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In today’s digital age, it’s hard to envision a world devoid of data and

computers. Yet, the principles of "data science" predate our modern era

of digital computation.

Take, for instance, Johannes Kepler’s remarkable 16th-century compu-

tations. Before the invention of calculus, he analyzed the orbit of Mars

based on Tycho Brahe’s observations. This monumental effort culminated

in the Laws of Planetary Motion [6]. Fast forward to the 20th century, where

human computers at the Jet Propulsion Laboratory painstakingly calculated

the number of rockets needed for space missions. These computations

often spanned over a week, filling six to eight notebooks with data

and intricate formulas [4]. Such endeavours underscore the invaluable

contributions of data-based calculations to our scientific legacy.

Modern technology allows us to retrace and even surpass the feats of our

predecessors in a mere fraction of their original time. With advancements

in quantum computing, big data processing, and artificial intelligence on

the horizon, it seems our computational potential knows no bounds – at

least from a technical perspective.
1

1: From a sociological and ethical view-

point, however, the landscape is poten-

tially more complex.This chapter provides an overview of the foundational concepts and

techniques at the heart of data science: the often-hidden mathematics
underlying data calculations and data processing. Substantially more

details are available in [1, 3].
2

2: Some of the required topological con-

cepts can also be found in [2].

4.1 Basic Concepts

In scientific computing, we typically navigate from a physical problem
(observed phenomenon) to a computed solution (algorithm solution)

via a mathematical problem (model) and/or a numerical problem, as

illustrated in Figure 4.1.

If 𝑢 is the real solution of the problem and �̂� the computed solution, we

are often interested in the computational error, for obvious reasons: the

smaller it is, the more confident we are in exhibiting �̂� as a solution.

There are two types of such errors:

absolute error: |𝑢 − �̂� |;
relative error: |𝑢−�̂� |

|𝑢 | .

Sources of Error In practice, it is nearly always the case that the com-

putational error is not 0, i.e., that 𝑢 ≠ �̂�.



182 4 Basics of Numerical Methods

Figure 4.1: Schematics of scientific com-

puting (modified from [1]).

That might prove to be the case due to:

errors in the mathematical model;

errors in the input data (e.g., due to measurements);

approximation errors, such as discretization errors (in interpo-

lation, differentiation, integration, ...) and convergence errors (in

iterative methods), and/or

round-off errors due to finite machine precision.

Assessing Numerical Algorithms In theory, there may be multiple

ways of solving a problem numerically. In practice, we usually favour

algorithms that are:

accurate;

efficient (in terms of CPU runtime, storage requirements, rate of

convergence, etc.), as well as

robust/reliable/stable (roughly speaking, computations do not

magnify approximation errors).

4.1.1 Round-Off Error

In a computer, a real number 𝑥 is stored using a floating point represen-
tation:

fl(𝑥) = (−1)𝑠 · (1.𝑑1𝑑2 · · · 𝑑𝑡) · 2
𝑒 ,

where

𝑠 ∈ {0, 1} determines the sign of 𝑥, which is positive if 𝑠 = 0, and

negative if 𝑠 = 1;

𝑓 = 𝑑1𝑑2 . . . 𝑑𝑡 is the mantissa (or fraction) of 𝑥 in base 2, with

𝑑𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑡, and

𝑒 is the exponent, with 𝐿 ≤ 𝑒 ≤ 𝑈 for some 𝐿,𝑈 .

For instance, the floating point representation of −6.5 is

fl(−6.5) = (−1)1 · (1.101) · 2
2 =⇒ −

(
1 + 1

2

+ 1

2
3

)
· 2

2 = −6.5.
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It is not too difficult to show that the following bound applies on the

relative (rounding) error:

|𝑥 − fl(𝑥)|
|𝑥 | ≤ 2

−(𝑡+1).

Single vs. Double Precision Different operational systems/computa-

tional software use different values of 𝑠, 𝑒, and 𝑓 .

𝑠 𝑒 𝑓 𝐿 𝑈

single (32 bits) 1 bit 8 bits 23 bits −126 127

double (64 bits) 1 bit 11 bits 52 bits −1022 1023

In double precision, for instance, we represent numbers as follows:

(−1)𝑠 ·
(
1 +

52∑
𝑖=1

𝑑𝑖

2
𝑖

)
· 2

𝑒
with 𝐿 = −1022 ≤ 𝑒 ≤ 1023 = 𝑈.

The smallest positive number that can be represented has 𝑠 = 0,

𝑑𝑖 = 0, and 𝑒 = 𝐿 =⇒ 𝑥min = 2
−1022

;

the largest positive number has 𝑠 = 0, 𝑑𝑖 = 1, and 𝑒 = 𝑈 =⇒
𝑥max = (2 − 2

−52)21023.

We can recover these values (and other parameters) in R.

.Machine

$double.eps

[1] 2.220446e-16

$double.neg.eps

[1] 1.110223e-16

$double.xmin

[1] 2.225074e-308

$double.xmax

[1] 1.797693e+308

$double.base

[1] 2

$double.digits

[1] 53

$double.rounding

[1] 5

$double.guard

[1] 0

$double.ulp.digits

[1] -52

$double.neg.ulp.digits

[1] -53

$double.exponent

[1] 11

$double.min.exp

[1] -1022

$double.max.exp

[1] 1024

$integer.max

[1] 2147483647

$sizeof.long

[1] 4

$sizeof.longlong

[1] 8

$sizeof.longdouble

[1] 16

$sizeof.pointer

[1] 8

$longdouble.eps

[1] 1.084202e-19

$longdouble.neg.eps

[1] 5.421011e-20

$longdouble.digits

[1] 64

$longdouble.rounding

[1] 5

$longdouble.guard

[1] 0

$longdouble.ulp.digits

[1] -63

$longdouble.neg.ulp.digits

[1] -64

$longdouble.exponent

[1] 15

$longdouble.min.exp

[1] -16382

$longdouble.max.exp

[1] 16384

Round-off arithmetic can lead to odd behaviour – consider, for instance,

the function 𝑓 : (0,∞) → R defined by

𝑓 (𝑥) = (1 + 𝑥) − 1

𝑥
.
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In theory, we know that 𝑓 ≡ 1 on (0,∞). In practice, things get messy.

We define the function in R using the following chunk of code.

f.test <- function(x){

((1+x)-1)/x

}

The function evaluates exactly to 1 for 𝑥 = 1, 10
−9 , 10

−10
.

> f.test(1)

[1] 1

> f.test(0.0000000001)

[1] 1

> f.test(0.00000000001)

[1] 1

For smaller values, something strange is happening.

> f.test(0.000000000001)

[1] 1.000089

> f.test(0.0000000000001)

[1] 0.9992007

> f.test(0.000000000000001)

[1] 1.110223

> f.test(0.0000000000000001)

[1] 0

This phenomenon is know as cancellation error. Say we want to compute

𝑓 (10
−16). We must first add 10

−16
and 1 – to do so, we first need to align

the exponents.

1 = 1.000000000000000 × 10
0

10
−16

= 1.000000000000000 × 10
−16

= 0.100000000000000 × 10
−15

= 0.010000000000000 × 10
−14

= 0.001000000000000 × 10
−13

= 0.000100000000000 × 10
−12

= 0.000010000000000 × 10
−11

= 0.000001000000000 × 10
−10

= 0.000000100000000 × 10
−9

= 0.000000010000000 × 10
−8

= 0.000000001000000 × 10
−7

= 0.000000000100000 × 10
−6

= 0.000000000010000 × 10
−5

= 0.000000000001000 × 10
−4

= 0.000000000000100 × 10
−3

= 0.000000000000010 × 10
−2

= 0.000000000000001 × 10
−1

= 0.000000000000000 × 10
0

From the perspective of double precision arithmetic, 1 + 10
−16 = 1! This

explains why 𝑓 (10
−16) = 0 in R.

3
3: In R, the only numbers that are repre-

sented exactly are the integers and neg-

ative powers of 2. More information on

round-off error (and error propagation) is

available in [3].
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4.2 Solving an Equation in 1 Variable

In this section, we will discuss how to solve an equation of the form

𝑓 (𝑥) = 0

numerically, where 𝑓 : [𝑎, 𝑏] → ℝ is a (potentially non-linear) continuous
function. A real number 𝑥∗ ∈ [𝑎, 𝑏] for which 𝑓 (𝑥∗) = 0 is a root (or a

zero) of the function 𝑓 ; “solving 𝑓 in [𝑎, 𝑏]” means finding (at least) one

root of 𝑓 in [𝑎, 𝑏].4 4: When the context is clear, we will drop

“in [𝑎, 𝑏]” from the conversation.

Iterative Procedures In some cases, we may be able to solve 𝑓 exactly –

if 𝑎 ≠ 0, for instance, the linear equation 𝑎𝑥 + 𝑏 = 0 has exactly one zero

at 𝑥∗ = −𝑏/𝑎. In practice, we can usually only hope to solve a continuous

𝑓 approximately, assuming a solution even exists.
5

5: Not every function has a zero: for in-

stance, 𝑓 : ℝ → ℝdefined by 𝑓 (𝑥) = 𝑥2+1

does not have a root in ℝ.In general, we must use an iterative procedure in order to zoom in

on a root. Given an initial guess 𝑥0, we generate a sequence of iterates
𝑥1 , 𝑥2 , 𝑥3 , . . . which (hopefully) converges to a root 𝑥∗ of 𝑓 .

In order to exhibit a candidate 𝑥∗, we must stop the iterative process

after a finite number of iterations 𝑛, according to a prescribed stopping
criterion such as:

|𝑥𝑛 − 𝑥𝑛−1 | ≤ tol;

|𝑥𝑛 − 𝑥𝑛−1 |/|𝑥𝑛 | ≤ tol, provided 𝑥𝑛 ≠ 0, or

| 𝑓 (𝑥𝑛)| ≤ tol,

where tol is the algorithm’s prescribed tolerance. We can avoid infinite

loops by also prescribing a maximum number of iterations 𝑁max.

4.2.1 Bisection Method

This method is based on the intermediate value theorem: if 𝑓 ∈ 𝐶([𝑎, 𝑏])
and 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0, then there exists 𝑥∗ ∈ [𝑎, 𝑏] such that 𝑓 (𝑥∗) = 0.

Let 𝑎0 = 𝑎, 𝑏0 = 𝑏 and 𝑥0 = (𝑎0 + 𝑏0)/2. There are three possibilities:

1. 𝑓 (𝑥0) = 0, in which case 𝑥∗ = 𝑥0 is a root and we are done;

2. 𝑓 (𝑎0) 𝑓 (𝑥0) < 0, in which case 𝑓 has a root in [𝑎, 𝑥0] and we set

𝑎1 = 𝑎0, 𝑏1 = 𝑥0, or

3. 𝑓 (𝑏0) 𝑓 (𝑥0) < 0, in which case 𝑓 has a root in [𝑥0 , 𝑏] and we set

𝑎1 = 𝑥0, 𝑏1 = 𝑏0.

In the latter two cases, we also set 𝑥1 = (𝑎1 + 𝑏1)/2; the bisection method
re-iterates this process to generate a sequence {𝑥0 , 𝑥1 , 𝑥2 , . . .}, which

converges to a root 𝑥∗ ∈ [𝑎, 𝑏] of 𝑓 .

Illustration of the Method Let 𝑓 : [𝑎, 𝑏] → ℝ be the continuous function

whose graph is displayed on the next page. Let 𝑎0 = 𝑎, 𝑏0 = 𝑏 and

𝑥0 = (𝑎0 + 𝑏0)/2; clearly, 𝑓 (𝑎0) 𝑓 (𝑏0) < 0.
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𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎0

𝑏0

𝑓 (𝑎0)

𝑓 (𝑏0)

𝑓 (𝑥0)

𝑥0

We find ourselves in the third case, since 𝑓 (𝑏0) 𝑓 (𝑥0) < 0; as such 𝑓 has

a root in [𝑥0 , 𝑏0]. In the next iteration, we set 𝑎1 = 𝑥0, 𝑏1 = 𝑏0, and

𝑥1 = (𝑎1 + 𝑏1)/2.

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎1

𝑏1

𝑓 (𝑎1)

𝑓 (𝑏1)

𝑓 (𝑥1)

𝑥1

We find ourselves in the second case, since 𝑓 (𝑎1) 𝑓 (𝑥1) < 0; as such 𝑓

has a root in [𝑎1 , 𝑥1]. In the next iteration, we set 𝑎2 = 𝑎1, 𝑏2 = 𝑥1, and

𝑥2 = (𝑎2 + 𝑏2)/2, and so on.

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎2

𝑏2

𝑓 (𝑎2)

𝑓 (𝑏2)
𝑓 (𝑥2)

𝑥2
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Assume that we would like to use the bisection method to find an

approximation 𝑥𝑛 of a root 𝑥∗ satisfying

|𝑥𝑛 − 𝑥∗ | ≤ tol

for a given tolerance tol > 0. How large 𝑛 should be? We can answer this

question using the following result.

Theorem: let 𝑓 ∈ 𝐶([𝑎, 𝑏]) be such that 𝑓 (𝑎) 𝑓 (𝑏) < 0. The sequence {𝑥𝑘}
generated by the bisection method approximates a root 𝑥∗ of 𝑓 with

|𝑥𝑘 − 𝑥∗ | ≤
𝑏 − 𝑎
2
𝑘+1

, 𝑘 ≥ 0.

Proof: we go through the procedure as illustrated previously; at step 𝑘,

we have 𝑥∗ ∈ [𝑎𝑘 , 𝑏𝑘] and 𝑥𝑘 = (𝑎𝑘 + 𝑏𝑘)/2. Moreover, 𝑏𝑘 − 𝑎𝑘 = (𝑏−𝑎)
2
𝑘 as

we have divided [𝑎, 𝑏] in two 𝑘 times at that point, and so

|𝑥𝑘 − 𝑥∗ | ≤
1

2

(𝑏𝑘 − 𝑎𝑘) =
𝑏 − 𝑎
2
𝑘+1

,

which completes the proof. ■

We can guarantee the desired absolute error tolerance if

|𝑥𝑛 − 𝑥∗ | ≤
𝑏 − 𝑎
2
𝑛+1

< tol,

which is to say

2
𝑛+1 ≥ 𝑏 − 𝑎

tol

=⇒ 𝑛 ≥ log
2

(
𝑏 − 𝑎
tol

)
− 1.

Example: consider the function 𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2, 𝑥 ∈ [0, 5],
whose graph is given below.

𝑥

𝑦

5

4

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2
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We can guarantee that the bisection iterate 𝑥𝑛 is within tol = 10
−4

of 𝑥∗

when 𝑛 ≥ log
2
(5 · 10

4) − 1 = 14.60964, which is to say when 𝑛 ≥ 15.

Algorithm: bisection method

Input: continuous 𝑓 ; 𝑎, 𝑏 with 𝑓 (𝑎) 𝑓 (𝑏) < 0; tol > 0

Output: approximation 𝑝 of 𝑥∗, 𝑛

1 Initialization: 𝑎0 = 𝑎, 𝑏0 = 𝑏, 𝑥0 =
𝑎0+𝑏0

2
, 𝑛 = ⌈log

2

(
𝑏−𝑎
tol

)
− 1⌉;

2 For 𝑘 = 0, 1, 2, . . . , 𝑛 − 1 do

3 If 𝑓 (𝑥𝑘) = 0 then
4 𝑝 = 𝑥𝑘 , 𝑛 = 𝑘;

5 Stop

6 If 𝑓 (𝑎𝑘) 𝑓 (𝑥𝑘) < 0 then
7 𝑎𝑘+1 = 𝑎𝑘 , 𝑏𝑘+1 = 𝑥𝑘 ;

8 Else
9 𝑎𝑘+1 = 𝑥𝑘 , 𝑏𝑘+1 = 𝑏𝑘 ;

10 End
11 𝑥𝑘+1 =

𝑎𝑘+1
+𝑏𝑘+1

2
;

12 End
13 𝑝 = 𝑥𝑛 .

Comments On the positive side, the bisection method always converges

when 𝑓 has a different sign at 𝑎 and 𝑏, and we have precise control over

the error; on the negative side, the convergence is quite slow (the upper

bound on the error only halves with each step), and the method fails to

be of use if 𝑓 does not change sign near a root 𝑥∗.

Example Throughout this section, we will attempt to find roots of the

test function 𝑓 (𝑥) = sin(𝑥) + 1/2 over the interval [2, 8].

𝑥

𝑦

5

2 8

𝑓 (𝑥) = sin(𝑥) + 1/2

Graphically, we see that there are two roots: 𝑥∗ ∈ (2, 5) and 𝑥∗ ∈ (5, 8).
The function is implemented in R as follows.

f.test <- function(x){ sin(x)+1/2 }



4.2 Equations With 1 Variable 189

Can the bisection method find 𝑓 ’s roots? Here is an implementation of

the method in R.

Bisection method
bisection <- function(f, a, b, tol) {

# initialization

k <- 0 # 0th iteration

x <- (a + b)/2 # first iterate (root approximation)

x_vec <- c(x)

# max number of iterations for absolute error control

n <- ceiling(log2((b - a) / tol) - 1)

# Bisection method

while (k < n) {

if (f(x) == 0) {

break

} else {

k <- k + 1

if (f(a) * f(x) < 0) {

b <- x

} else {

a <- x

}

}

x <- (a + b) / 2

x_vec <- c(x_vec, x)

}

return(list(x=x, k=k, x_vec=x_vec))

}

Note that we have not included input checks to the code: we must have

𝑎 < 𝑏, tol > 0, 𝑓 (𝑎) 𝑓 (𝑏) < 0.

We look for 𝑥∗ in the interval [2, 5], with a tolerance of 0.00005.

bisection(f.test, 2, 5, 0.00005)

$x

[1] 3.665207

$k

[1] 15

$x_vec

[1] 3.500000 4.250000 3.875000 3.687500 3.593750 3.640625 3.664062

[8] 3.675781 3.669922 3.666992 3.665527 3.664795 3.665161 3.665344

[15] 3.665253 3.665207
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What about 𝑥∗ in the interval [5, 8], with the same tolerance?

bisection(f.test, 5, 8, 0.00005)

$x

[1] 5.759567

$k

[1] 15

$x_vec

[1] 6.500000 5.750000 6.125000 5.937500 5.843750 5.796875 5.773438

[8] 5.761719 5.755859 5.758789 5.760254 5.759521 5.759888 5.759705

[15] 5.759613 5.759567

The object x_vec lists the iterates 𝑥0 to 𝑥15: the convergence rate is indeed

rather slow.

We can verify that the final iterates are quite close to 𝑥∗ and 𝑥∗.

f.test(3.665207)

f.test(5.759567)

[1] -1.348466e-05

[1] -1.691475e-05

Note however that we manually have to separate the problem into two

sub-problems in order to capture both roots. If we were to try to find the

roots of the test function over a longer interval containing both 𝑥∗ and 𝑥∗,
such as [-10,10],

6
the algorithm would find at most one root.6: We should first verify that

𝑓 (−10) 𝑓 (10) < 0.

bisection(f.test, -10, 10, 0.00005)

$x

[1] 3.665199

$k

[1] 18

$x_vec

[1] 0.000000 5.000000 2.500000 3.750000 3.125000 3.437500 3.593750

[8] 3.671875 3.632812 3.652344 3.662109 3.666992 3.664551 3.665771

[15] 3.665161 3.665466 3.665314 3.665237 3.665199

This highlight an important feature of numerical methods in the context

of finding roots of a function: they are more useful when we already

have a fairly good idea about the location of its roots.

Without the assumption check, the code will still run and might even

converge to a root... but not necessarily so. How does the code respond

for the test function over [2, 8]? Over [2, 3]?
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4.2.2 Golden Ratio Method

We can also “solve” a continuous function 𝑓 : [𝑎, 𝑏] → ℝ by finding a

value 𝑥∗ that maximizes 𝑓 over [𝑎, 𝑏] and/or a value 𝑥∗ that minimizes
𝑓 over [𝑎, 𝑏].7 7: Admittedly, the word “solve” does

some heavy lifting here.

In this new context, the Golden ratio method plays an analogous role for

unimodal continuous functions to that played by the bisection method

in the original context.

This method is based on the max/min theorem: if 𝑓 ∈ 𝐶([𝑎, 𝑏]), then there

exist 𝑥∗ , 𝑥∗ ∈ [𝑎, 𝑏] such that 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) ≥ 𝑓 (𝑥∗) for all 𝑥 ∈ [𝑎, 𝑏].

Say we are seeking the minimal value. If 𝑎 = 𝑏, then 𝑥∗ = 𝑥∗ = 𝑎 = 𝑏, so

assume that 𝑎 < 𝑏. Let 𝜑 = (1 +
√

5)/2, and set 𝑎0 = 𝑎 and 𝑏0 = 𝑏.

1. Set 𝑐 = 𝑏0 − (𝑏0 − 𝑎0)/𝜑 and 𝑑 = 𝑎0 + (𝑏0 − 𝑎0)/𝜑. We have

𝜑 < 2 =⇒ 𝑏0 − 𝑎0

2

<
𝑏0 − 𝑎0

𝜑
=⇒ 𝑏0 − 𝑎0 < 2

(
𝑏0 − 𝑎0

𝜑

)
=⇒ 𝑐 = 𝑏0 −

𝑏0 − 𝑎0

𝜑
< 𝑎0 +

𝑏0 − 𝑎0

𝜑
= 𝑑,

1 < 𝜑 =⇒ 𝑏0 − 𝑎0

𝜑
< 𝑏0 − 𝑎0 =⇒ 𝑎0 < 𝑏0 −

𝑏0 − 𝑎0

𝜑
and

𝑎0 +
𝑏0 − 𝑎0

𝜑
< 𝑏0 ,

and so [𝑐, 𝑑] ⊊ [𝑎0 , 𝑏0].
2. If 𝑓 (𝑐) < 𝑓 (𝑑), set 𝑎1 = 𝑎0 and 𝑏1 = 𝑑.

3. Otherwise, set 𝑎1 = 𝑐 and 𝑏1 = 𝑏0.

The algorithm iterates with this new sub-interval [𝑎1 , 𝑏1], to produce a

sequence of nested intervals

[𝑎0 , 𝑏0] ⊊ [𝑎1 , 𝑏1] ⊊ · · · [𝑎𝑘 , 𝑏𝑘] ⊆ · · ·

That the sequence of sub-intervals converges to the minimizer 𝑥∗ is

guaranteed by the nested interval theorem since

lim

𝑘→∞
(𝑏𝑘 − 𝑎𝑘) = lim

𝑘→∞

(
𝑏0 − 𝑎0

𝜑𝑘+1

)
= 0.

We can guarantee a desired absolute error tolerance tol after 𝑛 iterations

if

𝑏𝑛 − 𝑎𝑛 =
𝑏0 − 𝑎0

𝜑𝑛+1

≤ tol,

which is to say

𝜑𝑛+1 ≥ 𝑏0 − 𝑎0

tol

=⇒ 𝑛 ≥ log𝜑

(
𝑏0 − 𝑎0

tol

)
− 1.

We learn in introductory calculus classes that a differentiable function

reaches its max/min at a point where the derivative is 0 or at a point of

the domain where the derivative does not exist.
8

8: So we could use the bisection method

on 𝑓 ′ instead, say.

The Golden Ratio method does not require knowledge of the derivative,

however!
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We implement the method (without checks) as follows.

Golden Ratio method
golden.min <- function(f, a, b, tol) {

# initialization

phi = (1 + sqrt(5))/2

k <- 0 # 0th iteration

c <- b - (b - a)/phi

d <- a + (b - a)/phi

a_vec <- c(a) # first iterate (lower endpoint)

b_vec <- c(b) # first iterate (upper endpoint)

# max number of iterations for absolute error control

n <- ceiling(log((b - a) / tol) / log(phi) - 1)

# Golden Ratio method

while (k < n) {

k <- k + 1

if (f(c) < f(d)) {

b <- d

} else {

a <- c

}

c <- b - (b - a)/phi

d <- a + (b - a)/phi

a_vec <- c(a_vec, a)

b_vec <- c(b_vec, b)

}

# point estimate for minimizer

x = (a + b)/2

fx = f(x)

return(list(fx=fx, x=x, k=k, a_vec=a_vec, b_vec=b_vec))

}

Example In the test function from the previous section, we see that the

minimum occurs somewhere in [4.5, 5].

golden.min(f.test,2,8,0.00005)

$fx

[1] -0.5

$x

[1] 4.712396

$k

[1] 24
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$a_vec

[1] 2.000000 2.000000 3.416408 4.291796 4.291796 4.291796 4.498447

[8] 4.626165 4.626165 4.674948 4.674948 4.693582 4.705098 4.705098

[15] 4.709497 4.709497 4.711177 4.711177 4.711819 4.712216 4.712216

[22] 4.712216 4.712309 4.712367 4.712367

$b_vec

[1] 8.000000 5.708204 5.708204 5.708204 5.167184 4.832816 4.832816

[8] 4.832816 4.753882 4.753882 4.723732 4.723732 4.723732 4.716615

[15] 4.716615 4.713896 4.713896 4.712858 4.712858 4.712858 4.712612

[22] 4.712461 4.712461 4.712461 4.712425

From theoretical considerations, we already know that the minimal value

of 𝑓 (𝑥) = sin(𝑥) + 1/2 is indeed −1/2.

4.2.3 Fixed Point Iteration Method

Both of the previous algorithms converge slowly, in the sense that while

they do converge, they typically require an unreasonably large number

of iterations to do so.

A root-finding problem 𝑓 (𝑥) = 0 can be transformed into an equivalent

fixed point problem 𝑔(𝑥) = 𝑥. For instance, if

𝑔(𝑥) = 𝑥 − 2 𝑓 (𝑥) or 𝑔(𝑥) = 𝑥 + 𝑓 2(𝑥),

then 𝑓 (𝑥∗) = 0 if and only if 𝑔(𝑥∗) = 𝑥∗.9 An input 𝑥∗ for which 𝑔(𝑥∗) = 𝑥∗ 9: There are infinitely many different for-

mulations for 𝑔, as we will see, but not all

choices are suitable.

is called a fixed point of 𝑔.

The following theorem gives sufficient conditions under which a function

𝑔 : [𝑎, 𝑏] → ℝ has a unique fixed point in [𝑎, 𝑏].

Fixed Point Theorem:

1. if 𝑔 ∈ 𝐶([𝑎, 𝑏]) and 𝑔(𝑥) ∈ [𝑎, 𝑏] for all 𝑥 ∈ [𝑎, 𝑏], then 𝑔 has a

fixed point in [𝑎, 𝑏];
2. if 𝑔′ exists on (𝑎, 𝑏) and if there exists 0 < 𝜌 < 1 such that

|𝑔′(𝑥)| ≤ 𝜌, ∀𝑥 ∈ (𝑎, 𝑏),

then 𝑔 has a unique fixed point in [𝑎, 𝑏].

Proof: define 𝜆 : [𝑎, 𝑏] → ℝ by 𝜆(𝑥) = 𝑔(𝑥) − 𝑥. Since 𝑔(𝑎) ≥ 𝑎, then

𝜆(𝑎) = 𝑔(𝑎) − 𝑎 ≥ 𝑎 − 𝑎 = 0. Since 𝑔(𝑏) ≤ 𝑏, 𝜆(𝑏) = 𝑔(𝑏) − 𝑏 ≤ 𝑏 − 𝑏 = 0.

But 𝑔 is continuous; according to the the intermediate value theorem,

there is thus a 𝑝 ∈ [𝑎, 𝑏] such that 𝜆(𝑝) = 0, which is to say 𝑔(𝑝) = 𝑝.

Now suppose 𝑝∗ , 𝑝∗ ∈ [𝑎, 𝑏] are two fixed points of 𝑔; then

|𝑝∗ − 𝑝∗ | = |𝑔(𝑝∗) − 𝑔(𝑝∗)|.

According to the mean value theorem,
10

if 𝑔 is differentiable, there is a 𝑐 10: See [2] for details.

between 𝑝∗ and 𝑝∗ such that

|𝑝∗ − 𝑝∗ | = |𝑔(𝑝∗) − 𝑔(𝑝∗)| = |𝑔′(𝑐)| · |𝑝∗ − 𝑝∗ | ≤ 𝜌|𝑝∗ − 𝑝∗ | < |𝑝∗ − 𝑝∗ |.

This can only happen if 𝑝∗ = 𝑝∗, and so the fixed point is unique. ■
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Example Consider the equation 𝑓 (𝑥) = 𝑥2 − 2𝑥 − 3 = 0, 𝑥 ∈
[
− 1

2
, 4

]
,

and the equivalent fixed point equation 𝑥 = 𝑔(𝑥) =
√

2𝑥 + 3. Show that

𝑔 has a unique fixed point, and so that 𝑓 has a unique root, in

[
− 1

2
, 4

]
.

Solution: any fixed point of 𝑔 satisfies 𝑥 =
√

2𝑥 + 3 =⇒ 𝑥2 − 2𝑥 − 3 = 0,

and thus is a root of 𝑓 . Over the interval

[
− 1

2
, 4

]
, 𝑔 is continuous and

increasing, as shown below.

𝑥

𝑦

4

4

− 1

2

√
2

√
11 𝑔(𝑥) =

√
2𝑥 + 3

Thus, for any 𝑥 ∈
[
− 1

2
, 4

]
, we have:

− 1

2
≤
√

2 ≤ 𝑔
(
− 1

2

)
≤ 𝑔(𝑥) ≤ 𝑔(4) ≤

√
11 ≤ 4 =⇒ 𝑔

( [
− 1

2
, 4

] )
⊆

[
− 1

2
, 4

]
.

Since 𝑔′(𝑥) = 1√
2𝑥+3

, then we also have:

|𝑔′(𝑥)| ≤ 1√
2

< 1, over

[
−1

2

, 4

]
.

As the assumptions of the theorem are satisfied, 𝑔 admits a unique fixed

point over

[
− 1

2
, 4

]
.

𝑥

𝑦

4

4

− 1

2

√
2

√
11 𝑔(𝑥) =

√
2𝑥 + 3

𝑦 = 𝑥
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For a given continuous function 𝑔 on [𝑎, 𝑏] and initial iterate 𝑥0, the fixed
point iteration process reads as:

𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1.

If {𝑥𝑘} converges to some 𝑥∗ ∈ [𝑎, 𝑏], then 𝑥∗ is a fixed point of 𝑔;
11

11: Note that the fixed point is not neces-

sarily unique.
indeed,

𝑥∗ = lim

𝑘→∞
𝑥𝑘 = lim

𝑘→∞
𝑔(𝑥𝑘−1) = 𝑔

(
lim

𝑘→∞
𝑥𝑘−1

)
= 𝑔(𝑥∗).

Illustration of the Fixed Point Procedure Consider the problem of solv-

ing the equation

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2 = 0, 𝑥 ∈ [0, 5],

and the three equivalent fixed point equations:

1. 𝑥 = 𝑔1(𝑥) = 𝑥 − 1

2
[𝑥 + ln(1 + 𝑥) − 2]

2. 𝑥 = 𝑔2(𝑥) = 2 − ln(1 + 𝑥)
3. 𝑥 = 𝑔3(𝑥) = 𝑒2−𝑥 − 1

We provide a detailed illustration of how the method works on 𝑔1; for 𝑔2

and 𝑔3, we only show the final picture.
12

12: Is it clear that all the fixed point prob-

lems are equivalent to the root-finding

problem?First, we plot the graphs of 𝑦 = 𝑔1(𝑥) and 𝑦 = 𝑥; any intersection of the

two curves over the domain [𝑎, 𝑏](= [0, 5]) must satisfy 𝑔1(𝑥) = 𝑥 and so

is a fixed point of 𝑔1 over the domain.

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

Graphically, we see that there is one such fixed point. How does the

procedure find it?

We need an 𝑥0 in the domain; we select 𝑥0 = 4, for no particular reason,

and we obtain:

𝑥1 = 𝑔1(𝑥0) = 𝑔1(4) = 4 − 1

2
[4 + ln(1 + 4) − 2] ≈ 2.195281;

𝑥2 = 𝑔1(𝑥1) = 𝑔1(2.195281) ≈ 1.516803;

𝑥3 = 𝑔1(𝑥2) = 𝑔1(1.516803) ≈ 1.296907, etc.



196 4 Basics of Numerical Methods

For 𝑘 ≥ 1, each 𝑥𝑘 plays two roles: it is the 𝑦−coordinate of a point on

the curve 𝑦 = 𝑔1(𝑥), which becomes the 𝑥−coordinate of a point on the

curve 𝑦 = 𝑥, which is then fed back into 𝑔1, and so on.

Graphically, this is represented as a rectangular “curve” which converges

to the point (𝑥∗ , 𝑥∗) ≈ (1.20794, 1.20794) in a manner resembling a

staircase; the label 𝑃𝑖 , 𝑗 represents the point with coordinates (𝑥𝑖 , 𝑥 𝑗).

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

𝑥0𝑥∗

𝑃0,1𝑃1,1

𝑃1,2

𝑃2,2

𝑃2,3

𝑃3,3

With 𝑔2 and 𝑔3, the fixed point iterations instead take on the following

forms.

5

5

𝑥

𝑦

𝑦 = 𝑔2(𝑥)

𝑦 = 𝑥

𝑥0𝑥∗

5

5

𝑥

𝑦

𝑦 = 𝑔3(𝑥)

𝑦 = 𝑥

𝑥∗

We see that the method converges for 𝑔1 and 𝑔2, both to the same fixed

point 𝑥∗, but not for 𝑔3, even though 𝑥∗ is a fixed point for the latter. Note

that |𝑔′
𝑖
(𝑥∗)| < 1 for 𝑖 = 1, 2, while |𝑔′

3
(𝑥∗)| > 1.

Convergence So when can we be sure that fixed point iteration con-

verges to a fixed point?



4.2 Equations With 1 Variable 197

Fixed Point Theorem (Reprise): let 𝑔 : [𝑎, 𝑏] → ℝ be a function satisfying

hypotheses 1. and 2. of the fixed point theorem of page 193. Then for any

initial iterate 𝑥0 ∈ [𝑎, 𝑏], the sequence {𝑥𝑘} defined by

𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1,

converges to the unique fixed point 𝑥∗ of 𝑔 in [𝑎, 𝑏].

Proof: the original fixed point theorem shows that 𝑔 has a unique fixed

point 𝑥∗ in [𝑎, 𝑏]. Let 𝑥0 ∈ [𝑎, 𝑏]; we must show that 𝑥𝑘 → 𝑥∗ as 𝑘 → ∞.

On the one hand, we have 𝑥𝑘 − 𝑥∗ = 𝑔(𝑥𝑘−1) − 𝑔(𝑥∗) for all 𝑘 ≥ 1. On the

other hand, since 𝑔 is differentiable over (𝑎, 𝑏), the mean value theorem

implies that

𝑔(𝑥𝑘−1) − 𝑔(𝑥∗) = 𝑔′(𝑐𝑘)(𝑥𝑘−1 − 𝑥∗), for some 𝑐𝑘 between 𝑥𝑘−1 and 𝑥∗.

Thus,

|𝑥𝑘 − 𝑥∗ | = |𝑔(𝑥𝑘−1) − 𝑔(𝑥∗)| = |𝑔′(𝑐𝑘)| |𝑥𝑘−1 − 𝑥∗ | ≤ 𝜌|𝑥𝑘−1 − 𝑥∗ |,

by hypothesis. We then have, recursively,

|𝑥𝑘 − 𝑥∗ | ≤ 𝜌|𝑥𝑘−1 − 𝑥∗ | ≤ 𝜌2 |𝑥𝑘−2 − 𝑥∗ | ≤ · · · ≤ 𝜌𝑘 |𝑥0 − 𝑥∗ | → 0

as 𝑘 → ∞ since 𝜌 < 1, which completes the proof. ■

Corollary on the Error Estimates: under the hypotheses of the fixed

point theorem, we can show that:

1. |𝑥𝑘 − 𝑥∗ | ≤ 𝜌𝑘 · max{𝑥0 − 𝑎, 𝑏 − 𝑥0} for 𝑘 ≥ 0;

2. |𝑥𝑘 − 𝑥∗ | ≤ 𝜌𝑘

1−𝜌 · max{𝑥0 − 𝑎, 𝑏 − 𝑥0} for 𝑘 ≥ 1.

Note that the smaller the value 𝜌 < 1 is, the faster the sequence converges

to the fixed point 𝑥∗ of 𝑔.

Stopping Criterion Ideally, we would like the fixed point procedure to

stop whenever the error satisfies 𝑒𝑘 = |𝑥𝑘 − 𝑥∗ | < tol for some prescribed

tolerance tol > 0. However, the exact fixed point 𝑥∗ is not known; instead,

we can use the following stopping criterion:

|𝑥𝑘+1 − 𝑥𝑘 | < tol.

The value 𝑟𝑘 = |𝑥𝑘 − 𝑔(𝑥𝑘)| = |𝑥𝑘 − 𝑥𝑘+1 | is the residual of the fixed point

procedure at step 𝑘. Note that 𝑟𝑘 ≈ tol does not imply that 𝑒𝑘 ≈ tol:

𝑥𝑘 − 𝑥∗ = 𝑥𝑘 − 𝑥𝑘+1 + 𝑥𝑘+1 − 𝑥∗
= 𝑥𝑘 − 𝑥𝑘+1 + 𝑔(𝑥𝑘) − 𝑔(𝑥∗)
= 𝑥𝑘 − 𝑥𝑘+1 + 𝑔′(𝑐𝑘)(𝑥𝑘 − 𝑥∗), for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗,

so that

(1 − 𝑔′(𝑐𝑘))(𝑥𝑘 − 𝑥∗) = 𝑥𝑘 − 𝑥𝑘+1 =⇒ 𝑒𝑘 =
𝑟𝑘

|1 − 𝑔′(𝑐𝑘)|
.

If |𝑔′(𝑐𝑘)| ≪ 1, then 𝑒𝑘 ≈ 𝑟𝑘 ≈ tol; if 𝑔′(𝑐𝑘) ≈ 1, then it is possible that

𝑒𝑘 ≫ tol!
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The fixed point iteration is summarized in the following algorithm.

Algorithm: fixed point iteration

Input: 𝑔 with the appropriate properties on [𝑎, 𝑏], 𝑥0, tol > 0, 𝑁max

Output: approximation 𝑝 of a fixed point 𝑥∗ of 𝑔, number of

iterations 𝑛

1 Initialization: 𝑥1 = 𝑔(𝑥0), 𝑟0 = |𝑥0 − 𝑥1 |, 𝑘 = 0;

2 While 𝑟𝑘 > tol and 𝑘 < 𝑁max do

3 𝑘 = 𝑘 + 1;

4 𝑥𝑘+1 = 𝑔(𝑥𝑘);
5 𝑟𝑘 = |𝑥𝑘 − 𝑥𝑘+1 |;
6 End
7 𝑝 = 𝑥𝑘+1, 𝑛 = 𝑘 + 1.

Here is an implementation of the method in R.

Fixed point method

fixed_point <- function(g, x0, tol, Nmax) {

# initialization

x_old <- x0

x <- g(x_old)

res <- abs(x - x_old)

k <- 1

x_vec <- c(x0, x)

# fixed point iteration

while (res > tol && k < Nmax) {

k <- k + 1

x_old <- x

x <- g(x_old)

res <- abs(x - x_old)

x_vec <- c(x_vec, x)

# tolerance not reached

if (k == Nmax && res > tol) {

cat(’Nmax iterations reached without

satisfying the prescribed tolerance\n’)

}

}

return(list(x = x, k = k, x_vec = x_vec))

}

Example We can find the fixed point 𝑥∗ of 𝑔(𝑥) = − cos(𝑥) with tol =

0.00005 as follows.

g.test <- function(x){ -cos(x) }

fixed_point(g.test, 1, 0.00005, 300)
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$x

[1] -0.7390714

$k

[1] 25

$x_vec

[1] 1.0000000 -0.5403023 -0.8575532 -0.6542898

[5] -0.7934804 -0.7013688 -0.7639597 -0.7221024

[9] -0.7504178 -0.7314040 -0.7442374 -0.7356047

[13] -0.7414251 -0.7375069 -0.7401473 -0.7383692

[17] -0.7395672 -0.7387603 -0.7393039 -0.7389378

[21] -0.7391844 -0.7390183 -0.7391302 -0.7390548

[25] -0.7391056 -0.7390714

We can easily verify that the output is at the very least quite near 𝑥∗,
numerically and graphically.

g.test(-0.7390714)+0.7390714

[1] -2.2984e-05

𝑥

𝑦

1−1

1

−1

𝑦 = − cos(𝑥)

𝑦 = 𝑥

Order of the Method In the proof of the fixed point theorem (reprise),

we saw that

|𝑔(𝑥𝑘) − 𝑔(𝑥∗)| = |𝑔′(𝑐𝑘)| |𝑥𝑘 − 𝑥∗ |

for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗.

If 𝑔, 𝑔′ are continuous over [𝑎, 𝑏] and lim𝑘→∞ 𝑥𝑘 = 𝑥∗, where 𝑔(𝑥∗) = 𝑥∗,
then we see that

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= lim

𝑘→∞

|𝑔(𝑥𝑘) − 𝑔(𝑥∗)|
|𝑥𝑘 − 𝑥∗ |

= lim

𝑘→∞
|𝑔′(𝑐𝑘)| = |𝑔′(𝑥∗)|,

since 0 ≤ |𝑥∗ − 𝑐𝑘 | ≤ |𝑥∗ − 𝑥𝑘 | → 0 and 𝑔′ is continuous.

Thus, |𝑔′(𝑥∗)| provides a measure of the speed of convergence of the

sequence {𝑥𝑘}.
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Let 𝑥𝑘 → 𝑥∗ be such that 𝑥𝑘 ≠ 𝑥∗ for all 𝑘.

1. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 𝜆 ∈ (0, 1),

then {𝑥𝑘} converges linearly to 𝑥∗.

2. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 1,

then {𝑥𝑘} converges sublinearly to 𝑥∗.

3. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 0,

then {𝑥𝑘} converges superlinearly to 𝑥∗.

4. Set 𝛼 ≥ 1 an integer; if

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= 𝜆 > 0,

then {𝑥𝑘} converges to 𝑥∗ with order 𝛼; in this case, the value 𝜆 is

known as the asymptotic error constant.1313: If 𝛼 = 1, the convergence is linear

and we must have 𝜆 < 1; if 𝛼 = 2, the

convergence is quadratic. We say that a fixed point iteration 𝑥𝑘 = 𝑔(𝑥𝑘−1) is of order 𝛼 if {𝑥𝑘}
converges to a fixed point 𝑥∗ with order 𝛼. In that case, when 𝑥𝑘 is

sufficiently close to 𝑥∗ then we have

|𝑥𝑘+1 − 𝑥∗ | ≈ 𝜆|𝑥𝑘 − 𝑥∗ |𝛼 .

Example Assume that we have two fixed point iterations, one with

order 𝛼 = 1 and 𝜆 = 0.5, and the other with order 𝛼 = 2 and 𝜆 = 1.

Moreover, suppose that |𝑥0−𝑥∗ | = 10
−1

. Then we would expect to observe

something like the following table.

𝑘 |𝑥𝑘 − 𝑥∗ | 𝛼 = 1,𝜆 = 0.5 𝛼 = 2,𝜆 = 1

0 |𝑥0 − 𝑥∗ | 0.1 0.1

1 |𝑥1 − 𝑥∗ | 0.05 0.01

2 |𝑥2 − 𝑥∗ | 0.025 0.0001

3 |𝑥3 − 𝑥∗ | 0.0125 0.00000001

...
...

...
...

In both cases, 𝑒𝑘 → 0; the convergence is quicker in the second case.
14

14: In practice, this means that we will not

need as many iterations of the fixed point

procedure before exiting the ‘while’ loop

in the algorithm.

As mentioned above, the exact fixed point 𝑥∗ is not known, and so we

cannot compute the absolute error 𝑒𝑘 = |𝑥𝑘 − 𝑥∗ | exactly. Instead, we

estimate the order 𝛼 of a fixed point iteration with the help of the residual

𝑟𝑘 = |𝑥𝑘 − 𝑥𝑘+1 | and search for the value of 𝛼 for which that the ratio

𝑟𝑘+1/𝑟𝛼𝑘 converges to a positive constant.
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We already know the relationship between 𝑟𝑘 and 𝑒𝑘 : 𝑟𝑘 = |1 − 𝑔′(𝑐𝑘)|𝑒𝑘
for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗; so if

𝑒𝑘+1

𝑒𝛼
𝑘

→ 𝜆 > 0, then

lim

𝑘→∞

𝑟𝑘+1

𝑟𝛼
𝑘

= lim

𝑘→∞

|1 − 𝑔′(𝑐𝑘+1)|
|1 − 𝑔′(𝑐𝑘)|𝛼

· 𝑒𝑘+1

𝑒𝛼
𝑘

=
𝜆

|1 − 𝑔′(𝑥∗)|𝛼−1

> 0.

Example Consider again the equation

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2 = 0, 𝑥 ∈ [0, 5],

and the equivalent fixed point equations 𝑥 = 𝑔𝑖(𝑥), 𝑖 = 1, 4, with

𝑔1(𝑥) = 𝑥−1

2

[𝑥 + ln(1 + 𝑥) − 2] and 𝑔4(𝑥) =
3𝑥 + 2 − (1 + 𝑥) ln(1 + 𝑥)

2 + 𝑥 .

The charts are shown below, with their tangent lines at (𝑥∗ , 𝑥∗).

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

𝑦 = 0.27𝑥 + 0.88

5

5

𝑥

𝑦

𝑦 = 𝑔4(𝑥)

𝑦 = 𝑥

𝑦 = 1.21

In both cases, the derivative at the fixed point falls in (−1, 1), so the

fixed point procedure converges for every initial iterate 𝑥0 ∈ [0, 5]; note,

however, that |𝑔′
4
(𝑥∗)| < |𝑔′

1
(𝑥∗)|, so we expect the convergence to the

fixed point to be of higher order for 𝑔4 than for 𝑔1.

We run the algorithm with 𝑥0 = 4 and tol = 10
−8

.

g1 <- function(x){x-0.5*(x + log(x+1) - 2)}

x0 = 2

tol = 10^(-8)

Nmax = 1000

fp1 = fixed_point(g1, x0, tol, Nmax)

n1 = length(fp1$x_vec)

We compute the residuals, and study the ratios 𝑟𝑘+1/𝑟𝑘 :

res1 = abs(fp1$x_vec[2:n1] - fp1$x_vec[1:(n1-1)] )

res1[2:(n1-1)]/res1[1:(n1-2)]
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[1] 0.3159122 0.2883925 0.2779797 0.2747903

[5] 0.2738879 0.2736387 0.2735703 ...

We see that the sequence of ratios seems to converge to 𝜆1 = 0.2735... > 0,

and so the fixed point convergence is at least linear. For comparison’s

sake, we also take a look at the ratios 𝑟𝑘+1/𝑟2

𝑘
:

res1[2:(n1-1)]/(res1[1:(n1-2)])^2

[1] 0.5751114 1.6618933 5.5545402 19.7525620

[5] 71.6462604 261.3517413 954.8594146 ...

The sequence of ratios does not seem to converge.

If we repeat the above commands for 𝑔4, we find that the fixed point

iteration with 𝑔4 is of order 2.

g4 <- function(x){(3*x+2-(1+x)*log(1+x))/(2+x)}

x0 = 2; tol = 10^(-8); Nmax = 1000;

fp4 = fixed_point(g4, x0, tol, Nmax)

n4 = length(fp4$x_vec)

We compute the residuals, and study the ratios 𝑟𝑘+1/𝑟𝑘 :

res4 = abs(fp4$x_vec[2:n4] - fp4$x_vec[1:(n4-1)] )

res4[2:(n4-1)]/res4[1:(n4-2)]

[1] 3.862611e-02 2.290711e-03 5.146737e-06 ...

We see that the sequence of ratios seems to converge to 𝜆4 = 0. We take a

look at the ratios 𝑟𝑘+1/𝑟2

𝑘
:

res4[2:(n4-1)]/(res4[1:(n4-2)])^2

[1] 0.04687867 0.07197530 0.07059517 ...

These ratios do seem to converge to a non-zero 𝜆4, so the convergence is

at least of order 2. And for 𝑟𝑘+1/𝑟3

𝑘
?

res4[2:(n4-1)]/(res4[1:(n4-2)])^2

[1] 0.05689441 2.26150082 968.31804790 ...

The sequence of ratios does not seem to converge.

In general, the order of the convergence to a fixed point 𝑥∗ of 𝑔 is linked

to the order of differentiability of 𝑔 at 𝑥∗.
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Theorem: let 𝑔 ∈ 𝐶𝛼([𝑎, 𝑏]), 𝛼 ≥ 1 an integer, and let 𝑥∗ ∈ [𝑎, 𝑏] be a

fixed point of 𝑔, with 𝑥0 sufficiently near 𝑥∗. If

0 < |𝑔′(𝑥∗)| < 1,

then the fixed point iteration 𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1, is only of order 1. If

𝑔′(𝑥∗) = 𝑔′′(𝑥∗) = · · · = 𝑔(𝛼−1)(𝑥∗) = 0 and 𝑔(𝛼)(𝑥∗) ≠ 0,

then the fixed point iteration is of order 𝛼.

Proof: we only provide an outline for the case 𝛼 > 1. For any 𝑥, 𝑥0 ∈ [𝑎, 𝑏],
with 𝑥0 “sufficiently close” to 𝑥, we apply Taylor’s theorem to 𝑔,

15
around 15: See [2] for details.

its fixed point 𝑥∗ ∈ [𝑎, 𝑏], and write

𝑔(𝑥) = 𝑔(𝑥∗) + 𝑔′(𝑥∗)(𝑥 − 𝑥∗) +
1

2

𝑔′′(𝑥∗)(𝑥 − 𝑥∗)2 + · · · + 1

(𝛼 − 1)! 𝑔
(𝛼−1)(𝑥∗)(𝑥 − 𝑥∗)𝛼−1 + 1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼

= 𝑔(𝑥∗) +
1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼 ,

for some 𝑐𝑥 between 𝑥 and 𝑥∗.16 When 𝑥 = 𝑥𝑘 , we get 16: The mean value theorem is a special

case of Taylor’s theorem, with 𝛼 = 1.

𝑥𝑘+1 − 𝑥∗ = 𝑔(𝑥𝑘) − 𝑔(𝑥∗) =
1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼 ,

where 𝑐𝑘 lies between 𝑥𝑘 and 𝑥∗. Since 𝑥𝑘 → 𝑥∗, then 𝑐𝑘 → 𝑥∗ and

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= lim

𝑘→∞

1

𝛼!

|𝑔(𝛼)(𝑐𝑘)| =
1

𝛼!

|𝑔(𝛼)(𝑥∗)|,

which is non-zero, by assumption. ■

This explains why some choices of 𝑔 are better than others; of course, this

is of limited applicability as we need to know 𝑥∗ before we can use this

last result to increase the convergence order of the procedure... but if we

already know 𝑥∗, there is no need to improve the speed of convergence.

4.2.4 Newton’s Method

Newton’s method is one of the most frequently-used “fast” method

for solving nonlinear equations, although in many applications, it is

often supplanted by task-specific methods, such as gradient descent
methods.

17
17: See Chapters 5 and 31, and Section

4.3.2.

We wish to solve the equation 𝑓 (𝑥) = 0, with 𝑓 ∈ 𝐶2([𝑎, 𝑏]). Assume

that 𝑥∗ ∈ [𝑎, 𝑏] is a root of 𝑓 and let 𝑥𝑘 ∈ [𝑎, 𝑏]. According to Taylor’s

theorem, there is a 𝑐𝑘 between 𝑥∗ and 𝑥𝑘 such that

0 = 𝑓 (𝑥∗) = 𝑓 (𝑥𝑘) + 𝑓 ′(𝑥𝑘)(𝑥∗ − 𝑥) +
1

2

𝑓 ′′(𝑐𝑘)(𝑥∗ − 𝑥𝑘)2.

If 𝑥𝑘 is near 𝑥∗, we expect |𝑥∗−𝑥𝑘 | to be small, so that |𝑥∗−𝑥𝑘 |2 ≪ |𝑥∗−𝑥𝑘 |.
Moreover, if 𝑓 ′(𝑥𝑘) ≠ 0, then

0 = 𝑓 (𝑥∗) ≈ 𝑓 (𝑥𝑘) + 𝑓 ′(𝑥𝑘)(𝑥∗ − 𝑥) =⇒ 𝑥∗ ≈ 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

.
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Starting from 𝑥0, Newton’s method generates the sequence {𝑥𝑘} defined

by

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

, 𝑘 ≥ 0.

Illustration of the Method Let 𝑓 : [𝑎, 𝑏] → ℝ be the 𝐶2
function whose

graph is displayed below, and let 𝑥0 ∈ [𝑎, 𝑏] be near 𝑥∗. Draw the tangent

to 𝑓 at 𝑥0.

𝑥

𝑦

𝑥0

𝑦 = 𝑓 (𝑥)

𝑦 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0)

The equation of the tangent is 𝑦 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0); the intersection

of the line with the 𝑥−axis at

0 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) =⇒ 𝑥 = 𝑥0 −
𝑓 (𝑥0)
𝑓 ′(𝑥0)

,

which is exactly the first Newton iterate 𝑥1. Repeat this procedure starting

from 𝑥1 to obtain 𝑥2, and so on.

𝑥

𝑦

𝑥0𝑥1

𝑦 = 𝑓 (𝑥)

𝑦 = 𝑓 (𝑥1) + 𝑓 ′(𝑥1)(𝑥 − 𝑥1)
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Theorem: let 𝑓 ∈ 𝐶2([𝑎, 𝑏]). If 𝑥∗ ∈ [𝑎, 𝑏] is such that 𝑓 (𝑥∗) = 0 and

𝑓 ′(𝑥∗) ≠ 0, then the sequence {𝑥𝑘} generated by Newton’s method

converges (at least) quadratically to 𝑥∗ for any 𝑥0 sufficiently near 𝑥∗.

Proof: Newton’s method can be recast as a fixed point iteration for the

function defined by 𝑔(𝑥) = 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥) . At 𝑥 = 𝑥∗,

𝑔(𝑥∗) = 𝑥∗ −
𝑓 (𝑥∗)
𝑓 ′(𝑥∗) = 𝑥∗ − 0

𝑓 ′(𝑥∗) = 𝑥∗ ,

so 𝑥∗ is a fixed point of 𝑔. But

𝑔′(𝑥) = 1 −
[ 𝑓 ′(𝑥)]2 − 𝑓 (𝑥) 𝑓 ′′(𝑥)

[ 𝑓 ′(𝑥)]2 =
𝑓 (𝑥) 𝑓 ′′(𝑥)
[ 𝑓 ′(𝑥)]2 =⇒ 𝑔′(𝑥∗) =

𝑓 (𝑥∗) 𝑓 ′′(𝑥∗)
[ 𝑓 ′(𝑥∗)]2 = 0,

so the order of convergence is at least 𝛼 = 2 according to the last theorem

of Section 4.2.3. ■

Newton’s method may not converge if 𝑥0 is too removed from 𝑥∗, or if

the iterations gets caught in a cycle.

Remark: if 𝑓 ′(𝑥∗) = 0, then Newton’s method may still converge with

order 1. For instance, 𝑓 (𝑥) = 𝑥2
vanishes at 𝑥∗ = 0 and 𝑓 ′(𝑥∗) = 0. We

then have

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

= 𝑥𝑘 −
𝑥2

𝑘

2𝑥𝑘
=

1

2

𝑥𝑘 = · · · =
(
1

2

) 𝑘
𝑥0 → 0 = 𝑥∗

as 𝑘 → ∞, and so 𝑥𝑘 → 𝑥∗. However, for the equivalent fixed point

problem 𝑥 = 𝑔(𝑥) = 𝑥/2, we have 𝑔(𝑥∗) = 0 and 𝑔′(𝑥∗) = 1/2 ≠ 0, so the

convergence is only linear.

Newton’s algorithm is summarized in the following algorithm.

Algorithm: Newton’s method

Input: 𝑓 , 𝑓 ′, 𝑥0, tol > 0, 𝑁max

Output: approximation 𝑝 of a root 𝑥∗ of 𝑓 , number of iterations 𝑛

1 Initialization: 𝑥1 = 𝑥0 − 𝑓 (𝑥0)
𝑓 ′(𝑥0) , 𝑟0 = |𝑥1 − 𝑥0 |, 𝑘 = 0;

2 While 𝑟𝑘 > tol and 𝑘 < 𝑁max do

3 𝑘 = 𝑘 + 1;

4 𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) ;

5 𝑟𝑘 = |𝑥𝑘+1 − 𝑥𝑘 |;
6 End
7 𝑝 = 𝑥𝑘+1, 𝑛 = 𝑘 + 1.

Here is an implementation of the method in R.

Newton’s method
newton <- function(f, df, x0, tol, Nmax) {

x_old <- x0

x <- x_old - f(x_old) / df(x_old)

res <- abs(x - x_old)
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k <- 1

x_vec <- c(x0, x)

while(res > tol && k < Nmax) {

k <- k + 1

x_old <- x

x <- x_old - f(x_old) / df(x_old)

res <- abs(x - x_old)

x_vec <- c(x_vec, x)

if(k == Nmax && res > tol) {

cat(’Nmax iterations reached without

satisfying the prescribed tolerance\n’)

}

}

return(list(x=x, k=k, x_vec=x_vec))

}

Example We are looking for roots of the function 𝑓 defined by 𝑓 (𝑥) =
𝑥2 − 4, whose derivative is 𝑓 ′ defined by 𝑓 ′(𝑥) = 2𝑥.

f <- function(x){x^2 - 4}

df <- function(x){2*x}

We initialize the algorithm as follows.

x0 <- 1

tol <- 1e-5

Nmax <- 100

What does Newton’s method find?

result <- newton(f, df, x0, tol, Nmax)

print(result$x)

[1] 2

print(result$k)

[1] 5

print(result$x_vec)

[1] 1.00000 2.50000 2.05000 2.00061 2.00000 2.00000
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We know, theoretically, that 𝑓 (2) = 0. But 𝑥∗ = 2 is not the only root of 𝑓 .

One of the drawbacks of iterative procedures in the search for roots is

that a sequence {𝑥𝑘} converges to one limit (at most).

When we know that there are other roots, we can try playing with the

parameters to generate sequences converging to those, but in general

that knowledge is not available to us.
18

We can exhibit the other root by 18: That is, in no small part, exactly why

we are looking for roots in the first place.
using a different 𝑥0.

x0 <- -1

result <- newton(f, df, x0, tol, Nmax)

print(result$x)

[1] -2

print(result$k)

[1] 5

print(result$x_vec)

[1] -1.00000 -2.50000 -2.05000 -2.00061 -2.00000 -2.00000

Newton’s method, being of order 2, is usually quite fast, but the function’s

derivative must be known.

4.2.5 Secant Method

It might be costly to evaluate 𝑓 ′; the secant method is a variation of

Newton’s method where only evaluations of 𝑓 are needed. The idea is to

approximate 𝑓 ′(𝑥𝑘) by a difference quotient:

𝑓 ′(𝑥𝑘) = lim

𝑥→𝑥𝑘

𝑓 (𝑥) − 𝑓 (𝑥𝑘)
𝑥 − 𝑥𝑘

≈ 𝑓 (𝑥𝑘−1) − 𝑓 (𝑥𝑘)
𝑥𝑘−1 − 𝑥𝑘

.

The quality of the approximation increases when 𝑥𝑘−1 is “close” to 𝑥𝑘 .

Given initial iterates 𝑥0 ≠ 𝑥1 ∈ [𝑎, 𝑏] for which 𝑓 (𝑥0) ≠ 𝑓 (𝑥1), the

sequence generated by the secant method is similar to the Newton

sequence, but substituting 𝑓 ′(𝑥𝑘) by

𝑓 (𝑥𝑘−1
)− 𝑓 (𝑥𝑘 )

𝑥𝑘−1
−𝑥𝑘 :

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1)
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)

, 𝑘 ≥ 1.

Graphically, we obtain 𝑥2 as the intersection of the 𝑥−axis with the line

joining the points (𝑥0 , 𝑓 (𝑥0)) and (𝑥1 , 𝑓 (𝑥1)).
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4.3 Systems of Equations

In practice, data problems often give rise to systems of 𝑚 equations in 𝑛

unknowns (as opposed to 1 equation in 1 variable). The nature of these

systems (linear vs. non-linear) affects the choice of solution method.
19

19: Methods derived specifically for linear

systems are not easily applicable to non-

linear systems, but methods for non-linear

systems are usually applicable to linear

systems as well.

4.3.1 Linear Systems

In simple linear regression, for instance, we are trying to find the coef-

ficients 𝛽0 and 𝛽1 that “best” fit the data {(𝑋𝑖 , 𝑌𝑖)} in the least square

sense: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛.

In Chapter 8, we see that the estimators 𝑏0 , 𝑏1 are the solutions of

𝑛𝑌 = 𝑛𝛽0 + 𝑛𝑋𝛽1 , 𝑆𝑥𝑦 + 𝑛𝑋𝑌 = 𝑛𝑋𝛽0 + (𝑆𝑥𝑥 + 𝑛𝑋
2)𝛽1.

This is a linear system of two equations in two unknowns, which we

can re-write in matrix form as 𝐴𝜷 = c. If 𝐴 is invertible, the estimated

solution vector is 𝐴−1c.
20

20: See Chapter 3 for details.

Consider the linear system 𝐴x = b, where 𝐴 is an 𝑚 × 𝑛 matrix, x ∈ ℝ𝑛
,

and b ∈ ℝ𝑚
. If 𝑚 = 𝑛 and 𝐴 is invertible, the system has a unique

solution, x = 𝐴−1b.

In practice, we rarely solve the linear system by explicitly computing 𝐴−1
,

especially if 𝑛 is large.
21

21: With a computer capable of teraflop

speeds, it would take roughly 10
141

years

to compute the inverse of an 100 × 100

matrix using cofactors or Cramer’s rule!

We will briefly discuss two types of methods for solving 𝐴x = b that do

not involve computing 𝐴−1
: direct methods and iterative methods.

Direct Methods

In theory, a direct method finds the exact solution in a finite number of

steps; in practice, the solution is “polluted” by round-off error.

Gaussian Elimination and Backward Substitution A linear system may

be easy to solve when 𝐴 has an advantageous structure, such as if it is

upper (or lower) triangular:

©«

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛−1 𝑎1,𝑛

0 𝑎2,2 · · · 𝑎2,𝑛−1 𝑎2,𝑛

...
. . .

. . .
...

...

0 · · · 0 𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛

0 0 0 0 𝑎𝑛,𝑛

ª®®®®®®¬
©«

𝑥1

𝑥2

...

𝑥𝑛−1

𝑥𝑛

ª®®®®®®¬
=

©«

𝑏1

𝑏2

...

𝑏𝑛−1

𝑏𝑛

ª®®®®®®¬
.

From the last row 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛 , we obtain 𝑥𝑛 = 𝑏𝑛/𝑎𝑛,𝑛 , assuming that

𝑎𝑛,𝑛 ≠ 0.
22

22: All diagonal entries of a triangular ma-

trix 𝐴 must be non-zero if 𝐴 is invertible.

Then, from the penultimate row, we have

𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1 =⇒ 𝑥𝑛−1 =
1

𝑎𝑛−1,𝑛−1

(𝑏𝑛−1 − 𝑎𝑛−1,𝑛𝑥𝑛) ,

and so on until we reach the first row.
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The formal procedure for triangular matrices are provided below.

Algorithm: backward substitution

Input: 𝐴 upper triangular, 𝑛 × 𝑛, with 𝑎𝑖 ,𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛
Output: solution x of 𝐴x = b

1 For 𝑖 = 𝑛, 𝑛 − 1, . . . , 1 do

2 𝑥𝑖 =
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

∑𝑛
𝑗=𝑖+1

𝑎𝑖 , 𝑗𝑥 𝑗

)
3 End
4 x = (𝑥1 , . . . , 𝑥𝑛)⊤

Algorithm: forward substitution

Input: 𝐴 lower triangular, 𝑛 × 𝑛, with 𝑎𝑖 ,𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛
Output: solution x of 𝐴x = b

1 For 𝑖 = 1, 2, . . . , 𝑛 do

2 𝑥𝑖 =
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

∑𝑖−1

𝑗=1
𝑎𝑖 , 𝑗𝑥 𝑗

)
3 End
4 x = (𝑥1 , . . . , 𝑥𝑛)⊤

In general, the matrix 𝐴 is not triangular, but it can be brought to a

triangular form via Gaussian elimination.
23

23: See Section 3.4.1 for more details.

Example To find the solution of the linear system
𝑥1 + 𝑥2 + 3𝑥4 = 4

2𝑥1 + 𝑥2 − 𝑥3 + 3𝑥4 = 1

3𝑥1 − 𝑥2 − 𝑥3 + 2𝑥4 = −3

−𝑥1 + 2𝑥2 + 3𝑥3 − 𝑥4 = 4

we first form the augmented matrix [𝐴 | b] and reduce it to its echelon

form to obtain ©«
1 1 0 3

0 −1 −1 −5

0 0 3 13

0 0 0 −13

��������
4

−7

13

−13

ª®®®¬ .
We can read the solution from the reduced matrix directly, via backward

substitution:

𝑥4 = 13/13 = 1,

𝑥3 =
1

3

(13 − 13 · 1) = 0,

𝑥2 =
1

−1

(−7 − (−1) · 0 − (−5) · 1) = 2,

𝑥1 =
1

1

(4 − 1 · 2 − 0 · 0 − 3 · 1) = −1.

In order to solve a system of 𝑛 linear equations in 𝑛 variables, we can

show that we need O(𝑛3) operations for Gaussian elimination of [𝐴 | b],
and O(𝑛2) operations for backward/forward substitution.

24

24: We use the “big O” notation O(𝑛𝑘 )
as shorthand for a number of operations

≤ 𝐴𝑛𝑘 for some constant 𝐴 > 0.
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LU Factorization If 𝐴 is invertible, then we can perform Gaussian

elimination on it, which also means that it can be factored as

𝐴 = 𝐿𝑈,

where 𝐿 and𝑈 are lower and upper square triangular, respectively.
25

In25: This assumes that Gaussian elimina-

tion can be conducted on 𝐴 without hav-

ing to interchange rows, an assumption

that we will make throughout this section.

fact,𝑈 is the reduced matrix of 𝐴 (after Gaussian-elimination) and

𝐿 =

©«
1 0 · · · 0

ℓ2,1 1 0

...
. . .

. . .

ℓ𝑛,1 · · · ℓ𝑛,𝑛−1 1

ª®®®®¬
.

Example In the preceding example, we had

𝐴 =

©«
1 1 0 3

2 1 −1 1

3 −1 −1 2

−1 2 3 −1

ª®®®¬⇝ 𝑈 =

©«
1 1 0 3

0 −1 −1 −5

0 0 3 13

0 0 0 −13

ª®®®¬ .
With

𝐿 =

©«
1 0 0 0

2 1 0 0

3 4 1 0

−1 −3 0 1

ª®®®¬ ,
we indeed have 𝐿𝑈 = 𝐴. □

Let I𝑛 be the 𝑛 × 𝑛 identity matrix, and M𝑛(𝑖 , 𝑗) be the 𝑛 × 𝑛 zero matrix,

except in the position (𝑖 , 𝑗), where the entry is 1. The three types of

elementary row transformations that carry 𝐴 to𝑈 can also be written as

a left-product of elementary matrices with 𝐴:

𝑈 = 𝐸(𝑛−1,1)𝐸(𝑛−2,2)𝐸(𝑛−2,1) · · ·𝐸(1,𝑛−1) · · ·𝐸(1,1)𝐴,

where

𝐸(𝑘,𝜈) =


In[𝑅𝑖 ↔ 𝑅 𝑗], 𝜈th operation of step 𝑘 is 𝑅𝑖 ↔ 𝑅 𝑗

In + 𝑎M𝑛(𝑖 , 𝑗), 𝜈th operation of step 𝑘 is 𝑎𝑅𝑖 + 𝑅 𝑗 → 𝑅 𝑗 , 𝑖 > 𝑗

In + (𝑎 − 1)M𝑛(𝑗 , 𝑗), 𝜈th operation of step 𝑘 is 𝑎𝑅 𝑗 → 𝑅 𝑗 , 𝑎 ≠ 0

Note that 𝐸(𝑘,𝜈)
is always invertible; if no row interchange is required,

then 𝐸(𝑘,𝜈)
and

[
𝐸(𝑘,𝜈)]−1

are both lower triangular.

By construction, then

𝐴 =

[
𝐸(1,1)

]−1

·
[
𝐸(1,𝑛−1)

]−1

· · ·
[
𝐸(𝑛−1,1)

]−1

𝑈 = 𝐿𝑈,

where 𝐿 is lower diagonal with ones on the diagonal.

Once we have the 𝐿𝑈 factorization of 𝐴, the system 𝐴x = b can be solved

using first forward, then backward substitution:

𝐴x = 𝐿𝑈x = 𝐿y = b, and then 𝑈x = y.
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The LU factorization approach is particularly useful if we need to solve

𝐴x = b for different b.
26

It can also be used to speed up determinant 26: We only need O(𝑛3) steps for the Gaus-

sian elimination of 𝐴 once, then O(𝑛2)
steps for the forward and backward sub-

stitution in each system.

computations, since

det(𝐴) = det(𝐿𝑈) = det(𝐿)det(𝑈) =
(
𝑛∏
𝑖=1

ℓ𝑖 ,𝑖

) (
𝑛∏
𝑖=1

𝑢𝑖 ,𝑖

)
=

(
𝑛∏
𝑖=1

𝑢𝑖 ,𝑖

)
.

Pivoting Strategies When one of the (eventual) pivot elements is zero,

Gaussian elimination fails because we need access to row interchanges

(also known as pivoting).
27

But this strategy should also be used when 27: See [7, 5] for details.

the pivot elements are small in magnitude, relative to the other (reduced)

matrix entries, because Gaussian elimination is prone to round-off error.

Example In exact (symbolic) arithmetic, the matrix form of the linear

system {
10

−20𝑥1 + 𝑥2 = 1

𝑥1 + 2𝑥2 = 4

reduces to (
10

−20
1

1 2

���� 1

4

)
⇝

(
10

−20
1

0 2 − 10
20

���� 1

4 − 10
20

)
,

via the row transformation 𝑅2 − 10
20𝑅1 → 𝑅2. Using backward substitu-

tion, we then obtain

(2 − 10
20)𝑥2 = 4 − 10

20 =⇒ 𝑥2 =
4 − 10

20

2 − 10
20

,

10
−20𝑥1 = 1 − 𝑥2 =⇒ 𝑥1 = 10

20

(
1 − 4 − 10

20

2 − 10
20

)
= −2 × 10

20

2 − 10
20

;

therefore, 𝑥2 ≈ 1 and 𝑥1 ≈ 2.

If we are using double precision,
28

we have 2 − 10
20 ↦→ −10

20
and 28: Which is to say, ≈ 16 significant digits.

4 − 10
20 ↦→ −10

20
, and so(

10
−20

1

1 2

���� 1

4

)
⇝

(
10

−20
1

0 −10
20

���� 1

−10
20

)
,

which yields 𝑥2 = 1 and 𝑥1 = 0. That is problematic!

If we exchange rows 1 and 2 (𝑅1 ↔ 𝑅2), we obtain instead(
1 2

10
−20

1

���� 4

1

)
⇝

(
1 2

0 1 − 2 × 10
−20

���� 4

1 − 4 × 10
−20

)
↦→

(
1 2

0 1

���� 4

1

)
,

which yields 𝑥2 = 1 and 𝑥1 = 2.

The elementary matrices in which row interchange are encoded are not

lower triangular; an invertible matrix 𝐴 whose Gaussian elimination

requires such a transformation does not have an 𝐿𝑈 decomposition, but

it can be decomposed that way up to a permutation matrix 𝑃:
29

29: A permutation matrix is a matrix

whose rows are a permutation of the rows

of I𝑛 .𝑃𝐴 = 𝐿𝑈.
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Algorithm: 𝐿𝑈 factorization with partial pivoting

Input: 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖 , 𝑗)
Output: 𝑛 × 𝑛 matrices 𝐿,𝑈, 𝑃 such that 𝑃𝐴 = 𝐿𝑈

1 Initialization: 𝑃 = I𝑛 ;

2 For 𝑘 = 1, 2, . . . , 𝑛 − 1 do

3 Find smallest 𝑞 such that |𝑎𝑞,𝑘 | = max𝑘≤𝑖≤𝑛 |𝑎𝑖 ,𝑘 |;
4 Exchange rows 𝑞 and 𝑘 in 𝐴 and 𝑃;

5 For 𝑖 = 𝑘 + 1, . . . , 𝑛 do
6 Set 𝑎𝑖 ,𝑘 = 𝑎𝑖 ,𝑘/𝑎𝑘,𝑘 ;
7 For 𝑗 = 𝑘 + 1, . . . , 𝑛 do
8 Set 𝑎𝑖 , 𝑗 = 𝑎𝑖 , 𝑗 − 𝑎𝑖 ,𝑘𝑎𝑘,𝑗 ;
9 End

10 End
11 End
12 𝐿 = I𝑛 + strictly lower triangular(𝐴);𝑈 = upper triangular(𝐴); 𝑃

Once we have 𝑃, 𝐿,𝑈 such that 𝑃𝐴 = 𝐿𝑈 , then we can solve the system

𝐴x = b for x by using

𝐴x = b ⇐⇒ 𝑃𝐴x = 𝑃b ⇐⇒ 𝐿𝑈x = 𝑃b,

namely, we first solve 𝐿y = 𝑃b using forward substitution, then we solve

𝑈x = y using backward substitution.

Example Algorithm 6 is implemented in R via the Matrix package’s

function lu(). We use it to find the partial pivoting 𝐿𝑈 decomposition

of

𝐴 =
©«
1 2 3

2 4 5

3 4 6

ª®¬ .
We start by loading the matrix.

require(Matrix)

A=t(matrix(c(1,2,3,2,4,5,3,4,6),3,3))

We can decompose and extract the factors of the 𝐿𝑈 decomposition as

follows:

D <- lu(A)

expand(D)$L

3 x 3 Matrix of class "dtrMatrix" (unitriangular)

[,1] [,2] [,3]

[1,] 1.0000000 . .

[2,] 0.6666667 1.0000000 .

[3,] 0.3333333 0.5000000 1.0000000
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expand(D)$U

3 x 3 Matrix of class "dtrMatrix"

[,1] [,2] [,3]

[1,] 3.000000 4.000000 6.000000

[2,] . 1.333333 1.000000

[3,] . . 0.500000

expand(D)$P

3 x 3 sparse Matrix of class "pMatrix"

[1,] . . |

[2,] . | .

[3,] | . .

Other (mostly similar) factorizations may be better suited to various

types of matrices 𝐴:

for symmetric matrices 𝐴,
30

we use 𝐴 = 𝐿𝐷𝐿⊤, where 𝐷 is a 30: 𝐴⊤ = 𝐴

diagonal matrix;

for symmetric positive definite matrices 𝐴,
31

we use the Cholesky 31: 𝐴 symmetric and x⊤𝐴x > 0 for all

x ≠ 0.decomposition 𝐴 = 𝑀𝑀⊤
;

it may be possible to take advantage of some sparse matrices’

structure (such as is the case for banded matrices) to greatly

increase the speed of the LU decomposition with partial pivoting.

Matrix Norms A vector norm ∥ − ∥ : ℝ𝑛 → ℝ+
0

is a function satisfying

the following three conditions:

1. ∥x∥ ≥ 0 for all x ∈ ℝ𝑛
, and ∥x∥ = 0 if and only if x = 0;

2. ∥𝛼x∥ = |𝛼 |∥x∥ for all x ∈ ℝ𝑛 , 𝛼 ∈ ℝ;

3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ ℝ𝑛
.

The 2−norm ∥x∥2 =

√
𝑥2

1
+ · · · + 𝑥2

𝑛 is a common example.
32

32: We can show that all vector norms on

ℝ𝑛
are equivalent, suggesting that there is

no real advantage to selecting one over an-

other, in a general setting (although there

may be instances where calculations are

simpler in one context over another).

Given a vector norm ∥ · ∥ on ℝ𝑛
, we can define the induced matrix norm

| | | − || | on the space of 𝑛 × 𝑛 matrices by

| | |𝐴| | | = sup

x≠0

{
∥𝐴x∥
∥x∥

}
,

where x ranges over ℝ𝑛
.
33

33: The properties of vector norms also

apply to matrix norms – matrices are the

vectors of the space of square matrices,

with matrix addition and multiplication

by a scalar.

That | | |𝐴| | | ≥ 0 is a direct consequence of the definition of the supremum

and because ∥𝐴x∥ , ∥x∥ ≥ 0 for all x.

If | | |𝐴| | | = 0, then ∥𝐴x∥ ≤ 0 for all x ≠ 0; since ∥𝐴x∥ ≥ 0 for all x ≠ 0,

then ∥𝐴x∥ = 0 for all x. As ∥𝐴0∥ = 0, then ∥𝐴x∥ = 0 for all x. In particular,

∥𝐴e𝑘 ∥ = ∥𝐴𝑘 ∥ = 0 for 1 ≤ 𝑘 ≤ 𝑛, so that every column 𝐴𝑘 = 0; hence

𝐴 = O𝑛×𝑛 . Conversely, if 𝐴 = O𝑛×𝑛 , then ∥𝐴x∥ = ∥0∥ = 0 for all x, so

that ∥𝐴x∥/∥x∥ = 0 for all x ≠ 0; hence | | |𝐴| | | ≤ 0. Since | | |𝐴| | | ≥ 0, we

must have | | |𝐴| | | = 0.
34

34: Properties 2 and 3 are left as exercises.
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Theorem: let | | | · | | | be the matrix norm induced by a vector norm ∥ · ∥.

Then:

1. ∥𝐴x∥ ≤ || |𝐴| | | · ∥x∥ for all 𝐴, x;

2. | | |I𝑛 | | | = 1;

3. | | |𝐴𝐵| | | ≤ || |𝐴| | | · | | |𝐵| | | for all 𝐴, 𝐵.

Proof: throughout, let 𝐴, 𝐵 be generic 𝑛 × 𝑛 matrices, and x ∈ ℝ𝑛
.

1. If x = 0, then the property holds as both sides are 0. Now assume

that x ≠ 0. By definition,

| | |𝐴| | | ≥ ∥𝐴x∥
∥x∥ for all x ≠ 0;

thus | | |𝐴| | | · ∥x∥ ≥ ∥𝐴x∥ for all x ≠ 0.

2. For any x ≠ 0, we have ∥I𝑛x∥/∥x∥ = 1, so

| | |I𝑛 | | | = sup

x≠0

{
∥I𝑛x∥
∥x∥

}
= sup

x≠0
{1} = 1.

3. For any x ≠ 0, we see that

∥𝐴𝐵x∥ ≤ || |𝐴| | | · ∥𝐵x∥ ≤ || |𝐴| | | · | | |𝐵| | | · ∥x∥;

hence

| | |𝐴𝐵| | | = sup

x≠0

{
∥𝐴𝐵x∥
∥x∥

}
≤ |||𝐴| | | · | | |𝐵| | |,

which completes the proof.
35 ■35: See [2] for more information on the

supremum.

The ℓ𝑝 vector norm ∥ · ∥𝑝 on ℝ𝑛
is trivial to compute: for 𝑝 ≥ 1, we have

∥x∥𝑝 = 𝑝
√
|𝑥1 |𝑝 + · · · + |𝑥𝑛 |𝑝 ;

for 𝑝 = ∞ we have

∥x∥∞ = max

1≤𝑘≤𝑛
|𝑥𝑘 |.

It is not as clear how we would compute the corresponding induced

matrix norm; we can show that

| | |𝐴| | |1 = max

1≤ 𝑗≤𝑛

{
𝑛∑
𝑖=1

|𝑎𝑖 , 𝑗 |
}

;

| | |𝐴| | |∞ = max

1≤𝑖≤𝑛

{
𝑛∑
𝑗=1

|𝑎𝑖 , 𝑗 |
}

;

| | |𝐴| | |2 =
√
𝜆max(𝐴⊤𝐴), 𝜆max(𝐵) : largest eigenvalue of 𝐵.

Let | | | · | | | be an induced matrix norm. The condition number of an

invertible matrix 𝐴 under that norm is

𝜅(𝐴) = | | |𝐴| | | · | | |𝐴−1 | | |.

Because 𝐴𝐴−1 = I𝑛 , we have

1 = | | |I𝑛 | | | = | | |𝐴𝐴−1 | | | ≤ || |𝐴| | | · | | |𝐴−1 | | | = 𝜅(𝐴).

When 𝜅(𝐴) ≫ 1, we say that 𝐴 is ill-conditioned under | | | · | | |.
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Estimating Error In this section, we estimate the relative error between

the exact solution of 𝐴x = b and an approximate solution x̂.
36

36: This estimation is useful not only to

quantify the effect of round-off error in di-
rect methods, but also to analyze stopping

criteria for iterative methods.

Theorem: let 𝐴 be an invertible 𝑛 × 𝑛 matrix, and let 0 ≠ b ∈ ℝ𝑛
. Let

x ∈ ℝ𝑛
be the exact solution to the system 𝐴x = b. Consider a vector

norm ∥ · ∥ on ℝ𝑛
and its induced matrix norm | | | · | | |. For any x̂ ∈ ℝ𝑛

, we

have

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) · ∥b − 𝐴x̂∥

∥b∥ .

Proof: write

b − 𝐴x̂ = 𝐴x − 𝐴x̂ = 𝐴(x − x̂) =⇒ x − x̂ = 𝐴−1(b − 𝐴x̂);

hence

∥x − x̂∥ = ∥𝐴−1(b − 𝐴x̂)∥ ≤ || |𝐴−1 | | | · ∥b − 𝐴x̂∥.

We also have

∥b∥ = ∥𝐴x∥ ≤ || |𝐴| | | · ∥x∥ =⇒ 1

∥x∥ ≤ 1

∥b∥ | | |𝐴| | |.

Combining both of these inequalities yields

∥x − x̂∥
∥x∥ ≤ || |𝐴| | | · | | |𝐴−1 | | | · ∥b − 𝐴x̂∥

∥b∥ ;

as 𝜅(𝐴) = | | |𝐴| | | · | | |𝐴−1 | | |, the proof is complete. ■.

In practice, due to floating point representation, we never really solve

the system 𝐴x = b ≠ 0;
37

instead, we solve the perturbed system 37: If b = 0, the homogeneous system has

the exact solution x = 0 and no additional

work is needed.(𝐴 + 𝛿𝐴)x̂ = b + 𝛿b,

where the entries of the 𝑛 × 𝑛 matrix 𝛿𝐴 and 𝛿b ∈ ℝ𝑛
are of the order of

10
−16

those of 𝐴 and b, respectively.
38

38: Assuming double precision.

Let x ∈ ℝ𝑛
be the exact solution of the unperturbed system and x̂ that of

the perturbed system. Then

b − 𝐴x̂ = b − (b + 𝛿b − 𝛿𝐴x̂) = 𝛿𝐴x̂ − 𝛿b,

and we deduce from the previous theorem that

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) ∥b − 𝐴x̂∥

∥b∥ ≤ 𝜅(𝐴) · ∥𝛿𝐴∥∥x̂∥ + ∥𝛿b∥
∥b∥ .

If ∥𝛿𝐴∥ ≤ 1

∥𝐴−1∥ , then we can re-arrange the last equation and write

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴)

1 − 𝜅(𝐴) · ∥𝛿𝐴∥
∥𝐴∥

·
(
∥𝛿𝐴∥
∥𝐴∥ + ∥𝛿b∥

∥b∥

)
.

Example If the perturbation 𝛿𝐴 is O𝑛×𝑛 , then

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) · ∥𝛿b∥

∥b∥ .
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For instance, consider the exact and perturbed systems(
1 10

−16

1 0

) (
𝑥1

𝑥2

)
=

(
1

1

)
and

(
1 10

−16

1 0

) (
𝑥1

𝑥2

)
=

(
1 + 10

−16

1

)
.

The exact solution of 𝐴x = b is x = (1, 0)⊤, that of 𝐴x = b + 𝛿b is (1, 1)⊤:

a tiny perturbation 𝛿b has a gigantic effect on the solution. This is due to

the fact that 𝐴 is ill-conditioned. Indeed,

𝐴−1 =

(
0 1

10
16 −10

16

)
, | | |𝐴| | |1 = 2, | | |𝐴−1 | | |1 = 1 + 10

16 ,

and so 𝜅1(𝐴) = 2 + 2 × 10
16 ≫ 1.

Since the perturbation 𝛿𝐴 is O2×2, we would expect, in the ℓ1 vector norm

and associated induced matrix norm, to find:

∥x − x̂∥1

∥x∥1

=
∥(0,−1)⊤∥
∥(1, 0)⊤∥ = 1 ≤ 𝜅1(𝐴) ·

∥𝛿b∥1

∥b∥1

= (2 + 2 × 10
16) · ∥(10

−16 , 0)⊤∥1

∥(1, 1)⊤∥1

= (2 + 2 × 10
16) · 10

−16

2

= 1 + 10
−16 ,

which is indeed the case. □

Iterative Methods

We can get exact solutions from direct methods, but the process is

computationally expensive and storage can be prohibitive, especially

for large dense matrices. In this section, we consider iterative methods,

which operate in the same spirit as fixed point iteration.
39

39: We will discuss other iterative meth-

ods, such as gradient descent and its

variants in Chapter 31. Other modern ap-

proaches include the generalized mini-
mal residual and biconjugate gradient
method, among others.

The problem of solving 𝐴x = b is equivalent to the problem of solving

𝑓 (x) = 𝐴x − b = 0.

We re-write this problem into an equivalent problem

x = 𝑔(x) = 𝑇x + c;

given an initial guess x0, we then compute the iterative sequence

x(𝑘+1) = 𝑔(x(𝑘)) = 𝑇x(𝑘) + c, 𝑘 = 0, 1, . . .

The hope is that the sequence converges to the solution x∗ of 𝐴x = b.

Stationary Iteration As was the case for functions of one variables, we

can come up with multiple formulations for the fixed point system.

One general technique is based on a splitting of 𝐴: for an invertible

matrix 𝑃 (the pre-conditioner), we can write 𝐴 = 𝑃 − (𝑃 − 𝐴):

𝐴x = b ⇐⇒ [𝑃 − (𝑃 − 𝐴)]x = b ⇐⇒ 𝑃x = (𝑃 − 𝐴)x + b

⇐⇒ x = 𝑃−1(𝑃 − 𝐴)x + 𝑃−1b ⇐⇒ x = 𝑇x + c.
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The iterative method obtained with this splitting can be written as

𝑃x(𝑘+1) = (𝑃 − 𝐴)x(𝑘) + b,

or equivalently, upon setting the residual r(𝑘) = b − 𝐴x(𝑘) at step 𝑘:

𝑃𝛿x(𝑘+1) = r(𝑘) ,

x(𝑘+1) = x(𝑘) + 𝛿x(𝑘+1) , 𝑘 = 0, 1, . . .

This approach is useful when 𝑃𝛿x(𝑘+1) = r(𝑘) is “much simpler” to solve

than the original system 𝐴x = b, however. This is the case when 𝑃 is

diagonal (Jacobi) or triangular (Gauss-Seidel).40
40: In both cases, we assume that the diag-

onal entries of 𝐴 are non-zero, i.e. 𝑎𝑖 ,𝑖 ≠ 0

for 1 ≤ 𝑖 ≤ 𝑛.

Jacobi Method In this approach, we use

𝑃 =
©«
𝑎1,1

. . .

𝑎𝑛,𝑛

ª®®¬ and 𝑃 − 𝐴 = −
©«

0 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1
. . .

. . .
...

...
. . .

. . . 𝑎𝑛−1,𝑛

𝑎𝑛,1 · · · 𝑎𝑛,𝑛−1 0

ª®®®®®¬
.

The iterative procedure 𝑃x(𝑘+1) = (𝑃 −𝐴)x(𝑘) + b then reduces to a linear

system in which the components of x(𝑘+1)
only depend on the components

of x(𝑘):41
41: They can be computed in parallel,
which is a non-negligible time saver.

𝑥
(𝑘+1)
𝑖

=
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 + 𝑎𝑖 ,𝑖𝑥(𝑘)𝑖 −

𝑛∑
𝑗=1

𝑎𝑖 , 𝑗𝑥
(𝑘)
𝑗

)
, 𝑖 = 1, . . . , 𝑛.

Gauss-Seidel Method In this approach, we use

𝑃 =
©«
𝑎1,1

...
. . .

𝑎𝑛,1 · · · 𝑎𝑛,𝑛

ª®®¬ and 𝑃 − 𝐴 = −
©«
0 𝑎1,2 · · · 𝑎1,𝑛

. . .
. . .

...
. . . 𝑎𝑛−1,𝑛

0

ª®®®®®¬
.

The iterative procedure 𝑃x(𝑘+1) = (𝑃 −𝐴)x(𝑘) + b then reduces to a linear

system which can be solved by forward substitution:

𝑥
(𝑘+1)
𝑖

=
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

𝑖−1∑
𝑗=1

𝑎𝑖 , 𝑗𝑥
(𝑘+1)
𝑗

−
𝑛∑

𝑗=𝑖+1

𝑎𝑖 , 𝑗𝑥
(𝑘)
𝑗

)
, 𝑖 = 1, . . . , 𝑛.

Example Consider the system 𝐴x = b with

𝐴 =
©«
3 −1 1

3 6 2

3 3 7

ª®¬ and b =
©«
1

0

4

ª®¬ .
We use x0 = (1, 1, 1)⊤ to compute the first iterate for both the Jacobi and

the Gauss-Seidel methods.
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In the Jacobi method, the first iterate x(1) solves

©«
3 0 0

0 6 0

0 0 7

ª®¬
©«
𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

ª®®¬ =
©«

0 1 −1

−3 0 −2

−3 −3 0

ª®¬ ©«
1

1

1

ª®¬ + ©«
1

0

4

ª®¬ =
©«

1

−5

−2

ª®¬ ,
which we can solve directly by substitution:

x(1) = ©«
1/3

−5/6

−2/7

ª®¬ .
In the Gauss-Seidel method, the first iterate x(1) solves

©«
3 0 0

3 6 0

3 3 7

ª®¬
©«
𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

ª®®¬ =
©«
0 1 −1

0 0 −2

0 0 0

ª®¬ ©«
1

1

1

ª®¬ + ©«
1

0

4

ª®¬ =
©«

1

−2

4

ª®¬ ,
which we solve by forward substitution:

𝑥
(1)
1

= 1/3

3𝑥
(1)
1

+ 6𝑥
(1)
2

= −2 =⇒ 𝑥
(1)
2

= −1/2

3𝑥
(1)
1

+ 3𝑥
(1)
2

+ 7𝑥
(1)
3

= 4 =⇒ 𝑥
(1)
3

= 9/14.

Convergence and Stopping Criterion We know how to compute iterates

in the Jacobi and Gauss-Seidel framework, and, more generally, for an

iteration matrix
𝑇 = 𝑃−1(𝑃 − 𝐴).

How can we tell if the iteration procedure converges, and if it does,

whether it converges to the system’s unique solution x∗?

The error e(𝑘+1) at step 𝑘 + 1 is defined by

e(𝑘+1) = x∗ − x(𝑘+1).

Recall that x∗ = 𝑇x∗ + c. Then

e(𝑘+1) = x∗ − x(𝑘+1) = 𝑇x∗ + c − 𝑇x(𝑘) − c = 𝑇
(
x∗ − x(𝑘)

)
= 𝑇e(𝑘).

Thus, for any vector norm ∥ · ∥ and induced matrix norm | | | · | | |, we

have

∥e(𝑘+1)∥ = ∥𝑇e(𝑘)∥ ≤ || |𝑇 | | | · ∥e(𝑘)∥ ≤ || |𝑇 | | |2 · ∥e(𝑘−1)∥ ≤ · · · ≤ || |𝑇 | | |𝑘+1 · ∥e(0)∥ ,

and so

lim

𝑘→∞
∥e(𝑘+1)∥ = 0, when | | |𝑇 | | | < 1.

Theorem: if | | |𝑇 | | | < 1 for an induced matrix norm, then for any x(0), the

sequence {x(𝑘)} converges to the solution of x∗ of 𝐴x = b. Moreover,

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | |𝑘 · ∥x∗ − x(0)∥;

the smaller | | |𝑇 | | | is, the faster the convergence to x∗.
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At what point in the iteration should we stop? Given a prescribed tolerance

tol > 0, the goal is to stop as soon as

∥e(𝑘)∥ = ∥x∗ − x(𝑘)∥ ≤ tol or

∥x∗ − x(𝑘)∥
∥x∗∥ ≤ tol,

the latter assuming b ≠ 0. Since the error cannot be computed in practice,

as it involves the exact solution x∗, we need to use an error estimate.

One possibility is to use the normalized residual and stop as soon as

∥r(𝑘)∥
∥b∥ =

∥b − 𝐴x(𝑘)∥
∥b∥ ≤ tol.

From a previous theorem, we have

∥x∗ − x(𝑘)∥
∥x∗∥ ≤ 𝜅(𝐴) · ∥r(𝑘)∥

∥b∥ ≤ 𝜅(𝐴) · tol;

when 𝜅(𝐴) is reasonably small, the normalized residual is suitable to use

in the stopping criterion.

Another possibility is to use the increment between two iterates, and

stop as soon as

∥x(𝑘) − x(𝑘−1)∥ ≤ tol.

In this case, since

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | | · ∥x∗ − x(𝑘−1)∥ = | | |𝑇 | | | · ∥x∗ − x(𝑘) + x(𝑘) − x(𝑘−1)∥

≤ || |𝑇 | | |
[
∥x∗ − x(𝑘)∥ + ∥x(𝑘) − x(𝑘−1)∥

]
.

Thus, provided | | |𝑇 | | | < 1, we have

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | |
1 − |||𝑇 | | | · ∥x(𝑘) − x(𝑘−1)∥ ≤ || |𝑇 | | |

1 − |||𝑇 | | | · tol.

The incremental stopping criterion would thus be a good choice if | | |𝑇 | | |
is not too close to 1.

Implementation The Jacobi (J) and Gauss-Seidel (GS) methods are

implemented in R as follows.

Iterative solver
iterative_solver <- function(A, b, x0, nmax, tol, method){

# Check for valid method

if(!(method %in% c(’J’, ’GS’))) {

stop("Unknown method...")

}

# Construct preconditioner matrix based on the method

if(method == ’J’) {

P <- diag(diag(A))

} else if(method == ’GS’) {

P <- matrix(0, ncol=ncol(A), nrow=nrow(A))
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for(i in 1:nrow(A)) {

for(j in 1:ncol(A)) {

if(i >= j) {

P[i, j] <- A[i, j]

}

}

}

}

# initialization

b_norm <- norm(b, type="2")

if(b_norm == 0) {

b_norm <- 1

}

x <- x0

r <- b - A %*% x

r_norm <- norm(r, type="2")

iter <- 0

# Iteration

while((r_norm/b_norm > tol) && (iter < nmax)){

incr <- solve(P, r)

x <- x + incr

r <- b - A %*% x

iter <- iter + 1

r_norm <- norm(r, type="2")

}

return(list(x=x, iter=iter))

}

Example The pracma library is required to access norm().

library(pracma)

For instance, we can solve the 4 × 4 system

©«
4 −1 0 0

−1 4 −1 0

0 −1 4 −1

0 0 −1 3

ª®®®¬
©«
𝑥1

𝑥2

𝑥3

𝑥4

ª®®®¬ =

©«
15

10

10

10

ª®®®¬
using the Gauss-Seidel method and the normalized residual stopping

criterion, with a tolerance of 10
−5

and x0 = (0, 0, 0, 0)⊤.

A <- matrix(c(4,-1,0,0,-1,4,-1,0, 0,-1,4,-1, 0,0,-1,3), 4, 4)

b <- c(15,10,10,10); x0 <- c(0,0,0,0)

nmax <- 100; tol <- 1e-5; method <- "GS"

result <- iterative_solver(A, b, x0, nmax, tol, method)

We can see the solution and number of iterations by calling the two
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returned items.

result$x

[,1]

[1,] 4.999974

[2,] 4.999982

[3,] 4.999991

[4,] 4.999997

result$iter

[1] 8

This compares very well to the exact solution x∗ = (5, 5, 5, 5)⊤.

4.3.2 Non-Linear Systems

The direct method does not generalize to non-linear systems of equations,

but the fundamental concept of iterative methods does.
42

42: We will have more to say on the topic

in Chapter 31.

Fixed Point Iteration The ideas of Section 4.2.3 still apply, but they

need to be modified somewhat to generalize to non-linear systems of 𝑛

equations in 𝑛 unknowns.

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
be a sufficiently differentiable function. We are

looking for points x∗ ∈ ℝ𝑛
that solve 𝑓 (x) = 0. In the general case, the

system could admit any finite number of solution,
43

an infinite countable 43: Not necessarily only 0 or 1.

set of solutions,
44

or an uncountable set of solutions.
45

There is no 44: Such as for sin 𝑥 = 0 over ℝ.

45: Such as for 𝐴x = 𝟘 when 𝐴 is not of

full rank.

simple criterion to determine in which class a given system falls.

Example The system

𝑓 (x) =
(
𝑥3

1
+ 2𝑥1𝑥2

𝑥2 + 2𝑥2

1
𝑥2

)
=

(
8

13

)
is equivalent to

x =

(
𝑥1

𝑥2

)
=

(
(8 − 𝑥3

1
)/2𝑥2

13 − 2𝑥2

1
𝑥2

)
= 𝑔(x).

Note that there may be multiple ways to transform the system 𝑓 (x) = 0
into a fixed point problem 𝑔(x) = x, with 𝑔(𝐷) ⊆ 𝐷.

General Fixed Point Theorem: let 𝑔 : 𝐷 → 𝐷, with 𝐷 a closed subset of

ℝ𝑛
, and ∥ · ∥ a vector norm on ℝ𝑛

. If ∃𝐿 < 1 such that

∥𝑔(x) − 𝑔(y)∥ ≤ 𝐿∥x − y∥

for all x, y ∈ 𝐷, then 𝑔 admits a unique fixed point x∗ ∈ 𝐷 and the

sequence x(𝑘+1) = 𝑔(x(𝑘)) converges to x∗ for all x(0) ∈ 𝐷.
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When 𝑔 meets the condition stated in the theorem, we say it is contractive
on 𝐷; it is not easy to show directly that this property holds. There is

a sufficient condition on the Jacobian matrix of 𝑔 at x∗ (see Chapter

2 and the next section on Newton’s method) that guarantees that 𝑔 is

contractive in a neighbourhood of x∗:

| | |𝐷𝑔(x∗)| | | < 1,

assuming that 𝑔 is at least 𝐶1
. In that case, the convergence of the fixed

point iterates to x∗ is at least of order 1 (linear).

Newton’s Method In Section 4.2.5, we saw that there was a way to avoid

directly evaluating the derivative 𝑓 ′ in Newton’s Method (which can be

costly) by using the secant approximation.

This is a reasonable approach for equations in one variable, but it is less

obvious how we would do so in a multi-dimensional case – this is where

the work we put on linear systems will pay off.

In order to apply Newton’s method to the system

𝑓 (x) =
©«
𝑓1(x)
...

𝑓𝑛(x)

ª®®¬ = 0,

where 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
is at least 𝐶1

, we need to generalize the

iterates 𝑥𝑘 , the function values 𝑓 (𝑥𝑘), and the derivative 𝑓 ′(𝑥𝑘) to the

multi-dimensional case.

The natural way to do this is as follows:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

=⇒ x(𝑘+1) = x(𝑘) − 𝐷 𝑓 (x(𝑘))−1 𝑓 (x𝑘),

for 𝑘 ≥ 0, where

𝐷 𝑓 (x) =
©«
𝜕 𝑓1
𝜕𝑥1

(x) · · · 𝜕 𝑓1
𝜕𝑥𝑛

(x)
...

. . .
...

𝜕 𝑓𝑛
𝜕𝑥1

(x) · · · 𝜕 𝑓𝑛
𝜕𝑥𝑛

(x)

ª®®®¬ .
In practice it can be quite costly to invert the matrix not only once, but

at every step of the iterative process. We can save time (and increase

numerical stability) by re-writing the iteration step as a system of linear

equations:

𝐷 𝑓 (x(𝑘))(x(𝑘+1) − x(𝑘)) = 𝑓 (x𝑘), for 𝑘 ≥ 0,

which can be solved using the methods of Section 4.3.1.

Under some regularity conditions on 𝑓 , the sequence {x(𝑘)} converges

quadratically to a solution x∗ of 𝑓 (x∗) = 0.

Potential problems include the poor choice of the starting point x0

(at a critical point of 𝑓 , x0 entering a cycle); 𝑓 not being sufficiently

differentiable in a neighbourhood of x∗; x∗ not existing; the derivative of

𝑓 not being continuous at x∗, etc.
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4.4 Exercises

1. How must the Golden Ratio method be modified if we are looking

for the maximal value of a unimodal continuous function 𝑓 on

[𝑎, 𝑏]?
2. Is it necessary to use a factor 𝜑 in the Golden Ratio method or

would any other constant > 1 do the trick?

3. Implement the secant method in R. Test it on this chapter’s example

functions.

4. Consider the function defined by 𝑓 (𝑥) = 𝑥2 − 2, which has one

positive root 𝑥∗ =
√

2.

𝑥

𝑓 (𝑥)

𝑥0

slope 𝑓 ′(𝑥0)

𝑥1

slope 𝑓 ′(𝑥1)

𝑥2

a) Illustrate Newton’s method by performing two steps starting

at 𝑥0.

b) Let {𝑥𝑘}𝑘≥0 be the sequence generated by Newton’s method.

Write the relationship between 𝑥𝑘+1 and 𝑥𝑘 . Then, compute

𝑥1 and 𝑥2 starting from 𝑥0 = 2.

c) Determine the (exact) order of Newton’s method assuming

that we start close enough to 𝑥∗ =
√

2.

5. Let 𝑓 (𝑥) = (𝑥 + 2)(𝑥 + 1)2𝑥(𝑥 − 1)3(𝑥 − 2). To which zero of 𝑓 does

the bisection method converge when applied on the following

intervals?

a) [−1.5, 2.5] b) [−0.5, 2.4] c) [−0.5, 3] d) [−3,−0.5].

6. Use the bisection method on [1, 2] to find an approximation of

√
3

correct to within 10
−4

. Indicate which function 𝑓 you used and

report the values of 𝑥0, 𝑥1 and 𝑥2, the final output and the number

of iterations.

7. Let 𝑓 (𝑥) = 𝑥2 − 2𝑥 − 3. To find a root of 𝑓 , the following three fixed

point method are proposed

a) 𝑥𝑘 =
3

𝑥𝑘−1 − 2

b) 𝑥𝑘 = 𝑥2

𝑘−1
−𝑥𝑘−1−3 c) 𝑥𝑘 =

𝑥2

𝑘−1
+ 3

2𝑥𝑘−1 − 2

.

For each method, compute (if possible) the iterates 𝑥1, 𝑥2, 𝑥3 and

𝑥4 starting from 𝑥0 = 0. Report the values you obtain in a table.

Which methods seem to be appropriate? Among those, which one

seems to converge the fastest?

8. Consider the function 𝑔(𝑥) = 1

3

3

√
𝑥 + 8.

a) Show that 𝑔 has a unique fixed point in [0, 1].
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b) Assuming that we start from 𝑥0 = 1

2
, find a bound for the

number of fixed point iterations needed to achieve 10
−6

accu-

racy.

9. Use Newton’s method and the secant method with stopping crite-

rion |𝑥𝑘+1 − 𝑥𝑘 | ≤ 10
−5

to find solutions for the following problems.

For Newton’s method, use the midpoint of the given interval for 𝑥0

while for the secant method, use the endpoints of the given interval

for 𝑥0 and 𝑥1.

a) 3𝑥 − 𝑒𝑥 = 0 for 1 ≤ 𝑥 ≤ 2;

b) 2𝑥 + 5 cos(𝑥) − 𝑒𝑥 = 0 for −5 ≤ 𝑥 ≤ 0.

10. Recall that a sequence {𝑥𝑘} that converges to some 𝑥∗ is said to

converge with order 𝛼 and asymptotic error constant 𝜆 if

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= 𝜆,

where we need 𝜆 < 1 if 𝛼 = 1.

a) Consider the function 𝑓 (𝑥) = 1/𝑥−1/3, 𝑥 > 0, which vanishes

at 𝑥∗ = 3. Use Newton’s method with stopping criterion

|𝑥𝑘+1 − 𝑥𝑘 | ≤ 10
−4

and 𝑥0 = 1 to approximate 𝑥∗. Determine

(numerically) the order 𝛼 and the asymptotic error constant

𝜆.

b) Use the secant method to approximate the root of 𝑓 defined

in a) using 𝑥0 = 0.5 and 𝑥1 = 1.5. Verify that the order of the

method is the golden ratio 𝛼 = (1 +
√

5)/2 and determine the

value of 𝜆.

11. Suppose that 𝑥∗ is a zero of multiplicity 𝑚 ≥ 1 of a function 𝑓 of

class 𝐶𝑚 , namely

𝑓 (𝑥∗) = 𝑓 ′(𝑥∗) = 𝑓 ′′(𝑥∗) = . . . = 𝑓 (𝑚−1)(𝑥∗) = 0 and 𝑓 (𝑚)(𝑥∗) ≠ 0.

a) Show that Newton’s method

𝑥𝑘+1 = 𝑔1(𝑥𝑘), 𝑘 ≥ 0, where 𝑔1(𝑥) = 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥) ,

converges only linearly (i.e., with order 1) if 𝑚 > 1.

b) Consider now the modified Newton’s method

𝑥𝑘+1 = 𝑔2(𝑥𝑘), 𝑘 ≥ 0, where 𝑔2(𝑥) = 𝑥 − 𝑚
𝑓 (𝑥)
𝑓 ′(𝑥) .

Show that this method converges at least quadratically (i.e.,

with order ≥ 2) for any 𝑚.

Hint: Write 𝑓 as
𝑓 (𝑥) = (𝑥 − 𝑥∗)𝑚ℎ(𝑥)

for some (unknown) function ℎ with ℎ(𝑥∗) ≠ 0 and show that 𝑔′
1
(𝑥∗) =

1 − 1/𝑚 and 𝑔′
2
(𝑥∗) = 0.

12. Show that the induced matrix norm is indeed a norm (property 1

has already been proved; finish the job with properties 2 and 3).

13. Consider the 𝑛 × 𝑛 matrix 𝐴 consisting of 1’s on the diagonal

and in the first column (every other entry being a 0). Compute

𝜅1(𝐴), 𝜅∞(𝐴), and 𝜅2(𝐴).
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14. If 𝐴 is a 𝑛 × 𝑛 symmetric positive definitive matrix, show that

𝜅2(𝐴) =
𝜆max(𝐴)
𝜆min(𝐴)

.

15. Solve the linear system
𝑥1 − 𝑥2 + 3𝑥3 = −2

𝑥1 + 𝑥2 = 5

3𝑥1 − 2𝑥2 + 𝑥3 = 4.

using Gaussian elimination in its simplest form (i.e., without

pivoting) and backward substitution.

16. Let

𝐴 =
©«

1 2 1

1 −2 2

2 12 −2

ª®¬ and b =
©«

1

6

−10

ª®¬ .
a) Compute the 𝐿𝑈 factorization of𝐴, i.e., find a lower triangular

matrix 𝐿 (with ones on the diagonal) and an upper triangular

matrix𝑈 such that 𝐴 = 𝐿𝑈 .

b) Solve the system 𝐴x = b using only forward and backward

substitution.

17. Let

𝐴 =

©«
1 1 1 1

2 2 5 3

4 6 8 0

3 3 9 8

ª®®®¬ and b =

©«
1

0

−2

2

ª®®®¬ .
a) Find a lower triangular matrix 𝐿 (with ones on the diagonal),

an upper triangular matrix 𝑈 and a permutation matrix 𝑃

such that 𝑃𝐴 = 𝐿𝑈 .

b) Solve the system 𝐴x = b using the factorization found in a).

c) Compute the determinant of 𝐴 using the factorization found

in a).

18. a) Prove that for any x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛)𝑇 ∈ ℝ𝑛
we have

∥x∥∞ ≤ ∥x∥2 , ∥x∥2 ≤
√
𝑛∥x∥∞ and ∥x∥2

2
≤ ∥x∥∞∥x∥1.

(4.1)

b) For each inequality in (4.1), find a vector x for which equality

is attained.

c) Prove that for any matrix 𝐴 ∈ ℝ𝑛×𝑛

1√
𝑛
| | |𝐴| | |∞ ≤ |||𝐴| | |2 ≤

√
𝑛 | | |𝐴| | |∞.

19. Let

x = (1,−3, 2,−1)𝑇 and 𝐴 =

(
−1 −1

2 −2

)
.

a) Compute ∥x∥1, ∥x∥2 and ∥x∥∞.

b) Compute | | |𝐴| | |1, | | |𝐴| | |2 and | | |𝐴| | |∞.

c) Compute 𝜅1(𝐴), 𝜅2(𝐴) and 𝜅∞(𝐴).

20. We say that an 𝑛 × 𝑛 matrix 𝐴 is strictly diagonally dominant by
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row if

|𝑎𝑖𝑖 | >
𝑛∑

𝑗=1, 𝑗≠𝑖

|𝑎𝑖 𝑗 | for 𝑖 = 1, 2, . . . , 𝑛. (4.2)

Prove that if 𝐴 satisfies (4.2) then the Jacobi method applied to

𝐴x = b, b ∈ ℝ𝑛
, converges. Hint: show that ∥𝑇𝐽 ∥∞ < 1, where 𝑇𝐽 is

the iteration matrix for the Jacobi method.
21. Consider the system 𝐴x = b with

𝐴 =
©«

2 −1 2

−1 1 0

0 1 3

ª®¬ and b =
©«
−6

2

−3

ª®¬ .
22. Using x(0) = (0, 0, 0)𝑇 as initial guess:

a) find (by hand) the first 2 iterations of the Jacobi method;

b) find (by hand) the first iteration of the Gauss-Seidel method.

23. We consider the Gauss-Seidel method for solving the linear system

𝐴x = b, where

𝐴 =

(
1 𝛼

−2 1

)
.

24. Determine for which values of 𝛼 ∈ ℝ the method converges for

any initial guess x(0) ∈ ℝ2
and any right-hand side b ∈ ℝ2

.

25. Implement the fixed point algorithm for systems in R and solve

the system in Section 4.3.2. Is the function 𝑔 contractive on some

neighbourhood 𝐷 of the fixed point?

26. Implement Newton’s algorithm for systems in R and solve the

system in Section 4.3.2. What is its Jacobian?
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