
A Survey of Optimization 5
5.1 Beginnings 227
5.2 Single-Objective Problems 228

Feasible/Optimal Solutions 229
Unsolvable Problems 230
Possible Tasks 230

5.3 Problems Types 231
Classification 231
Algorithms 232

5.4 Linear Programming 233
LP Duality 235
Solving LP Problems 237

5.5 Mixed-Integer LP 238
Cutting Planes 241

5.6 Useful Techniques 241
Activation 242
Disjunction 242
Soft Constraints 242

5.7 Software Solvers 243
5.8 Data Envelopment Analysis 244

Challenges and Pitfalls . . . 246
Pros and Cons 247
DEA Solvers 247
Case Study: Schools 248

5.9 Exercises 252
Chapter References 252

by Patrick Boily and Kevin Cheung

Traditionally, optimization has been one of the most-frequently used

arrows in the operations researcher’s and quantitative analyst’s quiver.

From its humble beginning as an offshoot of calculus (see Chapter 2) to

its current status as the crown jewel in a variety of industrial contexts

(scheduling, financial engineering, transportation networks, rankings,

machine learning, etc.), optimization allows users to find the largest

output, the smallest wait time, the winning conditions, and so on.

Optimization problems seen in calculus classes are often solved using

differential tools. In this whirlwind tour of the optimization landscape,

we discuss problems that do not lend themselves to such an approach,

providing a quick survey of optimization problems and algorithms,

modeling techniques, an software.

5.1 Beginnings

We start by looking at some of the most common types of single-objective
optimization problems that arise in practice.

1
The following toy problems 1: And popular techniques for solving

them.
introduce some of the fundamental notions.

1. Let 𝑆 be the set of all the four-letter English words. What is the

maximum number of ℓ ’s a word in 𝑆 can have?

There are numerous four-letter words that contain the letter ℓ – for

example, “line”, “long”, “tilt”, and “full”. From this short list alone,

we know the maximum number of ℓ ’s is at least 2 and at most 4.

As “llll” is not an English word, the maximum number cannot be 4.

Can the maximum number be 3? Yes, because “lull” is a four-letter

word with three ℓ ’s.

This example illustrates some fundamental ideas in optimization.

In order to say that 3 is the correct answer, we need to

search for a word that has three ℓ ’s, and

provide an argument that rules out any value higher than 3.

In this example, the only possible value of ℓ higher than 3 is 4,

which was easily ruled out. That cannot always be done – if the

problem was to find the maximum number of y’s, would the same

approach work?

228 5 A Survey of Optimization

2. A pirate lands on an island with a knapsack that can hold 50kg of

treasure. She finds a cave with the following items:

Item Weight Value Value/kg

iron shield 20kg $2800.00 $140.00/kg

gold chest 40kg $4400.00 $110.00/kg

brass sceptre 30kg $1200.00 $40.00/kg

Which items can she bring back home in order to maximize her

reward without breaking the knapsack?

If the pirate does not take the gold chest, she can take both the

iron shield and the brass sceptre for a total value of $4000. If she

takes the gold chest, she cannot take any of the remaining items.

However, the value of the gold chest is $4400, which is larger than

the combined value of the iron shield and the brass sceptre. Hence,

the pirate should just take the gold chest.

Here, we performed a case analysis and exhausted all the promis-
ing possibilities to arrive at our answer. Note that a greedy strategy
that chooses items in descending value per weight would give us

the sub-optimal solution of taking the iron shield and brass sceptre.

Even though there are problems for which the greedy approach would

return an optimal solution, the second example is not such a problem. The

general version of this problem is the classic binary knapsack problem
and is known to be NP-hard.

2
2: Informally, NP-hard optimization prob-

lems are problems for which no algorithm

can provide an output in polynomial time

– when the problem size is large, the run

time explodes.

Many real-world optimization problems are NP-hard. Despite the theo-

retical difficulty, practitioners often devise methods that return “good-

enough solutions” using approximation methods and heuristics. There

are also ways to obtain bounds to gauge the quality of the solutions

obtained. We will be looking at these issues at a later stage.

5.2 Single-Objective Optimization Problems

A typical single-objective optimization problem consists of a domain set
D, an objective function 𝑓 : D → ℝ, and predicates C𝑖 on D, where

𝑖 = 1, . . . , 𝑚 for some non-negative integer 𝑚, called constraints.

We want to find, if possible, an element x ∈ D such that C𝑖(x) holds

for 𝑖 = 1, . . . , 𝑚 and the value of 𝑓 (x) is either as high (in the case

of maximization) or as low (in the case of minimization) as possible.

Compactly, single-objective optimization problems are written down

as:

min 𝑓 (x)
s.t. C𝑖(x) 𝑖 = 1, . . . , 𝑚

x ∈ D,

in the case of minimizing 𝑓 (x), or

max 𝑓 (x)
s.t. C𝑖(x) 𝑖 = 1, . . . , 𝑚

x ∈ D,

5.2 Single-Objective Problems 229

in the case of maximizing 𝑓 (x).

Here, “s.t.” is an abbreviation for “subject to.” Technically, “min” should

be replaced with “inf” (and “max” with “sup”) since the minimum value

is not necessarily attained. However, we will abuse notation and ignore

this subtle distinction.

Some common domain sets include:

ℝ𝑛
+ (the set of 𝑛-tuples of non-negative real numbers)

ℤ𝑛
+ (the set of 𝑛-tuples of non-negative integers)

{0, 1}𝑛 (the set of binary 𝑛-tuples)

The Binary Knapsack Problem (BKP) can be formulated using the

notation we have just introduced. Suppose that there are 𝑛 items, with

item 𝑖 having weight 𝑤𝑖 and value 𝑣𝑖 > 0 for 𝑖 = 1, . . . , 𝑛.

Let 𝐾 denote the capacity of the knapsack. Then the BKP can be formu-

lated as:

max

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖

s.t.

𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝐾

𝑥𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛.

Note that there is only one constraint given by the inequality modeling

the capacity of the knapsack. For the pirate example discussed previously,

the BKP is:

max 2800𝑥1 + 4400𝑥2 + 1200𝑥3

s.t. 20𝑥1 + 40𝑥2 + 30𝑥3 ≤ 50

𝑥1 , 𝑥2 , 𝑥3 ∈ {0, 1}.

5.2.1 Feasible and Optimal Solutions

An element x ∈ D satisfying all the constraints (i.e., C𝑖(x) holds for all

𝑖 = 1, . . . , 𝑚) is called a feasible solution and its objective function
value is 𝑓 (x). For a minimization (resp. maximization) problem, a feasible

solution x∗ such that 𝑓 (x∗) ≤ 𝑓 (x) (resp. 𝑓 (x∗) ≥ 𝑓 (x)) for every feasible

solution x is called an optimal solution.

The objective function value of an optimal solution, if it exists, is the

optimal value of the optimization problem. If an optimal value exists,

it is by necessity unique, but the problem can have multiple optimal

solutions. Consider, for instance, the following example:

min 𝑥 + 𝑦
s.t. 𝑥 + 𝑦 ≥ 1[

𝑥

𝑦

]
∈ ℝ2

This problem has an optimal solution[
𝑥

𝑦

]
=

[
1 − 𝑡
𝑡

]
for every 𝑡 ∈ ℝ, but a unique optimal value of 1.

230 5 A Survey of Optimization

5.2.2 Infeasible/Unbounded Problems

It is possible that there exists no element x ∈ D such that C𝑖(x) holds for

all 𝑖 = 1, . . . , 𝑚. In such a case, the optimization problem is said to be

infeasible. The following problem, for instance, is infeasible:

min 𝑥

s.t. 𝑥 ≤ −1

𝑥 ≥ 0

𝑥 ∈ ℝ

Indeed, any solution 𝑥 must be simultaneously non-negative and smaller

than −1, which is patently impossible. An optimization problem that is

not infeasible can still fail to have an optimal solution, however.

For instance, the problem

max 𝑥

s.t. 𝑥 ∈ ℝ

is not infeasible, but the max/sup does not exist since the objective

function can take on values larger than any candidate maximum. Such a

problem is said to be unbounded.

On the other hand, the problem

min 𝑒−𝑥

s.t. 𝑥 ∈ ℝ,

has a positive objective function value for every feasible solution. Even

though the objective function value approaches 0 as 𝑥 → ∞, there is

no feasible solution with an objective function value of 0. Note that this

problem is not unbounded as the objective function value is bounded

below by 0.

5.2.3 Possible Tasks

Given an optimization problem, the most natural task is to find an

optimal solution (provided that one exists) and to demonstrate that it is

optimal.

However, depending on the context of the problem, one might be instead

tasked to find:

a feasible solution (or show that none exists);

a local optimum;

a good bound on the optimal value;

all global solutions;

a “good” (but not necessarily optimal) solution, quickly;

a “good” solution that is robust to small changes in problem data,

and/or

the 𝑁 best solutions.

In many contexts, the last three tasks are often more important than

finding optimal solutions. For example, if the problem data comes from

5.3 Problems Types 231

measurements or forecasts, one needs to have a solution that is still

feasible when deviations are taken into account.

Additionally, producing multiple “good” solutions could allow decision

makers to choose a solution that has desirable properties (such as political

or traditional requirements) but that is not represented by, or difficult to

represent with, problem constraints.

5.3 Classification of Optimization Problems and
Types of Algorithms

The computational difficulty of optimization problems, then, depends on

the properties of the domain set, constraints, and the objective function.

5.3.1 Classification

Problems without constraints are said to be unconstrained. For exam-

ple, least-squares minimization in statistics can be formulated as an

unconstrained problem, and so can

min 𝑥2 − 3𝑥

s.t. 𝑥 ∈ ℝ

Problems with linear constraints 𝑔𝑖 (i.e., linear inequalities or equalities)

and a linear objective function 𝑓 form an important class of problems in

linear programming.

Linear programming problems are by far the easiest to solve in the

sense that efficient algorithms exist both in theory and in practice. Linear

programming is also the backbone for solving more complex models

[2].

Convex problems are problems with a convex domain set, which is to

say a set D such that

𝑡x1 + (1 − 𝑡)x2 ∈ D

for all x1 , x2 ∈ D and for all 𝑡 ∈ [0, 1], and convex constraints 𝑔𝑖 and

function 𝑓 , which is to say,

ℎ(𝑡x1 + (1 − 𝑡)x2) ≤ 𝑡ℎ(x1) + (1 − 𝑡)ℎ(x2)

for all x1 , x2 ∈ D, and for all 𝑡 ∈ [0, 1], ℎ ∈ { 𝑓 , 𝑔𝑖}.

Convex optimization problems have the property that every local opti-
mum is also a global optimum. Such a property permits the development

of effective algorithms that could also work well in practice. Linear pro-

gramming is a special case of convex optimization.

Nonconvex problems (such as problems involving integer variables

and/or nonlinear constraints that are not convex) are the hardest problems

to solve. In general, nonconvex problems are NP-hard. Such problems

often arise in scheduling and engineering applications.

232 5 A Survey of Optimization

In the rest of the chapter, we will primarily focus on linear programming

and nonconvex problems whose linear constraints 𝑔𝑖 and objective

function 𝑓 are linear, but with domain set D ⊆ ℝ𝑘 ×ℤ𝑛−𝑘
+ .

These problems cover a large number of applications in operations

research, which are often discrete in nature. We will not discuss op-

timization problems that arise in statistical learning and engineering

applications that are modeled as nonconvex continuous models since

they require different sets of techniques and methods – more information

is available in [1], and in Chapters 4 and 31.

5.3.2 Algorithms

We omit the specific algorithmic details of various optimization methods,
3

as consultants and analytsts are usually expected to use off-the-shelf3: Which would be better left for a gradu-

ate course on the subject anyway.
solvers for the various tasks, but it could prove insightful for analysts to

know of the various types of algorithms or methods that exist for solving

optimization problems.

Algorithms fall into three families: heuristics, exact, and approximate.

Heuristics These are normally quick to execute but do not provide

guarantees of optimality. For example, the greedy heuristic for the

knapsack problem is very quick but does not always return an optimal

solution.
4

4: In fact, no guarantee exists for the “va-

lidity” of a solution in that case.

Other heuristics methods include ant colony, particle swarm, and evolu-
tionary algorithms, just to name a few. There are also heuristics that are

stochastic in nature and have proof of convergence to an optimal solution.

Simulated annealing and multiple random starts are such heuristics.

Unfortunately, there is no guarantee on the running time to reach
optimality and there is no way to identify when one has reached an
optimum point.

Exact Methods Some approaches return a global optimum after a finite

run time.

However, most exact methods can only guarantee that constraints are

approximately satisfied (though the potential violations fall below some

pre-specified tolerance). It is therefore possible for the returned solutions
to be infeasible for the actual problem.

There also exist exact methods that fully control the error. When using

such a method, an optimum is usually given as a box guaranteed to
contain an optimal solution rather than a single element.

Returning boxes rather than single elements are helpful in cases, for

example, where the optimum cannot be expressed exactly as a vector of

floating point numbers.

Such exact methods are used mostly in academic research and in areas

such as medicine and avionics where the tolerance for errors is practically

zero.

5.4 Linear Programming 233

Approximate Methods Some algorithms eventually zoom in on sub-

optimal solutions, while providing a guarantee: this solution is at most 𝜀
away from the optimal solution, say.

In other words, approximate methods also provide a proof of solution
quality.

5.4 Linear Programming

Linear programming (LP) was developed independently by G.B. Dantzig

and L. Kantorovich in the first half of the 20
th

century to solve resource

planning problems.

Even though linear programming is insufficient for many modern-day

applications in operations research, it was used extensively in economic

and military contexts in the early days.

To motivate some key ideas in linear programming, we begin with an

example.

Example: A roadside stand sells lemonade and lemon juice. Each unit of

lemonade requires 1 lemon and 2 litres of water to prepare, and each unit

of lemon juice requires 3 lemons and 1 litre of water to prepare. Each unit

of lemonade gives a profit of 3$ dollars upon selling, while each unit of

lemon juice gives a profit of 2$ dollars.

With 6 lemons and 4 litres of water available, how many units of lemonade

and lemon juice should be prepared in order to maximize profit?

If we let 𝑥 and 𝑦 denote the number of units of lemonade and lemon

juice, respectively, to prepare, then the profit is the objective function,

given by (3𝑥 + 2𝑦)$.

Note that a number of constraints must be satisfied by 𝑥 and 𝑦:

𝑥 and 𝑦 should be non-negative;

the number of lemons needed to make 𝑥 units of lemonade and 𝑦

units of lemon juice is 𝑥 + 3𝑦 and cannot exceed 6;

the number of litres of water needed to make 𝑥 units of lemonade

and 𝑦 units of lemon juice is 2𝑥 + 𝑦 and cannot exceed 4;

Hence, to determine the maximum profit, we need to maximize 3𝑥 + 2𝑦

subject to 𝑥 and 𝑦 satisfying the constraints 𝑥 + 3𝑦 ≤ 6, 2𝑥 + 𝑦 ≤ 4, 𝑥 ≥ 0,

and 𝑦 ≥ 0.

A more compact way to write the problem is as follows:

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0.

𝑥 , 𝑦 ∈ ℝ.

234 5 A Survey of Optimization

It is customary to omit the specification of the domain set in linear

programming since the variables always take on real numbers. Hence,

we can simply write

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0.

We can solve the above maximization problem graphically, as follows. We

first sketch the set of [𝑥, 𝑦]⊤ satisfying the constraints, called the feasible
region, on the (𝑥, 𝑦)−plane.

We then take the objective function 3𝑥 + 2𝑦 and turn it into the equation

of a line 3𝑥 + 2𝑦 = 𝑐 where 𝑐 is a parameter. Note that as the value of

𝑐 increases, the line defined by the equation 3𝑥 + 2𝑦 = 𝑐 moves in the

direction of the normal vector [3, 2]⊤. We call this direction the direction
of improvement. Determining the maximum value of the objective

function, called the optimal value, subject to the contraints amounts to

finding the maximum value of 𝑐 so that the line defined by the equation

3𝑥 + 2𝑦 = 𝑐 still intersects the feasible region.

Figure 5.1 shows the (objective function) lines with 𝑐 = 0, 4, 6.8.

Figure 5.1: Graphical solution for the

lemonade and lemon juice optimization

problem; the feasible region is shown in

yellow, and level curves of the objective

function in red.

We can see that if 𝑐 is greater than 6.8, the line defined by 3𝑥 + 2𝑦 = 𝑐

will not intersect the feasible region. Hence, the profit cannot exceed 6.8

dollars.

As the line 3𝑥 + 2𝑦 = 6.8 does intersect the feasible region, 6.8 is the

maximum value for the objective function. Note that there is only one

5.4 Linear Programming 235

point in the feasible region that intersects the line 3𝑥 + 2𝑦 = 6.8, namely

[𝑥∗ , 𝑦∗]⊤ = [1.2, 1.6]⊤. In other words, to maximize profit, we want to

prepare 1.2 units of lemonade and 1.6 units of lemon juice.

This solution method can hardly be regarded as rigorous because we

relied on a picture to conclude that 3𝑥 + 2𝑦 ≤ 6.8 for all [𝑥, 𝑦]⊤ satisfying

the constraints. But we can also obtain this result algebraically.

Note that multiplying both sides of the constraint 𝑥 + 3𝑦 ≤ 6 by 0.2

yields

0.2𝑥 + 0.6𝑦 ≤ 1.2,

and multiplying both sides of the constraint 2𝑥 + 𝑦 ≤ 4 by 1.4 yields

2.8𝑥 + 1.4𝑦 ≤ 5.6.

Hence, any [𝑥, 𝑦]⊤ that satisfies both

𝑥 + 3𝑦 ≤ 6 and 2𝑥 + 𝑦 ≤ 4

must also satisfy

(0.2𝑥 + 0.6𝑦) + (2.8𝑥 + 1.4𝑦) ≤ 1.2 + 5.6,

which simplifies to 3𝑥 + 2𝑦 ≤ 6.8, as desired.

It is always possible to find an algebraic proof like the one above for linear

programming problems, which adds to their appeal. To describe the full

result, it is convenient to call on duality, a central notion in mathematical

optimization.

5.4.1 Linear Programming Duality

Let 𝑃 denote following linear programming problem:

min cTx
s.t. Ax ≥ b

where c ∈ ℝ𝑛 b ∈ ℝ𝑚 A ∈ ℝ𝑚×𝑛
(inequality on 𝑚−tuples is applied

component-wise.)

Then for every y ∈ ℝ𝑚
+ (that is, all components of y are non-negative),

the inferred inequality yTAx ≥ yTb is valid for all x satisfying Ax ≥ b.

Furthermore, if yTA = cT , the inferred inequality becomes cTx ≥ yTb,

making yTb a lower bound on the optimal value of 𝑃. To obtain the

largest possible bound, we can solve

max yTb
s.t. yTA = cT

y ≥ 0.

This problem is called the dual problem of 𝑃, and 𝑃 is called the primal
problem. A remarkable result relating 𝑃 and its dual 𝑃′

is the Duality
Theorem for Linear Programming: if 𝑃 has an optimal solution, then so

does its dual problem 𝑃′
, and the optimal values of the two problems

are the same.

236 5 A Survey of Optimization

A weaker result follows easily from the discussion above: the objective

function value of a feasible solution to the dual problem 𝑃′
is a lower

bound on the objective function value of a feasible solution to 𝑃. This

result is known as weak duality. Despite the fact that it is a simple result,

its significance in practice cannot be overlooked because it provides a

way to gauge the quality of a feasible solution to 𝑃.

For example, suppose we have at hand a feasible solution to 𝑃 with

objective function value 3 and a feasible solution to the dual problem 𝑃′

with objective function value 2. Then we know that the objective function

value of our current solution to 𝑃 is within 1.5 times the actual optimal

value since the optimal value cannot be less than 2.

In general, a linear programming problem can have a more complicated

form. Let A ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, c ∈ ℝ𝑛
. Let a(𝑖)T denote the 𝑖th row of A,

A𝑗 denote the 𝑗th column of A, and 𝑃 denote the minimization problem,

with variables in the tuple x = [𝑥1 , · · · , 𝑥𝑛]⊤, given as follows:

the objective function to be minimized is cTx;

the constraints are a(𝑖)Tx⊔𝑖 𝑏𝑖 , where⊔𝑖 is≤,≥, or= for 𝑖 = 1, . . . , 𝑚,

and

for each 𝑗 ∈ {1, . . . , 𝑛}, 𝑥 𝑗 is constrained to be non-negative, non-

positive, or free.

Then the dual problem 𝑃′
is defined to be the maximization problem,

with variables in the tuple y = [𝑦1 , · · · , 𝑦𝑚]⊤ given as follows:

the objective function to be maximized is yTb;

for 𝑗 = 1, . . . , 𝑛, the 𝑗th constraint is
yTA𝑗 ≤ 𝑐 𝑗 if 𝑥 𝑗 is constrained to be non-negative

yTA𝑗 ≥ 𝑐 𝑗 if 𝑥 𝑗 is constrained to be nonpositive

yTA𝑗 = 𝑐 𝑗 if 𝑥 𝑗 is free.

and for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑦𝑖 is constrained to be non-negative if

⊔𝑖 is ≥; 𝑦𝑖 is constrained to be non-positive if ⊔𝑖 is ≤; 𝑦𝑖 is free if

⊔𝑖 is =.

The following table can help remember the correspondences:

Primal (min) Dual (max)

≥ constraint ≥ 0 variable

≤ constraint ≤ 0 variable

= constraint free variable

≥ 0 variable ≥ constraint

≤ 0 variable ≤ constraint

free variable = constraint

Below is an example of a primal-dual pair of problems based on the

above definition.

5.4 Linear Programming 237

Consider the primal problem:

min 𝑥1 − 2𝑥2 + 3𝑥3

s.t. −𝑥1 + 4𝑥3 = 5

2𝑥1 + 3𝑥2 − 5𝑥3 ≥ 6

7𝑥2 ≤ 8

𝑥1 ≥ 0

𝑥2 free

𝑥3 ≤ 0.

Here, A =


−1 0 4

2 3 −5

0 7 0

 , b =


5

6

8

 , and c =


1

−2

3

 .

Since the primal problem has three constraints, the dual problem has

three variables:

the first constraint in the primal is an equation, the corresponding

variable in the dual is free;

the second constraint in the primal is a ≥-inequality, the corre-

sponding variable in the dual is non-negative;

the third constraint in the primal is a ≤-inequality, the correspond-

ing variable in the dual is non-positive.

Since the primal problem has three variables, the dual problem has three

constraints:

the first variable in the primal is non-negative, the corresponding

constraint in the dual is a ≤-inequality;

the second variable in the primal is free, the corresponding con-

straint in the dual is an equation;

the third variable in the primal is non-positive, the corresponding

constraint in the dual is a ≥-inequality.

Hence, the dual problem is:

max 5𝑦1 + 6𝑦2 + 8𝑦3

s.t. −𝑦1 + 2𝑦2 ≤ 1

3𝑦2 + 7𝑦3 = −2

4𝑦1 − 5𝑦2 ≥ 3

𝑦1 free

𝑦2 ≥ 0

𝑦3 ≤ 0.

In some references, the primal problem is always a maximization prob-
lem – in that case, what we have considered to be a primal problem is

their dual problem and vice-versa.
5

5: Note that the Duality Theorem for Lin-
ear Programming remains true for the

more general definition of the primal-dual

pair of linear programming problems.5.4.2 Methods for Solving LP Problems

There are currently two families of methods used by modern-day linear

programming solvers: simplex methods and interior-point methods.

We will not get into the technical details of these methods, except to

say that the algorithms in either family are iterative, that there is no

238 5 A Survey of Optimization

known simplex method that runs in polynomial time, but efficient

polynomial-time interior-point methods abound in practice. We might

wonder why anyone would still use simplex methods, given that they

are not polynomial-time methods: simply put, simplex methods are in

general more memory-efficient than interior-point methods, and they

tend to return solutions that have few nonzero entries.

More concretely, suppose that we want to solve the following problem:

min cTx
s.t. Ax = b

x ≥ 0.

For ease of exposition, we assume that A has full row rank. Then, each

iteration of a simplex method maintains a current solution x that is basic,

in the sense that the columns of A corresponding to the nonzero entries

of x are linearly independent. In contrast, interior-point methods will

maintain x > 0 throughout (whence the name “interior point”).

When we use an off-the-shelf linear programming solver, the choice of

method is usually not too important since solvers have good default

settings. Simplex methods are typically used in settings when a problem

needs to be resolved after minor changes in the problem data or in

problems with additional integrality constraints discussed in the next

section.

5.5 Mixed-Integer Linear Programming

While the simplicity of linear programming (and duality) make it an

appealing tool, its modeling power is insufficient in many real-life appli-

cations (for example, there is no simple linear programming formulation

of the BKP).

Fortunately, allowing the domain set to restrict one or more variables

to integer values drastically extends the modeling power. The price we

pay is that there is no guarantee that the problems can be solved in

polynomial time.

Example: Recall the lemonade and lemon juice problem introduced in the

previous section: there is a unique optimal solution at [𝑥, 𝑦]⊤ = [1.2, 1.6]⊤
for a profit of 6.8.

But this solution requires the preparation of fractional units of lemonade

and lemon juice. What if the number of prepared units needs to be

integers?

The solution is to add integrality constraints:

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0

𝑥 , 𝑦 ∈ ℤ.

5.5 Mixed-Integer LP 239

This problem is no longer a linear programming problem; rather, it is

an integer linear programming problem. Note that we can solve this

problem via a case analysis. The second and third inequalities tell us that

the possible values for 𝑥 are 0, 1, and 2.

If 𝑥 = 0, the first inequality gives 3𝑦 ≤ 6, implying that 𝑦 ≤
2. Since we are maximizing 3𝑥 + 2𝑦, we want 𝑦 to be as large

as possible; [𝑥, 𝑦]⊤ = [0, 2]⊤ satisfies all the constraints with an

objective function value of 4.

If 𝑥 = 1, the first inequality gives 3𝑦 ≤ 5, implying that 𝑦 ≤ 1. Note

that [𝑥, 𝑦]⊤ = [1, 1]⊤ satisfies all the constraints with an objective

function value of 5.

If 𝑥 = 2, the second inequality gives 𝑦 ≤ 0. Note that [𝑥, 𝑦]⊤ =

[2, 0]⊤ satisfies all the constraints with an objective function value

of 6.

Thus, [𝑥∗ , 𝑦∗]⊤ = [2, 0]⊤ is an optimal solution. How does this compare

to the solution of the LP problem of the previous section, both in terms

of location of the solution and value of the objective function?

A mixed-integer linear programming problem (MILP) is a problem

of minimizing or maximizing a linear function subject to finitely many

linear constraints such that the number of variables are finite, with at

least one of them required to take on integer values.

If all the variables are required to take on integer values, the problem is

called a pure integer linear programming problem or simply an integer
linear programming problem. Normally, we assume the problem data

to be rational numbers to rule out pathological cases.

Many solution methods for solving MILPs have been devised and some

of them first solve the linear programming relaxation of the original

problem, which is the problem obtained from the original problem by

dropping all the integrality requirements on the variables.

For instance, if 𝑃𝑀 denotes the following MILP:

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

𝑥3 ∈ ℤ.

then the linear programming relaxation 𝑃1 of 𝑃𝑀 is:

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥1 , 𝑥2 , 𝑥3 ≥ 0.

Observe that the optimal value of 𝑃1 is a lower bound for the optimal

value of 𝑃𝑀 since the feasible region of 𝑃1 contains all the feasible

solutions to 𝑃𝑀 , thus making it possible to find a feasible solution to 𝑃1

240 5 A Survey of Optimization

with objective function value which is better than the optimal value of

𝑃𝑀 .

Hence, if an optimal solution to the LP relaxation happens to be a feasible

solution to the original problem, then it is also an optimal solution to

the original problem. Otherwise, there is an integer variable having a

nonintegral value 𝑣.

What we then do is to create two new sub-problems as follows:

one requiring the variable to be at most the greatest integer less

than 𝑣,

the other requiring the variable to be at least the smallest integer

greater than 𝑣.

This is the basic idea behind the branch-and-bound method. We now

illustrate these ideas on 𝑃𝑀 . Solving the linear programming relaxation

𝑃1, we find that x′ = 1

3
[0, 2, 1]⊤ is an optimal solution to 𝑃1. Note that x′

is not a feasible solution to 𝑃𝑀 because 𝑥′
3

is not an integer.

We now create two sub-problems 𝑃2 and 𝑃3. 𝑃2 is obtained from 𝑃1 by

adding the constraint 𝑥3 ≤ ⌊𝑥′
3
⌋,6 and 𝑃3 is obtained from 𝑃1 by adding6: ⌊𝑎⌋ denotes the floor of 𝑎 and ⌈𝑎⌉ de-

notes the ceiling of 𝑎.
the constraint 𝑥3 ≥ ⌈𝑥′

3
⌉ .

Hence, 𝑃2 is the problem

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥3 ≤ 0

𝑥1 , 𝑥2 , 𝑥3 ≥ 0,

and 𝑃3 is the problem

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥3 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 ≥ 0.

Note that any feasible solution to 𝑃𝑀 must be a feasible solution to either

𝑃2 or 𝑃3. Using the help of a solver, one can see that 𝑃2 is infeasible. The

problem 𝑃3, however, has an optimal solution at x∗ = 1

5
[0, 4, 5]⊤, which

is also feasible for 𝑃𝑀 . Hence, x∗ is an optimal solution of 𝑃𝑀 .

In many instances, there are multiple choices for the variable on which to

branch, and for which sub-problem to solve next. These choices can have

an impact on the total computation time. But there are no hard-and-fast

rules (at the moment) to determine the best branching path. This in area

of ongoing research.

5.6 Useful Techniques 241

5.5.1 Cutting Planes

Difficult MILP problems often cannot be solved by branch-and-bound

methods alone. A technique that is typically employed in solvers is to add

valid inequalities to strengthen the linear programming relaxation.

Such inequalities, known as cutting planes, are known to be satisfied

by all the feasible solutions to the original problem but not by all the

feasible solutions to the initial linear programming relaxation.

Example: consider the following PILP problem:

min 3𝑥 + 2𝑦

s.t. 2𝑥 + 𝑦 ≥ 1

𝑥 + 2𝑦 ≥ 4

𝑥 , 𝑦 ∈ ℤ.

An optimal solution to the linear programming relaxation is given by

[𝑥+ , 𝑦+]⊤ =
1

3

[−2, 7]⊤.

Note that adding the inequalities 2𝑥 + 𝑦 ≥ 1 and 𝑥 + 2𝑦 ≥ 4 yields

3𝑥 + 3𝑦 ≥ 5, or equivalently,

𝑥 + 𝑦 ≥ 5

3

.

Since 𝑥 + 𝑦 is an integer for every feasible solution [𝑥, 𝑦]⊤, 𝑥 + 𝑦 ≥ 2 is

a valid inequality for the original problem, but is violated by [𝑥+ , 𝑦+]⊤.

Hence, 𝑥 + 𝑦 ≥ 2 is a cutting plane.

Adding this to the linear programming relaxation, we have

min 3𝑥 + 2𝑦

s.t. 2𝑥 + 𝑦 ≥ 1

𝑥 + 2𝑦 ≥ 4

𝑥 + 𝑦 ≥ 2.

which, upon solving, yields [𝑥∗ , 𝑦∗]⊤ = [−1, 3]⊤ as an optimal solution.

Since all the entries are integers, this is also an optimal solution to the

original problem. In this example, adding a single cutting plane solved

the problem. In practice, one often needs to add numerous cutting planes

and then continue with branch-and-bound to solve nontrivial MILP

problems.

Many methods for generating cutting planes exist – the problem of

generating effective cutting planes efficiently is still an active area of

research [4].

5.6 Useful Modeling Techniques

So far, we have discussed the kinds of optimization problems that can be

solved and certain methods available for solving them. Practical success,

however, depends upon the effective translation and formulation of a

242 5 A Survey of Optimization

problem description into a mathematical programming problem, which

often turns out to be as much an art as it is a science.

We will not be discussing formulation techniques in detail (see [7] for a

deep dive into the topic) – instead, we highlight modeling techniques

that often arise in business applications, which our examples have not

covered so far.

5.6.1 Activation

Sometimes, we may want to set a binary variable 𝑦 to 1 whenever some

other variable 𝑥 is positive. Assuming that 𝑥 is bounded above by 𝑀, the

inequality

𝑥 ≤ 𝑀𝑦

will model the condition. Note that if there is no valid upper bound on 𝑥,

the condition cannot be modeled using a linear constraint.

5.6.2 Disjunction

Sometimes, we want x to satisfy at least one of a list of inequalities; that

is,

a(1)
T

x ≥ 𝑏1 ∨ a(2)
T

x ≥ 𝑏2 ∨ · · · ∨ a(𝑘)
T

x ≥ 𝑏𝑘 .

To formulate such a disjunction using linear constraints, we assume that,

for 𝑖 = 1, . . . , 𝑘, there is a lower bound 𝑀𝑖 on a𝑖Tx for all x ∈ D. Note

that such bounds automatically exist when D is a bounded set, which is

often the case in applications.

The disjunction can now be formulated as the following system where 𝑦𝑖
is a new 0-1 variable for 𝑖 = 1, . . . , 𝑘:

a(1)Tx ≥ 𝑏1𝑦1 +𝑀1(1 − 𝑦1)
a(2)Tx ≥ 𝑏2𝑦2 +𝑀2(1 − 𝑦2)

...

a(𝑘)Tx ≥ 𝑏𝑘𝑦𝑘 +𝑀𝑘(1 − 𝑦𝑘)
𝑦1 + · · · + 𝑦𝑘 ≥ 1.

Note that a𝑖Tx ≥ 𝑏𝑖𝑦𝑖 +𝑀𝑖(1− 𝑦𝑖) reduces to a𝑖Tx ≥ 𝑏𝑖 when 𝑦𝑖 = 1, and

to a𝑖Tx ≥ 𝑀𝑖 when 𝑦𝑖 = 0, which holds for all x ∈ D.

Therefore, 𝑦𝑖 is an activation for the 𝑖th constraint, and at least one is

activated because of the constraint

𝑦1 + · · · + 𝑦𝑘 ≥ 1.

5.6.3 Soft Constraints

Sometimes, we may be willing to pay a price in exchange for specific con-

straints to be violated (perhaps they represent “nice-to-have” conditions

instead of “must-be-met” conditions). Such constraints are referred to as

soft constraints.

5.7 Software Solvers 243

There are situations in which having soft constraints is advisable, say

when enforcing all constraints results into an infeasible problem, but a

solution is nonetheless needed.

We illustrate the idea on a modified BKP. As usual, there are 𝑛 items and

item 𝑖 has weight 𝑤𝑖 and value 𝑣𝑖 > 0 for 𝑖 = 1, . . . , 𝑛. The capacity of

the knapsack is denoted by 𝐾. Suppose that we prefer not to take more

than 𝑁 items, but that the preference is not an actual constraint.

We assign a penalty for its violation and use the following formulation:

max

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖 − 𝑝𝑦

s.t.

𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝐾

𝑛∑
𝑖=1

𝑥𝑖 − 𝑦 ≤ 𝑁

𝑥𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛

𝑦 ≥ 0.

Here, 𝑝 is a non-negative number of our choosing. As we are maximiz-

ing

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖 − 𝑝𝑦,

𝑦 is pushed towards 0 when 𝑝 is “large”. Therefore, the problem will be

biased towards solutions that try to violate 𝑥1 + · · · + 𝑥𝑛 ≤ 𝑁 as little as

possible.

Experimentation is required to determine What value to select for 𝑝; the

general rule is that if violation is costly in practice, we should set 𝑝 to be

(relatively) high; otherwise, we set it to a moderate value relative to the

coefficients of the variables in the objective function value.

Note that when 𝑝 = 0 , the constraint 𝑥1 + · · · + 𝑥𝑛 ≤ 𝑁 has no effect

because 𝑦 can take on any positive value without incurring a penalty.

5.7 Software Solvers

A wide variety of solvers exist for all kinds of optimization problems.

The NEOS Server is a free online service that hosts many solvers and

is a great resource for experimenting with different solvers on small
problems.

For large or computationally challenging problems, it is advisable to use

a solver installed on a dedicated private machine/server. Commercial

solvers can also prove useful:

IBM ILOG Cplex ;

Gurobi , or

FICO Xpress Optimization .

There are popular open-source solvers as well, although they are not as

powerful as the commercial tools:

CBC ;

https://neos-server.org/neos/
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://www.fico.com/en/products/fico-xpress-optimization
https://projects.coin-or.org/Cbc

244 5 A Survey of Optimization

GLPLK

SCIP (requires a commercial licence for consulting work);

JuliaOpt , to name a few.

We mention in passing that learning how to use of any of these solvers

effectively requires a significant time investment. In addition, it is common

to build optimization models using a modeling system such as GAMS

and LINDO , or a modeling language such as AMPL , ZIMPL , or

JuMP .

Note that in the data science and machine learning context, more straight-

forward methods like gradient descent, stochastic gradient descent and

Newton’s method are usually sufficient for most applications.

5.8 Data Envelopment Analysis

Operations research (OR) is a mish-mash of various mathematical

methods used to solve complex industrial problems, especially opti-

mization problems, which are being tackled in management and other

non-industrial contexts.

Data Envelopment Analysis (DEA), based on linear programming, is

used to measure the relative performance of units in an organization

such as a government department, a school, a company, etc. Typically, a

unit’s efficiency is defined as the quotient of its outputs7
by its inputs.

8
7: Activities of the organization such as

service levels or number of deliveries.

8: The resources supporting the organiza-

tion’s operations, such as wages or value

of the in-store stock.

In an organization with only one type of input and one type of output,

the comparison is simple. For instance, a fictional organization could

have the simple input/out data in the table below:

Unit Input Output Efficiency

A 10 10 100%

B 10 20 200%

C 5 15 300%

D 15 10 67%

However, if there are more than one input or output, the comparisons are

less obvious: in the table below, is unit 𝐴 more efficient than unit 𝐵?

Unit Input 1 Input 2 Output 1 Output 2

A 10 5 10 20

B 10 15 20 5

C 5 15 15 15

D 15 5 10 20

Unit 𝐴 has fewer total inputs than unit 𝐵 (as well as fewer outputs of type

1, but it has a substantially more outputs of type 2. Without a system

in place to measure relative efficiency, comparison between (potentially

incommensurate) units is unlikely to be fruitful.

https://www.gnu.org/software/glpk/
http://scip.zib.de/
http://www.juliaopt.org/
https://www.gams.com/
https://lindo.com/
https://ampl.com/
http://zimpl.zib.de/
https://jump.readthedocs.io/en/latest/

5.8 Data Envelopment Analysis 245

The relative efficiency of unit 𝑘 is defined by

RE𝑘 =

∑
𝑗 𝑤𝑘,𝑗𝑂𝑘,𝑗∑
𝑖 𝑣𝑘,𝑖 𝐼𝑘,𝑖

,

where

{𝑂𝑘,𝑗 | 𝑗 = 1, . . . , 𝑛} represent the 𝑛 outputs from unit 𝑘,

{𝐼𝑘,𝑖 | 𝑖 = 1, . . . , 𝑚} represent the 𝑚 inputs from unit 𝑘,

{𝑤𝑘,𝑗 | 𝑗 = 1, . . . , 𝑛} and {𝑣𝑘,𝑖 | 𝑖 = 1, . . . , 𝑚} are the associated
unit weights.

For a specific unit 𝑘, the DEA model maximizes the weighted sum of
outputs for a fixed weighted sum of inputs (usually set to 100), subject

to the weighted sum of outputs of every unit being at most equal to the

weighted sum of its inputs when using the DEA weights of unit 𝑘.

In other words, the optimal set of weights for a given unit could not give

another unit a relative efficiency greater than 1.

This is equivalent to solving the following linear program for each unit

𝑘0:

max

∑𝑛
𝑗=1
𝑤𝑘0 , 𝑗𝑂𝑘0 , 𝑗

s.t.

∑𝑚
𝑖=1
𝑣𝑘0 ,𝑖 𝐼𝑘0 ,𝑖 = 100∑𝑛

𝑗=1
𝑤𝑘0 , 𝑗𝑂ℓ , 𝑗 −

∑𝑚
𝑖=1
𝑣𝑘0 ,𝑖 𝐼ℓ ,𝑖 ≤ 0, 1 ≤ ℓ ≤ 𝐾

(𝑤𝑘0 , 𝑗 , 𝑣𝑘0 ,𝑖) ≥ 𝜺, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚

where 𝜺 ≥ 0 is a parameter vector to be modified by the user.

If we define wℓ , vℓ , Oℓ and Iℓ as the vectors of output weights, input

weights, outputs and inputs, respectively, for unit ℓ , while O and I
represent the row matrix of outputs and the row matrix of inputs for all

the units, then the linear problem can be re-written simply as

max w⊤
𝑘0

O𝑘0

s.t. v⊤
𝑘0

I𝑘0
= 100

w⊤
𝑘0

O − v⊤
𝑘0

I ≤ 0
− (w𝑘0

, v𝑘0
) ≤ −𝜺

This problem can be solved by the method of Lagrange multipliers (see

Section 2.5.5) or by using dedicated numerical solvers (see previous

Section 5.7).

With the data from the example above,the DEA program for unit 𝐴, for

instance, becomes

max 10𝑤𝐴,1 + 20𝑤𝐴,2
s.t. 10𝑣𝐴,1 + 5𝑣𝐴,2 = 100

10𝑤𝐴,1 + 20𝑤𝐴,2 − 10𝑣𝐴,1 − 5𝑤𝐴,2 ≤ 0

20𝑤𝐴,1 + 5𝑤𝐴,2 − 10𝑣𝐴,1 − 15𝑤𝐴,2 ≤ 0

15𝑤𝐴,1 + 15𝑤𝐴,2 − 5𝑣𝐴,1 − 15𝑤𝐴,2 ≤ 0

10𝑤𝐴,1 + 20𝑤𝐴,2 − 15𝑣𝐴,1 − 5𝑤𝐴,2 ≤ 0

𝑤𝐴,1 , 𝑤𝐴,2 , 𝑣𝐴,1 , 𝑣𝐴,2 ≥ 𝜀

246 5 A Survey of Optimization

5.8.1 Challenges and Pitfalls

By allowing non-universal (unit-specific) weights, DEA allows each unit

to present itself in the best possible light, which could potentially lead

most units to be deemed efficient. This issue is mitigated to some extent

when the number of units 𝐾 is greater than the product of the number of

outputs by the number of inputs 𝑛 · 𝑚.

When the number of units is small, a lack of differentiation among units

is uninformative since all units could benefit from the best-case scenario

described above. When there is differentiation, however, it can be quite

telling: units with low DEA relative efficiency have achieved a low score

even when given a chance to put their best foot forward.

Another concern is that a unit could artificially seem efficient by com-

pletely eliminating unfavourable outputs or inputs (i.e.if the associated

input/output weights are 0). Constraining the weights to take values in

some fixed range can help avoid this issue.

In the example that was discussed above, when we set 𝜀 = 0, all units

have a relative efficiency of 100. If we set 𝜀 = 2, however, the relative

efficiency for each unit is

RE𝐴 = 100, RE𝐵 = 67.7, RE𝐶 = 100, and RE𝐷 = 90.

Evidently, insisting that all the factors be considered may affect the

results.

External factors can easily be added to the model as either inputs or

outputs. Available resources are classified as inputs; activity levels or

performance measures are classified as outputs.

When units can also be assessed according to some other measure (such

as profitability, average rate of success for a task, or environmental

cleanliness, say), it can be tempting to solely use the second metric to

rank the units.

The combination of efficiency and profitability (or of any two measures,

really) can however offer insights and suggestions:

Flagships are units who score high on both measures and that can

provide examples of good operating practices (as long as it is

recognized that they are also likely beneficiaries of favourable

conditions).

Sleepers score low on efficiency but high on the other measure, which is

probably more a consequence of favourable conditions than good

management; as such, they become candidates for efficiency drives.

Dogs score high on efficiency but low on the other measure, which indi-

cates good management but unfavourable conditions. In extreme

case, these units are candidates for closures, their staff members

could be re-assigned to other units.

Question Marks are units who score low on both measures; they are

subject to unfavourable conditions, but this could also be a conse-

quence of bad management. Attempts should be made to increase

the efficiency of these units so that they become Sleepers or Flag-

ships.

5.8 Data Envelopment Analysis 247

Finally, note that in any reasonable application, the linear program to be

solved (or its dual) can be fairly complicated and sophisticated software

can be required to obtain a solution. That is emblematic of industrial

optimization problems.

5.8.2 Advantages and Disadvantages

The main benefits of DEAs are that:

there is no need to explicitly specify a mathematical form for the

production function;

they have been proven to be useful in uncovering relationships that

remain hidden from other methodologies;

they are capable of handling multiple inputs and outputs;

they can be used with any input-output measurements, and

the sources of inefficiency can be analysed and quantified for every

evaluated unit.

On the other hand, there are also disadvantages to using DEAs:

the results are known to be sensitive to the selection of inputs and

outputs;

it is impossible to test for the best specification, and

the number of efficient units on the frontier tends to increase with

the number of inputs and output variables.

As is the case for all applications of quantitative methods to real-world

problems, DEAs will ultimately prove useless unless users understand
how they function and how to interpret their results.

5.8.3 SAS, Excel, and R DEA Solvers

For small problems, the numerical cost of solving the problem is not too

onerous. Consequently, such problems can typically be solved without

having to purchase a commercial solver.

As an illustration, consider the problem of finding the relative efficiency

of unit 𝐷 in the example arising from the data presented above (using

a minimal weight threshold of 𝜀 = 2, say). Thus, we are looking for the

solution to

max 10𝑤𝐷,1 + 20𝑤𝐷,2
s.t. 15𝑣𝐷,1 + 5𝑣𝐷,2 = 100

10𝑤𝐷,1 + 20𝑤𝐷,2 − 10𝑣𝐷,1 − 5𝑤𝐷,2 ≤ 0

20𝑤𝐷,1 + 5𝑤𝐷,2 − 10𝑣𝐷,1 − 15𝑤𝐷,2 ≤ 0

15𝑤𝐷,1 + 15𝑤𝐷,2 − 5𝑣𝐷,1 − 15𝑤𝐷,2 ≤ 0

10𝑤𝐷,1 + 20𝑤𝐷,2 − 15𝑣𝐷,1 − 5𝑤𝐷,2 ≤ 0

𝑤𝐷,1 , 𝑤𝐷,2 , 𝑣𝐷,1 , 𝑣𝐷,2 ≥ 2

This is a small problem, and Excel’s numerical solver can be used to

yield a relative efficiency of 90% (see Figure 5.2 for an illustration).

https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040

248 5 A Survey of Optimization

Figure 5.2: Excel’s numerical solver for unit 𝐷 in the simple DEA problem.

There are a number of non-technical issues with the solver, including

the fact that a different worksheet has to be created for every single unit.

With larger datasets, this approach may not be practical.

SAS’s proc optmodel, available in version 9.2+ as part of the OR(R) suite,

can also be used; but some additional work has to be done to automate

the descriptions of the programs to be solved. R’s rDEA and deaR

packages provide other options.

5.8.4 Case Study: Barcelona Schools

In this section, we present an illustration of a resource utlization model
which uses a DEA-like approach.

9
9: Other optimization case studies can be

found in [3].

Title: On centralized resource utilization and its re-allocation by

using DEA [6]

Authors: Cecilio Mar-Molinero, Diego Prior, Maria-Manuela Segovia,

Fabiola Portillo

Date: 2012

Methods: Data envelopment analysis, simulations

Abstract The standard DEA model allows different Decision-Making
Units (DMUs) to set their own priorities for the inputs and outputs

that form part of the efficiency assessment. In the case of a centralized

organization with many outlets, such as an education authority that is

responsible for many schools, it may be more sensible to operate in the

most efficient way, but under a common set of priorities for all DMUs.

The centralized resource allocation model does just this; the optimal

resource reallocation is found for Spanish public schools and it is shown

that the most desirable operating unit is a by-product of the estimation.

https://rdrr.io/cran/rDEA/
https://cran.r-project.org/web/packages/deaR/index.html

5.8 Data Envelopment Analysis 249

Data The data consists of 54 secondary public schools in Barcelona

during the year 2008, each with three discretionary inputs (teaching

hours per week, 𝑥1; specialized teaching hours per week, 𝑥2; capital

investments in the last decade, 𝑥3), one non-discretionary input (total

number of students present at the beginning of the academic year, 𝑋)

and two outputs (number of students passing their final assessment,

𝑦1, and number of students continuing their studies at the end of the

academic year, 𝑦2).

A subset of the data is shown in Table 5.5.

Table 5.5: Sample from the Barcelona pub-

lic school dataset used with the radial and

simplified models.

Challenges A first challenge is that the machinery of DEA cannot

directly be brought to bear on the problem since the models under

consideration are at best DEA-like. Another challenge is that the number

of unknowns to be estimated in the original model is quadratic in the

number of units. Consequently, the original model must be simplified

to avoid difficulties when the number of units is large. Fortunately, the

proposed simplifications can be interpreted logically in the context of

re-allocation of resources.

Finally, there are situations where a solution to the simplified problem

can be obtained even when the constraints on the total number of units is

relaxed, allowing for the possibility of reaching the similar output levels

with fewer inputs, in effect advocating for the closure of some units.

While this is a technically-correct solution, it might could prove to be an

unadvisable one for a variety of non-technical reasons: closing schools is

not usually a politically and/or societally palatable strategy. This latter

factor should also be incorporated in the decision-making process.

250 5 A Survey of Optimization

Project Summary and Results In the standard DEA model, each unit

sets its own priorities, and is evaluated using unit-specific weights. In a

de-centralized environment, the standard approach is reasonable, but

under a central authority where a common set of priorities needs to be

met by all units (such as the branches of a bank, or recycling collection

vehicles in a city), that approach needs to be modified.

In a school setting, school board administrators may wish to evaluate

teachers in a similar manner independently of the school at which they

work. Centralized assessment imposes a common set of weights. For

weakly centralized management, it is a further assumption that any input

excess of inefficient units can be re-allocated among the efficient units,

but only as long as this does not contravene the built-in inflexibility of

the system, which may make re-allocation rather difficult.

Strongly centralized management, on the other hand, allow for re-

allocation of the majority of inputs and outputs among all the units

(inefficient or efficient) with the aim of optimizing the performance of

the entire system. The original radial model of Lozano and Villa [5] is

not, strictly speaking, a data envelopment model:

min 𝜃 (objective)

s.t.

54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑥𝑖 , 𝑗 − 𝜃
54∑
𝑗=1

𝑥𝑖 , 𝑗 ≤ 0, for 𝑖 = 1, 2, 3

(discretionary inputs)

54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑋𝑗 −
54∑
𝑗=1

𝑋𝑗 ≤ 0,

(non-discretionary input)

54∑
𝑟=1

𝑦𝑘𝑟 −
54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑦𝑘,𝑗 ≤ 0, for 𝑘 = 1, 2

(outputs)

54∑
𝑗=1

𝜆 𝑗 ,𝑟 = 54, for 𝑟 = 1, . . . , 54

− 𝜆 𝑗 ,𝑟 ≤ 0, for 𝑗 , 𝑟 = 1, . . . , 54, 𝜃 free

Indeed, this model is not asking every unit to select the weights that

make it look as good as possible when comparing itself to the remaining

units under the same assessment; rather, it is asking for the system as a

whole to find the weights that present it in the best possible light possible,

then it assesses the performance of the units separately, using the optimal

system weights.

This conceptual shift leads to proposed closures.The main drawback of the

radial model is the large number of weights to estimate. A simplification

is proposed: if some of the units can be cloned, or equivalently, if some

of the units can be closed and their resources re-allocated to other units,

then the radial model becomes substantially simpler, and the number

of weights to estimate is linear in the number of units (as opposed to

quadratic).

5.8 Data Envelopment Analysis 251

Figure 5.3: Results of the re-allocation pro-

cess in the Barcelona public school dataset.

The new problem is DEA-like:

min 𝜃 (objective)

s.t.

54∑
𝑗=1

𝜆 𝑗𝑥𝑖 , 𝑗 − 𝜃
54∑
𝑗=1

𝑥𝑖 , 𝑗 ≤ 0, for 𝑖 = 1, 2, 3

(discretionary inputs)

54∑
𝑗=1

𝜆 𝑗𝑋𝑗 −
54∑
𝑗=1

𝑋𝑗 ≤ 0

(non-discretionary inputs)

54∑
𝑟=1

𝑦𝑘 −
54∑
𝑗=1

𝜆 𝑗𝑦𝑘,𝑗 ≤ 0, for 𝑘 = 1, 2

(outputs)

54∑
𝑗=1

𝜆 𝑗 = 54

− 𝜆 𝑗 ≤ 0, for 𝑗 = 1, . . . , 54, 𝜃 free

The numerical solution to the radial model shows a group efficiency of

66%, meaning that the outputs of the system could be produced while

reducing the discretionary inputs by 𝜃 = 34%. The simplified model

reaches the same group efficiency by cloning units 25 (24.26 times), 26

(20.02 times), 36 (4.71 times), 17 (2.69 times), and 44 (1.70 times).

The re-allocation of inputs and outputs among the 54 schools would pro-

duce the aforementioned reduction of the 34% in discretionary inputs.

A simulation experiment shows the effect of dropping the constraint

on the number of units: the group efficiency obtained by solving the

simplified system for various values of 𝑛 from 32 to 81 is seen in Figure

5.3.

Sure enough, the original solution is good, appearing near the minimum,

which reaches 𝜃 = 0.64 at 𝑛 = 50.36. This group efficiency corresponds

to cloning units 25 (23.96 times), 26 (17.62 times), and 29 (7.87 times).

Obviously, schools (and their resources) cannot be cloned, so what are

we to make of this result?
10

10: It could be argued that unit 25 and 26,

for instance, are ideal schools under the

common priorities imposed by the system:

should new schools have to be built, at-

tempts could be made to emulate the stars.

Of course, in practice, other factors could

come into play.

252 5 A Survey of Optimization

5.9 Exercises

Some of the questions in this section may need to be solved by a combination of the techniques provided in

Chapters 2, 4, and 5.

1. Find the extrema of the function defined by 𝑓 (𝑥) = 𝑥 − sin(𝑥) over the interval [−2, 12].
2. Let 𝑓 : ℝ2 → ℝ be defined by 𝑓 (𝑥, 𝑦) = 𝐴−(𝑥2 +𝐵𝑥+ 𝑦2 +𝐶𝑦), where 𝐴, 𝐵, 𝐶 are constants. What values

must they take so that 𝑓 admits a maximum value of 15 when (𝑥, 𝑦) = (−2, 1)? What if it is a minimal

value of 15 when (𝑥, 𝑦) = (−2, 1)?
3. Consider a factory that produces various types of deluxe pickle jars. The monthly number of jars 𝑄 of a

specific kind of pickled radish that can be produced at the factory is given by 𝑄(𝐾, 𝐿) = 1000𝐾0.21𝐿0.79 ,

where 𝐾 is the number of dedicated canning machines, and 𝐿 is the monthly number of employee-hours

spent on the pickled radish. The pay rate for the employees is 22$/hour; the monthly maintenance cost for

each canning machine is 300$. If the factory owners want to maintain monthly production at 40,000 jars of

pickled radish, what combination of number of canning machines and employee-hour will minimize the

total production costs?

4. The distance 𝑑 at which a projectile can be fired depends on the temperature 𝑡 and the humidity level ℎ,

according to

𝐸(𝑡 , ℎ) = 12, 000 − 𝑡2 − 2ℎ𝑡 − 2ℎ2 + 200𝑡 + 260ℎ,

where 𝑡 is measured in
◦
F and 0 ≤ ℎ ≤ 100. Under what atmospheric conditions should we fire the

projectile to maximize the distance it travels? To minimize it?

5. The area of the vertical sections of an irrigation canal is 50 square feet. The average flow of liquid in the

canal is inversely proportional to the perimeter of the trapezoid, excluding the length length of the dotted

segment, which we will denote by 𝑝. In order to maximise the flow, we must then minimize 𝑝. Determine

the depth 𝑑, base 𝑤 and angle 𝜃 that maximizes the flow.

𝑑

𝑤
𝜃 𝜃

6. Find the extrema of 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦, subject to 𝑥2 − 𝑦2 = 1.

7. Find the extrema of 𝑓 (𝑥, 𝑦, 𝑧) = 2

√
𝑥 + 𝑦 + 4 ln 𝑧 subject to 𝑥2 + 𝑦 + 𝑧2 = 16.

8. Solve the linear program: arg min{0.5𝑥1 + 𝑥2 | 𝑥1 + 𝑥2 ≥ 1, 𝑥1 + 0.5𝑥2 ≥ 1, 𝑥1 , 𝑥2 ≥ 0}.

Chapter References
[1] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[2] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. 1st. Athena Scientific, 1997.

[3] P. Boily and J. Schellinck. Introduction to Quantitative Consulting. Quadrangle/Data Action Lab, 2025.

[4] G. Cornuéjols. ‘Valid inequalities for mixed integer linear programs ’. In: Math. Program. 112.1 (2008),

pp. 3–44.

[5] S. Lozano and G. Villa. ‘Centralized Resource Allocation Using Data Envelopment Analysis ’. In: Journal
of Productivity Analysis 22.1 (July 2004), pp. 143–161.

[6] C. Mar-Molinero et al. ‘On centralized resource utilization and its reallocation by using DEA ’. In: Ann.
Oper. Res. 221.1 (2014), pp. 273–283.

[7] H. P. Williams. ‘Model Building in Linear and Integer Programming’. In: Computational Mathematical
Programming. Ed. by Klaus Schittkowski. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 25–53.

http://dblp.uni-trier.de/db/journals/mp/mp112.html#Cornuejols08
https://ideas.repec.org/a/kap/jproda/v22y2004i1p143-161.html
http://dblp.uni-trier.de/db/journals/anor/anor221.html#Mar-MolineroPSP14

	A Survey of Optimization
	Beginnings
	Single-Objective Problems
	Problems Types
	Linear Programming
	Mixed-Integer LP
	Useful Techniques
	Software Solvers
	Data Envelopment Analysis
	Exercises
	Chapter References

