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Data analysis is sometimes presented in a “point-and-click manner”,

with tutorials often bypassing foundations in probability and statistics

to focus on software use and specific datasets. While modern analysts

do not always need to fully understand the theory underpinning the

methods that they use, understanding some of the basic concepts can

only lead to long-term benefits.

In this chapter, we introduce some of the crucial probabilistic notions

that will help analysts get the most out of their data.

6.1 Basic Notions

Probability theory is the mathematical discipline relating to the numeri-

cal description of the likelihood of an event.

6.1.1 Sample Spaces and Events

Throughout, we will deal with random experiments (e.g., measurements

of speed/ weight, number and duration of phone calls, etc.).

For any “experiment,” the sample space is defined as the set of all its

possible outcomes, often denoted by the symbol S. A sample space can

be discrete or continuous.

An event is a collection of outcomes from the sample space S. Events

will be denoted by 𝐴, 𝐵, 𝐸1, 𝐸2, etc.

Examples

Toss a fair coin – the corresponding (discrete) sample space is

S= {Head, Tail}.
Roll a die – the corresponding (discrete) sample space is S =

{1, 2, 3, 4, 5, 6}, with various events represented by

− rolling an even number: {2, 4, 6};
− rolling a prime number: {2, 3, 5}.

Suppose we measure the weight (in grams) of a chemical sample –

the (continuous) sample space can be represented by S= (0,∞),
the positive half line, and various events by subsets of S, such as

− sample is less than 1.5 grams: (0, 1.5);
− sample exceeds 5 grams: (5,∞).
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For any events 𝐴, 𝐵 ⊆ S:

the union 𝐴 ∪ 𝐵 of 𝐴 and 𝐵 are all outcomes in S contained in

either 𝐴 or 𝐵;

the intersection 𝐴 ∩ 𝐵 of 𝐴 and 𝐵 are all outcomes in Scontained

in both 𝐴 and 𝐵;

the complement 𝐴𝑐 of 𝐴 (sometimes denoted 𝐴 or −𝐴) is the set

of all outcomes in S that are not in 𝐴.

If 𝐴 and 𝐵 have no outcomes in common, they are mutually exclusive;

which is denoted by 𝐴 ∩ 𝐵 = ∅ (the empty set). In particular, 𝐴 and 𝐴𝑐

are always mutually exclusive.
1

1: Events can be represented graphically

using Venn diagrams – mutually exclu-

sive events are those which do not have a

common intersection. Examples

Roll a die and let 𝐴 = {2, 3, 5} (a prime number) and 𝐵 = {3, 6}
(multiples of 3). Then 𝐴 ∪ 𝐵 = {2, 3, 5, 6}, 𝐴 ∩ 𝐵 = {3} and

𝐴𝑐 = {1, 4, 6}.
100 plastic samples are analyzed for scratch and shock resistance.

shock resistance
high low

scratch high 70 4

resistance low 1 25

If 𝐴 is the event that a sample has high shock resistance and 𝐵

is the event that a sample has high scratch residence, then 𝐴 ∩ 𝐵
consists of 70 samples.

6.1.2 Counting Techniques

A two-stage procedure can be modeled as having 𝑘 bags, with 𝑚1 items

in the first bag, . . . , 𝑚𝑘 items in 𝑘-th bag.

The first stage consists of picking a bag, and the second stage consists of

drawing an item out of that bag. This is equivalent to picking one of the

𝑚1 + · · · + 𝑚𝑘 total items.

If all the bags have the same number of items, 𝑚1 = · · · = 𝑚𝑘 = 𝑛, then

there are 𝑘𝑛 items in total, and this is the total number of ways the

two-stage procedure can occur.

Examples

How many ways are there to first roll a die and then draw a card

from a (shuffled) 52−card pack?

Answer: there are 6 ways the first step can turn out, and for each

of these (the stages are independent, in fact) there are 52 ways

to draw the card. Thus there are 6×52 = 312 ways this can turn out.
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How many ways are there to draw two tickets numbered 1 to 100

from a bag, the first with the right hand and the second with the

left hand?

Answer: There are 100 ways to pick the first number; for each of
these there are 99 ways to pick the second number. Thus, the task

has 100 × 99 = 9900 possible outputs.

Multi-Stage Procedures

A 𝑘-stage process is a process for which:

there are 𝑛1 possibilities at stage 1;

regardless of the 1st outcome there are 𝑛2 possibilities at stage 2,

. . .

regardless of the previous outcomes, there are 𝑛𝑘 choices at stage 𝑘.

There are thus 𝑛1 × 𝑛2 · · · × 𝑛𝑘 total ways the process can turn out.

6.1.3 Ordered Samples

Suppose we have a bag of 𝑛 billiard balls numbered 1, . . . , 𝑛. We can

draw an ordered sample of size 𝑟 by picking balls from the bag:

with replacement, or

without replacement.

With how many different collection of 𝑟 balls can we end up in each of

those cases (each is an 𝑟-stage procedure)?

Key Notion: all the object (balls) can be differentiated (using numbers,

colours, etc.)

Sampling With Replacement (Order Important)

If we replace each ball into the bag after it is picked, then every draw

is the same (there are 𝑛 ways it can turn out). According to our earlier

result, there are

𝑛 × 𝑛 × · · · × 𝑛︸              ︷︷              ︸
𝑟 stages

= 𝑛𝑟

ways to select an ordered sample of size 𝑟 with replacement from a set

with 𝑛 objects {1, 2, . . . , 𝑛}.

Sampling Without Replacement (Order Important)

If we do not replace each ball into the bag after it is drawn, then the

choices for the second draw depend on the result of the first draw, and

there are only 𝑛 − 1 possible outcomes.

Whatever the first two draws were, there are 𝑛 − 2 ways to draw the third

ball, and so on.
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Thus there are

𝑛 × (𝑛 − 1) × · · · × (𝑛 − 𝑟 + 1)︸                                ︷︷                                ︸
𝑟 stages

= 𝑛𝑃𝑟 (common symbol)

ways to select an ordered sample of size 𝑟 ≤ 𝑛 without replacement
from a set of 𝑛 objects {1, 2, . . . , 𝑛}.

Factorial Notation

For a positive integer 𝑛, write

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) · · · 1.

There are two possibilities:

when 𝑟 = 𝑛, 𝑛𝑃𝑟 = 𝑛!, and the ordered selection (without replace-

ment) is called a permutation;

when 𝑟 < 𝑛, we can write

𝑛𝑃𝑟 =
𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1) (𝑛 − 𝑟) · · · 1

(𝑛 − 𝑟) · · · 1

=
𝑛!

(𝑛 − 𝑟)! = 𝑛 × · · · × (𝑛 − 𝑟 + 1).

By convention, we set 0! = 1, so that

𝑛𝑃𝑟 =
𝑛!

(𝑛 − 𝑟)! , for all 𝑟 ≤ 𝑛.

Examples:

In how many different ways can 6 balls be drawn in order without

replacement from a bag of balls numbered 1 to 49?

Answer: We compute

49𝑃6 = 49 × 48 × 47 × 46 × 45 × 44 = 10, 068, 347, 520.

This is the number of ways the actual drawing of the balls can

occur for Lotto 6/49 in real-time (balls drawn one by one).

How many 6-digits PIN codes can you create from the set of digits

{0, 1, . . . , 9}?

Answer: If the digits may be repeated, we see that

10 × 10 × 10 × 10 × 10 × 10 = 10
6 = 1, 000, 000.

If the digits may not be repeated, we have instead

10𝑃6 = 10 × 9 × 8 × 7 × 6 × 5 = 151, 200.



6.1 Basic Notions 257

6.1.4 Unordered Samples

Suppose that we cannot distinguish between different ordered samples;

when we look up the Lotto 6/49 results in the newspaper, for instance,

we have no way of knowing the order in which the balls were drawn:

1 − 2 − 3 − 4 − 5 − 6

could mean that the first drawn ball was ball # 1, the second drawn ball

was ball # 2, etc., but it could also mean that the first ball drawn was ball

# 4, the second one, ball # 3, etc., or any combination of the first 6 balls.

Denote the (as yet unknown) number of unordered samples of size 𝑟

from a set of size 𝑛 by 𝑛𝐶𝑟 . We can derive the expression for 𝑛𝐶𝑟 by

noting that the following two processes are equivalent:

take an ordered sample of size 𝑟 (there are 𝑛𝑃𝑟 ways to do this);

take an unordered sample of size 𝑟 (there are 𝑛𝐶𝑟 ways to do this)

and then rearrange (permute) the objects in the sample (there are

𝑟! ways to do this).

Thus

𝑛𝑃𝑟 = 𝑛𝐶𝑟 × 𝑟! =⇒ 𝑛𝐶𝑟 =
𝑛𝑃𝑟

𝑟!
=

𝑛!

(𝑛 − 𝑟)! 𝑟! =
(
𝑛

𝑟

)
;

these are known as binomial coefficients, read as “𝑛-choose-𝑟”.

Example In how many ways can the “Lotto 6/49 draw” be reported in

the newspaper (if they are always reported in increasing order)?

This number is the same as the number of unordered samples of size 6

(different re-orderings of same 6 numbers are indistinguishable), so

49𝐶6 =

(
49

6

)
=

49 × 48 × 47 × 46 × 45 × 44

6 × 5 × 4 × 3 × 2 × 1

=
10, 068, 347, 520

720

= 13, 983, 816 . ■

There is a variety of binomial coefficient identities, such as(
𝑛

𝑘

)
=

(
𝑛

𝑛 − 𝑘

)
, for all 0 ≤ 𝑘 ≤ 𝑛,

𝑛∑
𝑘=0

(
𝑛

𝑘

)
= 2

𝑛 , for all 0 ≤ 𝑛,(
𝑛 + 1

𝑘 + 1

)
=

(
𝑛

𝑘

)
+

(
𝑛

𝑘 + 1

)
, for all 0 ≤ 𝑘 ≤ 𝑛 − 1

𝑛∑
𝑗=𝑘

(
𝑗

𝑘

)
=

(
𝑛 + 1

𝑘 + 1

)
, for all 0 ≤ 𝑛, etc.

6.1.5 Probability of an Event

For situations where we have a random experiment which has exactly

𝑁 possible mutually exclusive, equally likely outcomes, we can assign
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a probability to an event 𝐴 by counting the number of outcomes that

correspond to 𝐴 – its relative frequency. If that count is 𝑎, then

𝑃(𝐴) = 𝑎

𝑁
.

The probability of each individual outcome is thus 1/𝑁 .

Examples

Toss a fair coin – the sample space is S= {Head, Tail}, i.e., 𝑁 = 2.

The probability of observing a Head on a toss is thus
1

2
.

Throw a fair six sided die. There are 𝑁 = 6 possible outcomes. The

sample space is

S= {1, 2, 3, 4, 5, 6}.

If 𝐴 corresponds to observing a multiple of 3, then 𝐴 = {3, 6} and

𝑎 = 2, so that

Prob(number is a multiple of 3) = 𝑃(𝐴) = 2

6

=
1

3

.

The probabilities of seeing an even/odd number are:

Prob{even} = 𝑃 ({2, 4, 6}) = 3

6

=
1

2

;

Prob{prime} = 𝑃 ({2, 3, 5}) = 1 − 𝑃 ({1, 4, 6}) = 1

2

.

In a group of 1000 people it is known that 545 have high blood

pressure. 1 person is selected randomly. What is the probability

that this person has high blood pressure?

Answer: the relative frequency of people with high blood pressure

is 0.545.

This approach to probability is called the frequentist interpretation. It is

based on the idea that the theoretical probability of an event is given by

the behaviour of the empirical (observed) relative frequency of the event

over long-run repeatable and independent experiments.
2

2: Such as when 𝑁 → ∞.

This is the classical definition, and the one used in these notes, but

there are competing interpretations which may be more appropriate

depending on the context; chiefly, the Bayesian interpretation (see [2]

and Chapter 25 for details) and the propensity interpretation.
3

3: Introducing causality as a mechanism.

Axioms of Probability

The modern definition of probability is axiomatic (according to Kol-

mogorov’s seminal work [@KOL]).

The probability of an event 𝐴 ⊆ S is a numerical value satisfying the

following properties:

1. for any event 𝐴, 1 ≥ 𝑃(𝐴) ≥ 0;

2. for the complete sample space S, 𝑃(S) = 1;

3. for the empty event ∅, 𝑃(∅) = 0, and
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4. for two mutually exclusive events 𝐴 and 𝐵, the probability that 𝐴

or 𝐵 occurs is 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

Since S= 𝐴 ∪ 𝐴𝑐 , and 𝐴 and 𝐴𝑐 are mutually exclusive, then

1

A2
= 𝑃 (S) = 𝑃 (𝐴 ∪ 𝐴𝑐) A4

= 𝑃(𝐴) + 𝑃 (𝐴𝑐)
=⇒ 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴).

Examples

Throw a single six sided die and record the number that is shown.

Let 𝐴 and 𝐵 be the events that the number is a multiple of or

smaller than 3, respectively. Then 𝐴 = {3, 6}, 𝐵 = {1, 2} and 𝐴 and

𝐵 are mutually exclusive since 𝐴 ∩ 𝐵 = ∅. Then

𝑃(𝐴 or 𝐵) = 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) = 2

6

+ 2

6

=
2

3

.

An urn contains 4 white balls, 3 red balls and 1 black ball. Draw one

ball, and denote the following events by 𝑊 = {the ball is white},
𝑅 = {the ball is red} and 𝐵 = {the ball is black}. Then

𝑃(𝑊) = 1/2, 𝑃(𝑅) = 3/8, 𝑃(𝐵) = 1/8,

and 𝑃(𝑊 or 𝑅) = 7/8.

General Addition Rule

This useful rule is a direct consquence of the axioms of probability:

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

Example An electronic gadget consists of two components, 𝐴 and 𝐵.

We know from experience that 𝑃(𝐴 fails) = 0.2, 𝑃(𝐵 fails) = 0.3 and

𝑃(both 𝐴 and 𝐵 fail) = 0.15. Find 𝑃(at least one of 𝐴 and 𝐵 fails) and

𝑃(neither 𝐴 nor 𝐵 fails).

Write𝐴 for “𝐴 fails” and similarly for𝐵. Then we are looking to compute

𝑃(at least one fails) = 𝑃(𝐴 ∪ 𝐵)
= 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) = 0.35 ;

𝑃(neither fail) = 1 − 𝑃(at least one fails) = 0.65 .

If 𝐴, 𝐵 are mutually exclusive, 𝑃(𝐴 ∩ 𝐵) = 𝑃(∅) = 0 and

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

With three events, the addition rule expands as follows:

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)
− 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶)
+ 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶).
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6.1.6 Conditional Probability and Independent Events

Any two events 𝐴 and 𝐵 satisfying

𝑃 (𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵)

are said to be independent.4 When events are not independent, we say4: This is a purely mathematical defini-

tion, but it agrees with the intuitive notion

of independence in simple examples.

that they are dependent or conditional.

Mutual exclusivity and independence are unrelated concepts. The only

way for events 𝐴 and 𝐵 to be mutually exclusive and independent is for

either 𝐴 or 𝐵 (or both) to be a non-event (the empty event):

∅ = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) =⇒ 𝑃(𝐴) = 0 or 𝑃(𝐵) = 0

=⇒ 𝐴 = ∅ or 𝐵 = ∅.

Examples

Flip a fair coin twice – the 4 possible outcomes are all equally likely:

S= {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇}. Let

𝐴 = {𝐻𝐻} ∪ {𝐻𝑇}

denote “head on first flip”, 𝐵 = {𝐻𝐻} ∪ {𝑇𝐻} “head on second

flip”. Note that 𝐴 ∪ 𝐵 ≠ S and 𝐴 ∩ 𝐵 = {𝐻𝐻}. By the general

addition rule,

𝑃 (𝐴) = 𝑃({𝐻𝐻}) + 𝑃({𝐻𝑇}) − 𝑃({𝐻𝐻} ∩ {𝐻𝑇})

=
1

4

+ 1

4

− 𝑃(∅) = 1

2

− 0 =
1

2

.

Similarly, 𝑃 (𝐵) = 𝑃({𝐻𝐻}) + 𝑃({𝑇𝐻}) = 1

2
, and so 𝑃(𝐴)𝑃(𝐵) = 1

4
.

But 𝑃(𝐴 ∩ 𝐵) = 𝑃({𝐻𝐻}) is also
1

4
, so 𝐴 and 𝐵 are independent.

A card is drawn from a regular well-shuffled 52-card North Ameri-

can deck. Let 𝐴 be the event that it is an ace and 𝐷 be the event

that it is a diamond. These two events are independent. Indeed,

there are 4 aces

𝑃(𝐴) = 4

52

=
1

13

and 13 diamonds

𝑃(𝐷) = 13

52

=
1

4

in such a deck, so that

𝑃(𝐴)𝑃(𝐷) = 1

13

× 1

4

=
1

52

,

and exactly 1 ace of diamonds in the deck, so that𝑃(𝐴∩𝐷) is also
1

52
.

A six-sided die numbered 1 − 6 is loaded in such a way that the

probability of rolling each value is proportional to that value. Find

𝑃(3).

Let S= {1, 2, 3, 4, 5, 6} be the value showing after a single toss; for

some proportional constant 𝑣, we have 𝑃(𝑘) = 𝑘𝑣, for 𝑘 ∈ S. By
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Axiom A2, 𝑃(S) = 𝑃(1) + · · · + 𝑃(6) = 1, so that

1 =

6∑
𝑘=1

𝑃(𝑘) =
6∑
𝑘=1

𝑘𝑣 = 𝑣
6∑
𝑘=1

𝑘 = 𝑣
(6 + 1)(6)

2

= 21𝑣 .

Hence 𝑣 = 1/21 and 𝑃(3) = 3𝑣 = 3/21 = 1/7.

Now the die is rolled twice, the second toss independent of the first.

Find 𝑃(31 , 32).

The experiment is such that 𝑃(31) = 1/7 and 𝑃(32) = 1/7, as seen

in the previous example. Since the die tosses are independent,
5

5: Is it clear what is meant by “indepen-

dent tosses’ ’?
then

𝑃 (31 ∩ 32) = 𝑃(31)𝑃(32) = 1/49 .

Is a 2-engine plane more likely to be forced down than a 3-engine

plane?

This question is easier to answer if we assume that engines fail
independently (this is no doubt convenient, but the jury is still out

as to whether it is realistic). In what follows, let 𝑝 be the probability

that an engine fails.
6

6: What are some realistic values of 𝑝?

The next step is to decide what type engine failure will force a

plane down:
7

7: There is nothing to that effect in the

problem statement, so we have to make

another set of assumptions.− A 2-engine plane will be forced down if both engines fail –

the probability is 𝑝2
;

− A 3-engine plane will be forced down if any pair of engines

fail, or if all 3 fail.

* Pair: the probability that exactly 1 pair of engines will fail

independently (i.e., two engines fail and one does not) is

𝑝 × 𝑝 × (1 − 𝑝).

The order in which the engines fail does not matter: there

are 3𝐶2 = 3!

2!1!
= 3 ways in which a pair of engines can

fail: for 3 engines A, B, C, these are AB, AC, BC.

* All 3: the probability of all three engines failing indepen-

dently is 𝑝3
.

The probability ≥ 2 engines failing is thus

𝑃(2 + engines fail) = 3𝑝2(1 − 𝑝) + 𝑝3 = 3𝑝2 − 2𝑝3.

Basically it’s safer to use a 2-engine plane than a 3-engine plane:

the 3-engine plane will be forced down more often, assuming it

needs 2 engines to fly.

This “makes sense”: the 2-engine plane need 50% of its engines

working, while the 3-engine plane needs 66% (see Figure 6.1 to get

a sense of what the probabilities are for 0 ≤ 𝑝 ≤ 1).

(Taken from [3]) Air traffic control is a safety-related activity – each

piece of equipment is designed to the highest safety standards and

in many cases duplicate equipment is provided so that if one item

fails another takes over.
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Figure 6.1: Failure probability for the 2-

engine and 3-engine planes.

A new system is to be provided passing information from Heathrow

Airport to Terminal Control at West Drayton. As part of the system

design a decision has to be made as to whether it is necessary to

provide duplication.

The new system takes data from the Ground Movements Radar
(GMR) at Heathrow, combines this with data from the National
Airspace System NAS, and sends the output to a display at Terminal
Control (a conceptual model is shown in Figure 6.2).

Figure 6.2: Conceptual model of air traffic

control security system.

For all existing systems, records of failure are kept and an ex-

perimental probability of failure is calculated annually using the

previous 4 years.
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The reliability of a system is defined as 𝑅 = 1 − 𝑃, where 𝑃 =

𝑃(failure). We assume that 𝑅GMR = 𝑅NAS = 0.9999,
8

and that the 8: That is to say, 1 failure in 10, 000 hours.

components’ failure probabilities are independent.

If a single module is used, the reliability of the single thread design
(STD) is

𝑅STD = 𝑅GMR × 𝑅NEW × 𝑅NAS.

If the module is duplicated, the reliability of this dual thread
design (DTD) is

𝑅DTD = 𝑅GMR × (1 − (1 − 𝑅NEW)2) × 𝑅NAS.

Duplicating the module causes an improvement in reliability of

𝜌 =
𝑅DTD

𝑅STD

=
(1 − (1 − 𝑅NEW)2)

𝑅NEW

× 100% .

For the module, no historical data is available. Instead, we work

out the improvement achieved by using the dual thread design for

various values of 𝑅NEW.

𝑅NEW 0.1 0.2 0.5 0.75 0.99 0.999 0.9999 0.99999

𝜌 (%) 190 180 150 125 101 100.1 100.01 100.001

If the module is very unreliable (i.e., 𝑅NEW is small), then there is

a significant benefit in using the dual thread design (𝜌 is large).
9

If 9: But why would we install a module

which we know to be unreliable in the first

place?

the new module is as reliable as GMR and NAS, that is, if

𝑅GMR = 𝑅NEW = 𝑅NAS = 0.9999,

then the single thread design has a combined reliability of 0.9997

(i.e., 3 failures in 10, 000 hours), whereas the dual thread design

has a combined reliability of 0.9998 (i.e., 2 failures in 10, 000 hours).

If the probability of failure is independent for each component,

we could conclude from this that the reliability gain from a dual

thread design probably does not justify the extra cost.

In the last two examples, we had to make additional assumptions in

order to answer the questions – this is often the case in practice.

Conditional Probability

The conditional probability of an event 𝐵 given that another event 𝐴

has occurred is defined by

𝑃(𝐵 | 𝐴) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐴) .

Note that this definition only makes sense when “𝐴 can happen” i.e.,

𝑃(𝐴) > 0. If 𝑃(𝐴)𝑃(𝐵) > 0, then

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) × 𝑃(𝐴 | 𝐵) = 𝑃(𝐵 ∩ 𝐴);

𝐴 and 𝐵 are thus independent if 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) and 𝑃(𝐴 | 𝐵) = 𝑃(𝐴).
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Examples

From a group of 100 people, 1 is selected. What is the probability

that this person has high blood pressure (HBP)?

If we know nothing else about the population, this is an (uncondi-
tional) probability, namely

𝑃(HBP) = # individuals with HBP in the population

100

.

If instead we first filter out all people with low cholesterol level,

and then select 1 person. What is the probability that this person

has HBP?

We are looking for the conditional probability

𝑃(HBP | high cholesterol);

the probability of selecting a person with HBP, given high choles-

terol levels, presumably different from 𝑃(HBP | low cholesterol).

A sample of 249 individuals is taken and each person is classified

by blood type and tuberculosis (TB) status.

O A B AB Total

TB 34 37 31 11 113

no TB 55 50 24 7 136

Total 89 87 55 18 249

The (unconditional) probability that a random individual has TB is

𝑃(TB) = #TB

249
= 113

249
= 0.454. Among those individuals with type B

blood, the (conditional) probability of having TB is

𝑃(TB | type B) = 𝑃(TB ∩ type B)
𝑃(type B) =

31

55

=
31/249

55/249

= 0.564.

A family has two children (not twins). What is the probability that

the youngest child is a girl given that at least one of the children is

a girl? Assume that boys and girls are equally likely to be born.

Let 𝐴 and 𝐵 be the events that the youngest child is a girl and that

at least one child is a girl, respectively:

𝐴 = {GG, BG} and 𝐵 = {GG, BG,GB},

𝐴 ∩ 𝐵 = 𝐴. Then 𝑃(𝐴 | 𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) =

𝑃(𝐴)
𝑃(𝐵) =

2/4

3/4
= 2

3
(and not

1

2
,

as might naively be believed).

Incidentally, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ≠ 𝑃(𝐴) × 𝑃(𝐵), which means that 𝐴

and 𝐵 are not independent events.
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Figure 6.3: Decomposition of 𝐵 via 𝐴.

Law of Total Probability

Let 𝐴 and 𝐵 be two events. From set theory, we have

𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵),

as illustrated in Figure 6.3. Note that 𝐴 ∩ 𝐵 and 𝐴 ∩ 𝐵 are mutually

exclusive, so that, according to Axiom A4, we have

𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵).

Now, assuming that ∅ ≠ 𝐴 ≠ S, we have

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) and 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴),

so that

𝑃(𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | 𝐴)𝑃(𝐴).

This generalizes as follows: if 𝐴1 , ...𝐴𝑘 are mutually exclusive and

exhaustive (i.e., 𝐴_𝑖 ∩ 𝐴_𝑗 = ∅ for all 𝑖 ≠ 𝑗 and 𝐴1 ∪ .... ∪ 𝐴𝑘 = S), then

for any event 𝐵

𝑃(𝐵) =
𝑘∑
𝑗=1

𝑃(𝐵 | 𝐴 𝑗)𝑃(𝐴 𝑗) = 𝑃(𝐵 | 𝐴1)𝑃(𝐴1) + ... + 𝑃(𝐵 | 𝐴𝑘)𝑃(𝐴𝑘).

Example With the Law of Total Probability (the rule above), compute

𝑃(TB) using the data from one of the previous example.

The blood types {O,A,B,AB} form a mutually exclusive partition of the

population, with

𝑃(O) = 89

249

, 𝑃(A) = 87

249

, 𝑃(B) = 55

249

, 𝑃(AB) = 18

249

.

It is easy to see that 𝑃(O) + 𝑃(A) + 𝑃(B) + 𝑃(AB) = 1. Furthermore,

𝑃(TB | O) = 𝑃(TB∩O)
𝑃(O) = 34

89
, 𝑃(TB | A) = 𝑃(TB∩A)

𝑃(A) = 37

87
,

𝑃(TB | B) = 𝑃(TB∩B)
𝑃(B) = 31

55
, 𝑃(TB | AB) = 𝑃(TB∩AB)

𝑃(AB) = 11

18
.

According to the law of total probability,

𝑃(TB) = 𝑃(TB | O)𝑃(O) + 𝑃(TB | A)𝑃(A)
+ 𝑃(TB | B)𝑃(B) + 𝑃(TB | AB)𝑃(AB),



266 6 Probability and Applications

so that

𝑃(TB) = 34

89

· 89

249

+ 37

87

· 87

249

+ 31

55

· 55

249

+ 11

18

· 18

249

=
34 + 37 + 31 + 11

249

=
113

249

= 0.454,

which matches the previous obtained result.

6.1.7 Bayes’ Theorem

After an experiment generates an outcome, we are often interested in the

probability that a certain condition was present given an outcome.
10

10: Or that a particular hypothesis was

valid, say.

We have noted before that if 𝑃(𝐴)𝑃(𝐵) > 0, then

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) × 𝑃(𝐴 | 𝐵) = 𝑃(𝐵 ∩ 𝐴);

this can be re-written as Bayes’ Theorem:

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴) × 𝑃(𝐴)
𝑃(𝐵) .

Bayes’ Theorem is a powerful tool in probability analysis, but it is a

simple corollary of the rules of probability.

Central Data Analysis Question

Given everything that was known prior to the experiment, does the

observed data support the hypothesis? The problem is that this is

usually impossible to compute directly. Bayes’ Theorem offers a possible
solution:

𝑃(hypothesis | data) = 𝑃(data | hypothesis) × 𝑃(hypothesis)
𝑃(data)

∝ 𝑃(data | hypothesis) × 𝑃(hypothesis),

in which the terms on the right might be easier to compute than the term

on the left.

Bayesian Vernacular

In Bayes’ Theorem:

𝑃(hypothesis) is the prior – the probability of the hypothesis being

true prior to the experiment;

𝑃(hypothesis | data) is the posterior – the probability of the

hypothesis being true once the experimental data is taken into

account;

𝑃(data | hypothesis) is the likelihood – the probability of the

experimental data being observed assuming that the hypothesis is

true.

The theorem is often presented as posterior ∝ likelihood×prior, which is

to say, beliefs should be updated in the presence of new information.
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Formulations

If 𝐴, 𝐵 are events for which 𝑃(𝐴)𝑃(𝐵) > 0, then Bayes’ Theorem can be

re-written, using the law of total probability, as

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵) =

𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | 𝐴)𝑃(𝐴)

,

or, in the general case where 𝐴1 , ...𝐴𝑘 are mutually exclusive and

exhaustive events, then for any event 𝐵 and for each 1 ≤ 𝑖 ≤ 𝑘,

𝑃(𝐴𝑖 | 𝐵) =
𝑃(𝐵 | 𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵) =
𝑃(𝐵 | 𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵 | 𝐴1)𝑃(𝐴1) + ... + 𝑃(𝐵 | 𝐴𝑘)𝑃(𝐴𝑘)
.

Examples

In 1999, Sinnas sold three car models in North America: Sarten (S),

Minima (M), and Papader (PA). Of the vehicles sold that year, 50%

were S, 30% were M and 20% were PA; 12% of the S, 15% of the M,

and 25% of the PA had a particular defect 𝐷.

1. If you own a 1999 Sinnas, what is the probability that it has

the defect?

In the language of conditional probability,

𝑃(S) = 0.5, 𝑃(M) = 0.3, 𝑃(Pa) = 0.2,

𝑃(𝐷 | S) = 0.12, 𝑃(𝐷 | M) = 0.15, 𝑃(𝐷 | PA) = 0.25,

so that

𝑃(𝐷) = 𝑃(𝐷 | S) × 𝑃(S) + 𝑃(𝐷 | M) × 𝑃(M) + 𝑃(𝐷 | Pa) × 𝑃(Pa)
= 0.12 · 0.5 + 0.15 · 0.3 + 0.25 · 0.2

= 0.155 = 15.5%.

2. If a 1999 Sinnas has defect 𝐷, what model is it likely to be?

In the first part we computed the total probability 𝑃(𝐷); in

this part, we compare the posterior probabilities 𝑃(M | 𝐷),
𝑃(S | 𝐷), and 𝑃(Pa | 𝐷) (and not the priors!), computed using

Bayes’ Theorem:

𝑃(S | 𝐷) = 𝑃(𝐷 |S)𝑃(S)
𝑃(𝐷) = 0.12×0.5

0.155
≈ 38.7%

𝑃(M | 𝐷) = 𝑃(𝐷 |M)𝑃(M)
𝑃(𝐷) = 0.15×0.3

0.155
≈ 29.0%

𝑃(Pa | 𝐷) = 𝑃(𝐷 |Pa)𝑃(Pa)
𝑃(𝐷) = 0.25×0.2

0.155
≈ 32.3%

Even though Sartens are least likely to have the defect𝐷, their

overall prevalence in the population carries more weight.

Suppose that a test for a particular disease has a very high success

rate. If a patient:

1. has the disease, the test is ‘positive’ with probability 0.99;

2. does not have the disease, the test reports a ‘negative’ with

prob 0.95.
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Assume that only 0.1% of the population has the disease. What is

the probability that a patient who tests positive does not have the

disease?

Let 𝐷 be the event that the patient has the disease, and 𝐴 be the

event that the test is positive. The probability of a true positive is

𝑃(𝐷 | 𝐴) = 𝑃(𝐴 | 𝐷)𝑃(𝐷)
𝑃(𝐴 | 𝐷)𝑃(𝐷) + 𝑃(𝐴 | 𝐷𝑐)𝑃(𝐷𝑐)

=
0.99 × 0.001

0.99 × 0.001 + 0.05 × 0.999

≈ 0.019.

The probability of a false positive is thus 1− 0.019 ≈ 0.981. Despite

the apparent high accuracy of the test, the incidence of the disease

is so low (1 in a 1000) that the vast majority of patients who test

positive (98 in 100) do not have the disease.

The 2 in 100 who are true positives still represent 20 times the pro-

portion of positives found in the population (before the outcome

of the test is known).
11

11: It is important to remember that when

dealing with probabilities, both the likeli-

hood and the prevalence have to be taken

into account.

[Monty Hall Problem] On a game show, you are given the choice

of three doors. Behind one of the doors is a prize; behind the others,

dirty and smelly rubbish bins (as is skillfully rendered in Figure 6.4).

You pick a door, say No. 1, and the host, who knows what is behind

the doors, opens another door, say No. 3, behind which is a bin.

She then says to you, “Do you want to switch from door No. 1 to

No. 2?”

Is it to your advantage to do so?

Figure 6.4: The Monty Hall set-up (per-

sonal file, ... but that was probably obvious

from the artistic quality ).

In what follows, let and be the events that switching to another door

is a successful strategy and that the prize is behind the original

door, respectively.

− Let’s first assume that the host opens no door. What is the

probability that switching to another door in this scenario

would prove to be a successful strategy?

If the prize is behind the original door, switching would

succeed 0% of the time: 𝑃(S | D) = 0.
12

If the prize is not12: Note that the prior is 𝑃(D) = 1/3.

behind the original door, switching would succeed 50% of the

time: 𝑃(S | D
𝑐) = 1/2.

13
Thus,13: Note that the prior is 𝑃(D𝑐) = 2/3.
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𝑃(S) = 𝑃(S | D)𝑃(D) + 𝑃(S | D
𝑐)𝑃(D𝑐)

= 0 · 1

3

+ 1

2

· 2

3

≈ 33%.

− Now let’s assume that the host opens one of the other two

doors to show a rubbish bin. What is the probability that

switching to another door in this scenario would prove to be

a successful strategy?

If the prize is behind the original door, switching would

succeed 0% of the time: 𝑃(S | D) = 0.
14

If the prize is not 14: Note that the prior is 𝑃(D) = 1/3.

behind the original door, switching would succeed 100% of

the time: 𝑃(S | D
𝑐) = 1.

15
Thus, 15: Note that the prior is 𝑃(D𝑐) = 2/3.

𝑃(S) = 𝑃(S | D)𝑃(D) + 𝑃(S | D
𝑐)𝑃(D𝑐)

= 0 · 1

3

+ 1 · 2

3

≈ 67%.

If no door is opened, switching is not a winning strategy, resulting

in success only 33% of the time. If a door is opened, however,

switching becomes the winning strategy, resulting in success 67%

of the time.

The Monty Hall problem has attracted a lot of attention over the years

due to its counter-intuitive result, but there is no paradox when we

understand conditional probabilities.

Perhaps it would be easier to see what happens in practice: if we could

pit two players against one another (one who never switches and one

who always does so) in a series of Monty Hall games, which one would

come out on top in the long run?

We start by setting a number of games 𝑁 (not too small, or we won’t be

able to observe long-run behaviour) and a replicability seed (so that we

may all obtain the same results).

N=500

set.seed(1234)

Next, for each game, we will place the prize behind one of the 3 doors: 𝐴,

𝐵, or 𝐶.

locations = sample(c("A","B","C"), N, replace = TRUE)

We verify that the prize gets placed behind each door roughly 33% of the

time:

table(locations)/N

locations

A B C

0.302 0.344 0.354
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Let us now obtain a player’s first guess for each game – this guess is

completely independent of the actual prize location:

player.guesses = sample(c("A","B","C"), N, replace = TRUE)

Finally, we create a data frame telling the analyst where the prize actually

is, and what door the player has selected as their original guess.

games = data.frame(locations, player.guesses)

head(games)

locations player.guesses

1 B B

2 B B

3 A B

4 C C

5 A C

6 A A

In this example (that is, with the data generated above), how often had

the player guessed correctly, before a door was opened and they were

given a chance to switch?

table(games$locations==games$player.guesses)

FALSE TRUE

333 167

This should not come as a surprise.

We now initialize the process to find out which door the host opens. For

each game, the host opens a door which is not the one selected by the

player, nor the one behind which the prize is found.

games$open.door <- NA

for(j in 1:N){

games$open.door[j] <- sample(setdiff(c("A","B","C"),

union(games$locations[j],games$player.guesses[j])), 1)

}

head(games)

locations player.guesses open.door

1 B B C

2 B B C

3 A B C

4 C C A

5 A C B

6 A A B
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The union() call enumerates the doors that the host cannot open; the

setdiff() call finds the complement of the doors that the host cannot

open (i.e.: the doors that she can open), and the sample() call picks one

of those doors.

If the player never switches, they win whenever they had originally

guessed the location of the prize correctly:

games$no.switch.win <- games$player.guess==games$locations

We find which door the player would have selected if they always

switched (the door that is neither the location of the prize nor the one

they had originally selected):

games$switch.door <- NA

for(j in 1:N){

games$switch.door[j] <- sample(setdiff(c("A","B","C"),

union(games$open.door[j],games$player.guesses[j])), 1)

}

If the player always switches, they win whenever their switched guess is

where the prize is located:

games$switch.win <- games$switch.door==games$locations

head(games)

locations player.guesses open.door no.switch.win switch.door switch.win

1 B B C TRUE A FALSE

2 B B C TRUE A FALSE

3 A B C FALSE A TRUE

4 C C A TRUE B FALSE

5 A C B FALSE A TRUE

6 A A B TRUE C FALSE

The chances of winning by not switching are thus:

table(games$no.switch.win)/N

FALSE TRUE

0.666 0.334

while the chances of winning by switching are:

table(games$switch.win)/N

FALSE TRUE

0.334 0.666

Pretty wild, eh? Numerical simulations show, beyond the shadow of a

doubt, that switching IS the better strategy.
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6.2 Discrete Distributions

In the next sections, we discuss how some of the probability computations

can be made easier with the use of (theoretical) distributions.
16

16: Note that the principles of probability

theory introduced in the previous section

remain valid in all cases.

6.2.1 Random Variables and Distributions

Recall that, for any random “experiment”, the set of all possible outcomes

is denoted by S. A random variable (r.v.) is a function 𝑋 : S→ ℝ, which

is to say, it is a rule that associates a (real) number to every outcome of the

experiment; S is the domain of the r.v. 𝑋 and 𝑋(S) ⊆ ℝ is its range.

A probability distribution function (p.d.f.) is a function 𝑓 : ℝ → ℝ

which specifies the probabilities of the values in the range 𝑋(S). When

S is discrete,
17

we say that 𝑋 is a discrete r.v. and the p.d.f. is called a17: For the purpose of these notes, a dis-

crete set is one in which all points are

isolated: ℕ and finite sets are discrete, but

ℚ and ℝ are not.

probability mass function (p.m.f.).

Notation

Throughout, we use the following notation:

capital roman letters (𝑋, 𝑌, etc.) denote r.v., and

corresponding lower case roman letters (𝑥, 𝑦, etc.) denote generic
values taken by the r.v.

A discrete r.v. can be used to define events – if𝑋 takes values𝑋(S) = {𝑥𝑖},
then we can define the events 𝐴𝑖 = {𝑠 ∈ S : 𝑋(𝑠) = 𝑥𝑖} :

the p.m.f. of 𝑋 is 𝑓 (𝑥) = 𝑃 ({𝑠 ∈ S : 𝑋(𝑠) = 𝑥}) := 𝑃(𝑋 = 𝑥);
its cumulative distribution function (c.d.f.) is 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥).

Properties

If 𝑋 is a discrete random variable with p.m.f. 𝑓 (𝑥) and c.d.f. 𝐹(𝑥), then

0 < 𝑓 (𝑥) ≤ 1 for all 𝑥 ∈ 𝑋(S); ∑𝑠∈S 𝑓 (𝑋(𝑠)) = ∑
𝑥∈𝑋(S) 𝑓 (𝑥) = 1;

for any event 𝐴 ⊆ S, 𝑃(𝑋 ∈ 𝐴) = ∑
𝑥∈𝐴 𝑓 (𝑥);

for any 𝑎, 𝑏 ∈ ℝ,

𝑃(𝑎 < 𝑋) = 1 − 𝑃(𝑋 ≤ 𝑎) = 1 − 𝐹(𝑎)
𝑃(𝑋 < 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝑓 (𝑏)

for any 𝑎, 𝑏 ∈ ℝ,

𝑃(𝑎 ≤ 𝑋) = 1 − 𝑃(𝑋 < 𝑎) = 1 − (𝑃(𝑋 ≤ 𝑎) − 𝑃(𝑋 = 𝑎)) = 1 − 𝐹(𝑎) + 𝑓 (𝑎).

We can use these results to compute the probability of a discrete r.v. 𝑋

falling in various intervals:

𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑏) − 𝐹(𝑎);
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) + 𝑃(𝑋 = 𝑎) = 𝐹(𝑏) − 𝐹(𝑎) + 𝑓 (𝑎);
𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) − 𝑓 (𝑏);
𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) + 𝑓 (𝑎) − 𝑓 (𝑏).
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Examples

Flip a fair coin – the outcome space is S = {Head, Tail}. Let

𝑋 : 𝑆 → ℝ be defined by 𝑋(Head) = 1 and 𝑋(Tail) = 0. Then 𝑋 is

a discrete random variable.
18

18: As a convenience, we write 𝑋 = 1 and

𝑋 = 0.

If the coin is fair, the p.m.f. of 𝑋 is 𝑓 : ℝ → ℝ, where

𝑓 (0) = 𝑃(𝑋 = 0) = 1/2, 𝑓 (1) = 𝑃(𝑋 = 1) = 1/2,

𝑓 (𝑥) = 0 for all other 𝑥.

Roll a fair die – the outcome space is S= {1, . . . , 6}. Let 𝑋 : S→ ℝ

be defined by 𝑋(𝑖) = 𝑖 for 𝑖 = 1, . . . , 6. Then 𝑋 is a discrete r.v.

If the die is fair, the p.m.f. of 𝑋 is 𝑓 : ℝ → ℝ, where

𝑓 (𝑖) = 𝑃(𝑋 = 𝑖) = 1/6, for 𝑖 = 1, . . . , 6,

𝑓 (𝑥) = 0 for all other 𝑥.

For the random variable 𝑋 from the previous example, the c.d.f. is

𝐹 : ℝ → ℝ, where

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) =


0 if 𝑥 < 1

𝑖/6 if 𝑖 ≤ 𝑥 < 𝑖 + 1, 𝑖 = 1, . . . , 6

1 if 𝑥 ≥ 6

For the same random variable, we can compute the probability

𝑃(3 ≤ 𝑋 ≤ 5) directly:

𝑃(3 ≤ 𝑋 ≤ 5) = 𝑃(𝑋 = 3) + 𝑃(𝑋 = 4) + 𝑃(𝑋 = 5)
= 1

6
+ 1

6
+ 1

6
= 1

2
,

or we can use the c.d.f.:

𝑃(3 ≤ 𝑋 ≤ 5) = 𝐹(5) − 𝐹(3) + 𝑓 (3) = 5

6
− 3

6
+ 1

6
= 1

2
.

The number of calls received over a specific time period, 𝑋, is a

discrete random variable, with potential values 0, 1, 2, . . ..

Consider a 5−card poker hand consisting of cards selected at

random from a 52−card deck. Find the probability distribution of

𝑋 , where𝑋 indicates the number of red cards (q andr) in the hand.

In all, there are

(
52

5

)
ways to select poker hands. By construction, 𝑋

can take on values 𝑥 = 0, 1, 2, 3, 4, 5.

If 𝑋 = 0, then none of the 5 cards in the hands are q or r, and all of

the 5 cards in the hands are ♠ or ♣. There are thus

(
26

0

)
·
(
26

5

)
5−card

hands that only contain black cards, and

𝑃(𝑋 = 0) =
(
26

0

)
·
(
26

5

)(
52

5

) .

In general, if𝑋 = 𝑥, 𝑥 = 0, 1, 2, 3, 4, 5, there are

(
26

𝑥

)
ways of having 𝑥

q or r in the hand, and

(
26

5−𝑥
)

ways of having 5 − 𝑥 ♠ and ♣ in the
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hand, so that

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =

(26

𝑥 )·( 26

5−𝑥)
(52

5
) , 𝑥 = 0, 1, 2, 3, 4, 5;

0 otherwise

Find the c.d.f. of a discrete r.v. 𝑋 with p.m.f. 𝑓 (𝑥) = 0.1𝑥 if

𝑥 = 1, 2, 3, 4 and 𝑓 (𝑥) = 0 otherwise.

𝑓 (𝑥) is indeed a p.m.f. as 0 < 𝑓 (𝑥) ≤ 1 for all 𝑥 and

4∑
𝑥=1

0.1𝑥 = 0.1(1 + 2 + 3 + 4) = 0.1
4(5)

2

= 1.

Computing 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) yields

𝐹(𝑥) =



0 if 𝑥 < 1

0.1 if 1 ≤ 𝑥 < 2

0.3 if 2 ≤ 𝑥 < 3

0.6 if 3 ≤ 𝑥 < 4

1 if 𝑥 ≥ 4

The p.m.f. and the c.m.f. for this r.v. are shown in Figure 6.5.

Figure 6.5: P.m.f. and c.m.f. for the discrete

r.v. 𝑋 defined in the last example.
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6.2.2 Expectation of a Discrete Random Variable

The expectation of a discrete random variable 𝑋 is

E[𝑋] =
∑
𝑥

𝑥 · 𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑥 𝑓 (𝑥) ,

where the sum extends over all values of 𝑥 taken by 𝑋.
19

The definition 19: The expectation of a random variable

is simply the average value that it takes,

over all possible values.

can be extended to a general function of 𝑋:

E[𝑢(𝑋)] =
∑
𝑥

𝑢(𝑥)𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑢(𝑥) 𝑓 (𝑥).

As an important example, note that

E[𝑋2] =
∑
𝑥

𝑥2𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑥2 𝑓 (𝑥).

Examples

What is the expectation on the roll 𝑍 of 6−sided die?

If the die is fair, then

E[𝑍] =
6∑
𝑧=1

𝑧 · 𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

𝑧 =
1

6

· 6(7)
2

= 3.5.

For each 1$ bet in a gambling game, a player can win 3$ with

probability
1

3
and lose 1$ with probability

2

3
. Let 𝑋 be the net

gain/loss from the game. Find the expected value of the game.

𝑋 takes on the value 2$ for a win and −2$ for a loss.
20

The expected 20: That is, win/loss = outcome − bet.

value of 𝑋 is thus

E[𝑋] = 2 · 1

3

+ (−2) · 2

3

= −2

3

.

If 𝑍 is the number showing on a roll of a fair 6−sided die, find

E[𝑍2] and E[(𝑍 − 3.5)2].

E[𝑍2] =
∑
𝑧

𝑧2𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

𝑧2 =
1

6

(12 + · · · + 6
2) = 91

6

E[(𝑍 − 3.5)2] =
6∑
𝑧=1

(𝑧 − 3.5)2 × 𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

(𝑧 − 3.5)2

=
(1 − 3.5)2 + · · · + (6 − 3.5)2

6

=
35

12

.

Mean and Variance

We can interpret the expectation as the average or the mean of 𝑋 , which

we often denote by 𝜇 = 𝜇𝑋 . For instance, in the example of the fair die,

𝜇𝑍 = E[𝑍] = 3.5
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Note that in the final example, we could have written

E[(𝑍 − 3.5)2] = E[(𝑍 − E[𝑍])2].

This is an important quantity associated to a random variable 𝑋, its

variance Var[𝑋].

The variance of a discrete random variable 𝑋 is the expected squared
difference from the mean:

Var(𝑋) = E[(𝑋 − 𝜇𝑋)2] =
∑
𝑥

(𝑥 − 𝜇𝑋)2𝑃(𝑋 = 𝑥)

=
∑
𝑥

(
𝑥2 − 2𝑥𝜇𝑋 + 𝜇2

𝑋

)
𝑓 (𝑥)

=
∑
𝑥

𝑥2 𝑓 (𝑥) − 2𝜇𝑋
∑
𝑥

𝑥 𝑓 (𝑥) + 𝜇2

𝑋

∑
𝑥

𝑓 (𝑥)

= E[𝑋2] − 2𝜇𝑋𝜇𝑋 + 𝜇2

𝑋 · 1

= E[𝑋2] − 𝜇2

𝑋 .

This is also sometimes written as Var[𝑋] = E[𝑋2] − E
2[𝑋].

Standard Deviation

The standard deviation of a discrete random variable 𝑋 is defined

directly from the variance:

SD[𝑋] =
√

Var[𝑋] .

The mean is a measure of centrality and it gives an idea as to where

the bulk of a distribution is located; the variance and standard devia-

tion provide information about the spread – distributions with higher

variance/SD are more spread out about the average.

Example Let 𝑋 and 𝑌 be random variables with the following p.d.f.

𝑥 𝑃(𝑋 = 𝑥) 𝑦 𝑃(𝑌 = 𝑦)
−2 1/5 −4 1/5

−1 1/5 −2 1/5

0 1/5 0 1/5

1 1/5 2 1/5

2 1/5 4 1/5

We have E[𝑋] = E[𝑌] = 0 and

2 = Var[𝑋] < Var[𝑌] = 8,

meaning that we expect both distributions to be centered at 0, but 𝑌

should be more spread-out than 𝑋 (because its variance is greater, see

Figure 6.6).
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Figure 6.6: R.v. 𝑋 (left) and 𝑌 (right) for two uniform distributions, as defined in the example.

Properties

Let 𝑋,𝑌 be random variables and 𝑎 ∈ ℝ. Then

E[𝑎𝑋] = 𝑎E[𝑋];
E[𝑋 + 𝑎] = E[𝑋] + 𝑎;
E[𝑋 + 𝑌] = E[𝑋] + E[𝑌];
in general, E[𝑋𝑌] ≠ E[𝑋]E[𝑌];
Var[𝑎𝑋] = 𝑎2

Var[𝑋], SD[𝑎𝑋] = |𝑎 |SD[𝑋];
Var[𝑋 + 𝑎] = Var[𝑋], SD[𝑋 + 𝑎] = SD[𝑋].

6.2.3 Binomial Distributions

Recall that the number of unordered samples of size 𝑟 from a set of size

𝑛 is

𝑛𝐶𝑟 =

(
𝑛

𝑟

)
=

𝑛!

(𝑛 − 𝑟)!𝑟! .

Examples

2! × 4! = (1 × 2) × (1 × 2 × 3 × 4) = 48, but (2 × 4)! = 8! = 40320.(
5

1

)
= 5!

1!×4!
= 1×2×3×4×5

1×(1×2×3×4) =
5

1
= 5.

In general:

(𝑛
1

)
= 𝑛 and

(𝑛
0

)
= 1.(

6

2

)
= 6!

2!×4!
= 4!×5×6

2!×4!
= 5×6

2
= 15.(

27

22

)
= 27!

22!×5!
= 22!×23×24×25×26×27

5!×22!
= 23×24×25×26×27

120
.

Binomial Experiments

A Bernoulli trial is a random experiment with two possible outcomes,

“success" and”failure". Let 𝑝 denote the probability of a success.
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A binomial experiment consists of 𝑛 repeated independent Bernoulli

trials, each with the same probability of success, 𝑝, such as:

female/male births (perahps not truly independent, but often

treated as such);

satisfactory/defective items on a production line;

sampling with replacement with two types of item,

etc.

Probability Mass Function

In a binomial experiment of 𝑛 independent events, each with probability

of success 𝑝, the number of successes 𝑋 is a discrete random variable

that follows a binomial distribution with parameters (𝑛, 𝑝):

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =
(
𝑛

𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 , for 𝑥 = 0, 1, 2, . . . , 𝑛.

This is often abbreviated to “𝑋 ∼ B(𝑛, 𝑝)”.

If 𝑋 ∼ B(1, 𝑝), then 𝑃(𝑋 = 0) = 1 − 𝑝 and 𝑃(𝑋 = 1) = 𝑝, so

E[𝑋] = (1 − 𝑝) · 0 + 𝑝 · 1 = 𝑝 .

Expectation and Variance

If 𝑋 ∼ B(𝑛, 𝑝), it can be shown that

E[𝑋] =
𝑛∑
𝑥=0

𝑥𝑃(𝑋 = 𝑥) = 𝑛𝑝,

and

Var[𝑋] = E

[
(𝑋 − 𝑛𝑝)2

]
=

𝑛∑
𝑥=0

(𝑥 − 𝑛𝑝)2 · 𝑃(𝑋 = 𝑥) = 𝑛𝑝(1 − 𝑝)

(we will eventually see an easier way to derive these formulas by inter-

preting 𝑋 as a sum of discrete random variables).

Recognizing that certain situations can be modeled via a distribution

whose p.m.f. and c.d.f. are already known can simplify computations.

Examples

Suppose that water samples taken in some well-defined region

have a 10% probability of being polluted. If 12 samples are selected

independently, then it is reasonable to model the number 𝑋 of

polluted samples as B(12, 0.1).

Find

1. E[𝑋] and Var[𝑋];
2. 𝑃(𝑋 = 3);
3. 𝑃(𝑋 ≤ 3).
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1. If 𝑋 ∼ B(𝑛, 𝑝), then

E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝).

With 𝑛 = 12 and 𝑝 = 0.1, we obtain

E[𝑋] = 12 × 0.1 = 1.2;

Var[𝑋] = 12 × 0.1 × 0.9 = 1.08 .

2. By definition,

𝑃(𝑋 = 3) =
(
12

3

)
(0.1)3(0.9)9 ≈ 0.0852.

3. By definition,

𝑃(𝑋 ≤ 3) =
3∑
𝑥=0

𝑃(𝑋 = 𝑥)

=

3∑
𝑥=0

(
12

𝑥

)
(0.1)𝑥(0.9)12−𝑥 .

This sum can be computed directly, however, for𝑋 ∼ B(12, 0.1),
𝑃(𝑋 ≤ 3) can also be read directly from tabulated values (as

in Figure 6.7):

Figure 6.7: Tabulated c.d.f. values for the binomial distribution with 𝑛 = 12 [source unknown].

The appropriate value ≈ 0.9744 can be found in the group

corresponding to 𝑛 = 12, in the row corresponding to 𝑥 = 3,

and in the column corresponding to 𝑝 = 0.1. The table can

also be used to compute

𝑃(𝑋 = 3) = 𝑃(𝑋 ≤ 3) − 𝑃(𝑋 ≤ 2) = 0.9744 − 0.8891 ≈ 0.0853.

An airline sells 101 tickets for a flight with 100 seats. Each passenger

with a ticket is known to have a probability 𝑝 = 0.97 of showing up

for their flight. What is the probability of 101 passengers showing

up (and the airline being caught overbooking)? Make appropriate
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assumptions. What if the airline sells 125 tickets?

Let 𝑋 be the number of passengers that show up. We want to

compute 𝑃(𝑋 > 100).

If all passengers show up independently of one another,
21

we can21: No families or late bus?

model 𝑋 ∼ B(101, 0.97) and

𝑃(𝑋 > 100) = 𝑃(𝑋 = 101)

=

(
101

101

)
(0.97)101(0.03)0 ≈ 0.046.

If the airline sells 𝑛 = 125 tickets, we can model the situation with

the binomial distribution B(125, 0.97), so that

𝑃(𝑋 > 100) = 1 − 𝑃(𝑋 ≤ 100)

= 1 −
100∑
𝑥=0

(
125

𝑥

)
(0.97)𝑥(0.03)125−𝑥 .

This sum is harder to compute directly, but is very nearly 1 (try it

with R, say).
22

22: Do these results match your intuition?

We can evaluate related probabilities in R via the base functions rbinom(),

dbinom(), etc., whose parameters are n, size, and prob.

We can draw an observation 𝑋 from a binomial distribution B(11, 0.2)
in R as follows:

rbinom(1, size=11, prob=0.2)

[1] 5

We could also replicate the process 1000 times (and extract the empirical

expectation and variance):

v<- rbinom(1000,size=11, prob=0.2)

mean(v)

var(v)

[1] 2.236

[1] 1.794098

The histogram of the sample is shown below.

brks = min(v):max(v)

hist(v, breaks = brks)
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If we change the parameters of the distribution (B(19.0.7)), we get a

different looking histogram (and a different expectation and variance).

v<- rbinom(1000,size=19, prob=0.7)

mean(v)

var(v)

[1] 13.308

[1] 4.253389

brks = min(v):max(v)

hist(v, breaks = brks)
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6.2.4 Geometric Distributions

Now consider a sequence of Bernoulli trials, with probability 𝑝 of success

at each step. Let the geometric random variable 𝑋 denote the number of

steps before the first success occurs. Its p.m.f. is given by

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝, 𝑥 = 1, 2, . . .

and we denote it by 𝑋 ∼ Geo(𝑝). For this r.v., we have

E[𝑋] = 1

𝑝
and Var[𝑋] = 1 − 𝑝

𝑝2

.

Examples

A fair 6−sided die is thrown until it shows a 6. What is the proba-

bility that 5 throws are required?

If 5 throws are required, we have to compute 𝑃(𝑋 = 5), where

𝑋 ∼ Geo(1/6):

𝑃(𝑋 = 5) = (1 − 𝑝)5−1𝑝 = (5/6)4(1/6) ≈ 0.0804.

In the example above, how many throws would you expect to need?

It’s fairly simple: E[𝑋] = 1

1/6
= 6.

23
23: Understand, however, that this does
not mean that we obtain get a 6 every 6

throws.

6.2.5 Negative Binomial Distributions

Consider now a sequence of Bernoulli trials, with probability 𝑝 of success

at each step. Let the negative binomial random variable 𝑋 denote the

number of steps before the 𝑟th success occurs. Its p.m.f. is given by

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =
(
𝑥 − 1

𝑟 − 1

)
(1 − 𝑝)𝑥−𝑟𝑝𝑟 , 𝑥 = 𝑟, 𝑟 + 1, . . .

and we denote it by 𝑋 ∼ NegBin(𝑝, 𝑟). For this r.v., we have

E[𝑋] = 𝑟

𝑝
and Var[𝑋] = 𝑟(1 − 𝑝)

𝑝2

.

Examples

A fair 6−sided die is thrown until it three 6’s are rolled. What is

the probability that 5 throws are required?

If 5 throws are required, we have to compute 𝑃(𝑋 = 5), where

𝑋 ∼ NegBin(1/6, 3):

𝑃(𝑋 = 5) =
(
5 − 1

3 − 1

)
(1 − 𝑝)5−3𝑝3 =

(
4

2

)
(5/6)2(1/6)3 ≈ 0.0193.

In the example above, how many throws would you expect to need?

This one is also fairly simple: E[𝑋] = 3

1/6
= 18.
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6.2.6 Poisson Distributions

Let us say we are counting the number of “changes” that occur in a

continuous interval of time or space.
24

24: Such as # of defects on a production

line over a 1 hr period, # of customers that

arrive at a teller over a 15 min interval, etc.We have a Poisson process with rate 𝜆, denoted by P(𝜆), if:

1. the number of changes occurring in non-overlapping intervals are

independent;
2. the probability of exactly one change in a short interval of length ℎ

is approximately 𝜆ℎ, and

3. The probability of 2+ changes in a sufficiently short interval is

essentially 0.

Assume that an experiment satisfies the above properties. Let 𝑋 be

the number of changes in a unit interval.25
What is 𝑃(𝑋 = 𝑥), for 25: This could be 1 day, or 15 minutes, or

10 years, etc.𝑥 = 0, 1, . . .? We get to the answer by first partition the unit interval into

𝑛 disjoint sub-intervals of length 1/𝑛. Then,

1. by the second condition, the probability of one change occurring

in one of the sub-intervals is approximately 𝜆/𝑛;

2. by the third condition, the probability of 2+ changes is ≈ 0, and

3. by the first condition, we have a sequence of 𝑛 Bernoulli trials with

probability 𝑝 = 𝜆/𝑛.

Therefore,

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) ≈ 𝑛!

𝑥!(𝑛 − 𝑥)!

(
𝜆
𝑛

)𝑥 (
1 − 𝜆

𝑛

)𝑛−𝑥
=

𝜆𝑥

𝑥!

· 𝑛!

(𝑛 − 𝑥)! ·
1

𝑛𝑥︸          ︷︷          ︸
term 1

·
(
1 − 𝜆

𝑛

)𝑛
︸     ︷︷     ︸

term 2

·
(
1 − 𝜆

𝑛

)−𝑥
︸      ︷︷      ︸

term 3

.

Letting 𝑛 → ∞, we obtain

𝑃(𝑋 = 𝑥) = lim

𝑛→∞
𝜆𝑥

𝑥!

· 𝑛!

(𝑛 − 𝑥)! ·
1

𝑛𝑥︸          ︷︷          ︸
term 1

·
(
1 − 𝜆

𝑛

)𝑛
︸     ︷︷     ︸

term 2

·
(
1 − 𝜆

𝑛

)−𝑥
︸      ︷︷      ︸

term 3

=
𝜆𝑥

𝑥!

· 1 · exp(−𝜆) · 1 =
𝜆𝑥𝑒−𝜆

𝑥!

, 𝑥 = 0, 1, . . .

Let 𝑋 ∼ P(𝜆). Then it can be shown that

E[𝑋] = 𝜆 and Var[𝑋] = 𝜆;

the mean and the variance of a Poisson random variable are identical!

We can compute related probabilities in R via the base functions rpois(),

dpois(), etc., with required parameters n and lambda. We start by

drawing a sample of size 1 from P(13), say, in R as follows:
26

26: No seed has been specified, so it is

conceivable that your results would be

different.

rpois(1,lambda=13)

[1] 18
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Next, we sample independently 500 times; this yields an empirical

expectation and variance.

u<-rpois(500,lambda=13)

head(u)

mean(u)

var(u)

[1] 13 12 14 12 18 9

[1] 12.874

[1] 12.92798

The sample’s histogram is shown below.

hist(u)

Examples

A traffic flow is typically modeled by a Poisson distribution. It

is known that the traffic flowing through an intersection is 6

cars/minute, on average. What is the probability of no cars enter-

ing the intersection in a 30 second period?

Note that 6 cars/min = 3 cars/30 sec. Thus 𝜆 = 3, and we need to

compute

𝑃(𝑋 = 0) = 3
0𝑒−3

0!

=
𝑒−3

1

≈ 0.0498.

A hospital needs to schedule night shifts in the maternity ward. It

is known that there are 3000 deliveries per year; if these happened

randomly round the clock,
27

we would expect 1000 deliveries27: Is this a reasonable assumption?

between the hours of midnight and 8.00 a.m., a time when much

of the staff is off-duty.
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It is thus important to ensure that the night shift is sufficiently

staffed to allow the maternity ward to cope with the workload on

any particular night, or at least, on a high proportion of nights.

The average number of deliveries per night

𝜆 = 1000/365.25 ≈ 2.74.

If the daily number 𝑋 of night deliveries follows a Poisson process

P(𝜆), we can compute the probability of delivering 𝑥 = 0, 1, 2, . . .

babies on each night.

For a Poisson distribution, the p.m.f. values 𝑓 (𝑥) are obtained via
dpois() in R.

28
28: For a general distribution, replace the

r in the rxxxxx(...) random number gen-

erators by d: dxxxxx(...).

We start by setup the Poisson distribution parameters and the

distribution’s range.
29

29: In theory, it goes to infinity, but we

have got to stop somewhere in practice.

lambda = 2.74

x=0:10

The p.m.f. and c.d.f. are shown below:

pmf=dpois(x,lambda)

cdf=ppois(x,lambda)

data.frame(x,pmf,cdf)

x pmf cdf

0 0.0645703 0.0645703

1 0.1769228 0.2414931

2 0.2423842 0.4838773

3 0.2213775 0.7052548

4 0.1516436 0.8568984

5 0.0831007 0.9399991

6 0.0379493 0.9779484

7 0.0148544 0.9928029

8 0.0050876 0.9978905

9 0.0015489 0.9994394

10 0.0004244 0.9998638

Here are the p.m.f. and c.d.f. plots:

plot(x,pmf, type="h", col=2, main="Poisson PMF",

xlab="x", ylab="f(x)=P(X=x)")

points(x,pmf, col=2)

abline(h=0, col=4)

plot(c(1,x),c(0,cdf), type="s", col=2,

main="Poisson CDF",

xlab="x", ylab="F(x)=P(X<=x)")

abline(h=0:1, col=4)
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If the maternity ward wants to prepare for the greatest possible

traffic on 80% of the nights, how many deliveries should be ex-

pected?

We seek an 𝑥 for which

𝑃(𝑋 ≤ 𝑥 − 1) ≤ 0.80 ≤ 𝑃(𝑋 ≤ 𝑥).

Let’s plot the height 𝐹(𝑥) = 0.8 on the c.d.f.:

plot(c(1,x),c(0,cdf), type="s", col=2,

main="Poisson CDF", xlab="x", ylab="F(x)=P(X<=x)")

abline(h=0:1, col=4)

abline(h=0.8, col=1)

The 𝑦 = 0.8 line crosses the CMF at 𝑥 = 4; let’s evaluate 𝐹(3) =
𝑃(𝑋 ≤ 3) and 𝐹(4) = 𝑃(𝑋 ≤ 4) to confirm that 𝐹(3) ≤ 0.8 ≤ 𝐹(4).

ppois(3,lambda)

ppois(4,lambda)

[1] 0.7052548

[1] 0.8568984

Thus, if the hospital prepares for 4 deliveries a night, they will be

ready for the worst on at least 80% of the nights.
30

30: Note that this is different than asking

how many deliveries are expected nightly

(namely, E[𝑋] = 2.74).
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On how many nights in the year would 5 or more deliveries be

expected?

We need to evaluate

365.25 · 𝑃(𝑋 ≥ 5) = 365.25(1 − 𝑃(𝑋 ≤ 4)).

365.25*(1-ppois(4,2.74))

[1] 52.26785

Thus, on roughly 14% of the nights.

Over the course of one year, what is the greatest number of deliver-

ies expected on any night?

We are looking for the largest value of 𝑥 s.t. 365.25 ·𝑃(𝑋 = 𝑥) ≥ 1.
31

The expected number of nights with each number of deliveries 31: If 365.25 · 𝑃(𝑋 = 𝑥) < 1, then the

probability of that number of deliveries is

too low to expect that we would ever see

it during the year.

can be computed using:

nights=c()

for(j in 0:10){

nights[j+1]=365.25*dpois(j,lambda)

}

rbind(0:10,nights)

[,1] [,2] [,3] [,4]

0.00000 1.00000 2.00000 3.00000

nights 23.58432 64.62103 88.53082 80.85815

[,5] [,6] [,7] [,8]

4.00000 5.00000 6.00000 7.000000

nights 55.38783 30.35253 13.86099 5.425587

[,9] [,10] [,11]

8.000000 9.000000 10.0000000

nights 1.858264 0.565738 0.1550122

The largest index is:

max(which(nights>1))-1

[1] 8

Indeed, for larger values of 𝑥, we have 365.25 · 𝑃(𝑋 = 𝑥) < 1.

365.25*dpois(8,lambda)

365.25*dpois(9,lambda)

[1] 1.858264

[1] 0.565738
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6.2.7 Other Discrete Distributions

There are numerous commonly-used discrete distributions [5]:

the Rademacher distribution, which takes values 1 and −1, each

with probability 1/2;

the beta binomial distribution, which describes the number of

successes in a series of independent Bernoulli experiments with

heterogeneity in the success probability;

the discrete uniform distribution, where all elements of a finite

set are equally likely (balanced coin, unbiased die, first card of a

well-shuffled deck, etc.);

the hypergeometric distribution, which describes the number

of successes in the first 𝑚 of a series of 𝑛 consecutive Bernoulli

experiments, if the total number of successes is known;

the Poisson binomial distribution, which describes the number of

successes in a series of independent Bernoulli experiments with

different success probabilities;

Benford’s Law, which describes the frequency of the first digit of

many naturally occurring data.

Zipf’s Law, which describes the frequency of words in the English

language;

the beta negative binomial distribution, which describes the num-

ber of failures needed to obtain 𝑟 successes in a sequence of

independent Bernoulli experiments;

etc.

6.3 Continuous Distributions

How do we approach probabilities where there there are uncountably
infinitely many possible outcomes, such as one might encounter if 𝑋

represents the height of an individual in the population, for instance (e.g.,

the outcomes reside in a continuous interval)? What is the probability

that a randomly selected person is about 6 feet tall, say?

6.3.1 Continuous Random Variables

In the discrete case, the probability mass function 𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥) was

the main object of interest. In the continuous case, the analogous role

is played by the probability density function (p.d.f.), still denoted by

𝑓𝑋(𝑥), but there is a major difference with discrete r.v.:

𝑓𝑋(𝑥) ≠ 𝑃(𝑋 = 𝑥).

The (cumulative) distribution function (c.d.f.) of any such random

variable 𝑋 is also still defined by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) ,

viewed as a function of a real variable 𝑥; however 𝑃(𝑋 ≤ 𝑥) is not simply

computed by adding a few terms of the form 𝑃(𝑋 = 𝑥𝑖).
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Note as well that

lim

𝑥→−∞
𝐹𝑋(𝑥) = 0 and lim

𝑥→+∞
𝐹𝑋(𝑥) = 1.

We can describe the distribution of the random variable 𝑋 via the

following relationship between 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥):32
32: In the continuous case, probability is

simply an application of calculus!

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥).

Area Under the Curve

For any 𝑎 < 𝑏, we have

{𝑋 ≤ 𝑏} = {𝑋 ≤ 𝑎} ∪ {𝑎 < 𝑋 ≤ 𝑏} ,

so that

𝑃 (𝑋 ≤ 𝑎) + 𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑋 ≤ 𝑏)

and thus

𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑋 ≤ 𝑏) − 𝑃 (𝑋 ≤ 𝑎) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) =
∫ 𝑏

𝑎

𝑓𝑋(𝑥) 𝑑𝑥

Probability Density Function

The probability density function (p.d.f.) of a continuous random variable

𝑋 is an integrable function 𝑓𝑋 : 𝑋(S) → ℝ such that:

𝑓𝑋(𝑥) > 0 for all 𝑥 ∈ 𝑋(S) and lim

𝑥→±∞
𝑓𝑋(𝑥) = 0;∫

S
𝑓𝑋(𝑥) 𝑑𝑥 = 1;

for any event 𝐴 = (𝑎, 𝑏) = {𝑋 | 𝑎 < 𝑋 < 𝑏},

𝑃(𝐴) = 𝑃((𝑎, 𝑏)) =
∫ 𝑏

𝑎

𝑓𝑋(𝑥) 𝑑𝑥,

and the cumulative distribution function (c.d.f.) 𝐹𝑋 is given by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡.

Unlike discrete distributions, the endpoints do not affect the probability

computations for continuous distributions: for any 𝑎, 𝑏,

𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏),

all taking the value

𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Furthermore, for any 𝑥,

𝑃(𝑥 < 𝑋) = 1 − 𝑃(𝑋 ≤ 𝑥) = 1 − 𝐹𝑋(𝑥) = 1 −
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡;
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and for any 𝑎,

𝑃 (𝑋 = 𝑎) = 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑎) =
∫ 𝑎

𝑎

𝑓𝑋(𝑥) 𝑑𝑥 = 0.

That last result explains why it is pointless to speak of the probability

of a random variable taking on a specific value in the continuous case;

rather, we are interested in ranges of values.

Examples

Assume that 𝑋 has the following p.d.f.:

𝑓𝑋(𝑥) =


0 if 𝑥 < 0

𝑥/2 if 0 ≤ 𝑥 ≤ 2

0 if 𝑥 > 2

Note that

∫
2

0

𝑓 (𝑥) 𝑑𝑥 = 1. The corresponding c.d.f. is given by:

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡

=


0 if 𝑥 < 0

1/2 ·
∫ 𝑥

0

𝑡 𝑑𝑡 = 𝑥2/4 if 0 < 𝑥 < 2

1 if 𝑥 ≥ 2

The p.d.f. and the c.d.f. for this r.v. are shown in Figure 6.8.

Figure 6.8: P.d.f. and c.d.f. for the continu-

ous r.v. 𝑋 defined above.
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What is the probability of the event 𝐴 = {𝑋 | 0.5 < 𝑋 < 1.5} if 𝑋

is the r.v. above?

We need to evaluate

𝑃(𝐴) = 𝑃(0.5 < 𝑋 < 1.5) = 𝐹𝑋(1.5) − 𝐹𝑋(0.5)

=
(1.5)2

4

− (0.5)2
4

=
1

2

.

Figure 6.9: P.d.f. and c.d.f. for the continu-

ous r.v. 𝑋 defined above, with event 𝐴.

What is the probability of the event 𝐵 = {𝑋 | 𝑋 = 1}?

We need to evaluate

𝑃(𝐵) = 𝑃(𝑋 = 1) = 𝑃(1 ≤ 𝑋 ≤ 1) = 𝐹𝑋(1) − 𝐹𝑋(1) = 0.

This is not unexpected: even though 𝑓𝑋(1) = 0.5 ≠ 0, 𝑃(𝑋 = 1) = 0,

as we saw earlier.

Assume that, for 𝜆 > 0, 𝑋 has the following p.d.f.:

𝑓𝑋(𝑥) =
{
𝜆 exp(−𝜆𝑥) if 𝑥 ≥ 0

0 if 𝑥 < 0

Verify that 𝑓𝑋 is a p.d.f. for all 𝜆 > 0, and compute the probability

that 𝑋 > 10.2.
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That 𝑓𝑋 is a p.d.f. is obvious; the only work goes into showing that∫ ∞

−∞
𝑓 (𝑥) 𝑑𝑥 =

∫ ∞

0

𝜆 exp(−𝜆𝑥) 𝑑𝑥 = lim

𝑏→∞

∫ 𝑏

0

𝜆 exp(−𝜆𝑥) 𝑑𝑥

= lim

𝑏→∞
𝜆

[
exp(−𝜆𝑥)

−𝜆

] 𝑏
0

= lim

𝑏→∞
[− exp(−𝜆𝑥)]𝑏

0

= lim

𝑏→∞
[− exp(−𝜆𝑏) + exp(0)] = 1.

The corresponding c.d.f. is given by:

𝐹𝑋(𝑥;𝜆) = 𝑃𝜆(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡 =

{
0 if 𝑥 < 0

𝜆
∫ 𝑥

0

exp(−𝜆𝑡) 𝑑𝑡 if 𝑥 ≥ 0

=

{
0 if 𝑥 < 0

[− exp(−𝜆𝑡)]𝑥
0

if 𝑥 ≥ 0

=

{
0 if 𝑥 < 0

1 − exp(−𝜆𝑥) if 𝑥 ≥ 0

Then

𝑃𝜆(𝑋 > 10.2) = 1 − 𝐹𝑋(10.2;𝜆) = 1 − [1 − exp(−10.2𝜆)] = exp(−10.2𝜆)

is a function of the distribution parameter 𝜆 itself:

𝜆 0.002 0.02 0.2 2 20 200

𝑃𝜆(𝑋 > 10.2) 0.9798 0.8155 0.13 1.38 × 10
−9

2.54 × 10
−89 ≈ 0

For 𝜆 = 0.2, for instance, the p.d.f. and c.d.f. are:

Figure 6.10: P.d.f. and c.d.f. for the r.v. 𝑋
with 𝜆 = 0.2.
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Figure 6.11: Probability of 𝑋 > 10.2 (in

blue), for 𝑋 with 𝜆 = 0.2.

Figure 6.12: Probability of 𝑋 > 10.2, for

𝑋 with 𝜆 = 2; the probability is so small

(1.38 × 10
−9

) that it cannot even be made

out in the p.d.f. (blue area).
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Note that in all cases, the shape of the p.d.f. and the c.d.f. are the same,

although the spike when 𝜆 = 2 is much higher than that when 𝜆 = 0.2 –

why must that be the case?.
33

33: This is not a general property of dis-

tributions, however, but a property of this

specific family of distributions.

6.3.2 Expectation of a Continuous Random Variables

For a continuous random variable 𝑋 with p.d.f. 𝑓𝑋(𝑥), the expectation of

𝑋 is defined as

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑥) 𝑑𝑥 .

For any function ℎ(𝑋), we can also define

E [ℎ(𝑋)] =
∫ ∞

−∞
ℎ(𝑥) 𝑓𝑋(𝑥) 𝑑𝑥 .

Examples

Find E[𝑋] and E[𝑋2] in the first example, above.

we need to evaluate

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑋) 𝑑𝑥 =

∫
2

0

𝑥 𝑓𝑋(𝑥) 𝑑𝑥

=

∫
2

0

𝑥2

2

𝑑𝑥 =

[
𝑥3

6

] 𝑥=2

𝑥=0

=
4

3

;

E[𝑋2] =
∫

2

0

𝑥3

2

𝑑𝑥 = 2.

Note that the expectation need not exist. Compute the expectation

of the random variable 𝑋 with p.d.f.

𝑓𝑋(𝑥) =
1

𝜋(1 + 𝑥2) , −∞ < 𝑥 < ∞.

let’s verify that 𝑓𝑋(𝑥) is indeed a p.d.f.:∫ ∞

−∞
𝑓𝑋(𝑥) 𝑑𝑥 =

1

𝜋

∫ ∞

−∞

1

1 + 𝑥2

𝑑𝑥

=
1

𝜋
[arctan(𝑥)]∞−∞ =

1

𝜋

[𝜋
2

+ 𝜋
2

]
= 1.

We can also easily see that

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡

=
1

𝜋

∫ 𝑥

−∞

1

1 + 𝑡2 𝑑𝑡 =
1

𝜋
arctan(𝑥) + 1

2

,

so that 𝑃(𝑋 ≤ 3) = 1

𝜋 arctan(3) + 1

2
, say (see Figure 6.13).

The expectation of 𝑋 is

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑥) 𝑑𝑥 =

∫ ∞

−∞

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥.
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Figure 6.13: P.d.f. and c.d.f. for the Cauchy

distribution, with area under the curve

𝐹(3).

If this improper integral exists, then it needs to be equal both to∫
0

−∞

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥 +
∫ ∞

0

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥︸                                            ︷︷                                            ︸
candidate 1

and to the Cauchy principal value

lim

𝑎→∞

∫ 𝑎

−𝑎

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥︸                      ︷︷                      ︸
candidate 2

.

But it is straightforward to find an antiderivative of
𝑥

𝜋(1+𝑥2) . Set

𝑢 = 1 + 𝑥2
. Then 𝑑𝑢 = 2𝑥𝑑𝑥 and 𝑥𝑑𝑥 = 𝑑𝑢

2
, and we obtain∫

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥 =
1

2𝜋

∫
𝑢 𝑑𝑢 =

1

2𝜋
ln |𝑢 | = 1

2𝜋
ln(1 + 𝑥2).

Then the candidate 2 integral reduces to

lim

𝑎→∞

[
ln(1 + 𝑥2)

2𝜋

] 𝑎
−𝑎

= lim

𝑎→∞

[
ln(1 + 𝑎2)

2𝜋
− ln(1 + (−𝑎)2)

2𝜋

]
= lim

𝑎→∞
0 = 0;

while the candidate 1 integral reduces to[
ln(1 + 𝑥2)

2𝜋

]
0

−∞
+

[
ln(1 + 𝑥2)

2𝜋

]∞
0

= 0 − (∞) +∞ − 0 = ∞−∞
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which is undefined. Thus E[𝑋] cannot not exist, as it would have

to be both equal to 0 and be undefined simultaneously.
34

34: Actually, this is not quite true: the in-

tegral for candidate 1 is undetermined of

the form ∞−∞; usually, when we reach

this point in calculus, we have to use some

other approach, such as de l’Hôpital’s rule,

to reduce the expression to a determinate

form. The real reason why the mean does

not exist is because the value of the inte-

gral for candidate 1 depends on how we

approach −∞ and ∞ for each of the con-

stituents. For instance, if the integral exists,

we should also have∫ ∞

−∞
𝑥 𝑓𝑋 (𝑥) 𝑑𝑥 = lim

𝑎→∞

∫
2𝑎

−𝑎
𝑥 𝑓𝑋 (𝑥) 𝑑𝑥.

In the Cauchy case, that second integral

can be shown to take on the value ln 2/𝜋,

which is different from the principal value

0; hence, the integral does not exist, which

is to say, the mean of the Cauchy r.v. does

not exist.

Mean and Variance

Similarly to the discrete case, the mean of 𝑋 is defined to be E[𝑋], and

the variance and standard deviation of 𝑋 are, as before,

Var[𝑋] def

= E

[
(𝑋 − E[𝑋])2

]
= E[𝑋2] − E

2[𝑋] ,

SD[𝑋] =
√

Var[𝑋] .

As in the discrete case, if 𝑋,𝑌 are continuous random variables, and

𝑎, 𝑏 ∈ ℝ, then

E[𝑎𝑌 + 𝑏𝑋] = 𝑎E[𝑌] + 𝑏E[𝑋]
Var[𝑎 + 𝑏𝑋] = 𝑏2

Var[𝑋]
SD[𝑎 + 𝑏𝑋] = |𝑏 |SD[𝑋]

The interpretations of the mean as a measure of centrality and of the

variance as a measure of dispersion still apply in the continuous case.

For the time being, however, we cannot easily compute the variance of a

sum 𝑋 + 𝑌, unless 𝑋 and 𝑌 are independent random variables:

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌].

6.3.3 Normal Distributions

A very important example of a continuous distribution is that provided

by the special probability distribution function

𝜙(𝑧) = 1√
2𝜋
𝑒−𝑧

2/2 .

The corresponding cumulative distribution function is denoted by

Φ(𝑧) = 𝑃(𝑍 ≤ 𝑧) =
∫ 𝑧

−∞
𝜙(𝑡) 𝑑𝑡 .

A random variable 𝑍 with this c.d.f. is said to have a standard normal
distribution, denoted by 𝑍 ∼ N(0, 1).

Figure 6.14: P.d.f. and c.d.f. for the stan-

dard normal distribution.
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Standard Normal Random Variable

The expectation and variance of 𝑍 ∼ N(0, 1) are

E[𝑍] =
∫ ∞

−∞
𝑧 𝜙(𝑧) 𝑑𝑧 =

∫ ∞

−∞
𝑧

1√
2𝜋
𝑒−

1

2
𝑧2

𝑑𝑧 = 0,

Var[𝑍] =
∫ ∞

−∞
𝑧2 𝜙(𝑧) 𝑑𝑧 = 1,

SD[𝑍] =
√

Var[𝑍] =
√

1 = 1.

Other quantities of interest include:

Φ(0) = 𝑃(𝑍 ≤ 0) = 1

2

, Φ(−∞) = 0, Φ(∞) = 1,

Φ(1) = 𝑃(𝑍 ≤ 1) ≈ 0.8413, etc.

Normal Random Variables

Let 𝜎 > 0 and 𝜇 ∈ ℝ. If 𝑍 ∼ N(0, 1) and 𝑋 = 𝜇 + 𝜎𝑍, then

𝑋 − 𝜇

𝜎
= 𝑍 ∼ N(0, 1).

Thus, the c.d.f. of 𝑋 is given by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝜇 + 𝜎𝑍 ≤ 𝑥) = 𝑃
(
𝑍 ≤ 𝑥 − 𝜇

𝜎

)
= Φ

( 𝑥 − 𝜇

𝜎

)
;

its p.d.f. must then be

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥) =

𝑑

𝑑𝑥
Φ

( 𝑥 − 𝜇

𝜎

)
=

1

𝜎
𝜙

( 𝑥 − 𝜇

𝜎

)
.

Any random variable 𝑋 with this c.d.f./p.d.f. satisfies

E[𝑋] = 𝜇 + 𝜎E[𝑍] = 𝜇,

Var[𝑋] = 𝜎2

Var[𝑍] = 𝜎2 ,

SD[𝑋] = 𝜎

and is said to be normal with mean 𝜇 and variance 𝜎2
, denoted by

𝑋 ∼ N(𝜇, 𝜎2). As it happens, every general normal 𝑋 can be obtained by

a linear transformation of the standard normal 𝑍.

Traditionally, probability computations for normal distributions are done

with tables which compile values of the standard normal distribution

c.d.f., such as the one found in [4] or at ztable.net . With the advent of

freely-available statistical software, the need for tabulated values had

decreased.
35

35: Although it would still be a good idea

to learn how to read and use them.

In R, the standard normal c.d.f. 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) can be computed with

the function pnorm(z) – for instance, pnorm(0)=0.5.
36

36: In the examples that follow, whenever

𝑃(𝑍 ≤ 𝑎) is evaluated for some 𝑎, the

value is found either by consulting a table

or using pnorm.Examples

Let 𝑍 represent the standard normal random variable. Then:

https://www.ztable.net/
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1. 𝑃(𝑍 ≤ 0.5) = 0.6915

2. 𝑃(𝑍 < −0.3) = 0.3821

3. 𝑃(𝑍 > 0.5) = 1 − 𝑃(𝑍 ≤ 0.5) = 1 − 0.6915 = 0.3085

4. 𝑃(0.1 < 𝑍 < 0.3) = 𝑃(𝑍 < 0.3) − 𝑃(𝑍 < 0.1) = 0.0781

5. 𝑃(−1.2 < 𝑍 < 0.3) = 𝑃(𝑍 < 0.3) − 𝑃(𝑍 < −1.2) = 0.5028

Suppose that the waiting time (in minutes) in a coffee shop at 9am

is normally distributed with mean 5 and standard deviation 0.5.
37

37: In theory, this cannot be the true

model as this would imply that some of the

wait times could be negative, but it may

nevertheless be an acceptable assumption

in practice.

What is the probability that the waiting time for a customer is at

most 6 minutes?

Let 𝑋 denote the waiting time. Then 𝑋 ∼ N(5, 0.52) and the

standardised random variable is a standard normal:

𝑍 =
𝑋 − 5

0.5
∼ N(0, 1) .

The desired probability is

𝑃 (𝑋 ≤ 6) = 𝑃
(
𝑋 − 5

0.5
≤ 6 − 5

0.5

)
= 𝑃

(
𝑍 ≤ 6 − 5

0.5

)
= Φ

(
6 − 5

0.5

)
= Φ(2) = 𝑃(𝑍 ≤ 2) ≈ 0.9772.

Suppose that bottles of beer are filled in such a way that the actual

volume of the liquid content (in mL) varies randomly according to

a normal distribution with 𝜇 = 376.1 and 𝜎 = 0.4.
38

What is the38: The statement from the previous side-

note applies here as well – we will assume

that this is understood from this point

onward.

probability that the volume in any randomly selected bottle is less

than 375mL?

Let 𝑋 denote the volume of the liquid in the bottle. Then

𝑋 ∼ N(376.1, 0.42) =⇒ 𝑍 =
𝑋 − 376.1

0.4
∼ N(0, 1) .

The desired probability is thus

𝑃 (𝑋 < 375) = 𝑃
(
𝑋 − 376.1

0.4
<

375 − 376.1

0.4

)
= 𝑃

(
𝑍 <

−1.1

0.4

)
= 𝑃(𝑍 ≤ −2.75) = Φ (−2.75) ≈ 0.003 .

If 𝑍 ∼ N(0, 1), for which values 𝑎, 𝑏 and 𝑐 do:

1. 𝑃(𝑍 ≤ 𝑎) = 0.95?

From the table (or R) we see that

𝑃(𝑍 ≤ 1.64) ≈ 0.9495, 𝑃(𝑍 ≤ 1.65) ≈ 0.9505 .

Clearly we must have 1.64 < 𝑎 < 1.65; a linear interpolation

provides a decent guess at 𝑎 ≈ 1.645.

This level of precision is usually not necessary – it is often suf-
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ficient to simply present the interval estimate: 𝑎 ∈ (1.64, 1.65)
2. 𝑃(|𝑍 | ≤ 𝑏) = 𝑃(−𝑏 ≤ 𝑍 ≤ 𝑏) = 0.99?

Note that

𝑃 (−𝑏 ≤ 𝑍 ≤ 𝑏) = 𝑃(𝑍 ≤ 𝑏) − 𝑃(𝑍 < −𝑏)

However the p.d.f. 𝜙(𝑧) is symmetric about 𝑧 = 0, which

means that

𝑃(𝑍 < −𝑏) = 𝑃(𝑍 > 𝑏) = 1 − 𝑃(𝑍 ≤ 𝑏),

and so that

𝑃 (−𝑏 ≤ 𝑍 ≤ 𝑏) = 𝑃(𝑍 ≤ 𝑏) − [1 − 𝑃(𝑍 ≤ 𝑏)]
= 2𝑃(𝑍 ≤ 𝑏) − 1

In the question, 𝑃(−𝑏 ≤ 𝑍 ≤ 𝑏) = 0.99, so that

2𝑃(𝑍 ≤ 𝑏) − 1 = 0.99 =⇒ 𝑃(𝑍 ≤ 𝑏) = 1 + 0.99

2

= 0.995 .

Consulting the table we see that

𝑃(𝑍 ≤ 2.57) ≈ 0.9949, 𝑃(𝑍 ≤ 2.58) ≈ 0.9951;

a linear interpolation suggests that 𝑏 ≈ 2.575.

3. 𝑃(|𝑍 | ≥ 𝑐) = 0.01?

Note that {|𝑍 | ≥ 𝑐} = {|𝑍 | < 𝑐}𝑐 , so we need to find 𝑐 such

that

𝑃 (|𝑍 | < 𝑐) = 1 − 𝑃 (|𝑍 | ≥ 𝑐) = 0.99.

But this is equivalent to

𝑃 (−𝑐 < 𝑍 < 𝑐) = 𝑃(−𝑐 ≤ 𝑍 ≤ 𝑐) = 0.99

as |𝑥 | < 𝑦 ⇔ −𝑦 < 𝑥 < 𝑦, and 𝑃(𝑍 = 𝑐) = 0 for all 𝑐. This

problem was solved in part b); set 𝑐 ≈ 2.575.

Normally distributed numbers can be generated by rnorm() in R, which

accepts three parameters: n, mean, and sd. The default parameter values

are mean=0 and sd=1.

We can draw a single number from N(0, 1) as follows:
39

39: Note: no seed is provided, so results

may vary.

rnorm(1)

[1] -0.2351372

We can generate a histogram of a sample of size 500, say, from N(0, 1) as

follows:

z<-rnorm(500)

hist(z)
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A histogram with 20 bins is shown below:

brks = seq(min(z),max(z),(max(z)-min(z))/20)

hist(z, breaks = brks)

For normal distributions with mean 𝜇 and standard deviation 𝜎, we need

to modify the call to rnorm().

For instance, we can draw 5000 observations from N(−2, 32) using the

following code:

w<-rnorm(5000, sd=3, mean=-2)

mean(w)

sd(w)

[1] -1.943782

[1] 2.920071
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A histogram with 50 bins is displayed below:

brks = seq(min(w),max(w),(max(w)-min(w))/50)

hist(w, breaks = brks)

6.3.4 Exponential Distributions

Assume that cars arrive according to a Poisson process with rate 𝜆, that

is, the number of cars arriving within a fixed unit time period is a Poisson

random variable with parameter 𝜆.

Over a period of time 𝑥, we would then expect the number of arrivals 𝑁

to follow a Poisson process with parameter 𝜆𝑥. Let 𝑋 be the wait time to

the first car arrival. Then

𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑁 = 0) = exp(−𝜆𝑥).

We say that 𝑋 follows an exponential distribution Exp(𝜆):

𝐹𝑋(𝑥) =
{

0 for 𝑥 < 0

1 − 𝑒−𝜆𝑥 for 0 ≤ 𝑥
and 𝑓𝑋(𝑥) =

{
0 for 𝑥 < 0

𝜆𝑒−𝜆𝑥 for 0 ≤ 𝑥

Note that 𝑓𝑋(𝑥) = 𝐹′
𝑋
(𝑥) for all 𝑥.

If 𝑋 ∼ Exp(4), then 𝑃(𝑋 < 0.5) = 𝐹𝑋(0.5) = 1 − 𝑒−4(0.5) ≈ 0.865 is the

area of the shaded region in Figure 6.15.

Properties

If 𝑋 ∼ Exp(𝜆), then:

𝜇 = E[𝑋] = 1/𝜆, since

𝜇 =

∫ ∞

0

𝑥𝜆𝑒−𝜆𝑥 𝑑𝑥 =

[
−𝜆𝑥 + 1

𝜆
𝑒−𝜆𝑥

]∞
0

=

[
0 + 𝜆(0) + 1

𝜆
𝑒−0

]
=

1

𝜆
;
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Figure 6.15: P.d.f. and c.d.f. for the expo-

nential distribution. with parameter

𝑙𝑎𝑚𝑏𝑑𝑎 = 4 [source unknown].

𝜎2 = Var[𝑋] = 1/𝜆2
, since

𝜎2 =

∫ ∞

0

(𝑥 − E[𝑋])2 𝜆𝑒−𝜆𝑥 𝑑𝑥 =

∫ ∞

0

(
𝑥 − 1

𝜆

)
2

𝜆𝑒−𝜆𝑥 𝑑𝑥

=

[
−𝜆2𝑥2 + 1

𝜆2

𝑒−𝜆𝑥
]∞

0

=

[
0 + 𝜆2(0)2 + 1

𝜆2

𝑒−0

]
=

1

𝜆2

;

and 𝑃(𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠), for all 𝑠, 𝑡 > 0, since

𝑃(𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠 + 𝑡 and 𝑋 > 𝑡)
𝑃(𝑋 > 𝑡)

=
𝑃(𝑋 > 𝑠 + 𝑡)
𝑃(𝑋 > 𝑡) =

1 − 𝐹𝑋(𝑠 + 𝑡)
1 − 𝐹𝑋(𝑡)

=
exp(−𝜆(𝑠 + 𝑡))

exp(−𝜆𝑡)
= exp(−𝜆𝑠) = 𝑃(𝑋 > 𝑠).

Among continuous r.v., only exponential distributions satisfy this memo-
ryless property; geometric distributions are the only memoryless discrete

r.v., which makes, In a sense, Exp(𝜆) the continuous counterpart of

Geo(𝑝).

Example The lifetime of a certain type of light bulb follows an exponen-

tial distribution whose mean is 100 hours (i.e. 𝜆 = 1/100).

What is the probability that a light bulb will last at least 100 hours?

Since 𝑋 ∼ Exp(1/100), we have

𝑃(𝑋 > 100) = 1 − 𝑃(𝑋 ≤ 100) = exp(−100/100) ≈ 0.37.

Given that a light bulb has already been burning for 100 hours,

what is the probability that it will last at least 100 hours more?

We seek 𝑃(𝑋 > 200 | 𝑋 > 100). By the memory-less property,

𝑃(𝑋 > 200 | 𝑋 > 100) = 𝑃(𝑋 > 200 − 100) = 𝑃(𝑋 > 100) ≈ 0.37.

The manufacturer wants to guarantee that their light bulbs will last

at least 𝑡 hours. What should 𝑡 be in order to ensure that 90% of
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the light bulbs will last longer than 𝑡 hours?

We need to find 𝑡 such that 𝑃(𝑋 > 𝑡) = 0.9. In other words, we are

looking for 𝑡 such that

0.9 = 𝑃(𝑋 > 𝑡) = 1 − 𝑃(𝑋 ≤ 𝑡) = 1 − 𝐹𝑋(𝑡) = 𝑒−0.01𝑡 ,

that is,

ln 0.9 = −0.01𝑡 =⇒ 𝑡 = −100 ln 0.9 ≈ 10.5 hours.

Exponentially distributed numbers are generated by rexp() in R, with

required parameters n and rate.

We can draw from Exp(100) as follows:
40

40: This is the last time we mention that

these are seedless (pseudo-)random num-

bers.

rexp(1,100)

[1] 0.0009430804

If we repeat the process 1000 times, the empirical mean and variance

are:

q<-rexp(1000,100)

mean(q)

var(q)

[1] 0.01029523

[1] 0.000102973

The histogram is displayed below:

hist(q)
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6.3.5 Gamma Distributions

Assume that cars arrive according to a Poisson process with rate 𝜆. Recall

that if 𝑋 is the time to the first car arrival, then 𝑋 ∼ Exp(𝜆).

If 𝑌 is the wait time to the 𝑟th arrival, then 𝑌 follows a Gamma distribu-
tion with parameters 𝜆, 𝑟, denoted 𝑌 ∼ Γ(𝜆, 𝑟), for which the p.d.f. is

𝑓𝑌(𝑦) =
{

0 for 𝑦 < 0

𝑦𝑟−1

06(𝑟−1)!𝜆
𝑟 𝑒−𝜆𝑦 for 𝑦 ≥ 0

The c.d.f. 𝐹𝑌(𝑦) exists – it is the area under 𝑓𝑌 from 0 to 𝑦 – but it cannot

be expressed with elementary functions.

We can also show that

𝜇 = E[𝑌] = 𝑟

𝜆
and 𝜎2 = Var[𝑌] = 𝑟

𝜆2

.

Examples

Suppose that an average of 30 customers per hour arrive at a shop in

accordance with a Poisson process, that is to say, 𝜆 = 1/2 customers

arrive on average every minute. What is the probability that the

shopkeeper will wait more than 5 minutes before both of the first

two customers arrive?

Let 𝑌 denote the wait time in minutes until the second customer

arrives. Then 𝑌 ∼ Γ(1/2, 2) and

𝑃(𝑌 > 5) =
∫ ∞

5

𝑦2−1

(2 − 1)! (1/2)2𝑒−𝑦/2 𝑑𝑦 =

∫ ∞

5

𝑦𝑒−𝑦/2

4

𝑑𝑦

=
1

4

[
−2𝑦𝑒−𝑦/2 − 4𝑒−𝑦/2

]∞
5

=
7

2

𝑒−5/2 ≈ 0.287.

Telephone calls arrive at a switchboard at a mean rate of 𝜆 = 2

per minute, according to a Poisson process. Let 𝑌 be the waiting

time until the 5th call arrives. What is the p.d.f., the mean, and the

variance of 𝑌?

We have

𝑓𝑌(𝑦) =
2

5𝑦4

4!

𝑒−2𝑦 , for 0 ≤ 𝑦 < ∞,

E[𝑌] = 5

2

, Var[𝑌] = 5

4

.

The Gamma distribution can be extended to cases where 𝑟 > 0 is not an

integer by replacing (𝑟 − 1)! by

Γ(𝑟) =
∫ ∞

0

𝑡𝑟−1𝑒−𝑡 𝑑𝑡.

The exponential and the 𝜒2
distributions (we will discuss the latter

later) are special cases of the Gamma distribution: Exp(𝜆) = Γ(𝜆, 1) and

𝜒2(𝑟) = Γ(1/2, 𝑟).

Gamma distributed numbers are generated by rgamma(), with required

parameters n, shape, and scale.
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We can draw from a Γ(2, 3) distribution, for example, using:

rgamma(1,shape=2,scale=1/3)

[1] 2.249483

This can be repeated 1000 times, say, and we get the empirical mean and

variance:

q<-rgamma(1000,shape=2, scale=1/3)

mean(q)

var(q)

[1] 0.6663675

[1] 0.2205931

The corresponding histogram is displayed below:

hist(q)

6.3.6 Approximation of the Binomial Distribution

If 𝑋 ∼ B(𝑛, 𝑝) then we may interpret 𝑋 as a sum of independent and
identically distributed random variables

𝑋 = 𝐼1 + 𝐼2 + · · · + 𝐼𝑛 where each 𝐼𝑖 ∼ B(1, 𝑝) .

Thus, according to the Central Limit Theorem,
41

for large 𝑛 we have 41: We will have more to say on this crucial

topic in Section 6.5.

𝑋 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

approx∼ N(0, 1) ;

for large 𝑛 if 𝑋
exact∼ B(𝑛, 𝑝) then 𝑋

approx∼ N(𝑛𝑝, 𝑛𝑝(1 − 𝑝)).
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Normal Approximation with Continuity Correction

When 𝑋 ∼ B(𝑛, 𝑝), we know that E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝). If

𝑛 is large, we may approximate 𝑋 by a normal random variable in the

following way:

𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 < 𝑥 + 0.5) = 𝑃
(
𝑍 <

𝑥 − 𝑛𝑝 + 0.5√
𝑛𝑝(1 − 𝑝)

)
and

𝑃(𝑋 ≥ 𝑥) = 𝑃(𝑋 > 𝑥 − 0.5) = 𝑃
(
𝑍 >

𝑥 − 𝑛𝑝 − 0.5√
𝑛𝑝(1 − 𝑝)

)
.

The continuity correction terms are the corresponding ±0.5 in the

expressions – they are required.

Example Suppose 𝑋 ∼ B(36, 0.5). Provide a normal approximation to

the probability 𝑃(𝑋 ≤ 12).42
42: The binomial probabilities are not

typically available in textbooks (or on-

line) for 𝑛 = 36, although they could

be computed directly in R, such as with

pbinom(12,26,0.5)=0.0326.

The expectation and the variance of a binomial r.v. are known:

E[𝑋] = 36(0.5) = 18 and Var[𝑋] = 36(0.5)(1 − 0.5) = 9,

and so

𝑃(𝑋 ≤ 12) = 𝑃
(
𝑋 − 18

3

≤ 12 − 18 + 0.5

3

)
norm.approx’n

≈ Φ(−1.83) table≈ 0.033 .

Computing Binomial Probabilities

There are thus at least four ways of computing (or approximating)

binomial probabilities:

using the exact formula – if 𝑋 ∼ B(𝑛, 𝑝), then we have 𝑃(𝑋 = 𝑥) =(𝑛
𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 for each 𝑥 = 0, 1, . . . , 𝑛;

using tables – if 𝑛 ≤ 15 and 𝑝 is one of 0.1, . . . , 0.9, then the

corresponding c.d.f. can be found in many textbooks (we must first

express the desired probability in terms of the c.d.f. 𝑃(𝑋 ≤ 𝑥)),
such as in

𝑃(𝑋 < 3) = 𝑃(𝑋 ≤ 2);
𝑃(𝑋 = 7) = 𝑃(𝑋 ≤ 7) − 𝑃(𝑋 ≤ 6) ;

𝑃(𝑋 > 7) = 1 − 𝑃(𝑋 ≤ 7);
𝑃(𝑋 ≥ 5) = 1 − 𝑃(𝑋 ≤ 4), etc.

using statistical software (pbinom() in R, say), and

using the normal approximation when 𝑛𝑝 and 𝑛(1 − 𝑝) are both

≥ 5:

𝑃(𝑋 ≤ 𝑥) ≈ Φ

(
𝑥 + 0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
;

𝑃(𝑋 ≥ 𝑥) ≈ 1 −Φ

(
𝑥 − 0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
.
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6.3.7 Other Continuous Distributions

Some other common continuous distributions are listed in [5]:

the Beta distribution, a family of 2-parameter distributions with

one mode and which is useful to estimate success probabilities

(special cases: uniform, arcsine, PERT distributions);

the logit-normal distribution on (0, 1), which is used to model

proportions;

the Kumaraswamy distribution, which is used in simulations in

lieu of the Beta distribution (as it has a closed form c.d.f.);

the triangular distribution, which is typically used as a subjective

description of a population for which there is only limited sample

data (it is based on a knowledge of the minimum and maximum

and a guess of the mode);

the chi-squared distribution, which is the sum of the squares of 𝑛

independent normal random variables, is used in goodness-of-fit

tests in statistics;

the 𝐹−distribution, which is the ratio of two chi-squared random

variables, used in the analysis of variance;

the Erlang distribution is the distribution of the sum of 𝑘 indepen-

dent and identically distributed exponential random variables, and

it is used in queueing models (it is a special case of the Gammma

distribution);

the Pareto distribution, which is used to describe financial data

and critical behavior;

Student’s 𝑇 statistic, which arise when estimating the mean of a

normally-distributed population in situations where the sample

size is small and the population’s standard deviation is unknown;

the logistic distribution, whose cumulative distribution function is

the logistic function;

the log-normal distribution, which describing variables that are

the product of many small independent positive variables;

etc.

6.4 Joint Distributions

Let 𝑋 , 𝑌 be two continuous random variables. The joint probability dis-
tribution function (joint p.d.f.) of 𝑋,𝑌 is a function 𝑓 (𝑥, 𝑦) satisfying:

1. 𝑓 (𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦;

2.

∫ ∞
−∞

∫ ∞
−∞ 𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = 1, and

3. 𝑃(𝐴) =
∬
𝐴
𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦, where 𝐴 ⊆ ℝ2

.

For a discrete variable, the properties are the same, except that we replace

integrals by sums, and we add a property to the effect that 𝑓 (𝑥, 𝑦) ≤ 1

for all 𝑥, 𝑦.

Property 3 implies that 𝑃(𝐴) is the volume of the solid over the region 𝐴

in the 𝑥𝑦 plane bounded by the surface 𝑧 = 𝑓 (𝑥, 𝑦).
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Examples

Roll a pair of unbiased dice. For each of the 36 possible outcomes,

let 𝑋 denote the smaller roll, and 𝑌 the larger roll (taken from [1]).

1. How many outcomes correspond to the event

𝐴 = {(𝑋 = 2, 𝑌 = 3)}?

The rolls (3, 2) and (2, 3) both give rise to event 𝐴.

2. What is 𝑃(𝐴)?

There are 36 possible outcomes, so 𝑃(𝐴) = 2

36
≈ 0.0556.

3. What is the joint p.m.f. of 𝑋,𝑌?

Only one outcome, (𝑋 = 𝑎, 𝑌 = 𝑎), gives rise to the event

{𝑋 = 𝑌 = 𝑎}. For every other event {𝑋 ≠ 𝑌}, two outcomes

do the trick: (𝑋,𝑌) and (𝑌, 𝑋). The joint p.m.f. is thus

𝑓 (𝑥, 𝑦) =
{

1/36 1 ≤ 𝑥 = 𝑦 ≤ 6

2/36 1 ≤ 𝑥 < 𝑦 ≤ 6

The first property is automatically satisfied, as is the third (by

construction). There are only 6 outcomes for which 𝑋 = 𝑌,

all the remaining outcomes (of which there are 15) have𝑋 < 𝑌.

Thus,

6∑
𝑥=1

6∑
𝑦=𝑥

𝑓 (𝑥, 𝑦) = 6 · 1

36

+ 15 · 2

36

= 1.

4. Compute 𝑃(𝑋 = 𝑎) and 𝑃(𝑌 = 𝑏), for 𝑎, 𝑏 = 1, . . . , 6.

For every 𝑎 = 1, . . . , 6, {𝑋 = 𝑎} corresponds to the following

union of events:

{𝑋 = 𝑎, 𝑌 = 𝑎}∪{𝑋 = 𝑎, 𝑌 = 𝑎 + 1} ∪ · · · ∪ {𝑋 = 𝑎, 𝑌 = 6}.

These events are mutually exclusive, so that

𝑃(𝑋 = 𝑎) =
6∑
𝑦=𝑎

𝑃({𝑋 = 𝑎, 𝑌 = 𝑦})

=
1

36

+
6∑

𝑦=𝑎+1

2

36

=
1

36

+ 2(6 − 𝑎)
36

, 𝑎 = 1, . . . , 6.

Similarly, we get

𝑃(𝑌 = 𝑏) = 1

36

+ 2(𝑏 − 6)
36

, 𝑏 = 1, . . . , 6.

These marginal probabilities can be found in the margins of

the p.m.f.

5. Compute 𝑃(𝑋 = 3 | 𝑌 > 3), 𝑃(𝑌 ≤ 3 | 𝑋 ≥ 4).
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The notation suggests how to compute these conditional
probabilities:

𝑃(𝑋 = 3 | 𝑌 > 3) = 𝑃(𝑋 = 3 ∩ 𝑌 > 3)
𝑃(𝑌 > 3)

𝑃(𝑌 = 3 | 𝑋 ≥ 4) = 𝑃(𝑌 = 3 ∩ 𝑋 ≥ 4)
𝑃(𝑋 ≥ 4)

The region corresponding to 𝑃(𝑌 > 3) = 27

36
is shaded in red

(see Figure 6.16); the region corresponding to 𝑃(𝑋 = 3) = 7

36

is shaded in blue. The region corresponding to

𝑃(𝑋 = 3 ∩ 𝑌 > 3) = 6

36

is the intersection of the regions:

𝑃(𝑋 = 3 | 𝑌 > 3) = 6/36

27/36

=
6

27

≈ 0.2222.

As 𝑃(𝑌 ≤ 3 ∩ 𝑋 ≥ 4) = 0, 𝑃(𝑌 ≤ 3 | 𝑋 ≥ 4) = 0.

Figure 6.16: Conditional and marginal

probabilities in the dice example [1].

6. Are 𝑋 and 𝑌 independent?

Why didn’t we simply use the multiplicative rule to compute

𝑃(𝑋 = 3 ∩ 𝑌 > 3) = 𝑃(𝑋 = 3)𝑃(𝑌 > 3)?

It’s because 𝑋 and 𝑌 are not independent, that is, it is not

always the case that

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦)

for all allowable 𝑥, 𝑦. Indeed, 𝑃(𝑋 = 1, 𝑌 = 1) = 1

36
, but

𝑃(𝑋 = 1)𝑃(𝑌 = 1) = 11

36

· 1

36

≠
1

36

,

so 𝑋 and 𝑌 are dependent.43
43: This is often the case when the domain

of the joint p.d.f./p.m.f. is not rectangular.
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There are 8 similar chips in a bowl: three marked (0, 0), two marked

(1, 0), two marked (0, 1) and one marked (1, 1). A player selects a

chip at random and is given the sum of the two coordinates, in

dollars (taken from [1]).

1. What is the joint probability mass function of 𝑋1, and 𝑋2?

Let 𝑋1 and 𝑋2 represent the coordinates; we have

𝑓 (𝑥1 , 𝑥2) =
3 − 𝑥1 − 𝑥2

8

, 𝑥1 , 𝑥2 = 0, 1.

2. What is the expected pay-off for this game?

The pay-off is simply 𝑋1 + 𝑋2. The expected pay-off is thus

E[𝑋1 + 𝑋2] =
1∑

𝑥1=0

0∑
𝑥2=1

(𝑥1 + 𝑥2) 𝑓 (𝑥1 , 𝑥2)

= 0 · 3

8

+ 1 · 2

8

+ 1 · 2

8

+ 2 · 1

8

= 0.75.

Let 𝑋 and 𝑌 have joint p.d.f.

𝑓 (𝑥, 𝑦) = 2, 0 ≤ 𝑦 ≤ 𝑥 ≤ 1.

1. What is the support of 𝑓 (𝑥, 𝑦)?

The support is the set 𝑆 = {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ 𝑥 ≤ 1}, a triangle

in the 𝑥𝑦 plane bounded by the 𝑥−axis, the line 𝑥 = 1, and

the line 𝑦 = 𝑥.

The support is the blue triangle shown in Figure 6.17.

Figure 6.17: Support for the joint distribu-

tion of 𝑋 and 𝑌 in the above example.
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2. What is 𝑃(0 ≤ 𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 0.5)?

We need to evaluate the integral over the shaded area:

𝑃(0 ≤𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 0.5) = 𝑃(0 ≤ 𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 𝑋)

=

∫
0.5

0

∫ 𝑥

0

2 𝑑𝑦𝑑𝑥 =

∫
0.5

0

[2𝑦]𝑦=𝑥𝑦=0
𝑑𝑥 =

∫
0.5

0

2𝑥 𝑑𝑥 = 1/4.

3. What are the marginal probabilities 𝑃(𝑋 = 𝑥) and 𝑃(𝑌 = 𝑦)?

For 0 ≤ 𝑥 ≤ 1, we get

𝑃(𝑋 = 𝑥) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦) 𝑑𝑦 =

∫ 𝑦=𝑥

𝑦=0

2 𝑑𝑦 = [2𝑦]𝑦=𝑥𝑦=0
= 2𝑥,

and for 0 ≤ 𝑦 ≤ 1,

𝑃(𝑌 = 𝑦) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦) 𝑑𝑥 =

∫ 𝑥=1

𝑥=𝑦

2 𝑑𝑥 = [2𝑥]𝑥=1

𝑥=𝑦 = 2 − 2𝑦.

4. Compute E[𝑋], E[𝑌], E[𝑋2], E[𝑌2], and E[𝑋𝑌].

We have

E[𝑋] =
∬

𝑆

𝑥 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫ 𝑥

0

2𝑥 𝑑𝑦𝑑𝑥

=

∫
1

0

[2𝑥𝑦]𝑦=𝑥𝑦=0
𝑑𝑥 =

∫
1

0

2𝑥2 𝑑𝑥 =

[
2

3

𝑥3

]
1

0

=
2

3

;

E[𝑌] =
∬

𝑆

𝑦 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫
1

𝑦

2𝑦 𝑑𝑥𝑑𝑦

=

∫
1

0

[2𝑥𝑦]𝑥=1

𝑥=𝑦 𝑑𝑦 =

∫
1

0

(2𝑦 − 2𝑦2) 𝑑𝑦 =

[
𝑦2 − 2

3

𝑦3

]
1

0

=
1

3

;

E[𝑋2] =
∬

𝑆

𝑥2 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫ 𝑥

0

2𝑥2 𝑑𝑦𝑑𝑥

=

∫
1

0

[
2𝑥2𝑦

] 𝑦=𝑥
𝑦=0

𝑑𝑥 =

∫
1

0

2𝑥3 𝑑𝑥 =

[
1

2

𝑥4

]
1

0

=
1

2

;

E[𝑌2] =
∬

𝑆

𝑦2 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫
1

𝑦

2𝑦2 𝑑𝑥𝑑𝑦

=

∫
1

0

[
2𝑥𝑦2

] 𝑥=1

𝑥=𝑦
𝑑𝑦 =

∫
1

0

(2𝑦 − 2𝑦3) 𝑑𝑦 =

[
2

3

𝑦3 − 1

2

𝑦4

]
1

0

=
1

6

;

E[𝑋𝑌] =
∬

𝑆

𝑥𝑦 𝑓 (𝑥, 𝑦) =
∫

1

0

∫ 𝑥

0

2𝑥𝑦 𝑑𝑦𝑑𝑥

=

∫
2

0

[
𝑥𝑦2

] 𝑦=𝑥
𝑦=0

=

∫
1

0

𝑥2 𝑑𝑥 =

[
𝑥4

4

]
1

0

=
1

4

.

5. Are 𝑋 and 𝑌 independent?

They are not, as the support of the joint p.d.f. is not rectangular.
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The covariance of two random variables𝑋 and𝑌 can give some indication

of how they depend on one another:

Cov(𝑋,𝑌) = E[(𝑋 − E[𝑋])(𝑌 − E[𝑌])] = E[𝑋𝑌] − E[𝑋]E[𝑌].

When𝑋 = 𝑌, the covariance reduces to the variance.
44

In the last example,44: Note that the covariance could be neg-

ative, unlike the variance.
for instance, we have: Var[𝑋] = 1

2
− ( 2

3
)2 = 1

18
, Var[𝑋] = 1

6
− ( 1

3
)2 = 1

18
,

and Cov(𝑋,𝑌) = 1

4
− 2

3
· 1

3
= 1

36
.
45

45: We will use the covariance again in

Chapters 8 and 10.

In R, we can generate a multivariate joint normal via MASS’s mvrnorm(),

whose required paramters are n, a mean vector mu and a covariance

matrix Sigma.

We look at two standard bivariate joint normals.

mu1 = c(0,0); mu2 = c(-3,12)

Sigma1 = matrix(c(1,0,0,1),2,2)

Sigma2 = matrix(c(110,15,15,3),2,2)

We sample 1000 observations from each joint normal.

library(MASS)

a1<-mvrnorm(1000,mu1,Sigma1)

a1<-data.frame(a1)

a2<-mvrnorm(1000,mu2,Sigma2)

a2<-data.frame(a2)

What would you expect to see when we plot the data? In the first case,

the covariance matrix is the identity (diagonal), so we expect the blob

to be circular; in the second case, we have a non-diagonal covariance

matrix, which stretches the blob.
46

46: The blob will have a “positive” slope

since Cov(𝑋,𝑌) = 15 > 0.

library(ggplot2)

library(hexbin)

qplot(X1, X2, data=a1, geom="hex")

qplot(X1, X2, data=a, geom="hex") +

ylim(-40,40) + xlim(-40,40)
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6.5 Central Limit Theorem and Sampling Distributions

In this section, we introduce one of the fundamental results of probability

theory and statistical analysis.

6.5.1 Sampling Distributions

A population is a set of similar items which of interest in relation to some

questions or experiments.

In some situations, it is impossible to observe the entire set of observations

that make up a population – perhaps the entire population is too large to

query, or some units are out-of-reach.

In these cases, we can only hope to infer the behaviour of the entire

population by considering a sample (subset) of the population.

Suppose that 𝑋1 , . . . , 𝑋𝑛 are 𝑛 independent random variables, each

having the same c.d.f. 𝐹, i.e.they are identically distributed. Then,

{𝑋1 , . . . , 𝑋𝑛} is a random sample of size 𝑛 from the population, with

c.d.f. 𝐹 .

Any function of such a random sample is called a statistic of the sample;

the probability distribution of a statistic is called a sampling distribu-
tion.

Recall the linear properties of the expectation and the variance: if 𝑋 is a

random variable and 𝑎, 𝑏 ∈ ℝ, then

E [𝑎 + 𝑏𝑋] = 𝑎 + 𝑏E[𝑋] ,
Var [𝑎 + 𝑏𝑋] = 𝑏2

Var[𝑋] ,
SD [𝑎 + 𝑏𝑋] = |𝑏 |SD[𝑋] .

Sum of Independent Random Variables

For any random variables 𝑋 and 𝑌, we have

E[𝑋 + 𝑌] = E[𝑋] + E[𝑌].

In general,

Var[𝑋 + 𝑌] = Var[𝑋] + 2Cov(𝑋,𝑌) + Var[𝑌];

if in addition 𝑋 and 𝑌 are independent, then

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌].

More generally, if 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 are independent, then

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

E[𝑋𝑖] and Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

Var[𝑋𝑖] .
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Independent and Identically Distributed Random Variables

A special case of the above occurs when all of 𝑋1 , . . . , 𝑋𝑛 have exactly
the same distribution. In that case we say they are independent and
identically distributed, which is traditionally abbreviated to “iid”.

If 𝑋1 , . . . , 𝑋𝑛 are iid, and

E [𝑋𝑖] = 𝜇 and Var [𝑋𝑖] = 𝜎2

for 𝑖 = 1, . . . , 𝑛,

then

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 𝑛𝜇 and Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 𝑛𝜎2 .

Examples

A random sample of size 100 is taken from a population with mean

50 and variance 0.25. Find the expected value and variance of the

sample total.

This problem translates to “if 𝑋1 , . . . , 𝑋100 are iid with E[𝑋𝑖] = 𝜇 =

50 and Var[𝑋] = 𝜎2 = 0.25 for 𝑖 = 1, . . . , 100, find E [𝜏] and Var [𝜏]
for

𝜏 =

𝑛∑
𝑖=1

𝑋𝑖 .”

According to the iid formulas,

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 100𝜇 = 5000, Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 100𝜎2 = 25 .

The mean value of potting mix bags weights is 5 kg, with standard

deviation 0.2. If a shop assistant carries 4 bags (selected indepen-

dently from the stock) then what is the expected value and standard

deviation of the total weight carried?

There is an implicit “population” of bag weights. Let 𝑋1 , 𝑋2 , 𝑋3 , 𝑋4

be iid with E[𝑋𝑖] = 𝜇 = 5, SD[𝑋𝑖] = 𝜎 = 0.2 and Var[𝑋𝑖] = 𝜎2 =

0.22 = 0.04 for 𝑖 = 1, 2, 3, 4. Let 𝜏 = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4.

According to the iid formulas,

E[𝜏] = 𝑛𝜇 = 4 · 5 = 20, Var[𝜏] = 𝑛𝜎2 = 4 · 0.04 = 0.16.

Thus, SD[𝜏] =
√

0.16 = 0.4.

Sample Mean

The sample mean is a typical statistic of interest:

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 .
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If 𝑋1 , . . . , 𝑋𝑛 are iid with E[𝑋𝑖] = 𝜇 and Var[𝑋𝑖] = 𝜎2
for all 𝑖 = 1, . . . , 𝑛,

then

E

[
𝑋

]
= E

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
(𝑛𝜇) = 𝜇

Var

[
𝑋

]
= Var

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛2

Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛2

(
𝑛𝜎2

)
=

𝜎2

𝑛
.

Example A set of scales returns the true weight of the object being

weighed plus a random error with mean 0 and standard deviation 0.1

g. Find the standard deviation of the average of 9 measurements of an

object.

Suppose the object has true weight 𝜇. The “random error” indicates that

each measurement 𝑖 = 1, . . . , 9 is written as 𝑋𝑖 = 𝜇+𝑍𝑖 where E[𝑍𝑖] = 0

and SD[𝑍𝑖] = 0.1 and the 𝑍𝑖 ’s are iid.

The 𝑋𝑖 ’s are iid with E[𝑋𝑖] = 𝜇 and SD[𝑋𝑖] = 𝜎 = 0.1. If we average

𝑋1 , . . . , 𝑋𝑛 (with 𝑛 = 9) to get 𝑋, then

E

[
𝑋

]
= 𝜇 and SD

[
𝑋

]
= 𝜎√

𝑛
= 0.1√

9

= 1

30
≈ 0.033 .

We do not need to know the actual distribution of the 𝑋𝑖 ; only 𝜇 and 𝜎2

are required to compute E[𝑋] and Var[𝑋].

Sum of Independent Normal Random Variables

Another interesting case occurs when we have multiple independent
normal random variables on the same experiment.

Suppose 𝑋𝑖 ∼ N
(
𝜇𝑖 , 𝜎2

𝑖

)
for 𝑖 = 1, . . . , 𝑛, and all the 𝑋𝑖 are independent.

We already know that

E[𝜏] = E[𝑋1 + · · · + 𝑋𝑛] = E[𝑋1] + · · · + E[𝑋𝑛] = 𝜇1 + · · · + 𝜇𝑛 ;

Var[𝜏] = Var[𝑋1 + · · · + 𝑋𝑛] = Var[𝑋1] + · · · + Var[𝑋𝑛] = 𝜎2

1
+ · · · + 𝜎2

𝑛 .

It turns out that, under these hypotheses, 𝜏 is also normally distributed,

i.e.

𝜏 =

𝑛∑
𝑖=1

𝑋𝑖 ∼ N(E[𝜏],Var[𝜏]) = N
(
𝜇1 + · · · + 𝜇𝑛 , 𝜎

2

1
+ · · · + 𝜎2

𝑛

)
.

Thus, if {𝑋1 , . . . , 𝑋𝑛} is a random sample from a normal population with
mean 𝜇 and variance 𝜎2

, then

∑𝑛
𝑖=1
𝑋𝑖 and 𝑋 are also normal, which,

combined with the above work, means that

𝑛∑
𝑖=1

𝑋𝑖 ∼ N
(
𝑛𝜇, 𝑛𝜎2

)
and 𝑋 ∼ N

(
𝜇,

𝜎2

𝑛

)
.

Example Suppose that the population of students’ weights is normal

with mean 75 kg and standard deviation 5 kg. If 16 students are picked

at random, what is the distribution of the (random) total weight 𝜏? What

is the probability that the total weight exceeds 1250 kg?
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