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This chapter contains an essential introduction to linear algebra. The goal

is to provide the readers interested in statistics and/or data science with

some basic mathematical tools that are at the base of the algorithms and

the mathematical models of statistical analysis. Theoretical details, such

as rigorous proofs and definitions, will be kept at a minimal level.

A more detailed introduction to linear algebra can be found in [3, 2].

3.1 Vector Spaces

At its most fundamental level, linear algebra deals with vector spaces
and linear transformation between these.

Linear transformation are represented by matrices; a good portion of

this chapter will be therefore dedicated to matrix algebra.
1

1: Note that the order in which the mate-

rial covered by a first year university linear

algebra course could be different than the

order presented here – it is common for

texts of this nature to start with linear sys-

tems before moving to vector spaces; this

is not how we will approach the presenta-

tion, in no small part because the language

of vectors is very useful, not only in math-

ematics, but also in coding. A mastery of

this language makes mathematical model-

ing more accessible, in general.

3.1.1 Practical Definition

While there is a formal definition of vector spaces (see [2], for instance),

we will eschew it in these notes. Instead, we use a “recipe” that contains

all that we will need.

In the context of linear algebra, the set ℝ𝑛
is the 𝑛-dimensional vector

space, consisting of 𝑛-dimensional vectors.
2

2: This definition is not ideal since it im-

plicitly assumes that the vector are ex-

pressed with respect to the standard basis

e1 = ⟨1, 0, · · · , 0⟩,
e2 = ⟨0, 1, · · · , 0⟩,
.
.
.

e𝑛 = ⟨0, 0, · · · , 1⟩.

Here are the key defining properties of these vectors:

a𝑛-dimensional vector v is a collection of𝑛 numbers: v = ⟨𝑣1 , · · · , 𝑣𝑛⟩,
where the numbers 𝑣𝑘 are the components of the vector;

3
3: In the other chapters, we will use

(𝑣1 , · · · , 𝑣𝑛) when the context is clear.
vectors belonging to the same vector space can be added, while

remaining a part of that vector space: the vector sum of v =

⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ and w = ⟨𝑤1 , 𝑤2 , · · · , 𝑤𝑛⟩, is

v + w = ⟨𝑣1 + 𝑤1 , 𝑣2 + 𝑤2 , · · · , 𝑣𝑛 + 𝑤𝑛⟩;

in vector algebra, simple numbers are scalars – the multiplication
of a vector by a scalar is defined in the “obvious way”: if 𝑐 is a

scalar, and v = ⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ is a vector, then

𝑐v = ⟨𝑐𝑣1 , 𝑐𝑣2 , · · · , 𝑐𝑣𝑛⟩;

the zero 𝑛-dimensional vector is denoted by 0 = ⟨0, 0, · · · , 0⟩.
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Example An aircraft is flying from Ottawa to Milan. The direction and

its speed are determined by three values that change over time: latitude

𝑥(𝑡), longitude 𝑦(𝑡), and altitude 𝑧(𝑡). Hence, the velocity of the aircraft is

modeled using a 3-dimensional vector v(𝑡) = ⟨𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)⟩ ∈ ℝ3
.

Note however that the 3 quantities 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are not truly

Cartesian in nature, since longitude and latitude are described by angles.

Locally, however,
4

this ℝ3
model is a good approximation, assuming4: That is to say, as long as we do not look

at long distance trajectories, say.
that the Earth is locally flat.

Example A boat is sailing in the Pacific Ocean with a velocity vector

v = ⟨1, 2⟩. At some point the wind starts blowing with speed w = ⟨2, 4⟩,
helping the boat to sail faster. What is the estimate of the effective velocity

of the boat under the influence of the wind?

We need to add the vectors. Luckily for us, velocities add linearly, hence

the velocity of the wind-boosted boat is

vtot = v + w = ⟨1, 2⟩ + ⟨2, 4⟩ = ⟨3, 6⟩.

The result is only an approximation of the real situation, since in reality

there are dissipation effects that may reduce the speed of the boat.
5 ■5: But that is a problem for engineers,

really, and we will sidestep the challenge

simply by ignoring it. While vectors can be of arbitrary dimension, having a low-dimensional

geometric picture helps strengthen vector intuition, which may be other-

wise sound too abstract. In practice, vectors in ℝ2
, ℝ3

are represented by

arrows, emanating from the same origin point.

Example Here is an example of a representation of 2-dimensional

vectors, which include a basic R script that produces the picture.
6

6: Which can be improved, see Chapter 18

and [1].

plot(NA,xlim=c(-2,2), ylim=c(-2,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="red"); arrows(0,0,-1,-1.5, col="blue")

arrows(0,0,1,-1.1, col="green"); arrows(0,0,-0.2,0.9, col="purple")
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In principle, arrows exist in arbitrary dimensions, but they are difficult

to visualize. As we can always represent a vector as an arrow, the next

rule applies no matter the dimension 𝑛.

Parallelogram rule: the sum of two vectors v and w is the diagonal of

the parallelogram generated by v and w, emanating from the origin:

plot(NA,xlim=c(-0.2,2), ylim=c(-0.22,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,0, col="red")

arrows(0,0,1,1, col="blue")

arrows(0,0,2,1, col="green")

segments(1,1,2,1, col="grey")

segments(1,0,2,1, col="grey")

3.1.2 Linear Combinations

Given a finite collection of 𝑛-dimensional vectors v1 , v2 , · · · , v𝑘 and scalar

coefficients 𝑐1 , 𝑐2 , · · · , 𝑐𝑘 , the vector

𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑘v𝑘

is called the linear combination of the vectors v1 , v2 , · · · , v𝑘 with coeffi-

cients 𝑐1 , 𝑐2 , · · · , 𝑐𝑘 .

Example Show that the vector ⟨2, 3⟩ can be written as a linear combina-

tion of e1 = ⟨1, 0⟩ and e2 = ⟨0, 1⟩.

This problem can be set up and solved using an algorithm that solves a

system of linear equations.
7

7: See Section 3.4.

However, the situation at hand is a simpler matter of applying the

definition of linear combination. We see that we can express

⟨2, 3⟩ = ⟨2, 0⟩ + ⟨0, 3⟩ = 2⟨1, 0⟩ + 3⟨0, 1⟩ = 2e1 + 3e2.
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3.1.3 Bases and Dimension

As we mentioned previously, the components of a vector are not defined

in a “universal way”, but they depend on the choice of a set of “reference

vectors”, which form a basis: a set of vectors which cover once and only

once all possible independent directions of the vector space.

Let 𝑉 be a vector space, and let {v1 , v2 , · · · , v𝑘} be a finite list of vectors

in 𝑉 . We say that the vectors are linearly independent if:

𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑘v𝑘 = 0 if and only if 𝑐1 = 𝑐2 = · · · = 𝑐𝑘 = 0.

Otherwise, we say that they are linearly dependent.

If we expand the equation above, we see that the condition of linear

independence is equivalent to state that the homogeneous linear system
(see Section 3.4)(

v1 v2 · · · v𝑘
)
·
(
𝑐1 𝑐2 · · · 𝑐𝑘

)𝑇
=

(
0 0 · · · 0

)𝑇
only has the trivial solution 𝑐1 = 𝑐2 = · · · = 𝑐𝑘 = 0.

We can also view linear dependence is as follows. Suppose, for instance,

that we have three vectors v1 , v2 , v3 related by a linear dependence

relation. For example, let us assume that

v1 − v2 − v3 = 0.

Then we can rewrite this expression as

v1 = v2 + v3 ,

which provides an intuition for the idea of linear dependence: one (or

more) vector in the collection can be reconstructed as a linear combination

of the remaining vectors.

A basis of a vector space 𝑉 is a collection of vectors v1 , v2 , · · · , v𝑛 such

that: + The vectors v1 , v2 , · · · , v𝑛 are linearly independent. + Every vector

𝑣 ∈ 𝑉 can be expressed in a unique way as a linear combination of the

basis element v1 , v2 , · · · , v𝑛 .

Note that the linear combination expressed from a basis is unique,
8

that8: Because the basis vectors are linearly

independent.
is the coefficients 𝑐1 , 𝑐2 , · · · , 𝑐𝑛 of the equation

v = 𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑛v𝑛

are uniquely determined.

While a vector space 𝑉 has more than one basis, all of its bases have
the same cardinality, meaning that all bases have the same number of

vectors. This number 𝑛 is the dimension of the vector space.

The vector space ℝ𝑛
is 𝑛−dimensional; we usually (but not always)

represent vectors with respect to the standard basis {e1 , . . . , e2}.

The uniqueness of the expression of a vector as a linear combination of

basis vectors explains why we can interpret the components of the vector

as coordinates.
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Example Determine if the following 4 vectors form a basis in ℝ4
:

v1 = ⟨1, 0, 0, 0⟩
v2 = ⟨1, 1, 1, 1⟩
v3 = ⟨1, 0, 1,−2⟩
v4 = ⟨0, 1, 0,−1⟩

We need to solve the equation 𝑐1v1 + 𝑐2v2 + 𝑐3v3 + 𝑐4v4 ,= ⟨0, 0, 0, 0⟩,
which unwraps into:

𝑐1 = 0

𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 = 0

𝑐1 + 𝑐3 − 2𝑐4 = 0

𝑐2 − 𝑐4 = 0

Is it clear that the only solution is the trivial one 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0?

We will discuss how to demonstrate that it is indeed the only solution in

Section 3.4.
9

9: We can also verify linear independence

using the properties of determinants (see

Section 3.3.3).

Example Show with an example that there can be infinitely many bases

for a vector space of positive dimension.

For each 𝜃 ∈ [0, 2𝜋), the set

𝐵𝜃 = {⟨cos𝜃, sin𝜃⟩, ⟨− sin𝜃, cos𝜃⟩}

is a basis of R2
. ■

We will not discuss infinite dimensional vector spaces (that’s a topic for

advanced courses), but we provide one such example, for curiosity’s

sake.

Example The space

ℙ[𝑥] = {𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑘𝑥𝑘 | 𝑎𝑖 ∈ ℝ, 𝑘 ∈ ℕ}

of all polynomials in one variable 𝑥 over the reals is an infinite dimensional

vector space; the vectors are polynomials. For all 𝑛 ∈ ℕ, the monomials

1, 𝑥, 𝑥2 , · · · , 𝑥𝑛 are linearly independent for all 𝑛, so there are infinitely

many linearly independent vectors in ℙ[𝑥].10 10: This example is interesting not just be-

cause it deals with an infinite-dimensional

vector space, but also because it shows that

the notion of vector space applies beyond

the intuitive geometric notion of arrows

represented in vector components.

3.1.4 Vector Subspaces

The space 𝑊 = ℝ2
consists of vectors of the form ⟨𝑥, 𝑦⟩. The space

𝑉 = ℝ3
consists of vectors of the form ⟨𝑥, 𝑦, 𝑧⟩. We can interpret𝑊 as a

smaller vector space contained in𝑉 , from which it inherits the operations

of sum and multiplication by scalar.
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Example Show that a linear combination of 2-dimensional vectors of

the form ⟨𝑥, 𝑦, 0⟩ has the same form (i.e., the third component remains

zero).

This is a classic problem that looks hard the first time we learn linear

algebra, but in fact the solution consists a simple check. Take two arbitrary

vectors v1 = ⟨𝑥1 , 𝑦1 , 0⟩ and v2 = ⟨𝑥2 , 𝑦2 , 0⟩. Then, for arbitrary scalars

𝑎, 𝑏, the linear combination of them has the expression

𝑎v1 + 𝑏v2 = 𝑎⟨𝑥1 , 𝑦1 , 0⟩ + 𝑏⟨𝑥2 , 𝑦2 , 0⟩ = ⟨𝑎𝑥1 + 𝑏𝑥2 , 𝑎𝑦1 + 𝑏𝑦2 , 0⟩,

of the form ⟨𝑥, 𝑦, 0⟩, if we let 𝑥 = 𝑎𝑥1 + 𝑏𝑥2 and 𝑦 = 𝑎𝑦1 + 𝑏𝑦2. ■

Let 𝑉 be a vector space, and 𝑊 ⊂ 𝑉 , a subset of 𝑉 : we say that 𝑊 is

a vector subspace (subspace in short) of 𝑉 , denoted 𝑊 < 𝑉 , if 𝑊 is a

vector space itself (which inherits the operations from the bigger space

𝑉 in which it is contained).

In particular, if𝑊 < 𝑉 , and v,w ∈𝑊 and 𝑎, 𝑏 ∈ ℝ, then:

0 ∈𝑊 , and

𝑎v + 𝑏w ∈𝑊 .

Note that, by definition, 𝑉 is a subspace of itself.

The result of the previous example can be recast as

ℝ2
being a vector subspace of ℝ3

.

Example Let 𝑉 be a vector space. What is the “largest” subspace of 𝑉?

What is the “smallest” subspace of 𝑉?

As𝑉 ⊆ 𝑉 is itself a subspace of𝑉 , it is also the largest subspace of𝑉 . The

smallest subspace of 𝑉 is the zero-dimensional vector space {0}, which

consists solely of the zero vector. ■

Let 𝑉 be a vector space of dimension 𝑛. Then, it should be intuitive that

if𝑊 is a subspace of 𝑉 , then dim(𝑊) ≤ dim(𝑉).

The zero space from the previous example is the only zero-dimensional

vector subspace; the space 𝑉 itself is the only subspace of maximal

dimension 𝑛. There are infintely many “intermediate dimension” (proper)

subspaces as soon dim𝑉 ≤ 2.

Example Let 𝑊𝜃 = {𝑎⟨cos𝜃, sin𝜃⟩ | 𝑎 ∈ ℝ} < ℝ2
, 𝜃 ∈ [0, 2𝜋). For

each angle value 𝜃, the vector ⟨cos𝜃, sin𝜃⟩ gives a different direction,

hence𝑊𝜃1
=𝑊𝜃2

if and only if 𝜃1 = 𝜃2.

library(plotrix)

plot(NA,xlim=c(-0.2,2), ylim=c(-0.22,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="blue")

segments(0,0,1.5,0, col="red")

draw.arc(0,0,0.3,0,0.5,col="grey")

text(0.5,0.3,expression(theta),col="blue")

text(1.1,1,expression(list(W[theta])),col="blue")
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3.1.5 Spanning Sets

How do we “create” subspaces? As long as we do not worry too much

about “clean production”, we take a finite set of vectors of a given vector

space𝑉 , and consider all possible linear combination of such vectors.

Let 𝑉 a vector space and v1 , v2 , · · · , v𝑁 ∈ 𝑉 . The spanning set

Span{v1 , v2 , · · · , v𝑁 } = {𝑎1v1 + · · · + 𝑎𝑁v𝑁 | 𝑎𝑖 ∈ ℝ} < 𝑉.

Example Let 𝑉 be a vector space and v1 , v2 , · · · , v𝑁 ∈ 𝑉 . Then v ∈
Span{v1 , . . . , v𝑁 } if and only if v = 𝑐1v1 + · · · 𝑐𝑛v𝑁 , for some coefficients

𝑐1 , 𝑐2 , · · · , 𝑐𝑁 ∈ ℝ.

This is a “trivial” statement – we simply translated the condition “belong-

ing to span” into the equation “v is a linear combination of the spanning

vectors v1 , v2 , · · · , v𝑁”.
11

11: Being trivial, it can still cause confusion

at the beginning; but it is crucial to learn

how to translate math-related sentences

into formulas or equations.

The problem with the definition of the spanning set of a collection of

vectors is that it says nothing about the dimension of the vector space.

Example Let 𝑉 = ℝ2
. We can write 𝑉 = Span{⟨1, 0⟩, ⟨0, 1⟩}, which

makes sense since the two vectors form a basis of𝑉 . However, we can also

generate the entire vector space with three vectors, so that the number of

vectors is not linked to the dimension: 𝑉 = Span{⟨1, 0⟩, ⟨0, 1⟩, ⟨1, 1⟩}.

3.1.6 Dot Product

The dot product of two vectors is a scalar quantity that in some sense

measure how much of their components two vectors share. The dot (or

scalar) product of two 𝑛-dimensional vectors v = ⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ and

w = ⟨𝑤1 , 𝑤2 , · · · , 𝑤𝑛⟩:

v · w = 𝑣1𝑤1 + 𝑣2𝑤2 + · · · + 𝑣𝑛𝑤𝑛 .



154 3 Overview of Linear Algebra

From the dot product, we can define the Euclidean length (or norm) of a

vector v:

∥v∥ =
√

v · v =

√
𝑣2

1
+ 𝑣2

2
+ · · · + 𝑣2

𝑛 .

Two vectors v and w are orthogonal if and only if v · w = 0. In general:

v · w = ∥v∥∥w∥ cos(𝜃),

where 𝜃 is the angle formed by the vector v and w.
12

12: In fact, this is how we define the angle

between two vectors when the geometrical

interpretation is unavailable to us. Two non-zero vectors v,w create two angles, 𝜃 and 2𝜋 − 𝜃: does the dot

product depends on the choice between the two angles?

No, because for all angles 𝜃 we have:

cos(2𝜋 − 𝜃) = cos(𝜃).

Example Find the (smallest) angle 𝜃 formed by the vectors v = ⟨1, 2⟩
and w = ⟨−1, 1⟩.

It’s a one line calculation:

𝜃 = arccos

(
v · w

∥v∥∥w∥

)
= arccos

(
−1 + 2√

1 + 4

√
1 + 1

)
= arccos

(
1√
10

)
= 1.25 radians .

Example Let 𝑡 be a real parameter Find the vectors of the form ⟨1, 𝑡⟩
and with length equal to 5.

The general vector ⟨1, 𝑡⟩ has length

∥⟨1, 𝑡⟩∥ =
√

1
2 + 𝑡2 =

√
1 + 𝑡2.

We look for the values of 𝑡 such that

∥⟨1, 𝑡⟩∥ =
√

1 + 𝑡2 = 5,

which are found by solving the quadratic equation:

√
1 + 𝑡2 = 5 =⇒ 1 + 𝑡2 = 25 =⇒ 𝑡2 = 24 =⇒ 𝑡 = ±

√
24 = ±2

√
6.

As expected, there are two vectors ⟨1, 𝑡⟩ of length 5: ⟨1,±2

√
6⟩.

3.1.7 Cross Product in ℝ3

The dot product is also called scalar product, since it outputs a scalar

from two given vectors. The cross (or vector) product, which will define

below, produces a new vector out of two input vectors.

Given two 3-dimensional vectors v = ⟨𝑣1 , 𝑣2 , 𝑣3 , ⟩ and w = ⟨𝑤1 , 𝑤2 , 𝑤3 , ⟩,
the cross (or vector) product formula can be symbolically represented
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with the help of a determinant:

v × w = det

©«
e1 e2 e3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

ª®¬ = det

©«
i j k
𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

ª®¬
= ⟨𝑣2𝑤3 − 𝑣3𝑤2 ,−(𝑣1𝑤3 − 𝑣3𝑤1), 𝑣1𝑤2 − 𝑣2𝑤1⟩.

Note that we left the formula without multiplying out negative sign

in front of the second entry, in order to remind the reader that the

determinant is an alternating sum.
13

13: See Section 3.3.3.

Whereas the dot product can be extended to vector space of all dimensions,

the cross product is only defined on ℝ3
.

3.2 Linear Transformations and Matrices

A matrix of size 𝑚 × 𝑛 is a collection of 𝑚 × 𝑛 numbers aligned along 𝑚

rows and 𝑛 columns:

𝐴 =

©«
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛

ª®®®®¬
We refer to matrices of size 𝑛 × 𝑛 as square matrices of size 𝑛.

Let 𝑉 and 𝑊 be two vector spaces (of arbitrary dimension, possibly

infinite-dimensional). A linear map 𝑇 : 𝑉 → 𝑊 is a function that

preserves linear combinations of vectors:

𝑇(𝑎v + 𝑏w) = 𝑎𝑇(v) + 𝑏𝑇(w), for all 𝑎, 𝑏 ∈ ℝ and for all v,w ∈ 𝑉.

Given a basis {v1 , v2 , · · · , v𝑛} of 𝑉 and a basis {w1 ,w2 , · · · ,w𝑚} of𝑊 ,

we can construct the matrix elements 𝑡𝑖 , 𝑗 of the matrix representing the

linear transformation 𝑇 with respect to the given bases. In fact, there are

coefficients 𝑇𝑖 𝑗 such that

𝑇(v𝑖) =
𝑚∑
𝑗=1

𝑡𝑖 , 𝑗w𝑗

We will use the convention that a matrix is given with respect to the

standard basis.

A linear map 𝑇 : ℝ𝑛 → ℝ𝑚
is represented by matrix-vector multiplica-

tion. We write the vectors of ℝ𝑛
and ℝ𝑚

as column vectors:

v =

©«
𝑣1

𝑣2

...

𝑣𝑛

ª®®®®¬
∈ ℝ𝑛 , w =

©«
𝑤1

𝑤2

...

𝑤𝑚

ª®®®®¬
∈ ℝ𝑚 .
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The vector-matrix multiplication defines the linear map𝑇(v) = w (relative

to bases of ℝ𝑛
and ℝ𝑚

):

©«
𝑤1

...

𝑤𝑚

ª®®¬ =
©«
𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛

ª®®¬
©«
𝑣1

...

𝑣𝑛

ª®®¬ =
©«
𝑡1,1𝑣1 + · · · + 𝑡1,𝑛𝑣𝑛

...

𝑡𝑚,1𝑣1 + · · · + 𝑡𝑚,𝑛𝑣𝑛

ª®®¬ .
Linear maps can be composed in the same way as regular functions,

assuming that the range of the second is in the domain of the first.

If 𝑇 : ℝ𝑛 → ℝ𝑚
and 𝑆 : ℝ𝑚 → ℝ𝑝

are two linear maps, then the

composition of 𝑆 and 𝑇 (the order is important) is the linear map

𝑆 ◦ 𝑇 : ℝ𝑛 → ℝ𝑝
defined by

(𝑆 ◦ 𝑇)(v) = 𝑆(𝑇(v)) = (𝑆𝑇)v.

If the maps 𝑆 and 𝑇 are represented by the matrices S=

©«
𝑠1,1 · · · 𝑠1,𝑚

...
. . .

...

𝑠𝑝,1 · · · 𝑠𝑝,𝑚

ª®®¬ and 𝑇 =
©«
𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛

ª®®¬ ,
then the composite map corresponds to the matrix obtained by matrix
multiplication (or matrix product)

𝑆𝑇 =
©«
𝑠1,1 · · · 𝑠1,𝑚

...
. . .

...

𝑠𝑝,1 · · · 𝑠𝑝,𝑚

ª®®¬
©«
𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛

ª®®¬ =
©«
𝑠1,1𝑡1,1 + · · · + 𝑠1,𝑚𝑡𝑚,1 · · · 𝑠1,1𝑡1,𝑛 + · · · + 𝑠1,𝑚𝑡𝑚,𝑛

...
. . .

...

𝑠𝑝,1𝑡1,1 + · · · + 𝑠𝑝,𝑚𝑡𝑚,1 · · · 𝑠𝑝,1𝑡1,𝑛 + · · · + 𝑠𝑝,𝑚𝑡𝑚,𝑛

ª®®¬
Note that the formula of matrix multiplication can be more easily under-

stood using dot products:

(𝑠𝑡)𝑖 𝑗 = (row 𝑖 of S) · (column 𝑗 of T) .

Example For any angle value in radians, measured counterclockwise

with respect to reference to the positive 𝑥-axis, the matrix

𝑅𝜃 =

(
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

)
rotates vectors in the 𝑥𝑦-plane around the origin by an angle 𝜃. For

instance, we can rotate the vector ⟨1, 0⟩ by
𝜋
4

(45 degrees counterclock-

wise):

𝑅𝜋/4

(
1

0

)
=

(
cos

𝜋
4

− sin
𝜋
4

sin
𝜋
4

cos
𝜋
4

) (
1

0

)
=

(√
2

2
−

√
2

2√
2

2

√
2

2

)
·
(
1

0

)
=

(√
2

2√
2

2

)
.

The new vector has the same length as the original one, in agreement

with the fact that rotations do not change lengths, and it forms an angle

of 45 degrees with respect to the positive 𝑥-axis.

For a fixed 𝜃, the rotation is a linear map:

𝑅𝜃(𝑎v + 𝑏w) = 𝑎𝑅𝜃(v) + 𝑏𝑅𝜃(w) (prove it!).
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3.3 Matrix Algebra

We have already introduced matrix multiplication as a way to define the

composition of two compatible linear maps. In this section we collect the

all essential rules of matrix algebra. We start with operations that make

sense for all matrices, and then specialize to operations that are defined

only for square matrices. For convenience we report again the definition

of matrix multiplication.

3.3.1 Matrix Operations

Matrix Multiplication

Formally, let 𝐴 ∈ 𝕄𝑚,𝑛 (i.e., 𝐴 is a 𝑚 × 𝑛 matrix) and 𝐵 ∈ 𝕄𝑛,𝑝 (i.e., 𝐵 is a

𝑛×𝑝 matrix). Then the matrix product of𝐴 by 𝐵 is the matrix𝐴𝐵 ∈ 𝕄𝑚,𝑝

(i.e., 𝐴𝐵 is of size 𝑚 × 𝑝), where the entries (𝑎𝑏)𝑖 , 𝑗 are

(𝑎𝑏)𝑖 , 𝑗 = row 𝑖 of 𝐴 · column 𝑗 of 𝐵.

Unlike multiplication between scalars, the product of matrices is not

generally commutative – assuming that both 𝐴𝐵 and 𝐵𝐴 exist, it is not

always the case that 𝐴𝐵 = 𝐵𝐴.

Example If 𝐴 =

(
1 2

3 4

)
and 𝐵 =

(
5 6

7 8

)
, then

𝐴𝐵 =

(
19 22

43 50

)
≠

(
23 34

31 46

)
= 𝐵𝐴.

The matrix product 𝐴𝐵 is only defined when the number of columns of

𝐴 is equal to the number of rows of 𝐵:

𝐴︸︷︷︸
𝑚×𝑛

𝐵︸︷︷︸
𝑛×𝑝

= 𝐴𝐵︸︷︷︸
𝑚×𝑝

.

The dot product of two 𝑛-dimensional vector can also be understood in

term of matrix multiplication: if we represent v as a row vector, and w as

a column vector, then

v · w =
(
𝑣1 · · · 𝑣𝑛

) ©«
𝑤1

...

𝑤𝑛

ª®®¬ = 𝑣1𝑤1 + 𝑣2𝑤2 + · · · + 𝑣𝑛𝑤𝑛 .

Matrix Addition

Given two matrices 𝐴, 𝐵 ∈ 𝕄𝑚,𝑛 , their sum is the matrix 𝐴 + 𝐵 ∈ 𝕄𝑚,𝑛

obtained by adding 𝐴 and 𝐵 entry-by-entry, that is

(𝑎 + 𝑏)𝑖 , 𝑗 = 𝑎𝑖 , 𝑗 + 𝑏𝑖 , 𝑗 .
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Example If 𝐴 =

(
1 2

3 4

)
and 𝐵 =

(
5 6

7 8

)
, then 𝐴 + 𝐵 =

(
6 8

10 12

)
.

Note that, unlike matrix multiplication, matrix addition is commutative:

𝐴 + 𝐵 = 𝐵 + 𝐴 for all compatible matrices.

Multiplication by a Scalar

For any matrix 𝐴 ∈ 𝕄𝑚,𝑛 and scalar 𝑐 ∈ ℝ, the scalar multiplication of

𝐴 by 𝑐 is the matrix 𝑐𝐴 ∈ 𝕄𝑚,𝑛 whose entries are the entries of 𝐴 scaled

by the factor 𝑐, that is:

(𝑐𝑎)𝑖 , 𝑗 = 𝑐𝑎𝑖 , 𝑗 .

Example If 𝐴 =

(
1 2

3 4

)
and 𝑐 = −2, then 𝑐𝐴 =

(
−2 −4

−6 −8

)
.

Transpose of a Matrix

The transpose of 𝐴 ∈ 𝕄𝑚,𝑛 is the matrix 𝐴⊤ ∈ 𝕄𝑛,𝑚 whose columns are

the rows of 𝐴:

(𝑎⊤)𝑖 , 𝑗 = 𝑎 𝑗 ,𝑖 .

Example If 𝐴 =

(
1 2

3 4

)
, then 𝐴⊤ =

(
1 3

2 4

)
.

The transpose is a linear operation: (𝐴+ 𝐵)⊤ = 𝐴⊤ + 𝐵⊤ for all compatible

matrices 𝐴, 𝐵. However, it behaves “unexpectedly” with respect to matrix

multiplication: (𝐴𝐵)⊤ = 𝐵⊤𝐴⊤ for all compatible matrices 𝐴, 𝐵.
14

14: While this is not a proof, we see that

this formula is at the very least aligned

with the compatibility of matrix multi-

plication: if 𝐴 ∈ 𝕄𝑚,𝑛 and 𝐵 ∈ 𝕄𝑛,𝑝 ,

then𝐴𝐵 ∈ 𝕄𝑚,𝑝 and (𝐴𝐵)⊤ ∈ 𝕄𝑝,𝑚 . Since

𝐵⊤ ∈ 𝕄𝑝,𝑛 and 𝐴⊤ ∈ 𝕄𝑛,𝑚 , we see that

𝐵⊤𝐴⊤ is always defined, but that 𝐴⊤𝐵⊤ is

only defined when 𝑚 = 𝑝.

Matrix Spaces

The column space of a matrix 𝐴 = [𝐴1 | · · · | 𝐴𝑛] ∈ 𝕄𝑚,𝑛 is the vector

subspace of ℝ𝑚
spanned by the column vectors of 𝐴:

colsp(𝐴) = Span{𝐴1 , · · · , 𝐴𝑛}.

The rank of 𝐴 is the dimension of colsp(𝐴). If we interpret 𝐴 as a linear

map (as discussed in Section 3.2), then colsp(𝐴) is in fact the image of

this map:

Im(𝐴) = {𝐴v | v ∈ ℝ𝑛} < ℝ𝑚 .

The nullspace (or kernel) of 𝐴 is the vector subspace of ℝ𝑚
that are

mapped to the null vector 0 by 𝐴:

nullsp(𝐴) = ker(𝐴) = {v ∈ ℝ𝑚 | 𝐴v = 0} ⊆ ℝ𝑚 .

That these two sets are indeed vector subspaces of R𝑚
is clear:

0 ∈ Im(𝐴), ker(𝐴) since 𝐴0 = 0;
15

15: The null vector pulls double-duty here.
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if v,w ∈ ker(𝐴), 𝑎, 𝑏 ∈ ℝ, then 𝑎v + 𝑏w ∈ ker(𝐴) since

𝐴(𝑎v + 𝑏w) = 𝑎𝐴v + 𝑏𝐴w = 𝑎0 + 𝑏0 = 0;

if v,w ∈ Im(𝐴), 𝑎, 𝑏 ∈ ℝ, then 𝑎v + 𝑏w ∈ Im(𝐴) since there exists

u, z ∈ ℝ𝑛
such that 𝐴u = v and 𝐴z = w, and so

𝑎v + 𝑏w = 𝑎𝐴u + 𝑏𝐴z = 𝐴(𝑎u + 𝑏z).

In particular, neither of these spaces is empty since they always contain

at least 0.

Rank-Nullity Theorem

Let 𝐴 ∈ 𝕄𝑚,𝑛 ; then

dim(ker(𝐴)) + dim(Im(𝐴)) = 𝑚.

This theorem is a basic (and very useful) result of linear algebra, with

counterparts in other sectors of algebra (such as group theory).

3.3.2 Square Matrices

The identity matrix of size 𝑛 is the square matrix, denoted by I𝑛 :

I𝑛 =

©«
1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

ª®®®®¬
The diagonal of a square matrix 𝐴 is the list of elements 𝐴𝑖𝑖 (that is, the

values along the diagonal).

A square matrix is said to be a diagonal matrix if the non-diagonal entries

are all zero.

A square matrix 𝐴 is said to be symmetric if 𝐴 = 𝐴⊤. In fact, the entries

are symmetric with respect to the diagonal of the matrix.

A square matrix 𝐴 of size 𝑛 is said to be invertible (or non-singular) if

there exists a matrix, denoted by 𝐴−1
, such that 𝐴𝐴−1 = 𝐴−1𝐴 = I𝑛 . The

matrix 𝐴−1
is called the inverse of 𝐴. Note that the inverse of 𝐴−1

is 𝐴

(in other words, (𝐴−1)−1 = 𝐴).

If 𝐴 is invertible, then

(𝐴−1)⊤ = (𝐴⊤)−1.

If 𝐴 and 𝐵 are both invertible (and have the same size), then

(𝐴𝐵)−1 = 𝐵−1𝐴−1.

We will discuss a way to compute the inverse of a non-singular matrix in

Section 3.4.2.
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3.3.3 Determinants

There is an important numerical value that can be associated to any

square matrix 𝐴, its determinant det(𝐴).

When we work with large-sized matrices, we rely on a computer program

to compute the determinant. However, we need to know what it is and

how to compute it for small size examples.

The purely algebraic definition of the determinant makes use of the

language of multilinear algebra, which will not discuss here; instead, we

proceed with a computational definition.

For a scalar 𝑎 ∈ ℝ = 𝕄1,1, det(𝑎) = 𝑎.

For 𝐴 ∈ 𝕄2,2,

det(𝐴) = det

(
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

)
= 𝑎1,1𝑎2,2 − 𝑎1,2𝑎2,1.

For 𝐴 ∈ 𝕄𝑛,𝑛 , consider the first row, which consists of the elements

[𝑎1,1 , 𝑎2,1 , · · · , 𝑎1,𝑛]. Let 𝑀1,𝑘 be the square matrix of size 𝑛 − 1

obtained by removing from𝐴 the row and column passing through

𝑎1,𝑘 . Then the determinant of 𝐴 is the alternating sum:

det(𝐴) = det(𝑀1,1) − det(𝑀1,2) + · · · + (−1)𝑛+1

det(𝑀1,𝑛)

The quantities det(𝑀𝑖 , 𝑗) are called the minors of the matrix.

In fact, we can pick any row or any column and apply the alternating

sum formula as above. However, we need to be careful about the sign in

front of the minor det(𝑀𝑖 , 𝑗), which is called the cofactor 𝐶𝑖 , 𝑗 :

𝐶𝑖 , 𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖 , 𝑗).

For more details about the general formula, we refer to [3].

Properties

The determinant determines important properties of a square matrix.

The determinant of a diagonal matrix is the product of its diagonal

entries.

The determinant behaves nicely when it comes to matrix multipli-

cation and inversion (assuming 𝐴 and 𝐵 are both square and of the

same size):

det(𝐴𝐵) = det(𝐴)det(𝐵),

and, if 𝐴 is invertible, then

det(𝐴−1) = det(𝐴)−1 ,

The determinant is invariant under transposition:

det(𝐴) = det(𝐴⊤).
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Let 𝐴 be a square matrix and let 𝐴[𝑅𝑖 ↔ 𝑅 𝑗] (resp. 𝐴[𝐶𝑖 ↔ 𝐶 𝑗])
be the matrix obtained by interchanging row 𝑖 with row 𝑗 (resp.

column 𝑖 with column 𝑗). Then

det(𝐴[𝐶𝑖 ↔ 𝐶 𝑗]) = −det(𝐴)
det(𝐴[𝑅𝑖 ↔ 𝑅 𝑗]) = −det(𝐴)

More generally, if we perform an odd number of permutations of

rows (columns), the determinant changes sign; if we perform an

even number of permutations of rows (columns), the determinant

stays the same.

Let 𝐴 be a square matrix, of size 𝑛. Then the following conditions are

equivalent:

1. det(𝐴) ≠ 0;

2. 𝐴 is invertible;

3. the 𝑛 column vectors of 𝐴 are linearly independent, hence they

form a basis of ℝ𝑛
;

4. the 𝑛 row vectors of 𝐴 are linearly independent, hence they form a

basis of ℝ𝑛
;

5. the rank of 𝐴 is 𝑛 (maximal rank);

6. the nullspace (kernel) of 𝐴 consists only of the zero vector 0.

Examples Determine if the following matrices are invertible or not,

without computing the inverse.

1. 𝐴 =

(
2 3

−1 −3

)
is invertible, since det𝐴 = 2(−3) − 3(−1) = −2 ≠ 0.

2. 𝐵 =

©«
1 2 3 4

0 3 2 1

1 2 3 4

−1 1 −1 1

ª®®®¬ is not invertible, since the first and third rows

are equal (and so they are linearly dependent).

3. 𝐶 =

©«
1 2 3 4

1 1 2 1

2 3 5 5

−1 1 −1 1

ª®®®¬ is not invertible, as we can see either by

computing that det𝐶 = 0, or by observing that 𝑅1 + 𝑅2 = 𝑅3.

4. 𝐷 =

©«
1 42 0.12 4

0 1 −2 21

1.2 23 0.5 5

−2.2 1 0 −0.55

ª®®®¬ is invertible as can be seen in the

following R code.

D <- rbind(c(1,42,0.12,4),c(0,1,-2,21),c(1.2,23,0.5,5),c(-2.2,1,0,-0.55))

det(D)

[1] -1336.74

5. Suppose that 𝐴 and 𝐵 are square matrices of the same size, and

that det(𝐴) = 3, det(𝐵) = −5; then

det(𝐴−1𝐵3𝐴) = 1

det(𝐴) ·(det(𝐵)3)·det(𝐴) = (det(𝐵))3 = (−5)3 = −125.
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There is a closed-form formula for finding the inverse of a square matrix

of arbitrary size. Computing the inverse can be very time consuming,

and, when the matrices are very large (thousands of entries), we typically

consider numerical methods.

But it is convenient to at least remember how to find the inverse of a 2× 2

matrix.
16

16: For inversion of matrices of arbitrary

size, we refer to [3]. We mention in passing

that the general formula for 𝐴−1
contains

a factor
1

det𝐴
, re-descovering the fact zero-

determinant matrices can not be inverted.

For a 2 × 2 matrix 𝐴 =

(
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

)
, say, the inverse (when it exits) is

𝐴−1 =
1

det𝐴

(
𝑎2,2 −𝑎1,2

−𝑎2,1 𝑎1,1

)
The formula of the inverse starts with

1

det𝐴 . If the determinant of 𝐴 is

non-zero, but close to zero, we could have issues with the finite precision

arithmetic.

We will discuss a row-reduction method to compute the inverse of a

general non-singular matrix in the next section.

Example Let 𝐴 and 𝐵 be the following matrices:

𝐴 =

(
1 2

3 1

)
, 𝐵 =

(
0 −2

8 1

)
Solve the equation 𝐴𝑋 = 𝐵 for 𝑋, where 𝑋 ∈ 𝕄2,2. We see that

𝐴𝑋 = 𝐵 ⇒ 𝑋 = 𝐴−1𝐵,

but is 𝐴 invertible? A quick check using the determinant confirms that it

is since det(𝐴) = 1 · 1 − 2 · 3 = −5 ≠ 0. Using the formula of the inverse

of a 2 × 2 matrix we obtain:

𝐴−1 =
1

1 · 1 − 2 · 3

(
1 −2

−3 1

)
=

(
− 1

5

2

5

3

5
− 1

5

)
.

Finally 𝑋, the solution of the equation, is

𝑋 = 𝐴−1𝐵 =

(
− 1

5

2

5

3

5
− 1

5

) (
0 −2

8 1

)
=

(
16

5

4

5

− 8

5
− 7

5

)

3.4 Linear Systems

A big motivation for developing the machinery of linear algebra is to

find systematic methods for solving systems of linear equations, which

we can call, in short, linear systems. A linear system in 𝑛 unknowns

𝑥1 , 𝑥2 , · · · , 𝑥𝑛 and 𝑚 equations is a system of 𝑚 linear equations

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + · · · + 𝑎1,𝑛𝑥𝑛 = 𝑏1

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + · · · + 𝑎2,𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + · · · + 𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚
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Collecting the coefficients of the left hand side of the system into a 𝑚 × 𝑛
matrix, and the coefficients of the right hand side into a 𝑚 dimensional

column vector, we obtain the matrix-vector form of the linear system,

𝐴x = b:

©«
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛

ª®®®®¬
©«
𝑥1

𝑥2

...

𝑥𝑛

ª®®®®¬
=

©«
𝑏1

𝑏2

...

𝑏𝑛

ª®®®®¬
We say that a system of 𝑚 equations and 𝑛 variables has size 𝑚 × 𝑛.

If b = 0, the system is called homogeneous.

Example Let 𝐴 and 𝐵 be the following matrices:

𝐴 =

(
1 2

3 1

)
, 𝐵 =

(
0 −2

8 1

)
We have shown how to solve the equation 𝐴𝑋 = 𝐵 for 𝑋 , where 𝑋 ∈ 𝕄2,2.

Expand this equation to show that is equivalent to a linear system. Write

the linear system in matrix vector form 𝐴x = b.
17

17: This will not be the same 𝐴 as in the

statement.

The 4 unknowns are the entries of the matrix 𝑋 =

(
𝑥 𝑦

𝑧 𝑤

)
. Then

𝐴𝑋 =

(
1 2

3 1

) (
𝑥 𝑦

𝑧 𝑤

)
=

(
0 −2

8 1

)
.

Expanding the product 𝐴𝑋 gives the equation

𝐴𝑋 =

(
𝑥 + 2𝑧 𝑦 + 2𝑤

3𝑥 + 𝑧 3𝑦 + 𝑤

)
=

(
0 −2

8 1

)
.

Equating the 4 components gives us a system of 4 equations in 4 un-

knowns:

𝑥 + 2𝑧 = 0

𝑦 + 2𝑤 = −2

3𝑥 + 𝑧 = 8

3𝑦 + 𝑤 = 1.

In matrix vector form the system is of the form 𝐴x = b, where 𝐴 ∈ 𝕄4,4,

whose entries are specified in the equation below. The right-hand side is

the vector of 4 constant entries, and the unknown vector has component

𝑥, 𝑦, 𝑧, 𝑤. The system is therefore

©«
1 0 2 0

0 1 0 2

3 0 1 0

0 3 0 1

ª®®®¬
©«
𝑥

𝑦

𝑧

𝑤

ª®®®¬ =

©«
0

−2

8

1

ª®®®¬ .
Rearranging the entries of a matrix in order to obtain a new matrix

of different size is a common procedure in coding. Programs like R or
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Python come with predefined functions that do the rezising for us (but

we need to know how they operate!)

The solution set of an arbitray (non-linear) system of equations in 𝑛

variables is a region of ℝ𝑛
. We learn that such regions are recognized to

be objects of euclidean geometry: as we learn in pre-calculus, for example,

the solutions of the equation 𝑥2 + 𝑦2 = 1 are the points of the circle of

radius 1 and centre at the origin of the Cartesian plane.

For a linear system, we will expect the solution set to have some “linearity”.

More precisely:

The solution set of a homogeneous linear system 𝐴x = 0, in the 𝑛

unknowns x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)⊤, is a vector subspace of ℝ𝑛
.

The solution set of a linear system 𝐴x = b is a “vector space shifted

away from the origin” of ℝ𝑛
. More precisely, let x𝑝 be any solution

of the system (we call it a particular solution). Then any solution

of the system is of the form x0 + x𝑝 , where x0 is a solution of the

associated homogeneous linear system 𝐴x = 0.

Example Let us illustrate the last two points with a simple example.

Notice that this example is not meant to propose an algorithm to solve a

linear system, but rather to explain the geometrical aspect of the solution

set of a linear system. Consider the linear system consisting of one

equations in two variables:

𝑥 + 𝑦 = 2.

It is not homogeneous, since the left hand side coefficient of the equation

is not zero. Since there are two variables but only one equation, we expect

the general form of the solution of this system to have one free parameter

(or free variable), that can be arbitrary chosen. If we use 𝑡 as the name for

the parameter, we write

𝑥 = 𝑡 ∈ ℝ

𝑦 = 2 − 𝑡.

Note in particular that with 𝑡 = 0 we obtain the particular solution

x𝑝 =
(
0

2

)
,

which we will use in a second.

The associated homogeneous linear system is

𝑥 + 𝑦 = 0.

The solution set of the homogeneous system is the line 𝑦 = −𝑥, which in

parametric form becomes

𝑥 = 𝑡

𝑦 = −𝑡.
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Geometrically, the general solution of the non-homogeneous system is

obtained by shifting the line 𝑦 = −𝑥 by the vector (0, 2)⊤. If we let

x0(𝑡) =
(
𝑡

−𝑡

)
,

we see that the general solution is of the form x(𝑡) = x𝑝 + x0(𝑡).

Example Which of the following equation is linear? Why is it important

to identify if an equation (or a system of equation) is linear?

a) 𝑥 + 𝑦 − 𝑧 = 4 b) 𝑥2 − 𝑦 + 𝑧 = 4 c) 4𝑥 + 4𝑦 − 𝑧 − 4 = 0

The system a) and c) are linear, while the 𝑥2
term in b) makes that one

non-linear. It is important to know what are the properties of linear

systems: the linear algebra algorithms, such as Gauss-Jordan elimination,

do not apply to non-linear systems.

3.4.1 Gauss-Jordan Elimination

In introductory linear algebra courses we often start by learning linear

systems and how to the Gauss-Jordan elimination algorithm. We will

not discuss the details of the method in this chapter and we refer to [3]

for more details.

The idea of the elimination algorithm is to transform the matrix associated

with a linear system into a simpler one. The common approach is to

transform the original matrix to a row echelon form, or even better the

row reduced echelon form. Reading the solution of a matrix in echelon

form then is quite easy.

The principles behind the Gauss-Jordan elimination are the following.

We say that two linear systems are equivalent if they have the same

solution set.

Given a linear system, an equivalent system is obtained by adding

to one equation a multiple of another one. In term of the matrix

associated to the linear system, this amounts to adding to a row a

multiple of another one.

Given a linear system, an equivalent system is obtained by rescaling

an equation by a non-zero factor. In term of the matrix associated

to the linear system, this amounts to multiplying the row vector

corresponding to the equation by a scalar.

We can therefore proceed and start eliminating as much variables as we

can, trying to obtain a matrix from which reading the solution is a simple

procedure. Let us see an example.

Example We solve the following 2 × 3 linear system:

𝑥 − 𝑦 − 2𝑧 = 0

3𝑥 + 2𝑦 + 𝑧 = 2
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We start by writing the augmented matrix(
1 −1 2 0

3 2 1 2

)
,

which includes the right hand side of the system in the last column.

We proceed with the row reduction in order to reduce the system to an

equivalent one that is easier to solve.

We denote by 𝑅𝑘 the row number 𝑘 of the matrix (in this example,

𝑘 = 1, 2). Assume 𝑎 ≠ 0, 𝑏 ∈ ℝ; 𝑅𝑘 → 𝑎𝑅𝑘 + 𝑏𝑅 𝑗 denotes the operation

of replacing 𝑅𝑘 with the linear combination 𝑎𝑅𝑘 + 𝑏𝑅 𝑗 .18 Then18: 𝑎 ≠ 0 is crucial.

(
1 −1 2 0

3 2 1 2

)
𝑅2→𝑅2−3𝑅1−−−−−−−−−→

(
1 −1 2 0

0 5 −5 2

)
𝑅2→ 𝑅

2

5−−−−−→
(
1 −1 2 0

0 1 −1
2

5

)
𝑅1→𝑅1+𝑅2 |−−−−−−−−−→

(
1 0 1

2

5

0 1 −1
2

5
.

)
The column in position 𝑗 corresponds to the variable in position 𝑗.

With the help of row reduction, the original linear system has been

transformed into the equivalent system:

𝑥 + 𝑧 = 2

5

𝑦 − 𝑧 = 2

5

,

Selecting 𝑧 as a free variable, we re-write it as:

𝑥 =
2

5

− 𝑧

𝑦 =
2

5

+ 𝑧,

We see that (𝑥, 𝑦) depends on the value of 𝑧. The solution set of the

linear system is therefore one-dimensional: geometrically, it is the line

parametrized by the two equations above, with 𝑧 being the free parameter.

Note that the line does not pass through the origin, in agreement with

the fact that the system is not homogeneous. ■

The solution set of a system of homogeneous linear equations is a vector

space. The dimension of this vector space coincides with the number

of free variables. In particular, if there are no free variables then either

the solution is unique or the system is inconsistent – it does not have

solutions.

Example Find an example of a linear system with a) no solutions, and

b) an example of a linear system whose solution set has 3 free variables

out of a total of 5.

To find an example of a) is very easy: write an equation “· · · = 1”, then

add another equation, obtained by changing the constant to the right

hand side, “· · · = 2”. Let us take the following example:

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 1

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 2.
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It should be clear that no solution can exist, since 1 ≠ 2. Proceeding with

row reduction, we can see it algorithmically: we replace 𝑅2 → 𝑅2 − 𝑅1

and we obtain the system:

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 1

0 = 1,

which is inconsistent.

As for b), we can produce an example of a matrix that gives 3 free

variables, if treated as the augmented matrix of a linear system:

©«
1 0 1 1 1 1

0 1 1 1 1 1

0 0 0 0 0 0

ª®¬ .
The examples of this section have shown that, if 𝐴 is a matrix associated

with the linear system 𝐴x = b, then:

the rows of the matrix corresponds to the system’s equations, the

column to its variables;

interchanging two rows of the matrix swaps the corresponding

equations in the linear system; interchanging two columns swaps

the corresponding variables.

Example The system

3𝑥 − 𝑦 + 𝑧 = 0

𝑥 + 𝑦 + 𝑧 = 3

corresponds to the matrix (
3 −1 1

1 1 1

)
.

If we switch 𝑦 and 𝑧,19 we obtain 19: Which should not be done unless ab-

solutely necessary, to be honest, but nev-

ermind that for now.
3𝑥 + 𝑧 − 𝑦 = 0

𝑥 + 𝑧 + 𝑦 = 3,

which corresponds to the matrix(
3 1 −1

1 1 1

)
.

3.4.2 Linear Systems and Matrices

Row reduction can be used to invert non-singular matrices. Let 𝐴 ∈ 𝕄𝑛,𝑛

be such that det(𝐴) ≠ 0. Construct the augmented matrix (𝐴 | I𝑛) and

row reduce it using only the 3 following allowable operations:

𝑅 𝑗 → 𝑅 𝑗 + 𝑏𝑅𝑘 , 𝑗 ≠ 𝑘;

𝑅 𝑗 → 𝑎𝑅 𝑗 , 𝑎 ≠ 0;

𝑅 𝑗 ↔ 𝑅𝑘 , 𝑗 ≠ 𝑘.
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The process leads to

(𝐴 | I𝑛)
RREF−−−−→ (I𝑛 | 𝐴−1).

Example Let 𝐴 =

(
1 2

3 1

)
. We have seen that det(𝐴) = −5 and so that

𝐴 is invertible. We reduce the augmented matrix:

(
1 2 1 0

3 1 0 1

)
𝑅2→𝑅2−3𝑅1−−−−−−−−−→

(
1 2 1 0

0 −5 −3 1

)
𝑅2→− 𝑅

2

5−−−−−−→
(
1 2 1 0

0 1
3

5
− 1

5

)
𝑅1→𝑅1−2𝑅2 |−−−−−−−−−→

(
1 0 − 1

5

2

5

0 1
3

5
− 1

5
;

)
so (

1 2

3 1

)−1

=
1

5

(
−1 2

3 −1

)
.

3.5 Matrix Diagonalization

Through a series of specific transformations, some matrices can be

brought into diagonal form. This seemingly inconspicuous property has

far-reaching consequences.

3.5.1 Eigenvalues and Eigenvectors

A matrix is diagonal if its non-zero entries can only be found along

the diagonal.
20

Diagonal matrices are very simple: in associated linear20: Note that the diagonal entries them-

selves could be zero.
systems, the variables involved are “decoupled”, and solving the system

amounts to solving a collection of linear equations in one variable. In

fact, for the diagonal matrix 𝐴 with diagonal entries denoted, in order,
by 𝜆1 ,𝜆2 , . . . ,𝜆𝑛 , the linear system 𝐴x = b is

𝜆1𝑥1 = 𝑏1

𝜆2𝑥2 = 𝑏2

...

𝜆𝑛𝑥𝑛 = 𝑏𝑛 .

Note that if 𝜆 𝑗 = 0 for some index 𝑗, the system has solution only if 𝑏 𝑗 = 0,

and the variable 𝑥 𝑗 corresponds to a subspace belonging to ker(𝐴).

But matrices are not “absolute objects”, in the sense that the values of

the entries of a matrix depend on the choice of a basis of the vector

space where the matrix operates as a linear map. Can we change the

coordinates so that a given matrix, with respect to this new coordinate

system, is diagonal?
21

21: The answer to this question is: “not

always, but we can still do partial diago-

nalization”. The first step in answering this question requires the introduction of

eigenvalues and eigenvectors.
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Let 𝐴 be a square matrix of size 𝑛. Let v ≠ 0 ∈ ℝ𝑛
. We say that v is

an eigenvector of 𝐴 if

𝐴v = 𝜆v

for some scalar 𝜆 ∈ ℂ. The number 𝜆 is said to be the eigenvalue
of 𝐴 associated to the eigenvector v.

If v ≠ 0 ∈ ℝ𝑛
is an eigenvector of 𝐴 associated with eigenvalue 𝜆,

then so is 𝑐v, 𝑐 ≠ 0. Indeed, if 𝐴v = 𝜆v, then

𝐴(𝑐v) = 𝑐𝐴v = 𝑐𝜆v = 𝜆(𝑐v).

By definition, the zero vector 0 cannot be an eigenvector. Also, note that

for a given eigenvector, only one eigenvalue is associated to it.
22

22: But eigenvalues/eigenvectors can be

complex, even if the matrix only has real

entries.What happens when we apply a matrix to one of its eigenvector? A

eigenvector spans a one dimensional vector space (a line), and along this
line the matrix acts like a scalar, rescaling v by 𝜆.

The goal of diagonalization is to transform the matrix to a form which

is as close as possible to a diagonal; the best form would be a diagonal

matrix, as we can see in the next exercise.

Example Let 𝐴 be a diagonal matrix. Show that the eigenvalues of 𝐴

are the diagonal values. What are the eigenvectors of 𝐴?

The matrix is of the form

𝐴 =

©«
𝑎1,1 0 · · · 0

0 𝑎2,2 · · · 0

...
...

. . .
...

0 0 · · · 𝑎𝑛,𝑛

ª®®®®¬
.

For the vector

e𝑘 = (0, 0, . . . , 0, 1, 0, . . . , 0)⊤ ,

it is easy to verify that

𝐴e𝑘 = 𝑎𝑘,𝑘e𝑘 .

Hence e𝑘 is the eigenvector with eigenvalue 𝜆𝑘 = 𝑎𝑘,𝑘 . ■

An eigenvector,
23

can come from only one eigenvalue. That is in fact 23: Or the 1-dimensional eigenspace

spanned by it.
almost obvious. Suppose that an eigenvector v of a matrix 𝐴 satisfies the

eigenvector equation with two different eigenvalues, which we call 𝜆 and

𝜇, which is to say that

𝐴v = 𝜆v and 𝐴v = 𝜇v.

Since the two left-hand sides of the equations above are the same, it

follows that 𝜆v = 𝜇v. Since v, being an eigenvector, is non-zero by

definition, this last equation implies that 𝜆 = 𝜇.
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Example Can two linearly independent eigenvector have the same

eigenvalue? If you believe that this is true (which it is), prove it by finding

an example of a a matrix which has the same eigenvalue for more than

one independent eigenvector.

The zero matrix can be used, but let us take a non-trivial example. Fix

any 𝜆 ≠ 0 ∈ ℝ and consider the matrix

©«
𝜆 0 0

0 𝜆 0

0 0 0

ª®¬
The eigenvalue 𝜆 is associated to two linearly independent eigenvectors,

i = (1, 0, 0)⊤ and j = (0, 1, 0)⊤;
24

the eigenvalue 0 is associated to the24: These are not the only two linearly

independent eigenvectors, however.
eigenvector k = (0, 0, 1)⊤.

25 ■
25: In particular, k spans ker(𝐴).

But what do eigenvectors represent, geometrically?
26

26: It is important to note that while we

have illustrated the eigenconcepts with ar-

rows inℝ𝑛
, any linear mapping of a vector

space to another could have eigenvectors;

in some cases eigenvectors are functions,

not geometrical vectors.

Example Let

𝐴 =

(
3 2

0 1

)
.

We can show that v = (1, 0)⊤ is an eigeventor of 𝐴, with eigenvalue 3,

since 𝐴v = 3v. Applying 𝐴 to v stretches it by a factor of 3, as seen

below.

plot(NA,xlim=c(-6,6), ylim=c(-6,6),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,0, col="blue")

arrows(0,0,3,0, col="blue")

But the vector w = (1, 1)⊤ is not an eigenvector of 𝐴 since 𝐴w = (5, 1)⊤ ≠

𝜆(1, 1)⊤, no matter the value of 𝜆. Applying 𝐴 to w does not only dilate

it, it also rotates it.
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plot(NA,xlim=c(-6,6), ylim=c(-6,6),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="green")

arrows(0,0,5,1, col="green")

The previous examples are easy because the involved matrices are

diagonal; finding the eigenvalues and eigenvectors of a general matrix

will help us transform it to a form that is closer to a diagonal.

The recipe for finding the eigenvalues and eigenvector of a matrix𝐴 starts

with constructing a polynomial equation, known as the characteristic
equation, such that its roots are the eigenvalues of 𝐴.

27
27: The characteristic equation is a direct

consequence of the properties of determi-

nant from Section 3.3.3.Suppose that 𝜆 is an eigenvalue of 𝐴 (the exact value does not matter):

by definition, there is a non-zero eigenvector v such that 𝐴v − 𝜆𝑣 = 0,

which can be re-written as

(𝐴 − 𝜆I𝑛)v = 0,

where I𝑛 is the identity matrix with the same size as 𝐴.

The matrix 𝐴 − 𝜆I𝑛 has therefore a non-zero nullspace, since it contains

the nonzero vector v. It follows that 𝐴−𝜆I𝑛 is not invertible which means

that its determinant is zero.

Hence, the eigenvalue 𝜆 is a solution of the characteristic equation

det(𝐴 − 𝜆I𝑛) = 0.

The expression det(𝐴 − 𝜆I𝑛) is a polynomial in the variable 𝜆, called

the characteristic polynomial of 𝐴. The degree of the characteristic

polynomial (its highest exponent in 𝜆) is the size 𝑛 of the 𝐴.

This works for all sizes 𝑛, but it is typically easier to find the eigenvalues

when 2 ≤ 𝑛 ≤ 4, due to the insolvability of the quintic; for 𝑛 ≥ 5, we

have to use numerical methods (see Chapter 4).
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Example Write the characteristic polynomial of the matrix

𝐴 =

(
1 4

1 2

)
,

and find its eigenvalues.

We need to apply the definition of the characteristic polynomial, expand

the determinant, and simplify. The eigenvalues will be the roots of a

quadratic equation, since 𝐴 is of size 2.

det(𝐴 − 𝜆I2) = det

((
1 4

1 2

)
− 𝜆

(
1 0

0 1

))
= det

((
1 4

1 2

)
−

(
𝜆 0

0 𝜆

))
= det

(
1 − 𝜆 4

1 2 − 𝜆

)
= (1 − 𝜆)(2 − 𝜆) − 4 = 𝜆2 − 3𝜆 − 2.

The eigenvalues of 𝐴 are thus the solutions of the equation

𝜆2 − 3𝜆 − 2 = 0,

namely

𝜆1,2 =
3 ±

√
17

2

.

In this example, both eigenvalues are real. ■

Let 𝐴 be a square matrix, of any size, and suppose that v and w are

two eigenvectors of 𝐴. Is their sum an eigenvector? What about a linear

combination of them?

In general the sum is not an eigenvector. However, if v and w are associated

with the same eigenvalue 𝜆, then their sum is another eigenvector of 𝐴

with the same eigenvalue, as the following calculations demonstrates:

𝐴(v + w) = 𝐴v + 𝐴w = 𝜆v + 𝜆w = 𝜆(v + w).

The sum v + w is a linear combination; it should not be too difficult to

show that a non-trivial linear combination 𝑎v + 𝑏w, 𝑎, 𝑏 ≠ 0 is not an

eigenvector of 𝐴, unless v and w share their associated eigenvalue.

After we obtain the eigenvalues of 𝐴 from the characteristic equation, the

next step is to find the corresponding eigenvectors.

As before, we let 𝐴 ∈ 𝕄𝑛,𝑛 and 𝜆 be an eigenvalue of 𝐴. The vector

subspace of ℝ𝑛
spanned by all eigevenctors with this eigenvalue is

eigenspace 𝐸𝜆. The dimension 𝐸𝜆, as a vector subspace of ℝ𝑛
, is the

geometric multiplicity of the associated eigenvalue 𝜆.

The eigenspace corresponding to an eigenvalue is obtained by solving

the homogeneous linear system (𝐴 − 𝜆I𝑛)v = 0, where the unknown are

the components of the eigenvector v.
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Example What are the eigenvectors of the matrix 𝐴 from the previous

example?

We already know the eigenvalues of 𝐴:

𝜆1,2 =
3 ±

√
17

2

.

To find v1, the eigenvector of 𝐴 associated to 𝜆1, we must solve the

system (
1 − 𝜆1 4

1 2 − 𝜆1

) (
𝑣1,1

𝑣1,2

)
=

(
0

0

)
.

Expanding the system gives two equations in the unknowns 𝑥, 𝑦 (the

components of the eigenvector v1 ).(
1 − 3 +

√
17

2

)
𝑣1,1 + 4𝑣1,2 = 0

𝑣1,1 +
(
2 − 3 +

√
17

2

)
𝑣1,2 = 0.

We expect this system to have a free variable, since the eigenspace has to

be one dimensional.
28

28: Why is that the case?

We can either get the solution via the Gauss-Jordan elimination algorithm

or, we can solve directly by substitution since 𝑛 is quite small. Proceeding

with the second option, we solve both equations for 𝑣1,2, and the second

equation collapses into the first:

𝑣1,2 =
1 +

√
17

8

𝑣1,1.

As expected, we found a one dimensional eigenspace, parametrized by

𝑣1,1. We can exhibit a basis for 𝐸𝜆1
by selecting any non-zero eigenvector

in this space; setting 𝑣1,1 = 1, we find

𝐸𝜆1
= Span{v1} = Span

{(
1

1+
√

17

8
.

)}
Similar computations, which we let the reader perform, yield

𝐸𝜆2
= Span{v2} = Span

{(
1

1−
√

17

8
.

)}
The multiplicity of an eigenvalue is linked to the number of times it

appears as a solution of the characteristic equation. We can count properly

the number of eigenvalues and eigenvector making use of this concept.

An eigenvalue is a solution of the characteristic equation det(𝐴−𝜆𝐼):
the multiplicity of the solution is called the algebraic multiplicity
of the eigenvalue.

It can be shown that the geometric multiplicity, i.e., the dimension

of the associated eigenspace 𝐸𝜆, is smaller than or equal to the

algebraic multiplicity (defined above).



174 3 Overview of Linear Algebra

3.5.2 Similar Matrices

Eigenvectors define subspaces along which the matrix acts by scalar

multiplication.
29

Once we have the eigenvectors, we apply a similarity29: That is to say, by stretching or dilation.

transformation to transform our matrix to a “more diagonal one”.

Before proceeding, we need to define similarity of matrices: two square

matrices 𝐴 and 𝐵 of the same size are said to be similar if there is an

invertible matrix 𝑃 such that

𝐵 = 𝑃−1𝐴𝑃.

The transformation 𝐴→ 𝐵 = 𝑃−1𝐴𝑃 is a similarity transformation.

Example Similarity is an equivalence relation, which means that it

satisfies the 3 following properties:

1. reflexivity – 𝐴 is similar to itself;

2. symmetry – 𝐴 is similar to 𝐵 if and only if 𝐵 is similar to 𝐴;

3. transitivity – if 𝐴 is similar to 𝐵 and 𝐵 is similar to 𝐶, then 𝐴 is

similar to 𝐶.

This exercise is more “theoretical” than our usual fare, but the proof

is easy and it will help us familiarize ourselves with the algebra of

matrices.

1. Let 𝑃 = I, the identity matrix of the same size of 𝐴: then

𝑃−1𝐴𝑃 = I−1𝐴I = I𝐴I = 𝐴.

2. Let 𝐵 = 𝑃−1𝐴𝑃 be the similarity relation. Then we can multiply

both of its sides to the left by 𝑃 and to the right by 𝑃−1
:

𝑃𝐵𝑃−1 = 𝑃𝑃−1𝐴𝑃𝑃−1 = (𝑃𝑃−1)𝐴(𝑃𝑃−1) = I𝐴I = 𝐴.

If we let 𝑄 = 𝑃−1
, we therefore obtain the similarity relation:

𝐴 = 𝑄−1𝐵𝑄.

3. Let 𝐵 = 𝑃−1𝐴𝑃 and 𝐶 = 𝑄−1𝐵𝑄 be the hypothetical similarity

relations. Substituting the second into the first yields:

𝐶 = 𝑄−1𝐵𝑄 = 𝑄−1(𝑃−1𝐴𝑃)𝑄 = (𝑄−1𝑃−1)𝐴(𝑃𝑄) = (𝑃𝑄)−1𝐴(𝑃𝑄).

Hence 𝐶 is similar to 𝐴.

It is important to respect the properties of matrix multiplication: for

numbers (scalars), the similarity relation reduces directly to equality

since 𝑝−1𝑏𝑝 = 𝑝−1𝑝𝑏 = 𝑏 for any number.

For matrices the similarity relation is not trivial, since the matrix product

is not commutative... but it does satisfy the other “standard properties”

of numbers.

In the proof of the second property above, for instance, we made use of

the associative property of matrix multiplication.
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3.5.3 Diagonalization

Now that we have defined the concept of similarity between matrices,

we can conclude our discussion about eigenvalues and eigenvectors with

the last step: the diagonalization of a matrix.

We say that a square matrix 𝐴 is diagonalizable if it is similar to a

diagonal matrix. That is, there exists an invertible matrix 𝑃 such that

𝐷 = 𝑃−1𝐴𝑃

is a diagonal matrix.

As discussed previously, a square matrix 𝐴 ∈ ℝ𝑛
is a linear map from

ℝ𝑛
to ℝ𝑛

. Thus, the matrix 𝐴 is diagonalizable if and only if there exists

a basis of ℝ𝑛
of eigenvectors of 𝐴, with respect to which the linear map

is represented by a diagonal matrix.

The diagonal values of 𝐷 are in fact the eigenvalues of 𝐴, as we will

explain in detail soon.

Once the matrix is diagonal, it is “easy to use”: a linear system associated

to a diagonal matrix of size 𝑛, for example, is equivalent to 𝑛 linear

equations in one variable. The difficult part is to find the eigenvalues and

eigenvectors, since we need to solve equations.
30

30: Thankfully, we have already discussed

how to do this.

Suppose that we found the matrix is diagonalizable, then what is the

relation with the eigenvalue problem?

Let 𝐴 be a square matrix of size 𝑛. Suppose that 𝐴 is diagonalizable.

Then 𝐴 has 𝑛 (possibly repeated) eigenvalues 𝜆1 ,𝜆2 , · · · ,𝜆𝑛 with corre-

sponding eigenvectors v1 , v2 , · · · , v𝑛 . Denote by 𝐷 the diagonal matrix

of the eigenvalues,

𝐷 =

©«
𝜆1 0 · · · 0

0 𝜆2 · · · 0

...
...

. . .
...

0 0 · · · 𝜆𝑛

ª®®®®¬
,

and denote by 𝑃 the matrix whose columns are the eigenvectors 𝐴

(presented in the same order as the eigenvalues!):

𝑃 =
(
v1 v2 · · · v𝑛

)
.

The diagonalization of 𝐴 is given by the similarity transformation:

𝐷 = 𝑃−1𝐴𝑃.

An easy consequence of all this (which we will not prove) is that all

symmetric matrices are diagonalizable. Moreover, if such a matrix only

has real entries, then all of its eigenvalues are real.

Example Show that the equation 𝐷 = 𝑃−1𝐴𝑃 is equivalent to the

equation 𝐴 = 𝑃𝐷𝑃−1
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We multiply the two sides by 𝑃−1
from the left, 𝑃 from the right:

𝑃−1𝐴𝑃 = 𝑃−1(𝑃𝐷𝑃−1)𝑃 = (𝑃−1𝑃)𝐷(𝑃−1𝑃) = 𝐼𝐷𝐼 = 𝐷.

Example Prove that the matrix 𝐴 below is diagonalizable. Diagonalize

it. How are the eigenvalues related to the determinant?

𝐴 =

©«
2 3 0.4 1

3 −1.3 0.6 17

0.4 0.6 0.1 −23

1 17 −23 0

ª®®®¬
The matrix is symmetric, hence it is diagonalizable. We expect 4 real

eigenvalues (some of which could be duplicates).

We could try to solve the problem by hand, but it would most likely be

rather time-consuming. We use R to speed up the process.

D <- rbind(c(2,3,0.4,1),c(3,-1.3,0.6,17),

c(0.4,0.6,0.1,-23),c(1,317,-23,0))

eigen(D)

det(D)

prod(eigen(D)$values)

eigen() decomposition

$values

[1] -77.8741054 76.0897048 2.9324699 -0.3480693

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.005237695 -0.01940525 0.46752893 -0.26108024

[2,] -0.210057716 -0.20443758 0.06120210 0.07064722

[3,] 0.278113608 0.28194691 0.87637211 0.96259458

[4,] 0.937283918 -0.93719510 -0.09819847 0.01605501

[1] 6048.09

[1] 6048.09

The output of the first two lines of codes produces the set of eigenvectors

and eigenvalues. In particular, 𝐴 is transformed to the diagonal matrix

𝐷 via the eigenvector matrix 𝑃. The third line computes the determinant

of the matrix, which we see is the same as the product of the eigenvalues

of 𝐴, as shown by the fourth line of code.
31

31: This will always be the case.

Invariance of the Determinant

The value of the determinant is respected by similarity transformation: if

𝐴 and 𝐵 are similar matrices, then det(𝐴) = det(𝐵). We can use this fact

to prove that the determinant of a diagonalizable matrix is the product

of its eigenvalues.
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To prove the fist part, we use the property that the determinant respects

the product and inverses: det(𝑃−1𝐴𝑃) = det(𝑃)−1
det(𝐴)det(𝑃) = det(𝐴).

From here, the second part is clear, since for a diagonal matrix the

determinant is the product of the diagonal entries.

But we must be careful: not every square matrix is diagonalizable!

Example For any 𝑡 ≠ 0, the matrix 𝑇 =

(
1 𝑡

0 1

)
only has one eigenvector

(0, 1)⊤, with eigenvalue 𝑡. The similarity recipe presented above can thus

not be applied.

While the matrix is not diagonalizable, we can still construct its Jordan
normal form, which is a more general version of a diagonal matrix [2].

32

32: This is a topic for an advanced linear

algebra course; we will not address it here.

3.6 Exercises

1. The augmented matrix [𝐴|𝐵] of a system has 15 rows and 18

columns. Assume rank(𝐴) = 12 and rank([𝐴|𝐵]) = 13. Which of

the following statements is necessarily true?

a) The system is inconsistent.

b) The system has more than one solution, expressed with one

parameter.

c) The system has more than one solution, expressed with two

parameters.

d) The system has a unique solution.

e) The system has more than one solution, expressed with three

parameters.

f) The system has more than one solution, expressed with four

parameters.

2. Find all values of 𝑏 for which the following system is consistent:

𝑥 + 𝑦 − 𝑧 = 2

𝑥 + 2𝑦 + 𝑧 = 3

𝑥 − 3𝑧 = 2𝑏 − 1

3. Find all the values of ℎ for which the following vectors are linearly

independent: ©«
1

1

0

0

ª®®®¬ ,
©«
1

0

0

1

ª®®®¬ ,
©«
0

0

1

1

ª®®®¬ ,
©«
1

1

1

ℎ

ª®®®¬ .
4. Which of the following sets are subspaces of ℝ2

?

𝑆 = {(𝑥, 𝑦) ∈ ℝ2 | 2𝑥 − 𝑦 = 1}
𝑇 = Span{(−1, 1), (2,−1)}
𝑈 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 = 𝑥2}
𝑉 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 − 3𝑦 = 0}
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5. 𝐴 is a 3 × 3 matrix. Suppose that det(𝐴) = 3. What is det(2𝐴⊤𝐴)?
(Hint: 𝐴⊤ is the transposed of 𝐴.)

6. Let𝐴 =

(
1 2 3

2 1 1

)
and 𝐵 =

(
1 1

-1 2

)
. Which of the following

statements is true?

a) 𝐴𝐵 =

(
-1 1 2

5 4 5

)
b) 𝐵𝐴 =

(
-1 1 2

5 4 5

)
c) 𝐵𝐴 =

(
3 3 4

3 0 -1

)
d) 𝐴𝐵 =

(
3 3 4

3 0 -1

)
e) 𝐵𝐴 =

(
1 2 3

4 5 6

)
f) 𝐴𝐵 =

(
1 2 3

4 5 6

)

7. What is the determinant of

©«
0 0 0 5 0

2 0 3 0 0

1 0 −1 0 0

0 0 0 0 1

0 7 0 0 0

ª®®®®®¬
?

8. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 be the constants and 𝑥, 𝑦 be the unknowns of the

system

𝑎𝑥 + 𝑏𝑦 = 𝑒

𝑐𝑥 + 𝑑𝑦 = 𝑓 .

a) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have a unique solution?

b) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have infinitely many solutions?

c) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have no solution?

9. Let 𝐵 =

(
5 1

1 2

)
. Find all 2 × 2 matrices 𝐴 that satisfy 𝐴𝐵 = 𝐵𝐴.

(Hint: write𝐴 =

(
𝑥 𝑦

𝑧 𝑤

)
, and compute𝐴𝐵 and 𝐵𝐴. Then, solve the

system of 4 equations in 4 unknowns that arises from 𝐴𝐵 = 𝐵𝐴.)

10. Consider the matrix 𝐴 =

(
1 0

2 −1

)
.

a) Find the eigenvalues of 𝐴.

b) For each eigenvalue of 𝐴, find the corresponding eigenspace

of 𝐴, and state its dimension.

11. Consider the matrix 𝐴 =

©«
0 0 1 1 0

−1 1 0 −5 1

1 −1 0 5 1

2 −2 −1 9 0

ª®®®¬, whose re-
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duced row echelon form is

�̃� =


1 −1 0 5 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0


a) Find the column space of 𝐴? (Hint: find the columns of 𝐴 that

are necessary to express the column space of 𝐴.)

b) Are the columns of 𝐴 linearly independent?

c) What is the dimension of the column space of 𝐴?

d) Find a basis for the nullspace of 𝐴.

e) Does the system 𝐴𝑥 = 0 have a unique solution?

12. Find all values of 𝑥 for which det

©«
1 𝑥 𝑥

−𝑥 −2 −𝑥
𝑥 −𝑥 −3

ª®¬ = 0.

13. Let𝑉 be a vector space and let u, v,w ∈ 𝑉 . Which of the following

statements are true?

13.. If {u, v} is linearly independent, so is {u, v, u + v}.
13.. If {u, v,w} is linearly independent, so is {u, v}.
13.. If {u, v,w} is linearly dependent, so is {u, v}.
13.. If {u, v} is linearly independent, so is {u, u + v}.

14. Which of the following statements are true?

a) The set {(𝑥, 𝑥 − 1, 𝑦) ∈ ℝ3 | 𝑥, 𝑦 ∈ ℝ} is a subspace of ℝ3
.

b) The set {𝑝(𝑥) ∈ ℙ4 | 𝑝(2) = 0} is a subspace of ℙ4.

c) The set {𝐴 ∈ 𝕄2,2 | 𝐴2 = 𝐴} is not a subspace of 𝕄2,2.

15. Let {u, v,w, z} be a set of linearly independent vectors. Which of

the following sets of vectors are linearly dependent?

a) {u + v, v + w,w + u}
b) {u, u + z, v, v + w}
c) {u − v, v − w,w − z, z − u}
d) {u, u + z, z}

16. If det

©«
3 −1 𝑥

2 6 𝑦

−5 4 𝑧

ª®¬ = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧, what is the value of 𝑐?

17. Let 𝐴, 𝐵, 𝐶 be square 𝑛 × 𝑛 matrices with det(𝐴) = 1, det(𝐵) = 4

and det(𝐶) = −3. What is the value of det(𝐴2𝐵𝐶⊤𝐵−1)?
18. For each of the following subspaces, exhibit a basis and find the

dimension.

a) {(𝑥, 𝑦, 𝑧, 𝑤)|𝑥 − 𝑦 + 𝑧 − 𝑤 = 0}
b) {𝐴 ∈ 𝕄2,2 | 𝐴⊤ = −𝐴}

19. Let 𝐴 =
©«

2 −1 0

−3 2 1

0 1 2

ª®¬.

a) Find 𝑐𝐴(𝜆), the characteristic polynomial of 𝐴.

b) Use your answer in (a) to determine the eigenvalues of 𝐴.

c) Find a basis for two of the eigenspaces of 𝐴.
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20. Let𝑈 and𝑊 be subspaces of 𝑉 . Define

𝑈 ∪𝑊 = {v ∈ 𝑉 | v ∈ 𝑈 or v ∈𝑊}
𝑈 ∩𝑊 = {v ∈ 𝑉 | v ∈ 𝑈 and v ∈𝑊}.

a) Show that𝑈 ∩𝑊 is a subspace of 𝑉 .

b) Is𝑈 ∪𝑊 necessarily a subspace of 𝑉? Explain.

21. The trace of a matrix 𝐴, denoted by tr(𝐴), is the sum of the elements

on the diagonal of 𝐴. Thus, tr

(
𝑥 𝑦

𝑧 𝑤

)
= 𝑥 + 𝑤.

a) Show that tr : 𝕄2,2 → ℝ is linear, that is, show that

tr

[
𝑎

(
𝑥1 𝑦1

𝑧1 𝑤1

)
+ 𝑏

(
𝑥2 𝑦2

𝑧2 𝑤2

)]
= 𝑎tr

(
𝑥1 𝑦1

𝑧1 𝑤1

)
+𝑏tr

(
𝑥2 𝑦2

𝑧2 𝑤2

)
for all 𝑎, 𝑏, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑤𝑖 ∈ ℝ.

b) Let 𝑥 ∈ ℝ. Find a matrix 𝐴 ∈ 𝕄2,2 such that tr(𝐴) = 𝑥.

c) Using the Rank-Nullity Theorem and the result from part b),

can you deduce the value of dim(ker(tr))?

22. Let 𝐴 =
©«

2 −1 0

−3 2 1

0 1 2

ª®¬. Find rowsp(𝐴) (the space spanned by the

rows of 𝐴), colsp(𝐴) and nullsp(𝐴).
23. Find (if possible) conditions on 𝑎, 𝑏 and 𝑐 such that the system

𝑥 + 𝑎𝑦 = 0, 𝑦 + 𝑏𝑧 = 0, 𝑧 + 𝑐𝑥 = 0.

has:

a) no solution.

b) one solution. What is the solution in this case?

c) infinitely many solutions. What are the solutions in this case?

24. Amongst the following vectors, which one is a linear combination

of (1, 0, 0) and (0, 1, 1)?

(1, 2, 3), (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 0), (3, 2, 1).

25. Let 𝑇 : ℝ2 → ℝ be a linear transformation. If 𝑇(1, 2) = 3 and

𝑇(1, 0) = −1, what is 𝑇(1, 1)?
26. Amongst

𝑈 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1}; 𝑉 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 + 𝑦 ≤ 0};
𝑊 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 = 2𝑦},

which sets are subspaces of ℝ2
?
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