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by Patrick Boily, inspired by Rafal Kulik

Many traditional statistical methods assume that observations are inde-

pendently and identically distributed, which is unlikely to happen in

real life. At best, this assumption may be sufficiently accurate to allow for

some predictive power; at worst, it can lead to wildly inaccurate insights

and predictions.

A time series is a sequence of values, measured at regular intervals over

time. The motivation of time series analysis lies in the assumption that

what happened in the past has an influence on what will happen in

the future. Typically, time series are used for trend analysis and for

forecasting future values when there are good reasons to suspect the

existence of cycles in the data.
*

Generally speaking, the forecast horizon

is the length of the prediction period: predictions at shorter horizons tend

to be more reliable and accurate than predictions at longer horizons.

Ideally, the reporting periods used in time series analysis should be

identical (e.g. daily, monthly, quarterly or yearly), the measurements

should be taken over discrete (exclusive), consecutive periods, and the

concepts and the measurement approach should be consistent over time.

Detection of periodicity should be done by graphical representation of

the data (and the frequency of data collection) using logic (e.g., is there an

expectation of hourly, weekly, monthly, quarterly, and/or x-year cycles).

More information is available in [2, 1, 5, 3, 4].

9.1 Introduction

Various time series analysis methods and tests are found in applications

and in the literature, including:

auto-regressive models (AR),

smoothing and filtering models (such as moving averages (MA)

and exponential smoothing (ES)),

detrending models (such as ARMA, finite differences, etc.),

seasonal decomposition models (such as X11, X12, X13, and ARIMA

models), and

linear and non-linear forecasting models (suc has Holt’s Method,

Winter’s Method, GARCH models, etc.).

We start by providing examples and some of the basic concepts of the

discipline.

*
For instance, a time series analysis could be used to predict the number of passengers

going through Canadian airports at various points in the future. Or an economist might

be interested in forecasting the stock market, using time series analysis.
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9.1.1 Simple Examples

White Noise Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 1. Sometimes such a sequence is called a

white noise. A sample white noise path consisting of 100 steps, with

independent 𝑍𝑡 ∼ N(0, 1), is provided by the R code below.
1

1: The output is shown in Figure 9.1. Note

that the specific realization of the time se-

ries depends on the seed used to generate

the pseudo-random numbers in R. In the

absence of a set.seed(...) command,

the realization will change after every call;

with the command, the realization will be

the same after every call. This comment

should be kept in mind at all times when

producing examples.

z = rnorm(100);

plot.ts(z)

Random Walk Let {𝑍𝑡} be a sequence of i.i.d.
2

random variables with

2: Independent, identically distributed

mean 0 and variance 𝜎2

𝑍
. Define 𝑋𝑡 =

∑⊤
𝑖=1
𝑍𝑖 , 𝑡 = 1, 2, . . .. A sample

random walk of 100 steps, with independent 𝑍𝑡 ∼ N(0, 1), is provided

by the R code below (see Figure 9.1 for the output).

z = rnorm(100);

x = cumsum(z);

plot.ts(x)

Model with Trend A linear or polynomial trend can sometimes be found

in time series models. Consider, for instance, the time series

𝑋𝑡 = 1 + 2𝑡 + 𝑍𝑡 , 𝑡 = 1, 2, . . . ,

where {𝑍𝑡} is a sequence of i.i.d. random variables. The linear trend

is 𝑚𝑡 = 1 + 2𝑡. A 100-step realization of this model, with independent

𝑍𝑡 ∼ N(0, 1), is provided by the R code below (see Figure 9.1).

Linear trend
trend = 1+2*seq(1:100);

z = rnorm(100,0,10);

x = z+trend;

plot.ts(x)

For economics data, we may want to take into account an exponential

inflation trend. If the interest rate 𝑟 is assumed to be fixed, the nominal

price 𝑋𝑡 is actually the real (deflated) price 𝑃𝑡 with respect to inflation:

𝑋𝑡 = 𝑃𝑡 𝑒
𝑟𝑡 , 𝑡 = 1, 2, . . . .

This phenomenon is illustrated in the quarterly earnings of Johnson &

Johnson share (1960–80), as shown in Figure 9.1.

Exponential trend

require(stats);

x = JohnsonJohnson;

plot.ts(x)
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Figure 9.1: Simple time series: white noise (top left), random walk (top right), linear trend (bottom left), exponential trend (bottom right).

9.1.2 Pre-Processing

Component decomposition is central to time series analysis. Displaying

the components of a time series is also helpful in understanding the data.

Each of the components represents a category of patterns.

Generally speaking, there are three common components of time series:

trend, seasonality, and irregular. We briefly discuss other potential

components, but for the sake of simplicity, only the first two of these will

be discussed in this chapter:

the trend component describes the overall “changing direction” of

the data, either increase or decrease or flat, which is a long-term

effect and not necessarily linear;
3

3: For example, in the linear trend time

series model of Figure 9.1, the bottom left

graph shows the trend going up, and so

we expect 𝑋𝑡 to increase with 𝑡.

the seasonal component reveals the seasonal effect on a series of

data, such as that passengers in the airport will increase during

summer vacation season;
4

4: If the monthly deaths of lung disease

in London, UK, shows peaks occurring at

the beginning of each year, say, then we

conclude that winter is a harsher time for

such deaths than summer is, in general.

The irregular (anomalous) component is a short-term effect, which

can vary considerably from period to period, and includes mea-

surement errors, unseasonal change, etc. – once the trend, seasonal,
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and cyclical effects are removed, we use the residual of the time

series to identify the irregular contributions;

cyclical components usually lasts at least two years – note that, in

general, the exact length of an ongoing cycle cannot be predicted;
5

5: For example, the global financial crisis

in 2008 lasted about 5 years. The difference

between seasonal and cyclical is that the

former displays the change over a fixed

time period.

other components may include calendar effect (trading day, leap

year, etc.), government policies, strike actions, exceptional events,

inclement weather, etc.

Decomposition Models Traditionally, decomposition follows one of

three models: multiplicative, additive, and pseudo-additive.

The additive approach assumes that:

1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

independent of the trend behaviour 𝑚𝑡 ;

2. the seasonal component 𝑆𝑡 remains stable from year to year; and

3. the seasonal fluctuations are such that

∑𝑛
𝑗=1
𝑆𝑡+𝑗 = 0.66: For daily series, 𝑛 = 365; for monthly

series, 𝑛 = 12; for quarterly series, 𝑛 = 4,

and so on. Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 + 𝑆𝑡 + 𝐼𝑡 .

All components share the same dimensions and units. After seasonality

adjustment, the seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑋𝑡 − 𝑆𝑡 = 𝑚𝑡 + 𝐼𝑡 .

The multiplicative approach assumes that:

1. the magnitude of the seasonal spikes/troughs increases when the

trend increases (and vice versa);

2. the trend 𝑚𝑡 has the same dimensions as the original series 𝑋𝑡 ,

and the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

dimensionless and centered around 1;

3. the seasonal fluctuations are such that

∑𝑛
𝑗=1
𝑆𝑡+𝑗 = 0, and

4. the original series 𝑋𝑡 does not contain zero values.

Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 × 𝑆𝑡 × 𝐼𝑡 .

All components share the same units. After seasonality adjustments, the

seasonality adjusted series is

𝑆𝐴𝑡 =
𝑋𝑡

𝑆𝑡
= 𝑚𝑡 × 𝐼𝑡

To transform a multiplicative model into an additive model, we could

take a logarithmic transformation, such as:

log𝑋𝑡 = log𝑚𝑡 + log 𝑆𝑡 + log 𝐼𝑡 ,

assuming that none of the component values are non-positive.

The pseudo-additive approach assumes that some of the values of the

original series 𝑋𝑡 are 0 (or very close to 0) and that:
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1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are both

dependent on the trend level 𝑚𝑡 , but independent of each other,

and

2. the trend 𝑚𝑡 has the same dimensions as the original series 𝑋𝑡 ,

and the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

dimensionless and centered around 1.

Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 + 𝑚𝑡 × (𝑆𝑡 − 1) + 𝑚𝑡 × (𝐼𝑡 − 1) = 𝑚𝑡 × (𝑆𝑡 + 𝐼𝑡 − 1).

All components share the same units. After seasonality adjustment, the

seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑋𝑡 − 𝑚𝑡 × (𝑆𝑡 − 1) − 𝑚𝑡 × (𝐷𝑡 − 1) = 𝑚𝑡 × 𝐼𝑡

The choice of a model is driven by data behaviour and assumptions. The

analyst needs to plot the time series graph and test a range of models,

selecting the one which stabilized the seasonal component.

The simplest way to determine whether to use multiplicative or additive

decomposition, is by graphing the time series. If the size of the seasonal

variation increases/decreases over time, multiplicative decomposition

should be used (such as in the last chart of Figure 9.1).

On the other hand, if the seasonal variation seems to be constant over

time, an additive model should be used (bottom left, Figure 9.1).
7

7: A pseudo-additive model should be

used when the data exhibits the character-

istics of the multiplicative series, but with

some 𝑋𝑡 values near zero.Illustration We illustrate the process of decomposition with an arbitrary

time series recording the monthly number of hours for a variable called

CV, whose values are shown in the Figure 9.2.

Figure 9.2: Time series; CV by year.

The continuous plot, Figure 9.3 ,shows that the size of the peaks and

troughs does not seem to follow changing trends: the additive model is

thus selected. The SAS procedure X12 agrees with that assessment, and

further suggests no data transformation.
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Figure 9.4: Diagnostic plots (top row) and adjusted plots (bottom row). Note that the analysis of a time series starts with estimation of the

effects of festivals and trading days. These pre-calculated estimates are then used for prior adjustment of the series. The prior adjusted

original series is subsequently analyzed using the seasonal adjustment.

Figure 9.3: Continuous CV; estimation

summary.

The diagnostic plots are shown in Figure 9.4: the 2010 CV series is prior-

adjusted from the beginning until OCT2010 after the detection of a level

shift. The SI (Seasonal-Irregular) chart shows that there are more than

one irregular component which exhibits volatility. The adjusted series is

shown at the bottom of Figure 9.4 (the trend and irregular components

are shown separately for readability).
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Roll-Back In this chapter, however, we will focus on time series whose

structure can be broken down into three additive components,

𝑋𝑡 = 𝑚𝑡 + 𝑌𝑡 + 𝑆𝑡 ,

where:

𝑚𝑡 is the trend;

𝑆𝑡 is the seasonal component;

𝑌𝑡 is the stationary component (to be defined shortly).

In order to analyse time series, we first need to eliminate both the trend

and the seasonal component.
8

We present a few ways to accomplish this, 8: Collectively, these are known as the

non-stationarities of the time series.
assuming that there is no seasonal component, i.e. 𝑆𝑡 ≡ 0.

Differencing For the time series {𝑋𝑡 , 𝑡 = 1, . . . , 𝑛}, we may calculate

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 , 𝑡 = 2, . . . , 𝑛.

Depending on the nature of the trend in the original time series, the

differenced time series may exhibit no trend.

Differencing a random walk

set.seed(1)

z = rnorm(100)

x = cumsum(z)

y = diff(x)

par(mfrow=c(1,2))

plot.ts(x)

plot.ts(y)

In a sense, differencing a time series is akin to differentiating a function

𝑓 : ℝ → ℝ; if the underlying trend is roughly linear, we expect the

differenced time series to have white noise characteristics.
9

9: Which is to say, that the trend is hori-

zontal.

But if the underlying trend is not linear, differencing only once might not

detrend the original series, as can be seen below, where the trend has a

clear (positive) slope.
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Given that the original time series trend is concave up, differencing a

second time could be a good strategy:
10

10: Since, by analogy, the second deriva-

tive of a quadratic function is the zero

function. ∇2𝑋𝑡 = ∇(∇𝑋𝑡) = ∇(𝑋𝑡−𝑋𝑡−1) = ∇𝑋𝑡−∇𝑋𝑡−1 = 𝑋𝑡−2𝑋𝑡−1+𝑋𝑡−2 , 𝑡 = 3, . . . , 𝑛.

Polynomial Fitting When a linear trend is clearly visible (𝑚𝑡 = 𝑎 + 𝑏𝑡),
then we can estimate the parameters 𝑎, 𝑏 by minimizing

𝑛∑
𝑡=1

(𝑋𝑡 − 𝑎 − 𝑏𝑡)2.

This is a simple regression problem (see Chapter 8), where the indepen-

dent variable is time 𝑡 and the dependent variable is the time series itself.

Consequently, the trend is estimated by

𝑚𝑡 = 𝑎̂ + 𝑏̂𝑡 ,

where 𝑎̂ and 𝑏̂ are the least squares estimators of 𝑎 and 𝑏, respectively.

In this case, the detrended time series is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 1, . . . , 𝑛.

If the trend 𝑚𝑡 would be better described by another polynomial, the

process is similar; note however that it is not in general easy to justify

using a non-linear polynomial trend.



9.1 Introduction 499

As an example, consider the following time series, whose trend is linear

by construction.

set.seed(11)

n=89; a=4; b=10;

Time=c(1:n);

X = a + b*Time + 20*rnorm(n)

We can find the least squares estimates as follows:

estimation = lm(X~Time);

a.est = estimation$coefficients[1]; # Estimated intercept

b.est = estimation$coefficients[2]; # Estimated slope

c(a.est,b.est)

[1] -3.695528 10.10823

We plot the time series with its linear trend and compute the stationary

part by removing the linear trend.

Fitted.Lin.Trend=a.est+b.est*Time;

TimeSeries=X-Fitted.Lin.Trend;

par(mfrow=c(1,2))

plot.ts(X)

abline(a=a.est,b=b.est, col="red", lwd=1);

plot.ts(TimeSeries);

Exponential Smoothing Let 𝛼 ∈ (0, 1). We can estimate the trend via:

𝑚1 = 𝑋1 , 𝑚𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝑚𝑡−1 , 𝑡 = 2, . . . , 𝑛.

In other words, at any time 𝑡, we assign weights 𝛼 and 1−𝛼 to the current

observation and the preceding smoothed data. The detrended time series

is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 1, . . . , 𝑛.

Let us take a look at an example.
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Temperature = c(-0.492, -0.173, -0.222, -0.327, 0.063,

-0.403, -0.565, -0.394, -0.313, 0.053, -0.519,

-0.316, -0.701, 0.163, -0.727, -0.213, -0.239,

-0.489, -0.208, -0.203, -0.329, -0.518, -0.166,

-0.359, -0.239, -0.905, -0.456, -0.223, 0.181,

-0.391, -0.355, -0.404, -0.236, -0.551, -0.667,

-0.649, -0.496, -0.471, -0.648, -0.319, -0.317,

-0.511, -0.572, -0.689, -0.293, -0.544, -0.352,

-0.298, -0.315, -0.236, -0.139, -0.160, -0.456,

-0.403, -0.516, -0.391, -0.179, -0.670, -0.460,

-0.429, -0.307, -0.370, -0.582, -0.339, -0.125,

-0.167, -0.393, -0.709, -0.410, -0.405, -0.268,

0.025, -0.244, -0.182, -0.281, -0.066, -0.014,

-0.175, -0.147, -0.474, -0.011, 0.021, -0.026,

-0.343, 0.097, -0.092, -0.062, 0.050, 0.271,

0.155, -0.031, 0.008, -0.067, 0.088, 0.140,

-0.178, 0.024, 0.037, 0.096, -0.024, -0.310,

-0.069, -0.038, 0.216, -0.152, -0.121, -0.469,

-0.078, 0.103, -0.001, -0.016, 0.046, 0.071,

0.099, -0.302, -0.268, -0.107, -0.113, -0.199,

-0.233, -0.102, -0.184, -0.368, 0.148, -0.262,

0.000, -0.383, 0.116, -0.046, 0.054, 0.085,

0.420, -0.027, 0.335, -0.075, -0.115, 0.110,

0.256, 0.391, 0.308, 0.591, 0.418, 0.085,

0.171, 0.438, 0.665, 0.179, 0.555, 0.957,

0.720, 0.603, 0.792, 0.868, 0.814, 0.820,

0.898, 0.924, 1.037, 0.765, 0.782, 1.017)

plot.ts(Temperature)

This times series is not stationary, so we need to remove its trend. Expo-

nential smoothing is implemented in the following R function.

ExpSmooth <- function(x,alpha){

# x: data

# alpha: smoothing parameter

n = length(x)

Data = c(rep(0,n))

Data[1] = x[1]
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for(i in 2:n){

Data[i] = alpha*x[i] + (1-alpha)*Data[i-1]

}

out <- Data

}

What effect does the parameter 𝛼 have on the outcome? In general, the

smaller 𝛼 is, the smoother the trend is; here, we try 𝛼 = 0.1, 0.5, 0.9.

plot.ts(Temperature)

MySmoothedTS1 = ExpSmooth(Temperature,0.1)

points(MySmoothedTS1,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS2 = ExpSmooth(Temperature,0.5)

points(MySmoothedTS2,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS3 = ExpSmooth(Temperature,0.9)

points(MySmoothedTS3,col="red",type="l", lwd=2)

Using 𝛼 = 0.1 (left) indeed achieves the smoothest trend; 𝛼 = 0.9 (right)

shows barely any smoothing. Detrending the series, we obtain:

TS_1 = Temperature-MySmoothedTS1

TS_2 = Temperature-MySmoothedTS2

TS_3 = Temperature-MySmoothedTS3

par(mfrow=c(1,3))

plot.ts(TS_1); plot.ts(TS_2); plot.ts(TS_3)
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The outcome of the procedure is a time series (in this example, either

TS_1, TS_2, or TS_3), which we hope can be treated as stationary.
11

Of11: These are the time series that will be

analysed using the methods we discuss in

this chapter.

course, different smoothing parameters 𝛼 lead to different stationary time

series – experience will inform the choice of 𝛼. The main thrust is that

the exponential smoothing should not follow the data too closely while

preserving the trend and the trend-removed dependence structure.

Moving Average Smoothing Another detrending approach requires us

to pick a window size 𝑞 (a positive integer). Then the trend is estimated

via

𝑚𝑡 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑋𝑡+𝑗 , 𝑞 + 1 ≤ 𝑡 ≤ 𝑛 − 𝑞.

The detrended time series is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 𝑞 + 1, . . . , 𝑛 − 𝑞.

Why does this method work? By assumption, we have 𝑋𝑡 = 𝑚𝑡 + 𝑌𝑡 . We

assume further that E[𝑌𝑡] = 0.
12

Then12: If this is not the case, the non-zero

mean can be always incorporated into the

trend.

(2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑋𝑡+𝑗 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑚𝑡+𝑗 + (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑌𝑡+𝑗 .

If the trend is linear (𝑚𝑡 = 𝑎 + 𝑏𝑡) Then

(2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑚𝑡+𝑗 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

{𝑎 + 𝑏(𝑡 + 𝑗)} = 𝑎 + 𝑏𝑡.

We apply this approach to the Temperature data from the previous

method, using 𝑞 = 5, 10, 25.

MASmooth<-function(x,Q){

# x: data set

# Q: MA window size

n = length(x)

Smooth = c(rep(0,n))

for(i in Q+1:(n-Q)){Smooth[i] = mean(x[(i-Q):(i+Q)])}

for(i in 1:Q){Smooth[i] = Smooth[Q+1]}

for(i in (n-Q+1):n){Smooth[i] = Smooth[(n-Q)]}

out <- Smooth }

plot.ts(Temperature)

MySmoothedTS1 = MASmooth(Temperature,5)

points(MySmoothedTS1,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS2 = MASmooth(Temperature,10)

points(MySmoothedTS2,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS3 = MASmooth(Temperature,25)

points(MySmoothedTS3,col="red",type="l", lwd=2)
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Note the flattening of the trend at the extremities.

The detrended time series are displayed below.

TS_1 = Temperature-MySmoothedTS1

TS_2 = Temperature-MySmoothedTS2

TS_3 = Temperature-MySmoothedTS2

par(mfrow=c(1,3))

plot.ts(TS_1)

plot.ts(TS_2)

plot.ts(TS_3)

Built-In Decomposer Most statistical analysis tools have built-in func-

tions that can decompose time series according to some model.

For instance, if the temperature data is a monthly time series, starting

in 1989 (and assuming that there is a seasonal component 𝑆𝑡), then

tseries’s decompose() function can extract the stationary component

(named random in this implementation) using an additive model and a

moving average approach.

library(tseries)

Temperature.ts <- ts(Temperature, start=1989, freq=12)

plot(decompose(Temperature.ts))
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The components can be isolated by calling:

decompose(Temperature.ts)$trend,

decompose(Temperature.ts)$seasonal, and

decompose(Temperature.ts)$random.

9.1.3 Stationary Models, Autocovariance, and Autocorrelation

We now introduce the fundamental notions of time series analysis.
13

13: Throughout this chapter, time series
are sequences {𝑋𝑡 | 𝑡 = 𝑡0 , . . .} of random

variables. Definitions and Properties

Let {𝑋𝑡} be a time series with E[𝑋2

𝑡 ] < ∞ for each 𝑡.

The expectation 𝜇𝑋(𝑡) = E[𝑋𝑡] is a function of 𝑡, the mean function. The

(auto)covariance function of the time series is defined as

𝛾𝑋(𝑡 , 𝑠) = Cov(𝑋𝑡 , 𝑋𝑠) = E[𝑋𝑠𝑋𝑡] − E[𝑋𝑠]E[𝑋𝑡].

Note that 𝛾𝑋(𝑡 , 𝑡) = Var(𝑋𝑡).1414: When the context is clear, we will de-

note the mean function and the autoco-

variance function simply by 𝜇 and 𝛾, re-

spectively.

From our perspective, the most important properties of the covariance

are that it is:

symmetric
Cov(𝑋,𝑌) = Cov(𝑌, 𝑋);

multilinear

Cov

(
𝐾∑
𝑘=1

𝑎𝑘𝑋𝑘 ,
𝐿∑
ℓ=1

𝑏ℓ𝑌ℓ

)
=

𝐾∑
𝑘=1

𝐿∑
ℓ=1

𝑎𝑘𝑏ℓCov(𝑋𝑘 , 𝑌ℓ ),

and Cov(𝑋, 𝑎) = 0 for all 𝑎 ∈ ℝ.
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Cauchy’s Inequality: if 𝑋,𝑌 are r.v., then

Cov(𝑋,𝑌))2 ≤ Var(𝑋)Var(𝑌).

Proof: we may assume that E[𝑋] = E[𝑌] = 0.
15

Define the function 15: Otherwise, set 𝑋′ = 𝑋 − E[𝑋] and

𝑌′ = 𝑌 − E[𝑌] and work with 𝑋′, 𝑌′
in-

stead of 𝑋,𝑌. This can be done since the

covariance and the variance are invariant

under translation by a constant (see prop-

erties above).

𝑔(𝑡) = E[(𝑋 + 𝑡𝑌)2] = 𝑡2Var(𝑌) + 2𝑡Cov(𝑋,𝑌) + Var(𝑋), 𝑡 ∈ ℝ.

By construction, 𝑔(𝑡) ≥ 0 for all 𝑡. Since it is quadratic in 𝑡, it has at most

one root, which is to say that its discriminant is non-positive. In other

words

Δ = 4(Cov(𝑋,𝑌))2 − 4Var(𝑋)Var(𝑌) ≤ 0,

which implies the result. ■

A time series {𝑋𝑡} is (weakly) stationary if

𝜇𝑋(𝑡) ≡ 𝜇𝑋 , and

𝛾𝑋(𝑡 , 𝑠) = 𝑓𝑋(𝑡 − 𝑠) for some function 𝑓𝑋 .

In particular, for such a time series, we must have 𝜎2 {(}𝑋𝑡) ≡ 𝜎2

𝑋
and

Cov(𝑋𝑡 , 𝑋𝑡+1) = 𝛾𝑋(𝑡 , 𝑡 + 1) = 𝑓𝑋(𝑡 + 1 − 𝑡) = 𝑓𝑋(1)
Cov(𝑋𝑡+1 , 𝑋𝑡+2) = 𝛾𝑋(𝑡 + 1, 𝑡 + 2) = 𝑓𝑋(𝑡 + 2 − (𝑡 + 1)) = 𝑓𝑋(1)

...

Cov(𝑋𝑡+𝑘 , 𝑋𝑡+𝑘+1) = 𝛾𝑋(𝑡 + 𝑘, 𝑡 + 𝑘 + 1) = 𝑓𝑋(1), 𝑘 ≥ 0.

Lemma: assume that {𝑋𝑡} is a (weakly) stationary time series. Then the

covariance function 𝛾𝑋(𝑡 , 𝑠) is a non-negative definite function.
16 Proof: 16: For all non-negative integers 𝑛 and all

real numbers 𝑎1 , . . . , 𝑎𝑛 we have

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑎 𝑗𝛾𝑋 (𝑖 , 𝑗) ≥ 0.

we have

0 ≤ Var

(
𝑛∑
𝑗=1

𝑎 𝑗𝑋𝑗

)
= Cov

(
𝑛∑
𝑖=1

𝑎 𝑗𝑋𝑗 ,
𝑛∑
𝑗=1

𝑎 𝑗𝑋𝑗

)
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗Cov(𝑋𝑖 , 𝑋𝑗) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗𝛾𝑋(𝑖 , 𝑗).

This completes the proof. ■

Under the same hypothesis as above, then 𝛾𝑋(𝑡 , 𝑠) = 𝑓𝑋(ℎ), ℎ = 𝑡 − 𝑠; for

simplicity’s sake, we often write 𝛾𝑋(𝑡 − 𝑠) or 𝛾𝑋(ℎ) for the covariance.
17

17: When the context is un-ambiguous.

The (auto)correlation function (ACF) of {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is given

by:

𝜌𝑋(ℎ) =
𝛾𝑋(ℎ)
𝛾𝑋(0)

=
Cov(𝑋1 , 𝑋ℎ+1)

Var(𝑋1)
.

Note that 𝜌𝑋(0) = 1.

Examples and Illustrations

White Noise Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 1.
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Then 𝜇𝑍(𝑡) = E[𝑍𝑡] = 0 and 𝛾𝑍(𝑡 , 𝑡) = 𝑓𝑍(0) = Var(𝑍𝑡) = 1 for all 𝑡,

while 𝛾𝑍(𝑡 , 𝑠) = 𝑓𝑍(ℎ) = 0 for all 𝑡 ≠ 𝑠 =⇒ ℎ ≠ 0. Since 𝛾𝑍 only

depends on ℎ = 𝑡 − 𝑠 and 𝜇𝑍 ≡ 0, {𝑍𝑡} is (weakly) stationary.

Random Walk Let {𝑍𝑡} be a sequence of i.i.d. random variables with

mean 0 and variance 𝜎2

𝑍
. Define 𝑆𝑡 =

∑⊤
𝑖=1
𝑍𝑖 . Then E[𝑆𝑡] = 0, and

𝛾𝑆(𝑡 , 𝑡 + ℎ) = Cov(𝑆𝑡 , 𝑆𝑡+ℎ) = Cov(𝑆𝑡 , 𝑆𝑡 + 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)
= Cov(𝑆𝑡 , 𝑆𝑡) + Cov(𝑆𝑡 , 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)
= Cov(𝑆𝑡 , 𝑆𝑡) + Cov(𝑍1 + · · · + 𝑍𝑡 , 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)

= Cov(𝑆𝑡 , 𝑆𝑡) +
⊤∑
𝑖=1

ℎ∑
𝑗=1

Cov(𝑍𝑖 , 𝑍𝑡+𝑗) = Cov(𝑆𝑡 , 𝑆𝑡) + 0 = Var(𝑆𝑡).

Since

Var(𝑆𝑡) = Var(𝑍1+· · ·+𝑍𝑡) = Var(𝑍1)+· · ·Var(𝑍𝑡) = 𝜎2

𝑍+· · ·+𝜎
2

𝑍 = 𝑡𝜎2

𝑍 ,

the autocovariance function depends on 𝑡 (and not on ℎ = 𝑡 − 𝑠), and the

sequence is not (weakly) stationary.

Model with Trend We revisti the model 𝑋𝑡 = 1 + 2𝑡 + 𝑍𝑡 , 𝑡 = 1, 2, . . . ,

where {𝑍𝑡} is a sequence of i.i.d. random variables with mean𝜇𝑍 = E[𝑍𝑡].
Then

E[𝑋𝑡] = E[1 + 2𝑡 + 𝑍𝑡] = 1 + 2𝑡 + 𝜇𝑍 .

The mean function depends on 𝑡; the model is not (weakly) stationary.

“Multiplicative” Model Let {𝑍𝑡} be i.i.d. with mean 0 and variance 𝜎2

𝑍
.

Define

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1𝑍𝑡−2 , 𝑡 ≥ 3.

Because E[𝑍𝑡] = 0, we have

𝜎2

𝑍 = Var(𝑍𝑡) = E[𝑍2

𝑡 ] − E
2[𝑍𝑡] = E[𝑍2

𝑡 ].

Since the 𝑍𝑡 are independent of one another, we have

E[𝑋𝑡] = E[𝑍𝑡𝑍𝑡−1𝑍𝑡−2] = E[𝑍𝑡]E[𝑍𝑡−1]E[𝑍𝑡−2] = 0, and

Var(𝑋𝑡) = E[𝑋2

𝑡 ] = E[𝑍2

𝑡𝑍
2

𝑡−1
𝑍2

𝑡−2
] = E[𝑍2

𝑡 ]E[𝑍2

𝑡−1
]E[𝑍2

𝑡−2
] = 𝜎6

𝑍

and

Cov(𝑋𝑡 , 𝑋𝑡+1) = E[𝑋𝑡𝑋𝑡+1] − E[𝑋𝑡]E[𝑋𝑡+1]
= E[{𝑍𝑡𝑍𝑡−1𝑍𝑡−2}{𝑍𝑡+1𝑍𝑡𝑍𝑡−1}] − 0

= E[𝑍𝑡+1]E[𝑍2

𝑡 ]E[𝑍2

𝑡−1
]E[𝑍𝑡−2] = 0.

Similarly, we have Cov(𝑋𝑡 , 𝑋𝑠) = 0 for 𝑡 ≠ 𝑠; the model is thus (weakly)

stationary.
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z=rnorm(100)

n=length(z)

zt=z[3:n]

zt1=z[2:(n-1)]

zt2=z[1:(n-2)]

x=zt*zt1*zt2

plot.ts(x)

MA(1) Let {𝑍𝑡} be a sequence of independent random variables with

𝜇𝑍 ≡ 0 and variance 𝜎2

𝑍
= Var(𝑍), and 𝜃 ∈ ℝ. The MA(1) model is:

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 , 𝑡 ≥ 2.

We see that E[𝑋𝑡] = E[𝑍𝑡 + 𝜃𝑍𝑡−1] = E[𝑍𝑡] + 𝜃E[𝑍𝑡−1], and that

Var(𝑋𝑡) = E[𝑋2

𝑡 ] = E[{𝑍𝑡 + 𝜃𝑍𝑡−1}2]
= E[𝑍2

𝑡 ] + 𝜃2

E[𝑍2

𝑡−1
] + 2𝜃 E[𝑍𝑡𝑍𝑡−1]︸     ︷︷     ︸

=0

= 𝜎2

𝑍 + 𝜃2𝜎2

𝑍 = 𝜎2

𝑍(1 + 𝜃2).

Thus the autocovariance of MA(1) is

𝛾𝑋(𝑡 , 𝑡 + ℎ) = 𝛾𝑋(ℎ) =


𝜎2

𝑍
(1 + 𝜃2) ℎ = 0;

𝜎2

𝑍
𝜃 ℎ = ±1;

0 |ℎ | > 1

.

Note that 𝛾𝑋(𝑡 , 𝑡 + ℎ) = 𝛾𝑋(ℎ) depends only on ℎ and so a MA(1) time

series is (weakly) stationary. Furthermore,

𝜌𝑋(𝑡 , 𝑡 + ℎ) = 𝜌𝑋(ℎ) =


1 ℎ = 0;

𝜃/(1 + 𝜃2) ℎ = ±1;

0 |ℎ | > 1

.

The ACF then also only depends on ℎ:

𝜌𝑋(𝑡 , 𝑡 + ℎ) = 𝜌𝑋(ℎ).

The set T𝑛 of stationary time series of length 𝑛 is a vector “subspace”

over ℝ of the set of all independent time series.
18

18: For a generous definition of subspace.
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Indeed,

1. {0𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ;

2. if {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ,𝜆 ∈ ℝ, then {𝜆𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ;

3. if {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛}, {𝑌𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 are independent
time series, then {𝑊𝑡 = 𝑋𝑡 + 𝑌𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 .

We only prove the third of these statements (the other two are left as

exercises).

Let {𝑋𝑡}, {𝑌𝑡} ∈ T𝑛 be independent time series, with means 𝜇𝑋 , 𝜇𝑌
and autocovariance functions 𝛾𝑋 and 𝛾𝑌 , respectively. Set𝑊𝑡 = 𝑋𝑡 + 𝑌𝑡 .
Then

𝜇𝑊 (𝑡) = E[𝑊𝑡] = E[𝑋𝑡 + 𝑌𝑡] = E[𝑋𝑡] + E[𝑌𝑡] = 𝜇𝑋 + 𝜇𝑌(:= 𝜇𝑊 )

and

𝛾𝑊 (𝑡 , 𝑡 + ℎ) = E[𝑊𝑡𝑊𝑡+ℎ] − E[𝑊𝑡]E[𝑊𝑡+ℎ]
= E[(𝑋𝑡 + 𝑌𝑡)(𝑋𝑡+ℎ + 𝑌𝑡+ℎ)] − 𝜇2

𝑊

= E[𝑋𝑡𝑋𝑡+ℎ] + E[𝑌𝑡𝑌𝑡+ℎ] + E[𝑋𝑡𝑌𝑡+ℎ]︸     ︷︷     ︸
=E[𝑋𝑡 ]E[𝑌𝑡 ]

+E[𝑌𝑡𝑋𝑡+ℎ]︸     ︷︷     ︸
=E[𝑋𝑡 ]E[𝑌𝑡 ]

−𝜇2

𝑊

= 𝛾𝑋(ℎ) + 𝜇2

𝑋 + 𝛾𝑌(ℎ) + 𝜇2

𝑌 + 𝜇𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌 − (𝜇𝑋 + 𝜇𝑌)2

= 𝛾𝑋(ℎ) + 𝛾𝑌(ℎ).

That is to say, {𝑊𝑡} ∈ T𝑛 . ■

9.1.4 Partial Autocorrelation (PACF)

Let {𝑋𝑡} ∈ T𝑛 with 𝜇𝑋 = 0. The partial (auto)covariance between 𝑋𝑡
and 𝑋𝑡+𝑘 is the covariance between 𝑋𝑡 and 𝑋𝑡+𝑘 , where we “condition

out” the intermediate time series 𝑋𝑡+1 , . . . , 𝑋𝑡+𝑘−1.

Assume that the random variables 𝑋1 and 𝑋3 from the stationary time

series have the following relationship:

𝑋1 = 𝛽1,3𝑋3 + 𝑍,

where 𝜇𝑍 = 0, and 𝑍 is independent of both 𝑋1 , 𝑋3. Then

𝑋1𝑋3 = 𝛽1,3𝑋
2

3
+ 𝑍𝑋3 =⇒ E[𝑋1𝑋3] = 𝛽1,3E[𝑋2

3
] + E[𝑍𝑋3]

=⇒ 𝛾𝑋(2) = 𝛽1,3𝛾𝑋(0) + E[𝑍]E[𝑋3] =⇒ 𝛾𝑋(2) = 𝛽1,3𝛾𝑋(0),

and so

𝛽1,3 =
𝛾𝑋(2)
𝛾𝑋(0)

= 𝜌𝑋(2).

If 𝑍 ∼ N(0, 𝜎2

𝑍
), we recognize 𝛽1,3 as the OLS regression parameter

when regressing 𝑋1 against 𝑋3.
19

Similarly, if we further assume that19: Strictly speaking, if 𝑍 is not normal,

the OLS qualifier does not apply but the

rest of the argument still works. 𝑋2 = 𝛽2,3𝑋3 +𝑉,
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where 𝑉 ∼ N(0, 𝜎2

𝑉
) is independent of both 𝑋2 , 𝑋3, then the OLS regres-

sion parameter when regressing 𝑋2 against 𝑋3 is

𝛽2,3 =
𝛾𝑋(1)
𝛾𝑋(0)

= 𝜌𝑋(1).

The partial (auto)correlation (PACF) between𝑋1 and𝑋2 is the correlation

between 𝑋1 and 𝑋2, removing the effect of 𝑋3:

𝜌1,2;3 = Corr(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3).

Hence,

𝜌1,2;3 =
Cov(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3)√

Var(𝑋1 − 𝛽1,3𝑋3)
√

Var(𝑋2 − 𝛽2,3𝑋3)
.

But we have

Cov(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3)
= Cov(𝑋1 , 𝑋2) + Cov(𝛽1,3𝑋3 , 𝛽2,3𝑋3) − Cov(𝑋1 , 𝛽2,3𝑋3) − Cov(𝛽1,3𝑋3 , 𝑋2)
= 𝛾𝑋(1) + 𝛽1,3𝛽2,3Cov(𝑋3 , 𝑋3) − 𝛽2,3Cov(𝑋1 , 𝑋3) − 𝛽1,3Cov(𝑋3 , 𝑋2)
= 𝛾𝑋(1) + 𝛽1,3𝛽2,3𝛾𝑋(0) − 𝛽2,3𝛾𝑋(2) − 𝛽1,3𝛾𝑋(1)
= 𝛾𝑋(1) + 𝜌𝑋(2)𝜌𝑋(1)𝛾𝑋(0) − 𝜌𝑋(1)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)
= 𝛾𝑋(1) + 𝜌𝑋(2)𝛾𝑋(1) − 𝜌𝑋(1)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)

= 𝛾𝑋(1) + 𝜌𝑋(2)𝛾𝑋(1) − 𝛾𝑋 (1)
𝛾𝑋 (0)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)

= 𝛾𝑋(1) + [𝜌𝑋(2)𝛾𝑋(1) − 𝛾𝑋(1)𝜌𝑋(2)] − 𝜌𝑋(2)𝛾𝑋(1) = 𝛾𝑋(1)(1 − 𝜌𝑋(2)).

We also have:

Var(𝑋1−𝛽1,3𝑋3) = 𝛾𝑋(0)
(
1 − 𝜌2

𝑋(2)
)

and Var(𝑋2−𝛽2,3𝑋3) = 𝛾𝑋(0)
(
1 − 𝜌2

𝑋(1)
)
.

Thus, the partial correlation is

𝜌1,2;3 =
𝛾𝑋(1)(1 − 𝜌𝑋(2))

𝛾𝑋(0)
√(

1 − 𝜌2

𝑋
(2)

) (
1 − 𝜌2

𝑋
(1)

) =
𝜌𝑋(1) − 𝜌𝑋(1)𝜌𝑋(2)√(
1 − 𝜌2

𝑋
(2)

) (
1 − 𝜌2

𝑋
(1)

)
=

Corr(𝑋1 , 𝑋2) − Corr(𝑋2 , 𝑋3) · Corr(𝑋1 , 𝑋3)√(
1 − Corr

2(𝑋1 , 𝑋3)
) (

1 − Corr
2(𝑋2 , 𝑋3)

) .
Note: 𝛾𝑋(1), Cov(𝑋1 , 𝑋2), and Cov(𝑋2 , 𝑋3) are interchangeable because

the time series {𝑋𝑡} is stationary; thus we have Corr(𝑋1 , 𝑋2) = Corr(𝑋2 , 𝑋3).

Similarly, the partial (auto)correlation between 𝑋1 and 𝑋3 is the correla-

tion between 𝑋1 and 𝑋3, removing the effect of 𝑋2:

𝜌1,3;2 =
Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(

1 − Corr
2(𝑋1 , 𝑋2)

) (
1 − Corr

2(𝑋2 , 𝑋3)
) .

The PACF Given a time series {𝑋𝑡}, the partial autocorrelation at lag ℎ,

denoted 𝛼𝑋(ℎ),20
is the autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ , removing 20: Or 𝛼(ℎ) if the context is clear.

the linear dependence of𝑋𝑡 on𝑋𝑡+1 , . . . , 𝑋𝑡+ℎ−1; the function 𝛼𝑋 is called

the partial autocorrelation function (PACF).
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Note that:

1. 𝛼(1) = 𝜌𝑋(1),
2. 𝛼(2) = 𝜌1,3;2,

3. 𝛼(3) = 𝜌1,4;2,3,

4. and so on.

A non-negligible aspect of the discipline involves computing the PACF

for different models; we anticipate the task by providing some some

calculations for a special case: the MA(1) model.

MA(1) Let {𝑍𝑡} be a sequence of independent random variables with

𝜇𝑍 ≡ 0 and variance 𝜎2

𝑍
= Var(𝑍), and 𝜃 ∈ ℝ. The MA(1) model is

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 , 𝑡 ≥ 2. We have seen that

𝜌𝑋(ℎ) =


1 ℎ = 0;

𝜃/(1 + 𝜃2) ℎ = ±1;

0 |ℎ | > 1

.

Thus,

𝛼(2) = Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(
1 − Corr

2(𝑋1 , 𝑋2)
) (

1 − Corr
2(𝑋2 , 𝑋3)

)
=

𝜌𝑋(2) − 𝜌2

𝑋
(1)√

1 − 𝜌2

𝑋
(1)

√
1 − 𝜌2

𝑋
(1)

=

0 − 𝜃2

(1 + 𝜃2)2

1 − 𝜃2

(1 + 𝜃2)2

=
−𝜃2

1 + 𝜃2 + 𝜃4

.

9.2 Estimating Model Parameters

In practice, we typically work with one of the time series’ realizations,

that is to say, the true 𝜇(·), 𝛾(·) and 𝛼(·) are not available to us.

9.2.1 Sample Statistics

As is usually the case, in statistical analysis, we can use the data at our

disposal in order to estimate the model’s parameters. As always, assume

that {𝑋𝑡} ∈ T𝑛 is stationary.

Sample Mean The mean 𝜇 = 𝜇𝑋 ≡ E[𝑋𝑡] can be estimated by the

sample mean:

𝜇̂ = 𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 .
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Sample Variance The variance 𝜎2

𝑋
≡ Var(𝑋𝑡) = E[(𝑋𝑡 − 𝜇)2] can be

estimated by the sample variance:

𝜎̂2

𝑋 = 𝛾̂𝑋(0) =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Sample (Auto)Covariance The covariance 𝛾𝑋(ℎ) = E[(𝑋𝑡−𝜇)(𝑋𝑡+ℎ−𝜇)]
(ACVF) can be estimated by the sample (auto)covariance:

𝛾̂𝑋(ℎ) =
1

𝑛 − 1

𝑛−ℎ∑
𝑡=1

(𝑋𝑡 − 𝑋)(𝑋𝑡+ℎ − 𝑋).

Sample (Auto)Correlation The (auto)correlation 𝜌𝑋(ℎ) = 𝛾𝑋(ℎ)/𝛾𝑋(0)
is estimated by the sample autocorrelation (sample ACF):

𝜌̂𝑋(ℎ) =
𝛾̂𝑋(ℎ)
𝛾̂𝑋(0)

.

Sample PACF The PACF is estimated by the sample PACF; for instance,

since

𝛼(2) =
𝜌𝑋(2) − 𝜌2

𝑋
(1)√

1 − 𝜌2

𝑋
(1)

√
1 − 𝜌2

𝑋
(1)

=
𝜌𝑋(2) − 𝜌2

𝑋
(1)

1 − 𝜌2

𝑋
(1)

,

then

𝛼̂(2) =
𝜌̂𝑋(2) − 𝜌̂2

𝑋
(1)

1 − 𝜌̂2

𝑋
(1)

.

9.2.2 Examples

White Noise Recall that white noise {𝑍𝑡} is a sequence of independent

random variables with mean 0 and variance 1. Then 𝛾𝑋(0) = 𝜌𝑋(0) = 1

and 𝛾𝑋(ℎ) = 𝜌𝑋(ℎ) = 0 for ℎ ≠ 0.

We prepare a realization of the white noise time series.

set.seed(1)

z = rnorm(100)

n = length(z)

(muz = mean(z))

gamma0 = sum((z-muz)^2)/(n-1)

var(z)

[1] 0.1088874

[1] 0.8067621

We see that the sample mean and the sample variance are near 0 and 1,

respectively. We can exhibit the sample ACF using the acf() func-

tion.
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zt = z[2:n]; zt1 = z[1:(n-1)]

(corr = acf(z))

autocorrelations of series ‘z’, by lag

0 1 2 3 4 5 6 7 8

1.000 -0.004 -0.027 -0.107 -0.113 -0.093 -0.125 0.065 0.043

9 10 11 12 13 14 15 16 17

0.026 0.025 -0.032 -0.042 0.053 -0.038 -0.022 -0.140 0.063

18 19 20

-0.023 -0.084 -0.112

For instance, we can extract 𝜌̂(1) using the following call:

corr$acf[2]

[1] -0.003651251

But we can also compute it directly:

gamma1 = sum((zt1-muz)*(zt-muz))/(n-1)

(rho1 = gamma1/gamma0)

[1] -0.003651251

The sample PACF can be obtained via the pacf() function.

(partial.corr = pacf(z))

Partial autocorrelations of series ‘z’, by lag

1 2 3 4 5 6 7 8 9

-0.004 -0.027 -0.108 -0.116 -0.105 -0.153 0.023 -0.002 -0.025

10 11 12 13 14 15 16 17 18

-0.005 -0.046 -0.052 0.069 -0.042 -0.039 -0.157 0.035 -0.053

19 20

-0.121 -0.190

For instance, we can extract 𝛼̂(2) using the following call:

partial.corr$acf[2]

[1] -0.02703468

But we can also compute it directly:
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(alpha2 = (corr$acf[3]-(corr$acf[2])^2)/(1-(corr$acf[2])^2))

[1] -0.02703468

Finally, we plot the sample ACF and sample PACF of the white noise time

series against the lag ℎ.
21

21: The dotted blue lines in the ACF and

PACF chart indicate the thresholds beyond

which the recorded values can be seen as

statistically different rom zero. These lines

are located at a height of± 1.96√
𝑛

(see Section

9.6 for an explanation).

par(mfrow=c(1,2))

acf(z); pacf(z)

“Multiplicative” Model Let {𝑍𝑡} be i.i.d. with mean 0 and variance 𝜎2

𝑍
.

Define

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1𝑍𝑡−2 , 𝑡 ≥ 3.

We prepare a realization of this time series, assuming that 𝑍𝑡 ∼ N(0, 1),
and display its sample ACF and sample PACF.

set.seed(2)

z = rnorm(100)

n = length(z)

zt = z[3:n]; zt1 = z[2:(n-1)]; zt2 = z[1:(n-2)];

x = zt*zt1*zt2

par(mfrow=c(1,2))

acf(x)

pacf(x)



514 9 Time Series and Forecasting

Are the results fundamentally different than those of the white noise

time series?
22

22: Keeping in mind that we are working

with (potentially) different realizations of

the respective time series.

MA(1) Recall MA(1) model

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 ,

We have derived the ACF of this model previously: 𝜌𝑋(0) = 1, 𝑟ℎ𝑜𝑋(1) =
𝜃/(1+𝜃2), and 𝑟ℎ𝑜𝑋(ℎ) = 0 for ℎ > 1. We prepare a realization of MA(1)

as follows:

set.seed(3)

z = rnorm(100,0,1)

n = length(z)

x = rep(0,n)

theta = 2

for(i in 2:n){

x[i] = z[i] + theta*z[i-1]

}

Theoretically, the only non-zero values of the ACF are at ℎ = 0 and ℎ = 1;

is that also going to be the case in the sample ACF?

par(mfrow=c(1,3))

plot.ts(x)

corr = acf(x)

pacf(x)
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It is not exactly so, obviously, but 𝜌̂𝑋(0) and 𝜌̂𝑋(1) are substantially larger

than the remaining 𝜌̂𝑋(ℎ).

The theoretical value of 𝜌𝑋(1) can be computed exactly:

(rho1 = theta/(1+theta^2))

[1] 0.4

How does that compare to the sample estimate 𝜌̂𝑋(1)?

corr[1]

autocorrelations of series ‘x’, by lag

1

0.401

Pretty darn close, we’d say.

Random Walk Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 𝜎2

𝑍
, and set 𝑋𝑡 =

∑⊤
𝑖=1
𝑍𝑖 .

We prepare a realization of a random walk and display its sample

ACF.
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set.seed(4)

z=rnorm(100)

x=cumsum(z)

acf(x)

Well, that is certainly rather different than the other sample ACF we have

studied so far... but perhaps it should not come as a surprise when we

remember that random walks are not stationary.

Time series analysis, then, requires first that the time series be decom-

posed into its

stationary (random) and

non-stationary components (trend, level shifts, seasonality, etc.).

Next, we try to identify the nature of the random component via a model

(using tools like the sample ACF and the sample PACF).

We will discuss commonly-encountered models in the following sec-

tions.

9.3 ARMA Models

In this section, we assume that the time series {𝑋𝑡} ∈ T𝑛 is stationary. We

will discuss the simplest of the non-trivial time series analysis models,

the auto-regressive moving average model (ARMA).

9.3.1 Linear Processes/Moving Averages

Let {𝑍𝑡} be a sequence of independent random variables with mean 0

and variance Var(𝑍𝑡) = E[𝑍2

𝑡 ] = 𝜎2

𝑍
.
23

Let 𝜓 𝑗 , 𝑗 ≥ 0, be a sequence of23: In the rest of this section, the assump-

tions on {𝑍𝑡 } will be taken for granted.
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constants such that

∑∞
𝑗=0

|𝜓 𝑗 | < ∞. Then

𝑋𝑡 =
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗

is called a linear process or a moving average.
24

24: The terms causal moving average or

one-sided moving average are also used,

to indicate that the sum starts at a finite

index 𝑗; a non-causal linear process would

take the form 𝑋𝑡 =
∑∞
𝑗=−∞ 𝜓 𝑗𝑍𝑡−𝑗 , but we

need a bi-directional sequence {𝑍𝑡 | 𝑡 ∈
ℤ} of independent random variables with

mean 0 and variance 𝜎2

𝑍
for this to make

sense.

The condition

∑∞
𝑗=0

|𝜓 𝑗 | < ∞ ensures that the infinite series converges:

E[|𝑋𝑡 |] ≤
∞∑
𝑗=0

|𝜓 𝑗 |E[|𝑍𝑡−𝑗 |] = E[|𝑍0 |]
∞∑
𝑗=0

|𝜓 𝑗 | < ∞.

Note that this condition is not necessary, however.
25

25:

∑∞
𝑗=0

|𝜓 𝑗 | < ∞ =⇒ ∑∞
𝑗=0

𝜓2

𝑗
< ∞.

Lemma: a linear process is a stationary time series with E[𝑋𝑡] = 0 and

𝛾𝑋(ℎ) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ .

Proof: if we assume that the convergence of the infinite sum of random

variables is “uniform”, then since E[𝑍𝑡] ≡ 0, we have

E[𝑋𝑡] = E

[
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗

]
=

∞∑
𝑗=0

𝜓 𝑗E[𝑍𝑡−𝑗] = 0;

that this is indeed the case is not trivial to show.
26

26: The proof is outside the scope of these

notes; we will take it as valid, sight unseen.

We interchange

∑
and E[·] once more,

27
to obtain:

27: Again, because of the 𝐿2−convergence

of the 𝜓−series.

𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡+ℎ] − E[𝑋𝑡]E[𝑋𝑡+ℎ] = E

[
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗
∞∑
𝑖=0

𝜓𝑖𝑍𝑡+ℎ−𝑖

]
− 0

=

∞∑
𝑗=0

∞∑
𝑖=0

𝜓 𝑗𝜓𝑖E[𝑍𝑡−𝑗𝑍𝑡+ℎ−𝑖].

Since the noise variables 𝑍𝑡 are independent, the only terms that con-

tributes to the double sum are those for which 𝑗 = 𝑖 − ℎ. Hence, the

double sum collapses to a single sum:

𝛾𝑋(ℎ) =
∞∑
𝑗=0

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎE[𝑍2

𝑡−𝑗] =
∞∑
𝑗=0

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ(𝜇2

𝑍 + 𝜎2

𝑍).

As 𝜇𝑍 = 0, we obtain the desired conclusion. ■

AR(1) The auto-regressive model of order 1, AR(1), with parameter 𝜙
takes the form

𝑋𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 .

If |𝜙 | < 1, AR(1) is the linear process with 𝜓 𝑗 = 𝜙 𝑗
; according to the

preceding lemma, we have

𝛾𝑋(ℎ) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ = 𝜎2

𝑍

∞∑
𝑗=0

𝜙 𝑗𝜙 𝑗+ℎ = 𝜎2

𝑍𝜙
ℎ

∞∑
𝑗=0

(𝜙2)𝑗 = 𝜎2

𝑍

𝜙ℎ

1 − 𝜙2

,
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using the formula for the sum of a geometric series.
28

28: Note that the sum does not converge

for |𝜙 | ≥ 1.

MA(𝑞) The moving average model of order 𝑞, MR(𝑞), with parameter

vector 𝜽 = (𝜃1 , · · · , 𝜃𝑞) takes the form

𝑋𝑡 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · + 𝜃𝑞𝑍𝑡−𝑞 .

This is a linear process with 𝜓0 = 1, 𝜓1 = 𝜃1 , . . . ,𝜓𝑞 = 𝜃𝑞 , and 𝜓 𝑗 = 0,

for all 𝑗 > 𝑞;
29

according to the preceding lemma, we have29: We set 𝜃0 = 1, by convention.

𝛾𝑋(ℎ) =


𝜎2

𝑍

∞∑
𝑗=0

𝜃𝑗𝜃𝑗+ℎ = 𝜎2

𝑍

𝑞−ℎ∑
𝑗=0

𝜃𝑗𝜃𝑗+ℎ ℎ = 0, . . . , 𝑞

0 ℎ > 𝑞.

9.3.2 ARMA in General

In order to define the general ARMA model, we introduce a crucial

element of time series analysis.

Backward Shift Operator Recall that the difference operator ∇ acts on a

time series {𝑋𝑡} according to

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 , as long as 𝑋𝑡−1 exists.

The backward shift operator 𝐵 is defined by

𝐵𝑋𝑡 = (1 − ∇)𝑋𝑡 = 𝑋𝑡 − (𝑋𝑡 − 𝑋𝑡−1) = 𝑋𝑡−1.

It is easy to show (by induction, say) that 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘 , for all 𝑘 for which

𝑋𝑡−𝑘 exists.

AR(1) If

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 ,

then, by formal manipulations of the expressions, we have

𝑋𝑡 = 𝜙(𝜙𝑋𝑡−2 + 𝑍𝑡−1) + 𝑍𝑡 = 𝜙2𝑋𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 ,
= 𝜙3𝑋𝑡−3 + 𝜙2𝑍𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 = · · ·
= · · · + 𝜙4𝑍𝑡−4 + 𝜙3𝑍𝑡−3 + 𝜙2𝑍𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 ,

which we recognize as the AR(1) process.
30

30: Convergence still requires |𝜙 | < 1.

Equivalently, if we set 𝜙(𝑥) = 1 − 𝜙𝑥, then AR(1) rewrites as:

𝑋𝑡 − 𝜙𝐵𝑋𝑡 = 𝑍𝑡 ⇐⇒ (1 − 𝜙𝐵)𝑋𝑡 = 𝑍𝑡 ⇐⇒ 𝜙(𝐵)𝑋𝑡 = 𝑍𝑡 .

MA(1) Recall that MA(1) is the linear process

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 ,
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where the 𝑍𝑡 are as in AR(1) above. If we set 𝜃(𝑧) = 1 + 𝜃𝑧, then MA(1)

rewrites as:

𝑋𝑡 = 𝑍𝑡 + 𝜃𝐵𝑍𝑡 ⇐⇒ 𝑋𝑡 = (1 + 𝜃𝐵)𝑍𝑡 ⇐⇒ 𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 .

ARMA(1, 1) We can use 𝜙(𝑥) and 𝜃(𝑧) to define a new model:

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

which upon expansion becomes

𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃𝑍𝑡−1.

This model combines the AR(1) and MA(1) models, which is why we call

it an auto-regressive moving average model of order (1, 1).

ARMA(𝑝, 𝑞) Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance Var(𝑍𝑡) = E[𝑍2

𝑡 ] = 𝜎2

𝑍
. A time series {𝑋𝑡}

is an auto-regressive moving average model of order (𝑝, 𝑞), denoted

ARMA(𝑝, 𝑞), if it solves the equation

𝑋𝑡 − 𝜙1𝑋𝑡−1 − · · · − 𝜙𝑝𝑋𝑡−𝑝 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · 𝜃𝑞𝑍𝑡−𝑞 .

Equivalently,

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

where

𝜙(𝑥) = 1 − 𝜙1𝑥 − · · · − 𝜙𝑝𝑥
𝑝 , and 𝜃(𝑧) = 1 + 𝜃1𝑧 + · · · + 𝜃𝑞𝑧

𝑞

are the auto-regressive and moving average polynomials, respectively.

The statement “ARMA(𝑝, 𝑞) solves the equation” means that we can

write 𝑋𝑡 as a stationary linear process

𝑋𝑡 =
∞∑

𝑗=−∞
𝜓 𝑗𝑍𝑡−𝑗 ,

where the coefficients 𝜓 𝑗 depend on the model parameters 𝜙1 , . . . , 𝜙𝑝
and 𝜃1 , . . . , 𝜃𝑞 .

While ARMA models do not need to be causal, we will only be interested

in causal models:

𝑋𝑡 =
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 .

9.3.3 Stationarity and Causality

A stationary solution for ARMA(𝑝, 𝑞) exists whenever the auto-regressive

polynomial

𝜙(𝑧) = 1 − 𝜙1𝑥 − · · · − 𝜙𝑝𝑥
𝑝

has no root on the complex unit circle, which is to say that of 𝜙’s roots

satisfy |𝑥 | ≠ 1.
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A causal solution for ARMA(𝑝, 𝑞) exists whenever the roots of the auto-

regressive polynomial auto-regressive polynomial 𝜙(𝑥) all lie outside
the complex open unit disk, which is to say that all of 𝜙’s roots satisfy

|𝑥 | > 1.

Examples

1. The auto-regressive polynomial of the AR(1) model

𝑋𝑡 − 1.1𝑋𝑡−1 = 𝑍𝑡

is 𝜙(𝑥) = 1 − 1.1𝑥; its only root is at 𝑥0 = 1/1.1, for which |𝑥0 | < 1.

Thus we can write 𝑋𝑡 as a stationary linear process, but there are

no causal solution.

2. The model 𝑋𝑡 − 0.1𝑋𝑡−1 = 𝑍𝑡 is both stationary and causal.

3. The model 𝑋𝑡 − 𝑋𝑡−1 = 𝑍𝑡 is causal but non-stationary; its auto-

regressive polynomial 𝜙(𝑥) only has a root at 𝑥 = 1.

4. Consider the AR(2) process 𝑋𝑡 − 0.1𝑋𝑡−1 − 0.4𝑋𝑡−2 = 𝑍𝑡 . Equiva-

lently, we can write 𝑋𝑡 −0.1𝐵𝑋𝑡 −0.4𝐵2𝑋𝑡 = 𝑍𝑡 ; its auto-regressive

polynomial is thus

𝜙(𝑥) = 1 − 0.1𝑥 − 0.4𝑥2 ,

whose roots are 𝑥1 ≈ 1.46 and 𝑥2 ≈ −1.71. Both of these roots have

modulus larger than one, so the process is causal and there is a

stationary solution.

5. Consider the AR(2) process (1−𝐵−𝐵2)𝑋𝑡 = 𝑍𝑡 . The auto-regressive

polynomial is

𝜙(𝑥) = 1 − 𝑥 − 𝑥2 ,

whose roots are 𝑥1,2 = (−1± 𝑖
√

3)/2. The modulus is 1 and so there

are no stationary solution (but the process is causal).

6. Consider the AR(2) process 𝑋𝑡 − 0.1𝑋𝑡−1 + 0.4𝑋𝑡−2 = 𝑍𝑡 . The

auto-regressive polynomial is

𝜙(𝑥) = 1 − 0.2𝑥 + 0.4𝑥2 ,

whose only roots are imaginary:

𝑥1,2 =
0.1 ± 𝑖

√
1.56

0.8
= 0.25 ± 0.1561249500𝑖.

Both roots have the same modulus which is ≈ 1.58; this is larger

than 1 so the linear process is stationary and causal.

7. Consider the AR(2) process 𝑋𝑡 − 𝜙𝑋𝑡−1 − 𝜙𝑋𝑡−2 = 𝑍𝑡 ; its auto-

regressive polynomial is

𝜙(𝑥) = 1 − 𝜙𝑥 − 𝜙𝑥2 ,

whose roots are

𝑥1,2(𝜙) = −
𝜙 ±

√
𝜙2 + 4𝜙

2𝜙
.

Then Δ = 𝜙2 + 4𝜙 = 𝜙(𝜙 + 4) > 0 if 𝜙 < −4 and 𝜙 > 0, so the

roots are real when 𝜙 ∉ [−4, 0]; over (−4, 0), the roots are complex
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conjugates, with

|𝑥1,2(𝜙)| =
�����12 ± 𝑖

√
−𝜙2 − 4𝜙

2𝜙

����� =
√

1

4

+
(−𝜙2 − 4𝜙)

4𝜙2

=

√
− 1

𝜙
.

We seek the instances where |𝑥1,2(𝜙)| = 1.

a) When 𝜙 ∉ [−4, 0], 𝑥1,2(𝜙) = ±1 if and only if

−
𝜙 ±

√
𝜙2 + 4𝜙

2𝜙
= ±1 ⇐⇒ 𝜙 ±

√
𝜙2 + 4𝜙 = ±2𝜙

⇐⇒ 𝜙 ± 2𝜙 = ±
√
𝜙2 + 4𝜙,

that is, −𝜙 = ±
√
𝜙2 + 4𝜙 or 3𝜙 = ±

√
𝜙2 + 4𝜙. Squaring on

both sides yields 𝜙2 = 𝜙2+4𝜙 or 9𝜙2 = 𝜙2+4𝜙; this becomes

𝜙 = 0, which we must reject as it is not in the domain of 𝑥1,2(𝜙),
or 𝜙 = 1/2, which is.

b) When 𝜙 ∈ (−4, 0), |𝑥1,2(𝜙)| = 1 if and only if

√
−1/𝜙 = 1, so

that −1/𝜙 = 1, or 𝜙 = −1.

The situation is summarized in Figure 9.5.

Figure 9.5: Modulus of the roots of the

quadratic polynomial 𝜙(𝑥) = 1−𝜙𝑥−𝜙𝑥2

as a function of 𝜙; the roots are real and

distinct when 𝜙 < −4 or 𝜙 > 0 (red, blue);

they are complex conjugates when −4 <
𝜙 < 0 (green). The corresponding linear

process is causal and stationary when the

modulus is larger than or equal to 1 for

both roots; by piecewise continuity of the

modulii, we see that this is the case for

𝜙 ∈ [−2, 0) ∪ (0, 1/2].

9.3.4 Linear Representation

Given an ARMA(𝑝, 𝑞) model, how do we represent it as a linear process?

There is no easy way to do this in the general case, but we will study

some basic models.
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MA(𝑞) If 𝑝 = 0, then an ARMA(0, 𝑞) model is simply an MA(𝑞) model,

and its linear representation is trivial:

𝑋𝑡 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · + 𝜃𝑞𝑍𝑡−𝑞 ,

with 𝜓0 = 1, 𝜓1 = 𝜃1, . . ., 𝜓𝑞 = 𝜃𝑞 , and 𝜓𝑘 = 0 for all 𝑘 > 𝑞.

As 𝑞 is finite,

∞∑
𝑗=0

|𝜓 𝑗 | = 1 + |𝜃1 | + · · · + |𝜃𝑞 | < ∞.

AR(1) The simplest auto-regressive model is obtained by setting 𝑝 = 1

and 𝑞 = 0 in ARMA(𝑝, 𝑞):

𝜙(𝐵)𝑋𝑡 = 𝑍𝑡 ,

where the auto-regressive polynomial is 𝜙(𝑥) = 1 − 𝜙𝑥. Define

𝜒(𝑥) = 1

𝜙(𝑥) =
1

1 − 𝜙𝑥
.

This function has a power series expansion:

𝜒(𝑥) = 1

1 − 𝜙𝑥
=

∞∑
𝑗=0

𝜙 𝑗𝑥 𝑗 ,

which we know converges whenever |𝜙 | < 1. Multiplying the original

model on both sides by 𝜒(𝐵) yields:

𝜒(𝐵)𝜙(𝐵)𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 =⇒ 𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 ,

since 𝜒(𝑥)𝜙(𝑥) = 1 for all 𝑥, by construction. Thus, the linear representa-

tion of AR(1) is

𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 ,

a formula we have seen before.

We note that the formal computation above only yields a causal linear

representation when |𝜙 | < 1.
31

31: If |𝜙 | > 1, we one can still represent

the process linearly, but it is not causal.

ARMA(1, 1) What can we say if 𝑝 = 1 and 𝑞 = 1, that is, if

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

where 𝜙(𝑥) = 1 − 𝜙𝑥 and 𝜃(𝑧) = 1 + 𝜃𝑧?

We once again define

𝜒(𝑥) = 1

𝜙(𝑥) =
1

1 − 𝜙𝑥
=

∞∑
𝑗=0

𝜙 𝑗𝑥 𝑗 .

Multiplying the original model on both sides by 𝜒(𝐵) yields:

𝜒(𝐵)𝜙(𝐵)𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 , =⇒ 𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 ,
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since 𝜒(𝑥)𝜙(𝑥) = 1 for all 𝑥. In other words,

𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗(1 + 𝜃𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗𝑍𝑡 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗+1𝑍𝑡

=

∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−(𝑗+1).

But we would like 𝑋𝑡 to take the form

∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 , that is, we want:

∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗−1.

We rewrite this equation as:

𝜓0𝑍𝑡 +
∞∑
𝑗=1

𝜓 𝑗𝑍𝑡−𝑗 = 𝜙0𝑍𝑡 +
∞∑
𝑗=1

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=1

𝜙 𝑗−1)𝑍𝑡−𝑗

= 𝜙0𝑍𝑡 +
∞∑
𝑗=1

(𝜙 𝑗 + 𝜃𝜙 𝑗−1)𝑍𝑡−𝑗 .

The linear representation of ARMA(1,1) is thus

𝜓0 = 1, 𝜓 𝑗 = 𝜙 𝑗−1(𝜙 + 𝜃), 𝑗 ≥ 1;

This formula was obtained under the assumptions that |𝜙 | < 1,
32

and 32: To insure the convergence of the power

series representation of 𝜒(𝑥).
that 𝜙 + 𝜃 ≠ 0.

33

33: Otherwise, 𝑋𝑡 = 𝑍𝑡 for all 𝑡.

ARMA(1, 𝑞) The procedure for ARMA(1, 𝑞) works in much the same

way as it did for ARMA(1, 1).

AR(𝑝) The general procedure for AR(𝑝), 𝑝 ≥ 2, is much more involved;

we will not discuss it.

9.3.5 Autocovariance Function

The simplest ways to obtain the ACVF of an ARMA model either use the

model’s linear representation or a recursive method.

MA(𝑞) and AR(1) The linear representation of the MA(𝑞) model is trivial;

for AR(1), we use the linear representation from Section 9.3.1. In both

cases, we used the Lemma in that section to compute each model’s ACVF

(see p. 9.3.2).

ARMA(1, 1) For this special case (and for ARMA(1,𝑞) in general), we

also use the linear representation from Section 9.3.4 and the Lemma from

Section 9.3.1 to obtain the ACVF.
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Specifically, since 𝜓0 = 1, 𝜓 𝑗 = 𝜙 𝑗−1(𝜙+𝜃), 𝑗 ≥ 1, and |𝜙 | < 1, we have

𝛾𝑋(0) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓2

𝑗 = 𝜎2

𝑍𝜓
2

0
+ 𝜎2

𝑍

∞∑
𝑗=1

𝜓2

𝑗

= 𝜎2

𝑍 + 𝜎2

𝑍

∞∑
𝑗=1

(𝜙 𝑗−1)2(𝜙 + 𝜃)2

= 𝜎2

𝑍

[
1 + (𝜙 + 𝜃)2

∞∑
𝑗=1

𝜙2(𝑗−1)

]
= 𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
.

Similarly,

𝛾𝑋(1) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+1 = 𝜎2

𝑍𝜓1 + 𝜎2

𝑍

∞∑
𝑗=1

𝜓 𝑗𝜓 𝑗+1

= 𝜎2

𝑍(𝜙 + 𝜃) + 𝜎2

𝑍

∞∑
𝑗=1

𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗(𝜙 + 𝜃)

= 𝜎2

𝑍

[
(𝜙 + 𝜃) + 1

𝜙
(𝜙 + 𝜃)2

∞∑
𝑗=1

𝜙2𝑗

]
= 𝜎2

𝑍

[
(𝜙 + 𝜃) + 𝜙

(𝜙 + 𝜃)2
1 − 𝜙2

]
.

For a general ℎ ≥ 1, note first that

𝜓0𝜓ℎ = 𝜓ℎ = 𝜙ℎ−1(𝜙 + 𝜃) = 𝜙ℎ−1𝜙1−1(𝜙 + 𝜃) = 𝜙ℎ−1𝜓1 = 𝜙ℎ−1𝜓0𝜓1;

if 𝑗 ≥ 1, we also have

𝜓 𝑗𝜓 𝑗+ℎ = 𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗+ℎ−1(𝜙 + 𝜃) = 𝜙ℎ−1

[
𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗(𝜙 + 𝜃)

]
= 𝜙ℎ−1𝜓 𝑗𝜓 𝑗+1.

Thus, 𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(1) for ℎ ≥ 1, and so

𝛾𝑋(ℎ) =


𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
ℎ = 0,

𝜎2

𝑍𝜙
ℎ−1

[
(𝜙 + 𝜃) + 𝜙

(𝜙 + 𝜃)2
1 − 𝜙2

]
ℎ ≥ 1.

AR(1) We can obtain 𝛾𝑋(ℎ) for AR(1) by setting 𝜃 = 0 in the the ACVF

for the ARMA(1, 1) model, but we will illustrate a recursive method that

generalizes to AR(𝑝) or general ARMA(𝑝, 𝑞) models with 𝑝 ≥ 2.

Let ℎ ∈ ℕ. We start by multiplying the AR(1) equation 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡
by 𝑋𝑡−ℎ on both sides and applying the expectation operator to obtain:

E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙E[𝑋𝑡−1𝑋𝑡−ℎ] + E[𝑍𝑡𝑋𝑡−ℎ].

By definition, 𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡−ℎ] − E[𝑋𝑡]E[𝑋𝑡−ℎ]. But E[𝑋𝑡] = 0 for

all 𝑡 as {𝑋𝑡} is assumed to be stationary; thus E[𝑋𝑡𝑋𝑡−ℎ] = 𝛾𝑋(ℎ) and

E[𝑋𝑡−1𝑋𝑡−ℎ] = 𝛾𝑋(ℎ − 1).

For all ℎ ≥ 1 we know that 𝑍𝑡 is independent of𝑋𝑡−ℎ , which is most easily

seen with the linear representation of AR(1): 𝑋𝑡−ℎ =
∑∞
𝑗=0

𝜙 𝑗𝑍𝑡−ℎ−𝑗 .34
34: Note that this would not be the case if

we had multiplied by 𝑋𝑡+ℎ to start with.

Thus, E[𝑍𝑡𝑋𝑡−ℎ] = E[𝑍𝑡]E[𝑋𝑡−ℎ] = 0, and the AR(1) equation is equiva-
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lent to the recursive formula:

𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙E[𝑋𝑡−1𝑋𝑡−ℎ] = 𝜙𝛾𝑋(ℎ − 1), ℎ ≥ 1,

or, by induction:

𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(0), ℎ ≥ 1.

We start the recursion by computing 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
. We have

Var(𝑋𝑡) = 𝜙2

Var(𝑋𝑡−1) + Var(𝑍𝑡),

again, since 𝑋𝑡−1 and 𝑍𝑡 are independent.

As 𝑋𝑡 is stationary, Var(𝑋𝑡) = Var(𝑋𝑡−1) for all 𝑡 and we have

𝜎2

𝑋 = 𝜙2𝜎2

𝑋 + 𝜎2

𝑍 .

Solving for 𝜎2

𝑋
yields:

𝜎2

𝑋 =
𝜎2

𝑍

1 − 𝜙2

.

Finally

𝛾𝑋(ℎ) = 𝜙ℎ𝛾𝑋(0) = 𝜎2

𝑍

𝜙ℎ

1 − 𝜙2

,

which agrees with the ACVF that was calculated in Section 9.3.1.

AR(2) This model’s equation is 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 . We use

a similar approach: we multiply both sides by 𝑋𝑡−ℎ and apply the

expectation operator to obtain:

E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙1E[𝑋𝑡−1𝑋𝑡−ℎ] + 𝜙2E[𝑋𝑡−2𝑋𝑡−ℎ] + E[𝑍𝑡𝑋𝑡−ℎ].

An argument similar to the one presented for AR(1) yields the AR(2)

recursion formula:

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙2𝛾𝑋(ℎ − 2), ℎ ≥ 2.

We start the recursion by computing 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
and 𝛾𝑋(1).

To do so, we multiply the AR(2) equation by 𝑋𝑡−1 and once again apply

the expectation operator to get:

E[𝑋𝑡𝑋𝑡−1] = 𝜙1E[𝑋2

𝑡−1
] + 𝜙2E[𝑋𝑡−2𝑋𝑡−1] + E[𝑍𝑡𝑋𝑡−1]︸      ︷︷      ︸

=0

,

so that

𝛾𝑋(1) = 𝜙1𝛾𝑋(0) + 𝜙2𝛾𝑋(1) =⇒ 𝛾𝑋(1)
1 − 𝜙2

𝜙1

= 𝛾𝑋(0).

Next, we multiply the AR(2) equation by 𝑋𝑡 and apply the expectation

operator one last time to get:

E[𝑋2

𝑡 ] = 𝜙1E[𝑋𝑡−1𝑋𝑡] + 𝜙2E[𝑋𝑡−2𝑋𝑡] + E[𝑍𝑡𝑋𝑡].
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But 𝑍𝑡 and 𝑋𝑡 are not independent; in fact,

E[𝑍𝑡𝑋𝑡] = E[𝑍𝑡(𝜙1𝑋𝑡−1+𝜙2𝑋𝑡−2+𝑍𝑡)] = 𝜙1E[𝑍𝑡𝑋𝑡]+𝜙2E[𝑍𝑡𝑋𝑡−2]+E[𝑍2

𝑡 ] = 𝜎2

𝑍 ,

and so

𝛾𝑋(0) = 𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(2) + 𝜎2

𝑍 .

However, we know that

𝛾𝑋(2) = 𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(0)

from the AR(2) recursion formula, with ℎ = 2; we can substitute this

expression into the equation for 𝛾𝑋(0) to obtain:

𝛾𝑋(0) = 𝜙1𝛾𝑋(1) + 𝜙2

{
𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(0)

}
+ 𝜎2

𝑍 ,

which yields:

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙2𝛾𝑋(ℎ − 2), ℎ ≥ 2,

𝛾𝑋(1) = 𝜎2

𝑍

𝜙1

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} ,
𝛾𝑋(0) = 𝜎2

𝑍

1 − 𝜙2

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} .
We can perform a sanity check, by letting 𝜙2 = 0, 𝜙1 = 𝜙; the last two

formulas reduce to 𝛾𝑋(0) and 𝛾𝑋(1) for AR(1).
35

35: It is easy to see that the recursive for-

mula for the ACVF of AR(𝑝) takes the

form:

𝛾𝑋 (ℎ) =
𝑝∑
𝑗=1

𝜙 𝑗𝛾𝑋 (ℎ − 𝑗). 9.3.6 Partial Autocorrelation Function

The partial autocorrelation of a time series {𝑋𝑡} at lag ℎ, denoted by

𝛼(ℎ), is the autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ , after removing the

linear dependence of 𝑋𝑡 on 𝑋𝑡+1 , . . . , 𝑋𝑡+ℎ−1.

MA(1) We have already calculated 𝛼(2) for MA(1); for a general ℎ ∈ ℕ,

it can be shown that the PACF is:

𝛼(ℎ) = −(−𝜃)ℎ
1 + 𝜃2 + · · · + 𝜃2ℎ

.

Since the denominator is always positive, we see that MA(1)’s PACF has

an oscillating behaviour, but that it tapers to 0 when ℎ → ∞.

AR(1) The PACF for the AR(1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 is such that

𝛼(1) = 𝜌𝑋(1) = 𝜙, 𝛼(2) = Corr(𝑋𝑡 , 𝑋𝑡+2 − 𝜙𝑋𝑡+1) = Corr(𝑋𝑡 , 𝑍𝑡+2) = 0.

It turns out that this PACF behaviour is typical of AR(𝑝) models.
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Theorem: consider a stationary AR(𝑝) time series. Then

𝛼(ℎ) = 0, ℎ = 𝑝 + 1, 𝑝 + 2, . . . .

Examples In what follows, we generate a realization of various ARMA(𝑝, 𝑞)

models through package tseries’ arima() function, and display the

sample ACF and sample PACF plots.
36

Do the graphs have the expected 36: The examples will also showcase the

syntax of the simulation function.
characteristics?

White Noise

library(tseries)

set.seed(10)

MyTimeSeries = arima.sim(model = list(ar = c()),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

AR(1)

set.seed(11)

MyTimeSeries = arima.sim(model = list(ar = c(0.1)),

n = 1000,

rand.gen = rnorm);

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)
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set.seed(12)

MyTimeSeries = arima.sim(model = list(ar = c(0.8)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

set.seed(14)

MyTimeSeries = arima.sim(model = list(ar = c(1.1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

Error in arima.sim(model = list(ar = c(1.1)), n = 1000, rand.gen = rnorm) :

’ar’ part of model is not stationary

AR(2)

set.seed(13)

MyTimeSeries = arima.sim(model = list(ar = c(0.7,0.1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)
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MA(1)

set.seed(15)

MyTimeSeries = arima.sim(model = list(ma = c(1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

MA(2)

set.seed(16)

MyTimeSeries = arima.sim(model = list(ma = c(1,1)),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

ARMA(1, 2)

set.seed(17)

MyTimeSeries = arima.sim(model = list(ar = c(0.8),

ma = c(1,1)),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)
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acf(MyTimeSeries)

pacf(MyTimeSeries)

Summary:

for AR(𝑝) models 𝛾𝑋(ℎ) ≠ 0 for any ℎ.

for MA(𝑞) models 𝛾𝑋(ℎ) = 0 for any |ℎ | > 𝑞;

for AR(𝑝) models 𝛼(ℎ) = 0 for any |ℎ | > 𝑝;

for MA(𝑞) models 𝛼𝑋(ℎ) ≠ 0 for any ℎ.

9.4 Forecasting with Stationary Time Series

In practice, once of the main objectives of time series analysis is to predict
(or forecast) 𝑋𝑛+𝑘 for some 𝑘 ≥ 1, having observed {𝑋1 , . . . , 𝑋𝑛} from a

time series with known mean 𝜇 and ACVF 𝛾𝑋(𝑘), 𝑘 ≥ 0.

Consider a stationary sequence with mean 𝜇 = E[𝑋𝑡] and covariance

𝛾𝑋(ℎ). Denote by 𝑃𝑛𝑋𝑛+𝑘 a prediction for 𝑋𝑛+𝑘 , given the 𝑛 observations

𝑋1 , . . . , 𝑋𝑛 .

We will restrict ourselves to linear predictors, that is to say, predictors of

the form:

𝑃𝑛𝑋𝑛+𝑘 = 𝑎0 + 𝑎1𝑋𝑛 + · · · + 𝑎𝑛𝑋1 = 𝑎0 +
𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖 ,

where 𝑎0 , 𝑎1 , . . . , 𝑎𝑛 ∈ ℝ.

As is usually the case in statistical applications, this can be recast as an

optimization problem. We seek values a = (𝑎0 , . . . , 𝑎𝑛) which minimize

the expected mean squared error (MSE):

E

[
(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2

]
,

One challenge is that we cannot minimize (𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2 directly

since, there would be no reason to predict 𝑋𝑛+𝑘 if we already knew it.
37

37: While the whole entreprise is remi-

niscent of OLS regression, there are some

important differences, chief among them

being that the predictors 𝑋𝑛+1−𝑖 are typi-

cally correlated with one another.

9.4.1 Yule-Walker Procedure

Let

𝑆(a) = E

[
(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2

]
= E

[
(𝑋𝑛+𝑘 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]
.
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We minimize 𝑆 by finding its critical points, i.e. by solving ∇𝑆(a) = 0.

The partial derivative of 𝑆 with respect to 𝑎0 is

E

[
2(𝑋𝑛+𝑘 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖) · 1

]
= 2

(
𝜇 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
;

setting it equal to 0 yields

𝑎0 = 𝜇
(
1 −

𝑛∑
𝑖=1

𝑎𝑖

)
.

If {𝑋𝑡} is assumed to be stationary, then 𝜇 = 0, and so 𝑎0 = 0.

The partial derivatives with respect to 𝑎1 , . . . , 𝑎𝑛 are thus:

E

[
− 2

(
𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
𝑋𝑛+1−𝑗

]
, 𝑗 = 1, . . . , 𝑛.

Setting each of these to 0 yields:

E[𝑋𝑛+𝑘𝑋𝑛+1−𝑗] −
𝑛∑
𝑖=1

𝑎𝑖E[𝑋𝑛+1−𝑖𝑋𝑛+1−𝑗] = 0, 𝑗 = 1, . . . , 𝑛.

Since 𝐸[𝑋𝑡] = 𝜇 = 0, the above expectations are the covariances of {𝑋𝑡}
at lags 𝑛 + 𝑘 − (𝑛 + 1 − 𝑗) = 𝑘 − 1 + 𝑗 and 𝑛 + 1 − 𝑖 − (𝑛 + 1 − 𝑗) = 𝑖 − 𝑗,

and we can thus write the system of equations as:

𝛾𝑋(𝑘 − 1 + 𝑗) =
𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑖 − 𝑗), 𝑗 = 1, . . . , 𝑛. (9.1)

Define the matrix

Γ𝑛 = [𝛾𝑋(|𝑖 − 𝑗 |)]𝑛𝑖,𝑗=1

and the column vectors

𝜸(𝑛; 𝑘) = (𝛾𝑋(𝑘), . . . , 𝛾𝑋(𝑘 + 𝑛 − 1))⊤ , a𝑛 = (𝑎1 , . . . , 𝑎𝑛)⊤.

We recognize Γ𝑛 as the variance-covariance matrix of (𝑋1 , . . . , 𝑋𝑛),
whose diagonal entries are 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
.

If 𝑛 = 1, for instance, then Γ1 = 𝛾𝑋(0); if 𝑛 = 2, then

Γ2 =

[
𝛾𝑋(0) 𝛾𝑋(1)

𝛾𝑋(| − 1|) 𝛾𝑋(0)

]
=

[
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

]
.

We can write the system of 𝑛 equations in 𝑛 unknowns from (9.1) in a

matrix-vector notation:

Γ𝑛a𝑛 = 𝜸(𝑛; 𝑘),

whose solution, assuming that Γ𝑛 is invertible, is the Yule-Walker fore-
casting formula:

a𝑛 = Γ−1

𝑛 𝜸(𝑛; 𝑘).

Note that it is model-independent.38

38: Well, the formula for a𝑛 is, at any rate.

It only really assumes that the time series

is stationary. But it does depend on the

autocovariances of the time series; with a

model, it is usually rather straightforward

to compute these. Without a model, we

have to use the sample autocovariances.
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MSPE The above procedure guarantees that the mean squared predic-
tion error

MSPE𝑛(𝑘) = E

[
(𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]

is minimized when a is chosen according to the Yule-Walker procedure.

Can we calculate the MSPE value?

Recall that the E[𝑋𝑡] ≡ 0 by stationarity. Thus,

E

[
(𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]

= E

[
𝑋2

𝑛+𝑘
]
− 2

𝑛∑
𝑖=1

𝑎𝑖E[𝑋𝑛+𝑘𝑋𝑛+1−𝑖] + E

[ ( 𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
2

]
= 𝛾𝑋(0) − 2

𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑘 + 𝑖 − 1) + E

[ 𝑛∑
𝑖 , 𝑗=1

𝑎𝑖𝑋𝑛+1−𝑖𝑋𝑛+1−𝑗𝑎 𝑗
]

= 𝛾𝑋(0) − 2

𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑘 + 𝑖 − 1) +
𝑛∑

𝑖 , 𝑗=1

𝑎𝑖𝛾𝑋(𝑖 − 𝑗)𝑎 𝑗

= 𝛾𝑋(0) − 2a⊤𝑛𝜸(𝑛; 𝑘) + a⊤𝑛Γ𝑛a𝑛 = 𝛾𝑋(0) − a⊤𝑛𝜸(𝑛; 𝑘).

An important remark is that the MSPE formula depends on 𝑘; in particular,

it is possible that, given a set of observations 𝑋1 , . . . , 𝑋𝑛 , predictions

further in the future (i.e., having a larger 𝑘) may have a larger prediction

error than those nearer 𝑡 = 𝑛.
39

39: Of course, it could also be the other

way around – but the point is that we

should not expect MSPE𝑛(𝑘) to be con-

stant with 𝑘. Example: AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 ,
where |𝜙 | < 1 and 𝑍𝑡 are i.i.d. with mean 0 and variance 𝜎2

𝑍
. We have

already seen that {𝑋𝑡} is stationary, and so that 𝜇 = E[𝑋𝑡] ≡ 0.

Recall that the autocovariances for this model are:

𝛾𝑋(ℎ) = 𝜙ℎ
𝜎2

𝑍

1 − 𝜙2

, ℎ ≥ 0.

If we are interested in predicting 𝑋𝑛+1, then we need:

𝜸(𝑛; 𝑘) = 𝜸(𝑛; 1) = (𝛾𝑋(1), . . . , 𝛾𝑋(𝑛))⊤ =
𝜎2

𝑍

1 − 𝜙2

(𝜙, . . . , 𝜙𝑛)⊤.

The Yule-Walker forecasting equation in this case becomes

𝜎2

𝑍

1 − 𝜙2

©­­­­«
1 𝜙 · · · 𝜙𝑛−1

𝜙 1 · · · 𝜙𝑛−2

...
...

. . .
...

𝜙𝑛−1 𝜙𝑛−2 · · · 1

ª®®®®¬
©­­«
𝑎1

...

𝑎𝑛

ª®®¬ =
𝜎2

𝑍

1 − 𝜙2

©­­«
𝜙
...

𝜙𝑛

ª®®¬ .
We can show that the determinant of of Γ𝑛 is

det(Γ𝑛) = (−1)𝑛−1(𝜙 − 1)𝑛−1(𝜙 + 1)𝑛−1

(
𝜎2

𝑍

1 − 𝜙2

)𝑛
≠ 0

since |𝜙 | < 1. There is thus a unique forecasting solution a𝑛 .
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But

Γ𝑛

©­­­­«
𝜙
0

...

0

ª®®®®¬
=

𝜎2

𝑍

1 − 𝜙2

©­­­­«
1 · 𝜙 + 0 · (...)
𝜙 · 𝜙 + 0 · (...)

...

𝜙𝑛−1 · 𝜙 + 0 · (...)

ª®®®®¬
=

𝜎2

𝑍

1 − 𝜙2

©­­­­«
𝜙
𝜙2

...

𝜙𝑛

ª®®®®¬
,

and so a𝑛 = (𝜙, 0, . . . , 0)⊤ is the unique Yule-Walker forecast vector for

the AR(1) model.

The Yule-Walker prediction for 𝑋𝑛+1 is thus

𝑃𝑛𝑋𝑛+1 = 𝑎1𝑋𝑛 + 𝑎2𝑋𝑛−1 + · · · + 𝑎𝑛𝑋1 = 𝜙𝑋𝑛 ,

while the MSPE is

MSPE𝑛(1) = 𝛾𝑋(0) − a :
⊤
𝑛 𝜸(𝑛; 1) = 𝛾𝑋(0) − 𝜙𝛾𝑋(1) − 0 · 𝛾𝑋(2) − · · · − 0 · 𝛾𝑋(𝑛)

=
𝜎2

𝑍

1 − 𝜙2

− 𝜙2

𝜎2

𝑍

1 − 𝜙2

= 𝜎2

𝑍 .

Note, however, that these formulas cannot yet be used in a practical

setting since they involve the unknown parameters 𝜙 and 𝜎2

𝑍
.

9.4.2 Durbin-Levinson Algorithm

In the AR(1) prediction example, we were lucky that the solution a𝑛
was provided in extremis; there is a way to find the best linear predictor

without having to compute the inverse of Γ𝑛 . But it comes at a price: the

approach only allows one-step prediction to 𝑃𝑛𝑋𝑛+1.

We assume that 𝜇 = E[𝑋𝑡] ≡ 0 and 𝑎0 = 0, as in the Yule-Walker

procedure.

We re-write the linear predictor as

𝑃𝑛𝑋𝑛+1 = 𝜙𝑛,1𝑋𝑛 + · · · + 𝜙𝑛,𝑛𝑋1.

That is, 𝑎1 = 𝜙𝑛,1 , . . . , 𝑎𝑛 = 𝜙𝑛,𝑛 .

If 𝑛 = 1, we seek to find 𝑃1𝑋2 = 𝜙1,1𝑋1 which minimizes

E

[
(𝑋2 − 𝑃1𝑋2)2

]
= E

[
(𝑋2 − 𝜙1,1𝑋1)2

]
.

We differentiate with respect to 𝜙1,1 and set equal to 0 to find the

critical point:

E

[
2(𝑋2 − 𝜙1,1𝑋1)(−𝑋1)

]
= 0 =⇒ E[𝑋1𝑋2] = 𝜙1,1E[𝑋2

1
],

which is to say that

𝜙1,1 =
𝛾𝑋(1)
𝛾𝑋(0)

= 𝜌𝑋(1).

If 𝑛 = 2, we seek to find 𝜙2,1 and 𝜙2,2 in

𝑃2𝑋3 = 𝜙2,1𝑋2 + 𝜙2,2𝑋2.
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As in the Yule-Walker procedure we minimize

E[(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)2].

Taking derivatives with respect to 𝜙2,1 and 𝜙2,2 leads to:

E[−2𝑋2(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)] = 0

E[−2𝑋1(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)] = 0;

equivalently, since the mixed expectations are covariances and the

squared ones are variances, this can be written as:

𝛾𝑋(1) − 𝜙2,1𝛾𝑋(0) − 𝜙2,2𝛾𝑋(1) = 0

𝛾𝑋(2) − 𝜙2,1𝛾𝑋(1) − 𝜙2,2𝛾𝑋(0) = 0.

We divide both equations by 𝛾𝑋(0) and re-organize the terms to

obtain:

𝜙2,1 = 𝜌𝑋(1) − 𝜙2,2𝜌𝑋(1) = 𝜌𝑋(1) − 𝜙2,2𝜙1,1 , by step 𝑛 = 1;

0 = 𝜌𝑋(2) − 𝜙2,1𝜌𝑋(1) − 𝜙2,2

Solving for 𝜙2,1 and 𝜙2,2, we arrive at

𝜙2,2 =
𝜌𝑋(2) − 𝜙1,1𝜌𝑋(1)

1 − 𝜙1,1𝜌𝑋(1)
,

𝜙2,1 = 𝜌𝑋(1) − 𝜙2,2𝜙1,1.

We use either 𝜙1,1 or 𝜌𝑋(1), solely based on convenience (since they

are equal). In the last system of equations, the coefficients 𝜙2,2 and

𝜙2,1 are computed using sample autocorrelations, as well as 𝜙1,1

(from the step 𝑛 = 1).

This recursive procedure can be extended for a general 𝑛.

Durbin-Levinson Algorithm The coefficients 𝜙𝑛,1 , . . . , 𝜙𝑛,𝑛 in the best

linear prediction 𝑃𝑛𝑋𝑛+1 can be computed recursively as:

𝜙𝑛,𝑛 =

[
𝛾𝑋(𝑛) −

𝑛−1∑
𝑗=1

𝜙𝑛−1, 𝑗𝛾𝑋(𝑛 − 𝑗)
]
𝑣−1

𝑛−1
;

©­­«
𝜙𝑛,1
...

𝜙𝑛,𝑛−1

ª®®¬ =
©­­«
𝜙𝑛−1,1

...

𝜙𝑛−1,𝑛−1

ª®®¬ − 𝜙𝑛,𝑛
©­­«
𝜙𝑛−1,𝑛−1

...

𝜙𝑛−1,1

ª®®¬ ,
and

𝑣𝑛 = 𝑣𝑛−1[1 − 𝜙2

𝑛,𝑛], 𝑣0 = 𝛾𝑋(0), 𝜙1,1 = 𝜌𝑋(1).

Note that the Durbin-Levinson algorithm and the Yule-Walker procedure

lead to the same results for 𝑃𝑛𝑋𝑛+1; indeed, in both cases we compute

the coefficents of the linear prediction 𝑃𝑛𝑋𝑛+1 using the mean squared

error criterion, the difference being that we approach the problem from

two different angles.
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AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡
are i.i.d. with mean 0 and variance 𝜎2

𝑍
.

We know the ACVF and ACF of {𝑋𝑡} are

𝛾𝑋(ℎ) = 𝜙ℎ
𝜎2

𝑍

1 − 𝜙2

, and 𝜌𝑋(ℎ) = 𝛾𝑋(ℎ)/𝛾𝑋(0) = 𝜙ℎ .

Using the Durbin-Levinson algorithm, we find the linear coefficients and

predictors as follows:

𝜙1,1 = 𝜙, 𝑃1𝑋2 = 𝜙𝑋1;

𝜙2,1 = 𝜙, 𝜙2,1 = 0, 𝑃2𝑋3 = 𝜙𝑋2;

...
...

𝜙𝑛,1 = 𝜙, 𝜙𝑛,2 = · · · = 𝜙𝑛,𝑛 = 0, 𝑃𝑛𝑋𝑛+1 = 𝜙𝑋𝑛 .

Partial Autocovariance function (PACF) As a by-product of the Durbin-

Levinson algorithm, we obtain the PACF via:

𝛼(0) = 1; 𝛼(ℎ) = 𝜙ℎ,ℎ , ℎ ≥ 1.

9.4.3 Forecast Limits and Prediction Intervals

We obtained model-independent formulas for (linearly) predicted time

series values in the preceding sections, depending solely on the sample

autocovariances.
40

Discussions of accuracy, however, require model 40: Although we can use a model if one

is available.
assumptions.

Let 𝑋𝑡 =
∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 be a causal linear process with E[𝑍𝑡] = 0 and

Var(𝑍𝑡) = 𝜎2

𝑍
, and 𝑘 ≥ 1 an integer.

It can be shown that the mean squared prediction error at 𝑃𝑛𝑋𝑛+𝑘 is:

MSPE𝑛(𝑘) = E[(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2] = 𝜎2

𝑍

𝑘−1∑
𝑗=0

𝜓2

𝑗 .

The theoretical forecast limits of the 100(1 − 𝛼)% prediction interval are

thus:

𝑃𝑛𝑋𝑛+𝑘 ± 𝑧𝛼/2

√
MSPE𝑛(𝑘) = 𝑃𝑛𝑋𝑛+𝑘 ± 𝑧𝛼/2

𝜎𝑍

√√
𝑘−1∑
𝑗=0

𝜓2

𝑗
,

where 𝑧𝛼/2
is the 𝛼/2 quantile of the standard normal distribution.

41
41: You know the one: if 𝛼 = 0.05, then

𝑧𝛼/2
= 1.96.

Note that MSPE (and so the coefficients 𝜓 𝑗) are model-dependent: no

model, no prediction interval!

9.4.4 Example: Currency Conversion Data

We illustrate the notions presented in this section with an example, using

the quarterly mean exchange rate between British pounds (UK) and New

Zealand dollar (NZD), from Jan 1991 to Mar 2000 (prepared by Darrin

Speegler).
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ExchangeRate = c(2.9243,2.9422,3.1719,3.2542,3.3479,

3.5066,3.0027,2.8440,2.8378,2.7301,

2.7008,2.6138,2.5874,2.5787,2.5470,

2.4701,2.3895,2.3705,2.3859,2.2766,

2.2351,2.2450,2.3208,2.3390,2.3687,

2.5120,2.6917,2.8435,3.0922,3.2528,

3.1852,3.0340,2.9593,3.0498,3.1869,

3.2286,3.1925,3.3522,3.5310)

The time series plot tells a better story.

plot.ts(ExchangeRate)

The model is clearly not stationary.

We detrend the data via the exponential smoother ExpSmooth of Section

9.1.2, with 𝛼 = 0.6.

alpha = 0.6

ExchangeRate.smoothed <- ExpSmooth(ExchangeRate,alpha)

Stationary = ExchangeRate - ExchangeRate.smoothed

The ACF and PACF of the stationary components are found below.

par(mfrow=c(1,3))

plot.ts(Stationary)

acf(Stationary)

pacf(Stationary)
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The detrended time series looks like AR(1).
42

We centre the time series and 42: Does it? How could you tell?

use the Yule-Walker method to verify that this is indeed an appropriate

model – we will be discussing this further in Section 9.5.3.

MyTimeSeries = Stationary

n = length(MyTimeSeries)

mean = mean(MyTimeSeries)

MyTimeSeries.centered = MyTimeSeries-mean(MyTimeSeries)

(fit.ar <- ar(MyTimeSeries.centered,method="yule-walker"))

Coefficients:

1

0.6241

Order selected 1 sigma^2 estimated as 0.002842

The Yule-Walker estimates of the selected AR(1) model are 𝜙̂ = 0.6241,

𝜎2

𝑋
= 0.002842, respectively.

We can verify the Yule-Walker output by comparing with the ACF.

par(mfrow=c(1,1))

(ACF <- acf(MyTimeSeries.centered))

Autocorrelations of series ‘MyTimeSeries.centered’, by lag

0 1 2 3 4 5 6 7 8

1.000 0.624 0.281 0.154 0.001 0.000 -0.027 -0.027 0.048

9 10 11 12 13 14 15

0.085 0.063 0.018 0.001 -0.039 -0.125 -0.149
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The second entry is indeed 0.624, the estimator of 𝜙, which can also be

accessed as follows.

phi = acf(MyTimeSeries.centered)$acf[2]

The sample variance of the centered data is:

(v = var(MyTimeSeries.centered))

[1] 0.004532399

The estimator of 𝜎2

𝑍
is:

v-phi^2*v

[1] 0.002767046

How can we tell if the AR(1) fit is appropriate? We can compute the

“residuals” of the 𝑋𝑡 − 𝜙̂𝑋𝑡−1 and compare it to 𝑍𝑡 , which is to say an i.i.d.

random variable with mean 0 and variance 𝜎2

𝑍
. What do the residual

time series ACF and PACF look like?
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Residuals <- MyTimeSeries.centered[2:n] -

phi*MyTimeSeries.centered[1:(n-1)]

par(mfrow=c(1,2))

acf(Residuals)

pacf(Residuals)

It certainly seems as though there is little dependence left in the residuals

time series. We can apply the Ljung-Box test (which we will discuss in

Section 9.6).

Box.test(Residuals,type="Ljung",lag=1,fitdf=1)

Box-Ljung test

data: Residuals

X-squared = 30.799, df = 1, p-value = 2.862e-08

The outcome is compatible with the notion that the residuals are i.i.d.

random variables.

We can also extract the residuals directly.

fit.ar$resid;

[1] NA 3.887364e-03 8.700283e-02 8.415571e-03

[5] 1.833739e-02 4.546024e-02 -2.249571e-01 -2.963355e-02

[9] 2.332064e-02 -3.416757e-02 -4.645337e-04 -2.963498e-02

[13] -2.659019e-03 8.326911e-05 -1.243842e-02 -2.978541e-02

[17] -2.692054e-02 1.589073e-03 6.651807e-03 -4.574392e-02

[21] -9.575653e-03 8.526158e-03 2.929546e-02 -1.888002e-03

[25] 4.617796e-03 4.978927e-02 5.405892e-02 3.551993e-02

[29] 7.382926e-02 2.972301e-02 -5.720633e-02 -6.845055e-02

[33] -2.147845e-02 4.429304e-02 4.800134e-02 -3.084927e-04

[37] -2.693691e-02 6.015361e-02 5.375058e-02
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Note that this produces one "NA", as the first residual corresponds to

𝑋1 − 𝜙̂𝑋0, but 𝑋0 does not exist in the original stationary time series.

The normality of the residuals (as well as their mean) can be visually

assessed as follows.

par(mfrow=c(1,2))

qqnorm(Residuals);

hist(Residuals)

There are some off-the-beaten-track values, but for the most part, the data

is compatible with the idea of the residuals being normally distributed,

with mean 0 and variance 𝜎̂2

𝑍
.

We can predict the next value of MyTimeSeries, and get the MSPE and

its prediction interval as follows.

(prediction.next <- mean*(1-phi) + phi*MyTimeSeries[n])

(MSPE = (v-phi^2*v))

[1] 0.06405712

[1] 0.002767046

MSPE can also be obtained by typing fit.ar$var.pred at the prompt.

alpha=0.05

quantile = qnorm(1-alpha/2)

c(prediction.next - quantile*sqrt(MSPE),

prediction.next + quantile*sqrt(MSPE))

[1] -0.03904232 0.16715655

But to make a prediction in the original data, we need to take the last value

in the smoothed time series and add the prediction for the stationary

component; this serves as the prediction of the next observation for the

original time series.
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(Prediction.Exchange.Rate.next <-

ExchangeRate.smoothed[n] + prediction.next)

[1] 3.497661

We can also determine the quality of the model fit by “predicting” past

values of the original time series using the same process as above (black:

original; blue: smoothed model: red: predictions).

prediction <- mean*(1-phi) + phi*(MyTimeSeries)

prediction <- c(MyTimeSeries[1],prediction[1:n-1])

Prediction.Exchange.Rate <- ExchangeRate.smoothed +

prediction[1:n]

par(mfrow=c(1,1))

plot.ts(ExchangeRate)

points(ExchangeRate.smoothed,type="l",col="blue")

points(Prediction.Exchange.Rate,type="p",col="red")

(Squared.Error =

sum((Prediction.Exchange.Rate - ExchangeRate)^2))

[1] 0.1020082

What happens if we ignore the non-stationary behaviour and work on the

original data itself instead of the stationary component? The Yule-Walker

method says the data follows an AR(1) model, but with different 𝜙 and

𝜎̂2

𝑋
values.

par(mfrow=c(1,3))

plot.ts(ExchangeRate)

acf(ExchangeRate)

pacf(ExchangeRate)

mean = mean(ExchangeRate)

ExchangeRate.centered = ExchangeRate - mean(ExchangeRate);

(fit.ar <- ar(ExchangeRate.centered,method="yule-walker"))
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Coefficients:

1

0.8903

Order selected 1 sigma^2 estimated as 0.03125

This fit’s residuals do not appear to form an i.i.d. sequence.

phi = fit.ar$ar

Residuals <- ExchangeRate.centered[2:n] -

phi*ExchangeRate.centered[1:(n-1)]

par(mfrow=c(1,2))

acf(Residuals)

pacf(Residuals)

Note, in particular, the large value of 𝜌̂𝑋(1) ≈ 0.5. The fitted AR(1)

model is the best of the AR models for the data, but it is unlikely to be

correct. Nothing is stopping us from predicting new values on the (false)

assumption that it was correct, unfortunately.
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prediction <- mean*(1-phi) + phi*ExchangeRate

prediction <- c(ExchangeRate[1],prediction[1:n-1])

Prediction.Exchange.Rate.Wrong <- prediction[1:n]

par(mfrow=c(1,1))

plot.ts(ExchangeRate)

points(ExchangeRate.smoothed,type="l",col="blue")

points(Prediction.Exchange.Rate.Wrong,type="p",col="red")

(Squared.Error.Wrong =

sum((Prediction.Exchange.Rate.Wrong-ExchangeRate)^2))

[1] 0.7490375

The predictions are clearly not as accurate as they were in our first attempt

at analyzing the data – the squared error is seven times larger now than

it was then.
43

43: This example highlights the impor-

tance of understanding the process; it is

not sufficient to know how to produce new

predictions from a time series data – we

also need to know not to apply the proce-

dure when the time series is not stationary,

or when the model is a poor fit to the data.

9.5 Estimation of ARMA Models

Let’s assume that we have observations {𝑋1 , . . . , 𝑋𝑛} from a time series

and that we have also identified that a model ARMA(𝑝, 𝑞) from which

they could conceivably arise. How can we best estimate the parameters

𝜙1 , . . . , 𝜙𝑝 and/or 𝜃1 , . . . , 𝜃𝑞?

9.5.1 Mean: I.I.D. Case

Assume first that 𝑋1 , . . . , 𝑋𝑛 are i.i.d. In practice, the mean of such a

sequence is not typically 0. We estimate 𝜇 ≡ E[𝑋𝑡] by the method of
moments, using the sample mean 𝑋:

E[𝑋] = E

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
𝑛𝜇 = 𝜇.

Using the independence of the 𝑋𝑡 , we have:

Var(𝑋) = Var

(
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

)
=

1

𝑛2

Var

(
𝑛∑
𝑖=1

𝑋𝑖

)
=

𝛾𝑋(0)
𝑛

.
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This computation leads to the Central Limit Theorem.

Lemma: assume that 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with mean 𝜇 and variance

𝛾𝑋(0). Then

√
𝑛

{
𝑋 − 𝜇√
𝛾𝑋(0)

}
d→ N(0, 1),

that is

lim

𝑛→∞
𝑃

(
√
𝑛

{
𝑋 − 𝜇√
𝛾𝑋(0)

}
≤ 𝑥

)
= Φ(𝑥),

where Φ is the standard normal cumulative distribution function.

This allows us to construct a 95% confidence interval for the mean 𝜇:

C.I.(𝜇; 0.95) ≡
(
𝑋 − 1.96

√
𝛾𝑋(0)√
𝑛

, 𝑋 + 1.96

√
𝛾𝑋(0)√
𝑛

)
.

This confidence interval involves the unknown 𝛾𝑋(0), which can be

estimated with the sample variance.

9.5.2 Mean: Time Series

When the time series {𝑋1 , . . . , 𝑋𝑛} does not consist of i.i.d. random

variables but arises from a stationary time series, the estimate for 𝜇
remains valid, but the variance computation has to be modified.

Instead, we have

Var(𝑋) = Cov

(
𝑋, 𝑋

)
= Cov

(
𝑋1 + · · · + 𝑋𝑛

𝑛
,
𝑋1 + · · · + 𝑋𝑛

𝑛

)
=

1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

Cov(𝑋𝑖 , 𝑋𝑗) =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛾𝑋(𝑖 − 𝑗)

=
1

𝑛2

𝑛−1∑
ℎ=−(𝑛−1)

(𝑛 − |ℎ |)𝛾𝑋(ℎ) =
1

𝑛2

𝑛∑
ℎ=−𝑛

(𝑛 − |ℎ |)𝛾𝑋(ℎ)

=
1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |).

As an illustration, assume that 𝑛 = 3. Then

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛾𝑋(𝑖 − 𝑗) = 3𝛾𝑋(0) + 2𝛾𝑋(1) + 2𝛾𝑋(−1) + 𝛾𝑋(2) + 𝛾𝑋(−2)

=

2∑
ℎ=−2

(3 − |ℎ |)𝛾𝑋(ℎ).

Assume now that 𝛾𝑋(|ℎ |) → 0 as |ℎ | → ∞. Then

lim

𝑛→∞
1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |) = lim

𝑛→∞
1

𝑛

𝑛∑
ℎ=−𝑛

𝛾𝑋(|ℎ |) = 0,
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and

lim

𝑛→∞
𝑛Var(𝑋) = lim

𝑛→∞
𝑛

1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |)

= lim

𝑛→∞

𝑛∑
ℎ=−𝑛

𝛾𝑋(|ℎ |) =
∞∑

ℎ=−∞
𝛾𝑋(|ℎ |) = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ)

as long as {𝑋𝑡} is short-range dependent (

∑∞
−∞ |𝛾𝑋(|ℎ |)| < ∞).

This computation is one of the main steps to establish the Central Limit

Theorem in the general case.

Lemma: assume that 𝑋1 , . . . , 𝑋𝑛 is a stationary short-range dependent

time series with mean 𝜇, variance 𝛾𝑋(0), and covariance function 𝛾𝑋(ℎ).
Then

√
𝑛

{
𝑋 − 𝜇

𝜈

}
d→ 𝑁(0, 1),

that is

lim

𝑛→∞
𝑃

(
√
𝑛

{
𝑋 − 𝜇

𝜈

}
≤ 𝑥

)
= Φ(𝑥),

where Φ is as above, and

𝜈2 = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ).

This allows us to construct a 95% confidence interval for the mean 𝜇:

C.I.(𝜇; 0.95) ≡
(
𝑋 − 1.96

𝜈√
𝑛
, 𝑋 + 1.96

𝜈√
𝑛

)
.

This confidence interval involves the unknown 𝜈.

Example Recall that the AR(1) model is 𝑋𝑡 = 𝜙𝑋𝑡−1 +𝑍𝑡 , with the usual

assumptions on 𝑍𝑡 .
44

Then 𝛾𝑋(ℎ) = 𝜎2

𝑍

𝜙ℎ

1−𝜙2
, and so 44: In order to obtain the linear represen-

tation of the model, we need to have 𝜇 = 0.

If the data is not centered (𝜇 ≠ 0), consider

instead the shifted model

𝑋𝑡 − 𝜇 = 𝜙(𝑋𝑡−1 − 𝜇) + 𝑍𝑡 .

The stationary solution will then be

𝑋𝑡 = 𝜇 +
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 .

𝜈2 = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ) = 𝜎2

𝑍

1

1 − 𝜙2

+ 2𝜎2

𝑍

1

1 − 𝜙2

𝜙

1 − 𝜙
= 𝜎2

𝑍

1

(1 − 𝜙)2 .

9.5.3 Yule-Walker Estimators

The method we present now has similarities with Yule-Walker forecasting;

it works quite well for AR(𝑝) models.

Assume a stationary and causal AR(1) model: 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where

|𝜙 | < 1, E[𝑍𝑡] ≡ 0, and Var(𝑍𝑡) ≡ 𝜎2

𝑍
. Multiply both sides of the equation,

once by 𝑋𝑡−1 and another time by 𝑋𝑡 , to get

𝑋𝑡𝑋𝑡−1 = 𝜙𝑋𝑡−1𝑋𝑡−1 + 𝑍𝑡𝑋𝑡−1 ,

𝑋2

𝑡 = 𝜙𝑋𝑡𝑋𝑡−1 + 𝑋𝑡𝑍𝑡 .
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We apply the expectation operator on both of these new equations (recall

that E[𝑋𝑡] = 0 and that 𝑋𝑡−1 is independent of 𝑍𝑡 because the time series

is causal) to obtain:

𝛾𝑋(1) = 𝜙𝛾𝑋(0) + 0,

𝛾𝑋(0) = 𝜙𝛾𝑋(1) + E[𝑋𝑡𝑍𝑡].

That last term evaluates to

E[𝑋𝑡𝑍𝑡] = E[(𝜙𝑋𝑡−1 + 𝑍𝑡)𝑍𝑡] = 𝜙E[𝑋𝑡−1𝑍𝑡] + E[𝑍2

𝑡 ] = 𝜎2

𝑍 .

Hence, the system reduces to:

𝛾𝑋(0)𝜙 = 𝛾𝑋(1)
𝜎2

𝑍 = 𝛾𝑋(0) − 𝜙𝛾𝑋(1).

Now, consider 𝑝 = 2: 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 . Multiply both sides of

that equation, once each by by 𝑋𝑡−2, 𝑋𝑡−1, and 𝑋𝑡 , to obtain:

𝑋𝑡𝑋𝑡−2 − 𝜙1𝑋𝑡−1𝑋𝑡−2 − 𝜙2𝑋
2

𝑡−2
= 𝑍𝑡𝑋𝑡−2 ,

𝑋𝑡𝑋𝑡−1 − 𝜙1𝑋
2

𝑡−1
− 𝜙2𝑋𝑡−2𝑋𝑡−1 = 𝑍𝑡𝑋𝑡−1 ,

𝑋2

𝑡 − 𝜙1𝑋𝑡−1𝑋𝑡 − 𝜙2𝑋𝑡−1𝑋𝑡 = 𝑋𝑡𝑍𝑡 .

We once again apply the expectation operator on each of these new

equations to obtain:

𝛾𝑋(1) − 𝜙1𝛾𝑋(1) − 𝜙2𝛾𝑋(0) = 0

𝛾𝑋(1) − 𝜙1𝛾𝑋(0) − 𝜙2𝛾𝑋(1) = 0

𝛾𝑋(0) − 𝜙1𝛾𝑋(1) − 𝜙2𝛾𝑋(2) = 𝜎2

𝑍 .

As in section 9.4.1 we consider the variance-covariance matrix

Γ𝑝 = [𝛾𝑋(𝑖 − 𝑗)]𝑝
𝑖, 𝑗=1

,

and the vectors

𝝓𝑝 =
(
𝜙1 , . . . , 𝜙𝑝

)⊤
and 𝜸(𝑝; 1) =

(
𝛾𝑋(1), . . . , 𝛾𝑋(𝑝)

)⊤
.

For 𝑝 = 1, Γ1 = 𝛾𝑋(0); for 𝑝 = 2,

Γ2 =

(
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(−1) 𝛾𝑋(0)

)
=

(
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

)
.

We can thus re-write the AR(1) and AR(2) systems above as:

Γ𝑝𝝓𝑝 = 𝜸(𝑝; 1), 𝜎2

𝑍 = 𝛾𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1).

Equivalently, we obtain the Yule-Walker equations

𝝓𝑝 = Γ−1

𝑝 𝜸(𝑝; 1), 𝜎2

𝑍 = 𝛾𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1),

which are very similar to the Yule-Walker forecast equations.
45

It is not45: Note that they do involve unknown

autocovariances.
hard to see that the equations hold for a general AR(𝑝).



9.5 ARMA Estimation 547

We can combine them with the method of moments,
46

to obtain the 46: We simply replace the mean with the

sample mean and the autocovariances

with the sample autocovariances.

Yule-Walker estimators:

𝝓𝑝 = Γ̂−1

𝑝 𝜸(𝑝; 1), 𝜎̂2

𝑍 = 𝛾̂𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1),

where Γ̂𝑝 and 𝜸(𝑝; 1) are obtained by substituting 𝛾𝑋 by 𝛾̂𝑋 .

Theorem: for a large-enough sample size 𝑛, the Yule-Walker estimators

are approximately normal, with

𝝓𝑝 ∼ N

(
𝝓𝑝 ,

1

𝑛
𝜎2

𝑍Γ
−1

𝑝

)
.

In particular, for 𝑝 = 1,

𝜙 ∼ N

(
𝜙,

1

𝑛
𝜎2

𝑍𝛾
−1

𝑋 (0)
)
.

That is, Var(𝜙) ∼ 1

𝑛 𝜎
2

𝑍
𝛾−1

𝑋
(0).

Confidence interval for AR(1) The theoretical confidence interval for

the parameter 𝜙 of AR(1) is

C.I.𝛼(𝜙) ≡ 𝜙 ± 𝑧𝛼/2

1√
𝑛
𝜎𝑍

√
𝛾−1

𝑋
(0),

where 𝑧𝛼/2
is the standard normal quantile. Since 𝜎2

𝑍
and 𝛾𝑋(0) are

unknown, we replace them with estimators to obtain the empirical
(practical) confidence interval

C.I.𝛼(𝜙) ≈ 𝜙 ± 𝑧𝛼/2

1√
𝑛
𝜎̂𝑍

√
𝛾̂−1

𝑋
(0),

where

𝜙 =
𝛾̂𝑋(1)
𝛾̂𝑋(0)

and 𝜎̂2

𝑍 = 𝛾̂𝑋(0) − 𝜙𝛾̂𝑋(1).

Confidence interval for AR(2) The limiting variance-covariance matrix

for the Yule-Walker estimators 𝜙1, 𝜙2 is

𝜎2

𝑍Γ
−1

2
=

[
1 − 𝜙2

2
−𝜙1(1 + 𝜙2)

−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

]
.

Indeed, we have

Γ2 =

[
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

]
=⇒ Γ−1

2
=

1

𝛾2

𝑋
(0) − 𝛾2

𝑋
(1)

[
𝛾𝑋(0) −𝛾𝑋(1)
−𝛾𝑋(1) 𝛾𝑋(0)

]
.

Previously, we saw that

𝛾𝑋(1) = 𝜎2

𝑍

𝜙1

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} and 𝛾𝑋(0) = 𝜎2

𝑍

1 − 𝜙2

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} .
Substituting these in the expression for Γ−1

2
yields the desired result.
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In particular, Var(𝜙1) ∼ 1

𝑛 (1 − 𝜙2

2
) and Var(𝜙2) ∼ 1

𝑛 (1 − 𝜙2

2
). Conse-

quently,

C.I.𝛼(𝜙1) ≡ 𝜙1 ± 𝑧𝛼/2

1√
𝑛

√
1 − 𝜙2

2
and C.I.𝛼(𝜙2) ≡ 𝜙2 ± 𝑧𝛼/2

1√
𝑛

√
1 − 𝜙2

2
,

where 𝜙1 and 𝜙2 are obtained from the Yule-Walker estimators.

9.5.4 Example

We illustrate this last concept with a simple example.

US Unemployment Data The United States’ monthly unemployment

rate starting with January 1996 is collected in USunemp.txt [3].

US.month <- c(5.6,5.5,5.5,5.6,5.6,5.3,5.5,5.1,5.2,5.2,

5.4,5.4,5.3,5.2,5.2,5.1,4.9,5.0,4.9,4.8,

4.9,4.7,4.6,4.7,4.6,4.6,4.7,4.3,4.4,4.5,

4.5,4.5,4.6,4.5,4.4,4.4,4.3,4.4,4.2,4.3,

4.2,4.3,4.3,4.2,4.2,4.1,4.1,4.0,4.0,4.1,

4.0,3.8,4.0,4.0,4.0,4.1,3.9,3.9,3.9,3.9,

4.2,4.2,4.3,4.4,4.3,4.5,4.6,4.9,5.0,5.3,

5.5,5.7,5.7,5.7,5.7,5.9,5.8,5.8,5.8,5.7,

5.7,5.7,5.9,6.0,5.8,5.9,5.9,6.0,6.1,6.3,

6.2,6.1,6.1,6.0,5.9,5.7,5.7,5.6,5.7,5.5,

5.6,5.6,5.5,5.4,5.4,5.4,5.4,5.4,5.2,5.4,

5.1,5.1,5.1,5.0,5.0,4.9,5.1,4.9,5.0,4.9,

4.7,4.8,4.7,4.7,4.6,4.6,4.8,4.7,4.6,4.4)

We put the data in a ts object and plot the data.

US.month.ts <- ts(US.month,start=c(1996,1), freq=12)

plot.ts(US.month.ts)

The time series is clearly not stationary, so we decompose it.
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plot(decompose(US.month.ts))

We recover the stationary part from this decomposition and analyse it as

below.
47

47: The default smoother for the

decompose() function is a moving

average.

Stationary <- decompose(US.month.ts)$random

MyTimeSeries = Stationary[7:120]

mean = mean(MyTimeSeries);

MyTimeSeries.centered = MyTimeSeries-mean

par(mfrow=c(1,2))

acf(MyTimeSeries.centered)

pacf(MyTimeSeries.centered)

The ACVF/ACF has non-zero values at various lags ℎ (outside the band);

the PACF has all zero values for ℎ > 1 (inside the band); the eye test

suggests an AR(1) model.

But a formal test (using the Yule-Walker) method suggests instead that

the order of the model is more likely to be 𝑝 = 4.
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n = length(MyTimeSeries)

fit.ar <- ar(MyTimeSeries.centered,method="yule-walker")

fit.ar$order

[1] 4

The Yule-Walker estimates for the coefficients 𝜙1 , 𝜙2 , 𝜙3 , 𝜙4 and for the

random component variance 𝜎2

𝑍
are given by:

fit.ar$ar

fit.ar$var.pred

[1] 0.3576 0.1788 -0.1008 -0.1845

[1] 0.009106

We compute the limiting variance covariance matrix 𝜎2

𝑍
Γ−1

4
as fol-

lows.

rho = acf(MyTimeSeries.centered)$acf

gamma.0 = var(MyTimeSeries.centered)

sigma.2.Z = fit.ar$var.pred

gamma.h = rho * gamma.0

Gamma.4 = matrix(c(gamma.h[1],gamma.h[2],gamma.h[3],gamma.h[4],

gamma.h[2],gamma.h[1],gamma.h[2],gamma.h[3],

gamma.h[3],gamma.h[2],gamma.h[1],gamma.h[2],

gamma.h[4],gamma.h[3],gamma.h[2],gamma.h[1]),4,4)

Gamma.4.inv = solve(Gamma.4)

(limit.V_CV = sigma.2.Z*Gamma.4.inv)

[,1] [,2] [,3] [,4]

[1,] 1.0014029 -0.3900340 -0.1511252 0.1729498

[2,] -0.3900340 1.1234465 -0.3050721 -0.1511252

[3,] -0.1511252 -0.3050721 1.1234465 -0.3900340

[4,] 0.1729498 -0.1511252 -0.3900340 1.0014029

Note that we can obtain the matrix directly from the fit.ar object.

(n-1)*fit.ar$asy.var.coef

Finally, we simply apply the formulas to obtain approximate 95% confi-

dence intervals on the AR(4) coefficients.

rbind(fit.ar$ar - 1.96/sqrt(n)*sqrt(diag(limit.V_CV)),

fit.ar$ar + 1.96/sqrt(n)*sqrt(diag(limit.V_CV)))

[,1] [,2] [,3] [,4]

[1,] 0.1739213 -0.01581274 -0.29541378 -0.3682125028

[2,] 0.5413204 0.37333082 0.09372978 -0.0008134319
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9.6 Diagnostic Tests

Assume that an AR(1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 is fit to the data, i.e., we

estimate 𝜙 by 𝜙 and 𝜎2

𝑍
by 𝜎̂2

𝑍
. We can now compute the time series of

residuals
𝑍𝑡 = 𝑋𝑡 − 𝜙𝑋𝑡−1.

Note that 𝑍𝑡 ≠ 𝑍𝑡 , in general, but we would expect them to be near one

another if the fit is good. As such, the properties of 𝑍𝑡 should be similar

to those of 𝑍𝑡 .

It is important to ensure that the model is an adequate fit to the data – in

particular, the residuals should not exhibit significant autocorrelations at

lags |ℎ | ≥ 1.

If the random variables 𝑍𝑡 are i.i.d., then the correlations 𝜌𝑋(|ℎ |) = 0 at

any lag ℎ ≠ 0 zero. However, the sample correlations are typically not

zero, since there usually are random fluctuations in the data. In general,

for large 𝑛, the sample correlation at any lag is normally distributed with

mean zero and variance 1/𝑛. This provides a 95% confidence interval for

the sample autororrelations: ±1.96/
√
𝑛.

48
48: This corresponds to the blue lines seen

on the ACF plot. Whenever the sample

ACF is within the confidence intervals, the

rule-of-thumb is to treat the correspond-

ing auto-correlation as zero.

White Noise The 95% threshold for a white noise time series with 𝜇 = 0

and 𝜎2 = 1, with 𝑛 = 100 observations is computed below.

n = 100

set.seed(1)

X = rnorm(n)

(threshold = 1.96/sqrt(n))

[1] 0.196

par(mfrow=c(1,2))

acf(X)

pacf(X)
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9.6.1 Ljung-Box Test

That is not the only approach, however. Let ℎ be a positive integer (the

lag) and define

𝑄ℎ = 𝑛
ℎ∑
𝑗=1

𝛾̂𝑋(𝑗)
𝛾̂𝑋(0)

.

Under the null hypothesis that the residuals are i.i.d. , the statistic 𝑄ℎ

has a 𝜒2
distribution with ℎ degrees of freedom. A large value of 𝑄ℎ

suggests that the sample autocorrelations are too large for the data to

arise from the draw of an i.i.d. sequence. We would therefore reject the

i.i.d. hypothesis at confidence level 𝛼 if 𝑄ℎ > 𝜒2

1−𝛼(ℎ).

White Noise We can conduct the Ljung-Box test on the white noise time

series from the previous section, with ℎ = 2, say.

Box.test(X,type="Ljung",lag=2,fitdf=0)

Box-Ljung test

data: X

X-squared = 0.077367, df = 2, p-value = 0.9621

Thus, we conclude that the data is compatible with 𝑋 being i.i.d., at

confidence level 𝛼 = 0.05

AR(1) Model This time, we simulate an auto-regressive model (so the

time series not i.i.d.) and repeat the procedure.

set.seed(1)

MyTimeSeries = arima.sim(model=list(ar=c(0.8)),

n=1000,rand.gen=rnorm)

Box.test(MyTimeSeries,type="Ljung",lag=2,fitdf=0)

Box-Ljung test

data: MyTimeSeries

X-squared = 904.66, df = 2, p-value < 2.2e-16

We see that the i.i.d. assumption is correctly rejected.

The Ljung-Box test is applied to the residuals. The parameter fitdf is the

number of the parameters that need to be estimated. In an ARMA(𝑝, 𝑞),

model, it is 𝑝 + 𝑞.
49

49: Be careful! Here, we are testing

whether the sequence MyTimeSeries,

which we know to be AR(1), could be

white noise (i.i.d.), which is why we use

fitdf=0. That is, we are assuming that

it is a time series of residuals that arose

naturally, not as a result of having fit an

ARMA(𝑝, 𝑞) model to the data. The lag

parameter represents the positive value ℎ.

When we reject the hypothesis that the residuals are i.i.d., we are claiming

that the fitted ARMA(𝑝, 𝑞) model is incorrect.
50

If the test results are

50: We must thus remove 𝑝+ 𝑞 degrees of

freedom from ℎ, since we had to estimate

𝑝 + 𝑞 parameters from the data before

obtaining the residual time series.

compatible with the null hypothesis, we must also verify that the residuals

are normally distributed, however, either by plotting a Q-Q plot or a

histogram.

In the first example, the time series {𝑋𝑡} is normally distributed.



9.6 Diagnostic Tests 553

par(mfrow=c(1,2))

qqnorm(X)

hist(X)

In the second case, the time series {𝑌𝑡} is a random walk, and it is not

normally distributed.

Y = cumsum(X)

par(mfrow=c(1,2))

qqnorm(Y)

hist(Y)

9.6.2 Example: Temperature

We consider the temperature data from page 499; it is clearly not stationary,

so we conduct exponential smoothing on it, with smoothing parameter

0.1, yielding the time series MySmoothedTS1, which is then centered.

Stationary = Temperature - MySmoothedTS1

plot.ts(Stationary, type="l")
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This time series certainly appears stationary.
51

Could it arise from an51: Although there is a bit of growth near

the end.
ARMA(𝑝, 𝑞) model? We plot its ACF and PACF.

par(mfrow=c(1,2))

acf(Stationary); pacf(Stationary)

AR(4) seems like a reasonable model;
52

Yule-Walker agrees.52: Be sure to understand why!

(fit.ar.yw <- ar(Stationary,method="yule-walker"))

Coefficients:

1 2 3 4

0.1745 0.1218 -0.0529 0.2855

Order selected 4 sigma^2 estimated as 0.03412

We compute the residuals for which 𝑍𝑡 = 𝜙(𝐵)𝑋𝑡 is defined.
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phi.yw = fit.ar.yw$ar

n = length(Stationary)

Residuals.yw <- fit.ar.yw$resid

Residuals.yw = na.omit(Residuals.yw)

The ACF and PACF of the obtained residuals are as follows.

par(mfrow=c(1,2))

acf(Residuals.yw)

pacf(Residuals.yw)

There is no dependence left in the residuals (although you can argue that

there is a significant lag at 9); the fit seems appropriate.

We can conduct the Box-Ljung test with ℎ = 5 > 4 = 𝑝 + 𝑞, say.

Box.test(Residuals.yw,type="Ljung",lag=5,fitdf=4)

Box-Ljung test

data: Residuals.yw

X-squared = 1.5724, df = 1, p-value = 0.2099

The 𝑝−value is small, but not that small... does the value of ℎ matter?

What if we used ℎ = 4, instead?

Box.test(Residuals.yw,type="Ljung",lag=4,fitdf=4)

Box-Ljung test

data: Residuals.yw

X-squared = 0.79007, df = 0, p-value < 2.2e-16

The 𝑝−value is indeed much smaller than 0.05, but it’s not clear how the

test implementation handles the case where ℎ = 𝑝 + 𝑞.

Either way, we should study the normality of the residuals visually.
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par(mfrow=c(1,2))

qqnorm(Stationary)

hist(Stationary)

So, what do you think? We will return this example in the next section.

One thing to note is that the Box-Ljung test is not unanimously favoured

by practitioners: see the Breusch-Godfrey test for an alternative.

9.7 Maximum Likelihood Estimation

We start with a brief refresher on the topic.

9.7.1 I.I.D. Random Variables

Assume that the random variables 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with a known

probability density function 𝑓𝑋(𝑥;𝜃). The objective of maximum like-
lihood estimation (MLE) is to find the parameter 𝜃 that best fits the

observed data, in the MLE sense.
53

53: This does not have to be a univari-

ate problem; we might be interested in

the parameter vector 𝜽, depending on the

context. The principle is the same, but we

will be working with ∇𝜽 instead of the

derivative
𝑑
𝑑𝜃 .

The likelihood function is

𝐿(𝜃) = 𝐿(𝜃;𝑋1 , . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑓𝑋(𝑋𝑖 ;𝜃).

The log-likelihood function is ℓ (𝜃) = log 𝐿(𝜃) = ln 𝐿(𝜃). The maxi-
mum likelihood estimator 𝜃MLE is a parameter value (often unique, for

commonly-used 𝑓 , but it also depends on the observed data) satisfying

𝜃MLE = arg max

𝜃
𝐿(𝜃) = arg max

𝜃
ℓ (𝜃).

https://stats.stackexchange.com/questions/148004/testing-for-autocorrelation-ljung-box-versus-breusch-godfrey
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Example: Exponential Distribution Assume that𝑋1 , . . . , 𝑋𝑛 is a random

sample from an exponential distribution. Recall that 𝑋 ∼ Exp(𝛽), 𝜃 =

𝛽 > 0 if

𝑓𝑋(𝑥; 𝛽) =
{

𝛽−1
exp(−𝑥/𝛽), 𝑥 > 0;

0, 𝑥 ≤ 0

The likelihood function is:

𝐿(𝛽) = 𝛽−𝑛
𝑛∏
𝑖=1

exp(−𝑋𝑖/𝛽) = 𝛽−𝑛 exp

(
−𝛽−1

𝑛∑
𝑖=1

𝑋𝑖

)
,

and the log-likelihood is:

ℓ (𝛽) = −𝑛 log(𝛽) − 1

𝛽

𝑛∑
𝑖=1

𝑋𝑖 .

To optimize ℓ , we must find its critical points with respect to 𝛽. There is

only one such point, since

𝜕ℓ (𝛽)
𝜕𝛽

= −𝑛
𝛽
+ 1

𝛽2

𝑛∑
𝑖=1

𝑋𝑖 = 0 =⇒ 𝛽̂MLE =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 = 𝑋.

Technically, this only tells us that𝑋 is a critical point of ℓ (𝛽), not necessarily

that it is a maximizer. But

𝜕2ℓ (𝛽)
𝜕𝛽2

����
𝛽=𝑋

= −𝑛𝑋2

< 0,

so 𝛽̂MLE = 𝑋 is indeed a global maximizer, according to the second

derivative test.

The sample mean is not only the MLE estimator for the Exponential

distribution, however.

Example: Normal Distribution Assume that 𝑍1 , . . . , 𝑍𝑛 is a i.i.d. sample

from a normal distribution with mean 𝜇 and variance 𝜎2

𝑍
. The likelihood

function is

𝐿(𝜇, 𝜎𝑍) =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇)2
)
,

and the log-likelihood is:

ℓ (𝜇, 𝜎𝑍) = −𝑛
2

log(2𝜋) − 𝑛 log 𝜎𝑍 − 1

2𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇)2.

We proceed as above, differentiating with respect to 𝜇 to find the critical

points:

𝜕ℓ (𝜇, 𝜎𝑍)
𝜕𝜇

= − 1

𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇) = 0 =⇒ 𝜇̂MLE = 𝑍 =
1

𝑛

𝑛∑
𝑖=1

𝑍𝑖 .
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Substituting 𝜇̂MLE = 𝑍 in 𝐿, differentiating with respect to 𝜎𝑍 , setting to 0

and solving yields

𝜎̂2

𝑍;MLE
=

1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇̂MLE)2 ,

demonstrating that the MLE estimators are not always unbiased.

9.7.2 Time Series Model

We now assume that 𝑋1 , . . . , 𝑋𝑛 are observation from a stationary time

series. Let 𝑓𝑛(𝑥1 , . . . , 𝑥𝑛) be their joint density.
54

We further assume that54: No longer in the product form.

the time series is Gaussian and centered.
55

55: This is an important assumption – we

need to verify that it applies to the data of

interest.
We introduce the following notation:

X𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , X̂𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , U𝑛 = (𝑈1 , . . . , 𝑈𝑛)⊤ ,

where 𝑈𝑖 = 𝑋𝑖 − 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, are the innovations. Recall that

Γ𝑛 = E[X⊤
𝑛X𝑛] = [𝛾𝑋(𝑖 − 𝑗)]𝑛

𝑖,𝑗=1
is the variance-covariance matrix of X𝑛

(see Section 9.4.1).

The likelihood (the joint density of 𝑋1 , . . . , 𝑋𝑛) is

𝐿 =
1

(2𝜋)𝑛/2

1

det(Γ𝑛)1/2

exp

(
−1

2

X⊤
𝑛Γ

−1

𝑛 X𝑛
)
,

where det(Γ𝑛) is the determinant. Note that the ACVF (and hence, also

the covariance matrix Γ𝑛) depends on model parameters.

For example, if the model is AR(1), then 𝛾𝑋(ℎ) = 𝜎2

𝑍
𝜙ℎ/(1−𝜙2). Thus, its

variance-covariance matrix and the log-likelihood depend on the model

parameters 𝜎𝑍 , 𝜙, so that we can write 𝐿(𝜎𝑍 , 𝜙).

In this particular case, the MLE estimators are obtained by maximizing

𝐿(𝜎𝑍 , 𝜙)with respect to 𝜎𝑍 , 𝜙. In the general case, there are no no explicit

formulas to do so and everything must be conducted numerically (see

Chapter 4).

It turns out that

X⊤
𝑛Γ

−1

𝑛 X𝑛 = U⊤
𝑛D−1U𝑛 ,

where D = diag(𝑣0 , . . . , 𝑣𝑛−1), for 𝑣𝑖 = E

[(
𝑋𝑖+1 − 𝑋𝑖+1

)
2

]
.
56

Thus, we56: See Section 9.9.3 for more details.

have

X⊤
𝑛Γ

−1

𝑛 X𝑛 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)2/𝑣𝑖−1.

Furthermore, det(Γ𝑛) = 𝑣0 · · · 𝑣𝑛−1 , and so the likelihood function takes

the form

𝐿 =
1

(2𝜋)𝑛/2

1√
𝑣0 · · · 𝑣𝑛−1

exp

(
−1

2

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)2/𝑣𝑖−1

)
.
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The form of 𝐿 above can be used as long as we have formulas for 𝑋𝑖 , even

if those do not arise from the innovation algorithm.

Theorem: the MLE estimator
̂𝜽MLE is asymptotically normal,57

with 57: See Section 9.9.2.

mean 𝜽 and variance 𝑛−1
V(𝜽), where V(𝜽) is a covariance matrix.

If the data arises from an ARMA(𝑝, 𝑞) process, we would use the innova-

tion algorithm to express 𝑋𝑖 in terms of the coefficients 𝜃1 , . . . , 𝜃𝑞 , and

then plug them into the likelihood function

𝐿(𝜽) = 𝐿(𝜙1 , . . . , 𝜙𝑝 , 𝜃1 , . . . , 𝜃𝑞 , 𝜎
2

𝑍),

which can be maximized using the MLE approach, as above.

AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡
are i.i.d. normal random variables with mean 0 and variance 𝜎2

𝑍
, starting

with 𝑡 = 1. Then 𝑋𝑖+1 = 𝜙𝑋𝑖 and 𝑣𝑖 = E[(𝑋𝑖+1 − 𝑋𝑖+1)2] = 𝜎2

𝑍
for all

𝑖 = 1, . . . , 𝑛 − 1. The likelihood function is thus:

𝐿 =
1

(2𝜋)𝑛/2

1

𝜎𝑛
𝑍

exp

(
−1

2

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2/𝜎2

𝑍

)
.

Ignoring the constant term
1

(2𝜋)𝑛/2
, the log-likelihood is

ℓ = −𝑛 log 𝜎𝑍 − 1

2𝜎2

𝑍

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2.

Hence,

𝜙MLE =

∑𝑛
𝑖=2
𝑋𝑖−1𝑋𝑖∑𝑛

𝑖=2
𝑋2

𝑖−1

and

𝜎̂2

MLE
=

1

𝑛

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙 MLE𝑋𝑖−1)2.

If 𝜎𝑍 is known, then we do not need to use the MLE estimator; we have

𝜃 = 𝜙 and V(𝜃) becomes

V(𝜃) = V(𝜙) = 𝜎2

𝑍(1 − 𝜙2).

We note that the MLE estimator of 𝜙 (as well as its asymptotic variance)

are the same as those obtained by the Yule-Walker procedure.

AR(𝑝) In general, for AR(p) models, the Yule-Walker estimator and

MLE of (𝜙1 , . . . , 𝜙𝑝) also agree; in both cases the asymptotic variance

is

V(𝜙1 , . . . , 𝜙𝑝) = 𝜎2

𝑍Γ
−1

𝑝 .

For AR(2) we have seen that

V(𝜙1 , 𝜙2) =
(

1 − 𝜙2

2
−𝜙1(1 + 𝜙2)

−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

)
.

However, the MLE and Yule-Walker estimators of variance 𝜎2

𝑍
do not

need to agree in general!
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AR(𝑝) Models (Revisited) For simplicity’s sake, consider the AR(1)

model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡 are i.i.d. normal with mean 0 and

variance 𝜎2

𝑍
.

We assume that 𝜇 = 0; then,

𝐿 =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=1

𝑍2

𝑖

)
,

Since 𝑍𝑡 = 𝑋𝑡 − 𝜙𝑋𝑡−1, this transforms to

𝐿(𝜙, 𝜎𝑍) =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2
)
.

The likelihood function now depends explicitly on 𝜙 and 𝜎𝑍 , and we

can continue as we did in the previous section (without having to use

innovations).

This approach works for arbitrary AR(𝑝) models, but not for MA(𝑞) or

general ARMA(𝑝, 𝑞) models.

9.7.3 Order Selection

We have discussed a visual criterion to identify a time series follows

a AR(𝑝) or MA(𝑞) model, as well as a formal approach (Yule-Walker).

Another classical approach to ARMA (𝑝, 𝑞) order selection is provided

by the Akaike information criteria (AIC) method.

We consider several ARMA(𝑝, 𝑞) models, all depending on parameter

vectors 𝝓 = (𝜙1 , . . . , 𝜙𝑝) and 𝜽 = (𝜃1 , . . . , 𝜃𝑞). The ar() function in R,

for instance, has 𝑞 = 0 and tries 𝑝 = 1, . . . , 12.

For each model we calculate the following expression:

AIC = 2 log 𝐿(𝝓, 𝜽, 𝜎𝑍) − 2(𝑝 + 𝑞 + 1) 𝑛

𝑛 − 𝑝 − 𝑞 − 2

.

When 𝑞 = 0 (i.e., when we consider AR(𝑝) models), this reduces to:

AIC = 2 log 𝐿(𝝓, 𝜎𝑍) − 2(𝑝 + 1) 𝑛

𝑛 − 𝑝 − 2

.

The AIC method chooses a model with a high likelihood but penalizes

models with too many parameters (i.e., if 𝑝 and 𝑞 are too large).
58

58: Note that maximizing AIC is equiva-

lent to minimizing −AIC.
Another function, arima(), computes AIC as follows:

AIC = −2 log 𝐿(𝝓, 𝜽, 𝜎𝑍) + 2(𝑝 + 𝑞 + 𝑘 + 1),

where 𝑘 is the number of additional parameters to estimate (in our case,

𝑘 = 1 since we estimate 𝜎𝑍 and there is no seasonality); the optimal

model is the one that minimizes that version of AIC.

9.7.4 Examples

We consider three examples: an artificial time series, a Lake Huron time

series, and a continuation of the Temperature example.
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Example: Artificial Data This artificial time series appears to be station-

ary (more or less).

MyTimeSeries <- c(0.793, 1.270, 3.600, 2.649, 1.767,

1.198, 1.278, 0.347, -0.683, -0.255,

-0.338, 1.316, 0.142, 0.218, 1.118,

-1.170, -0.731, 0.609, -0.498, -0.118,

-0.839, -0.439, -0.537, 0.537, 0.314,

0.647, 0.470, -0.323, -0.264, 0.670,

-0.616, 0.092, -2.062, -0.603, 0.958,

-0.084, -0.083, -0.156, -0.914, -1.250,

0.634, -0.031, -0.519, 0.383, 0.241,

-0.903, -1.838, -0.912, -1.422, -0.134,

1.004, 0.282, 0.766, 0.164, 1.180,

2.030, 0.341, -1.337, -1.452, 0.313,

-0.212, 0.500, -0.762, -3.239, -3.179,

-1.094, -1.055, 0.735, 0.582, 1.869,

1.295, 0.492, 1.272, 2.210, -0.574,

-1.363, -1.076, -0.809, 0.774, 0.082,

-1.180, -1.925, -2.463, -0.983, -0.135,

0.081, -0.071, 1.612, 2.241, 2.884,

1.686, 0.811, 2.046, 2.260, 2.142,

1.003, 1.435, -0.039, 1.049, -0.855)

plot.ts(MyTimeSeries)

The ACF and PACF displays suggest that the data could arise from an

AR(1) process.
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par(mfrow=c(1,2))

acf(MyTimeSeries)

pacf(MyTimeSeries)

We draw your attention to the structure of the ACF; a continuous stretch

of positive values, followed by a continuous stretch of negative values,

followed by a continuous stretch of positive values (and so on?). This

could be indicative of a seasonality effect in the data (see Section 9.9.1).

Are the values of the time series normally distributed?

par(mfrow=c(1,2))

qqnorm(MyTimeSeries)

hist(MyTimeSeries)

We perform model estimation using two approaches: Yule-Walker and

MLE.
59

59: We do not need normality for the for-

mer, but we do need it for the latter, which

is why we took the time to verify that

the time series values could be normally

distributed.
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(fit.ar.yw <- ar(MyTimeSeries,method="yule-walker"))

Coefficients:

1

0.6201

Order selected 1 sigma^2 estimated as 0.9707

(fit.ar.mle <- ar(MyTimeSeries,method="mle"))

Coefficients:

1

0.6197

Order selected 1 sigma^2 estimated as 0.9458

In both cases, the selected model is AR(1), but the estimated parameters

are slightly different. However, the estimates of the autoregressive pa-

rameter 𝜙 should be be the same, regardless of the method used. What

is going on?

The difference comes from the fact that the R implementation of the MLE

approach uses a fairly complicated optimization algorithm, leading to

numerical discrepancies – the differences are not significant, to be honest,

which is comforting.

Note, however, that the estimates for 𝜎2

𝑍
are different, as they should be,

since one is unbiased (Yule-Walker), whereas the other is biased (MLE).

The order and the coefficient value can be extracted using the following

code – the displays are suppressed as they can be read above.

fit.ar.yw$order

fit.ar.mle$order

fit.ar.yw$ar

fit.ar.mle$ar

In order to assess the fit, we can take a look at the residuals.

par(mfrow=c(3,2))

plot.ts(fit.ar.yw$resid)

plot.ts(fit.ar.mle$resid)

acf(na.omit(fit.ar.yw$resid))

acf(na.omit(fit.ar.mle$resid))

pacf(na.omit(fit.ar.yw$resid))

pacf(na.omit(fit.ar.mle$resid))
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In both cases, the residuals certainly look like they could arise from i.i.d.

processes.

What would the prediction for the next value of the time series be, in

both cases?

predict(fit.ar.yw)

$pred

Time Series:

Start = 101

End = 101

Frequency = 1

[1] -0.4737512

$se

Time Series:

Start = 101

End = 101

Frequency = 1

[1] 0.9852252

predict(fit.ar.mle)

$pred

Time Series:

Start = 101

End = 101

Frequency = 1

[1] -0.4754649

$se

Time Series:

Start = 101

End = 101

Frequency = 1

[1] 0.9725163

The different predictions values stem from the fact that 𝜙YW is slightly

different from 𝜙MLE.
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Both models seem appropriate – which one should we choose? We select

the MLE model, for no particular reason. We forecast the next 30 iterations

of the model; the confidence bands with confidence bands obtained as

prediction ± standard error of prediction.

predict.mle <- predict(fit.ar.mle,n.ahead=30)

par(mfrow=c(1,1))

y.max = max(predict.mle$pred+predict.mle$se)

y.min = min(predict.mle$pred-predict.mle$se)

plot.ts(predict.mle$pred,ylim=c(y.min,y.max))

lines(predict.mle$pred-predict.mle$se,col="red")

lines(predict.mle$pred+predict.mle$se,col="red")

Note that these prediction bounds are quite wide – the moral of this

story is that long-term forecasts are a fool’s errand, more often than not.

Tread with care.

In both estimation methods, the order of the AR model is selected

according to AIC (with the maximal order controlled by order.max).

fit.ar.mle$aic

0 1 2 3 4 5

46.636914 0.000000 1.621425 3.598935 5.537506 7.360361

6 7 8 9 10 11

8.973913 7.460411 8.709559 10.705111 12.469661 14.417006

12

14.506713

Sure enough, the lowest value (AIC minus a constant) is for AR(1).
60

60: How this value is computed depends

on the implementation.

We can also use the more general arima() function (but we need to

specify the order).



566 9 Time Series and Forecasting

(fit.arma <- arima(MyTimeSeries, order=c(1,0,0)))

Coefficients:

ar1 intercept

0.6197 0.1430

s.e. 0.0777 0.2517

sigma^2 estimated as 0.9458: log likelihood = -139.35, aic = 284.7

The results are readily seen to be identical to those of MLE (suggesting a

reason to select MLE over YW, perhaps).

Example: Lake Huron We now conduct a similar analysis with the

built-in Lake Huron dataset. We start by loading and plotting the data.

MyTimeSeries = LakeHuron

plot.ts(MyTimeSeries)

There is a downward trend in the first half of the data (from 1875 to 1925),

but it seems almost accidental – if a few of these points were lower, the

trend would probably appear to be horizontal. We will treat the time

series as stationary, with the caveat that it might make sense to analyze

the de-trended time series instead.

We can achieve a first pass at the order by looking at the ACF and PACF

graphs.
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par(mfrow=c(1,2))

acf(MyTimeSeries)

pacf(MyTimeSeries)

These plots suggest an AR(2) model, or potentially an ARMA(1, 1)

model.
61

61: The ACF and PACF of an ARMA model

both converge to 0, but the order (𝑝, 𝑞) is

not usually obvious... there is a lot of guess-

and-check involved in the process.

The time series appears to take on normally distributed values, as can be

seen below.

par(mfrow=c(1,2))

qqnorm(MyTimeSeries)

hist(MyTimeSeries)

We start by assuming that the data is best fit by an auto-regressive model;

what would its order and coefficient estimates be?

Using the Yule-Walker approach, we get the following.
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(fit.ar.yw <- ar(MyTimeSeries,method="yule-walker"))

Coefficients:

1 2

1.0538 -0.2668

Order selected 2 sigma^2 estimated as 0.5075

The MLE approach instead yields the following.

(fit.ar.mle <- ar(MyTimeSeries,method="mle"))

Coefficients:

1 2

1.0437 -0.2496

Order selected 2 sigma^2 estimated as 0.4788

Both of them suggest an AR(2) model, which agrees with our visual

determination of the order.
62

62: The 𝜙𝑖 should be identical in both ap-

proaches, but we have already discussed

that the discrepancies are due to the choice

of numerical algorithms in the implemen-

tations.

Are either of the fits good? We take a look at the residuals.

par(mfrow=c(3,2))

plot.ts(fit.ar.yw$resid); plot.ts(fit.ar.mle$resid)

n=length(fit.ar.yw$resid); m=length(fit.ar.mle$resid)

acf(fit.ar.yw$resid[3:n]); acf(fit.ar.mle$resid[3:m])

pacf(fit.ar.yw$resid[3:n]); pacf(fit.ar.mle$resid[3:m])
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The residual plots look as we would expect if the data arose from either

of the two AR(2) processes (i.e., there does not appear to be dependences

in the residuals). So which model should be chosen? We could pick the

one with smallest AIC, or selecting the model that best “predicts” past

values of the data (as done in Section 9.4.4 with the currency exchange

rate data). We select the MLE model for the purpose of illustration.

In order to investigate ARMA(1, 1) as a model for the data, we use the

arima() function. We will re-fit the MLE AR(2) model in this framework,

to gain access to the same set of attributes for both models.

(fit.arma.1 <- arima(MyTimeSeries, order=c(2,0,0)))

Coefficients:

ar1 ar2 intercept

1.0436 -0.2495 579.0473

s.e. 0.0983 0.1008 0.3319

sigma^2 estimated as 0.4788: log likelihood = -103.63, aic = 215.27

(fit.arma.2 <- arima(MyTimeSeries, order=c(1,0,1)))

Coefficients:

ar1 ma1 intercept

0.7449 0.3206 579.0555

s.e. 0.0777 0.1135 0.3501

sigma^2 estimated as 0.4749: log likelihood = -103.25, aic = 214.49

The intercept term represents the expectation 𝜇 = E[𝑋𝑡] of the time series.

An important take-away is that there is no obvious relationship between

the 𝜙1 of the AR(2) model and the 𝜙1 of the ARMA(1, 1) model.

What do the residuals look like?

par(mfrow=c(3,2))

plot.ts(fit.arma.1$residuals)

plot.ts(fit.arma.2$residuals)

n = length(fit.arma.1$residuals)

m = length(fit.arma.2$residuals)

acf(fit.arma.1$residuals[3:n])

acf(fit.arma.2$residuals[3:n])

pacf(fit.arma.1$residuals[3:n])

pacf(fit.arma.2$residuals[3:n])
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Both AR(2) and ARMA(1, 1) are acceptable; we select the latter since it

has the smallest AIC.
63

We can predict the next 20 time steps.63: The AIC can be read off of the out-

puts above, but they can also be ex-

tracted directly with fit.arma.1$aic and

fit.arma.2$aic. par(mfrow=c(1,1))

predict.mle <- predict(fit.arma.2,n.ahead=20)

y.max = max(predict.mle$pred+predict.mle$se)

y.min = min(predict.mle$pred-predict.mle$se)

plot.ts(predict.mle$pred,ylim=c(y.min,y.max))

lines(predict.mle$pred-predict.mle$se,col="red")

lines(predict.mle$pred+predict.mle$se,col="red")

Note that the predictions are not as “jagged” as the original time series.
64

64: When seasonality is taken into ac-

count, we might expect to see some up-

and-down motion in the predictions.
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Example: Temperature (cont.) We consider the temperature data from

pages 499 and 553; using the Yule-Walker procedure, we found that

the centered stationary part of the exponentially smoothed time series

(Stationary) was decently approximated by an AR(4) process.

We now approach the same time series via the MLE procedure. The chart

on page 556 indicates that the normality assumption is reasonable. We

can thus safely apply the procedure.

(fit.ar.mle <- ar(Stationary,method="mle"))

Coefficients:

1 2 3 4 5

0.1427 0.1290 -0.0682 0.2716 0.1187

Order selected 5 sigma^2 estimated as 0.03241

The MLE procedure selected a different order – but there is nothing wrong

with that! Note that we could recover this model with the arima function

(which also displays the standard errors for the AR coefficients).

arima(Stationary,order=c(5,0,0),method="ML")

Coefficients:

ar1 ar2 ar3 ar4 ar5 intercept

0.1427 0.1290 -0.0682 0.2716 0.1187 0.0743

s.e. 0.0786 0.0761 0.0766 0.0763 0.0798 0.0342

sigma^2 estimated as 0.03241: log likelihood = 47.34, aic = -80.69

Is the MLE fit appropriate? Do the residuals appear to be white noise?

Residuals.mle = fit.ar.mle$resid

Residuals.mle = na.omit(Residuals.mle)

par(mfrow=c(1,2))

acf(Residuals.mle)

pacf(Residuals.mle)
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Yes-ish. Close enough is good enough, certainly. We accept the fit. But

now we have two competing models. Which one should we choose? We

can check the quality of the prediction, for instance.

(Squared.Error.yw = mean((Residuals.yw)^2))

[1] 0.0332902

(Squared.Error.mle = mean((Residuals.mle)^2))

[1] 0.03214238

The MLE approach yields a lower total error, so we might as well select

the MLE model.

But why was AR(5) selected by the MLE procedure? We can compare

with the AR(4) MLE model and calculate the respective AIC.

(fit.mle.4 <- arima(Stationary,order=c(4,0,0),method="ML"))

Coefficients:

ar1 ar2 ar3 ar4 intercept

0.1782 0.1196 -0.0541 0.2918 0.0715

s.e. 0.0754 0.0764 0.0765 0.0757 0.0303

sigma^2 estimated as 0.03287: log likelihood = 46.25, aic = -80.49

(fit.mle.5 <- arima(Stationary,order=c(5,0,0),method="ML"))

Coefficients:

ar1 ar2 ar3 ar4 ar5 intercept

0.1427 0.1290 -0.0682 0.2716 0.1187 0.0743

s.e. 0.0786 0.0761 0.0766 0.0763 0.0798 0.0342

sigma^2 estimated as 0.03241: log likelihood = 47.34, aic = -80.69

Note the values of log-likelihod and AIC.
65

65: It would be important to make sure

that you can recover the AIC values from

the log-likelihood values, with the for-

mula.

We can use the MLE model to predict the next 20 observations

k = 20

prediction = predict(fit.ar.mle,n.ahead=k)$pred

error = predict(fit.ar.mle,n.ahead=k)$se

In order to transform these Stationary predictions into values in the

original time series, we have to add them to the Temperature data. In the

next code chunk, we will ignore the trend in the original data.
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n=length(Temperature)

k = 20

prediction.1 = prediction+Temperature[n]

prediction.1.upper = prediction.1 + error

prediction.1.lower = prediction.1 - error

dummy.ts = c(rep(NA,k))

NewTemperature = c(Temperature,dummy.ts)

dummy.pred=c(rep(NA,n))

PredictedStationary = c(dummy.pred,prediction.1)

PredictionUpperLimit = c(dummy.pred,prediction.1.upper)

PredictionLowerLimit = c(dummy.pred,prediction.1.lower)

par(mfrow=c(1,1))

plot.ts(NewTemperature,ylim=c(-1,2),main="Ignoring Trend")

points(PredictedStationary,col="red",type="p")

points(PredictionUpperLimit,col="green",type="l")

points(PredictionLowerLimit,col="green",type="l")

Something about this is definitely not right. The problem is that we

ignored the trend in the original data, but starting in year 120 (or

thereabouts), the time series follows a linear trend (more or less). We fit

a linear trend to this part of the data.

n = length(Temperature)

Time = seq(1,n,by=1)

lin.reg = lm(Temperature[120:n]~Time[120:n])

Lin.Trend = lin.reg[[1]][1] + lin.reg[[1]][2]*Time

plot.ts(Temperature)

points(Lin.Trend,col="blue",type="l")
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The next step is to extend the linear trend and the predictions.
66

66: The code for the prediction limits is

not included – how could they be pro-

duced?

k = 20

dummy.ts = c(rep(NA,k))

NewTemperature = c(Temperature,dummy.ts)

dummy.trend = c(rep(NA,n)); Time = seq(1,n+k,by=1)

Extended.Trend = lin.reg[[1]][1] + lin.reg[[1]][2]*Time

Trend = c(dummy.trend,Extended.Trend[(n+1):(n+k)])

y.max = 2; y.min = min(Temperature)

par(mfrow=c(1,2))

plot.ts(Temperature,xlim=c(1,n+k),ylim=c(y.min,y.max))

points(Lin.Trend,col="blue",type="l")

plot.ts(NewTemperature,xlim=c(1,n+k),ylim=c(y.min,y.max))

points(Trend,col="blue",type="l")

Prediction.stationary = c(dummy.trend,prediction)

PredictedStationary = Trend+Prediction.stationary

points(PredictedStationary,col="red",type="p")
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9.8 Nonlinear Time Series

The log-returns of financial data typically have the following properties:

they are uncorrelated;

their squares are correlated;

they are not normally distributed.

Such features cannot be modelled by ARMA models.

9.8.1 ARCH model

A time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is autoregressive conditionally het-
eroscedastic of order 𝑝, denoted ARCH(𝑝) if

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , 𝜎2

𝑡 = 𝛼0 +
𝑝∑
𝑖=1

𝛼𝑖𝑋
2

𝑡−𝑖 ,

where 𝑍𝑡 are i.i.d. with mean 0 and variance 1, 𝛼0 > 0, 𝛼𝑖 ≥ 0 for all 𝑖.

We note explicitly that the values of 𝜎𝑡 depend on the past values of the

sequence {𝑋𝑡}: 𝑋𝑡−1 , 𝑋𝑡−2 , . . ..

If 𝑝 = 1, then

𝑋2

𝑡 = 𝜎2

𝑡 𝑍
2

𝑡 =
(
𝛼0 + 𝛼1𝑋

2

𝑡−1

)
𝑍2

𝑡 =
(
𝛼0 + 𝛼1𝜎

2

𝑡−1
𝑍2

𝑡−1

)
𝑍2

𝑡

= 𝛼0𝑍
2

𝑡 + 𝛼1𝑍
2

𝑡𝑍
2

𝑡−1
𝜎2

𝑡−1
.

We can continue on this way by replacing 𝜎2

𝑡−1
by its formulation, and so

on. Consequently, we see that 𝑋2

𝑡 depends only on 𝑍𝑡 , 𝑍𝑡−1 , 𝑍𝑡−2 , . . ..
67

67: As a further consequence,𝑍𝑡 and𝑋𝑡−1

are independent.
This is valid for all ARCH models, not only ARCH(1).

For a general 𝑝, we have

E[𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = E[𝜎𝑡𝑍𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 𝜎𝑡E[𝑍𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 0

and

Var(𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝) = E[𝑋2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = E[𝜎2

𝑡 𝑍
2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝]
= 𝜎2

𝑡 E[𝑍2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 𝜎2

𝑡 E[𝑍2

𝑡 ] = 𝜎2

𝑡 .

The "conditionally heteroscedastic" in ARCH refers to this last equation.

The series {𝜎2

𝑡 | 𝑡 ≥ 1} is the volatility of the time series; ARCH(𝑝) is an

example of a stochastic volatility process.

Proposition: the ARCH(1) process is stationary if and only if 𝛼1 < 1. A

stationary solution is given by

𝑋2

𝑡 = 𝛼0

∞∑
𝑖=0

𝛼𝑖
1

𝑖∏
𝑗=0

𝑍2

𝑡−𝑗 .

In an ARCH(1) model, we have

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑋
2

𝑡−1
.
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We can estimate the model parameters using the maximum likelihood

principle. Consider the joint density

𝑓(𝑋0 ,...,𝑋𝑛 )(𝑥0 , . . . , 𝑥𝑛) = 𝑓𝑋0
(𝑥0)

𝑛∏
𝑖=1

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1)

where

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) =

1

𝜎𝑡
𝑔(𝑥𝑡/𝜎𝑡) ,

with 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑥
2

𝑡−1
and 𝑔 is the density of 𝑍0 (which is typically a

normal or Student 𝑇 distribution).

Let

𝐹𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) = 𝑃(𝑋𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝜎𝑡𝑍𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)
= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)
= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡) = 𝐺(𝑥𝑡/𝜎𝑡),

where 𝐺 is the cumulative distribution function of 𝑍: 𝐺(𝑧) = 𝑃(𝑍 ≤ 𝑧).

We can show that

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) =

𝑑

𝑑𝑥𝑡
𝐹𝑋𝑡 |𝑋𝑡−1

(𝑥𝑡 | 𝑥𝑡−1) =
1

𝜎𝑡
𝑔(𝑥𝑡/𝜎𝑡) .

Indeed, we start with the conditional distribution:

𝐹𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) = 𝑃(𝑋𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1) = 𝑃(𝜎𝑡𝑍𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/
√
𝛼0 + 𝛼1𝑥

2

𝑡−1
| 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝐹𝑍(𝑍𝑡 ≤ 𝑥𝑡/
√
𝛼0 + 𝛼1𝑥

2

𝑡−1
) = 𝐹𝑍(𝑥𝑡/𝜎𝑡)

and the density is

𝑑

𝑑𝑥𝑡
𝐹𝑍(𝑥𝑡/𝜎𝑡) =

1

𝜎𝑡
𝑓𝑍(𝑥/𝜎𝑡) =

1

𝜎𝑡
𝑔(𝑥/𝜎𝑡),

keeping in mind that 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑥
2

𝑡−1
.

Thus, the likelihood function has the form

𝐿(𝛼0 , 𝛼1) =
𝑛∏
𝑡=1

1

𝜎𝑡
𝑔(𝑋𝑡/𝜎𝑡)

and

(𝛼0 , 𝛼1) = arg max

𝛼0>0,0<𝛼1<1

𝐿(𝛼0 , 𝛼1),

where the optimization problem is solved numerically (see Section 4).

9.8.2 GARCH Model

A time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is a generalized autoregressive condi-
tionally heteroscedastic model of order (𝑝, 𝑞), denoted GARCH(𝑝, 𝑞) if
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the variance 𝜎2

𝑡 is modeled using past squared observations 𝑋2

𝑡−𝑖 and
past variances 𝜎2

𝑡−𝑗 :

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , Var(𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝) = 𝜎2

𝑡 = 𝛼0 +
𝑝∑
𝑖=1

𝛼𝑖𝑋
2

𝑡−𝑖 +
𝑞∑
𝑗=1

𝛽 𝑗𝜎
2

𝑡−𝑗 ,

where 𝑍𝑡 are i.i.d. with mean 0 and variance 1, 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽 𝑗 ≥ 0 for

all 𝑖 , 𝑗.

On the topic of identifying an ARCH/GARCH model in practice, [5] has

this to say:

The best identification tool may be a time series plot of the

series. It’s usually easy to spot periods of increased variation

sprinkled through the series. It can be fruitful to look at

the ACF and PACF of both 𝑋𝑡 and 𝑋2

𝑡 . For instance, if 𝑋𝑡
appears to be white noise and 𝑋2

𝑡 appears to be AR(1), then

an ARCH(1) model for the variance is suggested. If the PACF

of 𝑋2

𝑡 suggests AR(𝑝), then ARCH(𝑝) may work. GARCH

models may be suggested by an ARMA-type look to the

ACF and PACF of 𝑋2

𝑡 . [...] You might have to experiment

with various ARCH and GARCH structures after spotting

the need in the time series plot of the series.

9.8.3 Example: Stock Returns

We consider the daily closing price of Germany’s DAX stock index, from

1991 to 1998;
68

the dataset is pre-built in R. 68: The observations are recorded on busi-

ness days, and are also available for 3 other

indices: SMI, CAC, UK FTSE.

library(tseries)

plot(EuStockMarkets)

We differentiate the log-returns of the DAX index to obtain a time series

which appears to be stationary, but which is not normally distributed. We

display the ACF of the data, as well as the ACF and PACF of the square

of the data.
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Data <- diff(log(EuStockMarkets))[,"DAX"]

par(mfrow=c(2,3))

plot.ts(Data)

hist(Data); qqnorm(Data);

acf(Data); acf(Data^2); pacf(Data^2)

It is reasonable to fit to model the data as an ARCH(1) process.

fit.ARCH1 <- garch(Data,order=c(0,1))

***** ESTIMATION WITH ANALYTICAL GRADIENT *****

I INITIAL X(I) D(I)

1 1.008019e-04 1.000e+00

2 5.000000e-02 1.000e+00

IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF

0 1 -7.582e+03

1 8 -7.582e+03 7.08e-06 1.27e-05 1.0e-05 9.4e+10 1.0e-06 5.95e+05

2 9 -7.582e+03 9.60e-08 9.77e-08 1.0e-05 2.0e+00 1.0e-06 7.31e-01

3 18 -7.584e+03 2.66e-04 4.85e-04 2.6e-01 2.0e+00 3.5e-02 7.31e-01

4 19 -7.584e+03 1.47e-05 1.13e-05 4.4e-02 0.0e+00 7.9e-03 1.13e-05

5 20 -7.584e+03 1.81e-06 1.67e-06 2.0e-02 0.0e+00 3.8e-03 1.67e-06

6 21 -7.584e+03 1.51e-08 1.46e-08 1.9e-03 0.0e+00 3.6e-04 1.46e-08

7 22 -7.584e+03 1.47e-11 1.47e-11 6.3e-05 0.0e+00 1.2e-05 1.47e-11

***** RELATIVE FUNCTION CONVERGENCE *****

FUNCTION -7.584131e+03 RELDX 6.254e-05

FUNC. EVALS 22 GRAD. EVALS 8

PRELDF 1.471e-11 NPRELDF 1.471e-11

I FINAL X(I) D(I) G(I)

1 9.611161e-05 1.000e+00 -9.229e-01

2 9.703263e-02 1.000e+00 -7.850e-05
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The resulting GARCH object has the following attributes.

attributes(fit.ARCH1)

$names

[1] "order" "coef" "n.likeli" "n.used"

[5] "residuals" "fitted.values" "series" "frequency"

[9] "call" "vcov"

$class

[1] "garch"

The estimated coefficient values of 𝛼0 and 𝛼1 are obtained as below.

(Coefficients <- fit.ARCH1$coef)

alpha0=Coefficients[1]; alpha1=Coefficients[2]

a0 a1

9.611161e-05 9.703263e-02

We can view the fitted values as past prediction of 𝜎𝑡 , the first 10 of which

are as below.

past.prediction = fit.ARCH1$fitted.values

past.prediction[1:10]

[1] NA 0.010225064 0.009899957 0.010196954 0.009819289 0.009911300

[7] 0.010540232 0.009966482 0.009844322 0.010001275

We can plot the time series {𝜎2

𝑡 }:

n = length(Data)

sigmat = past.prediction[2:n]

par(mfrow=c(1,1))

plot.ts(sigmat^2)
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The prediction of the next observation in the sequence can be obtained

directly.

n1 = length(sigmat)

sqrt(alpha0+alpha1*sigmat[n1]^2)

a0

0.01028445

It is easy to extract the residuals, the first 10 of which are:

residuals <- fit.ARCH1$residuals

residuals[1:10]

[1] NA -0.4324838 0.9094782 -0.1743871

[5] -0.4762781 1.2538257 0.5464646

[8] -0.2879321 0.6451482 0.1183917

We can see that the residuals are normally distributed, roughly.
69

69: Remember that normality of the resid-

uals (𝑍𝑡 ) is not the same as normality of

the data (𝑋𝑡 ).
residuals = residuals[2:n]

qqnorm(residuals)

9.9 Miscellenous Topics

We will finish this chapter by briefly discussing three additional topics:

seasonality, asymptotic normality, and innovations.
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9.9.1 Seasonality

In the study of time series data, seasonality – a repeating pattern that

occurs at regular intervals – is an important concept. For instance, we

might expect a time series of the average monthly temperature in a specific

location to show regularity from one year to the next. Or, assuming that

an employee’s salary is deposited twice monthly directly into their bank

account and that expenses come out on a monthly basis form the same

account, we would expect the time series of end-of-day balances in the

account to follow a regular monthly pattern.

Differencing is a simple way to correct for a seasonal component: if we

have identified such a component with a period of 𝑇 time steps,
70

then 70: By searching for regularities in the

ACVF, through a Fourier analysis of the

data, or using domain expertise.

we can remove it on 𝑋𝑡 by subtracting from it the value 𝑋𝑡−𝑇 , yielding a

time series

𝑌𝑡 = ∇𝑇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑇 , 𝑡 > 𝑇.

We have seen some examples of seasonal decomposition when we were

using the decompose() function to de-trend the data and obtain the

stationary (random) component for analysis (see page 504, for instance).

Example: Accidental Deaths The monthly accidental deaths figures

(USAccDeaths) in the US from January 1973 (𝑡 = 1) to December 1978

(𝑡 = 72) are plotted below.

A histogram of the data is also provided.



582 9 Time Series and Forecasting

The sample autocorrelation function also shows a seasonal trend with

period 𝑇 = 12.

The deseasonalized deaths data is shown below.

This graphs suggests the presence of an additional quadratic compo-

nent:

𝑥𝑡 = 𝑚𝑡︸︷︷︸
local trend

+ 𝑠𝑡︸︷︷︸
seasonal trend

+ 𝑍𝑡︸︷︷︸
noise

, 𝑚𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2.

We estimate the local trend as

𝑚̂𝑡 = 9951.822 − 71.817𝑡 + 0.826𝑡2 , 1 ≤ 𝑡 ≤ 72.
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The estimated residuals (the stationary signal)

𝑌̂𝑡 = 𝑥𝑡 − 𝑚̂𝑡 − 𝑠𝑡 , 1 ≤ 𝑡 ≤ 72

is shown below.

The residuals do appear to be dependent, as there are long stretches of

residuals with the same sign. Furthermore, 10% of the autocorrelations

are outside the bounds ±1.96/
√

72, which is also an indication that we

should reject the i.i.d. hypothesis.

The results of the randomness tests for residuals are:

Ljung - Box statistic = 55.384 Chi-Square ( 20 ), p-value = .00004

Order of Min AICC YW Model for Residuals = 1

The sample value of the Ljung-Box statistic 𝑄LB with lag ℎ = 20 is

51.84. Since the corresponding 𝑝−value is 0.00004 < 0.05 we reject the

i.i.d. hypothesis at a level of 0.05. The minimum-AICC Yule-Walker

auto-regressive model for the data is of order 1 (≠ 0), which supports

the evidence provided by the sample ACF and the Ljung-Box statistic

against the i.i.d. hypothesis.

We forecast data for the years 1979 and 1980 (using an ARMA model)

and display the prediction in red below.
71

71: The order is not provided.



584 9 Time Series and Forecasting

Note the “jaggedness” of the predictions.

9.9.2 Asymptotic Normality

Asymptotic normality is an important concept in time series analysis for

several reasons, some of which are outlined below.

Statistical Inference: Asymptotic normality allows for the applica-

tion of standard statistical tests (like 𝑡−tests and 𝑧−tests) for hypoth-

esis testing and confidence interval construction. This simplifies

the analysis by using familiar and well-understood techniques.

Large Sample Approximation: Time series data often involve a

large number of observations. The Central Limit Theorem suggests

that the sampling distribution of many statistics will be approxi-

mately normal in large samples, making the results generalizable.

Parameter Estimation: In many time series models, parameter

estimates are often obtained through methods like Maximum

Likelihood Estimation (MLE) or Ordinary Least Squares (OLS).

Asymptotic normality of these estimators provides a basis for

conducting inference about the parameters.

Model Validation: When fitting models to time series data, it is

important to know under what conditions the model will produce

reliable forecasts. Knowing that a model’s estimators are asymptot-

ically normal helps in understanding its long-term behaviour.

Comparison of Models: Asymptotic normality provides a common

ground for comparing different models. This is especially useful in

model selection criteria, like Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC), where the likelihood function

plays a crucial role.

Robustness: Models that possess asymptotically normal properties

are often more robust to minor deviations from assumptions, like

non-normality of errors in small samples.

Simplicity and Computation: When the statistics of interest are

asymptotically normal, it simplifies both the theoretical and compu-

tational aspects of the analysis. This allows for easier interpretation

and faster computation, which is crucial in real-world applications

where time and computational resources may be limited.
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The score function of a probability density 𝑓 (𝑥;𝜃) is:

𝑠(𝑥;𝜃) = 𝜕 log 𝑓 (𝑥;𝜃)
𝜕𝜃

=
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
.

The Fisher information of the time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is:

𝐼𝑛(𝜃) = Var

(
𝑛∑
𝑖=1

𝑠(𝑋𝑖 ;𝜃)
)
.

If the random variables are i.i.d., then the Fisher information collapses

to

𝐼𝑛(𝜃) = 𝑛Var(𝑠(𝑋1;𝜃)) = 𝑛𝐼1(𝜃) = 𝑛𝐼(𝜃).

Lemma: the score function satisfies E[𝑠(𝑋;𝜃)] = 0.

Proof: we used the definition of the expectation to obtain:

E[𝑠(𝑋;𝜃)] =
∫

𝑠(𝑋;𝜃) 𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥

=

∫
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑑𝑥

=
𝜕

𝜕𝜃

∫
𝑓 (𝑥;𝜃)𝑑𝑥 =

𝜕

𝜕𝜃
[1] = 0. ■

In the proof, we assumed that we could interchange integration and

differentiation.
72

Using the above lemma, we then find: 72: This holds for most reasonable density

functions 𝑓 (𝑥;𝜃).
𝐼(𝜃) = Var(𝑠(𝑋;𝜃)) = E[𝑠2(𝑋;𝜃)].

Lemma: we have

𝐼(𝜃) = E[𝑠2(𝑋;𝜃)] = −E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
= −E

[
𝜕2

log 𝑓 (𝑋;𝜃)
𝜕𝜃2

]
.

Proof: first, we note that:

E

[
𝑠2(𝑋;𝜃)

]
=

∫ (
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
1

𝑓 2(𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
1

𝑓 (𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑑𝑥.

Next, we see that:

−E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
= −

∫
𝜕𝑠(𝑋;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 = −

∫
1

𝑓 2(𝑥;𝜃)

(
𝜕2 𝑓 (𝑥;𝜃)

𝜕𝜃2

𝑓 (𝑥;𝜃) −
(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

)
𝑓 (𝑥;𝜃)𝑑𝑥

= −
∫ (

𝜕2 𝑓 (𝑥;𝜃)
𝜕𝜃2

)
𝑑𝑥 +

∫
1

𝑓 (𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑑𝑥 = − 𝜕2

𝜕𝜃2

∫
𝑓 (𝑥;𝜃)𝑑𝑥︸         ︷︷         ︸

=1

+E[𝑠2(𝑋;𝜃)] = E[𝑠2(𝑋;𝜃)].

Finally, we have:

E

[
𝜕2

log 𝑓 (𝑥;𝜃)
𝜕𝜃2

]
=

∫
𝜕2

log 𝑓 (𝑥;𝜃)
𝜕𝜃2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕

𝜕𝜃

(
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃

)
𝑓 (𝑥;𝜃)𝑑𝑥

=

∫
𝜕

𝜕𝜃

(
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕𝑠(𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 = E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
. ■



586 9 Time Series and Forecasting

Example Consider 𝑋 ∼ Exp(𝛽). The density function of 𝑋 is

𝑓 (𝑥; 𝛽) = 1

𝛽
𝑒−𝑥/𝛽 ,

with E[𝑋] = 𝛽, so that log 𝑓 (𝑥; 𝛽) = − log(𝛽) − 𝑥𝛽. The score function of

𝑋 is thus

𝑠(𝑥; 𝛽) = − 1

𝛽
+ 1

𝛽2

𝑥

and its derivative (w.r.t. 𝛽) is

−𝜕𝑠(𝑥; 𝛽)
𝜕𝛽

= − 1

𝛽2

+ 2

𝛽3

𝑥.

Hence,

𝐼(𝛽) = E

[
−𝜕𝑠(𝑥; 𝛽)

𝜕𝛽

]
= − 1

𝛽2

+ 2

𝛽3

E[𝑋] = − 1

𝛽2

+ 2

𝛽3

𝛽 =
1

𝛽2

.

Thus,

𝐼𝑛(𝛽) =
𝑛

𝛽2

.

Note that for 𝑋𝑛 = (𝑋1 + . . . + 𝑋𝑛)/𝑛, we have

Var(𝑋𝑛) =
Var(𝑋)
𝑛

=
𝛽2

𝑛
,

so that Var(𝑋𝑛) = 𝐼−1

𝑛 (𝛽).

This can be generalized to other distributions.

Theorem: under appropriate regularity conditions, we have

𝜃MLE − 𝜃

Var

(√
𝜃MLE

) d→ N(0, 1),

where

Var

(√
𝜃MLE

)
= 𝐼−1

𝑛 (𝜃).

Proof: the MLE estimator, 𝜃MLE, solves

𝜕

𝜕𝜃
ℓ (𝜃MLE) = 0,

where ℓ is the log-likelihood. We apply Taylor’s theorem to ℓ around

𝜃 = 𝜃MLE to obtain

ℓ (𝜃) +
(
𝜃MLE − 𝜃

) 𝜕2

𝜕𝜃2

ℓ (𝜃) ≈ 0.

Rearranging the terms, we get:

√
𝑛

(
𝜃MLE − 𝜃

)
=

1√
𝑛

𝜕
𝜕𝜃 ℓ (𝜃)

− 1

𝑛
𝜕2

𝜕𝜃2
ℓ (𝜃)

.
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Next, we show that the numerator converges to a normal distribution,

whereas the denominator converges in probability to a constant.

Recall that

ℓ (𝜃) = log 𝑓 (𝑋1;𝜃) + · · · + log 𝑓 (𝑋𝑛)(𝜃)

and so

𝜕

𝜕𝜃
ℓ (𝜃) =

𝑛∑
𝑖=1

𝜕

𝜕𝜃
log 𝑓 (𝑋𝑖 ;𝜃) =

𝑛∑
𝑖=1

𝑠(𝑋𝑖 ;𝜃).

We have already shown that E[𝑠(𝑋𝑖 ;𝜃)] = 0. Hence, the numerator can

be written as

1√
𝑛

𝑛∑
𝑖=1

𝑌𝑖 ,

where 𝑌𝑖 = 𝑠(𝑋𝑖 ;𝜃) are i.i.d. with mean 0 and variance

Var(𝑠(𝑋𝑖 ;𝜃)) = E[𝑠2(𝑋𝑖 , 𝜃)] = 𝐼(𝜃).

Thus, we have

1√
𝑛

𝜕

𝜕𝜃
ℓ (𝜃) = 1√

𝑛

𝑛∑
𝑖=1

𝑌𝑖
d→ N

(
0, E[𝑠2(𝑋1 , 𝜃)]

)
= N(0, 𝐼(𝜃)) .

Similarly, the numerator can be written as

1

𝑛

𝑛∑
𝑖=1

𝑈𝑖 ,

where

𝑈𝑖 =
𝜕2

𝜕𝜃2

log 𝑓 (𝑋𝑖 ;𝜃), 𝑖 = 1, . . . , 𝑛

are i.i.d. random variables. From the previous Lemma, we can write

E[𝑈𝑖] = E

[
𝜕2

𝜕𝜃2

log 𝑓 (𝑋𝑖 ;𝜃)
]
= −𝐼(𝜃).

The Law of Large Numbers73
then yields 73: To wit: if the 𝑋𝑖 are i.i.d. with finite

mean 𝜇, then

lim

𝑛→∞
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 = 𝜇.

There are two versions of this, the weak
law and the strong law, depending on

the type of convergence, but that falls out-

side the scope of these course notes, as

does convergence in distribution, which

basically states that the corresponding cu-

mulative distribution functions 𝐹𝑛 con-

verge pointwise to a cumulative distribu-

tion function 𝐹.

− 1

𝑛

𝑛∑
𝑖=1

𝑈𝑖 → 𝐼(𝜃),

from which we conclude the result. ■

Example: Exponential Distribution (continued) Applying the theorem

on the , we have √
𝑛(𝑋𝑛 − 𝛽) d→ N

(
0, 𝛽2

)
.

9.9.3 Innovations

We now provide some of the details that allowed us to use innovations in

Section 9.7.2. The goal is to try to determine a “good” prediction for the

𝑛 + 1th observation in the time series, which we denote by 𝑃𝑛𝑋𝑛+1.

A by-product of the innovation algorithm is that we will also "predict"

𝑋1 , . . . , 𝑋𝑛 .
74

74: Of course, we do not need to predict

these values since they have already been

observed in practice, but we can use the

innovations, i.e., the differences between

the observed values𝑋𝑖 and the “predicted”

values 𝑋𝑖 for model choice and estimation

purposes.
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As in Section 9.7.2, we define

𝑋𝑖+1 = 𝑃𝑖𝑋𝑖+1 = 𝑎𝑖1𝑋𝑖 + · · · + 𝑎𝑖𝑖𝑋1 , 𝑖 = 0, . . . , 𝑛;

which is to say that 𝑋𝑛+1 is the predicted value for 𝑋𝑛+1, whereas

𝑋1 , . . . , 𝑋𝑛 are the “predicted” values for 𝑋1 , . . . , 𝑋𝑛 .

We also define the column vectors

X𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , X̂𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , U𝑛 = (𝑈1 , . . . , 𝑈𝑛)⊤ ,

where𝑈𝑖 = 𝑋𝑖 − 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, are the innovations of the time series; a

"good" prediction is such that these errors are small. As we have no data

before 𝑛 = 1 on which to base the prediction, we opt for𝑋1 = E[𝑋1] = 0.
75

75: Remember, we are assuming that {𝑋𝑡 }
is a stationary time series.

Omitting 𝑋𝑛+1, we re-write the predictions, individually, as

𝑖 = 0 : 𝑋1 = 0,

𝑖 = 1 : 𝑋2 = 𝑎1,1𝑋1 ,

𝑖 = 2 : 𝑋3 = 𝑎2,1𝑋2 + 𝑎2,2𝑋1 ,

𝑖 = 3 : 𝑋4 = 𝑎3,1𝑋3 + 𝑎3,2𝑋2 + 𝑎3,1𝑋1 ,

...

𝑖 = 𝑛 − 2 : 𝑋𝑛 = 𝑎𝑛−1,1𝑋𝑛−1 + · · · + 𝑎𝑛−1,𝑛−1𝑋1 ,

or, simultaneously, as

X̂𝑛 = A∗X𝑛 ,

where

A∗ =

©­­­­­­«

0 0 0 · · · 0

𝑎1,1 0 0 · · · 0

𝑎2,2 𝑎2,1 0 · · · 0

...
...

...
. . .

...

𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛−2 · · · 𝑎𝑛−1,1 0

ª®®®®®®¬
.

Note that the matrix is lower diagonal.

We write

U𝑛 = X𝑛 − X̂𝑛 = X𝑛 − A∗X𝑛 = AX𝑛 ,

where A = I𝑛 − A∗
. This matrix is invertible since det(A) = 1 ≠ 0.

Let C = A−1
and B = C − I𝑛 ; then we can write

X𝑛 = CU𝑛 , and X̂𝑛 = (C − I𝑛)U𝑛 = BU𝑛 ,

representing the "predicted" values in terms of the innovations U𝑛 and

the lower diagonal matrix B (indeed, C must be lower diagonal, as is I𝑛 ,

so that B = C − I𝑛 is also lower diagonal).



9.9 Miscellenea 589

We can write the second of these equations as

X̂𝑛 = (C − I𝑛)U𝑛 =

©­­­­­­­«

𝑋1

𝑋2

𝑋3

...

𝑋𝑛

ª®®®®®®®¬
=

©­­­­­­«

0 0 0 · · · 0

𝜃1,1 0 0 · · · 0

𝜃2,2 𝜃2,1 0 · · · 0

...
...

...
. . .

...

𝜃𝑛−1,𝑛−1 𝜃𝑛−1,𝑛−2 𝜃𝑛−1,𝑛−3 · · · 0

ª®®®®®®¬
©­­­­­­«

𝑈1

𝑈2

𝑈3

...

𝑈𝑛

ª®®®®®®¬
,

and the first as

X𝑛 = CU𝑛 =

©­­­­­­«

𝑋1

𝑋2

𝑋3

...

𝑋𝑛

ª®®®®®®¬
=

©­­­­­­«

1 0 0 · · · 0

𝜃1,1 1 0 · · · 0

𝜃2,2 𝜃2,1 1 · · · 0

...
...

...
. . .

...

𝜃𝑛−1,𝑛−1 𝜃𝑛−1,𝑛−2 𝜃𝑛−1,𝑛−3 · · · 1

ª®®®®®®¬
©­­­­­­«

𝑈1

𝑈2

𝑈3

...

𝑈𝑛

ª®®®®®®¬
.

Note that the coefficients 𝜃𝑘,𝑗 have nothing to do with the Durbin-

Levinson algorithm (see Section 9.4.2).

From the above matrix equation, we have, for instance,

𝑋1 = 0,

𝑋2 = 𝜃1,1(𝑋1 − 𝑋1),
𝑋3 = 𝜃2,1(𝑋2 − 𝑋2) + 𝜃2,2(𝑋1 − 𝑋1).

The prediction of 𝑋3 is then based on the first and the second innovations

𝑋1 − 𝑋1 and 𝑋2 − 𝑋2.

In general, for a MA(𝑞) model, we can write

𝑋𝑖+1 =


0 𝑖 = 0

𝑖∑
𝑗=1

𝜃𝑖 , 𝑗(𝑋𝑖+1−𝑗 − 𝑋𝑖+1−𝑗) 𝑖 ≥ 1

.

For an ARMA(𝑝, 𝑞) model, we have instead

𝑋𝑖+1 =


0 𝑖 = 0

𝜙1𝑋𝑖 + · · · + 𝜙𝑝𝑋𝑖+1−𝑝 +
𝑖∑
𝑗=1

𝜃𝑖 , 𝑗(𝑋𝑖+1−𝑗 − 𝑋𝑖+1−𝑗) 𝑖 ≥ 1

.

The only thing left is to determine how to evaluate the coefficients 𝜃𝑖 , 𝑗 ;
this is the subject of the next theorem.

Innovation Algorithm: assume that {𝑋𝑡} is a stationary time series with

mean 0. Let 𝑣𝑖 = E[(𝑋𝑖+1 − 𝑋𝑖+1)2], 𝑖 ≥ 0, and 𝑣0 = E[𝑋2

1
] = 𝛾𝑋(0).

Then

𝜃𝑛,𝑛−𝑖 = 𝑣
−1

𝑖

(
𝛾𝑋(𝑛 − 𝑖) −

𝑖−1∑
𝑗=0

𝜃𝑖 ,𝑖−𝑗𝜃𝑛,𝑛−𝑗𝑣 𝑗

)
, 0 ≤ 𝑖 < 𝑛,

𝑣𝑛 = 𝛾𝑋(𝑛 − 1) −
𝑛−1∑
𝑗=0

𝜃2

𝑛,𝑛−𝑗𝑣 𝑗 .
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Example Consider the MA(1) model 𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1, where E[𝑍𝑡] = 0

and Var(𝑍𝑡) = 𝜎2

𝑍
. Recall that 𝛾𝑋(0) = 𝜎2

𝑍
(1 + 𝜃2), 𝛾𝑋(1) = 𝜃𝜎2

𝑍
and

𝛾𝑋(ℎ) = 0, ℎ > 1.

We have:

𝑛 = 1

− 𝑖 = 0: 𝑣0 = 𝛾𝑋(0) = 𝜎2

𝑍
(1 + 𝜃2), 𝜃1,1 = 𝑣−1

0
𝛾𝑋(1) = 𝜌𝑋(1) and

𝑣1 = 𝛾𝑋(0) − 𝜃2

1,1
𝑣0

𝑛 = 2

− 𝑖 = 0: 𝜃2,2 = 𝑣−1

0
𝛾𝑋(2) = 0

− 𝑖 = 1: 𝜃2,1 = 𝑣−1

1
𝛾𝑋(1) and 𝑣2 = 𝑣𝑛 = [1 + 𝜃2 − 𝑣−1

1
𝜃2𝜎2

𝑍
]𝜎2

𝑍

general 𝑛

− 𝑖 = 0, . . . , 𝑛 − 2: 𝜃𝑛,𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑛,

− 𝑖 = 𝑛 − 1: 𝜃𝑛,1 = 𝑣−1

𝑛−1
𝛾𝑋(1) and 𝑣𝑛 = [1 + 𝜃2 − 𝑣−1

𝑛−1
𝜃2𝜎2

𝑍
]𝜎2

𝑍

Important Property The innovations𝑈1 , . . . , 𝑈𝑛 are uncorrelated: we

have Cov(𝑈𝑖 , 𝑈𝑗) = 0 for 𝑖 ≠ 𝑗.76
Remembering that the sequence is76: This is not trivial to show.

centered, we have:

Γ𝑛 = E

[
X𝑛X⊤

𝑛

]
= E[CU𝑛U⊤

𝑛C⊤] = CE[U𝑛U⊤
𝑛]C⊤ = CDC⊤

where D is the diagonal matrix with entries 𝑣0 , . . . , 𝑣𝑛−1, where the

values 𝑣𝑖 = E[𝑈2

𝑖
] = E[(𝑋𝑖 − 𝑋2

𝑖
)] are the same quantities as those in the

innovation algorithm.

9.10 Exercises

1. Show that the set T𝑛 of stationary time series of length 𝑛 is a vector

subspace (over ℝ) of the set of all time series.

2. Let {𝑍𝑡} be independent normalrandom variables with mean 0

and variance 𝜎2

𝑍
. Let 𝑎, 𝑏, 𝑐 be constants. Which of the following

processes are stationary? Evaluate the mean and the autocovariance

functions.

a) 𝑋𝑡 = 𝑍𝑡 cos(𝑎𝑡) + 𝑍𝑡−1 sin(𝑎𝑡).
b) 𝑋𝑡 = 𝑎 + 𝑏𝑍𝑡 + 𝑐𝑍𝑡−2.

c) 𝑋𝑡 = 𝑍𝑡𝑍𝑡−2.

3. Let {𝑍𝑡} be a sequence of independent normal random variables

with mean 0 and variance 𝜎2

𝑍
= 1. Consider the sequence

𝑋𝑡 = 𝑍𝑡 + (𝑍2

𝑡−1
− 1), 𝑡 = 1, 2, . . . .

a) Show that E[𝑋𝑡] = 0.

b) Show that E[𝑋𝑡𝑋𝑡+ℎ] = 0 for ℎ ≠ 0.

4. Let {𝑍𝑡} be independent random variables with mean 0 and

variance 𝜎2

𝑍
. Let {𝑌𝑡} be a stationary sequence with a covari-

ance function 𝛾𝑌(ℎ). Assume that the sequences {𝑍𝑡} and {𝑌𝑡}
are independent from each other. Define 𝑋𝑡 = 𝑌𝑡𝑍𝑡 . Verify that

Cov(𝑋𝑡 , 𝑋𝑡+ℎ) = 0 for ℎ ≥ 1.
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5. Show that the PACF between 𝑋1 and 𝑋3 when removing the effect of 𝑋2 is:

𝜌1,3;2 =
Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(

1 − Corr
2(𝑋1 , 𝑋2)

) (
1 − Corr

2(𝑋2 , 𝑋3)
) .

6. Let {𝑍𝑡} be independent random variables with mean 0 and variance 𝜎2

𝑍
. Consider the model𝑋𝑡 = 𝑍𝑡+𝑍𝑡−1.

Evaluate 𝛼(1) and 𝛼(2).
7. Let {𝑍𝑡} be independent random variables with mean 0 and variance 𝜎2

𝑍
. Determine if the following

processes are stationary and causal.

a) 𝑋𝑡 + 0.2𝑋𝑡−1 + 0.48𝑋𝑡−2 = 𝑍𝑡 .

b) 𝑋𝑡 + 1.6𝑋𝑡−1 = 𝑍𝑡 − 0.42𝑍𝑡−1 + 0.04𝑍𝑡−2.

8. Derive a linear representation of the general ARMA(1, 2) model.

9. Derive a linear representation of the general ARMA(1, 𝑞) model.

10. Derive a linear representation of the AR(2) model 𝑋𝑡 = 𝜙𝑋𝑡−2 + 𝑍𝑡 .
11. Use the linear representation of ARMA(1, 1) to compute its covariance function.

12. Use the recursive method to compute the covariance function of the general AR(2) model.

13. This is an exercise about simulating time series.

a) Generate ARMA(𝑝, 𝑞) sequence 𝑋𝑡 . You have to choose 𝑝, 𝑞 as well as the required parameters. Make

sure that the chosen parameters imply existence of a stationary solution.

b) Identify the model using ACF and PACF. Include graphs of ACF and PACF (2 graphs).

c) Add a linear or a polynomial trend 𝑚𝑡 . The new sequence is 𝑌𝑡 = 𝑚𝑡 + 𝑋𝑡 .
d) Estimate 𝑚𝑡 using all three methods:

parametric method;

exponential smoothing;

moving average smoothing with your chosen 𝑄.

e) For each of the three methods, plot 𝑌𝑡 and the estimated trend 𝑚𝑡 on the same graphs (3 graphs).

f) For each of the three methods, compute 𝑋𝑡 = 𝑌𝑡 − 𝑚𝑡 . Plot residuals (that is 𝑋𝑡) (3 graphs).

g) Analyze 𝑋𝑡 using ACF and PACF. Graph ACF and PACF for all three methods (6 graphs). Identify

the most likely ARMA model for the data. Compare with your identification in b).

14. Download a data set from this page or use your own data set.

a) Remove the trend using any of the methods, if needed, to obtain a stationary time series. State the

chosen 𝑚𝑡 .

b) Plot the original sequence together with the estimated trend.

c) Plot the stationary part, then its ACF and PACF. Comment on the results when it comes to the choice

of a model.

15. Assume that 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
.

a) Apply the Yule-Walker procedure to obtain 𝑃𝑛𝑋𝑛+2 (two step prediction) for AR(1) model 𝑋𝑡 =

𝜙𝑋𝑡−1 + 𝑍𝑡 , |𝜙 | < 1. Compute the corresponding MSPE𝑛(2). Can you guess a general formula for

𝑃𝑛𝑋𝑛+𝑘?
b) Apply the Yule-Walker procedure to obtain 𝑃𝑛𝑋𝑛+1 for AR(2) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .

Compute the corresponding MSPE𝑛(1).
16. Consider the ARMA(1, 1) model 𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃𝑍𝑡−1, |𝜙 | < 1, 𝜃 ∈ ℝ, where 𝑍𝑡 are i.i.d. random

variables with mean 0 and variance 𝜎2

𝑍
. The goal is to find the best linear predictor 𝑃𝑛𝑋𝑛+1 of 𝑋𝑛+1 based

on 𝑋1 , . . . , 𝑋𝑛 .

a) Let 𝑛 = 1. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain 𝑎1 in 𝑃1𝑋2 = 𝑎1𝑋1.

b) Let 𝑛 = 2. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain coefficients 𝑎1 , 𝑎2 in 𝑃2𝑋3 = 𝑎1𝑋2 + 𝑎2𝑋1.

Hint: We have the following formulas for the covariance function:

𝛾𝑋(0) = 𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
, 𝑋(1) = 𝜎2

𝑍

[
(𝜙 + 𝜃) +

(𝜙 + 𝜃)2𝜙
1 − 𝜙2

]
, 𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(1), ℎ ≥ 2.

https://mysite.science.uottawa.ca/rkulik/mat3379/mat3379.html
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17. Consider the MA(1) model 𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1, 𝜃 ∈ ℝ, where 𝑍𝑡 are i.i.d. random variables with mean 0

and variance 𝜎2

𝑍
. The goal is to find the best linear predictor 𝑃𝑛𝑋𝑛+1 of 𝑋𝑛+1 based on 𝑋1 , . . . , 𝑋𝑛 .

a) Let 𝑛 = 1. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to conclude that

𝑃1𝑋2 =
𝛾𝑋(1)
𝛾𝑋(0)

𝑋1 =
𝜃

1 + 𝜃2

𝑋1.

b) Let 𝑛 = 2. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain coefficients 𝑎1 , 𝑎2 in 𝑃2𝑋3 = 𝑎1𝑋2 + 𝑎2𝑋1.

c) Let 𝑛 = 2. Apply the Durbin-Levinson algorithm to get 𝑃2𝑋3 = 𝜙2,1𝑋2 + 𝜙2,2𝑋1.

18. Consider a stationary ARMA(1, 1) model

(𝑋𝑡 − 𝜇) = 𝜙(𝑋𝑡−1 − 𝜇) + 𝑍𝑡 + 𝜃𝑍𝑡−1.

Evaluate

∑∞
ℎ=−∞ 𝛾𝑋(ℎ).

19. Assume that 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
. Consider the AR(2) model

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .
a) Derive confidence intervals for 𝜙1 and 𝜙2.

b) Assume that 𝑛 = 100, 𝛾̂𝑋(0) = 3, 𝛾̂𝑋(1) = 1.5, 𝛾̂𝑋(2) = 0.5. Use a) to get the confidence intervals.

20. In this question we develop Yule-Walker estimators for the AR(1) and ARMA(1, 1) models and study their

numerical performance. Recall that the Yule-Walker estimator for the AR(1) model is

𝜙 =
𝛾̂𝑋(1)
𝛾̂𝑋(0)

= 𝜌̂𝑋(1), 𝜎̂2

𝑍 = 𝛾̂𝑋(0) − 𝜙𝛾̂𝑋(1) = 𝛾̂𝑋(0) − 𝜌̂𝑋(1)2𝛾̂𝑋(0).

a) Numerical experiment for AR(1):
i. Load the file Data-AR.txt into R. This is a data set generated from a AR(1) model with 𝜙 = 0.8.

ii. Type var(Data) to obtain 𝛾̂𝑋(0).
iii. Type ACF<-acf(Data). Then type ACF. You will get 𝜌̂𝑋(ℎ), the estimators of 𝜌𝑋(ℎ). The second

entry is 𝜌̂𝑋(1) = 𝜙.

iv. Write the final values for 𝜙 and 𝜎̂2

𝑍
.

v. Compare the estimated 𝜙 with the true 𝜙.

b) Consider the ARMA(1, 1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑍𝑡−1, |𝜙 | < 1; the sequence 𝑋𝑡 is causal. Apply

the Yule-Walker procedure to obtain the estimators for 𝜙, 𝜃 and 𝜎2

𝑍
= Var(𝑍𝑡).

c) Numerical experiment for ARMA(1, 1):
i. Load the file Data-ARMA.txt into R. This is a data set generated from a ARMA(1, 1) model with

𝜙 = 0.8 and 𝜃 = 1.

ii. Identify the values of 𝜙, 𝜃, and 𝜎̂2

𝑍
.

iii. Compare the estimated 𝜙 with the true 𝜙. Which estimate is more accurate: ARMA(1, 1) or

AR(1)?
21. a) One hundred observations from AR(1) yield the following sample statistics:

𝑥 = 0, 𝛾̂𝑋(0) = 1.1, 𝜌̂𝑋(1) = 0.42.

i. Find the Yule-Walker estimators of 𝜙 and 𝜎2

𝑍
.

ii. Write the confidence interval for 𝜙.

iii. If 𝑋100 = 1.5, what is the predicted value of 𝑋101? What is the squared error of this prediction?

b) Two hundred observation from AR(2) yields the following sample statistics:

𝑥 = 3.82, 𝛾̂𝑋(0) = 1.15, 𝜌̂𝑋(1) = 0.427, 𝜌̂2 = 0.475.

i. Find the Yule-Walker estimators of 𝜙1, 𝜙2 and 𝜎2

𝑍
.

ii. Is the estimated model causal?.

iii. If 𝑋100 = 3.84 and 𝑋99 = 3.26, what is the predicted value of 𝑋101?
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22. Consider the general AR(1) model. Derive the MLE for 𝜙 and 𝜎2

𝑍
.

23. We have already fitted an AR(4) model to US unemployment data, and estimated the parameters using

the Yule-Walker procedure.

a) Calculate the residuals, and plot their ACF and PACF. Is the chosen AR(4) model appropriate?

b) Predict the next observation in the time series.

c) Backcast the past observations and verify the quality of the "prediction" by plotting the original

values and the "predicted" values on the same graph. Compute the squared error of that prediction.

d) Now, pretend that the model is AR(1). Estimate the model’s parameters. Repeat b)-d). State conclusions.

24. Use the Lake Huron data for this question (an in-built dataset in R).

a) Type the following code at the prompt.

My.TS <- LakeHuron

help(LakeHuron)

mean = mean(My.TS)

My.Centered.TS <- My.TS - mean(My.TS)

b) Fit an AR(2) model to the data using the Yule-Walker estimator. Obtain 𝜙1, 𝜙2, 𝜎̂2

𝑍
.

fit.ar <- ar(My.Centered.TS, method="yule-walker")

c) Verify that the command ar() leads to the correct Yule-Walker estimator.

i. At the prompt, type the following code.

ACF <- acf(LakeHuron)

var(LakeHuron)

Read off 𝜌̂𝑋(1) and 𝜌̂𝑋(2) and 𝛾̂𝑋(0). Using theis information, compute 𝛾̂𝑋(1), 𝛾̂𝑋(2).
ii. Create a vector (𝛾̂𝑋(1), 𝛾̂𝑋(2)) and call it gamma.vector.

iii. Create a matrix Γ̂2 and call it Gamma.matrix.

iv. Compute Γ̂−1

2
∗ 𝛾𝑋,2 by typing in

solve(Gamma.matrix)%*%gamma.vector

Compare the results with those of part b).

25. When 𝑝 ≥ 2, it can be rather difficult to identify the right 𝑝 from the data. Start by loading BadData.txt

into the R variable X.

a) Based on the ACF and PACF of the data, argue that an AR(3) model can be reasonably chosen.

b) Type the following code at the prompt.

(fit.ar <- ar(X,method="mle"))

What order does ar() select? Denote this order by p.

c) Using p from the step above, type the following code at the prompt.

(fit.arima <- arima(X,order=c(3,0,0)))

(fit.arima1 <- arima(X,order=c(p,0,0)))

Why did MLE select p and not 3?

26. Derive the formulas for the spectral density of MA(1) and ARMA(1, 1).
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27. Assume that (𝑋1 , 𝑋2) is a vector of dependent normal random variables with mean 0 and variance 𝜎2

each. Assume that the covariance matrix is given by

Σ =

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

]
.

In other words, 𝜌 is the correlation between 𝑋1 and 𝑋2. Assuming that 𝜎 is known, find the maximum

likelihood estimator of 𝜌.

28. Let {𝑍𝑡} be an i.i.d. sequence of normal random variables with mean 0 and variance 𝜎2

𝑍
= 1. Define

𝑋𝑡 =

{
𝑍𝑡 , 𝑡 even,

(𝑍2

𝑡−1
− 1)/

√
2, 𝑡 odd.

Find E[𝑋𝑡], 𝛾𝑋(𝑡 , 𝑡 + 1) and 𝛾𝑋(𝑡 , 𝑡 + 2).
29. Consider the sequence

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1 + 0.5𝑍𝑡−1 ,

where 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
.

a) Show that E[𝑋𝑡] = 0 for all 𝑡.

b) Compute 𝛾𝑋(𝑡 , 𝑡 + ℎ) = E[𝑋𝑡𝑋𝑡+ℎ] for ℎ = 0, 1, 2.

c) Is the sequence 𝑋𝑡 stationary? Why?

30. Assume that 𝐴 and 𝐵 are random variables with mean 0 and variance 𝜎2
. Assume also that Cov(𝐴, 𝐵) = 0.

Let 𝜔 ∈ ℝ and define

𝑋𝑡 = 𝐴 cos(𝑎𝑡) + 𝐵 sin(𝑏𝑡), 𝑎, 𝑏 ≠ 0.

Is {𝑋𝑡} stationary?

31. Consider the ARMA(2, 1) model given by

𝑋𝑡 − 0.75𝑋𝑡−1 + 0.5625𝑋𝑡−2 = 𝑍𝑡 + 2.25𝑍𝑡−1.

Is this process causal? Is this process stationary?

32. Consider the linear process given by

𝑋𝑡 =
∞∑
𝑗=0

(𝜙 𝑗 + 𝜙 𝑗+1)𝑍𝑡−𝑗 ,

where |𝜙 | < 1 and 𝑍𝑡 is an i.i.d sequence with mean 0 and variance 𝜎2

𝑍
. Write the formula for 𝛾𝑋(ℎ), ℎ ≥ 0.

33. Consider the ARMA(1, 2) model

𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + 𝜃2𝑍𝑡−2 ,

where |𝜙 | < 1, 𝜃1 , 𝜃2 ∈ ℝ, and 𝑍𝑡 is an i.i.d sequence with mean 0 and variance 𝜎2

𝑍
. Derive the linear

representation for 𝑋𝑡 , i.e. find the coefficients 𝜓 𝑗 in 𝑋𝑡 =
∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 .
34. Consider a stationary AR(3) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝜙3𝑋𝑡−3 = 𝑍𝑡 . Use the recursive method to

conclude

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙1𝛾𝑋(ℎ − 2) + 𝜙1𝛾𝑋(ℎ − 3), ℎ ≥ 3.

35. Derive the linear representation of a stationary AR(2) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .
36. Write the non-causal linear representation of an AR(1) 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 with 𝜙 > 1.

37. Obtain the coefficients 𝜙1,1, 𝜙2,2, 𝜙3,3 for the AR(1) model. Compare with the Yule-Walker procedure.

38. Obtain the coefficients 𝜙1,1, 𝜙2,2, 𝜙2,1 for the AR(2) model.

39. If {𝑋𝑡} and {𝑌𝑡} are two uncorrelated stationary processes, show that {𝑋𝑡 + 𝑌𝑡} is a stationary process.

What is its ACVF?
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40. Identify the ARMA model based on the ACF and PACF below.

41. Identify the ARMA model based on the ACF and PACF below.

42. Consider the AR(1) model𝑋𝑡 = 𝜙𝑋𝑡−1+𝑍𝑡 , where |𝜙 | < 1 and the random variables 𝑍𝑡 are i.i.d. with mean

0 and variance 𝜎2

𝑍
. Prove that 𝜙𝑛,𝑛 = 0 for all 𝑛 ≥ 2 (recall that 𝜙𝑛,𝑛 = partial autocovariance at lag 𝑛).

43. a) Let 𝑋 and 𝑌 be random variables with E[𝑌2] < ∞. Show that E[𝑌 | 𝑋] minimizes

MSE = E

(
[𝑌 − 𝑔(𝑋)]2

)
over all functions 𝑔 such that E

(
[𝑔(𝑋)]2

)
< ∞.

b) Generalize to 𝑋1 , . . . , 𝑋𝑛 to show that E[𝑋𝑛+1 |𝑋1 , . . . , 𝑋𝑛] minimizes

MSE = E

(
[𝑋𝑛+1 − 𝑔(𝑋1 , . . . , 𝑋𝑛)]2

)
over all functions 𝑔 such that E

(
[𝑔(𝑋1 , . . . , 𝑋𝑛)]2

)
< ∞.

c) If 𝑋1 , 𝑋2 , . . . are i.i.d. with E[𝑋2

𝑖
] < ∞ and E[𝑋𝑖] = 𝜇 for all 𝑖, where 𝜇 is known, what is the

minimum mean square predictor of 𝑋𝑛+1 in terms of 𝑋1 , . . . , 𝑋𝑛?

d) If 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with E[𝑋2

𝑖
] < ∞ and E[𝑋𝑖] = 𝜇 for all 𝑖, where 𝜇 is unknown, show that the

best linear unbiased estimator (BLUE) of 𝜇 is 𝑋.
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44. Let {𝑍𝑡} be i.i.d. with 𝑍𝑡 ∼ 𝑁(0, 1) and define

𝑋𝑡 =

{
𝑍𝑡 if 𝑡 is even

𝑍2

𝑡−1
−1√
2

if 𝑡 is odd

a) Show that {𝑋𝑡} is WN(0, 1) but not i.i.d. (0, 1) noise.

b) Find E[𝑋𝑛+1 |𝑋1 , . . . , 𝑋𝑛] for 𝑛 even and for 𝑛 odd and compare the results.

45. Consider the time series

𝑋𝑡 = 𝑚𝑡︸︷︷︸
local trend

+ 𝑍𝑡︸︷︷︸
noise

and the simple moving average filter with weights 𝑎 𝑗 = (2𝑞 + 1)−1
for −𝑞 ≤ 𝑗 ≤ 𝑞.

a) If 𝑚𝑡 = 𝑐0 + 𝑐1𝑡 show that

∑𝑞

𝑗=−𝑞 𝑎 𝑗𝑚𝑡−𝑗 = 𝑚𝑡 .

b) If {𝑍𝑡}𝑡∈ℤ are i.i.d. with mean 0 and variance 𝜎2
, show that the moving average

𝐴𝑡 =

𝑞∑
𝑗=−𝑞

𝑎 𝑗𝑍𝑡−𝑗

is small in the sense that E[𝐴𝑡] = 0 and Var(𝐴2

𝑡 ) = 𝜎2

2𝑞+1
.

46. Compute the ACF of the model 𝑋𝑡 − 0.6𝑋𝑡−1 = 𝑍𝑡 + 1.2𝑍𝑡−1 , where 𝑍𝑡 is WN(0, 𝜎2).
47. Let 𝑋𝑡 denote a non-causal AR(1) process 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 where {𝑍𝑡} ∼ WN(0, 𝜎2) and |𝜙 | > 1.

a) Denote𝑊𝑡 = 𝑋𝑡 − 1

𝜙𝑋𝑡−1. Show that {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤) and express 𝜎2

𝑤 in terms of 𝜎2
and 𝜙.

b) Show that 𝑌𝑡 =
1

𝜙𝑌𝑡−1 +𝑊𝑡 is causal and has the same ACVF as 𝑋𝑡 above.

c) Find the causal form of 𝑋𝑡 = 1.2𝑋𝑡−1 + 𝑍𝑡 where {𝑍𝑡} ∼ WN(0, 1).
48. Let {𝑌𝑡} be the AR(1) plus white noise time series defined by 𝑌𝑡 = 𝑋𝑡 +𝑊𝑡 where {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤),
{𝑋𝑡} is the AR(1) process 𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 , |𝜙 | < 1, {𝑍𝑡} ∼ WN(0, 𝜎2

𝑧), E[𝑋𝑠𝑍𝑡] = 0 for all 𝑠 < 𝑡 and

E[𝑊𝑠𝑍𝑡] = 0 for all 𝑠, 𝑡.

a) Show that {𝑌𝑡} is stationary and find its ACVF.

b) Show that the time series𝑈𝑡 = 𝑌𝑡 − 𝜙𝑌𝑡−1 is 1−correlated and hence is an MA(1) process.

c) Conclude from b) that {𝑌𝑡} is an ARMA(1, 1) process and express the three parameters of this model

in terms of 𝜙, 𝜎2

𝑤 and 𝜎2

𝑧 .

49. Let {𝑋𝑡} be an AR(𝑝) process defined by

𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 ,

where {𝑍𝑡} ∼ WN(0, 𝜎2) and E[𝑋𝑠𝑍𝑡] = 0 for all 𝑠 < 𝑡.

a) Show that for 𝑛 > 𝑝, the best linear predictor 𝑃𝑛𝑋𝑛+1 is 𝜙1𝑋𝑛 + · · · + 𝜙𝑝𝑋𝑛−𝑝 .
b) Compute the mean square error of this forecast.

50. Let {𝑋𝑡} be an MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 − 𝜃𝑍𝑡−1 , 𝑡 ∈ ℤ where {𝑍𝑡} ∼ WN(0, 𝜎2) and |𝜃 | < 1.

a) Show that the best linear predictor 𝑃̃𝑛𝑋𝑛+1 based on {𝑋𝑗 | 𝑗 ≤ 𝑛} is

𝑃̃𝑛𝑋𝑛+1 = −
∞∑
𝑗=1

𝜃 𝑗𝑋𝑛+1−𝑗 .

b) Find the mean square error of 𝑃̃𝑛𝑋𝑛+1.

51. In the innovations algorithm, show that for each 𝑛 ≥ 2, the innovation 𝑋𝑛 − 𝑋̂𝑛 is uncorrelated

with 𝑋1 , . . . , 𝑋𝑛−1. Conclude also that the innovation 𝑋𝑛 − 𝑋̂𝑛 is uncorrelated with the innovations

𝑋1 − 𝑋̂1 , . . . , 𝑋𝑛−1 − 𝑋̂𝑛−1.
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52. Let 𝑋1 , 𝑋2 , 𝑋4 , 𝑋5 be observations from an MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 −𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2).
a) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋1 , 𝑋2.

b) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋4 , 𝑋5.

c) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋1 , 𝑋2 , 𝑋4 , 𝑋5.

d) Compute the mean squared error of the previous estimates. Which one of them is the best estimate

for 𝑋3.

53. Let {𝑋𝑡} be an AR(𝑝) process defined by 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2).
a) Show that

√
𝑛

𝜌̂(1)−𝜌(1)√
1−(𝜌(1))2

has asymptotically standard normal distribution 𝑁(0, 1).
b) If 𝑛 = 100 and 𝜌̂(1) = 0.64, build an approximate 95% confidence interval for 𝜙.

54. Let {𝑋𝑡} be an AR(1) process defined by 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2) with the usual hypotheses.

For ℎ = 1, 2, . . ., compute the ℎ−step ahead forecast 𝑃𝑛𝑋𝑛+ℎ = 𝑋̂𝑛(ℎ) in terms of {1, 𝑋𝑛 , . . . , 𝑋1} and find

its mean square error.

55. Suppose that {𝑋𝑡} is a non-causal and non-invertible ARMA(1, 1) process satisfying 𝑋𝑡 − 𝜙𝑋𝑡−1 =

𝑍𝑡 + 𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2), with |𝜙 |, |𝜃 | > 1. Define 𝜙̃(𝐵) = 1 − 𝐵
𝜙 and 𝜃̃(𝐵) = 1 + 𝐵

𝜃 and let

𝑊𝑡 = 𝜃̃−1(𝐵)𝜙̃(𝐵)𝑋𝑡 .
a) Show that {𝑊𝑡} has a constant spectral density function.

b) Conclude that {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤). Give an explicit formula for 𝜎2

𝑤 in terms of 𝜎2
, 𝜃 and 𝜙.

c) Deduce that 𝜙̃(𝐵)𝑋𝑡 = 𝜃̃(𝐵)𝑊𝑡 , so that {𝑋𝑡} is a causal and invertible ARMA(1, 1) process relative

to the white noise {𝑊𝑡} (see [1] for definition).

56. Let {𝑋𝑡} be the MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 +𝜃𝑍𝑡−1 where |𝜃 | < 1 and {𝑍𝑡} ∼ WN(0, 𝜎2). The best

linear predictor of 𝑋𝑛+1 based on 𝑋1 , . . . , 𝑋𝑛 is

𝑋̂𝑛+1 = 𝜙𝑛,1𝑋𝑛 + · · · + 𝜙𝑛,𝑛𝑋1 ,

where 𝜙𝑛 = (𝜙𝑛,1 , . . . , 𝜙𝑛,𝑛)⊤ satisfies 𝑅𝑛𝜙𝑛 = 𝜌𝑛 ; 𝜌𝑛 = (𝜌(1), . . . , 𝜌(𝑛))⊤. Show that

𝜙𝑛,𝑛−𝑗 = (1 + 𝜃2 + · · · + 𝜃2𝑗)(−𝜃)−𝑗𝜙𝑛,𝑛 for 1 ≤ 𝑗 < 𝑛

and conclude that the PACF of the process is

𝜙𝑛,𝑛 = − (−𝜃)𝑛
1 + 𝜃2 + · · · + 𝜃2𝑛

.

57. Let {𝑋𝑡} be a causal ARMA(1, 1) process of the form 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2).
Consider the innovation algorithm

𝑋̂𝑛+1 = 𝜙𝑋𝑛 + 𝜃𝑛,1(𝑋𝑛 − 𝑋̂𝑛)

for this process. It can be shown that the innovation algorithm coefficients 𝜃𝑛,1 can be found recursively

as follows:

𝑟0 =
1 + 2𝜃𝜙 + 𝜃2

1 − 𝜙2

, 𝜃𝑛,1 =
𝜃
𝑟𝑛−1

, 𝑟𝑛 = 1 + 𝜃2

(
1 − 1

𝑟𝑛−1

)
.

a) With the notation 𝑦𝑛 =
𝑟𝑛
𝑟𝑛−1

, show that

𝑦𝑛 = 𝜃−2𝑦𝑛−1 + 1, 𝑛 ≥ 1.

b) Deduce that

𝑦𝑛 = 𝜃−2𝑛𝑦0 +
𝑛∑
𝑗=1

𝜃−2(𝑗−1)
:= 𝐴(𝑛).

Determine 𝑟𝑛 and 𝜃𝑛,1 for all 𝑛 ≥ 1.

c) Evaluate the limits of 𝑟𝑛 and 𝜃𝑛,1 for |𝜃 | < 1 as 𝑛 → ∞.
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58. a) Compute and plot the spectral density of the stationary series {𝑋𝑡} satisfying

𝑋𝑡 − 0.99𝑋𝑡−3 = 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 1).

b) Does the spectral density suggest that the sample paths of {𝑋𝑡} will exhibit approximately oscillatory

behaviour? If so, then with what period?

c) Simulate and plot a realization of𝑋1 , . . . , 𝑋60. Does the graph of the realization support the conclusion

in part b)?

d) Compute the spectral density of the filtered process

𝑌𝑡 =
1

3

(𝑋𝑡−1 + 𝑋𝑡 + 𝑋𝑡+1)

and compare the numerical values of the spectral densities of {𝑋𝑡} and {𝑌𝑡} at frequency 𝜆 = 2𝜋
3

radians per unit time. What effect would you expect the filter to have on the oscillations of {𝑋𝑡}?
e) Apply the filter of part d) to the realization of part c). Comment on the result.

59. Consider the sunspot numbers {𝑋𝑡 , 𝑡 = 1, . . . , 100}, filed as SUNSPOTS.TSM.

a) Compute the sample autocovariances 𝛾̂(0), 𝛾̂(1), 𝛾̂(2) and 𝛾̂(3).
b) Use these values to find the Yule-Walker estimates of 𝜙1, 𝜙2 and 𝜎2

in the AR(2) model

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2)

for the mean corrected series 𝑌𝑡 = 𝑋𝑡 − 𝑋 𝑡 .

c) Assuming that the data really are a realization of an AR(2) process, find 95% C.I. for 𝜙̂1 and 𝜙̂2.

d) Use the Durbin-Levinson algorithm to compute the sample PACF 𝜙̂1,1, 𝜙̂2,2 and 𝜙̂3,3 of the sunspot

series. Is the value of 𝜙̂3,3 compatible with the assumption that the data are generated from an AR(2)
process? Use significance level 𝛼 = 0.05.

60. Use the ARMA Process Gaussian Likelihood formula to prove that if {𝑋𝑡} is an AR(𝑝) process with the

equation 𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2), then for 𝑛 > 𝑝, the likelihood function can

be written as

𝐿(𝜙, 𝜎2) = (2𝜋𝜎2)−𝑛/2(det(𝐺𝑝))−1/2

exp

{
− 1

2𝜎2

[
X⊤
𝑝𝐺

−1

𝑝 X𝑝 +
∑𝑛
𝑡=𝑝+1

𝑍2

𝑡

]}
,

where X𝑝 = (𝑋1 , . . . , 𝑋𝑝)⊤, 𝜙 = (𝜙1 , . . . , 𝜙𝑝)⊤ and 𝐺𝑝 = 𝜎−2Γ𝑝 = 𝜎−2𝐸(X𝑝X⊤
𝑝).

61. If {𝑌𝑡} is a zero-mean causal ARMA process and 𝑋0 is uncorrelated with 𝑌𝑡 for all 𝑡, show that the best

linear predictor of𝑌𝑛+1 in terms of 1, 𝑋0 , 𝑌1 , . . . , 𝑌𝑛 is the same as the best linear predictor of𝑌𝑛+1 in terms

of 1, 𝑌1 , . . . , 𝑌𝑛 .

62. Suppose that {𝑍𝑡} is a causal stationary AR(𝑝) process with E[𝑍4

𝑡 ] < ∞, and 𝑍𝑡 =
√
ℎ𝑡 𝑒𝑡 where

{𝑒𝑡} ∼ i.i.d. (0, 1) and

ℎ𝑡 = 𝛼0 + 𝛼1𝑍
2

𝑡−1
+ · · · + 𝛼𝑝𝑍

2

𝑡−𝑝 ,
𝑝∑
𝑗=1

𝛼 𝑗 < 1.

a) Show that E[𝑍2

𝑡 |𝑍2

𝑡−1
, 𝑍2

𝑡−2
, . . .] = ℎ𝑡 .

b) Show that {𝑍2

𝑡 } is an AR(𝑝) process. Identify its parameters.
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