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Loosely speaking, a statistic is any function of a sample from the distri-

bution of a random variable; statistics aim to extract information from an

observed sample to summarize the essential features of a dataset.

In this chapter, we introduce basic statistics, and we show how probability

theory can be used to build confidence intervals and conduct hypothesis
tests, two of the fundamental tasks of statistical analysis. We also discuss

various variance decompositions and multivariate statistics. This review

of statistical methods is (by necessity) quite brief; further details can be

found in [3, 5, 6, 7, 8, 9, 10, 11, 12].
1

1: A fair number of the examples and exer-

cises we provide in the chapter also come

from those references.

7.1 Introduction

In general, statistics can be divided into two categories based on their

purposes: descriptive statistics and inferential statistics.

Descriptive statistics can be extended to summarize multivariate be-

haviours, via sample correlations, contingency tables, scatter plots, etc.

They not only provide an easily understandable overview of the dataset;

they also give analysts a chance to study the collected sample and

investigate two important questions:

is the sample compatible with their understanding of the situation?

is the sample representative of the underlying population?

Inferential statistics, on the other hand, facilitate the process of inference

(induction) to the general population from which the sample is drawn.

7.2 Descriptive Statistics

As its name implies, descriptive statistics aim to describe the data;

examples include:

sample size (overall and/or subgroups);

demographic breakdowns of participants;

measures of central tendency (e.g., mean, median, mode, etc.);

measures of variability (e.g., sample variance, minimum, maxi-

mum, interquartile range, etc.);

higher distribution moments (skew, kurtosis, etc.);

non-parametric measures (various quantiles);

derived measures (correlation coefficients), etc.
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They can be presented as a single number, in a summary table, or even

in graphical representations (e.g., histogram, pie chart, etc.).

7.2.1 Data Descriptions

Studies and experiments give rise to statistical units. These units are

typically described with variables (and measurements), which are either

qualitative (categorical) or quantitative (numerical).

Categorical variables take values (levels) from a finite set of pre-determined

categories (or classes); numerical variables from a (potentially infinite)

set of quantities.

Examples

1. Age is a numerical variable, measured in years, although is is often

reported to the nearest year integer, or in an age range of years,

in which case it is an ordinal variable (mixture of qualitative or

quantitative).

2. Typical numerical variables include distance in 𝑚, volume in 𝑚3
,

etc.

3. Disease diagnosis is a categorical variable with (at least) 2 categories

(positive/negative).

4. Compliance with a standard is a categorical variable: there could

be 2 levels (compliant/non-compliant) or more (compliance, minor

non-compliance issues, major non-compliance issues).

5. Count variables are numerical variables.

In a first pass, a variable can be described along (at least) 2 dimensions:

its centrality and its spread:
2

2: The skew and the kurtosis are also

sometimes used.

centrality measures include the median, the mean, and, less fre-

quently, the mode;

spread (or dispersion) measures include the standard deviation
(sd), the quartiles, the inter-quartile range (IQR), and, less fre-

quently, the range.

The median, range, and quartiles are all easily calculated from an ordered
list of the data.

Sample Median

The median med(𝑥1 , . . . , 𝑥𝑛) of a sample of size 𝑛 is a numerical value

which splits the ordered data into 2 equal subsets: half the observations

fall below the median, and half above it:

if 𝑛 is odd, then the position of the median (or its rank) is (𝑛 + 1)/2

– the median observation is the
𝑛+1

2

th

ordered observation;

if 𝑛 is even, then the median is the average of the
𝑛
2

th

and the

( 𝑛
2
+ 1)th ordered observations.

The procedure is simple: order the data, and follow the even/odd rules

to the letter.
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Examples

1. med(4, 6, 1, 3, 7) = med(1, 3, 4, 6, 7) = 𝑥(5+1)/2
= 𝑥3 = 4. There are

2 observations below 4 {1, 3}, and 2 observations above 4 {6, 7}.
2. med(1, 3, 4, 6, 7, 23) =

𝑥
6/2

+𝑥
6/2+1

2
=

𝑥3+𝑥4

2
= 4+6

2
= 5. There are 3

observations below 5 {1, 3, 4}, and 3 observations above 4 {6, 7, 23}.
3. med(1, 3, 3, 6, 7) = 𝑥(5+1)/2

= 𝑥3 = 3. There seems to be only 1

observation below 3 {1}, but 2 observations above 3 {6, 7}.

Note that there is ambiguity in the definition of the median: above and

below should be interpreted as after and before, respectively, inclusive

of the median value. In the last example above, for instance, there are

2 observations (𝑥1 = 1, 𝑥2 = 3) before the median observation (𝑥3 = 3),
and 2 after the median (𝑥4 = 6, 𝑥5 = 7).

Sample Mean

The mean of a sample is simply the arithmetic average of its observations.

For observations 𝑥1 , . . . , 𝑥𝑛 , the sample mean is

AM(𝑥1 , . . . , 𝑥𝑛) = 𝑥 =
𝑥1 + · · · + 𝑥𝑛

𝑛
=

1

𝑛

(
𝑛∑
𝑖=1

𝑥𝑖

)
Other means exist, such as the harmonic mean and the geometric mean:

HM(𝑥1 , . . . , 𝑥𝑛) =
𝑛

1

𝑥1

+ · · · + 1

𝑥𝑛

GM(𝑥1 , . . . , 𝑥𝑛) = 𝑛
√
𝑥1 · · · 𝑥𝑛 .

All of these measures attempt to find an “average” of the observations.

Examples

1. AM(4, 6, 1, 3, 7) = 4+6+1+3+7

5
= 21

5
= 4.2 ≈ 4 = med(4, 6, 1, 3, 7).

2. AM(1, 3, 4, 6, 7, 23) = 1+3+4+6+7+23

6
= 44

6
≈ 7.3, which is not nearly

as close to med(1, 3, 4, 6, 7, 23) = 5.

3. HM(4, 6, 1, 3, 7) = 5

1

4
+ 1

6
+ 1

1
+ 1

3
+ 1

7

= 5

53/28
= 140

53
≈ 2.64.

4. GM(4, 6, 1, 3, 7) = 5

√
4 · 6 · 1 · 3 · 7 ≈ 5

√
(504) ≈ 3.47.

It can be shown that if 𝑥 = (𝑥1 , . . . , 𝑥𝑛) and 𝑥𝑖 > 0 for all 𝑖, then

min(𝑥) ≤ HM(𝑥) ≤ GM(𝑥) ≤ AM(𝑥) ≤ max(𝑥).

There is no need to decide on a single centrality measure when reporting

on the data; in practice, we may use as many of them as we want to.

But there are situations where the mean (or the median) could prove to

be a better choice. On the one hand, the use of the mean is theoretically
supported by the Central Limit Theorem (CLT; see Section 6.5.2.

When the data distribution is roughly symmetric, then the median and

the mean will be near one another. If the data distribution is skewed then

the mean is pulled toward the long tail and as a result gives a distorted

view of the centre (see Figure 7.1).
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Consequently, medians are generally used for house prices, incomes, etc.,

as the median is robust against outliers and incorrect readings (whereas

the mean is not).

Figure 7.1: Mean, median, and mode in var-

ious skewness scenarios. [modified from

unknown source]

Standard Deviation

While the mean, the median, and the mode provide an idea as to where

some of the distribution’s “mass” is located, the standard deviation
provides some notion of its spread. The higher the standard deviation,

the further away from the mean the variable values are likely to fall (see

Figure 7.2). We will have more to say on this topic.

Figure 7.2: Normal distributions, with

various means and standard deviations.

[Wikipedia]

Quantiles

Another way to provide information about the spread of the data is via
centiles, deciles, and/or quartiles.

The lower quartile 𝑄1(𝑥1 , . . . , 𝑥𝑛) of a sample of size 𝑛, or 𝑄1, is a

numerical value which splits the ordered data into 2 unequal subsets:

25% of the observations fall below 𝑄1 and 75% of the observations fall

above 𝑄1.
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Similarly, the upper quartile 𝑄3 splits the ordered data into 75% of the

observations below 𝑄3, and 25% of the observations above 𝑄3.

The median can be interpreted as the middle quartile 𝑄2, of the

sample, the minimum as 𝑄0, and the maximum as 𝑄4: the vector

(𝑄0 , 𝑄1 , 𝑄2 , 𝑄3 , 𝑄4) is the 5-pt summary of the data.

Centiles 𝑝𝑖 , 𝑖 = 0, . . . , 100 and deciles 𝑑 𝑗 , 𝑗 = 0, . . . , 10 run through

different splitting percentages

𝑝25 = 𝑄1 , 𝑝75 = 𝑄3 , 𝑑5 = 𝑄2 , etc.

They are found as with the media: sort the sample observations {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}
in an increasing order as

𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑛 .

The smallest 𝑦1 has rank 1 and the largest 𝑦𝑛 has rank 𝑛.

Any value that falls between the observations of ranks:

⌊ 𝑛
4
⌋ and ⌊ 𝑛

4
⌋ + 1 is a lower quartile 𝑄1;

⌊ 3𝑛
4
⌋ and ⌊ 3𝑛

4
⌋ + 1 is an upper quartile 𝑄3;

⌊ 𝑖𝑛
100

⌋ and ⌊ 𝑖𝑛
100

⌋ + 1 is a centile 𝑝𝑖 , for 𝑖 = 1, . . . , 99;

⌊ 𝑗𝑛
10
⌋ and ⌊ 𝑗𝑛

10
⌋ + 1 is a decile 𝑑 𝑗 , for 𝑗 = 1, . . . , 9.

In practice, we compute the 𝑚−quantile of order 𝑘 for the data, where

𝑘 = 1, . . . , 𝑚 − 1 by averaging the observations of rank⌊
𝑘𝑛

𝑚

⌋
and

⌊
𝑘𝑛

𝑚

⌋
+ 1;

other protocols exist, such as the use of weighted averages (where the

weights are determined by rank 𝑘 of the 𝑚−quantile of interest).

Examples

1. 𝑄1(1, 3, 4, 6, 7) = 1

2

(
𝑦⌊5/4⌋ + 𝑦⌊5/4⌋+1

)
= 1

2
(𝑦1 + 𝑦2) = 1

2
(1 + 3) = 2.

2. 𝑑7(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊7(6)/10⌋ + 𝑦⌊7(6)/10⌋+1

)
= 1

2
(𝑦4 + 𝑦5) = 1

2
(6 + 7) = 13/2.

3. 𝑄1(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊6/4⌋ + 𝑦⌊6/4⌋+1

)
= 1

2
(𝑦1 + 𝑦2) = 1

2
(1 + 3) = 2.

4. 𝑄3(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊3(6)/4⌋ + 𝑦⌊3(6)/4⌋+1

)
= 1

2
(𝑦4 + 𝑦5) = 1

2
(6 + 7) = 6.5.

5. Consider the following midterm grades:

grades<-c(

80,73,83,60,49,96,87,87,60,53,66,83,32,80,66,90,72,55,76,46,48,69,45,48,77,52,59,97,

76,89,73,73,48,59,55,76,87,55,80,90,83,66,80,97,80,55,94,73,49,32,76,57,42,94,80,90,

90,62,85,87,97,50,73,77,66,35,66,76,90,73,80,70,73,94,59,52,81,90,55,73,76,90,46,66,

76,69,76,80,42,66,83,80,46,55,80,76,94,69,57,55,66,46,87,83,49,82,93,47,59,68,65,66,

69,76,38,99,61,46,73,90,66,100,83,48,97,69,62,80,66,55,28,83,59,48,61,87,72,46,94,48,

59,69,97,83,80,66,76,25,55,69,76,38,21,87,52,90,62,73,73,89,25,94,27,66,66,76,90,83,

52,52,83,66,48,62,80,35,59,72,97,69,62,90,48,83,55,58,66,100,82,78,62,73,55,84,83,66,

49,76,73,54,55,87,50,73,54,52,62,36,87,80,80

)
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The quartiles and mean are:

summary(grades)

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.00 55.00 70.00 68.74 82.50 100.00

Dispersion Measures

Some of the dispersion measures are fairly simple to compute: the sample
range is

range(𝑥1 , . . . , 𝑥𝑛) = max{𝑥𝑖} − min{𝑥𝑖};

the inter-quartile range is IQR = 𝑄3 −𝑄1.

The sample standard deviation 𝑠 and sample variance 𝑠2
are estimates

of the underlying distribution’s 𝜎 and 𝜎2
. For observations 𝑥1 , . . . , 𝑥𝑛 ,

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥2

𝑖 −
1

𝑛

(
𝑛∑
𝑖=1

𝑥𝑖

)
2

);

it differs from the (population) standard deviation and the (population)

variance in the denominator: 𝑛 − 1 is used instead of 𝑛.
3

3: In statistical parlance, we say that 1

degree of freedom is lost when we use the

sample to estimate the sample mean.

Examples

1. The sample variance of {1, 3, 4, 6, 7} is

1

5 − 1

©­«
5∑
𝑖=1

𝑥2

𝑖 −
1

5

(
5∑
𝑖=1

𝑥𝑖

)
2ª®¬ =

1

4

(
111 − 1

5

(21)2
)
= 5.7.

2. The interquartile range of {1, 3, 4, 6, 7, 23} is

IQR(1, 3, 4, 6, 7, 23) = 𝑄3(1, 3, 4, 6, 7, 23) −𝑄1(1, 3, 4, 6, 7, 23)
= 6.5 − 2 = 4.5.

3. We can provide more data descriptions of the grades dataset (see

above) using psych’s describe() function.

psych::describe(grades)

vars n mean sd median trimmed

X1 1 211 68.74 17.37 70 69.43

mad min max range skew kurtosis se

19.27 21 100 79 -0.37 -0.46 1.2
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7.2.2 Outliers

An outlier is an observation that lies outside the overall pattern in a

distribution.
4

Let 𝑥 be an observation in the sample;
5

it is a 4: Outlier analysis (and anomaly detec-

tion) is its own discipline – an overview is

provided in Chapter 26.

5: In theory, this definition only applies to

normally distributed data, but it is often

used as a first pass for outlier analysis even

when the data is not normally distributed.

suspected outlier if

𝑥 < 𝑄1 − 1.5 IQR or 𝑥 > 𝑄3 + 1.5 IQR,

definite outlier if

𝑥 < 𝑄1 − 3 IQR or 𝑥 > 𝑄3 + 3 IQR.

Example In the set {1, 3, 4, 6, 7, 23}, 𝑄1 = 2, 𝑄3 = 6.5, and IQR = 4.5.

Thus

𝑄1 − 1.5IQR = 2 − 1.5(4.5) = −4.75

𝑄3 + 1.5IQR = 6.5 + 1.5(4.5) = 13.25

𝑄1 − 3IQR = 2 − 3(4.5) = −11.5

𝑄3 + 3IQR = 6.5 + 3(4.5) = 20.0

Since 23 > 𝑄3 + 3IQR (and 23 > 𝑄3 + 1.5IQR), 23 is both a definite (and

a suspected) outlier of {1, 3, 4, 6, 7, 23}.

7.2.3 Visual Summaries

The boxplot (also known as the box-and-whisker plot) is a quick and

easy way to present a graphical summary of a univariate distribution:

1. draw a box along the observation axis, with endpoints at the lower

and upper quartiles 𝑄1 (knees) and 𝑄3 (shoulders), and with a

“belt” at the median 𝑄2;

2. draw a line extending from 𝑄1 to the smallest value closer than

1.5IQR to the left of 𝑄1;

3. draw a line extending from 𝑄3 to the largest value closer than

1.5IQR to the right of 𝑄3;

4. any suspected outlier is plotted separately (as in Figure 7.3):

Figure 7.3: Boxplot with one (suspected)

outlier.

Skewness

For symmetric distributions, the median and mean are equal, and the

quartiles 𝑄1 and 𝑄3 are equidistant from 𝑄2:

if 𝑄3 −𝑄2 > 𝑄2 −𝑄1 then the data distribution is skewed to the
right (positively skewed);

if 𝑄3 −𝑄2 < 𝑄2 −𝑄1 then the data distribution is skewed to left
(negatively skewed).
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Graphically, if the distance between the shoulders and the belt is larger

than the distance between the belt and the knees, then the data is skewed

to the right; if it’s the opposite, the data is skewed to the left.

In the boxplots below, the data is skewed to the right.

Figure 7.4: Boxplot of positively skewed

datasets.

Histograms

Visual information about the distribution of the sample can also be

provided via histograms.

A histogram for the sample {𝑥1 , . . . , 𝑥𝑛} is built according to the following

specifications:

the range of the histogram is 𝑟 = max{𝑥𝑖} − min{𝑥𝑖};
the number of bins should approach 𝑘 =

√
𝑛, where 𝑛 is the

sample size;

the bin width should approach 𝑟/𝑘, and

the frequency of observations in each bin should be represented

by the bin height.

Shapes of Datasets

Boxplots and histograms provide an easy visual impression of the shape
of the data set, which can eventually suggest a mathematical model for

the situation of interest: another way to define skewness is to say that

data is skewed to the right if the corresponding boxplot or histogram is

stretched to the right, and vice-versa.

Examples

1. Consider the daily number of car accidents in Sydney, Australia,

over a 40-day period:

6 3 2 24 12 3 7 14 21 9 14 22 15 2 17 10 7 7 31 7

18 6 8 2 3 2 17 7 7 21 13 23 1 11 3 9 4 9 9 25

The sorted values are:

1 2 2 2 2 3 3 3 3 4 6 6 7 7 7 7 7 7 8 9

9 9 9 10 11 12 13 14 14 15 17 17 18 21 21 22 23 24 25 31
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We can then easily see that

min = 𝑦1 = 1, 𝑄1 =
1

2

(𝑦10 + 𝑦11) = 5, med =
1

2

(𝑦20 + 𝑦21) = 9,

𝑄3 =
1

2

(𝑦30 + 𝑦31) = 16, max = 𝑦40 = 31.

A corresponding histogram and boxplot are shown in Figure 7.5.

Figure 7.5: Histogram and boxplot of the

Sydney accident dataset.

2. We can also visualize the grades dataset:

hist(grades, breaks = seq(20,100,10))

boxplot(grades)

Here is a fancier version of the histogram, constructed with the

ggplot2 package.
6

6: See Section [1] for details on the use of

this R package.

# function to find the mode

fun.mode<-function(x){

as.numeric(names(sort(-table(x)))[1])}

library(ggplot2)

ggplot(data=data.frame(grades), aes(grades)) +

geom_histogram(aes(y =..density..), # approximated pdf

breaks=seq(20, 100, by = 10), # 8 bins from 20 to 100

col="black", # colour of outline
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fill="blue", # fill colour of bars

alpha=.2) + # transparency

geom_density(col=2) + # colour of pdf curve

geom_rug(aes(grades)) + # adding a rug on x-axis

geom_vline(aes(xintercept = mean(grades)),

col=’red’,size=2) + # vertical line: mean

geom_vline(aes(xintercept = median(grades)),

col=’darkblue’,size=2) + # vertical line: median

geom_vline(aes(xintercept = fun.mode(grades)),

col=’black’,size=2) # vertical line: mode

What is the shape of this dataset? Is the class in trouble?

7.2.4 Coefficient of Correlation

For bivariate (or multivariate) datasets, we can still study each variable

separately, as in the previous sections, but we might also be interested in

determining how the variables relate to one another.

For instance, consider the following data, consisting of 𝑛 = 20 paired

measurements (𝑥𝑖 , 𝑦𝑖) of hydrocarbon levels 𝑥 and pure oxygen levels 𝑦

in fuels:

x = c(

0.99,1.02,1.15,1.29,1.46,1.36,0.87,1.23,

1.55,1.40,1.19,1.15,0.98,1.01,1.11,1.20,

1.26,1.32,1.43,0.95

)

y = c(

90.01,89.05,91.43,93.74,96.73,94.45,87.59,91.77,

99.42,93.65,93.54,92.52,90.56,89.54,89.85,90.39,

93.25,93.41,94.98,87.33

)

cbind(x,y)
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x y x y

[1,] 0.99 90.01 [11,] 1.19 93.54

[2,] 1.02 89.05 [12,] 1.15 92.52

[3,] 1.15 91.43 [13,] 0.98 90.56

[4,] 1.29 93.74 [14,] 1.01 89.54

[5,] 1.46 96.73 [15,] 1.11 89.85

[6,] 1.36 94.45 [16,] 1.20 90.39

[7,] 0.87 87.59 [17,] 1.26 93.25

[8,] 1.23 91.77 [18,] 1.32 93.41

[9,] 1.55 99.42 [19,] 1.43 94.98

[10,] 1.40 93.65 [20,] 0.95 87.33

Assume that we are interested in measuring the strength of association
between 𝑥 and 𝑦. We can use a graphical display to provide an initial

description of the relationship: it appears that the observations lie around

a hidden line.

plot(x,y)

For paired data (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, . . . , 𝑛, the sample correlation coefficient
of 𝑥 and 𝑦 is

𝜌𝑋𝑌 =

∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)√∑(𝑥𝑖 − 𝑥)2
∑(𝑦𝑖 − 𝑦)2

=
𝑆𝑥𝑦√
𝑆𝑥𝑥 𝑆𝑦𝑦

.

The coefficient 𝜌𝑋𝑌 is defined only if 𝑆𝑥𝑥 ≠ 0 and 𝑆𝑦𝑦 ≠ 0, i.e. if neither

𝑥𝑖 nor 𝑦𝑖 are constant.

The variables 𝑥 and 𝑦 are uncorrelated if 𝜌𝑋𝑌 = 0 (or is very small, in

practice), and correlated if 𝜌𝑋𝑌 ≠ 0 (or if |𝜌𝑋𝑌 | is “large”, in practice).

Example For the data on the previous page, we have

𝑆𝑥𝑦 ≈ 10.18, 𝑆𝑥𝑥 ≈ 0.68, 𝑆𝑦𝑦 ≈ 173.38,

so that

𝜌𝑋𝑌 ≈ 10.18√
0.68 · 173.38

≈ 0.94.
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This can also be computed directly in R:

(Sxx = sum((x-mean(x))^2))

(Syy = sum((y-mean(y))^2))

(Sxy = sum((x-mean(x))*(y-mean(y))))

(rho = Sxy/sqrt(Sxx*Syy))

[1] 0.68088

[1] 173.3769

[1] 10.17744

[1] 0.9367154

or by using the cor() function:

cor(x,y)

[1] 0.9367154

Properties

𝜌𝑋𝑌 is unaffected by changes of scale or origin. Adding constants

to 𝑥 does not change 𝑥 − 𝑥 (similarly for 𝑦 − 𝑦) and multiplying 𝑥

and 𝑦 by constants changes both the numerator and denominator

equally;

𝜌𝑋𝑌 is symmetric in 𝑥 and 𝑦 (i.e. 𝜌𝑋𝑌 = 𝜌𝑌𝑋 ) and −1 ≤ 𝜌𝑋𝑌 ≤ 1;

if 𝜌𝑋𝑌 = ±1, then the observations (𝑥𝑖 , 𝑦𝑖) all lie on a straight line

with a positive (or negative) slope;

the sign of 𝜌𝑋𝑌 reflects the trend of the points;

a high correlation coefficient value |𝜌𝑋𝑌 | does not necessarily imply

a causal relationship between the two variables;

note that 𝑥 and 𝑦 can have a very strong non-linear relationship

without 𝜌𝑋𝑌 reflecting it (see Figure 7.6).

Figure 7.6: Examples of strong relation-

ships that are not reflected by the coeffi-

cient of correlation.

Human brains are ... not that great at intuiting correlations, even when

the relationship has a linear component: in the above figure, how obvious

is it that the correlation on the left is −0.12, and that the one on the right

is 0.93? Beware!
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7.3 Point and Interval Estimation

One of the goals of statistical inference is to draw conclusions about a

population based on a random sample from the population.

For instance, we might want answers to the following questions.

1. Can we assess the reliability of a product’s manufacturing process

by randomly selecting a sample of the final product and determin-

ing how many of them are compliant according to some quality

assessment scheme?

2. Can we determine who will win an election by polling a small

sample of respondents?

Specifically, we seek to estimate an unknown parameter 𝜃, say, using a

single quantity called the point estimate �̂�.

This point estimate is obtained via a statistic, which is simply a function

of a random sample.
7

7: Common examples of inferential statis-

tics include:

sample mean and sample median;

sample variance and sample stan-
dard deviation;

sample quantiles (median, quar-

tiles, quantiles);

test statistics (𝑡−statistics,

𝜒2−statistics, 𝑓−statistics, etc.);

order statistics (sample maximum

and minimum, sample range, etc.);

sample moments and functions

thereof (skewness, kurtosis, etc.);

etc.

The probability distribution of the statistic is its sampling distribution; as

an example, we have discussed the sampling distribution of the sample
mean in Section 6.5. Describing such sampling distributions is a main

focus of statistical research.

Example Consider a process that manufactures gear wheels. Let 𝑋 be

the random variable that records the weight of a randomly selected gear

wheel. What is the population mean 𝜇𝑋 = E[𝑋]?.

In the absence of the p.d.f. 𝑓 (𝑥), we can estimate 𝜇 = 𝑋 with the help of

a random sample 𝑋1 , . . . , 𝑋𝑛 of gear wheel weight measurements, via
the sample mean statistic:

𝑋 =
𝑋1 + · · · + 𝑋𝑛

𝑛
,

which follows approximately a N
(
𝜇, 𝜎2/𝑛

)
distribution, according to the

CLT.

7.3.1 Estimator (Sampling) Variance and Standard Error

In practice, the point estimator �̂� varies depending on the choice of the

sample {𝑋1 , . . . , 𝑋𝑛}.

The standard error of a statistic is the standard deviation of its sampling
distribution.

For instance, if observations 𝑋1 , . . . , 𝑋𝑛 come from a a population with

unknown mean 𝜇 and known variance 𝜎2
, then Var(𝑋) = 𝜎2/𝑛 and the

standard error of 𝑋 is

𝜎
𝑋
=

𝜎√
𝑛
.
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If the variance of the original population is unknown, then it is estimated

by the sample variance 𝑆2
and the estimated standard error of 𝑋 is

�̂�
𝑋
=

𝑆√
𝑛
, where 𝑆2 =

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Examples

1. A sample of 20 baseball player heights (in inches) is shown below.

x=c(74,74,72,72,73,69,69,71,76,71,

73,73,74,74,69,70,72,73,75,78)

What is the standard error of the sample mean 𝑋?

The sampling mean of the heights is

𝑋 =
𝑋1 + · · · + 𝑋20

20

= 72.6

and the sample variance 𝑆2
is

𝑆2 =
1

20 − 1

20∑
𝑖=1

(𝑋𝑖 − 72.6)2 ≈ 5.6211.

The standard error of 𝑋 is thus

�̂�
𝑋
=

𝑆√
20

≈
√

5.6211

20

≈ 0.5301.

The quantities can be computed directly via R:
8

8: Note that var() always treats the un-

derlying dataset as a sample, not as a pop-
ulation.

(x.bar = mean(x))

(S2.x = var(x))

(se.x = sqrt(S2.x/length(x)))

[1] 72.6

[1] 5.621053

[1] 0.530144

2. Consider a sample {𝑋1 , . . . , 𝑋100} of independent observations se-

lected from a normal population N(𝜇, 𝜎2) where 𝜎 = 50 is known,

but 𝜇 is not. What is the best estimate of 𝜇? What is the sampling

distribution of that estimate?

The sample mean 𝑋 = 1

100
(𝑋1 + · · · + 𝑋100) is the best estimate of

𝜇𝑋 = 𝜇
𝑋

and the standard error of 𝑋 is

𝜎
𝑋
=

50√
100

= 5.

Since the observations are sampled independently from a normal

population with mean 𝜇 and standard deviation 50, which is to say,

𝑋 ∼ N(𝜇, 52) = N(𝜇, 25), according to the CLT.
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7.3.2 Confidence Intervals for 𝜇 When 𝜎 is Known

Consider a sample {𝑥1 , . . . , 𝑥𝑛} drawn from a normal population with

known variance 𝜎2
and unknown mean 𝜇. The sample mean

𝑥 =
𝑥1 + · · · + 𝑥𝑛

𝑛

is a point estimate of 𝜇.
9

9: In general, upper case letters are re-

served for a general sample, and lower

case letters for a specifically observed sam-

ple.

Of course, this estimate is not exact, because 𝑥 is an observed value of

𝑋; it is unlikely that the observed value 𝑥 should coincide with 𝜇.

We know that 𝑋 ∼ N(𝜇, 𝜎2/𝑛), so that

𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

The 68 − 96 − 99.7 Rule

For the standard normal distribution, it can be shown that

𝑃(|𝑍 | < 1) ≈ 0.683, 𝑃(|𝑍 | < 2) ≈ 0.955, 𝑃(|𝑍 | < 3) ≈ 0.997.

This says that about 68% of the observations from N(0, 1) fall within one

standard deviation (𝜎 = 1) from the mean (𝜇 = 0), about 96% within two

standard deviations, and about 99.7% within three.

Figure 7.7: The 68-96-99.7 rule on the

standard normal distribution. [source un-

known]

In other words, whenever we observe a sample mean 𝑋 (with sample

size 𝑛) from a normal population with mean 𝜇, we would expect the

inequality

−𝑘 < 𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

< 𝑘
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to hold approximately

𝑔(𝑘) =


68.3% of the time, if 𝑘 = 1

95.5% of the time, if 𝑘 = 2

99.7% of the time, if 𝑘 = 3

Confidence Intervals

By re-arranging the terms, we can build a symmetric 𝑔(𝑘) confidence
interval (C.I.) for 𝜇:

𝑋 − 𝑘 𝜎√
𝑛

< 𝜇 < 𝑋 + 𝑘 𝜎√
𝑛

=⇒ C.I.(𝜇; 𝑔(𝑘)) ≡ 𝑋 ± 𝑘 𝜎√
𝑛
.

Examples

1. Consider a sample {𝑋1 , . . . , 𝑋64} from a normal population with

known standard deviation 𝜎 = 72. The sample mean is 𝑋 = 375.2.

Build a symmetric 68.3% confidence interval for 𝜇.

According to the formula, the symmetric 68.3% confidence interval

(𝑘 = 1) for 𝜇 would be

C.I.(𝜇; 0.683) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 1 · 72√
64

,

which is to say

C.I.(𝜇; 0.683) ≡ (375.2 − 9, 375.2 + 9) = (366.2, 384.2).

VERY IMPORTANT: this does not say that we are 68.3% sure that

the true 𝜇 is between 366.2 and 384.2. What it says is that when

a sample of size 64 is taken from a normal population N(𝜇, 72
2)

and a symmetric 68.3% confidence interval for 𝜇 is built, 𝜇 will

fall between the endpoints of the interval about 68.3% of the time.
10

10: This less than intuitive interpretation

of the confidence interval is one of the

disadvantages of using the frequentist ap-

proach; the analogous concept in Bayesian

statistics is called the credible interval,
which agrees with our naïve expectation

of a confidence interval as saying some-

thing about how certain we are that the

true parameter is in the interval, see [11]

and Chapter 25.

2. Build a symmetric 95.5% confidence interval for 𝜇.

The same formula applies, with 𝑘 = 2:

C.I.(𝜇; 0.955) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 2 · 72√
64

,

which is to say

C.I.(𝜇; 0.995) ≡ (375.2 − 18, 375.2 + 18) = (357.2, 393.2).

3. Build a symmetric 99.7% confidence interval for 𝜇.

Again, the same formula applies, with 𝑘 = 3:

C.I.(𝜇; 0.997) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 3 · 72√
64

,

which is to say

C.I.(𝜇; 0.995) ≡ (375.2 − 27, 375.2 + 27) = (348.2, 402.2).
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Note that the C.I. increases in size with the confidence level. The inter-

pretation stays the same, no matter the required confidence level or the

parameter of interest.

A 95% C.I. for the mean, for instance, indicates that we would expect

19 out of 20 samples from the same population to produce confidence

intervals that contain the true population mean, on average.

Figure 7.8: Frequentist interpretation of

confidence intervals: out of 20 experi-

ments, we would expect the true popu-

lation mean to fall in the confidence in-

terval about 19 times, on average. [source

unknown]

Confidence Interval for 𝜇 when 𝜎 is Known (Reprise)

Another approach to C.I. building is to specify the proportion of the
area under 𝜙(𝑧) of interest, and then to determine the critical values
(which is to say, the endpoints of the interval).

Let {𝑋1 , . . . , 𝑋𝑛} be drawn from N(𝜇, 𝜎2). Recall that

𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

For a symmetric 95% C.I. for 𝜇, we need to find 𝑧∗ > 0 such that

𝑃(−𝑧∗ < 𝑍 < 𝑧∗) ≈ 0.95. But the left-hand side of this “equality” can be

re-written as

𝑃(−𝑧∗ < 𝑍 < 𝑧∗) = Φ(𝑧∗) −Φ(−𝑧∗)
= Φ(𝑧∗) − (1 −Φ(𝑧∗)) = 2Φ(𝑧∗) − 1;

we are thus looking for a critical value 𝑧∗ such that

0.95 = 2Φ(𝑧∗) − 1 =⇒ Φ(𝑧∗) = 0.95 + 1

2

= 0.975.

From any normal table (or via qnorm(0.975) in R), we see that Φ(1.96) ≈
0.9750, so that

𝑃(−1.96 < 𝑍 < 1.96) = 𝑃
(
−1.96 <

𝑋 − 𝜇

𝜎/
√
𝑛

< 1.96

)
≈ 0.95.

In other words, the inequality

−1.96 <
𝑋 − 𝜇

𝜎/
√
𝑛

< 1.96
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holds with probability 0.95, or, equivalently,

C.I.(𝜇; 0.95) ≡ 𝑋 ± 1.96

𝜎√
𝑛

is the (symmetric) 95% C.I. for 𝜇 when 𝜎 is known.

A similar argument shows that

C.I.(𝜇; 0.99) ≡ 𝑋 ± 2.575

𝜎√
𝑛

is the (symmetric) 99% C.I. for 𝜇 when 𝜎 is known.

Examples

1. A sample of size 𝑛 = 17 is selected from a normal population with

mean 𝜇 = −3 (this is information is unknown to the analysts: this

is what they are trying to determine) and standard deviation 𝜎 = 2,

which is known.

The data is shown below:

set.seed(0) # for replicability

n=17; mu=-3; sigma=2

(x=rnorm(n,mu,sigma))

[1] -0.4740914 -3.6524667 -0.3404015 -0.4551414 -2.1707171

[6] -6.0799001 -4.8571341 -3.5894409 -3.0115343 1.8093068

[11] -1.4728131 -4.5980185 -5.2953140 -3.5789231 -3.5984302

[16] -3.8230217 -2.4955531

Build a 95% confidence interval for 𝜇.

The sample mean 𝑥 is given by

mean(x)

[1] -2.804917

The corresponding 95% confidence interval is:

lower.bound = mean(x) - 1.96*2/sqrt(17)

upper.bound = mean(x) + 1.96*2/sqrt(17)

c(lower.bound,upper.bound)

[1] -3.755657 -1.854178

We notice that 𝜇 = 3 is indeed found in the confidence interval:

lower.bound<mu & mu<upper.bound

[1] TRUE

2. Repeat the process 𝑀 = 1000 times. How often does 𝜇 fall in the

C.I.? We set the seed and the problem parameters.
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set.seed(0) # for replicability

n=17; mu=-3; sigma=2; M=1000

Next, we initialize the vector which determines if 𝜇 is in the C.I.

and the vector which will contain the sample mean for each of the

𝑀 = 1000 repetitions of the experiment:

is.mu.in <- c(); sample.means <- c()

Finally, we set-up the repetitions: for each sample, we compute the

sample mean and the confidence interval bounds, and determine

if the true (unknown) value 𝜇 = 2 falls in the confidence interval

or not.

for(j in 1:M){

x=rnorm(n,mu,sigma)

sample.means[j] = mean(x)

lower.bound = sample.means[j] - 1.96*sigma/sqrt(n)

upper.bound = sample.means[j] + 1.96*sigma/sqrt(n)

is.mu.in[j] = lower.bound<mu & mu<upper.bound

}

The proportion of the times when it does can thus be obtained via:

table(is.mu.in)/M

is.mu.in

FALSE TRUE

0.055 0.945

This is indeed very close to 95%. We can also verify the conclusion

of the CLT: look at the histogram of the sample means!

hist(sample.means, xlim=c(-8,8))
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This differs markedly from the histogram of the sample values: for

instance, the last of the 𝑀 = 1000 samples is distributed as below:

hist(x, xlim=c(-8,8))

The sample variance is significantly larger than the standard error.

7.3.3 Confidence Level

The confidence level 1 − 𝛼 is usually expressed in terms of a small 𝛼, so

that 𝛼 = 0.05 corresponds to a confidence level of 1 − 𝛼 = 0.95.

For 𝛼 ∈ (0, 1), the value 𝑧𝛼 for which 𝑃(𝑍 > 𝑧𝛼) = 𝛼 is called the

100(1 − 𝛼)% quantiles of the standard normal distribution. The situation

is illustrated in Figure 7.9.

Figure 7.9: Quantiles of the standard nor-

mal distribution [5].
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For general 2−sided confidence intervals,
11

the appropriate quantities 11: The only ones we will consider in these

notes.
are found by solving𝑃(|𝑍 | > 𝑧∗) = 𝛼 for 𝑧∗. By the properties ofN(0, 1),

𝛼 = 𝑃(|𝑍 | > 𝑧∗) = 1 − 𝑃(−𝑧∗ < 𝑍 < 𝑧∗) = 1 − (2Φ(𝑧∗) − 1) = 2(1 −Φ(𝑧∗)),

so that

Φ(𝑧∗) = 1 − 𝛼/2 =⇒ 𝑧∗ = 𝑧𝛼/2
,

as illustrated in Figure 7.10.

Figure 7.10: Two-sided quantiles of the

standard normal distribution [5].

The most commonly-used cases are for 𝛼 = 0.05 and 𝛼 = 0.01:

𝑃(|𝑍 | > 𝑧0.025) = 0.05 =⇒ 𝑧0.025 = 1.96

𝑃(|𝑍 | > 𝑧0.005) = 0.01 =⇒ 𝑧0.005 = 2.575.

Figure 7.11: Two-sided quantiles of the

standard normal distribution, for confi-

dence level 0.05.

The symmetric 100(1 − 𝛼)% C.I. for 𝜇 can thus generally be written as

C.I.(𝜇; 1 − 𝛼)𝑋 ± 𝑧𝛼/2

𝜎√
𝑛
.

For a given confidence level 𝛼, shorter confidence intervals are better in

relation to estimating the mean:

estimates improve when the sample size 𝑛 increases;

estimates improve when 𝜎 decreases.

For a given sample, if 𝛼1 > 𝛼2 then

100(1 − 𝛼1)% C.I. ⊆ 100(1 − 𝛼2)% C.I.

For instance, the 95% C.I. built from a sample is always contained in the

corresponding 99% C.I.

If the sample comes from a normal population, then the C.I. is exact.
Otherwise, if 𝑛 is large, we may use the CLT and get an approximate
C.I.
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Examples

A sample of 9 observations from a normal population with known

standard deviation 𝜎 = 5 yields a sample mean 𝑋 = 19.93. Provide

a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. is

𝑋 ± 𝑧𝛼/2

𝜎√
𝑛
.

Thus,

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

5√
9

= (16.66, 23.20)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

5√
9

= (15.64, 24.22).

A sample of 25 observations from a normal population with known

standard deviation 𝜎 = 5 yields a sample mean 𝑋 = 19.93. Provide

a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. are:

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

5√
25

= (17.97, 21.89)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

5√
25

= (17.35, 22.51).

A sample of 25 observations from a normal population with known

standard deviation 𝜎 = 10 yields a sample mean 𝑋 = 19.93. Pro-

vide a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. are:

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

10√
25

= (16.01, 23.85)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

10√
25

= (14.78, 25.08).

Note how the confidence intervals are affected by 𝛼, 𝑛, and 𝜎.

7.3.4 Sample Size

The error 𝐸 we commit by estimating 𝜇 via the sample mean 𝑋 is

smaller than 𝑧𝛼/2

𝜎√
𝑛

, with probability 100(1 − 𝛼)% (in the frequentist

interpretation).

Figure 7.12: Estimation error.
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At this stage, if we want to control the error 𝐸, the only thing we can

really do is control the sample size:
12

12: Sampling strategies can also help, but

this is a topic for another day (see Chapter

10).

𝐸 > 𝑧𝛼/2

𝜎√
𝑛

=⇒ 𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

.

Examples

1. A sample {𝑋1 , . . . , 𝑋𝑛} is selected from a normal population with

standard deviation 𝜎 = 100. What sample size should be used to

insure that the error on the population estimate is at most 𝐸 = 10,

at a confidence level 𝛼 = 0.05?

As long as

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 100

10

)
2

= (19.6)2 = 384.16,

then the error committed by using 𝑋 to estimate 𝜇 will be at most

10, with 95% probability.

2. Repeat the first example, but with 𝜎 = 10.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 10

10

)
2

= (1.96)2 = 3.8416.

3. Repeat the first example, but with 𝐸 = 1.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 100

1

)
2

= (196)2 = 38416.

4. Repeat the first example, but with 𝛼 = 0.01.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.005 · 100

10

)
2

= (25.75)2 = 663.0625.

The relationship between 𝛼, 𝜎, 𝐸, and 𝑛 is not always intuitive, but it

follows a simple rule.

7.3.5 Confidence Intervals for 𝜇 When 𝜎 is Unknown

So far, we have been in the fortunate situation of sampling from a

population with known variance 𝜎2
. What do we do when the population

variance is unknown (a situation which occurs much more frequently in

real world applications)?
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The solution is to estimate 𝜎 using the sample variance

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2

and the sample standard deviation 𝑆 =
√
𝑆2

; we use 𝑋 instead of 𝜇 since

we do not know the value of the latter (that is indeed the parameter

whose value we are trying to estimate in the first place).
13

13: Remember, when 𝜎 is known (and 𝑛

is large enough), we already know from

the CLT that 𝑍 =
𝑋−𝜇
𝜎/

√
𝑛

is approximately

N(0, 1).
If 𝜎 is unknown, it can be shown that

𝑋−𝜇
𝑆/

√
𝑛

follows approximately the

Student 𝑡−distribution with 𝑛 − 1 degrees of freedom, 𝑡(𝑛 − 1).

Consequently, at a confidence level 𝛼, we have

𝑃

(
−𝑡𝛼/2

(𝑛 − 1) < 𝑋 − 𝜇

𝑆/
√
𝑛

< 𝑡𝛼/2
(𝑛 − 1)

)
≈ 1 − 𝛼,

where 𝑡𝛼/2
(𝑛 − 1) is the 100(1 − 𝛼/2)th quantile of 𝑡(𝑛 − 1). These can be

read from pre-compiled tables or computed using the R function qt().

Thus,

100(1 − 𝛼)%C.I. for𝜇 ≈ 𝑋 ± 𝑡𝛼/2
(𝑛 − 1) 𝑆√

𝑛
.

Equality is reached if the underlying population is normal. For instance, if

𝛼 = 0.05 and {𝑋1 , 𝑋2 , 𝑋3 , 𝑋4 , 𝑋5} are samples from a normal distribution

with unknown mean𝜇 and unknown variance 𝜎2
, then 𝑡0.025(5−1) = 2.776

and

𝑃

(
−2.776 <

𝑋 − 𝜇

𝑆/
√

5

< 2.776

)
= 0.95.

Figure 7.13: Critical value for Student dis-

tribution with 4 degrees of freedom, at

confidence level 0.05. [source unknown]

Examples

1. For a given year, 9 measurements of ozone concentration are

obtained:

3.5, 5.1, 6.6, 6.0, 4.2, 4.4, 5.3, 5.6, 4.4.

Assuming that the measured ozone concentrations follow a normal

distribution with variance 𝜎2 = 1.21, build a 95% C.I. for the

population mean 𝜇. Note that 𝑋 = 5.01 and that 𝑆 = 0.97.
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We must use the standard normal quantile 𝑧𝛼/2
= 𝑧0.025 = 1.96 :

𝑋 ± 𝑧0.025

𝜎√
𝑛

= 5.01 ± 1.96

√
1.21√

9

= (4.29, 5.73).

2. Do the same thing, this time assuming that the true variance of the

underlying population is unknown.

We must use the Student quantile 𝑡𝛼/2
(𝑛 − 1) = 𝑡0.025(8) = 2.306:

𝑋 ± 𝑡0.025(𝑛 − 1) 𝑆√
𝑛

= 5.01 ± 2.306

0.97√
9

= (4.26, 5.76).

The quantile value can be obtained from R using qt():

alpha=0.05

n=9

qt(1-alpha/2,n-1)

[1] 2.306004

3. A sample of size 𝑛 = 17 is selected from a normal population

with mean 𝜇 = −3 (this is information is unknown to the analysts:

this is what they are trying to determine) and unknown standard

deviation.

The data is shown below:

set.seed(0) # for replicability

n=17; mu=-3; sigma=2

(x=rnorm(n,mu,sigma))

[1] -0.4740914 -3.6524667 -0.3404015 -0.4551414

[5] -2.1707171 -6.0799001 -4.8571341 -3.5894409

[9] -3.0115343 1.8093068 -1.4728131 -4.5980185

[13] -5.2953140 -3.5789231 -3.5984302 -3.8230217

[17] -2.4955531

Build a 95% confidence interval for 𝜇.

The sample mean 𝑥 is given by

mean(x)

[1] -2.804917

The corresponding 95% confidence interval is:

lower.bound = mean(x) - qt(1-0.05/2,17-1)*2/sqrt(17)

upper.bound = mean(x) + qt(1-0.05/2,17-1)*2/sqrt(17)

c(lower.bound,upper.bound)

[1] -3.833222 -1.776612

We notice that 𝜇 = −3 is indeed found in the confidence interval:
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lower.bound<mu & mu<upper.bound

[1] TRUE

When the underlying variance is known, the C.I. is tighter (smaller),

which is only natural as we are more confident about our results when

we have more information.

Note: what we have seen is that when the underlying distribution is

normal, or when it is not normal but the sample size is “large” enough,

we can build a C.I. for the population mean, whether the population

variance is known or not.

If, however, the underlying population is not normal and the sample size

is “small”, the approach used in this section cannot guarantee the C.I.’s

accuracy.

7.3.6 Confidence Intervals for a Proportion

If 𝑋 is the number of successes in 𝑛 independent trials, then 𝑋 ∼ B(𝑛, 𝑝),
E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝), and the point estimator for 𝑝 is

simply �̂� = 𝑋
𝑛 .

Since 𝑋 is a sum of iid random variables, its standardization

𝑍 =
𝑋 − 𝜇

𝜎
=

𝑛�̂� − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

=
�̂� − 𝑝√
𝑝(1−𝑝)
𝑛

is approximately N(0, 1), when 𝑛 is large enough.

Thus, for sufficiently large 𝑛,

𝑃
©­­«−𝑧𝛼/2

<
�̂� − 𝑝√
𝑝(1−𝑝)
𝑛

< 𝑧𝛼/2

ª®®¬ ≈ 1 − 𝛼.

Using the construction presented earlier in this section, we conclude

that

�̂� − 𝑧𝛼/2

√
𝑝(1 − 𝑝)

𝑛
< 𝑝 < �̂� + 𝑧𝛼/2

√
𝑝(1 − 𝑝)

𝑛

is an approximate 100(1−𝛼)% C.I. for 𝑝. However, this result is not useful

in practice because 𝑝 is unknown, so we use the following approximation

instead:

�̂� − 𝑧𝛼/2

√
�̂�(1 − �̂�)

𝑛
< 𝑝 < �̂� + 𝑧𝛼/2

√
�̂�(1 − �̂�)

𝑛
.

Examples

1. Two candidates (𝐴 and 𝐵) are running for office. A poll is conducted:

1000 voters are selected randomly and asked for their preference:

52% support 𝐴, while 48% support their rival, 𝐵. Provide a 95%

C.I. for the support of each candidate.
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We use 𝛼 = 0.05 and �̂� = 0.52. The approximate 95% C.I. for 𝐴 is

thus

0.52 ± 1.96

√
0.52 · 0.48

1000

≈ 0.52 ± 0.031,

while the one for 𝐵 is 0.48 ± 0.031.

2. On the strength of this polling result, a newspaper prints the follow-

ing headline: “Candidate 𝐴 Leads Candidate 𝐵!” Is the headline

warranted?

Although there is a 4−point gap in the poll numbers, the true

support for candidate 𝐴 is in the 48.9% − 55.1% range, and, the

true support for candidate 𝐵 is in the 44.9% − 51.1% range, with

probability 95% (that is to say, 19 times out of 20).

Since there is overlap in the confidence intervals, the race is more

likely to be a dead heat.

7.4 Hypothesis Testing

Consider the following scenario: person A claims they have a fair coin,

but for some reason, person B is suspicious of the claim, believing the

coin to be biased in favour of tails.

Person B flips the coin 10 times, expecting a low number of heads, which

they intend to use as evidence against the claim. Let 𝑋 = # of Heads.

Suppose 𝑋 = 4. This is less than expected for a binomial random variable

𝑋 ∼ B(10, 0.5) since E[𝑋] = 5; the results are more in line with a coin

for which 𝑃(Head) = 0.4.

Does this data constitute evidence against the claim 𝑃(Head) = 0.5?

If the coin is fair, then 𝑋 ∼ B(10, 0.5) and 𝑋 = 4 is still close to E[𝑋];
in fact, 𝑃(𝑋 = 4) = 0.205 (as opposed to 𝑃(𝑋 = 5) = 0.246) so the event

𝑋 = 4 is still quite likely. It would seem that there is no real evidence

against the claim that the coin is fair.

Figure 7.14: Binomial distribution for 10

trials, with probability of success 1/2. The

probability of exactly 4 successes is high-

lighted in red.

The way the sentence “It would seem that there is no evidence against the
claim that the coin is fair” is worded is very important.
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We did not reject the claim that 𝑃(Head) = 0.5,
14

but this doesn’t mean14: Which is to say, that the coin is sym-

metric. that, in fact, 𝑃(Head) = 0.5. Not rejecting (which is not the same as

“accepting”) a claim is a weak statement.

To see why, let’s consider person C, who claims that the coin from the

example above has 𝑃(Head) = 0.3. Under 𝑋 ∼ B(10, 0.3), the event

𝑋 = 4 is still quite likely, with 𝑃(𝑋 = 4) = 0.22; we do not have enough
evidence to reject either 𝑃(Head) = 0.5 or 𝑃(Head) = 0.3.

However, rejecting a claim is a strong statement! Let’s say that person B

convinces person A to flip the coin another 90 times. In the second round

of flips, 36 Heads occur, giving a total of 40 Heads out of 100 coin flips.

What can we say now? Does this constitute any evidence against the

claim? If so, how much?

Let 𝑌 ∼ B(100, 0.5) (i.e.the coin is fair); 𝑌 = 40 is smaller than what we

would expect as E[𝑌] = 50 if the claim is true, so 𝑌 = 40 is again more in

agreement with 𝑃(Head) = 0.4.

But the event 𝑌 = 40 does not lie in the probability mass centre of the

distribution as 𝑋 = 4 did; rather, it falls in the distribution tail (an area

of lower probability).

For 𝑌 ∼ B(100, 0.5), 𝑃(𝑌 = 40) = 0.011.
15

Thus, if the coin is fair, the15: Compare this with the previous value

𝑃(𝑋 = 4) = 0.205.
event 𝑌 = 40 is quite unlikely.

Figure 7.15: Binomial distribution for 100

trials, with probability of success 1/2. The

probability of exactly 40 successes is high-

lighted in red.

Values down in the lower tail (or up in the upper tail) provide some
evidence against the claim. The question is, how much evidence? How
do we quantify it?

Since values that are “further down the left tail” provide evidence against

the claim of a fair coin (in favour of a coin biased against Heads), we will

use the actual tail area that goes with the observation: the smaller the
tail area, the greater the evidence against the claim (and vice-versa).

For 4 Heads out of 10 tosses, the evidence is the 𝑝−value 𝑃(𝑋 ≤ 4) , i.e.

𝑃(𝑋 ≤ 4 | 𝑋 ∼ B(10, 0.5)) = 0.377.

Thus, if 𝑃(Head) = 0.5, the event 𝑋 ≤ 4 is still very likely: we would see

evidence that extreme (or more) ≈ 38% of the time (simply by chance).
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For 40 Heads out of 100 tosses, the evidence is the 𝑝−value 𝑃(𝑌 ≤ 40),

𝑃(𝑌 ≤ 40 | 𝑌 ∼ B(100, 0.5)) = 0.028.

Thus, if 𝑃(Head) = 0.5, the event 𝑌 ≤ 40 is very unlikely: we would only

see evidence that extreme (or more) ≈ 3% of the time. A claim’s 𝑝−value

is the area of the tail of the distribution’s p.d.f. under the assumption

that the claim is true:

smaller 𝑝−value ⇐⇒ more evidence against claim.

Vocabulary of Hypothesis Testing

A specific language and notation has evolved to describe this approach

to “testing hypotheses”:

the “claim” is called the null hypothesis and is denoted by 𝐻0.

the “suspicion” is called the alternative hypothesis (𝐻1);

the (random) quantity we use to measure evidence is called a test
statistic – we need to know its distribution when 𝐻0 is true, and

the 𝑝−value quantifies “the evidence against 𝐻0”.

Consider the coin tossing situation described previously. The null and

alternative hypotheses are

𝐻0 : 𝑃(Head) = 0.5 and 𝐻1 : 𝑃(Head) < 0.5 .

With 𝑛 tosses, the test statistic is the number of heads 𝑋 in 𝑛 tosses:

if 𝑛 = 10 and 𝑋 = 4, the 𝑝−value is

𝑃(𝑋 ≤ 4 | 𝑋 ∼ B(10, 0.5)) = 0.377,

on the basis of which we would not reject the null hypothesis that

the coin was fair;

if 𝑛 = 100 and 𝑋 = 40, the 𝑝−value is

𝑃(𝑋 ≤ 40 | 𝑋 ∼ B(100, 0.5)) = 0.028,

on the basis of which we would reject the null hypothesis that the

coin was fair, in favour of the alternative that it was not.

How Small Does the 𝑝−Value Need to Be?

We concluded that 37.7% was “not that small”, whereas 2.8% was “small

enough”. How small does a 𝑝−value need to be before we consider that

we have “compelling evidence” against 𝐻0?

There is no easy answer to this question.
16

Typically, we look at the 16: It depends on many factors, including

what penalties we might pay for being

wrong.

probability of making a type I error, 𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true) :

if 𝑝−value ≤ 𝛼, then we reject 𝐻0 in favour of 𝐻1;

if 𝑝−value > 𝛼, then there is not enough evidence to reject 𝐻0

(which is not the same as accepting 𝐻0!).
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By convention, we often use 𝛼 = 0.01 or 𝛼 = 0.05.

The use of 𝑝-values has come under fire recently, as many view them as

the root cause of the current replication crisis.
17

In this twitter thread17: The crisis concerns the prevalence of

positive findings that are contradicted in

subsequent studies [4].

K. Carr describes why there is nothing wrong with 𝑝−values per se:

Don’t know what a 𝑝−VALUE is? Don’t know why 𝑝−VALUES

work? Don’t know why sometimes 𝑝−VALUES don’t work? THIS
IS THE THREAD FOR YOU!

DEFINITION OF A 𝑝−VALUE: Assume your theory is false. The

𝑝−VALUE is the probability of getting an outcome as extreme or

even more extreme than what you got in your experiment.

THE LOGIC OF THE 𝑝−VALUE: Assume my theory is false. The

probability of getting extreme results should be very small but I

got an extreme result in my experiment. Therefore, I conclude that

this is strong evidence that my theory is true. That’s the logic of the

p-value.

THE 𝑝−VALUE IS REASONABLE IN THEORY BUT TRICKY
IN PRACTICE: In my opinion, the p-value is just a mathematical

version of the way humans think. If we see something that seems

unlikely given our beliefs, we often doubt those beliefs. In practice,

the p-value can be tricky to use.

THE 𝑝−VALUE REQUIRES A GOOD DEFINITION OF WHEN
YOUR THEORY IS FALSE: There are usually an infinite number

of ways to define a world where your theory is false. 𝑝−values

often fail when people use overly simplistic mathematical models

of the processes that created their data. If the mismatch between

their mathematical models of the world and the actual world is too

large then the probabilities we compute can become completely

disconnected from reality.

THE 𝑝−VALUE MAY REQUIRE AN ACCURATE MODEL OF
YOU (THE OBSERVER): The probability of getting the result you

got depends on many things. If you sometimes do things like throw

out data or repeat measurements then you’re part of the system.

Your behavior affects the probability of getting your experimental

results. Therefore, to be completely realistic, you need to have an

ACCURATE model of your own behavior when you gather and

analyze data. This is hard and a big part of why the p-value often

fails as a tool.

BY DEFINITION, 𝑝−VALUES MUST SOMETIMES BE WRONG:
When using 𝑝−values, we’re working off of probabilities. By logic

of the p-value itself, even with perfect use, some of your decisions

will be wrong. You have to embrace this if you’re going to use the

𝑝−values. Badly defining what it means for your model to be false.

Inaccurately modeling the chances of getting your data including

your own behaviors. Not treating a p-value as a decision rule that

can sometimes be wrong.

These factors all contribute to misuse of the p-value in practice.

Hope this cleared some things up for you.

Thanks for coming to my p-value TED talk!

https://twitter.com/kareem_carr/status/1312783404975493122
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7.4.1 Hypothesis Testing in General

A hypothesis is a conjecture concerning the value of a population

parameter. Hypothesis testing require two competing hypotheses:

a null hypothesis, denoted by 𝐻0;

an alternative hypothesis, denoted by 𝐻1 or 𝐻𝐴.

The hypothesis is tested by evaluating experimental evidence:

if the evidence against 𝐻0 is strong enough, we reject 𝐻0 in favour
of 𝐻1, and we say that the evidence against 𝐻0 in favour of 𝐻1 is

significant;
if the evidence against 𝐻0 is not strong enough, then we fail to

reject 𝐻0 and we say that the evidence against 𝐻0 is not significant.

In cases when we fail to reject 𝐻0, we do NOT instead accept 𝐻0; we

simply do not have enough evidence to reject 𝐻0. We sometimes also say

that the evidence is compatible with 𝐻0.

From a philosophical perspective, the hypotheses should be formulated

prior to the experiment or the study. The experiment or study is then

conducted to evaluate the evidence against the null hypothesis – in order

to avoid data snooping, it is crucial that we do not formulate 𝐻1 after

looking at the data.

Scientific hypotheses can be often expressed in terms of whether an

effect is found in the data. In this case, we might use the following null

hypothesis:

𝐻0 : there is no effect

against the alternative hypothesis:

𝐻1 : there is an effect.

Errors in Hypothesis Testing

Two types of errors can be committed when testing 𝐻0 against 𝐻1:

if we reject 𝐻0 when 𝐻0 was in fact true, we have committed a type
I error;
if we fail to reject𝐻0 when𝐻0 was in fact is false, we have committed

a type II error.

Decision: Decision:
reject 𝐻0 fail to reject 𝐻0

Reality: 𝐻0 is True Type I Error No Error

Reality: 𝐻0 is False No Error Type II Error

Examples

1. If we conclude that a drug treatment is useful for treating a par-

ticular disease, but this is not the case in reality, then we have

committed an error of type I.
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2. If we cannot conclude that a drug treatment is useful for treating a

particular disease, but in reality the treatment is effective, then we

have committed an error of type II.

What type of error is worst? It depends on numerous factors.
18

18: There are other types of errors, but

they are not quite of the same nature: when

𝐻0 is wrongly rejected, but not for the right

(data) reasons, or when 𝐻0 is correctly

rejected, but 𝐻1 is wrongly interpreted;

see Wikipedia for more information.

Power of a Test

The probability of committing a type I error is usually denoted by

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true);

that of committing a type II error by

𝛽 = 𝑃( fail to reject 𝐻0 | 𝐻0 is false),

and that of correctly rejecting 𝐻0 by

power = 𝑃(reject 𝐻0 | 𝐻0 is false) = 1 − 𝛽.

Conventional values of 𝛼 and 𝛽 are usually 0.05 and 0.2, respectively,

although that is not a hard and fast rule.

Types of Null and Alternative Hypotheses

Let 𝜇 be the population parameter of interest; hypotheses are usually

expressed in terms of the values of this parameter (although we could

also be testing for other parameters).

The null hypothesis is a simple hypothesis of the form:

𝐻0 : 𝜇 = 𝜇0 ,

where 𝜇0 is some candidate value (“simple” means that the parameter is

assumed to take on a single value).

The alternative hypothesis 𝐻1 is a composite hypothesis, i.e. it contains

more than one candidate value.

Depending on the context, hypothesis testing takes on one of the following

three forms. We test the null hypothesis

𝐻0 : 𝜇 = 𝜇0 , where 𝜇0 is a number,

against a:

two-sided alternative: 𝐻1 : 𝜇 ≠ 𝜇0;

left-sided alternative: 𝐻1 : 𝜇 < 𝜇0 , or

right-sided alternative: 𝐻1 : 𝜇 > 𝜇0.

The formulation of the alternative hypothesis depends on the research

hypothesis and is determined prior to experiment or study.

 https://en.wikipedia.org/wiki/Type_III_error
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Example Investigators often want to verify if new experimental condi-

tions lead to a change in population parameters.

For instance, an investigator claims that the use of a new type of soil will

produce taller plants on average compared to the use of traditional soil.

The mean plant height under the use of traditional soil is 20 cm.

1. Formulate the hypotheses to be tested.

2. If another investigator suspects the opposite, that is, that the mean

plant height when using the new soil will be smaller than the mean

plant height with old soil. What hypotheses should be formulated?

3. A 3rd investigator believes that there will be an effect, but is not

sure if the effect with be to produce shorter or taller plants. What

hypotheses should be formulated then?

Let 𝜇 represent the mean plant height with the new type of soil. In all

three cases, the null hypothesis is 𝐻0 : 𝜇 = 20.

The alternative hypothesis depends on the situation:

1. 𝐻1 : 𝜇 > 20.

2. 𝐻1 : 𝜇 < 20.

3. 𝐻1 : 𝜇 ≠ 20.

For each 𝐻1, the corresponding 𝑝−values would be computed differently

when testing 𝐻0 against 𝐻1.

7.4.2 Test Statistics and Critical Regions

We test a statistical hypothesis we use a test statistic. A test statistic

is a function of the random sample and the population parameter of

interest.

In general, we reject 𝐻0 if the value of the test statistic is in the critical
region or rejection area for the test; the critical region is an interval of

real numbers.

The critical region is obtained using the definition of errors in hypothesis

testing – we select the critical region so that

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true)

is equal to some pre-determined value, such as 0.05 or 0.01.

Examples a new curing process developed for a certain type of cement

results in a mean compressive strength of 5000 kg/cm
2
, with a standard

deviation of 120 kg/cm
2
.

We test the hypothesis𝐻0 : 𝜇 = 5000 against the alternative𝐻1 : 𝜇 < 5000

with a random sample of 49 pieces of cement.

Assume that the critical region in this specific instance is 𝑋 < 4970, that

is, we would reject 𝐻0 if 𝑋 < 4970.
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1. Find the probability of committing a type I error when 𝐻0 is true.

By definition, we have

𝛼 = 𝑃(type I error) = 𝑃(reject 𝐻0 | 𝐻0 is true)
= 𝑃(𝑋 < 4970 | 𝜇 = 5000).

Thus, according to the CLT, we have

𝛼 ≈ 𝑃
(
𝑋 − 𝜇

𝜎/
√
𝑛

<
4970 − 5000

120/7

)
≈ 𝑃(𝑍 < −1.75) ≈ 0.0401 .

The sampling distribution of 𝑋 under 𝐻0 is shown in red in the

graph above (and those below): it is a normal distribution with

mean= 5000, and standard deviation= 120/7). The sampling distri-

bution of 𝑋 under 𝐻1 appears in blue: here, a normal distribution

with mean = 4990 and standard deviation = 120/7.

The critical region falls to the left of the vertical black line𝑋 < 4970,

and the probability of committing a type I error is the area shaded

in pale red, below:

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true) = 𝑃(𝑋 < 4970 | 𝜇 = 5000).

We would thus reject 𝐻0 if the observed value of 𝑋 falls to the left

of 𝑋 = 4970 (in the critical region).

2. Evaluate the probability of committing a type II error if 𝜇 is actually

4990, say (and not 5000, as assumed in 𝐻0).

By definition, we have

𝛽 = 𝑃(type II error) = 𝑃(fail to reject 𝐻0 | 𝐻0 is false)
= 𝑃(𝑋 > 4970 | 𝜇 = 4990).
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Thus, according to the CLT, we have

𝛽 = 𝑃(𝑋 > 4970) = 𝑃
(
𝑋 − 𝜇

𝜎/
√
𝑛

>
4970 − 4990

120/7

)
≈ 𝑃(𝑍 > −1.17) = 1 − 𝑃(𝑍 < −1.17) ≈ 0.879 .

The critical region falls to the right of the vertical black line; the

probability of committing a type II error is the area in pale blue:

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970 | 𝜇 = 4990).

We would thus fail to reject 𝐻0 if the observed value of 𝑋 falls to

the right of 𝑋 = 4970 (outside the critical region).

The power of the test is easily computed as

power = 𝑃(reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 < 4970) = 1 − 𝛽 ≈ 0.121,

the area shaded in grey below.

3. Evaluate the probability of committing a type II error if 𝜇 is actually

4950, say (and not 5000, as in 𝐻0).

By definition, we have

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970|𝜇 = 4950).

Thus, according to the CLT, we have

𝛽 = 𝑃

(
𝑋 − 𝜇

𝜎/
√
𝑛

>
4970 − 4950

120/7

)
≈ 𝑃(𝑍 > 1.17) ≈ 0.121 .

The critical region falls to the right of the vertical black line; the

probability of committing a type II error is the area in pale blue:

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970 | 𝜇 = 4950).
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We would thus fail to reject 𝐻0 if the observed value of 𝑋 falls to

the right of 𝑋 = 4970 (outside the critical region).

The probability of making a type II error is much larger in the first case,

which means that the threshold 𝑋 = 4970 is not ideal in that situation.

7.4.3 Test for a Mean

Suppose 𝑋1 , . . . , 𝑋𝑛 is a random sample from a population with mean 𝜇
and variance 𝜎2

, and let 𝑋 = 1

𝑛

∑𝑛
𝑖=1
𝑋𝑖 denote the sample mean:

if the population is normal, then 𝑋
exact∼ N(𝜇, 𝜎2/𝑛) ;

if the population is not normal, then as long as 𝑛 is large enough,

𝑋
approx∼ N(𝜇, 𝜎2/𝑛).

We start by assuming that the population variance 𝜎2
is known, and that

the hypothesis concerns the unknown population mean 𝜇.

Explanation: Left-Sided Alternative

Consider the unknown population mean 𝜇. Suppose that we test

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0 ,

where 𝜇0 is some candidate value for 𝜇. To evaluate the evidence against

𝐻0, we compare 𝑋 to 𝜇0. Under 𝐻0,

𝑍0 =
𝑋 − 𝜇0

𝜎/
√
𝑛

approx∼ N(0, 1).

We say that 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛

is the observed value of the 𝑍−test statistic 𝑍0.

If 𝑧0 < 0, we have evidence that 𝜇 < 𝜇0. However, we only reject 𝐻0 in

favour of 𝐻1 if the evidence is significant, which is to say, if

𝑧0 ≤ −𝑧𝛼 , at a level of significance 𝛼.

The corresponding 𝑝−value for this test is the probability of observing

evidence that is as (or more) extreme than our current evidence in favour

of𝐻1, assuming that𝐻0 is true (that is, simply by chance).
19

The decision19: “Even more extreme”, in this case,

means further to the left, so that 𝑝-value =

𝑃(𝑍 ≤ 𝑧0) = Φ(𝑧0), where 𝑧0 is the ob-

served value for the 𝑍-test statistic.

rule for the left-sided test is thus

if the 𝑝−value ≤ 𝛼, we reject 𝐻0 in favour of 𝐻1;

if the 𝑝−value > 𝛼, we fail to reject 𝐻0.
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Formally, the left-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0;

at significance 𝛼, if 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛
≤ −𝑧𝛼, we reject 𝐻0 in favour of 𝐻1, as

below.

Figure 7.16: Critical test region, left-sided

test.

An equivalent right-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0;

at significance 𝛼, if 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛
≥ 𝑧𝛼, we reject 𝐻0 in favour of 𝐻1, as

below.

Figure 7.17: Critical test region, right-sided

test.

The two-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0;

at significance 𝛼, if |𝑧0 | =
��� 𝑥−𝜇0

𝜎/
√
𝑛

��� ≥ 𝑧𝛼/2
, we reject 𝐻0 in favour of 𝐻1.

Figure 7.18: Critical test region, two-sided

test.
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The procedure to test for 𝐻0 : 𝜇 = 𝜇0 requires 6 steps.

Step 1: set 𝐻0 : 𝜇 = 𝜇0.

Step 2: select an alternative hypothesis 𝐻1.
20

Depending on the context,20: What we are trying to show using the

data.
we choose one of these alternatives:

𝐻1 : 𝜇 < 𝜇0 (one-sided test);

𝐻1 : 𝜇 > 𝜇0 (one-sided test);

𝐻1 : 𝜇 ≠ 𝜇0 (two-sided test).

Step 3: choose 𝛼 = 𝑃(type I error), typically 𝛼 ∈ {0.01, 0.05}.

Step 4: for the observed sample {𝑥1 , . . . , 𝑥𝑛}, compute the observed

value of the test statistics 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛

.

Step 5: determine the critical region according to:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇 < 𝜇0 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇 ≠ 𝜇0 |𝑧0 | > 𝑧𝛼/2

where 𝑧𝛼 is the critical value satisfying 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).
The critical values are displayed below for convenience.

𝛼 𝑧𝛼 𝑧𝛼/2

0.05 1.645 1.960

0.01 2.327 2.576

Step 6: compute the associated 𝑝−value according to:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇 < 𝜇0 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇 ≠ 𝜇0 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Decision Rule: as above,

if the 𝑝−value ≤ 𝛼, reject 𝐻0 in favour of 𝐻1;

if the 𝑝−value > 𝛼, fail to reject 𝐻0.

A few examples will clarify the procedure.

Examples

1. Components are manufactured to have strength normally dis-

tributed with mean 𝜇 = 40 units and standard deviation 𝜎 = 1.2

units. The manufacturing process has been modified, and an in-

crease in mean strength is claimed (the standard deviation remains

the same).
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A random sample of 𝑛 = 12 components produced using the mod-

ified process had the following strengths:

42.5, 39.8, 40.3, 43.1, 39.6, 41.0,

39.9, 42.1, 40.7, 41.6, 42.1, 40.8.

Does the data provide strong evidence that the mean strength now

exceeds 40 units? Use 𝛼 = 0.05.

We follow the outlined procedure to test for 𝐻0 : 𝜇 = 40 against

𝐻1 : 𝜇 > 40.

The observed value of the sample mean is 𝑥 = 41.125. Hence,

𝑝−value = 𝑃(𝑋 ≥ 𝑥) = 𝑃(𝑋 ≥ 41.125)

= 𝑃

(
𝑋 − 𝜇0

𝜎/
√
𝑛

≥ 41.125 − 𝜇0

𝜎/
√
𝑛

)
= 𝑃(𝑍 ≥ 3.25) ≈ 0.006.

As the 𝑝−value is smaller than 𝛼, we reject 𝐻0 in favour of 𝐻1.

Another way to see this is that if the model ‘𝜇 = 40’ is true, then

it is very unlikely that we would observe the event {𝑋 ≥ 41.125}
entirely by chance, and so the manufacturing process likely has an

effect in the claimed direction.

2. A set of scales works properly if the measurements differ from

the true weight by a normally distributed random error term with

standard deviation 𝜎 = 0.007 grams. Researchers suspect that the

scale is systematically adding to the weights.

To test this hypothesis, 𝑛 = 10 measurements are made on a 1.0g

“gold-standard” weight, giving a set of measurements which aver-

age out to 1.0038g. Does this provide evidence that the scale adds

to the measurement weights? Use 𝛼 = 0.05 and 0.01.

Let 𝜇 be the weight that the scale would record in the absence

of random error terms. We test for𝐻0 : 𝜇 = 1.0 against𝐻1 : 𝜇 > 1.0.

The observed test statistic is 𝑧0 = 1.0038−1.0

0.007/
√

10

≈ 1.7167. Since

𝑧0.05 = 1.645 < 𝑧0 = 1.7167 ≤ 𝑧0.01 = 2.327,

we reject 𝐻0 for 𝛼 = 0.05, but we fail to reject 𝐻0 for 𝛼 = 0.01.

Case closed. Right?

3. In the previous example, assume that we are interested in whether

the scale works properly, which means that the investigators think

there might be some systematic misreading, but they are not sure

in which direction the misreading would occur. Does the sample

data provide evidence that the scale is systematically biased? Use

𝛼 = 0.05 and 0.01.
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Let 𝜇 be as in the previous example. We test for𝐻0 : 𝜇 = 1.0 against

𝐻1 : 𝜇 ≠ 1.0.

The test statistic is still 𝑧0 = 1.7167; since |𝑧0 | ≤ 𝑧𝛼/2
for both

𝛼 = 0.05 and 𝛼 = 0.01, we fail to reject 𝐻0 at either 𝛼 = 0.05 or

𝛼 = 0.01.

Thus, our “reading” of the test statistic depends on what type of

alternative hypothesis we have selected (and so, on the overall

context).

4. The marks for an “average” class are normally distributed with

mean 60 and variance 100. Nine students are selected from the

class; their average mark is 55. Is this subgroup “below average”?

Let 𝜇 be the true mean of the subgroup. We are testing for

𝐻0 : 𝜇 = 60 against 𝐻1 : 𝜇 < 60.

The observed sample test statistic is

𝑧0 =
55 − 60

10/
√

9

= −1.5.

The corresponding 𝑝−value is

𝑃(𝑋 ≤ 55) = 𝑃(𝑍 ≤ −1.5) = 0.07.

Thus there is not enough evidence to reject the claim that the

subgroup is ‘average’, regardless of whether we use 𝛼 = 0.05 or

𝛼 = 0.01.

5. We consider the same set-up as in the previous example, but this

time the sample size is 𝑛 = 100, not 9. Is there some evidence to

suggest that this subgroup of students is ‘below average’?

Let 𝜇 be as before. We are still testing for 𝐻0 : 𝜇 = 60 against

𝐻1 : 𝜇 < 60, but this time the observed sample test statistic is

𝑧0 =
55 − 60

10/
√

100

= −5.

The corresponding 𝑝−value is

𝑃(𝑋 ≤ 55) = 𝑃(𝑍 ≤ −5) ≈ 0.00.

Thus we reject the claim that the subgroup is ‘average’, regardless

of whether we use 𝛼 = 0.05 or 𝛼 = 0.01.

The lesson from the last example is that the sample size plays a role; in

general, an estimate obtained from a larger (representative) sample is

more likely to be generalizable to the population as a whole.
21

21: Or as the iFunny meme has it. . .
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Tests and Confidence Intervals

It is becoming more and more common for analysts to bypass the

computation of the 𝑝−value altogether, in favour of a confidence interval

based approach.
22

22: In order to avoid the controversy sur-

rounding the crisis of replication?

For a given 𝛼, we reject 𝐻0 : 𝜇 = 𝜇0 in favour of 𝐻1 : 𝜇 ≠ 𝜇0 if, and only

if, 𝜇0 is not in the 100(1 − 𝛼)% C.I. for 𝜇.

Example A manufacturer claims that a type of engine uses 20 gallons of

fuel to operate for one hour. It is known from previous studies that this

amount is normally distributed with variance 𝜎2 = 25 and mean 𝜇.

A sample of size 𝑛 = 9 has been taken and the following value has been

observed for the mean amount of fuel per hour: 𝑋 = 23. Should we

accept the manufacturer’s claim? Use 𝛼 = 0.05.

We test for 𝐻0 : 𝜇 = 20 against 𝐻1 : 𝜇 ≠ 20. The observed sample test

statistic is

𝑧0 =
𝑥 − 𝜇0

𝜎/
√
𝑛

=
23 − 20

5/
√

9

= 1.8.

For a 2−sided test with 𝛼 = 0.05, the critical value is 𝑧0.025 = 1.96. Since

|𝑧0 | ≤ 𝑧0.025, 𝑧0 is not in the critical region, and we do not reject 𝐻0.

The advantage of the confidence interval approach is that it allows

analysts to test for various claims simultaneously. Since we know the

variance of the underlying population, an approximate 100(1 − 𝛼)% C.I.

for 𝜇 is given by

𝑋 ± 𝑧𝛼/2
𝜎/

√
𝑛 = 23 ± 1.96 · 5/

√
9 = (19.73; 26.26).

Based on the data, we would thus not reject the claim that 𝜇 = 20,

𝜇 = 19.74, 𝜇 = 26.20, etc.

Test for a Mean with Unknown Variance

If the data is normal and 𝜎 is unknown, we can estimate it via the sample

variance

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋

)
2

.

As we have seen for confidence intervals, the test statistic

𝑇 =
𝑋 − 𝜇

𝑆/
√
𝑛

∼ 𝑡(𝑛 − 1)

follows a Student’s 𝑡−distribution with 𝑛 − 1 df.

We can follow the same steps as for the test with known variance, with

the modified critical regions and 𝑝−values:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑡0 > 𝑡𝛼(𝑛 − 1)
𝐻1 : 𝜇 < 𝜇0 𝑡0 < −𝑡𝛼(𝑛 − 1)
𝐻1 : 𝜇 ≠ 𝜇0 |𝑡0 | > 𝑡𝛼/2

(𝑛 − 1)
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where

𝑡0 =
𝑥 − 𝜇0

𝑆/
√
𝑛

and 𝑡𝛼(𝑛 − 1) is the 𝑡−value satisfying

𝑃(𝑇 > 𝑡𝛼(𝑛 − 1)) = 𝛼

for 𝑇 ∼ 𝑡(𝑛 − 1). The corresponding 𝑝−values are given in the table

below.

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇 > 𝜇0 𝑃(𝑇 > 𝑡0)
𝐻1 : 𝜇 < 𝜇0 𝑃(𝑇 < 𝑡0)
𝐻1 : 𝜇 ≠ 𝜇0 2 · min{𝑃(𝑇 > 𝑡0), 𝑃(𝑇 < 𝑡0)}

Example Consider the following observations, taken from a normal

population with unknown mean 𝜇 and variance:

18.0, 17.4, 15.5, 16.8, 19.0, 17.8, 17.4, 15.8,

17.9, 16.3, 16.9, 18.6, 17.7, 16.4, 18.2, 18.7.

Conduct a right-side hypothesis test for 𝐻0 : 𝜇 = 16.6 vs. 𝐻1 : 𝜇 > 16.6,

using 𝛼 = 0.05.

The sample size, sample mean, and sample variance are 𝑛 = 16, 𝑋 = 17.4

and 𝑆 = 1.078, respectively.

Since the variance 𝜎2
is unknown, the observed sample test statistics of

interest is

𝑡0 =
𝑥 − 𝜇0

𝑆/
√
𝑛

=
17.4 − 16.6

1.078/4

≈ 2.968,

and the corresponding 𝑝−value is

𝑝−value = 𝑃(𝑋 ≥ 17.4) = 𝑃(𝑇 > 2.968),

where 𝑇 ∼ 𝑡(𝑛 − 1) = 𝑡(𝜈) = 𝑡(15).

From the 𝑡−tables (or by using the R function qt()), we see that

𝑃 (𝑇(15) ≥ 2.947) ≈ 0.005, 𝑃 (𝑇(15) ≥ 3.286) ≈ 0.0025.

The 𝑝−value thus lies in the interval (0.0025, 0.005); in particular, the

𝑝−value ≤ 0.05, which is strong evidence against 𝐻0 : 𝜇 = 16.6.

7.4.4 Test for a Proportion

The principle for proportions is pretty much the same, as we can see in

the next example.
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Example A group of 100 adult American Catholics were asked the

following question: “Do you favour allowing women into the priesthood?”

60 of the respondents independently answered ‘Yes’; is the evidence

strong enough to conclude that more than half of American Catholics

favour allowing women to be priests?

Let 𝑋 be the number of people who answered ‘Yes’. We assume that

𝑋 ∼ B(100, 𝑝), where 𝑝 is the true proportion of American Catholics

who favour allowing women to be priests.

We test for 𝐻0 : 𝑝 = 0.5 vs. 𝐻1 : 𝑝 > 0.5. Under 𝐻0, 𝑋 ∼ B(100, 0.5).

The 𝑝−value that corresponds to the observed sample is

𝑃(𝑋 ≥ 60) = 1 − 𝑃(𝑋 < 60) = 1 − 𝑃(𝑋 ≤ 59)

≈ 1 − 𝑃
(
𝑋+0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

≤ 59+0.5 − 50√
25

)
≈ 1 − 𝑃(𝑍 ≤ 1.9) = 0.0287,

where the +0.5 comes from the correction to the normal approximation

of the binomial distribution (see Section 6.3.6 for details).

Thus, we would reject 𝐻0 at 𝛼 = 0.05, but not at 𝛼 = 0.01.

7.4.5 Two-Sample Tests

Up to this point, we have only tested hypotheses about populations by

evaluating the evidence provided by a single sample of observations.

Two-sample tests allows analysts to compare two populations.
23

23: These populations are potentially dis-

tinct.

Paired Test

Let 𝑋1,1 , . . . , 𝑋1,𝑛 be a random sample from a normal population with

unknown mean 𝜇1 and unknown variance 𝜎2
; let 𝑋2,1 , . . . , 𝑋2,𝑛 be a

random sample from a normal population with unknown mean 𝜇2 and

unknown variance 𝜎2
, with both populations not necessarily indepen-

dent of one another.
24

We would like to test for 𝐻0 : 𝜇1 = 𝜇2 against 24: It is possible that the 2 samples arise

from the same population, or represent

two different measurements on the same

units, say.

𝐻1 : 𝜇1 ≠ 𝜇2.

In order to do so, we compute the differences 𝐷𝑖 = 𝑋1,𝑖 − 𝑋2,𝑖 and

consider the 𝑡−test (as we do not know the variance). The test statistic

is

𝑇0 =
𝐷

𝑆𝐷/
√
𝑛

∼ 𝑡(𝑛 − 1),

where

𝐷 =
1

𝑛

𝑛∑
𝑖=1

𝐷𝑖 and 𝑆2

𝐷 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝐷𝑖 − 𝐷)2.

Example The knowledge of basic statistical concepts for 𝑛 = 10 engi-

neers was measured on a scale from 0− 100 before and after a short course

in statistical quality control. The result are as follows:
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Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1,𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2,𝑖 51 84 74 48 53 61 59 75 82 48

Let𝜇1 and𝜇2 be the mean score before and after the course, respectively.

Assuming the underlying scores are normally distributed, conduct a test

for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 < 𝜇2.

The differences 𝐷𝑖 = 𝑋1,𝑖 − 𝑋2,𝑖 are:

Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1,𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2,𝑖 51 84 74 48 53 61 59 75 82 48

Difference 𝐷𝑖 −8 −2 3 −9 −2 5 −4 −14 −3 −5

The observed sample mean is 𝑑 = −3.9, and the observed sample variance

is 𝑠2

𝐷
= 31.21.

The test statistic is:

𝑇0 =
𝐷 − 0

𝑆𝐷/
√
𝑛

∼ 𝑡(𝑛 − 1),

with observed value:

𝑡0 =
−3.9√

31.21/10

≈ −2.21.

We compute

𝑃(𝐷 ≤ −3.9) = 𝑃(𝑇(9) ≤ −2.21) = 𝑃(𝑇(9) > 2.21).

But 𝑡0.05(9) = 1.833 < 𝑡0 = 2.21 < 𝑡0.01(9) = 2.821, so we reject 𝐻0 at

𝛼 = 0.05, but not at 𝛼 = 0.01.

Figure 7.19: Critical test regions for the

right-sided test, with 𝑛 = 10 observa-

tions: confidence levels 0.05 (left) and 0.01

(right).

Unpaired Test

Let 𝑋1,1 , . . . , 𝑋1,𝑛 be a random sample from a normal population with

unknown mean 𝜇1 and variance 𝜎2

1
; let𝑌2,1 , . . . , 𝑌2,𝑚 be a random sample
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from a normal population with unknown mean 𝜇2 and variance 𝜎2

2
, with

both populations independent of one another.

We want to test for

𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 ≠ 𝜇2.

Let 𝑋 = 1

𝑛

∑𝑛
𝑖=1
𝑋𝑖 , 𝑌 = 1

𝑚

∑𝑚
𝑖=1
𝑌𝑖 . As always, the observed values are

denoted by lower case letters: 𝑥, 𝑦.

When the Variances 𝜎2

1
and 𝜎2

2
are Known

We can follow the same steps as for the earlier test, with some modifica-

tions:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇1 < 𝜇2 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑧0 | > 𝑧𝛼/2

where

𝑧0 =
𝑥 − 𝑦√

𝜎2

1
/𝑛 + 𝜎2

2
/𝑚

,

and 𝑧𝛼 satisfies 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Example A sample of 𝑛 = 100 Albertans yields a sample mean income

of 𝑋 = 33, 000$. A sample of 𝑚 = 80 Ontarians yields 𝑌 = 32, 000$.

From previous studies, it is known that the population income standard

deviations are, respectively, 𝜎1 = 5000$ in Alberta and 𝜎2 = 2000$ in

Ontario. Do Albertans earn more than Ontarians, on average?

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2. The observed difference is

𝑋 − 𝑌 = 1000; the observed test statistic is

𝑧0 =
𝑋 − 𝑌√

𝜎2

1
/𝑛 + 𝜎2

2
/𝑚

=
1000√

5000
2/100 + 2000

2/80

= 1.82;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 > 1000

)
= 𝑃(𝑍 > 1.82) = 0.035,

and so we reject 𝐻0 when 𝛼 = 0.05, but not when 𝛼 = 0.01.
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When the Variances 𝜎2

1
and 𝜎2

2
are Unknown (Small Samples)

In this case, the modifications are:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑡0 > 𝑡𝛼(𝑛 + 𝑚 − 2)
𝐻1 : 𝜇1 < 𝜇2 𝑡0 < −𝑡𝛼(𝑛 + 𝑚 − 2)
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑡0 | > 𝑡𝛼/2

(𝑛 + 𝑚 − 2)

where

𝑡0 =
𝑋 − 𝑌√

𝑆2

𝑝/𝑛 + 𝑆2

𝑝/𝑚
and 𝑆2

𝑝 =
(𝑛 − 1)𝑆2

1
+ (𝑚 − 1)𝑆2

2

𝑛 + 𝑚 − 2

,

𝑡𝛼(𝑛 +𝑚 − 2) satisfies 𝑃(𝑇 > 𝑡𝛼(𝑛 +𝑚 − 2)) = 𝛼 , and 𝑇 ∼ 𝑡(𝑛 +𝑚 − 2).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑇 > 𝑡0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑇 < 𝑡0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑇 > 𝑡0), 𝑃(𝑇 < 𝑡0)}

Example A researcher wants to test whether, on average, a new fertilizer

yields taller plants. Plants were divided into two groups: a control group

treated with an old fertilizer and a study group treated with the new

fertilizer. The following data are obtained:

Sample Size Sample Mean Sample Variance

𝑛 = 8 𝑋 = 43.14 𝑆2

1
= 71.65

𝑚 = 8 𝑌 = 47.79 𝑆2

2
= 52.66

Test for 𝐻0 : 𝜇1 = 𝜇2 vs. 𝐻1 : 𝜇1 < 𝜇2.

The observed difference is 𝑋 − 𝑌 = −4.65 and the pooled sampled
variance is

𝑆2

𝑝 =
(𝑛 − 1)𝑆2

1
+ (𝑚 − 1)𝑆2

2

𝑛 + 𝑚 − 2

=
7(71.65) + 7(52.66)

8 + 8 − 2

= 62.155 = 7.88
2.

The observed test statistic is thus

𝑡0 =
𝑋 − 𝑌√

𝑆2

𝑝/𝑛 + 𝑆2

𝑝/𝑚
=

−4.65

7.88

√
1/8 + 1/8

= −1.18;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 < −4.65

)
= 𝑃(𝑇(14) < −1.18)

= 𝑃(𝑇(14) > 1.18) ∈ (0.1, 0.25)

(according to the table), and we do not reject 𝐻0 when 𝛼 = 0.05, or when

𝛼 = 0.01.
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When the Variances 𝜎2

1
and 𝜎2

2
are Unknown (Large Samples)

In this case, the modifications are:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇1 < 𝜇2 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑧0 | > 𝑧𝛼/2

where

𝑧0 =
𝑋 − 𝑌√

𝑆2

1
/𝑛 + 𝑆2

2
/𝑚

,

and 𝑧𝛼 satisfies 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Example Consider the same set-up as in the previous example, but

with larger sample sizes: 𝑛 = 𝑚 = 100. Now test for 𝐻0 : 𝜇1 = 𝜇2 against

𝐻1 : 𝜇1 < 𝜇2.

The observed difference is (still) −4.65. The observed test statistic is

𝑧0 =
𝑋 − 𝑌√

𝑆2

1
/𝑛 + 𝑆2

2
/𝑚

=
−4.65√

71.65
2/100 + 52.66

2/100

= −4.17;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 < −4.65

)
= 𝑃(𝑍 < −4.17) ≈ 0.0000;

and we reject 𝐻0 when either 𝛼 = 0.05 or 𝛼 = 0.01.

7.4.6 Difference of Two Proportions

As always, we can transfer these tests to proportions, using the normal

approximation to the binomial distribution.

For instance, to test for 𝐻0 : 𝑝1 = 𝑝2 against 𝐻1 : 𝑝1 ≠ 𝑝2 in samples

of size 𝑛1, 𝑛2, respectively, we use the observed sample difference of
proportions

𝑧0 =
�̂�1 − �̂�2 − 0√

�̂�(1 − �̂�)
√

1/𝑛1 + 1/𝑛2

,

where �̂� is the pooled proportion

�̂� =
𝑛1

𝑛1 + 𝑛2

�̂�1 +
𝑛2

𝑛1 + 𝑛2

�̂�2.

and the 𝑝−value is, as always, 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}.
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7.4.7 Hypothesis Testing with R

There are built-in functions in R that allow for hypothesis testing.

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0 when 𝜎 is unknown

(two-sided 𝑡−test) using:

t.test(x,mu=mu.0)

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0 when 𝜎 is unknown

(right-sided 𝑡−test) using:

t.test(x,mu=mu.0,alternative="greater")

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0 when 𝜎 is unknown

(left-sided 𝑡−test) using:

t.test(x,mu=mu.0,alternative="less")

We test for 𝐻0 : 𝜇1 = 𝜇2 against𝐻1 : 𝜇1 ≠ 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample two-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE)

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample right-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE,alternative="greater")

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 < 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample left-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE,alternative="less")

For all these tests, we reject the null hypothesis 𝐻0 at significance level
𝛼 if the 𝑝−value of the test is below 𝛼.

25
25: Which means that the probability of

wrongly rejecting 𝐻0 when 𝐻0 is in fact

true is below 𝛼, usually taken to be 0.05

or 0.01).

If the 𝑝−value of the test is greater than the significance level 𝛼, then we

fail to reject the null hypothesis 𝐻0 at significance level 𝛼.
26

26: Which, it is worth recalling, is not the

same as accepting the null hypothesis.
Note that the 𝑝−value for the test will appear in the output, but it can also

be computed directly using the appropriate formula. The corresponding

95% confidence intervals also appear in the output.

Artificial Examples

1. Let’s say that we have a small dataset with 𝑛 = 7 observations:

x=c(4,5,4,6,4,4,5)

Let 𝜇𝑋 be the true mean of whatever distribution the sample came

from. Is it conceivable that 𝜇𝑋 = 5?

We can test for 𝐻0 : 𝜇𝑋 = 5 against 𝐻1 : 𝜇𝑋 ≠ 5 simply by calling:

t.test(x,mu=5)
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One Sample t-test

data: x

t = -1.4412, df = 6, p-value = 0.1996

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

3.843764 5.299093

sample estimates:

mean of x

4.571429

All the important information is in the output: the critical 𝑡−value

from Student’s 𝑇−distribution with 𝑛 − 1 = 6 degrees of freedom

𝑡∗ = −1.4412, the probability of wrongly rejecting 𝐻0 if it was

in fact true (𝑝−value = 0.1996), and the 95% confidence interval

(3.843764, 5.299093) for 𝜇𝑋 , whose point estimate is 𝑥 = 4.571429.

Since the 𝑝−value is greater than 𝛼 = 0.05, we fail to reject the null

hypothesis that 𝜇𝑋 = 5; there is not enough evidence in the data to

categorically state that 𝜇𝑋 ≠ 5.
27

27: Is it problematic that the sample size

𝑛 = 7 is small?

2. Let’s say that now we have a small dataset with 𝑛 = 9 observations:

y=c(1,2,1,4,3,2,4,3,2)

Let 𝜇𝑌 be the true mean of whatever distribution the sample came

from. Is it conceivable that 𝜇𝑌 = 5?

We can test for 𝐻0 : 𝜇𝑌 = 5 against 𝐻1 : 𝜇𝑌 ≠ 5 simply by calling:

t.test(y,mu=5)

One Sample t-test

data: y

t = -6.7823, df = 8, p-value = 0.0001403

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

1.575551 3.313338

sample estimates:

mean of x

2.444444

The 𝑝−value is 0.0001403, which is substantially smaller than

𝛼 = 0.05, and we reject the null hypothesis that the true mean is 5.

The test provides no information about what the true mean could

be, but the 95% confidence interval (1.575551, 3.313338) does: we

would expect 𝜇𝑌 ≈ 2.5.
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3. Is it conceivable that 𝜇𝑌 = 2.5?

Let’s run:

t.test(y,mu=2.5)

One Sample t-test

data: y

t = -0.14744, df = 8, p-value = 0.8864

alternative hypothesis: true mean is not equal to 2.5

95 percent confidence interval:

1.575551 3.313338

sample estimates:

mean of x

2.444444

With such a large 𝑝-value, we can definitely accept the null hypoth-

esis, right?
28

28: Alas, we cannot. All that we can say

is that we do not have enough evidence to

reject the null hypothesis 𝐻0 : 𝜇𝑌 = 2.5.

Teaching Dataset Suppose that a researcher wants to determine if, as

she believes, a new teaching method enables students to understand

elementary statistical concepts better than the traditional lectures given

in a university setting (based on [9]).

She recruits 𝑁 = 80 second-year students to test her claim. The students

are randomly assigned to one of two groups:

students in group 𝐴 are given the traditional lectures,

whereas students in group 𝐵 are taught using the new teaching

method.

After three weeks, a short quiz is administered to the students in order

to assess their understanding of statistical concepts.

The results are found in the teaching.csv dataset.

teaching <- read.csv("teaching.csv", header = TRUE)

colnames(teaching)<-c("ID","Group","Grade")

head(teaching)

ID Group Grade

1 B 75.5

2 B 77.5

3 A 73.5

4 A 75.0

5 B 77.0

6 A 79.0

Is there enough evidence to suggest that the new teaching is more effective

(as measured by test performance)?

https://www.data-action-lab.com/wp-content/uploads/2023/07/teaching.csv
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We can summarize the results (sample size, sample mean, sample vari-

ance) as follows:

library(dplyr)

counts.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = length)

means.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = mean)

variances.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = var)

teaching.summary <- counts.by.group |>

full_join(means.by.group, by="Group.1" ) |>

full_join(variances.by.group, by="Group.1" )

colnames(teaching.summary) <- c("Group",

"Sample Size", "Sample Mean", "Sample Variance")

Group Sample Size Sample Mean Sample Variance

A 40 75.125 6.650641

B 40 79.000 5.538462

If the researcher assumes that both groups have similar background

knowledge prior to being taught (which she attempt to enforce by

randomising the group assignment), then the effectiveness of the teaching

methods may be compared using two hypotheses: the null hypothesis
𝐻0 and the alternative 𝐻1.

Let 𝜇𝑖 represent the true performance of method 𝑖. Since the researcher

wants to claim that the new method is more effective than the traditional

ones, it is most appropriate for her to use one-sided hypothesis testing

with

𝐻0 : 𝜇𝐴 ≥ 𝜇𝐵 against 𝐻1 : 𝜇𝐴 < 𝜇𝐵 .

The testing procedure is simple:

1. calculate an appropriate test statistic under 𝐻0;

2. reject𝐻0 in favour of𝐻1 if the test statistic falls in the critical region
(also called the rejection region) of an associated distribution, and

3. fail to reject 𝐻0 otherwise.

In this case, she uses a two-sample 𝑡−test. Assuming that variability in

two groups are roughly the same, the test statistic is given by:

𝑡0 =
𝑦𝐵 − 𝑦𝐴

𝑆𝑝

√
1

𝑁𝐴
+ 1

𝑁𝐵

,

where the pooled variance 𝑆2

𝑝 is

𝑆2

𝑝 =
(𝑁𝐴 − 1)𝑆2

𝐴
+ (𝑁𝐵 − 1)𝑆2

𝐵

𝑁𝐴 + 𝑁𝐵 − 2

.
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With her data, she obtains the 𝑡−statistic as follows. First, she identifies

the number of observations in each group:

(N.A = teaching.summary[1,2])

(N.B = teaching.summary[2,2])

(N=N.A+N.B)

[1] 40

[1] 40

[1] 80

Then, she computes the sample mean score in each group:

(y.bar.A = teaching.summary[1,3])

(y.bar.B = teaching.summary[2,3])

[1] 75.125

[1] 79

She computes the sample variance of the scores in each group:

(S2.A = teaching.summary[1,4])

(S2.B = teaching.summary[2,4])

[1] 6.650641

[1] 5.538462

She finally computes the sample pooled variance of scores:

(S2.P = ((N.A-1)*S2.A+(N.A-1)*S2.B)/(N.A+N.B-2))

[1] 6.094551

From which she obtains the 𝑡−statistic:

(t0 = (y.bar.B - y.bar.A) / sqrt(S2.P*(1/N.A+1/N.B)))

[1] 7.019656

The test statistic value is 𝑡0 = 7.02.

In order to reject or fail to reject the null hypothesis, she needs to compare

it against the critical value of the Student 𝑇 distribution with 𝑁 − 2 = 78

degrees of freedom at significance level 𝛼 = 0.05, say.
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Set the significance level at 0.05:

alpha=0.05

Be careful with the qt() function – the next call “looks” right, but it will

give you a critical value on the wrong side of the distribution’s mean:

(t.star.wrong = qt(alpha,N-2))

[1] -1.664625

This call, however, gives the correct critical value:

(t.star = qt(alpha,N-2, lower.tail=FALSE))

[1] 1.664625

The appropriate critical value is

𝑡∗ = 𝑡1−𝛼,𝑁−2 = 𝑡0.95,78 = 1.665.

Since 𝑡0 > 𝑡∗ at 𝛼 = 0.05, she rejects the null hypothesis 𝐻0 : 𝜇𝐴 ≥ 𝜇𝐵,

which is to say that she has enough evidence to support the claim that

the new teaching method is more effective than the traditional methods,

at 𝛼 = 0.05.

7.5 Additional Topics

We will finish this chapter by introducing and briefly discussing some

additional statistical analysis topics (ANOVA, ANCOVA, MANOVA, mul-

tivariate statistics, goodness-of-fit tests). Another common application,

linear regression and its variants, will receive a thorough treatment in

subsequent modules.

7.5.1 Analysis of Variance

Analysis of variance (ANOVA) is a statistical method that partitions

a dataset’s variability into explainable variability (model-based) and

unexplained variability (error) using various statistical models, to deter-

mine whether (multiple) treatment groups have significantly different

group means.
29

The total sample variability of a feature 𝑦 in a dataset 29: We will have more to say on the topic

in Chapter 11.
is defined as

SST =

𝑁∑
𝑘=1

(𝑦𝑘 − 𝑦)2 ,

where 𝑦 is the overall mean of the data.

Let us return to the teaching method example of Section 7.4.7.

The mean of the grades, for all students, is:
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(mu = mean(teaching$Grade))

[1] 77.0625

The plot below shows all the students’ scores, ordered by participant ID;

the overall mean is displayed for comparison.

plot(teaching$ID,teaching$Grade, xlab="ID", ylab="Grade")

abline(h = mu)

Since the assignment of ID is arbitrary (at least, in theory), we do not

observe any patterns – if we were to guess someone’s score with no

knowledge except for their participant ID, then picking the sample mean

is as good a guess as any other reasonable guesses.

Statistically speaking, this means that the null model

𝑦𝑖 , 𝑗 = 𝜇 + 𝜀𝑖 , 𝑗 ,

where 𝜇 is the overall mean, 𝑖 = 𝐴, 𝐵, and 𝑗 = 1, . . . , 40, does not explain

any of the variability in the student scores (as usual, 𝜀𝑖 , 𝑗 represents the

departure or noise from the model prediction).

But the students DID NOT all receive the same treatment: 40 randomly

selected students were assigned to group 𝐴, and the other 40 to group 𝐵,

and both group were taught using a different method.

When we add this information to the plot, we see that the two study

groups show different characteristics in term of their average scores.

library(ggplot2)

ggplot(teaching, aes(x=ID,y=Grade,colour=Group,shape=Group)) +

geom_point() +

geom_hline(aes(yintercept = y.bar.B),col="#00BFC4") +

geom_hline(aes(yintercept = y.bar.A),col="#F8766D") + theme_bw()
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With the group assignment information, we can refine our null model

into the treatment-based model

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 ,

where 𝜇𝑖 , 𝑖 = 𝐴, 𝐵 represent the group means. Using this model, we

can decompose SST into between-treatment sum of squares and error
(within-treatment) sum of squares as

SST =
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦)2 =
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 + 𝑦 𝑖 − 𝑦)2

=
∑
𝑖

𝑁𝑖(𝑦 𝑖 − 𝑦)2 +
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦 𝑖)2 = SSA + SSE

The SSA component looks at the difference between each of the treatment

means and the overall mean, which we consider to be explainable30
; the 30: That is to say, the treatment explains

part of the difference in the observed

group means.

SSE component, on the other hand, looks at the difference between each

observation and its own group mean, and is considered to be random.
31

31: As the spread about the group means

is fairly large (relatively-speaking), we sus-

pect that the treatment-based model on its

own does not capture all the variability in

the data.

Thus, SSA/SST × 100% of the total variability can be explained using a

treatment-based model. This ratio is called the coefficient of determina-
tion, denoted by 𝑅2

.

Formally, the ANOVA table incorporates a few more items – the table

below summarizes all the information that it contains.

Source Sum of Squares df Mean Square F0 p−value

Treatment SSA 𝑝 − 1 MSA = SSA/(𝑝 − 1) MSA/MSE 𝑃(𝐹0 > 𝐹∗)
Error SSE 𝑁 − 𝑝 MSE = SSE/(𝑁 − 𝑝)
Total SST 𝑁 − 1

The specific table for the teaching methodology dataset can be obtained

directly from the lm() function.
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model.lm <- lm(Grade ~ Group, data = teaching)

SS.Table <- anova(model.lm)

SS.Table

Source Sum of Squares df Mean Square F0 p−value

Treatment 300.31 1 300.31 49.28 7.2 × 10
−10

***

Error 475.38 78 6.095

Total 775.69 79

The test statistic 𝐹0 follows an 𝐹-distribution with (dftreat , dfe) = (1, 78)
degrees of freedom. At a significance level of 𝛼 = 0.05, the critical value

𝐹∗ = 𝐹0.95,1,78 = 3.96 is substantially smaller than the test statistic 𝐹0 =

49.28, implying that the two-treatment model is statistically significant.

This, in turn, means that the model recognises a statistically significant

difference between the students’ scores, based on the teaching methods.

(R2 = summary(model.lm)$r.squared)

[1] 0.3871566

The coefficient of determination 𝑅2
provides a way to measure the

model’s significance. From the ANOVA table for the teaching example,

we compute

𝑅2 =
SSA

SST

=
300.31

775.69

≈ 0.39,

which means that 39% of the total variation in the data can be explained

by the two-treatment model.

Is this good enough? That depends on the specifics of the situation (in

particular, on the researcher’s or the client’s needs).

Diagnostic Checks

As with most statistical procedures, ANOVA relies on certain assumptions

for its result to be valid. Recall that the model is given by

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 .

What assumptions are made?

The main assumption is that the error terms follow independently and

identically distributed (iid) normal distributions (i.e., 𝜀𝑖 , 𝑗
iid∼ N(0, 𝜎2)).

Assuming independence, we are required to verify three additional

assumptions:

normality of the error terms;

constant variance (within treatment groups), and

equal variances (across treatment groups).
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Normality of the errors can be tested visually with the help of a normal-
QQ plot, which compares the standardized residuals quantiles against

the theoretical quantiles of the standard normal distribution N(0, 1).32

32: A straight line indicates normality.

In other words, if the errors are normally distributed with mean 0

and variance 𝜎2
, we would expect that the 80 standardized residuals

𝑟𝑖 , 𝑗 =
𝜀𝑖 , 𝑗−0

𝜎 should behave as though they had been drawn from N(0, 1).

plot(model.lm, which = c(1,2,3,4))

The plots above show some departure in the lower tail, however, moderate

departure from normality is usually acceptable as long as it is mostly a

tail phenomenon.

To test the assumption of constant variance, we can run visual inspection

using:

residuals vs.fitted values, and/or

residuals vs.order/time.

The standardized residuals in both groups should be approximately

distributed according to N(0, 1). The plots also show that variability from

the mean in each treatment group is reasonably similar.
33

33: If a difference is apparent and we

cannot conclude that the variances are

constant across groups, we need to ap-

ply a variance stabilising transformation,

such as a logarithmic transformation or

square-root transformation before pro-

ceeding.

More formally, equality of variance is often tested for using Bartlett’s
test (when normality of the residuals is met) or the modified Levene’s
test (when it is not).
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Assuming that we felt the evidence of normal residuals was warranted

in the two-treatment model of the teaching dataset, we get a 𝑝−value of

0.57 for Bartlett’s test:

(B.T <- bartlett.test(Grade~Group, teaching))

Bartlett test of homogeneity of variances

data: Grade by Group

Bartlett’s K-squared = 0.32192, df = 1, p-value = 0.5705

Otherwise, we get a 𝑝−value of 0.76 for Levene’s test.

(L.T <- lawstat::levene.test(teaching$Grade,

teaching$Group, location="median",

correction.method="zero.correction"))

Modified robust Brown-Forsythe Levene-type test based

on the absolute deviations from the median with modified

structural zero removal method and correction factor

data: teaching$Grade

Test Statistic = 0.095106, p-value = 0.7586

In either case, the 𝑝−value falls above reasonable significance levels (0.05,

say), which means that we cannot reject the null hypothesis of equal

variance.

When there are 𝑝 > 2 treatment groups, ANOVA provides a test for

𝐻0 : 𝜇1 = · · · = 𝜇𝑝 vs. 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 for at least one 𝑖 ≠ 𝑗.

A significant 𝐹0 value indicates that there is at least one group which
differs from the others, but it does not specify which one does.

Specialized methods such as Scheffe’s method and Tukey’s test can be

used to identify the statistically different treatments.

Finally, while ANOVA can accommodate unequal treatment group sizes,

it is recommended to keep those sizes equal across all groups – this

makes the test statistic less sensitive to violations of the assumption of

equal variances across treatment groups, providing yet another reason

to involve the analysts/consultants in the data collection process.

7.5.2 Analysis of Covariance

In a previous section, we looked at the effectiveness of new teaching

method by assigning each group to a specific treatment and comparing

the mean test scores. A crucial assumption for that model is that subjects

in each group have similar background knowledge about statistics prior

to the three week lectures.
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If this assumption is wrong, however, we may be making incorrect

decisions based on the model. Even if each group had similar background

knowledge on average, there may be large variability from person-to-

person, masking the true treatment effect.

Paired Comparison

One way to avoid such subject-to-subject variability is to administer

both treatments to each individual, and then compare treatment effects by

looking at the difference in the outcomes. For instance, if a grocery chain

is interested in measuring the effectiveness of two advertising campaigns,

it could be reasonable to assume that there is a large variability in total

sales, as well as popular items sold, at each store.

It may then be preferable to run both campaigns in each store and analyze

the resulting data rather than to split the stores into two groups (in each

of which a different advertising campaign is run) and then to compare

the mean outcomes in the two groups.

Formally, let 𝑋𝑖 ,1 denote the total sales with campaign 𝐴 and 𝑋𝑖 ,2 the

total sales with campaign 𝐵. The quantity of interest is the difference
𝐷𝑖 = 𝑋𝑖 ,1 − 𝑋𝑖 ,2 for each store 𝑖 = 1, . . . , 𝑁 .

Assuming that the differences 𝐷𝑖 follow an iid normal distribution with

mean 𝛿 and variance 𝜎2

𝑑
, then we test for

𝐻0 : 𝛿 = 0 against 𝐻1 : 𝛿 ≠ 0

using the test statistic

𝑡0 =
√
𝑁
𝐷

𝑠𝑑
,

which follows a Student’s 𝑡 distribution with 𝑁 − 1 degrees of freedom;

thus we reject 𝐻0 if the observed test statistic 𝑡0 has 𝑝-value less than the

significance level 𝛼/2.

ANOVA vs. ANCOVA

ANOVA compares multiple group means and tests whether any of the

group means differ from the rest, by breaking down the total variability

into a treatment (explainable) variability component and an error (un-

explained) variability component, and building a ratio 𝐹0 to determine

whether or not to reject 𝐻0.

Analysis of covariance (ANCOVA) introduces concomitant variables
(or covariates) to the ANOVA model, splitting the total variability into 3

components: SSA, SScon, and SSE, aiming to reduce error variability.

The choice of covariates is thus crucial in running a successful ANCOVA.

In order to be useful, a concomitant variable must be related to response

variable in some way, otherwise it not only fails to reduce error variability,

but it also increases the model complexity:

in the teaching method example, we could consider administering

a pre-study test to measure the prior knowledge level of each

participant and use this score as a concomitant variable;
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in the advertising campaign example, we could have used the

previous month’s sales as a covariate;

in medical studies, we could use the age and weight of subjects,

say.

Importantly, concomitant variables should not be affected by treatments.

As an example, suppose that the patients in a medical study were asked:

How strongly do you believe that you were given actual

medication rather than a placebo?

If the treatment is indeed effective, then a participant’s response to this

question could be markedly different in the treatment group than in the

placebo group.
34

34: The medication may have strong side-

effects which cannot be ignored.

This means that true treatment effect may be masked by concomitant

variable due to unequal effects on treatment groups. Note that qualitative
covariates (such as gender, say) are not part of the ANCOVA framework –

indeed, such covariates create new ANOVA treatment groups instead.

When moving from an ANOVA to an ANCOVA model, the error variabil-

ity is further split into a pure error and a covariate component, while the

treatment variability remains unchanged.

ANCOVA Model and Assumptions

Suppose that we are testing the effect of 𝑝 treatments, with 𝑁𝑗 subjects

in each group. Then the ANCOVA model takes the form

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑗 + 𝛾(𝑥𝑖 , 𝑗 − 𝑥) + 𝜀𝑖 , 𝑗

where

𝑦𝑖 , 𝑗 is the response of the 𝑖th subject in the 𝑗th treatment group;

𝜇 is the overall mean;

𝜏𝑗 is the 𝑗th treatment effect, subject to a constraint

𝑝∑
𝑗=1

𝜏𝑗 = 0;

𝛾 is the coefficient for the covariate effect;
(𝑥𝑖 , 𝑗 − 𝑥) is the covariate value of the 𝑖th subject in the 𝑗th treatment

group, adjusted by the mean, and

𝜀𝑖 , 𝑗 is the error of 𝑖th subject in the 𝑗th treatment group.

Additionally, four assumptions must be satisfied:

independence and normality of residuals – the residuals follow

an 𝑖𝑖𝑑 normal distribution with mean of 0 and variance 𝜎2

𝜀;

homogeneity of residual variances – the variance of the residuals

is uniform across treatment groups;

homogeneity of regression slopes – the regression effect (slope) is

uniform across treatment groups, and

linearity of regression – the regression relationship between the

response and the covariate is linear.
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The first of these assumptions can be tested with the help of a QQ-plot

and a scatter-plot of residuals vs.fitted values, while the second may use

the Bartlett or the Levene test. The final assumption is not as crucial as

the other three assumptions, however. Various remedial methods can be

applied should any of these assumptions fail.

The third assumption, however, is crucial to the ANCOVA model; it

can be tested with the equal slope test, which requires an ANCOVA

regression with an additional interaction term 𝑥 × 𝜏. If the interaction is

not significant, the third assumption is satisfied.

In the event that the interaction term is statistically significant, a different

approach (e.g. moderated regression analysis, mediation analysis) is

required since using the original ANCOVA model is not prescribed.

An in-depth application of an ANCOVA model can be found in [2].

7.5.3 Basics of Multivariate Statistics

Up to this point, we have only considered situations where the response

is univariate. In applications, the situation often calls for multivariate
responses, where the response variables are thought to have some

relationship to one another (e.g., a correlation structure).

It remains possible to analyze each response variable independently, but

the dependence structure can be exploited to make joint (or simultaneous)

inferences.

Properties of the Multivariate Normal Distribution

The probability density function of a multi-dimensional random vector

X ∈ ℝ𝑝
that follows a multivariate normal distribution with mean

vector 𝝁 and covariance matrix Σ, denoted by X ∼ N𝑝(𝝁,Σ), is given by

𝑓 (X) = 1

(2𝜋)𝑝/2
det(Σ)1/2

exp

(
−1

2

(X − 𝝁)⊤Σ−1(X − 𝝁)
)
,

where

Σ =


𝜎1,1 𝜎1,2 · · · 𝜎1,𝑝

𝜎2,1 𝜎2,2 · · · 𝜎2,𝑝

...
...

. . .
...

𝜎𝑝,1 𝜎𝑝,2 · · · 𝜎𝑝,𝑝


.

For such an X, the following properties hold:

1. any linear combination of its components are normally distributed;

2. all subsets of components follow a (modified) multivariate normal

distribution;

3. a diagonal covariance matrix implies the independence of its

components;

4. conditional distributions of components follow a normal distribu-

tion, and

5. the quantity (X − 𝝁)⊤Σ−1(X − 𝝁) follows a 𝜒2

𝑝 .
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These properties make the multivariate normal distribution attractive,

from a theoretical point of view (if not always entirely realistic).

For instance:

using property 1, we can use contrasts to test which components

are distinct from the others;

property 5 is the multivariate analogue of the square of a stan-

dard normal random variable 𝑍 ∼ N(0, 1) following a 𝑍2 ∼ 𝜒2

1

distribution;

but two univariate normal random variables with zero covariance

are not necessarly independent (the joint p.d.f. of two such variables

is not necessarily the p.d.f. of a multivariate normal distribution).

Hypothesis Testing for Mean Vectors

When the sample comes from a univariate normal distribution, we can

test

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0

by using a 𝑡−statistic. Analogously, if the sample comes from a 𝑝−variate

normal distribution, we can test

𝐻0 : 𝝁 = 𝝁0 against 𝐻1 : 𝝁 ≠ 𝝁0

by using Hotelling’s T2 test statistic

𝑇2 = 𝑁 · (X − 𝝁)⊤S−1(X − 𝝁),

where X denotes the sample mean, S the sample covariance matrix, and

𝑁 the sample size.

Under 𝐻0,

𝑇2 ∼ (𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝 .

Thus, we do not reject 𝐻0 at a significance level of 𝛼 if

𝑁 · (X − 𝝁0)⊤S−1(X − 𝝁0) ≤
(𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝(𝛼)

and reject it otherwise.

Confidence Region and Simultaneous Confidence Intervals for Mean
Vectors

In the 𝑝−variate normal distribution, any 𝝁 that satisfies the condition

𝑁 · (X − 𝝁)⊤S−1(X − 𝝁) ≤ (𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝(𝛼)

resides inside a (1 − 𝛼)100% confidence region (an ellipsoid in this

case).
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Simultaneous Bonferroni confidence intervals with overall error rate 𝛼
can also be derived, using

(𝑥 𝑗 − 𝜇𝑗) ± 𝑡𝑁−1(𝛼/𝑝)
√
𝑠 𝑗 , 𝑗

𝑁
for 𝑗 = 1, . . . , 𝑝.

Another approach is to use Hotelling’s T2 simultaneous confidence
intervals, given by

(𝑥 𝑗 − 𝜇𝑗) ±

√
𝑝(𝑁 − 1)
𝑁 − 𝑝 𝐹𝑝,𝑁−𝑝(𝛼)

√
𝑠 𝑗 , 𝑗

𝑁
for 𝑗 = 1, . . . , 𝑝.

Figure 7.20 shows these regions for a bivariate normal random sample.

Note that the Hotelling’s 𝑇2
simultaneous confidence intervals form

a rectangle (in grey) that confines the confidence region, while the

Bonferroni confidence intervals (in blue) are slightly narrower.

Figure 7.20: Confidence region for a bi-

variate normal random sample (sample

not shown).

Given that all the components of the mean vector are correlated (since

the covariance matrix is generally non-diagonal), the confidence region

should be used if the goal is to study the plausibility of the mean vector
as a whole, while Bonferroni confidence intervals may be more suitable

when component-wise confidence intervals are of needed.

Multivariate Analysis of Variance

ANOVA is often used as a first attempt to determine whether the means

from every sub-population are identical.
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ANOVA can test means from more than two populations; the multivariate
ANOVA (MANOVA) is quite simply a multivariate extension of ANOVA

which tests whether the mean vectors from all sub-populations are

identical.

Assume there are 𝐼 sub-populations in the population, from each of

which 𝑁𝑖 𝑝−dimensional responses are drawn, for 𝑖 = 1, . . . , 𝐼.

Each observation can be expressed as:

X𝑖 , 𝑗 = 𝝁 + 𝝉𝑖 + 𝜺𝑖 𝑗 ,

where 𝝁 is the overall mean vector, 𝝉𝑖 is the 𝑖th population-specific
treatment effect, and 𝜺𝑖 𝑗 is the random error, which follows a 𝑁𝑝(0,Σ)
distribution.

It is important to note that the covariance matrix Σ is assumed to be the

same for each sub-population, and that

𝐼∑
𝑖=1

𝑁𝑖𝝉𝑖 = 0

to ensure that the estimates are uniquely identifiable.

To test the hypothesis

𝐻0 : 𝝉1 = · · · = 𝝉𝐼 = 0 against 𝐻1 : some 𝝉𝑖 ≠ 0,

we decompose the total sum of squares and cross-products SSPtot into

SSPtot = SSPtreat + SS e.

Based on this decomposition, we compute the test statistic known as

Wilks’ lambda
Λ∗ =

|W|
|B + W| ,

where B,W are as in the MANOVA table below:

Source SSP df MSP F0

Treatment B 𝐼 − 1 B/(𝐼 − 1) W−1B
Error W

∑𝐼
𝑖=1
𝑁𝑖 − 𝐼 W/∑𝐼

𝑖=1
(𝑁𝑖 − 1)

Total B + W
∑𝐼
𝑖=1
𝑁𝑖 − 1 (B + W)/(∑𝐼

𝑖=1
𝑁𝑖 − 1)

We have

B =

𝐼∑
𝑖=1

𝑁𝑖(X𝑖 − X)(X𝑖 − X)⊤

and

W =

𝐼∑
𝑖=1

𝑛𝑖∑
𝑗=1

(X𝑖 𝑗 − X𝑖)(X𝑖 𝑗 − X𝑖)⊤;

we reject 𝐻0 if Λ∗
is below some pre-agreed upon threshold, which

depends on 𝑝, 𝐼, and 𝑁𝑖 , 𝑖 = 1, . . . , 𝐼.
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7.5.4 Goodness-of-Fit Test

A (fictitious) 2017 survey asked a sample of 𝑁 = 200 adults between the

age of 25 to 35 about their highest educational achievement:

Year <HS HS CU CU+
2017 16 55 83 46

In a 1997 survey, it was also found that:

Year <HS HS CU CU+
1997 13% 32% 37% 18%

Based on the result of this survey, is there sufficient evidence to believe

that educational backgrounds of the population have changed between

1997 and 2007?
35

35: Since each respondent’s educational

achievement can only be classified into

one of these categories, they are mutually
exclusive. Furthermore, these categories

cover all possibilities on the educational

front, so they are also exhaustive.

We can view the distribution of educational achievements as being

multinomial. For such a distribution, with parameters 𝑝1 , · · · , 𝑝𝑘 , the

expected frequency in each category is 𝑚 𝑗 = 𝑁𝑝 𝑗 .

Let 𝑂 𝑗 denote the observed frequency for the 𝑗th category. If there has

been no real change since 1997, we would expect the sum of squared

differences between the observed 2017 frequencies and the expected

frequencies based on 1997 data to be small.

We can use this information to test the goodness-of-fit between the

observations and the expected frequencies via Pearson’s 𝜒2
test statistic

𝑋2 =

𝑘∑
𝑗=1

(𝑂 𝑗 − 𝑚 𝑗 ,0)2

𝑚 𝑗 ,0
∼ 𝜒2(𝑘 − 1).

In the above example, the hypotheses of interest are

𝐻0 : p = p∗ = (0.13, 0.32, 0.37, 0.18) vs 𝐻1 : p ≠ p∗.

The table below summarizes the information under 𝐻0.

Category 𝑂 𝑗 𝑝 𝑗 ,0 𝑚 𝑗 ,0 (𝑂 𝑗 − 𝑚 𝑗 ,0)2/𝑚 𝑗 ,0

1 16 0.13 26 3.846

2 55 0.32 64 1.266

3 83 0.37 74 1.095

4 46 0.18 36 2.778

Total 200 1 200 7.815

Pearson’s test statistic is𝑋2 = 7.815, with an associated 𝑝−value of 0.0295,

which implies that there is enough statistical evidence (at the 𝛼 = 0.05

level) to accept that the population’s educational achievements have

changed over the last 20 years.
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7.6 Exercises

1. Consider a sample of 𝑛 = 10 observations displayed in ascending order:

15, 16, 18, 18, 20, 20, 21, 22, 23, 75.

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

2. The daily number of accidents in Sydney over a 40-day period are provided below:

6, 3, 2, 24, 12, 3, 7, 14, 21, 9, 14, 22, 15, 2, 17, 10, 3, 9, 4, 7, 7, 31, 7, 18, 6, 8, 2, 3, 2, 17, 7, 7, 21, 13, 23, 1, 11, 9, 9, 25.

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

3. Repeat the previous question when the “31” is replaced by a “130”.

4. The grades in a class are shown below.

80, 73, 83, 60, 49, 96, 87, 87, 60, 53, 66, 83, 32, 80, 66

90, 72, 55, 76, 46, 48, 69, 45, 48, 77, 52, 59, 97, 76, 89

73, 73, 48, 59, 55, 76, 87, 55, 80, 90, 83, 66, 80, 97, 80

55, 94, 73, 49, 32, 76, 57, 42, 94, 80, 90, 90, 62, 85, 87

97, 50, 73, 77, 66, 35, 66, 76, 90, 73, 80, 70, 73, 94, 59

52, 81, 90, 55, 73, 76, 90, 46, 66, 76, 69, 76, 80, 42, 66

83, 80, 46, 55, 80, 76, 94, 69, 57, 55, 66, 46, 87, 83, 49

82, 93, 47, 59, 68, 65, 66, 69, 76, 38, 99, 61, 46, 73, 90,

66, 100, 83, 48, 97, 69, 62, 80, 66, 55, 28, 83, 59, 48, 61

87, 72, 46, 94, 48, 59, 69, 97, 83, 80, 66, 76, 25, 55, 69

76, 38, 21, 87, 52, 90, 62, 73, 73, 89, 25, 94, 27, 66, 66

76, 90, 83, 52, 52, 83, 66, 48, 62, 80, 35, 59, 72, 97, 69

62, 90, 48, 83, 55, 58, 66, 100, 82, 78, 62, 73, 55, 84, 83

66, 49, 76, 73, 54, 55, 87, 50, 73, 54, 52, 62, 36, 87, 80, 80

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

f) Based on your analysis, how well did the class do?

5. Consider the following dataset:

2.6, 3.7, 0.8, 9.6, 5.8,−0.8, 0.7, 0.6, 4.8, 1.2, 3.3, 5.0, 3.7, 0.1,−3.1, 0.3.

What are the median and the interquartile range of the sample?
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f) The following charts show a histogram and a boxplot for two samples, 𝐴 and 𝐵. Based on these charts,

which of 𝐴 and/or 𝐵 (or neither) is likely to arise from a normal population?

f) Consider the following dataset:

12, 14, 6, 10, 1, 20, 4, 8.

What are its median and its first quartile?

f) A manufacturer of fluoride toothpaste regularly measures the concentration of of fluoride in the toothpaste

to make sure that it is within the specifications of 0.85 − 1.10 mg/g. [5]

a) Build a relative frequency histogram of the data (a histogram with area = 1).

b) Compute the data’s mean 𝑥 and its standard deviation 𝑠𝑥 .

c) The mean and the variance can also be approximated as follows. Let 𝑢𝑖 be the class mark for each

of the histogram’s classes (the midpoint along the rectangles’ widths), 𝑛 be the total number of

observations, and 𝑘 be the number of classes. Then

𝑢 =
1

𝑛

𝑘∑
𝑖=1

𝑓𝑖𝑢𝑖 and 𝑠2

𝑢 =
1

𝑛 − 1

𝑓𝑖(𝑢𝑖 − 𝑢)2.

Compute 𝑢 and 𝑠𝑢 . How do they compare with 𝑥 and 𝑠𝑥?

d) Provide a the 5−point summary of the data, as well as the interquartile range IQR.

e) Display this information as a boxplot chart.

f) Compute the midrange 1

2
(𝑄0 +𝑄4), the trimean 1

4
(𝑄1 + 2𝑄2 +𝑄3), and the range 𝑄4 −𝑄0 for the

fluoride data.

f) The compressive strength of concrete is normally distributed with mean 𝜇 = 2500 and standard deviation

𝜎 = 50. A random sample of size 5 is taken. What is the standard error of the sample mean?
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f) A new cure has been developed for a certain type of cement that should change its mean compressive

strength. It is known that the standard deviation of the compressive strength is 130 kg/cm
2

and that we

may assume that it follows a normal distribution. 9 chunks of cement have been tested and the observed

sample mean is 𝑋 = 4970. Find the 95% confidence interval for the mean of the compressive strength.

f) Consider the same set-up as in the previous question, but now 100 chunks of cement have been tested and

the observed sample mean is 𝑋 = 4970. Find the 95% confidence interval for the mean of the compressive

strength.

f) Consider the same set-up as in two questions ago, but now we do not know the standard deviation of the

normal distribution. 9 chunks of cement have been tested, and the measurements are

5001, 4945, 5008, 5018, 4991, 4990, 4968, 5020, 5003.

Find the 95% confidence interval for the mean of the compressive strength.

f) A steel bar is measured with a device which a known precision of 𝜎 = 0.5mm. Suppose we want to

estimate the mean measurement with an error of at most 0.2mm at a level of significance 𝛼 = 0.05. What

sample size is required? Assume normality.

f) In a random sample of 1000 houses in the city, it is found that 228 are heated by oil. Find a 99% C.I. for the

proportion of homes in the city that are heated by oil.

f) Past experience indicates that the breaking strength of yarn used in manufacturing drapery material is

normally distributed and that 𝜎 = 2 psi. A random sample of 15 specimens is tested and the average

breaking strength is found to be 𝑥 = 97.5 psi.

a) Find a 95% confidence interval on the true mean breaking strength.

b) Find a 99% confidence interval on the true mean breaking strength.

b) The diameter holes for a cable harness follow a normal distribution with 𝜎 = 0.01 inch. For a sample of

size 10, the average diameter is 1.5045 inches.

a) Find a 99% confidence interval on the mean hole diameter.

b) Repeat this for 𝑛 = 100.

b) A journal article describes the effect of delamination on the natural frequency of beams made from

composite laminates. The observations are as follows:

230.66, 233.05, 232.58, 229.48, 232.58, 235.22.

Assuming that the population is normal, find a 95% confidence interval on the mean natural frequency.

b) A textile fibre manufacturer is investigating a new drapery yarn, which the company claims has a mean

thread elongation of 𝜇 = 12 kilograms with standard deviation of 𝜎 = 0.5 kilograms.

a) What should be the sample size so that with probability 0.95 we will estimate the mean thread

elongation with error at most 0.15 kg?

b) What should be the sample size so that with probability 0.95 we will estimate the mean thread

elongation with error at most 0.05 kg?

b) An article in Computers and Electrical Engineering considered the speed-up of cellular neural networks

(CNN) for a parallel general-purpose computing architecture. Various speed-ups are observed:

3.77, 3.35, 4.21, 4.03, 4.03, 4.63, 4.63, 4.13, 4.39, 4.84, 4.26, 4.60.

Assume that the population is normally distributed. Find a 99% C.I. for the mean speed-up.

b) An engineer measures the weight of 𝑛 = 25 pieces of steel, which follows a normal distribution with

variance 16. The average observed weight for the sample is 𝑥 = 6. What is the two-sided 95% C.I. for the

mean 𝜇?
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b) The brightness of television picture tube can be evaluated by measuring the amount of current required to

achieve a particular brightness level. An engineer thinks that one has to use 300 microamps of current

to achieve the required brightness level. A sample of size 𝑛 = 20 has been taken to verify the engineer’s

hypotheses.

a) Formulate the null and the alternative hypotheses (use a two-sided test alternative).

b) For the sample of size 𝑛 = 20 we obtain 𝑥 = 319.2 and 𝑠 = 18.6. Test the hypotheses from part a)

with 𝛼 = 5% by computing a critical region. Calculate the 𝑝-value.

c) Use the data from part b) to construct a 95% confidence interval for the mean required current.

c) We say that a particular production process is stable if it produces at most 2% defective items. Let 𝑝 be the

true proportion of defective items.

a) We sample 𝑛 = 200 items at random and consider hypotheses testing about 𝑝. Formulate null and

alternative hypotheses.

b) What is your conclusion of the above test, if one observes 3 defective items out of 200? Note: you

have to choose an appropriate confidence level 𝛼.

b) Ten engineers’ knowledge of basic statistical concepts was measured on a scale of 0 − 100, before and after

a short course in statistical quality control. The results are:

Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2𝑖 51 84 74 48 53 61 59 75 82 53

Let 𝜇1 and 𝜇2 be the mean mean score before and after the course. Perform the test 𝐻0 : 𝜇1 = 𝜇2 against

𝐻𝐴 : 𝜇1 < 𝜇2. Use 𝛼 = 0.05.

b) It is claimed that 15% of a certain population is left-handed, but a researcher doubts this claim. They decide

to randomly sample 200 people and use the anticipated small number to provide evidence against the

claim of 15%. Suppose 22 of the 200 are left-handed. Compute the 𝑝−value associated with the hypothesis

(assuming a binomial distribution), and provide an interpretation.

b) A child psychologist believes that nursery school attendance improves children’s social perceptiveness

(SP). They use 8 pairs of twins, randomly choosing one to attend nursery school and the other to stay at

home, and then obtains scores for all 16. In 6 of the 8 pairs, the twin attending nursery school scored better

on the SP test. Compute the 𝑝−value associated with the hypothesis (assuming a binomial distribution),

and provide an interpretation.

b) A certain power supply is stated to provide a constant voltage output of 10kV. Ten measurements are

taken and yield the sample mean of 11kV. Formulate a test for this situation. Should it be 1−sided or

2−sided? What value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) A company is currently using titanium alloy rods it purchases from supplier 𝐴. A new supplier (supplier

𝐵) approaches the company and offers the same quality (at least according to supplier B’s claim) rods at

a lower price. The company’s decision makers are interested in the offer. At the same time, they want

to make sure that the safety of their product is not compromised. They randomly selects ten rods from

each of the lots shipped by suppliers 𝐴 and 𝐵 and measures the yield strengths of the selected rods. The

observed sample mean and sample standard deviation are 651 MPa and 2 MPa for supplier’s 𝐴 rods,

respectively, and the same parameters are 657 MPa and 3 MPa for supplier B’s rods. Perform the test

𝐻0 : 𝜇𝐴 = 𝜇𝐵 against 𝜇𝐴 ≠ 𝜇𝐵. Use 𝛼 = 0.05. Assume that the variances are equal but unknown.

b) The deflection temperature under load for two different types of plastic pipe is being investigated. Two

random samples of 15 pipe specimens are tested, and the deflection temperatures observed are as follows:

206, 188, 205, 187, 194, 193, 207, 185, 189, 213, 192, 210, 194, 178, 205.

177, 197, 206, 201, 180, 176, 185, 200, 197, 192, 198, 188, 189, 203, 192.

Does the data support the claim that the deflection temperature under load for type 1 pipes exceeds that

of type 2? Calculate the 𝑝-value, using 𝛼 = 0.05, and state your conclusion.
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b) It is claimed that the breaking strength of yarn used in manufacturing drapery material is normally

distributed with mean 97 and 𝜎 = 2 psi. A random sample of nine specimens is tested and the average

breaking strength is found to be 𝑋 = 98 psi. Formulate a test for this situation. Should it be 1−sided or

2−sided? What value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) A civil engineer is analyzing the compressive strength of concrete. It is claimed that its mean is 80 and

variance is known to be 2. A random sample of size 60 yields the sample mean 59. Formulate a test for this

situation. Should it be 1−sided or 2−sided? What value of 𝛼 should you use? What conclusion does the

test and the sample yield?

b) The sugar content of the syrup in canned peaches is claimed to be normally distributed with mean 10 and

variance 2. A random sample of 𝑛 = 10 cans yields a sample mean 11. Another random sample of 𝑛 = 10

cans yields a sample mean 9. Formulate a test for this situation. Should it be 1−sided or 2−sided? What

value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) The mean water temperature downstream from a power water plant cooling tower discharge pipe should

be no more than 100F. Past experience has indicated that that the standard deviation is 2F. The water

temperature is measured on nine randomly chosen days, and the average temperature is found to be 98F.

Formulate a test for this situation. Should it be 1−sided or 2−sided? What value of 𝛼 should you use?

What conclusion does the test and the sample yield?

b) We are interested in the mean burning rate of a solid propellant used to power aircrew escape systems.

We want to determine whether or not the mean burning rate is 50 cm/second. A sample of 10 specimens

is tested and we observe 𝑋 = 48.5. Assume normality with 𝜎 = 2.5.

b) Ten individuals have participated in a diet modification program to stimulate weight loss. Their weight

both before and after participation in the program is shown below:

Before 195, 213, 247, 201, 187, 210, 215, 246, 294, 310

After 187, 195, 221, 190, 175, 197, 199, 221, 278, 285

Is there evidence to support the claim that this particular diet-modification program is effective in

producing mean weight reduction? Use 𝛼 = 0.05. Compute the associated 𝑝−value.

b) We want to test the hypothesis that the average content of containers of a particular lubricant equals 10L

against the two-sided alternative. The contents of a random sample of 10 containers are 10.2, 9.7, 10.1,

10.3, 10.1, 9.8, 9.9, 10.4, 10.3, 9.5. Find the 𝑝−value of this two-sided test. Assume that the distribution of

contents is normal. Note that if 𝑥𝑖 represent the measurements,

∑
10

𝑖=1
𝑥2

𝑖
= 1006.79.

b) An engineer measures the weight of 𝑛 = 25 pieces of steel, which follows a normal distribution with

variance 16. The average weight for the sample is 𝑋 = 6. They want to test for𝐻0 : 𝜇 = 5 against𝐻1 : 𝜇 > 5.

What is the 𝑝−value for the test?

b) The thickness of a plastic film (in mm) on a substrate material is thought to be influenced by the temperature

at which the coating is applied. A completely randomized experiment is carried out. 11 substrates are

coated at 125F, resulting in a sample mean coating thickness of 𝑥1 = 103.5 and a sample standard deviation

of 𝑠1 = 10.2. Another 11 substrates are coated at 150F, for which 𝑥2 = 99.7 and 𝑠2 = 11.7 are observed. We

want to test equality of means against the two-sided alternative. Assume that population variances are

unknown but equal. The value of the appropriate test statistics and the decision are (for 𝛼 = 0.05):
b) The following output was produced with t.test command in R.

One Sample t-test

data: x

t = 2.0128, df = 99, p-value = 0.02342

alternative hypothesis: true mean is greater than 0

Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

b) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 ≠ 0;

c) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

d) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 < 0;

e) The type I error is 0.02342.
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e) A pharmaceutical company claims that a drug decreases a blood pressure. A physician doubts this claim.

They test 10 patients and records results before and after the drug treatment:

Before=c(140,135,122,150,126,138,141,155,128,130)

After=c(135,136,120,148,122,136,140,153,120,128)

At the R command prompt, they type:

test.t(Before,After,alternative="greater")

data: Before and After

t = 0.5499, p-value = 0.2946

alternative hypothesis: true

difference in means is

greater than 0

sample estimates: mean of x mean of y

136.5 133.8

Their assistant claims that the command should instead be:

test.t(Before,After,paired=TRUE,alternative="greater")

data: Before and After t = 3.4825,

df = 9, p-value = 0.003456

alternative hypothesis: true

difference in means is

greater than 0

sample estimates: mean of the differences

2.7

Which answer is best?

a) The assistant uses the correct command. There is not enough evidence to justify that the new drug

decreases blood pressure;

b) The assistant uses the correct command. There is enough evidence to justify that the new drug

decreases blood pressure for any reasonable choice of 𝛼;

c) The physician uses the correct command. There is not enough evidence to justify that the new drug

decreases blood pressure;

d) The physician uses the correct command. There is enough evidence to justify that the new drug

decreases blood pressure for any reasonable choice of 𝛼;

e) Nobody is correct, 𝑡−tests should not be used here.

e) A company claims that the mean deflection of a piece of steel which is 10ft long is equal to 0.012ft. A buyer

suspects that it is bigger than 0.012ft. The following data 𝑥𝑖 has been collected:

0.0132, 0.0138, 0.0108, 0.0126, 0.0136,

0.0112, 0.0124, 0.0116, 0.0127, 0.0131.

Assuming normality and that

∑
10

𝑖=1
𝑥2

𝑖
= 0.0016, what are the 𝑝−value for the appropriate one-sided test

and the corresponding decision?

a) 𝑝 ∈ (0.05, 0.1) and reject 𝐻0 at 𝛼 = 0.05.

b) 𝑝 ∈ (0.05, 0.1) and do not reject 𝐻0 at 𝛼 = 0.05.

c) 𝑝 ∈ (0.1, 0.25) and reject 𝐻0 at 𝛼 = 0.05.

d) 𝑝 ∈ (0.1, 0.25) and do not reject 𝐻0 at 𝛼 = 0.05.
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d) In an effort to compare the durability of two different types of sandpaper, 10 pieces of type 𝐴 sandpaper

and 11 pieces of type 𝐵 sandpaper were subjected to treatment by a machine which measures abrasive

wear. We have the following observations:

𝑥𝐴 : 27, 26, 24, 29, 30, 26, 27, 23, 28, 27; 𝑥𝐵 : 24, 23, 22, 27, 24, 21, 24, 25, 24, 23, 20

Note that

∑
𝑥𝐴,𝑖 = 267,

∑
𝑥𝐵,𝑖 = 257,

∑
𝑥2

𝐴,𝑖
= 7169,

∑
𝑥2

𝐵,𝑖
= 6041. Assuming normality and equality of

variances in abrasive wear for 𝐴 and 𝐵, we want to test for equality of mean abrasive wear for 𝐴 and 𝐵.

What is the appropriate 𝑝−value for this test?

d) The following output was produced with a t.test command in R.

t = 32.9198, df = 999, p-value < 2.2e-16, alternative hypothesis: true mean is not equal to 0

Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

b) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 ≠ 0;

c) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

d) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 < 0.

d) A medical team wants to test whether a particular drug decreases diastolic blood pressure. Nine people

have been tested. The team measured blood pressure before (𝑋) and after (𝑌) applying the drug. The

corresponding means were 𝑋 = 91, 𝑌 = 87. The sample variance of the differences was 𝑆2

𝐷
= 25. What is

the 𝑝−value for the appropriate one-sided test?

d) A researcher studies a difference between two programming languages. Twelve experts familiar with both

languages were asked to write a code for a particular function using both languages and the time for

writing those codes was registered. The observations are as follows.

Expert 01 02 03 04 05 06 07 08 09 10 11 12

Lang 1 17 16 21 14 18 24 16 14 21 23 13 18

Lang 2 18 14 19 11 23 21 10 13 19 24 15 29

Construct a 95% C.I. for the mean difference between the first and the second language. Do we have any

evidence that the average time to write a function is shorter in one of the languages?

d) Consider a proportion of recaptured moths in the light-coloured (𝑝1) and the dark-coloured (𝑝2) populations.

Among the 𝑛1 = 137 light-coloured moths, 𝑦1 = 18 were recaptured; among the 𝑛2 = 493 dark-coloured

moths, 𝑦2 = 131 were recaptured. Is there a significant difference between the proportion of recaptured

moths in both populations?
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