




Data Understanding, Data Analysis, and
Data Science (Course Notes)

Volume 1: Prelude to Data Understanding

Patrick Boily

October 2023

Quadrangle | Idlewyld Analytics and Consulting Services



This work is licensed under a Creative Commons Attribution – NonCommercial

– ShareAlike 4.0 International License .

Below is a human-readable summary of (and not a substitute for) the license. Please see
this page for the full legal text.

You are free to:

Share – copy and redistribute the material in any medium or format

Remix – remix, transform, and build upon the material for any purpose, even commer-

cially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and indicate

if changes were made. You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use.

ShareAlike – If you remix, transform, or build upon the material, you must distribute

your contributions under the same license as the original.

No additional restrictions – You may not apply legal terms or technological measures

that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public

domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity, privacy, or

moral rights may limit how you use the material.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode


This one goes out to the “Welsh” contingent: Elowyn,

Llewellyn, and Gwynneth. Your world is going to be a whole

lot different than mine was; maybe data can even help make

some of it better. But one thing’s for sure: data is not going

away any time soon – better be prepared.





Series Preface

The first thing to know about Data Understanding, Data Analysis, and Data Science (DUDADS)

is that it isn’t really a “book”. It makes more sense to think of it as course notes, or as a

reference manual and a source of examples and application.

I borrow some of its contents from authors who do a better job of explaining things than

I could hope to do; I also sometimes modify their examples and code to better suit my

pedagogical needs.
*

Major influences include [1, 2, 3, 4, 5, 6, 8] – be sure to give these

masterful works the attention they deserve!

The second thing to know about DUDADS is that it isn’t really “a” book. It makes more

sense to think of it as a bunch of books in a trench coat, masquerading as a single one.
†

No one is expected to traverse DUDADS in one sitting, or even to tackle more than a few

of its assigned chapters, sections, subsections, exercises at any given time; rather, it is

intended to be read in parallel with guided lectures.

The third thing to know about DUDADS is that the practical examples use R and/or

Python, for no particular reason other than that some programming language had to be

used to illustrate the concepts. In the text, R code appears in blue boxes:

... some R code ...

Whereas Python code appears in green boxes:

... some Python code ...

You may look at some piece of code and think to yourself: “This isn’t how I would do

it” or “such-and-such a task would be easier to accomplish if we used module/package

ABC or programming language XYZ”. That’s quite possible.

But finding the optimal tool is not the point of DUDADS. In the first place, new data

science tools appear regularly, and it would be a fool’s errand to try to continuously

modify the book to keep up with them.
‡

In the second place, I am serious about the

“understanding” part of Data Understanding, Data Analysis, and Data Science, and that is

why I favour a tool-agnostic approach.

*
In all cases, I have attempted to properly cite and give credit where it is due. Get in touch if you find omissions!

†
I paid heed to this realization by splitting it into a number of volumes.

‡
I am not saying that I won’t be adding examples in different languages in the future, but let’s not get ahead of

ourselves.



The fourth thing to know about DUDADS is that it is not a place to go to in order to obtain

a detailed step-by-step guide on “how to solve it”. In person, my answer to a vast array

of data science related questions is, rather anti-climatically: “it depends”. Of course, it

depends; on the data, on the objectives, on the cost associated with making a mistake,

on the stakeholder’s appetite for uncertainty, and, perhaps more surprisingly, on the

analytical and data preparation choices that are made along the way.

To some, this might smack of post-modernism: “you are saying that there is no truth, and

that data analysis is pointless!” To which I respond: “analysts have agency (lots of it, it turns

out), and their choices DO influence the results, so make sure to run multiple analyses to

determine the variability of the outcomes”. That is the nature of the discipline.

The last thing you should probably know about DUDADS is that I have made a concerted

effort to focus mainly on the story of (learning) data analysis and data science; sometimes,

that comes at the expense of rigorous exposition.

“The early stages of education have to include a lot of lies-to-children, because

early explanations have to be simple. However, we live in a complex world,

and lies-to-children must eventually be replaced by more complex stories if

they are not to become delayed-action genuine lies.” [7]

Some of the concepts and notions that I present are incomplete by design, but remain (I

hope) true-to-their-spirit, or at least true “enough” for a first pass.
§

My position is that

learning is an iterative process and that important take-aways from an early stage might

need to be modified to account for new developments at a later date. But all things in good

time: flexibility is a friend in your learning adventure; perfectionism, not always so.

Patrick Boily

Wakefield, October 2023

pboily@uottawa.ca

The DUDADS reference manuals are available at idlewyldanalytics.com

Volume 1: Prelude to Data Understanding
Volume 2: Fundamentals of Data Insight
Volume 3: Spotlight on Machine Learning
Volume 4: Techniques of Data Analysis
Volume 5: Special Topics in Data Science and Artificial Intelligence
The Practice of Data Visualization (with S. Davies and J. Schellinck)

§
In the parlance of the field, let me simply say that some of the details are left as an exercise for the reader (and

can also be found in the numerous references).

https://idlewyldanalytics.com
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Learning Paths

I mostly use the material found in this volume at different levels in my teaching at the

University of Ottawa in the Department of Mathematics and Statistics.

In particular, here is what I cover in various courses:

MAT 2377 (Probability and Statistics for Engineers) – Chapters 6–7, Section 8.2;

MAT 3375 (Regression Analysis) – Chapter 8 (and some material from Chapter 20, in

DUDADS Volume 3);

MAT 3377 (Sampling and Surveys) – Chapter 10;

MAT 3378 (Analysis of Experimental Design) – Chapter 11;

MAT 3379 (Introduction to Time Series Analysis) – Chapter 9.

In 3rd-year courses (and above), I further assume that students are familiar with the

contents of Chapters 1–7.
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Programming languages go in and out of style. To be a strong programmer,

it is important to understand not just the ins and outs of a particular

programming language, but how computer languages and computing

infrastructure work more generally [6, 9].

In this chapter, learners are first introduced to some of the core concepts of

computer programming in a language-agnostic way, before being shown

the basics of R and Python, two of the most common programming

languages used in modern data analysis.

1.1 Programming Fundamentals

What are computer code and computer programs? Is there a difference

between these two concepts? (see [4] for a discussion on the topic).

In a nutshell, a computer program is an algorithm, written in a computer
language, providing instructions to a computer for carrying out a

series of operations. An example of a computer program is provided

in Figure 1.1.

Computer programs can be compiled or interpreted as a series of hard-

ware operations, carried out by a computer’s electrical components.

1.1.1 Compiled vs. Interpreted Languages

Compilers translate full source code programs, written in high-level
language (i.e., using natural languages, only “understandable” by people,

as in Figure 1.1), into machine language (i.e., binary code, only “under-

standable” by computers): they are basically grammatical (syntactic)

checkers – if the source code is error-free, it is converted into machine

code, which is eventually run by an executable file. Compiled code runs

quickly, and is thus favoured for the deployment phase. Commonly-used

compiled languages include C/C++/C#, COBOL, Fortran, Pascal, and

Julia.

Interpreters execute the source code directly: as long as an individual

statement is error-free (in the context of the available workspace), it can

be executed every time it is called, without regard for the overall syntax

of the file. Interpreters are slower, generally, and are favoured during the

development phase. Commonly-used interpreted languages include R,
1

1: Most programmers do not consider R

to be a programming language. If they

are feeling generous, they might dub it a

scripting language, at best. But it gets the

job done for data analysis purposes.

Python, JavaScript, and Ruby.
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Figure 1.1: An example of a computer program written in the computer language C. What do you suppose this program does?

(Programiz .)

1.1.2 Some Fundamental Concepts

We have been using the terms “computer language” and “algorithm” as

though they were everyday words. Let us take the time to ensure that

their meanings are clear.

Formal Language

In a formal language, words are created by combining letters from a pre-

defined alphabet, according to the rules provided by a formal grammar.
Everything that is formed according to the rules is an acceptable word;

anything else is not.

Example: Consider the formal language defined with

alphabet: {a, b, C, D, !}

grammatical rules:

1. letters may only be placed immediately to the left or to the

right of another letter

2. a letter instance must always be accompanied by another

instance of the same letter at some location either to its left

and/or to its right (or both)

3. an upper case letter must always be accompanied by a lower

case letter immediately to its left or to its right

https://www.programiz.com/c-programming/examples/swapping
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Thus, aa is a word in this formal language (rules 2 and 3 are clearly

satisfied; rule 3 is satisfied vacuously), as is bCaCab, but !aC!, DDaa, and

Patrick are not (why?).

Formal languages can sometimes seem ridiculous – of course letters may

only be placed to the left or to the right of other letters... where else

would they go? Well, rule 1 officially (and formally) eliminates letters

piling up on top of one another, for starter, but also spaces between words

(for that language, the space _ is not in the alphabet of letters).

Human languages, of the sort deemed natural (in contrast with artificial or

constructed languages) are formal, in theory. In practice, their grammars

tend to be flexible (more so with English than French, say) – syntax

evolves with cultures (in time and in space), and semantics (meaning)

can be retained even when the grammar is mangled.
2

2: But only up to a point, of course.

Computer Language

Computer languages are languages constructed to provide instructions

to a computer, in such a way that they can be compiled into low-level

instructions that the computer processor can execute.

Computer languages are also called programming languages, for reasons

that will soon become obvious. They are formal languages because if the

grammatical rules are not followed to the letter, the program cannot be

executed – computers cannot guess or infer what the programmer really

meant when the syntax is out of sorts.

The structure of the formal definition of a computer language contains

the following sections:

1. Lexical Rules
2. Syntax Rules

Grammar Productions
Operator Associativities and Precedences

3. Typing Rules

Declarations
Type Consistency Requirements (Function Definitions, Expres-

sions, Statements)

4. Operational Characteristics

Data (Scalars, String Constants, Arrays)

Expressions (Order of Evaluation, Type Conversion, Array

Indexing)

Assignment Statements (Order of Evaluation, Type Conversion)

Functions (Evaluation of Actuals, Parameter Passing, Return

From a Function)

5. Program Execution

As an illustration, the lexical rules of C are shown in Figure 1.2.
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Figure 1.2: Lexical rules of the programming language C Debray .

Algorithm

Computer programs are algorithms, which is to say, sequences of in-

structions with (at least) one well-defined stopping point (an instruction

that tells the program when to stop running).

Algorithms are not always mathematical or computer-based. In some

sense, we could think of recipes as algorithms as well: the baking/cooking

steps are presented in sequence, and some last step that must be completed

before the end product can be eaten.

For instance, here is an algorithm to make muffins:
3

3: Delicious!

1. Pour 1/2 cup of flour into a bowl.

2. Break one egg into the bowl.

3. Pour 3 tablespoons of oil into the bowl.

4. Pour 1 teaspoon of baking powder into the bowl.

5. Pour 1/4 cup of sugar into the bowl.

6. Mix with spoon until smooth.

7. Pour the mixture into muffin tins.

8. Bake for 15 minutes at 350 degrees Fahrenheit.

9. Let cool before eating.

10. Enjoy!

What is the stopping point? What is the outcome?

1.1.3 Code Components

Various sets of instructions, conventions, and structures are so funda-

mental to computer programming aims that they can be found in nearly

all computer languages.

These fundamental code elements include:

Variables

Data Structures

Operators

Statements and Expressions

Blocks (and Scope)

https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html


1.1 Programming Fundamentals 5

Figure 1.3: Computer code elements in action, for the scripting language R.

Functions

Logical (Control) Flow

Libraries/Packages/Modules

Inputs/Outputs

Interpreters/Compilers

How these components mesh with one another depends on the syntax

of the programming language under consideration (or its dialect).

In Figure 1.3, we see how this could be done in base R, for instance. This

particular chunk of code uses the

igraph library (specifically, its pre-compiled functionsplot(),

sample_gnp(), ecount(), and V()),

and builds the

user-defined functionmy_graph_function() via a code block,

which takes in as

inputs the variables my_number_nodes, my_colour, and my_-

density.

This function creates a

graph data structure my_graph,

and colours the graph’s vertices using my_colour as long as

some conditional logic statement relating to the number of

edges in the graphs and my_number_nodes is satisfied.

The function generates a visualization of the graph as an

output,

which is displayed when the function call is issued.
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The code is seen in action below: it creates and displays a 30-node,

green-coloured, non-directed, loop-free graph with probability 0.3 of

there being an edge between two arbitrary nodes (we will discuss what

these concepts represent in Chapter 29, (Social) Network Data Analysis).4
4: The seed enforces replicability.

Creating a random graph

library(igraph)

my_graph_function <- function(my_number_nodes,

my_colour,

my_density) {

my_graph = sample_gnp(my_number_nodes,

my_density,

directed=FALSE,

loops = FALSE)

if(ecount(my_graph) >= my_number_nodes) {

V(my_graph)$color <- my_colour

}

plot(my_graph,

layout = layout.fruchterman.reingold,

vertex.color = V(my_graph)$color)

}

set.seed(0)

my_graph_function(30,"green",0.3)
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If all of this seems mysterious and opaque at first, it is important to

remember that mastering a computer language requires time and prac-

tice.

Some languages are dialects or variants of other languages;
5

proficiency 5: Or at least, are mutually intelligible,

like Swedish and Danish, say.
in one can make it is easier to become proficient in another. But not all pro-

gramming languages follow the same paradigm: imperative languages

(object-oriented programming) live in a different “linguistic family” than

declarative languages (functional programming) languages.

1.1.4 Designing With Pseudo-Code

Before we can start thinking about writing code (in whatever program-

ming language whose syntax we have mastered), we need to think about

what it means to design an algorithm (or a computer program). From

a mathematical perspective, an algorithm is a (stochastic) function. We

thus need to specify:

the algorithm’s inputs;

its outputs, and

the procedure to transform the inputs into the outputs.
6

6: In the muffin recipe above, the ingredi-

ents are the inputs, the muffins themselves

are the outputs, and the recipe instructions

describe the transformation.

It is good programming practice to avoid typing up programs on the

fly – code needs to be planned: we need to know what the program

will do and how it will go about doing it before we commit it to a file,

independently of the language in which it will be implemented.

“Pseudo-code” is a term used to describe a rough sketch of the algorithm,

which indicates its expected inputs, outputs, and steps, while leaving

the specifics of its functionality in “black boxes”. Pseudo-code is usually

designed with the main elements of code (e.g., variables, functions, logical

flow, etc.), in a language-agnostic (i.e., human readable) manner.

Example: we might be interested in building an algorithm that would

cluster the observations in a dataset, using a maximum number of “local”

observations (see Chapters 19, Machine Learning 101, and 22, Spotlight on
Clustering, for an in-depth discussion of this topic).

What might the following chunk of pseudo-code (which is part of the

bigger clustering picture) do?

Chunk of pseudo-code

find_neighbours(array_of_points, max_n_neighbour_distance)

{

for each point[i] in array_of_points

{

for each remaining point[j] in array_of_points

{

distance_between_ij = distance(point[i], point[j])

if distance_between_ij <= max_n_neighbour_distance

then neighbours[i] = add_to_neighbrs(point[i],point[j])

}

}

}
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Figure 1.4: The first stage of pseudo-coding, in all its chicken scratch glory.

This is what is happening:

the algorithmfind_neighbours() takes as inputs a datasetarray_-

of_points and a quantity max_n_neighbour_distance;

for each observation point[i] in the dataset (i indexes the observa-

tions), it considers all other observations point[j] and computes

their distances to the initial observation point[i] (one by one);

when these distances are smaller than the input threshold max_n_-

neighbour_distance, it considers that the corresponding observa-

tion point[j] is a neighbour of observation point[i], and adds

the former to the neighbours of observation point[i].

Evidently, this chunk of pseudo-code defines the neighbourhood of each

observation in the dataset. Note the black box functions distance() and

add_to_neighbrs(): their specifics are not provided,
7

but what they7: Their eventual implementation may

change depending on the computer lan-

guage selected to write the program.

represent is clear. That is the power of pseudo-code.
8

8: Of course, in practice, we also do not sit

down and write pseudo-code on the fly...

that too must be planned (see Figure 1.4).

Getting a feel for the right level of pseudo code detail takes practice:

should we drill down into what add_to_neighbrs() does? Do we need

to describe what <= does? How much utility should be sacrificed in

favour of understanding?

The answers to these questions depends on the level of abstraction of

the programming language used to implement the algorithm:

high-level languages (such as R and Python) contain tons of built-

in functions, which allow for programming at higher levels of

abstraction, whereas

many details and functions must be programmed “by hand” in

low-level languages (such as assembly and machine languages),

which require lower levels.

The strategy to write useful pseudo-code is deceptively simple:

1. define the available inputs;

2. define the desired outputs, and

3. identify (and write down) a set of programmatic instructions

(procedure) to transform the inputs into the outputs.
9

9: This is easier said than done, obviously,

and it looks an awful lot like the definition

of an algorithm we provided previously,

but remember that parts of the pseudo-

code can be “black boxed”, which is to

say, that functionality can be described at

a high level.
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1.1.5 From Pseudo-Code to Code That Runs

Once we are satisfied that the pseudo-code provides a decent path to

solving the problem at hand,
10

, we can start thinking about how to 10: The proposed solution does not need

to be final.
implement it into real code (“code that runs”):

1. we start by determining the appropriate syntax for the computer

language that will be used and we re-write the pseudo-code as

syntactically correct code in this language;

2. we replace all “black box” functions with real code, and

3. we determine how to connect the real code (the software) to the

computer, so that it can be compiled/interpreted, and run by the

computer (receiving inputs and generating outputs).

It might take multiple tries before this is done successfully. That is to be

expected. It takes time, even for the most gifted programmer, to become

an expert in a new language. The urge to feel defeated if (when?) the

first few attempts fail is completely natural; as always, practice is the

answer.

The process of taking the high-level code (which is really a text file) and

getting it to run on a computer without a hitch requires a certain amount

of infrastructure to be in place:

libraries

input/output + file system

compilers/interpreters

In these notes, we are taking care of much of these issues by setting

up the R/Python examples internally and running them locally (using

our infrastructure); this works well for illustrating the concepts and

working with pedagogical datasets, but the infrastructure conundrum

must be tackled and solve before it becomes possible to produce useful

and actionable data analysis results (see Chapter 17, Data Engineering and
Data Management, for more details).

In general, there is no single authoritative reference manual describing

how to use a particular computer language and/or how to make code run

on particular hardware configurations, in no small part because coding

and computer references become obsolete in the blink of an eye.
11

11: Consider the change from Python 2 to

Python 3 as a cautionary tale.

Successful coders must be embedded in a community of coders. Luckily,

this is getting to be easier to do every day – most questions anybody could

ever have about specific aspects of coding have already been answered

somewhere online. Stack Overflow and similar sites can be quite useful

in that regard.
12

12: Fair warning: some coder communi-

ties can be ... let us say, not overly wel-

coming of neophytes. It is not unusual for

the answer to a question to be some varia-

tion on “look it up in the documentation”.

While this can be true in a general sense,

such an answer is useless. We all know

that things can be looked up in the doc-

umentation. And we all know that some

users ask questions without taking the

time to think about things, or in the hope

that somebody else will do their work for

them. It is in the best interest of learners to

seek communities that make a concerted

effort to be healthy and inclusive, to recog-

nize that not every user has reached the

same proficiency level. Such communities

are plentiful online; do not waste any time

and energy on gatekeepers.

As a last remark on the topic, keep in mind that in the real coding

world, there is no such thing as cheating: the objectives are to make

happen the things you want to see happen. Getting help along the way

is emphatically not prohibited (mind you, it is good practice to cite or

acknowledge such help).

Crucially, though, we should not use code when we do not understand

what it does – borrowed code may make complete sense in the context

for which it was written, but may have unintended ramifications in a

different context: be careful!

https://stackoverflow.com/
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1.1.6 Debugging

PROGRAMMERS DRINKING SONG:
99 little bugs in the code,

99 bugs in the code,

fix one bug, compile it again,

141 little bugs in the code.

141 little bugs in the code. . . ..

(Repeat until bugs = 0)

Mistakes WILL happen. What do we do about that?

In the development phase, coding is about getting all the moving pieces

to fit together, yes, but it is also about fixing the bugs , an “error in the

source code that causes a program to produce unexpected results or crash

altogether”. Fixing these bugs (debugging) is mainly about revealing

what is in memory at different points in the control flow of the code, to

determine if it is actually doing what we think it ought to be doing.

As the quote at the start of the section implies, debugging is a bit of an art

form, requiring the programmer to become a detective and a zen master

(see The Tao of Programming ). It teaches perseverance and humility,

and it really helps us perfect our understanding of the language, of the

code itself, and of the task at hand.

Debugging tools can help with all of this; at our level, debugging often

requires running the code line-by-line until we can identify the chunk

of code that is the culprit. Debugging is a necessary part of coding, no

matter how experienced you are.

1.1.7 R/Python

There is only so much that can be said about programming in general;
at some point, we need to select a computer language and get going in

earnest.

At a foundational level, most programming languages are roughly equiv-
alent (Turing-complete or Turing-equivalent), in the sense that anything

that can be done with one can also (more or less) be done with another.

But that does not mean that they are all equally useful.

Some are better suited to certain tasks, whether because they are less

memory-intensive, or more elegant, or more intuitive, and so on. Even in

the data analysis world, there are competing paradigms. In these notes,

we will use two of the most popular languages (although by no mean

the only ones): R and Python.

In the examples we provide, R code appears in blue boxes:

... some R code ...

Whereas Python code appears in green boxes:

... some Python code ...

https://www.techslang.com/definition/what-is-a-computer-bug/
https://www.mit.edu/~xela/tao.html
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Object-Oriented Languages vs. Procedural Languages R and Python

are objected-oriented languages, as opposed to procedural languages.

The focus of procedural programming is to break down a pro-

gramming task into a collection of variables, data structures,

and subroutines, whereas in object-oriented programming

it is to break down a programming task into objects that

expose behavior (methods) and data (members or attributes)

using interfaces. The most important distinction is that while

procedural programming uses procedures to operate on data

structures, object-oriented programming bundles the two to-

gether, so an “object”, which is an instance of a class, operates

on its “own” data structure. [3]

This will make more sense if we first understand the concepts of:

data types

data structures

functions

Languages have a set of built-in basic variable types, such as:

integer: 5

character: ‘m’

list: (5, 3, 9)

Other variables types can be built up out of these basic types, such as

strings, which are list of characters: (‘t’, ‘a’, ‘b’, ‘l’, ‘e’)

We can also define related variables – a data structure:

struct myNames = {string firstName, string middleName,

string lastName}

jenNames might be a variable of type myNames, with firstName =

Jen, middleName = Adele, lastName = Schellinck.

In addition a programmer might want to be able to carry out a set of

predefined instructions, or functions, on that data structure:

jenNames.print_middleName or

jenNames.string_length_lastName, say (what these functions

do should be clear from their name).

Loosely speaking, an object is a user-defined data structure, together

with a set of functions that are specific to that structure.

The data frame object in R is structured similarly to a spreadsheet:

it has rows and columns, with associated row and column names,

and

we can carry out predefined operations (mean, count, etc.) on

specific values, on selected rows, or selected columns, or the data

frame as a whole.

Learners that are familiar with databases and/or languages that are more

vector-focused (e.g. Java) might find the data frame implementation in R

frustrating; those who are familiar with matrices and other mathematical

concepts used in data analysis, less so.
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1.2 Introduction to R

R is a powerful language that is widely-used for data analysis and

statistical computing. It was developed in the early 90s by Ross Ihaka

and Robert Gentleman, as a successor to S, a statistical programming
language.

The inclusion of sophisticated packages (such as dplyr, tidyr, readr,

data.table, SparkR, ggplot2, etc.) has made R both more powerful and

more useful, allowing for smart data manipulation, visualization, and

computation, using its built-in data structures and functionality.

Notably, it has gained prominence as a free and open source alternative

to expensive statistical software.

1.2.1 Why Use R

Here are some benefits that potential users might note:

the style of coding is intuitive;

R is open source and free;

more than 18,500 packages, customized for various computation

tasks, are available (as of February 2022);

the R community is overwhelmingly welcoming and useful to new

users and experienced users alike;
13

13: You can browse and ask questions at

StackOverflow , and consult worked-out

examples on R-bloggers , for instance.

high performance computing experience is possible (with the

appropriate packages), and

is is one of the highly sought skills by analytics and data science

companies.

1.2.2 Installing R / RStudio

Note: If you have a pre-existing installation of R and/or RStudio, you

may skip this part. However, we highly recommend that both of these

applications be upgraded to the most recent version, if they have not

been upgraded for a while.
14

14: Note that these instructions can

quickly become obsolete; we will do what

we can to stay on top of them, but you may

need to consult other sources or search for

“Installing R and RStudio” online. Con-

sult Upgrading R and/or RStudio on 15 for

details.

Data analysis can be conducted using the vanilla (base) version of R, but

also using RStudio provides a better coding experience, in our opinion.

The following steps will allow you to install R and RStudio.

1. Download and install R at https://cloud.r-project.org .

Windows users should click on Download R for Windows,

then click on base, then click on the Download R X.X.X for
Windows link, where R X.X.X is the version number. For

example, the latest version of R as of 2022-02-07, was R 4.1.2;

macOS users should click on Download R for macOS, then

on R-X.X.X.pkg (under “Latest release::”), where R-X.X.X is

the version number. If the Mac has an Arm-based M1 chip,

choose R-X.X.X-arm64.pkg instead;

Linux users should click on Download R for Linux and choose

the specific distribution for more information on installing R

for their actual setup.

https://stackoverflow.com/
https://www.r-bloggers.com/
https://cloud.r-project.org
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2. Download and install RStudio at

posit.co/download/rstudio-desktop/#download .

look for the big blue button that says DOWNLOAD RSTU-
DIO DESKTOP FOR ..., where ... represents the desired

OS;

click on the button to start downloading;

Once downloading has completed, double-click the file to

open it, and follow the installation instruction.

3. (for macOS users only): Download and install XQuartz.
15

15: What is XQuartz and why does macOS

users need it?

go to https://www.xquartz.org . Under “Quick Download”,

click on “XQuartz-2.8.1.dmg”;

save the .dmg file, double-click it to open, and follow the instal-

lation instructions (you may need to restart your computer).

Reminder: you will need to re-install XQuartz when upgrad-

ing your macOS to a new major version.

4. Even with both R and RStudio installed, we will refrain from

working directly with the R interface, given that RStudio provides

such a “nice” shell over the engine that is R.

Once RStudio is opened, the graphic user interface (GUI) displays 4

panes, as in Figure 1.5.

Console: bottom left; this area shows the output of code that has

been run (either from the command line in the console or from the

script window);

Script: top left; as the name suggests, this is the area one would

typically use to write code. Lines can be run by first selecting them

(right-clicking) and pressing ctrl + enter (win) or cmd + enter

(mac) simultaneously. Alternatively, you can click on the little ‘Run’

button located at the top right corner of the script window;

Environment: top right; this space displays the set of external

elements that have been added. This includes data set, variables,

vectors, functions etc. This area allows the user to verify that data

has been loaded properly;

Graphical Output: bottom right; this space display the graphs

created during exploratory data analysis, or embedded help on

package functions from R’s official documentation.

1.2.3 Test, Test, Test!

To make sure you have installed both R and RStudio properly, type a

simple command in the console. For example, place your cursor in the

pane labelled Console, type x <- 2 + 2 at the prompt, followed by

enter or return, then type x, again followed by enter or return.

Testing R

x <- 2 + 2

x

You should see the value 4 printed to the screen.

https://posit.co/download/rstudio-desktop/#download
https://www.reddit.com/r/explainlikeimfive/comments/2nba2t/eli5_what_is_xquartz_and_what_does_it_do_running/cmc3t0b
https://www.reddit.com/r/explainlikeimfive/comments/2nba2t/eli5_what_is_xquartz_and_what_does_it_do_running/cmc3t0b
https://www.xquartz.org
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Figure 1.5: RStudio interface, with 4 default windows: Console, Script, Environment, and Graphical Output.

1.2.4 Customizing RStudio

We would like to suggest the following settings for your R/RStudio

installation, following [18, ch.8].
16

In RStudio, go to Tools >> Global16: Feel free to ignore the suggestion as

you wish. Options, and make the changes described below:
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[These settings] will cause you some short-term pain, because

now when you restart RStudio it will not remember the results

of the code that you ran last time. But this short-term pain

will save you long-term agony because it forces you to capture

all important interactions in your source code. There’s nothing

worse than discovering three months after the fact that you’ve

only stored the results of an important calculation in your

workspace, not the calculation itself in your source code. [18]

Optionally, you could also adjust the font size via Tools >> Global

Options >> Appearance >> Editor font size.
17

17: By default, it is set at 12, but a larger

font size may be easier on the eyes.

1.2.5 Upgrading R / RStudio

We suggest always working with the latest version of R and RStudio.

To upgrade R, find out the current version of R running on your

computer. You can do so from within the RStudio Console:

R version
R.version.string

[1] "R version 4.1.3 (2022-03-10)"

As of January 2023, the most recent version of R is 4.2.2. If you

have an older version installed on your computer, go to cloud.r-

project.org and follow the steps described on p. 12 (Installing
R / RStudio) to install the latest version of R. You can confirm

that the upgrade was successful by restarting RStudio and typing

R.version.string in the console again.

To upgrade RStudio from within RStudio, go to Help > Check

for Updates to install a newer version of RStudio (if available).

Once both R and RStudio have been upgraded, test by typing some

simple command in the console (as on p. 13, Test, Test, Test!).

1.2.6 Basics of R

How are the elements of code (introduced in Code Components on p. 4)

implemented in R? How do they mesh with one another to form in-

terpretable code? First, we should mention that while R is technically

object-oriented, this tends to be hidden in practice; the language is thus

especially well-suited for quick, interactive, and intuitive scripting and

data exploration.

Note as well that it uses special built-in notation for statistical models,

which would not usually be found in other languages (hence the “statis-

tical programming” moniker). Some of the examples and explanations

provided in the text are modified from [18, 7, 5, 13, 2, 10, 14].

The rest of this section contain information on the basic use of R; more

examples are available in Section 1.3 (More About Programming in R) and

throughout the course notes.

https://cloud.r-project.org
https://cloud.r-project.org
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Simple Computations in R We will get familiar with the R coding

environment; we start by showing how the console can be used as an

interactive calculator.

Type the first line of each group in your console, followed by a carriage

return to confirm that R works as we would expect of a calculator:

2 + 3

[1] 5

(3*8)/(2*3)

[1] 4

log(12)

[1] 2.484907

sqrt(121)

[1] 11

You can experiment with various combinations of calculations.

Should you want to modify or repeat a prior calculation, press the Up

Arrow when the cursor is in the console to cycle through previously

executed commands; pressing Enter re-runs the selected computation.

On the other hand, you can avoid scrolling through a wall of computations

by creating a variable. In R, this is done via the variable assignment

symbols <- or =.
18

Once a variable exists in memory, the output does not18: There are 3 others such symbols, but

no language needs 5 assigners, let alone 2,

so we will not introduce them here.

get printed explicitly unless it is called directly at the prompt, or if the

variable assignment is surrounded with a pair of parentheses.

x <- 8 + 17

x

[1] 25

(y <- 8 + 17)

[1] 25

Variables can be named using any combination of alphanumeric symbols,

but the name has to start with a letter (a-z, A-Z) and cannot contain spaces

and punctuation marks other than periods and dashes.
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R Packages Packages (or libraries) contain pre-compiled functions and

objects that could be useful in specific settings.

To install a package, simply type:

install.packages("package_name")

Take note of the quotation marks. You can type this code directly in the

console, followed by a carriage return, or enter it in the script window

and click Run in the menu at the top.

The base distribution already comes with some high-priority add-on

packages, namely:

KernSmooth MASS boot class

foreign lattice mgcv nlme

rpart spatial survival base

grDevices graphics grid methods

stats stats4 tcltk tools

cluster nnet datasets splines

These packages implement standard statistical functionality, for example

linear models, classical tests, a huge collection of high-level plotting

functions, and tools for survival analysis. Once a package is installed, it

needs to be loaded before its objects (datasets, functions) can be used.

This can be done by typing:
19

19: Since entering instructions is always

done in one of the ways described above,

we will stop specifying where and how it

must be done.libary(package_name)

Note the absence of the quotation marks.

For instance, in Code Components (see p. 4), we loaded the igraph package

to take advantage of the pre-compiled functionssample_gnp(),ecount(),

V(), and plot(). The first 3 functions are not in the base distribution;

the last function plot() does exist, but it would not know how to handle

graph objects without the special instructions provided by igraph.

The help file for compiled functions can be displayed in the graphical

output window by using the reserved character “?”, as below (assuming

that the igraph library has been loaded).
20

20: Extract of the igraph help file below:

?sample_gnp

In more sophisticated code, it is conceivable that we would want to load

multiple libraries; because we might forget which function is associated

with which library, or even that different libraries use the same name

for different functions, it is good practice to forego explicitly loading

a library in favour of directly fetching the required functionality (the

package must be installed first, however). In R, this is done as follows:

package_name::function_name(function_parameters)
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For instance, the graph code from above can be replaced by the following

chunk:

my_graph_function <- function(my_number_nodes,

my_colour,

my_density) {

my_graph = igraph::sample_gnp(my_number_nodes,

my_density,

directed=FALSE,

loops = FALSE)

if(igraph::ecount(my_graph) >= my_number_nodes) {

igraph::V(my_graph)$color <- my_colour

}

plot(my_graph, vertex.color = igraph::V(my_graph)$color)

}

my_graph_function(30,"green",0.3)

Note, however, that this strategy is not always optimal (in particular,

when using the pipeline operator, see p. 41).

R Essentials Everything you see or create in R is an object: vectors,

matrices, data frames, even variables (and functions) are objects.

R allows 5 basic classes of objects:

Character

Numeric (real numbers)

Integer (whole numbers)

Complex

Logical (True / False)

Each of these classes has attributes. An object can have the following

attributes:

names, dimension names

dimensions

class

length

etc.

An object’s various attributes can be accessed using the attributes()

function. We will have more to say on this topic.

The most basic R object is the vector. An empty vector can be created

using vector(). A vector contains various objects, but all must be of the

same class.
21

21: That can cause unforeseen difficulties

as it is not always easy to visually distin-

guish between a real number (numeric)
and an integer. Furthermore, the digits of

a number can be represented as character

strings in some cases.

Vectors can also be created using the combine (or concatenate) operator

c() (which makes it a singularly bad idea to use c as a variable name).

(a <- c(1.8, 4.5)) # numeric

(b <- c(1 + 2i, 3 - 6i)) # complex

(d <- c(23, 44)) # integer
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(e <- vector("logical", length = 5)) # logical

(f <- c("abc","def")) # character

[1] 1.8 4.5

[1] 1+2i 3-6i

[1] 23 44

[1] FALSE FALSE FALSE FALSE FALSE

[1] "abc" "def"

Comments can be introduced in R code via the # symbol: all characters

following a pound symbol are ignored by R until the next line of code (so

the classes in the example above would not be part of the code proper).

R Data Types and Objects There are various types of R objects.

Vectors As mentioned above, a vector contains objects of the same class.

We may have a need to mix objects of different classes in a list – this can

be done to a vector by coercion. This has the effect of ‘converting’ objects

of different types to the same class. For instance:

# coercion to character

(vec <- c("Time", 25,TRUE,"retro", 2.22))

# coercion to numeric

(bbb <- c(FALSE, 11))

# coercion to character

(i.a <- c(215,"October"))

[1] "Time" "25" "TRUE" "retro" "2.22"

[1] 0 11

[1] "215" "October"

We can verify the class of these objects using the class() function.

class(vec)

class(bbb)

class(i.a)

[1] "character"

[1] "numeric"

[1] "character"

To convert the class of a vector, we can use the as. command.

g <- 10:16 # create a vector of 7 integers

class(g) # find bar’s class

as.numeric(g) # convert to numeric

class(g)

as.character(g) # convert to character
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class(g)

[1] "integer"

[1] 10 11 12 13 14 15 16

[1] "integer"

[1] "10" "11" "12" "13" "14" "15" "16"

[1] "integer"

We can change the class of any vector using a similar approach. But

be careful – while we can convert a numeric vector into a character

one, going the other way will introduce NAs (conversion is subject to R’s

internal class rules).

Lists A list is a special type of object which can contain elements of

different data types.

my.list <- list(254,"abab", TRUE, 0 - 3i)

my.list

[[1]]

[1] 254

[[2]]

[1] "abab"

[[3]]

[1] TRUE

[[4]]

[1] 0-3i

The output of a list differs from that of a vector, since all the objects are

of different types. The double bracket [[1]] shows the index of the first

element and so on. The elements of a list can be extracted by using the

appropriate index:

my.list[[3]]

[1] TRUE

The single single bracket [ ] also has a role: it returns the list element

with its index number, instead of the result above.

my.list[3]

[[1]]

[1] TRUE
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Matrices A vector for which rows and columns are explicitly identified

is a matrix, a 2-dimensional data structure. All the entries of a matrix

have to be of the same class. The following code produces a 6 by 3 matrix

consisting of the first 18 integers.

my.matrix <- matrix(1:18, nrow=6, ncol=3)

my.matrix

[,1] [,2] [,3]

[1,] 1 7 13

[2,] 2 8 14

[3,] 3 9 15

[4,] 4 10 16

[5,] 5 11 17

[6,] 6 12 18

The dimensions of a matrix can be obtained using either the dim() or

attributes() commands (the matrix dimensions are a matrix’s only

attributes in R).

dim(my.matrix)

attributes(my.matrix)

[1] 6 3

$dim

[1] 6 3

To extract a particular element from a matrix, simply use the appropriate

indices. What might you expect to see from the following commands?

my.matrix[5,2] # row 5, col 2

my.matrix[c(1,2,4),2] # col 2, rows 1, 2, 4

my.matrix[4,2:3] # row 4, cols 2, 3

my.matrix[,2] # col 2

my.matrix[4,] # row 4

my.matrix[c(1,1,4),2] # col 2, rows 1, 1, 4

[1] 11

[1] 7 8 10

[1] 10 16

[1] 7 8 9 10 11 12

[1] 4 10 16

[1] 7 7 10

As an aside, it is straightforward to create a matrix from any vector, by

assigning the dimensions using dim().
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For instance, we start by reading in a vector of ages:

age <- c(23, 8, 5, 44, 15, 12, 31, 19, 16)

age

[1] 23 8 5 44 15 12 31 19 16

Then reshape the vector as a 3 x 3 matrix:

dim(age) <- c(3,3)

age

class(age)

[,1] [,2] [,3]

[1,] 23 44 31

[2,] 8 15 19

[3,] 5 12 16

[1] "matrix" "array"

Matrices can also be created by joining two vectors (with matching

dimensions) using cbind() or rbind():

x <- c(1, -2, 3, -4, 5, -6)

y <- c(200, 300, 400, 500, 600, 700)

cbind(x, y)

rbind(x,y)

x y

[1,] 1 200

[2,] -2 300

[3,] 3 400

[4,] -4 500

[5,] 5 600

[6,] -6 700

[,1] [,2] [,3] [,4] [,5] [,6]

x 1 -2 3 -4 5 -6

y 200 300 400 500 600 700

class(x)

class(y)

class(cbind(x, y))

class(rbind(x, y))

[1] "numeric"

[1] "numeric"

[1] "matrix" "array"

[1] "matrix" "array"

We will discuss how R implements regular matrix operations (transpose,

multiplication, addition, etc.) in Chapter 3 (Overview of Linear Algebra).



1.2 Introduction to R 23

Data Frames The data frame is R’s most commonly-used (and most

convenient) data type, especially for data analysis tasks.

Like matrices, we can use data frames to store tabular (rectangular) data,

but unlike matrices, a data frame can accommodate lists of vectors of

different classes: each column of a data frame acts like a list.

When data is read into R, it is first stored as a data frame.

The following bit of code, for instance, creates a data frame with two

columns, name and age:

df <- data.frame(

name = c("Patrick","Brownyn","Elowyn",

"Llewellyn","Gwynneth"),

age = c(45,41,19,8,5)

)

df

name age

1 Patrick 45

2 Brownyn 41

3 Elowyn 19

4 Llewellyn 8

5 Gwynneth 5

Here are some of df attributes:

dim(df)

str(df)

nrow(df)

ncol(df)

[1] 5 2

’data.frame’: 5 obs. of 2 variables:

$ name: chr "Patrick" "Brownyn" "Elowyn" "Llewellyn" ...

$ age : num 45 41 19 8 5

[1] 5

[1] 2

In the code above, df is the name of the data frame, dim() returns its

dimensions, str() its structure (i.e., the list of variables stored in the

data frame), and nrow() and ncol(), the number of rows and number

of columns in the data frame, respectively.

Reading Data and Writing Reading data into a statistical system for

analysis, and exporting the results to some other system for report writing,

can be frustrating tasks that take far more time than the statistical/data

analysis itself, but the former task is required if the latter is to be

undertaken in earnest.

We describe the import/export facilities available in R itself or via pack-

ages available from Comprehensive R Archive Network (CRAN).

https://cran.r-project.org
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R comes with a few data reading functions:

read.table(), read.csv() for tabular data;

readLines() for lines of a text file;

source(), dget() to read R code files (inverse of dump() and

dput(), respectively);

load() to read-in saved workspaces;

unserialize() to read single R objects in binary form.

There are, of course, numerous R packages that have been developed to

read in all kinds of other datasets, and you may need to resort to one of

these packages if you are working in a specific area.

read.table() Theread.table() function is one of the most commonly-

used functions for reading data. The help file
22

is worth reading if only22: Run ?read.table in the console.

because the function gets so much use. Its main arguments are:

file, the name of a file, or a connection;

header, logical indicating if the file has a header line;

sep, string indicating how the columns are separated;

colClasses, character vector indicating the class of each column

in the dataset;

nrows, number of rows in the dataset;
23

23: By default read.table()will read the

entire file. comment.char, character string indicating comments;
24

24: Defaults to “#”. skip, the number of lines to skip from the beginning of the file;

stringsAsFactors, whether character variables are coded as fac-

tors or as strings.
25

25: Defaults to TRUE because back in the

old days, strings represented levels of a

categorical variable; now that text mining

is an every day occurrence, that is not

always the case.

For small to moderately sized datasets, you can usually callread.table()

without specifying any other arguments.

data <- read.table("foo.txt")

In this case, R will read in the file foo.txt and automatically:

skip lines that begin with a #;

figure out how many rows there are (and how much memory needs

to be allocated), and

figure what type of variable is in each column of the table.

Telling R all these things directly makes R run faster and more efficiently.

The read.csv() function is identical to read.table() except that some

of the defaults are set differently (such as the sep argument).

With much larger datasets, some things can be done to prevent R from

choking on the data (a risk as R stores everything in RAM):

read the help page for read.table(), which contains many hints;

make a rough calculation of the memory required to store the

dataset (see on the next page for an example); if the dataset is larger

than the amount of RAM on your computer, it is best to stop here;

set comment.char = "" if all lines in the file are uncommented;

use the colClasses argument – specifying this option can make

read.table() run MUCH faster, often twice as fast.
26

We can26: In order to use this option, we must

know the class of each column in the data

frame; if all of the columns are “numeric”,

for example, then we would simply set

colClasses = "numeric".

figure out the column classes via the following code:
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initial <- read.table("datatable.txt", nrows = 100)

classes <- sapply(initial, class)

tabAll <- read.table("datatable.txt",

colClasses = classes)]

set nrows – this doesn’t make R run faster but it helps with memory

usage (a mild overestimate is okay; the Unix tool wc can be used to

calculate the number of lines in the file).

In general, when using R with larger datasets, it is also useful to know a

few things about the operating system:

how much memory is available on the system?

what other applications are in use?
27

27: Close everything that is not required.

are other users logged into the same system?

what is the operating system? (some operating systems can limit

the amount of memory a single process can access).

For example, suppose we have a data frame with 2,000,000 rows and 100

columns, all of which are numeric data. Roughly speaking, how much

memory is required to store this data frame?

On most computers, numeric data is stored using 64 bits of memory (8

bytes). Given that information, we have:

2, 000, 000 × 100 × 8 bytes = 1, 600, 000, 000 bytes

≈ 1, 600 MB = 1.6 GB.

Reading in a large dataset for which one does not have enough RAM

is an easy way to get the computer (or the R session) to freeze. This is

usually an unpleasant experience that requires killing the R process, in

the best case scenario, or rebooting the computer, in the worst case.

It is always a good idea to do a rough memory requirements calculation

before reading in a large dataset.

txt, csv, and Other Formats

Fixed format text files

# Windows only

df = read.table("folder\\file.txt", header=TRUE)

# all OS (including Windows)

df = read.table("folder/file.txt", header=TRUE)

The forward slash / is supported as a directory delimiter on all

operating systems; the double backslash \\ is only supported

under Windows. If the first row of the file includes the name of the

variables, these entries will be used to create appropriate names
28

for each of the columns in the dataset. If the first row does not 28: Reserved characters such as ‘$’ are

changed to ‘.’
include the names, the header option can be left off (or set to

FALSE), and the variables will be named V1, V2, ..., Vn.
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A limit on the number of lines to be read can be specified through

the nrows option. The read.table() function also supports us-

ing a URL as a filename or browsing files interactively using

read.table(file.choose()).

Sometimes data arrives in irregularly-shaped data files (there may

be a variable number of fields per line, or some data in the line may

describe the remainder of the line). In such cases, a useful generic

approach is to read each line into a single character variable, then

use character variable functions to extract the contents.

df = readLines("file.txt")

df = scan("file.txt")

The readLines() function returns a character vector with length

equal to the number of lines read. A limit on the number of lines

to be read can be specified through the nrows option. The scan()

function returns a vector, with entries separated by white space

by default. These functions read from standard input, but can also

read a file or a URL.

Comma-separated value (CSV) files: the read.csv() function

takes on much the same parameters as read.table().

df = read.csv("folder/file.csv")

Read sheets from an Excel file: if the data is available in an Excel file,

various possibilities exist, depending on the spreadsheet format.

df.xls = gdata::read.xls("file.xls", sheet=1)

df.xlsx = xlsx::read.xlsx("file.xlsx", sheet=1)

The sheet can be provided as either a number or a name.
29

29: The appropriate packages should have

been installed beforehand, however.

Reading datasets in other formats: the datasets of interest some-

times comes from another software. The foreign library is able to

do a native import for some of the most common formats: Stata,

Epi Info, Minitab, Octave, SPSS, Systat, and SAS files.
30

30: The read.ssd() function will only

work if SAS is installed locally, however.

df = foreign::read.dbf("filename.dbf")

df = foreign::read.epiinfo("filename.epiinfo")

df = foreign::read.mtp("filename.mtp")

df = foreign::read.octave("filename.octave")

df = read.ssd("filename.ssd")

df = read.xport("filename.xport")

df = read.spss("filename.sav")

df = read.dta("filename.dta")

df = read.systat("filename.sys")

There are analogous functions for writing data to files:

write.table() writes tabular data to text files (i.e. CSV);

writeLines(), to write character data line-by-line to a file;
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dump(), for dumping a textual representation of multiple R objects;

dput(), for outputting a textual representation of an R object;

save(), for saving an arbitrary number of R objects in binary format

(possibly compressed) to a file, and

serialize(), for converting an R object into a binary format for

outputting to a file.

There are numerous ways to store data, including structured text file

formats like CSV or tab-delimited, or complex binary formats. It is

important to take the time to explore the full range of functionality in

order to achieve your specific aims.

1.3 More About Programming in R

Many software packages and libraries are available to the data analyst. R

not only has the advantage that we can easily use its available packages,

but it provides enough flexibility for the analyst who wants to get dirty

with the data.

In this section, you will find examples and tips that highlight R’s data

manipulation features. It is not meant to be a complete introduction, or

even necessarily a showcase of good programming practices.

1.3.1 Help and Documentation

R’s various help files and demos can be accessed using the following

commands (where function_name and search_term correspond to the

desired function and/or term):

?function_name

example(function_name)

args(function_name)

??search_term

For instance, the following code would display the help file for the

function glm() in the bottom graphical output window of RStudio:

?glm

Most help files contain examples showcasing the use of the function.

These can be accessed via example().

example(glm)

We can thus copy the code from the example file, and run it directly at

the console.

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))
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glm.D93 <- glm(counts ~ outcome + treatment,

family = poisson())

anova(glm.D93)

summary(glm.D93)

treatment outcome counts

1 1 1 18

2 1 2 17

3 1 3 15

4 2 1 20

5 2 2 10

6 2 3 20

7 3 1 25

8 3 2 13

9 3 3 12

Analysis of Deviance Table

Model: poisson, link: log

Response: counts

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 8 10.5814

outcome 2 5.4523 6 5.1291

treatment 2 0.0000 4 5.1291

Call:

glm(formula = counts ~ outcome + treatment, family = poisson())

Deviance Residuals:

1 2 3 4 5

-0.67125 0.96272 -0.16965 -0.21999 -0.95552

6 7 8 9

1.04939 0.84715 -0.09167 -0.96656

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285

treatment2 1.338e-15 2.000e-01 0.000 1.0000

treatment3 1.421e-15 2.000e-01 0.000 1.0000

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom

Residual deviance: 5.1291 on 4 degrees of freedom

AIC: 56.761

Number of Fisher Scoring iterations: 4
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Similarly, the function’s arguments can be accessed via args().

args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, singular.ok = TRUE,

contrasts = NULL, ...)

NULL

1.3.2 Simple Data Manipulation

So what can we actually do with R?

Loading a Built-In Dataset We can obtain a list of such datasets in the

datsets package by calling the following function:

data()

Or those available in all installed packages via:

data(package = .packages(all.available = TRUE))

Let us take a look at the swiss built in dataset.
31

We can display the 31: Type ?swiss to see the help file.

dataset by simply calling it at the prompt, like so:

swiss

Or we can take a look at its first or last n entries using the functions

head() or tail().

head(swiss,6)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

Assigning Data We can create, assign, and display a vector consisting

of a sequence of numbers like this:

(x<- c(1:3))

[1] 1 2 3
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We can also assign non-sequential numbers:

(w <- c(12,-9))

[1] 12 -9

or mixed objects:

(v = c(w,"pomplamoose"))

[1] "12" "-9" "pomplamoose"

or matrices:

(u = t(matrix(1:10,ncol=5)))

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

[5,] 9 10

Data Types and Conversion We can test whether objects are of a certain

type or class:

is.numeric(x)

[1] TRUE

is.character(x)

[1] FALSE

is.vector(x)

[1] TRUE

is.matrix(x)

[1] FALSE
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is.data.frame(x)

[1] FALSE

is.character(w)

[1] FALSE

is.character(v)

[1] TRUE

is.data.frame(swiss)

[1] TRUE

We can also set an object to be of a specific type:

as.numeric(x)

[1] 1 2 3

as.character(x)

[1] "1" "2" "3"

as.vector(x)

[1] 1 2 3

as.matrix(x)

[,1]

[1,] 1

[2,] 2

[3,] 3
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as.data.frame(x)

x

1 1

2 2

3 3

Or combine two vectors into a single vector:

c(y,w)

[1] 200 300 400 500 600 700 12 -9

Or convert vectors to matrices or data frames:

cbind(x,y)

x y

[1,] 1 200

[2,] 2 300

[3,] 3 400

[4,] 1 500

[5,] 2 600

[6,] 3 700

rbind(x,y)

[,1] [,2] [,3] [,4] [,5] [,6]

x 1 2 3 1 2 3

y 200 300 400 500 600 700

data.frame(x,y)

x y

1 1 200

2 2 300

3 3 400

4 1 500

5 2 600

6 3 700

Conversely, we can convert a matrix to a vector:

as.vector(u)

[1] 1 3 5 7 9 2 4 6 8 10

or a matrix to a data frame:
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as.data.frame(u)

V1 V2

1 1 2

2 3 4

3 5 6

4 7 8

5 9 10

or a data frame to a matrix:

swiss_matrix=as.matrix(swiss)

head(swiss_matrix)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

Writing Functions One of R’s most advantageous feature is its flexibility:

what if we want to write our own functions? The template for all functions

is a block of code that looks like:

my.function <- function(arg1,arg2, ..., argn) {

# what my.function does

# typically involving the arguments

}

Here are some (truly) simple examples: first, a function, my.product(),

that computes the product of two arguments 𝑥 and 𝑦.
32

32: This is not a very interesting function

as the standard multiplication * is already

defined in R, but this is just an illustration

of the functionality.my.product <- function (x,y) {

x*y

}

Note that the function definition must be compiled (the code must be

run) before it can be called in the R session.

There are multiple ways to call my.product() for arguments x=12 and

y=-2.

my.product(x=12,y=-2)

my.product(y=-2,x=12)

my.product(12,-2)

my.product(-2,12)
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[1] -24

[1] -24

[1] -24

[1] -24

The first two calls reflect better programming practices. The last of those

is acceptable because multiplication is commutative, but it is risky to

play with the arguments this way.

For instance, consider another simple function my.quotient():

my.quotient <- function (x,y) {

x/y

}

We call my.quotient() on x=12 and y=-2.

my.quotient(x=12,y=-2)

my.quotient(y=-2,x=12)

my.quotient(12,-2)

[1] -6

[1] -6

[1] -6

but

my.quotient(-2,12)

[1] -0.1666667

When the parameters are not specified in the function call, their implied

order reverts to the declared order in the definition (1st = 𝑥, 2nd = 𝑦).

And what might we expect to happen with this call?

my.quotient(12,0)

[1] Inf

1.3.3 Exploring Data

R is good tool for data exploration. Let us examine the swiss dataset in

detail.

We start by displaying the first few rows of the dataset (3, in this case):
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head(swiss,3)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

We could also display the last few entries (6, here):

tail(swiss,6)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Neuchatel 64.4 17.6 35 32 16.92 23.0

Val de Ruz 77.6 37.6 15 7 4.97 20.0

ValdeTravers 67.6 18.7 25 7 8.65 19.5

V. De Geneve 35.0 1.2 37 53 42.34 18.0

Rive Droite 44.7 46.6 16 29 50.43 18.2

Rive Gauche 42.8 27.7 22 29 58.33 19.3

We can also get an idea as to the dataset’s structure with str():

str(swiss)

’data.frame’: 47 obs. of 6 variables:

$ Fertility : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...

$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...

$ Examination : int 15 6 5 12 17 9 16 14 12 16 ...

$ Education : int 12 9 5 7 15 7 7 8 7 13 ...

$ Catholic : num 9.96 84.84 93.4 33.77 5.16 ...

$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...

We can extract the column names with the function colnames():

colnames(swiss)

[1] "Fertility" "Agriculture" "Examination" "Education"

[5] "Catholic" "Infant.Mortality"

or display a specific column of the data frame, say Education, with the $

operator:

swiss$Education

[1] 12 9 5 7 15 7 7 8 7 13 6 12 7 12 5 2 8 28 20 9 10 3 12 6 1

[26] 8 3 10 19 8 2 6 2 6 3 9 3 13 12 11 13 32 7 7 53 29 29

This cannot be done with a matrix, however – the following code will

provide an error message:
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swiss_matrix$Education

Error in swiss_matrix$Education :

$ operator is invalid for atomic vectors

To extract the Education column from a matrix, identify its column index

and use this, instead:

swiss_matrix[,4]

Courtelary Delemont Franches-Mnt Moutier Neuveville

12 9 5 7 15

Porrentruy Broye Glane Gruyere Sarine

7 7 8 7 13

...

Le Locle Neuchatel Val de Ruz ValdeTravers V. De Geneve

13 32 7 7 53

Rive Droite Rive Gauche

29 29

Just as one would expect from the behaviour of colnames(), rownames()

extracts the data frame’s row names:

rownames(swiss)

[1] "Courtelary" "Delemont" "Franches-Mnt" "Moutier"

...

[46] "Rive Droite" "Rive Gauche"

The summary statistics (5-pt summary + mean + number of missing

variables for numerical variables; frequency table for others) can be

obtained for all data frame’s variables simultaneously:

summary(swiss)

Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality

Min. : 2.150 Min. :10.80

1st Qu.: 5.195 1st Qu.:18.15

Median : 15.140 Median :20.00

Mean : 41.144 Mean :19.94

3rd Qu.: 93.125 3rd Qu.:21.70

Max. :100.000 Max. :26.60
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More in-depth statistics are available with psych’s describe():

psych::describe(swiss)

vars n mean sd med trim mad min max range skew kurt se

Fertility 1 47 70.1 12.4 70.4 70.6 10.2 35.0 92.5 57.5 -0.46 0.2 1.82

Agriculture 2 47 50.6 22.7 54.1 51.1 23.8 1.2 89.7 88.5 -0.32 -0.8 3.31

Examination 3 47 16.4 7.9 16.0 16.0 7.4 3.0 37.0 34.0 0.45 -0.1 1.16

Education 4 47 10.9 9.6 8.0 9.3 5.9 1.0 53.0 52.0 2.27 6.1 1.40

Catholic 5 47 41.1 41.7 15.1 39.1 18.6 2.1 100.0 97.8 0.48 -1.6 6.08

Infant.Mortality 6 47 19.9 2.9 20.0 19.9 2.8 10.8 26.6 15.8 -0.33 0.7 0.42

The correlation matrix is obtained pretty much as one would expect:

cor(swiss)

F A Ex Ed C IM

Fertility 1.0 0.3 -0.6 -0.6 0.4 0.4

Agriculture 0.3 1.0 -0.6 -0.6 0.4 -0.0

Examination -0.6 -0.6 1.0 0.6 -0.5 -0.1

Education -0.6 -0.6 0.6 1.0 -0.1 -0.0

Catholic 0.4 0.4 -0.5 -0.1 1.0 0.1

Infant.Mortality 0.4 -0.0 -0.1 -0.0 0.1 1.0

We can obtain the data frame’s number of rows:

nrow(swiss)

[1] 47

or the summary of a single variable:

summary(swiss$Fertility)

Min. 1st Qu. Median Mean 3rd Qu. Max.

35.00 64.70 70.40 70.14 78.45 92.50

We can also find all observations for which a feature takes on a value

greater than a certain threshold, say:

swiss$Fertility>50

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

or provide summary information for the logical vector:
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summary(swiss$Fertility>50)

Mode FALSE TRUE

logical 3 44

table(swiss$Fertility>50)

FALSE TRUE

3 44

The logical vector can be used as an index: for instance, here is the dataset

only for those observations where Fertility was greater than 50.

swiss[swiss$Fertility>50,]

with

nrow(swiss[swiss$Fertility>50,])

[1] 44

We could also replace the threshold; for instance, here is the dataset for

observations data where Fertility is in the top 50%:

swiss[swiss$Fertility>median(swiss$Fertility),]

Fertility Agriculture Examination Education Catholic

Courtelary 80.2 17.0 15 12 9.96

Delemont 83.1 45.1 6 9 84.84

...

Le Locle 72.7 16.7 22 13 11.22

Val de Ruz 77.6 37.6 15 7 4.97

Infant.Mortality

Courtelary 22.2

Delemont 22.2

...

Le Locle 18.9

Val de Ruz 20.0

or, solely the Fertility and Education variables for observations where

Fertility is in the top 50%:

swiss[swiss$Fertility > median(swiss$Fertility),

c("Fertility","Education")]
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Fertility Education

Courtelary 80.2 12

Delemont 83.1 9

... ... ...

Le Locle 72.7 13

Val de Ruz 77.6 7

or those observations for which Fertility was maximal:

swiss[swiss$Fertility == max(swiss$Fertility),]

Fertility Agriculture Examination Education Catholic Infant.Mortality

Franches-Mnt 92.5 39.7 5 5 93.4 20.2

1.3.4 A Word About NAs

NA values in R can create some havoc. Be careful!

To illustrate some of the issues, create a dataset by sampling 100 values

(with replacement) among the values {1, 2, 3, 4,NA}.33
33: Your sample will be different.

test = sample(c(1:4,NA),100, replace=TRUE)

We can summarize test as follows:

summary(test) # 5pt summary + mean + number of NAs

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

1.000 1.500 3.000 2.549 3.500 4.000 29

We can read the mean from the output, or we could try to compute it

directly, using mean():

mean(test)

[1] NA

What is happening? The function mean() does not know how it should

handle the NA values; without further guidance, it elects to throw every-

thing akimbo.

Compare with:

mean(test, na.rm=TRUE)

[1] 2.549296
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1.3.5 Loops and Conditional Statements

R allows for flow control through loops and conditional statements:

if() and ifelse() – when a condition holds, do thing 1, when it

does not, do thing 2;

for() – iterate a procedure for a fixed number of steps;

while() – repeat steps as long as some condition holds.

High-level interpreted languages (like R) are slower than low-level and/or

compiled languages. To get around this issue, interpreted languages will

sometimes hand off
34

some operations to functions written in lower-level34: “Behind the scenes”, so to speak.

languages (like C).

In order to take advantage of this, certain programming strategies are

recommended when working with list, vectors, arrays, data frames, and

so on, namely vectorized functions (see the family of apply() functions

in R). In particular, we try to avoid cycling through each item of a list, and

instead use special functions that map a chosen function or operation

to every item in the list (in R, this can be done with the apply family of

functions, among others).

This can run counter to habits gained when learning other languages, in

which for and while loops, for instance, might have been emphasized.

Consequently, we elect NOT to introduce such loops at this stage. The

syntax is rather intuitive and will be easy to understand when we

encounter it in examples.

The ifelse() statement is quite powerful and can speed-up and simplify

data frame operations, however, and we take the time to illustrate how it

can be used.

We can easily create a new swiss column determining whether the

Fertility variable, say, is above a certain threshold (in which case it

should take the value 1) or not (0):

swiss$threshold <-ifelse(swiss$Fertility>50,1,0)

[1] 1 1 1 ... 1 1 1

[45] 0 0 0

There will be other opportunities to use these functions; the best way to

get the hang of R is to practice and debug.

1.4 The tidyverse

R is a functional language, which means that it uses nested parentheses,

which can make code difficult to read.
35

35: Exhibit A: everything up to now.
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1.4.1 Pipeline Operator

The pipeline operator |> (formerly %>%) and the dplyr package can be

used to remedy the situation. Hadley Wickham
36

provided an example 36: See [18] for everything there is to know

about pipelines and tidy data.
to illustrate how it works:

hourly_delay <- filter(

summarise(

group_by(

filter(

flights,

!is.na(dep_delay)

),

date, hour

),

delay = mean(dep_delay),

n = n()

),

n > 10

)

Without necessarily knowing how each of the internal functions works,

we can still get a sense for what the overall nested structure does, and

realize (albeit, with a fair amount of work) that the basic object on which

we operate is the flights data frame.

The pipeline operator |> removes the need for nested function calls, in

favor of passing data from one function to the next:

library(dplyr)

hourly_delay <- flights |>

filter(!is.na(dep_delay)) |>

group_by(date, hour) |>

summarise(delay = mean(dep_delay),n = n()) |>

filter(n > 10)

It is now obvious that the flights data frame is the base object, for instance

– the gap between pseudo-code and “code that runs” is significantly

reduced. The beauty of this approach is that the block of code can now

be ‘read’ directly: the flights data frame is

1. filtered (to remove missing values of the dep_delay variable);

2. grouped by hours within days;

3. the mean delay is calculated within groups, and

4. the mean delay is returned for those hours with more than n >

10 flights.

The pipeline rules are simple – the object immediately to the left of the

pipeline is passed as the first argument to the function immediately to

its right:

data |> function is equivalent to function(data)

data |> function(arg=value) is equivalent to function(data,

arg=value)
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For instance:

library(dplyr)

swiss |> summary()

Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality threshold

Min. : 2.150 Min. :10.80 Min. :0.0000

1st Qu.: 5.195 1st Qu.:18.15 1st Qu.:1.0000

Median : 15.140 Median :20.00 Median :1.0000

Mean : 41.144 Mean :19.94 Mean :0.9362

3rd Qu.: 93.125 3rd Qu.:21.70 3rd Qu.:1.0000

Max. :100.000 Max. :26.60 Max. :1.0000

Themagrittrvignette provides additional information on themagrittr

package, on which dplyr is based.

1.4.2 Tidy Data

The pipeline operator is also compatible with the tidyverse suite of

packages, championed by Wickham;
37

cheat sheets are available here37: Including the ever popular ggplot2

(see Chapter 12, ggplot2 Visualizations in
R in [1]).

.

Tidy data has a specific structure:

each column represents a unique variable;

each row represents a unique observation;

each table represents a type of observational unit.

Two tidyr functions are used to reshape tables to a tidy format: gather()

and spread() – gather() requires:

a data frame to reshape;

a key column (against which to reshape);

a value column (which will contain the new variable of interest),

and

the indices of the columns that need to be collapsed.

Consider the following dataset:

cities <- data.frame(

city=c("Toronto","Montreal","Vancouver",

"Ottawa","Calgary","Edmonton",

"Quebec City","Winnipeg","Hamilton"),

prov=c("Ontario","Quebec","BC",

"Ontario","Alberta","Alberta",

"Quebec","Manitoba","Ontario"),

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
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pop.2016=c(6202225,4291732,2642825,

1488307,1481806,1418118,

839311,834678,785184),

pop.2011=c(5928040,4104074,2463431,

1371576,1392609,1321441,

806406,783099,747545)

)

cities

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Ottawa Ontario 1488307 1371576

5 Calgary Alberta 1481806 1392609

6 Edmonton Alberta 1418118 1321441

7 Quebec City Quebec 839311 806406

8 Winnipeg Manitoba 834678 783099

9 Hamilton Ontario 785184 747545

It is not presented in a tidy format, because populations show up in two
columns. In tidy format, it would instead look like:

cities.tidy <- tidyr::gather(cities,"year","population",

3:4)

cities.tidy$year <- ifelse(cities.tidy$year=="pop.2016",

2016,2011)

cities.tidy

city prov year population

1 Toronto Ontario 2016 6202225

2 Montreal Quebec 2016 4291732

3 Vancouver BC 2016 2642825

4 Ottawa Ontario 2016 1488307

5 Calgary Alberta 2016 1481806

6 Edmonton Alberta 2016 1418118

7 Quebec City Quebec 2016 839311

8 Winnipeg Manitoba 2016 834678

9 Hamilton Ontario 2016 785184

10 Toronto Ontario 2011 5928040

11 Montreal Quebec 2011 4104074

12 Vancouver BC 2011 2463431

13 Ottawa Ontario 2011 1371576

14 Calgary Alberta 2011 1392609

15 Edmonton Alberta 2011 1321441

16 Quebec City Quebec 2011 806406

17 Winnipeg Manitoba 2011 783099

18 Hamilton Ontario 2011 747545

spread(), on the other hand, generates multiple columns from two

columns; it requires a data frame to reshape; a key column, and values

in the value column to become new values.
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For instance, we could reverse the “tidying” of cities.tidy with:

cities.back.to.wide <- tidyr::spread(cities.tidy,year,

population)

colnames(cities.back.to.wide) <- c("city","prov",

"pop.2011","pop.2016")

cities.back.to.wide

city prov pop.2011 pop.2016

1 Calgary Alberta 1392609 1481806

2 Edmonton Alberta 1321441 1418118

3 Hamilton Ontario 747545 785184

4 Montreal Quebec 4104074 4291732

5 Ottawa Ontario 1371576 1488307

6 Quebec City Quebec 806406 839311

7 Toronto Ontario 5928040 6202225

8 Vancouver BC 2463431 2642825

9 Winnipeg Manitoba 783099 834678

Other useful wrangling functions include separate() and unite().

What do you think these do?
38

38: How could you find out?

1.4.3 The dplyr Package

The dplyr package provides functions to transform tabular data. Its most

useful functions are compatible with the pipeline operator |>:

select(): to extract a subset of variables from the data frame;

filter(): to extract a subset of observations from the data frame;

arrange(): to sort the data frame;

mutate(): to create new variables from existing variables;

summarise(): to create so-called pivot tables;

group_by(): . . . self-evident?

We will showcase these functions with the help of various examples. Try

to guess what the outputs would be before looking at them.
39

39: We do not explicitly state the

dplyr::xyz dependency since we already

had to load the dplyr package to gain

access to the pipeline operator |>. cities |> select(prov,pop.2016)

prov pop.2016

1 Ontario 6202225

2 Quebec 4291732

3 BC 2642825

4 Ontario 1488307

5 Alberta 1481806

6 Alberta 1418118

7 Quebec 839311

8 Manitoba 834678

9 Ontario 785184



1.4 The tidyverse 45

cities |> select(-pop.2016)

city prov pop.2011

1 Toronto Ontario 5928040

2 Montreal Quebec 4104074

3 Vancouver BC 2463431

4 Ottawa Ontario 1371576

5 Calgary Alberta 1392609

6 Edmonton Alberta 1321441

7 Quebec City Quebec 806406

8 Winnipeg Manitoba 783099

9 Hamilton Ontario 747545

cities |> filter(pop.2016>1000000)

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Ottawa Ontario 1488307 1371576

5 Calgary Alberta 1481806 1392609

6 Edmonton Alberta 1418118 1321441

cities |> filter(pop.2016>1000000,

prov %in% c("Ontario","Quebec"))

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Ottawa Ontario 1488307 1371576

cities |> mutate(pop.increase = pop.2016/pop.2011-1)

city prov pop.2016 pop.2011 pop.increase

1 Toronto Ontario 6202225 5928040 0.04625222

2 Montreal Quebec 4291732 4104074 0.04572481

3 Vancouver BC 2642825 2463431 0.07282282

4 Ottawa Ontario 1488307 1371576 0.08510721

5 Calgary Alberta 1481806 1392609 0.06405028

6 Edmonton Alberta 1418118 1321441 0.07316028

7 Quebec City Quebec 839311 806406 0.04080451

8 Winnipeg Manitoba 834678 783099 0.06586524

9 Hamilton Ontario 785184 747545 0.05035015

cities |> summarise(median.2011=median(pop.2011),

variance.2011=var(pop.2011))
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median.2011 variance.2011

1 1371576 3.209519e+12

cities |> summarise(mean.2016=mean(pop.2016),

sum.2016=sum(pop.2016), n=n())

mean.2016 sum.2016 n

1 2220465 19984186 9

cities |> arrange(pop.2016)

city prov pop.2016 pop.2011

1 Hamilton Ontario 785184 747545

2 Winnipeg Manitoba 834678 783099

3 Quebec City Quebec 839311 806406

4 Edmonton Alberta 1418118 1321441

5 Calgary Alberta 1481806 1392609

6 Ottawa Ontario 1488307 1371576

7 Vancouver BC 2642825 2463431

8 Montreal Quebec 4291732 4104074

9 Toronto Ontario 6202225 5928040

cities |> arrange(desc(pop.2011))

city prov pop.2016 pop.2011

1 Toronto Ontario 6202225 5928040

2 Montreal Quebec 4291732 4104074

3 Vancouver BC 2642825 2463431

4 Calgary Alberta 1481806 1392609

5 Ottawa Ontario 1488307 1371576

6 Edmonton Alberta 1418118 1321441

7 Quebec City Quebec 839311 806406

8 Winnipeg Manitoba 834678 783099

9 Hamilton Ontario 785184 747545

cities |> arrange(prov,desc(pop.2016))

city prov pop.2016 pop.2011

1 Calgary Alberta 1481806 1392609

2 Edmonton Alberta 1418118 1321441

3 Vancouver BC 2642825 2463431

4 Winnipeg Manitoba 834678 783099

5 Toronto Ontario 6202225 5928040

6 Ottawa Ontario 1488307 1371576

7 Hamilton Ontario 785184 747545

8 Montreal Quebec 4291732 4104074

9 Quebec City Quebec 839311 806406
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cities |> group_by(prov) |>

summarise(mean.2016 = mean(pop.2016))

# A tibble: 5 × 2

prov mean.2016

<chr> <dbl>

1 Alberta 1449962

2 BC 2642825

3 Manitoba 834678

4 Ontario 2825239.

5 Quebec 2565522.

cities |> mutate(pop.increase = pop.2016/pop.2011-1) |>

select(city, pop.increase) |>

arrange(desc(pop.increase))

city pop.increase

1 Ottawa 0.08510721

2 Edmonton 0.07316028

3 Vancouver 0.07282282

4 Winnipeg 0.06586524

5 Calgary 0.06405028

6 Hamilton 0.05035015

7 Toronto 0.04625222

8 Montreal 0.04572481

9 Quebec City 0.04080451

dplyr also comes with “database” functionality (bind_cols(), bind_-

rows(),union(),intersect(),setdiff(),left_join(),inner_join(),

semi_join(), anti_join(), etc.).

Do not hesitate to bookmark, consult, and borrow from the excellent [18]

(and from the subsequent chapters) for more examples, and to practice,

practice, practice: we learn programming by programming.

1.5 Basics of Python

Python is another object-oriented language (OOL). It was created in the

early 90’s but was not popularized until the 00’s. It lends itself to writing

structured, easy-to-read computer code.
40

40: Indentation matters in Python: in

some of the code boxes of the next two

sections, we have been forced to some-

times introduce a carriage return in order

for the code to fit the width of the available

box – in instances where a new line starts

with indentation, it is important to verify

if that line is completing code from the

previous line, in which case it should be

entered as a single line at the prompt.

It is intended to be easier to understand and learn than other OOLs.

One of its strength is that it has a massive base of open-source modules,

which allow programmers to implement very sophisticated functionality

simply by making a few function calls (not unlike R’s packages).

More information is available from the Python Software Foundation ,

on Stack Overflow (and similar sites), and in reference manuals, such

as Jake VanderPlas’ A Whirlwind Tour of Python or the Python 3

documentation .

https://www.python.org
https://stackoverflow.com/
https://github.com/jakevdp/WhirlwindTourOfPython
https://docs.python.org/3
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1.5.1 IDE for Python

Anaconda and Jupyter are popular data science Python integrated
development environments (IDE); Rodeo , Spyder , PyCharm ,

Ninja (an others) also provide RStudio-like functionality for Python.

Installation instructions are available on the respective websites.

1.5.2 Introduction to Python

The content of the next two sections is intended to help data analysts get

a better sense of how Python could be used for data analysis. They are

not designed to teach the ins and outs of Python programming. Instead,

they illustrate typical tasks through examples.
41

41: Note that these examples require

Python 3.5 or higher.

Fundamentals Let us start with the basics.

Using Python as a Scientific Calculator Mathematical expressions can

easily be evaluated numerically in Python. For scientific calculations, one

should import the math module (package/library) which contains many

mathematical functions .

It is important to note that Python also provides facilities for integer

arithmetic which will be covered later. In this section, only floating-point

calculations are used.

Modules can be imported using the import function.

import math

We can call pre-compiled functions in a module by prepending the

module name (with a period) to the function name: module.function_-

name() is the Python equivalent of package::function_name() in R.

For instance, there is a cos function in the math module: it is called using

math.cos().

We can evaluate cos(
√
𝜋) with:

math.cos(math.sqrt(math.pi))

-0.20029354112337366

arctan(25/3) with

math.atan(2**5 / 3)

1.477319545636307

and ln(1 + 𝑒4) with

https://www.anaconda.com/
https://jupyter.org/
https://github.com/yhat/rodeo
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://github.com/ninja-ide/ninja-ide
https://docs.python.org/3.5/library/math.html
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math.log(1 + math.exp(4))

4.0181499279178094

Using Variables to Hold Intermediate Results It could be helpful to

break complex calculations into smaller steps. Variables can be used to

store intermediate results. We will see later how variables are used in

algorithmic settings.

For instance, we could break down the evaluation of exp(sin(
√

2 + 2))
into three parts:

𝑥 =
√

2

𝑦 = sin(𝑥 + 2)
𝑧 = exp(𝑦)

x = math.sqrt(2)

y = math.sin(x+2)

z = math.exp(y)

In order to display the values taken by the variables, we must call on

them separately, as follows:

x,y,z

(1.4142135623731, -0.26925647329403, 0.7639472984402)

The variables are saved even when they are not displayed, however.

Numbers as Formatted Strings Quite often, we may want to control

the way numbers are displayed (this can come in handy when reporting

results). For example, we may wish to display no more than 4 decimal

places for all real numbers, or we may want to pad numbers with zeros

so that they all have a given width.

The following block illustrates a number of ways to obtain formatted
strings of the number 12.3456789. For more details on the format specifi-

cation mini-language, please consult the documentation .

Note that a string must be enclosed within double quotes or single quotes.

We will discuss general string operations shortly.

x = 12.3456789

We can format the number as a string of width 10, with 2 decimal places:

"{:10.2f}".format(x)

’ 12.35’

https://docs.python.org/3/library/string.html#format-specification-mini-language
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Or as a string with 4 decimal places:

"{:.4f}".format(x)

’12.3457’

or as a zero-padded string of width 5, with no decimal:

"{:05.0f}".format(x)

’00012’

Fixed Decimals Floating-point numbers are usually shunned as they

are inherently inexact. For example, we might be bewildered to find out

what the following sum amounts to:

2.2 + 1.1

3.3000000000000003

The result 3.3000000000000003 is definitely not what we would expect

as a sum, namely, 3.3.

The decimal module allows us to express decimal numbers exactly (see

the documentation for more information). Let’s look at a few examples

of working with decimal and Decimal().

We start by defining x and y as the fixed decimal values 1.1 and 1.2,

respectively. Note that the numbers must entered as strings.

import decimal

x = decimal.Decimal("1.1")

y = decimal.Decimal("2.2")

These computations behave as we would expect:

print(x+y)

print(y/x)

print(x**decimal.Decimal("3"))

3.3

2

1.331

If we do not enter the numbers as strings, they will be treated as floating-

point numbers, and then be converted to a string, leading to unexpected

results.

https://docs.python.org/3/library/decimal.html
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x = decimal.Decimal(1.1)

y = decimal.Decimal(2.2)

print(x+y )

3.300000000000000266453525910

Rounding works as one would expect when variables are correctly

declared as fixed decimals:

z = decimal.Decimal("3.1416")

round(z, 3)

Decimal(’3.142’)

Once fixed decimals are used, we must use mathematical functions

provided by the decimal module in order to stay within that module

(unfortunately, trigonmetric functions are not available).

For instance, if:

a= decimal.Decimal("0.16")

then

print(a.sqrt())

print(a.ln())

print(a.log10())

0.4

-1.832581463748310130367054424

-0.7958800173440752191450444211

The same results could be obtained using the math module functions:

import math

print(math.sqrt(a))

print(math.log(a))

print(math.log10(a))

0.4

-1.8325814637483102

-0.7958800173440752

List and Tuples Lists and tuples are important objects in Python

programming. Even though we will be mostly using numpy arrays and

certain pandas objects instead of lists later on, it is useful to learn the

basics of lists as some of the concepts are transferrable.
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List Creation A list holds a sequence of objects, who do not all have

to be the same type. One way to create a list is to enclose the elements,

separated by commas, with square brackets.

Let us illustrate this concept with a simple list containing three objects.

x = [3,’a’,5.1]

We can extract the elements using indices (note that the first element

corresponds to index 0, the second to index 1, etc.):

x[0]

x[1]

x[2]

3

’a’

5.1

The type of each of the elements can be found using:

print(type(x[0]))

print(type(x[1]))

print(type(x[2]))

<class ’int’>

<class ’str’>

<class ’float’>

We can also “multiply” an element and transform it into a longer list:

[’Ho’]*10

[’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’, ’Ho’]

or create a list of integers ranging from 0 to 𝑛 − 1, or from 𝑎 to 𝑏 − 1:

n = 5

list(range(n))

a=3

b=7

list(range(a,b))

[0, 1, 2, 3, 4]

[3, 4, 5, 6]
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Tuples Tuples are list-like objects, but with the following differences:

they are defined with parentheses instead of square brackets (some-

times, the parentheses can be omitted);

they are immutable (once created, they cannot be modified).

For instance, if

t = (1,’a’,4.5)

then we can obtain the length of t and print its 2nd element using

print(len(t))

print(t[1])

3

a

but we cannot change the value of the third element of t or append a

new value to t: both commands in the next block of code are illegal:

t[2]=1

t.append(5)

although the same command applied to the list x would be legal:

x[2]=1

x.append(5)

print(x)

[3, ’a’, 1, 5]

If we know the dimension of a tuple t, we can also use an extract
pattern to extract the individual components, as the following examples

illustrate.

t = (1, ’two’, 3.0)

fst, snd, trd = t

print(fst, snd, trd )

two 3.0

We could use ‘_’ (place holder) to extract the second component, say.

_, s, _ = t

print(s)

two

What do you think is happening on the next page?
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days = [(0,"Sun"), (1, "Mon"), (2, "Tue"), (3, "Wed"),

(4, "Thu"), (5, "Fri"), (6, "Sat")]

for n, d in days:

print(d+" is represented by " + str(n))

Sun is represented by 0

Mon is represented by 1

Tue is represented by 2

Wed is represented by 3

Thu is represented by 4

Fri is represented by 5

Sat is represented by 6

List Comprehension List comprehension is a powerful way to create

lists, based on set notation. Before we get into the technical details, let us

look at some examples.

We start by importing solely the function sqrt() from the mathmodule;
42

we also declare an index list x:42: Doing so means that we will not re-

quire the prefix math. in order to invoke

sqrt().

from math import sqrt

x = [1, 4, 9, 16]

print(x)

[1, 4, 9, 16]

We can now build new lists from x, such as the list of the squares of the

elements of x:

y = [a**2 for a in x]

print(y)

[1, 16, 81, 256]

the list of the square roots of the elements of x greater than 4:

z = [sqrt(b) for b in x if (b > 4)]

print(z)

[3.0, 4.0]

or the list of integers from 0 to 9 (equivalent to range(10)):

u = [ c for c in range(10) ]

print(u)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
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The most basic form of list comprehension is [f(x) for x in l], where

l is a list (or an iterable) and f(x) is an expression in x. It creates a list

obtained by applying f to each element or iterate in l.
43

43: range provides an example of an iter-

able. One way to think of an iterable is that

it provides a mechanism for generating a

sequence of elements one at a time. The

benefit is that range(100000), for exam-

ple, does not take up much computation

time since no actual element is generated

until it is iterated over.

An optional conditional can also be present, giving the general form

[f(x) for x in l if g(x)], for some boolean expression g (taking on

the values True or False) where generation of the list elements only

applies to elements that satisfy the boolean expression.

Multiple lists or iterables can be specified in list comprehension. equal

to either ‘math’ or ‘stat’.

[(x,y,z) for x in [True, False] for y in range(4,7)

for z in [’math’,’stat’]]

[(True, 4, ’math’), (True, 4, ’stat’), (True, 5, ’math’),

(True, 5, ’stat’), (True, 6, ’math’), (True, 6, ’stat’),

(False, 4, ’math’), (False, 4, ’stat’), (False, 5, ’math’),

(False, 5, ’stat’), (False, 6, ’math’), (False, 6, ’stat’)]

We can mimic list comprehension with the help of loops (much less

efficient); it is preferable to use the former to generate lists.

List Operations We illustrate various other operations that can be

performed on zero-indexed lists in the following blocks:
44

44: The first element in the list has index 0.

sublisting

changing values

sorting values

appending values

concatenating lists

deleting elements

Consider a given list x:

x = [3,1,7,2,5]

print(x)

[3, 1, 7, 2, 5]

We can find the length of the list or print the sublist from the second

element to the fourth element, say:
45

45: Remember, ordinals start with 0, car-

dinals with 1.

print(len(x))

print(x[1:4])

5

[1, 7, 2]
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We could also modify the second element of the list (index 1), say:

x[1] = 4

print(x)

[3, 4, 7, 2, 5]

Note that x is now permanently changed;
46

if we want to modify the last46: ... or at least, until it is modified again.

entry but we are not sure about the length of the list, for instance, we

could use:

x[-1] = 6

print(x)

[3, 4, 7, 2, 6]

If we are looking to change the third last element as well, we could use

x[-3] = 1

print(x)

[3, 4, 1, 2, 6]

Finally, we could sort the resulting list:

x.sort()

print(x)

[1, 2, 3, 4, 6]

A lot of Python methods are applied using the syntax object.method(),

in contrast to the typical R syntax that would use method(object); so it

is x.sort() instead of sort(x).

Let us create another list, this time with booleans:

y = [3, True, False]

print(y)

[3, True, False]

We can append a value, say 5, at the end of this list, as follows:

y.append(5)

print(y)

[3, True, False, 5]

It is also possible to concatenate lists, using the (somewhat confusing)

addition notation:



1.5 Basics of Python 57

z = x + y

print(z)

[1, 2, 3, 4, 6, 3, True, False, 5]

and delete the last element of this new list:

del z[-1] # Delete the last element from z

print(z)

[1, 2, 3, 4, 6, 3, True, False]

or delete a range of elements, say from the 3rd to the 6th, from the

resulting list:

del z[2:6] # watch out for the indices

print(z)

[1, 2, True, False]

Flow Control We will take a brief look at two ways to alter the flow of

control in Python: conditional statements and loops.

Conditional Statements Python supports if-elif-else statements in

various forms.

In the following example, we let x be some random integer between 1

and 12 (using function randint() from module random) and see how the

results are affected.

import random

x = random.randint(1,12)

print(x)

9

(which may change from one run to another). Perhaps we want to print

the string ’Helloifx‘ is less than 5, like so:

if x < 5:

print(’Hello’)

We would see nothing here as x is 9 in this run. Perhaps we want to print

‘Out of range’ if x is less than 5 or greater than 9, and Within range

otherwise?
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if x < 5 or x > 9:

print(’Out of range’)

else:

print(’Within range’)

Within range

Finally, we might want to print ‘Small’ if x is positive and less than 5;

otherwise, print ‘Five’ if x is 5; otherwise, print ‘Six’ if x is 6; otherwise,

print +:

if 0 < x and x < 5:

print(’Small’)

elif x == 5:

print(’Five’)

elif x == 6:

print(’Six’)

else:

print(’+’)

+

Run this sequence of blocks a number of times to see the various out-

comes.

Important: Note that the code block that follows an if, else, or elif

statement must be properly indented. The custom is to use four spaces

for indentation. The following example illustrates the effects of different

indentations.

x = 4

if x < 5:

print(’Small’)

else:

print(’This string will not be printed, because the

else statement never triggers’)

print(’Neither will this, for the same reason’)

print(’This will be printed no matter what x is, as it

falls outside the if-else statement block’)

Small

This will be printed no matter what x is, as it falls

outside the if-else statement block

Loops Loops are useful for repeatedly executing a statement or a block.

We first consider the for loop.

Let us start with a simple example: for each value in the list [1,3,8], we

print its square.
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for i in [1,3,8]:

print(i**2)

1

9

64

We could also compute sums with loops, such as 1 + 2 + · · · + 8 + 9:

sum = 0

for x in range(1,10):

sum += x # add the value of x to sum

print(sum)

45

Or print the first n even nonnegative integers

n = 5

for n in range(0,n):

t = 2*n

print(t)

0

2

4

6

8

If a for loop is used to create a list, it is probably best to rewrite it using

list comprehension. The following time comparison (using %%timeit)

illustrates the contrast when building a list of 100 × 1000 items.

Using a loop:

l = []

for i in range(100):

for j in range(1000):

l.append((i,j))

Using list comprehension:

l = [ (i,j) for i in range(100) for j in range(1000)]

While loops are useful for iterating until a certain condition is met. For

instance, if we want to print the first 10 even positive integers, separated

by a space, we could use the following block:
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i = 0

while i < 10: # Repeat the following block until i

# reaches 10 or greater

i += 1 # iterated index

print(2*i, end=’ ’)

2 4 6 8 10 12 14 16 18 20

Or we could print the 26 lower case English alphabets letters on one line,

with no separation:

i = 0;

while i < 26:

print(chr(ord(’a’)+i), end=’’)

i += 1

abcdefghijklmnopqrstuvwxyz

Note that ord returns the ordinal for a character; chr does the reverse.

Functions A function is a grouped sequence of code that can be called,

such as cos() and print(). A function can have 0 or more arguments:

cos() takes one argument, whereas print() can have up to five (see

documentation for details).

Named Functions Functions facilitate code re-use. Python functions

are defined via the def statement. In the next example, we define a

function that returns a pair consisting of the sum and the product of its

arguments.

def sumprod(x, y):

return x+y, x*y

The parentheses around the tuple are optional in this context. The ouput

for 𝑥 = 3 and 𝑦 = 4 can be obtained as follows (once the function is

compiled):

print(sumprod(3,4))

(7, 12)

Functions can also have default argument values. In the following ex-

ample, if the second argument is not supplied, it takes on the value

5.

def myIntegerList(start, end=5):

return list(range(start, end+1))

https://docs.python.org/3.5/library/functions.html#print
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Compare the results of the two calls below:

print(myIntegerList(2))

print(myIntegerList(7,9))

[2, 3, 4, 5]

[7, 8, 9]

Anonymous (Lambda) Functions Another way to define a function is

with a lambda statement, which is used to define one-line functions.
47

47: The function is anonymous because it

has no name.

Anonymous functions are defined using the one-line notation:

lambda variables: output

For instance,

add = lambda u, v: u + v

multiply = lambda u, v: u*v

We can apply a bivariate function func to arguments x and y, in a general

context, using:

def applyFunc(func, x, y):

return func(x,y)

and apply in specific contexts (rule, inputs) as follows:

print(applyFunc(multiply, 3,4))

print(applyFunc(add, 7,20))

12

27

But we do not need to define the function prior to the call. This would

also work:

print(applyFunc(lambda u, v: u*v, 3,4))

print(applyFunc(lambda u, v: u + v, 7,20))

12

27
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Strings Text manipulation is an important part of data cleaning. Often,

the raw data contains string fields that do not quite follow an expected

format. For example, proper nouns could be incorrectly capitalized. Dates

could have been entered under different conventions. Fortunately, Python

offers many tools that make string manipulation rather painless. In this

section, we look at some of the commonly-performed operations on

strings.

Strings can be defined using single or double quotes; note that Python

supports unicode strings.

a = ’First string’

b = "Second string"

c = ’+*’

print(type(a), type(b), type(c))

<class ’str’> <class ’str’> <class ’str’>

We can use the multiplication syntax to define a string made up of

identical copies of another string as illustrated below:

r1 = a*4

r2 = c*3

print(r1)

print(r2)

First stringFirst stringFirst stringFirst string

+*+*+*

Strings can be concatenated using the addition syntax:

d = a + c

e = r2 + a + b

print(d)

print(e)

First string+*
+*+*+*First stringSecond string

The character in position i (the index) of the string a can be accessed via

a[i]. Remember that the first character’s index is 0.

Negative indices can also be used:a[-4] returns the fourth character

from the end, say. For instance, we can print the first, seventh, last, and

fourth-last characters of a using:
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print(a[0], a[6], a[-1], a[-4])

F s g r

We can obtain a substring of a string a using the syntax a[i:j] where i

specifies the starting index and j-1 the ending index. Note that a[:j] is

equivalent to a[0:j], and a[i:] is the substring starting at index i and

reaching until the end of a.

print(a[2:4])

print(a[:3])

print(a[6:])

rs

Fir

string

For a string x, x.split() splits the string into a list of words separated by

a space (by default). Note that a contiguous sequence of space characters

including newline (\n), carriage return (\r), and tab (\t) is considered as

one space.

We can also specify what separating characters to use for the splitting,

instead of spaces. For example, x.split(',') splits x on commas and

x.split('--') splits it on --.

Consider the examples below:

print(’This is a \n\n long sentence with

\r \t weird spaces separating the words.’.split())

[’This’, ’is’, ’a’, ’long’, ’sentence’, ’with’, ’weird’, ’spaces’, ’separating’, ’the’, ’words.’]

print(’One,two, three ,four’.split(’,’)) # Note that

# ‘ three ‘ is one of the words after separation.

[’One’, ’two’, ’ three ’, ’four’]

print(’Five--six--ninety-four’.split(’--’))

[’Five’, ’six’, ’ninety-four’]

In some case, it is helpful to remove leading and trailing space characters

(whitespace stripping).
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s = ’ time ’

print(s)

print(s.strip())

time

time

It is common to combine strip() with split(','):

cs = ’One , two, three ’

print([s.strip() for s in cs.split(’,’)])

[’One’, ’two’, ’three’]

In fact, the strip() method can accept a string consisting of all char-

acters to be stripped from anothe string, in any combination. For in-

stance, we can strip any leading and trailing characters contained in

['&','#','-','.','!'] from any string as follows:

tostrip = ’&#-.!’

t = ’###.Hel#lo!?!&-’

print(t.strip(tostrip))

Hel#lo!?

The methods upper(), lower(), and title() are useful for altering the
case of characters in a string. The following examples showcase their

functionality.

x = "gArbagE collECtion"

print(x.upper())

print(x.lower())

print(x.title())

GARBAGE COLLECTION

garbage collection

Garbage Collection

The following example illustrates a function that takes a phrase and turns

it into an acronym by concatenating the first letters of the words and

capitalizing all the letters. Does the code make sense?

def acronymize(phrase):

a = ’’ # start with empty string

for w in phrase.split(): # iterate through words

a += w[0] # pick the first letter of

# the words and concatenate

return a.upper() # capitalize and return
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acronymize("Be right back"), acronymize("Mr Pat Why?")

(’BRB’, ’MPW’)

It can also be useful to convert a string representing a number to a

number type, and vice versa. The following examples illustrate how these

tasks can be achieved.

number = 12.345

s = str(number)

print( s, type(s))

f = float(s)

print(f, type(f))

i = int(’345’)

print(i, type(i))

12.345 <class ’str’>

12.345 <class ’float’>

345 <class ’int’>

We can also check if a string t is a substring of another string s via t in

s (pattern matching).

t1 = "is"

t2 = "has"

s = "This is my car."

print(t1 in s)

print(t2 in s)

True

False

If we want to obtain the index at which a substring begins, we can use

the find() method. If the substring is not found, -1 is returned.

print(s.find(t1))

print(s.find(t2))

2

-1

We shall revisit Python strings when we discuss Natural Language Pro-
cessing (see Chapter 32).
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Dictionaries A dictionary is a data structure for key-value pairs (k:v).

To define a dictionary, simply list the key-value pairs enclosed within

braces ({,}), as shown in the following examples.

The simplest dictionary is the one that is empty:

d = {} # This creates an empty dictionary

print(type(d))

<class ’dict’>

A more interesting dictionary could be the one below:

days = { ’Sun’: 1, ’Mon’: 2, ’Tue’:3, ’Wed’:4, ’Thu’:5,

’Fri’:6, ’Sat’:7 }

print(type(days))

<class ’dict’>

We can access the value for key k in dictionary d via d[k]. Note that an

exception will be raised if d does not contain the key k.

We can check if a key k is in a dictionary d via k in d.

print(days[’Wed’])

print(’Aug’ in days)

4

False

We can add a new key-value pair k:v to a dictionary d via d[k] = v.

d[1]=(1,2)

d[2]= 3.45

d[’three’]= ’string’

print(d)

{1: (1, 2), 2: 3.45, ’three’: ’string’}

Conversely, we can delete key k and its associated value from dictionary

d via del d[k].

del d[2]

print(d)

{1: (1, 2), ’three’: ’string’}

We can also iterate over the keys in a dictionary using a for loop.
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for key in d:

print(type(key), type(d[key]))

<class ’int’> <class ’tuple’>

<class ’str’> <class ’str’>

The following code gives the same output

for key, value in d.items():

print(type(key), type(value))

<class ’int’> <class ’tuple’>

<class ’str’> <class ’str’>

1.5.3 NumPy and Arrays

NumPy is a Python module that supports numerical computation on

multi-dimensional arrays. It comes with many useful mathematical

functions.

It is the backbone to the scientific computing library SciPy and data

analysis and manipulation library pandas. Even though it is possible

to do basic statisical analysis using a comprehensive statistics package

without direct manipulation of NumPy arrays, knowledge of NumPy is

essential for performing custom operations.

In this section, we get a taste of NumPy arrays of dimension at most two.

What is covered only scratches the surface of this powerful library. A

handy cheat sheet can be found here .

It is customary to use the alias np when importing the module.

import numpy as np

Arrays Unlike lists, NumPy arrays cannot contain elements of different

types. There are various ways to create such arrays.

We can create a 1D array from a list:

x = np.array([1,2,3,4])

print(x.shape)

(4,)

shape is the method that returns the array’s dimensions. We can create a

2D array from a list of lists:

http://datasciencefree.com/numpy.pdf
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y = np.array([[1,2,3],[4,5,6]])

print(y.shape)

(2, 3)

If some of the elements are not of the “right” type, they are converted

automatically:

c = np.array([’n’,’u’,’m’,15])

print(c)

[’n’ ’u’ ’m’ ’15’]

We can also define a NumPy array out of a range using the arange()

function:

np.arange(1,5)

print(c)

array([1, 2, 3, 4])

[’n’ ’u’ ’m’ ’15’]

yields the same result as np.array([1,2,3,4]), but it is more efficient,

from a computational perspective.

We can also obtain special arrays, composed of zeros, or composed of

ones, with the functions zeros() and ones(). Here is a 3x4 2D array of

0s:

z = np.zeros([3,4]) # A 3-by-4 array of 0’s

print(z.shape)

(3, 4)

and 2x1x3 3D array of 1s:

f = np.ones([2,3,4]) # A 2x1x3 3D array of 1’s

print(f.ndim)

3

Note the difference between the shape and ndim methods: the former

gives the actual dimensions (number of rows, columns, etc.), the latter,

the number of dimensions (axes).

We can also define NumPy arrays containing random values; for instance,

here is a 1D array of 10 random values sampled from the standard normal

distribution, using the function random.normal():
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r = np.random.normal(size=10)

print(r)

[-1.10501533 -0.69929125 -0.00882625 1.12738611 0.60354054

1.50509863 1.07440466 -0.86260135 1.12680367 -0.01988042]

Arithmetic Adding and subtracting NumPy arrays of the same dimen-

sions works as we would expect. Using x and y as above, and x2 as below,

we get:

w = np.array([-1,-2,-3,-4])

print(x+w)

[0 0 0 0]

print(x-w)

[2 4 6 8]

print(y+y)

[[ 2 4 6]

[ 8 10 12]]

Multiplication by a scalar also works as expected:

print(2*x)

[2 4 6 8]

However, note that multiplication and division via * and / (resp.) are

applied component-wise:

print(x*w)

[ -1 -4 -9 -16]

as is exponentiation:
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print(y**3)

[[ 1 8 27]

[ 64 125 216]]

Broadcasting allows addition and substraction to be performed between

arrays that do not have the same shape. There are rules governing

when such operations are valid and what the effects are. Here, we provide

two simple examples:

x + 3.5

array([4.5, 5.5, 6.5, 7.5])

y - 1

array([[0, 1, 2],

[3, 4, 5]])

Can you determine what broadcasting does from these examples?

Math Functions NumPy contain some useful methods mapping arrays

to a scalar.

For instance, sum adds up the elements in the array.

x.sum()

10

(the same result could have been obtained with np.sum(x)).

The usual statistical descriptions are also available as methos:

print(x.std(),x.var(),x.mean())

1.118033988749895 1.25 2.5

NumPy also has a collection of mathematical functions that can be applied

component-wise, such as abs() and exp():

print(np.abs(r))

[1.10501533 0.69929125 0.00882625 1.12738611 0.60354054

1.50509863 1.07440466 0.86260135 1.12680367 0.01988042]

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html
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print(np.exp(y))

[[ 2.71828183 7.3890561 20.08553692]

[ 54.59815003 148.4131591 403.42879349]]

NumPy functions are more efficient when it comes to array computations;

they should be used whenever possible.

Logical Operations Operations over arrays of boolean values can also

be performed efficiently in NumPy.

Let us create a boolean array bx of the same shape as x, with bx[i] =

True if and only if x[i] >= 2.5, and a boolean array by of the same

shape as y, with by[i] = True if and only if y[i] >= 3.5.

bx = x >= 2.5

by = y >= 3.5

print(bx)

print(by)

[False False True True]

[[False False False]

[ True True True]]

Comparison of two NumPy arrays of the same shape results in a boolean

array, yet again of the same shape. Note that comparison is performed

component-wise:

x2 = np.array([2,1,3,0])

print(x == x2)

[False False True False]

Comparisons use the symbols ==, <, and >:

print(x > x2)

[False True False True]

We can perform boolean operations (AND, OR, NEG) on boolean

arrays:

b = np.array([True, False, True, True])

AND is computed using &:
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b & bx

array([False, False, True, True])

OR with |:

b | bx

array([ True, False, True, True])

NEG with ~:

~b

array([False, True, False, False])

We can also sum over the values of a boolean array (in this case, True is

interpreted as 1 and False as 0):

np.sum(b)

3

1.6 Python for Data Science

While Python remains a bona fide programming language, it is as a data

science tool that its popularity has soared. Let us take a look at some of

its data functionality.

1.6.1 Pandas and Data Frames

The Pandas module provides Python with an equivalent of R data

frames. Essentially, it is a two-dimensional tabular data structure in

which each column can be of different value types.

In this section, we cover the basics of Pandas data frames (and introduce

a dataset found in the Seaborn module.
48

Comprehensive references48: Which is used for data visualization

(see Chapter 18 and [1]).
for doing data analysis with Python include [16, 11, 8]. The pandas cheat

sheet could also prove handy.

We start by importing the required modules, with the customary aliases
pd and sns:

import pandas as pd

import seaborn as sns

https://pandas.pydata.org
https://seaborn.pydata.org/
http://datasciencefree.com/pandas.pdf
http://datasciencefree.com/pandas.pdf
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Loading Data There are various ways to obtain data. One way is to use

a pre-built sample dataset, such as titanic from seaborn.

titanic = sns.load_dataset("titanic")

type(titanic)

<class ’pandas.core.frame.DataFrame’>

Another way is to read a csv file using pandas.read_csv(). For instance,

if the file calculus.csv is in the data folder, we would call:

calculus = pd.read_csv(’data/calculus.csv’)

The first rows are given using the head()method of a DataFrame object:

titanic.head()

survived pclass sex age ... deck embark_town alive alone

0 0 3 male 22.0 ... NaN Southampton no False

...

4 0 3 male 35.0 ... NaN Southampton no True

[5 rows x 15 columns]

We can also look at the last rows using the tail() method,
49

such as: 49: The number of observations can also

be specified in the head() method.

calculus.tail(6)

ID Sex Grade GPA Year

94 10095 F 69 6.49 1

95 10096 M 99 12.61 1

96 10097 M 40 4.17 2

97 10098 F 66 6.94 1

98 10099 M 83 10.09 1

99 10100 F 52 6.76 2

We get a quick summary of a DataFrame using the describe()method:

titanic.describe()

survived pclass age sibsp parch fare

count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000

mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208

std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429

min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000

25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400

50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
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We can also obtain a summary of a subset of the columns:

df1 = titanic[[’survived’, ’age’, ’fare’]]

df1.describe()

survived age fare

count 891.000000 714.000000 891.000000

mean 0.383838 29.699118 32.204208

std 0.486592 14.526497 49.693429

min 0.000000 0.420000 0.000000

25% 0.000000 20.125000 7.910400

50% 0.000000 28.000000 14.454200

75% 1.000000 38.000000 31.000000

max 1.000000 80.000000 512.329200

Or specific summary statistics on the full objects or on a specific column:

df1.mean()

print()

df1[’age’].median()

survived 0.383838

age 29.699118

fare 32.204208

dtype: float64

28.0

Data Frame Operations We continue with some basic operations on

data frames. We will use another built-in dataset

crashes.head()

total speeding alcohol ... ins_premium ins_losses abbrev

0 18.8 7.332 5.640 ... 784.55 145.08 AL

1 18.1 7.421 4.525 ... 1053.48 133.93 AK

2 18.6 6.510 5.208 ... 899.47 110.35 AZ

3 22.4 4.032 5.824 ... 827.34 142.39 AR

4 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

New columns can be added to any data frame. In this example, we will

generate a new column consisting of strings of the form Cnnn where

nnn is a zero-padded three-digit number so that row 1, 2,. . . of crashes

correspond to C001, C002, . . .

labels = [’C’+"{:03}".format(i+1) for

i in range(crashes.shape[0])]

crashes[’label’] = labels
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crashes.head()

total speeding alcohol ... ins_losses abbrev label

0 18.8 7.332 5.640 ... 145.08 AL C001

1 18.1 7.421 4.525 ... 133.93 AK C002

2 18.6 6.510 5.208 ... 110.35 AZ C003

3 22.4 4.032 5.824 ... 142.39 AR C004

4 12.0 4.200 3.360 ... 165.63 CA C005

[5 rows x 9 columns]

Quite often, a particular column in a csv file serves as the index column.

We can set this column to be an index column via the set_index()

method:

df = crashes.set_index(’label’)

df.head()

total speeding alcohol ... ins_premium ins_losses abbrev

label ...

C001 18.8 7.332 5.640 ... 784.55 145.08 AL

C002 18.1 7.421 4.525 ... 1053.48 133.93 AK

C003 18.6 6.510 5.208 ... 899.47 110.35 AZ

C004 22.4 4.032 5.824 ... 827.34 142.39 AR

C005 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

Note that crashes is not affected by set_index(). To make the change

directly to crashes, we would need to replace

df = crashes.set_index(’label’)

with

crashes.set_index(’label’, inplace=True)

We can subset a data frame by rows and columns labels via loc[], as in

the examples below:

df.loc[’C010’:’C013’,[’speeding’,’total’]]

speeding total

label

C010 3.759 17.9

C011 2.964 15.6

C012 9.450 17.5

C013 5.508 15.3
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df.loc[’C005’:’C008’,:]

total speeding alcohol ... ins_premium ins_losses abbrev

label ...

C005 12.0 4.200 3.360 ... 878.41 165.63 CA

C006 13.6 5.032 3.808 ... 835.50 139.91 CO

C007 10.8 4.968 3.888 ... 1068.73 167.02 CT

C008 16.2 6.156 4.860 ... 1137.87 151.48 DE

[4 rows x 8 columns]

We can also extract using position values via iloc[].

df.iloc[1:5,0:4]

total speeding alcohol not_distracted

label

C002 18.1 7.421 4.525 16.290

C003 18.6 6.510 5.208 15.624

C004 22.4 4.032 5.824 21.056

C005 12.0 4.200 3.360 10.920

We can reset the index in a data frame via the reset_index() method.

This has the effect of turning label into a data column like all other

columns in the data frame df, for instance:

df.reset_index(inplace=True)

df.head()

label total speeding ... ins_premium ins_losses abbrev

0 C001 18.8 7.332 ... 784.55 145.08 AL

1 C002 18.1 7.421 ... 1053.48 133.93 AK

2 C003 18.6 6.510 ... 899.47 110.35 AZ

3 C004 22.4 4.032 ... 827.34 142.39 AR

4 C005 12.0 4.200 ... 878.41 165.63 CA

[5 rows x 9 columns]

It is possible to use the generator iterrows to yield both index and row

of a data frame. For instance, the next block of code will print the labels

corresponding to the first five rows.

for index, row in df[0:5].iterrows():

print(row[’label’])

C001

C002

C003

C004

C005
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Columns and rows can be dropped from a data frame via the drop()

method. In the example below, we drop the label column from df and

assign the outcome to df2 (but note df itself is not changed):

df2 = df.drop(’label’, axis=1)

df2.head()

total speeding alcohol ... ins_premium ins_losses abbrev

0 18.8 7.332 5.640 ... 784.55 145.08 AL

1 18.1 7.421 4.525 ... 1053.48 133.93 AK

2 18.6 6.510 5.208 ... 899.47 110.35 AZ

3 22.4 4.032 5.824 ... 827.34 142.39 AR

4 12.0 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

In contrast, the total column is dropped from df (and df is modified as

a result):

df.drop(’total’, axis=1, inplace=True)

df.head()

label speeding alcohol ... ins_premium ins_losses abbrev

0 C001 7.332 5.640 ... 784.55 145.08 AL

1 C002 7.421 4.525 ... 1053.48 133.93 AK

2 C003 6.510 5.208 ... 899.47 110.35 AZ

3 C004 4.032 5.824 ... 827.34 142.39 AR

4 C005 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

We can rename the columns of a data frame via the rename() method:

df.rename(columns={’label’:’case’, ’abbrev’:’abbr’},

inplace=True)

df.head()

case speeding alcohol ... ins_premium ins_losses abbr

0 C001 7.332 5.640 ... 784.55 145.08 AL

1 C002 7.421 4.525 ... 1053.48 133.93 AK

2 C003 6.510 5.208 ... 899.47 110.35 AZ

3 C004 4.032 5.824 ... 827.34 142.39 AR

4 C005 4.200 3.360 ... 878.41 165.63 CA

[5 rows x 8 columns]

What would we expect the following chunk of code to do?
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newColumnNames = {}

for name in list(df):

newColumnNames[name] = name.capitalize()

df2=df.rename(columns=newColumnNames)

Rows can be filtered according to a given condition. In the example below,

b and d are Pandas series of booleans related to the df data frame:

b = df[’ins_losses’] > 160

d = df[’not_distracted’] < 12

If we want to return the rows of df for which ins_losses is greater than

160 AND not_distracted ia less than 12, we would simply call:

df[b & d]

case speeding alcohol ... ins_premium ins_losses abbr

4 C005 4.200 3.360 ... 878.41 165.63 CA

6 C007 4.968 3.888 ... 1068.73 167.02 CT

20 C021 4.250 4.000 ... 1048.78 192.70 MD

[3 rows x 8 columns]

To return the rows of db for which ins_losses is greater than 160 OR
abbr is equal to AL, we would call:

df[b | (df[’abbr’] == ’AL’)]

case speeding alcohol ... ins_premium ins_losses abbr

0 C001 7.332 5.640 ... 784.55 145.08 AL

4 C005 4.200 3.360 ... 878.41 165.63 CA

6 C007 4.968 3.888 ... 1068.73 167.02 CT

18 C019 7.175 6.765 ... 1281.55 194.78 LA

20 C021 4.250 4.000 ... 1048.78 192.70 MD

36 C037 6.368 5.771 ... 881.51 178.86 OK

[6 rows x 8 columns]

1.6.2 Data Wrangling

We now take a look at some ways to combine and clean data frames.

Merging and Joins Consider a fictitious test score dataset. There are

two sections in the class, contained in testA.csv and testB.csv. Each

row consists of a student ID, a section, and a test mark. The file gpa.csv

contains information on the students’ GPAs and their current year of

study.
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We start by reading in the two test score files (recall that pd is the alias

for the pandas module).

dfA = pd.read_csv(’data/testA.csv’)

dfB = pd.read_csv(’data/testB.csv’)

The first entries of each sets are shown below:

dfA.head()

ID Section Mark

0 10021 A 47

1 10073 A 83

2 10084 A 51

3 10102 A 57

4 10175 A 71

dfB.head()

ID Section Mark

0 10011 B 97

1 10063 B 63

2 10094 B 71

3 10110 B 77

4 10133 B 81

We now read in the GPA information.

gpa = pd.read_csv(’data/gpa.csv’)

gpa.head()

Student ID GPA Year

0 10011 12.0 3.0

1 10021 NaN 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

Note that the column title for student ID is different in the test score files

and in gpa.csv.

We now concatenate the two data frames of test scores into a single object

using the pandas function concat().

df = pd.concat([dfA,dfB])

We now merge the GPA data frame with this combined test score data

frame.
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df3 = pd.merge(gpa, df, left_on=’Student ID’, right_on=’ID’)

df3

Student ID GPA Year ID Section Mark

0 10011 12.0 3.0 10011 B 97

1 10021 NaN 3.0 10021 A 47

2 10063 5.6 3.0 10063 B 63

3 10073 9.8 3.0 10073 A 83

4 10084 6.2 3.0 10084 A 51

5 10094 8.1 NaN 10094 B 71

6 10102 6.9 2.0 10102 A 57

7 10110 8.4 2.0 10110 B 77

8 10133 10.4 2.0 10133 B 81

9 10145 5.1 2.0 10145 B 41

10 10162 7.2 2.0 10162 B 68

11 10175 6.9 1.0 10175 A 71

12 10189 6.1 1.0 10189 B 68

13 10190 11.2 1.0 10190 A 91

14 10199 NaN 1.0 10199 A 56

merge() performs an inner join, but it can also perform outer joins.

Let us see what happens when we merge gpa with dfA.

pd.merge(gpa, dfA, left_on=’Student ID’, right_on=’ID’,

how=’outer’).drop(’Student ID’, axis=1)

GPA Year ID Section Mark

0 12.0 3.0 NaN NaN NaN

1 NaN 3.0 10021.0 A 47.0

2 5.6 3.0 NaN NaN NaN

3 9.8 3.0 10073.0 A 83.0

4 6.2 3.0 10084.0 A 51.0

5 8.1 NaN NaN NaN NaN

6 6.9 2.0 10102.0 A 57.0

7 8.4 2.0 NaN NaN NaN

8 10.4 2.0 NaN NaN NaN

9 5.1 2.0 NaN NaN NaN

10 7.2 2.0 NaN NaN NaN

11 6.9 1.0 10175.0 A 71.0

12 6.1 1.0 NaN NaN NaN

13 11.2 1.0 10190.0 A 91.0

14 NaN 1.0 10199.0 A 56.0

We can see that there is a row for every row in gpa and that only those

rows for which Student ID is present in dfA have merged data (what

happens if the .drop('Student ID', axis=1) is omitted?).

Data Cleansing Note that in the merged data frame df3 (and in gpa),

there are rows containing NaN. If we do not want any rows with such

values, we can use the dropna() method.
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df3.dropna()

Student ID GPA Year ID Section Mark

0 10011 12.0 3.0 10011 B 97

2 10063 5.6 3.0 10063 B 63

3 10073 9.8 3.0 10073 A 83

4 10084 6.2 3.0 10084 A 51

6 10102 6.9 2.0 10102 A 57

7 10110 8.4 2.0 10110 B 77

8 10133 10.4 2.0 10133 B 81

9 10145 5.1 2.0 10145 B 41

10 10162 7.2 2.0 10162 B 68

11 10175 6.9 1.0 10175 A 71

12 10189 6.1 1.0 10189 B 68

13 10190 11.2 1.0 10190 A 91

We can also drop only the rows with NaN in specific columns. If we do

not want to retain observations with Year==NaN, we would call:

gpa.dropna(subset=[’Year’])

Student ID GPA Year

0 10011 12.0 3.0

1 10021 NaN 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

6 10102 6.9 2.0

7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 NaN 1.0

Instead of dropping rows containing NaN, we could replace the unwanted

values with some other chosen value instead (like 0, say).

gpa.fillna(0)

Student ID GPA Year

0 10011 12.0 3.0

1 10021 0.0 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

5 10094 8.1 0.0

6 10102 6.9 2.0



82 1 Programming Primer

7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 0.0 1.0

Note that all the NaNs are changed to 0.0. To change only the GPA volume,

we can do the following (note that this will modify the original gpa data

frame):

gpa.fillna({’GPA’:0.0})

Student ID GPA Year

0 10011 12.0 3.0

1 10021 0.0 3.0

2 10063 5.6 3.0

3 10073 9.8 3.0

4 10084 6.2 3.0

5 10094 8.1 NaN

6 10102 6.9 2.0

7 10110 8.4 2.0

8 10133 10.4 2.0

9 10145 5.1 2.0

10 10162 7.2 2.0

11 10175 6.9 1.0

12 10189 6.1 1.0

13 10190 11.2 1.0

14 10199 0.0 1.0

We can apply a function to a data frame column using the method map().

The following will add a Grade column to dfA, containing Pass or Fail

based on the Mark column.

def markToGrade(x):

res = ’Fail’

if x >= 50:

res = ’Pass’

return res

dfA[’Grade’] = dfA[’Mark’].map(markToGrade)

dfA

ID Section Mark Grade

0 10021 A 47 Fail

1 10073 A 83 Pass

2 10084 A 51 Pass

3 10102 A 57 Pass

4 10175 A 71 Pass

5 10190 A 91 Pass

6 10199 A 56 Pass
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1.6.3 Data Aggregation

Sometimes, the data in a dataset can be divided into groups. We might

want to obtain summary statistics for each group. Analyses by groups

and aggregation can help us obtain insight on groups.

Summaries by Groups We first illustrate obtaining simple statistics on

groups using a dataset containing calculus marks (recall that pd is the

pandas alias).

calc = pd.read_csv(’data/calculus.csv’)

calc.head()

ID Sex Grade GPA Year

0 10001 F 47 5.02 2

1 10002 M 57 3.82 1

2 10003 M 91 7.70 1

3 10004 M 71 4.82 1

4 10005 F 83 7.91 1

Suppose that we want to see separate mean grades and mean GPA based

on the Sex variables. We can use the groupby() method to perform the

task:

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).mean()

Grade GPA

Sex

F 67.901961 6.539804

M 64.408163 5.609388

If we want descriptive statistics for Grade and GPA grouped by Sex, we

can use the more general method agg(). Note that we first need to import

numpy (alias np) to access these simple statistics functions.

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg([np.mean,

np.std, np.median])

Grade GPA

mean std median mean std median

Sex

F 67.901961 20.162594 66.0 6.539804 3.008527 6.24

M 64.408163 16.237711 62.0 5.609388 2.756965 4.77

If we are interested in the Grade mean and the GPA median, grouped

by Sex, we can use a dictionary to specify which function is applied to

which column as follows:



84 1 Programming Primer

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg({’Grade’:

np.mean, ’GPA’: np.median})

Grade GPA

Sex

F 67.901961 6.24

M 64.408163 4.77

We can also build custom aggregate functions. The following chunk of

code computes the sum of squares for the Grade and GPA columns.

def sumOfSq(xs):

return np.dot(xs,xs)

calc[[’Sex’,’Grade’,’GPA’]].groupby(’Sex’).agg(sumOfSq)

Grade GPA

Sex

F 255471 2633.7825

M 215928 1906.6374

Pivot Tables We could also have obtained the mean Grade and mean

GPA for the Sex groups via pivot_table(), as below:

calc[[’Sex’,’Grade’,’GPA’]].pivot_table(index=’Sex’,

aggfunc=np.mean)

GPA Grade

Sex

F 6.539804 67.901961

M 5.609388 64.408163

To obtain a pivot table displaying the number of students in each Year

grouped by Sex, we can run the following code:

calc[[’Sex’,’Year’]].pivot_table(index=’Sex’,

columns=[’Year’],aggfunc=len, margins=False)

Year 1 2 3 4

Sex

F 33 11 6 1

M 32 11 2 4

We can also print the margins (totals) by changing to margins=True.
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1.6.4 Combining Python with R

Ask most data scientist and they will tell you that they are a Python

person or a R person (or perhaps less frequently a Julia person). Python

might be best for data processing (in terms of efficiency, especially with

large datasets), while R has a package (or three!) for pretty much any

statistical and data visualization task under the sun, but that leaves a lot

of data analysis real estate that is not spoken for; frankly, it makes much

more sense to be conversant with both.
50

50: And anything else that comes up from

this point onward.

It is now possible to use Python within R through the reticulate

package.
51

. The reticulate vignette contains detailed information on 51: There are other means, see R Interface

to Python and Five ways to work seam-

lessly between R and Python in the same

project for more information), for instance

the process; for the time being, we will only give a small example detailing

how this could be achieved, based on [19].

library(reticulate)

We start by creating a variable x in the Python session:

x = list(range(8))

Once that is done, we can access the Python variable x from R; it is a

column in the (reserved) py data frame:

str(py)

py$x

Module(__main__)

[1] 0 1 2 3 4 5 6 7

We can also create new variables y in the Python session from R, and pass

a data frame to y:

py$y <- head(AirPassengers) # a built-in R dataset

This variable can now be displayed in the the Python session, and

operated on, as needed:

print(y)

[112.0, 118.0, 132.0, 129.0, 121.0, 135.0]

It is not difficult to imagine how to expand this back and forth to

more complex data analysis situations, leaving us the option of picking

whatever language is best suited to a specific task.

https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
https://towardsdatascience.com/five-ways-to-work-seamlessly-between-r-and-python-in-the-same-project-bf173e35fdef
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1.7 Getting Started with SQL

Structured Query Language (SQL) is the standard language used to

retrieve, modify, and add data to a relational database. It is implemented

by all Relational Database Management Systems (RDMS), such as:

MySQL [12]

MS Access

Oracle

Postgres

etc.

SQL allows users to query a database and manipulate the stored data

using a variety of parameters. SQL code can be embedded into other

languages in order to enable storage and processing of large datasets in

an efficient manner.

The toy database with which we will work is “implemented” in Aidan

Crowther’s github repository . Video instructions can be found at

DUDADS – How to access the toy database (04:27) | A. Crowther .
52

52: You will need to install git, docker,

and MySQL Client, and know how to

open a port on Windows, MacOS, or Linux

(search online if necessary). 1.7.1 Basics

Table Structure The most common form of data organization in a

relational database is known as a table – it is similar to a spreadsheet.

Data is stored in a record (row), with individual observations aligned by

fields (columns).

Records and Fields Rows consist of data that fall into the categories

specified by each column and that either match the field data type or

contain a NULL value,
53

the absence of data – it is not the same as a value53: Similar to R’s NA.

of zero or an empty string; NULL can be matched to any data type.
54

54: SQL syntax often uses ALL CAPS in its

queries to make it easier to distinguish

between commands and data.

Constraints Data can be further restricted by Table or Field constraints.

These constraints define rules by which the data must abide. Most

commonly, these constraints are used to identify special fields by which

data can be uniquely identified, or to ensure data matches a pattern, such

as being unique, or not allowing NULL entries.

Here are some of common constraints (and their meanings).

DEFAULT: provides a predefined default value if none is specified

NOT NULL: enforces that columns can not have a NULL value

UNIQUE: ensures that all values in a column are different

PRIMARY KEY: uniquely identifies a record within a table

FOREIGN KEY: uniquely identifies a record in another table

CHECK: ensures all data in a field matches a restriction

INDEX: used to quickly retrieve and add data to a table

Notably, primary and foreign keys allow users to create relations between

tables. In addition, every table must contain no more than one primary

key; although they do not need to be defined with a primary key, doing

so is considered bad practice.

https://github.com/aidancrowther/Data_Action_Lab_SQL_Docker
https://github.com/aidancrowther/Data_Action_Lab_SQL_Docker
https://youtu.be/ZNgRC5S9dZE
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Data Integrity Data entered into a table must follow some ensuring the

latter’s integrity. The following rules exist in every Database Manage-
ment System (DBMS).

Entity Integrity: there must not be any duplicate records within a

table;

Domain Integrity: enforces valid entries for all fields, following

restrictions on data type, format, or range;

Referential Integrity: rows used by other records can not be

deleted.

Essentially, we cannot enter records that can cause a table to stop being

able to uniquely identify and collect data. In addition, relations between

tables must never be broken through the deletion of data.

1.7.2 SQL Syntax

The fundamental SQL unit is the query, a way to manipulate and output

observations from a database by following a specific set of rules.

Generally, queries are used to request data from tables kept within a

database, but they can also be used to modify, remove, and add data.

The “sentence structure” of a SQL query is a repeated pattern of a

command followed by a descriptor; the end of a query being denoted

by a semicolon (;).
55

More information on SQL (including its syntax) is 55: SQL queries read rather naturally as

regular English sentences, too.
available in [12, 15, 17].

We will illustrate the various SQL query parameters with the help of a

toy database with 4 tables, whose structure is shown in Figure 1.6.

Figure 1.6: Database diagram for the toy

example, with 4 tables. Some of the entries

for 2 of the tables are shown in the Exer-

cises. The data is also available as an Excel

spreadsheet .

https://www.data-action-lab.com/wp-content/uploads/2023/06/Schools.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Schools.xlsx
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Example What would the following toy dataset query return?

A Simple SQL Query

SELECT COURSE FROM Courses WHERE FACULTY_ID=1;

We break down the query into its command/descriptor structure.

SELECT COURSE: display only the COURSE identifier;

FROM Courses: of the observations from the Courses table;

WHERE FACULTY_ID=4: for which FACULTY_ID is 4.

This query would fetch all courses taught by the instructor #4:

COURSES

1 CGSC101

2 CGSC202

We see that this is indeed the case in the Courses table:

COURSE FULL Semester FACULTY_ID

1 BUSI202 1 SUMMER 6

2 CGSC101 1 SUMMER 4 <-- *
3 CGSC202 1 WINTER 4 <-- *
4 CHEM404 0 WINTER 8

5 COMP490 1 FALL 9

6 ECON101 1 FALL 1

7 ECON401 0 WINTER 1

8 MUSI101 0 SUMMER NA

9 PHYS201 0 WINTER 2

1.7.3 Key Query Operators

SELECT/FROM

The SELECT command is nearly always used to interact with data; it is

used to request data from a table. It is applied to columns, which need

to be specified, using a comma-separated list of columns immediately

after the SELECT keyword.
56

The wildcard character (*) can be used to56: Spelling, including the case, matters.

match all columns.

SELECT also needs to be told from which table to retrieve data; this is

accomplished with the FROM keyword, after columns have been specified

in the query. FROM cannot be used without an argument, but only one

table can be used as input.

The simplest form of a SELECT query takes the following form, returning

all data within a table.
57

57: In this case, the Courses table. The

table is typically clear from the context.

SELECT * FROM Courses;
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(The output was provided at the end of the previous Section).

The SELECT command also allows aggregate functions (statistics) to be

applied to the selected table columns, including COUNT, SUM, AVG, MIN, MAX;

and more. All rows matching the field being modified will be combined

into one unless combined with the GROUP BY clause.
58

58: Not unlike in an Excel pivot table.

Multiple fields can be matched with aggregate functions, and multiple

aggregate functions can be used in a query. This can be a useful work-

around if a SQL server has quota restrictions on the number of queries

that can be submitted, allowing multiple fields to be returned with one

query.

SELECT AVG(SALARY), MAX(AGE) FROM Professors;

AVG(SALARY) MAX(AGE)

1 210555.6 67

Evidently, the oldest professor is 67 years old, and the average salary is

$210,555.60.
59

59: Whoa! They’re making a killing out

there...

WHERE

In SQL, some queries contain modifiers that narrow the query scope.

The most prevalent one of these clauses is WHERE. This clause is often

seen used with the SELECT query, but can also be used to specify targets
for other queries such as UPDATE and DELETE.

WHERE allows users to specify constraints to apply to the database prior
to returning the results of a query. These constraints typically use com-
parison operators, such as: >, <, =, NOT, LIKE, IS, etc...

Constraints based on numerical values behave as expected, but their

behaviour might be unexpected however when operating on a strings.

Consequently, we recommend consulting the appropriate documentation

in the specific database software manual.

We can determine whether a value is NULL by using the IS conditional

clause to match for NULL type.

SELECT NAME FROM Professors WHERE SALARY >= 60000;

NAME

1 Adam Smith

2 Paige Ryans

3 Alex Doe

4 Landon Liu

5 Kyra Carmichael

6 Heather Wong

7 Quine Ngyogne

8 Vikram Das

9 Samuel Koffi
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AND/OR/NOT

Clauses, such as WHERE, can be chained with other constraints in order to

conduct complex queries on a database.

We can dive in further within a result when using a WHERE clause

by combining conditions using the AND, OR, and NOT clauses, Boolean
operators linking query conditions:

AND returns results where all conditions are true;

OR returns results where at least one condition is true, and

NOT returns results where the next condition is false.

These clauses can further be organized into brackets.

SELECT * FROM Professors WHERE

(SALARY>=60000 AND NOT AGE>60) OR FACULTY IS NULL;

NAME SALARY FACULTY_ID AGE FACULTY

1 Paige Ryans 180000 2 48 Physics

2 Alex Doe 190000 3 37 <NA>

3 Landon Liu 120000 4 34 Cognitive Science

4 Marcel Orosz NA 5 48 <NA>

5 Kyra Carmichael 200000 6 30 Business

6 Heather Wong 200000 7 34 Economics

7 Quine Ngyogne 115000 8 55 Chemistry

8 Vikram Das 500000 9 60 Computer Science

9 Samuel Koffi 300000 10 40 Political Science

EXISTS

The EXISTS keyword is used determine whether a sub-query returns any

rows; it returns true if the sub-query returns at least one row; and false

otherwise. It is often used in correlated sub-queries.

A correlated sub-query is a query that depends on values from the outer
query; it is executed for each row of the outer query, and the results

are used to filter the outer query (often based on some condition in the

sub-query).

The syntax for a correlated sub-query is similar to a regular sub-query,

but it includes a reference to the outer table in the sub-query.

SELECT * FROM Professors WHERE EXISTS

(SELECT * FROM Courses WHERE

Professors.FACULTY_ID = Courses.FACULTY_ID);

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics

2 Paige Ryans 180000 2 48 Physics

3 Landon Liu 120000 4 34 Cognitive Science

4 Kyra Carmichael 200000 6 30 Business

5 Quine Ngyogne 115000 8 55 Chemistry

6 Vikram Das 500000 9 60 Computer Science
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The correlated sub-query identifies professors currently assigned to

courses; the outer query returns the list of details for those professors.

HAVING/GROUP BY

The GROUP BY clause is used to aggregate data across multiple rows based

on one or more fields.
60

It is used to group data and perform calculations 60: Again, quite reminiscent of Excel pivot

tables.
on these groups. The aggregate functions include COUNT, SUM, AVG, MIN,

MAX, etc...

We can also use the HAVING clause to narrow grouped data further,

allowing for the selection only of those results matching a supplementary

set of criteria.

SELECT AGE, AVG(SALARY) AS AVG_SALARY FROM Professors

GROUP BY AGE HAVING AVG(SALARY)>90000;

AGE AVG_SALARY

1 48 180000

2 37 190000

3 34 160000

4 30 200000

5 55 115000

6 60 500000

7 40 300000

IN/BETWEEN

In addition to the use of Boolean conditionals, SQL has the ability to

match multiple distinct cases, either by constraining results to a narrow

value of cases specified by a list, or by matching within a continuous
range.

IN allows a set of possible matching values to be specified – any condition

contained within this set evaluates to true. We can also use the result of

another query to specify the contents of this set via a SELECT query when

specifying the set against which to match.

BETWEEN evaluates to true when a compared value falls strictly within the
bounds specified by the query. This comparison is performed inclusively;

it can also be used to match to an alphabetically sorted list of strings.

SELECT * FROM Professors WHERE FACULTY_ID IN (1, 2)

AND NAME BETWEEN "Adam Smith" AND "Alex Doe";

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics
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LIMIT/ORDER BY

Some tables store a large number of rows, and can overwhelm a receiver;

in these cases restricting the number of returned results can be crucial.
This can be accomplished by using the LIMIT command, which when

followed by a numerical value 𝑛, returns only the first 𝑛 results from the

query.
61

61: This command can vary according to

the SQL server in use – in some systems,

the command is instead TOP. ORDER BY is another powerful clause, especially when used in conjunction

with the LIMIT/TOP clause – it sorts the result set returned by the query,

allowing users to specify sorting columns (and directions: ASC and

DESC).
62

62: This works on numerical values and

strings.

SELECT * FROM Professors ORDER BY NAME ASC LIMIT 4;

NAME SALARY FACULTY_ID AGE FACULTY

1 Adam Smith 90000 1 67 Economics

2 Alex Doe 190000 3 37 <NA>

3 Heather Wong 200000 7 34 Economics

4 Kyra Carmichael 200000 6 30 Business

DISTINCT

When one of the fields being used to return results contains a large

number of duplicate values, the DISTINCT clause can help narrow the

returned data; multiple fields can be marked as distinct, which can

be useful when searching for unique matches after performing a JOIN

operation.

SELECT DISTINCT NAME From Professors;

NAME

1 Adam Smith

2 Paige Ryans

3 Alex Doe

4 Landon Liu

5 Marcel Orosz

6 Kyra Carmichael

7 Heather Wong

8 Quine Ngyogne

9 Vikram Das

10 Samuel Koffi

LIKE

The LIKE keyword is used in a WHERE clause to search for a specified

pattern in a string column. It is used with the % and _ wildcard characters,

to match any string or any single character, respectively. The pattern

provided for matching must be enclosed within quotes.
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SELECT * FROM Courses WHERE COURSE LIKE ’ECON%’;

COURSE FULL Semester FACULTY_ID

1 ECON101 1 FALL 1

2 ECON401 0 WINTER 1

UNION

A union in SQL is a set operation which combines the result sets of two

or more SELECT statements into a single result set.

The UNION command will combine the output of multiple SELECT queries,

with a few restrictions:

the same number of columns must be selected in all queries;

the same data type must be used for all selections;

the result must have the same order.

To include all rows, including duplicates, the UNION ALL operator can be

used instead of UNION.

A union can be used for a wide range of purposes, such as combining

data from multiple tables, aggregating data from different sources, and

generating reports that require data from multiple queries.

SELECT NAME AS RESULTS FROM Professors WHERE FACULTY_ID=1

UNION SELECT COURSE FROM Courses WHERE FACULTY_ID=1;

RESULTS

1 Adam Smith

2 ECON101

3 ECON401

Note that a UNION will combine all matching results into the same

column. This may require careful formatting of the selection ordering

when matching multiple columns.

JOIN

A crucial concept of SQL is that of combining tables virtually in order to

match related data between tables. One approach to doing so is using

the JOIN command, which allows users to combine multiple tables into a

single virtual table by matching like data between the two.

Multiple types of JOIN can be performed:

LEFT JOIN

RIGHT JOIN

INNER JOIN

FULL JOIN

EXCLUSIVE JOIN

These different forms of JOIN allow data selection to be narrowed to

various ranges, based on the order in which the tables are joined and the

type of join used.
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LEFT JOIN

LEFT JOIN is a type of join operation that combines rows from two tables

based on the chosen matching condition(s), as well as any unmatched
rows from the left table; i.e., the first specified table after the FROM

clause.
63

63: The LEFT JOIN is illustrated below:

The resulting table will contain all of the rows from the left table, along

with any matching rows from the right table. If a row does not have a

match in the right table, it contains only NULL values.

SELECT * FROM Professors LEFT JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

This query will create a list of all professor-assigned-to-course matches,

while also listing professors that do not teach any courses.

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

2 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

3 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2

4 Alex Doe 190000 3 37 <NA> <NA> NA <NA> NA

5 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

6 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

7 Marcel Orosz NA 5 48 <NA> <NA> NA <NA> NA

8 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

9 Heather Wong 200000 7 34 Economics <NA> NA <NA> NA

10 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

11 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

12 Samuel Koffi 300000 10 40 Political Science <NA> NA <NA> NA

RIGHT JOIN

RIGHT JOIN is identical to LEFT JOIN, except that the primary table in

this case is the second (“right”) table appearing after the FROM clause.
64

64: The RIGHT JOIN is illustrated below:

Generally, a RIGHT JOIN and a LEFT JOIN can be used interchangeably
by altering the order in which tables are selected.

SELECT * FROM Professors RIGHT JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

2 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

3 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

4 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

5 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

6 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

7 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

8 <NA> NA NA NA <NA> MUSI101 0 SUMMER NA

9 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2
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INNER JOIN

INNER JOIN is a type of join operation that combines rows from two tables

based on the chosen matching condition(s), omitting any unmatched
rows; the resulting table will contain only rows where both left and right

tables meet the match criteria, all unmatched rows will be dropped.
65

65: The INNER JOIN is illustrated below:

SELECT * FROM Professors INNER JOIN Courses

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

This query will provide a list of only those records for which there ia

professor and a course match.

NAME SALARY FACULTY_ID AGE FACULTY COURSE FULL Semester FACULTY_ID

1 Kyra Carmichael 200000 6 30 Business BUSI202 1 SUMMER 6

2 Landon Liu 120000 4 34 Cognitive Science CGSC101 1 SUMMER 4

3 Landon Liu 120000 4 34 Cognitive Science CGSC202 1 WINTER 4

4 Quine Ngyogne 115000 8 55 Chemistry CHEM404 0 WINTER 8

5 Vikram Das 500000 9 60 Computer Science COMP490 1 FALL 9

6 Adam Smith 90000 1 67 Economics ECON101 1 FALL 1

7 Adam Smith 90000 1 67 Economics ECON401 0 WINTER 1

8 Paige Ryans 180000 2 48 Physics PHYS201 0 WINTER 2

FULL JOIN

FULL JOIN returns all rows based on the matching condition(s), including

the rows from both right and left tables, replacing missing values with

NULL; the input rows of both tables will be present in the output.

MySQL does not inherently support the FULL JOIN as this function is

largely “syntactic sugar”; we can emulate it using UNION in conjunction

with a LEFT JOIN and RIGHT JOIN.
66

66: The FULL JOIN is illustrated below:

SELECT * FROM Courses LEFT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID

UNION SELECT * FROM Courses RIGHT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID;

COURSE FULL Semester FACULTY_ID NAME SALARY FACULTY_ID AGE FACULTY

1 BUSI202 1 SUMMER 6 Kyra Carmichael 200000 6 30 Business

2 CGSC101 1 SUMMER 4 Landon Liu 120000 4 34 Cognitive Science

3 CGSC202 1 WINTER 4 Landon Liu 120000 4 34 Cognitive Science

4 CHEM404 0 WINTER 8 Quine Ngyogne 115000 8 55 Chemistry

5 COMP490 1 FALL 9 Vikram Das 500000 9 60 Computer Science

6 ECON101 1 FALL 1 Adam Smith 90000 1 67 Economics

7 ECON401 0 WINTER 1 Adam Smith 90000 1 67 Economics

8 MUSI101 0 SUMMER NA <NA> NA NA NA <NA>

9 PHYS201 0 WINTER 2 Paige Ryans 180000 2 48 Physics

10 <NA> NA <NA> NA Alex Doe 190000 3 37 <NA>

11 <NA> NA <NA> NA Marcel Orosz NA 5 48 <NA>

12 <NA> NA <NA> NA Heather Wong 200000 7 34 Economics

13 <NA> NA <NA> NA Samuel Koffi 300000 10 40 Political Science
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EXCLUSIVE JOIN

An EXCLUSIVE JOIN is a syntactic concept; the WHERE clause is appended

to a JOIN command specifying to only return rows from the left table if

no matching data exists in the right table. This modification effectively

only return results that are unique to each table, but otherwise operate

exactly as before.
67

67: The EXCLUSIVE JOIN is illustrated be-

low:

SELECT * FROM Courses RIGHT JOIN Professors

ON Courses.FACULTY_ID=Professors.FACULTY_ID

WHERE Courses.FACULTY_ID IS NULL;

This query will return a list of all professors not teaching a course.

COURSE FULL Semester FACULTY_ID NAME SALARY FACULTY_ID AGE FACULTY

1 <NA> NA <NA> NA Alex Doe 190000 3 37 <NA>

2 <NA> NA <NA> NA Marcel Orosz NA 5 48 <NA>

3 <NA> NA <NA> NA Heather Wong 200000 7 34 Economics

4 <NA> NA <NA> NA Samuel Koffi 300000 10 40 Political Science

1.7.4 Examples

A Representative SQL Query Typical SQL queries tend to be more com-

plicated than the few examples we have seen so far. The following example

can be seen as representative of the level of sophistication/complexity

we might encounter.
68

68: We display the SQL keywords in lower

case to make it easier to parse the query;

the table and variable names have to

be spelled exactly as they appear in the

database, however. In practice, it might be

a better idea to store the database variables

and table names in lower case or camel

case, and retain ALL CAPS for the SQL

keywords. But you do you.

select NAME from

(Professors left join Courses

on Professors.FACULTY_ID=Courses.FACULTY_ID)

inner join

(select COURSE, sum(STATUS in (’DNF’, ’FAILED’))

as Failing_Students

from Registrations

where STATUS in (’DNF’, ’FAILED’)

group by COURSE order by Failing_Students desc limit 2)

as T on Courses.COURSE=T.COURSE;

NAME

1 Adam Smith

2 Kyra Carmichael

It can be easier to understand a query if it is broken down from the

innermost sub table.

1. We start by noting that we work on the Registrations table, and

select only rows that contain a STATUS value of DNF or FAILED.

from Registrations

where STATUS in (’DNF’, ’FAILED’)
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2. In the sub-query, we select two fields: the COURSE field is returned

as it appears in the data, and the count of instances where STATUS

is DNF or FAILED (using the aggregation function SUM), which was

saved as Failing_Students, now available to the outer query.

select COURSE, sum(STATUS in (’DNF’, ’FAILED’))

as Failing_Students

3. The sub-query groups the output by the COURSE field, ordered by

the count of Failing_Students in each course, but limited to the

two largest instances.

group by COURSE order by Failing_Students

desc limit 2

4. We can now go to the primary query, in which the Professors table

is joined to the Courses table to create a mapping of professors to

the courses they teach.

(Professors left join Courses

on Professors.FACULTY_ID=Courses.FACULTY_ID)

5. The sub-query is assigned the table identifierT, which is inner joined

with the primary query table, returning a table with the information

of the two professors with the most “failing” students.

inner join

...

as T on Courses.COURSE=T.COURSE;

6. Finally, the resultant rows are isolated and only the NAME field is

outputted, ultimately returning the names of the two professor

with the most failing students.

select NAME from

...

SQL in R It will not come as a surprise, especially after the reticulate

detour of Section 1.6.4, that we can write SQL queries in R, with the

appropriate library.
69

69: The dbname, host, port, user, and

password arguments are those of a test

server where the toy example database

can be accessed. For obvious reasons, this

is a read-only situation. Just as obviously,

the arguments would be different when

working with a real database; contact your

DBA (database admin) and consult the

video linked to at the start of this section

for more information and troubleshooting.

SQL in R

# install required library

library(RMySQL)

# connect to the database

mysqlcon = dbConnect(RMySQL::MySQL(),

dbname=’school’, host=’ayyws.com’, port=3000,

user=’Ruser’, password=’Ruser’)

[1] "Courses" "Professors" "Registrations" "Students"
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# test the connection by listing all tables

dbListTables(mysqlcon)

# submit a query to the database

x = dbSendQuery(mysqlcon, "select * from Registrations;")

# convert the result to an R data frame, and display

data.frame = fetch(x)

print(data.frame)

STUDENT_ID COURSE GRADE STATUS

1 100 ECON401 NA Registered

2 100 ECON101 10.00 Passed

3 101 ECON101 2.45 Failed

4 102 BUSI202 NA Registered

5 102 ECON101 NA DNF

6 104 CHEM404 NA Registered

7 104 COMP490 9.80 Passed

8 101 BUSI202 3.52 Failed

1.8 Exercises

1. Write pseudo-code that will sort a list of numbers. Identify the

inputs and the outputs, and solve the problem “procedurally” on

a definite example before generalizing to a general list. You may

need to “black box” the manipulation of individual numbers and

group of numbers within the list.

2. Write pseudo-code that will enumerate all strings of up to n charac-

ters taken from the set A-Z, with no repeated character. Identify the

inputs and the outputs, and solve the problem “procedurally” on a

definite example before generalizing. Use “black boxes” as needed.

3. Use R to calculate the following quantities:

a) The sum of 1.001, 22.9, and -73.78

b) The square root of 64

c) Calculate the base 10 logarithm of 90, and multiply the result

with the cosine of 𝜋.
70

70: Hint: see ?log and ?pi for information

about how to use.

4. Type the following R code, which assigns numbers to objects x, y.

x<-252

y<-5.5

a) Calculate the product of x and y

b) Store the result in a new object called z

c) Inspect your workspace by typing ls(), and by clicking the

Environment tab in RStudio, and find the three objects you

created

d) Make a vector of the objects ‘x‘, ‘y‘, and ‘z‘.

5. You have measured seven cylinders. Their lengths are: 2.1, 10.8,

5.5, 6.6, 9.7, 8.2, 8.1, and the diameters are: 0.4, 0.3, 1.2, 0.9, 0.3,

0.2, 0.1. Read these data points into two vectors (give the vectors
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appropriate names). Use R to calculate the volume of each cylinder

(𝑉 = length × 𝜋 × (diameter/2)2).

6. Input the following data, related to space shuttle launch damage

prior to the Challenger explosion. The set covers 6 launches out

of 24 that were included in the pre-launch charts used to decide

whether to proceed with the launch or not

Temp Erosion Blowby Total

53 3 2 5

57 1 0 1

63 1 0 1

70 1 0 1

70 1 0 1

75 0 2 1

Enter these data into aRdata frame, with column namestemperature,

erosion, blowby, and total.

7. Read the following data into R (number of honeyeaters seen at a

site in a week). Give the resulting data frame a reasonable name.

Type it into Excel or text file and save it as a CSV file or txt.

Day nbirds Day nbirds

Sunday 3 Thursday 8

Monday 2 Friday 1

Tuesday 5 Saturday 2

Wednesday 0

Enter the following data as new observations of a different week

starting on Sunday: 4, 3, 6, 1, 9, 2, 0.

8. Read the data from the space shuttle launch (from the previous

question) data into R.

9. Read the following data set (various Australian populations since

1917) into an R object. Write the object into a text file, from R.

Year NSW Vic. Qld SA WA Tas. NT ACT Aust.

1917 1904 1409 683 440 306 193 5 3 4941

1927 2402 1727 873 565 392 211 4 8 6182

1937 2693 1853 993 589 457 233 6 11 6836

1947 2985 2055 1106 646 502 257 11 17 7579

1957 3625 2656 1413 873 688 326 21 38 9640

1967 4295 3274 1700 1110 879 375 62 103 11799

1977 5002 3837 2130 1286 1204 415 104 214 14192

1987 5617 4210 2675 1393 1496 449 158 265 16264

1997 6274 4605 3401 1480 1798 474 187 310 18532

10. What do you think the following R calls do?

swiss$var1 <- swiss[,1]>median(swiss[,1])

swiss$var4 <- swiss[,4]>median(swiss[,4])
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table(swiss$var1); table(swiss$var4)

table(swiss$var1,swiss$var4)

11. What do you think the following R calls do?

median(test, na.rm=TRUE)

min(test, na.rm=TRUE)

max(test, na.rm=TRUE)

quantile(test, na.rm=TRUE)

12. In Python:

a) evaluate ⌊10001/4⌋ and arcsin(𝜋/4);
b) obtain the value of 𝑠 in the following: 𝑎 = 𝜋(1+ ln 5), 𝑏 = 1

3+
√

4

and 𝑠 = 𝑎 + 𝑏;

c) obtain a formatted string of sin(𝜋2) of width 8, with 5 decimal

places;

d) turn the value of

√
3 into a fixed decimal with 8 decimal places.

13. In Python:

a) create a list of integers from -10 to 5;

b) use list comprehension to create a list (x,y) so that x+y > 8

where x can be any nonnegative integer at most 10 and y can

be any positive integer at most 7;

c) use list comprehension to create a list (x,y) so that y is the

square of x and x is from 1 to 10;

d) write one line of code that returns a list obtained from

x = ['one', 2, 3, 'four', 5, 6, 'seven', 8, 9, 10,

'eleven', 12, 13, 'fourteen']

by moving all the elements of type str to the end of the list.
71

71: Hint: Use list comprehension and con-

catenation. To check if a is of type str, use

type(a) is str. To check if a is not of

type str, use type(a) is not str.

14. Write an if statement in Python that prints “odd” if x is odd and

prints “even” if x is even where x is a random integer between -100

and 100, inclusive.
72

72: Hint: x % n returns the remainder of

x divided by n.

import random

x = random.randint(-100,100)

15. Use a single while loop in Python to print all pairs (x,y) such that

x+y=100 and x ranges from 0 to 50.

16. Write a Python function myFunc() that returns the square of x if x

is of type int and returns None otherwise.
73

73: Hint: type(x) is int is the syntax

for testing if x is of type int.

def myFunc(x):

res = None

## Your code here

return res

Verify that the function behaves as expected:

assert(myFunc(5) == 25)

assert(myFunc(’five’) is None)
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17. Write a function mySoS() that accepts a list of floats as the only

argument and returns the sum of squares of the numbers (assume

that the argument is indeed a list of floats – no need to test if the

condition is met).

def mySoS(ns):

res = 0

## Your code here

return res

Verify that the function behaves as expected:

assert(mySoS([1.0,2.0,3.0]) == 14.0)

assert(mySoS([-2.5,1.3,13.4]) == 187.5)

18. What is the result of the following code?

def mystery(func, n):

return [func(i) for i in range(n)]

print(mystery(lambda x: (2*x+1)**2, 5))

Rewrite the function using an anonymous function (single line).

19. Complete the definition of the Python function myRep() with

arguments x, y, and n (where x and y can be assumed to be strings

and n can be assumed to be a nonnegative integer) that returns the

string x+y repeated n times.

def myRep(x, y, n):

res = ’’

# Your code here

return res

Verify that the function behaves as expected:

assert(myRep(’a’,’b’,3) == ’ababab’)

assert(myRep(’Python’,’C’,0) == ’’)

20. Complete the definition of the Python function posOfi() with

argument s and returns a list of indices at which s contains the

letter ‘i’.
74

74: Hint: use the enumerate function.

def posOfi(s):

# Your code here

return None

Verify that the function behaves as expected:

print(posOfi("Mississipi"))

print(posOfi("Harry Potter"))

https://docs.python.org/3.5/library/functions.html#enumerate
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21. Complete the following Python function which takes a string

consisting of a paragraph of sentences ending with a period and

returns a list of all the sentences, with leading and trailing spaces

stripped. You may assume that every period ends a proper sentence

and there are no sentences not ending in a period.

def sentences(p):

# Your code here

return None

Verify that the function behaves as expected:

p = ’The essence of Python. One can sense. But not learn. ’

print(sentences(p))

22. What effect do the methods upper(), lower(), and title() have

on non-alphabetical characters?

23. Complete the following function which takes a list of full names

as argument an returns a list of names that are not properly

capitalized. For example, for the argument ['John Doe', 'JANE

Kelly', 'nicole dunn', 'David Huang'], the function returns

['JANE Kelly, 'nicole Dunn'].

def badNames(names):

# Your code here

return None

24. Complete the following function which takes a list l of strings

as argument and returns a list consisting of the strings in l not

containing the symbol -. For example, given the argument ['Hi',

'Good-bye', 'Ciao', 'Twenty-one'], the function should re-

turn ['Hi', 'Ciao'].

def filterList(l):

# Your code here

return None

25. Complete the following function which takes a list of pairs as

argument and returns a dictionary with the first components as

keys and the second components as the corresponding values. For

example, given the argument [(1,'a'),(2,'b')], the function

returns {1: 'a', 2: 'b'}.

def pairListToDict(pairs):

# Your code here

return None

26. Complete the following function which takes a dictionary as argu-

ment and removes all the key-value pairs that do not have values

of type str. For example, calling the function with the dictio-

nary {'one': 1, 'two': 'Two', 'three': 3} will change the

dictionary to {'two': 'Two'}.
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def filter(d):

# Your code here

return

27. Complete the following code so that sq is a 1D numpy array of the

squares of the first 100 positive integers. Use list comprehension.

sq = np.array([...])

28. Obtain a NumPy array from the array sq in the section by applying

the function

√
𝑥 + 1 to each entry x in sq.

75
75: Hint: use broadcasting and

np.sqrt().
29. Complete the following definition of myFunc() which takes a

positive integer argument n and a positive real number d and

generates an array of n random values drawn from the standard

normal distribution and returns the number of values whose

absolute values are less than or equal to d. You may assume that n

is a positive integer and d is a non-negative float when myFunc() is

called.
76

76: Hint: use numpy.random.randn() for

generating the random array.

def myFunc(n, d):

# Your code here

return 0

Verify that the function behaves as expected:

np.random.seed(5900)

assert(myFunc(10000,1) == 6848)

assert(myFunc(100000,2) == 95490)

30. Obtain the iris data set through seaborn and generate some

summary statistics.

31. Write code to change the labels in the data frame crashes from

Cnnn to Incident nnn and turn that column into an index column.

Commit these changes to crashes.

32. Extract a data frame from df consisting only of the columns

speeding and alcohol for which the speeding values are at least

3.0 and the alcohol values are at most 4.5.

33. There is a powerful way to filter rows involving complex boolean

expressions via the query() method. For instance,

df.query("ins_losses > 160 & ins_premium < 900 & abbr == ’CA’")

case speeding alcohol ... ins_premium ins_losses abbr

4 C005 4.2 3.36 ... 878.41 165.63 CA

[1 rows x 8 columns]

Extract a data frame from df via query() consisting of records for

which alcohol is at most 4.0 and abbr is neither CA nor LA.

34. Obtain a data frame df4 by changing the column name of Student

ID in the data frame gpa to ID. Then create df5 by merging df4

and df using pd.merge(df4, df, on='ID') and summarize the

resulting data frame.

35. Perform an outer join with df4 from the previous exercise and dfB.
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36. Drop the observations in the original gpa data frame for which the

only NaN values are found in the GPA column.

37. Replace the NaN in the original gpa’s Year column with the string

Unknown.

38. Modify markToGrade so that a mark between 80 to 100 (incusive) is

converted to an A, a mark at least 70 but less than 80 is converted to

a B, a mark at least 60 but less than 70 is converted to a C, a mark at

least 50 but less than 60 is converted to a D, and a mark below 50 is

converted to an F.

def markToGrade(x):

res = ’F’

# Your code here

return res

Add a Grade column to df3 containing the converted grades.

39. Obtain the mean for each of the Year groups in the calc data

frame.

40. Obtain the mean, standard deviation, and median for each of the

Year groups in the calc data frame, using agg().

41. Produce a summary of the calc data frame giving the Grade mean

and standard deviation, and the GPA median, grouped by Years.

42. Complete the definition of a function that returns Satisfactory

if the average of the array x is at least 65.0 and Unsatisfactory

otherwise.

def groupStatus(arr):

res = ’’

# Your code here

return res

Determine the group status in the calc dataset by both Sex and

Year, for the Grade variable.

43. Write a function that produces the pivot table displaying the number

of students with a passing grade by Sex and Year.
77

77: Hint: if arr is a NumPy array, then arr

>= 50.0 gives an array of the same length

such that element i is True if and only if

a[i] >= 50.0.

44. Carry out the remaining exercises in both R and Python. There is

no need to do the exercises in any particular order. Take the time

to design pseudo-code and think about what the code does before

jumping directly into the programming. You may choose to carry

out each of the exercises separately, or to write a single program

that carries out all of the individual exercises. You will find much

of the base code you need in the chapter’s examples, but you may

need to tweak and add to this code to carry out the exercises. Do

not hesitate to look for information and inspiration on the Internet

and in the documentation.

a) Create three variables and assign numerical values to each of

these variables. Then write one or more statements that carry

out the following types of operations using these variables:

addition, subtraction, multiplication, division, raising to a

power.

b) Create three variables and assign string values to each of these

variables. Write a statement that joins the three strings into

a single string. Write some code that prints the string. Write
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some code that tests to see if a substring of your choice is

contained within the larger string.

c) Create three variables and assign lists to each of these variables.

Join the three lists into a new list containing three distinct

sub-lists (a list of three lists). Create a list from this list without

sub-lists (all original list elements are part of a single larger

list). Create a fourth list by splitting this resulting list in half

and assigning the second half of the list to a new variable.

Extract the last item of this list (it can either stay in the original

list or be removed from it) and assign this element to a variable.

d) Write a statement that contains at least three nested blocks.

Use at least three of the following control flow options: if, if

else, while, for, break, continue (Python only), next, switch.

e) Write a function that takes three arguments as input and

returns one value. Call the function with arguments of your

choosing.

f) Execute the relevant command that shows a list of the packages

(for R) or modules (for Python) that are currently installed

in your environment. Use the available documentation to

determine what some of these do. Write some code that uses

functions and objects supplied by these packages.

g) Print to the standard output three sentences of your choosing,

on three separate lines, using a single statement of code.

h) Locate a comma separated values (.csv) file stored on your

computer or online. Read this file into the notebook and store

the results in one or more variables.

i) Create a new file and write four lines in .csv format to this file.

In a separate statement, write four more lines to this existing

file, without overwriting the original file.

j) Write enough code to generate at least five different error

messages. Copy these error messages into a text document,

and write a short note under each explaining the meaning of

the error message, and how the code was fixed.

k) Using a language of your choice, write a function that, when

passed a dataset, reports 5 interesting pieces of information

about the dataset. Load a dataset and run the function on this

dataset.

l) Using a language of your choice, write two functions. The

output of the first function should work as the input to the

second function. The first function should read in a dataset

and generate a subset of the dataset based on some chosen

criteria. The second function should read in a dataset and

provide summary data of some type for each column in the

dataset. Load a dataset and run both functions on the dataset.

m) Write a program that sorts a list of numbers, without using

the in-built sorting functions.

n) Write a program that sorts a list of character strings, without

using the in-built sorting functions.
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45. Consider a database consisting of two tables, as shown below.

a) What is the primary key for each table?

b) What are the foreign keys for each table?

c) What are the NULL values?

d) What is the relation between these tables?

e) What type of data does each field support?

f) What constraints might we expect each field to have?

g) What would happen if we tried to mix datatypes without

enforcing constraints?
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by Fabrizio Donzelli, with contributions from Patrick Boily

This chapter contains an essential introduction to multivariable calculus.

The goal is to provide the readers interested in statistics and/or data

science with some basic mathematical tools that are at the base of the

algorithms and the mathematical models of statistical analysis. Theoreti-

cal details, such as rigorous proofs and definitions, will be kept at the

minimal level.

A more detailed and complete introduction to multivariable calculus is

found at the YouTube channel Calc with Fab and in [4, 3, 1].

2.1 Points, Vectors, Coordinates, Dimensions

We denote by ℝ𝑛
the 𝑛-dimensional (real) space. A point 𝑃 in ℝ𝑛

is

located using the orthogonal Cartesian coordinates (𝑥1 , 𝑥2 , · · · , 𝑥𝑛).*

This notation may be adapted according to the context. For instance,

we will often denote a specified point in ℝ𝑛
by a = (𝑎1 , 𝑎2 , · · · , 𝑎𝑛), in

contrast with the notation x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛) which we reserve for a

generic point. The number 𝑛 of coordinates is the dimension of ℝ𝑛
.

Given two sets 𝐴 and 𝐵 (for examples, two regions in ℝ𝑛
) we write 𝐴 ⊆ 𝐵

if 𝐴 is a subset of 𝐵 (that is, 𝐴 is contained in 𝐵: every element of 𝐴 is

also in 𝐵, but the converse is not necessarily true). Let 𝑃 = (𝑎1 , · · · , 𝑎𝑛)
be a point in ℝ𝑛

, and 𝐷 ⊆ ℝ𝑛
. We write 𝑃 ∈ ℝ𝑛

if the point belongs to

the set 𝐷, otherwise we write 𝑃 ∉ ℝ𝑛
.

The real line ℝ contains intervals:

closed [𝑎, 𝑏], the set of all 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏;

open (𝑎, 𝑏), the set of all 𝑥 such that 𝑎 < 𝑥 < 𝑏;

“clopens” (𝑎, 𝑏] (𝑎 < 𝑥 ≤ 𝑏) and [𝑎, 𝑏) (𝑎 ≤ 𝑥 < 𝑏), and

unbounded (𝑎,+∞), (−∞, 𝑎), (−∞,+∞).

Figure 2.1: Intervals on the real line ℝ.

*
We assume some familiarity with most of the following notions, but we suggest reading

this short section before moving on to the rest of the chapter, as a refresher.

https://www.youtube.com/channel/UCHorQtnCoLb5TFWHJRbuz-g
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2.1.1 One Dimension

The (real) one-dimensional space is denoted by ℝ; it is represented by a

line, oriented from left to right along the directon along which values

increase. It is common to denote the position of the points along ℝ by 𝑥,

but one can choose another name for the variable.
1

1: We often use 𝑡 when the real line repre-

sents the passage of time, for instance.

The point with coordinate 𝑥 = 0 is known as the origin of the line.

Positive values of 𝑥 are located to the right of the origin, negative values

to the left, as in Figure 2.2.

Figure 2.2: The real line ℝ, with origin

and direction.

2.1.2 Two and Three Dimensions

The (real) plane ℝ2
is two-dimensional; we give it (Cartesian) coordinates

(𝑥, 𝑦), as shown in Figure 2.3.
2

The four plane sectors formed by the2: As was the case in one-dimensional

space, the notation of the coordinates may

change according to the context: (𝑥1 , 𝑥2)
is also used, for instance, but so are polar

coordinates (𝑟, 𝜃).

coordinate axes (red lines) are the plane’s quadrants, labeled with Roman

numerals in counterclockwise order.

Forℝ3
, we typically use the (Cartesian) coordinates (𝑥, 𝑦, 𝑧)or (𝑥1 , 𝑥2 , 𝑥3).3

3: Other options: spherical coordinates,

cylindrical coordinates.

Figure 2.3: The real plane ℝ2
, with origin

and quadrants (left); the real space ℝ3

(right).

In general, we do not display the coordinate axes.
4

4: Unless we do!

2.1.3 More Dimensions

We define the 𝑛-dimensional (real) space ℝ𝑛
as the space described by

Cartesian coordinates x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛). The point 0 = (0, 0, · · · , 0) is

the origin of ℝ𝑛
, and it is the point of common intersection of the 𝑛

coordinate axes.

In principle, ℝ𝑛
is not a vector space, but it can be treated as such and

so we can perform vector algebra operation with elements of ℝ𝑛
(see

Chapter 3, Overview of Linear Algebra).
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2.2 Functions

Functions are the basic objects of calculus, and are the building blocks of

mathematical modelling. Functions are in a general sense input-output
machines, in the sense of the following general definition, which applies

beyond calculus.

If 𝐷 is a set of input values and 𝑂 is the set of output values, then a

function 𝑓 : 𝐷 → 𝑂 is a rule that assigns to each input element 𝑥 ∈ 𝐼
a unique output value, which we denote by 𝑓 (𝑥). The notation of the

function, the input and output set can vary, as usual, according to the

context. Once 𝑓 has been specified, we refer to 𝐷 as the domain of 𝑓 and

to 𝑂 as its codomain.

If 𝑓 : 𝐷 → 𝑂 is a function, the set 𝑓 (𝐷) = { 𝑓 (𝑥) | 𝑥 ∈ 𝐷} ⊆ 𝑂 is called

the range (or the image) of 𝑓 .

Examples

1. Let 𝑃 be the collection of patients in a COVID emergency hos-

pital, and 𝑂 = {𝑝(ositive), 𝑛(egative)} be the set of possible test

responses. We construct the “COVID-TEST” function 𝑇 : 𝑃 → 𝑂

as follows: If 𝑥 ∈ 𝑃,

𝑇(𝑥) =
{
𝑝, if patient 𝑥 tests positive

𝑛, if patient 𝑥 tests negative

In this example the output values are categorical, since they classify

the patients into a discrete set of (fixed) classes.
5

5: In statistics, it is often convenient to

represent categorical variables with nu-
meric values. For example, we can assign

𝑓 (𝑥) = 1 if the patient 𝑥 has a positive test,

𝑓 (𝑥) = 0 if their test is negative.

2. Let 𝑆 denote a sphere of arbitrary radius. A point on 𝑆 can be

located using two coordinates: its longitude and its latitude.
6

We

6: Assuming that a special point and great

circle through that point have been identi-

fied.

can then define the temperature function 𝑇 : 𝑆 → ℝ by

𝑇(longitude, latitude) = temperature at the point.

The temperature function is usually assumed to be continuous.
7

7: We will not be discussing this concept

except in an intuitive manner: a contin-

uous function is one in which there are

no ”jumps”. An interesting corollary is

that if we model the temperature on the

Earth in that manner, we can show that at

any given moment there are at least two

antipodal points which have exactly the

same temperature.

3. Probability theory is naturally expressed in the language of multi-

variate calculus (see Chapter 6). For instance, the density function
of the multivariate normal distribution in 2 uncorrelated variables

of expectation 0 is a function 𝑓𝜎1 ,𝜎2
: ℝ2 → ℝ defined by:

𝑓𝜎1 ,𝜎2
(𝑥, 𝑦) = 1

2𝜋𝜎1𝜎2

exp

(
−
𝑥2/𝜎2

1
+ 𝑦2/𝜎2

2

2

)
.

The probability that a randomly selected point 𝑃 = (𝑥, 𝑦) from this

distribution falls in Ω ⊆ ℝ2
is an integral:∬

Ω

𝑓𝜎1 ,𝜎2
(𝑥, 𝑦) 𝑑𝐴.
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We will discuss such notions further in Section 2.6, 6.3, and 6.4.

4. The following block of R code provides a display of the 3D surface

𝑧 = exp(−𝑥2 − 𝑦2) over {(𝑥, 𝑦) ∈ ℝ2 | −2 ≤ 𝑥, 𝑦 ≤ 2}.

3D plotting in R

library(plot3D) # for 3D plotting

M <- mesh(seq(-2, 2, length.out = 50),

seq(-2, 2, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- exp(-x^2-y^2)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Note: the domain of a function is part of the recipe, it is not automatically

defined by the function itself. However, in calculus, when we use the

word domain, we usually mean the largest set 𝐷 𝑓 to which the function

could be applied. For any 𝑥 in 𝐷 𝑓 , there is a unique output 𝑓 (𝑥).88: That is not necessarily the case in the

general framework of multivalued func-
tions, which, while quite interesting from

a geometrical perspective, are outside the

scope of this document.

Examples

1. What is the (largest possible) domain 𝐷 𝑓 of the function defined

by 𝑓 (𝑥, 𝑦) = 1

𝑥+𝑦 ? We cannot divide by zero, so the denominator

𝑥 + 𝑦 can never be zero when we apply the function 𝑓 (𝑥, 𝑦); 𝐷 𝑓

therefore consists of all pairs (𝑥, 𝑦) expect for those satisfying the

equation 𝑥 + 𝑦 = 0, whose solution set is the line 𝑦 = −𝑥. Thus,

𝐷 𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 + 𝑦 ≠ 0};

in other words, the domain consists of the region above the line

𝑦 = −𝑥 and the region below the line 𝑦 = −𝑥.

2. What is the domain 𝐷 𝑓 of 𝑓 (𝑥, 𝑦, 𝑧, 𝑤) = ln(𝑤) + 𝑥 + 𝑦 + 𝑧? Recall

that the (real) logarithm is defined only for positive input values.

Hence the domain is 𝐷 𝑓 = {(𝑥, 𝑦, 𝑧, 𝑤) ∈ ℝ4 | 𝑤 > 0}.
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2.3 Graphical Representation of Functions

Human eyes (and brains) have a difficult time parsing large data files

directly; we typically rely on graphical representations to make sense of

data (see Chapter 18 and [2] for a lot more information on the topic).

Graphical representations are useful in calculus as well; we review a few

standard ways of providing these for functions of several variables.

2.3.1 One Variable: Sketch the Graph

Let 𝑓 : (𝑎, 𝑏) → ℝ be a function of one variable 𝑥. The graph of 𝑓 is the

curve of equation 𝑦 = 𝑓 (𝑥); a point in the graph is given by coordinates

(𝑥, 𝑓 (𝑥)), for 𝑥 ∈ (𝑎, 𝑏).

Example Sketch the graph of the function 𝑓 : [0,∞) → ℝ defined by

𝑓 (𝑥) = 𝑒−𝑥 for 𝑥 ≥ 0.

Does the point (1, 2) belong to the graph of 𝑓 ?9
9: This is essentially an example of the

exponential distribution.

Note that the domain is restricted to the half-real line 𝑥 ≥ 0; since the

exponent is negative, 𝑒−𝑥 decays to 0 as 𝑥 → ∞ (quite rapidly in fact).

x <- seq(0,4,0.1)

y <- exp(-x)

plot(x, y, type=’l’, col = rainbow(25), lty=1)

To answer the last question, we evaluate 𝑓 (1); it is equal to 𝑒−1 ≠ 2, and

so the point is not on the graph.

2.3.2 Two Variables: Graphs or Level Curves

For function of two variables, there are two convenient ways to provide a

graphical representation.
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The Graph of a Function

Let 𝑓 : 𝐷 → ℝ be a function of two variables 𝑥, 𝑦, where 𝐷 ⊆ ℝ2
. The

graph of 𝑓 is the surface of equation 𝑧 = 𝑓 (𝑥, 𝑦).

A point on the graph is given by coordinates (𝑥, 𝑦, 𝑓 (𝑥, 𝑦)), where

(𝑥, 𝑦) ∈ 𝐷. We can interpret the graph as a hilly region, in which case

(𝑥, 𝑦) are the coordinates of the position with reference to 𝑥𝑦−plane, and

𝑧 is the altitude.

Example Sketch the graph of the function 𝑓 : 𝐷 → ℝ defined by

𝑓 (𝑥, 𝑦) = 𝑒𝑥+𝑦 , for − 1 ≤ 𝑥 ≤ 1,−1 ≤ 𝑦 ≤ 1.

Interpret the graph.

We can recycle the code from one of the previous examples.

library(plot3D)

M <- mesh(seq(-1, 1, length.out = 50),

seq(-1, 1, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- exp(x+y)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Level (Contour) Curves

Let 𝑓 : 𝐷 ⊆ ℝ2 → ℝ. Depending on the nature of 𝑓 , the graph may be

difficult to read (or to plot). An alternative may be to sketch the level (or

contour) curves.
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Let 𝑐 be a value in the range of 𝑓 , which is to say, a possible output value
of 𝑓 . Generically, the equation 𝑓 (𝑥, 𝑦) = 𝑐 is a curve in the 𝑥𝑦−plane, a

level curve (or contour curve) of 𝑓 , which consists of all (and only) the

points (𝑥, 𝑦) ∈ 𝐷 where the function takes the value 𝑐.

Example Plot a few level curves of the function 𝑓 : ℝ2 → ℝ defined by

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦.

For any fixed value 𝑐, the equation 𝑥+𝑦 = 𝑐 can be rewritten as 𝑦 = −𝑥+𝑐.
The level curves of 𝑓 are thus all the lines in the 𝑥𝑦−plane with slope −1.

Along each line of equation 𝑦 = −𝑥 + 𝑐, the value of 𝑓 is given by the

𝑦−intercept.

Here is a sample code for plotting the level curves of 𝑓 ; the numbers

displayed on top of the curves are the values 𝑐 taken by the function

along the curves displayed.

x <- seq(-5,5,length.out=50)

y <- seq(-5,5,length.out=50)

z <- outer(x,y,"+")

cols <- hcl.colors(10, "Inferno") #color palette

contour(x,y,z,col=cols)

We can use level curves to estimate the values of a function in a certain

region of the domain.

Example Given the following level curves of 𝑓 (𝑥, 𝑦) = sin(𝑥) + cos(𝑦),
estimate the value of 𝑓 at 𝐴 and 𝐵.

Level curves in R
x <- seq(-5,5,length.out=50)

y <- seq(-5,5,length.out=50)

z <- outer(sin(x),cos(y),"+")

cols <- hcl.colors(10, "Inferno") #color palette
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contour(x,y,z, col=cols)

points(-2,2,col=’blue’,pch=20)

points(0,3,col=’blue’,pch=20)

points(-2,1.7,col=’blue’,pch="A")

points(0,2.7,col=’blue’,pch="B")

The point𝐴 is located between the level curves 𝑓 (𝑥, 𝑦) = −1 and 𝑓 (𝑥, 𝑦) =
−1.5. Since it is slightly closer to the second curve, we can estimate

𝑓 (𝐴) ≈ −1.3.

The point 𝐵 seems to sit exactly along the level curve 𝑓 (𝑥, 𝑦) = −1, hence

𝑓 (𝐵) ≈ −1.
10

10: Of course, we can double check this

estimate by finding the coordinates of 𝐴

and 𝐵, and computing 𝑓 (𝐴) and 𝑓 (𝐵).
Example Level curves may degenerate to lower dimensional regions,

or, even “worse”, be empty when 𝑐 is not in the range of 𝑓 .

As an illustration, consider the function 𝑓 : ℝ2 → ℝ, 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
:

for 𝑐 > 0, the level curve 𝑥2 + 𝑦2 = 𝑐 is the circle of center (0, 0)
and radius

√
𝑐;

the level curve 𝑥2 + 𝑦2 = 0 degenerates to the point (0, 0), the only

point whose coordinates solve the equation 𝑥2 + 𝑦2 = 0;

for 𝑐 < 0, the level curve 𝑥2+𝑦2 = 𝑐 does not exist, since 𝑥2+𝑦2 ≥ 0

for all real values of 𝑥 and 𝑦.

2.3.3 Three or More Variables

The more variables we have, the more challenging it can be to provide

graphical representations of a function.

However both graphs and level sets can be defined, in purely mathemati-

cal terms, over an arbitrary number of variables, without needing to be

visualized.
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The Graph of a Function

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ be a function of 𝑛 variables x = (𝑥1 , · · · , 𝑥𝑛). The

graph of 𝑓 is the 𝑛−dimensional hypersurface in ℝ𝑛+1
defined by the

equation 𝑤 = 𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑛), for x ∈ 𝐷. A point on the graph is

therefore identified by the coordinates

(x, 𝑓 (x)) = (𝑥1 , . . . , 𝑥𝑛 , 𝑓 (𝑥1 , . . . , 𝑥𝑛)),

with x = (𝑥1 , . . . , 𝑥𝑛) ∈ 𝐷. We can interpret 𝑓 as a way of bending and

stretching the domain 𝐷 into a new region embedded in ℝ𝑛+1
.
11

11: We illustrate this for 𝑛 = 2 below:

The cone is a distortion in ℝ3
of the ring

in ℝ2
.

Level (Contour) Sets

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and let 𝑐 be a value in the range of 𝑓 . Generically,

the equation 𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑛) = 𝑐 is an 𝑛 − 1 dimensional region

(hypersurface) in𝐷, called a level set (or contour set) of 𝑓 , which consists

of all (and only) the points x = (𝑥1 , . . . , 𝑥𝑛) ∈ 𝐷 where the function

takes the value 𝑐.

Level sets may degenerate to lower dimensional regions < 𝑛 − 1, or be

empty when 𝑐 is not in the range of 𝑓 .

Example Describe the level sets of the function 𝑓 : ℝ3 → ℝ defined by

𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2
. Are there “degenerate” level sets?

In ℝ3
, the equation of the 2D sphere of radius 𝑅 > 0 centred at the origin

0 = (0, 0, 0) is 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2
. Thus, the level sets of the function

consists of spheres all centered at the origin.

If 𝑅 = 0, the equation 𝑥2 + 𝑦2 + 𝑧2 = 0 is satisfied only for the zero

dimensional set {(𝑥, 𝑦, 𝑧) | 𝑥 = 𝑦 = 𝑧 = 0}; this level set is degenerate.

2.3.4 Scalar-Valued Functions and Vector Fields

Let 𝐷 ⊆ ℝ𝑛
be a 𝑛-dimensional domain. A real valued function 𝑓 :

𝐷 → ℝ will be called a function (or a scalar field), in contrast with a

vector valued function F : 𝐷 → ℝ𝑛
, which we call a vector field.

Figure 2.4: An illustration of the 2D vector

field F(𝑥, 𝑦) = (sin 𝑦, sin 𝑥) [author un-

known].

Vector fields play a crucial role in vector calculus and its applications to

physics and geometry, but this is out of scope for our purposes. We refer

again the reader to [4].
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Figure 2.5: Difference quotient and slope of the tangent to 𝑦 = 𝑓 (𝑥) at 𝑃(𝑎, 𝑓 (𝑎)).

2.4 Derivatives

After an introduction to functions, the next step is to define the derivative,

which provides a unified way of measuring the rate of change of a function

with respect to its variables.

2.4.1 Limit of Difference Quotients

Let 𝑓 : (𝑐, 𝑑) → ℝ be a function of one variable 𝑥 and 𝑥 = 𝑎 ∈ 𝐷 𝑓 = (𝑐, 𝑑).
The derivative of 𝑓 (𝑥) at 𝑥 = 𝑎 is denoted by 𝑓 ′(𝑎) and is defined as the

limit (if it exists) of the difference quotients

𝑓 ′(𝑎) = lim

Δ𝑥→0

𝑓 (𝑎 + Δ𝑥) − 𝑓 (𝑎)
Δ𝑥

.

The number 𝑓 ′(𝑎) is a measure of the rate of change of 𝑓 at 𝑥 = 𝑎.

Geometrically, the value 𝑓 ′(𝑎) is the slope of the tangent line to the graph

of 𝑓 at the point (𝑎, 𝑓 (𝑎)).

In general, the value of the derivative of 𝑓 depends on 𝑥; we therefore

define the derivative function 𝑓 ′ : (𝑐, 𝑑) → ℝ, which also carries the

information relating to the slope.

Example Consider the exponential function 𝑓 defined by 𝑓 (𝑥) = 𝑒3𝑥
on

ℝ, whose graph is represented by the red curve below.

x <- seq(0, 3, length.out=50)

y <- exp(3*x)

plot(x, y, type=’l’, col=rainbow(25), lty=1)

lines(x, 3*exp(3)*x-3*exp(3)+exp(3),

col=’darkblue’, lty=3)

points(1, exp(3), pch=20, col=’darkblue’)

lines(x, 3*exp(6)*x-3*2*exp(6)+exp(6),

col=’darkgreen’, lty=3)

points(2, exp(6), pch=20, col=’darkgreen’)
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The graph also shows two tangent lines. The slope of each tangent line is

the rate of change of 𝑓 at 𝑥. By comparing the slopes of the two tangent

lines, we observe that the rate of change at 𝑥 = 2 is much larger than the

rate of change at 𝑥 = 1, in accordance with the fact that the exponential

function grows quite quickly.

The process of calculating the derivative of 𝑓 is sometimes referred as

differentiation. The derivative is denoted in two ways:

𝑑𝑓 (𝑥)
𝑑𝑥

or 𝑓 ′(𝑥),

it is up to the reader which one (if not both) to use.

2.4.2 Rules of Differentiation

But there is no need to use the definition via the limit of differential quo-

tients to compute the derivative of a function. The set of differentiation
rules are recalled here for readers’ convenience.

12
12: A detailed discussion about differenti-

ation can be found in [6, 3].

In the following list, 𝑥 denotes the variable, while 𝑎 and 𝑛 are constants.

1. For a constant function 𝑓 , 𝑓 ′(𝑥) = 0

2. Power rule: (𝑥𝑛)′ = 𝑛𝑥𝑛−1

3. Exponentials: (𝑒 𝑎𝑥)′ = 𝑎𝑒 𝑎𝑥

4. Logarithms: (ln(𝑥))′ = 1

𝑥

5. Product rule: ( 𝑓 (𝑥)𝑔(𝑥))′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥)
6. Quotient rule:

(
𝑓 (𝑥)
𝑔(𝑥)

)′
=

𝑓 ′(𝑥)𝑔(𝑥)− 𝑓 (𝑥)𝑔′(𝑥)
𝑔(𝑥)2

7. Chain rule: 𝑓 (𝑔(𝑥))′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

The chain rule, for instance, is important for understanding the construc-

tion of the backpropagation algorithm of neural network models (see

Chapter 31 and [5], say).

Example Using the rules, compute the derivative of 𝑓 (𝑥) = 𝑒−𝑥
2

.
13

13: We will stop using the convoluted

phrasing “the function 𝑓 : 𝐴 → 𝐵 de-

fined by 𝑓 (𝑥) = ...” and substitute instead

“the function 𝑓 (𝑥) = ...” when the context

allows it.

What is the value of the rate of change of 𝑓 (𝑥) at 𝑥 = 2?

From the exponentials derivative rule and the chain rule, we obtain:

𝑓 ′(𝑥) = (𝑒−𝑥2)′ = 𝑒−𝑥
2(−𝑥2)′ = −2𝑥𝑒−𝑥

2
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At 𝑥 = 2, the rate of change of 𝑓 (𝑥) is

𝑓 ′(2) = −2 × 2 × 𝑒−2
2

= −0.073

The slope (or rate of change) at 𝑥 = 2 is negative, as expected by

inspecting the shape of the bell curve representing the curve 𝑦 = 𝑒−𝑥
2

.

Its value is “small”, which is also expected since the function decays to

zero quite rapidly.

x = seq(-3, 3, length.out=50)

y = exp(-x^2)

plot(x, y, type=’l’, col = rainbow(25), lty=1)

lines(x, -2*2*exp(-2**2)*(x-2)+exp(-2**2), col=’darkgreen’,

lty=3)

points(2, exp(-2**2), pch=20, col=’darkgreen’)

2.4.3 Partial Derivatives

How do we expand this definition to functions of several variables? In

this case, we are interested in defining and computing the rate of change

with respect to any of the variables. This is done via partial derivatives
which, computationally speaking, are a straightforward generalization

of the notion of derivative of a function of one variable.

Partial Derivatives of Order 1

Let 𝑓 (𝑥1 , · · · , 𝑥𝑛), and pick any variable 𝑥𝑘 , for some 𝑘 ∈ {1, · · · , 𝑛},
with respect to which we want to compute the rate of change of 𝑓 . We can

use the one-variable differentiation rules from Section 2.4.2 by treating

the remaining variables as constant.

The partial derivative of order one of 𝑓 with respect to the variable 𝑥𝑘 ,

denoted in two alternative ways as follows:

lim

Δ𝑥→0

𝑓 (𝑥1 , . . . , 𝑥𝑘 + Δ𝑥, . . . , 𝑥𝑛) − 𝑓 (𝑥1 , . . . , 𝑥𝑘 , . . . , 𝑥𝑛)
Δ𝑥

=
𝜕 𝑓

𝜕𝑥𝑘
= 𝑓𝑥𝑘 .
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Example Compute the 3 partial derivatives of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 3𝑥𝑧.

We have 3 variables, and we compute the corresponding partial derivative

for each of them:

𝑓𝑥(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑥
= 2𝑥𝑦 + 3𝑧

𝑓𝑦(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑦
= 𝑥2

𝑓𝑧(𝑥, 𝑦, 𝑧) =
𝜕(𝑥2𝑦 + 3𝑥𝑧)

𝜕𝑧
= 3𝑥

Tangent Plane

If 𝑓 : ℝ → ℝ is differentiable at 𝑥 = 𝑎, the equation of the unique tangent
line to the graph 𝑦 = 𝑓 (𝑥) at 𝑃(𝑎, 𝑓 (𝑎)) is

𝑦 = 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 (𝑎).

More generally, if 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ is differentiable at x = a, there are

infinitely many tangent lines to its graph 𝑤 = 𝑓 (x) at 𝑃(a, 𝑓 (a)). All of

these lines lie in the same unique tangent hyperplane.

When 𝑛 = 2, we have a tangent plane to 𝑧 = 𝑓 (𝑥, 𝑦) at 𝑃(𝑎, 𝑏, 𝑓 (𝑎, 𝑏));
it is the plane that rests on the surface, touching it only at the point of

tangency, as illustrated in the figure below.
14

14: Near the point of tangency, the surface

resembles the tangent plane: this is partly

why that we’ve long believed the Earth to

be flat!

Figure 2.6: Tangent plane to 𝑧 = −𝑥2 + 𝑦2

at (0, 1, 1), seen from two different angles.

When such a plane exists, as do the partial derivatives, the surface is said

to be differentiable at the point in question.

If 𝑧 = 𝑓 (𝑥, 𝑦) is a differentiable surface 𝑃(𝑎, 𝑏, 𝑓 (𝑎, 𝑏)), the equation of

the tangent plane to the surface at point 𝑃 is

𝑧 = 𝑓 (𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏).

Example Find the tangent plane to 𝑧 =
√
𝑥 − 𝑦 at 𝑃(2, 1, 1)

First, we verify that 𝑃 is indeed on the surface. Since 𝑎 = 2 and 𝑏 = 1,

we simply need to check that

√
𝑎 − 𝑏 =

√
2 − 1 = 1, which is indeed the

case.



120 2 Multivariate Calculus for Data Analysis

Next we compute the partial derivatives

𝑓𝑥(𝑥, 𝑦) =
1

2

√
𝑥 − 𝑦 and 𝑓𝑦(𝑥, 𝑦) = − 1

2

√
𝑥𝑥 − 𝑦 .

Thus

𝑓𝑥(𝑎, 𝑏) = 𝑓𝑥(2, 1) =
1

2

√
2 − 1

=
1

2

and 𝑓𝑦(𝑎, 𝑏) = 𝑓𝑦(2, 1) = − 1

2

√
2 − 1

= −1

2

,

so the equation of the tangent plane is

𝑧 = 𝑓 (2, 1) + 𝑓𝑥(2, 1)(𝑥 − 2) + 𝑓𝑦(2, 1)(𝑦 − 1)

= 1 + 1

2

· (𝑥 − 2) − 1

2

(𝑦 − 1) = 1

2

(1 + 𝑥 − 𝑦).

When the partial derivatives do not exist at a particular point on the

surface, then either there is no tangent plane or it is not unique.

For example, the partial derivatives of 𝑓 (𝑥, 𝑦) = 2 −
√
𝑥2 + 𝑦2

are not

defined when (𝑥, 𝑦) = (0, 0) (which is in the domain of 𝑓 ); graphically,

this translates into more than one tangent plane at the vertex of the cone

𝑧 = 2 −
√
𝑥2 + 𝑦2

, as shown below.

Figure 2.7: Two tangent planes at the ver-

tex of the cone 𝑧 = 2 −
√
𝑥2 + 𝑦2

.

Partial Derivatives of Order 2

In calculus problems,
15

it is convenient to have at hand the partial15: For example, in optimization.

derivatives of order two. Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and pick any two

variables 𝑥ℎ , 𝑥𝑘 , for 𝑘, ℎ ∈ {1, 2, · · · 𝑛}.

The partial derivative of order two with respect to 𝑥ℎ and 𝑥𝑘 (in that

order) is the function

𝑓𝑥ℎ𝑥𝑘 (𝑥1 , · · · , 𝑥𝑛) =
𝜕2 𝑓 (𝑥1 , · · · , 𝑥𝑛)

𝜕𝑥𝑘𝜕𝑥ℎ

obtained by first computing the partial derivative with respect to 𝑥ℎ , and

then the partial derivative of that partial derivative with respect to 𝑥𝑘 .

But what if, when computing a partial derivative of order two, we

mistakenly change the order of differentiation with respect to the two

chosen variables?
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It turns out that for sufficiently regular functions the order does not

matter, thanks to Clairaut’s Theorem, which is explained in Figure 2.8;

“higher order” means that we can keep differentiating 𝑓 ,16 obtaining 16: When the function is differentiable, it

needs to be added.
partial derivatives of order 3, 4, ... and so on.

Figure 2.8: Illustration of Clairaut’s theo-

rem in 2 variables.

Clairaut’s Theorem applies to the “standard functions” that we introduce

in calculus courses, obtained by combining polynomials, rational funtions,

trigonometric functions, exponentials and logarithmic functions, analytic

functions (power series), etc.

Example Consider such a standard function of 3 variables (𝑥, 𝑦, 𝑧). In

theory, 𝑓 has 9 partial derivatives of order 2:

𝑓𝑥𝑥 , 𝑓𝑥𝑦 , 𝑓𝑥𝑧 , 𝑓𝑦𝑥 , 𝑓𝑦𝑦 , 𝑓𝑦𝑧 , 𝑓𝑧𝑥 , 𝑓𝑧𝑦 , 𝑓𝑧𝑧

But thanks to Clairaut’s Theorem, we have:

𝑓𝑥𝑦 = 𝑓𝑦𝑥

𝑓𝑥𝑧 = 𝑓𝑧𝑥

𝑓𝑦𝑧 = 𝑓𝑧𝑦

We only need to compute 6 partial derivatives of order 2 to obtain them

all!

2.4.4 Gradients

From the point of view of data analysis, the most important vector fields

are the gradients of multivariate functions 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ.

The gradient ∇ 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
is defined by:

17
17: Pronounced “nabla”.

∇ 𝑓 (𝑥1 , · · · , 𝑥𝑛) = ⟨ 𝑓𝑥1
(𝑥1 , · · · , 𝑥𝑛), · · · , 𝑓𝑥𝑛 (𝑥1 , · · · , 𝑥𝑛).⟩

The ⟨...⟩ notation is used to distinguish vector fields (and vectors) from

points in ℝ𝑛
, which are denoted using (...).18 18: The gradient is not only a way to col-

lect the first order partial derivatives of

a function into a vector, but it carries im-

portant geometrical information about the

function, as we shall soon see.
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Example We can easily compute the gradient of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + 𝑧,
and evaluate it at (−1, 1, 2).

Indeed,

∇ 𝑓 (𝑥, 𝑦, 𝑧) = ⟨2𝑥𝑦, 𝑥2 , 1⟩.

At (−1, 1, 2), the gradient becomes a 3-dimensional vector:

∇ 𝑓 (−1, 1, 2) = ⟨2 · (−1) · 1, (−1)2 , 1⟩ = ⟨−2, 1, 1⟩.

Gradient and Level Sets

There is a crucial property linking the gradient of a function 𝑓 : 𝐷 ⊆
ℝ𝑛 → ℝ𝑛

and its level sets: wherever ∇ 𝑓 (x) ≠ 0, the gradient is perpen-
dicular to the level sets of 𝑓 .

More precisely, given a point a = (𝑎1 , · · · , 𝑎𝑛) ∈ 𝐷, if ∇ 𝑓 (a) ≠ 0 =

(0, . . . , 0), then ∇ 𝑓 (𝕒) ⊥ 𝐿a, where 𝐿a is the level set of 𝑓 through a. In

ℝ2
, we can visualize this property quite easily.

Example Consider the function 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
, whose level curves

are concentric circles. The gradient vector field is represented by the

vectors in Figure 2.9. Since ∇ 𝑓 )(𝑥, 𝑦) = ⟨2𝑥, 2𝑦⟩, the gradient is a radial

vector field,
19

and the orthogonality is a simple consequence of Euclidean19: The vectors point along the radii of the

level circles.
geometry.

20

20: A radius meets its circle orthogonally

[3].

Figure 2.9: The gradient ∇ 𝑓 = ⟨2𝑥, 2𝑦⟩ is

perpendicular to the level sets 𝑥2 + 𝑦2 = 𝑐,
as is illustrated with (𝑥, 𝑦) = (−1, 0).

2.4.5 Directional Derivatives

In studying a function whose domain 𝐷 is a region of 𝑛−dimensional

space ℝ𝑛
, we usually choose 𝑛 preferred pairwise orthogonal direc-

tions, corresponding to the 𝑛 cartesian coordinates (𝑥1 , · · · , 𝑥𝑛). Those

directions are given by the canonical basis vectors

e1 = ⟨1, 0, · · · , 0⟩
...

e𝑛 = ⟨0, 0, · · · , 1⟩
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Note that each canonical basis vector is of length 1. In ℝ3
we also denote

the canonical basis by {e1 , e2 , e3} = {i, j, k}.

The rate of change of 𝑓 along the direction e𝑘 is the partial derivative

𝑓𝑥𝑘 . We can also use any direction u with unit length. We can find the

appropriate formula using “minimally intuitive’ ’ reasoning.
21

21: To quote Dr. De Oliveira.

The vector u is a linear combination of the basis elements:

u = 𝑐1e1 + · · · + 𝑐𝑛e𝑛 .

As we have discussed, the rate of change of 𝑓 along e𝑘 is 𝑓𝑥𝑘 . If u is

of length 1, we can interpret the linear combination above as a signed
weighted average of the canonical basis vectors e𝑘 ; consequently, it is

reasonable to define the rate of change of 𝑓 along u as the signed weighted

average of the partial derivatives 𝑓𝑥𝑘 , with the same coefficients 𝑐𝑘 .
22

22: The proof that this indeed the right

approach to take is an easy consequence

of the chain rule.

Link With the Gradient

Given a unit vector

u = 𝑐1e1 + · · · + 𝑐𝑛e𝑛 ,

the directional derivative of 𝑓 along u is

𝐷u 𝑓 (𝑥1 , · · · , 𝑥𝑛) = 𝑐1 𝑓𝑥1
(𝑥1 , · · · , 𝑥𝑛) + · · · + 𝑐𝑛 𝑓𝑥𝑛 (𝑥1 , · · · , 𝑥𝑛).

Using the dot product of vectors, we can also write

𝐷u 𝑓 (𝑥1 , · · · , 𝑥𝑛) = ∇ 𝑓 (𝑥1 , . . . , 𝑥𝑛) · u.

Example What is the directional derivative of 𝑓 (𝑥, 𝑦) = cos(𝑥𝑦)+ 𝑦 along

the unit vector u = 1√
2

⟨1, 1⟩ at the point (1, 1)?

We start computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦) = ⟨−𝑦 sin(𝑥𝑦),−𝑥 sin(𝑥𝑦) + 1⟩.

The directional derivative as a function (that is, for arbitrary 𝑥, 𝑦) is

𝐷u 𝑓 (𝑥, 𝑦) = ∇ 𝑓 (𝑥, 𝑦) · u = ⟨−𝑦 sin(𝑥𝑦),−𝑥 sin(𝑥𝑦) + 1⟩ · 1√
2

⟨1, 1⟩

= − 1√
2

𝑦 sin(𝑥𝑦) + 1√
2

(−𝑥 sin(𝑥𝑦) + 1).

At 𝑥 = 1, 𝑦 = 1 we obtain

𝐷u 𝑓 (1, 1) = − 1√
2

sin(1) + 1√
2

(−1 sin(1) + 1) = −
√

2 sin(1) + 1√
2

Minimum and Maximum Rate of Change

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a = (𝑎1 , · · · , 𝑎𝑛) ∈ 𝐷 with ∇ 𝑓 (a) ≠ 0. The

maximum rate of change of 𝑓 at a occurs along the direction of the
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gradient,

∇ 𝑓 (a)
| |∇ 𝑓 (a)| | ,

while the minimum rate of change of 𝑓 at a occurs along the opposite

direction.

To understand this last statement let us reason in the case of a function

of two variables whose graph 𝑧 = 𝑓 (𝑥, 𝑦) is a surface. In order to climb

or go down the hill along the steepest way, we move perpendicularly to

the contour line of the hill located at a certain height. The orthogonal

direction is given by the gradient.
23

23: This property is crucial in understand-

ing the gradient descent algorithm that

searches for the minimum values of a func-

tion (the cost function). See Chapter 31, A
Deep Learning Launchpad.

Figure 2.10: Gradient descent search for

the minimum of 𝑧 = (𝑥2+𝑦2) exp(𝑥4−𝑦4)
[5].

Example What is the maximum rate of change of 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
at

(1, 1)?

We start with the calculation of the gradient

∇ 𝑓 (𝑥, 𝑦) = ⟨2𝑥, 2𝑦⟩.

At (𝑥, 𝑦) = (1, 1), the gradient is

∇ 𝑓 (1, 1) = ⟨2, 2⟩,

the unit vector corresponding to the direction of maximum rate of change

is thus

u = ∇ 𝑓 (1, 1)| |∇ 𝑓 (1, 1)| | 1√
2

⟨1, 1⟩.

The value of the maximum rate of change is thus given by:

𝐷u 𝑓 = ∇ 𝑓 (1, 1) · u = ∇ 𝑓 (1, 1) = ⟨2, 2⟩ · 1√
2

⟨1, 1⟩ = 2

√
2.

For a general 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a ∈ 𝐷 such that ∇ 𝑓 (a) ≠ 0, the value

of the maximum rate of change of 𝑓 at a is | |∇ 𝑓 (a)| |; conversely, the

minimum rate of change of 𝑓 at a is −||∇ 𝑓 (a)| |.
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2.5 Optimization

Optimization problems arise in many areas of sciences and mathemat-

ics.

1. In regression analysis, we minimize a “cost function” in order to

find the parameters that best fit the available data (see Chapter 8);

2. in machine learning, we use algorithms to adjust the learning

parameters, again by minimizing a cost function (see Chapters 19,

20, 21, and 31);

3. in general relativity, objects move along geodesics, which are the

trajectories of minimal length, and

4. in geometry, the shortest path joining two points on a sphere is the

great circle passing through the points.
24

24: These are crucial to navigation, espe-

cially when it comes to determining the

fastest and cheapest air routes between

two cities.

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ. The goal of optimization is to find where 𝑓 reaches

its maximum and minimum values, and to determine these values as

well.
25

25: We provide a more in-depth look at

optimization in Chapter 5.

Example In linear regression, we construct a linear model, in which

a dependent variable (the response) is predicted by the independent

variables (predictors) by means of a linear function.

Consider the case when we have only one independent variable, de-

noted by 𝑥. The goal is to find the linear relation that best determines the

value of the response 𝑦 as a function of 𝑥: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, where 𝜀 is

the error component of the model.
26

The regression goal is to determine 26: In practice, the relation between 𝑥 and

𝑦 is unlikely to be exact, and the error

component (which relies of distribution

parameters) is part and parcel of the prob-

lem. We will discuss this in much more

detail in Chapter 8.

the optimal model parameters 𝛽0 and 𝛽1. But what does optimal mean

in this context?

Let (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, . . . , 𝑁 , be the observed/available data. In the ordinary
least squares framework, the best estimate of the true parameters 𝛽0, 𝛽1

(assuming that the linear model was appropriate in the first place) are

the values minimizing the residual sum of squares:

𝑄(𝛽0 , 𝛽1) =
𝑁∑
𝑘=1

(𝛽0 + 𝛽1𝑥𝑘 − 𝑦𝑘)2.

In the rest of this section, we will review a few of the standard concepts

and methods for solving optimization problems, which come in two

flavours:

1. analytical methods, which are based on differential calculus –

they yield exact solutions, but fail in practice when the underlying

model is too complicated,
27

and 27: See Chapter 5 for more information.

2. numerical methods which provide approximate solutions when

that is the case.
28

28: See Chapter 4 for more information.

2.5.1 Critical Points

The properties of gradient mentioned above require that the gradient not

be zero at the point of interest. But observations where the gradient is zero
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are also important. These “equilibrium” points are location candidates

for finding function’s extrema (max/min).

Throughout, let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ and a = (𝑎1 , . . . , 𝑎𝑛) ∈ 𝐷. The latter is

a critical point of 𝑓 if

∇ 𝑓 (a) = 0 or ∇ 𝑓 (a) does not exist.

The latter situation occurs at the cone’s apex in Figure 2.7, for instance.

In term of equations, this means that x = (𝑥1 , . . . , 𝑥𝑛) = (𝑥1 , . . . , 𝑥𝑛) = a
is a solution of the system

𝑓𝑥1
(𝑎1 , · · · , 𝑎𝑛) = 0

...

𝑓𝑥𝑛 (𝑎1 , · · · , 𝑎𝑛) = 0.

In general situations, it is typically somewhat difficult to find the critical

points of a function, for two reasons:

1. the system of equations encoded in ∇ 𝑓 = 0 is often **non-linear**,

and so we can not use linear algebra methods to solve it;

2. but even when the system is linear, if the number of variables is

large, it may be time consuming to use the Gauss-Jordan algorithm

to obtain solution(s).
29

29: See Chapter 3 for details.

We thus often have to rely on numerical solvers: the good news is

that most programming languages come with libraries that do the work

behind the scenes. But it remains important to have a basic understanding

of the underlying mathematics, if we want to make conscientious use of

such libraries.

Example Find the critical points of 𝑓 (𝑥, 𝑦) = sin(𝑥𝑦). Plot the graph

and the contour curves of 𝑓 as a solution.

We start by computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦) = ⟨𝑦 cos(𝑥𝑦), 𝑥 cos(𝑥𝑦)⟩.

Next, we solve the system ∇ 𝑓 = 0, which consists of the following

equations:

𝑦 cos(𝑥𝑦) = 0 and 𝑥 cos(𝑥𝑦) = 0.

The first of these has two possible solutions: 𝑦 = 0 or cos(𝑥𝑦) = 0.

Substituting 𝑦 = 0 in the second equation yields 𝑥 cos(0) = 𝑥 = 0, which

implies that 𝑥 = 0 as well. Thus, 𝑃 = (0, 0) is a critical point of 𝑓 .

If cos(𝑥𝑦) = 0, then 𝑥𝑦 = 𝜋
2
+𝑛𝜋, which automatically satisfies the second

equation. We have thus found an infinite collection of critical points of 𝑓 ,

namely all the points located along the the hyperbolas 𝑥𝑦 = 𝜋
2
+ 𝑛𝜋. If

we let 𝑥𝑦 = 𝑡, we see in fact that the graph of 𝑓 looks like a “distorted

cosine wave” drawn along each hyperbola.
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# graph

library(plot3D)

M <- mesh(seq(-2, 2, length.out = 50),

seq(-2, 2, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- sin(x*y)

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

# contour lines

x <- seq(-2,2,length.out=50)

y <- seq(-2,2,length.out=50)

z <- sin(outer(x,y,"*"))

cols <- hcl.colors(10, "Inferno") #color palette

contour(x,y,z, col=cols)

2.5.2 Local vs. Global

The extreme values of a function 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ fall into two main

categories: local and global. In general, a local property is a property

that is satisfied (detected) on a small subregion of the domain𝐷; a global
property is one that is satisfied everywhere in the domain.

Thus local extrema are extreme values in a sub-region of the domain 𝐷,

global extrema are extreme values along the entire domain.

2.5.3 Local Extrema

We now discuss how to find the local extrema of multivariate functions

using differential calculus.
30

30: In order to keep things simple from

a geometrical perspective, we will restrict

our efforts to function 𝑓 of two variables,

but the concepts generalize to higher 𝑛.

In this case, the graph is the surface 𝑧 =

𝑓 (𝑥, 𝑦), which can be interpreted as a hilly

region over the domain 𝐷 of 𝑓 .

Locally, the 3 standard shapes that we

encounter at a critical point x = a ∈ 𝐷 where ∇ 𝑓 (a) = 0 resemble the

following.

1. Local maximum
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M <- mesh(seq(-1, 1, length.out = 50),

seq(-1, 1, length.out = 50))

u <- M$x ; v <- M$y

x <- u

y <- v

z <- -x**2-y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

2. Local mimimum

z <- x**2+y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

3. Saddle point (“hybrid”: max on one direction, min on the other

one)

z <- x**2-y**2

surf3D(x, y, z, colvar = z, colkey = TRUE,

box = TRUE, bty = "b", phi = 20, theta = 120)

Definitions

We say that 𝑓 has a local minimum at a = (𝑎1 , · · · , 𝑎𝑛) if 𝑓 (a) ≤ 𝑓 (x) for

all x in a small 𝑛-dimensional region of 𝐷 centered at a. In contrast, 𝑓 has
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a local maximum at a) if 𝑓 (a) ≥ 𝑓 (x) for all x in a small 𝑛-dimensional

region of 𝐷 centered at a.

Critical Points and Local Extrema

It is the following result (presented without proof) that justifies the

importance of critical points in the optimization context.

Theorem If 𝑓 has a local extremum at x = a, then x = a is a criti-

cal point of 𝑓 .

The only candidates for local extrema are thus critical points.
31

The first 31: That is not necessarily the case for

step in the search of local extrema therefore consists in solving the system

∇ 𝑓 = 0.

Once that is done, we need to determine which critical points are local

maxima and which are local minima. Thankfully, the second derivative
test of introductory calculus can be generalized to any finite dimension

𝑛, as we shall see shortly.

The Hessian Matrix

We have already introduced the gradient of 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ, a vector

field which provides first-order information about 𝑓 . Second derivatives

are collected into the Hessian matrix:

𝐻( 𝑓 )(x) =

𝑓𝑥1𝑥1

(x) · · · 𝑓𝑥1𝑥𝑛 (x)
...

. . .
...

𝑓𝑥𝑛𝑥1
(x) · · · 𝑓𝑥𝑛𝑥𝑛 (x).


The Hessian matrix is symmetric (according to Clairaut’s Theorem): a

linear algebra result states that real symmetric matrix have real eigenval-
ues.

32
32: We will discuss these notions in detail

in Chapter 3.

Each eigenvalue 𝜆 of 𝐻( 𝑓 )(a) is associated to an eigenvector v ∈ ℝ𝑛
; the

sign of the eigenvalue provides information about the local behaviour of

𝑓 at x = a, along the direction determined by v.

Second Derivative Test

Suppose a ∈ 𝐷 is a critical point of 𝑓 and let

𝐻( 𝑓 )(a) =

𝑓𝑥1𝑥1

(a) · · · 𝑓𝑥1𝑥𝑛 (a)
...

. . .
...

𝑓𝑥𝑛𝑥1
(a) · · · 𝑓𝑥𝑛𝑥𝑛 (a).


be the Hessian matrix of 𝑓 at a. If all eigenvalues of 𝐻( 𝑓 )(a) are negative,

then 𝑓 has a local maximum at x = a; if all eigenvalues of 𝐻( 𝑓 )(a) are

positive, then 𝑓 has a local minimum at x = a; if some are positive and

some are negative, then 𝑓 has a saddle point at x = a.
33

33: What happens if some of the eigenval-

ues are 0?

If 𝑓 : 𝐷 ⊆ ℝ → ℝ, this is simply the second derivative test in ℝ: let 𝑎 be

a critical point of 𝑓 with 𝑓 ′(𝑎) = 0:
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if 𝑓 ”(𝑎) < 0, then 𝑓 has a local maximum at 𝑥 = 𝑎;

if 𝑓 ”(𝑎) > 0, then 𝑓 has a local maximum at 𝑥 = 𝑎, and

if 𝑓 ”(𝑎) = 0, we can not use the second derivative to determine the

nature of the critical point.
34

34: It may be a local maximum (such as

𝑎 = 0 for 𝑓 (𝑥) = −𝑥4
), a local minimum

(such as 𝑎 = 0 for 𝑓 (𝑥) = 𝑥4
, or an inflec-

tion point (such as 𝑎 = 0 for 𝑓 (𝑥) = 𝑥3
.

Which it is depends on the function in

question.

Example Find and classify the critical points of the function 𝑓 : ℝ3 → ℝ

defined by 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑥𝑧.

We start by computing the gradient of 𝑓 :

∇ 𝑓 (𝑥, 𝑦, 𝑧) = ⟨2𝑥 + 𝑧, 2𝑦, 𝑥⟩.

The system ∇ 𝑓 = 0 has a unique solution, 𝑥 = 𝑦 = 𝑧 = 0; the only critical

point of 𝑓 is thus located at 0 = (0, 0, 0).

The Hessian matrix 𝐻( 𝑓 )(x) is constant since 𝑓 was quadratic. In particu-

lar,

𝐻( 𝑓 )(0) =

2 0 1

0 2 0

1 0 0

 .
We can compute the eigenvalues and the corresponding eigenvectors

of 𝐻( 𝑓 )(0) algebraically (see Chapter 3), but we can also solve the

eigenvalue/eigenvectors problem numerically with two lines of code in

R:

H = matrix(c(2, 0, 1, 0, 2, 0, 1, 0, 0), 3, 3)

print(eigen(H))

𝜆1 = 2.4 v1 = ⟨0.9, 0, 0.4⟩
𝜆2 = 2 v2 = ⟨0,−1, 0⟩
𝜆3 = −0.4 v3 = ⟨0.4, 0,−0.9⟩

Two of the eigenvalues are positive, the other one is negative; the critical

point 0 = (0, 0, 0) is a saddle point of 𝑓 .

Geometrically, along the plane spanned by the vectors v1 and v2,
35

which35: These concepts are discussed in Chap-

ter 3.
corresponds to the positive eigenvalues 𝜆1 and 𝜆2 of 𝐻( 𝑓 )(0), 𝑓 behaves

like a function of two variables with a local minimum; along the line

spanned by the vector v3 associated with the negative eigenvalue 𝜆3, 𝑓

behaves like a function of one variable with a local maximum.

2.5.4 Global Extrema

When we attempt of minimizing the cost function in a machine learn-

ing algorithm, we hope to find the smallest possible cost, which will

correspond to the parameters associated with the "best learning". In

mathematical terms we are looking for the global minimum of the cost

function, which does not necessarily occur at a local minimum – indeed,
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it is conceivable that the global minimum is reached on the boundary of

the domain.

In other types of problems, it could be the global maximum that is of

interest.

Definitions

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ. We say that 𝑓 reaches its global minimum at

a ∈ 𝐷 if 𝑓 (a) ≤ 𝑓 (x) for all x ∈ 𝐷; the value 𝑓 (a) is the global minimum

value of 𝑓 . For the global maximum, we replace “≤” by “≥”.

Note that global extrema do not necessarily exist: 𝑓 : (0,∞) → ℝ, 𝑥 ↦→ 1

𝑥

has neither a global maximum nor a global minimum.

Closed and Bounded Domains

A subset 𝐷 ⊆ ℝ𝑛
is bounded if it can be contained in an 𝑛−ball of finite

radius; formally, it there exists 𝑀 > 0 such that

∥x∥2 =

√
𝑥2

1
+ · · · + 𝑥2

𝑛 ≤ 𝑀

for all x ∈ 𝐷.

It is closed if it contains it boundary. This is perhaps more difficult to

grasp than it looks. An alternative definition (in ℝ𝑛
) is that 𝐷 is closed if

every x ∉ 𝐷 is contained in an 𝑛−ball centered at x which lies entirely

outside of 𝐷.

Example The disk 𝐷 ⊆ ℝ𝑛
defined by the inequality 𝑥2 + 𝑦2 < 1 is a

bounded domain (use 𝑀 = 1, but it not closed – its boundary, which

consists of the circle 𝑥2 + 𝑦2 = 1, is not contained in 𝐷. The closure of 𝐷

is 𝑥2 + 𝑦2 ≤ 1.

Extreme Value Theorem

If 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ is continuous (roughly speaking, if it has no jump

or break) over a closed and bounded domain, then 𝑓 admits a global

maximum and a global minimum on 𝐷.

The EVT is not useful from a computational point of view, but it gives

some conditions that guarantee that the problems of searching for global

extrema makes sense.

Example Let𝐷 be the open disk as in the previous example, and denote

its closure by𝐷. Consider the function 𝑓 (𝑥, 𝑦) = 𝑥2+𝑦2
on𝐷: the globabl

minimum of 𝑓 is 0, clearly attained at 𝑥 = 𝑦 = 0. However there is no

global maximum, since the maximum value is “pushed” to the boundary

circle, which is not part of the domain.

If we take the same function but extend it to the closed domain 𝐷, then

𝑓 does reach its maximum value of 1, at infinitely many points along the

boundary circle.
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Figure 2.11: Critical points for continuous

functions of a single real variable.

2.5.5 Lagrange Multipliers

We have already discussed the link between optimization and the deriva-

tive when it comes to finding local extrema. Is there a link for global

optimization?

Recall that a differentiable function 𝑓 : [𝑎, 𝑏] → ℝ has a critical point at

𝑥∗ ∈ (𝑎, 𝑏) if either 𝑓 ′(𝑥∗) = 0 or 𝑓 ′(𝑥∗) is undefined (see Figure 2.11).

If additionally 𝑓 is continuous, then the optimal solution of the problem

max 𝑓 (𝑥)
s.t. 𝑥 ≤ 𝑏

𝑥 ≥ 𝑎

𝑥 ∈ ℝ

is found at one (or possibly, many) of the following feasible solutions:

𝑥 = 𝑎, 𝑥 = 𝑏, or 𝑥 = 𝑥∗ where 𝑥∗ is a critical point of 𝑓 in (𝑎, 𝑏).

This can be extended fairly easily to multi-dimensional domains, with

the following result.

Theorem Let 𝑓 : 𝐴 ⊆ ℝ𝑛 → ℝ be a continuous function, where 𝐴 is a

closed subset of ℝ𝑛
. Then 𝑓 reaches its maximum (resp.minimum) value

either at a critical point of 𝑓 in 𝐴◦
, the interior of 𝐴, or somewhere on

𝜕𝐴, the boundary of 𝐴.

Example Consider a company that sells gadgets and gizmos. If the

company’s monthly profits are expressed (in 1000$ dollars) according

to

𝑓 (𝑥, 𝑦) = 81 + 16𝑥𝑦 − 𝑥4 − 𝑦4 ,

where 𝑥 and 𝑦 represent, respectively, the number of gadgets and gizmos

sold monthly (in 10,000s of units), and if the company can produce up to

30,000 units of both gadgets and gizmos monthly, what is the optimal

number of each items that the company must sell in order to maximize its

monthly profits? The monthly profit function is shown in Figure 2.12.
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Figure 2.12: Monthly profit function for

the gadgets and gizmos example.

Since 𝑓 is continuous, the maximum value is reached at a critical value

in

𝐴◦ = (0, 3) × (0, 3)

or somewhere on the boundary

𝜕𝐴 = {(𝑥, 𝑦) ∈ [0, 3]2 | 𝑥 = 0 or 𝑥 = 3 or 𝑦 = 0 or 𝑦 = 3}.

Figure 2.13: Boundary of the domain (left);

profile for 𝑔3 and ℎ3 (right) in the gadgets

and gizmos example.

But 𝑓 is smooth; the gradient ∇ 𝑓 (𝑥, 𝑦) is thus always defined, and the

only critical points are those for which∇ 𝑓 (𝑥, 𝑦) = (16𝑦−4𝑥3 , 16𝑥−4𝑦3) =
(0, 0). At such a point, 4𝑥 = 𝑦3

, which, upon substitution in 𝑓𝑥 yields

0 = 16𝑦 − 1

16

𝑦9 =
1

16

𝑦(256 − 𝑦8) = 1

16

𝑦(𝑦 − 2)(𝑦 + 2)(𝑦2 + 4)(𝑦4 + 16),

which is to say 𝑦 = −2, 0, 2.

Only 𝑦 = 2 can potentially yield a critical point in 𝐴◦
, however. When

𝑦 = 2, we must have 𝑥 = 1

4
2

3 = 2: the only critical point of 𝑓 in 𝐴◦
is thus

(𝑥∗ , 𝑦∗) = (2, 2), and the monthly profit function value at that point is

𝑓 (𝑥∗ , 𝑦∗) = 81 + 16(2)(2) − 2
4 − 2

4 = 113.

On the boundary 𝜕𝐴, the objective function reduces to one of:

𝑓 (0, 𝑦) = 𝑔0(𝑦) = 81 − 𝑦4 , on 0 ≤ 𝑦 ≤ 3

𝑓 (3, 𝑦) = 𝑔3(𝑦) = 48𝑦 − 𝑦4 , on 0 ≤ 𝑦 ≤ 3

𝑓 (𝑥, 0) = ℎ0(𝑥) = 81 − 𝑥4 , on 0 ≤ 𝑥 ≤ 3

𝑓 (𝑥, 3) = ℎ3(𝑥) = 48𝑥 − 𝑥4 , on 0 ≤ 𝑥 ≤ 3

These are easy to optimize, being continuous functions of a single real

variable; 𝑔0 and ℎ0 are maximized at the origin, with the objective
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function taking the value 81 there, while 𝑔3 and ℎ3 are maximized at

12
1/3

, with the objective function taking the value ≈ 82.42 there (see

Figure 2.13).

Combining all this information, we conclude that the company will

maximize its monthly profits at 113,000$ if it sells 20,000 units of both

gadgets and gizmos.

While the approach we just presented works in this case, there are many

instances for which it can be substantially more difficult to find the

optimal value on 𝜕𝐴.

The method of Lagrange multipliers can simplify the computations, to

some extent. Consider the problem

min/max 𝑓 (x)
s.t. 𝑔𝑖(x) ≤ 𝑎𝑖 𝑖 = 1, . . . , 𝑚

x ∈ D,

where 𝑓 , 𝑔𝑖 are continuous and differentiable on the (closed) region 𝐴

described by the constraints 𝑔𝑖 ≤ 𝑎𝑖 , 𝑖 = 1, . . . , 𝑚.
36

If the problem is36: Strictly speaking, differentiability is

not required on the entirety of 𝐴. feasible and bounded,
37

then the optimal value is reached either at a

37: See Chapter 5. critical point of 𝑓 in 𝐴◦
or at a point x ∈ 𝜕𝐴 for which

∇ 𝑓 (x) = 𝜆1∇𝑔1(x) + · · · + 𝜆𝑚∇𝑔𝑚(x),

where 𝜆1 , . . . ,𝜆𝑚 ∈ ℝ are the Lagrange multipliers of the problem.

Example Consider a factory that produces various types of deluxe pickle

jars. The monthly number of jars 𝑄 of a specific kind of pickled radish

that can be produced at the factory is given by 𝑄(𝐾, 𝐿) = 900𝐾0.6𝐿0.4 ,

where 𝐾 is the number of dedicated canning machines, and 𝐿 is the

monthly number of employee-hours spent on the pickled radish.

The pay rate for the employees is 100$/hour (the pickles are extra deluxe,

apparently); the monthly maintenance cost for each canning machine is

200$.

If the factory owners want to maintain monthly production at 36,000

jars of pickled radish, what combination of number of canning ma-

chines and employee-hour will minimize the total production costs? The

optimization problem is

min 𝑓 (𝐾, 𝐿) = 200𝐾 + 100𝐿

s.t. 𝐾0.6𝐿0.4 = 40; 𝐾, 𝐿 ≥ 0.

The objective function is linear and so has no critical point. The feasability

region 𝐴 can be described by the constraints 𝑔1(𝐾, 𝐿) = 𝐾0.6𝐿0.4 ≤ 40

and 𝑔2(𝐾, 𝐿) = −𝐾0.6𝐿0.4 ≤ −40. Points of interest on the boundary 𝜕𝐴
are obtained by solving the Lagrange equation

(200, 100) = 𝜆
(
0.6

(
𝐿
𝐾

)
0.4
, 0.4

(
𝐾
𝐿

)
0.6

)
,
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since ∇𝑔1 = −∇𝑔2, with 𝐾0.6𝐿0.4 = 40.

Numerically, there is only one solution, namely

(𝐾∗ , 𝐿∗ ,𝜆) ≈ (35.65, 47.54, 297.10).

The objective function at that point takes on the value

𝑓 (𝐾∗ , 𝐿∗) ≈ 200(35.65) + 100(47.54) ≈ 11884.02,

and this value must either be the maximum or the minimum of the

objective function subject to the constraints of the problem. But we know,

that the point (𝐾1 , 𝐿1) = (1, 40
2.5) belongs to 𝜕𝐴;

38
since 38: As 1

0.6(40
2.5)0.4 = 40).

𝑓 (𝐾1 , 𝐿1) = 200(1) + 100(40
2.5) > 𝑓 (𝐾∗ , 𝐿∗),

then (𝐾∗ , 𝐿∗) is indeed the minimal solution of the problem, and the

minimal value of the objective function subject to the constraints is

≈ 11, 884.02$.

In practice, the value for 𝐾 has to be an integer,
39

, so we might pick: 39: Unless we consider using a different

number of canning machines at various

times during the month.a sub-optimal 𝐾′
∗ = 36 canning machines, which yields

a sub-optimal 𝐿′∗ ≈ 46.84 employee-hours,

which together yield a sub-optimal monthly operating cost of

𝑓 (𝐾′
∗ , 𝐿

′
∗) ≈ 200(36) + 100(46.84) ≈ 11884.85.

This departure from optimality would nevertheless be quite likely to be

acceptable to the factory owners.

Given how straightforward the method is, it might seem that there is no

real need to say anything else – why would anybody ever use something

other than Lagrange multipliers to solve optimization problems?

One of the issues is that when the number of constraints is too high

relative to the dimension 𝑛 of𝐴,
40

then there may not be a finite number 40: Which is usually the case in real-life

situations.of candidate solutions on 𝜕𝐴, which makes this approach useless.

Another difficulty that might arise is that the system of equations

∇ 𝑓 (x) = 𝜆1∇𝑔1(x) + · · · + 𝜆𝑚∇𝑔𝑚(x)

could be ill-conditioned, or highly non-linear, and numerical solutions

could be hard to obtain. We will discuss this further in Chapters 4 and

5.

2.6 Riemann Integrals

Integration, as we will see, is the reverse process of differentiation. We

start with a review of basic integration rules and methods, starting with

one-variable methods which can then be generalized to multiple Riemann

integrals in many variables.
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2.6.1 Motivation: Local Densities vs. Total Quantities

The following argument, motivated by statistics, is one of many possible

ways of introducing the concept of Riemann integrals.

In general, the (multi-variable) Riemann integral∫
𝐷

𝑓 (𝑥1 , · · · , 𝑥𝑛)𝑑𝑉

is the continuous version of the infinite series

∞∑
𝑘1 ,··· ,𝑘𝑛=1

𝑓𝑘1 ,··· ,𝑘𝑛Δ𝑉.

This realization is at the centre of all approaches to Riemann integration.

Consider a real random variable 𝑥 with probability density function
𝑓 (𝑥).41

Let 𝑥0 be an arbitrary value of 𝑥. The probability that 𝑥 takes a41: See Chapter 6 for details.

value in the interval [𝑥0 , 𝑥0 + Δ𝑥] of length (size) Δ𝑥 (which is usually

quite small) is approximately

𝑓 (𝑥0)Δ𝑥.

Assume that [𝑎, 𝑏] is a finite interval. We compute the probability that 𝑥

belongs to the (large) interval [𝑎, 𝑏] by using Riemann sums approxima-
tions.

First, we sub-divide the interval [𝑎, 𝑏] into 𝑁 sub-intervals of equal

length Δ𝑥 = 𝑏−𝑎
𝑁 : if we label the endpoints of each sub-interval as

𝑥0 = 𝑎, 𝑥1 = 𝑥0 + Δ𝑥, · · · , 𝑥𝑁−1 = 𝑥0 + (𝑁 − 1)Δ𝑥, 𝑥𝑁 = 𝑏,

then the sub-interval 𝐼𝑘 can be written as

𝐼𝑘 = [𝑥𝑘−1 , 𝑥𝑘].

If Δ𝑥 is sufficiently small, then we can say that, since the probability

of finding 𝑥 within 𝐼𝑘 is approximately 𝑓 (𝑥𝑘−1)Δ𝑥, then the probabil-

ity of finding 𝑥 in [𝑎, 𝑏] is approximated by the sum of those “local”

(infinitesimal) probabilities:

𝑃(𝑥 ∈ [𝑎, 𝑏]) ≈
𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥.

At this point, we may be nonplussed to realize that this formula is only

going to yield an estimate (or an approximation) of the exact value of

the probability.

But the theory of Riemann integrals shows that as we increase the number

𝑁 of sub-intervals 𝐼𝑘 ,
42

the estimated value converges (gets closer and42: And therefore sending Δ𝑥 → 0.

closer) to the exact value, and in the limiting case 𝑁 → ∞, we obtain

𝑃(𝑥 ∈ [𝑎, 𝑏]) = lim

𝑁→∞

𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥.
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Figure 2.14: Graphical illustration of the Riemann integral

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥: approximations with left-most sample points and 𝑁 = 7 (left); 𝑁 = 14

(middle); Riemann integral (right).

2.6.2 One Variable

Using the same reasoning, we define the Riemann integral for any

continuous function 𝑓 : [𝑎, 𝑏] → ℝ by

𝑏∫
𝑎

𝑓 (𝑥) 𝑑𝑥 = lim

𝑁→∞

𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1)Δ𝑥,

where 𝑁 is the number of sub-interval 𝐼𝑘 of length Δ𝑥 = (𝑏 − 𝑎)/𝑁 and

𝑥𝑘 is a sample point in 𝐼𝑘 (the centre of the interval, say).

Different choices of sample points lead to different versions of the

Riemann sum approximation. In the limiting case 𝑁 → ∞, however,

all approximations converge to the same value, which is the {Riemann
integral of 𝑓 over [𝑎, 𝑏]; the process is illustrated in Figure 2.14.

2.6.3 Fundamental Theorem of Calculus

As is the case with derivatives, the calculation of Riemann integrals

can (in principle) be performed without going through the process of

Riemann sum approximations.

For a continuous function 𝑓 : [𝑎, 𝑏] → ℝ, there is a function 𝐹 :

[𝑎, 𝑏] → ℝ (the antiderivative or indefinite integral of 𝑓 ), which satisfies

𝐹′(𝑥) = 𝑓 (𝑥) and which we denote by

𝐹(𝑥) =
∫

𝑓 (𝑥)𝑑𝑥,

The antiderivative is unique up to an additive constant 𝑐:

(𝐹(𝑥) + 𝑐)′ = 𝑓 (𝑥).

The Fundamental Theorem of Calculus states that, for any antideriva-

tive 𝐹 of 𝑓 , then

𝑏∫
𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) =
[
𝐹(𝑥)

] 𝑏
𝑎
.

Note that we also denote the difference 𝐹(𝑏) − 𝐹(𝑎) by

[
𝐹(𝑥)

] 𝑏
𝑎
.
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Example Here are the Riemann sum approximations with 4 different

sub-interval sub-divisions, for the integral

4∫
0

𝑒−𝑥𝑑𝑥 =
[
− 𝑒−𝑥

]
4

0

= 1 − 𝑒−4.

For any of the approximations, the area of each vertical rectangle is

𝑓 (𝑥)Δ𝑥, where 𝑥 is the midpoint of the small interval.

The antiderivative 𝐹 of a continuous function 𝑓 always exists. However,

if the analytic expression of the function is too complicated, it may not be

possible to find the antiderivative 𝐹 of 𝑓 .43
What to do, then? We have43: It still exists, however.

no choice but to proceed with numerical integration.
44

44: There are several approaches used

to compute a Riemann integrals numeri-

cally. In the previous example, we used

the midpoint approximation; there are

other ways of approximating the integral

(left-most point, right-most point, Simp-

son rule, Gaussian quadratures, Monte

Carlo, etc.). We will discuss these in Chap-

ter 4.

2.6.4 Finding Antiderivatives

Computing derivatives is usually easy, since it is (almost) a one-directional,

no-choice algorithm: follow the rules and all is good to go.

When we find an antiderivative, we are “climbing back” to the source,

and that can actually be much harder.
45

45: There are methods, but typically

harder to use or understand: how do we

select the right 𝑢-substitution? Or the 𝑢 𝑑𝑣

term in integration by parts?

Here are some basic rules for finding antiderivatives. For more advanced

techniques, we let the reader look into the literature [6, 3].
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1. Linearity:

∫
(𝑎 𝑓 (𝑥) + 𝑏𝑔(𝑥)) 𝑑𝑥 = 𝑎

∫
𝑓 (𝑥) 𝑑𝑥 + 𝑏

∫
𝑔(𝑥) 𝑑𝑥

2. Power rule:

∫
𝑥𝑛 𝑑𝑥 =

𝑥𝑛+1

𝑛 + 1

+ 𝐶, for 𝑛 ≠ −1

3. Power rule special case:

∫
𝑑𝑥

𝑥
= ln |𝑥 | + 𝐶

4. Exponentials:

∫
𝑒 𝑎𝑥 𝑑𝑥 =

𝑒 𝑎𝑥

𝑎
+ 𝐶

5. Integration by parts:

∫
𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 = 𝑓 (𝑥)𝑔(𝑥) −

∫
𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥

6. Integration by substitution:

∫
𝑓 (𝑥) 𝑑𝑥 =

∫
𝑓 (𝑥(𝑢)) 𝑑𝑥

𝑑𝑢
𝑑𝑢

Note that integration by substitution is a sort of inverse of the chain rule,

and integration by parts the same for the product rule.

2.6.5 Several Variables

We are now ready to introduce multiple integrals, that is Riemann

integrals of a function defined over a domain of arbitrary dimension.

Let 𝐷 ⊂ ℝ𝑛
and 𝑓 be a density function on 𝐷, such as a probability

density function for the configuration (𝑥1 , · · · , 𝑥𝑛) of 𝑛 random variables.

Let a ∈ 𝐷. If we pick a point x at random the probability that we find it

in a region centered at x = a of 𝑛−volume Δ𝑉 is approximated by

𝑓 (a)Δ𝑥1 · · ·Δ𝑥𝑛 .

Let 𝑆 ⊂ 𝐷 be a subregion of the whole sample space domain 𝐷. The

probability 𝑝(𝑆) of finding x ∈ 𝑆 is approximated as follows. Subdivide

𝑆 into 𝑁 small sample regions 𝑆𝑘 (𝑘 = 1, · · · , 𝑁), each of volume Δ𝑉 .

Pick, for each 𝑘, a sample point 𝑃𝑘 in 𝑆𝑘 . According to the formula above,
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we have

𝑝(x ∈ 𝑆) ≈
𝑁∑
𝑘=1

𝑓 (𝑃𝑘)Δ𝑉

The exact value is obtained in the limiting case 𝑁 → ∞. This is the multi-

variate Riemann integral construction. If we use Cartesian coordinates
(𝑥1 , · · · , 𝑥𝑛), the volume is

Δ𝑉 = Δ𝑥1 · · ·Δ𝑥𝑛 ,

and so

𝑝(x ∈ 𝑆) =
∫
𝑆

𝑓 (𝑆) 𝑑𝑉 = lim

𝑁→∞

(
𝑁∑
𝑘=1

𝑓 (𝑃𝑘)Δ𝑥1 · · ·Δ𝑥𝑛

)
.

The Riemann sum approximation is used to define the Riemann integral

for an arbitrary continuous function, not necessarily one carrying the

meaning of probability.

The double integral (𝑛 = 2 variables) is often denoted by

∬
, the triple

integral (𝑛 = 3 variables) by

∭
. If the dimension of the integral is not

important (for example, if we are interested in general properties of

Riemann integrals) we simply use the symbol

∫
.

2.6.6 Applications to Statistics

Let 𝑓 be a probability density function of 𝑛 independent continuous

random variables, on a domain𝐷 ⊂ ℝ𝑛
. Let 𝑔(𝑥1 , · · · , 𝑥𝑛) be an arbitrary

random variable.
46

46: We can assume that is a continuous

function.

The average value of 𝑔 is the integral

𝐸{𝑔} =
∫
𝐷

𝑔(𝑥1 , · · · , 𝑥𝑛) 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The variance of 𝑔 is the integral

𝜎2 = 𝐸
{
(𝑔 − 𝐸{𝑔})2

}
=

∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})2 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The standard deviation of 𝑔 is the integral

𝜎 =

√√∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})2 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

The covariance between two random variables 𝑔 and ℎ is

𝜎{𝑔, ℎ} =
∫
𝐷

(𝑔(𝑥1 , · · · , 𝑥𝑛) − 𝐸{𝑔})(ℎ(𝑥1 , · · · , 𝑥𝑛) − 𝐸{ℎ}) 𝑓 (𝑥1 , · · · , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛 .
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Computing Riemann Integrals in Several Variables

Several methods can be used to calculate the Riemann integral of a

function of several variables. In Cartesian coordinates, we can deduce a

formula starting, once again, from the “infinitesimal” point of view.

For simplicity, we can consider a 2D domain 𝐷 ⊂ ℝ2
defined by the

inequalities

𝐷 : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐(𝑥) ≤ 𝑦 ≤ 𝑑(𝑥).

Let 𝑓 : 𝐷 ⊆ ℝ2 → ℝ be continuous. In order to compute the integral∬
𝐷

𝑓 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥,

we can proceed by iterating the integration process, one iteration per

variable, as follows.

First, for each value of 𝑥 ∈ [𝑎, 𝑏], we can integrate

∫
𝑓 (𝑥, 𝑦) 𝑑𝑦 along the

vertical direction. Since 𝑦 satisfies the bounds 𝑐(𝑥) ≤ 𝑦 ≤ 𝑑(𝑥) for each

𝑥 ∈ [𝑎, 𝑏], we start by computing the integral along the vertical strips of

width 𝑑𝑥:

𝑑(𝑥)∫
𝑐(𝑥)

𝑓 (𝑥, 𝑦)𝑑𝑦.

Next, we integrate the contributions of each individual strip, by inte-

grating over the remaining variable 𝑥. We therefore obtain a formula for

computing a double integral in Cartesian coordinates, integrating first

by vertical strips:

∫
𝐷

𝑓 𝑑𝐴 =

𝑏∫
𝑎

©«
𝑑(𝑥)∫

𝑐(𝑥)

𝑓 (𝑥, 𝑦)𝑑𝑦
ª®®¬ .

Note that the role of the variables can be interchanged; refer to [4] for

more details.

In general, if a domain 𝐷 ⊂ ℝ𝑛
is described by Cartesian coordinate

inequalities (𝑥1 , · · · , 𝑥𝑛), such as:

𝑎1 ≤ 𝑥1 ≤ 𝑏1

𝑎2(𝑥1) ≤ 𝑥2 ≤ 𝑏2(𝑥1)
· · ·
𝑎𝑛(𝑥1 , 𝑥2 , · · · , 𝑥𝑛−1) ≤ 𝑥𝑛 ≤ 𝑏𝑛(𝑥1 , 𝑥2 , · · · , 𝑥𝑛−1)

then the 𝑛− integral of 𝑓 over 𝐷 can be computed by the iterated
integral

∫
𝐷

𝑓 𝑑𝑉 =

𝑏1∫
𝑎1

𝑏1(𝑥1)∫
𝑎2(𝑥1)

· · ·
𝑏𝑛 (𝑥1 ,𝑥2 ,··· ,𝑥𝑛−1)∫

𝑎𝑛 (𝑥1 ,𝑥2 ,··· ,𝑥𝑛−1)

𝑓 (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)𝑑𝑥𝑛𝑑𝑥𝑛−1 · · · 𝑑𝑥1.
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The idea is to integrate one variable per time, using the one-variable

rules of integration. As is the case for integration in ℝ, there is a change
of variables (substitution) formula for integrals in several variables.

We can then derive formulas for double integrals in polar coordinates, or

triple integrals in cylindrical or spherical coordinates.
47

47: Again, refer to [4] for more details.

Let 𝐷 ⊂ ℝ𝑛
and 𝑓 : 𝐷 → ℝ. The Riemann integral of 𝑓 over 𝐷, defined

as the limit of Riemann sums, is denoted by∫
𝐷

𝑓 𝑑𝑉.

The symbol 𝑑𝑉 denotes the infinitesimal 𝑛−dimensional volume ele-
ment, and the infinitesimal quantity 𝑓 𝑑𝑉 represents the infinitesimal

portion of 𝑓 contained in the infinitesimal region of measure 𝑑𝑉 . The total
(“grand sum”) is obtained by integrating 𝑓 𝑑𝑉 over the full domain.

The expression of the volume element depends of the choice of coordi-

nates. In Cartesian coordinates, the volume is as expressed above:

𝑑𝑉 = 𝑑𝑥1 · · · 𝑑𝑥𝑛 .

Thus, if 𝑓 ≡ 1,

∫
𝐷

𝑓 𝑑𝑉 represents the 𝑛−volume of 𝐷. For other types

of coordinate systems, and the corresponding integration formulas, we

once again refer to [4].

Example Let 𝐸 be the solid region located above the triangle of the

𝑥𝑦−plane defined by the inequalities |𝑥 | ≤ 1, 0 ≤ 𝑦 ≤ 1−𝑥, and below the

surface 𝑧 = 𝑥2+𝑦2
. Compute the triple integral of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 over 𝐸.

The bounds of the triangle define the region of the 𝑥𝑦−plane:

−1 ≤ 𝑥 ≤ 1, 0 ≤ 1 ≤ 1 − 𝑥.

The solid is therefore described by the inequalities

−1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 − 𝑥, 0 ≤ 𝑧 ≤ 𝑥2 + 𝑦2 ,

as shown below.
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Therefore, the triple integral is:

∭
𝐸

𝑓 𝑑𝑉 =

1∫
−1

1−𝑥∫
0

𝑥2+𝑦2∫
0

𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

=

1∫
−1

1−𝑥∫
0

[
𝑥𝑧

] 𝑧=𝑥2+𝑦2

𝑧=0

=

1∫
−1

1−𝑥∫
0

(𝑥3 + 𝑥𝑦2) 𝑑𝑦 𝑑𝑥

=

1∫
−1

[
𝑥3𝑦 + 𝑥 𝑦

3

3

] 𝑦=1−𝑥

𝑦=0

𝑑𝑥 =

1∫
−1

(
𝑥3(1 − 𝑥) + 𝑥 (1 − 𝑥)3

3

)
𝑑𝑥

=

1∫
−1

(
−4𝑥4

3

+ 2𝑥3 − 𝑥2 + 𝑥

3

)
𝑑𝑥

=

[
−4𝑥5

15

+ 2𝑥4

4

− 𝑥3

3

+ 𝑥2

6

]
1

−1

= −6

5

.

2.7 Exercises

1. The price at which an item sells is given by 𝑃(𝑑, 𝑠) = 𝑘 𝑑2

𝑠+10
, where

𝑘 is a constant, and 𝑠 and 𝑑 are the product supply and demand,

respectively.

a) For what value(s) of 𝑑 is 𝑃(𝑑, 90) = 100𝑘?

b) For what value(s) of 𝑠 is 𝑃(10, 𝑠) = 10𝑘?

c) If 𝑑 = 9 and 𝑠 = 10, how does 𝑃 change when 𝑑 goes from 9

to 11?

d) If 𝑑 = 9 and 𝑠 = 10, how does 𝑃 change when 𝑠 goes from 10

to 8?

e) Compute and interpret 𝑃(6, 3).
f) Compute and interpret 𝑃𝑑(6, 3).
g) Compute and interpret 𝑃𝑠(6, 3).

2. Find the largest possible domain (in ℝ2
) and the range (in ℝ) of the

following functions.

a) 𝑓 (𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦 + 𝑦2
.

b) 𝑓 (𝑥, 𝑦) = ln(𝑥 − 𝑦).
c) 𝑓 (𝑥, 𝑦) = 1

(𝑦−2) ln 𝑥
.

d) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑦

1−𝑧 .

e) 𝑓 (𝑥, 𝑦, 𝑧) =
√

36 − 𝑥2 − 4𝑦2
.

f) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑧2

(𝑦−2)2 .

g) 𝑓 (𝑥, 𝑦) = √
𝑥 + 𝑦.

h) 𝑓 (𝑥, 𝑦) =
√

4 − 𝑥2 − 𝑦2
.

i) 𝑓 (𝑥, 𝑦) = 1

4−𝑥2−𝑦2
.

j) 𝑓 (𝑥, 𝑦) = 1

𝑒𝑥
2+𝑦2

.

3. Find the equation of the tangent plane to the surface 𝑧 = 𝑓 (𝑥, 𝑦) at

the given point.

a) 𝑓 (𝑥, 𝑦) = 𝑥4 + 𝑦4 − 4𝑥𝑦 + 1, (0, 0).
b) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦, (1, 0).
c) 𝑓 (𝑥, 𝑦) = 2𝑥3 + 𝑥𝑦2 + 5𝑥2 + 𝑦2

, (0, 1).
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d) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥2𝑦 + 4, (1, 2).
e) 𝑓 (𝑥, 𝑦) = 𝑦

√
𝑥 − 𝑦2 − 𝑥 + 6𝑦, (1,−1).

f) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 − 2𝑥 − 𝑦, (2, 3).
g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦(1 − 𝑥 − 𝑦), (−3, 2).
h) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1

𝑥2𝑦2
, (−1, 0).

i) 𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 + 4𝑥𝑦, (0,−2).
j) 𝑓 (𝑥, 𝑦) = 1

𝑥𝑦 , (1,−1).
k) 𝑓 (𝑥, 𝑦) = ln(𝑥2 + 𝑦2), (1, 0).
l) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 , (2, 2).

m) 𝑓 (𝑥, 𝑦) = (𝑥 + 𝑦)𝑒𝑥 , (0, 2).
n) 𝑓 (𝑥, 𝑦) = 𝑥+𝑦

𝑥−𝑦 , (2,−1).
o) 𝑓 (𝑥, 𝑦) = 𝑦 ln(𝑥 + 2)𝑒

√
𝑦
, (−1, 4).

p) 𝑓 (𝑥, 𝑦) = 𝑥𝑦𝑒1/𝑦
, (−1, 1).

4. Classify the critical points of the following functions.

a) 𝑓 (𝑥, 𝑦) = 𝑥4 + 𝑦4 − 4𝑥𝑦 + 1.

b) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦.

c) 𝑓 (𝑥, 𝑦) = 2𝑥3 + 𝑥𝑦2 + 5𝑥2 + 𝑦2
.

d) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥2𝑦 + 4.

e) 𝑓 (𝑥, 𝑦) = 𝑦
√
𝑥 − 𝑦2 − 𝑥 + 6𝑦.

f) 𝑓 (𝑥, 𝑦) = 𝑥𝑦 − 2𝑥 − 𝑦.

g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦(1 − 𝑥 − 𝑦).
h) 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1

𝑥2𝑦2

i) 𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 + 4𝑥𝑦.

5. Compute the 2nd order partial derivatives of the following func-

tions.

a) 𝑓 (𝑥, 𝑦) = 1√
𝑥2+𝑦2

.

b) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧.

c) 𝑓 (𝑥, 𝑦, 𝑧) = ln

(
𝑥+𝑦
𝑥+𝑧

)
.

d) 𝑓 (𝑥, 𝑦) = 𝑥2+𝑦2

1+𝑥 .

e) 𝑓 (𝑥, 𝑦, 𝑧) =
√

1 + 𝑥 + 𝑦 − 2𝑧.

f) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧3 + 𝑥𝑦2

√
𝑧.

g) 𝑓 (𝑥, 𝑦) = 𝑥𝑦2

√
𝑥+3

.

h) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑧
√
𝑦.

i) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥3
ln(𝑧𝑥)𝑦𝑧2𝑒𝑦𝑥 .

j) 𝑓 (𝑥, 𝑦) = 𝑥𝑦
√
𝑥2 + 7.

k) 𝑓 (𝑥, 𝑦, 𝑧) = 1

𝑥𝑦𝑧 .

l) 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥3𝑦−𝑧2

3𝑥+𝑦+2𝑧 .

6. Compute

∫
2

0

∫ 𝑥

0

𝑒𝑥
2

𝑑𝑦 𝑑𝑥 by first sketching the area of integration.

7. Compute

∫
3

0

∫
9

𝑦2
𝑦 sin(𝑥2) 𝑑𝑥 𝑑𝑦.

8. What is the volume of the solid bounded by the planes 𝑧 = 𝑥+2𝑦+4

and 𝑧 = 2𝑥 + 𝑦, above the triangle in the 𝑥𝑦 plane with vertices

𝐴(1, 0, 0), 𝐵(2, 1, 0) and 𝐶(0, 1, 0)?
9. Compute

∫
𝑊
ℎ 𝑑𝑉 , where ℎ(𝑥, 𝑦, 𝑧) = 𝑎𝑥+𝑏𝑦+ 𝑐𝑧,𝑊 = {(𝑥, 𝑦, 𝑧) :

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑧 ≤ 2}.
10. Sketch the region of integration𝑊 of the triple integral∫

1

0

∫
2−𝑥

0

∫
3

0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥.
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11. What is the volume of the solid defined by the intersection of the

two cylinders 𝑥2 + 𝑧2 = 1 and 𝑦2 + 𝑧2 = 1?

12. Compute

∫ √
2

0

∫ √
4−𝑦2

0

𝑥𝑦 𝑑𝑥 𝑑𝑦.

13. Compute

∫
𝑊

sin(𝑥2 + 𝑦2) 𝑑𝑉 , where 𝑊 is the cylinder centered

about the 𝑧 axis from 𝑧 = −1 to 𝑧 = 3 with radius 1.

14. Compute∫
1

0

∫ √
1−𝑥2

−
√

1−𝑥2

∫ √
1−𝑥2−𝑧2

−
√

1−𝑥2−𝑧2

(𝑥2 + 𝑦2 + 𝑧2)−1/2 𝑑𝑦 𝑑𝑧 𝑑𝑥.

15. Compute ∫
1

0

∫
1

−1

∫ √
1−𝑥2

−
√

1−𝑥2

(𝑥2 + 𝑦2)−1/2 𝑑𝑦 𝑑𝑥 𝑑𝑧.

16. What is the volume of the solid𝑄 directly above the region bounded

by 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2 in the 𝑥𝑦−plane and below the plane

𝑧 = 4 − 𝑥 − 𝑦?

17. Compute

∫
1

0

∫
1√
𝑥
𝑒𝑦

3

𝑑𝑦 𝑑𝑥.

18. Sketch the solid bounded by the the surfaces 𝑧 = 0, 𝑦 = 0, 𝑧 =

𝑎 − 𝑥 + 𝑦 and 𝑦 = 𝑎 − 1

𝑎 𝑥
2
, where 𝑎 is a positive constant. What is

the volume of that solid?

19. Evaluate

∫
ln 2

0

∫
ln 5

0

𝑒2𝑥−𝑦 𝑑𝑥 𝑑𝑦.

20. Evaluate

∫
1

0

∫
1

0

𝑥𝑦√
𝑥2+𝑦2+1

𝑑𝑥 𝑑𝑦.

21. Let 𝐷 = {(𝑥, 𝑦) : 1 ≤ 𝑦 ≤ 𝑒 , 𝑦2 ≤ 𝑥 ≤ 𝑦4}. Compute

∬
𝐷

1

𝑥 𝑑𝐴.

22. What is the volume of the solid lying under the paraboloid 𝑧 =

𝑥2 + 𝑦2
and above the domain bounded by 𝑦 = 𝑥2

and 𝑥 = 𝑦2
?

23. Let 𝑅 be the disk of radius 5, centered at the origin. Evaluate∬
𝑅
𝑥 𝑑𝐴.

24. What is the volume of the solid lying under the cone 𝑧 =
√
𝑥2 + 𝑦2

and above the ring 4 ≤ 𝑥2 + 𝑦2 ≤ 25 located in the 𝑥𝑦−plane?

25. Evaluate

∫
3

0

∫ √
9−𝑥2

0

∫ 𝑥

0

𝑦𝑧 𝑑𝑦 𝑑𝑧 𝑑𝑥.

26. Compute

∭
𝐸
𝑒𝑥 𝑑𝑉 , where

𝐸 = {(𝑥, 𝑦, 𝑧) : 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑥 ≤ 𝑦, 0 ≤ 𝑧 ≤ 𝑥 + 𝑦}.

27. Compute

∭
𝐸
𝑥𝑧 𝑑𝑉 , where 𝐸 is the pyramid with vertices (0, 0, 0),

(0, 1, 0), (1, 1, 0) and (0, 1, 1).
28. Let𝑊 be a three-dimensional solid. Its volume can be computed

by the following iterated integral:

𝑉(𝑊) =
∫

2𝜋

0

∫
2

0

∫
4−𝑟2

0

𝑟 𝑑𝑧 𝑑𝑟 𝑑𝜃.

Find𝑊 and 𝑉(𝑊).
29. Compute

∭
𝐵
(𝑥2+𝑦2+𝑧2) 𝑑𝑉 , where𝐵 is the unit ball 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

30. Evaluate∫
3

0

∫ √
9−𝑦2

0

∫ √
18−𝑥2−𝑦2

√
𝑥2+𝑦2

(𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑧 𝑑𝑥 𝑑𝑦.
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31. Evaluate the integral

∬
𝐷
𝑥2𝑦 𝑑𝑥 𝑑𝑦 where 𝐷 is the region bounded

by the curves 𝑦 = 𝑥2
and 𝑥 = 𝑦2

in the first quadrant.

32. Compute the volume of the solid bounded by the cone 𝑧 =
√
𝑥2 + 𝑦2

and the sphere of radius 𝑎 > 0 whose center is located at the origin.

33. Compute the volume of the solid bounded by the paraboloïds

𝑧 = 10 − 𝑥2 − 𝑦2
and 𝑧 = 2(𝑥2 + 𝑦2 − 1).

34. Compute the area of the planar region bounded by 𝑦 = 𝑥2
, 𝑦 = 2𝑥2

,

𝑥 = 𝑦2
, and 𝑥 = 3𝑦2

.

35. Find the volume of the solid bounded by the interior of the sphere

𝑥2 + 𝑦2 + 𝑧2 = 𝑎2
and the interior of the cylinder 𝑥2 + 𝑦2 = 𝑎2

,

𝑎 > 0.

36. Find the volume of the solid bounded by the interior of each of the

cylinders 𝑥2 + 𝑦2 = 𝑎2
, 𝑥2 + 𝑧2 = 𝑎2

and 𝑦2 + 𝑧2 = 𝑎2
, 𝑎 > 0.

37. Find the volume of the solid bounded by the interior of the cone

𝑧2 = 𝑥2 + 𝑦2
lying above the paraboloïd 𝑧 = 6 − 𝑥2 − 𝑦2

.

38. Find the volume of the solid bounded by the plane 𝑧 = 3𝑥 + 4𝑦

lying below the paraboloïd 𝑧 = 𝑥2 + 𝑦2
.

39. Let 𝑆 be the sphere of radius 𝑎 > 0 centered at (0, 0, 𝑎). Show that∭
𝑆
𝑧2 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 8

5
𝜋𝑎5

.

40. Compute

∭
ℝ3
𝑒−(𝑥

2+𝑦2+𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧.
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This chapter contains an essential introduction to linear algebra. The goal

is to provide the readers interested in statistics and/or data science with

some basic mathematical tools that are at the base of the algorithms and

the mathematical models of statistical analysis. Theoretical details, such

as rigorous proofs and definitions, will be kept at a minimal level.

A more detailed introduction to linear algebra can be found in [2, 3, 4].

3.1 Vector Spaces

At its most fundamental level, linear algebra deals with vector spaces
and linear transformation between these.

Linear transformation are represented by matrices; a good portion of

this chapter will be therefore dedicated to matrix algebra.
1

1: Note that the order in which the mate-

rial covered by a first year university linear

algebra course could be different than the

order presented here – it is common for

texts of this nature to start with linear sys-

tems before moving to vector spaces; this

is not how we will approach the presenta-

tion, in no small part because the language

of vectors is very useful, not only in math-

ematics, but also in coding. A mastery of

this language makes mathematical model-

ing more accessible, in general.

3.1.1 Practical Definition

While there is a formal definition of vector spaces (see [3], for instance),

we will eschew it in these notes. Instead, we use a “recipe” that contains

all that we will need.

In the context of linear algebra, the set ℝ𝑛
is the 𝑛-dimensional vector

space, consisting of 𝑛-dimensional vectors.
2

2: This definition is not ideal since it im-

plicitly assumes that the vector are ex-

pressed with respect to the standard basis

e1 = ⟨1, 0, · · · , 0⟩,
e2 = ⟨0, 1, · · · , 0⟩,
.
.
.

e𝑛 = ⟨0, 0, · · · , 1⟩.

Here are the key defining properties of these vectors:

a𝑛-dimensional vector v is a collection of𝑛 numbers: v = ⟨𝑣1 , · · · , 𝑣𝑛⟩,
where the numbers 𝑣𝑘 are the components of the vector;

3

3: In the other chapters, we will use

(𝑣1 , · · · , 𝑣𝑛) when the context is clear.

vectors belonging to the same vector space can be added, while

remaining a part of that vector space: the vector sum of v =

⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ and w = ⟨𝑤1 , 𝑤2 , · · · , 𝑤𝑛⟩, is

v + w = ⟨𝑣1 + 𝑤1 , 𝑣2 + 𝑤2 , · · · , 𝑣𝑛 + 𝑤𝑛⟩;

in vector algebra, simple numbers are scalars – the multiplication
of a vector by a scalar is defined in the “obvious way”: if 𝑐 is a

scalar, and v = ⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ is a vector, then

𝑐v = ⟨𝑐𝑣1 , 𝑐𝑣2 , · · · , 𝑐𝑣𝑛⟩;

the zero 𝑛-dimensional vector is denoted by 0 = ⟨0, 0, · · · , 0⟩.
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Example An aircraft is flying from Ottawa to Milan. The direction and

its speed are determined by three values that change over time: latitude

𝑥(𝑡), longitude 𝑦(𝑡), and altitude 𝑧(𝑡). Hence, the velocity of the aircraft is

modeled using a 3-dimensional vector v(𝑡) = ⟨𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)⟩ ∈ ℝ3
.

Note however that the 3 quantities 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are not truly

Cartesian in nature, since longitude and latitude are described by angles.

Locally, however,
4

this ℝ3
model is a good approximation, assuming4: That is to say, as long as we do not look

at long distance trajectories, say.
that the Earth is locally flat.

Example A boat is sailing in the Pacific Ocean with a velocity vector

v = ⟨1, 2⟩. At some point the wind starts blowing with speed w = ⟨2, 4⟩,
helping the boat to sail faster. What is the estimate of the effective velocity

of the boat under the influence of the wind?

We need to add the vectors. Luckily for us, velocities add linearly, hence

the velocity of the wind-boosted boat is

vtot = v + w = ⟨1, 2⟩ + ⟨2, 4⟩ = ⟨3, 6⟩.

The result is only an approximation of the real situation, since in reality

there are dissipation effects that may reduce the speed of the boat.
5 ■5: But that is a problem for engineers,

really, and we will sidestep the challenge

simply by ignoring it. While vectors can be of arbitrary dimension, having a low-dimensional

geometric picture helps strengthen vector intuition, which may be other-

wise sound too abstract. In practice, vectors in ℝ2
, ℝ3

are represented by

arrows, emanating from the same origin point.

Example Here is an example of a representation of 2-dimensional

vectors, which include a basic R script that produces the picture.
6

6: Which can be improved, see Chapter 18

and [1].

plot(NA,xlim=c(-2,2), ylim=c(-2,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="red"); arrows(0,0,-1,-1.5, col="blue")

arrows(0,0,1,-1.1, col="green"); arrows(0,0,-0.2,0.9, col="purple")
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In principle, arrows exist in arbitrary dimensions, but they are difficult

to visualize. As we can always represent a vector as an arrow, the next

rule applies no matter the dimension 𝑛.

Parallelogram rule: the sum of two vectors v and w is the diagonal of

the parallelogram generated by v and w, emanating from the origin.

plot(NA,xlim=c(-0.2,2), ylim=c(-0.22,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,0, col="red")

arrows(0,0,1,1, col="blue")

arrows(0,0,2,1, col="green")

segments(1,1,2,1, col="grey")

segments(1,0,2,1, col="grey")

3.1.2 Linear Combinations

Given a finite collection of 𝑛-dimensional vectors v1 , v2 , · · · , v𝑘 and scalar

coefficients 𝑐1 , 𝑐2 , · · · , 𝑐𝑘 , the vector

𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑘v𝑘

is called the linear combination of the vectors v1 , v2 , · · · , v𝑘 with coeffi-

cients 𝑐1 , 𝑐2 , · · · , 𝑐𝑘 .

Example Show that the vector ⟨2, 3⟩ can be written as a linear combina-

tion of e1 = ⟨1, 0⟩ and e2 = ⟨0, 1⟩.

This problem can be set up and solved using an algorithm that solves a

system of linear equations.
7

7: See Section 3.4.

However, the situation at hand is a simpler matter of applying the

definition of linear combination. We see that we can express

⟨2, 3⟩ = ⟨2, 0⟩ + ⟨0, 3⟩ = 2⟨1, 0⟩ + 3⟨0, 1⟩ = 2e1 + 3e2.
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3.1.3 Bases and Dimension

As we mentioned previously, the components of a vector are not defined

in a “universal way”, but they depend on the choice of a set of “reference

vectors”, which form a basis: a set of vectors which cover once and only

once all possible independent directions of the vector space.

Let 𝑉 be a vector space, and let {v1 , v2 , · · · , v𝑘} be a finite list of vectors

in 𝑉 . We say that the vectors are linearly independent if:

𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑘v𝑘 = 0 if and only if 𝑐1 = 𝑐2 = · · · = 𝑐𝑘 = 0.

Otherwise, we say that they are linearly dependent.

If we expand the equation above, we see that the condition of linear

independence is equivalent to state that the homogeneous linear system
(see Section 3.4)[

v1 v2 · · · v𝑘
]
·
[
𝑐1 𝑐2 · · · 𝑐𝑘

]𝑇
=

[
0 0 · · · 0

]𝑇
only has the trivial solution 𝑐1 = 𝑐2 = · · · = 𝑐𝑘 = 0.

We can also view linear dependence is as follows. Suppose, for instance,

that we have three vectors v1 , v2 , v3 related by a linear dependence

relation. For example, let us assume that

v1 − v2 − v3 = 0.

Then we can rewrite this expression as

v1 = v2 + v3 ,

which provides an intuition for the idea of linear dependence: one (or

more) vector in the collection can be reconstructed as a linear combination

of the remaining vectors.

A basis of a vector space 𝑉 is a collection of vectors v1 , v2 , · · · , v𝑛 such

that: + The vectors v1 , v2 , · · · , v𝑛 are linearly independent. + Every vector

𝑣 ∈ 𝑉 can be expressed in a unique way as a linear combination of the

basis element v1 , v2 , · · · , v𝑛 .

Note that the linear combination expressed from a basis is unique,
8

that8: Because the basis vectors are linearly

independent.
is the coefficients 𝑐1 , 𝑐2 , · · · , 𝑐𝑛 of the equation

v = 𝑐1v1 + 𝑐2v2 + · · · + 𝑐𝑛v𝑛

are uniquely determined.

While a vector space 𝑉 has more than one basis, all of its bases have
the same cardinality, meaning that all bases have the same number of

vectors. This number 𝑛 is the dimension of the vector space.

The vector space ℝ𝑛
is 𝑛−dimensional; we usually (but not always)

represent vectors with respect to the standard basis {e1 , . . . , e2}.

The uniqueness of the expression of a vector as a linear combination of

basis vectors explains why we can interpret the components of the vector

as coordinates.
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Example Determine if the following 4 vectors form a basis in ℝ4
:

v1 = ⟨1, 0, 0, 0⟩
v2 = ⟨1, 1, 1, 1⟩
v3 = ⟨1, 0, 1,−2⟩
v4 = ⟨0, 1, 0,−1⟩

We need to solve the equation 𝑐1v1 + 𝑐2v2 + 𝑐3v3 + 𝑐4v4 ,= ⟨0, 0, 0, 0⟩,
which unwraps into:

𝑐1 = 0

𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 = 0

𝑐1 + 𝑐3 − 2𝑐4 = 0

𝑐2 − 𝑐4 = 0

Is it clear that the only solution is the trivial one 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0?

We will discuss how to demonstrate that it is indeed the only solution in

Section 3.4.
9

9: We can also verify linear independence

using the properties of determinants (see

Section 3.3.3).

Example Show with an example that there can be infinitely many bases

for a vector space of positive dimension.

For each 𝜃 ∈ [0, 2𝜋), the set

𝐵𝜃 = {⟨cos𝜃, sin𝜃⟩, ⟨− sin𝜃, cos𝜃⟩}

is a basis of ℝ2
. ■

We will not discuss infinite dimensional vector spaces (that’s a topic for

advanced courses), but we provide one such example, for curiosity’s

sake.

Example The space

ℙ[𝑥] = {𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑘𝑥𝑘 | 𝑎𝑖 ∈ ℝ, 𝑘 ∈ ℕ}

of all polynomials in one variable 𝑥 over the reals is an infinite dimensional

vector space; the vectors are polynomials. For all 𝑛 ∈ ℕ, the monomials

1, 𝑥, 𝑥2 , · · · , 𝑥𝑛 are linearly independent for all 𝑛, so there are infinitely

many linearly independent vectors in ℙ[𝑥].10 10: This example is interesting not just be-

cause it deals with an infinite-dimensional

vector space, but also because it shows that

the notion of vector space applies beyond

the intuitive geometric notion of arrows

represented in vector components.

3.1.4 Vector Subspaces

The space 𝑊 = ℝ2
consists of vectors of the form ⟨𝑥, 𝑦⟩. The space

𝑉 = ℝ3
consists of vectors of the form ⟨𝑥, 𝑦, 𝑧⟩. We can interpret𝑊 as a

smaller vector space contained in𝑉 , from which it inherits the operations

of sum and multiplication by scalar.
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Example Show that a linear combination of 2-dimensional vectors of

the form ⟨𝑥, 𝑦, 0⟩ has the same form (i.e., the third component remains

zero).

This is a classic problem that looks hard the first time we learn linear

algebra, but in fact the solution consists a simple check. Take two arbitrary

vectors v1 = ⟨𝑥1 , 𝑦1 , 0⟩ and v2 = ⟨𝑥2 , 𝑦2 , 0⟩. Then, for arbitrary scalars

𝑎, 𝑏, the linear combination of them has the expression

𝑎v1 + 𝑏v2 = 𝑎⟨𝑥1 , 𝑦1 , 0⟩ + 𝑏⟨𝑥2 , 𝑦2 , 0⟩ = ⟨𝑎𝑥1 + 𝑏𝑥2 , 𝑎𝑦1 + 𝑏𝑦2 , 0⟩,

of the form ⟨𝑥, 𝑦, 0⟩, if we let 𝑥 = 𝑎𝑥1 + 𝑏𝑥2 and 𝑦 = 𝑎𝑦1 + 𝑏𝑦2. ■

Let 𝑉 be a vector space, and 𝑊 ⊂ 𝑉 , a subset of 𝑉 : we say that 𝑊 is

a vector subspace (subspace in short) of 𝑉 , denoted 𝑊 < 𝑉 , if 𝑊 is a

vector space itself (which inherits the operations from the bigger space

𝑉 in which it is contained).

In particular, if𝑊 < 𝑉 , and v,w ∈𝑊 and 𝑎, 𝑏 ∈ ℝ, then:

0 ∈𝑊 , and

𝑎v + 𝑏w ∈𝑊 .

Note that, by definition, 𝑉 is a subspace of itself.

The result of the previous example can be recast as

ℝ2
being a vector subspace of ℝ3

.

Example Let 𝑉 be a vector space. What is the “largest” subspace of 𝑉?

What is the “smallest” subspace of 𝑉?

As𝑉 ⊆ 𝑉 is itself a subspace of𝑉 , it is also the largest subspace of𝑉 . The

smallest subspace of 𝑉 is the zero-dimensional vector space {0}, which

consists solely of the zero vector. ■

Let 𝑉 be a vector space of dimension 𝑛. Then, it should be intuitive that

if𝑊 is a subspace of 𝑉 , then dim(𝑊) ≤ dim(𝑉).

The zero space from the previous example is the only zero-dimensional

vector subspace; the space 𝑉 itself is the only subspace of maximal

dimension 𝑛. There are infintely many “intermediate dimension” (proper)

subspaces as soon dim𝑉 ≤ 2.

Example Let 𝑊𝜃 = {𝑎⟨cos𝜃, sin𝜃⟩ | 𝑎 ∈ ℝ} < ℝ2
, 𝜃 ∈ [0, 2𝜋). For

each angle value 𝜃, the vector ⟨cos𝜃, sin𝜃⟩ gives a different direction,

hence𝑊𝜃1
=𝑊𝜃2

if and only if 𝜃1 = 𝜃2.

library(plotrix)

plot(NA,xlim=c(-0.2,2), ylim=c(-0.22,2),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="blue")

segments(0,0,1.5,0, col="red")

draw.arc(0,0,0.3,0,0.5,col="grey")

text(0.5,0.3,expression(theta),col="blue")

text(1.1,1,expression(list(W[theta])),col="blue")
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3.1.5 Spanning Sets

How do we “create” subspaces? As long as we do not worry too much

about “clean production”, we take a finite set of vectors of a given vector

space𝑉 , and consider all possible linear combination of such vectors.

Let 𝑉 a vector space and v1 , v2 , · · · , v𝑁 ∈ 𝑉 . The spanning set

Span{v1 , v2 , · · · , v𝑁 } = {𝑎1v1 + · · · + 𝑎𝑁v𝑁 | 𝑎𝑖 ∈ ℝ} < 𝑉.

Example Let 𝑉 be a vector space and v1 , v2 , · · · , v𝑁 ∈ 𝑉 . Then v ∈
Span{v1 , . . . , v𝑁 } if and only if v = 𝑐1v1 + · · · 𝑐𝑛v𝑁 , for some coefficients

𝑐1 , 𝑐2 , · · · , 𝑐𝑁 ∈ ℝ.

This is a “trivial” statement – we simply translated the condition “belong-

ing to span” into the equation “v is a linear combination of the spanning

vectors v1 , v2 , · · · , v𝑁”.
11

11: Being trivial, it can still cause confusion

at the beginning; but it is crucial to learn

how to translate math-related sentences

into formulas or equations.

The problem with the definition of the spanning set of a collection of

vectors is that it says nothing about the dimension of the vector space.

Example Let 𝑉 = ℝ2
. We can write 𝑉 = Span{⟨1, 0⟩, ⟨0, 1⟩}, which

makes sense since the two vectors form a basis of𝑉 . However, we can also

generate the entire vector space with three vectors, so that the number of

vectors is not linked to the dimension: 𝑉 = Span{⟨1, 0⟩, ⟨0, 1⟩, ⟨1, 1⟩}.

3.1.6 Dot Product

The dot product of two vectors is a scalar quantity that in some sense

measure how much of their components two vectors share. The dot (or

scalar) product of two 𝑛-dimensional vectors v = ⟨𝑣1 , 𝑣2 , · · · , 𝑣𝑛⟩ and

w = ⟨𝑤1 , 𝑤2 , · · · , 𝑤𝑛⟩:

v · w = 𝑣1𝑤1 + 𝑣2𝑤2 + · · · + 𝑣𝑛𝑤𝑛 .
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From the dot product, we can define the Euclidean length (or norm) of a

vector v:

∥v∥ =
√

v · v =

√
𝑣2

1
+ 𝑣2

2
+ · · · + 𝑣2

𝑛 .

Two vectors v and w are orthogonal if and only if v · w = 0. In general:

v · w = ∥v∥∥w∥ cos(𝜃),

where 𝜃 is the angle formed by the vector v and w.
12

12: In fact, this is how we define the angle

between two vectors when the geometrical

interpretation is unavailable to us. Two non-zero vectors v,w create two angles, 𝜃 and 2𝜋 − 𝜃: does the dot

product depends on the choice between the two angles?

No, because for all angles 𝜃 we have:

cos(2𝜋 − 𝜃) = cos(𝜃).

Example Find the (smallest) angle 𝜃 formed by the vectors v = ⟨1, 2⟩
and w = ⟨−1, 1⟩.

It’s a one line calculation:

𝜃 = arccos

(
v · w

∥v∥∥w∥

)
= arccos

(
−1 + 2√

1 + 4

√
1 + 1

)
= arccos

(
1√
10

)
= 1.25 radians .

Example Let 𝑡 be a real parameter Find the vectors of the form ⟨1, 𝑡⟩
and with length equal to 5.

The general vector ⟨1, 𝑡⟩ has length

∥⟨1, 𝑡⟩∥ =
√

1
2 + 𝑡2 =

√
1 + 𝑡2.

We look for the values of 𝑡 such that

∥⟨1, 𝑡⟩∥ =
√

1 + 𝑡2 = 5,

which are found by solving the quadratic equation:

√
1 + 𝑡2 = 5 =⇒ 1 + 𝑡2 = 25 =⇒ 𝑡2 = 24 =⇒ 𝑡 = ±

√
24 = ±2

√
6.

As expected, there are two vectors ⟨1, 𝑡⟩ of length 5: ⟨1,±2

√
6⟩.

3.1.7 Cross Product in ℝ3

The dot product is also called scalar product, since it outputs a scalar

from two given vectors. The cross (or vector) product, which will define

below, produces a new vector out of two input vectors.

Given two 3-dimensional vectors v = ⟨𝑣1 , 𝑣2 , 𝑣3 , ⟩ and w = ⟨𝑤1 , 𝑤2 , 𝑤3 , ⟩,
the cross (or vector) product formula can be symbolically represented
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with the help of a determinant:

v × w = det


e1 e2 e3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

 = det


i j k
𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3


= ⟨𝑣2𝑤3 − 𝑣3𝑤2 ,−(𝑣1𝑤3 − 𝑣3𝑤1), 𝑣1𝑤2 − 𝑣2𝑤1⟩.

Note that we left the formula without multiplying out negative sign

in front of the second entry, in order to remind the reader that the

determinant is an alternating sum.
13

13: See Section 3.3.3.

Whereas the dot product can be extended to vector space of all dimensions,

the cross product is only defined on ℝ3
.

3.2 Linear Transformations and Matrices

A matrix of size 𝑚 × 𝑛 is a collection of 𝑚 × 𝑛 numbers aligned along 𝑚

rows and 𝑛 columns:

𝐴 =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛


We refer to matrices of size 𝑛 × 𝑛 as square matrices of size 𝑛.

Let 𝑉 and 𝑊 be two vector spaces (of arbitrary dimension, possibly

infinite-dimensional). A linear map 𝑇 : 𝑉 → 𝑊 is a function that

preserves linear combinations of vectors:

𝑇(𝑎v + 𝑏w) = 𝑎𝑇(v) + 𝑏𝑇(w), for all 𝑎, 𝑏 ∈ ℝ and for all v,w ∈ 𝑉.

Given a basis {v1 , v2 , · · · , v𝑛} of 𝑉 and a basis {w1 ,w2 , · · · ,w𝑚} of𝑊 ,

we can construct the matrix elements 𝑡𝑖 , 𝑗 of the matrix representing the

linear transformation 𝑇 with respect to the given bases. In fact, there are

coefficients 𝑇𝑖 𝑗 such that

𝑇(v𝑖) =
𝑚∑
𝑗=1

𝑡𝑖 , 𝑗w𝑗

We will use the convention that a matrix is given with respect to the

standard basis.

A linear map 𝑇 : ℝ𝑛 → ℝ𝑚
is represented by matrix-vector multiplica-

tion. We write the vectors of ℝ𝑛
and ℝ𝑚

as column vectors:

v =


𝑣1

𝑣2

...

𝑣𝑛


∈ ℝ𝑛 , w =


𝑤1

𝑤2

...

𝑤𝑚


∈ ℝ𝑚 .
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The vector-matrix multiplication defines the linear map𝑇(v) = w (relative

to bases of ℝ𝑛
and ℝ𝑚

):
𝑤1

...

𝑤𝑚

 =


𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛



𝑣1

...

𝑣𝑛

 =


𝑡1,1𝑣1 + · · · + 𝑡1,𝑛𝑣𝑛

...

𝑡𝑚,1𝑣1 + · · · + 𝑡𝑚,𝑛𝑣𝑛

 .
Linear maps can be composed in the same way as regular functions,

assuming that the range of the second is in the domain of the first.

If 𝑇 : ℝ𝑛 → ℝ𝑚
and 𝑆 : ℝ𝑚 → ℝ𝑝

are two linear maps, then the

composition of 𝑆 and 𝑇 (the order is important) is the linear map

𝑆 ◦ 𝑇 : ℝ𝑛 → ℝ𝑝
defined by

(𝑆 ◦ 𝑇)(v) = 𝑆(𝑇(v)) = (𝑆𝑇)v.

If the maps 𝑆 and 𝑇 are represented by the matrices S=
𝑠1,1 · · · 𝑠1,𝑚

...
. . .

...

𝑠𝑝,1 · · · 𝑠𝑝,𝑚

 and 𝑇 =


𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛

 ,
then the composite map corresponds to the matrix obtained by matrix
multiplication (or matrix product)

𝑆𝑇 =


𝑠1,1 · · · 𝑠1,𝑚

...
. . .

...

𝑠𝑝,1 · · · 𝑠𝑝,𝑚



𝑡1,1 · · · 𝑡1,𝑛
...

. . .
...

𝑡𝑚,1 · · · 𝑡𝑚,𝑛

 =


𝑠1,1𝑡1,1 + · · · + 𝑠1,𝑚𝑡𝑚,1 · · · 𝑠1,1𝑡1,𝑛 + · · · + 𝑠1,𝑚𝑡𝑚,𝑛

...
. . .

...

𝑠𝑝,1𝑡1,1 + · · · + 𝑠𝑝,𝑚𝑡𝑚,1 · · · 𝑠𝑝,1𝑡1,𝑛 + · · · + 𝑠𝑝,𝑚𝑡𝑚,𝑛


Note that the formula of matrix multiplication can be more easily under-

stood using dot products:

(𝑠𝑡)𝑖 𝑗 = (row 𝑖 of S) · (column 𝑗 of T) .

Example For any angle value in radians, measured counterclockwise

with respect to reference to the positive 𝑥-axis, the matrix

𝑅𝜃 =

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
rotates vectors in the 𝑥𝑦-plane around the origin by an angle 𝜃. For

instance, we can rotate the vector ⟨1, 0⟩ by
𝜋
4

(45 degrees counterclock-

wise):

𝑅𝜋/4

[
1

0

]
=

[
cos

𝜋
4

− sin
𝜋
4

sin
𝜋
4

cos
𝜋
4

] [
1

0

]
=

[√
2

2
−

√
2

2√
2

2

√
2

2

]
·
[
1

0

]
=

[√
2

2√
2

2

]
.

The new vector has the same length as the original one, in agreement

with the fact that rotations do not change lengths, and it forms an angle

of 45 degrees with respect to the positive 𝑥-axis.

For a fixed 𝜃, the rotation is a linear map:

𝑅𝜃(𝑎v + 𝑏w) = 𝑎𝑅𝜃(v) + 𝑏𝑅𝜃(w) (prove it!).
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3.3 Matrix Algebra

We have already introduced matrix multiplication as a way to define the

composition of two compatible linear maps. In this section we collect

the essential rules of matrix algebra. We start with operations that make

sense for all matrices, and then specialize to operations that are defined

only for square matrices. For convenience we report again the definition

of matrix multiplication.

3.3.1 Matrix Operations

Matrix Multiplication

Formally, let 𝐴 ∈ M𝑚,𝑛 (i.e., 𝐴 is a 𝑚 × 𝑛 matrix) and 𝐵 ∈ M𝑛,𝑝 (i.e.,

𝐵 is a 𝑛 × 𝑝 matrix). Then the matrix product of 𝐴 by 𝐵 is the matrix

𝐴𝐵 ∈ M𝑚,𝑝 (i.e., 𝐴𝐵 is of size 𝑚 × 𝑝), where the entries (𝑎𝑏)𝑖 , 𝑗 are

(𝑎𝑏)𝑖 , 𝑗 = row 𝑖 of 𝐴 · column 𝑗 of 𝐵.

Unlike multiplication between scalars, the product of matrices is not

generally commutative – assuming that both 𝐴𝐵 and 𝐵𝐴 exist, it is not

always the case that 𝐴𝐵 = 𝐵𝐴.

Example If 𝐴 =

[
1 2

3 4

]
and 𝐵 =

[
5 6

7 8

]
, then

𝐴𝐵 =

[
19 22

43 50

]
≠

[
23 34

31 46

]
= 𝐵𝐴.

The matrix product 𝐴𝐵 is only defined when the number of columns of

𝐴 is equal to the number of rows of 𝐵:

𝐴︸︷︷︸
𝑚×𝑛

𝐵︸︷︷︸
𝑛×𝑝

= 𝐴𝐵︸︷︷︸
𝑚×𝑝

.

The dot product of two 𝑛-dimensional vector can also be understood in

term of matrix multiplication: if we represent v as a row vector, and w as

a column vector, then

v · w =
[
𝑣1 · · · 𝑣𝑛

] 
𝑤1

...

𝑤𝑛

 = 𝑣1𝑤1 + 𝑣2𝑤2 + · · · + 𝑣𝑛𝑤𝑛 .

Matrix Addition

Given two matrices 𝐴, 𝐵 ∈ M𝑚,𝑛 , their sum is the matrix 𝐴 + 𝐵 ∈ M𝑚,𝑛

obtained by adding 𝐴 and 𝐵 entry-by-entry, that is

(𝑎 + 𝑏)𝑖 , 𝑗 = 𝑎𝑖 , 𝑗 + 𝑏𝑖 , 𝑗 .
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Example If 𝐴 =

[
1 2

3 4

]
and 𝐵 =

[
5 6

7 8

]
, then 𝐴 + 𝐵 =

[
6 8

10 12

]
.

Note that, unlike matrix multiplication, matrix addition is commutative:

𝐴 + 𝐵 = 𝐵 + 𝐴 for all compatible matrices.

Multiplication by a Scalar

For any matrix 𝐴 ∈ M𝑚,𝑛 and scalar 𝑐 ∈ ℝ, the scalar multiplication of

𝐴 by 𝑐 is the matrix 𝑐𝐴 ∈ M𝑚,𝑛 whose entries are the entries of 𝐴 scaled

by the factor 𝑐, that is:

(𝑐𝑎)𝑖 , 𝑗 = 𝑐𝑎𝑖 , 𝑗 .

Example If 𝐴 =

[
1 2

3 4

]
and 𝑐 = −2, then 𝑐𝐴 =

[
−2 −4

−6 −8

]
.

Transpose of a Matrix

The transpose of 𝐴 ∈ M𝑚,𝑛 is the matrix 𝐴⊤ ∈ M𝑛,𝑚 whose columns are

the rows of 𝐴:

(𝑎⊤)𝑖 , 𝑗 = 𝑎 𝑗 ,𝑖 .

Example If 𝐴 =

[
1 2

3 4

]
, then 𝐴⊤ =

[
1 3

2 4

]
.

The transpose is a linear operation: (𝐴+ 𝐵)⊤ = 𝐴⊤ + 𝐵⊤ for all compatible

matrices 𝐴, 𝐵. However, it behaves “unexpectedly” with respect to matrix

multiplication: (𝐴𝐵)⊤ = 𝐵⊤𝐴⊤ for all compatible matrices 𝐴, 𝐵.
14

14: While this is not a proof, we see that

this formula is at the very least aligned

with the compatibility of matrix multipli-

cation: if 𝐴 ∈ M𝑚,𝑛 and 𝐵 ∈ M𝑛,𝑝 , then

𝐴𝐵 ∈ M𝑚,𝑝 and (𝐴𝐵)⊤ ∈ M𝑝,𝑚 . Since

𝐵⊤ ∈ M𝑝,𝑛 and 𝐴⊤ ∈ M𝑛,𝑚 , we see that

𝐵⊤𝐴⊤ is always defined, but that 𝐴⊤𝐵⊤ is

only defined when 𝑚 = 𝑝.

Matrix Spaces

The column space of a matrix 𝐴 = [𝐴1 | · · · | 𝐴𝑛] ∈ M𝑚,𝑛 is the vector

subspace of ℝ𝑚
spanned by the column vectors of 𝐴:

colsp(𝐴) = Span{𝐴1 , · · · , 𝐴𝑛}.

The rank of 𝐴 is the dimension of colsp(𝐴). If we interpret 𝐴 as a linear

map (as discussed in Section 3.2), then colsp(𝐴) is in fact the image of

this map:

Im(𝐴) = {𝐴v | v ∈ ℝ𝑛} < ℝ𝑚 .

The nullspace (or kernel) of 𝐴 is the vector subspace of ℝ𝑚
that are

mapped to the null vector 0 by 𝐴:

nullsp(𝐴) = ker(𝐴) = {v ∈ ℝ𝑚 | 𝐴v = 0} ⊆ ℝ𝑚 .

That these two sets are indeed vector subspaces of ℝ𝑚
is clear:

0 ∈ Im(𝐴), ker(𝐴) since 𝐴0 = 0;
15

15: The null vector pulls double-duty here.
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if v,w ∈ ker(𝐴), 𝑎, 𝑏 ∈ ℝ, then 𝑎v + 𝑏w ∈ ker(𝐴) since

𝐴(𝑎v + 𝑏w) = 𝑎𝐴v + 𝑏𝐴w = 𝑎0 + 𝑏0 = 0;

if v,w ∈ Im(𝐴), 𝑎, 𝑏 ∈ ℝ, then 𝑎v + 𝑏w ∈ Im(𝐴) since there exists

u, z ∈ ℝ𝑛
such that 𝐴u = v and 𝐴z = w, and so

𝑎v + 𝑏w = 𝑎𝐴u + 𝑏𝐴z = 𝐴(𝑎u + 𝑏z).

In particular, neither of these spaces is empty since they always contain

at least 0.

Rank-Nullity Theorem

Let 𝐴 ∈ M𝑚,𝑛 ; then

dim(ker(𝐴)) + dim(Im(𝐴)) = 𝑚.

This theorem is a basic (and very useful) result of linear algebra, with

counterparts in other sectors of algebra (such as group theory).

3.3.2 Square Matrices

The identity matrix of size 𝑛 is the square matrix, denoted by I𝑛 :

I𝑛 =


1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


The diagonal of a square matrix 𝐴 is the list of elements 𝐴𝑖𝑖 (that is, the

values along the diagonal).

A square matrix is said to be a diagonal matrix if the non-diagonal entries

are all zero.

A square matrix 𝐴 is said to be symmetric if 𝐴 = 𝐴⊤. In fact, the entries

are symmetric with respect to the diagonal of the matrix.

A square matrix 𝐴 of size 𝑛 is said to be invertible (or non-singular) if

there exists a matrix, denoted by 𝐴−1
, such that 𝐴𝐴−1 = 𝐴−1𝐴 = I𝑛 . The

matrix 𝐴−1
is called the inverse of 𝐴. Note that the inverse of 𝐴−1

is 𝐴

(in other words, (𝐴−1)−1 = 𝐴).

If 𝐴 is invertible, then

(𝐴−1)⊤ = (𝐴⊤)−1.

If 𝐴 and 𝐵 are both invertible (and have the same size), then

(𝐴𝐵)−1 = 𝐵−1𝐴−1.

We will discuss a way to compute the inverse of a non-singular matrix in

Section 3.4.2.
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3.3.3 Determinants

There is an important numerical value that can be associated to any

square matrix 𝐴, its determinant det(𝐴).

When we work with large-sized matrices, we rely on a computer program

to compute the determinant. However, we need to know what it is and

how to compute it for small size examples.

The purely algebraic definition of the determinant makes use of the

language of multilinear algebra, which will not discuss here; instead, we

proceed with a computational definition.

For a scalar 𝑎 ∈ ℝ = M1,1, det(𝑎) = 𝑎.

For 𝐴 ∈ M2,2,

det(𝐴) = det

[
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

]
= 𝑎1,1𝑎2,2 − 𝑎1,2𝑎2,1.

For 𝐴 ∈ M𝑛,𝑛 , consider the first row, which consists of the elements

[𝑎1,1 , 𝑎2,1 , · · · , 𝑎1,𝑛]. Let 𝑀1,𝑘 be the square matrix of size 𝑛 − 1

obtained by removing from𝐴 the row and column passing through

𝑎1,𝑘 . Then the determinant of 𝐴 is the alternating sum:

det(𝐴) = det(𝑀1,1) − det(𝑀1,2) + · · · + (−1)𝑛+1

det(𝑀1,𝑛)

The quantities det(𝑀𝑖 , 𝑗) are called the minors of the matrix.

In fact, we can pick any row or any column and apply the alternating

sum formula as above. However, we need to be careful about the sign in

front of the minor det(𝑀𝑖 , 𝑗), which is called the cofactor 𝐶𝑖 , 𝑗 :

𝐶𝑖 , 𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖 , 𝑗).

For more details about the general formula, we refer to [4].

Properties

The determinant determines important properties of a square matrix.

The determinant of a diagonal matrix is the product of its diagonal

entries.

The determinant behaves nicely when it comes to matrix multipli-

cation and inversion (assuming 𝐴 and 𝐵 are both square and of the

same size):

det(𝐴𝐵) = det(𝐴)det(𝐵),

and, if 𝐴 is invertible, then

det(𝐴−1) = det(𝐴)−1 ,

The determinant is invariant under transposition:

det(𝐴) = det(𝐴⊤).
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Let 𝐴 be a square matrix and let 𝐴[𝑅𝑖 ↔ 𝑅 𝑗] (resp. 𝐴[𝐶𝑖 ↔ 𝐶 𝑗])
be the matrix obtained by interchanging row 𝑖 with row 𝑗 (resp.

column 𝑖 with column 𝑗). Then

det(𝐴[𝐶𝑖 ↔ 𝐶 𝑗]) = −det(𝐴)
det(𝐴[𝑅𝑖 ↔ 𝑅 𝑗]) = −det(𝐴)

More generally, if we perform an odd number of permutations of

rows (columns), the determinant changes sign; if we perform an

even number of permutations of rows (columns), the determinant

stays the same.

Let 𝐴 be a square matrix, of size 𝑛. Then the following conditions are

equivalent:

1. det(𝐴) ≠ 0;

2. 𝐴 is invertible;

3. the 𝑛 column vectors of 𝐴 are linearly independent, hence they

form a basis of ℝ𝑛
;

4. the 𝑛 row vectors of 𝐴 are linearly independent, hence they form a

basis of ℝ𝑛
;

5. the rank of 𝐴 is 𝑛 (maximal rank);

6. the nullspace (kernel) of 𝐴 consists only of the zero vector 0.

Examples Determine if the following matrices are invertible or not,

without computing the inverse.

1. 𝐴 =

[
2 3

−1 −3

]
is invertible, since det𝐴 = 2(−3) − 3(−1) = −2 ≠ 0.

2. 𝐵 =


1 2 3 4

0 3 2 1

1 2 3 4

−1 1 −1 1

 is not invertible, since the first and third rows

are equal (and so they are linearly dependent).

3. 𝐶 =


1 2 3 4

1 1 2 1

2 3 5 5

−1 1 −1 1

 is not invertible, as we can see either by

computing that det𝐶 = 0, or by observing that 𝑅1 + 𝑅2 = 𝑅3.

4. 𝐷 =


1 42 0.12 4

0 1 −2 21

1.2 23 0.5 5

−2.2 1 0 −0.55

 is invertible as can be seen in the

following R code.

D <- rbind(c(1,42,0.12,4),c(0,1,-2,21),c(1.2,23,0.5,5),c(-2.2,1,0,-0.55))

det(D)

[1] -1336.74

5. Suppose that 𝐴 and 𝐵 are square matrices of the same size, and

that det(𝐴) = 3, det(𝐵) = −5; then

det(𝐴−1𝐵3𝐴) = 1

det(𝐴) ·(det(𝐵)3)·det(𝐴) = (det(𝐵))3 = (−5)3 = −125.



162 3 Overview of Linear Algebra

There is a closed-form formula for finding the inverse of a square matrix

of arbitrary size. Computing the inverse can be very time consuming,

and, when the matrices are very large (thousands of entries), we typically

consider numerical methods.

But it is convenient to at least remember how to find the inverse of a 2× 2

matrix.
16

16: For inversion of matrices of arbitrary

size, we refer to [4]. We mention in passing

that the general formula for 𝐴−1
contains

a factor
1

det𝐴
, re-descovering the fact zero-

determinant matrices can not be inverted.

For a 2 × 2 matrix 𝐴 =

[
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

]
, say, the inverse (when it exits) is

𝐴−1 =
1

det𝐴

[
𝑎2,2 −𝑎1,2

−𝑎2,1 𝑎1,1

]
The formula of the inverse starts with

1

det𝐴 . If the determinant of 𝐴 is

non-zero, but close to zero, we could have issues with the finite precision

arithmetic.

We will discuss a row-reduction method to compute the inverse of a

general non-singular matrix in the next section.

Example Let 𝐴 and 𝐵 be the following matrices:

𝐴 =

[
1 2

3 1

]
, 𝐵 =

[
0 −2

8 1

]
Solve the equation 𝐴𝑋 = 𝐵 for 𝑋, where 𝑋 ∈ M2,2. We see that

𝐴𝑋 = 𝐵 ⇒ 𝑋 = 𝐴−1𝐵,

but is 𝐴 invertible? A quick check using the determinant confirms that it

is since det(𝐴) = 1 · 1 − 2 · 3 = −5 ≠ 0. Using the formula of the inverse

of a 2 × 2 matrix we obtain:

𝐴−1 =
1

1 · 1 − 2 · 3

[
1 −2

−3 1

]
=

[
− 1

5

2

5

3

5
− 1

5

]
.

Finally 𝑋, the solution of the equation, is

𝑋 = 𝐴−1𝐵 =

[
− 1

5

2

5

3

5
− 1

5

] [
0 −2

8 1

]
=

[
16

5

4

5

− 8

5
− 7

5

]

3.4 Linear Systems

A big motivation for developing the machinery of linear algebra is to

find systematic methods for solving systems of linear equations, which

we can call, in short, linear systems. A linear system in 𝑛 unknowns

𝑥1 , 𝑥2 , · · · , 𝑥𝑛 and 𝑚 equations is a system of 𝑚 linear equations

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + · · · + 𝑎1,𝑛𝑥𝑛 = 𝑏1

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + · · · + 𝑎2,𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + · · · + 𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚
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Collecting the coefficients of the left hand side of the system into a 𝑚 × 𝑛
matrix, and the coefficients of the right hand side into a 𝑚 dimensional

column vector, we obtain the matrix-vector form of the linear system,

𝐴x = b: 
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑛



𝑥1

𝑥2

...

𝑥𝑛


=


𝑏1

𝑏2

...

𝑏𝑛


We say that a system of 𝑚 equations and 𝑛 variables has size 𝑚 × 𝑛.

If b = 0, the system is called homogeneous.

Example Let 𝐴 and 𝐵 be the following matrices:

𝐴 =

[
1 2

3 1

]
, 𝐵 =

[
0 −2

8 1

]
We have shown how to solve the equation𝐴𝑋 = 𝐵 for𝑋 , where𝑋 ∈ M2,2.

Expand this equation to show that is equivalent to a linear system. Write

the linear system in matrix vector form 𝐴x = b.
17

17: This will not be the same 𝐴 as in the

statement.

The 4 unknowns are the entries of the matrix 𝑋 =

[
𝑥 𝑦

𝑧 𝑤

]
. Then

𝐴𝑋 =

[
1 2

3 1

] [
𝑥 𝑦

𝑧 𝑤

]
=

[
0 −2

8 1

]
.

Expanding the product 𝐴𝑋 gives the equation

𝐴𝑋 =

[
𝑥 + 2𝑧 𝑦 + 2𝑤

3𝑥 + 𝑧 3𝑦 + 𝑤

]
=

[
0 −2

8 1

]
.

Equating the 4 components gives us a system of 4 equations in 4 un-

knowns:

𝑥 + 2𝑧 = 0

𝑦 + 2𝑤 = −2

3𝑥 + 𝑧 = 8

3𝑦 + 𝑤 = 1.

In matrix vector form the system is of the form 𝐴x = b, where 𝐴 ∈ M4,4,

whose entries are specified in the equation below. The right-hand side is

the vector of 4 constant entries, and the unknown vector has component

𝑥, 𝑦, 𝑧, 𝑤. The system is therefore
1 0 2 0

0 1 0 2

3 0 1 0

0 3 0 1



𝑥

𝑦

𝑧

𝑤

 =


0

−2

8

1

 .
Rearranging the entries of a matrix in order to obtain a new matrix

of different size is a common procedure in coding. Programs like R or
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Python come with predefined functions that do the rezising for us (but

we need to know how they operate!)

The solution set of an arbitray (non-linear) system of equations in 𝑛

variables is a region of ℝ𝑛
. We learn that such regions are recognized to

be objects of euclidean geometry: as we learn in pre-calculus, for example,

the solutions of the equation 𝑥2 + 𝑦2 = 1 are the points of the circle of

radius 1 and centre at the origin of the Cartesian plane.

For a linear system, we will expect the solution set to have some “linearity”.

More precisely:

The solution set of a homogeneous linear system 𝐴x = 0, in the 𝑛

unknowns x = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)⊤, is a vector subspace of ℝ𝑛
.

The solution set of a linear system 𝐴x = b is a “vector space shifted

away from the origin” of ℝ𝑛
. More precisely, let x𝑝 be any solution

of the system (we call it a particular solution). Then any solution

of the system is of the form x0 + x𝑝 , where x0 is a solution of the

associated homogeneous linear system 𝐴x = 0.

Example Let us illustrate the last two points with a simple example.

Notice that this example is not meant to propose an algorithm to solve a

linear system, but rather to explain the geometrical aspect of the solution

set of a linear system. Consider the linear system consisting of one

equations in two variables:

𝑥 + 𝑦 = 2.

It is not homogeneous, since the left hand side coefficient of the equation

is not zero. Since there are two variables but only one equation, we expect

the general form of the solution of this system to have one free parameter

(or free variable), that can be arbitrary chosen. If we use 𝑡 as the name for

the parameter, we write

𝑥 = 𝑡 ∈ ℝ

𝑦 = 2 − 𝑡.

Note in particular that with 𝑡 = 0 we obtain the particular solution

x𝑝 =
[
0

2

]
,

which we will use in a second.

The associated homogeneous linear system is

𝑥 + 𝑦 = 0.

The solution set of the homogeneous system is the line 𝑦 = −𝑥, which in

parametric form becomes

𝑥 = 𝑡

𝑦 = −𝑡.
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Geometrically, the general solution of the non-homogeneous system is

obtained by shifting the line 𝑦 = −𝑥 by the vector (0, 2)⊤. If we let

x0(𝑡) =
[
𝑡

−𝑡

]
,

we see that the general solution is of the form x(𝑡) = x𝑝 + x0(𝑡).

Example Which of the following equation is linear? Why is it important

to identify if an equation (or a system of equation) is linear?

a) 𝑥 + 𝑦 − 𝑧 = 4 b) 𝑥2 − 𝑦 + 𝑧 = 4 c) 4𝑥 + 4𝑦 − 𝑧 − 4 = 0

The system a) and c) are linear, while the 𝑥2
term in b) makes that one

non-linear. It is important to know what are the properties of linear

systems: the linear algebra algorithms, such as Gauss-Jordan elimination,

do not apply to non-linear systems.

3.4.1 Gauss-Jordan Elimination

In introductory linear algebra courses we often start by learning linear

systems and how to the Gauss-Jordan elimination algorithm. We will

not discuss the details of the method in this chapter and we refer to [4]

for more details.

The idea of the elimination algorithm is to transform the matrix associated

with a linear system into a simpler one. The common approach is to

transform the original matrix to a row echelon form, or even better the

row reduced echelon form. Reading the solution of a matrix in echelon

form then is quite easy.

The principles behind the Gauss-Jordan elimination are the following.

We say that two linear systems are equivalent if they have the same

solution set.

Given a linear system, an equivalent system is obtained by adding

to one equation a multiple of another one. In term of the matrix

associated to the linear system, this amounts to adding to a row a

multiple of another one.

Given a linear system, an equivalent system is obtained by rescaling

an equation by a non-zero factor. In term of the matrix associated

to the linear system, this amounts to multiplying the row vector

corresponding to the equation by a scalar.

We can therefore proceed and start eliminating as much variables as we

can, trying to obtain a matrix from which reading the solution is a simple

procedure. Let us see an example.

Example We solve the following 2 × 3 linear system:

𝑥 − 𝑦 − 2𝑧 = 0

3𝑥 + 2𝑦 + 𝑧 = 2
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We start by writing the augmented matrix[
1 −1 2 0

3 2 1 2

]
,

which includes the right hand side of the system in the last column.

We proceed with the row reduction in order to reduce the system to an

equivalent one that is easier to solve.

We denote by 𝑅𝑘 the row number 𝑘 of the matrix (in this example,

𝑘 = 1, 2). Assume 𝑎 ≠ 0, 𝑏 ∈ ℝ; 𝑅𝑘 → 𝑎𝑅𝑘 + 𝑏𝑅 𝑗 denotes the operation

of replacing 𝑅𝑘 with the linear combination 𝑎𝑅𝑘 + 𝑏𝑅 𝑗 .18 Then18: 𝑎 ≠ 0 is crucial.

[
1 −1 2 0

3 2 1 2

]
𝑅2→𝑅2−3𝑅1−−−−−−−−−→

[
1 −1 2 0

0 5 −5 2

]
𝑅2→ 𝑅

2

5−−−−−→
[
1 −1 2 0

0 1 −1
2

5

]
𝑅1→𝑅1+𝑅2 |−−−−−−−−−→

[
1 0 1

2

5

0 1 −1
2

5
.

]
The column in position 𝑗 corresponds to the variable in position 𝑗.

With the help of row reduction, the original linear system has been

transformed into the equivalent system:

𝑥 + 𝑧 = 2

5

𝑦 − 𝑧 = 2

5

,

Selecting 𝑧 as a free variable, we re-write it as:

𝑥 =
2

5

− 𝑧

𝑦 =
2

5

+ 𝑧,

We see that (𝑥, 𝑦) depends on the value of 𝑧. The solution set of the

linear system is therefore one-dimensional: geometrically, it is the line

parametrized by the two equations above, with 𝑧 being the free parameter.

Note that the line does not pass through the origin, in agreement with

the fact that the system is not homogeneous. ■

The solution set of a system of homogeneous linear equations is a vector

space. The dimension of this vector space coincides with the number

of free variables. In particular, if there are no free variables then either

the solution is unique or the system is inconsistent – it does not have

solutions.

Example Find an example of a linear system with a) no solutions, and

b) an example of a linear system whose solution set has 3 free variables

out of a total of 5.

To find an example of a) is very easy: write an equation “· · · = 1”, then

add another equation, obtained by changing the constant to the right

hand side, “· · · = 2”. Let us take the following example:

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 1

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 2.
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It should be clear that no solution can exist, since 1 ≠ 2. Proceeding with

row reduction, we can see it algorithmically: we replace 𝑅2 → 𝑅2 − 𝑅1

and we obtain the system:

3𝑥 + 𝑦 − 𝑧 + 𝑤 = 1

0 = 1,

which is inconsistent.

As for b), we can produce an example of a matrix that gives 3 free

variables, if treated as the augmented matrix of a linear system:
1 0 1 1 1 1

0 1 1 1 1 1

0 0 0 0 0 0

 .
The examples of this section have shown that, if 𝐴 is a matrix associated

with the linear system 𝐴x = b, then:

the rows of the matrix corresponds to the system’s equations, the

column to its variables;

interchanging two rows of the matrix swaps the corresponding

equations in the linear system; interchanging two columns swaps

the corresponding variables.

Example The system

3𝑥 − 𝑦 + 𝑧 = 0

𝑥 + 𝑦 + 𝑧 = 3

corresponds to the matrix [
3 −1 1

1 1 1

]
.

If we switch 𝑦 and 𝑧,19 we obtain 19: Which should not be done unless ab-

solutely necessary, to be honest, but nev-

ermind that for now.
3𝑥 + 𝑧 − 𝑦 = 0

𝑥 + 𝑧 + 𝑦 = 3,

which corresponds to the matrix[
3 1 −1

1 1 1

]
.

3.4.2 Linear Systems and Matrices

Row reduction can be used to invert non-singular matrices. Let 𝐴 ∈ M𝑛,𝑛

be such that det(𝐴) ≠ 0. Construct the augmented matrix (𝐴 | I𝑛) and

row reduce it using only the 3 following allowable operations:

𝑅 𝑗 → 𝑅 𝑗 + 𝑏𝑅𝑘 , 𝑗 ≠ 𝑘;

𝑅 𝑗 → 𝑎𝑅 𝑗 , 𝑎 ≠ 0;

𝑅 𝑗 ↔ 𝑅𝑘 , 𝑗 ≠ 𝑘.
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The process leads to

(𝐴 | I𝑛)
RREF−−−−→ (I𝑛 | 𝐴−1).

Example Let 𝐴 =

[
1 2

3 1

]
. We have seen that det(𝐴) = −5 and so that

𝐴 is invertible. We reduce the augmented matrix:

[
1 2 1 0

3 1 0 1

]
𝑅2→𝑅2−3𝑅1−−−−−−−−−→

[
1 2 1 0

0 −5 −3 1

]
𝑅2→− 𝑅

2

5−−−−−−→
[
1 2 1 0

0 1
3

5
− 1

5

]
𝑅1→𝑅1−2𝑅2 |−−−−−−−−−→

[
1 0 − 1

5

2

5

0 1
3

5
− 1

5
;

]
so [

1 2

3 1

]−1

=
1

5

[
−1 2

3 −1

]
.

3.5 Matrix Diagonalization

Through a series of specific transformations, some matrices can be

brought into diagonal form. This seemingly inconspicuous property has

far-reaching consequences.

3.5.1 Eigenvalues and Eigenvectors

A matrix is diagonal if its non-zero entries can only be found along

the diagonal.
20

Diagonal matrices are very simple: in associated linear20: Note that the diagonal entries them-

selves could be zero.
systems, the variables involved are “decoupled”, and solving the system

amounts to solving a collection of linear equations in one variable. In

fact, for the diagonal matrix 𝐴 with diagonal entries denoted, in order,
by 𝜆1 ,𝜆2 , . . . ,𝜆𝑛 , the linear system 𝐴x = b is

𝜆1𝑥1 = 𝑏1

𝜆2𝑥2 = 𝑏2

...

𝜆𝑛𝑥𝑛 = 𝑏𝑛 .

Note that if 𝜆 𝑗 = 0 for some index 𝑗, the system has solution only if 𝑏 𝑗 = 0,

and the variable 𝑥 𝑗 corresponds to a subspace belonging to ker(𝐴).

But matrices are not “absolute objects”, in the sense that the values of

the entries of a matrix depend on the choice of a basis of the vector

space where the matrix operates as a linear map. Can we change the

coordinates so that a given matrix, with respect to this new coordinate

system, is diagonal?
21

21: The answer to this question is: “not

always, but we can still do partial diago-

nalization”. The first step in answering this question requires the introduction of

eigenvalues and eigenvectors.
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Let 𝐴 be a square matrix of size 𝑛. Let v ≠ 0 ∈ ℝ𝑛
. We say that v is

an eigenvector of 𝐴 if

𝐴v = 𝜆v

for some scalar 𝜆 ∈ ℂ. The number 𝜆 is said to be the eigenvalue
of 𝐴 associated to the eigenvector v.

If v ≠ 0 ∈ ℝ𝑛
is an eigenvector of 𝐴 associated with eigenvalue 𝜆,

then so is 𝑐v, 𝑐 ≠ 0. Indeed, if 𝐴v = 𝜆v, then

𝐴(𝑐v) = 𝑐𝐴v = 𝑐𝜆v = 𝜆(𝑐v).

By definition, the zero vector 0 cannot be an eigenvector. Also, note that

for a given eigenvector, only one eigenvalue is associated to it.
22

22: But eigenvalues/eigenvectors can be

complex, even if the matrix only has real

entries.What happens when we apply a matrix to one of its eigenvector? A

eigenvector spans a one dimensional vector space (a line), and along this
line the matrix acts like a scalar, rescaling v by 𝜆.

The goal of diagonalization is to transform the matrix to a form which

is as close as possible to a diagonal; the best form would be a diagonal

matrix, as we can see in the next exercise.

Example Let 𝐴 be a diagonal matrix. Show that the eigenvalues of 𝐴

are the diagonal values. What are the eigenvectors of 𝐴?

The matrix is of the form

𝐴 =


𝑎1,1 0 · · · 0

0 𝑎2,2 · · · 0

...
...

. . .
...

0 0 · · · 𝑎𝑛,𝑛


.

For the vector

e𝑘 = (0, 0, . . . , 0, 1, 0, . . . , 0)⊤ ,

it is easy to verify that

𝐴e𝑘 = 𝑎𝑘,𝑘e𝑘 .

Hence e𝑘 is the eigenvector with eigenvalue 𝜆𝑘 = 𝑎𝑘,𝑘 . ■

An eigenvector,
23

can come from only one eigenvalue. That is in fact 23: Or the 1-dimensional eigenspace

spanned by it.
almost obvious. Suppose that an eigenvector v of a matrix 𝐴 satisfies the

eigenvector equation with two different eigenvalues, which we call 𝜆 and

𝜇, which is to say that

𝐴v = 𝜆v and 𝐴v = 𝜇v.

Since the two left-hand sides of the equations above are the same, it

follows that 𝜆v = 𝜇v. Since v, being an eigenvector, is non-zero by

definition, this last equation implies that 𝜆 = 𝜇.
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Example Can two linearly independent eigenvector have the same

eigenvalue? If you believe that this is true (which it is), prove it by finding

an example of a a matrix which has the same eigenvalue for more than

one independent eigenvector.

The zero matrix can be used, but let us take a non-trivial example. Fix

any 𝜆 ≠ 0 ∈ ℝ and consider the matrix
𝜆 0 0

0 𝜆 0

0 0 0


The eigenvalue 𝜆 is associated to two linearly independent eigenvectors,

i = (1, 0, 0)⊤ and j = (0, 1, 0)⊤;
24

the eigenvalue 0 is associated to the24: These are not the only two linearly

independent eigenvectors, however.
eigenvector k = (0, 0, 1)⊤.

25 ■
25: In particular, k spans ker(𝐴).

But what do eigenvectors represent, geometrically?
26

26: It is important to note that while we

have illustrated the eigenconcepts with ar-

rows inℝ𝑛
, any linear mapping of a vector

space to another could have eigenvectors;

in some cases eigenvectors are functions,

not geometrical vectors.

Example Let

𝐴 =

[
3 2

0 1

]
.

We can show that v = (1, 0)⊤ is an eigeventor of 𝐴, with eigenvalue 3,

since 𝐴v = 3v. Applying 𝐴 to v stretches it by a factor of 3, as seen

below.

plot(NA,xlim=c(-6,6), ylim=c(-6,6),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,0, col="blue")

arrows(0,0,3,0, col="blue")

But the vector w = (1, 1)⊤ is not an eigenvector of 𝐴 since 𝐴w = (5, 1)⊤ ≠

𝜆(1, 1)⊤, no matter the value of 𝜆. Applying 𝐴 to w does not only dilate

it, it also rotates it.
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plot(NA,xlim=c(-6,6), ylim=c(-6,6),

xlab = expression(list(v[1])),

ylab=expression(list(v[2])))

arrows(0,0,1,1, col="green")

arrows(0,0,5,1, col="green")

The previous examples are easy because the involved matrices are

diagonal; finding the eigenvalues and eigenvectors of a general matrix

will help us transform it to a form that is closer to a diagonal.

The recipe for finding the eigenvalues and eigenvector of a matrix𝐴 starts

with constructing a polynomial equation, known as the characteristic
equation, such that its roots are the eigenvalues of 𝐴.

27
27: The characteristic equation is a direct

consequence of the properties of determi-

nant from Section 3.3.3.Suppose that 𝜆 is an eigenvalue of 𝐴 (the exact value does not matter):

by definition, there is a non-zero eigenvector v such that 𝐴v − 𝜆𝑣 = 0,

which can be re-written as

(𝐴 − 𝜆I𝑛)v = 0,

where I𝑛 is the identity matrix with the same size as 𝐴.

The matrix 𝐴 − 𝜆I𝑛 has therefore a non-zero nullspace, since it contains

the nonzero vector v. It follows that 𝐴−𝜆I𝑛 is not invertible which means

that its determinant is zero.

Hence, the eigenvalue 𝜆 is a solution of the characteristic equation

det(𝐴 − 𝜆I𝑛) = 0.

The expression det(𝐴 − 𝜆I𝑛) is a polynomial in the variable 𝜆, called

the characteristic polynomial of 𝐴. The degree of the characteristic

polynomial (its highest exponent in 𝜆) is the size 𝑛 of the 𝐴.

This works for all sizes 𝑛, but it is typically easier to find the eigenvalues

when 2 ≤ 𝑛 ≤ 4, due to the insolvability of the quintic; for 𝑛 ≥ 5, we

have to use numerical methods (see Chapter 4).
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Example Write the characteristic polynomial of the matrix

𝐴 =

[
1 4

1 2

]
,

and find its eigenvalues.

We need to apply the definition of the characteristic polynomial, expand

the determinant, and simplify. The eigenvalues will be the roots of a

quadratic equation, since 𝐴 is of size 2.

det(𝐴 − 𝜆I2) = det

( [
1 4

1 2

]
− 𝜆

[
1 0

0 1

] )
= det

( [
1 4

1 2

]
−

[
𝜆 0

0 𝜆

] )
= det

[
1 − 𝜆 4

1 2 − 𝜆

]
= (1 − 𝜆)(2 − 𝜆) − 4 = 𝜆2 − 3𝜆 − 2.

The eigenvalues of 𝐴 are thus the solutions of the equation

𝜆2 − 3𝜆 − 2 = 0,

namely

𝜆1,2 =
3 ±

√
17

2

.

In this example, both eigenvalues are real. ■

Let 𝐴 be a square matrix, of any size, and suppose that v and w are

two eigenvectors of 𝐴. Is their sum an eigenvector? What about a linear

combination of them?

In general the sum is not an eigenvector. However, if v and w are associated

with the same eigenvalue 𝜆, then their sum is another eigenvector of 𝐴

with the same eigenvalue, as the following calculations demonstrates:

𝐴(v + w) = 𝐴v + 𝐴w = 𝜆v + 𝜆w = 𝜆(v + w).

The sum v + w is a linear combination; it should not be too difficult to

show that a non-trivial linear combination 𝑎v + 𝑏w, 𝑎, 𝑏 ≠ 0 is not an

eigenvector of 𝐴, unless v and w share their associated eigenvalue.

After we obtain the eigenvalues of 𝐴 from the characteristic equation, the

next step is to find the corresponding eigenvectors.

As before, we let 𝐴 ∈ M𝑛,𝑛 and 𝜆 be an eigenvalue of 𝐴. The vector

subspace of ℝ𝑛
spanned by all eigevenctors with this eigenvalue is

eigenspace 𝐸𝜆. The dimension 𝐸𝜆, as a vector subspace of ℝ𝑛
, is the

geometric multiplicity of the associated eigenvalue 𝜆.

The eigenspace corresponding to an eigenvalue is obtained by solving

the homogeneous linear system (𝐴 − 𝜆I𝑛)v = 0, where the unknown are

the components of the eigenvector v.
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Example What are the eigenvectors of the matrix 𝐴 from the previous

example?

We already know the eigenvalues of 𝐴:

𝜆1,2 =
3 ±

√
17

2

.

To find v1, the eigenvector of 𝐴 associated to 𝜆1, we must solve the

system [
1 − 𝜆1 4

1 2 − 𝜆1

] [
𝑣1,1

𝑣1,2

]
=

[
0

0

]
.

Expanding the system gives two equations in the unknowns 𝑥, 𝑦 (the

components of the eigenvector v1 ).(
1 − 3 +

√
17

2

)
𝑣1,1 + 4𝑣1,2 = 0

𝑣1,1 +
(
2 − 3 +

√
17

2

)
𝑣1,2 = 0.

We expect this system to have a free variable, since the eigenspace has to

be one dimensional.
28

28: Why is that the case?

We can either get the solution via the Gauss-Jordan elimination algorithm

or, we can solve directly by substitution since 𝑛 is quite small. Proceeding

with the second option, we solve both equations for 𝑣1,2, and the second

equation collapses into the first:

𝑣1,2 =
1 +

√
17

8

𝑣1,1.

As expected, we found a one dimensional eigenspace, parametrized by

𝑣1,1. We can exhibit a basis for 𝐸𝜆1
by selecting any non-zero eigenvector

in this space; setting 𝑣1,1 = 1, we find

𝐸𝜆1
= Span{v1} = Span

{[
1

1+
√

17

8
.

]}
Similar computations, which we let the reader perform, yield

𝐸𝜆2
= Span{v2} = Span

{[
1

1−
√

17

8
.

]}
The multiplicity of an eigenvalue is linked to the number of times it

appears as a solution of the characteristic equation. We can count properly

the number of eigenvalues and eigenvector making use of this concept.

An eigenvalue is a solution of the characteristic equation det(𝐴−𝜆𝐼):
the multiplicity of the solution is called the algebraic multiplicity
of the eigenvalue.

It can be shown that the geometric multiplicity, i.e., the dimension

of the associated eigenspace 𝐸𝜆, is smaller than or equal to the

algebraic multiplicity (defined above).
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3.5.2 Similar Matrices

Eigenvectors define subspaces along which the matrix acts by scalar

multiplication.
29

Once we have the eigenvectors, we apply a similarity29: That is to say, by stretching or dilation.

transformation to transform our matrix to a “more diagonal one”.

Before proceeding, we need to define similarity of matrices: two square

matrices 𝐴 and 𝐵 of the same size are said to be similar if there is an

invertible matrix 𝑃 such that

𝐵 = 𝑃−1𝐴𝑃.

The transformation 𝐴→ 𝐵 = 𝑃−1𝐴𝑃 is a similarity transformation.

Example Similarity is an equivalence relation, which means that it

satisfies the 3 following properties:

1. reflexivity – 𝐴 is similar to itself;

2. symmetry – 𝐴 is similar to 𝐵 if and only if 𝐵 is similar to 𝐴;

3. transitivity – if 𝐴 is similar to 𝐵 and 𝐵 is similar to 𝐶, then 𝐴 is

similar to 𝐶.

This exercise is more “theoretical” than our usual fare, but the proof

is easy and it will help us familiarize ourselves with the algebra of

matrices.

1. Let 𝑃 = I, the identity matrix of the same size of 𝐴: then

𝑃−1𝐴𝑃 = I−1𝐴I = I𝐴I = 𝐴.

2. Let 𝐵 = 𝑃−1𝐴𝑃 be the similarity relation. Then we can multiply

both of its sides to the left by 𝑃 and to the right by 𝑃−1
:

𝑃𝐵𝑃−1 = 𝑃𝑃−1𝐴𝑃𝑃−1 = (𝑃𝑃−1)𝐴(𝑃𝑃−1) = I𝐴I = 𝐴.

If we let 𝑄 = 𝑃−1
, we therefore obtain the similarity relation:

𝐴 = 𝑄−1𝐵𝑄.

3. Let 𝐵 = 𝑃−1𝐴𝑃 and 𝐶 = 𝑄−1𝐵𝑄 be the hypothetical similarity

relations. Substituting the second into the first yields:

𝐶 = 𝑄−1𝐵𝑄 = 𝑄−1(𝑃−1𝐴𝑃)𝑄 = (𝑄−1𝑃−1)𝐴(𝑃𝑄) = (𝑃𝑄)−1𝐴(𝑃𝑄).

Hence 𝐶 is similar to 𝐴.

It is important to respect the properties of matrix multiplication: for

numbers (scalars), the similarity relation reduces directly to equality

since 𝑝−1𝑏𝑝 = 𝑝−1𝑝𝑏 = 𝑏 for any number.

For matrices the similarity relation is not trivial, since the matrix product

is not commutative... but it does satisfy the other “standard properties”

of numbers.

In the proof of the second property above, for instance, we made use of

the associative property of matrix multiplication.
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3.5.3 Diagonalization

Now that we have defined the concept of similarity between matrices,

we can conclude our discussion about eigenvalues and eigenvectors with

the last step: the diagonalization of a matrix.

We say that a square matrix 𝐴 is diagonalizable if it is similar to a

diagonal matrix. That is, there exists an invertible matrix 𝑃 such that

𝐷 = 𝑃−1𝐴𝑃

is a diagonal matrix.

As discussed previously, a square matrix 𝐴 ∈ ℝ𝑛
is a linear map from

ℝ𝑛
to ℝ𝑛

. Thus, the matrix 𝐴 is diagonalizable if and only if there exists

a basis of ℝ𝑛
of eigenvectors of 𝐴, with respect to which the linear map

is represented by a diagonal matrix.

The diagonal values of 𝐷 are in fact the eigenvalues of 𝐴, as we will

explain in detail soon.

Once the matrix is diagonal, it is “easy to use”: a linear system associated

to a diagonal matrix of size 𝑛, for example, is equivalent to 𝑛 linear

equations in one variable. The difficult part is to find the eigenvalues and

eigenvectors, since we need to solve equations.
30

30: Thankfully, we have already discussed

how to do this.

Suppose that we found the matrix is diagonalizable, then what is the

relation with the eigenvalue problem?

Let 𝐴 be a square matrix of size 𝑛. Suppose that 𝐴 is diagonalizable.

Then 𝐴 has 𝑛 (possibly repeated) eigenvalues 𝜆1 ,𝜆2 , · · · ,𝜆𝑛 with corre-

sponding eigenvectors v1 , v2 , · · · , v𝑛 . Denote by 𝐷 the diagonal matrix

of the eigenvalues,

𝐷 =


𝜆1 0 · · · 0

0 𝜆2 · · · 0

...
...

. . .
...

0 0 · · · 𝜆𝑛


,

and denote by 𝑃 the matrix whose columns are the eigenvectors 𝐴

(presented in the same order as the eigenvalues!):

𝑃 =
[
v1 v2 · · · v𝑛

]
.

The diagonalization of 𝐴 is given by the similarity transformation:

𝐷 = 𝑃−1𝐴𝑃.

An easy consequence of all this (which we will not prove) is that all

symmetric matrices are diagonalizable. Moreover, if such a matrix only

has real entries, then all of its eigenvalues are real.

Example Show that the equation 𝐷 = 𝑃−1𝐴𝑃 is equivalent to the

equation 𝐴 = 𝑃𝐷𝑃−1
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We multiply the two sides by 𝑃−1
from the left, 𝑃 from the right:

𝑃−1𝐴𝑃 = 𝑃−1(𝑃𝐷𝑃−1)𝑃 = (𝑃−1𝑃)𝐷(𝑃−1𝑃) = 𝐼𝐷𝐼 = 𝐷.

Example Prove that the matrix 𝐴 below is diagonalizable. Diagonalize

it. How are the eigenvalues related to the determinant?

𝐴 =


2 3 0.4 1

3 −1.3 0.6 17

0.4 0.6 0.1 −23

1 17 −23 0


The matrix is symmetric, hence it is diagonalizable. We expect 4 real

eigenvalues (some of which could be duplicates).

We could try to solve the problem by hand, but it would most likely be

rather time-consuming. We use R to speed up the process.

D <- rbind(c(2,3,0.4,1),c(3,-1.3,0.6,17),

c(0.4,0.6,0.1,-23),c(1,317,-23,0))

eigen(D)

det(D)

prod(eigen(D)$values)

eigen() decomposition

$values

[1] -77.8741054 76.0897048 2.9324699 -0.3480693

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.005237695 -0.01940525 0.46752893 -0.26108024

[2,] -0.210057716 -0.20443758 0.06120210 0.07064722

[3,] 0.278113608 0.28194691 0.87637211 0.96259458

[4,] 0.937283918 -0.93719510 -0.09819847 0.01605501

[1] 6048.09

[1] 6048.09

The output of the first two lines of codes produces the set of eigenvectors

and eigenvalues. In particular, 𝐴 is transformed to the diagonal matrix

𝐷 via the eigenvector matrix 𝑃. The third line computes the determinant

of the matrix, which we see is the same as the product of the eigenvalues

of 𝐴, as shown by the fourth line of code.
31

31: This will always be the case.

Invariance of the Determinant

The value of the determinant is respected by similarity transformation: if

𝐴 and 𝐵 are similar matrices, then det(𝐴) = det(𝐵). We can use this fact

to prove that the determinant of a diagonalizable matrix is the product

of its eigenvalues.
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To prove the fist part, we use the property that the determinant respects

the product and inverses: det(𝑃−1𝐴𝑃) = det(𝑃)−1
det(𝐴)det(𝑃) = det(𝐴).

From here, the second part is clear, since for a diagonal matrix the

determinant is the product of the diagonal entries.

But we must be careful: not every square matrix is diagonalizable!

Example For any 𝑡 ≠ 0, the matrix 𝑇 =

[
1 𝑡

0 1

]
only has one eigenvector

(0, 1)⊤, with eigenvalue 𝑡. The similarity recipe presented above can thus

not be applied.

While the matrix is not diagonalizable, we can still construct its Jordan
normal form, which is a more general version of a diagonal matrix [3].

32

32: This is a topic for an advanced linear

algebra course; we will not address it here.

3.6 Exercises

1. The augmented matrix [𝐴|𝐵] of a system has 15 rows and 18

columns. Assume rank(𝐴) = 12 and rank([𝐴|𝐵]) = 13. Which of

the following statements is necessarily true?

a) The system is inconsistent.

b) The system has more than one solution, expressed with one

parameter.

c) The system has more than one solution, expressed with two

parameters.

d) The system has a unique solution.

e) The system has more than one solution, expressed with three

parameters.

f) The system has more than one solution, expressed with four

parameters.

2. Find all values of 𝑏 for which the following system is consistent:

𝑥 + 𝑦 − 𝑧 = 2

𝑥 + 2𝑦 + 𝑧 = 3

𝑥 − 3𝑧 = 2𝑏 − 1

3. Find all the values of ℎ for which the following vectors are linearly

independent: 
1

1

0

0

 ,

1

0

0

1

 ,

0

0

1

1

 ,

1

1

1

ℎ

 .
4. Which of the following sets are subspaces of ℝ2

?

𝑆 = {(𝑥, 𝑦) ∈ ℝ2 | 2𝑥 − 𝑦 = 1}
𝑇 = Span{(−1, 1), (2,−1)}
𝑈 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 = 𝑥2}
𝑉 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 − 3𝑦 = 0}
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5. 𝐴 is a 3 × 3 matrix. Suppose that det(𝐴) = 3. What is det(2𝐴⊤𝐴)?
(Hint: 𝐴⊤ is the transposed of 𝐴.)

6. Let𝐴 =

(
1 2 3

2 1 1

)
and 𝐵 =

(
1 1

-1 2

)
. Which of the following

statements is true?

a) 𝐴𝐵 =

(
-1 1 2

5 4 5

)
b) 𝐵𝐴 =

(
-1 1 2

5 4 5

)
c) 𝐵𝐴 =

(
3 3 4

3 0 -1

)
d) 𝐴𝐵 =

(
3 3 4

3 0 -1

)
e) 𝐵𝐴 =

(
1 2 3

4 5 6

)
f) 𝐴𝐵 =

(
1 2 3

4 5 6

)

7. What is the determinant of

©«
0 0 0 5 0

2 0 3 0 0

1 0 −1 0 0

0 0 0 0 1

0 7 0 0 0

ª®®®®®¬
?

8. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 be the constants and 𝑥, 𝑦 be the unknowns of the

system

𝑎𝑥 + 𝑏𝑦 = 𝑒

𝑐𝑥 + 𝑑𝑦 = 𝑓 .

a) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have a unique solution?

b) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have infinitely many solutions?

c) What condition(s) on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 are needed in order for

the system to have no solution?

9. Let 𝐵 =

[
5 1

1 2

]
. Find all 2 × 2 matrices 𝐴 that satisfy 𝐴𝐵 = 𝐵𝐴.

(Hint: write𝐴 =

[
𝑥 𝑦

𝑧 𝑤

]
, and compute𝐴𝐵 and 𝐵𝐴. Then, solve the

system of 4 equations in 4 unknowns that arises from 𝐴𝐵 = 𝐵𝐴.)

10. Consider the matrix 𝐴 =

(
1 0

2 −1

)
.

a) Find the eigenvalues of 𝐴.

b) For each eigenvalue of 𝐴, find the corresponding eigenspace

of 𝐴, and state its dimension.

11. Consider the matrix 𝐴 =

©«
0 0 1 1 0

−1 1 0 −5 1

1 −1 0 5 1

2 −2 −1 9 0

ª®®®¬, whose re-
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duced row echelon form is

�̃� =


1 −1 0 5 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0


a) Find the column space of 𝐴? (Hint: find the columns of 𝐴 that

are necessary to express the column space of 𝐴.)

b) Are the columns of 𝐴 linearly independent?

c) What is the dimension of the column space of 𝐴?

d) Find a basis for the nullspace of 𝐴.

e) Does the system 𝐴𝑥 = 0 have a unique solution?

12. Find all values of 𝑥 for which det


1 𝑥 𝑥

−𝑥 −2 −𝑥
𝑥 −𝑥 −3

 = 0.

13. Let𝑉 be a vector space and let u, v,w ∈ 𝑉 . Which of the following

statements are true?

13.. If {u, v} is linearly independent, so is {u, v, u + v}.
13.. If {u, v,w} is linearly independent, so is {u, v}.
13.. If {u, v,w} is linearly dependent, so is {u, v}.
13.. If {u, v} is linearly independent, so is {u, u + v}.

14. Which of the following statements are true?

a) The set {(𝑥, 𝑥 − 1, 𝑦) ∈ ℝ3 | 𝑥, 𝑦 ∈ ℝ} is a subspace of ℝ3
.

b) The set {𝑝(𝑥) ∈ ℙ4 | 𝑝(2) = 0} is a subspace of ℙ4.

c) The set {𝐴 ∈ M2,2 | 𝐴2 = 𝐴} is not a subspace of M2,2.

15. Let {u, v,w, z} be a set of linearly independent vectors. Which of

the following sets of vectors are linearly dependent?

a) {u + v, v + w,w + u}
b) {u, u + z, v, v + w}
c) {u − v, v − w,w − z, z − u}
d) {u, u + z, z}

16. If det


3 −1 𝑥

2 6 𝑦

−5 4 𝑧

 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧, what is the value of 𝑐?

17. Let 𝐴, 𝐵, 𝐶 be square 𝑛 × 𝑛 matrices with det(𝐴) = 1, det(𝐵) = 4

and det(𝐶) = −3. What is the value of det(𝐴2𝐵𝐶⊤𝐵−1)?
18. For each of the following subspaces, exhibit a basis and find the

dimension.

a) {(𝑥, 𝑦, 𝑧, 𝑤)|𝑥 − 𝑦 + 𝑧 − 𝑤 = 0}
b) {𝐴 ∈ M2,2 | 𝐴⊤ = −𝐴}

19. Let 𝐴 =


2 −1 0

−3 2 1

0 1 2

 .

a) Find 𝑐𝐴(𝜆), the characteristic polynomial of 𝐴.

b) Use your answer in (a) to determine the eigenvalues of 𝐴.

c) Find a basis for two of the eigenspaces of 𝐴.
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20. Let𝑈 and𝑊 be subspaces of 𝑉 . Define

𝑈 ∪𝑊 = {v ∈ 𝑉 | v ∈ 𝑈 or v ∈𝑊}
𝑈 ∩𝑊 = {v ∈ 𝑉 | v ∈ 𝑈 and v ∈𝑊}.

a) Show that𝑈 ∩𝑊 is a subspace of 𝑉 .

b) Is𝑈 ∪𝑊 necessarily a subspace of 𝑉? Explain.

21. The trace of a matrix 𝐴, denoted by tr(𝐴), is the sum of the elements

on the diagonal of 𝐴. Thus, tr

[
𝑥 𝑦

𝑧 𝑤

]
= 𝑥 + 𝑤.

a) Show that tr : M2,2 → ℝ is linear, that is, show that

tr

[
𝑎

[
𝑥1 𝑦1

𝑧1 𝑤1

]
+ 𝑏

[
𝑥2 𝑦2

𝑧2 𝑤2

] ]
= 𝑎tr

[
𝑥1 𝑦1

𝑧1 𝑤1

]
+ 𝑏tr

[
𝑥2 𝑦2

𝑧2 𝑤2

]
for all 𝑎, 𝑏, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑤𝑖 ∈ ℝ.

b) Let 𝑥 ∈ ℝ. Find a matrix 𝐴 ∈ M2,2 such that tr(𝐴) = 𝑥.

c) Using the Rank-Nullity Theorem and the result from part b),

can you deduce the value of dim(ker(tr))?

22. Let 𝐴 =


2 −1 0

−3 2 1

0 1 2

 . Find rowsp(𝐴) (the space spanned by the

rows of 𝐴), colsp(𝐴) and nullsp(𝐴).
23. Find (if possible) conditions on 𝑎, 𝑏 and 𝑐 such that the system

𝑥 + 𝑎𝑦 = 0, 𝑦 + 𝑏𝑧 = 0, 𝑧 + 𝑐𝑥 = 0.

has:

a) no solution.

b) one solution. What is the solution in this case?

c) infinitely many solutions. What are the solutions in this case?

24. Amongst the following vectors, which one is a linear combination

of (1, 0, 0) and (0, 1, 1)?

(1, 2, 3), (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 0), (3, 2, 1).

25. Let 𝑇 : ℝ2 → ℝ be a linear transformation. If 𝑇(1, 2) = 3 and

𝑇(1, 0) = −1, what is 𝑇(1, 1)?
26. Amongst

𝑈 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1}; 𝑉 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 + 𝑦 ≤ 0};
𝑊 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 = 2𝑦},

which sets are subspaces of ℝ2
?
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by Patrick Boily (inspired by Diane Guignard)

In today’s digital age, it’s hard to envision a world devoid of data and

computers. Yet, the principles of "data science" predate our modern era

of digital computation.

Take, for instance, Johannes Kepler’s remarkable 16th-century compu-

tations. Before the invention of calculus, he analyzed the orbit of Mars

based on Tycho Brahe’s observations. This monumental effort culminated

in the Laws of Planetary Motion [6]. Fast forward to the 20th century, where

human computers at the Jet Propulsion Laboratory painstakingly calculated

the number of rockets needed for space missions. These computations

often spanned over a week, filling six to eight notebooks with data

and intricate formulas [4]. Such endeavours underscore the invaluable

contributions of data-based calculations to our scientific legacy.

Modern technology allows us to retrace and even surpass the feats of our

predecessors in a mere fraction of their original time. With advancements

in quantum computing, big data processing, and artificial intelligence on

the horizon, it seems our computational potential knows no bounds – at

least from a technical perspective.
1

1: From a sociological and ethical view-

point, however, the landscape is poten-

tially more complex.This chapter provides an overview of the foundational concepts and

techniques at the heart of data science: the often-hidden mathematics
underlying data calculations and data processing. Substantially more

details are available in [1, 3].
2

2: Some of the required topological con-

cepts can also be found in [2].

4.1 Basic Concepts

In scientific computing, we typically navigate from a physical problem
(observed phenomenon) to a computed solution (algorithm solution)

via a mathematical problem (model) and/or a numerical problem, as

illustrated in Figure 4.1.

If 𝑢 is the real solution of the problem and �̂� the computed solution, we

are often interested in the computational error, for obvious reasons: the

smaller it is, the more confident we are in exhibiting �̂� as a solution.

There are two types of such errors:

absolute error: |𝑢 − �̂� |;
relative error: |𝑢−�̂� |

|𝑢 | .

Sources of Error In practice, it is nearly always the case that the com-

putational error is not 0, i.e., that 𝑢 ≠ �̂�.
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Figure 4.1: Schematics of scientific com-

puting (modified from [1]).

That might prove to be the case due to:

errors in the mathematical model;

errors in the input data (e.g., due to measurements);

approximation errors, such as discretization errors (in interpo-

lation, differentiation, integration, ...) and convergence errors (in

iterative methods), and/or

round-off errors due to finite machine precision.

Assessing Numerical Algorithms In theory, there may be multiple

ways of solving a problem numerically. In practice, we usually favour

algorithms that are:

accurate;

efficient (in terms of CPU runtime, storage requirements, rate of

convergence, etc.), as well as

robust/reliable/stable (roughly speaking, computations do not

magnify approximation errors).

4.1.1 Round-Off Error

In a computer, a real number 𝑥 is stored using a floating point represen-
tation:

fl(𝑥) = (−1)𝑠 · (1.𝑑1𝑑2 · · · 𝑑𝑡) · 2
𝑒 ,

where

𝑠 ∈ {0, 1} determines the sign of 𝑥, which is positive if 𝑠 = 0, and

negative if 𝑠 = 1;

𝑓 = 𝑑1𝑑2 . . . 𝑑𝑡 is the mantissa (or fraction) of 𝑥 in base 2, with

𝑑𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑡, and

𝑒 is the exponent, with 𝐿 ≤ 𝑒 ≤ 𝑈 for some 𝐿,𝑈 .

For instance, the floating point representation of −6.5 is

fl(−6.5) = (−1)1 · (1.101) · 2
2 =⇒ −

(
1 + 1

2

+ 1

2
3

)
· 2

2 = −6.5.
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It is not too difficult to show that the following bound applies on the

relative (rounding) error:

|𝑥 − fl(𝑥)|
|𝑥 | ≤ 2

−(𝑡+1).

Single vs. Double Precision Different operational systems/computa-

tional software use different values of 𝑠, 𝑒, and 𝑓 .

𝑠 𝑒 𝑓 𝐿 𝑈

single (32 bits) 1 bit 8 bits 23 bits −126 127

double (64 bits) 1 bit 11 bits 52 bits −1022 1023

In double precision, for instance, we represent numbers as follows:

(−1)𝑠 ·
(
1 +

52∑
𝑖=1

𝑑𝑖

2
𝑖

)
· 2

𝑒
with 𝐿 = −1022 ≤ 𝑒 ≤ 1023 = 𝑈.

The smallest positive number that can be represented has 𝑠 = 0,

𝑑𝑖 = 0, and 𝑒 = 𝐿 =⇒ 𝑥min = 2
−1022

;

the largest positive number has 𝑠 = 0, 𝑑𝑖 = 1, and 𝑒 = 𝑈 =⇒
𝑥max = (2 − 2

−52)21023.

We can recover these values (and other parameters) in R.

.Machine

$double.eps

[1] 2.220446e-16

$double.neg.eps

[1] 1.110223e-16

$double.xmin

[1] 2.225074e-308

$double.xmax

[1] 1.797693e+308

$double.base

[1] 2

$double.digits

[1] 53

$double.rounding

[1] 5

$double.guard

[1] 0

$double.ulp.digits

[1] -52

$double.neg.ulp.digits

[1] -53

$double.exponent

[1] 11

$double.min.exp

[1] -1022

$double.max.exp

[1] 1024

$integer.max

[1] 2147483647

$sizeof.long

[1] 4

$sizeof.longlong

[1] 8

$sizeof.longdouble

[1] 16

$sizeof.pointer

[1] 8

$longdouble.eps

[1] 1.084202e-19

$longdouble.neg.eps

[1] 5.421011e-20

$longdouble.digits

[1] 64

$longdouble.rounding

[1] 5

$longdouble.guard

[1] 0

$longdouble.ulp.digits

[1] -63

$longdouble.neg.ulp.digits

[1] -64

$longdouble.exponent

[1] 15

$longdouble.min.exp

[1] -16382

$longdouble.max.exp

[1] 16384

Round-off arithmetic can lead to odd behaviour – consider, for instance,

the function 𝑓 : (0,∞) → R defined by

𝑓 (𝑥) = (1 + 𝑥) − 1

𝑥
.
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In theory, we know that 𝑓 ≡ 1 on (0,∞). In practice, things get messy.

We define the function in R using the following chunk of code.

f.test <- function(x){

((1+x)-1)/x

}

The function evaluates exactly to 1 for 𝑥 = 1, 10
−9 , 10

−10
.

> f.test(1)

[1] 1

> f.test(0.0000000001)

[1] 1

> f.test(0.00000000001)

[1] 1

For smaller values, something strange is happening.

> f.test(0.000000000001)

[1] 1.000089

> f.test(0.0000000000001)

[1] 0.9992007

> f.test(0.000000000000001)

[1] 1.110223

> f.test(0.0000000000000001)

[1] 0

This phenomenon is known as cancellation error. Say we want to compute

𝑓 (10
−16). We must first add 10

−16
and 1 – to do so, we first need to align

the exponents.

1 = 1.000000000000000 × 10
0

10
−16

= 1.000000000000000 × 10
−16

= 0.100000000000000 × 10
−15

= 0.010000000000000 × 10
−14

= 0.001000000000000 × 10
−13

= 0.000100000000000 × 10
−12

= 0.000010000000000 × 10
−11

= 0.000001000000000 × 10
−10

= 0.000000100000000 × 10
−9

= 0.000000010000000 × 10
−8

= 0.000000001000000 × 10
−7

= 0.000000000100000 × 10
−6

= 0.000000000010000 × 10
−5

= 0.000000000001000 × 10
−4

= 0.000000000000100 × 10
−3

= 0.000000000000010 × 10
−2

= 0.000000000000001 × 10
−1

= 0.000000000000000 × 10
0

From the perspective of double precision arithmetic, 1 + 10
−16 = 1! This

explains why 𝑓 (10
−16) = 0 in R.

3
3: In R, the only numbers that are repre-

sented exactly are the integers and neg-

ative powers of 2. More information on

round-off error (and error propagation) is

available in [3].
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4.2 Solving an Equation in 1 Variable

In this section, we will discuss how to solve an equation of the form

𝑓 (𝑥) = 0

numerically, where 𝑓 : [𝑎, 𝑏] → ℝ is a (potentially non-linear) continuous
function. A real number 𝑥∗ ∈ [𝑎, 𝑏] for which 𝑓 (𝑥∗) = 0 is a root (or a

zero) of the function 𝑓 ; “solving 𝑓 in [𝑎, 𝑏]” means finding (at least) one

root of 𝑓 in [𝑎, 𝑏].4 4: When the context is clear, we will drop

“in [𝑎, 𝑏]” from the conversation.

Iterative Procedures In some cases, we may be able to solve 𝑓 exactly –

if 𝑎 ≠ 0, for instance, the linear equation 𝑎𝑥 + 𝑏 = 0 has exactly one zero

at 𝑥∗ = −𝑏/𝑎. In practice, we can usually only hope to solve a continuous

𝑓 approximately, assuming a solution even exists.
5

5: Not every function has a zero: for in-

stance, 𝑓 : ℝ → ℝdefined by 𝑓 (𝑥) = 𝑥2+1

does not have a root in ℝ.In general, we must use an iterative procedure in order to zoom in

on a root. Given an initial guess 𝑥0, we generate a sequence of iterates
𝑥1 , 𝑥2 , 𝑥3 , . . . which (hopefully) converges to a root 𝑥∗ of 𝑓 .

In order to exhibit a candidate 𝑥∗, we must stop the iterative process

after a finite number of iterations 𝑛, according to a prescribed stopping
criterion such as:

|𝑥𝑛 − 𝑥𝑛−1 | ≤ tol;

|𝑥𝑛 − 𝑥𝑛−1 |/|𝑥𝑛 | ≤ tol, provided 𝑥𝑛 ≠ 0, or

| 𝑓 (𝑥𝑛)| ≤ tol,

where tol is the algorithm’s prescribed tolerance. We can avoid infinite

loops by also prescribing a maximum number of iterations 𝑁max.

4.2.1 Bisection Method

This method is based on the intermediate value theorem: if 𝑓 ∈ 𝐶([𝑎, 𝑏])
and 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0, then there exists 𝑥∗ ∈ [𝑎, 𝑏] such that 𝑓 (𝑥∗) = 0.

Let 𝑎0 = 𝑎, 𝑏0 = 𝑏 and 𝑥0 = (𝑎0 + 𝑏0)/2. There are three possibilities:

1. 𝑓 (𝑥0) = 0, in which case 𝑥∗ = 𝑥0 is a root and we are done;

2. 𝑓 (𝑎0) 𝑓 (𝑥0) < 0, in which case 𝑓 has a root in [𝑎, 𝑥0] and we set

𝑎1 = 𝑎0, 𝑏1 = 𝑥0, or

3. 𝑓 (𝑏0) 𝑓 (𝑥0) < 0, in which case 𝑓 has a root in [𝑥0 , 𝑏] and we set

𝑎1 = 𝑥0, 𝑏1 = 𝑏0.

In the latter two cases, we also set 𝑥1 = (𝑎1 + 𝑏1)/2; the bisection method
re-iterates this process to generate a sequence {𝑥0 , 𝑥1 , 𝑥2 , . . .}, which

converges to a root 𝑥∗ ∈ [𝑎, 𝑏] of 𝑓 .

Illustration of the Method Let 𝑓 : [𝑎, 𝑏] → ℝ be the continuous function

whose graph is displayed on the next page. Let 𝑎0 = 𝑎, 𝑏0 = 𝑏 and

𝑥0 = (𝑎0 + 𝑏0)/2; clearly, 𝑓 (𝑎0) 𝑓 (𝑏0) < 0.
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𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎0

𝑏0

𝑓 (𝑎0)

𝑓 (𝑏0)

𝑓 (𝑥0)

𝑥0

We find ourselves in the third case, since 𝑓 (𝑏0) 𝑓 (𝑥0) < 0; as such 𝑓 has

a root in [𝑥0 , 𝑏0]. In the next iteration, we set 𝑎1 = 𝑥0, 𝑏1 = 𝑏0, and

𝑥1 = (𝑎1 + 𝑏1)/2.

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎1

𝑏1

𝑓 (𝑎1)

𝑓 (𝑏1)

𝑓 (𝑥1)

𝑥1

We find ourselves in the second case, since 𝑓 (𝑎1) 𝑓 (𝑥1) < 0; as such 𝑓

has a root in [𝑎1 , 𝑥1]. In the next iteration, we set 𝑎2 = 𝑎1, 𝑏2 = 𝑥1, and

𝑥2 = (𝑎2 + 𝑏2)/2, and so on.

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎2

𝑏2

𝑓 (𝑎2)

𝑓 (𝑏2)
𝑓 (𝑥2)

𝑥2
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Assume that we would like to use the bisection method to find an

approximation 𝑥𝑛 of a root 𝑥∗ satisfying

|𝑥𝑛 − 𝑥∗ | ≤ tol

for a given tolerance tol > 0. How large 𝑛 should be? We can answer this

question using the following result.

Theorem: let 𝑓 ∈ 𝐶([𝑎, 𝑏]) be such that 𝑓 (𝑎) 𝑓 (𝑏) < 0. The sequence {𝑥𝑘}
generated by the bisection method approximates a root 𝑥∗ of 𝑓 with

|𝑥𝑘 − 𝑥∗ | ≤
𝑏 − 𝑎
2
𝑘+1

, 𝑘 ≥ 0.

Proof: we go through the procedure as illustrated previously; at step 𝑘,

we have 𝑥∗ ∈ [𝑎𝑘 , 𝑏𝑘] and 𝑥𝑘 = (𝑎𝑘 + 𝑏𝑘)/2. Moreover, 𝑏𝑘 − 𝑎𝑘 = (𝑏−𝑎)
2
𝑘 as

we have divided [𝑎, 𝑏] in two 𝑘 times at that point, and so

|𝑥𝑘 − 𝑥∗ | ≤
1

2

(𝑏𝑘 − 𝑎𝑘) =
𝑏 − 𝑎
2
𝑘+1

,

which completes the proof. ■

We can guarantee the desired absolute error tolerance if

|𝑥𝑛 − 𝑥∗ | ≤
𝑏 − 𝑎
2
𝑛+1

< tol,

which is to say

2
𝑛+1 ≥ 𝑏 − 𝑎

tol

=⇒ 𝑛 ≥ log
2

(
𝑏 − 𝑎
tol

)
− 1.

Example: consider the function 𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2, 𝑥 ∈ [0, 5],
whose graph is given below.

𝑥

𝑦

5

4

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2
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We can guarantee that the bisection iterate 𝑥𝑛 is within tol = 10
−4

of 𝑥∗

when 𝑛 ≥ log
2
(5 · 10

4) − 1 = 14.60964, which is to say when 𝑛 ≥ 15.

Algorithm: bisection method

Input: continuous 𝑓 ; 𝑎, 𝑏 with 𝑓 (𝑎) 𝑓 (𝑏) < 0; tol > 0

Output: approximation 𝑝 of 𝑥∗, 𝑛

1 Initialization: 𝑎0 = 𝑎, 𝑏0 = 𝑏, 𝑥0 =
𝑎0+𝑏0

2
, 𝑛 = ⌈log

2

(
𝑏−𝑎
tol

)
− 1⌉;

2 For 𝑘 = 0, 1, 2, . . . , 𝑛 − 1 do

3 If 𝑓 (𝑥𝑘) = 0 then
4 𝑝 = 𝑥𝑘 , 𝑛 = 𝑘;

5 Stop

6 If 𝑓 (𝑎𝑘) 𝑓 (𝑥𝑘) < 0 then
7 𝑎𝑘+1 = 𝑎𝑘 , 𝑏𝑘+1 = 𝑥𝑘 ;

8 Else
9 𝑎𝑘+1 = 𝑥𝑘 , 𝑏𝑘+1 = 𝑏𝑘 ;

10 End
11 𝑥𝑘+1 =

𝑎𝑘+1
+𝑏𝑘+1

2
;

12 End
13 𝑝 = 𝑥𝑛 .

Comments On the positive side, the bisection method always converges

when 𝑓 has a different sign at 𝑎 and 𝑏, and we have precise control over

the error; on the negative side, the convergence is quite slow (the upper

bound on the error only halves with each step), and the method fails to

be of use if 𝑓 does not change sign near a root 𝑥∗.

Example Throughout this section, we will attempt to find roots of the

test function 𝑓 (𝑥) = sin(𝑥) + 1/2 over the interval [2, 8].

𝑥

𝑦

5

2 8

𝑓 (𝑥) = sin(𝑥) + 1/2

Graphically, we see that there are two roots: 𝑥∗ ∈ (2, 5) and 𝑥∗ ∈ (5, 8).
The function is implemented in R as follows.

f.test <- function(x){ sin(x)+1/2 }



4.2 Equations With 1 Variable 189

Can the bisection method find 𝑓 ’s roots? Here is an implementation of

the method in R.

Bisection method
bisection <- function(f, a, b, tol) {

# initialization

k <- 0 # 0th iteration

x <- (a + b)/2 # first iterate (root approximation)

x_vec <- c(x)

# max number of iterations for absolute error control

n <- ceiling(log2((b - a) / tol) - 1)

# Bisection method

while (k < n) {

if (f(x) == 0) {

break

} else {

k <- k + 1

if (f(a) * f(x) < 0) {

b <- x

} else {

a <- x

}

}

x <- (a + b) / 2

x_vec <- c(x_vec, x)

}

return(list(x=x, k=k, x_vec=x_vec))

}

Note that we have not included input checks to the code: we must have

𝑎 < 𝑏, tol > 0, 𝑓 (𝑎) 𝑓 (𝑏) < 0.

We look for 𝑥∗ in the interval [2, 5], with a tolerance of 0.00005.

bisection(f.test, 2, 5, 0.00005)

$x

[1] 3.665207

$k

[1] 15

$x_vec

[1] 3.500000 4.250000 3.875000 3.687500 3.593750 3.640625 3.664062

[8] 3.675781 3.669922 3.666992 3.665527 3.664795 3.665161 3.665344

[15] 3.665253 3.665207
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What about 𝑥∗ in the interval [5, 8], with the same tolerance?

bisection(f.test, 5, 8, 0.00005)

$x

[1] 5.759567

$k

[1] 15

$x_vec

[1] 6.500000 5.750000 6.125000 5.937500 5.843750 5.796875 5.773438

[8] 5.761719 5.755859 5.758789 5.760254 5.759521 5.759888 5.759705

[15] 5.759613 5.759567

The object x_vec lists the iterates 𝑥0 to 𝑥15: the convergence rate is indeed

rather slow.

We can verify that the final iterates are quite close to 𝑥∗ and 𝑥∗.

f.test(3.665207)

f.test(5.759567)

[1] -1.348466e-05

[1] -1.691475e-05

Note however that we manually have to separate the problem into two

sub-problems in order to capture both roots. If we were to try to find the

roots of the test function over a longer interval containing both 𝑥∗ and 𝑥∗,
such as [-10,10],

6
the algorithm would find at most one root.6: We should first verify that

𝑓 (−10) 𝑓 (10) < 0.

bisection(f.test, -10, 10, 0.00005)

$x

[1] 3.665199

$k

[1] 18

$x_vec

[1] 0.000000 5.000000 2.500000 3.750000 3.125000 3.437500 3.593750

[8] 3.671875 3.632812 3.652344 3.662109 3.666992 3.664551 3.665771

[15] 3.665161 3.665466 3.665314 3.665237 3.665199

This highlight an important feature of numerical methods in the context

of finding roots of a function: they are more useful when we already

have a fairly good idea about the location of its roots.

Without the assumption check, the code will still run and might even

converge to a root... but not necessarily so. How does the code respond

for the test function over [2, 8]? Over [2, 3]?
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4.2.2 Golden Ratio Method

We can also “solve” a continuous function 𝑓 : [𝑎, 𝑏] → ℝ by finding a

value 𝑥∗ that maximizes 𝑓 over [𝑎, 𝑏] and/or a value 𝑥∗ that minimizes
𝑓 over [𝑎, 𝑏].7 7: Admittedly, the word “solve” does

some heavy lifting here.

In this new context, the Golden ratio method plays an analogous role for

unimodal continuous functions to that played by the bisection method

in the original context.

This method is based on the max/min theorem: if 𝑓 ∈ 𝐶([𝑎, 𝑏]), then there

exist 𝑥∗ , 𝑥∗ ∈ [𝑎, 𝑏] such that 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) ≥ 𝑓 (𝑥∗) for all 𝑥 ∈ [𝑎, 𝑏].

Say we are seeking the minimal value. If 𝑎 = 𝑏, then 𝑥∗ = 𝑥∗ = 𝑎 = 𝑏, so

assume that 𝑎 < 𝑏. Let 𝜑 = (1 +
√

5)/2, and set 𝑎0 = 𝑎 and 𝑏0 = 𝑏.

1. Set 𝑐 = 𝑏0 − (𝑏0 − 𝑎0)/𝜑 and 𝑑 = 𝑎0 + (𝑏0 − 𝑎0)/𝜑. We have

𝜑 < 2 =⇒ 𝑏0 − 𝑎0

2

<
𝑏0 − 𝑎0

𝜑
=⇒ 𝑏0 − 𝑎0 < 2

(
𝑏0 − 𝑎0

𝜑

)
=⇒ 𝑐 = 𝑏0 −

𝑏0 − 𝑎0

𝜑
< 𝑎0 +

𝑏0 − 𝑎0

𝜑
= 𝑑,

1 < 𝜑 =⇒ 𝑏0 − 𝑎0

𝜑
< 𝑏0 − 𝑎0 =⇒ 𝑎0 < 𝑏0 −

𝑏0 − 𝑎0

𝜑
and

𝑎0 +
𝑏0 − 𝑎0

𝜑
< 𝑏0 ,

and so [𝑐, 𝑑] ⊊ [𝑎0 , 𝑏0].
2. If 𝑓 (𝑐) < 𝑓 (𝑑), set 𝑎1 = 𝑎0 and 𝑏1 = 𝑑.

3. Otherwise, set 𝑎1 = 𝑐 and 𝑏1 = 𝑏0.

The algorithm iterates with this new sub-interval [𝑎1 , 𝑏1], to produce a

sequence of nested intervals

[𝑎0 , 𝑏0] ⊊ [𝑎1 , 𝑏1] ⊊ · · · [𝑎𝑘 , 𝑏𝑘] ⊆ · · ·

That the sequence of sub-intervals converges to the minimizer 𝑥∗ is

guaranteed by the nested interval theorem since

lim

𝑘→∞
(𝑏𝑘 − 𝑎𝑘) = lim

𝑘→∞

(
𝑏0 − 𝑎0

𝜑𝑘+1

)
= 0.

We can guarantee a desired absolute error tolerance tol after 𝑛 iterations

if

𝑏𝑛 − 𝑎𝑛 =
𝑏0 − 𝑎0

𝜑𝑛+1

≤ tol,

which is to say

𝜑𝑛+1 ≥ 𝑏0 − 𝑎0

tol

=⇒ 𝑛 ≥ log𝜑

(
𝑏0 − 𝑎0

tol

)
− 1.

We learn in introductory calculus classes that a differentiable function

reaches its max/min at a point where the derivative is 0 or at a point of

the domain where the derivative does not exist.
8

8: So we could use the bisection method

on 𝑓 ′ instead, say.

The Golden Ratio method does not require knowledge of the derivative,

however!
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We implement the method (without checks) as follows.

Golden Ratio method
golden.min <- function(f, a, b, tol) {

# initialization

phi = (1 + sqrt(5))/2

k <- 0 # 0th iteration

c <- b - (b - a)/phi

d <- a + (b - a)/phi

a_vec <- c(a) # first iterate (lower endpoint)

b_vec <- c(b) # first iterate (upper endpoint)

# max number of iterations for absolute error control

n <- ceiling(log((b - a) / tol) / log(phi) - 1)

# Golden Ratio method

while (k < n) {

k <- k + 1

if (f(c) < f(d)) {

b <- d

} else {

a <- c

}

c <- b - (b - a)/phi

d <- a + (b - a)/phi

a_vec <- c(a_vec, a)

b_vec <- c(b_vec, b)

}

# point estimate for minimizer

x = (a + b)/2

fx = f(x)

return(list(fx=fx, x=x, k=k, a_vec=a_vec, b_vec=b_vec))

}

Example In the test function from the previous section, we see that the

minimum occurs somewhere in [4.5, 5].

golden.min(f.test,2,8,0.00005)

$fx

[1] -0.5

$x

[1] 4.712396

$k

[1] 24
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$a_vec

[1] 2.000000 2.000000 3.416408 4.291796 4.291796 4.291796 4.498447

[8] 4.626165 4.626165 4.674948 4.674948 4.693582 4.705098 4.705098

[15] 4.709497 4.709497 4.711177 4.711177 4.711819 4.712216 4.712216

[22] 4.712216 4.712309 4.712367 4.712367

$b_vec

[1] 8.000000 5.708204 5.708204 5.708204 5.167184 4.832816 4.832816

[8] 4.832816 4.753882 4.753882 4.723732 4.723732 4.723732 4.716615

[15] 4.716615 4.713896 4.713896 4.712858 4.712858 4.712858 4.712612

[22] 4.712461 4.712461 4.712461 4.712425

From theoretical considerations, we already know that the minimal value

of 𝑓 (𝑥) = sin(𝑥) + 1/2 is indeed −1/2.

4.2.3 Fixed Point Iteration Method

Both of the previous algorithms converge slowly, in the sense that while

they do converge, they typically require an unreasonably large number

of iterations to do so.

A root-finding problem 𝑓 (𝑥) = 0 can be transformed into an equivalent

fixed point problem 𝑔(𝑥) = 𝑥. For instance, if

𝑔(𝑥) = 𝑥 − 2 𝑓 (𝑥) or 𝑔(𝑥) = 𝑥 + 𝑓 2(𝑥),

then 𝑓 (𝑥∗) = 0 if and only if 𝑔(𝑥∗) = 𝑥∗.9 An input 𝑥∗ for which 𝑔(𝑥∗) = 𝑥∗ 9: There are infinitely many different for-

mulations for 𝑔, as we will see, but not all

choices are suitable.

is called a fixed point of 𝑔.

The following theorem gives sufficient conditions under which a function

𝑔 : [𝑎, 𝑏] → ℝ has a unique fixed point in [𝑎, 𝑏].

Fixed Point Theorem:

1. if 𝑔 ∈ 𝐶([𝑎, 𝑏]) and 𝑔(𝑥) ∈ [𝑎, 𝑏] for all 𝑥 ∈ [𝑎, 𝑏], then 𝑔 has a

fixed point in [𝑎, 𝑏];
2. if 𝑔′ exists on (𝑎, 𝑏) and if there exists 0 < 𝜌 < 1 such that

|𝑔′(𝑥)| ≤ 𝜌, ∀𝑥 ∈ (𝑎, 𝑏),

then 𝑔 has a unique fixed point in [𝑎, 𝑏].

Proof: define 𝜆 : [𝑎, 𝑏] → ℝ by 𝜆(𝑥) = 𝑔(𝑥) − 𝑥. Since 𝑔(𝑎) ≥ 𝑎, then

𝜆(𝑎) = 𝑔(𝑎) − 𝑎 ≥ 𝑎 − 𝑎 = 0. Since 𝑔(𝑏) ≤ 𝑏, 𝜆(𝑏) = 𝑔(𝑏) − 𝑏 ≤ 𝑏 − 𝑏 = 0.

But 𝑔 is continuous; according to the the intermediate value theorem,

there is thus a 𝑝 ∈ [𝑎, 𝑏] such that 𝜆(𝑝) = 0, which is to say 𝑔(𝑝) = 𝑝.

Now suppose 𝑝∗ , 𝑝∗ ∈ [𝑎, 𝑏] are two fixed points of 𝑔; then

|𝑝∗ − 𝑝∗ | = |𝑔(𝑝∗) − 𝑔(𝑝∗)|.

According to the mean value theorem,
10

if 𝑔 is differentiable, there is a 𝑐 10: See [2] for details.

between 𝑝∗ and 𝑝∗ such that

|𝑝∗ − 𝑝∗ | = |𝑔(𝑝∗) − 𝑔(𝑝∗)| = |𝑔′(𝑐)| · |𝑝∗ − 𝑝∗ | ≤ 𝜌|𝑝∗ − 𝑝∗ | < |𝑝∗ − 𝑝∗ |.

This can only happen if 𝑝∗ = 𝑝∗, and so the fixed point is unique. ■
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Example Consider the equation 𝑓 (𝑥) = 𝑥2 − 2𝑥 − 3 = 0, 𝑥 ∈
[
− 1

2
, 4

]
,

and the equivalent fixed point equation 𝑥 = 𝑔(𝑥) =
√

2𝑥 + 3. Show that

𝑔 has a unique fixed point, and so that 𝑓 has a unique root, in

[
− 1

2
, 4

]
.

Solution: any fixed point of 𝑔 satisfies 𝑥 =
√

2𝑥 + 3 =⇒ 𝑥2 − 2𝑥 − 3 = 0,

and thus is a root of 𝑓 . Over the interval

[
− 1

2
, 4

]
, 𝑔 is continuous and

increasing, as shown below.

𝑥

𝑦

4

4

− 1

2

√
2

√
11 𝑔(𝑥) =

√
2𝑥 + 3

Thus, for any 𝑥 ∈
[
− 1

2
, 4

]
, we have:

− 1

2
≤
√

2 ≤ 𝑔
(
− 1

2

)
≤ 𝑔(𝑥) ≤ 𝑔(4) ≤

√
11 ≤ 4 =⇒ 𝑔

( [
− 1

2
, 4

] )
⊆

[
− 1

2
, 4

]
.

Since 𝑔′(𝑥) = 1√
2𝑥+3

, then we also have:

|𝑔′(𝑥)| ≤ 1√
2

< 1, over

[
−1

2

, 4

]
.

As the assumptions of the theorem are satisfied, 𝑔 admits a unique fixed

point over

[
− 1

2
, 4

]
.

𝑥

𝑦

4

4

− 1

2

√
2

√
11 𝑔(𝑥) =

√
2𝑥 + 3

𝑦 = 𝑥
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For a given continuous function 𝑔 on [𝑎, 𝑏] and initial iterate 𝑥0, the fixed
point iteration process reads as:

𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1.

If {𝑥𝑘} converges to some 𝑥∗ ∈ [𝑎, 𝑏], then 𝑥∗ is a fixed point of 𝑔;
11

11: Note that the fixed point is not neces-

sarily unique.
indeed,

𝑥∗ = lim

𝑘→∞
𝑥𝑘 = lim

𝑘→∞
𝑔(𝑥𝑘−1) = 𝑔

(
lim

𝑘→∞
𝑥𝑘−1

)
= 𝑔(𝑥∗).

Illustration of the Fixed Point Procedure Consider the problem of solv-

ing the equation

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2 = 0, 𝑥 ∈ [0, 5],

and the three equivalent fixed point equations:

1. 𝑥 = 𝑔1(𝑥) = 𝑥 − 1

2
[𝑥 + ln(1 + 𝑥) − 2]

2. 𝑥 = 𝑔2(𝑥) = 2 − ln(1 + 𝑥)
3. 𝑥 = 𝑔3(𝑥) = 𝑒2−𝑥 − 1

We provide a detailed illustration of how the method works on 𝑔1; for 𝑔2

and 𝑔3, we only show the final picture.
12

12: Is it clear that all the fixed point prob-

lems are equivalent to the root-finding

problem?First, we plot the graphs of 𝑦 = 𝑔1(𝑥) and 𝑦 = 𝑥; any intersection of the

two curves over the domain [𝑎, 𝑏](= [0, 5]) must satisfy 𝑔1(𝑥) = 𝑥 and so

is a fixed point of 𝑔1 over the domain.

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

Graphically, we see that there is one such fixed point. How does the

procedure find it?

We need an 𝑥0 in the domain; we select 𝑥0 = 4, for no particular reason,

and we obtain:

𝑥1 = 𝑔1(𝑥0) = 𝑔1(4) = 4 − 1

2
[4 + ln(1 + 4) − 2] ≈ 2.195281;

𝑥2 = 𝑔1(𝑥1) = 𝑔1(2.195281) ≈ 1.516803;

𝑥3 = 𝑔1(𝑥2) = 𝑔1(1.516803) ≈ 1.296907, etc.
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For 𝑘 ≥ 1, each 𝑥𝑘 plays two roles: it is the 𝑦−coordinate of a point on

the curve 𝑦 = 𝑔1(𝑥), which becomes the 𝑥−coordinate of a point on the

curve 𝑦 = 𝑥, which is then fed back into 𝑔1, and so on.

Graphically, this is represented as a rectangular “curve” which converges

to the point (𝑥∗ , 𝑥∗) ≈ (1.20794, 1.20794) in a manner resembling a

staircase; the label 𝑃𝑖 , 𝑗 represents the point with coordinates (𝑥𝑖 , 𝑥 𝑗).

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

𝑥0𝑥∗

𝑃0,1𝑃1,1

𝑃1,2

𝑃2,2

𝑃2,3

𝑃3,3

With 𝑔2 and 𝑔3, the fixed point iterations instead take on the following

forms.

5

5

𝑥

𝑦

𝑦 = 𝑔2(𝑥)

𝑦 = 𝑥

𝑥0𝑥∗

5

5

𝑥

𝑦

𝑦 = 𝑔3(𝑥)

𝑦 = 𝑥

𝑥∗

We see that the method converges for 𝑔1 and 𝑔2, both to the same fixed

point 𝑥∗, but not for 𝑔3, even though 𝑥∗ is a fixed point for the latter. Note

that |𝑔′
𝑖
(𝑥∗)| < 1 for 𝑖 = 1, 2, while |𝑔′

3
(𝑥∗)| > 1.

Convergence So when can we be sure that fixed point iteration con-

verges to a fixed point?
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Fixed Point Theorem (Reprise): let 𝑔 : [𝑎, 𝑏] → ℝ be a function satisfying

hypotheses 1. and 2. of the fixed point theorem of page 193. Then for any

initial iterate 𝑥0 ∈ [𝑎, 𝑏], the sequence {𝑥𝑘} defined by

𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1,

converges to the unique fixed point 𝑥∗ of 𝑔 in [𝑎, 𝑏].

Proof: the original fixed point theorem shows that 𝑔 has a unique fixed

point 𝑥∗ in [𝑎, 𝑏]. Let 𝑥0 ∈ [𝑎, 𝑏]; we must show that 𝑥𝑘 → 𝑥∗ as 𝑘 → ∞.

On the one hand, we have 𝑥𝑘 − 𝑥∗ = 𝑔(𝑥𝑘−1) − 𝑔(𝑥∗) for all 𝑘 ≥ 1. On the

other hand, since 𝑔 is differentiable over (𝑎, 𝑏), the mean value theorem

implies that

𝑔(𝑥𝑘−1) − 𝑔(𝑥∗) = 𝑔′(𝑐𝑘)(𝑥𝑘−1 − 𝑥∗), for some 𝑐𝑘 between 𝑥𝑘−1 and 𝑥∗.

Thus,

|𝑥𝑘 − 𝑥∗ | = |𝑔(𝑥𝑘−1) − 𝑔(𝑥∗)| = |𝑔′(𝑐𝑘)| |𝑥𝑘−1 − 𝑥∗ | ≤ 𝜌|𝑥𝑘−1 − 𝑥∗ |,

by hypothesis. We then have, recursively,

|𝑥𝑘 − 𝑥∗ | ≤ 𝜌|𝑥𝑘−1 − 𝑥∗ | ≤ 𝜌2 |𝑥𝑘−2 − 𝑥∗ | ≤ · · · ≤ 𝜌𝑘 |𝑥0 − 𝑥∗ | → 0

as 𝑘 → ∞ since 𝜌 < 1, which completes the proof. ■

Corollary on the Error Estimates: under the hypotheses of the fixed

point theorem, we can show that:

1. |𝑥𝑘 − 𝑥∗ | ≤ 𝜌𝑘 · max{𝑥0 − 𝑎, 𝑏 − 𝑥0} for 𝑘 ≥ 0;

2. |𝑥𝑘 − 𝑥∗ | ≤ 𝜌𝑘

1−𝜌 · max{𝑥0 − 𝑎, 𝑏 − 𝑥0} for 𝑘 ≥ 1.

Note that the smaller the value 𝜌 < 1 is, the faster the sequence converges

to the fixed point 𝑥∗ of 𝑔.

Stopping Criterion Ideally, we would like the fixed point procedure to

stop whenever the error satisfies 𝑒𝑘 = |𝑥𝑘 − 𝑥∗ | < tol for some prescribed

tolerance tol > 0. However, the exact fixed point 𝑥∗ is not known; instead,

we can use the following stopping criterion:

|𝑥𝑘+1 − 𝑥𝑘 | < tol.

The value 𝑟𝑘 = |𝑥𝑘 − 𝑔(𝑥𝑘)| = |𝑥𝑘 − 𝑥𝑘+1 | is the residual of the fixed point

procedure at step 𝑘. Note that 𝑟𝑘 ≈ tol does not imply that 𝑒𝑘 ≈ tol:

𝑥𝑘 − 𝑥∗ = 𝑥𝑘 − 𝑥𝑘+1 + 𝑥𝑘+1 − 𝑥∗
= 𝑥𝑘 − 𝑥𝑘+1 + 𝑔(𝑥𝑘) − 𝑔(𝑥∗)
= 𝑥𝑘 − 𝑥𝑘+1 + 𝑔′(𝑐𝑘)(𝑥𝑘 − 𝑥∗), for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗,

so that

(1 − 𝑔′(𝑐𝑘))(𝑥𝑘 − 𝑥∗) = 𝑥𝑘 − 𝑥𝑘+1 =⇒ 𝑒𝑘 =
𝑟𝑘

|1 − 𝑔′(𝑐𝑘)|
.

If |𝑔′(𝑐𝑘)| ≪ 1, then 𝑒𝑘 ≈ 𝑟𝑘 ≈ tol; if 𝑔′(𝑐𝑘) ≈ 1, then it is possible that

𝑒𝑘 ≫ tol!
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The fixed point iteration is summarized in the following algorithm.

Algorithm: fixed point iteration

Input: 𝑔 with the appropriate properties on [𝑎, 𝑏], 𝑥0, tol > 0, 𝑁max

Output: approximation 𝑝 of a fixed point 𝑥∗ of 𝑔, number of

iterations 𝑛

1 Initialization: 𝑥1 = 𝑔(𝑥0), 𝑟0 = |𝑥0 − 𝑥1 |, 𝑘 = 0;

2 While 𝑟𝑘 > tol and 𝑘 < 𝑁max do

3 𝑘 = 𝑘 + 1;

4 𝑥𝑘+1 = 𝑔(𝑥𝑘);
5 𝑟𝑘 = |𝑥𝑘 − 𝑥𝑘+1 |;
6 End
7 𝑝 = 𝑥𝑘+1, 𝑛 = 𝑘 + 1.

Here is an implementation of the method in R.

Fixed point method

fixed_point <- function(g, x0, tol, Nmax) {

# initialization

x_old <- x0

x <- g(x_old)

res <- abs(x - x_old)

k <- 1

x_vec <- c(x0, x)

# fixed point iteration

while (res > tol && k < Nmax) {

k <- k + 1

x_old <- x

x <- g(x_old)

res <- abs(x - x_old)

x_vec <- c(x_vec, x)

# tolerance not reached

if (k == Nmax && res > tol) {

cat(’Nmax iterations reached without

satisfying the prescribed tolerance\n’)

}

}

return(list(x = x, k = k, x_vec = x_vec))

}

Example We can find the fixed point 𝑥∗ of 𝑔(𝑥) = − cos(𝑥) with tol =

0.00005 as follows.

g.test <- function(x){ -cos(x) }

fixed_point(g.test, 1, 0.00005, 300)
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$x

[1] -0.7390714

$k

[1] 25

$x_vec

[1] 1.0000000 -0.5403023 -0.8575532 -0.6542898

[5] -0.7934804 -0.7013688 -0.7639597 -0.7221024

[9] -0.7504178 -0.7314040 -0.7442374 -0.7356047

[13] -0.7414251 -0.7375069 -0.7401473 -0.7383692

[17] -0.7395672 -0.7387603 -0.7393039 -0.7389378

[21] -0.7391844 -0.7390183 -0.7391302 -0.7390548

[25] -0.7391056 -0.7390714

We can easily verify that the output is at the very least quite near 𝑥∗,
numerically and graphically.

g.test(-0.7390714)+0.7390714

[1] -2.2984e-05

𝑥

𝑦

1−1

1

−1

𝑦 = − cos(𝑥)

𝑦 = 𝑥

Order of the Method In the proof of the fixed point theorem (reprise),

we saw that

|𝑔(𝑥𝑘) − 𝑔(𝑥∗)| = |𝑔′(𝑐𝑘)| |𝑥𝑘 − 𝑥∗ |

for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗.

If 𝑔, 𝑔′ are continuous over [𝑎, 𝑏] and lim𝑘→∞ 𝑥𝑘 = 𝑥∗, where 𝑔(𝑥∗) = 𝑥∗,
then we see that

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= lim

𝑘→∞

|𝑔(𝑥𝑘) − 𝑔(𝑥∗)|
|𝑥𝑘 − 𝑥∗ |

= lim

𝑘→∞
|𝑔′(𝑐𝑘)| = |𝑔′(𝑥∗)|,

since 0 ≤ |𝑥∗ − 𝑐𝑘 | ≤ |𝑥∗ − 𝑥𝑘 | → 0 and 𝑔′ is continuous.

Thus, |𝑔′(𝑥∗)| provides a measure of the speed of convergence of the

sequence {𝑥𝑘}.
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Let 𝑥𝑘 → 𝑥∗ be such that 𝑥𝑘 ≠ 𝑥∗ for all 𝑘.

1. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 𝜆 ∈ (0, 1),

then {𝑥𝑘} converges linearly to 𝑥∗.

2. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 1,

then {𝑥𝑘} converges sublinearly to 𝑥∗.

3. If

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |

= 0,

then {𝑥𝑘} converges superlinearly to 𝑥∗.

4. Set 𝛼 ≥ 1 an integer; if

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= 𝜆 > 0,

then {𝑥𝑘} converges to 𝑥∗ with order 𝛼; in this case, the value 𝜆 is

known as the asymptotic error constant.1313: If 𝛼 = 1, the convergence is linear

and we must have 𝜆 < 1; if 𝛼 = 2, the

convergence is quadratic. We say that a fixed point iteration 𝑥𝑘 = 𝑔(𝑥𝑘−1) is of order 𝛼 if {𝑥𝑘}
converges to a fixed point 𝑥∗ with order 𝛼. In that case, when 𝑥𝑘 is

sufficiently close to 𝑥∗ then we have

|𝑥𝑘+1 − 𝑥∗ | ≈ 𝜆|𝑥𝑘 − 𝑥∗ |𝛼 .

Example Assume that we have two fixed point iterations, one with

order 𝛼 = 1 and 𝜆 = 0.5, and the other with order 𝛼 = 2 and 𝜆 = 1.

Moreover, suppose that |𝑥0−𝑥∗ | = 10
−1

. Then we would expect to observe

something like the following table.

𝑘 |𝑥𝑘 − 𝑥∗ | 𝛼 = 1,𝜆 = 0.5 𝛼 = 2,𝜆 = 1

0 |𝑥0 − 𝑥∗ | 0.1 0.1

1 |𝑥1 − 𝑥∗ | 0.05 0.01

2 |𝑥2 − 𝑥∗ | 0.025 0.0001

3 |𝑥3 − 𝑥∗ | 0.0125 0.00000001

...
...

...
...

In both cases, 𝑒𝑘 → 0; the convergence is quicker in the second case.
14

14: In practice, this means that we will not

need as many iterations of the fixed point

procedure before exiting the ‘while’ loop

in the algorithm.

As mentioned above, the exact fixed point 𝑥∗ is not known, and so we

cannot compute the absolute error 𝑒𝑘 = |𝑥𝑘 − 𝑥∗ | exactly. Instead, we

estimate the order 𝛼 of a fixed point iteration with the help of the residual

𝑟𝑘 = |𝑥𝑘 − 𝑥𝑘+1 | and search for the value of 𝛼 for which that the ratio

𝑟𝑘+1/𝑟𝛼𝑘 converges to a positive constant.
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We already know the relationship between 𝑟𝑘 and 𝑒𝑘 : 𝑟𝑘 = |1 − 𝑔′(𝑐𝑘)|𝑒𝑘
for some 𝑐𝑘 between 𝑥𝑘 and 𝑥∗; so if

𝑒𝑘+1

𝑒𝛼
𝑘

→ 𝜆 > 0, then

lim

𝑘→∞

𝑟𝑘+1

𝑟𝛼
𝑘

= lim

𝑘→∞

|1 − 𝑔′(𝑐𝑘+1)|
|1 − 𝑔′(𝑐𝑘)|𝛼

· 𝑒𝑘+1

𝑒𝛼
𝑘

=
𝜆

|1 − 𝑔′(𝑥∗)|𝛼−1

> 0.

Example Consider again the equation

𝑓 (𝑥) = 𝑥 + ln(1 + 𝑥) − 2 = 0, 𝑥 ∈ [0, 5],

and the equivalent fixed point equations 𝑥 = 𝑔𝑖(𝑥), 𝑖 = 1, 4, with

𝑔1(𝑥) = 𝑥−1

2

[𝑥 + ln(1 + 𝑥) − 2] and 𝑔4(𝑥) =
3𝑥 + 2 − (1 + 𝑥) ln(1 + 𝑥)

2 + 𝑥 .

The charts are shown below, with their tangent lines at (𝑥∗ , 𝑥∗).

5

5

𝑥

𝑦

𝑦 = 𝑔1(𝑥)

𝑦 = 𝑥

𝑦 = 0.27𝑥 + 0.88

5

5

𝑥

𝑦

𝑦 = 𝑔4(𝑥)

𝑦 = 𝑥

𝑦 = 1.21

In both cases, the derivative at the fixed point falls in (−1, 1), so the

fixed point procedure converges for every initial iterate 𝑥0 ∈ [0, 5]; note,

however, that |𝑔′
4
(𝑥∗)| < |𝑔′

1
(𝑥∗)|, so we expect the convergence to the

fixed point to be of higher order for 𝑔4 than for 𝑔1.

We run the algorithm with 𝑥0 = 4 and tol = 10
−8

.

g1 <- function(x){x-0.5*(x + log(x+1) - 2)}

x0 = 2

tol = 10^(-8)

Nmax = 1000

fp1 = fixed_point(g1, x0, tol, Nmax)

n1 = length(fp1$x_vec)

We compute the residuals, and study the ratios 𝑟𝑘+1/𝑟𝑘 :

res1 = abs(fp1$x_vec[2:n1] - fp1$x_vec[1:(n1-1)] )

res1[2:(n1-1)]/res1[1:(n1-2)]
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[1] 0.3159122 0.2883925 0.2779797 0.2747903

[5] 0.2738879 0.2736387 0.2735703 ...

We see that the sequence of ratios seems to converge to 𝜆1 = 0.2735... > 0,

and so the fixed point convergence is at least linear. For comparison’s

sake, we also take a look at the ratios 𝑟𝑘+1/𝑟2

𝑘
:

res1[2:(n1-1)]/(res1[1:(n1-2)])^2

[1] 0.5751114 1.6618933 5.5545402 19.7525620

[5] 71.6462604 261.3517413 954.8594146 ...

The sequence of ratios does not seem to converge.

If we repeat the above commands for 𝑔4, we find that the fixed point

iteration with 𝑔4 is of order 2.

g4 <- function(x){(3*x+2-(1+x)*log(1+x))/(2+x)}

x0 = 2; tol = 10^(-8); Nmax = 1000;

fp4 = fixed_point(g4, x0, tol, Nmax)

n4 = length(fp4$x_vec)

We compute the residuals, and study the ratios 𝑟𝑘+1/𝑟𝑘 :

res4 = abs(fp4$x_vec[2:n4] - fp4$x_vec[1:(n4-1)] )

res4[2:(n4-1)]/res4[1:(n4-2)]

[1] 3.862611e-02 2.290711e-03 5.146737e-06 ...

We see that the sequence of ratios seems to converge to 𝜆4 = 0. We take a

look at the ratios 𝑟𝑘+1/𝑟2

𝑘
:

res4[2:(n4-1)]/(res4[1:(n4-2)])^2

[1] 0.04687867 0.07197530 0.07059517 ...

These ratios do seem to converge to a non-zero 𝜆4, so the convergence is

at least of order 2. And for 𝑟𝑘+1/𝑟3

𝑘
?

res4[2:(n4-1)]/(res4[1:(n4-2)])^2

[1] 0.05689441 2.26150082 968.31804790 ...

The sequence of ratios does not seem to converge.

In general, the order of the convergence to a fixed point 𝑥∗ of 𝑔 is linked

to the order of differentiability of 𝑔 at 𝑥∗.
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Theorem: let 𝑔 ∈ 𝐶𝛼([𝑎, 𝑏]), 𝛼 ≥ 1 an integer, and let 𝑥∗ ∈ [𝑎, 𝑏] be a

fixed point of 𝑔, with 𝑥0 sufficiently near 𝑥∗. If

0 < |𝑔′(𝑥∗)| < 1,

then the fixed point iteration 𝑥𝑘 = 𝑔(𝑥𝑘−1), 𝑘 ≥ 1, is only of order 1. If

𝑔′(𝑥∗) = 𝑔′′(𝑥∗) = · · · = 𝑔(𝛼−1)(𝑥∗) = 0 and 𝑔(𝛼)(𝑥∗) ≠ 0,

then the fixed point iteration is of order 𝛼.

Proof: we only provide an outline for the case 𝛼 > 1. For any 𝑥, 𝑥0 ∈ [𝑎, 𝑏],
with 𝑥0 “sufficiently close” to 𝑥, we apply Taylor’s theorem to 𝑔,

15
around 15: See [2] for details.

its fixed point 𝑥∗ ∈ [𝑎, 𝑏], and write

𝑔(𝑥) = 𝑔(𝑥∗) + 𝑔′(𝑥∗)(𝑥 − 𝑥∗) +
1

2

𝑔′′(𝑥∗)(𝑥 − 𝑥∗)2 + · · · + 1

(𝛼 − 1)! 𝑔
(𝛼−1)(𝑥∗)(𝑥 − 𝑥∗)𝛼−1 + 1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼

= 𝑔(𝑥∗) +
1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼 ,

for some 𝑐𝑥 between 𝑥 and 𝑥∗.16 When 𝑥 = 𝑥𝑘 , we get 16: The mean value theorem is a special

case of Taylor’s theorem, with 𝛼 = 1.

𝑥𝑘+1 − 𝑥∗ = 𝑔(𝑥𝑘) − 𝑔(𝑥∗) =
1

𝛼!

𝑔(𝛼)(𝑐𝑥)(𝑥 − 𝑥∗)𝛼 ,

where 𝑐𝑘 lies between 𝑥𝑘 and 𝑥∗. Since 𝑥𝑘 → 𝑥∗, then 𝑐𝑘 → 𝑥∗ and

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= lim

𝑘→∞

1

𝛼!

|𝑔(𝛼)(𝑐𝑘)| =
1

𝛼!

|𝑔(𝛼)(𝑥∗)|,

which is non-zero, by assumption. ■

This explains why some choices of 𝑔 are better than others; of course, this

is of limited applicability as we need to know 𝑥∗ before we can use this

last result to increase the convergence order of the procedure... but if we

already know 𝑥∗, there is no need to improve the speed of convergence.

4.2.4 Newton’s Method

Newton’s method is one of the most frequently-used “fast” method

for solving nonlinear equations, although in many applications, it is

often supplanted by task-specific methods, such as gradient descent
methods.

17
17: See Chapters 5 and 31, and Section

4.3.2.

We wish to solve the equation 𝑓 (𝑥) = 0, with 𝑓 ∈ 𝐶2([𝑎, 𝑏]). Assume

that 𝑥∗ ∈ [𝑎, 𝑏] is a root of 𝑓 and let 𝑥𝑘 ∈ [𝑎, 𝑏]. According to Taylor’s

theorem, there is a 𝑐𝑘 between 𝑥∗ and 𝑥𝑘 such that

0 = 𝑓 (𝑥∗) = 𝑓 (𝑥𝑘) + 𝑓 ′(𝑥𝑘)(𝑥∗ − 𝑥) +
1

2

𝑓 ′′(𝑐𝑘)(𝑥∗ − 𝑥𝑘)2.

If 𝑥𝑘 is near 𝑥∗, we expect |𝑥∗−𝑥𝑘 | to be small, so that |𝑥∗−𝑥𝑘 |2 ≪ |𝑥∗−𝑥𝑘 |.
Moreover, if 𝑓 ′(𝑥𝑘) ≠ 0, then

0 = 𝑓 (𝑥∗) ≈ 𝑓 (𝑥𝑘) + 𝑓 ′(𝑥𝑘)(𝑥∗ − 𝑥) =⇒ 𝑥∗ ≈ 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

.
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Starting from 𝑥0, Newton’s method generates the sequence {𝑥𝑘} defined

by

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

, 𝑘 ≥ 0.

Illustration of the Method Let 𝑓 : [𝑎, 𝑏] → ℝ be the 𝐶2
function whose

graph is displayed below, and let 𝑥0 ∈ [𝑎, 𝑏] be near 𝑥∗. Draw the tangent

to 𝑓 at 𝑥0.

𝑥

𝑦

𝑥0

𝑦 = 𝑓 (𝑥)

𝑦 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0)

The equation of the tangent is 𝑦 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0); the intersection

of the line with the 𝑥−axis at

0 = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) =⇒ 𝑥 = 𝑥0 −
𝑓 (𝑥0)
𝑓 ′(𝑥0)

,

which is exactly the first Newton iterate 𝑥1. Repeat this procedure starting

from 𝑥1 to obtain 𝑥2, and so on.

𝑥

𝑦

𝑥0𝑥1

𝑦 = 𝑓 (𝑥)

𝑦 = 𝑓 (𝑥1) + 𝑓 ′(𝑥1)(𝑥 − 𝑥1)
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Theorem: let 𝑓 ∈ 𝐶2([𝑎, 𝑏]). If 𝑥∗ ∈ [𝑎, 𝑏] is such that 𝑓 (𝑥∗) = 0 and

𝑓 ′(𝑥∗) ≠ 0, then the sequence {𝑥𝑘} generated by Newton’s method

converges (at least) quadratically to 𝑥∗ for any 𝑥0 sufficiently near 𝑥∗.

Proof: Newton’s method can be recast as a fixed point iteration for the

function defined by 𝑔(𝑥) = 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥) . At 𝑥 = 𝑥∗,

𝑔(𝑥∗) = 𝑥∗ −
𝑓 (𝑥∗)
𝑓 ′(𝑥∗) = 𝑥∗ − 0

𝑓 ′(𝑥∗) = 𝑥∗ ,

so 𝑥∗ is a fixed point of 𝑔. But

𝑔′(𝑥) = 1 −
[ 𝑓 ′(𝑥)]2 − 𝑓 (𝑥) 𝑓 ′′(𝑥)

[ 𝑓 ′(𝑥)]2 =
𝑓 (𝑥) 𝑓 ′′(𝑥)
[ 𝑓 ′(𝑥)]2 =⇒ 𝑔′(𝑥∗) =

𝑓 (𝑥∗) 𝑓 ′′(𝑥∗)
[ 𝑓 ′(𝑥∗)]2 = 0,

so the order of convergence is at least 𝛼 = 2 according to the last theorem

of Section 4.2.3. ■

Newton’s method may not converge if 𝑥0 is too removed from 𝑥∗, or if

the iterations gets caught in a cycle.

Remark: if 𝑓 ′(𝑥∗) = 0, then Newton’s method may still converge with

order 1. For instance, 𝑓 (𝑥) = 𝑥2
vanishes at 𝑥∗ = 0 and 𝑓 ′(𝑥∗) = 0. We

then have

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

= 𝑥𝑘 −
𝑥2

𝑘

2𝑥𝑘
=

1

2

𝑥𝑘 = · · · =
(
1

2

) 𝑘
𝑥0 → 0 = 𝑥∗

as 𝑘 → ∞, and so 𝑥𝑘 → 𝑥∗. However, for the equivalent fixed point

problem 𝑥 = 𝑔(𝑥) = 𝑥/2, we have 𝑔(𝑥∗) = 0 and 𝑔′(𝑥∗) = 1/2 ≠ 0, so the

convergence is only linear.

Newton’s algorithm is summarized in the following algorithm.

Algorithm: Newton’s method

Input: 𝑓 , 𝑓 ′, 𝑥0, tol > 0, 𝑁max

Output: approximation 𝑝 of a root 𝑥∗ of 𝑓 , number of iterations 𝑛

1 Initialization: 𝑥1 = 𝑥0 − 𝑓 (𝑥0)
𝑓 ′(𝑥0) , 𝑟0 = |𝑥1 − 𝑥0 |, 𝑘 = 0;

2 While 𝑟𝑘 > tol and 𝑘 < 𝑁max do

3 𝑘 = 𝑘 + 1;

4 𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) ;

5 𝑟𝑘 = |𝑥𝑘+1 − 𝑥𝑘 |;
6 End
7 𝑝 = 𝑥𝑘+1, 𝑛 = 𝑘 + 1.

Here is an implementation of the method in R.

Newton’s method
newton <- function(f, df, x0, tol, Nmax) {

x_old <- x0

x <- x_old - f(x_old) / df(x_old)

res <- abs(x - x_old)
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k <- 1

x_vec <- c(x0, x)

while(res > tol && k < Nmax) {

k <- k + 1

x_old <- x

x <- x_old - f(x_old) / df(x_old)

res <- abs(x - x_old)

x_vec <- c(x_vec, x)

if(k == Nmax && res > tol) {

cat(’Nmax iterations reached without

satisfying the prescribed tolerance\n’)

}

}

return(list(x=x, k=k, x_vec=x_vec))

}

Example We are looking for roots of the function 𝑓 defined by 𝑓 (𝑥) =
𝑥2 − 4, whose derivative is 𝑓 ′ defined by 𝑓 ′(𝑥) = 2𝑥.

f <- function(x){x^2 - 4}

df <- function(x){2*x}

We initialize the algorithm as follows.

x0 <- 1

tol <- 1e-5

Nmax <- 100

What does Newton’s method find?

result <- newton(f, df, x0, tol, Nmax)

print(result$x)

[1] 2

print(result$k)

[1] 5

print(result$x_vec)

[1] 1.00000 2.50000 2.05000 2.00061 2.00000 2.00000
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We know, theoretically, that 𝑓 (2) = 0. But 𝑥∗ = 2 is not the only root of 𝑓 .

One of the drawbacks of iterative procedures in the search for roots is

that a sequence {𝑥𝑘} converges to one limit (at most).

When we know that there are other roots, we can try playing with the

parameters to generate sequences converging to those, but in general

that knowledge is not available to us.
18

We can exhibit the other root by 18: That is, in no small part, exactly why

we are looking for roots in the first place.
using a different 𝑥0.

x0 <- -1

result <- newton(f, df, x0, tol, Nmax)

print(result$x)

[1] -2

print(result$k)

[1] 5

print(result$x_vec)

[1] -1.00000 -2.50000 -2.05000 -2.00061 -2.00000 -2.00000

Newton’s method, being of order 2, is usually quite fast, but the function’s

derivative must be known.

4.2.5 Secant Method

It might be costly to evaluate 𝑓 ′; the secant method is a variation of

Newton’s method where only evaluations of 𝑓 are needed. The idea is to

approximate 𝑓 ′(𝑥𝑘) by a difference quotient:

𝑓 ′(𝑥𝑘) = lim

𝑥→𝑥𝑘

𝑓 (𝑥) − 𝑓 (𝑥𝑘)
𝑥 − 𝑥𝑘

≈ 𝑓 (𝑥𝑘−1) − 𝑓 (𝑥𝑘)
𝑥𝑘−1 − 𝑥𝑘

.

The quality of the approximation increases when 𝑥𝑘−1 is “close” to 𝑥𝑘 .

Given initial iterates 𝑥0 ≠ 𝑥1 ∈ [𝑎, 𝑏] for which 𝑓 (𝑥0) ≠ 𝑓 (𝑥1), the

sequence generated by the secant method is similar to the Newton

sequence, but substituting 𝑓 ′(𝑥𝑘) by

𝑓 (𝑥𝑘−1
)− 𝑓 (𝑥𝑘 )

𝑥𝑘−1
−𝑥𝑘 :

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1)
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)

, 𝑘 ≥ 1.

Graphically, we obtain 𝑥2 as the intersection of the 𝑥−axis with the line

joining the points (𝑥0 , 𝑓 (𝑥0)) and (𝑥1 , 𝑓 (𝑥1)).
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4.3 Systems of Equations

In practice, data problems often give rise to systems of 𝑚 equations in 𝑛

unknowns (as opposed to 1 equation in 1 variable). The nature of these

systems (linear vs. non-linear) affects the choice of solution method.
19

19: Methods derived specifically for linear

systems are not easily applicable to non-

linear systems, but methods for non-linear

systems are usually applicable to linear

systems as well.

4.3.1 Linear Systems

In simple linear regression, for instance, we are trying to find the coef-

ficients 𝛽0 and 𝛽1 that “best” fit the data {(𝑋𝑖 , 𝑌𝑖)} in the least square

sense: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛.

In Chapter 8, we see that the estimators 𝑏0 , 𝑏1 are the solutions of

𝑛𝑌 = 𝑛𝛽0 + 𝑛𝑋𝛽1 , 𝑆𝑥𝑦 + 𝑛𝑋𝑌 = 𝑛𝑋𝛽0 + (𝑆𝑥𝑥 + 𝑛𝑋
2)𝛽1.

This is a linear system of two equations in two unknowns, which we

can re-write in matrix form as 𝐴𝜷 = c. If 𝐴 is invertible, the estimated

solution vector is 𝐴−1c.
20

20: See Chapter 3 for details.

Consider the linear system 𝐴x = b, where 𝐴 is an 𝑚 × 𝑛 matrix, x ∈ ℝ𝑛
,

and b ∈ ℝ𝑚
. If 𝑚 = 𝑛 and 𝐴 is invertible, the system has a unique

solution, x = 𝐴−1b.

In practice, we rarely solve the linear system by explicitly computing 𝐴−1
,

especially if 𝑛 is large.
21

21: With a computer capable of teraflop

speeds, it would take roughly 10
141

years

to compute the inverse of an 100 × 100

matrix using cofactors or Cramer’s rule!

We will briefly discuss two types of methods for solving 𝐴x = b that do

not involve computing 𝐴−1
: direct methods and iterative methods.

Direct Methods

In theory, a direct method finds the exact solution in a finite number of

steps; in practice, the solution is “polluted” by round-off error.

Gaussian Elimination and Backward Substitution A linear system may

be easy to solve when 𝐴 has an advantageous structure, such as if it is

upper (or lower) triangular:

©«

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛−1 𝑎1,𝑛

0 𝑎2,2 · · · 𝑎2,𝑛−1 𝑎2,𝑛

...
. . .

. . .
...

...

0 · · · 0 𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛

0 0 0 0 𝑎𝑛,𝑛

ª®®®®®®¬
©«

𝑥1

𝑥2

...

𝑥𝑛−1

𝑥𝑛

ª®®®®®®¬
=

©«

𝑏1

𝑏2

...

𝑏𝑛−1

𝑏𝑛

ª®®®®®®¬
.

From the last row 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛 , we obtain 𝑥𝑛 = 𝑏𝑛/𝑎𝑛,𝑛 , assuming that

𝑎𝑛,𝑛 ≠ 0.
22

22: All diagonal entries of a triangular ma-

trix 𝐴 must be non-zero if 𝐴 is invertible.

Then, from the penultimate row, we have

𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1 =⇒ 𝑥𝑛−1 =
1

𝑎𝑛−1,𝑛−1

(𝑏𝑛−1 − 𝑎𝑛−1,𝑛𝑥𝑛) ,

and so on until we reach the first row.
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The formal procedure for triangular matrices are provided below.

Algorithm: backward substitution

Input: 𝐴 upper triangular, 𝑛 × 𝑛, with 𝑎𝑖 ,𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛
Output: solution x of 𝐴x = b

1 For 𝑖 = 𝑛, 𝑛 − 1, . . . , 1 do

2 𝑥𝑖 =
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

∑𝑛
𝑗=𝑖+1

𝑎𝑖 , 𝑗𝑥 𝑗

)
3 End
4 x = (𝑥1 , . . . , 𝑥𝑛)⊤

Algorithm: forward substitution

Input: 𝐴 lower triangular, 𝑛 × 𝑛, with 𝑎𝑖 ,𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛
Output: solution x of 𝐴x = b

1 For 𝑖 = 1, 2, . . . , 𝑛 do

2 𝑥𝑖 =
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

∑𝑖−1

𝑗=1
𝑎𝑖 , 𝑗𝑥 𝑗

)
3 End
4 x = (𝑥1 , . . . , 𝑥𝑛)⊤

In general, the matrix 𝐴 is not triangular, but it can be brought to a

triangular form via Gaussian elimination.
23

23: See Section 3.4.1 for more details.

Example To find the solution of the linear system
𝑥1 + 𝑥2 + 3𝑥4 = 4

2𝑥1 + 𝑥2 − 𝑥3 + 3𝑥4 = 1

3𝑥1 − 𝑥2 − 𝑥3 + 2𝑥4 = −3

−𝑥1 + 2𝑥2 + 3𝑥3 − 𝑥4 = 4

we first form the augmented matrix [𝐴 | b] and reduce it to its echelon

form to obtain ©«
1 1 0 3

0 −1 −1 −5

0 0 3 13

0 0 0 −13

��������
4

−7

13

−13

ª®®®¬ .
We can read the solution from the reduced matrix directly, via backward

substitution:

𝑥4 = 13/13 = 1,

𝑥3 =
1

3

(13 − 13 · 1) = 0,

𝑥2 =
1

−1

(−7 − (−1) · 0 − (−5) · 1) = 2,

𝑥1 =
1

1

(4 − 1 · 2 − 0 · 0 − 3 · 1) = −1.

In order to solve a system of 𝑛 linear equations in 𝑛 variables, we can

show that we need O(𝑛3) operations for Gaussian elimination of [𝐴 | b],
and O(𝑛2) operations for backward/forward substitution.

24

24: We use the “big O” notation O(𝑛𝑘 )
as shorthand for a number of operations

≤ 𝐴𝑛𝑘 for some constant 𝐴 > 0.
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LU Factorization If 𝐴 is invertible, then we can perform Gaussian

elimination on it, which also means that it can be factored as

𝐴 = 𝐿𝑈,

where 𝐿 and𝑈 are lower and upper square triangular, respectively.
25

In25: This assumes that Gaussian elimina-

tion can be conducted on 𝐴 without hav-

ing to interchange rows, an assumption

that we will make throughout this section.

fact,𝑈 is the reduced matrix of 𝐴 (after Gaussian-elimination) and

𝐿 =

©«
1 0 · · · 0

ℓ2,1 1 0

...
. . .

. . .

ℓ𝑛,1 · · · ℓ𝑛,𝑛−1 1

ª®®®®¬
.

Example In the preceding example, we had

𝐴 =

©«
1 1 0 3

2 1 −1 1

3 −1 −1 2

−1 2 3 −1

ª®®®¬⇝ 𝑈 =

©«
1 1 0 3

0 −1 −1 −5

0 0 3 13

0 0 0 −13

ª®®®¬ .
With

𝐿 =

©«
1 0 0 0

2 1 0 0

3 4 1 0

−1 −3 0 1

ª®®®¬ ,
we indeed have 𝐿𝑈 = 𝐴. □

Let I𝑛 be the 𝑛 × 𝑛 identity matrix, and M𝑛(𝑖 , 𝑗) be the 𝑛 × 𝑛 zero matrix,

except in the position (𝑖 , 𝑗), where the entry is 1. The three types of

elementary row transformations that carry 𝐴 to𝑈 can also be written as

a left-product of elementary matrices with 𝐴:

𝑈 = 𝐸(𝑛−1,1)𝐸(𝑛−2,2)𝐸(𝑛−2,1) · · ·𝐸(1,𝑛−1) · · ·𝐸(1,1)𝐴,

where

𝐸(𝑘,𝜈) =


In[𝑅𝑖 ↔ 𝑅 𝑗], 𝜈th operation of step 𝑘 is 𝑅𝑖 ↔ 𝑅 𝑗

In + 𝑎M𝑛(𝑖 , 𝑗), 𝜈th operation of step 𝑘 is 𝑎𝑅𝑖 + 𝑅 𝑗 → 𝑅 𝑗 , 𝑖 > 𝑗

In + (𝑎 − 1)M𝑛(𝑗 , 𝑗), 𝜈th operation of step 𝑘 is 𝑎𝑅 𝑗 → 𝑅 𝑗 , 𝑎 ≠ 0

Note that 𝐸(𝑘,𝜈)
is always invertible; if no row interchange is required,

then 𝐸(𝑘,𝜈)
and

[
𝐸(𝑘,𝜈)]−1

are both lower triangular.

By construction, then

𝐴 =

[
𝐸(1,1)

]−1

·
[
𝐸(1,𝑛−1)

]−1

· · ·
[
𝐸(𝑛−1,1)

]−1

𝑈 = 𝐿𝑈,

where 𝐿 is lower diagonal with ones on the diagonal.

Once we have the 𝐿𝑈 factorization of 𝐴, the system 𝐴x = b can be solved

using first forward, then backward substitution:

𝐴x = 𝐿𝑈x = 𝐿y = b, and then 𝑈x = y.
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The LU factorization approach is particularly useful if we need to solve

𝐴x = b for different b.
26

It can also be used to speed up determinant 26: We only need O(𝑛3) steps for the Gaus-

sian elimination of 𝐴 once, then O(𝑛2)
steps for the forward and backward sub-

stitution in each system.

computations, since

det(𝐴) = det(𝐿𝑈) = det(𝐿)det(𝑈) =
(
𝑛∏
𝑖=1

ℓ𝑖 ,𝑖

) (
𝑛∏
𝑖=1

𝑢𝑖 ,𝑖

)
=

(
𝑛∏
𝑖=1

𝑢𝑖 ,𝑖

)
.

Pivoting Strategies When one of the (eventual) pivot elements is zero,

Gaussian elimination fails because we need access to row interchanges

(also known as pivoting).
27

But this strategy should also be used when 27: See [7, 5] for details.

the pivot elements are small in magnitude, relative to the other (reduced)

matrix entries, because Gaussian elimination is prone to round-off error.

Example In exact (symbolic) arithmetic, the matrix form of the linear

system {
10

−20𝑥1 + 𝑥2 = 1

𝑥1 + 2𝑥2 = 4

reduces to (
10

−20
1

1 2

���� 1

4

)
⇝

(
10

−20
1

0 2 − 10
20

���� 1

4 − 10
20

)
,

via the row transformation 𝑅2 − 10
20𝑅1 → 𝑅2. Using backward substitu-

tion, we then obtain

(2 − 10
20)𝑥2 = 4 − 10

20 =⇒ 𝑥2 =
4 − 10

20

2 − 10
20

,

10
−20𝑥1 = 1 − 𝑥2 =⇒ 𝑥1 = 10

20

(
1 − 4 − 10

20

2 − 10
20

)
= −2 × 10

20

2 − 10
20

;

therefore, 𝑥2 ≈ 1 and 𝑥1 ≈ 2.

If we are using double precision,
28

we have 2 − 10
20 ↦→ −10

20
and 28: Which is to say, ≈ 16 significant digits.

4 − 10
20 ↦→ −10

20
, and so(

10
−20

1

1 2

���� 1

4

)
⇝

(
10

−20
1

0 −10
20

���� 1

−10
20

)
,

which yields 𝑥2 = 1 and 𝑥1 = 0. That is problematic!

If we exchange rows 1 and 2 (𝑅1 ↔ 𝑅2), we obtain instead(
1 2

10
−20

1

���� 4

1

)
⇝

(
1 2

0 1 − 2 × 10
−20

���� 4

1 − 4 × 10
−20

)
↦→

(
1 2

0 1

���� 4

1

)
,

which yields 𝑥2 = 1 and 𝑥1 = 2.

The elementary matrices in which row interchange are encoded are not

lower triangular; an invertible matrix 𝐴 whose Gaussian elimination

requires such a transformation does not have an 𝐿𝑈 decomposition, but

it can be decomposed that way up to a permutation matrix 𝑃:
29

29: A permutation matrix is a matrix

whose rows are a permutation of the rows

of I𝑛 .𝑃𝐴 = 𝐿𝑈.
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Algorithm: 𝐿𝑈 factorization with partial pivoting

Input: 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖 , 𝑗)
Output: 𝑛 × 𝑛 matrices 𝐿,𝑈, 𝑃 such that 𝑃𝐴 = 𝐿𝑈

1 Initialization: 𝑃 = I𝑛 ;

2 For 𝑘 = 1, 2, . . . , 𝑛 − 1 do

3 Find smallest 𝑞 such that |𝑎𝑞,𝑘 | = max𝑘≤𝑖≤𝑛 |𝑎𝑖 ,𝑘 |;
4 Exchange rows 𝑞 and 𝑘 in 𝐴 and 𝑃;

5 For 𝑖 = 𝑘 + 1, . . . , 𝑛 do
6 Set 𝑎𝑖 ,𝑘 = 𝑎𝑖 ,𝑘/𝑎𝑘,𝑘 ;
7 For 𝑗 = 𝑘 + 1, . . . , 𝑛 do
8 Set 𝑎𝑖 , 𝑗 = 𝑎𝑖 , 𝑗 − 𝑎𝑖 ,𝑘𝑎𝑘,𝑗 ;
9 End

10 End
11 End
12 𝐿 = I𝑛 + strictly lower triangular(𝐴);𝑈 = upper triangular(𝐴); 𝑃

Once we have 𝑃, 𝐿,𝑈 such that 𝑃𝐴 = 𝐿𝑈 , then we can solve the system

𝐴x = b for x by using

𝐴x = b ⇐⇒ 𝑃𝐴x = 𝑃b ⇐⇒ 𝐿𝑈x = 𝑃b,

namely, we first solve 𝐿y = 𝑃b using forward substitution, then we solve

𝑈x = y using backward substitution.

Example Algorithm 6 is implemented in R via the Matrix package’s

function lu(). We use it to find the partial pivoting 𝐿𝑈 decomposition

of

𝐴 =
©«
1 2 3

2 4 5

3 4 6

ª®¬ .
We start by loading the matrix.

require(Matrix)

A=t(matrix(c(1,2,3,2,4,5,3,4,6),3,3))

We can decompose and extract the factors of the 𝐿𝑈 decomposition as

follows:

D <- lu(A)

expand(D)$L

3 x 3 Matrix of class "dtrMatrix" (unitriangular)

[,1] [,2] [,3]

[1,] 1.0000000 . .

[2,] 0.6666667 1.0000000 .

[3,] 0.3333333 0.5000000 1.0000000
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expand(D)$U

3 x 3 Matrix of class "dtrMatrix"

[,1] [,2] [,3]

[1,] 3.000000 4.000000 6.000000

[2,] . 1.333333 1.000000

[3,] . . 0.500000

expand(D)$P

3 x 3 sparse Matrix of class "pMatrix"

[1,] . . |

[2,] . | .

[3,] | . .

Other (mostly similar) factorizations may be better suited to various

types of matrices 𝐴:

for symmetric matrices 𝐴,
30

we use 𝐴 = 𝐿𝐷𝐿⊤, where 𝐷 is a 30: 𝐴⊤ = 𝐴

diagonal matrix;

for symmetric positive definite matrices 𝐴,
31

we use the Cholesky 31: 𝐴 symmetric and x⊤𝐴x > 0 for all

x ≠ 0.decomposition 𝐴 = 𝑀𝑀⊤
;

it may be possible to take advantage of some sparse matrices’

structure (such as is the case for banded matrices) to greatly

increase the speed of the LU decomposition with partial pivoting.

Matrix Norms A vector norm ∥ − ∥ : ℝ𝑛 → ℝ+
0

is a function satisfying

the following three conditions:

1. ∥x∥ ≥ 0 for all x ∈ ℝ𝑛
, and ∥x∥ = 0 if and only if x = 0;

2. ∥𝛼x∥ = |𝛼 |∥x∥ for all x ∈ ℝ𝑛 , 𝛼 ∈ ℝ;

3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ ℝ𝑛
.

The 2−norm ∥x∥2 =

√
𝑥2

1
+ · · · + 𝑥2

𝑛 is a common example.
32

32: We can show that all vector norms on

ℝ𝑛
are equivalent, suggesting that there is

no real advantage to selecting one over an-

other, in a general setting (although there

may be instances where calculations are

simpler in one context over another).

Given a vector norm ∥ · ∥ on ℝ𝑛
, we can define the induced matrix norm

| | | − || | on the space of 𝑛 × 𝑛 matrices by

| | |𝐴| | | = sup

x≠0

{
∥𝐴x∥
∥x∥

}
,

where x ranges over ℝ𝑛
.
33

33: The properties of vector norms also

apply to matrix norms – matrices are the

vectors of the space of square matrices,

with matrix addition and multiplication

by a scalar.

That | | |𝐴| | | ≥ 0 is a direct consequence of the definition of the supremum

and because ∥𝐴x∥ , ∥x∥ ≥ 0 for all x.

If | | |𝐴| | | = 0, then ∥𝐴x∥ ≤ 0 for all x ≠ 0; since ∥𝐴x∥ ≥ 0 for all x ≠ 0,

then ∥𝐴x∥ = 0 for all x. As ∥𝐴0∥ = 0, then ∥𝐴x∥ = 0 for all x. In particular,

∥𝐴e𝑘 ∥ = ∥𝐴𝑘 ∥ = 0 for 1 ≤ 𝑘 ≤ 𝑛, so that every column 𝐴𝑘 = 0; hence

𝐴 = O𝑛×𝑛 . Conversely, if 𝐴 = O𝑛×𝑛 , then ∥𝐴x∥ = ∥0∥ = 0 for all x, so

that ∥𝐴x∥/∥x∥ = 0 for all x ≠ 0; hence | | |𝐴| | | ≤ 0. Since | | |𝐴| | | ≥ 0, we

must have | | |𝐴| | | = 0.
34

34: Properties 2 and 3 are left as exercises.
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Theorem: let | | | · | | | be the matrix norm induced by a vector norm ∥ · ∥.

Then:

1. ∥𝐴x∥ ≤ || |𝐴| | | · ∥x∥ for all 𝐴, x;

2. | | |I𝑛 | | | = 1;

3. | | |𝐴𝐵| | | ≤ || |𝐴| | | · | | |𝐵| | | for all 𝐴, 𝐵.

Proof: throughout, let 𝐴, 𝐵 be generic 𝑛 × 𝑛 matrices, and x ∈ ℝ𝑛
.

1. If x = 0, then the property holds as both sides are 0. Now assume

that x ≠ 0. By definition,

| | |𝐴| | | ≥ ∥𝐴x∥
∥x∥ for all x ≠ 0;

thus | | |𝐴| | | · ∥x∥ ≥ ∥𝐴x∥ for all x ≠ 0.

2. For any x ≠ 0, we have ∥I𝑛x∥/∥x∥ = 1, so

| | |I𝑛 | | | = sup

x≠0

{
∥I𝑛x∥
∥x∥

}
= sup

x≠0
{1} = 1.

3. For any x ≠ 0, we see that

∥𝐴𝐵x∥ ≤ || |𝐴| | | · ∥𝐵x∥ ≤ || |𝐴| | | · | | |𝐵| | | · ∥x∥;

hence

| | |𝐴𝐵| | | = sup

x≠0

{
∥𝐴𝐵x∥
∥x∥

}
≤ |||𝐴| | | · | | |𝐵| | |,

which completes the proof.
35 ■35: See [2] for more information on the

supremum.

The ℓ𝑝 vector norm ∥ · ∥𝑝 on ℝ𝑛
is trivial to compute: for 𝑝 ≥ 1, we have

∥x∥𝑝 = 𝑝
√
|𝑥1 |𝑝 + · · · + |𝑥𝑛 |𝑝 ;

for 𝑝 = ∞ we have

∥x∥∞ = max

1≤𝑘≤𝑛
|𝑥𝑘 |.

It is not as clear how we would compute the corresponding induced

matrix norm; we can show that

| | |𝐴| | |1 = max

1≤ 𝑗≤𝑛

{
𝑛∑
𝑖=1

|𝑎𝑖 , 𝑗 |
}

;

| | |𝐴| | |∞ = max

1≤𝑖≤𝑛

{
𝑛∑
𝑗=1

|𝑎𝑖 , 𝑗 |
}

;

| | |𝐴| | |2 =
√
𝜆max(𝐴⊤𝐴), 𝜆max(𝐵) : largest eigenvalue of 𝐵.

Let | | | · | | | be an induced matrix norm. The condition number of an

invertible matrix 𝐴 under that norm is

𝜅(𝐴) = | | |𝐴| | | · | | |𝐴−1 | | |.

Because 𝐴𝐴−1 = I𝑛 , we have

1 = | | |I𝑛 | | | = | | |𝐴𝐴−1 | | | ≤ || |𝐴| | | · | | |𝐴−1 | | | = 𝜅(𝐴).

When 𝜅(𝐴) ≫ 1, we say that 𝐴 is ill-conditioned under | | | · | | |.
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Estimating Error In this section, we estimate the relative error between

the exact solution of 𝐴x = b and an approximate solution x̂.
36

36: This estimation is useful not only to

quantify the effect of round-off error in di-
rect methods, but also to analyze stopping

criteria for iterative methods.

Theorem: let 𝐴 be an invertible 𝑛 × 𝑛 matrix, and let 0 ≠ b ∈ ℝ𝑛
. Let

x ∈ ℝ𝑛
be the exact solution to the system 𝐴x = b. Consider a vector

norm ∥ · ∥ on ℝ𝑛
and its induced matrix norm | | | · | | |. For any x̂ ∈ ℝ𝑛

, we

have

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) · ∥b − 𝐴x̂∥

∥b∥ .

Proof: write

b − 𝐴x̂ = 𝐴x − 𝐴x̂ = 𝐴(x − x̂) =⇒ x − x̂ = 𝐴−1(b − 𝐴x̂);

hence

∥x − x̂∥ = ∥𝐴−1(b − 𝐴x̂)∥ ≤ || |𝐴−1 | | | · ∥b − 𝐴x̂∥.

We also have

∥b∥ = ∥𝐴x∥ ≤ || |𝐴| | | · ∥x∥ =⇒ 1

∥x∥ ≤ 1

∥b∥ | | |𝐴| | |.

Combining both of these inequalities yields

∥x − x̂∥
∥x∥ ≤ || |𝐴| | | · | | |𝐴−1 | | | · ∥b − 𝐴x̂∥

∥b∥ ;

as 𝜅(𝐴) = | | |𝐴| | | · | | |𝐴−1 | | |, the proof is complete. ■.

In practice, due to floating point representation, we never really solve

the system 𝐴x = b ≠ 0;
37

instead, we solve the perturbed system 37: If b = 0, the homogeneous system has

the exact solution x = 0 and no additional

work is needed.(𝐴 + 𝛿𝐴)x̂ = b + 𝛿b,

where the entries of the 𝑛 × 𝑛 matrix 𝛿𝐴 and 𝛿b ∈ ℝ𝑛
are of the order of

10
−16

those of 𝐴 and b, respectively.
38

38: Assuming double precision.

Let x ∈ ℝ𝑛
be the exact solution of the unperturbed system and x̂ that of

the perturbed system. Then

b − 𝐴x̂ = b − (b + 𝛿b − 𝛿𝐴x̂) = 𝛿𝐴x̂ − 𝛿b,

and we deduce from the previous theorem that

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) ∥b − 𝐴x̂∥

∥b∥ ≤ 𝜅(𝐴) · ∥𝛿𝐴∥∥x̂∥ + ∥𝛿b∥
∥b∥ .

If ∥𝛿𝐴∥ ≤ 1

∥𝐴−1∥ , then we can re-arrange the last equation and write

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴)

1 − 𝜅(𝐴) · ∥𝛿𝐴∥
∥𝐴∥

·
(
∥𝛿𝐴∥
∥𝐴∥ + ∥𝛿b∥

∥b∥

)
.

Example If the perturbation 𝛿𝐴 is O𝑛×𝑛 , then

∥x − x̂∥
∥x∥ ≤ 𝜅(𝐴) · ∥𝛿b∥

∥b∥ .
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For instance, consider the exact and perturbed systems(
1 10

−16

1 0

) (
𝑥1

𝑥2

)
=

(
1

1

)
and

(
1 10

−16

1 0

) (
𝑥1

𝑥2

)
=

(
1 + 10

−16

1

)
.

The exact solution of 𝐴x = b is x = (1, 0)⊤, that of 𝐴x = b + 𝛿b is (1, 1)⊤:

a tiny perturbation 𝛿b has a gigantic effect on the solution. This is due to

the fact that 𝐴 is ill-conditioned. Indeed,

𝐴−1 =

(
0 1

10
16 −10

16

)
, | | |𝐴| | |1 = 2, | | |𝐴−1 | | |1 = 1 + 10

16 ,

and so 𝜅1(𝐴) = 2 + 2 × 10
16 ≫ 1.

Since the perturbation 𝛿𝐴 is O2×2, we would expect, in the ℓ1 vector norm

and associated induced matrix norm, to find:

∥x − x̂∥1

∥x∥1

=
∥(0,−1)⊤∥
∥(1, 0)⊤∥ = 1 ≤ 𝜅1(𝐴) ·

∥𝛿b∥1

∥b∥1

= (2 + 2 × 10
16) · ∥(10

−16 , 0)⊤∥1

∥(1, 1)⊤∥1

= (2 + 2 × 10
16) · 10

−16

2

= 1 + 10
−16 ,

which is indeed the case. □

Iterative Methods

We can get exact solutions from direct methods, but the process is

computationally expensive and storage can be prohibitive, especially

for large dense matrices. In this section, we consider iterative methods,

which operate in the same spirit as fixed point iteration.
39

39: We will discuss other iterative meth-

ods, such as gradient descent and its

variants in Chapter 31. Other modern ap-

proaches include the generalized mini-
mal residual and biconjugate gradient
method, among others.

The problem of solving 𝐴x = b is equivalent to the problem of solving

𝑓 (x) = 𝐴x − b = 0.

We re-write this problem into an equivalent problem

x = 𝑔(x) = 𝑇x + c;

given an initial guess x0, we then compute the iterative sequence

x(𝑘+1) = 𝑔(x(𝑘)) = 𝑇x(𝑘) + c, 𝑘 = 0, 1, . . .

The hope is that the sequence converges to the solution x∗ of 𝐴x = b.

Stationary Iteration As was the case for functions of one variables, we

can come up with multiple formulations for the fixed point system.

One general technique is based on a splitting of 𝐴: for an invertible

matrix 𝑃 (the pre-conditioner), we can write 𝐴 = 𝑃 − (𝑃 − 𝐴):

𝐴x = b ⇐⇒ [𝑃 − (𝑃 − 𝐴)]x = b ⇐⇒ 𝑃x = (𝑃 − 𝐴)x + b

⇐⇒ x = 𝑃−1(𝑃 − 𝐴)x + 𝑃−1b ⇐⇒ x = 𝑇x + c.
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The iterative method obtained with this splitting can be written as

𝑃x(𝑘+1) = (𝑃 − 𝐴)x(𝑘) + b,

or equivalently, upon setting the residual r(𝑘) = b − 𝐴x(𝑘) at step 𝑘:

𝑃𝛿x(𝑘+1) = r(𝑘) ,

x(𝑘+1) = x(𝑘) + 𝛿x(𝑘+1) , 𝑘 = 0, 1, . . .

This approach is useful when 𝑃𝛿x(𝑘+1) = r(𝑘) is “much simpler” to solve

than the original system 𝐴x = b, however. This is the case when 𝑃 is

diagonal (Jacobi) or triangular (Gauss-Seidel).40
40: In both cases, we assume that the diag-

onal entries of 𝐴 are non-zero, i.e. 𝑎𝑖 ,𝑖 ≠ 0

for 1 ≤ 𝑖 ≤ 𝑛.

Jacobi Method In this approach, we use

𝑃 =
©«
𝑎1,1

. . .

𝑎𝑛,𝑛

ª®®¬ and 𝑃 − 𝐴 = −
©«

0 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1
. . .

. . .
...

...
. . .

. . . 𝑎𝑛−1,𝑛

𝑎𝑛,1 · · · 𝑎𝑛,𝑛−1 0

ª®®®®®¬
.

The iterative procedure 𝑃x(𝑘+1) = (𝑃 −𝐴)x(𝑘) + b then reduces to a linear

system in which the components of x(𝑘+1)
only depend on the components

of x(𝑘):41
41: They can be computed in parallel,
which is a non-negligible time saver.

𝑥
(𝑘+1)
𝑖

=
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 + 𝑎𝑖 ,𝑖𝑥(𝑘)𝑖 −

𝑛∑
𝑗=1

𝑎𝑖 , 𝑗𝑥
(𝑘)
𝑗

)
, 𝑖 = 1, . . . , 𝑛.

Gauss-Seidel Method In this approach, we use

𝑃 =
©«
𝑎1,1

...
. . .

𝑎𝑛,1 · · · 𝑎𝑛,𝑛

ª®®¬ and 𝑃 − 𝐴 = −
©«
0 𝑎1,2 · · · 𝑎1,𝑛

. . .
. . .

...
. . . 𝑎𝑛−1,𝑛

0

ª®®®®®¬
.

The iterative procedure 𝑃x(𝑘+1) = (𝑃 −𝐴)x(𝑘) + b then reduces to a linear

system which can be solved by forward substitution:

𝑥
(𝑘+1)
𝑖

=
1

𝑎𝑖 ,𝑖

(
𝑏𝑖 −

𝑖−1∑
𝑗=1

𝑎𝑖 , 𝑗𝑥
(𝑘+1)
𝑗

−
𝑛∑

𝑗=𝑖+1

𝑎𝑖 , 𝑗𝑥
(𝑘)
𝑗

)
, 𝑖 = 1, . . . , 𝑛.

Example Consider the system 𝐴x = b with

𝐴 =
©«
3 −1 1

3 6 2

3 3 7

ª®¬ and b =
©«
1

0

4

ª®¬ .
We use x0 = (1, 1, 1)⊤ to compute the first iterate for both the Jacobi and

the Gauss-Seidel methods.
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In the Jacobi method, the first iterate x(1) solves

©«
3 0 0

0 6 0

0 0 7

ª®¬
©«
𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

ª®®¬ =
©«

0 1 −1

−3 0 −2

−3 −3 0

ª®¬ ©«
1

1

1

ª®¬ + ©«
1

0

4

ª®¬ =
©«

1

−5

−2

ª®¬ ,
which we can solve directly by substitution:

x(1) = ©«
1/3

−5/6

−2/7

ª®¬ .
In the Gauss-Seidel method, the first iterate x(1) solves

©«
3 0 0

3 6 0

3 3 7

ª®¬
©«
𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

ª®®¬ =
©«
0 1 −1

0 0 −2

0 0 0

ª®¬ ©«
1

1

1

ª®¬ + ©«
1

0

4

ª®¬ =
©«

1

−2

4

ª®¬ ,
which we solve by forward substitution:

𝑥
(1)
1

= 1/3

3𝑥
(1)
1

+ 6𝑥
(1)
2

= −2 =⇒ 𝑥
(1)
2

= −1/2

3𝑥
(1)
1

+ 3𝑥
(1)
2

+ 7𝑥
(1)
3

= 4 =⇒ 𝑥
(1)
3

= 9/14.

Convergence and Stopping Criterion We know how to compute iterates

in the Jacobi and Gauss-Seidel framework, and, more generally, for an

iteration matrix
𝑇 = 𝑃−1(𝑃 − 𝐴).

How can we tell if the iteration procedure converges, and if it does,

whether it converges to the system’s unique solution x∗?

The error e(𝑘+1) at step 𝑘 + 1 is defined by

e(𝑘+1) = x∗ − x(𝑘+1).

Recall that x∗ = 𝑇x∗ + c. Then

e(𝑘+1) = x∗ − x(𝑘+1) = 𝑇x∗ + c − 𝑇x(𝑘) − c = 𝑇
(
x∗ − x(𝑘)

)
= 𝑇e(𝑘).

Thus, for any vector norm ∥ · ∥ and induced matrix norm | | | · | | |, we

have

∥e(𝑘+1)∥ = ∥𝑇e(𝑘)∥ ≤ || |𝑇 | | | · ∥e(𝑘)∥ ≤ || |𝑇 | | |2 · ∥e(𝑘−1)∥ ≤ · · · ≤ || |𝑇 | | |𝑘+1 · ∥e(0)∥ ,

and so

lim

𝑘→∞
∥e(𝑘+1)∥ = 0, when | | |𝑇 | | | < 1.

Theorem: if | | |𝑇 | | | < 1 for an induced matrix norm, then for any x(0), the

sequence {x(𝑘)} converges to the solution of x∗ of 𝐴x = b. Moreover,

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | |𝑘 · ∥x∗ − x(0)∥;

the smaller | | |𝑇 | | | is, the faster the convergence to x∗.
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At what point in the iteration should we stop? Given a prescribed tolerance

tol > 0, the goal is to stop as soon as

∥e(𝑘)∥ = ∥x∗ − x(𝑘)∥ ≤ tol or

∥x∗ − x(𝑘)∥
∥x∗∥ ≤ tol,

the latter assuming b ≠ 0. Since the error cannot be computed in practice,

as it involves the exact solution x∗, we need to use an error estimate.

One possibility is to use the normalized residual and stop as soon as

∥r(𝑘)∥
∥b∥ =

∥b − 𝐴x(𝑘)∥
∥b∥ ≤ tol.

From a previous theorem, we have

∥x∗ − x(𝑘)∥
∥x∗∥ ≤ 𝜅(𝐴) · ∥r(𝑘)∥

∥b∥ ≤ 𝜅(𝐴) · tol;

when 𝜅(𝐴) is reasonably small, the normalized residual is suitable to use

in the stopping criterion.

Another possibility is to use the increment between two iterates, and

stop as soon as

∥x(𝑘) − x(𝑘−1)∥ ≤ tol.

In this case, since

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | | · ∥x∗ − x(𝑘−1)∥ = | | |𝑇 | | | · ∥x∗ − x(𝑘) + x(𝑘) − x(𝑘−1)∥

≤ || |𝑇 | | |
[
∥x∗ − x(𝑘)∥ + ∥x(𝑘) − x(𝑘−1)∥

]
.

Thus, provided | | |𝑇 | | | < 1, we have

∥x∗ − x(𝑘)∥ ≤ || |𝑇 | | |
1 − |||𝑇 | | | · ∥x(𝑘) − x(𝑘−1)∥ ≤ || |𝑇 | | |

1 − |||𝑇 | | | · tol.

The incremental stopping criterion would thus be a good choice if | | |𝑇 | | |
is not too close to 1.

Implementation The Jacobi (J) and Gauss-Seidel (GS) methods are

implemented in R as follows.

Iterative solver
iterative_solver <- function(A, b, x0, nmax, tol, method){

# Check for valid method

if(!(method %in% c(’J’, ’GS’))) {

stop("Unknown method...")

}

# Construct preconditioner matrix based on the method

if(method == ’J’) {

P <- diag(diag(A))

} else if(method == ’GS’) {

P <- matrix(0, ncol=ncol(A), nrow=nrow(A))
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for(i in 1:nrow(A)) {

for(j in 1:ncol(A)) {

if(i >= j) {

P[i, j] <- A[i, j]

}

}

}

}

# initialization

b_norm <- norm(b, type="2")

if(b_norm == 0) {

b_norm <- 1

}

x <- x0

r <- b - A %*% x

r_norm <- norm(r, type="2")

iter <- 0

# Iteration

while((r_norm/b_norm > tol) && (iter < nmax)){

incr <- solve(P, r)

x <- x + incr

r <- b - A %*% x

iter <- iter + 1

r_norm <- norm(r, type="2")

}

return(list(x=x, iter=iter))

}

Example The pracma library is required to access norm().

library(pracma)

For instance, we can solve the 4 × 4 system

©«
4 −1 0 0

−1 4 −1 0

0 −1 4 −1

0 0 −1 3

ª®®®¬
©«
𝑥1

𝑥2

𝑥3

𝑥4

ª®®®¬ =

©«
15

10

10

10

ª®®®¬
using the Gauss-Seidel method and the normalized residual stopping

criterion, with a tolerance of 10
−5

and x0 = (0, 0, 0, 0)⊤.

A <- matrix(c(4,-1,0,0,-1,4,-1,0, 0,-1,4,-1, 0,0,-1,3), 4, 4)

b <- c(15,10,10,10); x0 <- c(0,0,0,0)

nmax <- 100; tol <- 1e-5; method <- "GS"

result <- iterative_solver(A, b, x0, nmax, tol, method)

We can see the solution and number of iterations by calling the two
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returned items.

result$x

[,1]

[1,] 4.999974

[2,] 4.999982

[3,] 4.999991

[4,] 4.999997

result$iter

[1] 8

This compares very well to the exact solution x∗ = (5, 5, 5, 5)⊤.

4.3.2 Non-Linear Systems

The direct method does not generalize to non-linear systems of equations,

but the fundamental concept of iterative methods does.
42

42: We will have more to say on the topic

in Chapter 31.

Fixed Point Iteration The ideas of Section 4.2.3 still apply, but they

need to be modified somewhat to generalize to non-linear systems of 𝑛

equations in 𝑛 unknowns.

Let 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
be a sufficiently differentiable function. We are

looking for points x∗ ∈ ℝ𝑛
that solve 𝑓 (x) = 0. In the general case, the

system could admit any finite number of solution,
43

an infinite countable 43: Not necessarily only 0 or 1.

set of solutions,
44

or an uncountable set of solutions.
45

There is no 44: Such as for sin 𝑥 = 0 over ℝ.

45: Such as for 𝐴x = 𝟘 when 𝐴 is not of

full rank.

simple criterion to determine in which class a given system falls.

Example The system

𝑓 (x) =
(
𝑥3

1
+ 2𝑥1𝑥2

𝑥2 + 2𝑥2

1
𝑥2

)
=

(
8

13

)
is equivalent to

x =

(
𝑥1

𝑥2

)
=

(
(8 − 𝑥3

1
)/2𝑥2

13 − 2𝑥2

1
𝑥2

)
= 𝑔(x).

Note that there may be multiple ways to transform the system 𝑓 (x) = 0
into a fixed point problem 𝑔(x) = x, with 𝑔(𝐷) ⊆ 𝐷.

General Fixed Point Theorem: let 𝑔 : 𝐷 → 𝐷, with 𝐷 a closed subset of

ℝ𝑛
, and ∥ · ∥ a vector norm on ℝ𝑛

. If ∃𝐿 < 1 such that

∥𝑔(x) − 𝑔(y)∥ ≤ 𝐿∥x − y∥

for all x, y ∈ 𝐷, then 𝑔 admits a unique fixed point x∗ ∈ 𝐷 and the

sequence x(𝑘+1) = 𝑔(x(𝑘)) converges to x∗ for all x(0) ∈ 𝐷.
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When 𝑔 meets the condition stated in the theorem, we say it is contractive
on 𝐷; it is not easy to show directly that this property holds. There is

a sufficient condition on the Jacobian matrix of 𝑔 at x∗ (see Chapter

2 and the next section on Newton’s method) that guarantees that 𝑔 is

contractive in a neighbourhood of x∗:

| | |𝐷𝑔(x∗)| | | < 1,

assuming that 𝑔 is at least 𝐶1
. In that case, the convergence of the fixed

point iterates to x∗ is at least of order 1 (linear).

Newton’s Method In Section 4.2.5, we saw that there was a way to avoid

directly evaluating the derivative 𝑓 ′ in Newton’s Method (which can be

costly) by using the secant approximation.

This is a reasonable approach for equations in one variable, but it is less

obvious how we would do so in a multi-dimensional case – this is where

the work we put on linear systems will pay off.

In order to apply Newton’s method to the system

𝑓 (x) =
©«
𝑓1(x)
...

𝑓𝑛(x)

ª®®¬ = 0,

where 𝑓 : 𝐷 ⊆ ℝ𝑛 → ℝ𝑛
is at least 𝐶1

, we need to generalize the

iterates 𝑥𝑘 , the function values 𝑓 (𝑥𝑘), and the derivative 𝑓 ′(𝑥𝑘) to the

multi-dimensional case.

The natural way to do this is as follows:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

=⇒ x(𝑘+1) = x(𝑘) − 𝐷 𝑓 (x(𝑘))−1 𝑓 (x𝑘),

for 𝑘 ≥ 0, where

𝐷 𝑓 (x) =
©«
𝜕 𝑓1
𝜕𝑥1

(x) · · · 𝜕 𝑓1
𝜕𝑥𝑛

(x)
...

. . .
...

𝜕 𝑓𝑛
𝜕𝑥1

(x) · · · 𝜕 𝑓𝑛
𝜕𝑥𝑛

(x)

ª®®®¬ .
In practice it can be quite costly to invert the matrix not only once, but

at every step of the iterative process. We can save time (and increase

numerical stability) by re-writing the iteration step as a system of linear

equations:

𝐷 𝑓 (x(𝑘))(x(𝑘+1) − x(𝑘)) = 𝑓 (x𝑘), for 𝑘 ≥ 0,

which can be solved using the methods of Section 4.3.1.

Under some regularity conditions on 𝑓 , the sequence {x(𝑘)} converges

quadratically to a solution x∗ of 𝑓 (x∗) = 0.

Potential problems include the poor choice of the starting point x0

(at a critical point of 𝑓 , x0 entering a cycle); 𝑓 not being sufficiently

differentiable in a neighbourhood of x∗; x∗ not existing; the derivative of

𝑓 not being continuous at x∗, etc.
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4.4 Exercises

1. How must the Golden Ratio method be modified if we are looking

for the maximal value of a unimodal continuous function 𝑓 on

[𝑎, 𝑏]?
2. Is it necessary to use a factor 𝜑 in the Golden Ratio method or

would any other constant > 1 do the trick?

3. Implement the secant method in R. Test it on this chapter’s example

functions.

4. Consider the function defined by 𝑓 (𝑥) = 𝑥2 − 2, which has one

positive root 𝑥∗ =
√

2.

𝑥

𝑓 (𝑥)

𝑥0

slope 𝑓 ′(𝑥0)

𝑥1

slope 𝑓 ′(𝑥1)

𝑥2

a) Illustrate Newton’s method by performing two steps starting

at 𝑥0.

b) Let {𝑥𝑘}𝑘≥0 be the sequence generated by Newton’s method.

Write the relationship between 𝑥𝑘+1 and 𝑥𝑘 . Then, compute

𝑥1 and 𝑥2 starting from 𝑥0 = 2.

c) Determine the (exact) order of Newton’s method assuming

that we start close enough to 𝑥∗ =
√

2.

5. Let 𝑓 (𝑥) = (𝑥 + 2)(𝑥 + 1)2𝑥(𝑥 − 1)3(𝑥 − 2). To which zero of 𝑓 does

the bisection method converge when applied on the following

intervals?

a) [−1.5, 2.5] b) [−0.5, 2.4] c) [−0.5, 3] d) [−3,−0.5].

6. Use the bisection method on [1, 2] to find an approximation of

√
3

correct to within 10
−4

. Indicate which function 𝑓 you used and

report the values of 𝑥0, 𝑥1 and 𝑥2, the final output and the number

of iterations.

7. Let 𝑓 (𝑥) = 𝑥2 − 2𝑥 − 3. To find a root of 𝑓 , the following three fixed

point method are proposed

a) 𝑥𝑘 =
3

𝑥𝑘−1 − 2

b) 𝑥𝑘 = 𝑥2

𝑘−1
−𝑥𝑘−1−3 c) 𝑥𝑘 =

𝑥2

𝑘−1
+ 3

2𝑥𝑘−1 − 2

.

For each method, compute (if possible) the iterates 𝑥1, 𝑥2, 𝑥3 and

𝑥4 starting from 𝑥0 = 0. Report the values you obtain in a table.

Which methods seem to be appropriate? Among those, which one

seems to converge the fastest?

8. Consider the function 𝑔(𝑥) = 1

3

3

√
𝑥 + 8.

a) Show that 𝑔 has a unique fixed point in [0, 1].
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b) Assuming that we start from 𝑥0 = 1

2
, find a bound for the

number of fixed point iterations needed to achieve 10
−6

accu-

racy.

9. Use Newton’s method and the secant method with stopping crite-

rion |𝑥𝑘+1 − 𝑥𝑘 | ≤ 10
−5

to find solutions for the following problems.

For Newton’s method, use the midpoint of the given interval for 𝑥0

while for the secant method, use the endpoints of the given interval

for 𝑥0 and 𝑥1.

a) 3𝑥 − 𝑒𝑥 = 0 for 1 ≤ 𝑥 ≤ 2;

b) 2𝑥 + 5 cos(𝑥) − 𝑒𝑥 = 0 for −5 ≤ 𝑥 ≤ 0.

10. Recall that a sequence {𝑥𝑘} that converges to some 𝑥∗ is said to

converge with order 𝛼 and asymptotic error constant 𝜆 if

lim

𝑘→∞

|𝑥𝑘+1 − 𝑥∗ |
|𝑥𝑘 − 𝑥∗ |𝛼

= 𝜆,

where we need 𝜆 < 1 if 𝛼 = 1.

a) Consider the function 𝑓 (𝑥) = 1/𝑥−1/3, 𝑥 > 0, which vanishes

at 𝑥∗ = 3. Use Newton’s method with stopping criterion

|𝑥𝑘+1 − 𝑥𝑘 | ≤ 10
−4

and 𝑥0 = 1 to approximate 𝑥∗. Determine

(numerically) the order 𝛼 and the asymptotic error constant

𝜆.

b) Use the secant method to approximate the root of 𝑓 defined

in a) using 𝑥0 = 0.5 and 𝑥1 = 1.5. Verify that the order of the

method is the golden ratio 𝛼 = (1 +
√

5)/2 and determine the

value of 𝜆.

11. Suppose that 𝑥∗ is a zero of multiplicity 𝑚 ≥ 1 of a function 𝑓 of

class 𝐶𝑚 , namely

𝑓 (𝑥∗) = 𝑓 ′(𝑥∗) = 𝑓 ′′(𝑥∗) = . . . = 𝑓 (𝑚−1)(𝑥∗) = 0 and 𝑓 (𝑚)(𝑥∗) ≠ 0.

a) Show that Newton’s method

𝑥𝑘+1 = 𝑔1(𝑥𝑘), 𝑘 ≥ 0, where 𝑔1(𝑥) = 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥) ,

converges only linearly (i.e., with order 1) if 𝑚 > 1.

b) Consider now the modified Newton’s method

𝑥𝑘+1 = 𝑔2(𝑥𝑘), 𝑘 ≥ 0, where 𝑔2(𝑥) = 𝑥 − 𝑚
𝑓 (𝑥)
𝑓 ′(𝑥) .

Show that this method converges at least quadratically (i.e.,

with order ≥ 2) for any 𝑚.

Hint: Write 𝑓 as
𝑓 (𝑥) = (𝑥 − 𝑥∗)𝑚ℎ(𝑥)

for some (unknown) function ℎ with ℎ(𝑥∗) ≠ 0 and show that 𝑔′
1
(𝑥∗) =

1 − 1/𝑚 and 𝑔′
2
(𝑥∗) = 0.

12. Show that the induced matrix norm is indeed a norm (property 1

has already been proved; finish the job with properties 2 and 3).

13. Consider the 𝑛 × 𝑛 matrix 𝐴 consisting of 1’s on the diagonal

and in the first column (every other entry being a 0). Compute

𝜅1(𝐴), 𝜅∞(𝐴), and 𝜅2(𝐴).
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14. If 𝐴 is a 𝑛 × 𝑛 symmetric positive definitive matrix, show that

𝜅2(𝐴) =
𝜆max(𝐴)
𝜆min(𝐴)

.

15. Solve the linear system
𝑥1 − 𝑥2 + 3𝑥3 = −2

𝑥1 + 𝑥2 = 5

3𝑥1 − 2𝑥2 + 𝑥3 = 4.

using Gaussian elimination in its simplest form (i.e., without

pivoting) and backward substitution.

16. Let

𝐴 =
©«

1 2 1

1 −2 2

2 12 −2

ª®¬ and b =
©«

1

6

−10

ª®¬ .
a) Compute the 𝐿𝑈 factorization of𝐴, i.e., find a lower triangular

matrix 𝐿 (with ones on the diagonal) and an upper triangular

matrix𝑈 such that 𝐴 = 𝐿𝑈 .

b) Solve the system 𝐴x = b using only forward and backward

substitution.

17. Let

𝐴 =

©«
1 1 1 1

2 2 5 3

4 6 8 0

3 3 9 8

ª®®®¬ and b =

©«
1

0

−2

2

ª®®®¬ .
a) Find a lower triangular matrix 𝐿 (with ones on the diagonal),

an upper triangular matrix 𝑈 and a permutation matrix 𝑃

such that 𝑃𝐴 = 𝐿𝑈 .

b) Solve the system 𝐴x = b using the factorization found in a).

c) Compute the determinant of 𝐴 using the factorization found

in a).

18. a) Prove that for any x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛)𝑇 ∈ ℝ𝑛
we have

∥x∥∞ ≤ ∥x∥2 , ∥x∥2 ≤
√
𝑛∥x∥∞ and ∥x∥2

2
≤ ∥x∥∞∥x∥1.

(4.1)

b) For each inequality in (4.1), find a vector x for which equality

is attained.

c) Prove that for any matrix 𝐴 ∈ ℝ𝑛×𝑛

1√
𝑛
| | |𝐴| | |∞ ≤ |||𝐴| | |2 ≤

√
𝑛 | | |𝐴| | |∞.

19. Let

x = (1,−3, 2,−1)𝑇 and 𝐴 =

(
−1 −1

2 −2

)
.

a) Compute ∥x∥1, ∥x∥2 and ∥x∥∞.

b) Compute | | |𝐴| | |1, | | |𝐴| | |2 and | | |𝐴| | |∞.

c) Compute 𝜅1(𝐴), 𝜅2(𝐴) and 𝜅∞(𝐴).

20. We say that an 𝑛 × 𝑛 matrix 𝐴 is strictly diagonally dominant by
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row if

|𝑎𝑖𝑖 | >
𝑛∑

𝑗=1, 𝑗≠𝑖

|𝑎𝑖 𝑗 | for 𝑖 = 1, 2, . . . , 𝑛. (4.2)

Prove that if 𝐴 satisfies (4.2) then the Jacobi method applied to

𝐴x = b, b ∈ ℝ𝑛
, converges. Hint: show that ∥𝑇𝐽 ∥∞ < 1, where 𝑇𝐽 is

the iteration matrix for the Jacobi method.
21. Consider the system 𝐴x = b with

𝐴 =
©«

2 −1 2

−1 1 0

0 1 3

ª®¬ and b =
©«
−6

2

−3

ª®¬ .
22. Using x(0) = (0, 0, 0)𝑇 as initial guess:

a) find (by hand) the first 2 iterations of the Jacobi method;

b) find (by hand) the first iteration of the Gauss-Seidel method.

23. We consider the Gauss-Seidel method for solving the linear system

𝐴x = b, where

𝐴 =

(
1 𝛼

−2 1

)
.

24. Determine for which values of 𝛼 ∈ ℝ the method converges for

any initial guess x(0) ∈ ℝ2
and any right-hand side b ∈ ℝ2

.

25. Implement the fixed point algorithm for systems in R and solve

the system in Section 4.3.2. Is the function 𝑔 contractive on some

neighbourhood 𝐷 of the fixed point?

26. Implement Newton’s algorithm for systems in R and solve the

system in Section 4.3.2. What is its Jacobian?
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by Patrick Boily and Kevin Cheung

Traditionally, optimization has been one of the most-frequently used

arrows in the operations researcher’s and quantitative analyst’s quiver.

From its humble beginning as an offshoot of calculus (see Chapter 2) to

its current status as the crown jewel in a variety of industrial contexts

(scheduling, financial engineering, transportation networks, rankings,

machine learning, etc.), optimization allows users to find the largest

output, the smallest wait time, the winning conditions, and so on.

Optimization problems seen in calculus classes are often solved using

differential tools. In this whirlwind tour of the optimization landscape,

we discuss problems that do not lend themselves to such an approach,

providing a quick survey of optimization problems and algorithms,

modeling techniques, an software.

5.1 Beginnings

We start by looking at some of the most common types of single-objective
optimization problems that arise in practice.

1
The following toy problems 1: And popular techniques for solving

them.
introduce some of the fundamental notions.

1. Let 𝑆 be the set of all the four-letter English words. What is the

maximum number of ℓ ’s a word in 𝑆 can have?

There are numerous four-letter words that contain the letter ℓ – for

example, “line”, “long”, “tilt”, and “full”. From this short list alone,

we know the maximum number of ℓ ’s is at least 2 and at most 4.

As “llll” is not an English word, the maximum number cannot be 4.

Can the maximum number be 3? Yes, because “lull” is a four-letter

word with three ℓ ’s.

This example illustrates some fundamental ideas in optimization.

In order to say that 3 is the correct answer, we need to

search for a word that has three ℓ ’s, and

provide an argument that rules out any value higher than 3.

In this example, the only possible value of ℓ higher than 3 is 4,

which was easily ruled out. That cannot always be done – if the

problem was to find the maximum number of y’s, would the same

approach work?
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2. A pirate lands on an island with a knapsack that can hold 50kg of

treasure. She finds a cave with the following items:

Item Weight Value Value/kg

iron shield 20kg $2800.00 $140.00/kg

gold chest 40kg $4400.00 $110.00/kg

brass sceptre 30kg $1200.00 $40.00/kg

Which items can she bring back home in order to maximize her

reward without breaking the knapsack?

If the pirate does not take the gold chest, she can take both the

iron shield and the brass sceptre for a total value of $4000. If she

takes the gold chest, she cannot take any of the remaining items.

However, the value of the gold chest is $4400, which is larger than

the combined value of the iron shield and the brass sceptre. Hence,

the pirate should just take the gold chest.

Here, we performed a case analysis and exhausted all the promis-
ing possibilities to arrive at our answer. Note that a greedy strategy
that chooses items in descending value per weight would give us

the sub-optimal solution of taking the iron shield and brass sceptre.

Even though there are problems for which the greedy approach would

return an optimal solution, the second example is not such a problem. The

general version of this problem is the classic binary knapsack problem
and is known to be NP-hard.

2
2: Informally, NP-hard optimization prob-

lems are problems for which no algorithm

can provide an output in polynomial time

– when the problem size is large, the run

time explodes.

Many real-world optimization problems are NP-hard. Despite the theo-

retical difficulty, practitioners often devise methods that return “good-

enough solutions” using approximation methods and heuristics. There

are also ways to obtain bounds to gauge the quality of the solutions

obtained. We will be looking at these issues at a later stage.

5.2 Single-Objective Optimization Problems

A typical single-objective optimization problem consists of a domain set
D, an objective function 𝑓 : D → ℝ, and predicates C𝑖 on D, where

𝑖 = 1, . . . , 𝑚 for some non-negative integer 𝑚, called constraints.

We want to find, if possible, an element x ∈ D such that C𝑖(x) holds

for 𝑖 = 1, . . . , 𝑚 and the value of 𝑓 (x) is either as high (in the case

of maximization) or as low (in the case of minimization) as possible.

Compactly, single-objective optimization problems are written down

as:

min 𝑓 (x)
s.t. C𝑖(x) 𝑖 = 1, . . . , 𝑚

x ∈ D,

in the case of minimizing 𝑓 (x), or

max 𝑓 (x)
s.t. C𝑖(x) 𝑖 = 1, . . . , 𝑚

x ∈ D,
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in the case of maximizing 𝑓 (x).

Here, “s.t.” is an abbreviation for “subject to.” Technically, “min” should

be replaced with “inf” (and “max” with “sup”) since the minimum value

is not necessarily attained. However, we will abuse notation and ignore

this subtle distinction.

Some common domain sets include:

ℝ𝑛
+ (the set of 𝑛-tuples of non-negative real numbers)

ℤ𝑛
+ (the set of 𝑛-tuples of non-negative integers)

{0, 1}𝑛 (the set of binary 𝑛-tuples)

The Binary Knapsack Problem (BKP) can be formulated using the

notation we have just introduced. Suppose that there are 𝑛 items, with

item 𝑖 having weight 𝑤𝑖 and value 𝑣𝑖 > 0 for 𝑖 = 1, . . . , 𝑛.

Let 𝐾 denote the capacity of the knapsack. Then the BKP can be formu-

lated as:

max

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖

s.t.

𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝐾

𝑥𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛.

Note that there is only one constraint given by the inequality modeling

the capacity of the knapsack. For the pirate example discussed previously,

the BKP is:

max 2800𝑥1 + 4400𝑥2 + 1200𝑥3

s.t. 20𝑥1 + 40𝑥2 + 30𝑥3 ≤ 50

𝑥1 , 𝑥2 , 𝑥3 ∈ {0, 1}.

5.2.1 Feasible and Optimal Solutions

An element x ∈ D satisfying all the constraints (i.e., C𝑖(x) holds for all

𝑖 = 1, . . . , 𝑚) is called a feasible solution and its objective function
value is 𝑓 (x). For a minimization (resp. maximization) problem, a feasible

solution x∗ such that 𝑓 (x∗) ≤ 𝑓 (x) (resp. 𝑓 (x∗) ≥ 𝑓 (x)) for every feasible

solution x is called an optimal solution.

The objective function value of an optimal solution, if it exists, is the

optimal value of the optimization problem. If an optimal value exists,

it is by necessity unique, but the problem can have multiple optimal

solutions. Consider, for instance, the following example:

min 𝑥 + 𝑦
s.t. 𝑥 + 𝑦 ≥ 1[

𝑥

𝑦

]
∈ ℝ2

This problem has an optimal solution[
𝑥

𝑦

]
=

[
1 − 𝑡
𝑡

]
for every 𝑡 ∈ ℝ, but a unique optimal value of 1.
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5.2.2 Infeasible/Unbounded Problems

It is possible that there exists no element x ∈ D such that C𝑖(x) holds for

all 𝑖 = 1, . . . , 𝑚. In such a case, the optimization problem is said to be

infeasible. The following problem, for instance, is infeasible:

min 𝑥

s.t. 𝑥 ≤ −1

𝑥 ≥ 0

𝑥 ∈ ℝ

Indeed, any solution 𝑥 must be simultaneously non-negative and smaller

than −1, which is patently impossible. An optimization problem that is

not infeasible can still fail to have an optimal solution, however.

For instance, the problem

max 𝑥

s.t. 𝑥 ∈ ℝ

is not infeasible, but the max/sup does not exist since the objective

function can take on values larger than any candidate maximum. Such a

problem is said to be unbounded.

On the other hand, the problem

min 𝑒−𝑥

s.t. 𝑥 ∈ ℝ,

has a positive objective function value for every feasible solution. Even

though the objective function value approaches 0 as 𝑥 → ∞, there is

no feasible solution with an objective function value of 0. Note that this

problem is not unbounded as the objective function value is bounded

below by 0.

5.2.3 Possible Tasks

Given an optimization problem, the most natural task is to find an

optimal solution (provided that one exists) and to demonstrate that it is

optimal.

However, depending on the context of the problem, one might be instead

tasked to find:

a feasible solution (or show that none exists);

a local optimum;

a good bound on the optimal value;

all global solutions;

a “good” (but not necessarily optimal) solution, quickly;

a “good” solution that is robust to small changes in problem data,

and/or

the 𝑁 best solutions.

In many contexts, the last three tasks are often more important than

finding optimal solutions. For example, if the problem data comes from
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measurements or forecasts, one needs to have a solution that is still

feasible when deviations are taken into account.

Additionally, producing multiple “good” solutions could allow decision

makers to choose a solution that has desirable properties (such as political

or traditional requirements) but that is not represented by, or difficult to

represent with, problem constraints.

5.3 Classification of Optimization Problems and
Types of Algorithms

The computational difficulty of optimization problems, then, depends on

the properties of the domain set, constraints, and the objective function.

5.3.1 Classification

Problems without constraints are said to be unconstrained. For exam-

ple, least-squares minimization in statistics can be formulated as an

unconstrained problem, and so can

min 𝑥2 − 3𝑥

s.t. 𝑥 ∈ ℝ

Problems with linear constraints 𝑔𝑖 (i.e., linear inequalities or equalities)

and a linear objective function 𝑓 form an important class of problems in

linear programming.

Linear programming problems are by far the easiest to solve in the

sense that efficient algorithms exist both in theory and in practice. Linear

programming is also the backbone for solving more complex models

[2].

Convex problems are problems with a convex domain set, which is to

say a set D such that

𝑡x1 + (1 − 𝑡)x2 ∈ D

for all x1 , x2 ∈ D and for all 𝑡 ∈ [0, 1], and convex constraints 𝑔𝑖 and

function 𝑓 , which is to say,

ℎ(𝑡x1 + (1 − 𝑡)x2) ≤ 𝑡ℎ(x1) + (1 − 𝑡)ℎ(x2)

for all x1 , x2 ∈ D, and for all 𝑡 ∈ [0, 1], ℎ ∈ { 𝑓 , 𝑔𝑖}.

Convex optimization problems have the property that every local opti-
mum is also a global optimum. Such a property permits the development

of effective algorithms that could also work well in practice. Linear pro-

gramming is a special case of convex optimization.

Nonconvex problems (such as problems involving integer variables

and/or nonlinear constraints that are not convex) are the hardest problems

to solve. In general, nonconvex problems are NP-hard. Such problems

often arise in scheduling and engineering applications.
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In the rest of the chapter, we will primarily focus on linear programming

and nonconvex problems whose linear constraints 𝑔𝑖 and objective

function 𝑓 are linear, but with domain set D ⊆ ℝ𝑘 ×ℤ𝑛−𝑘
+ .

These problems cover a large number of applications in operations

research, which are often discrete in nature. We will not discuss op-

timization problems that arise in statistical learning and engineering

applications that are modeled as nonconvex continuous models since

they require different sets of techniques and methods – more information

is available in [1], and in Chapters 4 and 31.

5.3.2 Algorithms

We omit the specific algorithmic details of various optimization methods,
3

as consultants and analytsts are usually expected to use off-the-shelf3: Which would be better left for a gradu-

ate course on the subject anyway.
solvers for the various tasks, but it could prove insightful for analysts to

know of the various types of algorithms or methods that exist for solving

optimization problems.

Algorithms fall into three families: heuristics, exact, and approximate.

Heuristics These are normally quick to execute but do not provide

guarantees of optimality. For example, the greedy heuristic for the

knapsack problem is very quick but does not always return an optimal

solution.
4

4: In fact, no guarantee exists for the “va-

lidity” of a solution in that case.

Other heuristics methods include ant colony, particle swarm, and evolu-
tionary algorithms, just to name a few. There are also heuristics that are

stochastic in nature and have proof of convergence to an optimal solution.

Simulated annealing and multiple random starts are such heuristics.

Unfortunately, there is no guarantee on the running time to reach
optimality and there is no way to identify when one has reached an
optimum point.

Exact Methods Some approaches return a global optimum after a finite

run time.

However, most exact methods can only guarantee that constraints are

approximately satisfied (though the potential violations fall below some

pre-specified tolerance). It is therefore possible for the returned solutions
to be infeasible for the actual problem.

There also exist exact methods that fully control the error. When using

such a method, an optimum is usually given as a box guaranteed to
contain an optimal solution rather than a single element.

Returning boxes rather than single elements are helpful in cases, for

example, where the optimum cannot be expressed exactly as a vector of

floating point numbers.

Such exact methods are used mostly in academic research and in areas

such as medicine and avionics where the tolerance for errors is practically

zero.
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Approximate Methods Some algorithms eventually zoom in on sub-

optimal solutions, while providing a guarantee: this solution is at most 𝜀
away from the optimal solution, say.

In other words, approximate methods also provide a proof of solution
quality.

5.4 Linear Programming

Linear programming (LP) was developed independently by G.B. Dantzig

and L. Kantorovich in the first half of the 20
th

century to solve resource

planning problems.

Even though linear programming is insufficient for many modern-day

applications in operations research, it was used extensively in economic

and military contexts in the early days.

To motivate some key ideas in linear programming, we begin with an

example.

Example: A roadside stand sells lemonade and lemon juice. Each unit of

lemonade requires 1 lemon and 2 litres of water to prepare, and each unit

of lemon juice requires 3 lemons and 1 litre of water to prepare. Each unit

of lemonade gives a profit of 3$ dollars upon selling, while each unit of

lemon juice gives a profit of 2$ dollars.

With 6 lemons and 4 litres of water available, how many units of lemonade

and lemon juice should be prepared in order to maximize profit?

If we let 𝑥 and 𝑦 denote the number of units of lemonade and lemon

juice, respectively, to prepare, then the profit is the objective function,

given by (3𝑥 + 2𝑦)$.

Note that a number of constraints must be satisfied by 𝑥 and 𝑦:

𝑥 and 𝑦 should be non-negative;

the number of lemons needed to make 𝑥 units of lemonade and 𝑦

units of lemon juice is 𝑥 + 3𝑦 and cannot exceed 6;

the number of litres of water needed to make 𝑥 units of lemonade

and 𝑦 units of lemon juice is 2𝑥 + 𝑦 and cannot exceed 4;

Hence, to determine the maximum profit, we need to maximize 3𝑥 + 2𝑦

subject to 𝑥 and 𝑦 satisfying the constraints 𝑥 + 3𝑦 ≤ 6, 2𝑥 + 𝑦 ≤ 4, 𝑥 ≥ 0,

and 𝑦 ≥ 0.

A more compact way to write the problem is as follows:

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0.

𝑥 , 𝑦 ∈ ℝ.
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It is customary to omit the specification of the domain set in linear

programming since the variables always take on real numbers. Hence,

we can simply write

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0.

We can solve the above maximization problem graphically, as follows. We

first sketch the set of [𝑥, 𝑦]⊤ satisfying the constraints, called the feasible
region, on the (𝑥, 𝑦)−plane.

We then take the objective function 3𝑥 + 2𝑦 and turn it into the equation

of a line 3𝑥 + 2𝑦 = 𝑐 where 𝑐 is a parameter. Note that as the value of

𝑐 increases, the line defined by the equation 3𝑥 + 2𝑦 = 𝑐 moves in the

direction of the normal vector [3, 2]⊤. We call this direction the direction
of improvement. Determining the maximum value of the objective

function, called the optimal value, subject to the contraints amounts to

finding the maximum value of 𝑐 so that the line defined by the equation

3𝑥 + 2𝑦 = 𝑐 still intersects the feasible region.

Figure 5.1 shows the (objective function) lines with 𝑐 = 0, 4, 6.8.

Figure 5.1: Graphical solution for the

lemonade and lemon juice optimization

problem; the feasible region is shown in

yellow, and level curves of the objective

function in red.

We can see that if 𝑐 is greater than 6.8, the line defined by 3𝑥 + 2𝑦 = 𝑐

will not intersect the feasible region. Hence, the profit cannot exceed 6.8

dollars.

As the line 3𝑥 + 2𝑦 = 6.8 does intersect the feasible region, 6.8 is the

maximum value for the objective function. Note that there is only one
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point in the feasible region that intersects the line 3𝑥 + 2𝑦 = 6.8, namely

[𝑥∗ , 𝑦∗]⊤ = [1.2, 1.6]⊤. In other words, to maximize profit, we want to

prepare 1.2 units of lemonade and 1.6 units of lemon juice.

This solution method can hardly be regarded as rigorous because we

relied on a picture to conclude that 3𝑥 + 2𝑦 ≤ 6.8 for all [𝑥, 𝑦]⊤ satisfying

the constraints. But we can also obtain this result algebraically.

Note that multiplying both sides of the constraint 𝑥 + 3𝑦 ≤ 6 by 0.2

yields

0.2𝑥 + 0.6𝑦 ≤ 1.2,

and multiplying both sides of the constraint 2𝑥 + 𝑦 ≤ 4 by 1.4 yields

2.8𝑥 + 1.4𝑦 ≤ 5.6.

Hence, any [𝑥, 𝑦]⊤ that satisfies both

𝑥 + 3𝑦 ≤ 6 and 2𝑥 + 𝑦 ≤ 4

must also satisfy

(0.2𝑥 + 0.6𝑦) + (2.8𝑥 + 1.4𝑦) ≤ 1.2 + 5.6,

which simplifies to 3𝑥 + 2𝑦 ≤ 6.8, as desired.

It is always possible to find an algebraic proof like the one above for linear

programming problems, which adds to their appeal. To describe the full

result, it is convenient to call on duality, a central notion in mathematical

optimization.

5.4.1 Linear Programming Duality

Let 𝑃 denote following linear programming problem:

min cTx
s.t. Ax ≥ b

where c ∈ ℝ𝑛 b ∈ ℝ𝑚 A ∈ ℝ𝑚×𝑛
(inequality on 𝑚−tuples is applied

component-wise.)

Then for every y ∈ ℝ𝑚
+ (that is, all components of y are non-negative),

the inferred inequality yTAx ≥ yTb is valid for all x satisfying Ax ≥ b.

Furthermore, if yTA = cT , the inferred inequality becomes cTx ≥ yTb,

making yTb a lower bound on the optimal value of 𝑃. To obtain the

largest possible bound, we can solve

max yTb
s.t. yTA = cT

y ≥ 0.

This problem is called the dual problem of 𝑃, and 𝑃 is called the primal
problem. A remarkable result relating 𝑃 and its dual 𝑃′

is the Duality
Theorem for Linear Programming: if 𝑃 has an optimal solution, then so

does its dual problem 𝑃′
, and the optimal values of the two problems

are the same.
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A weaker result follows easily from the discussion above: the objective

function value of a feasible solution to the dual problem 𝑃′
is a lower

bound on the objective function value of a feasible solution to 𝑃. This

result is known as weak duality. Despite the fact that it is a simple result,

its significance in practice cannot be overlooked because it provides a

way to gauge the quality of a feasible solution to 𝑃.

For example, suppose we have at hand a feasible solution to 𝑃 with

objective function value 3 and a feasible solution to the dual problem 𝑃′

with objective function value 2. Then we know that the objective function

value of our current solution to 𝑃 is within 1.5 times the actual optimal

value since the optimal value cannot be less than 2.

In general, a linear programming problem can have a more complicated

form. Let A ∈ ℝ𝑚×𝑛
, b ∈ ℝ𝑚

, c ∈ ℝ𝑛
. Let a(𝑖)T denote the 𝑖th row of A,

A𝑗 denote the 𝑗th column of A, and 𝑃 denote the minimization problem,

with variables in the tuple x = [𝑥1 , · · · , 𝑥𝑛]⊤, given as follows:

the objective function to be minimized is cTx;

the constraints are a(𝑖)Tx⊔𝑖 𝑏𝑖 , where⊔𝑖 is≤,≥, or= for 𝑖 = 1, . . . , 𝑚,

and

for each 𝑗 ∈ {1, . . . , 𝑛}, 𝑥 𝑗 is constrained to be non-negative, non-

positive, or free.

Then the dual problem 𝑃′
is defined to be the maximization problem,

with variables in the tuple y = [𝑦1 , · · · , 𝑦𝑚]⊤ given as follows:

the objective function to be maximized is yTb;

for 𝑗 = 1, . . . , 𝑛, the 𝑗th constraint is
yTA𝑗 ≤ 𝑐 𝑗 if 𝑥 𝑗 is constrained to be non-negative

yTA𝑗 ≥ 𝑐 𝑗 if 𝑥 𝑗 is constrained to be nonpositive

yTA𝑗 = 𝑐 𝑗 if 𝑥 𝑗 is free.

and for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑦𝑖 is constrained to be non-negative if

⊔𝑖 is ≥; 𝑦𝑖 is constrained to be non-positive if ⊔𝑖 is ≤; 𝑦𝑖 is free if

⊔𝑖 is =.

The following table can help remember the correspondences:

Primal (min) Dual (max)

≥ constraint ≥ 0 variable

≤ constraint ≤ 0 variable

= constraint free variable

≥ 0 variable ≥ constraint

≤ 0 variable ≤ constraint

free variable = constraint

Below is an example of a primal-dual pair of problems based on the

above definition.
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Consider the primal problem:

min 𝑥1 − 2𝑥2 + 3𝑥3

s.t. −𝑥1 + 4𝑥3 = 5

2𝑥1 + 3𝑥2 − 5𝑥3 ≥ 6

7𝑥2 ≤ 8

𝑥1 ≥ 0

𝑥2 free

𝑥3 ≤ 0.

Here, A =


−1 0 4

2 3 −5

0 7 0

 , b =


5

6

8

 , and c =


1

−2

3

 .

Since the primal problem has three constraints, the dual problem has

three variables:

the first constraint in the primal is an equation, the corresponding

variable in the dual is free;

the second constraint in the primal is a ≥-inequality, the corre-

sponding variable in the dual is non-negative;

the third constraint in the primal is a ≤-inequality, the correspond-

ing variable in the dual is non-positive.

Since the primal problem has three variables, the dual problem has three

constraints:

the first variable in the primal is non-negative, the corresponding

constraint in the dual is a ≤-inequality;

the second variable in the primal is free, the corresponding con-

straint in the dual is an equation;

the third variable in the primal is non-positive, the corresponding

constraint in the dual is a ≥-inequality.

Hence, the dual problem is:

max 5𝑦1 + 6𝑦2 + 8𝑦3

s.t. −𝑦1 + 2𝑦2 ≤ 1

3𝑦2 + 7𝑦3 = −2

4𝑦1 − 5𝑦2 ≥ 3

𝑦1 free

𝑦2 ≥ 0

𝑦3 ≤ 0.

In some references, the primal problem is always a maximization prob-
lem – in that case, what we have considered to be a primal problem is

their dual problem and vice-versa.
5

5: Note that the Duality Theorem for Lin-
ear Programming remains true for the

more general definition of the primal-dual

pair of linear programming problems.5.4.2 Methods for Solving LP Problems

There are currently two families of methods used by modern-day linear

programming solvers: simplex methods and interior-point methods.

We will not get into the technical details of these methods, except to

say that the algorithms in either family are iterative, that there is no
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known simplex method that runs in polynomial time, but efficient

polynomial-time interior-point methods abound in practice. We might

wonder why anyone would still use simplex methods, given that they

are not polynomial-time methods: simply put, simplex methods are in

general more memory-efficient than interior-point methods, and they

tend to return solutions that have few nonzero entries.

More concretely, suppose that we want to solve the following problem:

min cTx
s.t. Ax = b

x ≥ 0.

For ease of exposition, we assume that A has full row rank. Then, each

iteration of a simplex method maintains a current solution x that is basic,

in the sense that the columns of A corresponding to the nonzero entries

of x are linearly independent. In contrast, interior-point methods will

maintain x > 0 throughout (whence the name “interior point”).

When we use an off-the-shelf linear programming solver, the choice of

method is usually not too important since solvers have good default

settings. Simplex methods are typically used in settings when a problem

needs to be resolved after minor changes in the problem data or in

problems with additional integrality constraints discussed in the next

section.

5.5 Mixed-Integer Linear Programming

While the simplicity of linear programming (and duality) make it an

appealing tool, its modeling power is insufficient in many real-life appli-

cations (for example, there is no simple linear programming formulation

of the BKP).

Fortunately, allowing the domain set to restrict one or more variables

to integer values drastically extends the modeling power. The price we

pay is that there is no guarantee that the problems can be solved in

polynomial time.

Example: Recall the lemonade and lemon juice problem introduced in the

previous section: there is a unique optimal solution at [𝑥, 𝑦]⊤ = [1.2, 1.6]⊤
for a profit of 6.8.

But this solution requires the preparation of fractional units of lemonade

and lemon juice. What if the number of prepared units needs to be

integers?

The solution is to add integrality constraints:

max 3𝑥 + 2𝑦

s.t. 𝑥 + 3𝑦 ≤ 6

2𝑥 + 𝑦 ≤ 4

𝑥 ≥ 0

𝑦 ≥ 0

𝑥 , 𝑦 ∈ ℤ.
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This problem is no longer a linear programming problem; rather, it is

an integer linear programming problem. Note that we can solve this

problem via a case analysis. The second and third inequalities tell us that

the possible values for 𝑥 are 0, 1, and 2.

If 𝑥 = 0, the first inequality gives 3𝑦 ≤ 6, implying that 𝑦 ≤
2. Since we are maximizing 3𝑥 + 2𝑦, we want 𝑦 to be as large

as possible; [𝑥, 𝑦]⊤ = [0, 2]⊤ satisfies all the constraints with an

objective function value of 4.

If 𝑥 = 1, the first inequality gives 3𝑦 ≤ 5, implying that 𝑦 ≤ 1. Note

that [𝑥, 𝑦]⊤ = [1, 1]⊤ satisfies all the constraints with an objective

function value of 5.

If 𝑥 = 2, the second inequality gives 𝑦 ≤ 0. Note that [𝑥, 𝑦]⊤ =

[2, 0]⊤ satisfies all the constraints with an objective function value

of 6.

Thus, [𝑥∗ , 𝑦∗]⊤ = [2, 0]⊤ is an optimal solution. How does this compare

to the solution of the LP problem of the previous section, both in terms

of location of the solution and value of the objective function?

A mixed-integer linear programming problem (MILP) is a problem

of minimizing or maximizing a linear function subject to finitely many

linear constraints such that the number of variables are finite, with at

least one of them required to take on integer values.

If all the variables are required to take on integer values, the problem is

called a pure integer linear programming problem or simply an integer
linear programming problem. Normally, we assume the problem data

to be rational numbers to rule out pathological cases.

Many solution methods for solving MILPs have been devised and some

of them first solve the linear programming relaxation of the original

problem, which is the problem obtained from the original problem by

dropping all the integrality requirements on the variables.

For instance, if 𝑃𝑀 denotes the following MILP:

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

𝑥3 ∈ ℤ.

then the linear programming relaxation 𝑃1 of 𝑃𝑀 is:

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥1 , 𝑥2 , 𝑥3 ≥ 0.

Observe that the optimal value of 𝑃1 is a lower bound for the optimal

value of 𝑃𝑀 since the feasible region of 𝑃1 contains all the feasible

solutions to 𝑃𝑀 , thus making it possible to find a feasible solution to 𝑃1
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with objective function value which is better than the optimal value of

𝑃𝑀 .

Hence, if an optimal solution to the LP relaxation happens to be a feasible

solution to the original problem, then it is also an optimal solution to

the original problem. Otherwise, there is an integer variable having a

nonintegral value 𝑣.

What we then do is to create two new sub-problems as follows:

one requiring the variable to be at most the greatest integer less

than 𝑣,

the other requiring the variable to be at least the smallest integer

greater than 𝑣.

This is the basic idea behind the branch-and-bound method. We now

illustrate these ideas on 𝑃𝑀 . Solving the linear programming relaxation

𝑃1, we find that x′ = 1

3
[0, 2, 1]⊤ is an optimal solution to 𝑃1. Note that x′

is not a feasible solution to 𝑃𝑀 because 𝑥′
3

is not an integer.

We now create two sub-problems 𝑃2 and 𝑃3. 𝑃2 is obtained from 𝑃1 by

adding the constraint 𝑥3 ≤ ⌊𝑥′
3
⌋,6 and 𝑃3 is obtained from 𝑃1 by adding6: ⌊𝑎⌋ denotes the floor of 𝑎 and ⌈𝑎⌉ de-

notes the ceiling of 𝑎.
the constraint 𝑥3 ≥ ⌈𝑥′

3
⌉ .

Hence, 𝑃2 is the problem

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥3 ≤ 0

𝑥1 , 𝑥2 , 𝑥3 ≥ 0,

and 𝑃3 is the problem

min 𝑥1 + 𝑥3

s.t. −𝑥1 + 𝑥2 + 𝑥3 ≥ 1

−𝑥1 − 𝑥2 + 2𝑥3 ≥ 0

−𝑥1 + 5𝑥2 − 𝑥3 = 3

𝑥3 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 ≥ 0.

Note that any feasible solution to 𝑃𝑀 must be a feasible solution to either

𝑃2 or 𝑃3. Using the help of a solver, one can see that 𝑃2 is infeasible. The

problem 𝑃3, however, has an optimal solution at x∗ = 1

5
[0, 4, 5]⊤, which

is also feasible for 𝑃𝑀 . Hence, x∗ is an optimal solution of 𝑃𝑀 .

In many instances, there are multiple choices for the variable on which to

branch, and for which sub-problem to solve next. These choices can have

an impact on the total computation time. But there are no hard-and-fast

rules (at the moment) to determine the best branching path. This in area

of ongoing research.
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5.5.1 Cutting Planes

Difficult MILP problems often cannot be solved by branch-and-bound

methods alone. A technique that is typically employed in solvers is to add

valid inequalities to strengthen the linear programming relaxation.

Such inequalities, known as cutting planes, are known to be satisfied

by all the feasible solutions to the original problem but not by all the

feasible solutions to the initial linear programming relaxation.

Example: consider the following PILP problem:

min 3𝑥 + 2𝑦

s.t. 2𝑥 + 𝑦 ≥ 1

𝑥 + 2𝑦 ≥ 4

𝑥 , 𝑦 ∈ ℤ.

An optimal solution to the linear programming relaxation is given by

[𝑥+ , 𝑦+]⊤ =
1

3

[−2, 7]⊤.

Note that adding the inequalities 2𝑥 + 𝑦 ≥ 1 and 𝑥 + 2𝑦 ≥ 4 yields

3𝑥 + 3𝑦 ≥ 5, or equivalently,

𝑥 + 𝑦 ≥ 5

3

.

Since 𝑥 + 𝑦 is an integer for every feasible solution [𝑥, 𝑦]⊤, 𝑥 + 𝑦 ≥ 2 is

a valid inequality for the original problem, but is violated by [𝑥+ , 𝑦+]⊤.

Hence, 𝑥 + 𝑦 ≥ 2 is a cutting plane.

Adding this to the linear programming relaxation, we have

min 3𝑥 + 2𝑦

s.t. 2𝑥 + 𝑦 ≥ 1

𝑥 + 2𝑦 ≥ 4

𝑥 + 𝑦 ≥ 2.

which, upon solving, yields [𝑥∗ , 𝑦∗]⊤ = [−1, 3]⊤ as an optimal solution.

Since all the entries are integers, this is also an optimal solution to the

original problem. In this example, adding a single cutting plane solved

the problem. In practice, one often needs to add numerous cutting planes

and then continue with branch-and-bound to solve nontrivial MILP

problems.

Many methods for generating cutting planes exist – the problem of

generating effective cutting planes efficiently is still an active area of

research [4].

5.6 Useful Modeling Techniques

So far, we have discussed the kinds of optimization problems that can be

solved and certain methods available for solving them. Practical success,

however, depends upon the effective translation and formulation of a
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problem description into a mathematical programming problem, which

often turns out to be as much an art as it is a science.

We will not be discussing formulation techniques in detail (see [7] for a

deep dive into the topic) – instead, we highlight modeling techniques

that often arise in business applications, which our examples have not

covered so far.

5.6.1 Activation

Sometimes, we may want to set a binary variable 𝑦 to 1 whenever some

other variable 𝑥 is positive. Assuming that 𝑥 is bounded above by 𝑀, the

inequality

𝑥 ≤ 𝑀𝑦

will model the condition. Note that if there is no valid upper bound on 𝑥,

the condition cannot be modeled using a linear constraint.

5.6.2 Disjunction

Sometimes, we want x to satisfy at least one of a list of inequalities; that

is,

a(1)
T

x ≥ 𝑏1 ∨ a(2)
T

x ≥ 𝑏2 ∨ · · · ∨ a(𝑘)
T

x ≥ 𝑏𝑘 .

To formulate such a disjunction using linear constraints, we assume that,

for 𝑖 = 1, . . . , 𝑘, there is a lower bound 𝑀𝑖 on a𝑖Tx for all x ∈ D. Note

that such bounds automatically exist when D is a bounded set, which is

often the case in applications.

The disjunction can now be formulated as the following system where 𝑦𝑖
is a new 0-1 variable for 𝑖 = 1, . . . , 𝑘:

a(1)Tx ≥ 𝑏1𝑦1 +𝑀1(1 − 𝑦1)
a(2)Tx ≥ 𝑏2𝑦2 +𝑀2(1 − 𝑦2)

...

a(𝑘)Tx ≥ 𝑏𝑘𝑦𝑘 +𝑀𝑘(1 − 𝑦𝑘)
𝑦1 + · · · + 𝑦𝑘 ≥ 1.

Note that a𝑖Tx ≥ 𝑏𝑖𝑦𝑖 +𝑀𝑖(1− 𝑦𝑖) reduces to a𝑖Tx ≥ 𝑏𝑖 when 𝑦𝑖 = 1, and

to a𝑖Tx ≥ 𝑀𝑖 when 𝑦𝑖 = 0, which holds for all x ∈ D.

Therefore, 𝑦𝑖 is an activation for the 𝑖th constraint, and at least one is

activated because of the constraint

𝑦1 + · · · + 𝑦𝑘 ≥ 1.

5.6.3 Soft Constraints

Sometimes, we may be willing to pay a price in exchange for specific con-

straints to be violated (perhaps they represent “nice-to-have” conditions

instead of “must-be-met” conditions). Such constraints are referred to as

soft constraints.
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There are situations in which having soft constraints is advisable, say

when enforcing all constraints results into an infeasible problem, but a

solution is nonetheless needed.

We illustrate the idea on a modified BKP. As usual, there are 𝑛 items and

item 𝑖 has weight 𝑤𝑖 and value 𝑣𝑖 > 0 for 𝑖 = 1, . . . , 𝑛. The capacity of

the knapsack is denoted by 𝐾. Suppose that we prefer not to take more

than 𝑁 items, but that the preference is not an actual constraint.

We assign a penalty for its violation and use the following formulation:

max

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖 − 𝑝𝑦

s.t.

𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝐾

𝑛∑
𝑖=1

𝑥𝑖 − 𝑦 ≤ 𝑁

𝑥𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛

𝑦 ≥ 0.

Here, 𝑝 is a non-negative number of our choosing. As we are maximiz-

ing

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖 − 𝑝𝑦,

𝑦 is pushed towards 0 when 𝑝 is “large”. Therefore, the problem will be

biased towards solutions that try to violate 𝑥1 + · · · + 𝑥𝑛 ≤ 𝑁 as little as

possible.

Experimentation is required to determine What value to select for 𝑝; the

general rule is that if violation is costly in practice, we should set 𝑝 to be

(relatively) high; otherwise, we set it to a moderate value relative to the

coefficients of the variables in the objective function value.

Note that when 𝑝 = 0 , the constraint 𝑥1 + · · · + 𝑥𝑛 ≤ 𝑁 has no effect

because 𝑦 can take on any positive value without incurring a penalty.

5.7 Software Solvers

A wide variety of solvers exist for all kinds of optimization problems.

The NEOS Server is a free online service that hosts many solvers and

is a great resource for experimenting with different solvers on small
problems.

For large or computationally challenging problems, it is advisable to use

a solver installed on a dedicated private machine/server. Commercial

solvers can also prove useful:

IBM ILOG Cplex ;

Gurobi , or

FICO Xpress Optimization .

There are popular open-source solvers as well, although they are not as

powerful as the commercial tools:

CBC ;

https://neos-server.org/neos/
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://www.fico.com/en/products/fico-xpress-optimization
https://projects.coin-or.org/Cbc
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GLPLK

SCIP (requires a commercial licence for consulting work);

JuliaOpt , to name a few.

We mention in passing that learning how to use of any of these solvers

effectively requires a significant time investment. In addition, it is common

to build optimization models using a modeling system such as GAMS

and LINDO , or a modeling language such as AMPL , ZIMPL , or

JuMP .

Note that in the data science and machine learning context, more straight-

forward methods like gradient descent, stochastic gradient descent and

Newton’s method are usually sufficient for most applications.

5.8 Data Envelopment Analysis

Operations research (OR) is a mish-mash of various mathematical

methods used to solve complex industrial problems, especially opti-

mization problems, which are being tackled in management and other

non-industrial contexts.

Data Envelopment Analysis (DEA), based on linear programming, is

used to measure the relative performance of units in an organization

such as a government department, a school, a company, etc. Typically, a

unit’s efficiency is defined as the quotient of its outputs7
by its inputs.

8
7: Activities of the organization such as

service levels or number of deliveries.

8: The resources supporting the organiza-

tion’s operations, such as wages or value

of the in-store stock.

In an organization with only one type of input and one type of output,

the comparison is simple. For instance, a fictional organization could

have the simple input/out data in the table below:

Unit Input Output Efficiency

A 10 10 100%

B 10 20 200%

C 5 15 300%

D 15 10 67%

However, if there are more than one input or output, the comparisons are

less obvious: in the table below, is unit 𝐴 more efficient than unit 𝐵?

Unit Input 1 Input 2 Output 1 Output 2

A 10 5 10 20

B 10 15 20 5

C 5 15 15 15

D 15 5 10 20

Unit 𝐴 has fewer total inputs than unit 𝐵 (as well as fewer outputs of type

1, but it has a substantially more outputs of type 2. Without a system

in place to measure relative efficiency, comparison between (potentially

incommensurate) units is unlikely to be fruitful.

https://www.gnu.org/software/glpk/
http://scip.zib.de/
http://www.juliaopt.org/
https://www.gams.com/
https://lindo.com/
https://ampl.com/
http://zimpl.zib.de/
https://jump.readthedocs.io/en/latest/
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The relative efficiency of unit 𝑘 is defined by

RE𝑘 =

∑
𝑗 𝑤𝑘,𝑗𝑂𝑘,𝑗∑
𝑖 𝑣𝑘,𝑖 𝐼𝑘,𝑖

,

where

{𝑂𝑘,𝑗 | 𝑗 = 1, . . . , 𝑛} represent the 𝑛 outputs from unit 𝑘,

{𝐼𝑘,𝑖 | 𝑖 = 1, . . . , 𝑚} represent the 𝑚 inputs from unit 𝑘,

{𝑤𝑘,𝑗 | 𝑗 = 1, . . . , 𝑛} and {𝑣𝑘,𝑖 | 𝑖 = 1, . . . , 𝑚} are the associated
unit weights.

For a specific unit 𝑘, the DEA model maximizes the weighted sum of
outputs for a fixed weighted sum of inputs (usually set to 100), subject

to the weighted sum of outputs of every unit being at most equal to the

weighted sum of its inputs when using the DEA weights of unit 𝑘.

In other words, the optimal set of weights for a given unit could not give

another unit a relative efficiency greater than 1.

This is equivalent to solving the following linear program for each unit

𝑘0:

max

∑𝑛
𝑗=1
𝑤𝑘0 , 𝑗𝑂𝑘0 , 𝑗

s.t.

∑𝑚
𝑖=1
𝑣𝑘0 ,𝑖 𝐼𝑘0 ,𝑖 = 100∑𝑛

𝑗=1
𝑤𝑘0 , 𝑗𝑂ℓ , 𝑗 −

∑𝑚
𝑖=1
𝑣𝑘0 ,𝑖 𝐼ℓ ,𝑖 ≤ 0, 1 ≤ ℓ ≤ 𝐾

(𝑤𝑘0 , 𝑗 , 𝑣𝑘0 ,𝑖) ≥ 𝜺, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚

where 𝜺 ≥ 0 is a parameter vector to be modified by the user.

If we define wℓ , vℓ , Oℓ and Iℓ as the vectors of output weights, input

weights, outputs and inputs, respectively, for unit ℓ , while O and I
represent the row matrix of outputs and the row matrix of inputs for all

the units, then the linear problem can be re-written simply as

max w⊤
𝑘0

O𝑘0

s.t. v⊤
𝑘0

I𝑘0
= 100

w⊤
𝑘0

O − v⊤
𝑘0

I ≤ 0
− (w𝑘0

, v𝑘0
) ≤ −𝜺

This problem can be solved by the method of Lagrange multipliers (see

Section 2.5.5) or by using dedicated numerical solvers (see previous

Section 5.7).

With the data from the example above,the DEA program for unit 𝐴, for

instance, becomes

max 10𝑤𝐴,1 + 20𝑤𝐴,2
s.t. 10𝑣𝐴,1 + 5𝑣𝐴,2 = 100

10𝑤𝐴,1 + 20𝑤𝐴,2 − 10𝑣𝐴,1 − 5𝑤𝐴,2 ≤ 0

20𝑤𝐴,1 + 5𝑤𝐴,2 − 10𝑣𝐴,1 − 15𝑤𝐴,2 ≤ 0

15𝑤𝐴,1 + 15𝑤𝐴,2 − 5𝑣𝐴,1 − 15𝑤𝐴,2 ≤ 0

10𝑤𝐴,1 + 20𝑤𝐴,2 − 15𝑣𝐴,1 − 5𝑤𝐴,2 ≤ 0

𝑤𝐴,1 , 𝑤𝐴,2 , 𝑣𝐴,1 , 𝑣𝐴,2 ≥ 𝜀
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5.8.1 Challenges and Pitfalls

By allowing non-universal (unit-specific) weights, DEA allows each unit

to present itself in the best possible light, which could potentially lead

most units to be deemed efficient. This issue is mitigated to some extent

when the number of units 𝐾 is greater than the product of the number of

outputs by the number of inputs 𝑛 · 𝑚.

When the number of units is small, a lack of differentiation among units

is uninformative since all units could benefit from the best-case scenario

described above. When there is differentiation, however, it can be quite

telling: units with low DEA relative efficiency have achieved a low score

even when given a chance to put their best foot forward.

Another concern is that a unit could artificially seem efficient by com-

pletely eliminating unfavourable outputs or inputs (i.e.if the associated

input/output weights are 0). Constraining the weights to take values in

some fixed range can help avoid this issue.

In the example that was discussed above, when we set 𝜀 = 0, all units

have a relative efficiency of 100. If we set 𝜀 = 2, however, the relative

efficiency for each unit is

RE𝐴 = 100, RE𝐵 = 67.7, RE𝐶 = 100, and RE𝐷 = 90.

Evidently, insisting that all the factors be considered may affect the

results.

External factors can easily be added to the model as either inputs or

outputs. Available resources are classified as inputs; activity levels or

performance measures are classified as outputs.

When units can also be assessed according to some other measure (such

as profitability, average rate of success for a task, or environmental

cleanliness, say), it can be tempting to solely use the second metric to

rank the units.

The combination of efficiency and profitability (or of any two measures,

really) can however offer insights and suggestions:

Flagships are units who score high on both measures and that can

provide examples of good operating practices (as long as it is

recognized that they are also likely beneficiaries of favourable

conditions).

Sleepers score low on efficiency but high on the other measure, which is

probably more a consequence of favourable conditions than good

management; as such, they become candidates for efficiency drives.

Dogs score high on efficiency but low on the other measure, which indi-

cates good management but unfavourable conditions. In extreme

case, these units are candidates for closures, their staff members

could be re-assigned to other units.

Question Marks are units who score low on both measures; they are

subject to unfavourable conditions, but this could also be a conse-

quence of bad management. Attempts should be made to increase

the efficiency of these units so that they become Sleepers or Flag-

ships.
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Finally, note that in any reasonable application, the linear program to be

solved (or its dual) can be fairly complicated and sophisticated software

can be required to obtain a solution. That is emblematic of industrial

optimization problems.

5.8.2 Advantages and Disadvantages

The main benefits of DEAs are that:

there is no need to explicitly specify a mathematical form for the

production function;

they have been proven to be useful in uncovering relationships that

remain hidden from other methodologies;

they are capable of handling multiple inputs and outputs;

they can be used with any input-output measurements, and

the sources of inefficiency can be analysed and quantified for every

evaluated unit.

On the other hand, there are also disadvantages to using DEAs:

the results are known to be sensitive to the selection of inputs and

outputs;

it is impossible to test for the best specification, and

the number of efficient units on the frontier tends to increase with

the number of inputs and output variables.

As is the case for all applications of quantitative methods to real-world

problems, DEAs will ultimately prove useless unless users understand
how they function and how to interpret their results.

5.8.3 SAS, Excel, and R DEA Solvers

For small problems, the numerical cost of solving the problem is not too

onerous. Consequently, such problems can typically be solved without

having to purchase a commercial solver.

As an illustration, consider the problem of finding the relative efficiency

of unit 𝐷 in the example arising from the data presented above (using

a minimal weight threshold of 𝜀 = 2, say). Thus, we are looking for the

solution to

max 10𝑤𝐷,1 + 20𝑤𝐷,2
s.t. 15𝑣𝐷,1 + 5𝑣𝐷,2 = 100

10𝑤𝐷,1 + 20𝑤𝐷,2 − 10𝑣𝐷,1 − 5𝑤𝐷,2 ≤ 0

20𝑤𝐷,1 + 5𝑤𝐷,2 − 10𝑣𝐷,1 − 15𝑤𝐷,2 ≤ 0

15𝑤𝐷,1 + 15𝑤𝐷,2 − 5𝑣𝐷,1 − 15𝑤𝐷,2 ≤ 0

10𝑤𝐷,1 + 20𝑤𝐷,2 − 15𝑣𝐷,1 − 5𝑤𝐷,2 ≤ 0

𝑤𝐷,1 , 𝑤𝐷,2 , 𝑣𝐷,1 , 𝑣𝐷,2 ≥ 2

This is a small problem, and Excel’s numerical solver can be used to

yield a relative efficiency of 90% (see Figure 5.2 for an illustration).

https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
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Figure 5.2: Excel’s numerical solver for unit 𝐷 in the simple DEA problem.

There are a number of non-technical issues with the solver, including

the fact that a different worksheet has to be created for every single unit.

With larger datasets, this approach may not be practical.

SAS’s proc optmodel, available in version 9.2+ as part of the OR(R) suite,

can also be used; but some additional work has to be done to automate

the descriptions of the programs to be solved. R’s rDEA and deaR

packages provide other options.

5.8.4 Case Study: Barcelona Schools

In this section, we present an illustration of a resource utlization model
which uses a DEA-like approach.

9
9: Other optimization case studies can be

found in [3].

Title: On centralized resource utilization and its re-allocation by

using DEA [6]

Authors: Cecilio Mar-Molinero, Diego Prior, Maria-Manuela Segovia,

Fabiola Portillo

Date: 2012

Methods: Data envelopment analysis, simulations

Abstract The standard DEA model allows different Decision-Making
Units (DMUs) to set their own priorities for the inputs and outputs

that form part of the efficiency assessment. In the case of a centralized

organization with many outlets, such as an education authority that is

responsible for many schools, it may be more sensible to operate in the

most efficient way, but under a common set of priorities for all DMUs.

The centralized resource allocation model does just this; the optimal

resource reallocation is found for Spanish public schools and it is shown

that the most desirable operating unit is a by-product of the estimation.

https://rdrr.io/cran/rDEA/
https://cran.r-project.org/web/packages/deaR/index.html
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Data The data consists of 54 secondary public schools in Barcelona

during the year 2008, each with three discretionary inputs (teaching

hours per week, 𝑥1; specialized teaching hours per week, 𝑥2; capital

investments in the last decade, 𝑥3), one non-discretionary input (total

number of students present at the beginning of the academic year, 𝑋)

and two outputs (number of students passing their final assessment,

𝑦1, and number of students continuing their studies at the end of the

academic year, 𝑦2).

A subset of the data is shown in Table 5.5.

Table 5.5: Sample from the Barcelona pub-

lic school dataset used with the radial and

simplified models.

Challenges A first challenge is that the machinery of DEA cannot

directly be brought to bear on the problem since the models under

consideration are at best DEA-like. Another challenge is that the number

of unknowns to be estimated in the original model is quadratic in the

number of units. Consequently, the original model must be simplified

to avoid difficulties when the number of units is large. Fortunately, the

proposed simplifications can be interpreted logically in the context of

re-allocation of resources.

Finally, there are situations where a solution to the simplified problem

can be obtained even when the constraints on the total number of units is

relaxed, allowing for the possibility of reaching the similar output levels

with fewer inputs, in effect advocating for the closure of some units.

While this is a technically-correct solution, it might could prove to be an

unadvisable one for a variety of non-technical reasons: closing schools is

not usually a politically and/or societally palatable strategy. This latter

factor should also be incorporated in the decision-making process.
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Project Summary and Results In the standard DEA model, each unit

sets its own priorities, and is evaluated using unit-specific weights. In a

de-centralized environment, the standard approach is reasonable, but

under a central authority where a common set of priorities needs to be

met by all units (such as the branches of a bank, or recycling collection

vehicles in a city), that approach needs to be modified.

In a school setting, school board administrators may wish to evaluate

teachers in a similar manner independently of the school at which they

work. Centralized assessment imposes a common set of weights. For

weakly centralized management, it is a further assumption that any input

excess of inefficient units can be re-allocated among the efficient units,

but only as long as this does not contravene the built-in inflexibility of

the system, which may make re-allocation rather difficult.

Strongly centralized management, on the other hand, allow for re-

allocation of the majority of inputs and outputs among all the units

(inefficient or efficient) with the aim of optimizing the performance of

the entire system. The original radial model of Lozano and Villa [5] is

not, strictly speaking, a data envelopment model:

min 𝜃 (objective)

s.t.

54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑥𝑖 , 𝑗 − 𝜃
54∑
𝑗=1

𝑥𝑖 , 𝑗 ≤ 0, for 𝑖 = 1, 2, 3

(discretionary inputs)

54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑋𝑗 −
54∑
𝑗=1

𝑋𝑗 ≤ 0,

(non-discretionary input)

54∑
𝑟=1

𝑦𝑘𝑟 −
54∑
𝑟=1

54∑
𝑗=1

𝜆 𝑗 ,𝑟𝑦𝑘,𝑗 ≤ 0, for 𝑘 = 1, 2

(outputs)

54∑
𝑗=1

𝜆 𝑗 ,𝑟 = 54, for 𝑟 = 1, . . . , 54

− 𝜆 𝑗 ,𝑟 ≤ 0, for 𝑗 , 𝑟 = 1, . . . , 54, 𝜃 free

Indeed, this model is not asking every unit to select the weights that

make it look as good as possible when comparing itself to the remaining

units under the same assessment; rather, it is asking for the system as a

whole to find the weights that present it in the best possible light possible,

then it assesses the performance of the units separately, using the optimal

system weights.

This conceptual shift leads to proposed closures.The main drawback of the

radial model is the large number of weights to estimate. A simplification

is proposed: if some of the units can be cloned, or equivalently, if some

of the units can be closed and their resources re-allocated to other units,

then the radial model becomes substantially simpler, and the number

of weights to estimate is linear in the number of units (as opposed to

quadratic).
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Figure 5.3: Results of the re-allocation pro-

cess in the Barcelona public school dataset.

The new problem is DEA-like:

min 𝜃 (objective)

s.t.

54∑
𝑗=1

𝜆 𝑗𝑥𝑖 , 𝑗 − 𝜃
54∑
𝑗=1

𝑥𝑖 , 𝑗 ≤ 0, for 𝑖 = 1, 2, 3

(discretionary inputs)

54∑
𝑗=1

𝜆 𝑗𝑋𝑗 −
54∑
𝑗=1

𝑋𝑗 ≤ 0

(non-discretionary inputs)

54∑
𝑟=1

𝑦𝑘 −
54∑
𝑗=1

𝜆 𝑗𝑦𝑘,𝑗 ≤ 0, for 𝑘 = 1, 2

(outputs)

54∑
𝑗=1

𝜆 𝑗 = 54

− 𝜆 𝑗 ≤ 0, for 𝑗 = 1, . . . , 54, 𝜃 free

The numerical solution to the radial model shows a group efficiency of

66%, meaning that the outputs of the system could be produced while

reducing the discretionary inputs by 𝜃 = 34%. The simplified model

reaches the same group efficiency by cloning units 25 (24.26 times), 26

(20.02 times), 36 (4.71 times), 17 (2.69 times), and 44 (1.70 times).

The re-allocation of inputs and outputs among the 54 schools would pro-

duce the aforementioned reduction of the 34% in discretionary inputs.

A simulation experiment shows the effect of dropping the constraint

on the number of units: the group efficiency obtained by solving the

simplified system for various values of 𝑛 from 32 to 81 is seen in Figure

5.3.

Sure enough, the original solution is good, appearing near the minimum,

which reaches 𝜃 = 0.64 at 𝑛 = 50.36. This group efficiency corresponds

to cloning units 25 (23.96 times), 26 (17.62 times), and 29 (7.87 times).

Obviously, schools (and their resources) cannot be cloned, so what are

we to make of this result?
10

10: It could be argued that unit 25 and 26,

for instance, are ideal schools under the

common priorities imposed by the system:

should new schools have to be built, at-

tempts could be made to emulate the stars.

Of course, in practice, other factors could

come into play.
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5.9 Exercises

Some of the questions in this section may need to be solved by a combination of the techniques provided in

Chapters 2, 4, and 5.

1. Find the extrema of the function defined by 𝑓 (𝑥) = 𝑥 − sin(𝑥) over the interval [−2, 12].
2. Let 𝑓 : ℝ2 → ℝ be defined by 𝑓 (𝑥, 𝑦) = 𝐴−(𝑥2 +𝐵𝑥+ 𝑦2 +𝐶𝑦), where 𝐴, 𝐵, 𝐶 are constants. What values

must they take so that 𝑓 admits a maximum value of 15 when (𝑥, 𝑦) = (−2, 1)? What if it is a minimal

value of 15 when (𝑥, 𝑦) = (−2, 1)?
3. Consider a factory that produces various types of deluxe pickle jars. The monthly number of jars 𝑄 of a

specific kind of pickled radish that can be produced at the factory is given by 𝑄(𝐾, 𝐿) = 1000𝐾0.21𝐿0.79 ,

where 𝐾 is the number of dedicated canning machines, and 𝐿 is the monthly number of employee-hours

spent on the pickled radish. The pay rate for the employees is 22$/hour; the monthly maintenance cost for

each canning machine is 300$. If the factory owners want to maintain monthly production at 40,000 jars of

pickled radish, what combination of number of canning machines and employee-hour will minimize the

total production costs?

4. The distance 𝑑 at which a projectile can be fired depends on the temperature 𝑡 and the humidity level ℎ,

according to

𝐸(𝑡 , ℎ) = 12, 000 − 𝑡2 − 2ℎ𝑡 − 2ℎ2 + 200𝑡 + 260ℎ,

where 𝑡 is measured in
◦
F and 0 ≤ ℎ ≤ 100. Under what atmospheric conditions should we fire the

projectile to maximize the distance it travels? To minimize it?

5. The area of the vertical sections of an irrigation canal is 50 square feet. The average flow of liquid in the

canal is inversely proportional to the perimeter of the trapezoid, excluding the length length of the dotted

segment, which we will denote by 𝑝. In order to maximise the flow, we must then minimize 𝑝. Determine

the depth 𝑑, base 𝑤 and angle 𝜃 that maximizes the flow.

𝑑

𝑤
𝜃 𝜃

6. Find the extrema of 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦, subject to 𝑥2 − 𝑦2 = 1.

7. Find the extrema of 𝑓 (𝑥, 𝑦, 𝑧) = 2

√
𝑥 + 𝑦 + 4 ln 𝑧 subject to 𝑥2 + 𝑦 + 𝑧2 = 16.

8. Solve the linear program: arg min{0.5𝑥1 + 𝑥2 | 𝑥1 + 𝑥2 ≥ 1, 𝑥1 + 0.5𝑥2 ≥ 1, 𝑥1 , 𝑥2 ≥ 0}.
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by Patrick Boily; inspired by Rafal Kulik

Data analysis is sometimes presented in a “point-and-click manner”,

with tutorials often bypassing foundations in probability and statistics

to focus on software use and specific datasets. While modern analysts

do not always need to fully understand the theory underpinning the

methods that they use, understanding some of the basic concepts can

only lead to long-term benefits.

In this chapter, we introduce some of the crucial probabilistic notions

that will help analysts get the most out of their data.

6.1 Basic Notions

Probability theory is the mathematical discipline relating to the numeri-

cal description of the likelihood of an event.

6.1.1 Sample Spaces and Events

Throughout, we will deal with random experiments (e.g., measurements

of speed/ weight, number and duration of phone calls, etc.).

For any “experiment,” the sample space is defined as the set of all its

possible outcomes, often denoted by the symbol S. A sample space can

be discrete or continuous.

An event is a collection of outcomes from the sample space S. Events

will be denoted by 𝐴, 𝐵, 𝐸1, 𝐸2, etc.

Examples

Toss a fair coin – the corresponding (discrete) sample space is

S= {Head, Tail}.
Roll a die – the corresponding (discrete) sample space is S =

{1, 2, 3, 4, 5, 6}, with various events represented by

− rolling an even number: {2, 4, 6};
− rolling a prime number: {2, 3, 5}.

Suppose we measure the weight (in grams) of a chemical sample –

the (continuous) sample space can be represented by S= (0,∞),
the positive half line, and various events by subsets of S, such as

− sample is less than 1.5 grams: (0, 1.5);
− sample exceeds 5 grams: (5,∞).
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For any events 𝐴, 𝐵 ⊆ S:

the union 𝐴 ∪ 𝐵 of 𝐴 and 𝐵 are all outcomes in S contained in

either 𝐴 or 𝐵;

the intersection 𝐴 ∩ 𝐵 of 𝐴 and 𝐵 are all outcomes in Scontained

in both 𝐴 and 𝐵;

the complement 𝐴𝑐 of 𝐴 (sometimes denoted 𝐴 or −𝐴) is the set

of all outcomes in S that are not in 𝐴.

If 𝐴 and 𝐵 have no outcomes in common, they are mutually exclusive;

which is denoted by 𝐴 ∩ 𝐵 = ∅ (the empty set). In particular, 𝐴 and 𝐴𝑐

are always mutually exclusive.
1

1: Events can be represented graphically

using Venn diagrams – mutually exclu-

sive events are those which do not have a

common intersection. Examples

Roll a die and let 𝐴 = {2, 3, 5} (a prime number) and 𝐵 = {3, 6}
(multiples of 3). Then 𝐴 ∪ 𝐵 = {2, 3, 5, 6}, 𝐴 ∩ 𝐵 = {3} and

𝐴𝑐 = {1, 4, 6}.
100 plastic samples are analyzed for scratch and shock resistance.

shock resistance
high low

scratch high 70 4

resistance low 1 25

If 𝐴 is the event that a sample has high shock resistance and 𝐵

is the event that a sample has high scratch residence, then 𝐴 ∩ 𝐵
consists of 70 samples.

6.1.2 Counting Techniques

A two-stage procedure can be modeled as having 𝑘 bags, with 𝑚1 items

in the first bag, . . . , 𝑚𝑘 items in 𝑘-th bag.

The first stage consists of picking a bag, and the second stage consists of

drawing an item out of that bag. This is equivalent to picking one of the

𝑚1 + · · · + 𝑚𝑘 total items.

If all the bags have the same number of items, 𝑚1 = · · · = 𝑚𝑘 = 𝑛, then

there are 𝑘𝑛 items in total, and this is the total number of ways the

two-stage procedure can occur.

Examples

How many ways are there to first roll a die and then draw a card

from a (shuffled) 52−card pack?

Answer: there are 6 ways the first step can turn out, and for each

of these (the stages are independent, in fact) there are 52 ways

to draw the card. Thus there are 6×52 = 312 ways this can turn out.
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How many ways are there to draw two tickets numbered 1 to 100

from a bag, the first with the right hand and the second with the

left hand?

Answer: There are 100 ways to pick the first number; for each of
these there are 99 ways to pick the second number. Thus, the task

has 100 × 99 = 9900 possible outputs.

Multi-Stage Procedures

A 𝑘-stage process is a process for which:

there are 𝑛1 possibilities at stage 1;

regardless of the 1st outcome there are 𝑛2 possibilities at stage 2,

. . .

regardless of the previous outcomes, there are 𝑛𝑘 choices at stage 𝑘.

There are thus 𝑛1 × 𝑛2 · · · × 𝑛𝑘 total ways the process can turn out.

6.1.3 Ordered Samples

Suppose we have a bag of 𝑛 billiard balls numbered 1, . . . , 𝑛. We can

draw an ordered sample of size 𝑟 by picking balls from the bag:

with replacement, or

without replacement.

With how many different collection of 𝑟 balls can we end up in each of

those cases (each is an 𝑟-stage procedure)?

Key Notion: all the object (balls) can be differentiated (using numbers,

colours, etc.)

Sampling With Replacement (Order Important)

If we replace each ball into the bag after it is picked, then every draw

is the same (there are 𝑛 ways it can turn out). According to our earlier

result, there are

𝑛 × 𝑛 × · · · × 𝑛︸              ︷︷              ︸
𝑟 stages

= 𝑛𝑟

ways to select an ordered sample of size 𝑟 with replacement from a set

with 𝑛 objects {1, 2, . . . , 𝑛}.

Sampling Without Replacement (Order Important)

If we do not replace each ball into the bag after it is drawn, then the

choices for the second draw depend on the result of the first draw, and

there are only 𝑛 − 1 possible outcomes.

Whatever the first two draws were, there are 𝑛 − 2 ways to draw the third

ball, and so on.
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Thus there are

𝑛 × (𝑛 − 1) × · · · × (𝑛 − 𝑟 + 1)︸                                ︷︷                                ︸
𝑟 stages

= 𝑛𝑃𝑟 (common symbol)

ways to select an ordered sample of size 𝑟 ≤ 𝑛 without replacement
from a set of 𝑛 objects {1, 2, . . . , 𝑛}.

Factorial Notation

For a positive integer 𝑛, write

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) · · · 1.

There are two possibilities:

when 𝑟 = 𝑛, 𝑛𝑃𝑟 = 𝑛!, and the ordered selection (without replace-

ment) is called a permutation;

when 𝑟 < 𝑛, we can write

𝑛𝑃𝑟 =
𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1) (𝑛 − 𝑟) · · · 1

(𝑛 − 𝑟) · · · 1

=
𝑛!

(𝑛 − 𝑟)! = 𝑛 × · · · × (𝑛 − 𝑟 + 1).

By convention, we set 0! = 1, so that

𝑛𝑃𝑟 =
𝑛!

(𝑛 − 𝑟)! , for all 𝑟 ≤ 𝑛.

Examples:

In how many different ways can 6 balls be drawn in order without

replacement from a bag of balls numbered 1 to 49?

Answer: We compute

49𝑃6 = 49 × 48 × 47 × 46 × 45 × 44 = 10, 068, 347, 520.

This is the number of ways the actual drawing of the balls can

occur for Lotto 6/49 in real-time (balls drawn one by one).

How many 6-digits PIN codes can you create from the set of digits

{0, 1, . . . , 9}?

Answer: If the digits may be repeated, we see that

10 × 10 × 10 × 10 × 10 × 10 = 10
6 = 1, 000, 000.

If the digits may not be repeated, we have instead

10𝑃6 = 10 × 9 × 8 × 7 × 6 × 5 = 151, 200.
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6.1.4 Unordered Samples

Suppose that we cannot distinguish between different ordered samples;

when we look up the Lotto 6/49 results in the newspaper, for instance,

we have no way of knowing the order in which the balls were drawn:

1 − 2 − 3 − 4 − 5 − 6

could mean that the first drawn ball was ball # 1, the second drawn ball

was ball # 2, etc., but it could also mean that the first ball drawn was ball

# 4, the second one, ball # 3, etc., or any combination of the first 6 balls.

Denote the (as yet unknown) number of unordered samples of size 𝑟

from a set of size 𝑛 by 𝑛𝐶𝑟 . We can derive the expression for 𝑛𝐶𝑟 by

noting that the following two processes are equivalent:

take an ordered sample of size 𝑟 (there are 𝑛𝑃𝑟 ways to do this);

take an unordered sample of size 𝑟 (there are 𝑛𝐶𝑟 ways to do this)

and then rearrange (permute) the objects in the sample (there are

𝑟! ways to do this).

Thus

𝑛𝑃𝑟 = 𝑛𝐶𝑟 × 𝑟! =⇒ 𝑛𝐶𝑟 =
𝑛𝑃𝑟

𝑟!
=

𝑛!

(𝑛 − 𝑟)! 𝑟! =
(
𝑛

𝑟

)
;

these are known as binomial coefficients, read as “𝑛-choose-𝑟”.

Example In how many ways can the “Lotto 6/49 draw” be reported in

the newspaper (if they are always reported in increasing order)?

This number is the same as the number of unordered samples of size 6

(different re-orderings of same 6 numbers are indistinguishable), so

49𝐶6 =

(
49

6

)
=

49 × 48 × 47 × 46 × 45 × 44

6 × 5 × 4 × 3 × 2 × 1

=
10, 068, 347, 520

720

= 13, 983, 816 . ■

There is a variety of binomial coefficient identities, such as(
𝑛

𝑘

)
=

(
𝑛

𝑛 − 𝑘

)
, for all 0 ≤ 𝑘 ≤ 𝑛,

𝑛∑
𝑘=0

(
𝑛

𝑘

)
= 2

𝑛 , for all 0 ≤ 𝑛,(
𝑛 + 1

𝑘 + 1

)
=

(
𝑛

𝑘

)
+

(
𝑛

𝑘 + 1

)
, for all 0 ≤ 𝑘 ≤ 𝑛 − 1

𝑛∑
𝑗=𝑘

(
𝑗

𝑘

)
=

(
𝑛 + 1

𝑘 + 1

)
, for all 0 ≤ 𝑛, etc.

6.1.5 Probability of an Event

For situations where we have a random experiment which has exactly

𝑁 possible mutually exclusive, equally likely outcomes, we can assign
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a probability to an event 𝐴 by counting the number of outcomes that

correspond to 𝐴 – its relative frequency. If that count is 𝑎, then

𝑃(𝐴) = 𝑎

𝑁
.

The probability of each individual outcome is thus 1/𝑁 .

Examples

Toss a fair coin – the sample space is S= {Head, Tail}, i.e., 𝑁 = 2.

The probability of observing a Head on a toss is thus
1

2
.

Throw a fair six sided die. There are 𝑁 = 6 possible outcomes. The

sample space is

S= {1, 2, 3, 4, 5, 6}.

If 𝐴 corresponds to observing a multiple of 3, then 𝐴 = {3, 6} and

𝑎 = 2, so that

Prob(number is a multiple of 3) = 𝑃(𝐴) = 2

6

=
1

3

.

The probabilities of seeing an even/odd number are:

Prob{even} = 𝑃 ({2, 4, 6}) = 3

6

=
1

2

;

Prob{prime} = 𝑃 ({2, 3, 5}) = 1 − 𝑃 ({1, 4, 6}) = 1

2

.

In a group of 1000 people it is known that 545 have high blood

pressure. 1 person is selected randomly. What is the probability

that this person has high blood pressure?

Answer: the relative frequency of people with high blood pressure

is 0.545.

This approach to probability is called the frequentist interpretation. It is

based on the idea that the theoretical probability of an event is given by

the behaviour of the empirical (observed) relative frequency of the event

over long-run repeatable and independent experiments.
2

2: Such as when 𝑁 → ∞.

This is the classical definition, and the one used in these notes, but

there are competing interpretations which may be more appropriate

depending on the context; chiefly, the Bayesian interpretation (see [2]

and Chapter 25 for details) and the propensity interpretation.
3

3: Introducing causality as a mechanism.

Axioms of Probability

The modern definition of probability is axiomatic (according to Kol-

mogorov’s seminal work [@KOL]).

The probability of an event 𝐴 ⊆ S is a numerical value satisfying the

following properties:

1. for any event 𝐴, 1 ≥ 𝑃(𝐴) ≥ 0;

2. for the complete sample space S, 𝑃(S) = 1;

3. for the empty event ∅, 𝑃(∅) = 0, and
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4. for two mutually exclusive events 𝐴 and 𝐵, the probability that 𝐴

or 𝐵 occurs is 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

Since S= 𝐴 ∪ 𝐴𝑐 , and 𝐴 and 𝐴𝑐 are mutually exclusive, then

1

A2
= 𝑃 (S) = 𝑃 (𝐴 ∪ 𝐴𝑐) A4

= 𝑃(𝐴) + 𝑃 (𝐴𝑐)
=⇒ 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴).

Examples

Throw a single six sided die and record the number that is shown.

Let 𝐴 and 𝐵 be the events that the number is a multiple of or

smaller than 3, respectively. Then 𝐴 = {3, 6}, 𝐵 = {1, 2} and 𝐴 and

𝐵 are mutually exclusive since 𝐴 ∩ 𝐵 = ∅. Then

𝑃(𝐴 or 𝐵) = 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) = 2

6

+ 2

6

=
2

3

.

An urn contains 4 white balls, 3 red balls and 1 black ball. Draw one

ball, and denote the following events by 𝑊 = {the ball is white},
𝑅 = {the ball is red} and 𝐵 = {the ball is black}. Then

𝑃(𝑊) = 1/2, 𝑃(𝑅) = 3/8, 𝑃(𝐵) = 1/8,

and 𝑃(𝑊 or 𝑅) = 7/8.

General Addition Rule

This useful rule is a direct consquence of the axioms of probability:

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

Example An electronic gadget consists of two components, 𝐴 and 𝐵.

We know from experience that 𝑃(𝐴 fails) = 0.2, 𝑃(𝐵 fails) = 0.3 and

𝑃(both 𝐴 and 𝐵 fail) = 0.15. Find 𝑃(at least one of 𝐴 and 𝐵 fails) and

𝑃(neither 𝐴 nor 𝐵 fails).

Write𝐴 for “𝐴 fails” and similarly for𝐵. Then we are looking to compute

𝑃(at least one fails) = 𝑃(𝐴 ∪ 𝐵)
= 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) = 0.35 ;

𝑃(neither fail) = 1 − 𝑃(at least one fails) = 0.65 .

If 𝐴, 𝐵 are mutually exclusive, 𝑃(𝐴 ∩ 𝐵) = 𝑃(∅) = 0 and

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

With three events, the addition rule expands as follows:

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)
− 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶)
+ 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶).
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6.1.6 Conditional Probability and Independent Events

Any two events 𝐴 and 𝐵 satisfying

𝑃 (𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵)

are said to be independent.4 When events are not independent, we say4: This is a purely mathematical defini-

tion, but it agrees with the intuitive notion

of independence in simple examples.

that they are dependent or conditional.

Mutual exclusivity and independence are unrelated concepts. The only

way for events 𝐴 and 𝐵 to be mutually exclusive and independent is for

either 𝐴 or 𝐵 (or both) to be a non-event (the empty event):

∅ = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) =⇒ 𝑃(𝐴) = 0 or 𝑃(𝐵) = 0

=⇒ 𝐴 = ∅ or 𝐵 = ∅.

Examples

Flip a fair coin twice – the 4 possible outcomes are all equally likely:

S= {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇}. Let

𝐴 = {𝐻𝐻} ∪ {𝐻𝑇}

denote “head on first flip”, 𝐵 = {𝐻𝐻} ∪ {𝑇𝐻} “head on second

flip”. Note that 𝐴 ∪ 𝐵 ≠ S and 𝐴 ∩ 𝐵 = {𝐻𝐻}. By the general

addition rule,

𝑃 (𝐴) = 𝑃({𝐻𝐻}) + 𝑃({𝐻𝑇}) − 𝑃({𝐻𝐻} ∩ {𝐻𝑇})

=
1

4

+ 1

4

− 𝑃(∅) = 1

2

− 0 =
1

2

.

Similarly, 𝑃 (𝐵) = 𝑃({𝐻𝐻}) + 𝑃({𝑇𝐻}) = 1

2
, and so 𝑃(𝐴)𝑃(𝐵) = 1

4
.

But 𝑃(𝐴 ∩ 𝐵) = 𝑃({𝐻𝐻}) is also
1

4
, so 𝐴 and 𝐵 are independent.

A card is drawn from a regular well-shuffled 52-card North Ameri-

can deck. Let 𝐴 be the event that it is an ace and 𝐷 be the event

that it is a diamond. These two events are independent. Indeed,

there are 4 aces

𝑃(𝐴) = 4

52

=
1

13

and 13 diamonds

𝑃(𝐷) = 13

52

=
1

4

in such a deck, so that

𝑃(𝐴)𝑃(𝐷) = 1

13

× 1

4

=
1

52

,

and exactly 1 ace of diamonds in the deck, so that𝑃(𝐴∩𝐷) is also
1

52
.

A six-sided die numbered 1 − 6 is loaded in such a way that the

probability of rolling each value is proportional to that value. Find

𝑃(3).

Let S= {1, 2, 3, 4, 5, 6} be the value showing after a single toss; for

some proportional constant 𝑣, we have 𝑃(𝑘) = 𝑘𝑣, for 𝑘 ∈ S. By
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Axiom A2, 𝑃(S) = 𝑃(1) + · · · + 𝑃(6) = 1, so that

1 =

6∑
𝑘=1

𝑃(𝑘) =
6∑
𝑘=1

𝑘𝑣 = 𝑣
6∑
𝑘=1

𝑘 = 𝑣
(6 + 1)(6)

2

= 21𝑣 .

Hence 𝑣 = 1/21 and 𝑃(3) = 3𝑣 = 3/21 = 1/7.

Now the die is rolled twice, the second toss independent of the first.

Find 𝑃(31 , 32).

The experiment is such that 𝑃(31) = 1/7 and 𝑃(32) = 1/7, as seen

in the previous example. Since the die tosses are independent,
5

5: Is it clear what is meant by “indepen-

dent tosses’ ’?
then

𝑃 (31 ∩ 32) = 𝑃(31)𝑃(32) = 1/49 .

Is a 2-engine plane more likely to be forced down than a 3-engine

plane?

This question is easier to answer if we assume that engines fail
independently (this is no doubt convenient, but the jury is still out

as to whether it is realistic). In what follows, let 𝑝 be the probability

that an engine fails.
6

6: What are some realistic values of 𝑝?

The next step is to decide what type engine failure will force a

plane down:
7

7: There is nothing to that effect in the

problem statement, so we have to make

another set of assumptions.− A 2-engine plane will be forced down if both engines fail –

the probability is 𝑝2
;

− A 3-engine plane will be forced down if any pair of engines

fail, or if all 3 fail.

* Pair: the probability that exactly 1 pair of engines will fail

independently (i.e., two engines fail and one does not) is

𝑝 × 𝑝 × (1 − 𝑝).

The order in which the engines fail does not matter: there

are 3𝐶2 = 3!

2!1!
= 3 ways in which a pair of engines can

fail: for 3 engines A, B, C, these are AB, AC, BC.

* All 3: the probability of all three engines failing indepen-

dently is 𝑝3
.

The probability ≥ 2 engines failing is thus

𝑃(2 + engines fail) = 3𝑝2(1 − 𝑝) + 𝑝3 = 3𝑝2 − 2𝑝3.

Basically it’s safer to use a 2-engine plane than a 3-engine plane:

the 3-engine plane will be forced down more often, assuming it

needs 2 engines to fly.

This “makes sense”: the 2-engine plane need 50% of its engines

working, while the 3-engine plane needs 66% (see Figure 6.1 to get

a sense of what the probabilities are for 0 ≤ 𝑝 ≤ 1).

(Taken from [3]) Air traffic control is a safety-related activity – each

piece of equipment is designed to the highest safety standards and

in many cases duplicate equipment is provided so that if one item

fails another takes over.



262 6 Probability and Applications

Figure 6.1: Failure probability for the 2-

engine and 3-engine planes.

A new system is to be provided passing information from Heathrow

Airport to Terminal Control at West Drayton. As part of the system

design a decision has to be made as to whether it is necessary to

provide duplication.

The new system takes data from the Ground Movements Radar
(GMR) at Heathrow, combines this with data from the National
Airspace System NAS, and sends the output to a display at Terminal
Control (a conceptual model is shown in Figure 6.2).

Figure 6.2: Conceptual model of air traffic

control security system.

For all existing systems, records of failure are kept and an ex-

perimental probability of failure is calculated annually using the

previous 4 years.
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The reliability of a system is defined as 𝑅 = 1 − 𝑃, where 𝑃 =

𝑃(failure). We assume that 𝑅GMR = 𝑅NAS = 0.9999,
8

and that the 8: That is to say, 1 failure in 10, 000 hours.

components’ failure probabilities are independent.

If a single module is used, the reliability of the single thread design
(STD) is

𝑅STD = 𝑅GMR × 𝑅NEW × 𝑅NAS.

If the module is duplicated, the reliability of this dual thread
design (DTD) is

𝑅DTD = 𝑅GMR × (1 − (1 − 𝑅NEW)2) × 𝑅NAS.

Duplicating the module causes an improvement in reliability of

𝜌 =
𝑅DTD

𝑅STD

=
(1 − (1 − 𝑅NEW)2)

𝑅NEW

× 100% .

For the module, no historical data is available. Instead, we work

out the improvement achieved by using the dual thread design for

various values of 𝑅NEW.

𝑅NEW 0.1 0.2 0.5 0.75 0.99 0.999 0.9999 0.99999

𝜌 (%) 190 180 150 125 101 100.1 100.01 100.001

If the module is very unreliable (i.e., 𝑅NEW is small), then there is

a significant benefit in using the dual thread design (𝜌 is large).
9

If 9: But why would we install a module

which we know to be unreliable in the first

place?

the new module is as reliable as GMR and NAS, that is, if

𝑅GMR = 𝑅NEW = 𝑅NAS = 0.9999,

then the single thread design has a combined reliability of 0.9997

(i.e., 3 failures in 10, 000 hours), whereas the dual thread design

has a combined reliability of 0.9998 (i.e., 2 failures in 10, 000 hours).

If the probability of failure is independent for each component,

we could conclude from this that the reliability gain from a dual

thread design probably does not justify the extra cost.

In the last two examples, we had to make additional assumptions in

order to answer the questions – this is often the case in practice.

Conditional Probability

The conditional probability of an event 𝐵 given that another event 𝐴

has occurred is defined by

𝑃(𝐵 | 𝐴) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐴) .

Note that this definition only makes sense when “𝐴 can happen” i.e.,

𝑃(𝐴) > 0. If 𝑃(𝐴)𝑃(𝐵) > 0, then

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) × 𝑃(𝐴 | 𝐵) = 𝑃(𝐵 ∩ 𝐴);

𝐴 and 𝐵 are thus independent if 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) and 𝑃(𝐴 | 𝐵) = 𝑃(𝐴).
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Examples

From a group of 100 people, 1 is selected. What is the probability

that this person has high blood pressure (HBP)?

If we know nothing else about the population, this is an (uncondi-
tional) probability, namely

𝑃(HBP) = # individuals with HBP in the population

100

.

If instead we first filter out all people with low cholesterol level,

and then select 1 person. What is the probability that this person

has HBP?

We are looking for the conditional probability

𝑃(HBP | high cholesterol);

the probability of selecting a person with HBP, given high choles-

terol levels, presumably different from 𝑃(HBP | low cholesterol).

A sample of 249 individuals is taken and each person is classified

by blood type and tuberculosis (TB) status.

O A B AB Total

TB 34 37 31 11 113

no TB 55 50 24 7 136

Total 89 87 55 18 249

The (unconditional) probability that a random individual has TB is

𝑃(TB) = #TB

249
= 113

249
= 0.454. Among those individuals with type B

blood, the (conditional) probability of having TB is

𝑃(TB | type B) = 𝑃(TB ∩ type B)
𝑃(type B) =

31

55

=
31/249

55/249

= 0.564.

A family has two children (not twins). What is the probability that

the youngest child is a girl given that at least one of the children is

a girl? Assume that boys and girls are equally likely to be born.

Let 𝐴 and 𝐵 be the events that the youngest child is a girl and that

at least one child is a girl, respectively:

𝐴 = {GG, BG} and 𝐵 = {GG, BG,GB},

𝐴 ∩ 𝐵 = 𝐴. Then 𝑃(𝐴 | 𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) =

𝑃(𝐴)
𝑃(𝐵) =

2/4

3/4
= 2

3
(and not

1

2
,

as might naively be believed).

Incidentally, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ≠ 𝑃(𝐴) × 𝑃(𝐵), which means that 𝐴

and 𝐵 are not independent events.
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Figure 6.3: Decomposition of 𝐵 via 𝐴.

Law of Total Probability

Let 𝐴 and 𝐵 be two events. From set theory, we have

𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵),

as illustrated in Figure 6.3. Note that 𝐴 ∩ 𝐵 and 𝐴 ∩ 𝐵 are mutually

exclusive, so that, according to Axiom A4, we have

𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵).

Now, assuming that ∅ ≠ 𝐴 ≠ S, we have

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) and 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴),

so that

𝑃(𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | 𝐴)𝑃(𝐴).

This generalizes as follows: if 𝐴1 , ...𝐴𝑘 are mutually exclusive and

exhaustive (i.e., 𝐴_𝑖 ∩ 𝐴_𝑗 = ∅ for all 𝑖 ≠ 𝑗 and 𝐴1 ∪ .... ∪ 𝐴𝑘 = S), then

for any event 𝐵

𝑃(𝐵) =
𝑘∑
𝑗=1

𝑃(𝐵 | 𝐴 𝑗)𝑃(𝐴 𝑗) = 𝑃(𝐵 | 𝐴1)𝑃(𝐴1) + ... + 𝑃(𝐵 | 𝐴𝑘)𝑃(𝐴𝑘).

Example With the Law of Total Probability (the rule above), compute

𝑃(TB) using the data from one of the previous example.

The blood types {O,A,B,AB} form a mutually exclusive partition of the

population, with

𝑃(O) = 89

249

, 𝑃(A) = 87

249

, 𝑃(B) = 55

249

, 𝑃(AB) = 18

249

.

It is easy to see that 𝑃(O) + 𝑃(A) + 𝑃(B) + 𝑃(AB) = 1. Furthermore,

𝑃(TB | O) = 𝑃(TB∩O)
𝑃(O) = 34

89
, 𝑃(TB | A) = 𝑃(TB∩A)

𝑃(A) = 37

87
,

𝑃(TB | B) = 𝑃(TB∩B)
𝑃(B) = 31

55
, 𝑃(TB | AB) = 𝑃(TB∩AB)

𝑃(AB) = 11

18
.

According to the law of total probability,

𝑃(TB) = 𝑃(TB | O)𝑃(O) + 𝑃(TB | A)𝑃(A)
+ 𝑃(TB | B)𝑃(B) + 𝑃(TB | AB)𝑃(AB),
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so that

𝑃(TB) = 34

89

· 89

249

+ 37

87

· 87

249

+ 31

55

· 55

249

+ 11

18

· 18

249

=
34 + 37 + 31 + 11

249

=
113

249

= 0.454,

which matches the previous obtained result.

6.1.7 Bayes’ Theorem

After an experiment generates an outcome, we are often interested in the

probability that a certain condition was present given an outcome.
10

10: Or that a particular hypothesis was

valid, say.

We have noted before that if 𝑃(𝐴)𝑃(𝐵) > 0, then

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) × 𝑃(𝐴 | 𝐵) = 𝑃(𝐵 ∩ 𝐴);

this can be re-written as Bayes’ Theorem:

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴) × 𝑃(𝐴)
𝑃(𝐵) .

Bayes’ Theorem is a powerful tool in probability analysis, but it is a

simple corollary of the rules of probability.

Central Data Analysis Question

Given everything that was known prior to the experiment, does the

observed data support the hypothesis? The problem is that this is

usually impossible to compute directly. Bayes’ Theorem offers a possible
solution:

𝑃(hypothesis | data) = 𝑃(data | hypothesis) × 𝑃(hypothesis)
𝑃(data)

∝ 𝑃(data | hypothesis) × 𝑃(hypothesis),

in which the terms on the right might be easier to compute than the term

on the left.

Bayesian Vernacular

In Bayes’ Theorem:

𝑃(hypothesis) is the prior – the probability of the hypothesis being

true prior to the experiment;

𝑃(hypothesis | data) is the posterior – the probability of the

hypothesis being true once the experimental data is taken into

account;

𝑃(data | hypothesis) is the likelihood – the probability of the

experimental data being observed assuming that the hypothesis is

true.

The theorem is often presented as posterior ∝ likelihood×prior, which is

to say, beliefs should be updated in the presence of new information.
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Formulations

If 𝐴, 𝐵 are events for which 𝑃(𝐴)𝑃(𝐵) > 0, then Bayes’ Theorem can be

re-written, using the law of total probability, as

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵) =

𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | 𝐴)𝑃(𝐴)

,

or, in the general case where 𝐴1 , ...𝐴𝑘 are mutually exclusive and

exhaustive events, then for any event 𝐵 and for each 1 ≤ 𝑖 ≤ 𝑘,

𝑃(𝐴𝑖 | 𝐵) =
𝑃(𝐵 | 𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵) =
𝑃(𝐵 | 𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵 | 𝐴1)𝑃(𝐴1) + ... + 𝑃(𝐵 | 𝐴𝑘)𝑃(𝐴𝑘)
.

Examples

In 1999, Sinnas sold three car models in North America: Sarten (S),

Minima (M), and Papader (PA). Of the vehicles sold that year, 50%

were S, 30% were M and 20% were PA; 12% of the S, 15% of the M,

and 25% of the PA had a particular defect 𝐷.

1. If you own a 1999 Sinnas, what is the probability that it has

the defect?

In the language of conditional probability,

𝑃(S) = 0.5, 𝑃(M) = 0.3, 𝑃(Pa) = 0.2,

𝑃(𝐷 | S) = 0.12, 𝑃(𝐷 | M) = 0.15, 𝑃(𝐷 | PA) = 0.25,

so that

𝑃(𝐷) = 𝑃(𝐷 | S) × 𝑃(S) + 𝑃(𝐷 | M) × 𝑃(M) + 𝑃(𝐷 | Pa) × 𝑃(Pa)
= 0.12 · 0.5 + 0.15 · 0.3 + 0.25 · 0.2

= 0.155 = 15.5%.

2. If a 1999 Sinnas has defect 𝐷, what model is it likely to be?

In the first part we computed the total probability 𝑃(𝐷); in

this part, we compare the posterior probabilities 𝑃(M | 𝐷),
𝑃(S | 𝐷), and 𝑃(Pa | 𝐷) (and not the priors!), computed using

Bayes’ Theorem:

𝑃(S | 𝐷) = 𝑃(𝐷 |S)𝑃(S)
𝑃(𝐷) = 0.12×0.5

0.155
≈ 38.7%

𝑃(M | 𝐷) = 𝑃(𝐷 |M)𝑃(M)
𝑃(𝐷) = 0.15×0.3

0.155
≈ 29.0%

𝑃(Pa | 𝐷) = 𝑃(𝐷 |Pa)𝑃(Pa)
𝑃(𝐷) = 0.25×0.2

0.155
≈ 32.3%

Even though Sartens are least likely to have the defect𝐷, their

overall prevalence in the population carries more weight.

Suppose that a test for a particular disease has a very high success

rate. If a patient:

1. has the disease, the test is ‘positive’ with probability 0.99;

2. does not have the disease, the test reports a ‘negative’ with

prob 0.95.
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Assume that only 0.1% of the population has the disease. What is

the probability that a patient who tests positive does not have the

disease?

Let 𝐷 be the event that the patient has the disease, and 𝐴 be the

event that the test is positive. The probability of a true positive is

𝑃(𝐷 | 𝐴) = 𝑃(𝐴 | 𝐷)𝑃(𝐷)
𝑃(𝐴 | 𝐷)𝑃(𝐷) + 𝑃(𝐴 | 𝐷𝑐)𝑃(𝐷𝑐)

=
0.99 × 0.001

0.99 × 0.001 + 0.05 × 0.999

≈ 0.019.

The probability of a false positive is thus 1− 0.019 ≈ 0.981. Despite

the apparent high accuracy of the test, the incidence of the disease

is so low (1 in a 1000) that the vast majority of patients who test

positive (98 in 100) do not have the disease.

The 2 in 100 who are true positives still represent 20 times the pro-

portion of positives found in the population (before the outcome

of the test is known).
11

11: It is important to remember that when

dealing with probabilities, both the likeli-

hood and the prevalence have to be taken

into account.

[Monty Hall Problem] On a game show, you are given the choice

of three doors. Behind one of the doors is a prize; behind the others,

dirty and smelly rubbish bins (as is skillfully rendered in Figure 6.4).

You pick a door, say No. 1, and the host, who knows what is behind

the doors, opens another door, say No. 3, behind which is a bin.

She then says to you, “Do you want to switch from door No. 1 to

No. 2?”

Is it to your advantage to do so?

Figure 6.4: The Monty Hall set-up (per-

sonal file, ... but that was probably obvious

from the artistic quality ).

In what follows, let and be the events that switching to another door

is a successful strategy and that the prize is behind the original

door, respectively.

− Let’s first assume that the host opens no door. What is the

probability that switching to another door in this scenario

would prove to be a successful strategy?

If the prize is behind the original door, switching would

succeed 0% of the time: 𝑃(S | D) = 0.
12

If the prize is not12: Note that the prior is 𝑃(D) = 1/3.

behind the original door, switching would succeed 50% of the

time: 𝑃(S | D
𝑐) = 1/2.

13
Thus,13: Note that the prior is 𝑃(D𝑐) = 2/3.
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𝑃(S) = 𝑃(S | D)𝑃(D) + 𝑃(S | D
𝑐)𝑃(D𝑐)

= 0 · 1

3

+ 1

2

· 2

3

≈ 33%.

− Now let’s assume that the host opens one of the other two

doors to show a rubbish bin. What is the probability that

switching to another door in this scenario would prove to be

a successful strategy?

If the prize is behind the original door, switching would

succeed 0% of the time: 𝑃(S | D) = 0.
14

If the prize is not 14: Note that the prior is 𝑃(D) = 1/3.

behind the original door, switching would succeed 100% of

the time: 𝑃(S | D
𝑐) = 1.

15
Thus, 15: Note that the prior is 𝑃(D𝑐) = 2/3.

𝑃(S) = 𝑃(S | D)𝑃(D) + 𝑃(S | D
𝑐)𝑃(D𝑐)

= 0 · 1

3

+ 1 · 2

3

≈ 67%.

If no door is opened, switching is not a winning strategy, resulting

in success only 33% of the time. If a door is opened, however,

switching becomes the winning strategy, resulting in success 67%

of the time.

The Monty Hall problem has attracted a lot of attention over the years

due to its counter-intuitive result, but there is no paradox when we

understand conditional probabilities.

Perhaps it would be easier to see what happens in practice: if we could

pit two players against one another (one who never switches and one

who always does so) in a series of Monty Hall games, which one would

come out on top in the long run?

We start by setting a number of games 𝑁 (not too small, or we won’t be

able to observe long-run behaviour) and a replicability seed (so that we

may all obtain the same results).

N=500

set.seed(1234)

Next, for each game, we will place the prize behind one of the 3 doors: 𝐴,

𝐵, or 𝐶.

locations = sample(c("A","B","C"), N, replace = TRUE)

We verify that the prize gets placed behind each door roughly 33% of the

time:

table(locations)/N

locations

A B C

0.302 0.344 0.354
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Let us now obtain a player’s first guess for each game – this guess is

completely independent of the actual prize location:

player.guesses = sample(c("A","B","C"), N, replace = TRUE)

Finally, we create a data frame telling the analyst where the prize actually

is, and what door the player has selected as their original guess.

games = data.frame(locations, player.guesses)

head(games)

locations player.guesses

1 B B

2 B B

3 A B

4 C C

5 A C

6 A A

In this example (that is, with the data generated above), how often had

the player guessed correctly, before a door was opened and they were

given a chance to switch?

table(games$locations==games$player.guesses)

FALSE TRUE

333 167

This should not come as a surprise.

We now initialize the process to find out which door the host opens. For

each game, the host opens a door which is not the one selected by the

player, nor the one behind which the prize is found.

games$open.door <- NA

for(j in 1:N){

games$open.door[j] <- sample(setdiff(c("A","B","C"),

union(games$locations[j],games$player.guesses[j])), 1)

}

head(games)

locations player.guesses open.door

1 B B C

2 B B C

3 A B C

4 C C A

5 A C B

6 A A B
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The union() call enumerates the doors that the host cannot open; the

setdiff() call finds the complement of the doors that the host cannot

open (i.e.: the doors that she can open), and the sample() call picks one

of those doors.

If the player never switches, they win whenever they had originally

guessed the location of the prize correctly:

games$no.switch.win <- games$player.guess==games$locations

We find which door the player would have selected if they always

switched (the door that is neither the location of the prize nor the one

they had originally selected):

games$switch.door <- NA

for(j in 1:N){

games$switch.door[j] <- sample(setdiff(c("A","B","C"),

union(games$open.door[j],games$player.guesses[j])), 1)

}

If the player always switches, they win whenever their switched guess is

where the prize is located:

games$switch.win <- games$switch.door==games$locations

head(games)

locations player.guesses open.door no.switch.win switch.door switch.win

1 B B C TRUE A FALSE

2 B B C TRUE A FALSE

3 A B C FALSE A TRUE

4 C C A TRUE B FALSE

5 A C B FALSE A TRUE

6 A A B TRUE C FALSE

The chances of winning by not switching are thus:

table(games$no.switch.win)/N

FALSE TRUE

0.666 0.334

while the chances of winning by switching are:

table(games$switch.win)/N

FALSE TRUE

0.334 0.666

Pretty wild, eh? Numerical simulations show, beyond the shadow of a

doubt, that switching IS the better strategy.
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6.2 Discrete Distributions

In the next sections, we discuss how some of the probability computations

can be made easier with the use of (theoretical) distributions.
16

16: Note that the principles of probability

theory introduced in the previous section

remain valid in all cases.

6.2.1 Random Variables and Distributions

Recall that, for any random “experiment”, the set of all possible outcomes

is denoted by S. A random variable (r.v.) is a function 𝑋 : S→ ℝ, which

is to say, it is a rule that associates a (real) number to every outcome of the

experiment; S is the domain of the r.v. 𝑋 and 𝑋(S) ⊆ ℝ is its range.

A probability distribution function (p.d.f.) is a function 𝑓 : ℝ → ℝ

which specifies the probabilities of the values in the range 𝑋(S). When

S is discrete,
17

we say that 𝑋 is a discrete r.v. and the p.d.f. is called a17: For the purpose of these notes, a dis-

crete set is one in which all points are

isolated: ℕ and finite sets are discrete, but

ℚ and ℝ are not.

probability mass function (p.m.f.).

Notation

Throughout, we use the following notation:

capital roman letters (𝑋, 𝑌, etc.) denote r.v., and

corresponding lower case roman letters (𝑥, 𝑦, etc.) denote generic
values taken by the r.v.

A discrete r.v. can be used to define events – if𝑋 takes values𝑋(S) = {𝑥𝑖},
then we can define the events 𝐴𝑖 = {𝑠 ∈ S : 𝑋(𝑠) = 𝑥𝑖} :

the p.m.f. of 𝑋 is 𝑓 (𝑥) = 𝑃 ({𝑠 ∈ S : 𝑋(𝑠) = 𝑥}) := 𝑃(𝑋 = 𝑥);
its cumulative distribution function (c.d.f.) is 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥).

Properties

If 𝑋 is a discrete random variable with p.m.f. 𝑓 (𝑥) and c.d.f. 𝐹(𝑥), then

0 < 𝑓 (𝑥) ≤ 1 for all 𝑥 ∈ 𝑋(S); ∑𝑠∈S 𝑓 (𝑋(𝑠)) = ∑
𝑥∈𝑋(S) 𝑓 (𝑥) = 1;

for any event 𝐴 ⊆ S, 𝑃(𝑋 ∈ 𝐴) = ∑
𝑥∈𝐴 𝑓 (𝑥);

for any 𝑎, 𝑏 ∈ ℝ,

𝑃(𝑎 < 𝑋) = 1 − 𝑃(𝑋 ≤ 𝑎) = 1 − 𝐹(𝑎)
𝑃(𝑋 < 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝑓 (𝑏)

for any 𝑎, 𝑏 ∈ ℝ,

𝑃(𝑎 ≤ 𝑋) = 1 − 𝑃(𝑋 < 𝑎) = 1 − (𝑃(𝑋 ≤ 𝑎) − 𝑃(𝑋 = 𝑎)) = 1 − 𝐹(𝑎) + 𝑓 (𝑎).

We can use these results to compute the probability of a discrete r.v. 𝑋

falling in various intervals:

𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑏) − 𝐹(𝑎);
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) + 𝑃(𝑋 = 𝑎) = 𝐹(𝑏) − 𝐹(𝑎) + 𝑓 (𝑎);
𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) − 𝑓 (𝑏);
𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) + 𝑓 (𝑎) − 𝑓 (𝑏).
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Examples

Flip a fair coin – the outcome space is S = {Head, Tail}. Let

𝑋 : 𝑆 → ℝ be defined by 𝑋(Head) = 1 and 𝑋(Tail) = 0. Then 𝑋 is

a discrete random variable.
18

18: As a convenience, we write 𝑋 = 1 and

𝑋 = 0.

If the coin is fair, the p.m.f. of 𝑋 is 𝑓 : ℝ → ℝ, where

𝑓 (0) = 𝑃(𝑋 = 0) = 1/2, 𝑓 (1) = 𝑃(𝑋 = 1) = 1/2,

𝑓 (𝑥) = 0 for all other 𝑥.

Roll a fair die – the outcome space is S= {1, . . . , 6}. Let 𝑋 : S→ ℝ

be defined by 𝑋(𝑖) = 𝑖 for 𝑖 = 1, . . . , 6. Then 𝑋 is a discrete r.v.

If the die is fair, the p.m.f. of 𝑋 is 𝑓 : ℝ → ℝ, where

𝑓 (𝑖) = 𝑃(𝑋 = 𝑖) = 1/6, for 𝑖 = 1, . . . , 6,

𝑓 (𝑥) = 0 for all other 𝑥.

For the random variable 𝑋 from the previous example, the c.d.f. is

𝐹 : ℝ → ℝ, where

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) =


0 if 𝑥 < 1

𝑖/6 if 𝑖 ≤ 𝑥 < 𝑖 + 1, 𝑖 = 1, . . . , 6

1 if 𝑥 ≥ 6

For the same random variable, we can compute the probability

𝑃(3 ≤ 𝑋 ≤ 5) directly:

𝑃(3 ≤ 𝑋 ≤ 5) = 𝑃(𝑋 = 3) + 𝑃(𝑋 = 4) + 𝑃(𝑋 = 5)
= 1

6
+ 1

6
+ 1

6
= 1

2
,

or we can use the c.d.f.:

𝑃(3 ≤ 𝑋 ≤ 5) = 𝐹(5) − 𝐹(3) + 𝑓 (3) = 5

6
− 3

6
+ 1

6
= 1

2
.

The number of calls received over a specific time period, 𝑋, is a

discrete random variable, with potential values 0, 1, 2, . . ..

Consider a 5−card poker hand consisting of cards selected at

random from a 52−card deck. Find the probability distribution of

𝑋 , where𝑋 indicates the number of red cards (q andr) in the hand.

In all, there are

(
52

5

)
ways to select poker hands. By construction, 𝑋

can take on values 𝑥 = 0, 1, 2, 3, 4, 5.

If 𝑋 = 0, then none of the 5 cards in the hands are q or r, and all of

the 5 cards in the hands are ♠ or ♣. There are thus

(
26

0

)
·
(
26

5

)
5−card

hands that only contain black cards, and

𝑃(𝑋 = 0) =
(
26

0

)
·
(
26

5

)(
52

5

) .

In general, if𝑋 = 𝑥, 𝑥 = 0, 1, 2, 3, 4, 5, there are

(
26

𝑥

)
ways of having 𝑥

q or r in the hand, and

(
26

5−𝑥
)

ways of having 5 − 𝑥 ♠ and ♣ in the
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hand, so that

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =

(26

𝑥 )·( 26

5−𝑥)
(52

5
) , 𝑥 = 0, 1, 2, 3, 4, 5;

0 otherwise

Find the c.d.f. of a discrete r.v. 𝑋 with p.m.f. 𝑓 (𝑥) = 0.1𝑥 if

𝑥 = 1, 2, 3, 4 and 𝑓 (𝑥) = 0 otherwise.

𝑓 (𝑥) is indeed a p.m.f. as 0 < 𝑓 (𝑥) ≤ 1 for all 𝑥 and

4∑
𝑥=1

0.1𝑥 = 0.1(1 + 2 + 3 + 4) = 0.1
4(5)

2

= 1.

Computing 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) yields

𝐹(𝑥) =



0 if 𝑥 < 1

0.1 if 1 ≤ 𝑥 < 2

0.3 if 2 ≤ 𝑥 < 3

0.6 if 3 ≤ 𝑥 < 4

1 if 𝑥 ≥ 4

The p.m.f. and the c.m.f. for this r.v. are shown in Figure 6.5.

Figure 6.5: P.m.f. and c.m.f. for the discrete

r.v. 𝑋 defined in the last example.
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6.2.2 Expectation of a Discrete Random Variable

The expectation of a discrete random variable 𝑋 is

E[𝑋] =
∑
𝑥

𝑥 · 𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑥 𝑓 (𝑥) ,

where the sum extends over all values of 𝑥 taken by 𝑋.
19

The definition 19: The expectation of a random variable

is simply the average value that it takes,

over all possible values.

can be extended to a general function of 𝑋:

E[𝑢(𝑋)] =
∑
𝑥

𝑢(𝑥)𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑢(𝑥) 𝑓 (𝑥).

As an important example, note that

E[𝑋2] =
∑
𝑥

𝑥2𝑃(𝑋 = 𝑥) =
∑
𝑥

𝑥2 𝑓 (𝑥).

Examples

What is the expectation on the roll 𝑍 of 6−sided die?

If the die is fair, then

E[𝑍] =
6∑
𝑧=1

𝑧 · 𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

𝑧 =
1

6

· 6(7)
2

= 3.5.

For each 1$ bet in a gambling game, a player can win 3$ with

probability
1

3
and lose 1$ with probability

2

3
. Let 𝑋 be the net

gain/loss from the game. Find the expected value of the game.

𝑋 takes on the value 2$ for a win and −2$ for a loss.
20

The expected 20: That is, win/loss = outcome − bet.

value of 𝑋 is thus

E[𝑋] = 2 · 1

3

+ (−2) · 2

3

= −2

3

.

If 𝑍 is the number showing on a roll of a fair 6−sided die, find

E[𝑍2] and E[(𝑍 − 3.5)2].

E[𝑍2] =
∑
𝑧

𝑧2𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

𝑧2 =
1

6

(12 + · · · + 6
2) = 91

6

E[(𝑍 − 3.5)2] =
6∑
𝑧=1

(𝑧 − 3.5)2 × 𝑃(𝑍 = 𝑧) = 1

6

6∑
𝑧=1

(𝑧 − 3.5)2

=
(1 − 3.5)2 + · · · + (6 − 3.5)2

6

=
35

12

.

Mean and Variance

We can interpret the expectation as the average or the mean of 𝑋 , which

we often denote by 𝜇 = 𝜇𝑋 . For instance, in the example of the fair die,

𝜇𝑍 = E[𝑍] = 3.5
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Note that in the final example, we could have written

E[(𝑍 − 3.5)2] = E[(𝑍 − E[𝑍])2].

This is an important quantity associated to a random variable 𝑋, its

variance Var[𝑋].

The variance of a discrete random variable 𝑋 is the expected squared
difference from the mean:

Var(𝑋) = E[(𝑋 − 𝜇𝑋)2] =
∑
𝑥

(𝑥 − 𝜇𝑋)2𝑃(𝑋 = 𝑥)

=
∑
𝑥

(
𝑥2 − 2𝑥𝜇𝑋 + 𝜇2

𝑋

)
𝑓 (𝑥)

=
∑
𝑥

𝑥2 𝑓 (𝑥) − 2𝜇𝑋
∑
𝑥

𝑥 𝑓 (𝑥) + 𝜇2

𝑋

∑
𝑥

𝑓 (𝑥)

= E[𝑋2] − 2𝜇𝑋𝜇𝑋 + 𝜇2

𝑋 · 1

= E[𝑋2] − 𝜇2

𝑋 .

This is also sometimes written as Var[𝑋] = E[𝑋2] − E
2[𝑋].

Standard Deviation

The standard deviation of a discrete random variable 𝑋 is defined

directly from the variance:

SD[𝑋] =
√

Var[𝑋] .

The mean is a measure of centrality and it gives an idea as to where

the bulk of a distribution is located; the variance and standard devia-

tion provide information about the spread – distributions with higher

variance/SD are more spread out about the average.

Example Let 𝑋 and 𝑌 be random variables with the following p.d.f.

𝑥 𝑃(𝑋 = 𝑥) 𝑦 𝑃(𝑌 = 𝑦)
−2 1/5 −4 1/5

−1 1/5 −2 1/5

0 1/5 0 1/5

1 1/5 2 1/5

2 1/5 4 1/5

We have E[𝑋] = E[𝑌] = 0 and

2 = Var[𝑋] < Var[𝑌] = 8,

meaning that we expect both distributions to be centered at 0, but 𝑌

should be more spread-out than 𝑋 (because its variance is greater, see

Figure 6.6).
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Figure 6.6: R.v. 𝑋 (left) and 𝑌 (right) for two uniform distributions, as defined in the example.

Properties

Let 𝑋,𝑌 be random variables and 𝑎 ∈ ℝ. Then

E[𝑎𝑋] = 𝑎E[𝑋];
E[𝑋 + 𝑎] = E[𝑋] + 𝑎;
E[𝑋 + 𝑌] = E[𝑋] + E[𝑌];
in general, E[𝑋𝑌] ≠ E[𝑋]E[𝑌];
Var[𝑎𝑋] = 𝑎2

Var[𝑋], SD[𝑎𝑋] = |𝑎 |SD[𝑋];
Var[𝑋 + 𝑎] = Var[𝑋], SD[𝑋 + 𝑎] = SD[𝑋].

6.2.3 Binomial Distributions

Recall that the number of unordered samples of size 𝑟 from a set of size

𝑛 is

𝑛𝐶𝑟 =

(
𝑛

𝑟

)
=

𝑛!

(𝑛 − 𝑟)!𝑟! .

Examples

2! × 4! = (1 × 2) × (1 × 2 × 3 × 4) = 48, but (2 × 4)! = 8! = 40320.(
5

1

)
= 5!

1!×4!
= 1×2×3×4×5

1×(1×2×3×4) =
5

1
= 5.

In general:

(𝑛
1

)
= 𝑛 and

(𝑛
0

)
= 1.(

6

2

)
= 6!

2!×4!
= 4!×5×6

2!×4!
= 5×6

2
= 15.(

27

22

)
= 27!

22!×5!
= 22!×23×24×25×26×27

5!×22!
= 23×24×25×26×27

120
.

Binomial Experiments

A Bernoulli trial is a random experiment with two possible outcomes,

“success" and”failure". Let 𝑝 denote the probability of a success.
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A binomial experiment consists of 𝑛 repeated independent Bernoulli

trials, each with the same probability of success, 𝑝, such as:

female/male births (perahps not truly independent, but often

treated as such);

satisfactory/defective items on a production line;

sampling with replacement with two types of item,

etc.

Probability Mass Function

In a binomial experiment of 𝑛 independent events, each with probability

of success 𝑝, the number of successes 𝑋 is a discrete random variable

that follows a binomial distribution with parameters (𝑛, 𝑝):

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =
(
𝑛

𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 , for 𝑥 = 0, 1, 2, . . . , 𝑛.

This is often abbreviated to “𝑋 ∼ B(𝑛, 𝑝)”.

If 𝑋 ∼ B(1, 𝑝), then 𝑃(𝑋 = 0) = 1 − 𝑝 and 𝑃(𝑋 = 1) = 𝑝, so

E[𝑋] = (1 − 𝑝) · 0 + 𝑝 · 1 = 𝑝 .

Expectation and Variance

If 𝑋 ∼ B(𝑛, 𝑝), it can be shown that

E[𝑋] =
𝑛∑
𝑥=0

𝑥𝑃(𝑋 = 𝑥) = 𝑛𝑝,

and

Var[𝑋] = E

[
(𝑋 − 𝑛𝑝)2

]
=

𝑛∑
𝑥=0

(𝑥 − 𝑛𝑝)2 · 𝑃(𝑋 = 𝑥) = 𝑛𝑝(1 − 𝑝)

(we will eventually see an easier way to derive these formulas by inter-

preting 𝑋 as a sum of discrete random variables).

Recognizing that certain situations can be modeled via a distribution

whose p.m.f. and c.d.f. are already known can simplify computations.

Examples

Suppose that water samples taken in some well-defined region

have a 10% probability of being polluted. If 12 samples are selected

independently, then it is reasonable to model the number 𝑋 of

polluted samples as B(12, 0.1).

Find

1. E[𝑋] and Var[𝑋];
2. 𝑃(𝑋 = 3);
3. 𝑃(𝑋 ≤ 3).
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1. If 𝑋 ∼ B(𝑛, 𝑝), then

E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝).

With 𝑛 = 12 and 𝑝 = 0.1, we obtain

E[𝑋] = 12 × 0.1 = 1.2;

Var[𝑋] = 12 × 0.1 × 0.9 = 1.08 .

2. By definition,

𝑃(𝑋 = 3) =
(
12

3

)
(0.1)3(0.9)9 ≈ 0.0852.

3. By definition,

𝑃(𝑋 ≤ 3) =
3∑
𝑥=0

𝑃(𝑋 = 𝑥)

=

3∑
𝑥=0

(
12

𝑥

)
(0.1)𝑥(0.9)12−𝑥 .

This sum can be computed directly, however, for𝑋 ∼ B(12, 0.1),
𝑃(𝑋 ≤ 3) can also be read directly from tabulated values (as

in Figure 6.7):

Figure 6.7: Tabulated c.d.f. values for the binomial distribution with 𝑛 = 12 [source unknown].

The appropriate value ≈ 0.9744 can be found in the group

corresponding to 𝑛 = 12, in the row corresponding to 𝑥 = 3,

and in the column corresponding to 𝑝 = 0.1. The table can

also be used to compute

𝑃(𝑋 = 3) = 𝑃(𝑋 ≤ 3) − 𝑃(𝑋 ≤ 2) = 0.9744 − 0.8891 ≈ 0.0853.

An airline sells 101 tickets for a flight with 100 seats. Each passenger

with a ticket is known to have a probability 𝑝 = 0.97 of showing up

for their flight. What is the probability of 101 passengers showing

up (and the airline being caught overbooking)? Make appropriate
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assumptions. What if the airline sells 125 tickets?

Let 𝑋 be the number of passengers that show up. We want to

compute 𝑃(𝑋 > 100).

If all passengers show up independently of one another,
21

we can21: No families or late bus?

model 𝑋 ∼ B(101, 0.97) and

𝑃(𝑋 > 100) = 𝑃(𝑋 = 101)

=

(
101

101

)
(0.97)101(0.03)0 ≈ 0.046.

If the airline sells 𝑛 = 125 tickets, we can model the situation with

the binomial distribution B(125, 0.97), so that

𝑃(𝑋 > 100) = 1 − 𝑃(𝑋 ≤ 100)

= 1 −
100∑
𝑥=0

(
125

𝑥

)
(0.97)𝑥(0.03)125−𝑥 .

This sum is harder to compute directly, but is very nearly 1 (try it

with R, say).
22

22: Do these results match your intuition?

We can evaluate related probabilities in R via the base functions rbinom(),

dbinom(), etc., whose parameters are n, size, and prob.

We can draw an observation 𝑋 from a binomial distribution B(11, 0.2)
in R as follows:

rbinom(1, size=11, prob=0.2)

[1] 5

We could also replicate the process 1000 times (and extract the empirical

expectation and variance):

v<- rbinom(1000,size=11, prob=0.2)

mean(v)

var(v)

[1] 2.236

[1] 1.794098

The histogram of the sample is shown below.

brks = min(v):max(v)

hist(v, breaks = brks)
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If we change the parameters of the distribution (B(19.0.7)), we get a

different looking histogram (and a different expectation and variance).

v<- rbinom(1000,size=19, prob=0.7)

mean(v)

var(v)

[1] 13.308

[1] 4.253389

brks = min(v):max(v)

hist(v, breaks = brks)
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6.2.4 Geometric Distributions

Now consider a sequence of Bernoulli trials, with probability 𝑝 of success

at each step. Let the geometric random variable 𝑋 denote the number of

steps before the first success occurs. Its p.m.f. is given by

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝, 𝑥 = 1, 2, . . .

and we denote it by 𝑋 ∼ Geo(𝑝). For this r.v., we have

E[𝑋] = 1

𝑝
and Var[𝑋] = 1 − 𝑝

𝑝2

.

Examples

A fair 6−sided die is thrown until it shows a 6. What is the proba-

bility that 5 throws are required?

If 5 throws are required, we have to compute 𝑃(𝑋 = 5), where

𝑋 ∼ Geo(1/6):

𝑃(𝑋 = 5) = (1 − 𝑝)5−1𝑝 = (5/6)4(1/6) ≈ 0.0804.

In the example above, how many throws would you expect to need?

It’s fairly simple: E[𝑋] = 1

1/6
= 6.

23
23: Understand, however, that this does
not mean that we obtain get a 6 every 6

throws.

6.2.5 Negative Binomial Distributions

Consider now a sequence of Bernoulli trials, with probability 𝑝 of success

at each step. Let the negative binomial random variable 𝑋 denote the

number of steps before the 𝑟th success occurs. Its p.m.f. is given by

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =
(
𝑥 − 1

𝑟 − 1

)
(1 − 𝑝)𝑥−𝑟𝑝𝑟 , 𝑥 = 𝑟, 𝑟 + 1, . . .

and we denote it by 𝑋 ∼ NegBin(𝑝, 𝑟). For this r.v., we have

E[𝑋] = 𝑟

𝑝
and Var[𝑋] = 𝑟(1 − 𝑝)

𝑝2

.

Examples

A fair 6−sided die is thrown until it three 6’s are rolled. What is

the probability that 5 throws are required?

If 5 throws are required, we have to compute 𝑃(𝑋 = 5), where

𝑋 ∼ NegBin(1/6, 3):

𝑃(𝑋 = 5) =
(
5 − 1

3 − 1

)
(1 − 𝑝)5−3𝑝3 =

(
4

2

)
(5/6)2(1/6)3 ≈ 0.0193.

In the example above, how many throws would you expect to need?

This one is also fairly simple: E[𝑋] = 3

1/6
= 18.
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6.2.6 Poisson Distributions

Let us say we are counting the number of “changes” that occur in a

continuous interval of time or space.
24

24: Such as # of defects on a production

line over a 1 hr period, # of customers that

arrive at a teller over a 15 min interval, etc.We have a Poisson process with rate 𝜆, denoted by P(𝜆), if:

1. the number of changes occurring in non-overlapping intervals are

independent;
2. the probability of exactly one change in a short interval of length ℎ

is approximately 𝜆ℎ, and

3. The probability of 2+ changes in a sufficiently short interval is

essentially 0.

Assume that an experiment satisfies the above properties. Let 𝑋 be

the number of changes in a unit interval.25
What is 𝑃(𝑋 = 𝑥), for 25: This could be 1 day, or 15 minutes, or

10 years, etc.𝑥 = 0, 1, . . .? We get to the answer by first partition the unit interval into

𝑛 disjoint sub-intervals of length 1/𝑛. Then,

1. by the second condition, the probability of one change occurring

in one of the sub-intervals is approximately 𝜆/𝑛;

2. by the third condition, the probability of 2+ changes is ≈ 0, and

3. by the first condition, we have a sequence of 𝑛 Bernoulli trials with

probability 𝑝 = 𝜆/𝑛.

Therefore,

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) ≈ 𝑛!

𝑥!(𝑛 − 𝑥)!

(
𝜆
𝑛

)𝑥 (
1 − 𝜆

𝑛

)𝑛−𝑥
=

𝜆𝑥

𝑥!

· 𝑛!

(𝑛 − 𝑥)! ·
1

𝑛𝑥︸          ︷︷          ︸
term 1

·
(
1 − 𝜆

𝑛

)𝑛
︸     ︷︷     ︸

term 2

·
(
1 − 𝜆

𝑛

)−𝑥
︸      ︷︷      ︸

term 3

.

Letting 𝑛 → ∞, we obtain

𝑃(𝑋 = 𝑥) = lim

𝑛→∞
𝜆𝑥

𝑥!

· 𝑛!

(𝑛 − 𝑥)! ·
1

𝑛𝑥︸          ︷︷          ︸
term 1

·
(
1 − 𝜆

𝑛

)𝑛
︸     ︷︷     ︸

term 2

·
(
1 − 𝜆

𝑛

)−𝑥
︸      ︷︷      ︸

term 3

=
𝜆𝑥

𝑥!

· 1 · exp(−𝜆) · 1 =
𝜆𝑥𝑒−𝜆

𝑥!

, 𝑥 = 0, 1, . . .

Let 𝑋 ∼ P(𝜆). Then it can be shown that

E[𝑋] = 𝜆 and Var[𝑋] = 𝜆;

the mean and the variance of a Poisson random variable are identical!

We can compute related probabilities in R via the base functions rpois(),

dpois(), etc., with required parameters n and lambda. We start by

drawing a sample of size 1 from P(13), say, in R as follows:
26

26: No seed has been specified, so it is

conceivable that your results would be

different.

rpois(1,lambda=13)

[1] 18
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Next, we sample independently 500 times; this yields an empirical

expectation and variance.

u<-rpois(500,lambda=13)

head(u)

mean(u)

var(u)

[1] 13 12 14 12 18 9

[1] 12.874

[1] 12.92798

The sample’s histogram is shown below.

hist(u)

Examples

A traffic flow is typically modeled by a Poisson distribution. It

is known that the traffic flowing through an intersection is 6

cars/minute, on average. What is the probability of no cars enter-

ing the intersection in a 30 second period?

Note that 6 cars/min = 3 cars/30 sec. Thus 𝜆 = 3, and we need to

compute

𝑃(𝑋 = 0) = 3
0𝑒−3

0!

=
𝑒−3

1

≈ 0.0498.

A hospital needs to schedule night shifts in the maternity ward. It

is known that there are 3000 deliveries per year; if these happened

randomly round the clock,
27

we would expect 1000 deliveries27: Is this a reasonable assumption?

between the hours of midnight and 8.00 a.m., a time when much

of the staff is off-duty.
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It is thus important to ensure that the night shift is sufficiently

staffed to allow the maternity ward to cope with the workload on

any particular night, or at least, on a high proportion of nights.

The average number of deliveries per night

𝜆 = 1000/365.25 ≈ 2.74.

If the daily number 𝑋 of night deliveries follows a Poisson process

P(𝜆), we can compute the probability of delivering 𝑥 = 0, 1, 2, . . .

babies on each night.

For a Poisson distribution, the p.m.f. values 𝑓 (𝑥) are obtained via
dpois() in R.

28
28: For a general distribution, replace the

r in the rxxxxx(...) random number gen-

erators by d: dxxxxx(...).

We start by setup the Poisson distribution parameters and the

distribution’s range.
29

29: In theory, it goes to infinity, but we

have got to stop somewhere in practice.

lambda = 2.74

x=0:10

The p.m.f. and c.d.f. are shown below:

pmf=dpois(x,lambda)

cdf=ppois(x,lambda)

data.frame(x,pmf,cdf)

x pmf cdf

0 0.0645703 0.0645703

1 0.1769228 0.2414931

2 0.2423842 0.4838773

3 0.2213775 0.7052548

4 0.1516436 0.8568984

5 0.0831007 0.9399991

6 0.0379493 0.9779484

7 0.0148544 0.9928029

8 0.0050876 0.9978905

9 0.0015489 0.9994394

10 0.0004244 0.9998638

Here are the p.m.f. and c.d.f. plots:

plot(x,pmf, type="h", col=2, main="Poisson PMF",

xlab="x", ylab="f(x)=P(X=x)")

points(x,pmf, col=2)

abline(h=0, col=4)

plot(c(1,x),c(0,cdf), type="s", col=2,

main="Poisson CDF",

xlab="x", ylab="F(x)=P(X<=x)")

abline(h=0:1, col=4)
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If the maternity ward wants to prepare for the greatest possible

traffic on 80% of the nights, how many deliveries should be ex-

pected?

We seek an 𝑥 for which

𝑃(𝑋 ≤ 𝑥 − 1) ≤ 0.80 ≤ 𝑃(𝑋 ≤ 𝑥).

Let’s plot the height 𝐹(𝑥) = 0.8 on the c.d.f.:

plot(c(1,x),c(0,cdf), type="s", col=2,

main="Poisson CDF", xlab="x", ylab="F(x)=P(X<=x)")

abline(h=0:1, col=4)

abline(h=0.8, col=1)

The 𝑦 = 0.8 line crosses the CMF at 𝑥 = 4; let’s evaluate 𝐹(3) =
𝑃(𝑋 ≤ 3) and 𝐹(4) = 𝑃(𝑋 ≤ 4) to confirm that 𝐹(3) ≤ 0.8 ≤ 𝐹(4).

ppois(3,lambda)

ppois(4,lambda)

[1] 0.7052548

[1] 0.8568984

Thus, if the hospital prepares for 4 deliveries a night, they will be

ready for the worst on at least 80% of the nights.
30

30: Note that this is different than asking

how many deliveries are expected nightly

(namely, E[𝑋] = 2.74).
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On how many nights in the year would 5 or more deliveries be

expected?

We need to evaluate

365.25 · 𝑃(𝑋 ≥ 5) = 365.25(1 − 𝑃(𝑋 ≤ 4)).

365.25*(1-ppois(4,2.74))

[1] 52.26785

Thus, on roughly 14% of the nights.

Over the course of one year, what is the greatest number of deliver-

ies expected on any night?

We are looking for the largest value of 𝑥 s.t. 365.25 ·𝑃(𝑋 = 𝑥) ≥ 1.
31

The expected number of nights with each number of deliveries 31: If 365.25 · 𝑃(𝑋 = 𝑥) < 1, then the

probability of that number of deliveries is

too low to expect that we would ever see

it during the year.

can be computed using:

nights=c()

for(j in 0:10){

nights[j+1]=365.25*dpois(j,lambda)

}

rbind(0:10,nights)

[,1] [,2] [,3] [,4]

0.00000 1.00000 2.00000 3.00000

nights 23.58432 64.62103 88.53082 80.85815

[,5] [,6] [,7] [,8]

4.00000 5.00000 6.00000 7.000000

nights 55.38783 30.35253 13.86099 5.425587

[,9] [,10] [,11]

8.000000 9.000000 10.0000000

nights 1.858264 0.565738 0.1550122

The largest index is:

max(which(nights>1))-1

[1] 8

Indeed, for larger values of 𝑥, we have 365.25 · 𝑃(𝑋 = 𝑥) < 1.

365.25*dpois(8,lambda)

365.25*dpois(9,lambda)

[1] 1.858264

[1] 0.565738
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6.2.7 Other Discrete Distributions

There are numerous commonly-used discrete distributions [5]:

the Rademacher distribution, which takes values 1 and −1, each

with probability 1/2;

the beta binomial distribution, which describes the number of

successes in a series of independent Bernoulli experiments with

heterogeneity in the success probability;

the discrete uniform distribution, where all elements of a finite

set are equally likely (balanced coin, unbiased die, first card of a

well-shuffled deck, etc.);

the hypergeometric distribution, which describes the number

of successes in the first 𝑚 of a series of 𝑛 consecutive Bernoulli

experiments, if the total number of successes is known;

the Poisson binomial distribution, which describes the number of

successes in a series of independent Bernoulli experiments with

different success probabilities;

Benford’s Law, which describes the frequency of the first digit of

many naturally occurring data.

Zipf’s Law, which describes the frequency of words in the English

language;

the beta negative binomial distribution, which describes the num-

ber of failures needed to obtain 𝑟 successes in a sequence of

independent Bernoulli experiments;

etc.

6.3 Continuous Distributions

How do we approach probabilities where there there are uncountably
infinitely many possible outcomes, such as one might encounter if 𝑋

represents the height of an individual in the population, for instance (e.g.,

the outcomes reside in a continuous interval)? What is the probability

that a randomly selected person is about 6 feet tall, say?

6.3.1 Continuous Random Variables

In the discrete case, the probability mass function 𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥) was

the main object of interest. In the continuous case, the analogous role

is played by the probability density function (p.d.f.), still denoted by

𝑓𝑋(𝑥), but there is a major difference with discrete r.v.:

𝑓𝑋(𝑥) ≠ 𝑃(𝑋 = 𝑥).

The (cumulative) distribution function (c.d.f.) of any such random

variable 𝑋 is also still defined by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) ,

viewed as a function of a real variable 𝑥; however 𝑃(𝑋 ≤ 𝑥) is not simply

computed by adding a few terms of the form 𝑃(𝑋 = 𝑥𝑖).
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Note as well that

lim

𝑥→−∞
𝐹𝑋(𝑥) = 0 and lim

𝑥→+∞
𝐹𝑋(𝑥) = 1.

We can describe the distribution of the random variable 𝑋 via the

following relationship between 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥):32
32: In the continuous case, probability is

simply an application of calculus!

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥).

Area Under the Curve

For any 𝑎 < 𝑏, we have

{𝑋 ≤ 𝑏} = {𝑋 ≤ 𝑎} ∪ {𝑎 < 𝑋 ≤ 𝑏} ,

so that

𝑃 (𝑋 ≤ 𝑎) + 𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑋 ≤ 𝑏)

and thus

𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑋 ≤ 𝑏) − 𝑃 (𝑋 ≤ 𝑎) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) =
∫ 𝑏

𝑎

𝑓𝑋(𝑥) 𝑑𝑥

Probability Density Function

The probability density function (p.d.f.) of a continuous random variable

𝑋 is an integrable function 𝑓𝑋 : 𝑋(S) → ℝ such that:

𝑓𝑋(𝑥) > 0 for all 𝑥 ∈ 𝑋(S) and lim

𝑥→±∞
𝑓𝑋(𝑥) = 0;∫

S
𝑓𝑋(𝑥) 𝑑𝑥 = 1;

for any event 𝐴 = (𝑎, 𝑏) = {𝑋 | 𝑎 < 𝑋 < 𝑏},

𝑃(𝐴) = 𝑃((𝑎, 𝑏)) =
∫ 𝑏

𝑎

𝑓𝑋(𝑥) 𝑑𝑥,

and the cumulative distribution function (c.d.f.) 𝐹𝑋 is given by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡.

Unlike discrete distributions, the endpoints do not affect the probability

computations for continuous distributions: for any 𝑎, 𝑏,

𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏),

all taking the value

𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Furthermore, for any 𝑥,

𝑃(𝑥 < 𝑋) = 1 − 𝑃(𝑋 ≤ 𝑥) = 1 − 𝐹𝑋(𝑥) = 1 −
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡;
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and for any 𝑎,

𝑃 (𝑋 = 𝑎) = 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑎) =
∫ 𝑎

𝑎

𝑓𝑋(𝑥) 𝑑𝑥 = 0.

That last result explains why it is pointless to speak of the probability

of a random variable taking on a specific value in the continuous case;

rather, we are interested in ranges of values.

Examples

Assume that 𝑋 has the following p.d.f.:

𝑓𝑋(𝑥) =


0 if 𝑥 < 0

𝑥/2 if 0 ≤ 𝑥 ≤ 2

0 if 𝑥 > 2

Note that

∫
2

0

𝑓 (𝑥) 𝑑𝑥 = 1. The corresponding c.d.f. is given by:

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡

=


0 if 𝑥 < 0

1/2 ·
∫ 𝑥

0

𝑡 𝑑𝑡 = 𝑥2/4 if 0 < 𝑥 < 2

1 if 𝑥 ≥ 2

The p.d.f. and the c.d.f. for this r.v. are shown in Figure 6.8.

Figure 6.8: P.d.f. and c.d.f. for the continu-

ous r.v. 𝑋 defined above.



6.3 Continuous Distributions 291

What is the probability of the event 𝐴 = {𝑋 | 0.5 < 𝑋 < 1.5} if 𝑋

is the r.v. above?

We need to evaluate

𝑃(𝐴) = 𝑃(0.5 < 𝑋 < 1.5) = 𝐹𝑋(1.5) − 𝐹𝑋(0.5)

=
(1.5)2

4

− (0.5)2
4

=
1

2

.

Figure 6.9: P.d.f. and c.d.f. for the continu-

ous r.v. 𝑋 defined above, with event 𝐴.

What is the probability of the event 𝐵 = {𝑋 | 𝑋 = 1}?

We need to evaluate

𝑃(𝐵) = 𝑃(𝑋 = 1) = 𝑃(1 ≤ 𝑋 ≤ 1) = 𝐹𝑋(1) − 𝐹𝑋(1) = 0.

This is not unexpected: even though 𝑓𝑋(1) = 0.5 ≠ 0, 𝑃(𝑋 = 1) = 0,

as we saw earlier.

Assume that, for 𝜆 > 0, 𝑋 has the following p.d.f.:

𝑓𝑋(𝑥) =
{
𝜆 exp(−𝜆𝑥) if 𝑥 ≥ 0

0 if 𝑥 < 0

Verify that 𝑓𝑋 is a p.d.f. for all 𝜆 > 0, and compute the probability

that 𝑋 > 10.2.
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That 𝑓𝑋 is a p.d.f. is obvious; the only work goes into showing that∫ ∞

−∞
𝑓 (𝑥) 𝑑𝑥 =

∫ ∞

0

𝜆 exp(−𝜆𝑥) 𝑑𝑥 = lim

𝑏→∞

∫ 𝑏

0

𝜆 exp(−𝜆𝑥) 𝑑𝑥

= lim

𝑏→∞
𝜆

[
exp(−𝜆𝑥)

−𝜆

] 𝑏
0

= lim

𝑏→∞
[− exp(−𝜆𝑥)]𝑏

0

= lim

𝑏→∞
[− exp(−𝜆𝑏) + exp(0)] = 1.

The corresponding c.d.f. is given by:

𝐹𝑋(𝑥;𝜆) = 𝑃𝜆(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡 =

{
0 if 𝑥 < 0

𝜆
∫ 𝑥

0

exp(−𝜆𝑡) 𝑑𝑡 if 𝑥 ≥ 0

=

{
0 if 𝑥 < 0

[− exp(−𝜆𝑡)]𝑥
0

if 𝑥 ≥ 0

=

{
0 if 𝑥 < 0

1 − exp(−𝜆𝑥) if 𝑥 ≥ 0

Then

𝑃𝜆(𝑋 > 10.2) = 1 − 𝐹𝑋(10.2;𝜆) = 1 − [1 − exp(−10.2𝜆)] = exp(−10.2𝜆)

is a function of the distribution parameter 𝜆 itself:

𝜆 0.002 0.02 0.2 2 20 200

𝑃𝜆(𝑋 > 10.2) 0.9798 0.8155 0.13 1.38 × 10
−9

2.54 × 10
−89 ≈ 0

For 𝜆 = 0.2, for instance, the p.d.f. and c.d.f. are:

Figure 6.10: P.d.f. and c.d.f. for the r.v. 𝑋
with 𝜆 = 0.2.
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Figure 6.11: Probability of 𝑋 > 10.2 (in

blue), for 𝑋 with 𝜆 = 0.2.

Figure 6.12: Probability of 𝑋 > 10.2, for

𝑋 with 𝜆 = 2; the probability is so small

(1.38 × 10
−9

) that it cannot even be made

out in the p.d.f. (blue area).
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Note that in all cases, the shape of the p.d.f. and the c.d.f. are the same,

although the spike when 𝜆 = 2 is much higher than that when 𝜆 = 0.2 –

why must that be the case?.
33

33: This is not a general property of dis-

tributions, however, but a property of this

specific family of distributions.

6.3.2 Expectation of a Continuous Random Variables

For a continuous random variable 𝑋 with p.d.f. 𝑓𝑋(𝑥), the expectation of

𝑋 is defined as

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑥) 𝑑𝑥 .

For any function ℎ(𝑋), we can also define

E [ℎ(𝑋)] =
∫ ∞

−∞
ℎ(𝑥) 𝑓𝑋(𝑥) 𝑑𝑥 .

Examples

Find E[𝑋] and E[𝑋2] in the first example, above.

we need to evaluate

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑋) 𝑑𝑥 =

∫
2

0

𝑥 𝑓𝑋(𝑥) 𝑑𝑥

=

∫
2

0

𝑥2

2

𝑑𝑥 =

[
𝑥3

6

] 𝑥=2

𝑥=0

=
4

3

;

E[𝑋2] =
∫

2

0

𝑥3

2

𝑑𝑥 = 2.

Note that the expectation need not exist. Compute the expectation

of the random variable 𝑋 with p.d.f.

𝑓𝑋(𝑥) =
1

𝜋(1 + 𝑥2) , −∞ < 𝑥 < ∞.

let’s verify that 𝑓𝑋(𝑥) is indeed a p.d.f.:∫ ∞

−∞
𝑓𝑋(𝑥) 𝑑𝑥 =

1

𝜋

∫ ∞

−∞

1

1 + 𝑥2

𝑑𝑥

=
1

𝜋
[arctan(𝑥)]∞−∞ =

1

𝜋

[𝜋
2

+ 𝜋
2

]
= 1.

We can also easily see that

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡

=
1

𝜋

∫ 𝑥

−∞

1

1 + 𝑡2 𝑑𝑡 =
1

𝜋
arctan(𝑥) + 1

2

,

so that 𝑃(𝑋 ≤ 3) = 1

𝜋 arctan(3) + 1

2
, say (see Figure 6.13).

The expectation of 𝑋 is

E[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑥) 𝑑𝑥 =

∫ ∞

−∞

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥.
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Figure 6.13: P.d.f. and c.d.f. for the Cauchy

distribution, with area under the curve

𝐹(3).

If this improper integral exists, then it needs to be equal both to∫
0

−∞

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥 +
∫ ∞

0

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥︸                                            ︷︷                                            ︸
candidate 1

and to the Cauchy principal value

lim

𝑎→∞

∫ 𝑎

−𝑎

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥︸                      ︷︷                      ︸
candidate 2

.

But it is straightforward to find an antiderivative of
𝑥

𝜋(1+𝑥2) . Set

𝑢 = 1 + 𝑥2
. Then 𝑑𝑢 = 2𝑥𝑑𝑥 and 𝑥𝑑𝑥 = 𝑑𝑢

2
, and we obtain∫

𝑥

𝜋(1 + 𝑥2) 𝑑𝑥 =
1

2𝜋

∫
𝑢 𝑑𝑢 =

1

2𝜋
ln |𝑢 | = 1

2𝜋
ln(1 + 𝑥2).

Then the candidate 2 integral reduces to

lim

𝑎→∞

[
ln(1 + 𝑥2)

2𝜋

] 𝑎
−𝑎

= lim

𝑎→∞

[
ln(1 + 𝑎2)

2𝜋
− ln(1 + (−𝑎)2)

2𝜋

]
= lim

𝑎→∞
0 = 0;

while the candidate 1 integral reduces to[
ln(1 + 𝑥2)

2𝜋

]
0

−∞
+

[
ln(1 + 𝑥2)

2𝜋

]∞
0

= 0 − (∞) +∞ − 0 = ∞−∞
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which is undefined. Thus E[𝑋] cannot not exist, as it would have

to be both equal to 0 and be undefined simultaneously.
34

34: Actually, this is not quite true: the in-

tegral for candidate 1 is undetermined of

the form ∞−∞; usually, when we reach

this point in calculus, we have to use some

other approach, such as de l’Hôpital’s rule,

to reduce the expression to a determinate

form. The real reason why the mean does

not exist is because the value of the inte-

gral for candidate 1 depends on how we

approach −∞ and ∞ for each of the con-

stituents. For instance, if the integral exists,

we should also have∫ ∞

−∞
𝑥 𝑓𝑋 (𝑥) 𝑑𝑥 = lim

𝑎→∞

∫
2𝑎

−𝑎
𝑥 𝑓𝑋 (𝑥) 𝑑𝑥.

In the Cauchy case, that second integral

can be shown to take on the value ln 2/𝜋,

which is different from the principal value

0; hence, the integral does not exist, which

is to say, the mean of the Cauchy r.v. does

not exist.

Mean and Variance

Similarly to the discrete case, the mean of 𝑋 is defined to be E[𝑋], and

the variance and standard deviation of 𝑋 are, as before,

Var[𝑋] def

= E

[
(𝑋 − E[𝑋])2

]
= E[𝑋2] − E

2[𝑋] ,

SD[𝑋] =
√

Var[𝑋] .

As in the discrete case, if 𝑋,𝑌 are continuous random variables, and

𝑎, 𝑏 ∈ ℝ, then

E[𝑎𝑌 + 𝑏𝑋] = 𝑎E[𝑌] + 𝑏E[𝑋]
Var[𝑎 + 𝑏𝑋] = 𝑏2

Var[𝑋]
SD[𝑎 + 𝑏𝑋] = |𝑏 |SD[𝑋]

The interpretations of the mean as a measure of centrality and of the

variance as a measure of dispersion still apply in the continuous case.

For the time being, however, we cannot easily compute the variance of a

sum 𝑋 + 𝑌, unless 𝑋 and 𝑌 are independent random variables:

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌].

6.3.3 Normal Distributions

A very important example of a continuous distribution is that provided

by the special probability distribution function

𝜙(𝑧) = 1√
2𝜋
𝑒−𝑧

2/2 .

The corresponding cumulative distribution function is denoted by

Φ(𝑧) = 𝑃(𝑍 ≤ 𝑧) =
∫ 𝑧

−∞
𝜙(𝑡) 𝑑𝑡 .

A random variable 𝑍 with this c.d.f. is said to have a standard normal
distribution, denoted by 𝑍 ∼ N(0, 1).

Figure 6.14: P.d.f. and c.d.f. for the stan-

dard normal distribution.
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Standard Normal Random Variable

The expectation and variance of 𝑍 ∼ N(0, 1) are

E[𝑍] =
∫ ∞

−∞
𝑧 𝜙(𝑧) 𝑑𝑧 =

∫ ∞

−∞
𝑧

1√
2𝜋
𝑒−

1

2
𝑧2

𝑑𝑧 = 0,

Var[𝑍] =
∫ ∞

−∞
𝑧2 𝜙(𝑧) 𝑑𝑧 = 1,

SD[𝑍] =
√

Var[𝑍] =
√

1 = 1.

Other quantities of interest include:

Φ(0) = 𝑃(𝑍 ≤ 0) = 1

2

, Φ(−∞) = 0, Φ(∞) = 1,

Φ(1) = 𝑃(𝑍 ≤ 1) ≈ 0.8413, etc.

Normal Random Variables

Let 𝜎 > 0 and 𝜇 ∈ ℝ. If 𝑍 ∼ N(0, 1) and 𝑋 = 𝜇 + 𝜎𝑍, then

𝑋 − 𝜇

𝜎
= 𝑍 ∼ N(0, 1).

Thus, the c.d.f. of 𝑋 is given by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝜇 + 𝜎𝑍 ≤ 𝑥) = 𝑃
(
𝑍 ≤ 𝑥 − 𝜇

𝜎

)
= Φ

( 𝑥 − 𝜇

𝜎

)
;

its p.d.f. must then be

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥) =

𝑑

𝑑𝑥
Φ

( 𝑥 − 𝜇

𝜎

)
=

1

𝜎
𝜙

( 𝑥 − 𝜇

𝜎

)
.

Any random variable 𝑋 with this c.d.f./p.d.f. satisfies

E[𝑋] = 𝜇 + 𝜎E[𝑍] = 𝜇,

Var[𝑋] = 𝜎2

Var[𝑍] = 𝜎2 ,

SD[𝑋] = 𝜎

and is said to be normal with mean 𝜇 and variance 𝜎2
, denoted by

𝑋 ∼ N(𝜇, 𝜎2). As it happens, every general normal 𝑋 can be obtained by

a linear transformation of the standard normal 𝑍.

Traditionally, probability computations for normal distributions are done

with tables which compile values of the standard normal distribution

c.d.f., such as the one found in [4] or at ztable.net . With the advent of

freely-available statistical software, the need for tabulated values had

decreased.
35

35: Although it would still be a good idea

to learn how to read and use them.

In R, the standard normal c.d.f. 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) can be computed with

the function pnorm(z) – for instance, pnorm(0)=0.5.
36

36: In the examples that follow, whenever

𝑃(𝑍 ≤ 𝑎) is evaluated for some 𝑎, the

value is found either by consulting a table

or using pnorm.Examples

Let 𝑍 represent the standard normal random variable. Then:

https://www.ztable.net/
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1. 𝑃(𝑍 ≤ 0.5) = 0.6915

2. 𝑃(𝑍 < −0.3) = 0.3821

3. 𝑃(𝑍 > 0.5) = 1 − 𝑃(𝑍 ≤ 0.5) = 1 − 0.6915 = 0.3085

4. 𝑃(0.1 < 𝑍 < 0.3) = 𝑃(𝑍 < 0.3) − 𝑃(𝑍 < 0.1) = 0.0781

5. 𝑃(−1.2 < 𝑍 < 0.3) = 𝑃(𝑍 < 0.3) − 𝑃(𝑍 < −1.2) = 0.5028

Suppose that the waiting time (in minutes) in a coffee shop at 9am

is normally distributed with mean 5 and standard deviation 0.5.
37

37: In theory, this cannot be the true

model as this would imply that some of the

wait times could be negative, but it may

nevertheless be an acceptable assumption

in practice.

What is the probability that the waiting time for a customer is at

most 6 minutes?

Let 𝑋 denote the waiting time. Then 𝑋 ∼ N(5, 0.52) and the

standardised random variable is a standard normal:

𝑍 =
𝑋 − 5

0.5
∼ N(0, 1) .

The desired probability is

𝑃 (𝑋 ≤ 6) = 𝑃
(
𝑋 − 5

0.5
≤ 6 − 5

0.5

)
= 𝑃

(
𝑍 ≤ 6 − 5

0.5

)
= Φ

(
6 − 5

0.5

)
= Φ(2) = 𝑃(𝑍 ≤ 2) ≈ 0.9772.

Suppose that bottles of beer are filled in such a way that the actual

volume of the liquid content (in mL) varies randomly according to

a normal distribution with 𝜇 = 376.1 and 𝜎 = 0.4.
38

What is the38: The statement from the previous side-

note applies here as well – we will assume

that this is understood from this point

onward.

probability that the volume in any randomly selected bottle is less

than 375mL?

Let 𝑋 denote the volume of the liquid in the bottle. Then

𝑋 ∼ N(376.1, 0.42) =⇒ 𝑍 =
𝑋 − 376.1

0.4
∼ N(0, 1) .

The desired probability is thus

𝑃 (𝑋 < 375) = 𝑃
(
𝑋 − 376.1

0.4
<

375 − 376.1

0.4

)
= 𝑃

(
𝑍 <

−1.1

0.4

)
= 𝑃(𝑍 ≤ −2.75) = Φ (−2.75) ≈ 0.003 .

If 𝑍 ∼ N(0, 1), for which values 𝑎, 𝑏 and 𝑐 do:

1. 𝑃(𝑍 ≤ 𝑎) = 0.95?

From the table (or R) we see that

𝑃(𝑍 ≤ 1.64) ≈ 0.9495, 𝑃(𝑍 ≤ 1.65) ≈ 0.9505 .

Clearly we must have 1.64 < 𝑎 < 1.65; a linear interpolation

provides a decent guess at 𝑎 ≈ 1.645.

This level of precision is usually not necessary – it is often suf-
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ficient to simply present the interval estimate: 𝑎 ∈ (1.64, 1.65)
2. 𝑃(|𝑍 | ≤ 𝑏) = 𝑃(−𝑏 ≤ 𝑍 ≤ 𝑏) = 0.99?

Note that

𝑃 (−𝑏 ≤ 𝑍 ≤ 𝑏) = 𝑃(𝑍 ≤ 𝑏) − 𝑃(𝑍 < −𝑏)

However the p.d.f. 𝜙(𝑧) is symmetric about 𝑧 = 0, which

means that

𝑃(𝑍 < −𝑏) = 𝑃(𝑍 > 𝑏) = 1 − 𝑃(𝑍 ≤ 𝑏),

and so that

𝑃 (−𝑏 ≤ 𝑍 ≤ 𝑏) = 𝑃(𝑍 ≤ 𝑏) − [1 − 𝑃(𝑍 ≤ 𝑏)]
= 2𝑃(𝑍 ≤ 𝑏) − 1

In the question, 𝑃(−𝑏 ≤ 𝑍 ≤ 𝑏) = 0.99, so that

2𝑃(𝑍 ≤ 𝑏) − 1 = 0.99 =⇒ 𝑃(𝑍 ≤ 𝑏) = 1 + 0.99

2

= 0.995 .

Consulting the table we see that

𝑃(𝑍 ≤ 2.57) ≈ 0.9949, 𝑃(𝑍 ≤ 2.58) ≈ 0.9951;

a linear interpolation suggests that 𝑏 ≈ 2.575.

3. 𝑃(|𝑍 | ≥ 𝑐) = 0.01?

Note that {|𝑍 | ≥ 𝑐} = {|𝑍 | < 𝑐}𝑐 , so we need to find 𝑐 such

that

𝑃 (|𝑍 | < 𝑐) = 1 − 𝑃 (|𝑍 | ≥ 𝑐) = 0.99.

But this is equivalent to

𝑃 (−𝑐 < 𝑍 < 𝑐) = 𝑃(−𝑐 ≤ 𝑍 ≤ 𝑐) = 0.99

as |𝑥 | < 𝑦 ⇔ −𝑦 < 𝑥 < 𝑦, and 𝑃(𝑍 = 𝑐) = 0 for all 𝑐. This

problem was solved in part b); set 𝑐 ≈ 2.575.

Normally distributed numbers can be generated by rnorm() in R, which

accepts three parameters: n, mean, and sd. The default parameter values

are mean=0 and sd=1.

We can draw a single number from N(0, 1) as follows:
39

39: Note: no seed is provided, so results

may vary.

rnorm(1)

[1] -0.2351372

We can generate a histogram of a sample of size 500, say, from N(0, 1) as

follows:

z<-rnorm(500)

hist(z)
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A histogram with 20 bins is shown below:

brks = seq(min(z),max(z),(max(z)-min(z))/20)

hist(z, breaks = brks)

For normal distributions with mean 𝜇 and standard deviation 𝜎, we need

to modify the call to rnorm().

For instance, we can draw 5000 observations from N(−2, 32) using the

following code:

w<-rnorm(5000, sd=3, mean=-2)

mean(w)

sd(w)

[1] -1.943782

[1] 2.920071
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A histogram with 50 bins is displayed below:

brks = seq(min(w),max(w),(max(w)-min(w))/50)

hist(w, breaks = brks)

6.3.4 Exponential Distributions

Assume that cars arrive according to a Poisson process with rate 𝜆, that

is, the number of cars arriving within a fixed unit time period is a Poisson

random variable with parameter 𝜆.

Over a period of time 𝑥, we would then expect the number of arrivals 𝑁

to follow a Poisson process with parameter 𝜆𝑥. Let 𝑋 be the wait time to

the first car arrival. Then

𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑁 = 0) = exp(−𝜆𝑥).

We say that 𝑋 follows an exponential distribution Exp(𝜆):

𝐹𝑋(𝑥) =
{

0 for 𝑥 < 0

1 − 𝑒−𝜆𝑥 for 0 ≤ 𝑥
and 𝑓𝑋(𝑥) =

{
0 for 𝑥 < 0

𝜆𝑒−𝜆𝑥 for 0 ≤ 𝑥

Note that 𝑓𝑋(𝑥) = 𝐹′
𝑋
(𝑥) for all 𝑥.

If 𝑋 ∼ Exp(4), then 𝑃(𝑋 < 0.5) = 𝐹𝑋(0.5) = 1 − 𝑒−4(0.5) ≈ 0.865 is the

area of the shaded region in Figure 6.15.

Properties

If 𝑋 ∼ Exp(𝜆), then:

𝜇 = E[𝑋] = 1/𝜆, since

𝜇 =

∫ ∞

0

𝑥𝜆𝑒−𝜆𝑥 𝑑𝑥 =

[
−𝜆𝑥 + 1

𝜆
𝑒−𝜆𝑥

]∞
0

=

[
0 + 𝜆(0) + 1

𝜆
𝑒−0

]
=

1

𝜆
;
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Figure 6.15: P.d.f. and c.d.f. for the expo-

nential distribution. with parameter

𝑙𝑎𝑚𝑏𝑑𝑎 = 4 [source unknown].

𝜎2 = Var[𝑋] = 1/𝜆2
, since

𝜎2 =

∫ ∞

0

(𝑥 − E[𝑋])2 𝜆𝑒−𝜆𝑥 𝑑𝑥 =

∫ ∞

0

(
𝑥 − 1

𝜆

)
2

𝜆𝑒−𝜆𝑥 𝑑𝑥

=

[
−𝜆2𝑥2 + 1

𝜆2

𝑒−𝜆𝑥
]∞

0

=

[
0 + 𝜆2(0)2 + 1

𝜆2

𝑒−0

]
=

1

𝜆2

;

and 𝑃(𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠), for all 𝑠, 𝑡 > 0, since

𝑃(𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠 + 𝑡 and 𝑋 > 𝑡)
𝑃(𝑋 > 𝑡)

=
𝑃(𝑋 > 𝑠 + 𝑡)
𝑃(𝑋 > 𝑡) =

1 − 𝐹𝑋(𝑠 + 𝑡)
1 − 𝐹𝑋(𝑡)

=
exp(−𝜆(𝑠 + 𝑡))

exp(−𝜆𝑡)
= exp(−𝜆𝑠) = 𝑃(𝑋 > 𝑠).

Among continuous r.v., only exponential distributions satisfy this memo-
ryless property; geometric distributions are the only memoryless discrete

r.v., which makes, In a sense, Exp(𝜆) the continuous counterpart of

Geo(𝑝).

Example The lifetime of a certain type of light bulb follows an exponen-

tial distribution whose mean is 100 hours (i.e. 𝜆 = 1/100).

What is the probability that a light bulb will last at least 100 hours?

Since 𝑋 ∼ Exp(1/100), we have

𝑃(𝑋 > 100) = 1 − 𝑃(𝑋 ≤ 100) = exp(−100/100) ≈ 0.37.

Given that a light bulb has already been burning for 100 hours,

what is the probability that it will last at least 100 hours more?

We seek 𝑃(𝑋 > 200 | 𝑋 > 100). By the memory-less property,

𝑃(𝑋 > 200 | 𝑋 > 100) = 𝑃(𝑋 > 200 − 100) = 𝑃(𝑋 > 100) ≈ 0.37.

The manufacturer wants to guarantee that their light bulbs will last

at least 𝑡 hours. What should 𝑡 be in order to ensure that 90% of
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the light bulbs will last longer than 𝑡 hours?

We need to find 𝑡 such that 𝑃(𝑋 > 𝑡) = 0.9. In other words, we are

looking for 𝑡 such that

0.9 = 𝑃(𝑋 > 𝑡) = 1 − 𝑃(𝑋 ≤ 𝑡) = 1 − 𝐹𝑋(𝑡) = 𝑒−0.01𝑡 ,

that is,

ln 0.9 = −0.01𝑡 =⇒ 𝑡 = −100 ln 0.9 ≈ 10.5 hours.

Exponentially distributed numbers are generated by rexp() in R, with

required parameters n and rate.

We can draw from Exp(100) as follows:
40

40: This is the last time we mention that

these are seedless (pseudo-)random num-

bers.

rexp(1,100)

[1] 0.0009430804

If we repeat the process 1000 times, the empirical mean and variance

are:

q<-rexp(1000,100)

mean(q)

var(q)

[1] 0.01029523

[1] 0.000102973

The histogram is displayed below:

hist(q)
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6.3.5 Gamma Distributions

Assume that cars arrive according to a Poisson process with rate 𝜆. Recall

that if 𝑋 is the time to the first car arrival, then 𝑋 ∼ Exp(𝜆).

If 𝑌 is the wait time to the 𝑟th arrival, then 𝑌 follows a Gamma distribu-
tion with parameters 𝜆, 𝑟, denoted 𝑌 ∼ Γ(𝜆, 𝑟), for which the p.d.f. is

𝑓𝑌(𝑦) =
{

0 for 𝑦 < 0

𝑦𝑟−1

06(𝑟−1)!𝜆
𝑟 𝑒−𝜆𝑦 for 𝑦 ≥ 0

The c.d.f. 𝐹𝑌(𝑦) exists – it is the area under 𝑓𝑌 from 0 to 𝑦 – but it cannot

be expressed with elementary functions.

We can also show that

𝜇 = E[𝑌] = 𝑟

𝜆
and 𝜎2 = Var[𝑌] = 𝑟

𝜆2

.

Examples

Suppose that an average of 30 customers per hour arrive at a shop in

accordance with a Poisson process, that is to say, 𝜆 = 1/2 customers

arrive on average every minute. What is the probability that the

shopkeeper will wait more than 5 minutes before both of the first

two customers arrive?

Let 𝑌 denote the wait time in minutes until the second customer

arrives. Then 𝑌 ∼ Γ(1/2, 2) and

𝑃(𝑌 > 5) =
∫ ∞

5

𝑦2−1

(2 − 1)! (1/2)2𝑒−𝑦/2 𝑑𝑦 =

∫ ∞

5

𝑦𝑒−𝑦/2

4

𝑑𝑦

=
1

4

[
−2𝑦𝑒−𝑦/2 − 4𝑒−𝑦/2

]∞
5

=
7

2

𝑒−5/2 ≈ 0.287.

Telephone calls arrive at a switchboard at a mean rate of 𝜆 = 2

per minute, according to a Poisson process. Let 𝑌 be the waiting

time until the 5th call arrives. What is the p.d.f., the mean, and the

variance of 𝑌?

We have

𝑓𝑌(𝑦) =
2

5𝑦4

4!

𝑒−2𝑦 , for 0 ≤ 𝑦 < ∞,

E[𝑌] = 5

2

, Var[𝑌] = 5

4

.

The Gamma distribution can be extended to cases where 𝑟 > 0 is not an

integer by replacing (𝑟 − 1)! by

Γ(𝑟) =
∫ ∞

0

𝑡𝑟−1𝑒−𝑡 𝑑𝑡.

The exponential and the 𝜒2
distributions (we will discuss the latter

later) are special cases of the Gamma distribution: Exp(𝜆) = Γ(𝜆, 1) and

𝜒2(𝑟) = Γ(1/2, 𝑟).

Gamma distributed numbers are generated by rgamma(), with required

parameters n, shape, and scale.
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We can draw from a Γ(2, 3) distribution, for example, using:

rgamma(1,shape=2,scale=1/3)

[1] 2.249483

This can be repeated 1000 times, say, and we get the empirical mean and

variance:

q<-rgamma(1000,shape=2, scale=1/3)

mean(q)

var(q)

[1] 0.6663675

[1] 0.2205931

The corresponding histogram is displayed below:

hist(q)

6.3.6 Approximation of the Binomial Distribution

If 𝑋 ∼ B(𝑛, 𝑝) then we may interpret 𝑋 as a sum of independent and
identically distributed random variables

𝑋 = 𝐼1 + 𝐼2 + · · · + 𝐼𝑛 where each 𝐼𝑖 ∼ B(1, 𝑝) .

Thus, according to the Central Limit Theorem,
41

for large 𝑛 we have 41: We will have more to say on this crucial

topic in Section 6.5.

𝑋 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

approx∼ N(0, 1) ;

for large 𝑛 if 𝑋
exact∼ B(𝑛, 𝑝) then 𝑋

approx∼ N(𝑛𝑝, 𝑛𝑝(1 − 𝑝)).
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Normal Approximation with Continuity Correction

When 𝑋 ∼ B(𝑛, 𝑝), we know that E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝). If

𝑛 is large, we may approximate 𝑋 by a normal random variable in the

following way:

𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 < 𝑥 + 0.5) = 𝑃
(
𝑍 <

𝑥 − 𝑛𝑝 + 0.5√
𝑛𝑝(1 − 𝑝)

)
and

𝑃(𝑋 ≥ 𝑥) = 𝑃(𝑋 > 𝑥 − 0.5) = 𝑃
(
𝑍 >

𝑥 − 𝑛𝑝 − 0.5√
𝑛𝑝(1 − 𝑝)

)
.

The continuity correction terms are the corresponding ±0.5 in the

expressions – they are required.

Example Suppose 𝑋 ∼ B(36, 0.5). Provide a normal approximation to

the probability 𝑃(𝑋 ≤ 12).42
42: The binomial probabilities are not

typically available in textbooks (or on-

line) for 𝑛 = 36, although they could

be computed directly in R, such as with

pbinom(12,26,0.5)=0.0326.

The expectation and the variance of a binomial r.v. are known:

E[𝑋] = 36(0.5) = 18 and Var[𝑋] = 36(0.5)(1 − 0.5) = 9,

and so

𝑃(𝑋 ≤ 12) = 𝑃
(
𝑋 − 18

3

≤ 12 − 18 + 0.5

3

)
norm.approx’n

≈ Φ(−1.83) table≈ 0.033 .

Computing Binomial Probabilities

There are thus at least four ways of computing (or approximating)

binomial probabilities:

using the exact formula – if 𝑋 ∼ B(𝑛, 𝑝), then we have 𝑃(𝑋 = 𝑥) =(𝑛
𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 for each 𝑥 = 0, 1, . . . , 𝑛;

using tables – if 𝑛 ≤ 15 and 𝑝 is one of 0.1, . . . , 0.9, then the

corresponding c.d.f. can be found in many textbooks (we must first

express the desired probability in terms of the c.d.f. 𝑃(𝑋 ≤ 𝑥)),
such as in

𝑃(𝑋 < 3) = 𝑃(𝑋 ≤ 2);
𝑃(𝑋 = 7) = 𝑃(𝑋 ≤ 7) − 𝑃(𝑋 ≤ 6) ;

𝑃(𝑋 > 7) = 1 − 𝑃(𝑋 ≤ 7);
𝑃(𝑋 ≥ 5) = 1 − 𝑃(𝑋 ≤ 4), etc.

using statistical software (pbinom() in R, say), and

using the normal approximation when 𝑛𝑝 and 𝑛(1 − 𝑝) are both

≥ 5:

𝑃(𝑋 ≤ 𝑥) ≈ Φ

(
𝑥 + 0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
;

𝑃(𝑋 ≥ 𝑥) ≈ 1 −Φ

(
𝑥 − 0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
.
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6.3.7 Other Continuous Distributions

Some other common continuous distributions are listed in [5]:

the Beta distribution, a family of 2-parameter distributions with

one mode and which is useful to estimate success probabilities

(special cases: uniform, arcsine, PERT distributions);

the logit-normal distribution on (0, 1), which is used to model

proportions;

the Kumaraswamy distribution, which is used in simulations in

lieu of the Beta distribution (as it has a closed form c.d.f.);

the triangular distribution, which is typically used as a subjective

description of a population for which there is only limited sample

data (it is based on a knowledge of the minimum and maximum

and a guess of the mode);

the chi-squared distribution, which is the sum of the squares of 𝑛

independent normal random variables, is used in goodness-of-fit

tests in statistics;

the 𝐹−distribution, which is the ratio of two chi-squared random

variables, used in the analysis of variance;

the Erlang distribution is the distribution of the sum of 𝑘 indepen-

dent and identically distributed exponential random variables, and

it is used in queueing models (it is a special case of the Gammma

distribution);

the Pareto distribution, which is used to describe financial data

and critical behavior;

Student’s 𝑇 statistic, which arise when estimating the mean of a

normally-distributed population in situations where the sample

size is small and the population’s standard deviation is unknown;

the logistic distribution, whose cumulative distribution function is

the logistic function;

the log-normal distribution, which describing variables that are

the product of many small independent positive variables;

etc.

6.4 Joint Distributions

Let 𝑋 , 𝑌 be two continuous random variables. The joint probability dis-
tribution function (joint p.d.f.) of 𝑋,𝑌 is a function 𝑓 (𝑥, 𝑦) satisfying:

1. 𝑓 (𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦;

2.

∫ ∞
−∞

∫ ∞
−∞ 𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = 1, and

3. 𝑃(𝐴) =
∬
𝐴
𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦, where 𝐴 ⊆ ℝ2

.

For a discrete variable, the properties are the same, except that we replace

integrals by sums, and we add a property to the effect that 𝑓 (𝑥, 𝑦) ≤ 1

for all 𝑥, 𝑦.

Property 3 implies that 𝑃(𝐴) is the volume of the solid over the region 𝐴

in the 𝑥𝑦 plane bounded by the surface 𝑧 = 𝑓 (𝑥, 𝑦).
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Examples

Roll a pair of unbiased dice. For each of the 36 possible outcomes,

let 𝑋 denote the smaller roll, and 𝑌 the larger roll (taken from [1]).

1. How many outcomes correspond to the event

𝐴 = {(𝑋 = 2, 𝑌 = 3)}?

The rolls (3, 2) and (2, 3) both give rise to event 𝐴.

2. What is 𝑃(𝐴)?

There are 36 possible outcomes, so 𝑃(𝐴) = 2

36
≈ 0.0556.

3. What is the joint p.m.f. of 𝑋,𝑌?

Only one outcome, (𝑋 = 𝑎, 𝑌 = 𝑎), gives rise to the event

{𝑋 = 𝑌 = 𝑎}. For every other event {𝑋 ≠ 𝑌}, two outcomes

do the trick: (𝑋,𝑌) and (𝑌, 𝑋). The joint p.m.f. is thus

𝑓 (𝑥, 𝑦) =
{

1/36 1 ≤ 𝑥 = 𝑦 ≤ 6

2/36 1 ≤ 𝑥 < 𝑦 ≤ 6

The first property is automatically satisfied, as is the third (by

construction). There are only 6 outcomes for which 𝑋 = 𝑌,

all the remaining outcomes (of which there are 15) have𝑋 < 𝑌.

Thus,

6∑
𝑥=1

6∑
𝑦=𝑥

𝑓 (𝑥, 𝑦) = 6 · 1

36

+ 15 · 2

36

= 1.

4. Compute 𝑃(𝑋 = 𝑎) and 𝑃(𝑌 = 𝑏), for 𝑎, 𝑏 = 1, . . . , 6.

For every 𝑎 = 1, . . . , 6, {𝑋 = 𝑎} corresponds to the following

union of events:

{𝑋 = 𝑎, 𝑌 = 𝑎}∪{𝑋 = 𝑎, 𝑌 = 𝑎 + 1} ∪ · · · ∪ {𝑋 = 𝑎, 𝑌 = 6}.

These events are mutually exclusive, so that

𝑃(𝑋 = 𝑎) =
6∑
𝑦=𝑎

𝑃({𝑋 = 𝑎, 𝑌 = 𝑦})

=
1

36

+
6∑

𝑦=𝑎+1

2

36

=
1

36

+ 2(6 − 𝑎)
36

, 𝑎 = 1, . . . , 6.

Similarly, we get

𝑃(𝑌 = 𝑏) = 1

36

+ 2(𝑏 − 6)
36

, 𝑏 = 1, . . . , 6.

These marginal probabilities can be found in the margins of

the p.m.f.

5. Compute 𝑃(𝑋 = 3 | 𝑌 > 3), 𝑃(𝑌 ≤ 3 | 𝑋 ≥ 4).
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The notation suggests how to compute these conditional
probabilities:

𝑃(𝑋 = 3 | 𝑌 > 3) = 𝑃(𝑋 = 3 ∩ 𝑌 > 3)
𝑃(𝑌 > 3)

𝑃(𝑌 = 3 | 𝑋 ≥ 4) = 𝑃(𝑌 = 3 ∩ 𝑋 ≥ 4)
𝑃(𝑋 ≥ 4)

The region corresponding to 𝑃(𝑌 > 3) = 27

36
is shaded in red

(see Figure 6.16); the region corresponding to 𝑃(𝑋 = 3) = 7

36

is shaded in blue. The region corresponding to

𝑃(𝑋 = 3 ∩ 𝑌 > 3) = 6

36

is the intersection of the regions:

𝑃(𝑋 = 3 | 𝑌 > 3) = 6/36

27/36

=
6

27

≈ 0.2222.

As 𝑃(𝑌 ≤ 3 ∩ 𝑋 ≥ 4) = 0, 𝑃(𝑌 ≤ 3 | 𝑋 ≥ 4) = 0.

Figure 6.16: Conditional and marginal

probabilities in the dice example [1].

6. Are 𝑋 and 𝑌 independent?

Why didn’t we simply use the multiplicative rule to compute

𝑃(𝑋 = 3 ∩ 𝑌 > 3) = 𝑃(𝑋 = 3)𝑃(𝑌 > 3)?

It’s because 𝑋 and 𝑌 are not independent, that is, it is not

always the case that

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦)

for all allowable 𝑥, 𝑦. Indeed, 𝑃(𝑋 = 1, 𝑌 = 1) = 1

36
, but

𝑃(𝑋 = 1)𝑃(𝑌 = 1) = 11

36

· 1

36

≠
1

36

,

so 𝑋 and 𝑌 are dependent.43
43: This is often the case when the domain

of the joint p.d.f./p.m.f. is not rectangular.
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There are 8 similar chips in a bowl: three marked (0, 0), two marked

(1, 0), two marked (0, 1) and one marked (1, 1). A player selects a

chip at random and is given the sum of the two coordinates, in

dollars (taken from [1]).

1. What is the joint probability mass function of 𝑋1, and 𝑋2?

Let 𝑋1 and 𝑋2 represent the coordinates; we have

𝑓 (𝑥1 , 𝑥2) =
3 − 𝑥1 − 𝑥2

8

, 𝑥1 , 𝑥2 = 0, 1.

2. What is the expected pay-off for this game?

The pay-off is simply 𝑋1 + 𝑋2. The expected pay-off is thus

E[𝑋1 + 𝑋2] =
1∑

𝑥1=0

0∑
𝑥2=1

(𝑥1 + 𝑥2) 𝑓 (𝑥1 , 𝑥2)

= 0 · 3

8

+ 1 · 2

8

+ 1 · 2

8

+ 2 · 1

8

= 0.75.

Let 𝑋 and 𝑌 have joint p.d.f.

𝑓 (𝑥, 𝑦) = 2, 0 ≤ 𝑦 ≤ 𝑥 ≤ 1.

1. What is the support of 𝑓 (𝑥, 𝑦)?

The support is the set 𝑆 = {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ 𝑥 ≤ 1}, a triangle

in the 𝑥𝑦 plane bounded by the 𝑥−axis, the line 𝑥 = 1, and

the line 𝑦 = 𝑥.

The support is the blue triangle shown in Figure 6.17.

Figure 6.17: Support for the joint distribu-

tion of 𝑋 and 𝑌 in the above example.
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2. What is 𝑃(0 ≤ 𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 0.5)?

We need to evaluate the integral over the shaded area:

𝑃(0 ≤𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 0.5) = 𝑃(0 ≤ 𝑋 ≤ 0.5, 0 ≤ 𝑌 ≤ 𝑋)

=

∫
0.5

0

∫ 𝑥

0

2 𝑑𝑦𝑑𝑥 =

∫
0.5

0

[2𝑦]𝑦=𝑥𝑦=0
𝑑𝑥 =

∫
0.5

0

2𝑥 𝑑𝑥 = 1/4.

3. What are the marginal probabilities 𝑃(𝑋 = 𝑥) and 𝑃(𝑌 = 𝑦)?

For 0 ≤ 𝑥 ≤ 1, we get

𝑃(𝑋 = 𝑥) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦) 𝑑𝑦 =

∫ 𝑦=𝑥

𝑦=0

2 𝑑𝑦 = [2𝑦]𝑦=𝑥𝑦=0
= 2𝑥,

and for 0 ≤ 𝑦 ≤ 1,

𝑃(𝑌 = 𝑦) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦) 𝑑𝑥 =

∫ 𝑥=1

𝑥=𝑦

2 𝑑𝑥 = [2𝑥]𝑥=1

𝑥=𝑦 = 2 − 2𝑦.

4. Compute E[𝑋], E[𝑌], E[𝑋2], E[𝑌2], and E[𝑋𝑌].

We have

E[𝑋] =
∬

𝑆

𝑥 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫ 𝑥

0

2𝑥 𝑑𝑦𝑑𝑥

=

∫
1

0

[2𝑥𝑦]𝑦=𝑥𝑦=0
𝑑𝑥 =

∫
1

0

2𝑥2 𝑑𝑥 =

[
2

3

𝑥3

]
1

0

=
2

3

;

E[𝑌] =
∬

𝑆

𝑦 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫
1

𝑦

2𝑦 𝑑𝑥𝑑𝑦

=

∫
1

0

[2𝑥𝑦]𝑥=1

𝑥=𝑦 𝑑𝑦 =

∫
1

0

(2𝑦 − 2𝑦2) 𝑑𝑦 =

[
𝑦2 − 2

3

𝑦3

]
1

0

=
1

3

;

E[𝑋2] =
∬

𝑆

𝑥2 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫ 𝑥

0

2𝑥2 𝑑𝑦𝑑𝑥

=

∫
1

0

[
2𝑥2𝑦

] 𝑦=𝑥
𝑦=0

𝑑𝑥 =

∫
1

0

2𝑥3 𝑑𝑥 =

[
1

2

𝑥4

]
1

0

=
1

2

;

E[𝑌2] =
∬

𝑆

𝑦2 𝑓 (𝑥, 𝑦) 𝑑𝐴 =

∫
1

0

∫
1

𝑦

2𝑦2 𝑑𝑥𝑑𝑦

=

∫
1

0

[
2𝑥𝑦2

] 𝑥=1

𝑥=𝑦
𝑑𝑦 =

∫
1

0

(2𝑦 − 2𝑦3) 𝑑𝑦 =

[
2

3

𝑦3 − 1

2

𝑦4

]
1

0

=
1

6

;

E[𝑋𝑌] =
∬

𝑆

𝑥𝑦 𝑓 (𝑥, 𝑦) =
∫

1

0

∫ 𝑥

0

2𝑥𝑦 𝑑𝑦𝑑𝑥

=

∫
2

0

[
𝑥𝑦2

] 𝑦=𝑥
𝑦=0

=

∫
1

0

𝑥2 𝑑𝑥 =

[
𝑥4

4

]
1

0

=
1

4

.

5. Are 𝑋 and 𝑌 independent?

They are not, as the support of the joint p.d.f. is not rectangular.
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The covariance of two random variables𝑋 and𝑌 can give some indication

of how they depend on one another:

Cov(𝑋,𝑌) = E[(𝑋 − E[𝑋])(𝑌 − E[𝑌])] = E[𝑋𝑌] − E[𝑋]E[𝑌].

When𝑋 = 𝑌, the covariance reduces to the variance.
44

In the last example,44: Note that the covariance could be neg-

ative, unlike the variance.
for instance, we have: Var[𝑋] = 1

2
− ( 2

3
)2 = 1

18
, Var[𝑋] = 1

6
− ( 1

3
)2 = 1

18
,

and Cov(𝑋,𝑌) = 1

4
− 2

3
· 1

3
= 1

36
.
45

45: We will use the covariance again in

Chapters 8 and 10.

In R, we can generate a multivariate joint normal via MASS’s mvrnorm(),

whose required paramters are n, a mean vector mu and a covariance

matrix Sigma.

We look at two standard bivariate joint normals.

mu1 = c(0,0); mu2 = c(-3,12)

Sigma1 = matrix(c(1,0,0,1),2,2)

Sigma2 = matrix(c(110,15,15,3),2,2)

We sample 1000 observations from each joint normal.

library(MASS)

a1<-mvrnorm(1000,mu1,Sigma1)

a1<-data.frame(a1)

a2<-mvrnorm(1000,mu2,Sigma2)

a2<-data.frame(a2)

What would you expect to see when we plot the data? In the first case,

the covariance matrix is the identity (diagonal), so we expect the blob

to be circular; in the second case, we have a non-diagonal covariance

matrix, which stretches the blob.
46

46: The blob will have a “positive” slope

since Cov(𝑋,𝑌) = 15 > 0.

library(ggplot2)

library(hexbin)

qplot(X1, X2, data=a1, geom="hex")

qplot(X1, X2, data=a, geom="hex") +

ylim(-40,40) + xlim(-40,40)
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6.5 Central Limit Theorem and Sampling Distributions

In this section, we introduce one of the fundamental results of probability

theory and statistical analysis.

6.5.1 Sampling Distributions

A population is a set of similar items which of interest in relation to some

questions or experiments.

In some situations, it is impossible to observe the entire set of observations

that make up a population – perhaps the entire population is too large to

query, or some units are out-of-reach.

In these cases, we can only hope to infer the behaviour of the entire

population by considering a sample (subset) of the population.

Suppose that 𝑋1 , . . . , 𝑋𝑛 are 𝑛 independent random variables, each

having the same c.d.f. 𝐹, i.e.they are identically distributed. Then,

{𝑋1 , . . . , 𝑋𝑛} is a random sample of size 𝑛 from the population, with

c.d.f. 𝐹 .

Any function of such a random sample is called a statistic of the sample;

the probability distribution of a statistic is called a sampling distribu-
tion.

Recall the linear properties of the expectation and the variance: if 𝑋 is a

random variable and 𝑎, 𝑏 ∈ ℝ, then

E [𝑎 + 𝑏𝑋] = 𝑎 + 𝑏E[𝑋] ,
Var [𝑎 + 𝑏𝑋] = 𝑏2

Var[𝑋] ,
SD [𝑎 + 𝑏𝑋] = |𝑏 |SD[𝑋] .

Sum of Independent Random Variables

For any random variables 𝑋 and 𝑌, we have

E[𝑋 + 𝑌] = E[𝑋] + E[𝑌].

In general,

Var[𝑋 + 𝑌] = Var[𝑋] + 2Cov(𝑋,𝑌) + Var[𝑌];

if in addition 𝑋 and 𝑌 are independent, then

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌].

More generally, if 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 are independent, then

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

E[𝑋𝑖] and Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

Var[𝑋𝑖] .
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Independent and Identically Distributed Random Variables

A special case of the above occurs when all of 𝑋1 , . . . , 𝑋𝑛 have exactly
the same distribution. In that case we say they are independent and
identically distributed, which is traditionally abbreviated to “iid”.

If 𝑋1 , . . . , 𝑋𝑛 are iid, and

E [𝑋𝑖] = 𝜇 and Var [𝑋𝑖] = 𝜎2

for 𝑖 = 1, . . . , 𝑛,

then

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 𝑛𝜇 and Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 𝑛𝜎2 .

Examples

A random sample of size 100 is taken from a population with mean

50 and variance 0.25. Find the expected value and variance of the

sample total.

This problem translates to “if 𝑋1 , . . . , 𝑋100 are iid with E[𝑋𝑖] = 𝜇 =

50 and Var[𝑋] = 𝜎2 = 0.25 for 𝑖 = 1, . . . , 100, find E [𝜏] and Var [𝜏]
for

𝜏 =

𝑛∑
𝑖=1

𝑋𝑖 .”

According to the iid formulas,

E

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 100𝜇 = 5000, Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
= 100𝜎2 = 25 .

The mean value of potting mix bags weights is 5 kg, with standard

deviation 0.2. If a shop assistant carries 4 bags (selected indepen-

dently from the stock) then what is the expected value and standard

deviation of the total weight carried?

There is an implicit “population” of bag weights. Let 𝑋1 , 𝑋2 , 𝑋3 , 𝑋4

be iid with E[𝑋𝑖] = 𝜇 = 5, SD[𝑋𝑖] = 𝜎 = 0.2 and Var[𝑋𝑖] = 𝜎2 =

0.22 = 0.04 for 𝑖 = 1, 2, 3, 4. Let 𝜏 = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4.

According to the iid formulas,

E[𝜏] = 𝑛𝜇 = 4 · 5 = 20, Var[𝜏] = 𝑛𝜎2 = 4 · 0.04 = 0.16.

Thus, SD[𝜏] =
√

0.16 = 0.4.

Sample Mean

The sample mean is a typical statistic of interest:

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 .
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If 𝑋1 , . . . , 𝑋𝑛 are iid with E[𝑋𝑖] = 𝜇 and Var[𝑋𝑖] = 𝜎2
for all 𝑖 = 1, . . . , 𝑛,

then

E

[
𝑋

]
= E

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
(𝑛𝜇) = 𝜇

Var

[
𝑋

]
= Var

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛2

Var

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛2

(
𝑛𝜎2

)
=

𝜎2

𝑛
.

Example A set of scales returns the true weight of the object being

weighed plus a random error with mean 0 and standard deviation 0.1

g. Find the standard deviation of the average of 9 measurements of an

object.

Suppose the object has true weight 𝜇. The “random error” indicates that

each measurement 𝑖 = 1, . . . , 9 is written as 𝑋𝑖 = 𝜇+𝑍𝑖 where E[𝑍𝑖] = 0

and SD[𝑍𝑖] = 0.1 and the 𝑍𝑖 ’s are iid.

The 𝑋𝑖 ’s are iid with E[𝑋𝑖] = 𝜇 and SD[𝑋𝑖] = 𝜎 = 0.1. If we average

𝑋1 , . . . , 𝑋𝑛 (with 𝑛 = 9) to get 𝑋, then

E

[
𝑋

]
= 𝜇 and SD

[
𝑋

]
= 𝜎√

𝑛
= 0.1√

9

= 1

30
≈ 0.033 .

We do not need to know the actual distribution of the 𝑋𝑖 ; only 𝜇 and 𝜎2

are required to compute E[𝑋] and Var[𝑋].

Sum of Independent Normal Random Variables

Another interesting case occurs when we have multiple independent
normal random variables on the same experiment.

Suppose 𝑋𝑖 ∼ N
(
𝜇𝑖 , 𝜎2

𝑖

)
for 𝑖 = 1, . . . , 𝑛, and all the 𝑋𝑖 are independent.

We already know that

E[𝜏] = E[𝑋1 + · · · + 𝑋𝑛] = E[𝑋1] + · · · + E[𝑋𝑛] = 𝜇1 + · · · + 𝜇𝑛 ;

Var[𝜏] = Var[𝑋1 + · · · + 𝑋𝑛] = Var[𝑋1] + · · · + Var[𝑋𝑛] = 𝜎2

1
+ · · · + 𝜎2

𝑛 .

It turns out that, under these hypotheses, 𝜏 is also normally distributed,

i.e.

𝜏 =

𝑛∑
𝑖=1

𝑋𝑖 ∼ N(E[𝜏],Var[𝜏]) = N
(
𝜇1 + · · · + 𝜇𝑛 , 𝜎

2

1
+ · · · + 𝜎2

𝑛

)
.

Thus, if {𝑋1 , . . . , 𝑋𝑛} is a random sample from a normal population with
mean 𝜇 and variance 𝜎2

, then

∑𝑛
𝑖=1
𝑋𝑖 and 𝑋 are also normal, which,

combined with the above work, means that

𝑛∑
𝑖=1

𝑋𝑖 ∼ N
(
𝑛𝜇, 𝑛𝜎2

)
and 𝑋 ∼ N

(
𝜇,

𝜎2

𝑛

)
.

Example Suppose that the population of students’ weights is normal

with mean 75 kg and standard deviation 5 kg. If 16 students are picked

at random, what is the distribution of the (random) total weight 𝜏? What

is the probability that the total weight exceeds 1250 kg?
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If 𝑋1 , . . . , 𝑋16 are iid as N(75, 25), then the sum 𝜏 = 𝑋1 + · · · +𝑋16 is also

normally distributed with

𝜏 =

16∑
𝑖=1

𝑋𝑖 ∼ N(16 · 75, 16 · 25) = N(1200, 400), and

𝑍 =
𝜏 − 1200√

400

∼ N(0, 1).

Thus,

𝑃(𝜏 > 1250) = 𝑃
(
𝜏 − 1200√

400

>
1250 − 1200

20

)
= 𝑃(𝑍 > 2.5) = 1 − 𝑃(𝑍 ≤ 2.5)

≈ 1 − 0.9938 = 0.0062 .

6.5.2 Central Limit Theorem

Suppose that a professor has been teaching a course for the last 20 years.

For every cohort during that period, the mid-term exam grades of all the

students have been recorded. Let 𝑋𝑖 , 𝑗 be the grade of student 𝑖 in year 𝑗.

Looking back on the class lists, they find that

E[𝑋𝑖 , 𝑗] = 56 and SD[𝑋𝑖 , 𝑗] = 11.

This year, there are 49 students in the class. What should the professor

expect for the class mid-term exam average?

Of course, the professor cannot predict any of the student grades or the

class average with absolute certainty, but they could try the following

approach:

1. simulate the results of the class of 49 students by generating sample

grades 𝑋1,1 , . . . , 𝑋1,49 from a normal distribution N(65, 15
2);

2. compute the sample mean for the sample and record it as 𝑋1;

3. repeat steps 1-2 𝑚 times and compute the standard deviation of

the sample means 𝑋1 , . . . , 𝑋𝑚 ;

4. plot the histogram of the sample means 𝑋1 , . . . , 𝑋𝑚 .

What do you think is going to happen?

Central Limit Theorem: if 𝑋 is the mean of a random sample of size 𝑛

taken from a population with mean 𝜇 and finite variance 𝜎2 , then

𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1),

as 𝑛 → ∞. More precisely, this is a limiting result. If we view the

standardization

𝑍𝑛 =
𝑋 − 𝜇

𝜎/
√
𝑛
,

as functions of 𝑛, we have, for each 𝑧,

lim

𝑛→∞
𝑃 (𝑍𝑛 ≤ 𝑧) = Φ(𝑧) and 𝑃 (𝑍𝑛 ≤ 𝑧) ≈ Φ(𝑧), if 𝑛 is large enough,

whether the original 𝑋𝑖 ’s are normal or not.



6.5 CLT/Sampling Distributions 317

Figure 6.18: Illustration of the central limit theorem with a normal underlying distribution and with an exponential underlying distribution

[source unknown].

Examples

The examination scores in an university course have mean 56 and

standard deviation 11. In a class of 49 students, what is the proba-

bility that the average mark is below 50? What is the probability

that the average mark lies between 50 and 60?

Let the marks be 𝑋1 , ..., 𝑋49 and assume the performances are

independent. According to the central limit theorem,

𝑋 = (𝑋1 + 𝑋2 + · · · + 𝑋49)/49,

with E[𝑋] = 56 and Var[𝑋] = 11
2/49. We thus have

𝑃(𝑋 < 50) ≈ 𝑃
(
𝑍 <

50 − 56

11/7

)
= 𝑃(𝑍 < −3.82) = 0.0001

and

𝑃(50 < 𝑋 < 60) ≈ 𝑃
(
50 − 56

11/7

< 𝑍 <
60 − 56

11/7

)
= 𝑃(−3.82 < 𝑍 < 2.55) = Φ(2.55) −Φ(−3.82) = 0.9945.

Note that this says nothing about whether the scores are normally

distributed or not, only that the average scores follow an approxi-

mate normal distribution.
47

47: If the scores did arise from a normal

distribution, the ≈ would be replaced by

a =.

Systolic blood pressure readings for pre-menopausal, non-pregnant

women aged 35 − 40 have mean 122.6 standard deviation 11 mm

Hg. An independent sample of 25 women is drawn from this target

population and their blood pressure is recorded. What is the prob-

ability that the average blood pressure is greater than 125 mm Hg?

How would the answer change if the sample size increases to 40?



318 6 Probability and Applications

According to the CLT, 𝑋 ∼ N(122.6, 121/25), approximately. Thus

𝑃(𝑋 > 125) ≈ 𝑃
(
𝑍 >

125 − 122.6

11/
√

25

)
= 𝑃(𝑍 > 1.09) = 1 −Φ(1.09) = 0.14.

However, if the sample size is 40, then

𝑃(𝑋 > 125) ≈ 𝑃
(
𝑍 >

125 − 122.6

11/
√

40

)
= 0.08.

Increasing the sample size reduces the probability that the average

is far from the expectation of each original measurement.

Suppose that we select a random sample 𝑋1 , . . . , 𝑋100 from a pop-

ulation with mean 5 and variance 0.01. What is the probability that

the difference between the sample mean of the random sample and

the mean of the population exceeds 0.027?

According to the CLT, we know that, approximately, 𝑍 =
𝑋−𝜇
𝜎/

√
𝑛

has

standard normal distribution. The desired probability is thus

𝑃 = 𝑃(|𝑋 − 𝜇| ≥ 0.027)
= 𝑃(𝑋 − 𝜇 ≥ 0.027 or 𝜇 − 𝑋 ≥ 0.027)

= 𝑃

(
𝑋 − 5

0.1/
√

100

≥ 0.027

0.1/
√

100

)
+ 𝑃

(
𝑋 − 5

0.1/
√

100

≤ −0.027

0.1/
√

100

)
≈ 𝑃 (𝑍 ≥ 2.7) + 𝑃 (𝑍 ≤ −2.7)
= 2𝑃 (𝑍 ≥ 2.7) ≈ 2(0.0035) = 0.007.

In the next example, we illustrate how to use the CLT with R.

Example A large freight elevator can transport a maximum of 9800

lbs. Suppose a load containing 49 boxes must be transported. From

experience, the weight of boxes follows a distribution with mean 𝜇 = 205

lbs and standard deviation 𝜎 = 15 lbs. Estimate the probability that all 49

boxes can be safely loaded onto the freight elevator and transported.

We are given 𝑛 = 49, 𝜇 = 205, and 𝜎 = 15. Let us further assume that the

boxes all come from different sources, which is to say, the boxes’ weight

𝑥𝑖 , 𝑖 = 1, . . . , 49, are independent of one another.

To get a sense of the task’s feasibility, we simulate a few scenarios. Note

that the problem makes no mention of the type of distribution that the

weights follow.

To start, we assume that the weights are normally distributed.

set.seed(0) # to ensure replicability

x<-rnorm(49,mean=205,sd=15)

The histogram shows a distribution which is roughly normal.
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brks = seq(min(x),max(x),(max(x)-min(x))/10)

hist(x, breaks = brks)

The elevator can transport up to 9800 lbs; the 𝑛 = 49 boxes can be

transported if their total weight

𝑇 = 49𝑤 = 𝑥1 + · · · + 𝑥49 ,

where 𝑤 = 𝑥, is less than 9800 lbs. In mathematical terms, we are

interested in the value of the probability 𝑃(𝑇 < 9800).

For the sample x from above, we get:

(T<-sum(x))

[1] 10066.36

That specific group of 49 boxes would be too heavy to carry in one trip.

But perhaps we were simply unlucky – perhaps another group of boxes

would have been light enough. Let us try again, but with a different

group of boxes.

set.seed(999)

(T=sum(rnorm(49,mean=205,sd=15)))

[1] 9852.269

It’s closer, but still no cigar. However, two tries are not enough to establish

a trend and to estimate 𝑃(𝑇 < 9800).

Next, we write a little function to help us find an estimate of the prob-

ability. The idea is simple: if we were to try a large number of random

combinations of 49 boxes, the proportion of the attempts for which the

total weight 𝑇 falls below 9800 is (hopefully?) going to approximate

𝑃(𝑇 < 9800).



320 6 Probability and Applications

estimate_T.normal <- function(n, T.threshold, mean, sd, num.tries){

a=0

for(j in 1:num.tries){

if(sum(rnorm(n,mean=mean,sd=sd))<T.threshold){

a=a+1

}

}

estimate_T.normal <- a/num.tries

}

What kind of inputs are these meant to be? What does this code do? Note

that running this cell will compile the function estimate_T.normal(),

but that it still needs to be called with appropriate inputs to provide an

estimate for 𝑃(𝑇 < 9800).

We try the experiment (num.tries) 10, 100, 1000, 10000, 100000, and

1000000 times, with n=49, T.threshold=9800, mu=205, and sigma=15.

(c(estimate_T.normal(49,9800,205,15,10),

estimate_T.normal(49,9800,205,15,100),

estimate_T.normal(49,9800,205,15,1000),

estimate_T.normal(49,9800,205,15,10000),

estimate_T.normal(49,9800,205,15,100000),

estimate_T.normal(49,9800,205,15,1000000)))

[1] 0.00000 0.01000 0.00700 0.00990 0.00973 0.00975

We cannot say too much from such a simple set up, but it certainly seems

as though we should expect success about 1% of the time.

That is a low probability, which suggests that 49 may be too many boxes

for the elevator to work correctly, in general, but perhaps that is only

the case because we assumed normality. What happens if we used other

distributions with the same characteristics, such as𝑈(179.02, 230.98) or

Λ(5.32, 0.0054)?48
48: How would we verify that these dis-

tributions indeed have the right charac-

teristics? How would we determine the

appropriate parameters in the first place?

Let us write new functionsestimate_T.unif() andestimate_T.lnormf()

to repeat the previous work with those two distributions.

estimate_T.unif <- function(n, T.threshold, min, max, num.tries){

a=0

for(j in 1:num.tries){

if(sum(runif(n,min=min,max=max))<T.threshold){

a=a+1

}

}

estimate_T.unif <- a/num.tries

}

estimate_T.lnorm <- function(n, T.threshold, meanlog, sdlog, num.tries){

a=0

for(j in 1:num.tries){

if(sum(rlnorm(n,meanlog=meanlog,sdlog=sdlog))<T.threshold){
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a=a+1

}

}

estimate_T.lnorm <- a/num.tries

}

For the uniform distribution, we obtain:

(c(estimate_T.unif(49,9800,179.02,230.98,10),

estimate_T.unif(49,9800,179.02,230.98,100),

estimate_T.unif(49,9800,179.02,230.98,1000),

estimate_T.unif(49,9800,179.02,230.98,10000),

estimate_T.unif(49,9800,179.02,230.98,100000),

estimate_T.unif(49,9800,179.02,230.98,1000000)))

[1] 0.000000 0.010000 0.008000 0.007900 0.010230 0.009613

For the log-normal distribution, we obtain:

(c(estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),10),

estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),100),

estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),1000),

estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),10000),

estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),100000),

estimate_T.lnorm(49,9800,5.32,sqrt(0.0054),1000000)))

[1] 0.000000 0.000000 0.006000 0.009500 0.009060 0.009184

Under all three distributions, it appears as though 𝑃(𝑇 < 9800) converges

to a value near 1%, even though the three distributions are very different.

That might be surprising at first glance, but it is really a consequence of

the Central Limit Theorem.

We are estimating 𝑃(𝑇 < 9800) = 𝑃(𝑤 < 9800/49) = 𝑃(𝑤 < 200), where

𝑤 is the mean weight of the boxes.

According to the CLT, the distribution of 𝑤 is approximately normal

with mean 𝜇 = 205 and variance 𝜎2/𝑛 = 15
2/49, even if the weights

themselves were not normally distributed.

By subtracting the mean of 𝑤 and dividing by the standard deviation

we obtain a new random variable 𝑧 which is approximately the standard

unit normal, i.e.

𝑃(𝑤 < 200) ≈ 𝑃
(
𝑧 <

200 − 205

15/7

)
.

But

(200-205)/(15/7)

[1] -2.333333
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Thus, 𝑃(𝑤 < 200) ≈ 𝑃(𝑧 < −2.33) and we need to find the probability

that the standard normal p.d.f. is smaller than −2.33.

This can be calculated with the pnorm() function:

pnorm(-2.33, mean=0, sd=1)

[1] 0.009903076

Hence, 𝑃(𝑇 < 9800) ≈ 0.0099, which means that it is highly unlikely that

the 49 boxes can be transported in the elevator all at once.

Example What elevator threshold would be required to reach a proba-

bility of success of 10%? 50%? 75%?

The following routine approximates the probability in question without

resorting to simulating the weights (that is, independently of the under-

lying distribution of weights) for given n, threshold, mean, and sd. Can

you figure out what pnorm() is doing?

prob_T <- function(n,threshold,mean,sd){

prob_T=pnorm((threshold/n - mean)/(sd/sqrt(n)),0,1)

}

plot((prob_T(49,1:12000,205,15)))

We can find the desired thresholds by calling:

max(which(prob_T(49,1:12000,205,15)<0.1))

max(which(prob_T(49,1:12000,205,15)<0.5))

max(which(prob_T(49,1:12000,205,15)<0.75))

[1] 9910

[1] 10044

[1] 10115
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6.5.3 Sampling Distributions (Reprise)

We now revisit sampling distributions in a some specific contexts.

Difference Between Two Means

Statisticians are often interested in the difference between various popu-

lations; a result akin to the CLT provides guidance in that area.

Theorem: let {𝑋1 , . . . , 𝑋𝑛} be a random sample from a population with

mean 𝜇1 and variance 𝜎2

1
, and {𝑌1 , . . . , 𝑌𝑚} be another random sample,

independent of 𝑋, from a population with mean 𝜇2 and variance 𝜎2

2
.

If 𝑋 and 𝑌 are the respective sample means, then

𝑍 =
𝑋 − 𝑌 − (𝜇1 − 𝜇2)√

𝜎2

1

𝑛 + 𝜎2

2

𝑚

has standard normal distribution N(0, 1) as 𝑛, 𝑚 → ∞.
49

49: Like the CLT, this is a limiting result.

Example Two different machines are used to fill cereal boxes on an

assembly line. The critical measurement influenced by these machines is

the weight of the product in the boxes.

The variances of these weights is identical, 𝜎2 = 1. Each machine produces

a sample of 36 boxes, and the weights are recorded. What is the probability

that the difference between the respective averages is less than 0.2,

assuming that the true means are identical?

We have 𝜇1 = 𝜇2, 𝜎2

1
= 𝜎2

2
= 1, 𝑛 = 𝑚 = 36. The desired probability is

𝑃
(
|𝑋 − 𝑌 | < 0.2

)
= 𝑃

(
−0.2 < 𝑋 − 𝑌 < 0.2

)
= 𝑃

(
−0.2 − 0√

1/36 + 1/36

<
𝑋 − 𝑌 − (𝜇1 − 𝜇2)√

1/36 + 1/36

<
0.2 − 0√

1/36 + 1/36

)
= 𝑃(−0.8485 < 𝑍 < 0.8485)
≈ Φ(0.8485) −Φ(−0.8485) ≈ 0.6.

Sample Variance 𝑆2

When the underlying variance is unknown (which is usually the case in

practice), it must be approximated by the sample variance.

Theorem: let {𝑋1 , . . . , 𝑋𝑛} be a random sample taken from a normal

population with mean 𝜎2
, and

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2

be the sample variance. The statistic

𝜒2 =
(𝑛 − 1)𝑆2

𝜎2

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2
𝜎2
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follows a chi-squared distribution with 𝜈 = 𝑛 − 1 degrees of freedom
(d.f.), where 𝜒2(𝜈) = Γ(1/2, 𝜈).

Figure 6.19: Chi-squared distribution with

8 degrees of freedom [1].

Notation: for 0 < 𝛼 < 1 and 𝜈 ∈ ℕ∗
, 𝜒2

𝛼(𝜈) is the critical value for

which

𝑃(𝜒2 > 𝜒2

𝛼(𝜈)) = 𝛼 ,

where 𝜒2 ∼ 𝜒2(𝜈) follows a chi-squared distribution with 𝜈 degrees of

freedom.

The values of 𝜒2

𝛼(𝜈) can be found in various textbook tables, or by using

R or specialized online calculators.

For instance, when 𝜈 = 8 and 𝛼 = 0.95, we compute 𝜒2

0.95
(8) via

qchisq(0.95, df=8,lower.tail = FALSE)

[1] 2.732637

Thus 𝑃(𝜒2 > 2.732) = 0.95 , where 𝜒2 ∼ 𝜒2(8), i.e., 𝜒2
has a chi-squared

distribution with 𝜈 = 8 degrees of freedom.

In other words, 95% of the area under the curve of the probability density

function of 𝜒2(8) is found to the right of 2.732.

Sample Mean With Unknown Population Variance

Suppose that 𝑍 ∼ N(0, 1) and 𝑉 ∼ 𝜒2(𝜈). If 𝑍 and 𝑉 are independent,

then the distribution of the random variable

𝑇 =
𝑍√
𝑉/𝜈

is a Student 𝑡−distribution with 𝜈 degrees of freedom, which we denote

by 𝑇 ∼ 𝑡(𝜈).50
50: The probability density function of

𝑡(𝜈) is

𝑓 (𝑥) = Γ(𝜈/2 + 1/2)√
𝜋𝜈Γ(𝜈/2)(1 + 𝑥2/𝜈)𝜈/2+1/2

.

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇 and standard deviation 𝜎 . Let 𝑋 and 𝑆2
be the sample mean and

sample variance, respectively. Then the random variable

𝑇 =
𝑋 − 𝜇

𝑆/
√
𝑛

∼ 𝑡(𝑛 − 1),

follows a Student 𝑡−distribution with 𝜈 = 𝑛 − 1 degrees of freedom.
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Using the same notation as with the chi-squared distribution, let 𝑡𝛼(𝜈)
represent the critical 𝑡-value above which we find an area under the

p.d.f. of 𝑡(𝜈) equal to 𝛼 , i.e.

𝑃(𝑇 > 𝑡𝛼(𝜈)) = 𝛼 ,

where 𝑇 ∼ 𝑡(𝜈).

For all 𝜈, the Student 𝑡-distribution is a symmetric distribution around

zero, so we have 𝑡1−𝛼(𝜈) = −𝑡𝛼(𝜈). The critical values can be found in

tables, or by using the R function qt().

Figure 6.20: Student 𝑡−distribution with

𝑟 degrees of freedom [1].

If 𝑇 ∼ 𝑡(𝜈), then for any 0 < 𝛼 < 1, we have

𝑃
(
|𝑇 | < 𝑡𝛼/2

(𝜈)
)
= 𝑃

(
−𝑡𝛼/2

(𝜈) < 𝑇 < 𝑡𝛼/2
(𝜈)

)
= 𝑃

(
𝑇 < 𝑡𝛼/2

(𝜈)
)
− 𝑃

(
𝑇 < −𝑡𝛼/2

(𝜈)
)

= 1 − 𝑃
(
𝑇 > 𝑡𝛼/2

(𝜈)
)
− (1 − 𝑃

(
𝑇 > −𝑡𝛼/2

(𝜈)
)
)

= 1 − 𝑃
(
𝑇 > 𝑡𝛼/2

(𝜈)
)
− (1 − 𝑃

(
𝑇 > 𝑡

1−𝛼/2
(𝜈)

)
)

= 1 − 𝛼/2 − (1 − (1 − 𝛼/2)) = 1 − 𝛼.

Consequently,

𝑃

(
−𝑡𝛼/2

(𝑛 − 1) < �̄� − 𝜇

𝑆/
√
𝑛

< 𝑡𝛼/2
(𝑛 − 1)

)
= 1 − 𝛼 .

We can show that 𝑡(𝜈) → N(0, 1) as 𝜈 → ∞; intuitively, this makes sense

because the estimate 𝑆 gets better at estimating 𝜎 when 𝑛 increases.

Example In R, we can see that when 𝑇 ∼ 𝑡(8),

qt(0.025, df=8, lower.tail=FALSE)

[1] 2.306004

Thus, 𝑃 (𝑇 > 2.306) = 0.025, which implies

𝑃 (𝑇 < −2.306) = 0.025
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, so 𝑡0.025(8) = 2.306 and

𝑃 (|𝑇 | ≤ 2.306) = 𝑃 (−2.306 ≤ 𝑇 ≤ 2.306)
= 1 − 𝑃 (𝑇 < −2.306) − 𝑃 (𝑇 > 2.306)
= 1 − 2𝑃 (𝑇 < −2.306) = 0.95 .

The Student 𝑡−distribution will be useful when the time comes to compute

confidence intervals and to do hypothesis testing (see Chapter 7).

𝐹−Distributions

Let 𝑈 ∼ 𝜒2(𝜈1) and 𝑉 ∼ 𝜒2(𝜈2). If 𝑈 and 𝑉 are independent, then the

random variable

𝐹 =
𝑈/𝜈1

𝑉/𝜈2

follows an 𝐹-distribution with 𝜈1 and 𝜈2 degrees of freedom, which we

denote by 𝐹 ∼ 𝐹(𝜈1 , 𝜈2).

The probability density function of 𝐹(𝜈1 , 𝜈2) is

𝑓 (𝑥) = Γ(𝜈1/2 + 𝜈2/2)(𝜈1/𝜈2)𝜈1/2𝑥𝜈1/2−1

Γ(𝜈1/2)Γ(𝜈2/2)(1 + 𝑥𝜈1/𝜈2)𝜈1/2+𝜈2/2

, 𝑥 ≥ 0.

Theorem: if 𝑆2

1
and 𝑆2

2
are the sample variances of independent random

samples of size 𝑛 and 𝑚, respectively, taken from normal populations

with variances 𝜎2

1
and 𝜎2

2
, then

𝐹 =
𝑆2

1
/𝜎2

1

𝑆2

2
/𝜎2

2

∼ 𝐹(𝑛 − 1, 𝑚 − 1)

follows an 𝐹-distribution with 𝜈1 = 𝑛 − 1, 𝜈2 = 𝑚 − 1 d.f.

Notation: for 0 < 𝛼 < 1 and 𝜈1 , 𝜈2 ∈ ℕ∗
, 𝑓𝛼(𝜈1 , 𝜈2) is the critical value

for which 𝑃(𝐹 > 𝑓𝛼(𝜈1 , 𝜈2)) = 𝛼 where 𝐹 ∼ 𝐹(𝜈1 , 𝜈2). Critical values can

be found in tables, or by using the R function qf().

It can be shown that

𝑓1−𝛼(𝜈1 , 𝜈2) =
1

𝑓𝛼(𝜈2 , 𝜈1)
;

for instance, since

qf(0.95, df1=6, df2=10, lower.tail=FALSE)

[1] 0.2463077

Thus,

𝑓0.95(6, 10) = 1

𝑓0.05(10, 6) =
1

4.06

= 0.246 .

These distributions play a role in linear regression and ANOVA models

(see Chapters 8 and 11).
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6.6 Exercises

1. Two events each have probability 0.2 of occurring and are independent. What is the probability that

neither occur?

2. Two events each have probability 0.2 and are mutually exclusive. What is the probability that neither

occur?

3. A smoke-detector system has two parts,𝐴 and 𝐵. If smoke occurs then the item𝐴 detects it with probability

0.95, the item 𝐵 detects it with probability 0.98 whereas both of them detect it with probability 0.94. What

is the probability that the smoke is undetected?

4. Let 𝐴1 , 𝐴2 , 𝐴3 denote the events that the field goal is made by player 1, 2, 3, respectively. Assume

independence and 𝑃(𝐴1) = 0.5, 𝑃(𝐴2) = 0.7, 𝑃(𝐴3) = 0.6. Compute the probability that exactly 1 player is

successful.

5. In a group of 16 candidates, 7 are chemists and 9 are physicists. In how many ways can one choose a

group of 5 candidates with 2 chemists and 3 physicists?

6. A theorem of combinatorics states that the number of permutations of 𝑛 objects in which 𝑛1 are alike of

kind 1, 𝑛2 are alike of kind 2, ..., and 𝑛𝑟 are alike of kind 𝑟 (that is, 𝑛 = 𝑛1 + 𝑛2 + · · · + 𝑛𝑟) is

𝑛!

𝑛1! · 𝑛2! · · · · · 𝑛𝑟 !
.

Find the number of different words that can be formed by rearranging the letters in the following words.

6.. FRIDGE

6.. HHTTTT

6.. LLEWELLYN

6.. KITCHISSIPPI

7. A class consists of 490 engineering and 510 science students. The students are divided according to their

marks:

Passed Failed

Eng. 430 60

Sci. 410 100

If one person is selected randomly, what is the probability that they failed if they were an engineering

student?

8. A company which produces a particular drug has two factories, 𝐴 and 𝐵. 70% of the drugs are made in

factory 𝐴, 30% in factory 𝐵. If 95% of the drugs produced by factory 𝐴 meet standards while only 75% of

those produced by factory 𝐵 do so, what is the probability that a random dose meets standards?

9. A medical research team wished to evaluate a proposed screening test for Alzheimer’s disease. The test

was given to a random sample of 450 patients with Alzheimer’s disease; in 436 cases the test result was

positive. The test was also given to a random sample of 500 patients without the disease; only in 5 cases

was the result positive. In Canada 11.3% of the population aged 65+ have Alzheimer’s disease. Find the

probability that a person has the disease given that their test was positive.

10. Twelve items are independently sampled from a production line. If the probability that any given item is

defective is 0.1, what is the probability of at most two defectives in the sample?

11. A student can solve 6 problems from a list of 10. For an exam 8 questions are selected at random from the

list. What is the probability that the student will solve exactly 5 problems?



328 6 Probability and Applications

12. Consider the following system with six components. We say that it is functional if there exists a path of

functional components from left to right. The probability of each component functions is shown. Assume

that the components function or fail independently. What is the probability that the system operates?

13. Pieces of aluminum are classified according to the finishing of the surface and according to the finishing

of edge. The results from 85 samples are summarized as follows:

Edge

Surface excellent good

excellent 60 5

good 16 4

Let 𝐴 denote the event that a selected piece has an “excellent” surface, and let 𝐵 denote the event

that a selected piece has an “excellent” edge. If samples are elected randomly, determine the following

probabilities:

13.. 𝑃(𝐴) b) 𝑃(𝐵) c) 𝑃(𝐴𝑐) d) 𝑃(𝐴 ∩ 𝐵) e) 𝑃(𝐴 ∪ 𝐵) f) 𝑃(𝐴𝑐 ∪ 𝐵)
14. Three events are shown in the Venn diagram below.

Shade the region corresponding to the following events:

a) 𝐴𝑐 (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵𝑐)
b) (𝐴 ∩ 𝐵) ∪ 𝐶
c) (𝐵 ∪ 𝐶)𝑐
d) (𝐴 ∩ 𝐵)𝑐 ∪ 𝐶

15. If 𝑃(𝐴) = 0.1, 𝑃(𝐵) = 0.3, 𝑃(𝐶) = 0.3, and events 𝐴, 𝐵, 𝐶 are mutually exclusive, determine the following

probabilities:

a) 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶)
b) 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)
c) 𝑃(𝐴 ∩ 𝐵)
d) 𝑃((𝐴 ∪ 𝐵) ∩ 𝐶)
e) 𝑃(𝐴𝑐 ∩ 𝐵𝑐 ∩ 𝐶𝑐)
f) 𝑃[(𝐴 ∪ 𝐵 ∪ 𝐶)𝑐]
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f) The probability that an electrical switch, which is kept in dryness, fails during the guarantee period, is

1%. If the switch is humid, the failure probability is 8%. Assume that 90% of switches are kept in dry

conditions, whereas remaining 10% are kept in humid conditions.

a) What is the probability that the switch fails during the guarantee period?

b) If the switch failed during the guarantee period, what is the probability that it was kept in humid

conditions?

b) The following system operates only if there is a path of functional device from left to the right. The

probability that each device functions is as shown. What is the probability that the circuit operates?

Assume independence.

b) An inspector working for a manufacturing company has a 95% chance of correctly identifying defective

items and 2% chance of incorrectly classifying a good item as defective. The company has evidence that

1% of the items it produces are nonconforming (defective).

a) What is the probability that an item selected for inspection is classified as defective?

b) If a random item is classified as non defective, what is the probability that it is indeed good?

b) Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit).

a) How many different 5−card poker hands can be drawn from the deck?

b) How many different 13−card bridge hands can be drawn from the deck?

c) What is the probability of an all-spade 5−card poker hand?

d) What is the probability of a flush (5−cards from the same suit)?

e) What is the probability that a 5−card poker hand contains exactly 3 Kings and 2 Queens?

f) What is the probability that a 5−card poker hand contains exactly 2 Kings, 2 Queens, and 1 Jack?

f) Students on a boat send messages back to shore by arranging seven coloured flags on a vertical flagpole.

a) If they have 4 orange flags and 3 blue flags, how many messages can they send?

b) If they have 7 flags of different colours, how many messages can they send?

c) If they have 3 purple flags, 2 red flags, and 4 yellow flags, how many messages can they send?

c) The Stanley Cup Finals of hockey or the NBA Finals in basketball continue until either the representative

team form the Western Conference or from the Eastern Conference wins 4 games. How many different

orders are possible (𝑊𝑊𝐸𝐸𝐸𝐸 means that the Eastern team won in 6 games) if the series goes

a) 4 games?

b) 5 games?

c) 6 games?

d) 7 games?

d) Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit), from which

cards are drawn at random and without replacement, until 3 spades are drawn.

a) What is the probability that there are 2 spades in the first 5 draws?

b) What is the probability that a spade is drawn on the 6th draw given that there were 2 spades in the

first 5 draws?

c) What is the probability that 6 cards need to be drawn in order to obtain 3 spades?

d) All the cards are placed back into the deck, and the deck is shuffled. 4 cards are then drawn from.

What is the probability of having drawn a spade, a heart, a diamond, and a club, in that order?
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d) A student has 5 blue marbles and 4 white marbles in his left pocket, and 4 blue marbles and 5 white

marbles in his right pocket. If they transfer one marble at random from their left pocket to his right pocket,

what is the probability of them then drawing a blue marble from their right pocket?

d) An insurance company sells a number of different policies; among these, 60% are for cars, 40% are for

homes, and 20% are for both. Let 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 represent people with only a car policy, only a home

policy, both, or neither, respectively. Let 𝐵 represent the event that a policyholder renews at least one of

the car or home policies.

a) Compute 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3), and 𝑃(𝐴4).
b) Assume 𝑃(𝐵 | 𝐴1) = 0.6, 𝑃(𝐵 | 𝐴2) = 0.7, 𝑃(𝐵 | 𝐴3) = 0.8. Given that a client selected at random has

a car or a home policy, what is the probability that they will renew one of these policies?

b) An urn contains four balls numbered 1 through 4. The balls are selected one at a time, without replacement.

A match occurs if ball 𝑚 is the 𝑚th ball selected. Let the event 𝐴𝑖 denote a match on the 𝑖th draw,

𝑖 = 1, 2, 3, 4.

a) Compute 𝑃(𝐴𝑖), 𝑖 = 1, 2, 3, 4.

b) Compute 𝑃(𝐴𝑖 ∩ 𝐴 𝑗), 𝑖 , 𝑗 = 1, 2, 3, 4, 𝑖 ≠ 𝑗.

c) Compute 𝑃(𝐴𝑖 ∩ 𝐴 𝑗 ∩ 𝐴𝑘), 𝑖 , 𝑗 , 𝑘 = 1, 2, 3, 4, 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘.

d) What is the probability of at least 1 match?

d) The probability that a company’s workforce has at least one accident in a given month is (0.01)𝑘, where 𝑘

is the number of days in the month. Assume that the numbers of monthly accidents are independent. If

the company’s year starts on January 1, what is the probability that the first accident occurs in April?

d) A Pap smear is a screening procedure used to detect cervical cancer. Let 𝑇−
and 𝑇+

represent the events

that the test is negative and positive, respectively, and let 𝐶 represent the event that the person tested has

cancer. The false negative rate for this test when the patient has the cancer is 16%; the false positive test for

this test when the patient does not have cancer is 19%. In North America, the rate of incidence for this

cancer is roughly 8 out of 100,000 women. Based on these numbers, is a Pap smear an effective procedure?

What factors influence your conclusion?

d) Of three different fair dice, one each is given to Elowyn, Llewellyn, and Gwynneth. They each roll it. Let

𝐸 = {Elowyn rolls a 1 or a 2}, 𝐿𝐿 = {Llewellyn rolls a 3 or a 4}, and 𝐺 = {Gwynneth rolls a 5 or a 6}.
a) What are the probabilities of each of 𝐸, 𝐿𝐿, and 𝐺 occurring?

b) What are the probabilities of any two of 𝐸, 𝐿𝐿, and 𝐺 occurring simultaneously?

c) What is the probability of all three of the events occurring simultaneously?

d) What is the probability of at least one of 𝐸, 𝐿𝐿, or 𝐺 occurring?

d) Over the course of two baseball seasons, player 𝐴 obtained 126 hits in 500 at-bats in Season 1, and 90 hits

in 300 at-bats in Season 2; player 𝐵, on the other hand, obtained 75 hits in 300 at-bats in Season 1, and 145

hits in 500 at-bats in Season 2. A player’s batting average is the number of hits they obtain divided by the

number of at-bats.

a) Which player has the best batting average in Season 1? In Season 2?

b) Which player has the best batting average over the 2-year period?

c) Can you explain what is happening here?

c) A stranger comes to you and shows you what appears to be a normal coin, with two distinct sides: Heads

(𝐻) and Tails (𝑇). They flip the coin 4 times and record the following sequence of tosses: 𝐻𝐻𝐻𝐻.

a) What is the probability of obtaining this specific sequence of tosses? What assumptions do you make

along the way in order to compute the probability? What is the probability that the next toss will be

a 𝑇.

b) The stranger offers you a bet: they will toss the coin another time; if the toss is 𝑇, they give you

100$, but if it is 𝐻, you give them 10$. Would you accept the bet (if you are not morally opposed to

gambling)?

c) Now the stranger tosses the coin 60 times and records 60 × 𝐻 in a row: 𝐻 · · ·𝐻. They offer you the

same bet. Do you accept it?

d) What if they offered 1000$ instead? 1000000$?
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d) An experiment consists in selecting a bowl, and then drawing a ball from that bowl. Bowl 𝐵1 contains two

red balls and four white balls; bowl 𝐵2 contains one red ball and two white balls; and bowl 𝐵3 contains

five red balls and four white balls. The probabilities for selecting the bowls are not uniform: 𝑃(𝐵1) = 1/3,

𝑃(𝐵2) = 1/6, and 𝑃(𝐵3) = 1/2, respectively.

a) What is the probability of drawing a red ball 𝑃(𝑅)?
b) If the experiment is conducted and a red ball is drawn, what is the probability that the ball was

drawn from bowl 𝐵1? 𝐵2? 𝐵3?

b) Two companies 𝐴 and 𝐵 consider making an offer for road construction. Company 𝐴 submits a proposal.

The probability that 𝐵 submits a proposal is 1/3. If 𝐵 does not submit the proposal, the probability that

𝐴 gets the job is 3/5. If 𝐵 submits the proposal, the probability that 𝐴 gets the job is 1/3. What is the

probability that 𝐴 will get the job?

b) In a box of 50 fuses there are 8 defective ones. We choose 5 fuses randomly (without replacement). What is

the probability that all 5 fuses are not defective?

b) The sample space of a random experiment is {𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 } and each outcome is equally likely. A random

variable is defined as follows

outcome 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑋 0 0 1.5 1.5 2 3

Determine the probability mass function of 𝑋. Determine the following probabilities:

a) 𝑃(𝑋 = 1.5)
b) 𝑃(0.5 < 𝑋 < 2.7)
c) 𝑃(𝑋 > 3)
d) 𝑃(0 ≤ 𝑋 < 2)
e) 𝑃(𝑋 = 0 or 2)

e) Determine the mean and the variance of the random variable defined in the previous question.

e) 𝑋 has uniform distribution on a set of values {𝑋1 , . . . , 𝑋𝑘} if

𝑃(𝑋 = 𝑋𝑖) =
1

𝑘
, 𝑖 = 1, . . . , 𝑘.

The thickness measurements of a coating process are uniformly distributed with values 0.15, 0.16, 0.17,

0.18, 0.19. Determine the mean and variance of the thickness measurements. Is this result compatible with

a uniform distribution?

e) Samples of rejuvenated mitochondria are mutated in 1% of cases. Suppose 15 samples are studied and

that they can be considered to be independent (from a mutation standpoint). Determine the following

probabilities:

a) no samples are mutated;

b) at most one sample is mutated, and

c) more than half the samples are mutated.

c) Samples of 20 parts from a metal punching process are selected every hour. Typically, 1% of the parts

require re-work. Let 𝑋 denote the number of parts in the sample that require re-work. A process problem

is suspected if 𝑋 exceeds its mean by more than three standard deviations.

a) What is the probability that there is a process problem?

b) If the re-work percentage increases to 4%, what is the probability that 𝑋 exceeds 1?

c) If the re-work percentage increases to 4%, what is the probability that 𝑋 exceeds 1 in at least one of

the next five sampling hours?
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c) In a clinical study, volunteers are tested for a gene that has been found to increase the risk for a particular

disease. The probability that the person carries a gene is 0.1.

a) What is the probability that 4 or more people will have to be tested in order to detect 1 person with

the gene?

b) How many people are expected to be tested in order to detect 1 person with the gene?

c) How many people are expected to be tested in order to detect 2 people with the gene?

c) The number of failures of a testing instrument from contaminated particles on the product is a Poisson

random variable with a mean of 0.02 failure per hour.

a) What is the probability that the instrument does not fail in an 8−hour shift?

b) What is the probability of at least 1 failure in a 24−hour day?

b) Use R to generate a sample from a binomial distribution and from a Poisson distribution (select parameters

as you wish). Use R to compute the sample means and sample variances. Compare these values to

population means and population variances.

b) A container of 100 light bulbs contains 5 bad bulbs. We draw 10 bulbs without replacement. Find the

probability of drawing at least 1 defective bulb.

b) Let 𝑋 be a discrete random variable with range {0, 1, 2} and probability mass function (p.m.f.) given by

𝑓 (0) = 0.5, 𝑓 (1) = 0.3, and 𝑓 (2) = 0.2. What are the expected value and variance of 𝑋?

b) A factory employs several thousand workers, of whom 30% are not from an English-speaking background.

If 15 members of the union executive committee were chosen from the workers at random, evaluate the

probability that exactly 3 members of the committee are not from an English-speaking background.

b) Assuming the context of the previous questions, what is the probability that a majority of the committee

members do not come from an English-speaking background?

b) In a video game, a player is confronted with a series of opponents and has an 80% probability of defeating

each one. Success with any opponent (that is, defeating the opponent) is independent of previous

encounters. The player continues until defeated. What is the probability that the player encounters at least

three opponents?

b) Assuming the context of the previous question, how many encounters is the player expected to have?

b) From past experience it is known that 3% of accounts in a large accounting company are in error. The

probability that exactly 5 accounts are audited before an account in error is found, is:

b) A receptionist receives on average 2 phone calls per minute. Assume that the number of calls can be

modeled using a Poisson random variable. What is the probability that he does not receive a call within a

3−minute interval?

b) Roll a 4−sided die twice, and let 𝑋 equal the larger of the two outcomes if they are different and the

common value if they are the same. Find the p.m.f. and the c.d.f. of 𝑋.

b) Compute the mean and the variance of 𝑋 as defined in the previous question, as well as E[𝑋(5 − 𝑋)].
b) A basketball player is successful in 80% of her (independent) free throw attempts. Let 𝑋 be the minimum

number of attempts in order to succeed 10 times. Find the p.m.f. of 𝑋 and the probability that 𝑋 = 12.

b) Let 𝑋 be the minimum number of independent trials (each with probability of success 𝑝) that are needed

to observe 𝑟 successes. The p.m.f. of 𝑋 is

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) =
(
𝑥 − 1

𝑟 − 1

)
𝑝𝑟(1 − 𝑝)𝑥−1 , 𝑥 = 𝑟, 𝑟 + 1, . . .

The mean and variance of 𝑋 are

E[𝑋] = 𝑟

𝑝
and Var[𝑋] = 𝑟(1 − 𝑝)

𝑝2

.

Compute the mean minimum number of independent free throw attempts required to observe 10 successful

free throws if the probability of success at the free thrown line is 80%. What about the standard deviation

of 𝑋?
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b) If 𝑛 ≥ 20 and 𝑝 ≤ 0.05, it can be shown that the binomial distribution with 𝑛 trials and an independent

probability of success 𝑝 can be approximated by a Poisson distribution with parameter 𝜆 = 𝑛𝑝:

(𝑛𝑝)𝑥𝑒−𝑛𝑝
𝑥!

≈
(
𝑛

𝑥

)
𝑝𝑥(1 − 𝑝)𝑛−𝑥 .

A manufacturer of light bulbs knows that 2% of its bulbs are defective. What is the probability that a box

of 100 bulbs contains exactly at most 3 defective bulbs? Use the Poisson approximation to estimate the

probability.

b) Consider a discrete random variable 𝑋 which has a uniform distribution over the first positive 𝑚 integers,

i.e.

𝑓 (𝑥) = 𝑃(𝑋 = 𝑥) = 1

𝑚
, 𝑥 = 1, . . . , 𝑚,

and 𝑓 (𝑥) = 0 otherwise. Compute the mean and the variance of 𝑋 . For what values of𝑚 is E[𝑋] > Var[𝑋]?
b) Assume that arrivals of small aircrafts at an airport can be modeled by a Poisson random variable with an

average of 1 aircraft per hour.

a) What is the probability that more than 3 aircrafts arrive within an hour?

b) Consider 15 consecutive and disjoint 1−hour intervals. What is the probability that in none of these

intervals we have more than 3 aircraft arrivals?

c) What is the probability that exactly 3 aircrafts arrive within 2 hours?

c) In a group of ten students, each student has a probability of 0.7 of passing the exam. What is the probability

that exactly 7 of them will pass an exam?

c) A company’s warranty states that the probability that a new swimming pool requires some repairs within

the 1st year is 20%. What is the probability, that the sixth sold pool is the first one which requires some

repairs within the 1st year?

c) Consider the following R output:

> pbinom(16,100,0.25)

[1] 0.02111062

> pbinom(30,100,0.25)

[1] 0.8962128

> pbinom(32,100,0.25)

[1] 0.9554037

> pbinom(15,100,0.25)

[1] 0.01108327

> pbinom(17,100,0.25)

[1] 0.03762626

> pbinom(31,100,0.25)

[1] 0.9306511

Let 𝑋 ∼ B(𝑛, 𝑝) with 𝑛 = 100 and 𝑝 = 0.25. Using the R output above, calculate 𝑃(16 ≤ 𝑋 ≤ 31).
c) Consider a random variable 𝑋 with probability density function given by

𝑓 (𝑥) =


0 if 𝑥 ≤ −1

0.75(1 − 𝑥2) if −1 ≤ 𝑥 < 1

0 if 𝑥 ≥ 1

What is the expected value and the standard deviation of 𝑋?
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c) A random variable 𝑋 has a cumulative distribution function (c.d.f.)

𝐹(𝑥) =


0 if 𝑥 ≤ 0

𝑥/2 if 0 < 𝑥 < 2

1 if 𝑥 ≥ 2

What is the mean value of 𝑋?

c) Let 𝑋 be a random variable with p.d.f. 𝑓 (𝑥) = 3

2
𝑥2

for −1 ≤ 𝑥 ≤ 1, and 𝑓 (𝑥) = 0 otherwise. Find

𝑃(𝑋2 ≤ 0.25).
c) In the inspection of tin plate produced by a continuous electrolytic process, 0.2 imperfections are spotted

per minute, on average. Find the probability of spotting at least 2 imperfections in 5 minutes. Assume that

we can model the occurrences of imperfections as a Poisson process.

c) If 𝑋 ∼ N(0, 4), find 𝑃(|𝑋 | ≥ 2.2).
c) If 𝑋 ∼ N(10, 1), what value of 𝑘 yields 𝑃(𝑋 ≤ 𝑘) = 0.701944?

c) The time it takes a supercomputer to perform a task is normally distributed with mean 10 milliseconds

and standard deviation 4 milliseconds. What is the probability that it takes more than 18.2 milliseconds to

perform the task? (use the normal table or R).

c) Let 𝑋 be a random variable. What is the value of 𝑏 (where 𝑏 is not a function of 𝑋) which minimizes

E[(𝑋 − 𝑏)2]?
c) The time to reaction to a visual signal follows a normal distribution with mean 0.5 seconds and standard

deviation 0.035 seconds.

a) What is the probability that time to react exceeds 1 second?

b) What is the probability that time to react is between 0.4 and 0.5 seconds?

c) What is the time to reaction that is exceeded with probability of 0.9?

c) Refer to the situation described in the aircraft question above.

a) What is the length of the interval such that the probability of having no arrival within this interval is

0.1?

b) What is the probability that one has to wait at least 3 hours for the arrival of 3 aircrafts?

c) What is the mean and variance of the waiting time for 3 aircrafts?

c) Assume that 𝑋 is normally distributed with mean 10 and standard deviation 3. In each case, find the value

𝑥 such that:

a) 𝑃(𝑋 > 𝑥) = 0.5

b) 𝑃(𝑋 > 𝑥) = 0.95

c) 𝑃(𝑥 < 𝑋 < 10) = 0.2

d) 𝑃(−𝑥 < 𝑋 − 10 < 𝑥) = 0.95

e) 𝑃(−𝑥 < 𝑋 − 10 < 𝑥) = 0.99

e) Let 𝑋 ∼ Exp(𝜆) with mean 10. Find 𝑃(𝑋 > 30 | 𝑋 > 10).
e) Consider a random variable 𝑋 with the following probability density function:

𝑓 (𝑥) =


0 if 𝑥 ≤ −1

3

4
(1 − 𝑥2) if −1 < 𝑥 < 1

0 if 𝑥 ≥ 1

What is the value of 𝑃(𝑋 ≤ 0.5)?
e) A receptionist receives on average 2 phone calls per minute. If the number of calls follows a Poisson

process, what is the probability that the waiting time for call will be greater than 1 minute?

e) A company manufactures hockey pucks. It is known that their weight is normally distributed with mean 1

and standard deviation 0.05. The pucks used by the NHL must weigh between 0.9 and 1.1. What is the

probability that a randomly chosen puck can be used by NHL?



6.6 Exercises 335

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) for the dice example above. Are 𝑋 and 𝑌 independent?

e) Find Var[𝑋1], Var[𝑋2], and Cov(𝑋1 , 𝑋2) for the chip example above. Are 𝑋1 and 𝑋2 independent?

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) if 𝑋 and 𝑌 have joint p.m.f.

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦
21

, 𝑥 = 1, 2, 3, 𝑦 = 1, 2.

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) if 𝑋 and 𝑌 have joint p.m.f.

𝑓 (𝑥, 𝑦) =
𝑥𝑦2

30

, 𝑥 = 1, 2, 3, 𝑦 = 1, 2.

Are 𝑋 and 𝑌 independent?

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) if 𝑋 and 𝑌 have joint p.m.f.

𝑓 (𝑥, 𝑦) = 𝑥𝑦2

13

, (𝑥, 𝑦) = (1, 1), (1, 2), (2, 2)

Are 𝑋 and 𝑌 independent?

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) if 𝑋 and 𝑌 have joint p.d.f.

𝑓 (𝑥, 𝑦) = 3

2

𝑥2(1 − |𝑦 |), −1 < 𝑥 < 1, −1 < 𝑦 < 1.

Are 𝑋 and 𝑌 independent?

e) Find Var[𝑋], Var[𝑌], and Cov(𝑋,𝑌) if 𝑋 and 𝑌 follow

𝑓 (𝑥, 𝑦) = 1

2𝜋
𝑒−

1

2
(𝑥2+𝑦2) , −∞ < 𝑥 < ∞, −∞ < 𝑦 < ∞.

e) Suppose that samples of size 𝑛 = 25 are selected at random from a normal population with mean 100 and

standard deviation 10. What is the probability that sample mean falls in the interval

(𝜇
𝑋
− 1.8𝜎

𝑋
, 𝜇

𝑋
+ 1.0𝜎

𝑋
)?

e) The amount of time that a customer spends waiting at an airport check-in counter is a random variable

with mean 𝜇 = 8.2 minutes and standard deviation 𝜎 = 1.5 minutes. Suppose that a random sample of

𝑛 = 49 customers is taken. Compute the approximate probability that the average waiting time for these

customers is:

a) Less than 10 min.

b) Between 5 and 10 min.

c) Less than 6 min.

c) A random sample of size 𝑛1 = 16 is selected from a normal population with a mean of 75 and standard

deviation of 8. A second random sample of size 𝑛2 = 9 is taken independently from another normal

population with mean 70 and standard deviation of 12. Let 𝑋1 and 𝑋2 be the two sample means. Find

a) The probability that 𝑋1 − 𝑋2 exceeds 4.

b) The probability that 3.5 < 𝑋1 − 𝑋2 < 5.5.

b) Using R, illustrate the central limit theorem by generating 𝑀 = 300 samples of size 𝑛 = 30 from:

a) a normal random variable with mean 10 and variance 0.75;

b) a binomial random variable with 3 trials and probability of success 0.3

Repeat the same procedure for samples of size 𝑛 = 200. What do you observe?

b) Suppose that the weight in pounds of a North American adult can be represented by a normal random

variable with mean 150 lbs and variance 900 lbs
2
. An elevator containing a sign “Maximum 12 people’ ’

can safely carry 2000 lbs. What is the probability that 12 North American adults will not overload the

elevator?
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b) Let 𝑋1 , · · · , 𝑋50 be an independent random sample from a Poisson distribution with mean 1. Set

𝑌 = 𝑋1 + · · · + 𝑋50. Find an approximation of the probability 𝑃(48 ≤ 𝑌 ≤ 52).
b) A new type of electronic flash for cameras will last an average of 5000 hours with a standard deviation of

500 hours. A quality control engineer intends to select a random sample of 100 of these flashes and use

them until they fail. What is the probability that the mean life time of the sample of 100 flashes will be less

than 4928 hours?

b) Assume that random variables {𝑋1 , . . . , 𝑋8} follow a normal distribution with mean 2 and variance 24.

Independently, assume that random variables {𝑌1 , . . . , 𝑋16} follow a normal distribution with mean 1

and variance 16. Let 𝑋 and 𝑌 be the corresponding sample means. What is 𝑃(𝑋 + 𝑌 > 4)?
b) Suppose that 𝑋1 ∼ N(3, 4) and 𝑋2 ∼ N(3, 45). Given that 𝑋1 and 𝑋2 are independent random variables,

what is a good approximation of 𝑃(𝑋1 + 𝑋2 > 9.5)?
b) Consider a sample {𝑋1 , . . . , 𝑋10} from a normal population 𝑋𝑖 ∼ N(4, 9). Denote by 𝑋 and 𝑆2

the sample

mean and the sample variance, respectively. Find 𝑐 such that

𝑃

(
𝑋 − 4

𝑆/
√

10

≤ 𝑐

)
= 0.99.
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by Patrick Boily, with contributions from Shintaro Hagiwara

Loosely speaking, a statistic is any function of a sample from the distri-

bution of a random variable; statistics aim to extract information from an

observed sample to summarize the essential features of a dataset.

In this chapter, we introduce basic statistics, and we show how probability

theory can be used to build confidence intervals and conduct hypothesis
tests, two of the fundamental tasks of statistical analysis. We also discuss

various variance decompositions and multivariate statistics. This review

of statistical methods is (by necessity) quite brief; further details can be

found in [3, 5, 6, 7, 8, 9, 10, 11, 12].
1

1: A fair number of the examples and exer-

cises we provide in the chapter also come

from those references.

7.1 Introduction

In general, statistics can be divided into two categories based on their

purposes: descriptive statistics and inferential statistics.

Descriptive statistics can be extended to summarize multivariate be-

haviours, via sample correlations, contingency tables, scatter plots, etc.

They not only provide an easily understandable overview of the dataset;

they also give analysts a chance to study the collected sample and

investigate two important questions:

is the sample compatible with their understanding of the situation?

is the sample representative of the underlying population?

Inferential statistics, on the other hand, facilitate the process of inference

(induction) to the general population from which the sample is drawn.

7.2 Descriptive Statistics

As its name implies, descriptive statistics aim to describe the data;

examples include:

sample size (overall and/or subgroups);

demographic breakdowns of participants;

measures of central tendency (e.g., mean, median, mode, etc.);

measures of variability (e.g., sample variance, minimum, maxi-

mum, interquartile range, etc.);

higher distribution moments (skew, kurtosis, etc.);

non-parametric measures (various quantiles);

derived measures (correlation coefficients), etc.
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They can be presented as a single number, in a summary table, or even

in graphical representations (e.g., histogram, pie chart, etc.).

7.2.1 Data Descriptions

Studies and experiments give rise to statistical units. These units are

typically described with variables (and measurements), which are either

qualitative (categorical) or quantitative (numerical).

Categorical variables take values (levels) from a finite set of pre-determined

categories (or classes); numerical variables from a (potentially infinite)

set of quantities.

Examples

1. Age is a numerical variable, measured in years, although is is often

reported to the nearest year integer, or in an age range of years,

in which case it is an ordinal variable (mixture of qualitative or

quantitative).

2. Typical numerical variables include distance in 𝑚, volume in 𝑚3
,

etc.

3. Disease diagnosis is a categorical variable with (at least) 2 categories

(positive/negative).

4. Compliance with a standard is a categorical variable: there could

be 2 levels (compliant/non-compliant) or more (compliance, minor

non-compliance issues, major non-compliance issues).

5. Count variables are numerical variables.

In a first pass, a variable can be described along (at least) 2 dimensions:

its centrality and its spread:
2

2: The skew and the kurtosis are also

sometimes used.

centrality measures include the median, the mean, and, less fre-

quently, the mode;

spread (or dispersion) measures include the standard deviation
(sd), the quartiles, the inter-quartile range (IQR), and, less fre-

quently, the range.

The median, range, and quartiles are all easily calculated from an ordered
list of the data.

Sample Median

The median med(𝑥1 , . . . , 𝑥𝑛) of a sample of size 𝑛 is a numerical value

which splits the ordered data into 2 equal subsets: half the observations

fall below the median, and half above it:

if 𝑛 is odd, then the position of the median (or its rank) is (𝑛 + 1)/2

– the median observation is the
𝑛+1

2

th

ordered observation;

if 𝑛 is even, then the median is the average of the
𝑛
2

th

and the

( 𝑛
2
+ 1)th ordered observations.

The procedure is simple: order the data, and follow the even/odd rules

to the letter.
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Examples

1. med(4, 6, 1, 3, 7) = med(1, 3, 4, 6, 7) = 𝑥(5+1)/2
= 𝑥3 = 4. There are

2 observations below 4 {1, 3}, and 2 observations above 4 {6, 7}.
2. med(1, 3, 4, 6, 7, 23) =

𝑥
6/2

+𝑥
6/2+1

2
=

𝑥3+𝑥4

2
= 4+6

2
= 5. There are 3

observations below 5 {1, 3, 4}, and 3 observations above 4 {6, 7, 23}.
3. med(1, 3, 3, 6, 7) = 𝑥(5+1)/2

= 𝑥3 = 3. There seems to be only 1

observation below 3 {1}, but 2 observations above 3 {6, 7}.

Note that there is ambiguity in the definition of the median: above and

below should be interpreted as after and before, respectively, inclusive

of the median value. In the last example above, for instance, there are

2 observations (𝑥1 = 1, 𝑥2 = 3) before the median observation (𝑥3 = 3),
and 2 after the median (𝑥4 = 6, 𝑥5 = 7).

Sample Mean

The mean of a sample is simply the arithmetic average of its observations.

For observations 𝑥1 , . . . , 𝑥𝑛 , the sample mean is

AM(𝑥1 , . . . , 𝑥𝑛) = 𝑥 =
𝑥1 + · · · + 𝑥𝑛

𝑛
=

1

𝑛

(
𝑛∑
𝑖=1

𝑥𝑖

)
Other means exist, such as the harmonic mean and the geometric mean:

HM(𝑥1 , . . . , 𝑥𝑛) =
𝑛

1

𝑥1

+ · · · + 1

𝑥𝑛

GM(𝑥1 , . . . , 𝑥𝑛) = 𝑛
√
𝑥1 · · · 𝑥𝑛 .

All of these measures attempt to find an “average” of the observations.

Examples

1. AM(4, 6, 1, 3, 7) = 4+6+1+3+7

5
= 21

5
= 4.2 ≈ 4 = med(4, 6, 1, 3, 7).

2. AM(1, 3, 4, 6, 7, 23) = 1+3+4+6+7+23

6
= 44

6
≈ 7.3, which is not nearly

as close to med(1, 3, 4, 6, 7, 23) = 5.

3. HM(4, 6, 1, 3, 7) = 5

1

4
+ 1

6
+ 1

1
+ 1

3
+ 1

7

= 5

53/28
= 140

53
≈ 2.64.

4. GM(4, 6, 1, 3, 7) = 5

√
4 · 6 · 1 · 3 · 7 ≈ 5

√
(504) ≈ 3.47.

It can be shown that if 𝑥 = (𝑥1 , . . . , 𝑥𝑛) and 𝑥𝑖 > 0 for all 𝑖, then

min(𝑥) ≤ HM(𝑥) ≤ GM(𝑥) ≤ AM(𝑥) ≤ max(𝑥).

There is no need to decide on a single centrality measure when reporting

on the data; in practice, we may use as many of them as we want to.

But there are situations where the mean (or the median) could prove to

be a better choice. On the one hand, the use of the mean is theoretically
supported by the Central Limit Theorem (CLT; see Section 6.5.2.

When the data distribution is roughly symmetric, then the median and

the mean will be near one another. If the data distribution is skewed then

the mean is pulled toward the long tail and as a result gives a distorted

view of the centre (see Figure 7.1).
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Consequently, medians are generally used for house prices, incomes, etc.,

as the median is robust against outliers and incorrect readings (whereas

the mean is not).

Figure 7.1: Mean, median, and mode in var-

ious skewness scenarios. [modified from

unknown source]

Standard Deviation

While the mean, the median, and the mode provide an idea as to where

some of the distribution’s “mass” is located, the standard deviation
provides some notion of its spread. The higher the standard deviation,

the further away from the mean the variable values are likely to fall (see

Figure 7.2). We will have more to say on this topic.

Figure 7.2: Normal distributions, with

various means and standard deviations.

[Wikipedia]

Quantiles

Another way to provide information about the spread of the data is via
centiles, deciles, and/or quartiles.

The lower quartile 𝑄1(𝑥1 , . . . , 𝑥𝑛) of a sample of size 𝑛, or 𝑄1, is a

numerical value which splits the ordered data into 2 unequal subsets:

25% of the observations fall below 𝑄1 and 75% of the observations fall

above 𝑄1.
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Similarly, the upper quartile 𝑄3 splits the ordered data into 75% of the

observations below 𝑄3, and 25% of the observations above 𝑄3.

The median can be interpreted as the middle quartile 𝑄2, of the

sample, the minimum as 𝑄0, and the maximum as 𝑄4: the vector

(𝑄0 , 𝑄1 , 𝑄2 , 𝑄3 , 𝑄4) is the 5-pt summary of the data.

Centiles 𝑝𝑖 , 𝑖 = 0, . . . , 100 and deciles 𝑑 𝑗 , 𝑗 = 0, . . . , 10 run through

different splitting percentages

𝑝25 = 𝑄1 , 𝑝75 = 𝑄3 , 𝑑5 = 𝑄2 , etc.

They are found as with the media: sort the sample observations {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}
in an increasing order as

𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑛 .

The smallest 𝑦1 has rank 1 and the largest 𝑦𝑛 has rank 𝑛.

Any value that falls between the observations of ranks:

⌊ 𝑛
4
⌋ and ⌊ 𝑛

4
⌋ + 1 is a lower quartile 𝑄1;

⌊ 3𝑛
4
⌋ and ⌊ 3𝑛

4
⌋ + 1 is an upper quartile 𝑄3;

⌊ 𝑖𝑛
100

⌋ and ⌊ 𝑖𝑛
100

⌋ + 1 is a centile 𝑝𝑖 , for 𝑖 = 1, . . . , 99;

⌊ 𝑗𝑛
10
⌋ and ⌊ 𝑗𝑛

10
⌋ + 1 is a decile 𝑑 𝑗 , for 𝑗 = 1, . . . , 9.

In practice, we compute the 𝑚−quantile of order 𝑘 for the data, where

𝑘 = 1, . . . , 𝑚 − 1 by averaging the observations of rank⌊
𝑘𝑛

𝑚

⌋
and

⌊
𝑘𝑛

𝑚

⌋
+ 1;

other protocols exist, such as the use of weighted averages (where the

weights are determined by rank 𝑘 of the 𝑚−quantile of interest).

Examples

1. 𝑄1(1, 3, 4, 6, 7) = 1

2

(
𝑦⌊5/4⌋ + 𝑦⌊5/4⌋+1

)
= 1

2
(𝑦1 + 𝑦2) = 1

2
(1 + 3) = 2.

2. 𝑑7(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊7(6)/10⌋ + 𝑦⌊7(6)/10⌋+1

)
= 1

2
(𝑦4 + 𝑦5) = 1

2
(6 + 7) = 13/2.

3. 𝑄1(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊6/4⌋ + 𝑦⌊6/4⌋+1

)
= 1

2
(𝑦1 + 𝑦2) = 1

2
(1 + 3) = 2.

4. 𝑄3(1, 3, 4, 6, 7, 23) = 1

2

(
𝑦⌊3(6)/4⌋ + 𝑦⌊3(6)/4⌋+1

)
= 1

2
(𝑦4 + 𝑦5) = 1

2
(6 + 7) = 6.5.

5. Consider the following midterm grades:

grades<-c(

80,73,83,60,49,96,87,87,60,53,66,83,32,80,66,90,72,55,76,46,48,69,45,48,77,52,59,97,

76,89,73,73,48,59,55,76,87,55,80,90,83,66,80,97,80,55,94,73,49,32,76,57,42,94,80,90,

90,62,85,87,97,50,73,77,66,35,66,76,90,73,80,70,73,94,59,52,81,90,55,73,76,90,46,66,

76,69,76,80,42,66,83,80,46,55,80,76,94,69,57,55,66,46,87,83,49,82,93,47,59,68,65,66,

69,76,38,99,61,46,73,90,66,100,83,48,97,69,62,80,66,55,28,83,59,48,61,87,72,46,94,48,

59,69,97,83,80,66,76,25,55,69,76,38,21,87,52,90,62,73,73,89,25,94,27,66,66,76,90,83,

52,52,83,66,48,62,80,35,59,72,97,69,62,90,48,83,55,58,66,100,82,78,62,73,55,84,83,66,

49,76,73,54,55,87,50,73,54,52,62,36,87,80,80

)
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The quartiles and mean are:

summary(grades)

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.00 55.00 70.00 68.74 82.50 100.00

Dispersion Measures

Some of the dispersion measures are fairly simple to compute: the sample
range is

range(𝑥1 , . . . , 𝑥𝑛) = max{𝑥𝑖} − min{𝑥𝑖};

the inter-quartile range is IQR = 𝑄3 −𝑄1.

The sample standard deviation 𝑠 and sample variance 𝑠2
are estimates

of the underlying distribution’s 𝜎 and 𝜎2
. For observations 𝑥1 , . . . , 𝑥𝑛 ,

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥2

𝑖 −
1

𝑛

(
𝑛∑
𝑖=1

𝑥𝑖

)
2

);

it differs from the (population) standard deviation and the (population)

variance in the denominator: 𝑛 − 1 is used instead of 𝑛.
3

3: In statistical parlance, we say that 1

degree of freedom is lost when we use the

sample to estimate the sample mean.

Examples

1. The sample variance of {1, 3, 4, 6, 7} is

1

5 − 1

©«
5∑
𝑖=1

𝑥2

𝑖 −
1

5

(
5∑
𝑖=1

𝑥𝑖

)
2ª®¬ =

1

4

(
111 − 1

5

(21)2
)
= 5.7.

2. The interquartile range of {1, 3, 4, 6, 7, 23} is

IQR(1, 3, 4, 6, 7, 23) = 𝑄3(1, 3, 4, 6, 7, 23) −𝑄1(1, 3, 4, 6, 7, 23)
= 6.5 − 2 = 4.5.

3. We can provide more data descriptions of the grades dataset (see

above) using psych’s describe() function.

psych::describe(grades)

vars n mean sd median trimmed

X1 1 211 68.74 17.37 70 69.43

mad min max range skew kurtosis se

19.27 21 100 79 -0.37 -0.46 1.2
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7.2.2 Outliers

An outlier is an observation that lies outside the overall pattern in a

distribution.
4

Let 𝑥 be an observation in the sample;
5

it is a 4: Outlier analysis (and anomaly detec-

tion) is its own discipline – an overview is

provided in Chapter 26.

5: In theory, this definition only applies to

normally distributed data, but it is often

used as a first pass for outlier analysis even

when the data is not normally distributed.

suspected outlier if

𝑥 < 𝑄1 − 1.5 IQR or 𝑥 > 𝑄3 + 1.5 IQR,

definite outlier if

𝑥 < 𝑄1 − 3 IQR or 𝑥 > 𝑄3 + 3 IQR.

Example In the set {1, 3, 4, 6, 7, 23}, 𝑄1 = 2, 𝑄3 = 6.5, and IQR = 4.5.

Thus

𝑄1 − 1.5IQR = 2 − 1.5(4.5) = −4.75

𝑄3 + 1.5IQR = 6.5 + 1.5(4.5) = 13.25

𝑄1 − 3IQR = 2 − 3(4.5) = −11.5

𝑄3 + 3IQR = 6.5 + 3(4.5) = 20.0

Since 23 > 𝑄3 + 3IQR (and 23 > 𝑄3 + 1.5IQR), 23 is both a definite (and

a suspected) outlier of {1, 3, 4, 6, 7, 23}.

7.2.3 Visual Summaries

The boxplot (also known as the box-and-whisker plot) is a quick and

easy way to present a graphical summary of a univariate distribution:

1. draw a box along the observation axis, with endpoints at the lower

and upper quartiles 𝑄1 (knees) and 𝑄3 (shoulders), and with a

“belt” at the median 𝑄2;

2. draw a line extending from 𝑄1 to the smallest value closer than

1.5IQR to the left of 𝑄1;

3. draw a line extending from 𝑄3 to the largest value closer than

1.5IQR to the right of 𝑄3;

4. any suspected outlier is plotted separately (as in Figure 7.3):

Figure 7.3: Boxplot with one (suspected)

outlier.

Skewness

For symmetric distributions, the median and mean are equal, and the

quartiles 𝑄1 and 𝑄3 are equidistant from 𝑄2:

if 𝑄3 −𝑄2 > 𝑄2 −𝑄1 then the data distribution is skewed to the
right (positively skewed);

if 𝑄3 −𝑄2 < 𝑄2 −𝑄1 then the data distribution is skewed to left
(negatively skewed).
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Graphically, if the distance between the shoulders and the belt is larger

than the distance between the belt and the knees, then the data is skewed

to the right; if it’s the opposite, the data is skewed to the left.

In the boxplots below, the data is skewed to the right.

Figure 7.4: Boxplot of positively skewed

datasets.

Histograms

Visual information about the distribution of the sample can also be

provided via histograms.

A histogram for the sample {𝑥1 , . . . , 𝑥𝑛} is built according to the following

specifications:

the range of the histogram is 𝑟 = max{𝑥𝑖} − min{𝑥𝑖};
the number of bins should approach 𝑘 =

√
𝑛, where 𝑛 is the

sample size;

the bin width should approach 𝑟/𝑘, and

the frequency of observations in each bin should be represented

by the bin height.

Shapes of Datasets

Boxplots and histograms provide an easy visual impression of the shape
of the data set, which can eventually suggest a mathematical model for

the situation of interest: another way to define skewness is to say that

data is skewed to the right if the corresponding boxplot or histogram is

stretched to the right, and vice-versa.

Examples

1. Consider the daily number of car accidents in Sydney, Australia,

over a 40-day period:

6 3 2 24 12 3 7 14 21 9 14 22 15 2 17 10 7 7 31 7

18 6 8 2 3 2 17 7 7 21 13 23 1 11 3 9 4 9 9 25

The sorted values are:

1 2 2 2 2 3 3 3 3 4 6 6 7 7 7 7 7 7 8 9

9 9 9 10 11 12 13 14 14 15 17 17 18 21 21 22 23 24 25 31
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We can then easily see that

min = 𝑦1 = 1, 𝑄1 =
1

2

(𝑦10 + 𝑦11) = 5, med =
1

2

(𝑦20 + 𝑦21) = 9,

𝑄3 =
1

2

(𝑦30 + 𝑦31) = 16, max = 𝑦40 = 31.

A corresponding histogram and boxplot are shown in Figure 7.5.

Figure 7.5: Histogram and boxplot of the

Sydney accident dataset.

2. We can also visualize the grades dataset:

hist(grades, breaks = seq(20,100,10))

boxplot(grades)

Here is a fancier version of the histogram, constructed with the

ggplot2 package.
6

6: See Section [1] for details on the use of

this R package.

# function to find the mode

fun.mode<-function(x){

as.numeric(names(sort(-table(x)))[1])}

library(ggplot2)

ggplot(data=data.frame(grades), aes(grades)) +

geom_histogram(aes(y =..density..), # approximated pdf

breaks=seq(20, 100, by = 10), # 8 bins from 20 to 100

col="black", # colour of outline
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fill="blue", # fill colour of bars

alpha=.2) + # transparency

geom_density(col=2) + # colour of pdf curve

geom_rug(aes(grades)) + # adding a rug on x-axis

geom_vline(aes(xintercept = mean(grades)),

col=’red’,size=2) + # vertical line: mean

geom_vline(aes(xintercept = median(grades)),

col=’darkblue’,size=2) + # vertical line: median

geom_vline(aes(xintercept = fun.mode(grades)),

col=’black’,size=2) # vertical line: mode

What is the shape of this dataset? Is the class in trouble?

7.2.4 Coefficient of Correlation

For bivariate (or multivariate) datasets, we can still study each variable

separately, as in the previous sections, but we might also be interested in

determining how the variables relate to one another.

For instance, consider the following data, consisting of 𝑛 = 20 paired

measurements (𝑥𝑖 , 𝑦𝑖) of hydrocarbon levels 𝑥 and pure oxygen levels 𝑦

in fuels:

x = c(

0.99,1.02,1.15,1.29,1.46,1.36,0.87,1.23,

1.55,1.40,1.19,1.15,0.98,1.01,1.11,1.20,

1.26,1.32,1.43,0.95

)

y = c(

90.01,89.05,91.43,93.74,96.73,94.45,87.59,91.77,

99.42,93.65,93.54,92.52,90.56,89.54,89.85,90.39,

93.25,93.41,94.98,87.33

)

cbind(x,y)
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x y x y

[1,] 0.99 90.01 [11,] 1.19 93.54

[2,] 1.02 89.05 [12,] 1.15 92.52

[3,] 1.15 91.43 [13,] 0.98 90.56

[4,] 1.29 93.74 [14,] 1.01 89.54

[5,] 1.46 96.73 [15,] 1.11 89.85

[6,] 1.36 94.45 [16,] 1.20 90.39

[7,] 0.87 87.59 [17,] 1.26 93.25

[8,] 1.23 91.77 [18,] 1.32 93.41

[9,] 1.55 99.42 [19,] 1.43 94.98

[10,] 1.40 93.65 [20,] 0.95 87.33

Assume that we are interested in measuring the strength of association
between 𝑥 and 𝑦. We can use a graphical display to provide an initial

description of the relationship: it appears that the observations lie around

a hidden line.

plot(x,y)

For paired data (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, . . . , 𝑛, the sample correlation coefficient
of 𝑥 and 𝑦 is

𝜌𝑋𝑌 =

∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)√∑(𝑥𝑖 − 𝑥)2
∑(𝑦𝑖 − 𝑦)2

=
𝑆𝑥𝑦√
𝑆𝑥𝑥 𝑆𝑦𝑦

.

The coefficient 𝜌𝑋𝑌 is defined only if 𝑆𝑥𝑥 ≠ 0 and 𝑆𝑦𝑦 ≠ 0, i.e. if neither

𝑥𝑖 nor 𝑦𝑖 are constant.

The variables 𝑥 and 𝑦 are uncorrelated if 𝜌𝑋𝑌 = 0 (or is very small, in

practice), and correlated if 𝜌𝑋𝑌 ≠ 0 (or if |𝜌𝑋𝑌 | is “large”, in practice).

Example For the data on the previous page, we have

𝑆𝑥𝑦 ≈ 10.18, 𝑆𝑥𝑥 ≈ 0.68, 𝑆𝑦𝑦 ≈ 173.38,

so that

𝜌𝑋𝑌 ≈ 10.18√
0.68 · 173.38

≈ 0.94.
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This can also be computed directly in R:

(Sxx = sum((x-mean(x))^2))

(Syy = sum((y-mean(y))^2))

(Sxy = sum((x-mean(x))*(y-mean(y))))

(rho = Sxy/sqrt(Sxx*Syy))

[1] 0.68088

[1] 173.3769

[1] 10.17744

[1] 0.9367154

or by using the cor() function:

cor(x,y)

[1] 0.9367154

Properties

𝜌𝑋𝑌 is unaffected by changes of scale or origin. Adding constants

to 𝑥 does not change 𝑥 − 𝑥 (similarly for 𝑦 − 𝑦) and multiplying 𝑥

and 𝑦 by constants changes both the numerator and denominator

equally;

𝜌𝑋𝑌 is symmetric in 𝑥 and 𝑦 (i.e. 𝜌𝑋𝑌 = 𝜌𝑌𝑋 ) and −1 ≤ 𝜌𝑋𝑌 ≤ 1;

if 𝜌𝑋𝑌 = ±1, then the observations (𝑥𝑖 , 𝑦𝑖) all lie on a straight line

with a positive (or negative) slope;

the sign of 𝜌𝑋𝑌 reflects the trend of the points;

a high correlation coefficient value |𝜌𝑋𝑌 | does not necessarily imply

a causal relationship between the two variables;

note that 𝑥 and 𝑦 can have a very strong non-linear relationship

without 𝜌𝑋𝑌 reflecting it (see Figure 7.6).

Figure 7.6: Examples of strong relation-

ships that are not reflected by the coeffi-

cient of correlation.

Human brains are ... not that great at intuiting correlations, even when

the relationship has a linear component: in the above figure, how obvious

is it that the correlation on the left is −0.12, and that the one on the right

is 0.93? Beware!
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7.3 Point and Interval Estimation

One of the goals of statistical inference is to draw conclusions about a

population based on a random sample from the population.

For instance, we might want answers to the following questions.

1. Can we assess the reliability of a product’s manufacturing process

by randomly selecting a sample of the final product and determin-

ing how many of them are compliant according to some quality

assessment scheme?

2. Can we determine who will win an election by polling a small

sample of respondents?

Specifically, we seek to estimate an unknown parameter 𝜃, say, using a

single quantity called the point estimate �̂�.

This point estimate is obtained via a statistic, which is simply a function

of a random sample.
7

7: Common examples of inferential statis-

tics include:

sample mean and sample median;

sample variance and sample stan-
dard deviation;

sample quantiles (median, quar-

tiles, quantiles);

test statistics (𝑡−statistics,

𝜒2−statistics, 𝑓−statistics, etc.);

order statistics (sample maximum

and minimum, sample range, etc.);

sample moments and functions

thereof (skewness, kurtosis, etc.);

etc.

The probability distribution of the statistic is its sampling distribution; as

an example, we have discussed the sampling distribution of the sample
mean in Section 6.5. Describing such sampling distributions is a main

focus of statistical research.

Example Consider a process that manufactures gear wheels. Let 𝑋 be

the random variable that records the weight of a randomly selected gear

wheel. What is the population mean 𝜇𝑋 = E[𝑋]?.

In the absence of the p.d.f. 𝑓 (𝑥), we can estimate 𝜇 = 𝑋 with the help of

a random sample 𝑋1 , . . . , 𝑋𝑛 of gear wheel weight measurements, via
the sample mean statistic:

𝑋 =
𝑋1 + · · · + 𝑋𝑛

𝑛
,

which follows approximately a N
(
𝜇, 𝜎2/𝑛

)
distribution, according to the

CLT.

7.3.1 Estimator (Sampling) Variance and Standard Error

In practice, the point estimator �̂� varies depending on the choice of the

sample {𝑋1 , . . . , 𝑋𝑛}.

The standard error of a statistic is the standard deviation of its sampling
distribution.

For instance, if observations 𝑋1 , . . . , 𝑋𝑛 come from a a population with

unknown mean 𝜇 and known variance 𝜎2
, then Var(𝑋) = 𝜎2/𝑛 and the

standard error of 𝑋 is

𝜎
𝑋
=

𝜎√
𝑛
.



350 7 Introductory Statistical Analysis

If the variance of the original population is unknown, then it is estimated

by the sample variance 𝑆2
and the estimated standard error of 𝑋 is

�̂�
𝑋
=

𝑆√
𝑛
, where 𝑆2 =

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Examples

1. A sample of 20 baseball player heights (in inches) is shown below.

x=c(74,74,72,72,73,69,69,71,76,71,

73,73,74,74,69,70,72,73,75,78)

What is the standard error of the sample mean 𝑋?

The sampling mean of the heights is

𝑋 =
𝑋1 + · · · + 𝑋20

20

= 72.6

and the sample variance 𝑆2
is

𝑆2 =
1

20 − 1

20∑
𝑖=1

(𝑋𝑖 − 72.6)2 ≈ 5.6211.

The standard error of 𝑋 is thus

�̂�
𝑋
=

𝑆√
20

≈
√

5.6211

20

≈ 0.5301.

The quantities can be computed directly via R:
8

8: Note that var() always treats the un-

derlying dataset as a sample, not as a pop-
ulation.

(x.bar = mean(x))

(S2.x = var(x))

(se.x = sqrt(S2.x/length(x)))

[1] 72.6

[1] 5.621053

[1] 0.530144

2. Consider a sample {𝑋1 , . . . , 𝑋100} of independent observations se-

lected from a normal population N(𝜇, 𝜎2) where 𝜎 = 50 is known,

but 𝜇 is not. What is the best estimate of 𝜇? What is the sampling

distribution of that estimate?

The sample mean 𝑋 = 1

100
(𝑋1 + · · · + 𝑋100) is the best estimate of

𝜇𝑋 = 𝜇
𝑋

and the standard error of 𝑋 is

𝜎
𝑋
=

50√
100

= 5.

Since the observations are sampled independently from a normal

population with mean 𝜇 and standard deviation 50, which is to say,

𝑋 ∼ N(𝜇, 52) = N(𝜇, 25), according to the CLT.
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7.3.2 Confidence Intervals for 𝜇 When 𝜎 is Known

Consider a sample {𝑥1 , . . . , 𝑥𝑛} drawn from a normal population with

known variance 𝜎2
and unknown mean 𝜇. The sample mean

𝑥 =
𝑥1 + · · · + 𝑥𝑛

𝑛

is a point estimate of 𝜇.
9

9: In general, upper case letters are re-

served for a general sample, and lower

case letters for a specifically observed sam-

ple.

Of course, this estimate is not exact, because 𝑥 is an observed value of

𝑋; it is unlikely that the observed value 𝑥 should coincide with 𝜇.

We know that 𝑋 ∼ N(𝜇, 𝜎2/𝑛), so that

𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

The 68 − 96 − 99.7 Rule

For the standard normal distribution, it can be shown that

𝑃(|𝑍 | < 1) ≈ 0.683, 𝑃(|𝑍 | < 2) ≈ 0.955, 𝑃(|𝑍 | < 3) ≈ 0.997.

This says that about 68% of the observations from N(0, 1) fall within one

standard deviation (𝜎 = 1) from the mean (𝜇 = 0), about 96% within two

standard deviations, and about 99.7% within three.

Figure 7.7: The 68-96-99.7 rule on the

standard normal distribution. [source un-

known]

In other words, whenever we observe a sample mean 𝑋 (with sample

size 𝑛) from a normal population with mean 𝜇, we would expect the

inequality

−𝑘 < 𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

< 𝑘
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to hold approximately

𝑔(𝑘) =


68.3% of the time, if 𝑘 = 1

95.5% of the time, if 𝑘 = 2

99.7% of the time, if 𝑘 = 3

Confidence Intervals

By re-arranging the terms, we can build a symmetric 𝑔(𝑘) confidence
interval (C.I.) for 𝜇:

𝑋 − 𝑘 𝜎√
𝑛

< 𝜇 < 𝑋 + 𝑘 𝜎√
𝑛

=⇒ C.I.(𝜇; 𝑔(𝑘)) ≡ 𝑋 ± 𝑘 𝜎√
𝑛
.

Examples

1. Consider a sample {𝑋1 , . . . , 𝑋64} from a normal population with

known standard deviation 𝜎 = 72. The sample mean is 𝑋 = 375.2.

Build a symmetric 68.3% confidence interval for 𝜇.

According to the formula, the symmetric 68.3% confidence interval

(𝑘 = 1) for 𝜇 would be

C.I.(𝜇; 0.683) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 1 · 72√
64

,

which is to say

C.I.(𝜇; 0.683) ≡ (375.2 − 9, 375.2 + 9) = (366.2, 384.2).

VERY IMPORTANT: this does not say that we are 68.3% sure that

the true 𝜇 is between 366.2 and 384.2. What it says is that when

a sample of size 64 is taken from a normal population N(𝜇, 72
2)

and a symmetric 68.3% confidence interval for 𝜇 is built, 𝜇 will

fall between the endpoints of the interval about 68.3% of the time.
10

10: This less than intuitive interpretation

of the confidence interval is one of the

disadvantages of using the frequentist ap-

proach; the analogous concept in Bayesian

statistics is called the credible interval,
which agrees with our naïve expectation

of a confidence interval as saying some-

thing about how certain we are that the

true parameter is in the interval, see [11]

and Chapter 25.

2. Build a symmetric 95.5% confidence interval for 𝜇.

The same formula applies, with 𝑘 = 2:

C.I.(𝜇; 0.955) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 2 · 72√
64

,

which is to say

C.I.(𝜇; 0.995) ≡ (375.2 − 18, 375.2 + 18) = (357.2, 393.2).

3. Build a symmetric 99.7% confidence interval for 𝜇.

Again, the same formula applies, with 𝑘 = 3:

C.I.(𝜇; 0.997) ≡ 𝑋 ± 𝑘 𝜎√
𝑛

≡ 375.2 ± 3 · 72√
64

,

which is to say

C.I.(𝜇; 0.995) ≡ (375.2 − 27, 375.2 + 27) = (348.2, 402.2).
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Note that the C.I. increases in size with the confidence level. The inter-

pretation stays the same, no matter the required confidence level or the

parameter of interest.

A 95% C.I. for the mean, for instance, indicates that we would expect

19 out of 20 samples from the same population to produce confidence

intervals that contain the true population mean, on average.

Figure 7.8: Frequentist interpretation of

confidence intervals: out of 20 experi-

ments, we would expect the true popu-

lation mean to fall in the confidence in-

terval about 19 times, on average. [source

unknown]

Confidence Interval for 𝜇 when 𝜎 is Known (Reprise)

Another approach to C.I. building is to specify the proportion of the
area under 𝜙(𝑧) of interest, and then to determine the critical values
(which is to say, the endpoints of the interval).

Let {𝑋1 , . . . , 𝑋𝑛} be drawn from N(𝜇, 𝜎2). Recall that

𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

For a symmetric 95% C.I. for 𝜇, we need to find 𝑧∗ > 0 such that

𝑃(−𝑧∗ < 𝑍 < 𝑧∗) ≈ 0.95. But the left-hand side of this “equality” can be

re-written as

𝑃(−𝑧∗ < 𝑍 < 𝑧∗) = Φ(𝑧∗) −Φ(−𝑧∗)
= Φ(𝑧∗) − (1 −Φ(𝑧∗)) = 2Φ(𝑧∗) − 1;

we are thus looking for a critical value 𝑧∗ such that

0.95 = 2Φ(𝑧∗) − 1 =⇒ Φ(𝑧∗) = 0.95 + 1

2

= 0.975.

From any normal table (or via qnorm(0.975) in R), we see that Φ(1.96) ≈
0.9750, so that

𝑃(−1.96 < 𝑍 < 1.96) = 𝑃
(
−1.96 <

𝑋 − 𝜇

𝜎/
√
𝑛

< 1.96

)
≈ 0.95.

In other words, the inequality

−1.96 <
𝑋 − 𝜇

𝜎/
√
𝑛

< 1.96
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holds with probability 0.95, or, equivalently,

C.I.(𝜇; 0.95) ≡ 𝑋 ± 1.96

𝜎√
𝑛

is the (symmetric) 95% C.I. for 𝜇 when 𝜎 is known.

A similar argument shows that

C.I.(𝜇; 0.99) ≡ 𝑋 ± 2.575

𝜎√
𝑛

is the (symmetric) 99% C.I. for 𝜇 when 𝜎 is known.

Examples

1. A sample of size 𝑛 = 17 is selected from a normal population with

mean 𝜇 = −3 (this information is unknown to the analysts: this is

what they are trying to determine) and standard deviation 𝜎 = 2,

which is known.

The data is shown below:

set.seed(0) # for replicability

n = 17; mu = -3; sigma = 2

(x = rnorm(n,mu,sigma))

[1] -0.4740914 -3.6524667 -0.3404015 -0.4551414 -2.1707171

[6] -6.0799001 -4.8571341 -3.5894409 -3.0115343 1.8093068

[11] -1.4728131 -4.5980185 -5.2953140 -3.5789231 -3.5984302

[16] -3.8230217 -2.4955531

Build a 95% confidence interval for 𝜇.

Solution: the sample mean 𝑥 is given by

mean(x)

[1] -2.804917

The corresponding 95% confidence interval is:

lower.bound = mean(x) - qnorm(0.975)*2/sqrt(n)

upper.bound = mean(x) + qnorm(0.975)*2/sqrt(n)

c(lower.bound,upper.bound)

[1] -3.755657 -1.854178

We notice that 𝜇 = 3 is indeed found in the confidence interval:

lower.bound<mu & mu<upper.bound

[1] TRUE

2. Repeat the process 𝑀 = 1000 times. How often does 𝜇 fall in the

C.I.? We set the seed and the problem parameters.
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set.seed(0) # for replicability

n=17; mu=-3; sigma=2; M=1000

Next, we initialize the vector which determines if 𝜇 is in the C.I.

and the vector which will contain the sample mean for each of the

𝑀 = 1000 repetitions of the experiment:

is.mu.in <- c(); sample.means <- c()

Finally, we set-up the repetitions: for each sample, we compute the

sample mean and the confidence interval bounds, and determine

if the true (unknown) value 𝜇 = 2 falls in the confidence interval

or not.

for(j in 1:M){

x=rnorm(n,mu,sigma)

sample.means[j] = mean(x)

lower.bound = sample.means[j] - 1.96*sigma/sqrt(n)

upper.bound = sample.means[j] + 1.96*sigma/sqrt(n)

is.mu.in[j] = lower.bound<mu & mu<upper.bound

}

The proportion of the times when it does can thus be obtained via:

table(is.mu.in)/M

is.mu.in

FALSE TRUE

0.055 0.945

This is indeed very close to 95%. We can also verify the conclusion

of the CLT: look at the histogram of the sample means!

hist(sample.means, xlim=c(-8,8))
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This differs markedly from the histogram of the sample values: for

instance, the last of the 𝑀 = 1000 samples is distributed as below:

hist(x, xlim=c(-8,8))

The sample variance is significantly larger than the standard error.

7.3.3 Confidence Level

The confidence level 1 − 𝛼 is usually expressed in terms of a small 𝛼, so

that 𝛼 = 0.05 corresponds to a confidence level of 1 − 𝛼 = 0.95.

For 𝛼 ∈ (0, 1), the value 𝑧𝛼 for which 𝑃(𝑍 > 𝑧𝛼) = 𝛼 is called the

100(1 − 𝛼)% quantiles of the standard normal distribution. The situation

is illustrated in Figure 7.9.

Figure 7.9: Quantiles of the standard nor-

mal distribution [5].
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For general 2−sided confidence intervals,
11

the appropriate quantities 11: The only ones we will consider in these

notes.
are found by solving𝑃(|𝑍 | > 𝑧∗) = 𝛼 for 𝑧∗. By the properties ofN(0, 1),

𝛼 = 𝑃(|𝑍 | > 𝑧∗) = 1 − 𝑃(−𝑧∗ < 𝑍 < 𝑧∗) = 1 − (2Φ(𝑧∗) − 1) = 2(1 −Φ(𝑧∗)),

so that

Φ(𝑧∗) = 1 − 𝛼/2 =⇒ 𝑧∗ = 𝑧𝛼/2
,

as illustrated in Figure 7.10.

Figure 7.10: Two-sided quantiles of the

standard normal distribution [5].

The most commonly-used cases are for 𝛼 = 0.05 and 𝛼 = 0.01:

𝑃(|𝑍 | > 𝑧0.025) = 0.05 =⇒ 𝑧0.025 = 1.96

𝑃(|𝑍 | > 𝑧0.005) = 0.01 =⇒ 𝑧0.005 = 2.575.

Figure 7.11: Two-sided quantiles of the

standard normal distribution, for confi-

dence level 0.05.

The symmetric 100(1 − 𝛼)% C.I. for 𝜇 can thus generally be written as

C.I.(𝜇; 1 − 𝛼)𝑋 ± 𝑧𝛼/2

𝜎√
𝑛
.

For a given confidence level 𝛼, shorter confidence intervals are better in

relation to estimating the mean:

estimates improve when the sample size 𝑛 increases;

estimates improve when 𝜎 decreases.

For a given sample, if 𝛼1 > 𝛼2 then

100(1 − 𝛼1)% C.I. ⊆ 100(1 − 𝛼2)% C.I.

For instance, the 95% C.I. built from a sample is always contained in the

corresponding 99% C.I.

If the sample comes from a normal population, then the C.I. is exact.
Otherwise, if 𝑛 is large, we may use the CLT and get an approximate
C.I.
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Examples

A sample of 9 observations from a normal population with known

standard deviation 𝜎 = 5 yields a sample mean 𝑋 = 19.93. Provide

a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. is

𝑋 ± 𝑧𝛼/2

𝜎√
𝑛
.

Thus,

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

5√
9

= (16.66, 23.20)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

5√
9

= (15.64, 24.22).

A sample of 25 observations from a normal population with known

standard deviation 𝜎 = 5 yields a sample mean 𝑋 = 19.93. Provide

a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. are:

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

5√
25

= (17.97, 21.89)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

5√
25

= (17.35, 22.51).

A sample of 25 observations from a normal population with known

standard deviation 𝜎 = 10 yields a sample mean 𝑋 = 19.93. Pro-

vide a 95% and a 99% C.I. for the unknown population mean 𝜇.

The estimate of 𝜇 is the sample mean 𝑋 = 19.93. The 100(1 − 𝛼)%
C.I. are:

C.I.(𝜇; 0.95) ≡ 19.93 ± 1.96

10√
25

= (16.01, 23.85)

C.I.(𝜇; 0.99) ≡ 19.93 ± 2.575

10√
25

= (14.78, 25.08).

Note how the confidence intervals are affected by 𝛼, 𝑛, and 𝜎.

7.3.4 Sample Size

The error 𝐸 we commit by estimating 𝜇 via the sample mean 𝑋 is

smaller than 𝑧𝛼/2

𝜎√
𝑛

, with probability 100(1 − 𝛼)% (in the frequentist

interpretation).

Figure 7.12: Estimation error.
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At this stage, if we want to control the error 𝐸, the only thing we can

really do is control the sample size:
12

12: Sampling strategies can also help, but

this is a topic for another day (see Chapter

10).

𝐸 > 𝑧𝛼/2

𝜎√
𝑛

=⇒ 𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

.

Examples

1. A sample {𝑋1 , . . . , 𝑋𝑛} is selected from a normal population with

standard deviation 𝜎 = 100. What sample size should be used to

insure that the error on the population mean estimate is at most

𝐸 = 10, at a confidence level 𝛼 = 0.05?

As long as

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 100

10

)
2

= (19.6)2 = 384.16,

then the error committed by using 𝑋 to estimate 𝜇 will be at most

10, with 95% probability.

2. Repeat the first example, but with 𝜎 = 10.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 10

10

)
2

= (1.96)2 = 3.8416.

3. Repeat the first example, but with 𝐸 = 1.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.025 · 100

1

)
2

= (196)2 = 38416.

4. Repeat the first example, but with 𝛼 = 0.01.

We need

𝑛 >
( 𝑧𝛼/2

𝜎

𝐸

)2

=

(
𝑧0.005 · 100

10

)
2

= (25.75)2 = 663.0625.

The relationship between 𝛼, 𝜎, 𝐸, and 𝑛 is not always intuitive, but it

follows a simple rule.

7.3.5 Confidence Intervals for 𝜇 When 𝜎 is Unknown

So far, we have been in the fortunate situation of sampling from a

population with known variance 𝜎2
. What do we do when the population

variance is unknown (a situation which occurs much more frequently in

real world applications)?
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The solution is to estimate 𝜎 using the sample variance

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2

and the sample standard deviation 𝑆 =
√
𝑆2

; we use 𝑋 instead of 𝜇 since

we do not know the value of the latter (that is indeed the parameter

whose value we are trying to estimate in the first place).
13

13: Remember, when 𝜎 is known (and 𝑛

is large enough), we already know from

the CLT that 𝑍 =
𝑋−𝜇
𝜎/

√
𝑛

is approximately

N(0, 1).
If 𝜎 is unknown, it can be shown that

𝑋−𝜇
𝑆/

√
𝑛

follows approximately the

Student 𝑡−distribution with 𝑛 − 1 degrees of freedom, 𝑡(𝑛 − 1).

Consequently, at a confidence level 𝛼, we have

𝑃

(
−𝑡𝛼/2

(𝑛 − 1) < 𝑋 − 𝜇

𝑆/
√
𝑛

< 𝑡𝛼/2
(𝑛 − 1)

)
≈ 1 − 𝛼,

where 𝑡𝛼/2
(𝑛 − 1) is the 100(1 − 𝛼/2)th quantile of 𝑡(𝑛 − 1). These can be

read from pre-compiled tables or computed using the R function qt().

Thus,

100(1 − 𝛼)%C.I. for𝜇 ≈ 𝑋 ± 𝑡𝛼/2
(𝑛 − 1) 𝑆√

𝑛
.

Equality is reached if the underlying population is normal. For instance, if

𝛼 = 0.05 and {𝑋1 , 𝑋2 , 𝑋3 , 𝑋4 , 𝑋5} are samples from a normal distribution

with unknown mean𝜇 and unknown variance 𝜎2
, then 𝑡0.025(5−1) = 2.776

and

𝑃

(
−2.776 <

𝑋 − 𝜇

𝑆/
√

5

< 2.776

)
= 0.95.

Figure 7.13: Critical value for Student dis-

tribution with 4 degrees of freedom, at

confidence level 0.05. [source unknown]

Examples

1. For a given year, 9 measurements of ozone concentration are

obtained:

3.5, 5.1, 6.6, 6.0, 4.2, 4.4, 5.3, 5.6, 4.4.

Assuming that the measured ozone concentrations follow a normal

distribution with variance 𝜎2 = 1.21, build a 95% C.I. for the

population mean 𝜇. Note that 𝑋 = 5.01 and that 𝑆 = 0.97.
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We must use the standard normal quantile 𝑧𝛼/2
= 𝑧0.025 = 1.96 :

𝑋 ± 𝑧0.025

𝜎√
𝑛

= 5.01 ± 1.96

√
1.21√

9

= (4.29, 5.73).

2. Do the same thing, this time assuming that the true variance of the

underlying population is unknown.

We must use the Student quantile 𝑡𝛼/2
(𝑛 − 1) = 𝑡0.025(8) = 2.306:

𝑋 ± 𝑡0.025(𝑛 − 1) 𝑆√
𝑛

= 5.01 ± 2.306

0.97√
9

= (4.26, 5.76).

The quantile value can be obtained from R using qt():

alpha=0.05

n=9

qt(1-alpha/2,n-1)

[1] 2.306004

3. A sample of size 𝑛 = 17 is selected from a normal population

with mean 𝜇 = −3 (this is information is unknown to the analysts:

this is what they are trying to determine) and unknown standard

deviation.

The data is shown below:

set.seed(0) # for replicability

n=17; mu=-3; sigma=2

(x=rnorm(n,mu,sigma))

[1] -0.4740914 -3.6524667 -0.3404015 -0.4551414

[5] -2.1707171 -6.0799001 -4.8571341 -3.5894409

[9] -3.0115343 1.8093068 -1.4728131 -4.5980185

[13] -5.2953140 -3.5789231 -3.5984302 -3.8230217

[17] -2.4955531

Build a 95% confidence interval for 𝜇.

The sample mean 𝑥 is given by

mean(x)

[1] -2.804917

The corresponding 95% confidence interval is:

lower.bound = mean(x) - qt(1-0.05/2,17-1)*2/sqrt(17)

upper.bound = mean(x) + qt(1-0.05/2,17-1)*2/sqrt(17)

c(lower.bound,upper.bound)

[1] -3.833222 -1.776612

We notice that 𝜇 = −3 is indeed found in the confidence interval:
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lower.bound<mu & mu<upper.bound

[1] TRUE

When the underlying variance is known, the C.I. is tighter (smaller),

which is only natural as we are more confident about our results when

we have more information.

Note: what we have seen is that when the underlying distribution is

normal, or when it is not normal but the sample size is “large” enough,

we can build a C.I. for the population mean, whether the population

variance is known or not.

If, however, the underlying population is not normal and the sample size

is “small”, the approach used in this section cannot guarantee the C.I.’s

accuracy.

7.3.6 Confidence Intervals for a Proportion

If 𝑋 is the number of successes in 𝑛 independent trials, then 𝑋 ∼ B(𝑛, 𝑝),
E[𝑋] = 𝑛𝑝 and Var[𝑋] = 𝑛𝑝(1 − 𝑝), and the point estimator for 𝑝 is

simply �̂� = 𝑋
𝑛 .

Since 𝑋 is a sum of iid random variables, its standardization

𝑍 =
𝑋 − 𝜇

𝜎
=

𝑛�̂� − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

=
�̂� − 𝑝√
𝑝(1−𝑝)
𝑛

is approximately N(0, 1), when 𝑛 is large enough.

Thus, for sufficiently large 𝑛,

𝑃
©«−𝑧𝛼/2

<
�̂� − 𝑝√
𝑝(1−𝑝)
𝑛

< 𝑧𝛼/2

ª®®¬ ≈ 1 − 𝛼.

Using the construction presented earlier in this section, we conclude

that

�̂� − 𝑧𝛼/2

√
𝑝(1 − 𝑝)

𝑛
< 𝑝 < �̂� + 𝑧𝛼/2

√
𝑝(1 − 𝑝)

𝑛

is an approximate 100(1−𝛼)% C.I. for 𝑝. However, this result is not useful

in practice because 𝑝 is unknown, so we use the following approximation

instead:

�̂� − 𝑧𝛼/2

√
�̂�(1 − �̂�)

𝑛
< 𝑝 < �̂� + 𝑧𝛼/2

√
�̂�(1 − �̂�)

𝑛
.

Examples

1. Two candidates (𝐴 and 𝐵) are running for office. A poll is conducted:

1000 voters are selected randomly and asked for their preference:

52% support 𝐴, while 48% support their rival, 𝐵. Provide a 95%

C.I. for the support of each candidate.
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We use 𝛼 = 0.05 and �̂� = 0.52. The approximate 95% C.I. for 𝐴 is

thus

0.52 ± 1.96

√
0.52 · 0.48

1000

≈ 0.52 ± 0.031,

while the one for 𝐵 is 0.48 ± 0.031.

2. On the strength of this polling result, a newspaper prints the follow-

ing headline: “Candidate 𝐴 Leads Candidate 𝐵!” Is the headline

warranted?

Although there is a 4−point gap in the poll numbers, the true

support for candidate 𝐴 is in the 48.9% − 55.1% range, and, the

true support for candidate 𝐵 is in the 44.9% − 51.1% range, with

probability 95% (that is to say, 19 times out of 20).

Since there is overlap in the confidence intervals, the race is more

likely to be a dead heat.

7.4 Hypothesis Testing

Consider the following scenario: person A claims they have a fair coin,

but for some reason, person B is suspicious of the claim, believing the

coin to be biased in favour of tails.

Person B flips the coin 10 times, expecting a low number of heads, which

they intend to use as evidence against the claim. Let 𝑋 = # of Heads.

Suppose 𝑋 = 4. This is less than expected for a binomial random variable

𝑋 ∼ B(10, 0.5) since E[𝑋] = 5; the results are more in line with a coin

for which 𝑃(Head) = 0.4.

Does this data constitute evidence against the claim 𝑃(Head) = 0.5?

If the coin is fair, then 𝑋 ∼ B(10, 0.5) and 𝑋 = 4 is still close to E[𝑋];
in fact, 𝑃(𝑋 = 4) = 0.205 (as opposed to 𝑃(𝑋 = 5) = 0.246) so the event

𝑋 = 4 is still quite likely. It would seem that there is no real evidence

against the claim that the coin is fair.

Figure 7.14: Binomial distribution for 10

trials, with probability of success 1/2. The

probability of exactly 4 successes is high-

lighted in red.

The way the sentence “It would seem that there is no evidence against the
claim that the coin is fair” is worded is very important.
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We did not reject the claim that 𝑃(Head) = 0.5,
14

but this doesn’t mean14: Which is to say, that the coin is sym-

metric. that, in fact, 𝑃(Head) = 0.5. Not rejecting (which is not the same as

“accepting”) a claim is a weak statement.

To see why, let’s consider person C, who claims that the coin from the

example above has 𝑃(Head) = 0.3. Under 𝑋 ∼ B(10, 0.3), the event

𝑋 = 4 is still quite likely, with 𝑃(𝑋 = 4) = 0.22; we do not have enough
evidence to reject either 𝑃(Head) = 0.5 or 𝑃(Head) = 0.3.

However, rejecting a claim is a strong statement! Let’s say that person B

convinces person A to flip the coin another 90 times. In the second round

of flips, 36 Heads occur, giving a total of 40 Heads out of 100 coin flips.

What can we say now? Does this constitute any evidence against the

claim? If so, how much?

Let 𝑌 ∼ B(100, 0.5) (i.e.the coin is fair); 𝑌 = 40 is smaller than what we

would expect as E[𝑌] = 50 if the claim is true, so 𝑌 = 40 is again more in

agreement with 𝑃(Head) = 0.4.

But the event 𝑌 = 40 does not lie in the probability mass centre of the

distribution as 𝑋 = 4 did; rather, it falls in the distribution tail (an area

of lower probability).

For 𝑌 ∼ B(100, 0.5), 𝑃(𝑌 = 40) = 0.011.
15

Thus, if the coin is fair, the15: Compare this with the previous value

𝑃(𝑋 = 4) = 0.205.
event 𝑌 = 40 is quite unlikely.

Figure 7.15: Binomial distribution for 100

trials, with probability of success 1/2. The

probability of exactly 40 successes is high-

lighted in red.

Values down in the lower tail (or up in the upper tail) provide some
evidence against the claim. The question is, how much evidence? How
do we quantify it?

Since values that are “further down the left tail” provide evidence against

the claim of a fair coin (in favour of a coin biased against Heads), we will

use the actual tail area that goes with the observation: the smaller the
tail area, the greater the evidence against the claim (and vice-versa).

For 4 Heads out of 10 tosses, the evidence is the 𝑝−value 𝑃(𝑋 ≤ 4) , i.e.

𝑃(𝑋 ≤ 4 | 𝑋 ∼ B(10, 0.5)) = 0.377.

Thus, if 𝑃(Head) = 0.5, the event 𝑋 ≤ 4 is still very likely: we would see

evidence that extreme (or more) ≈ 38% of the time (simply by chance).
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For 40 Heads out of 100 tosses, the evidence is the 𝑝−value 𝑃(𝑌 ≤ 40),

𝑃(𝑌 ≤ 40 | 𝑌 ∼ B(100, 0.5)) = 0.028.

Thus, if 𝑃(Head) = 0.5, the event 𝑌 ≤ 40 is very unlikely: we would only

see evidence that extreme (or more) ≈ 3% of the time. A claim’s 𝑝−value

is the area of the tail of the distribution’s p.d.f. under the assumption

that the claim is true:

smaller 𝑝−value ⇐⇒ more evidence against claim.

Vocabulary of Hypothesis Testing

A specific language and notation has evolved to describe this approach

to “testing hypotheses”:

the “claim” is called the null hypothesis and is denoted by 𝐻0.

the “suspicion” is called the alternative hypothesis (𝐻1);

the (random) quantity we use to measure evidence is called a test
statistic – we need to know its distribution when 𝐻0 is true, and

the 𝑝−value quantifies “the evidence against 𝐻0”.

Consider the coin tossing situation described previously. The null and

alternative hypotheses are

𝐻0 : 𝑃(Head) = 0.5 and 𝐻1 : 𝑃(Head) < 0.5 .

With 𝑛 tosses, the test statistic is the number of heads 𝑋 in 𝑛 tosses:

if 𝑛 = 10 and 𝑋 = 4, the 𝑝−value is

𝑃(𝑋 ≤ 4 | 𝑋 ∼ B(10, 0.5)) = 0.377,

on the basis of which we would not reject the null hypothesis that

the coin was fair;

if 𝑛 = 100 and 𝑋 = 40, the 𝑝−value is

𝑃(𝑋 ≤ 40 | 𝑋 ∼ B(100, 0.5)) = 0.028,

on the basis of which we would reject the null hypothesis that the

coin was fair, in favour of the alternative that it was not.

How Small Does the 𝑝−Value Need to Be?

We concluded that 37.7% was “not that small”, whereas 2.8% was “small

enough”. How small does a 𝑝−value need to be before we consider that

we have “compelling evidence” against 𝐻0?

There is no easy answer to this question.
16

Typically, we look at the 16: It depends on many factors, including

what penalties we might pay for being

wrong.

probability of making a type I error, 𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true) :

if 𝑝−value ≤ 𝛼, then we reject 𝐻0 in favour of 𝐻1;

if 𝑝−value > 𝛼, then there is not enough evidence to reject 𝐻0

(which is not the same as accepting 𝐻0!).
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By convention, we often use 𝛼 = 0.01 or 𝛼 = 0.05.

The use of 𝑝-values has come under fire recently, as many view them as

the root cause of the current replication crisis.
17

In this twitter thread17: The crisis concerns the prevalence of

positive findings that are contradicted in

subsequent studies [4].

K. Carr describes why there is nothing wrong with 𝑝−values per se:

Don’t know what a 𝑝−VALUE is? Don’t know why 𝑝−VALUES

work? Don’t know why sometimes 𝑝−VALUES don’t work? THIS
IS THE THREAD FOR YOU!

DEFINITION OF A 𝑝−VALUE: Assume your theory is false. The

𝑝−VALUE is the probability of getting an outcome as extreme or

even more extreme than what you got in your experiment.

THE LOGIC OF THE 𝑝−VALUE: Assume my theory is false. The

probability of getting extreme results should be very small but I

got an extreme result in my experiment. Therefore, I conclude that

this is strong evidence that my theory is true. That’s the logic of the

𝑝−value.

THE 𝑝−VALUE IS REASONABLE IN THEORY BUT TRICKY
IN PRACTICE: In my opinion, the 𝑝−value is just a mathematical

version of the way humans think. If we see something that seems

unlikely given our beliefs, we often doubt those beliefs. In practice,

the 𝑝−value can be tricky to use.

THE 𝑝−VALUE REQUIRES A GOOD DEFINITION OF WHEN
YOUR THEORY IS FALSE: There are usually an infinite number

of ways to define a world where your theory is false. 𝑝−values

often fail when people use overly simplistic mathematical models

of the processes that created their data. If the mismatch between

their mathematical models of the world and the actual world is too

large then the probabilities we compute can become completely

disconnected from reality.

THE 𝑝−VALUE MAY REQUIRE AN ACCURATE MODEL OF
YOU (THE OBSERVER): The probability of getting the result you

got depends on many things. If you sometimes do things like throw

out data or repeat measurements then you’re part of the system.

Your behavior affects the probability of getting your experimental

results. Therefore, to be completely realistic, you need to have an

ACCURATE model of your own behavior when you gather and

analyze data. This is hard and a big part of why the 𝑝−value often

fails as a tool.

BY DEFINITION, 𝑝−VALUES MUST SOMETIMES BE WRONG:
When using 𝑝−values, we’re working off of probabilities. By logic

of the 𝑝−value itself, even with perfect use, some of your decisions

will be wrong. You have to embrace this if you’re going to use the

𝑝−values. Badly defining what it means for your model to be false.

Inaccurately modeling the chances of getting your data including

your own behaviors. Not treating a 𝑝−value as a decision rule that

can sometimes be wrong.

These factors all contribute to misuse of the 𝑝−value in practice.

Hope this cleared some things up for you.

Thanks for coming to my 𝑝−value TED talk!

https://twitter.com/kareem_carr/status/1312783404975493122
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7.4.1 Hypothesis Testing in General

A hypothesis is a conjecture concerning the value of a population

parameter. Hypothesis testing require two competing hypotheses:

a null hypothesis, denoted by 𝐻0;

an alternative hypothesis, denoted by 𝐻1 or 𝐻𝐴.

The hypothesis is tested by evaluating experimental evidence:

if the evidence against 𝐻0 is strong enough, we reject 𝐻0 in favour
of 𝐻1, and we say that the evidence against 𝐻0 in favour of 𝐻1 is

significant;
if the evidence against 𝐻0 is not strong enough, then we fail to

reject 𝐻0 and we say that the evidence against 𝐻0 is not significant.

In cases when we fail to reject 𝐻0, we do NOT instead accept 𝐻0; we

simply do not have enough evidence to reject 𝐻0. We sometimes also say

that the evidence is compatible with 𝐻0.

From a philosophical perspective, the hypotheses should be formulated

prior to the experiment or the study. The experiment or study is then

conducted to evaluate the evidence against the null hypothesis – in order

to avoid data snooping, it is crucial that we do not formulate 𝐻1 after

looking at the data.

Scientific hypotheses can be often expressed in terms of whether an

effect is found in the data. In this case, we might use the following null

hypothesis:

𝐻0 : there is no effect

against the alternative hypothesis:

𝐻1 : there is an effect.

Errors in Hypothesis Testing

Two types of errors can be committed when testing 𝐻0 against 𝐻1:

if we reject 𝐻0 when 𝐻0 was in fact true, we have committed a type
I error;
if we fail to reject𝐻0 when𝐻0 was in fact is false, we have committed

a type II error.

Decision: Decision:
reject 𝐻0 fail to reject 𝐻0

Reality: 𝐻0 is True Type I Error No Error

Reality: 𝐻0 is False No Error Type II Error

Examples

1. If we conclude that a drug treatment is useful for treating a par-

ticular disease, but this is not the case in reality, then we have

committed an error of type I.
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2. If we cannot conclude that a drug treatment is useful for treating a

particular disease, but in reality the treatment is effective, then we

have committed an error of type II.

What type of error is worst? It depends on numerous factors.
18

18: There are other types of errors, but

they are not quite of the same nature: when

𝐻0 is wrongly rejected, but not for the right

(data) reasons, or when 𝐻0 is correctly

rejected, but 𝐻1 is wrongly interpreted;

see Wikipedia for more information.

Power of a Test

The probability of committing a type I error is usually denoted by

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true);

that of committing a type II error by

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false),

and that of correctly rejecting 𝐻0 by

power = 𝑃(reject 𝐻0 | 𝐻0 is false) = 1 − 𝛽.

Conventional values of 𝛼 and 𝛽 are usually 0.05 and 0.2, respectively,

although that is not a hard and fast rule.

Types of Null and Alternative Hypotheses

Let 𝜇 be the population parameter of interest; hypotheses are usually

expressed in terms of the values of this parameter (although we could

also be testing for other parameters).

The null hypothesis is a simple hypothesis of the form:

𝐻0 : 𝜇 = 𝜇0 ,

where 𝜇0 is some candidate value (“simple” means that the parameter is

assumed to take on a single value).

The alternative hypothesis 𝐻1 is a composite hypothesis, i.e. it contains

more than one candidate value.

Depending on the context, hypothesis testing takes on one of the following

three forms. We test the null hypothesis

𝐻0 : 𝜇 = 𝜇0 , where 𝜇0 is a number,

against a:

two-sided alternative: 𝐻1 : 𝜇 ≠ 𝜇0;

left-sided alternative: 𝐻1 : 𝜇 < 𝜇0 , or

right-sided alternative: 𝐻1 : 𝜇 > 𝜇0.

The formulation of the alternative hypothesis depends on the research

hypothesis and is determined prior to experiment or study.

 https://en.wikipedia.org/wiki/Type_III_error
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Example Investigators often want to verify if new experimental condi-

tions lead to a change in population parameters.

For instance, an investigator claims that the use of a new type of soil will

produce taller plants on average compared to the use of traditional soil.

The mean plant height under the use of traditional soil is 20 cm.

1. Formulate the hypotheses to be tested.

2. If another investigator suspects the opposite, that is, that the mean

plant height when using the new soil will be smaller than the mean

plant height with old soil. What hypotheses should be formulated?

3. A 3rd investigator believes that there will be an effect, but is not

sure if the effect with be to produce shorter or taller plants. What

hypotheses should be formulated then?

Let 𝜇 represent the mean plant height with the new type of soil. In all

three cases, the null hypothesis is 𝐻0 : 𝜇 = 20.

The alternative hypothesis depends on the situation:

1. 𝐻1 : 𝜇 > 20.

2. 𝐻1 : 𝜇 < 20.

3. 𝐻1 : 𝜇 ≠ 20.

For each 𝐻1, the corresponding 𝑝−values would be computed differently

when testing 𝐻0 against 𝐻1.

7.4.2 Test Statistics and Critical Regions

We test a statistical hypothesis we use a test statistic. A test statistic

is a function of the random sample and the population parameter of

interest.

In general, we reject 𝐻0 if the value of the test statistic is in the critical
region or rejection area for the test; the critical region is an interval of

real numbers.

The critical region is obtained using the definition of errors in hypothesis

testing – we select the critical region so that

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true)

is equal to some pre-determined value, such as 0.05 or 0.01.

Examples a new curing process developed for a certain type of cement

results in a mean compressive strength of 5000 kg/cm
2
, with a standard

deviation of 120 kg/cm
2
.

We test the hypothesis𝐻0 : 𝜇 = 5000 against the alternative𝐻1 : 𝜇 < 5000

with a random sample of 49 pieces of cement.

Assume that the critical region in this specific instance is 𝑋 < 4970, that

is, we would reject 𝐻0 if 𝑋 < 4970.
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1. Find the probability of committing a type I error when 𝐻0 is true.

By definition, we have

𝛼 = 𝑃(type I error) = 𝑃(reject 𝐻0 | 𝐻0 is true)
= 𝑃(𝑋 < 4970 | 𝜇 = 5000).

Thus, according to the CLT, we have

𝛼 ≈ 𝑃
(
𝑋 − 𝜇

𝜎/
√
𝑛

<
4970 − 5000

120/7

)
≈ 𝑃(𝑍 < −1.75) ≈ 0.0401 .

The sampling distribution of 𝑋 under 𝐻0 is shown in red in the

graph above (and those below): it is a normal distribution with

mean= 5000, and standard deviation= 120/7). The sampling distri-

bution of 𝑋 under 𝐻1 appears in blue: here, a normal distribution

with mean = 4990 and standard deviation = 120/7.

The critical region falls to the left of the vertical black line𝑋 < 4970,

and the probability of committing a type I error is the area shaded

in pale red, below:

𝛼 = 𝑃(reject 𝐻0 | 𝐻0 is true) = 𝑃(𝑋 < 4970 | 𝜇 = 5000).

We would thus reject 𝐻0 if the observed value of 𝑋 falls to the left

of 𝑋 = 4970 (in the critical region).

2. Evaluate the probability of committing a type II error if 𝜇 is actually

4990, say (and not 5000, as assumed in 𝐻0).

By definition, we have

𝛽 = 𝑃(type II error) = 𝑃(fail to reject 𝐻0 | 𝐻0 is false)
= 𝑃(𝑋 > 4970 | 𝜇 = 4990).



7.4 Hypothesis Testing 371

Thus, according to the CLT, we have

𝛽 = 𝑃(𝑋 > 4970) = 𝑃
(
𝑋 − 𝜇

𝜎/
√
𝑛

>
4970 − 4990

120/7

)
≈ 𝑃(𝑍 > −1.17) = 1 − 𝑃(𝑍 < −1.17) ≈ 0.879 .

The critical region falls to the right of the vertical black line; the

probability of committing a type II error is the area in pale blue:

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970 | 𝜇 = 4990).

We would thus fail to reject 𝐻0 if the observed value of 𝑋 falls to

the right of 𝑋 = 4970 (outside the critical region).

The power of the test is easily computed as

power = 𝑃(reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 < 4970) = 1 − 𝛽 ≈ 0.121,

the area shaded in grey below.

3. Evaluate the probability of committing a type II error if 𝜇 is actually

4950, say (and not 5000, as in 𝐻0).

By definition, we have

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970|𝜇 = 4950).

Thus, according to the CLT, we have

𝛽 = 𝑃

(
𝑋 − 𝜇

𝜎/
√
𝑛

>
4970 − 4950

120/7

)
≈ 𝑃(𝑍 > 1.17) ≈ 0.121 .

The critical region falls to the right of the vertical black line; the

probability of committing a type II error is the area in pale blue:

𝛽 = 𝑃(fail to reject 𝐻0 | 𝐻0 is false) = 𝑃(𝑋 > 4970 | 𝜇 = 4950).
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We would thus fail to reject 𝐻0 if the observed value of 𝑋 falls to

the right of 𝑋 = 4970 (outside the critical region).

The probability of making a type II error is much larger in the first case,

which means that the threshold 𝑋 = 4970 is not ideal in that situation.

7.4.3 Test for a Mean

Suppose 𝑋1 , . . . , 𝑋𝑛 is a random sample from a population with mean 𝜇
and variance 𝜎2

, and let 𝑋 = 1

𝑛

∑𝑛
𝑖=1
𝑋𝑖 denote the sample mean:

if the population is normal, then 𝑋
exact∼ N(𝜇, 𝜎2/𝑛) ;

if the population is not normal, then as long as 𝑛 is large enough,

𝑋
approx∼ N(𝜇, 𝜎2/𝑛).

We start by assuming that the population variance 𝜎2
is known, and that

the hypothesis concerns the unknown population mean 𝜇.

Explanation: Left-Sided Alternative

Consider the unknown population mean 𝜇. Suppose that we test

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0 ,

where 𝜇0 is some candidate value for 𝜇. To evaluate the evidence against

𝐻0, we compare 𝑋 to 𝜇0. Under 𝐻0,

𝑍0 =
𝑋 − 𝜇0

𝜎/
√
𝑛

approx∼ N(0, 1).

We say that 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛

is the observed value of the 𝑍−test statistic 𝑍0.

If 𝑧0 < 0, we have evidence that 𝜇 < 𝜇0. However, we only reject 𝐻0 in

favour of 𝐻1 if the evidence is significant, which is to say, if

𝑧0 ≤ −𝑧𝛼 , at a level of significance 𝛼.

The corresponding 𝑝−value for this test is the probability of observing

evidence that is as (or more) extreme than our current evidence in favour

of𝐻1, assuming that𝐻0 is true (that is, simply by chance).
19

The decision19: “Even more extreme”, in this case,

means further to the left, so that 𝑝-value =

𝑃(𝑍 ≤ 𝑧0) = Φ(𝑧0), where 𝑧0 is the ob-

served value for the 𝑍-test statistic.

rule for the left-sided test is thus

if the 𝑝−value ≤ 𝛼, we reject 𝐻0 in favour of 𝐻1;

if the 𝑝−value > 𝛼, we fail to reject 𝐻0.
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Formally, the left-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0;

at significance 𝛼, if 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛
≤ −𝑧𝛼, we reject 𝐻0 in favour of 𝐻1, as

below.

Figure 7.16: Critical test region, left-sided

test.

An equivalent right-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0;

at significance 𝛼, if 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛
≥ 𝑧𝛼, we reject 𝐻0 in favour of 𝐻1, as

below.

Figure 7.17: Critical test region, right-sided

test.

The two-sided test pits

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0;

at significance 𝛼, if |𝑧0 | =
��� 𝑥−𝜇0

𝜎/
√
𝑛

��� ≥ 𝑧𝛼/2
, we reject 𝐻0 in favour of 𝐻1.

Figure 7.18: Critical test region, two-sided

test.
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The procedure to test for 𝐻0 : 𝜇 = 𝜇0 requires 6 steps.

Step 1: set 𝐻0 : 𝜇 = 𝜇0.

Step 2: select an alternative hypothesis 𝐻1.
20

Depending on the context,20: What we are trying to show using the

data.
we choose one of these alternatives:

𝐻1 : 𝜇 < 𝜇0 (one-sided test);

𝐻1 : 𝜇 > 𝜇0 (one-sided test);

𝐻1 : 𝜇 ≠ 𝜇0 (two-sided test).

Step 3: choose 𝛼 = 𝑃(type I error), typically 𝛼 ∈ {0.01, 0.05}.

Step 4: for the observed sample {𝑥1 , . . . , 𝑥𝑛}, compute the observed

value of the test statistic 𝑧0 =
𝑥−𝜇0

𝜎/
√
𝑛

.

Step 5: determine the critical region according to:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇 < 𝜇0 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇 ≠ 𝜇0 |𝑧0 | > 𝑧𝛼/2

where 𝑧𝛼 is the critical value satisfying 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).
The critical values are displayed below for convenience.

𝛼 𝑧𝛼 𝑧𝛼/2

0.05 1.645 1.960

0.01 2.327 2.576

Step 6: compute the associated 𝑝−value according to:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇 < 𝜇0 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇 ≠ 𝜇0 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Decision Rule: as above,

if the 𝑝−value ≤ 𝛼, reject 𝐻0 in favour of 𝐻1;

if the 𝑝−value > 𝛼, fail to reject 𝐻0.

A few examples will clarify the procedure.

Examples

1. Components are manufactured to have strength normally dis-

tributed with mean 𝜇 = 40 units and standard deviation 𝜎 = 1.2

units. The manufacturing process has been modified, and an in-

crease in mean strength is claimed (the standard deviation remains

the same).
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A random sample of 𝑛 = 12 components produced using the mod-

ified process had the following strengths:

42.5, 39.8, 40.3, 43.1, 39.6, 41.0,

39.9, 42.1, 40.7, 41.6, 42.1, 40.8.

Does the data provide strong evidence that the mean strength now

exceeds 40 units? Use 𝛼 = 0.05.

We follow the outlined procedure to test for 𝐻0 : 𝜇 = 40 against

𝐻1 : 𝜇 > 40.

The observed value of the sample mean is 𝑥 = 41.125. Hence,

𝑝−value = 𝑃(𝑋 ≥ 𝑥) = 𝑃(𝑋 ≥ 41.125)

= 𝑃

(
𝑋 − 𝜇0

𝜎/
√
𝑛

≥ 41.125 − 𝜇0

𝜎/
√
𝑛

)
= 𝑃(𝑍 ≥ 3.25) ≈ 0.006.

As the 𝑝−value is smaller than 𝛼, we reject 𝐻0 in favour of 𝐻1.

Another way to see this is that if the model ‘𝜇 = 40’ is true, then

it is very unlikely that we would observe the event {𝑋 ≥ 41.125}
entirely by chance, and so the manufacturing process likely has an

effect in the claimed direction.

2. A set of scales works properly if the measurements differ from

the true weight by a normally distributed random error term with

standard deviation 𝜎 = 0.007 grams. Researchers suspect that the

scale is systematically adding to the weights.

To test this hypothesis, 𝑛 = 10 measurements are made on a 1.0g

“gold-standard” weight, giving a set of measurements which aver-

age out to 1.0038g. Does this provide evidence that the scale adds

to the measurement weights? Use 𝛼 = 0.05 and 0.01.

Let 𝜇 be the weight that the scale would record in the absence

of random error terms. We test for𝐻0 : 𝜇 = 1.0 against𝐻1 : 𝜇 > 1.0.

The observed test statistic is 𝑧0 = 1.0038−1.0

0.007/
√

10

≈ 1.7167. Since

𝑧0.05 = 1.645 < 𝑧0 = 1.7167 ≤ 𝑧0.01 = 2.327,

we reject 𝐻0 for 𝛼 = 0.05, but we fail to reject 𝐻0 for 𝛼 = 0.01.

Case closed. Right?

3. In the previous example, assume that we are interested in whether

the scale works properly, which means that the investigators think

there might be some systematic misreading, but they are not sure

in which direction the misreading would occur. Does the sample

data provide evidence that the scale is systematically biased? Use

𝛼 = 0.05 and 0.01.
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Let 𝜇 be as in the previous example. We test for𝐻0 : 𝜇 = 1.0 against

𝐻1 : 𝜇 ≠ 1.0.

The test statistic is still 𝑧0 = 1.7167; since |𝑧0 | ≤ 𝑧𝛼/2
for both

𝛼 = 0.05 and 𝛼 = 0.01, we fail to reject 𝐻0 at either 𝛼 = 0.05 or

𝛼 = 0.01.

Thus, our “reading” of the test statistic depends on what type of

alternative hypothesis we have selected (and so, on the overall

context).

4. The marks for an “average” class are normally distributed with

mean 60 and variance 100. Nine students are selected from the

class; their average mark is 55. Is this subgroup “below average”?

Let 𝜇 be the true mean of the subgroup. We are testing for

𝐻0 : 𝜇 = 60 against 𝐻1 : 𝜇 < 60.

The observed sample test statistic is

𝑧0 =
55 − 60

10/
√

9

= −1.5.

The corresponding 𝑝−value is

𝑃(𝑋 ≤ 55) = 𝑃(𝑍 ≤ −1.5) = 0.07.

Thus there is not enough evidence to reject the claim that the

subgroup is ‘average’, regardless of whether we use 𝛼 = 0.05 or

𝛼 = 0.01.

5. We consider the same set-up as in the previous example, but this

time the sample size is 𝑛 = 100, not 9. Is there some evidence to

suggest that this subgroup of students is ‘below average’?

Let 𝜇 be as before. We are still testing for 𝐻0 : 𝜇 = 60 against

𝐻1 : 𝜇 < 60, but this time the observed sample test statistic is

𝑧0 =
55 − 60

10/
√

100

= −5.

The corresponding 𝑝−value is

𝑃(𝑋 ≤ 55) = 𝑃(𝑍 ≤ −5) ≈ 0.00.

Thus we reject the claim that the subgroup is ‘average’, regardless

of whether we use 𝛼 = 0.05 or 𝛼 = 0.01.

The lesson from the last example is that the sample size plays a role; in

general, an estimate obtained from a larger (representative) sample is

more likely to be generalizable to the population as a whole.
21

21: Or as the iFunny meme has it. . .
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Tests and Confidence Intervals

It is becoming more and more common for analysts to bypass the

computation of the 𝑝−value altogether, in favour of a confidence interval

based approach.
22

22: In order to avoid the controversy sur-

rounding the crisis of replication?

For a given 𝛼, we reject 𝐻0 : 𝜇 = 𝜇0 in favour of 𝐻1 : 𝜇 ≠ 𝜇0 if, and only

if, 𝜇0 is not in the 100(1 − 𝛼)% C.I. for 𝜇.

Example A manufacturer claims that a type of engine uses 20 gallons of

fuel to operate for one hour. It is known from previous studies that this

amount is normally distributed with variance 𝜎2 = 25 and mean 𝜇.

A sample of size 𝑛 = 9 has been taken and the following value has been

observed for the mean amount of fuel per hour: 𝑋 = 23. Should we

accept the manufacturer’s claim? Use 𝛼 = 0.05.

We test for 𝐻0 : 𝜇 = 20 against 𝐻1 : 𝜇 ≠ 20. The observed sample test

statistic is

𝑧0 =
𝑥 − 𝜇0

𝜎/
√
𝑛

=
23 − 20

5/
√

9

= 1.8.

For a 2−sided test with 𝛼 = 0.05, the critical value is 𝑧0.025 = 1.96. Since

|𝑧0 | ≤ 𝑧0.025, 𝑧0 is not in the critical region, and we do not reject 𝐻0.

The advantage of the confidence interval approach is that it allows

analysts to test for various claims simultaneously. Since we know the

variance of the underlying population, an approximate 100(1 − 𝛼)% C.I.

for 𝜇 is given by

𝑋 ± 𝑧𝛼/2
𝜎/

√
𝑛 = 23 ± 1.96 · 5/

√
9 = (19.73; 26.26).

Based on the data, we would thus not reject the claim that 𝜇 = 20,

𝜇 = 19.74, 𝜇 = 26.20, etc.

Test for a Mean with Unknown Variance

If the data is normal and 𝜎 is unknown, we can estimate it via the sample

variance

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋

)
2

.

As we have seen for confidence intervals, the test statistic

𝑇 =
𝑋 − 𝜇

𝑆/
√
𝑛

∼ 𝑡(𝑛 − 1)

follows a Student’s 𝑡−distribution with 𝑛 − 1 df.

We can follow the same steps as for the test with known variance, with

the modified critical regions and 𝑝−values:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇 > 𝜇0 𝑡0 > 𝑡𝛼(𝑛 − 1)
𝐻1 : 𝜇 < 𝜇0 𝑡0 < −𝑡𝛼(𝑛 − 1)
𝐻1 : 𝜇 ≠ 𝜇0 |𝑡0 | > 𝑡𝛼/2

(𝑛 − 1)
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where

𝑡0 =
𝑥 − 𝜇0

𝑆/
√
𝑛

and 𝑡𝛼(𝑛 − 1) is the 𝑡−value satisfying

𝑃(𝑇 > 𝑡𝛼(𝑛 − 1)) = 𝛼

for 𝑇 ∼ 𝑡(𝑛 − 1). The corresponding 𝑝−values are given in the table

below.

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇 > 𝜇0 𝑃(𝑇 > 𝑡0)
𝐻1 : 𝜇 < 𝜇0 𝑃(𝑇 < 𝑡0)
𝐻1 : 𝜇 ≠ 𝜇0 2 · min{𝑃(𝑇 > 𝑡0), 𝑃(𝑇 < 𝑡0)}

Example Consider the following observations, taken from a normal

population with unknown mean 𝜇 and variance:

18.0, 17.4, 15.5, 16.8, 19.0, 17.8, 17.4, 15.8,

17.9, 16.3, 16.9, 18.6, 17.7, 16.4, 18.2, 18.7.

Conduct a right-side hypothesis test for 𝐻0 : 𝜇 = 16.6 vs. 𝐻1 : 𝜇 > 16.6,

using 𝛼 = 0.05.

The sample size, sample mean, and sample variance are 𝑛 = 16, 𝑋 = 17.4

and 𝑆 = 1.078, respectively.

Since the variance 𝜎2
is unknown, the observed sample test statistics of

interest is

𝑡0 =
𝑥 − 𝜇0

𝑆/
√
𝑛

=
17.4 − 16.6

1.078/4

≈ 2.968,

and the corresponding 𝑝−value is

𝑝−value = 𝑃(𝑋 ≥ 17.4) = 𝑃(𝑇 > 2.968),

where 𝑇 ∼ 𝑡(𝑛 − 1) = 𝑡(𝜈) = 𝑡(15).

From the 𝑡−tables (or by using the R function qt()), we see that

𝑃 (𝑇(15) ≥ 2.947) ≈ 0.005, 𝑃 (𝑇(15) ≥ 3.286) ≈ 0.0025.

The 𝑝−value thus lies in the interval (0.0025, 0.005); in particular, the

𝑝−value ≤ 0.05, which is strong evidence against 𝐻0 : 𝜇 = 16.6.

7.4.4 Test for a Proportion

The principle for proportions is pretty much the same, as we can see in

the next example.
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Example A group of 100 adult American Catholics were asked the

following question: “Do you favour allowing women into the priesthood?”

60 of the respondents independently answered ‘Yes’; is the evidence

strong enough to conclude that more than half of American Catholics

favour allowing women to be priests?

Let 𝑋 be the number of people who answered ‘Yes’. We assume that

𝑋 ∼ B(100, 𝑝), where 𝑝 is the true proportion of American Catholics

who favour allowing women to be priests.

We test for 𝐻0 : 𝑝 = 0.5 vs. 𝐻1 : 𝑝 > 0.5. Under 𝐻0, 𝑋 ∼ B(100, 0.5).

The 𝑝−value that corresponds to the observed sample is

𝑃(𝑋 ≥ 60) = 1 − 𝑃(𝑋 < 60) = 1 − 𝑃(𝑋 ≤ 59)

≈ 1 − 𝑃
(
𝑋 + 0.5 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

≤ 59 + 0.5 − 50√
25

)
≈ 1 − 𝑃(𝑍 ≤ 1.9) = 0.0287,

where the +0.5 comes from the correction to the normal approximation

of the binomial distribution (see Section 6.3.6 for details).

Thus, we would reject 𝐻0 at 𝛼 = 0.05, but not at 𝛼 = 0.01.

7.4.5 Two-Sample Tests

Up to this point, we have only tested hypotheses about populations by

evaluating the evidence provided by a single sample of observations.

Two-sample tests allows analysts to compare two populations.
23

23: These populations are potentially dis-

tinct.

Paired Test

Let 𝑋1,1 , . . . , 𝑋1,𝑛 be a random sample from a normal population with

unknown mean 𝜇1 and unknown variance 𝜎2
; let 𝑋2,1 , . . . , 𝑋2,𝑛 be a

random sample from a normal population with unknown mean 𝜇2 and

unknown variance 𝜎2
, with both populations not necessarily indepen-

dent of one another.
24

We would like to test for 𝐻0 : 𝜇1 = 𝜇2 against 24: It is possible that the 2 samples arise

from the same population, or represent

two different measurements on the same

units, say.

𝐻1 : 𝜇1 ≠ 𝜇2.

In order to do so, we compute the differences 𝐷𝑖 = 𝑋1,𝑖 − 𝑋2,𝑖 and

consider the 𝑡−test (as we do not know the variance). The test statistic

is

𝑇0 =
𝐷

𝑆𝐷/
√
𝑛

∼ 𝑡(𝑛 − 1),

where

𝐷 =
1

𝑛

𝑛∑
𝑖=1

𝐷𝑖 and 𝑆2

𝐷 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝐷𝑖 − 𝐷)2.

Example The knowledge of basic statistical concepts for 𝑛 = 10 engi-

neers was measured on a scale from 0− 100 before and after a short course

in statistical quality control. The result are as follows:



380 7 Introductory Statistical Analysis

Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1,𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2,𝑖 51 84 74 48 53 61 59 75 82 48

Let𝜇1 and𝜇2 be the mean score before and after the course, respectively.

Assuming the underlying scores are normally distributed, conduct a test

for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 < 𝜇2.

The differences 𝐷𝑖 = 𝑋1,𝑖 − 𝑋2,𝑖 are:

Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1,𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2,𝑖 51 84 74 48 53 61 59 75 82 48

Difference 𝐷𝑖 −8 −2 3 −9 −2 5 −4 −14 −3 −5

The observed sample mean is 𝑑 = −3.9, and the observed sample variance

is 𝑠2

𝐷
= 31.21.

The test statistic is:

𝑇0 =
𝐷 − 0

𝑆𝐷/
√
𝑛

∼ 𝑡(𝑛 − 1),

with observed value:

𝑡0 =
−3.9√

31.21/10

≈ −2.21.

We compute

𝑃(𝐷 ≤ −3.9) = 𝑃(𝑇(9) ≤ −2.21) = 𝑃(𝑇(9) > 2.21).

But 𝑡0.05(9) = 1.833 < 𝑡0 = 2.21 < 𝑡0.01(9) = 2.821, so we reject 𝐻0 at

𝛼 = 0.05, but not at 𝛼 = 0.01.

Figure 7.19: Critical test regions for the

right-sided test, with 𝑛 = 10 observa-

tions: confidence levels 0.05 (left) and 0.01

(right).

Unpaired Test

Let 𝑋1,1 , . . . , 𝑋1,𝑛 be a random sample from a normal population with

unknown mean 𝜇1 and variance 𝜎2

1
; let𝑌2,1 , . . . , 𝑌2,𝑚 be a random sample
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from a normal population with unknown mean 𝜇2 and variance 𝜎2

2
, with

both populations independent of one another.

We want to test for

𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 ≠ 𝜇2.

Let 𝑋 = 1

𝑛

∑𝑛
𝑖=1
𝑋𝑖 , 𝑌 = 1

𝑚

∑𝑚
𝑖=1
𝑌𝑖 . As always, the observed values are

denoted by lower case letters: 𝑥, 𝑦.

When the Variances 𝜎2

1
and 𝜎2

2
are Known

We can follow the same steps as for the earlier test, with some modifica-

tions:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇1 < 𝜇2 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑧0 | > 𝑧𝛼/2

where

𝑧0 =
𝑥 − 𝑦√

𝜎2

1
/𝑛 + 𝜎2

2
/𝑚

,

and 𝑧𝛼 satisfies 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Example A sample of 𝑛 = 100 Albertans yields a sample mean income

of 𝑋 = 33, 000$. A sample of 𝑚 = 80 Ontarians yields 𝑌 = 32, 000$.

From previous studies, it is known that the population income standard

deviations are, respectively, 𝜎1 = 5000$ in Alberta and 𝜎2 = 2000$ in

Ontario. Do Albertans earn more than Ontarians, on average?

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2. The observed difference is

𝑋 − 𝑌 = 1000; the observed test statistic is

𝑧0 =
𝑋 − 𝑌√

𝜎2

1
/𝑛 + 𝜎2

2
/𝑚

=
1000√

5000
2/100 + 2000

2/80

= 1.82;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 > 1000

)
= 𝑃(𝑍 > 1.82) = 0.035,

and so we reject 𝐻0 when 𝛼 = 0.05, but not when 𝛼 = 0.01.
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When the Variances 𝜎2

1
and 𝜎2

2
are Unknown (Small Samples)

In this case, the modifications are:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑡0 > 𝑡𝛼(𝑛 + 𝑚 − 2)
𝐻1 : 𝜇1 < 𝜇2 𝑡0 < −𝑡𝛼(𝑛 + 𝑚 − 2)
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑡0 | > 𝑡𝛼/2

(𝑛 + 𝑚 − 2)

where

𝑡0 =
𝑋 − 𝑌√

𝑆2

𝑝/𝑛 + 𝑆2

𝑝/𝑚
and 𝑆2

𝑝 =
(𝑛 − 1)𝑆2

1
+ (𝑚 − 1)𝑆2

2

𝑛 + 𝑚 − 2

,

𝑡𝛼(𝑛 +𝑚 − 2) satisfies 𝑃(𝑇 > 𝑡𝛼(𝑛 +𝑚 − 2)) = 𝛼 , and 𝑇 ∼ 𝑡(𝑛 +𝑚 − 2).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑇 > 𝑡0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑇 < 𝑡0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑇 > 𝑡0), 𝑃(𝑇 < 𝑡0)}

Example A researcher wants to test whether, on average, a new fertilizer

yields taller plants. Plants were divided into two groups: a control group

treated with an old fertilizer and a study group treated with the new

fertilizer. The following data are obtained:

Sample Size Sample Mean Sample Variance

𝑛 = 8 𝑋 = 43.14 𝑆2

1
= 71.65

𝑚 = 8 𝑌 = 47.79 𝑆2

2
= 52.66

Test for 𝐻0 : 𝜇1 = 𝜇2 vs. 𝐻1 : 𝜇1 < 𝜇2.

The observed difference is 𝑋 − 𝑌 = −4.65 and the pooled sampled
variance is

𝑆2

𝑝 =
(𝑛 − 1)𝑆2

1
+ (𝑚 − 1)𝑆2

2

𝑛 + 𝑚 − 2

=
7(71.65) + 7(52.66)

8 + 8 − 2

= 62.155 = 7.88
2.

The observed test statistic is thus

𝑡0 =
𝑋 − 𝑌√

𝑆2

𝑝/𝑛 + 𝑆2

𝑝/𝑚
=

−4.65

7.88

√
1/8 + 1/8

= −1.18;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 < −4.65

)
= 𝑃(𝑇(14) < −1.18)

= 𝑃(𝑇(14) > 1.18) ∈ (0.1, 0.25)

(according to the table), and we do not reject 𝐻0 when 𝛼 = 0.05, or when

𝛼 = 0.01.
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When the Variances 𝜎2

1
and 𝜎2

2
are Unknown (Large Samples)

In this case, the modifications are:

Alternative Hypothesis Critical Region

𝐻1 : 𝜇1 > 𝜇2 𝑧0 > 𝑧𝛼
𝐻1 : 𝜇1 < 𝜇2 𝑧0 < −𝑧𝛼
𝐻1 : 𝜇1 ≠ 𝜇2 |𝑧0 | > 𝑧𝛼/2

where

𝑧0 =
𝑋 − 𝑌√

𝑆2

1
/𝑛 + 𝑆2

2
/𝑚

,

and 𝑧𝛼 satisfies 𝑃(𝑍 > 𝑧𝛼) = 𝛼 , for 𝑍 ∼ N(0, 1).

Alternative Hypothesis 𝑝−Value

𝐻1 : 𝜇1 > 𝜇2 𝑃(𝑍 > 𝑧0)
𝐻1 : 𝜇1 < 𝜇2 𝑃(𝑍 < 𝑧0)
𝐻1 : 𝜇1 ≠ 𝜇2 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}

Example Consider the same set-up as in the previous example, but

with larger sample sizes: 𝑛 = 𝑚 = 100. Now test for 𝐻0 : 𝜇1 = 𝜇2 against

𝐻1 : 𝜇1 < 𝜇2.

The observed difference is (still) −4.65. The observed test statistic is

𝑧0 =
𝑋 − 𝑌√

𝑆2

1
/𝑛 + 𝑆2

2
/𝑚

=
−4.65√

71.65/100 + 52.66/100

= −4.17;

the corresponding 𝑝−value is

𝑃
(
𝑋 − 𝑌 < −4.65

)
= 𝑃(𝑍 < −4.17) ≈ 0.0000;

and we reject 𝐻0 when either 𝛼 = 0.05 or 𝛼 = 0.01.

7.4.6 Difference of Two Proportions

As always, we can transfer these tests to proportions, using the normal

approximation to the binomial distribution.

For instance, to test for 𝐻0 : 𝑝1 = 𝑝2 against 𝐻1 : 𝑝1 ≠ 𝑝2 in samples

of size 𝑛1, 𝑛2, respectively, we use the observed sample difference of
proportions

𝑧0 =
�̂�1 − �̂�2 − 0√

�̂�(1 − �̂�)
√

1/𝑛1 + 1/𝑛2

,

where �̂� is the pooled proportion

�̂� =
𝑛1

𝑛1 + 𝑛2

�̂�1 +
𝑛2

𝑛1 + 𝑛2

�̂�2.

and the 𝑝−value is, as always, 2 · min{𝑃(𝑍 > 𝑧0), 𝑃(𝑍 < 𝑧0)}.
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7.4.7 Hypothesis Testing with R

There are built-in functions in R that allow for hypothesis testing.

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0 when 𝜎 is unknown

(two-sided 𝑡−test) using:

t.test(x,mu=mu.0)

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0 when 𝜎 is unknown

(right-sided 𝑡−test) using:

t.test(x,mu=mu.0,alternative="greater")

We test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0 when 𝜎 is unknown

(left-sided 𝑡−test) using:

t.test(x,mu=mu.0,alternative="less")

We test for 𝐻0 : 𝜇1 = 𝜇2 against𝐻1 : 𝜇1 ≠ 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample two-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE)

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample right-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE,alternative="greater")

We test for 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 < 𝜇2 in case of two

independent samples, when variances are unknown but equal

(two-sample left-sided 𝑡−test) using:

t.test(x,y,var.equal=TRUE,alternative="less")

For all these tests, we reject the null hypothesis 𝐻0 at significance level
𝛼 if the 𝑝−value of the test is below 𝛼.

25
25: Which means that the probability of

wrongly rejecting 𝐻0 when 𝐻0 is in fact

true is below 𝛼, usually taken to be 0.05

or 0.01).

If the 𝑝−value of the test is greater than the significance level 𝛼, then we

fail to reject the null hypothesis 𝐻0 at significance level 𝛼.
26

26: Which, it is worth recalling, is not the

same as accepting the null hypothesis.
Note that the 𝑝−value for the test will appear in the output, but it can also

be computed directly using the appropriate formula. The corresponding

95% confidence intervals also appear in the output.

Artificial Examples

1. Let’s say that we have a small dataset with 𝑛 = 7 observations:

x=c(4,5,4,6,4,4,5)

Let 𝜇𝑋 be the true mean of whatever distribution the sample came

from. Is it conceivable that 𝜇𝑋 = 5?

We can test for 𝐻0 : 𝜇𝑋 = 5 against 𝐻1 : 𝜇𝑋 ≠ 5 simply by calling:

t.test(x,mu=5)
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One Sample t-test

data: x

t = -1.4412, df = 6, p-value = 0.1996

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

3.843764 5.299093

sample estimates:

mean of x

4.571429

All the important information is in the output: the critical 𝑡−value

from Student’s 𝑇−distribution with 𝑛 − 1 = 6 degrees of freedom

𝑡∗ = −1.4412, the probability of wrongly rejecting 𝐻0 if it was

in fact true (𝑝−value = 0.1996), and the 95% confidence interval

(3.843764, 5.299093) for 𝜇𝑋 , whose point estimate is 𝑥 = 4.571429.

Since the 𝑝−value is greater than 𝛼 = 0.05, we fail to reject the null

hypothesis that 𝜇𝑋 = 5; there is not enough evidence in the data to

categorically state that 𝜇𝑋 ≠ 5.
27

27: Is it problematic that the sample size

𝑛 = 7 is small?

2. Let’s say that now we have a small dataset with 𝑛 = 9 observations:

y=c(1,2,1,4,3,2,4,3,2)

Let 𝜇𝑌 be the true mean of whatever distribution the sample came

from. Is it conceivable that 𝜇𝑌 = 5?

We can test for 𝐻0 : 𝜇𝑌 = 5 against 𝐻1 : 𝜇𝑌 ≠ 5 simply by calling:

t.test(y,mu=5)

One Sample t-test

data: y

t = -6.7823, df = 8, p-value = 0.0001403

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

1.575551 3.313338

sample estimates:

mean of x

2.444444

The 𝑝−value is 0.0001403, which is substantially smaller than

𝛼 = 0.05, and we reject the null hypothesis that the true mean is 5.

The test provides no information about what the true mean could

be, but the 95% confidence interval (1.575551, 3.313338) does: we

would expect 𝜇𝑌 ≈ 2.5.
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3. Is it conceivable that 𝜇𝑌 = 2.5?

Let’s run:

t.test(y,mu=2.5)

One Sample t-test

data: y

t = -0.14744, df = 8, p-value = 0.8864

alternative hypothesis: true mean is not equal to 2.5

95 percent confidence interval:

1.575551 3.313338

sample estimates:

mean of x

2.444444

With such a large 𝑝-value, we can definitely accept the null hypoth-

esis, right?
28

28: Alas, we cannot. All that we can say

is that we do not have enough evidence to

reject the null hypothesis 𝐻0 : 𝜇𝑌 = 2.5.

Teaching Dataset Suppose that a researcher wants to determine if, as

she believes, a new teaching method enables students to understand

elementary statistical concepts better than the traditional lectures given

in a university setting (based on [9]).

She recruits 𝑁 = 80 second-year students to test her claim. The students

are randomly assigned to one of two groups:

students in group 𝐴 are given the traditional lectures,

whereas students in group 𝐵 are taught using the new teaching

method.

After three weeks, a short quiz is administered to the students in order

to assess their understanding of statistical concepts.

The results are found in the teaching.csv dataset.

teaching <- read.csv("teaching.csv", header = TRUE)

colnames(teaching)<-c("ID","Group","Grade")

head(teaching)

ID Group Grade

1 B 75.5

2 B 77.5

3 A 73.5

4 A 75.0

5 B 77.0

6 A 79.0

Is there enough evidence to suggest that the new teaching is more effective

(as measured by test performance)?

https://www.data-action-lab.com/wp-content/uploads/2023/07/teaching.csv
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We can summarize the results (sample size, sample mean, sample vari-

ance) as follows:

library(dplyr)

counts.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = length)

means.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = mean)

variances.by.group = aggregate(x = teaching$Grade,

by = list(teaching$Group), FUN = var)

teaching.summary <- counts.by.group |>

full_join(means.by.group, by="Group.1" ) |>

full_join(variances.by.group, by="Group.1" )

colnames(teaching.summary) <- c("Group",

"Sample Size", "Sample Mean", "Sample Variance")

Group Sample Size Sample Mean Sample Variance

A 40 75.125 6.650641

B 40 79.000 5.538462

If the researcher assumes that both groups have similar background

knowledge prior to being taught (which she attempt to enforce by

randomising the group assignment), then the effectiveness of the teaching

methods may be compared using two hypotheses: the null hypothesis
𝐻0 and the alternative 𝐻1.

Let 𝜇𝑖 represent the true performance of method 𝑖. Since the researcher

wants to claim that the new method is more effective than the traditional

ones, it is most appropriate for her to use one-sided hypothesis testing

with

𝐻0 : 𝜇𝐴 ≥ 𝜇𝐵 against 𝐻1 : 𝜇𝐴 < 𝜇𝐵 .

The testing procedure is simple:

1. calculate an appropriate test statistic under 𝐻0;

2. reject𝐻0 in favour of𝐻1 if the test statistic falls in the critical region
(also called the rejection region) of an associated distribution, and

3. fail to reject 𝐻0 otherwise.

In this case, she uses a two-sample 𝑡−test. Assuming that variability in

two groups are roughly the same, the test statistic is given by:

𝑡0 =
𝑦𝐵 − 𝑦𝐴

𝑆𝑝

√
1

𝑁𝐴
+ 1

𝑁𝐵

,

where the pooled variance 𝑆2

𝑝 is

𝑆2

𝑝 =
(𝑁𝐴 − 1)𝑆2

𝐴
+ (𝑁𝐵 − 1)𝑆2

𝐵

𝑁𝐴 + 𝑁𝐵 − 2

.



388 7 Introductory Statistical Analysis

With her data, she obtains the 𝑡−statistic as follows. First, she identifies

the number of observations in each group:

(N.A = teaching.summary[1,2])

(N.B = teaching.summary[2,2])

(N=N.A+N.B)

[1] 40

[1] 40

[1] 80

Then, she computes the sample mean score in each group:

(y.bar.A = teaching.summary[1,3])

(y.bar.B = teaching.summary[2,3])

[1] 75.125

[1] 79

She computes the sample variance of the scores in each group:

(S2.A = teaching.summary[1,4])

(S2.B = teaching.summary[2,4])

[1] 6.650641

[1] 5.538462

She finally computes the sample pooled variance of scores:

(S2.P = ((N.A-1)*S2.A+(N.A-1)*S2.B)/(N.A+N.B-2))

[1] 6.094551

From which she obtains the 𝑡−statistic:

(t0 = (y.bar.B - y.bar.A) / sqrt(S2.P*(1/N.A+1/N.B)))

[1] 7.019656

The test statistic value is 𝑡0 = 7.02.

In order to reject or fail to reject the null hypothesis, she needs to compare

it against the critical value of the Student 𝑇 distribution with 𝑁 − 2 = 78

degrees of freedom at significance level 𝛼 = 0.05, say.
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Set the significance level at 0.05:

alpha=0.05

Be careful with the qt() function – the next call “looks” right, but it will

give you a critical value on the wrong side of the distribution’s mean:

(t.star.wrong = qt(alpha,N-2))

[1] -1.664625

This call, however, gives the correct critical value:

(t.star = qt(alpha,N-2, lower.tail=FALSE))

[1] 1.664625

The appropriate critical value is

𝑡∗ = 𝑡1−𝛼,𝑁−2 = 𝑡0.95,78 = 1.665.

Since 𝑡0 > 𝑡∗ at 𝛼 = 0.05, she rejects the null hypothesis 𝐻0 : 𝜇𝐴 ≥ 𝜇𝐵,

which is to say that she has enough evidence to support the claim that

the new teaching method is more effective than the traditional methods,

at 𝛼 = 0.05.

7.5 Additional Topics

We will finish this chapter by introducing and briefly discussing some

additional statistical analysis topics (ANOVA, ANCOVA, MANOVA, mul-

tivariate statistics, goodness-of-fit tests). Another common application,

linear regression and its variants, will receive a thorough treatment in

subsequent modules.

7.5.1 Analysis of Variance

Analysis of variance (ANOVA) is a statistical method that partitions

a dataset’s variability into explainable variability (model-based) and

unexplained variability (error) using various statistical models, to deter-

mine whether (multiple) treatment groups have significantly different

group means.
29

The total sample variability of a feature 𝑦 in a dataset 29: We will have more to say on the topic

in Chapter 11.
is defined as

SST =

𝑁∑
𝑘=1

(𝑦𝑘 − 𝑦)2 ,

where 𝑦 is the overall mean of the data.

Let us return to the teaching method example of Section 7.4.7.

The mean of the grades, for all students, is:
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(mu = mean(teaching$Grade))

[1] 77.0625

The plot below shows all the students’ scores, ordered by participant ID;

the overall mean is displayed for comparison.

plot(teaching$ID,teaching$Grade, xlab="ID", ylab="Grade")

abline(h = mu)

Since the assignment of ID is arbitrary (at least, in theory), we do not

observe any patterns – if we were to guess someone’s score with no

knowledge except for their participant ID, then picking the sample mean

is as good a guess as any other reasonable guesses.

Statistically speaking, this means that the null model

𝑦𝑖 , 𝑗 = 𝜇 + 𝜀𝑖 , 𝑗 ,

where 𝜇 is the overall mean, 𝑖 = 𝐴, 𝐵, and 𝑗 = 1, . . . , 40, does not explain

any of the variability in the student scores (as usual, 𝜀𝑖 , 𝑗 represents the

departure or noise from the model prediction).

But the students DID NOT all receive the same treatment: 40 randomly

selected students were assigned to group 𝐴, and the other 40 to group 𝐵,

and both group were taught using a different method.

When we add this information to the plot, we see that the two study

groups show different characteristics in term of their average scores.

library(ggplot2)

ggplot(teaching, aes(x=ID,y=Grade,colour=Group,shape=Group)) +

geom_point() +

geom_hline(aes(yintercept = y.bar.B),col="#00BFC4") +

geom_hline(aes(yintercept = y.bar.A),col="#F8766D") + theme_bw()
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With the group assignment information, we can refine our null model

into the treatment-based model

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 ,

where 𝜇𝑖 , 𝑖 = 𝐴, 𝐵 represent the group means. Using this model, we

can decompose SST into between-treatment sum of squares and error
(within-treatment) sum of squares as

SST =
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦)2 =
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 + 𝑦 𝑖 − 𝑦)2

=
∑
𝑖

𝑁𝑖(𝑦 𝑖 − 𝑦)2 +
∑
𝑖 , 𝑗

(𝑦𝑖 , 𝑗 − 𝑦 𝑖)2 = SSA + SSE

The SSA component looks at the difference between each of the treatment

means and the overall mean, which we consider to be explainable30
; the 30: That is to say, the treatment explains

part of the difference in the observed

group means.

SSE component, on the other hand, looks at the difference between each

observation and its own group mean, and is considered to be random.
31

31: As the spread about the group means

is fairly large (relatively-speaking), we sus-

pect that the treatment-based model on its

own does not capture all the variability in

the data.

Thus, SSA/SST × 100% of the total variability can be explained using a

treatment-based model. This ratio is called the coefficient of determina-
tion, denoted by 𝑅2

.

Formally, the ANOVA table incorporates a few more items – the table

below summarizes all the information that it contains.

Source Sum of Squares df Mean Square F0 p−value

Treatment SSA 𝑝 − 1 MSA = SSA/(𝑝 − 1) MSA/MSE 𝑃(𝐹0 > 𝐹∗)
Error SSE 𝑁 − 𝑝 MSE = SSE/(𝑁 − 𝑝)
Total SST 𝑁 − 1

The specific table for the teaching methodology dataset can be obtained

directly from the lm() function.
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model.lm <- lm(Grade ~ Group, data = teaching)

SS.Table <- anova(model.lm)

SS.Table

Source Sum of Squares df Mean Square F0 p−value

Treatment 300.31 1 300.31 49.28 7.2 × 10
−10

***

Error 475.38 78 6.095

Total 775.69 79

The test statistic 𝐹0 follows an 𝐹-distribution with (dftreat , dfe) = (1, 78)
degrees of freedom. At a significance level of 𝛼 = 0.05, the critical value

𝐹∗ = 𝐹0.95,1,78 = 3.96 is substantially smaller than the test statistic 𝐹0 =

49.28, implying that the two-treatment model is statistically significant.

This, in turn, means that the model recognises a statistically significant

difference between the students’ scores, based on the teaching methods.

(R2 = summary(model.lm)$r.squared)

[1] 0.3871566

The coefficient of determination 𝑅2
provides a way to measure the

model’s significance. From the ANOVA table for the teaching example,

we compute

𝑅2 =
SSA

SST

=
300.31

775.69

≈ 0.39,

which means that 39% of the total variation in the data can be explained

by the two-treatment model.

Is this good enough? That depends on the specifics of the situation (in

particular, on the researcher’s or the client’s needs).

Diagnostic Checks

As with most statistical procedures, ANOVA relies on certain assumptions

for its result to be valid. Recall that the model is given by

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 .

What assumptions are made?

The main assumption is that the error terms follow independently and

identically distributed (iid) normal distributions (i.e., 𝜀𝑖 , 𝑗
iid∼ N(0, 𝜎2)).

Assuming independence, we are required to verify three additional

assumptions:

normality of the error terms;

constant variance (within treatment groups), and

equal variances (across treatment groups).
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Normality of the errors can be tested visually with the help of a normal-
QQ plot, which compares the standardized residuals quantiles against

the theoretical quantiles of the standard normal distribution N(0, 1).32

32: A straight line indicates normality.

In other words, if the errors are normally distributed with mean 0

and variance 𝜎2
, we would expect that the 80 standardized residuals

𝑟𝑖 , 𝑗 =
𝜀𝑖 , 𝑗−0

𝜎 should behave as though they had been drawn from N(0, 1).

plot(model.lm, which = c(1,2,3,4))

The plots above show some departure in the lower tail, however, moderate

departure from normality is usually acceptable as long as it is mostly a

tail phenomenon.

To test the assumption of constant variance, we can run visual inspection

using:

residuals vs.fitted values, and/or

residuals vs.order/time.

The standardized residuals in both groups should be approximately

distributed according to N(0, 1). The plots also show that variability from

the mean in each treatment group is reasonably similar.
33

33: If a difference is apparent and we

cannot conclude that the variances are

constant across groups, we need to ap-

ply a variance stabilising transformation,

such as a logarithmic transformation or

square-root transformation before pro-

ceeding.

More formally, equality of variance is often tested for using Bartlett’s
test (when normality of the residuals is met) or the modified Levene’s
test (when it is not).
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Assuming that we felt the evidence of normal residuals was warranted

in the two-treatment model of the teaching dataset, we get a 𝑝−value of

0.57 for Bartlett’s test:

(B.T <- bartlett.test(Grade~Group, teaching))

Bartlett test of homogeneity of variances

data: Grade by Group

Bartlett’s K-squared = 0.32192, df = 1, p-value = 0.5705

Otherwise, we get a 𝑝−value of 0.76 for Levene’s test.

(L.T <- lawstat::levene.test(teaching$Grade,

teaching$Group, location="median",

correction.method="zero.correction"))

Modified robust Brown-Forsythe Levene-type test based

on the absolute deviations from the median with modified

structural zero removal method and correction factor

data: teaching$Grade

Test Statistic = 0.095106, p-value = 0.7586

In either case, the 𝑝−value falls above reasonable significance levels (0.05,

say), which means that we cannot reject the null hypothesis of equal

variance.

When there are 𝑝 > 2 treatment groups, ANOVA provides a test for

𝐻0 : 𝜇1 = · · · = 𝜇𝑝 vs. 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 for at least one 𝑖 ≠ 𝑗.

A significant 𝐹0 value indicates that there is at least one group which
differs from the others, but it does not specify which one does.

Specialized methods such as Scheffe’s method and Tukey’s test can be

used to identify the statistically different treatments.

Finally, while ANOVA can accommodate unequal treatment group sizes,

it is recommended to keep those sizes equal across all groups – this

makes the test statistic less sensitive to violations of the assumption of

equal variances across treatment groups, providing yet another reason

to involve the analysts/consultants in the data collection process.

7.5.2 Analysis of Covariance

In a previous section, we looked at the effectiveness of new teaching

method by assigning each group to a specific treatment and comparing

the mean test scores. A crucial assumption for that model is that subjects

in each group have similar background knowledge about statistics prior

to the three week lectures.
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If this assumption is wrong, however, we may be making incorrect

decisions based on the model. Even if each group had similar background

knowledge on average, there may be large variability from person-to-

person, masking the true treatment effect.

Paired Comparison

One way to avoid such subject-to-subject variability is to administer

both treatments to each individual, and then compare treatment effects by

looking at the difference in the outcomes. For instance, if a grocery chain

is interested in measuring the effectiveness of two advertising campaigns,

it could be reasonable to assume that there is a large variability in total

sales, as well as popular items sold, at each store.

It may then be preferable to run both campaigns in each store and analyze

the resulting data rather than to split the stores into two groups (in each

of which a different advertising campaign is run) and then to compare

the mean outcomes in the two groups.

Formally, let 𝑋𝑖 ,1 denote the total sales with campaign 𝐴 and 𝑋𝑖 ,2 the

total sales with campaign 𝐵. The quantity of interest is the difference
𝐷𝑖 = 𝑋𝑖 ,1 − 𝑋𝑖 ,2 for each store 𝑖 = 1, . . . , 𝑁 .

Assuming that the differences 𝐷𝑖 follow an iid normal distribution with

mean 𝛿 and variance 𝜎2

𝑑
, then we test for

𝐻0 : 𝛿 = 0 against 𝐻1 : 𝛿 ≠ 0

using the test statistic

𝑡0 =
√
𝑁
𝐷

𝑠𝑑
,

which follows a Student’s 𝑡 distribution with 𝑁 − 1 degrees of freedom;

thus we reject 𝐻0 if the observed test statistic 𝑡0 has 𝑝-value less than the

significance level 𝛼/2.

ANOVA vs. ANCOVA

ANOVA compares multiple group means and tests whether any of the

group means differ from the rest, by breaking down the total variability

into a treatment (explainable) variability component and an error (un-

explained) variability component, and building a ratio 𝐹0 to determine

whether or not to reject 𝐻0.

Analysis of covariance (ANCOVA) introduces concomitant variables
(or covariates) to the ANOVA model, splitting the total variability into 3

components: SSA, SScon, and SSE, aiming to reduce error variability.

The choice of covariates is thus crucial in running a successful ANCOVA.

In order to be useful, a concomitant variable must be related to response

variable in some way, otherwise it not only fails to reduce error variability,

but it also increases the model complexity:

in the teaching method example, we could consider administering

a pre-study test to measure the prior knowledge level of each

participant and use this score as a concomitant variable;
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in the advertising campaign example, we could have used the

previous month’s sales as a covariate;

in medical studies, we could use the age and weight of subjects,

say.

Importantly, concomitant variables should not be affected by treatments.

As an example, suppose that the patients in a medical study were asked:

How strongly do you believe that you were given actual

medication rather than a placebo?

If the treatment is indeed effective, then a participant’s response to this

question could be markedly different in the treatment group than in the

placebo group.
34

34: The medication may have strong side-

effects which cannot be ignored.

This means that true treatment effect may be masked by concomitant

variable due to unequal effects on treatment groups. Note that qualitative
covariates (such as gender, say) are not part of the ANCOVA framework –

indeed, such covariates create new ANOVA treatment groups instead.

When moving from an ANOVA to an ANCOVA model, the error variabil-

ity is further split into a pure error and a covariate component, while the

treatment variability remains unchanged.

ANCOVA Model and Assumptions

Suppose that we are testing the effect of 𝑝 treatments, with 𝑁𝑗 subjects

in each group. Then the ANCOVA model takes the form

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑗 + 𝛾(𝑥𝑖 , 𝑗 − 𝑥) + 𝜀𝑖 , 𝑗

where

𝑦𝑖 , 𝑗 is the response of the 𝑖th subject in the 𝑗th treatment group;

𝜇 is the overall mean;

𝜏𝑗 is the 𝑗th treatment effect, subject to a constraint

𝑝∑
𝑗=1

𝜏𝑗 = 0;

𝛾 is the coefficient for the covariate effect;
(𝑥𝑖 , 𝑗 − 𝑥) is the covariate value of the 𝑖th subject in the 𝑗th treatment

group, adjusted by the mean, and

𝜀𝑖 , 𝑗 is the error of 𝑖th subject in the 𝑗th treatment group.

Additionally, four assumptions must be satisfied:

independence and normality of residuals – the residuals follow

an 𝑖𝑖𝑑 normal distribution with mean of 0 and variance 𝜎2

𝜀;

homogeneity of residual variances – the variance of the residuals

is uniform across treatment groups;

homogeneity of regression slopes – the regression effect (slope) is

uniform across treatment groups, and

linearity of regression – the regression relationship between the

response and the covariate is linear.



7.5 Additional Topics 397

The first of these assumptions can be tested with the help of a QQ-plot

and a scatter-plot of residuals vs.fitted values, while the second may use

the Bartlett or the Levene test. The final assumption is not as crucial as

the other three assumptions, however. Various remedial methods can be

applied should any of these assumptions fail.

The third assumption, however, is crucial to the ANCOVA model; it

can be tested with the equal slope test, which requires an ANCOVA

regression with an additional interaction term 𝑥 × 𝜏. If the interaction is

not significant, the third assumption is satisfied.

In the event that the interaction term is statistically significant, a different

approach (e.g. moderated regression analysis, mediation analysis) is

required since using the original ANCOVA model is not prescribed.

An in-depth application of an ANCOVA model can be found in [2].

7.5.3 Basics of Multivariate Statistics

Up to this point, we have only considered situations where the response

is univariate. In applications, the situation often calls for multivariate
responses, where the response variables are thought to have some

relationship to one another (e.g., a correlation structure).

It remains possible to analyze each response variable independently, but

the dependence structure can be exploited to make joint (or simultaneous)

inferences.

Properties of the Multivariate Normal Distribution

The probability density function of a multi-dimensional random vector

X ∈ ℝ𝑝
that follows a multivariate normal distribution with mean

vector 𝝁 and covariance matrix Σ, denoted by X ∼ N𝑝(𝝁,Σ), is given by

𝑓 (X) = 1

(2𝜋)𝑝/2
det(Σ)1/2

exp

(
−1

2

(X − 𝝁)⊤Σ−1(X − 𝝁)
)
,

where

Σ =


𝜎1,1 𝜎1,2 · · · 𝜎1,𝑝

𝜎2,1 𝜎2,2 · · · 𝜎2,𝑝

...
...

. . .
...

𝜎𝑝,1 𝜎𝑝,2 · · · 𝜎𝑝,𝑝


.

For such an X, the following properties hold:

1. any linear combination of its components are normally distributed;

2. all subsets of components follow a (modified) multivariate normal

distribution;

3. a diagonal covariance matrix implies the independence of its

components;

4. conditional distributions of components follow a normal distribu-

tion, and

5. the quantity (X − 𝝁)⊤Σ−1(X − 𝝁) follows a 𝜒2

𝑝 .
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These properties make the multivariate normal distribution attractive,

from a theoretical point of view (if not always entirely realistic).

For instance:

using property 1, we can use contrasts to test which components

are distinct from the others;

property 5 is the multivariate analogue of the square of a stan-

dard normal random variable 𝑍 ∼ N(0, 1) following a 𝑍2 ∼ 𝜒2

1

distribution;

but two univariate normal random variables with zero covariance

are not necessarly independent (the joint p.d.f. of two such variables

is not necessarily the p.d.f. of a multivariate normal distribution).

Hypothesis Testing for Mean Vectors

When the sample comes from a univariate normal distribution, we can

test

𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ≠ 𝜇0

by using a 𝑡−statistic. Analogously, if the sample comes from a 𝑝−variate

normal distribution, we can test

𝐻0 : 𝝁 = 𝝁0 against 𝐻1 : 𝝁 ≠ 𝝁0

by using Hotelling’s T2 test statistic

𝑇2 = 𝑁 · (X − 𝝁)⊤S−1(X − 𝝁),

where X denotes the sample mean, S the sample covariance matrix, and

𝑁 the sample size.

Under 𝐻0,

𝑇2 ∼ (𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝 .

Thus, we do not reject 𝐻0 at a significance level of 𝛼 if

𝑁 · (X − 𝝁0)⊤S−1(X − 𝝁0) ≤
(𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝(𝛼)

and reject it otherwise.

Confidence Region and Simultaneous Confidence Intervals for Mean
Vectors

In the 𝑝−variate normal distribution, any 𝝁 that satisfies the condition

𝑁 · (X − 𝝁)⊤S−1(X − 𝝁) ≤ (𝑁 − 1)𝑝
(𝑁 − 𝑝) 𝐹𝑝,𝑁−𝑝(𝛼)

resides inside a (1 − 𝛼)100% confidence region (an ellipsoid in this

case).
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Simultaneous Bonferroni confidence intervals with overall error rate 𝛼
can also be derived, using

(𝑥 𝑗 − 𝜇𝑗) ± 𝑡𝑁−1(𝛼/𝑝)
√
𝑠 𝑗 , 𝑗

𝑁
for 𝑗 = 1, . . . , 𝑝.

Another approach is to use Hotelling’s T2 simultaneous confidence
intervals, given by

(𝑥 𝑗 − 𝜇𝑗) ±

√
𝑝(𝑁 − 1)
𝑁 − 𝑝 𝐹𝑝,𝑁−𝑝(𝛼)

√
𝑠 𝑗 , 𝑗

𝑁
for 𝑗 = 1, . . . , 𝑝.

Figure 7.20 shows these regions for a bivariate normal random sample.

Note that the Hotelling’s 𝑇2
simultaneous confidence intervals form

a rectangle (in grey) that confines the confidence region, while the

Bonferroni confidence intervals (in blue) are slightly narrower.

Figure 7.20: Confidence region for a bi-

variate normal random sample (sample

not shown).

Given that all the components of the mean vector are correlated (since

the covariance matrix is generally non-diagonal), the confidence region

should be used if the goal is to study the plausibility of the mean vector
as a whole, while Bonferroni confidence intervals may be more suitable

when component-wise confidence intervals are of needed.

Multivariate Analysis of Variance

ANOVA is often used as a first attempt to determine whether the means

from every sub-population are identical.
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ANOVA can test means from more than two populations; the multivariate
ANOVA (MANOVA) is quite simply a multivariate extension of ANOVA

which tests whether the mean vectors from all sub-populations are

identical.

Assume there are 𝐼 sub-populations in the population, from each of

which 𝑁𝑖 𝑝−dimensional responses are drawn, for 𝑖 = 1, . . . , 𝐼.

Each observation can be expressed as:

X𝑖 , 𝑗 = 𝝁 + 𝝉𝑖 + 𝜺𝑖 𝑗 ,

where 𝝁 is the overall mean vector, 𝝉𝑖 is the 𝑖th population-specific
treatment effect, and 𝜺𝑖 𝑗 is the random error, which follows a 𝑁𝑝(0,Σ)
distribution.

It is important to note that the covariance matrix Σ is assumed to be the

same for each sub-population, and that

𝐼∑
𝑖=1

𝑁𝑖𝝉𝑖 = 0

to ensure that the estimates are uniquely identifiable.

To test the hypothesis

𝐻0 : 𝝉1 = · · · = 𝝉𝐼 = 0 against 𝐻1 : some 𝝉𝑖 ≠ 0,

we decompose the total sum of squares and cross-products SSPtot into

SSPtot = SSPtreat + SS e.

Based on this decomposition, we compute the test statistic known as

Wilks’ lambda
Λ∗ =

|W|
|B + W| ,

where B,W are as in the MANOVA table below:

Source SSP df MSP F0

Treatment B 𝐼 − 1 B/(𝐼 − 1) W−1B
Error W

∑𝐼
𝑖=1
𝑁𝑖 − 𝐼 W/∑𝐼

𝑖=1
(𝑁𝑖 − 1)

Total B + W
∑𝐼
𝑖=1
𝑁𝑖 − 1 (B + W)/(∑𝐼

𝑖=1
𝑁𝑖 − 1)

We have

B =

𝐼∑
𝑖=1

𝑁𝑖(X𝑖 − X)(X𝑖 − X)⊤

and

W =

𝐼∑
𝑖=1

𝑛𝑖∑
𝑗=1

(X𝑖 𝑗 − X𝑖)(X𝑖 𝑗 − X𝑖)⊤;

we reject 𝐻0 if Λ∗
is below some pre-agreed upon threshold, which

depends on 𝑝, 𝐼, and 𝑁𝑖 , 𝑖 = 1, . . . , 𝐼.
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7.5.4 Goodness-of-Fit Test

A (fictitious) 2017 survey asked a sample of 𝑁 = 200 adults between the

age of 25 to 35 about their highest educational achievement:

Year <HS HS CU CU+
2017 16 55 83 46

In a 1997 survey, it was also found that:

Year <HS HS CU CU+
1997 13% 32% 37% 18%

Based on the result of this survey, is there sufficient evidence to believe

that educational backgrounds of the population have changed between

1997 and 2007?
35

35: Since each respondent’s educational

achievement can only be classified into

one of these categories, they are mutually
exclusive. Furthermore, these categories

cover all possibilities on the educational

front, so they are also exhaustive.

We can view the distribution of educational achievements as being

multinomial. For such a distribution, with parameters 𝑝1 , · · · , 𝑝𝑘 , the

expected frequency in each category is 𝑚 𝑗 = 𝑁𝑝 𝑗 .

Let 𝑂 𝑗 denote the observed frequency for the 𝑗th category. If there has

been no real change since 1997, we would expect the sum of squared

differences between the observed 2017 frequencies and the expected

frequencies based on 1997 data to be small.

We can use this information to test the goodness-of-fit between the

observations and the expected frequencies via Pearson’s 𝜒2
test statistic

𝑋2 =

𝑘∑
𝑗=1

(𝑂 𝑗 − 𝑚 𝑗 ,0)2

𝑚 𝑗 ,0
∼ 𝜒2(𝑘 − 1).

In the above example, the hypotheses of interest are

𝐻0 : p = p∗ = (0.13, 0.32, 0.37, 0.18) vs 𝐻1 : p ≠ p∗.

The table below summarizes the information under 𝐻0.

Category 𝑂 𝑗 𝑝 𝑗 ,0 𝑚 𝑗 ,0 (𝑂 𝑗 − 𝑚 𝑗 ,0)2/𝑚 𝑗 ,0

1 16 0.13 26 3.846

2 55 0.32 64 1.266

3 83 0.37 74 1.095

4 46 0.18 36 2.778

Total 200 1 200 7.815

Pearson’s test statistic is𝑋2 = 7.815, with an associated 𝑝−value of 0.0295,

which implies that there is enough statistical evidence (at the 𝛼 = 0.05

level) to accept that the population’s educational achievements have

changed over the last 20 years.



402 7 Introductory Statistical Analysis

7.6 Exercises

1. Consider a sample of 𝑛 = 10 observations displayed in ascending order:

15, 16, 18, 18, 20, 20, 21, 22, 23, 75.

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

2. The daily number of accidents in Sydney over a 40-day period are provided below:

6, 3, 2, 24, 12, 3, 7, 14, 21, 9, 14, 22, 15, 2, 17, 10, 3, 9, 4, 7, 7, 31, 7, 18, 6, 8, 2, 3, 2, 17, 7, 7, 21, 13, 23, 1, 11, 9, 9, 25.

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

3. Repeat the previous question when the “31” is replaced by a “130”.

4. The grades in a class are shown below.

80, 73, 83, 60, 49, 96, 87, 87, 60, 53, 66, 83, 32, 80, 66

90, 72, 55, 76, 46, 48, 69, 45, 48, 77, 52, 59, 97, 76, 89

73, 73, 48, 59, 55, 76, 87, 55, 80, 90, 83, 66, 80, 97, 80

55, 94, 73, 49, 32, 76, 57, 42, 94, 80, 90, 90, 62, 85, 87

97, 50, 73, 77, 66, 35, 66, 76, 90, 73, 80, 70, 73, 94, 59

52, 81, 90, 55, 73, 76, 90, 46, 66, 76, 69, 76, 80, 42, 66

83, 80, 46, 55, 80, 76, 94, 69, 57, 55, 66, 46, 87, 83, 49

82, 93, 47, 59, 68, 65, 66, 69, 76, 38, 99, 61, 46, 73, 90,

66, 100, 83, 48, 97, 69, 62, 80, 66, 55, 28, 83, 59, 48, 61

87, 72, 46, 94, 48, 59, 69, 97, 83, 80, 66, 76, 25, 55, 69

76, 38, 21, 87, 52, 90, 62, 73, 73, 89, 25, 94, 27, 66, 66

76, 90, 83, 52, 52, 83, 66, 48, 62, 80, 35, 59, 72, 97, 69

62, 90, 48, 83, 55, 58, 66, 100, 82, 78, 62, 73, 55, 84, 83

66, 49, 76, 73, 54, 55, 87, 50, 73, 54, 52, 62, 36, 87, 80, 80

a) Compute the sample mean and sample variance.

b) Find the 5-point summary of the data. Is the distribution skewed?

c) Are there any likely outliers in the sample? If so, indicate their values.

d) Build and display the sample’s boxplot chart.

e) Build and display a sample histogram.

f) Based on your analysis, how well did the class do?

5. Consider the following dataset:

2.6, 3.7, 0.8, 9.6, 5.8,−0.8, 0.7, 0.6, 4.8, 1.2, 3.3, 5.0, 3.7, 0.1,−3.1, 0.3.

What are the median and the interquartile range of the sample?
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f) The following charts show a histogram and a boxplot for two samples, 𝐴 and 𝐵. Based on these charts,

which of 𝐴 and/or 𝐵 (or neither) is likely to arise from a normal population?

f) Consider the following dataset:

12, 14, 6, 10, 1, 20, 4, 8.

What are its median and its first quartile?

f) A manufacturer of fluoride toothpaste regularly measures the concentration of of fluoride in the toothpaste

to make sure that it is within the specifications of 0.85 − 1.10 mg/g. [5]

a) Build a relative frequency histogram of the data (a histogram with area = 1).

b) Compute the data’s mean 𝑥 and its standard deviation 𝑠𝑥 .

c) The mean and the variance can also be approximated as follows. Let 𝑢𝑖 be the class mark for each

of the histogram’s classes (the midpoint along the rectangles’ widths), 𝑛 be the total number of

observations, and 𝑘 be the number of classes. Then

𝑢 =
1

𝑛

𝑘∑
𝑖=1

𝑓𝑖𝑢𝑖 and 𝑠2

𝑢 =
1

𝑛 − 1

𝑓𝑖(𝑢𝑖 − 𝑢)2.

Compute 𝑢 and 𝑠𝑢 . How do they compare with 𝑥 and 𝑠𝑥?

d) Provide a the 5−point summary of the data, as well as the interquartile range IQR.

e) Display this information as a boxplot chart.

f) Compute the midrange 1

2
(𝑄0 +𝑄4), the trimean 1

4
(𝑄1 + 2𝑄2 +𝑄3), and the range 𝑄4 −𝑄0 for the

fluoride data.

f) The compressive strength of concrete is normally distributed with mean 𝜇 = 2500 and standard deviation

𝜎 = 50. A random sample of size 5 is taken. What is the standard error of the sample mean?
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f) A new cure has been developed for a certain type of cement that should change its mean compressive

strength. It is known that the standard deviation of the compressive strength is 130 kg/cm
2

and that we

may assume that it follows a normal distribution. 9 chunks of cement have been tested and the observed

sample mean is 𝑋 = 4970. Find the 95% confidence interval for the mean of the compressive strength.

f) Consider the same set-up as in the previous question, but now 100 chunks of cement have been tested and

the observed sample mean is 𝑋 = 4970. Find the 95% confidence interval for the mean of the compressive

strength.

f) Consider the same set-up as in two questions ago, but now we do not know the standard deviation of the

normal distribution. 9 chunks of cement have been tested, and the measurements are

5001, 4945, 5008, 5018, 4991, 4990, 4968, 5020, 5003.

Find the 95% confidence interval for the mean of the compressive strength.

f) A steel bar is measured with a device which a known precision of 𝜎 = 0.5mm. Suppose we want to

estimate the mean measurement with an error of at most 0.2mm at a level of significance 𝛼 = 0.05. What

sample size is required? Assume normality.

f) In a random sample of 1000 houses in the city, it is found that 228 are heated by oil. Find a 99% C.I. for the

proportion of homes in the city that are heated by oil.

f) Past experience indicates that the breaking strength of yarn used in manufacturing drapery material is

normally distributed and that 𝜎 = 2 psi. A random sample of 15 specimens is tested and the average

breaking strength is found to be 𝑥 = 97.5 psi.

a) Find a 95% confidence interval on the true mean breaking strength.

b) Find a 99% confidence interval on the true mean breaking strength.

b) The diameter holes for a cable harness follow a normal distribution with 𝜎 = 0.01 inch. For a sample of

size 10, the average diameter is 1.5045 inches.

a) Find a 99% confidence interval on the mean hole diameter.

b) Repeat this for 𝑛 = 100.

b) A journal article describes the effect of delamination on the natural frequency of beams made from

composite laminates. The observations are as follows:

230.66, 233.05, 232.58, 229.48, 232.58, 235.22.

Assuming that the population is normal, find a 95% confidence interval on the mean natural frequency.

b) A textile fibre manufacturer is investigating a new drapery yarn, which the company claims has a mean

thread elongation of 𝜇 = 12 kilograms with standard deviation of 𝜎 = 0.5 kilograms.

a) What should be the sample size so that with probability 0.95 we will estimate the mean thread

elongation with error at most 0.15 kg?

b) What should be the sample size so that with probability 0.95 we will estimate the mean thread

elongation with error at most 0.05 kg?

b) An article in Computers and Electrical Engineering considered the speed-up of cellular neural networks

(CNN) for a parallel general-purpose computing architecture. Various speed-ups are observed:

3.77, 3.35, 4.21, 4.03, 4.03, 4.63, 4.63, 4.13, 4.39, 4.84, 4.26, 4.60.

Assume that the population is normally distributed. Find a 99% C.I. for the mean speed-up.

b) An engineer measures the weight of 𝑛 = 25 pieces of steel, which follows a normal distribution with

variance 16. The average observed weight for the sample is 𝑥 = 6. What is the two-sided 95% C.I. for the

mean 𝜇?
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b) The brightness of television picture tube can be evaluated by measuring the amount of current required to

achieve a particular brightness level. An engineer thinks that one has to use 300 microamps of current

to achieve the required brightness level. A sample of size 𝑛 = 20 has been taken to verify the engineer’s

hypotheses.

a) Formulate the null and the alternative hypotheses (use a two-sided test alternative).

b) For the sample of size 𝑛 = 20 we obtain 𝑥 = 319.2 and 𝑠 = 18.6. Test the hypotheses from part a)

with 𝛼 = 5% by computing a critical region. Calculate the 𝑝-value.

c) Use the data from part b) to construct a 95% confidence interval for the mean required current.

c) We say that a particular production process is stable if it produces at most 2% defective items. Let 𝑝 be the

true proportion of defective items.

a) We sample 𝑛 = 200 items at random and consider hypotheses testing about 𝑝. Formulate null and

alternative hypotheses.

b) What is your conclusion of the above test, if one observes 3 defective items out of 200? Note: you

have to choose an appropriate confidence level 𝛼.

b) Ten engineers’ knowledge of basic statistical concepts was measured on a scale of 0 − 100, before and after

a short course in statistical quality control. The results are:

Engineer 1 2 3 4 5 6 7 8 9 10

Before 𝑋1𝑖 43 82 77 39 51 66 55 61 79 43

After 𝑋2𝑖 51 84 74 48 53 61 59 75 82 53

Let 𝜇1 and 𝜇2 be the mean mean score before and after the course. Perform the test 𝐻0 : 𝜇1 = 𝜇2 against

𝐻𝐴 : 𝜇1 < 𝜇2. Use 𝛼 = 0.05.

b) It is claimed that 15% of a certain population is left-handed, but a researcher doubts this claim. They decide

to randomly sample 200 people and use the anticipated small number to provide evidence against the

claim of 15%. Suppose 22 of the 200 are left-handed. Compute the 𝑝−value associated with the hypothesis

(assuming a binomial distribution), and provide an interpretation.

b) A child psychologist believes that nursery school attendance improves children’s social perceptiveness

(SP). They use 8 pairs of twins, randomly choosing one to attend nursery school and the other to stay at

home, and then obtains scores for all 16. In 6 of the 8 pairs, the twin attending nursery school scored better

on the SP test. Compute the 𝑝−value associated with the hypothesis (assuming a binomial distribution),

and provide an interpretation.

b) A certain power supply is stated to provide a constant voltage output of 10kV. Ten measurements are

taken and yield the sample mean of 11kV. Formulate a test for this situation. Should it be 1−sided or

2−sided? What value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) A company is currently using titanium alloy rods it purchases from supplier 𝐴. A new supplier (supplier

𝐵) approaches the company and offers the same quality (at least according to supplier B’s claim) rods at

a lower price. The company’s decision makers are interested in the offer. At the same time, they want

to make sure that the safety of their product is not compromised. They randomly selects ten rods from

each of the lots shipped by suppliers 𝐴 and 𝐵 and measures the yield strengths of the selected rods. The

observed sample mean and sample standard deviation are 651 MPa and 2 MPa for supplier’s 𝐴 rods,

respectively, and the same parameters are 657 MPa and 3 MPa for supplier B’s rods. Perform the test

𝐻0 : 𝜇𝐴 = 𝜇𝐵 against 𝜇𝐴 ≠ 𝜇𝐵. Use 𝛼 = 0.05. Assume that the variances are equal but unknown.

b) The deflection temperature under load for two different types of plastic pipe is being investigated. Two

random samples of 15 pipe specimens are tested, and the deflection temperatures observed are as follows:

206, 188, 205, 187, 194, 193, 207, 185, 189, 213, 192, 210, 194, 178, 205.

177, 197, 206, 201, 180, 176, 185, 200, 197, 192, 198, 188, 189, 203, 192.

Does the data support the claim that the deflection temperature under load for type 1 pipes exceeds that

of type 2? Calculate the 𝑝-value, using 𝛼 = 0.05, and state your conclusion.
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b) It is claimed that the breaking strength of yarn used in manufacturing drapery material is normally

distributed with mean 97 and 𝜎 = 2 psi. A random sample of nine specimens is tested and the average

breaking strength is found to be 𝑋 = 98 psi. Formulate a test for this situation. Should it be 1−sided or

2−sided? What value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) A civil engineer is analyzing the compressive strength of concrete. It is claimed that its mean is 80 and

variance is known to be 2. A random sample of size 60 yields the sample mean 59. Formulate a test for this

situation. Should it be 1−sided or 2−sided? What value of 𝛼 should you use? What conclusion does the

test and the sample yield?

b) The sugar content of the syrup in canned peaches is claimed to be normally distributed with mean 10 and

variance 2. A random sample of 𝑛 = 10 cans yields a sample mean 11. Another random sample of 𝑛 = 10

cans yields a sample mean 9. Formulate a test for this situation. Should it be 1−sided or 2−sided? What

value of 𝛼 should you use? What conclusion does the test and the sample yield?

b) The mean water temperature downstream from a power water plant cooling tower discharge pipe should

be no more than 100F. Past experience has indicated that that the standard deviation is 2F. The water

temperature is measured on nine randomly chosen days, and the average temperature is found to be 98F.

Formulate a test for this situation. Should it be 1−sided or 2−sided? What value of 𝛼 should you use?

What conclusion does the test and the sample yield?

b) We are interested in the mean burning rate of a solid propellant used to power aircrew escape systems.

We want to determine whether or not the mean burning rate is 50 cm/second. A sample of 10 specimens

is tested and we observe 𝑋 = 48.5. Assume normality with 𝜎 = 2.5.

b) Ten individuals have participated in a diet modification program to stimulate weight loss. Their weight

both before and after participation in the program is shown below:

Before 195, 213, 247, 201, 187, 210, 215, 246, 294, 310

After 187, 195, 221, 190, 175, 197, 199, 221, 278, 285

Is there evidence to support the claim that this particular diet-modification program is effective in

producing mean weight reduction? Use 𝛼 = 0.05. Compute the associated 𝑝−value.

b) We want to test the hypothesis that the average content of containers of a particular lubricant equals 10L

against the two-sided alternative. The contents of a random sample of 10 containers are 10.2, 9.7, 10.1,

10.3, 10.1, 9.8, 9.9, 10.4, 10.3, 9.5. Find the 𝑝−value of this two-sided test. Assume that the distribution of

contents is normal. Note that if 𝑥𝑖 represent the measurements,

∑
10

𝑖=1
𝑥2

𝑖
= 1006.79.

b) An engineer measures the weight of 𝑛 = 25 pieces of steel, which follows a normal distribution with

variance 16. The average weight for the sample is 𝑋 = 6. They want to test for𝐻0 : 𝜇 = 5 against𝐻1 : 𝜇 > 5.

What is the 𝑝−value for the test?

b) The thickness of a plastic film (in mm) on a substrate material is thought to be influenced by the temperature

at which the coating is applied. A completely randomized experiment is carried out. 11 substrates are

coated at 125F, resulting in a sample mean coating thickness of 𝑥1 = 103.5 and a sample standard deviation

of 𝑠1 = 10.2. Another 11 substrates are coated at 150F, for which 𝑥2 = 99.7 and 𝑠2 = 11.7 are observed. We

want to test equality of means against the two-sided alternative. Assume that population variances are

unknown but equal. The value of the appropriate test statistics and the decision are (for 𝛼 = 0.05):
b) The following output was produced with t.test command in R.

One Sample t-test

data: x

t = 2.0128, df = 99, p-value = 0.02342

alternative hypothesis: true mean is greater than 0

Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

b) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 ≠ 0;

c) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

d) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 < 0;

e) The type I error is 0.02342.



7.6 Exercises 407

e) A pharmaceutical company claims that a drug decreases a blood pressure. A physician doubts this claim.

They test 10 patients and records results before and after the drug treatment:

Before=c(140,135,122,150,126,138,141,155,128,130)

After=c(135,136,120,148,122,136,140,153,120,128)

At the R command prompt, they type:

test.t(Before,After,alternative="greater")

data: Before and After

t = 0.5499, p-value = 0.2946

alternative hypothesis: true

difference in means is

greater than 0

sample estimates: mean of x mean of y

136.5 133.8

Their assistant claims that the command should instead be:

test.t(Before,After,paired=TRUE,alternative="greater")

data: Before and After t = 3.4825,

df = 9, p-value = 0.003456

alternative hypothesis: true

difference in means is

greater than 0

sample estimates: mean of the differences

2.7

Which answer is best?

a) The assistant uses the correct command. There is not enough evidence to justify that the new drug

decreases blood pressure;

b) The assistant uses the correct command. There is enough evidence to justify that the new drug

decreases blood pressure for any reasonable choice of 𝛼;

c) The physician uses the correct command. There is not enough evidence to justify that the new drug

decreases blood pressure;

d) The physician uses the correct command. There is enough evidence to justify that the new drug

decreases blood pressure for any reasonable choice of 𝛼;

e) Nobody is correct, 𝑡−tests should not be used here.

e) A company claims that the mean deflection of a piece of steel which is 10ft long is equal to 0.012ft. A buyer

suspects that it is bigger than 0.012ft. The following data 𝑥𝑖 has been collected:

0.0132, 0.0138, 0.0108, 0.0126, 0.0136,

0.0112, 0.0124, 0.0116, 0.0127, 0.0131.

Assuming normality and that

∑
10

𝑖=1
𝑥2

𝑖
= 0.0016, what are the 𝑝−value for the appropriate one-sided test

and the corresponding decision?

a) 𝑝 ∈ (0.05, 0.1) and reject 𝐻0 at 𝛼 = 0.05.

b) 𝑝 ∈ (0.05, 0.1) and do not reject 𝐻0 at 𝛼 = 0.05.

c) 𝑝 ∈ (0.1, 0.25) and reject 𝐻0 at 𝛼 = 0.05.

d) 𝑝 ∈ (0.1, 0.25) and do not reject 𝐻0 at 𝛼 = 0.05.
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d) In an effort to compare the durability of two different types of sandpaper, 10 pieces of type 𝐴 sandpaper

and 11 pieces of type 𝐵 sandpaper were subjected to treatment by a machine which measures abrasive

wear. We have the following observations:

𝑥𝐴 : 27, 26, 24, 29, 30, 26, 27, 23, 28, 27; 𝑥𝐵 : 24, 23, 22, 27, 24, 21, 24, 25, 24, 23, 20

Note that

∑
𝑥𝐴,𝑖 = 267,

∑
𝑥𝐵,𝑖 = 257,

∑
𝑥2

𝐴,𝑖
= 7169,

∑
𝑥2

𝐵,𝑖
= 6041. Assuming normality and equality of

variances in abrasive wear for 𝐴 and 𝐵, we want to test for equality of mean abrasive wear for 𝐴 and 𝐵.

What is the appropriate 𝑝−value for this test?

d) The following output was produced with a t.test command in R.

t = 32.9198, df = 999, p-value < 2.2e-16, alternative hypothesis: true mean is not equal to 0

Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

b) If the type I error is 0.05, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 ≠ 0;

c) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 > 0;

d) If the type I error is 0.01, then we reject 𝐻0 : 𝜇 = 0 in favour of 𝐻1 : 𝜇 < 0.

d) A medical team wants to test whether a particular drug decreases diastolic blood pressure. Nine people

have been tested. The team measured blood pressure before (𝑋) and after (𝑌) applying the drug. The

corresponding means were 𝑋 = 91, 𝑌 = 87. The sample variance of the differences was 𝑆2

𝐷
= 25. What is

the 𝑝−value for the appropriate one-sided test?

d) A researcher studies a difference between two programming languages. Twelve experts familiar with both

languages were asked to write a code for a particular function using both languages and the time for

writing those codes was registered. The observations are as follows.

Expert 01 02 03 04 05 06 07 08 09 10 11 12

Lang 1 17 16 21 14 18 24 16 14 21 23 13 18

Lang 2 18 14 19 11 23 21 10 13 19 24 15 29

Construct a 95% C.I. for the mean difference between the first and the second language. Do we have any

evidence that the average time to write a function is shorter in one of the languages?

d) Consider a proportion of recaptured moths in the light-coloured (𝑝1) and the dark-coloured (𝑝2) populations.

Among the 𝑛1 = 137 light-coloured moths, 𝑦1 = 18 were recaptured; among the 𝑛2 = 493 dark-coloured

moths, 𝑦2 = 131 were recaptured. Is there a significant difference between the proportion of recaptured

moths in both populations?
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Regression analysis is quite likely the most frequent application of

probability and statistics; it is used extensively in the physical and social

sciences, and forms the backbone of statistical learning. No data scientist

worthy of the name can be ignorant of this aspect of the discipline.

We use the term “classical” to differentiate the basic process from its myr-

iad variants and modifications, which we discuss further in Chapter 20

(Regression and Value Estimation).

Our treatment borrows heavily from a classical reference [7]; other useful

resources include [3, 5]. Note that the examples use R, which provides a

suite of “natural” tools for regression analysis.

8.1 Preliminaries

Regression analysis is not a very complicated discipline ... assuming that

its pre-requisites are mastered well. In this chapter, it will be useful to be

familiar with a number of notions relating to:

random variables;

multivariate calculus;

linear algebra;

quadratic forms, and

optimization.

8.1.1 Random Variables

A random experiment is a process (together with its sample space S) for

which it is impossible to predict the outcome with certainty. The sample
space S is the set of the random experiment’s possible outcomes.

A random variable 𝑌 associated to this process is a function 𝑌 : S→ ℝ.

If the set 𝑌(S) = {𝑌(𝑠) | 𝑠 ∈ S} is countable, we say that 𝑌 is a discrete
random variable; if it is uncountable, we say that 𝑌 is a continuous
randcom variable.

Each r.v. 𝑌 has a corresponding probability function 𝑓 (𝑌), which speci-

fies the probabilities of the values taken by 𝑌. 𝑌1 and 𝑌2 are independent
when their joint probability function 𝑓 (𝑌1 , 𝑌2) is the product of the

individual probability functions 𝑓 (𝑌1) 𝑓 (𝑌2).
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Expectation, Variance, and Covariance The expectation operator E {·}
is defined by

E {𝑌} =


∑
𝑌(𝑠)

𝑌(𝑠) 𝑓 (𝑌(𝑠)), if 𝑌 is discrete∫
ℝ

𝑌 𝑓 (𝑌) 𝑑𝑦, if 𝑌 is continuous

The expectation E {𝑌} is the average value that we would expect to

observe if the experiment is repeated a large number of times. The

expectation is sometimes also called the mean of 𝑌, denoted 𝑌; it is thus

a measure of 𝑌’s centrality.

The variance operator 𝜎2 {·} is defined by

𝜎2 {𝑌} = E

{
(𝑌 − E {𝑌})2

}
= E

{
𝑌2

}
−

(
E {𝑌}

)
2

.

It is often denoted by Var(𝑌). It is a measure of 𝑌’s dispersion (large

variances are associated with r.v. with heavy dispersion, and vice-versa).

The covariance operator 𝜎 {·, ·} is defined by

𝜎 {𝑌,𝑊} = E {(𝑌 − E {𝑌}) (𝑊 − E {𝑊})} = E {𝑌𝑊} − E {𝑌} E {𝑊} .

It is often denoted by Cov(𝑌,𝑊). It is a measure of the strength of the
linear relationship between two r.v. (large covariance magnitudes are

associated with linearity, but “large" is a relative concept).

The standard deviation operator 𝜎 {·} is defined by

𝜎 {𝑌} =
√
𝜎2 {𝑌}.

It is always non-negative.

The correlation operator 𝜌 {·, ·} is defined by

𝜌 {𝑌,𝑊} = 𝜎 {𝑌,𝑊}
𝜎 {𝑌} 𝜎 {𝑊} ,

assuming that 𝜎 {𝑌} 𝜎 {𝑊} ≠ 0. When 𝜌 {𝑌,𝑊} = 0, we say that the r.v.

are uncorrelated.

Operator Properties Let 𝑌,𝑌𝑖 ,𝑊 be random variables, 𝑐, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ ℝ,

𝑖 = 1, . . . , 𝑛. Then:

E {·} is linear on the space of r.v.: E {𝑎𝑌 + 𝑏} = 𝑎E {𝑌} + 𝑏 and

E

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑎𝑖E {𝑌𝑖}

𝜎2 {𝑎𝑌 + 𝑏} = 𝑎2𝜎2 {𝑌} and

𝜎2

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗𝜎
{
𝑌𝑖 , 𝑌𝑗

}
=

𝑛∑
𝑖=1

𝑎2

𝑖 𝜎
2 {𝑌𝑖}+

∑
𝑖≠𝑗

𝑎𝑖𝑎 𝑗𝜎
{
𝑌𝑖 , 𝑌𝑗

}
𝜎{𝑌,𝑌} = 𝜎2{𝑌} and 𝜎 {𝑌,𝑊} = 𝜎 {𝑊,𝑌}
𝜎{𝑎1𝑌 + 𝑏1 , 𝑎2𝑊 + 𝑏2} = 𝑎1𝑎2𝜎{𝑌,𝑊}
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{𝑌𝑖} uncorrelated =⇒

𝜎

{
𝑛∑
𝑖=1

𝑎𝑖𝑌𝑖 ,
𝑛∑
𝑖=1

𝑐𝑖𝑌𝑖

}
=

𝑛∑
𝑖=1

𝑎𝑖𝑐𝑖𝜎
2 {𝑌𝑖}

𝜎 {𝑌,𝑊} < 0 ⇐⇒ observations of 𝑌 above 𝑌 tend to accompany

corresponding observations of𝑊 below𝑊 , and vice-versa.

𝜎 {𝑌,𝑊} > 0 ⇐⇒ observations of 𝑌 above 𝑌 tend to accompany

corresponding observations of𝑊 above𝑊 , and vice-versa.

𝜎 {𝑌,𝑊} = 0 =⇒ 𝑌 and𝑊 are uncorrelated
𝑌,𝑊 independent =⇒ 𝜌 {𝑌,𝑊} = 0 (uncorrelated)

𝜌 {𝑌,𝑊} = 0 ≠⇒ 𝑌,𝑊 independent, however

|𝜌 {𝑌,𝑊} | ≤ 1 (consequence of the Cauchy-Schwartz inequality)

|𝜌 {𝑌,𝑊} | = 1 ⇐⇒ 𝑌 = 𝑎𝑊 + 𝑏 for some 𝑎, 𝑏 ∈ ℝ,

Random Vectors If 𝑌1 , . . . , 𝑌𝑛 are random variables, then

Y =
©«
𝑌1

...

𝑌𝑛

ª®®¬
is a random vector. The expectation of Y is

E {Y} =
©«
E {𝑌1}
...

E {𝑌𝑛}

ª®®¬ .
The components of Y need not all have identical distributions.

The variance-covariance matrix of Y is the symmetric matrix

𝜎2 {Y} = (𝑔𝑖 , 𝑗), where 𝑔𝑖 , 𝑗 =

{
𝜎2 {𝑌𝑖} 𝑖 = 𝑗

𝜎
{
𝑌𝑖 , 𝑌𝑗

}
𝑖 ≠ 𝑗

or

𝜎2 {Y} =
©«

𝜎2 {𝑌1} · · · 𝜎 {𝑌1 , 𝑌𝑛}
...

. . .
...

𝜎 {𝑌1 , 𝑌𝑛} · · · 𝜎2 {𝑌𝑛}

ª®®¬
If the components of Y are independent and all have the same variance 𝜎2

,

then

𝜎2 {Y} = 𝜎2I𝑛 .

In practice, we usually work with samples of the random variables. Let

{(𝑋𝑖 , 𝑌𝑖)}𝑛𝑖=1
be observed from the joint distribution of (𝑋,𝑌):

the sample means

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 and 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

are unbiased estimators of E {𝑋} and E {𝑌}, respectively;
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the sample variances

𝑠2

𝑋 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 and 𝑠2

𝑌 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2

are unbiased estimators of 𝜎2 {𝑋} and 𝜎2 {𝑌}, respectively;

the sample variances

𝑠𝑋𝑌 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)

is an unbiased estimator of 𝜎 {𝑋,𝑌}.

Important Distributions The (cumulative) distribution function (c.d.f.)

of any continuous random variable 𝑌 is defined by

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) =
∫ 𝑦

−∞
𝑓𝑌(𝑡) 𝑑𝑡

viewed as a function of a real variable 𝑦.

Alternatively, We can describe the distribution of 𝑌 via the following

relationship between 𝑓𝑌(𝑦) and 𝐹𝑌(𝑦):

𝑓𝑌(𝑦) =
𝑑

𝑑𝑦
𝐹𝑌(𝑦).

The probability density function (p.d.f.) of a continuous random variable

𝑌 is function
1 𝑓𝑌 : 𝑌(S) → ℝ with:1: Integrable function, that is.

𝑓𝑌(𝑦) > 0 for all 𝑦 ∈ 𝑌(S)
lim

𝑦→±∞
𝑓𝑌(𝑦) = 0;∫

S
𝑓𝑌(𝑦) 𝑑𝑦 = 1;

For any 𝑎, 𝑏, we have

𝑃(𝑎 < 𝑌 < 𝑏) = 𝑃(𝑎 ≤ 𝑌 < 𝑏) = 𝑃(𝑎 < 𝑌 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏)

= 𝐹𝑌(𝑏) − 𝐹𝑌(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑦) 𝑑𝑦.

The following distributions all play an important role in the theory of

regression analysis (see Section 6.3.3 for more information).

A random variable 𝑌 follows a normal distribution N(𝜇, 𝜎2) of mean 𝜇
and variance 𝜎2

if the c.d.f. of 𝑌 is

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = Φ(𝑦),

with

𝑓𝑌(𝑦) = Φ′(𝑦) = 1√
2𝜋𝜎

exp

(
−1

2

( 𝑦 − 𝜇

𝜎

)
2

)
.
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A random variable 𝑌 follows a 𝜒2 distribution 𝜒2(𝜈) if its p.d.f. is

𝑓𝑌(𝑦; 𝜈) =


𝑦

𝜈
2
−1𝑒−

𝑦
2

2

𝜈
2 Γ

( 𝜈
2

) , 𝑦 > 0;

0, otherwise.

where Γ(·) is the Gamma function. If 𝑈𝑖 ∼ 𝜒2(𝜈𝑖), 𝑖 = 1, 2, and 𝑈1 , 𝑈2

are independent, then

𝑈 = 𝑈1 +𝑈2 ∼ 𝜒2(𝜈1) + 𝜒2(𝜈2) = 𝜒2(𝜈1 + 𝜈2).

There is an important link between the standard normal distribution and

the 𝜒2(1) distribution: if 𝑍 ∼ N(0, 1), then 𝑍2 ∼ 𝜒2(1).

If 𝑍 ∼ N(0, 1) and𝑈 ∼ 𝜒2(𝜈), where 𝑍,𝑈 are independent, then

𝑡 =
𝑍√
𝑈/𝜈

∼ 𝑡(𝜈)

follows a Student 𝑇-distribution with 𝜈 degrees of freedom.

Figure 8.1: Cumulative distribution function of Student’s 𝑇 distribution, with some critical values for 𝜈 = 1, 2, 3 degrees of freedom [6].

If𝑈𝑖 ∼ 𝜒2(𝜈𝑖), 𝑖 = 1, 2 and𝑈1 , 𝑈2 are independent, then

𝐹 =
𝑈1/𝜈1

𝑈2/𝜈2

∼ 𝐹(𝜈1 , 𝜈2)

follows the Fisher’s distribution with 𝜈1 and 𝜈2 degrees of freedom.

In practice, we do not use tables, but rather statistical software (such as R),
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Figure 8.2: Cumulative distribution function of Fisher’s 𝐹 distribution, with some critical values [6].

to compute important quantities. The functions qnorm(), qt(), and qf(),

for instance, find the quantiles of the corresponding distributions.

qnorm(0, mean = 0, sd = 1)

qnorm(1, mean = 0, sd = 1)

qnorm(0.5, mean = 0, sd = 1)

qnorm(0.25, mean = 4, sd = 2)

[1] -Inf

[1] Inf

[1] 0

[1] 2.65102

qt(0.95, df = 20)

qf(0.975, df1 = 1, df2 = 19)

[1] 1.724718

[1] 5.921631

The functions dnorm(), dt(), and df() compute the value of the p.d.f.

of the corresponding random variables at specified points in their do-

main.

dnorm(0, mean = 0, sd = 1)

dnorm(1, mean = 0, sd = 1)

dnorm(-1, mean = 0, sd = 1)

dnorm(3, mean = 4, sd = 2)

[1] 0.3989423
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[1] 0.2419707

[1] 0.2419707

[1] 0.1760327

qf(2, df1 = 1, df2 = 19)

[1] 0.2844237

The functions pnorm(), pt(), and pf() compute the value of the c.d.f.

of the corresponding random variables at specified points in their do-

main.

pnorm(0, mean = 0, sd = 1)

pnorm(1, mean = 0, sd = 1)

pnorm(-1, mean = 0, sd = 1)

pnorm(3, mean = 4, sd = 2)

[1] 0.5

[1] 0.8413447

[1] 0.1586553

[1] 0.3085375

pt(-1, df = 20)

pf(2, df1 = 1, df2 = 19)

[1] 0.1646283

[1] 0.8265229

Finally, we can generate (pseudo-)random values drawn from the corre-

sponding distribution with rnorm(), rt(), and rf().

set.seed(0) # for replicability

rnorm(10, mean = 0, sd = 1)

[1] 1.262954285 -0.326233361 1.329799263 1.272429321 0.414641434

[6] -1.539950042 -0.928567035 -0.294720447 -0.005767173 2.404653389

rt(5, df = 20)

[1] 0.9000978 -0.9947734 -0.4056054 -0.8546851 -1.3176242

rf(8, df1 = 1, df2 = 19)

[1] 1.8583849 1.8137178 0.8621754 0.5502212 1.1415165

[6] 2.4191686 1.8868591 0.6094574
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Central Limit Theorems There are variants on a fundamental result of

probability statistics that forms the basis of a fair chunk of applications,

not only for regression analysis, but also for sampling theory, the design

of experiments, time series analysis, and so on. We present them here

without proof.

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇1 , . . . , 𝜇𝑛 and standard deviations 𝜎1 , . . . , 𝜎𝑛 . Then

𝑋1 + · · · + 𝑋𝑛 ∼ N(𝜇1 + · · · + 𝜇𝑛 , 𝜎
2

1
+ · · · + 𝜎2

𝑛).

If 𝜇𝑖 ≡ 𝜇 and 𝜎2

𝑖
≡ 𝜎 for 𝑖 = 1, . . . , 𝑛, then 𝑋1 + · · · +𝑋𝑛 ∼ N(𝑛𝜇, 𝑛𝜎2).

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇 and standard deviation 𝜎 . Let 𝑋 be the sample mean. Then

𝑍 =
𝑋 − 𝜇

𝜎/
√
𝑛

∼ N(0, 1).

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent random variables with mean 𝜇
and standard deviation 𝜎 . Let 𝑋 be the sample mean. Then

𝑍𝑛 =
𝑋 − 𝜇

𝜎/
√
𝑛

→ 𝑍 ∼ N(0, 1), as 𝑛 → ∞.

Theorem: let 𝑋1 , . . . , 𝑋𝑛 be independent normal random variables with

mean 𝜇 and common variance. Let 𝑋 and s
2

be the sample mean and the

sample variance, respectively. Then the random variable

𝑇 =
𝑋 − 𝜇

𝑆/
√
𝑛

∼ 𝑡(𝑛 − 1),

follows a Student 𝑇 distribution with 𝜈 = 𝑛 − 1 degrees of freedom.

8.1.2 Multivariate Calculus

From a regression analysis’s perspective, the main tool of multivariate

calculus is the gradient of a multivariate differentiable function.
2

2: More on the general topic can be found

in Chapter 2 and in [2, 1, 4].

Let 𝑓 : ℝ𝑛 → ℝ be a differentiable function. If Y = (𝑌1 , . . . , 𝑌𝑛), the

derivative (or gradient) of 𝑓 with respect to Y is

∇Y 𝑓 (Y) =
©«
𝜕 𝑓 (Y)
𝜕𝑌1

...
𝜕 𝑓 (Y)
𝜕𝑌𝑛

ª®®®¬ .
The gradient is a linear operator:

∇Y(𝑎 𝑓 + 𝑏𝑔)(Y) = 𝑎∇Y 𝑓 (Y) + 𝑏∇Y𝑔(Y).

The gradient of constant and of linear functions is particular easy to find:

if 𝑓 (Y) ≡ 𝑎, then ∇Y 𝑓 (Y) = 0; if 𝑓 (Y) = Y⊤v, then ∇Y 𝑓 (Y) = v.
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8.1.3 Matrix Algebra

It turns out that the important concepts of regression analysis are more

easily expressed (and ultimately, understandable) in matrix notation.
3

3: See Chapter 3 and [8] for more infor-

mation.

Let 𝐴 ∈ 𝑀𝑚,𝑛(ℝ) and Y be a random vector. Consider W = 𝐴Y. Then

E {W} = 𝐴E {Y} and 𝜎2{W} = 𝐴𝜎2{Y}𝐴⊤.

Furthermore, if Y ∼ N
(
E {Y} , 𝜎2{Y}

)
, then

W ∼ N
(
E {W} , 𝜎2{W}

)
= N

(
𝐴E {Y} , 𝐴𝜎2{Y}𝐴⊤

)
.

If 𝐴 ∈ 𝑀𝑛,𝑛(ℝ), the trace of 𝐴 is

trace(𝐴) =
𝑛∑
𝑖=1

𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + · · · + 𝑎𝑛𝑛 .

The trace is a linear operator: trace(𝑘𝐴 + 𝐵) = 𝑘 · trace(𝐴) + trace(𝐵); we

also have trace(𝐴𝐵) = trace(𝐵𝐴).4 4: Assuming, of course, that the matrices

are compatible with respect to the prod-

uct.The transpose of a matrix 𝐴, denoted by 𝐴⊤, is obtained by interchanging

its rows and its columns, or simply by reflecting the matrix along its

primary diagonal.

Properties: if 𝐴 ∈ 𝑀𝑚,𝑛(ℝ) and 𝑘 ∈ ℝ, then

(𝐴⊤)⊤ = 𝐴

𝑘⊤ = 𝑘

(𝑘𝐴 + 𝐵)⊤ = 𝑘𝐴⊤ + 𝐵⊤
(𝐴𝐵)⊤ = 𝐵⊤𝐴⊤

8.1.4 Quadratic Forms

A symmetric quadratic form in 𝑌1 , . . . , 𝑌𝑛 is an expression of the form

𝑄𝐴(Y) = Y⊤𝐴Y =

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 , 𝑗𝑌𝑖𝑌𝑗 ,

where 𝐴 is an 𝑛 × 𝑛 symmetric matrix (𝐴⊤ = 𝐴). A number of important

quantities in regression analysis can be expressed as such forms.

The degrees of freedom for a symmetric quadratic form 𝑄𝐴(Y) can be

obtained by computing the rank of the associated matrix 𝐴. For instance,

the symmetric matrix associated with the symmetric quadratic form

𝑄𝐴(Y) = 4𝑌2

1
+ 7𝑌1𝑌2 + 2𝑌2

2

is

𝐴 =

(
4 7/2

7/2 2

)
.

As rank(𝐴) = 2, 𝑄𝐴 has 2 degrees of freedom.

Theorem: let 𝑄1 , . . . 𝑄𝐾 be symmetric quadratic forms of Y with re-

spective symmetric matrices 𝐴1 , . . . , 𝐴𝐾 . If 𝑎𝑖 ∈ ℝ for 𝑖 = 1, . . . , 𝐾,

then

𝑄 = 𝑎1𝑄1 + · · · + 𝑎𝐾𝑄𝐾



418 8 Classical Regression Analysis

is a symmetric quadratic form of Y with symmetric matrix

𝐴 = 𝑎1𝐴1 + · · · + 𝑎𝐾𝐴𝐾 .

For a general 𝑛 × 𝑛 matrix 𝐵, we have

∇Y
(
Y⊤𝐵Y

)
= (𝐵⊤+ 𝐵)Y.

Thus the gradient of a symmetric quadratic form 𝑄𝐴(Y) is

∇Y𝑄𝐴(Y) = 2𝐴Y.

It can be shown that every expression of the form Y⊤𝐵Y can be associated

to a symmetric matrix 𝐴, even if 𝐵 is not itself symmetric, so we may as

well assume that every such form is symmetric.
5

5: The role played by quadratic forms in

multi-variable calculus is analogous to the

role played by 𝑓 (𝑥) = 𝑎𝑥2
in calculus. The eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 are the roots of the characteristic

polynomial 𝑝𝐴(𝜆) of 𝐴: 𝑝𝐴(𝜆) = det(𝐴−𝜆I𝑛) = 0.6 If 𝜆 is an eigenvalue
6: There are 𝑛 such (complex) roots, not

all necessarily distinct. of 𝐴, then there exists v ≠ 0 such that 𝐴v = 𝜆v.7
7: If 𝐴 is symmetric, all of its eigenvalues

are real. Consider a quadratic form 𝑄𝐴(Y), with eigenvalues 𝜆1 , . . . ,𝜆𝑛 ∈ ℝ:

if 𝜆𝑖 > 0 for all 𝑖, we say that 𝑄𝐴(Y) and 𝐴 are positive definite;

if 𝜆𝑖 < 0 for all 𝑖, we say that 𝑄𝐴(Y) and 𝐴 are negative definite;

if 𝜆𝑖𝜆 𝑗 < 0 for some 𝑖 , 𝑗, we say that 𝑄𝐴(Y) and 𝐴 are indefinite.

Cochran’s Theorem Let Y = (𝑌1 , . . . , 𝑌𝑛) ∼ N(0, 𝜎2I𝑛). Suppose that

Y⊤Y = 𝑄1(Y) + · · · +𝑄𝐾(Y),

with 𝑄𝑘 positive (semi-)definite quadratic forms with 𝑟𝑘 = rank(𝐴𝑘) de-

grees of freedom, 𝑘 = 1, . . . , 𝐾. If 𝑟1+· · ·+𝑟𝐾 = 𝑛, then𝑄1(Y), . . . , 𝑄𝐾(Y)
are independent random variables and

𝑄𝑘(Y)
𝜎2

∼ 𝜒2(𝑟𝑘), 𝑘 = 1, . . . , 𝐾.

In particular, if 𝐾 = 2 and 𝑟1 = 𝑟, then 𝑄2(Y)/𝜎2 ∼ 𝜒2(𝑛 − 𝑟).

Important Quadratic Forms For any positive integer 𝑛, we define two

special matrices:

J𝑛 = J =
©«
1 · · · 1

...
. . .

...

1 · · · 1

ª®®¬ and 1𝑛×1 = 1𝑛 = 1 =
©«
1

...

1

ª®®¬ .
Note that 1⊤𝑛1𝑛 = 𝑛 and 1𝑛1⊤𝑛 = J𝑛 . Let Y = (𝑌1 , . . . , 𝑌𝑛) ∼ N(0, 𝜎2I𝑛) be

a random vector. What are the symmetric matrices associated with:

𝑄𝐴(Y) =
𝑛∑
𝑖=1

𝑌2

𝑖 , 𝑄𝐵(Y) = 𝑛𝑌
2

, and 𝑄𝐶(Y) =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2?
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We re-write the quadratic forms in Y to obtain:

𝑄𝐴(Y) = Y⊤Y = Y⊤I𝑛Y =⇒ 𝐴 = I𝑛 ;

𝑄𝐵(Y) = 𝑛

(
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

)
2

=
1

𝑛

𝑛∑
𝑖 , 𝑗=1

𝑌𝑖𝑌𝑗 =
1

𝑛
Y⊤1𝑛1⊤𝑛Y =⇒ 𝐵 =

1

𝑛
J𝑛 ;

𝑄𝐶(Y) =
𝑛∑
𝑖=1

𝑌2

𝑖 − 𝑛𝑌2

= Y⊤I𝑛Y − 1

𝑛
Y⊤J𝑛Y =⇒ 𝐶 = I𝑛 −

1

𝑛
J𝑛 .

Since rank(𝐴) = 𝑛, rank(𝐵) = 1, and rank(𝐶) = 𝑛−1, Cochran’s Theorem

implies that 𝑄𝐵(Y), and 𝑄𝐶(Y) are independent random variable, and

that

𝑄𝐴(Y)
𝜎2

=
Y⊤Y
𝜎2

∼ 𝜒2(𝑛), 𝑄𝐵(Y)
𝜎2

=
𝑛𝑌

2

𝜎2

∼ 𝜒2(1), 𝑄𝐶(Y)
𝜎2

=
SST

𝜎2

∼ 𝜒2(𝑛−1).

8.1.5 Optimization

Let𝐴 be a symmetric 𝑛×𝑛matrix, v ∈ ℝ𝑛
, 𝑐 ∈ ℝ. Consider the function

𝑓 (Y) = 1

2

Y⊤𝐴Y − Y⊤v + 𝑐.

Note that 𝑓 is differentiable. The critical points of 𝑓 satisfy

∇Y 𝑓 (Y) = 𝐴Y − v = 0 =⇒ 𝐴Y = v.

If 𝐴 is invertible (det(𝐴) ≠ 0), there is a unique critical point Y∗ = 𝐴−1v.

If 𝐴 is singular (det(𝐴) = 0), there is no critical point if v ∉ range(𝐴), or

there are infinitely many critical points if v ∈ range(𝐴).

When 𝐴 is invertible:

if 𝐴 is positive definite, then 𝑓 reaches its global minimum at

Y∗ = 𝐴−1v;

if 𝐴 is negative definite, then 𝑓 reaches its global maximum at

Y∗ = 𝐴−1v;

if 𝐴 is indefinite (if 𝐴 has positive and negative eigenvalues), then

Y∗ = 𝐴−1v is a saddle point for 𝑓 .

If the eigenvalues could be zero, we replace “definite” by “semi-definite”

throughout.

8.2 Simple Linear Regression

We start by considering a simple scenario, with only two continuous
variables: a response 𝑌 and a predictor 𝑋.

Examples

𝑋: age; 𝑌: height

𝑋: age; 𝑌: salary

𝑋: income; 𝑌: life expectancy

𝑋: number of sunlight hours; 𝑌: plant biomass
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Figure 8.3: Response and predictor in the Gapminder data [10, 9]; life expectancy 𝑌 against the logarithm of the GDP per capita 𝑋 (left);

mean years in schooling 𝑌 against direct democracy index 𝑋 (right).

We hope that there might be a functional relationship𝑌 = 𝑓 (𝑋) between

𝑋 and 𝑌. In practice (assuming that a relationship even exists), the best

that we may be able to achieve is a statistical relationship

𝑌 = 𝑓 (𝑋) + 𝜀,

where

𝑓 (𝑋) is the response function;

𝜀 is the random error (or noise).

In simple linear regression, we assume that the response function

satisfies

𝑓 (𝑋) = 𝛽0 + 𝛽1𝑋.

The building blocks of regression analysis are the observations:

(𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛.

In an ideal setting, these observations are (jointly) randomly sampled,

according to some appropriate design.
8

8: See Chapters 11 and 10.

The simple linear regression model (SLRM) is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where 𝛽0 , 𝛽1 are unknown parameters (which we want to find) and 𝜀𝑖 is

the random error on the 𝑖th observation (or case).

The SLRM assumption on the error structure is that 𝜺 ∼ N(0, 𝜎2I𝑛).9 Let9: We use matrix notation to keep the

assumption compact.
us unpack the statement: since 𝜺 = (𝜀1 , . . . , 𝜀𝑛)⊤∼ N(0, 𝜎2I𝑛): we have

E {𝜺} = 0 =⇒ E {𝜀𝑖} = 0, 𝑖 = 1, . . . , 𝑛;

𝜎2 {𝜺} = 𝜎2I𝑛 =⇒ 𝜎2 {𝜀𝑖} = 𝜎2 , 𝑖 = 1, . . . , 𝑛;

𝜎2 {𝜺} = 𝜎2I𝑛 =⇒ 𝜎
{
𝜀𝑖 , 𝜀𝑗

}
= 0, for all 𝑖 ≠ 𝑗.

This means that the errors {𝜀𝑖} are uncorrelated, with mean 0 and

constant variance.

In other words, the dispersion of observations is constant around the

regression line.
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Figure 8.4: Illustrations of failed SLRM assumptions: constant, uncorrelated variance (top left); non-constant uncorrelated variance (top

right); constant correlated variance (bottom left); non-constant correlated variance (bottom right).

8.2.1 Least Squares Estimation

We treat the predictor values 𝑋𝑖 as constant, for 𝑖 = 1, . . . , 𝑛.
10

Since 10: That is, we assume that there is no
measurement error.

E {𝜀𝑖} = 0, the expected (or mean) response given 𝑋𝑖 is thus

E {𝑌𝑖 | 𝑋𝑖} = E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 | 𝑋𝑖} = 𝛽0 + 𝛽1𝑋𝑖 + E {𝜀𝑖} = 𝛽0 + 𝛽1𝑋𝑖 .

The deviation at 𝑋𝑖 is the difference between the observed response 𝑌𝑖
and the expected response E {𝑌𝑖 | 𝑋𝑖}:

𝑒𝑖 = 𝑌𝑖 − E {𝑌𝑖 | 𝑋𝑖} ;

the deviation can be positive (if the point lies above the line) or negative
(if it lies below).

Figure 8.5: Line of best fit and deviations (residuals) for a simple dataset.

How do we find estimators for 𝛽0 and 𝛽1? Incidentally, how do we

determine if the fitted line is a good model for the data?

Consider the function

𝑄(𝜷) = 𝑄(𝛽0 , 𝛽1) =
𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − E {𝑌𝑖 |𝑋𝑖})2 =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2.
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If 𝑄(𝜷) is "small", then the sum of the squared residuals is "small", and

so we would expect the line 𝑌 = 𝛽0 + 𝛽1𝑋 to be a good fit for the data.

The least-square estimators of the SLR problem are the pair b = (𝑏0 , 𝑏1)
which minimizes the function 𝑄 with respect to 𝜷 = (𝛽0 , 𝛽1).

We must then find the critical points of 𝑄(𝜷), i.e., solve ∇𝜷𝑄(b) = 0.

Thus, we must solve the following system:

𝜕𝑄(𝛽0 , 𝛽1)
𝜕𝛽0

= 2

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖) · (−1) = 0

𝜕𝑄(𝛽0 , 𝛽1)
𝜕𝛽1

= 2

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖) · (−𝑋𝑖) = 0.

This is a linear system of two equations in the two unknowns 𝛽0 , 𝛽1,

known as the normal equations. As seen in Chapter 3, it has either no
solution, a unique solution, or infinitely many solutions.

11
11: From now on, we drop the | 𝑋𝑖 when

we use the E {· | 𝑋𝑖}.

Normal Equations These equations reduce to the following pair:

𝑛∑
𝑖=1

𝑌𝑖 = 𝑛𝛽0 + 𝛽1

𝑛∑
𝑖=1

𝑋𝑖 ,
𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 = 𝛽0

𝑛∑
𝑖=1

𝑋𝑖 + 𝛽1

𝑛∑
𝑖=1

𝑋2

𝑖 .

If we use the following shorthand notation:

𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 , 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 , 𝑆𝑥𝑥 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 , 𝑆𝑥𝑦 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌),

it is not too difficult to show that

𝑛∑
𝑖=1

𝑋2

𝑖 = 𝑆𝑥𝑥 + 𝑛𝑋
2

and

𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 = 𝑆𝑥𝑦 + 𝑛𝑋𝑌.

With this notation, the normal equations further reduce to

𝑛𝑌 = 𝑛𝛽0 + 𝑛𝑋𝛽1 , 𝑆𝑥𝑦 + 𝑛𝑋𝑌 = 𝑛𝑋𝛽0 + (𝑆𝑥𝑥 + 𝑛𝑋
2)𝛽1.

In matrix form, this can be written as:[
1 𝑋

𝑛𝑋 𝑆𝑥𝑥 + 𝑛𝑋
2

] [
𝛽0

𝛽1

]
=

[
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
.

A linear system𝐴𝜷 = v has a unique solution 𝜷 = 𝐴−1v if the determinant

of the coefficient matrix 𝐴 is non-zero.

In our case, the determinant is

𝑆𝑥𝑥 + 𝑛𝑋
2 − 𝑛𝑋𝑋 = 𝑆𝑥𝑥 > 0 ⇐⇒ 𝑠2

𝑋 ≠ 0.

The unique solution is thus

[
𝛽0

𝛽1

]
=

[
1 𝑋

𝑛𝑋 𝑆𝑥𝑥 + 𝑛𝑋
2

]−1 [
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
=

1

𝑆𝑥𝑥

[
𝑆𝑥𝑥 + 𝑛𝑋

2 −𝑋
−𝑛𝑋 1

] [
𝑌

𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
=

1

𝑆𝑥𝑥

[
(𝑆𝑥𝑥 + 𝑛𝑋

2)𝑌 − 𝑋(𝑆𝑥𝑦 + 𝑛𝑋𝑌)
−𝑛𝑋𝑌 + 𝑆𝑥𝑦 + 𝑛𝑋𝑌

]
,
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which reduces to [
𝛽0

𝛽1

]
=

[
𝑌 − 𝑋 · 𝑆𝑥𝑦/𝑆𝑥𝑥

𝑆𝑥𝑦/𝑆𝑥𝑥

]
Set 𝑏0 = 𝛽0 and 𝑏1 = 𝛽1. Then we may write:

𝑏1 =
𝑆𝑥𝑦

𝑆𝑥𝑥
(slope) and 𝑏0 = 𝑌 − 𝑏1𝑋 (intercept).

By analogy with 𝑆𝑥𝑥 (the total variation of the predictor), we can also

define the total variation of the response 𝑆𝑦𝑦 , a quantity that will play

an important role in this chapter:
12

12: And in Chapters 11 and 10.

𝑆𝑦𝑦 =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

𝑌2

𝑖 − 𝑛𝑌2

;

If the 𝑋𝑖 are fixed, 𝑏0 , 𝑏1 are linear combinations of the 𝑌𝑖 :

𝑏1 =
1

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)𝑌𝑖 −
𝑌

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖 ,

𝑏0 =

𝑛∑
𝑖=1

𝑌𝑖

𝑛
−

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑋𝑋

𝑌𝑖𝑋 =

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋 (𝑋𝑖 − 𝑋)

𝑆𝑋𝑋

]
𝑌𝑖 .

Properties of Least Squares Estimators Both 𝑏0 , 𝑏1 are unbiased esti-
mators of their respective parameters. Indeed,

E {𝑏1} = E

{
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

E {𝑌𝑖}

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} =
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

(𝛽0 + 𝛽1𝑋𝑖 + E {𝜀𝑖})

=

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

(𝛽0 + 𝛽1𝑋𝑖) =
𝛽0

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

+ 𝛽1

𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)𝑋𝑖︸            ︷︷            ︸
=𝑆𝑥𝑥 (?)

= 0 + 𝛽1 = 𝛽1 ,

and

E {𝑏0} = E

{
𝑌 − 𝑏1𝑋

}
= E

{
𝑌
}
− E

{
𝑏1𝑋

}
= E

{
𝑌
}
− E {𝑏1}𝑋

= E

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖

}
− 𝛽1𝑋 =

1

𝑛

𝑛∑
𝑖=1

E {𝑌𝑖} − 𝛽1𝑋

=
1

𝑛

𝑛∑
𝑖=1

E {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} − 𝛽1𝑋 =
1

𝑛

𝑛∑
𝑖=1

(𝛽0 + 𝛽1𝑋𝑖) − 𝛽1𝑋

=
𝛽0

𝑛

𝑛∑
𝑖=1

1 + 𝛽1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝛽1𝑋 = 𝛽0 + 𝛽1𝑋 − 𝛽1𝑋 = 𝛽0.

Now is as good a time as any to illustrate these notions with an example.
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Fuels Example Consider the following 𝑛 = 20 paired measurements

(𝑋𝑖 , 𝑌𝑖) of hydrocarbon levels (𝑋) and pure oxygen levels (𝑌) in fuels:

𝑖 1 2 3 4 5 6 7 8 9 10

𝑋𝑖 0.99 1.02 1.15 1.29 1.46 1.36 0.87 1.23 1.55 1.40

𝑌𝑖 90.01 89.05 91.43 93.74 96.73 94.45 87.59 91.77 99.42 93.65

𝑖 11 12 13 14 15 16 17 18 19 20

𝑋𝑖 1.19 1.15 0.98 1.01 1.11 1.20 1.26 1.32 1.43 0.95

𝑌𝑖 93.54 92.52 90.56 89.54 89.85 90.39 93.25 93.41 94.98 87.33

Is the simple regression model valid? If so, fit the data to the model.

We start by loading and displaying the data.

x = c(0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

1.19, 1.15, 0.98, 1.01, 1.11, 1.20, 1.26, 1.32, 1.43, 0.95)

y = c(90.01, 89.05, 91.43, 93.74, 96.73, 94.45, 87.59, 91.77, 99.42, 93.65,

93.54, 92.52, 90.56, 89.54, 89.85, 90.39, 93.25, 93.41, 94.98, 87.33)

plot(x,y)

Before we go on to compute the basic sums, we should verify visually if

the SLR assumptions are met; they appear to be.

x.mean = mean(x)

y.mean = mean(y)

Sxy = sum((x-mean(x))*(y-mean(y)))

Sxx = sum((x-mean(x))^2)

Syy = sum((y-mean(y))^2)

[1] 1.196

[1] 92.1605

[1] 0.68088

[1] 10.17744

[1] 173.3769

We compute the least-square estimators:
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(b1 = Sxy/Sxx)

(b0 = y.mean - b1*x.mean)

[1] 14.947

[1] 74.283

Thus the regression line for the data is

�̂� = 𝑓 (𝑋) = 𝑏0 + 𝑏1𝑋 = 74.283 + 14.947𝑋,

which is displayed in Figure 8.5 (left). Evaluating 𝑓 at 𝑋𝑖 yields the 𝑖th
fitted value �̂�𝑖 = 𝑓 (𝑋𝑖) = 𝑏0 + 𝑏1𝑋𝑖 .

Residuals The 𝑖th regression residual is 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 ; the residuals In

the fuels dataset are displayed in Figure 8.5 (right).

Properties of the Residuals

1. 𝑒 =
1

𝑛

𝑛∑
𝑖=1

𝑒𝑖 = 0;

2. 𝑌 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 =
1

𝑛

𝑛∑
𝑖=1

�̂�𝑖 = �̂�;

3.

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 = 0;

4.

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖 = 0;

5. the point (𝑋,𝑌) lies on the regression line, and

6.

𝑛∑
𝑖=1

𝑒2

𝑖 is minimal in the OLS sense.

Proof:

1. We see that

1

𝑛

𝑛∑
𝑖=1

𝑒𝑖 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖−�̂�𝑖) =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖−𝑏0−𝑏1𝑋𝑖) = 𝑌−𝑏0−𝑏1𝑋 = 0,

according to the first normal equation.

2. From 1., we have 0 = 𝑒. Thus

0 = 𝑒 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖) =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 −
1

𝑛

𝑛∑
𝑖=1

�̂�𝑖 = 𝑌 − �̂� =⇒ 𝑌 = �̂�.

3. We see that

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 =
𝑛∑
𝑖=1

𝑋𝑖(𝑌𝑖 − �̂�𝑖) =
𝑛∑
𝑖=1

𝑋𝑖𝑌𝑖 − 𝑏0

𝑛∑
𝑖=1

𝑋𝑖 − 𝑏1

𝑛∑
𝑖=1

𝑋2

𝑖 = 0,

according to the second normal equation.

4. We see that

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖 =
𝑛∑
𝑖=1

(𝑏0 + 𝑏1𝑋𝑖)𝑒𝑖 = 𝑏0

𝑛∑
𝑖=1

𝑒𝑖 + 𝑏1

𝑛∑
𝑖=1

𝑋𝑖𝑒𝑖 = 0,

according to 1. and 3.
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5. This is automatically true since

𝑓 (𝑋) = 𝑏0 + 𝑏1𝑋 = (𝑌 − 𝑏1𝑋) + 𝑏1𝑋 = 𝑌.

6. For any b∗ = (𝑏∗
0
, 𝑏∗

1
) ≠ b = (𝑏0 , 𝑏1), we must have 𝑄(b∗) ≥ 𝑄(b).

Denote the residuals obtained from the line fitted with b∗
by 𝑒∗

𝑖
.

Then

𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2︸                   ︷︷                   ︸
=𝑄(b)

<
𝑛∑
𝑖=1

(𝑌𝑖 − 𝑏∗
0
− 𝑏∗

1
𝑋𝑖)2︸                   ︷︷                   ︸

=𝑄(b∗)

=

𝑛∑
𝑖=1

(𝑒∗𝑖 )
2.

This completes the proof. ■

Descriptive Statistics and Correlations The Pearson sample correlation
coefficient 𝑟 of 2 variables 𝑋 and 𝑌 is defined by

𝑟 =
𝑆𝑥𝑦√
𝑆𝑥𝑥𝑆𝑦𝑦

.

This coefficient is such that

1. −1 ≤ 𝑟 ≤ 1;

2. |𝑟 | = 1 ⇐⇒ 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 , for all 𝑖 = 1, . . . , 𝑛, and

3. sgn(𝑟) = sgn(𝑏1), so that 𝑟 = 0 ⇐⇒ 𝑏1 = 0.

If |𝑟 | ≈ 1, then there is a strong linear association between 𝑋 and 𝑌. If

|𝑟 | ≈ 0, there is very little linear association between 𝑋 and 𝑌.
13

Note13: What can we say when 0 ≪ |𝑟 | ≪ 1?

We will discuss this at later stage.
that we can decompose the total deviation as follows:

𝑌𝑖 − 𝑌︸︷︷︸
total deviation

from the mean

= (𝑌𝑖 − �̂�𝑖)︸   ︷︷   ︸
unexplained deviation

from the mean

+ (�̂�𝑖 − 𝑌)︸   ︷︷   ︸
deviation from the mean

explained by regression

.

This decomposition is shown graphically in Figure 8.6.

Figure 8.6: Illustration of the total deviation decomposition on the fuels dataset.
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Figure 8.7: Illustration of various Spearman correlations (from Wikipedia).

The Spearman sample correlation coefficient 𝑟𝑆 of 2 variables 𝑋 and 𝑌

is the Pearson correlation between the rank values 𝑅(𝑋𝑖) and 𝑅(𝑌𝑖) of

𝑋𝑖 and 𝑌𝑖 , respectively. This coefficient is such that

1. −1 ≤ 𝑟𝑆 ≤ 1;

2. 𝑟𝑆 = 1 ⇐⇒ the relation between 𝑋 and𝑌 is monotonic increasing,

3. 𝑟𝑆 = −1 ⇐⇒ the relation between 𝑋 and 𝑌 is monotonic decreas-
ing,

4. if the association between 𝑋 and 𝑌 is weak, then 𝑟𝑆 ≈ 0, and

5. 𝑟𝑆 is invariant under order-preserving (monotonic) transforma-
tions.

The computational procedure is simple: for measurements

Z= {𝑍𝑖 | 𝑖 = 1, . . . , 𝑛},

let 𝑅(𝑍𝑖) be the rank value of 𝑍𝑖 in Z; the smallest value of 𝑍𝑖 has rank 1,

the second smallest has rank 2, and so on, until the largest value, which

has rank 𝑛. Ties are dealt with as in the example below:

𝑍𝑖 0 1.5 1.5 −1.5 3 −2

𝑅(𝑍𝑖) 3 4.5 4.5 2 6 1

Formally, the Spearman correlation is given by

𝑟𝑆 =
𝑆𝑅(𝑥)𝑅(𝑦)√

𝑆𝑅(𝑥)𝑅(𝑥)𝑆𝑅(𝑦)𝑅(𝑦)
.

Some examples are shown in Figure 8.7.

Sums of Squares Decomposition The total deviation decomposition

gives rise to one of the fundamental concepts of regression analysis: sum
of squares (SS) decompositions.

SST =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

[
(𝑌𝑖 − �̂�𝑖) + (�̂�𝑖 − 𝑌)

]
2

=

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 + 2

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)︸   ︷︷   ︸
=𝑒𝑖

(�̂�𝑖 − 𝑌) +
𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2

=

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2︸         ︷︷         ︸
SSE

+
𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2︸         ︷︷         ︸
SSR

+2

𝑛∑
𝑖=1

�̂�𝑖𝑒𝑖︸  ︷︷  ︸
=0

−2𝑌
𝑛∑
𝑖=1

𝑒𝑖︸︷︷︸
=0
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This is often written as SST = SSE + SSR, where

SST is the total sum of squares,

SSE is the error sum of squares, and

SSR is the regression sum of squares.

Note that we can write

SSR =

𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

(𝑏0 + 𝑏1𝑋𝑖 − 𝑌)2 =

𝑛∑
𝑖=1

(𝑌 − 𝑏1𝑋 + 𝑏1𝑋𝑖 − 𝑌)2

=

𝑛∑
𝑖=1

(
𝑏1(𝑋 − 𝑋𝑖)

)
2

= 𝑏2

1

𝑛∑
𝑖=1

(𝑋 − 𝑋𝑖)2 = 𝑏2

1
𝑆𝑥𝑥 .

As SST = 𝑆𝑦𝑦 and SSE = 𝑄(b), the decomposition can also be written:

𝑆𝑦𝑦 = 𝑏
2

1
𝑆𝑥𝑥 +

𝑛∑
𝑖=1

𝑒2

𝑖 .

Fuels Example In the fuels dataset, we have

𝑆𝑥𝑥 = 0.68, 𝑆𝑥𝑦 = 10.18, 𝑆𝑦𝑦 = 173.38,

so that the sample correlation coefficient is

𝑟 =
10.18

√
0.68

√
173.38

≈ 0.94,

and the SS decomposition is SST(173.38) = SSR(152.13)+SSE(21.25).We

can verify that this is indeed the case with R.

cor(x,y, method = "pearson")

cor(x,y, method = "spearman")

[1] 0.9367154

[1] 0.9236556

The values of 𝑟, 𝑟𝑆 are quite close to 1; is this a strong linear association?

Coefficient of Determination We can answer the previous question by

looking at the quantity

𝑅2 =
SSR

SST

,

also known as the coefficient of determination. It is the proportion of

variation in the response which can be explained by the fitted line.

When 𝑅2 ≈ 0, the regression is not very significant, whereas when

𝑅2 ≈ 1, the variables are strongly linearly related.

Proposition: 𝑅2 = 𝑟2
.

Proof: we have seen that SSR = 𝑏2

1
𝑆𝑥𝑥 and SST = 𝑆𝑦𝑦 . Thus

𝑟2 =
𝑆2

𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
=

(
𝑆𝑥𝑦

𝑆𝑥𝑥

)
2

𝑆𝑥𝑥

𝑆𝑦𝑦
= 𝑏2

1
· 𝑆𝑥𝑥
𝑆𝑦𝑦

=
SSR

SST

= 𝑅2. ■
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This answers the question relating to the interpretation of 0 ≪ |𝑟 | ≪ 1:

𝑟2
gives a sense of how much variation the regression “explains”.

Fuels Example In the fuel dataset, we have

𝑅2 =
152.13

173.98

= 0.8774;

thus, about 87.74% of the variation observed in the data can be explained

by the fitted line �̂� = 74.283 + 14.947𝑋.

This is a reasonably high proportion; together with the scatter plot, this

suggests that the SRM is likely appropriate in this case. □

But don’t get too deeply enamoured of 𝑅2
as a figure to validate the

regression: the values can be quite large even if the linear association is

weak, as can be seen in Figure 8.8.

Figure 8.8: Various 𝑅2
for nonlinear datasets; notice the effect of the number of observations on the coefficient of determination.

8.2.2 Inference

In order to test various hypotheses about the regression, we will need an

estimation for the common variance 𝜎2
. In the SLR model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

we have independent normal random errors 𝜺 ∼ N(0, 𝜎2I𝑛). The proba-

bility function of 𝑌𝑖 ∼ N(𝛽0 + 𝛽1𝑋𝑖 , 𝜎2) is thus

𝑓 (𝑌𝑖) =
1√
2𝜋𝜎

exp

[
−(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2

2𝜎2

]
.

The likelihood function is

𝐿(𝛽0 , 𝛽1; 𝜎2) =
𝑛∏
𝑖=1

𝑓 (𝑌𝑖) = (2𝜋𝜎2)−𝑛/2

exp

[
−𝑄(𝛽0 , 𝛽1)

2𝜎2

]
,

where

𝑄(𝛽0 , 𝛽1) =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2.

The likelihood 𝐿 is maximized when 𝑄 is minimized with respect to

𝛽0 , 𝛽1.
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We have already shown that the optimizer occurs at the maximum
likelihood estimator �̂� = (�̂�0 , �̂�1) = (𝑏0 , 𝑏1), for which

𝑄(𝑏0 , 𝑏1) =
𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 =

𝑛∑
𝑖=1

𝑒2

𝑖 = SSE.

Can we also use the data to find an estimator of 𝜎2
?

Consider the log-likelihood

ln 𝐿(𝑏0 , 𝑏1; 𝜎2) = ln

𝑛∏
𝑖=1

𝑓 (𝑌𝑖) =
𝑛∑
𝑖=1

ln 𝑓 (𝑌𝑖)

= −𝑛
2

ln(2𝜋𝜎2) − 1

2𝜎2

𝑄(𝑏0 , 𝑏1)

Because the logarithm is a monotone increasing function, maximizing 𝐿

is equivalent to maximizing ln 𝐿. But

𝜕𝐿

𝜕[𝜎2] = −𝑛
2

· 2𝜋

2𝜋𝜎2

+ 1

2(𝜎2)2𝑄(𝑏0 , 𝑏1) =
−1

2𝜎2

(
𝑛 − 𝑄(𝑏0 , 𝑏1)

𝜎2

)
.

Setting
𝜕𝐿

𝜕[𝜎2] = 0 and solving for 𝜎2
yields

𝜎2 =
1

𝑛
𝑄(𝑏0 , 𝑏1) =

SSE

𝑛
.

This estimator is biased, however.
14

The mean squared error14: It can be shown that E

{
𝜎2

}
= 𝑛−2

𝑛 𝜎2
.

MSE =
SSE

𝑛 − 2

is another estimator of the population variance 𝜎2
; this one is unbiased

as

E {MSE} = E

{
SSE

𝑛 − 2

}
= E

{
𝑛

𝑛 − 2

· SSE

𝑛

}
=

𝑛

𝑛 − 2

E

{
𝜎2

}
= 𝜎2.

We can think of the variance 𝜎2
of a finite population of size 𝑛 as a sum

of squares divided by its degrees of freedom 𝑛:

𝜎2 =
1

𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − 𝜇)2.

The estimator of the population variance using a sample of size 𝑛 is

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2;

a sum of squares divided by its degrees of freedom 𝑛 − 1.
15

15: A degree of freedom is lost because

we first used the sample to compute the

sample mean 𝑌 as an approximation of 𝜇. Using the same data for two different purposes creates a "link" between

𝑠2
and 𝑌 which did not exist between 𝜎2

and 𝜇. The same reasoning

explains why it should not come as a surprise that we must divide SSE

by 𝑛 − 2 to obtain an unbiased estimator of 𝜎2
: in the error of sum of

squares

SSE =

𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)2 ,
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we must first use the data to estimate 2 quantities, 𝛽0 and 𝛽1. Thus, SSE

has 𝑛 − 2 degrees of freedom, and the unbiased estimator of 𝜎2
is

MSE =
SSE

𝑛 − 2

.

Fuels Example In the fuels dataset with 𝑛 = 20 observations, the

unbiased estimator of the error variance 𝜎2
in the SLR model is computed

as below.

n = length(x)

SSE = Syy - b1^2*Sxx

(MSE = SSE/(n-2))

[1] 1.180545

Thus 𝜎2 ≈ 1.18. □

In general, if the SLR model is valid we would expect

E {𝑌𝑖} = 𝛽0 + 𝛽1𝑋𝑖

to hold, more or less, for all samples. But the specific values for the

OLS estimators 𝑏0 , 𝑏1 depend on the available data; with different

observations, we would obtain different values for the estimators, and it

makes sense to study the standard error of 𝑏0 , 𝑏1:

𝜎 {𝑏𝑘} =
√

E {(𝑏𝑘 − 𝛽𝑘)2} =
√

E

{
𝑏2

𝑘

}
− 𝛽2

𝑘
, for 𝑘 = 0, 1.

Regression Slope In theory, we could then

1. collect 𝑀 independent datasets,

2. repeat the OLS procedure and obtain a slope estimate 𝑏1;𝑗 of 𝛽1 for

each dataset 𝑗, and

3. estimate 𝜎 {𝑏1} by computing the sample standard deviation of

{𝑏1;1 , . . . , 𝑏1;𝑀}.

In practice, however, collecting data is often costly and we may never

have access to more than one set of observations.
16

16: The use of resampling methods (such

as the bootstrap or the jackknife, see Chap-

ter 20) is another option, but in the case

of OLS estimation, we can use the under-

lying machinery to obtain standard error

estimates from a single sample.

As the error terms 𝜀1 , . . . , 𝜀𝑛 are assumed to be independent in the SLR

model, the response values 𝑌1 , . . . , 𝑌𝑛 are uncorrelated, with variance

𝜎2 {𝑌𝑖} = 𝜎2 {𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖} = 𝜎2 {𝜀𝑖} = 𝜎2
for 𝑖 = 1, . . . , 𝑛. Since

𝑏1 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖 , we have 𝜎2 {𝑏1} =
𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋
𝑆𝑥𝑥

)
2

𝜎2 {𝑌𝑖} ,

so that

𝜎2 {𝑏1} =
𝑛∑
𝑖=1

(
𝑋𝑖 − 𝑋
𝑆𝑥𝑥

)
2

𝜎2 {𝜀𝑖} =
𝜎2

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2 =
𝜎2

𝑆2

𝑥𝑥

· 𝑆𝑥𝑥 =
𝜎2

𝑆𝑥𝑥
.
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Since we do not usually know the actual value of 𝜎2
, the estimated

standard error of 𝑏1 is:

s {𝑏1} =
√

MSE

𝑆𝑥𝑥
.

Fuels Example In the fuels dataset, we have:

(s.b1 = sqrt(MSE/Sxx))

[1] 1.316758

and so s {𝑏1} ≈ 1.317. □

As 𝑏1 is a linear combination of the independent normal random variables

{𝑌𝑖}𝑛𝑖=1
, it is itself normal, by the central limit theorem.

17
17: See page 416.

Since we already know its expectation and its variance, we know its

distribution:

𝑏1 ∼ N

(
𝛽1 ,

𝜎2

𝑆𝑥𝑥

)
=⇒ 𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

∼ N(0, 1).

We now make assumptions that will be justified at a later stage:

SST

𝜎2

∼ 𝜒2(𝑛 − 1), SSE

𝜎2

∼ 𝜒2(𝑛 − 2), SSR

𝜎2

∼ 𝜒2(1), 𝑏1 , SSE indep.

The definition of the Student 𝑡−distribution (see Section 8.1.1) yields

𝑇1 =
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥︸   ︷︷   ︸

=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈

=
𝑏1 − 𝛽1√

MSE/
√
𝑆𝑥𝑥

=
𝑏1 − 𝛽1

s {𝑏1}
∼ 𝑡(𝑛−2).

Critical Region Let 𝛼 ∈ (0, 1). Since

𝑏1−𝛽1

s{𝑏1} ∼ 𝑡(𝑛 − 2), we have

1 − 𝛼 = 𝑃
(
−𝑡(1 − 𝛼

2
; 𝑛 − 2) ≤ 𝑏1−𝛽1

s{𝑏1} ≤ 𝑡(1 − 𝛼
2
; 𝑛 − 2)

)
= 𝑃

(
𝑏1 − 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s {𝑏1} ≤ 𝛽1 ≤ 𝑏1 + 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s {𝑏1}

)
,

as in the image below.
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Thus, the 100(1 − 𝛼)% confidence interval for 𝛽1 is

C.I.(𝛽1; 1 − 𝛼) ≡ 𝑏1 ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s {𝑏1} .

Fuels Example In the fuels dataset, we have

𝑏1 = 14.947, s {𝑏1} = 1.317.

At a confidence level of 1 − 𝛼 = 0.95,
18

the critical value of the Student 18: Or an error rate of 𝛼 = 0.05.

𝑡−distribution with 𝑛 − 2 = 20 − 2 = 18 degrees of freedom is

𝑡(1 − 0.05/2; 20 − 2) = 𝑡(0.975; 18) = 2.101.

We can build a 95% confidence interval for 𝛽1 as follows:

C.I.(𝛽1; 0.95) ≡ 14.947 ± 2.101(1.317) = [12.17, 17.72].

Regression Intercept With the same assumptions as with 𝑏1, we also

have:

𝜎2 {𝑏0} = 𝜎2

{
𝑌 − 𝑏1𝑋

}
= 𝜎2

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 − 𝑋
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
= 𝜎2

{
𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
𝑌𝑖

}
=

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
2

𝜎2 {𝑌𝑖}︸ ︷︷ ︸
=𝜎2

= 𝜎2

[ 𝑛∑
𝑖=1

1

𝑛2

− 2𝑋

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

+ 𝑋
2

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2︸          ︷︷          ︸
=𝑆𝑥𝑥

]
.

Thus,

𝜎2 {𝑏0} =
[
𝑛

𝑛2

− 0 + 𝑋
2

𝑆2

𝑥𝑥

𝑆𝑋𝑋

]
= 𝜎2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

]
,

and so the estimated standard error of 𝑏0 is:

s {𝑏0} =
√

MSE

√
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥
.

Fuels Example In the fuels dataset, we have

s {𝑏0} =
√

1.18

√
1

20

+ (23.92/20)2
0.68

= 1.593. □

As was the case for 𝑏1, 𝑏0 follows a normal distribution since it is a linear

combination of the independent normal random variables 𝑌1 , . . . , 𝑌𝑛 .

As we already know its expectation and its variance, we also know its

distribution:

𝑏0 ∼ N

(
𝛽0 , 𝜎

2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

])
=⇒

𝑏0 − 𝛽0

𝜎

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥

∼ N(0, 1).
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Assuming again that 𝑏0 and SSE are independent and that
SSE

𝜎2
∼ 𝜒2(𝑛−2),

the definition of the Student 𝑡−distribution yields that

𝑇0 =
𝑏0 − 𝛽0

𝜎

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥︸       ︷︷       ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈

=
𝑏0 − 𝛽0

√
MSE

√
1

𝑛 + 𝑋
2

𝑆𝑥𝑥

=
𝑏0 − 𝛽0

s {𝑏0}

follows a 𝑡(𝑛 − 2) distribution.

As is the case with 𝛽1, the 100(1 − 𝛼)% confidence interval for 𝛽0 is

C.I.(𝛽0; 1 − 𝛼) ≡ 𝑏0 ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s {𝑏0} .

Fuels Example In the fuels dataset, we have 𝑏0 = 74.283 and s {𝑏0} =

1.593.At a confidence level of 1−𝛼 = 0.95, the critical value of the Student

𝑡−distribution with 𝑛−2 = 18 degrees of freedom is 𝑡(0.975; 18) = 2.101,

and we can build a 95% confidence interval for 𝛽0 as follows:

C.I.(𝛽0; 0.95) ≡ 74.283 ± 2.101(1.593) = [70.94, 77.63].

Hypothesis Testing With standard errors, we can test hypotheses on

the regression parameters.

We try to determine if the true parameters 𝛽0 , 𝛽1 take on specific values

and whether the line of best fit provides a good description of a bivariate

dataset using the following steps:

1. set up a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1;

2. compute a test statistic (using the studentization);

3. find a critical region/𝑝−value for the test statistic under 𝐻0;

4. reject or fail to reject 𝐻0 based on the critical region/𝑝−value.

For instance, we might be interested in testing whether a true parameter

value 𝛽 is equal to some candidate value 𝛽∗, i.e.

𝐻0 : 𝛽 = 𝛽∗ against 𝐻1 :


𝛽 < 𝛽∗ , left-tailed test

𝛽 > 𝛽∗ , right-tailed test

𝛽 ≠ 𝛽∗ , two-tailed test

Under 𝐻0, we have shown that

𝑇0 =
𝑏 − 𝛽∗

s {𝑏} ∼ 𝑡(𝑛 − 2).

The critical region depends on the confidence level 1− 𝛼 and on the type
of the alternative hypothesis 𝐻1.

Let 𝑡∗ be the observed value of 𝑇0; we reject 𝐻0 at 𝛼 if 𝑡∗ is in the critical
region of the test.

Alternative Hypothesis Rejection Region
𝐻1 : 𝛽 < 𝛽∗ 𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 2)
𝐻1 : 𝛽 > 𝛽∗ 𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 2)
𝐻1 : 𝛽 ≠ 𝛽∗ |𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 2)
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Examples Test the following hypotheses In the fuels dataset.

a) Test for 𝐻0 : 𝛽0 = 75 against 𝐻1 : 𝛽0 < 75 at 𝛼 = 0.05.

b) Test for 𝐻0 : 𝛽1 = 10 against 𝐻1 : 𝛽1 > 10 at 𝛼 = 0.05.

c) Test for 𝐻0 : 𝛽1 = 0 against 𝐻1 : 𝛽1 ≠ 0 at 𝛼 = 0.05.

We have seen that

𝑏0 = 74.283, s {𝑏0} = 1.593, 𝑏1 = 14.947, s {𝑏1} = 1.317.

Since the error rate for all tests is 𝛼 = 0.05, we also need to compute the

critical values of the Student 𝑡−distribution with 𝜈 = 20− 2 = 18 degrees

of freedom, at confidence levels 1 − 𝛼 = 0.95 and 1 − 𝛼/2 = 0.975:

𝑡(0.975; 18) = 2.101, and 𝑡(0.95; 18) = 1.734.

a) We run a left-tailed test for the intercept: the observed test statistic

is

𝑡∗𝑎 =
𝑏0 − 𝛽∗

0

s {𝑏0}
=

74.283 − 75

1.593

= −0.449 ≮ −1.734 = −𝑡(0.95; 18),

and so we fail to reject 𝐻0 at 𝛼 = 0.05.

b) We run a right-tailed test for the slope: the observed test statistic is

𝑡∗𝑏 =
𝑏1 − 𝛽∗

1

s {𝑏1}
=

14.947 − 10

1.317

= 3.757 > 1.734 = 𝑡(0.95; 18),

and so we reject 𝐻0 in favour of 𝐻1 at 𝛼 = 0.05.

c) We run a two-tailed test for the slope: the observed test statistic is

|𝑡∗𝑐 | =
����𝑏1 − 𝛽∗

1

s {𝑏1}

���� = ����14.947 − 0

1.317

���� = 11.351 > 2.101 = 𝑡(0.975; 18),

and so we reject 𝐻0 in favour of 𝐻1 at 𝛼 = 0.05.

We will see another test for the slope in Section 8.2.4.

Mean Response We can also conduct inferential analysis for the ex-
pected response at 𝑋 = 𝑋∗

.
19

We assume that E {𝑌∗} = 𝛽0 + 𝛽1𝑋
∗
. 19: In practice, there could be replicates,

say.

The estimated mean response at 𝑋 = 𝑋∗
is

�̂�∗ = 𝑏0 + 𝑏1𝑋
∗.

The predictor value being fixed, �̂�∗
is normally distributed with

E

{
�̂�∗} = E {𝑏0 + 𝑏1𝑋

∗} = E {𝑏0} + E {𝑏1}𝑋∗ = 𝛽0 + 𝛽1𝑋
∗ ,

so that �̂�∗
is an unbiased estimator of 𝑌∗

. What is its standard error?

If 𝑏0 , 𝑏1 were independent, we could simply compute

𝜎2

{
�̂�∗} = 𝜎2 {𝑏0} + (𝑋∗)2𝜎2 {𝑏1} .

But they are not independent, as we can see in the following result.
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Theorem: under the SLR assumptions, 𝜎
{
𝑌, 𝑏1

}
= 0 and

𝜎 {𝑏0 , 𝑏1} = −𝑋𝜎2 {𝑏1} .

Proof: throughout, keep in mind that the 𝑌𝑖 are uncorrelated. We have

𝜎
{
𝑌, 𝑏1

}
= 𝜎

{
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖 ,
𝑛∑
𝑖=1

(𝑋𝑗 − 𝑋)
𝑆𝑥𝑥

𝑌𝑗

}
=

𝑛∑
𝑖 , 𝑗=1

1

𝑛
· (𝑋𝑖 − 𝑋)

𝑆𝑥𝑥
𝜎
{
𝑌𝑖 , 𝑌𝑗

}
.

All the terms for which 𝑖 ≠ 𝑗 have 𝜎
{
𝑌𝑖 , 𝑌𝑗

}
= 0, the other ones have

𝜎 {𝑌𝑖 , 𝑌𝑖} = 𝜎2 {𝑌𝑖} = 𝜎2
, so

𝜎
{
𝑌, 𝑏1

}
=

𝜎2

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

= 0.

Similarly,

𝜎 {𝑏0 , 𝑏1} = 𝜎

{
𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
𝑌𝑖 ,

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

𝑌𝑖

}
=

𝑛∑
𝑖 , 𝑗=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
(𝑋𝑗 − 𝑋)
𝑆𝑥𝑥

𝜎
{
𝑌𝑖 , 𝑌𝑗

}
All the terms for which 𝑖 ≠ 𝑗 have 𝜎

{
𝑌𝑖 , 𝑌𝑗

}
= 0, the other ones have

𝜎 {𝑌𝑖 , 𝑌𝑖} = 𝜎2 {𝑌𝑖} = 𝜎2
, so

𝜎 {𝑏0 , 𝑏1} = 𝜎2

𝑛∑
𝑖=1

[
1

𝑛
− 𝑋(𝑋𝑖 − 𝑋)

𝑆𝑥𝑥

]
(𝑋𝑖 − 𝑋)
𝑆𝑥𝑥

=
𝜎2

𝑛𝑆𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)︸         ︷︷         ︸
=0

−𝜎2𝑋

𝑆2

𝑥𝑥

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2︸          ︷︷          ︸
𝑆𝑥𝑥

= −𝑋 𝜎2

𝑆𝑥𝑥
= −𝑋𝜎2 {𝑏1} .

This completes the proof. ■

We can now determine the standard error of the estimated mean response

𝑌 = �̂�∗
at 𝑋 = 𝑋∗

:

𝜎2

{
�̂�∗} = 𝜎2 {𝑏0 + 𝑏1𝑋

∗} = 𝜎2 {𝑏0} + (𝑋∗)2𝜎2 {𝑏1} + 2𝜎 {𝑏0 , 𝑋
∗𝑏1}

= 𝜎2

[
1

𝑛
+ 𝑋

2

𝑆𝑥𝑥

]
+ (𝑋∗)2𝜎2

𝑆𝑥𝑥
− 2𝑋∗𝑋

𝜎2

𝑆𝑥𝑥

=
𝜎2

𝑛
+ 𝜎2

𝑆𝑥𝑥

[
(𝑋∗)2 − 2𝑋𝑋∗ + 𝑋2]

= 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
.

The estimated standard error is thus

s

{
�̂�∗} =

√
MSE

√
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥
.
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But there are many ways to skin a cat:

𝜎2

{
�̂�∗} = 𝜎2

{
(𝑌 − 𝑏1𝑋) + 𝑏1𝑋

∗
}
= 𝜎2

{
𝑌 + 𝑏1(𝑋∗ − 𝑋)

}
= 𝜎2

{
𝑌
}
+ 𝜎2

{
𝑏1(𝑋∗ − 𝑋)

}
+ 2(𝑋∗ − 𝑋)𝜎

{
𝑌, 𝑏1

}
=

𝜎2

𝑛
+ (𝑋∗ − 𝑋)2 𝜎2

𝑆𝑥𝑥
+ 0 = 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
.

Either way, we can show that

𝑇∗ =
�̂�∗ − E{�̂�∗}

s{�̂�∗}
∼ 𝑡(𝑛 − 2), and so

C.I.(E{𝑌∗}; 1 − 𝛼) ≡ 𝛽0 + 𝛽1𝑋
∗ ± 𝑡(1 − 𝛼

2
; 𝑛 − 2) · s{�̂�∗}.

Fuels Example In the fuels dataset, the 95% C.I. for E {𝑌∗} is

C.I.(E{𝑌∗}; 0.95) ≡ 74.28 + 14.95𝑋∗ ± 2.10

√
1.18

[
1

20

+ (𝑋∗ − 1.12)2
0.68

]

Figure 8.9: Confidence interval for the mean response: at 𝑋∗ = 1, the 95% confidence interval for the mean response E {𝑌∗} is the orange bar.

8.2.3 Estimation and Prediction

When we estimate the expected (mean) response E {𝑌∗}, we are determin-

ing how (𝑏0 , 𝑏1) could jointly vary from one sample to the next. As these

parameters uniquely determine the line of best fit, finding a confidence

interval for the mean response at all 𝑋 = 𝑋∗
is equivalent to finding a

confidence band for the entire line over the predictor domain.
20

20: Warning: see a bit further down for

joint estimation.

It should come as no surprise that a number of observations fell outside

of their respective confidence intervals for the fuels dataset example: we

were estimating the mean response at a predictor level 𝑋 = 𝑋∗
, not the

actual (or new) responses at that level.
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But what if we wanted to find a range of likely response values at𝑋 = 𝑋∗
?

We use the available data to build confidence intervals (C.I.) when we

are interested in certain (fixed) population characteristics (parameters)

that are unknown to us.

But a new value of the response is not a parameter – it is a random
variable. We refer to the interval of plausible (likely) values for a new

response as a prediction interval (P.I.).

In order to determine such a P.I. for the response, we must model the

error involved in the prediction of the response.
21

21: Throughout, we assume that the new

responses for a predictor level 𝑋 = 𝑋∗
are

independent of the observed responses,

which is to say that the residuals are un-
correlated.

Prediction Intervals Let 𝑌∗
𝑝 represent a (new) response at 𝑋 = 𝑋∗

:

𝑌∗
𝑝 = 𝛽0 + 𝛽1𝑋

∗ + 𝜀𝑝 for some 𝜀𝑝 .

If the average error is 0, the best prediction for 𝑌∗
𝑝 is still the response on

the fitted line at 𝑋 = 𝑋∗
:

�̂�∗
𝑝 = 𝑏0 + 𝑏1𝑋

∗.

The prediction error at 𝑋 = 𝑋∗
is thus

pred
∗ = 𝑌∗

𝑝 − �̂�∗
𝑝 = 𝛽0 + 𝛽1𝑋

∗ + 𝜀𝑝 − 𝑏0 − 𝑏1𝑋
∗.

In the SLR model, the error 𝜀𝑝 and the estimators 𝑏0 , 𝑏1 are normally
distributed. Consequently, so is the prediction error pred

∗
. We have

E {pred
∗} = E

{
𝛽0 + 𝛽1𝑋

∗ + 𝜀∗𝑝
}︸                 ︷︷                 ︸

=𝛽0+𝛽1𝑋∗

−E

{
𝑏0 + 𝑏1𝑋

∗}︸          ︷︷          ︸
=𝛽0+𝛽1𝑋∗

= 0.

Because the residuals are uncorrelated with the responses,
22

we have22: They are not uncorrelated with one

another because 𝑒 = 0.

𝜎2 {pred
∗} = 𝜎2

{
𝑌∗
𝑝

}
+ 𝜎2

{
�̂�∗
𝑝

}
= 𝜎2 + 𝜎2

[
1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
= 𝜎2

[
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

]
Thus

pred
∗ ∼ N

(
0, 𝜎2

[
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥

])
.

The estimated standard error is thus

s {pred
∗} =

√
MSE

√
1 + 1

𝑛
+ (𝑋∗ − 𝑋)2

𝑆𝑥𝑥
.

As before, we can show that

𝑇∗
𝑝 =

pred
∗ − 0

s{pred
∗} ∼ 𝑡(𝑛 − 2), and so

P.I.(𝑌∗
𝑝 ; 1 − 𝛼) ≡ 𝛽0 + 𝛽1𝑋

∗ ± 𝑡(1 − 𝛼
2
; 𝑛 − 2) · s{pred

∗}.

Note that s{�̂�∗} < s{pred
∗} so that the C.I. for the mean response at 𝑋∗

is contained in the P.I. for a new response at 𝑋∗
.
23

23: Furthermore, these regions are small-

est when 𝑋∗ = 𝑋, and they increase as

|𝑋∗ − 𝑋 | increases.
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Fuels Example In the fuels dataset, the 95% P.I. for 𝑌∗
𝑝 is

P.I.(𝑌∗
𝑝 ; 0.95) ≡ 74.28 + 14.95𝑋∗ ± 2.10

√
1.18

[
1 + 1

20

+ (𝑋∗ − 1.12)2
0.68

]
.

Figure 8.10: Prediction interval for a new response: at 𝑋∗ = 1, the 95% prediction interval for a new response 𝑌∗
𝑝 is the orange bar.

Hypothesis Testing Since the distributions for the estimators of the

mean response and for new responses are normal and since we have

estimates for their standard errors, we can conduct hypothesis testing as

before:

1. identify the type of alternative hypothesis 𝐻1 (left-tailed, right-

tailed, two-tailed),

2. compute the (studentized) observed test statistic, and

3. compare to the appropriate critical value of the Student 𝑡−distribution.

Fuels Example In the fuels dataset, suppose we would like to test

𝐻0 : E {𝑌∗ | 𝑋∗ = 1.2} = 92.5 against 𝐻1 : E {𝑌∗ | 𝑋∗ = 1.2} ≠ 92.5.

Under 𝐻0, the test statistic

𝑇∗ =
�̂�∗ − 92.5

s{�̂�∗}
∼ 𝑡(𝑛 − 2) = 𝑡(18).

But �̂�∗ = 74.28 + 14.95(1.2) = 92.22 and

s{�̂�∗} =
√

1.18

√
1

20

+ (1.2 − 1.12)2
0.68

= 0.265.

The observed value of 𝑇∗
is thus

𝑡∗ =
92.22 − 92.5

0.265

= −1.057.
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At an error rate of 𝛼 = 0.05, the critical value of the Student 𝑡−distribution

with 𝑛 − 2 = 18 degrees of freedom is 𝑡(0.975; 18) = 2.101; since |𝑡∗ | ≯
𝑡(0.975; 18), there is not enough evidence to reject the null hypothesis 𝐻0

at a confidence level of 95%.
24

24: Which is not the same as accepting the

null hypothesis 𝐻0.

What if we observed a new response 𝑌∗
𝑝 = 80 for a predictor level

𝑋∗ = 1.2? Is this a reasonable value or should we expect something

larger?

At a confidence level of 95%, the prediction interval for the response at

the predictor level 𝑋∗ = 1.2 is

P.I.(𝑌∗
𝑝 ; 0.95) ≡ �̂�∗ ± 𝑡(0.975; 18) · s {pred

∗}

= 74.28 + 14.95(1.2) ± 2.101

√
1.18

[
1 + 1

20

+ (1.2 − 1.12)2
0.68

]
= 92.22 ± 2.101(1.061) = [89.99, 94.45].

As 𝑌∗
𝑝 = 80 is not in the prediction interval, this seems like an unlikely

new response for 𝑋∗ = 1.2 (at confidence level 95%).

Joint Estimations and Predictions When we use a dataset to estimate

the two parameters 𝛽0 and 𝛽1 in the SLR model, the error sum of squares
SSE has 𝑛 − 2 degrees of freedom.

This might seem like an obscure technical point, but there is a practical

consequence: the resulting C.I. are necessarily wider than those that

would be obtained if the sum of squares had more degrees of freedom.

For instance, 𝑡(0.975; 18) = 2.101 > 𝑡(0.975, 20) = 2.086.25
25: What does this mean for regression

analysis? One interpretation is that there

is a penalty for the simultaneous estima-

tion of parameters: when the same data

is used to compute various estimates, it

gets "tired" (?) and it loses some of its

predictive power.

Bonferroni’s Procedure Say we are interested in the joint estimation of

𝑔 parameters 𝜃1 , . . . , 𝜃𝑔 .

For each parameter 𝜃𝑖 , we build C.I.(𝜃𝑖) ≡ 𝐴𝑖 = {𝐿𝑖 ≤ 𝜃𝑖 ≤ 𝑈𝑖}; the

error rate for estimating 𝜃𝑖 is 𝑃(𝐴𝑖) = 𝑃(𝜃𝑖 ∉ 𝐴𝑖). The family confidence
level is

𝑃(𝐴1 ∩ · · · ∩ 𝐴𝑔) = 𝑃(𝜃1 ∈ 𝐴1 , · · · , 𝜃𝑔 ∈ 𝐴𝑔).

Theorem: for individual error rates 𝑃(𝐴𝑖) = 𝛼
𝑔 , we have

𝑃(𝐴1 ∩ · · · ∩ 𝐴𝑔) ≥ 1 − 𝛼.

Proof: recall that 𝑃(𝐶∪𝐷) = 𝑃(𝐶)+𝑃(𝐷)−𝑃(𝐶∩𝐷). As all probabilities

are non-negative, 𝑃(𝐶) + 𝑃(𝐷) ≥ 𝑃(𝐶 ∪ 𝐷). This can be extended to

unions of 𝑔 events:

𝑃(𝐴1 ∪ · · · ∪ 𝐴𝑔) ≤ 𝑃(𝐴1) + · · · + 𝑃(𝐴𝑔); or

1 − 𝑃(𝐴1 ∪ · · · ∪ 𝐴𝑔) ≥ 1 − 𝑃(𝐴1) − · · · − 𝑃(𝐴𝑔) = 1 − 𝑔 · 𝛼
𝑔
= 1 − 𝛼.

As 𝑃(𝐴1 ∩ · · · ∩𝐴𝑔) = 1−𝑃(𝐴1 ∪ · · · ∪𝐴𝑔), this completes the proof.■
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We can use the Bonferroni procedure to provide joint C.I. for parameters

𝜃1 , . . . , 𝜃𝑔 at a family confidence level of 1 − 𝛼:

C.I.B(𝜃𝑖 ; 1 − 𝛼) ≡ �̂�𝑖 ± 𝑡(1 − 𝛼/𝑔
2

; d.f.) · s{�̂�𝑖}, 𝑖 = 1, . . . , 𝑔.

Joint Estimation of 𝛽0 and 𝛽1 At a family confidence level of 1 − 𝛼, the

joint Bonferroni C.I. for 𝛽0 and 𝛽1 (𝑔 = 2) take the form:

C.I.B(𝛽𝑖 ; 1 − 𝛼) ≡ 𝑏𝑖 ± 𝑡(1 − 𝛼
4
; 𝑛 − 2) · s{𝑏𝑖}, 𝑖 = 0, . . . , 1.

At least 100(1 − 𝛼)% of the times we use this procedure, both 𝛽0 and 𝛽1

will fall inside their respective C.I..

Fuels Example In the fuels dataset, if we want a family confidence level

of 1−𝛼 = 0.95, we need to use 𝑡(1 − 0.05

4
; 20 − 2) = 𝑡(0.9875; 18) = 2.44501 :

C.I.B(𝜷; 0.95) ≡
{

74.283 ± 2.445 · 1.593 ≡ [70.39, 78.18] (𝛽0)
14.947 ± 2.445 · 1.317 ≡ [11.73, 18.17] (𝛽1)

Working-Hotelling’s Procedure When we estimate a C.I. for the mean

response at 𝑋 = 𝑋∗
, we express the lower bound and the upper bound

of the interval as a function of 𝑋∗
.
26

26: It would be tempting to see the union

of all these C.I. as a confidence band for

the mean response at all 𝑋, i.e., for the

true line of best fit

E {𝑌} = 𝛽0 + 𝛽1𝑋,

but that’s not how it works.

If we are only interested in jointly estimating the mean response at a

"small" number of levels 𝑋 = 𝑋∗
𝑖
, 𝑖 = 1, . . . , 𝑔, with a family confidence

level 1 − 𝛼, we can use the Bonferroni procedure:

C.I.B(E
{
𝑌∗
𝑖

}
; 1 − 𝛼) = �̂�∗

𝑖 ± 𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 2) · s{�̂�∗
𝑖
}, 𝑖 = 1, . . . , 𝑔.

If we want to build a 100(1−𝛼)% confidence region for E {𝑌} = 𝛽0+𝛽1𝑋,

the Bonferroni approach would require us to let 𝑔 → ∞ in the C.I.

computations, which is problematic as

𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 2) → ∞

in that case. Instead, we seek𝑊 > 0 such that

1 − 𝛼 = 𝑃
(
�̂�(𝑋) −𝑊 · s{�̂�(𝑋)} ≤ 𝛽0 + 𝛽1𝑋︸    ︷︷    ︸

=E{�̂�(𝑋)}

≤ �̂�(𝑋) +𝑊 · s{�̂�(𝑋)}
)

for all 𝑋 in the regression domain. This can be achieved if

1 − 𝛼 = 𝑃

(
max

𝑋

{�����̂�(𝑋) − E{�̂�(𝑋)}
s{�̂�(𝑋)}

����} ≤ 𝑊
)
,

or equivalently, if

1 − 𝛼 = 𝑃

(
max

𝑋

{
(�̂�(𝑋) − E{�̂�(𝑋)})2

s
2{�̂�(𝑋)}

}
≤ 𝑊2

)
.
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In order to find the appropriate𝑊 , we need the distribution of

M= max

𝑋

{
(�̂�(𝑋) − E{�̂�(𝑋)})2

s
2{�̂�(𝑋)}

}
= max

𝑋


[
(𝑏0 + 𝑏1𝑋) − (𝛽0 + 𝛽1𝑋)

]
2

MSE

[
1

𝑛 + (𝑋−𝑋)2
𝑆𝑥𝑥

]  .
Set 𝑡 = 𝑋 − 𝑋; then the quantity can be re-written as:

max

𝑡


[
𝑌 − E

{
𝑌
}
+ (𝑏1 − 𝛽1)𝑡

]
2

MSE

[
1

𝑛 + 𝑡2

𝑆𝑥𝑥

]  = max

𝑡

{
[𝑐1 + 𝑑1𝑡]2
𝑐2 + 𝑑2𝑡2

}
= max

𝑡
{ℎ(𝑡)}.

Note that 𝑐2 , 𝑑2 > 0 as MSE, 𝑆𝑥𝑥 > 0, so ℎ(𝑡) ≥ 0 for all 𝑡. This is

a continuous rational function of a single variable, with a horizontal

asymptote at ℎ = 𝑑2

1
/𝑑2 ≥ 0; its first derivative is

ℎ′(𝑡) = 2 (𝑐1 + 𝑑1𝑡) (𝑐2𝑑1 − 𝑐1𝑑2𝑡)
(𝑐1 + 𝑑2𝑡2)2 .

The critical points are found at 𝑡1 = − 𝑐1

𝑑1

and 𝑡2 =
𝑐2𝑑1

𝑐1𝑑2

. Since

ℎ(𝑡1) = 0 and ℎ(𝑡2) =
𝑐2

1
𝑑2 + 𝑐2𝑑

2

1

𝑐2𝑑2

=
𝑐2

1

𝑐2

+
𝑑2

1

𝑑2

≥ 0,

we must have

max

𝑡
{ℎ(𝑡)} =

𝑐2

1

𝑐2

+
𝑑2

1

𝑑2

.

Thus

M=
(𝑌 − E{𝑌})2

MSE/𝑛 + (𝑏1 − 𝛽1)2
MSE/𝑆𝑥𝑥

=

(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

+
(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

MSE/𝜎2

Both of the r.v. in the numerator of M are independent; we then have

𝑌 − E{𝑌}
𝜎/

√
𝑛

,
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

∼ N(0, 1) =⇒
(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

,

(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

∼ 𝜒2(1).

We can re-write the random variable in the denominator of M as

MSE/𝜎2 =
SSE

𝜎2

/
𝑛 − 2 ,

so that

M=

2

∼𝜒2(2)︷                                 ︸︸                                 ︷
(
𝑌 − E{𝑌}
𝜎/

√
𝑛

)
2

+
(
𝑏1 − 𝛽1

𝜎/
√
𝑆𝑥𝑥

)
2

/

2

SSE

𝜎2︸︷︷︸
∼𝜒2(𝑛−2)

/
𝑛 − 2

∼ 2𝐹(2, 𝑛 − 2).
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We thus have

1 − 𝛼 = 𝑃(M ≤ 𝑊2) ⇐⇒𝑊2 = 2𝐹(1 − 𝛼; 2, 𝑛 − 2).

Joint Estimation of Mean Responses At a family confidence level of

1−𝛼, the joint Working-Hotelling C.I. for E

{
𝑌∗
𝑖

}
at any number of levels

𝑋 = 𝑋∗
𝑖

take the form:

C.I.WH(E
{
𝑌∗
𝑖

}
; 1 − 𝛼) = �̂�∗

𝑖 ±
√

2𝐹(1 − 𝛼; 2, 𝑛 − 2) · s{�̂�∗
𝑖 }.

We select whichever of the Bonferroni or Working-Hotelling approaches

yields the tighter C.I..

Fuels Example In the fuels dataset, at a family confidence level of 0.95,

the required factor is

𝑊 =
√

2𝐹(0.95; 2; 18) = 2.667.

The Working-Hotelling confidence band for the line of best fit is shown

in pink below; the Bonferroni region for any 20 simultaneous inferences

on the mean response also contains the blue region.

Figure 8.11: Joint Working-Hotelling confidence band (pink) and joint Bonferroni region fo 20 simultaneous inferences on the mean response

(blue + pink) in the fuels dataset.

Scheffé’s Procedure and Joint Estimation of New Responses If we

want to obtain joint prediction intervals at family confidence level 1 − 𝛼
for 𝑔 new responses 𝑌∗

𝑝𝑖
at predictor levels 𝑋 = 𝑋∗

𝑖
, 𝑖 = 1, . . . , 𝑔, we use

the approach (among the two below) that leads to "tighter" P.I.:

if 𝑔 is "small", the Bonferroni prediction intervals are given by

P.I.B(𝑌∗
𝑝𝑖

; 1 − 𝛼) ≡ �̂�∗
𝑝𝑖
± 𝑡(1 − 𝛼/𝑔

2
; 𝑛 − 2) · s{pred

∗
𝑖 }, 𝑖 = 1, . . . , 𝑔;

if 𝑔 is "large", the Scheffé prediction intervals are

P.I.S(𝑌∗
𝑝𝑖

; 1−𝛼) ≡ �̂�∗
𝑝𝑖
±
√
𝑔𝐹(1 − 𝛼; 𝑔, 𝑛 − 2)·s{pred

∗
𝑖 }, 𝑖 = 1, . . . , 𝑔.
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8.2.4 Significance of Regression

What can we conclude if 𝛽1 = 0? It could be that:

1. there is no relationship between 𝑋 and 𝑌, as in a diffuse cloud of

points – knowledge of 𝑋 explains nothing about the possible val-

ues of 𝑌;

2. there is a horizontal relationship between𝑋 and𝑌, so that changes

in 𝑋 do not bring any change in 𝑌;

3. there is a non-linear relationship between 𝑋 and 𝑌 which is best

approximated by a horizontal line.

In each of these cases, we say that regression is not significant.

Figure 8.12: Examples of non-significant regressions.

This test for significance of regression is

𝐻0 : 𝛽1 = 0 against 𝐻1 : 𝛽1 ≠ 0.

The underlying assumptions are that:

1. the simple linear regression model holds, and

2. the error terms are independent and normal, with variance 𝜎2
.

Under these assumptions, we can show that 𝑏0 , 𝑏1 are independent of
SSE and that

SSE

𝜎2

∼ 𝜒2(𝑛 − 2).

Analysis of Variance Whether 𝐻0 holds or not, the unbiased estimator

for the error variance is

𝜎2 = MSE =
SSE

𝑛 − 2

(
=⇒ SSE

𝜎2

∼ 𝜒2(𝑛 − 2)
)
.
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Recall that, in general: SST = SSR + SSE. If 𝐻0 : 𝛽1 = 0 holds, then

𝑌1 , . . . , 𝑌𝑛 is an independent random sample drawn from N(𝛽0 , 𝜎2). Our

best estimate for 𝜎2
is thus

𝜎2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =
SST

𝑛 − 1

(
=⇒ SST

𝜎2

∼ 𝜒2(𝑛 − 1)
)
.

Cochran’s Theorem implies that SSE, SSR are independent, and that

SSR

𝜎2

∼ 𝜒2
(
(𝑛 − 1) − (𝑛 − 2)

)
= 𝜒2(1).

Thus, if 𝐻0 : 𝛽1 = 0 holds, the quotient

𝐹∗ =

(
SSR

𝜎2

)
︸  ︷︷  ︸
𝜒2(𝜈1)

/
1︸︷︷︸
𝜈1(

SSE

𝜎2

)
︸ ︷︷ ︸
𝜒2(𝜈2)

/
(𝑛 − 2)︸ ︷︷ ︸

𝜈2

=
SSR/1

SSE/(𝑛 − 2) =
MSR

MSE

∼ 𝐹(1, 𝑛 − 2)

follows a Fisher 𝐹 distribution with 1, 𝑛 − 2 degrees of freedom.

It can be shown that E {MSR} = 𝜎2 + 𝛽2

1
𝑆𝑥𝑥 ; if 𝛽1 ≠ 0, we thus have

E {MSR} > 𝜎2
, which means that large observed values of 𝐹∗ support

𝐻1 : 𝛽1 ≠ 0.

Decision Rule: let 0 < 𝛼 ≪ 1. If 𝐹∗ > 𝐹(1 − 𝛼; 1, 𝑛 − 2), then we reject

𝐻0 in favour of 𝐻1 at level 𝛼.
27

27: We have already examined a test for

significance of regression in Section 8.2.2.

They are linked: when 𝛽1 = 0, 𝐹∗ = (𝑡∗)2.

Fuels Example In the fuels dataset, we have 𝑛 = 20 and

SST = 173.38, SSR = 152.13, SSE = 21.25,

so that

𝐹∗ =
SSR/1

SSE/(𝑛 − 2) =
152.13/1

21.25/18

= 128.8631 = (11.351)2;

at 𝛼 = 0.05, the critical value is 𝐹(1 − 0.05; 1, 18) = 4.413873. Since

𝐹∗ > 𝐹(0.95; 1, 18), we reject 𝐻0 : 𝛽1 = 0 at 𝛼 = 0.05, in favour of the

alternative being that the regression is significant (𝐻1 : 𝛽1 ≠ 0).

Golden Rule In general, if SSx is a sum of squares with 𝑛 − 𝑥 degrees

of freedom, the corresponding mean sum of squares is

MSx =
SSx

𝑛 − 𝑥 .

Under some specific test assumptions,
28

MSx provides an unbiased 28: Or under general assumptions, de-

pending on the sum of squares in question

or the situation.

estimator for the variance 𝜎2
of the error terms. Depending on the

situation, Cochran’s Theorem can then be used to show that

SSx

𝜎2

∼ 𝜒2(𝑛 − 𝑥).



446 8 Classical Regression Analysis

8.2.5 Simple Linear Regression in R

While we can compute quantities associated with the SLR model man-

ually,
29

the lm() function in R produces an object from which we can29: As we have done on numerous occa-

sions earlier in this section.
extract most of them.

Fuels Example We can easily compute the regression model in R.

(model <- lm(y ~ x))

plot(x,y); abline(model) # display points and line

Coefficients:

(Intercept) x

74.28 14.95

We can get more information via the summary() call.

summary(model)

Residuals:

Min 1Q Median 3Q Max

-1.83029 -0.73334 0.04497 0.69969 1.96809

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.283 1.593 46.62 < 2e-16 ***
x 14.947 1.317 11.35 1.23e-09 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.087 on 18 degrees of freedom

Multiple R-squared: 0.8774,Adjusted R-squared: 0.8706

F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

Other attributes are available, as seen below.

attributes(model)

$names

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

attributes(summary(model))

$names

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"
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8.3 Multiple Linear Regression

The situation is usually more complicated; in particular, in any reasonable

dataset we might expect to see 𝑝 predictors 𝑋𝑘 , 𝑘 = 0, . . . , 𝑝 − 1.

Examples

𝑋1: age, 𝑋2: sex; 𝑌: height (𝑝 = 3)
𝑋1: age; 𝑋2: years of education, 𝑌: salary (𝑝 = 3)
𝑋1: income; 𝑋2: infant mortality; 𝑋3: fertility rate,𝑌: life expectancy

(𝑝 = 4)

etc.

In theory, we hope that there is a functional relationship𝑌 = 𝑓 (𝑋0 , . . . , 𝑋𝑝−1)
between 𝑋0(= 1), 𝑋1 , . . . , 𝑋𝑝−1 and 𝑌. In practice (assuming that a re-

lationship even exists), the best that we may be able to hope for is a

statistical relationship

𝑌 = 𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝−1) + 𝜀,

where, as before, 𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝−1) is the response function, and 𝜀 is

the random error (or noise).

In general linear regression, we assume that the response function is

𝑓 (𝑋0 , 𝑋1 , . . . , 𝑋𝑝) = 𝛽0𝑋0(= 1) + 𝛽1𝑋1 + · · · + 𝛽𝑝−1𝑋𝑝−1.

The building blocks of regression analysis are the observations:

(𝑋𝑖 ,0(= 1), 𝑋𝑖 ,1 , . . . , 𝑋𝑖 ,𝑝−1 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛.

In an ideal setting, these observations are (jointly) randomly sampled,

according to some appropriate design.
30

30: See Chapters 11 and 10.

The general linear regression (GLR) model is

𝑌𝑖 = 𝛽0𝑋𝑖 ,0(= 1) + 𝛽1𝑋𝑖 ,1 + · · · + 𝛽𝑝−1𝑋𝑖 ,𝑝−1 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where 𝛽𝑘 , 𝑘 = 0, . . . , 𝑝 − 1 are unknown parameters and 𝜀𝑖 is the

random error on the 𝑖th observation (or case).
31

A GLR model need not 31: Note that a predictor 𝑋𝑘 can be a func-

tion of other predictors. For instance, the

following model is a GLR model:

E {𝑌} = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 .

necessarily be linear in 𝑋, but the mean response E {𝑌} must be linear
in the parameters 𝛽𝑘 , 𝑘 = 0, . . . , 𝑝 − 1.

In what follows, we write

Y =
©«
𝑌1

...

𝑌𝑛

ª®®¬ , 𝜷 =

©«
𝛽0

𝛽1

...

𝛽𝑝−1

ª®®®®¬
, and X =

©«
1 𝑋1,1 · · · 𝑋1,𝑝−1

...
...

...

1 𝑋𝑛,1 · · · 𝑋𝑛,𝑝−1

ª®®¬ ,
for the response vector, the parameter vector, and the design matrix,

respectively.

In the design matrix X, X𝑖 represents the 𝑖th case (the 𝑖th row of X),

a single multiple predictor level. The columns of the design matrix

represent the values taken by the various predictor variables for all

cases.
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The multiple linear regression model is

Y = X𝜷 + 𝜺, where 𝜺 ∼ N(0, 𝜎2I𝑛).

Note that the SLR model fits into this framework, if we use 𝑝 = 2 with

𝜷 =

(
𝛽0

𝛽1

)
and X =

©«
1 𝑋1,1

...
...

1 𝑋𝑛,1

ª®®¬ .
8.3.1 Least Squares Estimation

We treat the predictor values 𝑋𝑖 ,𝑘 as though they were constant, for

𝑖 = 1, . . . , 𝑛, 𝑘 = 0, . . . , 𝑝 − 1.
32

Since E {𝜀𝑖} = 0, the expected (or mean)32: That is, we assume that there is no
measurement error. response conditional on 𝑋𝑖 is thus

E {𝑌𝑖 | X𝑖} = E

{
X𝑖𝜷 + 𝜀𝑖 | X𝑖

}
= X𝑖𝜷 + E {𝜀𝑖} = X𝑖𝜷.

The deviation at X𝑖 is the difference between the observed response 𝑌𝑖
and the expected response E {𝑌𝑖 | X𝑖}:

𝑒𝑖 = 𝑌𝑖 − E {𝑌𝑖 | X𝑖} ;

the deviation can be positive (if the point lies “above” the hyperplane

𝑌 = X𝜷) or “negative” (if it lies below).

How do we find estimators for 𝜷? Incidentally, how do we determine if

the fitted hyperplane is a good model for the data?

Consider the function

𝑄(𝜷) =
𝑛∑
𝑖=1

𝑒2

𝑖 =

𝑛∑
𝑖=1

(𝑌𝑖 − E {𝑌𝑖 | X𝑖})2 =

𝑛∑
𝑖=1

(𝑌𝑖 − X𝑖𝜷)2.

If 𝑄(𝜷) is "small", then the sum of the squared residuals is "small", and

so we would expect the hyperplane𝑌 = X𝜷 to be a good fit for the data.

The least-square estimators of the GLR problem is the vector b ∈ ℝ𝑝

which minimizes the function 𝑄 with respect to 𝜷 ∈ ℝ𝑝
. We must then

find critical points of 𝑄(𝜷), i.e., solve ∇𝜷𝑄(b) = 0.

Matrix Notation The OLS regression function is Ŷ = Xb, where b
minimizes

𝑄(𝜷) =
𝑛∑
𝑖=1

(
𝑌𝑖 − X𝑖𝜷

)
2

= (Y − X𝜷)⊤(Y − X𝜷)

= (Y⊤ − 𝜷⊤X⊤)(Y − X𝜷) = Y⊤Y − 𝜷⊤X⊤Y − Y⊤X𝜷 + 𝜷⊤X⊤X𝜷.

Since 𝜷⊤X⊤Y is a scalar, it is equal to its transpose Y⊤X𝜷, and so

𝑄(𝜷) = Y⊤Y − 2𝜷⊤X⊤Y + 𝜷⊤X⊤X𝜷.

But X⊤X is positive definite, so 𝑄(𝜷) is minimized at ∇𝜷𝑄(b) = 0.
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Normal Equations The gradient of 𝑄(𝜷) is

∇𝜷𝑄(𝜷) = −2X⊤Y + 2X⊤X𝜷,

so the critical point b solves the normal equations

(X⊤X)b = X⊤Y.

The matrix X⊤X is called the sum of squares and cross products (SSCP)

matrix; when it is invertible, the unique solution of the normal equations

is

b = (X⊤X)−1X⊤Y,

also known as the LS estimates of the GLR problem.
33

33: The SSCP matrix is 𝑝 × 𝑝, and so is

not usually too costly to invert, no matter

the number of observations 𝑛, although

in practice 𝑝 can be quite large.

For instance, say we have two predictors 𝑋1 , 𝑋2 and three regression

parameters 𝜷 = (𝛽0 , 𝛽1 , 𝛽2)⊤. If we write x = (1, 𝑋1 , 𝑋2), the regression
function is

E {𝑌} = x𝜷 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2.

If the OLS estimates are

b = (X⊤X)−1X⊤Y =
(
0.5,−0.1, 2

)⊤
,

say, then the estimated regression function is

�̂� = xb = 0.5 − 0.1𝑋1 + 2𝑋2.

Residuals and Sums of Squares The fitted values for the GLR problem

are ©«
�̂�1

...

�̂�𝑛

ª®®¬ = Ŷ = Xb = X
(
X⊤X

)−1 X⊤︸          ︷︷          ︸
=H

Y = HY,

where H is the hat matrix.

Theorem: H, I𝑛 − H are idempotent and symmetric, and (I𝑛 − H)X = 0.

Proof: we use the notation M = I𝑛 − H. We will first need to show that

H2 = H, H⊤ = H, M2 = M, and M⊤ = M.

That this is the case is obvious:

H2 = X
(
X⊤X

)−1 X⊤X
(
X⊤X

)−1 X⊤ = XI𝑛
(
X⊤X

)−1 X⊤ = H

H⊤ =

(
X

(
X⊤X

)−1 X⊤
)⊤

=
(
X⊤)⊤ ( (

X⊤X
)−1

)⊤
X⊤ = X

( (
X⊤X

)⊤)−1

X⊤

= X⊤ (
X⊤(X⊤)⊤

)−1 X⊤ = X⊤(X⊤X)−1X⊤ = H

M2 = (I𝑛 − H)2 = I2

𝑛 − I𝑛H − HI𝑛 + H2 = I𝑛 − 2H + H = I𝑛 − H = M
M⊤ = (I𝑛 − H)⊤ = I⊤𝑛 − H⊤ = I𝑛 − H = M.

Furthermore,

MX = (I𝑛 − H)X = X − HX = X − X
(
X⊤X

)−1 X⊤X = X − XI𝑛 = 0,

which completes the proof. ■
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The 𝑖th residual is 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 . Since MX = 0, the residual vector is

e = Y − Ŷ = Y − HY = (I𝑛 − H)Y = MY
= M(X𝜷 + 𝜺) = M𝜺.

In other words, the residual vector is both a linear transformation of the

response vector Y and of the random error vector 𝜺. Just as in the SLR

case (which is a special case of GLR), the residuals have a set of nice

properties.

Theorem: the design matrix is orthogonal to the residual vector, i.e.,

X⊤e = 0 (the columns of X are orthogonal to e).

Proof: from the normal equations, we get

X⊤Xb = X⊤Y =⇒ X⊤(Y − Xb) = 0 =⇒ X⊤(Y − Ŷ) = 0.

But Y − Ŷ = e, so that X⊤e = 0. ■

Theorem: if the model has an intercept term 𝛽0, we also have 1⊤𝑛e = 0,

e = Y − Ŷ = 0, and Ŷ⊤e = 0.

Proof: if there is an intercept term, the first column of the design matrix

X is 1𝑛 . Thus 1⊤𝑛e corresponds to the first entry of X⊤e = 0, which is to

say, 0. This also implies that e = 0. For the last part, recall that Ŷ = Xb,

and so Ŷ⊤ = b⊤X⊤
and Ŷ⊤e = b⊤X⊤e = b⊤0 = 0. ■

We have already seen that SST is a quadratic form in Y:

SST =

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 = Y⊤
(
I𝑛 −

1

𝑛
J𝑛

)
Y;

from the definition of the residuals, we see that this also holds for SSE:

SSE =

𝑛∑
𝑖=1

(𝑌𝑖 − �̂�𝑖)2 =

𝑛∑
𝑖=1

𝑒2

𝑖 = e⊤e = (MY)⊤MY = Y⊤M⊤MY

= Y⊤M2Y = Y⊤MY = Y⊤ (I𝑛 − H)Y.

The sum of squares decomposition can then be re-written as:

SSR = SST − SSE.

Thus, SSR is also a quadratic form in Y:

SSR =

𝑛∑
𝑖=1

(�̂�𝑖 − 𝑌)2 = Y⊤
(
I𝑛 −

1

𝑛
J𝑛

)
Y − Y⊤ (I𝑛 − H)Y

= Y⊤
(
I𝑛 −

1

𝑛
J𝑛 − I𝑛 + H

)
Y = Y⊤

(
H − 1

𝑛
J𝑛

)
Y.

Theorem: E {SSE} = (𝑛 − 𝑝)𝜎2
and rank(M) = trace(M) = 𝑛 − 𝑝. Thus,

SSE has 𝑛 − 𝑝 degrees of freedom.

Proof: we have

SSE = e⊤e = (M𝜺)⊤M𝜺 = 𝜺⊤M𝜺 =

𝑛∑
𝑖 , 𝑗=1

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗 =
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖 +
∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗 .
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Since 𝜺 ∼ N(0, 𝜎2I𝑛),

E

{
𝜀2

𝑖

}
= 𝜎2 {𝜀𝑖} + (E {𝜀𝑖})2 = 𝜎2 + 0 = 𝜎2 , 𝑖 = 1, . . . , 𝑛, and

E

{
𝜀𝑖𝜀𝑗

}
= 𝜎

{
𝜀𝑖 , 𝜀𝑗

}
+ E {𝜀𝑖} E

{
𝜀𝑗

}
= 0 + 0 = 0, 𝑖 ≠ 𝑗.

Consequently,

E {SSE} = E

{
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖 +
∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗

}
= E

{
𝑛∑
𝑖=1

𝑚𝑖𝑖𝜀
2

𝑖

}
+ E

{∑
𝑖≠𝑗

𝑚𝑖 𝑗𝜀𝑖𝜀𝑗

}
=

𝑛∑
𝑖=1

𝑚𝑖𝑖E
{
𝜀2

𝑖

}
+

∑
𝑖≠𝑗

𝑚𝑖 𝑗E
{
𝜀𝑖𝜀𝑗

}
= 𝜎2

𝑛∑
𝑖=1

𝑚𝑖𝑖 = 𝜎2

trace(M)

= 𝜎2

trace(I𝑛 − H) = 𝜎2[trace(I𝑛) − trace(H)] = 𝜎2[𝑛 − trace(H)].

But

trace(H) = trace

(
X

(
X⊤X

)−1︸      ︷︷      ︸
𝐴𝑛×𝑝

X⊤︸︷︷︸
𝐵𝑝×𝑛

)
= trace

(
X⊤︸︷︷︸
𝐵𝑝×𝑛

X
(
X⊤X

)−1︸      ︷︷      ︸
𝐴𝑛×𝑝

)
= trace(I𝑝) = 𝑝,

whence E {SSE} = (𝑛 − 𝑝)𝜎2
. ■

The mean square error MSE in the GLR model is

MSE =
SSE

𝑛 − 𝑝 ,

which is not surprising as we have to estimate the 𝑝 parameters 𝛽𝑘 ,
𝑘 = 0, . . . , 𝑝 − 1, in order to compute SSE. According to the previous

theorem, MSE is an unbiased estimator of the error variance 𝜎2
.

8.3.2 Inference, Estimation, and Prediction

Assuming normality and independence of the random errors, the esti-

mators 𝑏0 , . . . , 𝑏𝑝−1 are then independent of SSE and

SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝).

This information allows us to test for the significance of regression using

the overall 𝐹−test:

𝐻0 : 𝛽1 = · · · = 𝛽𝑝−1 = 0 against 𝐻1 : 𝛽𝑘 ≠ 0 for some 𝑘 = 1, . . . , 𝑝 − 1

assuming that the GLR model holds.

Analysis of Variance In particular, we have

𝑌𝑖 ∼ N(X𝑖𝜷, 𝜎2I𝑛), 𝑖 = 1, . . . , 𝑛.

Whether 𝐻0 holds or not, the unbiased estimator for the error variance

is

𝜎2 = MSE =
SSE

𝑛 − 𝑝
(
=⇒ SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝)
)
.
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If 𝐻0 holds, then 𝑌1 , . . . , 𝑌𝑛 is an independent random sample drawn

from N(𝛽0 , 𝜎2). Our best estimate for 𝜎2
is thus

𝜎2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌)2 =
SST

𝑛 − 1

(
=⇒ SST

𝜎2

∼ 𝜒2(𝑛 − 1)
)
.

Since SST = SSE + SSR, Cochran’s Theorem implies that SSE, SSR are

independent, and that

SSR

𝜎2

∼ 𝜒2
(
(𝑛 − 1) − (𝑛 − 𝑝)

)
= 𝜒2(𝑝 − 1).

Thus, if 𝐻0 holds, the quotient

𝐹∗ =

(
SSR

𝜎2

)/
(𝑝 − 1)(

SSE

𝜎2

)/
(𝑛 − 𝑝)

=
SSR/(𝑝 − 1)
SSE/(𝑛 − 𝑝) =

MSR

MSE

∼ 𝐹(𝑝 − 1, 𝑛 − 𝑝)

follows a Fisher 𝐹 distribution with 𝑝 − 1, 𝑛 − 𝑝 degrees of freedom.

The corresponding ANOVA table is

Source SS df MS F∗

Regression SSR 𝑝 − 1 MSR = SSR/(𝑝 − 1) MSR/MSE

Error SSE 𝑛 − 𝑝 MSE = SSE/(𝑛 − 𝑝)
Total SST 𝑛 − 1

The overall 𝐹−test’s p−value is

𝑃(𝐹(𝑝 − 1, 𝑛 − 𝑝) > 𝐹∗).

Decision Rule: at confidence level 1 − 𝛼, we reject 𝐻0 if

𝐹∗ > 𝐹(1 − 𝛼; 𝑝 − 1, 𝑛 − 𝑝);

equivalently, we reject 𝐻0 if 𝑃(𝐹(𝑝 − 1, 𝑛 − 𝑝) > 𝐹∗) < 𝛼.

Toy Example Consider a dataset with 𝑛 = 12 observations, a response

variable 𝑌 and 𝑝 − 1 = 4 predictors 𝑋1, 𝑋2, 𝑋3, 𝑋4. We build a GLR

model

𝑌𝑖 = X𝑖𝜷 + 𝜀𝑖 , 𝑖 = 1, . . . , 12

= 𝛽0 + 𝛽1𝑋𝑖 ,1 + 𝛽2𝑋𝑖 ,2 + 𝛽3𝑋𝑖 ,3 + 𝛽4𝑋𝑖 ,4 + 𝜀𝑖 , 𝜺 ∼ N(0, 𝜎2I12)

The corresponding ANOVA table is

Source SS df MS F∗

Regression 4957.2 4 1239.3 5.1

Error 1699.0 7 242.7

Total 6656.2 11

With a 𝑝 − value = 𝑃(𝐹(4, 7) > 5.1) = 0.0303, we reject 𝐻0 at 𝛼 = 0.05

and conclude that the regression is significant.
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Figure 8.13: Geometrical interpretation of multiple linear regression: the sums of squares decomposition is a manifestation of Pythagoras’

Theorem (see below).

Geometrical Interpretation A number of GLR concepts become easier

to understand when viewed through the prism of geometry and vector
algebra. Let

M(X) = colsp(X) = {X𝜸 | 𝜸 ∈ ℝ𝑝} < ℝ𝑛

M⊥(X) = (colsp(X))⊥ = {v ∈ ℝ𝑛 | v · w = 0, ∀w ∈ M(X)}

The vector of observations Y = X𝜷 + 𝜺 lies in ℝ𝑛
, while the fitted vector

Y = Xb = HY lies in M(X) and

e = Y − Y = Y − HY = (I𝑛 − H)Y

lies in M⊥(X). The hat matrix H and I𝑛 − H are idempotent (they are the

projection matrices on M(X) and M⊥(X)) and symmetric.

The OLS estimator b is such that Xb is the closest vector to Y in M(X):

b = arg min

𝜸∈ℝ𝑝

{
∥Y − X𝜸∥2

2

}
= arg min

𝜸∈ℝ𝑝

{
∥e∥2

2

}
= arg min

𝜸∈ℝ𝑝
{SSE} .

If the GLR model has a constant term 𝛽0, the mean vector Y = 𝑌1𝑛 lies

in M(X); indeed, for 𝜸∗ = (𝑌, 0, . . . , 0)⊤, we have Y = X𝜸∗
. The triangle

ΔYYY is thus a right angle triangle, with

t = Y − Y = (Y − Y) + (Y − Y) = e + r;

Pythagoras’ Theorem then gives us

∥t∥2

2
= SST = SSE + SSR = ∥e∥2

2
+ ∥r∥2

2
.
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Model Parameters As was the case with the SLR model parameters, if

𝜺 ∼ N(0, 𝜎2I𝑛), then

Y ∼ N(E {Y} , 𝜎2 {Y}) = N(X𝜷, 𝜎2I𝑛).

If 𝐴 is any compatible matrix, then

𝐴Y ∼ N(𝐴E {Y} , 𝐴𝜎2 {Y}𝐴⊤) = N(𝐴X𝜷, 𝜎2𝐴𝐴⊤).

From the normal equations, the OLS estimates for the GLR model are

given by a linear transformation of the response vector Y:

b = (X⊤X)−1X⊤︸      ︷︷      ︸
𝑝×𝑛

Y = 𝐴Y.

In particular,

E {b} = (X⊤X)−1X⊤
E {Y} = (X⊤X)−1X⊤X𝜷 = 𝜷,

so that b provides unbiased estimators of 𝜷. Furthemore,

𝜎2 {b} = (X⊤X)−1X⊤𝜎2 {Y}
[
(X⊤X)−1X⊤]⊤

= (X⊤X)−1X⊤𝜎2I𝑛
[
(X⊤X)−1X⊤]⊤

= 𝜎2(X⊤X)−1.

Thus,

b ∼ N
(
𝜷, 𝜎2(X⊤X)−1

)
.

The estimated variance-covariance matrix for the estimators b is thus

s
2 {b} = MSE · (X⊤X)−1 , and s {b} =

√
MSE

√
diag

[
(X⊤X)−1

]
.

For each 𝑘 = 0, . . . , 𝑝 − 1, the studentization of 𝑏𝑘 is

𝑇𝑘 =
𝑏𝑘 − 𝛽𝑘

√
MSE

√
(X⊤X)−1

𝑘,𝑘

=
𝑏𝑘 − 𝛽𝑘

𝜎
√
(X⊤X)−1

𝑘,𝑘︸         ︷︷         ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 𝑝)︸ ︷︷ ︸

=𝜈

∼ 𝑡(𝑛 − 𝑝),

where (X⊤X)−1

𝑘,𝑘 represents the 𝑘 + 1 entry in diag

[
(X⊤X)−1

]
.

For a specific 𝑘 ∈ {0, . . . , 𝑝 − 1}, the 100(1 − 𝛼)% C.I. for 𝛽𝑘 is

C.I.(𝛽𝑘 ; 0.95) ≡ 𝑏𝑘 ± 𝑡
(
1 − 𝛼

2
; 𝑛 − 𝑝

)
· s{𝑏𝑘}.

The corresponding hypothesis tests for

𝐻0 : 𝛽𝑘 = 𝛽∗𝑘 against 𝐻1 :


𝛽𝑘 < 𝛽∗

𝑘
left-tailed test

𝛽𝑘 > 𝛽∗
𝑘

right-tailed test

𝛽𝑘 ≠ 𝛽∗
𝑘

two-tailed test

Under 𝐻0, the computed test statistic

𝑇𝑘 =
𝑏𝑘 − 𝛽∗

𝑘

s{𝑏𝑘}
∼ 𝑡(𝑛 − 𝑝).
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The critical region for the test depends on the confidence level 1− 𝛼 and

on the type of the alternative hypothesis 𝐻1. Let 𝑡∗ be the observed value

of 𝑇𝑘 . We reject 𝐻0 if 𝑡∗ is in the critical region.

Alternative Hypothesis Rejection Region
𝐻1 : 𝛽𝑘 < 𝛽∗

𝑘
𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 𝑝)

𝐻1 : 𝛽𝑘 > 𝛽∗
𝑘

𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : 𝛽𝑘 ≠ 𝛽∗

𝑘
|𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 𝑝)

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We build the GLR model

Ŷ = Xb and obtain the following results:

Predictor Estimate SE t
Intercept -102.71 207.86 -0.49

𝑋1 0.61 0.37 1.64

𝑋2 8.92 5.3 1.68

𝑋3 1.44 2.39 0.60

𝑋4 0.01 0.77 0.02

Recall that 𝑛 − 𝑝 = 7; the 95% C.I. for 𝛽2 is thus

C.I.(𝛽2; 0.95) ≡ 8.92 ± 𝑡(0.975; 7) · 5.3 = 8.92 ± 2.365 · 5.3 = [−3.6, 21.5].

We could also test for 𝐻0 : 𝛽3 = 2 against 𝐻1 : 𝛽3 ≠ 2, say: under 𝐻0,

𝑇∗
3
=
𝑏3 − 2

s {𝑏3}
∼ 𝑡(7).

The observed statistic is

𝑡∗ =
1.44 − 2

2.39

= −0.23;

we would reject 𝐻0 at confidence level 1 − 𝛼 = 0.95 if

|𝑡∗ | > 𝑡(0.975; 7) = 2.365;

as −0.23 ≯ 2.365, we cannot conclude that 𝛽3 ≠ 2.
34

34: While we can build a C.I. for 𝛽2 and

test a hypothesis about 𝛽3, each at the

1 − 𝛼 = 0.95 confidence level, we cannot

do so jointly.Mean Response We can also conduct inferential analysis for the ex-
pected response at X∗ = (1, 𝑋∗

1
, . . . , 𝑋∗

𝑝−1
) in the model’s scope. In the

GLR model, we assume that

E {𝑌∗} = X∗𝜷 = 𝛽0 + 𝛽1𝑋
∗
1
+ · · · + 𝛽𝑝−1𝑋

∗
𝑝−1
.

The estimated mean response at X∗
is

�̂�∗ = X∗b = 𝑏0 + 𝑏1𝑋
∗
1
+ · · · + 𝑏𝑝−1𝑋

∗
𝑝−1
.

The predictor values are fixed, thus �̂�∗
is normally distributed with

E{�̂�∗} = E {X∗b} = X∗
E {b} = X∗𝜷,

so that �̂�∗
is an unbiased estimator of E{𝑌∗}.
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Furthermore,

𝜎2{�̂�∗} = X∗𝜎2 {b} (X∗)⊤ = 𝜎2X∗(X⊤X)−1 (X∗)⊤ ,

so that

s
2{�̂�∗} = MSE · X∗(X⊤X)−1 (X∗)⊤ = X∗

s
2 {b} (X∗)⊤ .

The estimated standard error is thus

s{�̂�∗} =
√

X∗
s

2 {b} (X∗)⊤.

Since

�̂�∗ = X∗b = X∗(X⊤X)−1X⊤Y

is a linear transformation of Y, and since

Y ∼ N(X𝜷, 𝜎2I𝑛),

then

�̂�∗ ∼ N

(
E{�̂�∗}, 𝜎2{�̂�∗}

)
= N

(
X∗𝜷, 𝜎2X∗(X⊤X)−1(X∗)⊤

)
.

Thus

𝑍 =
�̂�∗ − E{�̂�∗}

𝜎{�̂�∗}
=

�̂�∗ − X∗𝜷

𝜎
√

X∗ (X⊤X)−1 (X∗)⊤
∼ N(0, 1).

The studentization of �̂�∗
is then

𝑇 =
�̂�∗ − X∗𝜷

𝜎
√

X∗ (X⊤X)−1 (X∗)⊤︸                   ︷︷                   ︸
=𝑍

/√√√√√√√ SSE

𝜎2︸︷︷︸
=𝑈

/
(𝑛 − 𝑝)︸ ︷︷ ︸

=𝜈

=
�̂�∗ − X∗𝜷

√
MSE

√
X∗ (X⊤X)−1 (X∗)⊤

∼ 𝑡(𝑛 − 𝑝).

For a specific predictor level X∗
, the 100(1 − 𝛼)% C.I. for E {𝑌∗} is

C.I.(E {𝑌∗} ; 0.95) ≡ �̂�∗ ± 𝑡
(
1 − 𝛼

2
; 𝑛 − 𝑝

)
· s{�̂�∗}.

The corresponding hypothesis tests for

𝐻0 : E {𝑌∗} = 𝛾 against 𝐻1 :


E {𝑌∗} < 𝛾 left-tailed test

E {𝑌∗} > 𝛾 right-tailed test

E {𝑌∗} ≠ 𝛾 two-tailed test

Under 𝐻0, the computed test statistic

𝑇 =
�̂�∗ − 𝛾

s{�̂�∗}
∼ 𝑡(𝑛 − 𝑝).

The critical region for the test depends on the confidence level 1− 𝛼 and

on the type of the alternative hypothesis 𝐻1. Let 𝑡∗ be the observed value

of 𝑇. We reject 𝐻0 if 𝑡∗ is in the critical region.
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Alternative Hypothesis Rejection Region
𝐻1 : E {𝑌∗} < 𝛾 𝑡∗ < −𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : E {𝑌∗} > 𝛾 𝑡∗ > 𝑡(1 − 𝛼; 𝑛 − 𝑝)
𝐻1 : E {𝑌∗} ≠ 𝛾 |𝑡∗ | > 𝑡(1 − 𝛼/2; 𝑛 − 𝑝)

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We would like to predict

the expected response at

X∗ = (1, 11.10, 20.74, 6.61, 182.38), in the model’s scope.

Thus

�̂�∗ = X∗b
= −102.71 + 0.61(11.10) + 8.92(20.74) + 1.44(6.61) + 0.01(182.38)
= 100.40.

Recall that MSE = 242.71. Using the data, we computed

X∗(X⊤X)−1 (X∗)⊤ = 1.42,

so that

s{�̂�∗} =
√

242.71

√
1.42 = 22.12.

Since 𝑛 − 𝑝 = 7; the 95% C.I. for E {𝑌∗} is

C.I.(E {𝑌∗} ; 0.95) ≡ 100.40 ± 𝑡(0.975; 7) · 22.12

= 100.40 ± 2.365 · 22.12 = [48.09, 152.71].

We could also test for 𝐻0 : E {𝑌∗} = 150 against 𝐻1 : E {𝑌∗} < 150, say:

under 𝐻0,

𝑇∗ =
�̂�∗ − 150

s{�̂�∗}
∼ 𝑡(7).

The observed statistic is

𝑡∗ =
100.40 − 150

22.12

= −2.24.

We would reject 𝐻0 at confidence level 1 − 𝛼 = 0.95 if

𝑡∗ < −𝑡(0.95; 7) = −1.89;

as −2.24 < −1.89, the evidence is strong enough to reject

𝐻0 : E {𝑌∗} = 150 in favour of 𝐻1 : E {𝑌∗} < 150.

Note, however, that the two-sided 95% C.I. for E {𝑌∗} contains 150, so

we cannot reject

𝐻0 : E {𝑌∗} = 150 in favour of 𝐻1 : E {𝑌∗} ≠ 150

at confidence level 1 − 𝛼 = 95%. As before, we cannot conduct joint
inferences about various predictor levels X∗

without modifications.
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Prediction Intervals Let 𝑌∗
𝑝 represent a (new) response at X∗

, so that

𝑌∗
𝑝 = X∗𝜷 + 𝜀𝑝 for some 𝜀𝑝 .

If the average error is 0, the best prediction for𝑌∗
𝑝 is still the fitted response

at X∗
:

�̂�∗
𝑝 = X∗b.

The prediction error at X∗
is thus

pred
∗ = 𝑌∗

𝑝 − �̂�∗
𝑝 = X∗𝜷 + 𝜀𝑝 − X∗b.

In the GLR model, the error 𝜀𝑝 and the estimators b are normally
distributed. Consequently, so is the prediction error pred

∗
. Note that

E {pred
∗} = E

{
X∗𝜷 + 𝜀∗𝑝

}
︸         ︷︷         ︸

=X∗𝜷

−E {X∗b}︸  ︷︷  ︸
=X∗𝜷

= 0.

Because the residuals are uncorrelated with the response, we also have

𝜎2 {pred
∗} = 𝜎2

{
𝑌∗
𝑝

}
+ 𝜎2

{
�̂�∗
𝑝

}
= 𝜎2 + 𝜎2X∗(X⊤X)−1(X∗)⊤ = 𝜎2

[
1 + X∗(X⊤X)−1(X∗)⊤

]
.

Thus pred
∗ ∼ N

(
0, 𝜎2

[
1 + X∗(X⊤X)−1(X∗)⊤

] )
and the estimated standard

error is

s {pred
∗} =

√
MSE

√
1 + X∗(X⊤X)−1(X∗)⊤.

As before, we can show that

𝑇∗
𝑝 =

pred
∗ − 0

s{pred
∗} ∼ 𝑡(𝑛 − 𝑝), and so

P.I.(𝑌∗
𝑝 ; 1 − 𝛼) ≡ X∗b ± 𝑡(1 − 𝛼

2
; 𝑛 − 𝑝) · s{pred

∗}.

Note that s{�̂�∗} < s{pred
∗} so that the C.I. for the mean response is

always contained in the P.I. for new responses.

Toy Example Consider the situation with 𝑛 = 12 observations and

𝑝 − 1 = 4 predictors as described previously. We would like to predict

the new responses at

X∗ = (1, 11.10, 20.74, 6.61, 182.38), in the model’s scope.

We have already seen that �̂�∗ = X∗b = 100.40. Recall that MSE = 242.71

and

X∗(X⊤X)−1 (X∗)⊤ = 1.42,

so that

s{pred
∗} =

√
242.71

√
1 + 1.42 = 37.70.

Since 𝑛 − 𝑝 = 7, the 95% P.I. for 𝑌∗
is

P.I.(𝑌∗
; 0.95) ≡ 100.40 ± 𝑡(0.975; 7) · 37.70

= 100.40 ± 2.365 · 37.70 = [11.24, 189.56].
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Joint Estimation and Prediction At a family confidence level of 1 − 𝛼:

the Bonferroni procedure can be used to jointly estimate 𝑔 model

parameters 𝛽𝑘ℓ , 𝑔 mean responses E

{
𝑌∗
ℓ

}
, or 𝑔 new responses 𝑌∗

ℓ
,

for ℓ = 1, . . . , 𝑔;

the Working-Hostelling procedure can be used to jointly estimate

𝑔 mean responses E

{
𝑌∗
ℓ

}
, for ℓ = 1, . . . , 𝑔;

the Scheffé procedure can be used to jointly predict 𝑔 new responses

𝑌∗
ℓ
, for ℓ = 1, . . . , 𝑔.

The process is identical to the SLR approach; depending on the task

at hand, we pick the appropriate procedure that yields the smallest
interval.

The sole difference lies in the composition of the factors that accom-

pany the estimated standard errors in the construction of the joint
confidence/prediction intervals at family confidence level 1 − 𝛼:

𝑡(1 − 𝛼/𝑔
2

; 𝑛 − 𝑝) for the Bonferroni procedure;√
𝑝𝐹(1 − 𝛼; 𝑝, 𝑛 − 𝑝) for the Working-Hotelling procedure, and√
𝑔𝐹(1 − 𝛼; 𝑔, 𝑛 − 𝑝) for the Scheffé procedure.

Toy Example We can provide joint confidence intervals for the model
parameters in the preceding example at family confidence level 1 − 𝛼 =

0.95, using 𝑛 − 𝑝 = 7 and 𝑔 = 5. The Bonferroni factor is

𝑡
(
1 − 0.05/5

2
; 7

)
= 𝑡(0.995; 7) = 3.50;

the joint confidence intervals are:

C.I.B(𝛽𝑘 ; 0.95) ≡ 𝑏𝑘 ± 3.50 · s {𝑏𝑘} .

Parameter 𝑏𝑘 C.I.B(𝛽𝑘 ; 0.95)
𝛽0 -102.71 [-830.22, 624.80]

𝛽1 0.61 [-0.685 , 1.905]

𝛽2 8.92 [ -9.63 ,27.47]

𝛽3 1.44 [-6.925 , 9.805]

𝛽4 0.01 [-2.685 , 2.705]

Individually, none of the parameters are significant at the family confi-

dence level 1 − 𝛼 = 0.95 (all the confidence intervals contain 0), but the

regression as a whole is significant (see overall 𝐹-test example).

Similarly, the Working-Hotelling joint confidence intervals for the es-

timated mean E

{
𝑌∗
ℓ

}
at a variety of predictor levels X∗

ℓ
, ℓ = 1, . . . , 𝑔

(family confidence level 1 − 𝛼 = 0.95) are

C.I.WH(E
{
𝑌∗
ℓ

}
; 0.95) ≡ �̂�∗

ℓ ±
√

5𝐹(0.95; 5, 7) · s{�̂�∗
ℓ }

= X∗
ℓb ± 4.46

√√√
242.71︸︷︷︸
=MSE

√
X∗
ℓ
(X⊤X)−1(X∗

ℓ
)⊤
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Figure 8.14: Power function (right) and error of type I (left).

8.3.3 Power of a Test

When we do hypothesis testing, we can make two types of errors.

Type I Error: rejecting a valid 𝐻0

Type II Error: failing to reject 𝐻0 when 𝐻1 is valid.
35

35: There are other types of error, such

as “correctly rejecting 𝐻0 for the wrong

reason”, “giving the right answer to the

wrong problem ”, “choosing the wrong

problem representation”, “deliberately se-

lecting the wrong questions for intensive

and skilled investigation”, “incorrectly in-

terpreting a correctly rejected 𝐻0” and so

on, but that is outside the scope of this

chapter. See wikipedia.org/wiki/Type_-

III_error for details.

The level of significance 𝛼 is used to control the risk of making an error

of type I; type II errors are harder to control, in general.

Suppose we are testing (2−sided test) for{
𝐻0 : 𝜃 = 𝜃0

𝐻1 : 𝜃 ≠ 𝜃0

Let 𝛼 be the probability of making an error of type I.

The power function

𝐾(𝜃′) = 𝑃(reject 𝐻0 if 𝜃 = 𝜃′)

is such that 𝐾(𝜃0) = 𝛼.

If 𝜃 ≠ 𝜃0, 𝑡∗ = �̂�−𝜃0

s{�̂�} ∼ 𝑡(𝜈) with non-centrality parameter

𝛿 =
|𝜃 − 𝜃0 |
𝜎{�̂�}

≈ |𝜃 − 𝜃0 |
s{�̂�}

,

where 𝜃 is the true value and 𝜃0 is the value under 𝐻0. The power of the
test is the probability of rejecting 𝐻0 if 𝜃 = 𝜃′

:

𝐾(𝜃′) = 𝑃(|𝑡∗ | > 𝑡(1 − 𝛼/2; 𝜈); 𝛿).

To control the power, we can either increase 𝑛 or decrease 𝑆𝑥𝑥 (as we can

see in Figure 8.14).

We will revisit these notions in Chapter 11.

https://en.wikipedia.org/wiki/Type_III_error
https://en.wikipedia.org/wiki/Type_III_error
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8.3.4 Coefficients of Determination

The coefficient of multiple determination of a GLR model is

𝑅2 =
SSR

SST

= 1 − SSE

SST

,

the proportion of the variation in 𝑌 which is explained by the regression.

If the GLR model incorporates an intercept term (𝛽0 ≠ 0), then

𝑅2 = 𝑟2

𝑌�̂�
=

(𝑠𝑌�̂�)2
𝑠𝑌𝑠�̂�

;

this is not the case without an intercept term. When the number of

parameters 𝑝 increases, so does 𝑅2
; however, the degrees of freedom,

𝑛 − 𝑝 decrease. This typically means that the estimates are less precise.

We can adjust 𝑅2
to take this loss into account.

The adjusted coefficient of multiple determination of a GLR model is

𝑅2

𝑎 = 1 −
SSE/(𝑛 − 𝑝)
SST/(𝑛 − 1) = 1 − 𝑛 − 1

𝑛 − 𝑝 · SSE

SST

(which could be < 0).

Toy Example In the case we have been carrying around for a while, we

had

SST = 6656.2, SSE = 1699.0, 𝑛 − 𝑝 = 7, 𝑛 − 1 = 11,

so that

𝑅2 = 1 − 1699.0

6656.2
= 0.745 and 𝑅2

𝑎 = 1 − 11

7

· 1699.0

6656.2
= 0.599.

8.3.5 Diagnostics and Remedial Measures

We have seen that there are four GLR assumptions:

linearity – E {𝑌 | X = x} = x𝜷 = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝−1𝑥𝑝−1;

variance constancy (homoscedasticity) – 𝜎2{𝜀𝑖} = 𝜎2
, 𝑖 = 1, . . . , 𝑛;

independence – 𝜀1 , . . . , 𝜀𝑛 are independent,
36

and 36: Uncorrelated is in fact sufficient.

normality – 𝜀𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛.

We have combined these assumptions in the simpler vector form

𝑌 | X ∼ N(X𝜷, 𝜎2I𝑛).

These assumptions must be met before we can trust the GLR model.
37

37: In theory, at least. In practice, the

model may prove useful even if they are

not met, but that must be established on a
case-by-case basis.

Recall that we have the following results on the residuals:

1. e = Y − Ŷ, or 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖 , for 𝑖 = 1, . . . , 𝑛;

2. if 𝛽0 ≠ 0, e = 0, and

3. 𝜎2{e} = 𝜎2(I𝑛 − H), so that 𝜎2{𝑒𝑖} = 𝜎2(1 − ℎ𝑖𝑖), for 𝑖 = 1, . . . , 𝑛,

and 𝜎{𝑒𝑖 , 𝑒 𝑗} = 𝜎{𝑒 𝑗 , 𝑒𝑖} = −ℎ𝑖 𝑗𝜎2
for 𝑖 ≠ 𝑗 = 1, . . . , 𝑛.

The standard error is s
2{𝑒𝑖} = MSE(1 − ℎ𝑖𝑖) and the internal studentiza-

tion is 𝑟𝑖 =
𝑒𝑖−𝑒
s{𝑒𝑖 } ∼ 𝑡(𝑛 − 𝑝), for 𝑖 = 1, . . . , 𝑛.
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Figure 8.15: Illustrations of non-linearity using residuals and fitted values: linear case (left) and non-linear case (trend).

Linearity We plot the residuals 𝑒𝑖 against the prediction �̂�𝑖 : if the linearity

assumption is warranted, the points should appear randomly scattered
about 0.

The absence of a trend suggests that the relationship between 𝑋1 , . . . , 𝑋𝑝
and 𝑌 is indeed linear, the presence of a trend provides evidence against

the linearity assumption, as we see in Figure 8.15.

There are also formal tests, such as the test for lack of fit:38
38: The Ramsay RESET test is another

such test, which we will not discuss, but

which would be useful to know.

{
𝐻0 : E {𝑌 | X = x} = 𝛽0 + 𝛽1x1 + · · · + 𝛽𝑝−1x𝑝−1

𝐻1 : 𝐻0 is false

Let W1 = (𝑋1

1
, . . . , 𝑋1

𝑝−1
), . . . ,W𝑐 = (𝑋 𝑐

1
, . . . , 𝑋 𝑐

𝑝−1
), be the 𝑐 distinct

predictor levels.
39

39: The 𝑗th level has 𝑛 𝑗 observations 𝑌𝑖 , 𝑗 .

Assume that E {𝑌} has a functional dependency on 𝑋1 , . . . , 𝑋𝑝−1, and

that the residuals are independent and follow a normal distribution
N(0, 𝜎2), and that at least one of the 𝑝 − 1 predictor levels 𝑋𝑘 has

replicates. Denote the average observation over the 𝑗th level by 𝑌 𝑗 , and

write

SST𝑗 =

𝑛 𝑗∑
𝑖

(
𝑌𝑖 𝑗 − 𝑌 𝑗

)
2

.

The corresponding ANOVA table is

source SS df MS 𝐹∗

Regression SSR 𝑝 − 1 SSR/(𝑝 − 1) MSLF/MSPE

Error SSE 𝑛 − 𝑝 SSE/(𝑛 − 𝑝)
Lack of fit SSLF 𝑐 − 𝑝 SSLF/(𝑐 − 𝑝)
Pure Error SSPE 𝑛 − 𝑐 SSPE/(𝑛 − 𝑐)
Total SST 𝑛 − 1
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Recall that SST = SSE + SSR. We further partition SSE = SSPE + SSLF,

where

SSPE =

𝑐∑
𝑗=1

SST𝑗

so that

SSPE

𝜎2

∼ 𝜒2

(
𝑐∑
𝑗=1

(𝑛 𝑗 − 1)
)
= 𝜒2(𝑛 − 𝑐).

Thus, according to Cochran’s Theorem, when 𝐻0 holds, we have

SSE

𝜎2

∼ 𝜒2(𝑛 − 𝑝), SSLF

𝜎2

∼ 𝜒2(𝑐 − 𝑝),

and

𝐹∗ =

(
SSLF

𝜎2

)/
(𝑐 − 𝑝)(

SSPE

𝜎2

)/
(𝑛 − 𝑐)

∼ 𝐹(𝑐 − 𝑝, 𝑛 − 𝑐).

Decision Rule: If 𝐹∗ > 𝐹(1− 𝛼; 𝑐 − 𝑝, 𝑛 − 𝑐), we reject 𝐻0 at a significance

level of 𝛼.

Example Consider a dataset with the following (𝑋,𝑌) observations

(1, 10), (1, 11), (2, 10.5), (2, 12), (3, 13).

Is the linear model E {𝑌} = 𝛽0 + 𝛽1𝑋 warranted? We have 𝑛 = 5, 𝑝 = 2,

and 𝑐 = 3. The OLS framework yields𝑌 = 9.18+1.18𝑋 , and the scatterplot

is shown below.

Visually, it does seem that the line would be a good model, but it is

difficult to say with certainty since there are so few points in the chart.

We use the formal test for lack of fitness: we have

SST = 𝑆𝑦𝑦 = 5.8, SSR = 𝑏2

1
𝑆𝑥𝑥 = 3.8829, SSE = SST − SSR = 1.91071,

SSPE = SST1 + SST2 + SST3 = 0.5 + 1.125 + 0 = 1.625,

SSLF = SSE − SSPE = 1.91071 − 1.625 = 0.28751,

MSLF =
SSLF

𝑐 − 𝑝 =
0.28571

3 − 2

= 0.28571, MSPE =
SSPE

𝑛 − 𝑐 =
1.625

5 − 3

= 0.8125,

so that

𝐹∗ =
MSLF

MSPE

=
0.28571

0.8125

= 0.3516.

Since the critical value of the 𝐹(3 − 2, 5 − 3) = 𝐹(1, 2) distribution at

𝛼 = 0.05 is 18.5 , we do not reject the hypothesis of linearity.
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Figure 8.16: Illustration of the Brown-Forsythe test: original data and linear model (left), residuals against fitted values (middle), and

deviations of residuals by group (right).

Homoscedasticity We can use residual plots to determine whether the

condition of homoscedasticity is met or not. But there are formal tests as

well, such as the Brown-Forsythe test, which is robust against departures

from normality.
40

40: Anotehr useful alternative is the

Breusch-Pagan test, which requires nor-

mality of the residuals. It is worth looking

up.

Let us take a look at the latter. Select a threshold 𝑎 ∈ ℝ and partition the

residuals into 2 groups:

Group 0: �̂� ≤ 𝑎 (the 𝑒𝑖 ,0’s) vs. Group 1: �̂� > 𝑎 (the 𝑒𝑖 ,1’s).

We pick 𝑎 so that |Group 0| = 𝑛0 ≈ 𝑛1 = |Group 1|. Let 𝑒 𝑗 be the median
residual of group 𝑗 and let 𝑑𝑖 𝑗 = |𝑒𝑖 𝑗 − 𝑒 𝑗 | be the absolute deviation of
the 𝑖th residual in group 𝑗 from 𝑒 𝑗 , for 𝑗 = 0, 1.

41
41: We use this framework rather than us-

ing the mean and the square deviation
because of sensitivity to outliers – it is this

choice that makes the test robust against

departures from the normality assump-

tion.

Set 𝑑 𝑗 =
1

𝑛 𝑗

𝑛 𝑗∑
𝑖

𝑑𝑖 𝑗 , 𝑗 = 0, 1. In order to test for

{
𝐻0 : 𝑑0 = 𝑑1 (the variance is constant)

𝐻1 : 𝑑0 ≠ 𝑑1 (the variance is not constant)

we compute the test statistic

𝑡∗
BF

=
𝑑0 − 𝑑1

𝑠𝑝

√
1

𝑛0

+ 1

𝑛1

,

where

𝑠2

𝑝 =
1

𝑛 − 2

[
𝑛0∑
𝑖=1

(𝑑𝑖 ,0 − 𝑑0)2 +
𝑛1∑
𝑖=1

(𝑑𝑖 ,1 − 𝑑1)2
]
=

(𝑛0 − 1)𝑠2

0
+ (𝑛1 − 1)𝑠2

1

𝑛0 + 𝑛1 − 2

is the pooled variance. When 𝐻0 holds, 𝑡∗
BF

∼ 𝑡(𝑛0 + 𝑛1 − 2) = 𝑡(𝑛 − 2).

Decision Rule: If |𝑡∗
BF
| > 𝑡(1 − 𝛼/2; 𝑛 − 2), we reject 𝐻0 at 𝛼.

Example In the data displayed in Figure 8.16, the median fitted value is

𝑎 = 101.5096. Visually, the constant variance assumption does not seem

to be met.

We divide the datasets into two groups, based on whether the fitted

value falls below 𝑎 (Group 0, in blue) or not (Group 1, in orange); there

are 𝑛0 = 𝑛1 = 100 observations in each group.
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The group median residuals are 𝑒0 = −15.6, 𝑒1 = −22.9. The mean and

variance of the absolute deviations of the residuals to the median in

each group are 𝑑0 = 59.1, s
2

0 = 2197.745, and 𝑑1 = 86.3, 𝑠1

0
= 4783.501,

respectively, which yield the pooled variance 𝑠2

𝑝 = 3490.623.

The BF test statistic is 𝑡∗
BF

= −3.21; since

|𝑡∗
BF
| = 3.21 > 𝑡(0.975; 198) = 1.97,

we reject 𝐻0 (equal variance) at significance level 𝛼 = 0.05.

Independence Independence of the error terms can be gauged visually

by plotting the residuals 𝑒𝑖 against the fitted values �̂�𝑖 .

If the errors are independent, the correlation between these should be

small (|𝜌| ≈ 0 ); if a pattern or a trend emerges, then they are likely

dependent. The residuals vs. fitted values chart of the previous example

shows a slight pattern, for instance, but the correlation is so small
(𝜌 = −6 × 10

−18
) that we can reasonably treat them as independent.42

42: The general linear regression assump-

tion is that the errors are independent,

but we only ever work with the residu-
als, which are definitely not independent
(𝑒 = 0).

Other tests may be appropriate, depending on the nature of the data and

model.
43

43: For instance, the Durbin-Watson test

for auto-correlation in the residuals of time

series models (see Chapter 9).

Normality If the error terms are N(0, 𝜎2), we expect the residuals to also

be N(0, 𝜎2). Thus, if the histogram of the studentized residuals

𝑟𝑖 =
𝑒𝑖

s{𝑒𝑖}
=

𝑌𝑖 − �̂�𝑖√
MSE

√
1 − ℎ𝑖𝑖

is not symmetrical, then they do not follow a standard normal distribution

N(0, 1) and the error terms are unlikely to be normal.

If the histogram is symmetrical, we build the normal probability plot

from the studentized residuals.
44

For each 𝑖 = 1, . . . , 𝑛, we construct 44: Also known as quantile-quantile plot,

or 𝑞𝑞−plot.
the following table:

𝑖 studentized residual rank percentile 𝑧−quantile
1 𝑟1 𝑘1 𝑝1 𝑧1

...
...

...
...

...

𝑖 𝑟𝑖 𝑘𝑖 𝑝𝑖 𝑧𝑖
...

...
...

...
...

𝑛 𝑟𝑛 𝑘𝑛 𝑝𝑛 𝑧𝑛

The rank 𝑘𝑖 is given in increasing order (ties use the average rank); the

approximate percentile is

𝑝𝑖 =
𝑘𝑖 − 0.375

𝑛 + 0.25

, (blom plotting position);

the quantile is 𝑧𝑖 = Φ−1(𝑝𝑖), where Φ(𝑧) = 𝑃(𝑍 ≤ 𝑧), 𝑍 ∼ N(0, 1).

Next, we plot the studentized residuals 𝑟𝑖 against the quantiles 𝑧𝑖 – the

points should fall randomly about the “normal” line, with no systematic

trend away from it. If not, the errors are unlikely to be normal.
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Finally, we compute the correlation 𝜌 between 𝑟𝑖 and 𝑧𝑖 , 𝑖 = 1, . . . , 𝑛. In

order to test for{
𝐻0 : error terms are normally distributed

𝐻1 : 𝐻0 is false

we find the critical value 𝜌𝛼 of the normal probability plot correlation
coefficient (PPCC) for sample size 𝑛 at a significance level 𝛼.

45
45: Such as could be found here .

Decision Rule: If 𝜌 < 𝜌𝛼, we reject 𝐻0 at significance level 𝛼.

Example Consider a dataset with the following (𝑋,𝑌) observations

(1, 7.4), (1, 8.0), (2, 7.0), (2, 10.4), (3, 19.1), (4, 20.3).

Assume a linear model E {𝑌} = 𝛽0 + 𝛽1𝑋. Is the normality assumption

of the error terms warranted?

The linear model is E {𝑌} = 1.802 + 4.722𝑋; the table is

𝑥 𝑦 studentized residual rank 𝑝 𝑧−quantile
1 7.4 0.35 4 0.58 0.20

1 8.0 0.60 5 0.74 0.64

2 7.0 -2.57 1 0.10 -1.28

2 10.4 -0.29 2 0.26 -0.64

3 19.1 1.48 6 0.90 1.28

4 20.3 -0.21 3 0.42 -0.20

The 𝑞𝑞−plot is shown below.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3676.htm
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The correlation between the studentized residuals and the 𝑧−quantile

is 𝜌 = 0.939. At a significance level 𝛼 = 0.05, the critical value of the

correlation in the PPCC table with 𝑛 = 6 is 0.888, so we do not reject the

normality assumption.
46

46: Which, as we never tire of pointing

out, is not the same as accepting 𝐻0.

Remedial Measures Transformations on 𝑋 are used when the data

exhibits a monotone non-linear trend with variance constancy; if the

trend is increasing and concave down, we might try 𝑋′ = ln𝑋 or

𝑋′ =
√
𝑋 ; if the trend is increasing and concave up, we might try 𝑋′ = 𝑒𝑋

or 𝑋′ = 𝑋2
; if it is decreasing and concave up, we might try 𝑋′ = 1

𝑋 or

𝑋′ = 𝑒−𝑋 ; if it is decreasing and concave down, we might try𝑋′ = 𝑒−𝑋
2

.

Transformations on 𝑌 are used when the data exhibits monotone non-
linear trend with NO variance constancy, but it is often hard to determine

from the scatter plots which transformation on 𝑌 is best. The Box-Cox
transformation helps us find a power 𝜆 which will be appropriate for the

regression model

𝑌
(𝜆)
𝑖

= X𝑖𝜷 + 𝜀,

where X𝑖 is the 𝑖th row of X. Set

𝑌(𝜆) =


𝑌𝜆 − 1

𝜆
, 𝜆 ≠ 0

ln𝑌, 𝜆 = 0

We pick the𝜆 that minimizes the SSE(𝜆) resulting from the regressions.

Weighted Least Squares are used if the data exhibits a linear trend
with no variance constancy. An alternative would be to first use a

transformation on 𝑌 to control the variance, and then a transformation

on 𝑋 to control the linearity that may have been destroyed by the first

transformation.
47

47: We will discuss this further in Section

8.4.5.

Example Consider the following dataset

(7, 1), (7, 1), (8, 1), (3, 2), (2, 2), (4, 2), (4, 2), (6, 2),
(6, 2), (7, 3), (5, 3), (3, 3), (3, 6), (5, 7), (8, 8).48

48: This example was found online, at a

location that we cannot remember, unfor-

tunately.

The scatterplot, regression line, and normal 𝑞𝑞−plot are shown below.



468 8 Classical Regression Analysis

The 𝑞𝑞−plot shows that the error terms are unlikely to be normal, and so

the regression model is not valid. The variance is not constant, so we use

the Box-Cox transformation on 𝑌: the optimal 𝜆 is -0.42.

The scatterplot, regression line, and normal 𝑞𝑞−plot on the transformed

data are shown below.

IMPORTANT: the linear model on the original data is E {𝑌} = 3 + 0 · 𝑋 .

The linear model on the transformed data is

E

{
𝑌(−0.42)

}
= 1.00564 − 0.06264𝑋

=⇒

E {𝑌} =
(
[𝜆𝛽0 + 1] + 𝜆𝛽1𝑋

)
1/𝜆

=
(
[−0.42(1.00564) + 1] + 0.42 · 0.06264𝑋

)
1/(−0.42)

=
1

(0.5776 + 0.0263𝑋)2.380

which is NOT a straight line in the 𝑥𝑦−plane.

8.4 Extensions of the OLS Model

We have seen that we can fairly easily extend simple linear regression to

multiple linear regression with minimal disruption, simply by using the

appropriate matrix notation. In practice, the multiple linear regression

assumptions are rarely met; we have also presented ways in which we

can identify departures from the assumptions, and how we can remedy

this situation.

In this chapter, we will discuss more sophisticated extensions of linear

regression, extensions that get closer to real-life applications.

8.4.1 Multicollinearity

The multiple linear regression normal equations are

(X⊤X)b = X⊤Y.
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When X⊤X is invertible, the solution b = (X⊤X)−1X⊤Y is unique. If one

of the variables is a non-trivial linear combination of other variables

𝑋𝑘 = 𝛼 𝑗1𝑋𝑗1 + · · · + 𝛼 𝑗ℓ𝑋𝑗ℓ ,

then rank(X⊤) = rank(X⊤X) < 𝑝 and so X⊤X is singular (not invertible),

and the solution is not unique (the system in under-determined).

Example Consider the design matrix and vector response

X =
©«
1 1 1 2

1 1 2 3

1 3 3 6

ª®¬ and Y =
©«
0

1

4

ª®¬ .
Find the OLS model E {𝑌 | (𝑋1 , 𝑋2 , 𝑋3)} = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3.

We compute the constituents of the normal equations

X⊤X =

©«
3 5 6 11

5 11 12 23

6 12 14 26

11 23 26 49

ª®®®¬ and X⊤Y =

©«
5

13

14

27

ª®®®¬ .
The row echelon form of [X⊤X | X⊤Y] is

©«
1 0 0 0

0 1 0 1

0 0 1 1

0 0 0 0

��������
−2

1

1

0

ª®®®¬ ,
meaning that b = (−2, 1 − 𝑠, 1 − 𝑠, 𝑠) is an OLS solution for all 𝑠 ∈ ℝ.

More problematically, we cannot compute the corresponding variance-

covariance matrix 𝜎2 {b} = 𝜎2(X⊤X)−1
. □

In practice, it is quite rate that a predictor is an exact linear combination

of other predictors; when it is almost so, however, the design matrix may

be nearly singular (ill-conditioned),
49

leading to uncertainty in the 49: See Chapter 4.

parameter vector b that solves the normal equations.
50

50: This is also the main cause of the

“wrong coefficient sign” problem, when

a coefficient takes on the opposite sign of

what is expected based on a first-principle

understanding of the situation.

In multiple linear regression, the variance inflation factor for 𝛽𝑘 is

VIF𝑘 =
1

1 − 𝑅2

𝑘

, 𝑘 = 1, . . . , 𝑝,

where 𝑅2

𝑘
is the coefficient of multiple determination obtained when 𝑋𝑘

is regressed on the other 𝑝 − 2 predictor variables in the model.
51

51: Strictly speaking, this is not quite the

definition of the variance inflation factor,

but it will do for the purpose of these

notes.

Note that if 𝑋𝑘 is very nearly a linear combination of the other predictors,

then 𝑅2

𝑘
≈ 1, yielding a large VIF𝑘 , which influence the least-squares

estimates. In practice, max𝑘 VIF𝑘 > 10 implies that there are likely crucial

problems with multicollinearity.

Remedial measures include centering the data, ridge regression, and

principal component regression.
52

52: The latter two of these are discussed

in Chapter 20.



470 8 Classical Regression Analysis

Example Consider the following dataset

𝑋1 𝑋2 𝑋3 𝑋4 𝑌

1 1 2.063 1 2.995

2 1 3.184 1 3.773

1 1 2.131 2 2.846

2 1 2.867 2 3.963

1 2 3.104 1 5.291

2 2 3.876 1 6.070

1 2 2.999 2 5.034

2 2 3.865 2 6.014

Compare the linear models

E {𝑌 | (𝑋1 , 𝑋2 , 𝑋3)} and E {𝑌 | (𝑋1 , 𝑋2 , 𝑋4)} .

We start by loading the data in R.

X1 = c(1,2,1,2,1,2,1,2); X2 = c(1,1,1,1,2,2,2,2)

X4 = c(1,1,2,2,1,1,2,2)

X3 = c(2.06, 3.18, 2.13, 2.87, 3.10, 3.88, 2.99, 3.87)

Y = c(2.99, 3.77, 2.85, 3.96, 5.29, 6.07, 5.03, 6.01)

data = data.frame(X1,X2,X3,X4,Y)

We build and summarize the two models.

summary(lm(Y ~ X1 + X2 + X3, data=data))

summary(lm(Y ~ X1 + X2 + X4, data=data))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.08738 0.25633 -0.341 0.7503

X1 1.15410 0.43564 2.649 0.0570 .

X2 2.45576 0.44809 5.481 0.0054 **
X3 -0.27536 0.48844 -0.564 0.6030

Residual standard error: 0.1237 on 4 degrees of freedom

Multiple R-squared: 0.9947,Adjusted R-squared: 0.9907

F-statistic: 248.9 on 3 and 4 DF, p-value: 5.313e-05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.08200 0.22295 -0.368 0.731659

X1 0.91350 0.08427 10.841 0.000411 ***
X2 2.20800 0.08427 26.203 1.26e-05 ***
X4 -0.06800 0.08427 -0.807 0.464935

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1192 on 4 degrees of freedom

Multiple R-squared: 0.9951,Adjusted R-squared: 0.9913

F-statistic: 268.2 on 3 and 4 DF, p-value: 4.579e-05
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The estimated parameters 𝑏0, 𝑏1, and 𝑏2 are quite similar in both models,

but the standard errors are starkingly different; the confidence intervals

in the second model are much tighter for 𝛽1 and 𝛽2 than they are in the

first model.

Why is this? Note that VIF1 ≈ VIF2 ≈ VIF4 ≈ 1 in the second model,
53

, whereas VIF1 ≈ VIF2 ≈ VIF3 ≈ 25 in the first model. This should not 53: The predictors are linearly indepen-

dent.
come as a surprise, as 𝑋3 is very nearly a linear combination of 𝑋1 and

𝑋2:

∥𝑋3 − 𝑋1 − 𝑋2∥2

2
≈ 0.324,

whereas ∥𝑋1∥2

2
≈ 4.47, ∥𝑋2∥2

2
≈ 4.47, and ∥𝑋3∥2

2
≈ 8.70.

8.4.2 Polynomial Regression

In a dataset with a predictor 𝑋 and a response 𝑌, both numerical, if the

relationship between𝑋 and𝑌 is not linear, we may consider transforming

the data so that the relationship between 𝑋′
and 𝑌′

is so, fitting a linear
OLS model to these new variables, and inverting the results to obtain a

relationship between the original 𝑋 and 𝑌.

Another approach is to create a sequence of predictors

𝑋1 = 𝑋, 𝑋2 = 𝑋2 , . . . , 𝑋𝑘 = 𝑋 𝑘

and to treat the entire situation as a multiple linear regression model

E {𝑌 | (𝑋1 , . . . , 𝑋𝑘)} = 𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘 = 𝛽0 + 𝛽1𝑋 + · · · + 𝛽𝑘𝑋
𝑘 .

Example Fit the following data

𝑋 1 1 2 4 3 6

𝑌 0.8 1.3 4.1 15.3 8.8 36

We can fit a linear model to the data as follows.

X = c(1,1,2,4,3,6)

Y = c(0.8,1.3,4.1,15.3,8.8,36)

summary(lm(Y ~ X))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.913 2.734 -2.895 0.04435 *
X 6.693 0.818 8.182 0.00122 **
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.55 on 4 degrees of freedom

Multiple R-squared: 0.9436, Adjusted R-squared: 0.9295

F-statistic: 66.94 on 1 and 4 DF, p-value: 0.001215

The fit seems decent (𝑅2

𝑎 = 0.9295), but a plot of the data suggests

that something is astray: visually, the quadratic fit seems better (𝑅2

𝑎 =

0.9994).
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X2 = X^2

Y = c(0.8,1.3,4.1,15.3,8.8,36)

summary(lm(Y ~ X + X2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.56635 0.47768 1.186 0.321128

X -0.49591 0.34935 -1.420 0.250809

X2 1.06466 0.05046 21.101 0.000233 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3354 on 3 degrees of freedom

Multiple R-squared: 0.9996,Adjusted R-squared: 0.9994

F-statistic: 3973 on 2 and 3 DF, p-value: 7.331e-06

One thing we notice is that of the three coefficients, only the quadratic 𝑏2

is significant at 𝛼 = 0.05, even though the fit seemed quite tight, visually.

Part of the problem is that although the relationship between 𝑋 and 𝑋2

is not linear, the predictors are still correlated, leading to a fairly high

VIF term:

VIF1 =
1

1 − 𝑅2

1

=
1

1 − 0.9510685

= 20.43673. □

This is typical of polynomial regression: the suggested remedial measure

is to use centered predictors 𝑥𝑖 = 𝑋𝑖 − 𝑋.

Example The quadratic fit of the previous example could also be written

as:

E {𝑌} = 𝛾0 + 𝛾1(𝑋 − 𝑋) + 𝛾2(𝑋 − 𝑋)2

=

{
𝛾0 − 𝛾1𝑋 + 𝛾2𝑋

2

}
+

{
𝛾1 − 2𝛾2𝑋

}
𝑋 + 𝛾2𝑋

2 = 𝛽′
0
+ 𝛽′

1
𝑋 + 𝛽′

2
𝑋2

but now all coefficients are significant at 𝛼 = 0.05.
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Figure 8.17: The White House projections for COVID-19 deaths used a cubic polynomial regression certainly fit the available data (March

22-May 3, 2020); the predicted end of the pandemic by May 16, 2020 did not survive the test of time, however, as no epidemiological domain

expertise was brought to bear on the problem, with dire consequences of the United States [author unknown].

Xm = X - mean(X)

X2m = Xm^2

summary(lm(Y ~ Xm + X2m))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.70814 0.20935 36.82 4.41e-05 ***
Xm 5.53718 0.09472 58.46 1.10e-05 ***
X2m 1.06466 0.05046 21.10 0.000233 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3354 on 3 degrees of freedom

Multiple R-squared: 0.9996,Adjusted R-squared: 0.9994

F-statistic: 3973 on 2 and 3 DF, p-value: 7.331e-06

Note that the centered VIF1 is much lower at (1−0.3344)2 ≈ 1.5.

summary(lm(X2m ~ Xm))

Residual standard error: 3.323 on 4 degrees of freedom

Multiple R-squared: 0.3344,Adjusted R-squared: 0.168

F-statistic: 2.009 on 1 and 4 DF, p-value: 0.2293

The rest of the ordinary least square machinery easily carries over. □

Graphically and/or mathematically, polynomial regression can prove

quite powerful and convenient to use. But convenience is not always a

sufficient reason to use a regression model.
54

54: For a modern example, consider the

White House prediction in the early days

of the COVID-19 pandemic (see Figure

8.17).
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8.4.3 Interaction Effects

We have seen that we can extend simple linear regression in 𝑋 to include

higher power terms.
55

55: After centering the data to minimize

the effects of multicolinearity.

There is nothing to stop us from doing so with any number of predictors

𝑋1 , . . . , 𝑋𝑝 , leading to an additive model

𝐸{𝑌} = 𝑓1(𝑋1) + · · · + 𝑓𝑝(𝑋𝑝),

where the 𝑓𝑖 are polynomial functions in 1 variable.
56

In what follows,56: This could be modified to any linear

function of the regression coefficients 𝛽𝑖 , 𝑗 . we assume that 𝑝 = 2 to keep things simple.

We can refine the model with an interaction term 𝑓3(𝑋1 , 𝑋2) = 𝛽3𝑋1𝑋2. In

keeping with the hierarchical principle, we might consider the model

E {𝑌} = 𝑓1(𝑋1) + 𝑓2(𝑋2) + 𝑓3(𝑋1 , 𝑋2)
= 𝛽0 + 𝛽1,1𝑋1 + 𝛽2,1𝑋2 + 𝛽1,2𝑋

2

1
+ 𝛽3𝑋1𝑋2 + 𝛽2,2𝑋

2

2
,

although there could also be good reasons to consider something like

E {𝑌} = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2.

In the latter case, if we assume that 𝛽1𝛽2 > 0, then if 𝛽1𝛽3 > 0, we

have a reinforcement interaction; if 𝛽1𝛽3 < 0, we have an interference
interaction.

Example We consider a dataset of 𝑛 = 50 observations with 2 centered

predictors 𝑋1 , 𝑋2 and a response 𝑌.
57

57: We do not specify a seed, so the results

may vary slightly from one run to the next.

x1 <- runif(50, 0, 10); x2 <- rnorm(50, 10, 3)

modmat <- model.matrix(~x1*x2, data.frame(x1=x1, x2=x2))

coeff <- c(1, 2, -1, 1.5)

y <- rnorm(50, mean = modmat %*% coeff, sd = 25)

dat <- data.frame(y = y, x1 = x1, x2 = x2)

dat2 = dat

dat2[,c(2:3)] <- scale(dat[,c(2:3)], scale=FALSE)

library(ggplot2)

ggplot(dat2,aes(x=x1,y=x2,fill=y,size=y)) + theme_bw() +

geom_point(pch=21) + theme_bw()
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We compute the fit for the reduced and the full interaction models. The

former exhibits reinforcement interaction (𝛽1𝛽3 > 0).

summary(lm(y ~ x1 * x2, data=dat2))

plot(lm(y ~ x1 * x2, data=dat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 61.7494 3.7043 16.669 < 2e-16 ***
x1 15.6463 1.3017 12.020 8.55e-16 ***
x2 5.1396 1.2010 4.279 9.40e-05 ***
x1:x2 1.6886 0.4379 3.856 0.000356 ***

Residual standard error: 26.06 on 46 degrees of freedom

Multiple R-squared: 0.8166,Adjusted R-squared: 0.8047

F-statistic: 68.28 on 3 and 46 DF, p-value: < 2.2e-16
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The summary indicates that the reduced interaction linear model is

appropriate, which is supported by the diagnostic plots. But what about

the full model? The pure quadratic terms are not significant, which

suggests that the reduced model is likely a better choice.
58

58: Although not necessarily so.

summary(lm(y ~ x1+I(x1^2)+x1*x2+x2+I(x2^2), data=dat2))

plot(lm(y ~ x1+I(x1^2)+x1*x2+x2+I(x2^2), data=dat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.25684 5.94511 9.799 1.24e-12 ***
x1 15.36026 1.38371 11.101 2.42e-14 ***
I(x1^2) 0.41459 0.46486 0.892 0.377316

x2 4.91100 1.31831 3.725 0.000553 ***
I(x2^2) 0.01042 0.26562 0.039 0.968891

x1:x2 1.56368 0.46519 3.361 0.001613 **

Residual standard error: 26.4 on 44 degrees of freedom

Multiple R-squared: 0.8199,Adjusted R-squared: 0.7994

F-statistic: 40.06 on 5 and 44 DF, p-value: 2.654e-15
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8.4.4 ANOVA/ANCOVA for Categorical Variables

We can also include categorical variables within the OLS framework.

Suppose there are 𝐾 treatments (levels) for predictor 𝑋.

In the dummy variable encoding, we set

𝑋𝑗 =

{
1 treatment 𝑗

0 else

for 𝑗 = 1, . . . , 𝐾 − 1. The ANOVA/OLS model is then

𝑌𝑖 = 𝛽0 +
𝐾−1∑
𝑗=1

𝛽 𝑗𝑋𝑖 , 𝑗 + 𝜀𝑖 and 𝐸{𝑌} =
{
𝛽0 treatment 𝐾

𝛽0 + 𝛽 𝑗 treatment 𝑗

In the treatment effect encoding, we set

𝑋𝑗 =


1 treatment 𝑗

−1 treatment 𝐾

0 else

for 𝑗 = 1, . . . , 𝐾 − 1. The ANOVA/OLS model is as in the dummy

encoding case and

𝐸{𝑌} =
{
𝛽0 − (𝛽1 + · · · + 𝛽𝐾−1) treatment 𝐾

𝛽0 + 𝛽 𝑗 treatment 𝑗

We will have more to say on the topic in Chapter 11.

8.4.5 Weighted Least Squares

We have seen that the OLS regression model Y ∼ N(X𝜷, 𝜎2I𝑛) requires

constant variance. When that assumption is not met – but in a “monotonic”

manner, such as 𝜎2 {𝜀𝑖} = 𝜎2𝑥𝑖 , say – various data transformations on

the predictors 𝑋 may be appropriate.

What do we do when the linearity assumption is valid, but the variance

𝜎𝑖 does not change in a systematic manner?

One way to approach the problem is via weighted least squares (WLS),

which does not require all observations to be treated equally, that is to

say, to be given the same weight.

Let 𝑤𝑖 ≥ 0 be the weight of observation 𝑖 and write 𝑍𝑖 =
√
𝑤𝑖𝑌𝑖 . Define

the weight matrix as W = diag(𝑤1 , . . . , 𝑤𝑛).

The WLS problem is to find the coefficient vector 𝜷 which minimizes
the weighted sum of squared errors

SSE𝑤 = 𝑄𝑤(𝜷) = ∥Z − Ẑ∥2

2

= ∥
√

WY −
√

WŶ∥2

2
= ∥

√
WY −

√
WX𝜷∥2

2

= (Y − X𝜷)⊤W(Y − X𝜷)
= Y⊤WY − 𝜷⊤X⊤WY − Y⊤WX𝜷 + 𝜷⊤X⊤WX𝜷.
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But ∇𝜷𝑄𝑤(𝜷) = −2X⊤WY+ 2X⊤WX𝜷, so the WLS estimator b𝑊 of 𝜷 is

∇𝜷𝑄𝑤(𝜷) = 0 =⇒ b𝑊 = (X⊤WX)−1X⊤WY.

The entire OLS machinery can then be used in the WLS context simply

by replacing Y by

√
WY and X by

√
WX throughout.

Example Consider a dataset with 𝑛 = 11 observations:

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑥 0.82 1.09 1.22 1.24 1.29 1.30 1.36 1.38 1.39 1.40 1.55

𝑦 1.47 1.33 1.32 1.30 1.35 1.34 1.38 1.52 1.40 1.44 1.58

We build the OLS model, a WLS model where the first observation has

twice the weight of the other observations, and a OLS model without the

first observation.
59

59: Which is equivalent to a WLS model

with 𝑤1 = 0 and 𝑤𝑖 = 1 for 𝑖 > 1.

x <- c(0.82,1.09,1.22,1.24,1.29,1.30,1.36,1.38,1.39,1.40,1.55)

y <- c(1.47,1.33,1.32,1.30,1.35,1.34,1.38,1.52,1.40,1.44,1.58)

mod.1 <- lm(y ~ x)

summary(mod.1)

mod.2 <- lm(y ~ x, weights = c(2,1,1,1,1,1,1,1,1,1,1))

summary(mod.2)

mod.3 <- lm(y ~ x, weights = c(0,1,1,1,1,1,1,1,1,1,1))

summary(mod.3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2225 0.1920 6.366 0.00013 ***
x 0.1412 0.1489 0.948 0.36782

Residual standard error: 0.09047 on 9 degrees of freedom

Multiple R-squared: 0.09081, Adjusted R-squared: -0.01021

F-statistic: 0.899 on 1 and 9 DF, p-value: 0.3678

------------------------------------------------------------

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3553 0.1624 8.344 1.58e-05 ***
x 0.0428 0.1292 0.331 0.748

Residual standard error: 0.09669 on 9 degrees of freedom

Multiple R-squared: 0.01204, Adjusted R-squared: -0.09773

F-statistic: 0.1097 on 1 and 9 DF, p-value: 0.748

------------------------------------------------------------

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5848 0.1916 3.052 0.0158 *
x 0.6136 0.1444 4.250 0.0028 **

Residual standard error: 0.05402 on 8 degrees of freedom

Multiple R-squared: 0.693, Adjusted R-squared: 0.6546

F-statistic: 18.06 on 1 and 8 DF, p-value: 0.002801
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The OLS model is �̂� = 1.223 + 0.1412𝑥 (left in the chart below), the WLS

model with 𝑤1 = 2 and 𝑤𝑖 = 1, 𝑖 = 2, . . . , 11 is �̂� = 1.3553 + 0.0428𝑥

(middle), and the OLS/WLS without the first observation is �̂� = 0.5848+
0.6136𝑥 (right). The plots are shown below.

par(mfrow=c(1,3))

plot(x,y); abline(mod.1, col="red")

plot(x,y); abline(mod.2, col="red")

plot(x,y); abline(mod.3, col="red")

We can use WLS to deal with an error variance which is not constant.

Consider the underlying model

Y ∼ N
(
X𝜷, 𝜎2 {𝜺}

)
, where 𝜎2{𝜀𝑖} = 𝜎2

𝑖 . 𝜎2 ,

such as may be found in the image below:
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The procedure goes as in the OLS case, with some slight modifications:

1. if the 𝜎2

𝑖
are known, we use the weights 𝑤𝑖 =

1

𝜎2

𝑖

≥ 0;

2. if the 𝜎2

𝑖
are unknown:

a) we use OLS and find the residuals 𝑒𝑖 ;
60

60: 𝑒2

𝑖
is an estimate of 𝜎2

𝑖
when there are

no𝑌-outliers, |𝑒𝑖 | is an estimate of 𝜎𝑖 when

there are some.

b) depending on the choice made above, regress either 𝑒2

𝑖
or

|𝑒𝑖 | on 𝑋1 , . . . , 𝑋𝑝−1 to obtain fitted values �̂�𝑖 or 𝑠𝑖 , which are

point estimate of 𝜎2

𝑖
or 𝜎𝑖 , respectively;

c) depending on the choice made above, use WLS with 𝑤𝑖 =
1

�̂�𝑖

or𝑤𝑖 =
1

𝑠2

𝑖

and compute SSE𝑤 and MSE𝑤 =
SSE𝑤

𝑛−𝑝 . If MSE𝑤 ≈ 1,

the scaling is appropriate; otherwise, repeat steps a) to c),

starting with the current WLS residuals.

Example The number of defective items 𝑌 produced by a machine is

known to be linearly related to the speed setting 𝑋 of the machine:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝜀𝑖 ∼ N(0, 𝜎2), 𝜀𝑖 indép.

An analyst regresses the squared residuals 𝑒2

𝑖
= (�̂�𝑖 − 𝑌𝑖)2 on the speed

setting 𝑋𝑖 and obtains the following 𝑛 = 12 fitted values:

𝑖 1 2 3 4 5 6 7 8 9 10 11 12

�̂�𝑖 68.7 317.4 193 317.4 68.7 193 193 317.4 68.7 317.4 68.7 193

Using weighted OLS with 𝑤𝑖 =
1

�̂�𝑖
, her residuals are 𝑒𝑤

𝑖
= �̂�𝑤

𝑖
− 𝑌𝑖 :

𝑖 1 2 3 4 5 6 7 8 9 10 11 12

𝑒𝑖 −3.6 5.6 −13.5 −16.4 −9.6 7.5 −10.5 26.6 14.4 −17.4 −1.6 18.5

Is her use of these weights appropriate?

We have

SSE𝑤 =

12∑
𝑖=1

𝑤𝑖𝑒
2

𝑖 =

12∑
𝑖=1

1

�̂�𝑖
𝑒2

𝑖 = 12.2953,

a sum of squares with 𝑛 − 𝑝 = 12 − 2 = 10 degrees of freedom, so that

MSE𝑤 =
SSE𝑤

𝑛 − 𝑝 =
12.2953

10

= 1.22953.

Since MSE𝑤 ≈ 1, we have evidence that the weights are appropriate and

that the initial �̂�𝑖 provide reasonable approximations of 𝜎2

𝑖
.

8.4.6 Other Extensions

The OLS assumptions are convenient from a mathematical perspective,

but they are not always met in practice. One way out of this conundrum is

to use remedial measures to transform the data into compliant inputs.

Another approach is to extend/expand the assumptions and to work out

the corresponding mathematical formalism:
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generalized linear models (GLM) implement responses with non-
normal conditional distributions (see Section 20.2.3);

classifiers, such as logistic regression, decision trees, support vector

machines, naïve Bayes methods, neural networks, etc., extend

regression to categorical responses (see Chapter 21);

non-linear methods, such as splines, generalized additive models

(GAM), nearest neighbour methods, kernel smoothing methods,

etc., are used for responses that are not linear combinations of the
predictors (see Chapter 20);

tree-based methods and ensemble learning methods, such as

bagging, random forests, and boosting, are used to simplify the

modeling of predictor interactions (see Chapter 21);

regularization methods, such as ridge regression, the LASSO, and

elastic nets, facilitate the process of model selection and feature
selection (see Section 20).

Model Selection With reasonable real-world datasets and situations,

we can often build tens (if not hundreds) of models related to a specific

scenario.
61

When most of these models are “aligned” with one another, 61: Not necessarily models of the linear

regression variety.
that is, when they yield similar results, picking the simplest model is a

good approach.

But in practice, we can also reach a point of diminishing returns –

including more variables in the model might not yield better predictive

power, due to the curse of dimensionality.

The problem of model selection is not easy to solve; we tackle it in earnest

in Section 20.4 and in Chapter 23.

8.5 Outliers and Influential Observations

When we are working with a single predictor, we can usually tell quite

quickly if a prediction or a response is unusual, in some sense.

If a predictor value is much smaller/much larger than the other predictor

values, we might be hesitant to use the regression model to fit the value

because no similar values were used to “train” the model. When 𝑝 > 1,

finding the anomalous observations (predictors and/or responses) is not

as obvious.

We introduce a small number of methods to do so in this section; there

are plenty more, which we will discuss in detail in Chapter 26.

8.5.1 Leverage and Hidden Extrapolation

Consider a dataset with two predictors 𝑋1 , 𝑋2, as shown in Figure 8.18.

Regression models are typically only useful when we are working within

the model scope; if regression is an attempt to interpolate the data, then

we must avoid situations where we are extrapolating from the data.

The problem is that we cannot always easily tell if a predictor Xℎ is in the

model scope or not; in the previous image, each component of Xℎ is in
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Figure 8.18: Model scope in two-

dimensional predictor space (in blue); the

predictor level Xℎ is out-of-scope.

the range of the predictors used to build the model, but Xℎ as a whole is

not. When 𝑝 is large, this visual approach fails.

The leverage of the 𝑖th case is:

ℎ𝑖𝑖 = X𝑖(X⊤X)−1X⊤
𝑖 , X𝑖 is the 𝑖th row of X;

in other words, ℎ𝑖𝑖 is the 𝑖th diagonal element of H = X(X⊤X)−1X⊤
. The

leverage determines if a predictor level Xℎ is in the model scope: if

X⊤
ℎ(X

⊤X)−1Xℎ > max{ℎ𝑖𝑖 | 𝑖 = 1, . . . , 𝑛},

Xℎ is outside the scope and �̂�ℎ = Xℎb contains a hidden extrapolation.

Note that 0 ≤ ℎ𝑖𝑖 ≤ 1, for 𝑖 = 1, . . . , 𝑛. Indeed, since:

1. 0 ≤ 𝜎2{Ŷ} = 𝜎2{HY} = H𝜎2{Y}H⊤ = 𝜎2H =⇒ ℎ𝑖𝑖 ≥ 0 for all 𝑖

2. 0 ≤ 𝜎2{e} = 𝜎2{(I𝑛 − H)Y} = 𝜎2(I𝑛 − H) =⇒ 1 − ℎ𝑖𝑖 ≥ 0 for all 𝑖

Generally-speaking, the surface of X⊤
ℎ
(X⊤X)−1Xℎ = 𝑐 is an ellipsoid

centred around

X = (1, 𝑋1 , . . . , 𝑋𝑝).

The larger 𝑐, the larger the “distance” to X.

An 𝑋−outlier is an observation which is atypical with respect to the

predictor levels.

We note that

ℎ =
1

𝑛

𝑛∑
𝑖=1

ℎ𝑖𝑖 =
1

𝑛
trace(H) =

𝑝

𝑛
(𝑝 ≤ 𝑛);

1. if ℎ𝑖𝑖 ≤ 0.2, then the leverage of the 𝑖th case is low (very near X);
2. if 0.2 < ℎ𝑖𝑖 < 0.5, then the leverage is moderate;

3. if ℎ𝑖𝑖 ≥ 0.5, then the leverage is high (potential 𝑋−outlier);

4. when 𝑛 is large, if ℎ𝑖𝑖 > 3ℎ =
3𝑝

𝑛 , then the 𝑖th case is an 𝑋−outlier.
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Example We wish to fit the multiple linear model

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀, 𝜀 ∼ N(0, 𝜎2)

to a dataset with 𝑛 observations, with

(X⊤X)−1 =
©«

1.17991 −0.00731 0.00073

−0.00731 0.00008 −0.00012

0.00073 −0.00012 0.00046

ª®¬ and X⊤Y =
©«

220

36768

9965

ª®¬
What are the point estimates for the regression coefficients 𝜷? We would

like to predict the value of 𝑌ℎ when 𝑋1 = 200 and 𝑋2 = 50, i.e., at the

point Xℎ = (1, 200, 50)⊤. What is the leverage of Xℎ? Is this case of hidden

extrapolation? If not, what is the predicted value 𝑌ℎ?

The OLS estimates of the regression coefficients are

b = (X⊤X)−1X⊤Y =
©«
−1.91943

0.13744

0.33234

ª®¬ .
The leverage of Xℎ is

X⊤
ℎ(X

⊤X)−1Xℎ = 0.27891;

it is small enough to suggest that we are not in a hidden extrapolation

situation (although 𝑛 is unknown, so we cannot compare it against

3𝑝

𝑛 ).

The predicted response at Xℎ is thus �̂�ℎ = X⊤
ℎ
b = 42.18557.

8.5.2 Deleted Studentized Residuals

While 𝑋−outliers can be determined without reference to a regression
surface �̂�(x) = xb, we can also look for observations whose response

values are unexpectedly distant from �̂�(x).

Figure 8.19: 𝑋−outlier and 𝑌−outlier in

an artificial dataset.
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A 𝑌−outlier is an observation which yields a large regression residual.

If the (internal) studentized residual is large enough,

|𝑟𝑖 | =
���� 𝑒𝑖

s{𝑒𝑖}

���� = ���� 𝑒𝑖√
MSE

√
1 − ℎ𝑖𝑖

���� ≥ 3,

say, then the 𝑖th point is a 𝑌−outlier.

Another approach is to delete the 𝑖th case from the model and refit

b(𝑖) =
(
X⊤
(𝑖)X(𝑖)

)−1

X⊤
(𝑖)Y(𝑖) ,

yielding an expected value for the 𝑖th case, �̂�𝑖(𝑖).

For 𝑖 = 1, . . . , 𝑛, the deleted residual is 𝑑𝑖 = 𝑌𝑖 − �̂�𝑖(𝑖) = 𝑒𝑖
1−ℎ𝑖𝑖 and the

external studentization is

𝑡𝑖 =
𝑑𝑖

s{𝑑𝑖}
= 𝑒𝑖

√
𝑛 − 𝑝 − 1

SSE(1 − ℎ𝑖𝑖) − 𝑒2

𝑖

∼ 𝑡(𝑛 − 𝑝 − 1),

where

s
2{𝑑𝑖} = MSE(𝑖)

[
1 + X𝑖

(
X⊤
(𝑖)X(𝑖)

)−1

X⊤
𝑖

]
.

Decision Rule: if |𝑡𝑖 | > 𝑡(1− 𝛼/𝑛
2

; 𝑛−𝑝−1), then the 𝑖th case is a𝑌−outlier

at significance level 𝛼.

Note that it is possible for an observation to be an 𝑋−outlier without

being an 𝑌−outlier, and vice-versa (see previous chart).

8.5.3 Influential Observations

In the regression context, we may also be interested in determining

which observations are influential – observations whose absence from

(or presence in) the data significantly change the nature of the fit
(qualitatively).

Figure 8.20: Influential observation in a

dataset; the nature of the regression line

changes drastically when the left-most ob-

servation is removed from the data.

Influential observations need not be outliers (but they may be!), and

vice-versa.
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For the 𝑖th case, DFFITS𝑖 is a measure of the influence of the 𝑖th case on

the �̂� in a neighbourhood of X𝑖 . The difference from the fitted value is

DFFITS𝑖 =
�̂�𝑖 − �̂�𝑖(𝑖)√
MSE(𝑖)ℎ𝑖𝑖

= 𝑡𝑖

√
ℎ𝑖𝑖

1 − ℎ𝑖𝑖
.

For small and moderately-sized samples, if |DFFITS𝑖 | > 2, then the 𝑖th

case is likely influential. For larger samples, if |DFFITS𝑖 | > 2

√
𝑝

𝑛 , then

the 𝑖th case is influential.

A similar measure can be determined to see if case 𝑖 has a lot of influence

on the value of the fitted parameter 𝑏𝑘 :

DFBETAS
𝑘
𝑖 =

𝑏𝑘 − 𝑏𝑘(𝑖)√
MSE(𝑖) [(X⊤X)−1]𝑘,𝑘

.

8.5.4 Cook’s Distance

We can also use Cook’s distance to measure observation 𝑖’s influence:

𝐷𝑖 =
1

𝑝 · MSE

𝑛∑
𝑗=1

(
�̂�𝑗 − �̂�𝑗(𝑖)

)
2

=
𝑒2

𝑖

𝑝 · MSE

[
ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2

]
∼ 𝐹(𝑝, 𝑛 − 𝑝).

Decision Rule:

if 𝐷𝑖 < 𝐹(0.2; 𝑝; 𝑛 − 𝑝), then the 𝑖th case has little influence;

if 𝐷𝑖 > 𝐹(0.5; 𝑝; 𝑛 − 𝑝), then the 𝑖th case is very influential.

Regressions based on OLS framework are convenient, but they are not

robust against outliers and influential observations (median, absolute

value).

Example Let

X =

©«

1 1 1

1 1 4

1 2 5

1 3 3

1 4 3

1 4 2

ª®®®®®®®¬
and Y =

©«

2.1

24.2

29.5

27.6

30.5

27.5

ª®®®®®®®¬
.

Find the data’s 𝑋−outliers, 𝑌−outliers, and influential observations.

Since 𝑛 = 6, the sample is small. The OLS estimates are

b =
©«
−7.3

5.51

5.70

ª®¬ ,
from which

e = Y − Xb = (−1.8, 3.2,−2.7, 1.28,−1.32, 1.37)⊤.
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The external residuals are (−18.47, 2.40,−1.99, 0.41,−0.5, 0.57)⊤. Since

𝑡

(
1 − 𝛼/𝑛

2

; 𝑛 − 𝑝 − 1

)
= 𝑡

(
1 − 0.1/6

2

; 6 − 3 − 1

)
= 7.65,

only the first case is a 𝑌−outlier at 𝛼 = 0.1; conservatively, when |𝑡𝑖 | is

large, we should further study the influence of case 𝑖, so we will be sure

to look into case 1 in detail.
62

62: Note the Bonferroni correction term.

For 𝑋−outliers, we seek cases with leverages above 0.5:

h = (0.87, 0.45, 0.58, 0.19, 0.41, 0.48)⊤.

Cases 1, 3 are high leverage points, suggesting that they are poten-

tial 𝑋−outliers, whereas cases 2, 5, 6 have moderate leverages (but are

unlikely to be 𝑋−outliers, lest 5/6 observations be so).

The differences in fitted values are

DFFITS = (−48.7, 2.29,−2.33, 0.2,−0.42, 0.54)⊤ ,

suggesting that only the first 3 cases are influential. The Cook distances
are D = (6.9, 0.67, 0.91, 0.02, 0.08, 0.13)⊤; since 𝐷1 is the only distance

larger than than 𝐹(0.5; 𝑝, 𝑛 − 𝑝) = 1, only the first case is likely to be

influential.

8.6 Exercises

1. a) Let𝑈𝑖 ∼ 𝜒2(𝑟𝑖) be independent random variables with 𝑟1 = 5,

𝑟2 = 10. Set

𝑋 =
𝑈1/𝑟1
𝑈2/𝑟2

.

Using R, find 𝑠 and 𝑡 such that

𝑃(𝑋 ≤ 𝑠) = 0.95 and 𝑃(𝑋 ≤ 𝑡) = 0.99.

𝑃(𝑉 ≤ 𝑤) = 0.95.

2. Let 𝑓 : ℝ𝑛 → ℝ, v ∈ ℝ𝑛
, and 𝑎 ∈ ℝ. Define 𝑓 (Y) = Y⊤v + 𝑎.

Find the gradient of 𝑓 with respect to Y. Write a function in R that

computes 𝑓 (Y) given v, 𝑎. Evaluate the function at Y = (1, 0,−1),
for v = (1, 2,−3) and 𝑎 = −2.

63
63: We write vectors either as columns or

as rows, in a more or less arbitrary way.

It is up to you to determine which one

makes the dimensions compatible.

3. Let 𝐴 =

(
1 1 0

0 1 −1

)
, 𝝁 = (1, 0, 1), 𝚺 =

©«
2 −1 0

−1 1 0

0 0 1

ª®¬, Y ∼ N(𝝁,𝚺).

Let W = 𝐴Y. What distribution does the random vector W follow?

Draw a sample of size 100 for this random vector with R and plot

them in a graph. You may use the function mvrnorm() from the

MASS package to help along (but you do not have to).

4. Let Y ∼ N(0, 9I4) and set 𝑌 = 1

4
(𝑌1 + 𝑌2 + 𝑌3 + 𝑌4). Using R, draw

1000 observations (and plot a histrogram) from:

a) 𝑌2

1
+ 𝑌2

2
+ 𝑌2

3
+ 𝑌2

4

b) 4𝑌
2

c) (𝑌1 − 𝑌)2 + (𝑌2 − 𝑌)2 + (𝑌3 − 𝑌)2 + (𝑌4 − 𝑌)2
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5. Consider the function 𝑓 : ℝ3 → ℝ defined by

𝑓 (Y) = 𝑌2

1
+ 1

2
𝑌2

2
+ 1

2
𝑌2

3
− 𝑌1𝑌2 + 𝑌1 + 2𝑌2 − 3𝑌3 − 2.

Using R, find the critical point(s) of 𝑓 . If it is unique, does it give rise to a global maximum of 𝑓 ? A global

minimum? A saddle point?

6. Consider the dataset Autos.xlsx. The predictor variable is VKM.q (𝑋 , the average daily distance driven, in

km); the response variable is CC.q (𝑌, the average daily fuel consumption, in L). Use R to:

a) display the scatterplot of 𝑌 versus 𝑋;

b) determine the number of observations 𝑛 in the dataset;

c) compute the quantities

∑
𝑋𝑖 ,

∑
𝑌𝑖 ,

∑
𝑋2

𝑖
,

∑
𝑋𝑖𝑌𝑖 ,

∑
𝑌2

𝑖
;

d) find the normal equations of the line of best fit;

e) find the coefficients of the line of best fit (without using lm()), and

f) overlay the line of best fit onto the scatterplot.

7. Use the R function lm() to obtain the coefficients of the line of best fit and the residuals from exercise 6.

Show (by calculating the required quantities directly) that the first 5 properties of residuals are satisfied.

8. Using R, compute the Pearson and Spearman correlation coefficients between the predictor and the

response in exercise 6. Is there a strong or weak linear association between these two variables? Use the

correlation values and diagrams to justify your answer.

9. Using R, find the decomposition into sums of squares for the regression in exercise 6.

10. (continuation of the previous question) Using R, randomly draw 𝑛 pairs of observations from the data set.

Determine the least squares line of best fit 𝐿𝑛 and calculate its coefficient of determination 𝑅2

𝑛 . Repeat

for 𝑛 = 10, 50, 100, 500 and for all observations. Is there anything interesting to report? If so, how is it

explained?

11. Using R, plot the residuals corresponding to the ls line of best fit when using all observations in the set.

Visually, do the SLR assumptions on the error terms appear to be satisfied? Give a visual approximation

of 𝜎2
. Then compute the estimator �̂�2

. Compare.

12. Using R, compute directly the 95% and the 99% confidence interval of the slope of the regression line.

13. Before even doing the calculations with R, do you think we should be able to determine whether the

confidence interval for the intercept of the regression line is smaller or larger than the corresponding

interval for the slope? If so, why would this be the case? Determine directly the 95% and the 99% confidence

interval of the intercept.

14. (continuation of the previous question) Using the fit from the previous questions:

a) Test for 𝐻0 : 𝛽0 = 0 vs. 𝐻1 : 𝛽0 > 0.

b) Test for 𝐻0 : 𝛽1 = 10 vs. 𝐻1 : 𝛽1 ≠ 10.

c) Test for 𝐻0 : 𝛽1 = 0 vs. 𝐻1 : 𝛽1 ≠ 0.

Justify and explain your answers.

15. (continuation of the previous question)

a) Using the formulas, calculate the covariance 𝜎{𝑏0 , 𝑏1}.
b) Randomly select a sample of 50 pairs of observations fromAutos.xlsx (with or without remplacement,

as desired). Compute the regression parameters (𝑏(1)
0
, 𝑏

(1)
1
) corresponding to the sample. Repeat the

procedure 300 times, to produce 300 pairs (𝑏(𝑗)
0
, 𝑏

(𝑗)
1
). Display all pairs in a scatter plot.

c) Comment on the results. Are they consistent with what you obtained in a)?

16. Determine the 95% confidence interval of the expected response E{𝑌} when the predictor is 𝑋 = 𝑋∗
.

What is the specific interval when 𝑋∗ = 27? Calculate the mean of the responses {𝑌∗} when 𝑋∗ = 27

in the data. Does this mean fall within the confidence interval? Repeat the exercise for 𝑋∗ = 5. Test

𝐻0 : E{𝑌∗ | 𝑋∗ = 5} = 0 vs. 𝐻1 : E{𝑌∗ | 𝑋∗ = 5} > 0 at confidence level 𝛼 = 0.05.

17. Determine the 95% prediction interval for a new response 𝑌∗
𝑝 when the predictor is 𝑋 = 𝑋∗

. What is the

specific interval when 𝑋∗ = 27? What proportion of the responses 𝑌∗
𝑝 fall within the prediction interval

when 𝑋∗ = 27? Repeat the exercise for 𝑋∗ = 5. Are the results compatible with the notion of prediction

interval? Is the observation (5.25) probable (at 𝛼 = 0.05)?
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18. (continuation of the previous question)

a) Perform a 95% joint estimate of the parameters 𝛽0 and 𝛽1 Compare with the results of question 16.

b) Find the joint 95% Working-Hostelling confidence band for the mean response 𝐸{𝑌} when 𝑋 = 𝑋∗
.

Superimpose the line of best fit and the band on the scatterplot of the observations.

c) Find a joint 95% confidence band for the prediction of 𝑔 = 20 new responses 𝑌∗
𝑘

at 𝑋 = 𝑋∗
𝑘
,

𝑘 = 1, . . . , 20. Superimpose the line of best fit and the band on the scatterplot of the observations.

19. (continuation of the previous question) Perform an analysis of variance to determine if the regression is

significant or not.

20. (continuation of the previous question) Express the SLR 𝑌𝑖 = 𝑏𝑒𝑡𝑎0 + 𝑏𝑒𝑡𝑎1𝑋𝑖 + 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑖 using matrix

notation. With R, determine the OLS solution directly (without using lm() or the sums

∑
𝑋𝑖 ,

∑
𝑌𝑖 ,

∑
𝑋2

𝑖
,∑

𝑋𝑖𝑌𝑖 ,
∑
𝑌2

𝑖
).

21. Consider the dataset Autos.xlsx. This time around, we are only interested in the VPAS vehicles. The

predictor variables are VKM.q (𝑋1, the average daily distance driven, in km) and Age (𝑋2, the age of the

vehicle, in years); the response variable is CC.q (𝑌, the average daily fuel consumption, in L). Use R to:

a) determine the design matrix X of the SLR model;

b) compute the fitted values of the response Y if 𝜷 = (1, 5, 1);
c) compute the residual sum of squares if 𝜷 = (1, 5, 1).

22. (continuation of the previous question) Determine directly the least squares estimator b of the SLR

problem, using matrix manipulations in R. Find the estimated regression function of the response 𝑌.

Compute the residual sum of squares in the case 𝜷 = b. Is this value consistent with the result obtained in

part c) of the previous question?

23. (continuation of the previous question) Using only matrix manipulations in R, determine the vector of

residuals in the SLR problem, as well as SST, SSE, and SSR. Verify that SST = SSR+ SSE. What is the mean

square error of the SLR model?

24. (continuation of the previous question) Assuming the SLR model is valid, test whether the regression is

significant using the global 𝐹 test – use R as you see fit (but use it!).

25. (continuation of the previous question) Find the estimated variance-covariance matrix 𝑠2{b} for the OLS

estimator b. At a confidence level of 95%, test for

a) 𝐻0 : 𝛽1 = 0 vs. 𝐻1 : 𝛽1 ≠ 0;

b) 𝐻0 : 𝛽2 = 0 vs. 𝐻1 : 𝛽2 < 0.

26. (continuation of the previous question) We want to predict the mean response 𝐸{𝑌∗} when X∗ = (20, 5).
What is the fitted value �̂�∗

in this case? Compute a 95% C.I. for the sought quantity.

27. (continuation of the previous question) We want to predict the new response 𝑌∗
𝑝 when X∗ = (20, 5).

Compute a 95% P.I. for 𝑌∗
𝑝 .

28. (continuation of the previous question)

a) Give joint 95% C.I. for the regression parameters 𝛽0 , 𝛽1 , 𝛽2.

b) Give joint 95% C.I. for the expected mean value 𝐸{𝑌∗
ℓ
} using the Working-Hotelling procedure for

X∗
1
= (50, 10),X∗

2
= (20, 5),X∗

3
= (200, 8).

29. (continuation of the previous question) Is the multiple linear regression model preferable to the two simple

linear regression models for the same subset of Autos.xlsx (using 𝑋1 or 𝑋2, but not both)? Support your

answer.

30. (continuation of the previous question) Compute the multiple coefficient of determination and the adjusted

multiple coefficient of determination directly (without using lm()). What do these values tell you about

the quality of the fit?

31. (continuation of the previous question) Is the linearity assumption reasonable? Justify your answer.

32. (continuation of the previous question) Is the assumption of constant variance reasonable? Justify your

answer.

33. (continuation of the previous question) Is the assumption of independence of the error terms reasonable?

Justify your answer.

34. (continuation of the previous question) Is the assumption of normality of the error terms reasonable?

Justify your answer.
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35. (continuation of the previous question) Overall, do you believe that the multiple linear regression model

is appropriate? Justify your answer.

36. (continuation of the previous question) Use appropriate corrective measures to improve the multiple

regression results.

37. (continuation of the previous question) Are the predictors in the data set multicollinear? Justify your

answer.

38. (continuation of the previous question) For this question, we drop the variable Age from the dataset.

Fit the response to a cubic regression centered on the predictor 𝑥1 = 𝑋1 − 𝑋1, by adding one variable

at a time, to obtain 𝐸{𝑌 | 𝑥1} = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥
2

1
+ 𝛽3𝑥

3

1
. Using 𝛼 = 0.05, test for 𝐻0 : 𝛽2 = 𝛽3 = 0 vs.

𝐻1 : 𝛽2 ≠ 0 or 𝛽3 ≠ 0.

39. (continuation of the previous question) For this question, we re-introduce the variable Age to the data.

Build a polynomial model of degree 2 in 𝑋1 and 𝑋2 that includes an interaction term (the full model) and

a model that is only of degree 1 in 𝑋1 and 𝑋2, but still contains an interaction term (the reduced model).

Determine the coefficients in both cases. Which of the two models is better?

40. Consider the dataset Autos.xlsx. The predictor variable is Type (𝑋, vehicle type); the response is CC.q

(𝑌, average daily fuel consumption, in L). Using a dummy variable encoding, find the regression model of

𝑌 as a function of 𝑋. Is this a good model? Justify your answer.

41. Use the data set provided in the example for Section 4.5.

a) Find and plot the solution of the WLS problem with 𝑤𝑖 = 𝑥2

𝑖
.

b) Find the solution of the WLS problem with the procedure described in the chapter. Plot the results.

c) Which of the two options gives the best fit? Justify your answer.

42. Consider the dataset Autos.xlsx. The predictor variables are VKM.q (𝑋1, average daily distance, in km),

Age (𝑋2, vehicle age in years), and Rural (𝑋3, 0 for urban vehicle, 1 for rural vehicle); the response is CC.q

(𝑌, average daily fuel consumption, in L). Use the best subset approach with Mallow’s 𝐶𝑝 criterion to

select the best model.

43. Repeat the previous question, with the adjusted coefficient of determination 𝑅2

𝑎 .

44. Repeat the previous question, with the backward stepwise selection method and with Mallow’s 𝐶𝑝
criterion.

45. Repeat the previous question, with the backward stepwise selection method and with the adjusted

coefficient of determination 𝑅2

𝑎 .

46. Repeat the previous question, with the forward stepwise selection method and with Mallow’s 𝐶𝑝 criterion.

47. Repeat the previous question, with the forward stepwise selection method and with the adjusted coefficient

of determination 𝑅2

𝑎 .

48. Consider the dataset Autos.xlsx. The predictor variables are VKM.q (𝑋1, average daily distance, in km)

and Age (𝑋2, vehicle age in years), and Rural (𝑋3, 0 for urban vehicle, 1 for rural vehicle; the response is

still CC.q (𝑌, average daily fuel consumption, in L). Find the 𝑋−outliers in the dataset.

49. (continuation of the previous question) Consider the MLR model �̂� = 𝑏0+𝑏1𝑋1+𝑏2𝑋2. Find the𝑌−outliers

in the dataset.
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by Patrick Boily, inspired by Rafal Kulik

Many traditional statistical methods assume that observations are inde-

pendently and identically distributed, which is unlikely to happen in

real life. At best, this assumption may be sufficiently accurate to allow for

some predictive power; at worst, it can lead to wildly inaccurate insights

and predictions.

A time series is a sequence of values, measured at regular intervals over

time. The motivation of time series analysis lies in the assumption that

what happened in the past has an influence on what will happen in

the future. Typically, time series are used for trend analysis and for

forecasting future values when there are good reasons to suspect the

existence of cycles in the data.
*

Generally speaking, the forecast horizon

is the length of the prediction period: predictions at shorter horizons tend

to be more reliable and accurate than predictions at longer horizons.

Ideally, the reporting periods used in time series analysis should be

identical (e.g. daily, monthly, quarterly or yearly), the measurements

should be taken over discrete (exclusive), consecutive periods, and the

concepts and the measurement approach should be consistent over time.

Detection of periodicity should be done by graphical representation of

the data (and the frequency of data collection) using logic (e.g., is there an

expectation of hourly, weekly, monthly, quarterly, and/or x-year cycles).

More information is available in [2, 1, 5, 3, 4].

9.1 Introduction

Various time series analysis methods and tests are found in applications

and in the literature, including:

auto-regressive models (AR),

smoothing and filtering models (such as moving averages (MA)

and exponential smoothing (ES)),

detrending models (such as ARMA, finite differences, etc.),

seasonal decomposition models (such as X11, X12, X13, and ARIMA

models), and

linear and non-linear forecasting models (suc has Holt’s Method,

Winter’s Method, GARCH models, etc.).

We start by providing examples and some of the basic concepts of the

discipline.

*
For instance, a time series analysis could be used to predict the number of passengers

going through Canadian airports at various points in the future. Or an economist might

be interested in forecasting the stock market, using time series analysis.
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9.1.1 Simple Examples

White Noise Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 1. Sometimes such a sequence is called a

white noise. A sample white noise path consisting of 100 steps, with

independent 𝑍𝑡 ∼ N(0, 1), is provided by the R code below.
1

1: The output is shown in Figure 9.1. Note

that the specific realization of the time se-

ries depends on the seed used to generate

the pseudo-random numbers in R. In the

absence of a set.seed(...) command,

the realization will change after every call;

with the command, the realization will be

the same after every call. This comment

should be kept in mind at all times when

producing examples.

z = rnorm(100);

plot.ts(z)

Random Walk Let {𝑍𝑡} be a sequence of i.i.d.
2

random variables with

2: Independent, identically distributed

mean 0 and variance 𝜎2

𝑍
. Define 𝑋𝑡 =

∑⊤
𝑖=1
𝑍𝑖 , 𝑡 = 1, 2, . . .. A sample

random walk of 100 steps, with independent 𝑍𝑡 ∼ N(0, 1), is provided

by the R code below (see Figure 9.1 for the output).

z = rnorm(100);

x = cumsum(z);

plot.ts(x)

Model with Trend A linear or polynomial trend can sometimes be found

in time series models. Consider, for instance, the time series

𝑋𝑡 = 1 + 2𝑡 + 𝑍𝑡 , 𝑡 = 1, 2, . . . ,

where {𝑍𝑡} is a sequence of i.i.d. random variables. The linear trend

is 𝑚𝑡 = 1 + 2𝑡. A 100-step realization of this model, with independent

𝑍𝑡 ∼ N(0, 1), is provided by the R code below (see Figure 9.1).

Linear trend
trend = 1+2*seq(1:100);

z = rnorm(100,0,10);

x = z+trend;

plot.ts(x)

For economics data, we may want to take into account an exponential

inflation trend. If the interest rate 𝑟 is assumed to be fixed, the nominal

price 𝑋𝑡 is actually the real (deflated) price 𝑃𝑡 with respect to inflation:

𝑋𝑡 = 𝑃𝑡 𝑒
𝑟𝑡 , 𝑡 = 1, 2, . . . .

This phenomenon is illustrated in the quarterly earnings of Johnson &

Johnson share (1960–80), as shown in Figure 9.1.

Exponential trend

require(stats);

x = JohnsonJohnson;

plot.ts(x)
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Figure 9.1: Simple time series: white noise (top left), random walk (top right), linear trend (bottom left), exponential trend (bottom right).

9.1.2 Pre-Processing

Component decomposition is central to time series analysis. Displaying

the components of a time series is also helpful in understanding the data.

Each of the components represents a category of patterns.

Generally speaking, there are three common components of time series:

trend, seasonality, and irregular. We briefly discuss other potential

components, but for the sake of simplicity, only the first two of these will

be discussed in this chapter:

the trend component describes the overall “changing direction” of

the data, either increase or decrease or flat, which is a long-term

effect and not necessarily linear;
3

3: For example, in the linear trend time

series model of Figure 9.1, the bottom left

graph shows the trend going up, and so

we expect 𝑋𝑡 to increase with 𝑡.

the seasonal component reveals the seasonal effect on a series of

data, such as that passengers in the airport will increase during

summer vacation season;
4

4: If the monthly deaths of lung disease

in London, UK, shows peaks occurring at

the beginning of each year, say, then we

conclude that winter is a harsher time for

such deaths than summer is, in general.

The irregular (anomalous) component is a short-term effect, which

can vary considerably from period to period, and includes mea-

surement errors, unseasonal change, etc. – once the trend, seasonal,
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and cyclical effects are removed, we use the residual of the time

series to identify the irregular contributions;

cyclical components usually lasts at least two years – note that, in

general, the exact length of an ongoing cycle cannot be predicted;
5

5: For example, the global financial crisis

in 2008 lasted about 5 years. The difference

between seasonal and cyclical is that the

former displays the change over a fixed

time period.

other components may include calendar effect (trading day, leap

year, etc.), government policies, strike actions, exceptional events,

inclement weather, etc.

Decomposition Models Traditionally, decomposition follows one of

three models: multiplicative, additive, and pseudo-additive.

The additive approach assumes that:

1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

independent of the trend behaviour 𝑚𝑡 ;

2. the seasonal component 𝑆𝑡 remains stable from year to year; and

3. the seasonal fluctuations are such that

∑𝑛
𝑗=1
𝑆𝑡+𝑗 = 0.66: For daily series, 𝑛 = 365; for monthly

series, 𝑛 = 12; for quarterly series, 𝑛 = 4,

and so on. Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 + 𝑆𝑡 + 𝐼𝑡 .

All components share the same dimensions and units. After seasonality

adjustment, the seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑋𝑡 − 𝑆𝑡 = 𝑚𝑡 + 𝐼𝑡 .

The multiplicative approach assumes that:

1. the magnitude of the seasonal spikes/troughs increases when the

trend increases (and vice versa);

2. the trend 𝑚𝑡 has the same dimensions as the original series 𝑋𝑡 ,

and the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

dimensionless and centered around 1;

3. the seasonal fluctuations are such that

∑𝑛
𝑗=1
𝑆𝑡+𝑗 = 0, and

4. the original series 𝑋𝑡 does not contain zero values.

Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 × 𝑆𝑡 × 𝐼𝑡 .

All components share the same units. After seasonality adjustments, the

seasonality adjusted series is

𝑆𝐴𝑡 =
𝑋𝑡

𝑆𝑡
= 𝑚𝑡 × 𝐼𝑡

To transform a multiplicative model into an additive model, we could

take a logarithmic transformation, such as:

log𝑋𝑡 = log𝑚𝑡 + log 𝑆𝑡 + log 𝐼𝑡 ,

assuming that none of the component values are non-positive.

The pseudo-additive approach assumes that some of the values of the

original series 𝑋𝑡 are 0 (or very close to 0) and that:
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1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are both

dependent on the trend level 𝑚𝑡 , but independent of each other,

and

2. the trend 𝑚𝑡 has the same dimensions as the original series 𝑋𝑡 ,

and the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

dimensionless and centered around 1.

Mathematically, the model is expressed as:

𝑋𝑡 = 𝑚𝑡 + 𝑚𝑡 × (𝑆𝑡 − 1) + 𝑚𝑡 × (𝐼𝑡 − 1) = 𝑚𝑡 × (𝑆𝑡 + 𝐼𝑡 − 1).

All components share the same units. After seasonality adjustment, the

seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑋𝑡 − 𝑚𝑡 × (𝑆𝑡 − 1) − 𝑚𝑡 × (𝐷𝑡 − 1) = 𝑚𝑡 × 𝐼𝑡

The choice of a model is driven by data behaviour and assumptions. The

analyst needs to plot the time series graph and test a range of models,

selecting the one which stabilized the seasonal component.

The simplest way to determine whether to use multiplicative or additive

decomposition, is by graphing the time series. If the size of the seasonal

variation increases/decreases over time, multiplicative decomposition

should be used (such as in the last chart of Figure 9.1).

On the other hand, if the seasonal variation seems to be constant over

time, an additive model should be used (bottom left, Figure 9.1).
7

7: A pseudo-additive model should be

used when the data exhibits the character-

istics of the multiplicative series, but with

some 𝑋𝑡 values near zero.Illustration We illustrate the process of decomposition with an arbitrary

time series recording the monthly number of hours for a variable called

CV, whose values are shown in the Figure 9.2.

Figure 9.2: Time series; CV by year.

The continuous plot, Figure 9.3 ,shows that the size of the peaks and

troughs does not seem to follow changing trends: the additive model is

thus selected. The SAS procedure X12 agrees with that assessment, and

further suggests no data transformation.
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Figure 9.4: Diagnostic plots (top row) and adjusted plots (bottom row). Note that the analysis of a time series starts with estimation of the

effects of festivals and trading days. These pre-calculated estimates are then used for prior adjustment of the series. The prior adjusted

original series is subsequently analyzed using the seasonal adjustment.

Figure 9.3: Continuous CV; estimation

summary.

The diagnostic plots are shown in Figure 9.4: the 2010 CV series is prior-

adjusted from the beginning until OCT2010 after the detection of a level

shift. The SI (Seasonal-Irregular) chart shows that there are more than

one irregular component which exhibits volatility. The adjusted series is

shown at the bottom of Figure 9.4 (the trend and irregular components

are shown separately for readability).
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Roll-Back In this chapter, however, we will focus on time series whose

structure can be broken down into three additive components,

𝑋𝑡 = 𝑚𝑡 + 𝑌𝑡 + 𝑆𝑡 ,

where:

𝑚𝑡 is the trend;

𝑆𝑡 is the seasonal component;

𝑌𝑡 is the stationary component (to be defined shortly).

In order to analyse time series, we first need to eliminate both the trend

and the seasonal component.
8

We present a few ways to accomplish this, 8: Collectively, these are known as the

non-stationarities of the time series.
assuming that there is no seasonal component, i.e. 𝑆𝑡 ≡ 0.

Differencing For the time series {𝑋𝑡 , 𝑡 = 1, . . . , 𝑛}, we may calculate

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 , 𝑡 = 2, . . . , 𝑛.

Depending on the nature of the trend in the original time series, the

differenced time series may exhibit no trend.

Differencing a random walk

set.seed(1)

z = rnorm(100)

x = cumsum(z)

y = diff(x)

par(mfrow=c(1,2))

plot.ts(x)

plot.ts(y)

In a sense, differencing a time series is akin to differentiating a function

𝑓 : ℝ → ℝ; if the underlying trend is roughly linear, we expect the

differenced time series to have white noise characteristics.
9

9: Which is to say, that the trend is hori-

zontal.

But if the underlying trend is not linear, differencing only once might not

detrend the original series, as can be seen below, where the trend has a

clear (positive) slope.
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Given that the original time series trend is concave up, differencing a

second time could be a good strategy:
10

10: Since, by analogy, the second deriva-

tive of a quadratic function is the zero

function. ∇2𝑋𝑡 = ∇(∇𝑋𝑡) = ∇(𝑋𝑡−𝑋𝑡−1) = ∇𝑋𝑡−∇𝑋𝑡−1 = 𝑋𝑡−2𝑋𝑡−1+𝑋𝑡−2 , 𝑡 = 3, . . . , 𝑛.

Polynomial Fitting When a linear trend is clearly visible (𝑚𝑡 = 𝑎 + 𝑏𝑡),
then we can estimate the parameters 𝑎, 𝑏 by minimizing

𝑛∑
𝑡=1

(𝑋𝑡 − 𝑎 − 𝑏𝑡)2.

This is a simple regression problem (see Chapter 8), where the indepen-

dent variable is time 𝑡 and the dependent variable is the time series itself.

Consequently, the trend is estimated by

𝑚𝑡 = �̂� + �̂�𝑡 ,

where �̂� and �̂� are the least squares estimators of 𝑎 and 𝑏, respectively.

In this case, the detrended time series is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 1, . . . , 𝑛.

If the trend 𝑚𝑡 would be better described by another polynomial, the

process is similar; note however that it is not in general easy to justify

using a non-linear polynomial trend.
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As an example, consider the following time series, whose trend is linear

by construction.

set.seed(11)

n=89; a=4; b=10;

Time=c(1:n);

X = a + b*Time + 20*rnorm(n)

We can find the least squares estimates as follows:

estimation = lm(X~Time);

a.est = estimation$coefficients[1]; # Estimated intercept

b.est = estimation$coefficients[2]; # Estimated slope

c(a.est,b.est)

[1] -3.695528 10.10823

We plot the time series with its linear trend and compute the stationary

part by removing the linear trend.

Fitted.Lin.Trend=a.est+b.est*Time;

TimeSeries=X-Fitted.Lin.Trend;

par(mfrow=c(1,2))

plot.ts(X)

abline(a=a.est,b=b.est, col="red", lwd=1);

plot.ts(TimeSeries);

Exponential Smoothing Let 𝛼 ∈ (0, 1). We can estimate the trend via:

𝑚1 = 𝑋1 , 𝑚𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝑚𝑡−1 , 𝑡 = 2, . . . , 𝑛.

In other words, at any time 𝑡, we assign weights 𝛼 and 1−𝛼 to the current

observation and the preceding smoothed data. The detrended time series

is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 1, . . . , 𝑛.

Let us take a look at an example.
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Temperature = c(-0.492, -0.173, -0.222, -0.327, 0.063,

-0.403, -0.565, -0.394, -0.313, 0.053, -0.519,

-0.316, -0.701, 0.163, -0.727, -0.213, -0.239,

-0.489, -0.208, -0.203, -0.329, -0.518, -0.166,

-0.359, -0.239, -0.905, -0.456, -0.223, 0.181,

-0.391, -0.355, -0.404, -0.236, -0.551, -0.667,

-0.649, -0.496, -0.471, -0.648, -0.319, -0.317,

-0.511, -0.572, -0.689, -0.293, -0.544, -0.352,

-0.298, -0.315, -0.236, -0.139, -0.160, -0.456,

-0.403, -0.516, -0.391, -0.179, -0.670, -0.460,

-0.429, -0.307, -0.370, -0.582, -0.339, -0.125,

-0.167, -0.393, -0.709, -0.410, -0.405, -0.268,

0.025, -0.244, -0.182, -0.281, -0.066, -0.014,

-0.175, -0.147, -0.474, -0.011, 0.021, -0.026,

-0.343, 0.097, -0.092, -0.062, 0.050, 0.271,

0.155, -0.031, 0.008, -0.067, 0.088, 0.140,

-0.178, 0.024, 0.037, 0.096, -0.024, -0.310,

-0.069, -0.038, 0.216, -0.152, -0.121, -0.469,

-0.078, 0.103, -0.001, -0.016, 0.046, 0.071,

0.099, -0.302, -0.268, -0.107, -0.113, -0.199,

-0.233, -0.102, -0.184, -0.368, 0.148, -0.262,

0.000, -0.383, 0.116, -0.046, 0.054, 0.085,

0.420, -0.027, 0.335, -0.075, -0.115, 0.110,

0.256, 0.391, 0.308, 0.591, 0.418, 0.085,

0.171, 0.438, 0.665, 0.179, 0.555, 0.957,

0.720, 0.603, 0.792, 0.868, 0.814, 0.820,

0.898, 0.924, 1.037, 0.765, 0.782, 1.017)

plot.ts(Temperature)

This times series is not stationary, so we need to remove its trend. Expo-

nential smoothing is implemented in the following R function.

ExpSmooth <- function(x,alpha){

# x: data

# alpha: smoothing parameter

n = length(x)

Data = c(rep(0,n))

Data[1] = x[1]
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for(i in 2:n){

Data[i] = alpha*x[i] + (1-alpha)*Data[i-1]

}

out <- Data

}

What effect does the parameter 𝛼 have on the outcome? In general, the

smaller 𝛼 is, the smoother the trend is; here, we try 𝛼 = 0.1, 0.5, 0.9.

plot.ts(Temperature)

MySmoothedTS1 = ExpSmooth(Temperature,0.1)

points(MySmoothedTS1,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS2 = ExpSmooth(Temperature,0.5)

points(MySmoothedTS2,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS3 = ExpSmooth(Temperature,0.9)

points(MySmoothedTS3,col="red",type="l", lwd=2)

Using 𝛼 = 0.1 (left) indeed achieves the smoothest trend; 𝛼 = 0.9 (right)

shows barely any smoothing. Detrending the series, we obtain:

TS_1 = Temperature-MySmoothedTS1

TS_2 = Temperature-MySmoothedTS2

TS_3 = Temperature-MySmoothedTS3

par(mfrow=c(1,3))

plot.ts(TS_1); plot.ts(TS_2); plot.ts(TS_3)
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The outcome of the procedure is a time series (in this example, either

TS_1, TS_2, or TS_3), which we hope can be treated as stationary.
11

Of11: These are the time series that will be

analysed using the methods we discuss in

this chapter.

course, different smoothing parameters 𝛼 lead to different stationary time

series – experience will inform the choice of 𝛼. The main thrust is that

the exponential smoothing should not follow the data too closely while

preserving the trend and the trend-removed dependence structure.

Moving Average Smoothing Another detrending approach requires us

to pick a window size 𝑞 (a positive integer). Then the trend is estimated

via

𝑚𝑡 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑋𝑡+𝑗 , 𝑞 + 1 ≤ 𝑡 ≤ 𝑛 − 𝑞.

The detrended time series is

𝑌𝑡 = 𝑋𝑡 − 𝑚𝑡 , 𝑡 = 𝑞 + 1, . . . , 𝑛 − 𝑞.

Why does this method work? By assumption, we have 𝑋𝑡 = 𝑚𝑡 + 𝑌𝑡 . We

assume further that E[𝑌𝑡] = 0.
12

Then12: If this is not the case, the non-zero

mean can be always incorporated into the

trend.

(2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑋𝑡+𝑗 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑚𝑡+𝑗 + (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑌𝑡+𝑗 .

If the trend is linear (𝑚𝑡 = 𝑎 + 𝑏𝑡) Then

(2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

𝑚𝑡+𝑗 = (2𝑞 + 1)−1

𝑞∑
𝑗=−𝑞

{𝑎 + 𝑏(𝑡 + 𝑗)} = 𝑎 + 𝑏𝑡.

We apply this approach to the Temperature data from the previous

method, using 𝑞 = 5, 10, 25.

MASmooth<-function(x,Q){

# x: data set

# Q: MA window size

n = length(x)

Smooth = c(rep(0,n))

for(i in Q+1:(n-Q)){Smooth[i] = mean(x[(i-Q):(i+Q)])}

for(i in 1:Q){Smooth[i] = Smooth[Q+1]}

for(i in (n-Q+1):n){Smooth[i] = Smooth[(n-Q)]}

out <- Smooth }

plot.ts(Temperature)

MySmoothedTS1 = MASmooth(Temperature,5)

points(MySmoothedTS1,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS2 = MASmooth(Temperature,10)

points(MySmoothedTS2,col="red",type="l", lwd=2)

plot.ts(Temperature)

MySmoothedTS3 = MASmooth(Temperature,25)

points(MySmoothedTS3,col="red",type="l", lwd=2)
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Note the flattening of the trend at the extremities.

The detrended time series are displayed below.

TS_1 = Temperature-MySmoothedTS1

TS_2 = Temperature-MySmoothedTS2

TS_3 = Temperature-MySmoothedTS2

par(mfrow=c(1,3))

plot.ts(TS_1)

plot.ts(TS_2)

plot.ts(TS_3)

Built-In Decomposer Most statistical analysis tools have built-in func-

tions that can decompose time series according to some model.

For instance, if the temperature data is a monthly time series, starting

in 1989 (and assuming that there is a seasonal component 𝑆𝑡), then

tseries’s decompose() function can extract the stationary component

(named random in this implementation) using an additive model and a

moving average approach.

library(tseries)

Temperature.ts <- ts(Temperature, start=1989, freq=12)

plot(decompose(Temperature.ts))
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The components can be isolated by calling:

decompose(Temperature.ts)$trend,

decompose(Temperature.ts)$seasonal, and

decompose(Temperature.ts)$random.

9.1.3 Stationary Models, Autocovariance, and Autocorrelation

We now introduce the fundamental notions of time series analysis.
13

13: Throughout this chapter, time series
are sequences {𝑋𝑡 | 𝑡 = 𝑡0 , . . .} of random

variables. Definitions and Properties

Let {𝑋𝑡} be a time series with E[𝑋2

𝑡 ] < ∞ for each 𝑡.

The expectation 𝜇𝑋(𝑡) = E[𝑋𝑡] is a function of 𝑡, the mean function. The

(auto)covariance function of the time series is defined as

𝛾𝑋(𝑡 , 𝑠) = Cov(𝑋𝑡 , 𝑋𝑠) = E[𝑋𝑠𝑋𝑡] − E[𝑋𝑠]E[𝑋𝑡].

Note that 𝛾𝑋(𝑡 , 𝑡) = Var(𝑋𝑡).1414: When the context is clear, we will de-

note the mean function and the autoco-

variance function simply by 𝜇 and 𝛾, re-

spectively.

From our perspective, the most important properties of the covariance

are that it is:

symmetric
Cov(𝑋,𝑌) = Cov(𝑌, 𝑋);

multilinear

Cov

(
𝐾∑
𝑘=1

𝑎𝑘𝑋𝑘 ,
𝐿∑
ℓ=1

𝑏ℓ𝑌ℓ

)
=

𝐾∑
𝑘=1

𝐿∑
ℓ=1

𝑎𝑘𝑏ℓCov(𝑋𝑘 , 𝑌ℓ ),

and Cov(𝑋, 𝑎) = 0 for all 𝑎 ∈ ℝ.
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Cauchy’s Inequality: if 𝑋,𝑌 are r.v., then

Cov(𝑋,𝑌))2 ≤ Var(𝑋)Var(𝑌).

Proof: we may assume that E[𝑋] = E[𝑌] = 0.
15

Define the function 15: Otherwise, set 𝑋′ = 𝑋 − E[𝑋] and

𝑌′ = 𝑌 − E[𝑌] and work with 𝑋′, 𝑌′
in-

stead of 𝑋,𝑌. This can be done since the

covariance and the variance are invariant

under translation by a constant (see prop-

erties above).

𝑔(𝑡) = E[(𝑋 + 𝑡𝑌)2] = 𝑡2Var(𝑌) + 2𝑡Cov(𝑋,𝑌) + Var(𝑋), 𝑡 ∈ ℝ.

By construction, 𝑔(𝑡) ≥ 0 for all 𝑡. Since it is quadratic in 𝑡, it has at most

one root, which is to say that its discriminant is non-positive. In other

words

Δ = 4(Cov(𝑋,𝑌))2 − 4Var(𝑋)Var(𝑌) ≤ 0,

which implies the result. ■

A time series {𝑋𝑡} is (weakly) stationary if

𝜇𝑋(𝑡) ≡ 𝜇𝑋 , and

𝛾𝑋(𝑡 , 𝑠) = 𝑓𝑋(𝑡 − 𝑠) for some function 𝑓𝑋 .

In particular, for such a time series, we must have 𝜎2 {(}𝑋𝑡) ≡ 𝜎2

𝑋
and

Cov(𝑋𝑡 , 𝑋𝑡+1) = 𝛾𝑋(𝑡 , 𝑡 + 1) = 𝑓𝑋(𝑡 + 1 − 𝑡) = 𝑓𝑋(1)
Cov(𝑋𝑡+1 , 𝑋𝑡+2) = 𝛾𝑋(𝑡 + 1, 𝑡 + 2) = 𝑓𝑋(𝑡 + 2 − (𝑡 + 1)) = 𝑓𝑋(1)

...

Cov(𝑋𝑡+𝑘 , 𝑋𝑡+𝑘+1) = 𝛾𝑋(𝑡 + 𝑘, 𝑡 + 𝑘 + 1) = 𝑓𝑋(1), 𝑘 ≥ 0.

Lemma: assume that {𝑋𝑡} is a (weakly) stationary time series. Then the

covariance function 𝛾𝑋(𝑡 , 𝑠) is a non-negative definite function.
16 Proof: 16: For all non-negative integers 𝑛 and all

real numbers 𝑎1 , . . . , 𝑎𝑛 we have

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑎 𝑗𝛾𝑋 (𝑖 , 𝑗) ≥ 0.

we have

0 ≤ Var

(
𝑛∑
𝑗=1

𝑎 𝑗𝑋𝑗

)
= Cov

(
𝑛∑
𝑖=1

𝑎 𝑗𝑋𝑗 ,
𝑛∑
𝑗=1

𝑎 𝑗𝑋𝑗

)
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗Cov(𝑋𝑖 , 𝑋𝑗) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑎 𝑗𝛾𝑋(𝑖 , 𝑗).

This completes the proof. ■

Under the same hypothesis as above, then 𝛾𝑋(𝑡 , 𝑠) = 𝑓𝑋(ℎ), ℎ = 𝑡 − 𝑠; for

simplicity’s sake, we often write 𝛾𝑋(𝑡 − 𝑠) or 𝛾𝑋(ℎ) for the covariance.
17

17: When the context is un-ambiguous.

The (auto)correlation function (ACF) of {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is given

by:

𝜌𝑋(ℎ) =
𝛾𝑋(ℎ)
𝛾𝑋(0)

=
Cov(𝑋1 , 𝑋ℎ+1)

Var(𝑋1)
.

Note that 𝜌𝑋(0) = 1.

Examples and Illustrations

White Noise Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 1.
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Then 𝜇𝑍(𝑡) = E[𝑍𝑡] = 0 and 𝛾𝑍(𝑡 , 𝑡) = 𝑓𝑍(0) = Var(𝑍𝑡) = 1 for all 𝑡,

while 𝛾𝑍(𝑡 , 𝑠) = 𝑓𝑍(ℎ) = 0 for all 𝑡 ≠ 𝑠 =⇒ ℎ ≠ 0. Since 𝛾𝑍 only

depends on ℎ = 𝑡 − 𝑠 and 𝜇𝑍 ≡ 0, {𝑍𝑡} is (weakly) stationary.

Random Walk Let {𝑍𝑡} be a sequence of i.i.d. random variables with

mean 0 and variance 𝜎2

𝑍
. Define 𝑆𝑡 =

∑⊤
𝑖=1
𝑍𝑖 . Then E[𝑆𝑡] = 0, and

𝛾𝑆(𝑡 , 𝑡 + ℎ) = Cov(𝑆𝑡 , 𝑆𝑡+ℎ) = Cov(𝑆𝑡 , 𝑆𝑡 + 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)
= Cov(𝑆𝑡 , 𝑆𝑡) + Cov(𝑆𝑡 , 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)
= Cov(𝑆𝑡 , 𝑆𝑡) + Cov(𝑍1 + · · · + 𝑍𝑡 , 𝑍𝑡+1 + · · · + 𝑍𝑡+ℎ)

= Cov(𝑆𝑡 , 𝑆𝑡) +
⊤∑
𝑖=1

ℎ∑
𝑗=1

Cov(𝑍𝑖 , 𝑍𝑡+𝑗) = Cov(𝑆𝑡 , 𝑆𝑡) + 0 = Var(𝑆𝑡).

Since

Var(𝑆𝑡) = Var(𝑍1+· · ·+𝑍𝑡) = Var(𝑍1)+· · ·Var(𝑍𝑡) = 𝜎2

𝑍+· · ·+𝜎
2

𝑍 = 𝑡𝜎2

𝑍 ,

the autocovariance function depends on 𝑡 (and not on ℎ = 𝑡 − 𝑠), and the

sequence is not (weakly) stationary.

Model with Trend We revisti the model 𝑋𝑡 = 1 + 2𝑡 + 𝑍𝑡 , 𝑡 = 1, 2, . . . ,

where {𝑍𝑡} is a sequence of i.i.d. random variables with mean𝜇𝑍 = E[𝑍𝑡].
Then

E[𝑋𝑡] = E[1 + 2𝑡 + 𝑍𝑡] = 1 + 2𝑡 + 𝜇𝑍 .

The mean function depends on 𝑡; the model is not (weakly) stationary.

“Multiplicative” Model Let {𝑍𝑡} be i.i.d. with mean 0 and variance 𝜎2

𝑍
.

Define

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1𝑍𝑡−2 , 𝑡 ≥ 3.

Because E[𝑍𝑡] = 0, we have

𝜎2

𝑍 = Var(𝑍𝑡) = E[𝑍2

𝑡 ] − E
2[𝑍𝑡] = E[𝑍2

𝑡 ].

Since the 𝑍𝑡 are independent of one another, we have

E[𝑋𝑡] = E[𝑍𝑡𝑍𝑡−1𝑍𝑡−2] = E[𝑍𝑡]E[𝑍𝑡−1]E[𝑍𝑡−2] = 0, and

Var(𝑋𝑡) = E[𝑋2

𝑡 ] = E[𝑍2

𝑡𝑍
2

𝑡−1
𝑍2

𝑡−2
] = E[𝑍2

𝑡 ]E[𝑍2

𝑡−1
]E[𝑍2

𝑡−2
] = 𝜎6

𝑍

and

Cov(𝑋𝑡 , 𝑋𝑡+1) = E[𝑋𝑡𝑋𝑡+1] − E[𝑋𝑡]E[𝑋𝑡+1]
= E[{𝑍𝑡𝑍𝑡−1𝑍𝑡−2}{𝑍𝑡+1𝑍𝑡𝑍𝑡−1}] − 0

= E[𝑍𝑡+1]E[𝑍2

𝑡 ]E[𝑍2

𝑡−1
]E[𝑍𝑡−2] = 0.

Similarly, we have Cov(𝑋𝑡 , 𝑋𝑠) = 0 for 𝑡 ≠ 𝑠; the model is thus (weakly)

stationary.
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z=rnorm(100)

n=length(z)

zt=z[3:n]

zt1=z[2:(n-1)]

zt2=z[1:(n-2)]

x=zt*zt1*zt2

plot.ts(x)

MA(1) Let {𝑍𝑡} be a sequence of independent random variables with

𝜇𝑍 ≡ 0 and variance 𝜎2

𝑍
= Var(𝑍), and 𝜃 ∈ ℝ. The MA(1) model is:

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 , 𝑡 ≥ 2.

We see that E[𝑋𝑡] = E[𝑍𝑡 + 𝜃𝑍𝑡−1] = E[𝑍𝑡] + 𝜃E[𝑍𝑡−1], and that

Var(𝑋𝑡) = E[𝑋2

𝑡 ] = E[{𝑍𝑡 + 𝜃𝑍𝑡−1}2]
= E[𝑍2

𝑡 ] + 𝜃2

E[𝑍2

𝑡−1
] + 2𝜃 E[𝑍𝑡𝑍𝑡−1]︸     ︷︷     ︸

=0

= 𝜎2

𝑍 + 𝜃2𝜎2

𝑍 = 𝜎2

𝑍(1 + 𝜃2).

Thus the autocovariance of MA(1) is

𝛾𝑋(𝑡 , 𝑡 + ℎ) = 𝛾𝑋(ℎ) =


𝜎2

𝑍
(1 + 𝜃2) ℎ = 0;

𝜎2

𝑍
𝜃 ℎ = ±1;

0 |ℎ | > 1

.

Note that 𝛾𝑋(𝑡 , 𝑡 + ℎ) = 𝛾𝑋(ℎ) depends only on ℎ and so a MA(1) time

series is (weakly) stationary. Furthermore,

𝜌𝑋(𝑡 , 𝑡 + ℎ) = 𝜌𝑋(ℎ) =


1 ℎ = 0;

𝜃/(1 + 𝜃2) ℎ = ±1;

0 |ℎ | > 1

.

The ACF then also only depends on ℎ:

𝜌𝑋(𝑡 , 𝑡 + ℎ) = 𝜌𝑋(ℎ).

The set T𝑛 of stationary time series of length 𝑛 is a vector “subspace”

over ℝ of the set of all independent time series.
18

18: For a generous definition of subspace.
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Indeed,

1. {0𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ;

2. if {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ,𝜆 ∈ ℝ, then {𝜆𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 ;

3. if {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛}, {𝑌𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 are independent
time series, then {𝑊𝑡 = 𝑋𝑡 + 𝑌𝑡 | 𝑡 = 1, . . . , 𝑛} ∈ T𝑛 .

We only prove the third of these statements (the other two are left as

exercises).

Let {𝑋𝑡}, {𝑌𝑡} ∈ T𝑛 be independent time series, with means 𝜇𝑋 , 𝜇𝑌
and autocovariance functions 𝛾𝑋 and 𝛾𝑌 , respectively. Set𝑊𝑡 = 𝑋𝑡 + 𝑌𝑡 .
Then

𝜇𝑊 (𝑡) = E[𝑊𝑡] = E[𝑋𝑡 + 𝑌𝑡] = E[𝑋𝑡] + E[𝑌𝑡] = 𝜇𝑋 + 𝜇𝑌(:= 𝜇𝑊 )

and

𝛾𝑊 (𝑡 , 𝑡 + ℎ) = E[𝑊𝑡𝑊𝑡+ℎ] − E[𝑊𝑡]E[𝑊𝑡+ℎ]
= E[(𝑋𝑡 + 𝑌𝑡)(𝑋𝑡+ℎ + 𝑌𝑡+ℎ)] − 𝜇2

𝑊

= E[𝑋𝑡𝑋𝑡+ℎ] + E[𝑌𝑡𝑌𝑡+ℎ] + E[𝑋𝑡𝑌𝑡+ℎ]︸     ︷︷     ︸
=E[𝑋𝑡 ]E[𝑌𝑡 ]

+E[𝑌𝑡𝑋𝑡+ℎ]︸     ︷︷     ︸
=E[𝑋𝑡 ]E[𝑌𝑡 ]

−𝜇2

𝑊

= 𝛾𝑋(ℎ) + 𝜇2

𝑋 + 𝛾𝑌(ℎ) + 𝜇2

𝑌 + 𝜇𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌 − (𝜇𝑋 + 𝜇𝑌)2

= 𝛾𝑋(ℎ) + 𝛾𝑌(ℎ).

That is to say, {𝑊𝑡} ∈ T𝑛 . ■

9.1.4 Partial Autocorrelation (PACF)

Let {𝑋𝑡} ∈ T𝑛 with 𝜇𝑋 = 0. The partial (auto)covariance between 𝑋𝑡
and 𝑋𝑡+𝑘 is the covariance between 𝑋𝑡 and 𝑋𝑡+𝑘 , where we “condition

out” the intermediate time series 𝑋𝑡+1 , . . . , 𝑋𝑡+𝑘−1.

Assume that the random variables 𝑋1 and 𝑋3 from the stationary time

series have the following relationship:

𝑋1 = 𝛽1,3𝑋3 + 𝑍,

where 𝜇𝑍 = 0, and 𝑍 is independent of both 𝑋1 , 𝑋3. Then

𝑋1𝑋3 = 𝛽1,3𝑋
2

3
+ 𝑍𝑋3 =⇒ E[𝑋1𝑋3] = 𝛽1,3E[𝑋2

3
] + E[𝑍𝑋3]

=⇒ 𝛾𝑋(2) = 𝛽1,3𝛾𝑋(0) + E[𝑍]E[𝑋3] =⇒ 𝛾𝑋(2) = 𝛽1,3𝛾𝑋(0),

and so

𝛽1,3 =
𝛾𝑋(2)
𝛾𝑋(0)

= 𝜌𝑋(2).

If 𝑍 ∼ N(0, 𝜎2

𝑍
), we recognize 𝛽1,3 as the OLS regression parameter

when regressing 𝑋1 against 𝑋3.
19

Similarly, if we further assume that19: Strictly speaking, if 𝑍 is not normal,

the OLS qualifier does not apply but the

rest of the argument still works. 𝑋2 = 𝛽2,3𝑋3 +𝑉,
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where 𝑉 ∼ N(0, 𝜎2

𝑉
) is independent of both 𝑋2 , 𝑋3, then the OLS regres-

sion parameter when regressing 𝑋2 against 𝑋3 is

𝛽2,3 =
𝛾𝑋(1)
𝛾𝑋(0)

= 𝜌𝑋(1).

The partial (auto)correlation (PACF) between𝑋1 and𝑋2 is the correlation

between 𝑋1 and 𝑋2, removing the effect of 𝑋3:

𝜌1,2;3 = Corr(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3).

Hence,

𝜌1,2;3 =
Cov(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3)√

Var(𝑋1 − 𝛽1,3𝑋3)
√

Var(𝑋2 − 𝛽2,3𝑋3)
.

But we have

Cov(𝑋1 − 𝛽1,3𝑋3 , 𝑋2 − 𝛽2,3𝑋3)
= Cov(𝑋1 , 𝑋2) + Cov(𝛽1,3𝑋3 , 𝛽2,3𝑋3) − Cov(𝑋1 , 𝛽2,3𝑋3) − Cov(𝛽1,3𝑋3 , 𝑋2)
= 𝛾𝑋(1) + 𝛽1,3𝛽2,3Cov(𝑋3 , 𝑋3) − 𝛽2,3Cov(𝑋1 , 𝑋3) − 𝛽1,3Cov(𝑋3 , 𝑋2)
= 𝛾𝑋(1) + 𝛽1,3𝛽2,3𝛾𝑋(0) − 𝛽2,3𝛾𝑋(2) − 𝛽1,3𝛾𝑋(1)
= 𝛾𝑋(1) + 𝜌𝑋(2)𝜌𝑋(1)𝛾𝑋(0) − 𝜌𝑋(1)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)
= 𝛾𝑋(1) + 𝜌𝑋(2)𝛾𝑋(1) − 𝜌𝑋(1)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)

= 𝛾𝑋(1) + 𝜌𝑋(2)𝛾𝑋(1) − 𝛾𝑋 (1)
𝛾𝑋 (0)𝛾𝑋(2) − 𝜌𝑋(2)𝛾𝑋(1)

= 𝛾𝑋(1) + [𝜌𝑋(2)𝛾𝑋(1) − 𝛾𝑋(1)𝜌𝑋(2)] − 𝜌𝑋(2)𝛾𝑋(1) = 𝛾𝑋(1)(1 − 𝜌𝑋(2)).

We also have:

Var(𝑋1−𝛽1,3𝑋3) = 𝛾𝑋(0)
(
1 − 𝜌2

𝑋(2)
)

and Var(𝑋2−𝛽2,3𝑋3) = 𝛾𝑋(0)
(
1 − 𝜌2

𝑋(1)
)
.

Thus, the partial correlation is

𝜌1,2;3 =
𝛾𝑋(1)(1 − 𝜌𝑋(2))

𝛾𝑋(0)
√(

1 − 𝜌2

𝑋
(2)

) (
1 − 𝜌2

𝑋
(1)

) =
𝜌𝑋(1) − 𝜌𝑋(1)𝜌𝑋(2)√(
1 − 𝜌2

𝑋
(2)

) (
1 − 𝜌2

𝑋
(1)

)
=

Corr(𝑋1 , 𝑋2) − Corr(𝑋2 , 𝑋3) · Corr(𝑋1 , 𝑋3)√(
1 − Corr

2(𝑋1 , 𝑋3)
) (

1 − Corr
2(𝑋2 , 𝑋3)

) .
Note: 𝛾𝑋(1), Cov(𝑋1 , 𝑋2), and Cov(𝑋2 , 𝑋3) are interchangeable because

the time series {𝑋𝑡} is stationary; thus we have Corr(𝑋1 , 𝑋2) = Corr(𝑋2 , 𝑋3).

Similarly, the partial (auto)correlation between 𝑋1 and 𝑋3 is the correla-

tion between 𝑋1 and 𝑋3, removing the effect of 𝑋2:

𝜌1,3;2 =
Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(

1 − Corr
2(𝑋1 , 𝑋2)

) (
1 − Corr

2(𝑋2 , 𝑋3)
) .

The PACF Given a time series {𝑋𝑡}, the partial autocorrelation at lag ℎ,

denoted 𝛼𝑋(ℎ),20
is the autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ , removing 20: Or 𝛼(ℎ) if the context is clear.

the linear dependence of𝑋𝑡 on𝑋𝑡+1 , . . . , 𝑋𝑡+ℎ−1; the function 𝛼𝑋 is called

the partial autocorrelation function (PACF).
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Note that:

1. 𝛼(1) = 𝜌𝑋(1),
2. 𝛼(2) = 𝜌1,3;2,

3. 𝛼(3) = 𝜌1,4;2,3,

4. and so on.

A non-negligible aspect of the discipline involves computing the PACF

for different models; we anticipate the task by providing some some

calculations for a special case: the MA(1) model.

MA(1) Let {𝑍𝑡} be a sequence of independent random variables with

𝜇𝑍 ≡ 0 and variance 𝜎2

𝑍
= Var(𝑍), and 𝜃 ∈ ℝ. The MA(1) model is

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 , 𝑡 ≥ 2. We have seen that

𝜌𝑋(ℎ) =


1 ℎ = 0;

𝜃/(1 + 𝜃2) ℎ = ±1;

0 |ℎ | > 1

.

Thus,

𝛼(2) = Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(
1 − Corr

2(𝑋1 , 𝑋2)
) (

1 − Corr
2(𝑋2 , 𝑋3)

)
=

𝜌𝑋(2) − 𝜌2

𝑋
(1)√

1 − 𝜌2

𝑋
(1)

√
1 − 𝜌2

𝑋
(1)

=

0 − 𝜃2

(1 + 𝜃2)2

1 − 𝜃2

(1 + 𝜃2)2

=
−𝜃2

1 + 𝜃2 + 𝜃4

.

9.2 Estimating Model Parameters

In practice, we typically work with one of the time series’ realizations,

that is to say, the true 𝜇(·), 𝛾(·) and 𝛼(·) are not available to us.

9.2.1 Sample Statistics

As is usually the case, in statistical analysis, we can use the data at our

disposal in order to estimate the model’s parameters. As always, assume

that {𝑋𝑡} ∈ T𝑛 is stationary.

Sample Mean The mean 𝜇 = 𝜇𝑋 ≡ E[𝑋𝑡] can be estimated by the

sample mean:

�̂� = 𝑋 =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 .
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Sample Variance The variance 𝜎2

𝑋
≡ Var(𝑋𝑡) = E[(𝑋𝑡 − 𝜇)2] can be

estimated by the sample variance:

�̂�2

𝑋 = �̂�𝑋(0) =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Sample (Auto)Covariance The covariance 𝛾𝑋(ℎ) = E[(𝑋𝑡−𝜇)(𝑋𝑡+ℎ−𝜇)]
(ACVF) can be estimated by the sample (auto)covariance:

�̂�𝑋(ℎ) =
1

𝑛 − 1

𝑛−ℎ∑
𝑡=1

(𝑋𝑡 − 𝑋)(𝑋𝑡+ℎ − 𝑋).

Sample (Auto)Correlation The (auto)correlation 𝜌𝑋(ℎ) = 𝛾𝑋(ℎ)/𝛾𝑋(0)
is estimated by the sample autocorrelation (sample ACF):

�̂�𝑋(ℎ) =
�̂�𝑋(ℎ)
�̂�𝑋(0)

.

Sample PACF The PACF is estimated by the sample PACF; for instance,

since

𝛼(2) =
𝜌𝑋(2) − 𝜌2

𝑋
(1)√

1 − 𝜌2

𝑋
(1)

√
1 − 𝜌2

𝑋
(1)

=
𝜌𝑋(2) − 𝜌2

𝑋
(1)

1 − 𝜌2

𝑋
(1)

,

then

�̂�(2) =
�̂�𝑋(2) − �̂�2

𝑋
(1)

1 − �̂�2

𝑋
(1)

.

9.2.2 Examples

White Noise Recall that white noise {𝑍𝑡} is a sequence of independent

random variables with mean 0 and variance 1. Then 𝛾𝑋(0) = 𝜌𝑋(0) = 1

and 𝛾𝑋(ℎ) = 𝜌𝑋(ℎ) = 0 for ℎ ≠ 0.

We prepare a realization of the white noise time series.

set.seed(1)

z = rnorm(100)

n = length(z)

(muz = mean(z))

gamma0 = sum((z-muz)^2)/(n-1)

var(z)

[1] 0.1088874

[1] 0.8067621

We see that the sample mean and the sample variance are near 0 and 1,

respectively. We can exhibit the sample ACF using the acf() func-

tion.
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zt = z[2:n]; zt1 = z[1:(n-1)]

(corr = acf(z))

autocorrelations of series ‘z’, by lag

0 1 2 3 4 5 6 7 8

1.000 -0.004 -0.027 -0.107 -0.113 -0.093 -0.125 0.065 0.043

9 10 11 12 13 14 15 16 17

0.026 0.025 -0.032 -0.042 0.053 -0.038 -0.022 -0.140 0.063

18 19 20

-0.023 -0.084 -0.112

For instance, we can extract �̂�(1) using the following call:

corr$acf[2]

[1] -0.003651251

But we can also compute it directly:

gamma1 = sum((zt1-muz)*(zt-muz))/(n-1)

(rho1 = gamma1/gamma0)

[1] -0.003651251

The sample PACF can be obtained via the pacf() function.

(partial.corr = pacf(z))

Partial autocorrelations of series ‘z’, by lag

1 2 3 4 5 6 7 8 9

-0.004 -0.027 -0.108 -0.116 -0.105 -0.153 0.023 -0.002 -0.025

10 11 12 13 14 15 16 17 18

-0.005 -0.046 -0.052 0.069 -0.042 -0.039 -0.157 0.035 -0.053

19 20

-0.121 -0.190

For instance, we can extract �̂�(2) using the following call:

partial.corr$acf[2]

[1] -0.02703468

But we can also compute it directly:
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(alpha2 = (corr$acf[3]-(corr$acf[2])^2)/(1-(corr$acf[2])^2))

[1] -0.02703468

Finally, we plot the sample ACF and sample PACF of the white noise time

series against the lag ℎ.
21

21: The dotted blue lines in the ACF and

PACF chart indicate the thresholds beyond

which the recorded values can be seen as

statistically different rom zero. These lines

are located at a height of± 1.96√
𝑛

(see Section

9.6 for an explanation).

par(mfrow=c(1,2))

acf(z); pacf(z)

“Multiplicative” Model Let {𝑍𝑡} be i.i.d. with mean 0 and variance 𝜎2

𝑍
.

Define

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1𝑍𝑡−2 , 𝑡 ≥ 3.

We prepare a realization of this time series, assuming that 𝑍𝑡 ∼ N(0, 1),
and display its sample ACF and sample PACF.

set.seed(2)

z = rnorm(100)

n = length(z)

zt = z[3:n]; zt1 = z[2:(n-1)]; zt2 = z[1:(n-2)];

x = zt*zt1*zt2

par(mfrow=c(1,2))

acf(x)

pacf(x)
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Are the results fundamentally different than those of the white noise

time series?
22

22: Keeping in mind that we are working

with (potentially) different realizations of

the respective time series.

MA(1) Recall MA(1) model

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 ,

We have derived the ACF of this model previously: 𝜌𝑋(0) = 1, 𝑟ℎ𝑜𝑋(1) =
𝜃/(1+𝜃2), and 𝑟ℎ𝑜𝑋(ℎ) = 0 for ℎ > 1. We prepare a realization of MA(1)

as follows:

set.seed(3)

z = rnorm(100,0,1)

n = length(z)

x = rep(0,n)

theta = 2

for(i in 2:n){

x[i] = z[i] + theta*z[i-1]

}

Theoretically, the only non-zero values of the ACF are at ℎ = 0 and ℎ = 1;

is that also going to be the case in the sample ACF?

par(mfrow=c(1,3))

plot.ts(x)

corr = acf(x)

pacf(x)
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It is not exactly so, obviously, but �̂�𝑋(0) and �̂�𝑋(1) are substantially larger

than the remaining �̂�𝑋(ℎ).

The theoretical value of 𝜌𝑋(1) can be computed exactly:

(rho1 = theta/(1+theta^2))

[1] 0.4

How does that compare to the sample estimate �̂�𝑋(1)?

corr[1]

autocorrelations of series ‘x’, by lag

1

0.401

Pretty darn close, we’d say.

Random Walk Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance 𝜎2

𝑍
, and set 𝑋𝑡 =

∑⊤
𝑖=1
𝑍𝑖 .

We prepare a realization of a random walk and display its sample

ACF.
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set.seed(4)

z=rnorm(100)

x=cumsum(z)

acf(x)

Well, that is certainly rather different than the other sample ACF we have

studied so far... but perhaps it should not come as a surprise when we

remember that random walks are not stationary.

Time series analysis, then, requires first that the time series be decom-

posed into its

stationary (random) and

non-stationary components (trend, level shifts, seasonality, etc.).

Next, we try to identify the nature of the random component via a model

(using tools like the sample ACF and the sample PACF).

We will discuss commonly-encountered models in the following sec-

tions.

9.3 ARMA Models

In this section, we assume that the time series {𝑋𝑡} ∈ T𝑛 is stationary. We

will discuss the simplest of the non-trivial time series analysis models,

the auto-regressive moving average model (ARMA).

9.3.1 Linear Processes/Moving Averages

Let {𝑍𝑡} be a sequence of independent random variables with mean 0

and variance Var(𝑍𝑡) = E[𝑍2

𝑡 ] = 𝜎2

𝑍
.
23

Let 𝜓 𝑗 , 𝑗 ≥ 0, be a sequence of23: In the rest of this section, the assump-

tions on {𝑍𝑡 } will be taken for granted.
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constants such that

∑∞
𝑗=0

|𝜓 𝑗 | < ∞. Then

𝑋𝑡 =
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗

is called a linear process or a moving average.
24

24: The terms causal moving average or

one-sided moving average are also used,

to indicate that the sum starts at a finite

index 𝑗; a non-causal linear process would

take the form 𝑋𝑡 =
∑∞
𝑗=−∞ 𝜓 𝑗𝑍𝑡−𝑗 , but we

need a bi-directional sequence {𝑍𝑡 | 𝑡 ∈
ℤ} of independent random variables with

mean 0 and variance 𝜎2

𝑍
for this to make

sense.

The condition

∑∞
𝑗=0

|𝜓 𝑗 | < ∞ ensures that the infinite series converges:

E[|𝑋𝑡 |] ≤
∞∑
𝑗=0

|𝜓 𝑗 |E[|𝑍𝑡−𝑗 |] = E[|𝑍0 |]
∞∑
𝑗=0

|𝜓 𝑗 | < ∞.

Note that this condition is not necessary, however.
25

25:

∑∞
𝑗=0

|𝜓 𝑗 | < ∞ =⇒ ∑∞
𝑗=0

𝜓2

𝑗
< ∞.

Lemma: a linear process is a stationary time series with E[𝑋𝑡] = 0 and

𝛾𝑋(ℎ) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ .

Proof: if we assume that the convergence of the infinite sum of random

variables is “uniform”, then since E[𝑍𝑡] ≡ 0, we have

E[𝑋𝑡] = E

[
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗

]
=

∞∑
𝑗=0

𝜓 𝑗E[𝑍𝑡−𝑗] = 0;

that this is indeed the case is not trivial to show.
26

26: The proof is outside the scope of these

notes; we will take it as valid, sight unseen.

We interchange

∑
and E[·] once more,

27
to obtain:

27: Again, because of the 𝐿2−convergence

of the 𝜓−series.

𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡+ℎ] − E[𝑋𝑡]E[𝑋𝑡+ℎ] = E

[
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗
∞∑
𝑖=0

𝜓𝑖𝑍𝑡+ℎ−𝑖

]
− 0

=

∞∑
𝑗=0

∞∑
𝑖=0

𝜓 𝑗𝜓𝑖E[𝑍𝑡−𝑗𝑍𝑡+ℎ−𝑖].

Since the noise variables 𝑍𝑡 are independent, the only terms that con-

tributes to the double sum are those for which 𝑗 = 𝑖 − ℎ. Hence, the

double sum collapses to a single sum:

𝛾𝑋(ℎ) =
∞∑
𝑗=0

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎE[𝑍2

𝑡−𝑗] =
∞∑
𝑗=0

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ(𝜇2

𝑍 + 𝜎2

𝑍).

As 𝜇𝑍 = 0, we obtain the desired conclusion. ■

AR(1) The auto-regressive model of order 1, AR(1), with parameter 𝜙
takes the form

𝑋𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 .

If |𝜙 | < 1, AR(1) is the linear process with 𝜓 𝑗 = 𝜙 𝑗
; according to the

preceding lemma, we have

𝛾𝑋(ℎ) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+ℎ = 𝜎2

𝑍

∞∑
𝑗=0

𝜙 𝑗𝜙 𝑗+ℎ = 𝜎2

𝑍𝜙
ℎ

∞∑
𝑗=0

(𝜙2)𝑗 = 𝜎2

𝑍

𝜙ℎ

1 − 𝜙2

,
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using the formula for the sum of a geometric series.
28

28: Note that the sum does not converge

for |𝜙 | ≥ 1.

MA(𝑞) The moving average model of order 𝑞, MR(𝑞), with parameter

vector 𝜽 = (𝜃1 , · · · , 𝜃𝑞) takes the form

𝑋𝑡 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · + 𝜃𝑞𝑍𝑡−𝑞 .

This is a linear process with 𝜓0 = 1, 𝜓1 = 𝜃1 , . . . ,𝜓𝑞 = 𝜃𝑞 , and 𝜓 𝑗 = 0,

for all 𝑗 > 𝑞;
29

according to the preceding lemma, we have29: We set 𝜃0 = 1, by convention.

𝛾𝑋(ℎ) =


𝜎2

𝑍

∞∑
𝑗=0

𝜃𝑗𝜃𝑗+ℎ = 𝜎2

𝑍

𝑞−ℎ∑
𝑗=0

𝜃𝑗𝜃𝑗+ℎ ℎ = 0, . . . , 𝑞

0 ℎ > 𝑞.

9.3.2 ARMA in General

In order to define the general ARMA model, we introduce a crucial

element of time series analysis.

Backward Shift Operator Recall that the difference operator ∇ acts on a

time series {𝑋𝑡} according to

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 , as long as 𝑋𝑡−1 exists.

The backward shift operator 𝐵 is defined by

𝐵𝑋𝑡 = (1 − ∇)𝑋𝑡 = 𝑋𝑡 − (𝑋𝑡 − 𝑋𝑡−1) = 𝑋𝑡−1.

It is easy to show (by induction, say) that 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘 , for all 𝑘 for which

𝑋𝑡−𝑘 exists.

AR(1) If

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 ,

then, by formal manipulations of the expressions, we have

𝑋𝑡 = 𝜙(𝜙𝑋𝑡−2 + 𝑍𝑡−1) + 𝑍𝑡 = 𝜙2𝑋𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 ,
= 𝜙3𝑋𝑡−3 + 𝜙2𝑍𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 = · · ·
= · · · + 𝜙4𝑍𝑡−4 + 𝜙3𝑍𝑡−3 + 𝜙2𝑍𝑡−2 + 𝜙𝑍𝑡−1 + 𝑍𝑡 ,

which we recognize as the AR(1) process.
30

30: Convergence still requires |𝜙 | < 1.

Equivalently, if we set 𝜙(𝑥) = 1 − 𝜙𝑥, then AR(1) rewrites as:

𝑋𝑡 − 𝜙𝐵𝑋𝑡 = 𝑍𝑡 ⇐⇒ (1 − 𝜙𝐵)𝑋𝑡 = 𝑍𝑡 ⇐⇒ 𝜙(𝐵)𝑋𝑡 = 𝑍𝑡 .

MA(1) Recall that MA(1) is the linear process

𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1 ,
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where the 𝑍𝑡 are as in AR(1) above. If we set 𝜃(𝑧) = 1 + 𝜃𝑧, then MA(1)

rewrites as:

𝑋𝑡 = 𝑍𝑡 + 𝜃𝐵𝑍𝑡 ⇐⇒ 𝑋𝑡 = (1 + 𝜃𝐵)𝑍𝑡 ⇐⇒ 𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 .

ARMA(1, 1) We can use 𝜙(𝑥) and 𝜃(𝑧) to define a new model:

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

which upon expansion becomes

𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃𝑍𝑡−1.

This model combines the AR(1) and MA(1) models, which is why we call

it an auto-regressive moving average model of order (1, 1).

ARMA(𝑝, 𝑞) Let {𝑍𝑡} be a sequence of independent random variables

with mean 0 and variance Var(𝑍𝑡) = E[𝑍2

𝑡 ] = 𝜎2

𝑍
. A time series {𝑋𝑡}

is an auto-regressive moving average model of order (𝑝, 𝑞), denoted

ARMA(𝑝, 𝑞), if it solves the equation

𝑋𝑡 − 𝜙1𝑋𝑡−1 − · · · − 𝜙𝑝𝑋𝑡−𝑝 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · 𝜃𝑞𝑍𝑡−𝑞 .

Equivalently,

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

where

𝜙(𝑥) = 1 − 𝜙1𝑥 − · · · − 𝜙𝑝𝑥
𝑝 , and 𝜃(𝑧) = 1 + 𝜃1𝑧 + · · · + 𝜃𝑞𝑧

𝑞

are the auto-regressive and moving average polynomials, respectively.

The statement “ARMA(𝑝, 𝑞) solves the equation” means that we can

write 𝑋𝑡 as a stationary linear process

𝑋𝑡 =
∞∑

𝑗=−∞
𝜓 𝑗𝑍𝑡−𝑗 ,

where the coefficients 𝜓 𝑗 depend on the model parameters 𝜙1 , . . . , 𝜙𝑝
and 𝜃1 , . . . , 𝜃𝑞 .

While ARMA models do not need to be causal, we will only be interested

in causal models:

𝑋𝑡 =
∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 .

9.3.3 Stationarity and Causality

A stationary solution for ARMA(𝑝, 𝑞) exists whenever the auto-regressive

polynomial

𝜙(𝑧) = 1 − 𝜙1𝑥 − · · · − 𝜙𝑝𝑥
𝑝

has no root on the complex unit circle, which is to say that of 𝜙’s roots

satisfy |𝑥 | ≠ 1.
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A causal solution for ARMA(𝑝, 𝑞) exists whenever the roots of the auto-

regressive polynomial auto-regressive polynomial 𝜙(𝑥) all lie outside
the complex open unit disk, which is to say that all of 𝜙’s roots satisfy

|𝑥 | > 1.

Examples

1. The auto-regressive polynomial of the AR(1) model

𝑋𝑡 − 1.1𝑋𝑡−1 = 𝑍𝑡

is 𝜙(𝑥) = 1 − 1.1𝑥; its only root is at 𝑥0 = 1/1.1, for which |𝑥0 | < 1.

Thus we can write 𝑋𝑡 as a stationary linear process, but there are

no causal solution.

2. The model 𝑋𝑡 − 0.1𝑋𝑡−1 = 𝑍𝑡 is both stationary and causal.

3. The model 𝑋𝑡 − 𝑋𝑡−1 = 𝑍𝑡 is causal but non-stationary; its auto-

regressive polynomial 𝜙(𝑥) only has a root at 𝑥 = 1.

4. Consider the AR(2) process 𝑋𝑡 − 0.1𝑋𝑡−1 − 0.4𝑋𝑡−2 = 𝑍𝑡 . Equiva-

lently, we can write 𝑋𝑡 −0.1𝐵𝑋𝑡 −0.4𝐵2𝑋𝑡 = 𝑍𝑡 ; its auto-regressive

polynomial is thus

𝜙(𝑥) = 1 − 0.1𝑥 − 0.4𝑥2 ,

whose roots are 𝑥1 ≈ 1.46 and 𝑥2 ≈ −1.71. Both of these roots have

modulus larger than one, so the process is causal and there is a

stationary solution.

5. Consider the AR(2) process (1−𝐵−𝐵2)𝑋𝑡 = 𝑍𝑡 . The auto-regressive

polynomial is

𝜙(𝑥) = 1 − 𝑥 − 𝑥2 ,

whose roots are 𝑥1,2 = (−1± 𝑖
√

3)/2. The modulus is 1 and so there

are no stationary solution (but the process is causal).

6. Consider the AR(2) process 𝑋𝑡 − 0.1𝑋𝑡−1 + 0.4𝑋𝑡−2 = 𝑍𝑡 . The

auto-regressive polynomial is

𝜙(𝑥) = 1 − 0.2𝑥 + 0.4𝑥2 ,

whose only roots are imaginary:

𝑥1,2 =
0.1 ± 𝑖

√
1.56

0.8
= 0.25 ± 0.1561249500𝑖.

Both roots have the same modulus which is ≈ 1.58; this is larger

than 1 so the linear process is stationary and causal.

7. Consider the AR(2) process 𝑋𝑡 − 𝜙𝑋𝑡−1 − 𝜙𝑋𝑡−2 = 𝑍𝑡 ; its auto-

regressive polynomial is

𝜙(𝑥) = 1 − 𝜙𝑥 − 𝜙𝑥2 ,

whose roots are

𝑥1,2(𝜙) = −
𝜙 ±

√
𝜙2 + 4𝜙

2𝜙
.

Then Δ = 𝜙2 + 4𝜙 = 𝜙(𝜙 + 4) > 0 if 𝜙 < −4 and 𝜙 > 0, so the

roots are real when 𝜙 ∉ [−4, 0]; over (−4, 0), the roots are complex
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conjugates, with

|𝑥1,2(𝜙)| =
�����12 ± 𝑖

√
−𝜙2 − 4𝜙

2𝜙

����� =
√

1

4

+
(−𝜙2 − 4𝜙)

4𝜙2

=

√
− 1

𝜙
.

We seek the instances where |𝑥1,2(𝜙)| = 1.

a) When 𝜙 ∉ [−4, 0], 𝑥1,2(𝜙) = ±1 if and only if

−
𝜙 ±

√
𝜙2 + 4𝜙

2𝜙
= ±1 ⇐⇒ 𝜙 ±

√
𝜙2 + 4𝜙 = ±2𝜙

⇐⇒ 𝜙 ± 2𝜙 = ±
√
𝜙2 + 4𝜙,

that is, −𝜙 = ±
√
𝜙2 + 4𝜙 or 3𝜙 = ±

√
𝜙2 + 4𝜙. Squaring on

both sides yields 𝜙2 = 𝜙2+4𝜙 or 9𝜙2 = 𝜙2+4𝜙; this becomes

𝜙 = 0, which we must reject as it is not in the domain of 𝑥1,2(𝜙),
or 𝜙 = 1/2, which is.

b) When 𝜙 ∈ (−4, 0), |𝑥1,2(𝜙)| = 1 if and only if

√
−1/𝜙 = 1, so

that −1/𝜙 = 1, or 𝜙 = −1.

The situation is summarized in Figure 9.5.

Figure 9.5: Modulus of the roots of the

quadratic polynomial 𝜙(𝑥) = 1−𝜙𝑥−𝜙𝑥2

as a function of 𝜙; the roots are real and

distinct when 𝜙 < −4 or 𝜙 > 0 (red, blue);

they are complex conjugates when −4 <
𝜙 < 0 (green). The corresponding linear

process is causal and stationary when the

modulus is larger than or equal to 1 for

both roots; by piecewise continuity of the

modulii, we see that this is the case for

𝜙 ∈ [−2, 0) ∪ (0, 1/2].

9.3.4 Linear Representation

Given an ARMA(𝑝, 𝑞) model, how do we represent it as a linear process?

There is no easy way to do this in the general case, but we will study

some basic models.
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MA(𝑞) If 𝑝 = 0, then an ARMA(0, 𝑞) model is simply an MA(𝑞) model,

and its linear representation is trivial:

𝑋𝑡 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · + 𝜃𝑞𝑍𝑡−𝑞 ,

with 𝜓0 = 1, 𝜓1 = 𝜃1, . . ., 𝜓𝑞 = 𝜃𝑞 , and 𝜓𝑘 = 0 for all 𝑘 > 𝑞.

As 𝑞 is finite,

∞∑
𝑗=0

|𝜓 𝑗 | = 1 + |𝜃1 | + · · · + |𝜃𝑞 | < ∞.

AR(1) The simplest auto-regressive model is obtained by setting 𝑝 = 1

and 𝑞 = 0 in ARMA(𝑝, 𝑞):

𝜙(𝐵)𝑋𝑡 = 𝑍𝑡 ,

where the auto-regressive polynomial is 𝜙(𝑥) = 1 − 𝜙𝑥. Define

𝜒(𝑥) = 1

𝜙(𝑥) =
1

1 − 𝜙𝑥
.

This function has a power series expansion:

𝜒(𝑥) = 1

1 − 𝜙𝑥
=

∞∑
𝑗=0

𝜙 𝑗𝑥 𝑗 ,

which we know converges whenever |𝜙 | < 1. Multiplying the original

model on both sides by 𝜒(𝐵) yields:

𝜒(𝐵)𝜙(𝐵)𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 =⇒ 𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 ,

since 𝜒(𝑥)𝜙(𝑥) = 1 for all 𝑥, by construction. Thus, the linear representa-

tion of AR(1) is

𝑋𝑡 = 𝜒(𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 ,

a formula we have seen before.

We note that the formal computation above only yields a causal linear

representation when |𝜙 | < 1.
31

31: If |𝜙 | > 1, we one can still represent

the process linearly, but it is not causal.

ARMA(1, 1) What can we say if 𝑝 = 1 and 𝑞 = 1, that is, if

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,

where 𝜙(𝑥) = 1 − 𝜙𝑥 and 𝜃(𝑧) = 1 + 𝜃𝑧?

We once again define

𝜒(𝑥) = 1

𝜙(𝑥) =
1

1 − 𝜙𝑥
=

∞∑
𝑗=0

𝜙 𝑗𝑥 𝑗 .

Multiplying the original model on both sides by 𝜒(𝐵) yields:

𝜒(𝐵)𝜙(𝐵)𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 , =⇒ 𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 ,
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since 𝜒(𝑥)𝜙(𝑥) = 1 for all 𝑥. In other words,

𝑋𝑡 = 𝜒(𝐵)𝜃(𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗(1 + 𝜃𝐵)𝑍𝑡 =
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗𝑍𝑡 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝐵 𝑗+1𝑍𝑡

=

∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−(𝑗+1).

But we would like 𝑋𝑡 to take the form

∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 , that is, we want:

∞∑
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 =
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗−1.

We rewrite this equation as:

𝜓0𝑍𝑡 +
∞∑
𝑗=1

𝜓 𝑗𝑍𝑡−𝑗 = 𝜙0𝑍𝑡 +
∞∑
𝑗=1

𝜙 𝑗𝑍𝑡−𝑗 + 𝜃
∞∑
𝑗=1

𝜙 𝑗−1)𝑍𝑡−𝑗

= 𝜙0𝑍𝑡 +
∞∑
𝑗=1

(𝜙 𝑗 + 𝜃𝜙 𝑗−1)𝑍𝑡−𝑗 .

The linear representation of ARMA(1,1) is thus

𝜓0 = 1, 𝜓 𝑗 = 𝜙 𝑗−1(𝜙 + 𝜃), 𝑗 ≥ 1;

This formula was obtained under the assumptions that |𝜙 | < 1,
32

and 32: To insure the convergence of the power

series representation of 𝜒(𝑥).
that 𝜙 + 𝜃 ≠ 0.

33

33: Otherwise, 𝑋𝑡 = 𝑍𝑡 for all 𝑡.

ARMA(1, 𝑞) The procedure for ARMA(1, 𝑞) works in much the same

way as it did for ARMA(1, 1).

AR(𝑝) The general procedure for AR(𝑝), 𝑝 ≥ 2, is much more involved;

we will not discuss it.

9.3.5 Autocovariance Function

The simplest ways to obtain the ACVF of an ARMA model either use the

model’s linear representation or a recursive method.

MA(𝑞) and AR(1) The linear representation of the MA(𝑞) model is trivial;

for AR(1), we use the linear representation from Section 9.3.1. In both

cases, we used the Lemma in that section to compute each model’s ACVF

(see p. 9.3.2).

ARMA(1, 1) For this special case (and for ARMA(1,𝑞) in general), we

also use the linear representation from Section 9.3.4 and the Lemma from

Section 9.3.1 to obtain the ACVF.
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Specifically, since 𝜓0 = 1, 𝜓 𝑗 = 𝜙 𝑗−1(𝜙+𝜃), 𝑗 ≥ 1, and |𝜙 | < 1, we have

𝛾𝑋(0) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓2

𝑗 = 𝜎2

𝑍𝜓
2

0
+ 𝜎2

𝑍

∞∑
𝑗=1

𝜓2

𝑗

= 𝜎2

𝑍 + 𝜎2

𝑍

∞∑
𝑗=1

(𝜙 𝑗−1)2(𝜙 + 𝜃)2

= 𝜎2

𝑍

[
1 + (𝜙 + 𝜃)2

∞∑
𝑗=1

𝜙2(𝑗−1)

]
= 𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
.

Similarly,

𝛾𝑋(1) = 𝜎2

𝑍

∞∑
𝑗=0

𝜓 𝑗𝜓 𝑗+1 = 𝜎2

𝑍𝜓1 + 𝜎2

𝑍

∞∑
𝑗=1

𝜓 𝑗𝜓 𝑗+1

= 𝜎2

𝑍(𝜙 + 𝜃) + 𝜎2

𝑍

∞∑
𝑗=1

𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗(𝜙 + 𝜃)

= 𝜎2

𝑍

[
(𝜙 + 𝜃) + 1

𝜙
(𝜙 + 𝜃)2

∞∑
𝑗=1

𝜙2𝑗

]
= 𝜎2

𝑍

[
(𝜙 + 𝜃) + 𝜙

(𝜙 + 𝜃)2
1 − 𝜙2

]
.

For a general ℎ ≥ 1, note first that

𝜓0𝜓ℎ = 𝜓ℎ = 𝜙ℎ−1(𝜙 + 𝜃) = 𝜙ℎ−1𝜙1−1(𝜙 + 𝜃) = 𝜙ℎ−1𝜓1 = 𝜙ℎ−1𝜓0𝜓1;

if 𝑗 ≥ 1, we also have

𝜓 𝑗𝜓 𝑗+ℎ = 𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗+ℎ−1(𝜙 + 𝜃) = 𝜙ℎ−1

[
𝜙 𝑗−1(𝜙 + 𝜃)𝜙 𝑗(𝜙 + 𝜃)

]
= 𝜙ℎ−1𝜓 𝑗𝜓 𝑗+1.

Thus, 𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(1) for ℎ ≥ 1, and so

𝛾𝑋(ℎ) =


𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
ℎ = 0,

𝜎2

𝑍𝜙
ℎ−1

[
(𝜙 + 𝜃) + 𝜙

(𝜙 + 𝜃)2
1 − 𝜙2

]
ℎ ≥ 1.

AR(1) We can obtain 𝛾𝑋(ℎ) for AR(1) by setting 𝜃 = 0 in the the ACVF

for the ARMA(1, 1) model, but we will illustrate a recursive method that

generalizes to AR(𝑝) or general ARMA(𝑝, 𝑞) models with 𝑝 ≥ 2.

Let ℎ ∈ ℕ. We start by multiplying the AR(1) equation 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡
by 𝑋𝑡−ℎ on both sides and applying the expectation operator to obtain:

E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙E[𝑋𝑡−1𝑋𝑡−ℎ] + E[𝑍𝑡𝑋𝑡−ℎ].

By definition, 𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡−ℎ] − E[𝑋𝑡]E[𝑋𝑡−ℎ]. But E[𝑋𝑡] = 0 for

all 𝑡 as {𝑋𝑡} is assumed to be stationary; thus E[𝑋𝑡𝑋𝑡−ℎ] = 𝛾𝑋(ℎ) and

E[𝑋𝑡−1𝑋𝑡−ℎ] = 𝛾𝑋(ℎ − 1).

For all ℎ ≥ 1 we know that 𝑍𝑡 is independent of𝑋𝑡−ℎ , which is most easily

seen with the linear representation of AR(1): 𝑋𝑡−ℎ =
∑∞
𝑗=0

𝜙 𝑗𝑍𝑡−ℎ−𝑗 .34
34: Note that this would not be the case if

we had multiplied by 𝑋𝑡+ℎ to start with.

Thus, E[𝑍𝑡𝑋𝑡−ℎ] = E[𝑍𝑡]E[𝑋𝑡−ℎ] = 0, and the AR(1) equation is equiva-
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lent to the recursive formula:

𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙E[𝑋𝑡−1𝑋𝑡−ℎ] = 𝜙𝛾𝑋(ℎ − 1), ℎ ≥ 1,

or, by induction:

𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(0), ℎ ≥ 1.

We start the recursion by computing 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
. We have

Var(𝑋𝑡) = 𝜙2

Var(𝑋𝑡−1) + Var(𝑍𝑡),

again, since 𝑋𝑡−1 and 𝑍𝑡 are independent.

As 𝑋𝑡 is stationary, Var(𝑋𝑡) = Var(𝑋𝑡−1) for all 𝑡 and we have

𝜎2

𝑋 = 𝜙2𝜎2

𝑋 + 𝜎2

𝑍 .

Solving for 𝜎2

𝑋
yields:

𝜎2

𝑋 =
𝜎2

𝑍

1 − 𝜙2

.

Finally

𝛾𝑋(ℎ) = 𝜙ℎ𝛾𝑋(0) = 𝜎2

𝑍

𝜙ℎ

1 − 𝜙2

,

which agrees with the ACVF that was calculated in Section 9.3.1.

AR(2) This model’s equation is 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 . We use

a similar approach: we multiply both sides by 𝑋𝑡−ℎ and apply the

expectation operator to obtain:

E[𝑋𝑡𝑋𝑡−ℎ] = 𝜙1E[𝑋𝑡−1𝑋𝑡−ℎ] + 𝜙2E[𝑋𝑡−2𝑋𝑡−ℎ] + E[𝑍𝑡𝑋𝑡−ℎ].

An argument similar to the one presented for AR(1) yields the AR(2)

recursion formula:

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙2𝛾𝑋(ℎ − 2), ℎ ≥ 2.

We start the recursion by computing 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
and 𝛾𝑋(1).

To do so, we multiply the AR(2) equation by 𝑋𝑡−1 and once again apply

the expectation operator to get:

E[𝑋𝑡𝑋𝑡−1] = 𝜙1E[𝑋2

𝑡−1
] + 𝜙2E[𝑋𝑡−2𝑋𝑡−1] + E[𝑍𝑡𝑋𝑡−1]︸      ︷︷      ︸

=0

,

so that

𝛾𝑋(1) = 𝜙1𝛾𝑋(0) + 𝜙2𝛾𝑋(1) =⇒ 𝛾𝑋(1)
1 − 𝜙2

𝜙1

= 𝛾𝑋(0).

Next, we multiply the AR(2) equation by 𝑋𝑡 and apply the expectation

operator one last time to get:

E[𝑋2

𝑡 ] = 𝜙1E[𝑋𝑡−1𝑋𝑡] + 𝜙2E[𝑋𝑡−2𝑋𝑡] + E[𝑍𝑡𝑋𝑡].
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But 𝑍𝑡 and 𝑋𝑡 are not independent; in fact,

E[𝑍𝑡𝑋𝑡] = E[𝑍𝑡(𝜙1𝑋𝑡−1+𝜙2𝑋𝑡−2+𝑍𝑡)] = 𝜙1E[𝑍𝑡𝑋𝑡]+𝜙2E[𝑍𝑡𝑋𝑡−2]+E[𝑍2

𝑡 ] = 𝜎2

𝑍 ,

and so

𝛾𝑋(0) = 𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(2) + 𝜎2

𝑍 .

However, we know that

𝛾𝑋(2) = 𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(0)

from the AR(2) recursion formula, with ℎ = 2; we can substitute this

expression into the equation for 𝛾𝑋(0) to obtain:

𝛾𝑋(0) = 𝜙1𝛾𝑋(1) + 𝜙2

{
𝜙1𝛾𝑋(1) + 𝜙2𝛾𝑋(0)

}
+ 𝜎2

𝑍 ,

which yields:

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙2𝛾𝑋(ℎ − 2), ℎ ≥ 2,

𝛾𝑋(1) = 𝜎2

𝑍

𝜙1

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} ,
𝛾𝑋(0) = 𝜎2

𝑍

1 − 𝜙2

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} .
We can perform a sanity check, by letting 𝜙2 = 0, 𝜙1 = 𝜙; the last two

formulas reduce to 𝛾𝑋(0) and 𝛾𝑋(1) for AR(1).
35

35: It is easy to see that the recursive for-

mula for the ACVF of AR(𝑝) takes the

form:

𝛾𝑋 (ℎ) =
𝑝∑
𝑗=1

𝜙 𝑗𝛾𝑋 (ℎ − 𝑗). 9.3.6 Partial Autocorrelation Function

The partial autocorrelation of a time series {𝑋𝑡} at lag ℎ, denoted by

𝛼(ℎ), is the autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ , after removing the

linear dependence of 𝑋𝑡 on 𝑋𝑡+1 , . . . , 𝑋𝑡+ℎ−1.

MA(1) We have already calculated 𝛼(2) for MA(1); for a general ℎ ∈ ℕ,

it can be shown that the PACF is:

𝛼(ℎ) = −(−𝜃)ℎ
1 + 𝜃2 + · · · + 𝜃2ℎ

.

Since the denominator is always positive, we see that MA(1)’s PACF has

an oscillating behaviour, but that it tapers to 0 when ℎ → ∞.

AR(1) The PACF for the AR(1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 is such that

𝛼(1) = 𝜌𝑋(1) = 𝜙, 𝛼(2) = Corr(𝑋𝑡 , 𝑋𝑡+2 − 𝜙𝑋𝑡+1) = Corr(𝑋𝑡 , 𝑍𝑡+2) = 0.

It turns out that this PACF behaviour is typical of AR(𝑝) models.
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Theorem: consider a stationary AR(𝑝) time series. Then

𝛼(ℎ) = 0, ℎ = 𝑝 + 1, 𝑝 + 2, . . . .

Examples In what follows, we generate a realization of various ARMA(𝑝, 𝑞)

models through package tseries’ arima() function, and display the

sample ACF and sample PACF plots.
36

Do the graphs have the expected 36: The examples will also showcase the

syntax of the simulation function.
characteristics?

White Noise

library(tseries)

set.seed(10)

MyTimeSeries = arima.sim(model = list(ar = c()),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

AR(1)

set.seed(11)

MyTimeSeries = arima.sim(model = list(ar = c(0.1)),

n = 1000,

rand.gen = rnorm);

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)
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set.seed(12)

MyTimeSeries = arima.sim(model = list(ar = c(0.8)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

set.seed(14)

MyTimeSeries = arima.sim(model = list(ar = c(1.1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

Error in arima.sim(model = list(ar = c(1.1)), n = 1000, rand.gen = rnorm) :

’ar’ part of model is not stationary

AR(2)

set.seed(13)

MyTimeSeries = arima.sim(model = list(ar = c(0.7,0.1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)
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MA(1)

set.seed(15)

MyTimeSeries = arima.sim(model = list(ma = c(1)),

n = 1000, rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

MA(2)

set.seed(16)

MyTimeSeries = arima.sim(model = list(ma = c(1,1)),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)

acf(MyTimeSeries)

pacf(MyTimeSeries)

ARMA(1, 2)

set.seed(17)

MyTimeSeries = arima.sim(model = list(ar = c(0.8),

ma = c(1,1)),

n = 1000,

rand.gen = rnorm)

par(mfrow=c(1,3))

plot.ts(MyTimeSeries)
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acf(MyTimeSeries)

pacf(MyTimeSeries)

Summary:

for AR(𝑝) models 𝛾𝑋(ℎ) ≠ 0 for any ℎ.

for MA(𝑞) models 𝛾𝑋(ℎ) = 0 for any |ℎ | > 𝑞;

for AR(𝑝) models 𝛼(ℎ) = 0 for any |ℎ | > 𝑝;

for MA(𝑞) models 𝛼𝑋(ℎ) ≠ 0 for any ℎ.

9.4 Forecasting with Stationary Time Series

In practice, once of the main objectives of time series analysis is to predict
(or forecast) 𝑋𝑛+𝑘 for some 𝑘 ≥ 1, having observed {𝑋1 , . . . , 𝑋𝑛} from a

time series with known mean 𝜇 and ACVF 𝛾𝑋(𝑘), 𝑘 ≥ 0.

Consider a stationary sequence with mean 𝜇 = E[𝑋𝑡] and covariance

𝛾𝑋(ℎ). Denote by 𝑃𝑛𝑋𝑛+𝑘 a prediction for 𝑋𝑛+𝑘 , given the 𝑛 observations

𝑋1 , . . . , 𝑋𝑛 .

We will restrict ourselves to linear predictors, that is to say, predictors of

the form:

𝑃𝑛𝑋𝑛+𝑘 = 𝑎0 + 𝑎1𝑋𝑛 + · · · + 𝑎𝑛𝑋1 = 𝑎0 +
𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖 ,

where 𝑎0 , 𝑎1 , . . . , 𝑎𝑛 ∈ ℝ.

As is usually the case in statistical applications, this can be recast as an

optimization problem. We seek values a = (𝑎0 , . . . , 𝑎𝑛) which minimize

the expected mean squared error (MSE):

E

[
(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2

]
,

One challenge is that we cannot minimize (𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2 directly

since, there would be no reason to predict 𝑋𝑛+𝑘 if we already knew it.
37

37: While the whole entreprise is remi-

niscent of OLS regression, there are some

important differences, chief among them

being that the predictors 𝑋𝑛+1−𝑖 are typi-

cally correlated with one another.

9.4.1 Yule-Walker Procedure

Let

𝑆(a) = E

[
(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2

]
= E

[
(𝑋𝑛+𝑘 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]
.
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We minimize 𝑆 by finding its critical points, i.e. by solving ∇𝑆(a) = 0.

The partial derivative of 𝑆 with respect to 𝑎0 is

E

[
2(𝑋𝑛+𝑘 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖) · 1

]
= 2

(
𝜇 − 𝑎0 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
;

setting it equal to 0 yields

𝑎0 = 𝜇
(
1 −

𝑛∑
𝑖=1

𝑎𝑖

)
.

If {𝑋𝑡} is assumed to be stationary, then 𝜇 = 0, and so 𝑎0 = 0.

The partial derivatives with respect to 𝑎1 , . . . , 𝑎𝑛 are thus:

E

[
− 2

(
𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
𝑋𝑛+1−𝑗

]
, 𝑗 = 1, . . . , 𝑛.

Setting each of these to 0 yields:

E[𝑋𝑛+𝑘𝑋𝑛+1−𝑗] −
𝑛∑
𝑖=1

𝑎𝑖E[𝑋𝑛+1−𝑖𝑋𝑛+1−𝑗] = 0, 𝑗 = 1, . . . , 𝑛.

Since 𝐸[𝑋𝑡] = 𝜇 = 0, the above expectations are the covariances of {𝑋𝑡}
at lags 𝑛 + 𝑘 − (𝑛 + 1 − 𝑗) = 𝑘 − 1 + 𝑗 and 𝑛 + 1 − 𝑖 − (𝑛 + 1 − 𝑗) = 𝑖 − 𝑗,

and we can thus write the system of equations as:

𝛾𝑋(𝑘 − 1 + 𝑗) =
𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑖 − 𝑗), 𝑗 = 1, . . . , 𝑛. (9.1)

Define the matrix

Γ𝑛 = [𝛾𝑋(|𝑖 − 𝑗 |)]𝑛𝑖,𝑗=1

and the column vectors

𝜸(𝑛; 𝑘) = (𝛾𝑋(𝑘), . . . , 𝛾𝑋(𝑘 + 𝑛 − 1))⊤ , a𝑛 = (𝑎1 , . . . , 𝑎𝑛)⊤.

We recognize Γ𝑛 as the variance-covariance matrix of (𝑋1 , . . . , 𝑋𝑛),
whose diagonal entries are 𝛾𝑋(0) = Var(𝑋𝑡) = 𝜎2

𝑋
.

If 𝑛 = 1, for instance, then Γ1 = 𝛾𝑋(0); if 𝑛 = 2, then

Γ2 =

[
𝛾𝑋(0) 𝛾𝑋(1)

𝛾𝑋(| − 1|) 𝛾𝑋(0)

]
=

[
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

]
.

We can write the system of 𝑛 equations in 𝑛 unknowns from (9.1) in a

matrix-vector notation:

Γ𝑛a𝑛 = 𝜸(𝑛; 𝑘),

whose solution, assuming that Γ𝑛 is invertible, is the Yule-Walker fore-
casting formula:

a𝑛 = Γ−1

𝑛 𝜸(𝑛; 𝑘).

Note that it is model-independent.38

38: Well, the formula for a𝑛 is, at any rate.

It only really assumes that the time series

is stationary. But it does depend on the

autocovariances of the time series; with a

model, it is usually rather straightforward

to compute these. Without a model, we

have to use the sample autocovariances.
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MSPE The above procedure guarantees that the mean squared predic-
tion error

MSPE𝑛(𝑘) = E

[
(𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]

is minimized when a is chosen according to the Yule-Walker procedure.

Can we calculate the MSPE value?

Recall that the E[𝑋𝑡] ≡ 0 by stationarity. Thus,

E

[
(𝑋𝑛+𝑘 −

𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖)2
]

= E

[
𝑋2

𝑛+𝑘
]
− 2

𝑛∑
𝑖=1

𝑎𝑖E[𝑋𝑛+𝑘𝑋𝑛+1−𝑖] + E

[ ( 𝑛∑
𝑖=1

𝑎𝑖𝑋𝑛+1−𝑖
)
2

]
= 𝛾𝑋(0) − 2

𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑘 + 𝑖 − 1) + E

[ 𝑛∑
𝑖 , 𝑗=1

𝑎𝑖𝑋𝑛+1−𝑖𝑋𝑛+1−𝑗𝑎 𝑗
]

= 𝛾𝑋(0) − 2

𝑛∑
𝑖=1

𝑎𝑖𝛾𝑋(𝑘 + 𝑖 − 1) +
𝑛∑

𝑖 , 𝑗=1

𝑎𝑖𝛾𝑋(𝑖 − 𝑗)𝑎 𝑗

= 𝛾𝑋(0) − 2a⊤𝑛𝜸(𝑛; 𝑘) + a⊤𝑛Γ𝑛a𝑛 = 𝛾𝑋(0) − a⊤𝑛𝜸(𝑛; 𝑘).

An important remark is that the MSPE formula depends on 𝑘; in particular,

it is possible that, given a set of observations 𝑋1 , . . . , 𝑋𝑛 , predictions

further in the future (i.e., having a larger 𝑘) may have a larger prediction

error than those nearer 𝑡 = 𝑛.
39

39: Of course, it could also be the other

way around – but the point is that we

should not expect MSPE𝑛(𝑘) to be con-

stant with 𝑘. Example: AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 ,
where |𝜙 | < 1 and 𝑍𝑡 are i.i.d. with mean 0 and variance 𝜎2

𝑍
. We have

already seen that {𝑋𝑡} is stationary, and so that 𝜇 = E[𝑋𝑡] ≡ 0.

Recall that the autocovariances for this model are:

𝛾𝑋(ℎ) = 𝜙ℎ
𝜎2

𝑍

1 − 𝜙2

, ℎ ≥ 0.

If we are interested in predicting 𝑋𝑛+1, then we need:

𝜸(𝑛; 𝑘) = 𝜸(𝑛; 1) = (𝛾𝑋(1), . . . , 𝛾𝑋(𝑛))⊤ =
𝜎2

𝑍

1 − 𝜙2

(𝜙, . . . , 𝜙𝑛)⊤.

The Yule-Walker forecasting equation in this case becomes

𝜎2

𝑍

1 − 𝜙2

©«
1 𝜙 · · · 𝜙𝑛−1

𝜙 1 · · · 𝜙𝑛−2

...
...

. . .
...

𝜙𝑛−1 𝜙𝑛−2 · · · 1

ª®®®®¬
©«
𝑎1

...

𝑎𝑛

ª®®¬ =
𝜎2

𝑍

1 − 𝜙2

©«
𝜙
...

𝜙𝑛

ª®®¬ .
We can show that the determinant of of Γ𝑛 is

det(Γ𝑛) = (−1)𝑛−1(𝜙 − 1)𝑛−1(𝜙 + 1)𝑛−1

(
𝜎2

𝑍

1 − 𝜙2

)𝑛
≠ 0

since |𝜙 | < 1. There is thus a unique forecasting solution a𝑛 .
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But

Γ𝑛

©«
𝜙
0

...

0

ª®®®®¬
=

𝜎2

𝑍

1 − 𝜙2

©«
1 · 𝜙 + 0 · (...)
𝜙 · 𝜙 + 0 · (...)

...

𝜙𝑛−1 · 𝜙 + 0 · (...)

ª®®®®¬
=

𝜎2

𝑍

1 − 𝜙2

©«
𝜙
𝜙2

...

𝜙𝑛

ª®®®®¬
,

and so a𝑛 = (𝜙, 0, . . . , 0)⊤ is the unique Yule-Walker forecast vector for

the AR(1) model.

The Yule-Walker prediction for 𝑋𝑛+1 is thus

𝑃𝑛𝑋𝑛+1 = 𝑎1𝑋𝑛 + 𝑎2𝑋𝑛−1 + · · · + 𝑎𝑛𝑋1 = 𝜙𝑋𝑛 ,

while the MSPE is

MSPE𝑛(1) = 𝛾𝑋(0) − a :
⊤
𝑛 𝜸(𝑛; 1) = 𝛾𝑋(0) − 𝜙𝛾𝑋(1) − 0 · 𝛾𝑋(2) − · · · − 0 · 𝛾𝑋(𝑛)

=
𝜎2

𝑍

1 − 𝜙2

− 𝜙2

𝜎2

𝑍

1 − 𝜙2

= 𝜎2

𝑍 .

Note, however, that these formulas cannot yet be used in a practical

setting since they involve the unknown parameters 𝜙 and 𝜎2

𝑍
.

9.4.2 Durbin-Levinson Algorithm

In the AR(1) prediction example, we were lucky that the solution a𝑛
was provided in extremis; there is a way to find the best linear predictor

without having to compute the inverse of Γ𝑛 . But it comes at a price: the

approach only allows one-step prediction to 𝑃𝑛𝑋𝑛+1.

We assume that 𝜇 = E[𝑋𝑡] ≡ 0 and 𝑎0 = 0, as in the Yule-Walker

procedure.

We re-write the linear predictor as

𝑃𝑛𝑋𝑛+1 = 𝜙𝑛,1𝑋𝑛 + · · · + 𝜙𝑛,𝑛𝑋1.

That is, 𝑎1 = 𝜙𝑛,1 , . . . , 𝑎𝑛 = 𝜙𝑛,𝑛 .

If 𝑛 = 1, we seek to find 𝑃1𝑋2 = 𝜙1,1𝑋1 which minimizes

E

[
(𝑋2 − 𝑃1𝑋2)2

]
= E

[
(𝑋2 − 𝜙1,1𝑋1)2

]
.

We differentiate with respect to 𝜙1,1 and set equal to 0 to find the

critical point:

E

[
2(𝑋2 − 𝜙1,1𝑋1)(−𝑋1)

]
= 0 =⇒ E[𝑋1𝑋2] = 𝜙1,1E[𝑋2

1
],

which is to say that

𝜙1,1 =
𝛾𝑋(1)
𝛾𝑋(0)

= 𝜌𝑋(1).

If 𝑛 = 2, we seek to find 𝜙2,1 and 𝜙2,2 in

𝑃2𝑋3 = 𝜙2,1𝑋2 + 𝜙2,2𝑋2.
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As in the Yule-Walker procedure we minimize

E[(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)2].

Taking derivatives with respect to 𝜙2,1 and 𝜙2,2 leads to:

E[−2𝑋2(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)] = 0

E[−2𝑋1(𝑋3 − 𝜙2,1𝑋2 − 𝜙2,2𝑋1)] = 0;

equivalently, since the mixed expectations are covariances and the

squared ones are variances, this can be written as:

𝛾𝑋(1) − 𝜙2,1𝛾𝑋(0) − 𝜙2,2𝛾𝑋(1) = 0

𝛾𝑋(2) − 𝜙2,1𝛾𝑋(1) − 𝜙2,2𝛾𝑋(0) = 0.

We divide both equations by 𝛾𝑋(0) and re-organize the terms to

obtain:

𝜙2,1 = 𝜌𝑋(1) − 𝜙2,2𝜌𝑋(1) = 𝜌𝑋(1) − 𝜙2,2𝜙1,1 , by step 𝑛 = 1;

0 = 𝜌𝑋(2) − 𝜙2,1𝜌𝑋(1) − 𝜙2,2

Solving for 𝜙2,1 and 𝜙2,2, we arrive at

𝜙2,2 =
𝜌𝑋(2) − 𝜙1,1𝜌𝑋(1)

1 − 𝜙1,1𝜌𝑋(1)
,

𝜙2,1 = 𝜌𝑋(1) − 𝜙2,2𝜙1,1.

We use either 𝜙1,1 or 𝜌𝑋(1), solely based on convenience (since they

are equal). In the last system of equations, the coefficients 𝜙2,2 and

𝜙2,1 are computed using sample autocorrelations, as well as 𝜙1,1

(from the step 𝑛 = 1).

This recursive procedure can be extended for a general 𝑛.

Durbin-Levinson Algorithm The coefficients 𝜙𝑛,1 , . . . , 𝜙𝑛,𝑛 in the best

linear prediction 𝑃𝑛𝑋𝑛+1 can be computed recursively as:

𝜙𝑛,𝑛 =

[
𝛾𝑋(𝑛) −

𝑛−1∑
𝑗=1

𝜙𝑛−1, 𝑗𝛾𝑋(𝑛 − 𝑗)
]
𝑣−1

𝑛−1
;

©«
𝜙𝑛,1
...

𝜙𝑛,𝑛−1

ª®®¬ =
©«
𝜙𝑛−1,1

...

𝜙𝑛−1,𝑛−1

ª®®¬ − 𝜙𝑛,𝑛
©«
𝜙𝑛−1,𝑛−1

...

𝜙𝑛−1,1

ª®®¬ ,
and

𝑣𝑛 = 𝑣𝑛−1[1 − 𝜙2

𝑛,𝑛], 𝑣0 = 𝛾𝑋(0), 𝜙1,1 = 𝜌𝑋(1).

Note that the Durbin-Levinson algorithm and the Yule-Walker procedure

lead to the same results for 𝑃𝑛𝑋𝑛+1; indeed, in both cases we compute

the coefficents of the linear prediction 𝑃𝑛𝑋𝑛+1 using the mean squared

error criterion, the difference being that we approach the problem from

two different angles.
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AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡
are i.i.d. with mean 0 and variance 𝜎2

𝑍
.

We know the ACVF and ACF of {𝑋𝑡} are

𝛾𝑋(ℎ) = 𝜙ℎ
𝜎2

𝑍

1 − 𝜙2

, and 𝜌𝑋(ℎ) = 𝛾𝑋(ℎ)/𝛾𝑋(0) = 𝜙ℎ .

Using the Durbin-Levinson algorithm, we find the linear coefficients and

predictors as follows:

𝜙1,1 = 𝜙, 𝑃1𝑋2 = 𝜙𝑋1;

𝜙2,1 = 𝜙, 𝜙2,1 = 0, 𝑃2𝑋3 = 𝜙𝑋2;

...
...

𝜙𝑛,1 = 𝜙, 𝜙𝑛,2 = · · · = 𝜙𝑛,𝑛 = 0, 𝑃𝑛𝑋𝑛+1 = 𝜙𝑋𝑛 .

Partial Autocovariance function (PACF) As a by-product of the Durbin-

Levinson algorithm, we obtain the PACF via:

𝛼(0) = 1; 𝛼(ℎ) = 𝜙ℎ,ℎ , ℎ ≥ 1.

9.4.3 Forecast Limits and Prediction Intervals

We obtained model-independent formulas for (linearly) predicted time

series values in the preceding sections, depending solely on the sample

autocovariances.
40

Discussions of accuracy, however, require model 40: Although we can use a model if one

is available.
assumptions.

Let 𝑋𝑡 =
∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 be a causal linear process with E[𝑍𝑡] = 0 and

Var(𝑍𝑡) = 𝜎2

𝑍
, and 𝑘 ≥ 1 an integer.

It can be shown that the mean squared prediction error at 𝑃𝑛𝑋𝑛+𝑘 is:

MSPE𝑛(𝑘) = E[(𝑋𝑛+𝑘 − 𝑃𝑛𝑋𝑛+𝑘)2] = 𝜎2

𝑍

𝑘−1∑
𝑗=0

𝜓2

𝑗 .

The theoretical forecast limits of the 100(1 − 𝛼)% prediction interval are

thus:

𝑃𝑛𝑋𝑛+𝑘 ± 𝑧𝛼/2

√
MSPE𝑛(𝑘) = 𝑃𝑛𝑋𝑛+𝑘 ± 𝑧𝛼/2

𝜎𝑍

√√
𝑘−1∑
𝑗=0

𝜓2

𝑗
,

where 𝑧𝛼/2
is the 𝛼/2 quantile of the standard normal distribution.

41
41: You know the one: if 𝛼 = 0.05, then

𝑧𝛼/2
= 1.96.

Note that MSPE (and so the coefficients 𝜓 𝑗) are model-dependent: no

model, no prediction interval!

9.4.4 Example: Currency Conversion Data

We illustrate the notions presented in this section with an example, using

the quarterly mean exchange rate between British pounds (UK) and New

Zealand dollar (NZD), from Jan 1991 to Mar 2000 (prepared by Darrin

Speegler).
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ExchangeRate = c(2.9243,2.9422,3.1719,3.2542,3.3479,

3.5066,3.0027,2.8440,2.8378,2.7301,

2.7008,2.6138,2.5874,2.5787,2.5470,

2.4701,2.3895,2.3705,2.3859,2.2766,

2.2351,2.2450,2.3208,2.3390,2.3687,

2.5120,2.6917,2.8435,3.0922,3.2528,

3.1852,3.0340,2.9593,3.0498,3.1869,

3.2286,3.1925,3.3522,3.5310)

The time series plot tells a better story.

plot.ts(ExchangeRate)

The model is clearly not stationary.

We detrend the data via the exponential smoother ExpSmooth of Section

9.1.2, with 𝛼 = 0.6.

alpha = 0.6

ExchangeRate.smoothed <- ExpSmooth(ExchangeRate,alpha)

Stationary = ExchangeRate - ExchangeRate.smoothed

The ACF and PACF of the stationary components are found below.

par(mfrow=c(1,3))

plot.ts(Stationary)

acf(Stationary)

pacf(Stationary)
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The detrended time series looks like AR(1).
42

We centre the time series and 42: Does it? How could you tell?

use the Yule-Walker method to verify that this is indeed an appropriate

model – we will be discussing this further in Section 9.5.3.

MyTimeSeries = Stationary

n = length(MyTimeSeries)

mean = mean(MyTimeSeries)

MyTimeSeries.centered = MyTimeSeries-mean(MyTimeSeries)

(fit.ar <- ar(MyTimeSeries.centered,method="yule-walker"))

Coefficients:

1

0.6241

Order selected 1 sigma^2 estimated as 0.002842

The Yule-Walker estimates of the selected AR(1) model are �̂� = 0.6241,

𝜎2

𝑋
= 0.002842, respectively.

We can verify the Yule-Walker output by comparing with the ACF.

par(mfrow=c(1,1))

(ACF <- acf(MyTimeSeries.centered))

Autocorrelations of series ‘MyTimeSeries.centered’, by lag

0 1 2 3 4 5 6 7 8

1.000 0.624 0.281 0.154 0.001 0.000 -0.027 -0.027 0.048

9 10 11 12 13 14 15

0.085 0.063 0.018 0.001 -0.039 -0.125 -0.149
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The second entry is indeed 0.624, the estimator of 𝜙, which can also be

accessed as follows.

phi = acf(MyTimeSeries.centered)$acf[2]

The sample variance of the centered data is:

(v = var(MyTimeSeries.centered))

[1] 0.004532399

The estimator of 𝜎2

𝑍
is:

v-phi^2*v

[1] 0.002767046

How can we tell if the AR(1) fit is appropriate? We can compute the

“residuals” of the 𝑋𝑡 − �̂�𝑋𝑡−1 and compare it to 𝑍𝑡 , which is to say an i.i.d.

random variable with mean 0 and variance 𝜎2

𝑍
. What do the residual

time series ACF and PACF look like?
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Residuals <- MyTimeSeries.centered[2:n] -

phi*MyTimeSeries.centered[1:(n-1)]

par(mfrow=c(1,2))

acf(Residuals)

pacf(Residuals)

It certainly seems as though there is little dependence left in the residuals

time series. We can apply the Ljung-Box test (which we will discuss in

Section 9.6).

Box.test(Residuals,type="Ljung",lag=1,fitdf=1)

Box-Ljung test

data: Residuals

X-squared = 30.799, df = 1, p-value = 2.862e-08

The outcome is compatible with the notion that the residuals are i.i.d.

random variables.

We can also extract the residuals directly.

fit.ar$resid;

[1] NA 3.887364e-03 8.700283e-02 8.415571e-03

[5] 1.833739e-02 4.546024e-02 -2.249571e-01 -2.963355e-02

[9] 2.332064e-02 -3.416757e-02 -4.645337e-04 -2.963498e-02

[13] -2.659019e-03 8.326911e-05 -1.243842e-02 -2.978541e-02

[17] -2.692054e-02 1.589073e-03 6.651807e-03 -4.574392e-02

[21] -9.575653e-03 8.526158e-03 2.929546e-02 -1.888002e-03

[25] 4.617796e-03 4.978927e-02 5.405892e-02 3.551993e-02

[29] 7.382926e-02 2.972301e-02 -5.720633e-02 -6.845055e-02

[33] -2.147845e-02 4.429304e-02 4.800134e-02 -3.084927e-04

[37] -2.693691e-02 6.015361e-02 5.375058e-02
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Note that this produces one "NA", as the first residual corresponds to

𝑋1 − �̂�𝑋0, but 𝑋0 does not exist in the original stationary time series.

The normality of the residuals (as well as their mean) can be visually

assessed as follows.

par(mfrow=c(1,2))

qqnorm(Residuals);

hist(Residuals)

There are some off-the-beaten-track values, but for the most part, the data

is compatible with the idea of the residuals being normally distributed,

with mean 0 and variance �̂�2

𝑍
.

We can predict the next value of MyTimeSeries, and get the MSPE and

its prediction interval as follows.

(prediction.next <- mean*(1-phi) + phi*MyTimeSeries[n])

(MSPE = (v-phi^2*v))

[1] 0.06405712

[1] 0.002767046

MSPE can also be obtained by typing fit.ar$var.pred at the prompt.

alpha=0.05

quantile = qnorm(1-alpha/2)

c(prediction.next - quantile*sqrt(MSPE),

prediction.next + quantile*sqrt(MSPE))

[1] -0.03904232 0.16715655

But to make a prediction in the original data, we need to take the last value

in the smoothed time series and add the prediction for the stationary

component; this serves as the prediction of the next observation for the

original time series.
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(Prediction.Exchange.Rate.next <-

ExchangeRate.smoothed[n] + prediction.next)

[1] 3.497661

We can also determine the quality of the model fit by “predicting” past

values of the original time series using the same process as above (black:

original; blue: smoothed model: red: predictions).

prediction <- mean*(1-phi) + phi*(MyTimeSeries)

prediction <- c(MyTimeSeries[1],prediction[1:n-1])

Prediction.Exchange.Rate <- ExchangeRate.smoothed +

prediction[1:n]

par(mfrow=c(1,1))

plot.ts(ExchangeRate)

points(ExchangeRate.smoothed,type="l",col="blue")

points(Prediction.Exchange.Rate,type="p",col="red")

(Squared.Error =

sum((Prediction.Exchange.Rate - ExchangeRate)^2))

[1] 0.1020082

What happens if we ignore the non-stationary behaviour and work on the

original data itself instead of the stationary component? The Yule-Walker

method says the data follows an AR(1) model, but with different 𝜙 and

�̂�2

𝑋
values.

par(mfrow=c(1,3))

plot.ts(ExchangeRate)

acf(ExchangeRate)

pacf(ExchangeRate)

mean = mean(ExchangeRate)

ExchangeRate.centered = ExchangeRate - mean(ExchangeRate);

(fit.ar <- ar(ExchangeRate.centered,method="yule-walker"))



542 9 Time Series and Forecasting

Coefficients:

1

0.8903

Order selected 1 sigma^2 estimated as 0.03125

This fit’s residuals do not appear to form an i.i.d. sequence.

phi = fit.ar$ar

Residuals <- ExchangeRate.centered[2:n] -

phi*ExchangeRate.centered[1:(n-1)]

par(mfrow=c(1,2))

acf(Residuals)

pacf(Residuals)

Note, in particular, the large value of �̂�𝑋(1) ≈ 0.5. The fitted AR(1)

model is the best of the AR models for the data, but it is unlikely to be

correct. Nothing is stopping us from predicting new values on the (false)

assumption that it was correct, unfortunately.
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prediction <- mean*(1-phi) + phi*ExchangeRate

prediction <- c(ExchangeRate[1],prediction[1:n-1])

Prediction.Exchange.Rate.Wrong <- prediction[1:n]

par(mfrow=c(1,1))

plot.ts(ExchangeRate)

points(ExchangeRate.smoothed,type="l",col="blue")

points(Prediction.Exchange.Rate.Wrong,type="p",col="red")

(Squared.Error.Wrong =

sum((Prediction.Exchange.Rate.Wrong-ExchangeRate)^2))

[1] 0.7490375

The predictions are clearly not as accurate as they were in our first attempt

at analyzing the data – the squared error is seven times larger now than

it was then.
43

43: This example highlights the impor-

tance of understanding the process; it is

not sufficient to know how to produce new

predictions from a time series data – we

also need to know not to apply the proce-

dure when the time series is not stationary,

or when the model is a poor fit to the data.

9.5 Estimation of ARMA Models

Let’s assume that we have observations {𝑋1 , . . . , 𝑋𝑛} from a time series

and that we have also identified that a model ARMA(𝑝, 𝑞) from which

they could conceivably arise. How can we best estimate the parameters

𝜙1 , . . . , 𝜙𝑝 and/or 𝜃1 , . . . , 𝜃𝑞?

9.5.1 Mean: I.I.D. Case

Assume first that 𝑋1 , . . . , 𝑋𝑛 are i.i.d. In practice, the mean of such a

sequence is not typically 0. We estimate 𝜇 ≡ E[𝑋𝑡] by the method of
moments, using the sample mean 𝑋:

E[𝑋] = E

[
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
E

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

1

𝑛
𝑛𝜇 = 𝜇.

Using the independence of the 𝑋𝑡 , we have:

Var(𝑋) = Var

(
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖

)
=

1

𝑛2

Var

(
𝑛∑
𝑖=1

𝑋𝑖

)
=

𝛾𝑋(0)
𝑛

.
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This computation leads to the Central Limit Theorem.

Lemma: assume that 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with mean 𝜇 and variance

𝛾𝑋(0). Then

√
𝑛

{
𝑋 − 𝜇√
𝛾𝑋(0)

}
d→ N(0, 1),

that is

lim

𝑛→∞
𝑃

(
√
𝑛

{
𝑋 − 𝜇√
𝛾𝑋(0)

}
≤ 𝑥

)
= Φ(𝑥),

where Φ is the standard normal cumulative distribution function.

This allows us to construct a 95% confidence interval for the mean 𝜇:

C.I.(𝜇; 0.95) ≡
(
𝑋 − 1.96

√
𝛾𝑋(0)√
𝑛

, 𝑋 + 1.96

√
𝛾𝑋(0)√
𝑛

)
.

This confidence interval involves the unknown 𝛾𝑋(0), which can be

estimated with the sample variance.

9.5.2 Mean: Time Series

When the time series {𝑋1 , . . . , 𝑋𝑛} does not consist of i.i.d. random

variables but arises from a stationary time series, the estimate for 𝜇
remains valid, but the variance computation has to be modified.

Instead, we have

Var(𝑋) = Cov

(
𝑋, 𝑋

)
= Cov

(
𝑋1 + · · · + 𝑋𝑛

𝑛
,
𝑋1 + · · · + 𝑋𝑛

𝑛

)
=

1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

Cov(𝑋𝑖 , 𝑋𝑗) =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛾𝑋(𝑖 − 𝑗)

=
1

𝑛2

𝑛−1∑
ℎ=−(𝑛−1)

(𝑛 − |ℎ |)𝛾𝑋(ℎ) =
1

𝑛2

𝑛∑
ℎ=−𝑛

(𝑛 − |ℎ |)𝛾𝑋(ℎ)

=
1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |).

As an illustration, assume that 𝑛 = 3. Then

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛾𝑋(𝑖 − 𝑗) = 3𝛾𝑋(0) + 2𝛾𝑋(1) + 2𝛾𝑋(−1) + 𝛾𝑋(2) + 𝛾𝑋(−2)

=

2∑
ℎ=−2

(3 − |ℎ |)𝛾𝑋(ℎ).

Assume now that 𝛾𝑋(|ℎ |) → 0 as |ℎ | → ∞. Then

lim

𝑛→∞
1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |) = lim

𝑛→∞
1

𝑛

𝑛∑
ℎ=−𝑛

𝛾𝑋(|ℎ |) = 0,
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and

lim

𝑛→∞
𝑛Var(𝑋) = lim

𝑛→∞
𝑛

1

𝑛

𝑛∑
ℎ=−𝑛

(
1 − |ℎ |

𝑛

)
𝛾𝑋(|ℎ |)

= lim

𝑛→∞

𝑛∑
ℎ=−𝑛

𝛾𝑋(|ℎ |) =
∞∑

ℎ=−∞
𝛾𝑋(|ℎ |) = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ)

as long as {𝑋𝑡} is short-range dependent (

∑∞
−∞ |𝛾𝑋(|ℎ |)| < ∞).

This computation is one of the main steps to establish the Central Limit

Theorem in the general case.

Lemma: assume that 𝑋1 , . . . , 𝑋𝑛 is a stationary short-range dependent

time series with mean 𝜇, variance 𝛾𝑋(0), and covariance function 𝛾𝑋(ℎ).
Then

√
𝑛

{
𝑋 − 𝜇

𝜈

}
d→ 𝑁(0, 1),

that is

lim

𝑛→∞
𝑃

(
√
𝑛

{
𝑋 − 𝜇

𝜈

}
≤ 𝑥

)
= Φ(𝑥),

where Φ is as above, and

𝜈2 = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ).

This allows us to construct a 95% confidence interval for the mean 𝜇:

C.I.(𝜇; 0.95) ≡
(
𝑋 − 1.96

𝜈√
𝑛
, 𝑋 + 1.96

𝜈√
𝑛

)
.

This confidence interval involves the unknown 𝜈.

Example Recall that the AR(1) model is 𝑋𝑡 = 𝜙𝑋𝑡−1 +𝑍𝑡 , with the usual

assumptions on 𝑍𝑡 .
44

Then 𝛾𝑋(ℎ) = 𝜎2

𝑍

𝜙ℎ

1−𝜙2
, and so 44: In order to obtain the linear represen-

tation of the model, we need to have 𝜇 = 0.

If the data is not centered (𝜇 ≠ 0), consider

instead the shifted model

𝑋𝑡 − 𝜇 = 𝜙(𝑋𝑡−1 − 𝜇) + 𝑍𝑡 .

The stationary solution will then be

𝑋𝑡 = 𝜇 +
∞∑
𝑗=0

𝜙 𝑗𝑍𝑡−𝑗 .

𝜈2 = 𝛾𝑋(0) + 2

∞∑
ℎ=1

𝛾𝑋(ℎ) = 𝜎2

𝑍

1

1 − 𝜙2

+ 2𝜎2

𝑍

1

1 − 𝜙2

𝜙

1 − 𝜙
= 𝜎2

𝑍

1

(1 − 𝜙)2 .

9.5.3 Yule-Walker Estimators

The method we present now has similarities with Yule-Walker forecasting;

it works quite well for AR(𝑝) models.

Assume a stationary and causal AR(1) model: 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where

|𝜙 | < 1, E[𝑍𝑡] ≡ 0, and Var(𝑍𝑡) ≡ 𝜎2

𝑍
. Multiply both sides of the equation,

once by 𝑋𝑡−1 and another time by 𝑋𝑡 , to get

𝑋𝑡𝑋𝑡−1 = 𝜙𝑋𝑡−1𝑋𝑡−1 + 𝑍𝑡𝑋𝑡−1 ,

𝑋2

𝑡 = 𝜙𝑋𝑡𝑋𝑡−1 + 𝑋𝑡𝑍𝑡 .
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We apply the expectation operator on both of these new equations (recall

that E[𝑋𝑡] = 0 and that 𝑋𝑡−1 is independent of 𝑍𝑡 because the time series

is causal) to obtain:

𝛾𝑋(1) = 𝜙𝛾𝑋(0) + 0,

𝛾𝑋(0) = 𝜙𝛾𝑋(1) + E[𝑋𝑡𝑍𝑡].

That last term evaluates to

E[𝑋𝑡𝑍𝑡] = E[(𝜙𝑋𝑡−1 + 𝑍𝑡)𝑍𝑡] = 𝜙E[𝑋𝑡−1𝑍𝑡] + E[𝑍2

𝑡 ] = 𝜎2

𝑍 .

Hence, the system reduces to:

𝛾𝑋(0)𝜙 = 𝛾𝑋(1)
𝜎2

𝑍 = 𝛾𝑋(0) − 𝜙𝛾𝑋(1).

Now, consider 𝑝 = 2: 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 . Multiply both sides of

that equation, once each by by 𝑋𝑡−2, 𝑋𝑡−1, and 𝑋𝑡 , to obtain:

𝑋𝑡𝑋𝑡−2 − 𝜙1𝑋𝑡−1𝑋𝑡−2 − 𝜙2𝑋
2

𝑡−2
= 𝑍𝑡𝑋𝑡−2 ,

𝑋𝑡𝑋𝑡−1 − 𝜙1𝑋
2

𝑡−1
− 𝜙2𝑋𝑡−2𝑋𝑡−1 = 𝑍𝑡𝑋𝑡−1 ,

𝑋2

𝑡 − 𝜙1𝑋𝑡−1𝑋𝑡 − 𝜙2𝑋𝑡−1𝑋𝑡 = 𝑋𝑡𝑍𝑡 .

We once again apply the expectation operator on each of these new

equations to obtain:

𝛾𝑋(1) − 𝜙1𝛾𝑋(1) − 𝜙2𝛾𝑋(0) = 0

𝛾𝑋(1) − 𝜙1𝛾𝑋(0) − 𝜙2𝛾𝑋(1) = 0

𝛾𝑋(0) − 𝜙1𝛾𝑋(1) − 𝜙2𝛾𝑋(2) = 𝜎2

𝑍 .

As in section 9.4.1 we consider the variance-covariance matrix

Γ𝑝 = [𝛾𝑋(𝑖 − 𝑗)]𝑝
𝑖, 𝑗=1

,

and the vectors

𝝓𝑝 =
(
𝜙1 , . . . , 𝜙𝑝

)⊤
and 𝜸(𝑝; 1) =

(
𝛾𝑋(1), . . . , 𝛾𝑋(𝑝)

)⊤
.

For 𝑝 = 1, Γ1 = 𝛾𝑋(0); for 𝑝 = 2,

Γ2 =

(
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(−1) 𝛾𝑋(0)

)
=

(
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

)
.

We can thus re-write the AR(1) and AR(2) systems above as:

Γ𝑝𝝓𝑝 = 𝜸(𝑝; 1), 𝜎2

𝑍 = 𝛾𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1).

Equivalently, we obtain the Yule-Walker equations

𝝓𝑝 = Γ−1

𝑝 𝜸(𝑝; 1), 𝜎2

𝑍 = 𝛾𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1),

which are very similar to the Yule-Walker forecast equations.
45

It is not45: Note that they do involve unknown

autocovariances.
hard to see that the equations hold for a general AR(𝑝).
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We can combine them with the method of moments,
46

to obtain the 46: We simply replace the mean with the

sample mean and the autocovariances

with the sample autocovariances.

Yule-Walker estimators:

𝝓𝑝 = Γ̂−1

𝑝 𝜸(𝑝; 1), �̂�2

𝑍 = �̂�𝑋(0) − 𝝓⊤
𝑝𝜸(𝑝; 1),

where Γ̂𝑝 and 𝜸(𝑝; 1) are obtained by substituting 𝛾𝑋 by �̂�𝑋 .

Theorem: for a large-enough sample size 𝑛, the Yule-Walker estimators

are approximately normal, with

𝝓𝑝 ∼ N

(
𝝓𝑝 ,

1

𝑛
𝜎2

𝑍Γ
−1

𝑝

)
.

In particular, for 𝑝 = 1,

𝜙 ∼ N

(
𝜙,

1

𝑛
𝜎2

𝑍𝛾
−1

𝑋 (0)
)
.

That is, Var(𝜙) ∼ 1

𝑛 𝜎
2

𝑍
𝛾−1

𝑋
(0).

Confidence interval for AR(1) The theoretical confidence interval for

the parameter 𝜙 of AR(1) is

C.I.𝛼(𝜙) ≡ 𝜙 ± 𝑧𝛼/2

1√
𝑛
𝜎𝑍

√
𝛾−1

𝑋
(0),

where 𝑧𝛼/2
is the standard normal quantile. Since 𝜎2

𝑍
and 𝛾𝑋(0) are

unknown, we replace them with estimators to obtain the empirical
(practical) confidence interval

C.I.𝛼(𝜙) ≈ 𝜙 ± 𝑧𝛼/2

1√
𝑛
�̂�𝑍

√
�̂�−1

𝑋
(0),

where

𝜙 =
�̂�𝑋(1)
�̂�𝑋(0)

and �̂�2

𝑍 = �̂�𝑋(0) − 𝜙�̂�𝑋(1).

Confidence interval for AR(2) The limiting variance-covariance matrix

for the Yule-Walker estimators 𝜙1, 𝜙2 is

𝜎2

𝑍Γ
−1

2
=

[
1 − 𝜙2

2
−𝜙1(1 + 𝜙2)

−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

]
.

Indeed, we have

Γ2 =

[
𝛾𝑋(0) 𝛾𝑋(1)
𝛾𝑋(1) 𝛾𝑋(0)

]
=⇒ Γ−1

2
=

1

𝛾2

𝑋
(0) − 𝛾2

𝑋
(1)

[
𝛾𝑋(0) −𝛾𝑋(1)
−𝛾𝑋(1) 𝛾𝑋(0)

]
.

Previously, we saw that

𝛾𝑋(1) = 𝜎2

𝑍

𝜙1

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} and 𝛾𝑋(0) = 𝜎2

𝑍

1 − 𝜙2

(1 + 𝜙2)
{
(1 − 𝜙2)2 − 𝜙2

1

} .
Substituting these in the expression for Γ−1

2
yields the desired result.
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In particular, Var(𝜙1) ∼ 1

𝑛 (1 − 𝜙2

2
) and Var(𝜙2) ∼ 1

𝑛 (1 − 𝜙2

2
). Conse-

quently,

C.I.𝛼(𝜙1) ≡ 𝜙1 ± 𝑧𝛼/2

1√
𝑛

√
1 − 𝜙2

2
and C.I.𝛼(𝜙2) ≡ 𝜙2 ± 𝑧𝛼/2

1√
𝑛

√
1 − 𝜙2

2
,

where 𝜙1 and 𝜙2 are obtained from the Yule-Walker estimators.

9.5.4 Example

We illustrate this last concept with a simple example.

US Unemployment Data The United States’ monthly unemployment

rate starting with January 1996 is collected in USunemp.txt [3].

US.month <- c(5.6,5.5,5.5,5.6,5.6,5.3,5.5,5.1,5.2,5.2,

5.4,5.4,5.3,5.2,5.2,5.1,4.9,5.0,4.9,4.8,

4.9,4.7,4.6,4.7,4.6,4.6,4.7,4.3,4.4,4.5,

4.5,4.5,4.6,4.5,4.4,4.4,4.3,4.4,4.2,4.3,

4.2,4.3,4.3,4.2,4.2,4.1,4.1,4.0,4.0,4.1,

4.0,3.8,4.0,4.0,4.0,4.1,3.9,3.9,3.9,3.9,

4.2,4.2,4.3,4.4,4.3,4.5,4.6,4.9,5.0,5.3,

5.5,5.7,5.7,5.7,5.7,5.9,5.8,5.8,5.8,5.7,

5.7,5.7,5.9,6.0,5.8,5.9,5.9,6.0,6.1,6.3,

6.2,6.1,6.1,6.0,5.9,5.7,5.7,5.6,5.7,5.5,

5.6,5.6,5.5,5.4,5.4,5.4,5.4,5.4,5.2,5.4,

5.1,5.1,5.1,5.0,5.0,4.9,5.1,4.9,5.0,4.9,

4.7,4.8,4.7,4.7,4.6,4.6,4.8,4.7,4.6,4.4)

We put the data in a ts object and plot the data.

US.month.ts <- ts(US.month,start=c(1996,1), freq=12)

plot.ts(US.month.ts)

The time series is clearly not stationary, so we decompose it.
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plot(decompose(US.month.ts))

We recover the stationary part from this decomposition and analyse it as

below.
47

47: The default smoother for the

decompose() function is a moving

average.

Stationary <- decompose(US.month.ts)$random

MyTimeSeries = Stationary[7:120]

mean = mean(MyTimeSeries);

MyTimeSeries.centered = MyTimeSeries-mean

par(mfrow=c(1,2))

acf(MyTimeSeries.centered)

pacf(MyTimeSeries.centered)

The ACVF/ACF has non-zero values at various lags ℎ (outside the band);

the PACF has all zero values for ℎ > 1 (inside the band); the eye test

suggests an AR(1) model.

But a formal test (using the Yule-Walker) method suggests instead that

the order of the model is more likely to be 𝑝 = 4.
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n = length(MyTimeSeries)

fit.ar <- ar(MyTimeSeries.centered,method="yule-walker")

fit.ar$order

[1] 4

The Yule-Walker estimates for the coefficients 𝜙1 , 𝜙2 , 𝜙3 , 𝜙4 and for the

random component variance 𝜎2

𝑍
are given by:

fit.ar$ar

fit.ar$var.pred

[1] 0.3576 0.1788 -0.1008 -0.1845

[1] 0.009106

We compute the limiting variance covariance matrix 𝜎2

𝑍
Γ−1

4
as fol-

lows.

rho = acf(MyTimeSeries.centered)$acf

gamma.0 = var(MyTimeSeries.centered)

sigma.2.Z = fit.ar$var.pred

gamma.h = rho * gamma.0

Gamma.4 = matrix(c(gamma.h[1],gamma.h[2],gamma.h[3],gamma.h[4],

gamma.h[2],gamma.h[1],gamma.h[2],gamma.h[3],

gamma.h[3],gamma.h[2],gamma.h[1],gamma.h[2],

gamma.h[4],gamma.h[3],gamma.h[2],gamma.h[1]),4,4)

Gamma.4.inv = solve(Gamma.4)

(limit.V_CV = sigma.2.Z*Gamma.4.inv)

[,1] [,2] [,3] [,4]

[1,] 1.0014029 -0.3900340 -0.1511252 0.1729498

[2,] -0.3900340 1.1234465 -0.3050721 -0.1511252

[3,] -0.1511252 -0.3050721 1.1234465 -0.3900340

[4,] 0.1729498 -0.1511252 -0.3900340 1.0014029

Note that we can obtain the matrix directly from the fit.ar object.

(n-1)*fit.ar$asy.var.coef

Finally, we simply apply the formulas to obtain approximate 95% confi-

dence intervals on the AR(4) coefficients.

rbind(fit.ar$ar - 1.96/sqrt(n)*sqrt(diag(limit.V_CV)),

fit.ar$ar + 1.96/sqrt(n)*sqrt(diag(limit.V_CV)))

[,1] [,2] [,3] [,4]

[1,] 0.1739213 -0.01581274 -0.29541378 -0.3682125028

[2,] 0.5413204 0.37333082 0.09372978 -0.0008134319
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9.6 Diagnostic Tests

Assume that an AR(1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 is fit to the data, i.e., we

estimate 𝜙 by 𝜙 and 𝜎2

𝑍
by �̂�2

𝑍
. We can now compute the time series of

residuals
𝑍𝑡 = 𝑋𝑡 − 𝜙𝑋𝑡−1.

Note that 𝑍𝑡 ≠ 𝑍𝑡 , in general, but we would expect them to be near one

another if the fit is good. As such, the properties of 𝑍𝑡 should be similar

to those of 𝑍𝑡 .

It is important to ensure that the model is an adequate fit to the data – in

particular, the residuals should not exhibit significant autocorrelations at

lags |ℎ | ≥ 1.

If the random variables 𝑍𝑡 are i.i.d., then the correlations 𝜌𝑋(|ℎ |) = 0 at

any lag ℎ ≠ 0 zero. However, the sample correlations are typically not

zero, since there usually are random fluctuations in the data. In general,

for large 𝑛, the sample correlation at any lag is normally distributed with

mean zero and variance 1/𝑛. This provides a 95% confidence interval for

the sample autororrelations: ±1.96/
√
𝑛.

48
48: This corresponds to the blue lines seen

on the ACF plot. Whenever the sample

ACF is within the confidence intervals, the

rule-of-thumb is to treat the correspond-

ing auto-correlation as zero.

White Noise The 95% threshold for a white noise time series with 𝜇 = 0

and 𝜎2 = 1, with 𝑛 = 100 observations is computed below.

n = 100

set.seed(1)

X = rnorm(n)

(threshold = 1.96/sqrt(n))

[1] 0.196

par(mfrow=c(1,2))

acf(X)

pacf(X)
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9.6.1 Ljung-Box Test

That is not the only approach, however. Let ℎ be a positive integer (the

lag) and define

𝑄ℎ = 𝑛
ℎ∑
𝑗=1

�̂�𝑋(𝑗)
�̂�𝑋(0)

.

Under the null hypothesis that the residuals are i.i.d. , the statistic 𝑄ℎ

has a 𝜒2
distribution with ℎ degrees of freedom. A large value of 𝑄ℎ

suggests that the sample autocorrelations are too large for the data to

arise from the draw of an i.i.d. sequence. We would therefore reject the

i.i.d. hypothesis at confidence level 𝛼 if 𝑄ℎ > 𝜒2

1−𝛼(ℎ).

White Noise We can conduct the Ljung-Box test on the white noise time

series from the previous section, with ℎ = 2, say.

Box.test(X,type="Ljung",lag=2,fitdf=0)

Box-Ljung test

data: X

X-squared = 0.077367, df = 2, p-value = 0.9621

Thus, we conclude that the data is compatible with 𝑋 being i.i.d., at

confidence level 𝛼 = 0.05

AR(1) Model This time, we simulate an auto-regressive model (so the

time series not i.i.d.) and repeat the procedure.

set.seed(1)

MyTimeSeries = arima.sim(model=list(ar=c(0.8)),

n=1000,rand.gen=rnorm)

Box.test(MyTimeSeries,type="Ljung",lag=2,fitdf=0)

Box-Ljung test

data: MyTimeSeries

X-squared = 904.66, df = 2, p-value < 2.2e-16

We see that the i.i.d. assumption is correctly rejected.

The Ljung-Box test is applied to the residuals. The parameter fitdf is the

number of the parameters that need to be estimated. In an ARMA(𝑝, 𝑞),

model, it is 𝑝 + 𝑞.
49

49: Be careful! Here, we are testing

whether the sequence MyTimeSeries,

which we know to be AR(1), could be

white noise (i.i.d.), which is why we use

fitdf=0. That is, we are assuming that

it is a time series of residuals that arose

naturally, not as a result of having fit an

ARMA(𝑝, 𝑞) model to the data. The lag

parameter represents the positive value ℎ.

When we reject the hypothesis that the residuals are i.i.d., we are claiming

that the fitted ARMA(𝑝, 𝑞) model is incorrect.
50

If the test results are

50: We must thus remove 𝑝+ 𝑞 degrees of

freedom from ℎ, since we had to estimate

𝑝 + 𝑞 parameters from the data before

obtaining the residual time series.

compatible with the null hypothesis, we must also verify that the residuals

are normally distributed, however, either by plotting a Q-Q plot or a

histogram.

In the first example, the time series {𝑋𝑡} is normally distributed.
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par(mfrow=c(1,2))

qqnorm(X)

hist(X)

In the second case, the time series {𝑌𝑡} is a random walk, and it is not

normally distributed.

Y = cumsum(X)

par(mfrow=c(1,2))

qqnorm(Y)

hist(Y)

9.6.2 Example: Temperature

We consider the temperature data from page 499; it is clearly not stationary,

so we conduct exponential smoothing on it, with smoothing parameter

0.1, yielding the time series MySmoothedTS1, which is then centered.

Stationary = Temperature - MySmoothedTS1

plot.ts(Stationary, type="l")
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This time series certainly appears stationary.
51

Could it arise from an51: Although there is a bit of growth near

the end.
ARMA(𝑝, 𝑞) model? We plot its ACF and PACF.

par(mfrow=c(1,2))

acf(Stationary); pacf(Stationary)

AR(4) seems like a reasonable model;
52

Yule-Walker agrees.52: Be sure to understand why!

(fit.ar.yw <- ar(Stationary,method="yule-walker"))

Coefficients:

1 2 3 4

0.1745 0.1218 -0.0529 0.2855

Order selected 4 sigma^2 estimated as 0.03412

We compute the residuals for which 𝑍𝑡 = 𝜙(𝐵)𝑋𝑡 is defined.



9.6 Diagnostic Tests 555

phi.yw = fit.ar.yw$ar

n = length(Stationary)

Residuals.yw <- fit.ar.yw$resid

Residuals.yw = na.omit(Residuals.yw)

The ACF and PACF of the obtained residuals are as follows.

par(mfrow=c(1,2))

acf(Residuals.yw)

pacf(Residuals.yw)

There is no dependence left in the residuals (although you can argue that

there is a significant lag at 9); the fit seems appropriate.

We can conduct the Box-Ljung test with ℎ = 5 > 4 = 𝑝 + 𝑞, say.

Box.test(Residuals.yw,type="Ljung",lag=5,fitdf=4)

Box-Ljung test

data: Residuals.yw

X-squared = 1.5724, df = 1, p-value = 0.2099

The 𝑝−value is small, but not that small... does the value of ℎ matter?

What if we used ℎ = 4, instead?

Box.test(Residuals.yw,type="Ljung",lag=4,fitdf=4)

Box-Ljung test

data: Residuals.yw

X-squared = 0.79007, df = 0, p-value < 2.2e-16

The 𝑝−value is indeed much smaller than 0.05, but it’s not clear how the

test implementation handles the case where ℎ = 𝑝 + 𝑞.

Either way, we should study the normality of the residuals visually.
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par(mfrow=c(1,2))

qqnorm(Stationary)

hist(Stationary)

So, what do you think? We will return this example in the next section.

One thing to note is that the Box-Ljung test is not unanimously favoured

by practitioners: see the Breusch-Godfrey test for an alternative.

9.7 Maximum Likelihood Estimation

We start with a brief refresher on the topic.

9.7.1 I.I.D. Random Variables

Assume that the random variables 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with a known

probability density function 𝑓𝑋(𝑥;𝜃). The objective of maximum like-
lihood estimation (MLE) is to find the parameter 𝜃 that best fits the

observed data, in the MLE sense.
53

53: This does not have to be a univari-

ate problem; we might be interested in

the parameter vector 𝜽, depending on the

context. The principle is the same, but we

will be working with ∇𝜽 instead of the

derivative
𝑑
𝑑𝜃 .

The likelihood function is

𝐿(𝜃) = 𝐿(𝜃;𝑋1 , . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑓𝑋(𝑋𝑖 ;𝜃).

The log-likelihood function is ℓ (𝜃) = log 𝐿(𝜃) = ln 𝐿(𝜃). The maxi-
mum likelihood estimator 𝜃MLE is a parameter value (often unique, for

commonly-used 𝑓 , but it also depends on the observed data) satisfying

𝜃MLE = arg max

𝜃
𝐿(𝜃) = arg max

𝜃
ℓ (𝜃).

https://stats.stackexchange.com/questions/148004/testing-for-autocorrelation-ljung-box-versus-breusch-godfrey
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Example: Exponential Distribution Assume that𝑋1 , . . . , 𝑋𝑛 is a random

sample from an exponential distribution. Recall that 𝑋 ∼ Exp(𝛽), 𝜃 =

𝛽 > 0 if

𝑓𝑋(𝑥; 𝛽) =
{

𝛽−1
exp(−𝑥/𝛽), 𝑥 > 0;

0, 𝑥 ≤ 0

The likelihood function is:

𝐿(𝛽) = 𝛽−𝑛
𝑛∏
𝑖=1

exp(−𝑋𝑖/𝛽) = 𝛽−𝑛 exp

(
−𝛽−1

𝑛∑
𝑖=1

𝑋𝑖

)
,

and the log-likelihood is:

ℓ (𝛽) = −𝑛 log(𝛽) − 1

𝛽

𝑛∑
𝑖=1

𝑋𝑖 .

To optimize ℓ , we must find its critical points with respect to 𝛽. There is

only one such point, since

𝜕ℓ (𝛽)
𝜕𝛽

= −𝑛
𝛽
+ 1

𝛽2

𝑛∑
𝑖=1

𝑋𝑖 = 0 =⇒ �̂�MLE =
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 = 𝑋.

Technically, this only tells us that𝑋 is a critical point of ℓ (𝛽), not necessarily

that it is a maximizer. But

𝜕2ℓ (𝛽)
𝜕𝛽2

����
𝛽=𝑋

= −𝑛𝑋2

< 0,

so �̂�MLE = 𝑋 is indeed a global maximizer, according to the second

derivative test.

The sample mean is not only the MLE estimator for the Exponential

distribution, however.

Example: Normal Distribution Assume that 𝑍1 , . . . , 𝑍𝑛 is a i.i.d. sample

from a normal distribution with mean 𝜇 and variance 𝜎2

𝑍
. The likelihood

function is

𝐿(𝜇, 𝜎𝑍) =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇)2
)
,

and the log-likelihood is:

ℓ (𝜇, 𝜎𝑍) = −𝑛
2

log(2𝜋) − 𝑛 log 𝜎𝑍 − 1

2𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇)2.

We proceed as above, differentiating with respect to 𝜇 to find the critical

points:

𝜕ℓ (𝜇, 𝜎𝑍)
𝜕𝜇

= − 1

𝜎2

𝑍

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜇) = 0 =⇒ �̂�MLE = 𝑍 =
1

𝑛

𝑛∑
𝑖=1

𝑍𝑖 .
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Substituting �̂�MLE = 𝑍 in 𝐿, differentiating with respect to 𝜎𝑍 , setting to 0

and solving yields

�̂�2

𝑍;MLE
=

1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − �̂�MLE)2 ,

demonstrating that the MLE estimators are not always unbiased.

9.7.2 Time Series Model

We now assume that 𝑋1 , . . . , 𝑋𝑛 are observation from a stationary time

series. Let 𝑓𝑛(𝑥1 , . . . , 𝑥𝑛) be their joint density.
54

We further assume that54: No longer in the product form.

the time series is Gaussian and centered.
55

55: This is an important assumption – we

need to verify that it applies to the data of

interest.
We introduce the following notation:

X𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , X̂𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , U𝑛 = (𝑈1 , . . . , 𝑈𝑛)⊤ ,

where 𝑈𝑖 = 𝑋𝑖 − 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, are the innovations. Recall that

Γ𝑛 = E[X⊤
𝑛X𝑛] = [𝛾𝑋(𝑖 − 𝑗)]𝑛

𝑖,𝑗=1
is the variance-covariance matrix of X𝑛

(see Section 9.4.1).

The likelihood (the joint density of 𝑋1 , . . . , 𝑋𝑛) is

𝐿 =
1

(2𝜋)𝑛/2

1

det(Γ𝑛)1/2

exp

(
−1

2

X⊤
𝑛Γ

−1

𝑛 X𝑛
)
,

where det(Γ𝑛) is the determinant. Note that the ACVF (and hence, also

the covariance matrix Γ𝑛) depends on model parameters.

For example, if the model is AR(1), then 𝛾𝑋(ℎ) = 𝜎2

𝑍
𝜙ℎ/(1−𝜙2). Thus, its

variance-covariance matrix and the log-likelihood depend on the model

parameters 𝜎𝑍 , 𝜙, so that we can write 𝐿(𝜎𝑍 , 𝜙).

In this particular case, the MLE estimators are obtained by maximizing

𝐿(𝜎𝑍 , 𝜙)with respect to 𝜎𝑍 , 𝜙. In the general case, there are no no explicit

formulas to do so and everything must be conducted numerically (see

Chapter 4).

It turns out that

X⊤
𝑛Γ

−1

𝑛 X𝑛 = U⊤
𝑛D−1U𝑛 ,

where D = diag(𝑣0 , . . . , 𝑣𝑛−1), for 𝑣𝑖 = E

[(
𝑋𝑖+1 − 𝑋𝑖+1

)
2

]
.
56

Thus, we56: See Section 9.9.3 for more details.

have

X⊤
𝑛Γ

−1

𝑛 X𝑛 =

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)2/𝑣𝑖−1.

Furthermore, det(Γ𝑛) = 𝑣0 · · · 𝑣𝑛−1 , and so the likelihood function takes

the form

𝐿 =
1

(2𝜋)𝑛/2

1√
𝑣0 · · · 𝑣𝑛−1

exp

(
−1

2

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)2/𝑣𝑖−1

)
.
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The form of 𝐿 above can be used as long as we have formulas for 𝑋𝑖 , even

if those do not arise from the innovation algorithm.

Theorem: the MLE estimator
̂𝜽MLE is asymptotically normal,57

with 57: See Section 9.9.2.

mean 𝜽 and variance 𝑛−1
V(𝜽), where V(𝜽) is a covariance matrix.

If the data arises from an ARMA(𝑝, 𝑞) process, we would use the innova-

tion algorithm to express 𝑋𝑖 in terms of the coefficients 𝜃1 , . . . , 𝜃𝑞 , and

then plug them into the likelihood function

𝐿(𝜽) = 𝐿(𝜙1 , . . . , 𝜙𝑝 , 𝜃1 , . . . , 𝜃𝑞 , 𝜎
2

𝑍),

which can be maximized using the MLE approach, as above.

AR(1) Consider the auto-regressive model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡
are i.i.d. normal random variables with mean 0 and variance 𝜎2

𝑍
, starting

with 𝑡 = 1. Then 𝑋𝑖+1 = 𝜙𝑋𝑖 and 𝑣𝑖 = E[(𝑋𝑖+1 − 𝑋𝑖+1)2] = 𝜎2

𝑍
for all

𝑖 = 1, . . . , 𝑛 − 1. The likelihood function is thus:

𝐿 =
1

(2𝜋)𝑛/2

1

𝜎𝑛
𝑍

exp

(
−1

2

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2/𝜎2

𝑍

)
.

Ignoring the constant term
1

(2𝜋)𝑛/2
, the log-likelihood is

ℓ = −𝑛 log 𝜎𝑍 − 1

2𝜎2

𝑍

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2.

Hence,

𝜙MLE =

∑𝑛
𝑖=2
𝑋𝑖−1𝑋𝑖∑𝑛

𝑖=2
𝑋2

𝑖−1

and

�̂�2

MLE
=

1

𝑛

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙 MLE𝑋𝑖−1)2.

If 𝜎𝑍 is known, then we do not need to use the MLE estimator; we have

𝜃 = 𝜙 and V(𝜃) becomes

V(𝜃) = V(𝜙) = 𝜎2

𝑍(1 − 𝜙2).

We note that the MLE estimator of 𝜙 (as well as its asymptotic variance)

are the same as those obtained by the Yule-Walker procedure.

AR(𝑝) In general, for AR(p) models, the Yule-Walker estimator and

MLE of (𝜙1 , . . . , 𝜙𝑝) also agree; in both cases the asymptotic variance

is

V(𝜙1 , . . . , 𝜙𝑝) = 𝜎2

𝑍Γ
−1

𝑝 .

For AR(2) we have seen that

V(𝜙1 , 𝜙2) =
(

1 − 𝜙2

2
−𝜙1(1 + 𝜙2)

−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

)
.

However, the MLE and Yule-Walker estimators of variance 𝜎2

𝑍
do not

need to agree in general!
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AR(𝑝) Models (Revisited) For simplicity’s sake, consider the AR(1)

model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , where 𝑍𝑡 are i.i.d. normal with mean 0 and

variance 𝜎2

𝑍
.

We assume that 𝜇 = 0; then,

𝐿 =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=1

𝑍2

𝑖

)
,

Since 𝑍𝑡 = 𝑋𝑡 − 𝜙𝑋𝑡−1, this transforms to

𝐿(𝜙, 𝜎𝑍) =
1

(
√

2𝜋)𝑛𝜎𝑛
𝑍

exp

(
− 1

2𝜎2

𝑍

𝑛∑
𝑖=2

(𝑋𝑖 − 𝜙𝑋𝑖−1)2
)
.

The likelihood function now depends explicitly on 𝜙 and 𝜎𝑍 , and we

can continue as we did in the previous section (without having to use

innovations).

This approach works for arbitrary AR(𝑝) models, but not for MA(𝑞) or

general ARMA(𝑝, 𝑞) models.

9.7.3 Order Selection

We have discussed a visual criterion to identify a time series follows

a AR(𝑝) or MA(𝑞) model, as well as a formal approach (Yule-Walker).

Another classical approach to ARMA (𝑝, 𝑞) order selection is provided

by the Akaike information criteria (AIC) method.

We consider several ARMA(𝑝, 𝑞) models, all depending on parameter

vectors 𝝓 = (𝜙1 , . . . , 𝜙𝑝) and 𝜽 = (𝜃1 , . . . , 𝜃𝑞). The ar() function in R,

for instance, has 𝑞 = 0 and tries 𝑝 = 1, . . . , 12.

For each model we calculate the following expression:

AIC = 2 log 𝐿(𝝓, 𝜽, 𝜎𝑍) − 2(𝑝 + 𝑞 + 1) 𝑛

𝑛 − 𝑝 − 𝑞 − 2

.

When 𝑞 = 0 (i.e., when we consider AR(𝑝) models), this reduces to:

AIC = 2 log 𝐿(𝝓, 𝜎𝑍) − 2(𝑝 + 1) 𝑛

𝑛 − 𝑝 − 2

.

The AIC method chooses a model with a high likelihood but penalizes

models with too many parameters (i.e., if 𝑝 and 𝑞 are too large).
58

58: Note that maximizing AIC is equiva-

lent to minimizing −AIC.
Another function, arima(), computes AIC as follows:

AIC = −2 log 𝐿(𝝓, 𝜽, 𝜎𝑍) + 2(𝑝 + 𝑞 + 𝑘 + 1),

where 𝑘 is the number of additional parameters to estimate (in our case,

𝑘 = 1 since we estimate 𝜎𝑍 and there is no seasonality); the optimal

model is the one that minimizes that version of AIC.

9.7.4 Examples

We consider three examples: an artificial time series, a Lake Huron time

series, and a continuation of the Temperature example.
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Example: Artificial Data This artificial time series appears to be station-

ary (more or less).

MyTimeSeries <- c(0.793, 1.270, 3.600, 2.649, 1.767,

1.198, 1.278, 0.347, -0.683, -0.255,

-0.338, 1.316, 0.142, 0.218, 1.118,

-1.170, -0.731, 0.609, -0.498, -0.118,

-0.839, -0.439, -0.537, 0.537, 0.314,

0.647, 0.470, -0.323, -0.264, 0.670,

-0.616, 0.092, -2.062, -0.603, 0.958,

-0.084, -0.083, -0.156, -0.914, -1.250,

0.634, -0.031, -0.519, 0.383, 0.241,

-0.903, -1.838, -0.912, -1.422, -0.134,

1.004, 0.282, 0.766, 0.164, 1.180,

2.030, 0.341, -1.337, -1.452, 0.313,

-0.212, 0.500, -0.762, -3.239, -3.179,

-1.094, -1.055, 0.735, 0.582, 1.869,

1.295, 0.492, 1.272, 2.210, -0.574,

-1.363, -1.076, -0.809, 0.774, 0.082,

-1.180, -1.925, -2.463, -0.983, -0.135,

0.081, -0.071, 1.612, 2.241, 2.884,

1.686, 0.811, 2.046, 2.260, 2.142,

1.003, 1.435, -0.039, 1.049, -0.855)

plot.ts(MyTimeSeries)

The ACF and PACF displays suggest that the data could arise from an

AR(1) process.
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par(mfrow=c(1,2))

acf(MyTimeSeries)

pacf(MyTimeSeries)

We draw your attention to the structure of the ACF; a continuous stretch

of positive values, followed by a continuous stretch of negative values,

followed by a continuous stretch of positive values (and so on?). This

could be indicative of a seasonality effect in the data (see Section 9.9.1).

Are the values of the time series normally distributed?

par(mfrow=c(1,2))

qqnorm(MyTimeSeries)

hist(MyTimeSeries)

We perform model estimation using two approaches: Yule-Walker and

MLE.
59

59: We do not need normality for the for-

mer, but we do need it for the latter, which

is why we took the time to verify that

the time series values could be normally

distributed.
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(fit.ar.yw <- ar(MyTimeSeries,method="yule-walker"))

Coefficients:

1

0.6201

Order selected 1 sigma^2 estimated as 0.9707

(fit.ar.mle <- ar(MyTimeSeries,method="mle"))

Coefficients:

1

0.6197

Order selected 1 sigma^2 estimated as 0.9458

In both cases, the selected model is AR(1), but the estimated parameters

are slightly different. However, the estimates of the autoregressive pa-

rameter 𝜙 should be be the same, regardless of the method used. What

is going on?

The difference comes from the fact that the R implementation of the MLE

approach uses a fairly complicated optimization algorithm, leading to

numerical discrepancies – the differences are not significant, to be honest,

which is comforting.

Note, however, that the estimates for 𝜎2

𝑍
are different, as they should be,

since one is unbiased (Yule-Walker), whereas the other is biased (MLE).

The order and the coefficient value can be extracted using the following

code – the displays are suppressed as they can be read above.

fit.ar.yw$order

fit.ar.mle$order

fit.ar.yw$ar

fit.ar.mle$ar

In order to assess the fit, we can take a look at the residuals.

par(mfrow=c(3,2))

plot.ts(fit.ar.yw$resid)

plot.ts(fit.ar.mle$resid)

acf(na.omit(fit.ar.yw$resid))

acf(na.omit(fit.ar.mle$resid))

pacf(na.omit(fit.ar.yw$resid))

pacf(na.omit(fit.ar.mle$resid))
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In both cases, the residuals certainly look like they could arise from i.i.d.

processes.

What would the prediction for the next value of the time series be, in

both cases?

predict(fit.ar.yw)

$pred

Time Series:

Start = 101

End = 101

Frequency = 1

[1] -0.4737512

$se

Time Series:

Start = 101

End = 101

Frequency = 1

[1] 0.9852252

predict(fit.ar.mle)

$pred

Time Series:

Start = 101

End = 101

Frequency = 1

[1] -0.4754649

$se

Time Series:

Start = 101

End = 101

Frequency = 1

[1] 0.9725163

The different predictions values stem from the fact that 𝜙YW is slightly

different from 𝜙MLE.
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Both models seem appropriate – which one should we choose? We select

the MLE model, for no particular reason. We forecast the next 30 iterations

of the model; the confidence bands with confidence bands obtained as

prediction ± standard error of prediction.

predict.mle <- predict(fit.ar.mle,n.ahead=30)

par(mfrow=c(1,1))

y.max = max(predict.mle$pred+predict.mle$se)

y.min = min(predict.mle$pred-predict.mle$se)

plot.ts(predict.mle$pred,ylim=c(y.min,y.max))

lines(predict.mle$pred-predict.mle$se,col="red")

lines(predict.mle$pred+predict.mle$se,col="red")

Note that these prediction bounds are quite wide – the moral of this

story is that long-term forecasts are a fool’s errand, more often than not.

Tread with care.

In both estimation methods, the order of the AR model is selected

according to AIC (with the maximal order controlled by order.max).

fit.ar.mle$aic

0 1 2 3 4 5

46.636914 0.000000 1.621425 3.598935 5.537506 7.360361

6 7 8 9 10 11

8.973913 7.460411 8.709559 10.705111 12.469661 14.417006

12

14.506713

Sure enough, the lowest value (AIC minus a constant) is for AR(1).
60

60: How this value is computed depends

on the implementation.

We can also use the more general arima() function (but we need to

specify the order).
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(fit.arma <- arima(MyTimeSeries, order=c(1,0,0)))

Coefficients:

ar1 intercept

0.6197 0.1430

s.e. 0.0777 0.2517

sigma^2 estimated as 0.9458: log likelihood = -139.35, aic = 284.7

The results are readily seen to be identical to those of MLE (suggesting a

reason to select MLE over YW, perhaps).

Example: Lake Huron We now conduct a similar analysis with the

built-in Lake Huron dataset. We start by loading and plotting the data.

MyTimeSeries = LakeHuron

plot.ts(MyTimeSeries)

There is a downward trend in the first half of the data (from 1875 to 1925),

but it seems almost accidental – if a few of these points were lower, the

trend would probably appear to be horizontal. We will treat the time

series as stationary, with the caveat that it might make sense to analyze

the de-trended time series instead.

We can achieve a first pass at the order by looking at the ACF and PACF

graphs.
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par(mfrow=c(1,2))

acf(MyTimeSeries)

pacf(MyTimeSeries)

These plots suggest an AR(2) model, or potentially an ARMA(1, 1)

model.
61

61: The ACF and PACF of an ARMA model

both converge to 0, but the order (𝑝, 𝑞) is

not usually obvious... there is a lot of guess-

and-check involved in the process.

The time series appears to take on normally distributed values, as can be

seen below.

par(mfrow=c(1,2))

qqnorm(MyTimeSeries)

hist(MyTimeSeries)

We start by assuming that the data is best fit by an auto-regressive model;

what would its order and coefficient estimates be?

Using the Yule-Walker approach, we get the following.
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(fit.ar.yw <- ar(MyTimeSeries,method="yule-walker"))

Coefficients:

1 2

1.0538 -0.2668

Order selected 2 sigma^2 estimated as 0.5075

The MLE approach instead yields the following.

(fit.ar.mle <- ar(MyTimeSeries,method="mle"))

Coefficients:

1 2

1.0437 -0.2496

Order selected 2 sigma^2 estimated as 0.4788

Both of them suggest an AR(2) model, which agrees with our visual

determination of the order.
62

62: The 𝜙𝑖 should be identical in both ap-

proaches, but we have already discussed

that the discrepancies are due to the choice

of numerical algorithms in the implemen-

tations.

Are either of the fits good? We take a look at the residuals.

par(mfrow=c(3,2))

plot.ts(fit.ar.yw$resid); plot.ts(fit.ar.mle$resid)

n=length(fit.ar.yw$resid); m=length(fit.ar.mle$resid)

acf(fit.ar.yw$resid[3:n]); acf(fit.ar.mle$resid[3:m])

pacf(fit.ar.yw$resid[3:n]); pacf(fit.ar.mle$resid[3:m])
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The residual plots look as we would expect if the data arose from either

of the two AR(2) processes (i.e., there does not appear to be dependences

in the residuals). So which model should be chosen? We could pick the

one with smallest AIC, or selecting the model that best “predicts” past

values of the data (as done in Section 9.4.4 with the currency exchange

rate data). We select the MLE model for the purpose of illustration.

In order to investigate ARMA(1, 1) as a model for the data, we use the

arima() function. We will re-fit the MLE AR(2) model in this framework,

to gain access to the same set of attributes for both models.

(fit.arma.1 <- arima(MyTimeSeries, order=c(2,0,0)))

Coefficients:

ar1 ar2 intercept

1.0436 -0.2495 579.0473

s.e. 0.0983 0.1008 0.3319

sigma^2 estimated as 0.4788: log likelihood = -103.63, aic = 215.27

(fit.arma.2 <- arima(MyTimeSeries, order=c(1,0,1)))

Coefficients:

ar1 ma1 intercept

0.7449 0.3206 579.0555

s.e. 0.0777 0.1135 0.3501

sigma^2 estimated as 0.4749: log likelihood = -103.25, aic = 214.49

The intercept term represents the expectation 𝜇 = E[𝑋𝑡] of the time series.

An important take-away is that there is no obvious relationship between

the 𝜙1 of the AR(2) model and the 𝜙1 of the ARMA(1, 1) model.

What do the residuals look like?

par(mfrow=c(3,2))

plot.ts(fit.arma.1$residuals)

plot.ts(fit.arma.2$residuals)

n = length(fit.arma.1$residuals)

m = length(fit.arma.2$residuals)

acf(fit.arma.1$residuals[3:n])

acf(fit.arma.2$residuals[3:n])

pacf(fit.arma.1$residuals[3:n])

pacf(fit.arma.2$residuals[3:n])
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Both AR(2) and ARMA(1, 1) are acceptable; we select the latter since it

has the smallest AIC.
63

We can predict the next 20 time steps.63: The AIC can be read off of the out-

puts above, but they can also be ex-

tracted directly with fit.arma.1$aic and

fit.arma.2$aic. par(mfrow=c(1,1))

predict.mle <- predict(fit.arma.2,n.ahead=20)

y.max = max(predict.mle$pred+predict.mle$se)

y.min = min(predict.mle$pred-predict.mle$se)

plot.ts(predict.mle$pred,ylim=c(y.min,y.max))

lines(predict.mle$pred-predict.mle$se,col="red")

lines(predict.mle$pred+predict.mle$se,col="red")

Note that the predictions are not as “jagged” as the original time series.
64

64: When seasonality is taken into ac-

count, we might expect to see some up-

and-down motion in the predictions.
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Example: Temperature (cont.) We consider the temperature data from

pages 499 and 553; using the Yule-Walker procedure, we found that

the centered stationary part of the exponentially smoothed time series

(Stationary) was decently approximated by an AR(4) process.

We now approach the same time series via the MLE procedure. The chart

on page 556 indicates that the normality assumption is reasonable. We

can thus safely apply the procedure.

(fit.ar.mle <- ar(Stationary,method="mle"))

Coefficients:

1 2 3 4 5

0.1427 0.1290 -0.0682 0.2716 0.1187

Order selected 5 sigma^2 estimated as 0.03241

The MLE procedure selected a different order – but there is nothing wrong

with that! Note that we could recover this model with the arima function

(which also displays the standard errors for the AR coefficients).

arima(Stationary,order=c(5,0,0),method="ML")

Coefficients:

ar1 ar2 ar3 ar4 ar5 intercept

0.1427 0.1290 -0.0682 0.2716 0.1187 0.0743

s.e. 0.0786 0.0761 0.0766 0.0763 0.0798 0.0342

sigma^2 estimated as 0.03241: log likelihood = 47.34, aic = -80.69

Is the MLE fit appropriate? Do the residuals appear to be white noise?

Residuals.mle = fit.ar.mle$resid

Residuals.mle = na.omit(Residuals.mle)

par(mfrow=c(1,2))

acf(Residuals.mle)

pacf(Residuals.mle)



572 9 Time Series and Forecasting

Yes-ish. Close enough is good enough, certainly. We accept the fit. But

now we have two competing models. Which one should we choose? We

can check the quality of the prediction, for instance.

(Squared.Error.yw = mean((Residuals.yw)^2))

[1] 0.0332902

(Squared.Error.mle = mean((Residuals.mle)^2))

[1] 0.03214238

The MLE approach yields a lower total error, so we might as well select

the MLE model.

But why was AR(5) selected by the MLE procedure? We can compare

with the AR(4) MLE model and calculate the respective AIC.

(fit.mle.4 <- arima(Stationary,order=c(4,0,0),method="ML"))

Coefficients:

ar1 ar2 ar3 ar4 intercept

0.1782 0.1196 -0.0541 0.2918 0.0715

s.e. 0.0754 0.0764 0.0765 0.0757 0.0303

sigma^2 estimated as 0.03287: log likelihood = 46.25, aic = -80.49

(fit.mle.5 <- arima(Stationary,order=c(5,0,0),method="ML"))

Coefficients:

ar1 ar2 ar3 ar4 ar5 intercept

0.1427 0.1290 -0.0682 0.2716 0.1187 0.0743

s.e. 0.0786 0.0761 0.0766 0.0763 0.0798 0.0342

sigma^2 estimated as 0.03241: log likelihood = 47.34, aic = -80.69

Note the values of log-likelihod and AIC.
65

65: It would be important to make sure

that you can recover the AIC values from

the log-likelihood values, with the for-

mula.

We can use the MLE model to predict the next 20 observations

k = 20

prediction = predict(fit.ar.mle,n.ahead=k)$pred

error = predict(fit.ar.mle,n.ahead=k)$se

In order to transform these Stationary predictions into values in the

original time series, we have to add them to the Temperature data. In the

next code chunk, we will ignore the trend in the original data.
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n=length(Temperature)

k = 20

prediction.1 = prediction+Temperature[n]

prediction.1.upper = prediction.1 + error

prediction.1.lower = prediction.1 - error

dummy.ts = c(rep(NA,k))

NewTemperature = c(Temperature,dummy.ts)

dummy.pred=c(rep(NA,n))

PredictedStationary = c(dummy.pred,prediction.1)

PredictionUpperLimit = c(dummy.pred,prediction.1.upper)

PredictionLowerLimit = c(dummy.pred,prediction.1.lower)

par(mfrow=c(1,1))

plot.ts(NewTemperature,ylim=c(-1,2),main="Ignoring Trend")

points(PredictedStationary,col="red",type="p")

points(PredictionUpperLimit,col="green",type="l")

points(PredictionLowerLimit,col="green",type="l")

Something about this is definitely not right. The problem is that we

ignored the trend in the original data, but starting in year 120 (or

thereabouts), the time series follows a linear trend (more or less). We fit

a linear trend to this part of the data.

n = length(Temperature)

Time = seq(1,n,by=1)

lin.reg = lm(Temperature[120:n]~Time[120:n])

Lin.Trend = lin.reg[[1]][1] + lin.reg[[1]][2]*Time

plot.ts(Temperature)

points(Lin.Trend,col="blue",type="l")
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The next step is to extend the linear trend and the predictions.
66

66: The code for the prediction limits is

not included – how could they be pro-

duced?

k = 20

dummy.ts = c(rep(NA,k))

NewTemperature = c(Temperature,dummy.ts)

dummy.trend = c(rep(NA,n)); Time = seq(1,n+k,by=1)

Extended.Trend = lin.reg[[1]][1] + lin.reg[[1]][2]*Time

Trend = c(dummy.trend,Extended.Trend[(n+1):(n+k)])

y.max = 2; y.min = min(Temperature)

par(mfrow=c(1,2))

plot.ts(Temperature,xlim=c(1,n+k),ylim=c(y.min,y.max))

points(Lin.Trend,col="blue",type="l")

plot.ts(NewTemperature,xlim=c(1,n+k),ylim=c(y.min,y.max))

points(Trend,col="blue",type="l")

Prediction.stationary = c(dummy.trend,prediction)

PredictedStationary = Trend+Prediction.stationary

points(PredictedStationary,col="red",type="p")
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9.8 Nonlinear Time Series

The log-returns of financial data typically have the following properties:

they are uncorrelated;

their squares are correlated;

they are not normally distributed.

Such features cannot be modelled by ARMA models.

9.8.1 ARCH model

A time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is autoregressive conditionally het-
eroscedastic of order 𝑝, denoted ARCH(𝑝) if

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , 𝜎2

𝑡 = 𝛼0 +
𝑝∑
𝑖=1

𝛼𝑖𝑋
2

𝑡−𝑖 ,

where 𝑍𝑡 are i.i.d. with mean 0 and variance 1, 𝛼0 > 0, 𝛼𝑖 ≥ 0 for all 𝑖.

We note explicitly that the values of 𝜎𝑡 depend on the past values of the

sequence {𝑋𝑡}: 𝑋𝑡−1 , 𝑋𝑡−2 , . . ..

If 𝑝 = 1, then

𝑋2

𝑡 = 𝜎2

𝑡 𝑍
2

𝑡 =
(
𝛼0 + 𝛼1𝑋

2

𝑡−1

)
𝑍2

𝑡 =
(
𝛼0 + 𝛼1𝜎

2

𝑡−1
𝑍2

𝑡−1

)
𝑍2

𝑡

= 𝛼0𝑍
2

𝑡 + 𝛼1𝑍
2

𝑡𝑍
2

𝑡−1
𝜎2

𝑡−1
.

We can continue on this way by replacing 𝜎2

𝑡−1
by its formulation, and so

on. Consequently, we see that 𝑋2

𝑡 depends only on 𝑍𝑡 , 𝑍𝑡−1 , 𝑍𝑡−2 , . . ..
67

67: As a further consequence,𝑍𝑡 and𝑋𝑡−1

are independent.
This is valid for all ARCH models, not only ARCH(1).

For a general 𝑝, we have

E[𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = E[𝜎𝑡𝑍𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 𝜎𝑡E[𝑍𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 0

and

Var(𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝) = E[𝑋2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = E[𝜎2

𝑡 𝑍
2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝]
= 𝜎2

𝑡 E[𝑍2

𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝] = 𝜎2

𝑡 E[𝑍2

𝑡 ] = 𝜎2

𝑡 .

The "conditionally heteroscedastic" in ARCH refers to this last equation.

The series {𝜎2

𝑡 | 𝑡 ≥ 1} is the volatility of the time series; ARCH(𝑝) is an

example of a stochastic volatility process.

Proposition: the ARCH(1) process is stationary if and only if 𝛼1 < 1. A

stationary solution is given by

𝑋2

𝑡 = 𝛼0

∞∑
𝑖=0

𝛼𝑖
1

𝑖∏
𝑗=0

𝑍2

𝑡−𝑗 .

In an ARCH(1) model, we have

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑋
2

𝑡−1
.



576 9 Time Series and Forecasting

We can estimate the model parameters using the maximum likelihood

principle. Consider the joint density

𝑓(𝑋0 ,...,𝑋𝑛 )(𝑥0 , . . . , 𝑥𝑛) = 𝑓𝑋0
(𝑥0)

𝑛∏
𝑖=1

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1)

where

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) =

1

𝜎𝑡
𝑔(𝑥𝑡/𝜎𝑡) ,

with 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑥
2

𝑡−1
and 𝑔 is the density of 𝑍0 (which is typically a

normal or Student 𝑇 distribution).

Let

𝐹𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) = 𝑃(𝑋𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝜎𝑡𝑍𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)
= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)
= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡) = 𝐺(𝑥𝑡/𝜎𝑡),

where 𝐺 is the cumulative distribution function of 𝑍: 𝐺(𝑧) = 𝑃(𝑍 ≤ 𝑧).

We can show that

𝑓𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) =

𝑑

𝑑𝑥𝑡
𝐹𝑋𝑡 |𝑋𝑡−1

(𝑥𝑡 | 𝑥𝑡−1) =
1

𝜎𝑡
𝑔(𝑥𝑡/𝜎𝑡) .

Indeed, we start with the conditional distribution:

𝐹𝑋𝑡 |𝑋𝑡−1
(𝑥𝑡 | 𝑥𝑡−1) = 𝑃(𝑋𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1) = 𝑃(𝜎𝑡𝑍𝑡 ≤ 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/𝜎𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝑃(𝑍𝑡 ≤ 𝑥𝑡/
√
𝛼0 + 𝛼1𝑥

2

𝑡−1
| 𝑋𝑡−1 = 𝑥𝑡−1)

= 𝐹𝑍(𝑍𝑡 ≤ 𝑥𝑡/
√
𝛼0 + 𝛼1𝑥

2

𝑡−1
) = 𝐹𝑍(𝑥𝑡/𝜎𝑡)

and the density is

𝑑

𝑑𝑥𝑡
𝐹𝑍(𝑥𝑡/𝜎𝑡) =

1

𝜎𝑡
𝑓𝑍(𝑥/𝜎𝑡) =

1

𝜎𝑡
𝑔(𝑥/𝜎𝑡),

keeping in mind that 𝜎2

𝑡 = 𝛼0 + 𝛼1𝑥
2

𝑡−1
.

Thus, the likelihood function has the form

𝐿(𝛼0 , 𝛼1) =
𝑛∏
𝑡=1

1

𝜎𝑡
𝑔(𝑋𝑡/𝜎𝑡)

and

(𝛼0 , 𝛼1) = arg max

𝛼0>0,0<𝛼1<1

𝐿(𝛼0 , 𝛼1),

where the optimization problem is solved numerically (see Section 4).

9.8.2 GARCH Model

A time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is a generalized autoregressive condi-
tionally heteroscedastic model of order (𝑝, 𝑞), denoted GARCH(𝑝, 𝑞) if
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the variance 𝜎2

𝑡 is modeled using past squared observations 𝑋2

𝑡−𝑖 and
past variances 𝜎2

𝑡−𝑗 :

𝑋𝑡 = 𝜎𝑡𝑍𝑡 , Var(𝑋𝑡 | 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑝) = 𝜎2

𝑡 = 𝛼0 +
𝑝∑
𝑖=1

𝛼𝑖𝑋
2

𝑡−𝑖 +
𝑞∑
𝑗=1

𝛽 𝑗𝜎
2

𝑡−𝑗 ,

where 𝑍𝑡 are i.i.d. with mean 0 and variance 1, 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽 𝑗 ≥ 0 for

all 𝑖 , 𝑗.

On the topic of identifying an ARCH/GARCH model in practice, [5] has

this to say:

The best identification tool may be a time series plot of the

series. It’s usually easy to spot periods of increased variation

sprinkled through the series. It can be fruitful to look at

the ACF and PACF of both 𝑋𝑡 and 𝑋2

𝑡 . For instance, if 𝑋𝑡
appears to be white noise and 𝑋2

𝑡 appears to be AR(1), then

an ARCH(1) model for the variance is suggested. If the PACF

of 𝑋2

𝑡 suggests AR(𝑝), then ARCH(𝑝) may work. GARCH

models may be suggested by an ARMA-type look to the

ACF and PACF of 𝑋2

𝑡 . [...] You might have to experiment

with various ARCH and GARCH structures after spotting

the need in the time series plot of the series.

9.8.3 Example: Stock Returns

We consider the daily closing price of Germany’s DAX stock index, from

1991 to 1998;
68

the dataset is pre-built in R. 68: The observations are recorded on busi-

ness days, and are also available for 3 other

indices: SMI, CAC, UK FTSE.

library(tseries)

plot(EuStockMarkets)

We differentiate the log-returns of the DAX index to obtain a time series

which appears to be stationary, but which is not normally distributed. We

display the ACF of the data, as well as the ACF and PACF of the square

of the data.
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Data <- diff(log(EuStockMarkets))[,"DAX"]

par(mfrow=c(2,3))

plot.ts(Data)

hist(Data); qqnorm(Data);

acf(Data); acf(Data^2); pacf(Data^2)

It is reasonable to fit to model the data as an ARCH(1) process.

fit.ARCH1 <- garch(Data,order=c(0,1))

***** ESTIMATION WITH ANALYTICAL GRADIENT *****

I INITIAL X(I) D(I)

1 1.008019e-04 1.000e+00

2 5.000000e-02 1.000e+00

IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF

0 1 -7.582e+03

1 8 -7.582e+03 7.08e-06 1.27e-05 1.0e-05 9.4e+10 1.0e-06 5.95e+05

2 9 -7.582e+03 9.60e-08 9.77e-08 1.0e-05 2.0e+00 1.0e-06 7.31e-01

3 18 -7.584e+03 2.66e-04 4.85e-04 2.6e-01 2.0e+00 3.5e-02 7.31e-01

4 19 -7.584e+03 1.47e-05 1.13e-05 4.4e-02 0.0e+00 7.9e-03 1.13e-05

5 20 -7.584e+03 1.81e-06 1.67e-06 2.0e-02 0.0e+00 3.8e-03 1.67e-06

6 21 -7.584e+03 1.51e-08 1.46e-08 1.9e-03 0.0e+00 3.6e-04 1.46e-08

7 22 -7.584e+03 1.47e-11 1.47e-11 6.3e-05 0.0e+00 1.2e-05 1.47e-11

***** RELATIVE FUNCTION CONVERGENCE *****

FUNCTION -7.584131e+03 RELDX 6.254e-05

FUNC. EVALS 22 GRAD. EVALS 8

PRELDF 1.471e-11 NPRELDF 1.471e-11

I FINAL X(I) D(I) G(I)

1 9.611161e-05 1.000e+00 -9.229e-01

2 9.703263e-02 1.000e+00 -7.850e-05
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The resulting GARCH object has the following attributes.

attributes(fit.ARCH1)

$names

[1] "order" "coef" "n.likeli" "n.used"

[5] "residuals" "fitted.values" "series" "frequency"

[9] "call" "vcov"

$class

[1] "garch"

The estimated coefficient values of 𝛼0 and 𝛼1 are obtained as below.

(Coefficients <- fit.ARCH1$coef)

alpha0=Coefficients[1]; alpha1=Coefficients[2]

a0 a1

9.611161e-05 9.703263e-02

We can view the fitted values as past prediction of 𝜎𝑡 , the first 10 of which

are as below.

past.prediction = fit.ARCH1$fitted.values

past.prediction[1:10]

[1] NA 0.010225064 0.009899957 0.010196954 0.009819289 0.009911300

[7] 0.010540232 0.009966482 0.009844322 0.010001275

We can plot the time series {𝜎2

𝑡 }:

n = length(Data)

sigmat = past.prediction[2:n]

par(mfrow=c(1,1))

plot.ts(sigmat^2)
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The prediction of the next observation in the sequence can be obtained

directly.

n1 = length(sigmat)

sqrt(alpha0+alpha1*sigmat[n1]^2)

a0

0.01028445

It is easy to extract the residuals, the first 10 of which are:

residuals <- fit.ARCH1$residuals

residuals[1:10]

[1] NA -0.4324838 0.9094782 -0.1743871

[5] -0.4762781 1.2538257 0.5464646

[8] -0.2879321 0.6451482 0.1183917

We can see that the residuals are normally distributed, roughly.
69

69: Remember that normality of the resid-

uals (𝑍𝑡 ) is not the same as normality of

the data (𝑋𝑡 ).
residuals = residuals[2:n]

qqnorm(residuals)

9.9 Miscellenous Topics

We will finish this chapter by briefly discussing three additional topics:

seasonality, asymptotic normality, and innovations.
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9.9.1 Seasonality

In the study of time series data, seasonality – a repeating pattern that

occurs at regular intervals – is an important concept. For instance, we

might expect a time series of the average monthly temperature in a specific

location to show regularity from one year to the next. Or, assuming that

an employee’s salary is deposited twice monthly directly into their bank

account and that expenses come out on a monthly basis form the same

account, we would expect the time series of end-of-day balances in the

account to follow a regular monthly pattern.

Differencing is a simple way to correct for a seasonal component: if we

have identified such a component with a period of 𝑇 time steps,
70

then 70: By searching for regularities in the

ACVF, through a Fourier analysis of the

data, or using domain expertise.

we can remove it on 𝑋𝑡 by subtracting from it the value 𝑋𝑡−𝑇 , yielding a

time series

𝑌𝑡 = ∇𝑇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑇 , 𝑡 > 𝑇.

We have seen some examples of seasonal decomposition when we were

using the decompose() function to de-trend the data and obtain the

stationary (random) component for analysis (see page 504, for instance).

Example: Accidental Deaths The monthly accidental deaths figures

(USAccDeaths) in the US from January 1973 (𝑡 = 1) to December 1978

(𝑡 = 72) are plotted below.

A histogram of the data is also provided.
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The sample autocorrelation function also shows a seasonal trend with

period 𝑇 = 12.

The deseasonalized deaths data is shown below.

This graphs suggests the presence of an additional quadratic compo-

nent:

𝑥𝑡 = 𝑚𝑡︸︷︷︸
local trend

+ 𝑠𝑡︸︷︷︸
seasonal trend

+ 𝑍𝑡︸︷︷︸
noise

, 𝑚𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2.

We estimate the local trend as

�̂�𝑡 = 9951.822 − 71.817𝑡 + 0.826𝑡2 , 1 ≤ 𝑡 ≤ 72.
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The estimated residuals (the stationary signal)

�̂�𝑡 = 𝑥𝑡 − �̂�𝑡 − 𝑠𝑡 , 1 ≤ 𝑡 ≤ 72

is shown below.

The residuals do appear to be dependent, as there are long stretches of

residuals with the same sign. Furthermore, 10% of the autocorrelations

are outside the bounds ±1.96/
√

72, which is also an indication that we

should reject the i.i.d. hypothesis.

The results of the randomness tests for residuals are:

Ljung - Box statistic = 55.384 Chi-Square ( 20 ), p-value = .00004

Order of Min AICC YW Model for Residuals = 1

The sample value of the Ljung-Box statistic 𝑄LB with lag ℎ = 20 is

51.84. Since the corresponding 𝑝−value is 0.00004 < 0.05 we reject the

i.i.d. hypothesis at a level of 0.05. The minimum-AICC Yule-Walker

auto-regressive model for the data is of order 1 (≠ 0), which supports

the evidence provided by the sample ACF and the Ljung-Box statistic

against the i.i.d. hypothesis.

We forecast data for the years 1979 and 1980 (using an ARMA model)

and display the prediction in red below.
71

71: The order is not provided.
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Note the “jaggedness” of the predictions.

9.9.2 Asymptotic Normality

Asymptotic normality is an important concept in time series analysis for

several reasons, some of which are outlined below.

Statistical Inference: Asymptotic normality allows for the applica-

tion of standard statistical tests (like 𝑡−tests and 𝑧−tests) for hypoth-

esis testing and confidence interval construction. This simplifies

the analysis by using familiar and well-understood techniques.

Large Sample Approximation: Time series data often involve a

large number of observations. The Central Limit Theorem suggests

that the sampling distribution of many statistics will be approxi-

mately normal in large samples, making the results generalizable.

Parameter Estimation: In many time series models, parameter

estimates are often obtained through methods like Maximum

Likelihood Estimation (MLE) or Ordinary Least Squares (OLS).

Asymptotic normality of these estimators provides a basis for

conducting inference about the parameters.

Model Validation: When fitting models to time series data, it is

important to know under what conditions the model will produce

reliable forecasts. Knowing that a model’s estimators are asymptot-

ically normal helps in understanding its long-term behaviour.

Comparison of Models: Asymptotic normality provides a common

ground for comparing different models. This is especially useful in

model selection criteria, like Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC), where the likelihood function

plays a crucial role.

Robustness: Models that possess asymptotically normal properties

are often more robust to minor deviations from assumptions, like

non-normality of errors in small samples.

Simplicity and Computation: When the statistics of interest are

asymptotically normal, it simplifies both the theoretical and compu-

tational aspects of the analysis. This allows for easier interpretation

and faster computation, which is crucial in real-world applications

where time and computational resources may be limited.
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The score function of a probability density 𝑓 (𝑥;𝜃) is:

𝑠(𝑥;𝜃) = 𝜕 log 𝑓 (𝑥;𝜃)
𝜕𝜃

=
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
.

The Fisher information of the time series {𝑋𝑡 | 𝑡 = 1, . . . , 𝑛} is:

𝐼𝑛(𝜃) = Var

(
𝑛∑
𝑖=1

𝑠(𝑋𝑖 ;𝜃)
)
.

If the random variables are i.i.d., then the Fisher information collapses

to

𝐼𝑛(𝜃) = 𝑛Var(𝑠(𝑋1;𝜃)) = 𝑛𝐼1(𝜃) = 𝑛𝐼(𝜃).

Lemma: the score function satisfies E[𝑠(𝑋;𝜃)] = 0.

Proof: we used the definition of the expectation to obtain:

E[𝑠(𝑋;𝜃)] =
∫

𝑠(𝑋;𝜃) 𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥

=

∫
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃
𝑑𝑥

=
𝜕

𝜕𝜃

∫
𝑓 (𝑥;𝜃)𝑑𝑥 =

𝜕

𝜕𝜃
[1] = 0. ■

In the proof, we assumed that we could interchange integration and

differentiation.
72

Using the above lemma, we then find: 72: This holds for most reasonable density

functions 𝑓 (𝑥;𝜃).
𝐼(𝜃) = Var(𝑠(𝑋;𝜃)) = E[𝑠2(𝑋;𝜃)].

Lemma: we have

𝐼(𝜃) = E[𝑠2(𝑋;𝜃)] = −E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
= −E

[
𝜕2

log 𝑓 (𝑋;𝜃)
𝜕𝜃2

]
.

Proof: first, we note that:

E

[
𝑠2(𝑋;𝜃)

]
=

∫ (
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
1

𝑓 2(𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
1

𝑓 (𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑑𝑥.

Next, we see that:

−E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
= −

∫
𝜕𝑠(𝑋;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 = −

∫
1

𝑓 2(𝑥;𝜃)

(
𝜕2 𝑓 (𝑥;𝜃)

𝜕𝜃2

𝑓 (𝑥;𝜃) −
(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

)
𝑓 (𝑥;𝜃)𝑑𝑥

= −
∫ (

𝜕2 𝑓 (𝑥;𝜃)
𝜕𝜃2

)
𝑑𝑥 +

∫
1

𝑓 (𝑥;𝜃)

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
2

𝑑𝑥 = − 𝜕2

𝜕𝜃2

∫
𝑓 (𝑥;𝜃)𝑑𝑥︸         ︷︷         ︸

=1

+E[𝑠2(𝑋;𝜃)] = E[𝑠2(𝑋;𝜃)].

Finally, we have:

E

[
𝜕2

log 𝑓 (𝑥;𝜃)
𝜕𝜃2

]
=

∫
𝜕2

log 𝑓 (𝑥;𝜃)
𝜕𝜃2

𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕

𝜕𝜃

(
𝜕 log 𝑓 (𝑥;𝜃)

𝜕𝜃

)
𝑓 (𝑥;𝜃)𝑑𝑥

=

∫
𝜕

𝜕𝜃

(
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
𝑓 (𝑥;𝜃)𝑑𝑥 =

∫
𝜕𝑠(𝑥;𝜃)

𝜕𝜃
𝑓 (𝑥;𝜃)𝑑𝑥 = E

[
𝜕𝑠(𝑋;𝜃)

𝜕𝜃

]
. ■
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Example Consider 𝑋 ∼ Exp(𝛽). The density function of 𝑋 is

𝑓 (𝑥; 𝛽) = 1

𝛽
𝑒−𝑥/𝛽 ,

with E[𝑋] = 𝛽, so that log 𝑓 (𝑥; 𝛽) = − log(𝛽) − 𝑥𝛽. The score function of

𝑋 is thus

𝑠(𝑥; 𝛽) = − 1

𝛽
+ 1

𝛽2

𝑥

and its derivative (w.r.t. 𝛽) is

−𝜕𝑠(𝑥; 𝛽)
𝜕𝛽

= − 1

𝛽2

+ 2

𝛽3

𝑥.

Hence,

𝐼(𝛽) = E

[
−𝜕𝑠(𝑥; 𝛽)

𝜕𝛽

]
= − 1

𝛽2

+ 2

𝛽3

E[𝑋] = − 1

𝛽2

+ 2

𝛽3

𝛽 =
1

𝛽2

.

Thus,

𝐼𝑛(𝛽) =
𝑛

𝛽2

.

Note that for 𝑋𝑛 = (𝑋1 + . . . + 𝑋𝑛)/𝑛, we have

Var(𝑋𝑛) =
Var(𝑋)
𝑛

=
𝛽2

𝑛
,

so that Var(𝑋𝑛) = 𝐼−1

𝑛 (𝛽).

This can be generalized to other distributions.

Theorem: under appropriate regularity conditions, we have

𝜃MLE − 𝜃

Var

(√
𝜃MLE

) d→ N(0, 1),

where

Var

(√
𝜃MLE

)
= 𝐼−1

𝑛 (𝜃).

Proof: the MLE estimator, 𝜃MLE, solves

𝜕

𝜕𝜃
ℓ (𝜃MLE) = 0,

where ℓ is the log-likelihood. We apply Taylor’s theorem to ℓ around

𝜃 = 𝜃MLE to obtain

ℓ (𝜃) +
(
𝜃MLE − 𝜃

) 𝜕2

𝜕𝜃2

ℓ (𝜃) ≈ 0.

Rearranging the terms, we get:

√
𝑛

(
𝜃MLE − 𝜃

)
=

1√
𝑛

𝜕
𝜕𝜃 ℓ (𝜃)

− 1

𝑛
𝜕2

𝜕𝜃2
ℓ (𝜃)

.
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Next, we show that the numerator converges to a normal distribution,

whereas the denominator converges in probability to a constant.

Recall that

ℓ (𝜃) = log 𝑓 (𝑋1;𝜃) + · · · + log 𝑓 (𝑋𝑛)(𝜃)

and so

𝜕

𝜕𝜃
ℓ (𝜃) =

𝑛∑
𝑖=1

𝜕

𝜕𝜃
log 𝑓 (𝑋𝑖 ;𝜃) =

𝑛∑
𝑖=1

𝑠(𝑋𝑖 ;𝜃).

We have already shown that E[𝑠(𝑋𝑖 ;𝜃)] = 0. Hence, the numerator can

be written as

1√
𝑛

𝑛∑
𝑖=1

𝑌𝑖 ,

where 𝑌𝑖 = 𝑠(𝑋𝑖 ;𝜃) are i.i.d. with mean 0 and variance

Var(𝑠(𝑋𝑖 ;𝜃)) = E[𝑠2(𝑋𝑖 , 𝜃)] = 𝐼(𝜃).

Thus, we have

1√
𝑛

𝜕

𝜕𝜃
ℓ (𝜃) = 1√

𝑛

𝑛∑
𝑖=1

𝑌𝑖
d→ N

(
0, E[𝑠2(𝑋1 , 𝜃)]

)
= N(0, 𝐼(𝜃)) .

Similarly, the numerator can be written as

1

𝑛

𝑛∑
𝑖=1

𝑈𝑖 ,

where

𝑈𝑖 =
𝜕2

𝜕𝜃2

log 𝑓 (𝑋𝑖 ;𝜃), 𝑖 = 1, . . . , 𝑛

are i.i.d. random variables. From the previous Lemma, we can write

E[𝑈𝑖] = E

[
𝜕2

𝜕𝜃2

log 𝑓 (𝑋𝑖 ;𝜃)
]
= −𝐼(𝜃).

The Law of Large Numbers73
then yields 73: To wit: if the 𝑋𝑖 are i.i.d. with finite

mean 𝜇, then

lim

𝑛→∞
1

𝑛

𝑛∑
𝑖=1

𝑋𝑖 = 𝜇.

There are two versions of this, the weak
law and the strong law, depending on

the type of convergence, but that falls out-

side the scope of these course notes, as

does convergence in distribution, which

basically states that the corresponding cu-

mulative distribution functions 𝐹𝑛 con-

verge pointwise to a cumulative distribu-

tion function 𝐹.

− 1

𝑛

𝑛∑
𝑖=1

𝑈𝑖 → 𝐼(𝜃),

from which we conclude the result. ■

Example: Exponential Distribution (continued) Applying the theorem

on the , we have √
𝑛(𝑋𝑛 − 𝛽) d→ N

(
0, 𝛽2

)
.

9.9.3 Innovations

We now provide some of the details that allowed us to use innovations in

Section 9.7.2. The goal is to try to determine a “good” prediction for the

𝑛 + 1th observation in the time series, which we denote by 𝑃𝑛𝑋𝑛+1.

A by-product of the innovation algorithm is that we will also "predict"

𝑋1 , . . . , 𝑋𝑛 .
74

74: Of course, we do not need to predict

these values since they have already been

observed in practice, but we can use the

innovations, i.e., the differences between

the observed values𝑋𝑖 and the “predicted”

values 𝑋𝑖 for model choice and estimation

purposes.
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As in Section 9.7.2, we define

𝑋𝑖+1 = 𝑃𝑖𝑋𝑖+1 = 𝑎𝑖1𝑋𝑖 + · · · + 𝑎𝑖𝑖𝑋1 , 𝑖 = 0, . . . , 𝑛;

which is to say that 𝑋𝑛+1 is the predicted value for 𝑋𝑛+1, whereas

𝑋1 , . . . , 𝑋𝑛 are the “predicted” values for 𝑋1 , . . . , 𝑋𝑛 .

We also define the column vectors

X𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , X̂𝑛 = (𝑋1 , . . . , 𝑋𝑛)⊤ , U𝑛 = (𝑈1 , . . . , 𝑈𝑛)⊤ ,

where𝑈𝑖 = 𝑋𝑖 − 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, are the innovations of the time series; a

"good" prediction is such that these errors are small. As we have no data

before 𝑛 = 1 on which to base the prediction, we opt for𝑋1 = E[𝑋1] = 0.
75

75: Remember, we are assuming that {𝑋𝑡 }
is a stationary time series.

Omitting 𝑋𝑛+1, we re-write the predictions, individually, as

𝑖 = 0 : 𝑋1 = 0,

𝑖 = 1 : 𝑋2 = 𝑎1,1𝑋1 ,

𝑖 = 2 : 𝑋3 = 𝑎2,1𝑋2 + 𝑎2,2𝑋1 ,

𝑖 = 3 : 𝑋4 = 𝑎3,1𝑋3 + 𝑎3,2𝑋2 + 𝑎3,1𝑋1 ,

...

𝑖 = 𝑛 − 2 : 𝑋𝑛 = 𝑎𝑛−1,1𝑋𝑛−1 + · · · + 𝑎𝑛−1,𝑛−1𝑋1 ,

or, simultaneously, as

X̂𝑛 = A∗X𝑛 ,

where

A∗ =

©«

0 0 0 · · · 0

𝑎1,1 0 0 · · · 0

𝑎2,2 𝑎2,1 0 · · · 0

...
...

...
. . .

...

𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛−2 · · · 𝑎𝑛−1,1 0

ª®®®®®®¬
.

Note that the matrix is lower diagonal.

We write

U𝑛 = X𝑛 − X̂𝑛 = X𝑛 − A∗X𝑛 = AX𝑛 ,

where A = I𝑛 − A∗
. This matrix is invertible since det(A) = 1 ≠ 0.

Let C = A−1
and B = C − I𝑛 ; then we can write

X𝑛 = CU𝑛 , and X̂𝑛 = (C − I𝑛)U𝑛 = BU𝑛 ,

representing the "predicted" values in terms of the innovations U𝑛 and

the lower diagonal matrix B (indeed, C must be lower diagonal, as is I𝑛 ,

so that B = C − I𝑛 is also lower diagonal).
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We can write the second of these equations as

X̂𝑛 = (C − I𝑛)U𝑛 =

©«

𝑋1

𝑋2

𝑋3

...

𝑋𝑛

ª®®®®®®®¬
=

©«

0 0 0 · · · 0

𝜃1,1 0 0 · · · 0

𝜃2,2 𝜃2,1 0 · · · 0

...
...

...
. . .

...

𝜃𝑛−1,𝑛−1 𝜃𝑛−1,𝑛−2 𝜃𝑛−1,𝑛−3 · · · 0

ª®®®®®®¬
©«

𝑈1

𝑈2

𝑈3

...

𝑈𝑛

ª®®®®®®¬
,

and the first as

X𝑛 = CU𝑛 =

©«

𝑋1

𝑋2

𝑋3

...

𝑋𝑛

ª®®®®®®¬
=

©«

1 0 0 · · · 0

𝜃1,1 1 0 · · · 0

𝜃2,2 𝜃2,1 1 · · · 0

...
...

...
. . .

...

𝜃𝑛−1,𝑛−1 𝜃𝑛−1,𝑛−2 𝜃𝑛−1,𝑛−3 · · · 1

ª®®®®®®¬
©«

𝑈1

𝑈2

𝑈3

...

𝑈𝑛

ª®®®®®®¬
.

Note that the coefficients 𝜃𝑘,𝑗 have nothing to do with the Durbin-

Levinson algorithm (see Section 9.4.2).

From the above matrix equation, we have, for instance,

𝑋1 = 0,

𝑋2 = 𝜃1,1(𝑋1 − 𝑋1),
𝑋3 = 𝜃2,1(𝑋2 − 𝑋2) + 𝜃2,2(𝑋1 − 𝑋1).

The prediction of 𝑋3 is then based on the first and the second innovations

𝑋1 − 𝑋1 and 𝑋2 − 𝑋2.

In general, for a MA(𝑞) model, we can write

𝑋𝑖+1 =


0 𝑖 = 0

𝑖∑
𝑗=1

𝜃𝑖 , 𝑗(𝑋𝑖+1−𝑗 − 𝑋𝑖+1−𝑗) 𝑖 ≥ 1

.

For an ARMA(𝑝, 𝑞) model, we have instead

𝑋𝑖+1 =


0 𝑖 = 0

𝜙1𝑋𝑖 + · · · + 𝜙𝑝𝑋𝑖+1−𝑝 +
𝑖∑
𝑗=1

𝜃𝑖 , 𝑗(𝑋𝑖+1−𝑗 − 𝑋𝑖+1−𝑗) 𝑖 ≥ 1

.

The only thing left is to determine how to evaluate the coefficients 𝜃𝑖 , 𝑗 ;
this is the subject of the next theorem.

Innovation Algorithm: assume that {𝑋𝑡} is a stationary time series with

mean 0. Let 𝑣𝑖 = E[(𝑋𝑖+1 − 𝑋𝑖+1)2], 𝑖 ≥ 0, and 𝑣0 = E[𝑋2

1
] = 𝛾𝑋(0).

Then

𝜃𝑛,𝑛−𝑖 = 𝑣
−1

𝑖

(
𝛾𝑋(𝑛 − 𝑖) −

𝑖−1∑
𝑗=0

𝜃𝑖 ,𝑖−𝑗𝜃𝑛,𝑛−𝑗𝑣 𝑗

)
, 0 ≤ 𝑖 < 𝑛,

𝑣𝑛 = 𝛾𝑋(𝑛 − 1) −
𝑛−1∑
𝑗=0

𝜃2

𝑛,𝑛−𝑗𝑣 𝑗 .
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Example Consider the MA(1) model 𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1, where E[𝑍𝑡] = 0

and Var(𝑍𝑡) = 𝜎2

𝑍
. Recall that 𝛾𝑋(0) = 𝜎2

𝑍
(1 + 𝜃2), 𝛾𝑋(1) = 𝜃𝜎2

𝑍
and

𝛾𝑋(ℎ) = 0, ℎ > 1.

We have:

𝑛 = 1

− 𝑖 = 0: 𝑣0 = 𝛾𝑋(0) = 𝜎2

𝑍
(1 + 𝜃2), 𝜃1,1 = 𝑣−1

0
𝛾𝑋(1) = 𝜌𝑋(1) and

𝑣1 = 𝛾𝑋(0) − 𝜃2

1,1
𝑣0

𝑛 = 2

− 𝑖 = 0: 𝜃2,2 = 𝑣−1

0
𝛾𝑋(2) = 0

− 𝑖 = 1: 𝜃2,1 = 𝑣−1

1
𝛾𝑋(1) and 𝑣2 = 𝑣𝑛 = [1 + 𝜃2 − 𝑣−1

1
𝜃2𝜎2

𝑍
]𝜎2

𝑍

general 𝑛

− 𝑖 = 0, . . . , 𝑛 − 2: 𝜃𝑛,𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑛,

− 𝑖 = 𝑛 − 1: 𝜃𝑛,1 = 𝑣−1

𝑛−1
𝛾𝑋(1) and 𝑣𝑛 = [1 + 𝜃2 − 𝑣−1

𝑛−1
𝜃2𝜎2

𝑍
]𝜎2

𝑍

Important Property The innovations𝑈1 , . . . , 𝑈𝑛 are uncorrelated: we

have Cov(𝑈𝑖 , 𝑈𝑗) = 0 for 𝑖 ≠ 𝑗.76
Remembering that the sequence is76: This is not trivial to show.

centered, we have:

Γ𝑛 = E

[
X𝑛X⊤

𝑛

]
= E[CU𝑛U⊤

𝑛C⊤] = CE[U𝑛U⊤
𝑛]C⊤ = CDC⊤

where D is the diagonal matrix with entries 𝑣0 , . . . , 𝑣𝑛−1, where the

values 𝑣𝑖 = E[𝑈2

𝑖
] = E[(𝑋𝑖 − 𝑋2

𝑖
)] are the same quantities as those in the

innovation algorithm.

9.10 Exercises

1. Show that the set T𝑛 of stationary time series of length 𝑛 is a vector

subspace (over ℝ) of the set of all time series.

2. Let {𝑍𝑡} be independent normalrandom variables with mean 0

and variance 𝜎2

𝑍
. Let 𝑎, 𝑏, 𝑐 be constants. Which of the following

processes are stationary? Evaluate the mean and the autocovariance

functions.

a) 𝑋𝑡 = 𝑍𝑡 cos(𝑎𝑡) + 𝑍𝑡−1 sin(𝑎𝑡).
b) 𝑋𝑡 = 𝑎 + 𝑏𝑍𝑡 + 𝑐𝑍𝑡−2.

c) 𝑋𝑡 = 𝑍𝑡𝑍𝑡−2.

3. Let {𝑍𝑡} be a sequence of independent normal random variables

with mean 0 and variance 𝜎2

𝑍
= 1. Consider the sequence

𝑋𝑡 = 𝑍𝑡 + (𝑍2

𝑡−1
− 1), 𝑡 = 1, 2, . . . .

a) Show that E[𝑋𝑡] = 0.

b) Show that E[𝑋𝑡𝑋𝑡+ℎ] = 0 for ℎ ≠ 0.

4. Let {𝑍𝑡} be independent random variables with mean 0 and

variance 𝜎2

𝑍
. Let {𝑌𝑡} be a stationary sequence with a covari-

ance function 𝛾𝑌(ℎ). Assume that the sequences {𝑍𝑡} and {𝑌𝑡}
are independent from each other. Define 𝑋𝑡 = 𝑌𝑡𝑍𝑡 . Verify that

Cov(𝑋𝑡 , 𝑋𝑡+ℎ) = 0 for ℎ ≥ 1.
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5. Show that the PACF between 𝑋1 and 𝑋3 when removing the effect of 𝑋2 is:

𝜌1,3;2 =
Corr(𝑋1 , 𝑋3) − Corr(𝑋1 , 𝑋2) · Corr(𝑋2 , 𝑋3)√(

1 − Corr
2(𝑋1 , 𝑋2)

) (
1 − Corr

2(𝑋2 , 𝑋3)
) .

6. Let {𝑍𝑡} be independent random variables with mean 0 and variance 𝜎2

𝑍
. Consider the model𝑋𝑡 = 𝑍𝑡+𝑍𝑡−1.

Evaluate 𝛼(1) and 𝛼(2).
7. Let {𝑍𝑡} be independent random variables with mean 0 and variance 𝜎2

𝑍
. Determine if the following

processes are stationary and causal.

a) 𝑋𝑡 + 0.2𝑋𝑡−1 + 0.48𝑋𝑡−2 = 𝑍𝑡 .

b) 𝑋𝑡 + 1.6𝑋𝑡−1 = 𝑍𝑡 − 0.42𝑍𝑡−1 + 0.04𝑍𝑡−2.

8. Derive a linear representation of the general ARMA(1, 2) model.

9. Derive a linear representation of the general ARMA(1, 𝑞) model.

10. Derive a linear representation of the AR(2) model 𝑋𝑡 = 𝜙𝑋𝑡−2 + 𝑍𝑡 .
11. Use the linear representation of ARMA(1, 1) to compute its covariance function.

12. Use the recursive method to compute the covariance function of the general AR(2) model.

13. This is an exercise about simulating time series.

a) Generate ARMA(𝑝, 𝑞) sequence 𝑋𝑡 . You have to choose 𝑝, 𝑞 as well as the required parameters. Make

sure that the chosen parameters imply existence of a stationary solution.

b) Identify the model using ACF and PACF. Include graphs of ACF and PACF (2 graphs).

c) Add a linear or a polynomial trend 𝑚𝑡 . The new sequence is 𝑌𝑡 = 𝑚𝑡 + 𝑋𝑡 .
d) Estimate 𝑚𝑡 using all three methods:

parametric method;

exponential smoothing;

moving average smoothing with your chosen 𝑄.

e) For each of the three methods, plot 𝑌𝑡 and the estimated trend 𝑚𝑡 on the same graphs (3 graphs).

f) For each of the three methods, compute 𝑋𝑡 = 𝑌𝑡 − 𝑚𝑡 . Plot residuals (that is 𝑋𝑡) (3 graphs).

g) Analyze 𝑋𝑡 using ACF and PACF. Graph ACF and PACF for all three methods (6 graphs). Identify

the most likely ARMA model for the data. Compare with your identification in b).

14. Download a data set from this page or use your own data set.

a) Remove the trend using any of the methods, if needed, to obtain a stationary time series. State the

chosen 𝑚𝑡 .

b) Plot the original sequence together with the estimated trend.

c) Plot the stationary part, then its ACF and PACF. Comment on the results when it comes to the choice

of a model.

15. Assume that 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
.

a) Apply the Yule-Walker procedure to obtain 𝑃𝑛𝑋𝑛+2 (two step prediction) for AR(1) model 𝑋𝑡 =

𝜙𝑋𝑡−1 + 𝑍𝑡 , |𝜙 | < 1. Compute the corresponding MSPE𝑛(2). Can you guess a general formula for

𝑃𝑛𝑋𝑛+𝑘?
b) Apply the Yule-Walker procedure to obtain 𝑃𝑛𝑋𝑛+1 for AR(2) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .

Compute the corresponding MSPE𝑛(1).
16. Consider the ARMA(1, 1) model 𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃𝑍𝑡−1, |𝜙 | < 1, 𝜃 ∈ ℝ, where 𝑍𝑡 are i.i.d. random

variables with mean 0 and variance 𝜎2

𝑍
. The goal is to find the best linear predictor 𝑃𝑛𝑋𝑛+1 of 𝑋𝑛+1 based

on 𝑋1 , . . . , 𝑋𝑛 .

a) Let 𝑛 = 1. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain 𝑎1 in 𝑃1𝑋2 = 𝑎1𝑋1.

b) Let 𝑛 = 2. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain coefficients 𝑎1 , 𝑎2 in 𝑃2𝑋3 = 𝑎1𝑋2 + 𝑎2𝑋1.

Hint: We have the following formulas for the covariance function:

𝛾𝑋(0) = 𝜎2

𝑍

[
1 +

(𝜙 + 𝜃)2
1 − 𝜙2

]
, 𝑋(1) = 𝜎2

𝑍

[
(𝜙 + 𝜃) +

(𝜙 + 𝜃)2𝜙
1 − 𝜙2

]
, 𝛾𝑋(ℎ) = 𝜙ℎ−1𝛾𝑋(1), ℎ ≥ 2.

https://mysite.science.uottawa.ca/rkulik/mat3379/mat3379.html
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17. Consider the MA(1) model 𝑋𝑡 = 𝑍𝑡 + 𝜃𝑍𝑡−1, 𝜃 ∈ ℝ, where 𝑍𝑡 are i.i.d. random variables with mean 0

and variance 𝜎2

𝑍
. The goal is to find the best linear predictor 𝑃𝑛𝑋𝑛+1 of 𝑋𝑛+1 based on 𝑋1 , . . . , 𝑋𝑛 .

a) Let 𝑛 = 1. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to conclude that

𝑃1𝑋2 =
𝛾𝑋(1)
𝛾𝑋(0)

𝑋1 =
𝜃

1 + 𝜃2

𝑋1.

b) Let 𝑛 = 2. Use the formula Γ𝑛a𝑛 = 𝜸(𝑛; 1) to obtain coefficients 𝑎1 , 𝑎2 in 𝑃2𝑋3 = 𝑎1𝑋2 + 𝑎2𝑋1.

c) Let 𝑛 = 2. Apply the Durbin-Levinson algorithm to get 𝑃2𝑋3 = 𝜙2,1𝑋2 + 𝜙2,2𝑋1.

18. Consider a stationary ARMA(1, 1) model

(𝑋𝑡 − 𝜇) = 𝜙(𝑋𝑡−1 − 𝜇) + 𝑍𝑡 + 𝜃𝑍𝑡−1.

Evaluate

∑∞
ℎ=−∞ 𝛾𝑋(ℎ).

19. Assume that 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
. Consider the AR(2) model

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .
a) Derive confidence intervals for 𝜙1 and 𝜙2.

b) Assume that 𝑛 = 100, �̂�𝑋(0) = 3, �̂�𝑋(1) = 1.5, �̂�𝑋(2) = 0.5. Use a) to get the confidence intervals.

20. In this question we develop Yule-Walker estimators for the AR(1) and ARMA(1, 1) models and study their

numerical performance. Recall that the Yule-Walker estimator for the AR(1) model is

𝜙 =
�̂�𝑋(1)
�̂�𝑋(0)

= �̂�𝑋(1), �̂�2

𝑍 = �̂�𝑋(0) − 𝜙�̂�𝑋(1) = �̂�𝑋(0) − �̂�𝑋(1)2�̂�𝑋(0).

a) Numerical experiment for AR(1):
i. Load the file Data-AR.txt into R. This is a data set generated from a AR(1) model with 𝜙 = 0.8.

ii. Type var(Data) to obtain �̂�𝑋(0).
iii. Type ACF<-acf(Data). Then type ACF. You will get �̂�𝑋(ℎ), the estimators of 𝜌𝑋(ℎ). The second

entry is �̂�𝑋(1) = 𝜙.

iv. Write the final values for 𝜙 and �̂�2

𝑍
.

v. Compare the estimated 𝜙 with the true 𝜙.

b) Consider the ARMA(1, 1) model 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑍𝑡−1, |𝜙 | < 1; the sequence 𝑋𝑡 is causal. Apply

the Yule-Walker procedure to obtain the estimators for 𝜙, 𝜃 and 𝜎2

𝑍
= Var(𝑍𝑡).

c) Numerical experiment for ARMA(1, 1):
i. Load the file Data-ARMA.txt into R. This is a data set generated from a ARMA(1, 1) model with

𝜙 = 0.8 and 𝜃 = 1.

ii. Identify the values of 𝜙, 𝜃, and �̂�2

𝑍
.

iii. Compare the estimated 𝜙 with the true 𝜙. Which estimate is more accurate: ARMA(1, 1) or

AR(1)?
21. a) One hundred observations from AR(1) yield the following sample statistics:

𝑥 = 0, �̂�𝑋(0) = 1.1, �̂�𝑋(1) = 0.42.

i. Find the Yule-Walker estimators of 𝜙 and 𝜎2

𝑍
.

ii. Write the confidence interval for 𝜙.

iii. If 𝑋100 = 1.5, what is the predicted value of 𝑋101? What is the squared error of this prediction?

b) Two hundred observation from AR(2) yields the following sample statistics:

𝑥 = 3.82, �̂�𝑋(0) = 1.15, �̂�𝑋(1) = 0.427, �̂�2 = 0.475.

i. Find the Yule-Walker estimators of 𝜙1, 𝜙2 and 𝜎2

𝑍
.

ii. Is the estimated model causal?.

iii. If 𝑋100 = 3.84 and 𝑋99 = 3.26, what is the predicted value of 𝑋101?
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22. Consider the general AR(1) model. Derive the MLE for 𝜙 and 𝜎2

𝑍
.

23. We have already fitted an AR(4) model to US unemployment data, and estimated the parameters using

the Yule-Walker procedure.

a) Calculate the residuals, and plot their ACF and PACF. Is the chosen AR(4) model appropriate?

b) Predict the next observation in the time series.

c) Backcast the past observations and verify the quality of the "prediction" by plotting the original

values and the "predicted" values on the same graph. Compute the squared error of that prediction.

d) Now, pretend that the model is AR(1). Estimate the model’s parameters. Repeat b)-d). State conclusions.

24. Use the Lake Huron data for this question (an in-built dataset in R).

a) Type the following code at the prompt.

My.TS <- LakeHuron

help(LakeHuron)

mean = mean(My.TS)

My.Centered.TS <- My.TS - mean(My.TS)

b) Fit an AR(2) model to the data using the Yule-Walker estimator. Obtain 𝜙1, 𝜙2, �̂�2

𝑍
.

fit.ar <- ar(My.Centered.TS, method="yule-walker")

c) Verify that the command ar() leads to the correct Yule-Walker estimator.

i. At the prompt, type the following code.

ACF <- acf(LakeHuron)

var(LakeHuron)

Read off �̂�𝑋(1) and �̂�𝑋(2) and �̂�𝑋(0). Using theis information, compute �̂�𝑋(1), �̂�𝑋(2).
ii. Create a vector (�̂�𝑋(1), �̂�𝑋(2)) and call it gamma.vector.

iii. Create a matrix Γ̂2 and call it Gamma.matrix.

iv. Compute Γ̂−1

2
∗ 𝛾𝑋,2 by typing in

solve(Gamma.matrix)%*%gamma.vector

Compare the results with those of part b).

25. When 𝑝 ≥ 2, it can be rather difficult to identify the right 𝑝 from the data. Start by loading BadData.txt

into the R variable X.

a) Based on the ACF and PACF of the data, argue that an AR(3) model can be reasonably chosen.

b) Type the following code at the prompt.

(fit.ar <- ar(X,method="mle"))

What order does ar() select? Denote this order by p.

c) Using p from the step above, type the following code at the prompt.

(fit.arima <- arima(X,order=c(3,0,0)))

(fit.arima1 <- arima(X,order=c(p,0,0)))

Why did MLE select p and not 3?

26. Derive the formulas for the spectral density of MA(1) and ARMA(1, 1).
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27. Assume that (𝑋1 , 𝑋2) is a vector of dependent normal random variables with mean 0 and variance 𝜎2

each. Assume that the covariance matrix is given by

Σ =

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

]
.

In other words, 𝜌 is the correlation between 𝑋1 and 𝑋2. Assuming that 𝜎 is known, find the maximum

likelihood estimator of 𝜌.

28. Let {𝑍𝑡} be an i.i.d. sequence of normal random variables with mean 0 and variance 𝜎2

𝑍
= 1. Define

𝑋𝑡 =

{
𝑍𝑡 , 𝑡 even,

(𝑍2

𝑡−1
− 1)/

√
2, 𝑡 odd.

Find E[𝑋𝑡], 𝛾𝑋(𝑡 , 𝑡 + 1) and 𝛾𝑋(𝑡 , 𝑡 + 2).
29. Consider the sequence

𝑋𝑡 = 𝑍𝑡𝑍𝑡−1 + 0.5𝑍𝑡−1 ,

where 𝑍𝑡 are i.i.d random variables with mean 0 and variance 𝜎2

𝑍
.

a) Show that E[𝑋𝑡] = 0 for all 𝑡.

b) Compute 𝛾𝑋(𝑡 , 𝑡 + ℎ) = E[𝑋𝑡𝑋𝑡+ℎ] for ℎ = 0, 1, 2.

c) Is the sequence 𝑋𝑡 stationary? Why?

30. Assume that 𝐴 and 𝐵 are random variables with mean 0 and variance 𝜎2
. Assume also that Cov(𝐴, 𝐵) = 0.

Let 𝜔 ∈ ℝ and define

𝑋𝑡 = 𝐴 cos(𝑎𝑡) + 𝐵 sin(𝑏𝑡), 𝑎, 𝑏 ≠ 0.

Is {𝑋𝑡} stationary?

31. Consider the ARMA(2, 1) model given by

𝑋𝑡 − 0.75𝑋𝑡−1 + 0.5625𝑋𝑡−2 = 𝑍𝑡 + 2.25𝑍𝑡−1.

Is this process causal? Is this process stationary?

32. Consider the linear process given by

𝑋𝑡 =
∞∑
𝑗=0

(𝜙 𝑗 + 𝜙 𝑗+1)𝑍𝑡−𝑗 ,

where |𝜙 | < 1 and 𝑍𝑡 is an i.i.d sequence with mean 0 and variance 𝜎2

𝑍
. Write the formula for 𝛾𝑋(ℎ), ℎ ≥ 0.

33. Consider the ARMA(1, 2) model

𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + 𝜃2𝑍𝑡−2 ,

where |𝜙 | < 1, 𝜃1 , 𝜃2 ∈ ℝ, and 𝑍𝑡 is an i.i.d sequence with mean 0 and variance 𝜎2

𝑍
. Derive the linear

representation for 𝑋𝑡 , i.e. find the coefficients 𝜓 𝑗 in 𝑋𝑡 =
∑∞
𝑗=0

𝜓 𝑗𝑍𝑡−𝑗 .
34. Consider a stationary AR(3) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝜙3𝑋𝑡−3 = 𝑍𝑡 . Use the recursive method to

conclude

𝛾𝑋(ℎ) = 𝜙1𝛾𝑋(ℎ − 1) + 𝜙1𝛾𝑋(ℎ − 2) + 𝜙1𝛾𝑋(ℎ − 3), ℎ ≥ 3.

35. Derive the linear representation of a stationary AR(2) model 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝑍𝑡 .
36. Write the non-causal linear representation of an AR(1) 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 with 𝜙 > 1.

37. Obtain the coefficients 𝜙1,1, 𝜙2,2, 𝜙3,3 for the AR(1) model. Compare with the Yule-Walker procedure.

38. Obtain the coefficients 𝜙1,1, 𝜙2,2, 𝜙2,1 for the AR(2) model.

39. If {𝑋𝑡} and {𝑌𝑡} are two uncorrelated stationary processes, show that {𝑋𝑡 + 𝑌𝑡} is a stationary process.

What is its ACVF?
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40. Identify the ARMA model based on the ACF and PACF below.

41. Identify the ARMA model based on the ACF and PACF below.

42. Consider the AR(1) model𝑋𝑡 = 𝜙𝑋𝑡−1+𝑍𝑡 , where |𝜙 | < 1 and the random variables 𝑍𝑡 are i.i.d. with mean

0 and variance 𝜎2

𝑍
. Prove that 𝜙𝑛,𝑛 = 0 for all 𝑛 ≥ 2 (recall that 𝜙𝑛,𝑛 = partial autocovariance at lag 𝑛).

43. a) Let 𝑋 and 𝑌 be random variables with E[𝑌2] < ∞. Show that E[𝑌 | 𝑋] minimizes

MSE = E

(
[𝑌 − 𝑔(𝑋)]2

)
over all functions 𝑔 such that E

(
[𝑔(𝑋)]2

)
< ∞.

b) Generalize to 𝑋1 , . . . , 𝑋𝑛 to show that E[𝑋𝑛+1 |𝑋1 , . . . , 𝑋𝑛] minimizes

MSE = E

(
[𝑋𝑛+1 − 𝑔(𝑋1 , . . . , 𝑋𝑛)]2

)
over all functions 𝑔 such that E

(
[𝑔(𝑋1 , . . . , 𝑋𝑛)]2

)
< ∞.

c) If 𝑋1 , 𝑋2 , . . . are i.i.d. with E[𝑋2

𝑖
] < ∞ and E[𝑋𝑖] = 𝜇 for all 𝑖, where 𝜇 is known, what is the

minimum mean square predictor of 𝑋𝑛+1 in terms of 𝑋1 , . . . , 𝑋𝑛?

d) If 𝑋1 , . . . , 𝑋𝑛 are i.i.d. with E[𝑋2

𝑖
] < ∞ and E[𝑋𝑖] = 𝜇 for all 𝑖, where 𝜇 is unknown, show that the

best linear unbiased estimator (BLUE) of 𝜇 is 𝑋.
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44. Let {𝑍𝑡} be i.i.d. with 𝑍𝑡 ∼ 𝑁(0, 1) and define

𝑋𝑡 =

{
𝑍𝑡 if 𝑡 is even

𝑍2

𝑡−1
−1√
2

if 𝑡 is odd

a) Show that {𝑋𝑡} is WN(0, 1) but not i.i.d. (0, 1) noise.

b) Find E[𝑋𝑛+1 |𝑋1 , . . . , 𝑋𝑛] for 𝑛 even and for 𝑛 odd and compare the results.

45. Consider the time series

𝑋𝑡 = 𝑚𝑡︸︷︷︸
local trend

+ 𝑍𝑡︸︷︷︸
noise

and the simple moving average filter with weights 𝑎 𝑗 = (2𝑞 + 1)−1
for −𝑞 ≤ 𝑗 ≤ 𝑞.

a) If 𝑚𝑡 = 𝑐0 + 𝑐1𝑡 show that

∑𝑞

𝑗=−𝑞 𝑎 𝑗𝑚𝑡−𝑗 = 𝑚𝑡 .

b) If {𝑍𝑡}𝑡∈ℤ are i.i.d. with mean 0 and variance 𝜎2
, show that the moving average

𝐴𝑡 =

𝑞∑
𝑗=−𝑞

𝑎 𝑗𝑍𝑡−𝑗

is small in the sense that E[𝐴𝑡] = 0 and Var(𝐴2

𝑡 ) = 𝜎2

2𝑞+1
.

46. Compute the ACF of the model 𝑋𝑡 − 0.6𝑋𝑡−1 = 𝑍𝑡 + 1.2𝑍𝑡−1 , where 𝑍𝑡 is WN(0, 𝜎2).
47. Let 𝑋𝑡 denote a non-causal AR(1) process 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 where {𝑍𝑡} ∼ WN(0, 𝜎2) and |𝜙 | > 1.

a) Denote𝑊𝑡 = 𝑋𝑡 − 1

𝜙𝑋𝑡−1. Show that {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤) and express 𝜎2

𝑤 in terms of 𝜎2
and 𝜙.

b) Show that 𝑌𝑡 =
1

𝜙𝑌𝑡−1 +𝑊𝑡 is causal and has the same ACVF as 𝑋𝑡 above.

c) Find the causal form of 𝑋𝑡 = 1.2𝑋𝑡−1 + 𝑍𝑡 where {𝑍𝑡} ∼ WN(0, 1).
48. Let {𝑌𝑡} be the AR(1) plus white noise time series defined by 𝑌𝑡 = 𝑋𝑡 +𝑊𝑡 where {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤),
{𝑋𝑡} is the AR(1) process 𝑋𝑡 − 𝜙𝑋𝑡−1 = 𝑍𝑡 , |𝜙 | < 1, {𝑍𝑡} ∼ WN(0, 𝜎2

𝑧), E[𝑋𝑠𝑍𝑡] = 0 for all 𝑠 < 𝑡 and

E[𝑊𝑠𝑍𝑡] = 0 for all 𝑠, 𝑡.

a) Show that {𝑌𝑡} is stationary and find its ACVF.

b) Show that the time series𝑈𝑡 = 𝑌𝑡 − 𝜙𝑌𝑡−1 is 1−correlated and hence is an MA(1) process.

c) Conclude from b) that {𝑌𝑡} is an ARMA(1, 1) process and express the three parameters of this model

in terms of 𝜙, 𝜎2

𝑤 and 𝜎2

𝑧 .

49. Let {𝑋𝑡} be an AR(𝑝) process defined by

𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 ,

where {𝑍𝑡} ∼ WN(0, 𝜎2) and E[𝑋𝑠𝑍𝑡] = 0 for all 𝑠 < 𝑡.

a) Show that for 𝑛 > 𝑝, the best linear predictor 𝑃𝑛𝑋𝑛+1 is 𝜙1𝑋𝑛 + · · · + 𝜙𝑝𝑋𝑛−𝑝 .
b) Compute the mean square error of this forecast.

50. Let {𝑋𝑡} be an MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 − 𝜃𝑍𝑡−1 , 𝑡 ∈ ℤ where {𝑍𝑡} ∼ WN(0, 𝜎2) and |𝜃 | < 1.

a) Show that the best linear predictor �̃�𝑛𝑋𝑛+1 based on {𝑋𝑗 | 𝑗 ≤ 𝑛} is

�̃�𝑛𝑋𝑛+1 = −
∞∑
𝑗=1

𝜃 𝑗𝑋𝑛+1−𝑗 .

b) Find the mean square error of �̃�𝑛𝑋𝑛+1.

51. In the innovations algorithm, show that for each 𝑛 ≥ 2, the innovation 𝑋𝑛 − �̂�𝑛 is uncorrelated

with 𝑋1 , . . . , 𝑋𝑛−1. Conclude also that the innovation 𝑋𝑛 − �̂�𝑛 is uncorrelated with the innovations

𝑋1 − �̂�1 , . . . , 𝑋𝑛−1 − �̂�𝑛−1.
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52. Let 𝑋1 , 𝑋2 , 𝑋4 , 𝑋5 be observations from an MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 −𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2).
a) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋1 , 𝑋2.

b) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋4 , 𝑋5.

c) Find the best linear estimate of the missing value 𝑋3 in terms of 𝑋1 , 𝑋2 , 𝑋4 , 𝑋5.

d) Compute the mean squared error of the previous estimates. Which one of them is the best estimate

for 𝑋3.

53. Let {𝑋𝑡} be an AR(𝑝) process defined by 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2).
a) Show that

√
𝑛

�̂�(1)−𝜌(1)√
1−(𝜌(1))2

has asymptotically standard normal distribution 𝑁(0, 1).
b) If 𝑛 = 100 and �̂�(1) = 0.64, build an approximate 95% confidence interval for 𝜙.

54. Let {𝑋𝑡} be an AR(1) process defined by 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2) with the usual hypotheses.

For ℎ = 1, 2, . . ., compute the ℎ−step ahead forecast 𝑃𝑛𝑋𝑛+ℎ = �̂�𝑛(ℎ) in terms of {1, 𝑋𝑛 , . . . , 𝑋1} and find

its mean square error.

55. Suppose that {𝑋𝑡} is a non-causal and non-invertible ARMA(1, 1) process satisfying 𝑋𝑡 − 𝜙𝑋𝑡−1 =

𝑍𝑡 + 𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2), with |𝜙 |, |𝜃 | > 1. Define �̃�(𝐵) = 1 − 𝐵
𝜙 and �̃�(𝐵) = 1 + 𝐵

𝜃 and let

𝑊𝑡 = �̃�−1(𝐵)�̃�(𝐵)𝑋𝑡 .
a) Show that {𝑊𝑡} has a constant spectral density function.

b) Conclude that {𝑊𝑡} ∼ WN(0, 𝜎2

𝑤). Give an explicit formula for 𝜎2

𝑤 in terms of 𝜎2
, 𝜃 and 𝜙.

c) Deduce that �̃�(𝐵)𝑋𝑡 = �̃�(𝐵)𝑊𝑡 , so that {𝑋𝑡} is a causal and invertible ARMA(1, 1) process relative

to the white noise {𝑊𝑡} (see [1] for definition).

56. Let {𝑋𝑡} be the MA(1) process defined by 𝑋𝑡 = 𝑍𝑡 +𝜃𝑍𝑡−1 where |𝜃 | < 1 and {𝑍𝑡} ∼ WN(0, 𝜎2). The best

linear predictor of 𝑋𝑛+1 based on 𝑋1 , . . . , 𝑋𝑛 is

�̂�𝑛+1 = 𝜙𝑛,1𝑋𝑛 + · · · + 𝜙𝑛,𝑛𝑋1 ,

where 𝜙𝑛 = (𝜙𝑛,1 , . . . , 𝜙𝑛,𝑛)⊤ satisfies 𝑅𝑛𝜙𝑛 = 𝜌𝑛 ; 𝜌𝑛 = (𝜌(1), . . . , 𝜌(𝑛))⊤. Show that

𝜙𝑛,𝑛−𝑗 = (1 + 𝜃2 + · · · + 𝜃2𝑗)(−𝜃)−𝑗𝜙𝑛,𝑛 for 1 ≤ 𝑗 < 𝑛

and conclude that the PACF of the process is

𝜙𝑛,𝑛 = − (−𝜃)𝑛
1 + 𝜃2 + · · · + 𝜃2𝑛

.

57. Let {𝑋𝑡} be a causal ARMA(1, 1) process of the form 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑍𝑡−1, {𝑍𝑡} ∼ WN(0, 𝜎2).
Consider the innovation algorithm

�̂�𝑛+1 = 𝜙𝑋𝑛 + 𝜃𝑛,1(𝑋𝑛 − �̂�𝑛)

for this process. It can be shown that the innovation algorithm coefficients 𝜃𝑛,1 can be found recursively

as follows:

𝑟0 =
1 + 2𝜃𝜙 + 𝜃2

1 − 𝜙2

, 𝜃𝑛,1 =
𝜃
𝑟𝑛−1

, 𝑟𝑛 = 1 + 𝜃2

(
1 − 1

𝑟𝑛−1

)
.

a) With the notation 𝑦𝑛 =
𝑟𝑛
𝑟𝑛−1

, show that

𝑦𝑛 = 𝜃−2𝑦𝑛−1 + 1, 𝑛 ≥ 1.

b) Deduce that

𝑦𝑛 = 𝜃−2𝑛𝑦0 +
𝑛∑
𝑗=1

𝜃−2(𝑗−1)
:= 𝐴(𝑛).

Determine 𝑟𝑛 and 𝜃𝑛,1 for all 𝑛 ≥ 1.

c) Evaluate the limits of 𝑟𝑛 and 𝜃𝑛,1 for |𝜃 | < 1 as 𝑛 → ∞.
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58. a) Compute and plot the spectral density of the stationary series {𝑋𝑡} satisfying

𝑋𝑡 − 0.99𝑋𝑡−3 = 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 1).

b) Does the spectral density suggest that the sample paths of {𝑋𝑡} will exhibit approximately oscillatory

behaviour? If so, then with what period?

c) Simulate and plot a realization of𝑋1 , . . . , 𝑋60. Does the graph of the realization support the conclusion

in part b)?

d) Compute the spectral density of the filtered process

𝑌𝑡 =
1

3

(𝑋𝑡−1 + 𝑋𝑡 + 𝑋𝑡+1)

and compare the numerical values of the spectral densities of {𝑋𝑡} and {𝑌𝑡} at frequency 𝜆 = 2𝜋
3

radians per unit time. What effect would you expect the filter to have on the oscillations of {𝑋𝑡}?
e) Apply the filter of part d) to the realization of part c). Comment on the result.

59. Consider the sunspot numbers {𝑋𝑡 , 𝑡 = 1, . . . , 100}, filed as SUNSPOTS.TSM.

a) Compute the sample autocovariances �̂�(0), �̂�(1), �̂�(2) and �̂�(3).
b) Use these values to find the Yule-Walker estimates of 𝜙1, 𝜙2 and 𝜎2

in the AR(2) model

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2)

for the mean corrected series 𝑌𝑡 = 𝑋𝑡 − 𝑋 𝑡 .

c) Assuming that the data really are a realization of an AR(2) process, find 95% C.I. for �̂�1 and �̂�2.

d) Use the Durbin-Levinson algorithm to compute the sample PACF �̂�1,1, �̂�2,2 and �̂�3,3 of the sunspot

series. Is the value of �̂�3,3 compatible with the assumption that the data are generated from an AR(2)
process? Use significance level 𝛼 = 0.05.

60. Use the ARMA Process Gaussian Likelihood formula to prove that if {𝑋𝑡} is an AR(𝑝) process with the

equation 𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 , {𝑍𝑡} ∼ WN(0, 𝜎2), then for 𝑛 > 𝑝, the likelihood function can

be written as

𝐿(𝜙, 𝜎2) = (2𝜋𝜎2)−𝑛/2(det(𝐺𝑝))−1/2

exp

{
− 1

2𝜎2

[
X⊤
𝑝𝐺

−1

𝑝 X𝑝 +
∑𝑛
𝑡=𝑝+1

𝑍2

𝑡

]}
,

where X𝑝 = (𝑋1 , . . . , 𝑋𝑝)⊤, 𝜙 = (𝜙1 , . . . , 𝜙𝑝)⊤ and 𝐺𝑝 = 𝜎−2Γ𝑝 = 𝜎−2𝐸(X𝑝X⊤
𝑝).

61. If {𝑌𝑡} is a zero-mean causal ARMA process and 𝑋0 is uncorrelated with 𝑌𝑡 for all 𝑡, show that the best

linear predictor of𝑌𝑛+1 in terms of 1, 𝑋0 , 𝑌1 , . . . , 𝑌𝑛 is the same as the best linear predictor of𝑌𝑛+1 in terms

of 1, 𝑌1 , . . . , 𝑌𝑛 .

62. Suppose that {𝑍𝑡} is a causal stationary AR(𝑝) process with E[𝑍4

𝑡 ] < ∞, and 𝑍𝑡 =
√
ℎ𝑡 𝑒𝑡 where

{𝑒𝑡} ∼ i.i.d. (0, 1) and

ℎ𝑡 = 𝛼0 + 𝛼1𝑍
2

𝑡−1
+ · · · + 𝛼𝑝𝑍

2

𝑡−𝑝 ,
𝑝∑
𝑗=1

𝛼 𝑗 < 1.

a) Show that E[𝑍2

𝑡 |𝑍2

𝑡−1
, 𝑍2

𝑡−2
, . . .] = ℎ𝑡 .

b) Show that {𝑍2

𝑡 } is an AR(𝑝) process. Identify its parameters.
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by Patrick Boily (inspired by Patrick Farrell)

Simply put, data analysis requires data. In pedagogical settings, we take

for granted that the data at our disposal is “perfect” (or “ideal”): it either

consists of the totality of potentially available data, or it is a representative

subset thereof. In practice, either of these can be difficult to achieve; it

can prove costly (and sometimes impractical) to collect data from which

we can infer population trends and characteristics.

While web scraping (and automated methods) are sometimes used to

facilitate the data collection process (see Chapter 16, Web Scraping and
Automatic Data Collection), the samples that they provide often fail to be

representative enough to be of use in practice.

In this chapter, we discuss the principles that underlie statistical sampling

methods, and show how to obtain estimates for various sampling plans.

10.1 Background

To call in the statistician after the experiment is done may be

no more than asking them to perform a post-mortem exami-

nation: at best, they may be able to say what the experiment

died of. [R.A. Fisher, Presidential Address to the First Indian
Statistical Congress, 1938]

Data analysis tools and techniques work in conjunction with collected

data. The type of data that needs to be collected to carry out such analyses,

as well as the priority placed on the collection of quality data relative to

other demands, will dictate the choice of data collection strategies.

The manner in which the resulting outputs of these analyses are used for

decision support will, in turn, influence appropriate data presentation

strategies and system functionality, which is an important access of the

analytical process. Although analysts should always endeavour to work

with representative and unbiased data, there will be times when the

available data is flawed and not easily repaired.

Analysts have a professional responsibility to explore the data, looking

for potential fatal flaws prior to the analysis and to inform their client

and stakeholders of any findings that could halt, skew, or simply hinder
the analytical process or its applicability to the situation at hand.

1

1: Unless some clause has specifically been

put in the contract/agreement to allow a

graceful exit at this point, consultants will

have to proceed with the analysis, flaws

and all. It is EXTREMELY IMPORTANT
that one does not simply sweep these flaws

under the carpet. Address them repeat-

edly in meetings with the clients, and

make sure that the analysis results that

are presented or reported on include an

appropriate caveat.
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Formulating the Problem

The objectives drive all other aspects of quantitative analysis. With a

question (or questions) in mind, an investigator can start the process that

leads to model selection.

With potential models in tow, the next step is to consider:

what variates (fields, variables) are needed,

the number of observations required to achieve a pre-determined

precision, and

how to best go about collecting, storing and accessing the data.

Another important aspect of the problem is to determine whether the

questions are being asked of the data in and of itself, or whether the data

is used as a stand-in for a larger population. In the later case, there are

other technical issues to incorporate into the analysis in order to be able

to obtain generalizable results.

Questions do more than just drive the other aspects of data analysis –

they also drive the development of quantitative methods. They come in

all flavours and their variability and breadth make attempts to answer

them challenging: no single approach can work for all of them, or even

for a majority of them, which leads to the discovery of better methods,

which are in turn applicable to new situations, and so on, and so on.

Not every question is answerable, of course, but a large proportion of

them may be answerable partially or completely; quantitative methods

can provide insights, estimates, and ranges for possible answers, and they

can point the way towards possible implementations of the solutions.

As an illustration, consider the following questions:

Is cancer incidence higher for second-hand smokers than it is for

smoke-free individuals?

Using past fatal collision data and economic indicators, can we

predict future fatal collision rates given a specific national unem-

ployment rate?

What effect would moving a central office to a new location have

on average employee commuting time?

Is a clinical agent effective in the treatment against acne?

Can we predict when border-crossing traffic is likely to be higher

than usual, in order to appropriately schedule staff rotations?

Can personalized offers be provided to past clients to increase the

likelihood of them becoming repeat customers?

Has employee productivity increased since the company introduced

mandatory language training?

Is there a link between early marĳuana use and heavy drug use

later in life?

How do selfies from over the world differ in everything from mood

to mouth gape to head tilt?

Next steps nearly always requires obtaining relevant data.
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Data Types

Data has attributes and properties. Fields are classified as response,

auxiliary, demographic or classification variables; they can be quanti-
tative or qualitative; categorical, ordinal or continuous; text-based or

numerical.

Furthermore, data is collected through experiments, interviews, censuses,

surveys, sensors, scraped from the Internet, etc. Collection methods are

not always sophisticated, but new technologies usually improves the pro-

cess in many ways (while introducing new issues and challenges): modern

data collection can occur over one pass, in batches, or continuously.

How does one decide which data collection method to use?

The type of question to answer obviously has an effect, as do the required

precision, cost and timeliness. Statistics Canada’s Survey Methods and
Practices [10] provides a wealth of information on probabilistic sampling

and questionnaire design, which remain relevant in this day of big (and

real-time) data.

The importance of this step cannot be overstated: without a well-designed
plan to collect meaningful data, and without safeguards to identify flaws

(and possible fixes) as the data comes in, subsequent steps are likely to

prove a waste of time and resources.

As an illustration of the potential effect that data collection can have on

the final analysis results, contrast the two following “ways” to collect

similar data.

The Government of Québec has made public its proposal to

negotiate a new agreement with the rest of Canada, based on

the equality of nations; this agreement would enable Québec

to acquire the exclusive power to make its laws, levy its taxes

and establish relations abroad – in other words, sovereignty –

and at the same time to maintain with Canada an economic

association including a common currency; any change in

political status resulting from these negotiations will only

be implemented with popular approval through another

referendum; on these terms, do you give the Government of

Québec the mandate to negotiate the proposed agreement

between Québec and Canada? [1980 Québec sovereignty

referendum question]

Should Scotland be an independent country? [2014 Scotland

independence referendum question]

The end result was the same in both instances (no to independence),

but an argument can easily be made that the 2014 Scottish ‘No’ was a

much clearer ‘No’ than the Québec ‘No’ of 34 years earlier, in spite of the

smaller 2014 victory margin.
2

2: 55.3%-44.7% in the Scotland referen-

dum, as opposed to 59.6%-40.4% in the

Québec referendum.
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Data Storage and Access

Data storage is also strongly linked with the data collection process, in

which decisions need to be made to reflect how the data is being collected

(one pass, batch, continuously), the volume of data that is being collected,

and the type of access and processing that will be required (how fast,

how much, by whom).

Stored data may go stale (e.g., people move, addresses are no longer

accurate, etc.), so it may be necessary to implement regular updating

collection procedures.

Until very recently, the story of data analysis has only been written for

small datasets: useful collection techniques yielded data that could, for

the most part, be stored on personal computers or on small servers.

The advent of “Big Data” has introduced new challenges vis-à-vis the

collection, capture, access, storage, analysis and visualisation of datasets;

some effective solutions have been proposed and implemented, and

intriguing new approaches are on the way.
3

3: Such as DNA storing [8], to name but

one (!).

We shall not discuss those challenges in detail in this module, but we

urge analysts and consultants alike to be aware of their existence.

10.1.1 Survey Sampling Generalities

The latest survey shows that 3 out of 4 people make up 75%

of the world’s population. [David Letterman]

While the World Wide Web does contain troves of data, web scraping

(see Chapter 16) does not address the question of data validity: will

the extracted data be useful as an analytical component? Will it suffice

to provide the quantitative answers that clients and stakeholders are

seeking?

A survey [10] is any activity that collects information about characteristics

of interest:

in an organized and methodical manner;

from some or all units of a population;

using well-defined concepts, methods, and procedures, and

compiles such information into a meaningful summary form.

A census is a survey where information is collected from all units of a

population, whereas a sample survey uses only a fraction of the units.

Sampling Model

When survey sampling is done properly, we may be able to use various

statistical methods to make inferences about the target population
by sampling a (comparatively) small number of units in the study
population.

The relationship between the various populations (target, study, respon-
dent) and samples (sample, intended, achieved) is illustrated in Figure

10.1.
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Figure 10.1: Various populations and samples in the sampling model.

Target population: population for which we want to obtain infor-

mation;

Study population (survey population): population covered by the

survey (it may be different from the target population, but ideally

the two are very similar);
4

conclusions drawn from the survey 4: The difference may be due to the diffi-
culty/high cost of data collection for some

units excluded from the study population.

results only apply to the study population;

Respondent population: units of the study population that would

participate in the survey if they were asked to do so; it may be

different from the study population if the respondents are not

representative of the study population;

Survey frame: provides the means to identify and communicate
with the units in the survey population; it takes the form of a list,

which is linked to the population under study;

Intended sample: subset of the study population targeted by the

survey;

Achieved sample: subset of the study population whose character-

istics were in fact measured.

In general, a survey is preferred to a census if it is expensive/laborious
to measure the characteristics of interest for each unit, or if the units are

destroyed by measuring the characteristics.

Deciding Factors

In some instances, information about the entire population is required in

order to solve the client’s problem, whereas in others it is not necessary.

How do we determine which type of survey must be conducted to collect

data? The answer depends on multiple factors:

the type of question that needs to be answered;

the required precision;

the cost of surveying a unit;

the time required to survey a unit;

size of the population under investigation, and

the prevalence of the attributes of interest.
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Once a choice has been made, each survey typically follows the same

general steps:

1. statement of objective

2. selection of survey frame

3. sampling design

4. questionnaire design

5. data collection

6. data capture and coding

7. data processing and imputation

8. estimation

9. data analysis

10. dissemination and documentation

The process is not always linear, in that preliminary planning and data

collection may guide the implementation (selection of a frame and of a

sampling design, questionnaire design), but there is a definite movement

from objective to dissemination.
5

5: Compare with Figure 14.4, Section

14.4.1.

10.1.2 Survey Frames

The frame provides the means of identifying and contacting the units of

the study population. It is generally costly to create and to maintain (in

fact, there are organisations and companies that specialize in building

and/or selling such frames).

Useful frames contain:

identification data,

contact data,

classification data,

maintenance data, and

linkage data.

The ideal frame must minimize the risk of undercoverage or overcoverage,

as well as the number of duplications and misclassifications (although

some issues that arise can be fixed at the data processing stage).

Unless the selected frame is relevant (which is to say, it corresponds, and

permits accessibility to, the target population), accurate (the information

it contains is valid), timely (it is up-to-date), and competitively priced,

the statistical sampling approach is contra-indicated.

10.1.3 Fundamental Sampling Concepts

In general, a survey is conducted to estimate certain attributes of a
population (statistics), such as, for example

a mean;

a total, or

a proportion.
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A population (either target, study, or respondent) has a finite number

𝑁 of members, called units or items. The response associated with the

𝑗−th unit of the population is represented by 𝑢𝑗 .

Let U= {𝑢1 , . . . , 𝑢𝑁 } be a population of size 𝑁 < ∞. If 𝑢𝑗 represents a

numerical variable,
6

the mean, variance, and total of the response in 6: E.g., if 𝑢𝑗 is the salary of the 𝑗−th unit

in the population.
the population are respectively

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 , 𝜎2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 , and 𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇.

If 𝑢𝑗 represents a binary variable,
7

the proportion of the response in 7: E.g., 1 if the 𝑗−th unit earns more than

$70𝐾 per year, 0 otherwise.
the population is

𝑝 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 .

We seek to estimate 𝜇, 𝜏, 𝜎2
and/or 𝑝 using the values of the response

variable for the units in the achieved sample Y = {𝑦1 , . . . , 𝑦𝑛} ⊆ U.

The relationship between Y and U is simple: in general, 𝑛 ≪ 𝑁 and

∀𝑖 ∈ {1, . . . , 𝑛}, ∃!𝑗 ∈ {1, . . . , 𝑁} such that 𝑦𝑖 = 𝑢𝑗 .

The empirical mean, empirical total, and empirical variance are:

𝑦(, �̂�) = 1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 , 𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2 , �̂� =

(
𝑁

𝑛

)
𝑛∑
𝑖=1

𝑦𝑖 = 𝑁𝑦.

Let 𝑋1 , . . . , 𝑋𝑛 be random variables, 𝑏1 , . . . , 𝑏𝑛 ∈ ℝ, and E, V, and Cov

be the expectation, variance and covariance operators. Recall that

E

(
𝑛∑
𝑖=1

𝑏𝑖𝑋𝑖

)
=

𝑛∑
𝑖=1

𝑏𝑖E(𝑋𝑖), V(𝑋𝑖) = Cov(𝑋𝑖 , 𝑋𝑖) = E

(
𝑋2

𝑖

)
− E

2(𝑋𝑖)

V

(
𝑛∑
𝑖=1

𝑏𝑖𝑋𝑖

)
=

𝑛∑
𝑖=1

𝑏2

𝑖 V(𝑋𝑖) +
𝑛∑

1≤𝑖≠𝑗
𝑏𝑖𝑏 𝑗Cov(𝑋𝑖 , 𝑋𝑗)

Cov(𝑋𝑖 , 𝑋𝑗) = E(𝑋𝑖𝑋𝑗) − E(𝑋𝑖)E(𝑋𝑗).

The bias in an error component is the average of that error component

if the survey is repeated many times independently under the same

conditions. The variability in an error component is the extent to which

that component would vary about its average value in this scenario.

The mean square error of an error component is a measure of the size of

the error component:

MSE(�̂�) = E

(
(�̂� − 𝛽)2

)
= E

(
(�̂� − E(�̂�) + E(�̂�) − 𝛽)2

)
= V(�̂�) +

(
E(�̂�) − 𝛽

)
2

= V(�̂�) + Bias
2(�̂�)

where �̂� is an estimate of 𝛽. Finally, if the estimate is unbiased, then an

approximate 95% confidence interval (95% C.I.) for 𝛽 is given by

�̂� ± 2

√
V̂(�̂�),
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where V̂(�̂�) is a sampling design-specific estimate of V(�̂�).

Survey Error

One of the strengths of statistical sampling is in its ability to provide

estimates of various quantities of interest in the target population, and to

provide some control over the total error (TE) of the estimates. The TE of

an estimate is the amount by which it differs from the true value for the

target population:

Total Error = Measurement Error + Sampling Error + Non-response Error + Coverage Error,

where the:

coverage error is due to differences in the study and target popula-

tions;

non-response error is due to differences in the respondent and

study populations;

sampling error is due to differences in the achieved sample and

the respondent population;

measurement error is due to true value in the achieved sample not

being assessed correctly.
8

8: We sometimes also include the pro-
cessing error in this component, due to

the fact that the real value of the charac-

teristic of interest can be affected by the

data transformations performed through-

out the analysis.

If we let:

𝑥 be the computed attribute value in the achieved sample;

𝑥true be the true attribute value in the achieved sample under

perfect measurement;

𝑥resp be the attribute value in the respondent population;

𝑥study be the attribute value in the study population, and

𝑥target be the attribute value in the target population,

then

𝑥 − 𝑥target︸     ︷︷     ︸
total error (TE)

= (𝑥 − 𝑥true)︸      ︷︷      ︸
meas. & proc. error

+ (𝑥true − 𝑥resp)︸          ︷︷          ︸
sampling error

+ (𝑥resp − 𝑥study)︸            ︷︷            ︸
non-response error

+ (𝑥study − 𝑥target)︸             ︷︷             ︸
coverage error

.

In an ideal scenario, TE = 0. In practice, there are two main contributions

to Total Error: sampling errors (which are this module’s main concern)

and nonsampling errors, which include every contribution to survey

error which is not due to the choice of sampling scheme.

The latter can be controlled, to some extent:

coverage error can be minimized by selecting a high quality, up-to-

date survey frame;

non-response error can be minimized by careful choice of the data

collection mode and questionnaire design, and by using “call-backs”

and “follow-ups”;

measurement error can be minimized by careful questionnaire

design, pre-testing of the measurement apparatus, and cross-

validation of answers.



10.1 Background 607

These suggestions are perhaps less useful than one could hope in modern

times: survey frames based on landline telephones are quickly becoming

irrelevant in light of an increasingly large and younger population who

eschew such phones, for instance, while response rates for surveys that

are not mandated by law are surprisingly low.
9

9: This explains, in part, the impetus to-

wards automated data collection and the

use of non-probabilistic sampling meth-

ods.

10.1.4 Data Collection Basics

How is data traditionally captured, then? There are paper-based ap-

proaches, computer-assisted approaches, and a suite of other modes.

Self-administered questionnaires are used when the survey re-

quires detailed information to allow the units to consult personal

records (which reduces measurement errors), they are useful to

measure responses to sensitive issues as they provide an extra layer

of privacy, and are typically not as costly as other collection modes,

but they tend to be associated with high non-response rate since

there is less pressure to respond.

Interviewer-assisted questionnaires use trained interviewers to

increase the response rate and overall quality of the data. Face-to-

face personal interviews achieve the highest response rates, but

they are costly (both in training and in salaries). Furthermore, the

interviewer may be required to visit any selected respondents many

times before contact is established. Telephone interviews, on the

other hand produce “reasonable” response rates at a reasonable

cost and they are safer for the interviewers, but they are limited in

length due to respondent phone fatigue. With random dialing, 4-6

minutes of the interviewer’s time is spent in out-of-scope numbers

for each completed interview.

Computer-assisted interviews combine data collection and data

capture, which saves valuable time, but the drawback is that not ev-

ery sampling unit may have access to a computer/data recorder (al-

though this is becomine less prevalent). All paper-based modes have

a computer-assisted equivalent: computer-assisted self-interview
(CASI), computer-assisted interview (CAI), computer-assisted
telephone interview (CATI), and computer-assisted personal
interview (CAPI).

Other approaches include unobtrusive direct observation; diaries

to be filled (paper or electronic); omnibus surveys; email, Internet

(e.g., Survey Monkey ), social media, etc.

10.1.5 Types of Sampling Methods

There is a large variety of methods to select sampling units from the

target population.

Non-Probabilistic Sampling

Those that use subjective, non-random approaches are called non-
probabilistic sampling (NPS) methods; these tend to be quick, relatively
inexpensive and convenient in that a survey frame is not needed.

https://surveymonkey.com
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NPS methods are ideal for exploratory analysis and survey development.
Unfortunately, they are sometimes used instead of probabilistic sampling

designs, which is problematic; the associated selection bias makes NPS

methods unsound when it comes to inferences, as they cannot be used

to provide reliable estimates of the sampling error.1010: The only component of the total er-

ror TE on which the analysts has direct

control. Automated data collection often fall squarely in the NPS camp, for

instance. While we can still analyse data collected with a NPS approach,

we may not generalize the results to the target population (except in

rare, census-like situations).

NPS methods include:

haphazard sampling, also known as “person on the street” sam-

pling; it assumes that the population is homogeneous, but the

selection remains subject to interviewer biases and the availability

of units;

volunteer sampling in which the respondents are self-selected;

there is a large selection bias since the silent majority does not

usually volunteer; this method is often imposed upon analysts

due to ethical considerations; it is also used for focus groups or

qualitative testing;

judgement sampling is based on the analysts’ ideas of the target

population composition and behaviour (sometimes using a prior

study); the units are selected by population experts, but inaccurate

preconceptions can introduce large biases in the study;

quota sampling is very common (and is used in exit polling to

this day in spite of the infamous “Dewey Defeats Truman” debacle

of 1948 [2]); sampling continues until a specific number of units

have been selected for various sub-populations; it is preferable to

other NPS methods because of inclusion of sub-populations, but it

ignores non-response bias;

modified sampling starts out using probability sampling (more on

this later), but turns to quota sampling in its last stage, in part as a

reaction to high non-response rates;

snowball sampling asks sampled units to recruit other units among

their acquaintances; this NPS approach may help locate hidden

populations, but it biased in favour of units with larger social circles

and units that are charming enough to convince their acquaintances

to participate.
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Figure 10.2: Dewey vs Truman – the after-

math: Truman victorious!

There are contexts where NPS methods might fit a client’s need (and

that remains their decision to make, ultimately), but the analyst MUST

still inform the client of the drawbacks, and present some probabilistic

alternatives.

Probabilistic Sampling

The inability to make sound inferences in NPS contexts is a monumental

strike against their use. While probabilistic sample designs are usually

more difficult and expensive to set-up (due to the need for a quality

survey frame), and take longer to complete, they provide reliable es-
timates for the attribute of interest and the sampling error, paving the

way for small samples being used to draw inferences about larger target

populations (in theory, at least; the non-sampling error components can

still affect results and generalisation).

In this chapter, we take a deeper look at the traditional probability sample

designs:

simple random sampling (SRS), see Section 10.3;

stratified random sampling (STS), see Section 10.4;

systematic random sampling (SyS), see Section 10.7.1;

cluster random sampling (CLS), see Section 10.6;

sampling with probability proportional to size (PPS), see Section

10.7.2, and

more advanced designs, see Section 10.7.

In this chapter, the analysis is made easier by assuming that the sampling

error dominates the survey error, i.e., that:

the study population is representative of the target population

(𝑥study ≈ 𝑥target);
the respondent population and the study population coincide, as

are the achieved sample and the target sample (𝑥resp ≈ 𝑥study), and
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Figure 10.3: Schematics of various sampling designs (from left to right, top to bottom): simple random sampling, stratified sampling,

systematic sampling, cluster sampling, multi-stage sampling, multi-phase sampling.

the response is measured without error in the achieved sample

(𝑥 ≈ 𝑥true).

The objective is to control and evaluate the sampling error (𝑥true − 𝑥resp)
for various random sampling designs.

10.2 Questionnaire Design

People resist a census, but give them a profile page and they’ll

spend all day telling you who they are [1].

A questionnaire is a series of questions designed to obtain information
on a topic from respondents. Of course, design principles vary depending

on the subject and method of data collection, but it is considered good

practice to test various questionnaires on random pilot populations
before rolling it out on the study population.

10.2.1 Basic Concepts

In general, a questionnaire should:

be as brief as possible, and free of unnecessary questions;

be accompanied by clear and concise instructions;

keep the respondent’s interests in mind;

emphasize confidentiality;
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keep a serious and courteous tone;

be error-free and attractively presented;

be clearly and precisely worded;

be designed so that it can be answered accurately, and

neatly arranged.

The quality of the collected data depends to a large extent on the quality

of the questionnaire – this is a practical aspect of the discipline on
which much more time should be spent than on data analysis; reputable

survey firms employ specialized teams for questionnaire design.

There is an added challenge for Government of Canada (GoC) federal

departments that are collecting and reporting information about the

public and representatives of businesses or other entities, including

federal public servants: see Public opinion research in the Government of

Canada for details. Some of the information presented in this section

will overlap with the POR guidelines, but at other times, our (generic)

advice will differ.

When working with the GoC, the POR guidelines must obviously take

precedence.
11

11: Fancy footwork might be required to

overcome the challenges presented by the

guidelines, but that is par for the course.

10.2.2 Question Types

The basic unit of the questionnaire is, of course, the question, which

comes in two forms:

closed questions, with a fixed number of predetermined, mutually

exclusive, and collectively exhaustive answer choices (and which

should always include an “Other (please specify)” category to

counteract loss of expressiveness), and

open questions, which are used primarily to identify common

response choices for use in closed-ended questions in a subsequent

questionnaire; any closed-ended question should have been an

open-ended question at some point.

In everyday conversation, closed-ended questions are not appropriate:

Asking open-ended questions is a friendly way to approach

others in discussions. Knowing the difference between open

and closed questions will be invaluable in your career and

social life. How to ask open-ended questions, WikiHow

In a survey, it is rather open-ended questions that are not appropriate:

closed-ended questions require less effort on the part of respondents,

and they are generally easier to quantify, allowing more questions to be

asked in a restricted amount of time and for a given budget.

For example, compare the two following questions.

Open question: What is the most important issue facing Ontario in

2022?

Closed-ended question: Which of these is the most important challenge

for Ontario in 2022?

economy and unemployment

https://www.tpsgc-pwgsc.gc.ca/rop-por/index-eng.html
https://www.tpsgc-pwgsc.gc.ca/rop-por/index-eng.html
https://www.wikihow.com/Ask-Open-Ended-Questions
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impact of COVID-19

reconciliation with indigenous communities

taxes

budget deficit

the environment

organized crime

gang violence

racism

other (please specify)

However, closed-ended questions can also lead to:

a loss of an opportunity to test the waters in order to obtain further

clarification;

introducing response bias by presenting alternatives that respon-

dents would never have thought of, and

a potential loss of interest if the choice of answers does not match

a respondents’ expectations.

Adding open-ended questions to the questionnaire can mitigate these

risks. The use of text analysis and natural language processing methods

can also help to extract the main meaning or sentiments of an answer to

an open-ended question.
12

12: See Chapters 27 and 32 for details and

for limitations of such approaches.

10.2.3 Design Considerations

It is well known that the formulation of questions can influence the

responses of a questionnaire; it is good idea to keep the following wording
considerations in mind when developing questionnaires:

Avoid abbreviations and jargon: “Does your organization use

TTWQ practices?”

Avoid using complex terms when simpler terms will do: “How

many times have you been defenestrated?” vs. “How many times

have you been thrown out a window?”

Ensure that all respondents can answer the questions, by asking

relevant and appropriate-level questions;

Clarify the framework: “What is your annual income?” vs. “What

was your total household income from all sources, before taxes and

deductions, in 2021?

Make the question as accurate as possible: “How much fuel did

your moving company use last year?” (answers received: 2,500

liters, 800 gallons, $13500, more than the previous year, etc.) vs.

“How much did your moving company spend on fuel last year?”

Avoid “double-barreled” questions: “Do you plan to leave your

car at home and take LRT to work?” vs. “Do you plan to leave your

car at home? If so, do you plan to take LRT to work?”, and

Avoid leading questions: the always excellent Yes, Prime Minister
gives a clear-cut example:

13
Sir Humphrey demonstrates that13: Which is not nearly as facetious as it

appears, in the final analysis.

Yes, Prime Minister | S04xE02 | Lead-

ing Questions | The Ministerial Broadcast

asking leading questions in a particular order can lead a respondent

to support the reintroduction of national service:

− Are you concerned about the number of unemployed youth?

− Are you concerned about the increase in teenage crime?

− Do you think there is a lack of discipline in our schools?

http://www.youtube.com/embed/G0ZZJXw4MTA?rel=0
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− Do you think young people would appreciate some leadership?

− Do you think they would respond to a challenge?

− Would you support the re-introduction of national service in

the UK?

The first five questions are designed and presented in such a way

as to elicit support – the obvious answer to each is “yes”. After

this pattern of agreement, Sir Humphrey launches the crucial

question, framed in such a way that it proposes national service

as a supposed solution to all the above problems. In the second

part of the exchange, Sir Humphrey demonstrates that another

set of leading questions can lead the respondent to oppose the

reintroduction of national service:

− Does the danger presented by war worry you?

− Does the arms race worry you?

− Do you think it is dangerous to arm young people and teach

them to kill?

− Is it bad to force people to take up arms against their will?

− Would you oppose the reintroduction of national service?

Sir Humphrey’s first four questions are deliberately designed to

produce agreement. In keeping with the survey design, the fifth

question does the same: a person who answers “yes” to each of

these questions is necessarily opposed to the reintroduction of

national service.
14

14: Based on an idea by Nagesh Belludi.

10.2.4 Question Order

The order in which the questions are presented is as important as their

wording. Questionnaires should be designed to be seamless and follow
a logical process, from the perspective of the respondents:

15
15: Questionnaire design is discussed in

the following references:

Hidiroglou, M., Drew, J. and Gray,

G. [1993], “A Framework for Mea-

suring and Reducing Nonresponse

in Surveys,” Survey Methodology,

v.19, n.1, pp.81-94 [4]

Gower, A. [1994], “Questionnaire

Design for Business Surveys,” Sur-
vey Methodology, v.20, n.2, pp.125-

136 [3]

Survey Methods and Practices ,

Statistics Canada, catalogue num-

ber 12-587-X [10]

1. begin with an introduction that provides the title, topic and pur-

pose of the survey;

2. ask for cooperation from respondents and explain the importance

of the survey and how the results will be used;

3. indicate the degree of confidentiality and provide a deadline and

contact address;

4. follow up with a series of easy and interesting questions to build

respondent confidence;

5. group similar questions under the same heading;

6. only introduce sensitive topics when a relationship of trust is likely

to have been established with the respondents;

7. leave some space and/or time for additional comments, and

8. thank respondents for their participation.

It is worth remembering that without a “sound sampling plan”, collected

data may be of such poor quality that it is impossible to use it to draw

any meaningful conclusions. It is also essential to capture demographic
information that allows classification of units into stratas (STS) or clusters
(CLS); we will revisit those concepts in subsequent sections.

Example: Consider the following video.

https://www150.statcan.gc.ca/n1/pub/12-587-x/12-587-x2003001-eng.pdf
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Figure 10.4: 2021 Census – How do I com-

plete the questionnaire?

Transcription of the video

In May, your household will receive a letter to complete the

2021 Census questionnaire. On your letter, you will find a

secure access code that allows you to complete the question-

naire online. Once online, you can complete the questionnaire

in three easy steps. Simply log on using your secure access

code, complete the questionnaire and select “Submit.” If you

need help or require a paper version, please call the Census

Help Line. For more information or to complete the 2021

Census questionnaire, visit census.gc.ca . It’s safe, quick

and easy.

Message from the Chief Statistician of Canada

Thank you for taking a few minutes to participate in the

2021 Census. The information you provide is converted into

statistics used by communities, businesses and governments

to plan services and make informed decisions about em-

ployment, education, health care, market development and

more. Your answers are collected under the authority of the

Statistics Act and kept strictly confidential. By law, every

household must complete a 2021 Census of Population ques-

tionnaire. Statistics Canada makes use of existing sources of

information such as immigration, income tax and benefits

data to ensure the least amount of burden is placed on house-

holds. The information that you provide may be used by

Statistics Canada for other statistical and research purposes

or may be combined with other survey or administrative

data sources. Make sure you count yourself into Canada’s

statistical portrait, and complete your census questionnaire
today.

Thank you,

Anil Arora

Chief Statistician of Canada

http://www.youtube.com/embed/Gc4zJBrpvm0?rel=0
http://www.youtube.com/embed/Gc4zJBrpvm0?rel=0
https://census.gc.ca
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Figure 10.5: Schematics of SRS: target pop-

ulation (left) and sample (right).

10.3 Simple Random Sampling

Let Ube a population composed of 𝑁 units, whose responses are

U= {𝑢1 , . . . , 𝑢𝑁 }.

Suppose we are interested in the mean 𝜇 of this target population U,

where

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 .

Since the population is of finite size, it is possible to compute 𝜇 directly. . .

at least, in theory. In practice, we rarely have access to the response values

for the entire population U, which leads us to use sampling methods.

A sample Yof size 𝑛 is a subset of the target population U,

Y⊆ {𝑦1 , . . . , 𝑦𝑛} ⊆ {𝑢1 , . . . , 𝑢𝑁 } = U,

from which we can approximate 𝜇 using the sample mean16
16: This is not the only estimator of 𝜇.

𝑦 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 .

A simple random sample (SRS) of size 𝑛 is obtained by randomly

selecting 𝑛 units from the target population, one at a time, without
replacement. In Figure 10.5, a SRS of size 𝑛 = 16 is selected from a

population of size 𝑁 = 64.

At each stage of the sampling procedure, all units not yet in the sample

have the same probability of being added to the sample. In an SRS, each

subset of 𝑛 units has the same probability of being selected.

How do we choose a random sample?

This used to be done “by hand”, using tables of random numbers.

Nowadays, we simply use software (SAS, R, etc.) to obtain (pseudo-
)random samples.

Example What is the average life span, by country, in 2011?

We use the data available in the Gapminder dataset.

https://www.data-action-lab.com/wp-content/uploads/2023/06/gapminder_SS.csv
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library(tidyverse) # for dplyr, ggplot2

gapminder = read.csv("gapminder_SS.csv",

stringsAsFactors=TRUE)

gapminder <- gapminder[,c("country","year","region",

"continent","population",

"infant_mortality","fertility",

"gdp","life_expectancy")]

The structure is provided below:

str(gapminder)

’data.frame’: 10545 obs. of 9 variables:

$ country : Factor w/ 185 levels "Albania","Algeria",..: 1 2 3 4 5 6 7 8 9 ...

$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

$ region : Factor w/ 22 levels "Australia and New Zealand",..: 19 11 10 2 ...

$ continent : Factor w/ 5 levels "Africa","Americas",..: 4 1 1 2 2 3 2 5 4 3 ...

$ population : int 1636054 11124892 5270844 54681 20619075 1867396 54208 ...

$ infant_mortality: num 115.4 148.2 208 NA 59.9 ...

$ fertility : num 6.19 7.65 7.32 4.43 3.11 4.55 4.82 3.45 2.7 5.57 ...

$ gdp : num NA 1.38e+10 NA NA 1.08e+11 ...

$ life_expectancy : num 62.9 47.5 36 63 65.4 ...

A famous chart displays the relationship between 4 of the variables [9].

Our version for 2011 (built with R) can be found in Figure 10.6.

Figure 10.6: Health and wealth of nations for the 2011 Gapminder data.

We start by extracting the information of interest.

gapminder.SRS <- gapminder |>

filter(year==2011) |>

select(life_expectancy)

str(gapminder.SRS)
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’data.frame’: 185 obs. of 1 variable:

$ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...

In this specific example, we know the true average life expectancy per

country in 2011 (at least, for the 𝑁 = 185 countries in the dataset).

mean(gapminder.SRS)

[1] 71.18

The distribution of the population U = {𝑢1 , . . . , 𝑢185} is shown below

(with mean in red):

ggplot(data=gapminder.SRS, aes(life_expectancy)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2,

breaks=seq(45, 85, by = 2.5)) +

geom_vline(xintercept=mean(gapminder.SRS$life_expectancy),

color="red")

We select a random sample of size 𝑛 = 10 from U. The indices are:

set.seed(1234) # for replicability

N = dim(gapminder.SRS)[1]

n = 10

(sample.ind = sample(1:N,n, replace=FALSE))

[1] 28 80 150 101 111 137 133 166 144 132

The corresponding sample Y= {𝑦1 , . . . , 𝑦10} is obtained via:
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(gapminder.SRS.n = gapminder.SRS[sample.ind,])

[1] 67.60 67.70 76.10 79.97 75.70 79.70 70.20 59.60 78.90 78.50

Its empirical mean 𝑦 is:

(y.bar = mean(gapminder.SRS.n))

[1] 73.397

But a different sample may lead to a different estimate. Case in point,

consider the following:

set.seed(12345) # replicability

(sample.ind = sample(1:N,n, replace=FALSE))

(gapminder.SRS.n = gapminder.SRS[sample.ind,])

(y.bar = mean(gapminder.SRS.n))

[1] 142 51 152 58 93 75 96 2 86 180

[1] 71.0 74.3 63.0 81.6 65.0 75.0 46.7 76.1 78.1 74.8

[1] 70.56

It is quite reasonable for the two estimates to be different – since each 𝑦𝑖
in a SRS is a random variable, so is the mean 𝑦.

The sampling variability explains how the estimates vary with the

sample. For example, if we prepare 𝑚 = 500 samples, each of size 𝑛 = 10,

we could obtain the empirical means below:

set.seed(12) # for replicability

N=dim(gapminder.SRS)[1]

n=10

m=500

means <- c()

for(k in 1:m){

means[k] <- mean(gapminder.SRS[sample(1:N,n,

replace=FALSE),])

}

ggplot(data=data.frame(means), aes(means)) +

geom_histogram(aes(y =..density..),

breaks=seq(60, 80, by = 1),

col="black", fill="blue", alpha=.2) +

geom_density(col=2) + geom_rug(aes(means))
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There is some variability, of course, but the sample means seem to

congregate around the 72 mark:

summary(data.frame(means))

means

Min. :63.03

1st Qu.:69.83

Median :71.53

Mean :71.44

3rd Qu.:73.05

Max. :78.86

10.3.1 Basic Notions

The population variance 𝜎2
is a measure of dispersion, i.e., the tendency

of the response values to deviate from the population mean 𝜇:

𝜎2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 =
1

𝑁

𝑁∑
𝑗=1

(𝑢2

𝑗 − 2𝑢𝑗𝜇 + 𝜇2)

=
1

𝑁

(
𝑁∑
𝑗=1

𝑢2

𝑗 − 2𝜇
𝑁∑
𝑗=1

𝑢𝑗 + 𝑁𝜇2

)
=

1

𝑁

(
𝑁∑
𝑗=1

𝑢2

𝑗 − 2𝑁𝜇2 + 𝑁𝜇2

)
=

1

𝑁

𝑁∑
𝑗=1

(
𝑢2

𝑗 − 𝑁𝜇2

)
=

1

𝑁

𝑁∑
𝑗=1

𝑢2

𝑗 − 𝜇2

The parameters 𝜇 and 𝜎2
can be interpreted in terms of the expectation

and variance of a random variable.

Let 𝑋 be a discrete random variable whose probability mass function
(p.m.f.) is 𝑓 (𝑥) = 𝑃(𝑋 = 𝑥). Thus,

E[𝑋] =
∑
𝑥

𝑥 𝑓 (𝑥), V[𝑋] =
∑
𝑥

(𝑥 − E[𝑋])2 𝑓 (𝑥), SD[𝑋] =
√

V[𝑋].
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For a sample of size 𝑛 = 1 from this population, whose value is repre-

sented by the random variable 𝑌1, we have 𝑓 (𝑢𝑗) = 𝑃(𝑌1 = 𝑢𝑗) = 1

𝑁 for

𝑗 = 1, . . . , 𝑁 , from which we see that

E[𝑌1] =
𝑁∑
𝑗=1

𝑢𝑗 𝑓 (𝑢𝑗) =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 = 𝜇,

and

V[𝑌1] =
𝑁∑
𝑗=1

(𝑢𝑗 − 𝜇)2 𝑓 (𝑢𝑗) =
1

𝑁

𝑁∑
𝑗=1

𝑢2

𝑗 − 𝜇2 = 𝜎2 , SD[𝑌1] =
√

V[𝑌1] = 𝜎.

In general, however, the estimator 𝑦 of the population mean𝜇 is computed

using more than one observation – different sample sizes 𝑛 could yield

different values of 𝑦. In order to control the sampling error associated

with an SRS, one needs to know the distribution of 𝑌; in particular, E[𝑌]
and V[𝑌].

If 𝑦1 , . . . , 𝑦𝑛 are independent and identically distributed (i.i.d.) random

variables, the central limit theorem (CLT) imposes

𝑌 ∼approx. N(𝜇, 𝜎2/𝑛).

Example Consider a finite population with 𝑁 = 4 elements:

𝑢1 = 2, 𝑢2 = 0, 𝑢3 = 1, 𝑢4 = 5.

The population mean and variance are, respectively,

𝜇 =
1

4

(2 + 0 + 1 + 5) = 2 and 𝜎2 =
1

4

(22 + 0
2 + 1

2 + 5
2) − 2

2 =
7

2

.

Suppose that draw a SRS of size 𝑛 = 3 without replacement from this

population in order to approximate (estimate) the true mean 𝜇. There

are

(
4

3

)
= 4 such samples:

Sample Values 𝑦 𝑃(𝑌 = 𝑦)
𝑢1 , 𝑢2 , 𝑢3 2, 0, 1 1 1/4

𝑢1 , 𝑢2 , 𝑢4 2, 0, 5 7/3 1/4

𝑢1 , 𝑢3 , 𝑢4 2, 1, 5 8/3 1/4

𝑢2 , 𝑢3 , 𝑢4 0, 1, 5 2 1/4

Then

E[𝑌] =
∑
𝑦

𝑦𝑃(𝑌 = 𝑦) = 1

4

(
1 + 7

3
+ 8

3
+ 2

)
= 2 = 𝜇

V[𝑌] =
∑
𝑦

𝑦
2

𝑃(𝑌 = 𝑦) − E
2[𝑌] = 1

4

(
1

2 +
(

7

3

)
2 +

(
8

3

)
2 + 2

2

)
− 2

2 = 7

18
.

This is all great. . . except that V[𝑌] ≠ 𝜎2

𝑛 = 7

6
. What is going on? ■

Here’s how we can explain this discrepancy. Let U= {𝑢1 , . . . , 𝑢𝑁 } be a

finite population of size 𝑁 . A SRS Y= {𝑦1 , . . . , 𝑦𝑛} of size 𝑛 is drawn
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from U without replacement. Let 𝑌𝑖 be the random variable which

represents the value of the 𝑖−th unit of the sample, respectively.

All 𝑌𝑖 have identical distributions: for any 𝑢𝑗 ∈ U, we have:
17

17: Be careful not to confuse the unit 𝑢𝑗
with its response value 𝑢𝑗 ; we use the same

notation by laziness, but they represent

different concepts.𝑃(𝑌1 = 𝑢𝑗) =
1

𝑁
,

𝑃(𝑌2 = 𝑢𝑗) =
𝑃(𝑌2 = 𝑢𝑗 | 𝑌1 ≠ 𝑢𝑗) · 𝑃(𝑌1 ≠ 𝑢𝑗)

𝑃(𝑌1 ≠ 𝑢𝑗 | 𝑌2 = 𝑢𝑗)
=

1

𝑁−1
· 𝑁−1

𝑁

1

=
1

𝑁
,

𝑃(𝑌3 = 𝑢𝑗) =
𝑃(𝑌3 = 𝑢𝑗 | 𝑌1 , 𝑌2 ≠ 𝑢𝑗) · 𝑃(𝑌1 , 𝑌2 ≠ 𝑢𝑗)

𝑃(𝑌1 , 𝑌2 ≠ 𝑢𝑗 | 𝑌3 = 𝑢𝑗)
=

1

𝑁−2
· 𝑁−2

𝑁−1
· 𝑁−1

𝑁

1

=
1

𝑁
,

and so on:

𝑃(𝑌𝑖 = 𝑢𝑗) =
1

𝑁

for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁 , and so E[𝑌𝑖] = 𝜇, V[𝑌𝑖] = 𝜎2
for any 𝑖.

Thus, in the preceding example, we would have

E[𝑌1] = E[𝑌2] = E[𝑌3] = 𝜇 = 2 and V[𝑌1] = V[𝑌2] = V[𝑌3] = 𝜎2 =
7

2

.

But the {𝑌𝑖} are not independent of each other since (for example)

E[𝑌] = 𝜇 = 2, but V[𝑌] = V

[
𝑌1+𝑌2+𝑌3

3

]
=

7

18

≠
𝜎2

3

=
7/2

3

=
7

6

.

It is in the variance that we observe a difference. The covariance between

two (discrete) random variables 𝑋1, 𝑋2 is a measure of the strength of
association between 𝑋1 and 𝑋2. If E[𝑋𝑖] = 𝜇𝑖 and V[𝑋𝑖] = 𝜎2

𝑖
< ∞ for

all 𝑖, then

Cov[𝑋1 , 𝑋2] = E[(𝑋1 − 𝜇1)(𝑋2 − 𝜇2)] = E[𝑋1𝑋2] − 𝜇1𝜇2.

If 𝑋1 , 𝑋2 both take values in U= {𝑢1 , . . . , 𝑢𝑁 }, then their joint expecta-
tion is

E[𝑋1𝑋2] =
𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘𝑃(𝑋1 = 𝑢𝑗 , 𝑋2 = 𝑢𝑘).

In the case where 𝑋1 = 𝑌𝑖 and 𝑋2 = 𝑌ℓ (with the interpretation given

before) for 1 ≤ 𝑖 ≠ ℓ ≤ 𝑛, we get

𝑃(𝑌𝑖 = 𝑢𝑗 , 𝑌ℓ = 𝑢𝑘) = 𝑃(𝑌𝑖 = 𝑢𝑗)𝑃(𝑌ℓ = 𝑢𝑘 | 𝑌𝑖 = 𝑢𝑗) =
{

1

𝑁 · 1

𝑁−1
if 𝑗 ≠ 𝑘

0 if 𝑗 = 𝑘

But E[𝑌𝑖] = E[𝑌ℓ ] = 𝜇, and so

Cov(𝑌𝑖 , 𝑌ℓ ) =


1

𝑁(𝑁−1)

[ 𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘 −
𝑁∑
𝑚=1

𝑢2

𝑚︸  ︷︷  ︸
doublecounting

]
− 𝜇2

if 𝑖 ≠ ℓ

𝜎2
if 𝑖 = ℓ (by convention)

We use the properties

∑
𝑢𝜉 = 𝑁𝜇 and

∑
𝑢2

𝜉 = 𝑁(𝜇2 + 𝜎2) to simplify the
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expression when 𝑖 =≠ ℓ :

Cov(𝑌𝑖 , 𝑌ℓ ) =
1

𝑁(𝑁 − 1)
[ 𝑁∑
𝑗=1

𝑁∑
𝑘=1

𝑢𝑗𝑢𝑘 −
𝑁∑
𝑚=1

𝑢2

𝑚 − 𝑁(𝑁 − 1)𝜇2

]
=

1

𝑁(𝑁 − 1)
[ 𝑁∑
𝑗=1

𝑢𝑗

( 𝑁∑
𝑘=1

𝑢𝑘

)
− 𝑁(𝜎2 + 𝜇2) − 𝑁(𝑁 − 1)𝜇2

]
=

1

𝑁(𝑁 − 1)
[
𝑁𝜇

𝑁∑
𝑗=1

𝑢𝑗 − 𝑁𝜎2 − 𝑁𝜇2 − 𝑁2𝜇2 + 𝑁𝜇2

]
=

1

𝑁(𝑁 − 1)
[
𝑁𝜇 · 𝑁𝜇 − 𝑁𝜎2 − 𝑁2𝜇2

]
= − 𝜎2

𝑁 − 1

.

Using the formulas of the previous section, we thus obtain

E[𝑌] = E

[𝑌1 + · · · + 𝑌𝑛
𝑛

]
=

1

𝑛
E[𝑌1 + · · · + 𝑌𝑛] =

1

𝑛

(
E[𝑌1] + · · ·E[𝑌𝑛]

)
=

1

𝑛
(𝜇 + · · · + 𝜇︸       ︷︷       ︸

𝑛 times

) = 𝜇, and

V[𝑌] = V

[𝑌1 + · · · + 𝑌𝑛
𝑛

]
=

1

𝑛2

V[𝑌1 + · · · + 𝑌𝑛] =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
ℓ=1

Cov(𝑌𝑖 , 𝑌ℓ )

=
1

𝑛2

[ 𝑛∑
𝑖=1

𝜎2 + 2

𝑛∑
𝑖=1

𝑛∑
ℓ=𝑖+1

Cov(𝑌𝑖 , 𝑌ℓ )
]
=

1

𝑛2

[
𝑛𝜎2 − 𝑛(𝑛 − 1) 𝜎2

𝑁 − 1

]
=

𝜎2

𝑛

(
1 − 𝑛 − 1

𝑁 − 1

)
=

𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Let’s go back to the above example: we have 𝑁 = 4, 𝑛 = 3, 𝜇 = 2, and

𝜎2 = 7

2
. According to what we have just found, we indeed get

E[𝑌] = 2 and V[𝑌] = 7/2

3

(
4 − 3

4 − 1

)
=

7

18

.

The component
𝑁−𝑛
𝑁−1

is the finite population correction factor (FPCF);

it shows up because the population is not infinite. Since the SRS is

constructed without replacing the units in the finite population after they

have been drawn into the sample, the presence of a unit in the SRS affects

the probability that another unit will also be in the SRS – the random
variables 𝑌𝑖 are not independent.1818: When 𝑁 is “large” and the ratio

𝑛
𝑁

is

“small”, the FPCF ≈ 1, in which case the

situation is very similar to sampling with

replacement. 10.3.2 Estimators and Confidence Intervals

The estimator 𝑦 is unbiased under SRS. In that case, how do we interpret

the sapling variance V(𝑦)? Quite simply, it provides an idea of the typical

distance between the empirical mean 𝑦 and the population mean 𝜇.

The mean square error of 𝑦 under SRS is

MSE(𝑦) = V(𝑦) + (E(𝑦) − 𝜇)2 = V(𝑦) + 0 = V(𝑦),

which is to say that the estimation error is entirely dominated by V(𝑦).
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When we sample with replacement,
19

the samples 𝑦1 , . . . , 𝑦𝑛 are viewed 19: Which is not a SRS situation.

as independent from one another. If they are also indentically dis-
tributed, we then have E(𝑦𝑖) = 𝜇 and V(𝑦𝑖) = 𝜎2

, or

E(𝑦) = 𝜇, and V(𝑦) = 𝜎2

𝑛
.

When 𝑛 → ∞, the CLT states that 𝑦 ∼ approx.N(𝜇, 𝜎2/𝑛), whence

𝑍 =
𝑦 − 𝜇

SD(𝑦) =
𝑦 − 𝜇

𝜎/
√
𝑛

∼approx. N(0, 1).

Let 𝛼 ∈ (0, 1). Denote the (1 − 𝛼)th quantile of a standard normal
random variable 𝑍 ∼ N(0, 1) by 𝑧𝛼 > 0. According to the frequentist

interpretation of probability, we can expect that

𝑦−𝜇
𝜎/

√
𝑛

will fall in the

interval (−𝑧𝛼/2
, 𝑧𝛼/2

) roughly 100(1 − 𝛼)% of the time:
20

20: The important quantiles are illustrated

below:

𝑃(−𝑧𝛼/2
≤ 𝑍 ≤ 𝑧𝛼/2

) = 𝑃
(
−𝑧𝛼/2

𝜎√
𝑛

≤ 𝑦 − 𝜇 ≤ 𝑧𝛼/2

𝜎√
𝑛

)
≈ 1 − 𝛼.

The quantity

𝐵𝛼 = 𝑧𝛼/2

𝜎√
𝑛

= 𝑧𝛼/2
SD(𝑦)

is the bound on the error of estimation, and we can build an approximate

95% confidence interval for the mean 𝜇:

C.I.(𝜇; 100(1 − 𝛼)%) : 𝑦 ± 𝐵𝛼 = 𝑦 ± 𝑧𝛼/2

𝜎√
𝑛
.

However, in a SRS scenario, we are NOT dealing with i.i.d. random

variables. How must this argument be modified when we sample without

replacement from a finite population?

Sampling Context – Gapminder Data

We will illustrate the important concepts of sampling theory with the

help of the 2011 Gapminder dataset, as we had done at the start of the

section. In addition to average life expectancy, we are also interested in:

the total population of the planet,

the average population per country, and

the proportion of countries with a population of less than 10M.

The population of 185 countries is available – it ranges from 56, 641 to

1, 348, 174, 478, with an average value 𝜇 = 37, 080, 426.

gapminder.SRS <- gapminder |>

filter(year==2011) |> select(life_expectancy,population)

str(gapminder.SRS)

summary(gapmider.SRS)
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’data.frame’: 185 obs. of 2 variables:

$ life_expectancy: num 77.4 76.1 58.1 75.9 76 ...

$ population : int 2886010 36717132 21942296 88152 41655616 ...

life_expectancy population

Min: 46.70 5.644e+04

1st Qu: 65.30 2.064e+06

Median :73.70 7.563e+06

Mean :71.18 3.708e+07

3rd Qu.:77.40 2.423e+07

Max. :83.02 1.348e+09

ggplot(data=gapminder.SRS, aes(population)) +

geom_rug() +

geom_vline(xintercept=mean(gapminder.SRS$population),

color="red") +

geom_histogram(col="black", fill="blue", alpha=.2)

The population distribution by country is asymmetric, with a tail that

spreads to the right, and two outliers (China and India). These observa-

tions will sometimes be removed from the data set.

gapminder.SRS.2 <- gapminder |>

filter(year==2011) |>

select(life_expectancy,population) |>

filter(population<500000000)

nrow(gapminder.SRS.2)

summary(data.frame(gapminder.SRS.2$population))

[1] 183

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 2061342 7355231 23301958 22242334 312390368
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ggplot(data=gapminder.SRS.2, aes(population)) +

geom_rug() +

geom_vline(xintercept=mean(gapminder.SRS$population),

color="red") +

geom_histogram(col="black", fill="blue", alpha=.2)

The associated distribution has the same shape as the one with all

countries, but the 183 populations all fall below 312, 390, 368, with a

mean value of 𝜇 = 23, 301, 958.

Estimating the Mean 𝜇

In an SRS, we have shown that the empirical mean 𝑦 computed from a

sample of size 𝑛 is an unbiased estimator of the mean𝜇 of a population of

size 𝑁 and variance 𝜎2
. We have also shown that the sampling variance

of the 𝑦 estimator is

V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

What distribution can we expect 𝑦 to follow? Let’s go back to the example

of the world population (without China and India). We produce 500 SRS

samples of 𝑛 = 20 countries from the list of 𝑁 = 183 countries. For each

sample 1 ≤ 𝑖 ≤ 500, we compute the empirical mean 𝑦 𝑖 :

set.seed(12) # replicability

N=dim(gapminder.SRS.2)[1]

n=20

m=500

means <- c()

for(k in 1:m){

means[k] <- mean(gapminder.SRS.2[sample(1:N,n,

replace=FALSE),2])
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}

The SRS sample means are listed below:

summary(data.frame(means))

Min. : 5244486

1st Qu.:16289930

Median :21986525

Mean :23238867

3rd Qu.:28718720

Max. :55152022

Their distribution (and mean) is:

ggplot(data=data.frame(means), aes(means)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(means), color="red")

Although the distribution of empirical means 𝑦 𝑖 is asymmetric with a
tail spreading to the right, the density curve still resembles that of a

normal distribution.

Central Limit Theorem – SRS Let U = {𝑢1 , . . . , 𝑢𝑁 } be a finite popu-

lation with mean 𝜇 and variance 𝜎2
, and let Y = {𝑦1 , . . . , 𝑦𝑛} ⊆ U be

a simple random sample. If 𝑛 and 𝑁 − 𝑛 are both “sufficiently large”,

then

𝑦 ∼approx. N(E(𝑦),V(𝑦)) = N

(
𝜇,

𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

))
.



10.3 Simple Random Sampling 627

In a SRS, the bound on the error of estimation and the approximate 95%
C.I. are given by:

𝐵𝜇 = 2

√
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
and 𝑃(|𝑦−𝜇| ≤ 𝐵𝜇) ≈ 𝑃

(��� 𝑦−𝜇
SD(𝑦)

��� ≤ 2

)
≈ 0.9544.

In practice, the population variance 𝜎2
is rarely known. We usually

approximate it with the empirical variance

𝑠2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2 =
1

𝑛 − 1

[ 𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

]
, {𝑦𝑖} i.i.d.

Unfortunately, 𝑠2
is a biased estimator of 𝜎2

when the simple random

sample is selected without replacement from a finite population. In-

deed,

E(𝑠2) = E

[
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2
]

= E

[
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇 + 𝜇 − 𝑦)2
]

= E

[
1

𝑛 − 1

[ 𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇)2 − 𝑛(𝑦 − 𝜇)2
] ]

=
1

𝑛 − 1

[ 𝑛∑
𝑖=1

E

[
(𝑦𝑖 − 𝜇)2

]
− 𝑛E

[
(𝑦 − 𝜇)2

] ]
=

1

𝑛 − 1

[ 𝑛∑
𝑖=1

𝜎2 − 𝑛V(𝑦)
]

=
1

𝑛 − 1

[
𝑛𝜎2 − 𝑛 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)]
=

𝜎2

𝑛 − 1

[
𝑛 − 𝑁 − 𝑛

𝑁 − 1

]
=

𝜎2

𝑛 − 1

[𝑛𝑁 − 𝑛 − 𝑁 + 𝑛
𝑁 − 1

]
=

𝜎2

𝑛 − 1

· 𝑁(𝑛 − 1)
𝑁 − 1

=
𝑁

𝑁 − 1

𝜎2.

The unbiased estimator of 𝜎2
in the SRS context is instead

𝑁 − 1

𝑁
𝑠2

since

E

[
𝑁 − 1

𝑁
𝑠2

]
=
𝑁 − 1

𝑁
E(𝑠2) = 𝑁 − 1

𝑁
· 𝑁

𝑁 − 1

𝜎2 = 𝜎2.

We can approximate the sampling variance by replacing 𝜎2
by

𝑁−1

𝑁 𝑠2
in

the expression for V(𝑦):

V̂(𝑦) = 𝑁 − 1

𝑁
· 𝑠

2

𝑛

(
𝑁 − 𝑛
𝑁 − 1

)
=
𝑠2

𝑛

(
𝑁 − 𝑛
𝑁

)
=
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
.

The bound on the error of estimation is thus approxiated by

𝐵𝜇 ≈ �̂�𝜇 = 2

√
V̂(𝑦) = 2

√
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
,
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from which we conclude that

C.I.(𝜇; 0.95) : 𝑦 ± 2

√
𝑠2

𝑛

(
1 − 𝑛

𝑁

)
is an approximate 95% confidence interval for 𝜇.

If the population variance 𝜎2
is known, the FPCF is

𝑁−𝑛
𝑁−1

; if it is unknwon,

the FPCF in 1 − 𝑛
𝑁 . In practice, when the sampling rate 𝑛

𝑁 is below 5%,

we can easily drop the FPCF (1 − 𝑛
𝑁 ≈ 1) without affecting the resulting

quantities too greatly.

Example We draw a SRS sample Y of size 𝑛 = 132 from a finite

population Uwith 𝑁 = 37, 444 units. Let the sample mean and sample

standard deviation be 𝑦 = 111.3 and 𝑠 = 16.35, respectively. Find an

approximate 95% C.I. for the population average 𝜇.

The bound on the error of estimation is roughly

�̂�𝜇 = 2

√
V̂(𝑦) = 2

√
16.35

2

132

(
1 − 132

37444

)
≈ 2.8,

which implies that

C.I.(𝜇; 0.95) ≈ 111.3 ± 2.8;

the outcome is basically the same without the FPCF. ■

Example Find an approximate 95% C.I. for the average population per

country in 2011 (excluding China and India) with a SRS of size 𝑛 = 20.

We draw such a SRS sample and compute its sample mean 𝑦 and

sample variance 𝑠2
(the outcomes will of course vary from one sample to

another).

set.seed(12) # replicability

N = dim(gapminder.SRS.2)[1]

n = 20

SRS = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]

(y.bar = mean(SRS))

(s.2 = var(SRS))

[1] 35217143

[1] 5.492071e+15

If we do not know the population variance, the bound �̂�𝜇 and the

corresponding approximate 95% C.I. for 𝜇 are given by:

(B.hat = 2*sqrt(s.2/n*(1-n/N)))

(IC.hat = c(y.bar-B.hat,y.bar+B.hat))

[1] 31278890

[1] 3938253 66496034
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We can compare with the true mean 𝜇:

(mu = mean(gapminder.SRS.2[,2]))

[1] 23301958

Sure enough, 𝜇 is in the confidence interval:

mu > IC.hat[1] & mu < IC.hat[2]

[1] TRUE

In this case, however, we also knew the population variance 𝜎2
:

(sigma.2 = var(gapminder.SRS.2[,2]))

[1] 1.885224e+15

The bound 𝐵𝜇 and the corresponding approximate 95% C.I. for 𝜇 are

then obtained via:

(B = 2*sqrt(sigma.2/n*(N-1)/(N-n)))

(IC = c(y.bar-B,y.bar+B))

[1] 20518160

[1] 14698984 55735303

Sure enough, 𝜇 is again in the confidence interval:

mu > IC[1] & mu < IC[2]

[1] TRUE

In both cases, the true mean𝜇 = 23, 301, 958 is contained in the confidence

interval. We also notice that the C.I. when the variance 𝜎2
is known is

contained in the 95% C.I. when the variance is not known.
21 ■ 21: Will this always be the case?

In this case, the true mean was in the confidence interval. But it could be

that the 95% C.I. constructed from a sample does not contain the mean 𝜇.

Example We repeat this procedure 𝑚 = 1000 times (with different

samples each time). If the CLT for SRS applies, how many times would

we expect 𝜇 to be in the approximate 95% C.I. built from the simple

random samples? Assume that 𝜎2
is not known.
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m = 1000

mu.in.IC = c()

y.bar = c()

for(j in 1:m){

test = gapminder.SRS.2[sample(1:N,n, replace=FALSE),2]

s.2 = var(test)

B.hat = 2*sqrt(s.2/n*(1-n/N))

y.bar[j] = mean(test)

mu.in.IC[j] = y.bar[j]-B.hat < mu & mu < y.bar[j]+B.hat

}

mean(mu.in.IC)

[1] 0.821

This is not the ≈ 95% we expected; but if we increase the sample size,

the proportion gets closer to 95% (see Exercises). The long tail of the

population distribution for 𝑁 = 183 units probably plays a role – the

distribution of the sample measn 𝑦 (with 𝑚 = 1000 samples of size

𝑛 = 20) does not appear to be normal.

ggplot(data=data.frame(y.bar), aes(y.bar)) +

geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(y.bar), color="red")

Estimating the Total 𝜏

Most of the work has been done: since the total 𝜏 can be re-written as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,
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we can approximate 𝜏 with a SRS through the formula

�̂� = 𝑁𝑦 =
𝑁

𝑛

𝑛∑
𝑖=1

𝑦𝑖 .

This estimator is unbiased since its expectation is

E(�̂�) = E(𝑁𝑦) = 𝑁 · E(𝑦) = 𝑁𝜇 = 𝜏.

Its sampling variance is given by

V(�̂�) = V(𝑁𝑦) = 𝑁2 · V(𝑦) = 𝑁2 · 𝜎
2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

the bound on the estimation error is thus

𝐵𝜏 = 2

√
V(�̂�) = 2

√
𝑁2 · 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
= 𝑁 · 𝐵𝜇.

Since we do not usually know the true population variance 𝜎2
of U, we

provide an approximation by substituting 𝜎2
by the sample variance 𝑠2

,

which needs to be multiplied by the “biased” factor
𝑁−1

𝑁 .
22

We can thus 22: Recall that 𝑠2
is a biased estimator of

𝜎2
in a SRS.

provide an approximation of the sampling variance using

V̂(�̂�) = V̂(𝑁𝑦) = 𝑁2 · 𝑠
2

𝑛

(
1 − 𝑛

𝑁

)
;

this yields an approximate bound on the estimation error of

𝐵𝜏 ≈ �̂�𝜏 = 2

√
V̂(�̂�) = 2

√
𝑁2 · 𝑠

2

𝑛

(
1 − 𝑛

𝑁

)
= 𝑁 · �̂�𝜇 ,

and an approximate 95% C.I. for 𝜏:

C.I.(𝜏; 0.95) : �̂� ± 2

√
𝑁2 · 𝑠

2

𝑛

(
1 − 𝑛

𝑁

)
.

Example Consider a sample Y of size 𝑛 = 132 drawn from a finite

population U of size 𝑁 = 37, 444. Suppose the empirical mean and

standard deviation of the sample are 𝑦 = 111.3 and 𝑠 = 16.35, respectively.

Give an approximate 95% C.I. for the total 𝜏 in U.

The approximate bound on the error of estimation

�̂�𝜏 = 2

√
𝑁2 · V̂(𝑦) = 2

√
37444

2 · 16.35
2

132

(
1 − 132

37444

)
≈ 106, 383.9643,

which yields

C.I.(𝜏; 0.95) ≈ 37, 444 · 111.3 ± 106, 383.9643 = 4, 167, 517.2 ± 106, 384.0,

or simply (4, 061, 133.2; 4, 273, 901.2). ■

Example Find an approximate 95% C.I. for the population of the planet

in 2011 (excluding China and India), using a SRS of size 𝑛 = 20, assuming
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that

𝑦 = 27, 396, 632 and C.I.(𝜇; 0.95) ≡ (6, 755, 099; 48, 038, 164).

We have �̂�𝜇 ≈ 48, 038, 164 − 27, 396, 632 = 20, 641, 532 and

�̂�𝜏 ≈ 𝑁�̂�𝜇 = 183 · 20, 641, 532 = 3, 777, 400, 356,

from which we conclude that

C.I.(𝜏; 0.95) : 𝑁𝑦 ± 𝐵𝜏 = 183(27, 396, 632) ± 3, 777, 400, 356,

or simply, C.I.(𝜏; 0.95) :≡ (1, 236, 183, 300; 8, 790, 984, 012).23 ■23: The interval is “valid”, but it is per-

haps too wide to be of practical use. We

will discuss ways to improve the predic-

tion in future sections. Estimating a Proportion 𝑝

In a population Uwhere 𝑢𝑗 ∈ {0, 1} represents a binary response for all

1 ≤ 𝑗 ≤ 𝑁 ,
24

the mean takes a particular interpretation:24: For example, 𝑢𝑗 = 1 when the corre-

sponding unit possesses a certain charac-

teristic, and 𝑢𝑗 = 0 when it does not.

𝑝 = 𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗

is the proportion of the units possessing the characteristic in question.

This proportion can be estimated with a SRS via:

�̂� = 𝑦 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 𝑦𝑖 ∈ {0, 1}.

It is an unbiased estimator of the proportion since its expectation is

E(�̂�) = E(𝑦) = 𝜇 = 𝑝;

its sampling variance is

V(�̂�) = V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But𝑈2 = 𝑈 when𝑈 is a binary response, from which we see that

𝜎2 = E[𝑈2] − E
2[𝑈] = E[𝑈] − E

2[𝑈] = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝),

and so

V(�̂�) = 𝑝(1 − 𝑝)
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound on the error of estimation is thus

𝐵𝑝 = 2

√
V(�̂�) = 2

√
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

When the population variance 𝜎2
is unknown (which is to say, when the

true 𝑝 is unknown, which is usually the case), the sampling variation
approximation is

V̂(�̂�) = V̂(𝑦) = 𝑠2

𝑛

(
1 − 𝑛

𝑁

)
.
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But recall that 𝑦𝑖 only takes on the values 0 and 1, so that 𝑦2

𝑖
= 𝑦𝑖 for

1 ≤ 𝑖 ≤ 𝑛, from which we see that

𝑠2 =
1

𝑛 − 1

( 𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

)
=
𝑛𝑦 − 𝑛𝑦2

𝑛 − 1

=
𝑛(�̂� − �̂�2)
𝑛 − 1

=
𝑛�̂�(1 − �̂�)
𝑛 − 1

,

and

V̂(�̂�) = 𝑛�̂�(1 − �̂�)
(𝑛 − 1)𝑛

(
1 − 𝑛

𝑁

)
=
�̂�(1 − �̂�)
𝑛 − 1

(
1 − 𝑛

𝑁

)
.

The approximate estimation error bound becomes

𝐵𝑝 ≈ �̂�𝑝 = 2

√
V̂(�̂�) = 2

√
�̂�(1 − �̂�)
𝑛 − 1

(
1 − 𝑛

𝑁

)
,

with the corresponding approximate 95% C.I. for 𝑝 being

C.I.(𝑝; 0.95) : �̂� ± 2

√
�̂�(1 − �̂�)
𝑛 − 1

(
1 − 𝑛

𝑁

)
.

Example Consider a sample Y of size 𝑛 = 132 drawn from a finite

population Uof size 𝑁 = 37, 444. Suppose that 25 of the observations of

Yhave a particular characteristic. Find an approximate 95% C.I. for the

proportion 𝑝 of the observations of U that possess the feature.

In this case, �̂� = 25/132 ≈ 0.19. The required approximate bound is

thus

�̂�𝑝 = 2

√
V̂(�̂�) = 2

√
0.19(1 − 0.19)

132 − 1

(
1 − 132

37444

)
≈ 0.0684,

from which we get

C.I.(𝑝; 0.95) ≈ 0.19 ± 0.0684 ≡ (0.121, 0.258). ■

Example Find an approximate 95% C.I. for the proportion of countries

for which the 2011 population fell below 10M, using a SRS with sample

size 𝑛 = 20.

Let’s draw a SRS sample of size 𝑛 = 20 and compute �̂� (results will vary

from one sample to when the population of a country is smaller than

10M and FALSE otherwise.

set.seed(1234) # replicability

N=dim(gapminder.SRS.2)[1]

n=20

thresh.10 <- gapminder.SRS.2[,2] < 10000000

SRS = thresh.10[sample(1:N,n, replace=FALSE)]

The proportion of countries with a population smaller than 10M in that

sample is:

(p.hat = mean(SRS))
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[1] 0.6

The true proportion 𝑝, amongst the 𝑁 = 185 countries, is:

(p = mean(thresh.10))

[1] 0.5737705

If we assume that population variance is unknown, the bound �̂�𝑝 and

the approximate 95% C.I. are given by:

(B.p = 2*sqrt(p.hat*(1-p.hat)/(n-1)*(1-n/N)))

(IC = c(p.hat-B.p,p.hat+B.p))

[1] 0.2121422

[1] 0.3878578 0.8121422

The true proportion 𝑝 ≈ 0.568 is indeed in the confidence interval. If

we repeat this process 𝑚 = 1000 times, how often is the true proportion

found inside the obtained C.I.?

m=1000

p.in.IC = c()

p.hat = c()

for(j in 1:m){

p.hat[j] = mean(thresh.10[sample(1:N,n, replace=FALSE)])

B.p = 2*sqrt(p.hat[j]*(1-p.hat[j])/(n-1)*(1-n/N))

p.in.IC[j] = p.hat[j]-B.p < p & p < p.hat[j]+B.p

}

mean(p.in.IC)

[1] 0.963

Quite close to 95%, you will agree. The distribution of the 𝑚 = 1000

estimates �̂� is shown below, with the true proportion (red vertical line).

ggplot(data=data.frame(p.hat), aes(p.hat)) +

geom_histogram(bins=21, col="black", fill="blue",

alpha=.2) +

geom_vline(xintercept=mean(gapminder.SRS.2[,2]<10000000),

color="red") + xlim(0,1)
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10.3.3 Sample Size

Selecting an appropriate sample size is a challenge, and there is a bit of a

chicken-and-egg scenario at play.

Firstly, there is a practical problem associated with sampling: since the

cost associated with each response can be costly (in terms of time/cost),
we often seek to minimize the size of the realized sample Y, given a

desired error bound.

Secondly, the SRS error bound is expressed as

𝐵𝜉 = 2

√
V(�̂�), 𝜉 ∈ {𝜇, 𝜏, 𝑝},

but the variance depends on the sample size |Y| = 𝑛. We must then

express 𝑛 in terms of the (known) parameters 𝑁 , 𝜎2
, and 𝐵𝜉.

Mean 𝜇

If we are trying to estimate the mean 𝜇, we have:

𝐵𝜇 = 2

√
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝜇

4︸︷︷︸
=𝐷𝜇

=
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
(𝑁 − 1)𝐷𝜇

𝜎2

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1 ⇐⇒

(𝑁 − 1)𝐷𝜇 + 𝜎2

𝜎2

=
𝑁

𝑛

⇐⇒ 𝑛𝜇 =
𝑁𝜎2

(𝑁 − 1)𝐷𝜇 + 𝜎2

.

However, we can only use this formula is we know the population
variance 𝜎2

. We could chose to use the empirical variance 𝑠2
of the

sample Y as we did when we estimated the sample variance, but we
haven’t drawn Y from Uyet!

Stratagies (to obtain 𝜎2
):
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use a preliminary sample (not necessarily random),

use the empirical variance obtained in a previous study, or

for a proportion, use a conservative estimate (𝑝 = 0.5).

Example Consider a finite population Uwith size 𝑁 = 37, 444. We are

interested in the mean 𝜇 of the response variable in U. In a preliminary

SRS of size 𝑛 = 132, we computed an (empirical) standard deviation of

𝑠 = 16.35.

Using 𝜎 = 𝑠, find the minimal SRS sample size 𝑛𝜇 required to estimate

the mean with a bound on the error of estimation at most 𝐵𝜇 = 1.7.

We can use the formula directly to get

𝐷𝜇 =
(1.7)2

4

≈ 0.73 =⇒ 𝑛𝜇 =
37444(16.35)2

(37444 − 1)(0.73) + 16.35
2

= 366.39 ≈ 367. ■

Total 𝜏

If instead, we are seeking to estimate the total 𝜏, we have:

𝐵𝜏 = 2

√
𝑁2 · 𝜎

2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝐵2

𝜏

4𝑁2︸︷︷︸
=𝐷𝜏

=
𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ (𝑁 − 1)𝐷𝜏

𝜎2

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒ (𝑁 − 1)𝐷𝜏 + 𝜎2

𝜎2

=
𝑁

𝑛

⇐⇒ 𝑛𝜏 =
𝑁𝜎2

(𝑁 − 1)𝐷𝜏 + 𝜎2

.

Example Consider a finite population U of size 𝑁 = 37, 444. We are

interested in the total 𝜏 of the response variable of U. In a preliminary

SRS of size 𝑛 = 132, we computed an empirical standard deviation of

𝑠 = 16.35.

Using 𝜎 = 𝑠, find the minimal SRS sample size 𝑛𝜏 required to estimate

the total response with a bound on the error of estimation at most

𝐵𝜏 = 10000.

We can use the formula directly to obtain

𝐷𝜏 =
(10000)2
4(37444)2 ≈ 0.018 =⇒ 𝑛𝜏 =

37444(16.35)2
(37444 − 1)(0.018) + 16.35

2

≈ 10706. ■
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Proportion 𝑝

If we are interested in the proportion 𝑝, we have:

𝐵𝑝 = 2

√
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝑝

4︸︷︷︸
=𝐷𝑝

=
𝑝(1 − 𝑝)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)

⇐⇒
(𝑁 − 1)𝐷𝑝

𝑝(1 − 𝑝) =
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒
(𝑁 − 1)𝐷𝑝 + 𝑝(1 − 𝑝)

𝑝(1 − 𝑝) =
𝑁

𝑛

⇐⇒ 𝑛𝑝 =
𝑁𝑝(1 − 𝑝)

(𝑁 − 1)𝐷𝑝 + 𝑝(1 − 𝑝) .

Example Consider a finite population U of size 𝑁 = 37, 444. We are

interested in the proportion 𝑝 of units that have a particular feature. In a

preliminary SRS of size 𝑛 = 132, we identify 25 observations possessing

the feature.

Using the approximation 𝜎2 = 25

132
· 107

132
from the preliminary sample, find

the minimal SRS sample size 𝑛𝑝 required to estimate the true proportion

with a bound on the error of estimation of at most 𝐵𝑝 = 0.03.

We use the formula directly and obtain

𝐷𝑝 =
(0.03)2

4

≈ 0.0002 =⇒ 𝑛𝑝 =
37444(0.189)(0.811)

(37444 − 1)(0.0002) + (0.189)(0.811) ≈ 671. ■

Example Consider a situation similar to the previous example. Using

the (conservative) approximation 𝜎2 = (0.5)2, find the minimal SRS

sample size 𝑛𝑝 required to estimate the true proportion with a bound on

the error of estimation of at most 𝐵𝑝 = 0.03.

We use the formula directly and obtain

𝐷𝑝 =
(0.03)2

4

≈ 0.0002 =⇒ 𝑛𝑝 =
37444(0.5)(0.5)

(37444 − 1)(0.0002) + (0.5)(0.5) ≈ 1080. ■

10.4 Stratified Random Sampling

The theory we developed in the previous section allows us to determine

the distribution of the three unbiased estimators 𝑦, ˆ𝑡𝑎𝑢, and 𝑝.

For instance, we have shown that if the size 𝑁 of a finite population

U= {𝑢1 , . . . , 𝑢𝑁 } of expectation 𝜇 and variance 𝜎2
and the size 𝑛 of the

SRS Y from which the estimator 𝑦 is constructed are sufficiently large,

and if moreover the responses 𝑢𝑗 are i.i.d. for 1 ≤ 𝑗 ≤ 𝑁 , then 𝑦 follows

approximately a normal distribution whose parameters are

E(𝑦) = 𝜇 and V(𝑦) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.
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The higher 𝜎2
is, the more the repeated SRS 𝑦 values vary.

In practice, the normal approximation is:

often acceptable – see average life expectancy, previous section;

but it is not always so, which can lead to some challenges – cf. the

C.I.(𝜇; 0.95) for the average population which was in fact only an

80% C.I. for a SRS of size 𝑛 = 20 in the previous section.

In the presence of outliers or when 𝑛, 𝑁 are too small, the performance

of an SRS may leave something to be desired.

Example Consider a finite population with 𝑁 = 16 elements:

2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 5, 5, 5, 5.

The population mean and variance are, respectively:

𝜇 =
1

16

(4 · 2 + 4 · 0 + 4 · 1 + 4 · 5) = 2;

𝜎2 =
1

16

(4 · 2
2 + 4 · 0

2 + 4 · 1
2 + 4 · 5

2) − 2
2 =

7

2

.

Suppose that we draw an SRS of size 𝑛 = 4 from this population, in order

to estimate the mean 𝜇.

From what we discussed in the previous section, the expectation and

sampling variance of the estimator 𝑦 are, respectively:

E(𝑦) = 2 and V(𝑦) =
√

7/2

2

4

(
16 − 4

16 − 1

)
=

7

10

.

We could also restrict the sampling structure in the following manner:

1. we start by separating the population into 4 segments (the strata):

strata 1 : 2, 2, 2, 2

strata 2 : 0, 0, 0, 0

strata 3 : 1, 1, 1, 1

strata 4 : 5, 5, 5, 5

2. we then draw a SRS of size 𝑛 = 4 by selecting one unit per stratum.

In such a situation (which is NOT a SRS(𝑛 = 4, 𝑁 = 16)), each achieved
sample takes the form {2, 0, 1, 5}: the empirical mean is always 2, and so

the sampling variance is null.

In practice, this artificial situation rarely occurs, but if the units of the

population can be grouped into natural strata, i.e., sub-populations for

which:

the response value is homogeneous within each stratum, but

it is heterogeneous from one stratum to another, then

this approach can produce an estimator whose sampling variance is
lower than that of the SRS estimator; as a bonus, the sample preserves
certain population structures.
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Example Find an approximate 95% C.I. for the average population per

country (excluding China and India) in 2011. The population distribution

in the 2011 Gapminder dataset has the following characteristics:

gapminder.STS <- gapminder |>

filter(year==2011) |> select(population) |>

filter(population < 1000000000)

summary(gapminder.STS$population)

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 2061342 7355231 23301958 22242334 312390368

The true average population, by country, is 𝜇 = 23, 301, 958. Recall that

the population distribution is asymmetrical:

N = nrow(gapminder.STS)

ggplot(data=gapminder.STS, aes(population)) +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(gapminder.STS$population),

color="red") + geom_rug()

We use the population strata [0, 10𝑀), [10𝑀, 25𝑀), [25𝑀, 50𝑀), 100M+.

gapminder.STS <- gapminder.STS |>

mutate(strata = ifelse(population<10000000,"S1",

ifelse(population<25000000,"S2",

ifelse(population<50000000,"S3",

ifelse(population<100000000,"S4","S5")))))

gapminder.STS <- gapminder.STS[order(gapminder.STS$population),]

gapminder.STS$strata <- as.factor(gapminder.STS$strata)
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The number of countries in each stratum is:

(strata.N <- tapply(gapminder.STS$population,

gapminder.STS$strata, length))

S1 S2 S3 S4 S5

105 35 21 13 9

For a sample size of 𝑛 = 20, we use approximately 𝑛𝑖 countries per

stratum 𝑆𝑖 :

strata.N/sum(strata.N)*20

S1 S2 S3 S4 S5

11.4754098 3.8251366 2.2950820 1.4207650 0.9836066

Some practical considerations might suggest the use of a different
allocation (more on this later). The distribution of the population by

stratum has the following characteristics:

tapply(gapminder.STS$population, gapminder.STS$strata,

summary)

$S1

Min. 1st Qu. Median Mean 3rd Qu. Max.

56441 622957 2886010 3386819 5411377 9988846

$S2

Min. 1st Qu. Median Mean 3rd Qu. Max.

10027140 11234699 15177280 15682124 20213668 24928503

$S3

Min. 1st Qu. Median Mean 3rd Qu. Max.

25016921 29427631 34499905 36211465 41655616 49356692

$S4

Min. 1st Qu. Median Mean 3rd Qu. Max.

52237272 63268405 73517002 73841185 83787634 94501233

$S5

Min. 1st Qu. Median Mean 3rd Qu. Max.

120365271 143211476 163770669 182154642 200517584 312390368

In the first attempt, we draw a SRS from each stratum, using the following

sizes: (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (11, 4, 3, 1, 1):

set.seed(12345) # replicability

n=c(); n[1] = 11; n[2] = 4; n[3] = 3; n[4] = 1; n[5] = 1

ind = list()

# draw a SRS of indices in each of the 5 strata
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ind[[1]] <- sample(1:strata.N[1],n[1])

ind[[2]] <- sum(strata.N[1:1]) + sample(1:strata.N[2],n[2])

ind[[3]] <- sum(strata.N[1:2]) + sample(1:strata.N[3],n[3])

ind[[4]] <- sum(strata.N[1:3]) + sample(1:strata.N[4],n[4])

ind[[5]] <- sum(strata.N[1:4]) + sample(1:strata.N[5],n[5])

The average population in the sample is computed as below (this value

will change from one STS to another).

sample.STS <- gapminder.STS[unique(unlist(ind)),]

mean(sample.STS$population)

[1] 24378331

This naïve approach is not ideal.
25

The estimator 25: Despite the relative accuracy of the

estimate.

𝑦
STS

= 1

20
(𝑦1 + · · · + 𝑦20)

implies that each observation had the same probability of being chosen,

which is not the case in reality.
26

26: Remember, we are not dealing with a

SRS situation.

In our second attempt, the weight of

each selected observation depends on the size of the stratum.
27

27: We will discuss the theoretical details

in the next section.

set.seed(123456) # replicability

cumul.n = cumsum(n); cumul.N = cumsum(strata.N)

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sample.STS <- gapminder.STS[unique(unlist(ind)),]

sample.STS = sample.STS[order(sample.STS$population),]

y.bar <- list()

y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sample.STS[(cumul.n[j-1]+1):cumul.n[j], c("population")])

}

y.bar.STS <- 0

for(j in 1:length(n)){

y.bar.STS <- y.bar.STS +

as.numeric(strata.N[j])*y.bar[[j]]

}

y.bar.STS/N

[1] 22668202

The estimate is very close to the actual value of 𝜇, but a lone point

estimate does not tell the full story.
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We repeat this procedure 500 times, each time using the same size

allocation (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (9, 3, 3, 3, 2):

set.seed(12) # replicability

strata.N <- tapply(gapminder.STS$population,

gapminder.STS$strata, length)

cumul.N = cumsum(strata.N)

n=c(); n[1] = 9; n[2] = 3; n[3] = 3; n[4] = 3; n[5] = 2

cumul.n = cumsum(n)

m=500

means <- c()

for(k in 1:m){

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] +

sample(1:strata.N[j],n[j])

}

ind.STS <-unique(unlist(ind))

sample.STS <- gapminder.STS[ind.STS,]

sample.STS = sample.STS[order(sample.STS$population),]

y.bar <- list()

y.bar[[1]] <- mean(sample.STS[1:n[1],c("population")])

for(j in 2:length(n)){

y.bar[[j]] = mean(sample.STS[(cumul.n[j-1]+1):

cumul.n[j],c("population")])

}

y.bar.STS <- 0

for(j in 1:length(n)){

y.bar.STS <- y.bar.STS +

as.numeric(strata.N[j])*y.bar[[j]]

}

means[k] <- y.bar.STS/N

}

For each sample 1 ≤ 𝑖 ≤ 500, we then compute the empirical mean –

their distribution has the following characteristics:

summary(means)

Min. 1st Qu. Median Mean 3rd Qu. Max.

17608174 21602380 22735650 23179372 24655297 29082447

Finally, we plot the histogram of the STS means (with their mean in

red):
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ggplot(data=data.frame(means), aes(means)) + geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(means), color="red")

Not only is the shape of the distribution closer to a normal distribution,

compared to the distribution of 𝑦 obtained using SRS, but its variance is

also much lower.

As an illustration, ccompare the following image, on the same scale as

the corresponding histogram for SRS in Section 10.3.2.

ggplot(data=data.frame(means), aes(means)) + geom_rug() +

geom_histogram(col="black", fill="blue", alpha=.2) +

xlim(0,60000000) +

geom_vline(xintercept=mean(means), color="red")
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Figure 10.7: Schematics of STS: target pop-

ulation (left) and sample (right).

10.4.1 Estimators and Confidence Intervals

Assume that we are interested in a finite population U= {𝑢1 , . . . , 𝑢𝑁 },
whose expectation is 𝜇 and variance is 𝜎2

. We cover the population with

𝑀 disjoint strata, containing, respectively, 𝑁1 , . . . , 𝑁𝑀 units:

U1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , U𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with stratum mean and stratum variance

𝜇𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 and 𝜎2

𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢2

𝑖 , 𝑗 − 𝜇2

𝑖 , 1 ≤ 𝑖 ≤ 𝑀.

A stratified sample Yof size 𝑛 ≤ 𝑁 is a subset of the target population

U, with𝑛1 + · · · + 𝑛𝑀 = 𝑛 and 𝑛𝑖 ≤ 𝑁𝑖 for 1 ≤ 𝑖 ≤ 𝑀:

{𝑦1,1 , . . . , 𝑦1,𝑛1︸          ︷︷          ︸
∈ strate U1

, . . . , 𝑦𝑀,1 , . . . , 𝑦𝑀,𝑛𝑚︸              ︷︷              ︸
∈ strate U𝑀

} ⊆
𝑀⋃
𝑖=1

U𝑖 = U.

If every sample Y𝑖 = {𝑦𝑖 , 𝑗 | 1 ≤ 𝑗 ≤ 𝑛𝑖} is drawn from the corresponding

stratum U𝑖 via a SRS, independently from one stratum to another, we

obtain a stratified random sample (STS) of size 𝑛. The sample mean and

the sample variance28
of Y𝑖 are denoted by 𝑦 𝑖 and 𝑠2

𝑖
, respectively. In a28: Which it is important to remember

is not the same thing as the “sampling

variance” of an estimator.

STS design, each observation in a stratum has the same probability of
being selected, but it may differ from one stratum to another.

Mean 𝜇

In a STS, the sample mean of the observations of the sample Y falling in

the stratum U𝑖 is an estimator of 𝜇𝑖 given by

𝑦 𝑖 =
1

𝑛𝑖

𝑛𝑖∑
ℓ=1

𝑦𝑖 ,ℓ , where 𝑛𝑖 = |U∩ Y𝑖 |, 1 ≤ 𝑖 ≤ 𝑀.

The true mean 𝜇 and the STS estimator of 𝜇 are thus:

𝜇 =
1

𝑁

𝑁∑
𝑗=1

𝑢𝑗 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜇𝑖 and 𝑦
STS

=
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 .
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Since Y𝑖 is a SRS drawn from U𝑖 , we have:
29

29: For the sake of completeness, the SRS

estimator is sometimes denoted by 𝑦
SRS

.

E(𝑦 𝑖) = 𝜇𝑖 and V(𝑦 𝑖) =
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
, pour 1 ≤ 𝑖 ≤ 𝑀.

The expectation of the STS estimator is thus:

E

(
𝑦

STS

)
= E

(
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖

)
=

1

𝑁

𝑀∑
𝑖=1

𝑁𝑖E(𝑦 𝑖) =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜇𝑖 = 𝜇,

which is to say that 𝑦
STS

is an unbiased estimator of the true mean 𝜇 for

a population of size 𝑁 with variance 𝜎2
.
30

30: It is evidently not the one as 𝑦
SRS

is

also such an estimator.

The sampling variance of the estimator 𝑦
STS

is

V

(
𝑦

STS

)
= V

(
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) +
𝑀∑
𝑖≠𝑖′

𝑁𝑖𝑁𝑖′ Cov(𝑦 𝑖 , 𝑦 𝑖′)︸        ︷︷        ︸
= 0

=
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

Central Limit Theorem – STS If 𝑛,𝑁−𝑛, 𝑛𝑖 , and𝑁𝑖−𝑛𝑖 are all sufficiently

large, for all 𝑖, then

𝑦
STS

∼approx. N
(
E(𝑦

STS
),V(𝑦

STS
)
)
= N

(
𝜇,

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

))
.

In a STS, the bound on the error of estimation is

𝐵𝜇;STS = 2

√
V(𝑦

STS
) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
and the corresponding approximate 95% C.I. for 𝜇 is

C.I.STS(𝜇; 0.95) : 𝑦
STS

± 𝐵𝜇;STS.

In practice, the population variance 𝜎2
is rarely known,

31
in which case 31: As is the variance 𝜎2

𝑖
in each stratum

U𝑖 , 1 ≤ 𝑖 ≤ 𝑀.
we use the sample variance.

32

32: And the corresponding finite popula-
tion correction factor.In each stratum, the empirical variance 𝑠2

𝑖
is

𝑠2

𝑖 =
1

𝑛𝑖 − 1

𝑛𝑖∑
ℓ=1

(𝑦𝑖 ,ℓ − 𝑦 𝑖)2 =
1

𝑛𝑖 − 1

[ 𝑛𝑖∑
ℓ=1

𝑦2

𝑖 ,ℓ − 𝑛𝑖𝑦
2

𝑖

]
, 1 ≤ 𝑖 ≤ 𝑀.

We can then approximate the sampling variance in U𝑖 as we did for a

SRS, using

V̂(𝑦 𝑖) =
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
, 1 ≤ 𝑖 ≤ 𝑀.
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The sampling variance of the estimator 𝑦
STS

is thus

V̂(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 V(𝑦 𝑖) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
.

The bound of the estimation error is approximated by

𝐵𝜇;STS ≈ �̂�𝜇;STS = 2

√
V̂(𝑦

STS
) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
,

whence

C.I.STS(𝜇; 0.95) : 𝑦
STS

± �̂�𝜇;STS ≡ 𝑦
STS

± 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
is an approximate 95% C.I. for 𝜇.

In practice, when the stratum sampling rate 𝑛𝑖
𝑁𝑖

is below 5%, we can drop

the FPCF in the corresponding stratum.

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. A STS sample Y of size 𝑛 = 132 is drawn from U, with

𝑛1 = 82 and 𝑛2 = 50.

Suppose the empirical mean and standard deviation in Y1 and Y2 are

𝑦
1
= 120.7, 𝑦

2
= 96.6, 𝑠1 = 18.99, and 𝑠2 = 14.31, respectively. Find a

95% C.I. for the mean 𝜇 of U.

The bound on the error of estimation is ≈ �̂�𝜇;STS = 2

√
V̂(𝑦

STS
):

2

√
21123

2

37444
2

· 18.99
2

82

(
1 − 82

21123

)
+ 16321

2

37444
2

· 14.31
2

50

(
1 − 50

16321

)
≈ 2.95,

so C.I.STS(𝜇; 0.95) ≈
(

21,123(120.7)
37,444

+ 16,321(96.6)
37,444

)
± 2.95 ≡ (107.25, 113.14).

Example Find a 95% confidence interval for the average life expectancy

by country in 2011 (including India and China), using a STS of size

𝑛 = 20.
33

33: Stratifying using the country popula-
tions, as we did earlier in this section.

We can basically re-use the same code:

LE.1 <- gapminder |> filter(year==2011) |>

select(population,life_expectancy)

summary(LE.1)

population life_expectancy

Min. :5.644e+04 Min. :46.70

1st Qu.:2.064e+06 1st Qu.:65.30

Median :7.563e+06 Median :73.70

Mean :3.708e+07 Mean :71.18

3rd Qu.:2.423e+07 3rd Qu.:77.40

Max. :1.348e+09 Max. :83.02
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The average life expectancy is 𝜇 = 71.18. We now prepare the strata

according to the population, and we sort the observations from the

smallest population to the largest:

LE.1 <- LE.1 |> mutate(strata = ifelse(population<10000000,"S1",

ifelse(population<25000000,"S2", ifelse(population<50000000,"S3",

ifelse(population<100000000,"S4","S5")))))

LE.1 <- LE.1[order(LE.1$population),]

LE.1$strata <- as.factor(LE.1$strata)

# number of countries in each stratum

(strata.N <- tapply(LE.1$life_expectancy, LE.1$strata, length))

S1 S2 S3 S4 S5

105 35 21 13 11

Unfortunately, the life expectancy distributions in each stratum overlap

to a great extent: this is not a good sign as it suggests that a country’s

population is not aligned with its life expectancy.
34

34: And so that the strata are heteroge-

neous with respect to life expectancy.

ggplot(LE.1,aes(x=life_expectancy,fill=strata)) +

geom_density(alpha=0.5) + geom_rug()

Since there are 𝑁 = 185 observations in the data set, a sample of size

𝑛 = 20, allocated in such a way as to maintain the relative frequencies of

the number of observations in each U𝑖 (this is known as proportional
allocation), would have the following stratum allocation:

N=sum(strata.N)

strata.N/sum(strata.N)*20

S1 S2 S3 S4 S5

11.351351 3.783784 2.270270 1.405405 1.189189
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In practice, we prefer to have at least 2 observations per stratum, so we

might use (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5) = (11, 3, 2, 2, 2).

n=c(11,3,2,2,2)

We select a STS sample Ywith these characteristics via:

set.seed(123456) # replicability

cumul.n = cumsum(n)

cumul.N = cumsum(strata.N)

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])

for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sam.LE.1 <- LE.1[unique(unlist(ind)),]

sam.LE.1 <- sam.LE.1[order(sam.LE.1$population),]

Next, we compute the mean 𝑦 𝑖 and the standard deviation 𝑠𝑖 in each

bucket Y𝑖 , 1 ≤ 𝑖 ≤ 5.

y.bar <- list()

std.dev <- list()

y.bar[[1]] <- mean(sam.LE.1[1:n[1],c("life_expectancy")])

std.dev[[1]] <- sd(sam.LE.1[1:n[1],c("life_expectancy")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

std.dev[[j]] <- sd(sam.LE.1[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

}

rbind(y.bar,std.dev)

[,1] [,2] [,3] [,4] [,5]

y.bar 70.83636 71.6 67.55 72.15 76.2

std.dev 7.551327 3.774917 18.45549 2.757716 9.050967

There is not much variation in the means, but the standard deviation

values are all over the place: this is due to small sample sizes in some

strata, and overlapping distributions of life expectancy by strata.

As we’ve already mentioned, the stratification of countries by population
does not align with the estimate of mean life expectancy. We will

continue the STS estimation procedure, for illustration purposes, but

in practice, this is the stage at which we would require a different

stratification or another sampling plan altogether.
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The estimator 𝑦
STS

is:

mean.LE.1 <- 0

for(j in 1:length(n)){

mean.LE.1 <- mean.LE.1 +

as.numeric(strata.N[j])*y.bar[[j]]

}

(mean.LE.1 <- mean.LE.1/N)

[1] 71.01902

This is fairly close to the true mean𝜇. The bound on the error of estimation

�̂�𝜇;STS is:

B=0

for(j in 1:length(n)){

B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))

}

(B <- 2*sqrt(B))

[1] 3.883388

This is quite a large bound, all things considered. The 95% C.I. is thus:

c(mean.LE.1 - B, mean.LE.1 + B)

[1] 67.13563 74.90241

Compare with the C.I.SRS(𝜇; 0.95) obtained previously – the SRS interval

was much narrower. This is no doubt due to stratification on the basis of

population being a poor choice when dealing with life expectancy.

Example Find a 95% confidence interval for the average life expectancy

by country in 2011 (including India and China), using a STS of size

𝑛 = 20.
35

35: This time stratifying the data using the

country life expectations. In general, we

do not stratify with respect to the variable

of interest, but with the help of auxiliary

variables that are linked to the variable of

interest.

We make the appropriate modifications to the code, using the following

strata, say:

U1 = {𝑢𝑗 | 𝑢𝑗 < 70}, U2 = {𝑢𝑗 | 70 ≤ 𝑢𝑗 < 80}, U3 = {𝑢𝑗 | 𝑢𝑗 ≥ 80}.

LE.2 <- gapminder |> filter(year==2011) |> select(life_expectancy)

LE.2 <- LE.2 |> mutate(strata = ifelse(life_expectancy<70,"S1",

ifelse(life_expectancy<80,"S2","S3")))

LE.2 <- LE.2[order(LE.2$life_expectancy),]

LE.2$strata <- as.factor(LE.2$strata)

(strata.N <- tapply(LE.2$life_expectancy, LE.2$strata, length))
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S1 S2 S3

65 93 27

By construction, the life expectancy distributions do not overlap from

stratum to stratum.

ggplot(LE.2,aes(x=life_expectancy,fill=strata)) +

geom_density(alpha=0.5) +

geom_rug(aes(color=life_expectancy))

Since there are 𝑁 = 185 observations in the data set, with (𝑁1 , 𝑁2 , 𝑁3) =
(65, 93, 27), a sample of size 𝑛 = 20 could be drawn according to:

N=sum(strata.N)

strata.N/sum(strata.N)*20

S1 S2 S3

7.027027 10.054054 2.918919

We will use (𝑛1 , 𝑛2 , 𝑛3) = (7, 10, 3).

n=c(7,10,3)

The rest of the code runs as in the previous example.

cumul.n = cumsum(n)

cumul.N = cumsum(strata.N)

set.seed(123456) # replicability

ind = list()

ind[[1]] <- sample(1:strata.N[1],n[1])
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for(j in 2:length(n)){

ind[[j]] <- cumul.N[j-1] + sample(1:strata.N[j],n[j])

}

sam.LE.2 <- LE.2[unique(unlist(ind)),]

sam.LE.2 <- sam.LE.1[order(sam.LE.2$life_expectancy),]

y.bar <- list()

std.dev <- list()

y.bar[[1]] <- mean(sam.LE.2[1:n[1],c("life_expectancy")])

std.dev[[1]] <- sd(sam.LE.2[1:n[1],c("life_expectancy")])

for(j in 2:length(n)){

y.bar[[j]] <- mean(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

std.dev[[j]] <- sd(sam.LE.2[(cumul.n[j-1]+1):cumul.n[j],

c("life_expectancy")])

}

With this sample Y, the strata means and standard deviations are:

rbind(y.bar,std.dev)

[,1] [,2] [,3]

y.bar 71.5 70.27 74.2

std.dev 8.469553 7.721838 7.277362

These quantities are more reasonable than with the previous stratification

(why?), but they could change from one STS sample to the next. The

values for 𝑦
STS

and �̂�𝜇;STS are:

mean.LE.2 <- 0

for(j in 1:length(n)){

mean.LE.2 <- mean.LE.2 +

as.numeric(strata.N[j])*y.bar[[j]]

}

(mean.LE.2 <- mean.LE.2/N)

B=0

for(j in 1:length(n)){

B <- B + as.numeric((strata.N[j]/N)^2*
std.dev[[j]]^2/n[j]*(1-n[j]/strata.N[j]))

}

(B <- 2*sqrt(B))

[1] 71.27573

[1] 3.35133

The estimator is quite close to the true value 𝜇 = 71.18, but it is when

calculating the bound on the error of estimation that the STS approach

proves its superiority. In this case, the 95% C.I. for 𝜇 is:
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c(mean.LE.2 - B, mean.LE.2 + B)

[1] 67.92440 74.62706

These examples show that stratified sampling can improve SRS estimation,

but that this is not always going to be the case.

Total 𝜏

Most of the work has been done: since the total 𝜏 can be re-written as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,

we can estimate the total with a STS using:

�̂�STS = 𝑁𝑦
STS

=
𝑁

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 =
𝑀∑
𝑖=1

𝑁𝑖𝑦 𝑖 .

It is an unbiased estimator of the total since its expectation is

E(�̂�STS) = E(𝑁𝑦
STS

) = 𝑁 · E(𝑦
STS

) = 𝑁𝜇 = 𝜏.

Its sampling variance is

V(�̂�STS) = V(𝑁𝑦
STS

) = 𝑁2 · V(𝑦
STS

) =
𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
,

assuming that we know the variance 𝜎2

𝑖
in each strata Ui, 1 ≤ 𝑖 ≤ 𝑀,

whence the bound on the error of estimation is

𝐵𝜏;STS = 2

√
V(�̂�STS) = 2

√
𝑀∑
𝑖=1

𝑁2

𝑖
·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
= 𝑁 · 𝐵𝜇;STS.

Since the variances 𝜎2

𝑖
are usually unknown, we often use the stratum

variances 𝑠2

𝑖
, with correction factors

𝑁𝑖−1

𝑁𝑖
, 1 ≤ 𝑖 ≤ 𝑀. The approximation

of the sampling variance is thus

V̂(�̂�STS) = V̂(𝑁𝑦
STS

) =
𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
,

whence the bound on the error of estimation is

𝐵𝜏;STS ≈ �̂�𝜏;STS = 2

√
V̂(�̂�STS) = 2

√
𝑀∑
𝑖=1

𝑁2

𝑖
·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
= 𝑁 · �̂�𝜇;STS ,

and the approximate 95% C.I. for 𝜏 is

C.I.STS(𝜏; 0.95) : �̂�STS ± �̂�𝜏;STS.
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Example Consider a finite population Uof size 𝑁 = 37, 444, split into

two strata U1 and U2, of sizes𝑁1 = 21, 123 and𝑁2 = 16, 321, respectively.

A STS Yof size 𝑛 = 132 is drawn from U, with 𝑛1 = 82 and 𝑛2 = 50.

Suppose the empirical mean and standard deviation in Y1 and Y2 are

𝑦
1
= 120.7, 𝑦

2
= 96.6, 𝑠1 = 18.99, and 𝑠2 = 14.31, respectively. Find a

95% C.I. of the total 𝜏 in U.

The bound on the error of estimation is ≈ �̂�𝜏;STS = 2

√
V̂(�̂�STS):

2

√
21123

2 · 18.99
2

82

(
1 − 82

21123

)
+ 16321

2 · 14.31
2

50

(
1 − 50

16321

)
≈ 110312.3;

C.I.STS(𝜏; 0.95) ≈ 21123(120.7)+16321(96.6)±110312.3 ≈ (4015842, 4236467).

Proportion 𝑝

If the response 𝑢𝑖 ,ℓ ∈ {0, 1} represents the absence or the presence of a

certain characteristic for the ℓ th unit in the 𝑖th strata U𝑖 , the mean

𝑝 = 𝜇 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
ℓ=1

𝑢𝑖 ,ℓ

is the proportion of all units in Uwhich posess the characteristic. This

proportion can be estimated with a STS via

�̂�STS =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖 �̂�𝑖 , where �̂�𝑖 =
1

𝑛𝑖

𝑛𝑖∑
ℓ=1

𝑢𝑖 ,ℓ , 1 ≤ 𝑖 ≤ 𝑀.

This is an unbiased estimator of 𝑝 since

E(�̂�STS) = E(𝑦
STS

) = 𝜇 = 𝑝;

its sampling variance is:

V(�̂�STS) = V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
,

where 𝜎2

𝑖
= 𝑝𝑖(1 − 𝑝𝑖) is the variance of the response variable 𝑢 in the

stratum U𝑖 .

The bound on the error of estimation is

𝐵𝑝;STS = 2

√
V(�̂�STS) = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
· 𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

Since the proportions 𝑝𝑖 are not usually known, the approximate sam-
pling variance is used instead:

V̂(�̂�STS) =
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
�̂�𝑖(1 − �̂�𝑖)
𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
.
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The approximate bound on the error of estimation is thus

𝐵𝑝;STS ≈ �̂�𝑝;STS = 2

√
V̂(�̂�STS) =

2

𝑁

√
𝑀∑
𝑖=1

𝑁2

𝑖
· �̂�𝑖(1 − �̂�𝑖)

𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
,

and the corresponding approximate 95% C.I. for 𝑝 is

C.I.STS(𝑝; 0.95) : �̂�STS ±
2

𝑁

√
𝑀∑
𝑖=1

𝑁2

𝑖
· �̂�𝑖(1 − �̂�𝑖)

𝑛𝑖 − 1

(
1 − 𝑛𝑖

𝑁𝑖

)
.

If the sample size in a stratum is too small, we can use the conservative

estimate �̂�𝑖 = 0.5.

Example Consider a finite population Uof size 𝑁 = 37, 444, split into

two strata U1 and U2, of sizes𝑁1 = 21, 123 and𝑁2 = 16, 321, respectively.

A STS Yof size 𝑛 = 132 is drawn from U, with 𝑛1 = 82 and 𝑛2 = 50.

Suppose that 𝑛1 = 20 of the observations from Y1 and 𝑛2 = 5 of the

observations from Y2 possess a certain characteristic. Find a 95% C.I. for

the proportion 𝑝 of the units in U that possess the characteristic.

In this case, �̂�1 = 20/82 ≈ 0.244 and �̂�2 = 5/50 = 0.10, from which we

obtain

�̂�STS =
21123

37444

(0.244) + 16321

37444

(0.10) = 0.181.

The bound on the error of estimation is thus

�̂�𝑝 =
2

37444

√
21123

2
0.244(1−0.244)

82−1

(
1 − 82

21123

)
+ 16321

2
0.1(1−0.1)

50−1

(
1 − 50

16321

)
≈ 0.0654,

from which we conclude that

C.I.(𝑝; 0.95) ≈ 0.181 ± 0.0654 ≡ (0.116, 0.247).

10.4.2 Sample Size and Allocation

When determining the size of a STS sample Y, we must also consider

the problem of allocating the number of units 𝑛𝑖 in each stratum Y𝑖 . If

|Y𝑖 | = 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑀, then 𝑛 = 𝑛1 + · · · + 𝑛𝑀 . But what are the 𝑛𝑖?

In a STS, the sampling variance of the estimator 𝑦
STS

is

V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.

When 𝑁𝑖 ≫ 1, then 𝑁𝑖 ≈ 𝑁𝑖 − 1 and so

V(𝑦
STS

) ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖

)
=

1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖
− 1

𝑁2

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 .

Since the sampling variance V(𝑦
STS

) determines the bound on the error

of estimation �̂�𝜇;STS, we can minimize the bound (and thus the error) by
minimizing the sampling variance. The quantities 𝑁 , 𝑁𝑖 , 𝜎2

𝑖
, are fixed
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for 1 ≤ 𝑖 ≤ 𝑀; what we minimize against is the sample size 𝑛 and the

allocation 𝑛𝑖 in each stratum.

The total cost of the survey �̃� can also affect the allocation. The survey

budget includes the overhead cost (indirect costs) 𝑐0 and the cost per
response 𝑐𝑖 in each stratum U𝑖 , 1 ≤ 𝑖 ≤ 𝑀. The total cost is thus

�̃� = 𝑐0 +
𝑀∑
𝑖=1

𝑐𝑖𝑛𝑖 ,

which must remain below than available survey budget𝐶. The allocation

problem is an optimization problem: we seek to solve

arg(𝑛,𝑛1 ,...,𝑛𝑀 ) min V(𝑦
STS

), subject to �̃� ≤ 𝐶.

We use the method of Lagrange multipliers. The objective function

becomes

𝑓 (𝑛1 , . . . , 𝑛𝑀 ,𝜆) = V(𝑦
STS

) + 𝜆(�̃� − 𝐶)

=
1

𝑁2

𝑀∑
𝑘=1

𝑁2

𝑖 ·
𝜎2

𝑘

𝑛𝑘
− 1

𝑁2

𝑀∑
𝑘=1

𝑁𝑘𝜎
2

𝑘
+ 𝜆(𝑐0 +

𝑀∑
𝑘=1

𝑐𝑘𝑛𝑘 − 𝐶).

Its critical points solve

0 =
𝜕 𝑓 (𝑛1 , . . . , 𝑛𝑀 ,𝜆)

𝜕𝑛𝑖
=

1

𝑁2

𝑀∑
𝑘=1

𝑁2

𝑘
𝜎2

𝑘

𝜕(1/𝑛𝑘)
𝜕𝑛𝑖

+ 𝜆
𝑀∑
𝑘=1

𝑐𝑘
𝜕(𝑛𝑘)
𝜕𝑛𝑖

= −
𝑁2

𝑖
𝜎2

𝑖

𝑁2𝑛2

𝑖

+ 𝜆𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑀,

which is to say that

𝑛𝑖 =
𝑁𝑖𝜎𝑖

𝑁
√
𝜆
√
𝑐𝑖
, 1 ≤ 𝑖 ≤ 𝑀.

The strata sampling weights 𝑤𝑖 are

𝑤𝑖 =
𝑛𝑖

𝑛1 + · · · + 𝑛𝑀
, 1 ≤ 𝑖 ≤ 𝑀.

The general optimal allocation is thus

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖𝜎𝑖

𝑁
√
𝜆
√
𝑐𝑖

𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

𝑁
√
𝜆
√
𝑐𝑘

=

𝑁𝑖𝜎𝑖√
𝑐𝑖

𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

, 1 ≤ 𝑖 ≤ 𝑀.

Once we have determined the size 𝑛 of the sample Y, we compute the

size of the sample 𝑛𝑖 in each Y𝑖 using𝑤𝑖 ·𝑛, 1 ≤ 𝑖 ≤ 𝑀. Since the product

𝑤𝑖 · 𝑛 is not typically an integer, we allocate [𝑤𝑖 · 𝑛] units to each Y𝑖 ,
36

36: The integer part [𝑥] of 𝑥 is the largest

integer smaller than 𝑥.
and distribute the remaining

𝑛 − [𝑤1 · 𝑛] − · · · − [𝑤𝑀 · 𝑛]

units using “common sense” (while ensuring that �̃� ≤ 𝐶).
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If the cost per response in each stratum is constant, 𝑐1 = · · · = 𝑐𝑀 ,

Neyman allocation yields the following stratum sampling weights:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖𝜎𝑖
𝑁1𝜎1 + · · · + 𝑁𝑀𝜎𝑀

, 1 ≤ 𝑖 ≤ 𝑀.

If moreover the variance is the same in each stratum, 𝜎2

1
= · · · = 𝜎2

𝑀
,

proportional allocation yields the following stratum sampling weights:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑁𝑖

𝑁1 + · · · + 𝑁𝑀
=
𝑁𝑖

𝑁
, 1 ≤ 𝑖 ≤ 𝑀.

Once the sample size and allocation have been selected, the methods in

the previous section can be used to provide confidence intervals for the

mean 𝜇, for the total 𝜏, or for a proportion 𝑝. When the variances are

unknown, the usual approximations can be used.

We may at times use allocation schemes that are not necessarily ideal
from a technical perspective, but which facilitate the preparation of

reports or the dissemination of results:

𝑤𝑖 =
𝑛𝑖

𝑛
=

𝑓 (𝑁𝑖)
𝑓 (𝑁1) + · · · + 𝑓 (𝑁𝑀) , 1 ≤ 𝑖 ≤ 𝑀, 𝑓 a random function.

For instance, when studying Canadian populations, we often stratify

according to the provinces and use 𝑓 (𝑥) =
√
𝑥; the proportional alloca-

tion and square root allocation sampling weights for the 13 Canadian

jurisdictions (based on 2022 population data) are shown below.

Table 10.2: Sampling weights for Cana-

dian provinces, under proportional alloca-

tion and square root allocation (racine, in

French).

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of U using a STS. The

survey budget allows for a sample size 𝑛 = 132.

In a preliminary study, we estimated 𝜎1 ≈ 20 and 𝜎2 ≈ 15. If the cost of a

response in the first stratum is four times that of the cost of a response in

the second stratum, find the general optimal allocation. If the response

cost per stratum is constant, determine the Neyman and the proportional

allocations.

In the general case, we have 𝑐1 = 4𝑐2,

𝑁1𝜎1√
𝑐1

=
21123(20)√

4𝑐2

=
211230√

𝑐2

,
𝑁2𝜎2√
𝑐2

=
16321(15)√

𝑐2

=
244815√

𝑐2

,

and

𝑁1𝜎1√
𝑐1

+ 𝑁2𝜎2√
𝑐2

=
211230√

𝑐2

+ 244815√
𝑐2

=
456045√

𝑐2

,
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from which we conclude that

𝑛1 = 132

(
211230

456045

)
= 61.13 and 𝑛2 = 132

(
244815

456045

)
= 70.87;

the general optimal allocation is thus 𝑛1 = 61 and 𝑛2 = 71.

If the cost for a response is the same in both strata, 𝑐1 = 𝑐2, then:

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

and

𝑁1𝜎1 + 𝑁2𝜎2 = 422460 + 244815 = 667275,

from which we conclude that

𝑛1 = 132

(
422460

667275

)
= 83.57 and 𝑛2 = 132

(
244815

667275

)
= 48.43;

the Neyman allocation is thus 𝑛1 = 84 and 𝑛2 = 48.

If we do not trust the study conducted beforehand, and we assume that

the variance is constant in each stratum (𝜎1 = 𝜎2), then we have

𝑁1 = 21123, 𝑁2 = 16321, and 𝑁1 + 𝑁2 = 21123 + 16321 = 37444,

from which we conclude that

𝑛1 = 132

(
21123

37444

)
= 74.46 and 𝑛2 = 132

(
16321

37444

)
= 57.54;

the proportional allocation is thus 𝑛1 = 74 and 𝑛2 = 58. ■

Sample Size, Given a Bound on the Error of Estimation

In theory, only analytical considerations should influence the sample

size. Recall that in a STS of size 𝑛, the sampling weight corresponding to

the stratum U𝑖 is 𝑤𝑖 =
𝑛𝑖
𝑛 , for 1 ≤ 𝑖 ≤ 𝑀. When we estimate 𝜇 via 𝑦

STS
,

the bound on the error of estimation can be written

𝐵𝜇;STS = 2

√
1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖
·

𝜎2

𝑖

𝑤𝑖 · 𝑛
(𝑁𝑖 − 𝑤𝑖 · 𝑛

𝑁𝑖 − 1

)
.

We seek to express 𝑛 in terms of the parameters 𝑁𝑖 , 𝜎𝑖 , 𝑤𝑖 , and 𝐵𝜇;STS. If

𝑁𝑖 ≫ 1,
37

then 𝑁𝑖 ≈ 𝑁𝑖 − 1 and so 37: Which is hopefully the case in practice.

𝐵2

𝜇;STS

4︸ ︷︷ ︸
=𝐷𝜇;STS

≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑤𝑖 · 𝑛
(𝑁𝑖 − 𝑤𝑖 · 𝑛

𝑁𝑖

)

⇐⇒ 𝑁2𝐷𝜇;STS ≈ 1

𝑛

{
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

}
−

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖
· 𝑤𝑖
𝑁𝑖

⇐⇒
𝑁2𝐷𝜇;STS +

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

≈ 1

𝑛
⇐⇒ 𝑛𝜇;STS ≈

𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑤𝑖

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

.
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Under general optimal allocation, the stratum sampling weights are

given by

𝑤𝑖 =
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖𝜎𝑖/
√
𝑐𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖

) (
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

)
𝑁2𝐷𝜇;STS +

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

Under Neyman allocation, the stratum sampling weights are given by

𝑤𝑖 = 𝑁𝑖𝜎𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖𝜎𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

( 𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
)

2

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

In a proportional allocation scenario, the stratum sampling weights are

given by

𝑤𝑖 = 𝑁𝑖

(
𝑀∑
𝑘=1

𝑁𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

and the sample size is then

𝑛𝜇;STS ≈

(
𝑀∑
𝑖=1

𝑁2

𝑖
𝜎2

𝑖

𝑁𝑖

)
÷

(
𝑀∑
𝑘=1

𝑁𝑘

)−1

𝑁2𝐷𝜇;STS +
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

=

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

𝑁𝐷𝜇;STS +
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖

When we try to estimate the total 𝜏 using the estimator �̂�STS, we must

substitute

𝐷𝜇;STS =
𝐵2

𝜇;STS

4

by 𝐷𝜏;STS =
𝐵2

𝜏;STS

4𝑁2

.

When we want to estimate a proportion 𝑝 using the estimator �̂�STS, the

bound remains

𝐷𝑝;STS =
𝐵2

𝑝;STS

4

,

but we have to substitute the stratum variances 𝜎2

𝑖
by 𝑝𝑖(1 − 𝑝𝑖). The

proportions 𝑝𝑖 can be estimated with the help of a previous study, or,

conservatively, by using 𝑝𝑖 = 0.5.
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Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of Uusing a STS, with a

bound on the error of estimation of 𝐵𝜇;STS = 5. The response costs by

stratum are 𝑐1 = 400$ and 𝑐2 = 100$.

In a preliminary study, we estimated 𝜎1 ≈ 20 and 𝜎2 ≈ 15. Determine the

sample size and allocation in each of the three scenarios: general optimal

allocation, Neyman allocation, and proportional allocation (in the last

two cases, use 𝑐1 = 𝑐2 = 100$).

In the general case, we have

𝑁1𝜎1√
𝑐1

=
21123(20)√

400

= 21123,
𝑁2𝜎2√
𝑐2

=
16321(15)√

100

= 24481.5,

𝑁1𝜎1

√
𝑐1 = 21123(20)

√
400 = 8449200, 𝑁2𝜎2

√
𝑐2 = 16321(15)

√
100 = 2448150

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

= 45604.5,
2∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖 = 10897350,

2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
(10897350)(45604.5)

(37444)2(6.25) + 12121425

= 56.63 ≈ 57

𝑛1 = 57

(
21123

45604.5

)
= 26.4 ≈ 26, 𝑛2 = 57

(
24481.5

45604.5

)
= 30.6 ≈ 31.

If instead the response cost per stratum is constant (𝑐1 = 𝑐2 = 100), we

have:

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖 = 667275,
2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
(667275)2

(37444)2(6.25) + 12121425

= 50.74 ≈ 51

𝑛1 = 51

(
422460

667275

)
= 32.30 ≈ 32, 𝑛2 = 51

(
244815

667275

)
= 18.71 ≈ 19.

It turns out that the exact value of 𝑐1 = 𝑐2 does not come into play.

If we look for a proportional allocation, we still have

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎
2

1
= 21123(20)2 = 8449200, 𝑁2𝜎

2

2
= 16321(15)2 = 3672225,

2∑
𝑖=1

𝑁𝑖𝜎𝑖 = 667275,
2∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 = 12121425,

𝐷𝜇;STS =
5

2

4

= 6.25, 𝑛 =
12121425

37444(6.25) + 12121425

37444

= 51.72 ≈ 52

𝑛1 = 52

(
21123

37444

)
= 29.33 ≈ 29, 𝑛2 = 52

(
16321

37444

)
= 22.67 ≈ 23.

The exact value of 𝑐1 = 𝑐2 also does not come into play. ■
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Sample Size, Given a Budget

In practice, however, it is often budgetary considerations that play the

most important role in sample size selection.

In a STS of size 𝑛, the stratum sampling weights are𝑤𝑖 =
𝑛𝑖
𝑛 , for 1 ≤ 𝑖 ≤ 𝑀.

In this case, we seek to maximize the size 𝑛 allowed by the survey
budget 𝐶:

𝐶 = 𝑐0 +
𝑀∑
𝑖=1

𝑐𝑖𝑛𝑖 = 𝑐0 + 𝑛
𝑀∑
𝑖=1

𝑐𝑖𝑤𝑖 =⇒ 𝑛 =
𝐶 − 𝑐0

𝑀∑
𝑖=1

𝑐𝑖𝑤𝑖

.

In a general optimal allocation scenario, we have

𝑤𝑖 =
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

𝑐𝑖𝑤𝑖 = 𝑐𝑖 ·
𝑁𝑖𝜎𝑖√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

= 𝑁𝑖𝜎𝑖
√
𝑐𝑖

(
𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘√
𝑐𝑘

)−1

, 1 ≤ 𝑖 ≤ 𝑀;

the sample size is then

𝑛STS = (𝐶 − 𝑐0)
(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖√
𝑐𝑖

) (
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖
√
𝑐𝑖

)−1

.

In a Neyman allocation or proportional allocation scenario, the sample

weights are

𝑤𝑖 = 𝑁𝑖𝜎𝑖
( 𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘
)−1

, 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

𝑐𝑖𝑤𝑖 = 𝑐 · 𝑁𝑖𝜎𝑖
( 𝑀∑
𝑘=1

𝑁𝑘𝜎𝑘
)−1

, 1 ≤ 𝑖 ≤ 𝑀;

the sample size is then

𝑛STS = (𝐶 − 𝑐0)
(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

) (
𝑐
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

)−1

=
𝐶 − 𝑐0

𝑐
.

Example Consider a finite population U of size 𝑁 = 37, 444, separated

in two disjoint strata U1 and U2, of respective sizes 𝑁1 = 21, 123 and

𝑁2 = 16, 321. We seek to estimate the mean 𝜇 of U using a STS. The

budget for the study is 𝐶 = 20, 000$, minus 𝑐0 = 4, 000$ for overhead

costs. The cost of a response in each stratum are 𝑐1 = 400$ and 𝑐2 = 100$,

respectively.

In a preliminary study, we estimate 𝜎1 = 20 and 𝜎2 = 15. Determine the

sample size and allocation in each of the three scenarios: general optimal
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allocation, Neyman allocation, and proportional allocation (in the last

two cases, use 𝑐1 = 𝑐2 = 100$).

In the general case, we have

𝑁1𝜎1√
𝑐1

=
21123(20)√

400

= 21123,
𝑁2𝜎2√
𝑐2

=
16321(15)√

100

= 24481.5,

𝑁1𝜎1

√
𝑐1 = 21123(20)

√
400 = 8449200,

𝑁2𝜎2

√
𝑐2 = 16321(15)

√
100 = 2448150

𝑁1𝜎1√
𝑐1

+ 𝑁2𝜎2√
𝑐2

= 21123 + 24481.5 = 45604.5,

𝑁1𝜎1

√
𝑐1 + 𝑁2𝜎2

√
𝑐2 = 8449200 + 2448150 = 10897350,

𝑛 = (20000 − 4000)
(

45604.5

10897350

)
= 66.96 ≈ 66,

𝑛1 = 66

(
21123

45604.5

)
= 30.56 ≈ 31, 𝑛2 = 66

(
24481.5

45604.5

)
= 35.43 ≈ 35.

If the response cost per stratum is constant (𝑐1 = 𝑐2 = 100):

𝑁1𝜎1 = 21123(20) = 422460, 𝑁2𝜎2 = 16321(15) = 244815,

𝑁1𝜎1 + 𝑁2𝜎2 = 422460 + 244815 = 667275,

𝑛 =
20000 − 4000

100

= 160,

𝑛1 = 160

(
422460

667275

)
= 101.3 ≈ 101, 𝑛2 = 160

(
244815

667275

)
= 58.7 ≈ 59.

If we also assume that the variances are equal in the 2 strata, the sample

size remains 𝑛 = 160, but the proportional allocation yields

𝑛1 = 160

(
21123

37444

)
= 90.25 ≈ 90 and 𝑛2 = 160

(
16321

37444

)
= 69.74 ≈ 70. ■

10.4.3 Comparison Between SRS and STS

Let U= {𝑢1 , . . . , 𝑢𝑁 } have mean 𝜇 and variance 𝜎2
.

Using a SRS of size 𝑛, we can construct the estimator 𝑦
SRS

, with sampling

variance

V(𝑦
SRS

) = 𝜎2

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

We have studied the properties of such estimators in section 10.3.

If U can be split into 𝑀 strata

U1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , U𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with mean and variance 𝜇𝑖 and 𝜎2

𝑖
, respectively, for 1 ≤ 𝑖 ≤ 𝑀.

Using a STS of size 𝑛 = (𝑛1 , . . . , 𝑛𝑀), we can construct the estimator 𝑦
STS

,

with sampling variance

V(𝑦
STS

) = 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
.
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Both samples have the same size; is there any way to determine which

of the two approaches is preferable before computing the confidence

intervals? In general, the sample design for which the sampling variance
of the corresponding estimator is smallest is preferred.

38
38: This corresponds to a tighter (smaller)

C.I.

If 𝑁 ≫ 𝑛 and 𝑁𝑖 ≫ 𝑛𝑖 for all 1 ≤ 𝑖 ≤ 𝑀, then 𝑁 − 𝑛 ≈ 𝑁 − 1 and

𝑁𝑖 − 𝑛1 ≈ 𝑁𝑖 − 1 for all 1 ≤ 𝑖 ≤ 𝑀. Consequently,

V(𝑦
SRS

) ≈ 𝜎2

𝑛
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇)2 and V(𝑦
STS

) ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖
.

In a proportional allocation scenario, 𝑛𝑖 = 𝑛 · 𝑁𝑖

𝑁 for all 1 ≤ 𝑖 ≤ 𝑀, from

which we see that

V(𝑦
STS

)Prop ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖
· 𝑁

𝑛𝑁𝑖
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 .

In a Neyman allocation scenario, 𝑛𝑖 = 𝑛 · 𝑁𝑖𝜎𝑖
𝑁1𝜎1+···+𝑁𝑀𝜎𝑀

for all 1 ≤ 𝑖 ≤ 𝑀,

from which we see that

V(𝑦
STS

)Neyman ≈ 1

𝑁2

𝑀∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

(∑𝑀
𝑘=1

𝑁𝑘𝜎𝑘
)

𝑛𝑁𝑖𝜎𝑖
=

1

𝑛𝑁2

(
𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖

)
2

.

But

V(𝑦
SRS

) ≈ 1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇)2 =
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖 + 𝜇𝑖 − 𝜇)2

=
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

{
(𝑢𝑖 , 𝑗 − 𝜇𝑖)2 + 2(𝑢𝑖 , 𝑗 − 𝜇𝑖)(𝜇𝑖 − 𝜇) + (𝜇𝑖 − 𝜇)2

}

=
1

𝑛𝑁


𝑀∑
𝑖=1

𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖)2︸           ︷︷           ︸
𝑁𝑖𝜎2

𝑖

+2

𝑀∑
𝑖=1

(𝜇𝑖 − 𝜇)
𝑁𝑖∑
𝑗=1

(𝑢𝑖 , 𝑗 − 𝜇𝑖)︸          ︷︷          ︸
𝑁𝑖𝜇𝑖−𝑁𝑖𝜇𝑖=0

+
𝑀∑
𝑖=1

(𝜇𝑖 − 𝜇)2
𝑁𝑖∑
𝑗=1

1︸︷︷︸
𝑁𝑖


=

1

𝑛𝑁

{
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 +
𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2
}
= V(𝑦

STS
)Prop + 1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2.

As such,

V(𝑦
SRS

) ≫ V(𝑦
STS

)Prop , whenever

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜇𝑖 − 𝜇)2 ≫ 0;

a STS under proportional allocation is substantially preferable to a SRS

when the variance of the stratum means is high.

Similarly, set

𝜎 =
1

𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎𝑖 =
√
𝑛V(𝑦

STS
)Neyman.
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As such,

V(𝑦
STS

)Prop − V(𝑦
STS

)Neyman =
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 −
𝜎2

𝑛

=
1

𝑛𝑁

{
𝑀∑
𝑖=1

𝑁𝑖𝜎
2

𝑖 − 𝑁𝜎2

}
=

1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜎2

𝑖 − 2𝜎𝑖𝜎 + 𝜎2)

=
1

𝑛𝑁

𝑀∑
𝑖=1

𝑁𝑖(𝜎𝑖 − 𝜎)2 ≥ 0;

a STS under Neyman allocation is substantially preferable to a STS under

proportional allocation when the variance of the stratum standard
deviations is high.

Combining these, we can conclude that a STS under Neyman allocation

is substantially preferable to a SRS when stratum means and standard
deviations vary greatly across strata.

Since in practice there are other considerations at play (sampling cost,

etc.), one may still decide in favor of a SRS or a STS under proportional

allocation, especially if the difference in the corresponding variances is

(relatively) small.

10.5 Using Auxiliary Information

In what follows we present ways to obtain estimates of the mean, the

total, or of a proportion with the help of auxiliary information. So far,

we have only discussed univariate SRS and STS estimators. Can we use

more than one response per unit to obtain better approximations?

In the 2011 Gapminder dataset, there are 𝑁 = 168 countries in 2011 for

which the life expectancy 𝑌 and the (logarithm of the) gross domestic
product per capita 𝑋 are available. Suppose it is known that E[𝑋] =
𝜇𝑋 = 7.84. If we draw a sample {(𝑥1 , 𝑦1), . . . , (𝑥10 , 𝑦10)} ⊆ U for which

the mean of 𝑦𝑖/𝑥𝑖 is 8.67, can we expect that 𝜇𝑌 ≈ 8.67𝜇𝑋 = 68.00?
39

39: See Figure 10.6.

10.5.1 Ratio Estimation

Let U = {(𝑋1 , 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁 )} be a finite population of size 𝑁 for

which each unit 𝑢𝑗 has 2 observed values: 𝑋𝑗 and 𝑌𝑗 . The ratio of the
means 𝑅 is the ratio of the means (or totals):

𝑅 =

𝑁∑
𝑗=1

𝑌𝑗

𝑁∑
𝑗=1

𝑋𝑗

=
𝜇𝑌
𝜇𝑋

=
𝜏𝑌
𝜏𝑋
, as long as 𝜇𝑋 , 𝜏𝑋 ≠ 0.

We are interested in such quotients when we try to determine the average

wage 𝑌 as a function of years of schooling 𝑋 in Canada, for example.

https://www.data-action-lab.com/wp-content/uploads/2023/06/gapminder_SS.csv
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Ratio Estimator

Let Y = {(𝑥𝑖1 , 𝑦𝑖1), . . . , (𝑥𝑖𝑛 , 𝑦𝑖𝑛 )} ⊆ U a bivariate simple random
sample of size 𝑛. We often simplify the notation by writing

Y= {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)}.

The sample ratio of means 𝑟 is an estimator of 𝑅:

𝑟 =

𝑛∑
𝑖=1

𝑦𝑖

𝑛∑
𝑖=1

𝑥𝑖

=
𝑦

𝑥
=

�̂�𝑌
�̂�𝑋
, as long as 𝑥, �̂�𝑋 ≠ 0.

Warning: this is a biased estimator!

Example Consider a finite bivariate population with 𝑁 = 4 units:

𝑢1 = (1, 2), 𝑢2 = (1, 0), 𝑢3 = (2, 1), 𝑢4 = (4, 5).

The population ratio of means 𝑅 is simply

𝑅 =
2 + 0 + 1 + 5

1 + 1 + 2 + 4

=
8

8

= 1.

Suppose that we want to provide an estimate of 𝑅 by drawing a SRS of

size 𝑛 = 3 from U. There are

(
4

3

)
= 4 such samples.

Sample 𝑦 Values 𝑦 𝑥 Values 𝑥 𝑟 𝑃(𝑟)
𝑢1 , 𝑢2 , 𝑢3 2, 0, 1 1 1, 1, 2 4/3 3/4 1/4

𝑢1 , 𝑢2 , 𝑢4 2, 0, 5 7/3 1, 1, 4 2 7/6 1/4

𝑢1 , 𝑢3 , 𝑢4 2, 1, 5 8/3 1, 2, 4 7/3 8/7 1/4

𝑢2 , 𝑢3 , 𝑢4 0, 1, 5 2 1, 2, 3 2 1 1/4

We can compute the expectation of the estimator 𝑟 directly:

E[𝑟] =
∑
𝑟

𝑟𝑃(𝑟) = 1

4

(3/4 + 7/6 + 8/7 + 1) = 341

336

≈ 1.014881 ≠ 𝑅 = 1. ■

What is the sampling bias of 𝑟 as an estimator of 𝑅, then?

E[𝑟 − 𝑅] = E

[ 𝑦
𝑥
− 𝑅

]
= E

[
1

𝑥
(𝑦 − 𝑅𝑥)

]
= ??

Ratio Estimator Bias

In this last expression for the sampling bias, only 𝑥 and 𝑦 change when

the sample changes:𝑅 remains constant. But there is no simple expression

allowing us to compute exactly the expectation of a quotient of random
variables; we must use approximations.
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Let 𝑓 : [𝑎, 𝑏] → ℝ be 𝐶2
over [𝑎, 𝑏] (i.e., 𝑓 , 𝑓 ′, 𝑓 ′′ are all continuous over

[𝑎, 𝑏]). According to Taylor’s theorem, for all 𝑐 ∈ (𝑎, 𝑏), there exists a 𝜉
between 𝑐 and 𝑧 such that

𝑓 (𝑧) = 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐) + 𝑓 ′′(𝜉)
2

(𝑧 − 𝑐)2.

Since 𝑓 ′′ is continuous over [𝑎, 𝑏], 𝑓 ′′ is bounded on [𝑎, 𝑏]: ∃𝑀 > 0 such

that | 𝑓 ′′(𝑧)| ≤ 𝑀 for all 𝑧 ∈ [𝑎, 𝑏].

Thus, if 𝑧 is sufficiently close to 𝑐,

| 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐)| ≫ 𝑀

2

(𝑧 − 𝑐)2 ≥
���� 𝑓 ′′(𝜉)

2

(𝑧 − 𝑐)2
���� ,

from which we conclude that

𝑓 (𝑧) ≈ 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐);

this is the linear approximation of 𝑓 at 𝑧 = 𝑐. If 𝑓 (𝑧) = 1

𝑧 , we know that

𝑓 ′(𝑧) = − 1

𝑧2
. Set 𝑧 = 𝑥 and 𝑐 = 𝜇𝑋 .

Since 𝑓 is 𝐶2
over any interval [𝑎, 𝑏] with 𝑎 > 0, if 𝑥 is sufficiently close

to 𝜇𝑋 , then the liner approximation becomes

1

𝑥
≈ 1

𝜇𝑋
− 1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)

(the constant approximation would be
1

𝑥
≈ 1

𝜇𝑋
).

But E(𝑥) = 𝜇𝑋 , E(𝑦) = 𝜇𝑌 (SRS), and 𝜇𝑌 = 𝑅𝜇𝑋 , so that

E[𝑟 − 𝑅] = E

[ 𝑦 − 𝑅𝑥
𝑥

]
≈ E

[(
1

𝜇𝑋
− 1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)
)
(𝑦 − 𝑅𝑥)

]
= E

[
1

𝜇𝑋
(𝑦 − 𝑅𝑥)

]
− E

[
1

𝜇2

𝑋

(𝑥 − 𝜇𝑋)(𝑦 − 𝑅𝑥)
]

=
1

𝜇𝑋

(
E(𝑦) − 𝑅 · E(𝑥)

)
− 1

𝜇2

𝑋

(
E

[
𝑥𝑦 − 𝜇𝑋 𝑦 − 𝑅𝑥2 − 𝑅𝜇𝑋𝑥

] )
=

1

𝜇𝑋

(
𝜇𝑌 − 𝑅𝜇𝑋

)
︸         ︷︷         ︸

=0

− 1

𝜇2

𝑋

(
E(𝑥𝑦) − 𝜇𝑋E(𝑦) − 𝑅

(
E(𝑥2) − 𝜇𝑋E(𝑥)

) )
= − 1

𝜇2

𝑋

(
E(𝑥𝑦) − 𝜇𝑋𝜇𝑌 − 𝑅

(
E(𝑥2) − 𝜇2

𝑋

) )
We further simplify the sampling bias E[𝑟 − 𝑅] with the help of E(𝑥𝑦) =
𝜇𝑋𝜇𝑌 + Cov(𝑥, 𝑦), and E(𝑥2) = 𝜇2

𝑋
+ V(𝑥). Thus,

E[𝑟 − 𝑅] ≈ − 1

𝜇2

𝑋

[
Cov(𝑥, 𝑦) − 𝑅 · V(𝑥)

]
.

In an SRS of size 𝑛, drawn from a finite population withsize 𝑁 and

variance 𝑠𝑖𝑔𝑚𝑎2
, we have already seen that

𝑉(𝑥) =
𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
and 𝑉(𝑦) =

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.
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Consider the random variable 𝑍 = 𝑋 + 𝑌. The SRS estimator of

𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌

is

𝑧 = 𝑥 + 𝑦;

its sampling variance is

V(𝑧) =
𝜎2

𝑍

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
, where

𝜎2

𝑍 =
1

𝑁

𝑁∑
𝑗=1

(𝑧 𝑗 − 𝜇𝑍)2 =
1

𝑁

𝑁∑
𝑗=1

{
(𝑥 𝑗 + 𝑦 𝑗) − (𝜇𝑋 + 𝜇𝑌)

}
2

=
1

𝑁

𝑁∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑋)2 +
2

𝑁

𝑁∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑋)(𝑦 𝑗 − 𝜇𝑌) +
1

𝑁

𝑁∑
𝑗=1

(𝑦 𝑗 − 𝜇𝑌)2

= 𝜎2

𝑋 + 2𝜎𝑋𝑌 + 𝜎2

𝑌 = 𝜎2

𝑋 + 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑌 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

is the Pearson correlation coefficient between 𝑋 and
𝑌.

On the one hand,

V(𝑧) =
𝜎2

𝑋
+ 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

on the other,

V(𝑧) = V(𝑥 + 𝑦) = V(𝑥) + 2Cov(𝑥, 𝑦) + V(𝑦)

=
𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
+ 2Cov(𝑥, 𝑦) +

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
;

we can thus conclude that

Cov(𝑥, 𝑦) =
𝜌𝜎𝑋𝜎𝑌
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently,

E[𝑟 − 𝑅] ≈ − 1

𝜇2

𝑋

[
Cov(𝑥, 𝑦) − 𝑅 · V(𝑥)

]
= − 1

𝜇2

𝑋

[
𝜌𝜎𝑋𝜎𝑌
𝑛

(𝑁 − 𝑛
𝑁 − 1

)
− 𝑅

𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)]
=

1

𝜇2

𝑋

·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
But the systematic error is not the only way to qualify the magnitude of

the error made when using 𝑟 to estimate 𝑅: the mean square error (MSE)

of 𝑟 is

MSE(𝑟) = E

(
(𝑟 − 𝑅)2

)
= V(𝑟) +

(
E(𝑟) − 𝑅

)
2

.
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Ratio Estimator Variability

We can obtain an approximation of V(𝑟) using the constant Taylor

approximation (of order 0):

1

𝑥
≈ 1

𝜇𝑋
.

Thus,

V(𝑟) = V(𝑟 − 𝑅) = V

[ 𝑦
𝑥
− 𝑅

]
= V

[ 𝑦 − 𝑅𝑥
𝑥

]
≈ V

[ 𝑦 − 𝑅𝑥
𝜇𝑋

]
.

Consider the random variable𝑊 = 𝑌 − 𝑅𝑋. Since 𝜇𝑌 = 𝑅𝜇𝑋 ,

𝜇𝑊 = 𝜇𝑌 − 𝑅𝜇𝑋 = 0.

The SRS sample mean of𝑊 in Y is thus

𝑤 = 𝑦 − 𝑅𝑥 =⇒ V(𝑟) ≈ V

[ 𝑤
𝜇𝑋

]
=

1

𝜇2

𝑋

V(𝑤) = 1

𝜇2

𝑋

·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

where

𝜎2

𝑊 =
1

𝑁

𝑁∑
𝑗=1

(𝑊𝑗 − 𝜇𝑊 )2 =
1

𝑁

𝑁∑
𝑗=1

𝑊2

𝑗 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2.

We thus have

V(𝑟) ≈ 1

𝜇2

𝑋

· 1

𝑛
· 1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2
(𝑁 − 𝑛
𝑁 − 1

)
.

The ratio between the systematic error E[𝑟−𝑅] and the standard deviation

of 𝑟 is then

E[𝑟 − 𝑅]
SD(𝑟) ≈ 1√

𝑛
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝜎𝑊

√
𝑁 − 1

𝑁 − 𝑛 ;

when 𝑛, 𝑁 → ∞ (while 𝑁 ≫ 𝑛), we must have

E[𝑟 − 𝑅]
SD(𝑟) → 0.

In other words, although it is impossible to get rid of the bias, the

estimation error

MSE(𝑟) = V(𝑟) + (E(𝑟) − 𝑅)2

is dominated by the variance V(𝑟) if the sample size 𝑛 is sufficiently
large.

Example The list of countries for which both life expectancy and (loga-

rithm of) gross domestic product per capita are available in 2011 contains

𝑁 = 168 observations.
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gapminder.RLD <- gapminder |> filter(year==2011) |>

select(life_expectancy,gdp,population)

# we keep only the observations that have both

gapminder.RLD <- gapminder.RLD[complete.cases(gapminder.RLD),]

gapminder.RLD <- gapminder.RLD |> mutate(lgdppc=log(gdp/population))

(N=nrow(gapminder.RLD))

[1] 168

We draw 𝑚 = 500 SRS samples of 𝑛 = 20, and we compute the estimator

𝑟 of the ratio 𝑅 for each of these samples.

set.seed(12) # replicability

n=20

m=500

quotients <- c()

for(k in 1:m){

samp <- gapminder.RLD[sample(1:N,n, replace=FALSE),c("life_expectancy","lgdppc")]

quotients[k] <- mean(samp$life_expectancy/samp$lgdppc)

}

The average of the 500 estimators is shown below:

quotients <- data.frame(quotients)

mean(quotients$quotients)

[1] 9.238648

We already know that 𝜇𝑋 = 7.84. It would be reasonable to expect that

𝜇𝑌 ≈ 𝑟𝜇𝑋 :

mean(gapminder.RLD$lgdppc)*mean(quotients$quotients)

[1] 72.45559

Is this a better approximation than the one we obtained at the beginning

of the section: 𝜇𝑌 ≈ 68.00? This question cannot be answered without

knowing the distribution of the estimator 𝑟.40
40: Keep in mind that it is indeed a ran-

dom variable since its value depends on

the sample Y selected.

ggplot(quotients, aes(quotients)) +

geom_rug(aes(quotients)) +

geom_histogram(breaks=seq(8, 10.5, by = .125),

col="black", fill="blue", alpha=.2) +

geom_vline(xintercept=mean(quotients$quotients),

color="red")
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summary(quotients)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.428 9.073 9.246 9.239 9.401 10.002

Ratio Estimator Confidence Intervals

We can show that the estimator 𝑟 follows approximately a normal

distribution N(E(𝑟),V(𝑟)), from which we conclude that the bound on
the error of estimation is

𝐵𝑅 ≈ �̂�𝑅 = 2

√
V̂(𝑟) ≈ 2

√
1

𝜇2

𝑋

·
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
≈ 2

√
1

𝑥
2

·
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2.

Thus

C.I.(𝑅; 0.95) : 𝑟 ± �̂�𝑅
is an approximate 95% C.I. for 𝑅.

Write 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

. We notice that

𝜎2

𝑊 =
1

𝑁

𝑁∑
𝑗=1

𝑊2

𝑗 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝑅𝑋𝑗)2 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌 + 𝜇𝑌 − 𝑅𝑋𝑗)

=
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌 + 𝑅𝜇𝑋 − 𝑅𝑋𝑗)2 =
1

𝑁

𝑁∑
𝑗=1

[(𝑌𝑗 − 𝜇𝑌) − 𝑅(𝑋𝑗 − 𝜇𝑋)]2

=
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 − 𝜇𝑌)2 − 2𝑅
1

𝑁

𝑁∑
𝑗=1

(𝑋𝑗 − 𝜇𝑋)(𝑌𝑗 − 𝜇𝑌) + 𝑅2
1

𝑁

𝑁∑
𝑗=1

(𝑋𝑗 − 𝜇𝑋)2

= 𝜎2

𝑌 − 2𝑅Cov(𝑋,𝑌) + 𝑅2𝜎2

𝑋 = 𝜎2

𝑌 − 2𝑅𝜌𝜎𝑋𝜎𝑌 + 𝑅2𝜎2

𝑋 ,
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By analogy, we then have 𝑠2

𝑊
= 𝑠2

𝑌
− 2𝑟�̂�𝑠𝑋 𝑠𝑌 + 𝑟2𝑠2

𝑋
, where

𝑠2

𝑋 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥2

𝑖 − 𝑛𝑥
2

)
, 𝑠2

𝑌 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑦2

𝑖 − 𝑛𝑦
2

)
,

𝑠𝑋𝑌 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
)
, and �̂� =

𝑠𝑋𝑌

𝑠𝑋 𝑠𝑌
.

In practice, we can also use the following formula:

𝑠2

𝑊 =
1

𝑛 − 1

(
𝑛∑
𝑖=1

𝑦2

𝑖 − 2𝑟
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 + 𝑟2

𝑛∑
𝑖=1

𝑥2

𝑖

)
.

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} of size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. Find a 95% C.I. for 𝑅 if

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

With this sample, we have 𝑟 = 14691.6
9464.6 ≈ 1.55, so that

𝑠2

𝑊 =
1670194 − 2(1.55)(1062186) + (1.55)2(686773.2)

132 − 1

≈ 209.2, and

V̂(𝑟) ≈ 132
2

9464.62

209.2

132

(
1 − 132

37444

)
= 0.0003 =⇒ C.I.(𝑅; 0.95) ≈ 1.552 ± 0.035.

Example Find a 95% C.I. for the ratio of life expectancy by the logarithm

of the GDO per capita in 2011 with the help of a SRS of size 𝑛 = 20.

The true ratio is:

(R = mean(gapminder.RLD$life_expectancy)/mean(gapminder.RLD$lgdppc))

[1] 9.046742

We draw a sample of size 𝑛 = 20, and we calculate the intermediate

sums:

N=nrow(gapminder.RLD); n=20

set.seed(123456) # replicability

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

(sum.xi = sum(samp$lgdppc))

(sum.yi = sum(samp$life_expectancy))

(sum.xi.2 = sum(samp$lgdppc^2))

(sum.yi.2 = sum(samp$life_expectancy^2))

(sum.xiyi = sum(samp$lgdppc*samp$life_expectancy))
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[1] 167.2794

[1] 1450.82

[1] 1430.912

[1] 106117.4

[1] 12245.93

Finally, we compute the estimator 𝑟 and its variance, as well as the desired

confidence interval.

r = sum.yi/sum.xi

s2.W = 1/(n-1)*(sum.yi.2-2*r*sum.xiyi+r^2*sum.xi.2)

V = n^2/sum.xi^2*(1/n)*s2.W*(1-n/N)

B = 2*sqrt(V)

c(r-B,r+B)

[1] 8.252515 9.093552

We would expect the quotient 𝑅 to be in the interval (8.25, 9.09) with

95% probability;
41

since 𝑅 = 9.046742, it is indeed the case.
42

41: According to the frequentist interpre-

tation of confidence intervals.

42: As we have noticed several times, the

confidence interval can of course change

depending on which sample is drawn from

the population.

Estimation of the Mean and the Total Using the Ratio Estimator

In practice, we often know 𝜏𝑋 and/or 𝜇𝑋 . It is possible to use the

relation

𝜇𝑌 = 𝑅𝜇𝑋 , where 𝑅 =
𝜇𝑌
𝜇𝑋

in order to approximate 𝜇𝑌 (if 𝜇𝑋 is unknown, one uses 𝜇𝑋 ≈ 𝑥).

Since 𝑟 = 𝑦/𝑥, the ratio-based estimator for �̂�𝑌;𝑅 is simply:

�̂�𝑌;𝑅 = 𝑟 · 𝜇𝑋 .

But we have already observed that 𝑟 is a biased estimator of 𝑅, so we

expect �̂�𝑌;𝑅 to be a biased estimator of 𝜇𝑌 , with a normal distribution:

�̂�𝑌;𝑅 ∼approx N(E(�̂�𝑌;𝑅),V(�̂�𝑌;𝑅)).

It is easy to show

E[�̂�𝑌;𝑅 − 𝜇𝑌] = 𝜇𝑋E[𝑟 − 𝑅] ≈ 1

𝜇𝑋
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
V(�̂�𝑌;𝑅) = V(𝑟 · 𝜇𝑋) = 𝜇2

𝑋V(𝑟) ≈
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound of error on the estimation of 𝜇𝑌;𝑅 is thus

𝐵𝜇𝑌;𝑅
≈ �̂�𝜇𝑌;𝑅

= 2

√
V(�̂�𝑌;𝑅) ≈ 2

√
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
, 𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2 ,

from which we see that C.I.𝑅(𝜇𝑌 ; 0.95) ≡ �̂�𝑌;𝑅 ± �̂�𝜇𝑌;𝑅
is an approximate

95% C.I. for 𝜇𝑌 .
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It is also possible to use the relationship

𝜏𝑌 = 𝑅𝜏𝑋 , where 𝑅 =
𝜇𝑌
𝜇𝑋

=
𝜏𝑌
𝜏𝑋

to approximate 𝜏𝑌 (if 𝜏𝑋 is unknown, we use 𝜏𝑋 ≈ 𝑁𝑥).

Since 𝑟 = 𝑦/𝑥, the ratio-based estimator for �̂�𝑌;𝑅 is simply:

�̂�𝑌;𝑅 = 𝑟 · 𝜏𝑋 .

But we have already observed that 𝑟 is a biased estimator of 𝑅, so

we expect �̂�𝑌;𝑅 to be a biased estimator of 𝜏𝑌 , which follows a normal

distribution:

�̂�𝑌;𝑅 ∼approx N(E(�̂�𝑌;𝑅),V(�̂�𝑌;𝑅)) .

It is easy to show

E[�̂�𝑌;𝑅 − 𝜏𝑌] = 𝜏𝑋E[𝑟 − 𝑅] ≈ 𝑁

𝜇𝑋
·
𝑅𝜎2

𝑋
− 𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
V(�̂�𝑌;𝑅) = V(𝑟 · 𝜏𝑋) = 𝜏2

𝑋V(𝑟) = 𝑁2𝜇2

𝑋V(𝑟) ≈ 𝑁2 ·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The bound of error on the estimation of 𝜏𝑌;𝑅 is thus

𝐵𝜏𝑌;𝑅
≈ �̂�𝜏𝑌;𝑅

= 2

√
V(�̂�𝑌;𝑅) ≈ 2𝑁

√
𝑠2

𝑊

𝑛

(
1 − 𝑛

𝑁

)
, 𝑠2

𝑊 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑟𝑥𝑖)2 ,

from which we conclude that C.I.𝑅(𝜏𝑌 ; 0.95) ≡ �̂�𝑌;𝑅 ± �̂�𝜏𝑌;𝑅
is an approxi-

mate 95% C.I. for 𝜏𝑌 .

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} o size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. Find a 95% C.I. for 𝜇𝑌
using ratio-based estimation, given that

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

With this sample, we have 𝑟 ≈ 1.55, 𝑠2

𝑊
≈ 209.2, V̂(𝑟) ≈ 0.00031, and

C.I.(𝑅; 0.95) ≈ 1.552 ± 0.035. Moreover, 𝑥 = 9464.6/132 = 71.70. Thus

C.I.𝑅(𝜇𝑌 ; 0.95) = 𝜇𝑋 · C.I.(𝑅; 0.95) ≈ 𝑥 · C.I.(𝑅; 0.95) ≡ 111.29 ± 2.51. ■

Example Find a 95% C.I. for the average life expectancy by country 𝜇𝑌 ,

in 2011, using ratio estimation and the logarithm of the gross domestic

product per capita in 2011 (𝑋), with a SRS sample of size 𝑛 = 20.

We use the same sample as in the preceding example on the topic. We

have already obtained a confidence interval for the ratio:

C.I.(𝑅; 0.95) = (8.25, 9.09).



10.5 Auxiliary Information 673

The sample mean of 𝑋 was 𝑥 = 167.2794

20
= 8.364. The 95% confidence

interval for the average life expectancy using ratio estimation is thus

C.I.𝑅(𝜇𝑌 ; 0.95) = 𝜇𝑋 · C.I.(𝑅; 0.95) ≈ 𝑥 · (8.25, 9.09) = (69.00, 76.03).

Recall that the true value is 𝜇𝑌 = 70.95.

Sample Size

Just as was the case with SRS and STS, we can determine the required sam-

ple size assuming that we have some information about the population

distribution.

To give an estimate for 𝑅, use:

𝐵𝑅 ≈ 2

√
1

𝜇2

𝑋

·
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝑅
𝜇2

𝑋

4︸ ︷︷ ︸
=𝐷𝑅

=
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ (𝑁 − 1)𝐷𝑅

𝜎2

𝑊

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1

⇐⇒
(𝑁 − 1)𝐷𝑅 + 𝜎2

𝑊

𝜎2

𝑊

=
𝑁

𝑛

⇐⇒ 𝑛𝑅 =
𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝑅 + 𝜎2

𝑊

.

To give an estimate for 𝜇𝑌 with ratio estimation, use:

𝐵𝜇𝑌;𝑅
≈ 2

√
𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜇𝑌 =

𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝜇𝑌 + 𝜎2

𝑊

, 𝐷𝜇𝑌 =
𝐵2

𝜇𝑌;𝑅

4

;

for 𝜏𝑌 , use:

𝐵𝜏𝑌;𝑅
≈ 2

√
𝑁2 ·

𝜎2

𝑊

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏𝑌 =

𝑁𝜎2

𝑊

(𝑁 − 1)𝐷𝜏𝑌 + 𝜎2

𝑊

, 𝐷𝜏𝑌 =
𝐵2

𝜏𝑌;𝑅

4𝑁2

.

Since we do not typically know 𝜎2

𝑊
, we often use a small preliminary

sample and use the empirical variance 𝑠2

𝑊
as an estimator of 𝜎2

𝑊
.

Example Consider a SRS Y= {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} of size 𝑛, drawn

from a population of size 𝑁 = 37, 444. Assume that we have 𝜎2

𝑊
≈ 209.2

and 𝜇𝑋 ≈ 71.7, perhaps from a previous study.

Determine the minimum sample size required to ensure that the bound

on the error of estimation of the:

1. ratio 𝑅 using 𝑟 is at most 0.025;

2. mean 𝜇𝑌 using �̂�𝑌;𝑅 is at most 5, and

3. total 𝜏𝑌 using �̂�𝑌;𝑅 is at most 25.

We simply use the formulas.
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1. since 𝐷𝑅 =
𝐵2

𝑅
𝜇2

𝑋

4
=

0.025
2(71.7)2
4

≈ 0.8033, we have

𝑛𝑅 =
37444(209.2)

(37444 − 1)(0.8033) + 209.2
= 258.6453 =⇒ 𝑛𝑅 ≥ 259;

2. since 𝐷𝜇𝑌 =
𝐵2

𝜇𝑌;𝑅

4
= 5

2

4
≈ 6.25, we have

𝑛𝜇𝑌 =
37444(209.2)

(37444 − 1)(6.25) + 209.2
= 33.443 =⇒ 𝑛𝜇𝑌 ≥ 34;

3. since 𝐷𝜏𝑌 =
𝐵2

𝜏𝑌;𝑅

4𝑁2
= 25

2

4(37444) ≈ 0.001502243, we have

𝑛𝜏𝑌 =
37444(209.2)

(37444 − 1)(0.001502243) + 209.2
= 29509.62 =⇒ 𝑛𝜏𝑌 ≥ 29510.

In this last case, the desired bound 𝐵𝜏𝑌;𝑅
is probably too tight (the

resulting sample size is way too large). ■

10.5.2 Regression Estimation

Ratio estimation is a special case of a more general method, regression
estimation. In the gapminder.csv dataset for 2011, we recognize that

there is a more or less linear relationship between the life expectancy 𝑌
and the logarithm of the GDP per capita 𝑋 for 𝑁 = 168 countries.

Figure 10.8: Health and wealth of nations for the 2011 Gapminder data, with superimposed line of best fit.

When we compute

𝑟 = 𝑦/𝑥

using a SRS of size 𝑛, we are really assuming that the true relationship

between 𝑌 and 𝑋 takes the form 𝑌 = 𝑅𝑋 ≈ 𝑟𝑋, i.e., that it is a straight

line of slope 𝑟 passing through the origin. But this last condition does

not seem to be met. What to do in this case?
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Regression Estimator

As above, let Ube a finite bivariate population of size𝑁 , and Y⊆ Ube a

finite bivariate random sample of size 𝑛. We assume that the relationship

between 𝑌 and 𝑋 takes the form

𝑌 − 𝜇𝑌 = 𝛽(𝑋 − 𝜇𝑋).

If 𝜇𝑋 is known (as we had assumed was the case for ratio estimation),

the regression estimator �̂�𝑌;𝐿 of 𝜇𝑌 obtained with the SRS Y is

�̂�𝑌;𝐿 = 𝑦 + 𝛽(𝜇𝑋 − 𝑥).

For now, we treat 𝛽 as an unknown constant (since 𝜇𝑌 is also unknown).

Since Y is drawn in a SRS context, E(𝑥) = 𝜇𝑋 and E(𝑦) = 𝜇𝑌 , so that

E(�̂�𝑌;𝐿) = E(𝑦) + 𝛽(𝜇𝑋 − E(𝑥)) = 𝜇𝑌 + 𝛽(𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

Consider the random variable𝑊 = 𝑌 + 𝛽(𝜇𝑋 − 𝑋). As 𝛽 is constant, we

have

𝜇𝑊 = 𝜇𝑌 + 𝛽(𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

The sample mean of𝑊 is thus

𝑤 = 𝑦 + 𝛽(𝜇𝑋 − 𝑥) = �̂�𝑌;𝐿 =⇒ V(�̂�𝑌;𝐿) = V(𝑤) =
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But

𝜎2

𝑊 ;𝐿 =
1

𝑁

𝑁∑
𝑗=1

(𝑊𝑗 − 𝜇𝑊 )2 =
1

𝑁

𝑁∑
𝑗=1

(𝑌𝑗 + 𝛽(𝜇𝑋 − 𝑋𝑗) − 𝜇𝑌)2

=
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝜇𝑌) − 𝛽(𝑋𝑗 − 𝜇𝑋)

}
2

= 𝜎2

𝑌 − 2𝛽𝜌𝜎𝑋𝜎𝑌 + 𝛽2𝜎2

𝑋 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

. Consequently,

V(�̂�𝑌;𝐿) =
𝜎2

𝑌
− 2𝛽𝜌𝜎𝑋𝜎𝑌 + 𝛽2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

In general, for a given systematic error (bias), preference is given to the

estimator with the lowest variance. The value of 𝛽 which minimizes

V(�̂�𝑌;𝐿) would then satisfy

𝜕V(�̂�𝑌;𝐿)
𝜕𝛽

(𝛽∗) = 1

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
(−2𝜌𝜎𝑋𝜎𝑌 + 2𝛽∗𝜎2

𝑋) = 0,

which is to say that

𝛽∗ = 𝜌
𝜎𝑌
𝜎𝑋

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

· 𝜎𝑌
𝜎𝑋

=
𝜎𝑋𝑌
𝜎2

𝑋

,
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from which we conclude that

V(�̂�𝑌;𝐿) =
𝜎2

𝑌
− 2𝛽∗𝜌𝜎𝑋𝜎𝑌 + (𝛽∗)2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
− 2𝜌 𝜎𝑌

𝜎𝑋
𝜌𝜎𝑋𝜎𝑌 + (𝜌 𝜎𝑌

𝜎𝑋
)2𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
− 2𝜌2𝜎2

𝑌
+ 𝜌2𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌
(1 − 𝜌2)
𝑛

(𝑁 − 𝑛
𝑛 − 1

)
.

Regression Estimator Bias

The task is to determine the coefficients 𝛼, 𝛽 that “best describe” the

linear relationship between 𝑋 and 𝑌,

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛,

where we assume that 𝜀 = (𝜀1 , . . . , 𝜀𝑛) ∼approx. N(0, 𝜎2I𝑛).

There are several ways to interpret the phrase “best describe” – the least
squares estimators �̂� and �̂� are those that minimize the residual sum of

squares

𝑄(𝛼, 𝛽) =
𝑛∑
𝑖=1

𝜀2

𝑖 =

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)2.

We solve the system of equations

𝜕𝑄

𝜕𝛼
(𝑎, 𝑏) =

𝑛∑
𝑖=1

−2(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0,
𝜕𝑄

𝜕𝛽
(𝑎, 𝑏) =

𝑛∑
𝑖=1

−2𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0,

which yields

�̂� = 𝑎 = 𝑦 − 𝑏𝑥 and �̂� = 𝑏 =

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2
.

In practice, it is this 𝑏 = �̂� 𝑠𝑌
𝑠𝑋

that plays the role of the estimator 𝛽∗; note

that it varies from one SRS to another. Since 𝑏 is a random variable,
43 we43: in the sense that we obtain (poten-

tially) a different slope with every SRS

Y.

cannot conclude that E(𝑏𝑥) = E(𝑏)E(𝑥), so that

E(�̂�𝑌;𝐿) = E(𝑦) + 𝜇𝑋E(𝑏) − E(𝑏𝑥) ≠ 𝜇𝑌 ,

in general.

However, if the sample size 𝑛 is large, it is possible to show that

E[�̂�𝑌;𝐿 − 𝜇𝑌]

is of order
1

𝑛 (as was the case for the systematic error in ratio estimation);

�̂�𝑌;𝐿 is therefore a biased estimator of 𝜇𝑌 .
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Regression Estimator Variability

The sampling variance of �̂�𝑌;𝐿 is also of order
1

𝑛 , and so the quotient of

the bias E[�̂�𝑌;𝐿 − 𝜇𝑌] by the standard deviation of �̂�𝑌;𝐿 is of order
1√
𝑛

.

Thus, when 𝑛, 𝑁 → ∞ (assuming that 𝑁 ≫ 𝑛), we have

E[�̂�𝑌;𝐿 − 𝜇𝑌]
SD(�̂�𝑌;𝑙)

→ 0.

Although it is impossible to get rid of the bias, the estimation error

MSE(�̂�𝑌;𝐿) = V(�̂�𝑌;𝐿) + (E(�̂�𝑌;𝐿) − 𝜇𝑌)2

is dominated byt the variance V(�̂�𝑌;𝐿) when 𝑛 is sufficiently large.

Regression Estimator Confidence Intervals

The regression estimator �̂�𝑌;𝐿 follows approximately a normal distribu-

tion N(E(�̂�𝑌;𝐿),V(�̂�𝑌;𝐿)), from which we conclude that the bound on the
error of estimation is

𝐵𝐿 ≈ �̂�𝐿 = 2

√
V̂(�̂�𝑌;𝐿) ≈ 2

√
𝑠2

𝑊 ;𝐿

𝑛

(
1 − 𝑛

𝑁

)
,

where 𝑠2

𝑊 ;𝐿
is the regression mean square error,

𝑠2

𝑊 ;𝐿 =
𝑛 − 1

𝑛 − 2

(𝑠2

𝑌 − 𝑏2𝑠2

𝑋) =
𝑛 − 1

𝑛 − 2

· 𝑠2

𝑌(1 − �̂�2).

Consequently C.I.𝐿(𝜇𝑌 ; 0.95) : �̂�𝑌;𝐿 ± �̂�𝐿 is an approximate 95% C.I. for
𝜇𝑌 .

44
44: We tackle 𝜏𝑌 and 𝑝𝑌 in the usual man-

ner.

Example Consider a SRS Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} with 𝑛 = 132,

drawn from population of size 𝑁 = 37, 444. In a preceding study, we

have shown that 𝜇𝑋 ≈ 70.3. Find a 95% C.I. for 𝜇𝑌 using regression

estimation if

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

We must evaluate 𝑥, 𝑦, 𝑠2

𝑋
, 𝑠𝑋𝑌 , 𝑠2

𝑌
, and �̂�. But

𝑥 =
9464.6

132

≈ 71.7, 𝑦 =
14691.6

132

≈ 111.3,

𝑠2

𝑋 =
686773.2 − 132(71.7)2

132 − 1

≈ 62.2, 𝑠2

𝑌 =
1670194 − 132(111.3)2

132 − 1

≈ 267.3

𝑠𝑋𝑌 =
1062186 − 132(71.7)(111.3)

132 − 1

≈ 67.2, �̂� =
67.2√

(62.2)(267.3)
≈ 0.521.
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The estimator for the regression slope is therefore 𝑏 = �̂� 𝑠𝑌
𝑠𝑋

= 1.08.

Moreover,

𝑠2

𝑊 ;𝐿 =
131

130

· 267.3 · (1 − 0.521
2) ≈ 196.77.

Consequently,

�̂�𝑌;𝐿 = 111.3 + 1.08( 70.3︸︷︷︸
𝜇𝑋

−71.7) = 109.8, and

�̂�𝐿 ≈ 2

√
196.77

132

(
1 − 132

37444

)
= 2.43,

from which we conclude that

C.I.𝐿(𝜇𝑌 ; 0.95) ≡ 109.8 ± 2.43.

Of course, if the linearity assumption is not valid, we should not expect

the bound on the error of estimation using regression estimation to be

substantially tighter than the one obtained in a SRS, say.

Example Find a 95% C.I. for the average life expectancy by country in

2011 using regression estimation against the logarithm of the GDP per

capita, with 𝑛 = 20, assuming that it is known that 𝜇𝑋 = 7.84.

We draw a sample of size 𝑛 = 20 and calculate the required quantities:

set.seed(123456) # replicability

N=nrow(gapminder.RLD); n=20

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

mu.X = mean(gapminder.RLD$lgdppc)

The sample means are:

(y.bar = mean(samp$life_expectancy))

(x.bar = mean(samp$lgdppc))

[1] 72.541

[1] 8.363971

The intermediate sums and the correlation coefficient are:

sum.xi = sum(samp$lgdppc)

sum.yi = sum(samp$life_expectancy)

sum.xi.2 = sum(samp$lgdppc^2)

sum.yi.2 = sum(samp$life_expectancy^2)

sum.xiyi = sum(samp$lgdppc*samp$life_expectancy)

s2.X = (sum.xi.2-n*x.bar^2)/(n-1)

s2.Y = (sum.yi.2-n*y.bar^2)/(n-1)

s.XY = (sum.xiyi-n*x.bar*y.bar)/(n-1)
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(rho = s.XY/sqrt(s2.X*s2.Y))

[1] 0.667983

Next, we evaluate the MSE:

(s2.W.L = (n-1)/(n-2)*s2.Y*(1-rho^2))

[1] 26.8736

The bound on the error of estimation is thus:

(B = 2*sqrt(s2.W.L/n*(1-n/N)))

[1] 2.175976

and the corresponding 95% C.I. for the mean life expectancy by country

is:

(hat.mu.Y.L = y.bar + rho*sqrt(s2.Y/s2.X)*(mu.X-x.bar))

c(hat.mu.Y.L-B,hat.mu.Y.L+B)

[1] 70.71572

[1] 68.53974 72.89170

For comparison’s sake, the true mean is 𝜇𝑌 = 70.95.

We can also compute the estimate and the confidence interval directly,

with the base lm() function.

reg.lin = lm(life_expectancy~lgdppc, data=samp)

summary(reg.lin)

Residuals:

Min 1Q Median 3Q Max

-16.2467 0.1592 1.6513 2.6614 5.8812

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.2559 7.7768 5.562 2.8e-05 ***
lgdppc 3.5013 0.9194 3.808 0.00129 **
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.184 on 18 degrees of freedom

Multiple R-squared: 0.4462, Adjusted R-squared: 0.4154

F-statistic: 14.5 on 1 and 18 DF, p-value: 0.001287
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The required quantities can be extracted as follows:

(b = as.numeric(reg.lin$coefficients[2]))

[1] 3.501336

(s2.W.L = summary(reg.lin)$sigma^2)

[1] 26.8736

Sample Size

If we seek an regression estimate of 𝜇𝑌 , we use:

𝐵𝐿 ≈ 2

√
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

𝐵2

𝐿

4︸︷︷︸
=𝐷𝐿

=
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒

(𝑁 − 1)𝐷𝐿

𝜎2

𝑊 ;𝐿

=
𝑁 − 𝑛
𝑛

=
𝑁

𝑛
− 1 ⇐⇒

(𝑁 − 1)𝐷𝐿 + 𝜎2

𝑊 ;𝐿

𝜎2

𝑊 ;𝐿

=
𝑁

𝑛
,

⇐⇒ 𝑛𝐿 =
𝑁𝜎2

𝑊 ;𝐿

(𝑁 − 1)𝐷𝐿 + 𝜎2

𝑊 ;𝐿

.

For 𝜏𝑌 , we use:

𝐵𝜏;𝐿 ≈ 2𝑁

√
𝜎2

𝑊 ;𝐿

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏;𝐿 =

𝑁𝜎2

𝑊 ;𝐿

(𝑁 − 1)𝐷𝜏;𝐿 + 𝜎2

𝑊 ;𝐿

,

where 𝐷𝜏;𝐿 =
𝐵2

𝜏;𝐿

4𝑁2

.

Since we do not know usually know 𝜎2

𝑊 ;𝐿
, we often draw a small prelimi-

nary sample on which we compute the sample 𝑠2

𝑊 ;𝐿
, which is used as an

estimator of 𝜎2

𝑊 ;𝐿
.
45

45: Warning: Even if formal manipula-

tions can still be performed, the estimate

may not be valid if the relationship be-
tween the variables 𝑋 and𝑌 is not linear. Example Determine the sample size 𝑛 required to estimate the average

life expectancy 𝜇𝑌 using regression estimation against the logarithm of

GDP per capita in 2011, with a bound of error on the estimation of 𝐵𝐿 = 1,

if 𝜎𝑊 ;𝐿 ≈ 5.194 and 𝑁 = 168.

Using the formula, we have:

𝑛𝐿 =
168(5.194)2

167(12/4) + (5.194)2 = 65.94498 =⇒ 𝑛𝐿 ≥ 66.

Since there are good reasons to trust that the relationship between life

expectancy and log GNP per capita in 2011 is approximately linear (see

Figure 10.8), the regression approach is a strong one.
46

How does it46: Assuming, of course, that 𝜇𝑋 is

known; otherwise, it is pretty much use-

less.

compare with the example that uses ratio estimation?
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10.5.3 Difference Estimation

Difference estimation is another special case of regression estimation,

where the slope 𝛽 is now assumed to be 1.

If 𝜇𝑋 is known, the difference estimator �̂�𝑌;𝐷 of 𝜇𝑌 computed from a

SRS Y is

�̂�𝑌;𝐷 = 𝑦 + (𝜇𝑋 − 𝑥).

Difference estimation is a good strategy when the relationship between

𝑋 and𝑌 is approximately linear and of slope 1,
47

as long as the variance 47: Passing or not through the origin.

of 𝑌 along this line is constant for all 𝑋. Since Y is drawn according to

a SRS, E(𝑥) = 𝜇𝑋 and E(𝑦) = 𝜇𝑌 , from which we conclude that

E(�̂�𝑌;𝐷) = E(𝑦) + (𝜇𝑋 − E(𝑥)) = 𝜇𝑌 + (𝜇𝑋 − 𝜇𝑋) = 𝜇𝑌 .

Consider the random variable 𝐷 = 𝑌 − 𝑋, whose expectation is

𝜇𝐷 = 𝜇𝑌 − 𝜇𝑋 .

The sample mean of 𝐷 is thus

𝑑 = 𝑦 − 𝑥 =⇒ �̂�𝑌;𝐷 = 𝜇𝑋 + (𝑦 − 𝑥) = 𝜇𝑋 + 𝑑.

Consequently,

V(�̂�𝑌;𝐷) = V(𝜇𝑋 + 𝑑) = V(𝑑) =
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

But

𝜎2

𝐷 =
1

𝑁

𝑁∑
𝑗=1

(𝐷𝑗 − 𝜇𝐷)2 =
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝑋𝑗) − (𝜇𝑌 − 𝜇𝑋)

}
2

=
1

𝑁

𝑁∑
𝑗=1

{
(𝑌𝑗 − 𝜇𝑌) − (𝑋𝑗 − 𝜇𝑋)

}
2

= 𝜎2

𝑌 − 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋 ,

where 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

=
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

. As such,

V(�̂�𝑌;𝐷) =
𝜎2

𝑌
− 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

The difference estimator �̂�𝑌;𝐷 follows approximately a normal distribu-

tion N(E(�̂�𝑌;𝐷),V(�̂�𝑌;𝐷)), from which we obtain the bound on the error
of estimation

𝐵𝐷 ≈ �̂�𝐷 = 2

√
V̂(�̂�𝑌;𝐷) ≈ 2

√
𝑠2

𝐷

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

𝐷 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑑𝑖 − 𝑑)2 = 𝑠2

𝑌 − 2�̂�𝑠𝑋 𝑠𝑌 + 𝑠2

𝑋 ,
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so that C.I.𝐷(𝜇𝑌 ; 0.95) : �̂�𝑌;𝐷 ± �̂�𝐷 is an approximate 95% C.I. for 𝜇𝑌 .
48

48: We tackle 𝜏𝑌 and 𝑝𝑌 in the usual man-

ner.

Example Auditors are often interested in comparing the audited value

𝑌 of items with their book value 𝑋. Suppose that 𝑁 = 180 items in

inventory have a book value of 𝜏𝑋 = 13, 320. A SRS of 𝑛 = 10 items yields

the following data:

item 𝑖 1 2 3 4 5 6 7 8 9 10

Audit 𝑦𝑖 9 14 7 29 45 109 40 238 60 170

Book 𝑥𝑖 10 12 8 26 47 112 36 240 59 167

𝑑𝑖 = 𝑦𝑖 − 𝑥𝑖 −1 2 −1 3 −2 −3 4 −2 1 3

Find a 95% C.I. for the mean audit value 𝜇𝑌 using difference estimation.

Figure 10.9: Scatterplot of 𝑋 and 𝑌.

From the scatterplot, we surmise that the slope of the linear fit of 𝑌

against 𝑋 is approximately 1. We must compute 𝑑 and 𝑠2

𝐷
:

10∑
𝑖=1

𝑑𝑖 = 4,
10∑
𝑖=1

𝑑2

𝑖 = 58, =⇒ 𝑑 =
4

10

and 𝑠2

𝐷 =
58 − 10(0.4)2

10 − 1

= 6.27.

Since 𝜇𝑋 =
𝜏𝑋
𝑁 = 13320

180
= 74, the difference estimator is

�̂�𝑌;𝐷 = 𝜇𝑋 + 𝑑 = 74 + 0.4 = 74.4

and the bound is

�̂�𝐷 ≈ 2

√
V̂(�̂�𝐷) = 2

√
6.27

10

(
1 − 10

180

)
= 1.54,

from which

C.I.𝐷(𝜇𝑌 ; 0.95) : 74.4 ± 1.54 ≡ (72.86, 75.94).

Example Consider a bivariate SRS sample Y= {(𝑥𝑖 , 𝑦𝑖)} of size 𝑛 = 132,

drawn from a population of size 𝑁 = 37, 444. In a preceding study, we
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found that 𝜇𝑋 ≈ 70.3. Find a 95% C.I. for 𝜇𝑌 using difference estimation,

assuming that

𝑛∑
𝑖=1

𝑥𝑖 = 9464.6,
𝑛∑
𝑖=1

𝑦𝑖 = 14691.6,

𝑛∑
𝑖=1

𝑥2

𝑖 = 686773.2,
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 = 1062186,
𝑛∑
𝑖=1

𝑦2

𝑖 = 1670194.

In a previous example, we have already computed

𝑥 = 71.7, 𝑦 ≈ 111.3, 𝑠2

𝑋 ≈ 62.2, 𝑠2

𝑌 ≈ 267.3, 𝑠𝑋𝑌 ≈ 67.2.

The difference estimator is thus

�̂�𝑌;𝐷 = 𝑦 + (𝜇𝑥 − 𝑥) = 111.3 + (70.3 − 71.7) = 109.9,

so that

�̂�𝐷 ≈ 2

√
267.3 − 2(67.2) + 62.2

132

(
1 − 132

37444

)
= 2.427,

and

C.I.𝐷(𝜇𝑌 ; 0.95) ≡ 109.9 ± 2.427.

Example Find a 95% C.I. for the average life expectancy by country

in 2011 𝜇𝑌 using the difference method with the logarithm of GDP per

capita per country (𝑋), using a sample of size 𝑛 = 20. Assume that

𝜇𝑋 = 7.84 is known.

We draw a sample of size 𝑛 = 20 and compute the various required

quantities.

set.seed(1234567) # for replicability

N=nrow(gapminder.RLD); n=20

index = sample(1:N,n, replace=FALSE)

samp = gapminder.RLD[index,c("life_expectancy","lgdppc")]

d = samp$life_expectancy - samp$lgdppc

(mu.X = mean(gapminder.RLD[,"lgdppc"]))

(y.bar = mean(samp$life_expectancy))

(x.bar = mean(samp$lgdppc))

(d.bar = mean(d))

(s2.d = var(d))

[1] 7.842661

[1] 70.105

[1] 7.577646

[1] 62.52735

[1] 47.69057

Note that the regression slope does not seem to be 1 (if that was the case,

we would expect 𝑦/𝑥 ≈ 1). Difference estimation is not recommended in
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this case, but we will continue the example nonetheless.

The bound on the error of estimation and the difference estimate are

computed below, and the confidence interval is:

B = 2*sqrt(s2.d/n*(1-n/N))

hat.mu.Y.D = y.bar + (mu.X-x.bar)

c(hat.mu.Y.D-B,hat.mu.Y.D+B)

[1] 67.47129 73.26874

In spite of the difference estimation assumptions not being met, the 95%

C.I. for 𝑌 does contain the true value, 𝜇𝑌 = 70.95! A happy coincidence,

no more.

Sample Size

As with the other methods, we can determine the sample size required

to achieve a certain bound on the error of estimation.

In order to estimate 𝜇𝑌 and 𝜏𝑌 via difference estimation, use:

𝐵𝜇;𝐷 ≈ 2

√
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜇;𝐷 =

𝑁𝜎2

𝐷

(𝑁 − 1)𝐷𝜇;𝐷 + 𝜎2

𝐷

;

𝐵𝜏;𝐷 ≈ 2𝑁

√
𝜎2

𝐷

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
⇐⇒ 𝑛𝜏;𝐷 =

𝑁𝜎2

𝐷

(𝑁 − 1)𝐷𝜏;𝐷 + 𝜎2

𝐷

,

where

𝐷𝜇;𝐷 =
𝐵2

𝜇;𝐷

4

and 𝐷𝜏;𝐷 =
𝐵2

𝜏;𝐷

4𝑁2

.

As we do not know usually know 𝜎2

𝐷
, we often draw a small preliminary

sample and use the empirical variance 𝑠2

𝐷
as an estimator of 𝜎2

𝐷
.

Warning! Even if formal manipulations can still be performed, the
estimate may not be valid if the relationship between the variables 𝑋
and 𝑌 is not linear with slope ≈ 1.

10.5.4 Comparisons

We have already compared the bounds on the error of estimation for

SRS, STS (Prop), and STS (Neyman), and discussed contexts in which

one might expect a STS to be preferable to an SRS, or a STS (Neyman)

preferable to a STS (Prop).

What can be said about ratio, regression, and difference estimation, both

compared to SRS and to each other?
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Comparaison Between SRS and the Ratio Method

In what context can we expect ratio estimation to perform “well”?

Obviously, the relationship between 𝑌 and 𝑋 must at least be linear and

pass through the origin, i.e.,

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛.

It is generally assumed that the observations {𝑥𝑖 > 0} are fixed, and that

the error terms {𝜀𝑖} are independent of each other, with

E(𝜀𝑖) = 0 and V(𝜀𝑖) = 𝑓 (𝑥𝑖)𝜎2 > 0.

The question becomes: what form must 𝑓 (𝑥𝑖) take so that the least squares

solution �̂� is exactly the estimator 𝑟 of the ratio 𝑅?

If we set

𝑦𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝑦′
𝑖

= 𝛽
𝑥𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝑥′
𝑖

+ 𝜀𝑖√
𝑓 (𝑥𝑖)︸  ︷︷  ︸
𝜀′
𝑖

, 𝑖 = 1, . . . , 𝑛,

we get

E(𝜀′𝑖) =
1√
𝑓 (𝑥𝑖)

E(𝜀) = 0 and V(𝜀′𝑖) =
1

𝑓 (𝑥𝑖)
V(𝜀′𝑖) =

𝑓 (𝑥𝑖)𝜎2

𝑓 (𝑥𝑖)
= 𝜎2 ,

and the assumptions of the least squares problem are satisfied. The

estimator 𝛽 is obtained by minimizing

𝑄(𝛽) =
𝑛∑
𝑖=1

(𝜀′𝑖)
2 =

𝑛∑
𝑖=1

(𝑦′𝑖 − 𝛽𝑥′𝑖)
2 =

𝑛∑
𝑖=1

1

𝑓 (𝑥𝑖)
(𝑦𝑖 − 𝛽𝑥𝑖)2;

since

𝑄′(𝛽) = −2

𝑛∑
𝑖=1

𝑥𝑖

𝑓 (𝑥𝑖)
(𝑦𝑖 − 𝛽𝑥𝑖),

this is equivalent to solving

0 =

𝑛∑
𝑖=1

𝑥𝑖

𝑓 (𝑥𝑖)
(𝑦𝑖 − �̂�𝑥𝑖) ⇐⇒ 0 =

𝑛∑
𝑖=1

(
𝑥𝑖𝑦𝑖

𝑓 (𝑥𝑖)
− �̂�

𝑥2

𝑖

𝑓 (𝑥𝑖)

)
⇐⇒ �̂� =

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

𝑓 (𝑥𝑖)
𝑛∑
𝑖=1

𝑥2

𝑖

𝑓 (𝑥𝑖)

.

If
𝑥𝑖
𝑓 (𝑥𝑖 ) = 𝑘 > 0 for all 𝑖 = 1, . . . , 𝑛, the estimator �̂� becomes

�̂� =

𝑘
𝑛∑
𝑖=1

𝑦𝑖

𝑘
𝑛∑
𝑖=1

𝑥𝑖

=

𝑛∑
𝑖=1

𝑦𝑖

𝑛∑
𝑖=1

𝑥𝑖

= 𝑟.
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Thus, when the variance of 𝑌 along the line 𝑌 = 𝛽𝑋 is

V(𝑦𝑖) = V(𝛽𝑥𝑖 + 𝜀𝑖) = V(𝜀𝑖) = 𝑥𝑖𝜎
2

(i.e., the variance of 𝑌 is proportional to 𝑋), the estimator 𝑟 of the ratio

𝑅 is exactly the least squares solution, �̂� = 𝑟, and we can expect ratio

estimation to produce “good” results.

Of course, one can use the ratio estimation method with a SRS Y to

obtain an estimate �̂�𝑌;𝑅 of 𝜇𝑌 even if V(𝜀) ≠ 𝑥𝜎2
.

We have already determined the variance of this estimator:

V(�̂�𝑌;𝑅) = V(𝑟𝜇𝑋) = 𝜇2

𝑋V(𝑟) ≈ 1

𝑛
(𝜎2

𝑌 + 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌)
(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

+
𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently, V(𝑦
SRS

) ≫ V(�̂�𝑌;𝑅) if and only if 𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌 ≪ 0,

which is to say if

𝜌 ≫ 𝑅𝜎𝑋
2𝜎𝑌

=
𝜇𝑌𝜎𝑋
2𝜇𝑋𝜎𝑌

=
1

2

· CV𝑋

CV𝑌
.

Comparaison Between SRS and the Regression Method

We have already determined the variance of the estimator �̂�𝑌;𝐿 of 𝜇𝑌 :

V(�̂�𝑌;𝐿) ≈ (1 − 𝜌2)
𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

−𝜌2 ·
𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
= (1 − 𝜌2)V(𝑦

SRS
).

Consequently, V(�̂�𝑌;𝐿) ≪ V(𝑦
SRS

)when (1 − 𝜌2)V(𝑦
SRS

) ≪ V(𝑦
SRS

), which

is to say that

1 − 𝜌2 ≪ 1 ⇐⇒ 0 ≪ |𝜌| ≤ 1.

Comparaison Between SRS and the Difference Method

We have already determined the variance of the estimator �̂�𝑌;𝐷 of 𝜇𝑌 :

V(�̂�𝑌;𝐷) =
𝜎2

𝑌
− 2𝜌𝜎𝑋𝜎𝑌 + 𝜎2

𝑋

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
=

𝜎2

𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
︸         ︷︷         ︸

V(𝑦
SRS

)

+
𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

Consequently, V(�̂�𝑌;𝐷) ≪ V(𝑦
SRS

)when 𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌 ≪ 0 ⇐⇒ 𝜎2

𝑋
≪ 2𝜎𝑋𝑌 .



10.5 Auxiliary Information 687

Comparaison Between the Ratio, Regression, and Difference Methods

For each of the estimators �̂�𝑌;𝛼, 𝛼 ∈ {𝑅, 𝐿, 𝐷}, we have shown that the

sampling variance takes the (approximate) form

V(�̂�𝑌;𝛼) ≈ V(𝑦
SRS

) + 𝐴𝛼

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

where

𝐴𝛼 =


𝑅2𝜎2

𝑋
− 2𝑅𝜌𝜎𝑋𝜎𝑌 , 𝛼 = 𝑅

−𝜌2𝜎2

𝑌
, 𝛼 = 𝐿

𝜎2

𝑋
− 2𝜌𝜎𝑋𝜎𝑌 , 𝛼 = 𝐷

In general, V(�̂�𝑌;𝛼) ≪ V(�̂�𝑌;𝛾) if and only if 𝐴𝛼 ≪ 𝐴𝛾; these are the

terms that must be compared to one another.

For instance,

V(�̂�𝑌;𝑅) ≫ V(�̂�𝑌;𝐿) ⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 ≫ −𝜌2𝜎2

𝑌

⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 + 𝜌2𝜎2

𝑌 ≫ 0

⇐⇒ (𝑅𝜎𝑋 − 𝜌𝜎𝑌)2 ≫ 0 ⇐⇒ |𝑅𝜎𝑋 − 𝜌𝜎𝑌 | ≫ 0

⇐⇒ 𝑅 ≫ 𝜌
𝜎𝑌
𝜎𝑋

= �̂� or 𝑅 ≪ �̂�

All things being equal, the regression estimator is preferable to the ratio

estimator (according to their bounds on the error of estimation) when

the ratio is quite different from the slope of the regression line.

Similarly,

V(�̂�𝑌;𝐷) ≫ V(�̂�𝑌;𝐿) ⇐⇒ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌 ≫ −𝜌2𝜎2

𝑌

⇐⇒ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌 + 𝜌2𝜎2

𝑌 ≫ 0

⇐⇒ (𝜎𝑋 − 𝜌𝜎𝑌)2 ≫ 0 ⇐⇒ |𝜎𝑋 − 𝜌𝜎𝑌 | ≫ 0

⇐⇒ 1 ≫ 𝜌
𝜎𝑌
𝜎𝑋

= �̂� or 1 ≪ �̂�.

All things being equal, the regression estimator is preferable to the

difference estimator (according to their bounds on the error of estimation)

when the slope of the regression line takes a value far from 1.

But the regression estimator is always at least as good as the other two
since the latter two are special cases of regression estimation.

Finally, we can also compare the estimators by the ratio and by the

difference:

V(�̂�𝑌;𝑅) ≫ V(�̂�𝑌;𝐷) ⇐⇒ 𝑅2𝜎2

𝑋 − 2𝑅𝜌𝜎𝑋𝜎𝑌 ≫ 𝜎2

𝑋 − 2𝜌𝜎𝑋𝜎𝑌

⇐⇒ |𝑅 | ≠ 1 and 𝜎2

𝑋 ≫ 2

𝑅 + 1

𝜎𝑋𝑌

and

V(�̂�𝑌;𝐷) ≫ V(�̂�𝑌;𝑅) ⇐⇒ |𝑅 | ≠ 1 and 𝜎2

𝑋 ≪ 2

𝑅 + 1

𝜎𝑋𝑌

Otherwise, the variances are of relatively similar magnitude.
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10.6 Cluster Sampling

In practice, collecting sample data can require a tremendous amount of

travel. Imagine a survey where the residents of the entire country are

the target population, and a range of demographic and health indicators

are measured about the units:

age, height, weight, ethnicity, neighborhood, etc;

blood pressure, blood cholesterol and mercury levels, body-mass

index, etc.

Some of the information can be self-reported by the units (age, ethnicity,

etc.), but in many cases (body-mass index, mercury levels, etc.), data col-

lection requires the use of health experts and specialized equipment.

If all the sample units are from the Greater Toronto Area (GTA), say,

it may be efficient to move the panel of experts (with all the required

equipment in a trailer) from site to site, staying 2 weeks at each site. With

about 20 sites in the GTA, data collection would take about a year to

complete, but the cost of the survey would be greatly reduced: each night,

the interviewers would go home; the cost of moving the equipment
would also be minimized because of the small distances involved.

In a national study, where units could be drawn from several jurisdictions

and remote locations, this approach is no longer necessarily recom-

mended as it is potentially very expensive. Instead, one could start by

taking a first sample of geographic areas (cities, regional municipalities,

etc.), and then select a sub-sample of units (residents) in each of these

areas.

Such a strategy is known as multi-stage sampling (M𝑛S, see Section

10.7.3). Stratified sampling, for example, is a M2S for which the first level

sample is a census and the second level sample is a SRS.

As another example, when the first level sample comes from a SRS and

the second level sample is a census (all units are selected), we speak of

cluster sampling (CLS).

10.6.1 Estimators and Confidence Intervals

As it was the case in the second chapter, we are interested in a finite

population U= {𝑢1 , . . . , 𝑢𝑁 } of expectation 𝜇 and variance 𝜎2
.

Suppose we can cover the population with𝑀 disjoint clusters containing,

respectively, 𝑁1 , . . . , 𝑁𝑀 units, so that 𝑁1 + · · · + 𝑁𝑀 = 𝑁 :

G1 = {𝑢1,1 , . . . , 𝑢1,𝑁1
}, · · · , G𝑀 = {𝑢𝑀,1 , . . . , 𝑢𝑀,𝑁𝑀

},

with cluster expectation, total, and variance given by

𝜇𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢𝑖 , 𝑗 , 𝜏𝑖 = 𝑁𝑖𝜇𝑖 , and 𝜎2

𝑖 =
1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑢2

𝑖 , 𝑗 − 𝜇2

𝑖 , 1 ≤ 𝑖 ≤ 𝑀.
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Figure 10.10: Schematics of CLS: target

population (left) and sample (right).

A cluster random sample (CLS) Y is a subset of the target population

Uwhich is obtained by first drawing a SRS of 𝑚 > 1 clusters, and then

selecting all units in the selected clusters:

G𝑖1 ∪ · · · ∪ G𝑖𝑚 = {𝑦𝑖1 ,1 , . . . , 𝑦𝑖1 ,𝑁𝑖
1︸             ︷︷             ︸

cluster G𝑖1

, . . . , 𝑦𝑖𝑚 ,1 , . . . , 𝑦𝑖𝑚 ,𝑁𝑖𝑚︸               ︷︷               ︸
cluster G𝑖𝑚

} ⊆
𝑀⋃
ℓ=1

Gℓ = U.

When G𝑖𝑘 belongs to the CLS Y, we denote its mean, total, and variance
by 𝑦 𝑖𝑘 , 𝑦𝑖𝑘 , and 𝑠2

𝑖𝑘
, respectively, for 1 ≤ 𝑘 ≤ 𝑚.

In a CLS design, each observation has the same probability of being
selected, but the sample size may change from one CLS to another,
unless the clusters all have the same size in the first place.

Estimating the Mean 𝜇 for Clusters of Equal Size

Let us assume that all clusters have the same size: 𝑁1 = · · · = 𝑁𝑀 =

𝑛 =⇒ 𝑁 = 𝑀𝑛. The cluster mean of the sample observations in Y is

an estimator of 𝜇:

𝑦𝐶 =
1

𝑚𝑛

𝑚∑
𝑘=1

𝑛∑
𝑗=1

𝑦𝑖𝑘 , 𝑗 =
1

𝑚𝑛

𝑚∑
𝑘=1

𝑦𝑖𝑘 =
1

𝑚

𝑚∑
𝑘=1

𝑦 𝑖𝑘 =
1

𝑚

𝑚∑
𝑘=1

𝜇𝑖𝑘 .

Therefore, the cluster average is simply the average of the selected cluster
averages. This is not surprising since

𝜇 =
1

𝑁

𝑀∑
ℓ=1

𝑛∑
𝑗=1

𝑢ℓ , 𝑗 =
1

𝑀𝑛

𝑀∑
ℓ=1

𝑛∑
𝑗=1

𝑢ℓ , 𝑗 =
1

𝑀𝑛

𝑀∑
ℓ=1

𝜏ℓ =
1

𝑀

𝑀∑
ℓ=1

𝜇ℓ .

We can easily show that 𝑦𝐶 is an unbiased estimator of 𝜇:

E(𝑦𝐶) =
1

𝑚

𝑚∑
𝑘=1

E(𝜇𝑖𝑘 ) =
1

𝑚

𝑚∑
𝑘=1

𝜇 = 𝜇.

Furthemore, its sampling variance is

V(𝑦𝐶) =
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
, where 𝜎2

𝐶 =
1

𝑀

𝑀∑
ℓ=1

(𝜇ℓ − 𝜇)2 ,
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since clusters are drawn using an SRS. Indeed, 𝑦𝐶 is the mean of a SRS

with 𝑚:

{𝜇𝑖1 , . . . , 𝜇𝑖𝑚 } ⊆ {𝜇1 , . . . , 𝜇𝑀}.

Central Limit Theorem – CLS: if 𝑚 and 𝑀 − 𝑚 are sufficiently large,

then

𝑦𝐶 ∼approx. N
(
E(𝑦𝐶),V(𝑦𝐶)

)
= N

(
𝜇,

𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

))
.

In a CLS, the bound on the error of estimation is thus

𝐵𝜇;𝐶 = 2

√
V(𝑦𝐶) = 2

√
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

and the corresponding 95% C.I. for 𝜇 is simply

C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± 𝐵𝜇;𝐶 .

In practice, the variance of the cluster means 𝜎2

𝐶
is rarely known – the

empirical variance (and the corresponding correction factor) is used

instead:

V̂(𝑦𝐶) =
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
, where 𝑠2

𝐶 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦 𝑖𝑘 − 𝑦𝐶)
2.

The bound on the error of estimation is then approximated by

𝐵𝜇;𝐶 ≈ �̂�𝜇;𝐶 = 2

√
V̂(𝑦𝐶) = 2

√
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
,

=⇒ C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± �̂�𝜇;𝐶 ≡ 𝑦𝐶 ± 2

√
𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
.

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ , each of size 𝑛 = 851. We draw a SRS of 𝑚 = 6

clusters. The means of these clusters are:

𝑦
1
= 120.7, 𝑦

2
= 75.2, 𝑦

3
= 116.3, 𝑦

4
= 111.1, 𝑦

5
= 116.9, 𝑦

6
= 96.6.

Find a 95% C.I. for the mean 𝜇.

The bound on the error of estimation for 𝜇 is ≈ �̂�𝜇;𝐶 = 2

√
V̂(𝑦𝐶); we see

that

𝑦𝐶 = 1

6

∑
6

𝑘=1
𝑦𝑘 ≈ 106.1, 𝑠2

𝐶
= 1

6−1

∑
6

𝑘=1
(𝑦𝑘 − 𝑦𝐶)2 =

69089.6−6(106.1)2
6−1

≈ 300.8,

from which we have

C.I.𝐶(𝜇; 0.95) ≈ 106.1 ± 2

√
300.8

6

(
1 − 6

44

)
≡ (93.0, 119.3).
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Estimating the Mean 𝜇 for Clusters of Different Sizes

In practice, the clusters are often all of different sizes, so we could write

𝜇 =

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝑢ℓ , 𝑗

𝑀∑
ℓ=1

𝑁ℓ

=

𝑀∑
ℓ=1

𝜏ℓ

𝑀∑
ℓ=1

𝑁ℓ

,

where 𝜏ℓ is the sum of 𝑢ℓ , 𝑗 for units in the cluster Gℓ , 1 ≤ ℓ ≤ 𝑀.
49

49: If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, the formulas

we will develop will collapse to those seen

in the preceding section.If we still draw 𝑚 clusters from the population of 𝑀 clusters using an

SRS, the form of 𝜇 suggests the use of the following estimator:

𝑦𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑦𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑦𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where we are using the notation of Section 10.5.

If the average cluster size is 𝑁 = 𝑁
𝑀 , this is similar to the situation

that leads to ratio estimation of the mean. By performing the mapping

(𝑦𝐶 , 𝜇, 𝑁 , 𝜏ℓ , 𝑁ℓ )↭ (𝑟, 𝑅, 𝜇𝑋 , 𝑌𝑗 , 𝑋𝑗), we can therefore conclude that

𝑦𝐶 is a biased estimator of 𝜇, whose sampling variance is

V(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ︸    ︷︷    ︸
=𝑁ℓ (𝜇ℓ−𝜇)

)2.

Consequently, the bound on the error of estimation is given by

𝐵𝜇;𝐶 = 2

√
V(𝑦𝐶) ≈ 2

√
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ )2.

In practice, we often only have access to the sampled clusters – we must

then use the empirical variance:

V̂(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2

=
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 �̂�𝑠𝑁 𝑠𝑌), where

𝑠2

𝑌 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦)2 , 𝑠2

𝑁 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑁𝑖𝑘 − 𝑁)2 ,

�̂� =

∑𝑚
𝑘=1

(𝑦𝑖𝑘 − 𝑦)(𝑁𝑖𝑘 − 𝑁)√∑𝑚
𝑘=1

(𝑦𝑖𝑘 − 𝑦)2
∑𝑚
𝑘=1

(𝑁𝑖𝑘 − 𝑁)2
, 𝑦 =

1

𝑚

𝑚∑
𝑘=1

𝑦𝑖𝑘 .

Since it is not always possible to determine the average 𝑁 of the clusters

in the population U, we often use 𝑛, the average cluster size in the
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sample Y instead:

𝑛 =
𝑁𝑖1 + · · · + 𝑁𝑚

𝑚
.

The bound on the error of estimation is thus

�̂�𝜇;𝐶 ≈ 2

√
1

𝑛
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌
+ 𝑠2

𝑁
𝑦

2

𝐶 − 2𝑦𝐶 �̂�𝑠𝑁 𝑠𝑌)

and the approximate 95% C.I. for 𝜇 is

C.I.𝐶(𝜇; 0.95) : 𝑦𝐶 ± �̂�𝜇;𝐶 .

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The means of

the observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the mean 𝜇.

The bound on the error of estimation is ≈ �̂�𝜇;𝐶 = 2

√
V̂(𝑦𝐶); we see that

𝑦𝐶 =

∑
6

𝑘=1
𝑁𝑘𝑦𝑘∑

6

𝑘=1
𝑁𝑘

=
531073.3

4791

≈ 110.8, 𝑛 =
1

6

6∑
𝑘=1

𝑁𝑘 =
4791

6

= 798.5

𝑦 =

∑
6

𝑘=1
𝑁𝑘𝑦𝑘

6

=
531073.3

6

= 88, 512.2,

𝑠2

𝑁 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘 − 𝑛)2 = 98, 146.7

𝑠2

𝑌 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘𝑦𝑘 − 𝑦)2 = 1, 465, 229, 403.4,

�̂� =

∑
6

𝑘=1
(𝑁𝑘 − 𝑛)(𝑁𝑘𝑦𝑘 − 𝑦)√∑

6

𝑘=1
(𝑁𝑘 − 𝑛)2

∑
6

𝑘=1
(𝑁𝑘𝑦𝑘 − 𝑦)2

≈ 0.9796

𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 �̂�𝑠𝑁 𝑠𝑌 = 66, 814, 598.95

from which we conclude that

V̂(𝑦𝐶) =
1

798.52

· 1

6

(
1 − 6

44

)
(66, 814, 598.95) ≈ 15.1

and C.I.𝐶(𝜇; 0.95) ≈ 110.8 ± 2

√
15.1 ≡ (103.1, 118.6).

Example Find a 95% C.I. for the average life expectancy by country in

2011 (including India and China), using a CLS of size 𝑚 = 8, assuming

that the 𝑁 = 185 countries have been grouped into 𝑀 = 22 clusters
determined by geographic regions.

We re-use the code from the previous sections,
50

50: With some modifications, in particular

with respect to the clusters (region.

The cluster sizes in the

population are as follows.
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gapminder.CLS <- gapminder |> filter(year==2011) |> select(life_expectancy, region)

summary(gapminder.CLS,22)

life_expectancy region

Min. :46.70 Australia and New Zealand: 2

1st Qu.:65.30 Caribbean :13

Median :73.70 Central America : 8

Mean :71.18 Central Asia : 5

3rd Qu.:77.40 Eastern Africa :16

Max. :83.02 Eastern Asia : 6

Eastern Europe :10

Melanesia : 5

Micronesia : 2

Middle Africa : 8

Northern Africa : 6

Northern America : 3

Northern Europe :10

Polynesia : 3

South America :12

South-Eastern Asia :10

Southern Africa : 5

Southern Asia : 8

Southern Europe :12

Western Africa :16

Western Asia :18

Western Europe : 7

We note that the average life expectancy is 𝜇 = 71.18. We can explore the

distribution of life expectancy by cluster using the following code:

ggplot(data=gapminder.CLS, aes(x=life_expectancy, y=region, fill=region)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(), legend.position="none")
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We notice a significant variability between some clusters (Southern Africa

vs. Southern Europe, for example), but there is still a lot of overlap (which

is a good sign). Next, we draw a SRS of 𝑚 = 8 clusters:

set.seed(12345) # for replicability

regions=unique(gapminder.CLS[,"region"])

M=length(regions); m=8

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 14 19 16 11 2 21 6 7

We provide a summary of the observations in the sampled clusters:

sample.ind = gapminder.CLS$region %in% regions[sample.reg]

gapminder.CLS.n = gapminder.CLS[sample.ind,]

gapminder.CLS.n$region <- as.factor(gapminder.CLS.n$region)

(summ = gapminder.CLS.n |> group_by(region) |>

summarise(N=n(), y.bar=mean(life_expectancy),

total.y=sum(life_expectancy)))

# A tibble: 8 × 4

region N y.barre total.y

<fct> <int> <dbl> <dbl>

1 Australia and New Zealand 2 81.5 163

2 Central America 8 75.0 600.

3 Central Asia 5 69.4 347.

4 Melanesia 5 65.5 328.

5 Northern Africa 6 70.7 424.

6 Northern America 3 77.2 232.

7 South-Eastern Asia 10 72.6 726.

8 Western Asia 18 75.8 1364.

We can also produce a summary of this summary:

(summ.final = summ |>

summarise(sum.N = sum(N), moy.N = mean(N),

y.bar.bar = mean(total.y),

sum.y.bar = sum(total.y)))

# A tibble: 1 × 4

sum.N moy.N y.barre.barre sum.y.barre

<int> <dbl> <dbl> <dbl>

1 57 7.12 523. 4184.

We can now calculate the cluster estimator:

(est.y.bar.G=summ.final$sum.y.bar/summ.final$sum.N)

[1] 73.40316
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Next, its sampling variance:

s2.Y = var(summ$total.y)

s2.N = var(summ$N)

rho = cor(summ$N,summ$total.y)

V.est.y.G = 1/summ.final$moy.N^2*1/m*(1-m/M)*
(s2.Y+s2.N*est.y.bar.G^2-

2*est.y.bar.G*rho*sqrt(s2.N*s2.Y))

The bound on the error of estimation and the 95% C.I. for 𝜇 are:

B = 2*sqrt(V.est.y.G)

c(est.y.bar.G - B,est.y.bar.G + B)

[1] 71.35310 75.45321

The performance of CLS is generally worse than that of SRS and/or STS

– no surprise, given the discussion at the beginning of this section. The

nature of the clusters may also play a role (in contrast to STS, CLS is

more efficient when the cluster structure is similar from one cluster to
another), which is not really the case here. We will discuss this further.

Estimating the Total 𝜏

Most of the work has already been done: since the total 𝜏 can be rewritten

as

𝜏 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝑁𝜇,

we can estimate the total with a CLS using the formula

�̂�𝐶 = 𝑁𝑦𝐶 .

There are two possibilities: either 𝑁1 = · · · = 𝑁𝑀 = 𝑛, or the clusters are

not all the same size.

If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, we have an unbiased estimator of 𝜏:

E(�̂�𝐶) = E(𝑁𝑦𝐶) = 𝑁 · E(𝑦𝐶) = 𝑁𝜇 = 𝜏,

V(�̂�𝐶) = 𝑁2 · V(𝑦𝐶) = 𝑁2 ·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
≈ 𝑁2 · V̂(𝑦𝐶) = 𝑁2 ·

𝑠2

𝐶

𝑚

(
1 − 𝑚

𝑀

)
.

If the clusters are of different sizes, we have a biased estimator of 𝜏, with

sampling variance given by

V(�̂�𝐶) = V(𝑁𝑦𝐶) = 𝑁2 · V(𝑦𝐶) ≈ 𝑁2 · V̂(𝑦𝐶)

=
𝑁2

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 �̂�𝑠𝑁 𝑠𝑌)

= 𝑀2 · 1

𝑚

(
1 − 𝑚

𝑀

)
(𝑠2

𝑌 + 𝑠2

𝑁 𝑦
2

𝐶 − 2𝑦𝐶 �̂�𝑠𝑁 𝑠𝑌).
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The estimator follows an approximate normal distribution

�̂�𝐶 ∼approx N

(
E(�̂�𝐶), V̂(�̂�𝐶)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

In both cases, the bound on the error of estimation is

𝐵𝜏;𝐶 ≈ �̂�𝜏;𝐶 = 2

√
V̂(�̂�𝐶)

and the 95% C.I. for 𝜏 takes the usual form:

C.I.𝐶(𝜏; 0.95) : �̂�𝐶 ± �̂�𝜏;𝐶 .

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ , each of size 𝑛 = 851. We draw a SRS of 𝑚 = 6

clusters. The means of the observations in these clusters are:

𝑦
1
= 120.7, 𝑦

2
= 75.2, 𝑦

3
= 116.3, 𝑦

4
= 111.1, 𝑦

5
= 116.9, 𝑦

6
= 96.6.

Find a 95% C.I. for the total 𝜏 in U.

We have previously seen that C.I.𝐶(𝜇; 0.95) ≡ (93.0, 119.3) for this CLS,

with 𝑁1 = · · · = 𝑁6 = 851. Therefore,

C.I.𝐶(𝜏; 0.95) ≈ 37444(93.0, 119.3) ≡ (3481307.7, 4466805.3).

Example Consider a finite population Uof size 𝑁 = 37, 444, divided

into 𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The mean of

the observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the total 𝜏 in U.

We have already seen in a previous example that C.I.𝐶(𝜇; 0.95) ≡
(103.1, 118.6) for this CLS with different cluster sizes. Therefore,

C.I.𝐶(𝜏; 0.95) ≈ 37444(103.1, 118.6) ≡ (3860476, 4440858).

WARNING: how do we do this if the size 𝑁 of the population is
unknown? Note that

𝜏 =

𝑀∑
ℓ=1

𝜏ℓ = 𝑀 · 1

𝑀

𝑀∑
ℓ=1

𝜏ℓ = 𝑀𝜏,

where 𝜏 is mean of the cluster totals in the population.

We could then use the estimator

𝑀𝑦𝑇 = 𝑀 · 1

𝑚

𝑚∑
𝑘=1

𝑦𝑖𝑘 ,
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where 𝑦𝑇 is the mean of the 𝑚 cluster totals in the CLS.

In that case, we are dealing with a SRS of size 𝑚, drawn from 𝑀 cluster

totals, i.e., this is an unbiased estimator:

E(𝑀𝑦𝑇) = 𝜏

V(𝑀𝑦𝑇) = 𝑀2 · V(𝑦𝑇) = 𝑀2 ·
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
V̂(𝑀𝑦𝑇) ≈ 𝑀2 · V̂(𝑦𝑇) = 𝑀2 ·

𝑠2

𝑇

𝑚

(
1 − 𝑚

𝑀

)
,

where

𝜎2

𝑇 =
1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜏)2 and 𝑠2

𝑇 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝑇)2.

The estimator follows an approximate normal distribution

𝑀𝑦𝑇 ∼approx N

(
𝜏, V̂(𝑀𝑦𝑇)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

The bound on the error of estimation is then

𝐵𝜏;𝑇 ≈ �̂�𝜏;𝑇 = 2

√
V̂(𝑀𝑦𝑇)

and the 95% C.I. for 𝜏 takes the usual form:

C.I.𝑇(𝜏; 0.95) : 𝑀𝑦𝑇 ± �̂�𝜏;𝑇 .

Example Consider a finite population Uof unknown size, divided into

𝑀 = 44 clusters Gℓ . We draw a SRS of 𝑚 = 6 clusters. The mean of the

observations in these clusters are:

𝑘 1 2 3 4 5 6

𝑦𝑘 120.7 75.2 116.3 111.1 116.9 96.6

𝑁𝑘 850 176 1011 1001 843 910

Find a 95% C.I. for the total 𝜏 in U.

Since the population size 𝑁 is unknown, the bound on the error of

estimation for 𝜏 is ≈ �̂�𝜏;𝑇 = 2

√
V̂(𝑀𝑦𝑇); we see that

𝑦𝑇 =
1

6

6∑
𝑘=1

𝑁𝑘𝑦𝑘 =
531073.3

6

≈ 88512.2, 𝑀𝑦𝑇 = 44(88512.2) = 3894537.5

and

𝑠2

𝑇 =
1

6 − 1

6∑
𝑘=1

(𝑁𝑘𝑦𝑘 − 𝑦𝑇)2 =
1

5

(
6∑
𝑘=1

𝑁2

𝑘
𝑦

2

𝑘 − 6𝑦
2

𝑇

)
= 1465229403,
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from which we conclude that

V̂(𝑀𝑦𝑇) = (44)2 · 1465229403

6

(
1 − 6

44

)
= 408310593755.73

and C.I.𝑇(𝜏; 0.95) ≈ 3894537.5±2

√
408310593755.73 ≡ (2616554, 5172521).

The estimator is unbiased, but the confidence interval for 𝜏 is much

wider than that given by C.I.𝐶(𝜏; 0.95) ≡ (3860476, 4440858); this is not

surprising since we have more information in the latter case (namely, the

size 𝑁 of the population).

Example Find a 95% C.I. for the world population in 2011 (excluding

China and India), using a CLS of size𝑚 = 8, drawn from 𝑀 = 22 clusters

determined by geographic regions.

We re-use the code from the previous sections to create the clusters. The

true population total is found below:

gapminder.CLS.pop <- gapminder |> filter(year==2011) |>

select(population, region) |>

filter(population < 500000000)

(sum(gapminder.CLS.pop$population))

[1] 4264258312

We start by studying the distribution of population by region:

ggplot(data=gapminder.CLS.pop, aes(x=population, y=region,

fill=population)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(),

legend.position="none")
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The essential statistics are calculated as follows:

summ.pop = gapminder.CLS.pop |> group_by(region) |>

summarise(N=n(), y.pop=mean(population),

tau.pop=sum(population))

Next we draw a SRS of clusters:

set.seed(22) # for replicability

regions = unique(gapminder.CLS.pop[,"region"])

M=length(regions); m=8

N=nrow(gapminder.CLS.pop)

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 6 9 10 12 17 5 11 3

The sample is summarized as follows:

sample.ind = gapminder.CLS.pop$region %in%

regions[sample.reg]

gapminder.CLS.T = gapminder.CLS.pop[sample.ind,]

gapminder.CLS.T$region <- as.factor(gapminder.CLS.T$region)

(summ.T = gapminder.CLS.T |> group_by(region) |>

summarise(N=n(), tau=sum(population)))

# A tibble: 8 × 3

region N tau

<fct> <int> <int>

1 Central America 8 163510619

2 Eastern Europe 10 294249971

3 Middle Africa 8 134483803

4 Northern Europe 10 99989705

5 South America 12 401182686

6 Southern Asia 7 450825356

7 Western Africa 16 316604189

8 Western Asia 18 237909741

If we assume the number of units in the population to be known (𝑁 = 183),

the estimator of the average population per country is:

(y.G = sum(summ.T$tau)/sum(summ.T$N))

[1] 23581529

The estimator for the total population (excluding China and India) is:

(tau.G = N*y.G)

[1] 4315419784



700 10 Survey Sampling Methods

The bound on the error of estimation and the 95% C.I. for 𝜏 are:

s2.G = 1/(m-1)*sum((summ.T$tau-y.G*summ.T$N)^2)

V = M^2*s2.G/m*(1-m/M)

B = 2*sqrt(V)

c(tau.G-B,tau.G+B)

[1] 2441918142 6188921427

If we assume instead that the number of units is unknown, the estimator

of the population per cluster is:

(y.T = sum(summ.T$tau)/m)

[1] 262344509

The estimator for the total population (excluding China and India) would

then be:

(tau.T = M*y.T)

[1] 5771579192

The bound on the error of estimation and the 95% C.I. for 𝜏 in that case

are computed below:

s2.T = 1/(m-1)*sum((summ.T$tau-y.T)^2)

V = M^2*s2.T/m*(1-m/M)

B = 2*sqrt(V)

c(tau.G-B,tau.G+B)

[1] 2746857662 5883981906

The actual value 𝜏 = 4, 264, 258, 312 is found within the 95% C.I.
51

51: But different SRS of clusters might lead

to different outcomes.

Estimating a Proportion 𝑝

In a population where 𝐴ℓ , 𝑗 ∈ {0, 1} represents the absence or presence

of a characteristic for the 𝑗th unit in the ℓ th cluster, the mean

𝑝 =
1

𝑁

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝐴ℓ , 𝑗 =

𝑀∑
ℓ=1

𝐴ℓ

𝑀∑
ℓ=1

𝑁ℓ

is the proportion of the population units possessing the characteristic,

where𝐴ℓ is the number of units with the characteristic in the ℓ th cluster.
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If we are still drawing 𝑚 clusters using a SRS from the 𝑀 clusters in

the population, the form taken by 𝑝 suggests the use of the following

estimator:

�̂�𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑎𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑎𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where 𝑎𝑖𝑘 is the number of units with the characteristic in the 𝑘th sampled

cluster.

Set 𝑁 = 𝑁
𝑀 . If 𝑁 is unknown, we use 𝑁 ≈ 𝑛 = 1

𝑚 (𝑁𝑖1 + · · · + 𝑁𝑖𝑚 ). There

are then two possibilities: either 𝑁1 = · · · = 𝑁𝑀 = 𝑛, or the clusters are

not all of the same size. If 𝑁1 = · · · = 𝑁𝑀 = 𝑛, we have an unbiased
estimator of 𝑝:

E(�̂�𝐶) = 𝑝, V(�̂�𝐶) =
1

𝑛2

·
𝜎2

𝑃

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
≈ 1

𝑛2

·
𝑠2

𝑃

𝑚

(
1 − 𝑚

𝑀

)
= V̂(�̂�𝐶),

where

𝜎2

𝑃 =
1

𝑀

𝑀∑
ℓ=1

(𝐴ℓ − 𝑝𝑁ℓ )2 and 𝑠2

𝑃 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑎𝑖𝑘 − �̂�𝐶𝑁𝑖𝑘 )2.

If the clusters are of different sizes, we have a biased estimator of 𝑝,

whose sampling variance is:

V(�̂�𝐶) ≈
1

𝑁
2

·
𝜎2

𝑃

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
, V̂(�̂�𝐶) ≈

1

𝑛
2

·
𝑠2

𝑃

𝑚

(
1 − 𝑚

𝑀

)
.

The estimator follows an approximate normal distribution

�̂�𝐶 ∼approx N

(
E(�̂�𝐶), V̂(�̂�𝐶)

)
,

as long as the quantities 𝑚, and 𝑀 − 𝑚 are both “large enough”.

In both cases, the bound on the error of estimation is

𝐵𝑝;𝐶 ≈ �̂�𝑝;𝐶 = 2

√
V̂(�̂�𝐶)

and the 95% C.I. for 𝑝 takes the usual form:

C.I.𝐶(𝑝; 0.95) : �̂�𝐶 ± �̂�𝑝;𝐶 .

Example Find a 95% C.I. for the proportion of countries whose life

expectancy is above 75 years in 2011, using a CLS with 𝑚 = 8, assuming

that the countries are grouped into 𝑀 = 22 clusters determined by

geographic regions.

We re-use the code of the previous sections to create the clusters, and

we create a new indicator variable for the 75 years life expectancy

threshold:
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gapminder.CLS$life.75 <- ifelse(

gapminder.CLS$life_expectancy>75,1,0)

gapminder.CLS.75 <- gapminder.CLS |> select(life.75,region)

(mean(gapminder.CLS.75$life.75)) # true proportion

[1] 0.3945946

We begin by examining the proportions in each region:

summ.75 = gapminder.CLS.75 |>

group_by(region) |>

summarise(N=n(), p.hat=mean(life.75))

ggplot(data=summ.75,aes(x=p.hat, y=region, size=N, fill=p.hat)) +

geom_point(col="black", alpha=.2,pch=22) +

theme(legend.title = element_blank(), legend.position="none")

The proportion of countries with a life expectancy of more than 75 years

is found to vary greatly from region to region – this may affect the quality

of the estimate.

Next, we draw a SRS of 𝑚 − 8 clusters:

set.seed(0) # for replicability

regions = unique(gapminder.CLS[,"region"])

M=length(regions)

m=8

(sample.reg = sample(1:M,m, replace=FALSE))

[1] 14 4 7 1 2 11 22 18
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Then, we provide a summary of the proportions by cluster:

sample.ind = gapminder.CLS$region %in% regions[sample.reg]

gapminder.CLS.G = gapminder.CLS[sample.ind,]

gapminder.CLS.G$region <- as.factor(gapminder.CLS.G$region)

(summ.75.n = gapminder.CLS.G |>

group_by(region) |>

summarise(N=n(), p.hat=mean(life.75)))

# A tibble: 8 × 3

region N p.hat

<fct> <int> <dbl>

1 Australia and New Zealand 2 1

2 Caribbean 13 0.385

3 Central America 8 0.5

4 Micronesia 2 0

5 Northern Africa 6 0.333

6 Northern Europe 10 0.8

7 South-Eastern Asia 10 0.2

8 Southern Europe 12 1

We now have enough information to compute the CLS estimator of the

proportion:

(p.G = sum(summ.75.n$N*summ.75.n$p.hat)/sum(summ.75.n$N))

[1] 0.5555556

Finally, we compute the sampling variance, the margin of error, and the

95% C.I. for 𝑝 (assuming that the average cluster size is not known):

mean.size = sum(summ.75.n$N)/m

s2.p.G = 1/(m-1)*sum((summ.75.n$N*summ.75.n$p.hat-

p.G*summ.75.n$N)^2)

V = 1/mean.size^2*s2.p.G/m*(1-m/M)

(B = 2*sqrt(V))

c(p.G-B,p.G+B)

[1] 0.2025966

[1] 0.3529590 0.7581521

The actual value 𝑝 = 0.394 is indeed within the 95% confidence interval.

We assumed that the average cluster size was unknown; is this also the

case if we use the known value 𝑁 = 185

22
≈ 8.41?

The observations of the Gapmider dataset are probably not that suitable

for CLS ... at least, not if we use regions as clusters.



704 10 Survey Sampling Methods

10.6.2 Sample Size

Depending on whether the clusters are of equal size or not, the variance

formulas take different forms; however, they coincide when 𝑁𝑖 = 𝑛 for

all 𝑖; it is only the nature of the estimator bias and the exactness of its
sampling variance that are affected.

Consequently, we will only study the situation where the clusters are

assumed to be of different sizes. In what follows, we will use the nota-

tions

𝜎2

𝐸 =
1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ )2 and 𝑠2

𝐸 =
1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2.

Mean 𝜇

If we want to estimate 𝜇 with 𝑦𝐶 , we use:

𝐵𝜇;𝐶 = 2

√
1

𝑁
2

·
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜇;𝐶
𝑁

2

4︸   ︷︷   ︸
=𝐷𝜇

=
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒
(𝑀 − 1)𝐷𝜇

𝜎2

𝐸

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

𝜎2

𝐸

=
𝑀

𝑚

⇐⇒ 𝑚𝜇;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

.

Obviously, we can only use this formula if we know the variance 𝜎2

𝐸
of

the cluster totals in the population U. If that is not available, we can use

the empirical variance 𝑠2

𝐸
from a preliminary sample, or that from a

prior survey.
52

52: If the average size 𝑁 of the clusters

of U is unknown, we use the empirical
average size 𝑛 = (𝑁𝑖

1
+· · ·+𝑁𝑖𝑚 )/𝑚 from

the preliminary sample.

Finally, note that this formula allows us to determine the number of
clusters 𝑚 to be drawn from a SRS of clusters in order to obtain some

margin of error on the estimate; the sample size may change from one

realization to another, depending on the size of the sampled clusters.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS of

these items; however, the items are arranged on 𝑀 = 100 shelves and it is

relatively easy to select a SRS of shelves, treating each shelf as a cluster of

items. How many shelves would need to be sampled in order to estimate

the average value of all items in inventory with a bound on the error of

estimation of at most 𝐵𝜇;𝐶 = 1.25$, assuming 𝜎2

𝐸
≈ 317.53$?

Set 𝐷𝜇 =
𝐵2

𝜇;𝐶
𝑁

2

4
=

(1.25)2(6.25)2
4

≈ 15.26; then

𝑚𝜇;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜇 + 𝜎2

𝐸

=
100(317.53)

(100 − 1)(15.26) + 317.53

= 17.4 ≈ 18. ■
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Total 𝜏

If we want to estimate 𝜏 with 𝑁𝑦𝐶 , we use:

𝐵𝜏;𝐶 = 2

√
𝑀2 ·

𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜏;𝐶

4𝑀2︸︷︷︸
=𝐷𝜏;𝐶

=
𝜎2

𝐸

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒ (𝑀 − 1)𝐷𝜏;𝐶

𝜎2

𝐸

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

𝜎2

𝐸

=
𝑀

𝑚

⇐⇒ 𝑚𝜏;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS

of these items; however, the items are arranged on 𝑀 = 100 shelves and

it is relatively easy to select a SRS of shelves, treating each shelf as a

cluster of items. How many shelves would need to be sampled in order

to estimate the total value of all items in inventory with a bound on the

error of estimation of at most 𝐵𝜏;𝐶 = 600$, assuming 𝜎2

𝐸
≈ 317.53$?

Set 𝐷𝜏;𝐶 =
𝐵2

𝜏;𝐶

4𝑀2
=

(600)2
4(100)2 = 9; then

𝑚𝜏;𝐶 =
𝑀𝜎2

𝐸

(𝑀 − 1)𝐷𝜏;𝐶 + 𝜎2

𝐸

=
100(317.53)

(100 − 1)(9) + 317.53

= 26.3 ≈ 27. ■

If we want to estimate 𝜏 with 𝑀𝑦𝑇 , we use:

𝐵𝜏;𝑇 = 2

√
𝑀2 ·

𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝜏;𝑇

4𝑀2︸︷︷︸
=𝐷𝜏

=
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒ (𝑀 − 1)𝐷𝜏

𝜎2

𝑇

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝜏 + 𝜎2

𝑇

𝜎2

𝑇

=
𝑀

𝑚

⇐⇒ 𝑚𝜏;𝑇 =
𝑀𝜎2

𝑇

(𝑀 − 1)𝐷𝜏 + 𝜎2

𝑇

.

Example Consider a company that wants a cost inventory for the

𝑁 = 625 items in stock. In practice, it might be tedious to obtain a SRS

of these items; however, the items are arranged on 𝑀 = 100 shelves and

it is relatively easy to select a SRS of shelves, treating each shelf as a

cluster of items. How many shelves would need to be sampled in order

to estimate the total value of all items in inventory with a bound on the

error of estimation of at most 𝐵𝜏;𝑇 = 600$, assuming 𝜎2

𝑇
≈ 682.77$?
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Set 𝐷𝜏;𝑇 =
𝐵2

𝜏;𝑇

4𝑀2
=

(600)2
4(100)2 = 9; then

𝑚𝜏;𝑇 =
𝑀𝜎2

𝑇

(𝑀 − 1)𝐷𝜏;𝑇 + 𝜎2

𝑇

=
100(682.77)

(100 − 1)(9) + 682.77

= 43.4 ≈ 44. ■

Proportion 𝑝

If we want to estimate 𝑝 with �̂�𝐶 , we use:

𝐵𝑝;𝐶 = 2

√
1

𝑁
2

·
𝜎2

𝑝

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
⇐⇒

𝐵2

𝑝;𝐶
𝑁

2

4︸   ︷︷   ︸
=𝐷𝑝;𝐶

=
𝜎2

𝑝

𝑚

(𝑀 − 𝑚
𝑀 − 1

)

⇐⇒
(𝑀 − 1)𝐷𝑝;𝐶

𝜎2

𝑃

=
𝑀 − 𝑚
𝑚

=
𝑀

𝑚
− 1

⇐⇒
(𝑀 − 1)𝐷𝑝;𝐶 + 𝜎2

𝑃

𝜎2

𝑃

=
𝑀

𝑚

⇐⇒ 𝑚𝑝;𝐶 =
𝑀𝜎2

𝑃

(𝑀 − 1)𝐷𝑝;𝐶 + 𝜎2

𝑃

.

10.6.3 Comparison Between SRS and CLS

Consider a ClS Yconsisting of 𝑚 clusters drawn from a population Uof

size 𝑁 , distributed in 𝑀 clusters. Let 𝜇 be the mean and 𝜎2
the variance

of the population U.

If the clusters are all of size 𝑛, we can show that

V(𝑦𝐶) ≈
𝜎2 − 𝜎2

𝑚

(
1 − 𝑚

𝑀

)
, where 𝜎2 =

1

𝑀

𝑀∑
ℓ=1

𝜎2

ℓ ,

where 𝜎2

ℓ
is the variance in the ℓ th cluster.

But we can also consider Yas having arisen from a SRS with size 𝑚𝑛. In

that case, we have

V(𝑦
SRS

) = 𝜎2

𝑚𝑛

(𝑁 − 𝑚𝑛
𝑁 − 1

)
≈ 𝜎2

𝑚𝑛

(
1 − 𝑚𝑛

𝑁

)
=

𝜎2

𝑚𝑛

(
1 − 𝑚𝑛

𝑀𝑛

)
=

𝜎2

𝑚𝑛

(
1 − 𝑚

𝑀

)
,

from which we conclude that

V(𝑦𝐶) − V(𝑦
SRS

) ≈ 1

𝑚

(
1 − 𝑚

𝑀

) (
𝜎2 − 𝜎2 − 𝜎2

𝑛

)
=

1

𝑚

(
1 − 𝑚

𝑀

) (𝑛 − 1

𝑛
𝜎2 − 𝜎2

)
≈ 1

𝑚

(
1 − 𝑚

𝑀

)
(𝜎2 − 𝜎2), si 𝑛 − 1 ≈ 𝑛.

Consequently, V(𝑦𝐶) ≫ V(𝑦
SRS

) if and only if 𝜎2 ≫ 𝜎2
, which is the case

when the mean of the cluster variances is smaller than the variance in
the population.

The moral of the story is that a ClS is effective if the clusters, regardless

of their size, are as heterogeneous as the population itself.
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Figure 10.11: Schematics of SYS: target

population (left) and sample (right).

10.7 Special Topics

We complete this introduction to survey sampling by discussing a few

additional topics.
53

53: A few of which could even be called

advanced.

10.7.1 Systematic Sampling

With the advent of easy-to-access pseudo-random number generators,
54

54: Excel, R, SAS, Python, etc.

it is not very arduous to draw a pseudo SRS Yof size 𝑛 from a population

Uof size 𝑁 (assuming that we have an appropriate sampling frame, of

course).

However, it remains possible for the obtained sample to not be represen-
tative of the population: a SRS of countries that do not include China or

India, for example, would not be very useful if we are trying to estimate

the average population of the world’s countries.

In some cases, a systematic sampling design (SYS) can be used to

maximize the probability that the random sample Y represents the

population.

Here is how we draw a 1−in−𝑀 systematic sample of size 𝑛 (or 𝑛 + 1)

from an ordered list of size 𝑁 :

1. determine the integer part 𝑀 = ⌊ 𝑁𝑛 ⌋;
2. randomly select an integer 𝛾 in {1, 2, . . . , 𝑀};
3. the sample Y then contains the values corresponding to units

𝛾, 𝛾 +𝑀, 𝛾 + 2𝑀, . . . , 𝛾 + (𝑛 − 1)𝑀︸                                            ︷︷                                            ︸
𝑛 units

, 𝛾 + 𝑛𝑀︸   ︷︷   ︸
if 𝛾+𝑛𝑀≤𝑁

.

If the ordering of the units in the sampling frame is fixed, there can only

be 𝑀 different SYS samples of size 𝑛 (or 𝑛 + 1, in some cases).

Example The Gapminder dataset contains socio-economic information

on 𝑁 = 185 countries in 2011. What are the average life expectancy and

population of the world’s countries?
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We modify the code allowing us to access the data set:

gapminder.SYS <- gapminder |> filter(year==2011) |>

select(country, life_expectancy, population)

N=nrow(gapminder.SYS)

There are 185 units in the data set. If we are interested in a SYS of size

𝑛 = 20, say, the integer 𝑀 is:

n=20

(M=floor(N/n))

[1] 9

The vector of observations 0, 𝑀, 2𝑀, . . . , 𝑛𝑀 is therefore:

index = M*(0:n)

We construct 𝑀 = 9 samples Y𝑖 , 𝑖 = 1, . . . , 9, assuming that the units

appear in alphabetical order (by country name) in the dataset.

moy.SYS.life_exp = c() # initialization - life expectation

moy.SYS.pop = c() # initialization - population

for(j in 1:M){# all SYS of size n or n+1, alpha order

index.tmp = j + index

index.tmp <- index.tmp[index.tmp < N+1] # keeping indices <= N

sample.sys = gapminder.SYS[index.tmp,2:3]

moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)

moy.SYS.pop[j]=mean(sample.sys$population)

}

# charts

par(mfrow=c(1,2))

plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")

plot(moy.SYS.pop, xlab="sample", ylab="mean population")
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Could you identify the sample that contains China or India? What if we

change the order in which the countries are listed in the dataset?

gapminder.SYS <- gapminder.SYS[order(gapminder.SYS$population),]

for(j in 1:M){# all SYS of size n or n+1, population order

index.tmp = j + index

index.tmp <- index.tmp[index.tmp < N+1]

sample.sys = gapminder.SYS[index.tmp,2:3]

moy.SYS.life_exp[j]=mean(sample.sys$life_expectancy)

moy.SYS.pop[j]=mean(sample.sys$population)

}

par(mfrow=c(1,2))

plot(moy.SYS.life_exp, xlab="sample", ylab="mean life exp")

plot(moy.SYS.pop, xlab="sample", ylab="mean population")

We obtain similar results when ordering the units in the dataset by life

expectancy. ■

In general, if there is a correlation between the position (rank) of the
unit in the sampling frame and the value of the variable of interest, the

sampling variance of the SYS estimator will be lower than that of the SRS

estimator, because the sample is more likely to be representative of the

population.

If there is no such correlation, the SYS sample is essentially an SRS sample,

and the sampling variances are comparable – a SYS is as likely to be

representative of the population as an SRS.

Finally, if the step 𝑀 is aligned with the periodicity of the values of the

variable of interest, it is the opposite: the sampling variance of a SYS

is larger than that of an SRS – a SYS is then less representative of the

population than an SRS.

Some examples illustrating these situations are shown in Figure 10.12.
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Figure 10.12: Various populations and systematic samplings: the order in which the population observations are presented may affect the

representativity of the SYS sample.

SYS as SRS

If the order in which the units are listed in the sampling frame is

random,
55

we can simply consider that the sample55: Careful! this is not always easy to

demonstrate.

YSYS = {𝑦1 , 𝑦2 , 𝑦3 , . . . , 𝑦𝑛−1 , 𝑦𝑛}︸                          ︷︷                          ︸
{𝑢𝛾 ,𝑢𝛾+𝑀 ,...,𝑢𝛾+(𝑛−1)𝑀 }

⊆ U

of size 𝑛 ≈ 𝑁
𝑀 is in fact a SRS of size 𝑛. In that case, the theory developed

in Section 10.3 for SRS remains valid.

Estimating the Mean 𝜇 The empirical mean

𝑦
SYS

=
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the true population mean 𝜇, with bound on
the error of estimation

𝐵𝜇;SYS ≈ �̂�𝜇;SYS = 2

√
V̂(𝑦

SYS
) = 2

√
𝑠2

SYS

𝑛

(
1 − 𝑛

𝑁

)
,

where

𝑠2

SYS
=

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦
SYS

)2;

the corresponding 95% C.I. for 𝜇 is thus

C.I.SYS(𝜇; 0.95) : 𝑦
SYS

± �̂�𝜇;SYS.
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Estimating the Total 𝜏 The quantity

�̂�SYS = 𝑁𝑦
SYS

=
𝑁

𝑛

𝑛∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the true population total 𝜏, with bound on
the error of estimation

𝐵𝜏;SYS ≈ �̂�𝜏;SYS = 2𝑁

√
V̂(𝑦

SYS
) = 2𝑁

√
𝑠2

SYS

𝑛

(
1 − 𝑛

𝑁

)
;

the corresponding 95% C.I. for 𝜏 is thus

C.I.SYS(𝜏; 0.95) : �̂�SYS ± �̂�𝜏;SYS.

Estimating the Proportion 𝑝 If 𝑦𝑖 ∈ {0, 1} denotes the absence or pres-

ence of a certain characteristic, the quantity

�̂�SYS = 𝑦
SYS

is an unbiased estimator of the true proportion 𝑝 of units with the

characteristic, with bound on the error of estimation

𝐵𝑝;SYS ≈ �̂�𝑝;SYS = 2

√
V̂(�̂�SYS) = 2

√
�̂�SYS(1 − �̂�SYS)

𝑛 − 1

(
1 − 𝑛

𝑁

)
;

the corresponding 95% C.I. for 𝑝 is thus

C.I.SYS(𝑝; 0.95) : �̂�SYS ± �̂�𝑝;SYS.

SYS as CLS

In practice, SYS is equivalent to a CLS of size 𝑚 = 1, where each cluster

is one of the 1−in−𝑀 SYS samples.

The quantity

𝑦𝐶 =

𝑚∑
𝑘=1

𝑁𝑖𝑘∑
𝑗=1

𝑦𝑖𝑘 , 𝑗

𝑚∑
𝑘=1

𝑁𝑖𝑘

=

𝑚∑
𝑘=1

𝑦𝑖𝑘

𝑚∑
𝑘=1

𝑁𝑖𝑘

,

where we use the CLS notation, is thus a biased estimator of the popula-
tion mean, 𝜇.

The average cluster size is denoted by 𝑁 = 𝑁
𝑀 ; its sampling variance

is

V(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
· 1

𝑀

𝑀∑
ℓ=1

(𝜏ℓ − 𝜇𝑁ℓ︸    ︷︷    ︸
=𝑁ℓ (𝜇ℓ−𝜇)

)2 :=
1

𝑁
2

·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

and the corresponding 95% C.I. for 𝜇 is thus

C.I.G(𝜇; 0.95) : 𝑦𝐶 ± 2

√
V(𝑦𝐶).
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If the average cluster size 𝑁 is unknown, we simply substitute it by

𝑛 =
1

𝑛

𝑚∑
𝑘=1

𝑁𝑖𝑘 .

The estimator of the total population 𝜏 is thus either:

𝑁𝑦𝐶 , when the number of units 𝑁 in the population is known, or

𝑀𝑦𝑇 , where 𝑦𝑇 is the (empirical) mean of the sampled cluster
totals, when only 𝑀 is known.

Consequently, the sampling variances are

V(𝑁𝑦𝐶) ≈ 𝑀2 ·
𝜎2

𝐶

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
and V(𝑀𝑦𝑇) ≈ 𝑀2 ·

𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
,

where 𝜎2

𝐶
and 𝜎2

𝑇
are computed as for a CLS. We can then construct the

95% C.I. for 𝜏 in the usual manner.

Pretty simple, eh?

The sample contains exactly𝑚 = 1 cluster, so 𝑛 = 𝑛. The problem doesn’t

end there – since we don’t know 𝜎2

𝐶
or 𝜎2

𝑇
in general, we would use the

empirical variances

V̂(𝑦𝐶) ≈
1

𝑁
2

· 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝐶𝑁𝑖𝑘 )2

V̂(𝑀𝑦𝑇) ≈ 𝑀2 · 1

𝑚

(
1 − 𝑚

𝑀

)
· 1

𝑚 − 1

𝑚∑
𝑘=1

(𝑦𝑖𝑘 − 𝑦𝑇)2.

But if 𝑚 = 1, these variances do not exist. How do we get out of this

mess? If we cannot treat the SYS as if it were a SRS (for whatever reason),

the solution is to draw additional SYS samples (replicates) and treat it
as a CLS, modifying the value of 𝑀 as necessary.
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10.7.2 Sampling with Probability Proportional to Size

In practice, the size (whether or not this is a physical characteristic) of

the sample units is often quite variable – a SRS is not always effective

since it does not take into account the importance that larger population
units may have.

Additional information on the unit size can sometimes be used to select

a sample that provides a more accurate estimator of the parameters of

interest.

One possible way to do this is to assign (potentially) equal selection

probabilities to different units, based on their size.

Example To a certain extent (𝜌 = 0.46), the larger the area of a country,

the larger its population. If we are trying to estimate the population of

the planet, it might be desirable to adopt a sampling scheme in which the

probability of selecting a country is proportional to its area – in an SRS,

it is very likely that neither China nor India will be selected, resulting in

an underestimate of the total sought. ■

If the variable of interest is (more or less) related to the size of the unit,

one can assign a probability of selection proportional to the size of the

unit (PPS). Note that in a PPS, previously selected units are replaced in

the population, allowing for the multiple selection of a single unit.

Selecting a PPS With Replacement

We consider two selection methods for a PPS sample:

cumulative totals, and

the Lahiri method.

In both cases, the PPS sample selection procedure consists of associating

with each unit a range of numbers,
56

related to the size of the unit, and 56: These are often integers, but that is

not necessary.
taking the units that correspond to numbers chosen at random from the

set of numbers associated with the entire population of 𝑁 units.

In the method of cumulative totals, the size of the 𝑖−th unit is denoted

by 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁 . We associate a range to each unit as follows:

Unit Range

1 1 to 𝑥1

2 𝑥1 + 1 to 𝑥1 + 𝑥2

3 𝑥1 + 𝑥2 + 1 to 𝑥1 + 𝑥2 + 𝑥3

...
...

...
...

𝑁 − 1 𝑥1 + · · · + 𝑥𝑁−2 + 1 to 𝑥1 + · · · + 𝑥𝑁−2 + 𝑥𝑁−1

𝑁 𝑥1 + · · · + 𝑥𝑁−1 + 1 to 𝑥1 + · · · + 𝑥𝑁−1 + 𝑥𝑁

Finally, we draw a PPS sample by choosing 𝑛 integers at random between

1 and 𝑋 = 𝑥1 + · · · + 𝑥𝑁−1 + 𝑥𝑁 (with replacement) and by selecting the

units associated with these integers.
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Example In a village, there are 8 orchards, each containing a certain

number of apple trees. A sample of 𝑛 = 3 orchards is drawn (with

replacement), in proportion to the number of apple trees per orchard.

ID 𝑖 Size 𝑥𝑖 Cumulative Totals Associated Range

1 50 50 1 − 50

2 30 80 51 − 80

3 25 105 81 − 105

4 40 145 106 − 145

5 26 171 146 − 171

6 44 215 172 − 215

7 20 235 216 − 235

8 35 270 236 − 270

We choose 𝑛 = 3 integers at random between 1 and 270: 108, 140, and

201, say. The associated units are the 4th, the 4th, and the 6th. ■

In the Lahiri method, we still denote the size of a unit by 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁 ,

but without having to calculate and report the successive cumulative
totals, which can be tedious to accomplish, even with a computer.

The method consists in selecting a pair of integers (𝑖 , 𝑗), where 1 ≤ 𝑖 ≤ 𝑁

and 1 ≤ 𝑗 ≤ 𝑀 = max{𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑁}. If 𝑗 ≤ 𝑥𝑖 , the 𝑖th unit is added to

the sample. Otherwise, the pair (𝑖 , 𝑗) is rejected.

We continue in this manner until 𝑛 units have been selected.
57

57: There are other ways to do this, of

course; the important thing is to have a

mechanism for selecting a PPS sample.

We generally prefer sampling without re-

placement to sampling with replacement,

but the latter is a reasonable substitute to

the former if
𝑛
𝑁

is “ sufficiently small”.

Estimation

Let us revisit the orchard example, where 𝑢𝑖 is the yield of all apple trees

in the 𝑖th orchard.

ID 𝑖 # Trees 𝑥𝑖 𝜋𝑖 Yield

1 50 50/270 𝑢1 = 2250

2 30 30/270 𝑢2 = 1080

3 25 25/270 𝑢3 = 1300

4 40 40/270 𝑢4 = 1400

5 26 26/270 𝑢5 = 1196

6 44 44/270 𝑢6 = 1716

7 20 20/270 𝑢7 = 820

8 35 35/270 𝑢8 = 1680

We are interested in the total apple production of the village, which we

know in this case to be 𝜏 = 11, 442. Since in principle an orchard with

more apple trees should produce more apples, we draw a PPS sample of

𝑛 = 3 units (with replacement), where the number of apple trees in the

orchard is used as the unit size.

In what follows, we illustrate the concepts using the sample

𝑦1 = 𝑢4 = 1400, 𝑦2 = 𝑢4 = 1400, 𝑦3 = 𝑢6 = 1716.
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If the sample Y, with |Y| = 𝑛, is drawn from Uusing a PPS, the units

𝑦1 , . . . , 𝑦𝑛 are independent and distributed according to

𝑦𝑖 𝑢1 · · · 𝑢𝑗 · · · 𝑢𝑁

𝑝(𝑦𝑖) 𝜋1 · · · 𝜋 𝑗 · · · 𝜋𝑁

where 0 < 𝜋𝑗 < 1 for all 1 ≤ 𝑗 ≤ 𝑁 and 𝜋1 + · · · + 𝜋𝑁 = 1.

For all 1 ≤ 𝑖 ≤ 𝑛, there is a 1 ≤ 𝑗 ≤ 𝑁 such that 𝑦𝑖 = 𝑢𝑗 . Set 𝑤𝑖 =
𝑢𝑗
𝜋𝑗

. The

sampling weights 𝑤𝑖 are also independent and distributed according

to

𝑃(𝑦𝑖 = 𝑢𝑗) = 𝑃
(
𝑤𝑖 =

𝑢𝑗

𝜋 𝑗

)
= 𝜋 𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁.

We note that for any 1 ≤ 𝑖 ≤ 𝑛, the expected weight is

E(𝑤𝑖) =
𝑁∑
𝑗=1

𝑤 𝑗𝑃(𝑤𝑖 = 𝑤 𝑗) =
𝑁∑
𝑗=1

𝑢𝑗

𝜋 𝑗
· 𝜋 𝑗 =

𝑁∑
𝑗=1

𝑢𝑗 = 𝜏.

In other words,

�̂�pps = 𝑤 =
1

𝑛

𝑛∑
𝑖=1

𝑤𝑖

is an unbiased estimator of the total 𝜏. Its sampling variance is computed

as follows:

V(�̂�pps) = V

(
1

𝑛

𝑛∑
𝑖=1

𝑤𝑖

)
=

1

𝑛2

𝑛∑
𝑖=1

V(𝑤𝑖)︸         ︷︷         ︸
ind. des 𝑤𝑖

=
1

𝑛2

𝑛∑
𝑖=1

[ 𝑁∑
𝑗=1

(𝑤 𝑗 − 𝜏)2𝑃(𝑤𝑖 = 𝑤 𝑗)
]

=
1

𝑛2

𝑛∑
𝑖=1

𝑁∑
𝑗=1

( 𝑢𝑗
𝜋 𝑗

− 𝜏
)

2

𝜋 𝑗 =
1

𝑛

𝑁∑
𝑗=1

( 𝑢𝑗
𝜋 𝑗

− 𝜏
)

2

𝜋 𝑗 =
1

𝑛

𝑁∑
𝑗=1

(𝑢2

𝑗

𝜋 𝑗
−

2𝜏𝑢𝑗
𝜋 𝑗

+ 𝜏2

)
𝜋 𝑗

=
1

𝑛

( 𝑁∑
𝑗=1

𝑢2

𝑗

𝜋 𝑗
− 2𝜏

𝑁∑
𝑗=1

𝑢𝑗︸︷︷︸
=𝜏

+𝜏2

𝑁∑
𝑗=1

𝜋 𝑗︸ ︷︷ ︸
=1

)
=

1

𝑛

( 𝑁∑
𝑗=1

𝑢2

𝑗

𝜋 𝑗
− 𝜏2

)
.

In practice, we do not typically know the true value of 𝜏, so we use the

unbiased estimator

V̂(�̂�pps) =
1

𝑛(𝑛 − 1)

(
𝑛∑
𝑖=1

𝑤2

𝑖 − 𝑛�̂�
2

pps

)
.

Central Limit Theorem – PPS: if 𝑛 and 𝑁 − 𝑛 are sufficiently large,

then

�̂�pps ∼approx. N

(
𝜏, V̂(�̂�pps)

)
.

The bound on the error of estimation and the 95% C.I. for 𝜏 are

therefore

�̂�𝜏;pps = 2

√
V̂(�̂�pps) and C.I.pps(𝜏; 0.95) = �̂�pps ± �̂�𝜏;pps.
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Example In the orchard dataset, we have

�̂�pps =
1

3

[
1400

40/270︸   ︷︷   ︸
𝑤1

+ 1400

40/270︸  ︷︷  ︸
𝑤2

+ 1716

44/270︸  ︷︷  ︸
𝑤3

]
= 9810;

V̂(�̂�pps) =
1

3(2)
[(

1400

40/270︸  ︷︷  ︸
𝑤1

)
2

+
(

1400

40/270︸  ︷︷  ︸
𝑤2

)
2

+
(

1716

44/270︸  ︷︷  ︸
𝑤3

)
2

− 3 · 9810
2︸︷︷︸

�̂�2

pps

]
= 129, 600.

Consequently, the 95% C.I. for the total apple yield in the village is

C.I.pps(𝜏; 0.95) = 9810 ± 2

√
129, 600 ≡ (9090, 10530).

The actual total yield (𝜏 = 11, 442) does not fall within the confidence

interval – why might this be the case? Is this problematic? ■

In general, V(�̂�pps) ≤ V(�̂�SRS). In the orchards example, we can show

that

V(�̂�SRS) ≈ 8
2 · 172981.4375

3

(
8 − 3

8 − 1

)
= 2, 635, 907.619, and

V(�̂�pps) ≈
1

3

[
2250

2

50/270

+ · · · + 1680
2

35/270

− 11, 442
2

]
= 723, 912.

We can also give an estimate of the population average 𝜇 using

�̂�pps =
�̂�pps

𝑁
, V̂(�̂�pps) =

V̂(�̂�pps)
𝑁2

, C.I.pps(𝜇; 0.95) =
C.I.pps(𝜏; 0.95)

𝑁
.

A lot more can be said on the topic; PPS usually provides a springboard to

more sophisticated sampling designs and other theoretical considerations

[5, 7, 6].

10.7.3 Multi-Stage Sampling

By splitting the sampling process into several stages, one can reduce
costs and focus the logistical aspects of sampling on a few focal points.

In multi-stage sampling (M𝑛S), a sample of large units (primary units)

is drawn, then sub-units (secondary units) are drawn from the large

units, and so on.

Example Sampling units in a Canadian province could be decomposed

into three steps:

1. conduct a sample of municipalities (primary units);

2. sample neighbourhoods in the sampled municipalities (secondary
units), and

3. sample households in the samples neighbourhoods (tertiary units).
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Figure 10.13: Schematics of SRS2S: target

population (left) and sample (right).

In a M𝑛S, the sample is concentrated around several pivots: in field

studies, for example, this has the advantage of considerably reducing the

survey area, which helps to reduce non-sampling errors.
58

58: In addition to reducing operational

costs.

Furthermore, detailed information is often available for groups of sample

units, but not for individual units: it is therefore not necessary to obtain

a complete sampling frame for all sample units, but only for those

belonging to the primary units selected in the first round, for example.

Any probability sampling method can be used at each stage, and they

can change from stage to stage: e.g., a municipality SRS, a neighborhood

SRS, a household SRS, etc.

Two-Stage Simple Random Sampling

In a 2-stage process, if sampling is conducted using a SRS for both stages,

the method is known as two-stage simple random sampling (SRS2S).

Example The biomass of a plant species in a forest area can be estimated

by drawing a SRS of 𝑚 = 8 compartments (primary units) from the

𝑀 = 40 compartments composing the population under study.

For each of these compartments 1 ≤ 𝑖 ≤ 𝑚, we then draw a SRS of 𝑛𝑖
plots, and measure the biomass in the plot. Estimates of the average

or total amount of biomass in the forest area can be calculated using

appropriate formulas. ■

Estimation

Let be a population consisting of 𝑀 primary units, having 𝑁ℓ secondary

units in the ℓ th primary unit. Denote by 𝑢𝑖 , 𝑗 the value of the response

variable of the 𝑗th secondary unit in the 𝑖th primary unit.

The population mean is

𝜇 =

𝑀∑
ℓ=1

𝑁ℓ∑
𝑗=1

𝑢ℓ , 𝑗

𝑀∑
ℓ=1

𝑁ℓ

.
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Suppose we draw a SRS of 𝑚 primary units, and a SRS of 𝑛𝑖 secondary

units in the 𝑖th primary unit. The total sample size is thus 𝑛 = 𝑛1 +
𝑐𝑑𝑜𝑡𝑠 + 𝑛𝑚 . We obtain an unbiased estimator of 𝜇 from:

𝑦
SRS2S

=
1

𝑚𝑁

𝑚∑
𝑖=1

𝑁𝑖𝑦 𝑖 =
1

𝑚𝑁

𝑚∑
𝑖=1

𝑁𝑖

𝑛𝑖

𝑛𝑖∑
𝑘=1

𝑦𝑖 ,𝑘 =
1

𝑚𝑁

𝑚∑
𝑖=1

𝑛𝑖∑
𝑘=1

𝑀𝑁𝑖

𝑚𝑛𝑖
𝑦𝑖 ,𝑘 ,

where

𝑁 =
1

𝑀

𝑀∑
ℓ=1

𝑁ℓ ≈
𝑁1 + · · · + 𝑁𝑚

𝑚
.

The sampling variance is composed of two components:

a measure of the variation between the primary units, and

a measure of the variation within the primary units.

When 𝑛𝑖 = 𝑁𝑖 for all 1 ≤ 𝑖 ≤ 𝑚, we are dealing with a CLS and the

variance is only given by the first component (see Section 10.6). In the

case where 𝑚 = 𝑀, we are dealing with a STS and the variance is only

given by the second component (see Section 10.4).

When 𝑚 ≠ 𝑀 and 𝑛𝑖 ≠ 𝑁𝑖 for at least one primary unit 𝑖, the variance is

a combination of these two extremes: in that case, the second component

represents the contribution of sub-sampling (another name for M𝑛S).

We use the law of total variance to estimate the sampling variance:

V(𝑦
SRS2S

) = E[V(𝑦
SRS2S

| 𝑚)] + V(E[𝑦
SRS2S

| 𝑚])

=
1

𝑁
2

·
𝜎2

𝑇

𝑚

(𝑀 − 𝑚
𝑀 − 1

)
+ 1

𝑚𝑀𝑁
2

𝑚∑
𝑖=1

𝑁2

𝑖 ·
𝜎2

𝑖

𝑛𝑖

(𝑁𝑖 − 𝑛𝑖
𝑁𝑖 − 1

)
≈ 1

𝑁
2

·
𝑠2

𝑇

𝑚

(
1 − 𝑚

𝑀

)
︸               ︷︷               ︸
between primary units

+ 1

𝑚𝑀𝑁
2

𝑚∑
𝑖=1

𝑁2

𝑖 ·
𝑠2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
︸                               ︷︷                               ︸

within primary units

,

where

𝑠2

𝑇 =
1

𝑚 − 1

𝑛∑
𝑖=1

(
𝑁𝑖𝑦 𝑖 − 𝑁𝑦SRS2S

)
2

, 𝑠2

𝑖 =
1

𝑛𝑖 − 1

𝑛𝑖∑
𝑘=1

(𝑦𝑖 ,𝑘 − 𝑦 𝑖)2.

Example The biomass of a plant species (kg) is measured in plots of

0.025 ha (secondary units) selected from 𝑚 = 8 compartments (primary

units), randomly selected themselves among the 𝑀 = 40 compartments

of a forested area. The summary of results is shown in the following

table:

Comp. 1 2 3 4 5 6 7 8

𝑦 𝑖 118 107 109 110 120 95 93 90

𝑠2

𝑖
436 516 586 456 412 497 755 496

𝑁𝑖 1760 1975 1615 1785 1775 2050 1680 1865

𝑛𝑖 9 10 8 9 9 10 8 9

Find a 95% C.I. for the average biomass per plot and per compartment,

and for its total in the forested area.
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Solution: Since we do not know 𝑁 , we approximate it with the mean

𝑁 ≈ 1

8

(1760 + · · · + 1865) = 1813.125.

The totals in the selected primary units are then:

Comp. 1 2 3 4 5 6 7 8

𝑁𝑖𝑦 𝑖(×10
5) 2.077 2.113 1.760 1.964 2.130 1.946 1.562 1.679

The SRS2S estimators of the mean 𝜇, of the mean of the totals in the

compartments, and of the total are:

𝑦
SRS2S

=
1

8(1813.125) (2.077 + · · · + 1.679) × 10
5 = 105.01;

𝑁𝑦
SRS2S

= 1813.125 · 105.01 = 190, 403.75; 𝜏SRS2S = 𝑀 · 𝑁𝑦
SRS2S

= 7, 616, 150.

The variance between compartments (primary units) is thus:

𝑠2

𝑇 =
1

8 − 1

8∑
𝑖=1

(𝑁𝑖𝑦 𝑖 − 190, 403.75)2 = 4.55 × 10
8

Finally, we calculate the variance within the compartments:

Comp. 1 2 3 4 5 6 7 8

𝑁2

𝑖

𝑁
2
· 𝑠

2

𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
48.2 51.3 72.7 50.4 45.6 49.4 93.9 54.9

The sampling variance is thus

V̂(𝑦
SRS2S

) = 4.55 × 10
8

8(1813.125)2
(
1 − 8

40

)
+ 1

8(40) (48.2 + · · · + 54.9)

= 14.03

The variances of the other two estimators are easily calculated:

V̂(𝑁𝑦
SRS2S

) = 𝑁
2

V̂(𝑦
SRS2S

) = (1813.125)2 · 14.03 = 46, 141, 324.55;

V̂(𝜏SRS2S) = 𝑀2𝑁
2

V̂(𝑦
SRS2S

) = (40)2 · (1813.125)2 · 14.03 = 73, 826, 119, 284;

the confidence intervals are thus

C.I.SRS2S(𝜇; 0.95) : 105.01 ± 2

√
14.03 ≡ (97.5, 112.5)

C.I.SRS2S(𝑁0

𝑀 𝜇; 0.95) : 190, 403.75 ± 2

√
46, 141, 324.55 ≡ (176818, 203989.2312)

C.I.SRS2S(𝜏; 0.95) : 7, 616, 150 ± 2

√
73, 826, 119, 284 ≡ (7072730, 8159569)

,

assuming of course that the central limit theorem remains valid in the

context of a SRS2S. ■
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10.7.4 Multi-Phase Sampling

Multi-stage sampling (M𝑛P) plays a crucial role in many types of surveys,

including those conducted by remote sensing.

In the first phase, a selected number of units are sampled, but only

a small number of characteristics are captured for each unit. In each

successive phase, a larger number of features is measured on a smaller

sub-sample of units.

In this way, the target parameter can be estimated with more accuracy
and at lower cost, by studying the relationship between the features

measured in the different sampling phases.

Two-Phase Random Sampling

A M𝑛P with only two phases is called a two-phase sampling (M2P).

M2Ps are particularly useful in a situation where enumeration of the

main trait is expensive (in terms of costs or labor), but in which an

auxiliary trait correlated to the main trait can easily be observed.

Thus, it is sometimes preferable to draw a large SRS in the first phase in

order to analyze the auxiliary variables, which leads to more accurate

estimates of 𝜏 or 𝜇 for that auxiliary variable (at least, that is the hope).

In the second phase, a smaller sample is drawn, usually a sub-sample of

the characteristic, and the auxiliary variable are measured.

Estimates of the main characteristic are then obtained using the informa-

tion obtained in the first phase, using the ratio method or the regression
method, for instance. The precision of the final estimates can be increased

by including several correlated auxiliary variables.

Example If we want to estimate the total volume of wood 𝜏 in a forest,

we could first measure the circumference 𝑐𝑖 and height ℎ𝑖 of the trees 𝑖

in some sample, then the volume 𝑣𝑖𝑘 of the trees 𝑖𝑘 in a sub-sample. We

only need to determine the statistical relationship between 𝜏𝑣 , 𝜏𝑐 , and 𝜏ℎ
to complete the procedure. ■

The M𝑛P sampling method helps to reduce the cost of enumeration
and increase the accuracy of estimates. It can also be used to stratify a

population: an initial sample is taken based on the auxiliary characteristic,

which is used to subdivide the population into strata in which the main

characteristic is more or less homogeneous.

As long as the two characteristics are correlated, accurate estimates of the

main characteristic are obtained from a second, relatively small sample.

M2P can also be paired with M2S, for example (or with any other

sampling design). If both selection steps are performed with SRS, the

method is called two-phase simple random sampling (SRS2P).

In the first phase, the population is divided into well-defined sampling

units; a SRS Y1 of size 𝑛1 is drawn from these units; the auxiliary variable
𝑥 is measured on all units of Y1. Next, a sub-SRS Y2 of size 𝑛2 is drawn

from Y1; the main characteristic 𝑦 is measured on all units of Y2.
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Figure 10.14: Schematics of SRS2P: target

population (left) and sample (right).

We can evaluate 𝑟Y2
or 𝑏Y2

from the observations in Y2 (using either the

ratio method or the regression method), which yields

�̂�𝑌;𝑅;SRS2P = 𝑟Y2
· 𝑥Y1

or

�̂�𝑌;𝐿;SRS2P = 𝑦Y2

+ 𝑏Y2
(𝑥Y1

− 𝑥Y2
).

Estimation

Due to the double sampling, two terms contribute to sampling variances

of the estimators (the first when going from U to Y1, and the second

from Y1 to Y2):

V̂(�̂�𝑌;𝑅;SRS2P) =
1

𝑛2

(
𝑠2

𝑌 − 2𝑟Y2
𝑠𝑋𝑌 + (𝑟Y2

)2𝑠2

𝑋

)
+ 1

𝑛1

(
2𝑟Y2

𝑠𝑋𝑌 − (𝑟Y2
)2𝑠2

𝑋

)
V̂(�̂�𝑌;𝐿;SRS2P) =

1

𝑛2

𝑠2

𝑋𝑌;𝐿 +
1

𝑛1

(
𝑠2

𝑋𝑌;𝐿 − 𝑠
2

𝑌

)
where 𝑠2

𝑌
, 𝑠𝑋𝑌 , and 𝑠2

𝑋
are the usual quantities (in Y2), and

𝑟Y2
=
𝑦Y2

𝑥Y2

, 𝑏Y2
=
𝑠𝑋𝑌

𝑠2

𝑋

, and

𝑠2

𝑋𝑌;𝐿 =
𝑛2 − 1

𝑛2 − 2

·
{
𝑠2

𝑌 − 𝑏2

Y2

𝑠2

𝑋

} .

Example We are interested in the biomass of any plant in a region,

which is divided into plots of 0.025 ha each. First, we measure the number

𝑥 of groves per unit in a SRS Y1 of 𝑛1 = 200 plots.

Then, the biomass 𝑦 of the plant in question is calculated in each unit of

a sub-SRS Y2 of 𝑛2 = 40 plots:

𝑥Y1
= 374.4;

40∑
𝑖=1

𝑥𝑖 = 15, 419;

40∑
𝑖=1

𝑦𝑖 = 2104;

40∑
𝑖=1

𝑥2

𝑖 = 7, 744, 481;

40∑
𝑖=1

𝑥𝑖𝑦𝑖 = 960, 320;

40∑
𝑖=1

𝑦2

𝑖 = 125, 346.

What would a 95% C.I. for the average biomass per plot look like?
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Let us compute the required intermediate quantities:

𝑥Y2
=

15419

40

= 385.5; 𝑦Y2

=
2104

40

= 52.6; 𝑟Y2
=
𝑦Y2

𝑥Y2

=
52.6

385.5
= 0.14;

𝑠2

𝑋 =
1

39

[7744481 − 40(385.5)2] ≈ 46175; 𝑠2

𝑌 =
1

39

[125346 − 40(52.6)2] ≈ 376

𝑠𝑋𝑌 =
1

39

[960320 − 40(385.5)(52.6)] ≈ 3827.7; 𝑏Y2
=
𝑠𝑋𝑌

𝑠2

𝑋

=
3827.7

46175.4
≈ 0.08;

𝑠2

𝑋𝑌;𝐿 =
39

38

[376.3 − 0.08
2(46175.4)] ≈ 82.9;

which gives us

�̂�𝑌;𝑅;SRS2P = 0.14(374.4) ≈ 51.1; �̂�𝑌;𝐿;SRS2P = 52.6 + 0.08(374.4 − 385.5) ≈ 51.7

and

V̂(�̂�𝑌;𝑅;SRS2P) =
376.3 − 2(0.14)(3827.7) + (0.14)246175.4

40

+ 2(0.14)3827.7 − (0.14)246175.4

200

≈ 5.67;

V̂(�̂�𝑌;𝐿;SRS2P) =
82.9

40

+ 82.9 − 376.3

200

≈ 3.54;

from which we conclude that

C.I.𝑅;SRS2P(𝜇𝑌 ; 0.95) = 51.1 ± 2

√
5.67 ≡ (46.3, 55.8)

C.I.𝐿;SRS2P(𝜇𝑌 ; 0.95) = 51.7 ± 2

√
3.54 ≡ (47.9, 55.5). ■

10.7.5 Miscellaneous

We end the module by briefly discussing a few notions that did not find

a natural slot in the previous sections:

design effects;

adjusting for non-response;

estimating the size of a population,

randomized responses, and

Bernoulli sampling.

Design Effect

The design effect compares the estimator for a given sampling design and

for a SRS. It is the ratio of the sampling variance of the estimator under
the given sampling design to the sampling variance of the estimator
under a SRS (assuming samples of the same size).

This value is often applied to compare the efficiency of estimators from

different sampling designs. If the ratio < 1, the sampling design is more

efficient than SRS; if it is > 1, it is less efficient than SRS.

We directly compared the theoretical variances of several sampling

designs in sections 10.4.3, 10.5.4, and 10.6.3, but in practice we compute

the design effect using the achieved samples (assuming that they had

been drawn under various sampling plans).
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Design effects also help to obtain approximate variance estimates for

complex sampling designs. If a design effect estimate is available from a

previous survey (that used the sampling design we will be using for this

survey), it can be used to determine the sample size required to meet

some pre-determined condition(s).

Adjusting for Nonresponse

Non-response is a problem in all surveys. Total non-response (when all

or almost all data from a sampled unit are missing) occurs when:

a sample unit refuses to participate in the survey;

we cannot establish contact with a sample unit;
the sampled unit cannot be found, or

the information obtained form the unit is useless/invalid.

The simplest way to deal with such non-response is to ignore it; in some

exceptional circumstances (when the affected observations are not in any

way different from those for whom we have valid and complete measure-

ments), proportions or means that are estimated without adjusting for

non-response are more or less the same as those produced by applying

adjustment for non-response.

If one neglects to compensate for nonresponding units, however, the

totals are generally underestimated (e.g., the size of a population, total

revenue, or total acres harvested, say).

The most common way to deal with total non-response is to adjust the
base sampling weights by assuming that the responding units represent

both responding and nonresponding units. If the nonrespondents are
equivalent to the respondents for the characteristics measured in the

survey, this is a reasonable approach.

The base weights for nonrespondents are then redistributed among

respondents, using a adjustment factor for nonrespondents that is

multiplied by the base weight, to obtain an adjusted weight.

Example If we draw a SRS of size 𝑛 = 25 from a stratum of size

𝑁 = 1000, the probability of inclusion of each of these units and the

corresponding basic weight are

𝜋 =
𝑛

𝑁
=

25

1000

= 0.025, 𝑤 =
1

𝜋
=

1

0.025

= 40.

In other words, each selected unit represents 40 units in the stratum.

If we only get a response from 𝑛𝑟 = 20 of the 𝑛 = 25 selected units, the

non-response adjustment factor (NRAF) and the adjusted weight (for

non-response) become:

NRAF =
𝑛

𝑛𝑟
=

25

20

= 1.25

𝑤nr = 𝑤 · NRAF = 1.25(40) = 50;

each responding unit then represents 50 units in the stratum. This

adjusted weighting is what we would end up working with. ■
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Of course, the adjusted weight may vary from stratum to stratum,

depending on the sample design and the sample size/allocation.

When we want to determine the optimal sample size/allocation across

various strata, what we obtain is the target sample size.
59

We then have59: Assuming that the target and study

populations coincide.
to resort to inflation of the sample size to achieve the target.

Example The allocation of a StS of size 𝑛 = 29 is found to be (17, 9, 3).
In a prior study, the non-response rates by stratum were determined to

be (16.2%, 20.8%, 31.2%). Which allocation optimizes the likelihood of

achieving the target allocation?

We only need to solve

𝑛1(1 − 0.162) = 17, 𝑛2(1 − 0.208) = 9, 𝑛3(1 − 0.312) = 3,

which gives a practical sample allocation of (𝑛1 , 𝑛2 , 𝑛3) = (20.3, 11.3, 4.3) ≈
(21, 12, 5), and a practical sample size of 𝑛 = 38.

Estimating a Population Size

How do we proceed if the size 𝑁 of the population U is unknown? When

the population is large enough, we can always use the approximation

𝑁 ≈ ∞ in the sampling variance formulas.

But sometimes it is the parameter 𝑁 that represents the quantity of

interest; as an example, how would we find out the number 𝑁 of $5 bill

in circulation?

We approach such a problem using the catch-and-release method (com-

pare with the approach used in Module 25):

1. we capture 𝑛1 bills at random (without replacement) from the

population;

2. we mark them and release them back into circulation;

3. at a later time, 𝑛2 bills are captured at random (without replacement)

from the population;

4. we count the number 𝑋 of marked bills, 0 < 𝑋 ≤ 𝑛2.

If we wait long enough (to let the marked bills propagate in the population,

say), we obtain

𝑛1

𝑁
≈ 𝑋

𝑛2

, from which we have �̂� =
𝑛1𝑛2

𝑋
,

where 𝑋 follows a hypergeometric distribution with parameters 𝑛1 , 𝑁 −
𝑛1 , 𝑛2, and probability mass function

𝑃(𝑋 = 𝑥) =

(
𝑛1

𝑥

) (
𝑁 − 𝑛1

𝑛2 − 𝑥

)
(
𝑁

𝑛2

) , 0 ≤ 𝑥 ≤ 𝑛2

𝜇𝑋 = E[𝑋] = 𝑛2

(𝑛1

𝑁

)
︸︷︷︸

𝑝

= 𝑛2𝑝, 𝜎2

𝑋 = V[𝑋] = 𝑛2𝑝(1 − 𝑝)
(
𝑁 − 𝑛2

𝑁 − 1

)
.
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If
𝑛2

𝑁 < 0.05, we can ignore the FPCF term in the variance:

𝜎2

𝑋 = V[𝑋] ≈ 𝑛2𝑝(1 − 𝑝).

We can now develop expressions for E[�̂�] and V[�̂�], using a Taylor
series of order 2 near 𝑋 ≈ 𝜇𝑋 = 𝑛2𝑝:

𝑓 (𝑋) ≈ 𝑓 (𝜇𝑋) + 𝑓 ′(𝜇𝑋)(𝑋 − 𝜇𝑋) +
𝑓 ′′(𝜇𝑋)

2

(𝑋 − 𝜇𝑋)2.

Si �̂� = 𝑓 (𝑋) = 𝑛1𝑛2

𝑋 , so that

�̂� ≈ 𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2

=
𝑛1

𝑝
− 𝑛1

𝑛2𝑝2

(𝑋 − 𝑛2𝑝) +
𝑛1

𝑛2

2
𝑝3

(𝑋 − 𝑛2𝑝)3.

Consequently,

E[�̂�] = E

[
𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2
]

= E

[
𝑛1𝑛2

𝜇𝑋

]
− E

[
𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋)
]
+ E

[
𝑛1𝑛2

𝜇3

𝑋

(𝑋 − 𝜇𝑋)2
]

=
𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(E[𝑋]︸︷︷︸
𝜇𝑋

−𝜇𝑋) +
𝑛1𝑛2

𝜇3

𝑋

E

[
(𝑋 − 𝜇𝑋)2

]
=
𝑛1𝑛2

𝜇𝑋
+ 𝑛1𝑛2

𝜇3

𝑋

V[𝑋] ≈ 𝑛1

𝑝
+ 𝑛1

𝑛2

2
𝑝3

· 𝑛2𝑝(1 − 𝑝) = 𝑛1

𝑝
+ 𝑛1

𝑛2𝑝2

(1 − 𝑝)

=
𝑛1

𝑝

(
1 + 1 − 𝑝

𝑛2𝑝

)
= 𝑁

(
1 + 1 − 𝑝

𝑛2𝑝

)
.

Since

1−𝑝
𝑛2𝑝

> 0, E[�̂�] ≠ 𝑁 , and so �̂� is an asympotically unbiased
estimator of 𝑁 when the sample size 𝑛2 increases.

We can provide an approximation of the variance using a Taylor series
of order 1 near 𝑋 ≈ 𝜇𝑋 = 𝑛2𝑝:

�̂� ≈ 𝑛1𝑛2

𝜇𝑋
− 𝑛1𝑛2

𝜇2

𝑋

(𝑋 − 𝜇𝑋) =
𝑛1

𝑝

(
1 −

𝑋 − 𝑛2𝑝

𝑛2𝑝

)
=
𝑛1

𝑝

(
2 − 𝑋

𝑛2𝑝

)
.

Putting all this together, we get

V[�̂�] ≈ V

[
𝑛1

𝑝

(
2 − 𝑋

𝑛2𝑝

)]
=
𝑛2

1

𝑝2

· V

[
− 𝑋

𝑛2𝑝

]
=

𝑛2

1

𝑛2

2
𝑝4

· V[𝑋]

≈
𝑛2

1
𝑛2𝑝(1 − 𝑝)
𝑛2

2
𝑝4

=
𝑛2

1
(1 − 𝑝)
𝑛2𝑝3

.

In practice, we do not know the true 𝑝, so we use

V̂[�̂�] =
𝑛2

1
(1 − �̂�)
𝑛2 �̂�3

, where �̂� =
𝑋

𝑛2

.
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Central Limit Theorem – Population Size 𝑁 : if 𝑛2 and 𝑁 are sufficiently

large, we have

�̂� ∼approx. N

(
E[�̂�], V̂[�̂�]

)
≈ N

(
𝑛1𝑛2

𝑋
,
𝑛2

1
(1 − �̂�)
𝑛2 �̂�3

)
,

and the corresponding 95% C.I. for 𝑁 is thus

C.I.(𝑁 ; 0.95) :

𝑛1𝑛2

𝑋
± 2

√
𝑛2

1
(1 − �̂�)
𝑛2 �̂�3

.

Example Say that 𝑛1 = 500 bills were initially captured, marked, and

releases; of the 𝑛2 = 300 bills recaptured at a later date, 𝑋 = 127 were

marked. Give a 95% C.I. for the total number of $5.

The point estimate is �̂� = 500·300

127
≈ 1181.102. We also have �̂� = 𝑋

𝑛2

=
127

300
≈ 0.423, from which we get the bound on the error of estimation

2

√
V̂(�̂�) = 2

√
500

2 · (1 − 0.42)
300 · (0.42)3 = 159.176,

and

C.I.(𝑁 ; 0.95) : 1181.102 ± 159.176 ≡ (1021.9, 1340.3). ■

Randomized Response

Let’s say we ask students whether they cheated on a test or an assignment

during the pandemic. If the answer is “Yes,” we can likely conclude that

it is the true answer. But since there is a social cost associated with such

an answer, we can expect that some cheaters will answer “No”. What can

we do to reduce the measurement error for sensitive questions?

First approach: with such questions, the skill of the interviewer plays a

crucial role – this aspect should not be overlooked.

Second approach: the randomized response technique requires the use

of two questions:

the sensitive question, and

an innocent question,

as well as a random mechanism with known parameters (heads or tails,

etc.).

Randomized responses work as follows: the respondent flips a coin

(without announcing the result to the interviewer), and answers honestly

one of the 2 questions:

“head”: “Have you ever cheated on a test?”;

“tail”: “Were you born in January?”;
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Since the interviewer does not know the outcome of the draw, they do

not know whether the respondent is answering the sensitive question or

the innocent one. In theory, the anonymity provided by the randomized

response is freeing (the social cost is diminished, if not eliminated
altogether) – therefore, we could expect an honest answer, regardless of

the question.

But we have to be careful: this approach can only be successful if we

know the probabilities:

𝜃 of observing a positive response to the innocent question;

𝜌 of the question being answered actually being the sensitive
question, and

𝜙 of observing a positive response, whatever the question.

Let 𝑝 be the proportion of positive responses to the sensitive question,

which is the quantity of interest. According to the Law of Total Probability,

we have

𝜙 = 𝑃(positive response)
= 𝑃(positive | sensitive)︸                      ︷︷                      ︸

𝑝

×𝑃(sensitive︸       ︷︷       ︸
𝜌

) + 𝑃(positive | innocent)︸                      ︷︷                      ︸
𝜃

×𝑃(innocent)︸        ︷︷        ︸
1−𝜌

,

= 𝑝𝜌 + 𝜃(1 − 𝜌)

or

𝑝 =
𝜙 − 𝜃(1 − 𝜌)

𝜌
.

If �̂� is the proportion of positive responses in the achieved sample, then

the randomized response estimator is

�̂�rr =
�̂� − 𝜃(1 − 𝜌)

𝜌
, 𝜃, 𝜌 constants,

whose sampling variance is

V(�̂�rr) = V

(
�̂� − 𝜃(1 − 𝜌)

𝜌

)
= V

(
�̂�

𝜌

)
=

1

𝜌2

· V(�̂�).

Since �̂� is a SRS proportion estimator obtained from a sample of size 𝑛

in a population Uof size 𝑁 , its sampling variance is

V(�̂�) =
𝜙(1 − 𝜙)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
,

from which we conclude that

V(�̂�rr) =
1

𝜌2

·
𝜙(1 − 𝜙)

𝑛

(𝑁 − 𝑛
𝑁 − 1

)
.

As the true value of 𝜙 is typically not known, we instead use the unbiased

estimator

V̂(�̂�rr) =
1

𝜌2

·
�̂�(1 − �̂�)
𝑛 − 1

(
1 − 𝑛

𝑁

)
,
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and we build a 95% C.I. for 𝑝 via

C.I.rr(𝑝; 0.95) : �̂�rr ± 2

√
V̂(�̂�rr).

The factor 1/𝜌2 penalizes the uncertainty brought by the randomized

response – the higher 𝜌 is, the lower V̂(�̂�rr) is.

There are practical considerations that limit how high 𝜌 can get: if it is

too large, the anonymity conferred by the approach evaporates, and we

risk ruining the study by causing an increase in non-response.

Example We seek to determine the incidence of cheating in online

courses among students in the Department of Mathematics and Statistics

(𝑁 = 442), using a SRS with 𝑛 = 65. We use the scheme described in this

section with 𝜌 = 1/2, and observe 𝜃 = 52

442
and �̂� = 21

65
. Find a 95% C.I.

for the proportion of students who cheated during the pandemic.

We only need compute

�̂�rr =
21/65 − 52/442(1 − 1/2)

1/2

= 0.53

V̂(�̂�rr) =
1

1/2
2

· 21/65(1 − 21/65)
65 − 1

(
1 − 65

442

)
= 0.012,

which yields C.I.rr(𝑝; 0.95) = 0.53 ± 2

√
0.012 ≡ (0.31, 0.74). ■

Bernoulli Sampling

Bernoulli sampling (BS) is a random sampling design – we do not know

the sample size before it is drawn.

Each unit of the population U = {𝑢1 , . . . , 𝑢𝑁 } is assigned the same

probability of inclusion in the sample Y: 𝜋 𝑗 = 𝜋 ∈ (0, 1), for all 𝑗. We

denote the achieved sample size by 𝑛𝑎 .

The BS design
60

consists of performing 𝑁 independent Bernoulli trials,60: I know, I know.

each with probability of success 𝜋 (where a success means that the unit

is included in the sample, and a failure means that it rejected).

The probability of obtaining a sample Yof size 𝑛𝑎 is then:

𝑃(|Y| = 𝑛𝑎) = 𝜋𝑛𝑎 (1 − 𝜋)𝑁−𝑛𝑎 .

There are 2
𝑁

possible samples, with size varying from 𝑛𝑎 = 0 to 𝑛𝑎 = 𝑁 .

The sample size follows a binomial distribution 𝑛𝑎 ∼ 𝐵(𝑁,𝜋):

𝑃(𝑛𝑎 = 𝑛) =
(
𝑁

𝑛

)
𝜋𝑛(1 − 𝜋)𝑁−𝑛 , E[𝑛𝑎] = 𝑁𝜋, V[𝑛𝑎] = 𝑁𝜋(1 − 𝜋).

When 𝑁 is sufficiently large, this distribution is approximately normal;
the 95% C.I. for 𝑛 is thus

C.I.(𝑛𝑎 ; 0.95) : 𝑁𝜋 ± 2

√
𝑁𝜋(1 − 𝜋).
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Let 𝜋 𝑗 ,𝑘 be the probability of inclusion of units 𝑢𝑗 and 𝑢𝑘 , 𝑗 ≠ 𝑘 in the

smaple Y. Since the Bernouilli trials are independent of one another,

𝜋 𝑗 ,𝑘 = 𝑃({𝑢𝑗 , 𝑢𝑘} ∈ Y) = 𝑃(𝑢𝑗 ∈ Y) · 𝑃(𝑢𝑘 ∈ Y) = 𝜋 𝑗𝜋𝑘 = 𝜋2.

The estimator

�̂�BS =
1

𝜋

𝑛𝑎∑
𝑖=1

𝑦𝑖

is an unbiased estimator of the total 𝜏 in U: indeed,

E[�̂�BS] =
1

𝜋
E[𝑛𝑎𝑦] =

E[𝑛𝑎]E[𝑦]
𝜋

=
𝑁𝜋𝜇

𝜋
= 𝑁𝜇 = 𝜏,

as 𝑛𝑎 and 𝑦 are independent of each other.

In the same vein, the sampling variance of �̂�BS is approximately

V̂[�̂�BS] =
1

𝜋

(
1

𝜋
− 1

) 𝑛𝑎∑
𝑖=1

𝑦2

𝑖 .

If 𝑁 and 𝑛𝑎 are sufficiently large, the Central Limit Theorem comes into

play again, and we build a 95% C.I. for 𝜏 using

C.I.BS(𝜏; 0.95) : �̂�BS ± 2

√
V̂[�̂�BS].

The corresponding estimators for the mean 𝑦
BS

and the proportion �̂�BS

are obtained in the usual manner.

Example A teacher has to correct 600 exam papers. For each paper, she

rolls a die and only corrects it (at this stage) if it shows a 6.

At the end of the process, she has graded 90 papers, of which 60 have

received a passing grade. Find a 95% C.I. for the total number of passes

in her class.

Let 𝑦𝑖 = 1 if the 𝑖th marked examen received a passing grade, and 𝑦𝑖 = 0

otherwise. We have 𝑁 = 600, 𝜋 = 1/6, 𝑛𝑎 = 90,

90∑
𝑖=1

𝑦𝑖= 60,
90∑
𝑖=1

𝑦2

𝑖 = 60, �̂�BS =
1

1/6

90∑
𝑖=1

𝑦𝑖 = 6(60) = 360

V̂[�̂�BS]=
1

1/6

(
1

1/6

− 1

)
90∑
𝑖=1

𝑦2

𝑖 = 6(5)(60) = 1800.

The 95% C.I. is thus C.I.BS(𝜏; 0.95) = 360 ± 2

√
1800 ≡ [277, 443]. We are

not going to lie... it is looking particularly bleak for the students. ■
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10.8 Exercises

1. You are tasked with estimating the annual salary of data scientists

in Canada. Determine the: populations (target, study, respondent);

sampling frames; samples (target, achieved); information about

units (units, response variable, attributes); sources of error (cover-

age, non-response, sampling, measurement and processing) and

variability (sampling, measurement).

2. We seek to estimate the average daily distance travelled by Ontario

cars, as well as their daily fuel consumption. Discuss various

approaches to be used. What are some of the issues and challenges

that could be encountered?

3. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario, as are the average daily fuel consumption and

the proportion of vehicles not in use. An SRS is selected from the

Ontario fleet (size 𝑁 = 7, 868, 359); the responses are collected in

the file Autos.xlsx . Discuss issues that may affect the quality

of the data. Provide a numerical and visual summary of the data

for the sample. Give an approximate 95% C.I. for each population

mean sought, with corresponding coefficient of variation.

4. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario, as are the average daily fuel consumption and

the proportion of vehicles not in use. An STS is selected from the

Ontario fleet (size 𝑁 = 7, 868, 359), with information concerning

vehicle type and age (the strata); the responses are collected in the

file Autos.xlsx . Discuss issues that may affect the quality of the

data. Provide a numerical and visual summary of the data for the

sample. Give an approximate 95% C.I. for each population mean

sought, with corresponding coefficient of variation. Conduct the

same exercise for each stratum.

5. We seek an estimate of the average daily distance travelled in Winter

2012 in Ontario. An SRS is selected from the Ontario fleet (size

𝑁 = 7, 868, 359). The responses, as well as the corresponding daily

fuel consumption, are collected in the file Autos.xlsx . Give

an approximate 95% C.I. for the characteristic of interest using

quotient, regression, and difference estimation.

6. Could cluster sampling be used to provide estimates of average

daily distance travelled, average daily fuel consumption, and pro-

portion of vehicles not in use in Winter 2012 in Ontario? Treat the

vehicle type and age information found in Autos.xlsx as cluster

information.

7. Repeat the previous exercise using multi-phase and multi-stage

sampling.

8. Draw 𝑚 = 1000 SRS samples of size 𝑛 from the 𝑁 = 183 countries

(excluding China and India) in the 2011 Gapminder dataset to esti-

mate the average propulation by country 𝜇. For 𝑛 = 30, 60, 90, 120,

what proportion of the 𝑚 samples yield an approximate 95% C.I.

containing 𝜇? Assume that 𝜎2
is not known.

9. Find an approximate 95% C.I. for the average life expectancy 𝜇
of the 𝑁 = 185 countries in the 2011 Gapminder dataset using

a SRS of size 𝑛 = 20. Is the true average life expectancy in your

confidence interval? Repeat this task𝑚 = 1000 times, with different

SRS samples. What proportion of the𝑚 samples yield approximate

https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
https://www.data-action-lab.com/wp-content/uploads/2023/06/Autos.xlsx
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95% C.I. containing 𝜇? Assume that 𝜎2
is not known. Compare

with the results of the previous exercise. How do you explain the

discrepancy?

10. Find an approximate 95% C.I. for the proportion 𝑝 of countries

whose life expectancy fell below 60 years in the 2011 Gapminder

dataset (𝑁 = 185), using a SRS of size 𝑛 = 20. Is the true proportion

in the confidence interval? Repeat this task 𝑚 = 1000 times, with

different SRS samples. What proportion of the 𝑚 samples yield

approximate 95% C.I. containing the true 𝑝? Assume that 𝜎2
is not

known. Compare with the results of exercises 8 and 9.

11. Find an approximate 95% C.I. for the total population of the planet

in the 2011 Gapminder dataset (𝑁 = 185), using a STS of size

𝑛 = 20. What variable will you use to stratify the data? Repeat this

task 𝑚 = 1000 times, with different STS samples. What proportion

of the 𝑚 samples yield approximate 95% C.I. containing the true

total 𝜏? Is the distribution of the obtained totals (approximately)

normal? How do you explain the shape of this distribution?

12. Find an approximate 95% C.I. for the proportion 𝑝 of countries

whose life expectancy fell below 60 years in the 2011 Gapminder

dataset (𝑁 = 185), using a STS of size 𝑛 = 20. What variable will

you use to stratify the data? Is the true proportion in the confidence

interval? Repeat this task 𝑚 = 1000 times, with different STS

samples. What proportion of the𝑚 samples yield approximate 95%

C.I. containing the true 𝑝? Compare with the results of exercise 10.

13. Consider a sample Y = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)} drawn from a

population of size 𝑁 = 37, 444. In a preceding study, we have

found that 𝜎2

𝑊 ;𝐿
≈ 188.2. Find the minimal 𝑛 which ensures that

the bound on the error of (regression) estimation of the mean 𝜇𝑌 is

at most 5. Do the same for the total 𝜏𝑌 and a bound of at most 250.

14. Find a 95% C.I. for the proportion of countries in the 2011 Gap-

minder dataset (𝑁 = 185) whose life expectancy is above 75 years,

using a CLS with 𝑚 = 8, assuming that the countries are grouped

into 𝑀 = 22 clusters determined by geographic regions. Assume

further that the average cluster size is known to be 𝑁 = 8.41.

15. Consider a CLS Yconsisting of𝑚 clusters drawn from a population

U of size 𝑁 , distributed in 𝑀 clusters. Let 𝜇 be the mean and 𝜎2

the variance of the population U. If the clusters are all of size 𝑛,

show that

V(𝑦𝐶) ≈
𝜎2 − 𝜎2

𝑚

(
1 − 𝑚

𝑀

)
, where 𝜎2 =

1

𝑀

𝑀∑
ℓ=1

𝜎2

ℓ ,

where 𝜎2

ℓ
is the variance in the ℓ th cluster.
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by Patrick Boily (inspired by David Haziza)

In data-driven decision-making, it is not enough to simply possess vast

datasets (which are often passively collected) and analytical prowess.

The manner in which experiments are designed, conducted, and ana-
lyzed can make a huge difference in the validity and reliability of the

conclusions that analysts draw.

The design of experiment provides the foundation for sound experimental

methodology, enabling scientists and data professionals to meticulously

control variables, uncover hidden patterns, and discern causality amidst

the complexity of real-world data.
*

11.1 Basic Notions

At its core, statistics serves as the science of collecting, analyzing, and

deriving meaningful conclusions from data.

Data can be obtained through several primary methods, each with its

own unique characteristics.

One common approach to data collection involves conducting sample
surveys. These surveys are often carried out by entities such as National

Statistical Offices and polling market firms.
†

The main objective of sample surveys is typically to estimate parameters

for finite populations. For instance, they may aim to determine the average

income within the Canadian population or calculate the unemployment

rate.
‡

Another method involves observational studies, where researchers

gather data by observing and recording natural occurrences. These

studies provide valuable insights into real-world phenomena but may

not always allow for the establishment of causality between variables.

Experimentation represents a powerful way to investigate causal relation-

ships. In experiments, researchers manipulate one or more variables and

observe the effects on others. This controlled approach helps establish

potential causal networks,
1

a crucial aspect of scientific inquiry. 1: Or cause-and-effect connections.

These foundational concepts lay the groundwork for our exploration of

experimental design.

*
More details, examples, and exercises are available in [2, 5], among others.

†
Such as Statistics Canada or EKOS Research, say.

‡
Survey sampling is explored in depth in Chapter 10.
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11.1.1 Experiments

The essence of experimental studies lies in the comparison of treatments
and their respective outcomes. Researchers leverage experiments to

address crucial questions, often revolving around topics such as:

Is a drug a safe and effective cure for a disease? This could involve

testing how AZT affects the progression of AIDS.

What combination of protein and carbohydrate sources provides

the optimal nutrition for growing lambs?

How will long-distance telephone usage patterns change if our

company introduces a different rate structure for our customers?

Can an ice cream manufactured with a new kind of stabilizer match

the palatability of our current ice cream?

A fundamental aspect of scientific reasoning involves drawing conclu-

sions from experiments that have been meticulously designed, executed

appropriately, and rigorously analyzed. Key elements include the treat-
ments and experimental units to be employed, the methodology for

assigning treatments to units, and the measured responses.

Note that the environment and observation conditions must be carefully

controlled and fixed.
2

2: Explanatory variables are under the

direct control of the researchers; some are

intentionally altered, while others are held

constant. Observational Studies against Experiments

Both observational studies and experiments are typically employed

to establish relationships between two or more measured quantities.

However, there is a fundamental distinction between observational

studies and experiments.

In an observational study, researchers do not actively manipulate or

create data; instead, they solely observe the characteristics of pre-existing

data. Consequently, an observational study entails the observation of

units/individuals and the measurement of variables of interest, without
any attempt to influence their responses.

Conversely, an experiment involves the deliberate imposition of specific
treatments on individuals/units to observe their responses. Causal infer-

ences find justification in experiments, where the explanatory variables

𝑥1 , · · · , 𝑥𝑝 , often referred to as the "possible causes," are directly con-

trolled by the researcher. Such experiments are known as randomized
trials because the values of the explanatory variables are assigned to

experimental units through some random mechanism.

In observational studies, the values of the explanatory variables are

observed rather than assigned by the researcher, alongside the value of

the response. In such studies, causal inferences are not warranted because,

although efforts can be made to "control" for certain "confounding" factors,

it is generally impossible to control for all relevant factors.

What constitutes a relevant (or confounding) factor in observational

studies? It is a factor that both influences the response variable(s) and

relates to the explanatory variable(s) on which the research focuses.
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A drawback of observational studies is that the grouping of individ-

uals into "treatments" is beyond the experimenter’s control, and the

mechanism underlying this grouping is often unknown.

Consequently, observed differences in responses between treatment

groups may be attributable to hidden mechanisms rather than to the

treatments.

Example Consider a dataset from Canada’s Health Care System compar-

ing the effectiveness of two procedures for treating prostate disease:

1. traditional surgery, or

2. a new method that does not require surgery.

The dataset includes many patients suffering from prostate disease, with

their doctors choosing one of the two methods. Initially, the study found

that patients treated with the new method were significantly more likely

to die within 8 years. H

However, further data analysis revealed that this conclusion was incorrect.

Why? What potential confounding variables might be at play?

Definitions

Some concepts will re-appear time and time again in this chapter, and so

we take the time to define them properly.

Treatments represent the different procedures under examination.

These could encompass various types or amounts of fertilizer in

agronomy or distinct long-distance rate structures in marketing.

An experimental unit refers to the physical entity that can be

randomly assigned to a treatment. This unit may be an individual,

an animal, a plot of land receiving fertilizer, and so forth, upon

which measurements are taken.
3

3: It does not have to be a “physical” entity

per se, as the data may arise in a simulation

context (see Chapter 12).

The dependent (or response) variable, often denoted by 𝑌, rep-

resents the observed outcome after applying a treatment to an

experimental unit.

Randomization involves the use of a known and perfectly con-

trolled probabilistic mechanism to assign treatments to units.

A factor in an experiment is a controlled independent variable, a

variable whose levels are determined by the experimenter. Factors

combine to create treatments. For instance, the baking treatment

for a cake may involve specific time and temperature settings, with

each variable varied independently.

A level denotes the intensity setting (or value) of a factor.

The effect is the change in the response caused by a change in a

factor.

A lurking (or hidden) variable is an uncontrolled variable that falls

outside the experimenter’s awareness and control, which could

influence the experiment’s outcome.

A cell refers to the subset of data occurring at the intersection of

one level of every treatment.
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Example In each of five different campuses across the country, we

selected 10 students at random to assess their attitudes toward industrial

pollution. Each student responded to a specific set of questions, and their

responses were aggregated into a total interview score.

Campus I II III IV V

Score 172 248 236 250 241

Experimental unit: a student

Response variable: total aggregated score

Factor: campus, with 5 levels

There are 5 cells in this experiment

Example We would like to compare the effects of three different insecti-

cides on a particular variety of string beans. Four plots were prepared,

with each plot subdivided into three rows. Each row was planted with

100 seeds and then maintained under the insecticide assigned to the row.

The insecticides were randomly assigned to the rows within a plot so

that each insecticide appeared in one row in all four plots. The response

variable was the number of seedlings that emerged per row.

Plot
Row I II III IV

1 (A)

121

(A)

73

(B)

144

(B)

134

2 (B)

128

(B)

141

(C)

118

(A)

85

3 (C)

112

(C)

118

(A)

109

(C)

111

Of course, we do not need to physically refer to the rows in order; in

fact, it might make more sense to represent the experiment using the

treatments instead of the location.

Plot
Insecticide I II III IV

A (1)

121

(1)

73

(3)

109

(2)

85

B (2)

128

(2)

141

(1)

144

(1)

134

C (3)

112

(3)

118

(2)

118

(3)

111

Experimental unit: variety of string beans

Response variable: number of seedlings

Factors: plot and insecticide

Levels of the factors:

− Plot: four levels (I, II, III, IV)

− Insecticide: three levels (A, B, C)

There are 3 · 4 = 12 cells in this experiment



11.1 Basic Notions 737

Example We aim to test whether a chemical agent can prevent symp-

tomatic infection from a respiratory diseases. A clinical trial was con-

ducted where patients received either the compound (C) or a placebo

(P). The treatment was administered to both men (M) and women (F),

each belonging to a specific age group. The information is summarized

below.

Gender

M F

Drug
Age P C P C

29− (102)

0.31

(99)

0.29

(105)

0.28

(105)

0.30

30-59 (117)

0.35

(119)

0.31

(120)

0.31

(119)

0.27

60+ (89)

0.38

(85)

0.41

(91)

0.38

(90)

0.37

Experimental unit: individual on which the infected/non-infected

status is measured

Response variable: 1 = infection, 0 = no infection.

Factors: gender, drug, and age group

Levels of the factors:

− Drug: two levels (compound and placebo)

− Gender: two levels (male and female)

− Age group: three levels (29−, 30-60, 60+)

There are 2 · 2 · 3 = 12 cells in this experiment

11.1.2 Useful Distributions

We have encountered several probabilistic and statistical concepts that

arise time and time again in applications.
4

We briefly mention those 4: See Chapters 6, 7, 8, 9, and 10.

properties that will be useful in the analysis and design of experiments.

Sample Mean and Sample Variance Consider a random sample

Y= {𝑦1 , . . . , 𝑦𝑛}

drawn from a population with mean 𝜇 and variance 𝜎2
, where E(𝑦𝑖) = 𝜇

and Var(𝑦𝑖) = 𝜎2
for 𝑖 = 1, . . . , 𝑛.

We assume that the sample observations in Y are independent and
identically distributed (i.i.d), indicating that they were generated from

the same distribution (or from the same population U).

The sample mean and sample variance of Yare given by:

𝑦 =
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 , 𝑠2 =
1

𝑛 − 1

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦)2.
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As a reminder, both the sample mean and the sample variance are

unbiased estimators of the population mean and the population variance,

respectively:

E(𝑦) = 1

𝑁

𝑁∑
𝑖=1

E(𝑦𝑖) =
1

𝑁

𝑁∑
𝑖=1

𝜇 = 𝜇,

Var(𝑦) = 1

𝑛2

𝑁∑
𝑖=1

Var(𝑦𝑖) =
1

𝑛2

𝑁∑
𝑖=1

𝜎2 =
𝜎2

𝑛
,

and

E(𝑠2) = 1

𝑛 − 1

[
𝑁∑
𝑖=1

E(𝑦2

𝑖 ) − 𝑛E(𝑦2)
]
=

1

𝑛 − 1

[
𝑁∑
𝑖=1

(𝜎2 + 𝜇2) − 𝑛
(
𝜎2

𝑛
+ 𝜇2

)]
=

1

𝑛 − 1

[
𝑛(𝜎2 + 𝜇2) − 𝑛

(
𝜎2

𝑛
+ 𝜇2

)]
= 𝜎2.

Probability Distributions The distribution of sample observations is

described by a probability distribution. For a continuous variable 𝑌, the

probability distribution is characterized by a density function, denoted

as 𝑓 (𝑦), with the following properties:

𝑓 (𝑦) ≥ 0, 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) =
∫ 𝑏

𝑎

𝑓 (𝑦)𝑑𝑦,
∫ +∞

−∞
𝑓 (𝑦)𝑑𝑦 = 1.

The mean of a probability distribution, denoted by 𝜇, serves as a measure

of centrality location and is defined as:

𝜇 = E(𝑌) =
∫ +∞

−∞
𝑦 𝑓 (𝑦)𝑑𝑦.

The variance 𝜎2
can be used to quantify the dispersion of a variable:

𝜎2 = Var(𝑌) = E[(𝑦 − 𝜇)2] =
∫ +∞

−∞
(𝑦 − 𝜇)2 𝑓 (𝑦)𝑑𝑦.

Normal Distributions If 𝑌 follows a normal distribution N(𝜇, 𝜎2) with

mean 𝜇 and variance 𝜎2
, its probability density function is given by

𝑓 (𝑦) = 1√
2𝜋𝜎

exp

(
−(𝑦 − 𝜇)2

2𝜎2

)
, −∞ < 𝑦 < ∞

.

If 𝑦1 , . . . , 𝑦𝑛 , is a random sample generated from a N(𝜇, 𝜎2), then 𝑦 and

𝑠2
are statistically independent.

Normal distributions are entirely characterized by their expectation

E(𝑌) = 𝜇 and variance Var(𝑦) = 𝜎2
; any other normal random variable

with the same properties must in fact be exactly 𝑌 ∼ N(𝜇, 𝜎2). We can

standardize any such random variable:

𝑍 =
𝑌 − 𝜇

𝜎
∼ N(0, 1).

The resulting random variable 𝑍 is said to be standard normal.
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We have discussed normal distributions in detail in Section 6.3.3; the

primacy of normal distributions in statistical applications is explained

by the following oft-used result.

Central Limit Theorem: let 𝑌1 , . . . , 𝑌𝑛 , be 𝑛 i.i.d. random variables with

mean 𝜇 and variance 𝜎2
. The random variable

𝑍𝑛 =
𝑌 − 𝜇

𝜎/
√
𝑛

converges in distribution to 𝑍 ∼ N(0, 1), where 𝑌 =
∑𝑛
𝑖=1
𝑌𝑖/𝑛.5 5: A sequence {𝑋𝑛} of random variables,

with cumulative distribution functions

{𝐹1} converges in distribution to a random

variable 𝑋 with cumulative distribution

function 𝐹 if 𝐹𝑛(𝑥) → 𝐹(𝑥) for all 𝑥 where

𝐹 is continuous.

𝜒2 Distributions If 𝑍1 , . . . , 𝑍𝑘 ∼ N(0, 1) are 𝑘 i.i.d. random variables,

then the random variable

𝑌 = 𝑍2

1
+ · · · + 𝑍2

𝑘

follows a 𝜒2

𝑘
distribution (with 𝑘 degrees of freedom).

6
6: We have also used the notation 𝜒2(𝑘)
in these notes.

The probability density function of such a random variable is

𝑓 (𝑦) = 1

2
𝑘/2Γ

(
𝑘
2

) 𝑦𝑘/2−1𝑒−𝑦/2 , 𝑦 > 0,

where Γ is the Gamma function .

When 𝑌 ∼ 𝜒2

𝑘
, we have E(𝑌) = 𝑘 and Var(𝑌) = 2𝑘.

As the degrees of freedom parameter 𝑘 increases, the chi-square distribu-

tion converges in distribution to a normal distribution with a mean equal

to 𝑘 and a variance equal to 2𝑘. This convergence is a direct consequence

of the Central Limit Theorem.

Now, if we have a random sample 𝑦1 , . . . , 𝑦𝑛 generated from a normal

distribution N(𝜇, 𝜎2), we can make the following observation:

(𝑛 − 1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1
.

This implies that we can obtain an unbiased estimator of 𝜎2
by dividing

the sum of squares by the number of degrees of freedom, which is 𝑛 − 1.

This unbiased estimator of the population variance will prove useful

when introduce ANOVA tables.

Student’s 𝑇−Distributions If 𝑍 ∼ N(0, 1) and 𝑌 ∼ 𝜒2

𝑘
independent,

then the distribution of the random variable

𝑊 =
𝑍√
𝑌/𝑘

is that of a Student 𝑇−distribution with 𝑘 degrees of freedom, denoted

by𝑊 ∼ 𝑡𝑘 .7 7: We have also used the notation 𝑡(𝑘) in

these notes.

https://en.wikipedia.org/wiki/Gamma_function
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The probability density function of the 𝑇−distribution is :

𝑓 (𝑤) =
Γ

(
𝑘+1

2

)
√
𝑘𝜋Γ

(
𝑘
2

) (
1 + 𝑤2

𝑘

) 𝑘+1

2

, −∞ < 𝑤 < ∞.

The 𝑇−distribution is symmetric, and its expected value is E(𝑊) = 0,

while its variance is Var(𝑊) = 𝑘
𝑘−2

for 𝑘 > 2. As the degrees of freedom

parameter 𝑘 increases,𝑊 converges in distribution to the standard normal

distribution N(0, 1).

Fisher’s 𝐹−Distributions If 𝑋 ∼ 𝜒2

𝑢 and 𝑌 ∼ 𝜒2

𝑣 are independent, then

the distribution of the random variable

𝑊 =

𝑋
𝑢

𝑌
𝑣

is that of a Ficher 𝐹−distribution with (𝑢, 𝑣) degrees of freedom, denoted

by𝑊 ∼ 𝐹𝑢,𝑣 .
8

8: We have also used the notation 𝐹(𝑢, 𝑣)
in these notes. The order of the degrees of

freedom is important: if 𝑊 ∼ 𝐹𝑢,𝑣 , then

1

𝑊
∼ 𝐹𝑣,𝑢 .

The probability density function of the 𝐹−distribution is given by:

𝑓 (𝑤) =
Γ

(
𝑢+𝑣

2

) (
𝑢
𝑣

) 𝑢
2

Γ
(
𝑢
2

)
Γ

(
𝑣
2

) 𝑤
𝑢
2
−1(

1 + 𝑢
𝑣𝑤

) 𝑢+𝑣
2

, 𝑤 > 0.

The expectation of𝑊 ∼ 𝐹𝑢,𝑣 is only defined if 𝑣 > 2; its variance is only

defined if 𝑣 > 4. In those cases, we have

E(𝑊) = 𝑢

𝑣 − 2

and Var(𝑊) = 2𝑣2(𝑢 + 𝑣 − 2)
𝑢(𝑣 − 2)2(𝑣 − 4) ;

if 𝑣 ≤ 4, 𝑊 does not have a well-defined variance, if 𝑣 ≤ 2, it does not

have a well-defined expectation. Moreover, if 𝑋 ∼ 𝑡(𝑘), then 𝑋2 ∼ 𝐹1,𝑘 .

11.2 Review of Hypothesis Testing

We have discussed hypothesis testing in detail in Section 7.4 (and in the

chapters on applications); we briefly review its important features as it

relates to the design of experiment.

11.2.1 Inference on the Population Mean

The customary Student 𝑇−test relies on several key assumptions:

1. a random sample of size 𝑛 is selected for analysis;

2. the individual observations in this sample are denoted by 𝑦1 , 𝑦2 , . . . , 𝑦𝑛 ;

3. these observations are assumed to have been generated from a

normal population with a mean parameter 𝜇 and variance 𝜎2
,

expressed as:

𝑦1 , 𝑦2 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2).



11.2 Hypothesis Testing 741

However, what if the underlying population does not follow a normal

distribution? The Student 𝑡−test exhibits robustness in the sense that the

distribution of the test statistic remains relatively stable even when the

normality assumption is not strictly met. This robustness holds, provided

that the sampled population exhibits an approximately mound-shaped
distribution.

In the context of hypothesis testing: we typically formulate both null and

alternative hypotheses as follows. We pit the

null hypothesis (𝐻0): 𝜇 = 𝜇0

against the two-tailed

alternative hypothesis (𝐻1): 𝜇 ≠ 𝜇0,

or either of the one-tailed

alternative hypothesis (𝐻1): 𝜇 > 𝜇0 (one-tailed test), or

alternative hypothesis (𝐻1): 𝜇 < 𝜇0 (one-tailed test).

We define the following terms related to hypothesis testing (see Table

11.5 for a summary):

a type I error occurs when we wrongly reject the null hypothesis

𝐻0 but it is in fact valid:

𝛼 = 𝑃(Type I error) = 𝑃(reject 𝐻0 | 𝐻0 is true);

a type II error occurs when we do not reject the null hypothesis 𝐻0

but it should in fact be rejected:

𝛽 = 𝑃(Type II error) = 𝑃(do not reject 𝐻0 | 𝐻0 is false);

the power of the test is the probability of correctly rejecting the

null hypothesis when it is in fact false:

Power = 1 − 𝛽 = 𝑃(reject 𝐻0 | 𝐻0 is false)

We discuss other types of error in one of the sidenotes of Section 7.4.1.

Reality
𝐻0 is true 𝐻0 is false

Decision
Reject 𝐻0

type I error

(𝛼)
right decision

(1 − 𝛽)

Do not reject 𝐻0

right decision

(1 − 𝛼)
type II error

(𝛽) Table 11.5: The four possible outcomes for

hypothesis testing.

We usually set the significance level 𝛼 of the test, typically chosen as

𝛼 = 0.01, 0.05, 0.1, and aim to construct a test with high power 1 − 𝛽,

typically for 𝛽 = 0.1, 0.2.

The test statistic 𝑡0 is calculated as follows:

𝑡0 =
𝑦 − 𝜇0

𝑠/
√
𝑛
.
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If 𝐻0 is true,
9

the distribution of 𝑡0 follows a 𝑇−distribution with 𝑛 − 19: We also say “under 𝐻0”.

degrees of freedom (𝑡𝑛−1).

For a two-tailed test at the level 𝛼, we reject 𝐻0 when |𝑡0 | is greater than

the critical value 𝑡𝛼/2;𝑛−1
.
10

For a one-tailed test, either 𝐻0 : 𝜇 = 𝜇010: See Section 7.3.2 for more information.

against 𝐻1 : 𝜇 > 𝜇0 or 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 < 𝜇0, we reject 𝐻0

based on the sign of 𝑡0:

for 𝐻1 : 𝜇 > 𝜇0, we reject 𝐻0 when 𝑡0 > 𝑡𝛼;𝑛−1;

for 𝐻1 : 𝜇 < 𝜇0, we reject 𝐻0 when 𝑡0 < −𝑡𝛼;𝑛−1.

We can then build an 100(1 − 𝛼)% confidence interval for 𝜇 according

to:

𝑦 ± 𝑡𝛼/2;𝑛−1
· 𝑠√

𝑛

The margin of error 𝑚 (sometimes known as the bound on the error of
estimation, see Chapter 10) is

𝑚 = 𝑡𝛼/2;𝑛−1
· 𝑠√

𝑛

We reject 𝐻0 if

��� 𝑦−𝜇0

𝑠/
√
𝑛

��� > 𝑡𝛼/2;𝑛−1
, that is, if 𝑦 lies in the rejection region

𝑦 ≥ 𝜇0 + 𝑚 or 𝑦 ≤ 𝜇0 − 𝑚.

Inference about 𝜇: Power The power of a test depends on various

factors, including the specific alternative hypothesis, the significance
level 𝛼, the variance 𝜎2

, and the sample size 𝑛.

We can think of the power as a function

𝜋(𝜃) = 𝑃(reject 𝐻0 : 𝜃 = 𝜃0 | observed sample).

The power function 𝜋(𝜃) obviously depends on the true value of the

parameter 𝜃, of course, but may also be influenced by the sample size
and the rejection rule or significance level of the test. By construction,

we must have 𝜋(𝜃0) = 𝛼.

We can compute the power of the Student 𝑇−test with the help of the

following random variable: if 𝑍 ∼ N(0, 1) and 𝑋 ∼ 𝜒2

𝑘
are independent,

the distribution of

𝑊 =
𝑍 + 𝛿√
𝑋/𝑘

is a non-central 𝑇−distribution with 𝑘 degrees of freedom and non-
centrality parameter 𝛿, denoted by𝑊 ∼ 𝑡𝑘(𝛿).1111: When 𝛿 = 0, this clearly reduces to the

standard Student 𝑇−distribution.

We take a detailed look at computing the power of the test for a one-tailed

test with hypotheses 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 > 𝜇0.

In this case, we reject 𝐻0 if 𝑡0 > 𝑡𝛼;𝑛−1, which is equivalent to

𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1.
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The power function of the test can then be expressed as:

𝜋(𝜇) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1

����𝐻0 is false

)
= 𝑃

(
𝑦 − 𝜇0

𝑠/
√
𝑛

> 𝑡𝛼;𝑛−1

����𝜇 > 𝜇0

)
.

To compute this probability, we first note that

𝑦 − 𝜇0

𝑠/
√
𝑛

=
(𝑦 − 𝜇) + (𝜇 − 𝜇0)

𝑠/
√
𝑛

=

√
𝑛(𝑦 − 𝜇)/𝜎 +

√
𝑛(𝜇 − 𝜇0)/𝜎

𝑠/𝜎 .

According to the central limit theorem, 𝑍 =
𝑦−𝜇
𝜎/

√
𝑛
∼ N(0, 1).

Furthermore, 𝑋 = (𝑛 − 1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1
. If 𝛿 =

√
𝑛(𝜇 − 𝜇0)/𝜎,

12
then 12: In practice, we use 𝛿 ≈

√
𝑛(𝜇 − 𝜇0)/𝑠.

𝑦 − 𝜇0

𝑠/
√
𝑛

=
𝑍 + 𝛿

𝑋/(𝑛 − 1) .

Under 𝐻1, then, we have:

𝑊 =
𝑦 − 𝜇0

𝑠/
√
𝑛

∼ 𝑡𝑛−1(
√
𝑛(𝜇 − 𝜇0)/𝜎).

Example Let 𝑦1 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2) be i.i.d., with 𝑠 = 10. We want to

test𝐻0 : 𝜇 = 60 against𝐻1 : 𝜇 > 60; assume that we reject𝐻0 if 𝑦 ≥ 62.

What is the power of the test when 𝑛 = 25 and the true value of

the mean is 𝜇 = 63?

In this case, we have 𝛿 ≈
√

25(63 − 60)/10 = 1.5 and

𝜋(63) = 𝑃(𝑦 ≥ 62 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√

25

����𝜇 = 63

)
= 𝑃(𝑡24(1.5) ≥ 1) = 0.6933.

We can compute this in R as follows:

1 - pt(q=1, df=24, ncp=1.5)

Thus, if 𝜇 = 63, the probability of correctly rejecting 𝐻0 is ≈ 70%.

Repeat the calculation, but assuming that 𝑛 = 100 instead. In this

case, we have 𝛿 ≈
√

100(63 − 60)/10 = 3 and

𝜋(63) = 𝑃(reject 𝐻0 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√

100

����𝜇 = 63

)
= 𝑃(𝑡99(3) ≥ 2) = 0.8401,

which can also be obtained in R as follows:

1 - pt(q=2, df=99, ncp=3)

We note that, for given values of 𝜇 and 𝑠, the power of the test

increases as the sample size 𝑛 increases.

For an arbitrary 𝑛, we have 𝛿 ≈
√
𝑛(63 − 60)/10 = 0.3

√
𝑛, and

𝜋(63) = 𝑃(reject 𝐻0 | 𝜇 = 63) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√
𝑛

����𝜇 = 63

)
= 𝑃(𝑡𝑛−1(0.3

√
𝑛) ≥ 0.2

√
𝑛).
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If the true parameter value is 𝜇 = 60, then for an arbitrary sample

size 𝑛, we have 𝛿 =
√
𝑛(60 − 60)/10 = 0 and

𝜋(60) = 𝑃(reject 𝐻0 | 𝜇 = 60) = 𝑃
(
𝑦 − 𝜇0

𝑠/
√
𝑛

≥ 62 − 60

10/
√
𝑛

����𝜇 = 60

)
= 𝑃(𝑡𝑛−1 ≥ 0.2

√
𝑛) = 𝛼.

Note that 𝜋(60) corresponds to the probability of a Type I error for

a given decision rule and sample size. □

In general, the power of a test increases as:

the effect |𝜇 − 𝜇0 | increases for fixed values of 𝑛 and 𝑠;

the sample size increases for fixed values of 𝜇 and 𝑠;

𝑠 decreases for fixed values of 𝜇 and 𝑛.

Sample Size When designing an experiment, it is crucial to determine

an appropriate sample size. Typically, researchers aim to determine the

sample size 𝑛 that guarantees a high statistical power.
13

To achieve this,13: Often set at 1 − 𝛽 = 0.8 or 0.9.

the they need to specify the following key factors.

1. The desired power, which represents the probability of detecting a

true effect if it exists;

2. the significance level 𝛼 (the probability of making a Type I error);

3. the effect size |𝜇 − 𝜇0 |, which is chosen to represent a practically

meaningful difference between groups or conditions, and

4. an estimate or range for the population variance 𝜎2
.

We illustrate the process via a simple example.

Example Let 𝑦1 , . . . , 𝑦𝑛 ∼ N(𝜇, 𝜎2) be i.i.d. We wish to test the following

hypotheses:

𝐻0 : 𝜇 = 100 against 𝐻1 : 𝜇 > 100.

We assume that 20 a plausible value for 𝜎, and that the level of significance

𝛼 is 0.05. If an effect 𝜇 − 𝜇0 = 10 is considered meaningful, what sample

size is required to detect such a difference with a power of 0.9?

Given our assumption about 𝜎2
, the distribution of the test statistic

𝑍 =
𝑦 − 𝜇0

𝜎/
√
𝑛

is standard normal, N(0, 1).

In order for 𝜇 − 𝜇0 to be 10, we must have 𝜇 = 110; we can achieve a

power of 0.9 as follows:

𝜋(110) = 𝑃(reject 𝐻0 | 𝜇 = 110) = 0.9 ⇔ 𝑃 (𝑍 ≥ 𝑧0.05 | 𝜇 = 110) = 0.9

⇔ 𝑃

(
𝑦 − 100

20/
√
𝑛

≥ 1.645

����𝜇 = 110

)
= 0.9 ⇔ 𝑃

(
𝑦 ≥ 1.645 · 20√

𝑛
+ 100

����𝜇 = 110

)
= 0.9

⇔ 𝑃

(
𝑦 − 110

20/
√
𝑛

≥ 1.645 − 10

√
𝑛

20

)
= 0.9.

What is the corresponding quantile of the standard normal distribu-

tion?
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qnorm(p=0.9, mean=0, sd=1, lower.tail=FALSE)

[1] -1.281552

Then, we must have

1.645 − 10

√
𝑛

20

= −1.29,

which is to say, 𝑛 ≈ 35. □

11.2.2 Inference on the Difference of Means

We start with an example borrowed from [4].

Motivational Example An experiment was conducted to compare the

mean number of tapeworms in the stomachs of sheep that had been

treated for worms against the mean number in those that were un-

treated.

A sample of 14 worms-infected lambs was randomly divided into two

groups: 7 were injected with the drug and the remainder were left

untreated. After a 6-month period, the lambs were slaughtered and the

following worm counts were recorded.

Drug-treated sheep 18 43 28 50 16 32 13

Untreated sheep 40 54 26 63 21 37 39

How would we test the hypothesis that there is no difference in the mean

number of worms between treated and untreated lambs? □

We will return to this example after some important notions.

To test for the difference of means, we assume two populations, denoted

by I and II, in each of which the distribution of the response variable is

taken to be normal.
14

14: Note that in the motivational example,

the response is the worm count, which can-

not be normally distributed as negative

and fractional values cannot arise. Never-

theless, that assumption may be a good

approximation to reality (see Section 6.3.6,

for instance).For Population 1, let 𝜇1 and 𝜎2

1
be the respective population mean

and variance, and analogously, for Population II, 𝜇2, and 𝜎2

2
.
15

A key 15: Referring to the motivational exam-

ple, 𝜇1 and 𝜇2 are the true worm count

means in the populations of treated and

untreated lambs, respectively.

assumption is that the population variances are equal: 𝜎2

1
= 𝜎2

2
= 𝜎2

.

Let 𝑦1,1 , . . . , 𝑦1,𝑛1
be a random sample of size 𝑛1 drawn from Population I,

with sample mean 𝑦
1
, and 𝑦2,1 , . . . , 𝑦2,𝑛2

be a random sample of size 𝑛2

drawn from Population II, with sample mean 𝑦
2
. Crucially, these samples

are assumed to be independent.

Expressed in distributional terms:

𝑦1,1 , . . . , 𝑦1,𝑛1
∼ N(𝜇1 , 𝜎

2), 𝑦2,1 , . . . , 𝑦2,𝑛2
∼ N(𝜇2 , 𝜎

2)

or equivalently:

𝑦1,𝑖 = 𝜇1 + 𝜀1,𝑖 , 𝜀1,𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛1 , and

𝑦2,𝑖 = 𝜇2 + 𝜀2,𝑖 , 𝜀2,𝑖 ∼ N(0, 𝜎2), 𝑖 = 1, . . . , 𝑛2.



746 11 The Design of Experiments

The test’s null and alternative hypotheses are:

𝐻0 : 𝜇1 = 𝜇2 and 𝐻1 : 𝜇1 ≠ 𝜇2;

the treatment effect is denoted by 𝜇1 − 𝜇2.
16

16: When the alternative hypothesis is

in the form 𝐻1 : 𝜇1 ≠ 𝜇2, the test is a

two-tailed test. If, however, the alterna-

tive hypothesis is either 𝐻1 : 𝜇1 > 𝜇2 or

𝐻1 : 𝜇1 < 𝜇2, the test becomes a one-
tailed test.

We require a test statistic to determine whether to reject or accept the null

hypothesis, 𝐻0. Setting the level of the test as 𝛼,
17

we aim to formulate a

17: Common values: 𝛼 = 0.01, 0.05, 0.1.

test with a substantial power.

The customary 𝑇−statistic with significance level 𝛼 is

𝑡0 =
𝑦

1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

, where 𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

is the pooled estimate of the common variance 𝜎2
.

If the null hypothesis 𝐻0 holds true, the test statistics 𝑡0 follows a

𝑇−distribution with 𝑛1 + 𝑛2 − 2 degrees of freedom, 𝑡0 ∼ 𝑡𝑛1+𝑛2−2. The

decision to reject the null hypothesis at level 𝛼 is made when

|𝑡0 | > 𝑡𝛼/2;𝑛1+𝑛2−2
.

In practice, the decision often hinges on the 𝑝-value. The computation

for the 𝑝-value (in the two-tailed case) is:

𝑝−value = 2𝑃(𝑡𝑛1+𝑛2−2 > |𝑡0 |);

that quantity is smaller then 𝛼 if and only if the test rejects 𝐻0 at level 𝛼.

Motivational Example (Cont.) We compute the required quantities.

y.1 <- c(18,43,28,50,16,32,13)

y.2 <- c(40,54,26,63,21,37,39)

(y.bar.1 <- mean(y.1))

(y.bar.2 <- mean(y.2))

(s.2.1 <- var(y.1))

(s.2.2 <- var(y.2))

[1] 28.57143

[1] 40

[1] 198.619

[1] 215.3333

The pooled estimate of the variance is easy to compute.

n.1 = length(y.1)

n.2 = length(y.2)

(n.1+n.2-2)

(s.2.p <- ((n.1-1)*s.2.1 + (n.2-1)*s.2.2)/(n.1 + n.2 - 2))
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[1] 12

[1] 206.9762

The test statistic is computed below.

(t_0 <- (y.bar.1 - y.bar.2)/sqrt(s.2.p*(1/n.1 + 1/n.2)))

[1] -1.486161

The 𝑝−value for the two-sided test is thus 2𝑃(𝑡12 > |−1.486161|).

2*pt(q=t_0, df=n.1 + n.2 - 2, lower.tail=TRUE)

[1] 0.1630303

Since the 𝑝−value is larger than 𝛼 = 0.05, we have insufficient evidence

to reject 𝐻0, which is to say that the observed data is compatible with the

idea that the treatment has no effect. □

We have discussed this before (in Section 7.4, notably), but we will repeat

it here for good measure: failure to reject the null hypothesis 𝐻0 is not

the same as accepting the null hypothesis 𝐻0. We cannot prove 𝐻0, we

can only show that the observed data is at least compatible with it.
18

18: We can reject 𝐻0, however, which is

equivalent to saying that the observed data

is not compatible with it.

Power and Sample Size We now turn to the sample size determination

𝑛1 and 𝑛2. In a study, these are usually determined based on the need to

offer sufficient statistical power.

When𝐻0 is true, the test statistic 𝑡0 follows a Student𝑇−distribution with

𝑛1 + 𝑛2 − 2 degrees of freedom. However, when 𝐻0 is false, 𝑡0 follows a

non-central 𝑇−distribution with non-centrality parameter

𝛿 =
𝜇1 − 𝜇2

𝜎
√

1

𝑛1

+ 1

𝑛2

.

Suppose we test 𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 > 𝜇2.

The power function of the test is then given by

𝜋(𝜇1 − 𝜇2) = 𝑃
©«

𝑦
1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

> 𝑡𝛼;𝑛1+𝑛2−2

������� 𝐻0 is false

ª®®¬
= 𝑃

©«
𝑦

1
− 𝑦

2

𝑠𝑝

√
1

𝑛1

+ 1

𝑛2

> 𝑡𝛼;𝑛1+𝑛2−2

������� 𝜇1 − 𝜇2 > 0

ª®®¬ .
The power function increases with 𝛿. Thus, the power increases when:

1. |𝜇1 − 𝜇2 | increases – a large difference between the means is easier

to detect;
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2. 𝜎 decreases – a given difference between 𝜇1 and 𝜇2 is easier to

detect when the errors 𝜀ℓ , 𝑗 are small, and/or

3. 𝑛1 and/or 𝑛2 increases.

Confidence Intervals We can construct an approximate 100(1 − 𝛼)%
confidence interval for 𝜇1 − 𝜇2:

C.I.(𝜇1 − 𝜇2; 1 − 𝛼) ≡ 𝑦
1
− 𝑦

2
) ± 𝑡𝛼/2;𝑛1+𝑛2−2

· 𝑠𝑝
√

1

𝑛1

+ 1

𝑛2

.

In the previous example, we get a 95% confidence interval for 𝜇1 − 𝜇2 by

computing

C.I.(𝜇1−𝜇2; 0.95) ≡ (28.57−40)±2.1788·14.39

√
1

7

+ 1

7

⇐⇒ (−28.18, 5.32).

Because the interval contains 0, we do not have enough evidence to reject

𝐻0 – the data is not incompatible with the notion that 𝜇1 −𝜇2 = 0.
19

This19: Which is not the same as saying that

we accept 𝐻1 : 𝜇1 − 𝜇2 ≠ 0.
matches the 𝑝−test result from the previous section.

Paired-Difference Test When the samples are drawn independently

from the two populations, we refer to the test as unpaired.
20

In a paired20: We often have 𝑛1 ≠ 𝑛2.

scenario, the units are not independent:
21

we could imagine selecting21: In some sense, they are maximally de-

pendent. 𝑛 = 7 sheep, testing them for tapeworm before treating them with a

drug, then testing the same sheep for tapeworm after the treatment.

If a given specimen is somehow more likely to be afflicted by tapeworm

due to genetics or farmer care, we wouldn’t be surprised to find a link in

its before/after measurements.

Motivational Example To compare the wear-and-tear qualities of two

types of road paints, A and B, a sample of each is applied to a small

area of five randomly selected roads. The roads operate as they normally

do, with their specific usage patters, and the number of weeks to some

“failure” threshold is recorded for each sample.

These measurements appear in the table below. Do the data present

sufficient evidence to indicate a difference in the average wear for the

two paint types?

Road Paint A Paint B

1 9.1 8.7

2 11.2 10.7

3 9.6 9.0

4 8.6 8.2

5 8.9 8.4

If we treated these samples as independent, we would be able be able to

answer the question using the pooled variance 𝑠2

𝑝 , computed with the

help of 𝑦𝐴, 𝑦𝐵, 𝑠𝐴, 𝑠𝐵, and 𝑛𝐴 = 𝑛𝐵 = 5.
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The two-sample pooled 𝑇−test would conclude that we cannot reject

the null hypothesis 𝐻0 : 𝜇𝐴 = 𝜇𝐵, which is certainly thought-provoking

given that the time to “failure” is systematically longer for Paint A than

it is for Paint B. □

We have alluded to this problem at the start of the section: the two-

sampled pooled 𝑇−test is not the proper statistical test to use in this

case because the two samples are not independent.

Motivational Example (Cont.) Indeed, the (pair of) measurements Paint

A and Paint B for a particular roadway are definitely related. The readings

have approximately the same magnitude for a road but vary markedly

from one road to another. Paint wear-and-tear is largely determined by

traffic volume and type, the weather, and the road surface, say.

Since each road is likely to have different characteristics on that front,

we expect a large amount of variability in the data from one road to

another.

In designing the paint wear-and-tear experiment, the experimenters

realized that the measurements would vary greatly from road to road. If

the paint types (five of type A and five of type B) were randomly assigned

to 10 roads, resulting in two independent random samples of size 5, this

variability would result in a large standard error and make it difficult to

detect a difference in the means.

Instead, they chose to "pair" the measurements, comparing the wear-and-

tear for Paint A and Paint B on each of the five roads.

Road Paint A Paint B Difference 𝑑

1 9.1 8.7 0.4

2 11.2 10.7 0.5

3 9.6 9.0 0.6

4 8.6 8.2 0.4

5 8.9 8.4 0.5

This experimental design, sometimes called a paired-difference or

matched pairs design, allows us to eliminate the road-to-road vari-

ability by looking at only the five difference measurements shown above.

These five differences form a single random sample of size 𝑛 = 5. □

For a paired-difference test with 𝑛 samples, we compute 𝑑𝑖 = 𝑦1,𝑖 − 𝑦2,𝑖

for 𝑖 = 1, . . . , 𝑛. The null and the alternative hypotheses are:

𝐻0 : 𝜇𝑑 = 0

and

𝐻1 : 𝜇𝑑 ≠ 0 or 𝐻1 : 𝜇𝑑 > 0 or 𝐻1 : 𝜇𝑑 < 0,

while the test statistic is:

𝑡0 =
𝑑 − 0

𝑠𝑑/
√
𝑛
, (11.1)
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where 𝑑 = (𝑑1 + · · · + 𝑑𝑛)/𝑛 and

𝑠2

𝑑
=

1

𝑛 − 1

𝑛∑
𝑖=1

(𝑑𝑖 − 𝑑)2.

For a two-tailed test at level 𝛼, we reject 𝐻0 when

|𝑡0 | > 𝑡𝛼/2;𝑛−1
.

For a one-tailed test 𝐻0 : 𝜇𝑑 = 0 against 𝐻1 : 𝜇𝑑 > 0 (respectively,

𝐻1 : 𝜇𝑑 < 0), we reject 𝐻0 when

𝑡0 > 𝑡𝛼;𝑛−1; (resp. 𝑡0 < −𝑡𝛼;𝑛−1).

We can build an approximate 100(1 − 𝛼)% confidence interval for 𝜇𝑑
using

C.I.(𝜇𝑑; 1 − 𝛼) ≡ 𝑑 ± 𝑡𝛼/2;𝑛−1
· 𝑠𝑑√

𝑛
.

Motivational Example (Cont.) We prepare the data.

d <- c(0.4, 0.5, 0.6, 0.4, 0.5)

n = length(d)

Simple calculations leads to 𝑑 and 𝑠𝑑.

(d.bar <- mean(d))

(s.2.d <- var(d))

[1] 0.48

[1] 0.007

The test statistic 𝑡0 can be computed easily.

(t_0 <- (d.bar - 0)/sqrt(s.2.d/n))

[1] 12.8285

At significance level 𝛼, the critical value of Student’s 𝑇 distribution with

𝑛 − 1 = 4 degrees of freedom is 𝑡𝛼/2;𝑛−1
, which can compute using either

of the following ways in R.

alpha = 0.05

(t.crit = qt(p=1 - 0.05/2, df=n-1))

qt(p=0.05/2, df=n-1, lower.tail = FALSE)

[1] 2.776445

Since 12.829 = 𝑡0 > 𝑡4;0.025 = 2.776, we reject 𝐻0 and we conclude that

there is a difference in the mean wear-and-tear for paints A and B.
22

22: Note that the observed value 𝑡0 =

12.829 is quite large for the Student 𝑇 dis-

tribution with 4 degrees of freedom, and

the test result is highly significant.

We build an approximate 95% confidence interval for𝜇𝑑 as follows.
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c(d.bar - t.crit*sqrt(s.2.d/n),

d.bar + t.crit*sqrt(s.2.d/n))

[1] 0.3761149 0.5838851

Note that this interval is much narrower than the interval that would

have been obtained using the unpaired data, which indicates that the

paired difference design increased the accuracy of the estimate – we have

gained valuable information by using this design. □

The paired-difference test or matched pairs design used in the paint

wear-and-tear experiment is a special case of an experimental design

called a randomized block design (see Section 11.5). Importantly, the

pairing (or blocking) must occur when the experiment is planned, and

not after the data are collected.

11.2.3 Inference on the Population Variance

In some research situations, the primary interest lies in making infer-

ences concerning population variances rather than focusing solely on

population means. We begin by considering a test designed for a single
population variance.

Imagine we have selected a random sample, represented as 𝑦1 , . . . , 𝑦𝑛 ,

from a population characterized by a mean of 𝜇 and a variance of 𝜎2
. An

important assumption is that the population from which this sample is

drawn is normally distributed, i.e. 𝑌 ∼ N(𝜇, 𝜎2).

The hypothesis test pits

𝐻0 : 𝜎2 = 𝜎2

0
against 𝐻1 : 𝜎2 ≠ 𝜎2

0
.

The analysis uses the test statistic

𝜒2

0
= (𝑛 − 1)𝑠2/𝜎2

0
.

Under the assumption that 𝐻0 is indeed true, the distribution of 𝜒2

0

follows a 𝜒2

𝑛−1
distribution.

We reject 𝐻0 if 𝜒2

0
> 𝜒2

𝛼/2;𝑛−1

or 𝜒2

0
< 𝜒2

1−𝛼/2;𝑛−1

, with

𝑃(𝑊 > 𝜒2

𝛼/2;𝑛−1
) = 𝑃(𝑊 < 𝜒2

1−𝛼/2;𝑛−1
) = 𝛼/2, where𝑊 ∼ 𝜒2

𝑛−1
.

We build an approximate 100(1 − 𝛼)% confidence interval for 𝜎2 via:

(𝑛 − 1)𝑠2

𝜒2

𝛼/2;𝑛−1

< 𝜎2 <
(𝑛 − 1)𝑠2

𝜒2

1−𝛼/2;𝑛−1

.
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Example An experimenter believes that the variability of her measuring

apparatus has a standard deviation of 𝜎 = 2.5. During an experiment, the

measurements recorded were 4.2, 5.3, and 10.3. The question arises: do

these observations support or contradict her belief? We test this assertion

using a significance level of 𝛼 = 0.05.

Firstly, we define our null and alternative hypotheses as:

𝐻0 : 𝜎2 = 6.25 against 𝐻1 : 𝜎2 ≠ 6.25.

We can find the test statistics 𝜒2

0
as follows.

x <- c(4.2, 5.3, 10.3)

n = length(x)

(s.2 = var(x))

[1] 10.57

sigma.2 = 6.25

chi.2.0 = (n-1)*s.2/sigma.2

[1] 3.3824

We can compute the critical 𝜒2

𝑛−1
values at 𝛼 = 0.05.

alpha = 0.05

(crit.lv = qchisq(p=alpha/2, df=2))

(crit.uv = qchisq(p=1-alpha/2, df=2))

[1] 0.05063562

[1] 7.377759

We reject the null hypothesis 𝐻0 if 𝜒2

0
> 7.38 or 𝜒2

0
< 0.05. Since the

observed value of 𝜒2

0
= 3.3824 lies between the critical values, we do not

reject 𝐻0.
23

23: This indicates that the data does not

provide sufficient evidence to dispute the

experimenter’s initial belief about the vari-

ability of her instrument.

She can build an approximate 95% confidence interval for 𝜎2
by using

the formula.

c((n-1)*s.2/crit.uv, (n-1)*s.2/crit.lv)

[1] 2.865369 417.4927

This wide range implies a high level of uncertainty about the true variance,

which further underscores the need for more data (or a different testing

approach). □
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11.2.4 Inference on the Ratio of Variances

We now turn our attention to the case of comparing two population

variances. Consider two normal populations, labeled I and II. Denote the

population variances associated with each populations by 𝜎2

1
and 𝜎2

2
.

We draw a random sample of size 𝑛1 from Population I:

𝑦1,1 , . . . , 𝑦1,𝑛1
∼ N(0, 𝜎2

1
)

and similarly from Population II:

𝑦2,1 , . . . , 𝑦2,𝑛2
∼ N(0, 𝜎2

2
).

The samples are unpaired, and so assumed to be independent of one

another.

The hypothesis test for the variances is framed as:

𝐻0 : 𝜎2

1
= 𝜎2

2
against 𝐻1 : 𝜎2

1
≠ 𝜎2

2
.

The test statistic employed for the test is

𝐹0 = 𝑠2

1
/𝑠2

2
.

Under the assumption that 𝐻0 is true, the distribution of 𝐹0 follows

an 𝐹 distribution with 𝑛1 − 1 and 𝑛2 − 1 degrees of freedom. The null

hypothesis 𝐻0 is rejected at significance level 𝛼 if

𝐹0 > 𝐹𝛼/2;𝑛1−1,𝑛2−1
or 𝐹0 < 𝐹

1−𝛼/2;𝑛1−1,𝑛2−1
,

with

𝑃(𝑊 > 𝐹𝛼/2;𝑛1−1,𝑛2−1
) = 𝑃(𝑊 < 𝐹

1−𝛼/2;𝑛1−1,𝑛2−1
) = 𝛼/2, where𝑊 ∼ 𝐹𝑛1−1,𝑛2−1.

Equivalently, we can express a 100(1 − 𝛼)% confidence interval for the
ratio 𝜎2

1
/𝜎2

2
via:

𝑠2

1
/𝑠2

2
· 𝐹

1−𝛼/2;𝑛2−1,𝑛1−1
< 𝜎2

1
/𝜎2

2
< 𝑠2

1
/𝑠2

2
· 𝐹𝛼/2;𝑛2−1,𝑛1−1

.

Note the order of the degrees of freedom.
24

24: We may need to leverage the relation-

ship

𝐹1−𝛾,𝜈
1
,𝜈

2
=

1

𝐹𝛾,𝜈
2
,𝜈

1

in the analysis.

Example The same experimenter is concerned that the variability of

her responses may not be the same when she is using two different

experimental procedures.

She conducts a preliminary study with random samples of 𝑛1 = 11 and

𝑛2 = 9 responses and obtains 𝑠2

1
= 8.25 and 𝑠2

2
= 4.32, respectively. Do

the sample variances present sufficient evidence to indicate that the

population variances are unequal?

The null and alternative hypotheses are

𝐻0 : 𝜎2

1
= 𝜎2

2
against 𝐻1 : 𝜎2

1
≠ 𝜎2

2
.
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The test statistic is given by 𝐹0 = 8.25/4.32 = 1.91. We reject 𝐻0 at level

𝛼 = 0.05 if

𝐹0 > 𝐹0.025,10,8 = 4.29 or 𝐹0 < 𝐹0.975,10,8 = 0.26;

therefore, we cannot reject 𝐻0 based on the observed data: there is

insufficient evidence to indicate a difference in the population variances.
25

25: Perhaps if we increased the sample

sizes?

We can build a 95% confidence interval for 𝜎2

1
/𝜎2

2
via:

C.I.(𝜎2

1
/𝜎2

2
; 0.95) ≡ (8.25/4.32 · 𝐹0.975,8,10 , 8.25/4.32 · 𝐹0.025,8,10)

≡ (8.25/4.32 · 0.23, 8.25/4.32 · 3.85)
≡ (0.44, 7.36).

Because the confidence interval includes 1 (which corresponds to the

situation of equal variances), we cannot reject 𝐻0 at significance level

𝛼 = 0.05.

11.3 One-Way Classification

In the worm/sheep example of Section 11.2.1, we were primarily con-

cerned with comparing the worm counts in treated versus untreated

lambs, represented as 𝜇1−𝜇2. Within the context of experimental designs,

the drug administered (or lack thereof) to the lambs is considered a factor
with two levels: treated, untreated.

As we progress through this chapter, our focus shifts to a model where

the factor encompasses 𝑎 levels, thereby giving rise to 𝑎 treatments. The

primary objective is to examine hypothesis testing for equality among
more than two population means. To achieve this, we leverage a method

of data analysis known as the analysis of variance (ANOVA).
26

26: In essence, ANOVA can be perceived

as a generalization of the customary

𝑇−test.

11.3.1 Completely Randomized Designs

In experiments where we have 𝑎 treatments to compare and 𝑁 units

available for the study, a completely randomized design offers an efficient

approach. To implement such a design:

1. decide on sample sizes 𝑛1 , 𝑛2 , . . . , 𝑛𝑎 such that 𝑛1+𝑛2+. . .+𝑛𝑎 = 𝑁 ;

2. randomly allocate 𝑛1 units to Treatment 1, 𝑛2 units to Treatment 2,

and so forth, until 𝑛𝑎 units are assigned to Treatment 𝑎.

In this design, the 𝑁 experimental units are randomly divided into 𝑎

groups. Taking the worm/sheep example of Section 11.2.1 as an illustra-

tion, the 𝑁 = 14 lambs were divided at random into 𝑎 = 2 groups: the

treated group and the untreated group.

Alternatively, one could view the completely randomized design as

drawing random samples from each of 𝑎 distinct populations. Each

population represents a unique level (or treatment) of the factor under

consideration.
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Regardless of the perspective – whether through random selection or

random assignment – completely randomized designs are centered

around a single factor, which is why they are often referred to as a

one-way classification.

The next example (modified from [3]) illustrates the basic notation.

Example A horticulturist is investigating the phosphorus content of

tree leaves from three different varieties of apple trees (A, B and C).

Random samples of five leaves from each three varieties are analyzed for

phosphorus content. The observations are shown below.

variety sample size phosphorus content totals means

1 5 0.45, 0.50, 0.68, 0.60, 0.57 2.80 0.560

2 5 0.65, 0.70, 0.90, 0.84, 0.79 3.88 0.776

3 5 0.50, 0.70, 0.65, 0.63, 0.56 3.04 0.608

The response variable is the phosphorus content, the factor (with three

levels) is the tree variety.

Notation

𝑦𝑖 , 𝑗 is the 𝑗th observation for the 𝑖th factor level (group, class),

𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛𝑖 ;

𝑛𝑖 is the number of sample observations for the 𝑖th factor level;
the total sample size is

𝑁 =

𝑎∑
𝑖=1

𝑛𝑖 ;

𝑦𝑖 ,• is the total of the sample observations for the 𝑖th factor level,
so

𝑦𝑖 ,• =
𝑛𝑖∑
𝑗=1

𝑦𝑖 , 𝑗 ;

𝑦•,• is the grand total of the sample observations, so

𝑦•,• =
𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑦𝑖 , 𝑗 ;

𝑦 𝑖 ,• is the average of the sample observations for the 𝑖th factor
level, so

𝑦 𝑖 ,• = 𝑦𝑖 ,•/𝑛𝑖 ;

𝑦•,• is the average of all sample observations, so 𝑦•,• = 𝑦•,•/𝑁 .

In the example, we have:

𝑦𝑖 , 𝑗 is the phosphorus content from leave 𝑗 of variety 𝑖, 𝑖 = 1, 2, 3;

𝑗 = 1, . . . , 5;

𝑛1 = 𝑛2 = 𝑛3 ≡ 𝑛 = 5;

𝑁 = 𝑛 · 3 = 5 · 3 = 15;

𝑦1,• = 2.80, 𝑦2,• = 3.88, 𝑦3,• = 3.04;

𝑦•,• = 9.72;

𝑦
1,• = 0.560, 𝑦

2,• = 0.776, 𝑦
3,• = 0.608;

𝑦•,• = 0.648.
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11.3.2 One-Way Classification Model

We consider 𝑎 populations (groups, treatments). Initially, we address

the scenario of balanced data, with 𝑛𝑖 = 𝑛 = 𝑁/𝑎 observations for each

treatment 𝑖.

The data can be summarized in the following manner:

from Population 1, we gather the observations 𝑦1,1 , . . . , 𝑦1,𝑛 ;

from Population 2, we gather the observations 𝑦2,1 , . . . , 𝑦2,𝑛 ;

. . .

from Population 𝑎, we gather the observations 𝑦𝑎,1 , . . . , 𝑦𝑎,𝑛 .

For each treatment 𝑖 = 1, . . . , 𝑎, we assume that the observations

𝑦𝑖 ,1 , . . . , 𝑦𝑖 ,𝑛 ∼ N(𝜇𝑖 , 𝜎2).

Equivalently, we can express the model as

𝑦𝑖 , 𝑗 = 𝜇𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

with the errors 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2) being i.i.d. random variables. We also

assume a common variance 𝜎2
for the 𝑎 populations.

27
The parameters27: See homoscedasticity, Chapter 8.

to be estimated include 𝜇1 , . . . , 𝜇𝑎 , and 𝜎2
.

We can deduce that:

E(𝑦𝑖 , 𝑗) = 𝜇𝑖 for the 𝑗th observation in treatment group 𝑖

and the variance is given by:

Var(𝑦𝑖 , 𝑗) = 𝜎2

for all 𝑖 , 𝑗.

Alternative Reparametrization We can also recast the problem in a

different manner:

𝜇𝑖 = 𝜇 + (𝜇𝑖 − 𝜇) ≡ 𝜇 + 𝜏𝑖 ,

where 𝜏𝑖 = 𝜇𝑖−𝜇 for all 𝑖 = 1, . . . , 𝑎. Here, 𝜏𝑖 represents the 𝑖th treatment
effect (or treatment effect).

Given this, the one-way classification model can be expressed as:

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 stands for the global (or common) mean applicable to all

observations, and the error term 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2). This yields an expectation

of:

E(𝑦𝑖 , 𝑗) = 𝜇 + 𝜏𝑖 .

The original model has 𝑎 parameters, specifically: 𝜇1 , . . . , 𝜇𝑎 . However,

the new model presents 𝑎 + 1 parameters: 𝜇, 𝜏1 , . . . , 𝜏𝑎 . This makes the

model over-parametrized.

Addressing this, we set the constraint:

𝑎∑
𝑖=1

𝜏𝑖 = 0.



11.3 One-Way Classification 757

It’s clear that the both the original model and the reparametrized model

are equivalent, provided we adhere to the constraint. This constraint

enables us to express:

𝜇1 = 𝜇 + 𝜏1 ,

...

𝜇𝑎−1 = 𝜇 + 𝜏𝑎−1 ,

𝜇𝑎 = 𝜇 − (𝜏1 + · · · + 𝜏𝑎−1),

reducing the parameter count to 𝑎 parameters: 𝜇, 𝜏1 , . . . , 𝜏𝑎−1.

Overview Most often, the main objective in ANOVA is to determine

if there are differences between the 𝑎 populations (or treatments). A

pertinent question arises: why do we need a new procedure to compare

population means when Student’s 𝑇−test is available?

Consider an instance with 𝑎 = 3 population means: 𝜇1 , 𝜇2, and 𝜇3. We

could hypothetically test each of the three pairs of hypotheses:

𝐻0 : 𝜇1 = 𝜇2 , 𝐻0 : 𝜇1 = 𝜇3 , and 𝐻0 : 𝜇2 = 𝜇3

against the appropriate alternatives to identify where the differences (if

any) are located.

But each test we conduct is prone to errors – consequently, the more tests

we perform, the greater the likelihood that at least one of our conclusions

will be erroneous.
28

28: We will dive deeper into this subject

at a later date.

ANOVA offers a singular, comprehensive test to evaluate the equality of

the 𝑎 population means. Once we discern if a genuine difference exists

among the means, we can then use a designated procedure to pinpoint

the origins of these differences.

The hypothesis tests pits

𝐻0 : 𝜇1 = · · · = 𝜇𝑎 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 , for at least one pair (𝑖 , 𝑗),

or, in an equivalent form:

𝐻0 : 𝜏1 = · · · = 𝜏𝑎−1 = 0 against 𝐻1 : at least one 𝜏𝑖 ≠ 0.

11.3.3 Analysis of Variance

In the analysis of variance, we focus on partitioning the total sum of
squares, starting with the basic decomposition

𝑦𝑖 , 𝑗 − 𝑦•,• = (𝑦 𝑖 ,• − 𝑦•,•) + (𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•).

Each component of the decomposition is interpreted as follows:

𝑦𝑖 , 𝑗 − 𝑦•,• is the total deviation component;

𝑦 𝑖 ,• − 𝑦•,• is the deviation of the estimated factor level mean
around the overall mean, and

𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• is the deviation around the estimated factor level mean.
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We can show (see Exercises) that the sums of squares decomposition for

this scenario is:

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦•,•)2 = 𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2 +
𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 ,

or

SST = SSA + SSE,

where:

SST is the total sum of squares;

SSA is the treatment (or factor) sum of squares, and

SSE is the error sum of squares.

Given that the total sum of squares SST is fixed, an increase in SSA

corresponds to a decrease in SSE and vice versa.

If all the observations within a given factor level are identical across all

factor levels, then SSE = 0 and SST = SSA. Conversely, if all the estimated

factor levels 𝑦 𝑖 ,• are equal, then SSA = 0 and SST = SSE.

Each sum of squares in the decomposition is associated to a degree of
freedom (df):

SST⇝ 𝑁 − 1

SSA⇝ 𝑎 − 1

SSE⇝ 𝑎(𝑛 − 1) = 𝑁 − 𝑎

The decomposition’s “structure” applies to the degrees of freedome:

𝑁 − 1 = (𝑎 − 1) + 𝑎(𝑛 − 1) = 𝑎 − 1 + 𝑁 − 𝑎.

Variance Considerations The 𝑖th treatment sample variance is:

𝑠2

𝑖 =
1

𝑛 − 1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 , 𝑖 = 1, . . . , 𝑎;

we know that E(𝑠2

𝑖
) = 𝜎2

and (𝑛 − 1)𝑠2

𝑖
/𝜎2 ∼ 𝜒2

𝑛−1
for all 𝑖 = 1, . . . , 𝑎.

Thus, we can express SSE as

SSE =

𝑎∑
𝑖=1

[
𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2
]
=

𝑎∑
𝑖=1

(𝑛 − 1)𝑠2

𝑖 = (𝑛 − 1)
𝑎∑
𝑖=1

𝑠2

𝑖 ,

and using the typical argument related to the trace of quadratic forms,

we can show that

SSE/𝜎2 ∼ 𝜒2

𝑁−𝑎 .

Theorem: The random variable

MSE =
SSE

𝑁 − 𝑎 =
𝑛 − 1

𝑁 − 𝑎
𝑎∑
𝑖=1

𝑠2

𝑖 =
1

𝑎

𝑎∑
𝑖=1

𝑠2

𝑖

is an unbiased estimator of 𝜎2
.
29

29: This holds true regardless of whether

the factor level means 𝜇𝑖 are equal or not.

Intuitively, this is reasonable: the variabil-

ity of observations within each factor level

is not influenced by the magnitude of the

estimated factor level means when the

populations are normal.

So, what exactly does SSA estimate?
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Theorem: the expectation of SSA is:

E(SSA) = 1

𝑁

𝑎∑
𝑖=1

{
𝑛𝜎2 + [𝑛(𝜇 + 𝜏𝑖)]2

}
− 1

𝑎𝑛
[𝑎𝑛𝜎2 + (𝑎𝑛𝜇)2]

= (𝑎 − 1)𝜎2 + 𝑛
𝑎∑
𝑖=1

𝜏2

𝑖 .

If we denote the mean square due to the factor 𝐴 (commonly known as

the treatment mean square) as MSA = SSA/(𝑎 − 1), then:

E(MSA) = 𝜎2 + 𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 .

In situations where all the factor level means are the same (𝜇𝑖 ≡ 𝜇), then

we have 𝜏2

𝑖
= (𝜇𝑖 − 𝜇)2 ≡ 0 and E(MSA) = 𝜎2

. Consequently, both MSE

and MSA offer unbiased estimates of 𝜎2
. However, when the 𝜇𝑖 ’s differ,

MSA tends to be larger than MSE on average.

It can be shown (although it is beyond the scope of these notes) that:

SSA/𝜎2
follows a non-central 𝜒2 distribution:

SSA/𝜎2 ∼ 𝜒2

𝑎−1

(
𝑛

𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2

)
;

the random variables SSE and SSA are independent.

𝐹−Test for the Equality of Treatment Means How can we tell if the

treatment means are identical?

The 𝐹−test pits

𝐻0 : 𝜇1 = · · · = 𝜇𝑎 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 for at least one pair (𝑖 , 𝑗).

The test statistic to be used is

𝐹0 =
MSA

MSE

.

Large values of 𝐹0 support 𝐻1 since MSA will tend to exceed MSE when

𝐻1 holds.
30

On the other hand, values of 𝐹0 near 1 tend to support 𝐻0 30: We have seen above that the ratio of

the expected values,
E(MSA)
E(MSE) , is greater

than 1 under 𝐻1.

since both MSE and MSA have the same expected value when𝐻0 holds.
31

Hence, the appropriate test is an upper-tail one.

31: Indeed, under 𝐻0,

E(MSA)
E(MSE) = 1.

When𝐻0 holds, SSE/𝜎2
and SSA/𝜎2

are independent 𝜒2
variables. There-

fore, under 𝐻0,

𝐹0 =
SSA/(𝑎 − 1)
SSE/(𝑁 − 𝑎) ∼ 𝐹𝑎−1,𝑁−𝑎 .

When𝐻1 holds, that is, when the 𝜇𝑖 ’s are not all equal, 𝐹0 does not follow

the customary 𝐹 distribution.
32

32: It follows instead a more complicated

non-central 𝐹 distribution.

It is thus reasonable to reject𝐻0 if we observe large values of 𝐹0. Formally,

we reject 𝐻0 at significance level 𝛼 if

𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎 .
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We can construct an ANOVA table for the 𝐹−test for equality of treatment

means in the one-way classification scenario, based on the test statistic

𝐹0 = MSA/MSE (see Table 11.11).

Table 11.11: ANOVA table for the equality

of the treatment means 𝜇𝑖 in the one-way

classification scenario.

Source SS df MS F0

Treatment SSA 𝑎 − 1 MSA 𝐹0 = MSA/MSE

Error SSE 𝑁 − 𝑎 MSE

Total SST 𝑁 − 1

From a computational perspective, the following equivalent formulas

are sometimes used, since they are easier to handle when we do not use

software:

SST =

𝑎∑
𝑖=1

𝑛∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

, SSA =
1

𝑁

𝑎∑
𝑖=1

𝑦2

𝑖 ,• −
𝑦2

•,•
𝑁

, SSE = SST − SSA.

Example The ANOVA table for the phosphorus dataset of the previous

section can be obtained as follows in R.

First we load the data.

variety <- c(1,2,3)

sample.size <- c(5,5,5)

content.1 <- c(0.45, 0.50, 0.68, 0.60, 0.57)

content.2 <- c(0.65, 0.70, 0.90, 0.84, 0.79)

content.3 <- c(0.50, 0.70, 0.65, 0.63, 0.56)

content <- rbind(content.1, content.2, content.3)

data <- data.frame(cbind(sample.size, content))

rownames(data) <- variety

colnames(data) <- c("sample.size", "leaf.1", "leaf.2",

"leaf.3", "leaf.4", "leaf.5")

data$totals <- rowSums(content)

data$means <- data$totals/data$sample.size

data

sample.size leaf.1 leaf.2 leaf.3 leaf.4 leaf.5 totals means

1 5 0.45 0.5 0.68 0.60 0.57 2.80 0.560

2 5 0.65 0.7 0.90 0.84 0.79 3.88 0.776

3 5 0.50 0.7 0.65 0.63 0.56 3.04 0.608

We compute the necessary quantities and place them in the ANOVA

table.

a = nrow(data)

n = length(content.1)

N = a*n

grand.mean = mean(unlist(data[,c(2:(n+1))]))

SST = sum((data[,c(2:(n+1))]-grand.mean)^2)

SSA = n * sum((data$means-grand.mean)^2)

SSE = SST - SSA
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ANOVA = as.data.frame(cbind(c(SSA,SSE,SST),

c(a-1, N-a, N-1),

c(SSA/(a-1),SSE/(N-a),0),

c((SSA/(a-1))/(SSE/(N-a)),0,0)))

rownames(ANOVA) = c("Treatment", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment 0.12864 2 0.06432 7.892025

Error 0.09780 12 0.00815

Total 0.22644 14

At significance level 𝛼 = 0.05, the critical value of 𝐹2,12 is:

alpha=0.05

qf(p=1-alpha, df1 = a-1, df2 = N-a)

[1] 3.885294

Since 7.89 = 𝐹0 > 𝐹0.05;2,12 = 3.89, we reject 𝐻0 at 𝛼 = 0.05 and we

conclude that the mean phosphorus content is unlikely to be the same

for all 𝑎 = 3 varieties of trees. □

11.3.4 Estimation of Model Parameters

Recall that in the one-way classification model, 𝑎 + 1 parameters require

estimation, namely 𝜇, 𝜏1 , . . . , 𝜏𝑎 . We use the least square estimation
principle to find them based on the observed data.

The sum of squares is defined as

𝐿 =

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖)2.

We find �̂� and �̂�𝑖 that minimize 𝐿 by differentiating 𝐿 with respect to 𝜇
and 𝜏𝑖 , 𝑖 = 1, . . . , 𝑎, and setting to 0. This yields the normal equations:

𝑎∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖) = 0 (𝜇-equation),

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖) = 0 (𝜏𝑖-equation, 𝑖 = 1, . . . , 𝑎).

The corresponding system of linear equations is:

𝑁�̂� + 𝑛
𝑎∑
𝑖=1

�̂�𝑖 = 𝑦•,• ,

𝑛�̂� + 𝑛�̂�1 = 𝑦1,• ,

...

𝑛�̂� + 𝑛�̂�𝑎 = 𝑦𝑎,•.
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Given the constraint 𝜏1 + · · · + 𝜏𝑎 = 0, the solution is:

�̂� = 𝑦•,• ,

�̂�𝑖 = 𝑦 𝑖 ,• − 𝑦•,• for 𝑖 = 1, . . . , 𝑎.

Thus, the estimated treatment effect for the 𝑖th treatment is

�̂�𝑖 = �̂� + �̂�𝑖 = 𝑦 𝑖 ,•;

the difference between treatments 𝑖 and 𝑗 is given by

�̂�𝑖 − �̂�𝑗 = 𝑦 𝑖 ,• − 𝑦 𝑗 ,•.

Using the pooled estimate MSE as an estimator of 𝜎2
, we can exhibit a

100(1 − 𝛼)% confidence interval for 𝜇𝑖 via:

𝑦 𝑖 ,• ± 𝑡𝛼/2;𝑁−𝑎

√
MSE

𝑛
;

for 𝜇𝑖 − 𝜇𝑗 , we have instead:

(𝑦 𝑖 ,• − 𝑦 𝑗 ,•) ± 𝑡𝛼/2;𝑁−𝑎

√
2MSE

𝑛
.

11.3.5 Unbalanced Designs

We could also opt for an unbalanced design, in which the number of

observations 𝑛𝑖 we sample in each treatment group 𝑖 is not necessarily

the same from one group to the other. However, a balanced design has

several advantages.
33

33: First and foremost, the theoretical

derivations are simpler to obtain in the

balanced case. In particular, the power of the 𝐹−test is larger with balanced data. Indeed

for 𝑎 = 2 (two treatments), we can show that the power of the 𝐹−test is

maximized when
1

𝑛 + 1

𝑁−𝑛 is minimized (see Exercises); if 𝑁 is even and

fixed, the minimum is thus achieved when 𝑛 = 𝑁/2.

Moreover, the 𝐹 test is only robust against unequal variances when data

is balanced. For the case of 𝑎 = 2 treatments, the 𝐹 test is equivalent to

the Student’s 𝑇−test, with 𝐹0 = 𝑡2
0
.

If we define 𝜃 as the ratio 𝜎2

1
/𝜎2

2
and 𝑅 as the ratio 𝑛1/𝑛2, the Student’s

𝑇−test can be expressed as:

𝑡0 =
𝑦

1
− 𝑦

2(
𝜎2

1

𝑛1

+ 𝜎2

2

𝑛2

)
1/2

©« 1

𝑠2

𝑝

·
𝜎2

1

𝑛1

+ 𝜎2

2

𝑛2

1

𝑛1

+ 1

𝑛2

ª®¬
1/2

.

When 𝑛1 , 𝑛2 → ∞,

𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

→ 𝜎2

2

1 + 𝑅𝜃
1 + 𝑅 .

Consquently, 𝑡0 → N(0, (𝑅 + 𝜃)/(1 + 𝑅𝜃)), and (𝑅 + 𝜃)/(1 + 𝑅𝜃) = 1

when 𝑅 = 1, regardless of 𝜃’s value.
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For unbalanced data, the sum of squares formulas must be modified:

SST =

𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

, SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•
𝑛𝑖

−
𝑦2

•,•
𝑁

.

Finally, when we estimate the model parameters, we solve the normal
equations subject to the constraint:

𝑎∑
𝑖=1

𝑛𝑖 �̂�𝑖 = 0

as opposed to the constraint

∑𝑎
𝑖=1

�̂�𝑖 = 0.
34

34: If we note that the latter can also be

written as 𝑛𝜏1 + · · · + 𝑛𝜏𝑎 = 0 in the bal-

anced case, we see that it is simply a special

instance of the unbalanced case. The same

comment applies to the modified formula

for SSA.

11.3.6 Contrasts

The analysis of variance can tell us an indication that not all the treatment

groups have the same mean response, but an ANOVA does not, by itself,

provide information about which treatments are different or in what

ways they differ.

To get answers to these questions, we must examine the treatment means,

or equivalently, the treatment effects. We can do so through contrasts,

which enable us to focus in on specific (narrow) features of the data.
35

35: In fact, a single contrast’s focus is so

narrow that it may obscure the overall

picture.By using several contrasts, we can move the focus around and explore

more features. Intelligent use of contrasts involves choosing the contrasts

so that they highlight interesting data features.
36

36: But that’s easier said than done with-

out a solid understanding of the domain

under study, which can be improved via
data exploration, among others (see Chap-

ter 18 for more information).

Linear Contrasts Linear combinations of the treatment effects 𝜇𝑖

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖 , where

𝑎∑
𝑖=1

𝑐𝑖 = 0 with 𝑐𝑖 ∈ ℝ.

are called linear contrasts; in general, we are interested in testing for

𝐻0 : 𝐶 = 0 against 𝐻1 : 𝐶 ≠ 0.

When there are 𝑎 treatment effects, we sometimes identify the linear

contrast 𝐶 with its signature vector (𝑐1 , . . . , 𝑐𝑎).

Examples

1. Suppose that we wish to test for

𝐻0 : 𝜇1 = 𝜇2 against 𝐻1 : 𝜇1 ≠ 𝜇2;

we must then work with the linear contrast (1,−1, 0, . . . , 0).37
37: The linear contrast (1,−1, 0, . . . , 0)
also does the trick, being equivalent to

the one in the text when it comes to hy-

pothesis testing.

2. Suppose that we wish to test for

𝐻0 :
1

2
(𝜇1 + 𝜇2) = 1

2
(𝜇3 + 𝜇4) against 𝐻1 :

1

2
(𝜇1 + 𝜇2) ≠ 1

2
(𝜇3 + 𝜇4);

we work with the linear contrast (1/2, 1/2,−1/2,−1/2, 0, . . . , 0).
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To test a contrast hypothesis, we start by estimating 𝐶 using

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,•.

Assume a balanced design; if the observations are obtained independently,

we have Cov(𝑦 𝑖1 ,• , 𝑦 𝑖2 ,•) = 0 if 𝑖1 = 𝑖2, and Var(𝑦 𝑖 ,•) = 𝜎2/𝑛 for all 𝑖, so

Var(𝐶) =
𝑎∑
𝑖=1

𝑐2

𝑖 Var(𝑦 𝑖 ,•) =
𝜎2

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

We obtain an estimator of Var(𝐶) via:

V̂ar(𝐶) = MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

It follows that the test statistic is given by

𝑡0 =
𝐶√

MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖

.

We can show that 𝑡0 ∼ 𝑡𝑁−𝑎 ; therefore, we reject 𝐻0 at significance level

𝛼 if |𝑡0 | > 𝑡𝛼/2;𝑁−𝑎 .

Instead of the 𝑇−test, however, we could use the equivalent 𝐹−test,

with test statistic 𝐹0 = SSC

MSE
, which rejects 𝐻0 at significance level 𝛼 if

𝐹0 > 𝐹𝛼;1,𝑁−𝑎 , where

SSC =

(
𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,•

)
2
/

𝑎∑
𝑖=1

𝑐2

𝑖 /𝑛.

We can build a 100(1 − 𝛼)% confidence interval for 𝐶 is given by

𝐶 ± 𝑡𝛼/2;𝑁−𝑎

√
MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖
.

Example In the phosphorus dataset, suppose we want to test

𝐻0 : 𝜇2 =
𝜇1 + 𝜇3

2

against 𝐻1 : 𝜇2 ≠
𝜇1 + 𝜇3

2

.

This is a contrast with 𝑐1 = −1/2, 𝑐2 = 1 and 𝑐3 = −1/2.

The test statistics is given by

𝑡0 =
(−1/2) · 0.560 + 1 · 0.776 + (−1/2) · 0.608√(

0.00815/12

5

)
{(−1/2)2 + 1

2 + (−1/2)2}
=

0.192

0.0142741

= 13.45094.

Since |𝑡0 | > 𝑡0.025,12 = 2.17881, we reject 𝐻0 and we conclude that there

is enough evidence to conclude that 𝜇2 is different from the average of

𝜇1 and 𝜇3. □
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Orthogonal Contrasts Two contrasts with coefficients {𝑐𝑖} and {𝑑𝑖} are

orthogonal if 𝑐1𝑑1+· · ·+𝑐𝑎𝑑𝑎 = 0. For instance, the contrasts−2𝜇1+𝜇2+𝜇3

and 𝜇3 − 𝜇2 are orthogonal since

(−2)(0) + (1)(−1) + (1)(1) = 0.

If there are 𝑎 treatments, we can find a set of 𝑎 − 1 contrasts that are

mutually orthogonal, that is, each one is orthogonal to all of the others.

With 5 treatments (say), we can define 4 mutually orthogonal contrasts:

𝐶1 = 𝜇4 −𝜇5

𝐶2 = 𝜇1 +𝜇3 −𝜇4 −𝜇5

𝐶3 = 𝜇1 −𝜇3

𝐶4 = 𝜇1 −4𝜇2 +𝜇3 +𝜇4 +𝜇5

The important feature of orthogonal contrasts is that they are independent
(as random variables).

38
38: An additional useful fact is that they

partition the treatment sum of squares:

SSA =

𝑎−1∑
𝑖=1

SSC𝑖 .

In other words, if we compute the sums

of squares for a full set of orthogonal con-

trasts (𝑎−1 contrasts for 𝑎 groups), adding

up those 𝑎 − 1 sums of squares yields ex-

actly the treatment sum of squares, which

also has 𝑎 − 1 degrees of freedom.

11.3.7 Multiple Comparisons

We have discussed multiple hypothesis testing in Section 8.2.3; how

does it apply to design of experiments?

Example Suppose we want to compare four treatments, so 𝑎 = 4. We

may want to compare all the pairs

𝐻0 : 𝜇1 = 𝜇2 , 𝐻0 : 𝜇1 = 𝜇3 , 𝐻0 : 𝜇1 = 𝜇4 ,

𝐻0 : 𝜇2 = 𝜇3 , 𝐻0 : 𝜇2 = 𝜇4 , 𝐻0 : 𝜇3 = 𝜇4.

Overall, there we have 𝑘 = 6 possible tests of the form 𝐻0 : 𝜇𝑖 = 𝜇𝑗
against some fixed alternative type. □

In general, suppose that we wish to conduct 𝑘 hypothesis tests. If the

level of each individual test is 𝛼, then the overall error rate is likely to be

(much) larger than 𝛼.

As an illustration, suppose that we conduct 𝑘 = 2 tests, each one at

significance level 5% .
39

Then, the probability of rejecting at least one of 39: That is, the probability of a Type 1

error is 5% for each test separately.
the null hypotheses when they are both true will be higher than 5%.

Indeed, let 𝐸 𝑗 be the event that we reject the null hypothesis for the 𝑗th

test, 𝑗 = 1, 2. Then,

𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1 ∩ 𝐸2)
= 0.05 + 0.05 − 𝑃(𝐸1 ∩ 𝐸2) = 0.1 − 𝑃(𝐸1 ∩ 𝐸2).

As 0 ≤ 𝑃(𝐸1 ∩ 𝐸2) ≤ 0.5, the probability of making at least one mistake

is now between 5% and 10%.
40

40: If the events are independent, then

0 < 𝑃(𝐸1 ∩ 𝐸2), and 𝑃(𝐸1 ∪ 𝐸2) > 0.05.

We can extend this argument to the general case of 𝑘 tests. Suppose that

the 𝑘 null hypotheses 𝐻0 are true. Once again, let’s define 𝐸 𝑗 as the event

that we reject the null hypothesis for the 𝑗th test, 𝑗 = 1, · · · , 𝑘.
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Boole’s inequality states that

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤

𝑘∑
𝑗=1

𝑃(𝐸 𝑗) =
𝑘∑
𝑗=1

𝛼 𝑗 ,

where 𝛼 𝑗 denotes the probability of Type 1 error associated with the
𝑗th test. If 𝛼 𝑗 = 𝛼 then

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤ 𝑘𝛼.

For instance, for 𝑘 = 10, and 𝛼 𝑗 = 0.05 for all 𝑗, then the best that we can

say is that

𝑃 (𝐸1 ∪ · · · ∪ 𝐸10) ≤ 0.5.

Conclusion: the level of significance of a family of tests may differ from

that of an individual test.

We use multiple comparison procedures to conduct multiple inference

while controlling the overall error rate. The rationale behind these

procedures is simple – we seek to ensure a global significance level
below (or at) 𝛼. More specifically, we seek a procedure for which the

probability of rejecting at least one the null hypotheses when they are all

true is not larger than 𝛼.

Several procedures have been proposed in the literature, including:

Bonferroni’s (1936);

Tukey’s (1949);

Scheffé’s (1959).

Bonferroni’s Procedure When investigating a particular set of 𝑘 pair-

wise comparisons and/or contrasts, it is essential to specify the family of

interest in advance. The Bonferroni procedure is versatile, and applicable

whether the 𝑛𝑖 ’s are equal or unequal and irrespective of whether the

focus is on pairwise comparisons, contrasts, or a mix of both.

Instead of conducting each of the 𝑘 tests at the usual 𝛼 level, we conduct

each test at the 𝛼/𝑘 level. With this adjustment, the probability of making

at least one Type I error across all 𝑘 tests is bounded by 𝛼:

𝑃

(
𝑘⋃
𝑗=1

𝐸 𝑗

)
≤

𝑘∑
𝑗=1

𝛼
𝑘
= 𝑘

(𝛼
𝑘

)
= 𝛼.

For example, for an analysis involving 10 tests with an intended over-

all error rate of 𝛼 = 0.05, the Bonferroni correction would adjust the

significance level for each test to 0.05/10 = 0.005.

This method can also be extended to the construction of simultaneous
confidence intervals. If we denote by C.I.1 , · · · ,C.I.𝑘 the associated

confidence intervals, each constructed at a coverage level of 1 − 𝛼,
41

41: That is,

𝑃(𝐶 𝑗 ∈ C.I.𝑗) = 1 − 𝛼, 𝑗 = 1, · · · , 𝑘,

where 𝐶 𝑗 is the true value of the 𝑗th pa-

rameter or contrast of interest.

then the probability that all 𝑘 intervals simultaneously contain their true

parameter values is bounded above by 1 − 𝛼:

𝑃

(
𝑘⋂
𝑗=1

𝐸 𝑗

)
≤ 1 − 𝛼.
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However, with Bonferroni’s adjustment, if each interval is constructed to

have a coverage probability of 1−𝛼/𝑘, then the joint coverage probability
is at least 1 − 𝛼:

𝑃

(
𝑘⋂
𝑗=1

𝐸 𝑗

)
= 1 − 𝑃

(
𝑘⋃
𝑗=1

𝐸𝑐𝑗

)
≥ 1 −

𝑘∑
𝑗=1

𝑃(𝐸𝑐𝑗 ) = 1 −
𝑘∑
𝑗=1

𝛼
𝑘
= 1 − 𝛼.

An undoubted advantage of the Bonferroni method lies in its generality:

it is applicable to a wide range of probability-based inferences across

various distributions, not merely confidence intervals within a normal

linear model.

But this method is not without its drawbacks. Chief among them being

that for larger values of 𝑘, the individual significance level for each test

can become exceedingly stringent.

With an overall error rate of 𝛼 = 5% and 𝑘 = 10, say, the significance

level for each test under Bonferroni’s method is 1 − 𝛼/𝑘 = 0.995. This

means each confidence interval might be so wide that its practical utility
diminishes.

42
42: In such scenarios, one might consider

increasing the overall (joint) error rate,

perhaps to 10%, to make the results more
easily interpretable.Tukey’s Procedure The Tukey multiple comparison procedure is par-

ticularly valuable when our focus is on analyzing the set of all pairwise
comparisons of factor level means. Specifically, when utilizing this

method, the primary interest revolves around the tests defined by:

𝐻0 : 𝜇𝑖 = 𝜇𝑗 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗 .

When all sample sizes are balanced, the family confidence coefficient

for the Tukey method aligns precisely with 1 − 𝛼, ensuring the family

significance level is consistent with 𝛼. However, for unbalanced data,

where sample sizes diverge, the Tukey procedure exhibits a conservative
behaviour. This results in the family confidence coefficient surpassing

1 − 𝛼, and subsequently, the family significance level falling below 𝛼.

A key component of the Tukey procedure is the use of the Studentized
range distribution. Given a set of i.i.d. random variables 𝑦1 , . . . , 𝑦𝑘 ∼
N(𝜇, 𝜎2), their range 𝑅 is defined as:

𝑅 = max{𝑦1 , . . . , 𝑦𝑘} − min{𝑦1 , . . . , 𝑦𝑘}.

If 𝑠2
be an estimator of 𝜎2

independent of 𝑅, and assume that
𝑣𝑠2

𝜎2
∼ 𝜒2

𝑣 .

Then the variable
𝑅
𝑠 follows a Studentized range distribution 𝑞𝑘,𝑣 . Let

𝑞𝛼;𝑘,𝑣 be the critical value for which

𝑃

(
𝑅

𝑠
> 𝑞𝛼;𝑘,𝑣

)
= 𝛼.

Theorem: suppose we have 𝑎 means, 𝑦
1,• , . . . , 𝑦𝑎,•, obtained from 𝑎

independent normal samples, each of size 𝑛, with respective means

𝜇1 , . . . , 𝜇𝑎 and a shared variance 𝜎2
.
43

43: That is, 𝑦 𝑖 ,• ∼ N(𝜇𝑖 , 𝜎2/𝑛), for all 𝑖.
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We know that MSE is an unbiased estimator of 𝜎2
independent of 𝑅

and

(𝑁 − 𝑎)MSE

𝜎2

∼ 𝜒2

𝑁−𝑎 .

Under these conditions, the simultaneous probability for all pairwise

comparisons is:

(𝑦 𝑖 ,• − 𝑦 𝑗 ,•) − 𝑞𝛼;𝑎,𝑁−𝑎

√
MSE

𝑛
< 𝜇𝑖 −𝜇𝑗 < (𝑦 𝑖 ,• − 𝑦 𝑗 ,•) + 𝑞𝛼;𝑎,𝑁−𝑎

√
MSE

𝑛
.

The family confidence coefficient 1−𝛼 pertaining to the multiple pairwise

comparisons refers to the proportion of correct families, each consisting

of all pairwise comparisons, when repeated sets of samples are selected

and all pairwise confidence intervals are calculated each time.
44

44: A family of pairwise comparisons is

considered to be correct if every pairwise
comparison in the family is correct. This family confidence coefficient implies that, across repeated sampling,

all pairwise comparisons in the family will be accurate in 100(1 − 𝛼)% of

the instances.

Transitioning our focus to simultaneous testing, the objective is to

conduct a comprehensive set of tests that pit

𝐻0 : 𝜇𝑖 = 𝜇𝑗 against 𝐻1 : 𝜇𝑖 ≠ 𝜇𝑗

for all potential pairwise comparisons. The pivotal test statistic in this

context is:

𝑞0 =
𝑦 𝑖 ,• − 𝑦 𝑗 ,•√

MSE/𝑛
.

We reject 𝐻0 at significance level 𝛼 if |𝑞0 | ≥ 𝑞𝛼;𝑎,𝑁−𝑎 .45
45: Selected percentiles for the Studen-

tized range distribution can be found in

tables, such as on this page . In R, we can

use the functions qtukey() and ptukey().

We illustrate the procedure with the help of a classical example.
46

46: See here , for instance.

Example In a study of the effectiveness of different rust inhibitors, four

brands (A, E, C, D) were tested. Altogether, 40 experimental units were

randomly assigned to the four brands, with 10 units assigned to each

brand. The results obtained after exposing the experimental units to

severe weather conditions are given below.
47

47: The higher the value, the more effec-

tive the rust inhibitor.

Rust Inhibitor Brand

A B C D

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝑦 𝑖 ,• 43.14 89.44 67.95 40.47

𝑦•,• = 60.25

MSE = 6.14

This study is a completely randomized design, where the levels of the

single factor correspond to the four rust inhibitor brands. Suppose we

are interested in all pairwise comparisons, which we evaluate via the

Tukey procedure.

The important parameters are loaded below.

https://www.statisticshowto.com/studentized-range-distribution/
https://stats.libretexts.org/Bookshelves/Computing_and_Modeling/Supplemental_Modules_(Computing_and_Modeling)/Experimental_Design
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a = 4; N = 40; n = 10; alpha = 0.05

y.bar.1 = 43.14; y.bar.2 = 89.44

y.bar.3 = 67.95; y.bar.4 = 40.47

y.bar = 60.25; MSE = 6.14

(q.crit = qtukey(alpha, a, N-a, lower.tail = FALSE))

B = q.crit*sqrt(MSE/n)

[1] 3.808798

The 6 confidence intervals (with corresponding test statitsics) are com-

puted as follows.

ci.2.1 = y.bar.2 - y.bar.1 +B*c(-1,1); q0.2.1 = (y.bar.2 - y.bar.1)/sqrt(MSE/n)

ci.3.1 = y.bar.3 - y.bar.1 +B*c(-1,1); q0.3.1 = (y.bar.3 - y.bar.1)/sqrt(MSE/n)

ci.4.1 = y.bar.4 - y.bar.1 +B*c(-1,1); q0.4.1 = (y.bar.4 - y.bar.1)/sqrt(MSE/n)

ci.3.2 = y.bar.3 - y.bar.2 +B*c(-1,1); q0.3.2 = (y.bar.3 - y.bar.2)/sqrt(MSE/n)

ci.4.2 = y.bar.4 - y.bar.2 +B*c(-1,1); q0.4.2 = (y.bar.4 - y.bar.2)/sqrt(MSE/n)

ci.4.3 = y.bar.4 - y.bar.3 +B*c(-1,1); q0.4.3 = (y.bar.4 - y.bar.3)/sqrt(MSE/n)

The simultaneous confidence intervals and tests for pairwise differences

are shown in the table below.

Confidence Interval Test
𝐻0 𝐻1 𝑞0

43.3 < 𝜇2 − 𝜇1 < 49.3 𝜇2 = 𝜇1 𝜇2 ≠ 𝜇1 58.99

21.8 < 𝜇3 − 𝜇1 < 27.8 𝜇3 = 𝜇1 𝜇3 ≠ 𝜇1 31.61

−0.3 < 𝜇4 − 𝜇1 < 5.7 𝜇1 = 𝜇4 𝜇1 ≠ 𝜇4 3.40

18.5 < 𝜇2 − 𝜇3 < 24.5 𝜇2 = 𝜇3 𝜇2 ≠ 𝜇3 27.37

46.0 < 𝜇2 − 𝜇4 < 52.0 𝜇2 = 𝜇4 𝜇2 ≠ 𝜇4 62.39

24.5 < 𝜇3 − 𝜇4 < 30.5 𝜇3 = 𝜇4 𝜇3 ≠ 𝜇4 35.01

Only in the comparison between A and D does the confidence interval

include 0. Therefore, there is no clear evidence that either D or A is

the better rust inhibitor. For the other pairs, we conclude that there is a

difference in performance:

B ⪰ A, C ⪰ A, B ⪰ C, B ⪰ D, C ⪰ D (see the diagram format

below).

A D

C

B

We obtain the same conclusions if we look at the test statistics, and

compare their absolute value to 𝑞0.05;4,36 = 3.814 – except for A and D, all

differences are found to be statistically significant. □
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Scheffé’s Procedure The family of interest refers to the set of all possible
contrasts among the factor level means:

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖 , where

𝑎∑
𝑖=1

𝑐𝑖 = 0, with 𝑐𝑖 ∈ ℝ.

In essence, the family is comprised of estimates of all possible contrasts

𝐶 or tests concerning all possible contrasts of the type:

𝐻0 : 𝐶 = 0 versus 𝐻1 : 𝐶 ≠ 0;

thus, the family consists of infinitely many statements.

The confidence level for the Scheffé procedure for the entire family is

exactly 1 − 𝛼, regardless of whether the design is balanced or unbal-

anced.

Recall that

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝜇𝑖

is estimated by

𝐶 =

𝑎∑
𝑖=1

𝑐𝑖𝑦 𝑖 ,• ,

and that the variance of this estimate is

V̂ar(𝐶) = MSE

𝑛

𝑎∑
𝑖=1

𝑐2

𝑖 .

For simultaneous estimation through confidence intervals, the Scheffé
confidence intervals for the family of contrasts 𝐶 take the form:

𝐶 −𝑊
√

V̂ar(𝐶) < 𝐶 < 𝐶 +𝑊
√

V̂ar(𝐶),

where𝑊2 = (𝑎 − 1)𝐹𝛼;𝑎−1,𝑁−𝑎 .48
48: See the justification for the Working-

Hostelling test in Section 8.2.3 for an indi-

cation of how to prove this statement. If we were to compute the confidence intervals for every conceivable

contrast, then we would expect that the entire set of confidence intervals in

the family would be accurate in roughly 100(1− 𝛼)% of the experimental

repetitions. Note that the simultaneous confidence limits differ from those

for a single confidence limit solely in terms of the estimated standard
deviation multiple in front of the square root.

Considering the problem of simultaneous testing, we are interested in

tests of the form:

𝐻𝐶
0

: 𝐶 = 0 versus 𝐻𝐶
1

: 𝐶 ≠ 0.

The corresponding test statistics are

𝐹0 =
𝐶2

(𝑎 − 1)V̂ar(𝐶)
,

and we reject the specific test 𝐻𝐶
0

if 𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎 .49

49: Given that applications of the Scheffé

procedure never involve all conceivable

contrasts, the confidence coefficient for the

finite family of statements under consid-

eration will exceed 1 − 𝛼. Thus, 1 − 𝛼 acts

as a guaranteed lower bound. In a similar

vein, the significance level for the finite

family of tests will be below 𝛼.

The following example is found in [1].
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Example The Kenton Food Company tested four different package

designs for a new breakfast cereal. Twenty stores were selected as the

experimental units. Each store was randomly assigned one of the package

designs, with each package design assigned to five stores. A fire occurred

in one store during the study period, so this store was dropped from the

study. Hence, one of the designs was tested in only four stores.

The stores were chosen to be comparable in location and sales volume.

Other relevant conditions that could affect sales, such as price, amount

and location of shelf space, and special promotional efforts, were kept

the same for all of the stores in the experiment.

Sales were observed for the study period; the results are recorded below.

Package Design (𝑖)
1 2 3 4 Total

𝑛𝑖 5 5 4 5 19
𝑦𝑖 ,• 73 67 78 136 354
𝑦 𝑖 ,• 14.6 13.4 19.5 27.2 18.63

This study is a completely randomized unbalanced design with package

type as the single, four-level factor.

For what it is worth, the package types had the following characteristics

Package 1: 3-colour design, with a cartoon character;

Package 2: 3-colour design, without a cartoon character;

Package 3: 5-colour design, with a cartoon character;

Package 4: 5-colour design, without a cartoon character.

The one-way classification ANOVA table for the observed data is:

Source SS df MS F0

Treatment 588.2 3 196.07 18.585

Error 158.2 15 10.55

Total 746.42 8

We are interested in estimating the following 4 contrasts with family

confidence coefficient 0.90:

𝐶1 =
𝜇1 + 𝜇2

2

− 𝜇3 + 𝜇4

2

𝐶2 =
𝜇1 + 𝜇3

2

−
𝜇2 + 𝜇4

2

𝐶3 = 𝜇1 − 𝜇2

𝐶4 = 𝜇3 − 𝜇4.

We can compute the coefficient𝑊 for significance level 𝛼 = 0.1.

a=4; alpha=0.1; N=19;

(W = sqrt((a-1)*qf(alpha, df1=a-1, df2=N-a, lower.tail=FALSE)))

[1] 2.733014
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We can easily compute the estimated contrasts.

y.bar.1 = 14.6; y.bar.2 = 13.4; y.bar.3 = 19.5; y.bar.4 = 27.2

C.hat.1 = (y.bar.1 + y.bar.2)/2 - (y.bar.3 + y.bar.4)/2

C.hat.2 = (y.bar.1 + y.bar.3)/2 - (y.bar.2 + y.bar.4)/2

C.hat.3 = y.bar.1 - y.bar.2

C.hat.4 = y.bar.3 - y.bar.4

The designed is unbalanced, so 𝑛 is not constant. For the purposes of this

exercise, we use the average value of the 𝑛𝑖 for 𝑛. Moreover, we can read

the value of MSE from the ANOVA table.

n = mean(c(5,5,4,5)); MSE = 10.55

We now compute the variance of the contrasts.

sum.c2.1 = 4*(1/2)^2; sum.c2.2 = 4*(1/2)^2

sum.c2.3 = 2*(1)^2; sum.c2.4 = 2*(1)^2

B.1 = sqrt(MSE/n*sum.c2.1); B.2 = sqrt(MSE/n*sum.c2.2)

B.3 = sqrt(MSE/n*sum.c2.3); B.4 = sqrt(MSE/n*sum.c2.4)

We are now able to obtain the joint 90% confidence intervals for the

contrasts.

C.hat.1 + W*B.1*c(-1,1)

C.hat.2 + W*B.2*c(-1,1)

C.hat.3 + W*B.3*c(-1,1)

C.hat.4 + W*B.4*c(-1,1)

[1] -13.423064 -5.276936

[1] -7.3230638 0.8230638

[1] -4.560182 6.960182

[1] -13.460182 -1.939818

Note that the confidence interval for 𝐶1 does not include 0. Hence, if we

wished to test 𝐻0 : 𝐶1 = 0 versus 𝐻1 : 𝐶1 ≠ 0 at 90% confidence (among

3 other contrasts), we would reject 𝐻0 in favour of 𝐻1, namely that the

mean sales for the 3-colour and 5-colour designs differ.

The confidence interval provides additional information, however; the

mean sales for the 5-colour designs exceed the mean sales for the 3-colour

designs, by somewhere between 5.3 and 13.4 cases per store.

Using the other contrasts, the sales manager also concluded that no

overall effect of cartoon characters in the package design is indicated by

the data, although the use of a cartoon character in the 5-colour designs

is associated with lower mean sales than when no cartoon character is

used.
50 □50: Is the link necessarily causal?
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Bonferroni vs. Tukey vs. Scheffé If all pairwise comparisons are of

interest, the Tukey procedure is superior to the Bonferroni and Scheffé

procedures, leading to narrower confidence intervals. If not all pairwise
comparisons are to be considered, the Bonferroni procedure may be

prove to be a better choice (at times).

The Bonferroni procedure yields tighter confidence intervals than Scheffé’s

when the number of contrasts of interest is about the same as (or is

smaller than) the number of factor levels. Indeed, the number of con-

trasts of interest must exceed the number of factor levels by a considerable
amount before the Scheffé procedure becomes a better choice.

All three procedures are of the form

Estimator ± Multiplier · SE.

The only difference among the three procedures is the multiplier. In

any given problem, one may then compute the Bonferroni and Scheffé

multipliers (and, when appropriate, the Tukey multiplier), and select the

smallest option.
51

51: This is an appropriate choice because

the multiplier does not depend on the

observed data, only on the structure of the

design and the desierd joint signficance

level.

11.3.8 Model Validation

In our analysis of experimental results, we have primarily compared the

average responses across various treatment groups. These comparisons

have been conducted using an overarall ANOVA test or more targeted

procedures based on contrasts and pairwise comparisons.

The foundation of these methods rests on the assumption that the data

follows the model

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 symbolizes the global mean applicable to all observations, and

𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2). Note that the designed is assumed to be balanced.

The 𝜏𝑖 ’s are fixed but unknown coefficients, whereas the 𝜀𝑖 , 𝑗 ’s are indepen-

dent normal random variables with constant but potentially unknown

variance 𝜎2
.

At its core, a model is essentially a set of assumptions – but we have

done nothing so far to verify if (or ensure that) these assumptions are

reasonable.

Specifically, we must verify three primary assumptions about the errors:

1. they are independent;

2. they are normally distributed, and

3. they have constant variance.

The model’s analytical rigour and the consequent inferences largely

depend on the extent to which the errors 𝜀𝑖 , 𝑗 , adhere to these assumptions.

Unfortunately, we never observe the true errors 𝜀𝑖 , 𝑗 ; the most accurate

representation we possess for them are the residuals 𝑒𝑖 , 𝑗 , derived from

the full model.
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Validation must then be based on these observable residuals rather than

the genuine errors. Due to the indirect nature of this process, diagnostics

are sometimes complicated.

In any practical data set, it’s almost inevitable that we encounter violations

of one or more of these core assumptions. But there is reason for optimism:

even in the face of slight deviations, the procedures can still yield

reasonable inferences.

We now dwell on diagnostics and possible remedial measures for

scenarios where the model assumptions are not met.

Residuals The (unobservable) errors are given by

𝜀𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖 .

After the model parameters have been estimated, we can compute the

residuals

𝑒𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 = 𝑦𝑖 , 𝑗 − �̂�𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•.

These residuals are often referred to as raw residuals.

The error sum of squares is simply

SSE =

𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑒2

𝑖 ,

and the mean square error is

MSE =
SSE

𝑁 − 𝑎 , where 𝑁 = 𝑛1 + · · · + 𝑛𝑎 .

At times, we may also use the Studentized residuals

𝑑𝑖 , 𝑗 =
𝑒𝑖 , 𝑗√
MSE

,

which we have discussed in Section 8.3.5.

Assessing Non-Normality The 𝑞𝑞−plot, also known as the normal
probability plot, is used to determine if the errors align with a nor-
mal distribution. The assessment is made by comparing the observed
quantiles of the residuals with the expected quantiles from a normal

distribution.

A straight line is indicative of errors following a normal distribution,

albeit slight deviations at the tails are customary (and anticipated).
52

For52: See Section 8.3.5 for description and

examples. non-normal data, the curvature of the plot provides insights into how

the data varies from the normal distribution.

In the context of 𝑞𝑞−plots, the choice between raw residuals and Studen-

tized residuals is generally inconsequential.
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Assessing Non-Constant Variance We look for non-constant variance

occurring when the responses within a treatment group all have the

same variance 𝜎2

𝑖
, but the 𝜎2

𝑖
differ between different groups.

This can be assessed visually by plotting the residuals, either 𝑒𝑖 , 𝑗 or 𝑑𝑖 , 𝑗 ,

against the fitted values �̂�𝑖 , 𝑗 . With constant variance, the vertical disper-
sion observed within the stripes of this plot remains fairly consistent;
any discernible pattern in the residuals signals non-constant variance.

The most common deviations from constant variance are those where

the residual variation depends on the mean. Usually we see variances

increasing as the mean increases, but other patterns can occur.

Assessing Independence Serial dependence, also known as autocorre-
lation, is a common deviation from the assumption of independence in

data analysis. This phenomenon emerges when consecutive data points,

particularly those in close temporal proximity, exhibit excessive similar-

ity (indicating positive dependence) or marked dissimilarity (suggesting

negative dependence). Among these, positive dependence is the more

prevalent form.

To visually discern the presence of serial dependence, analysts frequently

use an index plot, which plots residuals on the vertical axis against their

temporal sequence on the horizontal axis. By examining this plot, one

can gauge the degree of dependence.

A discernible drift across the plot, for instance, is indicative of positive

dependence. On the other hand, residuals rapidly alternating between

positive and negative values, all the while centering around zero, typically

suggest negative dependence.

Remedial Measures Non-normality and non-constant variance can

sometimes be alleviated by transforming the response to a different
scale:

skewness to the right is often mitigated by employing a square

root, logarithm, or other transformation to a power smaller than 1;

in contrast, skewness to the left can be lessened by a square, cube,

or other transformation to a power greater than 1;

similarly, a prevalent method to address non-constant error vari-

ances is through the transformation of the response variable.

The Box-Cox transformation is particularly well-suited to such a situation,

offering a suite of transformations indexed by a parameter 𝜆:
53

53: We also discuss it in Section 8.3.5.

𝑌(𝜆) =

{
𝑌𝜆−1

𝜆 , 𝜆 ≠ 0

log(𝑌), 𝜆 = 0.

The idea is to transform the data over a spectrum of 𝜆 values, perhaps

between −3 and 3, and subsequently perform the ANOVA using 𝑌(𝜆).
We compute the sum of squared errors SSE(𝜆) for every chosen 𝜆.

Specifically, the optimal𝜆 is the one that maximizes the log-likelihood

−𝑁
2

log[SSE(𝜆)] + (𝜆 − 1)
𝑎∑
𝑖=1

𝑛𝑖∑
𝑗=1

log(𝑦𝑖 , 𝑗).
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And what can we do about the assumption of data independence? Un-

fortunately, straightforward methodologies to confront data dependence

are limited. Advanced analytical techniques like time series analysis
(see Chapter 9) and spatial statistics could be used to model such data,

but these are beyond the scope of this chapter.

11.3.9 Power and Sample Size

So far, our focus has primarily been on analyzing experimental results.

A new focus now emerges as we proceed: how do we determine an

appropriate sample size for a completely randomized design?

Ideally, the sample size should be as small as possible, in order to

optimize both time and costs, yet it must also be sufficiently large to

fulfill the analytical requirements.
54

54: Making an informed decision on the

appropriate sample size requires the ana-

lysts to have some knowledge of the sys-

tem being examined; we will discuss this

further in Chapters 13 and 14.

We need two additional distributions to answer the original question:

if 𝑋1 , . . . , 𝑋𝑎 ∼ N(𝜇𝑖 , 1) are independent random variables, then

𝑋2

1
+· · ·+ 𝑥2

𝑎 follows a non-central 𝜒2 distributions with 𝑎 degrees
of freedom and non-centrality parameter 𝛿 = 𝜇2

1
+· · ·+𝜇2

𝑎 , denoted

by 𝑎𝑋 ∼ 𝜒2

𝑎(𝛿);55
55: This definition is a generalization of

the original definition of the (central) 𝑐ℎ𝑖2𝑎
distribution.

if 𝑋 ∼ 𝜒𝑛(𝜂) and 𝑌 ∼ 𝜒𝑚 , then

𝐹 =
𝑋/𝑛
𝑌/𝑚 ∼ 𝐹𝑛,𝑚(𝜂),

where 𝐹𝑛,𝑚(𝜂) is the non-central 𝐹 distribution with 𝑛 and 𝑚

degrees of freedom and non-centrality parameter 𝜂.

Recall that the statistic 𝐹0 for testing

𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0 against 𝐻1 : 𝜏𝑖 ≠ 0, for at least one 𝑖

follows a distribution 𝐹𝑎−1,𝑁−𝑎 when 𝐻0 is true. Under the alternative

hypothesis 𝐻1, this distribution assumption no longer holds.

Instead, the statistic 𝐹0 follows a non-central 𝐹𝑎−1,𝑁−𝑎(𝛿2), where

𝛿2 = 𝑛
𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2

is the non-centrality parameter.

This parameter essentially measures the extent to which the treatment

means deviate from being equal, scaled relative to the variation of 𝑦 𝑖 ,•,
which is 𝜎2/𝑛.

When computing the power for a specific sample size or determining the

necessary sample size for a desired power, we have to use non-central

𝐹-distributions.

A potential complication arises from the fact that each value of the non-

centrality parameter corresponds to a unique alternative distribution,

meaning that there is a distinct non-central 𝐹−distribution for every

possible non-centrality parameter value.
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Example Suppose that 𝑎 = 5 and that the treatment means are

𝜇1 = 11, 𝜇2 = 12, 𝜇3 = 15, 𝜇4 = 18, and 𝜇5 = 19.

From previous studies, we know that it is reasonable to expect that 𝜎2 = 9.

What should 𝑁 (or 𝑛) be in a balanced complete design if we use a test

with 𝛼 = 0.01, assuming we want a power of at least 1 − 𝛽 = 0.9? □

In order to answer this question, we need to actually know ahead of
time what the true individual values of 𝜇1 , . . . , 𝜇5 are, which may prove

challenging; we also needed to specify a plausible value (or range of

values) for 𝜎2
.

An alternative approach is to determine the sample size 𝑁 such that the

largest difference between treatment means

max{𝜇𝑖} − min{𝜇𝑖}

is larger than a given value 𝐷.

If 𝐷 = max{𝜇𝑖} − min{𝜇𝑖}, the non-centrality parameter is minimized

when the other means are exactly in the middle of the interval

(min{𝜇𝑖},max{𝜇𝑖}) = (𝜇𝑖∗ , 𝜇𝑖∗).

In that case, we would have

𝜏𝑖∗ = 𝜇𝑖∗ − 𝜇 = −𝐷
2

and 𝜏𝑖∗ = 𝜇𝑖∗ − 𝜇 =
𝐷

2

,

and all other 𝜏𝑖 ≡ 0, from which we conclude

𝑎∑
𝑖=1

𝜏2

𝑖 = 2(𝐷/2)2 = 𝐷2/2.

It follows that

𝛿2

min
= 𝑛𝐷2/(2𝜎2),

for a power equal to

𝑃
(
𝐹𝑎−1,𝑁−𝑎(𝛿2

min
) ≥ 𝐹𝛼;𝑎−1,𝑁−𝑎

)
.

Example With the data in the statement of the previous example,

suppose that we have reason to believe that the largest difference between

the treatment means is 𝐷 = 8. Then

𝛿2

min
= 𝑛 · 8

2/(2 · 9) = (32/9)𝑛.

The power of the test is

𝑃
[
𝐹

4,5(𝑛−1)((32/9)𝑛) ≥ 𝐹
0.01;4,5(𝑛−1)

]
.

We try different values of 𝑛, until we obtain a power which is at least

0.9.
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for(n in c(2:9)){

delta.2.min = 32/9*n; df1 = 4; df2 = 5*(n-1); alpha = 0.01

crit = qf(0.01, df1=df1, df2=df2, lower.tail=FALSE)

print(c(n,

pf(crit, df1=df1, df2=df2, ncp=delta.2.min,

lower.tail=FALSE)))

}

[1] 2.0000000 0.0704121

[1] 3.0000000 0.2308392

[1] 4.0000000 0.4413316

[1] 5.0000000 0.6376441

[1] 6.0000000 0.7861772

[1] 7.0000000 0.8833954

[1] 8.0000000 0.9405001

[1] 9.0000000 0.9713123

With a value of 𝑁 = 40 (i.e., with 𝑛 = 8), the test’s power is 94.1%. □

11.4 One-Way ANOVA with Random Effects

In the one-way ANOVA model from the previous section

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where 𝜇 is the common mean to all observations and 𝜀𝑖 , 𝑗 ∼ N(0, 𝜎2), the

treatment effects 𝜏1 , . . . , 𝜏𝑎 are viewed as fixed; this one-way ANOVA

model is known as a fixed-effect model.

But in some situations, the fixed-effect model is not appropriate; in

this section, we consider treatments that are drawn randomly from a

population of potential treatments, leading to a random effects model.

Examples: Fixe vs. Random Effects

A business operates 50 machines that produce cardboard boxes

for canned products. To analyze the consistency in the carton’s

durability, they randomly select ten machines out of the 50 and

manufacture 40 boxes from each. They distribute 400 batches of

feedstock cardboard randomly among these ten machines. Sub-

sequently, the boxes’ strength is assessed. This approach follows

a completely randomized design, encompassing ten treatment

groups and 400 units.

In this context, a fixed-effect model is not suitable since the goal is

to understand and draw conclusions about the entire population
of machines, not merely the ten we tested in the experiment –

we want to make assertions for the entire population, not just the

random subset we examined. Moreover, if the experiment was

repeated with a fresh batch of 10 machines, we would most likely

end up with a completely distinct group of machines (and so with

different observations).
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Imagine a home gardener conducting a small experiment using 24

tomato plants, divided into 4 varieties with 6 plants each. These

varieties have piqued the gardener’s interest after occasional use

over recent summers. Now, the gardener plans to compare these

varieties within a 12’ x 8’ garden patch. Each plant is randomly

placed in one of the 2’ x 2’ sections. In this scenario, the gardener’s

focus is solely on these specific four varieties, with no consideration

for any other types. The emphasis is strictly on the varieties being

tested, and nothing else, so we can use fixed effects.

Suppose, on the other hand, the 4 tomato varieties were chosen

at random from a broader population of tomato types. In this

scenario, we’d be dealing with random effects. If the experiment

were repeated with a different batch of 4 varieties, it would likely

result in a completely distinct group of tomato varieties.

To determine how proficiently Ontario students can read by the

conclusion of first grade, imagine we randomly select 6 schools

within the province. From each chosen school, a group of students

is randomly picked to undergo a reading assessment. Given that

these schools are a random sample from a broader group of interest

(all the schools in Ontario), we are operating under a random effect

model.

If our sole focus was on the performance of those specific 6 schools,

then a fixed-effect model would have been appropriate. However,

that is not the intention in this scenario.

11.4.1 Estimation of Model Parameters

The one-way ANOVA model with random effects is given by

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑛,

where

𝜇 is the global (or common) mean to all observations;

𝜏𝑖 ∼ i.i.d. N(0, 𝜎2

𝑇
), 𝑖 = 1, . . . , 𝑎;

𝜀𝑖 , 𝑗 ∼ i.i.d. N(0, 𝜎2), 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑛𝑖 ;

𝜏𝑖 and 𝜀𝑖 , 𝑗 are independent.

It follows that

E(𝜏𝑖) = 0, Var(𝜏𝑖) = 𝜎2

𝑇 , Cov(𝜏𝑖 , 𝜏𝑖′) = 0, 𝑖 ≠ 𝑖′;

E(𝜀𝑖 , 𝑗) = 0, Var(𝜀𝑖 , 𝑗) = 𝜎2 , and

Cov(𝜀𝑖 , 𝑗 , 𝜀𝑖′ , 𝑗′) = 0, except when 𝑖 = 𝑖′ and 𝑗 = 𝑗′;

Cov(𝜏𝑖 , 𝜀𝑖′ , 𝑗′) = 0, for all 𝑖 and 𝑖′.

Consequently, we have

E(𝑦𝑖 , 𝑗) = E(𝑦𝑖 , 𝑗 | 𝜏𝑖) = E(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 | 𝜏𝑖) = E(𝜇 + 𝜏𝑖) = 𝜇

and

Var(𝑦𝑖 , 𝑗) = Var(𝑦𝑖 , 𝑗 | 𝜏𝑖) + VarE(𝑦𝑖 , 𝑗 | 𝜏𝑖) = 𝜎2

𝑇 + 𝜎2.
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Although the 𝜏𝑖 ’s and the 𝜀𝑖 , 𝑗 ’s are uncorrelated, the 𝑦𝑖 , 𝑗 ’s are correlated.

Indeed, for those in the same treatment class, we have

Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖 , 𝑗′) = Cov(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗′) = 𝜎2

𝑇 , for 𝑗 ≠ 𝑗′,

whereas for those in different treatment classes, we have

Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖′ , 𝑗′) = Cov(𝜇 + 𝜏𝑖 + 𝜀𝑖 , 𝑗 , 𝜇 + 𝜏𝑖′ + 𝜀𝑖′ , 𝑗′) = 0, for 𝑖 ≠ 𝑖′.

Estimation of Parameters The intra-class correlation coefficient is

defined as

𝜌 =
Cov(𝑦𝑖 , 𝑗 , 𝑦𝑖 , 𝑗′)√

Var(𝑦𝑖 , 𝑗)
√

Var(𝑦𝑖 , 𝑗′)
=

𝜎2

𝑇

𝜎2

𝑇
+ 𝜎2

, if 𝑗 ≠ 𝑗′.

It is a measure of the correlation between two observations from the

same factor level (or class); the parameters 𝜎2

𝑇
and 𝜎2

are the variance
components.

In practice, there are 4 family of parameters to be estimated and/or

predicted: the common mean 𝜇, the treatment effects 𝜏𝑖 , and the variance

components 𝜎2

𝑇
and 𝜎2

.

The common mean and the variance components are fixed parameters;

these we seek to estimate. The treatment effects are random variables,

these we seek to predict.

11.4.2 Analysis of Variance

In the one-way fixed-effects ANOVA model, we considered the overall test

of hypothesis 𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0. In the context of a random- effects

ANOVA model, this hypothesis is nonsensical as the 𝜏𝑖 ’s are random
variables.

Instead, we look to test if the factor (treatment) has an impact on the

variability of the response 𝑌. The null hypothesis is then expressed as

𝐻0 : 𝜎2

𝑇
= 0. The alternative stipulates that the factor has an effect on the

variability of the response 𝑌, which we express as 𝐻1 : 𝜎2

𝑇
> 0.

In effect, if 𝐻0 is valid, then all the 𝜏𝑖 ’s are equal, whereas if 𝐻1 holds,

then at least two of the 𝜏𝑖 ’s differ.

Despite the fact that the fixed-effects model is emphatically not equivalent

to the random-effects model, their analysis of variance for a single-factor

study (one-way classification) is conducted in similar fashions.

We can show (see Exercises) that

E(MSE) = 𝜎2

and E(MSA) = 𝜎2 + 𝑛𝜎2

𝑇 .

It then follows that MSE and MSA have the same expectation 𝜎2
if 𝜎2

𝑇
= 0.

If 𝜎2

𝑇
> 0, on the other hand, then E(MSA) > E(MSE) as 𝑛 > 0.

Therefore, we would reject 𝐻0 at significance level 𝛼 if

𝐹0 =
MSA

MSE

> 𝐹𝛼;𝑎−1,𝑁−𝑎 .
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To understand why we compare the observed test statistic 𝐹0 to critical

values of the 𝐹𝑎−1,𝑁−𝑎 distribution, we first note that

𝑦 𝑖 ,• =
1

𝑁

𝑛∑
𝑗=1

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖 ,• , where

𝜀𝑖 ,• =
𝑛∑
𝑗=1

𝜀𝑖 , 𝑗
𝑛

∼ N

(
0,

𝜎2

𝑛

)
,

from which it follows that

𝑦 𝑖 ,• ∼ N

(
𝜇, 𝜎2

𝑇 + 𝜎2

𝑛

)
, 𝑖 = 1, . . . , 𝑎.

The random variables 𝑦 𝑖 ,• being i.i.d., we must then have

(𝑎 − 1)MSA

𝜎2 + 𝑛𝜎2

𝑇

∼ 𝜒2

𝑎−1
.

In the context of a balanced design, SSA can be expressed as

SSA =

𝑎∑
𝑖=1

𝑛𝑖(𝑦 𝑖 ,• − 𝑦•,•)2 = 𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2

= 𝑛
𝑎∑
𝑖=1

[(𝜏𝑖 − 𝜏•) + (𝜀𝑖 ,• − 𝜀•,•)]2 ,

where

𝜏• =
𝑎∑
𝑖=1

𝜏𝑖
𝑎

and 𝜀•,• =
𝑎∑
𝑖=1

𝜀𝑖 ,•
𝑎
.

On the other hand, we have

(𝑛 − 1)𝑠2

𝑖 =

𝑛∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,•)2 =

𝑛∑
𝑗=1

(𝜀𝑖 , 𝑗 − 𝜀𝑖 ,•)2.

According to the i.i.d. condition,

(𝑛 − 1)𝑠2

𝑖

𝜎2

∼ 𝜒2

𝑛−1

independently for all 𝑖 = 1, . . . .𝑎. As a result, we then have

(𝑁 − 𝑎)MSE

𝜎2

= (𝑁 − 𝑎)
𝑎∑
𝑖=1

𝑠2

𝑖

𝜎2

=

𝑎∑
𝑖=1

(𝑛 − 1)𝑠2

𝑖

𝜎2

∼ 𝜒2

𝑁−𝑎 .

Thus, MSA only depends on {𝜏1 , . . . , 𝜏𝑎} and {𝜀1,• , . . . , 𝜀𝑎,•} and MSE

only depends on

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
. But the sets {𝜏1 , . . . , 𝜏𝑎} and

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
are independent, as are the sets {𝜀1,• , . . . , 𝜀𝑎,•} and

{
𝑠2

1
, . . . , 𝑠2

𝑎

}
. There-

fore, MSA and MSE are independent and so we have, by definition of the

𝐹 distribution,

𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎 .

Under 𝐻0 : 𝜎2

𝑇
= 0, this collapses to the decision protocol presented

above.
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11.4.3 Inference on 𝜎2, 𝜎2

𝑇
, and 𝜇

As was the case with the fixed-effects model, we can conduct inference

on the model parameters.
56

56: Assuming, as before, a balanced

model.

Confidence interval for 𝜎2 and 𝜎2

𝑇
As before, MSE = �̂�2

is an unbiased
estimator of 𝜎2

. Since (𝑁 − 𝑎)MSE/𝜎2 ∼ 𝜒2

𝑁−𝑎 , it follows from that we

obtain a 100(1 − 𝛼)% confidence interval for 𝜎2 via[
(𝑁 − 𝑎)MSE

𝜒2

𝛼/2;𝑁−𝑎
,
(𝑁 − 𝑎)MSE

𝜒2

1−𝛼/2;𝑁−𝑎

]
.

But we also have

𝐸

(
MSA − MSE

𝑛

)
=

𝜎2

𝑛
−

𝜎2 + 𝑛𝜎2

𝑇

𝑛
= 𝜎2

𝑇 ;

consequently, (MSA − MSE)/𝑛 is an unbiased estimator of 𝜎2

𝑇
.

However, nothing precludes this estimator to take on negative values,

which may occur when MSA < MSE.
57

To overcome this issue, we use57: This can occur when we are evaluating

MSE and MSA from actual data (not their

expectations).

the truncated estimator

�̂�2

𝑇 =

{
(MSA − MSE)/𝑛, if MSA ≥ MSE,

0, otherwise.

The distribution of �̂�2

𝑇
is not simple since it is expressed as the linear

combination of two chi-square distributions. As a result, we cannot

derive an exact confidence interval for 𝜎2

𝑇
; we will have to settle for an

approximate confidence interval for 𝜎2

𝑇
.

However, we can construct an exact confidence interval for the intra-class

correlation coefficient 𝜌 = 𝜎2

𝑇
/(𝜎2

𝑇
+ 𝜎2). Indeed,

1 − 𝛼 = 𝑃

(
𝐹

1−𝛼/2;𝑎−1,𝑁−𝑎 ≤
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

≤ 𝐹𝛼/2;𝑎−1,𝑁−𝑎

)
= 𝑃

(
1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

)
≤

𝜎2

𝑇

𝜎2

≤ 1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

))
= 𝑃

(
𝑔

(
1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

))
≤ 𝑔

(
𝜎2

𝑇

𝜎2

)
=

𝜎2

𝑇

𝜎2

𝑇
+ 𝜎2

≤ 𝑔

(
1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

)))
,

where 𝑔(𝑡) = 𝑡/(𝑡 + 1) is an increasing function. Therefore, a 100(1− 𝛼)%
confidence interval for 𝜎2

𝑇
/(𝜎2

𝑇
+ 𝜎2) is obtained via:[

MSA − 𝐹𝛼/2;𝑎−1,𝑁−𝑎MSE

MSA + (𝑛 − 1)𝐹𝛼/2;𝑎−1,𝑁−𝑎MSE

,
MSA − 𝐹

1−𝛼/2;𝑎−1,𝑁−𝑎MSE

MSA + (𝑛 − 1)𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎MSE

]
.

When 𝑁 − 𝑎 is large, the estimator MSE of 𝜎2
becomes more precise and

we can write 𝜎2 ≈ MSE.
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It follows that

1 − 𝛼 ≈ 𝑃
(

1

𝑛

(
MSA

MSE

1

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− 1

)
≤

𝜎2

𝑇

MSE

≤ 1

𝑛

(
MSA

MSE

1

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− 1

))
= 𝑃

(
1

𝑛

(
MSA

𝐹𝛼/2;𝑎−1,𝑁−𝑎
− MSE

)
≤ 𝜎2

𝑇 ≤ 1

𝑛

(
MSA

𝐹
1−𝛼/2;𝑎−1,𝑁−𝑎

− MSE

))
,

which provides an approximate 100(1−𝛼)% confidence interval for 𝜎2

𝑇
.

Confidence interval for 𝜇 Inferences about the global mean are simpler

to obtain. The expression

�̂� = 𝑦•,• =
1

𝑁

𝑎∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖 , 𝑗

provides an unbiased estimator of 𝜇. Its variance is given by

Var(�̂�) =
𝑛𝜎2

𝑇
+ 𝜎2

𝑁
;

an unbiased estimator of which is given by

V̂ar(�̂�) = MSA

𝑁
.

It follows that we can find a 100(1 − 𝛼)% confidence interval for 𝜇 via

𝑦•,• ± 𝑡𝛼/2;𝑎−1

√
MSA

𝑁
.

11.4.4 Power of a Test

In the case of the 𝐹−test at significance level 𝛼 for a one-way random-

effects model, the power of the test

𝐻0 : 𝜎2

𝑇 = 0 vs. 𝐻1 : 𝜎2

𝑇 ≠ 0

is:

𝑃(Δ) = 𝑃
(
MSA

MSE

> 𝐹𝛼;𝑎−1,𝑁−𝑎

���� 𝜎2

𝑇 ≠ 0

)
= 𝑃

(
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

MSA

MSE

>
𝜎2

𝜎2 + 𝑛𝜎2

𝑇

𝐹𝛼;𝑎−1,𝑁−𝑎

)
= 𝑃

(
𝐹𝑎−1,𝑁−𝑎 >

1

1 + Δ
𝐹𝛼;𝑎−1,𝑁−𝑎

)
,

where Δ = 𝑛𝜎2

𝑇
/𝜎2

.
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11.5 Randomized Complete Block Designs

As the variance of the experimental error 𝜎2 increases, the corresponding

confidence intervals get longer and the power of tests decreases.

All other things being equal, we would thus prefer to conduct experiments

with units that are homogeneous so that 𝜎2
is as small as possible.

We can achieve this through variance-reduction designs, which almost

exclusively use blocking. A block of units is a collection of units that

are homogeneous in some sense – field plots located in the same general

area, or units that came from a single supplier, say.

These similarities in the units themselves lead us to anticipate that units

within a block may have similar responses.

When constructing blocks, the goal is to achieve homogeneity of the

units within blocks, with the caveat that units in different blocks may be

dissimilar.58
The primary purpose of blocking is to remove or isolate the58: Compare with the notion of stratified

random sampling in Section 10.4. block-to-block variability. This helps ensure that this variability does

not overshadow or mask the treatment effects under consideration.

A notable experimental design that makes use of this concept is the

Randomized Complete Block Design (RCBD). This design is structured

for comparing 𝑎 treatments across 𝑏 blocks. In this setup, treatments are

randomly assigned to experimental units within a block – each treatment

appears exactly once in every block. If a RCBD integrates 𝑎 treatments

within each of 𝑏 blocks, then the total number of observations would be

𝑁 = 𝑎𝑏.

Randomized block designs can be seen as an extension of the paired-

difference designs that were discussed in Section 11.2.

Examples: Randomized Complete Block Design

A production supervisor is keen on comparing the mean assem-

bly times of operators using three distinct methods: A, B, and C.

Given the anticipated variation in assembly times across differ-

ent operators, the supervisor employs an RCDB for the comparison.

Specifically, six assembly-line operators are selected, each represent-

ing a block. Each operator is tasked with assembling the item three

times, once for every method. The importance of the sequence in

which the methods are applied is recognized, as factors like fatigue

or heightened dexterity might influence the results. Therefore,

every operator is assigned a randomized sequence of the three

methods. For instance:

− Operator 1 first uses method A, proceeds to B, and finishes with C.

− Operator 2 first uses method A, proceeds to C, and finishes with B.

− Operator 3 first uses method B, proceeds to A, and finishes with C.

− Operator 4 first uses method B, proceeds to C, and finishes with A.

− Operator 5 first uses method C, proceeds to A, and finishes with B.

− Operator 6 first uses method C, proceeds to B, and finishes with A.



11.5 Randomized Block Designs 785

The credit card industry is engaged in an intense competition for

cardholders. Each company designs its unique, intricate reward

and fee structure in an attempt to attract customers. Notably, the

benefits or costs associated with a credit card can vary significantly

depending on the cardholder’s monthly spending.

To investigate this, a consumer watchdog group set out to compare

the average rewards or fees of four different credit card companies

(A, B, C, D). They used three distinct spending levels as blocks:

− low spending – $500 per month,

− middle spending – $2,500 per month, and

− high spending – $10,000 per month.

If the rewards are not monetary in nature, the watchdog group

has first converted them to a monetary value. The average monthly

rewards, as quoted by the credit card companies for cardholders

across these spending levels, are presented in the table below.

Rewards Credit Card Company

Spending Level A
(𝑖 = 1)

B
(𝑖 = 2)

C
(𝑖 = 3)

D
(𝑖 = 4)

Low
(𝑗 = 1) 30 27 34 26

Middle
(𝑗 = 2) 68 76 65 67

High
(𝑗 = 3) 304 322 308 296

11.5.1 Analysis of Variance

In an RCBD, we consider two key factors: treatments and blocks, both of

which play a significant role in influencing the response. Let 𝑦𝑖 , 𝑗 represent

the response when the 𝑖th treatment is applied within the 𝑗th block. The

underlying RCBD is described via:

𝑦𝑖 , 𝑗 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝜀𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏,

where the error terms 𝜀𝑖 , 𝑗 are independent random variables from a

N(0, 𝜎2) distribution.

In this model, the parameter 𝜇 represents the global effect, while 𝜏𝑖
denotes the treatment effect for the 𝑖th treatment level, and 𝛽 𝑗 indicates

the effect associated with the 𝑗th block.
59

59: We also refer to the treatment as the

first factor (or Factor A), and to blocking

as the second factor (or Factor B).Both treatments and blocks are regarded as fixed factors; the expected

value of the response can thus be expressed as:

E(𝑦𝑖 , 𝑗) = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 .

Just as in the one-way (single-factor) fixed-effect experimental design

discussed previously, the RCBD model is over-parameterized.
60

The 60: We can bypass this problem by enforc-

ing constraints on the treatment and block

effects:

𝑎∑
𝑖=1

𝜏𝑖 = 0 and

𝑏∑
𝑗=1

𝛽 𝑗 = 0.

primary aim is to test the uniformity of the treatment means, effectively

examining the presence or absence of an effect for Factor A.
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Formally, we test for

𝐻0 : 𝜏1 = 𝜏2 = · · · = 𝜏𝑎 = 0, against 𝐻1 : 𝜏𝑖 ≠ 0 for at least one 𝑖.

The totals for the 𝑖th treatment, the 𝑗th block, and the overall total of the

𝑁 = 𝑎𝑏 observations are given, respectively, by

𝑦𝑖 ,• =
𝑏∑
𝑗=1

𝑦𝑖 , 𝑗 , 𝑖 = 1, . . . , 𝑎, 𝑦•, 𝑗 =
𝑎∑
𝑖=1

𝑦𝑖 , 𝑗 , 𝑗 = 1, . . . , 𝑏

𝑦•,• =
𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦𝑖 , 𝑗 =
𝑎∑
𝑖=1

𝑦𝑖 ,• =
𝑏∑
𝑗=1

𝑦•, 𝑗 .

Similarly, we define the various means

𝑦 𝑖 ,• =
𝑦𝑖 ,•
𝑏
, 𝑦•, 𝑗 =

𝑦•, 𝑗
𝑎
, and 𝑦•,• =

𝑦•,•
𝑁

.

Example (cont.) In the credit card example from earlier in the section,

the totals and means are given in the table below.

Rewards Credit Card Company

Spending Level A
(𝑖 = 1)

B
(𝑖 = 2)

C
(𝑖 = 3)

D
(𝑖 = 4)

Totals
𝑦•, 𝑗

Means
𝑦•, 𝑗

Low
(𝑗 = 1) 30 27 34 26 117 29.25

Middle
(𝑗 = 2) 68 76 65 67 276 69

High
(𝑗 = 3) 304 322 308 296 1230 307.5

Totals
𝑦𝑖 ,•

402 425 407 389 1623

Means
𝑦 𝑖 ,•

134 141.7 135.7 129.7 135.25

The total sum of square (SST) can be expressed as the sum of three sums

of squares:

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦•,•)2 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

[
(𝑦 𝑖 ,• − 𝑦•,•) + (𝑦•, 𝑗 − 𝑦•,•) + (𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•)

]
2

= 𝑏
𝑎∑
𝑖=1

(𝑦 𝑖 ,• − 𝑦•,•)2 + 𝑎
𝑏∑
𝑗=1

(𝑦•, 𝑗 − 𝑦•,•)2 +
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•)2 ,

or, using the customary symbols (along with the corresponding degrees

of freedom):

SST = SSA + SSB + SSE

𝑁 − 1 = (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1) = 𝑎𝑏 − 1
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There are equivalent formulas (which are slightly easier to use) for the

sums of squares:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦2

𝑖 , 𝑗 −
𝑦2

•,•
𝑁

,

SSA =
1

𝑏

𝑎∑
𝑖=1

𝑦2

𝑖 ,• −
𝑦2

•,•
𝑁

,

SSB =
1

𝑎

𝑏∑
𝑗=1

𝑦2

•, 𝑗 −
𝑦2

•,•
𝑁

,

Finally, SSE is obtained as

SSE = SST − SSA − SSB.

It can be shown that

SSA

𝜎2

∼ 𝜒2

𝑎−1

(
𝑏

𝑎∑
𝑖=1

𝜏2

𝑖

𝜎2

)
,

SSB

𝜎2

∼ 𝜒2

𝑏−1

(
𝑎

𝑏∑
𝑗=1

𝛽2

𝑗

𝜎2

)
,

and

SSE

𝜎2

∼ 𝜒2

(𝑎−1)(𝑏−1).

As has been the case throughout, we can also show that the three sums of

squares SSA, SSB, and SSE are mutually independent. The corresponding

mean squares are obtained in the usual way:

MSA =
SSA

𝑎 − 1

, MSB =
SSB

𝑏 − 1

, and MSE =
SSE

(𝑎 − 1)(𝑏 − 1) .

We can show (see Exercises) that

E(MSA) = 𝜎2 + 𝑏

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ,

E(MSB) = 𝜎2 + 𝑎

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ,

E(MSE) = 𝜎2.

We can test for the absence of a treatment effect (Factor A) by pitting

𝐻0 : 𝜏1 = · · · = 𝜏𝑎 = 0 against 𝐻1 : 𝜏𝑖 ≠ 0 for at least one 𝑖 , using the test

statistics

𝐹0 =
MSA

MSE

,

which follows an 𝐹𝑎−1,(𝑎−1)(𝑏−1) distribution under 𝐻0.

All of this is summarized in Table 11.19.
61

61: A “large” value of the ratio MSB/MSE

implies that blocking was a good strategy.

Source SS df MS F0

Treatment SSA 𝑎 − 1 MSA 𝐹0 = MSA/MSE

Block SSB 𝑏 − 1 MSB

Error SSE (𝑎 − 1)(𝑏 − 1) MSE

Total SST 𝑁 − 1

Table 11.19: ANOVA table for the equality

of the treatment means 𝜏𝑖 in a two-factor

randomized complete block design.
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Example (cont.) In the credit card example from earlier in the section, we

have a randomized block design with 𝑏 = 3 spending levels (blocks) and

𝑎 = 4 companies (treatments), so there are 𝑁 = 𝑎𝑏 = 12 observations.

We start by loading the data.

content.1 <- c(30, 27, 34, 26)

content.2 <- c(68, 76, 65, 67)

content.3 <- c(304, 322, 308, 296)

data <- data.frame(rbind(content.1, content.2, content.3))

rownames(data) <- c("Low", "Middle", "High")

colnames(data) <- c("A", "B", "C", "D")

row.totals <- rowSums(data)

row.means <- rowMeans(data)

data <- cbind(data, row.totals, row.means)

col.totals <- colSums(data)

col.means <- colMeans(data)

data <- rbind(data, col.totals, col.means)

rownames(data) <- c("Low", "Middle", "High", "col.totals",

"col.means")

data[4,6] <- NA; data[5,5] <- NA

A B C D row.totals row.means

Low 30 27.0000 34.0000 26.0000 117 29.25

Middle 68 76.0000 65.0000 67.0000 276 69.00

High 304 322.0000 308.0000 296.0000 1230 307.50

col.totals 402 425.0000 407.0000 389.0000 1623

col.means 134 141.6667 135.6667 129.6667 135.25

We compute the necessary quantities and place them in the ANOVA

table.

a = ncol(content)

b = nrow(content)

N = a*b

grand.mean = data[b+2,a+2]

SST = sum((data[c(1:b),c(1:a)]-grand.mean)^2)

SSA = b * sum((data[b+2,c(1:a)]-grand.mean)^2)

SSB = a * sum((data[c(1:b),a+2]-grand.mean)^2)

SSE = SST - SSA - SSB

ANOVA = as.data.frame(cbind(c(SSA,SSB,SSE,SST),

c(a-1, b-1, (a-1)*(b-1), N-1),

c(SSA/(a-1),SSB/(b-1),SSE/((a-1)*(b-1)),0),

c((SSA/(a-1))/(SSE/((a-1)*(b-1))),(SSB/(b-1))/(SSE/((a-1)*(b-1))),0,0)))

rownames(ANOVA) = c("Treatment", "Block", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment 222.25 3 74.08333 1.84058

Block 181180.50 2 90590.25000 2250.68944

Error 241.50 6 40.25000

Total 181644.25 11
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At significance level 𝛼 = 0.05, the critical value of 𝐹
4−1,(4−1)(3−1) = 𝐹3,6 is

given below.

qf(0.05, df1 = a-1, df2 = (a-1)*(b-1), lower.tail=FALSE)

[1] 4.757063

We see that 𝐹0 = MSA/MSE = 1.84 < 𝐹0.05;3,6 = 4.76; therefore, the

results do not show a significant difference in the treatment means. That

is, there is insufficient evidence to indicate a difference in the credit card

companies’ monthly rewards.
62

62: The ratio MSB/MSE is quite large,

which suggests that blocking is effective,

even if we cannot say that the treatment is

so.11.5.2 Estimation of Model Parameters

The RCBD model parameters are the grand mean 𝜇, the treatment effects

𝜏𝑖 , and the blocking effect 𝛽 𝑗 , which can be estimated from the data as

follows.

We seek to minimize the sum of squares errors:

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝜀2

𝑖 , 𝑗 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − 𝜇 − 𝜏𝑖 − 𝛽 𝑗)2.

We determine the model values of 𝜇, 𝜏𝑖 and 𝛽 𝑗 by differentiating the

expression above, setting the gradient to 0, and solving for the parameters.

In the RCBD context, this leads to:

𝜇 : −2

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0,

𝜏𝑖 : −2

𝑏∑
𝑗=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0, 𝑖 = 1, . . . , 𝑎,

𝛽 𝑗 : −2

𝑎∑
𝑖=1

(𝑦𝑖 , 𝑗 − �̂� − �̂�𝑖 − �̂� 𝑗) = 0, 𝑗 = 1, . . . , 𝑏.

After some simplifications, we obtain the following system of linear

equations:

𝜇 : 𝑁�̂� = 𝑦•,• ,

𝜏𝑖 : 𝑏�̂� + 𝑏�̂�𝑖 = 𝑦𝑖 ,• , 𝑖 = 1, . . . , 𝑎,

𝛽 𝑗 : 𝑎�̂� + 𝑎�̂� 𝑗 = 𝑦•, 𝑗 , 𝑗 = 1, . . . , 𝑏,

whose solution is

�̂� = 𝑦•,• , �̂�𝑖 = 𝑦 𝑖 ,• − 𝑦•,• , �̂� 𝑗 = 𝑦•, 𝑗 − 𝑦•,•.

11.5.3 Multiple Comparisons

We can compare two treatments 𝑖 and 𝑖′, by looking at the difference of

treatments 𝜏𝑖 − 𝜏𝑖′ , which we estimate via 𝑦 𝑖 ,• − 𝑦 𝑖′ .
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The variance of 𝑦 𝑖 ,• − 𝑦 𝑖′ ,• is given by

Var(𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) = 𝜎2 · 2

𝑏
.

We obtain an 100(1 − 𝛼)% confidence interval for 𝜏𝑖 − 𝜏𝑖′ in the usual

manner:

𝜏𝑖 − 𝜏𝑖′ : (𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) ± 𝑡𝛼/2;(𝑎−1)(𝑏−1)
√

MSE

√
2

𝑏
.

For simultaneous confidence intervals, we must use a modification (as in

Section 11.3.7). If we use Tukey’s method, for instance, the confidence

interval with family confidence 100(1 − 𝛼)% becomes

𝜏𝑖 − 𝜏𝑖′ : (𝑦 𝑖 ,• − 𝑦 𝑖′ ,•) ± 𝑞𝛼;𝑎,(𝑎−1)(𝑏−1)
√

MSE

√
1

𝑏
.

11.5.4 Power and Sample Size

Whether or not Factor A has an effect, the distribution of the test statistic

𝐹0 is a non-central 𝐹𝑎−1,(𝑎−1)(𝑏−1)(𝛿2), with non-centrality parameter

𝛿2 = 𝑏
𝑎∑
𝑖=1

𝜏2

𝑖 /𝜎
2.

To determine the sample size, we can use an approach similar to the one

described in Section 11.3.9.

The differences between the treatment effects are 𝜏𝑖 − 𝜏𝑖′ ; the largest

difference between the treatment averages is thus

𝐷 = max{𝜏𝑖} − min{𝜏𝑖}.

The minimal non-centrality parameter is thus

𝛿2

min
= 𝑏𝐷2/(2𝜎2),

which yields a test power of

𝑃
(
𝐹𝑎−1,(𝑎−1)(𝑏−1)(𝛿2

min
) ≥ 𝐹𝛼;𝑎−1,(𝑎−1)(𝑏−1)

)
.

11.5.5 Model Validation

As in the previously studied design, three basic assumptions about errors

must be checked: independence, normality, and homoscedasticity. As

before, we use the residuals to verify whether the assumptions seem

reasonable. In the RCBD predicted responses are

�̂�𝑖 , 𝑗 = �̂� + �̂�𝑖 + �̂� 𝑗 = 𝑦 𝑖 ,• + 𝑦•, 𝑗 − 𝑦•,•;

their residuals are thus

𝑒𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − �̂�𝑖 , 𝑗 = 𝑦𝑖 , 𝑗 − 𝑦 𝑖 ,• − 𝑦•, 𝑗 + 𝑦•,•.
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11.6 Factorial Designs

In our discussions up to this point, we primarily focused on the foun-

dational problem of understanding how a single independent factor
influences the response. However, it’s not uncommon in research to

encounter situations where the interest lies in studying the combined
effects of multiple independent variables on a given response. We call

such experimental setups, where two or more factors are simultaneously

investigated, factorial designs.

Consider an example where researchers wish to determine the effect of

sleep deprivation on student test performance. If the study only revolves

around the sleep factor and the test performance, it is a simple (one-way)
experiment. But we can add a twist: what if the researchers also wants

to know whether the impacts of sleep deprivation vary between high

school and university students? This introduces a second factor, school

level,
63

into the study, turning it into a factorial design. 63: Which is presumably linked to age.

Factorial designs can vary in their complexity. A frequently encountered

type is the 2 × 2 factorial design, where two factors are being analyzed,

and each factor has two distinct levels. The numeric representation of

a factorial design offers quick insights: the number of digits indicates

the number of factors, while the value of each number shows how
many levels the corresponding factor has. For instance, a 4 × 3 factorial

design consists of two factors, with the first having four levels and the

second comprising three levels. Extending this understanding, a 2× 2× 2

factorial design would mean the experiment has three factors, each of

which having two levels.

11.6.1 Two-Way Factorial Experiments

We start by looking into two-factor designs. The data from a two-way

factorial design can be illustratively showcased using a table, as in Table

11.21.

𝐵1 𝐵2 𝐵3

𝐴1 𝑦1,1,1 , . . . , 𝑦1,1,𝑛 𝑦1,2,1 , . . . , 𝑦1,2,𝑛 𝑦1,3,1 , . . . , 𝑦1,3,𝑛

𝐴2 𝑦2,1,1 , . . . , 𝑦2,1,𝑛 𝑦2,2,1 , . . . , 𝑦2,2,𝑛 𝑦2,3,1 , . . . , 𝑦2,3,𝑛

𝐴3 𝑦3,1,1 , . . . , 𝑦3,1,𝑛 𝑦3,2,1 , . . . , 𝑦3,2,𝑛 𝑦3,3,1 , . . . , 𝑦3,3,𝑛

𝐴4 𝑦4,1,1 , . . . , 𝑦4,1,𝑛 𝑦4,2,1 , . . . , 𝑦4,2,𝑛 𝑦4,3,1 , . . . , 𝑦4,3,𝑛
Table 11.21: 4×3 factorial design treatment

structure, with 𝑛 observations per cell.

In this representation, rows align with the levels of one specific factor

(designated as Factor A), while columns represent the levels of the second

factor (Factor B).

In that design, there are 4 × 3 = 12 total treatments. In balanced factorial

designs, the number of observations 𝑛 per unique combination of factor

levels (which we also call a cell) is the same value across all combinations.

For the current discussion, we assume that the collected data is balanced,

𝑛 responses to a cell.
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Assume that we are working with an 𝑎 × 𝑏 two-way design; there are

𝑁 = 𝑎𝑏𝑛 observations in total. We refer to the 𝑘th response in the

(𝑖 , 𝑗)−cell by 𝑦𝑖 , 𝑗 ,𝑘 .

By similarity to the one-way design, we adopt the following notation:

𝑦𝑖 ,•,• =
𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦 𝑖 ,•,• =
𝑦𝑖 ,•,•
𝑏𝑛

;

𝑦•, 𝑗 ,• =
𝑎∑
𝑖=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦•, 𝑗 ,• =
𝑦•, 𝑗 ,•
𝑎𝑛

;

𝑦𝑖 , 𝑗 ,• =
𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦 𝑖 , 𝑗 ,• =
𝑦𝑖 , 𝑗 ,•
𝑛

;

𝑦•,•,• =
𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦𝑖 , 𝑗 ,𝑘 , 𝑦•,•,• =
𝑦•,•,•
𝑁

.

Example We are interested in determining if a medicated agent can

help reduce inflammation among athletes. 6000 college-level athletes are

assigned to 30 lots of 200 athletes each.

The 30 lots are divided at random into ten groups of three lots each, with

each group receiving a different treatment.

A treatment is factorial combination of the medication dosage (Factor A,

with two levels), and when the medication is applied (Factor B, with five

levels: 1 hour after a game, immediately after the game, during the game,

immediately before the game, 1 hour before game).

In each lot, the response is the number of athletes who experience

inflammation at some point within a 24-hour period after the game.

Cases Application Period

Dosage 1 2 3 4 5

Low
10 6 8 12 19

7 18 36 29 46

9 16 19 35 37

High
3 7 9 10 15

4 4 10 10 26

7 0 4 0 10

The data is summarized below.

Cases Application Period

Dosage 1 2 3 4 5 𝑦𝑖 ,•,•

Low 26 40 63 76 102 307

High 14 11 23 20 51 119

𝑦•, 𝑗 ,• 40 51 86 96 153 426

We will discuss how to estimate the two-way factorial design model

parameters shortly. □
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Typically, we are interested in the treatment effects and interaction effects.

The mathematical representation of a two-way factorial experiment is

given by the model:

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇𝑖 , 𝑗 + 𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛;

the subscripts 𝑖 and 𝑗 serve as indices for the treatment levels A and B,

respectively.

We can re-write the treatment effects as follows:

𝜇𝑖 , 𝑗 = 𝜇•,• + (𝜇𝑖 ,• − 𝜇•,•) + (𝜇•, 𝑗 − 𝜇•,•) + (𝜇𝑖 , 𝑗 − 𝜇𝑖 ,• − 𝜇•, 𝑗 + 𝜇•,•)
= 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + (𝜏𝛽)𝑖 , 𝑗

By adopting this perspective, we can reformulate the model as:

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇+𝜏𝑖+𝛽 𝑗+(𝜏𝛽)𝑖 , 𝑗+𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛.

As always, we incorporate constraints to avoid an over-parametrized

model:

𝑎∑
𝑖=1

𝜏𝑖 = 0,
𝑏∑
𝑗=1

𝛽 𝑗 = 0,
𝑎∑
𝑖=1

(𝜏𝛽)𝑖 , 𝑗 = 0,
𝑏∑
𝑗=1

(𝜏𝛽)𝑖 , 𝑗 = 0.

The main treatment effects are represented by 𝜏𝑖 (Factor A) and 𝛽 𝑗 (Factor

B); the interaction effect by (𝜏𝛽)𝑖 , 𝑗 . This interaction plays a pivotal role

in understanding the experiment’s nuances.

The row effects tells us how the response changes as we transition from

one row to the next, averaged across all columns. In contrast, the column
effect tells us how the response changes as we move from once column

to the next, averaged across all rows.

The interaction effects tell us how the change in response depends on

columns when moving between rows, or how the change in response

depends on rows when moving between columns. An interaction term

between Factor A and Factor B means that the change in mean response

going from level 𝑖1 of Factor A to level 𝑖2 of Factor A depends on the level

of Factor B under consideration.
64

64: We cannot simply say that changing

the level of Factor A changes the response

by a given amount; we may need a dif-

ferent amount of change for each level of

Factor B.

Advantages Factorial experiments present several advantages.

When the factors do not interact, factorial experiments are more

efficient than one-at-a-time experiments, as the units can be used

to assess the (main) effects for both factors. Units in a one-at-a-time

experiment can only be used to assess the effects of one factor.

When the factors interact, factorial experiments can estimate the

interaction. One-at-at-time experiments cannot estimate interaction.

Use of one-at-a-time experiments in the presence of interaction can

lead to serious misunderstanding of how the response varies as a

function of the factors.

When there is no interaction, then the main treatment effects alone are

suffcient to describe the means of the response – such a model is said to

be additive.
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Estimation of Model Parameters As before, we seek to minimize the

sum of squared residuals

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝜀2

𝑖 , 𝑗 ,𝑘
=

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − 𝜇 − 𝜏𝑖 − 𝛽 𝑗 − 𝛾𝑖 , 𝑗)2 ,

where we write 𝛾𝑖 , 𝑗 for (𝜏𝛽)𝑖 , 𝑗 to simplify the notation.

We compute the partial derivatives and set them to 0:

𝜇 :

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦•,•,• − 𝑁�̂� = 0;

𝜏𝑖 :

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦𝑖 ,•,• − 𝑏𝑛�̂� − 𝑏𝑛�̂�𝑖 = 0;

𝛽 𝑗 :

𝑎∑
𝑖=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦•, 𝑗 ,• − 𝑎𝑛�̂� − 𝑎𝑛�̂� 𝑗 = 0;

𝛾𝑖 , 𝑗 :

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − �̂� − �̂�𝑖 − �̂� 𝑗 − �̂�𝑖 , 𝑗) = 𝑦𝑖 , 𝑗 ,• − 𝑛�̂� − 𝑛�̂�𝑖 − 𝑛�̂� 𝑗 − 𝑛�̂�𝑖 , 𝑗 = 0.

The system’s solution is

�̂� = 𝑦•,•,• ,

�̂�𝑖 = 𝑦 𝑖 ,•,• − 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎,

�̂� 𝑗 = 𝑦•, 𝑗 ,• − 𝑦•,•,• , 𝑗 = 1, . . . , 𝑏,

�̂�𝑖 , 𝑗 = 𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏.

Analysis of Variance The total sum of squares can be decomposed as

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

(𝑦𝑖 , 𝑗 ,𝑘 − 𝑦•,•,•)2 =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

[
(𝑦 𝑖 ,•,• − 𝑦•,•,•) + (𝑦•, 𝑗 ,• − 𝑦•,•,•) + (𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•) + (𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•)

]
2

= 𝑏𝑛
𝑎∑
𝑖=1

(𝑦 𝑖 ,•,• − 𝑦•,•,•)2 + 𝑎𝑛
𝑏∑
𝑗=1

(𝑦•, 𝑗 ,• − 𝑦•,•,•)2 + 𝑛
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝑦 𝑖 , 𝑗 ,• − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•)2 +
∑
𝑖 , 𝑗 ,𝑘

(𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•)2 ,

which we can re-write simply as

SST = SSA + SSB + SSAB + SSE.

The corresponding ANOVA table is shown below.

Table 11.25: ANOVA table for equality of

factorial effects and of interaction effects,

in a two-way design.

Source SS df MS F

Treatment A SSA 𝑎 − 1 MSA 𝐹𝐴 = MSA/MSE

Treatment B SSB 𝑏 − 1 MSB 𝐹𝐵 = MSB/MSE

Interaction AB SSAB (𝑎 − 1)(𝑏 − 1) MSAB 𝐹𝐴𝐵 = MSAB/MSE

Error SSE 𝑎𝑏(𝑛 − 1) MSE

Total SST 𝑁 − 1
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As always, there are equivalent formulas for the sums of squares:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦2

𝑖 , 𝑗 ,𝑘
−
𝑦2

•,•,•
𝑁

; SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•,•
𝑏𝑛

−
𝑦2

•,•,•
𝑁

;

SSB =

𝑏∑
𝑗=1

𝑦2

•, 𝑗 ,•
𝑎𝑛

−
𝑦2

•,•,•
𝑁

; SSTR =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑦2

𝑖 , 𝑗 ,•
𝑛

−
𝑦2

•,•,•
𝑁

;

SSAB = SSTR − SSA − SSB; SSE = SST − SSTR.

Example In a comprehensive study aimed at understanding the growth

dynamics of plants, we use a 33 factorial design, resulting in a total of 9 dis-

tinct treatments. For each treatment combination, we collect information

on 𝑛 = 4 replicates, ensuring robustness in the observations.

The response variable of interest is the height of the plants (in cm), all of

the same species, after a span of 30 days. We examine two critical factors:

the amount of daily sunlight exposure,
65

and the type of fertilizer used.
66

65: With three specific levels (4 hours, 8

hours, and 12 hours).
The responses are shown below.

66: With three unique compositions (Type

1, Type 2, Type 3).

Height (cm) Daily Sunlight Exposure (hours)

Fertilizer 12 8 4

Type 1 14.0 19.8 12.6 13.2 1.5 8.0

14.9 13.6 9.6 12.5 4.8 5.5

Type 2 14.0 14.5 4.4 3.0 3.0 6.0

8.4 17.0 9.0 6.5 9.2 4.8

Type 3 13.8 11.0 17.4 12.0 9.6 10.4

16.8 16.0 15.0 13.9 8.2 6.0

The primary objective of the study is not only to tease out the individual

and interactive effects of sunlight exposure and fertilizer composition on

the plant’s growth, but also to pinpoint whether a particular fertilizer

type consistently supports optimal growth across sunlight conditions.

The data is summarized below.

Height (cm) Exposure (hrs)

Dosage 12 8 4 𝑦𝑖 ,•,•

Type 1 62.3 47.9 19.8 130.0

Type 2 53.9 22.9 23.0 99.8

Type 3 57.6 58.3 34.2 150.1

𝑦•, 𝑗 ,• 173.8 129.1 77.0 379.9

We can also create this table in R.
67

67: We will use the tidyverse package

this time around, just to show it can be

done.

data = data.frame(

Fertilizer = as.factor(c(rep("Type 1",4),rep("Type 2",4),rep("Type 3",4))),

Height_12 = c(14.0, 14.9, 19.8, 13.6, 14.0, 8.4, 14.5, 17.0, 13.8, 16.8, 11.0, 16.0),

Height_8 = c(12.6, 9.6, 13.2, 12.5, 4.4, 9.0, 3.0, 6.5, 17.4, 15.0, 12.0, 13.9),

Height_4 = c(1.5, 4.8, 8.0, 5.5, 3.0, 9.2, 6.0, 4.8, 9.6, 8.2, 10.4, 6.0))
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library(tidyverse)

summary.main <- data |> group_by(Fertilizer) |>

summarise(h12 = sum(Height_12), h8 = sum(Height_8), h4 = sum(Height_4))

totals <- summary.main$h12 + summary.main$h8 + summary.main$h4

summary.big <- data.frame(cbind(summary.main[,c(2:4)], totals))

summary.end <- summary.big |>

summarise(h12 = sum(h12), h8 = sum(h8), h4 = sum(h4), totals = sum(totals))

summary.data <- rbind(summary.big,summary.end)

rownames(summary.data) <- c("Type 1", "Type 2", "Type 3", "totals")

summary.data

h12 h8 h4 totals

Type 1 62.3 47.9 19.8 130.0

Type 2 53.9 22.9 23.0 99.8

Type 3 57.6 58.3 34.2 150.1

totals 173.8 129.1 77.0 379.9

We can obtain the ANOVA table as follows.

a = nrow(summary.data) - 1

b = ncol(summary.data) - 1

n = nrow(data)/a

N = a*b*n

SST = sum(data[,c(2:(b+1))]^2)-summary.data[4,4]^2/N

SSA = sum(summary.data[b+1,c(1:a)]^2)/(b*n)-summary.data[4,4]^2/N

SSB = sum(summary.data[c(1:b),a+1]^2)/(a*n)-summary.data[4,4]^2/N

SSTR = sum(summary.data[c(1:b),c(1:a)]^2)/n-summary.data[4,4]^2/N

SSAB = SSTR - SSA - SSB

SSE = SST - SSTR

MSA = SSA/(a-1)

MSB = SSB/(b-1)

MSAB = SSAB/((a-1)*(b-1))

MSE = SSE/(a*b*(n-1))

ANOVA = as.data.frame(cbind(c(SSA,SSB,SSAB,SSE,SST),

c(a-1, b-1, (a-1)*(b-1), a*b*(n-1), N-1),

c(MSA,MSB,MSAB,MSE,0),

c(MSA/MSE,MSB/MSE,MSAB/MSE,0,0)))

rownames(ANOVA) = c("Treatment A", "Treatment B", "Interaction AB", "Error", "Total")

colnames(ANOVA) = c("SS", "df", "MS", "F0")

ANOVA

SS df MS F0

Treatment A 391.18722 2 195.593611 29.159629

Treatment B 106.83722 2 53.418611 7.963792

Interaction AB 96.13778 4 24.034444 3.583121

Error 181.10750 27 6.707685

Total 775.26972 35
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Hypothesis Testing Before discussing the different hypothesis tests, we

need the following results (see Exercises):

E(MSA) = 𝜎2 + 𝑏𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ; E(MSB) = 𝜎2 + 𝑎𝑛

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ;

E(MSAB) = 𝜎2 + 𝑛

(𝑎 − 1)(𝑏 − 1)
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ; E(MSE) = 𝜎2.

In general, we may be interested in the following tests:

presence/absence of interactions between Factor A and Factor B;

presence/absence of a Factor A effect;

presence/absence of a Factor B effect.

The hypothesis of absence of interaction between Factors A and B can

be formulated as

𝐻𝐴𝐵
0

: 𝜇𝑖 , 𝑗 − 𝜇𝑖 ,• − 𝜇•, 𝑗 + 𝜇•,• = (𝜏𝛽)𝑖 , 𝑗 = 0, 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏.

In the absence of interaction, the difference between averages obtained

by varying either Factor A or Factor B is the same regardless of the level

of the other factor:

𝜇𝑖 , 𝑗 − 𝜇𝑖 , 𝑗′ = 𝜇𝑖′ , 𝑗 − 𝜇𝑖′ , 𝑗′

𝜇𝑖 , 𝑗 − 𝜇𝑖′ , 𝑗 = 𝜇𝑖 , 𝑗′ − 𝜇𝑖′ , 𝑗′ , 𝑖 , 𝑖′ = 1, . . . , 𝑎, 𝑗, 𝑗′ = 1, . . . , 𝑏.

The absence of effect for Factor A can be formulated as

𝐻𝐴
0

: 𝜇𝑖 ,• − 𝜇•,• = 𝜏𝑖 = 0, 𝑖 = 1, . . . , 𝑎.

In the absence of interaction, we can rewrite the hypothesis as

𝐻𝐴
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖′ , 𝑗 , 𝑖 , 𝑖′ = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏,

which corresponds to the intuitive notion of the absence of effect of Factor A.

Similarly, the absence of effect for Factor B can be formulated as

𝐻𝐵
0

: 𝜇•, 𝑗 − 𝜇•,• = 𝛽 𝑗 = 0, 𝑗 = 1, . . . , 𝑏.

In the absence of interaction, we can rewrite the hypothesis as

𝐻𝐵
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖 , 𝑗′ , 𝑖 = 1, . . . , 𝑎, 𝑗, 𝑗′ = 1, . . . , 𝑏,

which corresponds to the intuitive notion of the absence of effect of Factor B.

The hypotheses 𝐻𝐴𝐵
0

, 𝐻𝐴
0

and 𝐻𝐵
0

use, respectively, the following tests:

𝐹𝐴𝐵 =
MSAB

MSE

∼ 𝐹(𝑎−1)(𝑏−1),𝑁−𝑎𝑏(𝛿2

𝐴𝐵), 𝛿2

𝐴𝐵 =
𝑛

𝜎2

𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ;

𝐹𝐴 =
MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎𝑏(𝛿2

𝐴), 𝛿2

𝐴 =
𝑏𝑛

𝜎2

𝑎∑
𝑖=1

𝜏2

𝑖 ;

𝐹𝐵 =
MSB

MSE

∼ 𝐹𝑏−1,𝑁−𝑎𝑏(𝛿2

𝐵), 𝛿2

𝐵 =
𝑎𝑛

𝜎2

𝑏∑
𝑗=1

𝛽2

𝑗 .
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When𝐻𝐴𝐵
0

,𝐻𝐴
0

, and/or𝐻𝐵
0

hold, we note that𝐸(MSAB),𝐸(MSA), and/or

𝐸(MSB) take on the value MSE = 𝜎2
, respectively. Thus, large values

of 𝐹𝐴𝐵, 𝐹𝐴, and/or 𝐹𝐵 imply that the observations do not support the

corresponding null hypotheses.

More generally, When 𝐻𝐴𝐵
0

, 𝐻𝐴
0

, and/or 𝐻𝐵
0

hold, the corresponding test

statistic 𝐹𝐴𝐵, 𝐹𝐴, and/or 𝐹𝐵 follow a central 𝐹-distribution. Thus, we

reject 𝐻𝐴𝐵
0

, 𝐻𝐴
0

, and/or 𝐻𝐵
0

, respectively, at significance 𝛼 if

𝐴𝐵 : 𝐹0 > 𝐹𝛼;(𝑎−1)(𝑏−1),𝑁−𝑎𝑏 ;

𝐴 : 𝐹0 > 𝐹𝛼;𝑎−1,𝑁−𝑎𝑏 , and/or

𝐵 : 𝐹0 > 𝐹𝛼;𝑏−1,𝑁−𝑎𝑏 .

In practice, we start by testing the absence/presence of interactions. If the

interaction is not significant, then we perform the tests corresponding to

treatment effects for Factors A and B.
68

68: In the latter case, the hypotheses 𝐻𝐴
0

et 𝐻𝐵
0

can easily be interpreted; when the

interaction is statistically significant, the

interpretation of the treatment effect may

be more challenging.

Example In the plant growth example, we have 𝐹𝐴𝐵 = 3.58, 𝐹𝐴 = 29.16,

and 𝐹𝐵 = 7.96. At significance level 𝛼 = 0.05, we find:

qf(0.05, df1=(a-1)*(b-1), df2=N-a*b, lower.tail=FALSE)

qf(0.05, df1=a-1, df2=N-a*b, lower.tail=FALSE)

qf(0.05, df1=b-1, df2=N-a*b, lower.tail=FALSE)

[1] 2.727765

[1] 3.354131

[1] 3.354131

Since 3.58 > 𝐹0.05,4,27 = 2.73, we reject 𝐻𝐴𝐵
0

and conclude that the

interaction is significant at 𝛼 = 0.05. Also, since 7.96 > 𝐹0.05,2,27 = 3.35

and since 29.16 > 𝐹0.05,2,27 = 3.35, we reject both 𝐻𝐴
0

and 𝐻𝐵
0

, but it is

not as obvious what the means for the data. □

11.6.2 Model Validation

The three basic model assumptions are still that the errors are indepen-
dent, normally distributed, and have constant variance. As we have

done before, we would use the residuals in lieu of the errors to validate

these assumptions.

In the two-way balanced factorial design, the predicted values are given

by

�̂�𝑖 , 𝑗 ,𝑘 = �̂� + �̂�𝑖 + �̂� 𝑗 + (𝜏𝛽)𝑖 , 𝑗 = 𝑦 𝑖 , 𝑗 ,•;

the model residuals are thus given by

𝑒𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − �̂�𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 , 𝑗 ,•.
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11.6.3 Model Without Interaction

In the absence of interaction, the model simplifies to

𝑦𝑖 , 𝑗 ,𝑘 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝜀𝑖 , 𝑗 ,𝑘 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑛.

In that case, the estimators of the model parameters are given by

�̂� = 𝑦•,•,•

�̂�𝑖 = 𝑦 𝑖 ,•,• − 𝑦•,•,• , 𝑖 = 1, . . . , 𝑎

�̂� 𝑗 = 𝑦•, 𝑗 ,• − 𝑦•,•,• , 𝑗 = 1, . . . , 𝑏,

and the decomposition of the total sum of squares is

SST = SSA + SSB + SSE

𝑁 − 1 = (𝑎 − 1) + (𝑏 − 1) + [(𝑎 − 1)(𝑏 − 1) + 𝑎𝑏(𝑛 − 1)]
= (𝑎 − 1) + (𝑏 − 1) + (𝑁 − 𝑎 − 𝑏 + 1).

The treatment sums of squares SSA and SSB are identical to those in the

ANOVA model with interaction. The simpler formulas collapse to:

SST =

𝑎∑
𝑖=1

𝑏∑
𝑗=1

𝑛∑
𝑘=1

𝑦2

𝑖 , 𝑗 ,𝑘
−
𝑦2

•,•,•
𝑁

; SSA =

𝑎∑
𝑖=1

𝑦2

𝑖 ,•,•
𝑏𝑛

−
𝑦2

•,•,•
𝑁

;

SSB =

𝑏∑
𝑗=1

𝑦2

•, 𝑗 ,•
𝑎𝑛

−
𝑦2

•,•,•
𝑁

; SSE = SST − SSA − SSB.

The corresponding ANOVA table is given below:

Source SS df MS F

Treatment A SSA 𝑎 − 1 MSA 𝐹𝐴 = MSA/MSE

Treatment B SSB 𝑏 − 1 MSB 𝐹𝐵 = MSB/MSE

Error SSE 𝑁 − 𝑎 − 𝑏 + 1 MSE

Total SST 𝑁 − 1

Table 11.29: ANOVA table for equality of

factorial effects, with no interaction effects,

in a two-way design.

We test for the null hypotheses

𝐻𝐴
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖′ , 𝑗 and 𝐻𝐵
0

: 𝜇𝑖 , 𝑗 = 𝜇𝑖 , 𝑗′

using the test statistics

𝐹𝐴 =
MSA

MSE

∼ 𝐹𝑎−1,𝑁−𝑎−𝑏+1(𝛿2

𝐴), 𝛿2

𝐴 =
𝑏𝑛

𝜎2

𝑎∑
𝑖=1

𝜏2

𝑖 ,

𝐹𝐵 =
MSB

MSE

∼ 𝐹𝑏−1,𝑁−𝑎−𝑏+1(𝛿2

𝐵), 𝛿2

𝐵 =
𝑎𝑛

𝜎2

𝑏∑
𝑗=1

𝛽2

𝑗 .

The analysis of the residuals is based on the following residuals

𝑒𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − �̂�𝑖 , 𝑗 ,𝑘 = 𝑦𝑖 , 𝑗 ,𝑘 − (�̂� + �̂�𝑖 + �̂� 𝑗) = 𝑦𝑖 , 𝑗 ,𝑘 − 𝑦 𝑖 ,•,• − 𝑦•, 𝑗 ,• + 𝑦•,•,•.

The rest of the analysis proceeds as before.
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11.6.4 Multiple Comparisons

As in previous sections, we may want to perform multiple comparisons.

More often than not, we are interested in constructing simultaneous
confidence intervals that compare the effects for each factor.

Throughout, recall that we estimate 𝜎2
by

𝑠2 = MSE =
SSE

𝑁 − 𝑎𝑏 =
SSE

𝑎𝑏(𝑛 − 1) .

Suppose that we are interested in all possible pairwise comparisons for

treatment A; in that case, there are 𝐾 =
(𝑎
2

)
= 𝑎(𝑎 − 1)/2 possible pairs to

test. For treatment B, there are 𝐿 = 𝑏(𝑏 − 1)/2 possible pairs to test.

We could use the Bonferroni procedure to do so; the simultaneous

confidence intervals corresponding to Factor 𝐴 take the form

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑡𝛼/(2𝐾),𝑁−𝑎𝑏
√

MSE

√
2

𝑏𝑛
,

and those for Factor 𝐵, the form

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ± 𝑡𝛼/(2𝐿),𝑁−𝑎𝑏
√

MSE

√
2

𝑎𝑛
.

If instead we use Tukey’s method, the simultaneous confidence intervals

corresponding to Factor A are given by

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑞𝛼;𝑎,𝑁−𝑎𝑏
√

MSE

√
1

𝑏𝑛
,

and those for Factor 𝐵, by

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ± 𝑞𝛼;𝑏,𝑁−𝑎𝑏
√

MSE

√
1

𝑎𝑛
.

For Scheffé’s approach, the simultaneous confidence intervals corre-

sponding to Factor A are

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ±
√
(𝑎 − 1)𝐹𝛼;𝑎−1,𝑁−𝑎𝑏

1/2√
MSE

√
2

𝑏𝑛
,

and those for Factor B,

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ±
√
(𝑏 − 1)𝐹𝛼;𝑏−1,𝑁−𝑎𝑏

1/2√
MSE

√
2

𝑎𝑛
.

For the two-way balanced factorial model without interaction, the

simultaneous confidence intervals are similar, except that the number of

degrees of freedom in the residual sum of squares SSE is now𝑁−𝑎−𝑏+1.

In that case, the estimator of 𝜎2
is

𝑠2 = ˜
MSE =

SSE

𝑁 − 𝑎 − 𝑏 + 1

.

For instance, the simultaneous confidence intervals for Factor A obtained
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using Tukey’s method are given by

𝜏𝑖 − 𝜏𝑖′ : 𝑦 𝑖 ,•,• − 𝑦 𝑖′ ,•,• ± 𝑞𝛼;𝑎,𝑁−𝑎−𝑏+1

√
˜

MSE

√
1

𝑏𝑛
,

whereas the simultaneous confidence intervals for Factor B obtained via
Scheffé’s approach, say, are given by

𝛽 𝑗 − 𝛽 𝑗′ : 𝑦•, 𝑗 ,• − 𝑦•, 𝑗′ ,• ±
√
(𝑏 − 1)𝐹𝛼;𝑏−1,𝑁−𝑎−𝑏+1

√
˜

MSE

√
2

𝑎𝑛
.

11.6.5 Factorial Designs with Multiple Factors

The two-way factorial design can be naturally extended to multiple
factors. For instance, the three-way factorial design 𝑎 × 𝑏 × 𝑐 is:

𝑦𝑖 , 𝑗 ,𝑘,𝑙 = 𝜇𝑖 , 𝑗 ,𝑘+𝜀𝑖 , 𝑗 ,𝑘,𝑙 , 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏; 𝑘 = 1, . . . , 𝑐; 𝑙 = 1, . . . , 𝑛

where

𝜇𝑖 , 𝑗 ,𝑘 = 𝜇 + 𝜏𝑖 + 𝛽 𝑗 + 𝛾𝑘 + (𝜏𝛽)𝑖 , 𝑗 + (𝜏𝛾)𝑖 ,𝑘 + (𝛽𝛾)𝑗 ,𝑘 + (𝜏𝛽𝛾)𝑖 , 𝑗 ,𝑘 .

With three factors, we can explore second-order interactions 𝐴𝐵, 𝐴𝐶,

and 𝐵𝐶, or the third-order interaction 𝐴𝐵𝐶. Such designs are out of

scope for these course notes,
69

more details are available in [2, 5]. 69: The ANOVA table for the 𝑎 × 𝑏 × 𝑐

design has 9 rows, but is otherwise what

one would expect to see.

11.7 Exercises

1. Conduct an analysis of the paint example of Section 11.2.1 assuming

that the samples are independent (unpaired test). Compare with

the results of the paired test on the same data.

2. Recreate the analysis of the apparatus example of Section 11.2.4

using R. What if the sample sizes were 𝑛1 = 25 and 𝑛2 = 30, instead?

3. Show directly that the decomposition SST = SSA+ SSE of one-way

classification holds.

4. In a one-way classification model with 𝑎 = 2, show that the power

of the 𝐹−test is maximized when
1

𝑛 + 1

𝑁−𝑛 is minimized.

5. Use the least square estimation principles to establish the normal

equations, and estimate the parameters in the unbalanced one-way

classification model. What are the estimated treatment effects and

the estimated difference between treatments in that case? What

about their confidence intervals?

6. Compute the ANOVA table for the completely randomized unbal-

anced design in the Kenton Food Company example.

7. In the one-way random-effects ANOVA model, show that E(MSE) =
𝜎2

and E(MSA) = 𝜎2 + 𝑛𝜎2

𝑇
.

8. In the one-way random-effects ANOVA model, show that

(𝑎 − 1)MSA

𝜎2 + 𝑛𝜎2

𝑇

∼ 𝜒2

𝑎−1
.
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9. In a two-factor RCBD, show that

E(MSA) = 𝜎2 + 𝑏

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ,

E(MSB) = 𝜎2 + 𝑎

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 .

10. Verify if the RCBD model assumptions are met for the credit card

example.

11. Show directly that the total sum of squares in a balanced two-way

factorial design breaks down as

SST = SSA + SSB + SSAB + SSE.

12. In the two-way balanced factorial design, show that

E(MSA) = 𝜎2 + 𝑏𝑛

𝑎 − 1

𝑎∑
𝑖=1

𝜏2

𝑖 ;

E(MSB) = 𝜎2 + 𝑎𝑛

𝑏 − 1

𝑏∑
𝑗=1

𝛽2

𝑗 ;

E(MSAB) = 𝜎2 + 𝑛

(𝑎 − 1)(𝑏 − 1)
𝑎∑
𝑖=1

𝑏∑
𝑗=1

(𝜏𝛽)2𝑖 , 𝑗 ;

E(MSE) = 𝜎2.

13. In the medical agent example (two-way factorial design), is the

interaction effect significant at 𝛼 = 0.05? What about the dosage

effect? The application period effect?

14. Produce simultaneous confidence intervals at family significance

𝛼 for treatment effects (Factors A and B) in the medical agent and

plant growth examples.
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by Jen Schellinck and Patrick Boily

Modeling plays a central role in a wide range of quantitative endeavours.

To thrive as a successful quantitative analyst and consultant, it is crucial to

grasp the various types of modeling and models, grasp their similarities

and distinctions, and identify suitable applications.

However, due to its pervasive presence across the quantitative spectrum,

the significance of modeling is often underestimated and taken for

granted, in part because it serves as the foundation of, and is integrated

into, numerous techniques.

In reality, quantitative analysts and consultants are inherently modelers.

As such, possessing a solid overall understanding of modeling ( beyond

mastering specific techniques) and being able to construct models in a

broader sense greatly enhances various quantitative undertakings.

12.1 Introduction

Analogical reasoning is the act of reasoning from one specific occurrence

to another specific occurrence, on the basis of similarity. For example,

[HAND:FINGERS, FOOT:—].

A major benefit of this type of reasoning is that it can reveal new aspects or

relationships between objects that have not previously been considered.

Clearly, the choice of objects used in an analogy is important:

[HAND:FINGERS, ORANGE:—]

likely yields little useful insight, but

[HAND:FINGERS, PLANT STEM:—]

might be more interesting (see Figure 12.1).

Analogical reasoning is viewed by some as a primary cognitive strategy,

underlying much of human cognition [7, 6, 4].

Keeping this context in mind, a model is simply an independent entity,

or structure, that has useful similarities to another structure of interest,

and which allows for analogical reasoning. This structure of interest is

referred to as the target of the model.

We can carry out inductive or deductive reasoning on the model and

then, via analogical reasoning, transfer our insights about the model over

to the target, and in this way learn something about the target. The target
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Figure 12.1: Can we draw an analogy be-

tween the top row of shapes and the bot-

tom row of images? What should the shape

and colour of the last image in the bottom

row be?

?

structure might be a single object or a system of objects, or a process

being carried out by this system of objects.

Our ability to create a model with useful similarities to the target system,

and then learn about our chosen target system using this model, can be

extremely powerful.

For instance, we can make a very small model of something that is, in

reality, very large or very distant – for example, a small scale model of

the solar system, made out of wire and styrofoam – and use this small

simple model to come up with accurate predictions about this large and

distant system.

The solar system model example also showcases the importance of

understanding which parts of the model are usefully similar to the
target system in the context of our intended use of the model. If we try

to use our simple solar system model to draw conclusions relating to the

relative densities of planets in the solar system, we will be disappointed.

Although there are many different types of models, which we will

further discussed later, in general we can say that models have two main

functions: explanation and prediction.

In some cases, we might have a system whose behaviour we do not

fully understand and cannot explain. Models can help us increase

our understanding of the mechanisms underlying the behaviours

or properties of interest.

In other cases, regardless of how a type of system is generating

a particular behaviour, or came to have a certain property, our

interest is not in understanding how this came to be, but rather in

predicting the presence (or absence) of that behaviour or property

in another system of the same type.

Modelers often try to create taxonomies or categorisations of models.

These efforts have arguably not been that successful from a conceptually

rigorous point of view but, pragmatically, it is still useful to consider the

types of models that people commonly use and discuss (see [16] for a

useful review and discussion of a variety model and simulation types).

It has been our experienced that clients and stakeholders usually take

a dim view of simulations, as though they are somehow less ‘valid’ or
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‘real‘ than other quantitative approaches.
1

This is worth remembering 1: The reasons for this are varied, and

perhaps not entirely unfounded as simula-

tions can easily be used in the wrong way

or with the wrong endgame in mind.

when producing simulation solutions.

12.1.1 Static Models

At the heart of simulations lies the concept of a model. Models serve as

essential tools in understanding systems, employing various strategies.

Ultimately, their purpose is to enhance the modeler’s comprehension of

a system, using the term "system" in an axiomatic sense.

Conceptual Models

A conceptual model is an abstraction of a real world system or process

that defines which elements of the system or process are of interest in the

current context, and how these elements and their relationships will be

defined for the purposes of drawing conclusions about the behaviours

or properties of the system.

Arguably, before any other type of model can be generated, a conceptual

model must first be created, either implicitly or explicitly.

Explicit conceptual models may take the form of diagrams or formalized

descriptions of the system. Conceptual models may then be implemented

as other types of models (e.g. mathematical, simulation).

Implicit conceptual models are often linked with gaps in the under-

standing of a system – assumptions that go unchallenged and unstated

are often less clear and obvious than is originally believed. An engineer

may, for instance, state to a consultant that the probability of a certain

component failing by time 𝑡 is 0 without feeling the need to specify that,

in the jargon of the discipline, this really means that

𝑃(failure by time 𝑡 > 𝑇) = 𝜀 > 0,

for a “sufficiently large” 𝑇 and a “sufficiently small” 𝜀; the consultant,

not knowing the conventions of the field, might mistake this for

𝑃(failure by time 𝑡) = 0 for all 𝑡;

if not cleared up, the misunderstanding can propagate through the

simulation, potentially making it useless in practice.

Mathematical Models

A mathematical model uses mathematics to support reasoning about

a real world system. Relationships between objects in the system,
2

are 2: Or their properties.

represented by mathematical relationships between variables.

If the relationships within the mathematical model are sufficiently similar
to relationships between objects in the system of interest, then carrying

out truth-preserving mathematical manipulations on the model should

result in valid new conclusions about the system.
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Arguments represented by symbolic logic also fall under this category.

As a result, it could readily be said that all models implemented on

computers are a type of mathematical model. That being said, the

expression ‘mathematical model’ typically refers to models that are not

necessarily implemented on computers, and which consist of systems of

mathematical equations.

Although mathematical models may represent processes and dynamic

elements of systems by including time and space as variables, the models

themselves are static, in the sense that they do not change over time in

a manner that is similar to the ways in which the target system itself

changes over time.

Mathematical models may still be implemented on computers and

methods for solving the systems of equations in these models (e.g.

symbolic manipulations, numerical analysis) may be carried out using

computer algorithms.

Nevertheless, it is important to remember that although both the work

performed on a computer and simulations take place within a computa-

tional environment, finding solutions to equations through programmatic

strategies should not be conflated with the conventional understand-

ing of “simulations”. We will elaborate on this topic in the subsequent

discussion.

Statistical Models

Conceptually, statistics help us represent the world in terms of popula-
tions and processes, which have certain properties that can be themselves

be represented using mathematical expressions. Statistical models could

thus be described as mathematical models motivated by a certain (statis-

tical) conceptualisation of real world processes.

To-Scale Physical Models

A to-scale physical model is a model that is constructed from physical
materials, which are shaped and positioned in such a way as to accurately

represent the physical layout, positions, and sizes of elements of the

target system, as well as relative to each other (see Figure 12.2 for an

example of an architectural model).

Data Models

A data model is a conceptual model used to design the structure of data

storage. Since data itself represents facts about a system, it is appropriate

to first conceptually model the properties and relationships that exist

within the system, and which are represented by the data, and then use

this conceptual model to create a data storage structure that can be used

to efficiently hold, extract, edit and add to the stored data (see Figure 12.3

for an example).
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Figure 12.2: To-scale architectural model

of the interior of an office building [5].
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Figure 12.3: A preliminary data model of a restaurant reservation system, which can be used to help design an efficient data storage

structure, as well as develop data analysis strategies.
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12.1.2 Dynamic Models

In some situations, only the static aspects of a system are interesting, or

the system itself is mostly static.

For instance, if we build a physical model of a house, we expect both the

house and the model to be relatively unchanging – the measurements of

the rooms and the furniture in the house will not change from minute to

minute,
3

and the model will not need to change either.3: Although they could change over years

due to remodeling, or even drastically if

the house is sold to new owners with a

different sense of aesthetics.

We can then use the model to reason about the house:

if the model couch fits against this wall in the model house, we can

reason that the real couch will fit in the real house;

if eight model chairs cannot simultaneously be placed around the

model kitchen table, than eight real chairs cannot be simultaneously

be placed around the real kitchen table, etc.

Other systems, however, are more active, or dynamic, with processes

taking place within the system. When modeling these dynamic system

elements, we often talk about simulation models or simply simulations.

Although the term ‘simulation’ is not precisely defined, it typically

indicates that a model is intended to reflect the behaviour of the target
system – its processes – over time, and also that the model itself will
independently change over time, when it is run.

The goal is to construct the simulation in such a way that it will change

over time in ways that are similar to the manner in which the system

itself changes over time. As a result we can use the simulation to predict

past, current, and future behaviours of the system.

Historically, simulations have often modeled individual object-level
properties and behaviours, as well as the mechanisms underlying rele-

vant behaviours, rather than group-level properties or system outputs,

but this does not have to be the case.

Modeling Time and Movement

How do we incorporate time and movement into a model? To return to

our styrofoam and wires model of the solar system, if we set it up so that

when we turn a crank the planets and moons move realistically around a

light bulb in the centre of the model (representing the sun), then we have

a dynamic model, or simulation of the solar system. We can simulate

what will happen within the actual solar system over time.

As another example, if we wish to know how emergency responders

might behave in different plane crash scenarios, we could set up a number

of simulated crash scenarios, with a life-size model of a crashed plane,

and actors behaving as injured people might. We can then have the

emergency responders try out (i.e., simulate) different approaches and

strategies to dealing with plane crashes.

The advent of computers greatly facilitated the construction and possible

uses of simulations, because it made it possible to simulate dynamic

systems virtually instead of having to create a dynamic physical model

of the system, whose elements could be represented as data structures

(and variables within these structures) within computer programs. The
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physical interactions between these system elements could then, in turn,

be represented by logical rules and mathematical equations operating

over these data structures.

These logical rules and mathematical equations pushed computer simula-

tions closer to the domain of mathematical models, relative to physically

constructed models. At the same time, computer simulations retained the

strategy used by these physical models of determining what would hap-

pen to the system by moving the model through its expected behaviours

step-by-step, over time.

Rather than mechanically moving the model (or using people and

other elements in this capacity) computer models rely on the computer

processor to run the program that represents the system, and essentially

‘move’ (in an electronic sense) the model based on the behaviours the

model implements. As discussed earlier, this is a different technique than

the one used by mathematical models implemented on computers.

12.1.3 Uses, Data, and Contrast with Mathematical Modeling

Simulations are typically used to

better understand actual real-world phenomena and systems, and

explore phenomena that don’t currently exist but which could exist

hypothetically.

Simulations can allow us to both predict what our target system will do

under particular circumstances, but also explain why a system behaves

the way it does. However, given that we build simulations using only

what is already known (or possibly suspected) to be either currently the

case about the system, or at least plausible within the conceptual phase

space in which the system resides, you may wonder how a simulation

could possibly tell us anything new about the system, and thus, why we

would ever bother running simulations.

Human thinking is typically unable to capture all the possible interactions

between a system’s various parts, and how these parts influence each other

in particular circumstances; merely thinking through the behaviours

of a system which is even slightly complicated is likely lead us to miss

implications, and, as a result, incorrectly predict or explain the system’s

behaviour. If, instead, we introduce what we do know into the simulation

and allow it to behave based on these rules, behaviours that we would

not easily have anticipated can emerge from the process.

Consequently, the notion of emergence is crucial in simulations. We can

say that simulation behaviours emerge when they are not programmed

in the simulation directly, but rather occur as the result of interactions

between model components that are themselves programmed into the

simulation directly.

The emergent behaviours may occur at different levels of granularity
of the system. For example, if we create a simulation of people in a

city, we might see emergent behaviour with respect to which people

most frequently interact with which other people, and we might also see

emergent behaviour at the population level, where the average number

of people in a given location is equal to a particular value over time.
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We can see from this example how emergence allows us both to predict

and to explain elements of a system that were not previously amenable

to such efforts. We can predict average numbers of people in a particular

location, if this information is not available from another source; if it is,

we can still use the simulation to explain the origins and underpinnings

of this number, by referring to the more granular system components

whose interactions lead to the value.

‘Emergence’ is a concept that has crossed-over into a large number of

areas of human endeavour. Don’t be surprised to hear clients and end

users talk about “emergent phenomena” in contexts where you would

not normally expect to hear it.
4

Be sure to clarify the situation at an4: It is quite conceivable that they have

a very thorough understanding of what

emergence means and what it entails –

don’t make the classic quantitative con-

sulting mistake of assuming that clients

do not understand technical concepts ...

you never know what their background

and interests are – but, together with terms

like ‘synergy’ or ‘big data’, it seems to have

entered the business lexicon as a trendy

but ultimately meaningless term.

early stage (in the proposal, say) in order to avoid the confusion and

headaches that can result when deliverables are handed off.

Simulations and Data

All modeling activities rely on the modeler having accurate and relevant
information or data about the target system, which allows for the con-

struction of a model with useful similarities to the target system, which

is basically a data collection/information gathering problem. But even

then, simulations have a particular relationship with data:

first and foremost, data is needed in order to properly set simulation

parameters – the initial simulation settings that determine how

the simulation will run in a particular instance; in the absence of

this type of information, although the simulation may generate

outputs that could, in principle, have some relevance to the target

system in some circumstances, the simulation behaviour is unlikely

(or at least, should not be expected) to overlap with target system

behaviours of interest within the specific context in which the

simulation was generated;

secondly, simulations have the capacity to generate large amounts

of data about the behaviour of the simulation, and by extension,

the target system. This data, sometimes referred to as ‘synthetic

data’ or ‘simulated data’, can be uses as a stand-in for actual data

about the system, just as the model is being used as a stand-in for

the target system.

When very little is know about reasonable parameters values, a prelimi-

nary simulation might first be required in order to produce data which

could then be used to set simulation parameters, which, in turn, could

be used to produce data for analysis.

It is not too difficult to conceive of multiple links being added to this

chain; our advice is to keep the number of such links to a minimum

(preferably zero) – in light of the point made in the first item above, it

might be preferable to garner information about parameters from first
principles (or other models).

Simulations vs. Mathematical Models

The procedural element of computer models, whereby the behaviour

of the target system must be, in a sense, mechanically replicated by the
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data structures and procedures of the computer program, distinguishes

computer simulations from mathematical models, which, rather than

modeling the temporal, dynamic components of systems by incorporating

a temporal, dynamic component directly into the model, instead represent

them as variables in mathematical equations that represent components

and behaviours of the system.

On this front, the advantage of mathematical models is that deductive
reasoning (or first principles reasoning) can, in theory, be used to deter-

mine the target system behaviour, rather than have to resort to ‘running’

the model over a range of starting conditions. This is appealing, as math-

ematical strategies can allow for more definitive and general statements

about the system (e.g. “The system will never do the following”; “The

system will always do the following”, etc.); these types of statements are

typically outside the reach of even the most advanced mechanical or pro-

grammatic simulations. In practice, however, the underlying complexity

of such models limit the usefulness of this approach in most scenarios.

Example Consider, for instance, the 𝑛−body problem (𝑛BP) of classical

mechanics, which consists in predicting the individual trajectories of 𝑛

celestial bodies bound by gravitational attraction.

Using Newtonian mechanics, the trajectories can be deduced to follow

the paths described by the following system of differential equations:

𝑚1

d
2q1

d𝑡2
=

∑
𝑗≠1

𝐺𝑚1𝑚 𝑗(q𝑗 − q1)
∥q𝑗 − q1∥3

, · · · , 𝑚𝑛
d

2q𝑛
d𝑡2

=
∑
𝑗≠𝑛

𝐺𝑚𝑛𝑚 𝑗(q𝑗 − q𝑛)
∥q𝑗 − q𝑛 ∥3

,

where 𝑚𝑖 and q𝑖(𝑡) are, respectively, the mass and the trajectory of the 𝑖th

celestial body in 3-space, and 𝐺 is Newton’s constant. These equations

describe, in principle, the behaviour of stars in a globular cluster, say, or

of the Earth-Sun or the Earth-Moon system.

They cannot provide a complete description as the range of gravitational

attraction is infinite – every ‘object’ in the Universe influences every ‘other’

object to some extent, no matter how distant,
5

and other forces/factors 5: At large distances, the force due to grav-

ity overwhelms the other 3 forces, how-

ever.

may also act on the bodies,
6

but for most practical applications,
7

they

6: See the precession of Mercury, for in-

stance.

7: If one can consider astronomy a practi-

cal discipline.

are more than sufficient as long as we are willing to ignore relativistic

effects.

What do the solutions look like? A typical mathematical approach would

be to try to solve the 2BP, and to see if the solution can be generalized to

more complex cases.

The two-body problem has an exact solution. The centre of mass of the

two bodies is the vector

x(𝑡) = 𝑚1q1(𝑡) + 𝑚2q2(𝑡)
𝑚1 + 𝑚2

.

In the ‘centre-of-mass frame’,
8

physical conservation laws show that 8: That is, in the frame that moves along

with the centre of mass.
the trajectories of the two bodies are co-planar and ‘orbit’ the system’s

barycentre, with an angle 𝜃𝑖(𝑡) depending on the reduced mass of the

system 𝑚∗ =
𝑚1𝑚2

𝑚1+𝑚2

and on the effective potential𝑈(𝑟(𝑡), ℓ , 𝑚∗), where

𝑟(𝑡) = ∥q2 − q1∥ and ℓ is the system’s angular momentum.
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Figure 12.4: Possible solutions of the 𝑛−body problem, based on [14]: planetary 3BD (left), 4BP pairs of bodies orbiting each other (middle),

3−body choreography (right).

Various combinations of parameters lead to various orbits; if the effective

potential admits a local minimum, for instance, the orbits will oscillate

around the barycentre;
9

if the effective potential does not admit a9: Elliptic or precessing elliptic paths, in

each Sun-planet system.
minimum, then the orbits may escape to infinity.

10

10: Hyperbolic or parabolic paths, such as

in some Sun-comet systems.
Under some restrictions on the masses and momenta of the bodies,

the 𝑛BP can be shown to have closed-form solutions or theoretically

understood approximate solutions (see [8] for a list, and Figure 12.4 for

some illustrations), including:

Euler’s Problem of Two-Fixed Centres allows for colinear motion

in systems where two of the three masses are comparable and fixed;

the restricted 3BP shows the existence of 5 fixed configurations

(involving the Lagrangian points) which rotate around the system’s

barycentre in cases where one of the masses is negligible, such as

is the case in the Sun-Jupiter-Trojans systems (there are two);

the planetary 𝑛BP admits quasi-periodic solutions in systems

where one of the masses is significantly larger than the other 𝑛 − 1

masses, which shows that planets in stable, planar, and nearly

circular orbits around a star can transition to chaotic orbits, but that

these orbits would be bounded by quasiperiodic tori and so would

preserve some regularity, and

𝑛−body choreography in which all the masses move on the same

manifold, without collisions.

The general 𝑛−body problem can be solved analytically using Taylor

Series (known as Sundman’s series), but the series converge so slowly as

to be of no practical use for astronomical results.
11

11: Which would require at least 10
8000000

terms in the 3BP case, well beyond even

what modern computers can produce [1]. By contrast, in order to draw conclusions from a simulation we must first

set certain initial conditions and then run the simulation and examine

the resulting output. Each simulation run represents only one specific

instance in the model space. As a result, it can be difficult, if not downright

impossible, to draw general conclusions from the results of one or even

multiple simulation runs.
12

12: To say nothing of exploring the out-

come of using different parameter values.

This has lead to criticism over the use of simulations in some milieus, on

the basis that simulations should never be used if mathematical models

can be used instead.
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However, the 𝑛BP illustrates why taking this hard-line position may

be inadvisable; clearly, there are circumstances in which it is difficult

to create solvable (actionable) mathematical models that represents the

target system in ways sufficiently similar to the system in relevant respects

in order to for salient and accurate conclusions to be drawn about that

system, in which case a simulation might provide greater insight.

It is also possible to create hybrids of mathematical and simulation

models to allow for increased insight into system behaviours.

If 𝑛 is relatively small, the 𝑛BP trajectories can be approximated to a high-

level of accuracy by using numerical methods to solve the corresponding

system of differential equations.
13

For astronomical bodies that avoid 13: See [11] for an example of planetary

system formation).
collisions (or near encounters), there are two main technical issues:

the first one is that the 𝑛BP problem is chaotic for 𝑛 > 2,
14

so 14: A whimsical take on the effects of such

unpredictable behaviour is offered in Liu

Cixin’s The Three-Body Problem [3].

that small errors such as can be generated by truncating initial

conditions or intermediate calculations may lead to simulated

solutions that are wildly divergent from the true paths;

astronomical simulations typically run over million of years, leading

to an accumulation of integration errors; this is problematic as

the approximate solutions are only mathematical objects, whereas

the actual bodies they represent have to satisfy physical laws

(including the various conservation laws); this can be tackled by

using analytical methods such as the variational principle and

perturbation theory to produce trajectory manifolds on which to

‘project’ the integrated approximations.

For many bodies, the time complexity is related to the square of the

number of bodies, which can make the direct simulation unpractical.

In that case, useful simulations must approximate the essential character

of the actual trajectories while reducing the computational complexity.

There are many dedicated methods to achieve this goal, including so-

called tree code and particle mesh methods [8].

While these particular issues may not apply to general simulations, the

interplay of valid approximation and computational feasibility lies at the

core of successful simulations.

12.1.4 Simulation Types

We have already alluded to some simulation types; in this section we

provide more concrete descriptions of the available modeling avenues.

Full-Scale Physical Simulations

Full-scale physical simulations are life-sized, physically realistic simu-

lations, which make use of structures that already exist to replicate or

reproduce target system behaviours.

For example, to simulate boat rescue situations (and then practice re-

sponding under various scenarios), the Coast Guard might make use

of existing vessels and emergency personnel, and introduce actors play-

ing the part of accident victims, a wave machine to simulate possible

environmental conditions, etc.
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Figure 12.5: Harvard orrery [12], and Baltic Aviation Academy Airbus B737 Full Flight Simulator (FFS) in Vilnius (public domain).

Mechanical Simulations

A mechanical simulation is one that is physically implemented but

which is not necessarily full-scale, to-scale, or physically realistic in

some respects. It simulates dynamic behaviours using electro-mechanical

components. Mechanical simulations were popular prior to the advent

of computers.

The ‘orrery’, a classic type of clockwork model of the solar system, is a

typical example of a mechanical simulation (see Figure 12.5, left). Another

example would be a CPR dummy that can be used to practice proper

CPR technique, and which may have sensors to simulate certain heart

behaviours and then provide feedback regarding the effectiveness of the

applied CPR.

Computer (Programmatic) Simulations

Programmatic simulations represent the target system or process using

data structures and algorithms. The data structures are sets of variables

that represent the properties of system objects, and the algorithms deter-

mine how these properties change over time. When quantitative analysts

and consultants produce simulations, they are usually programmatic.

Event-Centric Computer Simulations: this type of computer simu-

lation models activity (and is dynamic in this sense), but the focus

is not accurate modeling of time. The goal, rather, is to represent

an event or sequence of events. For example, we might simulate

the selection, and result, of sampling a population, or simulate

possible outcomes of a series of events that themselves occur with

particular probabilities.

Discrete Time Computer Simulations: as suggested by the name,

discrete time simulations treat time as a discrete series of consecu-
tive steps, rather than continuously. A common example of this is

the agent-based model (or multi-agent simulation); in this type of

simulation, the time step may range from seconds to years, and the

goal of the simulation is to explore how individual agents interact

with each other over this time span.



12.2 Modeling Strategies 815

Continuous Time Computer Simulations: In contrast to discrete

time simulations, continuous time simulations treat time as a

continuous property. The challenge is that continuous time simula-

tions are generally implemented on a computer, and computers are

necessarily discrete. Thus, in practice, a continuous time simulation

is one where the discrete time steps are simply very small. Note

that this is not equivalent to implementing a continuous-time math-

ematical model on a computer and solving it using mathematical

methods implemented as algorithms.

Hybrid Models

It is also possible to create a model of a system where one part of the

model is of one type and another part is of another type. A realistic flight

simulator, for instance, might consist of a few full-scale physical compo-

nents such as the cockpit, seats, etc.,
15

while the experience of actually 15: Possibly using part of an actual plane.

flying the plane is simulated via computer, and perhaps integrated with

the physical part of the simulation by projecting a computer controlled

image onto the cockpit window (see Figure 12.5, right). The computer

simulation might also controls the physical behaviour of the motion of

the cockpit – its pitch, yaw, and roll, for example.

12.2 Modeling Strategies

Among practitioners, it sometimes said that modeling is as much an art

as it is a science. While there are no tested and true approaches that will

work no matter the situation under consideration, the following steps,

illustrated in Figures 12.6 to 12.11 with the simulation of a school of fish,

often end up having practical importance in the process:

1. gather information about the target system;

2. create a conceptual model;

3. build the model;

4. verify and validate, and

5. run and analyze.

12.2.1 Information Gathering

As domain experts or modeling specialists, it can be tempting to believe

that the understanding of the target system is so strong that that we

can forgo collecting and validating information about that system and

jump right into implementing a model of the system. However, modelers

tend to be experts in specific techniques rather than in the behaviour of

the target system, and vice-versa for the domain experts – teamwork is

usually required to properly construct the model.

In such a case, the modeler and domain expert must work together

closely to gather the information about the system that the domain expert

believes will be required to understand or predict the relevant behaviours

of the target system. The modeler must also keep in mind the types of

information required to create a comprehensive and consistent model
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Figure 12.6: A school of fish – an example

of a target system to simulate [15].

Figure 12.7: Gathering information: rel-

evant perceptual mechanics information

about a single fish, to be incorporated into

the model [13].

76

measured on two D. rerio. The mean eye position was 0.20 cm from the tip of the nose and 0.18

cm up from the bottom of the head (ratio 1:1.84).

13º

Figure 17: A coronal scan of a 17mm D. rerio, used to measure D. rerio eye position and angle
(Bryson-Richardson et al, 2007).

Data on lateral line positions in D. rerio larvae (Whitfield et al, 1996; Van Trump and

McHenry 2007 ) indicate that D. rerio lateral line fields run along both sides of the fish from

the head behind the eye to the base of the tail, slightly above the midline of the fish. A visual

inspection of two adult D. rerio specimens placed these lines an average estimated 1.9mm from

the top of the fish and 3.5mm from the bottom of the fish (ratio 1:1.84) (see Figure 18).

4.3 Creating an IBSEM model of D. rerio aggregation

Figure 18: Estimated D. rerio lateral line position (white dots superimposed on photograph, with white
lines indicating body position, not including shadow), based on lateral line position in larvae (as reported
by Whitfield et al, 1996 and Van Trump and McHenry, 2008).

Turning to the model, this section will discuss the construction of the PCA D. rerio model

agents, with a focus on how the collected data were incorporated into the model. The D. rerio

of the system, given the proposed model type. Creating a conceptual
model (see below) will greatly assist with the process of determining

what information is necessary to properly represent the target system.

There is also an opportunity to validate the structure of the model at

this stage. Even when a domain expert is involved, ensuring that the

information being incorporated into the model comes from rigorous and
reliable sources, and documenting these sources early on, will enhance

the likelihood that the model will be valid, as well as increasing the
credibility of the model in the eyes of those using the model.

12.2.2 Conceptual Model

A conceptual model is a clearly defined description of those components,

properties, and relationships of the system that are believed to be

important, relative to the system behaviours or properties of interest (i.e.,

the modeling context). A conceptual model may be a:

verbal description of the system, structured in some way;
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lateral line 
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vision
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+

Figure 8: Combining the concept of the information area with what is known about animal perception
results in an experimentally validatable model of individual agents. This in turn allows modellers to
create species-specific aggregate models . Perceptual field details are discussed in Section 3.3.2.(Anchovy
drawing in figure from (Pearson Scott Foresman, n.d.)

Figure 12.8: Creating a conceptual model:

a conceptual model showing how ele-

ments of the target system – the fish in

a fish school – will be represented in the

model of the fish school [13].

collection of diagrams depicting elements of the system and their

relationships, or

combination of both.

The conceptual model can be thought of as the blueprint that will be

followed during construction of the model.

At this stage, the modeler will also often discover that it is necessary to

concretely define the more abstract or less well-defined elements of the

target system, in preparation for implementing the model. During the

construction of the conceptual model, it may be determined that there

are gaps in the understanding of the system itself, which prevent the

construction of a complete model of the system.

If this occurs, it may be necessary to return to gathering information
about the target system itself. If the required information is not readily

available it is important at this step to indicate which parts of the model

are based on reliable knowledge about the system and which parts are

speculative.

This step can be challenging from an interdisciplinary perspective because,

as we have already mentioned, it requires the modeler and the domain

expert to work together to create the conceptual model. This requires,

in a sense, the domain expert to enter the modeler’s world, just as the

modeler must enter into the world of the domain expert.

This can be difficult to achieve, for a variety of reasons, and as a result

it can be tempting to skip this step outright – to leave the conceptual

model in an implicit stage rather than in an explicit stage – and to jump

straight into building the model.
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Figure 12.9: Creating a conceptual model:

determining how specific relevant physi-

cal characteristics of individual fish will

be represented and incorporated into the

model [13].

79

ø=0.5cm
ø=0.75cm

h=0.56cm

l=2.6cm

d=0.45cm

l=2.5cm

Figure 19: Agent shape, compared with D. rerio shape. The agent is composed of two 0.75 diameter (ø)
spheres, two 0.5 cm diameter spheres and one small sphere that indicates orientation (drawing not to
scale).

(agent-centered) coordinates, the vertices of the cones were located at (0,0,0.25) and (0,0,-0.25)

respectively (the cones extended outwards on either side of the ’head sphere’ of the agent). In

the absence of specific data concerning D. rerio visual acuity, the length of the visual fields of

model agents was set to 40 cm. Since it was assumed that the visual field of the actual fish

would not extend usefully through the glass of the tank, and since the tank was 50⇥ 45⇥ 89

cm, this was considered to be a conservative approximation of the visual field extent for the

fish being modelled. Lateral line fields were set at three points on both sides of the zebra fish

agent, from tail to head, for a total of 6 fields (see Figure 20). The vertex of each field was

placed at the centre of its respective body sphere. It was hypothesised that lateral lines, because

they respond to water flow (Van Trump and McHenry, 2008), operate most effectively from an

information processing perspective at relatively short distances. Therefore the lateral line fields

were set to extend 5 cm outwards from the body of the agent.

In the absence of data on the perceptual resolution of D. rerio vision and the lateral line,

some assumptions were made about the data that these perceptions could supply to the agents.

It was assumed that D. rerio vision was accurate enough to return information about the position

However, unless the modeler is also a domain expert and the system

itself is relatively simple, this can lead to models that do not perform

satisfactorily in the final analysis.

12.2.3 Building the Model

Once the conceptual model is in place, a model type (e.g., mathematical,

simulation) can be selected in order to build the model itself, using the

conceptual model as a blueprint. Target system objects, properties, and

relationships are translated into model structures.

12.2.4 Verification and Validation

Verifying the model means going over the model in order to confirm that

it has been constructed as intended, given the conceptual blueprint that

has been developed.

Validation refers to a process of confirming that the constructed model

is in fact a good match for the target system. Thus, a model could be

verified as having been constructed as intended, but the model might

still be invalid if, for example, the modeler was misinformed about the

actual workings of the target system.

A thoughtful discussion of model validation, in the context of building

population-based disease simulation models, can be found in [9].

12.2.5 Analysis of Results

Once the model has been verified and validated, it may then be analysed

in order to draw conclusions about the target system.



12.2 Modeling Strategies 819

108

TIMESTEP(O,�,�, N)

1 for each agent in �
2 do L0  ATTENTION(O)
3 I  COGNITIVE-PROCESSING(L0)
4 ACTION(I)
5 for each agent in �¬ perception deprived agents
6 do L0  ()
7 I  COGNITIVE-PROCESSING(L0)
8 ACTION(I)

ATTENTION(O)

1 L0  MERGE-LISTS(O)
2 L0  PICK-NEIGHBOURS(N , L0)
3 ¬ the appropriate PICK-NEIGHBOURS procedure (below) is called for each scenario
4 return L0

PICK-NEIGHBOURS-RANDOM(N , L0)
1 return RANDOM(N , L0)

PICK-NEIGHBOURS-NEAREST(N , L0)
1 return NEAREST(N , L0)

Algorithm 3: Agent behaviour during one timestep of the minimum information models. Cognitive
processing and action algorithms are the same as in the Chapter 4 D. rerio model, Algorithm 2.

time step received no information.

Parameter combinations Within the context of these four main scenarios a number of addi-

tional parameter combinations were used to explore behaviour across the parameter space of the

scenarios. Specifically, two values for maximum speed, maximum turning angle and preferred

space were chosen and two different starting configurations were chosen, one where all agents

started with a random position within one unit radius of the origin, and one where all agents

started with a random position within a 40 unit radius of the origin (see Table 10). This resulted

in a total of of 80 parameter combinations for each of the first two scenarios.

Model runs and aggregate measures Model runs of 100 timesteps each were run for each

parameter combination, with 10 model runs per parameter combination. At each timestep,

Figure 12.10: Building the model: pseudo-code describing how the simulation of the fish school is created [13].

Figure 12.11: Building the model: the re-

sulting simulation of the fish school. The

schooling behaviour is an emergent prop-

erty of the simulation, coming out of pro-

grammed individual simulated-fish be-

haviours [13].

In the case of simulations, model parameters have to be selected, and

‘runs’ of the model carried out for each set of parameters.
16

16: By ‘run’ we mean that the model is

given certain initial starting conditions
and then the behaviour of the simulation

allowed to proceed and produce various

outputs of interest.

If the model has stochastic components, it may be necessary to carry

out multiple runs using the same parameter settings in order to produce
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posterior distributions for the outputs. Once the simulation has been run

with all of the relevant parameter settings, the resulting output of the

simulation can be analysed.

At this point, the analysis may follow a vast number of methods: trend
extraction and forecasting, classification, data visualization, etc.

12.3 Practical Considerations

As with most applied disciplines, the implementation and applications

are fraught with unsuspected challenges. While it remains important

to have a good handle on the conceptual foundations of the field, the

best way to become a competent practitioner is to continuously attempt

to conduct simulations, and to learn from the inevitable mistakes made

along the way.

12.3.1 Computational Complexity

Because simulations are computer programs, it remains crucial to be

aware of the broader issue of computational complexity when construct-

ing simulations. The computational complexity of an algorithm is based

on the number of possible steps in the algorithm and how they interact

with different types of data to lead to different run times.

Although a detailed discussion of computational complexity is beyond

the scope of this section, understanding that the manner in which the

simulation is programmed will influence its run time is very important,

as this might limit the options for the exploration of parameter space.

As previously discussed, when a simulation is created, a set of parameters

to vary has to be explicitly selected in order to explore the behaviour of

the simulation. However, because specific parameter values have to be

chosen for each run of the simulation, and because multiple simulations

have to be run in order to get a general sense of the behaviour of the

simulation (i.e. building a posterior distribution for the behaviour), and

by extension the system, the problem of combinatorial explosion is

encountered very quickly.

This problem cannot always be overcome, and it might be that the best

that can be hoped for is to maximise the number of simulation runs that

the computer can support in the available time.

12.3.2 Applications and Use Cases

Science The appropriate role of models and simulations within science

is a topic for debate within scientific circles. Statistical models are well ac-

cepted and used extensively. Mathematical models are generally accepted

if used in a theoretical context. In our experience, however, the use of

simulations is currently not encouraged. In situations where carrying out

actual experiments would be difficult,
17

simulations may be viewed as a17: For ethical reasons, notably.

type of virtual experiment. In such situations the results of the virtual

experiment, although not viewed in the same light as actual experimental
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Figure 12.12: A sketch of some different

possible computational complexities of a

computer program, as represented in Big-

O notation.

results, may, at the very least, fuel the discovery of hypotheses, which

may then be tested using other methods.

Business Accurate prediction of events is highly valued in a business

context. Consequently, the emphasis for models in this domain is on

predictive accuracy, rather than on being able to use the model for

explanatory purposes. Businesses use models to, for example, predict

customer behaviour, how their business will be affected in certain market

situations, and how they might reorganise their business structure to

reduce overhead and increase profitability.

Government Setting policy is a major governmental activity. Within this

context, it is often important to explore different possible policy scenarios,

and gain a better understanding of which policies will be effective in a

variety of circumstances. Models that provide explanatory power can

be particularly helpful in this type of work, because it allows for an

understanding of why one approach might work better than another.

This can then be taken into account in order to ensure good policy.

In addition, as with businesses, governments are usually interested

in making its own operations more efficient and effective. From an

organisational perspective, models can help determine the best strategies

for internal structures and processes, as well as the conditions under

which such structures may function optimally.

Education Simulations play an important role in education, allowing

students to explore and experience scenarios virtually, which may de-

crease the risks associated with “learning through doing”, and increase

the rewards of “learn from experience” in controlled and monitored
conditions.

18
18: For a very thorough discussion of the

role of simulations in education, see [10].
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Entertainment It might be argued that most forms of entertainment

are simply reflections or representations of real world experiences, and

are thus, in some sense, models of life. More specifically, simulations

and models frequently play an important role in theatre, television,

and film – allowing creators to convincingly mimic real life situations

without needing to entirely re-create or enact them, using physical
small-scale models (e.g., a small-scale model of a cityscape), life-size
models of particular environments (e.g., a life-size model of a submarine),

or computer simulations (e.g. simulated flocks of birds and artificially

generated clouds, added to provide more realism and detail to the

backdrop of a scene).

12.3.3 Modeling and Simulation Software

It is quite possible to create models by hand, without the use of computers,

and it is also possible to create computer models or simulations without

using a particular programming environment. But some programming

environments have been specifically designed for creating simulations.

Some of these currently available (as of 2018) include:

Matlab Simulink (commercial simulation software)

Simio (commercial simulation software)

Netlogo (free software, mainly for teaching and prototyping)

SymPy (a python library for discrete time simulations)

12.4 Case Study: NWMO

Canada has a long history with nuclear power: the first self-sustained

Canadian nuclear reaction was achieved at Chalk River’s ZEEP reactor

in 1945. Over the years, numerous research reactors and power reactors

have been built and decommissioned – as of 2014, electricity is currently

being produced by 19 CANDU reactors in Ontario and New Brunswick.

Given that the existence of high energy nuclear waste in Canada is a fait
accompli,19 it is paramount that we find ways to safely dispose of this19: We have already chosen, as a society,

to use nuclear power and create nuclear

waste

waste.

In 2002, the Nuclear Fuel Waste Act (NFWA) was enacted to study possible

strategies for the management of Canada’s used nuclear fuel. As a result,

the Nuclear Waste Management Organization (NWMO) was formed by the

Canadian nuclear power companies, with the mandate to provide recom-

mendations to the Canadian Government for the long-term management

of used nuclear fuel. One such recommendation, which was accepted in

2007, was the establishment of Adaptive Phased Management (APM) as

both a social and technical approach to permanently manage Canada’s

used nuclear fuel. Canadian citizens determined that the optimal strategy,

given the current state of technology in Canada, is the construction of a

deep geological repository to contain and isolate the fuel.

This decision puts the NWMO in a unique and demanding position, as it

is the first group in Canada to design and build a unique but extremely

performance-critical engineering structure: a long term Canadian reposi-

tory for high energy nuclear waste. By its very nature, this structure as
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a whole cannot be tested in advance of use and essentially cannot be

maintained once it is built. Furthermore, the environment and materials

involved are themselves volatile and their long term behaviour is difficult

to predict.

Under such challenging circumstances, engineers must do their best to

use all of the expertise at their disposal to create as perfect a design

as possible for the required structure. Despite the uniqueness of the

structure, they need to produce a design that will meet the requirements

that have been set out, and then, once built, function exactly as predicted

on the first try. Such a design process is necessarily a lengthy one,

involving many designers with high levels of expertise. Many designs

would be proposed and rejected before a final design is selected, based on

all the evidence and expertise the design team have at their disposal.

At the end of the process the engineering team will have high confidence

in the final design that is put forward. The success of the structure in

question is critical, and, as responsible, professional engineers, they

would not put forward a design for such a structure without being

entirely certain, to the best of their collective ability, that this structure

will not fail.

Despite this confidence, due diligence requires more than the simple

assurance (and belief) from the design team that the structure will not

fail. It is not enough, from a societal perspective, for the team to simply

provide a “vote of confidence:” it also requires the provision of more

quantitative information about the failure aspects of the structure. Those

responsible for the structure need to be able to determine (and to help

the stakeholders understand) what are the structure’s necessary and

sufficient conditions for failure (and by extension, the conditions for non-

failure). To produce these answers they need to be able to quantitatively

examine what circumstances the structure might encounter, and under

these circumstances, what the probability of failure is.

From an ideal testing point of view, the entire proposed structure would

be built many times over to run trials relating to each of the foreseen

circumstances. Data would then be gathered and analyzed to determine

the failure tolerance of the structure. Failure probabilities would be

calculated based on this data, along with an understanding of possible

failure circumstances – the structure might even be redesigned to take

into account the results of the testing.

However, as we have already noted, this idealistic testing scenario is

simply not an option in this case. The structure as a whole cannot be

directly tested even once, let alone multiple times; even were many

replications of the structure itself available for testing, not all failure

circumstances would be possible to re-create in a test environment.
20

20: In particular those involving major

geological forces and long time spans.

An alternative strategy is centered around a combination of physical

testing and modeling of the behaviour of the structure and environment.

More specifically, a larger structure is built up of many component parts,

which themselves may be built up of many components. The failure

parameters of these component parts may be tested, even if the structure

as a whole cannot.

Similarly, while the structure itself, and perhaps even in some cases the

components themselves, cannot be tested repeatedly, there remains the
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option of creating models of the structure and components in question,

and then using the behaviour of these models to predict the behaviour

of the components and, in turn, of the structure at large.

In the absence of the ideal testing scenario, understanding and quanti-

fying the failure of the system as a whole can be carried out by under-

standing and quantifying the failure circumstances of the components

of the system, understanding the causal relationships between these

components, creating models of the system as a whole based on these

relationships, determining the failure circumstances and probabilities

of the constructed structure level models and then transferring these

findings over to the structure itself. This results in an estimate of the

failure circumstances and probabilities of the actual engineered structure

as a whole.

The end result of this exercise will thus be, rather than a simple yes/no

statement (such as “No, the structure will not fail”, for instance), a

list of the possible failure circumstances and an estimate of the failure

probabilities for both the structure components and the structure itself,

along with a confidence measure indicating a level of confidence in the

failure probabilities calculated for each failure circumstance.

Such a table of failure circumstances, probabilities, and confidence

measures will allow those building the structure to open a legitimate

dialogue with those responsible for, and those being affected by, the

resulting structure. In essence, this deliverable will allow the designers

of the structure to provide their stakeholders with a clearer and more

detailed picture of the risks they are likely to encounter when undertaking

the construction of such a structure.

General Objectives

The general objective of this Failure Analysis project as a whole is to

estimate the failure probability of the Mark II canister and engineered

barrier system immediately surrounding the canister. In order to achieve

that larger objective, we anticipate that we will be using a combination of

statistical analysis, mathematical modeling, and simulations, much as in

this prototype. More specifically, we will take the approach that our model

is meant to answer a specific question, as well as to provide outputs that

can be fed into other models, as may be required by already-developed

NWMO models.

In this prototype phase, however, the objective is to develop a methodol-

ogy and implementation framework to confirm that interactions (both

planned and emergent) can in principle be captured by the modeling

process, both at the repository and the manufacturing level. For both the

manufacturing process and the interactions models, a specific selection

of a small number of sub-components of the entire system will be consid-

ered in this phase, in order to maintain focus on the development and

testability of the methodology itself.

In [2], we report on a simulation approach for the Failure Analysis
Simulation Model for the APMRD-II, we discuss some of the strategies that

could be used to extract information and knowledge about the engineered

barrier system, which could then be incorporated in any interaction model
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of its components. A discussion of system complexity and the effect it

had on our choice of modeling approach is also provided. We also

provide a prototype UFC manufacturing process model: potential states,

actions and variables are introduced, as well as the underlying modeling

assumptions and families of parameters. The model is illustrated via
a specific parameter set; a series of 8 scenarios showcase the effect of

various parameter combinations.
21

21: It should be noted that due to the un-

certainty relating the manufacturing pro-

cess parameters, the numbers presented

are placeholders: reasonable estimates for

a large number of these parameters will

be required before the model can output

meaningful failure estimates.

12.5 Exercise

Create a simulation of pre-board screening (PBS) wait-time at Borealian

airfields (as described in Section 24.6).
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