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Regression analysis is quite likely the most frequent application of

probability and statistics; it is used extensively in the physical and social

sciences, and forms the backbone of statistical learning. No data scientist

worthy of the name can be ignorant of this aspect of the discipline.

We use the term “classical” to differentiate the basic process from its myr-

iad variants and modifications, which we discuss further in Chapter 20

(Regression and Value Estimation).

Our treatment borrows heavily from a classical reference [7]; other useful

resources include [3, 5]. Note that the examples use R, which provides a

suite of “natural” tools for regression analysis.

8.1 Preliminaries

Regression analysis is not a very complicated discipline ... assuming that

its pre-requisites are mastered well. In this chapter, it will be useful to be

familiar with a number of notions relating to:

random variables;

multivariate calculus;

linear algebra;

quadratic forms, and

optimization.

8.1.1 Random Variables

A random experiment is a process (together with its sample space S) for

which it is impossible to predict the outcome with certainty. The sample
space S is the set of the random experiment’s possible outcomes.

A random variable 𝑌 associated to this process is a function 𝑌 : S→ ℝ.

If the set 𝑌(S) = {𝑌(𝑠) | 𝑠 ∈ S} is countable, we say that 𝑌 is a discrete
random variable; if it is uncountable, we say that 𝑌 is a continuous
randcom variable.

Each r.v. 𝑌 has a corresponding probability function 𝑓 (𝑌), which speci-

fies the probabilities of the values taken by 𝑌. 𝑌1 and 𝑌2 are independent
when their joint probability function 𝑓 (𝑌1 , 𝑌2) is the product of the

individual probability functions 𝑓 (𝑌1) 𝑓 (𝑌2).
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Expectation, Variance, and Covariance The expectation operator E {·}
is defined by

E {𝑌} =


∑
𝑌(𝑠)

𝑌(𝑠) 𝑓 (𝑌(𝑠)), if 𝑌 is discrete∫
ℝ

𝑌 𝑓 (𝑌) 𝑑𝑦, if 𝑌 is continuous

The expectation E {𝑌} is the average value that we would expect to

observe if the experiment is repeated a large number of times. The

expectation is sometimes also called the mean of 𝑌, denoted 𝑌; it is thus

a measure of 𝑌’s centrality.

The variance operator 𝜎2 {·} is defined by

𝜎2 {𝑌} = E

{
(𝑌 − E {𝑌})2

}
= E

{
𝑌2

}
−

(
E {𝑌}

)
2

.

It is often denoted by Var(𝑌). It is a measure of 𝑌’s dispersion (large

variances are associated with r.v. with heavy dispersion, and vice-versa).

The covariance operator 𝜎 {·, ·} is defined by

𝜎 {𝑌,𝑊} = E {(𝑌 − E {𝑌}) (𝑊 − E {𝑊})} = E {𝑌𝑊} − E {𝑌} E {𝑊} .

It is often denoted by Cov(𝑌,𝑊). It is a measure of the strength of the
linear relationship between two r.v. (large covariance magnitudes are

associated with linearity, but “large" is a relative concept).

The standard deviation operator 𝜎 {·} is defined by

𝜎 {𝑌} =
√
𝜎2 {𝑌}.

It is always non-negative.

The correlation operator 𝜌 {·, ·} is defined by

𝜌 {𝑌,𝑊} = 𝜎 {𝑌,𝑊}
𝜎 {𝑌} 𝜎 {𝑊} ,

assuming that 𝜎 {𝑌} 𝜎 {𝑊} ≠ 0. When 𝜌 {𝑌,𝑊} = 0, we say that the r.v.

are uncorrelated.

Operator Properties Let 𝑌,𝑌𝑖 ,𝑊 be random variables, 𝑐, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ ℝ,

𝑖 = 1, . . . , 𝑛. Then:

E {·} is linear on the space of r.v.: E {𝑎𝑌 + 𝑏} = 𝑎E {𝑌} + 𝑏 and

E

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑎𝑖E {𝑌𝑖}

𝜎2 {𝑎𝑌 + 𝑏} = 𝑎2𝜎2 {𝑌} and

𝜎2

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗𝜎
{
𝑌𝑖 , 𝑌𝑗

}
=

𝑛∑
𝑖=1

𝑎2

𝑖 𝜎
2 {𝑌𝑖}+

∑
𝑖≠𝑗

𝑎𝑖𝑎 𝑗𝜎
{
𝑌𝑖 , 𝑌𝑗

}
𝜎{𝑌,𝑌} = 𝜎2{𝑌} and 𝜎 {𝑌,𝑊} = 𝜎 {𝑊,𝑌}
𝜎{𝑎1𝑌 + 𝑏1 , 𝑎2𝑊 + 𝑏2} = 𝑎1𝑎2𝜎{𝑌,𝑊}
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{𝑌𝑖} uncorrelated =⇒

𝜎

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖 ,
𝑛∑
𝑖=1

𝑐𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑎𝑖𝑐𝑖𝜎
2 {𝑌𝑖}

𝜎 {𝑌,𝑊} < 0 ⇐⇒ observations of 𝑌 above 𝑌 tend to accompany

corresponding observations of𝑊 below𝑊 , and vice-versa.

𝜎 {𝑌,𝑊} > 0 ⇐⇒ observations of 𝑌 above 𝑌 tend to accompany

corresponding observations of𝑊 above𝑊 , and vice-versa.

𝜎 {𝑌,𝑊} = 0 =⇒ 𝑌 and𝑊 are uncorrelated
𝑌,𝑊 independent =⇒ 𝜌 {𝑌,𝑊} = 0 (uncorrelated)

𝜌 {𝑌,𝑊} = 0 ≠⇒ 𝑌,𝑊 independent, however

|𝜌 {𝑌,𝑊} | ≤ 1 (consequence of the Cauchy-Schwartz inequality)

|𝜌 {𝑌,𝑊} | = 1 ⇐⇒ 𝑌 = 𝑎𝑊 + 𝑏 for some 𝑎, 𝑏 ∈ ℝ,

Random Vectors If 𝑌1 , . . . , 𝑌𝑛 are random variables, then

Y =
©«
𝑌1

...

𝑌𝑛

ª®®¬
is a random vector. The expectation of Y is

E {Y} =
©«
E {𝑌1}
...

E {𝑌𝑛}

ª®®¬ .
The components of Y need not all have identical distributions.

The variance-covariance matrix of Y is the symmetric matrix

𝜎2 {Y} = (𝑔𝑖 , 𝑗), where 𝑔𝑖 , 𝑗 =

{
𝜎2 {𝑌𝑖} 𝑖 = 𝑗

𝜎
{
𝑌𝑖 , 𝑌𝑗

}
𝑖 ≠ 𝑗

or

𝜎2 {Y} =
©«

𝜎2 {𝑌1} · · · 𝜎 {𝑌1 , 𝑌𝑛}
...

. . .
...

𝜎 {𝑌1 , 𝑌𝑛} · · · 𝜎2 {𝑌𝑛}

ª®®¬
If the components of Y are independent and all have the same variance 𝜎2

,

then

𝜎2 {Y} = 𝜎2I𝑛 .

In practice, we usually work with samples of the random variables. Let

{(𝑋𝑖 , 𝑌𝑖)}𝑛𝑖=1
be observed from the joint distribution of (𝑋,𝑌):

the sample means

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 and 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

are unbiased estimators of E {𝑋} and E {𝑌}, respectively;
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the sample variances

𝑠2

𝑋 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 and 𝑠2

𝑌 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2

are unbiased estimators of 𝜎2 {𝑋} and 𝜎2 {𝑌}, respectively;

the sample variances

𝑠𝑋𝑌 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)

is an unbiased estimator of 𝜎 {𝑋,𝑌}.

Important Distributions The (cumulative) distribution function (c.d.f.)

of any continuous random variable 𝑌 is defined by

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) =
∫ 𝑦

−∞
𝑓𝑌(𝑡) 𝑑𝑡

viewed as a function of a real variable 𝑦.

Alternatively, We can describe the distribution of 𝑌 via the following

relationship between 𝑓𝑌(𝑦) and 𝐹𝑌(𝑦):

𝑓𝑌(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌(𝑦).

The probability density function (p.d.f.) of a continuous random variable

𝑌 is function
1 𝑓𝑌 : 𝑌(S) → ℝ with:1: Integrable function, that is.

𝑓𝑌(𝑦) > 0 for all 𝑦 ∈ 𝑌(S)
lim

𝑦→±∞
𝑓𝑌(𝑦) = 0;∫

S
𝑓𝑌(𝑦) 𝑑𝑦 = 1;

For any 𝑎, 𝑏, we have

𝑃(𝑎 < 𝑌 < 𝑏) = 𝑃(𝑎 ≤ 𝑌 < 𝑏) = 𝑃(𝑎 < 𝑌 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏)

= 𝐹𝑌(𝑏) − 𝐹𝑌(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑦) 𝑑𝑦.

The following distributions all play an important role in the theory of

regression analysis (see Section 6.3.3 for more information).

A random variable 𝑌 follows a normal distribution N(𝜇, 𝜎2) of mean 𝜇
and variance 𝜎2

if the c.d.f. of 𝑌 is

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = Φ(𝑦),

with

𝑓𝑌(𝑦) = Φ′(𝑦) = 1√
2𝜋𝜎

exp

(
−1

2

( 𝑦 − 𝜇

𝜎

)
2

)
.
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A random variable 𝑌 follows a 𝜒2 distribution 𝜒2(𝜈) if its p.d.f. is

𝑓𝑌(𝑦; 𝜈) =


𝑦

𝜈
2
−1𝑒−

𝑦
2

2

𝜈
2 Γ

( 𝜈
2

) , 𝑦 > 0;

0, otherwise.

where Γ(·) is the Gamma function. If 𝑈𝑖 ∼ 𝜒2(𝜈𝑖), 𝑖 = 1, 2, and 𝑈1 , 𝑈2

are independent, then

𝑈 = 𝑈1 +𝑈2 ∼ 𝜒2(𝜈1) + 𝜒2(𝜈2) = 𝜒2(𝜈1 + 𝜈2).

There is an important link between the standard normal distribution and

the 𝜒2(1) distribution: if 𝑍 ∼ N(0, 1), then 𝑍2 ∼ 𝜒2(1).

If 𝑍 ∼ N(0, 1) and𝑈 ∼ 𝜒2(𝜈), where 𝑍,𝑈 are independent, then

𝑡 =
𝑍√
𝑈/𝜈

∼ 𝑡(𝜈)

follows a Student 𝑇-distribution with 𝜈 degrees of freedom.

Figure 8.1: Cumulative distribution function of Student’s 𝑇 distribution, with some critical values for 𝜈 = 1, 2, 3 degrees of freedom [6].

If𝑈𝑖 ∼ 𝜒2(𝜈𝑖), 𝑖 = 1, 2 and𝑈1 , 𝑈2 are independent, then

𝐹 =
𝑈1/𝜈1

𝑈2/𝜈2

∼ 𝐹(𝜈1 , 𝜈2)

follows the Fisher’s distribution with 𝜈1 and 𝜈2 degrees of freedom.

In practice, we do not use tables, but rather statistical software (such as R),
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Figure 8.2: Cumulative distribution function of Fisher’s 𝐹 distribution, with some critical values [6].

to compute important quantities. The functions qnorm(), qt(), and qf(),

for instance, find the quantiles of the corresponding distributions.

qnorm(0, mean = 0, sd = 1)

qnorm(1, mean = 0, sd = 1)

qnorm(0.5, mean = 0, sd = 1)

qnorm(0.25, mean = 4, sd = 2)

[1] -Inf

[1] Inf

[1] 0

[1] 2.65102

qt(0.95, df = 20)

qf(0.975, df1 = 1, df2 = 19)

[1] 1.724718

[1] 5.921631

The functions dnorm(), dt(), and df() compute the value of the p.d.f.

of the corresponding random variables at specified points in their do-

main.

dnorm(0, mean = 0, sd = 1)

dnorm(1, mean = 0, sd = 1)

dnorm(-1, mean = 0, sd = 1)

dnorm(3, mean = 4, sd = 2)

[1] 0.3989423
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[1] 0.2419707

[1] 0.2419707

[1] 0.1760327

qf(2, df1 = 1, df2 = 19)

[1] 0.2844237

The functions pnorm(), pt(), and pf() compute the value of the c.d.f.

of the corresponding random variables at specified points in their do-

main.

pnorm(0, mean = 0, sd = 1)

pnorm(1, mean = 0, sd = 1)

pnorm(-1, mean = 0, sd = 1)

pnorm(3, mean = 4, sd = 2)

[1] 0.5

[1] 0.8413447

[1] 0.1586553

[1] 0.3085375

pt(-1, df = 20)

pf(2, df1 = 1, df2 = 19)

[1] 0.1646283

[1] 0.8265229

Finally, we can generate (pseudo-)random values drawn from the corre-

sponding distribution with rnorm(), rt(), and rf().

set.seed(0) # for replicability

rnorm(10, mean = 0, sd = 1)

[1] 1.262954285 -0.326233361 1.329799263 1.272429321 0.414641434

[6] -1.539950042 -0.928567035 -0.294720447 -0.005767173 2.404653389

rt(5, df = 20)

[1] 0.9000978 -0.9947734 -0.4056054 -0.8546851 -1.3176242

rf(8, df1 = 1, df2 = 19)

[1] 1.8583849 1.8137178 0.8621754 0.5502212 1.1415165

[6] 2.4191686 1.8868591 0.6094574



416 8 Classical Regression Analysis

Central Limit Theorems There are variants on a fundamental result of

probability statistics that forms the basis of a fair chunk of applications,

not only for regression analysis, but also for sampling theory, the design

of experiments, time series analysis, and so on. We present them here

without proof.

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇1 , . . . , 𝜇𝑛 and standard deviations 𝜎1 , . . . , 𝜎𝑛 . Then

𝑋1 + · · · + 𝑋𝑛 ∼ N(𝜇1 + · · · + 𝜇𝑛 , 𝜎
2

1
+ · · · + 𝜎2

𝑛).

If 𝜇𝑖 ≡ 𝜇 and 𝜎2

𝑖
≡ 𝜎 for 𝑖 = 1, . . . , 𝑛, then 𝑋1 + · · · +𝑋𝑛 ∼ N(𝑛𝜇, 𝑛𝜎2).

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇 and standard deviation 𝜎 . Let 𝑋 be the sample mean. Then

𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent random variables with mean 𝜇
and standard deviation 𝜎 . Let 𝑋 be the sample mean. Then

𝑍𝑛 =
𝑋 − 𝜇

𝜎/
√
𝑛

→ 𝑍 ∼ N(0, 1), as 𝑛 → ∞.

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇 and common variance. Let 𝑋 and s
2

be the sample mean and the

sample variance, respectively. Then the random variable

𝑇 =
𝑋 − 𝜇

𝑆/
√
𝑛

∼ 𝑡(𝑛 − 1),

follows a Student 𝑇 distribution with 𝜈 = 𝑛 − 1 degrees of freedom.

8.1.2 Multivariate Calculus

From a regression analysis’s perspective, the main tool of multivariate

calculus is the gradient of a multivariate differentiable function.
2

2: More on the general topic can be found

in Chapter 2 and in [2, 1, 4].

Let 𝑓 : ℝ𝑛 → ℝ be a differentiable function. If Y = (𝑌1 , . . . , 𝑌𝑛), the

derivative (or gradient) of 𝑓 with respect to Y is

∇Y 𝑓 (Y) =
©«
𝜕 𝑓 (Y)
𝜕𝑌1

...
𝜕 𝑓 (Y)
𝜕𝑌𝑛

ª®®®¬ .
The gradient is a linear operator:

∇Y(𝑎 𝑓 + 𝑏𝑔)(Y) = 𝑎∇Y 𝑓 (Y) + 𝑏∇Y𝑔(Y).

The gradient of constant and of linear functions is particular easy to find:

if 𝑓 (Y) ≡ 𝑎, then ∇Y 𝑓 (Y) = 0; if 𝑓 (Y) = Y⊤v, then ∇Y 𝑓 (Y) = v.
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8.1.3 Matrix Algebra

It turns out that the important concepts of regression analysis are more

easily expressed (and ultimately, understandable) in matrix notation.
3

3: See Chapter 3 and [8] for more infor-

mation.

Let 𝐴 ∈ 𝑀𝑚,𝑛(ℝ) and Y be a random vector. Consider W = 𝐴Y. Then

E {W} = 𝐴E {Y} and 𝜎2{W} = 𝐴𝜎2{Y}𝐴⊤.

Furthermore, if Y ∼ N
(
E {Y} , 𝜎2{Y}

)
, then

W ∼ N
(
E {W} , 𝜎2{W}

)
= N

(
𝐴E {Y} , 𝐴𝜎2{Y}𝐴⊤

)
.

If 𝐴 ∈ 𝑀𝑛,𝑛(ℝ), the trace of 𝐴 is

trace(𝐴) =
𝑛∑
𝑖=1

𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + · · · + 𝑎𝑛𝑛 .

The trace is a linear operator: trace(𝑘𝐴 + 𝐵) = 𝑘 · trace(𝐴) + trace(𝐵); we

also have trace(𝐴𝐵) = trace(𝐵𝐴).4 4: Assuming, of course, that the matrices

are compatible with respect to the prod-

uct.The transpose of a matrix 𝐴, denoted by 𝐴⊤, is obtained by interchanging

its rows and its columns, or simply by reflecting the matrix along its

primary diagonal.

Properties: if 𝐴 ∈ 𝑀𝑚,𝑛(ℝ) and 𝑘 ∈ ℝ, then

(𝐴⊤)⊤ = 𝐴

𝑘⊤ = 𝑘

(𝑘𝐴 + 𝐵)⊤ = 𝑘𝐴⊤ + 𝐵⊤
(𝐴𝐵)⊤ = 𝐵⊤𝐴⊤

8.1.4 Quadratic Forms

A symmetric quadratic form in 𝑌1 , . . . , 𝑌𝑛 is an expression of the form

𝑄𝐴(Y) = Y⊤𝐴Y =

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 , 𝑗𝑌𝑖𝑌𝑗 ,

where 𝐴 is an 𝑛 × 𝑛 symmetric matrix (𝐴⊤ = 𝐴). A number of important

quantities in regression analysis can be expressed as such forms.

The degrees of freedom for a symmetric quadratic form 𝑄𝐴(Y) can be

obtained by computing the rank of the associated matrix 𝐴. For instance,

the symmetric matrix associated with the symmetric quadratic form

𝑄𝐴(Y) = 4𝑌2

1
+ 7𝑌1𝑌2 + 2𝑌2

2

is

𝐴 =

(
4 7/2

7/2 2

)
.

As rank(𝐴) = 2, 𝑄𝐴 has 2 degrees of freedom.

Theorem: let 𝑄1 , . . . 𝑄𝐾 be symmetric quadratic forms of Y with re-

spective symmetric matrices 𝐴1 , . . . , 𝐴𝐾 . If 𝑎𝑖 ∈ ℝ for 𝑖 = 1, . . . , 𝐾,

then

𝑄 = 𝑎1𝑄1 + · · · + 𝑎𝐾𝑄𝐾
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is a symmetric quadratic form of Y with symmetric matrix

𝐴 = 𝑎1𝐴1 + · · · + 𝑎𝐾𝐴𝐾 .

For a general 𝑛 × 𝑛 matrix 𝐵, we have

∇Y
(
Y⊤𝐵Y

)
= (𝐵⊤+ 𝐵)Y.

Thus the gradient of a symmetric quadratic form 𝑄𝐴(Y) is

∇Y𝑄𝐴(Y) = 2𝐴Y.

It can be shown that every expression of the form Y⊤𝐵Y can be associated

to a symmetric matrix 𝐴, even if 𝐵 is not itself symmetric, so we may as

well assume that every such form is symmetric.
5

5: The role played by quadratic forms in

multi-variable calculus is analogous to the

role played by 𝑓 (𝑥) = 𝑎𝑥2
in calculus. The eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 are the roots of the characteristic

polynomial 𝑝𝐴(𝜆) of 𝐴: 𝑝𝐴(𝜆) = det(𝐴−𝜆I𝑛) = 0.6 If 𝜆 is an eigenvalue
6: There are 𝑛 such (complex) roots, not

all necessarily distinct. of 𝐴, then there exists v ≠ 0 such that 𝐴v = 𝜆v.7
7: If 𝐴 is symmetric, all of its eigenvalues

are real. Consider a quadratic form 𝑄𝐴(Y), with eigenvalues 𝜆1 , . . . ,𝜆𝑛 ∈ ℝ:

if 𝜆𝑖 > 0 for all 𝑖, we say that 𝑄𝐴(Y) and 𝐴 are positive definite;

if 𝜆𝑖 < 0 for all 𝑖, we say that 𝑄𝐴(Y) and 𝐴 are negative definite;

if 𝜆𝑖𝜆 𝑗 < 0 for some 𝑖 , 𝑗, we say that 𝑄𝐴(Y) and 𝐴 are indefinite.

Cochran’s Theorem Let Y = (𝑌1 , . . . , 𝑌𝑛) ∼ N(0, 𝜎2I𝑛). Suppose that

Y⊤Y = 𝑄1(Y) + · · · +𝑄𝐾(Y),

with 𝑄𝑘 positive (semi-)definite quadratic forms with 𝑟𝑘 = rank(𝐴𝑘) de-

grees of freedom, 𝑘 = 1, . . . , 𝐾. If 𝑟1+· · ·+𝑟𝐾 = 𝑛, then𝑄1(Y), . . . , 𝑄𝐾(Y)
are independent random variables and

𝑄𝑘(Y)
𝜎2

∼ 𝜒2(𝑟𝑘), 𝑘 = 1, . . . , 𝐾.

In particular, if 𝐾 = 2 and 𝑟1 = 𝑟, then 𝑄2(Y)/𝜎2 ∼ 𝜒2(𝑛 − 𝑟).

Important Quadratic Forms For any positive integer 𝑛, we define two

special matrices:

J𝑛 = J =
©«
1 · · · 1

...
. . .

...

1 · · · 1

ª®®¬ and 1𝑛×1 = 1𝑛 = 1 =
©«
1

...

1

ª®®¬ .
Note that 1⊤𝑛1𝑛 = 𝑛 and 1𝑛1⊤𝑛 = J𝑛 . Let Y = (𝑌1 , . . . , 𝑌𝑛) ∼ N(0, 𝜎2I𝑛) be

a random vector. What are the symmetric matrices associated with:

𝑄𝐴(Y) =
𝑛∑
𝑖=1

𝑌2

𝑖 , 𝑄𝐵(Y) = 𝑛𝑌
2

, and 𝑄𝐶(Y) =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2?
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We re-write the quadratic forms in Y to obtain:

𝑄𝐴(Y) = Y⊤Y = Y⊤I𝑛Y =⇒ 𝐴 = I𝑛 ;

𝑄𝐵(Y) = 𝑛

(
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

)
2

=
1

𝑛

𝑛∑
𝑖 , 𝑗=1

𝑌𝑖𝑌𝑗 =
1

𝑛
Y⊤1𝑛1⊤𝑛Y =⇒ 𝐵 =

1

𝑛
J𝑛 ;

𝑄𝐶(Y) =
𝑛∑
𝑖=1

𝑌2

𝑖 − 𝑛𝑌2

= Y⊤I𝑛Y − 1

𝑛
Y⊤J𝑛Y =⇒ 𝐶 = I𝑛 −

1

𝑛
J𝑛 .

Since rank(𝐴) = 𝑛, rank(𝐵) = 1, and rank(𝐶) = 𝑛−1, Cochran’s Theorem

implies that 𝑄𝐵(Y), and 𝑄𝐶(Y) are independent random variable, and

that

𝑄𝐴(Y)
𝜎2

=
Y⊤Y
𝜎2

∼ 𝜒2(𝑛), 𝑄𝐵(Y)
𝜎2

=
𝑛𝑌

2

𝜎2

∼ 𝜒2(1), 𝑄𝐶(Y)
𝜎2

=
SST

𝜎2

∼ 𝜒2(𝑛−1).

8.1.5 Optimization

Let𝐴 be a symmetric 𝑛×𝑛matrix, v ∈ ℝ𝑛
, 𝑐 ∈ ℝ. Consider the function

𝑓 (Y) = 1

2

Y⊤𝐴Y − Y⊤v + 𝑐.

Note that 𝑓 is differentiable. The critical points of 𝑓 satisfy

∇Y 𝑓 (Y) = 𝐴Y − v = 0 =⇒ 𝐴Y = v.

If 𝐴 is invertible (det(𝐴) ≠ 0), there is a unique critical point Y∗ = 𝐴−1v.

If 𝐴 is singular (det(𝐴) = 0), there is no critical point if v ∉ range(𝐴), or

there are infinitely many critical points if v ∈ range(𝐴).

When 𝐴 is invertible:

if 𝐴 is positive definite, then 𝑓 reaches its global minimum at

Y∗ = 𝐴−1v;

if 𝐴 is negative definite, then 𝑓 reaches its global maximum at

Y∗ = 𝐴−1v;

if 𝐴 is indefinite (if 𝐴 has positive and negative eigenvalues), then

Y∗ = 𝐴−1v is a saddle point for 𝑓 .

If the eigenvalues could be zero, we replace “definite” by “semi-definite”

throughout.

8.2 Simple Linear Regression

We start by considering a simple scenario, with only two continuous
variables: a response 𝑌 and a predictor 𝑋.

Examples

𝑋: age; 𝑌: height

𝑋: age; 𝑌: salary

𝑋: income; 𝑌: life expectancy

𝑋: number of sunlight hours; 𝑌: plant biomass
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Figure 8.3: Response and predictor in the Gapminder data [10, 9]; life expectancy 𝑌 against the logarithm of the GDP per capita 𝑋 (left);

mean years in schooling 𝑌 against direct democracy index 𝑋 (right).

We hope that there might be a functional relationship𝑌 = 𝑓 (𝑋) between

𝑋 and 𝑌. In practice (assuming that a relationship even exists), the best

that we may be able to achieve is a statistical relationship

𝑌 = 𝑓 (𝑋) + 𝜀,

where

𝑓 (𝑋) is the response function;

𝜀 is the random error (or noise).

In simple linear regression, we assume that the response function

satisfies

𝑓 (𝑋) = 𝛽0 + 𝛽1𝑋.

The building blocks of regression analysis are the observations:

(𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛.

In an ideal setting, these observations are (jointly) randomly sampled,

according to some appropriate design.
8

8: See Chapters 11 and 10.

The simple linear regression model (SLRM) is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where 𝛽0 , 𝛽1 are unknown parameters (which we want to find) and 𝜀𝑖 is

the random error on the 𝑖th observation (or case).

The SLRM assumption on the error structure is that 𝜺 ∼ N(0, 𝜎2I𝑛).9 Let9: We use matrix notation to keep the

assumption compact.
us unpack the statement: since 𝜺 = (𝜀1 , . . . , 𝜀𝑛)⊤∼ N(0, 𝜎2I𝑛): we have

E {𝜺} = 0 =⇒ E {𝜀𝑖} = 0, 𝑖 = 1, . . . , 𝑛;

𝜎2 {𝜺} = 𝜎2I𝑛 =⇒ 𝜎2 {𝜀𝑖} = 𝜎2 , 𝑖 = 1, . . . , 𝑛;

𝜎2 {𝜺} = 𝜎2I𝑛 =⇒ 𝜎
{
𝜀𝑖 , 𝜀𝑗

}
= 0, for all 𝑖 ≠ 𝑗.

This means that the errors {𝜀𝑖} are uncorrelated, with mean 0 and

constant variance.

In other words, the dispersion of observations is constant around the

regression line.
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Figure 8.4: Illustrations of failed SLRM assumptions: constant, uncorrelated variance (top left); non-constant uncorrelated variance (top

right); constant correlated variance (bottom left); non-constant correlated variance (bottom right).

8.2.1 Least Squares Estimation

We treat the predictor values 𝑋𝑖 as constant, for 𝑖 = 1, . . . , 𝑛.
10

Since 10: That is, we assume that there is no
measurement error.

E {𝜀𝑖} = 0, the expected (or mean) response given 𝑋𝑖 is thus

E {𝑌𝑖 | 𝑋𝑖} = E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 | 𝑋𝑖} = 𝛽0 + 𝛽1𝑋𝑖 + E {𝜀𝑖} = 𝛽0 + 𝛽1𝑋𝑖 .

The deviation at 𝑋𝑖 is the difference between the observed response 𝑌𝑖
and the expected response E {𝑌𝑖 | 𝑋𝑖}:

𝑒𝑖 = 𝑌𝑖 − E {𝑌𝑖 | 𝑋𝑖} ;

the deviation can be positive (if the point lies above the line) or negative
(if it lies below).

Figure 8.5: Line of best fit and deviations (residuals) for a simple dataset.

How do we find estimators for 𝛽0 and 𝛽1? Incidentally, how do we

determine if the fitted line is a good model for the data?

Consider the function

𝑄(𝜷) = 𝑄(𝛽0 , 𝛽1) =
𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − E {𝑌𝑖 |𝑋𝑖})2 =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2.
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If 𝑄(𝜷) is "small", then the sum of the squared residuals is "small", and

so we would expect the line 𝑌 = 𝛽0 + 𝛽1𝑋 to be a good fit for the data.

The least-square estimators of the SLR problem are the pair b = (𝑏0 , 𝑏1)
which minimizes the function 𝑄 with respect to 𝜷 = (𝛽0 , 𝛽1).

We must then find the critical points of 𝑄(𝜷), i.e., solve ∇𝜷𝑄(b) = 0.

Thus, we must solve the following system:

𝜕𝑄(𝛽0 , 𝛽1)
𝜕𝛽0

= 2

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖) · (−1) = 0

𝜕𝑄(𝛽0 , 𝛽1)
𝜕𝛽1

= 2

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖) · (−𝑋𝑖) = 0.

This is a linear system of two equations in the two unknowns 𝛽0 , 𝛽1,

known as the normal equations. As seen in Chapter 3, it has either no
solution, a unique solution, or infinitely many solutions.

11
11: From now on, we drop the | 𝑋𝑖 when

we use the E {· | 𝑋𝑖}.

Normal Equations These equations reduce to the following pair:

𝑛∑
𝑖=1

𝑌𝑖 = 𝑛𝛽0 + 𝛽1

𝑛∑
𝑖=1

𝑋𝑖 ,
𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 = 𝛽0

𝑛∑
𝑖=1

𝑋𝑖 + 𝛽1

𝑛∑
𝑖=1

𝑋2

𝑖 .

If we use the following shorthand notation:

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 , 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 , 𝑆𝑥𝑥 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 , 𝑆𝑥𝑦 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌),

it is not too difficult to show that

𝑛∑
𝑖=1

𝑋2

𝑖 = 𝑆𝑥𝑥 + 𝑛𝑋
2

and

𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 = 𝑆𝑥𝑦 + 𝑛𝑋𝑌.

With this notation, the normal equations further reduce to

𝑛𝑌 = 𝑛𝛽0 + 𝑛𝑋𝛽1 , 𝑆𝑥𝑦 + 𝑛𝑋𝑌 = 𝑛𝑋𝛽0 + (𝑆𝑥𝑥 + 𝑛𝑋
2)𝛽1.

In matrix form, this can be written as:[
1 𝑋

𝑛𝑋 𝑆𝑥𝑥 + 𝑛𝑋
2

] [
𝛽0

𝛽1

]
=

[
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
.

A linear system𝐴𝜷 = v has a unique solution 𝜷 = 𝐴−1v if the determinant

of the coefficient matrix 𝐴 is non-zero.

In our case, the determinant is

𝑆𝑥𝑥 + 𝑛𝑋
2 − 𝑛𝑋𝑋 = 𝑆𝑥𝑥 > 0 ⇐⇒ 𝑠2

𝑋 ≠ 0.

The unique solution is thus

[
𝛽0

𝛽1

]
=

[
1 𝑋

𝑛𝑋 𝑆𝑥𝑥 + 𝑛𝑋
2

]−1 [
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
=

1

𝑆𝑥𝑥

[
𝑆𝑥𝑥 + 𝑛𝑋

2 −𝑋
−𝑛𝑋 1

] [
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
=

1

𝑆𝑥𝑥

[
(𝑆𝑥𝑥 + 𝑛𝑋

2)𝑌 − 𝑋(𝑆𝑥𝑦 + 𝑛𝑋𝑌)
−𝑛𝑋𝑌 + 𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
,
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which reduces to [
𝛽0

𝛽1

]
=

[
𝑌 − 𝑋 · 𝑆𝑥𝑦/𝑆𝑥𝑥

𝑆𝑥𝑦/𝑆𝑥𝑥

]
Set 𝑏0 = 𝛽0 and 𝑏1 = 𝛽1. Then we may write:

𝑏1 =
𝑆𝑥𝑦

𝑆𝑥𝑥
(slope) and 𝑏0 = 𝑌 − 𝑏1𝑋 (intercept).

By analogy with 𝑆𝑥𝑥 (the total variation of the predictor), we can also

define the total variation of the response 𝑆𝑦𝑦 , a quantity that will play

an important role in this chapter:
12

12: And in Chapters 11 and 10.

𝑆𝑦𝑦 =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

𝑌2

𝑖 − 𝑛𝑌2

;

If the 𝑋𝑖 are fixed, 𝑏0 , 𝑏1 are linear combinations of the 𝑌𝑖 :

𝑏1 =
1

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)𝑌𝑖 −
𝑌

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖 ,

𝑏0 =

𝑛∑
𝑖=1

𝑌𝑖

𝑛
−

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑋𝑋

𝑌𝑖𝑋 =

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋 (𝑋𝑖 − 𝑋)

𝑆𝑋𝑋

]
𝑌𝑖 .

Properties of Least Squares Estimators Both 𝑏0 , 𝑏1 are unbiased esti-
mators of their respective parameters. Indeed,

E {𝑏1} = E

{
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

E {𝑌𝑖}

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} =
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

(𝛽0 + 𝛽1𝑋𝑖 + E {𝜀𝑖})

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

(𝛽0 + 𝛽1𝑋𝑖) =
𝛽0

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

+ 𝛽1

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)𝑋𝑖︸            ︷︷            ︸
=𝑆𝑥𝑥 (?)

= 0 + 𝛽1 = 𝛽1 ,

and

E {𝑏0} = E

{
𝑌 − 𝑏1𝑋

}
= E

{
𝑌
}
− E

{
𝑏1𝑋

}
= E

{
𝑌
}
− E {𝑏1}𝑋

= E

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

}
− 𝛽1𝑋 =

1

𝑛

𝑛∑
𝑖=1

E {𝑌𝑖} − 𝛽1𝑋

=
1

𝑛

𝑛∑
𝑖=1

E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} − 𝛽1𝑋 =
1

𝑛

𝑛∑
𝑖=1

(𝛽0 + 𝛽1𝑋𝑖) − 𝛽1𝑋

=
𝛽0

𝑛

𝑛∑
𝑖=1

1 + 𝛽1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝛽1𝑋 = 𝛽0 + 𝛽1𝑋 − 𝛽1𝑋 = 𝛽0.

Now is as good a time as any to illustrate these notions with an example.
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Fuels Example Consider the following 𝑛 = 20 paired measurements

(𝑋𝑖 , 𝑌𝑖) of hydrocarbon levels (𝑋) and pure oxygen levels (𝑌) in fuels:

𝑖 1 2 3 4 5 6 7 8 9 10

𝑋𝑖 0.99 1.02 1.15 1.29 1.46 1.36 0.87 1.23 1.55 1.40

𝑌𝑖 90.01 89.05 91.43 93.74 96.73 94.45 87.59 91.77 99.42 93.65

𝑖 11 12 13 14 15 16 17 18 19 20

𝑋𝑖 1.19 1.15 0.98 1.01 1.11 1.20 1.26 1.32 1.43 0.95

𝑌𝑖 93.54 92.52 90.56 89.54 89.85 90.39 93.25 93.41 94.98 87.33

Is the simple regression model valid? If so, fit the data to the model.

We start by loading and displaying the data.

x = c(0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

1.19, 1.15, 0.98, 1.01, 1.11, 1.20, 1.26, 1.32, 1.43, 0.95)

y = c(90.01, 89.05, 91.43, 93.74, 96.73, 94.45, 87.59, 91.77, 99.42, 93.65,

93.54, 92.52, 90.56, 89.54, 89.85, 90.39, 93.25, 93.41, 94.98, 87.33)

plot(x,y)

Before we go on to compute the basic sums, we should verify visually if

the SLR assumptions are met; they appear to be.

x.mean = mean(x)

y.mean = mean(y)

Sxy = sum((x-mean(x))*(y-mean(y)))

Sxx = sum((x-mean(x))^2)

Syy = sum((y-mean(y))^2)

[1] 1.196

[1] 92.1605

[1] 0.68088

[1] 10.17744

[1] 173.3769

We compute the least-square estimators:
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(b1 = Sxy/Sxx)

(b0 = y.mean - b1*x.mean)

[1] 14.947

[1] 74.283

Thus the regression line for the data is

�̂� = 𝑓 (𝑋) = 𝑏0 + 𝑏1𝑋 = 74.283 + 14.947𝑋,

which is displayed in Figure 8.5 (left). Evaluating 𝑓 at 𝑋𝑖 yields the 𝑖th
fitted value �̂�𝑖 = 𝑓 (𝑋𝑖) = 𝑏0 + 𝑏1𝑋𝑖 .

Residuals The 𝑖th regression residual is 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 ; the residuals In

the fuels dataset are displayed in Figure 8.5 (right).

Properties of the Residuals

1. 𝑒 =
1

𝑛

𝑛∑
𝑖=1

𝑒𝑖 = 0;

2. 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 =
1

𝑛

𝑛∑
𝑖=1

�̂�𝑖 = �̂�;

3.

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 = 0;

4.

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖 = 0;

5. the point (𝑋,𝑌) lies on the regression line, and

6.

𝑛∑
𝑖=1

𝑒2

𝑖 is minimal in the OLS sense.

Proof:

1. We see that

1

𝑛

𝑛∑
𝑖=1

𝑒𝑖 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖−�̂�𝑖) =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖−𝑏0−𝑏1𝑋𝑖) = 𝑌−𝑏0−𝑏1𝑋 = 0,

according to the first normal equation.

2. From 1., we have 0 = 𝑒. Thus

0 = 𝑒 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖) =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 −
1

𝑛

𝑛∑
𝑖=1

�̂�𝑖 = 𝑌 − �̂� =⇒ 𝑌 = �̂�.

3. We see that

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 =
𝑛∑
𝑖=1

𝑋𝑖(𝑌𝑖 − �̂�𝑖) =
𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 − 𝑏0

𝑛∑
𝑖=1

𝑋𝑖 − 𝑏1

𝑛∑
𝑖=1

𝑋2

𝑖 = 0,

according to the second normal equation.

4. We see that

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖 =
𝑛∑
𝑖=1

(𝑏0 + 𝑏1𝑋𝑖)𝑒𝑖 = 𝑏0

𝑛∑
𝑖=1

𝑒𝑖 + 𝑏1

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 = 0,

according to 1. and 3.
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5. This is automatically true since

𝑓 (𝑋) = 𝑏0 + 𝑏1𝑋 = (𝑌 − 𝑏1𝑋) + 𝑏1𝑋 = 𝑌.

6. For any b∗ = (𝑏∗
0
, 𝑏∗

1
) ≠ b = (𝑏0 , 𝑏1), we must have 𝑄(b∗) ≥ 𝑄(b).

Denote the residuals obtained from the line fitted with b∗
by 𝑒∗

𝑖
.

Then

𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2︸                   ︷︷                   ︸
=𝑄(b)

<
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑏∗
0
− 𝑏∗

1
𝑋𝑖)2︸                   ︷︷                   ︸

=𝑄(b∗)

=

𝑛∑
𝑖=1

(𝑒∗𝑖 )
2.

This completes the proof. ■

Descriptive Statistics and Correlations The Pearson sample correlation
coefficient 𝑟 of 2 variables 𝑋 and 𝑌 is defined by

𝑟 =
𝑆𝑥𝑦√
𝑆𝑥𝑥𝑆𝑦𝑦

.

This coefficient is such that

1. −1 ≤ 𝑟 ≤ 1;

2. |𝑟 | = 1 ⇐⇒ 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 , for all 𝑖 = 1, . . . , 𝑛, and

3. sgn(𝑟) = sgn(𝑏1), so that 𝑟 = 0 ⇐⇒ 𝑏1 = 0.

If |𝑟 | ≈ 1, then there is a strong linear association between 𝑋 and 𝑌. If

|𝑟 | ≈ 0, there is very little linear association between 𝑋 and 𝑌.
13

Note13: What can we say when 0 ≪ |𝑟 | ≪ 1?

We will discuss this at later stage.
that we can decompose the total deviation as follows:

𝑌𝑖 − 𝑌︸︷︷︸
total deviation

from the mean

= (𝑌𝑖 − �̂�𝑖)︸   ︷︷   ︸
unexplained deviation

from the mean

+ (�̂�𝑖 − 𝑌)︸   ︷︷   ︸
deviation from the mean

explained by regression

.

This decomposition is shown graphically in Figure 8.6.

Figure 8.6: Illustration of the total deviation decomposition on the fuels dataset.
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Figure 8.7: Illustration of various Spearman correlations (from Wikipedia).

The Spearman sample correlation coefficient 𝑟𝑆 of 2 variables 𝑋 and 𝑌

is the Pearson correlation between the rank values 𝑅(𝑋𝑖) and 𝑅(𝑌𝑖) of

𝑋𝑖 and 𝑌𝑖 , respectively. This coefficient is such that

1. −1 ≤ 𝑟𝑆 ≤ 1;

2. 𝑟𝑆 = 1 ⇐⇒ the relation between 𝑋 and𝑌 is monotonic increasing,

3. 𝑟𝑆 = −1 ⇐⇒ the relation between 𝑋 and 𝑌 is monotonic decreas-
ing,

4. if the association between 𝑋 and 𝑌 is weak, then 𝑟𝑆 ≈ 0, and

5. 𝑟𝑆 is invariant under order-preserving (monotonic) transforma-
tions.

The computational procedure is simple: for measurements

Z= {𝑍𝑖 | 𝑖 = 1, . . . , 𝑛},

let 𝑅(𝑍𝑖) be the rank value of 𝑍𝑖 in Z; the smallest value of 𝑍𝑖 has rank 1,

the second smallest has rank 2, and so on, until the largest value, which

has rank 𝑛. Ties are dealt with as in the example below:

𝑍𝑖 0 1.5 1.5 −1.5 3 −2

𝑅(𝑍𝑖) 3 4.5 4.5 2 6 1

Formally, the Spearman correlation is given by

𝑟𝑆 =
𝑆𝑅(𝑥)𝑅(𝑦)√

𝑆𝑅(𝑥)𝑅(𝑥)𝑆𝑅(𝑦)𝑅(𝑦)
.

Some examples are shown in Figure 8.7.

Sums of Squares Decomposition The total deviation decomposition

gives rise to one of the fundamental concepts of regression analysis: sum
of squares (SS) decompositions.

SST =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

[
(𝑌𝑖 − �̂�𝑖) + (�̂�𝑖 − 𝑌)

]
2

=

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 + 2

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)︸   ︷︷   ︸
=𝑒𝑖

(�̂�𝑖 − 𝑌) +
𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2

=

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2︸         ︷︷         ︸
SSE

+
𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2︸         ︷︷         ︸
SSR

+2

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖︸  ︷︷  ︸
=0

−2𝑌
𝑛∑
𝑖=1

𝑒𝑖︸︷︷︸
=0
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This is often written as SST = SSE + SSR, where

SST is the total sum of squares,

SSE is the error sum of squares, and

SSR is the regression sum of squares.

Note that we can write

SSR =

𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

(𝑏0 + 𝑏1𝑋𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

(𝑌 − 𝑏1𝑋 + 𝑏1𝑋𝑖 − 𝑌)2

=

𝑛∑
𝑖=1

(
𝑏1(𝑋 − 𝑋𝑖)

)
2

= 𝑏2

1

𝑛∑
𝑖=1

(𝑋 − 𝑋𝑖)2 = 𝑏2

1
𝑆𝑥𝑥 .

As SST = 𝑆𝑦𝑦 and SSE = 𝑄(b), the decomposition can also be written:

𝑆𝑦𝑦 = 𝑏
2

1
𝑆𝑥𝑥 +

𝑛∑
𝑖=1

𝑒2

𝑖 .

Fuels Example In the fuels dataset, we have

𝑆𝑥𝑥 = 0.68, 𝑆𝑥𝑦 = 10.18, 𝑆𝑦𝑦 = 173.38,

so that the sample correlation coefficient is

𝑟 =
10.18

√
0.68

√
173.38

≈ 0.94,

and the SS decomposition is SST(173.38) = SSR(152.13)+SSE(21.25).We

can verify that this is indeed the case with R.

cor(x,y, method = "pearson")

cor(x,y, method = "spearman")

[1] 0.9367154

[1] 0.9236556

The values of 𝑟, 𝑟𝑆 are quite close to 1; is this a strong linear association?

Coefficient of Determination We can answer the previous question by

looking at the quantity

𝑅2 =
SSR

SST

,

also known as the coefficient of determination. It is the proportion of

variation in the response which can be explained by the fitted line.

When 𝑅2 ≈ 0, the regression is not very significant, whereas when

𝑅2 ≈ 1, the variables are strongly linearly related.

Proposition: 𝑅2 = 𝑟2
.

Proof: we have seen that SSR = 𝑏2

1
𝑆𝑥𝑥 and SST = 𝑆𝑦𝑦 . Thus

𝑟2 =
𝑆2

𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
=

(
𝑆𝑥𝑦

𝑆𝑥𝑥

)
2

𝑆𝑥𝑥

𝑆𝑦𝑦
= 𝑏2

1
· 𝑆𝑥𝑥
𝑆𝑦𝑦

=
SSR

SST

= 𝑅2. ■
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This answers the question relating to the interpretation of 0 ≪ |𝑟 | ≪ 1:

𝑟2
gives a sense of how much variation the regression “explains”.

Fuels Example In the fuel dataset, we have

𝑅2 =
152.13

173.98

= 0.8774;

thus, about 87.74% of the variation observed in the data can be explained

by the fitted line �̂� = 74.283 + 14.947𝑋.

This is a reasonably high proportion; together with the scatter plot, this

suggests that the SRM is likely appropriate in this case. □

But don’t get too deeply enamoured of 𝑅2
as a figure to validate the

regression: the values can be quite large even if the linear association is

weak, as can be seen in Figure 8.8.

Figure 8.8: Various 𝑅2
for nonlinear datasets; notice the effect of the number of observations on the coefficient of determination.

8.2.2 Inference

In order to test various hypotheses about the regression, we will need an

estimation for the common variance 𝜎2
. In the SLR model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

we have independent normal random errors 𝜺 ∼ N(0, 𝜎2I𝑛). The proba-

bility function of 𝑌𝑖 ∼ N(𝛽0 + 𝛽1𝑋𝑖 , 𝜎2) is thus

𝑓 (𝑌𝑖) =
1√
2𝜋𝜎

exp

[
−(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2

2𝜎2

]
.

The likelihood function is

𝐿(𝛽0 , 𝛽1; 𝜎2) =
𝑛∏
𝑖=1

𝑓 (𝑌𝑖) = (2𝜋𝜎2)−𝑛/2

exp

[
−𝑄(𝛽0 , 𝛽1)

2𝜎2

]
,

where

𝑄(𝛽0 , 𝛽1) =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2.

The likelihood 𝐿 is maximized when 𝑄 is minimized with respect to

𝛽0 , 𝛽1.



430 8 Classical Regression Analysis

We have already shown that the optimizer occurs at the maximum
likelihood estimator �̂� = (�̂�0 , �̂�1) = (𝑏0 , 𝑏1), for which

𝑄(𝑏0 , 𝑏1) =
𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 =

𝑛∑
𝑖=1

𝑒2

𝑖 = SSE.

Can we also use the data to find an estimator of 𝜎2
?

Consider the log-likelihood

ln 𝐿(𝑏0 , 𝑏1; 𝜎2) = ln

𝑛∏
𝑖=1

𝑓 (𝑌𝑖) =
𝑛∑
𝑖=1

ln 𝑓 (𝑌𝑖)

= −𝑛
2

ln(2𝜋𝜎2) − 1

2𝜎2

𝑄(𝑏0 , 𝑏1)

Because the logarithm is a monotone increasing function, maximizing 𝐿

is equivalent to maximizing ln 𝐿. But

𝜕𝐿

𝜕[𝜎2] = −𝑛
2

· 2𝜋

2𝜋𝜎2

+ 1

2(𝜎2)2𝑄(𝑏0 , 𝑏1) =
−1

2𝜎2

(
𝑛 − 𝑄(𝑏0 , 𝑏1)

𝜎2

)
.

Setting
𝜕𝐿

𝜕[𝜎2] = 0 and solving for 𝜎2
yields

𝜎2 =
1

𝑛
𝑄(𝑏0 , 𝑏1) =

SSE

𝑛
.

This estimator is biased, however.
14

The mean squared error14: It can be shown that E

{
𝜎2

}
= 𝑛−2

𝑛 𝜎2
.

MSE =
SSE

𝑛 − 2

is another estimator of the population variance 𝜎2
; this one is unbiased

as

E {MSE} = E

{
SSE

𝑛 − 2

}
= E

{
𝑛

𝑛 − 2

· SSE

𝑛

}
=

𝑛

𝑛 − 2

E

{
𝜎2

}
= 𝜎2.

We can think of the variance 𝜎2
of a finite population of size 𝑛 as a sum

of squares divided by its degrees of freedom 𝑛:

𝜎2 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − 𝜇)2.

The estimator of the population variance using a sample of size 𝑛 is

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2;

a sum of squares divided by its degrees of freedom 𝑛 − 1.
15

15: A degree of freedom is lost because

we first used the sample to compute the

sample mean 𝑌 as an approximation of 𝜇. Using the same data for two different purposes creates a "link" between

𝑠2
and 𝑌 which did not exist between 𝜎2

and 𝜇. The same reasoning

explains why it should not come as a surprise that we must divide SSE

by 𝑛 − 2 to obtain an unbiased estimator of 𝜎2
: in the error of sum of

squares

SSE =

𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)2 ,
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we must first use the data to estimate 2 quantities, 𝛽0 and 𝛽1. Thus, SSE

has 𝑛 − 2 degrees of freedom, and the unbiased estimator of 𝜎2
is

MSE =
SSE

𝑛 − 2

.

Fuels Example In the fuels dataset with 𝑛 = 20 observations, the

unbiased estimator of the error variance 𝜎2
in the SLR model is computed

as below.

n = length(x)

SSE = Syy - b1^2*Sxx

(MSE = SSE/(n-2))

[1] 1.180545

Thus 𝜎2 ≈ 1.18. □

In general, if the SLR model is valid we would expect

E {𝑌𝑖} = 𝛽0 + 𝛽1𝑋𝑖

to hold, more or less, for all samples. But the specific values for the

OLS estimators 𝑏0 , 𝑏1 depend on the available data; with different

observations, we would obtain different values for the estimators, and it

makes sense to study the standard error of 𝑏0 , 𝑏1:

𝜎 {𝑏𝑘} =
√

E {(𝑏𝑘 − 𝛽𝑘)2} =
√

E

{
𝑏2

𝑘

}
− 𝛽2

𝑘
, for 𝑘 = 0, 1.

Regression Slope In theory, we could then

1. collect 𝑀 independent datasets,

2. repeat the OLS procedure and obtain a slope estimate 𝑏1;𝑗 of 𝛽1 for

each dataset 𝑗, and

3. estimate 𝜎 {𝑏1} by computing the sample standard deviation of

{𝑏1;1 , . . . , 𝑏1;𝑀}.

In practice, however, collecting data is often costly and we may never

have access to more than one set of observations.
16

16: The use of resampling methods (such

as the bootstrap or the jackknife, see Chap-

ter 20) is another option, but in the case

of OLS estimation, we can use the under-

lying machinery to obtain standard error

estimates from a single sample.

As the error terms 𝜀1 , . . . , 𝜀𝑛 are assumed to be independent in the SLR

model, the response values 𝑌1 , . . . , 𝑌𝑛 are uncorrelated, with variance

𝜎2 {𝑌𝑖} = 𝜎2 {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} = 𝜎2 {𝜀𝑖} = 𝜎2
for 𝑖 = 1, . . . , 𝑛. Since

𝑏1 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖 , we have 𝜎2 {𝑏1} =
𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋
𝑆𝑥𝑥

)
2

𝜎2 {𝑌𝑖} ,

so that

𝜎2 {𝑏1} =
𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋
𝑆𝑥𝑥

)
2

𝜎2 {𝜀𝑖} =
𝜎2

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 =
𝜎2

𝑆2

𝑥𝑥

· 𝑆𝑥𝑥 =
𝜎2

𝑆𝑥𝑥
.
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Since we do not usually know the actual value of 𝜎2
, the estimated

standard error of 𝑏1 is:

s {𝑏1} =
√

MSE

𝑆𝑥𝑥
.

Fuels Example In the fuels dataset, we have:

(s.b1 = sqrt(MSE/Sxx))

[1] 1.316758

and so s {𝑏1} ≈ 1.317. □

As 𝑏1 is a linear combination of the independent normal random variables

{𝑌𝑖}𝑛𝑖=1
, it is itself normal, by the central limit theorem.

17
17: See page 416.

Since we already know its expectation and its variance, we know its

distribution:

𝑏1 ∼ N

(
𝛽1 ,

𝜎2

𝑆𝑥𝑥

)
=⇒ 𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

∼ N(0, 1).

We now make assumptions that will be justified at a later stage:

SST

𝜎2

∼ 𝜒2(𝑛 − 1), SSE

𝜎2

∼ 𝜒2(𝑛 − 2), SSR

𝜎2

∼ 𝜒2(1), 𝑏1 , SSE indep.

The definition of the Student 𝑡−distribution (see Section 8.1.1) yields

𝑇1 =
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥︸   ︷︷   ︸

=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈

=
𝑏1 − 𝛽1√

MSE/
√
𝑆𝑥𝑥

=
𝑏1 − 𝛽1

s {𝑏1}
∼ 𝑡(𝑛−2).

Critical Region Let 𝛼 ∈ (0, 1). Since

𝑏1−𝛽1

s{𝑏1} ∼ 𝑡(𝑛 − 2), we have

1 − 𝛼 = 𝑃
(
−𝑡(1 − 𝛼

2
; 𝑛 − 2) ≤ 𝑏1−𝛽1

s{𝑏1} ≤ 𝑡(1 − 𝛼
2
; 𝑛 − 2)

)
= 𝑃

(
𝑏1 − 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s {𝑏1} ≤ 𝛽1 ≤ 𝑏1 + 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s {𝑏1}

)
,

as in the image below.
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Thus, the 100(1 − 𝛼)% confidence interval for 𝛽1 is

C.I.(𝛽1; 1 − 𝛼) ≡ 𝑏1 ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s {𝑏1} .

Fuels Example In the fuels dataset, we have

𝑏1 = 14.947, s {𝑏1} = 1.317.

At a confidence level of 1 − 𝛼 = 0.95,
18

the critical value of the Student 18: Or an error rate of 𝛼 = 0.05.

𝑡−distribution with 𝑛 − 2 = 20 − 2 = 18 degrees of freedom is

𝑡(1 − 0.05/2; 20 − 2) = 𝑡(0.975; 18) = 2.101.

We can build a 95% confidence interval for 𝛽1 as follows:

C.I.(𝛽1; 0.95) ≡ 14.947 ± 2.101(1.317) = [12.17, 17.72].

Regression Intercept With the same assumptions as with 𝑏1, we also

have:

𝜎2 {𝑏0} = 𝜎2

{
𝑌 − 𝑏1𝑋

}
= 𝜎2

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 − 𝑋
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
= 𝜎2

{
𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
𝑌𝑖

}
=

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
2

𝜎2 {𝑌𝑖}︸ ︷︷ ︸
=𝜎2

= 𝜎2

[ 𝑛∑
𝑖=1

1

𝑛2

− 2𝑋

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

+ 𝑋
2

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2︸          ︷︷          ︸
=𝑆𝑥𝑥

]
.

Thus,

𝜎2 {𝑏0} =
[
𝑛

𝑛2

− 0 + 𝑋
2

𝑆2

𝑥𝑥

𝑆𝑋𝑋

]
= 𝜎2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

]
,

and so the estimated standard error of 𝑏0 is:

s {𝑏0} =
√

MSE

√
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥
.

Fuels Example In the fuels dataset, we have

s {𝑏0} =
√

1.18

√
1

20

+ (23.92/20)2
0.68

= 1.593. □

As was the case for 𝑏1, 𝑏0 follows a normal distribution since it is a linear

combination of the independent normal random variables 𝑌1 , . . . , 𝑌𝑛 .

As we already know its expectation and its variance, we also know its

distribution:

𝑏0 ∼ N

(
𝛽0 , 𝜎

2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

])
=⇒

𝑏0 − 𝛽0

𝜎

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥

∼ N(0, 1).
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Assuming again that 𝑏0 and SSE are independent and that
SSE

𝜎2
∼ 𝜒2(𝑛−2),

the definition of the Student 𝑡−distribution yields that

𝑇0 =
𝑏0 − 𝛽0

𝜎

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥︸       ︷︷       ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈

=
𝑏0 − 𝛽0

√
MSE

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥

=
𝑏0 − 𝛽0

s {𝑏0}

follows a 𝑡(𝑛 − 2) distribution.

As is the case with 𝛽1, the 100(1 − 𝛼)% confidence interval for 𝛽0 is

C.I.(𝛽0; 1 − 𝛼) ≡ 𝑏0 ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s {𝑏0} .

Fuels Example In the fuels dataset, we have 𝑏0 = 74.283 and s {𝑏0} =

1.593.At a confidence level of 1−𝛼 = 0.95, the critical value of the Student

𝑡−distribution with 𝑛−2 = 18 degrees of freedom is 𝑡(0.975; 18) = 2.101,

and we can build a 95% confidence interval for 𝛽0 as follows:

C.I.(𝛽0; 0.95) ≡ 74.283 ± 2.101(1.593) = [70.94, 77.63].

Hypothesis Testing With standard errors, we can test hypotheses on

the regression parameters.

We try to determine if the true parameters 𝛽0 , 𝛽1 take on specific values

and whether the line of best fit provides a good description of a bivariate

dataset using the following steps:

1. set up a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1;

2. compute a test statistic (using the studentization);

3. find a critical region/𝑝−value for the test statistic under 𝐻0;

4. reject or fail to reject 𝐻0 based on the critical region/𝑝−value.

For instance, we might be interested in testing whether a true parameter

value 𝛽 is equal to some candidate value 𝛽∗, i.e.

𝐻0 : 𝛽 = 𝛽∗ against 𝐻1 :


𝛽 < 𝛽∗ , left-tailed test

𝛽 > 𝛽∗ , right-tailed test

𝛽 ≠ 𝛽∗ , two-tailed test

Under 𝐻0, we have shown that

𝑇0 =
𝑏 − 𝛽∗

s {𝑏} ∼ 𝑡(𝑛 − 2).

The critical region depends on the confidence level 1− 𝛼 and on the type
of the alternative hypothesis 𝐻1.

Let 𝑡∗ be the observed value of 𝑇0; we reject 𝐻0 at 𝛼 if 𝑡∗ is in the critical
region of the test.

Alternative Hypothesis Rejection Region
𝐻1 : 𝛽 < 𝛽∗ 𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 2)
𝐻1 : 𝛽 > 𝛽∗ 𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 2)
𝐻1 : 𝛽 ≠ 𝛽∗ |𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 2)
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Examples Test the following hypotheses In the fuels dataset.

a) Test for 𝐻0 : 𝛽0 = 75 against 𝐻1 : 𝛽0 < 75 at 𝛼 = 0.05.

b) Test for 𝐻0 : 𝛽1 = 10 against 𝐻1 : 𝛽1 > 10 at 𝛼 = 0.05.

c) Test for 𝐻0 : 𝛽1 = 0 against 𝐻1 : 𝛽1 ≠ 0 at 𝛼 = 0.05.

We have seen that

𝑏0 = 74.283, s {𝑏0} = 1.593, 𝑏1 = 14.947, s {𝑏1} = 1.317.

Since the error rate for all tests is 𝛼 = 0.05, we also need to compute the

critical values of the Student 𝑡−distribution with 𝜈 = 20− 2 = 18 degrees

of freedom, at confidence levels 1 − 𝛼 = 0.95 and 1 − 𝛼/2 = 0.975:

𝑡(0.975; 18) = 2.101, and 𝑡(0.95; 18) = 1.734.

a) We run a left-tailed test for the intercept: the observed test statistic

is

𝑡∗𝑎 =
𝑏0 − 𝛽∗

0

s {𝑏0}
=

74.283 − 75

1.593

= −0.449 ≮ −1.734 = −𝑡(0.95; 18),

and so we fail to reject 𝐻0 at 𝛼 = 0.05.

b) We run a right-tailed test for the slope: the observed test statistic is

𝑡∗𝑏 =
𝑏1 − 𝛽∗

1

s {𝑏1}
=

14.947 − 10

1.317

= 3.757 > 1.734 = 𝑡(0.95; 18),

and so we reject 𝐻0 in favour of 𝐻1 at 𝛼 = 0.05.

c) We run a two-tailed test for the slope: the observed test statistic is

|𝑡∗𝑐 | =
����𝑏1 − 𝛽∗

1

s {𝑏1}

���� = ����14.947 − 0

1.317

���� = 11.351 > 2.101 = 𝑡(0.975; 18),

and so we reject 𝐻0 in favour of 𝐻1 at 𝛼 = 0.05.

We will see another test for the slope in Section 8.2.4.

Mean Response We can also conduct inferential analysis for the ex-
pected response at 𝑋 = 𝑋∗

.
19

We assume that E {𝑌∗} = 𝛽0 + 𝛽1𝑋
∗
. 19: In practice, there could be replicates,

say.

The estimated mean response at 𝑋 = 𝑋∗
is

�̂�∗ = 𝑏0 + 𝑏1𝑋
∗.

The predictor value being fixed, �̂�∗
is normally distributed with

E

{
�̂�∗} = E {𝑏0 + 𝑏1𝑋

∗} = E {𝑏0} + E {𝑏1}𝑋∗ = 𝛽0 + 𝛽1𝑋
∗ ,

so that �̂�∗
is an unbiased estimator of 𝑌∗

. What is its standard error?

If 𝑏0 , 𝑏1 were independent, we could simply compute

𝜎2

{
�̂�∗} = 𝜎2 {𝑏0} + (𝑋∗)2𝜎2 {𝑏1} .

But they are not independent, as we can see in the following result.
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Theorem: under the SLR assumptions, 𝜎
{
𝑌, 𝑏1

}
= 0 and

𝜎 {𝑏0 , 𝑏1} = −𝑋𝜎2 {𝑏1} .

Proof: throughout, keep in mind that the 𝑌𝑖 are uncorrelated. We have

𝜎
{
𝑌, 𝑏1

}
= 𝜎

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 ,
𝑛∑
𝑖=1

(𝑋𝑗 − 𝑋)
𝑆𝑥𝑥

𝑌𝑗

}
=

𝑛∑
𝑖 , 𝑗=1

1

𝑛
· (𝑋𝑖 − 𝑋)

𝑆𝑥𝑥
𝜎
{
𝑌𝑖 , 𝑌𝑗

}
.

All the terms for which 𝑖 ≠ 𝑗 have 𝜎
{
𝑌𝑖 , 𝑌𝑗

}
= 0, the other ones have

𝜎 {𝑌𝑖 , 𝑌𝑖} = 𝜎2 {𝑌𝑖} = 𝜎2
, so

𝜎
{
𝑌, 𝑏1

}
=

𝜎2

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

= 0.

Similarly,

𝜎 {𝑏0 , 𝑏1} = 𝜎

{
𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
𝑌𝑖 ,

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
=

𝑛∑
𝑖 , 𝑗=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
(𝑋𝑗 − 𝑋)
𝑆𝑥𝑥

𝜎
{
𝑌𝑖 , 𝑌𝑗

}
All the terms for which 𝑖 ≠ 𝑗 have 𝜎

{
𝑌𝑖 , 𝑌𝑗

}
= 0, the other ones have

𝜎 {𝑌𝑖 , 𝑌𝑖} = 𝜎2 {𝑌𝑖} = 𝜎2
, so

𝜎 {𝑏0 , 𝑏1} = 𝜎2

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

=
𝜎2

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

−𝜎2𝑋

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2︸          ︷︷          ︸
𝑆𝑥𝑥

= −𝑋 𝜎2

𝑆𝑥𝑥
= −𝑋𝜎2 {𝑏1} .

This completes the proof. ■

We can now determine the standard error of the estimated mean response

𝑌 = �̂�∗
at 𝑋 = 𝑋∗

:

𝜎2

{
�̂�∗} = 𝜎2 {𝑏0 + 𝑏1𝑋

∗} = 𝜎2 {𝑏0} + (𝑋∗)2𝜎2 {𝑏1} + 2𝜎 {𝑏0 , 𝑋
∗𝑏1}

= 𝜎2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

]
+ (𝑋∗)2𝜎2

𝑆𝑥𝑥
− 2𝑋∗𝑋

𝜎2

𝑆𝑥𝑥

=
𝜎2

𝑛
+ 𝜎2

𝑆𝑥𝑥

[
(𝑋∗)2 − 2𝑋𝑋∗ + 𝑋2]

= 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
.

The estimated standard error is thus

s

{
�̂�∗} =

√
MSE

√
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥
.
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But there are many ways to skin a cat:

𝜎2

{
�̂�∗} = 𝜎2

{
(𝑌 − 𝑏1𝑋) + 𝑏1𝑋

∗
}
= 𝜎2

{
𝑌 + 𝑏1(𝑋∗ − 𝑋)

}
= 𝜎2

{
𝑌
}
+ 𝜎2

{
𝑏1(𝑋∗ − 𝑋)

}
+ 2(𝑋∗ − 𝑋)𝜎

{
𝑌, 𝑏1

}
=

𝜎2

𝑛
+ (𝑋∗ − 𝑋)2 𝜎2

𝑆𝑥𝑥
+ 0 = 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
.

Either way, we can show that

𝑇∗ =
�̂�∗ − E{�̂�∗}

s{�̂�∗}
∼ 𝑡(𝑛 − 2), and so

C.I.(E{𝑌∗}; 1 − 𝛼) ≡ 𝛽0 + 𝛽1𝑋
∗ ± 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s{�̂�∗}.

Fuels Example In the fuels dataset, the 95% C.I. for E {𝑌∗} is

C.I.(E{𝑌∗}; 0.95) ≡ 74.28 + 14.95𝑋∗ ± 2.10

√
1.18

[
1

20

+ (𝑋∗ − 1.12)2
0.68

]

Figure 8.9: Confidence interval for the mean response: at 𝑋∗ = 1, the 95% confidence interval for the mean response E {𝑌∗} is the orange bar.

8.2.3 Estimation and Prediction

When we estimate the expected (mean) response E {𝑌∗}, we are determin-

ing how (𝑏0 , 𝑏1) could jointly vary from one sample to the next. As these

parameters uniquely determine the line of best fit, finding a confidence

interval for the mean response at all 𝑋 = 𝑋∗
is equivalent to finding a

confidence band for the entire line over the predictor domain.
20

20: Warning: see a bit further down for

joint estimation.

It should come as no surprise that a number of observations fell outside

of their respective confidence intervals for the fuels dataset example: we

were estimating the mean response at a predictor level 𝑋 = 𝑋∗
, not the

actual (or new) responses at that level.
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But what if we wanted to find a range of likely response values at𝑋 = 𝑋∗
?

We use the available data to build confidence intervals (C.I.) when we

are interested in certain (fixed) population characteristics (parameters)

that are unknown to us.

But a new value of the response is not a parameter – it is a random
variable. We refer to the interval of plausible (likely) values for a new

response as a prediction interval (P.I.).

In order to determine such a P.I. for the response, we must model the

error involved in the prediction of the response.
21

21: Throughout, we assume that the new

responses for a predictor level 𝑋 = 𝑋∗
are

independent of the observed responses,

which is to say that the residuals are un-
correlated.

Prediction Intervals Let 𝑌∗
𝑝 represent a (new) response at 𝑋 = 𝑋∗

:

𝑌∗
𝑝 = 𝛽0 + 𝛽1𝑋

∗ + 𝜀𝑝 for some 𝜀𝑝 .

If the average error is 0, the best prediction for 𝑌∗
𝑝 is still the response on

the fitted line at 𝑋 = 𝑋∗
:

�̂�∗
𝑝 = 𝑏0 + 𝑏1𝑋

∗.

The prediction error at 𝑋 = 𝑋∗
is thus

pred
∗ = 𝑌∗

𝑝 − �̂�∗
𝑝 = 𝛽0 + 𝛽1𝑋

∗ + 𝜀𝑝 − 𝑏0 − 𝑏1𝑋
∗.

In the SLR model, the error 𝜀𝑝 and the estimators 𝑏0 , 𝑏1 are normally
distributed. Consequently, so is the prediction error pred

∗
. We have

E {pred
∗} = E

{
𝛽0 + 𝛽1𝑋

∗ + 𝜀∗𝑝
}︸                 ︷︷                 ︸

=𝛽0+𝛽1𝑋∗

−E

{
𝑏0 + 𝑏1𝑋

∗}︸          ︷︷          ︸
=𝛽0+𝛽1𝑋∗

= 0.

Because the residuals are uncorrelated with the responses,
22

we have22: They are not uncorrelated with one

another because 𝑒 = 0.

𝜎2 {pred
∗} = 𝜎2

{
𝑌∗
𝑝

}
+ 𝜎2

{
�̂�∗
𝑝

}
= 𝜎2 + 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
= 𝜎2

[
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
Thus

pred
∗ ∼ N

(
0, 𝜎2

[
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

])
.

The estimated standard error is thus

s {pred
∗} =

√
MSE

√
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥
.

As before, we can show that

𝑇∗
𝑝 =

pred
∗ − 0

s{pred
∗} ∼ 𝑡(𝑛 − 2), and so

P.I.(𝑌∗
𝑝 ; 1 − 𝛼) ≡ 𝛽0 + 𝛽1𝑋

∗ ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s{pred

∗}.

Note that s{�̂�∗} < s{pred
∗} so that the C.I. for the mean response at 𝑋∗

is contained in the P.I. for a new response at 𝑋∗
.
23

23: Furthermore, these regions are small-

est when 𝑋∗ = 𝑋, and they increase as

|𝑋∗ − 𝑋 | increases.
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Fuels Example In the fuels dataset, the 95% P.I. for 𝑌∗
𝑝 is

P.I.(𝑌∗
𝑝 ; 0.95) ≡ 74.28 + 14.95𝑋∗ ± 2.10

√
1.18

[
1 + 1

20

+ (𝑋∗ − 1.12)2
0.68

]
.

Figure 8.10: Prediction interval for a new response: at 𝑋∗ = 1, the 95% prediction interval for a new response 𝑌∗
𝑝 is the orange bar.

Hypothesis Testing Since the distributions for the estimators of the

mean response and for new responses are normal and since we have

estimates for their standard errors, we can conduct hypothesis testing as

before:

1. identify the type of alternative hypothesis 𝐻1 (left-tailed, right-

tailed, two-tailed),

2. compute the (studentized) observed test statistic, and

3. compare to the appropriate critical value of the Student 𝑡−distribution.

Fuels Example In the fuels dataset, suppose we would like to test

𝐻0 : E {𝑌∗ | 𝑋∗ = 1.2} = 92.5 against 𝐻1 : E {𝑌∗ | 𝑋∗ = 1.2} ≠ 92.5.

Under 𝐻0, the test statistic

𝑇∗ =
�̂�∗ − 92.5

s{�̂�∗}
∼ 𝑡(𝑛 − 2) = 𝑡(18).

But �̂�∗ = 74.28 + 14.95(1.2) = 92.22 and

s{�̂�∗} =
√

1.18

√
1

20

+ (1.2 − 1.12)2
0.68

= 0.265.

The observed value of 𝑇∗
is thus

𝑡∗ =
92.22 − 92.5

0.265

= −1.057.
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At an error rate of 𝛼 = 0.05, the critical value of the Student 𝑡−distribution

with 𝑛 − 2 = 18 degrees of freedom is 𝑡(0.975; 18) = 2.101; since |𝑡∗ | ≯
𝑡(0.975; 18), there is not enough evidence to reject the null hypothesis 𝐻0

at a confidence level of 95%.
24

24: Which is not the same as accepting the

null hypothesis 𝐻0.

What if we observed a new response 𝑌∗
𝑝 = 80 for a predictor level

𝑋∗ = 1.2? Is this a reasonable value or should we expect something

larger?

At a confidence level of 95%, the prediction interval for the response at

the predictor level 𝑋∗ = 1.2 is

P.I.(𝑌∗
𝑝 ; 0.95) ≡ �̂�∗ ± 𝑡(0.975; 18) · s {pred

∗}

= 74.28 + 14.95(1.2) ± 2.101

√
1.18

[
1 + 1

20

+ (1.2 − 1.12)2
0.68

]
= 92.22 ± 2.101(1.061) = [89.99, 94.45].

As 𝑌∗
𝑝 = 80 is not in the prediction interval, this seems like an unlikely

new response for 𝑋∗ = 1.2 (at confidence level 95%).

Joint Estimations and Predictions When we use a dataset to estimate

the two parameters 𝛽0 and 𝛽1 in the SLR model, the error sum of squares
SSE has 𝑛 − 2 degrees of freedom.

This might seem like an obscure technical point, but there is a practical

consequence: the resulting C.I. are necessarily wider than those that

would be obtained if the sum of squares had more degrees of freedom.

For instance, 𝑡(0.975; 18) = 2.101 > 𝑡(0.975, 20) = 2.086.25
25: What does this mean for regression

analysis? One interpretation is that there

is a penalty for the simultaneous estima-

tion of parameters: when the same data

is used to compute various estimates, it

gets "tired" (?) and it loses some of its

predictive power.

Bonferroni’s Procedure Say we are interested in the joint estimation of

𝑔 parameters 𝜃1 , . . . , 𝜃𝑔 .

For each parameter 𝜃𝑖 , we build C.I.(𝜃𝑖) ≡ 𝐴𝑖 = {𝐿𝑖 ≤ 𝜃𝑖 ≤ 𝑈𝑖}; the

error rate for estimating 𝜃𝑖 is 𝑃(𝐴𝑖) = 𝑃(𝜃𝑖 ∉ 𝐴𝑖). The family confidence
level is

𝑃(𝐴1 ∩ · · · ∩ 𝐴𝑔) = 𝑃(𝜃1 ∈ 𝐴1 , · · · , 𝜃𝑔 ∈ 𝐴𝑔).

Theorem: for individual error rates 𝑃(𝐴𝑖) = 𝛼
𝑔 , we have

𝑃(𝐴1 ∩ · · · ∩ 𝐴𝑔) ≥ 1 − 𝛼.

Proof: recall that 𝑃(𝐶∪𝐷) = 𝑃(𝐶)+𝑃(𝐷)−𝑃(𝐶∩𝐷). As all probabilities

are non-negative, 𝑃(𝐶) + 𝑃(𝐷) ≥ 𝑃(𝐶 ∪ 𝐷). This can be extended to

unions of 𝑔 events:

𝑃(𝐴1 ∪ · · · ∪ 𝐴𝑔) ≤ 𝑃(𝐴1) + · · · + 𝑃(𝐴𝑔); or

1 − 𝑃(𝐴1 ∪ · · · ∪ 𝐴𝑔) ≥ 1 − 𝑃(𝐴1) − · · · − 𝑃(𝐴𝑔) = 1 − 𝑔 · 𝛼
𝑔
= 1 − 𝛼.

As 𝑃(𝐴1 ∩ · · · ∩𝐴𝑔) = 1−𝑃(𝐴1 ∪ · · · ∪𝐴𝑔), this completes the proof.■
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We can use the Bonferroni procedure to provide joint C.I. for parameters

𝜃1 , . . . , 𝜃𝑔 at a family confidence level of 1 − 𝛼:

C.I.B(𝜃𝑖 ; 1 − 𝛼) ≡ �̂�𝑖 ± 𝑡(1 − 𝛼/𝑔
2

; d.f.) · s{�̂�𝑖}, 𝑖 = 1, . . . , 𝑔.

Joint Estimation of 𝛽0 and 𝛽1 At a family confidence level of 1 − 𝛼, the

joint Bonferroni C.I. for 𝛽0 and 𝛽1 (𝑔 = 2) take the form:

C.I.B(𝛽𝑖 ; 1 − 𝛼) ≡ 𝑏𝑖 ± 𝑡(1 − 𝛼
4
; 𝑛 − 2) · s{𝑏𝑖}, 𝑖 = 0, . . . , 1.

At least 100(1 − 𝛼)% of the times we use this procedure, both 𝛽0 and 𝛽1

will fall inside their respective C.I..

Fuels Example In the fuels dataset, if we want a family confidence level

of 1−𝛼 = 0.95, we need to use 𝑡(1 − 0.05

4
; 20 − 2) = 𝑡(0.9875; 18) = 2.44501 :

C.I.B(𝜷; 0.95) ≡
{

74.283 ± 2.445 · 1.593 ≡ [70.39, 78.18] (𝛽0)
14.947 ± 2.445 · 1.317 ≡ [11.73, 18.17] (𝛽1)

Working-Hotelling’s Procedure When we estimate a C.I. for the mean

response at 𝑋 = 𝑋∗
, we express the lower bound and the upper bound

of the interval as a function of 𝑋∗
.
26

26: It would be tempting to see the union

of all these C.I. as a confidence band for

the mean response at all 𝑋, i.e., for the

true line of best fit

E {𝑌} = 𝛽0 + 𝛽1𝑋,

but that’s not how it works.

If we are only interested in jointly estimating the mean response at a

"small" number of levels 𝑋 = 𝑋∗
𝑖
, 𝑖 = 1, . . . , 𝑔, with a family confidence

level 1 − 𝛼, we can use the Bonferroni procedure:

C.I.B(E
{
𝑌∗
𝑖

}
; 1 − 𝛼) = �̂�∗

𝑖 ± 𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 2) · s{�̂�∗
𝑖
}, 𝑖 = 1, . . . , 𝑔.

If we want to build a 100(1−𝛼)% confidence region for E {𝑌} = 𝛽0+𝛽1𝑋,

the Bonferroni approach would require us to let 𝑔 → ∞ in the C.I.

computations, which is problematic as

𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 2) → ∞

in that case. Instead, we seek𝑊 > 0 such that

1 − 𝛼 = 𝑃
(
�̂�(𝑋) −𝑊 · s{�̂�(𝑋)} ≤ 𝛽0 + 𝛽1𝑋︸    ︷︷    ︸

=E{�̂�(𝑋)}

≤ �̂�(𝑋) +𝑊 · s{�̂�(𝑋)}
)

for all 𝑋 in the regression domain. This can be achieved if

1 − 𝛼 = 𝑃

(
max

𝑋

{�����̂�(𝑋) − E{�̂�(𝑋)}
s{�̂�(𝑋)}

����} ≤ 𝑊
)
,

or equivalently, if

1 − 𝛼 = 𝑃

(
max

𝑋

{
(�̂�(𝑋) − E{�̂�(𝑋)})2

s
2{�̂�(𝑋)}

}
≤ 𝑊2

)
.
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In order to find the appropriate𝑊 , we need the distribution of

M= max

𝑋

{
(�̂�(𝑋) − E{�̂�(𝑋)})2

s
2{�̂�(𝑋)}

}
= max

𝑋


[
(𝑏0 + 𝑏1𝑋) − (𝛽0 + 𝛽1𝑋)

]
2

MSE

[
1

𝑛 + (𝑋−𝑋)2
𝑆𝑥𝑥

]  .
Set 𝑡 = 𝑋 − 𝑋; then the quantity can be re-written as:

max

𝑡


[
𝑌 − E

{
𝑌
}
+ (𝑏1 − 𝛽1)𝑡

]
2

MSE

[
1

𝑛 + 𝑡2

𝑆𝑥𝑥

]  = max

𝑡

{
[𝑐1 + 𝑑1𝑡]2
𝑐2 + 𝑑2𝑡2

}
= max

𝑡
{ℎ(𝑡)}.

Note that 𝑐2 , 𝑑2 > 0 as MSE, 𝑆𝑥𝑥 > 0, so ℎ(𝑡) ≥ 0 for all 𝑡. This is

a continuous rational function of a single variable, with a horizontal

asymptote at ℎ = 𝑑2

1
/𝑑2 ≥ 0; its first derivative is

ℎ′(𝑡) = 2 (𝑐1 + 𝑑1𝑡) (𝑐2𝑑1 − 𝑐1𝑑2𝑡)
(𝑐1 + 𝑑2𝑡2)2 .

The critical points are found at 𝑡1 = − 𝑐1

𝑑1

and 𝑡2 =
𝑐2𝑑1

𝑐1𝑑2

. Since

ℎ(𝑡1) = 0 and ℎ(𝑡2) =
𝑐2

1
𝑑2 + 𝑐2𝑑

2

1

𝑐2𝑑2

=
𝑐2

1

𝑐2

+
𝑑2

1

𝑑2

≥ 0,

we must have

max

𝑡
{ℎ(𝑡)} =

𝑐2

1

𝑐2

+
𝑑2

1

𝑑2

.

Thus

M=
(𝑌 − E{𝑌})2

MSE/𝑛 + (𝑏1 − 𝛽1)2
MSE/𝑆𝑥𝑥

=

(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

+
(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

MSE/𝜎2

Both of the r.v. in the numerator of M are independent; we then have

𝑌 − E{𝑌}
𝜎/

√
𝑛

,
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

∼ N(0, 1) =⇒
(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

,

(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

∼ 𝜒2(1).

We can re-write the random variable in the denominator of M as

MSE/𝜎2 =
SSE

𝜎2

/
𝑛 − 2 ,

so that

M=

2

∼𝜒2(2)︷                                 ︸︸                                 ︷
(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

+
(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

/

2

SSE

𝜎2︸︷︷︸
∼𝜒2(𝑛−2)

/
𝑛 − 2

∼ 2𝐹(2, 𝑛 − 2).
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We thus have

1 − 𝛼 = 𝑃(M ≤ 𝑊2) ⇐⇒𝑊2 = 2𝐹(1 − 𝛼; 2, 𝑛 − 2).

Joint Estimation of Mean Responses At a family confidence level of

1−𝛼, the joint Working-Hotelling C.I. for E

{
𝑌∗
𝑖

}
at any number of levels

𝑋 = 𝑋∗
𝑖

take the form:

C.I.WH(E
{
𝑌∗
𝑖

}
; 1 − 𝛼) = �̂�∗

𝑖 ±
√

2𝐹(1 − 𝛼; 2, 𝑛 − 2) · s{�̂�∗
𝑖 }.

We select whichever of the Bonferroni or Working-Hotelling approaches

yields the tighter C.I..

Fuels Example In the fuels dataset, at a family confidence level of 0.95,

the required factor is

𝑊 =
√

2𝐹(0.95; 2; 18) = 2.667.

The Working-Hotelling confidence band for the line of best fit is shown

in pink below; the Bonferroni region for any 20 simultaneous inferences

on the mean response also contains the blue region.

Figure 8.11: Joint Working-Hotelling confidence band (pink) and joint Bonferroni region fo 20 simultaneous inferences on the mean response

(blue + pink) in the fuels dataset.

Scheffé’s Procedure and Joint Estimation of New Responses If we

want to obtain joint prediction intervals at family confidence level 1 − 𝛼
for 𝑔 new responses 𝑌∗

𝑝𝑖
at predictor levels 𝑋 = 𝑋∗

𝑖
, 𝑖 = 1, . . . , 𝑔, we use

the approach (among the two below) that leads to "tighter" P.I.:

if 𝑔 is "small", the Bonferroni prediction intervals are given by

P.I.B(𝑌∗
𝑝𝑖

; 1 − 𝛼) ≡ �̂�∗
𝑝𝑖
± 𝑡(1 − 𝛼/𝑔

2
; 𝑛 − 2) · s{pred

∗
𝑖 }, 𝑖 = 1, . . . , 𝑔;

if 𝑔 is "large", the Scheffé prediction intervals are

P.I.S(𝑌∗
𝑝𝑖

; 1−𝛼) ≡ �̂�∗
𝑝𝑖
±
√
𝑔𝐹(1 − 𝛼; 𝑔, 𝑛 − 2)·s{pred

∗
𝑖 }, 𝑖 = 1, . . . , 𝑔.
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8.2.4 Significance of Regression

What can we conclude if 𝛽1 = 0? It could be that:

1. there is no relationship between 𝑋 and 𝑌, as in a diffuse cloud of

points – knowledge of 𝑋 explains nothing about the possible val-

ues of 𝑌;

2. there is a horizontal relationship between𝑋 and𝑌, so that changes

in 𝑋 do not bring any change in 𝑌;

3. there is a non-linear relationship between 𝑋 and 𝑌 which is best

approximated by a horizontal line.

In each of these cases, we say that regression is not significant.

Figure 8.12: Examples of non-significant regressions.

This test for significance of regression is

𝐻0 : 𝛽1 = 0 against 𝐻1 : 𝛽1 ≠ 0.

The underlying assumptions are that:

1. the simple linear regression model holds, and

2. the error terms are independent and normal, with variance 𝜎2
.

Under these assumptions, we can show that 𝑏0 , 𝑏1 are independent of
SSE and that

SSE

𝜎2

∼ 𝜒2(𝑛 − 2).

Analysis of Variance Whether 𝐻0 holds or not, the unbiased estimator

for the error variance is

𝜎2 = MSE =
SSE

𝑛 − 2

(
=⇒ SSE

𝜎2

∼ 𝜒2(𝑛 − 2)
)
.
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Recall that, in general: SST = SSR + SSE. If 𝐻0 : 𝛽1 = 0 holds, then

𝑌1 , . . . , 𝑌𝑛 is an independent random sample drawn from N(𝛽0 , 𝜎2). Our

best estimate for 𝜎2
is thus

𝜎2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =
SST

𝑛 − 1

(
=⇒ SST

𝜎2

∼ 𝜒2(𝑛 − 1)
)
.

Cochran’s Theorem implies that SSE, SSR are independent, and that

SSR

𝜎2

∼ 𝜒2
(
(𝑛 − 1) − (𝑛 − 2)

)
= 𝜒2(1).

Thus, if 𝐻0 : 𝛽1 = 0 holds, the quotient

𝐹∗ =

(
SSR

𝜎2

)
︸  ︷︷  ︸
𝜒2(𝜈1)

/
1︸︷︷︸
𝜈1(

SSE

𝜎2

)
︸ ︷︷ ︸
𝜒2(𝜈2)

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈2

=
SSR/1

SSE/(𝑛 − 2) =
MSR

MSE

∼ 𝐹(1, 𝑛 − 2)

follows a Fisher 𝐹 distribution with 1, 𝑛 − 2 degrees of freedom.

It can be shown that E {MSR} = 𝜎2 + 𝛽2

1
𝑆𝑥𝑥 ; if 𝛽1 ≠ 0, we thus have

E {MSR} > 𝜎2
, which means that large observed values of 𝐹∗ support

𝐻1 : 𝛽1 ≠ 0.

Decision Rule: let 0 < 𝛼 ≪ 1. If 𝐹∗ > 𝐹(1 − 𝛼; 1, 𝑛 − 2), then we reject

𝐻0 in favour of 𝐻1 at level 𝛼.
27

27: We have already examined a test for

significance of regression in Section 8.2.2.

They are linked: when 𝛽1 = 0, 𝐹∗ = (𝑡∗)2.

Fuels Example In the fuels dataset, we have 𝑛 = 20 and

SST = 173.38, SSR = 152.13, SSE = 21.25,

so that

𝐹∗ =
SSR/1

SSE/(𝑛 − 2) =
152.13/1

21.25/18

= 128.8631 = (11.351)2;

at 𝛼 = 0.05, the critical value is 𝐹(1 − 0.05; 1, 18) = 4.413873. Since

𝐹∗ > 𝐹(0.95; 1, 18), we reject 𝐻0 : 𝛽1 = 0 at 𝛼 = 0.05, in favour of the

alternative being that the regression is significant (𝐻1 : 𝛽1 ≠ 0).

Golden Rule In general, if SSx is a sum of squares with 𝑛 − 𝑥 degrees

of freedom, the corresponding mean sum of squares is

MSx =
SSx

𝑛 − 𝑥 .

Under some specific test assumptions,
28

MSx provides an unbiased 28: Or under general assumptions, de-

pending on the sum of squares in question

or the situation.

estimator for the variance 𝜎2
of the error terms. Depending on the

situation, Cochran’s Theorem can then be used to show that

SSx

𝜎2

∼ 𝜒2(𝑛 − 𝑥).
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8.2.5 Simple Linear Regression in R

While we can compute quantities associated with the SLR model man-

ually,
29

the lm() function in R produces an object from which we can29: As we have done on numerous occa-

sions earlier in this section.
extract most of them.

Fuels Example We can easily compute the regression model in R.

(model <- lm(y ~ x))

plot(x,y); abline(model) # display points and line

Coefficients:

(Intercept) x

74.28 14.95

We can get more information via the summary() call.

summary(model)

Residuals:

Min 1Q Median 3Q Max

-1.83029 -0.73334 0.04497 0.69969 1.96809

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.283 1.593 46.62 < 2e-16 ***
x 14.947 1.317 11.35 1.23e-09 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.087 on 18 degrees of freedom

Multiple R-squared: 0.8774,Adjusted R-squared: 0.8706

F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

Other attributes are available, as seen below.

attributes(model)

$names

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

attributes(summary(model))

$names

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"
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8.3 Multiple Linear Regression

The situation is usually more complicated; in particular, in any reasonable

dataset we might expect to see 𝑝 predictors 𝑋𝑘 , 𝑘 = 0, . . . , 𝑝 − 1.

Examples

𝑋1: age, 𝑋2: sex; 𝑌: height (𝑝 = 3)
𝑋1: age; 𝑋2: years of education, 𝑌: salary (𝑝 = 3)
𝑋1: income; 𝑋2: infant mortality; 𝑋3: fertility rate,𝑌: life expectancy

(𝑝 = 4)

etc.

In theory, we hope that there is a functional relationship𝑌 = 𝑓 (𝑋0 , . . . , 𝑋𝑝−1)
between 𝑋0(= 1), 𝑋1 , . . . , 𝑋𝑝−1 and 𝑌. In practice (assuming that a re-

lationship even exists), the best that we may be able to hope for is a

statistical relationship

𝑌 = 𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝−1) + 𝜀,

where, as before, 𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝−1) is the response function, and 𝜀 is

the random error (or noise).

In general linear regression, we assume that the response function is

𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝) = 𝛽0𝑋0(= 1) + 𝛽1𝑋1 + · · · + 𝛽𝑝−1𝑋𝑝−1.

The building blocks of regression analysis are the observations:

(𝑋𝑖 ,0(= 1), 𝑋𝑖 ,1 , . . . , 𝑋𝑖 ,𝑝−1 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛.

In an ideal setting, these observations are (jointly) randomly sampled,

according to some appropriate design.
30

30: See Chapters 11 and 10.

The general linear regression (GLR) model is

𝑌𝑖 = 𝛽0𝑋𝑖 ,0(= 1) + 𝛽1𝑋𝑖 ,1 + · · · + 𝛽𝑝−1𝑋𝑖 ,𝑝−1 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where 𝛽𝑘 , 𝑘 = 0, . . . , 𝑝 − 1 are unknown parameters and 𝜀𝑖 is the

random error on the 𝑖th observation (or case).
31

A GLR model need not 31: Note that a predictor 𝑋𝑘 can be a func-

tion of other predictors. For instance, the

following model is a GLR model:

E {𝑌} = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 .

necessarily be linear in 𝑋, but the mean response E {𝑌} must be linear
in the parameters 𝛽𝑘 , 𝑘 = 0, . . . , 𝑝 − 1.

In what follows, we write

Y =
©«
𝑌1

...

𝑌𝑛

ª®®¬ , 𝜷 =

©«
𝛽0

𝛽1

...

𝛽𝑝−1

ª®®®®¬
, and X =

©«
1 𝑋1,1 · · · 𝑋1,𝑝−1

...
...

...

1 𝑋𝑛,1 · · · 𝑋𝑛,𝑝−1

ª®®¬ ,
for the response vector, the parameter vector, and the design matrix,

respectively.

In the design matrix X, X𝑖 represents the 𝑖th case (the 𝑖th row of X),

a single multiple predictor level. The columns of the design matrix

represent the values taken by the various predictor variables for all

cases.
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The multiple linear regression model is

Y = X𝜷 + 𝜺, where 𝜺 ∼ N(0, 𝜎2I𝑛).

Note that the SLR model fits into this framework, if we use 𝑝 = 2 with

𝜷 =

(
𝛽0

𝛽1

)
and X =

©«
1 𝑋1,1

...
...

1 𝑋𝑛,1

ª®®¬ .
8.3.1 Least Squares Estimation

We treat the predictor values 𝑋𝑖 ,𝑘 as though they were constant, for

𝑖 = 1, . . . , 𝑛, 𝑘 = 0, . . . , 𝑝 − 1.
32

Since E {𝜀𝑖} = 0, the expected (or mean)32: That is, we assume that there is no
measurement error. response conditional on 𝑋𝑖 is thus

E {𝑌𝑖 | X𝑖} = E

{
X𝑖𝜷 + 𝜀𝑖 | X𝑖

}
= X𝑖𝜷 + E {𝜀𝑖} = X𝑖𝜷.

The deviation at X𝑖 is the difference between the observed response 𝑌𝑖
and the expected response E {𝑌𝑖 | X𝑖}:

𝑒𝑖 = 𝑌𝑖 − E {𝑌𝑖 | X𝑖} ;

the deviation can be positive (if the point lies “above” the hyperplane

𝑌 = X𝜷) or “negative” (if it lies below).

How do we find estimators for 𝜷? Incidentally, how do we determine if

the fitted hyperplane is a good model for the data?

Consider the function

𝑄(𝜷) =
𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − E {𝑌𝑖 | X𝑖})2 =

𝑛∑
𝑖=1

(𝑌𝑖 − X𝑖𝜷)2.

If 𝑄(𝜷) is "small", then the sum of the squared residuals is "small", and

so we would expect the hyperplane𝑌 = X𝜷 to be a good fit for the data.

The least-square estimators of the GLR problem is the vector b ∈ ℝ𝑝

which minimizes the function 𝑄 with respect to 𝜷 ∈ ℝ𝑝
. We must then

find critical points of 𝑄(𝜷), i.e., solve ∇𝜷𝑄(b) = 0.

Matrix Notation The OLS regression function is Ŷ = Xb, where b
minimizes

𝑄(𝜷) =
𝑛∑
𝑖=1

(
𝑌𝑖 − X𝑖𝜷

)
2

= (Y − X𝜷)⊤(Y − X𝜷)

= (Y⊤ − 𝜷⊤X⊤)(Y − X𝜷) = Y⊤Y − 𝜷⊤X⊤Y − Y⊤X𝜷 + 𝜷⊤X⊤X𝜷.

Since 𝜷⊤X⊤Y is a scalar, it is equal to its transpose Y⊤X𝜷, and so

𝑄(𝜷) = Y⊤Y − 2𝜷⊤X⊤Y + 𝜷⊤X⊤X𝜷.

But X⊤X is positive definite, so 𝑄(𝜷) is minimized at ∇𝜷𝑄(b) = 0.
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Normal Equations The gradient of 𝑄(𝜷) is

∇𝜷𝑄(𝜷) = −2X⊤Y + 2X⊤X𝜷,

so the critical point b solves the normal equations

(X⊤X)b = X⊤Y.

The matrix X⊤X is called the sum of squares and cross products (SSCP)

matrix; when it is invertible, the unique solution of the normal equations

is

b = (X⊤X)−1X⊤Y,

also known as the LS estimates of the GLR problem.
33

33: The SSCP matrix is 𝑝 × 𝑝, and so is

not usually too costly to invert, no matter

the number of observations 𝑛, although

in practice 𝑝 can be quite large.

For instance, say we have two predictors 𝑋1 , 𝑋2 and three regression

parameters 𝜷 = (𝛽0 , 𝛽1 , 𝛽2)⊤. If we write x = (1, 𝑋1 , 𝑋2), the regression
function is

E {𝑌} = x𝜷 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2.

If the OLS estimates are

b = (X⊤X)−1X⊤Y =
(
0.5,−0.1, 2

)⊤
,

say, then the estimated regression function is

�̂� = xb = 0.5 − 0.1𝑋1 + 2𝑋2.

Residuals and Sums of Squares The fitted values for the GLR problem

are ©«
�̂�1

...

�̂�𝑛

ª®®¬ = Ŷ = Xb = X
(
X⊤X

)−1 X⊤︸          ︷︷          ︸
=H

Y = HY,

where H is the hat matrix.

Theorem: H, I𝑛 − H are idempotent and symmetric, and (I𝑛 − H)X = 0.

Proof: we use the notation M = I𝑛 − H. We will first need to show that

H2 = H, H⊤ = H, M2 = M, and M⊤ = M.

That this is the case is obvious:

H2 = X
(
X⊤X

)−1 X⊤X
(
X⊤X

)−1 X⊤ = XI𝑛
(
X⊤X

)−1 X⊤ = H

H⊤ =

(
X

(
X⊤X

)−1 X⊤
)⊤

=
(
X⊤)⊤ ( (

X⊤X
)−1

)⊤
X⊤ = X

( (
X⊤X

)⊤)−1

X⊤

= X⊤ (
X⊤(X⊤)⊤

)−1 X⊤ = X⊤(X⊤X)−1X⊤ = H

M2 = (I𝑛 − H)2 = I2

𝑛 − I𝑛H − HI𝑛 + H2 = I𝑛 − 2H + H = I𝑛 − H = M
M⊤ = (I𝑛 − H)⊤ = I⊤𝑛 − H⊤ = I𝑛 − H = M.

Furthermore,

MX = (I𝑛 − H)X = X − HX = X − X
(
X⊤X

)−1 X⊤X = X − XI𝑛 = 0,

which completes the proof. ■
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The 𝑖th residual is 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 . Since MX = 0, the residual vector is

e = Y − Ŷ = Y − HY = (I𝑛 − H)Y = MY
= M(X𝜷 + 𝜺) = M𝜺.

In other words, the residual vector is both a linear transformation of the

response vector Y and of the random error vector 𝜺. Just as in the SLR

case (which is a special case of GLR), the residuals have a set of nice

properties.

Theorem: the design matrix is orthogonal to the residual vector, i.e.,

X⊤e = 0 (the columns of X are orthogonal to e).

Proof: from the normal equations, we get

X⊤Xb = X⊤Y =⇒ X⊤(Y − Xb) = 0 =⇒ X⊤(Y − Ŷ) = 0.

But Y − Ŷ = e, so that X⊤e = 0. ■

Theorem: if the model has an intercept term 𝛽0, we also have 1⊤𝑛e = 0,

e = Y − Ŷ = 0, and Ŷ⊤e = 0.

Proof: if there is an intercept term, the first column of the design matrix

X is 1𝑛 . Thus 1⊤𝑛e corresponds to the first entry of X⊤e = 0, which is to

say, 0. This also implies that e = 0. For the last part, recall that Ŷ = Xb,

and so Ŷ⊤ = b⊤X⊤
and Ŷ⊤e = b⊤X⊤e = b⊤0 = 0. ■

We have already seen that SST is a quadratic form in Y:

SST =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 = Y⊤
(
I𝑛 −

1

𝑛
J𝑛

)
Y;

from the definition of the residuals, we see that this also holds for SSE:

SSE =

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 =

𝑛∑
𝑖=1

𝑒2

𝑖 = e⊤e = (MY)⊤MY = Y⊤M⊤MY

= Y⊤M2Y = Y⊤MY = Y⊤ (I𝑛 − H)Y.

The sum of squares decomposition can then be re-written as:

SSR = SST − SSE.

Thus, SSR is also a quadratic form in Y:

SSR =

𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2 = Y⊤
(
I𝑛 −

1

𝑛
J𝑛

)
Y − Y⊤ (I𝑛 − H)Y

= Y⊤
(
I𝑛 −

1

𝑛
J𝑛 − I𝑛 + H

)
Y = Y⊤

(
H − 1

𝑛
J𝑛

)
Y.

Theorem: E {SSE} = (𝑛 − 𝑝)𝜎2
and rank(M) = trace(M) = 𝑛 − 𝑝. Thus,

SSE has 𝑛 − 𝑝 degrees of freedom.

Proof: we have

SSE = e⊤e = (M𝜺)⊤M𝜺 = 𝜺⊤M𝜺 =

𝑛∑
𝑖 , 𝑗=1

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗 =
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖 +
∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗 .
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Since 𝜺 ∼ N(0, 𝜎2I𝑛),

E

{
𝜀2

𝑖

}
= 𝜎2 {𝜀𝑖} + (E {𝜀𝑖})2 = 𝜎2 + 0 = 𝜎2 , 𝑖 = 1, . . . , 𝑛, and

E

{
𝜀𝑖𝜀𝑗

}
= 𝜎

{
𝜀𝑖 , 𝜀𝑗

}
+ E {𝜀𝑖} E

{
𝜀𝑗

}
= 0 + 0 = 0, 𝑖 ≠ 𝑗.

Consequently,

E {SSE} = E

{
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖 +
∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗

}
= E

{
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖

}
+ E

{∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗

}
=

𝑛∑
𝑖=1

𝑚𝑖𝑖E
{
𝜀2

𝑖

}
+

∑
𝑖≠𝑗

𝑚𝑖 𝑗E
{
𝜀𝑖𝜀𝑗

}
= 𝜎2

𝑛∑
𝑖=1

𝑚𝑖𝑖 = 𝜎2

trace(M)

= 𝜎2

trace(I𝑛 − H) = 𝜎2[trace(I𝑛) − trace(H)] = 𝜎2[𝑛 − trace(H)].

But

trace(H) = trace

(
X

(
X⊤X

)−1︸      ︷︷      ︸
𝐴𝑛×𝑝

X⊤︸︷︷︸
𝐵𝑝×𝑛

)
= trace

(
X⊤︸︷︷︸
𝐵𝑝×𝑛

X
(
X⊤X

)−1︸      ︷︷      ︸
𝐴𝑛×𝑝

)
= trace(I𝑝) = 𝑝,

whence E {SSE} = (𝑛 − 𝑝)𝜎2
. ■

The mean square error MSE in the GLR model is

MSE =
SSE

𝑛 − 𝑝 ,

which is not surprising as we have to estimate the 𝑝 parameters 𝛽𝑘 ,
𝑘 = 0, . . . , 𝑝 − 1, in order to compute SSE. According to the previous

theorem, MSE is an unbiased estimator of the error variance 𝜎2
.

8.3.2 Inference, Estimation, and Prediction

Assuming normality and independence of the random errors, the esti-

mators 𝑏0 , . . . , 𝑏𝑝−1 are then independent of SSE and

SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝).

This information allows us to test for the significance of regression using

the overall 𝐹−test:

𝐻0 : 𝛽1 = · · · = 𝛽𝑝−1 = 0 against 𝐻1 : 𝛽𝑘 ≠ 0 for some 𝑘 = 1, . . . , 𝑝 − 1

assuming that the GLR model holds.

Analysis of Variance In particular, we have

𝑌𝑖 ∼ N(X𝑖𝜷, 𝜎2I𝑛), 𝑖 = 1, . . . , 𝑛.

Whether 𝐻0 holds or not, the unbiased estimator for the error variance

is

𝜎2 = MSE =
SSE

𝑛 − 𝑝
(
=⇒ SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝)
)
.



452 8 Classical Regression Analysis

If 𝐻0 holds, then 𝑌1 , . . . , 𝑌𝑛 is an independent random sample drawn

from N(𝛽0 , 𝜎2). Our best estimate for 𝜎2
is thus

𝜎2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =
SST

𝑛 − 1

(
=⇒ SST

𝜎2

∼ 𝜒2(𝑛 − 1)
)
.

Since SST = SSE + SSR, Cochran’s Theorem implies that SSE, SSR are

independent, and that

SSR

𝜎2

∼ 𝜒2
(
(𝑛 − 1) − (𝑛 − 𝑝)

)
= 𝜒2(𝑝 − 1).

Thus, if 𝐻0 holds, the quotient

𝐹∗ =

(
SSR

𝜎2

)/
(𝑝 − 1)(

SSE

𝜎2

)/
(𝑛 − 𝑝)

=
SSR/(𝑝 − 1)
SSE/(𝑛 − 𝑝) =

MSR

MSE

∼ 𝐹(𝑝 − 1, 𝑛 − 𝑝)

follows a Fisher 𝐹 distribution with 𝑝 − 1, 𝑛 − 𝑝 degrees of freedom.

The corresponding ANOVA table is

Source SS df MS F∗

Regression SSR 𝑝 − 1 MSR = SSR/(𝑝 − 1) MSR/MSE

Error SSE 𝑛 − 𝑝 MSE = SSE/(𝑛 − 𝑝)
Total SST 𝑛 − 1

The overall 𝐹−test’s p−value is

𝑃(𝐹(𝑝 − 1, 𝑛 − 𝑝) > 𝐹∗).

Decision Rule: at confidence level 1 − 𝛼, we reject 𝐻0 if

𝐹∗ > 𝐹(1 − 𝛼; 𝑝 − 1, 𝑛 − 𝑝);

equivalently, we reject 𝐻0 if 𝑃(𝐹(𝑝 − 1, 𝑛 − 𝑝) > 𝐹∗) < 𝛼.

Toy Example Consider a dataset with 𝑛 = 12 observations, a response

variable 𝑌 and 𝑝 − 1 = 4 predictors 𝑋1, 𝑋2, 𝑋3, 𝑋4. We build a GLR

model

𝑌𝑖 = X𝑖𝜷 + 𝜀𝑖 , 𝑖 = 1, . . . , 12

= 𝛽0 + 𝛽1𝑋𝑖 ,1 + 𝛽2𝑋𝑖 ,2 + 𝛽3𝑋𝑖 ,3 + 𝛽4𝑋𝑖 ,4 + 𝜀𝑖 , 𝜺 ∼ N(0, 𝜎2I12)

The corresponding ANOVA table is

Source SS df MS F∗

Regression 4957.2 4 1239.3 5.1

Error 1699.0 7 242.7

Total 6656.2 11

With a 𝑝 − value = 𝑃(𝐹(4, 7) > 5.1) = 0.0303, we reject 𝐻0 at 𝛼 = 0.05

and conclude that the regression is significant.
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Figure 8.13: Geometrical interpretation of multiple linear regression: the sums of squares decomposition is a manifestation of Pythagoras’

Theorem (see below).

Geometrical Interpretation A number of GLR concepts become easier

to understand when viewed through the prism of geometry and vector
algebra. Let

M(X) = colsp(X) = {X𝜸 | 𝜸 ∈ ℝ𝑝} < ℝ𝑛

M⊥(X) = (colsp(X))⊥ = {v ∈ ℝ𝑛 | v · w = 0, ∀w ∈ M(X)}

The vector of observations Y = X𝜷 + 𝜺 lies in ℝ𝑛
, while the fitted vector

Y = Xb = HY lies in M(X) and

e = Y − Y = Y − HY = (I𝑛 − H)Y

lies in M⊥(X). The hat matrix H and I𝑛 − H are idempotent (they are the

projection matrices on M(X) and M⊥(X)) and symmetric.

The OLS estimator b is such that Xb is the closest vector to Y in M(X):

b = arg min

𝜸∈ℝ𝑝

{
∥Y − X𝜸∥2

2

}
= arg min

𝜸∈ℝ𝑝

{
∥e∥2

2

}
= arg min

𝜸∈ℝ𝑝
{SSE} .

If the GLR model has a constant term 𝛽0, the mean vector Y = 𝑌1𝑛 lies

in M(X); indeed, for 𝜸∗ = (𝑌, 0, . . . , 0)⊤, we have Y = X𝜸∗
. The triangle

ΔYYY is thus a right angle triangle, with

t = Y − Y = (Y − Y) + (Y − Y) = e + r;

Pythagoras’ Theorem then gives us

∥t∥2

2
= SST = SSE + SSR = ∥e∥2

2
+ ∥r∥2

2
.
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Model Parameters As was the case with the SLR model parameters, if

𝜺 ∼ N(0, 𝜎2I𝑛), then

Y ∼ N(E {Y} , 𝜎2 {Y}) = N(X𝜷, 𝜎2I𝑛).

If 𝐴 is any compatible matrix, then

𝐴Y ∼ N(𝐴E {Y} , 𝐴𝜎2 {Y}𝐴⊤) = N(𝐴X𝜷, 𝜎2𝐴𝐴⊤).

From the normal equations, the OLS estimates for the GLR model are

given by a linear transformation of the response vector Y:

b = (X⊤X)−1X⊤︸      ︷︷      ︸
𝑝×𝑛

Y = 𝐴Y.

In particular,

E {b} = (X⊤X)−1X⊤
E {Y} = (X⊤X)−1X⊤X𝜷 = 𝜷,

so that b provides unbiased estimators of 𝜷. Furthemore,

𝜎2 {b} = (X⊤X)−1X⊤𝜎2 {Y}
[
(X⊤X)−1X⊤]⊤

= (X⊤X)−1X⊤𝜎2I𝑛
[
(X⊤X)−1X⊤]⊤

= 𝜎2(X⊤X)−1.

Thus,

b ∼ N
(
𝜷, 𝜎2(X⊤X)−1

)
.

The estimated variance-covariance matrix for the estimators b is thus

s
2 {b} = MSE · (X⊤X)−1 , and s {b} =

√
MSE

√
diag

[
(X⊤X)−1

]
.

For each 𝑘 = 0, . . . , 𝑝 − 1, the studentization of 𝑏𝑘 is

𝑇𝑘 =
𝑏𝑘 − 𝛽𝑘

√
MSE

√
(X⊤X)−1

𝑘,𝑘

=
𝑏𝑘 − 𝛽𝑘

𝜎
√
(X⊤X)−1

𝑘,𝑘︸         ︷︷         ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 𝑝)︸ ︷︷ ︸

=𝜈

∼ 𝑡(𝑛 − 𝑝),

where (X⊤X)−1

𝑘,𝑘 represents the 𝑘 + 1 entry in diag

[
(X⊤X)−1

]
.

For a specific 𝑘 ∈ {0, . . . , 𝑝 − 1}, the 100(1 − 𝛼)% C.I. for 𝛽𝑘 is

C.I.(𝛽𝑘 ; 0.95) ≡ 𝑏𝑘 ± 𝑡
(
1 − 𝛼

2
; 𝑛 − 𝑝

)
· s{𝑏𝑘}.

The corresponding hypothesis tests for

𝐻0 : 𝛽𝑘 = 𝛽∗𝑘 against 𝐻1 :


𝛽𝑘 < 𝛽∗

𝑘
left-tailed test

𝛽𝑘 > 𝛽∗
𝑘

right-tailed test

𝛽𝑘 ≠ 𝛽∗
𝑘

two-tailed test

Under 𝐻0, the computed test statistic

𝑇𝑘 =
𝑏𝑘 − 𝛽∗

𝑘

s{𝑏𝑘}
∼ 𝑡(𝑛 − 𝑝).
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The critical region for the test depends on the confidence level 1− 𝛼 and

on the type of the alternative hypothesis 𝐻1. Let 𝑡∗ be the observed value

of 𝑇𝑘 . We reject 𝐻0 if 𝑡∗ is in the critical region.

Alternative Hypothesis Rejection Region
𝐻1 : 𝛽𝑘 < 𝛽∗

𝑘
𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 𝑝)

𝐻1 : 𝛽𝑘 > 𝛽∗
𝑘

𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : 𝛽𝑘 ≠ 𝛽∗

𝑘
|𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 𝑝)

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We build the GLR model

Ŷ = Xb and obtain the following results:

Predictor Estimate SE t
Intercept -102.71 207.86 -0.49

𝑋1 0.61 0.37 1.64

𝑋2 8.92 5.3 1.68

𝑋3 1.44 2.39 0.60

𝑋4 0.01 0.77 0.02

Recall that 𝑛 − 𝑝 = 7; the 95% C.I. for 𝛽2 is thus

C.I.(𝛽2; 0.95) ≡ 8.92 ± 𝑡(0.975; 7) · 5.3 = 8.92 ± 2.365 · 5.3 = [−3.6, 21.5].

We could also test for 𝐻0 : 𝛽3 = 2 against 𝐻1 : 𝛽3 ≠ 2, say: under 𝐻0,

𝑇∗
3
=
𝑏3 − 2

s {𝑏3}
∼ 𝑡(7).

The observed statistic is

𝑡∗ =
1.44 − 2

2.39

= −0.23;

we would reject 𝐻0 at confidence level 1 − 𝛼 = 0.95 if

|𝑡∗ | > 𝑡(0.975; 7) = 2.365;

as −0.23 ≯ 2.365, we cannot conclude that 𝛽3 ≠ 2.
34

34: While we can build a C.I. for 𝛽2 and

test a hypothesis about 𝛽3, each at the

1 − 𝛼 = 0.95 confidence level, we cannot

do so jointly.Mean Response We can also conduct inferential analysis for the ex-
pected response at X∗ = (1, 𝑋∗

1
, . . . , 𝑋∗

𝑝−1
) in the model’s scope. In the

GLR model, we assume that

E {𝑌∗} = X∗𝜷 = 𝛽0 + 𝛽1𝑋
∗
1
+ · · · + 𝛽𝑝−1𝑋

∗
𝑝−1
.

The estimated mean response at X∗
is

�̂�∗ = X∗b = 𝑏0 + 𝑏1𝑋
∗
1
+ · · · + 𝑏𝑝−1𝑋

∗
𝑝−1
.

The predictor values are fixed, thus �̂�∗
is normally distributed with

E{�̂�∗} = E {X∗b} = X∗
E {b} = X∗𝜷,

so that �̂�∗
is an unbiased estimator of E{𝑌∗}.
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Furthermore,

𝜎2{�̂�∗} = X∗𝜎2 {b} (X∗)⊤ = 𝜎2X∗(X⊤X)−1 (X∗)⊤ ,

so that

s
2{�̂�∗} = MSE · X∗(X⊤X)−1 (X∗)⊤ = X∗

s
2 {b} (X∗)⊤ .

The estimated standard error is thus

s{�̂�∗} =
√

X∗
s

2 {b} (X∗)⊤.

Since

�̂�∗ = X∗b = X∗(X⊤X)−1X⊤Y

is a linear transformation of Y, and since

Y ∼ N(X𝜷, 𝜎2I𝑛),

then

�̂�∗ ∼ N

(
E{�̂�∗}, 𝜎2{�̂�∗}

)
= N

(
X∗𝜷, 𝜎2X∗(X⊤X)−1(X∗)⊤

)
.

Thus

𝑍 =
�̂�∗ − E{�̂�∗}

𝜎{�̂�∗}
=

�̂�∗ − X∗𝜷

𝜎
√

X∗ (X⊤X)−1 (X∗)⊤
∼ N(0, 1).

The studentization of �̂�∗
is then

𝑇 =
�̂�∗ − X∗𝜷

𝜎
√

X∗ (X⊤X)−1 (X∗)⊤︸                   ︷︷                   ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 𝑝)︸ ︷︷ ︸

=𝜈

=
�̂�∗ − X∗𝜷

√
MSE

√
X∗ (X⊤X)−1 (X∗)⊤

∼ 𝑡(𝑛 − 𝑝).

For a specific predictor level X∗
, the 100(1 − 𝛼)% C.I. for E {𝑌∗} is

C.I.(E {𝑌∗} ; 0.95) ≡ �̂�∗ ± 𝑡
(
1 − 𝛼

2
; 𝑛 − 𝑝

)
· s{�̂�∗}.

The corresponding hypothesis tests for

𝐻0 : E {𝑌∗} = 𝛾 against 𝐻1 :


E {𝑌∗} < 𝛾 left-tailed test

E {𝑌∗} > 𝛾 right-tailed test

E {𝑌∗} ≠ 𝛾 two-tailed test

Under 𝐻0, the computed test statistic

𝑇 =
�̂�∗ − 𝛾

s{�̂�∗}
∼ 𝑡(𝑛 − 𝑝).

The critical region for the test depends on the confidence level 1− 𝛼 and

on the type of the alternative hypothesis 𝐻1. Let 𝑡∗ be the observed value

of 𝑇. We reject 𝐻0 if 𝑡∗ is in the critical region.
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Alternative Hypothesis Rejection Region
𝐻1 : E {𝑌∗} < 𝛾 𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : E {𝑌∗} > 𝛾 𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : E {𝑌∗} ≠ 𝛾 |𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 𝑝)

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We would like to predict

the expected response at

X∗ = (1, 11.10, 20.74, 6.61, 182.38), in the model’s scope.

Thus

�̂�∗ = X∗b
= −102.71 + 0.61(11.10) + 8.92(20.74) + 1.44(6.61) + 0.01(182.38)
= 100.40.

Recall that MSE = 242.71. Using the data, we computed

X∗(X⊤X)−1 (X∗)⊤ = 1.42,

so that

s{�̂�∗} =
√

242.71

√
1.42 = 22.12.

Since 𝑛 − 𝑝 = 7; the 95% C.I. for E {𝑌∗} is

C.I.(E {𝑌∗} ; 0.95) ≡ 100.40 ± 𝑡(0.975; 7) · 22.12

= 100.40 ± 2.365 · 22.12 = [48.09, 152.71].

We could also test for 𝐻0 : E {𝑌∗} = 150 against 𝐻1 : E {𝑌∗} < 150, say:

under 𝐻0,

𝑇∗ =
�̂�∗ − 150

s{�̂�∗}
∼ 𝑡(7).

The observed statistic is

𝑡∗ =
100.40 − 150

22.12

= −2.24.

We would reject 𝐻0 at confidence level 1 − 𝛼 = 0.95 if

𝑡∗ < −𝑡(0.95; 7) = −1.89;

as −2.24 < −1.89, the evidence is strong enough to reject

𝐻0 : E {𝑌∗} = 150 in favour of 𝐻1 : E {𝑌∗} < 150.

Note, however, that the two-sided 95% C.I. for E {𝑌∗} contains 150, so

we cannot reject

𝐻0 : E {𝑌∗} = 150 in favour of 𝐻1 : E {𝑌∗} ≠ 150

at confidence level 1 − 𝛼 = 95%. As before, we cannot conduct joint
inferences about various predictor levels X∗

without modifications.
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Prediction Intervals Let 𝑌∗
𝑝 represent a (new) response at X∗

, so that

𝑌∗
𝑝 = X∗𝜷 + 𝜀𝑝 for some 𝜀𝑝 .

If the average error is 0, the best prediction for𝑌∗
𝑝 is still the fitted response

at X∗
:

�̂�∗
𝑝 = X∗b.

The prediction error at X∗
is thus

pred
∗ = 𝑌∗

𝑝 − �̂�∗
𝑝 = X∗𝜷 + 𝜀𝑝 − X∗b.

In the GLR model, the error 𝜀𝑝 and the estimators b are normally
distributed. Consequently, so is the prediction error pred

∗
. Note that

E {pred
∗} = E

{
X∗𝜷 + 𝜀∗𝑝

}
︸         ︷︷         ︸

=X∗𝜷

−E {X∗b}︸  ︷︷  ︸
=X∗𝜷

= 0.

Because the residuals are uncorrelated with the response, we also have

𝜎2 {pred
∗} = 𝜎2

{
𝑌∗
𝑝

}
+ 𝜎2

{
�̂�∗
𝑝

}
= 𝜎2 + 𝜎2X∗(X⊤X)−1(X∗)⊤ = 𝜎2

[
1 + X∗(X⊤X)−1(X∗)⊤

]
.

Thus pred
∗ ∼ N

(
0, 𝜎2

[
1 + X∗(X⊤X)−1(X∗)⊤

] )
and the estimated standard

error is

s {pred
∗} =

√
MSE

√
1 + X∗(X⊤X)−1(X∗)⊤.

As before, we can show that

𝑇∗
𝑝 =

pred
∗ − 0

s{pred
∗} ∼ 𝑡(𝑛 − 𝑝), and so

P.I.(𝑌∗
𝑝 ; 1 − 𝛼) ≡ X∗b ± 𝑡(1 − 𝛼

2
; 𝑛 − 𝑝) · s{pred

∗}.

Note that s{�̂�∗} < s{pred
∗} so that the C.I. for the mean response is

always contained in the P.I. for new responses.

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We would like to predict

the new responses at

X∗ = (1, 11.10, 20.74, 6.61, 182.38), in the model’s scope.

We have already seen that �̂�∗ = X∗b = 100.40. Recall that MSE = 242.71

and

X∗(X⊤X)−1 (X∗)⊤ = 1.42,

so that

s{pred
∗} =

√
242.71

√
1 + 1.42 = 37.70.

Since 𝑛 − 𝑝 = 7, the 95% P.I. for 𝑌∗
is

P.I.(𝑌∗
; 0.95) ≡ 100.40 ± 𝑡(0.975; 7) · 37.70

= 100.40 ± 2.365 · 37.70 = [11.24, 189.56].
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Joint Estimation and Prediction At a family confidence level of 1 − 𝛼:

the Bonferroni procedure can be used to jointly estimate 𝑔 model

parameters 𝛽𝑘ℓ , 𝑔 mean responses E

{
𝑌∗
ℓ

}
, or 𝑔 new responses 𝑌∗

ℓ
,

for ℓ = 1, . . . , 𝑔;

the Working-Hostelling procedure can be used to jointly estimate

𝑔 mean responses E

{
𝑌∗
ℓ

}
, for ℓ = 1, . . . , 𝑔;

the Scheffé procedure can be used to jointly predict 𝑔 new responses

𝑌∗
ℓ
, for ℓ = 1, . . . , 𝑔.

The process is identical to the SLR approach; depending on the task

at hand, we pick the appropriate procedure that yields the smallest
interval.

The sole difference lies in the composition of the factors that accom-

pany the estimated standard errors in the construction of the joint
confidence/prediction intervals at family confidence level 1 − 𝛼:

𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 𝑝) for the Bonferroni procedure;√
𝑝𝐹(1 − 𝛼; 𝑝, 𝑛 − 𝑝) for the Working-Hotelling procedure, and√
𝑔𝐹(1 − 𝛼; 𝑔, 𝑛 − 𝑝) for the Scheffé procedure.

Toy Example We can provide joint confidence intervals for the model
parameters in the preceding example at family confidence level 1 − 𝛼 =

0.95, using 𝑛 − 𝑝 = 7 and 𝑔 = 5. The Bonferroni factor is

𝑡
(
1 − 0.05/5

2
; 7

)
= 𝑡(0.995; 7) = 3.50;

the joint confidence intervals are:

C.I.B(𝛽𝑘 ; 0.95) ≡ 𝑏𝑘 ± 3.50 · s {𝑏𝑘} .

Parameter 𝑏𝑘 C.I.B(𝛽𝑘 ; 0.95)
𝛽0 -102.71 [-830.22, 624.80]

𝛽1 0.61 [-0.685 , 1.905]

𝛽2 8.92 [ -9.63 ,27.47]

𝛽3 1.44 [-6.925 , 9.805]

𝛽4 0.01 [-2.685 , 2.705]

Individually, none of the parameters are significant at the family confi-

dence level 1 − 𝛼 = 0.95 (all the confidence intervals contain 0), but the

regression as a whole is significant (see overall 𝐹-test example).

Similarly, the Working-Hotelling joint confidence intervals for the es-

timated mean E

{
𝑌∗
ℓ

}
at a variety of predictor levels X∗

ℓ
, ℓ = 1, . . . , 𝑔

(family confidence level 1 − 𝛼 = 0.95) are

C.I.WH(E
{
𝑌∗
ℓ

}
; 0.95) ≡ �̂�∗

ℓ ±
√

5𝐹(0.95; 5, 7) · s{�̂�∗
ℓ }

= X∗
ℓb ± 4.46

√√√
242.71︸︷︷︸
=MSE

√
X∗
ℓ
(X⊤X)−1(X∗

ℓ
)⊤
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Figure 8.14: Power function (right) and error of type I (left).

8.3.3 Power of a Test

When we do hypothesis testing, we can make two types of errors.

Type I Error: rejecting a valid 𝐻0

Type II Error: failing to reject 𝐻0 when 𝐻1 is valid.
35

35: There are other types of error, such

as “correctly rejecting 𝐻0 for the wrong

reason”, “giving the right answer to the

wrong problem ”, “choosing the wrong

problem representation”, “deliberately se-

lecting the wrong questions for intensive

and skilled investigation”, “incorrectly in-

terpreting a correctly rejected 𝐻0” and so

on, but that is outside the scope of this

chapter. See wikipedia.org/wiki/Type_-

III_error for details.

The level of significance 𝛼 is used to control the risk of making an error

of type I; type II errors are harder to control, in general.

Suppose we are testing (2−sided test) for{
𝐻0 : 𝜃 = 𝜃0

𝐻1 : 𝜃 ≠ 𝜃0

Let 𝛼 be the probability of making an error of type I.

The power function

𝐾(𝜃′) = 𝑃(reject 𝐻0 if 𝜃 = 𝜃′)

is such that 𝐾(𝜃0) = 𝛼.

If 𝜃 ≠ 𝜃0, 𝑡∗ = �̂�−𝜃0

s{�̂�} ∼ 𝑡(𝜈) with non-centrality parameter

𝛿 =
|𝜃 − 𝜃0 |
𝜎{�̂�}

≈ |𝜃 − 𝜃0 |
s{�̂�}

,

where 𝜃 is the true value and 𝜃0 is the value under 𝐻0. The power of the
test is the probability of rejecting 𝐻0 if 𝜃 = 𝜃′

:

𝐾(𝜃′) = 𝑃(|𝑡∗ | > 𝑡(1 − 𝛼/2; 𝜈); 𝛿).

To control the power, we can either increase 𝑛 or decrease 𝑆𝑥𝑥 (as we can

see in Figure 8.14).

We will revisit these notions in Chapter 11.

https://en.wikipedia.org/wiki/Type_III_error
https://en.wikipedia.org/wiki/Type_III_error
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8.3.4 Coefficients of Determination

The coefficient of multiple determination of a GLR model is

𝑅2 =
SSR

SST

= 1 − SSE

SST

,

the proportion of the variation in 𝑌 which is explained by the regression.

If the GLR model incorporates an intercept term (𝛽0 ≠ 0), then

𝑅2 = 𝑟2

𝑌�̂�
=

(𝑠𝑌�̂�)2
𝑠𝑌𝑠�̂�

;

this is not the case without an intercept term. When the number of

parameters 𝑝 increases, so does 𝑅2
; however, the degrees of freedom,

𝑛 − 𝑝 decrease. This typically means that the estimates are less precise.

We can adjust 𝑅2
to take this loss into account.

The adjusted coefficient of multiple determination of a GLR model is

𝑅2

𝑎 = 1 −
SSE/(𝑛 − 𝑝)
SST/(𝑛 − 1) = 1 − 𝑛 − 1

𝑛 − 𝑝 · SSE

SST

(which could be < 0).

Toy Example In the case we have been carrying around for a while, we

had

SST = 6656.2, SSE = 1699.0, 𝑛 − 𝑝 = 7, 𝑛 − 1 = 11,

so that

𝑅2 = 1 − 1699.0

6656.2
= 0.745 and 𝑅2

𝑎 = 1 − 11

7

· 1699.0

6656.2
= 0.599.

8.3.5 Diagnostics and Remedial Measures

We have seen that there are four GLR assumptions:

linearity – E {𝑌 | X = x} = x𝜷 = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝−1𝑥𝑝−1;

variance constancy (homoscedasticity) – 𝜎2{𝜀𝑖} = 𝜎2
, 𝑖 = 1, . . . , 𝑛;

independence – 𝜀1 , . . . , 𝜀𝑛 are independent,
36

and 36: Uncorrelated is in fact sufficient.

normality – 𝜀𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛.

We have combined these assumptions in the simpler vector form

𝑌 | X ∼ N(X𝜷, 𝜎2I𝑛).

These assumptions must be met before we can trust the GLR model.
37

37: In theory, at least. In practice, the

model may prove useful even if they are

not met, but that must be established on a
case-by-case basis.

Recall that we have the following results on the residuals:

1. e = Y − Ŷ, or 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 , for 𝑖 = 1, . . . , 𝑛;

2. if 𝛽0 ≠ 0, e = 0, and

3. 𝜎2{e} = 𝜎2(I𝑛 − H), so that 𝜎2{𝑒𝑖} = 𝜎2(1 − ℎ𝑖𝑖), for 𝑖 = 1, . . . , 𝑛,

and 𝜎{𝑒𝑖 , 𝑒 𝑗} = 𝜎{𝑒 𝑗 , 𝑒𝑖} = −ℎ𝑖 𝑗𝜎2
for 𝑖 ≠ 𝑗 = 1, . . . , 𝑛.

The standard error is s
2{𝑒𝑖} = MSE(1 − ℎ𝑖𝑖) and the internal studentiza-

tion is 𝑟𝑖 =
𝑒𝑖−𝑒
s{𝑒𝑖 } ∼ 𝑡(𝑛 − 𝑝), for 𝑖 = 1, . . . , 𝑛.
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Figure 8.15: Illustrations of non-linearity using residuals and fitted values: linear case (left) and non-linear case (trend).

Linearity We plot the residuals 𝑒𝑖 against the prediction �̂�𝑖 : if the linearity

assumption is warranted, the points should appear randomly scattered
about 0.

The absence of a trend suggests that the relationship between 𝑋1 , . . . , 𝑋𝑝
and 𝑌 is indeed linear, the presence of a trend provides evidence against

the linearity assumption, as we see in Figure 8.15.

There are also formal tests, such as the test for lack of fit:38
38: The Ramsay RESET test is another

such test, which we will not discuss, but

which would be useful to know.

{
𝐻0 : E {𝑌 | X = x} = 𝛽0 + 𝛽1x1 + · · · + 𝛽𝑝−1x𝑝−1

𝐻1 : 𝐻0 is false

Let W1 = (𝑋1

1
, . . . , 𝑋1

𝑝−1
), . . . ,W𝑐 = (𝑋 𝑐

1
, . . . , 𝑋 𝑐

𝑝−1
), be the 𝑐 distinct

predictor levels.
39

39: The 𝑗th level has 𝑛 𝑗 observations 𝑌𝑖 , 𝑗 .

Assume that E {𝑌} has a functional dependency on 𝑋1 , . . . , 𝑋𝑝−1, and

that the residuals are independent and follow a normal distribution
N(0, 𝜎2), and that at least one of the 𝑝 − 1 predictor levels 𝑋𝑘 has

replicates. Denote the average observation over the 𝑗th level by 𝑌 𝑗 , and

write

SST𝑗 =

𝑛 𝑗∑
𝑖

(
𝑌𝑖 𝑗 − 𝑌 𝑗

)
2

.

The corresponding ANOVA table is

source SS df MS 𝐹∗

Regression SSR 𝑝 − 1 SSR/(𝑝 − 1) MSLF/MSPE

Error SSE 𝑛 − 𝑝 SSE/(𝑛 − 𝑝)
Lack of fit SSLF 𝑐 − 𝑝 SSLF/(𝑐 − 𝑝)
Pure Error SSPE 𝑛 − 𝑐 SSPE/(𝑛 − 𝑐)
Total SST 𝑛 − 1
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Recall that SST = SSE + SSR. We further partition SSE = SSPE + SSLF,

where

SSPE =

𝑐∑
𝑗=1

SST𝑗

so that

SSPE

𝜎2

∼ 𝜒2

(
𝑐∑
𝑗=1

(𝑛 𝑗 − 1)
)
= 𝜒2(𝑛 − 𝑐).

Thus, according to Cochran’s Theorem, when 𝐻0 holds, we have

SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝), SSLF

𝜎2

∼ 𝜒2(𝑐 − 𝑝),

and

𝐹∗ =

(
SSLF

𝜎2

)/
(𝑐 − 𝑝)(

SSPE

𝜎2

)/
(𝑛 − 𝑐)

∼ 𝐹(𝑐 − 𝑝, 𝑛 − 𝑐).

Decision Rule: If 𝐹∗ > 𝐹(1− 𝛼; 𝑐 − 𝑝, 𝑛 − 𝑐), we reject 𝐻0 at a significance

level of 𝛼.

Example Consider a dataset with the following (𝑋,𝑌) observations

(1, 10), (1, 11), (2, 10.5), (2, 12), (3, 13).

Is the linear model E {𝑌} = 𝛽0 + 𝛽1𝑋 warranted? We have 𝑛 = 5, 𝑝 = 2,

and 𝑐 = 3. The OLS framework yields𝑌 = 9.18+1.18𝑋 , and the scatterplot

is shown below.

Visually, it does seem that the line would be a good model, but it is

difficult to say with certainty since there are so few points in the chart.

We use the formal test for lack of fitness: we have

SST = 𝑆𝑦𝑦 = 5.8, SSR = 𝑏2

1
𝑆𝑥𝑥 = 3.8829, SSE = SST − SSR = 1.91071,

SSPE = SST1 + SST2 + SST3 = 0.5 + 1.125 + 0 = 1.625,

SSLF = SSE − SSPE = 1.91071 − 1.625 = 0.28751,

MSLF =
SSLF

𝑐 − 𝑝 =
0.28571

3 − 2

= 0.28571, MSPE =
SSPE

𝑛 − 𝑐 =
1.625

5 − 3

= 0.8125,

so that

𝐹∗ =
MSLF

MSPE

=
0.28571

0.8125

= 0.3516.

Since the critical value of the 𝐹(3 − 2, 5 − 3) = 𝐹(1, 2) distribution at

𝛼 = 0.05 is 18.5 , we do not reject the hypothesis of linearity.
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Figure 8.16: Illustration of the Brown-Forsythe test: original data and linear model (left), residuals against fitted values (middle), and

deviations of residuals by group (right).

Homoscedasticity We can use residual plots to determine whether the

condition of homoscedasticity is met or not. But there are formal tests as

well, such as the Brown-Forsythe test, which is robust against departures

from normality.
40

40: Anotehr useful alternative is the

Breusch-Pagan test, which requires nor-

mality of the residuals. It is worth looking

up.

Let us take a look at the latter. Select a threshold 𝑎 ∈ ℝ and partition the

residuals into 2 groups:

Group 0: �̂� ≤ 𝑎 (the 𝑒𝑖 ,0’s) vs. Group 1: �̂� > 𝑎 (the 𝑒𝑖 ,1’s).

We pick 𝑎 so that |Group 0| = 𝑛0 ≈ 𝑛1 = |Group 1|. Let 𝑒 𝑗 be the median
residual of group 𝑗 and let 𝑑𝑖 𝑗 = |𝑒𝑖 𝑗 − 𝑒 𝑗 | be the absolute deviation of
the 𝑖th residual in group 𝑗 from 𝑒 𝑗 , for 𝑗 = 0, 1.

41
41: We use this framework rather than us-

ing the mean and the square deviation
because of sensitivity to outliers – it is this

choice that makes the test robust against

departures from the normality assump-

tion.

Set 𝑑 𝑗 =
1

𝑛 𝑗

𝑛 𝑗∑
𝑖

𝑑𝑖 𝑗 , 𝑗 = 0, 1. In order to test for

{
𝐻0 : 𝑑0 = 𝑑1 (the variance is constant)

𝐻1 : 𝑑0 ≠ 𝑑1 (the variance is not constant)

we compute the test statistic

𝑡∗
BF

=
𝑑0 − 𝑑1

𝑠𝑝

√
1

𝑛0

+ 1

𝑛1

,

where

𝑠2

𝑝 =
1

𝑛 − 2

[
𝑛0∑
𝑖=1

(𝑑𝑖 ,0 − 𝑑0)2 +
𝑛1∑
𝑖=1

(𝑑𝑖 ,1 − 𝑑1)2
]
=

(𝑛0 − 1)𝑠2

0
+ (𝑛1 − 1)𝑠2

1

𝑛0 + 𝑛1 − 2

is the pooled variance. When 𝐻0 holds, 𝑡∗
BF

∼ 𝑡(𝑛0 + 𝑛1 − 2) = 𝑡(𝑛 − 2).

Decision Rule: If |𝑡∗
BF
| > 𝑡(1 − 𝛼/2; 𝑛 − 2), we reject 𝐻0 at 𝛼.

Example In the data displayed in Figure 8.16, the median fitted value is

𝑎 = 101.5096. Visually, the constant variance assumption does not seem

to be met.

We divide the datasets into two groups, based on whether the fitted

value falls below 𝑎 (Group 0, in blue) or not (Group 1, in orange); there

are 𝑛0 = 𝑛1 = 100 observations in each group.
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The group median residuals are 𝑒0 = −15.6, 𝑒1 = −22.9. The mean and

variance of the absolute deviations of the residuals to the median in

each group are 𝑑0 = 59.1, s
2

0 = 2197.745, and 𝑑1 = 86.3, 𝑠1

0
= 4783.501,

respectively, which yield the pooled variance 𝑠2

𝑝 = 3490.623.

The BF test statistic is 𝑡∗
BF

= −3.21; since

|𝑡∗
BF
| = 3.21 > 𝑡(0.975; 198) = 1.97,

we reject 𝐻0 (equal variance) at significance level 𝛼 = 0.05.

Independence Independence of the error terms can be gauged visually

by plotting the residuals 𝑒𝑖 against the fitted values �̂�𝑖 .

If the errors are independent, the correlation between these should be

small (|𝜌| ≈ 0 ); if a pattern or a trend emerges, then they are likely

dependent. The residuals vs. fitted values chart of the previous example

shows a slight pattern, for instance, but the correlation is so small
(𝜌 = −6 × 10

−18
) that we can reasonably treat them as independent.42

42: The general linear regression assump-

tion is that the errors are independent,

but we only ever work with the residu-
als, which are definitely not independent
(𝑒 = 0).

Other tests may be appropriate, depending on the nature of the data and

model.
43

43: For instance, the Durbin-Watson test

for auto-correlation in the residuals of time

series models (see Chapter 9).

Normality If the error terms are N(0, 𝜎2), we expect the residuals to also

be N(0, 𝜎2). Thus, if the histogram of the studentized residuals

𝑟𝑖 =
𝑒𝑖

s{𝑒𝑖}
=

𝑌𝑖 − �̂�𝑖√
MSE

√
1 − ℎ𝑖𝑖

is not symmetrical, then they do not follow a standard normal distribution

N(0, 1) and the error terms are unlikely to be normal.

If the histogram is symmetrical, we build the normal probability plot

from the studentized residuals.
44

For each 𝑖 = 1, . . . , 𝑛, we construct 44: Also known as quantile-quantile plot,

or 𝑞𝑞−plot.
the following table:

𝑖 studentized residual rank percentile 𝑧−quantile
1 𝑟1 𝑘1 𝑝1 𝑧1

...
...

...
...

...

𝑖 𝑟𝑖 𝑘𝑖 𝑝𝑖 𝑧𝑖
...

...
...

...
...

𝑛 𝑟𝑛 𝑘𝑛 𝑝𝑛 𝑧𝑛

The rank 𝑘𝑖 is given in increasing order (ties use the average rank); the

approximate percentile is

𝑝𝑖 =
𝑘𝑖 − 0.375

𝑛 + 0.25

, (blom plotting position);

the quantile is 𝑧𝑖 = Φ−1(𝑝𝑖), where Φ(𝑧) = 𝑃(𝑍 ≤ 𝑧), 𝑍 ∼ N(0, 1).

Next, we plot the studentized residuals 𝑟𝑖 against the quantiles 𝑧𝑖 – the

points should fall randomly about the “normal” line, with no systematic

trend away from it. If not, the errors are unlikely to be normal.
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Finally, we compute the correlation 𝜌 between 𝑟𝑖 and 𝑧𝑖 , 𝑖 = 1, . . . , 𝑛. In

order to test for{
𝐻0 : error terms are normally distributed

𝐻1 : 𝐻0 is false

we find the critical value 𝜌𝛼 of the normal probability plot correlation
coefficient (PPCC) for sample size 𝑛 at a significance level 𝛼.

45
45: Such as could be found here .

Decision Rule: If 𝜌 < 𝜌𝛼, we reject 𝐻0 at significance level 𝛼.

Example Consider a dataset with the following (𝑋,𝑌) observations

(1, 7.4), (1, 8.0), (2, 7.0), (2, 10.4), (3, 19.1), (4, 20.3).

Assume a linear model E {𝑌} = 𝛽0 + 𝛽1𝑋. Is the normality assumption

of the error terms warranted?

The linear model is E {𝑌} = 1.802 + 4.722𝑋; the table is

𝑥 𝑦 studentized residual rank 𝑝 𝑧−quantile
1 7.4 0.35 4 0.58 0.20

1 8.0 0.60 5 0.74 0.64

2 7.0 -2.57 1 0.10 -1.28

2 10.4 -0.29 2 0.26 -0.64

3 19.1 1.48 6 0.90 1.28

4 20.3 -0.21 3 0.42 -0.20

The 𝑞𝑞−plot is shown below.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3676.htm
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The correlation between the studentized residuals and the 𝑧−quantile

is 𝜌 = 0.939. At a significance level 𝛼 = 0.05, the critical value of the

correlation in the PPCC table with 𝑛 = 6 is 0.888, so we do not reject the

normality assumption.
46

46: Which, as we never tire of pointing

out, is not the same as accepting 𝐻0.

Remedial Measures Transformations on 𝑋 are used when the data

exhibits a monotone non-linear trend with variance constancy; if the

trend is increasing and concave down, we might try 𝑋′ = ln𝑋 or

𝑋′ =
√
𝑋 ; if the trend is increasing and concave up, we might try 𝑋′ = 𝑒𝑋

or 𝑋′ = 𝑋2
; if it is decreasing and concave up, we might try 𝑋′ = 1

𝑋 or

𝑋′ = 𝑒−𝑋 ; if it is decreasing and concave down, we might try𝑋′ = 𝑒−𝑋
2

.

Transformations on 𝑌 are used when the data exhibits monotone non-
linear trend with NO variance constancy, but it is often hard to determine

from the scatter plots which transformation on 𝑌 is best. The Box-Cox
transformation helps us find a power 𝜆 which will be appropriate for the

regression model

𝑌
(𝜆)
𝑖

= X𝑖𝜷 + 𝜀,

where X𝑖 is the 𝑖th row of X. Set

𝑌(𝜆) =


𝑌𝜆 − 1

𝜆
, 𝜆 ≠ 0

ln𝑌, 𝜆 = 0

We pick the𝜆 that minimizes the SSE(𝜆) resulting from the regressions.

Weighted Least Squares are used if the data exhibits a linear trend
with no variance constancy. An alternative would be to first use a

transformation on 𝑌 to control the variance, and then a transformation

on 𝑋 to control the linearity that may have been destroyed by the first

transformation.
47

47: We will discuss this further in Section

8.4.5.

Example Consider the following dataset

(7, 1), (7, 1), (8, 1), (3, 2), (2, 2), (4, 2), (4, 2), (6, 2),
(6, 2), (7, 3), (5, 3), (3, 3), (3, 6), (5, 7), (8, 8).48

48: This example was found online, at a

location that we cannot remember, unfor-

tunately.

The scatterplot, regression line, and normal 𝑞𝑞−plot are shown below.
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The 𝑞𝑞−plot shows that the error terms are unlikely to be normal, and so

the regression model is not valid. The variance is not constant, so we use

the Box-Cox transformation on 𝑌: the optimal 𝜆 is -0.42.

The scatterplot, regression line, and normal 𝑞𝑞−plot on the transformed

data are shown below.

IMPORTANT: the linear model on the original data is E {𝑌} = 3 + 0 · 𝑋 .

The linear model on the transformed data is

E

{
𝑌(−0.42)

}
= 1.00564 − 0.06264𝑋

=⇒

E {𝑌} =
(
[𝜆𝛽0 + 1] + 𝜆𝛽1𝑋

)
1/𝜆

=
(
[−0.42(1.00564) + 1] + 0.42 · 0.06264𝑋

)
1/(−0.42)

=
1

(0.5776 + 0.0263𝑋)2.380

which is NOT a straight line in the 𝑥𝑦−plane.

8.4 Extensions of the OLS Model

We have seen that we can fairly easily extend simple linear regression to

multiple linear regression with minimal disruption, simply by using the

appropriate matrix notation. In practice, the multiple linear regression

assumptions are rarely met; we have also presented ways in which we

can identify departures from the assumptions, and how we can remedy

this situation.

In this chapter, we will discuss more sophisticated extensions of linear

regression, extensions that get closer to real-life applications.

8.4.1 Multicollinearity

The multiple linear regression normal equations are

(X⊤X)b = X⊤Y.



8.4 Extensions of OLS 469

When X⊤X is invertible, the solution b = (X⊤X)−1X⊤Y is unique. If one

of the variables is a non-trivial linear combination of other variables

𝑋𝑘 = 𝛼 𝑗1𝑋𝑗1 + · · · + 𝛼 𝑗ℓ𝑋𝑗ℓ ,

then rank(X⊤) = rank(X⊤X) < 𝑝 and so X⊤X is singular (not invertible),

and the solution is not unique (the system in under-determined).

Example Consider the design matrix and vector response

X =
©«
1 1 1 2

1 1 2 3

1 3 3 6

ª®¬ and Y =
©«
0

1

4

ª®¬ .
Find the OLS model E {𝑌 | (𝑋1 , 𝑋2 , 𝑋3)} = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3.

We compute the constituents of the normal equations

X⊤X =

©«
3 5 6 11

5 11 12 23

6 12 14 26

11 23 26 49

ª®®®¬ and X⊤Y =

©«
5

13

14

27

ª®®®¬ .
The row echelon form of [X⊤X | X⊤Y] is

©«
1 0 0 0

0 1 0 1

0 0 1 1

0 0 0 0

��������
−2

1

1

0

ª®®®¬ ,
meaning that b = (−2, 1 − 𝑠, 1 − 𝑠, 𝑠) is an OLS solution for all 𝑠 ∈ ℝ.

More problematically, we cannot compute the corresponding variance-

covariance matrix 𝜎2 {b} = 𝜎2(X⊤X)−1
. □

In practice, it is quite rate that a predictor is an exact linear combination

of other predictors; when it is almost so, however, the design matrix may

be nearly singular (ill-conditioned),
49

leading to uncertainty in the 49: See Chapter 4.

parameter vector b that solves the normal equations.
50

50: This is also the main cause of the

“wrong coefficient sign” problem, when

a coefficient takes on the opposite sign of

what is expected based on a first-principle

understanding of the situation.

In multiple linear regression, the variance inflation factor for 𝛽𝑘 is

VIF𝑘 =
1

1 − 𝑅2

𝑘

, 𝑘 = 1, . . . , 𝑝,

where 𝑅2

𝑘
is the coefficient of multiple determination obtained when 𝑋𝑘

is regressed on the other 𝑝 − 2 predictor variables in the model.
51

51: Strictly speaking, this is not quite the

definition of the variance inflation factor,

but it will do for the purpose of these

notes.

Note that if 𝑋𝑘 is very nearly a linear combination of the other predictors,

then 𝑅2

𝑘
≈ 1, yielding a large VIF𝑘 , which influence the least-squares

estimates. In practice, max𝑘 VIF𝑘 > 10 implies that there are likely crucial

problems with multicollinearity.

Remedial measures include centering the data, ridge regression, and

principal component regression.
52

52: The latter two of these are discussed

in Chapter 20.
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Example Consider the following dataset

𝑋1 𝑋2 𝑋3 𝑋4 𝑌

1 1 2.063 1 2.995

2 1 3.184 1 3.773

1 1 2.131 2 2.846

2 1 2.867 2 3.963

1 2 3.104 1 5.291

2 2 3.876 1 6.070

1 2 2.999 2 5.034

2 2 3.865 2 6.014

Compare the linear models

E {𝑌 | (𝑋1 , 𝑋2 , 𝑋3)} and E {𝑌 | (𝑋1 , 𝑋2 , 𝑋4)} .

We start by loading the data in R.

X1 = c(1,2,1,2,1,2,1,2); X2 = c(1,1,1,1,2,2,2,2)

X4 = c(1,1,2,2,1,1,2,2)

X3 = c(2.06, 3.18, 2.13, 2.87, 3.10, 3.88, 2.99, 3.87)

Y = c(2.99, 3.77, 2.85, 3.96, 5.29, 6.07, 5.03, 6.01)

data = data.frame(X1,X2,X3,X4,Y)

We build and summarize the two models.

summary(lm(Y ~ X1 + X2 + X3, data=data))

summary(lm(Y ~ X1 + X2 + X4, data=data))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.08738 0.25633 -0.341 0.7503

X1 1.15410 0.43564 2.649 0.0570 .

X2 2.45576 0.44809 5.481 0.0054 **
X3 -0.27536 0.48844 -0.564 0.6030

Residual standard error: 0.1237 on 4 degrees of freedom

Multiple R-squared: 0.9947,Adjusted R-squared: 0.9907

F-statistic: 248.9 on 3 and 4 DF, p-value: 5.313e-05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.08200 0.22295 -0.368 0.731659

X1 0.91350 0.08427 10.841 0.000411 ***
X2 2.20800 0.08427 26.203 1.26e-05 ***
X4 -0.06800 0.08427 -0.807 0.464935

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1192 on 4 degrees of freedom

Multiple R-squared: 0.9951,Adjusted R-squared: 0.9913

F-statistic: 268.2 on 3 and 4 DF, p-value: 4.579e-05
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The estimated parameters 𝑏0, 𝑏1, and 𝑏2 are quite similar in both models,

but the standard errors are starkingly different; the confidence intervals

in the second model are much tighter for 𝛽1 and 𝛽2 than they are in the

first model.

Why is this? Note that VIF1 ≈ VIF2 ≈ VIF4 ≈ 1 in the second model,
53

, whereas VIF1 ≈ VIF2 ≈ VIF3 ≈ 25 in the first model. This should not 53: The predictors are linearly indepen-

dent.
come as a surprise, as 𝑋3 is very nearly a linear combination of 𝑋1 and

𝑋2:

∥𝑋3 − 𝑋1 − 𝑋2∥2

2
≈ 0.324,

whereas ∥𝑋1∥2

2
≈ 4.47, ∥𝑋2∥2

2
≈ 4.47, and ∥𝑋3∥2

2
≈ 8.70.

8.4.2 Polynomial Regression

In a dataset with a predictor 𝑋 and a response 𝑌, both numerical, if the

relationship between𝑋 and𝑌 is not linear, we may consider transforming

the data so that the relationship between 𝑋′
and 𝑌′

is so, fitting a linear
OLS model to these new variables, and inverting the results to obtain a

relationship between the original 𝑋 and 𝑌.

Another approach is to create a sequence of predictors

𝑋1 = 𝑋, 𝑋2 = 𝑋2 , . . . , 𝑋𝑘 = 𝑋 𝑘

and to treat the entire situation as a multiple linear regression model

E {𝑌 | (𝑋1 , . . . , 𝑋𝑘)} = 𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘 = 𝛽0 + 𝛽1𝑋 + · · · + 𝛽𝑘𝑋
𝑘 .

Example Fit the following data

𝑋 1 1 2 4 3 6

𝑌 0.8 1.3 4.1 15.3 8.8 36

We can fit a linear model to the data as follows.

X = c(1,1,2,4,3,6)

Y = c(0.8,1.3,4.1,15.3,8.8,36)

summary(lm(Y ~ X))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.913 2.734 -2.895 0.04435 *
X 6.693 0.818 8.182 0.00122 **
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.55 on 4 degrees of freedom

Multiple R-squared: 0.9436, Adjusted R-squared: 0.9295

F-statistic: 66.94 on 1 and 4 DF, p-value: 0.001215

The fit seems decent (𝑅2

𝑎 = 0.9295), but a plot of the data suggests

that something is astray: visually, the quadratic fit seems better (𝑅2

𝑎 =

0.9994).



472 8 Classical Regression Analysis

X2 = X^2

Y = c(0.8,1.3,4.1,15.3,8.8,36)

summary(lm(Y ~ X + X2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.56635 0.47768 1.186 0.321128

X -0.49591 0.34935 -1.420 0.250809

X2 1.06466 0.05046 21.101 0.000233 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3354 on 3 degrees of freedom

Multiple R-squared: 0.9996,Adjusted R-squared: 0.9994

F-statistic: 3973 on 2 and 3 DF, p-value: 7.331e-06

One thing we notice is that of the three coefficients, only the quadratic 𝑏2

is significant at 𝛼 = 0.05, even though the fit seemed quite tight, visually.

Part of the problem is that although the relationship between 𝑋 and 𝑋2

is not linear, the predictors are still correlated, leading to a fairly high

VIF term:

VIF1 =
1

1 − 𝑅2

1

=
1

1 − 0.9510685

= 20.43673. □

This is typical of polynomial regression: the suggested remedial measure

is to use centered predictors 𝑥𝑖 = 𝑋𝑖 − 𝑋.

Example The quadratic fit of the previous example could also be written

as:

E {𝑌} = 𝛾0 + 𝛾1(𝑋 − 𝑋) + 𝛾2(𝑋 − 𝑋)2

=

{
𝛾0 − 𝛾1𝑋 + 𝛾2𝑋

2

}
+

{
𝛾1 − 2𝛾2𝑋

}
𝑋 + 𝛾2𝑋

2 = 𝛽′
0
+ 𝛽′

1
𝑋 + 𝛽′

2
𝑋2

but now all coefficients are significant at 𝛼 = 0.05.
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Figure 8.17: The White House projections for COVID-19 deaths used a cubic polynomial regression certainly fit the available data (March

22-May 3, 2020); the predicted end of the pandemic by May 16, 2020 did not survive the test of time, however, as no epidemiological domain

expertise was brought to bear on the problem, with dire consequences of the United States [author unknown].

Xm = X - mean(X)

X2m = Xm^2

summary(lm(Y ~ Xm + X2m))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.70814 0.20935 36.82 4.41e-05 ***
Xm 5.53718 0.09472 58.46 1.10e-05 ***
X2m 1.06466 0.05046 21.10 0.000233 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3354 on 3 degrees of freedom

Multiple R-squared: 0.9996,Adjusted R-squared: 0.9994

F-statistic: 3973 on 2 and 3 DF, p-value: 7.331e-06

Note that the centered VIF1 is much lower at (1−0.3344)2 ≈ 1.5.

summary(lm(X2m ~ Xm))

Residual standard error: 3.323 on 4 degrees of freedom

Multiple R-squared: 0.3344,Adjusted R-squared: 0.168

F-statistic: 2.009 on 1 and 4 DF, p-value: 0.2293

The rest of the ordinary least square machinery easily carries over. □

Graphically and/or mathematically, polynomial regression can prove

quite powerful and convenient to use. But convenience is not always a

sufficient reason to use a regression model.
54

54: For a modern example, consider the

White House prediction in the early days

of the COVID-19 pandemic (see Figure

8.17).
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8.4.3 Interaction Effects

We have seen that we can extend simple linear regression in 𝑋 to include

higher power terms.
55

55: After centering the data to minimize

the effects of multicolinearity.

There is nothing to stop us from doing so with any number of predictors

𝑋1 , . . . , 𝑋𝑝 , leading to an additive model

𝐸{𝑌} = 𝑓1(𝑋1) + · · · + 𝑓𝑝(𝑋𝑝),

where the 𝑓𝑖 are polynomial functions in 1 variable.
56

In what follows,56: This could be modified to any linear

function of the regression coefficients 𝛽𝑖 , 𝑗 . we assume that 𝑝 = 2 to keep things simple.

We can refine the model with an interaction term 𝑓3(𝑋1 , 𝑋2) = 𝛽3𝑋1𝑋2. In

keeping with the hierarchical principle, we might consider the model

E {𝑌} = 𝑓1(𝑋1) + 𝑓2(𝑋2) + 𝑓3(𝑋1 , 𝑋2)
= 𝛽0 + 𝛽1,1𝑋1 + 𝛽2,1𝑋2 + 𝛽1,2𝑋

2

1
+ 𝛽3𝑋1𝑋2 + 𝛽2,2𝑋

2

2
,

although there could also be good reasons to consider something like

E {𝑌} = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2.

In the latter case, if we assume that 𝛽1𝛽2 > 0, then if 𝛽1𝛽3 > 0, we

have a reinforcement interaction; if 𝛽1𝛽3 < 0, we have an interference
interaction.

Example We consider a dataset of 𝑛 = 50 observations with 2 centered

predictors 𝑋1 , 𝑋2 and a response 𝑌.
57

57: We do not specify a seed, so the results

may vary slightly from one run to the next.

x1 <- runif(50, 0, 10); x2 <- rnorm(50, 10, 3)

modmat <- model.matrix(~x1*x2, data.frame(x1=x1, x2=x2))

coeff <- c(1, 2, -1, 1.5)

y <- rnorm(50, mean = modmat %*% coeff, sd = 25)

dat <- data.frame(y = y, x1 = x1, x2 = x2)

dat2 = dat

dat2[,c(2:3)] <- scale(dat[,c(2:3)], scale=FALSE)

library(ggplot2)

ggplot(dat2,aes(x=x1,y=x2,fill=y,size=y)) + theme_bw() +

geom_point(pch=21) + theme_bw()
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We compute the fit for the reduced and the full interaction models. The

former exhibits reinforcement interaction (𝛽1𝛽3 > 0).

summary(lm(y ~ x1 * x2, data=dat2))

plot(lm(y ~ x1 * x2, data=dat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 61.7494 3.7043 16.669 < 2e-16 ***
x1 15.6463 1.3017 12.020 8.55e-16 ***
x2 5.1396 1.2010 4.279 9.40e-05 ***
x1:x2 1.6886 0.4379 3.856 0.000356 ***

Residual standard error: 26.06 on 46 degrees of freedom

Multiple R-squared: 0.8166,Adjusted R-squared: 0.8047

F-statistic: 68.28 on 3 and 46 DF, p-value: < 2.2e-16
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The summary indicates that the reduced interaction linear model is

appropriate, which is supported by the diagnostic plots. But what about

the full model? The pure quadratic terms are not significant, which

suggests that the reduced model is likely a better choice.
58

58: Although not necessarily so.

summary(lm(y ~ x1+I(x1^2)+x1*x2+x2+I(x2^2), data=dat2))

plot(lm(y ~ x1+I(x1^2)+x1*x2+x2+I(x2^2), data=dat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.25684 5.94511 9.799 1.24e-12 ***
x1 15.36026 1.38371 11.101 2.42e-14 ***
I(x1^2) 0.41459 0.46486 0.892 0.377316

x2 4.91100 1.31831 3.725 0.000553 ***
I(x2^2) 0.01042 0.26562 0.039 0.968891

x1:x2 1.56368 0.46519 3.361 0.001613 **

Residual standard error: 26.4 on 44 degrees of freedom

Multiple R-squared: 0.8199,Adjusted R-squared: 0.7994

F-statistic: 40.06 on 5 and 44 DF, p-value: 2.654e-15
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8.4.4 ANOVA/ANCOVA for Categorical Variables

We can also include categorical variables within the OLS framework.

Suppose there are 𝐾 treatments (levels) for predictor 𝑋.

In the dummy variable encoding, we set

𝑋𝑗 =

{
1 treatment 𝑗

0 else

for 𝑗 = 1, . . . , 𝐾 − 1. The ANOVA/OLS model is then

𝑌𝑖 = 𝛽0 +
𝐾−1∑
𝑗=1

𝛽 𝑗𝑋𝑖 , 𝑗 + 𝜀𝑖 and 𝐸{𝑌} =
{
𝛽0 treatment 𝐾

𝛽0 + 𝛽 𝑗 treatment 𝑗

In the treatment effect encoding, we set

𝑋𝑗 =


1 treatment 𝑗

−1 treatment 𝐾

0 else

for 𝑗 = 1, . . . , 𝐾 − 1. The ANOVA/OLS model is as in the dummy

encoding case and

𝐸{𝑌} =
{
𝛽0 − (𝛽1 + · · · + 𝛽𝐾−1) treatment 𝐾

𝛽0 + 𝛽 𝑗 treatment 𝑗

We will have more to say on the topic in Chapter 11.

8.4.5 Weighted Least Squares

We have seen that the OLS regression model Y ∼ N(X𝜷, 𝜎2I𝑛) requires

constant variance. When that assumption is not met – but in a “monotonic”

manner, such as 𝜎2 {𝜀𝑖} = 𝜎2𝑥𝑖 , say – various data transformations on

the predictors 𝑋 may be appropriate.

What do we do when the linearity assumption is valid, but the variance

𝜎𝑖 does not change in a systematic manner?

One way to approach the problem is via weighted least squares (WLS),

which does not require all observations to be treated equally, that is to

say, to be given the same weight.

Let 𝑤𝑖 ≥ 0 be the weight of observation 𝑖 and write 𝑍𝑖 =
√
𝑤𝑖𝑌𝑖 . Define

the weight matrix as W = diag(𝑤1 , . . . , 𝑤𝑛).

The WLS problem is to find the coefficient vector 𝜷 which minimizes
the weighted sum of squared errors

SSE𝑤 = 𝑄𝑤(𝜷) = ∥Z − Ẑ∥2

2

= ∥
√

WY −
√

WŶ∥2

2
= ∥

√
WY −

√
WX𝜷∥2

2

= (Y − X𝜷)⊤W(Y − X𝜷)
= Y⊤WY − 𝜷⊤X⊤WY − Y⊤WX𝜷 + 𝜷⊤X⊤WX𝜷.
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But ∇𝜷𝑄𝑤(𝜷) = −2X⊤WY+ 2X⊤WX𝜷, so the WLS estimator b𝑊 of 𝜷 is

∇𝜷𝑄𝑤(𝜷) = 0 =⇒ b𝑊 = (X⊤WX)−1X⊤WY.

The entire OLS machinery can then be used in the WLS context simply

by replacing Y by

√
WY and X by

√
WX throughout.

Example Consider a dataset with 𝑛 = 11 observations:

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑥 0.82 1.09 1.22 1.24 1.29 1.30 1.36 1.38 1.39 1.40 1.55

𝑦 1.47 1.33 1.32 1.30 1.35 1.34 1.38 1.52 1.40 1.44 1.58

We build the OLS model, a WLS model where the first observation has

twice the weight of the other observations, and a OLS model without the

first observation.
59

59: Which is equivalent to a WLS model

with 𝑤1 = 0 and 𝑤𝑖 = 1 for 𝑖 > 1.

x <- c(0.82,1.09,1.22,1.24,1.29,1.30,1.36,1.38,1.39,1.40,1.55)

y <- c(1.47,1.33,1.32,1.30,1.35,1.34,1.38,1.52,1.40,1.44,1.58)

mod.1 <- lm(y ~ x)

summary(mod.1)

mod.2 <- lm(y ~ x, weights = c(2,1,1,1,1,1,1,1,1,1,1))

summary(mod.2)

mod.3 <- lm(y ~ x, weights = c(0,1,1,1,1,1,1,1,1,1,1))

summary(mod.3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2225 0.1920 6.366 0.00013 ***
x 0.1412 0.1489 0.948 0.36782

Residual standard error: 0.09047 on 9 degrees of freedom

Multiple R-squared: 0.09081, Adjusted R-squared: -0.01021

F-statistic: 0.899 on 1 and 9 DF, p-value: 0.3678

------------------------------------------------------------

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3553 0.1624 8.344 1.58e-05 ***
x 0.0428 0.1292 0.331 0.748

Residual standard error: 0.09669 on 9 degrees of freedom

Multiple R-squared: 0.01204, Adjusted R-squared: -0.09773

F-statistic: 0.1097 on 1 and 9 DF, p-value: 0.748

------------------------------------------------------------

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5848 0.1916 3.052 0.0158 *
x 0.6136 0.1444 4.250 0.0028 **

Residual standard error: 0.05402 on 8 degrees of freedom

Multiple R-squared: 0.693, Adjusted R-squared: 0.6546

F-statistic: 18.06 on 1 and 8 DF, p-value: 0.002801
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The OLS model is �̂� = 1.223 + 0.1412𝑥 (left in the chart below), the WLS

model with 𝑤1 = 2 and 𝑤𝑖 = 1, 𝑖 = 2, . . . , 11 is �̂� = 1.3553 + 0.0428𝑥

(middle), and the OLS/WLS without the first observation is �̂� = 0.5848+
0.6136𝑥 (right). The plots are shown below.

par(mfrow=c(1,3))

plot(x,y); abline(mod.1, col="red")

plot(x,y); abline(mod.2, col="red")

plot(x,y); abline(mod.3, col="red")

We can use WLS to deal with an error variance which is not constant.

Consider the underlying model

Y ∼ N
(
X𝜷, 𝜎2 {𝜺}

)
, where 𝜎2{𝜀𝑖} = 𝜎2

𝑖 . 𝜎2 ,

such as may be found in the image below:
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The procedure goes as in the OLS case, with some slight modifications:

1. if the 𝜎2

𝑖
are known, we use the weights 𝑤𝑖 =

1

𝜎2

𝑖

≥ 0;

2. if the 𝜎2

𝑖
are unknown:

a) we use OLS and find the residuals 𝑒𝑖 ;
60

60: 𝑒2

𝑖
is an estimate of 𝜎2

𝑖
when there are

no𝑌-outliers, |𝑒𝑖 | is an estimate of 𝜎𝑖 when

there are some.

b) depending on the choice made above, regress either 𝑒2

𝑖
or

|𝑒𝑖 | on 𝑋1 , . . . , 𝑋𝑝−1 to obtain fitted values �̂�𝑖 or 𝑠𝑖 , which are

point estimate of 𝜎2

𝑖
or 𝜎𝑖 , respectively;

c) depending on the choice made above, use WLS with 𝑤𝑖 =
1

�̂�𝑖

or𝑤𝑖 =
1

𝑠2

𝑖

and compute SSE𝑤 and MSE𝑤 =
SSE𝑤

𝑛−𝑝 . If MSE𝑤 ≈ 1,

the scaling is appropriate; otherwise, repeat steps a) to c),

starting with the current WLS residuals.

Example The number of defective items 𝑌 produced by a machine is

known to be linearly related to the speed setting 𝑋 of the machine:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝜀𝑖 ∼ N(0, 𝜎2), 𝜀𝑖 indép.

An analyst regresses the squared residuals 𝑒2

𝑖
= (�̂�𝑖 − 𝑌𝑖)2 on the speed

setting 𝑋𝑖 and obtains the following 𝑛 = 12 fitted values:

𝑖 1 2 3 4 5 6 7 8 9 10 11 12

�̂�𝑖 68.7 317.4 193 317.4 68.7 193 193 317.4 68.7 317.4 68.7 193

Using weighted OLS with 𝑤𝑖 =
1

�̂�𝑖
, her residuals are 𝑒𝑤

𝑖
= �̂�𝑤

𝑖
− 𝑌𝑖 :

𝑖 1 2 3 4 5 6 7 8 9 10 11 12

𝑒𝑖 −3.6 5.6 −13.5 −16.4 −9.6 7.5 −10.5 26.6 14.4 −17.4 −1.6 18.5

Is her use of these weights appropriate?

We have

SSE𝑤 =

12∑
𝑖=1

𝑤𝑖𝑒
2

𝑖 =

12∑
𝑖=1

1

�̂�𝑖
𝑒2

𝑖 = 12.2953,

a sum of squares with 𝑛 − 𝑝 = 12 − 2 = 10 degrees of freedom, so that

MSE𝑤 =
SSE𝑤

𝑛 − 𝑝 =
12.2953

10

= 1.22953.

Since MSE𝑤 ≈ 1, we have evidence that the weights are appropriate and

that the initial �̂�𝑖 provide reasonable approximations of 𝜎2

𝑖
.

8.4.6 Other Extensions

The OLS assumptions are convenient from a mathematical perspective,

but they are not always met in practice. One way out of this conundrum is

to use remedial measures to transform the data into compliant inputs.

Another approach is to extend/expand the assumptions and to work out

the corresponding mathematical formalism:
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generalized linear models (GLM) implement responses with non-
normal conditional distributions (see Section 20.2.3);

classifiers, such as logistic regression, decision trees, support vector

machines, naïve Bayes methods, neural networks, etc., extend

regression to categorical responses (see Chapter 21);

non-linear methods, such as splines, generalized additive models

(GAM), nearest neighbour methods, kernel smoothing methods,

etc., are used for responses that are not linear combinations of the
predictors (see Chapter 20);

tree-based methods and ensemble learning methods, such as

bagging, random forests, and boosting, are used to simplify the

modeling of predictor interactions (see Chapter 21);

regularization methods, such as ridge regression, the LASSO, and

elastic nets, facilitate the process of model selection and feature
selection (see Section 20).

Model Selection With reasonable real-world datasets and situations,

we can often build tens (if not hundreds) of models related to a specific

scenario.
61

When most of these models are “aligned” with one another, 61: Not necessarily models of the linear

regression variety.
that is, when they yield similar results, picking the simplest model is a

good approach.

But in practice, we can also reach a point of diminishing returns –

including more variables in the model might not yield better predictive

power, due to the curse of dimensionality.

The problem of model selection is not easy to solve; we tackle it in earnest

in Section 20.4 and in Chapter 23.

8.5 Outliers and Influential Observations

When we are working with a single predictor, we can usually tell quite

quickly if a prediction or a response is unusual, in some sense.

If a predictor value is much smaller/much larger than the other predictor

values, we might be hesitant to use the regression model to fit the value

because no similar values were used to “train” the model. When 𝑝 > 1,

finding the anomalous observations (predictors and/or responses) is not

as obvious.

We introduce a small number of methods to do so in this section; there

are plenty more, which we will discuss in detail in Chapter 26.

8.5.1 Leverage and Hidden Extrapolation

Consider a dataset with two predictors 𝑋1 , 𝑋2, as shown in Figure 8.18.

Regression models are typically only useful when we are working within

the model scope; if regression is an attempt to interpolate the data, then

we must avoid situations where we are extrapolating from the data.

The problem is that we cannot always easily tell if a predictor Xℎ is in the

model scope or not; in the previous image, each component of Xℎ is in
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Figure 8.18: Model scope in two-

dimensional predictor space (in blue); the

predictor level Xℎ is out-of-scope.

the range of the predictors used to build the model, but Xℎ as a whole is

not. When 𝑝 is large, this visual approach fails.

The leverage of the 𝑖th case is:

ℎ𝑖𝑖 = X𝑖(X⊤X)−1X⊤
𝑖 , X𝑖 is the 𝑖th row of X;

in other words, ℎ𝑖𝑖 is the 𝑖th diagonal element of H = X(X⊤X)−1X⊤
. The

leverage determines if a predictor level Xℎ is in the model scope: if

X⊤
ℎ(X

⊤X)−1Xℎ > max{ℎ𝑖𝑖 | 𝑖 = 1, . . . , 𝑛},

Xℎ is outside the scope and �̂�ℎ = Xℎb contains a hidden extrapolation.

Note that 0 ≤ ℎ𝑖𝑖 ≤ 1, for 𝑖 = 1, . . . , 𝑛. Indeed, since:

1. 0 ≤ 𝜎2{Ŷ} = 𝜎2{HY} = H𝜎2{Y}H⊤ = 𝜎2H =⇒ ℎ𝑖𝑖 ≥ 0 for all 𝑖

2. 0 ≤ 𝜎2{e} = 𝜎2{(I𝑛 − H)Y} = 𝜎2(I𝑛 − H) =⇒ 1 − ℎ𝑖𝑖 ≥ 0 for all 𝑖

Generally-speaking, the surface of X⊤
ℎ
(X⊤X)−1Xℎ = 𝑐 is an ellipsoid

centred around

X = (1, 𝑋1 , . . . , 𝑋𝑝).

The larger 𝑐, the larger the “distance” to X.

An 𝑋−outlier is an observation which is atypical with respect to the

predictor levels.

We note that

ℎ =
1

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑖 =
1

𝑛
trace(H) =

𝑝

𝑛
(𝑝 ≤ 𝑛);

1. if ℎ𝑖𝑖 ≤ 0.2, then the leverage of the 𝑖th case is low (very near X);
2. if 0.2 < ℎ𝑖𝑖 < 0.5, then the leverage is moderate;

3. if ℎ𝑖𝑖 ≥ 0.5, then the leverage is high (potential 𝑋−outlier);

4. when 𝑛 is large, if ℎ𝑖𝑖 > 3ℎ =
3𝑝

𝑛 , then the 𝑖th case is an 𝑋−outlier.
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Example We wish to fit the multiple linear model

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀, 𝜀 ∼ N(0, 𝜎2)

to a dataset with 𝑛 observations, with

(X⊤X)−1 =
©«

1.17991 −0.00731 0.00073

−0.00731 0.00008 −0.00012

0.00073 −0.00012 0.00046

ª®¬ and X⊤Y =
©«

220

36768

9965

ª®¬
What are the point estimates for the regression coefficients 𝜷? We would

like to predict the value of 𝑌ℎ when 𝑋1 = 200 and 𝑋2 = 50, i.e., at the

point Xℎ = (1, 200, 50)⊤. What is the leverage of Xℎ? Is this case of hidden

extrapolation? If not, what is the predicted value 𝑌ℎ?

The OLS estimates of the regression coefficients are

b = (X⊤X)−1X⊤Y =
©«
−1.91943

0.13744

0.33234

ª®¬ .
The leverage of Xℎ is

X⊤
ℎ(X

⊤X)−1Xℎ = 0.27891;

it is small enough to suggest that we are not in a hidden extrapolation

situation (although 𝑛 is unknown, so we cannot compare it against

3𝑝

𝑛 ).

The predicted response at Xℎ is thus �̂�ℎ = X⊤
ℎ
b = 42.18557.

8.5.2 Deleted Studentized Residuals

While 𝑋−outliers can be determined without reference to a regression
surface �̂�(x) = xb, we can also look for observations whose response

values are unexpectedly distant from �̂�(x).

Figure 8.19: 𝑋−outlier and 𝑌−outlier in

an artificial dataset.
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A 𝑌−outlier is an observation which yields a large regression residual.

If the (internal) studentized residual is large enough,

|𝑟𝑖 | =
���� 𝑒𝑖

s{𝑒𝑖}

���� = ���� 𝑒𝑖√
MSE

√
1 − ℎ𝑖𝑖

���� ≥ 3,

say, then the 𝑖th point is a 𝑌−outlier.

Another approach is to delete the 𝑖th case from the model and refit

b(𝑖) =
(
X⊤
(𝑖)X(𝑖)

)−1

X⊤
(𝑖)Y(𝑖) ,

yielding an expected value for the 𝑖th case, �̂�𝑖(𝑖).

For 𝑖 = 1, . . . , 𝑛, the deleted residual is 𝑑𝑖 = 𝑌𝑖 − �̂�𝑖(𝑖) = 𝑒𝑖
1−ℎ𝑖𝑖 and the

external studentization is

𝑡𝑖 =
𝑑𝑖

s{𝑑𝑖}
= 𝑒𝑖

√
𝑛 − 𝑝 − 1

SSE(1 − ℎ𝑖𝑖) − 𝑒2

𝑖

∼ 𝑡(𝑛 − 𝑝 − 1),

where

s
2{𝑑𝑖} = MSE(𝑖)

[
1 + X𝑖

(
X⊤
(𝑖)X(𝑖)

)−1

X⊤
𝑖

]
.

Decision Rule: if |𝑡𝑖 | > 𝑡(1− 𝛼/𝑛
2

; 𝑛−𝑝−1), then the 𝑖th case is a𝑌−outlier

at significance level 𝛼.

Note that it is possible for an observation to be an 𝑋−outlier without

being an 𝑌−outlier, and vice-versa (see previous chart).

8.5.3 Influential Observations

In the regression context, we may also be interested in determining

which observations are influential – observations whose absence from

(or presence in) the data significantly change the nature of the fit
(qualitatively).

Figure 8.20: Influential observation in a

dataset; the nature of the regression line

changes drastically when the left-most ob-

servation is removed from the data.

Influential observations need not be outliers (but they may be!), and

vice-versa.
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For the 𝑖th case, DFFITS𝑖 is a measure of the influence of the 𝑖th case on

the �̂� in a neighbourhood of X𝑖 . The difference from the fitted value is

DFFITS𝑖 =
�̂�𝑖 − �̂�𝑖(𝑖)√
MSE(𝑖)ℎ𝑖𝑖

= 𝑡𝑖

√
ℎ𝑖𝑖

1 − ℎ𝑖𝑖
.

For small and moderately-sized samples, if |DFFITS𝑖 | > 2, then the 𝑖th

case is likely influential. For larger samples, if |DFFITS𝑖 | > 2

√
𝑝

𝑛 , then

the 𝑖th case is influential.

A similar measure can be determined to see if case 𝑖 has a lot of influence

on the value of the fitted parameter 𝑏𝑘 :

DFBETAS
𝑘
𝑖 =

𝑏𝑘 − 𝑏𝑘(𝑖)√
MSE(𝑖) [(X⊤X)−1]𝑘,𝑘

.

8.5.4 Cook’s Distance

We can also use Cook’s distance to measure observation 𝑖’s influence:

𝐷𝑖 =
1

𝑝 · MSE

𝑛∑
𝑗=1

(
�̂�𝑗 − �̂�𝑗(𝑖)

)
2

=
𝑒2

𝑖

𝑝 · MSE

[
ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2

]
∼ 𝐹(𝑝, 𝑛 − 𝑝).

Decision Rule:

if 𝐷𝑖 < 𝐹(0.2; 𝑝; 𝑛 − 𝑝), then the 𝑖th case has little influence;

if 𝐷𝑖 > 𝐹(0.5; 𝑝; 𝑛 − 𝑝), then the 𝑖th case is very influential.

Regressions based on OLS framework are convenient, but they are not

robust against outliers and influential observations (median, absolute

value).

Example Let

X =

©«

1 1 1

1 1 4

1 2 5

1 3 3

1 4 3

1 4 2

ª®®®®®®®¬
and Y =

©«

2.1

24.2

29.5

27.6

30.5

27.5

ª®®®®®®®¬
.

Find the data’s 𝑋−outliers, 𝑌−outliers, and influential observations.

Since 𝑛 = 6, the sample is small. The OLS estimates are

b =
©«
−7.3

5.51

5.70

ª®¬ ,
from which

e = Y − Xb = (−1.8, 3.2,−2.7, 1.28,−1.32, 1.37)⊤.
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The external residuals are (−18.47, 2.40,−1.99, 0.41,−0.5, 0.57)⊤. Since

𝑡

(
1 − 𝛼/𝑛

2

; 𝑛 − 𝑝 − 1

)
= 𝑡

(
1 − 0.1/6

2

; 6 − 3 − 1

)
= 7.65,

only the first case is a 𝑌−outlier at 𝛼 = 0.1; conservatively, when |𝑡𝑖 | is

large, we should further study the influence of case 𝑖, so we will be sure

to look into case 1 in detail.
62

62: Note the Bonferroni correction term.

For 𝑋−outliers, we seek cases with leverages above 0.5:

h = (0.87, 0.45, 0.58, 0.19, 0.41, 0.48)⊤.

Cases 1, 3 are high leverage points, suggesting that they are poten-

tial 𝑋−outliers, whereas cases 2, 5, 6 have moderate leverages (but are

unlikely to be 𝑋−outliers, lest 5/6 observations be so).

The differences in fitted values are

DFFITS = (−48.7, 2.29,−2.33, 0.2,−0.42, 0.54)⊤ ,

suggesting that only the first 3 cases are influential. The Cook distances
are D = (6.9, 0.67, 0.91, 0.02, 0.08, 0.13)⊤; since 𝐷1 is the only distance

larger than than 𝐹(0.5; 𝑝, 𝑛 − 𝑝) = 1, only the first case is likely to be

influential.

8.6 Exercises

1. a) Let𝑈𝑖 ∼ 𝜒2(𝑟𝑖) be independent random variables with 𝑟1 = 5,

𝑟2 = 10. Set

𝑋 =
𝑈1/𝑟1
𝑈2/𝑟2

.

Using R, find 𝑠 and 𝑡 such that

𝑃(𝑋 ≤ 𝑠) = 0.95 and 𝑃(𝑋 ≤ 𝑡) = 0.99.

𝑃(𝑉 ≤ 𝑤) = 0.95.

2. Let 𝑓 : ℝ𝑛 → ℝ, v ∈ ℝ𝑛
, and 𝑎 ∈ ℝ. Define 𝑓 (Y) = Y⊤v + 𝑎.

Find the gradient of 𝑓 with respect to Y. Write a function in R that

computes 𝑓 (Y) given v, 𝑎. Evaluate the function at Y = (1, 0,−1),
for v = (1, 2,−3) and 𝑎 = −2.

63
63: We write vectors either as columns or

as rows, in a more or less arbitrary way.

It is up to you to determine which one

makes the dimensions compatible.

3. Let 𝐴 =

(
1 1 0

0 1 −1

)
, 𝝁 = (1, 0, 1), 𝚺 =

©«
2 −1 0

−1 1 0

0 0 1

ª®¬, Y ∼ N(𝝁,𝚺).

Let W = 𝐴Y. What distribution does the random vector W follow?

Draw a sample of size 100 for this random vector with R and plot

them in a graph. You may use the function mvrnorm() from the

MASS package to help along (but you do not have to).

4. Let Y ∼ N(0, 9I4) and set 𝑌 = 1

4
(𝑌1 + 𝑌2 + 𝑌3 + 𝑌4). Using R, draw

1000 observations (and plot a histrogram) from:

a) 𝑌2

1
+ 𝑌2

2
+ 𝑌2

3
+ 𝑌2

4

b) 4𝑌
2

c) (𝑌1 − 𝑌)2 + (𝑌2 − 𝑌)2 + (𝑌3 − 𝑌)2 + (𝑌4 − 𝑌)2
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5. Consider the function 𝑓 : ℝ3 → ℝ defined by

𝑓 (Y) = 𝑌2

1
+ 1

2
𝑌2

2
+ 1

2
𝑌2

3
− 𝑌1𝑌2 + 𝑌1 + 2𝑌2 − 3𝑌3 − 2.

Using R, find the critical point(s) of 𝑓 . If it is unique, does it give rise to a global maximum of 𝑓 ? A global

minimum? A saddle point?

6. Consider the dataset Autos.xlsx. The predictor variable is VKM.q (𝑋 , the average daily distance driven, in

km); the response variable is CC.q (𝑌, the average daily fuel consumption, in L). Use R to:

a) display the scatterplot of 𝑌 versus 𝑋;

b) determine the number of observations 𝑛 in the dataset;

c) compute the quantities

∑
𝑋𝑖 ,

∑
𝑌𝑖 ,

∑
𝑋2

𝑖
,

∑
𝑋𝑖𝑌𝑖 ,

∑
𝑌2

𝑖
;

d) find the normal equations of the line of best fit;

e) find the coefficients of the line of best fit (without using lm()), and

f) overlay the line of best fit onto the scatterplot.

7. Use the R function lm() to obtain the coefficients of the line of best fit and the residuals from exercise 6.

Show (by calculating the required quantities directly) that the first 5 properties of residuals are satisfied.

8. Using R, compute the Pearson and Spearman correlation coefficients between the predictor and the

response in exercise 6. Is there a strong or weak linear association between these two variables? Use the

correlation values and diagrams to justify your answer.

9. Using R, find the decomposition into sums of squares for the regression in exercise 6.

10. (continuation of the previous question) Using R, randomly draw 𝑛 pairs of observations from the data set.

Determine the least squares line of best fit 𝐿𝑛 and calculate its coefficient of determination 𝑅2

𝑛 . Repeat

for 𝑛 = 10, 50, 100, 500 and for all observations. Is there anything interesting to report? If so, how is it

explained?

11. Using R, plot the residuals corresponding to the ls line of best fit when using all observations in the set.

Visually, do the SLR assumptions on the error terms appear to be satisfied? Give a visual approximation

of 𝜎2
. Then compute the estimator �̂�2

. Compare.

12. Using R, compute directly the 95% and the 99% confidence interval of the slope of the regression line.

13. Before even doing the calculations with R, do you think we should be able to determine whether the

confidence interval for the intercept of the regression line is smaller or larger than the corresponding

interval for the slope? If so, why would this be the case? Determine directly the 95% and the 99% confidence

interval of the intercept.

14. (continuation of the previous question) Using the fit from the previous questions:

a) Test for 𝐻0 : 𝛽0 = 0 vs. 𝐻1 : 𝛽0 > 0.

b) Test for 𝐻0 : 𝛽1 = 10 vs. 𝐻1 : 𝛽1 ≠ 10.

c) Test for 𝐻0 : 𝛽1 = 0 vs. 𝐻1 : 𝛽1 ≠ 0.

Justify and explain your answers.

15. (continuation of the previous question)

a) Using the formulas, calculate the covariance 𝜎{𝑏0 , 𝑏1}.
b) Randomly select a sample of 50 pairs of observations fromAutos.xlsx (with or without remplacement,

as desired). Compute the regression parameters (𝑏(1)
0
, 𝑏

(1)
1
) corresponding to the sample. Repeat the

procedure 300 times, to produce 300 pairs (𝑏(𝑗)
0
, 𝑏

(𝑗)
1
). Display all pairs in a scatter plot.

c) Comment on the results. Are they consistent with what you obtained in a)?

16. Determine the 95% confidence interval of the expected response E{𝑌} when the predictor is 𝑋 = 𝑋∗
.

What is the specific interval when 𝑋∗ = 27? Calculate the mean of the responses {𝑌∗} when 𝑋∗ = 27

in the data. Does this mean fall within the confidence interval? Repeat the exercise for 𝑋∗ = 5. Test

𝐻0 : E{𝑌∗ | 𝑋∗ = 5} = 0 vs. 𝐻1 : E{𝑌∗ | 𝑋∗ = 5} > 0 at confidence level 𝛼 = 0.05.

17. Determine the 95% prediction interval for a new response 𝑌∗
𝑝 when the predictor is 𝑋 = 𝑋∗

. What is the

specific interval when 𝑋∗ = 27? What proportion of the responses 𝑌∗
𝑝 fall within the prediction interval

when 𝑋∗ = 27? Repeat the exercise for 𝑋∗ = 5. Are the results compatible with the notion of prediction

interval? Is the observation (5.25) probable (at 𝛼 = 0.05)?
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18. (continuation of the previous question)

a) Perform a 95% joint estimate of the parameters 𝛽0 and 𝛽1 Compare with the results of question 16.

b) Find the joint 95% Working-Hostelling confidence band for the mean response 𝐸{𝑌} when 𝑋 = 𝑋∗
.

Superimpose the line of best fit and the band on the scatterplot of the observations.

c) Find a joint 95% confidence band for the prediction of 𝑔 = 20 new responses 𝑌∗
𝑘

at 𝑋 = 𝑋∗
𝑘
,

𝑘 = 1, . . . , 20. Superimpose the line of best fit and the band on the scatterplot of the observations.

19. (continuation of the previous question) Perform an analysis of variance to determine if the regression is

significant or not.

20. (continuation of the previous question) Express the SLR 𝑌𝑖 = 𝑏𝑒𝑡𝑎0 + 𝑏𝑒𝑡𝑎1𝑋𝑖 + 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑖 using matrix

notation. With R, determine the OLS solution directly (without using lm() or the sums

∑
𝑋𝑖 ,

∑
𝑌𝑖 ,

∑
𝑋2

𝑖
,∑

𝑋𝑖𝑌𝑖 ,
∑
𝑌2

𝑖
).

21. Consider the dataset Autos.xlsx. This time around, we are only interested in the VPAS vehicles. The

predictor variables are VKM.q (𝑋1, the average daily distance driven, in km) and Age (𝑋2, the age of the

vehicle, in years); the response variable is CC.q (𝑌, the average daily fuel consumption, in L). Use R to:

a) determine the design matrix X of the SLR model;

b) compute the fitted values of the response Y if 𝜷 = (1, 5, 1);
c) compute the residual sum of squares if 𝜷 = (1, 5, 1).

22. (continuation of the previous question) Determine directly the least squares estimator b of the SLR

problem, using matrix manipulations in R. Find the estimated regression function of the response 𝑌.

Compute the residual sum of squares in the case 𝜷 = b. Is this value consistent with the result obtained in

part c) of the previous question?

23. (continuation of the previous question) Using only matrix manipulations in R, determine the vector of

residuals in the SLR problem, as well as SST, SSE, and SSR. Verify that SST = SSR+ SSE. What is the mean

square error of the SLR model?

24. (continuation of the previous question) Assuming the SLR model is valid, test whether the regression is

significant using the global 𝐹 test – use R as you see fit (but use it!).

25. (continuation of the previous question) Find the estimated variance-covariance matrix 𝑠2{b} for the OLS

estimator b. At a confidence level of 95%, test for

a) 𝐻0 : 𝛽1 = 0 vs. 𝐻1 : 𝛽1 ≠ 0;

b) 𝐻0 : 𝛽2 = 0 vs. 𝐻1 : 𝛽2 < 0.

26. (continuation of the previous question) We want to predict the mean response 𝐸{𝑌∗} when X∗ = (20, 5).
What is the fitted value �̂�∗

in this case? Compute a 95% C.I. for the sought quantity.

27. (continuation of the previous question) We want to predict the new response 𝑌∗
𝑝 when X∗ = (20, 5).

Compute a 95% P.I. for 𝑌∗
𝑝 .

28. (continuation of the previous question)

a) Give joint 95% C.I. for the regression parameters 𝛽0 , 𝛽1 , 𝛽2.

b) Give joint 95% C.I. for the expected mean value 𝐸{𝑌∗
ℓ
} using the Working-Hotelling procedure for

X∗
1
= (50, 10),X∗

2
= (20, 5),X∗

3
= (200, 8).

29. (continuation of the previous question) Is the multiple linear regression model preferable to the two simple

linear regression models for the same subset of Autos.xlsx (using 𝑋1 or 𝑋2, but not both)? Support your

answer.

30. (continuation of the previous question) Compute the multiple coefficient of determination and the adjusted

multiple coefficient of determination directly (without using lm()). What do these values tell you about

the quality of the fit?

31. (continuation of the previous question) Is the linearity assumption reasonable? Justify your answer.

32. (continuation of the previous question) Is the assumption of constant variance reasonable? Justify your

answer.

33. (continuation of the previous question) Is the assumption of independence of the error terms reasonable?

Justify your answer.

34. (continuation of the previous question) Is the assumption of normality of the error terms reasonable?

Justify your answer.
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35. (continuation of the previous question) Overall, do you believe that the multiple linear regression model

is appropriate? Justify your answer.

36. (continuation of the previous question) Use appropriate corrective measures to improve the multiple

regression results.

37. (continuation of the previous question) Are the predictors in the data set multicollinear? Justify your

answer.

38. (continuation of the previous question) For this question, we drop the variable Age from the dataset.

Fit the response to a cubic regression centered on the predictor 𝑥1 = 𝑋1 − 𝑋1, by adding one variable

at a time, to obtain 𝐸{𝑌 | 𝑥1} = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥
2

1
+ 𝛽3𝑥

3

1
. Using 𝛼 = 0.05, test for 𝐻0 : 𝛽2 = 𝛽3 = 0 vs.

𝐻1 : 𝛽2 ≠ 0 or 𝛽3 ≠ 0.

39. (continuation of the previous question) For this question, we re-introduce the variable Age to the data.

Build a polynomial model of degree 2 in 𝑋1 and 𝑋2 that includes an interaction term (the full model) and

a model that is only of degree 1 in 𝑋1 and 𝑋2, but still contains an interaction term (the reduced model).

Determine the coefficients in both cases. Which of the two models is better?

40. Consider the dataset Autos.xlsx. The predictor variable is Type (𝑋, vehicle type); the response is CC.q

(𝑌, average daily fuel consumption, in L). Using a dummy variable encoding, find the regression model of

𝑌 as a function of 𝑋. Is this a good model? Justify your answer.

41. Use the data set provided in the example for Section 4.5.

a) Find and plot the solution of the WLS problem with 𝑤𝑖 = 𝑥2

𝑖
.

b) Find the solution of the WLS problem with the procedure described in the chapter. Plot the results.

c) Which of the two options gives the best fit? Justify your answer.

42. Consider the dataset Autos.xlsx. The predictor variables are VKM.q (𝑋1, average daily distance, in km),

Age (𝑋2, vehicle age in years), and Rural (𝑋3, 0 for urban vehicle, 1 for rural vehicle); the response is CC.q

(𝑌, average daily fuel consumption, in L). Use the best subset approach with Mallow’s 𝐶𝑝 criterion to

select the best model.

43. Repeat the previous question, with the adjusted coefficient of determination 𝑅2

𝑎 .

44. Repeat the previous question, with the backward stepwise selection method and with Mallow’s 𝐶𝑝
criterion.

45. Repeat the previous question, with the backward stepwise selection method and with the adjusted

coefficient of determination 𝑅2

𝑎 .

46. Repeat the previous question, with the forward stepwise selection method and with Mallow’s 𝐶𝑝 criterion.

47. Repeat the previous question, with the forward stepwise selection method and with the adjusted coefficient

of determination 𝑅2

𝑎 .

48. Consider the dataset Autos.xlsx. The predictor variables are VKM.q (𝑋1, average daily distance, in km)

and Age (𝑋2, vehicle age in years), and Rural (𝑋3, 0 for urban vehicle, 1 for rural vehicle; the response is

still CC.q (𝑌, average daily fuel consumption, in L). Find the 𝑋−outliers in the dataset.

49. (continuation of the previous question) Consider the MLR model �̂� = 𝑏0+𝑏1𝑋1+𝑏2𝑋2. Find the𝑌−outliers

in the dataset.
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