their respective CF are (𝑁2 , S2 ,Q2) and (𝑁9 , S9 ,Q9).36
We adjust the CF

36: We are ignoring the temporal sum-

mary stats for the current illustration but

they would be tackled in the same manner.

of 𝐴, (𝑁𝐴 , S𝐴 ,Q𝐴), to (𝑁𝐴 − 𝑁2 − 𝑁9 , S𝐴 − S2 − S9 ,Q𝐴 − Q2 − Q9).

Finally, we perform (weighted) 𝑘−means on the adjusted micro-clusters,

treating their CF as virtual data points: these macro-clusters would be

the ones that are reported on demand.

The result will be a clustering over a time window that is not too far off

from the user-specified time-window [ℎ, 𝑡𝑐].37

37: Obviously, 𝑡𝑐 could be replaced by an

earlier time for which we have a snapshot.

So we are not always restricted to a most

current time window. This may prove use-

ful for change detection.
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DenStream We will not get into the details of DenStream, other than to

say that this algorithm was proposed in [10] (see also [7]); the authors

claim that it can overcome CluStream’s limitation in handling noise,

outliers, and non-spherical clusters.

DenStream uses a fading function to calculate micro-cluster weights;

points that are more distant in time contribute less to the weight. Unlike

CluStream, DenStream does not allow users to obtain clusters over a

particular time window.

There are many other clustering algorithms over data streams – we have

covered only some basic ideas and a selection of methods. This is a field

of active research, with different methods addressing the demands of

different applications.

Unfortunately, many algorithms published in research papers still do not

have readily accessible implementations for use in production.
38

38: This is also the case for classification

algorithms.

28.4 Classification

In machine learning, classification is the task of assigning a category or

label to a new data object.
39

39: For instance:

Is an image that of a cat?

Is an e-mail message spam?

Is a credit card transaction fraudu-

lent?

Is a student at risk of failing?

Is an HTTP request a network at-

tack?

We have discussed these notions and presented various algorithms to

classify offline data in Chapters 19 and 21 of [8, vol. 3] (see also [1]).

28.4.1 Basics and Challenges

Classifiers are trained on a pre-defined set of examples. In the case of

spam filtering, e-mail messages that are known to be spam and those

known not to be spam (a.k.a. ham) are used for training. They key is

that the categories (true labels) of the training data are known. Classifier

training, unlike clustering, is a case of supervised learning.

Challenges The need for the true labels for the training data seems to

lead to a dilemma for building classifiers over data streams. The point

of having a classifier is to predict the label of a new data object. A

trained classifier can predict over static data or from a data stream; in

other words, once we have a trained classifier, it can be put into operation

whether or not the data objects come from streams.

For data coming from a data stream, where do the true labels come

from? They cannot come immediately with the data or there would be

no need to build classifiers. If the true labels come after the fact, how do

classifiers adapt to concept drift? For example, spam filters cannot be

static as new types of spam messages can arise and old ones can go out

of circulation.
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Settings In a batch setting, examples with their true labels are stored

in a data base, and random access to the data is assumed. A portion of

these examples is set aside to form the test set; once a classifier is trained,

it can be put into operation for prediction over a data stream or a data

base.

But in a data stream setting, not all the examples may be available at once.

True labels might not be available right away and may only be available

some time after the rest of the data arrive.

For example, say an e-mail message arrives and the existing spam filter

misclassifies it. The user marks it with the correct label (e.g., by clicking

the ‘Is Spam’ or ‘Not Spam’ button) and the classifier can then be updated

with this new example or along with other accumulated examples,

assuming that an incremental training method is used.

Scenarios But we don’t necessarily need methods to train classifiers

over data stream only because we need to build classifiers on the fly
– it could happen that the training examples are only accessible in a

stream-like fashion (e.g., in a MapReduce framework) in which case

multiple access to the data is very costly or infeasible.

Another reason for having training methods that operate over data

streams is to deal with concept drift: for instance, e-mail spam can evolve
over time, as can network attacks, fraudulent transaction patterns, etc.

We thus need training methods that can adapt from new data – we do

not want to retrain from scratch every time we think the current model is

out-of-date.

Obtaining True Labels In general, obtaining true labels is a challeng-

ing task. In the past, labeling was done manually. For example, image

labels were entered by human beings looking at the image and typing in

the correct label. Nowadays, crowdsourcing is one method employed by

companies that offer image-sharing platforms; they scrap information

from tags or captions provided by the platform users. Clustering algo-
rithms are sometimes used to speed up the manual labeling process in

what is called semi-supervised learning.

There is on-going research on how to obtain proper labels with few

examples: promising avenues include generalized adversarial networks
(GANs) and one-shot learning (see the work of [25]).

Evaluation It is important to be able to compare the performance of

different classifiers and training methods. However, classifier training

often involves massive amounts of data and does not come cheap. Hence,

we search for a “good” return on investment: good performance should

not come at too steep a price.

In practice, this eliminates the traditional cross-validation method as

being too costly, computationally, in favour of other approaches, such

as: holdout; interleaved test-then-train; prequential, or interleaved
chunks.
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28.4.2 Approaches

There are tons of classification algorithms for batch settings [8, ch.21],

but deriving versions of these that can be trained from data streams is

not a trivial endeavour.

In the rest of this section, we provide a brief description of two algorithms:

Hoeffding trees and on-demand 𝑘NN (an extension of CluStream). We

conclude with a few remarks on ensemble classifiers.

Hoeffding Trees In a classification tree, at each intermediate node (i.e.,

not a leaf), we query a specific data feature to determine which child to

descend/branch out to. Once a leaf is reached, the label associated with

the leaf is the label assigned to the data object under consideration.

Figure 28.3: Example of a spam-filtering

decision tree.

Suppose that we want to build a decision tree classifier from a set of

examples with a fixed set of features. Using Shannon’s information theory,

we can compute the entropy of this set (see [8, sec 19.4.3] for details).
40

40: In a nutshell, the entropy of a set can

be thought of as the minimum number of

bits required to represent the disorder in

the data.

The process of building a decision tree for classification involves selecting

a feature and a condition for splitting the set into two smaller sets so that

the total entropy of the two subsets is less than the entropy of the set

taken as a whole. Usually, at each stage, we choose the feature that leads

to the maximum reduction of entropy.

The process typically stops way before we reach a stage where no further

splits can reduce the entropy – there are heuristics to determine when

the time is ripe to stop creating new decision nodes.

Decision trees are very easy to build once the entire training is available

and the results are interpretable, but once a model is found on the

training data, it does not usually generalize very well to new data.
41

41: The addition of a few new training

instances could dramatically change the

topology of the model Extensions (such as

boosting or random forests) can be used

to attempt to mitigate this shortcoming.

In a data stream setting, we do not have access to the entire training

set at any given time, however. The idea behind a Hoeffding tree is

not to train on the entire training set (coming through a stream) but to

first accumulate a “sufficient” number of observations before making

decisions about splitting.

The algorithm is shown in Figure 28.4; the precise details are fairly

technical and can be found in [12]. The method depends on a well-known

result in probability theory called the Hoeffding bound, which provides

a statistical guarantee that a decision made from a small data sample

matches the decision that would be made if all the data was available.
42

42: Similarly, a few flips of a coin (fewer

than a hundred, certainly) are usually suf-

ficient to give an idea of the true odds of

flipping ‘Heads’ for that coin.
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Figure 28.4: The Hoeffding tree algorithm.
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If 𝛿 > 0 is the decision procedure’s confidence level and 𝑛 ≥ 1 is the

number of training observations, then the error margin 𝜀 is

𝜀 =

√
ln(1/𝛿)

2𝑛
;

if 𝑟 ∈ [0, 1] is the true probability that an observation’s class is 𝐴, say, and

if the model built on 𝑛 training observations suggests that the probability

of the observations is 𝑟 ∈ [0, 1], then

𝑃(|𝑟 − 𝑟 | < 𝜀) = 1 − 𝛿.

Practically speaking, a Hoeffding tree can confidently (at a pre-determined

level 𝛿) split an intermediate node without having access to all the data;

as more data comes in, it may refine its decisions but it will not reverse
to an earlier state unless there arises a “major” reason to do so.

Several versions of Hoeffding Adaptive Trees (which extend Hoeffding

trees) are described in [6]: HAT-INC, HAT-EWMA, HAT-ADWIN; more

recent work investigates the usage of drift detectors in HATs [23].

On-Demand 𝑘NN In [4], the authors proposed a framework for on-
demand classification of evolving data streams using a two-phase
approach as in CluStream:

phase 1 involves the on-line maintenance of micro-clusters, while

phase 2 involves an efficient batch classifier (𝑘NN with small 𝑘).

𝑘NN is simple; the user is only required to select a measure of distance
between data points and a positive integer 𝑘. The training examples are

stored; when a new point needs to be classified, we look for the 𝑘 nearest

stored examples and find their most frequent label – this becomes the

predicted class for the new observation (see Figure 28.5).

But as we have seen, not all training examples are available at once in a

stream setting. Additionally, there may be too many points to store in

memory. Instead, we build a summary of the training examples in terms

of labeled micro-clusters.
43

43: As were defined/used in CluStream,

in the previous section.

When new micro-clusters are created, we may have to delete an old

cluster or merge two nearby micro-clusters with the same label so the

maximum number of maintained micro-clusters is not exceeded.
44

44: A merged micro-cluster contains the

ID of the micro-clusters that are merged.

As in CluStream, ID are needed when clustering over a time window.

The decision to delete an old cluster is based on the temporal summary

statistics in the extended cluster features (CF) of the micro-clusters.

To classify a new point using a classifier built with examples in the time

window [ℎ, 𝑡𝑐], we find a snapshot at time 𝑡𝑠 such that ℎ/2 ≤ 𝑡𝑐 − 𝑡𝑠 ≤ 2ℎ

(guaranteed by the lemma on page 1843) and the micro-clusters at the

current time.

For each micro-cluster 𝐴 at time 𝑡𝑐 , we identify all the micro-cluster ID

associated with 𝐴 and subtract away the CF summary stats of the corre-

sponding micro-clusters in the older snapshot provided by the CF of 𝐴.

The new point is then assigned the label of the nearest micro-cluster.
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a

a

Figure 28.5: A review of 𝑘NN classification: a two-class dataset (top left); a new observation (in red) which must be classified (top right);

comparing with 𝑘 = 3 nearest neighbours (bottom left); classifying the observations as a blue square (bottom right).

28.4.3 Ensemble Classifiers

As the name suggests, an ensemble classifier consists of a set of individual

classifiers. They do not all have to be of the same type: those that are,

however, are trained on slightly different data and/or with slightly
different parameters. A (weighted) majority of the individual classifiers

provides the ensemble classification.
45

45: See [8, sec. 21.5] for more details.

As an example, suppose we have an ensemble classifier for email spam

consisting of three tree-based classifiers. When a new e-mail message is

received, each of these three classifiers independently predicts whether

the e-mail message is ‘spam’ or ‘ham’; if two classifiers or more predict

that the message is ‘spam’, then the ensemble prediction is that the e-mail

message is ‘spam’, otherwise the ensemble prediction is ‘ham’.

Adapting to Change The main advantage of maintaining an ensemble

of classifiers in the streaming setting is that it provides the ability to

handle concept drift.

If the performance of a classifier in the ensemble declines over time,

say, then we can decrease its weight in the ensemble decision; if its

performance becomes completely unacceptable, then it can be removed
from the ensemble outright.

Similarly, we can add new classifiers to the ensemble to improve its

overall performance without having to discard any individual classifier

with (still) acceptable performance.

An early attempt to address concept drift using ensemble classifiers is

provided in [24]; a more general framework is proposed in [26].
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28.5 Frequent Itemset Mining

Say we have a data source of transactions, each of which consists of a set

of items – we may be interested in discovering the common collections of

items that occur among the transactions. Such item collections are called

frequent itemsets.

Frequent itemset mining powers association rule mining [8, sec. 19.3]),

which used to be common component of recommender systems.
46

An46: In recent years, collaborative filtering
has become more popular than associa-

tion rule mining for recommenders (see

Chapter 34).

association rule takes the form 𝑋 → 𝑌 where 𝑋 and 𝑌 are sets. One

possible interpretation of 𝑋 → 𝑌 is “If we see 𝑋, we are likely to see 𝑌

as well.”

It would be a mistake to treat such rules as causal relationships, however;

data mining algorithms are typically incapable of learning causality
(see Chapter 36 for more on this topic). At best, association rules reflect

correlations found in data.

Example Suppose that a small supermarket sells only 4 types of prod-

ucts: apples, bread, cheese, and watermelons. There are 2
4 − 1 = 15

possible itemsets of purchased goods, as can be seen in the table below.

Table 28.4: Possible itemsets in the super-

market example, when only 4 items can

be purchased.

In practical situations, the number of possible itemsets is much larger
than the total number of items – a typical supermarket easily carries

1000+ different items, so there are already at least 2
1000 − 1 ≈ 10

301

non-empty itemsets!

In general, the number of possible itemsets is exponential in the number

of items, and it becomes highly impractical (if not impossible) to keep

track of that many itemsets. But ways have been devised to mitigate

the combinatorial explosion of itemsets (see [8, sec. 9.3] and [19]); as

we cannot have our cake and eat it too, some of these methods sacrifice

exactness and can lead to false positives/negatives.
47

47: This trade-off between resource con-

sumption and accuracy of results is par for

the course in machine learning and data

science.

One concrete way to tame the combinatorial explosion requires drastically

cutting down the number of “interesting” itemsets. A frequency thresh-
old 𝜎 ∈ (0, 1) is first specified; an itemset 𝑋 is considered frequent if it

occurs in at least 𝜎 (viewed as a percentage) of the available transactions.

For instance, when 𝜎 = 20%, an itemset 𝑋 is considered frequent if it

occurred in at least 20% of all transactions.

The support of an itemset is the number of transactions that contain it; if

an itemset appears in two transactions, say, then its support is 2.
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We say that a frequent itemset is closed if it has no frequent superset
with the same support.

48
A frequent itemset is maximal if it has no 48: If 𝐴 ⊆ 𝐵, then 𝐴 is a subset of 𝐵 and

𝐵 is a superset of 𝐴.
frequent superset.

Theorem: any maximal frequent itemset is also closed, but closed frequent

itemsets need not be maximal.
49

49: Proof: for the first statement, let 𝑋

be a maximal frequent itemset that is not

closed. Then there is a superset 𝑌 ⊇ 𝑋

with the same support as 𝑋 . Thus,𝑌 must

be a frequent itemset, contradicting that

𝑋 has no frequent superset. For the sec-

ond statement, suppose that the support

level for being frequent is 3. It could be

that there is some closed frequent item-

set 𝑋 with support 4, but every frequent

superset of 𝑋 has support 3. ■

Example Consider the same small supermarket as before, after it in-

troduced a fifth product: cookies. Five customers have made purchases

today: their transactions are summarized in the table below.

Table 28.5: Transactions in the supermar-

ket example.

Suppose that the frequency threshold is 𝜎 = 0.4 and consider the

itemset 𝑋 = {bread, cheese}. The support of 𝑋 is 3 since it is a subset of

transactions 𝑡1, 𝑡4, and 𝑡5, but not of transactions 𝑡2 and 𝑡3; 𝑋 is a frequent

itemset since its support is greater than 0.4 × 5 = 2.

The supersets of 𝑋 with three items are

𝑋𝑎 = {bread, cheese, apple},
𝑋𝑤 = {bread, cheese,watermelon},
𝑋𝑐 = {bread, cheese, cookie}.

As𝑋𝑎 appears only in 𝑡1 , 𝑡4, its support is 2; as𝑋2 appears only in 𝑡1 , 𝑡4 , 𝑡5,

its support is 3; as 𝑋𝑐 appears only in 𝑡4, its support is 1. That means that

the 𝑋𝑎 and 𝑋𝑤 are frequent itemsets for this data, but that 𝑋𝑐 isn’t; in

particular, 𝑋 is neither closed nor maximal.
50 □ 50: Note however that

{bread,watermelon, cookie}

is maximal.Apriori Algorithm Before we look at frequent itemset mining in data

streams, we briefly discuss the apriori algorithm in a batch setting (see [8,

sec. 19.3] for more details). This algorithm exploits the apriori property,

which states that all subsets of a frequent itemset are themselves also

frequent.
51

51: The converse of that statement is that

all supersets of an infrequent itemset are

themselves also infrequent.
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Suppose that 𝑋 = {bread, cheese, apple} is a frequent itemset in a

transaction dataset; according to the apriori property, the following

itemsets are also frequent:

{bread, cheese}, {bread, apple}, {cheese, apple},
{bread}, {cheese}, {apple}.

The idea behind the apriori algorithm is to build up frequent itemsets

starting with small sets.

1. First, we make a pass over the database and identify all the frequent
items (frequent itemsets with only 1 item);

2. then we enumerate the 2−item sets by adding one element to each

of the frequent 1−item sets, in all possible ways;

3. from these generated 2−item sets, only those that are frequent are

retained.

4. This procedure is then repeated to obtain the frequent 3−item sets,

and so on, until there are no new frequent itemsets on which to

build.

Example Suppose that apple, bread, cheese, and watermelon are fre-

quent items in a transaction dataset. Then we only need to consider

1−item sets selected from the family

𝐿1 = {apple, bread, cheese,watermelon}.

All other items can be ignored because no superset that contains them

can be frequent according to the apriori property.

The candidates 2−item sets are thus:

{apple, bread}, {apple, cheese}, {apple,watermelon},
{bread, cheese}, {bread,watermelon}, {cheese,watermelon};

those that are frequent in that list are retained to form the family 𝐿2, and

so on. □

General Algorithm The general aprior algorithm is simple: let𝐿𝑘 denote

the family of all frequent 𝑘−item sets. Form all possible (𝑘 + 1)−item

sets (the candidates) that contain a 𝑘−item set of 𝐿𝑘 ; those that are also

frequent are placed into 𝐿𝑘+1.

Unfortunately, the apriori algorithm is unsuitable for data streams because

the algorithm requires multiple scans of the database, and resources are

often wasted on the generation of candidate, many of which ultimately

ending up discarded, in typical applications.

A number of additional challenges also arise when mining frequent items

in data streams:

the data often must be processed in a single pass;

computer memory is limited and cannot always store all of the

stream’s data, and

frequent itemsets can be time-sensitive (concept drift).
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Popular Algorithms In a streaming context, frequent itemset algorithms

are classified based on a number of characteristics:

approximate or exact (allows false positives/negatives or not)

per-batch or per-transaction processing

incremental, sliding window, or adaptive
frequent, closed, or maximal itemsets

Some popular algorithms are shown in the table below (see [18] for a

more comprehensive table).

Table 28.6: Popular frequent itemset min-

ing data streams algorithm.

LossyCounting Proposed in 2002 [21], LossyCounting is the first one-

pass algorithm to find all frequent itemsets over a data stream. It does

not allow false negatives and provides a theoretical guarantee on false

positives.

For a user-defined error parameter 0 ≤ 𝜀 ≤ 1 and support threshold
𝜃 ∈ (0, 1), all itemsets with a relative frequency in excess of 𝜃 will be

found; conversely, no itemset whose true relative frequency is less than

𝜃 − 𝜀 will be included.

In a data stream, the LossyCounting algorithm for frequent 1−item sets

works as follows:

1. the stream is divided into buckets, each of size ⌈1/𝜀⌉;
2. the buckets are indexed sequentially starting at 1;

3. counters of the form ⟨element, count, bucket_id⟩ are maintained,

where bucket_id denotes the ID of the bucket being processed

when the counter was created;

4. at the end of each bucket, we check if count + bucket_id ≤ 𝜀𝑁 ,

where 𝑁 denotes the number of transactions seen so far – if the

inequality holds, the counter is deleted.

The modification to handle frequent 𝑘−item sets is a bit more complicated.

Assume that we have a data structure 𝐷, initially empty, consisting of

a set of entries of the form (itemset, 𝑓 ,Δ) where 𝑓 is the estimated
frequency of the itemset and Δ is the maximum possible error in 𝑓 .

1. The stream is divided into buckets of 𝑤 = ⌈1/𝜀⌉ transactions each;

2. the buckets are indexed sequentially starting at 1

3. the current bucket id is denoted by bcurrent;
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4. the transactions are not processed individually but in batches, each

containing as many transactions as memory allows;

5. let 𝛽 be the number of buckets in main memory in the batch being

currently processed (𝛽 must be relatively “large”);

6. 𝐷 is updated as follows:

a) for each entry (itemset, 𝑓 ,Δ) in𝐷, increment 𝑓 by the number

of occurrences of itemset in the current batch;

b) if 𝑓 + Δ ≤ bcurrent, the entry is removed from 𝐷;

c) if an itemset has frequency 𝑓 at least 𝛽 times in the cur-

rent batch and itemset does not occur in 𝐷, a new entry

(itemset, 𝑓 , bcurrent − 𝛽) is added to 𝐷.

We observe that a set itemset with true frequency at least 𝜀𝑁 must have

an entry (itemset, 𝑓 ,Δ) in 𝐷. Furthermore, the true frequency is at least

𝑓 and at most 𝑓 + Δ.

Note that we can also provide a list of itemsets with support threshold 𝜃
by outputting the entries in 𝐷 with 𝑓 ≥ (𝜃 − 𝜀)𝑁 .

Conceptually, LossyCounting is a rather simple algorithm, but its efficient
implementation requires the use of non-trivial data structures whose

descriptions are beyond the scope of these notes.
52

52: A common implementation makes use

of a “trie” (a prefix tree), which is a search

tree for strings that can be dynamically up-

dated. A full description of LossyCount-

ing’s implementation details can be found

in [20].

FDPM-1 Unlike LossyCounting, the frequent datastream pattern min-
ing algorithm FDPM-1 does not allow false positives, but it also has a

high probability of finding truly frequent itemsets [32].

Users must specify parameters 0 ≤ 𝛿 ≤ 1 and 𝜃 ≥ 1 such that the

resulting family 𝑃 contains no itemset whose frequency is below the

specified support level 𝜃 and includes any frequent 𝜃−item set with

probability at least 1 − 𝛿.
53

53: FDPM-1 uses the Chernoff bound
to achieve the probabilistic guarantee by

modeling the appearance of an itemset in

𝑃 as a binomial random variable – in each

transaction, either the itemset appears or it

does not. This requires the transactions to

be independent, which is not necessarily

valid in real applications.

Figure 28.6: Frequent datastream pattern

mining FDPM-1, which produces the fam-

ily 𝑃 of frequent itemsets.

It can be shown that the required number of transactions per batch is

𝑛0 = 2(1 + ln(2/𝛿))/𝜃;

the running variable is 𝜀𝑛 =
√

2𝜃 ln(2/𝛿)/𝑛, where 𝑛 is the number of

transactions seen so far.
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IncMine Proposed in 2008 [11], IncMine uses sliding windows to

mine frequent closed itemsets (FCI), with a controlled number of false

negatives. The algorithm can handle concept drift, has a high throughput,

and only requires modest memory usage.

The sliding window looks at the 𝑤 most recent time units.
54

The 54: The number of transactions arriving

in each time unit may vary.
following illustration shows 4 time units: 𝑡1, 𝑡2, 𝑡3, 𝑡4, with 3, 2, 3,

4 transactions, respectively. Using 𝑤 = 2, we have 3 complete time
windows (𝑡1 , 𝑡2), (𝑡2 , 𝑡3), (𝑡3 , 𝑡4) over the 4 time units, containing 5, 5, 7

transactions, respectively.

Figure 28.7: An illustration of a sliding

window with 𝑤 = 2 over 4 time units.

IncMine introduce a novel idea for controlling the number of itemsets

that could eventually become frequent; the basic idea of semi-FCI is that

an itemset whose first appearance in the window happens earlier than

one with a later first appearance needs a higher support in order to be

kept. Intuitively, if a low support itemset has been in the stream for a

while, it is unlikely to become a frequent itemset.
55

55: In other words, IncMine assessment of

an itemset’s support is time-dependent.
The set of semi-FCI is updated incrementally.

56
Briefly, consider the three

56: The details of the actual algorithm

and its efficient implementation are rather

technical and fall beyond our scope; details

are available in [11, sec. 5].

semi-FCIs 𝐹, 𝐿, and 𝐶, where 𝐹 is the set of semi-FCI over the current
time unit, 𝐿 is the set of semi-FCI over the previous window, and 𝐶 is

the set of semi-FCI over the current window. The incremental update

task is to construct 𝐶 by modifying 𝐿 using 𝐹, dropping unpromising

itemsets and adding new semi-FCI according to some protocol.

Significantly faster processing times and smaller memory consumption

have been reported, in comparison to other algorithms.
57

Of course, the 57: IncMine was able to process up to

40,000 transactions per second for the

t10i4 data stream (produced by a modi-

fied IBM data generator), outperforming

LossyCounting and MOMENT by over

two orders of magnitude. Memory con-

sumption was found to be much below

that of LossyCounting and MOMENT, and

was relatively constant over a range of val-

ues of minimum support threshold. [11]

No Free Lunch theorems are still in play, so caveat emptor.

Mining Other Patterns Interesting patterns do not always appear as

frequent subsets of a larger set. In a supermarket, for instance, we might

be interested in tracking the order in which a customer picks up items

(e.g., milk before eggs); these precedence relations might provide insight

on merchandise layout, say. Sequence mining also has applications to

bioinformatics, text mining, telecommunications, fraud detection, and

cybersecurity.

Graph mining is another common pattern mining task; it subsumes

itemset mining since itemsets can be modeled as a complete subgraphs.

Notable graph mining algorithms include:

IncGraphMiner (a variant of IncMine);

WinGraphMiner (which maintains the frequent closed graphs in

a fixed-size sliding window), and

AdaGraphMiner (an extension of WinGraphMiner which can

adapt to changes in the stream).
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28.6 Examples

Various data streams mining notions discussed in this chapter are illus-

trated in the following examples, using R.

28.6.1 Obtaining Statistics

We got some practice doing batch analysis when working with the

dailysales.csv dataset in Section 28.1.1. In this first example, we will

work with the related weeklysales.csv dataset, which contains all the

sales over a week.

First, we read in the data.

dfw <- read.csv("weeklysales.csv", stringsAsFactors = TRUE)

str(dfw)

head(dfw)

’data.frame’: 154 obs. of 4 variables:

$ sku : Factor w/ 4 levels "A","B","C","D": 3 1 2 1 3 2 2 3 3 2 ...

$ day : Factor w/ 7 levels "Fri","Mon","Sat",..: 4 4 4 4 4 4 4 4 4 4 ...

$ time : Factor w/ 112 levels "08:25","08:30",..: 25 28 30 34 35 37 43 46 50 56 ...

$ amount: num 9.99 12.99 4.49 12.99 9.99 ...

Suppose that we are interested in the most popular item sold on Sunday.

We start by isolating the Sunday sales.

(sun <- dfw[dfw$day==’Sun’,])

sku day time amount

1 C Sun 10:20 9.99

2 A Sun 10:28 12.99

3 B Sun 10:43 4.49

4 A Sun 11:17 12.99

5 C Sun 11:23 9.99

6 B Sun 11:30 4.49

7 B Sun 12:09 4.49

8 C Sun 12:22 9.99

9 C Sun 12:30 9.99

10 B Sun 13:00 4.49

11 C Sun 13:12 9.99

12 C Sun 13:20 9.99

13 B Sun 13:39 4.49

14 A Sun 16:11 12.99

15 D Sun 16:27 24.99

16 A Sun 16:35 12.99

17 A Sun 16:55 12.99

18 A Sun 16:59 12.99

Next, we only retain the sku column.
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df2 <- sun[’sku’]

We find the summary count statistics as follows:

(ag <- aggregate(df2, by=list(item = df2$sku), FUN=length))

item sku

1 A 6

2 B 5

3 C 6

4 D 1

We rename the columns for consistency’s sake and exhibit the most

popular item(s).

(agsun <- setNames(ag, c(’sku’,’count’)))

agsun[agsun$count==max(agsun$count),]

sku count

1 A 6

3 C 6

28.6.2 Bloom Filter

In this example, we create a Bloom filter for a list of malware URLs ex-

cerpted from malwaredomainlist.com , found inmalwaredomainlist.csv.

Recall that such a filter can produce false positives; that is, it can flag

URL that do not appear on the list of URL used to create the filter.

We start by loading the data.
58

58: This block of code could be replaced

by a scraper that collects up-to-date infor-

mation from a host file containing thou-

sands of adware/malware URL into a list

of strings ready for hashing.

badURLs <- read.csv(’malwaredomainlist.csv’)

head(badURLs)

URL

1 CPROHWIN0190.locaweb.com.br

2 PEMLINWEB133.blacknight.com

3 Static-IP-18150024815.cable.net.co

4 a184-50-238-184.deploy.static.akamaitechnologies.com

5 acf113.rev.netart.pl

6 acs169.rev.netart.pl

Next, we set the filter’s parameters.

k <- 4 # Number of hash functions

m <- 100000 # Size of the filter array

http://www.malwaredomainlist.com
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The next stage is to build a “helper” function that creates a hash function

from a sample URL (salt). The range of output values of the created hash

function is 1, . . . , 𝑚 (inclusively). The digest() function (in package

digest) creates hash digests of arbitrary R objects – in this case, URL

strings.

makehash <- function ( salt, m ) {

function( url ) {

1 + strtoi(substr(digest::digest(paste(url,as.character(salt)),

algo=’xxhash32’), 1 , 5), 16L) %% m

}

}

Then we create the 𝑘 hash functions, by applying makehash to our sample

URL 𝑘 times.

f <- lapply( seq(1:k) , function(x) {makehash(x,m)})

For instance, we can apply the 𝑘 hash functions to the sample URL

uottawa.ca.

sampleURL = ’uottawa.ca’

for (i in 1:k) print(f[[i]](sampleURL))

[1] 17275

[1] 11876

[1] 29530

[1] 18068

We can now construct the Bloom filter from badURLs.

bf <- as.vector(rep(FALSE, m))

for (i in 1:k) {

hashed <- lapply( badURLs$URL, f[[i]] )

for (j in hashed) bf[j] = TRUE

}

The object bf is a logical vector of length 𝑚. In this example, we have the

following distribution.

table(bf)

bf

FALSE TRUE

97757 2243

We write a function that uses the Bloom filter to flag bad URL.
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isBadURL <- function( url ) {

rv <- TRUE

for (i in 1:k) {

hash <- f[[i]]( url )

if (bf[hash] == FALSE) {

rv <- FALSE

}

break

}

rv

}

We can now use the Bloom filter on a list of known safe sites obtained from

moz.com/top500 (stored in moz_dot_com_top500.csv) to determine

the percentage of false positives.

top <- read.csv(’moz_dot_com_top500.csv’)

(n <- dim(top)[1]) # number of rows

head(top)

[1] 500

URL

1 facebook.com

2 twitter.com

3 google.com

4 youtube.com

5 instagram.com

6 linkedin.com

We can compute the number of false positives in top as follows:

falsePositive <- 0

(c <- Reduce(’+’, lapply( top$URL, isBadURL)))

[1] 12

The proportion of false positives is thus quite low:

c / n

[1] 0.024

We can also determine which safe sites were considered “bad” by the

Bloom filter built from the list of malware sites.

index = which(lapply( top$URL, isBadURL) == TRUE)

top[index,]

https://moz.com/top500
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[1] "wixsite.com" "archive.org"

[3] "time.com" "constantcontact.com"

[5] "webs.com" "networksolutions.com"

[7] "youku.com" "yale.edu"

[9] "loopia.com" "mozilla.com"

[11] "allaboutcookies.org" "dot.gov"

That is not great news for Yale University, not gonna lie...

28.6.3 Sampling With a Reservoir

In the next two sections, we will compare sampling with reservoir and

with hash. We will not be working with actual data streams, however.

Instead, we will generate a long list of integers and process the numbers

sequentially.

n <- 30000

set.seed(n) # for replicability

u <- runif( n, 0, 1 ) # uniform distribution

hist(u)

We see that the distribution is quite uniform. If we batch select 10% of

the points of 𝑢 uniformly randomly, we expect the sample distribution to

also be uniform.

c <- as.integer(0.10 * n)

sample1 <- sample(u, c)

hist(sample1)
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How would we implement sampling with a reservoir in R? First, we

create the reservoir.

res <- u[1:c]

The reservoir sampling routine is shown below.

for (t in seq( c+1, length(u) )) {

m <- sample( 1 , t , 1)

if (m[1] <= c) {

# select a random position in the reservoir

# and replace with u[t]

i <- sample( 1 , c , 1)

u[i[1]] = u[t]

}

}

Once again, the histogram shows a uniform distribution.

hist(res)
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28.6.4 Sampling With a Hash Function

Sample with a hash function, we should once again expect to see a

uniform sample distribution.

hashNumeric <- function (x) { 1 + strtoi(substr(digest::digest(as.character(x),

algo=’xxhash32’),1,7),

16L) %% n}

hashes <- setNames( as.data.frame(sapply(u, hashNumeric)) , c(’hash’) )

The hashes object is a vector with the same length as 𝑢.

head(hashes)

hash

1 28126

2 13495

3 1506

4 28238

5 15920

6 11666

The has sample may not necessarily contain exactly 3000 observations,

however.

sample3 <- u[hashes$hash <= c]

length(sample3)

hist(sample3)

[1] 2975
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28.6.5 Fading Window

We now turn to the simple fading window example discussed on pp.1828-

1829 to identify recent most popular items. We start by setting the number

of possible items in the data.

set.seed(2000) # for replicability

numItems <- 100

Next, we create a data “stream” of 10,000 sales.

p <- sort( runif( numItems-1 , 0 , 1 ))

r <- runif(5000,0,1)

findIndex <- function (x, d) {

rv <- 1

# Identity the interval with breakpoints given by d in which x lies

for (i in 1:length(d)) {

if (x > d[i]) { rv <- i+1 }

}

rv

}

The stream is built in such a way that popular items in the first half are

not popular in the second half and vice versa.

items <- c(lapply(r, function(x) findIndex(x, p)),

lapply(r, function(x) { numItems + 1 - findIndex(x, p) } ))

The top products in the first half of the stream are shown below.

firstHalf.df <- setNames(data.frame(unlist(items[1:length(items)/2])), c(’item’))

ag1 <- setNames(aggregate(firstHalf.df, by=list(item = firstHalf.df$item), FUN=length),

c(’item’, ’count’))

head(ag1[ order(-ag1$count),])

item count

26 556

50 550

87 336

90 294

39 288

20 286

The top products in the second half of the stream are shown below.

secondHalf.df <- setNames(data.frame(unlist(items[(length(items)/2+1):length(items)])),

c(’item’))

ag2 <- setNames(aggregate(secondHalf.df, by=list(item = secondHalf.df$item), FUN=length),

c(’item’, ’count’))

head(ag2[ order(-ag2$count),])
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item count

75 278

51 275

14 168

11 147

62 144

81 143

We set up the parameters for the fading window algorithm.

t = 0.5 # threshold

c = 1/length(items) # decaying factor

scores <- rep(0.0, numItems)

We now process the first half the data "stream" with the fading window

algorithm.

for (i in 1:(length(items)/2)) {

scores <- (1-c)*scores

j <- items[[i]]

scores[[j]] <- scores[[j]] + 1

}

The top scores are shown below.

scores.df <- setNames(data.frame(c(1:length(scores)),unlist(scores)), c(’item’,’score’))

head(scores.df[ order(-scores.df$score),])

item score

26 219.6582

50 215.2115

87 132.1868

90 114.2575

20 112.9336

39 111.5845

The same items appear, although the order of the 5th and 6th items has

been switched. And of course, we can do the same for the second half of

the “stream”.

scores <- rep(0.0, numItems)

for (i in (length(items)/2+1):length(items)) {

scores <- (1-c)*scores

j <- items[[i]]

scores[[j]] <- scores[[j]] + 1

}

scores.df <- setNames(data.frame(c(1:length(scores)),unlist(scores)), c(’item’,’score’))

head(scores.df[ order(-scores.df$score),])
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item score

75 219.6582

51 215.2115

14 132.1868

11 114.2575

81 112.9336

62 111.5845

The same items appear, although the order of the 5th and 6th items has

been switched.

28.6.6 Adaptive Sliding Window Algorithm

In this example, we play with the ADWIN algorithm of Section 28.2.2.

First, we create a random data “stream” with 𝑛 = 4 concepts.

set.seed(0) # for replicability

nConcepts <- 4

minLen <- 150

maxLen <- 300

noiseLevel <- 0.01

len <- sample(minLen:maxLen, nConcepts)

means <- c(0.1, 0.5, 0.3, 0.7)

stream <- list()

for (i in 1:nConcepts) {

t <- rep(means[[i]], len[[i]]) + noiseLevel * rnorm(len[[i]], 0, 1)

stream <- c(stream, t)

}

We display the complete stream below.

plot( 1:length(stream), stream )
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We can obtain the empirical mean of the stream along each concept.

means.2 <- c()

cumlen = cumsum(unlist(len))

means.2[1] <- mean(unlist(stream[1:cumlen[1]]))

for(t in 2:nConcepts){

means.2[t] <- mean(unlist(

stream[cumlen[t-1]+1:cumlen[t]])

)

}

means.2

[1] 0.1002887 0.3952116 0.4630066 0.7000306

Let’s see if ADWIN can detect the different concept means. First, we

implement the threshold function: 𝜀(𝑊) =
√

1

2𝑚 ln
4|𝑊 |
𝛿 where𝑊 is a list

of numbers (the variable-length window) and 𝑚 = 2

1/|𝑊0 |+1/|𝑊1 | . In the

code below, 𝑖 represents the splitting indices.

delta = 0.5 # A value between 0 and 1; a value of 0.5

# favours neither FP nor FN

threshold <- function (W, i) {

W0 <- W[1:i]

W1 <- W[(i+1):length(W)]

m <- 2/(1/length(W0)+1/length(W1))

eps <- sqrt(1/(2*m)*log(4*length(W))/delta)

eps

}

Next, we Initialize the window𝑊 to contain only the first observation in

the stream.
59

59: Normally, one should consider a size-

able initial chunk of the stream, as in the

exercises.

W <- stream[1]

border <- 0

for (t in 2:length(stream)) {

W <- c(unlist(W), stream[[t]])

if (length(W) > 1) {

i <- 0

repeat {

i <- i+1

if (i >= length(W)) break;

u0 <- mean(W[1:i])

u1 <- mean(W[(i+1):length(W)])

thd <- threshold(W, i)

if (abs(u0 - u1) > thd) {

border = border + i
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print(paste(’Detected new mean:’,

as.character(u1),

’between indices’, border,

’and’, border+1))

W <- W[(i+1):length(W)]

i <- 0

}

}

}

}

[1] "Detected new mean: 0.502436993351689 between indices 291 and 292"

[1] "Detected new mean: 0.299156929106440 between indices 508 and 509"

[1] "Detected new mean: 0.697717000444021 between indices 786 and 787"

28.6.7 Partition Incremental Discretization Algorithm

In this example, we study the mechanics of PID (of pp.1836-1838).

We first simulate a data stream of 1000 random values drawn from 3 beta

distributions.

set.seed(1) # for replicability

n <- 1000

maxVal <- 100

stream <- sample( c(rbeta(2*n, 2, 5),

rbeta(2*n, 5, 1),

rbeta(n, 2, 2)), 1000 ,

replace = FALSE) * maxVal

plot( 1:length(stream), stream )
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We construct Layer 1 from the simulated stream; for simplicity, we use

intervals with integer breakpoints of width 1.
60

60: We could also use the split operator.

bins1 <- rep(0, maxVal)

for (i in 1:length(stream)) {

# Increment the count for the bin in which the ith

# element of stream falls

b <- ceiling(stream[[i]])

bins1[[b]] <- bins1[[b]] + 1

}

Next, we construct a 𝑘 = 10 equal-width Layer 2 histogram from Layer

1’s bin counts.
61

61: Obtaining an equal-frequency his-

togram is left as an exercise.

k <- 10

width <- ceiling (maxVal / k)

l2bins <- rep(0, k)

for (i in 1:k) {

lb <- (i-1)*width + 1

ub <- i*width

for (j in lb:ub) {

l2bins[[i]] <- l2bins[[i]] + bins[[j]]

}

}

barplot(bins1); barplot(l2bins)
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28.6.8 Histogram Drift

Using the same stream as in the previous section, we explore if there is a

difference between the histogram for either halves of the stream.

bins1 <- rep(0, maxVal); bins2 <- rep(0, maxVal)

# Layer 1 - first half

for (i in 1:(length(stream)/2)) {

# Increment the count for the bin in which the ith element of stream falls

b <- ceiling(stream[[i]])

bins1[[b]] <- bins1[[b]] + 1

}

# Layer 1 - second half

for (i in (length(stream)/2+1):length(stream)) {

b <- ceiling(stream[[i]])

bins2[[b]] <- bins2[[b]] + 1

}

# Layer 2 - both halves simultaneously

l2bins1 <- rep(0, k); l2bins2 <- rep(0, k)

for (i in 1:k) {

lb <- (i-1)*width + 1

ub <- i*width

for (j in lb:ub) {

l2bins1[[i]] <- l2bins1[[i]] + bins1[[j]]

l2bins2[[i]] <- l2bins2[[i]] + bins2[[j]]

}

}

barplot(l2bins1); barplot(l2bins2)

What about it? Are the two half-stream histograms similar or different?
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28.7 Exercises

1. Find the top two items sold between 1pm and 5pm in dailsales.csv (note the time format in the

dataset).

2. Find the most popular and the least popular items sold on each day of the week in weeklysales.csv.

3. Consider the Bloom filter of Section 28.6.2. Change the values of 𝑘 and 𝑚 to see how the rate of false

positives changes. Do the results change significantly if we use updated lists of malware and safe sites?

Implement your own hash functions and compare the results with those using the given hash function.

4. Recreate the examples from 28.6.3 and 28.6.4 using other distributions to generate 𝑢 (such as rnorm(),

etc.). Implement your own hash functions and compare the results with those using the given hash

function.

5. We revisit the fading window example 28.6.5. How did the results from the fading window algorithm

over the entire “stream” compare with the actual top items for the two halves? Apply the fading

window algorithm to the entire stream instead; what can be said about the results? If we adjust the

value of 𝑐 (e.g., 𝑐 = 0.01), numItems, and/or the number of transactions in the data “stream”; how do

the results change?

6. In the ADWIN example of Section 28.6.6, instead of hardcoding the means, generate random means

and see how the algorithm performs. Experiment with different values for nConcepts, minLen, maxLen,

and noiseLevel. Do we encounter false positives? False negatives? As it stands, the ADWIN code

above does *not* show the mean of the initial portion of the data “stream”. Modify the code so that it

does show the first mean.

7. In the PID example of Section 28.6.7, construct an equal-frequency Layer 2 histogram from Layer 1;

experiment with different values of 𝑘, maxVal, and choices of distributions. Write a function that takes

Layer 1 bin counts and other appropriate arguments and outputs Layer 2 bin counts.

8. Use a suitable statistical test on the two sets of bin counts to see if the histograms of Section 28.6.8 are

different, with statistical significance.

9. Consider the dataset flights1_2019_1.csv .

a) Transform the dataset so that the observational units are the airports and date. Create variables

as needed. Assume that each new day’s observations constitute a new batch. Does the stream

exhibit concept drift? Maintain and display statistics and histograms for some of the variables in

the stream.

b) Conduct a streaming 𝑘−means clustering of the data. Play with values of 𝑘 and 𝛼. Conduct

a streaming two-phase clustering of the data, under the same conditions as above. Play with

parameter values in CluStream and DenStream.
†

Comment on the results.
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