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This one goes out to the “Welsh” contingent: Elowyn,

Llewellyn, and Gwynneth. Your world is going to be a whole

lot different than mine was; maybe data can even help make

some of it better. But one thing’s for sure: data is not going

away any time soon – better be prepared.





Series Preface

The first thing to know about Data Understanding, Data Analysis, and Data Science (DUDADS)

is that it isn’t really a “book”. It makes more sense to think of it as course notes, or as a

reference manual and a source of examples and application.

I borrow some of its contents from authors who do a better job of explaining things than

I could hope to do; I also sometimes modify their examples and code to better suit my

pedagogical needs.
*

Major influences include [1, 2, 3, 4, 5, 6, 8] – be sure to give these

masterful works the attention they deserve!

The second thing to know about DUDADS is that it isn’t really “a” book. It makes more

sense to think of it as a bunch of books in a trench coat, masquerading as a single one.
†

No one is expected to traverse DUDADS in one sitting, or even to tackle more than a few

of its assigned chapters, sections, subsections, exercises at any given time; rather, it is

intended to be read in parallel with guided lectures.

The third thing to know about DUDADS is that the practical examples use R and/or

Python, for no particular reason other than that some programming language had to be

used to illustrate the concepts. In the text, R code appears in blue boxes:

... some R code ...

Whereas Python code appears in green boxes:

... some Python code ...

You may look at some piece of code and think to yourself: “This isn’t how I would do

it” or “such-and-such a task would be easier to accomplish if we used module/package

ABC or programming language XYZ”. That’s quite possible.

But finding the optimal tool is not the point of DUDADS. In the first place, new data

science tools appear regularly, and it would be a fool’s errand to try to continuously

modify the book to keep up with them.
‡

In the second place, I am serious about the

“understanding” part of Data Understanding, Data Analysis, and Data Science, and that is

why I favour a tool-agnostic approach.

*
In all cases, I have attempted to properly cite and give credit where it is due. Get in touch if you find omissions!

†
I paid heed to this realization by splitting it into a number of volumes.

‡
I am not saying that I won’t be adding examples in different languages in the future, but let’s not get ahead of

ourselves.



The fourth thing to know about DUDADS is that it is not a place to go to in order to obtain

a detailed step-by-step guide on “how to solve it”. In person, my answer to a vast array

of data science related questions is, rather anti-climatically: “it depends”. Of course, it

depends; on the data, on the objectives, on the cost associated with making a mistake,

on the stakeholder’s appetite for uncertainty, and, perhaps more surprisingly, on the

analytical and data preparation choices that are made along the way.

To some, this might smack of post-modernism: “you are saying that there is no truth, and

that data analysis is pointless!” To which I respond: “analysts have agency (lots of it, it turns

out), and their choices DO influence the results, so make sure to run multiple analyses to

determine the variability of the outcomes”. That is the nature of the discipline.

The last thing you should probably know about DUDADS is that I have made a concerted

effort to focus mainly on the story of (learning) data analysis and data science; sometimes,

that comes at the expense of rigorous exposition.

“The early stages of education have to include a lot of lies-to-children, because

early explanations have to be simple. However, we live in a complex world,

and lies-to-children must eventually be replaced by more complex stories if

they are not to become delayed-action genuine lies.” [7]

Some of the concepts and notions that I present are incomplete by design, but remain (I

hope) true-to-their-spirit, or at least true “enough” for a first pass.
§

My position is that

learning is an iterative process and that important take-aways from an early stage might

need to be modified to account for new developments at a later date. But all things in good

time: flexibility is a friend in your learning adventure; perfectionism, not always so.

Patrick Boily

Wakefield, July 2024

pboily@uottawa.ca

The DUDADS reference manuals are available at idlewyldanalytics.com

Volume 1: Prelude to Data Understanding
Volume 2: Fundamentals of Data Insight
Volume 3: Spotlight on Machine Learning
Volume 4: Techniques of Data Analysis
Volume 5: Special Topics in Data Science and Artificial Intelligence
The Practice of Data Visualization (with S. Davies and J. Schellinck)

§
In the parlance of the field, let me simply say that some of the details are left as an exercise for the reader (and

can also be found in the numerous references).

https://idlewyldanalytics.com
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Learning Paths

I mostly use the material found in this volume at various levels in my teaching at the

University of Ottawa in the Department of Mathematics and Statistics, or for data workshops

offered to professionals through Idlewyld Analytics and Consulting Services, the Data Action
Lab, and the University of Ottawa’s Professional Development Institute.

In particular, here is what I cover in various courses/workshops:

MAT3373 (Methods of Machine Learning) – Chapters 20–23;

Introduction to Machine Learning – Chapter 19.

The contents of Chapters 1–7 (DUDADS, Volume 1) are pre-requisites for MAT3373.
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by Patrick Boily

Data scientists are often introduced to the field via machine learning con-

cepts, algorithms and applications, which we introduce in this chapter.

In Chapters 20, 21, and 22, we will discuss other technical aspects of

machine learning, as well as more sophisticated algorithms (abundant

details can also be found in [3, 1, 24, 6, 27], among others).

19.1 Preliminaries

“Data is not information, information is not knowledge,

knowledge is not understanding, understanding is not wis-

dom.” (attributed to C. Stoll [30])

One of the challenges of working in the data science (DS), machine
learning (ML), and artificial intelligence (AI) fields is that nearly all

quantitative work can be described with some combination of the terms

DS/ML/AI (often to a ridiculous extent). As such, it can be difficult to

differentiate the discipline from other quantitative fields, which makes

studying and learning it properly harder than it should.

Robinson [49] suggests that their relationships follow an inclusive hier-
archical structure:

in a first stage, DS provides “insights” via visualization and (man-

ual) inferential analysis;

in a second stage, ML yields “predictions” (or “advice”), while

reducing the operator’s analytical, inferential and decisional work-

load (although it is still present to some extent), and

in the final stage, AI removes the need for oversight, allowing

for automatic “actions” to be taken by a completely unattended

system.

The goals of AI are laudable in an academic setting, but in practice, we

believe that stakeholders should not seek to give up their agency in the

decision-making process; as such, we follow the lead of various thinkers

and suggest further splitting AI into “general AI” (which we will not be

pursuing further at this stage) and “augmented intelligence”.
1

1: Which can be viewed as ML “on

steroids”.

With this in mind, our definition of the DS/ML/AI approach is that

it consists of quantitative processes
2

that can help users learn action- 2: What H. Mason has called “the work-
ing intersection of statistics, engineering,

computer science, domain expertise, and

”hacking” [59].

able insights about their situation without completely abdicating their

decision-making responsibility.

In this chapter, we will take a brief look at:
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the fundamentals of data science (see Section 19.2);

association rules mining (see Section 19.3);

supervised learning and classification, with a focus on decision
trees (see Section 19.4);

unsupervised learning and clustering, with a focus on 𝑘−means
(see Section 19.5), and

some of the common issues and challenges encountered during

the data science and machine learning process (see Section 19.6).

19.2 Statistical Learning

“We learn from failure, not from success!” (B. Stoker, Dracula)

As humans, we learn (at all stages) by first taking in our environment,

and then by:

answering questions about it;

testing hypotheses;

creating concepts;

making predictions;

creating categories, and

classifying and grouping its various objects and attributes.

In a way, the main concept of DS/ML/AI is to try to teach our machines

(and thus, ultimately, ourselves) to glean insight from data, and how to

do this properly and efficiently, free of biases and pre-conceived notions

– in other words, can we design algorithms that can learn?3
3: Note that this is not the same thing

as asking whether we should design such

algorithms. In that context, the simplest DS/ML/AI method is exploring the data
(or a representative sample) to:

provide a summary through basic statistics – mean, variance,

histograms, etc.;

make its multi-dimensional structure evident through data visual-

ization, and

look for consistency, considering what is in there and what is

missing.

19.2.1 Types of Learning

In the statistical learning context,
4

more sophisticated approaches tradi-4: A term sometimes used to describe gen-

eral DS/ML/AI approaches, for no partic-

ular reason other than letting the audience

know that the user has a background in

mathematics and statistics.

tionally fall into a supervised or an unsupervised learning framework.

Supervised learning is akin to “learning with a teacher.” Typical tasks

include classification, regression, rankings, and recommendations.

In supervised learning, algorithms use labeled training data to build

(or train) a predictive model;
5

each algorithm’s performance is evalu-5: For instance, students may need to an-

swer each exam question based on what

they learned from worked-out examples

provided by the teacher/textbook.

ated using test data for which the label is known but not used in the

prediction.
6

6: The teacher provides the correct an-

swers and marks the exam questions using

the key, to continue the example.

In supervised learning, there are fixed targets against which to train the

model (such as age categories, or plant species) – the categories (and

their number) are known prior to the analysis.
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Unsupervised learning, on the other hand, is akin to “self-learning

by grouping similar exercises together as a study guide.” Typical tasks

include clustering, association rules discovery, link profiling, and

anomaly detection. Unsupervised algorithms use unlabeled data to find

natural patterns in the data; the drawback is that accuracy cannot be
evaluated with the same degree of satisfaction.

7
7: The teacher would not be involved in

the discovery process, say, and the stu-

dents might end up with different group-

ings, as an example.

In unsupervised learning, we don’t know what the target is, or even if

there is one – we are simply looking for natural groups in the data.
8

8: Perhaps junior students who like litera-

ture, have longish hair, and know how to

cook vs. students who are on a sports team

and have siblings vs. financial profession-

als with a penchant for superhero movies,

craft beer and Hello Kitty backpack vs. ...

Other Learning Frameworks Some data science techniques fit into both

camps; others can be either supervised or unsupervised, depending

on how they are applied, but there are other conceptual approaches,

especially for AI tasks:

semi-supervised learning in which some data points have labels

but most do not, which may occur when acquiring data is costly;
9

9: The teacher could provide worked-out

examples and a list of unsolved problems

to try out; the students try to find similar

groups of unsolved problems and com-

pare them with the solved problems to

find close matches.

reinforcement learning, where an agent attempts to collect as

much (short-term) reward as possible while minimizing (long-

term) regret.
10

10: Embarking on a Ph.D. with an advi-

sor, with all of the highs and the lows

(and maybe a diploma at the end of the

process?).

19.2.2 DS and ML Tasks

Outside of academia, DS/ML/AI methods are only really interesting

when they help ask and answer useful questions. Compare, for instance:

Analytics – “How many clicks did this link get?”

Data Science – “Based on the previous history of clicks on links of

this publisher’s site, can I predict how many people from Manitoba

will read this specific page in the next three hours?” or “Is there a

relationship between the history of clicks on links and the number

of people from Manitoba who will read this specific page?”

Quantitative Methods – “We have no similar pages whose history

could be consulted to make a prediction, but we have reasons to

believe that the number of hits will be strongly correlated with

the temperature in Winnipeg. Using the weather forecast over the

next week, can we predict how many people will access the specific

page during that period?”

Data science and machine learning models are usually predictive (not

explanatory): they show connections, and exploit correlations to make

predictions, but they don’t reveal why such connections exist.

Quantitative methods, on the other hand, usually assume a certain level of

causal understanding based on various first principles. That distinction

is not always understood properly by clients and consultants alike.

Common data science tasks include [45]:

classification and probability estimation – which undergraduates

are likely to succeed at the graduate level?

value estimation – how much is a given client going to spend at a

restaurant?

similarity matching – which prospective clients are most similar

to a company’s established best clients?
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clustering – do signals from a sensor form natural groups?

association rules discovery – what books are commonly purchased

together at an online retailer?

profiling and behaviour description – what is the typical cell

phone usage of a certain customer segment?

link prediction – J. and K. have 20 friends in common: perhaps

they’d be great friends?

A classic example is provided by the UCI Machine Learning Repository

Mushroom Dataset [15]. Consider Amanita muscaria (commonly known as

the fly agaric), a specimen of which is shown below.

Figure 19.1: Amanita muscaria (fly agaric),

in the wild. Does it look dangerous to you?

Is it edible, or poisonous? There is a simple way to get an answer – eat it,

wait, and see: if you do not die or get sick upon ingestion, it was edible;

otherwise it was poisonous.

But this test in unappealing for various reasons, however. Apart from the

obvious risk of death, we might not learn much from the experiment; it is

possible that this specific specimen was poisonous due to some mutation

or some other factor (or that the ingester had a pre-existing condition

which combined with the fungus to cause discomfort, etc.), and that fly

agaric is actually edible in general (unlikely, but not impossible).

A predictive model, which would use features of a vast collection of

mushroom species and specimens (including their class) could help shed

light on the matter: what do poisonous mushrooms have in common?

What properties do edible mushrooms share?
11

11: Note that this is not the same as under-

standing why a mushroom is poisonous

or edible – the data alone cannot provide

an answer to that question.

For instance, let’s say that Amanita muscaria has the following features:

habitat: woods;

gill size: narrow;

spores: white;

odor: none,

cap color: red.

We do not know a priori whether it is poisonous or edible. Is the available

information sufficient to answer the question? Not on its own, no.
12

12: A mycologist could perhaps deduce

the answer from these features alone, but

she would be using her experience with

fungi to make a prediction, and so would

not be looking at the features in a vacuum.

But we could use past data, with correct edible or poisonous labels and

the same set of predictors to build various supervised classification
models to attempt to answer the question.

A simple form of such model, a decision tree, is shown in Figure 19.2.

The model prediction for Amanita muscaria follows the decision path
shown in Figure 19.3.
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Figure 19.2: Decision tree for the mushroom classification problem [author unknown].

1. some mushroom odors (musty, spicy, etc.) are associated with poi-

sonous mushrooms, some (almond, anise) with edible mushrooms,

but there are mushrooms with no specific odor in either category

– for mushroom with ‘no odor’ (as with Amanita muscaria), odor

does not provide enough information for proper classification and

we need to incorporate additional features into the decision path;

2. among mushrooms with no specific odor, some spore colours
(black, etc.) are associated with edible mushrooms, some (almond,

anise) with poisonous mushrooms, but there are mushrooms with

‘white’ spores in either category – the combination ‘no odor and

white spores’ does not provide enough information to classify

Amanita muscaria and we need to incorporate additional features

into the decision path;

3. among mushrooms of no specific odor with white spores, some

habitats (grasses, paths, wastes) are associated with edible mush-

rooms, but there are mushrooms in either category that are found

in the ‘woods’ – the combination ‘no odor, white spores, found

in the woods’ does not provide enough information to classify

Amanita muscaria and we need to incorporate additional features

into the decision path,

4. among white-spored forest mushroom with no specific odor, a

broad gill size is associated with edible mushrooms, whereas a

‘narrow’ gill size is associated with poisonous mushrooms – as

Amanita muscaria is a narrow-gilled, white-spored forest mushroom

with no specific odor, the decision path predicts that it is poisonous.

Note that the cap color does not affect the decision path, however.
13

But the decision tree model does not explain why this particular 13: It would have had Amanita muscaria’s

habitat been ‘leaves’.
combinations of features is associated with poisonous mushrooms – the

decision path is not causal.
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Figure 19.3: Decision path for Amanita
muscaria.

At this point, a number of questions naturally arise:

Would you have trusted an edible prediction?

How are the features measured?

What is the true cost of making a mistake?

Is the data on which the model is built representative?

What data is required to build trustworthy models?

What do we need to know about the model in order to trust it?

The stage has now been set: this mushroom classification problem has all

the hallmarks of a ML problem. Keep it in mind as a representative of

the discipline in the sections that follow.

19.3 Association Rules Mining

“Correlation isn’t causation. But it’s a big hint.” (E. Tufte)

19.3.1 Overview

Association rules discovery is a type of unsupervised learning that finds

connections among the attributes (variables) and levels (values), and

combinations thereof, of a dataset’s observations. For instance, we might

analyze a (hypothetical) dataset on the physical activities and purchasing

habits of North Americans and discover that

runners who are also triathletes (the premise) tend to drive Subarus,

drink microbrews, and use smart phones (the conclusion), or

individuals who have purchased home gym equipment are unlikely

to be using it 1 year later, say.

But the presence of a correlation between the premise and the conclusion

does not necessarily imply the existence of a causal relationship between

them. It is rather difficult to “demonstrate” causation via data analysis; in
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practice, decision-makers pragmatically (and often erroneously) focus on

the second half of Tufte’s rejoinder, which basically asserts that “there’s

no smoke without fire.”

Case in point, while being a triathlete does not cause one to drive a

Subaru, Subaru Canada thinks that the connection is strong enough to

offer to reimburse the registration fee at an IRONMAN 70.3 competition

(since at least 2018)! [8]

Market Basket Analysis Association rules discovery is also known as

market basket analysis after its original application, in which supermar-

kets record the contents of shopping carts (the baskets) at check-outs to

determine which items are frequently purchased together.

For instance, while bread and milk might often be purchased together,

that is unlikely to be of interest to supermarkets given the frequency of

market baskets containing milk or bread.
14

14: In the mathematical sense of “or”: one,

or the other, or both.

Knowing that a customer has purchased bread does provide some infor-

mation regarding whether they also purchased milk, but the individual

probability that each item is found, separately, in the basket is so high to

begin with that this insight is unlikely to be useful.

If 70% of baskets contain milk and 90% contain bread, say, we would

expect at least
90% × 70% = 63%

of all baskets to contain milk and bread, should the presence of one in

the basket be totally independent of the presence of the other.

If we then observe that 69% of baskets contain both items (a 1.10-fold

increase on the expected proportion, assuming there is no link), we

would conclude that there was at best a weak correlation between the

purchase of milk and the purchase of bread.

Sausages and hot dog buns, on the other hand, which we might suspect are

not purchased as frequently as milk and bread, might still be purchased

as a pair more often than one would expect given the frequency of baskets

containing sausages or buns.

If 10% of baskets contain sausages, and 5% contain buns, say, we would

expect that

10% × 5% = 0.5%

of all baskets would contain sausages and buns, should the presence of

one in the basket be totally independent of the presence of the other.

If we then observe that 4% of baskets contain both items (an 8-fold

increase on the expected proportion, assuming there is no link), we

would obviously conclude that there is a strong correlation between the

purchase of sausages and the purchase of hot dog buns.

It is not too difficult to see how this information could potentially be used

to help supermarkets turn a profit: announcing or advertising a sale on

sausages while simultaneously (and quietly) raising the price of buns

could have the effect of bringing in a higher number of customers into

the store, increasing the sale volume for both items while keeping the

combined price of the two items constant.
15

15: The marketing team is banking on the

fact that customers are unlikely to shop

around to get the best deal on hot dogs

AND buns, which may or may not be a

valid assumption.
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A (possibly) apocryphal story shows the limitations of association rules:

a supermarket found an association rule linking the purchase of beer

and diapers and consequently moved its beer display closer to its diapers

display, having confused correlation and causation.

Purchasing diapers does not cause one to purchase beer (or vice-versa); it

could simply be that parents of newborns have little time to visit public

houses and bars, and whatever drinking they do will be done at home.

Who knows? Whatever the case, rumour has it that the experiment was

neither popular nor successful.

Applications Typical uses include:

finding related concepts in text documents – looking for pairs

(triplets, etc) of words that represent a joint concept: {San Jose,

Sharks}, {Michelle, Obama}, etc.;

detecting plagiarism – looking for specific sentences that appear in

multiple documents, or for documents that share specific sentences;

identifying biomarkers – searching for diseases that are frequently

associated with a set of biomarkers;

making predictions and decisions based on association rules (there

are pitfalls here);

altering circumstances or environment to take advantage of these

correlations (suspected causal effect);

using connections to modify the likelihood of certain outcomes

(see immediately above);

imputing missing data,

text autofill and autocorrect, etc.

Other uses and examples can be found in [52, 7, 20].

Causation and Correlation Association rules can automate hypothesis
discovery, but one must remain correlation-savvy.

16
16: Which remains less prevalent among

quantitative specialists and data scientists

than one might hope, unfortunately, in our

experience.

If attributes 𝐴 and 𝐵 are shown to be correlated in a dataset, there are

four possibilities:

𝐴 and 𝐵 are correlated entirely by chance in this particular dataset;

𝐴 is a relabeling of 𝐵 (or vice-versa);

𝐴 causes 𝐵 (or vice-versa), or

some combination of attributes 𝐶1 , . . . , 𝐶𝑛 (which may not be

available in the dataset) cause both 𝐴 and 𝐵.

Siegel [52] illustrates the confusion that can arise with a number of

real-life examples:

Walmart has found that sales of strawberry Pop-Tarts increase

about seven-fold in the days preceding the arrival of a hurricane;

Xerox employees engaged in front-line service and sales-based

positions who use Chrome and Firefox browsers perform better on

employment assessment metrics and tend to stay with the company

longer, or

University of Cambridge researchers found that liking “Curly Fries”

on Facebook is predictive of high intelligence.
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It can be tempting to try to explain these results (again, from [52]).

Perhaps:

when faced with a coming disaster, people stock up on comfort or

nonperishable foods;

the fact that an employee takes the time to install another browser

shows that they are an informed individual and that they care

about their productivity, or

an intelligent person liked this Facebook page first, and her friends

saw it, and liked it too, and since intelligent people have intelligent

friends (?), the likes spread among people who are intelligent.

While these explanations might very well be the right ones (although

probably not in the last case), there is nothing in the data that supports

them. Association rules discovery finds interesting rules, but it does not

explain them. The point cannot be over-emphasized: correlation does

not imply causation.

Analysts and consultants might not have much control over the matter,

but they should do whatever is in their power so that the following

headlines do not see the light of day:

“Pop-Tarts” get hurricane victims back on their feet;

Using Chrome of Firefox improves employee performance, or

Eating curly fries makes you more intelligent.

Definitions A rule 𝑋 → 𝑌 is a statement of the form “if 𝑋 (the premise)

then 𝑌 (the conclusion)” built from any logical combinations of a dataset

attributes.

In practice, a rule does not need to be true for all observations in the

dataset – there could be instances where the premise is satisfied but the

conclusion is not.

In fact, some of the “best” rules are those which are only accurate 10% of

the time, as opposed to rules which are only accurate 5% of the time, say.

As always, it depends on the context. To determine a rule’s strength, we

compute various rule metrics, such as the:

support, which measures the frequency at which a rule occurs in a

dataset – low coverage values indicate rules that rarely occur;

confidence, which measures the reliability of the rule: how often

does the conclusion occur in the data given that the premises have

occurred – rules with high confidence are “truer”, in some sense;

interest, which measures the difference between its confidence and

the relative frequency of its conclusion – rules with high absolute

interest are . . . more interesting than rules with small absolute

interest;

lift, which measures the increase in the frequency of the conclusion

which can be explained by the premises – in a rule with a high

lift (> 1), the conclusion occurs more frequently than it would if it

were independent of the premises, and

conviction [55], all-confidence [40], leverage [43], collective strength
[4], and many others [53, 22].
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In a dataset with 𝑁 observations, let Freq(𝐴) ∈ {0, 1, . . . , 𝑁} represent

the count of the dataset’s observations for which property 𝐴 holds.

This is all the information that is required to compute a rule’s evaluation

metrics:

Support(𝑋 → 𝑌) = Freq(𝑋 ∩ 𝑌)
𝑁

∈ [0, 1]

Confidence(𝑋 → 𝑌) = Freq(𝑋 ∩ 𝑌)
Freq(𝑋) ∈ [0, 1]

Interest(𝑋 → 𝑌) = Confidence(𝑋 → 𝑌) − Freq(𝑌)
𝑁

∈ [−1, 1]

Lift(𝑋 → 𝑌) = 𝑁2 · Support(𝑋 → 𝑌)
Freq(𝑋) · Freq(𝑌) ∈ (0, 𝑁2)

Conviction(𝑋 → 𝑌) = 1 − Freq(Y)/𝑁
1 − Confidence(𝑋 → 𝑌) ≥ 0

British Music Dataset A simple example will serve to illustrate these

concepts. Consider a (hypothetical) music dataset containing data for

𝑁 = 15, 356 British music lovers and a candidate rule RM:

“If an individual is born before 1976 (𝑋), then they own a

copy of the Beatles’ Sergeant Peppers’ Lonely Hearts Club Band,

in some format (𝑌)”.

Let’s assume further that

Freq(𝑋) = 3888 individuals were born before 1976;

Freq(𝑌) = 9092 individuals own a copy of Sergeant Peppers’ Lonely
Hearts Club Band, and

Freq(𝑋 ∩ 𝑌) = 2720 individuals were born before 1976 and own a

copy of Sergeant Peppers’ Lonely Hearts Club Band.

We can easily compute the 5 metrics for RM:

Support(RM) = 2720

15, 356

≈ 18%

Confidence(RM) = 2720

3888

≈ 70%

Interest(RM) = 2720

3888

− 9092

15, 356

≈ 0.11

Lift(RM) = 15, 356
2 · 0.18

3888 · 9092

≈ 1.18

Conviction(RM) = 1 − 9092/15, 356

1 − 2720/3888

≈ 1.36

These values are easy to interpret: RM occurs in 18% of the dataset’s

instances, and it holds true in 70% of the instances where the individual

was born prior to 1976.

This would seem to make RM a meaningful rule about the dataset –

being older and owning the album are linked properties. But if being

younger and not owning that song are not also linked properties, the

statement is actually weaker than it would appear at a first glance.
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As it happens, RM’s lift is 1.18, which can be rewritten as

1.18 ≈ 0.70

0.59

,

i.e. 59% of ALL individuals also own the song.
17

17: Whereas 56% of young individuals

own the song.

The ownership rates of the two age categories are different, but perhaps

not as significantly as one would deduce using the confidence and

support alone, which is reflected by the rule’s “low” interest, whose

value is 0.11.

Finally, the rule’s conviction is 1.36, which means that the rule would be

incorrect 36% more often if 𝑋 and 𝑌 were completely independent.

All this seems to point to the rule RM being not entirely devoid of meaning,

but to what extent, exactly? This is a difficult question to answer.
18

18: There will be times when an interest

of 0.11 in a rule would be considered a

smashing success; a lift of 15 would not be

considered that significant but a support

of 2% would be, and so forth.

It is nearly impossible to provide hard and fast thresholds: it always

depends on the context, and on comparing evaluation metric values for

a rule with the values obtained for some other of the dataset’s rules. In

short, evaluation of a lone rule is meaningless.

In general, it is recommended to conduct a preliminary exploration of the

space of association rules (using domain expertise when appropriate) in

order to determine reasonable threshold ranges for the specific situation;

candidate rules would then be discarded or retained depending on these

metric thresholds.

This requires the ability to “easily” generate potentially meaningful

candidate rules.

19.3.2 Generating Rules

Given association rules, it is straightforward to evaluate them using

various metrics, as discussed in the previous section.

The real challenge of association rules discovery lies in generating a set

of candidate rules which are likely to be retained, without wasting time

generating rules which are likely to be discarded.

An itemset (or instance set) for a dataset is a list of attributes and values.

A set of rules can be created from the itemset by adding “IF . . . THEN”

blocks to the instances.

As an example, from the instance set

{membership = True, age = Youth, purchasing = Typical},

we can create the 7 following 3−item rules:

IF (membership = True AND age = Youth) THEN purchasing =

Typical;

IF (age = Youth AND purchasing = Typical) THEN membership =

True;

IF (purchasing = Typical AND membership = True) THEN age =

Youth;

IF membership = True THEN (age = Youth AND purchasing =

Typical);
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IF age = Youth THEN (purchasing = Typical AND membership =

True);
IF purchasing = Typical THEN (membership = True) AND age =

Youth);
IF∅THEN (membership = True AND age = Youth AND purchasing =

Typical);

the 9 following 2−item rules:

IF membership = True THEN age = Youth;

IF age = Youth THEN purchasing = Typical;

IF purchasing = Typical THEN membership = True;

IF membership = True THEN purchasing = Typical;

IF age = Youth THEN membership = True;

IF purchasing = Typical THEN age = Youth;

IF ∅ THEN (age = Youth AND purchasing = Typical);

IF ∅ THEN (purchasing = Typical AND membership = True);
IF ∅ THEN (membership = True) AND age = Youth);

and the 3 following 1−item rules:

IF ∅ THEN age = Youth;

IF ∅ THEN purchasing = Typical,

IF ∅ THEN membership = True.

In practice, we usually only consider rules with the same number of

items as there are members in the itemset: in the example above, for

instance, the 2−item rules could be interpreted as emerging from the 3

separate itemsets

{membership = True, age = Youth}
{age = Youth, purchasing = Typical}

{purchasing = Typical,membership = True}

and the 1−item rules as arising from the 3 separate itemsets

{membership = True}, {age = Youth}, {purchasing = Typical}.

Note that rules of the form ∅ → 𝑋 (or IF ∅ THEN 𝑋) are typically

denoted simply by 𝑋.

Now, consider an itemset C𝑛 with 𝑛 members (that is to say, 𝑛 at-

tribute/level pairs). In an 𝑛−item rule derived from C, each of the 𝑛

members appears either in the premise or in the conclusion; there are

thus 2
𝑛

such rules, in principle.

The rule where each member is part of the premise (i.e., the rule without

a conclusion) is nonsensical and is not allowed; we can derive exactly

2
𝑛 − 1 𝑛−item rules from C𝑛 . Thus, the number of rules increases

exponentially when the number of features increases linearly.

This combinatorial explosion is a problem – it instantly disqualifies the

brute force approach (simply listing all possible itemsets in the data and

generating all rules from those itemsets) for any dataset with a realistic

number of attributes.

How can we then generate a small number of promising candidate rules,

in general?
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Figure 19.4: Pruned supersets of an infrequent itemset in the a priori network of a dataset with 5 items [11]; no rule would be generated from

the grey itemsets.

19.3.3 The A Priori Algorithm

The a priori algorithm is an early attempt to overcome that difficulty.

Initially, it was developed to work for transaction data (i.e. goods as

columns, customer purchases as rows), but every reasonable dataset can

be transformed into a transaction dataset using dummy variables.

The algorithm attempts to find frequent itemsets from which to build

candidate rules, instead of building rules from all possible itemsets.

It starts by identifying frequent individual items in the database and

extends those that are retained into larger and larger item supersets,

who are themselves retained only if they occur frequently enough in the

data.

The main idea is that “all non-empty subsets of a frequent itemset must

also be frequent” [11], or equivalently, that all supersets of an infrequent

itemset must also be infrequent (see Figure 19.4).

In the technical jargon of machine learning, we say that a priori uses a

bottom-up approach and the downward closure property of support.

The memory savings arise from the fact that the algorithm prunes

candidates with infrequent sub-patterns and removes them from con-

sideration for any future itemset: if a 1−itemset is not considered to

be frequent enough, any 2−itemset containing it is also infrequent (see

Figure 19.5 for another illustration).

A list of the 4 teams making the playoffs each year is shown on the left

(𝑁 = 20). Frequent itemsets are generated using the a priori algorithms,
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Figure 19.5: Association rules for NHL playoff teams (1942-1967): 4 teams (out of 6) made the playoffs each year.

with a support threshold of 10. We see that there are 5 frequent 1−itemsets,

in yellow;
19

6 frequent 2−itemsets are found in the subsequent list of19: New York made the playoffs 6 < 10

times – no larger frequent itemset can

contain New York.

ten 2−itemsets, in green.
20

Only 2 frequent 3−itemsets are found, in

20: Note the absence of New York.

orange. Candidate rules are generated from the shaded itemsets; the

rules retained by the thresholds

Support ≥ 0.5, Confidence ≥ 0.7, and Lift > 1 (barely),

are shown in the table on the bottom row – the main result is that when

Boston made the playoffs, it was not surprising to see Detroit also make

the playoffs.
21

Are these rules meaningful at all?21: The presence or absence of Montreal

in a rule is a red herring, as Montreal made

the playoffs every year in the data. Of course, this process requires a support threshold input, for which

there is no guaranteed way to pick a “good” value; it has to be set

sufficiently high to minimize the number of frequent itemsets that are

being considered, but not so high that it removes too many candidates

from the output list.22
22: As ever, optimal threshold values are

dataset-specific.

The algorithm terminates when no further itemsets extensions are re-

tained, which must occur in datasets with a finite # of categorical levels.

Strengths: easy to implement and to parallelize [36]

Limitations: slow, requires frequent data set scans, not ideal for

finding rules for infrequent and rare itemsets

More efficient algorithms have since displaced a priori in practice:
23

23: Although it retains historical value.

Max-Miner tries to identify frequent itemsets without enumerating

them – it performs jumps in itemset space instead of using a bottom-

up approach;

Eclat is faster and uses depth-first search, but requires extensive

memory storage.
24

24: A priori and eclat are both imple-

mented in the R package arules [40].



19.3 Association Rules Mining 1135

19.3.4 Validation

How reliable are association rules? What is the likelihood that they occur

entirely by chance? How relevant are they? Can they be generalised

outside the dataset, or to new data streaming in?

These questions are notoriously difficult to answer for association rules

discovery, but statistically sound association discovery can help reduce

the risk of finding spurious associations to a user-specified significance

level [53, 22].

We end this section with a few comments.

Since frequent rules correspond to instances that occur repeatedly in

the dataset, algorithms that generate itemsets often try to maximize
coverage. When rare events are more meaningful (such as detection

of a rare disease or a threat), we need algorithms that can generate

rare itemsets. This is not a trivial problem.

Continuous data has to be binned into categorical data to generate

rules. As there are many ways to accomplish that task, the same

dataset can give rise to completely different rules. This could create

some credibility issues with clients and stakeholders.

Other popular algorithms include: AIS, SETM, aprioriTid, apriori-

Hybrid, PCY, Multistage, Multihash, etc.

Additional evaluation metrics can be found in the arules docu-

mentation [40].

19.3.5 Case Study: Danish Medical Data

In temporal disease trajectories condensed from population wide registry data
covering 6.2 million patients [29], A.B. Jensen et al. study diagnoses in

the Danish population, with the help of association rules mining and

clustering methods.

Objectives Estimating disease progression (trajectories) from current

patient state is a crucial notion in medical studies. Such trajectories

had (at the time of publication) only been analyzed for a small number

of diseases, or using large-scale approaches without consideration for

time exceeding a few years. Using data from the Danish National Patient
Registry (an extensive, long-term data collection effort by Denmark), the

authors sought connections between different diagnoses: how does the

presence of a diagnosis at some point in time allow for the prediction of

another diagnosis at a later point in time?

Methodology The authors took the following methodological steps:

1. compute the strength of correlation for pairs of diagnoses over a 5

year interval (on a representative subset of the data);

2. test diagnoses pairs for directionality (one diagnosis repeatedly

occurring before the other);

3. determine reasonable diagnosis trajectories (thoroughfares) by

combining smaller (but frequent) trajectories with overlapping

diagnoses;
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4. validate the trajectories by comparison with non-Danish data,

5. cluster the thoroughfares to identify a small number of central med-
ical conditions (key diagnoses) around which disease progression

is organized.

Data The Danish National Patient Registry is an electronic health

registry containing administrative information and diagnoses, covering

the whole population of Denmark, including private and public hospital

visits of all types: inpatient (overnight stay), outpatient (no overnight

stay) and emergency. The data set covers 15 years, from January ’96 to

November ’10 and consists of 68 million records for 6.2 million patients.

Challenges and Pitfalls

Access to the Patient Registry is protected and could only be

granted after approval by the Danish Data Registration Agency the
National Board of Health.

Gender-specific differences in diagnostic trends are clearly iden-

tifiable (pregnancy and testicular cancer do not have much cross-

appeal), but many diagnoses were found to be made exclusively

(or at least, predominantly) in different sites (inpatient, outpatient,

emergency ward), which suggests the importance of stratifying by

site as well as by gender.
In the process of forming small diagnoses chains, it became neces-

sary to compute the correlations using large groups for each pair

of diagnoses. For close to 1 million diagnosis pairs, more than 80

million samples would have been required to obtain significant

𝑝−values while compensating for multiple testing, which would

have translated to a thousand years’ worth of computer running

time. A pre-filtering step was included to avoid this pitfall.
25

25: The final trajectories were validated

using the full sampling procedure.

Project Summary and Results The dataset was reduced to 1,171 sig-
nificant trajectories. These thoroughfares were clustered into patterns

centred on 5 key diagnoses central to disease progression:

diabetes;

chronic obstructive pulmonary disease (COPD);

cancer;
arthritis, and

cerebrovascular disease.

Early diagnoses for these central factors can help reduce the risk of

adverse outcome linked to future diagnoses of other conditions.

Two author quotes illustrate the importance of these results:

“The sooner a health risk pattern is identified, the better we

can prevent and treat critical diseases.” [S. Brunak]

“Instead of looking at each disease in isolation, you can talk

about a complex system with many different interacting

factors. By looking at the order in which different diseases
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Figure 19.6: The COPD cluster showing five preceding diagnoses leading to COPD and some of its possible outcomes [29].

appear, you can start to draw patterns and see complex cor-

relations outlining the direction for each individual person.”

[L.J. Jensen]

Among the specific results, the following “surprising” insights were

found:

a diagnosis of anemia is typically followed months later by the

discovery of colon cancer;

gout was identified as a step on the path toward cardiovascular

disease, and

COPD is under-diagnosed and under-treated.

The disease trajectories cluster for COPD is shown in Figure 19.6.

19.3.6 Toy Example: Titanic Dataset

Compiled by Robert Dawson in 1995, the Titanic dataset consists of 4

categorical attributes for each of the 2201 people aboard the Titanic when

it sank in 1912 (some issues with the dataset have been documented, but

we will ignore them for now):

class (1st class, 2nd class, 3rd class, crewmember)

age (adult, child)

sex (male, female)

survival (yes, no)

The natural question of interest for this dataset is:

“How does survival relate to the other attributes?”
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Figure 19.7: Visualization of 8 Titanic association rules with parallel coordinates.

This is not, strictly speaking, an unsupervised task (as the interesting

rules’ structure is fixed to conclusions of the form survival = Yes or

survival = No).

For the purpose of this example, we elect not to treat the problem as

a predictive task, since the long removed situation on the Titanic has

little bearing on survival for new data – as such, we use fixed-structure

association rules to describe and explore survival conditions on the

Titanic (compare with [47]).

We use the arules implementation of the a priori algorithm in R to

generate and prune candidate rules, eventually leading to 8 rules (the

results are visualized in Figure 19.7). Who survived? Who didn’t?
26

We26: Again, with feeling: correlation does
not imply causation.

show how to obtain these rules via R in Section 19.7.1 (Association Rules
Mining: Titanic Dataset).

19.4 Classification and Value Estimation

“The diversity of problems that can be addressed by classifi-

cation algorithms is significant, and covers many domains. It

is difficult to comprehensively discuss all the methods in a

single book.” [2]

19.4.1 Overview

The principles underlying classification, regression and class probability

estimation are well-known and straightforward. Classification is a super-

vised learning endeavour in which a sample training set of data is used

to determine rules and patterns that divide the data into predetermined

groups, or classes. The training set usually consists of a randomly selected

subset of the labeled data.
27

27: Value estimation (regression) is simi-

lar to classification, except that the target

variable is numerical instead of categori-

cal.
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In the testing phase, the model is used to assign a class to observations

in the testing set, in which the label is hidden, in spite of being actually

known.

The performance of the predictive model is then evaluated by comparing

the predicted and the actual values for the testing set observations (but

never using the training set observations). A number of technical issues

need to be addressed in order to achieve optimal performance, among

them: determining which features to select for inclusion in the model

and, perhaps more importantly, which algorithm to choose.

The edible/poisonous mushroom model from Data Science and Machine
Learning Tasks provides a clean example of a classification model, albeit

one for which no detail regarding the training data and choice of algorithm

were made available.

Applications Classification and value estimation models are among the

most frequently used of the data science models, and form the backbone

of what is also known as predictive analytics. There are applications and

uses in just about every field of human endeavour, such as:

medicine and health science – predicting which patient is at risk

of suffering a second, and this time fatal, heart attack within 30

days based on health factors (blood pressure, age, sinus problems,

etc.);

social policies – predicting the likelihood of required assisted

housing in old age based on demographic information/survey

answers;

marketing/business – predicting which customers are likely to

cancel their membership to a gym based on demographics and

usage;

in general, predicting that an object belongs to a particular class, or

organizing and grouping instances into categories, or

enhancing the detection of relevant objects:

− avoidance – “this object is an incoming vehicle”;

− pursuit – “this object is leaving the scene of a collision”;

− degree – “this object is 90% likely to run in front of the car”,

economics – predicting the inflation rate for the coming two years

based on a number of economic indicators.

Other examples may be found in [33, 32, 18, 31].

Concrete Examples Some concrete examples may provide a clearer

picture of the types of SL problems encountered by analysts.

A motor insurance company has a fraud investigation department

that studies up to 20% of all claims made, yet money is still getting

lost on fraudulent claims. To help better direct the investigators,

management would like to determine, using past data, if it is

possible to predict whether a claim is likely to be fraudulent?
28

28: And/or whether a customer is likely

to commit fraud in the near future?

Whether an application for a policy is

likely to result in a fraudulent claim? If the

amount by which a claim will be reduced

if it is fraudulent?
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Figure 19.8: A classification pipeline, including training set, testing set, performance evaluation, and (eventual) deployment.

Customers who make a large number of calls to a mobile phone

company’s customer service number have been identified as churn

risks. The company is interested in reducing said churn. Can they

predict the overall lifetime value of a customer? Which customers

are more likely to churn in the near future? What retention offer a

particular customer will best respond to?

In every classification scenario, the following questions must be answered

before embarking on analysis:

What kind of data is required?

How much of it?

What would constitute a predictive success?

What are the risks associated with a predictive modeling approach?

These have no one-size-fits-all answers; they have to be considered on a

case-by-case basis.

In the absence of testing data, classification models cannot be used for

predictive tasks, but may still be useful for descriptive tasks (see Titanic

example above).

When testing data exists, the overall process is often quite similar, inde-

pendently of the choice of the algorithm (see the classification pipeline

shown in Figure 19.8).

This clearly points to the importance of obtaining good test data, but keep

in mind that this process may be costly and/or difficult to implement,

in general. Data scientists often have to enact clever schemes to collect

the right “stuff” – consider, for instance, the current procedures used to

prove that an online user is not a bot, such as identifying all traffic lights,

motorcycles, crosswalks, store fronts, etc. in a picture.
29

29: It is not in fact the answers that iden-

tify a user as human; rather, it is reaction

times and mouse movements that betray

bots. The answers are used to collect data

to train self-driving vehicle AIs.
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19.4.2 Classification Algorithms

The number of classification algorithms is truly staggering – it often

seems as though new algorithms and variants are put forward on a

monthly basis, depending on the task and on the type of data [2].

While some of them tend to be rather esoteric, there is a fairly small

number of commonly-used workhorse algorithms/approaches that data

scientists and consultants should at least have at their command:
30

30: Full descriptions: [54, 24, 45].

logistic regression and linear regression are classical models which

are often used by statisticians but rarely in a classification setting

(the estimated coefficients are often used to determine the features’

importance); one of their strengths is that the machinery of standard

statistical theory (hypothesis testing, confidence intervals, etc.)

is still available to the analyst, but they are easily affected by

variance inflation in the presence of predictor multi-collinearity,

and the stepwise variable selection process that is typically used

is problematic – regularization methods would be better suited in

general [25] (see Figure 19.9 for illustrations);

neural networks have become popular recently due to the advent

of deep learning; they might provide the prototypical example of a

black box algorithm as they are hard to interpret; another issue is

that they require a fair amount of data to train properly – we will

have more to say on the topic in a later chapter;

decision trees are perhaps the most common of all data science

algorithms, but they tend to overfit the data when they are not

pruned correctly, a process which often has to be done manually

(see Figure 19.9 for an illustration) – we shall discuss the pros an

cons of decision trees in general in Decision Trees;
naïve Bayes classifiers have known quite a lot of success in text

mining applications (more specifically as the basis of powerful

spam filters), but, embarrassingly, no one is quite sure why they

should work as well as they do given that one of their required

assumptions (independence of priors) is rarely met in practice (see

Figure 19.9 for an illustration);

support vector machines attempt to separate the dataset by “fitting”

as wide of a “tube” as possible through the classes (subjected to a

number of penalty constraints); they have also known successes,

most notably in the field of digital handwriting recognition, but

their decision boundaries (the tubes in question) tend to be non-

linear and quite difficult to interpret; nevertheless, they may help

mitigate some of the difficulties associated with big data (see Figure

19.10 for an illustration);

nearest neighbours classifiers (𝑘NN) basically implement a voting

procedure and require very little assumptions about the data, but

they are not very stable as adding training points may substantially

modify the boundary (see Figures 19.9 and 19.10 for illustrations),

Boosting methods [35, 27] and Bayesian methods [48, 16] (also see

Chapter 25) are becoming increasingly more popular.
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Figure 19.9: Illustrations of various classifiers – linear regression, top left; optimal Bayes, top right; 1NN and 15NN, middle left and right,

respectively, on an artificial dataset (from [24]); decision tree depicting the chances of survival for various disasters (fictional, based on [39]).

Note that linear regression is more stable, simpler to describe, but less accurate than 𝑘NN and optimal Bayes.
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Figure 19.10: Illustration of a 𝑘 nearest neighbour (left) and a support vector machines classifier (right, based on [45]). What is the 6NN

prediction for the location marked by a question mark? What about the 19NN prediction?

19.4.3 Decision Trees

In order to highlight the relative simplicity of most classification algo-

rithms, we will discuss the workings of ID3, a historically significant

decision tree algorithm.
31

31: ID3 would never be used in a deploy-

ment setting, but it will serve to illustrate

a number of classification concepts.Classification trees are perhaps the most intuitive of all supervised

methods: classification is achieved by following a path up the tree, from

its root, through its branches, and ending at its leaves (although typically

the tree is depicted with its root at the top and its leaves at the bottom).

To make a prediction for a new instance, it suffices to follow the path

down the tree, reading the prediction directly once a leaf is reached. It

sounds simple enough in theory, but in practice, creating the tree and

traversing it might be time-consuming if there are too many variables

in the dataset (due to the criterion that is used to determine how the

branches split).

Prediction accuracy can be a concern in trees whose growth is unchecked.

In practice, the criterion of purity at the leaf-level
32

is linked to bad 32: That is to say, all instances in a leaf

belong to the same leaf.
prediction rates for new instances. Other criteria are often used to prune

trees, which may lead to impure leaves.

How do we grow such trees?

For predictive purposes, we need a training set and a testing set upon

which to evaluate the tree’s performance. Ross Quinlan’s Iterative Di-
chotomizer 3 (a precursor to the widely-used C4.5 and C5.0) follows a

simple procedure:

1. split the training data (parent) set into (children) subsets, using

the different levels of a particular attribute;

2. compute the information gain for each subset;

3. select the most advantageous split, and

4. repeat for each node until some leaf criterion is met.
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Entropy is a measure of disorder in a set 𝑆. Let 𝑝𝑖 be the proportion of

observations in 𝑆 belonging to category 𝑖, for 𝑖 = 1, . . . , 𝑛. The entropy

of 𝑆 is given by

𝐸(𝑆) = −
𝑛∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 .

If the parent set 𝑆 consisting of 𝑚 records is split into 𝑘 children sets

𝐶1 , . . . , 𝐶𝑘 containing 𝑞1 , . . . , 𝑞𝑘 records, respectively, then the informa-
tion gained from the split is

𝐼(𝑆 : 𝐶1 , . . . , 𝐶𝑘) = 𝐸(𝑆) −
1

𝑚

𝑘∑
𝑗=1

𝑞 𝑗𝐸(𝐶 𝑗).

The sum term in the information gain equation is a weighted average of

the entropy of the children sets.

If the split leads to little disorder in the children, then IG(𝑆;𝐶1 , . . . , 𝐶𝑘)
is high; if the split leads to similar disorder in both children and parent,

then IG(𝑆;𝐶1 , . . . , 𝐶𝑘) is low.

Consider, as in Figure 19.11, two splits shown for a parent set with 30

observations separated into 2 classes: ◦ and ★.
33

33:

Figure 19.11: Picking the optimal informa-

tion gain split. [45]

Visually, it appears as though the binary split does a better job of

separating the classes. Numerically, the entropy of the parent set 𝑆 is

𝐸(𝑆) = −𝑝◦ log 𝑝◦ − 𝑝★ log 𝑝★

= −16

30

log

16

30

− 14

30

log

14

30

≈ 0.99.

For the binary split (on the left), leading to the children set 𝐿 (left) and 𝑅
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(right), the respective entropies are

𝐸(𝐿) = −12

13

log

12

13

− 1

13

log

1

13

≈ 0.39

and

𝐸(𝑅) = − 4

17

log

4

17

− 13

17

log

13

17

≈ 0.79,

so that the information gained by that split is

IG(𝑆;𝐶𝐿 , 𝐶𝑅) ≈ 0.99 − 1

30

[13 · 0.39 + 17 · 0.79] = 0.37.

On its own, this value is not substantially meaningful – it is only in

comparison to the information gained from other splits that it becomes

useful. A similar computation for the three-way split (see sidenote on

previous page) leads to IG(𝑆;𝐶1 , 𝐶2 , 𝐶3) ≈ 0.13, which is indeed smaller

than the information gained by the binary split – of these two options,

ID3 would select the first as being most advantageous.

Decision trees have numerous strengths: they

are easy to interpret, providing, as they do, a white box model –

predictions can always be explained by following the appropriate

paths;

can handle numerical and categorical data simultaneously, without

first having to “binarise” the data;

can be used with incomplete datasets, if needed (although there is

still some value in imputing missing observations);

allow for built-in feature selection as less relevant features do not

tend to be used as splitting features;

make no assumption about independence of observations, under-

lying distributions, multi-collinearity, etc., and can thus be used

without the need to verify assumptions;

lend themselves to statistical validation (in the form of cross-

validation), and

are in line with human decision-making approaches, especially

when such decisions are taken deliberately.

On the other hand, they are

not usually as accurate as other more complex algorithms, nor as
robust, as small changes in the training data can lead to a completely

different tree, with a completely different set of predictions;[This

can become problematic when presenting the results to a client

whose understanding of these matters is slight.]

particularly vulnerable to overfitting in the absence of pruning

— and pruning procedures are typically fairly convoluted (some

algorithms automate this process, using statistical tests to determine

when a tree’s “full” growth has been achieved), and

biased towards categorical features with high number of levels,

which may give such variables undue importance in the classifica-

tion process.

Information gain tends to grow small trees in its pursuit of pure leaves,

but it is not the only splitting metric in use (Gini impurity, variance
reduction, etc.).
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Notes ID3 is a precursor of C4.5, perhaps the most popular decision

tree algorithm on the market. There are other tree algorithms, such as

C5.0, CHAID, MARS, conditional inference trees, CART, etc., each grown

using algorithms with their own strengths and weaknesses.

Regression trees are grown in a similar fashion, but with a numerical
response variable (predicted inflation rate, say), which introduces some

complications [27, 24].

Decision trees can also be combined together using boosting algorithms
(such as AdaBoost) or random forests, providing a type of voting

procedure also known as ensemble learning – an individual tree might

make middling predictions, but a large number of judiciously selected

trees are likely to make good predictions, on average [27, 24, 35] – we

will re-visit these concepts in a later chapter.

Additionally:

since classification is linked to probability estimation, approaches

that extend the basic ideas of regression models could prove

fruitful;

rare occurrences are often more interesting and more difficult

to predict and identify than regular instances – historical data at

Fukushima’s nuclear reactor prior to the 2011 meltdown could not

have been used to learn about meltdowns, for obvious reasons,
34

34: Classical performance evaluation met-

rics can easily be fooled; if out of two

classes one of the instances is only repre-

sented in 0.01% of the instances, predicting

the non-rare class will yield correct predic-

tions roughly 99.99% of the time, missing

the point of the exercise altogether.

with big datasets, algorithms must also consider efficiency – thank-

fully, decision trees are easily parallelizable.

19.4.4 Performance Evaluation

As a consequence of the (so-called) No Free-Lunch Theorem, no single

classifier can be the best performer for every problem [57, 58]. Model

selection must take into account:

the nature of the available data;

the relative frequencies of the classification sub-groups;

the stated classification goals;

how easily the model lends itself to interpretation and statistical
analysis;

how much data preparation is required;

whether it can accommodate various data types and missing

observations;

whether it performs well with large datasets, and

whether it is robust against small data departures from theoretical

assumptions.

Past success is not a guarantee of future success – it is the analyst’s

responsibility to try a variety of models. But how can the “best” model

be selected?

When a classifier attempts to determine what kind of music a new

customer would prefer, there is next to no cost in making a mistake; if,

on the other hand, the classifier attempts to determine the presence or

absence of cancerous cells in lung tissue, mistakes are more consequential.

Several metrics can be used to assess a classifier’s performance, depending

on the context.
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Binary classifiers (presented in the abstract in Table 19.1) are simpler and

have been studied far longer than multi-level classifiers; consequently, a

larger body of evaluation metrics is available for these classifiers.

In the medical literature, for instance, TP, TN, FP and FN stand for

True Positives, True Negatives, False Positives, and False Negatives,

respectively.

Table 19.1: A general binary classifier.

A perfect classifier would be one for which both FP, FN = 0, but in

practice, that rarely ever happens (if at all).

Traditional performance metrics include:

sensitivity: TP/AP

specificity: TN/AN

precision: TP/PP

negative predictive value: TN/PN

false positive rate: FP/AN

false discovery rate: 1 − TP/PP

false negative rate: FN/AP

accuracy: (TP + TN)/T
𝐹1−score: 2TP/(2TP + FP + FN)
MCC:

TP·TN−FP·FN√
AP·AN·PP·PN

informedness/ROC: TP/AP + TN/AN − 1

markedness: TP/PP + TN/PN − 1.

The confusion matrices of two artificial binary classifers for a testing set

are shown in Table 19.2.

Both classifiers have an accuracy of 80%, but while the second classifier

sometimes makes a wrong prediction for 𝐴, it never does so for 𝐵,

whereas the first classifier makes erroneous predictions for both 𝐴 and 𝐵.

On the other hand, the second classifier mistakenly predicts occurrence

𝐴 as 𝐵 16 times while the first one only does so 6 times. Which is best?

The performance metrics alone do not suffice to answer the question:

the cost associated with making a mistake must also be factored in.

Furthermore, it could be preferable to select performance evaluation

metrics that generalize more readily to multi-level classifiers (see Table

19.3 for examples of associated confusion matrices).

The accuracy is the proportion of correct predictions amid all the ob-

servations; its value ranges from 0% to 100%. The higher the accuracy,

the better the match, and yet, a predictive model with high accuracy

may nevertheless be useless thanks to the Accuracy Paradox (see rare

occurrence sidenote on page 1146).

The Matthews Correlation Coefficient (MCC), on the other hand, is a

statistic which is of use even when the classes are of very different sizes. As
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Table 19.2: Performance metrics for two (artificial) binary classifiers.

Table 19.3: Performance metrics for (artificial) multi-level classifiers: ternary - left; senary - right [personal files].

a correlation coefficient between the actual and predicted classifications,

its range varies from −1 to 1.

If MCC = 1, the predicted and actual responses are identical, while if

MCC = 0, the classifier performs no better than a random prediction

(“flip of a coin”).

It is also possible to introduce two non-traditional performance metrics

(which are nevertheless well-known statistical quantities) to describe

how accurately a classifier preserves the classification distribution (rather

than how it behaves on an observation-by-observation basis):

Pearson’s 𝜒2
:

1

T

(
(PP −AP)2/PP + (PN −AN)2/PN

)
Hist:

1

T
(|PP −AP| + |PN −AN|)

Note, however, that these are non-standard performance metrics. For a

given number of levels, the smaller these quantities, the more similar the

actual and predicted distributions.

For numerical targets 𝑦 with predictions 𝑦̂, the confusion matrix is not

defined, but a number of classical performance evaluation metrics can
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be used on the testing set: the

mean squared and mean absolute errors

MSE = mean

{
(𝑦𝑖 − 𝑦̂𝑖)2

}
, MAE = mean{|𝑦𝑖 − 𝑦̂𝑖 |};

normalized mean squared/mean absolute errors

NMSE =
mean

{
(𝑦𝑖 − 𝑦̂𝑖)2

}
mean {(𝑦𝑖 − 𝑦)2}

,

NMAE =
mean {|𝑦𝑖 − 𝑦̂𝑖 |}
mean {|𝑦𝑖 − 𝑦 |}

;

mean average percentage error

MAPE = mean

{ |𝑦𝑖 − 𝑦̂𝑖 |
𝑦𝑖

}
;

correlation 𝜌𝑦,𝑦̂ , which is based on the notion that for good models,

the predicted values and the actual values should congregate

around the lines 𝑦 = 𝑦̂ (as in Figure 19.12).

Figure 19.12: Predicted and actual numer-

ical responses [personal file].

As is the case for classification, an isolated value estimation performance

metric does not provide enough of a rationale for model validation/selec-

tion. One possible exception: normalized evaluation metrics do provide

some information about the relative quality of performance [24, 27].

19.4.5 Case Study: Minnesota Tax Audit

Large gaps between revenue owed (in theory) and revenue collected (in

practice) are problematic for governments. Revenue agencies implement

various fraud detection strategies (such as audit reviews) to bridge that

gap.
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Since business audits are rather costly, there is a definite need for algo-

rithms that can predict whether an audit is likely to be successful or a

waste of resources.

In Data Mining Based Tax Audit Selection: A Case Study of a Pilot Project at
the Minnesota Department of Revenue [26], Hsu et al. study the Minnesota

Department of Revenue’s (DOR) tax audit selection process with the help

of classification algorithms.

Objective The U.S. Internal Revenue Service (IRS) estimated that there

were large gaps between revenue owed and revenue collected for 2001

and for 2006. Using DOR data, the authors sought to increase efficiency
in the audit selection process and to reduce the gap between revenue

owed and revenue collected.

Methodology The authors took the following steps:

1. data selection and separation: experts selected several hundred

cases to audit and divided them into training, testing and validating

sets;

2. classification modeling using MultiBoosting, Naïve Bayes, C4.5

decision trees, multilayer perceptrons, support vector machines,

etc;

3. evaluation of all models was achieved by testing the model on the

testing set – models originally performed poorly on the testing set

until the size of the business being audited was recognized to have

an effect, leading to two separate tasks (large and small businesses),

4. model selection and validation was done by comparing the esti-

mated accuracy between different classification model predictions

and the actual field audits. Ultimately, MultiBoosting with Naïve

Bayes was selected as the final model; the combination also sug-

gested some improvements to increase audit efficiency.

Data The data consisted of selected tax audit cases from 2004 to 2007,

collected by the audit experts, which were split into training, testing and

validation sets:

the training data set consisted of Audit Plan General (APGEN) Use
Tax audits and their results for the years 2004-2006;

the testing data consisted of APGEN Use Tax audits conducted

in 2007 and was used to test or evaluate models (for Large and

Smaller businesses) built on the training dataset,

while validation was assessed by actually conducting field audits

on predictions made by models built on 2007 Use Tax return data

processed in 2008.

None of the sets had records in common (see Figure 19.13).
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Figure 19.13: Data sources for APGEN

mining [26]. Note the 6 final sets which

feed the Data Analysis component.

Strengths and Limitations of Algorithms

The Naïve Bayes classification scheme assumes independence of the

features, which rarely occurs in real-world situations. This approach

is also known to potentially introduce bias to classification schemes.

In spite of this, classification models built using Naïve Bayes have

a successful track record.

MultiBoosting is an ensemble technique that uses committee (i.e.

groups of classification models) and “group wisdom” to make

predictions; unlike other ensemble techniques, it is different from

other ensemble techniques in the sense that it forms a committee

of sub-committees (i.e., a group of groups of classification models),

which has a tendency to reduce both bias and variance of predictions

(see [35, 2] for more information on these topics).

Procedures Classification schemes need a response variable for predic-

tion: audits which yielded more than $500 per year in revenues during

the audit period were classified as Good; the others were Bad. The various

models were tested and evaluated by comparing the performances of

the manual audits (which yield the actual revenue) and the classification

models (the predicted classification).

The procedure for manual audit selection in the early stages of the study

required:

1. DOR experts selecting several thousand potential cases through a

query;

2. DOR experts further selecting several hundreds of these cases to

audit;

3. DOR auditors actually auditing the cases, and

4. calculating audit accuracy and return on investment (ROI) using

the audits results.
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Once the ROIs were available, data mining started in earnest. The steps

involved were:

1. Splitting the data into training, testing, and validating sets.

2. Cleaning the training data by removing “bad” cases.

3. Building (and revising) classification models on the training

dataset. The first iteration of this step introduced a separation

of models for larger businesses and relatively smaller businesses

according to their average annual withholding amounts (the

threshold value that was used is not revealed in [26]).

4. Selecting separate modeling features for the APGEN Large and

Small training sets. The feature selection process is shown in Figure

19.14.

5. Building classification models on the training dataset for the two

separate class of business (using C4.5, Naïve Bayes, multilayer per-

ceptron, support vector machines, etc.), and assessing the classifiers

using precision and recall with improved estimated ROI:

Efficiency = ROI =
Total revenue generated

Total collection cost

Figure 19.14: Feature selection process in

[26]; note the involvement of domain ex-

perts.

Results, Evaluation and Validation The models that were eventually

selected were combinations of MultiBoosting and Naïve Bayes (C4.5

produced interpretable results, but its performance was shaky). For

APGEN Large (2007), experts had put forward 878 cases for audit (495

of which proved successful), while the classification model suggested

534 audits (386 of which proved successful). The theoretical best process

would find 495 successful audits in 495 audits performed, while the

manual audit selection process needed 878 audits in order to reach the

same number of successful audits.

For APGEN Small (2007), 473 cases were recommended for audit by

experts (only 99 of which proved successful); in contrast, 47 out of the 140

cases selected by the classification model were successful. The theoretical

best process would find 99 successful audits in 99 audits performed,

while the manual audit selection process needed 473 audits in order to

reach the same number of successful audits.

In both cases, the classification model improves on the manual audit

process: roughly 685 data mining audits to reach 495 successful audits of
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Figure 19.15: Audit resource deployment efficiency [26]; left – APGEN Large (2007); right – APGEN Small (2007). In both cases, the Data

Mining approach was more efficient (the slope of the Data Mining vector is “closer” to the Theoretical Best vector than is the Manual Audit

vector).

Table 19.4: Confusion matrices for audit evaluation [26]; left – APGEN Large (2007); right – APGEN Small (2007). 𝑅 stands for revenues, 𝐶
for collection costs.

APGEN Large (2007), and 295 would be required to reach 99 successful

audits for APGEN Small (2007), as can be seen in Figure 19.15.

Figure 19.4 presents the confusion matrices for the classification model

on both the APGEN Large and Small 2007 datasets.

The revenue 𝑅 and collection cost 𝐶 entries can be read as follows: the

47 successful audits which were correctly identified by the model for

APGEN Small (2007) correspond to cases consuming 9.9% of collection

costs but generating 42.5% of the revenues. Similarly, the 281 bad audits

correctly predicted by the model represent notable collection cost savings.

These are associated with 59.4% of collection costs but they generate only

11.1% of the revenues.

Once the testing phase of the study was completed, the DOR validated

the data mining-based approach by using the models to select cases for

actual field audits in a real audit project. The prior success rate of audits

for APGEN Use tax data was 39% while the model was predicting a

success rate of 56%; the actual field success rate was 51%.

Take-Aways A substantial number of models were churned out before

the team made a final selection. Past performance of a model family in

a previous project can be used as a guide, but it provides no guarantee

regarding its performance on the current data – remember the No Free
Lunch (NFL) Theorem [57]: nothing works best all the time!

There is a definite iterative feel to this project: the feature selection process

could very well require a number of visits to domain experts before the
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feature set yields promising results. This is a valuable reminder that the

data analysis team should seek out individuals with a good understand

of both data and context. Another consequence of the NFL is that domain-

specific knowledge has to be integrated in the model in order to beat

random classifiers, on average [58].

Finally, this project provides an excellent illustration that even slight

improvements over the current approach can find a useful place in an

organization – data science is not solely about Big Data and disruption!

19.4.6 Toy Example: Kyphosis Dataset

As a basic illustration of these concepts, consider the following example.

Kyphosis is a medical condition related to an excessive convex curvature

of the spine. Corrective spinal surgery is at times performed on children.

A dataset of 81 observations and 4 attributes has been collected (we have

no information on how the data was collected and how representative it

is likely to be, but those details can be gathered from [9]).

The attributes are:

kyphosis (absent or present after presentation);

age (at time of operation, in months);

number (of vertebrae involved),

start (topmost vertebra operated on).

The natural question of interest for this dataset is:

“How do the three explanatory attributes impact the opera-

tion’s success?”

We use the rpart implementation of Classification and Regression Tree

(CART) in R to generate a decision tree. Strictly speaking, this is not a

predictive supervised task as we treat the entire dataset as a training set

for the time being – there are no hold-out testing observations.

The results are shown in Figure 19.16. Interestingly, it would appear that

the variable number does not play a role in determining the success of

the operation (for the observations in the dataset).

Figure 19.16: Kyphosis decision tree visu-

alization. Only two features are used to

construct the tree. We also note that the

leaves are not pure – there are blue and
red instances in 3 of the 5 classification

regions.

Furthermore, the decision tree visualization certainly indicates that its

leaves are not pure (see Figure 19.17. Some additional work suggests that

the tree is somewhat overgrown and that it could benefit from being

pruned after the first branching point.
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Figure 19.17: Pruning a decision tree – the original tree (left) is more accurate/more complex than the pruned tree (right).

Table 19.5: Kyphosis decision tree – performance evaluation. The accuracy and 𝐹1 scores are good, but the false discovery and false negative

rates are not so great. This tree is good at predicting successful surgeries, but not fantastic at predicting failed surgeries. Is it still useful?

At any rate, it remains meangingless to discuss the performance of the tree

for predictive purposes if we are not using a holdout testing sample (not

to say anything about the hope of generalizing to a larger population).

To that end, we trained a model on 50 randomly selected observations

and evaluated the performance on the remaining 31 observations (the

structure of the tree is not really important at this stage). The results are

shown in Table 19.5. Is the model “good”?

It is difficult to answer this question in the machine learning sense

without being able to compare its performance metrics with those of

other models (or families of models).
35

35: The relative small size of the dataset

should give data analysts pause for

thought, at the very least.In the Model Selection subsection, we will briefly discuss how estimate a

model’s true predictive error rate through cross-validation. We will also

discuss a number of other issues that can arise when ML/AI methods

are not used correctly.

We show how to obtain these decision trees via R in Section 19.7 (Classifi-
cation: Kyphosis Dataset).
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19.5 Clustering

“Clustering is in the eye of the beholder, and as such, re-

searchers have proposed many induction principles and

models whose corresponding optimisation problem can only

be approximately solved by an even larger number of algo-

rithms.” [17]

19.5.1 Overview

We can make a variety of quantitative statements about a dataset, at the

univariate level. For instance, we can

compute frequency counts for the variables;

identify measures of centrality (mean, mode, median), and

measure the dispersion (range, standard deviation), among others.

At the multivariate level, the various options include 𝑛−way tabulations,

correlation analysis, and data visualization, among others.

While these can provide insights in simple situations, datasets with a large
number of variables or with mixed types (categorical and numerical)

might not yield to such an approach. Instead, insights might come in the

form of aggregation or clustering of similar observations.

A successful clustering scheme is one that tightly joins together any

number of similarity profiles – “tight” in this context refers to small

variability within the cluster, see Figure 19.18 for an illustration.

Figure 19.18: Clusters and outliers in an

artificial dataset [personal file].

A typical application is one found in search engines, where the listed

search results are the nearest similar objects (relevant webpages) clus-

tered around the search item.

Dissimilar objects (irrelevant webpages) should not appear in the list,

being “far” from the search item. Left undefined in this example is the

crucial notion of closeness: what does it mean for one observation to be

near another one? Various metrics can be used (see Figure 19.19 for some

simple examples), and not all of them lead to the same results.
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Figure 19.19: Distance metrics between

observations: Euclidean (as the crow flies,

top left); cosine (direction from a vantage

point, top right); Manhattan (taxi-cab, bot-

tom left). Observations should be trans-

formed (scaled, translated) before distance

computations (bottom right).

Clustering is a form of unsupervised learning since the cluster labels

(and possibly their number) are not determined ahead of the analysis.

The algorithms can be complex and non-intuitive, based on varying

notions of similarities between observations, and yet, the temptation

to provide a simple a posteriori explanation for the groupings remains

strong – we really, really want to reason with the data.
36

36: Is it possible to look at Figure 19.18

without assigning labels or trying to un-

derstand what type of customers were

likely to be young and have medium in-

come? Older and wealthier?

They are also (typically) non-deterministic – the same routine, applied

twice to the same dataset, can discover completely different clusters.
37

37: The order in which the data is pre-

sented can play a role, as can starting con-

figurations.

This (potential) non-replicability is not just problematic for validation

– it can also leads to client dissatisfaction. If the analyst is tasked with

finding customer clusters for marketing purposes and the clusters change

every time the client or the stakeholders ask for a report, they will be

very confused (and will be doubting the results) unless the stochastic
nature of the process has already been explained.

Another interesting aspect of clustering algorithms is that they often find

clusters even when there are no natural ways to break down a dataset

into constituent parts.

When there is no natural way to break up the data into clusters, the

results may be arbitrary and fail to represent any underlying reality

of the dataset. On the other hand, it could be that while there was no

recognized way of naturally breaking up the data into clusters, the

algorithm discovered such a grouping – clustering is sometimes called

automated classification as a result.

The aim of clustering, then, is to divide into naturally occurring groups.

Within each group, observations are similar; between groups, they are

dissimilar (see Figure 19.20 for an illustration).

Figure 19.20: Distance to points in own

clusters (left, smaller is better) and to

points in other clusters (right, larger is

better).
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As a learning process, clustering is fairly intuitive for human beings

– our brains unconsciously search for patterns and they can generally

handle messy data with the same relative ease as clean data. Computers

have a harder time of it, however, partly because there is no agreed-upon
definition of what constitutes a cluster, and so we cannot easily code

their recognition into algorithms – to paraphrase Justice Potter Stewart,

“I may not be able to define what a cluster is, but I know one

when I see one.”

All clustering algorithms rely on the notion of similarity 𝑤 between

observations; in many instances, similarity is obtained via a distance (or

metric) 𝑑, with 𝑤 → 1 as 𝑑→ 0, and 𝑤 → 0 as 𝑑→∞. However, there

are similarity measures which are not derived from a distance metric.

One additional clustering challenge is that there is no such thing as the
distance or the similarity measure between observations – observations

which are similar using a specific measure may not be similar at all
using another. Commonly-used metrics include:

euclidean, Manhattan, cosine, Canberra, Hamming, Jaccard,

Pearson, and so on.

Note, however, that no matter which similarity measure is selected, the

data must first be transformed: scaled, centered, etc. (see Figure 19.19).

This introduces another layer of arbitrary choices, as there are multiple

available options and no canonical way to perform this.

Applications Frequently, we use clustering and other unsupervised

learning tasks as preliminary steps in supervised learning problems,

but there exist stand-alone applications as well:

text analysis – grouping similar documents according to their

topics, based on the patterns of common and unusual terms;

product recommendations – grouping online purchasers based on

the products they have viewed, purchased, liked, or disliked, or

grouping products based on customer reviews;

marketing – grouping client profiles based on their demographics

and preferences;

social network analysis – recognizing communities within large

groups of people;

medical imaging – differentiating between different tissue types in

a 3D voxel;

genetics – inferring structures in populations;

dividing a larger group (or area, or category) into smaller groups,

with members of the smaller groups having similarities of some

kind, as analytical tasks may then be solved separately for each of

the smaller groups, which may lead to increased accuracy once the

separate results are aggregated, or

creating (new) taxonomies on the fly, as new items are added to a

group of items, which could allow for easier product navigation

on a website like Netflix, for instance.

Numerous other applications may be found in [3, 51, 13, 21, 41, 44, 42, 28,

50, 12, 34, 5].
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Figure 19.21: A clustering pipeline, including validation and (eventual) deployment.

When all is said and done, the clustering process is quite standard,

notwithstanding the choice of scaling strategy, similarity measure, and

algorithm and parameters (see the pipeline shown in Figure 19.21).

19.5.2 Clustering Algorithms

As is the case with classification, the number of clustering algorithms is

quite high; the Wikipedia page lists 40+ such algorithms as of August

2018 [56]. The choice of algorithms (and associated parameters) is as

much an art as it is a science, although domain expertise can come in

handy [3].

There is a smaller list of common algorithms that data scientists and

consultants should have in their toolbox:
38

38: Full descriptions: [54, 45, 3].

𝑘−means, close on the heels of decision trees for the title of “most-

used data science algorithm”, is a partition clustering method
which tends to produce equal-sized clusters; when clients ask for

their data to be clustered, they are typically envisioning 𝑘−means

with the Euclidean metric; variants include 𝑘−mode (for categorical

data), 𝑘−medians (for data with outliers), and 𝑘−means| | and

𝑘−means++ for large data sets; the number of clusters 𝑘 (and the

similarity measure/distance metric) must be provided by the user;

works fairly well for “blob”-like data;

hierarchical clustering is one of the few deterministic algorithms

on the market, with divisive (DIANA) and agglomerative (AGNES)

versions; no parameters need to be inputted, but the users must

select a linkage strategy (roughly speaking, a metric that computes

the distance between clusters) and a level at which to read off the

clusters (see Figure 19.22 for an illustration);
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Figure 19.22: Illustration of hierarchical clustering (left), DBSCAN (middle, based on [23]), and spectral clustering (right).

density-based spatial clustering (DBSCAN) is a graph-based

approach which attempts to identify densely-packed regions in the

dataset; its most obvious advantages (and of its variants OPTICS and

DENCLUE) are robustness to outliers and not needing to input a

number of clusters to search for in the data; the main disadvantage

is that the optimal input parameters (neighbourhood radius and

minimum number of points to be considered dense) are not easy

to derive (see Figure 19.22);

affinity propagation is another algorithm which selects the optimal

number of clusters directly from the data, but it does so by trying

and evaluating various scenarios, which may end up being time-
consuming,

spectral clustering can be used to recognize non-globular clusters

(see Figure 19.22 for an illustration); these are found by computing

eigenvalues of an associated Laplacian matrix – consequently,

spectral clustering is fast.

Other methods include latent Dirichlet allocation (used in topics mod-

eling), expectation-maximisation (particularly useful to find gaussian

clusters), BIRCH (a local method which does not require the entire

dataset to be scanned) and fuzzy clustering (a soft clustering scheme in

which the observations have a degree of belonging to each cluster).

19.5.3 𝑘-Means

As mentioned previously, 𝑘−means is a very natural way to group

observations together (formally, 𝑘−means is linked to Voronoi tilings).

𝑘−means clustering is achieved by:

1. selecting a distance metric 𝑑 (based on the data type and domain

expertise);

2. selecting a number of clusters 𝑘;
3. randomly choosing 𝑘 data instances as initial cluster centres;

4. calculating the distance from each observation to each centre;

5. placing each instance in the cluster whose centre it is nearest to;

6. computing/updating the centroid for each cluster (see Figure 19.23

for an illustration),

7. repeating steps 4-6 until the clusters are “stable”.
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Figure 19.23: 𝑘−means cluster allocation

(left) and updated centres (right) [author

unknown].

For 𝑘−means, cluster centroids are obtained by averaging all points in the

cluster. For 𝑘−medians and 𝑘−mode, the centrality measure is replaced

by the obvious candidate.

This simple algorithm has numerous strengths:

it is elegant and easy to implement (without actually having to

compute pairwise distances), and so is extremely common as a

result;

in many contexts, it is a natural way to look at grouping observa-

tions, and

it provides a first-pass basic understanding of the data structure.

On the other hand,

it can only assign an instance to one cluster, which can lead to

overfitting – a more robust solution would be to compute the

probability of belonging to each cluster, perhaps based on the

distance to the centroid;

it requires the “true” underlying clusters to be gaussian- or blob-

shaped, and it will fail to produce useful clusters if that assumption

is not met in practice,

it does not allow for overlapping or hierarchical groupings.

Notes Let us now return to some issues relating to clustering in general
(and not just to 𝑘−means):

No matter the choice of algorithm, clustering rests on the assumption

that nearness of observations (in whatever metric) is linked with object
similarity, and that large distances are linked with dissimilarity. While

there are plenty of situations where this is an appropriate assumption

to make (temperature readings on a map, for instance), there are others

where it is unlikely to be the case (chocolate bars and sensationalist

tabloids at a grocery’s checkout, say).

The lack of a clear-cut definition of what a cluster actually is (see Figure

19.24 for an example) makes it difficult to validate clustering results.

Much more can be said on the topic [3].

The fact that various algorithms are non-deterministic is also problematic

– clustering schemes should never be obtained using only one algorithmic

pass, as the outcome could be different depending on the location of

random starting positions and the distance/similarity metric in use.
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Figure 19.24: Cluster suggestions in an artificial dataset: suggested (blue), rejected (red).

But this apparent fickleness is not necessarily a problem: essential pat-
terns may emerge if the algorithms are implemented multiple times, with

different starting positions and re-ordered data (see cluster ensembles
[3]). For those algorithms that require the number of clusters as an input,

it may be difficult to determine what the optimal number should be (see

Figure 19.25 for an illustration).

Figure 19.25: The number of clusters in

a dataset is ambiguous: are there 2, 3, 4+

clusters in this example?

This number obviously depends on the choice of algorithm/metric, the

underlying data, and the use that will be made of the resulting clusters;

a dataset could have 3 natural groups when seen through the lens of

𝑘−means, but only 2 clusters for a specific choice of parameter values in

DBSCAN, and so on.

This problem could be overcome by producing clustering schemes (from

the same family of algorithms) with an increasing number of clusters and

to plot the average distance of a cluster member to its cluster representative

(centroid) against the number of clusters. Any kink in the plot represents

a number of clusters at which an increase does not provide an in-step

increase in clustering “resolution”, so to speak (see Figure 19.30 in the

Toy Example: Iris Dataset subsection for an illustration).
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Figure 19.26: An illustration of ghost clustering with 𝑘−means, for 𝑘 = 5.

And even when a cluster scheme has been accepted as valid, a cluster
description might be difficult to come by – should clusters be described

using representative instances or average values or some combination of

its’ members most salient features? Although there are exceptions, the

ease with which clusters can be described often provides an indication

about how natural the groups really are.

One of the most frustrating aspects of the process is that most methods

will find clusters in the data even if there are none – although DBSCAN

is exempt from this ghost clustering phenomenon (see Figure 19.26 for a

𝑘−means example).

Finally, analysts should beware (and resist) the temptation of a posteriori
rationalisation – once clusters have been found, it is tempting to try to

“explain” them; why are the groups as they have been found? But that is

a job for domain experts, at best, and a waste of time and resources, at

worst. Tread carefully.

19.5.4 Clustering Validation

What does it mean for a clustering scheme to be better than another?

What does it mean for a clustering scheme to be valid? What does it

mean for a single cluster to be good? How many clusters are there in the

data, really?

These are not easy questions to answer. In general, asking if a clustering

scheme is the right one or a good one is meaningless – much better to

ask if it is optimal or sub-optimal, potentially in comparison to other

schemes.

An optimal clustering scheme is one which

maximizes separation between clusters;

maximizes similarity within groups;

agrees with the human eye test, and

is useful at achieving its goals.
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There are 3 families of clustering validation approaches:

external, which use additional information (but the labels in ques-

tion might have very little to do with the similarity of the observa-

tions);

internal, which use only the clustering results (shape and size of

clusters, etc), and

relative, which compare across a number of clustering attempts.

In order to illustrate some of the possibilities, consider a dataset with

clustering scheme C= {C1 , . . . , C𝑁 }, where C𝑚 ’s centroid is denoted

by 𝑐𝑚 , and the average distance of C𝑚 ’s members to 𝑐𝑚 is denoted by 𝑠𝑚 .

The Davies-Bouldin Index is defined as

DBC =
1

𝑁
=

𝑁∑
𝑖=1

max

𝑗≠𝑖

{
𝑠𝑖 + 𝑠 𝑗
𝑑(𝑐𝑖 , 𝑐 𝑗)

}
,

where 𝑑 is the selected distance metric. Since DBC is only defined using

the clustering results, it is an internal validation method.

Heuristically, if the cluster separation is small, we might expect 𝑑(𝑐𝑖 , 𝑐 𝑗)
to be (relatively) small, and so DBC should be (relatively) large. In the

same vein, if the clusters are heterogeneous, we might expect 𝑠𝑖 + 𝑠 𝑗 to

be (relatively) large, and so DBC should be (relatively) large.

In short, when the clustering scheme is sub-optimal, DBC is “large”. This

suggests another way to determine the optimal number of clusters – pick

the scheme with minimal DBC (see Figure 19.30, which uses a modified

version of the index, for an illustration).

Other cluster quality metrics exist, including SSE, Dunn’s Index, the

Silhouette Metric, etc. [3, 14].

19.5.5 Case Study: Pittsburgh Livehoods

When we think of similarity at the urban level, we typically think in

terms of neighbourhoods. Is there some other way to identify similar

parts of a city?

In The Livehoods Project: Utilizing Social Media to Understand the Dynamics
of a City [12], Cranshaw et al. study the social dynamics of urban living

spaces with the help of clustering algorithms.

Objective The researchers aims to draw the boundaries of livehoods,

areas of similar character within a city, by using clustering models. Unlike

static administrative neighborhoods, the livehoods are defined based on

the habits of people who live there.

Methodology The case study introduces spectral clustering to discover

the distinct geographic areas of the city based on its inhabitants’ collective

movement patterns. Semi-structured interviews are also used to explore,

label, and validate the resulting clusters, as well as the urban dynamics

that shape them.

Livehood clusters are built using the following methodology:
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1. a geographic distance is computed based on pairs of check-in

venues’ coordinates;

2. social similarity between each pair of venues is computed using

cosine measurements,

3. spectral clustering produces candidate livehoods clusters;

4. interviews are conducted with residents in order to validate the

clusters discovered by the algorithm.

Data The data comes from two sources, combining 11 million (a recom-

mendation site for venues based on users’ experiences) check-ins from

the dataset of Chen et al. [10] and a new dataset of 7 million Twitter

check-ins downloaded between June and December of 2011.

For each check-in, the data consists of the user ID, the time, the latitude
and longitude, the name of the venue, and its category.

In this case study, it is livehood clusters from the city of Pittsburgh,

Pennsylvania, that are examined via 42,787 check-ins of 3840 users at

5349 venues.

Strengths and Limitations of the Approach

The technique used in this study is agnostic towards the particular

source of the data: it is not dependent on meta-knowledge about

the data.

The algorithm may be prone to “majority” bias, consequently

misrepresenting/hiding minority behaviours.

The dataset is built from a limited sample of check-ins shared on

Twitter and are therefore biased towards the types of visits/loca-

tions that people typically want to share publicly.

Tuning the clusters is non-trivial: experimenter bias may combine

with “confirmation bias” of the interviewees in the validation stage

– if the researchers are themselves residents of Pittsburgh, will they

see clusters when there are none?

Procedures The Livehoods project uses a spectral clustering model to

provide structure for local urban areas (UAs), grouping close Foursquare

venues into clusters based on both the spatial proximity between venues

and the social proximity which is derived from the distribution of people

that check-in to them.

The guiding principle of the model is that the “character” of an UA is

defined both by the types of venues it contains and by the people frequent

them as part of their daily activities. These clusters are referred to as

Livehoods, by analogy with more traditional neighbourhoods.

Let 𝑉 be a list of Foursquare venues, 𝐴 the associated affinity matrix
representing a measure of similarity between each venue, and 𝐺𝑚(𝐴) be

the graph obtained from the 𝐴 by linking each venue to its nearest 𝑚

neighbours. Spectral clustering is implemented as follows:
39

39: We will discuss spectral clustering and

other clustering algorithms in detail in

Chapter 22, Spotlight on Clustering.1. Compute the diagonal degree matrix 𝐷𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 ;

2. Set the Laplacian matrix 𝐿 = 𝐷 − 𝐴 and

𝐿norm = 𝐷−1/2𝐿𝐷−1/2
;
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Figure 19.27: Some livehoods in metropolitan Pittsburgh, PA: Shadyside/East Liberty, Lawrenceville/Polish Hill, and South Side. Municipal

borders are shown in black.

3. Find the k smallest eigenvalues of 𝐿norm, where 𝑘 is the index which

provides the biggest jump in successive eigenvalues of eigenvalues

of 𝐿norm, in increasing order;

4. Find the eigenvectors 𝑒1 , ...𝑒𝑘 of 𝐿 corresponding to the 𝑘 smallest

eigenvalues;

5. Construct the matrix 𝐸 with the eigenvectors 𝑒1 , ...𝑒𝑘 as columns;

6. Denote the rows of 𝐸 by 𝑦1 , ..., 𝑦𝑛 , and cluster them into 𝑘 clusters

𝐶1 , ..., 𝐶𝑘 using 𝑘-means. This induces a clustering {𝐴1 , ..., 𝐴𝑘}
defined by

𝐴𝑖 = { 𝑗 | 𝑦 𝑗 ∈ 𝐶𝑖};

7. For each 𝐴𝑖 , let 𝐺(𝐴𝑖) be the subgraph of 𝐺𝑚(𝐴) induced by vertex

𝐴𝑖 ; split 𝐺(𝐴𝑖) into connected components; add each component

as a new cluster to the list of clusters, and remove the subgraph

𝐺(𝐴𝑖) from the list;

8. Let 𝑏 be the area of bounding box containing coordinates in the set

of venues 𝑉 , and 𝑏𝑖 be the area of the box containing 𝐴𝑖 ; if
𝑏𝑖
𝑏
> 𝜏,

delete cluster 𝐴𝑖 , and redistribute each of its venues 𝑣 ∈ 𝐴𝑖 to the

closest 𝐴 𝑗 under the distance measurement.
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Results, Evaluation and Validation The parameters used for the cluster-

ing were 𝑚 = 10, 𝑘min = 30, 𝑘max = 45, and 𝜏 = 0.4. The results for three

areas of the city are shown in Figure 19.27. In total, 9 livehoods have been

identified and validated by 27 Pittsburgh residents; the article has more

information on this process.

Municipal Neighborhoods Borders: livehoods are dynamic, and

evolve as people’s behaviours change, unlike the fixed neighbour-

hood borders set by the city government.

Demographics: the interviews displayed strong evidence that the

demographics of the residents and visitors of an area often play a

strong role in explaining the divisions between livehoods.

Development and Resources: economic development can affect

the character of an area. Similarly, the resources (or lack there of)

provided by a region has a strong influence on the people that visit

it, and hence its resulting character. This is assumed to be reflected

in the livehoods.

Geography and Architecture: the movements of people through a

certain area is presumably shaped by its geography and architec-

ture; livehoods can reveal this influence and the effects it has over

visiting patterns.

Take-Away While this is a neat example of practical clustering, its main

take-away, from our perspective, is to remind everyone that 𝑘−means is

not the sole clustering algorithm in applications!

19.5.6 Toy Example: Iris Dataset

Iris is a genus of plants with showy flowers. The iris dataset contains

150 observations of 5 attributes for specimens collected by Anderson,

mostly from a Gaspé peninsula’s pasture in the 1930s [19].
40

40:

The attributes are:

petal width
petal length
sepal width
sepal length
species (virginica, versicolor, setosa)

This dataset has become synonymous with data analysis, being used to

showcase just about every algorithm under the sun. That is, sadly, also

what we are going to do in this section.
41

41: Note that the iris dataset has started

being phased out in favour of the penguin

dataset [46], for reasons that do not solely

have to do with its overuse (hint: take

a look at the name of the journal that

published Fisher’s paper).

A principal component projection of the dataset, with species indicated

by colours, is shown in Figure 19.28 (left).

From an unsupervised learning point of view, one question of interest is

whether the observations form natural groupings, and, if so, whether

these groupings correspond to the (known) species.

We use the 𝑘−means algorithm with Euclidean distance to resolve the

problem. Since we do not know how many clusters there should be in

the data (the fact that there are 3 species does not mean that there should

be 3 clusters), we run 40 replicates for 𝑘 = 2, . . . , 15.
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Figure 19.28: Classification of the iris dataset’s 3 species, projected on the first 2 principal components (left); optimal clustering results for

the iris dataset – one replicate, 𝑘 = 5 (right).

Figure 19.29: Clustering results on the iris

dataset with 𝑘−means, for 𝑘 = 2, 3, 4, 15

(from left to right).

For each replicate, we compute a (modified) Davies-Bouldin Index and

the Sum of Squared Errors of the associated clustering schemes (see

Figure 19.30 for the output) – the validation curves seem to indicate that

there could be either 3 of 5 natural 𝑘−means clusters in the data. Is this a

surprising outcome?

A single replicate with 𝑘 = 5 is shown in Figure 19.28 (right). Would you

consider this representative final clustering scheme to be meaningful?

We show how to obtain these clustering results via R in Section 19.7

(Clustering: Iris Dataset).
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Figure 19.30: Optimal clustering results for the iris dataset: 5 clusters using (modified) Davies-Bouldin index and Sum of Squared Errors.

19.6 Issues and Challenges

“We all say we like data, but we don’t. We like getting insight

out of data. That’s not quite the same as liking data itself. In

fact, I dare say that I don’t quite care for data, and it sounds

like I’m not alone.” [38]

19.6.1 Bad Data

The main difficulties with data is that it is not always representative
of the situation that we would like to model and that it might not be

consistent (the collection and collation methods may have changed over

time, say). There are other potential data issues [38]:

the data might be formatted for human consumption, not machine

readability;

the data might contain lies and mistakes;

the data might not reflect reality, and

there might be additional sources of bias and errors (imputation

bias, replacing extreme values with average values, proxy reporting,

etc.).

Seeking perfection in the data beyond a “reasonable” threshold
42

can 42: This threshold is difficult to establish

exactly, however.
hamper the efforts of analysts: different quality requirements exist for

academic data, professional data, economic data, government data,

military data, service data, commercial data, etc. It can be helpful to

remember the engineering dictum: “close enough is good enough”!
43

43: In terms of completeness, coherence,

correctness, and accountability.
The challenge lies in defining what is “close enough” for the application

under consideration.

Even when all (most?) data issues have been mitigated, there remains a

number of common data analysis pitfalls:

analyzing data without understanding the context;
using one and only one tool (by choice or by fiat) – neither the

“cloud”, nor Big Data, nor Deep Learning, nor Artificial Intelligence

will solve all of an organization’s problems;
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Figure 19.31: Illustration of underfitting (left) and overfitting (right) for a classification task – the optimal classifier (middle) might reach a

compromise between accuracy and simplicity.

analyzing data just for the sake of analysis,

having unrealistic expectations of data analysis/DS/ML/AI – in

order to optimize the production of actionable insights from data,

we must first recognize the methods’ domains of application and

their limitations.

19.6.2 Overfitting/Underfitting

In a traditional statistical model, 𝑝−values and goodness-of-fit statistics

are used to validate the model. But such statistics cannot always be

computed for predictive data science models. We recognise a “good”

model based on how well it performs on unseen data.

In practice, training sets and ML methods are used to search for rules
and models that are generalizable to new data (or validation/testing

sets).

Problems arise when knowledge that is gained from supervised learning

does not generalize properly to the data. Ironically, this may occur if the

rules or models fit the training set too well – in other words, the results

are too specific to the training set (see Figure 19.31 for an illustration of

overfitting and underfitting).

A simple example may elucidate further. Consider the following rules

regarding hair colour among humans:

vague rule – some people have black hair, some have brown hair,

some blond, and some red;
44

44: This is obviously “true”, but too gen-

eral to be useful for predictions. reasonable rule – in populations of European descent, approxi-

mately 45% have black hair, 45% brown hair, 7% blond and 3% red,

and

overly specific rule – in every 10,000 individuals of European

descent, we predict there are 46.32% with black hair, 47.27% with

brown hair, 6.51% with blond hair, and 0.00% with red hair.
45

45: This rule presumably emerges from

redhead-free training data.

With the overly specific rule, we would predict that there are no redheads

in populations of European descent, which is false. This rule is too
specific to the particular training subset that was used to produce it.

46
46: We could argue that the data was sim-

ply not representative – using a training

set with redheads would yield a rule that

would make better predictions. But “over-

reporting/overconfidence” (which mani-

fest themselves with the use of significant

digits) is also part of the problem.

More formally, underfitting and overfitting can be viewed as resulting

from the level of model complexity (see Figure 19.32).
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Figure 19.32: Underfitting and overfitting as a function of model complexity; error prediction on training sample (blue) and testing sample

(red). High error prediction rates for simple models are a manifestation of underfitting; large difference between error prediction rates

on training and testing samples for complex models are a manifestation of overfitting. Ideally, model complexity is chosen to reach the

situation’s ’sweet spot’; fishing for the ideal scenario might diminish explanatory power (based on [24]).

Figure 19.33: Schematic illustration of cross-fold validation, for 8 replicates and 4 folds; 8 × 4 = 32 models from a given family are built on

various training sets (consisting of 3/4 of the available data – the training folds). Model family performance is evaluated on the respective

holdout folds; the distribution of the performance metrics (in practice, some combination of the mean/median and standard deviation) can

be used to compare various model families (based on [45, 54]).
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Underfitting can be overcome by using more complex models (or models

that use a larger proportion of a dataset’s variables). Overfitting, on the

other hand, can be overcome in several ways:

using multiple training sets (ensemble learning approaches), with

overlap being allowed – this has the effect of reducing the odds of

finding spurious patterns based on quirks of the training data;

using larger training sets may also remove signal which is too

specific to small training sets: a 70%/30% split is often suggested,

and

using simpler models (or models that use a dataset with a reduced

number of variables as input).

When using multiple training sets, the size of the dataset may also affect

the suggested strategy: when faced with

small datasets (less than a few hundred observations, say, but that

depends on numerous factors such as computer power and number

of tasks), use 100-200 repetitions of a bootstrap procedure [27];

average-sized datasets (less than a few thousand observations),

use a few repetitions of 10-fold cross-validation [27, 54] (see Figure

19.33 for an illustration), and

large datasets, use a few repetitions of a holdout split (70%/30%?).

No matter which strategy is eventually selected, the machine learning

approach requires ALL models to be evaluated on unseen data.
47

47: These issues will be revisited in Chap-

ters 20 (Regression and Value Estimation)

and 21 (Spotlight on Classification).

19.6.3 Appropriateness and Transferability

Data science models will continue to be used heavily in the near fu-

ture; while there are pros and cons to their use on ethical and other

non-technical grounds, their applicability is also driven by technical
considerations.

DS/ML/AI methods are not appropriate if:

existing (legacy) datasets absolutely must be used instead of ide-

al/appropriate datasets;
48

48: “It’s the best data we have!” does not

mean that it is the right data, or even good

data.

the dataset has attributes that usefully predict a value of interest,

but these attributes are not available when a prediction is required

(e.g. the total time spent on a website may be predictive of a visitor’s

purchases, but the prediction must be made before the total time

spent on the website is known), and

class membership or numerical outcome is going to be predicted

using an unsupervised learning algorithm.
49

49: For instance, clustering loan default

data might lead to a cluster contains many

defaulters – if new instances get added to

this cluster, should they automatically be

viewed as loan defaulters?

Every model makes certain assumptions about what is and is not relevant
to its workings, but there is a tendency to only gather data which is

assumed to be relevant to a particular situation. If the data is used in

other contexts, or to make predictions depending on attributes for which

no data is available, then there might be no way to validate the results.
50

This is not just an esoteric consideration: over-generalizations and50: For instance, can we use a model

that predicts whether a borrower will de-

fault on a mortgage or not to also predict

whether a borrower will default on a car

loan or not? The problem is compounded

by the fact that there might be some link

between mortgage defaults and car loan

defaults, but the original model does not

necessarily takes this into account.

inaccurate predictions can lead to harmful results.
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19.6.4 Myths and Mistakes

We end this section by briefly repeating various data science myths,

originally found in [37]:

1. DS is about algorithms;

2. DS is about predictive accuracy;

3. DS requires a data warehouse;

4. DS requires a large quantity of data, and

5. DS requires only technical experts,

as well as common data analysis mistakes [same source]:

1. selecting the wrong problem;

2. getting by without metadata understanding;

3. not planning the data analysis process;

4. insufficient business/domain knowledge;

5. using incompatible data analysis tools;

6. using tools that are too specific;

7. favouring aggregates over individual results;

8. running out of time;

9. measuring results differently than the client, and

10. naïvely believing what one is told about the data.

It remains the analyst’s and/or the consultant’s responsibility to address

these issues with the stakeholders and/or clients, the earlier, the better.
It is safer to assume that not everyone is on the same page – prod and

ask, early and often.

19.7 R Examples

We provide the R code that was used to produce the outputs of the toy

examples in Sections 19.3, 19.4, and 19.5.

19.7.1 ARM: Titanic

This example refers to the Titanic dataset toy example of Section 19.3.

The very first step in programming withRis to import data.

Setting up the Titanic dataset

class = as.factor(c(rep("3rd",52),rep("1st",118),

rep("2nd",154),rep("3rd",387),rep("Crew",670),

rep("1st",4),rep("2nd",13.01),rep("3rd",89),

rep("Crew",3),rep("1st",5),rep("2nd",11),

rep("3rd",13),rep("1st",1),rep("2nd",13),

rep("3rd",14),rep("1st",57),rep("2nd",14),

rep("3rd",75),rep("Crew",192),rep("1st",140),

rep("2nd",80),rep("3rd",76),rep("Crew",20)))

sex = as.factor(c(rep("Male",35),rep("Female",17),

rep("Male",1329),rep("Female",109),rep("Male",29),

rep("Female",28),rep("Male",338),rep("Female",316)))
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age = as.factor(c(rep("Child",52),rep("Adult",1438),

rep("Child",57),rep("Adult",654)))

survived = as.factor(c(rep("No",1490),rep("Yes",711)))

titanic = data.frame(class,sex,age,survived)

We briefly explore the structure of data.

Summary data

summary(titanic)

table(titanic$age,titanic$survived)

table(titanic$class,titanic$survived)

class sex age survived

1st: 325 Female: 470 Adult: 2092 No: 1490

2nd: 285 Male: 1731 Child: 109 Yes: 711

3rd: 706

Crew: 885

age/survived No Yes class/survived No Yes

Adult 1438 654 1st 122 203

Child 52 57 2nd 167 118

3rd 528 178

Crew 673 212

Then we use the arules package function apriori(), which returns all

possible rules (built by the apriori algorithm). By default, apriori()

creates rules with minimum support of 0.1, minimum confidence of 0.8,

and maximum of 10.

Original apriori rules

rules.titanic <- arules::apriori(titanic)

Apriori parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.8 0.1 1 none FALSE TRUE 5 0.1 1

maxlen target ext

10 rules TRUE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 220

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[10 item(s), 2201 transaction(s)] done [0.00s].

sorting and recoding items ... [9 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].
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checking subsets of size 1 2 3 4 done [0.00s].

writing ... [27 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

For a rule 𝑋 → 𝑌, arule evaluates a number of default metrics. We can

extract the rules using the function inspect(): there are 27 in total.

Inspecting the original rules

arules::inspect(rules.titanic)

lhs rhs support confidence

[1] {} => {age=Adult} 0.9504771 0.9504771

[2] {class=2nd} => {age=Adult} 0.1185825 0.9157895

[3] {class=1st} => {age=Adult} 0.1449341 0.9815385

...

[26] {class=Crew, sex=Male, survived=No} => {age=Adult} 0.3044071 1.0000000

[27] {class=Crew, age=Adult, survived=No} => {sex=Male} 0.3044071 0.9955423

coverage lift count

[1] 1.0000000 1.0000000 2092

[2] 0.1294866 0.9635051 261

[3] 0.1476602 1.0326798 319

...

[26] 0.3044071 1.0521033 670

[27] 0.3057701 1.2658514 670

We set our own parameters to create a new list of rules, with minimum

support of 0.005 and minimum confidence of 0.8. As we are naturally

interested in finding combinations of attributes associated with survival

(either Yes or No), we only retain rule for which the conclusion is

{survived=No} or {survived=Yes}.

There are 12 such rules.

Constrained apriori rules

rules.titanic.2 <- arules::apriori(titanic,

parameter = list(minlen=2, supp=0.005, conf=0.8),

appearance = list(rhs=c("survived=No","survived=Yes"),

default="lhs"),

control = list(verbose=F))

We then sort the list by the lift value (in descending order) and print the

results:

Sorting the constrained rules

rules.titanic.2 <- arules::sort(rules.titanic.2,

by=c("lift"), decreasing=TRUE)
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Inspecting the constrained rules

arules::inspect(rules.titanic.2)

lhs rhs

[1] {class=2nd, age=Child} => {survived=Yes}

...

[11] {class=3rd, sex=Male, age=Adult} => {survived=No}

[12] {class=3rd, sex=Male} => {survived=No}

support confidence coverage lift count

[1] 0.010904134 1.0000000 0.010904134 3.095640 24

...

[11] 0.175829169 0.8376623 0.209904589 1.237379 387

[12] 0.191731031 0.8274510 0.231712858 1.222295 422

Are all these rules independent? If we know that

{class=3rd,sex=Male} => {survived=No}

is a rule, say, then we would not be surprised to find out that

{class=3rd,sex=Male,age=Adult} => {survived=No}

is also a rule.

The following chunk of code identifies which rules have an antecedent

which is a subset of another rule’s antecedent, marking one of them as

redundant, and removing those from the set of rules, which brings us

down to 8 rules:

Pruned apriori rules

subset.matrix <- as.matrix(arules::is.subset(

rules.titanic.2, rules.titanic.2))

subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA

redundant.titanic <- colSums(subset.matrix, na.rm=T) >= 1

rules.titanic.2.pruned <- rules.titanic.2[!redundant.titanic]

arules::inspect(rules.titanic.2.pruned)

lhs rhs supp conf cove lift count

[1] {class=2nd, age=Child} => {survived=Yes} 0.01 1.00 0.01 3.10 24

[2] {class=1st, sex=Female} => {survived=Yes} 0.06 0.97 0.07 3.01 141

[3] {class=2nd, sex=Female} => {survived=Yes} 0.04 0.88 0.05 2.72 93

[4] {class=Crew, sex=Female} => {survived=Yes} 0.01 0.87 0.01 2.69 20

[5] {class=2nd, sex=Male, age=Adult} => {survived=No} 0.07 0.92 0.08 1.35 154

[6] {class=2nd, sex=Male} => {survived=No} 0.07 0.86 0.08 1.27 154

[7] {class=3rd, sex=Male, age=Adult} => {survived=No} 0.18 0.84 0.21 1.24 387

[8] {class=3rd, sex=Male} => {survived=No} 0.19 0.83 0.23 1.22 422

We have presented the “interesting” associations in tabular format, but

there are a variety of graphical representations as well (available in

package arulesViz), such as:

a bubble chart;
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a two-key plot (taking into account the rules’ lengths);

a graph structure, or

parallel coordinates (where the width of the arrows represents

support and the intensity of the colour represent confidence).

The original rules are shown below:

Visualizing the original rules

library(arulesViz)

plot(rules.titanic)

plot(rules.titanic, method="graph")

plot(rules.titanic, method="paracoord", control = list(reorder = TRUE))

For the constrained and the pruned rules, we obtain:

plot(rules.titanic.2)

plot(rules.titanic.2, method="graph")

plot(rules.titanic.2, method="paracoord")

plot(rules.titanic.2.pruned)

plot(rules.titanic.2.pruned, method="graph")

plot(rules.titanic.2.pruned, method="paracoord")

Is anything surprising about these outcomes?
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19.7.2 Classification: Kyphosis Dataset

This example refers to the Kyphosis dataset toy example of Section 19.4;

we explore the built-in kyphosis dataset with two decision tree methods

(rpart(), ctree()).

Let’s get some information on the kyphosis dataset.

Getting the help file

?rpart::kyphosis

We can also determine its structure and summary statistics:

Kyphosis dataset structure

str(rpart::kyphosis)

’data.frame’: 81 obs. of 4 variables:

$ Kyphosis: Factor w/ 2 levels "absent","present": 1 1 2 ...

$ Age : int 71 158 128 2 1 1 61 37 113 59 ...

$ Number : int 3 3 4 5 4 2 2 3 2 6 ...

$ Start : int 5 14 5 1 15 16 17 16 16 12 ...

Summary data

summary(rpart::kyphosis)

Kyphosis Age Number Start

absent: 64 Min. : 1.00 Min. : 2.000 Min. : 1.00

present: 17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00

Median : 87.00 Median : 4.000 Median : 13.00

Mean : 83.65 Mean : 4.049 Mean : 11.49

3rd Qu.: 130.00 3rd Qu.: 5.000 3rd Qu.: 16.00

Max. : 206.00 Max. : 10.000 Max. : 18.00
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As always, we should take the time to visualize the dataset. In this case,

since there are 4 variables (one of which is categorical), a scatterplot

matrix is probably a good approach.

Visualizing the kyphosis data

pairs(rpart::kyphosis[,2:4],

main = "Kyphosis Data",

bg = c("red", "blue")[unclass(rpart::kyphosis[,1])],

pch = 21, lower.panel=NULL,

cex.labels=4.5, labels=c("Age","Number","Start"),

font.labels=2)

What should the legend of this scatterplot matrix be (red=?, blue=?).

We build a tree using the recursive partitioning algorithm implemented

in rpart.
51

For the time being, we’re assuming that the training set is 51: The package is called rpart, the func-

tion. . . also rpart().
the dataset as a whole (so there is no reason to expect that the decision

trees should have predictive power, only descriptive power).

Building a recursive partition tree

set.seed(2) # for replicability

tree <- rpart::rpart(Kyphosis ~ Age + Number + Start,

method="class", data=rpart::kyphosis)

tree
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n= 81

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 81 17 absent (0.79012346 0.20987654)

2) Start>=8.5 62 6 absent (0.90322581 0.09677419)

4) Start>=14.5 29 0 absent (1.00000000 0.00000000) *
5) Start< 14.5 33 6 absent (0.81818182 0.18181818)

10) Age< 55 12 0 absent (1.00000000 0.00000000) *
11) Age>=55 21 6 absent (0.71428571 0.28571429)

22) Age>=111 14 2 absent (0.85714286 0.14285714) *
23) Age< 111 7 3 present (0.42857143 0.57142857) *

3) Start< 8.5 19 8 present (0.42105263 0.57894737) *

We can access the method results by using printcp() (although how

informative this output will prove depends on the expectations. . . )

Getting information about the tree

rpart::printcp(tree)

Classification tree:

rpart::rpart(formula = Kyphosis ~ Age + Number + Start, data = rpart::kyphosis,

method = "class")

Variables actually used in tree construction:

[1] Age Start

Root node error: 17/81 = 0.20988

n= 81

CP nsplit rel error xerror xstd

1 0.176471 0 1.00000 1.0000 0.21559

2 0.019608 1 0.82353 1.2353 0.23200

3 0.010000 4 0.76471 1.2941 0.23548

Details on the nodes and the splits can be obtained using summary().

Summarizing the tree

summary(tree)

n= 81

CP nsplit rel error xerror xstd

1 0.17647059 0 1.0000000 1.000000 0.2155872

2 0.01960784 1 0.8235294 1.235294 0.2320031

3 0.01000000 4 0.7647059 1.294118 0.2354756

Variable importance

Start Age Number
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64 24 12

Node number 1: 81 observations, complexity param=0.1764706

predicted class=absent expected loss=0.2098765 P(node) =1

class counts: 64 17

probabilities: 0.790 0.210

left son=2 (62 obs) right son=3 (19 obs)

Primary splits:

Start < 8.5 to the right, improve=6.762330, (0 missing)

Number < 5.5 to the left, improve=2.866795, (0 missing)

Age < 39.5 to the left, improve=2.250212, (0 missing)

Surrogate splits:

Number < 6.5 to the left, agree=0.802, adj=0.158, (0 split)

...

Node number 23: 7 observations

predicted class=present expected loss=0.4285714 P(node) =0.08641975

class counts: 3 4

probabilities: 0.429 0.571

What are these nodes that are being referred to? Plotting the tree provides

more information. Here is a basic plot:

Plotting the tree

rpart.plot::prp(tree)

and a fancier one:

Plotting a fancier tree

rattle::fancyRpartPlot(tree,

main="Classification Tree for Kyphosis")
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In the fancy plot, does the intensity of the colour play a role? What about

the percentages? What about the decimals?

Unchecked tree growth usually leads to overfitting. This is typically a

problem when datasets contain too many variables.
52

But overfitting52: The corresponding decision tree will

contain too many splits in that case.
is unlikely to be an issue in the case of the kyphosis dataset because it

contains only three variables.

Nevertheless, the code below shows you how you would prune the

growth of the tree in general, by finding a value of cp which maximizes

xerror (this will be revisited in Section 21.4.1, Tree-Based Methods).

Pruning and plotting the pruned tree

tree2 = rpart::prune(tree, cp = 0.02)

rattle::fancyRpartPlot(tree2)

How good is the classification model provided by the tree? We don’t

have access to 𝑝−values or confidence intervals – we need to rely on the

model’s confusion matrix.

We can obtain the predictions made by the model on the object tree by

using the predict() function. This procedure takes each observation
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and feeds it to the model, outputting the likelihood of kyphosis being

absent or present.

Note that the probabilities are calibrated - compare with the Naive Bayes

method which we will see later.

The following model predicts the class probabilities for all observations:

Getting the class probabilities

predictions1 = predict(tree, type = "prob")

The first 10 predictions are:

head(predictions1, 10)

absent present

0.4210526 0.5789474

0.8571429 0.1428571

0.4210526 0.5789474

0.4210526 0.5789474

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

1.0000000 0.0000000

0.4285714 0.5714286

In general, the confusion matrix requires a specific prediction (absent

or present), against which we compare the actual classification. Here,

we have probabilities. How can we take the probabilities and transform

them into specific predictions?

Here is one way to do this.

Building the confidence matrix

# uniformly generate a random number (between 0 and 1)

# for each of the observations

random1 <- runif(81)

# extract the actual classification of the observations

real <- rpart::kyphosis$Kyphosis

# join together the prediction probabilities,

# the random numbers, and the actual classification

# since we’re joining together text and numbers,

# cbind coerces the factors to numerical values

# absent = 1, present = 2

test1 <- cbind(predictions1,random1,real)

# this code takes advantage of the numerical presentation
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# of the factors to output a specific prediction

# if random1 < prob of absent, then

# real = absent (1), otherwise real = present (2)

pred1 <- 2-(test1[,3]<test1[,1])

# add the specific predictions to the test1 dataset

test1 <- cbind(test1,pred1)

The confusion matrix actually depends on the random variables generated

in the previous chunk of code.

In this case, the first 10 predictions would be:

head(test1[,c(1,2,4,5)],10)

absent present real pred1

0.4210526 0.5789474 1 1

0.8571429 0.1428571 1 1

0.4210526 0.5789474 2 2

0.4210526 0.5789474 1 2

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

1.0000000 0.0000000 1 1

0.4285714 0.5714286 2 1

We can now build the confusion matrix on the model predictions using

real (actual classification) and pred1 (specific model prediction).

The function table() produces a joint distribution, where the rows

correspond to the first variable in the call (actual), and the columns to

the second variable (predicted).

Confusion matrix
table(test1[,4],test1[,5])

1 2

1 59 5

2 9 8

Note that the confusion matrix could be different every time a new set of

predictions are made. Why would that be the case?

Is this a good classification model or not?

In this example, we computed the confusion matrix using the entire
dataset. In a sense, we should not have been surprised that the results

were decent, because we were using the same data to build the model

and to evaluate it.

From a predictive perspective, classification models are built on a subset

of the data (the training set) and evaluated on the remaining data (the
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testing set). The idea is that if there IS a strong classification signal, it

should be found in any representative subset. As a rule, we look for

training sets making up between 70% and 80% of the data. They should

be selected randomly.

We start by creating a training set with 50 instances, and we fit the

rpart() algorithm to this data:
53

53: If we use all variables, we do not need

to specify them in the model call; we only

need to use the “.”

Training a recursive partition tree

sub <- c(sample(1:81, 50))

(fit <- rpart::rpart(Kyphosis ~ ., data = rpart::kyphosis,

subset = sub))

n= 50

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 50 9 absent (0.8200000 0.1800000)

2) Start>=8.5 40 3 absent (0.9250000 0.0750000) *
3) Start< 8.5 10 4 present (0.4000000 0.6000000) *

The confusion matrix has to be built on the testing set.
54

There are 2 54: Iindicated here by -sub, that is, the

opposite of the sub indices.
ways to make a prediction: we either use the most likely outcome, or we

generate a random vector of predictions using the probabilities for each

class, as above.

We can predict on the basis of class:

Predictions on the testing set

table(predict(fit, rpart::kyphosis[-sub,], type = "class"),

rpart::kyphosis[-sub, "Kyphosis"])

absent present

absent 19 3

present 4 5

Or we can predict on the basis of probability:

prob.fit <- predict(fit, rpart::kyphosis[-sub,],

type = "prob")

random1 <- runif(31)

real <- rpart::kyphosis[-sub,"Kyphosis"]

# absent = 1, present = 2

test1 <- cbind(prob.fit,random1,real)

pred1 <- 2-(test1[,3]<test1[,1])

test1 <- cbind(test1,pred1)

table(test1[,4], test1[,5])
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1 2

1 20 3

2 5 3

These are the confusion matrices that should be used to evaluate the

decision’s tree performance.

Another way to build decision trees is via party’s ctree() function.

Conditional inference trees have the property that they will automatically
prune themselves once a statistical criterion is met by the tree as a whole.

The downside is that they do not usually pick fully reasonable splits

(they may not conform to contextual understanding).

Building and plotting a conditional inference tree

kyphosis.ctree <- party::ctree(Kyphosis ~ .,

data = rpart::kyphosis, subset = sub)

kyphosis.ctree

plot(kyphosis.ctree)

Conditional inference tree with 2 terminal nodes

Response: Kyphosis

Inputs: Age, Number, Start

Number of observations: 50

1) Number <= 5; criterion = 0.998, statistic = 11.641

2)* weights = 42

1) Number > 5

3)* weights = 8

A very simple tree, as can be seen.

Confusion matrix on the testing set

table(predict(kyphosis.ctree, rpart::kyphosis[-sub,]),

rpart::kyphosis[-sub,1])

absent present

absent 21 7

present 2 1

How good of a model is this one? Which of the rpart() or ctree()

model is preferable? Does this depend on the training set?
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19.7.3 Clustering: Iris Dataset

This example refers to the Iris dataset toy example of Section 19.5; we

cluster the ubiquitous (built-in) iris dataset, via 𝑘-means.

The procedure is straightforward:

1. cluster with 𝑛 = 2, . . . , 15 clusters;

2. display the Within Sum of Squares curve, as a function of the # of

clusters;

3. display the Davies-Bouldin curve, as a function of the # of clusters,

4. select the optimal number of clusters on the basis of these curves.

Let us load the data and take a look at the iris dataset.
55

55: Without the species labels, as this is

an unsupervised problem.

Visualizing the iris data

my.data<-iris[,1:4]

head(my.data)

pairs(my.data)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4
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The eye test would most likely identify 2 clusters.

In preparation for the cluster analysis, we will scale the data so that all

the variables are represented on the same scale. This can be done using

the scale() function.

Scaling the data

my.data.scaled<-scale(my.data)

head(my.data.scaled)

pairs(my.data.scaled)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 -0.8976739 1.01560199 -1.335752 -1.311052

2 -1.1392005 -0.13153881 -1.335752 -1.311052

3 -1.3807271 0.32731751 -1.392399 -1.311052

4 -1.5014904 0.09788935 -1.279104 -1.311052

5 -1.0184372 1.24503015 -1.335752 -1.311052

6 -0.5353840 1.93331463 -1.165809 -1.048667

The “shape” of the dataset is the same, but the axis ranges have changed.

One way to reduce the dimension of the problem is to work with the

principal components (see Chapter 23, Feature Selection and Dimension
Reduction). The hope is that most of the variation in the data can be

explained by a smaller number of derived variables, expressed as linear

combinations of the original variables.
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This can be accomplished in R with the princomp() function.

Principal Components

pc.agg.data = princomp(my.data.scaled)

summary(pc.agg.data)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.7026571 0.9528572 0.38180950 0.143445939

Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709

Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000

This provides a summary of the “strength” of the signal in each compo-

nent. The cumulative proportion of the variance is the value of interest.

If 2 principal components are needed to explain 95% of the variance, we

would expect that roughly 95% of the set is “2-dimensional”.

As this is indeed the case, we opt to cluster the data projected on only

the first 2 components, which can be accessed via the scores attribute

of pc.agg.data. The plot below shows a 2D representation of the iris

dataset obtained via principal components analysis (PCA).

Visualizing the PCA data

pc.df.agg.data = cbind(pc.agg.data$scores[,1],

pc.agg.data$scores[,2])

plot(pc.df.agg.data,col=iris[,5])

title(’PCA plot of Iris Data - 2 Main PCs’)
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The Davies-Bouldin (DB) index is a measure that is used to determine the

optimal number of clusters in the data. For a given dataset, the optimal

number of clusters is obtained by maximizing the DB index (there are

different versions of the DB index, all giving equivalent results).

Davies.Bouldin <- function(A, SS, m) {

# A - the clusters’ centres

# SS - the within sum of squares

# m - the sizes of the clusters

N <- nrow(A) # number of clusters

# intercluster distance

S <- sqrt(SS/m)

# Get the distances between centres

M <- as.matrix(dist(A))

# Get the ratio of intercluster/centre.dist

R <- matrix(0, N, N)

for (i in 1:(N-1)) {

for (j in (i+1):N) {

R[i,j] <- (S[i] + S[j])/M[i,j]

R[j,i] <- R[i,j]

}

}

return(mean(apply(R, 1, max)))

}

But we do not yet know how many clusters we will ultimately be using,
56

so we will construct 𝑘−means clusters for a variety of values 𝑘.56: Although the visual inspection above

suggested 𝑘 = 2 or 𝑘 = 3.

We will in fact produce 40 replicates for each 𝑘 = 2, . . . , 15 and track both

the DB index and the Within Sums of Squares (SS), which is a measure

of how similar observations are within each cluster, and how different

they are from observations in other clusters.
57

57: The value for the SS can be found by

calling the attribute withinss on a kmeans

object. If the DB index does not provide a clear-cut winner, the optimal number of

clusters is obtained when the slope of the SS curve flattens “drastically”.
58

58: So that adding more clusters does not

provide as big a decrease in SS.

We start by setting up the number of repetitions and the loop.

Initializing the k-means process

# setting up the repetitions and display options

oldpar <- par(mfrow = c(4, 4))

N = 40 # Number of repetitions

max.cluster = 15 # Maximum number of desired clusters

# initializing values

m.errs <- rep(0, max.cluster)

m.DBI <- rep(0, max.cluster)

s.errs <- rep(0, max.cluster)

s.DBI <- rep(0, max.cluster)
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Now we run 40 replicates for each number of clusters (so 560 calls to the

kmeans() clustering algorithm in total). For each clustering schemes, we

compute the DB index and the SS, and store them in memory.

We also print one of the clustering schemes for each of the number of

clusters in the iteration.

Clustering the iris data

set.seed(0) # for replicability

## clustering and plotting

for (i in 2:max.cluster) {

errs <- rep(0, max.cluster)

DBI <- rep(0, max.cluster)

for (j in 1:N) {

KM <- kmeans(pc.df.agg.data, iter.max = 10, i)

errs[j] <- sum(KM$withinss)

DBI[j] <- Davies.Bouldin(KM$centers, KM$withinss,

KM$size)

}

m.errs[i - 1] = mean(errs)

s.errs[i - 1] = sd(errs)

m.DBI[i - 1] = mean(DBI)

s.DBI[i - 1] = sd(DBI)

plot(pc.df.agg.data,col=KM$cluster, pch=KM$cluster,

main=paste(i,"clusters - kmeans (euclidean)"))

}

Since we have replicates, we can compute confidence bonds for both the

average DB index and the average SS.
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Confidence bands for Within SS and DB curves
MSE.errs_up = m.errs + 1.96 * s.errs / sqrt(N)

MSE.errs_low = m.errs - 1.96 * s.errs / sqrt(N)

MSE.DBI_up = m.DBI + 1.96 * s.DBI / sqrt(N)

MSE.DBI_low = m.DBI - 1.96 * s.DBI / sqrt(N)

# Within SS curve

plot(2:(max.cluster+1), m.errs, main = "SS",

xlab="k", ylab="SS")

lines(2:(max.cluster+1), m.errs)

par(col = "red")

lines(2:(max.cluster+1), MSE.errs_up)

lines(2:(max.cluster+1), MSE.errs_low)

par(col = "black")

# DBI curve

plot(2:(max.cluster+1), m.DBI, main = "Davies-Bouldin",

xlab="k", ylab="DBI")

lines(2:(max.cluster+1), m.DBI)

par(col="red")

lines(2:(max.cluster+1), MSE.DBI_up)

lines(2:(max.cluster+1), MSE.DBI_low)

par(col = "black")

Where is the DB curve maximized? Does it match what the SS curve

shows? We pick the optimal number of clusters using the following:

(i_choice <- which(

m.DBI==max(m.DBI[1:(length(m.DBI)-1)]))+1)

[1] 5
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Finally, let us plot a “final” realization of the clustering scheme with the

optimal number of clusters. We cluster on the PCA-reduced scaled data,

but we plot the results with the original iris data.

We will also verify if we get similar clustering schemes when we use

a different distance measure (the default measure in kmeans() is the

Euclidean metric). Let us try the manhattan distance (𝑘-medians) with the

cclus() method (available with the flexclust package, which provides

a more flexible clustering approach, including different algorithms and

distances).

Comparison of k-means and k-medians

# k-means

KM <- kmeans(agg.data, iter.max = 10, i_choice)

plot(iris[,1:4],col=KM$cluster, pch=KM$cluster,

main=paste(i_choice,"clusters - kmeans (euclidean)"))

# k-medians

library(flexclust)

KMed <- cclust(pc.df.agg.data, i_choice, dist="manhattan")

plot(iris[,1:4], col=predict(KMed), pch=predict(KMed),

main=paste(i_choice,"clusters - kmed (manhattan)"))

How do they compare to one another?
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19.8 Exercises

1. What are some examples of supervised and unsupervised learning tasks in the business world? In a

public policy/government setting? In a scientific setting?

2. Assuming that data mining techniques are used in the following cases, identify whether the required

task falls under supervised or unsupervised learning [37].

a) Deciding whether to issue a loan to an applicant based on demographic and financial data (with

reference to a database of similar data on prior customers).

b) In an online bookstore, making recommendations to customers concerning additional items to

buy based on the buying pattern in prior transactions.

c) Identifying a network data packet as dangerous (virus, hacker attack) based on comparison to

other packets with a known threat status.

d) Identifying segments of similar customers.

e) Predicting whether a company will go bankrupt based on comparing its financial data to those of

similar bankrupt and non-bankrupt firms.

f) Estimating the repair time required for an aircraft based on a trouble ticket.

g) Automated sorting of mail by zip code scanning.

h) It is more difficult and expensive to win new customers than it is to retain existing customers.

Scoring each customer on their likelihood to quit can help an organization design effective

interventions, such as discounts or free services, to retain profitable customers in a cost-effective

manner.

i) Some medical practitioners conduct unnecessary tests and/or over-bill their government or

insurance companies. Using audit data, it may be possible to identify such providers and take

appropriate action.

j) A market basket analysis can help develop predictive models to determine which products often

sell together. This knowledge of affinities between products can help retailers create promotional

bundles to push non-selling items along a set of products that sell well.

k) Diagnosing the cause of a medical condition is the crucial first step in medical engagement.

In addition to the current condition, other factors can be considered, including the patient’s

health history, medication history, family’s history, and other environmental factors. A predictive

model can absorb all of the information available to date (for this patient and others) and make

probabilistic diagnoses, in the form of a decision tree, taking away most of the guess work involved.

l) Schools can develop models to identify students who are at risk of not returning to school. Such

students can be flagged to be on the receiving end of potential corrective measures.

m) In addition to customer data, telecom companies also store call detail records (CDR), which

precisely describe the calling behaviour of each customer. The unique data can be used to profile

customers, who may be marketed to based on the similarity of their CDR to other customers’.

n) Statistically, all equipment is likely to break down at some point in time. Predicting which machine

is likely to shut down is a complex process. Decision models to forecast machinery failure could

be constructed using past data, which can lead to savings provided by preventative maintenance.

o) Identifying which tweets contain disinformation and which tweets are legitimate.

3. Would the results of the Danish medical study (see Section 19.3) be applicable to the Canadian context?

To the Chinese context? What do you think some of the ethical/technical challenges were?

4. Evaluate the following candidate association rules for the British Musical Dataset introduced in Section

19.3:

a) If an individual owns a classical music album (𝑊 ), then they also own a hip-hop album (𝑍), given

that Freq(𝑊) = 2010, Freq(𝑍) = 6855, and Freq(𝑊 ∩ 𝑍) = 132.

b) If an individual owns both the Beatles’ Sergeant Peppers’ Lonely Hearts Club Band and a classical music

album, then they were born before 1976, given that Freq(𝑌∩𝑊) = 1852 and Freq(𝑌∩𝑊∩𝑋) = 1778.

5. Out of the 3 rules that have been established in the previous question (𝑋 → 𝑌, 𝑊 → 𝑍, and

(𝑌 AND𝑊) → 𝑋), which do you think is more useful? Which is more surprising?



19.8 Exercises 1195

6. A store that sells accessories for smart phones runs a promotion on faceplates. Customers who purchase

multiple faceplates from a choice of 6 different colours get a discount. The store managers, who would

like to know what colours of faceplates are likely to be purchased together, collected past transactions

in the file Transactions.csv . Consider the following rules:

{red, white}→ {green}

{green}→ {white}

{red, green}→ {white}

{green}→ {red}

{orange}→ {red}

{white, black}→ {yellow}

{black}→ {green}

a) For each rule, compute the support, confidence, interest, lift, and conviction.

b) Amongst the rules for which the support is positive (> 0), which one has the highest lift?

Confidence? Interest? Conviction?

c) Build an additional 5-10 candidate rules (randomly), and evaluate them. Which of the 12-17

candidate rules do you think would be most useful for the store managers?

d) How would one determine reasonable threshold values for the support, coverage, interest, and

lift of rules derived from a given dataset?

7. Consider the following datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv , and

HR_2016_Census_simple.xlsx .

a) Determine what the data is reporting on / what it is about / create a “data dictionary” to explain

the different fields and variables in the dataset.

b) Develop a list of questions you would like to answer about the data.

c) Investigate variables (individual, bivariate, multivariate) through charts, distributions, variable

interactions, summary statistics, etc.

d) Do you trust the data or not? Why? If you don’t trust it, flag some potential issues with the

data/specific entries.

e) Conduct an association rule mining analysis of the datasets. Using either the brute force approach

or the apriori algorithm, determine 10-20 strong association rules. Visualize them, and interpret

their results.

8. UniversalBank is looking at converting its liability customers (i.e., customers who only have deposits at

the bank) into asset customers (i.e., customers who have a loan with the bank). In a previous campaign,

UniversalBank was able to convert 9.6% of 5000 of its liability customers into asset customers.

The marketing department would like to understand what combination of factors make a customer

more likely to accept a personal loan, in order to better design the next conversion campaign.

UniversalBank.csv contains data on 5000 customers, including the following measurements: age,

years of professional experience, yearly income (in thousands of USD), family size, value of mortgage

with the bank, whether the client has a certificate of deposit with the bank, a credit card, etc.

They build 2 decision trees on a training subset of 3000 records to predict whether a customer is likely

to accept a personal loan (1) or not (0).

https://www.data-action-lab.com/wp-content/uploads/2019/10/Transactions.csv
https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
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a) Explore the UniversalBank.csv dataset. Can you come up with a reasonable guess as to what

each of the variables represent?

b) How many variables are used in the construction of tree 𝐴? Of tree 𝐵?

c) Are the following decision rules valid or not for trees 𝐴 and/or 𝐵?

IF (Income ≥ 114) AND (Education ≥ 1.5) THEN (Personal Loan = 1)
IF (Income < 92) AND (CCAvg ≥ 3) AND (CD.Account < 0.5) THEN (Personal Loan = 0)

d) What prediction would trees 𝐴 and 𝐵 make for a customer with:

a yearly income of 94,000$USD (Income = 94);

2 kids (Family = 4);

no certificate of deposit with the bank (CD.Account = 0);

a credit card interest rate of 3.2% (CCAvg = 3.2), and

a graduate degree in Engineering (Education = 3)?

9. The confusion matrices for the predictions of trees 𝐴 and 𝐵 on the remaining 2000 testing observations

are shown below.

a) Using the appropriate matrices, compute the 9 performance evaluation metrics for each of the

trees (on the testing set).

b) If customers who would not accept a personal loan get irritated when offered a personal loan,

what tree should UniversalBank’s marketing group use to help maintain good customer relations?

10. Consider the algae_blooms.csv dataset. We try to build a model to predict the presence/absence

of algae based on various chemical properties of river water. What is the data science motivation for

such a model? After all, we can simply analyze water samples to determine if various harmful algae are

present or absent. The answer is simple: chemical monitoring is cheap and easy to automate, whereas

biological analysis of samples is expensive and slow. Another answer is that analyzing the samples for

harmful content does not provide a better understanding of algae drivers: it just tells us which samples

contain algae.

a) Load the data and summarize/visualize it: you will be tasked with predicting the presence/absence

of algae a1 and a2.

b) Clean the data and impute missing values, as needed.

c) Remove 20% of the observations for a validation set.

https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/algae_blooms.csv
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d) Create a training/testing pair on the remaining 80% of the observations and train 2 decision trees

to predict the presence/absence of algaes a1 and a2, respectively. Evaluate the performance of

each model. Which models performs best on your training/testing pair?

e) Repeat step d) on at least 20 distinct training/testing pairs. Evaluate the performance of each

model, and save them.

f) For each algae, pick the best of the models (how would you determine this) and use it to make

predictions for the readings in the validation set. Evaluate.

g) Instead of picking the best of the 20+ models, find some way to combine the results of the 20

models and to make predictions for the readings in the validation set. Evaluate these predictions.

h) Which of the resulting models of steps 6 or 7 provide the best performance? Which are easier to

interpret?

11. Repeat question 10, using the same validation set in part c). In part d), use the remaining 80% of

the data to build a decision tree (do not split into a training/testing pair first). Use these models to

make predictions for the readings in the validation set. Evaluate these predictions. Is there evidence of

overfitting?

12. Repeat question 10, using the same validation set in part c). In parts d) to g), use decision stumps

(decision trees with only 1 branching point) instead of full growth trees. Is there evidence of underfitting?

13. The population of Canada is divided physically into provincial and territorial areas, most of which are

further subdivided into health regions. The Census information (from 2016) is available for those

health regions. The equivalent 2018 dataset has been clustered to produce peer groups: the result is

shown here . The data is found in the file HR_2016_Census_simple.xlsx .

a) Load the data and summarize/visualize it (extract the rows with a 4-digit geocode).

b) Clean the data and impute missing values (if necessary). Scale the data and assign to a new set.

c) Run the 𝑘−means algorithm (with Euclidean distance) on the scaled data, using ALL the features,

for 𝑘 = 3, ..., 16. Use the Davies-Bouldin index and the Within-SS index to determine the optimal

number of clusters. Is the optimal clustering scheme plausible?

14. Reduce the dimension of the health region dataset by running a principal component analysis (PCA)

and keep the principal components that explain up to 80% of the variability in the data. Repeat step c).

Are the results significantly different than they were for question 13?

15. Run 𝑘−means on the original health regions data (previous question) and on the reduced data, for the

same range of 𝑘−values, but replicate the process 30+ times per value of 𝑘. What are the optimal 𝑘

values in the aggregate runs?

16. Save the cluster assignments for each run with the optimal values of 𝑘 found in question 13. Say that

two observations 𝐴 and 𝐵 have similarity 𝑤(𝐴, 𝐵) ∈ [0, 1] if 𝐴 and 𝐵 lie in the same cluster in 𝑤(𝐴, 𝐵)%
of the runs. What are some observations with high similarity measurements? With low similarity

measurements?

17. Provide a 𝑘−means clustering schema for the UniversalBank dataset.

18. The remaining exercises use the Gapminder Tools (there is also an offline version ).

a) In the default configuration, we can identify some potential association rules. Using visual and

ballpark estimates, evaluate the performance of the following rules:

Income > 8000→ Life Expectancy > 70

Income < 8000 AND Life Expectancy < 70→ Region = Africa

18.. Play around with various charts and variables and identify and evaluate 5+ additional association

rules.

18.. Identify groups of similar countries, in 2018 [be sure to validate your groups using various charts].

18.. In the default configuration, follow the trajectories of Finland, Sweden, Iceland, Norway, and

Denmark between 1900 and 2018. Do the countries appear to follow similar trajectories? Are there

outliers or anomalous trajectories?

18.. Repeat step d) for Brazil, Paraguay, Uruguay, Venezuela, Colombia, Peru, and Ecuador.

18.. Based on your results in steps 4 and 5, would you expect the trajectory for Argentina to be more

like those of the Nordic countries or those of the South American countries? Or perhaps neither?

Is your answer the same over all time horizons?

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710012201
https://www150.statcan.gc.ca/n1/pub/82-402-x/2018001/maps-cartes/rm-cr14-eng.htm
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.gapminder.org/tools/
https://www.gapminder.org/tools-offline
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by Patrick Boily

In Chapter 19 (Machine Learning 101), we provided a (basically) math-free

general overview of machine learning. In this chapter, we present an

introductory mathematical treatment of the discipline, with a focus on

regression and value estimation methods (in particular, on parametric

methods).

Our approach borrows heavily from [3, 5]; explanations and examples

are also available in [1].

We will continue the ML treatment in Chapters 21 and 22 (and 23, to a

lesser extent).

20.1 Statistical Learning

Statistical learning is a series of procedures and approaches that allows

analysts to tackle problems such as:

identifying risk factors associated to breast/prostate cancer;

predicting whether a patient will have a second, fatal heart attack

within 30 days of the first on the basis of demographics, diet,

clinical measurements, etc.;

establishing the relationship between salary and demographic

information in population survey data;

predicting the yearly inflation rate using various indicators, etc.

Statistical learning tasks are typically divided into 2 main classes: super-
vised learning and unsupervised learning.

1
1: There are other types, such as semi-

supervised or reinforcement learning, but

these are topics for future chapters.

20.1.1 Supervised Learning Framework

In the supervised learning environment, the outcome (response, target,

dependent variable, etc.) is denoted by 𝑌, and the vector of 𝑝 predictors
(features) by

®𝑋 = (𝑋1 , . . . , 𝑋𝑝).

If𝑌 is quantitative (price, height, etc.), then the problem of predicting𝑌 in

terms of
®𝑋 is a regression task; if 𝑌 takes on values in a finite unordered

set (survived/died, colours, vegetation types, etc.), it is a classification
task. This is typically achieved with the use of training data, which is to

say historical observations or instances, which we often denote by [X | Y]
(the column denoting the observation IDs is dropped).
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obs. predictors predictors predictors resp.

1 𝑥1,1 · · · 𝑥1,𝑝−1 𝑦1

...
...

...
...

𝑛 𝑥𝑛,1 · · · 𝑥𝑛,𝑝−1 𝑦𝑛

The objectives of supervised learning are usually to:

accurately predict unseen test cases;

understand which inputs affect the outcomes (if any), and how;

assess the quality of predictions and/or inferences made on the

basis of the training data, etc.

In unsupervised learning, on the contrary, there are no outcome variables,

only features on a set of observations X.
2

2: The response variable Y that was seg-

regated away from X in the supervised

learning case could now be one of the

variables in X.

The objectives are much more vague – analysts could seek to:

find sets of features that behave similarly across observations;

find combinations of features with the most variation;

find natural groups of similar observations, etc.

We will discuss such methods in detail in Chapter 22.

Statistical Learning vs. Machine Learning The term “statistical learning”

is not used frequently in practice;
3

we speak instead of machine learning.3: Except by mathematicians and statisti-

cians, perhaps.
If a distinction must be made, we could argue that:

statistical learning arises from statistical-like models, and the em-

phasis is usually placed on interpretability, precision, and uncer-
tainty, whereas

machine learning arise from artificial intelligence studies, with

emphasis on large scale applications and prediction accuracy.

The dividing line between the terms is blurry – the vocabulary used by

practitioners mostly betrays their educational backgrounds (but see [7]

for another take on this).

Motivating Example Throughout, we will illustrate the concepts and no-

tions via the gapminder.csv dataset, which records socio-demographic

information relating to the planet’s nations, from 1960 to 2011 [9, 8].

We will be interested in determining if there is a link between life

expectancy, at various moments in time, and the rest of the predictors.

The dataset contains 7139 observations of 9 columns:

a country × year identifier (2 variables, 𝑖 and 𝑋1);

a region and continent pair of categorical predictors (2 variables,

𝑋2 and 𝑋3);

four numerical predictors: population 𝑋4, infant mortality 𝑋5,

fertility 𝑋6, gross domestic product in 1999 dollars 𝑋7, and

life expectancy 𝑌, the numerical response.

https://www.data-action-lab.com/wp-content/uploads/2021/08/gapminder.csv
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Setting up the Gapminder dataset

library(dplyr)

gapminder.ML = read.csv("gapminder.csv",

stringsAsFactors=TRUE)

gapminder.ML <- gapminder.ML[complete.cases(gapminder.ML),]

gapminder.ML <- gapminder.ML[,c("country","year","region",

"continent","population","infant_mortality",

"fertility","gdp","life_expectancy")]

The structure is provided below:

str(gapminder.ML)

’data.frame’: 7139 obs. of 9 variables:

$ country : Factor w/ 185 levels "Albania","Algeria",..: 2 5 8 9 11 13 14 16 18 20 ...

$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

$ region : Factor w/ 22 levels "Australia and New Zealand",..: 11 15 1 22 2 18 2 ...

$ continent : Factor w/ 5 levels "Africa","Americas",..: 1 2 5 4 2 3 2 4 1 2 ...

$ population : int 11124892 20619075 10292328 ...

$ infant_mortality: num 148.2 59.9 20.3 37.3 51 ...

$ fertility : num 7.65 3.11 3.45 2.7 4.5 6.73 4.33 2.6 6.28 6.7 ...

$ gdp : num 1.38e+10 1.08e+11 9.67e+10 5.24e+10 1.31e+09 ...

$ life_expectancy : num 47.5 65.4 70.9 68.8 62 ...

In other words, we will be looking for models of the form

𝑌 = 𝑓 (𝑋1 , . . . , 𝑋7) + 𝜀 ≡ 𝑓 ( ®𝑋) + 𝜀,

where 𝑓 is the systematic component of 𝑌 explained by 𝑋, and 𝜀 is the

random error term, which accounts for measurement errors and other

deviations and discrepancies.
4

4: Generally, we require E(𝜀) = 0.

20.1.2 Systematic Component and Regression

It is the systematic component that is used for predictions and inferences.

As long as 𝑓 is “good”, we can:

make predictions for the response 𝑌 at new points
®𝑋 = x;

understand which features of
®𝑋 = (𝑋1 , . . . , 𝑋𝑝) are important to

explain the variation in 𝑌, and

depending on the complexity of 𝑓 , understand the effect of each

feature 𝑋𝑗 on 𝑌.

Imagine a model with one predictor 𝑋 and a target 𝑌, with systematic

component 𝑓 , so that

𝑌 = 𝑓 (𝑋) + 𝜀.

For instance, consider the following subset of the Gapminder dataset.
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attach(gapminder.ML)

x=log(fertility[10*(1:730)]/infant_mortality[10*(1:730)])

y=life_expectancy[10*(1:730)]

x=x[!is.na(x)]

y=y[!is.na(y)]

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

What is the ideal 𝑓 in this case? How can we find it?

Figure 20.1: Regression model for a subset

of the Gapminder data.

In that case, what would be a good value of 𝑓 (−2), say?

Figure 20.2: Regression model for a subset

of the Gapminder data, with vertical line

at 𝑋 = −2.

Ideally, we would like to have 𝑓 (−2) = E[𝑌 | 𝑋 = −2].5 For any 𝑥 in the5: Why?

range of 𝑋, the function

𝑓 (𝑥) = E[𝑌 | 𝑋 = 𝑥]
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is the regression function of 𝑌 on 𝑋. In the general setting with 𝑝

predictors, the regression function is

𝑓 (x) = 𝑓 (𝑥1 , . . . , 𝑥𝑝) = E[𝑌 | 𝑋1 = 𝑥1 , . . . , 𝑋𝑝 = 𝑥𝑝] = E[𝑌 | ®𝑋 = x].

It is optimal in the sense that this regression function minimizes the

average square deviation from the response variable, that is to say,

𝑓 = arg min

𝑔

{
E

[
(𝑌 − 𝑔( ®𝑋))2 | ®𝑋 = x

]}
.

The term

𝜀 = 𝜀 ®𝑋 = 𝑌 − 𝑓 ( ®𝑋)

is the irreducible error of the regression. Typically, 𝜀 ®𝑋 ≠ 0 for all
®𝑋,

since, even when 𝑓 is known exactly, there will still be some uncertainty

in the predictions due to some noise-generating mechanism in the “real

world”.

If 𝑓 is any estimate of the regression function 𝑓 ,6 then 6: In particular, 𝑓 ( ®𝑋) = 𝑌̂ ≈ 𝑌 = 𝑓 ( ®𝑋)+𝜀.

E[(𝑌 − 𝑌̂)2 | ®𝑋 = x] = E[( 𝑓 ( ®𝑋) + 𝜀 − 𝑓 ( ®𝑋))2 | ®𝑋 = x]
= [ 𝑓 (x) − 𝑓 (x)]2︸          ︷︷          ︸

reducible

+ Var(𝜀)︸︷︷︸
irreducible

.

Since the irreducible component is not a property of the estimate 𝑓 , the

objective of minimizing E[(𝑌 − 𝑌̂)2] can only be achieved by working

through the reducible component. When we speak of learning a model,

we mean that we use the training data to find an estimate 𝑓 of 𝑓 that

minimizes this reducible component, in some way.

Estimating the Regression Function In theory, we know that the regres-

sion function is

𝑓 (x) = E[𝑌 | ®𝑋 = x];

in practice, however, there might be too few (or even no) observations at

®𝑋 = x to trust the estimate provided by the sample mean. One solution

is to approximate the expectation by a nearest neighbour average

𝑓 (x) = Avg{𝑌 | ®𝑋 ∈ 𝑁(x)},

where 𝑁(x) is a neighbourhood of x.

Figure 20.3: Regression model for a subset

of the Gapminder data, with vertical line

at 𝑋 = −2 and neighbourhood 𝑁(−2).
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In general, this approach works reasonably well when 𝑝 is “small”

(𝑝 ≤ 4?) and 𝑁 is “large”, but it fails when 𝑝 is too large because of the

curse of dimensionality. The problem is that nearest neighbours are

usually far when 𝑝 is large. Indeed, if 𝑁(x) is defined as the nearest 5% of

observations to x, say,
7

then we need to leave the “local” neighbourhood7: The proportion must be large enough

to bring the variance down.
of x to build 𝑁(x), which could compromise the quality of 𝑓 (x) as an

approximation to 𝑓 (x).

We provide more details in Chapter 23, but this is a topic about which it

is worth being well-read (see [3] for a formal treatment).

The various statistical learning methods attempt to provide estimates

of the regression function by minimizing the reducible component

through parametric or non-parametric approaches.
8

For instance, the8: In this context, “parametric” means

that assumptions are made about the

form of the regression function 𝑓 ; “non-

parametric” means that no such assump-

tions are made.

classical linear regression approach is parametric: it assumes that the

true regression function 𝑓 is linear and suggests the estimate

𝑓𝐿(x) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 .

The objective, in this case, is to learn the 𝑝 + 1 parameters 𝛽0 , 𝛽1 , . . . , 𝛽𝑝
with the help of the training data.

In practice, this assumption almost never holds, but it often provides

an interpretable9
approximation to the true regression function 𝑓 (see9: We will revisit this concept at a later

stage.
below for an example).

Gapminder subset and linear regression

lin.reg = lm(y~x)

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

abline(lin.reg, col="red", lwd=3)

As an example, if the true fit of the motivating example was

life expectancy = 𝑓 (fertility, infant mortality, gdp) + 𝜀,

say, then the linear regression approach would assume that

𝑓 (fertility,infant mortality, gdp) ≈ 𝑓𝐿(fertility, infant mortality, gdp)
= 𝛽0 + 𝛽1 · fertility + 𝛽2 · infant mortality + 𝛽3 · gdp.
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The main advantages of the linear model are that it is interpretable and

that it is easier to learn 𝑝 + 1 parameters than it is to learn a whole

function 𝑓 . On the flip side, the linear model does not usually match the

true regression function 𝑓 ; if 𝑓𝐿 0 𝑓 , then predictions will suffer.

We could decide to consider more complex functions in order to get

better estimates (and thus better prediction accuracy), but this comes at

a cost – the resulting functions are usually more difficult to learn and

they tend to overfit the data.
10

10: Which is to say, they mistake noise in

the data for a signal to model, see Section

20.1.4 for details.Splines provide examples of non-parametric models (see Section 20.5.2):

they make no assumption about the form of 𝑓 – they simply seek to

estimate 𝑓 by getting close to the data points without being too rough or

too wiggly, as below.

Gapminder subset and smoothing spline

smoothingSpline = smooth.spline(x, y, spar=0.7)

plot(x,y,ylab="response Y", xlab="predictor X", pch=20)

lines(smoothingSpline, col="red", lwd=3)

detach(gapminder.ML)

The main advantage of non-parametric approaches is that they have the

potential to fit a wider range of regression shapes. But since estimating

𝑓 is not reduced to learning a small number of parameters, substantially

more data is required to obtain accurate estimates.
11

11: And the whole situation is susceptible

to overfitting.

Non-parametric methods are usually more flexible (they can produce a

large range of shapes when estimating the true regression function 𝑓 );

parametric models are usually more interpretable.
12

12: The set of parameters to learn is small

and we can more easily make sense of

them, which leads us to a better under-

standing of how the predictors interact to

produce outputs.

Approaches that provide:

high flexibility, but low interpretability include ensemble learning,

support vector machines, neural networks, and splines;

low flexibility, but high interpretability include the LASSO and

OLS, and

medium flexibility and medium interpretability include general-

ized additive models and regression trees.
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There are no high-flexibility/high-interpretability approaches. The

trade-off between two competing desirable properties is the calling card

of machine learning; we will encounter such trade-offs time and time

again; they dictate what the discipline can and cannot hope to achieve.

20.1.3 Model Evaluation

In an ideal world,
13

we would want to identify the modeling approach13: From a model performance point of

view.
that performs “best”, and use it for all problems.

The discussion on trade-offs shows that the concept of “best performance”

is impossible to define in practice in a way that meets all desired require-

ments, and a balance must be struck. Another issue lurks around the

corner, even when we settle on an “optimal” performance evaluation

measure: no single method is optimal over all possible datasets.
14

14: In reality, machine learning is simply

applied optimization; the proof of this

No-Free Lunch Theorem falls outside the

scope of this document (but see [13, 12] for

details).

Given a specific task and dataset, then, how do we select the approach

that will yield the best results (for a given value of “best”)? In practice,

this is the main machine learning challenge.

In order to evaluate a model’s performance at a specific task, we must

be able to measure how well predictions match the observed data. In a

regression/value estimation setting, various metrics are used:

mean squared error (MSE):

1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2;

mean absolute error (MAE):

1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|;

normalized mean squared error (NMSE):

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦)2
;

normalized mean absolute error (NMAE):

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦 |
;

mean average percentage error (MAPE):

1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑓 (x𝑖)|
𝑦𝑖

;

correlation 𝜌𝑦̂ ,𝑦 , etc.
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The MSE has convenient mathematical properties, and we will follow

the lead of just about every reference in making it our go-to metric, but

note that the conceptual notions we will discuss would be qualitatively

similar for all performance evaluation tools.

Note that in order to evaluate the suitability of a model for predictive
purposes, these metrics should be evaluated on testing data (or unseen

data), not on the training data.
15

15: Failure to do so means that the model

can at best be used to describe the training

dataset (which might still be a valuable

contribution).

For instance, if we are trying to determine whether any clinical measure-

ment in patients are likely to predict the onset of Alzheimer’s disease,

we do not particularly care if the algorithm does a good job of telling us

that the patients we have already tested for the disease have it or not – it

is new patients that are of interest.
16

16: Although it would be surprising if the

performance on the test data is any good

if the performance on the training data is

middling. We shall see at a later stage that

the training/testing paradigm can also

help with problems related to overfitting.

Let Tr = {(x𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} be the training set and suppose that we

use some statistical learning method to estimate the true relationship

𝑌 = 𝑓 ( ®𝑋) + 𝜀 by 𝑌̂ = 𝑓 ( ®𝑋), i.e., we fit 𝑓 over Tr.

Hopefully, we have 𝑓 (x𝑖) ≈ 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑁 , and

MSETr =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (x𝑖))2

is small.

If it is indeed small, then the model does a good job of describing Tr.

But, as discussed above, this is largely irrelevant to (if not uncorrelated

with) our ability to make good predictions; what we would really like to

know is if

𝑓 (x∗) ≈ 𝑓 (x∗) = 𝑦∗

for observations (x∗ , 𝑦∗) ∉ Tr.

An optimal statistical learning method for a given combination of task

and dataset is one that minimizes

MSETe =
1

𝑀

𝑁+𝑀=𝑛∑
𝑗=𝑁+1

(𝑦 𝑗 − 𝑓 (x𝑗))2

over the testing set Te = {(x𝑗 , 𝑦𝑗) | 𝑗 = 𝑁 + 1, . . . , 𝑁 +𝑀 = 𝑛}, where, a
priori, none of the test observations were in Tr.

17
The general situation is 17: New test observations may end up as-

suming the same values as some of the

training observations, but that is an acci-

dent of sampling and/or it is due to the

reality of the scenario under considera-

tion.

illustrated in Figures 20.4 and 20.5.

20.1.4 Bias-Variance Trade-Off

The “U” shape of the testing MSE in Figure 20.5 is generic – something of

this nature occurs for nearly all datasets and choice of supervised learning

family of methods (for regression and for classification): underfitting
and overfitting is a fact of machine learning life.

18
18: Although, some recent findings are

casting the bias-variance trade-off in a new

light (see double descent , for instance).

We will discuss this further in Chapter 31.

The generic shape can be explained by two properties of SL methods: the

bias and the variance. Consider a test observation (x∗ , 𝑦∗), and a fitted

model 𝑓 (trained on Tr), which approximates the true model

𝑌 = 𝑓 ( ®𝑋) + 𝜀, where 𝑓 (x) = E[𝑌 | ®𝑋 = x].

https://mlu-explain.github.io/double-descent/
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Figure 20.4: The training/testing paradigm. Training data is fed into a variety of statistical learning methods, possibly arranged in increasing

order of complexity, yielding a sequence of models. These models are then used to make predictions on the testing set (using only the

predictors variables); the predictions are then compared with the actual values to evaluate the performance of the models on the testing set.

The performance of the models on the training set can also be evaluated.

Figure 20.5: Generic illustration of the bias-variance trade-off; when the complexity of the model increases, the training error decreases, but

the testing error eventually starts increasing. Generally, models that are too simple will have ’large’ prediction errors on both the training

and the testing sets (underfitting), whereas for models that are too complex, the training error tends to be “small” while the testing error

tends to be “large” (overfitting). Based on [5, 3].
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The expected test MSE at x∗ can be decomposed into 3 fundamental

quantities

E [MSETe(x∗)] = E

[
(𝑦∗ − 𝑓 (x∗))2

]
= Var( 𝑓 (x∗))︸      ︷︷      ︸

variance

+
{
E

[
𝑓 (x∗) − 𝑓 (x∗)

]}
2︸                    ︷︷                    ︸

squared bias

+Var(𝜀).

As before, Var(𝜀) is the irreducible error (due to the inherent noise in

the data); the variance component error Var( 𝑓 (x∗)) arises since different

training sets would yield different fitted models 𝑓 , and the (squared)
bias component error arises, in part, due to the “difficult” problem being

approximated by a “simple” model (see [5, 3] for details).

The overall expected test MSE E[MSETe] is the average of E[MSETe(x∗)]
over all allowable x∗ in the testing space. Note that

E[MSETe] ≥ Var(𝜀),

by construction.

In general, more flexible methods (i.e., more complex methods) tend to

have higher variance and lower bias, and vice-versa: simpler methods

have higher bias and lower variance. It is this interplay between bias

and variance that causes models to underfit (high bias) or overfit (high

variance) the data (see bias-variance trade-off diagram below).

Figure 20.6: Expected test error decompo-

sition, artificial dataset [5].

Let us summarize the main take-aways from the first section:

the optimal regression function 𝑌 = 𝑓 ( ®𝑋) + 𝜀 for numerical re-
sponses is

𝑓 (𝑥) = E[𝑌 | ®𝑋 = x];

models are learned on training data Tr;
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in practice, we learn the best model from a restricted group of

model families;

the best model 𝑓 (x)minimizes the reducible part of the prediction

error MSETe, evaluated on testing data Te;

the bias-variance trade-off tells us that models that are too simple

(or too rigid) underfit the data, and that models that are too complex

(or too “loose”) overfit the data;

the total prediction error on Te is bounded below by the irreducible

error.

Finally, remember that a predictive model’s performance can only be
evaluated on unseen data (i.e., on data not drawn from the training set Tr);

if this requirement is not met, the model is at best descriptive.

20.2 Regression Modeling

In the regression setting, the goal is to estimate the regression function

𝑓 (x) = E[𝑌 | ®𝑋 = x],

the solution to the regression problem

𝑌 = 𝑓 ( ®𝑋) + 𝜀.

The best estimate 𝑓 is the model that minimizes

MSETe( 𝑓 ) = Avgx∗∈Te
E

[
(𝑦∗ − 𝑓 (x∗))2

]
.

In practice, this can be hard to achieve without restrictions on the

functional form of 𝑓 , so we try to learn the best 𝑓 from specific families
of models. Remember, however, that no matter what the approximation

function 𝑓 is, we have:
19

19: Assuming that Var(𝜀) is constant in x.

MSETe( 𝑓 ) ≥ Var(𝜀).

What else can we say about 𝑓 ? In the ordinary least square framework
(OLS), we assume that

𝑓OLS(x) ≈ x⊤𝜷,

which is to say that we assume that 𝑓OLS is nearly globally linear.
20

20: We neglect the intercept term, in this

interpretation.

The true regression function is almost never linear, but the linear assump-

tion yields models 𝑓 that are both conceptually and practically useful –

the model 𝑓 is easily interpretable, and the associated prediction error

MSETe( 𝑓 ) is often “small-ish”.

The most common data modeling methods are linear and logistic regres-
sion methods. By some estimation, 90% of real-world data applications

end up using these as their final model, typically after very carefully

preparing the data (cleaning, encoding, creation of new variables, trans-

formation of variables, etc.).

That is mostly due to the:

regression models being straightforward to interpret and to train;
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MSETe having a closed-form linear expression, and

OLS solution being computable using simple matrix manipulations.

Gapminder Example Let us revisit the Gapminder dataset, focusing on

observations from 2011.

Is there a relationship between gross domestic product and life

expectancy?

How strong is the relationship?

Which factors contribute to the life expectancy?

How accurately could we predict life expectancy given a set of new

observations?

Is the relationship linear?

Are there combinations of factors that are linked with life ex-

pectancy?

Can the scatterplots of various predictors against life expectancy for

the 2011 Gapminder data, shown below with line of best fit, be used to

answer these questions?

gapminder.2011 <- gapminder.ML |> filter(year==2011)

attach(gapminder.2011)

x=population

y=life_expectancy

plot(x,y, xlab="Population", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=infant_mortality

y=life_expectancy

plot(x,y, xlab="Infant Mortality", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=fertility

y=life_expectancy

plot(x,y, xlab="Fertility", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=gdp

y=life_expectancy

plot(x,y, xlab="Gross Domestic Product",

ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=gdp/population

y=life_expectancy

plot(x,y, xlab="GDP per capita", ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

x=log(gdp/population)

y=life_expectancy

plot(x,y, xlab="GDP per capita (log scale)",
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ylab="Life Expectancy")

abline(lm(y~x), col="red",lwd=3)

detach(gapminder.2011)

20.2.1 Formalism

Consider a dataset Tr = {(x1 , 𝑦1), . . . , (x𝑁 , 𝑦𝑁 )} with 𝑁 observations

and 𝑝 − 1 features. The corresponding design matrix, response vector,
and coefficient vector are, respectively,

X =
©­­«
1 𝑥1,1 · · · 𝑥1,𝑝−1

...
...

...

1 𝑥𝑁,1 · · · 𝑥𝑁,𝑝−1

ª®®¬ , Y =
©­­«
𝑦1

...

𝑦𝑁

ª®®¬ , 𝜷 =

©­­­­«
𝛽0

𝛽1

...

𝛽𝑝−1

ª®®®®¬
.

The objective is to find 𝑓 such that Y = 𝑓 (X)+𝜺. The OLS solution assumes

that 𝑓 (X) = X𝜷; we must thus learn 𝜷 using the training data Tr.

If 𝜷̂ is an estimate of the true coefficient vector 𝜷, the linear regression
model associated with Tr is

𝑓 (x) = 𝛽̂0 + 𝛽̂1𝑥1 + · · · + 𝛽̂𝑝−1𝑥𝑝−1.

How do we find 𝜷̂? The OLS estimate minimizes the loss function

L(𝜷) = ∥Y − X𝜷∥2
2
= (Y − X𝜷)⊤(Y − X𝜷)

= Y⊤Y − ((X𝜷)⊤Y + Y⊤X𝜷) + (X𝜷)⊤X𝜷
= Y⊤Y − (𝜷⊤X⊤Y + Y⊤X𝜷) + 𝜷⊤X⊤X𝜷.

The loss function is a non-negative symmetric quadratic form in 𝜷, with

no restriction on the coefficients, so any minimizer of Lmust also be one

of its critical points (assuming certain regularity conditions on the data).

We are thus looking for coefficients for which ∇L(𝜷) = 0. Since

∇L(𝜷) = −2(X⊤Y − X⊤X𝜷),
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any minimizer 𝜷̂ must satisfy the canonical (normal) equations:

X⊤Y = X⊤X𝜷̂.

If X⊤X is invertible, the minimizer 𝜷̂ is unique and is given by

𝜷̂ = (X⊤X)−1X⊤Y, with Var(𝜷̂) = 𝜎̂2(X⊤X)−1 ,

where 𝜎̂2
is the variance of the residuals.

21
We say that “we have learned 21: Note that X⊤X is a 𝑝 × 𝑝 matrix, which

makes the inversion relatively easy to com-

pute even when 𝑁 is large.

the coefficients 𝜷̂ on the training data Tr using linear regression”.

In what follows, we sometimes write x to represent the observation

vector

(1, 𝑥1 , . . . , 𝑥𝑝−1)⊤;

it should be clear what is meant from the context.

The fitted value of the model 𝑓 at input x𝑖 ∈ Tr is

𝑦̂𝑖 = 𝑓 (x𝑖) = x⊤𝑖 𝜷̂,

and the predicted value at an arbitrary x∗ is

𝑦̂∗ = 𝑓 (x∗) = x∗⊤𝜷̂.

The fitted surface is thus entirely described by the 𝑝 + 1 parameters 𝜷̂;

the number of (effective) parameters is a measure of the complexity of

the learner.

Motivating Example We study a subset of the Gapminder dataset: the

observations for 2011, the predictor variables infant mortality 𝑋1 and

fertility 𝑋2, and the response variable life expectancy 𝑌. The training

data Tr contains 𝑁 = 166 observations and 𝑝 = 2 predictor features.

The design matrix X is thus of dimension 166 × 3.

library(matlib)

gapminder.2011 <- gapminder.2011 |> dplyr::mutate(const=1)

design.X = gapminder.2011[,c("const","infant_mortality",

"fertility")]

str(design.X)

’data.frame’: 166 obs. of 3 variables:

$ const : num 1 1 1 1 1 1 1 1 1 1 ...

$ infant_mortality: num 14.3 22.8 106.8 7.2 12.7 ...

$ fertility : num 1.75 2.83 6.1 2.12 2.2 1.5 1.88 1.44 1.96 1.9 ...

The response is a 166 × 1 vector.

resp.Y = gapminder.2011[,c("life_expectancy")]

The constituents of the canonical equations are:
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(X.t.X = t(as.matrix(design.X)) %*% as.matrix(design.X))

(X.t.Y = t(as.matrix(design.X)) %*% as.matrix(resp.Y))

We thus see that

X⊤X =
©­«

166.0 4537.3 486.54

4537.3 225043.25 18445.28

486.54 18445.28 1790.238

ª®¬
and

X⊤Y =
©­«

11756.7

291153.33

32874.95

ª®¬ .
We can now compute 𝜷̂:

(beta.hat = inv(X.t.X) %*% X.t.Y)

Thus,

𝜷̂ = (X⊤X)−1X⊤Y =
©­«

79.677

−0.276

−0.443

ª®¬ .
We have seen that the fitted surface is

𝑦∗ = 𝑓 (x∗) = 79.677 − 0.276𝑥∗
1
− 0.443𝑥∗

2

for an observation x∗ = (𝑥∗
1
, 𝑥∗

2
).

Warning: predictions should not be made for observations outside the

range (or the envelope) of the training predictors. In this example, the

predictor envelope is shown in red in the figure below – one should resist

the temptation to predict 𝑦∗ for x∗ = (100, 2), say.

Least Squares Assumptions Since the family of OLS learners is a subset

of all possible learners, the best we can say about 𝑓OLS is that

MSETe( 𝑓OLS) ≥ min

𝑓

{
MSETe( 𝑓 )

}
≥ Var(𝜀).

In practice, we are free to approximate 𝑓 with any learner 𝑓 . If we

want 𝑓 to be useful, however, we need to verify that it is a “decent”

approximation.

There is another trade-off at play: when we restrict learners to specific

families of functions,
22

we typically also introduce a series of assumptions22: That is, when we impose structure on

the learners.
on the data.

The OLS assumptions are

linearity: the response variable is a linear combination of the

predictors;

homoscedasticity: the error variance is constant for all predictor

levels;
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Figure 20.7: Predictor envelope for the

Gapminder subset.

uncorrelated errors: the error is uncorrelated from one observation

to the next;

full column rank for design matrix X: the predictors are not

perfectly multi-collinear;

weak exogeneity: predictor values are free of measurement error.

Mathematically, the assumptions translate to

Y = X𝜷 + 𝜺,

where 𝜷 ∈ ℝ𝑝+1
is determined on a training set Tr without measurement

error, and for which

E[𝜺 | X] = 0 and E[𝜺𝜺⊤ | X] = 𝜎2𝐼𝑛 .

Although it is not a requirement, it is also often further assumed that

𝜺 | X ∼N(0, 𝜎2𝐼𝑛).

We will discuss how these assumptions can be generalized at a later stage.

In the meantime, however, how can we determine if the choice of model

is valid? In the traditional statistical analysis context, there is a number

of tests available to the analyst (we will discuss them shortly). In the

machine learning context, there is only one real test:

does the model make good predictions?



1218 20 Regression and Value Estimation

20.2.2 Least Squares Properties

Let us assume that the OLS assumptions are satisfied. What can we say

about the linear regression results? (see Chapter 8 and [6], say, for a

refresher).

For the Gapminder example above, for instance, we could us R’s lm().

f.model = lm(life_expectancy~infant_mortality+fertility)

summary(f.model)

Residuals:

Min 1Q Median 3Q Max

-15.3233 -2.0057 0.2003 2.9570 10.6370

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 79.6759 0.7985 99.786 <2e-16 ***
infant_mortality -0.2763 0.0248 -11.138 <2e-16 ***
fertility -0.4440 0.4131 -1.075 0.284

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.172 on 163 degrees of freedom

Multiple R-squared: 0.7612, Adjusted R-squared: 0.7583

F-statistic: 259.8 on 2 and 163 DF, p-value: < 2.2e-16

Coefficient of Determination Let

SSE = Y⊤[𝐼𝑛 − X(X⊤X)−1X⊤]Y = Y⊤[𝐼𝑛 −H]Y

and

SST = Y⊤Y − 𝑛𝑦2

.

In the Gapminder example, we have:

(SSE=anova(f.model)[[2]][3])

[1] 2837.69

(SST=as.vector(t(as.matrix(resp.Y)) %*% as.matrix(resp.Y)

- nrow(as.matrix(resp.Y))*(mean(resp.Y))^2))

[1] 11882.18

The coefficient of determination of the OLS regression is the quotient

𝑅2 =
SST − SSE

SST

=
Cov

2(Y,X𝜷̂)
𝜎2

𝑦𝜎
2

𝑦̂

.

In the Gapminder example, we have:
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(R.2 = 1-SSE/SST)

[1] 0.761181

The coefficient of determination identifies the proportion of the variation

of the data explained by the linear regression; as such, 0 ≤ 𝑅2 ≤ 1.

If 𝑅2 ≈ 0, then the predictor variables have little explanatory power on

the response; if 𝑅2 ≈ 1, then the linear fit is deemed to be “good”, as a

lot of the variability in the response is explained by the predictors. In

practice, the number of predictors also affects the goodness-of-fit (this is

related to the curse of dimensionality discussed previously).

The quantity

𝑅2

𝑎 = 1 − 𝑁 − 1

𝑁 − 𝑝 (1 − 𝑅
2) = 1 − SSE/(𝑁 − 𝑝)

SST/(𝑁 − 1)

is the adjusted coefficient of determination of the linear regression.

While 𝑅2

𝑎 can be negative, it is always smaller than 𝑅2
. It also plays a role

in the feature selection process.

In the Gapminder example, we have:

(R.a.2 = 1-(nrow(as.matrix(resp.Y))-1)

/(nrow(as.matrix(resp.Y))-nrow(X.t.X))*(1-R.2))

[1] 0.7584

This suggests that a fair proportion of the variability in the life expectancy

(about 75.7%) is explained by infant mortality and fertility.

Significance of Regression We can determine if at least one of the

predictors𝑋1 , . . . , 𝑋𝑝−1 is useful in predicting the response𝑌 by pitting

𝐻0 : (𝛽1 , . . . , 𝛽𝑝−1) = 0 against 𝐻1 : (𝛽1 , . . . , 𝛽𝑝−1) ≠ 0.

Under the null hypothesis 𝐻0, the 𝐹−statistic

𝐹∗ =
(SST − SSE)/𝑝
SSE/(𝑁 − 𝑝) ∼ 𝐹𝑝,𝑁−𝑝 .

At significance level 𝛼, if 𝐹∗ ≥ 𝐹𝑝,𝑁−𝑝;𝛼 (the 1 − 𝛼 quantile of the 𝐹

distribution with 𝑝 and 𝑁 − 𝑝 degrees of freedom), then we reject the

null hypothesis in favour of the alternative.

In the Gapminder model

𝑌 = 79.677 − 0.276𝑋1 − 0.443𝑋2 + 𝜀, 𝑁 = 166, 𝑝 = 2,

we have:
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(F.star = ((SST-SSE)/(nrow(X.t.X)))

/(SSE/(nrow(as.matrix(resp.Y))-nrow(X.t.X))))

[1] 258.169

At a significance level 𝛼 = 0.05, the critical value of the 𝐹2,164 distribution

is:

qf(0.05,nrow(X.t.X),nrow(as.matrix(resp.Y))

-nrow(X.t.X),lower.tail=FALSE)

[1] 3.051127

Since 𝐹∗ ≥ 𝐹2,164;0.05, at least one of 𝛽1 , 𝛽2 ≠ 0, with probability 95% (in

the frequentist interpretation).

Interpretation of the Coefficients For 𝑗 = 1, . . . , 𝑝, the coefficient 𝛽 𝑗
is the average effect on 𝑌 of a 1-unit increase in 𝑋𝑗 , holding all other
predictors fixed. Ideally, the predictors are uncorrelated (such as would

be the case in a balanced design [10]). Each coefficient can then be

tested (and estimated) separately, and the above interpretation is at least

reasonable in theory.

In practice, however, we can not always control the predictor variables,

and it might be impossible to “hold all other predictors fixed.” When the

predictors are correlated, there are potential variance inflation issues

for the estimated regression coefficients, and the interpretation is risky,

since when 𝑋𝑗 changes, so do the other predictors.
23

More importantly,23: If 𝑌 represents the total monetary

value in a piggy bank, 𝑋1 the number

of coins, and 𝑋2 the number of pennies,

what is likely to be the sign of 𝛽2 in the

model 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀? Are

𝑋1 and 𝑋2 correlated? What would the

interpretation look like, in this case?

the interpretation can also be read as a claim of causality, which should
be avoided when dealing with observational data.

“The only way to find out what will happen when a complex

system is disturbed is to disturb the system, not merely to

observe it passively.” (paraphrased from [2])

In the Gapminder example, the correlation between 𝑋1 and 𝑋2 is:

cor(infant_mortality,life_expectancy)

[1] -0.8714863

The predictors are thus strongly correlated, and the standard interpreta-

tion is not available to us.
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Hypothesis Testing We can also determine if a specific predictor 𝑋𝑗 is

useful in predicting the response 𝑌, by testing for

𝐻0 : 𝛽 𝑗 = 0 against 𝐻1 : 𝛽 𝑗 ≠ 0.

Under the null hypothesis 𝐻0, the test statistic

𝑡∗ =
𝛽̂ 𝑗

se(𝛽̂ 𝑗)
∼ 𝑇𝑁−2 ,

where se(𝛽̂ 𝑗) =
√
𝜎̂2(X⊤X)−1

𝑗+1, 𝑗+1
, and 𝜎̂2 = SSE

𝑁−𝑝 , and 𝑇𝑛−2 is the Student

𝑇 distribution with 𝑁 − 2 degrees of freedom.

At a significance level 𝛼, if |𝑡∗ | ≥ |𝑡𝑛−2;𝛼/2 | (the 1 − 𝛼/2 quantile of the

𝑇 distribution with 𝑁 − 2 degrees of freedom), then we reject the null

hypothesis in favour of the alternative.

In the Gapminder model, we have: 𝑁 = 166, 𝑝 = 2, and 𝛽̂1 = −0.276 so

that

(sigma.hat.2=SSE/(nrow(as.matrix(resp.Y))

-nrow(X.t.X)))

[1] 17.51661

(se.beta.hat.1=sqrt(sigma.hat.2*inv(X.t.X)[2,2]))

[1] 0.02488045

Thus

(t.star=(inv(X.t.X) %*% X.t.Y)[2]/se.beta.hat.1)

[1] -11.08275

At a significance level 𝛼 = 0.05, the critical value of the 𝑇164 distribu-

tion is:

qt(0.025,nrow(as.matrix(resp.Y))-2)

[1] -1.974535

Since |𝑡∗ | ≥ |𝑡164;0.025 |, 𝛽1 ≠ 0 with probability 95% (in the frequentist

interpretation).
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Confidence Intervals The standard error of 𝛽̂ 𝑗 reflects how the estimate

would vary under various Tr; it can be used to compute a (1 − 𝛼)%
confidence interval for the true 𝛽 𝑗 :

CI(𝛽 𝑗 ; 1 − 𝛼) ≡ 𝛽̂ 𝑗 ± 𝑧𝛼/2 · se(𝛽̂ 𝑗);

at 𝛼 = 0.05, 𝑧𝛼/2 = 1.96 ≈ 2, so that

CI(𝛽 𝑗 ; 0.95) ≡ 𝛽̂ 𝑗 ± 2se(𝛽̂ 𝑗).

In the Gapminder example, we have

coeff. est. s.e. t∗ 95% CI

𝛽0 79.677 0.7985 99.786 [78.1, 81.3, ]
𝛽1 −0.276 0.0248 −11.138 [−0.33,−0.23]
𝛽2 0.443 0.4131 −1.075 [−1.27, 0.38]

In frequentist statistics, the confidence interval has a particular inter-

pretation – it does not mean, as one might wish, that there is a 95%

chance, say, that the true 𝛽 𝑗 is found in the CI; rather, it suggests that the

approach used to build the 95% CI will yield an interval in which the

true 𝛽 𝑗 will reside approximately 95% of the time.
24

24: Compare with the Bayesian notion of

a credible interval (see Chapter 25).

The resulting confidence intervals also depend on the underlying model.

For instance, the 95% CI for 𝛽1 in the full model is [−0.33,−0.23] (see

above), whereas the corresponding CI in the reduced model

𝑌̂ = 𝛾0 + 𝛾1𝑋1

is [−0.33,−0.27].

The estimates are necessarily distinct as well:

reduced.model = lm(life_expectancy ~ infant_mortality)

summary(reduced.model)

Residuals:

Min 1Q Median 3Q Max

-14.9729 -1.9716 0.1726 2.9727 11.0275

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.99279 0.48357 163.35 <2e-16 ***
infant_mortality -0.29888 0.01313 -22.76 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.174 on 164 degrees of freedom

Multiple R-squared: 0.7595, Adjusted R-squared: 0.758

F-statistic: 517.9 on 1 and 164 DF, p-value: < 2.2e-16

Note that 𝛽̂1 = −0.2763 ≠ −0.2989 = 𝛾̂1.
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Feature Selection How would we determine if all the predictors help

explain the response 𝑌, or if only a (proper) subset of the predictors is

needed? The most direct approach to solve this problem (in the linear

regression context) is to run best subsets regression.

The procedure is as follows: fit an OLS model for all possible subsets

of predictors and select the optimal model based on a criterion that

balances training error with model size.

There are 2
𝑝+1

such models (a quantity that quickly becomes unmanage-

able). In practice, we need to automate and speed-up the search through

a collection of predictor subsets. OLS approaches include forward selec-
tion and backward selection (we discuss these in detail in Chapter 23,

Feature Selection and Dimension Reduction).

Forward selection is a bottom-up approach:

1. start with the null model M0 : 𝑌 = 𝛽0 + 𝜀;

2. fit 𝑝 simple linear regressions 𝑌 = 𝛽0 + 𝛽 𝑗𝑋𝑗 + 𝜀 and add to the

null model the predictor 𝑋𝑗1 resulting in the lowest SSE:

M1 : 𝑌 = 𝛽0 + 𝛽 𝑗1𝑋𝑗1 + 𝜀;

3. add to that model the predictor 𝑋𝑗2 that results in the lowest SSE

among all the two-variable models:

M2 : 𝑌 = 𝛽0 + 𝛽 𝑗1𝑋𝑗1 + 𝛽 𝑗2𝑋𝑗2 + 𝜀;

4. the process continues until a stopping criterion is met.

Backward selection is a top-down approach, and it works in reverse,

removing predictors from the full model.

In both approaches, there are at most

𝑝 + (𝑝 − 1) + · · · + 2 + 1 =
𝑝(𝑝 + 1)

2

≪ 2
𝑝+1

(when 𝑝 is large)

regressions to run. These methods are, frankly, not ideal in the machine

learning framework (we will shortly see alternatives).

Other Questions

How do we handle qualitative variables? (dummy binary variables);

How do we handle interaction terms? (add features);

How do we handle outliers? (median regression, Theil-Sen esti-

mate);

How do we handle non-constant variance of error terms? (data

transformations, weighted least square regression, Bayesian regres-

sion);

How do we handle high-leverage observations? (robust regression);

How do we handle collinearity? (principal component analysis,

generalized linear models, partial least square regression);

How do we handle multiple tests? (Bonferroni correction: for 𝑞

independent tests with the same data, set significance level to 𝛼/𝑞
to get joint significance equivalent to 𝛼 for a single test).
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20.2.3 Generalizations of OLS

The OLS assumptions are convenient from a mathematical perspective,

but they are not always met in practice.

One way out of this problem is to use remedial measures to transform

the data into a compliant set; another one is to extend the assumptions

and to work out the corresponding mathematical formalism:

generalized linear models (GLM) implement responses with non-

normal conditional distributions;

classifiers (logistic regression, decision trees, support vector ma-

chines, naïve Bayes, neural networks) extend regression to categor-

ical responses (see Chapter 21);

non-linear methods such as splines, generalized additive models

(GAM), nearest neighbour methods, kernel smoothing methods

are used for responses that are not linear combinations of the

predictors (see Section 20.5);

tree-based methods and ensemble learning methods (bagging,

random forests, boosting) are used for predictor interactions (see

Chapter 21);

regularization methods (ridge regression, LASSO, elastic net)

facilitate the process of model selection and feature selection (see

the subsection on Shrinkage Methods).

Generalized Linear Models GLM extend the OLS paradigm
25

by accom-25: Ordinary least squares.

modating response variables with non-normal conditional distributions.

Apart from the error structure, a GLM is essentially a linear model:

𝑌𝑖 ∼ D(𝜇𝑖), where 𝑔(𝜇𝑖) = x⊤𝑖 𝜷.

A GLM consists of:

a systematic component x⊤
𝑖
𝜷;

a random component specified by the distribution D for 𝑌𝑖 , and

a link function 𝑔.

The systematic component is specified in terms of the linear predictor

for the 𝑖th observation 𝜂𝑖 = x⊤
𝑖
𝜷; the general ideas and concepts of OLS

carry over to GLM, with the added presence of the link function and the

distribution of the response 𝑦𝑖 .

In principle, the link function 𝑔 could be any function linking the linear

predictor 𝜂𝑖 to the distribution of the response 𝑌𝑖 ; in practice, however, 𝑔

should be smooth and monotonic.
26

26: Or at least differentiable and invert-

ible.

We could specify any distribution D for the response 𝑌𝑖 , but they are

usually selected from the exponential family of distributions.
27

OLS is27: These are distributions have probabil-

ity density functions that satisfy

𝑓 (x | ®𝜃) = ℎ(x)𝑔( ®𝜃) exp( ®𝜙( ®𝜃) · ®𝑇(x)).

This includes the normal, binomial, Pois-

son, Gamma distributions, etc. These are

all distributions with conjugate priors (see

Chapter 25).

an example of GLM, with:

systematic component 𝜂𝑖 = x⊤
𝑖
𝜷;

random component 𝑌𝑖 ∼N(𝜇𝑖 , 𝜎2);
link function 𝑔(𝜇) = 𝜇.
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For a more substantial example, consider the following situation. In the

early stages of a rumour spreading, the rate at which new individual learn

the information increases exponentially over time. If 𝜇𝑖 is the expected

number of people who have heard the rumour on day 𝑡𝑖 , a model of the

form 𝜇𝑖 = 𝛾 exp(𝛿𝑡𝑖)might be appropriate:

ln(𝜇𝑖)︸︷︷︸
link

= ln 𝛾 + 𝛿𝑡𝑖 = 𝛽0 + 𝛽1𝑡𝑖 = (1, 𝑡𝑖)⊤(𝛽0 , 𝛽1)︸           ︷︷           ︸
systematic component

.

Furthermore, since we measure a count of individuals, the Poisson

distribution could be a reasonable choice:

𝑌𝑖 ∼ Poisson(𝜇𝑖),︸        ︷︷        ︸
random component

ln(𝜇𝑖) = (1, 𝑡𝑖)⊤(𝛽0 , 𝛽1).

The main advantages of GLM are that:

there is no need to transform the response 𝑌 if it does not follow a

normal distribution;

if the link produces additive effects, the assumption of homoscedas-

ticity does not need to be met;

the choice of the link is separate from the choice of random compo-

nent, providing modeling flexibility;

models are still fitted via a maximum likelihood procedure;

inference tools and model checks (Wald ratio test, likelihood ratio

test, deviance, residuals, CI, etc.) still apply;

they are easily implemented (proc genmod, glm(), etc.), and

the framework unites various regression modeling approaches

(OLS, logistic, Poisson, etc.) under a single umbrella.

20.2.4 Shrinkage Methods

We will discuss the curse of dimensionality (CoD), subset selection, and

dimension reduction in Chapter 23. Another approach to dealing with

high-dimensionality is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants.

In what follows, assume that the training set consists of 𝑁 centered and

scaled observations x𝑖 = (𝑥𝑖 ,1 , · · · , 𝑥𝑖 ,𝑝−1), with responses 𝑦𝑖 .

Let 𝛽̂OLS, 𝑗 be the 𝑗th OLS coefficient, and set a threshold 𝜆 > 0, whose

value depends on the training dataset Tr. Recall that 𝜷̂OLS is the exact

solution to the OLS problem

𝜷̂OLS = arg min

𝜷
{∥Y − X𝜷∥2

2
} = arg min

𝜷
{SSE}.

In general, no restrictions are assumed on the values of the coefficients

𝛽̂OLS, 𝑗 – large magnitudes imply that corresponding features play an
important role in predicting the target. This observation forms the basis

of a series of useful OLS variants.
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Figure 20.8: Ridge regression coefficients in a generic problem; note how the coefficients converge to 0 when the threshold lambda increases

(left); the ratio between the magnitude of the ridge regression parameter and the corresponding OLS parameter is shown on the right [5].

Ridge Regression RR is a method to regularize the OLS regression coef-

ficients. Effectively, it shrinks the OLS coefficients by penalizing solutions

with large magnitudes – if the magnitude of a specific coefficient is large,

then it must have great relevance in predicting the target variable.

This leads to a modified OLS problem:

𝜷̂RR = arg min

𝜷
{ ∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+ 𝑁𝜆∥𝜷∥2
2︸   ︷︷   ︸

shrinkage penalty

}.

This quantity is small when SSE is small (i.e., the model is a good fit to

the data) and when the shrinkage penalty is small (i.e., when each 𝛽 𝑗 is

small). RR solutions are typically obtained via numerical methods.
28

28: For orthonormal covariates (which is

to say, X⊤X = 𝐼𝑝 ), we have, in fact:

𝛽̂
RR, 𝑗 =

𝛽̂
OLS, 𝑗

1 + 𝑁𝜆
.

The hyperparameter 𝜆 controls the relative impact of both components.

If 𝜆 is small, then the shrinkage penalty is small even if the individual

coefficients 𝛽 𝑗 are large; if 𝜆 is large, then the shrinkage penalty is only

small when all coefficients 𝛽 𝑗 are small (see Figure 20.8).

Setting the “right” value for𝜆 is crucial; it can be done via cross-validation

(see [5, pp.227-228] and Section 20.3 (Cross-Validation) for details). The

OLS estimates are equivariant: if 𝛽̂ 𝑗 is the estimate for the coefficient 𝛽 𝑗
of 𝑋𝑗 , then 𝛽̂ 𝑗/𝑐 is the estimate for the coefficient of the scaled variable

𝑐𝑋𝑗 . RR coefficients do not have this property, however, which is why

the dataset must be centered and scaled to start with.

Finally, note that RR estimates help to mitigate the bias-variance trade-off

and reduce issues related to overfitting.
29

29: Even if they do not reduce the dimen-

sions of the dataset.

Regression With Best Subset Selection BS runs on the same principle

but uses a different penalty term, which effectively sets some of the

coefficients to 0 (this could be used to select the features with non-zero

coefficients, potentially).
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Figure 20.9: LASSO coefficients in a generic problem; note how the coefficients goes directly to 0 after a certain threshold lambda (left); the

ratio between the magnitude of the LASSO parameter and the corresponding OLS parameter is shown on the right [5].

The problem consists in solving another modified version of the OLS

scenario, namely

𝜷̂BS = arg min

𝜷
{∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+𝑁𝜆∥𝜷∥0︸   ︷︷   ︸
shrinkage

}, ∥𝜷∥0 =
∑
𝑗

sgn(|𝛽 𝑗 |).

Solving the BS problem typically (also) requires numerical methods and

cross-validation.
30

A slight modification to the RR shrinkage penalty 30: For orthonormal covariates, we have

𝛽̂
BS, 𝑗 =

{
0 if |𝛽̂LS,j | <

√
𝑁𝜆

𝛽̂LS,j if |𝛽̂LS,j | ≥
√
𝑁𝜆

can overcome the lack of equivariance.

LASSO This approach is an alternative to RR obtained by solving

𝜷̂L = arg min

𝜷
{∥Y − X𝜷∥2

2︸      ︷︷      ︸
SSE

+𝑁𝜆∥𝜷∥1︸   ︷︷   ︸
shrinkage

};

the penalty effectively forces coefficients which combine the propertiesof

RR and BS, selecting at most max{𝑝, 𝑁} features, and usually no more

than one per group of highly correlated variables (the other coefficients

are forced down to 0 when 𝜆 is large enough, see Figure 20.9).
31

31: For orthonormal covariates, we have

𝛽̂
L, 𝑗 = 𝛽̂

OLS, 𝑗 ·max

(
0, 1 − 𝑁𝜆

|𝛽̂
OLS, 𝑗 |

)
.

Why do we get 𝛽̂L, 𝑗 = 0 for some 𝑗, but not for the RR coefficients? The

RR and LASSO formulations are equivalent to

𝜷̂RR = arg min

𝜷
{SSE | ∥𝜷∥2

2
≤ 𝑠}, for some 𝑠;

𝜷̂L = arg min

𝜷
{SSE | ∥𝜷∥1 ≤ 𝑠}, for some 𝑠.

Graphically, this looks like the images shown in Figure 20.10.

The RR coefficients 𝜷̂RR are found at the first intersection of the ellipses of

constant SSE around the OLS coefficient 𝜷̂ with the 2−sphere ∥𝜷∥2
2
≤ 𝑠;

that intersection is usually away from the axes;
32

this is not usually the 32: Due to the lack of “sharp” points.

case for the intersection of the 1−sphere ∥𝜷∥1 ≤ 𝑠.
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Figure 20.10: Level curves and neighbourhoods for LASSO (left) and ridge regression (right) [5].

The LASSO thus typically produces simpler models, but predictive

accuracy matters too (in the form of MSETe, say).
33

33: Depending on the data, either of the

two approaches can be optimal, thanks to

the No Free Lunch Theorem.

Generalizations If the response is related to a relatively small number

of predictors (whether this is the case or not is not something we usually

know a priori), LASSO is recommended. The use of other penalty functions

(or combinations thereof) provides various extensions, such as: elastic
nets; group, fused and adaptive lassos; bridge regression, etc.

The modifications described above were defined assuming an underlying

linear regression model, but they generalize to arbitrary regression/clas-

sification models as well. For a loss (cost) function L(Y, y(W)) between

the actual target and the values predicted by the model parameterized by

W, and a penalty vector R(W) = (𝑅1(W), · · · , 𝑅𝑘(W))⊤, the regularized
parametrization W∗ solves the general regularization problem

W∗ = arg min

W
{L(Y, y(W)) + 𝑁𝝀⊤R(W)},

which can be solved numerically, assuming some nice properties on

L and R [4]; as before, cross-validation can be used to determine the

optimal vector 𝝀 [3].

Gapminder Example In R, regularization is implemented in the package

glmnet (among others). In glmnet() the parameter alpha controls the

elastic net mixture: LASSO (alpha = 1), RR (alpha = 0).

Say we are interested in modeling life expectancy𝑌 in the 2011 Gapminder

dataset as a function of population, infant mortality, fertility, gdp, and

continental membership (we use the entire set as a training set Tr).
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A priori, an OLS model on this data would take the form

𝑌 = 𝛼0 + 𝛼1population + 𝛼2infant mortality + 𝛼3fertility + 𝛼4gpd

+ 𝛼5Africa + 𝛼6Americas + 𝛼7Asia + 𝛼8Europe + 𝛼9Oceania.

We start by creating dummy variables for the continents:

gapminder.2011.f <- fastDummies::dummy_cols(gapminder.2011,

select_columns = ’continent’)

Next, we select the appropriate variables for the response and the training

set, and scale and center the data (it must be in a matrix format to be

compatible with glmnet():

Setting up the Gapminder dataset

library(dplyr)

y <- gapminder.2011.f |> select(life_expectancy) |>

as.matrix()

x <- gapminder.2011.f |> select(c("population",

"infant_mortality","fertility","gdp",

"continent_Africa","continent_Americas",

"continent_Asia","continent_Europe",

"continent_Oceania")) |>

scale(center = TRUE, scale = TRUE) |>

as.matrix()

Finally, we run the regression and extract the LASSO coefficients for

hyperparameter 𝜆 = 1:

LASSO coefficients
glmnet1 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=1)

(c1 <- coef(glmnet1, x=x, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"

s1

(Intercept) 70.82349398

population .

infant_mortality -5.57897055

fertility .

gdp .

continent_Africa -1.13074639

continent_Americas .

continent_Asia .

continent_Europe .

continent_Oceania -0.03096299

Thus

𝑌 = 70.82 − 5.58(infant mortality) − 1.13(Africa) − 0.03(Oceania).
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For RR (𝛼 = 0), we obtain, with the same hyperparameter 𝜆 = 1:

Ridge regression

glmnet0 <- glmnet::glmnet(x=x, y=y, type.measure=’mse’, alpha=0)

(c0 <- coef(glmnet0, x=x, y=y,s=1,exact=TRUE))

10 x 1 sparse Matrix of class "dgCMatrix"

s1

(Intercept) 70.8234940

population -0.3471671

infant_mortality -4.4002779

fertility -0.6348077

gdp 0.5803223

continent_Africa -1.6275714

continent_Americas 0.5475769

continent_Asia 0.6117358

continent_Europe 1.0141934

continent_Oceania -0.6855980

which is to say:

𝑌 = 70.82 − 0.34(population) − 4.4(infant mortality) − 0.63(fertility) + 0.58(gdp)

− 1.62(Africa) + 0.55(Americas) + 0.61(Asia) + 1.01(Europe) − 0.68(Oceania),

which is compatible with the above discussion.

The coefficient values themselves are not as important as their signs and

the fact that they are roughly similar in both models.

It is important to note, however, that the choice of 𝜆 = 1 was arbitrary,

and that we have not been evaluating the result on test data Te. We will

revisit these issues in Section 20.3 (Cross-Validation).

20.3 Resampling Methods

How do we determine the variability of a regression fit? It can be done

by drawing different samples from the available data, fitting a regression

model to each sample, and then examining the extent to which the

various fits differ from one another.

Resampling methods provide additional information about a fitted

model, by applying the same fitting approach to various sub-samples of

the training set Tr. We will consider three such methods:

cross-validation, which estimates the test error associated with a

modeling approach in order to evaluate model performance;

the bootstrap, which provides a measure of accuracy, standard

deviation, bias, etc. of various model parameter estimates, and

the jackknife, which is a simpler approach with the same aims as

the bootstrap.
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The test error associated with a statistical learning model is the average

error arising when predicting the response for observations that were

not used to train the model.

The training error, on the other hand, is computed directly by comparing

the model’s predictions to the actual responses in Tr. In general, the

training error underestimates the test error, dramatically so when the

model complexity increases (see variance-bias trade-off, Figure 20.5).

A possible way out of this conundrum is to set aside a large-enough

testing set Te, but that’s not always possible if the original dataset is not

that large in the first place.
34

34: Some methods make direct adjust-

ments to the training error rate in order to

estimate the test error (e.g., Mallow’s 𝐶𝑝
statistic, 𝑅2

𝑎 , AIC, BIC, etc.)

In the statistical learning framework, we estimate the test error by holding
a subset Va ⊆ Tr out from the fitting process (which takes place on Tr\Va).

The validation approach is a simple strategy that is used to estimate

the test error associated with a particular statistical model on a set of

observations.

Formally, the latter is split into a training set Tr and a validation set Va

(the hold-out set). The model is fit on the training set; the fitted model is

used to make predictions on the validation set. The resulting validation

set error provides an estimate for the test error.

This approach is easy to implement and interpret, but it has a number of

drawbacks, most importantly:

the validation error is highly dependent on the choice of the

validation set, and is thus quite volatile;

the model is fitted on a proper subset of the available observations,

and we might expect that this would lead to the validation error
being larger than the test error in general, and

a number of classical statistical models can provide test error

estimates without having to resort to the validation set approach.

20.3.1 Cross-Validation

𝐾-fold cross-validation is a widely-used approach to estimate the test

error without losing some observations to a hold-out set.
35

35: It can also provide a basis for model

selection.

The procedure is simple:

1. Divide the dataset randomly into 𝐾 (roughly) equal-sized folds
(typically, 𝐾 = 4, 5, 10).

2. Each fold plays, in succession, the role of the validation set. If there

are 𝑁 observations in the dataset, partition

{1, . . . , 𝑁} = C1︸︷︷︸
fold 1

⊔ · · · ⊔ C𝐾︸︷︷︸
fold 𝐾

.

If |C𝑘 | = 𝑛𝑘 , we expect 𝑛𝑘 ≈ 𝑁
𝐾 for all 𝑘 = 1, . . . , 𝐾.

3. For all 𝑘 = 1, . . . , 𝐾, fit a model on observations {1, . . . , 𝑁} \ C𝑘
and denote the error on C𝑘 by 𝐸𝑘 .

36
36: For a regression model, there are many

options but we typically use

𝐸𝑘 =
∑
𝑖∈C𝑘

(𝑦𝑖 − 𝑦̂𝑖)2
𝑛𝑘

.

4. Write 𝐸 for the average of the 𝐸𝑘 .
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5. The cross-validation estimate of the test error is

CV(𝐾) =
𝐾∑
𝑘=1

𝑛𝑘
𝑁
𝐸𝑘 ,

with standard error

ŝe

(
CV(𝐾)

)
=

√
1

𝐾 − 1

𝐾∑
𝑘=1

(𝐸𝑘 − 𝐸)2.

These steps could also be replicated 𝑛 times to generate a distribution of

an evaluation metric, such as the standard error.
37

37: See Figure 19.33 for an illustration.

The resulting mean can prove useful in order to determine how well a

statistical learning procedure will perform on unseen data. If, however,

we are interested in selecting a method from a list of methods, or a

flexibility level among a family of approaches, we do not care about the

specific value of CV(𝐾) so much as where it is minimized.
38

38: The estimate is usually biased, any-

way.

From the perspective of bias reduction (in the estimate for the test error),

the best choice is 𝐾 = 𝑁 , but this is mitigated by the variance-bias

trade-off. With 𝐾 = 𝑁 , we have 𝑁 models and 𝑁 estimates for the test

error, but these estimates are highly correlated and the mean of highly

correlated estimates has high variance.
39

39: See Section 20.3, Jackknife, for details.

Gapminder Example We use cross-validation in the Gapminder dataset

to estimate the test error MSETe when predicting life expectancy as a

regression against the logarithm of the GDP per capita for the 2011 data.

Gapminder subset

gapminder.2011.cv <- gapminder.2011 |>

dplyr::mutate(lgdppc = log(gdp/population)) |>

select(life_expectancy,lgdppc)

ggpubr::ggscatter(gapminder.2011.cv, x="lgdppc",

y="life_expectancy", palette="jco", size = 2,

xlab="GDP per capita (log-scale)", xlim=c(0,12),

ylab = "Life Expectancy", ylim=c(0,85),

title = "Gapminder 2011 Data")
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We split the dataset into 𝐾 = 10 random folds, each containing 16 or 17

observations, and fit 10 linear regression models using the 149 or 150

remaining observations.
40

40: Note that the estimates for 𝛽0, 𝛽1, and

MSETe are likely to be correlated from

one fold to the next, since the respective

training sets share a fair number of obser-

vations.

The indices for each of the folds are computed below:

Setting-up the folds

set.seed(0) # for replicability

true.order = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=FALSE)

index=list()

for(k in 1:6){

index[[k]] = true.order[((k-1)*17+1):(k*17)]

}

for(k in 7:10){

index[[k]] = true.order[(102+(k-6-1)*16+1):(k*16+6)]

}

Each fold is used, in turn, as a testing set while the remaining folds form

the training set. We fit an OLS model on each training set, and evaluate

the MSE performance of the model on the appropriate fold testing set.

Compute the test MSE for each fold

training.gap = list()

testing.gap = list()

model.lm.gap = list()

pred.lm.gap = list()

beta.0 = c()

beta.1 = c()

MSE.cv = c()

n.row = c()

for(k in 1:10){

n.row[k]=length(index[[k]])

training.gap[[k]] = gapminder.2011.cv[-index[[k]],]

testing.gap[[k]] = gapminder.2011.cv[index[[k]],]

model.lm.gap[[k]] = lm(life_expectancy~lgdppc,

data=training.gap[[k]])

beta.0[k] = model.lm.gap[[k]][[1]][1]

beta.1[k] = model.lm.gap[[k]][[1]][2]

pred.lm.gap[[k]] = predict(model.lm.gap[[k]],

newdata=testing.gap[[k]])

tmp = data.frame(pred.lm.gap[[k]],testing.gap[[k]][1])

MSE.cv[k] = 1/nrow(tmp)*sum((tmp[,1]-tmp[,2])^2)

}

The number of observations in each fold, as well as the regression

parameters and the MSE on each fold testing set are shown below:
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(results = data.frame(n.row,beta.0,beta.1,MSE.cv))

n.row beta.0 beta.1 MSE.cv

17 37.69812 4.254105 33.859051

17 36.22257 4.442061 21.415376

17 37.59386 4.247255 45.620933

17 36.66761 4.345484 29.584469

17 37.49685 4.268917 24.127300

17 36.49849 4.386124 19.398769

16 36.78991 4.380887 48.157391

16 36.91113 4.331365 23.142625

16 37.41767 4.274771 7.837172

16 37.68955 4.254600 19.743046

The 10−fold cross-validation estimate of MSETe is thus

MSETe =
1

10

10∑
𝑘=1

MSETe𝑘
= 27.29;

CV(𝐾) =
10∑
𝑘=1

𝑛𝑘
166

MSETe𝑘
= 27.35;

ŝe

(
CV(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(MSETe𝑘
−MSETe)2 = 12.38;

these can be computed as below.

CV results
mean.MSE = mean(results$MSE.cv)

cv.k = sum(results$n.row*results$MSE.cv/sum(results$n.row))

se.cv.k = sqrt(1/(nrow(results)-1)*sum((results$MSE.cv-

mean.MSE)^2)))

Thus, 27.35 ± 2(12.38) ≡ (2.59, 52.11) is a 95% CI for the MSETe.

We can also get 10−fold cross-validation estimates of 𝛽0 , 𝛽1: we have

𝛽0(𝐾) =

10∑
𝑘=1

𝑛𝑘
166

𝛽0;𝑘 = 37.10

ŝe

(
𝛽0(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(𝛽0;𝑘 − 𝛽0)2 = 0.54,

,

so CI(𝛽0; 0.95) ≡ 37.10 ± 2(0.54) ≡ (36.00, 38.18) and

𝛽1(𝐾) =

10∑
𝑘=1

𝑛𝑘
166

𝛽1;𝑘 = 4.32

ŝe

(
𝛽1(𝐾)

)
=

√
1

10 − 1

10∑
𝑘=1

(𝛽1;𝑘 − 𝛽1)2 = 0.07,

so CI(𝛽1; 0.95) ≡ 4.32 ± 2(0.07) ≡ (4.18, 4.56), as computed below.
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CV estimates for the regression coefficients

mean.beta_0 = mean(results$beta.0)

cv.beta_0.k = sum(results$n.row*results$beta.0/

sum(results$n.row))

se.cv.beta_0.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta.0-mean.beta_0)^2))

mean.beta_1 = mean(results$beta.1)

cv.beta_1.k = sum(results$n.row*results$beta.1/

sum(results$n.row))

se.cv.beta_1.k = sqrt(1/(nrow(results)-1)*sum(

(results$beta.1-mean.beta_1)^2))

LASSO and Regression Ridge Revisited How would we pick the op-

timal hyperparameter 𝜆 in shrinkage regressions? Let us revisit the

example from Section 20.2 (Shrinkage Methods).

As before, we are interested in modeling life expectancy 𝑌 in the 2011

Gapminder dataset as a function of population, infant mortality, fertility,

gdp, and continental membership.
41

We run a 5-fold cross-validation 41: We use gapminder.2011.f, x, and y

as in that section.
LASSO regression for a variety of hyperparameter values 𝜆, and evaluate

the CV test error for each 𝜆 using MSE. The optimal 𝜆 is the one that

minimizes the CV test error.

Let us start with the LASSO (alpha=1):

glmnet1 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,

nfolds=5, alpha=1)

(c1 <- coef(glmnet1, s=’lambda.min’, exact=TRUE))

s1

(Intercept) 70.8234940

population .

infant_mortality -5.7375945

fertility .

gdp 0.1616446

continent_Africa -1.7592037

continent_Americas .

continent_Asia .

continent_Europe 0.1219114

continent_Oceania -0.7977736

The optimal 𝜆 in this case is:

(lambda1 = glmnet1$lambda.min)

[1] 0.3118295

We repeat the process for RR (alpha = 0):
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glmnet0 <- glmnet::cv.glmnet(x=x, y=y, type.measure=’mse’,

nfolds=5, alpha=0)

(c0 <- coef(glmnet0, s=’lambda.min’, exact=TRUE))

s1

(Intercept) 70.8234940

population -0.3466483

infant_mortality -4.6968992

fertility -0.4240814

gdp 0.5813385

continent_Africa -1.6192452

continent_Americas 0.5467797

continent_Asia 0.6295896

continent_Europe 1.0091460

continent_Oceania -0.7207190

The optimal 𝜆 in this case is:

(lambda0 = glmnet0$lambda.min)

[1] 0.7373175

Cross-Validation with Python Let us take a look at how we could esti-

mate the test error via cross-validation manually in Python. The following

modules will be necessary: statsmodels to run linear models (in par-

ticular to define formulas for linear regression), numpy for numerical

operations, and pandas for data frame manipulations.

Python modules for CV

import statsmodels.formula.api as smf

import numpy as np

import pandas as pd

import random

random.seed(0) # for replicability

We use the calculus.csv dataset from Section 1.6, whose structure is

as shown below. We will try to predict students’ grades in terms of the

other predictors, using linear regression. In particular, we are interested

in which model does a better job of predicting the grades.

df = pd.read_csv(’calculus.csv’)

df.head()

ID Sex Grade GPA Year

0 10001 F 47 5.02 2

1 10002 M 57 3.82 1

2 10003 M 91 7.70 1

3 10004 M 71 4.82 1

4 10005 F 83 7.91 1
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We start by obtaining a random permutation of the observations (the

pandas method iloc() selects values for specified indices).

nrows = len(df)

permuted = df.iloc[np.random.permutation(nrows)]

permuted.head()

ID Sex Grade GPA Year

60 10061 F 97 11.45 2

61 10062 M 70 3.65 1

28 10029 M 98 11.90 1

49 10050 F 92 11.05 1

50 10051 M 79 6.87 2

In this example, we separate the sample indices into 𝑘 = 5 folds for

cross-validation using the numpy function array_split().

k = 5

chunks = np.array_split(range(nrows), k)

We iterate over each fold as a test set while using the remaining folds as

a training set.

Say chunk[i] is the current test set; we can obtain the corresponding

training set as follows:

training = permuted.iloc[ np.concatenate( [ chunks[j]

for j in range(k) if j != i]) ]

We then perform a linear regression over this training set (with the

statsmodels methods ols() and fit()) and compute the MSE over the

test set using the predicted values. Remember, this is for a single fold:

fit = smf.ols(formula=m, data = training).fit()

test = permuted.iloc[chunks[i]]

pred = fit.predict( test )

testerror = ((pred - test[’Grade’])**2).mean()

In the chunk of code above, formula=m is an R-style formula. In the

following, we go through a number of possible formulas, for all folds.

f = [’Grade ~ GPA + C(Year) + C(Sex)’,

’Grade ~ GPA + C(Year)’,

’Grade ~ GPA + C(Sex)’, ’Grade ~ GPA’ ]

for m in f:

testerror = 0.0

for i in range(k):

training = permuted.iloc[ np.concatenate(

[ chunks[j] for j in range(k) if j != i]) ]
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fit = smf.ols(formula=m, data = training).fit()

test = permuted.iloc[chunks[i]]

pred = fit.predict( test )

testerror += ((pred - test[’Grade’])**2).mean()

testerror /= k

print(testerror, m)

118.2165188650409 Grade ~ GPA + C(Year) + C(Sex)

117.4815061224269 Grade ~ GPA + C(Year)

115.77980266850878 Grade ~ GPA + C(Sex)

114.87270405373037 Grade ~ GPA

The best model is given by the formula Grade ~ GPA.

20.3.2 Bootstrap

The bootstrap procedure uses re-sampling of the available data to mimic
the process of obtaining new replicates, which allows us to estimate the

variability of a statistical model parameter of interest without the need
to generate new observations.

Replicates are obtained by repeatedly sampling observations from the

original dataset with replacement. A bootstrap dataset Tr
∗

for a training

set Tr with 𝑁 observations is a sample of 𝑁 such observations, drawn

with replacement.

The process is repeated 𝑀 times to obtain bootstrap samples Tr
∗
𝑖 and

parameter estimates 𝛼̂∗
𝑖
, for 𝑖 = 1, . . . , 𝑀, from which we derive a

bootstrap estimate

𝛼̂∗ =
1

𝑀

𝑀∑
𝑖=1

𝛼̂∗𝑖 ,

with standard error

ŝe (𝛼̂∗) =

√
1

𝑀 − 1

𝑀∑
𝑖=1

(𝛼̂∗
𝑖
− 𝛼̂∗)2.

The bootstrap can also be used to build approximate frequentist confi-
dence intervals for the parameter 𝛼.

42
We can even construct a covariance42: Note that this is not as straightforward

as one might think, so caution is advised.
structure for the parameters, given enough replicates.

Finally, it should be noted that in more complex scenarios, the appropriate

bootstrap procedure might be more sophisticated than what has been

described here.
43

43: For instance, sampling with replace-

ment at the observation level would not

preserve the covariance structure of time

series data. Gapminder Example We use the bootstrap procedure for the regression

problem with life expectancy and the log of the GDP per capita in the

2011 Gapminder data.

We draw, with replacement, 𝑀 = 200 bootstrap samples of size 𝑁 = 166

from the original dataset. For each sample 1 ≤ 𝑖 ≤ 𝑀, we find the OLS

fit and retain the intercept 𝛽0,𝑖 and slope 𝛽1,𝑖 .
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beta_0 = c()

beta_1 = c()

set.seed(0) # for replicability

for(k in 1:200){

index = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=TRUE)

training.gap = gapminder.2011.cv[-index,]

model.lm.gap = lm(life_expectancy~lgdppc,

data=training.gap)

beta_0[k] = model.lm.gap[[1]][1]

beta_1[k] = model.lm.gap[[1]][2]

}

results.boot = data.frame(beta_0,beta_1)

We display the joint distribution of 𝜷 = (𝛽0 , 𝛽1)⊤, together with the

marginal distributions for each parameter.

library(ggplot2)

p <- ggplot(results.boot, aes(x=beta_0, y=beta_1)) +

geom_point() +

theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")

We see that 𝜷 roughly follows a multivariate normal N(𝝁,𝚺), with

𝝁 ≈ 𝝁̂∗ =

(
37.22

4.31

)
, 𝚺 ≈ 𝚺̂

∗
=

(
6.32 −0.72

−0.72 0.08

)
,

as computed below:
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boot.beta_0 = mean(results.boot$beta_0)

boot.beta_1 = mean(results.boot$beta_1)

cov(results.boot)

The vector 𝝁̂∗ provides the bootstrap estimates; the corresponding esti-

mates for the standard errors are ŝe(𝝁̂∗) = (2.51, 0.29)⊤, and

CI(𝛽0; 0.95) = 37.22 ± 2(2.51) ≡ (32.19, 42.25),
CI(𝛽1; 0.95) = 4.31 ± 2(0.29) ≡ (3.73, 4.89);

the standard errors are computed as below:
44

44: Note that the bootstrap CI are wider

than the corresponding cross-validation

CI.

se.boot.beta_0 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_0-mean(results.boot$beta_0))^2))

se.boot.beta_1 = sqrt(1/(nrow(results.boot)-1)*
sum((results.boot$beta_1-mean(results.boot$beta_1))^2))

20.3.3 Jackknife

The jackknife estimator arises from cross-validation when 𝐾 = 𝑁 ;
45

the45: The jackknife procedure is also known

as leave one out validation.
sole difference being in the standard error estimate

ŝe(𝛼̂∗) =

√
𝑁 − 1

𝑁

𝑁∑
𝑖=1

(𝛼̂∗
𝑖
− 𝛼̂∗)2.

Gapminder Example We use the jackknife procedure on the same task

as in the previous section.

For each fold 1 ≤ 𝑘 ≤ 𝑁 , we find the OLS fit on TR𝑘 and retain the

intercept 𝛽0,𝑘 and slope 𝛽1,𝑘 . The code is exactly as in the bootstrap case,

with one exception: we replace the line

index = sample.int(nrow(gapminder.2011.cv),

nrow(gapminder.2011.cv),replace=TRUE)

by

index = k

We display the joint distribution of 𝜷 = (𝛽0 , 𝛽1)⊤, together with the

marginal distributions for each parameter.

library(ggplot2)

p <- ggplot(results.jack, aes(x=beta_0, y=beta_1)) +

geom_point() +

theme(legend.position="none")

ggExtra::ggMarginal(p, type="density", fill = "slateblue")
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We see that 𝜷 roughly a multivariate normal N(𝝁,𝚺), with

𝝁 ≈ 𝝁̂∗ =

(
37.11

4.32

)
, 𝚺 ≈ 𝚺̂

∗
=

(
0.021 −0.002

−0.002 0.0003

)
,

as can be computed below:

jack.beta_0 = mean(results.jack$beta_0)

jack.beta_1 = mean(results.jack$beta_1)

cov(results.jack)

The vector 𝝁̂∗ provides the jackknife estimates; the corresponding esti-

mates for the standard errors are ŝe(𝝁̂∗) = (1.86, 0.21)⊤, and

CI(𝛽0; 0.95) = 37.11 ± 2(1.86) ≡ (33.38, 40.83);
CI(𝛽1; 0.95) = 4.32 ± 2(0.21) ≡ (3.890, 4.744).

The standard errors are computed as below:

se.jack.beta_0 = sqrt(1/nrow(results.jack)*
(nrow(results.jack)-1)*sum((results.jack$beta_0-

mean(results.jack$beta_0))^2))

se.jack.beta_1 = sqrt(1/nrow(results.jack)*
(nrow(results.jack)-1)*sum((results.jack$beta_1-

mean(results.jack$beta_1))^2))

In this case, the jackknife estimates are tighter than the corresponding

bootstrap estimates, but looser than the cross-validation estimates. Will

this always be the case?
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20.4 Model Selection

A linear model

𝑌 = ®𝑋⊤𝜷 + 𝜀

should be seen as an attempt to approximate the regression function

𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x].

But what we gain in convenience of fit (and structure) by using a linear

model, we may lose in modeling accuracy.

In this context, we assume a linear relationship between the response
𝑌 and the predictors 𝑋1 , . . . , 𝑋𝑝 , which we (typically) fit using the

(ordinary) least squares (OLS) framework, which is to say

𝜷̂ = arg min

𝜷
{∥Y − X𝜷∥2

2
},

for the response vector Y and design matrix X provided by a training set
Tr; additional assumptions on the error components 𝜺 usually require

𝜺 ∼N(0, 𝜎I𝑁 ),

where 𝑛 represents the number of observations in Tr.

Fundamentally, there are 3 ways in which the OLS framework can be

extended:

1. additive but non-linear models (see Section 20.5, Generalized Additive
Models);

2. non-linear models (see Section 20.5 and Chapter 21), and

3. replacing LS with alternative fitting procedures (see Section 20.2,

Shrinkage Methods).

The latter approach can produce better accuracy than OLS without

sacrificing too much in the way of model interpretability.
46

46: In practice, linear models have dis-

tinct advantages over more sophisticated

models, mainly in the areas of superior

interpretability and (frequently) appropri-

ate predictive performances (especially for

linearly separable data). These “Old Faith-

ful” models will still be there if fancy deep

learning models fail analysts in the future.

But in the OLS framework, prediction accuracy suffers when 𝑝 > 𝑛, due

to curse of dimensionality (see Section 23.2.2, Curse of Dimensionality);

model interpretability can be improved by removing irrelevant features
or by reducing 𝑝.

The 3 classes of methods to do so are:

shrinkage and regularization methods;

dimension reduction, and

subset selection/feature selection.

For shrinkage/regularization methods, we fit a model involving all 𝑝

predictors, but the estimated coefficients are shrunk towards 0 relative to

the OLS parameter estimates, which has the effect of reducing variance

and simultaneously perform variable selection (see Section 20.2, Shrinkage
Methods).

In dimension reduction, we project the 𝑝 predictors onto a manifold H,

with dim(H) = 𝑚 ≪ 𝑝; in numerous circumstances, H is a subspace of

R𝑝
and we can fit an OLS model on the projected coordinates (see Section

23.2, Dimension Reduction).
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In subset selection, we identify a subset of the 𝑝 predictors for which

there is evidence of a (strong-ish) link with the response, and we fit a

model to this reduced set using the OLS framework. Given 𝑝 predictors

(some of which may be interaction terms), there are 2
𝑝

OLS models that

can be fit on a training set Tr.

Which of those models should be selected as the best model?

20.4.1 Best Subset Selection

In the best subset selection BSS approach, the search for the best model

is usually broken down into 3 stages:

1. let M0 denote the null model (without predictor) which simply

predicts the sample mean for all observations;

2. for 𝑘 = 1, . . . , 𝑝 (as long as the model can be fit):

a) fit every model that contains exactly 𝑘 predictors (there are(𝑝
𝑘

)
of them);

b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘 ;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.
47

47: We cannot use SSE or 𝑅2
as metrics

in this last step, as we would always se-

lect M𝑝 since SSE decreases monotonically

with 𝑘 and 𝑅2
increases monotonically

with 𝑘. Low SSE/high 𝑅2
are associated

with a low training error, whereas the

other metrics attempt to say something

about the test error, which is what we are

after: after all, a model is good if it makes

good predictions!

BSS is conceptually simple, but with 2
𝑝

models to try out, it quickly

becomes computationally infeasible for large 𝑝 (𝑝 > 40, say). When 𝑝 is

large, the chances of finding a model that performs well according to

step 3 but poorly for new data increase, which can lead to overfitting
and high-variance estimates, which were exactly the problems we were

trying to avoid in the first place.
48

48: Here, we are assuming that all mod-

els are OLS models, but subset selection

algorithms can be used for other families

of supervised learning methods; all that is

required are appropriate training error es-

timates for step 2b and test error estimates

for step 3.

20.4.2 Stepwise Selection

Stepwise selection (SS) methods attempt to overcome this challenge by

only looking at a restricted set of models. Forward stepwise selection
(FSS) starts with the null model M0 and adding predictors one-by-one

until it reaches the full model M𝑝 :

1. Let M0 denote the null model;

2. for 𝑘 = 0, . . . , 𝑝 − 1 (as long as the model can be fit):

a) consider the 𝑝 − 𝑘 models that add a single predictor to M𝑘 ;

b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘+1;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.

Backward stepwise selection (also BSS, unfortunately) works the other

way, starting with the full model M𝑝 and removing predictors one-by-one

until it reaches the null model M0:

1. Let M𝑝 denote the full model;

2. for 𝑘 = 𝑝, . . . , 1 (as long as the model can be fit):

a) consider the 𝑘 models that remove a single predictor from M𝑘 ;
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b) pick the model with smallest SSE (largest 𝑅2
) and denote it

by M𝑘−1;

3. select a unique model from {M0 , . . . ,M𝑝} using CV(𝐾), 𝐶𝑝 (AIC),

BIC, 𝑅2

𝑎 , or any other appropriate metric.

The computational advantage of SS over B(est)SS is evident: instead of

having to fit 2
𝑝

models, SS only requires

1 + 𝑝 + (𝑝 − 1) + · · · + 2 + 1 =
𝑝2 + 𝑝 + 2

2

models to be fit to Tr. However, there is no guarantee that the “best”

model (among the 2
𝑝

BSS models) is found in the reduced set of SS

models.

SS can be used in settings where 𝑝 is too large for BSS to be computationally

feasible. Note that for OLS models, backward stepwise selection only

works if 𝑝 ≤ 𝑛 (otherwise OLS might not have a unique parameter

solution); if 𝑝 > 𝑛, only forward stepwise selection is viable.

Hybrid selection (HS) methods attempt to mimic BSS while keeping

model computation in a manageable range, not unlike in SS. More

information on this topic is available in [5].

20.4.3 Selecting the Optimal Model

The full model always has largest 𝑅2
/smallest SSE.

49
In order to estimate49: As it is a measure of the training error,

and as such, is subject to the overfitting

property found in the bias-variance trade-

off diagram of Figure 20.5.

the test error,
50

we can either:

50: And thus pick the optimal model in

the list {M0 , . . . ,M𝑝}.

adjust the training error to account for the bias induced by overfit-

ting, or

directly estimate the test error using a validation set or cross-

validation.

Adjustment Statistics Commonly, we use one of the following adjust-

ment statistics: Mallow’s 𝐶𝑝 , the Akaike information criterion (AIC),

the Bayesian information criteria (BIC), or the adjusted coefficient of

determination 𝑅2

𝑎 ; 𝐶𝑝 , AIC, and BIC must be minimized, while 𝑅2

𝑎 must

be maximized.

The adjustment statistics require the following quantities:

𝑁 , the number of observations in Tr;

𝑝, the number of predictors under consideration;

𝑑 = 𝑝 + 2,

𝜎̂2
, the estimate of Var(𝜀) (irreducible error);

SSE and SST, the residual and the total sum of squares.

Mallow’s 𝐶𝑝 statistic is given by

𝐶𝑝 =
1

𝑁
(SSE + 2𝑑𝜎̂2) = MSETr +

2𝑑𝜎̂2

𝑁︸︷︷︸
adjustment

.
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As 𝑑 increases, so does the adjustment term. Note that if 𝜎̂2
is an unbiased

estimate of Var(𝜀), 𝐶𝑝 is an unbiased estimate of MSETe.

The Akaike information criterion (AIC) is given by

AIC = −2 ln 𝐿 + 2𝑑︸︷︷︸
adjustment

,

where 𝐿 is the maximized value of the likelihood function for the

estimated model. If the errors are normally distributed, this requires

finding the maximum of

𝐿 =

𝑁∏
𝑖=1

1√
2𝜋𝜎̂

exp

(
−
(𝑌𝑖 − X⊤

𝑖
𝜷)2

2𝜎̂2

)
=

1

(2𝜋)𝑁/2𝜎̂𝑁
exp

(
− 1

2𝜎̂2

𝑁∑
𝑖=1

(𝑌𝑖 − X⊤𝑖 𝜷)
2

)
,

or, upon taking the logarithm,

ln 𝐿 = constant − 1

2𝜎̂2

∥Y − X𝜷∥2
2
,

and so

arg max

𝜷
{ln 𝐿(𝜷)} = arg min

𝜷
{∥Y − X𝜷∥2

2
}.

However,

AIC = −2 ln 𝐿 + 2𝑑 = constant + 1

𝜎̂2

∥Y − X𝜷∥2
2
+ 2𝑑

= constant + SSE

𝜎̂2

+ 2𝑑

= constant + 𝑁
𝜎̂2

· 1

𝑁

(
SSE + 2𝑑𝜎̂2

)
= constant + 𝑁

𝜎̂2

𝐶𝑝 .

Evidently, when the error structure is normal, minimizing AIC is equiva-

lent to minimizing 𝐶𝑝 .

The Bayesian information criterion uses a different adjustment term:

BIC =
1

𝑁
(SSE + 𝑑𝜎̂2

ln𝑁) = MSETr + 𝑑𝜎̂2
ln𝑁

𝑁︸    ︷︷    ︸
adjustment

.

This adjustment penalizes models with large number of predictors;

minimizing BIC results in selecting models with fewer variables than

those obtained by minimizing 𝐶𝑝 , in general.

The adjusted coefficient of determination 𝑅2

𝑎 is the Ur-example of an

adjusted statistic:

𝑅2

𝑎 = 1 − SSE/(𝑁 − 𝑝 − 1)
SST/(𝑁 − 1) = 1 − (1 − 𝑅2) 𝑁 − 1

𝑁 − 𝑝 − 1

.

Maximizing 𝑅2

𝑎 is equivalent to minimizing SSE/(𝑁 − 𝑝 − 1); note that

𝑅2

𝑎 penalizes models with unnecessary variables.
51

51: Note that in this subsection’s formal-

ism, we have 𝑝+1 predictors for the linear

model: 𝑋1 , . . . , 𝑋 + 𝑝 and a constant term

𝑋0.
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Validation and Cross-Validation (Reprise) As above, we want to select

M𝑘∗ from a sequence of models {M1 ,M2 , . . .}. The procedure is simple:

we compute MSEVa on some validation set or CV(𝐾) for each M𝑘 , and

we find the 𝑘∗ for which the value is smallest (see Section 20.3, Cross-
Validation).

The main advantages of this approach are that:

there is no need to estimate the irreducible error Var(𝜀) = 𝜎2
;

the method produces an estimate for MSETe “for free,” and

it can be used when the number of parameters is hard to pinpoint

(in deep learning networks, for instance).

Historically, adjustment approaches have been preferred because cross-

validation was computationally demanding, especially when 𝑝, 𝑛 were

large, but that is not as much of a problem in modern times.

Consequently, cross-validation is championed as the optimal model

selection approach, using the one standard error rule: calculate the

standard error of M̂SETe for each model size, and select the smallest
model for which M̂SETe is within one standard error from the lowest

point on the cross-validation error curve.

Roughly speaking, this is equivalent to Occam’s Razor52
on models that52: “When presented with competing hy-

potheses about the same prediction, one

should select the solution with the fewest

assumptions.”

have similar predictive power.

In the image below (modified from [5]), the lowest point is reached when

𝑝 = 6 (blue “X”) and the dashed red lines represent the 1-standard error

limits; according to the rule described above, we would select the model

with 𝑝 = 4 parameters (red dot).

SS methods are used extensively in practice, but there are serious limita-

tions to this approach:

all intermediate tests are biased, as they are based on the same

data;

𝑅2

𝑎 only takes into account the number of features in the final

model, not the degrees of freedom that have been used up during

the entire process;

if the cross-validation error is used, stepwise selection should be

repeated for each sub-model.

All in all, SS is a classic example of 𝑝−hacking: we are getting results

without setting hypotheses up first.
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Example In spite of the warning mentioned above, it could still be

useful to know how to perform stepwise selection. In what follows, we

search for the best FSS and BSS linear models to predict the credit card

balance for observations contained in the training set Credit.csv .

Credit <- read.csv("Credit.csv", stringsAsFactors = TRUE)

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education: int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 ...

$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 ...

$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 ...

$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 ...

We remove the id variable X, and create dummy variables for the categor-

ical levels.

Credit <- Credit[,-c(1)]

Credit$Gender.dummy <- ifelse(Credit$Gender == "Female",1,0)

Credit$Student.dummy <- ifelse(Credit$Student == "Yes",1,0)

Credit$Married.dummy <- ifelse(Credit$Married == "Yes",1,0)

Credit$Ethnicity.AA.dummy <- ifelse(Credit$Ethnicity == "African American",1,0)

Credit$Ethnicity.A.dummy <- ifelse(Credit$Ethnicity == "Asian",1,0)

Credit <- Credit[,c(1:6,12:16,11)]

summary(Credit)

Income Limit Rating Cards

Min. : 10.35 Min. : 855 Min. : 93.0 Min. :1.000

1st Qu.: 21.01 1st Qu.: 3088 1st Qu.:247.2 1st Qu.:2.000

Median : 33.12 Median : 4622 Median :344.0 Median :3.000

Mean : 45.22 Mean : 4736 Mean :354.9 Mean :2.958

3rd Qu.: 57.47 3rd Qu.: 5873 3rd Qu.:437.2 3rd Qu.:4.000

Max. :186.63 Max. :13913 Max. :982.0 Max. :9.000

Age Education Gender.dummy Student.dummy

Min. :23.00 Min. : 5.00 Min. :0.0000 Min. :0.0

1st Qu.:41.75 1st Qu.:11.00 1st Qu.:0.0000 1st Qu.:0.0

Median :56.00 Median :14.00 Median :1.0000 Median :0.0

Mean :55.67 Mean :13.45 Mean :0.5175 Mean :0.1

3rd Qu.:70.00 3rd Qu.:16.00 3rd Qu.:1.0000 3rd Qu.:0.0

Max. :98.00 Max. :20.00 Max. :1.0000 Max. :1.0

https://www.data-action-lab.com/wp-content/uploads/2023/02/Credit.csv
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Married.dummy Ethnicity.AA.dummy Ethnicity.A.dummy Balance

Min. :0.0000 Min. :0.0000 Min. :0.000 Min. : 0.00

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.: 68.75

Median :1.0000 Median :0.0000 Median :0.000 Median : 459.50

Mean :0.6125 Mean :0.2475 Mean :0.255 Mean : 520.01

3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.: 863.00

Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1999.00

We will work with a scaled version of the dataset.

Credit.scaled <- scale(Credit)

parameters <- attributes(Credit.scaled)

Credit.scaled <- data.frame(Credit.scaled)

var.names <- colnames(Credit.scaled)

We start by implementing step 2 of the FSS algorithm.

model <- c()

ind <- c()

for(i in 1:(ncol(Credit.scaled)-1)){

r2 <- c()

for(j in setdiff((1:(ncol(Credit.scaled)-1)),c(ind))){

model <- lm(Balance ~ .,

data = Credit.scaled[,c(ind,j,12)])

r2[j] <- summary(model)$r.squared

}

ind[i] <- which.max(r2)

}

var.names[ind]

[1] "Rating" "Income" "Student.dummy"

[4] "Limit" "Cards" "Age"

[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

[10] "Education" "Ethnicity.A.dummy"

The best 1-parameter modelM1 usesRating, the best 2-parameter modelM2

built from M1 uses Rating and Income, and so on.

Next, we implement step 3 by computing the adjustment statistics (AIC,

BIC, 𝑅2

𝑎) and the cross-validation error (with 𝐾 = 5 folds) for each of

M0 ,M1 , . . ..
53

53: The latter uses the function cv.lm()

available in the lmvar package in R.

We deal with M0 first.

model <- c()

aic <- c()

bic <- c()

r2a <- c()

cv.m <- c()
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model[[1]] <- lm(Balance ~ 1,

data=Credit.scaled, y=TRUE, x=TRUE)

cv.m[1] <- lmvar::cv.lm(model[[1]],k=5)$MSE[[1]]

r2a[1] <- summary(model[[1]])$adj.r.squared

aic[1] <- AIC(model[[1]])

bic[1] <- BIC(model[[1]])

The remaining models are similarly handled:

for(i in 1:(ncol(Credit.scaled)-1)){

model[[i+1]] <- lm(Balance ~., data=Credit.scaled[,

c(ind[c(1:i)],12)], y=TRUE, x=TRUE)

cv.m[i+1] <- lmvar::cv.lm(model[[i+1]],k=5)$MSE[[1]]

r2a[i+1] <- summary(model[[i+1]])$adj.r.squared

aic[i+1] <- AIC(model[[i+1]])

bic[i+1] <- BIC(model[[1+1]])

}

Let us plot the outcome for each adjustment statistic (and the CV estima-

tion of the test error):

plot(cv.m)

plot(r2a)

plot(aic)

plot(bic)

The best FSS model using the CV estimate of the test error is:
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ind.cv <- which.min(cv.m)

var.names[ind[1:ind.cv]]

[1] "Rating" "Income" "Student.dummy" "Limit"

[5] "Cards" "Age"

The best FSS model using 𝑅2

𝑎 is:

ind.r2a <- which.max(r2a)

var.names[ind[1:ind.r2a]]

[1] "Rating" "Income" "Student.dummy"

[4] "Limit" "Cards" "Age"

[7] "Gender.dummy" "Ethnicity.AA.dummy" "Married.dummy"

The best FSS model using AIC is:

ind.aic <- which.min(aic)

var.names[ind[1:ind.aic]]

[1] "Rating" "Income" "Student.dummy" "Limit"

[5] "Cards" "Age" "Gender.dummy"

The best FSS model using BIC is:

ind.bic <- which.min(bic)

var.names[ind[1:ind.bic]]

[1] "Rating" "Income"

Are there overlaps? The same can be done for BSS, instead:

model.BSS <- c()

ind.BSS <- list()

for(i in 1:(ncol(Credit.scaled)-1)){

r2 <- c()

list.of.indices <- combn(1:(ncol(Credit.scaled)-1), i)

for(j in 1:ncol(list.of.indices)){

model.BSS <- lm(Balance ~ .,

data=Credit.scaled[,c(list.of.indices[,j],12)])

r2[j] <- summary(model.BSS)$r.squared

}

ind.BSS[[i]] <- list.of.indices[,which.max(r2)]

}

model.BSS <- c()

aic.BSS <- c()

bic.BSS <- c()

r2a.BSS <- c()
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cv.m.BSS <- c()

model.BSS[[1]] <- lm(Balance ~ 1, data=Credit.scaled,

y=TRUE, x=TRUE)

cv.m.BSS[1] <- lmvar::cv.lm(model.BSS[[1]],

k=5)$MSE[[1]]

r2a.BSS[1] <- summary(model.BSS[[1]])$adj.r.squared

aic.BSS[1] <- AIC(model.BSS[[1]])

bic.BSS[1] <- BIC(model.BSS[[1]])

for(i in 1:(ncol(Credit.scaled)-1)){

model.BSS[[i+1]] <- lm(Balance ~.,

data=Credit.scaled[,c(ind.BSS[[i]],12)], y=TRUE, x=TRUE)

cv.m.BSS[i+1] <- lmvar::cv.lm(model.BSS[[i+1]],k=5)$MSE[[1]]

r2a.BSS[i+1] <- summary(model.BSS[[i+1]])$adj.r.squared

aic.BSS[i+1] <- AIC(model.BSS[[i+1]])

bic.BSS[i+1] <- BIC(model.BSS[[1+1]])

}

ind.cv.BSS <- which.min(cv.m.BSS)

var.names[ind.BSS[[ind.cv.BSS]]]

ind.r2a.BSS <- which.max(r2a.BSS)

var.names[ind.BSS[[ind.r2a.BSS]]]

ind.aic.BSS <- which.min(aic.BSS)

var.names[ind.BSS[[ind.aic.BSS]]]

ind.bic.BSS <- which.min(bic.BSS)

var.names[ind.BSS[[ind.bic.BSS]]]

[1] "Income" "Limit" "Rating" "Cards"

[5] "Age" "Student.dummy"

[1] "Income" "Limit" "Rating"

[4] "Cards" "Age" "Gender.dummy"

[7] "Student.dummy" "Married.dummy" "Ethnicity.AA.dummy"

[1] "Income" "Limit" "Rating" "Cards"

[5] "Age" "Gender.dummy" "Student.dummy"

[1] "Income" "Rating"

Any surprises?

20.5 Nonlinear Modeling

In practice the linearity assumption is almost never met and the regression

function

𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x]

has to be approximated by some other technique. Or does it?
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The linearity assumption is often “good enough” in spite of it not being

met, and, coupled with its convenience of use and its multiple extensions,

it is rarely a waste of time to give that approach a try.

When heavier machinery is required, it pays to consider the following

OLS generalizations, which offer a lot of flexibility without sacrificing

ease of interpretability, before jumping to so-called black box models
(SVM, ANN, ensemble learning, etc.) of Chapter 21:

curve fitting (polynomial regression, step functions, splines, etc.);

local regression methods, or

generalized additive models.

20.5.1 Basis Function Models

If we have reason to suspect that the response𝑌 is not a linear combination

of the predictors, we might benefit from using a derived set of predictors
(see [5, Section 7.3]).

Polynomial Regression We can extend the simple linear regression

model 𝑦𝑖 = 𝛽0+𝛽1𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 , by allowing for polynomial basis
terms in the regression function:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥
2

𝑖 + · · · + 𝛽𝑑𝑥
𝑑
𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁.

The regression function is non-linear in terms of the observations 𝑥𝑖 , but

it is linear in terms of the coefficients 𝛽 𝑗 .54
We thus create new variables54: In terms of {𝑥, 𝑥2 , . . . , 𝑥𝑑}.

𝑋1 = 𝑋, 𝑋2 = 𝑋2
, and so on, and estimate the regression function

𝑦 = 𝑓 (x) via 𝑓 (x) = x⊤𝜷̂, where the coefficients 𝜷̂ are learned using the

training set Tr.

Typically, the coefficient values are of little interest – it is the predictions

𝑓 (x) that are sought.

It is easy to obtain and estimate for Var( 𝑓 (x)) since 𝑓 (x) is linear in the

coefficients 𝛽̂𝑖 , 𝑖 = 0, . . . , 𝑑:

Var( 𝑓 (x)) = Var(x⊤𝜷̂) =
𝑑∑

𝑖 , 𝑗=0

Cov(𝛽̂𝑖 𝑥̃𝑖 , 𝛽̂ 𝑗 𝑥̃ 𝑗)

=

𝑑∑
𝑖 , 𝑗=0

𝑥̃𝑖 𝑥̃ 𝑗Cov(𝛽̂𝑖 , 𝛽̂ 𝑗) = x⊤Cov(𝜷̂)x = 𝜎2x⊤(X⊤X)−1x.

The estimated variance of the approximation at x is thus

V̂ar( 𝑓 (x)) = SSRes

𝑁 − 𝑑 − 1

x⊤(X⊤X)−1x =
∥Y − X𝜷̂∥2

2

𝑁 − 𝑑 − 1

x⊤(X⊤X)−1x,

with se( 𝑓 (x)) =
√

V̂ar( 𝑓 (x)), so that

𝑓 (x) ± 2 · se( 𝑓 (x))

constitutes a 95% C.I. for 𝑓 (x), assuming normality of the error terms.
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Gapminder Example The charts below show polynomial regressions

(𝑑 = 4) and confidence intervals for life expectancy against 4 different

predictors in the 2011 Gapminder data (assuming that the training set Tr

is the entire dataset).
55

55: In this section, we assume that

ggplot2 and dplyr have already been

loaded.

plot1 <- ggplot(gapminder.2011, aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4")

plot2 <- ggplot(gapminder.2011, aes(x=infant_mortality,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4")

plot3 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

ggplot(aes(x=lgdppc, y=life_expectancy)) +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4") +

theme_bw()

plot4 <- ggplot(gapminder.2011, aes(x=gdp,

y=life_expectancy)) +

geom_point(color=’red’, alpha=0.3) +

stat_smooth(method=’lm’, formula = y~poly(x,4)) +

ggtitle("Polynomial regression - d=4") +

theme_bw()

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

In this example, we picked 𝑑 = 4. How do we select 𝑑, in general? We can
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either pick a reasonable small 𝑑 (often below 4) or use cross-validation to

select a 𝑑 that minimizes the estimated MSETe.

Note that it is easy to incorporate more than one predictor and interaction

terms into the model.

The nature of polynomials (| 𝑓 (x)| → ∞ when ∥x∥ → ∞) is such that tail

behaviour is usually quite horrible (look at the bottom-right example

above). Consequently, polynomial regression should be used very care-
fully, staying within the domain and making sure to centre the predictors

to reduce variance inflation.

Step Functions Polynomial regression is an attractive approach because

of the ease with which we can use the apparatus of OLS, but the elephant

in the room is that we are imposing a global structure on the non-linear

function 𝑦 = 𝑓 (x), and that cannot always be justified.

Step functions can be used to keep things “local”. Let 𝑐𝑖 , 𝑖 = 1, . . . , 𝐾 lie

in range(𝑋) and consider the following 𝐾 + 1 new predictors:

𝐶0(𝑋) = I(𝑋 < 𝑐1)
𝐶𝑖(𝑋) = I(𝑐𝑖 ≤ 𝑋 < 𝑐𝑖+1), 𝑖 = 1, . . . , 𝐾 − 1

𝐶𝐾(𝑋) = I(𝑐𝑘 ≤ 𝑋),

where I is the indicator function

I(𝛼) =
{

0, 𝛼 is false

1, 𝛼 is true

For any 𝑋, 𝐶0(𝑋) + 𝐶1(𝑋) + · · · + 𝐶𝐾(𝑋) = 1, since 𝑋 lies in exactly one

of the intervals

(−∞, 𝑐1), [𝑐1 , 𝑐2), · · · , [𝑐𝐾−1 , 𝑐𝐾), [𝑐𝐾 ,∞).

The step function regression model is

𝑌𝑖 = 𝛽0 + 𝛽1𝐶1(𝑋𝑖) + · · · + 𝛽𝐾𝐶𝐾(𝑋𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 ;

it can also be obtained using the OLS framework.
56

56: Thus a 95% C.I. can be built just as

with polynomial and other regressions.

For a given𝑋 , at most one of 𝐶1(𝑋), . . . , 𝐶𝐾(𝑋) is≠ 0; thus, when𝑋 < 𝑐1,

𝐶 𝑗(𝑋) = 0 for all 𝑗 = 1, . . . , 𝐾, and so

𝛽0 = Avg{𝑌 | 𝑋 < 𝑐1}.

For 𝑋 ∈ [𝑐 𝑗 , 𝑐 𝑗+1), 𝑦̂ = 𝛽0 + 𝛽 𝑗 , so 𝛽 𝑗 represents the average increase in 𝑌
for [𝑐 𝑗 , 𝑐 𝑗+1) relative to (−∞, 𝑐1).

The only major challenge with step function regression is that there is no

easy way to find the number 𝐾 and select the position of the breakpoints

𝑐1 , . . . , 𝑐𝐾 , unless there are natural gaps in the predictors. We will discuss

a strategy to determine the number and location of knots when we

discuss classification and regression trees in Chapter 21.

We did not discuss how step function regression or polynomial regression

could be achieved in higher dimensions, but the principle remains the
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same (except that the number of parameters increases drastically, which

can create some overfitting issues).

Gapminder Example The charts below show step function regressions

and confidence intervals for life expectancy against 4 different predictors

in the 2011 Gapminder data .
57

57: Assuming that the training set Tr is

the entire dataset.

We start by building a 𝐾 = 3 knots step function model for life expectancy

against fertility, using the (arbitrary) knot values at 2, 4, and 6:

gapminder.2011 <- gapminder.2011 |>

mutate(fert0=I(fertility<2),

fert1=I(2<=fertility & fertility<4),

fert2=I(4<=fertility & fertility<6),

fert3=I(6<=fertility))

model.sf.1 = lm(life_expectancy ~ fert0 + fert1 + fert2,

data=gapminder.2011)

summary(model.sf.1)

Residuals:

Min 1Q Median 3Q Max

-24.0485 -2.8300 0.2515 3.9669 12.1515

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.5444 1.9554 30.963 < 2e-16 ***
fert0TRUE 16.8106 2.0969 8.017 2.04e-13 ***
fert1TRUE 10.2040 2.0845 4.895 2.36e-06 ***
fert2TRUE 0.7814 2.2212 0.352 0.725

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.866 on 162 degrees of freedom

Multiple R-squared: 0.5308, Adjusted R-squared: 0.5221

F-statistic: 61.09 on 3 and 162 DF, p-value: < 2.2e-16

The corresponding step function is defined with:

g.1 <- function(x){

model.sf.1$coefficients[1] +

model.sf.1$coefficients[2]*I(x<2) +

model.sf.1$coefficients[3]*I(2<=x & x<4) +

model.sf.1$coefficients[4]*I(6<=x)

}

We next build a 𝐾 = 4 knots step function model for life expectancy

against infant mortality, using the (arbitrary) knot values 10, 20, 40, 70:

gapminder.2011 <- gapminder.2011 |>

mutate(inf0=I(infant_mortality<10),

inf1=I(10<=infant_mortality & infant_mortality<20),
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inf2=I(20<=infant_mortality & infant_mortality<40),

inf3=I(40<=infant_mortality & infant_mortality<70),

inf4=I(70<=infant_mortality))

model.sf.2 = lm(life_expectancy ~ inf0 + inf1 + inf2 +

inf3, data=gapminder.2011)

summary(model.sf.2)

g.2 <- function(x){

model.sf.2$coefficients[1] +

model.sf.2$coefficients[2]*I(x<10) +

model.sf.2$coefficients[3]*I(10<=x & x<20) +

model.sf.2$coefficients[4]*I(20<=x & x<40) +

model.sf.2$coefficients[5]*I(40<=x & x<70)

}

Residuals:

Min 1Q Median 3Q Max

-13.9800 -2.3800 0.3725 2.7622 9.3200

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.675 1.207 46.939 < 2e-16 ***
inf0TRUE 22.017 1.340 16.437 < 2e-16 ***
inf1TRUE 17.963 1.390 12.928 < 2e-16 ***
inf2TRUE 11.782 1.429 8.247 5.46e-14 ***
inf3TRUE 5.305 1.399 3.791 0.000211 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.183 on 161 degrees of freedom

Multiple R-squared: 0.763, Adjusted R-squared: 0.7571

F-statistic: 129.5 on 4 and 161 DF, p-value: < 2.2e-16

We next build a 𝐾 = 3 knots step function model for life expectancy

against the log of gdp per capita, using the (arbitrary) knot values at 6, 8,

10:

gapminder.2011 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

mutate(lgdppc0=I(lgdppc<6),

lgdppc1=I(6<=lgdppc & lgdppc<8),

lgdppc2=I(8<=lgdppc & lgdppc<10),

lgdppc3=I(10<=lgdppc))

model.sf.3 = lm(life_expectancy ~ lgdppc0 + lgdppc1 + lgdppc2,

data=gapminder.2011)

summary(model.sf.3)

g.3 <- function(x){

model.sf.3$coefficients[1] +

model.sf.3$coefficients[2]*I(x<6) +

model.sf.3$coefficients[3]*I(6<=x & x<8) +
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model.sf.3$coefficients[4]*I(8<=x & x<10)

}

Residuals:

Min 1Q Median 3Q Max

-21.771 -1.831 0.550 3.691 9.789

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.270 63.857 < 2e-16 ***
lgdppc0TRUE -20.788 1.708 -12.174 < 2e-16 ***
lgdppc1TRUE -12.629 1.453 -8.692 3.75e-15 ***
lgdppc2TRUE -6.012 1.509 -3.984 0.000102 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.82 on 162 degrees of freedom

Multiple R-squared: 0.5382, Adjusted R-squared: 0.5296

F-statistic: 62.93 on 3 and 162 DF, p-value: < 2.2e-16

Finally, we build a 𝐾 = 6 knots step function model for life expectancy

against the log of gdp per capita, using the (arbitrary) knot values at 5, 6,

7, 8, 9, 10:

gapminder.2011 <- gapminder.2011 |>

mutate(lgdppc=log(gdp/population)) |>

mutate(lgdppc0=I(lgdppc<5),

lgdppc1=I(5<=lgdppc & lgdppc<6),

lgdppc2=I(6<=lgdppc & lgdppc<7),

lgdppc3=I(7<=lgdppc & lgdppc<8),

lgdppc4=I(8<=lgdppc & lgdppc<9),

lgdppc5=I(9<=lgdppc & lgdppc<10),

lgdppc6=I(10<=lgdppc))

model.sf.4 = lm(life_expectancy ~ lgdppc0 + lgdppc1 +

lgdppc2 + lgdppc3 + lgdppc4 + lgdppc5,

data=gapminder.2011)

summary(model.sf.4)

g.4 <- function(x){

model.sf.4$coefficients[1] +

model.sf.4$coefficients[2]*I(x<5) +

model.sf.4$coefficients[3]*I(5<=x & x<6) +

model.sf.4$coefficients[4]*I(6<=x & x<7) +

model.sf.4$coefficients[5]*I(7<=x & x<8) +

model.sf.4$coefficients[6]*I(8<=x & x<9) +

model.sf.4$coefficients[7]*I(9<=x & x<10)

}

Residuals:

Min 1Q Median 3Q Max

-22.8250 -1.3500 0.5964 3.1841 12.2929
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.100 1.204 67.367 < 2e-16 ***
lgdppc0TRUE -21.300 4.082 -5.217 5.59e-07 ***
lgdppc1TRUE -20.746 1.648 -12.585 < 2e-16 ***
lgdppc2TRUE -15.993 1.593 -10.042 < 2e-16 ***
lgdppc3TRUE -10.275 1.487 -6.912 1.10e-10 ***
lgdppc4TRUE -7.187 1.559 -4.610 8.24e-06 ***
lgdppc5TRUE -4.190 1.724 -2.431 0.0162 *
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.517 on 159 degrees of freedom

Multiple R-squared: 0.5927, Adjusted R-squared: 0.5774

F-statistic: 38.57 on 6 and 159 DF, p-value: < 2.2e-16

The step functions in each of the 4 cases are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.1) +

ggtitle("Step Function Regression - K=3")

plot2 <- ggplot(gapminder.2011,aes(x=infant_mortality,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.2) +

ggtitle("Step Function Regression - K=4")

plot3 <- ggplot(gapminder.2011,aes(x=lgdppc,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.3) +

ggtitle("Step Function Regression - K=3")

plot4 <- ggplot(gapminder.2011,aes(x=lgdppc,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

stat_function(fun=g.4) +

ggtitle("Step Function Regression - K=6")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)
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The step functions do capture the general trends, but how easily inter-

pretable are they?

20.5.2 Splines

We can combine polynomial regression and step functions to obtain a

more flexible curve fitting approach.

Regression Splines Instead of fitting a polynomial over the entire range

of the predictor 𝑋, we use different polynomials (of degree up to 3,

usually) in regions 𝑅𝑘 ,
58

such as: 58: Defined by knots in the 1-dimensional

case.

𝑌𝑖 =

{
𝛽0,1 + 𝛽1,1𝑋𝑖 + 𝛽2,1𝑋

2

𝑖
+ 𝛽3,1𝑋

3

𝑖
+ 𝜀𝑖 , if 𝑋𝑖 ∈ 𝑅1

𝛽0,2 + 𝛽1,2𝑋𝑖 + 𝛽2,2𝑋
2

𝑖
+ 𝛽3,2𝑋

3

𝑖
+ 𝛿𝑖 , if 𝑋𝑖 ∈ 𝑅2

Various constraints can be imposed on the polynomials:

none;

continuity at each region’s borders;

𝐶1
(continuously differentiable) at each region’s borders; etc.

In a sense to be defined shortly, splines have the “maximum” amount of

continuity. Note that using more regions leads to a more flexible fit.

In what follows, we assume that the domain is split into 𝐾 + 1 regions,

bounded by knots (there are thus 𝐾 such knots). If we impose no
restriction on the functions, we are trying to fit 𝐾 + 1 piecewise cubic

functions to the data; each polynomial has 4 parameters to be estimated,

leading to 4(𝐾 + 1) effective parameters.

If we impose a continuous fit,59
we reduce the number of effective 59: The polynomials must agree at the

knots.
parameters. We can also require a continuously differentiable fit,

60

60: The derivatives must also agree at the

knots.

further reducing the number of effective parameters.

A cubic spline (with only 𝐾 + 4 parameters to fit) is a regression spine

which is 𝐶2
on its domain.
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Let 𝜉 be a knot and 𝑋 be a predictor value. The positive part function is

defined by

𝑤+ =

{
𝑤 if 𝑤 > 0

0 else

Formally, the linear spline requires 𝜉1 , . . . , 𝜉𝐾 knots and has 𝐾 + 1

effective parameters. The model can be expressed simply using positive

parts:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 − 𝜉1)+ + · · · + 𝛽𝐾+1(𝑋𝑖 − 𝜉𝐾)+ + 𝜀𝑖 ;

the cubic spline is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋
2

𝑖 + 𝛽3𝑋
3

𝑖 + 𝛽4(𝑋𝑖 − 𝜉1)3+ + · · · + 𝛽𝐾+3(𝑋𝑖 − 𝜉𝐾)3+ + 𝜀𝑖 ,

and the natural cubic spline is a cubic spline between 𝜉1 and 𝜉𝐾 , with

linear extrapolation beyond 𝜉1 and 𝜉𝐾 ; this adds 4 extra constraints to

the cubic spline and allows for more knots while keeping the number of

effective parameters identical to that of the linear spline.

In all instances, the machinery of OLS remains available: predictions,

diagnostics, remedial measures, confidence intervals, and extension to

logistic regression, as needed.

Figure 20.11: Various splines on a 1-

dimensional dataset, with a single knot

[5].

Gapminder Example The charts below show cubic splines for life ex-

pectancy against fertility in the 2011 Gapminder data.
61

61: Assuming again that the training set

Tr is the entire dataset.

Cubic splines are modeled using the splines package bs() function. In

theory, we place more knots in locations where the spline function is

believed to vary more rapidly, and fewer knots where it is more stable.
62

62: In practice, the knots are placed uni-

formly at quantiles of the predictor vari-

able 𝑋, based on their number. The syntax for the OLS model formula in R follows the form

response ~ splines::bs(predictor, df)
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where the degrees of freedom df are linked to the number of parameters

to estimate (in the case of cubic spline, df = 𝐾 + 3). We start by building

a cubic spline with 𝐾 = 0 knot.
63

63: So 𝐾 + 3 = 3 degrees of freedom.

attach(gapminder.2011)

lm(life_expectancy ~ splines::bs(fertility, df = 3))

Coefficients:

(Intercept) splines::bs(fertility, df = 3)1

79.28 -11.47

splines::bs(fertility, df = 3)2 splines::bs(fertility, df = 3)3

-27.41 -16.65

Here is a cubic spline with 𝐾 = 10 knots, with their locations:
64

64: We can find the knot locations of a

cubic spline with 𝐾 = 1, 2 knots by com-

puting fm1, fm2, test1, test2, g1, and g2

in the same manner (these quantities are

required in the display code on the next

few pages).

fm10 <- lm(life_expectancy ~ splines::bs(fertility, df = 13))

test10 <- eval(attr(fm10$terms, "predvars"))

(g10 <- as.numeric(attr(test10[[2]],"knots")))

[1] 1.45 1.53 1.83 2.00 2.31 2.53 2.93 3.64 4.73 5.09

We can display cubic splines with 𝐾 = 0, 1, 2, 10 knots as below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=3)) +

ggtitle("Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=4)) +

geom_vline(xintercept = g1, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=1")

plot3 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=5)) +

geom_vline(xintercept = g2, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::bs(x,df=13)) +

geom_vline(xintercept = g10, colour = "deepskyblue") +

ggtitle("Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)
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Natural cubic splines are modeled using the splines package ns()

function; the knots are, again, placed uniformly at quantiles of the

predictor variable 𝑋, based on their number.
65

65: The knot locations are thus the same

as in the cubic spline case.

The syntax for the OLS model formula in R follows the form

response ~ splines::ns(predictor, df)

where the degrees of freedom df are linked to the number of parameters

to estimate (in the case of natural cubic spline, df = 𝐾 + 1). We start by

building a natural cubic spline with 𝐾 = 0 knot.
66

66: So 𝐾 + 1 = 1 degrees of freedom.

lm(life_expectancy ~ splines::ns(fertility, df = 1))

Coefficients:

(Intercept) splines::ns(fertility, df = 1)

78.09 -34.27

The natural cubic splines with 𝐾 = 0, 1, 2, 10 are displayed below:

plot1 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm", formula=y~splines::ns(x,df=2)) +

ggtitle("Natural Cubic Spline - K=0")

plot2 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g1, df = 2)) +

geom_vline(xintercept = g1, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=1")
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plot3 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g2, df = 3)) +

geom_vline(xintercept = g2, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=2")

plot4 <- ggplot(gapminder.2011,aes(x=fertility,

y=life_expectancy)) + theme_bw() +

geom_point(color=’red’, alpha=0.3) +

geom_smooth(method="lm",

formula= y ~ splines::ns(x, knots = g10, df = 11)) +

geom_vline(xintercept = g10, colour = "deepskyblue") +

ggtitle("Natural Cubic Spline - K=10")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Do you notice any difference in the shape of the cubic splines vs. that of

the natural cubic splines?
67

67: Cross-validation (again!) can be used

to determine the optimal 𝐾: compute the

estimated error for various 𝐾 (10-fold CV,

say), and pick the 𝐾∗ that minimizes the

error.

Regression splines often give better results than polynomial regression

because they induce flexibility via a large number of parameters 𝐾 with

low polynomial degree 𝑑 ≤ 3, rather than through high 𝑑 of the latter

(and the wild variability that such polynomials have, especially near the

boundaries of the predictor’s range, as can be observed in the polynomial

regression examples above).

Multivariate Adaptive Regression Splines We can reduce the polynomial

degree to 𝑑 ≤ 2 without losing too much curve fitting accuracy by

considering bases consisting of functions of the forms:

1, (𝑥 − 𝜉𝑘)± , (𝑥 − 𝜉𝑘1
)±(𝑥 − 𝜉𝑘2

)± ,
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where (𝑥 − 𝑡)± is one of the two hinge functions:

(𝑥 − 𝑡)+ =
{
𝑥 − 𝑡 if 𝑥 > 𝑡

0 else

(𝑥 − 𝑡)− =
{
𝑡 − 𝑥 if 𝑥 < 𝑡

0 else

(𝑥 − 1)±, (𝑥 − 1)+(𝑥 − 5)+, (𝑥 − 1)+(𝑥 − 8)− are shown in Figure 20.12.

Figure 20.12: A few hinge functions.

A multivariate adaptive regression spline (MARS) is expressed as

𝑦𝑖 =
𝐾∑
𝑘=1

𝛽𝑘 ℎ𝑘(𝑥𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 ,

where ℎ𝑘 is either a constant function, a hinge function, or a product of

hinge functions.

MARS adds terms to its model in an iterative fashioin; once a stopping

criterion is met, unwanted terms are removed. The model growth’s

parallels the growth of tree-based models, which we will discuss in

Chapter 21, and it has the same advantage that the knots are selected

automatically.

Artificial Dataset Example Let us take a look at a synthetic dataset,

based off of:

𝑦 = 𝑓 (𝑥) = sin(𝜋𝑥)
10

−
√
𝑥 + exp(𝑥/10) + 𝜀,

where 𝜀 ∼N(0, 0.04
2).

set.seed(1234)

fx=function(x){

sin(pi*x)/10-sqrt(x)+exp(x/10)

}

x=sort(runif(50, 0, 5))

noise=rnorm(50, 0, 0.04)

y=fx(x)+noise

plot(x, y, col=4)

x.vec=seq(0,6, length.out=100)

lines(x.vec, fx(x.vec), col="grey", lty=2)
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We can fit the data using package mda’s mars() function, in R.
68

Let us 68: This is a licensed implementation of

MARS. There is another implementation

in the earth package: enhanced adaptive
regression through hinges, or EARTH.

use only functions of degree 1 (linear functions and linear hinges, but no

interaction terms) for the time being:

MARS.1 = mda::mars(x, y, degree=1)

The output is rather lengthy and is suppressed for readability.
69

69:

$call provides the model;

$fitted.values contains the esti-

mated values 𝑦̂𝑖 ;

$residuals contain the residuals

𝑦̂𝑖 − 𝑦𝑖 , and

$x gives the hinge functions used

in the final model.

Let’s see how good a job MARS did:

plot(x, y, col=4, main="MARS with no interaction terms")

x.vec=seq(0,6, length.out=100)

lines(x.vec, fx(x.vec), col="grey", lty=2)

points(x, MARS.1$fitted.values, col=2, pch=16)

abline(v = MARS.1$cuts[MARS.1$selected.terms[-1]],

col = "light grey")

Not bad, all things considered.
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The EARTH output is identical, and would be obtained thus:

EARTH.1 = earth::earth(x, y, degree=1)

summary(EARTH.1)

coefficients

(Intercept) -0.16254461

h(1.3341-x) 0.70785002

h(x-1.3341) -0.05502561

h(x-2.53653) -0.27853205

h(x-3.38547) 0.37209809

Selected 5 of 6 terms, and 1 of 1 predictors

Termination condition: RSq changed by less than 0.001 at 6 terms

Importance: x

Number of terms at each degree of interaction: 1 4 (additive model)

GCV 0.002341396 RSS 0.07871774 GRSq 0.9759754 RSq 0.9831798

What about interaction terms? In order for MARS or EARTH to consider

such terms, we must first provide a second predictor.

xnew = x*x

data = data.frame(x,xnew,y)

EARTH.2 = earth::earth(y ~ x + xnew , data=data, degree=2)

summary(EARTH.2)

coefficients

(Intercept) -0.21273261

h(1.43112-x) 0.68806424

h(x-2.62849) -0.43057541

h(xnew-10.446) 0.05531043

Selected 4 of 6 terms, and 2 of 2 predictors

Termination condition: RSq changed by less than 0.001 at 6 terms

Importance: x, xnew

Number of terms at each degree of interaction: 1 3 (additive model)

GCV 0.00273995 RSS 0.09437758 GRSq 0.971886 RSq 0.9798336

What does the plot look like? Can you spot the non-linear components?

plot(x, y, col=4, main="MARS with interaction terms")

x.vec=seq(0,6, length.out=100)

points(x, EARTH.2$fitted.values, col=2, pch=16)

abline(v = EARTH.2$cuts[EARTH.2$selected.terms[-1]],

col = "light grey")

EARTH.2$cuts
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Housing Dataset Example In this section, we analyze a housing dataset

related to house selling prices in Ames, Iowa (VE_Housing.csv , modi-

fied from [1]). We start by reading in the data:

dat.Housing=read.csv("VE_Housing.csv", header=TRUE,

stringsAsFactors = TRUE)

dim(dat.Housing)

[1] 1460 81

Next, we count the number of missing values for each variable, excluding

those variables with complete rows.

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum)>0))$names

apply(is.na(dat.Housing[,missing]), 2, sum)

LotFrontage Alley MasVnrType MasVnrArea BsmtQual BsmtCond

259 1369 8 8 37 37

BsmtExposure BsmtFinType1 BsmtFinType2 Electrical FireplaceQu GarageType

38 37 38 1 690 81

GarageYrBlt GarageFinish GarageQual GarageCond PoolQC Fence

81 81 81 81 1453 1179

MiscFeature

1406

The housing dataset thus consists of 𝑛 = 1460 observations with 𝑝 = 79

predictors. There are two other variables: Id and SalePrice, repre-

senting the index variable and the response variable, respectively.
70

70: Use colnames() or str() to list all the

variables.
Furtheremore, the variables

LotFrontage

Alley

https://www.data-action-lab.com/wp-content/uploads/2023/02/VE_Housing.csv
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FireplaceQu

PoolQC

Fence, and

MiscFeature

all have anywhere from 259 to 1406 missing observations. The proportions

of missing values in these variables are probably too high for imputation

(see Chapter 15 for details), so we elect to remove them from further

analyses.

Note that the remaining major missing variables are all related to Garage
and Basement, with corresponding variables missing for the same houses.

Given that there are other variables associated with these, we suspect

these variables will not play a crucial role in model building, and we also

elect to remove them from the analyses.

For the remaining three variables with missing values (MasVnrType,

MasVnrArea, and Electrical), the number of missing observations are

so small that we could easily

impute these values, or

perform list-wise deletion.

For the purposes of this example, we will select the latter options and

delete all columns with missing values.

dat.Housing.new = dat.Housing[,

!colnames(dat.Housing)%in%missing]

dim(dat.Housing.new)

[1] 1460 62

We also remove the index variable ID:

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

In order to evaluate the effectiveness of the eventual model (i.e., to have

good predictive power without overfitting the data), we split the Housing

dataset into training and testing sets. The model is then developed using

the training set (i.e., optimized using a subset of data), and then later

tested for its prediction power using the testing set.

We select roughly 80% of the observations (1160) for the training set:

set.seed(1234) # for replicability

n.train=1160

ind.train=sample(1:nrow(dat.Housing.new), n.train)

The training and testing sets are thus:

dat.train=dat.Housing.new[ind.train,]

dat.test=dat.Housing.new[-ind.train,]
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We train EARTH (with interactions) on the training data:

EARTH.3 <- earth::earth(SalePrice~., data=dat.train,

degree=2)

summary(EARTH.3)

coefficients

(Intercept) 317.95604

Exterior1stBrkFace 18.17930

FoundationPConc 34.63490

h(14442-LotArea) -0.00198

h(LotArea-14442) 0.00048

...

h(7-OverallCond) * h(316-WoodDeckSF) -0.01602

h(2005-YearBuilt) * h(1056-BsmtFinSF1) 0.00030

h(YearBuilt-2005) * h(1056-BsmtFinSF1) -0.00928

Selected 36 of 39 terms, and 19 of 188 predictors

Termination condition: RSq changed by less than 0.001 at 39 terms

Importance: OverallQual, GrLivArea, YearBuilt, SaleTypeWD, BsmtFinSF1, ...

Number of terms at each degree of interaction: 1 18 17

GCV 396.2527 RSS 392191.8 GRSq 0.9377484 RSq 0.9467931

We now predict SalePrice on the testing data:

yhat.EARTH.3 = predict(EARTH.3, dat.test)

We can evaluate the quality of the predictions on the testing set either by

computing MSETe directly (≈ 628), but this value is more or less useless

on its own.

We get a better sense for the quality of the prediction on the testing

set by comparing the actual SalePrice values to the EARTH predicted

SalePrice values:

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

ylab="Predicted Price ($1,000)",

xlab="Actual Price ($1,000)",

main="MARS/EARTH SalePrice predictions

(w column-wise deletion)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(dat.test$SalePrice, yhat.EARTH.3, col=2)

(see plot on the next page) What do you think? Is the model likely to

prove useful?
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Smoothing Splines Given a training set Tr with 𝑁 observations, we

have seen that regression splines use the following approach:

1. identify 𝐾 knots 𝜉1 , . . . , 𝜉𝐾 ;

2. produce some basis functions {𝑏1(𝑥), . . . , 𝑏𝐾(𝑥)}, and

3. use OLS to estimate the coefficients of

𝑌𝑖 = 𝛽0 + 𝛽1𝑏1(𝑋𝑖) + · · · + 𝛽𝐾𝑏𝑘(𝑋𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁.

But we can use another mathematical approach in order to produce a

spline. In general, we need to find a function 𝑔 that provides a good fit

for the available data; in other words, we are looking for a 𝑔 for which

SSE =

𝑁∑
𝑖=1

(𝑌𝑖 − 𝑔(𝑋𝑖))2 is "small".

But we also need 𝑔 to be constrained, otherwise any smooth function

interpolating (𝑋𝑦 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑁 would yield SSE = 0, at the cost of

severe overfitting and loss of interpretability, as in Figure 20.13. The flip

side is that too many constraints can result in the data being underfit.

The smoothing spline approach seeks to solve the following problem:

𝑔𝜆 = arg min

ℎ

{
𝑁∑
𝑖=1

(𝑌𝑖 − ℎ(𝑋𝑖))2︸              ︷︷              ︸
SSE loss

+𝜆
∫
Ω(𝑋)
[ℎ′′(𝑡)]2 𝑑𝑡︸            ︷︷            ︸

penalty term

}
,

where 𝜆 ≥ 0 is a tuning parameter and Ω(𝑋) represents the range of the

predictor 𝑋.
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Figure 20.13: A spline with too few constraint overfits the data (right).

The penalty term measures the roughness of the spline function ℎ; if ℎ is

quite “wiggly”, the penalty will be (relatively) large, and vice-versa (and

similarly for 𝑔).
71

71: If ℎ represents a straight line, say, the

penalty term would be zero.

When 𝜆→ 0, the penalty term has little effect, so we would expect 𝑔𝜆 to

be “jumpy” in such cases and that it would interpolate the observations

exactly, leading to overfitting.

When 𝜆→∞, the penalty term dominates and 𝑔𝜆 is a function for which∫
[𝑔′′𝜆 (𝑡)]2𝑑𝑡 → 0 over Ω(𝑋), so 𝑔𝜆 → linear OLS solution over Ω(𝑋),

leading to underfitting.

As we have seen over and over again, the tuning parameter 𝜆 controls

the bias-variance trade-off, expressed, in this case, as a battle between

rigidity and model complexity.

The optimal smoothing spline 𝑔𝜆 is a natural cubic spline with a knot

at every data point 𝜉𝑖 = 𝑥𝑖 , 𝑖 = 1, . . . , 𝑁 , with continuous 0th, 1st, 2nd

derivatives throughout the range Ω(𝑋) = [min 𝜉𝑖 ,max 𝜉𝑖], and is linear

outside Ω(𝑋), but, importantly, it is not the one that would be obtained
from building a regression spline, as it also depends on the turning

parameter 𝜆.

What is the best choice for 𝜆? At first glance, this would seem to be

another job for cross-validation, but there is another option: we can

specify the smoothing spline through the effective degrees of freedom,

which decrease from 𝑁 to 2 as 𝜆 goes from 0 to∞ (note, however, that

R’s smooth.spline() uses a different parameterization).

Gapminder Example The charts below show the smoothing spline for

life expectancy against fertility in the 2011 Gapminder data, for 4 different

smoothing parameter values, using stats’s smooth.spline() function.

Note that the entire set is used as training data.

x=gapminder.2011$fertility

y=gapminder.2011$life_expectancy

ss00 = stats::smooth.spline(x, y, spar=0)

ss05 = stats::smooth.spline(x, y, spar=0.5)

ss10 = stats::smooth.spline(x, y, spar=1)

ss15 = stats::smooth.spline(x, y, spar=1.5)
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In order to be able to display the smoothing splines over the datapoints,

we use the broom::augment() function, which provide the value of the

spline at the various fertility values in the dataset.

plot1 <- ggplot(broom::augment(ss00, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=0")

plot2 <- ggplot(broom::augment(ss05, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=0.5")

plot3 <- ggplot(broom::augment(ss10, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=1")

plot4 <- ggplot(broom::augment(ss15, gapminder.2011),

aes(x=fertility, y=life_expectancy)) +

geom_point(colour="red") + theme_bw() +

geom_line(aes(y = .fitted), colour="blue", size=1.1) +

ggtitle("Smoothing Spline - spar=1.5")

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Note the evolution of a flexible but highly non-interpretable model (the

wiggly curve associated to spar=0) into a rigid but highly interpretable

model (the line associated to spar=1.5) as the spar values increase.
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20.5.3 Generalized Additive Models

While polynomial regression and splines can be applied to predictor sets,

they are best-suited to predicting a response 𝑌 on the basis of a single
predictor 𝑋 (the model complexity increases quickly if more than one

predictor is present).

Generalized additive models (GAM) allow for flexible non-linearities

in several variables while retaining the additive structure of linear

models:

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥𝑖 ,1) + · · · + 𝑓𝑝(𝑥𝑖 ,𝑝) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁

where each of the 𝑓𝑗 can be derived using any of the methods previously

discussed; if

𝑓1(𝑥𝑖) = 𝛽1,1𝑏1,1(𝑥𝑖 ,1) + · · · + 𝛽1,𝐿1
𝑏1,𝐿1
(𝑥𝑖 ,1)

...

𝑓𝑝(𝑥𝑖) = 𝛽𝑝,1𝑏𝑝,1(𝑥𝑖 ,𝑝) + · · · + 𝛽𝑝,𝐿𝑝𝑏𝑝,𝐿𝑝 (𝑥𝑖 ,𝑝),

say, we would fit the data using OLS (but this cannot be done if one of

the components is a smoothing spline, for instance, or if it is non-linear

in some other way).

In practice, using natural cubic splines for the quantitative components

seem to work as well as smoothing spline, when it comes to making

predictions.
72

72: GAM can also be used for classifica-

tion via log-odds:

ln

(
𝑝1(x)

1 − 𝑝1(x)

)
= 𝛽0+ 𝑓1(𝑥1)+· · ·+ 𝑓𝑝(𝑥𝑝).

GAM are implemented in R using the mgcv::gam() function; a typical

call might look like:

mgcv::gam(y ~ s(x1,df=5) +

lo(x2,spar=0.5) +

bs(x3,df=4) +

ns(x4,df=5):ns(x5,df=5) +

x6, data=dat)

which would indicate that the contribution of:

𝑋1 is given by smoothing spline with 5 degrees of freedom,

𝑋2 is given by a local regression with spar=0.5,

𝑋3 is given by a cubic spline with 4 degrees of freedom,

the fourth component is an interaction term based on natural

splines for 𝑋4 and 𝑋5 (each with 5 degrees of freedom), and

𝑋6 is directly added to the model.

GAM provide a useful compromise between linear models and fully

non-parametric models.

Advantages:

GAM can fit a non-linear 𝑓𝑗 to each predictor 𝑋𝑗 , so that they could

capture trends that linear regression would miss;

GAM can reduce the number of data transformations to try out

manually on each predictor 𝑋𝑗 ;
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non-linear fits may improve accuracy of predictions for the re-

sponse 𝑌;

GAM are useful for inference due to their additivity – the effect

of 𝑋𝑗 on 𝑌 (while keeping other predictors fixed) can be analyzed

separately;

the overall smoothness of the model can be summarized via effective

degrees of freedom/parameters.

Disadvantages:

GAM still suffer from the curse of dimensionality;

GAM are restricted to additive models – interaction terms can be

added manually by introducing new predictors 𝑋𝑗 × 𝑋𝑘 , as can

interaction functions 𝑓𝑗 ,𝑘(𝑋𝑗 , 𝑋𝑘) (using local regression or MARS,

say), but they quickly get out of hand (due to Curse of Dimensionality
issues).

Gapminder Example The charts below show the individual contribu-

tions of fertility, infant mortality, GDP, and continental membership to

life expectancy in the 2011 Gapminder data.
73

73: Using the entire set as training data.

library(mgcv)

b <- gam(gapminder.2011$life_expectancy ~

s(gapminder.2011$fertility) +

s(gapminder.2011$infant_mortality) +

s(gapminder.2011$gdp) +

gapminder.2011$continent)

summary(b)

Family: gaussian

Link function: identity

Formula:

gapminder.2011$life_expectancy ~ s(gapminder.2011$fertility) +

s(gapminder.2011$infant_mortality) + s(gapminder.2011$gdp) +

gapminder.2011$continent

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.1186 0.7470 91.190 < 2e-16 ***
continentAmericas 4.4787 1.1161 4.013 9.30e-05 ***
continentAsia 4.7110 0.9993 4.714 5.35e-06 ***
continentEurope 3.4179 1.3209 2.588 0.0106 *
continentOceania -0.2891 1.3798 -0.210 0.8343

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(gapminder.2011$fertility) 1.000 1.000 4.474 0.036 *
s(gapminder.2011$infant_mortality) 3.027 3.800 40.541 <2e-16 ***
s(gapminder.2011$gdp) 1.478 1.779 0.367 0.575

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.828 Deviance explained = 83.8%

GCV = 13.199 Scale est. = 12.363 n = 166

We see in the outcome that the intercept is 𝛽0 = 68.1186 and that

𝛽continent =



0 Africa

4.4787 America

4.7110 Asia

3.4179 Europe

−0.2891 Oceania

so that predictions take the form

life expectancy ≈ 𝛽0 + 𝑓1(fertility) + 𝑓2(infant mortality)
+ 𝑓3(gdp) + 𝛽continent.

plot.gam(b)

For instance, the life expectancy for an American country with fertility= 3,

infant mortality= 1, GDP= 6 × 10
12

would be approximately

68.1 + 0 + 10 + 2 + 4.5 = 84.6.

Take the time to read the mgcv and the gam documentation to better

understand how these work in practice (in particular, how to make

predictions on test/new observations).

20.6 Example: Algae Blooms

We continue the algae blooms analysis started in Section 15.7 (based on

a case study by L.Torgo [11]). The objective is to predict various algae

levels in water samples; we continue the analysis with the data frame

algae_blooms.sna2.

20.6.1 Value Estimation Modeling

For supervised learning tasks, the bias-variance trade-off means that we

need to set aside a testing set on which the models (which were learned

on the training set) are evaluated.
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There are no hard-and-fast rules to determine how to split the data; if the

signal is very strong, a small training set should capture its important

features, but we do not typically know how strong the signal is before

we start the modeling process. On the other hand, if the training set is

too large, we run the risk of overfitting the data. Weighing both of these

considerations, we elect to use a 65%/35% training/testing split.

The training data should also be representative, to avoid injecting biases

in the model (in case the data was provided according to some systematic

but unknown rule).

There are numerous ways to do this,
74

but we can do so using a simple74: See Chapter 10, Survey Sampling Meth-
ods, for instance.

random sample of 218 observations.
75

75: We could also have stratified accord-

ing to season, size, etc. To avoid issues related to replicability, we use a single training set.
76

76: The code that would allow for a differ-

ent random sample every time the code

is run has been commented out in the

following code box.

# ind <- sample(1:dim(algae_blooms.sna2)[1], 218)

ind <- 1:218

algae.train <- algae_blooms.sna2[ind,] # training set

algae.test <- algae_blooms.sna2[-ind,] # testing set

set.seed(0) # for replicability

Generalized Linear Model We implement a linear model to predict a2 (to

pick but one of the response variables) against all the predictor variables,

but only using the training set.
77

77: Before getting too excited about us-

ing various machine learning methods, it

is worth seeing what the traditional ap-

proaches yield. linear.model.a2 <- lm(a2 ~ season + size + speed + mxPH +

mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla,

data=algae.train)

A summary of the results can be given by calling the summary method

on the resulting object.

summary(linear.model.a2)

Residuals:

Min 1Q Median 3Q Max

-17.436 -5.281 -2.613 2.026 62.712

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.083e+01 1.257e+01 -2.452 0.015056 *
seasonsummer -1.166e-01 2.112e+00 -0.055 0.956035

seasonautumn 1.071e+00 2.370e+00 0.452 0.651934

seasonwinter -1.451e+00 2.000e+00 -0.726 0.468935

sizemedium -2.628e+00 1.895e+00 -1.387 0.166896

sizelarge -3.210e+00 2.412e+00 -1.331 0.184767

speedmedium 3.887e+00 2.485e+00 1.564 0.119325

speedhigh -1.104e+00 2.772e+00 -0.398 0.690751

mxPH 4.859e+00 1.559e+00 3.117 0.002092 **
mnO2 -1.841e-01 3.924e-01 -0.469 0.639474

Cl -7.432e-03 2.006e-02 -0.371 0.711351
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NO3 2.132e-01 3.028e-01 0.704 0.482249

NH4 -5.979e-04 5.355e-04 -1.117 0.265510

oPO4 2.290e-03 9.876e-03 0.232 0.816875

PO4 -1.559e-03 5.936e-03 -0.263 0.793090

Chla 1.652e-01 4.614e-02 3.579 0.000432 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.74 on 202 degrees of freedom

Multiple R-squared: 0.206, Adjusted R-squared: 0.147

F-statistic: 3.493 on 15 and 202 DF, p-value: 2.498e-05

We see that the adjusted 𝑅2
coefficient is fairly small, which is not ideal.

Furthermore, the residuals should have a mean of 0 and be “small”, which

is not quite what we are seeing here; the 𝐹−statistic seems to indicate

that there is some (linear) dependence on the predictor variables.

We can get a better handle on the regression diagnostics by calling the

plot() method on the object.

plot(linear.model.a2)

All in all, the linear model is ... not great. The significance of some of the

coefficients is questionable, however, and we might wonder what effect

their inclusion might have.

anova(linear.model.a2)
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Analysis of Variance Table

Response: a2

Df Sum Sq Mean Sq F value Pr(>F)

season 3 112.3 37.42 0.3243 0.8078029

size 2 436.0 217.99 1.8892 0.1538604

speed 2 1552.8 776.42 6.7287 0.0014825 **
mxPH 1 2223.5 2223.54 19.2698 1.829e-05 ***
mnO2 1 0.5 0.54 0.0047 0.9455025

Cl 1 0.3 0.33 0.0029 0.9572795

NO3 1 43.9 43.91 0.3806 0.5380001

NH4 1 193.8 193.82 1.6797 0.1964428

oPO4 1 0.1 0.09 0.0008 0.9775762

PO4 1 4.8 4.82 0.0417 0.8383141

Chla 1 1478.2 1478.18 12.8103 0.0004316 ***
Residuals 202 23308.8 115.39

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We might be interested in the results of a linear regression with the NH4

predictor removed, say.

linear.model.a2.mod <- update(linear.model.a2, . ~ . -NH4)

summary(linear.model.a2.mod)

Residuals:

Min 1Q Median 3Q Max

-16.801 -5.500 -2.647 2.504 63.259

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.996221 12.580354 -2.464 0.014577 *
seasonsummer -0.107996 2.113697 -0.051 0.959301

seasonautumn 0.806683 2.359593 0.342 0.732799

seasonwinter -1.397244 2.000275 -0.699 0.485648

sizemedium -2.378831 1.882645 -1.264 0.207838

sizelarge -3.086404 2.411377 -1.280 0.202029

speedmedium 3.637403 2.476278 1.469 0.143408

speedhigh -1.382060 2.762133 -0.500 0.617364

mxPH 4.821140 1.559264 3.092 0.002268 **
mnO2 -0.074216 0.380118 -0.195 0.845398

Cl -0.001602 0.019376 -0.083 0.934181

NO3 -0.013968 0.224437 -0.062 0.950437

oPO4 -0.001285 0.009348 -0.137 0.890775

PO4 -0.001518 0.005940 -0.256 0.798576

Chla 0.165865 0.046166 3.593 0.000411 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.75 on 203 degrees of freedom

Multiple R-squared: 0.2011, Adjusted R-squared: 0.146

F-statistic: 3.649 on 14 and 203 DF, p-value: 2.009e-05
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The fit is not that much better, but an ANOVA on the 2 suggested models

shows that we are at least ≈ 88% certain that the models are different.

anova(linear.model.a2,linear.model.a2.mod)

Analysis of Variance Table

Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla

Model 2: a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 +

oPO4 + PO4 + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309

2 203 23453 -1 -143.86 1.2467 0.2655

The step() function uses AIC to perform a model search (using back-
ward elimination). The “best” linear model for a2 is thus:

final.linear.model.a2 <- step(linear.model.a2)

summary(final.linear.model.a2)

Start: AIC=1050.52

a2 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC

- season 3 157.44 23466 1046.0

- oPO4 1 6.20 23315 1048.6

- PO4 1 7.96 23317 1048.6

- Cl 1 15.85 23325 1048.7

- mnO2 1 25.40 23334 1048.8

- NO3 1 57.19 23366 1049.0

- size 2 282.28 23591 1049.1

- NH4 1 143.86 23453 1049.9

<none> 23309 1050.5

- speed 2 967.47 24276 1055.4

- mxPH 1 1121.22 24430 1058.8

- Chla 1 1478.18 24787 1061.9

Step: AIC=1045.98

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

Df Sum of Sq RSS AIC

- oPO4 1 2.54 23469 1044.0

- PO4 1 4.10 23470 1044.0

- mnO2 1 6.61 23473 1044.0

- Cl 1 15.59 23482 1044.1

- size 2 257.60 23724 1044.4

- NO3 1 47.04 23513 1044.4

- NH4 1 114.06 23580 1045.0

<none> 23466 1046.0

- speed 2 1035.56 24502 1051.4

- mxPH 1 1052.01 24518 1053.5

- Chla 1 1477.06 24943 1057.3
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Step: AIC=1044.01

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + PO4 + Chla

Df Sum of Sq RSS AIC

- PO4 1 1.62 23470 1042.0

- mnO2 1 7.17 23476 1042.1

- Cl 1 14.19 23483 1042.1

- NO3 1 44.93 23514 1042.4

- size 2 266.73 23736 1042.5

- NH4 1 114.91 23584 1043.1

<none> 23469 1044.0

- speed 2 1050.55 24519 1049.5

- mxPH 1 1099.78 24569 1052.0

- Chla 1 1480.47 24949 1055.3

Step: AIC=1042.02

a2 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- mnO2 1 6.59 23477 1040.1

- Cl 1 17.42 23488 1040.2

- size 2 265.19 23736 1040.5

- NO3 1 51.04 23521 1040.5

- NH4 1 140.72 23611 1041.3

<none> 23470 1042.0

- speed 2 1050.42 24521 1047.6

- mxPH 1 1105.21 24576 1050.0

- Chla 1 1482.34 24953 1053.4

Step: AIC=1040.08

a2 ~ size + speed + mxPH + Cl + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- Cl 1 13.41 23490 1038.2

- size 2 260.65 23738 1038.5

- NO3 1 44.48 23522 1038.5

- NH4 1 135.66 23613 1039.3

<none> 23477 1040.1

- speed 2 1121.64 24599 1046.3

- mxPH 1 1103.17 24580 1048.1

- Chla 1 1492.55 24970 1051.5

Step: AIC=1038.21

a2 ~ size + speed + mxPH + NO3 + NH4 + Chla

Df Sum of Sq RSS AIC

- NO3 1 36.13 23526 1036.5

- size 2 275.91 23766 1036.8

- NH4 1 128.31 23619 1037.4

<none> 23490 1038.2

- speed 2 1172.78 24663 1044.8

- mxPH 1 1089.85 24580 1046.1

- Chla 1 1490.94 24981 1049.6
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Step: AIC=1036.54

a2 ~ size + speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC

- size 2 244.91 23771 1034.8

- NH4 1 93.48 23620 1035.4

<none> 23526 1036.5

- speed 2 1164.36 24691 1043.1

- mxPH 1 1053.88 24580 1044.1

- Chla 1 1611.04 25138 1049.0

Step: AIC=1034.8

a2 ~ speed + mxPH + NH4 + Chla

Df Sum of Sq RSS AIC

- NH4 1 82.62 23854 1033.6

<none> 23771 1034.8

- mxPH 1 850.56 24622 1040.5

- speed 2 1085.45 24857 1040.5

- Chla 1 1540.50 25312 1046.5

Step: AIC=1033.56

a2 ~ speed + mxPH + Chla

Df Sum of Sq RSS AIC

<none> 23854 1033.6

- speed 2 1021.27 24875 1038.7

- mxPH 1 928.72 24783 1039.9

- Chla 1 1479.59 25334 1044.7

Call:

lm(formula = a2 ~ speed + mxPH + Chla, data = algae.train)

Residuals:

Min 1Q Median 3Q Max

-16.195 -6.008 -2.530 2.024 63.589

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.13270 11.07921 -2.449 0.015134 *
speedmedium 4.17176 2.34330 1.780 0.076453 .

speedhigh -0.32929 2.41899 -0.136 0.891850

mxPH 3.89794 1.35358 2.880 0.004387 **
Chla 0.15945 0.04387 3.635 0.000349 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.58 on 213 degrees of freedom

Multiple R-squared: 0.1874, Adjusted R-squared: 0.1721

F-statistic: 12.28 on 4 and 213 DF, p-value: 5.289e-09

It is still not a great fit (the adjusted 𝑅2
is quite small); we conclude that

the linear model is not ideal to predict a2.
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anova(final.linear.model.a2)

Analysis of Variance Table

Response: a2

Df Sum Sq Mean Sq F value Pr(>F)

speed 2 1994.8 997.42 8.9063 0.0001929 ***
mxPH 1 2026.6 2026.63 18.0964 3.145e-05 ***
Chla 1 1479.6 1479.59 13.2117 0.0003488 ***
Residuals 213 23854.1 111.99

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In spite of the final model’s poor quality, it is significantly different from

the full model.

anova(linear.model.a2,final.linear.model.a2)

Model 1: a2 ~ season + size + speed + mxPH + mnO2 + Cl +

NO3 + NH4 + oPO4 + PO4 + Chla

Model 2: a2 ~ speed + mxPH + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 202 23309

2 213 23854 -11 -545.26 0.4296 0.9416

plot(final.linear.model.a2)
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Regression Tree Model An alternative to regression is the use of regres-
sion trees, implemented in the function rpart().

78
78: Its syntax is similar to lm().

regression.tree.a2 <-rpart::rpart(a2 ~ season + size +

speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +

Chla, data=algae.train)

The outcome can be displayed by calling the object directly.

regression.tree.a2

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.1300 7.6366970

2) Cl< 16.6875 83 1193.6400 1.8891570

4) size=small,medium 67 398.6457 0.9447761 *
5) size=large 16 485.0194 5.8437500 *

3) Cl>=16.6875 135 23733.9200 11.1703700

6) mxPH< 8.065 59 3831.8290 5.3864410

12) season=autumn,winter 29 561.8414 2.5172410 *
13) season=spring,summer 30 2800.4720 8.1600000

26) mxPH< 7.9375 23 889.9730 5.3173910 *
27) mxPH>=7.9375 7 1114.0000 17.5000000 *

7) mxPH>=8.065 76 16396.0400 15.6605300

14) Chla>=2.65 68 9694.0890 13.8544100

28) Chla< 14.8875 29 2747.5810 8.7172410

56) NH4< 226.875 21 558.4257 5.7857140 *
57) NH4>=226.875 8 1534.9490 16.4125000 *

29) Chla>=14.8875 39 5612.0940 17.6743600

58) mnO2< 11.05 30 3139.0940 15.4233300

116) NH4>=158.409 8 577.1000 8.9000000 *
117) NH4< 158.409 22 2097.7700 17.7954500

234) season=spring,autumn 14 674.7521 14.6642900 *
235) season=summer,winter 8 1045.5550 23.2750000 *

59) mnO2>=11.05 9 1814.2760 25.1777800 *
15) Chla< 2.65 8 4594.6690 31.0125000 *

The tree structure can be hard to determine when there is a large

number of nodes; we can improve on the visuals by using the R library

rpart.plot.

rpart.plot::prp(regression.tree.a2, extra=101,

box.col="orange", split.box.col="gray")
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Details on the regression tree can be obtained by calling the summary()

method on the object.

summary(regression.tree.a2)

CP nsplit rel error xerror xstd

1 0.15082765 0 1.0000000 1.0059069 0.1990911

2 0.11943572 1 0.8491724 0.9492709 0.1815913

3 0.07178590 2 0.7297366 0.8655117 0.1688012

4 0.04545758 3 0.6579507 0.9007445 0.1699016

5 0.02243987 4 0.6124932 0.9597254 0.1737117

6 0.02228595 5 0.5900533 0.9472199 0.1658890

7 0.02156378 6 0.5677673 0.9472199 0.1658890

8 0.01581407 8 0.5246398 0.9287217 0.1629262

9 0.01285848 9 0.5088257 0.9255472 0.1613858

10 0.01055949 10 0.4959672 0.9320459 0.1622581

11 0.01000000 11 0.4854077 0.9389544 0.1625727

Variable importance

Chla NH4 Cl mxPH oPO4 PO4 NO3 speed

19 14 14 13 11 9 6 5

mnO2 season size

4 3 2

Note that rpart() grows a tree on the training data until one of the

following criterion is met: - decrease in deviance goes below a certain

threshold (cp) - number of samples in a node is below some other

threshold (minsplit) - depth of the tree crosses yet another threshold

(maxdepth)

The library also implements a pruning method based on cost complexity:

finding the value of cp which best balances predictive accuracy and tree
size.

79
79: We will revisit these notions in Section

21.4.1, Tree-Based Methods.
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rpart::printcp(regression.tree.a2)

Variables actually used in tree construction:

[1] Chla Cl mnO2 mxPH NH4 season size

Root node error: 29355/218 = 134.66

n= 218

CP nsplit rel error xerror xstd

1 0.150828 0 1.00000 1.00591 0.19909

2 0.119436 1 0.84917 0.94927 0.18159

3 0.071786 2 0.72974 0.86551 0.16880

4 0.045458 3 0.65795 0.90074 0.16990

5 0.022440 4 0.61249 0.95973 0.17371

6 0.022286 5 0.59005 0.94722 0.16589

7 0.021564 6 0.56777 0.94722 0.16589

8 0.015814 8 0.52464 0.92872 0.16293

9 0.012858 9 0.50883 0.92555 0.16139

10 0.010559 10 0.49597 0.93205 0.16226

11 0.010000 11 0.48541 0.93895 0.16257

The tree returned by rpart() is the final one (cp= 0.01 is the default

value); it requires 11 decision tests, and has a relative error of 0.485.

Internally, rpart() uses 10-fold cross-validation to estimate that the tree

has an average relative error of 0.98 ± 0.18.
80

80: These values might change when from

one run to the next due to the stochastic

nature of the internal cross-validation rou-

tines.

In this framework, the optimal tree minimizes the value of xerror.

Alternatively, one could use the 1 − SE rule to find the minimal xerror +

xstd tree.

rpart::plotcp(regression.tree.a2)
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The scree plot above suggests that cp= 0.08 (that value may change when

you run yours due to the stochastic nature of the internal cross-validation

algorithm) is a special value for tree growth, so we could prune the tree

using that specific value.

(regression.tree.a2.mod <- rpart::prune(

regression.tree.a2,cp=0.05))

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.130 7.636697

2) Cl< 16.6875 83 1193.640 1.889157 *
3) Cl>=16.6875 135 23733.920 11.170370

6) mxPH< 8.065 59 3831.829 5.386441 *
7) mxPH>=8.065 76 16396.040 15.660530

14) Chla>=2.65 68 9694.089 13.854410 *
15) Chla< 2.65 8 4594.669 31.012500 *

rpart.plot::prp(regression.tree.a2.mod, extra=101,

box.col="orange", split.box.col="gray")

The entire process is automated in the wrapper method rpartXse()

provided with the DMwR library;
81

we (abitrarily) use se= 0.2.81: This library had to be installed from

source files as it was not available on the

Comprehensive R Archive Network as of

January 2023. library(DMwR)

(regression.tree.a2.final <- DMwR::rpartXse(a2 ~ season +

size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla, data=algae.train, se=0.2))

summary(regression.tree.a2.final)

node), split, n, deviance, yval

* denotes terminal node

1) root 218 29355.13 7.636697

2) Cl< 16.6875 83 1193.64 1.889157 *
3) Cl>=16.6875 135 23733.92 11.170370 *

Call:
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rpart(formula = form, data = data, cp = cp, minsplit = minsplit)

n= 218

CP nsplit rel error xerror xstd

1 0.1508276 0 1.0000000 1.0130822 0.2001495

2 0.1194357 1 0.8491724 0.9320224 0.1752140

Variable importance

Cl PO4 oPO4 Chla NH4 speed

28 17 16 14 14 12

Node number 1: 218 observations, complexity param=0.1508276

mean=7.636697, MSE=134.6565

left son=2 (83 obs) right son=3 (135 obs)

Primary splits:

Cl < 16.6875 to the left, improve=0.15082760, (0 missing)

mxPH < 7.94 to the left, improve=0.14900670, (0 missing)

NO3 < 0.18 to the right, improve=0.11564070, (0 missing)

oPO4 < 45.1 to the left, improve=0.11106510, (0 missing)

Chla < 12.21 to the left, improve=0.09817759, (0 missing)

Surrogate splits:

PO4 < 70.465 to the left, agree=0.844, adj=0.590, (0 split)

oPO4 < 19.8635 to the left, agree=0.835, adj=0.566, (0 split)

NH4 < 46.35 to the left, agree=0.807, adj=0.494, (0 split)

Chla < 2.225 to the left, agree=0.807, adj=0.494, (0 split)

speed splits as RRL, agree=0.775, adj=0.410, (0 split)

Node number 2: 83 observations

mean=1.889157, MSE=14.38121

Node number 3: 135 observations

mean=11.17037, MSE=175.8068

rpart.plot::prp(regression.tree.a2.final, extra=101,

box.col="orange", split.box.col="gray")

The resulting tree is not nearly as complex as the original tree (hence

discourages overfitting) but is still more complex than the pruned tree

(which should improve predicting accuracy).

20.6.2 Model Evaluation

At this stage, we know that the linear model is not great for a2, and

we have seen how to grow a regression tree for a2 but we have not
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yet discussed whether this model is a good fit, to say nothing of the

remaining 6 algae concentrations. Can we get a better handle on these

models’ performance (i.e., comparing the model predictions to the real

values of the target variable in the test data)?

We have discussed various metrics that can be used to determine how the

values compare in Chapter 19; in this case, we elect to use the normalized
mean squared error (NMSE):

MSE

mean

{(
real − real𝑖

)
2

; 𝑖 = 1, ..., 𝑁

} .
As the ratio of MSE to a baseline predictor (the mean of the value of

the target), NMSE is unitless. NMSE values between 0 and 1 (smaller is

better) indicate that the model performs better than the baseline; greater

than 1 indicate that the model’s performance is sub-par.

We use the performanceEstimation library to run 5 × 10−fold cross-

validations to determine which of the models (linear model and 4

regression trees parametrized by se) yields an optimal (smaller) NMSE

value when trying to predict a2.

library(performanceEstimation)

kCV.results.algae.a2 <- performanceEstimation(

PredTask(a2 ~ season + size + speed + mxPH + mnO2 + Cl +

NO3 + NH4 + oPO4 + PO4 + Chla, data=algae.train, "a2"),

c(Workflow(learner="lm",post="onlyPos"),

workflowVariants(learner="rpartXse",

learner.pars=list( se=c(0,0.25,0.5,0.75,1) ))),

EstimationTask(metrics="nmse",

method=CV(nReps=5,nFolds=10))

)

A summary and plot of the cross-validation results for NMSE can be

displayed using calls to summary() and plot().

summary(kCV.results.algae.a2)

== Summary of a Cross Validation Performance Estimation Experiment ==

Task for estimating nmse using 5 x 10-Fold Cross Validation (seed=1234)

* Predictive Tasks :: a2

* Workflows :: lm, rpartXse.v1, rpartXse.v2, rpartXse.v3,

rpartXse.v4, rpartXse.v5

-> Task: a2

*Workflow: lm

nmse

avg 0.9723125

std 0.2221976

med 0.9634147

iqr 0.1771688
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min 0.5878283

max 2.0801221

invalid 0.0000000

*Workflow: rpartXse.v1

nmse

avg 1.1148436

std 0.3871551

med 1.0000000

iqr 0.2226673

min 0.5701226

max 2.8186400

invalid 0.0000000

*Workflow: rpartXse.v2

nmse

avg 1.08587675

std 0.35111303

med 1.00000000

iqr 0.07178237

min 0.76004730

max 2.81864005

invalid 0.00000000

*Workflow: rpartXse.v3

nmse

avg 1.035773e+00

std 1.470430e-01

med 1.000000e+00

iqr 2.220446e-16

min 8.044770e-01

max 1.701835e+00

invalid 0.000000e+00

*Workflow: rpartXse.v4

nmse

avg 1.011250e+00

std 1.214329e-01

med 1.000000e+00

iqr 2.220446e-16

min 6.800497e-01

max 1.701835e+00

invalid 0.000000e+00

*Workflow: rpartXse.v5

nmse

avg 1.004167e+00

std 5.174279e-02

med 1.000000e+00

iqr 2.220446e-16

min 8.692699e-01

max 1.339067e+00

invalid 0.000000e+00
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plot(kCV.results.algae.a2)

It is not obvious which of the models has smaller values of NMSE,

although it does seem that the latter versions of the regression tree

models are not substantially better than the baseline model.

The first regression tree model sometimes produces very small NMSE

values, but that is offset by some of the larger values it also produces.
82

82: Similarly for the linear model.

At any rate, visual evidence seems to suggest that the linear model is the

best predictive model for a2 given the training data (in this version of

𝑘CV), which is corrobated by a call to topPerformers().

topPerformers(kCV.results.algae.a2)

$a2

Workflow Estimate

nmse lm 0.972

This might seem disheartening at first given how poorly the linear model

performed, but it might be helpful to remember that there is no guarantee

that a decent predictive model even exists in the first place.

Furthermore, regression trees and linear models are only two of a whole

collection of possible models. How do support vector machines perform

the task, for instance?
83

83: See Chapter 21 for an in-depth discus-

sion on the topic.

This time, however, we will learn models and perform evaluation for all

target variables (a1-a7) simultaneously. This does not mean that we are

looking for a single model which will optimize all learning tasks at once,

but rather that we can prepare and evaluate the models for each target

variable with the same bit of code.

This first require some code to create the appropriate model formulas

(a1 ~ . , ... ,a7 ~ . ) and the appropriate training data.
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gg <- function(x,list.of.variables){

PredTask(as.formula(paste(x,"~ .")), algae.train[,c(list.of.variables,x )],

x, copy=TRUE)}

(data.sources <- sapply(names(algae.train[12:18]), gg, names(algae.train[1:11])))

$a1

Prediction Task Object:

Task Name :: a1

Task Type :: regression

Target Feature :: a1

Formula :: a1 ~ .

$a2

Prediction Task Object:

Task Name :: a2

Task Type :: regression

Target Feature :: a2

Formula :: a2 ~ .

$a3

Prediction Task Object:

Task Name :: a3

Task Type :: regression

Target Feature :: a3

Formula :: a3 ~ .

$a4

Prediction Task Object:

Task Name :: a4

Task Type :: regression

Target Feature :: a4

Formula :: a4 ~ .

$a5

Prediction Task Object:

Task Name :: a5

Task Type :: regression

Target Feature :: a5

Formula :: a5 ~ .

$a6

Prediction Task Object:

Task Name :: a6

Task Type :: regression

Target Feature :: a6

Formula :: a6 ~ .

$a7

Prediction Task Object:

Task Name :: a7

Task Type :: regression

Target Feature :: a7

Formula :: a7 ~ .
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We shall use e1071’s implementation of svm(), with various values of

the svm()-specific parameters cost and gamma.

library(e1071)

kCV.results.algae.all <- performanceEstimation(

data.sources,

c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(

cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse", learner.pars=list(

se=c(0,0.7,1)))),

EstimationTask(metrics="nmse",

method=CV(nReps=5, nFolds=10)))

The rest of the evaluation proceeds much as before, except that we can

display results for the 7 target variables simultaneously.

plot(kCV.results.algae.all)

rankWorkflows(kCV.results.algae.all,top=3)

$a1$nmse

Workflow Estimate

1 rpartXse.v1 0.6163406

2 rpartXse.v2 0.6278027

3 rpartXse.v3 0.6430736

$a2$nmse

Workflow Estimate

1 lm 0.9723125

2 svm 0.9954432

3 rpartXse.v3 1.0041667
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$a3$nmse

Workflow Estimate

1 svm 0.9497730

2 lm 0.9801662

3 rpartXse.v2 1.0000000

$a4$nmse

Workflow Estimate

1 rpartXse.v3 1.001453

2 rpartXse.v2 1.351494

3 lm 1.357243

$a5$nmse

Workflow Estimate

1 svm 0.9968475

2 rpartXse.v3 0.9990465

3 rpartXse.v2 1.0194733

$a6$nmse

Workflow Estimate

1 rpartXse.v2 1.010069

2 rpartXse.v3 1.010069

3 svm 1.054975

$a7$nmse

Workflow Estimate

1 rpartXse.v2 1.00000

2 rpartXse.v3 1.00000

3 rpartXse.v1 1.00797

topPerformers(kCV.results.algae.all)

$a1

Workflow Estimate

nmse rpartXse.v1 0.616

$a2

Workflow Estimate

nmse lm 0.972

$a3

Workflow Estimate

nmse svm 0.95

$a4

Workflow Estimate

nmse rpartXse.v3 1.001

$a5

Workflow Estimate

nmse svm 0.997
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$a6

Workflow Estimate

nmse rpartXse.v2 1.01

$a7

Workflow Estimate

nmse rpartXse.v2 1

For a1, the models seem to perform reasonably well, but it is not as rosy

for the other target variables, where the baseline model is sometimes

better.
84

84: Again, this could be built-in in the

data, but we might benefit from incorpo-

rating more models.

library(randomForest)

kCV.algae.all.rf <- performanceEstimation(

data.sources,

c(Workflow(learner="lm", post="onlyPos"),

Workflow(learner="svm", learner.pars=list(

cost=c(10,1,0.1), gamma=0.1)),

workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.7,1))),

workflowVariants(learner="randomForest",

learner.pars=list(ntree=c(200,500,700)))),

EstimationTask(metrics="nmse", method=CV(nReps=5,

nFolds=10))

)

rankWorkflows(kCV.algae.all.rf,top=3)

$a1$nmse

Workflow Estimate

1 randomForest.v2 0.5217204

2 randomForest.v3 0.5228744

3 randomForest.v1 0.5264328

$a2$nmse

Workflow Estimate

1 randomForest.v3 0.7798749

2 randomForest.v2 0.7806831

3 randomForest.v1 0.7849360

$a3$nmse

Workflow Estimate

1 randomForest.v3 0.9377108

2 randomForest.v2 0.9400108

3 randomForest.v1 0.9431801

$a4$nmse

Workflow Estimate

1 rpartXse.v3 1.001453

2 randomForest.v3 1.006496

3 randomForest.v1 1.006806
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$a5$nmse

Workflow Estimate

1 randomForest.v1 0.7626241

2 randomForest.v2 0.7675794

3 randomForest.v3 0.7681834

$a6$nmse

Workflow Estimate

1 randomForest.v2 0.8590227

2 randomForest.v3 0.8621478

3 randomForest.v1 0.8663869

$a7$nmse

Workflow Estimate

1 rpartXse.v2 1.00000

2 rpartXse.v3 1.00000

3 rpartXse.v1 1.00797

rankWorkflows() does not report on the standard error, so we cannot

tell whether the differences between the score of the best model and the

other models is statistically significant.

randomForest.v3 seems to have the best ranking across all learning

tasks, so we will use it as the baseline model.

p <- pairedComparisons(kCV.algae.all.rf,

baseline="randomForest.v3")

p$nmse$F.test

p$nmse$BonferroniDunn.test

$chi

[1] 22.86905

$FF

[1] 5.251025

$critVal

[1] 0.7071231

$rejNull

[1] TRUE

$critDif

[1] 3.52218

$baseline

[1] "randomForest.v3"

$rkDifs

lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

4.1428571 2.8571429 4.1428571 2.6428571 1.9285714

randomForest.v1 randomForest.v2

0.8571429 0.0000000
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$signifDifs

lm svm rpartXse.v1 rpartXse.v2 rpartXse.v3

TRUE FALSE TRUE FALSE FALSE

randomForest.v1 randomForest.v2

FALSE FALSE

We can reject with 95% certainty the hypothesis that the performance of

the baseline method (randomForest.v3) is the same as that of the linear

model and the first 2 regression trees, but not that it is better than svm,

rpartXse.v3, and the other 2 random forests.

The information is also displayed in the Bonferroni-Dunn CD diagram

below.

CDdiagram.BD(p)

20.6.3 Model Predictions

Finally, we might actually be interested in generating predictions for each

of the target variables in the testing set. This simply requires that the best

performers for each target response be brought together in an R object.

best.performers <- sapply(taskNames(kCV.algae.all.rf),

function(x) topPerformer(kCV.algae.all.rf,

metric="nmse", task=x)

best.performers

$a1

Workflow Object:

Workflow ID :: randomForest.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=500

learner -> randomForest

$a2

Workflow Object:

Workflow ID :: randomForest.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=700

learner -> randomForest
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$a3

Workflow Object:

Workflow ID :: randomForest.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=700

learner -> randomForest

$a4

Workflow Object:

Workflow ID :: rpartXse.v3

Workflow Function :: standardWF

Parameter values:

learner.pars -> se=1

learner -> rpartXse

$a5

Workflow Object:

Workflow ID :: randomForest.v1

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=200

learner -> randomForest

$a6

Workflow Object:

Workflow ID :: randomForest.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> ntree=500

learner -> randomForest

$a7

Workflow Object:

Workflow ID :: rpartXse.v2

Workflow Function :: standardWF

Parameter values:

learner.pars -> se=0.7

learner -> rpartXse

The observations that form the testing set are placed in an object, as

below:

test.observations <- array(dim=c(nrow(algae.test),7,2),

dimnames=list(rownames(algae.test), paste("a",1:7),

c("actual","predicted")))

The function runWorkflow() will compute the predicted values for each

of the targets’ best performers. We can then plot the predicted and actual

values for each of the testing set targets.
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for(j in 1:7){

results <- runWorkflow(best.performers[[j]],

as.formula(paste(names(best.performers)[j],"~ .")),

algae.train[,c(1:11,11+j)],

algae.test[,c(1:11,11+j)])

test.observations[,j,"actual"] <- results$trues

test.observations[,j,"predicted"] <- results$preds

}

df.a1 <- as.data.frame(test.observations[,1,])

df.a2 <- as.data.frame(test.observations[,2,])

df.a3 <- as.data.frame(test.observations[,3,])

df.a4 <- as.data.frame(test.observations[,4,])

df.a5 <- as.data.frame(test.observations[,5,])

df.a6 <- as.data.frame(test.observations[,6,])

df.a7 <- as.data.frame(test.observations[,7,])

plot(df.a1,main="a1 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a2,main="a2 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a3,main="a3 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a4,main="a4 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a5,main="a5 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a6,main="a6 - predicted vs. actual")

abline(0,1,col="red")

plot(df.a7,main="a7 - predicted vs. actual")

abline(0,1,col="red")

The models simply are not that great, but we already expected that. The

average prediction for each target is shown below.

(average.prediction <- apply(algae.train[,12:18],2, mean))

a1 a2 a3 a4 a5 a6 a7

17.47 7.64 4.13 1.98 4.96 5.81 2.50
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Finally, you might be interested in the NMSE metrics for the predicted

values and how they compare to the NMSE metrics on the training set. Is

any of this surprising?

apply((test.observations[,,"actual"] - test.observations[,,"predicted"])^2, 2, sum) /

apply((scale(test.observations[,,"actual"], average.prediction,FALSE))^2, 2, sum)

a1 a2 a3 a4 a5 a6 a7

0.40 0.88 0.78 1.00 0.71 0.84 1.00

20.7 Exercises

1. Let (𝑋,𝑌) be a bivariate normal random variable with parameters

𝜇𝑋 = 12, 𝜇𝑌 = −7, 𝜎2

𝑋 = 1, 𝜎2

𝑌 = 2, 𝜎𝑋𝑌 = 4.

Consider the parameter

𝛼 =
𝜎2

𝑌
− 𝜎𝑋𝑌

𝜎2

𝑋
+ 𝜎2

𝑌
− 2𝜎𝑋𝑌

.

Using a bootstrap procedure with 𝑁 = 100 samples and 𝑀 = 200 replicates, provide a confidence interval

for the true value of 𝛼. [5]

2. Explicitly obtain the polynomial regression models in the Gapminder Example, for 𝑑 = 2, 3, 4.

3. Play around with a variety of knots in the step function regression models for the Gapminder Example,

and build the corresponding confidence intervals (including those of the example). How would you

determine the number and location of the knots?

4. Determine the optimal number of knots 𝐾 for cubic splines and natural cubic splines for the Gapminder

Example, using cross-validation.

5. Build piecewise cubic splines and continuous piecewise cubic splines for the Gapminder Example. Use

cross-validation to determine the optimal number of knots.

6. Predict life expectancy of countries in 2011 using the various spline models (in the text and in the exercises)

on the Gapminder dataset, with training/testing pairs. Evaluate your models. Which ones perform best?

7. Predict life expectancy of countries in 2011 using various GAM models on the Gapminder dataset, with

training/testing pairs. Evaluate your models. Which ones perform best?

8. Consider the dataset algae_blooms.csv, as in Section 20.6. Run the analysis with a scaled dataset. Run

the analysis with a PCA-reduced dataset. Do the results change significantly?

9. Consider the following datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx , and

UniversalBank.csv .

For each of these datasets, identify a response variable (or more than one, if the fancy strikes you) and

predictors, and build models to predict the response(s) using the various methods discussed in this

chapter. Evaluate and rank the resulting models. You may need to clean, transform, and visualize the data

along the way.

10. Complete the definition of the Python function kfoldCV(k, data, yname, formulas) where k is the

number of folds, data is the data set, yname is the column name of the dependent variable, and formulas

is a list of formulas. The function should return the tuple fit, f where fit is the OLS model for the

formula f in formulas that has the minimum 𝑘−fold CV estimate. Use it on the mpg data set with 𝑘 = 10

to obtain a good model for predicting mpg.

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
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import seaborn as sns

df = sns.load_dataset(’mpg’)

df.head()

def kfoldCV(k, data, yname, formulas):

fit = None

# Your code here. Don’t forget to obtain a

# random permutation of the observations

for f in formulas:

# Your code here

None

return fit, f
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In Chapter 19 (Machine Learning 101), we provided a (mostly) math-free

general overview of machine learning. In this chapter, we present an

introductory mathematical treatment of the discipline, with a focus

on classification, ensemble learning, and non-parametric supervised

methods.

Our approach once again borrows heavily from [14, 18]; explanations

and examples are also available in [3, 6]. It provides a continuation of the

treatment found in Chapter 20 (Regression and Value Estimation) and is a

companion piece to Chapter 22 (Focus on Clustering).

21.1 Overview

We will discuss classification in the same context as we discussed re-

gression/value estimation in Section 20.1; the latter should have been

read before embarking on this chapter.
1

In particular, it is expected that 1: Or, at the very least, should be read

concurrently.
readers are familiar with training sets Tr and testing sets Te for a dataset

with 𝑛 observations x1 , . . . , x𝑛 , 𝑝 predictors 𝑋1 , . . . , 𝑋𝑝 and response

variable 𝑌 (see Figure 20.4 for details).

One important note about this chapter’s notation: in the design matrix X,

a row corresponds to the signature vector of an observation (the values of

the predictors); when we write x or 𝜷, we typically understand those to

be column vectors. When in doubt, remember that all matrices/vectors

involved must have compatible dimensions when multiplied or compared;

that will sometimes mean that vectors must be viewed as row-vectors

rather than column vectors, and vice-versa, depending on the context.

21.1.1 Formalism

In a classification setting, the response 𝑌 is categorical, which is to

say that 𝑌 ∈ C, where C = {𝐶1 , . . . , 𝐶𝐾}, but the supervised learning

objectives remain the same:

build a classifier 𝐶(x∗) that assigns a label 𝐶𝑘 ∈ C to test observa-

tions x∗;
understand the role of the predictors in this assignment, and

assess the uncertainty and the accuracy of the classifier.



1302 21 Focus on Classification and Supervised Learning

The main difference with the regression setting (and to be fair, it’s a big

one) is that we do not have access to an MSE-type metric to evaluate the

classifier’s performance.

The counterpart of the regression function

𝑓 (x) = E[𝑌 | ®𝑋 = x]

is defined as follows. For 1 ≤ 𝑘 ≤ 𝐾, let 𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x); the

Bayes optimal classifier at x is the function
2

2: In other words, pick the most numerous

categorical label of observations for which

the signature vector is x. 𝐶(x) = 𝐶 𝑗 where 𝑝 𝑗(x) = max{𝑝1(x), . . . , 𝑝𝐾(x)}.

As was the case or regression, it could be that there are too few observa-

tions at
®𝑋 = x to estimate the probability exactly, in which case we might

want to allow for nearest neighbour averaging:

𝐶̂(x) = 𝐶 𝑗 , where 𝑝̃ 𝑗(x) = max{𝑝̃1(x), . . . , 𝑝̃𝐾(x)},

and 𝑝̃𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 ∈ 𝑁(x)) and 𝑁(x) is a neighbourhood of x.
3

3: The curse of dimensionality is also in

play when 𝑝 becomes too large.

The quantity that plays an analogous role to the MSE for 𝐶̃(x) is the

misclassification error rate:

ERRTe =
1

𝑀

𝑁+𝑀∑
𝑗=𝑁+1

I[𝑦 𝑗 ≠ 𝐶̃(x𝑗)],

where I is the indicator function

I[condition] =
{

0 if the condition is false

1 otherwise

The Bayes optimal classifier 𝐶(x) is the optimal classifier with respect to

ERRTe; the Bayes error rate

𝜂x = 1 − E

[
max

𝑘
𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x)

]
corresponds to the irreducible error and provides a lower limit on any

classifier’s expected error.

Most classifiers build structured models 𝐶̂(x)which directly approximate

the Bayes optimal classifier 𝐶(x) (such as support vector machines or

naïve Bayes classifiers), but some classifiers build structured models 𝑝̂𝑘(x)
for the conditional probabilities 𝑝𝑘(x), 1 ≤ 𝑗 ≤ 𝐾, which are then used

to build 𝐶̂(x), such as logistic regression, generalized additive models,

and 𝑘−nearest neighbours.

The latter models are said to be calibrated (i.e., the relative values of 𝑝̂𝑘(x)
represent relative probabilities), whereas the former are non-calibrated.

4

4: Only the most likely outcome is pro-

vided; it is impossible to say to what ex-

tent a given outcome is more likely than

another.
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21.1.2 Model Evaluation

The confusion matrix of a classifier on Te is a tool to evaluate the model’s

performance:

prediction
0 1

actual 0 TP FN

1 FP TN

Here, TP stands for true positive, FN for true negative, FP for false
positive, and TN for true negative. There are various classifier evaluation
metrics; if the testing set Te has 𝑀 observations, then:

accuracy measures the correct classification rate
TP+TN

𝑀 ;

misclassification is
FP+FN

𝑀 = 1 − accuracy;

false positive rate (FPR) is
FP

FP+TN
;

false negative rate (FNR) is
FN

TP+FN
;

true positive rate (TPR) is
TP

TP+FN
;

true negative rate (TNR) is
TN

FP+TN
;

There are other measures, including the 𝐹1−score, the Matthews’ correla-

tion coefficient, etc. [28].

One thing to remember is that we should not put all the performance

evaluation eggs in the same metric basket!

21.1.3 Bias-Variance Trade-Off

The bias-variance trade-off (see Section 20.1) is also observed in classifiers,

although the decomposition is necessarily different (see [14] for details).

In a 𝑘−nearest neighbours classifier, for instance, the prediction for a

new observation with predictors x∗ ∈ Te is obtained by finding the most

frequent class label of the 𝑘 nearest neighbours to x∗ in Tr on which the

model 𝐶̂𝑘NN(x) is built.

As the number of nearest neighbours under consideration increases, the

complexity of the model 𝐶̂𝑘NN(x) decreases, and vice-versa.

We would thus expect:

a model with a large 𝑘 to underfit the data;

a model with a small 𝑘 to overfit the data, and

models in the “Goldilock zone” to strike a balance between predic-
tion accuracy and interpretability of the decision boundary (see

Figures 20.5 and 21.1).

As it happens, the optimal classifier 𝑌 = 𝐶( ®𝑋) is, in fact, the Bayes

optimal classifier.
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Figure 21.1: Illustration of the accuracy-boundary interpretability trade-off for classifiers on an artificial dataset; Bayes optimal classifier

𝐶(x) (leftmost), underfit 𝐶̂100NN(x)model (2nd leftmost), Goldilock 𝐶̂10NN(x)model (3rd leftmost), overfit 𝐶̂1NN(x)model (4th leftmost).

Notice the interplay between prediction accuracy and complexity of the decision boundary (the dashed curve in the last three graphs shows

the Bayes optimal boundary). [18, 14]

Comparison Between 𝑘NN and OLS We are going to try to get a better

intuitive sense of the bias-variance trade-off by comparing ordinary least

squares (OLS), a rigid yet simple model (as measured by the number of

effective parameters), with 𝑘−nearest neighbours (𝑘NN), a very flexible

yet more complex model (again, according to the number of effective

parameters).

Given an input vector z ∈ ℝ𝑝
, the 𝑘−nearest neighbours (𝑘NN) model

predicts the response 𝑌 as the average

𝑌̂ = Avg{𝑌(x) | x ∈ 𝑁𝑘(z)} =
1

𝑘

∑
x∈𝑁(z)

𝑌(x),

where 𝑌(x) is the known response for predictor x ∈ Tr and 𝑁𝑘(z) is

the set of the 𝑘 training observations nearest to z. Another approach to

neighbourhoods, which we will use at a later stage, is that they contain

all training observations within a certain (fixed) distance of z.
5

5: The notion of proximity depends on

the distance metric in use; the Euclidean

case is the most common, but it does not

have to be that one.

For classification problems, 𝑘NN models use the mode instead of the

average. Of course, the prediction may depend on the value of 𝑘: in

the classification image below, the 6NN prediction would be a red star,

whereas the 19NN model prediction would be a blue disk.

Figure 21.2: Illustration of 𝑘NN classifiers.
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Figure 21.3: Classification based on OLS (left), 1NN (middle), and 15NN (right). [18, 14]

The following classification example (based on [14]) illustrates some of

the bias-variance trade-off consequences. Consider a training dataset Tr

consisting of 200 observations with features (𝑥1 , 𝑥2) ∈ ℝ2
and responses

𝑦 ∈ {BLUE(=0) ,ORANGE(=1)}. Let [·] : ℝ→ {BLUE,ORANGE} denote

the function

[𝑤] =
{

BLUE 𝑤 ≤ 0.5

ORANGE 𝑤 > 0.5

Linear Fit Fit an OLS model

𝑦̂(x) = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2

on Tr; the class prediction is 𝑔̂(x) = [𝑦̂(x)]. The decision boundary

𝜕OLS = {(𝑥1 , 𝑥2) | 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 = 0.5}

is shown in Figure 21.3 (on the left); it is a straight line which can be

described using only 2 effective parameters.
6

6: Their number is a measure of a model’s

complexity.

There are several misclassifications on both sides of 𝜕OLS; even though

errors seem to be unavoidable, the OLS model is likely to be too rigid.

𝑘NN Fit If 𝑦̂(x) represents the proportion of ORANGE points in 𝑁𝑘(x),
then the class prediction is 𝑔̂(x) = [𝑦̂(x)]. The decision boundaries 𝜕1NN

and 𝜕15NN are displayed in Figure 21.3.

They are both irregular: 𝜕1NN is overfit, whereas 𝜕15NN is less likely to

be.
7

The effective parameters are not as obviously defined for this model; 7: Although neither is great for inter-
pretability.

one approach is to view 𝑘NN as a model that fits 1 parameter (a mean)

to each ideal (non-overlapping) neighbourhood in the data, so that the

number of effective parameters is roughly equal to the number of such

neighbourhoods:

𝑁

𝑘
≈

{
13 when 𝑘 = 15

200 when 𝑘 = 1

The 𝑘NN models are thus fairly complex, in comparison with the OLS

model. There are no misclassification for 𝑘 = 1, and several in the case

𝑘 = 15.
8

The 15NN model seems to strike a balance between various 8: But not as many as with the OLS model.

competing properties; it is likely nearer the “sweet spot” of the test error

curve.
9

9: Remember however that we have not

evaluated the performance of the models

on a testing set Te; we have only described

some of their behaviours on the train-

ing set Tr.
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Conclusions The OLS model is stable as adding a few training obser-

vations is unlikely to alter the fit substantially, but also biased since the

assumptions of a valid linear fit is questionable; the 𝑘NN models are

unstable as adding a few training observations is quite likely to alter the

fit substantially (especially for small values of 𝑘)), but it is also unbiased
since no apparent assumptions are made about the data.

So which approach is best? That depends entirely on what the ultimate

task is: description, prediction, etc. In predictive data science, machine

learning, and artificial intelligence, the validity of modeling assumptions

takes a backseat to a model’s ability to make good predictions on new
(and unseen) observations.

Naturally, we would expect that models whose assumptions are met are

more likely to make good predictions than models for whom that is not

the case, but it does not need to be the case. The theory of linear models

is mature and extensive, and we could have discussed a number of their

other features and extensions (see Chapter 8 for details).

Keep in mind, then, that machine learning methods are not meant to

replace or supplant classical statistical analysis methods, but rather, to

complement them. They simply provide different approaches to gain
insights from data.

21.2 Simple Classification Methods

Qualitative variables take values in an unordered set C= {𝐶1 , . . . , 𝐶𝐾}.
For instance,

hair colour ∈ {black, red, blond, grey, other}
email message ∈ {ham, spam}
life expectancy ∈ {high, low}

For a training set Tr with observations ( ®𝑋,𝑌) ∈ ℝ𝑝 × C, the classification
problem is to build a classifier 𝐶̂ : ℝ𝑝 → C to approximate the optimal

Bayes classifier 𝐶 : ℝ𝑝 → C (as discussed in the previous section).

In many instances, we might be more interested in the probabilities

𝜋𝑘(x) = 𝑃{𝐶̂(x) = 𝐶𝑘}, 𝑘 = 1, . . . , 𝐾

than in the classification predictions themselves. Typically, the classifier

𝐶̂ is built on a training set

Tr = {(x𝑗 , 𝑦𝑗)}𝑁𝑗=1

and evaluated on a testing set

Te = {(x𝑖 , 𝑦𝑖)}𝑁+𝑀𝑖=𝑁+1
.

Example Let us revisit the gapminder.csv dataset, again focusing

on observations from 2011, with the difference that life expectancy is now

recorded as “high” (1) if it falls above 72.45 (the median in 2011), and as

“low” (0) otherwise.

https://www.data-action-lab.com/wp-content/uploads/2021/08/gapminder.csv
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Setting up the Gapminder dataset

library(dplyr)

gapminder.ML = read.csv("gapminder.csv",

stringsAsFactors=TRUE)

gapminder.ML <- gapminder.ML[complete.cases(gapminder.ML),]

gapminder.ML <- gapminder.ML[,c("country","year","region",

"continent","population","infant_mortality",

"fertility","gdp","life_expectancy")]

gapminder.2011 <- gapminder.ML |> filter(year==2011) |>

mutate(LE=as.factor(ifelse(life_expectancy <

median(life_expectancy),"low","high")))

The structure and summary are provided below:

summary(gapminder.2011[,c("infant_mortality",

"fertility", "LE")])

infant_mortality fertility LE

Min. : 1.800 Min. :1.260 high:83

1st Qu.: 7.275 1st Qu.:1.792 low :83

Median : 16.900 Median :2.420

Mean : 27.333 Mean :2.931

3rd Qu.: 41.125 3rd Qu.:3.908

Max. :106.800 Max. :7.580

Let us assume that we are interested in modeling the response LE (𝑌) as

a linear response of the predictors 𝑋1 (infant mortality) and 𝑋2 (fertility),

using ordinary linear regression (OLS).
10

10: See Chapter 8 for a detailed discussion

of such models.

p1 <- ggpubr::ggboxplot(gapminder.2011, x = "LE",

y = "infant_mortality", fill = "LE", palette = "jco",

xlab="Life Expectancy", ylab="Infant Mortality") +

ggpubr::rremove("legend")

p2 <- ggpubr::ggboxplot(gapminder.2011, x = "LE",

y = "fertility", fill = "LE", palette = "jco",

xlab="Life Expectancy", ylab="Fertility") +

ggpubr::rremove("legend")

grid::pushViewport(grid::viewport(

layout = grid::grid.layout(nrow = 1, ncol = 2)))

# helper function to define a region on the layout

define_region <- function(row, col){

grid::viewport(layout.pos.row = row, layout.pos.col = col)

}

print(p1, vp = define_region(row = 1, col = 1))

print(p2, vp = define_region(row = 1, col = 2))
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We run an OLS regression of 𝑌 on
®𝑋 over Tr and obtain the model

𝑌̂ = 𝛽̂0 + 𝛽̂1 · infant mortality + 𝛽̂2 · fertility,

from which we would classify an observation’s life expectancy as

𝐶̂( ®𝑋) =
{
high if 𝑌̂ > 0.5

low else

gapminder.2011 <- gapminder.2011 |>

mutate(LE.resp=ifelse(LE=="high",1,0))

model.class <- lm(LE.resp ~ infant_mortality + fertility,

data=gapminder.2011)

beta_0=as.numeric(model.class[[1]][1])

beta_1=as.numeric(model.class[[1]][2])

beta_2=as.numeric(model.class[[1]][3])

model.class[[1]]

(Intercept) infant_mortality fertility

1.00102979 -0.01188533 -0.06010533

Thus,

𝑌̂ = 1.001 − 0.012 · infant mortality − 0.060 · fertility.

We plot the decision boundary on the scatterplot of the domain:
11

11: If the boundary splits the observations

at 𝑌̂ = 𝛾 ∈ [0, 1], then it solves

𝛾 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 , 𝛽2 ≠ 0,

so that

𝑋2 =

(
𝛾 − 𝛽0

𝛽2

)
−

𝛽1

𝛽2

𝑋1 .

slope = -beta_1/beta_2

intercept = 0.5*(1-2*beta_0)/beta_2

ggpubr::ggscatter(gapminder.2011, x="infant_mortality",

y="fertility", shape="LE", color="LE", palette="jco",

size = 2, xlab="Infant Mortality", ylab = "Fertility",
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title = "Gapminder 2011 Data") +

ggplot2::geom_abline(intercept = intercept,

slope = slope, color="red", linetype="dashed", size=1.5)

The OLS approach is likely to do a decent job here since the data is

roughly linearly separable over the predictors. This will not usually be

the case, however.

In the example above, the optimal regression function is

𝑓 (x) = E[𝑌 | ®𝑋 = x] = 𝑃(𝑌 = 1 | ®𝑋 = x) = 𝑝1(x)

because𝑌 is a binary variable; this might lead us to believe that 𝑓 (x) could

also be used to directly classify and determine the class probabilities for

the data, in which case there would be no need for a separate classification
apparatus.

12
12: There is one major drawback with this

approach: if linear regression is used to

model the data (which is to say, if we as-

sume that 𝑓 (x) ≈ x⊤𝜷), we need to insure

that 𝑓OLS(x) ∈ [0, 1] for all x ∈ Te. This, in

general, cannot be guaranteed.

A problem arises if we study the residual situation further. If we model

𝑌 = {0, 1} with an OLS regression, we have

𝑌𝑖 = x⊤𝑖 𝜷 + 𝜀𝑖 .

Thus

𝜀𝑖 = 𝑌𝑖 − x⊤𝑖 𝜷 =

{
1 − x⊤

𝑖
𝜷 if 𝑌𝑖 = 1

−x⊤
𝑖
𝜷 if 𝑌𝑖 = 0

But OLS assumes that 𝜺 ∼N(0, 𝜎2𝐼), which is clearly not the case here,

as 𝜀𝑖 can only take two values. OLS is thus not an appropriate way to

model the response.

Furthermore,

Var(𝑌𝑖) = 𝑝1(x𝑖)(1 − 𝑝1(x𝑖)),

since 𝑌𝑖 is a binomial random variable, and

Var(𝜀𝑖) = Var(𝑌𝑖 − 𝑝1(x𝑖)) = Var(𝑌𝑖) = 𝑝1(x𝑖)(1 − 𝑝1(x𝑖)),

which is not constant as it depends on x𝑖 .
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The OLS assumptions are thus violated at every turn
13

– OLS is simply13: There is another way in which OLS

could fail, but it has nothing to do with the

OLS assumptions per se. When the set of

qualitative responses contains more than

2 level (such as C= {low, medium, high},
for instance), the response is usually en-

coded using numerals to facilitate the im-

plementation of the analysis:

𝑌 =


0 if low

1 if medium

2 if high

This encoding suggests an ordering
and a scale between the levels (for in-

stance, the difference between “high” and

“medium” is equal to the difference be-

tween “medium” and “low”, and half

again as large as the difference between

“high” and “low”). OLS is not appropriate

in this context.

not a good fit/modeling approach to estimate

𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | ®𝑋 = x).

We start by introducing two simple classification methods (see [18] for

more details).

21.2.1 Logistic Regression

The problems presented above point to OLS not being an ideal method for

classification, but the linear regression still provided a good separator in

the Gapminder example. This suggests that we should not automatically

reject the possibility of first transforming the data and then seeing if OLS

might not provide an appropriate modeling strategy on the transformed

data.

Formulations In logistic regression, we are seeking an invertible trans-

formation 𝑔 : ℝ→ [0, 1], with 𝑔(𝑦∗) = 𝑦 and 𝑔−1(𝑦) = 𝑦∗. The variable

𝑦 must behave like a probability; in the 2-class setting, we use 𝑔𝐿(𝑦∗) to
approximate the probability

𝑝1(x) = 𝑃(𝑌 = 1 | ®𝑋 = x).

The idea is to run OLS on a transformed training set

Tr
∗ = {(x𝑖 , 𝑦∗𝑖 )}

𝑁
𝑖=1
,

and to transform the results back using 𝑦𝑖 = 𝑔(𝑦∗
𝑖
).

There are many such functions: the probit model,
14

which we will14: The probit transformation uses

𝑔𝑃(𝑦∗) = Φ(𝑦∗), whereΦ is the cumulative

distribution function of N(0, 1).
not discuss, and the logit model regression model are two common

approaches.

Logit Model The logit model uses the transformation

𝑦 = 𝑔𝐿(𝑦∗) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ .

It is such that

𝑔−1

𝐿 (0) = −∞, 𝑔−1

𝐿 (1) = ∞, 𝑔−1

𝐿 (0.5) = 0, etc.

We solve for 𝑦∗ in order to get a transformed response 𝑦∗ ∈ ℝ (instead of

one restricted to [0, 1]):

𝑝1(x) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ ⇐⇒ 𝑦∗ = 𝑔−1

𝐿 (𝑦) = ln

(
𝑝1(x)

1 − 𝑝1(x)

)
.

It is the log-odds transformed observations that we attempt to fit with

an OLS model:

𝑌̂∗ = ln

(
𝑝1(x)

1 − 𝑝1(x)

)
= 𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑝𝑋𝑝 = x⊤𝜷.
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In order to make a prediction for 𝑝1(x), we estimate 𝑦∗ and use the logit

transformation to recover 𝑦. For instance, if x⊤𝜷̂ = 0.68, then

𝑦̂∗ = ln

(
𝑝̂1(x)

1 − 𝑝̂1(x)

)
= 0.68

and

𝑝̂1(x) =
𝑒𝑦
∗

1 + 𝑒𝑦∗ =
𝑒0.68

1 + 𝑒0.68

= 0.663.

Depending on the decision rule threshold 𝛾, we may thus predict that

𝐶̂(x) = 𝐶1 if 𝑝1(x) > 𝛾 or 𝐶̂(x) = 𝐶2, otherwise.

The technical challenge is in obtaining the coefficients 𝜷̂; they are found

by maximizing the likelihood (see [17])

𝐿(𝜷) =
∏
𝑦𝑖=1

𝑝1(x𝑖)
∏
𝑦𝑖=0

(1 − 𝑝1(x𝑖))

=
∏
𝑦𝑖=1

exp(xi
⊤𝜷)

1 + exp(xi⊤𝜷)
∏
𝑦𝑖=0

1

1 + exp(xi⊤𝜷)
,

or, more simply:

𝜷̂ = arg max

𝜷
{𝐿(𝜷)} = arg max

𝜷
{ln 𝐿(𝜷)}

= arg max

𝜷

{∑
𝑦𝑖=1

ln 𝑝1(x𝑖) +
∑
𝑦𝑖=0

ln(1 − 𝑝1(x𝑖))
}

= ... (terms in 𝜷 and the observations x𝑖).

The optimizer 𝜷̂ is then found using numerical methods; in R, the function

glm() computes the maximum likelihood estimate directly.

Example Using the Gapminder data from this section’s start, we obtain

the following model:

model.LR <- glm(LE.resp ~ infant_mortality + fertility,

data=gapminder.2011, family=binomial)

model.LR

Coefficients:

(Intercept) infant_mortality fertility

4.58733 -0.22499 -0.06495

Degrees of Freedom: 165 Total (i.e. Null); 163 Residual

Null Deviance: 230.1

Residual Deviance: 78.17 AIC: 84.17

Thus

𝑦̂∗ = ln

(
𝑃(𝑌 = high | ®𝑋)

1 − 𝑃(𝑌 = high | ®𝑋)

)
= 4.59 − 0.22𝑋1 − 0.06𝑋2.

For a decision rule threshold of 𝛾 = 0.5, the decision boundary is shown

below (compare with the linear regression boundary on page 1309).
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beta_0 = as.numeric(model.LR[[1]][1])

beta_1 = as.numeric(model.LR[[1]][2])

beta_2 = as.numeric(model.LR[[1]][3])

slope = -beta_1/beta_2

intercept = 0.5*(1-2*beta_0)/beta_2

ggpubr::ggscatter(gapminder.2011, x="infant_mortality",

y="fertility", shape="LE", color="LE", palette="jco",

size = 2, xlab="Infant Mortality", ylab = "Fertility",

title = "Gapminder 2011 Data") +

ggplot2::geom_abline(intercept = intercept,

slope = slope, color="red", linetype="dashed", size=1.5)

What is the estimated probability that the life expectancy is high in

a country whose infant mortality is 15 and whose fertility is 4? By

construction,

𝑝1(𝑌 = high | 𝑋1 = 15, 𝑋2 = 4) ≈ 𝑔𝐿([1, 15, 24]⊤𝜷̂)

=
exp(4.59 − 0.22(15) − 0.06(4))

1 + exp(4.59 − 0.22(15) − 0.06(4))

=
exp(0.9526322)

1 + exp(0.9526322) = 0.72.

How does all of this square up with the statistical learning framework of

Sections 19 and 20: no testing set has made an appearance, no misclassifi-

cation or mean squared error rate has been calculated.

Next, we randomly select 116 observations, say, and train a logistic

regression model on this training set Tr to obtain:

set.seed(0)

ind.train = sample(nrow(gapminder.2011),

round(0.7*nrow(gapminder.2011)),replace=FALSE)
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gapminder.2011.tr = gapminder.2011[ind.train,]

gapminder.2011.te = gapminder.2011[-ind.train,]

model.LR.tr <- glm(LE.resp ~ infant_mortality + fertility,

family=binomial, data=gapminder.2011.tr)

model.LR.tr

Coefficients:

(Intercept) infant_mortality fertility

6.1194 -0.2050 -0.6653

Degrees of Freedom: 115 Total (i.e. Null); 113 Residual

Null Deviance: 159.1

Residual Deviance: 50.83 AIC: 56.83

Thus,

𝑦̂∗ = 6.12 − 0.21𝑥1 − 0.67𝑥2.

Now, compute

𝑝̂𝑖 = 𝑃(𝑌𝑖 = high | 𝑋1 = 𝑥1,𝑖 , 𝑋2 = 𝑥2,𝑖) =
exp(𝑦̂∗

𝑖
)

1 + exp(𝑦̂∗
𝑖
)

on the observations in the testing set Te (see below).
15

15: The observations in the original

dataset not in Tr.

beta_0 = as.numeric(model.LR[[1]][1])

beta_1 = as.numeric(model.LR[[1]][2])

beta_2 = as.numeric(model.LR[[1]][3])

gapminder.2011.te$y.star = beta_0 +

beta_1*gapminder.2011.te$infant_mortality +

beta_2*gapminder.2011.te$fertility

gapminder.2011.te$p.1 = exp(gapminder.2011.te$y.star)/

(1+exp(gapminder.2011.te$y.star))

gapminder.2011.te$MSE = (gapminder.2011.te$p.1 -

gapminder.2011.te$LE.resp)^2

summary(gapminder.2011.te$LE.resp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 0.00 0.36 1.00 1.00

We obtain

MSETe =
1

50

50∑
𝑖=1

(𝑝̂𝑖 −I[𝑌𝑖 = high])2 = 0.075.

Is that a good test error? It is difficult to answer without more context.

Perhaps a more intuitive way to view the situation is to make actual

predictions and to explore their quality.
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ggpubr::ggscatter(gapminder.2011.te, x="p.1", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Testing Set Predictions")

For 𝛼 ∈ [0, 1], we further define

pred𝑖(𝛼) =
{
high if 𝑝̂𝑖 > 𝛼

low else

In the specific version of Te used in this example, 36% of the nations had

a high life expectancy.

gapminder.2011.te$pred81 = ifelse(gapminder.2011.te$p.1 > 0.81,

1, 0)

table(gapminder.2011.te$LE.resp,gapminder.2011.te$pred81)

If we set 𝛼 = 0.81, then the model predicts that 36% of the test nations

will have a high life expectancy, and the confusion matrix on Te is shown

below:

𝛼 = 0.81 prediction
0 1

actual 0 30 2

1 2 16

But why pick 𝛼 = 0.81 instead of 𝛼 = 0.5, say?
16

In the latter case, 42%16: In a sense, this could prove to be the

only rational choice in the absence of in-

formation.

of nations are predicted to have high life expectancy, and the confusion

matrix on Te is as in the next page.
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gapminder.2011.te$pred50 = round(gapminder.2011.te$p.1, 0)

table(gapminder.2011.te$LE.resp,gapminder.2011.te$pred50)

𝛼 = 0.5 prediction
0 1

actual 0 28 4

1 1 17

We will revisit this question at the end of this section (ROC Curve).

21.2.2 Discriminant Analysis

In logistic regression, we model 𝑃(𝑌 = 𝐶𝑘 | x) directly via the logistic

function

𝑝1(x) =
exp(x⊤𝜷̂)

1 + exp(x⊤𝜷̂)
.

We have discussed some of the properties of the process in the previous

section, but it should be noted that logistic regression is sometimes

contra-indicated:

when the classes are well-separated, the coefficient estimates may

be unstable (adding as little as one additional point to Tr could

change the coefficients substantially);

when Tr is small and the distribution of the predictors is roughly

Gaussian in each of the classes 𝑌 = 𝐶𝑘 , the coefficient estimates

may be unstable too;

when there are more than 2 response levels, it is not always obvious

how to select an extension of logistic regression.

In discriminant analysis (DA), we instead model

𝑃(x | 𝑌 = 𝐶𝑘),

the distribution of the predictors
®𝑋 conditional on the level of 𝑌, and use

Bayes’ Theorem to obtain

𝑃(𝑌 = 𝐶𝑘 | x),

the probability of observing the response conditional on the predictors.

Let C= {𝐶1 , . . . , 𝐶𝐾} be the 𝐾 response levels, 𝐾 ≥ 2, and denote by 𝜋𝑘
the probability that a random observation lies in 𝐶𝑘 , for 𝑘 ∈ {1, . . . , 𝐾};
𝜋𝑘 is the prior

𝜋𝑘 = 𝑃(𝑌 = 𝐶𝑘) =
|𝐶𝑘 |
𝑁

.

Let 𝑓𝑘(x) = 𝑃(x | 𝑌 = 𝐶𝑘) be the conditional density function of the

distribution of
®𝑋 in 𝐶𝑘 ; we would expect 𝑓𝑘(x) to be large if there is a

high probability that an observation in 𝐶𝑘 has a corresponding predictor

®𝑋 ≈ x, and small otherwise.
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According to Bayes’ Theorem,

𝑝𝑘(x) = 𝑃(𝑌 = 𝐶𝑘 | x)

=
𝑃(x | 𝑌 = 𝐶𝑘) · 𝑃(𝑌 = 𝐶𝑘)

𝑃(x)

=
𝑃(x | 𝑌 = 𝐶𝑘) · 𝑃(𝑌 = 𝐶𝑘)

𝑃(x | 𝑌 = 𝐶1) · 𝑃(𝑌 = 𝐶1) + · · · + 𝑃(x | 𝑌 = 𝐶𝐾) · 𝑃(𝑌 = 𝐶𝐾)

=
𝜋𝑘 𝑓𝑘(x)

𝜋1 𝑓1(x) + · · · + 𝜋𝐾 𝑓𝐾(x)
.

Given an observation x ∈ Te, the DA classifier is

𝐶̂DA(x) = 𝐶
arg max𝑗 {𝑝 𝑗(x)} .

In order to say more about discriminant analysis, we need to make

additional assumptions on the nature of the underlying distributions.

Linear Discriminant Analysis If there is only one predictor (𝑝 = 1), we

make the Gaussian assumption,

𝑓𝑘(𝑥) =
1√

2𝜋𝜎𝑘
exp

[
−1

2

(
𝑥 − 𝜇𝑘
𝜎𝑘

)
2

]
,

where 𝜇𝑘 and 𝜎𝑘 are the mean and the standard deviation, respectively,

of the predictor for all observations in class 𝐶𝑘 .
17

17: Any other predictor distribution could

be used if it is more appropriate for Tr, and

we could assume that the standard devia-

tions or the means (or both) are identical

across classes.

If we further assume that 𝜎𝑘 ≡ 𝜎 for all 𝑘, then

𝑝𝑘(𝑥) =
𝜋𝑘

1√
2𝜋𝜎

exp

[
−1

2

( 𝑥 − 𝜇𝑘
𝜎

)
2

]
𝜋1

1√
2𝜋𝜎

exp

[
−1

2

( 𝑥 − 𝜇1

𝜎

)
2

]
+ · · · + 𝜋𝐾

1√
2𝜋𝜎

exp

[
−1

2

( 𝑥 − 𝜇𝐾
𝜎

)
2

]

=

𝜋𝑘 exp

[
−1

2

( 𝑥 − 𝜇𝑘
𝜎

)
2

]
𝜋1 exp

[
−1

2

( 𝑥 − 𝜇1

𝜎

)
2

]
+ · · · + 𝜋𝐾 exp

[
−1

2

( 𝑥 − 𝜇𝐾
𝜎

)
2

]

=

𝜋𝑘 exp

[𝜇𝑘
𝜎2

(
𝑥 − 𝜇𝑘

2

)]
exp

(
− 𝑥

2

2𝜎2

)
{
𝜋1 exp

[𝜇1

𝜎2

(
𝑥 − 𝜇1

2

)]
+ · · · + 𝜋𝐾 exp

[𝜇𝐾
𝜎2

(
𝑥 − 𝜇𝐾

2

)]}
exp

(
− 𝑥

2

2𝜎2

)
= 𝜋𝑘 exp

[𝜇𝑘
𝜎2

(
𝑥 − 𝜇𝑘

2

)]
· 𝐴(𝑥).

We do not need to compute the actual probabilities 𝑝𝑘(𝑥) directly if we

are only interested in classification; in that case, the discriminant score
for each class may be more useful:

𝛿𝑘(𝑥) = ln 𝑝𝑘(𝑥) = ln𝜋𝑘 + 𝑥
𝜇𝑘
𝜎2

− 𝜇𝑘
2𝜎2

+ ln𝐴(𝑥).

As ln𝐴(𝑥) is the same for all 𝑘, we can drop it from the score as it does

not contribute to relative differences in class scores; given an observation
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Figure 21.4: Midpoint of two theoretical normal distributions (dashed line); midpoint of two empirical normal distributions (solid line).

Observations to the left of the decision boundary are classified as green, those to the right as purple. [18]

𝑥 ∈ Te, the linear discriminant analysis (LDA) classifier with 𝑝 = 1 is

𝐶̂LDA(x) = 𝐶
arg max𝑗 {𝛿̂ 𝑗(x)} .

Under other assumptions on the density function, the discriminant score

formulation may change.

The “linear” in LDA comes from the linearity of the discriminant scores

𝛿𝑘 .18 18: After the ln𝐴(𝑥) term has been

dropped.

If 𝐾 = 2 and 𝜋1 = 𝜋2 = 0.5, the midpoint 𝑥∗ = 1

2
(𝜇1 +𝜇2) of the predictor

means in 𝐶1 and 𝐶2 plays a crucial role. Indeed, the discriminant scores

𝛿1(𝑥) and 𝛿2(𝑥)meet when

𝑥∗
𝜇1

𝜎2

−
𝜇2

1

2𝜎2

= 𝑥∗
𝜇2

𝜎2

−
𝜇2

2

2𝜎2

=⇒ 𝑥∗ =
𝜇1 + 𝜇2

2

,

as long as 𝜇1 ≠ 𝜇2. If 𝜇1 < 𝜇2, say, then the decision rule simplifies to

𝐶̂(𝑥) =
{
𝐶1 if 𝑥 ≤ 𝑥∗

𝐶2 if 𝑥 > 𝑥∗

The principle is illustrated in Figure 21.4.

In practice, we estimate 𝜋𝑘 , 𝜇𝑘 and 𝜎 from Tr:

𝜋̂𝑘 =
𝑁𝑘

𝑁
, 𝜇̂𝑘 =

1

𝑁𝑘

∑
𝑦𝑖∈𝐶𝑘

𝑥𝑖

𝜎̂2 =

𝐾∑
𝑘=1

𝑁𝑘 − 1

𝑁 − 𝐾

(
1

𝑁𝑘 − 1

∑
𝑦𝑖∈𝐶𝑘
(𝑥𝑖 − 𝜇̂𝑘)2

)
.

If there are 𝑝 > 1 predictors, we can still make the Gaussian assumption,

but adapted to ℝ𝑝
:

𝑓𝑘(x) =
1

(2𝜋)𝑝/2 |𝚺𝑘 |1/2
exp

[
−1

2

(x − 𝝁𝑘)⊤𝚺−1

𝑘
(x − 𝝁𝑘),

]
,
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where 𝝁𝑘 = (𝑋1 , . . . , 𝑋𝑝) and 𝚺𝑘(𝑗 , 𝑖) = Cov(𝑋𝑖 , 𝑋𝑗) for all
®𝑋 with

𝑌 = 𝐶𝑘 .

If we further assume that 𝜎𝑘 ≡ 𝚺 for all 𝑘, then we can show that the

discriminant score is, again, linear (in x):

𝛿𝑘;LDA(x) = x⊤𝚺−1𝝁𝑘 −
1

2

𝝁⊤𝑘𝚺
−1𝝁𝑘 + ln𝜋𝑘 = 𝑐𝑘,0 + c⊤𝑘x.

We can estimate 𝝁𝑘 and 𝚺 from the data, from which we can recover the

estimates

𝑃(𝑌 = 𝐶𝑘 | x) ≈ 𝑝̂𝑘(x) =
exp(𝛿̂𝑘;LDA(x))∑𝐾
𝑗=1

exp(𝛿̂ 𝑗;LDA(x))
.

The decision rule is as before: given an observation x ∈ Te, the LDA

classifier with 𝑝 > 1 is

𝐶̂LDA = 𝐶
arg max𝑗 {𝛿̂ 𝑗;𝐿𝐷𝐴(x)} .

Quadratic Discriminant Analysis The assumption that the conditional

probability functions be Gaussians with the same covariance in each

training class may be a stretch in some situations.

If 𝚺𝑖 ≠ 𝚺𝑗 for at least one pair of classes (𝑖 , 𝑗), then a similar process

gives rise to quadratic discriminant analysis (QDA), which reduces to

discriminant scores

𝛿𝑘;QDA(x) = −
1

2

(x − 𝝁𝑘)⊤𝚺−1

𝑘
(x − 𝝁𝑘) + ln𝜋𝑘

= −1

2

x⊤𝚺−1

𝑘
x + x⊤𝚺−1

𝑘
𝝁𝑘 −

1

2

𝝁⊤𝑘𝚺
−1

𝑘
𝝁𝑘 + ln𝜋𝑘 .

To learn the LDA model, we must estimate 𝐾𝑝 + 𝑝(𝑝+1)
2

parameters from

Tr;
19

to learn QDA, 𝐾
(
𝑝 + 𝑝(𝑝+1)

2

)
.
20

QDA is thus more complex (and19: 𝑝 parameters for each 𝝁̂𝑘 and 1+· · ·+𝑝
parameters for 𝚺̂.

20: 𝑝 parameters for each 𝝁̂𝑘 and 1+· · ·+𝑝
parameters for each 𝚺̂𝑘 .

more flexible) than LDA.

The latter is recommended if Tr is small; the former if Tr is large, but

LDA will yield high bias if the 𝚺𝑘 ≡ 𝚺 assumption is invalid. Note that

LDA gives rise to nearly linear separating hypersurfaces and QDA to

quadratic ones.

Gaussian Naïve Bayes Classification If we assume further that each 𝚺𝑘
is diagonal (that is, if we assume that the features are independent from

each other in each class), we obtain the Gaussian naïve Bayes classifier
(GNBC), with discriminant scores given by

𝛿𝑘;GNBC(x) = −
1

2

𝑝∑
𝑗=1

(𝑥 𝑗 − 𝜇𝑘,𝑗)2

𝜎2

𝑘,𝑗

+ ln𝜋𝑘 .

The classification process continues as before. Note that the assumption

of independence is usually not met, hence the “naïve” part in the name.
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In spite of this, GNBC can prove very useful when 𝑝 is too large, where

both LDA and QDA break down.

Note that this approach can also be used for mixed feature vectors, by

using combinations of probability mass functions and probability density

functions in 𝑓𝑘,𝑗(𝑥 𝑗), as required. We will re-visit NBC in Section 21.4

(Naïve Bayes Classifiers).

Logistic Regression (Reprise) We can also recast the 2−class LDA

model as

ln

(
𝑝0(x)

1 − 𝑝0(x)

)
= ln(𝑝0(x)) − ln(𝑝1(x)) = 𝛿0(x) − 𝛿1(x) = 𝑎0 + a⊤x,

which has the same form as logistic regression.

It is not the same model, however:

in logistic regression, the parameters are estimated using the

maximum likelihood 𝑃(𝑌 | x);
in LDA, the parameters are estimated using the full likelihood

𝑃(x | 𝑌)𝑃(x) = 𝑃(x, 𝑌).

Example We finish this section by giving an example of LDA and QDA

on the 2011 Gapminder data (we will use the same training set Tr with

𝑁 = 116 observations and testing set Te with 𝑀 = 50 observations).

Given an observation x ∈ Te, we use a decision rule based on the

probabilities 𝑝̂0(x), 𝑝̂1(x) and a decision threshold 𝛼 ∈ (0, 1). On the

training set Tr, we find:

library(dplyr)

tmp = gapminder.2011.tr |> group_by(LE.resp) |>

summarise(N.k=n(), mean.im=mean(infant_mortality),

mean.f=mean(fertility))

N.0 = tmp[[2]][1]

N.1 = tmp[[2]][2]

N = N.0 + N.1

mu.0 = t(matrix(cbind(tmp[[3]][1],tmp[[4]][1])))

mu.1 = t(matrix(cbind(tmp[[3]][2],tmp[[4]][2])))

mu = (N.0*mu.0+N.1*mu.1)/N

tmp <- gapminder.2011.tr |>

split(gapminder.2011.tr$LE.resp) |>

purrr::map(select, c("infant_mortality","fertility")) |>

purrr::map(cov)

Sigma.0 <- tmp[[1]]

Sigma.1 <- tmp[[2]]

Sigma <- cov(gapminder.2011.tr[,c("infant_mortality",

"fertility")])
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which yields

𝑁0 = 51, 𝑁1 = 65, 𝜋̂0 = 51/116, 𝜋̂1 = 65/116,

𝝁̂0 = (45.40, 4.08)⊤ , 𝝁̂1 = (9.57, 1.92)⊤

𝚺0 =

(
496.51 23.38

23.38 2.17

)
, 𝚺1 =

(
42.79 2.14

2.14 0.31

)
𝝁̂ = (25.30, 2.87)⊤ , 𝚺 =

(
557.89 30.51

30.51 2.27

)
We invert the matrices 𝚺1 ,𝚺2 ,𝚺 using R’s matlib::inv(), and plug in

the results in the LDA and QDA score formulas to obtain:
21

21: Is this the best way to store the

LDA/QDA functions in R?

gapminder.2011.te$d.0.LDA = -4.780979901 -

0.0633308892*gapminder.2011.te$infant_mortality +

2.645503201*gapminder.2011.te$fertility

gapminder.2011.te$d.1.LDA = -2.277022950 -

0.1094188053*gapminder.2011.te$infant_mortality +

2.313946886*gapminder.2011.te$fertility

gapminder.2011.te$d.0.QDA = -4.657130536 -

0.002040555604*gapminder.2011.te$infant_mortality^2 +

0.00614539606*gapminder.2011.te$infant_mortality +

0.04390614038*gapminder.2011.te$infant_mortality*
gapminder.2011.te$fertility +

1.811698768*gapminder.2011.te$fertility -

0.4663036203*gapminder.2011.te$fertility^2

gapminder.2011.te$d.1.QDA = -6.700309855 -

0.01775013332*gapminder.2011.te$infant_mortality^2 -

0.1263473930*gapminder.2011.te$infant_mortality +

0.2427525754*gapminder.2011.te$infant_mortality*
gapminder.2011.te$fertility +

7.005915844*gapminder.2011.te$fertility -

2.429442185*gapminder.2011.te$fertility^2

Thus,

𝛿̂0;LDA = −4.78 − 0.06𝑥1 + 2.65𝑥2

𝛿̂1;LDA = −2.28 − 0.11𝑥1 + 2.31𝑥2

𝛿̂0;QDA = −4.66 − 0.002𝑥2

1
+ 0.01𝑥1 + 0.04𝑥1𝑥2 + 1.81𝑥2 − 0.47𝑥2

2

𝛿̂1;QDA = −6.70 − 0.02𝑥2

1
− 0.13𝑥1 + 0.24𝑥1𝑥2 + 7.01𝑥2 − 2.43𝑥2

2

With the class probability estimates

𝑝̂1;LDA =
exp(𝛿̂1;LDA)

exp(𝛿̂0;LDA) + exp(𝛿̂1;LDA)
,

𝑝̂1,QDA =
exp(𝛿̂1;QDA)

exp(𝛿̂0;QDA) + exp(𝛿̂1;QDA)
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gapminder.2011.te$p.1.LDA = exp(gapminder.2011.te$d.1.LDA)/

(exp(gapminder.2011.te$d.0.LDA)+exp(gapminder.2011.te$d.1.LDA))

gapminder.2011.te$p.1.QDA = exp(gapminder.2011.te$d.1.QDA)/

(exp(gapminder.2011.te$d.0.QDA)+exp(gapminder.2011.te$d.1.QDA))

and the decision threshold set at 𝛼 = 0.5, the LDA and QDA life ex-

pectancy classifiers are defined on Te by

𝐶̂𝛼;LDA(x) =
{

1 (high) if 𝑝1;LDA(x) ≥ 0.5

0 (low) else

𝐶̂𝛼;QDA(x) =
{

1 (high) if 𝑝1;QDA(x) ≥ 0.5

0 (low) else

ggpubr::ggscatter(gapminder.2011.te, x="p.1.LDA", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Test Predictions - LDA")

ggpubr::ggscatter(gapminder.2011.te, x="p.1.QDA", y="LE.resp",

shape="LE", color="LE", palette="jco", size = 3,

xlab="P(Y=1)", ylab = "Life Expectancy Groups",

title = "Gapminder 2011 Data - Test Predictions - QDA")

The 𝛼 = 0.5 confusion matrices for the LDA and QDA classifiers are:

LDA.table = function(x,alpha){

tmp = ifelse(x$p.1.LDA > alpha, 1, 0)

LDA.table = table(factor(x$LE.resp, levels = 0:1),

factor(tmp, levels = 0:1)) }

QDA.table = function(x,alpha){

tmp = ifelse(x$p.1.QDA > alpha, 1, 0)

QDA.table = table(factor(x$LE.resp, levels = 0:1),

factor(tmp, levels = 0:1)) }
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test.LDA=LDA.table(gapminder.2011.te,0.5)

test.QDA=QDA.table(gapminder.2011.te,0.5)

LDA prediction QDA prediction
𝛼 = 0.5 0 1 𝛼 = 0.5 0 1

actual 0 22 10 actual 0 28 4

1 0 18 1 2 16

In the LDA case, we further have

accuracy = 22+18

22+10+0+18
= 80%

misclassification rate = 10+0

22+10+0+18
= 20%

FPR = 0

0+18
= 0%

FNR = 10

22+10
= 31.25%

TPR = 22

22+10
= 68.75%

TNR = 18

0+18
= 100%

In the QDA case:

accuracy = 28+16

28+4+2+16
= 88%

misclassification rate = 4+2

28+4+2+16
= 12%

FPR = 2

2+16
= 11.1%

FNR = 4

28+4
= 12.5%

TPR = 28

28+4
= 87.5%

TNR = 16

2+16
= 88.9%

At first glance, it would certainly seem that the QDA model performs

better (at a decision threshold of 𝛼 = 0.5), but the FPR is not ideal. What

would be the ideal value of 𝛼? How would we find it?

21.2.3 ROC Curve

The receiver operating characteristic (ROC) curve plots the true positive

rate against the false positive rate for classifiers obtained by varying the

decision threshold 𝛼 in [0, 1]. The important realization is that a classifier

that is completely random would lie on the line TPR = FPR. Thus, the

ideal threshold would be the one associated with the model which is

farthest from that line.

Figure 21.5: Illustration of ROC curve con-

cepts.
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Let u(𝛼) be the vector from 0 to the (FPR(𝛼), TPR(𝛼)) coordinates of

the classifier with threshold 𝛼, and let v(𝛼) be the vector through

(FPR(𝛼), TPR(𝛼)) and perpendicular to the line TPR = FPR. The ideal 𝛼∗

satisfies:

𝛼∗ = arg max

𝛼
{∥v(𝛼)∥}

= arg max

𝛼
{∥v(𝛼)∥2}

= arg max

𝛼

{


u(𝛼) − proj(1,1)u(𝛼)



2

}
= arg max

𝛼

{


(FPR(𝛼), TPR(𝛼)) − proj(1,1)(FPR(𝛼), TPR(𝛼))



2

}
= arg max

𝛼

{
∥(FPR(𝛼) − TPR(𝛼), TPR(𝛼) − FPR(𝛼))∥2

}
= arg max

𝛼
{(FPR(𝛼) − TPR(𝛼))2}.

Example For the LDA and QDA classifiers built with the 2011 Gapminder

data (see preceding section), the false positive rates (FPR), false negative

rates (FNR), true positive rates (TPR), true negative rates (TNR), and

misclassification rates (MCR) when the decision threshold 𝛼 varies from

0.01 to 0.99 by steps of length 0.01 are computed below:

fpr=c()

fnr=c()

tpr=c()

tnr=c()

mcr=c()

for(alpha in 1:99){

tmp=LDA.table(gapminder.2011.te,alpha/100)

mcr[alpha]=(tmp[1,2]+tmp[2,1])/sum(tmp)

fpr[alpha]=tmp[2,1]/(tmp[2,1]+tmp[2,2])

fnr[alpha]=tmp[1,2]/(tmp[1,1]+tmp[1,2])

tnr[alpha]=tmp[2,2]/(tmp[2,1]+tmp[2,2])

tpr[alpha]=tmp[1,1]/(tmp[1,1]+tmp[1,2]) }

plot(c(0,fpr),c(0,tpr), type = "b", pch = 21,

col = "red", xlim=c(0,1), ylim=c(0,1),

xlab="FPR",ylab="TPR",

main="Receiver Operating Characteristic Curve - LDA")

abline(0,1)

(index=which((fpr-tpr)^2==max((fpr-tpr)^2)))

abline(fpr[index[1]]+tpr[index[1]],-1, col="green")

for(alpha in 1:99){

tmp=QDA.table(gapminder.2011.te,alpha/100)

mcr[alpha]=(tmp[1,2]+tmp[2,1])/sum(tmp)

fpr[alpha]=tmp[2,1]/(tmp[2,1]+tmp[2,2])

fnr[alpha]=tmp[1,2]/(tmp[1,1]+tmp[1,2])

tnr[alpha]=tmp[2,2]/(tmp[2,1]+tmp[2,2])

tpr[alpha]=tmp[1,1]/(tmp[1,1]+tmp[1,2]) }
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plot(c(0,fpr),c(0,tpr), type = "b", pch = 21,

col = "red", xlim=c(0,1), ylim=c(0,1),

xlab="FPR",ylab="TPR",

main="Receiver Operating Characteristic Curve - QDA")

abline(0,1)

(index=which((fpr-tpr)^2==max((fpr-tpr)^2)))

abline(fpr[index[1]]+tpr[index[1]],-1, col="green")

[1] 73 74

[1] 28

In both frameworks, a number of models have identical (FPR, TPR)
coordinates. With the LDA model, the ideal threshold is 𝛼∗

LDA
= 0.73

(coordinates (0.056, 0.906)); with the QDA model, it is 𝛼∗
QDA

= 0.28

(coordinates (0, 0.844)).

The corresponding confusion matrices are shown below.

LDA prediction QDA prediction
𝛼∗

LDA
= 0.73 0 1 𝛼∗

QDA
= 0.28 0 1

actual 0 29 3 actual 0 27 5

1 1 17 1 0 18

Which model is best? It depends on the context of the task, and on the

consequences of the choice. What makes the most sense here? Is there

a danger of overfitting? Is parameter tuning acceptable, from a data

massaging perspective? What effect does the choice of priors have?

While we can find the optimal 𝛼 according to the procedure highlighted

above, there is another aspect of the ROC curve that may be of interest:

in general, the larger the area under the curve is, the better the model

may behave for non-optimal decision thresholds.

The metric is known as ROC AUC; technically, it varies between 0 and 1,

but we since a classifier that is wrong more often than expected indirectly

provides a classifier that is right more often than expected,
22

we focus22: Simply predict the opposite of what it

predicts.
instead on the area between the curve and the line TPR = FPR.
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21.3 Rare Occurrences

Before we continue and discuss other supervised approaches, we briefly

touch on the problem of rare occurrences (or unbalanced dataset). Say we

are looking to detect fraudulent transactions. We can build classifiers to

approach this task using any number of methods, but there is a potential

problem. If (100 − 𝜀)% of observations belong to the normal category,

and 𝜀% to the special category, the model that predicts that EVERY

observation is normal has (100 − 𝜀)% accuracy.

In practice, the vast majority of transactions are legitimate, so that

0 < 𝜀 ≪ 1; the model in question has tremendous accuracy, even if it

misses the point of the exercise altogether.

There are two general approaches to overcome this issue: either we

modify the algorithms to take into account the asymmetric cost of

making a classification error (through so-called cost-sensitive classifiers
or one-class models), or we modify the training data to take into account

the imbalance in the data. In the former case, we invite you to read the

documentation of the methods that interest you to see how this could be

achieved.

In the latter case, we could try to obtain more training data. This is the

simplest method, but it is not always possible to do so, and it could be

that the new data would follow the same pattern as the original data,

which would leave us no better off than we were to start with.

Another alternative is to create a new training set by either undersampling
the majority class(es) or oversampling the under-represented class(es).

We assume for now that there are only two classes in the data (the

strategies can easily be adapted to multi-class problems).

Undersampling Let Tr = 𝐿 ⊔𝑀𝑐 , where 𝐿 consists of all observations

in the majority case, and 𝑀𝑐 of all observations in the minority case;

by assumption, |𝐿| ≫ |𝑀𝑐 | (and 𝐿 ∩ 𝑀𝑐 = ∅). Split 𝐿 into 𝐾 subsets

𝐿1 , . . . , 𝐿𝐾 , each roughly of the same size; 𝐾 should be selected so that

|𝑀𝑐 | 3 |𝐿𝑖 |, for all 𝑖 (in other words, even though |𝐿𝑖 | could be larger

than |𝑀𝑐 |, it is not going to be substantially so).

We then construct 𝐾 training sets

Tr1 = 𝐿1 ⊔𝑀𝑐 , . . . , Tr𝐾 = 𝐿𝐾 ⊔𝑀𝑐 ;

for all 1 ≤ 𝑖 ≤ 𝐾, we train a classifier 𝐶𝑖 (using a given algorithm) on Tr𝑖 .

Once that is done, we combine the predictions using bagging or other

ensemble learning methods (see Section 21.5).

Figure 21.6: Illustration of undersampling

[author unknown].
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Figure 21.7: Illustration of oversampling (SMOTE) [author unknown].

Oversampling We can oversample the minority cases to create balanced

datasets, but that introduces a dependency in the data that can have

far-reaching effect when it comes to bias and variability.

Synthetic Minority Oversampling Technique (SMOTE) is a common

approach which creates “synthetic” examples rather than oversampling

with replacement – the same idea is used to create samples for handwrit-

ing recognition by perturbing training data (e.g., rotating, skewing, etc.)

[5]:

1. select random integers 𝑘 ≪ ℓ ;

2. draw a random sample Vℓ of size ℓ from the minority class 𝑀𝑐 ;

3. for each x ∈ Vℓ , find the 𝑘 nearest neighbors of x in 𝑀𝑐 , say

zx,1 , . . . , zx,𝑘 ;

4. compute the vectors vx,1 , . . . , vx,𝑘 , originating from x and ending

at each of the zx,1 , . . . , zx,𝑘 ;

5. draw random values 𝛾1 , . . . , 𝛾𝑘 ∼ U(0, 1), and multiply vx,𝑖 by 𝛾𝑖 ,
for each 1 ≤ 𝑖 ≤ 𝑘;

6. the points found at x + 𝛾𝑖vx,𝑖 , 1 ≤ 𝑖 ≤ 𝑘, are added to the set 𝑀𝑐 .

This procedure is repeated until |𝑀𝑐 | 3 |𝐿| (see Figure 21.7).

There are variants, where we always use the same 𝑘, ℓ , Vℓ , or where

we only pick one of the 𝑘 nearest neighbours, etc. In general, SMOTE

increases recall, but it comes at the cost of lower precision.

We will have more to say about rare occurrences in Chapter 26, Anomaly
Detection and Outlier Analysis.
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21.4 Other Supervised Approaches

In this section, we present a number of non-parametric approaches,

with a focus on classification methods (although we will also discuss

regression problems):

classification and regression trees (CART) [2, 18, 14, 25];

support vector machines (SVW) [2, 18, 14, 15, 9];

artificial neural networks (ANN) [6, 12, 1], and

naïve Bayes classification (NBC).

21.4.1 Tree-Based Methods

This family of methods involves stratifying or segmenting the predictor

space into a small number of “simple” regions.

The set of splitting rules used to segment the space can be summarized

using a tree, whence their name. Tree-based methods are simple and

easy to interpret; but they don’t tend to be competitive with the best

supervised learning methods when it comes to predictive accuracy.

Nevertheless, there are instances when the ease of interpretability over-

rules the lessened accuracy. Tree-based methods are applicable both to

regression and to classification problems.

Regression Trees We introduce the important concepts via the 2011

Gapminder dataset.
23

In the figure on page 1308, we saw that when 𝑋1 23: The response 𝑌 is once again the life

expectancy of nations, and the predictors

𝑋1 and 𝑋2 are the fertility rates and infant

mortality rates per nation.

and 𝑋2 are both high, 𝑌 is low, and when 𝑋1 and 𝑋2 are both low, 𝑌 is

high. But what is the pattern “in the middle”?

Below, we see a possible regression tree for the (full) dataset (𝑁 = 166

observations).
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The tree can also be displayed as:

1) root (166) 70.82349

2) infant_mortality>=35.65 (54) 60.85370

4) infant_mortality>=52.9 (28) 58.30714 *
5) infant_mortality< 52.9 (26) 63.59615 *

3) infant_mortality< 35.65 (112) 75.63036

6) infant_mortality>=9.35 (62) 72.89516

12) infant_mortality>=22.85 (18) 69.50000 *
13) infant_mortality< 22.85 (44) 74.28409 *

7) infant_mortality< 9.35 (50) 79.02200

14) infant_mortality>=4.25 (23) 76.86087 *
15) infant_mortality< 4.25 (27) 80.86296 *

Node 1 is the tree’s root (initial node) with 166 (100%) observations; the

average life expectancy for these observations is 70.82.

The root is also the tree’s first branching point, separating the observa-

tions into two groups: node 2 with 54 observations (33%), given by “infant

mortality ≥ 35.65”, for which the average life expectancy is 60.85, and

node 3 with 112 observations (67%), given by “infant mortality < 35.65”,

for which the average life expectancy is 75.63.

Note that 54 + 112 = 166 and that

54(60.81) + 112(75.63)
54 + 112

= 70.82.

Node 2 is an internal node – it is further split into two groups: node

4 with 28 observations (17%), given with the additional rule “infant

mortality ≥ 52.9”, for which the average life expectancy is 58.31, and

node 5 with 26 observations (16%), given with the additional rule “infant

mortality < 52.9”, for which the average life expectancy is 63.60.

Note that 28 + 26 = 54 and that

28(58.31) + 26(63.60)
28 + 26

= 60.85.

Both nodes 4 and 5 are leaves (final nodes, terminal nodes); the tree does

not grow any further on that branch.

The tree continues to grow from node 3, eventually leading to 4 leaves on

that branch (there are intermediate branching points). There are 6 leaves

in total, 5 branching points (including the root) and the tree’s depth is 3

(excluding the root).

Only one feature is used in the regression tree in this example: to make

a prediction for a new observation, only infant mortality is needed. If

it was 21, say, the observation’s leaf would be node 13 and we would

predict that the life expectancy of that nation would be 74.28.

The tree diagram is a useful heuristic, especially since it allows the results

to be displayed without resorting to a multi-dimensional chart, but it

obscures the predictor space’s stratification.
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We can also write

𝑅4 = {(infant mortality, fertility) | infant mortality ≥ 52.9}
𝑅5 = {(infant mortality, fertility) | 36.65 ≤ infant mortality < 52.9}
𝑅12 = {(infant mortality, fertility) | 22.85 ≤ infant mortality < 35.65}
𝑅13 = {(infant mortality, fertility) | 9.35 ≤ infant mortality < 22.85}
𝑅14 = {(infant mortality, fertility) | 4.25 ≤ infant mortality < 9.35}
𝑅15 = {(infant mortality, fertility) | infant mortality < 4.25}

It turns out that only infant mortality is involved in the definition of the

tree’s terminal nodes. The regions are shown below:

Figure 21.8: Stratification of the predictor

space for the 2011 Gapminder data regres-

sion tree.

The regression tree model for life expectancy would thus be

𝑦̂𝑖 = 𝑓 (x𝑖) = Avg{𝑦 | x ∈ 𝑅 𝑗(𝑖)} =



58.3, 𝑗(𝑖) = 4

63.6, 𝑗(𝑖) = 5

69.5, 𝑗(𝑖) = 12

74.3, 𝑗(𝑖) = 13

76.9, 𝑗(𝑖) = 14

80.9, 𝑗(𝑖) = 15

where 𝑅 𝑗(𝑖) is the region in which x𝑖 falls. This tells us that infant

mortality is the most important factor in determining life expectancy,

with a negative correlation.
24

But it is not the only way to stratify the 24: This interpretation is, of course, a

coarse oversimplification, but it highlights

the advantage of using a regression tree

when it comes to displaying, interpreting,

and explaining the results.

data: how is it an optimal tree?
25

25: Recall that all supervised learning

tasks are optimization problems.

Building A Regression Tree The process is quite simple:

1. divide the predictor space X⊆ ℝ𝑝
into a disjoint union of 𝐽 regions:

X= 𝑅1 ⊔ · · · ⊔ 𝑅𝐽 ;

2. for any x ∈ 𝑅 𝑗 ,

𝑦̂(x) = Avg{𝑦(z) | z ∈ 𝑅 𝑗 ∩ Tr}.
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The second step tells us that trees are locally constant.26
26: It would be possible to define trees

that are not locally constant, if required.

In theory, the regions 𝑅 𝑗 could have any shape as long as they form a

disjoint cover of X; in practice, we use hyperboxes with 𝑝−1-dimensional

affine boundaries that are perpendicular/parallel to the 𝑝 hyperplanes

𝑋1 . . . 𝑋̂𝑘 . . . 𝑋𝑝 , 𝑘 = 1, . . . , 𝑝.

We find the optimal (𝑅1 , . . . , 𝑅𝐽) by minimizing

SSE =

𝐽∑
𝑗=1

∑
x𝑖∈𝑅 𝑗
(𝑦𝑖 − 𝑦̂𝑅 𝑗 )2 ,

where 𝑦̂𝑅 𝑗 is the mean response of 𝑦 in 𝑅 𝑗 ∩ Tr. In an ideal world, we

would compute SSE for all partitions of X into hyperboxes, and pick

the one that minimizes SSE, but that is not computationally feasible, in

general.

Instead, we use a growth algorithmic approach known as recursive binary
splitting, which is both top-down (starts at the root and successively

splits Xvia 2 new branches down the tree) and greedy (at each step of

the splitting process, the best choice is made there and now, rather than

by looking at long-term consequences).

Regression Tree Algorithm The algorithm has 10 steps, but it is fairly

straightforward.

1. Let 𝑦̂0 = Avg{𝑦(x𝑖) | 𝑖 = 1, . . . , 𝑁 and x𝑖 ∈ Tr}.
2. Set the baseline SSE0 =

∑𝑁
𝑖=1
(𝑦𝑖 − 𝑦̂0)2.

3. For each 1 ≤ 𝑘 ≤ 𝑝, order the predictor values of 𝑋𝑘 in Tr:

min1≤𝑖≤𝑁 {𝑥𝑖 ,𝑘} = 𝑣𝑘,1 ≤ 𝑣𝑘,2 ≤ · · · ≤ 𝑣𝑘,𝑁 = max1≤𝑖≤𝑁 {𝑥𝑖 ,𝑘}.
4. For each 𝑋𝑘 , set 𝑠𝑘,ℓ =

1

2
(𝑣𝑘,ℓ + 𝑣𝑘,ℓ+1), ℓ = 1, . . . , 𝑁 − 1.

5. For each 𝑘 = 1, . . . , 𝑝, ℓ = 1, . . . , 𝑁 − 1, define

𝑅1(𝑘, ℓ ) = { ®𝑋 ∈ ℝ𝑝 | 𝑋𝑘 < 𝑠𝑘,ℓ }, 𝑅2(𝑘, ℓ ) = { ®𝑋 ∈ ℝ𝑝 | 𝑋𝑘 ≥ 𝑠𝑘,ℓ }.

Note that X= 𝑅1(𝑘, ℓ ) ⊔ 𝑅2(𝑘, ℓ ) for all 𝑘, ℓ .

6. For each 𝑘 = 1, . . . , 𝑝, ℓ = 1, . . . , 𝑁 − 1, set

SSE
𝑘,ℓ
1

=

2∑
𝑚=1

∑
®𝑋𝑖∈𝑅𝑚 (𝑘,ℓ )

(𝑦𝑖 − 𝑦̂𝑅𝑚 (𝑘,ℓ ))2 ,

where 𝑦̂𝑅𝑚 (𝑘,ℓ ) = Avg{𝑦(x) | x ∈ Tr ∩ 𝑅𝑚(𝑘, ℓ )}.
7. Find 𝑘∗ , ℓ ∗ for which SSE

𝑘,ℓ
1

is minimized.

8. Define the children sets 𝑅𝐿
1
= 𝑅1(𝑘∗ , ℓ ∗) and 𝑅𝑅

1
= 𝑅2(𝑘∗ , ℓ ∗).

9. While some children sets 𝑅𝜈
𝜇 still do not meet a stopping criterion,

repeat steps 3 to 8, searching and minimizing SSE over X∩ 𝑅𝜈
𝜇,

and producing a binary split 𝑅𝐿𝜇+1
, 𝑅𝑅𝜇+1

.
27

27: Multiple stopping criteria are used

in practice, such as insisting that all final

nodes contain 10 or fewer observations,

etc.

10. Once the stopping criterion is met for all children sets, the tree’s

growth ceases, and Xhas been partitioned into 𝐽 regions (renum-

bering as necessary)

X= 𝑅1 ⊔ · · · ⊔ 𝑅𝐽 ,

on which the regression tree predicts the 𝐽 responses {𝑦̂1 , . . . , 𝑦̂𝐽},
according to 𝑦̂ 𝑗 = Avg{𝑦(x) | x ∈ 𝑅 𝑗}.
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For instance, if the training set was Tr = {(𝑥1,𝑖 , 𝑥2,𝑖 , 𝑦𝑖)}𝑁𝑖=1
, the algorithm

might provide the regression tree in Figure 21.9.

Figure 21.9: Generic recursive binary parti-

tion regression tree for a two-dimensional

predictor space, with 5 leaves.

In R, the recursive binary partition algorithm is implemented in package

rpart’s function rpart().

Tree Pruning Regression trees grown with the algorithm are prone to

overfitting; they can provide good predictions on Tr, but they usually

make shoddy predictions on Te.
28

28: Because the resulting tree might be

too complex – it captures noise as well as

the signal.A smaller tree with fewer splits might lead to lower variance and better

interpretability, at the cost of a little bias. Instead of simply growing a

tree 𝑇0 until each leaf contains at most 𝑀 observations, say,
29

it could be 29: Or whatever other stopping criterion

might be appropriate.
beneficial to prune it in order to obtain an optimal subtree.

We use cost complexity pruning (CCP) to build a sequence of candidate

subtrees indexed by the complexity parameter 𝛼 ≥ 0. For each such 𝛼,

find a subtree 𝑇𝛼 ⊆ 𝑇0 which minimizes

SSE + complexity penalty =

|𝑇 |∑
𝑚=1

∑
x𝑖∈𝑅𝑚
(𝑦𝑖 − 𝑦̂𝑅𝑚 )2 + 𝛼 |𝑇 |,

where |𝑇 | represents the number of final nodes in 𝑇; when 𝛼 is large, it

is costly to have a complex tree.

This is similar to the bias-variance trade-off or the regularization frame-

work: a good tree balances considerations of fit and complexity.

Pruning Algorithm Assume that a recursive binary splitting regression

tree 𝑇0 has been grown on Tr, using a given stopping criterion:

1. apply CCP to 𝑇0 to obtain a “sequence” 𝑇𝛼 of subtrees of 𝑇0;

2. divide Tr into 𝐾 folds;

3. for all 𝑘 = 1, . . . , 𝐾, build a regression tree 𝑇𝛼;𝑘 on Tr \ Fold𝑘 and

evaluate

M̂SE(𝛼) = Avg
1≤𝑘≤𝐾{MSE𝑘(𝛼) of 𝑇𝛼;𝑘 on Fold𝑘};

4. return 𝑇𝛼∗ from step 1, where 𝛼∗ = arg min𝛼{M̂SE(𝛼)}.

The Gapminder 2011 tree is pruned in the Figures below, using the rpart

functions plotcp() (the complexity parameter 𝛼 is denoted by cp in the

code below) and rpart().
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rpart::plotcp(reg.tree.1)

reg.tree.1.pruned.2 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.06)

rpart.plot::rpart.plot(reg.tree.1.pruned.2,

box.palette="RdBu", shadow.col="gray", nn=TRUE)

reg.tree.1.pruned.3 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.028)

rpart.plot::rpart.plot(reg.tree.1.pruned.3,

box.palette="RdBu", shadow.col="gray", nn=TRUE)
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reg.tree.1.pruned.4 <- rpart::rpart(life_expectancy ~

fertility + infant_mortality,

data=gapminder.2011, cp=0.02)

rpart.plot::rpart.plot(reg.tree.1.pruned.4,

box.palette="RdBu", shadow.col="gray", nn=TRUE)

We plotted the complexity pruning parameter, and the pruned trees for

cp = 0.06, cp = 0.028, and cp = 0.02 in the Gapminder 2011 example.

Note that the tree’s complexity increases when cp decreases.

Classification Trees The approach for classification is much the same,

with a few appropriate substitutions:

1. prediction in a terminal node is either the class label mode or the

relative frequency of the class labels;
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2. SSE must be replaced by some other fit measure:

the classification error rate:

𝐸 =

𝐽∑
𝑗=1

(1 −max

𝑘
{𝑝̂ 𝑗 ,𝑘}),

where 𝑝̂ 𝑗 ,𝑘 is the proportion of Tr observations in 𝑅 𝑗 of class

𝑘 (this measure is not a recommended choice, however);

the Gini index, which measures the total variance across

classes

𝐺 =

𝐽∑
𝑗=1

∑
𝑘

𝑝̂ 𝑗 ,𝑘(1 − 𝑝̂ 𝑗 ,𝑘),

which should be small when the nodes are pure (𝑝̂ 𝑗 ,𝑘 ≈ 0 or 1

throughout the regions), and

the cross-entropy deviance

𝐷 = −
𝐽∑
𝑗=1

∑
𝑘

𝑝̂ 𝑗 ,𝑘 ln 𝑝̂ 𝑗 ,𝑘 ,

which behaves like the Gini index, numerically.

One thing to note is that classification and regression trees (jointly known

as CART) suffer from high variance and their structure is unstable –

using different training sets typically gives rise to wildly varying trees.

As an extreme example, simply modifying the level of only one of the

predictors in only two observations can yield a tree with a completely

different topology, as in Figure 21.10.

Figure 21.10: Different tree topologies with

small changes in the training set (data

modified from [19]).

This lack of robustness is a definite strike against the use of CART; despite

this, the relative ease of their implementation makes them a popular

classification tool.

Examples A classification tree for the response LE in the Gapminder

2011 dataset is shown below:

reg.tree.2 <- rpart::rpart(LE~fertility +

infant_mortality + gdp, data=gapminder.2011)

rpart.plot::rpart.plot(reg.tree.2, box.palette="RdBu",

shadow.col="gray", nn=TRUE)
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1) root (166) high/low (0.5 0.5)

2) infant_mortality< 23 (94) high (0.862 0.138)

3) infant_mortality>=23 (72) low (0.028 0.972)

The stratification in the scatter plot is shown below.

library(ggplot2)

ggplot(gapminder.2011) +

geom_point(aes(fill=LE, x=infant_mortality, y=fertility),

pch=22) + theme_bw() +

theme(legend.position = "bottom") +

geom_vline(xintercept = c(23), linetype="dashed",

color = "blue", size=1) + xlab("Infant Mortality") +

ylab("Fertility")

Note that this tree should not be used for predictions as it was not built

on a training subset of the data.

We now revisit the Iowa Housing Price (VE_Housing.csv , modified

from [3]) example of Section 20.5 (Splines). We build a CART for the sale

price, requiring at least 5 observations per leaf.
30

30: Recall that we had built a training set

dat.train with 𝑛 = 1160 observations

relating to the selling price SalePrice of

houses in Ames, Iowa.

We only keep those columns for which there are no missing values,

for simplicity’s sake; in real-world applications, this is not usually a

reasonable strategy (see Chapter 15, Data Preparation).

https://www.data-action-lab.com/wp-content/uploads/2023/02/VE_Housing.csv
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n= 1160

node), split, n, deviance, yval

* denotes terminal node

1) root 1160 7371073.00 180.1428
2) OverallQual< 7.5 985 2301952.00 157.4737
4) Neighborhood=Blueste,BrDale,BrkSide,Edwards,IDOTRR,MeadowV,Mitchel,NAmes,NPkVill,OldTown,

Sawyer,SWISU 580 672022.40 132.2839
8) X1stFlrSF< 1050.5 332 240468.90 118.2474 *
9) X1stFlrSF>=1050.5 248 278574.40 151.0747 *

5) Neighborhood=Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,
Somerst,StoneBr,Timber,Veenker 405 734856.30 193.5480

10) GrLivArea< 1732.5 281 296100.70 178.2365
20) GrLivArea< 1204 56 25438.63 143.0286 *
21) GrLivArea>=1204 225 183967.70 186.9993 *

11) GrLivArea>=1732.5 124 223588.10 228.2459 *
3) OverallQual>=7.5 175 1713865.00 307.7376
6) OverallQual< 8.5 126 498478.90 273.6180
12) GrLivArea< 1925.5 71 167331.90 246.3000 *
13) GrLivArea>=1925.5 55 209762.20 308.8831 *

7) OverallQual>=8.5 49 691521.30 395.4736
14) Neighborhood=CollgCr,Edwards,Gilbert,NridgHt,Somerst,StoneBr,Timber,Veenker

44 358089.40 373.9441
28) Neighborhood=CollgCr,Edwards,Somerst,Timber 11 39962.11 293.0025 *
29) Neighborhood=Gilbert,NridgHt,StoneBr,Veenker 33 222038.20 400.9246
58) GrLivArea< 2260 20 42801.90 358.2032 *
59) GrLivArea>=2260 13 86576.40 466.6498 *

15) Neighborhood=NoRidge 5 133561.60 584.9336 *

dat.Housing = read.csv("VE_Housing.csv",

header=TRUE, stringsAsFactors = TRUE)

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum) > 0))$names

dat.Housing.new = dat.Housing[,!colnames(dat.Housing) %in%

missing]

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

set.seed(1234) # for replicability

n.train = 1160

ind.train = sample(1:nrow(dat.Housing.new), n.train)

dat.train = dat.Housing.new[ind.train,]

dat.test = dat.Housing.new[-ind.train,]

(RT = rpart::rpart(SalePrice ~ ., data=dat.train,

minbucket=5))

The tree is reasonably complex and fairly difficult to read, especially since

there are so many categorical levels in some of the branching nodes.

There are multiple ways to provide a visual display that makes it easier

to read the tree.

plot(RT, margin=0.05, uniform=TRUE)

text(RT, all=TRUE, use.n=TRUE, fancy=FALSE, cex=0.6)
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rpart.plot::prp(RT,extra=101,

box.col="orange",split.box.col="gray")

rattle::fancyRpartPlot(RT, main="Sale Price Regression Tree

(Iowa Housing)")
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These are fully grown trees. Next we use rpart’s plotcp() to determine

how to control the tree’s growth (i.e., we prune the tree).

set.seed(1234) # for replicability

rpart::plotcp(RT)

From this plot, we see that the tuning parameter should be around 0.024,

so we prune the tree as follows:



21.4 Other Approaches 1339

(RT.p = rpart::prune(RT, cp=0.024))

n= 1160

node), split, n, deviance, yval

* denotes terminal node

1) root 1160 7371073.0 180.1428

2) OverallQual< 7.5 985 2301952.0 157.4737

4) Neighborhood=Blueste,BrDale,BrkSide,Edwards,IDOTRR,MeadowV,Mitchel,NAmes,NPkVill,OldTown,

Sawyer,SWISU 580 672022.4 132.2839 *
5) Neighborhood=Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,

Somerst,StoneBr,Timber,Veenker 405 734856.3 193.5480

10) GrLivArea< 1732.5 281 296100.7 178.2365 *
11) GrLivArea>=1732.5 124 223588.1 228.2459 *

3) OverallQual>=7.5 175 1713865.0 307.7376

6) OverallQual< 8.5 126 498478.9 273.6180 *
7) OverallQual>=8.5 49 691521.3 395.4736

14) Neighborhood=CollgCr,Edwards,Gilbert,NridgHt,Somerst,StoneBr,Timber,Veenker

44 358089.4 373.9441 *
15) Neighborhood=NoRidge 5 133561.6 584.9336 *

We go from 11 to 6 leaves. The structure of the pruned tree is plotted

below.

plot(RT.p, margin=0.05, uniform=TRUE)

text(RT.p, all=TRUE, use.n=TRUE, fancy=FALSE, cex=0.6)
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rpart.plot::prp(RT.p,extra=101, box.col="orange",

split.box.col="gray")

rattle::fancyRpartPlot(RT.p, main="Sale Price Pruned

Regression Tree (Iowa Housing)")
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Now that we have a full regression tree and a pruned tree, our last task

is to see how well they perform as predictive models on the test data

dat.test.

For the full tree, we compute the reduction in SSE using the predictions:

yhat.RT = predict(RT, dat.test)

SSE.RT = sum((yhat.RT-dat.test$SalePrice)^2)

SSE.average = sum((mean(dat.test$SalePrice) -

dat.test$SalePrice)^2)

round((1-SSE.RT/SSE.average), digits=3)

[1] 0.703

For the pruned tree, the corresponding reduction is:

yhat.RT.p = predict(RT.p, dat.test)

SSE.RT.p = sum((yhat.RT.p-dat.test$SalePrice)^2)

round((1-SSE.RT.p/SSE.average), digits=3)

[1] 0.646

This suggests that pruning is a reasonable approach, in this case (based on

Tr). The predictions of both trees are plotted against the actual SalePrice

values in the next plots.

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.RT, dat.test$SalePrice, col=2)

legend(0,600, legend=c("Full Tree"), col=c(2),

pch=rep(1), bg=’light grey’)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.RT.p, dat.test$SalePrice, col=3)

legend(0,600, legend=c("Pruned Tree"), col=c(3),

pch=rep(2), bg=’light grey’)

Obviously, there are some departures from the actual response values,

but given that the regression trees can only predict a small number of

selling prices (corresponding to the tree leaves), these predictions are

reasonably accurate.
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cor(yhat.RT, dat.test$SalePrice)

cor(yhat.RT.p, dat.test$SalePrice)

[1] 0.8412035

[1] 0.8047534

How do these CART predictions compare with the MARS predictions of

Section 20.6? The Iowa Housing dataset contains information about sale

prices from 2006 to 2010; would you use the model to make predictions

about 2022 sale prices?

Classification trees work in the same manner, although the evaluation

step can be conducted in two ways: we can build trees that predict

class membership (type="class") or probability of class membership

(type="prob"). Examples of how to work with these predict() options

are provided in Section 19.7, Classification: Kyphosis Dataset.

21.4.2 Support Vector Machines

This next classifier is more sophisticated, from a mathematical perspective.

It was invented by computer scientists in the 1990s.

Support vector machines (SVM) attempt to find hyperplanes that separate

the classes in the feature space. On the left in Figure 21.11, we see an

artificial data with 3 features: 𝑋1 and 𝑋2 (numerical), 𝑌 (categorical,

represented by different symbols).

We grow a classification tree (perhaps the one shown on the right in

Figure 21.11): two of the leaves are pure, but the risk of misclassification

is fairly large in the other 2 (at least for that tree).
31

Without access to31: The tree is not unique, obviously, but

any other tree with separators parallel to

the axes will only be marginally better, at

best.

more features, that tree is as good as it gets.
32

32: To be sure, we could create an intri-

cate decision tree with more than 2
2 = 4

separating lines, but that is undesirable

for a well-fitted tree.
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Figure 21.11: Two-class artificial dataset

(left) and classification tree (right) [22].

But it is easy to draw a decision curve which improves on the effectiveness

of the decision tree (see Figure 21.12): a single observation is misclassified

by this rule.
33

33: Perfect separation could lead to over-

fitting.

Figure 21.12: Separating hyperplane on a

two-class artificial dataset [22].

Separating hyperplanes do not always exist; we may need to:

extend our notion of separability, and/or

extend the feature space so separation becomes possible.

A hyperplane 𝐻𝜷,𝛽0
⊆ ℝ𝑝

is an affine (“flat”) subset of ℝ𝑝
, with

dim

(
𝐻𝜷,𝛽0

)
= 𝑝 − 1;

in other words, it can be described by

𝐻𝜷,𝛽0
: 𝛽0 + 𝜷⊤x = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 = 0.

The vector 𝜷 is normal to 𝐻𝜷,𝛽0
; if 𝛽0 = 0, 𝐻𝜷,𝛽0

goes through the origin

in ℝ𝑝
. Set 𝐹(x) = 𝛽0+𝜷⊤x; then 𝐹(x) > 0 for points on one “side” of𝐻𝜷,𝛽0

and 𝐹(x) < 0 for points on the other.
34

34: 𝐹(x) = 0 for points on 𝐻𝜷,𝛽
0
.

In a binary classification problem with C= {𝐶1 , 𝐶2} = {±1}, if

𝑦𝑖𝐹(x𝑖) > 0, for all (x𝑖 , 𝑦𝑖) ∈ Tr

(or, 𝑦𝑖𝐹(x𝑖) < 0 for all (x𝑖 , 𝑦𝑖) ∈ Tr), then 𝐹(x) = 0 determines a separating
hyperplane for Tr (which does not need to be unique, see Figure 21.12),

and we say that Tr is linearly separable.

Among all separating hyperplanes, the one which provides the widest

separation between the two classes is the maximal margin hyperplane
(MMH); training observations on the boundary of the separating strip
are called the support vectors (see observations in Figure 21.13).
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Figure 21.13: Artificial linearly separable subset of a two-class dataset (left), with separating hyperplanes (centre), maximal margin

hyperplane with support vectors (right) [22].

The classification problem simplifies, as always, to a constrained opti-

mization problem:

(𝜷∗ , 𝛽∗
0
) = arg max

(𝜷,𝛽0)
{𝑀(𝜷,𝛽0)} s.t. 𝑦𝑖(𝛽0 + 𝜷x𝑖) ≥ 1

for all (x𝑖 , 𝑦𝑖) ∈ Tr, with MMH given by 𝐹(x) = 𝛽∗
0
+ 𝜷∗x = 0.

Any hyperplane can be expressed in an uncountable number of ways;

the MMH for which |𝐹(x∗)| = 1 for all support vectors x∗ provides a

canonical representation). From geometry, we know that the distance

from the canonical maximal margin hyperplane 𝐻𝜷,𝛽0
to any point z can

be computed using vector projections.

Let x0 be a point on MMH, i.e., 𝐹(x0) = 𝛽0 + 𝜷⊤x0 = 0, as shown below:

In particular, note that 𝛽0 = −𝜷⊤x0. Then,

𝑀

2

= dist

(
z, 𝐻𝜷,𝛽0

)
=




proj𝜷(z − x0)



 =





𝜷⊤(z − x0)
∥𝜷∥2 𝜷






=
|𝜷⊤(z − x0)|
∥𝜷∥2 ∥𝜷∥ =

|𝜷⊤z − 𝜷⊤x0 |
∥𝜷∥ =

|𝐹(z)|
∥𝜷∥ .

If z is a support vector, then |𝐹(z)| = 1, and

𝑀

2

= dist

(
z, 𝐻𝜷,𝛽0

)
=

1

∥𝜷∥ .
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Maximizing the margin 𝑀 is thus equivalent to minimizing

∥𝜷∥
2

, and,

since the square function is monotonic,

arg max

(𝜷,𝛽0)
{𝑀 | 𝑦𝑖(𝛽0 + 𝛽⊤x𝑖) ≥ 1, ∀x𝑖 ∈ Tr}

is equivalent to

arg min

(𝜷,𝛽0)

{
1

2

∥𝜷∥2
���� 𝑦𝑖(𝛽0 + 𝛽⊤x𝑖) ≥ 1, ∀x𝑖 ∈ Tr

}
.

This constrained quadratic problem (QP) can be solved by Lagrange

multipliers (in implementations, it is solved numerically), but a key

observation is that it is possible to rewrite

𝜷 =

𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑖 , with

𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

thanks to the representer theorem.
35

35: Technically speaking we do not need

to invoke the representer theorem in the

linear separable case. At any rate, the result

is out-of-scope for this document.

The original QP becomes

arg min

(𝜷,𝛽0)

{
1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗x⊤𝑖 x𝑗 −
𝑁∑
𝑖=1

𝛼𝑖

����� 𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, ∀x𝑖 , x𝑗 ∈ Tr

}
.

Ultimately, it can be shown that all but 𝐿 of the coefficients 𝛼𝑖 are 0,

typically, 𝐿 ≪ 𝑁 .
36

The decision function is defined by 36: The support vectors are those training

observations x𝑖𝑘 , 𝑘 = 1, . . . , 𝐿, for which

𝛼𝑖𝑘 ≠ 0.

𝑇(x; 𝜶) =
𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑖 + 𝛽0 =

𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘x
⊤
𝑖𝑘

x + 𝛽0 ,

scaled so that 𝑇(x𝑖𝑘 ; 𝛼) = 𝑦𝑖𝑘 = ±1 for each support vector x𝑖𝑘 .

The class assignment for any x ∈ Te is thus

class(x) =
{
+1 if 𝑇(x; 𝛼) ≥ 0

−1 if 𝑇(x; 𝛼) < 0

In practice (especially when 𝑁 < 𝑝), the data is rarely linearly separable

into distinct classes (as below, for instance).

Additionally, even when the classes are linearly separable, the data

may be noisy, which could lead to overfitting, with technically opti-

mal but practically sub-optimal maximal margin solutions (see [22] for

examples).

In applications, support vector classifiers optimize instead a soft margin,

one for which some misclassifications are permitted (as in Figure 21.15).

The soft margin problem can be written as

arg min

(𝜷,𝛽0)

{
1

2

𝜷⊤𝜷

���� 𝑦𝑖(𝛽0 + 𝜷⊤x𝑖) ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0,∀x𝑖 ∈ Tr, ∥𝜺∥ < 𝐶

}
,

where 𝐶 is a (budget) tuning parameter, 𝜺 is a vector of slack variables,

canonically scaled so that |𝐹(x∗)| = |𝛽0 + 𝜷⊤x∗ | = 1 for any eventual

support vector x∗.
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Figure 21.14: Non-linearly separable two-class datasets.

Figure 21.15: Hard margin for a linearly separable classifier (left); soft margin for a linearly separable classifier (middle); soft margin for a

non-linearly separable classifier (right).

Such a model offers greater robustness against unusual observations,

while still classifying most training observations correctly:

if 𝜀𝑖 = 0, then x𝑖 ∈ Tr is correctly classified;
37

37: It falls on the correct side of the hyper-

plane, and outside the maximum margin.
if 0 < 𝜀𝑖 < 1, then x𝑖 ∈ Tr is acceptably classified;

38

38: It falls on the correct side of the hyper-

plane, but within the margin.

if 𝜀𝑖 ≥ 1, it is incorrectly classified.

If 𝐶 = 0, then no violations are allowed (∥𝜺∥ = 0) and the problem

reduces to the hard margin SVM classifier; a solution may not even exist

if the data is not linearly separable.

If 𝐶 > 0 is an integer, no more than 𝐶 training observations can be

misclassified; indeed, if 𝑖1 , . . . , 𝑖𝐶 are the misclassified indices, then

𝜀𝑖1 , . . . , 𝜀𝑖𝐶 ≥ 1 and

𝐶 ≥
𝑁∑
𝑖=1

𝜀𝑖 ≥
𝐶∑
𝑘=1

𝜀𝑖𝑘 ≥ 𝐶.

As 𝐶 increases, tolerance for violations also increases, as does the width

of the soft margin; 𝐶 plays the role of a regularization parameter, and is

usually selected via cross-validation.
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Low values of 𝐶 are associated with harder margins, which leads to

low bias but high variance (a small change in the data could create

qualitatively different margins); large values of 𝐶 are associated with

wider (softer) margins, leading to more potential misclassifications and

higher bias, but also lower variance as small changes in the data are

unlikely to change the margin significantly.

We can build a classifier through the representer theorem formulation

as before, the only difference being that the decision function 𝑇(x; 𝜶) is
scaled so that |𝑇(x𝑖𝑘 ; 𝜶)| ≥ 1−𝜀𝑖𝑘 for every support vector x𝑖𝑘 . It is difficult

to determine what the value of the regularization parameter 𝐶 should

be at first glance; an optimal value can be obtained via a tuning process,

which tries out various values and identifies the one that produces an

optimal model.

Example We train a SVM with 𝐶 = 0.1 (obtained via a tuning procedure

for 𝐶) for the 2011 Gapminder dataset to predict the life expectancy class

𝑌 in terms of the fertility rate 𝑋1 and the logarithm of GDP per capita 𝑋2;

𝑛 = 116 observations are used in the training set gapminder.2011.tr,

the rest are set aside in the test set gapminder.2011.te.

set.seed(0)

ind.train = sample(nrow(gapminder.2011),

round(0.7*nrow(gapminder.2011)),

replace=FALSE)

gapminder.2011.tr = gapminder.2011[ind.train,]

gapminder.2011.te = gapminder.2011[-ind.train,]

x <- gapminder.2011.tr[,c("fertility","gdp","population")]

w <- log(x[,2]/x[,3])

x <- data.frame(x[,1],w)

y <- gapminder.2011.tr[,c("LE")]

dat = data.frame(x,y)

plot(w,x[,1],col=y,bg=y,pch=(as.numeric(y)+23),

xlab="Log GDPPC", ylab="fertility")
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The red triangles represent countries with low life expectancy; the black

ones, countries with high life expectancy. Notice the class overlap in the

training data.

We run 7 linear SVM models with various cost parameters (through

e1071’s tune() function), the optimal model has 𝐶 = 0.1.

library(e1071)

tuned.model <- tune(svm, y~., data = dat, kernel = "linear",

ranges = list(cost = c(0.001, 0.01, 0.1,

1, 5, 10, 100)))

(best.mod <- tuned.model$best.model)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 0.1

Number of Support Vectors: 50

The corresponding SVM model is obtained via the svm() function (note

the parameters). The SVM decision boundary is shown below:

svmfit <- svm(y~., data = dat, kernel = "linear", cost=0.1)

plot(svmfit, dat, main="Linear Kernel")

We can evaluate the model’s performance on Te (dat.te); the confusion

matrix of the model on the test set is:

x <- gapminder.2011.te[,c("fertility","gdp","population")]

w <- log(x[,2]/x[,3])

x <- data.frame(x[,1],w)

y <- gapminder.2011.te[,c("LE")]

# Test data



21.4 Other Approaches 1349

dat.te = data.frame(x,y)

# Class prediction on test data

results = predict(svmfit,dat.te)

# Confusion matrix

table(actual=gapminder.2011.te$LE,pred=results)

𝛼 = 0.5 prediction
0 1

actual 0 22 10

1 1 17

It is not a perfectly accurate model, but it is certainly acceptable given

the class overlap in Tr.

Nonlinear Boundaries If the boundary between two classes is linear,

the SVM classifier of the previous section is a natural way to attempt to

separate the classes. In practice, however, the classes are rarely so cleanly

separated, as below, say.

set.seed(0)

x <- matrix(rnorm(600*2), ncol = 2)

y <- c(rep(-1,200), rep(0,200),rep(1,200))

x[y==1,] <- x[y==1,] + 2

x[y==-1] <- x[y==-1,] - 2

y <- y^2

dat <- data.frame(x=x, y=as.factor(y))

plot(dat[,1], dat[,2], col=dat[,3], bg=dat[,3],

pch=(as.numeric(dat[,3])+23), xlab="X1", ylab="X2")

In both the hard and the soft margin support vector classifiers, the

function to optimize takes the form

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗x⊤𝑖 x𝑗 −
𝑁∑
𝑖=1

𝛼𝑖 ,
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and the decision function, the form

𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘x
⊤
𝑖𝑘

x + 𝛽0.

However, we do not actually need to know the support vectors x𝑖𝑘 (or

even the observations x𝑖 , for that matter) in order to compute the decision

function values – it is sufficient to have access to the inner products x⊤
𝑖
x𝑗

or x⊤
𝑖𝑘

x, which are usually denoted by ⟨x𝑖𝑘 , x⟩ or ⟨x𝑖 , x𝑗⟩.

The objective function and the decision function can thus be written as

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗 ⟨x𝑖 , x𝑗⟩ −
𝑁∑
𝑖=1

𝛼𝑖 , 𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘 ⟨x𝑖𝑘 , x⟩ + 𝛽0.

This seemingly innocuous remark opens the door to the kernel approach;

we could conceivably replace the inner products ⟨x,w⟩ by generalized

inner products 𝐾(x,w), which provide a measure of similarity between

the observations x and w.

Formally, a kernel is a symmetric (semi-)positive definite operator 𝐾 :

ℝ𝑝 ×ℝ𝑝 → ℝ+
0
.
39

Common statistical learning kernels include:39: By analogy with positive defi-

nite square matrices, this means that∑𝑁
𝑖,𝑗=1

𝑐𝑖 𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0 ∀x𝑖 ∈ ℝ𝑝
, 𝑐 𝑗 ≥ 0. linear – 𝐾(x,w) = x⊤w;

polynomial of degree 𝑑 – 𝐾𝑑(x,w) = (1 + x⊤w)𝑑;
Gaussian (or radial) – 𝐾𝛾(x,w) = exp(−𝛾∥x −w∥2

2
), 𝛾 > 0;

sigmoid – 𝐾𝜅,𝛿(x,w) = tanh(𝜅x⊤w − 𝛿), for allowable 𝜅, 𝛿.

For instance, a linear kernel SVM and a radial kernel SVM with 𝛾 = 1,

𝐶 = 0.5 yield the following classifications on the previous dataset.
40

40: We are using kernlab’s ksvm() func-

tion and display the linear SVM output

for comparison, whose performance we

expect to be crap-tastic library(kernlab)

# linear SVM

kernfit.lin <- ksvm(x,y, type = "C-svc",

kernel = ’vanilladot’, C = 10)

kernlab::plot(kernfit.lin, data=x)
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Not that great, to be honest...

# Gaussian SVM

kernfit.rbf <- ksvm(x,y, type = "C-svc", kernel = ’rbfdot’,

sigma=1, C = 0.5)

kernlab::plot(kernfit.rbf, data=x)

How is the decision boundary computed? The principle is the same as

with linear SVM: the objective function and the decision function are

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝐾(x𝑖 , x𝑗) −
𝑁∑
𝑖=1

𝛼𝑖 , 𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘𝐾(x𝑖𝑘 , x) + 𝛽0.

For the radial kernel, for instance, if a test observation x is near a training

observation x𝑖 , then ∥x − x𝑖 ∥2
2

is small and 𝐾𝛾(x, x𝑖) ≈ 1; if they are far

from one another, then ∥x − x𝑖 ∥2
2

is large and 𝐾𝛾(x, x𝑖) ≈ 0.

In other words, in the radial kernel framework, only those observations

close to a test observation play a role in class prediction.

Kernel Trick But why even use kernels in the first place? While the

linear kernel is easier to interpret and implement, not all data sets are

linearly separable, as we have just seen. Consider the toy classification

problem on the left of Figure 21.16 (adapted from an unknown online

source).

The optimal margin separating “strip” is obviously not linear. One

way out of this problem is to introduce a transformation Φ from the

original 𝑋−feature space to a higher-dimensional (or at least, of the

same dimension) 𝑍−feature space in which the data is linearly separable,

and to build a linear SVM on the transformed training observations

z𝑖 = Φ(x𝑖).41
41: This might seem to go against reduc-

tion strategies used to counter the curse of

dimensionality; the added dimensions are

needed to “unfurl” the data, so to speak.

In this example, we use some Φ : ℝ2 → ℝ3
; the projection of the

transformation into the 𝑍1𝑍3−plane could be as in Figure 21.16 (right).
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Figure 21.16: Toy classification problem (left); corresponding projection of the linear problem in 𝑍−space [author unknown].

The objective function and the decision function take the form

1

2

𝑁∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗Φ(x𝑖)⊤Φ(x𝑗) −
𝑁∑
𝑖=1

𝛼𝑖 ,

𝑇(x; 𝜶) =
𝐿∑
𝑘=1

𝛼𝑖𝑘 𝑦𝑖𝑘Φ(x𝑖𝑘 )⊤Φ(x) + 𝛽0 ,

and the linear SVM is built as before (but in 𝑍−space, not in 𝑋−space).

It sounds straightforward, but it does take a fair amount of experience to

recognize that one way to separate the data is to use

z = Φ(x) = (𝑥2

1
,
√

2𝑥1𝑥2 , 𝑥
2

2
).

And this is one of the easy transformations: what should be used in the

case below (image taken from Wikipedia)?

The kernel trick simply states that Φ can remain unspecified if we replace

Φ(x)⊤Φ(w) by a “reasonable” (often radial) kernel 𝐾(x,w).
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General Classification What do we do if the response variable has

𝐾 > 2 classes? In the one-versus-all (OVA) approach, we fit 𝐾 different

2−class SVM decision functions 𝑇𝑘(x; 𝜶), 𝑘 = 1, . . . , 𝐾; in each, one class

versus the rest. The test observation x∗ is assigned to the class for which

𝑇𝑘(x∗; 𝜶) is largest.

In the one-versus-one (OVO) approach, we fit all

(𝐾
2

)
pairwise 2−class

SVM classifiers class𝑘,ℓ (x), for training observations with levels 𝑘, ℓ ,

where 𝑘 > ℓ = 1, . . . , 𝐾 − 1. The test observation x∗ is assigned to the

class that wins the most pairwise “competitions”.

If𝐾 is large,

(𝐾
2

)
might be too large to make OVO computationally efficient;

when it is small enough, OVO is the recommended approach.

Example The vowel dataset was taken from the openML website .

This modified version, by Turney, is based on Robinson’s Deterding Vowel
Recognition Data, which is a speaker-independent recognition of the

eleven steady state vowels of British English using a specified training

set of lpc-derived log area ratios.
42

42: Real talk: we don’t actually know

what any of that means. But does it mat-

ter? Yes, any conclusion we can draw from

this dataset will need to be scrutinized by

subject matter experts before we can hope

to apply them to real-world situations. On

the other hand, data is simply marks on pa-

per (or perhaps electromagnetic patterns

on the cloud). We can analyze the data

without really knowing what the under-

lying meaning is. The latter approach is

usually sterile, but we can always use it to

illustrate basic concepts.

We start by reading in the data and summarizing it – the dataset has

𝑛 = 990 observations and 𝑝 = 14 variables.

vowel <- read.csv("datasets-uci-vowel.csv", header=TRUE,

sep=",", stringsAsFactors=TRUE)

str(vowel)

’data.frame’: 990 obs. of 14 variables:

$ Train.or.Test: Factor w/ 2 levels "Test","Train": 2 2 2 2 2 2 2 2 2 2 ...

$ Speaker.Name : Factor w/ 15 levels "Andrew","Bill",..: 1 1 1 1 1 1 1 1 1 1 ...

$ Speaker.Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...

$ Feature.0 : num -3.64 -3.33 -2.12 -2.29 -2.6 ...

$ Feature.1 : num 0.418 0.496 0.894 1.809 1.938 ...

$ Feature.2 : num -0.67 -0.694 -1.576 -1.498 -0.846 ...

$ Feature.3 : num 1.779 1.365 0.147 1.012 1.062 ...

$ Feature.4 : num -0.168 -0.265 -0.707 -1.053 -1.633 ...

$ Feature.5 : num 1.627 1.933 1.559 1.06 0.764 ...

$ Feature.6 : num -0.388 -0.363 -0.579 -0.567 0.394 0.217 0.322 -0.435 -0.512 -0.466 ...

$ Feature.7 : num 0.529 0.51 0.676 0.235 -0.15 -0.246 0.45 0.992 0.928 0.702 ...

$ Feature.8 : num -0.874 -0.621 -0.809 -0.091 0.277 0.238 0.377 0.575 -0.167 0.06 ...

$ Feature.9 : num -0.814 -0.488 -0.049 -0.795 -0.396 -0.365 -0.366 -0.301 -0.434 -0.836 ...

$ Class : Factor w/ 11 levels "had","hAd","hed",..: 5 6 4 2 11 1 8 7 10 9 ...

There is some imbalance in the training/testing set-up (especially as it

relates to the speaker sex):

table(vowel$Train.or.Test, vowel$Speaker.Sex)

Female Male

Test 198 264

Train 264 264

https://www.openml.org/search?type=data&sort=runs&id=307&status=active
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All-in-all, the numerical features seem to be generated from a multivariate

normal distribution, with mean vector:

colMeans(vowel[,c(4:13)], dims = 1)

Feature.0 Feature.1 Feature.2 Feature.3 Feature.4

-3.203740404 1.881763636 -0.507769697 0.515482828 -0.305657576

Feature.5 Feature.6 Feature.7 Feature.8 Feature.9

0.630244444 -0.004364646 0.336552525 -0.302975758 -0.071339394

and correlation matrix:

corrplot::corrplot.mixed(cor(vowel[,c(4:13)]))

Can we get any information from the paired plots?

psych::pairs.panels(vowel[,4:13], pch = 21, bg = vowel$Class)
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Perhaps if we focus only on certain variables?

library(psych)

pairs.panels(vowel[,c(4,6,7,9,13)], pch = 21, bg = vowel$Class)

pairs.panels(vowel[,c(5,8,14)], pch = 21, bg = vowel$Class)

The response variable is the Class, with 11 levels, and the 𝑝 = 10

predictors are Feature.0, . . . , Feature.9. We train an SVM model on a

subset of the vowel dataset. In this instance, we use the training/testing

split provided with the data (Train.or.Test), but any randomly selected

split would be appropriate.

training = vowel[vowel$Train.or.Test=="Train",4:14]

testing = vowel[vowel$Train.or.Test=="Test",4:14]

c(nrow(training),nrow(testing)) # training/testing split

[1] 528 462

We use the support vector machine implementation found in the R library

e1071.

First we tune the hyper-parameters on a subsample of the training data by

using the tune() function, which selects optimal parameters by carrying

out a grid search over the specified parameters (otherwise we might

spend a lot of time trying to find a good combination of parameters).

For C-classification with a Gaussian kernel, the parameters are

𝐶, the cost of constraint violation (which controls the penalty paid

by the SVM model for misclassifying a training point), and

𝛾, the parameter of the Gaussian kernel (used to handle non-linear

classification).

If 𝐶 is “high”, then misclassification is costly, and vice-versa. If 𝛾 is “high”,

than the Gaussian bump around the points are narrow, and vice-versa.

Let us run a grid search with 𝐶 varying from 0.1 to 100 by powers of 10,

and 𝛾 = 0.5, 1, 2.
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vowel.svm.tune.1 <- e1071::tune(e1071::svm,

train.x=training[,1:10],

train.y=training[,11],

kernel="radial",

ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)))

print(vowel.svm.tune.1)

Parameter tuning of ’e1071::svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

10 0.5

- best performance: 0.007619739

The minimal misclassfication error (best performance) in this run is

reached when the best parameters have the values listed in the output

above. Obviously, that search was fairly coarse: searching at a finer level

can be very demanding, time-wise.

For comparison’s sake, let us see if tuning with finer intervals and larger

ranges gives substantially different results.

vowel.svm.tune.2 <- e1071::tune(e1071::svm,

train.x=training[,1:10],

train.y=training[,11],

kernel="radial",

ranges=list(cost=10^(-2:2), gamma=1:20*0.1))

print(vowel.svm.tune.2)

Parameter tuning of ’e1071::svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

10 0.8

- best performance: 0.003773585

The optimal parameters are sensibly the same, so we might as well stick

with the optimal parameters values from the first tuning. Training the

model with these values yields:

vowel.svm.model = e1071::svm(training[,11] ~ ., data = training,

type="C-classification",

cost=10, kernel="radial", gamma=0.5)

summary(vowel.svm.model)
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Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 10

Number of Support Vectors: 351

( 27 32 32 26 30 36 37 29 40 32 30 )

Number of Classes: 11

Levels:

had hAd hed hEd hid hId hod hOd hud hUd hYd

Note the number of support vectors. How accurately can this model

predict the class of new observations?

predicted = predict(vowel.svm.model, testing)

(confusion.matrix = table(pred = predicted, true = testing[,11]))

e1071::classAgreement(confusion.matrix,match.names=TRUE)

true

pred had hAd hed hEd hid hId hod hOd hud hUd hYd

had 36 0 0 0 0 0 0 0 0 0 0

hAd 0 40 0 0 0 0 0 0 0 0 0

hed 0 0 42 0 0 0 0 0 0 0 0

hEd 0 0 0 37 0 0 0 0 0 0 0

hid 0 0 0 0 39 0 0 0 0 0 0

hId 0 0 0 0 2 42 0 0 1 0 0

hod 0 0 0 0 0 0 36 0 0 0 0

hOd 0 0 0 0 0 0 0 35 0 0 0

hud 0 0 0 0 0 0 0 0 23 0 0

hUd 6 2 0 5 1 0 6 7 18 42 16

hYd 0 0 0 0 0 0 0 0 0 0 26

$diag

[1] 0.8614719

$kappa

[1] 0.847619

$rand

[1] 0.9425585

$crand

[1] 0.6798992

What do you think?

Final Comments In practice, it is not always obvious whether one

should use SVM, logistic regression, linear discriminant analysis (LDA),

decision trees, etc:
43

43: In Section 21.5, we argue that it is

usually preferable to train a variety of

models, rather than just the one.
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Figure 21.17: Conceptual timeline of the interest and optimism regarding AI; important milestones are indicated below the dates.

if classes are (nearly) separable, SVM and LDA are usually prefer-

able to logistic regression;

otherwise, using logistic regression together with a ridge penalty

(see Section 20.2, Shrinkage Methods) is roughly equivalent to using

SVM;

if the aim is to estimate class membership probabilities, it is prefer-

able to use logistic regression as SVM is not calibrated;
44

44: The actual values of 𝑇(x; 𝜶) have no

intrinsic meaning, other than their relative

ordering.

it is possible to use kernels in the logistic regression and LDA

frameworks, but at the cost of increased computational complexity.

All in all, it remains crucial to understand that the No Free Lunch Theorem
remains in effect [31, 29, 30]. There is simply no magical recipe... although

the next technique we discuss is often viewed (and used) as one.

21.4.3 Artificial Neural Networks

When practitioners discuss using Artificial Intelligence (AI) techniques

[23] to solve a problem, the implicit assumption is often (but not always)

that a neural network (or some other variant of deep learning) will be

used, and for good reason: “neural networks blow all previous techniques

out of the water in terms of performance” [11]. But there are some skeletons

in the closet: “[...] given the existence of adversarial examples, it shows

we really don’t understand what’s going on” [11].

At various times since Turing’s seminal 1950 paper (in which he proposed

the celebrated Imitation Game [26]), complete artificial intelligence has

been announced to be “just around the corner” (see Figure 21.17).

With the advent of deep learning and Big Data processing, optimism is

as high as it’s ever been, but opinions on the topic are varied – to some
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commentators, AI is a brilliant success, while to others it is a spectacular

failure (see the headlines in Section 14.1.3). So what is really going on?

It is far from trivial to identify the essential qualities and skills of an
intelligence. There have been multiple attempts to solve the problem by

building on Turing’s original effort. An early argument by Hofstadter

[16] is that any intelligence should:

provide flexible responses in various scenarios;

take advantage of lucky circumstances;

make sense out of contradictory messages;

recognize the relative importance of a situation’s elements;

find similarities between different situations;

draw distinctions between similar situations, and

come up with new ideas from scratch or by re-arranging previous

known concepts.

This is not quite the approach taken by modern AI researchers, which

define the discipline as the study of intelligent agents – any device that

perceives its environment and takes actions to maximize its chance of

success at some task/goal [27].

Examples include:

expert systems – TurboTax, WebMD, technical support, insurance

claim processing, air traffic control, etc.;

decision-making – Deep Blue, auto-pilot systems, “smart” meters,

etc.;

natural Language Processing – machine translation, Siri, named-

entity recognition, chatGPT, etc.;

recommenders – Google, Expedia, Facebook, LinkedIn, Netflix,

Amazon, etc.;

content generators – music composer, novel writer, animation

creator, etc.;

classifiers – facial recognition, object identification, fraud detection,

etc.

A trained artificial neural network (ANN) is a function that maps

inputs to outputs in a useful way: it uses a Swiss-army-knife approach to

providing outputs – plenty of options are available in the architecture,

but it’s not always clear which ones should be used.

One of the reasons that ANNs are so popular is that the user does not

need to decide much about the function or know much about the problem

space in advance – ANNs are quiet models.

Algorithms allow ANNs to learn (i.e. to generate the function and its

internal values) automatically; technically, the only requirement is the

user’s ability to minimize a cost function (which is to say, to be able to

solve optimization problems).

Overview The simplest definition of an artificial neural network is

provided by the inventor of one of the first neuro-computers, R. Hecht-

Nielsen, as:
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Figure 21.18: Artificial neural network topology – conceptual example. The number of hidden layers is arbitrary, as is the size of the signal

and output vectors.

“[...] a computing system made up of a number of simple,

highly interconnected processing elements, which process

information by their dynamic state response to external

inputs. [4]”

An artificial neural network is an interconnected group of nodes, inspired

by a simplification of neurons in a brain but on much smaller scales.

Neural networks are typically organized in layers. Layers are made

up of a number of interconnected nodes which contain an activation
function.

A pattern x (input, signal) is presented to the network via the input layer,
which communicates with one or more hidden layers, where the actual

processing is done via a system of weighted connections W (edges).

The hidden layers then link to an output layer, which outputs the

predicted response ŷ (see Figure 21.18).

Neural Networks Architecture In order to train a neural network, we

need the following objects [6]:

some input data,

a number of layers,

a model, and

a learning process (loss function and optimizer).

The object interactions is visualized in Figure 21.19.

A network (model), which is composed of layers that are chained together,

maps the input data into predictions.
45

The loss function then compares45: In essence, a neural network is a func-
tion.

these predictions to the targets, producing a loss value: a measure of how
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Figure 21.19: Relationship between the net-

work, layers, loss function, and optimizer

[6].

well the network’s predictions match what was expected. The optimizer

uses this loss value to update the network’s weights.

Input Data Neural networks start with the input training data (and

corresponding targets) in the form of a tensor. Generally speaking,

most modern machine learning systems use tensors as their basic data

structure. At its core, a tensor is a container for data – and it is almost

always numerical.

Tensors are defined by three key attributes: their

rank (number of axes) – for instance, a 3D tensor has three axes,

while a matrix (2D tensor) has two axes;

shape, a tuple of integers that describes how many dimensions

the tensor has along each axis – for instance, a matrix’s shape is

described using two elements, such as (3,5), a 3D tensor’s shape

has three elements, such as (3,5,5), a vector (1D tensor)’s shape

is given by a single element, such as (5), whereas a scalar has an

empty shape, ( );

data type – for instance, a tensor’s type could be float32, uint8,

float64, etc.

Data tensors almost always fall into one of the following categories:

the most common case is vector data; in such datasets, each single

data point can be encoded as a vector, and a batch of data will be

encoded as a matrix or 2D tensor of shape (#samples,#features),

or more simply, as an array of vectors where the first axis is the

samples axis and the second axis is the features axis;

time series or sequence data, whenever the passage of time is

crucial to the observations in the dataset (or the notion of sequence

order), can be stored in a 3D tensor with an explicit time axis; each

sample can be encoded as a sequence of vectors (a 2D tensor), and
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a batch of data will be encoded as a 3D tensor of shape (#samples,

#timesteps, #features), as in Figure 21.20;

Figure 21.20: A 3D time series data tensor

[6].

images typically have three dimensions: height, width, and colour

depth;
46

a batch of image data could thus be stored in a 4D tensor of46: Although grayscale images have only

a single colour channel and could thus

be stored in 2D tensors, by convention

image tensors are always 3D, with a one-

dimensional colour channel for grayscale

images.

shape (#samples, #height, #width, #channels), as in Figure

21.21;

Figure 21.21: A 4D image data tensor [6].

video data is one of the few types of real-world data for which 5D

tensors are needed – a video can be understood as a sequence of

frames, each frame being a colour image; a sequence of frames can be

stored in a 4D tensor (#frames, #height, #width, #channels),

and so a batch of different videos can be stored in a 5D tensor of

shape (#samples, #frames, #height, #width, #channels).

Layers The core building block of neural networks is the layer, a data-

processing module that is, in a sense, a filter for data: some data goes

into the layer and comes out in a more useful form.

Specifically, layers extract representations out of the data fed into them –

hopefully, representations that are more meaningful for the problem at

hand. A layer takes as input 1+ tensors and outputs 1+ tensors. Different



21.4 Other Approaches 1363

layers are appropriate for different tensor formats and different types of

data processing.

For instance, simple vector data, stored in 2D tensors, is often processed

by densely connected layers, also called fully connected or dense layers.

Sequence data, stored in 3D tensors, is typically processed by recurrent
layers. Image data, stored in 4D tensors, is usually processed by 2D

convolution layers.

Most of deep learning consists of chaining together simple layers that will

implement a form of progressive data distillation. However, to build deep

learning models in tensor-based modules like Keras [6], it is important

to clip together compatible layers to form useful data-transformation

pipelines.

The notion of layer compatibility refers specifically to the fact that every

layer can only accept input tensors of a certain shape and return output

tensors of a certain shape.

We will discuss tensors in greater detail in Chapter 31.

Model: Networks of Layers An artificial neural network model is es-

sentially a data processing sieve, made of a succession of increasingly

refined data filters – the layers. The most common example of a model is

a linear stack of layers, mapping a single input to a single output. Other

network topologies include: two-branch networks, multihead networks,

and inception blocks. The topology of a network defines a hypothesis
space.

Since machine learning is basically

“[...] searching for useful representations of some input data,

within a predefined space of possibilities, using guidance

from a feedback signal [6],”

by choosing a network topology, we constrain the space of possibilities

(hypothesis space) to a specific series of tensor operations, mapping input

data to output data.

From a ML perspective, what we are searching for is a good set of values

for the weight tensors involved in these tensor operations. Picking the

right network architecture is more an art than a science; and although

there are some best practices and principles we can rely on, practical

experience is the main factor in becoming a proper neural network

architect.

Learning Process: Loss Function and Optimizer After a network archi-

tecture has been selected, two other objects need to be chosen:

the (objective) loss function is the quantity that is minimized

during training – it represents a measure of success for the task at

hand, and

the optimizer determines how the network is updated based on

the loss function.
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In this context, learning means finding a combination of model param-

eters that minimizes the loss function for a given set of training data

observations and their corresponding targets.

Learning happens by drawing random batches of data samples and

their targets, and computing the gradient of the network parameters

with respect to the loss on the batch. The network parameters are then

updated by a small amount (the magnitude of the move is defined by

the learning rate) in the opposite direction from the gradient.

The entire learning process is made possible by the fact that under a

network disguise, neural networks are simply chains of differentiable
tensor operations, to which it is possible to apply the chain rule of differ-

entiation to find the gradient function mapping the current parameters

and current batch of data to a gradient value.

Choosing the right objective function for a given problem is extremely

important: the network is ruthless when it comes to lowering its loss

function, and it will take any shortcut it can to achieve that objective. If

the latter does not fully correlate with success for the task at hand, the

network may face unintended side effects.

Simple guidelines exist to help analysts select an appropriate loss function

for common problems such as classification, regression, and sequence

prediction. We typically use:

binary cross entropy for a binary classification;

categorical cross entropy for a 𝑛−ary classification;

mean squared error for a regression;

connectionist temporal classification (CTC) for sequence-learning,

etc.

In most cases, one of these will do the trick – only when analysts are

working on truly new research problems do they have to develop their

own objective functions. Let us first illustrate the principles underlying

ANNs with a simple example.

We have seen that ANNs are formed from an input layer from which the

signal vector x is inputted, an output layer which produces an output
vector ŷ, and any number of hidden layers; each layer consists of a

number of nodes which are connected to the nodes of other layers via
directed edges with associated weights w, as seen below.

Nodes from the hidden and output layers are typically activation nodes –

the output 𝑎(z) is some function of the input z. Signals propagate through

the ANN using simple arithmetic, once a set of weights w and activation

functions 𝑎(·) have been selected (see Figure 21.22).

In a nutshell, at each node, the neural net computes a weighted sum of

inputs, applies an activation function, and sends a signal. This is repeated

until the various signals reach the final output nodes.

That part is easy – given a signal, an ANN can produce an output, as long

as the weights are specified. Matrix notation can simplify the expression

for the output ŷ in terms of the signal x, weights w, and activation

function 𝑎(·).
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Figure 21.22: Signal propagating forward through an ANN; weights (in blue), activation functions (in yellow), inputs (in green), and output

(in black).
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For instance, consider the network of Figure 21.22; if

𝑎(𝑧) = (1 + exp(−𝑧))−1 ,

the network topology can be re-written as:

input layer with 𝑝 nodes

X𝑁×𝑝 = X𝑛×2 =


𝑥𝐴,1 𝑥𝐵,1
...

...

𝑥𝐴,𝑁 𝑥𝐵,𝑁

 ;

weights from input layer to hidden layer with 𝑀 nodes

W(1)
𝑝×𝑀 = W(1)

2×2
=

[
𝑤𝐴𝐶 𝑤𝐴𝐷
𝑤𝐵𝐶 𝑤𝐵𝐷

]
;

hidden layer with 𝑀 nodes

Z(2)
𝑁×𝑀 = Z(2)

𝑁×2
=


𝑧𝐶,1 𝑧𝐷,1
...

...

𝑧𝐶,𝑁 𝑧𝐷,𝑁

 = XW(1);

activation function on hidden layer

a(2) =


(1 + exp(−𝑧𝐶,1))−1 (1 + exp(−𝑧𝐷,1))−1

...
...

(1 + exp(−𝑧𝐶,𝑁 ))−1 (1 + exp(−𝑧𝐷,𝑁 ))−1

 = 𝑔(Z(2));

weights from hidden layer with 𝑀 nodes to output layer with 𝐾
nodes

W(2)
𝑀×𝐾 = W(2)

2×1
=

[
𝑤𝐶𝐸
𝑤𝐷𝐸

]
;

output layer with 𝐾 nodes

Z(3)
𝑁×𝐾 = Z(3)

𝑁×1
=


𝑧𝐸,1
...

𝑧𝐸,𝑁

 = a(2)W(2);

activation function on output layer

ŷ = a(3) =


(1 + exp(−𝑧𝐸,1))−1

...

(1 + exp(−𝑧𝐸,𝑁 ))−1

 = 𝑔(Z(3));

The main problem is that unless the weights are judiciously selected,

the output that is produced is unlikely to have anything to do with the

desired output. For SL tasks (i.e., when an ANN attempts to emulate the

results of training examples), there has to be some method to optimize

the choice of the weights against an error function

𝑅(W) =
𝑁∑
𝑖=1

𝑘∑
ℓ=1

(𝑦̂𝑖 ,ℓ (W) − 𝑦𝑖 ,ℓ )2 or 𝑅(W) = −
𝑁∑
𝑖=1

𝑘∑
ℓ=1

𝑦𝑖 ,ℓ ln 𝑦̂𝑖 ,ℓ (W)
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(for value estimation and classification, respectively), where 𝑁 is the

number of observations in the training set, 𝐾 is the number of output

nodes in the ANN, 𝑦𝑖 ,ℓ is the known value or class label for the ℓ th
output

of the 𝑖th observation in the training set.

Enter backpropagation, which is simply an application of calculus’

chain rule to 𝑅(W). Under reasonable regularity condition, the desired

minimizer W∗ satisfies ∇𝑅(W∗) = 0 and is found using numerical
gradient descent.

Gradient-Based Optimization Initially, the weight matrix W is filled

with small random values (a step called random initialization). The

weights are then gradually trained (or learned), based on a feedback
signal. This occurs within a training loop, which works as follows:

1. draw a batch of training samples x and corresponding targets y;

2. run the network on x (the forward pass) to obtain predictions ŷ;

3. compute the loss of the network on the batch, a measure of the

mismatch between ŷ and y;

4. update all weights of the network in a way that slightly reduces

the loss on this batch.

Repeat these steps in a loop, as often as necessary. Hopefully, the process

will eventually converge on a network with very low training loss, which

is to say that there will be a low mismatch between the predictions ŷ and

the target y. In the vernacular, we say that the ANN has learned to map

its inputs to correct targets.

Step 1 is easy enough. Steps 2 and 3 are simply the application of a

handful of tensor operations (or matrix multiplication, as above). Step

4 is more difficult: how do we update the network’s weights? Given

an individual weight coefficient in the network, how can we compute

whether the coefficient should be increased or decreased, and by how

much?

One solution is to successively minimize the objective function along

coordinate directions to find the minimum of a function; this algorithm is

called coordinate descent and at each iteration determines a coordinate,

then minimizes over the corresponding hyperplane while fixing all other

coordinates [6].

It is based on the idea that optimization can be achieved by minimizing

along one direction at a time. Coordinate descent is useful in situations

where the objective function is not differentiable, as is the case for most

regularized regression models, say. But this approach would be inefficient

in deep learning networks, where there is a large collection of individual

weights to update. A smarter approach is use the fact that all operations

used to propagate a signal in the network are differentiable, and compute

the gradient of the objective function (loss) with regard to the network’s

coefficients.

Following a long-standing principle of calculus, we can decrease the

objective function by updating the coefficients in the opposite direction
to the gradient.47

For an input vector X, a weight matrix W, a target Y, 47: The gradient is the derivative of a ten-

sor operation; it generalizes the notion of

the derivative to functions of multidimen-

sional inputs.

and a loss function 𝐿, we predict a target candidate Ŷ(W), and compute

the loss when approximating Y by Ŷ(W).
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If X and Y are fixed, the loss function maps weights W to loss values:

𝑓 (W) = 𝐿(Ŷ(W),Y).

In much the same way that the derivative of a univariate function 𝑓 (𝑥) at

a point 𝑥0 is the slope of the tangent at 𝑓 at 𝑥0, the gradient ∇ 𝑓 (W0) is
the tensor describing the curvature of 𝑓 (W) around W0. As is the case

with the derivative, we can reduce 𝑓 (W) by moving W0 to

W1 = W0 − 𝑠∇ 𝑓 (W0),

where 𝑠 is the learning rate, a small scalar needed to approximate the

curvature of the hypersurface close to W0.

Stochastic Gradient Descent When dealing with ANNs, we can take

advantage of the differentiability of the gradient by finding its critical
points ∇ 𝑓 (W) = 0 analytically.

If the neural network contains𝑄 edges, this requires solving a polynomial

equation in 𝑄 variables. However, real-world ANNs often have over

a few thousand such connections (if not more), and so this analytical

approach is not reasonable.

Instead, we modify the parameters slightly based on the current loss

value on a random batch of data. Since we are dealing with a differentiable

function, we can use a mini-batch stochastic gradient descent (minibatch

SGD) to update the weights, simply by modifying Step 4 of the gradient

descent algorithm as follows:

4a. compute the gradient of the loss with regard to the weights (the

backward pass);

4b. update the weights “a little” in the direction opposite the gradient.

Figure 21.23 illustrates how SGD works when the network only has the

one parameter to learn, with a single training sample.

Figure 21.23: SGD with one parameter [6].
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We automatically see why it is important to choose a reasonable learning

rate (the step size); too small a value leads to either slow convergence

or running the risk of staying stuck at some local minimum; too large a

value may send the descent to essentially random locations on the curve

and overshooting the global minimum altogether.

SGD Challenges The main issue with minibatch SGD is that “good”

convergence rates are not guaranteed, but there are other challenges:

selecting a reasonable learning rate can be difficult. Too small a

rate leads to painfully slow convergence, too large a rate can hinder

convergence and cause the loss function to fluctuate around the

minimum or even to diverge [6];

the same learning rate applies to all parameter updates, which

might not be ideal when the data is sparse;

a key challenge is in minimizing highly non-convex loss functions

that commonly occur in ANNs and avoiding getting trapped in

sub-optimal local minima or saddle points. It is hard for SGD

to escape these sub-optimal local minima and even wors for the

saddle points [8].

SGD Variants There are several SGD variants that are commonly used by

the deep learning community to overcome the aforementioned challenges.

They take into account the previous weight updates when computing

the next weight update, rather than simply considering the current

value of the gradients. Popular optimzers include SGD with momentum,

Nesterov accelerated gradient, Adagrad, Adadelta, RMSProp, and many

more [7, 24].
48

48: A beautiful animation (created by A.

Radford) compares the performance of dif-

ferent optimization algorithms and shows

that the methods usually take different

paths to reach the minimum.

ANNs can be quite accurate when making predictions – more than other

algorithms, if given a proper set up (but this can be hard to achieve).

They degrade gracefully, and they often work when other things fail:

when the relationship between attributes is complex;

when there are a lot of dependencies/nonlinear relationships;

when the inputs are messy and highly-connected (images, text and

speech), and

when dealing with non-linear classification.

But they are relatively slow and prone to overfitting (unless they have

access to large and diverse training sets), they are notoriously hard to

interpret due to their blackbox nature, and there is no algorithm in place

to select the optimal network topology.

Finally, even when they do perform better than other options, ANNs may

not perform that much better due to the No Free-Lunch theorems; and

they always remain susceptible to various forms of adversarial attacks
[13], so they should be used with caution.

49
49: For now, at least. . . who knows what

the future holds.

Example: Wine Dataset In this example, we explore the wine dataset

with the ANN architecture implemented in the R package neuralnet.

We will revisit deep learning networks, and more complicated topologies,

in Chapter 31.

https://imgur.com/a/Hqolp
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wine = read.csv("wine.csv", header=TRUE)

wine = as.data.frame(wine)

str(wine)

’data.frame’: 178 obs. of 14 variables:

$ Class : int 1 1 1 1 1 1 1 1 1 1 ...

$ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...

$ Malic.acid : num 1.71 1.78 2.36 1.95 2.59 ...

$ Ash : num 2.43 2.14 2.67 2.5 2.87 ...

$ Alcalinity.of.ash : num 15.6 11.2 18.6 16.8 21 ...

$ Magnesium : int 127 100 101 113 118 112 ...

$ Total.phenols : num 2.8 2.65 2.8 3.85 2.8 ...

$ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 ...

$ Nonflavanoid.phenols: num 0.28 0.26 0.3 0.24 0.39 ...

$ Proanthocyanins : num 2.29 1.28 2.81 2.18 1.82 ...

$ Colour.intensity : num 5.64 4.38 5.68 7.8 4.32 ...

$ Hue : num 1.04 1.05 1.03 0.86 1.04 ...

$ OD280.OD315 : num 3.92 3.4 3.17 3.45 2.93 ...

$ Proline : int 1065 1050 1185 1480 735 ...

table(wine$Class)

1 2 3

59 71 48

We notice that there are only 3 classes: 1, 2, 3. These classes will be the

level of the categorical response variable for a classification task.

We set-up the model parameters/inputs as follows:

# Number of instances

n = nrow(wine)

# Dependent variable - Class

Y = wine$Class

# Independent variables (full)

X = wine[,-1]

# Indices for Class=1,2,3

C1.loc = which(Y==1)

C2.loc = which(Y==2)

C3.loc = which(Y==3)

We begin data exploration by taking a look at the variables’ boxplots, an

excellent way to understand the distribution of each variable.

plot.title = "Boxplot of Variables in the Wine dataset

(original scale)"

boxplot(X, main=plot.title, xaxt="n")

axis(1,at=1:dim(X)[2],labels=colnames(X),las=2,cex.axis=0.5)
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We clearly see that Proline has higher magnitudes in mean value and

variability. This suggests that if we apply reduction techniques like PCA

to the wine dataset, the 1st principal component will be based almost

entirely on the Proline value. In order to reduce undue effects, we need

to standardize the data first (see Chapter 23 for details).

# Standardized predictor variables (full)

X.std = scale(X)

plot.title = "Boxplot of Variables in the Wine dataset

(standardized)"

boxplot(X.std, main=plot.title, xaxt="n")

axis(1,at=1:dim(X)[2],labels=colnames(X),las=2,cex.axis=0.5)
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We now shift our focus on understanding the relationships amongst the

explanatory variables. This is important because:

scatter plots show us whether classification is a relatively simple

task for our data;

they let us visually inspect potential outliers or influential points;

correlations amongst variables tell us whether it is necessary to

retain all of them, and

the variance inflation factor (VIF) helps us determine which vari-

ables can be removed in order to obtain more stable models, etc.

Let us first take a look at the scatterplot matrix:

plot.title = "Scatterplot matrix"

pairs(X.std, main=plot.title, col=Y+1, cex=0.5, pch=".")
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We can also calculate and display the correlation matrix:

X.cor = cor(X.std)

corrplot::corrplot.mixed(X.cor)

We write a little function that will compute the VIF of each variable in a

design matrix

vif <- function(X){

vif=rep(0,dim(X)[2])

for (i in 1:dim(X)[2]){

expl=X[,-c(i)]

y=lm(X[,i]~expl)

vif[i]=1/(1-summary(y)$r.squared)}

return(vif)

}

vif.X = matrix(vif(X.std), nrow=1)

colnames(vif.X) = colnames(X)

rownames(vif.X) = "VIF"

round(t(vif.X),2)

VIF VIF

Alcohol 2.46 Nonflavanoid.phenols 1.80

Malic.acid 1.66 Proanthocyanins 1.98

Ash 2.19 Colour.intensity 3.03

Alcalinity.of.ash 2.24 Hue 2.55

Magnesium 1.42 OD280.OD315 3.79

Total.phenols 4.33 Proline 2.82

Flavanoids 7.03

We see that Flavonoids has high multicollinearity with respect to the

other variables, as its VIF is greater than 5; as such we have reasonable

grounds to remove that variable from further analyses as the other

variables can explain how Flavonoids would behave and doing so might

reduce the risk of creating unstable models.
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X = X[,-7]

X.std = X.std[,-7]

Now we apply a PCA reduction (see Chapter 23 for details) to fur-

ther reduce the problem complexity. We start by performing principal

component analysis on the standardized data:

pca.std = prcomp(X.std)

summary(pca.std)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.9757 1.5802 1.1870 0.94820

Proportion of Variance 0.3253 0.2081 0.1174 0.07492

Cumulative Proportion 0.3253 0.5334 0.6508 0.72569

PC5 PC6 PC7 PC8

Standard deviation 0.91472 0.80087 0.74082 0.58095

Proportion of Variance 0.06973 0.05345 0.04573 0.02813

Cumulative Proportion 0.79541 0.84886 0.89460 0.92272

PC9 PC10 PC11 PC12

Standard deviation 0.53687 0.49487 0.4750 0.41059

Proportion of Variance 0.02402 0.02041 0.0188 0.01405

Cumulative Proportion 0.94674 0.96715 0.9859 1.00000

The scree plot for proportions of variance explained by each PC is:

scree.y = eigen(t(X.std)%*%X.std)$values/

sum(eigen(t(X.std)%*%X.std)$values)

barplot(scree.y, main=plot.title,ylim=c(0, 0.35),

ylab="% explained", xlab="PC",col=heat.colors(12))

test = seq(0.7, 13.9, length.out=12)

axis(1, at=test, labels=1:12)
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Based on the summary table, the first 6 PC would be required to retain

80% of the explanatory power; the scree plot, on the other hand, shows a

knee at the 4th component.

We can explore this further: let us take a look at the scatterplot of the first

two PC. We start by transforming X.std into its principal coordinates:

PC = X.std %*% pca.std$rotation

PCnames = c("PC1","PC2","PC3","PC4","PC5","PC6","PC7",

"PC8","PC9","PC10","PC11","PC12")

colnames(PC) <- PCnames

plot.title = "PC1 vs. PC2"

plot(PC[,1], PC[,2], cex=1.2, main=plot.title, col=Y+1,

xlab="PC1", ylab="PC2")

The scatterplot shows that the three classes are separated reasonably well

by PC1 and PC2 (although, not linearly).

plot.title = "Boxplots (in Principal Coordinates)"

par(mfrow = c(3,4))

for (i in 1:12){

plot.title.ind = paste("PC ", i, sep="")

boxplot(PC[,i]~Y, main=plot.title.ind,

col=c("red","green","blue"))

}
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The boxplots further leave the impression that PC3 to PC12 do not provide

as clear a separation as do PC1 and PC2. We will thus use only the latter to

visually evaluate the effectiveness of ANN (and its prediction regions).

In order to evaluate the effectiveness of the model (i.e., does it have good

predictive power without overfitting the data?), we split the data into

training and testing sets.

The model is then developed using the training set (i.e., optimized using

a subset of data), and then evaluated for its prediction power using the

testing set.

There are 𝑛 = 178 observations in total: we sample 140 of them for

the training set (say, 46 of class 1, 56 of class 2, and 38 of class 3). The

remaining 38 observations form the testing set.

set.seed(1111) # for replicabilty

C1.train.loc = sort(sample(C1.loc, size=46))

C2.train.loc = sort(sample(C2.loc, size=56))

C3.train.loc = sort(sample(C3.loc, size=38))

train.loc = c(C1.train.loc, C2.train.loc, C3.train.loc)

test.loc = which(!(1:length(Y) %in% train.loc))

# training data

PC.train = PC[train.loc,]

Y.train = Y[train.loc]

dat.train = as.data.frame(cbind(nnet::class.ind(Y.train),

PC.train))

colnames(dat.train)[1:3] = c("C1", "C2", "C3")

# testing data

PC.test = PC[test.loc,]

Y.test = Y[test.loc]

dat.test = as.data.frame(cbind(nnet::class.ind(Y.test),

PC.test))

colnames(dat.test)[1:3] = c("C1", "C2", "C3")

We display the training dataset (circles) and testing dataset (triangles) on

the PC1/PC2 scatterplot.

plot.title = "Training and Testing data"

xlimit = c(-4,4)

ylimit = c(-3,3)

plot(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1,

main=plot.title, xlab="PC1", ylab="PC2", xlim=xlimit,

ylim=ylimit)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5,

col=Y.test+1)
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If we only use the PC1/PC2-reduced data, we would expect that at least

two of the test observations would be misclassified (the left-most and

right-most green triangles, respectively).

We are finally ready to build an ANN via the R package neuralnet (the

main function is also called neuralnet()). We run three analyses:

1. using only the first two principal components as inputs;

2. useing the first six principal components as inputs, and

3. using all 12 principal components as inputs.

We start by forming a grid in the PC1/PC2 space on which we can colour

the prediction regions.

predict.region.PC1=seq(-5,5, length.out=100)

predict.region.PC2=seq(-4,4, length.out=100)

predict.region=expand.grid(x=predict.region.PC1,

y=predict.region.PC2)

We will also use an expanded form of the confusion matrix:

# A souped-up version of the confusion matrix

confusion.expand <- function (pred.c, class) {

temp <-mda::confusion(pred.c,class)

row.sum <- apply(temp,1,sum)

col.sum <- apply(temp,2,sum)

t.sum <- sum(col.sum)

tmp <- rbind(temp, rep("----", dim(temp)[2]), col.sum)

tmp <- noquote(cbind(tmp, rep("|",dim(tmp)[1]),

c(row.sum, "----", t.sum)))

dimnames(tmp)<-list(object =

c(dimnames(temp)[[1]],"-------","Col Sum"),

true = c(dimnames(temp)[[2]],"|","Row Sum"))
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attr(tmp, "error") <- attr(temp, "error")

attr(tmp, "mismatch") <- attr(temp, "mismatch")

return(tmp)

}

In what follows, we build an ANN model using neuralnet, with PC1

and PC2 as inputs. The parameter model.structure, which defines the

number of hidden nodes in each hidden layer, is modifiable:

a model with no hidden layer would have model.structure = 0;

1 hidden layer of 3 nodes would require model.structure = 3;

2 hidden layers of 5 and 10 nodes, respectively, would require

model.structure = c(5,10), and so on.

We will use 2 hidden layers of 10 nodes each.

model.structure = c(10,10)

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ PC1 + PC2,

data = dat.train, hidden = model.structure,

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1, PC.test[,1:2])

predict.model1.test = max.col(prob.model1.test$net.result)

print(paste("Confusion matrix (testing) for model = ",

list(model.structure)[1], sep=""))

(conf.test=confusion.expand(predict.model1.test, Y.test))

[1] "Confusion matrix (testing) for model = c(10, 10)"

true

object 1 2 3 | Row Sum

1 13 1 0 | 14

2 0 13 1 | 14

3 0 1 9 | 10

------- ---- ---- ---- | ----

Col Sum 13 15 10 | 38

attr(,"error")

[1] 0.07894737

We can compute the prediction region for the two-input model and

display it as follows:

prob.model1.region <- neuralnet::compute(model1,

predict.region[,1:2])

predict.model1.region = max.col(prob.model1.region$net.result)

plot.title=paste("Prediction region for ANN with structure = ",

list(model.structure)[1], sep="")

plot(predict.region[,1], predict.region[,2],

main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2",

col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2,

col=Y.train+1)
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points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5,

col=Y.test+1)

Note the complex decision boundary.

Since the error function we seek to minimize (e.g., SSE) is non-convex, it

is possible for ANN to get stuck at local minima, rather than converge to

the global minimum. We can run the model a number of times (say, 50

replicates) and find the average prediction.
50

50: Note: this code may produce an error

saying that ANN has issues converging

(especially for simpler models). If this hap-

pens, the simple solution is to re-run the

code again or change the seed.

model.structure = c(10,10)

n.j = 50

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ PC1 + PC2,

data = dat.train, hidden = model.structure,

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:2])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test = confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

# number of misclassifications

conf.test.vector = round(conf.test.vector*length(Y.test))

print(paste("Summary of number of misclassifications

in testing data out of", n.j, "trials", sep=" "))
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round(summary(conf.test.vector), digits=2)

[1] "Summary of number of misclassifications in testing data out of 50 trials"

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 3.00 3.00 2.92 3.00 4.00

We build ANN for the PCA-reduced 6-input dataset.
51

For each ANN 51: We will try 11 different topologies: no

hidden layer; 1 hidden layer with 2, 6,

10, and 30 nodes; 2-hidden layers with

(6,6), (10,10), (30,30) nodes, and 30-hidden

layers with (6,6,6), (10,10,10) and (30,30,30)

nodes.

topology, we replicate the process 25 times. It should be noted that

prediction regions are not computed, as our input is in more than 2

dimensional space.

model.structure = list(0, # no hidden layer

2, 6, 10, 30, # 1 hidden layer

rep(6,2), rep(10,2), rep(30,2), # 2 hidden layers

rep(6,3), rep(10,3), rep(30,3)) # 3 hidden layers

set.seed(1)

results = NULL

n.loop = length(model.structure)

n.j = 25

for (i in 1:n.loop){

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~

PC1 + PC2 + PC3 + PC4 + PC5 + PC6,

data = dat.train, hidden = model.structure[[i]],

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:6])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test=confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

results[[i]] = summary(round(conf.test.vector*length(Y.test)))

}

results = as.data.frame(dplyr::bind_rows(results,

.id = "column_label"))

colnames(results) <- c("hidden", "min", "Q1", "med", "mean",

"Q3", "max")

results$hidden <- model.structure

hidden min Q1 med mean Q3 max

0 2 2 2 2.00 2 2

2 1 2 2 1.92 2 3

6 1 2 2 1.92 2 2
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10 1 2 2 1.96 2 2

30 2 2 2 2.00 2 2

6, 6 1 2 2 1.96 2 2

10, 10 1 2 2 1.88 2 2

30, 30 2 2 2 2.00 2 2

6, 6, 6 1 2 2 1.88 2 2

10, 10, 10 1 2 2 1.88 2 2

30, 30, 30 1 2 2 1.96 2 2

We can repeat this process once more, using all 12 PC.

for (i in 1:n.loop){

conf.train.vector = conf.test.vector = NULL

for (j in 1:n.j){

model1 <- neuralnet::neuralnet(C1 + C2 + C3 ~ .,

data = dat.train,

hidden = model.structure[[i]],

err.fct = "ce", linear.output = FALSE)

prob.model1.test <- neuralnet::compute(model1,

PC.test[,1:12])

predict.model1.test = max.col(prob.model1.test$net.result)

conf.test=confusion.expand(predict.model1.test,

Y.test)

conf.test.vector=c(conf.test.vector,

attributes(conf.test)$error)

}

results[[i]] = summary(round(conf.test.vector*length(Y.test)))

}

results = as.data.frame(dplyr::bind_rows(results,

.id = "column_label"))

colnames(results) <- c("hidden", "min", "Q1", "med", "mean",

"Q3", "max")

results$hidden <- model.structure

hidden min Q1 med mean Q3 max

0 2 2 2 2.00 2 2

2 1 1 1 1.80 3 4

6 1 2 2 2.04 2 3

10 1 2 2 1.96 2 2

30 2 2 2 2.00 2 2

6, 6 1 2 2 2.00 2 3

10, 10 1 2 2 1.92 2 3

30, 30 1 2 2 1.84 2 2

6, 6, 6 1 1 2 1.76 2 3

10, 10, 10 1 2 2 1.84 2 2

30, 30, 30 1 1 2 1.68 2 2

Comparing the mean number of misclassifications, what can we con-

clude?
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21.4.4 Naïve Bayes Classifiers

In classical statistics, model parameters (such as 𝜇 and 𝜎, say) are treated

as constants; Bayesian statistics, on the other hand assume that model

parameters are random variables.

Bayes’ Theorem lies at the foundation of this approach:

𝑃(hypothesis | data) = 𝑃(data | hypothesis) × 𝑃(hypothesis)
𝑃(data) ,

or simply

𝑃(𝐻 | 𝐷) = 𝑃(𝐷 | 𝐻) × 𝑃(𝐻)
𝑃(𝐷) .

This is sometimes written in shorthand as 𝑃(𝐻 | 𝐷) ∝ 𝑃(𝐷 | 𝐻) × 𝑃(𝐻);
in other words, our degree of belief in a hypothesis should be updated
by the evidence provided by the data.

52
52: Nobody disputes the validity of Bayes’

Theorem, and it has proven to be a useful

component in various models and algo-

rithms, such as email spam filters, and the

following example, but the use of Bayesian

statistics is controversial in many quarters.

We will discuss Bayesian data analysis in

depth in Chapter 25.

Naïve Bayes Classification for Tumor Diagnoses Suppose we are inter-

ested in diagnosing whether a tumor is benign or malignant, based on

several measurements obtained from video imaging.

Bayes’ Theorem can be recast as

posterior =
likelihood × prior

evidence

∝ likelihood × prior,

where

posterior: 𝑃(𝐻 | 𝐷) = based on collected data, how likely is a given

tumor to be benign (or malignant)?

prior: 𝑃(𝐻) = in what proportion are tumors benign (or malignant)

in general?

likelihood: 𝑃(𝐷 | 𝐻) = knowing a tumor is benign (or malignant),

how likely is it that these particular measurements would have

been observed?

evidence: 𝑃(𝐷) = regardless of a tumor being benign or malignant,

what is the chance that a tumor has the observed characteristics?

The naïve Bayes classifiers (NBC) procedure is straightforward.

1. Objective function: a simple way to determine whether a tumor

is benign or malignant is to compare posterior probabilities and

choose the one with highest probability. That is, we diagnose a

tumor as malignant if

𝑃(malignant | 𝐷)
𝑃(benign | 𝐷) =

𝑃(𝐷 | malignant) × 𝑃(malignant)
𝑃(𝐷 | benign) × 𝑃(benign) > 1,

and as benign otherwise.

2. Dataset: there are 𝑛 = 699 observations (from the [in]famous

BreastCancer-Wisconsin.csv dataset) with nine predictor mea-

surements, each scored on a scale of 1 to 10, a score of 0 being

reserved for missing values. The predictors include items such

as Clump_Thickness and Bare_Nuclei; the categorical response

variable is the Class (Benign, Malignant).

https://www.data-action-lab.com/wp-content/uploads/2023/04/BreastCancer-Wisconsin.csv
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dat.BC = read.csv("BreastCancer-Wisconsin.csv",

header=TRUE, stringsAsFactors = TRUE)

str(dat.BC)

’data.frame’: 699 obs. of 10 variables:
$ Clump_Thickness : int 5 5 3 6 4 8 1 2 2 4 ...
$ Uniformity_of_Cell_Size : int 1 4 1 8 1 10 1 1 1 2 ...
$ Uniformity_of_Cell_Shape : int 1 4 1 8 1 10 1 2 1 1 ...
$ Marginal_Adhesion : int 1 5 1 1 3 8 1 1 1 1 ...
$ Single_Epithelial_Cell_Size: int 2 7 2 3 2 7 2 2 2 2 ...
$ Bare_Nuclei : int 1 10 2 4 1 10 10 1 1 1 ...
$ Bland_Chromatin : int 3 3 3 3 3 9 3 3 1 2 ...
$ Normal_Nucleoli : int 1 2 1 7 1 7 1 1 1 1 ...
$ Mitoses : int 1 1 1 1 1 1 1 1 5 1 ...
$ Class : Factor w/ 2 levels "Benign","Malignant": 1 1 1 1 1 2 1 1 1 1 ...

In table layout, the first 6 observations look like:

head(dat.BC)

We create a training/testing split for the data, by selecting roughly

80%/20% of the observations.

set.seed(1234) # for reproducibility

ind = 1:nrow(dat.BC)

prop.train = 0.8

n.train = floor(nrow(dat.BC)*prop.train)

# indices of training observations

loc.train = sort(sample(ind, n.train, replace=FALSE))

# indices of testing observations

loc.test = ind[-which(ind %in% loc.train)]

# training data

dat.BC.train = dat.BC[loc.train,]

# test data

dat.BC.test = dat.BC[loc.test,]

We separate the Benign and Malignant subsets of the training data

for graphing purposes.

location.Benign = which(dat.BC.train$Class=="Benign")

location.Malignant = which(!(1:nrow(dat.BC.train)

%in% location.Benign))

cols_remove = c("Class")
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dat.Benign=dat.BC.train[location.Benign,!colnames(dat.BC)

%in% cols_remove]

dat.Malignant=dat.BC.train[location.Malignant,

!colnames(dat.BC) %in% cols_remove]

The boxplots of the training measurements are shown below.

library(gpplot2)

dat.BC2 = reshape2::melt(dat.BC.train, id.var="Class")

ggplot(data = dat.BC2, aes(x=variable, y=value)) +

geom_boxplot(aes(fill=Class)) +

scale_y_discrete(limits = 1:10) +

theme(axis.text.x = element_text(angle = 90, hjust = 1))

From these plots, we learn that benign tumors have lower scores

on average, while malignant tumors have much higher scores and

variabilities.
53

53: In what follows, we treat the test ob-

servations as undiagnosed cases.
3. Assumptions: we assume that the scores of each measurement in a

class are independent of one another (hence the naive qualifier);

this assumption reduces the likelihood to

𝑃(𝐻 | 𝐷) = 𝑃(𝐻 | 𝑥1 , 𝑥2 , · · · , 𝑥9) ∝ 𝑃(𝑥1 , 𝑥2 , · · · , 𝑥9 | 𝐻) × 𝑃(𝐻)
= 𝑃(𝑥1 | 𝐻) × · · · × 𝑃(𝑥9 | 𝐻) × 𝑃(𝐻).

Note that this assumption of conditional independence is not

usually satisfied.
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4. Prior distribution: we can ask subject matter experts to provide a

rough estimate for the general ratio of benign to malignant tumors,

or use the proportion of benign tumors in the sample as our prior.
54

54: In situations where we have no knowl-

edge about the distribution of priors, we

may simply assume a non-informative
prior. In this case, the prevalence rates

would be the same for both responses.

In this example, we will assume that the training data represents the

tumor population adequately, and we use the observed proportions

as estimated prior probabilities.

n.Benign.train = nrow(dat.Benign)

n.Malignant.train = nrow(dat.Malignant)

(prior.Benign = n.Benign.train/(n.Benign.train +

n.Malignant.train))

(prior.Malignant = 1 - prior.Benign)

[1] 0.6529517

[1] 0.3470483

5. Computation of likelihoods: under conditional independence,

each measurement is assumed to follow a multinomial distribution

(since scores are provided on a 1 to 10 scale): for each predictor, for

each class, we must estimate 𝑝1 , . . . , 𝑝10, with 𝑝1 + · · · + 𝑝10 = 1.
55

55: In other problems, the predictors

could be continuous rather than discrete,

in which case we would use continuous

distributions instead; even in discrete case,

the multinomial assumption might not be

appropriate.

The best estimates are thus

𝑝̂ℓ ,pred =
# of training cells in the class with pred score ℓ

# of training cells in the class

, ℓ = 1, . . . , 10.

This is done in the code below; note that count.xyz is a count

matrix, while freq.xyz is a frequency matrix.

# Benign cells

count.Benign = freq.Benign = NULL

for (i in 1:(ncol(dat.BC.train)-1)){

test.count = table(c(dat.Benign[,i],0:10))-1

test.freq = test.count/sum(test.count)

count.Benign = cbind(count.Benign, test.count)

freq.Benign = cbind(freq.Benign, test.freq)

}

colnames(count.Benign) = colnames(freq.Benign)

= colnames(dat.Benign)

p.Benign = freq.Benign

p.Benign[1,] = 1

# Malignant cells

count.Malignant = freq.Malignant = NULL

for (i in 1:(ncol(dat.BC.train)-1)){

test.count = table(c(dat.Malignant[,i],0:10))-1

test.freq = test.count/sum(test.count)

count.Malignant = cbind(count.Malignant, test.count)

freq.Malignant = cbind(freq.Malignant, test.freq)

}

colnames(count.Malignant) = colnames(freq.Malignant)

= colnames(dat.Malignant)

p.Malignant = freq.Malignant

p.Malignant[1,] = 1
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These are then the best estimates for the multinomial parameters,

for the benign tumors:

table(p.Benign)

For the malignant tumors, we have:

table(p.Malignant)

barplot(p.Benign[2:11,4],

xlab = "Score", ylab = "Relative Frequency",

main = "Marginal Adhesion Scores - Benign Cells")
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barplot(p.Malignant[2:11,4],

xlab = "Score", ylab = "Relative Frequency",

main = "Marginal Adhesion Scores - Malignant Cells")

Multiplying probabilities across predictors from each multino-

mial distribution (one each for both classes) provides the overall

likelihoods for benign and malignant tumors, respectively.

For instance, if the signature of an undiagnosed case was

(1, 1, 3, 1, 0, 2, 3, 2, 2),

then we would multiply the probabilities corresponding to each

score across predictors, once assuming that the cell was benign,

and once assuming it was malignant:

𝑃(𝐷 | 𝐻) = 𝑃(x = (1, 1, 3, 1, 0, 2, 3, 2, 2) | 𝐻)
= 𝑃(𝑥1 = 1 | 𝐻) × 𝑃(𝑥2 = 1 | 𝐻) × 𝑃(𝑥3 = 3 | 𝐻)
× 𝑃(𝑥4 = 1 | 𝐻) × 𝑃(𝑥5 = 0 | 𝐻) × 𝑃(𝑥6 = 2 | 𝐻)
× 𝑃(𝑥7 = 3 | 𝐻) × 𝑃(𝑥8 = 2 | 𝐻) × 𝑃(𝑥9 = 2 | 𝐻).

We can extract the signature vector of probabilities as follows:

x = c(1,1,3,1,0,2,3,2,2) + 1

y = c(1,2,3,4,5,6,7,8,9)

For the benign class, we have:

p.Benign[as.matrix(data.frame(x,y))]

[1] 0.33424658 0.83561644 0.08219178 0.82739726

[5] 1.00000000 0.04657534 0.26575342

[8] 0.05753425 0.01369863

(l.Benign = prod(p.Benign[as.matrix(data.frame(x,y))]))

[1] 1.852912e-07

For the malignant class, we have:
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p.Malignant[as.matrix(data.frame(x,y))]

[1] 0.01546392 0.01030928 0.09793814 0.14948454

[5] 1.00000000 0.02577320 0.15463918

[8] 0.03092784 0.10824742

(l.Malignant = prod(p.Malignant[as.matrix(data.frame(x,y))]))

[1] 3.114231e-11

Based on the multinomial probabilities given in p.Benign and

p.Malignant, the (naïve) likelihood of the undiagnosed case being

a benign tumor would thus be 1.86 × 10
−7

, while the likelihood of

it being a malignant tumor would be 3.11 × 10
−11

.
56

56: Careful! These are the likelihoods, not

the posteriors.
6. Computation of posterior: multiplying the corresponding prior

probabilities and likelihoods, we get a quantity that is proportional

to the respective posterior probabilities:

𝑃(𝐻 | x) ∝ 𝑃(𝐻) × 𝑃(x | 𝐻) ≈ 𝑃(𝐻) ×
9∏
𝑗=1

𝑃(𝑥 𝑗 | 𝐻).

The “likelihoods” can be computed as follows:

test.Benign = test.Malignant = NULL

likelihood.Benign = likelihood.Malignant = NULL

for (i in 1:nrow(dat.BC.test)){

location = rapply(dat.BC.test[i,-10]+1,c)

for(j in 1:length(location)){

test.Benign[j] = p.Benign[location[j],j]

test.Malignant[j] = p.Malignant[location[j],j]

}

likelihood.Benign.i = prod(test.Benign)

likelihood.Malignant.i = prod(test.Malignant)

likelihood.Benign = c(likelihood.Benign,

likelihood.Benign.i)

likelihood.Malignant = c(likelihood.Malignant,

likelihood.Malignant.i)

}

The “posteriors” can then be computed as follows:

posteriors=cbind(likelihood.Benign*prior.Benign,

likelihood.Malignant*prior.Malignant)

For the undiagnosed case x = (1, 1, 3, 1, 0, 2, 3, 2, 2), we obtain:

l.Benign*prior.Benign

l.Malignant*prior.Malignant
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[1] 1.209862e-07

[1] 1.080789e-11

Comparing the posteriors

𝑃(Malignant | x) < 𝑃(Benign | x),

we conclude that the tumor in the undiagnosed case is likely
benign.

57
We can complete the procedure for all observations in57: Note that we have no measurement

on how much more likely it is to be benign

than to be malignant – the classifier is not
calibrated.

the test set:

n.test=nrow(dat.BC.test)

prediction=rep(NA, n.test)

prediction[which(posteriors[,1]>posteriors[,2])]="Benign"

prediction[which(posteriors[,1]<posteriors[,2])]="Malignant"

prediction=as.factor(prediction)

table(prediction)

prediction

Benign Malignant

85 55

Since we actually know the true outcome for the test subjects, we

can take a look at the NBC’s performance on the data.

table(dat.BC.test$Class,prediction)

NBC

prediction
Benign Malignant

actual Benign 85 8

Malignant 0 47

Let’s take a look at cases where NBC misclassified, and their

corresponding posteriors:

dat.misclassified = dat.BC.test[

which(dat.BC.test$Class!=prediction),]

missed.class = prediction[

which(dat.BC.test$Class!=prediction)]

wrong.classifications = cbind(posteriors[

which(dat.BC.test$Class!=prediction),])

colnames(wrong.classifications) =

c("Posterior.Benign","Posterior.Malignant")

wrong.classifications =

cbind(dat.misclassified, wrong.classifications)

table(wrong.classifications)

The confusion matrix tells us that 8 out of 140 cases (5.7%) are

misclassified. A closer look at misclassified cases reveals that 3 of

the 8 false positives are a result of a posterior probability being 0 (a

score level that was not observed in the training set). Taking a close

look at ID 130, for instance, all but Single_Epithelial_Cell_Size
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have scores of 1, strongly indicating that tumor is likely benign

(perhaps the 10 is a typo?).

Can we prevent misclassification similar to case in ID 130? One way

to do so is to replace all 0 probabilities in the likelihood matrices

by a small 𝜀 (obtained by multiplying a base probability with the

smallest non-zero probability), and by re-scaling the columns so

that they all add up to 1 (excluding the missing values from the

process). If 𝜀 is small enough, the larger probabilities will not be

affected, in practice.
58

58: Using a base probability of 10
−8

%, for

instance, would reduce the misclassifica-

tion rate on the test data to 6/140 (4.3%).

Notes and Comments In practice, various prior distributions or condi-

tional distributions (for the features) can be used; domain matter expertise

can come in handy during these steps:

the naive assumption is made out of convenience, as it renders the

computation of the likelihood much simpler;

the variables in a dataset are not typically independent of one

another, but NBC still works well with test data (usually) – the

method seems to be robust against departure from the indepen-

dence assumption;

dependency among variables may change the true posterior values,

but the class with maximum posterior probabilities is often left

unchanged;

in the classification context, we typically get more insight from

independent/correlated data than from correlated data;

NBC works best for independent cases, but optimality can also be

reached when dependency among variables inconsistently support

one class over another;

the choice of a prior may have a great effect on the classification

predictions, as can the presence of outlying observations, especially

when |Tr| is small);

it is not practical to conduct NBC manually, as we have done in

this section – a complete implementation can be called by using

the method naiveBayes() from the R package e1071 (make sure

to read the documentation first!), and

a final reminder that, like the SVM models, NBC is not calibrated
and should not be used to estimate probabilities.

21.5 Ensemble Learning

In practice, individual learners are often weak – they perform better

than random guessing would, but not necessarily that much better, or
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sufficiently so for specific analytical purposes. In the late 80’s, Kearns

and Valiant asked the following question: can a set of weak learners be

used to create a strong learner? The answer, as it turn out, is yes – via
ensemble learning methods.

As an example, scientists trained 16 pigeons (weak learners, one would

assume) to identify pictures of magnified biopsies of possible breast

cancers. On average, each pigeon had an accuracy of about 85%, but when

the most popular answer among the group was selected, the accuracy

jumped to 99% [21].
59

59: The material of this section closely

follows [18].

21.5.1 Bagging

Bootstrap aggregation (also known as bagging) is an extension of

bootstrapping. Originally, bootstrapping was used in situations where it

is nearly impossible to compute the variance of a quantity of interest by

exact means (see Section 20.3.2).

But it can also be used to improve the performance of various statistical

learners, especially those that exhibit high variance (such as CART).
60

60: Low variance methods, in comparison,

are those for which the results, structure,

predictions, etc. remain roughly similar

when using different training sets, such as

OLS when 𝑁/𝑝 ≫ 1, and are less likely to

benefit from the use of ensemble learning.

Given a learning method, bagging can be used to reduce the variance of

that method.

If 𝑍1 , . . . , 𝑍𝐵 are independent predictions at x ∈ Te, say, with

Cov(𝑍𝑖 , 𝑍 𝑗) =
{
𝜎2

if 𝑖 = 𝑗

0 else

the central limit theorem states that

Var(𝑍) = Var

(
𝑍1 + · · · + 𝑍𝐵

𝐵

)
=

1

𝐵2

Var(𝑍1 + · · · + 𝑍𝐵)

=
1

𝐵2

𝐵∑
𝑖 , 𝑗=1

Cov(𝑍𝑖 , 𝑍 𝑗) =
1

𝐵2

𝐵∑
𝑘=1

Var(𝑍𝑖) =
𝜎2

𝐵
.

In other words, averaging a set of observations reduces the variance as

𝜎2 ≥ 𝜎2

𝐵 for all 𝐵 ∈ ℕ. In practice, this conclusion seems, at first, not to

be as interesting as originally intended since we do not usually have

access to multiple training sets. However, resampling methods can be

used to generate multiple bagging training sets from the original train-

ing set Tr.

Let 𝐵 > 1 be an integer. We generate 𝐵 bootstrapped training sets from Tr

by sampling 𝑁 = |Tr| observations from Tr, with replacement, to yield

Tr1 , . . . , Tr𝐵 ,

and train a model 𝑓𝑖 (for regression) or 𝐶̂𝑖 (for classification) on each Tr𝑖 ,

𝑖 = 1, . . . , 𝐵; for each x∗ ∈ Te, we then have 𝐵 predictions

𝑓1(x∗), . . . , 𝑓𝐵(x∗) (for regression)

𝐶̂1(x∗), . . . , 𝐶̂𝐵(x∗) (for classification).
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The bagging prediction at x∗ ∈ Te is the average of all predictions

𝑓Bag(x∗) =
1

𝐵

𝐵∑
𝑖=1

𝑓𝑖(x∗) (for regression),

or the most frequent prediction

𝐶̂Bag(x∗) = Mode{𝐶̂1(x∗), . . . , 𝐶̂𝐵(x∗)} (for classification).

Bagging is particularly helpful in the CART framework; to take full

advantage of bagging, however, the trees should be grown deep (i.e.,

no pruning), as their complexity will lead to high variance but low bias

(thanks to the bias-variance trade-off).

In practice, the bagged tree predictions would also have low bias, but the

variance will be reduced by the bagging process; bagging with 100s/1000s

of trees typically produces greatly improved predictions (at the cost of

interpretability, however).

Out-of-Bag Error Estimation As is usually the case with supervised

models, we will need to estimate the test error for a bagged model. There

is an easy way to provide the estimate without relying on cross-validation,

which is computationally expensive when 𝑁 is large.

The 𝑗th model is fit to the bootstrapped training set Tr𝑗 , 𝑗 = 1, . . . , 𝐵.

We can show that, on average, each of the Tr𝑗 contains ≈ 2/3 distinct

observations of Tr, which means that ≈ 1/3 of the training observations

are not used to build the model (we refer to those observations are

out-of-bag (OOB) observations).

We can then predict the response 𝑦𝑖 for the 𝑖th observation in Tr using

only those models for which x𝑖 was OOB; there should be about 𝐵/3
such predictions, and

𝑦̂𝑖 = Avg{ 𝑓𝑗(x𝑖) | x𝑖 ∈ OOB(Tr𝑗) = Tr \ Tr𝑗} (for regression)

𝑦̂𝑖 = Mode{𝐶̂ 𝑗(x𝑖) | x𝑖 ∈ OOB(Tr𝑗)} (for classification).

The OOB MSE (or the OOB misclassification rate) are thus good Te error

estimates since none of the predictions are given by models that used

the test observations in their training.

Variable Importance Measure Bagging improves the accuracy of stand-

alone models, but such an improvement comes at the cost of reduced
interpretability, especially in the case of CART: the bagged tree pre-

dictions cannot, in general, be expressed with the help of a single tree.

In such a tree, the relative importance of the features is linked to the

hierarchy of splits.
61

61: Namely, the most “important” vari-

ables appear in the earlier splits.

For bagged regression trees, a measure such as the total amount in

decreased SSE due to splits over a given predictor, in which we compare

SSE in trees with these splits against SSE in trees without these splits,

averaged over the 𝐵 bagged trees, provides a summary of the importance

of each variable (large scores indicate important variables). For bagged

classification trees, we would replace SSE with the Gini index, instead.
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Another approach might be to weigh the importance of a factor inversely
proportionally to the level in which it appears (if at all) in each bagging

tree and to average over all bagging trees.

For instance, if predictor 𝑋1 appears in the 1st split level of bagged tree

1, the 4th split level of bagged tree 2, and the 3rd split level of bagged

tree 5, whereas predictor 𝑋2 appears in the 2nd, 2nd, 3rd, and 5th split

levels of bagged trees 2, 3, 4, 5 (resp.), then the relative importance of

each predictor over the 5 bagged trees is

𝑋1 : (1 + 1/4 + 0 + 0 + 1/3) · 1/5 = 19/60 = 0.32

𝑋2 : (0 + 1/2 + 1/2 + 1/3 + 1/5) · 1/5 = 23/75 = 0.31;

the first variable is nominally more important than the second.

Example We once again revisit the Iowa Housing Price example of

Sections 20.5.2 and 21.4.1. Recall that we had built a training set dat.train

with 𝑛 = 1160 observations relating to the selling price SalePrice of

houses in Ames, Iowa.

dat.Housing = read.csv("VE_Housing.csv", header=TRUE,

stringsAsFactors = TRUE)

missing = attributes(which(apply(is.na(dat.Housing), 2,

sum)>0))$names

dat.Housing.new = dat.Housing[,!colnames(dat.Housing)

%in% missing]

dat.Housing.new = subset(dat.Housing.new, select = -c(Id))

set.seed(1234) # for replicability

n.train = 1160

ind.train = sample(1:nrow(dat.Housing.new), n.train)

dat.train = dat.Housing.new[ind.train,]

dat.test = dat.Housing.new[-ind.train,]

We build a regression tree bagging model using the R package ipred,

with 150 bags, and using an OOB error estimate.

set.seed(1234)

library(ipred)

(bag <- bagging(formula = SalePrice ~ ., data = dat.train,

nbagg = 150, coob = TRUE, control =

rpart::rpart.control(minsplit = 5, cp = 0),

importance = TRUE))

Bagging regression trees with 150 bootstrap replications

Out-of-bag estimate of root mean squared error: 29.2526

We can display the 5 most important variables:

p=ncol(dat.train)-1

vim <- data.frame(var=names(dat.train[,1:p]),

imp=caret::varImp(bag))
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vim.plot <- vim[order(vim$Overall, decreasing=TRUE),]

vim.plot <- vim.plot[1:5,]

barplot(vim.plot$Overall, names.arg=rownames(vim.plot),

col=heat.colors(5), xlab=’Variable Importance’)

The predictions on the testing data are obtained (and plotted) as follows:

yhat.bag = predict(bag, newdata=dat.test)

xlimit = ylimit = c(0,600)

plot(NA, col=2, xlim=xlimit, ylim=ylimit,

xlab="Predicted Price ($1,000)",

ylab="Actual Price ($1,000)")

abline(h=seq(0,600, length.out=13), lty=2, col="grey",

v=seq(0,600, length.out=13))

abline(a=0, b=1)

points(yhat.bag, dat.test$SalePrice, col=2)

legend(0,600, legend=c("Bagged Tree - (150 bags)"),

col=c(2), pch=rep(1), bg=’light grey’)
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The correlation measure between predicted and actual sale prices on the

dat.test is:

cor(yhat.bag, dat.test$SalePrice)

[1] 0.9413044

How does that compare to the previous MARS and CART models?

21.5.2 Random Forests

In a bagging procedure, we fit models on various training sets, and we

use the central limit theorem, assuming independence of the models, to

reduce the variance.

In practice, however, the independence assumption is rarely met: if there

are only a few strong predictors in Tr, each of the bagged models (built

on the bootstrapped training sets Tr𝑖) is likely to be similar to the others,

and the various bagging predictions are unlikely to be un-correlated, so

that

Var(𝑦̂∗
Bag
) ≠ 𝜎2

𝐵
, x∗ ∈ Te;

averaging highly correlated quantities does not reduce the variance

significantly.
62

62: The central limit theorem assumption

of independence of observations is neces-

sary. With a small tweak, however, we can decorrelate the bagged models,

leading to variance reduction when we average the (bagged) predictions.

Random forests also build models on 𝐵 bootstrapped training samples,

but each model is built out of a random subset of predictors.

For decision trees, every time a split is considered, the set of allowable

predictors is selected from a random subset of𝑚 predictors out of the full

𝑝 predictors. By selecting predictors randomly for each model, we lose

out on building the best possible model on each training sample, but we

also reduce the chance of them being correlated. For a test observation x∗,
the 𝐵 predictions are combined as in bagging to yield the random forest
prediction.

If 𝑚 = 𝑝, random forests reduce to bagged models; in practice we use

𝑚 ≈ √𝑝 for classification and𝑚 ≈ 𝑝/3 for regression. When the predictors

are highly correlated, however, smaller values of 𝑚 are recommended.

Example We revisit the Wine example of Section 21.4.3, using the R

package randomForest.

wine = read.csv("wine.csv", header=TRUE,

stringsAsFactors = TRUE)

wine$Class = as.factor(wine$Class)

Let’s implement a 70%/30% training/testing split:
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set.seed(1111)

ind.train <- sample(nrow(wine), 0.8*nrow(wine),

replace = FALSE)

dat.train <- wine[ind.train,]

dat.test <- wine[-ind.train,]

There are 𝑝 = 13 predictors in the dataset, so we should use 𝑚 ≈
√

13 ≈ 4

predictors at each split. Keep in mind, however, that we have seen that

some of the variables are correlated, so we will try models for 𝑚 = 1,

𝑚 = 2, 𝑚 = 3, and 𝑚 = 4.

wine.rf.1 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 1,

importance = TRUE)

wine.rf.1

No. of variables tried at each split: 1

OOB estimate of error rate: 0.7%

Confusion matrix:

1 2 3 class.error

1 47 0 0 0.00000000

2 0 54 1 0.01818182

3 0 0 40 0.00000000

wine.rf.2 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 2,

importance = TRUE)

wine.rf.2

No. of variables tried at each split: 2

OOB estimate of error rate: 0.7%

Confusion matrix:

1 2 3 class.error

1 47 0 0 0.00000000

2 0 54 1 0.01818182

3 0 0 40 0.00000000

wine.rf.3 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 3,

importance = TRUE)

wine.rf.3

No. of variables tried at each split: 3

OOB estimate of error rate: 1.41%

Confusion matrix:

1 2 3 class.error

1 46 1 0 0.02127660

2 0 54 1 0.01818182

3 0 0 40 0.00000000
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wine.rf.4 <- randomForest::randomForest(Class ~ .,

data = dat.train, ntree = 500, mtry = 4,

importance = TRUE)

wine.rf.4

No. of variables tried at each split: 4

OOB estimate of error rate: 1.41%

Confusion matrix:

1 2 3 class.error

1 46 1 0 0.02127660

2 0 54 1 0.01818182

3 0 0 40 0.00000000

In this example, then, the choice of 𝑚 only introduces slight differences.

Obviously, this will not always be the case.

21.5.3 Boosting

Another general approach to improving prediction results for statistical

learners involves creating a sequence of models, each improving over

the previous model in the series. Boosting does not involve bootstrap

sampling; instead, it fits models on a hierarchical sequence of residuals,

but it does so in a slow manner.

For regression problems, we proceed as follows:

1. set 𝑓 (x) = 0 and 𝑟𝑖 = 𝑦𝑖 for all x𝑖 ∈ Tr;

2. for 𝑏 = 1, 2, . . . , 𝐵:

a) fit a model 𝑓 𝑏 to the training set (X, r);
b) update the regression function 𝑓 := 𝑓 + 𝜆 𝑓 𝑏 ;
c) update the residuals 𝑟𝑖 := 𝑟𝑖 − 𝜆 𝑓 𝑏(x𝑖) for all x𝑖 ∈ Tr;

3. output the boosted model 𝑓 (x) = 𝜆( 𝑓 1(x) + · · · + 𝑓 𝐵(x)).

In this version of the algorithm, boosting requires three tuning parame-

ters:

the number of models 𝐵, which can be selected through cross-

validation (boosting can overfit if 𝐵 is too large);

the shrinkage parameter 𝜆 (typically, 0 < 𝜆 ≪ 1), which controls

the boosting learning rate (a small 𝜆 needs a large 𝐵, in general);

the optimal 𝜆 and 𝐵 can be found via cross-validation, and

although not explicitly stated, we also need the learning models to

reach some complexity threshold.

Variants of the boosting algorithm allowing for classification and for

varying weights depending on performance regions in predictor space

also exist and are quite popular. While the various No Free Lunch theorems

guarantee that no supervised learning algorithm is always best regardless

of context/data, the combination of AdaBoost with weak CART learners

is seen by many as the best “out-of-the-box” classifier.
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Example Consider the Credit.csv dataset [18]; the task is to deter-

mine the credit card balance based on a number of other factors.

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education: int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 1 2 1 1 ...

$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 2 ...

$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 2 ...

$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 2 3 3 1 2 3 1 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 1350 ...

We remove the index variable, and create binary variables for all categor-

ical levels in the data.

Credit <- Credit[,-c(1)]

Credit$Gender.dummy <- ifelse(

Credit$Gender == "Female",1,0)

Credit$Student.dummy <- ifelse(

Credit$Student == "Yes",1,0)

Credit$Married.dummy <- ifelse(

Credit$Married == "Yes",1,0)

Credit$Ethnicity.AA.dummy <- ifelse(

Credit$Ethnicity == "African American",1,0)

Credit$Ethnicity.A.dummy <- ifelse(

Credit$Ethnicity == "Asian",1,0)

The dataset under consideration will then have the following shape:

Credit <- Credit[,c(1:6,12:16,11)]

str(Credit)

’data.frame’: 400 obs. of 12 variables:

$ Income : num 14.9 106 104.6 148.9 55.9 ...

$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...

$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...

$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...

$ Age : int 34 82 71 36 68 77 37 87 66 41 ...

$ Education : int 11 15 11 11 16 10 12 9 13 19 ...

$ Gender.dummy : num 0 1 0 1 0 0 1 0 1 1 ...

$ Student.dummy : num 0 1 0 0 0 0 0 0 0 1 ...

$ Married.dummy : num 1 1 0 0 1 0 0 0 0 1 ...

$ Ethnicity.AA.dummy: num 0 0 0 0 0 0 1 0 0 1 ...

$ Ethnicity.A.dummy : num 0 1 1 1 0 0 0 1 0 0 ...

$ Balance : int 333 903 580 964 331 1151 203 872 279 1350 ...

https://www.data-action-lab.com/wp-content/uploads/2023/02/Credit.csv
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We pick 300 of the 400 observations to be part of the training set:

set.seed(1234)

ind = sample(1:nrow(Credit), size = 300)

Credit.train = Credit[ind,]

Credit.test = Credit[-ind,]

We use 𝜆 = 0.005 as a shrinkage parameter and 𝐵 = 2000 models.

lambda = 0.005

X <- Credit.train[,1:11] # predictors

r <- Credit.train[,12] # response

X.test <- Credit.test[,1:11]

Y.test = Credit.test[,12]

We start by building the first iteration of the boosting model, using R’s

tree package, and look at its predictions on the test data:

tree.f <- tree::tree(r ~ ., data = data.frame(cbind(X,r)),

na.action=na.pass)

r <- r - lambda * predict(tree.f, X)

plot(Y.test,predict(tree.f, X.test))

abline(0,1,col="red")

Visually, the performance seems middling, which is born by the correla-

tion metric between the actual test observations and the predicted test

observations.
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cor(Y.test,predict(tree.f, X.test))

[1] 0.8640351

Let us compare with the results of boosting with 2000 models.

results.boost <- 0*Y.test

B=2000

tree.full <- c()

tree.snipped <- c()

for(b in 1:B){

tree.full[[b]] <- tree::tree(r ~ .,

data = data.frame(cbind(X,r)), na.action=na.pass)

tree.snipped[[b]] <- tree::tree(r ~ .,

data = data.frame(cbind(X,r)), na.action=na.pass)

r <- r - lambda * predict(tree.snipped[[b]], X)

results.boost = results.boost + lambda *
predict(tree.snipped[[b]], X.test)

}

plot(Y.test,results.boost)

abline(0,1,col="red")

Visually, the performance is much improved; the correlation metric also

agrees:
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cor(Y.test,results.boost)

[1] 0.9734103

We can also use the pre-built gbm package to achieve sensibly the same

results, and get the influential predictors as a bonus:

boost.credit = gbm::gbm(Balance~., data = Credit.train,

distribution = "gaussian", n.trees = 10000,

shrinkage = 0.01, interaction.depth = 4)

summary(boost.credit)

var rel.inf

Limit 42.87367610

Rating 34.15766697

Income 12.72692829

Student.dummy 5.04913001

Age 2.48572012

Education 1.13432102

Cards 0.78545388

Ethnicity.AA.dummy 0.30692238

Married.dummy 0.25299822

Gender.dummy 0.15135520

Ethnicity.A.dummy 0.07582781
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Not surprisingly, ethnicity and gender have very little influence on the

model.

In order to determine the optimal number of models 𝐵 to use,
63

we seek 63: Is it really necessary to run 10,000

models?
to minimize the prediction MSE:

n.trees = seq(from = 100, to = 10000, by = 100)

predmat = predict(boost.credit, newdata = Credit.test,

n.trees = n.trees)

boost.err = with(Credit.test,

apply( (predmat - Balance)^2, 2, mean) )

plot(n.trees, boost.err, pch = 23, xlab = "# Trees",

ylab = "MSE", main = "Boosting Test Error")

abline(h = min(boost.err), col = "red")

which(boost.err==min(boost.err))

1200

12

The optimal gbm boosted model (with parameters as in the gbm() call

above) is thus:

results.boost.gbm = predict(boost.credit,

newdata = Credit.test, n.trees = 1200)

plot(Y.test,results.boost)

abline(0,1,col="red")
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cor(Y.test,results.boost)

[1] 0.9734103

AdaBoost Adaptive Boosting (AdaBoost) adapts dynamic boosting to a

set of models in order to minimize the error made by the individual weak

models.
64

The “adaptive” part means that any new weak learner that is64: Such as “stubby” trees or “coarse” lin-

ear models.
added to the boosted model is modified to improve the predictive power
on instances which were “mis-predicted” by the (previous) boosted

model.

The main idea behind dynamic boosting is to consider a weighted sum
of weak learners whose weights are adjusted so that the prediction error

is minimized.

Consider a binary classification context, where

Tr = {(x𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}, and 𝑦𝑖 ∈ {−1,+1} ∀𝑖 = 1, . . . , 𝑁.

The boosted classifier is a function

𝐹(x) =
𝐵∑
𝑏=1

𝑐𝑏 𝑓𝑏(x),

where 𝑓𝑏(x) ∈ {−1,+1} and 𝑐𝑏 ∈ ℝ for all 𝑏 and all x. The class prediction
at x is simply sign(𝐹(x)).

The AdaBoost contribution comes in at the modeling stage, where, for

each 𝜇 ∈ {1, . . . , 𝐵} the weak learner 𝑓𝜇 is trained on a weighted version



21.5 Ensemble Learning 1405

of the original training data, with observations that are misclassified by

the partial boosted model

𝐹𝜇(x) =
𝜇−1∑
𝑏=1

𝑐𝑏 𝑓𝑏(x)

given larger weights; AdaBoost estimates the weights 𝑤𝑖 , 𝑖 = 1, . . . , 𝑁 at

each of the boosting steps 𝑏 = 1, . . . , 𝐵.

Real AdaBoost [10] is a generalization of this approach which does away

with the constants 𝑐𝑏 :

1. initialize the weights w, with 𝑤𝑖 = 1/𝑁 , for 1 ≤ 𝑖 ≤ 𝑁 ;

2. for 𝑏 = 1, . . . , 𝐵, repeat the following steps:

a) fit the class probability estimate 𝑝𝑚(x) = 𝑃(𝑦 = 1 | x,w),
using the weak learner algorithm of interest;

b) define 𝑓𝑏(x) = 1

2
log

𝑝𝑏 (x)
1−𝑝𝑏 (x) ;

c) set 𝑤𝑖 ← 𝑤𝑖 exp{−𝑦𝑖 𝑓 (x𝑖)}, for 1 ≤ 𝑖 ≤ 𝑁 ;

d) re-normalize so that ∥w∥1 = 1;

3. output the classifier

𝐹(x) = sign

{
𝐵∑
𝑏=1

𝑓𝑏(x)
}
.

For regression tasks, this procedure must be modified to some extent (in

particular, the equivalent task of assigning larger weights to currently

misclassified observations at a given step is to train the model to predict

(shrunken) residuals at a given step. . . more or less).

Since boosting is susceptible to overfitting (unlike bagging and random

forests), the optimal number of boosting steps 𝐵 should be derived from

cross-validation.

Example The Python library scikit-learn provides a useful imple-

mentation of AdaBoost. In order to use it, a base estimator (that is to say,

a week learner) must first be selected.

In what follows, we will use a decision tree classifier. Once this is achieved,

a AdaBoostClassifier object is created, to which is fed the weak learner,

the number of estimators and the learning rate (a.k.a. the shrinkage

parameter, which we have seen is a small positive number).

In general, small learning rates require a large number of estimators to

provide adequate performance. By default, scikit-learn’s implementa-

tion uses 50 estimators with a learning rate of 1.

We use the classic Two-Moons dataset consisting of two interleaving half

circles with added noise, in order to test and compare classification

results for AdaBoost (and eventually Gradient Boosting, see below).

This dataset is conveniently built into scikit-learn and accessible via
make_moons(), which returns a data matrix X and a label vector y. We

can treat the dataset as a complete training set as we eventually use

cross-validation to estimate the test error.
65

65: The AdaBoost code on the Two-Moons

dataset was lifted from an online source

whose location cannot be recovered at the

moment.
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from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_moons

N = 1000

X,Y = make_moons(N,noise=0.2)

plt.scatter(X[:,0],X[:,1], c=Y)

plt.show()

We first attempt to classify the data using DecisionTreeClassifier()

with a maximum depth of 3.
66

66: This same structure will later be used

for our weak learners.

clf = DecisionTreeClassifier(max_depth=3)

clf.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()
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As can be seen from the display, this single decision tree does not provide

the best of fits.

Next, we build an AdaBoost classifier. We first consider a model with

𝐵 = 5 decision trees, and with a learning rate 𝜆 = 1/10.

ada = AdaBoostClassifier(clf, n_estimators=5,

learning_rate=0.1)

ada.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

Finally, we build an AdaBoost classifier with 𝐵 = 10 decision trees and

with a learning rate 𝜆 = 1/10.

ada = AdaBoostClassifier(clf, n_estimators=10,

learning_rate=0.1)

ada.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()
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The AdaBoosted tree is better at capturing the dataset’s structure. Of

course, until we evaluate the performance on an independent test set,

this could simply be a consequence of overfitting (one of AdaBoost’s

main weaknesses, as the procedure is sensitive to outliers and noise). We

can guard against this eventuality by adjusting the learning rate (which

provides a step size for the algorithm’s iterations).

To find the optimal value for the learning rate and the number of

estimators, one can use the GridSearchCVmethod from sklearn.model_-

selection, which implements cross-validation on a grid of parameters.

It can also be parallelized, in case the efficiency of the algorithm should

ever need improving (that is not necessary on such a small dataset, but

could prove useful with larger datasets).

import random

random.seed(10)

from sklearn.model_selection import GridSearchCV

params = {

’n_estimators’: np.arange(10,300,10),

’learning_rate’: [0.01, 0.05, 0.1, 1],

}

grid_cv = GridSearchCV(AdaBoostClassifier(),

param_grid= params, cv=5, n_jobs=1)

grid_cv.fit(X,Y)

grid_cv.best_params_

{’learning_rate’: 0.05, ’n_estimators’: 200}

The results show that, given the selected grid search ranges, the optimal

parameters (those that provide the best cross-validation fit for the data)

are 200 estimators with a learning rate of 0.05 (these parameters change

if cv and n_jobs are modified, and with different random seeds).

The plot of the model with these parameters indeed shows that the fit

looks quite acceptable.
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ada = grid_cv.best_estimator_

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = ada.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()

Gradient Boosting The implementation of gradient boosting is simpler

than that of AdaBoost. The idea is to first fit a model, then to compute

the residuals generated by this model. Next, a new model is trained, but

on the residuals instead of on the original response. The resulting model

is added to the first one. Those steps are repeated a sufficient number

of times. The final model will be a sum of the initial model and of the

subsequent models trained on the chain of residuals.

We will not go into the nitty-gritty of gradient boosting here (see [20] for

details), but we showcase how it would be applied on the Two-Moons

dataset.
67

67: Remember that without an estimate

of the test error, we cannot use these classi-

fiers for predictive purposes due to avoid

overfitting issues.
from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=9,

learning_rate=0.5)

gbc.fit(X,Y)

xx,yy = np.meshgrid(np.linspace(-1.5,2.5,50),

np.linspace(-1,1.5,50))

Z = gbc.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.scatter(X[:,0],X[:,1], c = Y)

plt.contourf(xx,yy,Z,alpha=0.3)

plt.show()
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21.6 Exercises

1. Repeat the vowel classification example on PCA-reduced data.

2. Conduct a pre-analysis exploration as in the Wine example to

remove variables in the 2011 Gapminder, the Iowa Housing, and the

Vowel datasets before conducting the analyses, as in the examples.

3. Construct and evaluate naïve Bayes classifiers for the Wine and for

the 2011 Gapminder dataset.

4. Construct and evaluate CART models for the Wine and for the

Wisconsin Breast Cancer datasets.

5. Construct and evaluate ANN models for the 2011 Gapminder, for

the Iowa Housing, for the Vowel, and for the Wisconsin Breast

Cancer datasets.

6. Re-run the ANN models incorporating 10 hidden layers with 30

nodes. How much more time does it take to run a “bigger” neural

network on the Wine dataset?

7. Build bagging models for the 2011 Gapminder, Wisconsin Breast

Cancer, and Wine datasets.

8. Build random forest models for the 2011 Gapminder, Wisconsin

Breast Cancer, and Iowa Housing datasets.

9. Build boosted models for the 2011 Gapminder, Wisconsin Breast

Cancer, Wine, and Iowa Housing datasets.

10. Build classification models for the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest. You may need to identify/de-

fine a categorical response variable first.

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
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In Chapter 19 (Machine Learning 101), we provided a (mostly) math-free

general overview of machine learning.

Supervised learning methods can be presented in a formalism which

generalizes statistical and regression analysis, and their performance are

easy to evaluate; consequently, they have been studied extensively and

often form the backbone of machine learning training.

On the other hand, apart from a select few classical models, unsupervised
learning tasks are not usually presented with quite the same depth,

primarily due to the vagueness which infect their core – some of the

concepts are defined ambiguously; results validation is at times elusive,

and the actionable applications of the outcomes are not always clear.

The interest in such methods and tasks (clustering and segmentation,

association rules mining, link profiling, etc.) is mounting, however,

with the recent advances in artificial intelligence and machine learning

research. In this chapter, we describe various clustering algorithms, and

discuss related issues and challenges.

This is a continuation of the treatment started in Chapter 20 (Regression
and Value Estimation) and is a companion piece to Chapter 21 (Focus on
Classification and Supervised Learning).

22.1 Overview

We introduced some of the basic notions of unsupervised learning in

Chapter 19, Introduction to Machine Learning; in this chapter, we review

some of these concepts in the context of clustering, discuss the prob-

lems of validation and model selection, and present some simple and

sophisticated clustering algorithms.

22.1.1 Unsupervised Learning

In supervised learning (SL), we differentiate a dataset’s response vari-
ables𝑌1 , . . . , 𝑌𝑚 from its predictor variables𝑋1 , . . . , 𝑋𝑝 . Which variables

are predictors and which are responses depend on the context – for some

questions, a given variable could be a predictor, for others, a response.

Unsupervised learning tasks do away with the responses altogether,

which means that prediction is off the table; the variables that would have
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been deemed response variables in a SL framework are not necessarily

removed from the dataset during the analysis – they are simply not

viewed as an outcome to predict, and the predictor variables are just

observation features.

In UL, the objective is to identify and uncover interesting insights
about the dataset and the system that it represents (see Section 14.2.2,

Information Gathering), such as:

informative ways of visualizing the dataset (often associated with

Feature Selection and Dimension Reduction, see Chapter 23);

highlighting subgroups among the dataset’s variables or observa-

tions (clustering), or

finding links between variables (association rules mining, link

profiling, etc.), say.

22.1.2 Clustering Framework

Clustering consists of a large family of algorithms and methods used

to discover so-called latent groups in the datasets – natural groups that

exist but have not been identified or labeled as such.

Clustering is a subjective analytical task; unlike classification and regres-

sion, clustering analysis does not have as “simple” a goal as predicting a

response for a new observation based on historical data patterns, and

there is no “solution key” against which to compare analysis results.

Applications:

finding subgroups of breast and/or prostate cancer patients based

on their gene expression measurements or their socio-demographic

characteristics in order to better understand the disease and poten-

tial treatment side-effects;

grouping products in an online shop based on ratings and reviews

assigned by customers, or grouping customers based on their

purchasing history, in order to make product recommendations;

finding documents that apply to search queries, and finding similar

queries to those entered by a user to increase the odds of finding

the documents they are really looking for;

identifying population segments to test various incentives for

vaccination;

etc.

In each of these cases, the number of these latent groups is unknown (and

can in fact be taken as a true unknown of the problem). The subjectivity
of unsupervised learning tasks may seem to be an insurmountable flaw:

analysts attempting to find latent groups in a dataset, say, may obtain

a different number of such groups, or assign different observations to

their groups if their numbers are identical, without one of them being

necessarily “wrong”.
1

1: Although it is conceivable that some of

them could produce sub-optimal groups;

see Section 22.3 for a detailed discussion

on this topic.

In spite of this, clustering is a popular analytical task, in part because it

is much easier (and cheaper), typically, to obtain unlabeled data than it

is to obtain labeled data (against which supervised methods could be

evaluated). A cluster is a subset of observations that all have something

in common – they are similar, according to some measure of similarity.
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Furthermore, a cluster’s observations should be dissimilar to other

clusters’ observations.

Clusters do not necessarily need to be disjoint (as in so-called hard
clustering) – in some cases, it might be sufficient to quantify the likeli-

hood or the degree to which an observation belongs to a cluster (soft
clustering).

The choice of a similarity/dissimilarity measure is also entirely subjec-
tive; there are contexts for which proximity could be used as a decent

proxy for similarity, and others where it could not. Even in the former

case, a distance measure (metric) has to be selected, and infinitely many

choices are available to analysts.

Without domain-specific considerations (this requires thorough data

and context understanding), the choice of measure is arbitrary; but

understanding the data and the context does not guarantee that all

reasonable analysts would agree on such a measure.

For instance, in any group of human beings, which of

age, ethnic background, gender, postal code, sexual orien-

tation, linguistic abilities, mathematical skills, career, social

class, political affiliation, operating system preferences, edu-

cational achievements, hockey club fandom, etc.

is responsible for separating its members into “US” vs. ”THEM” groups?

Is it some combination of these characteristics? Are the groups fixed? Is

everybody in the “US” group based on age also in the “US” group based

on “gender”?

We could bypass the problem by creating more groups; given an age

group and gender, we could create the clusters: “same age group and

gender” (US), “same age group, different gender” (THEM1), “different

age group, same gender’ (THEM2)’, ”different age group and gender”

(THEM3).

It is clear how the process can be expanded to include more combinations

of feature levels, but at the price of introducing an ever increasing number

of clusters – how many “THEM” groups are too many for analysts or

human brains to process?

Clustering algorithms are designed to try to model various aspects of this

problem, but the latter’s complexity gives rise to an enormous number

of algorithms: at least 100 have been published, as of January 2022 [48].

Most of these belong to one of six main families [2]:

partitional (𝑘−means and variants, CLARA, etc.);

hierarchical (AGNES, DIANA, BIRCH, etc.);

density-based (DBSCAN, DENCLUE, OPTICS, etc.);

connectivity-based (spectral and variants, etc.);

grid-based (GRIDCLUS, STING and variants, etc.);

model-based (mixture models, latent Dirichlet allocation, expectation-

maximization, etc.).

As is the case for all analytical methods, some modifications are required

when dealing with “Big Datasets”, for high-dimensional data, or for

specific types of datasets, such as stream data, network data, categorical
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data, text and multimedia data, time series data, and so on. Ensemble
methods, which combine various clustering results, can also prove

useful.

Distance, Similarity, and Dissimilarity Measures Although the choice of

how to interpret and compute similarity between observations is, to all

intents and purposes, completely up to the analysts, all such measures

must satisfy certain properties: they must take on

large values for similar objects, and

small (or even negative) values for dissimilar objects.

Dissimilarity measures function in the opposite manner. The kernel
functions2

of machine learning (see Section 21.4.2) are examples of2: Formally, a kernel is a symmetric

(semi-)positive definite operator 𝐾 : ℝ𝑝 ×
ℝ𝑝 → ℝ+

0
. By analogy with positive def-

inite square matrices, this means that∑𝑁
𝑖,𝑗=1

𝑐𝑖 𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0 for all x𝑖 ∈ ℝ𝑝

and all 𝑐 𝑗 ∈ ℝ+, and 𝐾(x,w) = 𝐾(w, x)
for all x,w ∈ ℝ𝑝

.

similarity (or dissimilarity) measures, most notably the Gaussian (or

radial) kernel

𝐾𝛾(x, y) = exp(−𝛾∥x − y∥2
2
),

for a given 𝛾 > 0, for which points near one another (in the ∥ · ∥2 sense)

have a similarity measure 𝑤 = 𝐾(x, y) ≈ 1 (and thus are similar), and

points far from one another have a similarity measure near 0 (and thus

are dissimilar).

Some similarity measures are derived from distance (metrics) functions

𝑑 : ℝ𝑝 ×ℝ𝑝 → ℝ+
0
, with special properties:

1. 𝑑(x, y) = 0 ⇐⇒ x = y;

2. 𝑑(x, y) ≥ 0 for all x, y ∈ ℝ𝑝
;

3. 𝑑(x, y) = 𝑑(y, x) for all x, y ∈ ℝ𝑝
;

4. 𝑑(x, y) ≤ 𝑑(x, z) + 𝑑(z, y) for all x, y ∈ ℝ𝑝
.

In effect, distances are positive-definite symmetric functions ℝ𝑝 ×ℝ𝑝 →
ℝ+

0
satisfying the Triangle Inequality. Commonly used distances include

the:

Euclidean distance 𝑑2(x, y) = ∥x − y∥2;

Manhattan distance 𝑑1(x, y) = ∥x − y∥1;

supremum distance 𝑑∞(x, y) = ∥x − y∥∞;

more general Minkowski distance 𝑑𝑝(x, y) = ∥x − y∥𝑝 , for 𝑝 ≥ 1,

of which the first three examples are special cases;

and more esoteric distances such as the Jaccard distance for binary

vectors, the Hamming distance for categorical vectors, the Canberra
distance for ranked lists, the cosine distance for text data, mixed
distances for mixed variables, and so on [13, 16].

Given a distance 𝑑, a common construction is to define the associated

similarity measures

𝑤 = ℓ − 𝑑, 𝑤 = exp(−𝑘𝑑2), or 𝑤 =
1

1 + 𝑑 .

Note that there are similarity measures that cannot be derived from

distance measures, however.
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Data Transformations Prior to Clustering Prior to clustering, it is crucial

that the data be scaled (and potentially centered) so that none of the

variables unduly influence the outcomes, or, as the expression prosaically

puts it, so that we do not have to compare apples with oranges – if age in

years and height in cm are dataset variables, a 10-unit difference in age is

likely to be more significant (in real terms) than a 10-unit difference in

height.

Putting everything on a (min,max) scale, for instance, guarantees that

relative differences (relative to the distributions of each variables), and

not absolute distances, play the important role. However, there are many

ways to scale the data, and the scaling approach may have an effect on

the clustering results.
3

3: As we are sure you will not be surprised

to find out, by this point – that is the way,

with clustering: out of the frying pan and

into the fire.Common Difficulties There are issues related to clustering other than

the vagueness we have already discussed:

in many instances, the underlying assumption is that nearness of
observations (in whatever metric) is linked with object similarity,

and that large distances are linked with dissimilarity;

the lack of a clear-cut definition of what a cluster actually is makes

it difficult to validate clustering results;

various clustering algorithms are non-deterministic;

the number of clusters cannot usually be known before the analysis;

even when a cluster scheme has been accepted as valid, a cluster
description might be difficult to come by;

most methods will find clusters in the data even if there are none;

once clusters have been found, it is tempting to try to “explain”

them, but that is a job for domain experts.

22.1.3 A Philosophical Approach to Clustering

In the context of artificial general intelligence,
4

clustering provides a 4: Think free-ranging robots, roughly

speaking.
basic way for intelligences to structure their experience of the world.

Clustering techniques can allow such machines to identify object in-
stances in the world around them and then, on the basis of this identifi-

cation, to identify or define types of objects by grouping together the

object instances they have discovered. With this in mind, we can view

creating concepts as the fundamental purpose of identifying groupings

of similar datapoints; these concepts allow an intelligent agent (whether

machine or person) to:

work in shorthand when dealing with objects (i.e., it is easier to

deal with 10 ‘cats’ than with 10 unique objects), and

make assumptions about the object instances in a cluster associated

with the concept (if an object is a cat, then that object probably likes

fish).

If the existence of some “ground truth” about what should be clustered

together (and by extension what should be counted as a concept) can be

presupposed, then regardless of what is currently known about that truth,

neither the choice of algorithms nor of clustering algorithm parameters

is wholly subjective, in the psychological sense of the term (where it has
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the connotation of “coming from a person’s experience”, which tends

to indicate that whatever it is that is being talked about does not exist

separate from such an experience); choosing one algorithm over another

(or one set of parameters over another) may lead to a “better” or “worse”

reflection of the underlying ground truth.

But what counts as a ground truth? There are, of course, debates about

this in philosophical circles. Suppose that natural kinds exist, that is to

say, suppose that there is a privileged and objectively essential way in

which objects are properly grouped in nature.

This assumption is very commonly made in the sciences, where uncover-

ing or discovering universal truths about natural kinds of objects is a

major objective. In such a case, natural kinds can count as a ground truth,

with some clusterings more closely reflecting this reality than others.

The fact that the ground truth is not known by the clustering agent does

not mean that it does not exist, or that it cannot be sought out using

various techniques. Indeed, this is arguably what scientists do when they

are using the scientific method; they do not know, a priori, which of their

hypotheses are true or which are false, but they nonetheless engage in

various techniques to try to get a better sense of what is true and false.

Even if the existence of natural kinds is rejected, it can still be the case that,

relative to a particular circumstance, some clustering results are of higher
quality than others. Or, stated in terms of goals, some clustering results

could achieve a stated goal to a greater or lesser extent than others.

This does appear to be more subjective, in the sense that the goal, and

the success of the outcome relative to the goal, are both defined by an

individual or individuals, rather than being independent of them.

Outside of clustering, it is not unusual for people to create contextual
definitions of what counts as ‘good’. Consider as an example the concept

of a ‘good meal’. What qualifies as a good meal when camping in the

backcountry is not the same as what counts as a good meal when staying

at a four-star resort. Context matters.

This does not mean that it is impossible to have a bad meal under either

of these circumstances, or that anything counts as a good meal – we do

not use subjective in the stultifying post-modernist sense that there are

no constraints whatsoever and everything is a social construct.
5

5: This might be a bit of a straw-man def-

inition of “post-modernist subjectivity”,

but perhaps not that much of one, in the fi-

nal analysis; all things being equal, we lean

more toward the objective side of things,

both in nature and in data analysis.

Nonetheless, such situations are difficult to pin down or define in a

rigorous fashion. Even if there were some more abstract or subjective

sense in which something could be said to be common to all types of

good meals – or to all types of good clustering results, in this analogy – it

is difficult to imagine how this could be stated with any precision. This is,

frustratingly, a typically human limitation to dealing with the world.

However, since the underlying objective of machine learning and artificial

intelligence is to create machines with abilities similar to those of humans,

perhaps it is worth trying to capture this less than rigorous approach

within the context of machine learning.

Given this inherent lack of rigour, are there applied situations where

clustering is useful? More concretely, suppose we desire to cluster furni-

ture, based on data about the furniture. We could make measurements
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of various kinds on physical objects, either selected randomly or haphaz-

ardly; perhaps, rather than working with the furniture itself, we could

use a website catalogue in which each page showcases a particular type

of furniture available for sale.

In this scenario, there may be one grouping (created by tagging and

linking pages, for instance) of the furniture pages that allows users to

visit the website with maximum efficiency, and another that helps the

store maximize its sales.

Moreover, if we believe that natural kinds exist (which, as noted, is

debated by philosophers but is a common assumption in science), there

might also be one grouping of the furniture that best matches the

underlying furniture natural kinds.

When considering outcomes relative to a particular situation, the most

appropriate strategy for a particular clustering will depend, broadly

speaking, on two considerations:

the chosen goal it is intended to support, and

the underlying structure of the data itself.

The first can be explicitly known and stated, but the second will likely

not be known in advance, which leads to numerous technical issues
when applying clustering algorithms.

A multitude of clustering algorithms can be applied to problems like

the website furniture problems described above, and for each of those,

many different parameter settings exist. Suppose six different clustering

process are carried out in the case of the furniture website example and

they generate six (potentially) different clustering outcomes.

Presumably, some will be more effective than others if the objective is to

get people to spend a maximum amount of money on the online store. If

the objective is to allow customers to make their purchases most quickly,

the “optimal” clustering might not be the one that leads customers to

spend the most money.

It is difficult to say ahead of time which of the six groupings will be the

most effective one, in each of these cases. However, it might be possible to

carry out A/B testing to determine which one is the most effective, once

they have been generated. But can the A/B testing step be avoided?

If the applied goal (e.g. the goal to group furniture pages in order

to maximize profits) can be operationalized more directly in terms of

similarity and difference, then it can be more directly tied to clustering

approaches.

If we think that the best way to increase sales is to have loose clusters

where people are forced to browse a certain amount, while being exposed

to somewhat similar (but still interesting) pieces of furniture to find what

they want, it might be possible to select a clustering approach to generate

clusters with this desirable property.

Returning for a moment to the less applied general artificial intelligence

scenario introduced earlier, if the fundamental functionality of clustering

is viewed as creating concepts, then it would seem to make sense to

operationalize this goal in terms of creating groupings where the ob-
servations in a group are similar to each other and different from those
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in other groups. In this context, a poor grouping would de facto be one

where multiple observations are similar to those in other clusters, or

very different from those in their own cluster. This could happen if a

clustering process runs into technical difficulties, but it can also happen

if there is no such strongly grouped structure in the data itself.

To eliminate the possibility that the problem is not linked with the

chosen clustering procedure, one strategy is to use multiple clustering
techniques, as well as multiple parameter settings for each technique.

If the issue remains, then we could conclude that it is likely that there is

no good clustering structure in the data and by extension, in the objects

being represented by the data.

Interested readers can get more information on clustering, as well as

examples of applications, in [2, 1, 38, 9, 15, 32, 35, 33, 21, 37, 23, 5, 48, 17,

20, 40, 46, 31, 39, 19, 42, 29, 8].

22.2 Simple Clustering Algorithms

We start by briefly discussing two of the simplest clustering algorithms:

𝑘−means and hierarchical clustering.
6

6: In this section, we borrow heavily from

[20].

22.2.1 𝑘−Means and Variants

One potential clustering objective could be to achieve minimal within-
cluster variation – observations within a cluster should be very similar

to one another, and the total variation over all clusters should be small.

Assume that there are 𝑘 clusters in the (scaled) dataset

X𝑛×𝑝 =


x1

...

x𝑛

 .
Let 𝐶1 , . . . , 𝐶𝑘 denote the set of indices in each cluster, so that

{1, . . . , 𝑛} = 𝐶1 ⊔ · · · ⊔ 𝐶𝑘 (hard clustering);

we use the notation x𝑖 ∈ 𝐶ℓ to indicate that observation 𝑖 lies in cluster

ℓ . The within-cluster variation WCV(𝐶ℓ )measures the degree to which

the observations in 𝐶ℓ differ from one another.

The approach is partition-based; we look for a partition {𝐶∗
ℓ
}𝑘
ℓ=1

such

that the total within cluster variation is minimized:

{𝐶∗ℓ } = arg min

{𝐶ℓ }

{
𝑘∑
ℓ=1

WCV(𝐶ℓ )
}
.
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The first challenge is that there are numerous ways to define WCV(𝐶ℓ ),
and that they do not necessarily lead to the same results;

7
most definitions, 7: As one would expect from clustering.

however, fall in line with expressions looking like

WCV(𝐶ℓ ) =
1

(|𝐶ℓ | − 𝑔)𝜇
∑

x𝑖 ,x𝑗∈𝐶ℓ
variation(x𝑖 , x𝑗),

where it is understood that variation(x, x) = 0.

Common choices for the variation include

variation(x𝑖 , x𝑗) = ∥x𝑖 − x𝑗 ∥2
2
=

𝑝∑
𝑚=1

(𝑥𝑖 ,𝑚 − 𝑥 𝑗 ,𝑚)2

variation(x𝑖 , x𝑗) = ∥x𝑖 − x𝑗 ∥1 =

𝑝∑
𝑚=1

|𝑥𝑖 ,𝑚 − 𝑥 𝑗 ,𝑚 |;

these are typically used because of the ease of vectorizing the distance

measurements, and not necessarily because they make the most sense in

context.

With these choices, if all observations x within a cluster 𝐶 are near

one another, we would expect WCV(𝐶) to be small. The values of the

parameter 𝜇 can be adjusted to influence the cluster sizes.

Traditionally, we use 𝜇 = 0 (or 𝜇 = 1) and 𝑔 = 0, and the partition

problem reduces to

{𝐶∗ℓ } = arg min

{𝐶ℓ }

{
𝑘∑
ℓ=1

1

|𝐶ℓ |𝜇
∑

x𝑖 ,x𝑗∈𝐶ℓ
variation(x𝑖 , x𝑗)

}
.

As an optimization problem, obtaining {𝐶∗
ℓ
}𝑘
ℓ=1

is NP−hard due to the

combinatorial explosion of possible partitions {𝐶ℓ }𝑘ℓ=1
when 𝑛 is large.

8

8: Computing the number of such parti-

tions in general cannot be done by elemen-

tary means, but it is easy to show that the

number is bounded above by 𝑛𝑘 .Algorithm: 𝑘−Means We can obtain a partition which is reasonably

close to the optimal one,
9

without having to go through all possible 9: Hopefully...

partitions:

1. randomly assign a cluster number {1, . . . , 𝑘} to each observation

in the dataset;

2. for each 𝐶ℓ , compute the cluster centroid;

3. assign each observation to the cluster whose centroid is nearest to

the observation;

4. repeat steps 2-3 until the clusters are stable.

Three choices need to be made in order for the algorithm to run:

the number of clusters 𝑘 in step 1;

the centroid computation measure in step 2;

the distance metric used in step 3.

The most common choice of centroid measure for numerical data is to

use the vector of means along each feature of the observations in each

cluster (hence, 𝑘−means); using other centrality measures yield different
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methods (such as 𝑘−medians, for instance). For categorical data, the

algorithm becomes 𝑘−modes.

The distance used in step 3 is usually aligned with the centroid measure

of step 2 (and with the choice of a variation function in the problem

statement): Euclidean for 𝑘−means, Manhattan for 𝑘−medians, Hamming

for 𝑘−modes. Variants of these approaches may use a different random

initialization step: the first iteration centroids may be selected randomly

from the list of observations, say.
10

10: Unfortunately, the clustering results

depend very strongly on the initial ran-

domization – a “poor” selection can yield

arbitrarily “bad” (sub-optimal) results;

𝑘−means++ selects the initial centroids so

as to maximize the chance that they will

be well-spread in the dataset (which also

speeds up the run-time).

Other variants indicate how to process computations in parallel (for Big

Data, see Chapter 30) or for data streams (with an updating rule, see

Chapter 28). The algorithm can be shown to converge to a stable cluster
assignment, but there is no guarantee that this assignment is the global
minimizer of the objective function; indeed, different initial conditions

can find different local minima, i.e., different clustering schemes.

Example We have worked with the Gapminder data in Chapters 20 and

21; we will use a variant (gapminder_all.csv ) to illustrate some of the

notions in this chapter. The 2011 data contains observations on 𝑛 = 184

countries, for the following variables:

life expectancy (in years);

infant mortality rate (per 1000 births);

fertility rate (in children per woman);

population (we use the logarithm for clustering), and

GDP per capita (same).

library(dplyr)
library(tidyverse) # remove_rownames(), column_to_rownames()

gapminder.SoCL = read.csv("gapminder_all.csv",
stringsAsFactors=TRUE)

gapminder.SoCL.2011 = gapminder.SoCL |>
filter(time==2011) |>
select(geo,

population_total,
income_per_person_gdppercapita_ppp_inflation_adjusted,
life_expectancy_years,
infant_mortality_rate_per_1000_births,
children_per_woman_total_fertility) |>

mutate(log10_pop=log10(population_total),
log10_gdppc=log10(income_per_person_gdppercapita_ppp_inflation_adjusted)) |>

na.omit() |>
remove_rownames() |>
column_to_rownames(var="geo")

colnames(gapminder.SoCL.2011)<- c("Pop","GDPpc","Life Exp",
"Inf Mort", "Fert","log10 Pop","log10 GDPpc")

A scatter plot of the original and transformed datasets are shown below.

We use the logarithm of the population and the logarithm of GDP per

capita due to outlying observations in the population variable (China

and India).

https://www.data-action-lab.com/wp-content/uploads/2023/04/gapminder_all.csv
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GGally::ggpairs(gapminder.SoCL.2011[,c(3:5,1:2)])

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)])

Throughout, we work with the scaled dataset.

gapminder.SoCL.2011.s <- data.frame(scale(gapminder.SoCL.2011[,c(3:7)]))
str(gapminder.SoCL.2011.s)

’data.frame’: 184 obs. of 5 variables:
$ Life.Exp : num -1.647 -1.151 0.635 0.377 1.366 ...
$ Inf.Mort : num 1.834 3.175 -0.602 -0.498 -0.959 ...
$ Fert : num 1.77 2.093 -0.404 -0.981 -0.7 ...
$ log10.Pop : num 0.742 0.635 0.921 -0.49 0.595 ...
$ log10.GDPpc: num -1.336 -0.304 0.672 -0.164 1.286 ...

The following function will allow us to plot the distributions of each of the

variables in each of the clusters (plots appearing on the diagonal):

library(ggplot2)

my_dens <- function(data, mapping, ..., low = "#132B43",

high = "#56B1F7") {

ggplot(data = data, mapping=mapping) +

geom_density(..., alpha=0.7)

}

We run 𝑘−means for 𝑘 = 2, 3, 4 and obtain the results shown in Figure

22.1.

set.seed(1) # for replicability

# k=2

gapminder.SoCL.2011.s.k2 = kmeans(gapminder.SoCL.2011.s,2,

iter.max=250,nstart=1)



1424 22 Focus on Clustering

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k2$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k2$cluster)

1 2

64 120

# k=3

gapminder.SoCL.2011.s.k3 = kmeans(gapminder.SoCL.2011.s,3,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k3$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k3$cluster)

1 2 3

46 84 54

# k=4

gapminder.SoCL.2011.s.k4 = kmeans(gapminder.SoCL.2011.s,4,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k4$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k4$cluster)

1 2 3 4

26 50 61 47

The colours (cluster labels) are not used by the clustering algorithm –

they are the outputs.
11

This next block shows the result of a different11: The actual cluster label value is entirely

irrelevant.
initialization for 𝑘 = 3, leading to a different cluster assignment.

set.seed(1234) # different initialization

gapminder.SoCL.2011.s.k3 = kmeans(gapminder.SoCL.2011.s,3,

iter.max=250,nstart=1)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(gapminder.SoCL.2011.s.k3$cluster)),

diag=list(continuous=my_dens))

table(gapminder.SoCL.2011.s.k3$cluster)

1 2 3

56 74 54

Another 𝑘−means example is provided in Section 19.7.3.
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Figure 22.1: Realizations of 𝑘−means on the 2011 Gapminder data: 𝑘 = 2 (top left); 𝑘 = 3 (top right); 𝑘 = 4 (bottom left); 𝑘 = 3 with a

different seed (bottom right). Are the two 𝑘 = 3 clustering outcomes clearly distinct, to your eye?
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22.2.2 Hierarchical Clustering

One of the issues surrounding the use of 𝑘−means (and its variants) is

that nothing in the result of a single run of the algorithm indicates if the

choice of 𝑘 was a good one.
12

12: The results might look good on a 2-

dimensional representation of the data,

but how do we know it could not look

better?

Determining a “good” value of 𝑘 can only be achieved by repeatedly

running the algorithm over a range of “reasonable” values of 𝑘 (to account

for initialization variability), and by comparing the outputs using some

of the methods discussed in Section 22.3. This process can be memory-

(and time-)extensive.

Hierarchical clustering (HC) can sidestep this difficulty altogether by

building a deterministic global clustering structure (for a given choice

of parameters), from which we can select a specific number of clusters

after the algorithm has converged; the advantage of this approach is that

if we want to use a different number of clusters, we do not need to re-run

the clustering algorithm – we simply read off the new clusters from the

global clustering structure.

There are two main conceptual approaches:

bottom-up/agglomerative (AGNES) – initially, each observation

sits in its own separate cluster, which are then merged (in pairs) as

the hierarchy is climbed, leading (after the last merge) to a large

cluster containing all observations;

top-down/divisive (DIANA) – initially, all observations lie in the

same cluster, which is split (and re-split) in pairs as the hierar-

chy is traversed downward, leading (after the last split) to each

observation sitting in its own separate cluster.

Both approaches are illustrated in Figure 22.2: the first one is an illustra-

tion of AGNES and DIANA. The corresponding hierarchical structure is

shown in the second image; the dendrogram in the third.

In theory, the two approaches are equivalent;
13

in practice, we use AGNES13: They produce the same hierarchical

structure given a similarity metric and a

linkage strategy (more on this later).

over DIANA for anything but small datasets as the former approach runs

in polynomial time,
14

whereas the latter runs in exponential time.

14: With respect to the number of obser-

vations. With AGNES, the clustering dendrogram is built starting from the leaves,

and combining clusters by pairs, up to the root, as in Figure 22.3.

Algorithm: AGNES The global clustering structure is built as follows:

1. each observation is assigned to its own cluster (there are 𝑛 clusters,

initially);

2. the two clusters that are the least dissimilar are merged into a

supra-cluster;
3. repeat step 2 until all of the observations belong to a single large

merged cluster (with 𝑛 observations).

Three decisions need to be made in order for the algorithm to run:

the choice of a linkage strategy in steps 2 and 3;

the dissimilarity measure used in step 2;

the dissimilarity threshold required to “cut” the dendrogram into

clusters.
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Figure 22.2: Conceptual representation of AGNES and DIANA on a simple artificial dataset.

Figure 22.3: Cluster dendrogram for the hierarchical cluster structure of a dataset with 50 observations and 3 variables, with average linkage

(UPGMA) and using the Euclidean distance as the dissimilarity measure [author unknown]. The dendrogram is cut at a dissimilarity level

≈ 0.6 so that 5 clusters emerge (ordered and coloured in red, magenta, blue, green, and red); the observations profiles are shown in the

stacked bar chart and provide potential descriptions of the clusters (magenta = small total height, with mostly dominant 3rd components,

say). Based on the profiles, we might also have elected to cut a slightly lower dissimilarity level (≈ 0.55), so that the yellow and green clusters

would have been further split into two clusters apiece (between observations 35 and 13, and 30 and 10, perhaps?).
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In Figure 22.3, the dataset is first split into 𝑛 = 50 clusters; observations

13 and 34 are then found to be most similar, and merged into a single

cluster, and the 50 observations are grouped into 49 clusters. The next two

observations which are most similar are 14 and 37, which are themselves

merged, so that there are 48 clusters at that level.

The process is continued until all observations are merged into a single

cluster, leading to the global clustering structure (clustering dendrogram)

for the dataset. In order to obtain actual clusters (as opposed to the global

structure), we cut the dendrogram at the selected dissimilarity level, with

the resulting groups of observations yielding the dataset clusters (5, in

the example).

Increasing the dissimilarity threshold decreases the number of clusters,

and vice-versa.

Linkage Strategy In the first AGNES stage, we compare all pairs of

observations to determine which two are least dissimilar; these are then

merged into a cluster.
15

15: With 𝑛 observations, there are 1+· · ·+
(𝑛 − 1) = (𝑛−1)𝑛

2
such pairs.

In the second stage, we must also compare each of the non-merged

observations with a cluster of two observations to determine their

dissimilarity (the other dissimilarities have been computed in the first

stage and do not need to be computed anew).

In subsequent stages, we might also need to compare two clusters with

any number of observations for overall similarity. How can this be

achieved? Let 𝐴 and 𝐵 be clusters in the data, with |𝐴| = 𝑛𝐴, |𝐵| = 𝑛𝐵.

The dissimilarity between 𝐴 and 𝐵 can be computed in multiple ways:

complete linkage – the largest dissimilarity among all pairwise

dissimilarities between the observations in 𝐴 and those in 𝐵 (𝑛𝐴𝑛𝐵
computations);

single linkage – the smallest dissimilarity among all pairwise

dissimilarities as in complete linkage;

average linkage – the average dissimilarity among all pairwise

dissimilarities as in complete (or single) linkage;

centroid linkage – the dissimilarity between the centroids of𝐴 and

𝐵 (found using whatever method is appropriate for the context);

Ward’s method (and its variants) uses any reasonable objective
function which reflects domain knowledge [4, 47];

etc.

The choice of a linkage strategy (and of a dissimilarity measure) affects

not only how clusters are compared and merged, but also the topology
(shape/structure) of the resulting dendrogram (are the clusters tight,

loose, blob-like, etc.). The various linkage strategies are illustrated in

Figure 22.4, assuming Euclidean dissimilarity.

Example We show the results of hierarchical clustering on the Gap-

minder 2011 data, using complete linkage and Euclidean dissimilarity,

and Ward 𝐷 linkage and the maximum dissimilarity. In each case, we

consider 𝑘 = 2, 3, 4 clusters.
16

The cluster charts are in Figure 22.5.16: Reminder: we work on the scaled data.

Assume that library(ggplot2) has al-

ready been loaded.
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Figure 22.4: Conceptual notions of linkage,

assuming Euclidean dissimilarity.

We first need to create the AGNES structure for the data using complete

linkage and Euclidean dissimilarity.

# global, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 <- hclust(dist(gapminder.SoCL.2011.s))

plot(hclust.gapminder.SoCL.2011, hang = -1, cex=0.7,

main = "Gapminder 2011 Data \n HC - Global Structure

- Euclidean - Complete", ylab="")

Let us find the breakdown for 𝑘 = 2, 3, 4 clusters for complete linkage

and Euclidean dissimilarity.

# k=2, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color", value = c("red", "blue"), k = 2) |>

plot(main = "Gapminder 2011 Data \n HC - 2 clusters - Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=2, border = 8, lty = 5, lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011, k = 2))),

diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 2))

1 2

66 118
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# k=3, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color",

value = c("red", "blue", "darkgreen"), k = 3) |>

plot(main = "Gapminder 2011 Data \n HC - 3 clusters -

Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=3, border = 8, lty = 5,

lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011,

k = 3))), diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 3))

1 2 3

66 24 94

# k=4, complete, Euclidean

par(cex=0.45)

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::set("branches_k_color",

value = c("red", "blue", "darkgreen", "gray"), k = 4) |>

plot(main = "Gapminder 2011 Data \n HC - 4 clusters -

Euclidean - Complete")

hclust.gapminder.SoCL.2011 |> as.dendrogram() |>

dendextend::rect.dendrogram(k=4, border = 8, lty = 5,

lwd = 2, lower_rect=0)

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(cutree(hclust.gapminder.SoCL.2011,

k = 4))), diag=list(continuous=my_dens))

table(cutree(hclust.gapminder.SoCL.2011, k = 4))

1 2 3 4

35 24 94 31

Notice how the number of observations in each cluster follows a hierar-

chical structure: when we go from 𝑘 = 2 to 𝑘 = 3 clusters, the new cluster

is a subset of one of the old clusters (and similarly when we go from

𝑘 = 3 to 𝑘 = 4).

We can see how the results change when we use a different distance

metric (maximum) and a different linkage strategy (Ward D): the line

hclust.gapminder.SoCL.2011 <- hclust(dist(gapminder.SoCL.2011.s))is

substituted throughout by hclust.gapminder.SoCL.2011.2 <- hclust(dist(

gapminder.SoCL.2011.s,method="maximum"), method="ward.D").
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Figure 22.5: Realizations of hierarchical clustering (AGNES) on the 2011 Gapminder data: complete linkage, Euclidean dissimilarity for

𝑘 = 2, 3, 4 clusters (top 2 rows); Ward 𝐷 linkage, maximum dissimilarity for 𝑘 = 2, 3, 4 clusters (bottom 2 rows).
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22.3 Clustering Evaluation

Hierarchical clustering (HC) and 𝑘−means (and its variants) both attempt

to separate the data into natural groups, using different conceptual

approaches; 𝑘−means tries to minimize within-cluster variation while

HC builds a global clustering structure.

We have discussed some of their shortcomings in the previous section;

the fact that they may yield different clustering outcomes depending on

the choices made along the way (initialization, similarity/dissimilarity

measures, linkage strategy, number of clusters, etc.) reinforces the notion

that unsupervised learning is difficult.

We will discuss advanced algorithms that sidestep some of these issues

in Section 22.4, but we make an important observation in the meantime:

a hallmark of clustering is that whenever a new approach manages to

overcome a previously-identified difficulty, it usually does so at the cost

of introducing holes in hitherto sound aspects.

We may thus not be able to ever find a “best” clustering approach/out-

come,
17

but is it possible to identify which of several clustering scheme17: An updated take on the No Free Lunch

theorem, perhaps? [49]
is “optimal” (or best-suited for an eventual task)?

22.3.1 Clustering Assessment

In machine learning, clustering is defined as grouping objects based

on their over-all similarity (or dissimilarity) to each other.
18

It can be18: Note that each object has multiple di-

mensions, or attributes available for com-

parison.

tempting to focus on just one or two attributes (especially for visual or

“eyeball” clustering), but keep in mind that even if we were to focus on

one or two particular attribute, all of the other attributes must still come

along for the ride.

For instance, consider the objects shown below.
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What is the same about these objects? What is different? Do they belong

in the same group? If not, how many groups are there?

As a start, they are all pictorial representations of apples;
19

they all 19: While we cannot forget that they are

not actual apples, we will assume that

this is understood and simply refer to the

objects as fruit, or apples.

possess stems, and appear to be of similar size. On the other hand, two

of them are (mostly) red while the other is green(ish); one of the stems

has a leaf while the other two do not, and one of them is spherical, while

the other two are “tapered” at the bottom.

While we do recognize them all as apples, we could make the argument

that each of them is unlike the other two (and thus also that each of them

is similar to exactly one of the other two).

Fruit Image Dataset In order to appreciate the challenges presented by

clustering validation, it will be helpful to relate the concepts to something

tangible. We will explore some of these notions through an artificial

dataset of 20 fruit images (see Figure 22.6):

are there right or wrong clusterings of this dataset?

are there multiple possible ‘natural’ clusterings?

could different clusterings be used for different tasks?

will some clusterings be of (objectively) higher quality than others?

Key Notions At a fundamental level, clustering relies on the notion of

representativeness; ideally, the essence of instances (observations) in a

cluster would be faithfully captured by the cluster concept (examplar,

representative), and differentiated from those of other clusters by the

same token.

As an example, the image below is a concept for “apples”:

as is the Mirriam-Webster definition:

“The fleshy, usually rounded red, yellow, or green edible

pome fruit of a usually cultivated tree (genus Malus) of the

rose family.”
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Of course, this is not all that an apple is, but most people who have seen or

eaten an apple at some point in the past will have no trouble recognizing

what is being alluded to by the concept, even if the corresponding mental

image differs from one person to the next.

The cluster concepts offer a generalized representation – they capture

“something” of their corresponding cluster’s instances. For a given cluster,

then, can we clearly identify a concept capturing its (and solely its)

essence? If so, does that make the entire clustering scheme a good one?

For machine learning purposes, we use signature vectors to represent

instance properties. Each vector element represents an instance attribute;

the element’s value is the measured value of the corresponding object’s

property (for instance, the colour of the apple).

The apple below, as an example, could perhaps be described by the

signature vector

(12, 9.12, tapered, golden delicious),

where the components are the instance’s colour (ordinal), height (contin-

uous), shape, and variety (both categorical).
20

20: An important consideration, from

a general data science perspective, is

whether the signature vector provides a

sufficient description of the associated ob-

ject or whether it is too crude to be of use.

This is usually difficult to ascertain prior

to obtaining analysis results, and compar-

ing them to the “reality” of the underling

system (see Chapters 13 and 14 for details).

Signature vectors are used to compare objects (instance-to-instance
relationships); such comparisons could yield, among others, a measure

of similarity between instances.

While similarity can be measured against a single dimension (compo-

nent), the comparisons of interest for clustering task require an overall

similarity measure, across all dimensions. We would compare the two

apples below, say, by comparing their signature vectors

v1 = (12, 9.12, tapered, golden delicious)
v2 = (2, 10.43, spherical,macintosh)

with the help of some similarity measure 𝑤(v1 , v2).21
21: Keep in mind that different similarity

measures may yield various results, in

some cases showing the two apples to be

similar, in others to be dissimilar.



22.3 Clustering Evaluation 1435

As we have discussed in Section 22.1, the use of a distance measure
(or metric) is a popular strategy for defining how similar (or dissimilar)

two objects are to each other. Importantly, a distance takes into account

all of the properties of the objects in question, not just a few of them.

Traditionally, only numeric attributes are allowed as input (see Chapter

26 for an in-depth discussion of distance metrics), but it is technically

possible to convert categorical attributes to numeric ones, or to define

mixed distances.
22

22: While the moniker “distance” harkens

back to the notion of Eulidean (physical)

distance between points in space, it is im-

portant to remember that the measure-

ments refer to the distance between the

associated signature vectors, which do not

necessarily correspond to their respective

physical locations.

In the clustering framework, we are often interested in all pairwise

similarities between objects, not just in the similarity between two objects,

which is to say that pairs of objects are not solely interesting in and of

themselves, but also in relation to other pairs of objects.

In a dataset with 4 objects, for instance, we might require the computation

of (up to) 6 pairwise similarities (as shown below).

As is the case with objects, clusters also have properties. These could

include:

the number of instances in a cluster;

similarity statistics across instances within a cluster (minimum,

maximum, average, median, standard deviation, mean absolute

deviation, variance, etc.);

the cluster representative, which may be an actual instance, or an

amalgamation of multiple instances (exemplar).

How many instances are there in the cluster at the top of the next page,

for instance? What pair of observations is most similar? The least similar?

What are the similarity values? Which instance is most representative?
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We can also define cluster-to-instance relationships. A specific instance

can be:

compared to a cluster representative, and/or

compared to specific instances in a cluster (as in instance-to-instance

relationships), such as the most similar instance or the most distant

instance.

This allows for membership questions: is the green apple similar to the

cluster below? Does it belong in the cluster, or is it most likely to belong

to another cluster? Or perhaps to no cluster in particular?

Finally, we might be interested in cluster-to-cluster relationships, where

we compare cluster-level properties, such as:

number of instances;

within-cluster similarities;

cluster representatives.

To these, we can also add between-cluster (or across-cluster) similarities,

as a way to determine if the instances are notably different from one

cluster to the next. This allows for validity questions: are the two clusters
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below significantly different? Should they be joined into a mega-cluster?

Does it make sense to have them as separate clusters in the dataset?

How would we qualify the clustering outcome of Figure 22.7, for instance,

as it relates to colour, height, and shape? Could there be clusterings of

higher quality? Of lower quality? How could this be quantified?

Cluster and instance comparisons can be combined in many different

ways, which can then be used to generate a vast number of clustering
validation functions.

The central cluster validation question becomes: what can these tell us

about the quality of a particular clustering outcome relative to some ob-

jective criteria about “good” clustering schemes (internal validation), to

another clustering option (relative validation), or to external information

(external validation)?

Clustering Quality Measures In general, clustering involves two main

activities:

creating/building the clusters, and

assessing their quality, individually and as a whole.

From a practical perspective, clustering requires two functions: one which

assigns each instance to a cluster,
23

and one which assigns each clustering 23: Or in the case of soft clustering, assign

each instance a “probability” of belonging

to each cluster.

scheme to a cluster quality measurement.24

24: The similarity matrix is typically re-

quired at both stages.

An illustration is provided in Figure 22.8, on an artificial dataset con-

taining two variables, with dissimilarity between instances given by the

corresponding Euclidean distance.
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Figure 22.6: Toy dataset with which the key concepts of clustering validation will be illustrated.

Figure 22.7: Two clusters in a subset of the fruit image toy dataset.
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Figure 22.8: Cluster quality measurements

on an artificial dataset.

We obtain three different clustering schemes, and their quality is assessed

with the help of some clustering validation function:
25

25: The specifics of that function are not

germane to the current discussion and so

are omitted.top – two clusters are found in the data (with outliers), and the

quality of the clustering is assessed as 0.61;

middle – three clusters are found (no outliers), with quality assess-

ment at 0.41;

bottom – two clusters are found (no outliers), with quality assess-

ment at 0.53.

With this choice of clustering validation function, the top scheme would

be preferred, followed by the bottom scheme; the middle one brings

up the rear. We have already mentioned the abundance of clustering

algorithms [48]; it will come as no surprise that a tremendous number

of clustering validation function in practice as well (for much the same

reasons as those discussed in Section 22.1.2).

They are, however, all built out of the basic measures relating to instance or

cluster properties we have already reviewed, as illustrated schematically

in Figure 22.9:

instance properties;

cluster properties;

instance-to-instance relationship properties;

cluster-to-instance relationship properties, and

cluster-to-cluster relationship properties.
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Figure 22.9: Schematic illustrations of various instance/cluster properties and relationships.

Internal Validation Context is quite relevant to the quality of a given

clustering result. But what if no context is readily available? Internal val-
idation methods attempt to measure cluster quality objectively, without

context.
26

26: “Clustering validation” suggests that

there is an ideal clustering result against

which to compare the various algorithmic

outcomes, and all that is needed is for ana-

lysts to determine how much the outcomes

depart from the ideal result. “Cluster qual-

ity” is a better way to refer to the process.

We could elect to validate the clustering outcome using only the properties

of the obtained clusters, such as, say, the distance between all clusters: if

the average between-cluster distance is large, we might feel that there

is some evidence to suggest that the resulting clusters provide a good

segmentation of the data into natural groups, as in the image below.

Alternatively, we might validate cluster quality by tempering the average

between-cluster distance against the average within-cluster distance be-

tween the instances, which would reward “tight” and “isolated clusters”,

as opposed to simply “isolated” ones, as below.
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There are multiple ways of including both between-cluster and within-

cluster similarities in a cluster quality metric (CQM): both the Davies-
Bouldin index and Dunn’s index do so, to name but two examples. The

broad objectives of clustering remain universal: instances within a cluster

should be similar; instances in different clusters should be dissimilar.

The problem is that there are many ways for clusters to deviate from this

ideal: in specific clustering cases, how do we weigh the “good” aspects

(such as high within-cluster similarity) relative to the “bad” ones (such

as low between-cluster separation)?

Other internal properties and relationships can also be used and com-

bined in various ways, leading to an embarrassment of riches when it

comes to CQMs. The following indices are all available in the R package

clusterCrit, for instance [10]:

Ball-Hall

Banfeld-Raftery

C

Calinski-Harabasz

*Davies-Bouldin
Det Ratio and LogDetRatio

*Dunn
Baker-Hubert Gamma

GDI

Gplus

KsqDetW

McClain-Rao

PBM

Point-Biserial

Ratkowsky-Lance

Ray-Turi

Scott-Symons

SD

SDbw

*Silhouette
Tau

TraceW and TraceWiB

Wemmert-Gancarski

*WSS
LogSSRatio

Xie-Beni

While it is useful to have access to so many CQMs, we should remain

aware that the No-Free Lunch theorem is still in play: none of them is

universally superior to any of the others.
27

27: Given that all of them are suppos-

edly provide context-free assessments of

clustering quality, that is problematic (al-

though emblematic of unsupervised en-

deavours).

In practice, certain approaches (weightings) may prove more relevant

given the eventual specific analysis goals, but what these could prove to

be is not always evident from the context; consequently, we recommend

assessing the quality of the clustering outcomes using a variety of CQMs.

Studies have been performed to compare a large number of internal

validation measures, relative to one another and against human evalu-

ation; generally speaking, variants of the silhouette index performed

reasonably well (but see previous NFLT comment) [44, 26].

One possible interpretation of these results is that internal validation

via CQMs may be providing information about clustering across all

contexts, and that it is usually easier to identify clustering outcomes that

clearly miss the mark than it is to objectively differentiate amongst “good”

outcomes, for reasons that are not fully understood yet.

Details on the CQMs are readily available from a multitude of sources

(see [2, 26, 44]); we provide more information for 4 CQMs:

(within) sum of squared error;

Davies-Bouldin;

Dunn, and

silhouette;
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Within Sum of Squares Let C= {𝐶1 , . . . , 𝐶𝐾} be the𝐾 clusters obtained

from a dataset X via some algorithm A. Denote the centroid (or some

other central representative) of cluster 𝐶𝑘 by c𝑘 . The (within) sum of
error for C is

WSE =

𝐾∑
𝑘=1

∑
x∈𝐶𝑘

dissimilarity(x, c𝑘).

The dissimilarity is often selected to be the square of the Euclidean
distance (thence “sum of squared error”), but the choice of the Euclidean

distance (and of the square exponent) is arbitrary – it would make more

sense, in practice, to use a dissimilarity related to the similarity measure

used by A.

Note that WSE decreases with the number of clusters 𝐾, and optimality

is obtained at points of diminishing returns (see the next section for

details); from a validation perspective, it might be easier to interpret the

(within) average error:

WAE = Avg
𝐾
𝑘=1

{
Avgx∈𝐶𝑘 {dissimilarity(x, c𝑘)}

}
= Avg

𝐾
𝑘=1
{𝑠𝑘} .

Davies-Bouldin Index With 𝑠𝑘 , 𝑘 = 1, . . . , 𝐾 as above, the Davies-
Bouldin index (DBI) is defined as

DBI =
1

𝐾

𝐾∑
𝑘=1

max

ℓ≠𝑘

{
𝑠𝑘 + 𝑠ℓ

dissimilarity(c𝑘 , cℓ )

}
.

If the clusters {𝐶𝑘} are tight and dissimilar to one another, we expect the

numerators 𝑠𝑘 + 𝑠ℓ to be small and the denominators dissimilarity(c𝑘 , cℓ )
to be large, so that the DBI would be small.

Dunn’s Index With clusters that are loose or somewhat similar to
one another, we expect the DBI to be large. There are other ways to

assess separation and tightness; Dunn’s index is the ratio of the smallest
between-cluster dissimilarity (for pairs of observations not in the same

cluster) to the largest cluster diameter (within-cluster dissimilarity).

If the clusters {𝐶𝑘} are tight and dissimilar to one another, we expect the

smallest between-cluster dissimilarity to be large and the largest cluster

diameter to be small, leasing to a large Dunn ratio.

Conversely, with clusters that are loose or somewhat similar to one
another, the Dunn ratio will be small. As is the case with the sum of errors

and the DBI, the choice of the dissimilarity (or distance) measure leads

to different variants of the Dunn index, but all of them take non-negative

values.
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Silhouette Metric The three previous CQMs provide examples of val-

idation metrics that are computed for the entire clustering outcome;

the silhouette metric instead assigns a score to each observation, and

aggregates the scores at a cluster level and at the dataset level: for a

dissimilarity 𝑑 and a point x in a cluster 𝐶, set

𝑏(x) = min

𝐶′≠𝐶

{
Avgy∈𝐶′ {𝑑(x, y)}

}
, 𝑎(x) = Avgw∈𝐶

w≠x
{𝑑(x,w)} .

Small values of 𝑎(x) imply that x is similar to the instances in its cluster,

large values of 𝑏(x) imply that it is dissimilar to instances in other

clusters.

The silhouette metric at x is

silhouette(x) = 𝑏(x) − 𝑎(x)
max{𝑎(x), 𝑏(x)} =


1 − 𝑎(x)/𝑏(x) if 𝑎(x) < 𝑏(x)
0 if 𝑎(x) = 𝑏(x)
𝑏(x)/𝑎(x) − 1 if 𝑎(x) > 𝑏(x)

Consequently, −1 ≤ silhouette(x) ≤ 1 for all x. Thus, when silhouette(x)
is large (≈ 1), the ratio 𝑎(x)/𝑏(x) is small and we interpret x to be correctly

assigned to cluster 𝐶 (and conversely, when silhouette(x) is small (≈ −1),

we interpret x’s assignment to 𝐶 to be “incorrect”).

The silhouette diagram corresponding to the clustering results displays

the silhouette scores for each observation, and averages out the scores in

each cluster. The mean over all observations (and the number of instances

that have been poorly assigned to a cluster) gives an indication of the

appropriateness of the clustering outcome.

In the example below, 65 observations are separated into 5 clusters:

6 observations are poorly assigned (those with negative silhouette

scores) and the average silhouette score over the entire dataset is 0.2,

which suggests that the clustering is more successful than unsuccessful,

overall.
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Note, however that it could prove difficult to associate intrinsic meaning to

a lone numerical score – there could be contexts where 0.2 is considered

to be a fantastic silhouette score, and others where it is viewed as an abject

failure. It is in comparison to the scores obtained by different clustering

schemes that this score (and those of the other CQMs) can best serve as

an indicator of a strong (or a poor) clustering outcome.

Relative Validation Obtaining a single validation measure for a single
clustering outcome is not always that useful – how would we really

characterize the silhouette score of 0.2 in the previous example? Could

the results be better? Is this the best that can be achieved?

One approach is to compare clustering outcomes across multiple runs to

take advantage of non-deterministic algorithms or various parameters’

values (see image below, and schematics in Figure 22.10).

If the outcomes of different clustering algorithms on the same dataset

are “similar”, this provides evidence in favour of the resulting clusters

being efficient, natural, or valid, in some sense.
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Figure 22.10: Schematics of relative clustering validation.
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Consider, for instance, a dataset with 6 instances, which is clustered in

two different manners (Aand B, with |A| = 3 and |B| = 2), as shown

below. The clusterings are clearly not identical; how similar are they?

One way to approach relative validation for two outcomes is by computing

“correlations” between cluster outcomes. Intuitively, we would expect

the similarity between both clustering schemes to be high, seeing as the

two outcomes are not that different from one another.
28

28: In B, the two smallest clusters of A

have been merged into a single, larger

cluster. This can be represented in the form of matrices:

How can this be quantified? Correlation measures include the Rand,

Jaccard (see Chapter 26), and Gamma (see [51]) indices.

Let A = {𝐴1 , . . . , 𝐴𝑘} and B = {𝐵1 , . . . , 𝐵ℓ } be two clusterings of a

dataset X. If X consists of 𝑛 instances, there are thus(
𝑛

2

)
=
𝑛(𝑛 − 1)

2

pairs of observations in the data. Denote the number of pairs of observa-

tions that are in:

the same cluster in Aand the same cluster in Bby ss,

different clusters in Aand different clusters in Bby dd;

the same cluster in Abut different clusters in Bby sd, and

different clusters in Abut the same cluster in Bby ds.
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Thus, (
𝑛

2

)
= ss + dd + sd + ds,

and we define the Rand index of Aand B as

RI(A,B) = ss + dd

ss + dd + sd + ds

=
ss + dd(𝑛

2

) .

Large values of the index are indicative of similarity of clustering out-

comes.
29

Unfortunately, the Rand index does not satisfy the constant 29: The formula for RI(A,B) reminds one

of the definition of accuracy, a perfor-

mance evaluation measure for (binary)

classifiers.

baseline property.
30

30: In a nutshell, the expected value of

RI(A,B) for independent, random clus-

terings Aand B is not 0 [45].

The adjusted Rand index (as well as several other pair-counting, set-

matching, and information theoretic measures) relies on the contingency
table between Aand B, a method to summarize the outcomes of two

clustering results on the same dataset:

𝐵1 · · · 𝐵ℓ Total

𝐴1 𝑛1,1 · · · 𝑛1,ℓ 𝜇1

...
...

. . .
...

...

𝐴𝑘 𝑛𝑘,1 · · · 𝑛𝑘,ℓ 𝜇𝑘
Total 𝜈1 · · · 𝜈ℓ 𝑛

In this array, 𝑛𝑖 , 𝑗 = |𝐴𝑖 ∩ 𝐵 𝑗 | represents the number of instances that are

found in both the cluster 𝐴𝑖 ∈ Aand 𝐵 𝑗 ∈ B. The adjusted Rand index

(∈ [−1, 1]) is given by

ARI(A,B) =
∑
𝑖 𝑗

(𝑛𝑖 𝑗
2

)
−

[∑
𝑖

(𝜇𝑖
2

) ∑
𝑗

(𝜈𝑗
2

) ] / (𝑛
2

)
1

2

[∑
𝑖

(𝜇𝑖
2

)
+∑

𝑗

(𝜈𝑗
2

) ]
−

[∑
𝑖

(𝜇𝑖
2

) ∑
𝑗

(𝜈𝑗
2

) ] / (𝑛
2

) ,
which can also be re-written as

ARI(A,B) = 2(ss · dd − sd · ds)
(ss + sd)(ds + dd) + (ss + ds)(sd + dd) .

It is straightforward to compute RI and ARI for the two clusterings of

the artificial example with 6 instances. Since 𝑛 = 6, there are 6 · 5/2 = 15

pairs of observations in the data, and we have:

ss = 4 (𝑥1 and 𝑥3; 𝑥1 and 𝑥4; 𝑥3 and 𝑥4; 𝑥2 and 𝑥5);

ds = 2 (𝑥2 and 𝑥6; 𝑥5 and 𝑥6);

sd = 0 (none);

dd = 9 (all remaining pairs).

Thus,

RI(A,B) = 4 + 9

4 + 9 + 0 + 2

=
13

15

= 0.87

ARI(A,B) = 2(4 · 9 − 0 · 2)
(4 + 0)(2 + 9) + (4 + 2)(0 + 9) = 0.73.

Both of these values are indicative of high similarity between the cluster-

ing outcomes Aand B.
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Cluster stability can also be used to assess the appropriateness of

the choice of algorithm for the data. Assume that we apply a clus-

tering algorithm G to a dataset X, resulting in a clustering scheme

C= {𝐶1 , . . . , 𝐶𝐾}.

In general, a dataset X is a realization of a (potentially unknown) under-

lying data generating mechanism related to the situation of interest; a

different realization X′, which could arise from the collection of new data,

may yield a distinct clustering scheme C′. How stable is the clustering

outcome of G, relative to the realization X?

We can get a sense for the underlying stability by sampling multiple row

subsets from X;
31

however this is achieved, we have obtained ℓ subsets31: Alternatively, we could also sample

from X’s columns, or sample columns

from a variety of sampled rows of X.

X1 , . . . ,Xℓ ⊆ X, on which we apply the algorithm G, with parameters P,

yielding the corresponding clustering schemes C1 , . . . , Cℓ .

Let Wbe the similarity matrix for the various clustering schemes:

W=
©­­«
𝑤(C1 , C1) · · · 𝑤(C1 , Cℓ )

...
. . .

...

𝑤(Cℓ , C1) · · · 𝑤(Cℓ , Cℓ )

ª®®¬ ;

this Wcan be used as the basis of a meta-clustering scheme in which

C1 , . . . , Cℓ play the role of instances, using a graph-based meta-clustering

method such as DBSCAN (which we will discuss in Section 22.4.1). If the

clustering results obtained from X by applying Gare stable, we might

expect the meta-clustering results to yield a single meta-cluster.32

32: If multiple meta-clusters are found

from W, this supports the position that

Gdoes not produce stable clusters in X,

although this does not necessarily imply

instability as the number of meta-clusters

could be an artefact related to the choice

of the meta-clustering method. This ap-

proach seems simple in theory, but in

practice it often simply pushes the issues

and challenges of clustering to the meta-

clustering activity; a more sophisticated

treatment of the problem of cluster stabil-

ity assessment is presented in [27].
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External Validation In everyday applications, we tend to gauge cluster-

ing results against some (often implicit) external expectation: we cannot

help but bring in outside information to evaluate the clusters.

The outside information is typically what is deemed to be the ‘correct’

groups to which the instances belong.
33

In the example below, for 33: This is starting to look a lot like classi-
fication, a supervised learning approach.

instance, we might be interested in finding natural groups in a dataset

of objects, but we might hold the pre-conceived notion that the natural

groups are linked to the underlying shape (square, triangle, circle).

If the outcome agrees with this (external) notion, we naturally feel that

the clustering was successful; if, the outcome seems to pick up something

about the sharpness of the shapes’ vertices, say (as in the image below),

we might conclude that the algorithm does not do a good job of capturing

the essential nature of the objects, or, more rarely, that we need to revisit

our pre-conceived notions about the dataset and its natural groups.
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This validation strategy is often used to build confidence in the overall

approach, based on preliminary or sample results, but it rests on a

huge assumption (which often conflicts with the unsupervised learning

framework), namely, that the natural groups in the data are identifiable,

explicitly or implicitly.

Due to the conceptual similarity to classification,
34 external validation34: Which it is emphatically not, it bears

repeating. measures often resemble classification performance measures. Case in

point, the purity metric. In the presence of an external classification

variable, this metric assign a label to a cluster 𝐶 according to the most

frequent classes of the instances in 𝐶, and

purity(𝐶) = # correctly assigned points in 𝐶

|𝐶 | ,

as in the example below:

The clustering purity score for C = {𝐶1 , . . . , 𝐶𝐾} is obtained as the

average of the cluster purity scores, or as a weighted average of purity

scores:

weighted purity(C) = 1

𝑛

𝐾∑
ℓ=1

|𝐶ℓ | · purity(𝐶ℓ ),

where 𝑛 represents the number of instances in the data.

In the image above, the green cluster is labeled as the square cluster

(since 4 of its 6 instances are classified as squares), and the blue cluster

is labeled as the circle cluster (since 5 of its 7 instances are classified as

circles). At the cluster level, the purity scores are thus:

purity(𝐶□) =
2

3

, purity(𝐶⃝) =
5

7

;

the average and weighted purity scores are

average purity(C) = 1

2

(
2

3

+ 5

7

)
= 69.0%

weighted purity(C) = 1

6 + 7

(
6 · 2

3

+ 7 · 5
7

)
= 69.2%.
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Figure 22.11: Useful external quality metric considerations: homogeneity (top left), completeness (top right), noisy and outlying data

(bottom left), size and quantity (bottom right).

These two numbers are very nearly identical because the clusters have

roughly the same size; if the size variance is large, the two measurements

would be quite different. The purity is an obvious analogue to accuracy;

other measures based on precision and recall are also popular [3].

Useful external quality metrics take advantage of the natural classes (if

they are aligned with the clustering results), and take into account cluster

homogeneity (top left, Figure 22.11), completeness, (top right), noisy
and outlying data (bottom left), and size vs. quantity considerations

(bottom right): the preferred behaviour is shown on the right [3].

Example Let us illustrate some of these notions using various 𝑘−means

and hierarchical clusters of the Gapminder data used in the previous sec-

tions. In all instances, we use Euclidean distance on the scaled dataset.

Internal Validation We use theRpackagescluster,fpc, andclusterCrit

to compute 3 CQMs: the Dunn index, the average silhouette width, and

the Calinski-Harabasz index, which is simply the ratio of the sum

of between-clusters dispersion to the inter-cluster dispersion for all

clusters (higher is better).

We start by clustering the data using 4−means; we then use hierarchical

clustering with complete linkage and 3 clusters (the global structure has

already been computed).

set.seed(123) # for replicability

kmeans.4 = kmeans(gapminder.SoCL.2011.s,4,iter.max=2509,nstart=1)

stats.kmeans.4 <- as.numeric(

clusterCrit::intCriteria(as.matrix(gapminder.SoCL.2011.s),

kmeans.4$cluster,

c("Dunn","Silhouette","Calinski_Harabasz")))

dist.all <- cluster::daisy(gapminder.SoCL.2011.s,metric="euclidean",stand=FALSE)

hc.1.3 <- cutree(hclust.gapminder.SoCL.2011, k = 3)

stats.hc.1.3 <- c(fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$dunn,

fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$avg.silwidth,

fpc::cluster.stats(dist.all, clustering=hc.1.3, silhouette = TRUE)$ch)
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The results are summarized below:

stats <-rbind(stats.kmeans.4,stats.hc.1.3)

colnames(stats) <- c("Dunn",

"Silhouette",

"Calinski-Harabasz")

stats

method Dunn Avg. Sil. C.-H.

4−means 0.097 0.315 139.0

HC(comp; 3) 0.091 0.274 125.4

Both of the Dunn values are low, although the 4−means result is

marginally superior; while the average silhouette widths are also low,

they are least positive in both cases, with a slight advantage in favour of

4−means; the Calinski-Harabasz values are not very indicative on their

own, but once again, 4−means comes out ahead of HC.

The average silhouette width is an intriguing metric. On the one hand, we

attempt to gauge the quality of the entire clustering with a single number,

but the average is a fickle summary measurement and potentially affected

by outlying values; on the other, we do have access to a silhouette score

for each observation, and can thus get a better idea of the performance

by studying the silhouette profile.

We show the silhouette results for hierarchical clustering with complete

linkage for 4 (average width= 0.23) and 6 clusters (average width= 0.22).

plot(cluster::silhouette(cutree(hclust.gapminder.SoCL.2011, k = 4), dist.all))

plot(cluster::silhouette(cutree(hclust.gapminder.SoCL.2011, k = 6), dist.all))
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The average silhouette width seems to favour the 4-cluster result, the

profile for the 6-cluster result seems more in-line with desirable proper-

ties: in both instances, some observations are “mis-clustered” (negative

silhouette scores), but these seem to be more broadly distributed in the

latter case.
35

35: in the 4-cluster case, half a cluster

seems to have been mis-assigned, for in-

stance.

Relative Validation We compute the Rand index (RI) and the adjusted

Rand index (ARI) to compare the outcomes of a single run of 2−means

(A2), 3−means (A3), and 4−means (A4), respectively.

set.seed(1) # for replicability

kmeans.2 = kmeans(gapminder.SoCL.2011.s,2,iter.max=250,nstart=1)

kmeans.3 = kmeans(gapminder.SoCL.2011.s,3,iter.max=250,nstart=1)

kmeans.4 = kmeans(gapminder.SoCL.2011.s,4,iter.max=250,nstart=1)

We can compute the Rand index and the adjusted Rand index using the

following function:

# create a matrix of 1s and 0s depending as to whether

# observations i and j are in the same cluster or not

w2=kmeans.2$cluster

mat2=floor(1 - abs(sqrt(w2%*%t(w2))) %% 1)

w3=kmeans.3$cluster

mat3=floor(1 - abs(sqrt(w3%*%t(w3))) %% 1)

w4=kmeans.4$cluster

mat4=floor(1 - abs(sqrt(w4%*%t(w4))) %% 1)

# build the rand index from these matrices

randindices <- function(W1,W2) {

diag(W1) <- -1

diag(W2) <- -1

W=table(W1+2*W2)

W=W[-c(1)]

dd=W[1]

sd=W[2]

ds=W[3]

ss=W[4]

RI=(ss+dd)/(ss+dd+sd+ds)

ARI=2*(ss*dd-sd*ds)/((ss+sd)*(ds+dd)+(ss+ds)*(sd+dd))

randindices=data.frame(cbind(RI[[1]],ARI[[1]]))

}

# compute RI and ARI for the 3 comparisons

(randindices(mat2,mat3))

(randindices(mat2,mat4))

(randindices(mat3,mat4))

RI ARI RI ARI RI ARI

0.7327 0.5152 0.6407 0.3285 0.7549 0.4584
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There are

(
184

2

)
= 16836 pairs of distinct observations in the 2011 Gapmin-

der dataset; the full pair types and indices break down as below:

Schemes ss dd sd ds RI ARI

A2 ,A3 5304 7032 3852 648 0.73 0.52

A2 ,A4 4395 6392 4761 1288 0.64 0.33

A3 ,A4 3754 8955 2198 1929 0.75 0.46

A2 ,A3 are relatively similar according to RI, as are A3 ,A4, but the ARI

suggests that A2 ,A3 are more similar to one another than A3 ,A4 are;

A2 ,A4 are not as similar, according to both indices, which is not that

surprising as the number of clusters in this case jumps from 2 to 4.

External Validation Finally, we compare the clustering results of hierar-

chical clustering, for 4 and 8 clusters, with a variety of external grouping:

6 world regions, as determined by the Gapminder Foundation, and

OECD/G77 membership (see Figure 22.12).

Figure 22.12: 6 world regions (left): America (yellow, 33 countries), East Asia Pacific (red, 26), Europe Central Asia (orange, 49), Middle East

North Africa (green, 20), South Asia (turquoise, 8), Sub Saharan Africa (blue, 48); memberships (right): OECD (green, 30), G77 (purple, 128),

other (red, 26); bubble size represents population [36].

We start by importing the external groupings.

gapminder.regions = read.csv("gapminder_regions.csv",

stringsAsFactors=TRUE)

colnames(gapminder.regions)[1] <- c("geo")

Then, we cluster the data using HC with complete linkage, for 𝑘 = 4 and

𝑘 = 8 clusters (using Euclidean dissimilarity). Recall that the dendrogram

structure was originally stored in hclust.gapminder.SoCL.2011.

hc.4.ce <- as.factor(cutree(hclust.gapminder.SoCL.2011, k = 4)) # complete, Euclidean

hc.8.ce <- as.factor(cutree(hclust.gapminder.SoCL.2011, k = 8)) # complete, Euclidean

geo = names(hc.4.ce)

clusters=data.frame(geo,hc.4.ce,hc.8.ce)

external.results <- merge(gapminder.regions,clusters, by="geo")

The first 3 entries of the external.results are shown on the next page.
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head(external.results,3)

geo name four_regions eight_regions six_regions members_oecd_g77 hc.4.ce hc.8.ce

afg Afghanistan asia asia_west south_asia g77 1 1

ago Angola africa africa_sub_saharan sub_saharan_africa g77 1 1

alb Albania europe europe_east europe_central_asia others 3 3

The clusters are then labeled with their most frequent cluster assignment,

which can be extracted with the following function:

mode <- function(x) { names(which.max(table(x))) }

tab <- external.results |> group_by(hc.4.ce) |>

summarise(mode = mode(six_regions), n=n())

n.mode <- external.results |> group_by(hc.4.ce) |>

count(six_regions) |>

summarise(n.mode = max(n))

info <- merge(tab,n.mode, by="hc.4.ce")[,2:4]

Are there any reasons to suspect that the clusters would be aligned with

these external classes? For the 6 world regions classes, the clusters labels

(the most frequent class per cluster) for HC(4) are shown below:

Cluster Label Size Frequency

1 Sub Saharan Africa 35 31

2 East Asia Pacific 24 9

3 Europe Central Asia 94 42

4 Sub Saharan Africa 31 14

info[,4] <- info$n.mode/info$n

(purity <- mean(info$V4))

(weighted.purity <- weighted.mean(info$V4,info$n))

This clustering scheme yields a purity of 0.54 and a weighted purity of

0.52 – the overall score is not great, but the Sub Saharan countries are

fairly well captured by clusters 1 and 4.

We repeat the same process for HC(8) (the code is omitted). The clusters

labels in that case are found below:

Cluster Label Size Frequency

1 Sub Saharan Africa 35 31

2 America 17 6

3 Europe Central Asia 65 34

4 East Asia Pacific 7 3

5 america 29 10

6 Sub Saharan Africa 18 7

7 East Asia Pacific 10 5

8 Sub Saharan Africa 3 3
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This now yields a purity of 0.55 and a weighted purity of 0.54; which

is still . . . . not that great. Perhaps the clusters have little to do with

geography, in the end.

Are they aligned with OECD/G77/other membership? The labels for

HC(8)with this external grouping are found below:

Cluster Label Size Frequency

1 G77 27 27

2 G77 29 22

3 OECD 28 17

4 G77 20 18

5 G77 12 11

6 OECD 23 11

7 G77 25 24

8 G77 20 10

The purity values are 0.77 and 0.76, respectively: these are better values

than the previous external validation attempts, but they might not really

be meaningful given the preponderance of G77 countries in the data.

It seems, then, that neither of the external classifications is a good gauge

of cluster validity for this data.

For the most part, the cluster validation yields middling results. The

few algorithms we have tried with the data suggest that there is some

low-level grouping at play, but nothing we have seen so far would suggest

that the data segments are all that “natural.”

While this result is somewhat disappointing, we should note that this is

often the case with real-world data: there is no guarantee that natural

groups even exist in the data. However, we have not been directing our

choices of algorithms and parameters – up to now, they have been made

fairly arbitrary. Can anything be done to help with model selection?

22.3.2 Model Selection

How do we pick the number of clusters and the various other parameters

(including choice of algorithm) to use for “optimal” results? A common

approach is to look at all the outcomes obtained from various parameter

runs and replicates (for a given algorithm), and to select the parameter

values that optimize a set of QCMs, such as Davies-Bouldin, Dunn, CH,

etc.

Optimization is, of course, dependent on each QCM’s properties: in

some cases, we are searching for parameters that maximizes the index,

in other cases, those that minimize it, and yet in other cases, for “knees”

or “change points” in various associated plots.

Note, however, that the parameter values that optimize a QCM may

not optimize others; when they coincide, this reinforces the support

for the existence of natural groups; when they do not, they provide a

smaller collection of models from which to select, removing some of the

arbitrariness discussed above.
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This can also be done for clustering outcomes arising from different

algorithms, although in this case we are not selecting parameter values

so much as identifying the model that best describes the natural groups

in the data among all results, according to some metric(s).

The metrics presented in Section 22.3.1 all provide frameworks to achieve

this. There are additional approaches, such as: seeking the clustering

C= {𝐶1 , . . . , 𝐶𝑘}, among a list of such outcomes, which minimizes the

quadratic cost

ΛW(C) = −trace

(
𝑍⊤(C)W𝑍(C)

)
,

where 𝑧𝑖 ,ℓ = 1 is x𝑖 ∈ 𝐶ℓ and 0 otherwise, associated with a similarity
matrix W; or methods relying on stability assessment [27, 25]. Model

assessment and selection remains a popular research topic.

But it remains important to remember that there is a lot of diversity in

clustering validation techniques. The various types of validation methods

do not always give concordant results; this variation within the types can

be demoralizing at times, but it can also be leveraged to extract useful

information about the data’s underlying structure.

In general, we should avoid using a single assessment method; it is

preferable to seek “signals of agreement” across a variety of strategies
(both in the choices of clustering algorithms and evaluation methods).

Finally, remember that clustering results may just be ‘ok’ . . . but that is

ok too! We can study the situation and decide what is important and

what can safely be ignored – as always, a lot depends on the context.

Example How many clusters 𝑘 should we seek when clustering the

(scaled) 2011 Gapminder dataset using Euclidean distance? For each

𝑘 = 2, . . . , 15, we compute the outcome of 𝑚 = 40 runs of 𝑘−means,

and average the within sum of squares (WSS) and a (modified) Davies-
Bouldin index (DBI) over the runs. The optimal number of parameters is

obtained at a DBI maximum or a WSS “knee”.

We start by computing the principal components for displaying purposes

– although we could also use them to cluster the data, at the cost of some

information about the dataset.

Principal component distribution

decomposition

pc.agg.data = princomp(gapminder.SoCL.2011.s)

summary(pc.agg.data)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.850624 0.9973737 0.49950729 0.45130387 0.3163521

Proportion of Variance 0.688705 0.2000380 0.05017419 0.04095763 0.0201251

Cumulative Proportion 0.688705 0.8887431 0.93891726 0.97987490 1.0000000
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pc.df.agg.data = cbind(pc.agg.data$scores[,1],

pc.agg.data$scores[,2])

plot(pc.df.agg.data, xlab="PC1", ylab="PC2")

title(’PCA plot of Gapminder Data - 2 Main PCs’)

The Davies-Bouldin index is computed using the following formula.

Davies.Bouldin <- function(A, SS, m) {

# A - the centres of the clusters

# SS - the within sum of squares

# m - the sizes of the clusters

N <- nrow(A) # number of clusters

# intercluster distance

S <- sqrt(SS/m)

# Get the distances between centres

M <- as.matrix(dist(A))

# Get the ratio of intercluster/centre.dist

R <- matrix(0, N, N)

for (i in 1:(N-1)) {

for (j in (i+1):N) {

R[i,j] <- (S[i] + S[j])/M[i,j]

R[j,i] <- R[i,j]

}

}

return(mean(apply(R, 1, max)))

}

For each 𝑘 = 2, . . . , 15, we run 𝑘−means 𝑁 = 40 times (using Euclidean

dissimilarity). One realization is displayed for each 𝑘, as are the DBI

curves and the WSS curves (with confidence bands). The clusters are

displayed on the first 2 principal components of the dataset, which

explain 88% of the variation in the data.
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N = 40 # Number of repetitions

max.cluster = 15 # Number of maximum number of desired clusters

# initializing values

m.errs = m.DBI = s.errs = s.DBI <- rep(0, max.cluster)

# clustering and plotting

set.seed(1)

for (i in 2:max.cluster) {

errs = DBI <- rep(0, max.cluster)

for (j in 1:N) {

# data, number of internal shifts of the cluster centres, number of clusters

KM <- kmeans(gapminder.SoCL.2011.s,i,iter.max=2509,nstart=1)

errs[j] <- sum(KM$withinss)

DBI[j] <- Davies.Bouldin(KM$centers, KM$withinss, KM$size)

}

m.errs[i - 1] = mean(errs)

s.errs[i - 1] = sd(errs)

m.DBI[i - 1] = mean(DBI)

s.DBI[i - 1] = sd(DBI)

plot(pc.df.agg.data,col=KM$cluster, pch=KM$cluster, main=paste(i,"clusters"),

xlab="PC1", ylab="PC2")

}
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The average within sum of squares curve and the average Davies-Bouldin

curves are also provided, with 95% confidence intervals.

# WSS

MSE.errs_up = m.errs + 1.96 * s.errs / sqrt(N)

MSE.errs_low = m.errs - 1.96 * s.errs / sqrt(N)

plot(2:(max.cluster), m.errs[1:(length(m.errs)-1)], main = "Within SS", xlab="", ylab="")

lines(2:(max.cluster), m.errs[1:(length(m.errs)-1)])

par(col = "red")

lines(2:(max.cluster), MSE.errs_up[1:(length(MSE.errs_up)-1)])

lines(2:(max.cluster), MSE.errs_low[1:(length(MSE.errs_low)-1)])

# DBI

MSE.DBI_up = m.DBI + 1.96 * s.DBI / sqrt(N)

MSE.DBI_low = m.DBI - 1.96 * s.DBI / sqrt(N)

par(col = "black")

plot(2:(max.cluster), m.DBI[1:(length(m.DBI)-1)], main = "Davies-Bouldin", xlab="", ylab="")

lines(2:(max.cluster), m.DBI[1:(length(m.DBI)-1)])

par(col="red")

lines(2:(max.cluster), MSE.DBI_up[1:(length(MSE.DBI_up)-1)])

lines(2:(max.cluster), MSE.DBI_low[1:(length(MSE.DBI_low)-1)])

Where is the Davies-Bouldin index maximized?

(i_choice <- which(m.DBI==max(m.DBI[1:(length(m.DBI)-1)]))+1)

[1] 9

The WSS curve does not yield much information, but the DBI curve

suggests that both 𝑘 = 3 and 𝑘 = 9 could be good parameter choices.

With parsimony considerations in mind, we might elect to use 𝑘 = 3,

but if the results are too simple or if signs of instability appear,
36 𝑘 = 936: Recall that 𝑘−means is a stochastic

algorithm.
might prove to be a better choice in the end.
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22.4 Advanced Clustering Methods

In the rest of this chapter, we present representative clustering algorithms

from the remaining families.
37

37: Substantially more information on the

topic can be found in [2, 18, 48].

22.4.1 Density-Based Clustering

The assumptions of the 𝑘−means algorithm imply that the clusters that it

finds are usually Gaussian.
38

But this is not always a desired outcome. 38: That is, blob-like.

In density-based clustering, it is the density of observations and the

connectivity of the accompanying clustering network that determine

the number and location of clusters.
39

Popular density-based clustering 39: We will discuss these further in the

next section.
algorithms include DBSCAN, DENCLUE, OPTICS, CHAMELEON, etc.

Once density has been defined in a meaningful way,
40

density-based 40: Which depends on a number of con-

textual factors.
algorithms are straightforward to apply (see [2, 38, 34, 37, 17]).

Density How do we measure density? Intuitively, we can recognize

areas of low density and high density in the (artificial) dataset below.

As the saying goes, “birds of a feather flock together”; it should not come

as a surprise that areas of higher density could be viewed as clusters in

the data. In that context, if Ψ ⊆ ℝ𝑛
is an 𝑛−dimensional sub-manifold

of ℝ𝑛
, we could define the density of Ψ around x by, say,

densityΨ(x; 𝑑) = lim

𝜀→0
+

Vol𝑛(𝐵𝑑(x, 𝜀) ∩ Ψ)
Vol𝑛(𝐵𝑑(x, 𝜀))

,

where

𝐵𝑑(x, 𝜀) = {y ∈ ℝ𝑛 | 𝑑(x, y) < 𝜀}

and

Vol𝑛(𝐴) = 𝑛 − volume of 𝐴 in R𝑛 .
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DBSCAN In practice, the dataset X is usually a discrete subset of

ℝ𝑛
, and the limit definition above cannot apply. Density-based spatial

clustering of applications with noise (DBSCAN) estimates the density

at an observations x ∈ X as follows: we pick a “reasonable” value of

𝜀∗ > 0 and set

densityX(x; 𝑑) = |𝐵𝑑(x, 𝜀∗) ∩ X| .

The outcome depends, of course, on the choice of 𝜀∗ and the distance 𝑑.

DBSCAN also requires a connectivity parameter: the minimum number
of points minPts in

𝑉x = 𝐵𝑑(x, 𝜀∗) ∩ [X \ {x}]

(excluding x). If |𝑉x | ≥ minPts, the observations in 𝑉x are said to be

within reach of (or reachable from) x.

In other words, for a given choice of 𝑑, 𝜀∗, and minPts, there are three

types of observations in X:

outliers are observations that are not within reach of any of the

other observations, such as x1 below:
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reachable (non-core) observations are observations that are within

reach of fewer than minPts other observations, such as x2 and x3

below (with minPts = 3):

core observations are within reach of at least minPts other obser-

vations, such as x4 below (with minPts = 3):

There are other core points: x5, x6, x7, x8, and x9.
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Figure 22.13: Density path connection in a DBSCAN cluster 𝐶.

Reachability is not a symmetric relation: no observation is reachable

from a non-core point (a non-core point may be reachable, but nothing

can be reached from it).

We can build a new symmetric relation on non-outlying observations on

the basis of reachability, however:

p, q ∈ X \ {outliers(X)}

are said to be density-connected for 𝜀∗ > 0 and 𝑑 if there is an observation

o ∈ X such that p, q ∈ 𝑉o, with |𝑉o | ≥ minPts.

The same p, q are said to be density-connected in a path if either they

are density-connected or if there is a sequence of observations

p = r0 , r1 , . . . , r𝑘−1 , r𝑘 = q

such that r𝑖−1 , r𝑖 is density-connected for all 𝑖 = 1, . . . , 𝑘.

That the latter is a relation on X \ {outliers(X)} is clear:

it is reflexive as every x ∈ X \ {outliers(X)} is either reachable or a

core observation, so that ∃ox ∈ X with x ∈ 𝑉ox and |𝑉ox | ≥ minPts,

and so x is density-connected to itself;

it is symmetric and transitive by construction.

DBSCAN clusters are, essentially, composed of observations that are

density-connected in a path.

In the image above, arrows represent density-connection: each orange

observation is within reach of a red one, but no observation can be

reached from the orange points.
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Algorithm DBSCAN clusters are grown as follows:

1. select an observation at random that has yet to be assigned to a

cluster, from the list of not previously selected observations;

2. determine the selected observation’s type (outlier, non-core, core);

3. if the observation is an outlier or a non-core point, assign it to the

noise cluster;
4. else, build its network of density-connected paths;

5. assign all observations in the network to a stand-alone cluster;
6. repeat steps 1 to 5 until all points have been assigned to a cluster.

All points within a cluster are mutually density-connected in a path. If

a point is reachable from any point of the cluster, it is part of the cluster

as well. An illustration of the DBSCAN algorithm is provided in Figure

22.14.

Figure 22.14: Illustration of DBSCAN on an artificial dataset (top, left). The parameters 𝜀 and minPts are shown in each display. We select a

point at random (second image, top row); it is not a core point as its 𝜀−neighbourhood does not contain more than minPts observations

(excluding the selected point itself); it is assigned to the noise cluster. We select another point at random (top, right); that one is core point,

as its 𝜀−neighbourhood contains 4 observations. All its density-connected observations are shown in green (bottom, left). Its network of

density-connected paths is shown in green, for the core observations, and in light green, for the reachable observations (bottom row, second

image); they make up cluster 1 (bottom row, third image). Continuing on this way, we obtain 2 clusters and noisy observations (bottom,

right).

The observations in the noise cluster are typically identified as outliers,

making DBSCAN a reasonable unsupervised learning approach for

anomaly detection (see Chapter 26).

Note that clusters, by definition, must contain at least one core point.

Small groups of observations that are not density-connected to any core

points will then also be assigned to the noise cluster. A non-core point

that has been assigned to the noise cluster may end up being assigned to

a stand-alone cluster at a later stage (but the opposite cannot occur).

It is possible for two clusters to share non-core points, in which case the

points in question are randomly assigned (the random order of selection

in step 1 may affect the results); consequently, some clusters may end up

containing fewer than minPts observations.
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Comments The main advantages of DBSCAN are that:

there is no need to specify the number of clusters to find in the

data;

clusters of arbitrary shapes can be discovered;

observations that are "noisy"/outlying are not forced into a cluster;

the clusters are robust with respect to outliers, and

it only requires two parameters (𝜀∗ > 0 and minPts) to run properly,

which can be set by domain experts if the data is well understood.

In general, it is suggested to use minPts ≥ 𝑝 + 1, with larger values being

preferable for noisy datasets, or minPts ≥ 2𝑝 for large datasets or sets

with duplicates. Meanwhile, the choice of 𝜀∗ > 0 should take into account

that if it is too small, a large portion of the observations will be assigned
to the noise cluster; but if it is too large, a majority of observations will

be found in a single cluster. Small values are preferable, but how small

is too small?

The parameter choices have a large impact on the DBSCAN results,

as does the choice of the distance function, which should take place

before 𝜀∗ is selected to avoid data dredging and “begging the question”.

Given that DBSCAN can handle globular clusters as well as non-globular

clusters, why would we not always use it?

One important reason relates to computational efficiency. For a dataset

X with 𝑛 observations, the basic 𝑘−means algorithm has order 𝑂(𝑛𝑘),
whereas the most efficient versions of DBSCAN algorithm has order

𝑂(𝑛 log 𝑛). Thus, when 𝑛 increases, the DBSCAN runtime increases

faster than the 𝑘−means runtime.

Another reason is that DBSCAN works well when the density of clusters

is assumed to be constant.

Most of us would agree that there are two clusters in the image above – a

loose one in the bottom/left corner, and a tight one in the top/right corner

– as well as some outliers around the tight cluster, but no combination of

𝜀∗ > 0 and minPts can allow DBSCAN to discover this structure: either it

finds no outliers, or it only finds the one tight cluster.
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Example We re-visit the (scaled) 2011 Gapminder dataset: we use

Euclidean dissimilarity in this example, but the dbscan() function from

the fpc package in R can accommodate other metrics: we first compute

the corresponding distance matrix and specify method="dist" instead

of method="raw" in the function call.

We will use 9 combinations of parameters

(𝜀∗ ∈ {0.75, 1, 1.25}) × (minPts ∈ {6, 10, 15}).

set.seed(0) # for replicability

dbscan1 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 6)

dbscan2 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 6)

dbscan3 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 6)

dbscan4 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 10)

dbscan5 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 10)

dbscan6 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 10)

dbscan7 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 0.75, MinPts = 15)

dbscan8 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.0, MinPts = 15)

dbscan9 <- fpc::dbscan(gapminder.SoCL.2011.s, eps = 1.25, MinPts = 15)

No doubt there are more efficient ways to go through the 9 combinations,

but this will do for the purpose of illustration.

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan1$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan2$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan3$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan4$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan5$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan6$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan7$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan8$cluster)),

diag=list(continuous=my_dens))

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(dbscan9$cluster)),

diag=list(continuous=my_dens))
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Figure 22.15: Realizations of DBSCAN on the (scaled) 2011 Gampinder data: 𝜀 = 0.75 (first column), 1 (second column), 1.25 (third column);

minPts = 6 (first row), 10 (second row), 15 (third row).
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The noisy observations are shown in red: one immediate insight is that

the number of outlying observations decreases as 𝜀∗ increases, which is

as expected. Another insight is that the number of noisy observations

increases as minPts increases, which is again not surprising.

If we compare the shape of the DBSCAN clusters with those of the

𝑘−means and HC clusters, we notice that the option of identifying obser-

vations as noisy – coupled with the "right" combination of parameters

– creates "reasonable" clusters, that is to say, clusters for which we do

not have to stretch our ideas about what clusters ought to look like: the

problematic observations
41

are simply explained away as outliers. 41: Like China and India in regards to

population, say.

The various runs find either 1 or 2 stand-alone clusters (as well as noisy

observations), but that can change if we use different parameter values.

We can also determine if the cluster observations are core or non-core

observations. In the realization with 𝜀∗ = 1 and minPts = 6, we have:

noise cluster 1 cluster 2

outlier 34 – –

reachable – 10 17

core – 20 103

total 34 30 120

22.4.2 Spectral Clustering

At a fairly coarse level, clustering algorithms are divided along those

focusing on compactness and those focusing on connectivity.

Compactness methods are usually variants of 𝑘 Nearest Neighbours
(𝑘NN) methods (see Section 21.1.3), and are effective when there are

distinct clumps in the data. We can make specific assumptions about the

distribution of the different clusters ahead of time (as in the next section),

but compact methods struggle to achieve meaningful results in scenarios

where groups are not linearly separable.

In cases where we have little to no knowledge of the dataset, making

assumptions about the distributions of clusters can lead to invalid clus-

tering schemes; in such cases, connectivity-based methods have been

shown to work reasonably well [30, 18].

Connectivity methods, such as DBSCAN, focus on dividing observations

into groups based on their similarity graphs; observations that are quite

different in their features
42

may end up in the same cluster if there is a 42: And as such would be differentiated

using compactness methods.
chain of sufficiently similar observations linking them.

Connectivity methods require fewer initial assumptions, but their use

can be harder to justify mathematically. The validity of such methods

can only be determined post hoc.

Spectral clustering is a connectivity method that has become quite

popular in practice; in a nutshell, we transform the dataset into its

similarity graph and convert the latter into an eigenvalue problem. We

then solve the eigenvalue problem, convert the solution into a graph cut,
and then translate the cut back into dataset clusters (as illustrated in

Figure 22.16).
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Figure 22.16: Schematics of spectral clustering. We extract the similarity graph of a dataset, which gives rise to an eigenvalue problem (top).

The eigenenvalue problem is then solved, which suggests an ‘optimal’ graph cut, which in turns leads to data clusters (bottom).



22.4 Advanced Methods 1471

Before we start delving into the spectral clustering algorithm, we must

discuss a few concepts relating to graphs and linear algebra.
43

43: These concepts are covered in just

enough depth to provide an intuition

about the algorithm.

Graphs and Cuts A graph is an object which connects nodes (or vertices)

together through edges. The edges have weights and can also be directed.

In certain cases, we may assume that all edge weights are identical and

bidirectional, which is equivalent to saying that the edges just represent

that a relationship exists.

Airports (vertices) and flight paths (edges) form a graph in transportation

networks, as do people (vertices) and relationships (edges) in social

networks; the edges can be weighted according to flight frequency

and/or directed according to their origin and destination, say, in the

transportation example.

In the social network example, they could be weighted according to

frequency of communication and/or directed according to who follows

who on some app.

The link with clustering is that once a similarity measure 𝑤 has been

selected, a dataset can be represented by a similarity graph 𝐺 =

(𝑉, 𝐸,𝑊):

1. observations x correspond to vertices 𝑣 ∈ 𝑉 ;

2. if 𝑖 ≠ 𝑗, vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 are connected by an edge 𝑒𝑖 , 𝑗 = 1 if

the similarity weight 𝑤𝑖 , 𝑗 = 𝑤(x𝑖 , x𝑗) > 𝜏 for a predetermined

threshold 𝜏 ∈ [0, 1), and by no edge (𝑒𝑖 , 𝑗 = 0) otherwise;
44

44: Note that, by convention, 𝑤𝑖 ,𝑖 = 0 for

all 𝑖.
3. the edges (𝑒𝑖 , 𝑗) form the adjacency matrix 𝐸;

4. the weights (𝑤𝑖 , 𝑗) form the similarity matrix𝑊 ;

5. the (diagonal) degree matrix 𝐷 provides information about the

number of edges attached to a vertex: 𝑑𝑖 ,𝑖 =
∑𝑛
𝑗=1
𝑒𝑖 , 𝑗 .

As an example, we could use the Gower similarity measure

𝑤(x𝑖 , x𝑗) = 1 − 1

𝑝

𝑝∑
𝑘=1

|𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘 |
range of 𝑘th feature in X

on the dataset found in Figure 22.16; the ranges of 𝑋1 and 𝑋2 are both

𝑟1 = 𝑟2 = 3, so that

𝑤3,4 = 𝑤4,3 = 𝑤(x3 , x4) = 1 − 1

2

(
|𝑥3,1 − 𝑥4,1 |

𝑟1
+ |𝑥3,2 − 𝑥4,2 |

𝑟2

)
= 1 − 1

2

(
|2 − 2|

3

+ |0 − 2|
3

)
= 1 − 1

2

· 2
3

=
2

3

;

the similarity matrix as a whole is

𝑊 =

©­­­­­­­«

0 5/6 1/2 1/2 5/6 1/6
5/6 0 2/3 1/3 2/3 0

1/2 2/3 0 2/3 1/3 1/3
1/2 1/3 2/3 0 2/3 2/3
5/6 2/3 1/3 2/3 0 1/3
1/6 0 1/3 2/3 1/3 0

ª®®®®®®®¬
.
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If we use a threshold value of 𝜏 = 0.6, say, then the adjacency matrix is

𝐸 =

©­­­­­­­«

0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0

ª®®®®®®®¬
,

and the degree matrix is

𝐷 =

©­­­­­­­«

2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1

ª®®®®®®®¬
.

The degree matrix can also be read directly from the similarity graph

(which depends on the threshold 𝜏), by counting the number of edges at

each node (see Figure 22.16).

A graph cut is the process by which we remove edges from the graph

and separate the vertices into into groups (or sub-graphs).

The clustering task is to separate the nodes into multiple groups by

minimizing the total weight of the edges we have to break in the process

(i.e., making sure that the groups are as dissimilar as possible). This is

also known as the minimum cut problem (MinCut).
45

45: This cannot be the entire story, how-

ever, as we can minimize the total weight

of broken edges by simply . . . not cut-

ting any edges. Indeed, there are other ap-

proaches: Normalized Cut (actually used

in practice), Ratio Cut, Min-Max Cut, etc.

This task is NP-Hard, which means that there is no theoretically guaran-

teed efficient way to do so, in comparison to simply testing every possible

cut and finding the minimum weight. This is problematic: for datasets

with 𝑛 observations, the number of cuts is bounded below by 2
𝑛

(when

we only consider 2−cuts); when 𝑛 is relatively small, the overall number

of cuts to consider remains manageable, but for nearly all reasonable

datasets, the size of 𝑛 turns this task into an exercise in futility.

The clustering approach generalizes the MinCut problem (or any of

the other problems) by imposing some properties on the similarity

graph to ensure that we can approximate the true MinCut solution in a

computationally efficient manner.
46

46: The spectral MinCut solution is not

guaranteed to be the true MinCut solution,

but it usually is close enough to be an

acceptable approximation.

Formally, the MinCut problem involves finding a partition {𝐴1 , ..., 𝐴𝑘}
of 𝐺 which minimizes the objective function

Cut(𝐴1 , ..., 𝐴𝑘) =
1

2

𝑘∑
𝑖=1

W(𝐴𝑖 , 𝐴𝑖),

where

W(𝐴, 𝐵) =
∑

𝑖∈𝐴,𝑗∈𝐵
𝑤𝑖 , 𝑗

and 𝐴 is the (set-theoretic) complement of 𝐴. The factor
1

2
is there to

remove double-counted edges.

The spectral clustering approach instead solves the Normalized Cut
(NCut) problem, which is similar to the MinCut problem except that we



22.4 Advanced Methods 1473

are minimizing the weight of edges escaping a cluster relative to the total

weights in the cluster.
47

47: For more information about this ab-

straction, which actually links a variant of

Kernel PCA to spectral clustering, consult

[7].

In the NCut problem, the objective function is

𝐽NCut(𝐴, 𝐵) = Cut(𝐴, 𝐵)
(

1

Vol(𝐴) +
1

Vol(𝐵)

)
,

where

Vol(𝐶) =
∑
𝑖∈𝐶

𝑤𝑖 ,∗;

in a first pass, we seek to minimize 𝐽NCut against the set of all possible
partitions (𝐴, 𝐵)of𝐺. The procedure can be repeated as often as necessary

on the cluster sub-graphs.

Intuitively, 𝐽NCut is small when the observations within each sub-graph

are similar to one another (Vol(𝐴),Vol(𝐵) are large) and the observations

across are dissimilar to one another (Cut(𝐴, 𝐵) is small).

On the plus side, takes into consideration the size of the partitioned
groups and intra-group variance, and tends to avoid isolating vertices,

but it is not any easier to solve than the MinCut problem. So why do

we even bring it up in the first place? As it happens, we can provide an

approximation to the NCut solution using purely algebraic means.

Similarity, Degree, and Laplacian Matrices There are different ways to

construct a graph representing the relationships between the dataset’s

observations. We can use:

fully connected graphs, where all vertices having non-zero simi-

larities are connected to each other;

𝑟−neighbourhood graphs, where each vertex is only connected

to the vertices falling inside a ball of radius 𝑟 (according to some

distance metric 𝑑), where 𝑟 has to be tuned to capture the local

structure of data;

𝑘 nearest neighbours graphs (and variants), where each vertex is

connected to its 𝑘 nearest neighbours (again, according to some

distance metric 𝑑), with 𝑘 pre-selected, and

mixtures of 𝑟−neighbourhood and 𝑘NN graphs, to better capture

sparsity in the data.

The similarity measure 𝑤 is usually picked from a list that includes:

Gaussian (most common), cosine, fuzzy, Euclidean, Gower, etc. The

similarity matrix 𝑊 is symmetric and has zeros along the diagonal;

its non-diagonal entries represent the similarity strength between the

corresponding graph vertices.
48

48: And so beteween the corresponding

observations in the dataset.

We have discussed previously how to build the adjacency matrix 𝐸

from𝑊 and a threshold 𝜏 ∈ [0, 1). The only component of a graph that

similarity matrices do not directly capture are the degrees of each vertex,

the number of edges that enter it.
49

49: We are viewing the similarity graph

as undirected.

The diagonal of the degree matrix 𝐷 holds that information for each

vertex. We can combine 𝑊 and 𝐷 (or 𝐸 and 𝐷) to create a matrix 𝐿

known as the Laplacian, which has properties linked to the topology of

the similarity graph.
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The Laplacian of a graph is defined by

𝐿0 = 𝐷 − Θ, Θ ∈ {𝐸,𝑊};

the symmetric Laplacian by

𝐿𝑆 = 𝐷−1/2𝐿0𝐷
−1/2 = I𝑛 − 𝐷−1/2Θ𝐷−1/2 ,

and the asymmetric Laplacian by

𝐿𝐴 = 𝐷−1𝐿 = I𝑛 − 𝐷−1Θ.

In all cases, the off-diagonal entries are non-positive, and the diagonal
entries contain the degree of each node.

The Laplacians have the following useful properties:

𝐿0, 𝐿𝑆 are symmetric; 𝐿𝐴 is not necessarily so;
50

50: Since the product of symmetric matri-

ces is not necessarily symmetric.
all their eigenvalues are real and non-negative;

every row and column adds up to 0, which means that 𝜆0 = 0 is

the smallest eigenvalue of each Laplacian (hence they are singular

and cannot be inverted);

the number of connected components in the graph is the dimension
of the nullspace of the Laplacian associated to 𝜆0 = 0 (which may

provide a first approximation to the number of clusters in X), and

the second smallest eigenvalue gives the graph’s sparsest cut.51
51: This is not the same as the minimum

cut which represents the cut that mini-

mizes the number of edges separating two

vertices, but instead represents the mini-

mum ratio of edges across the cut divided

by the number of vertices in the smaller

half of the partition.

Algorithm In the case of two clusters, the objective function 𝐽NCut is

minimized when finding the eigenvector f corresponding to the smallest

positive eigenvalue of 𝐿, also known as the spectral gap.
52

52: This notion will also play a role in

Section 23.4.3.

The clustering in the original data is recovered by sending x𝑖 to 𝐴 when

𝑓𝑖 > 0 and x𝑗 to 𝐵 otherwise. This deterministic algorithm is a special

case of the spectral clustering algorithm [28].

To split X into 𝑘 clusters, we follow the steps below:

1. form a similarity matrix𝑊 and a degree matrix𝐷 using a threshold

𝜏 ∈ [0, 1);
2. construct a Laplacian 𝐿𝜉, 𝜉 ∈ {0, 𝑆, 𝐴}, using Θ =𝑊 ;

3. compute the first 𝑘 eigenvectors {u1 , ..., u𝑘} of 𝐿𝜉 corresponding

to the 𝑘 smallest positive eigenvalues of 𝐿𝜉;

4. construct the 𝑛 × 𝑘 matrix U containing the vectors {u1 , ..., u𝑘} as

columns;

5. normalize the rows of U into a matrix Y with rows {y1 , . . . , y𝑛}
having unit length;

6. cluster the rows of Y into 𝑘 clusters;

7. assign x𝑖 to cluster 𝑗 of X if y𝑖 was assigned to cluster 𝑗 in the

preceding step.

Spectral clusters for the dataset of Figure 22.16, computed using the

Laplacian and symmetric Laplacian, are shown in Figure 22.17.

From an experimental perspective, spectral clustering provides an at-

tractive approach because it is easy to implement and reasonably fast,

especially for sparse datasets: it is a graph partitioning problem that

makes no initial assumptions on the form of the data clusters.
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Figure 22.17: Two clusters for the artificial dataset: simple Laplacian (left); symmetric Laplacian (right).

Figure 22.18: Comparing 2−means (middle) and spectral clustering with 𝑘 = 2 (right) on the spirals dataset (left).

Spectral clustering has variants, which depend on the many choices that

can be made at various points in the process:

1. pre-processing (choice of: number of cluster 𝑘, similarity mea-

sure 𝑤, threshold 𝜏);

2. spectral representation (choice of Laplacian);

3. clustering algorithm (choice of compact-based, potentially non-

deterministic algorithm to unleash on the rows of the representa-

tion Y).

The NJW algorithm uses 𝐿𝑆 for the spectral representation and 𝑘−means

as a clustering approach. It can be interpreted as kernalized 𝑘−means:

if we select a kernel which transforms the points to their mapped value

in the Laplacian of the graph, then we (almost directly) recover spectral

clustering [7].
53

53: DBSCAN can also fit within that

framework, by picking a similarity method

based on the radius that allows the graph

to separate into different components.

Then the multiplicity of 𝜆0 = 0 in the

Laplacian gives the number of graph com-

ponents, and these can be further clus-

tered, as above.

In Figure 22.18, the different outcomes of 𝑘−means and NJW are illus-

trated on the spirals dataset (available in R).

Practical Details and Limitations The most obvious practical detail in the

implementation of spectral clustering is related to the construction of the

similarity graph. In general, there is virtually no theoretical justification

for determining what type of clustering approach to use; even after an

approach has been selected, it can be quite difficult to choose appropriate

parameter values.
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In spectral clustering, there are considerations in favour of using sparse
similarity/adjacency matrix: we seek to strike a balance between a

Laplacian which is too densely connected, and one for which almost all

of the observations are seen as dissimilar to one another. Another issue

relates to the computational challenge of finding the eigenvalues of the

Laplacian.

This can be done relatively efficiently if the matrix is sparse enough,

however, which suggests using a relatively-high threshold 𝜏; there are

methods which help spectral clustering automatically tune for the best

parameter values (including 𝜏), but they take up a significant amount of

resources [28].

Spectral clustering methods are extremely effective because they do not

require assumptions about distributions and centres, are fairly easy to
implement, and are transparent and interpretable.

However, they suffer from some of the same drawbacks as other clustering

methods, namely when it comes to:

selecting initial parameter values,

run-times that do not scale with larger datasets, and

determining optimal ways to visualize the results.

As in all clustering scenarios, analysts are faced with decisions at various

levels of the process; they must be prepared to run multiple algorithms,

in multiple configurations, in order to get a sense for the data structure.
54

54: Some strategies specific to spectral

clustering are presented in [28].

Examples In a first example, spectral clustering is used to segment

greyscale images into different segments based on contrasting colours

[43]. Figure 22.19 shows instances with high contrast, with fairly decent

segmentation performance using NCut, Self-Tuning SC [52], and a pro-

posed SC algorithm [43]; Figure 22.20 shows other instances with less

contrast (resulting in a poorer segmentation with the same methods); Fig-

ure 22.21 shows the comparison in segmentations using the proposed SC

algorithm when the same image is presented at different resolutions.

In the second example, consider a dataset of 𝑛 = 250 times series, with

𝑁 = 60 entries each (see below).
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Figure 22.19: High-contrast image segmentation with spectral clustering [43].
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Figure 22.20: Low-contrast image segmentation with spectral clustering [43].
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Figure 22.21: Spectral clustering image segmentation of images at different resolutions [43].

We use the average absolute gap as distance 𝑑:

𝑑(x𝑖 , x𝑗) =
1

60

60∑
ℓ=1

|𝑥𝑖 ,ℓ − 𝑥 𝑗 ,ℓ |.

We build the Gaussian similarity measure

𝑤(x𝑖 , x𝑗) = exp

(
−
𝑑2(x𝑖 , x𝑗)

2𝜎2

)
,

and we use the following parameter values

𝜎2 = 300, 𝜏 = 0.9, 𝑘 = 5.

The spectral clustering results are quite appealing, as can be seen in the

first realization of the NJW algorithm with 𝑘 = 5 clusters. Note however

that not every run of the algorithm yields an outcome that we would

consider meaningful (see Figure 22.22).

Figure 22.22: Two realizations of spectral clustering, using the NJW algorithm with 𝑘 = 5; the original dataset is shown in blue. We see that

the NJW algorithm has captured 5 clusters with different times series characteristics, which is an encouraging result (two leftmost columns);

the 𝑘−means portion of the algorithm leads to different clusters, which appear to be of lower quality (two rightmost columns).

In the final example, we once again revisit the (scaled) 2011 Gapminder

dataset using Euclidean dissimilarity. We use the kernlab implementa-

tion of the NJW algorithm found in specc(), with the default settings.

We run one instance of the algorithm for 𝑘 = 2 to 𝑘 = 7 clusters.
55

55: Assume that the libraries ggplot2 and

GGally hgave already been loaded.
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sc.gapminder.2 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 2)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.2)), diag=list(continuous=my_dens))

sc.gapminder.3 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 3)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.3)), diag=list(continuous=my_dens))

sc.gapminder.4 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 4)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.4)), diag=list(continuous=my_dens))

sc.gapminder.5 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 5)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.5)), diag=list(continuous=my_dens))

sc.gapminder.6 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 6)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.6)), diag=list(continuous=my_dens))

sc.gapminder.7 <- kernlab::specc(as.matrix(gapminder.SoCL.2011.s), 7)

ggpairs(gapminder.SoCL.2011[,c(3:7)],

aes(color=as.factor(sc.gapminder.7)), diag=list(continuous=my_dens))

None of our clustering attempts have found what one might call natural
groups in the 2011 Gapminder data. We might not have hit on the right

method yet... but at what point do we decide that the task is futile and

no such groups exist in the first place?
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22.4.3 Probability-Based Clustering

In contrast with the model-free approach of density-based clustering and

spectral clustering, probabilistic-based clustering attempts to optimize

the fit between the observed data and some mathematical model of

clustering, with the assumption that the data is generated via a number

of underlying probability distributions.

In practice, we assume that clusters are represented by parametric
probability distributions, and the objective is to learn the parameters for

each of these distributions. This assumption allows us to use probability

theory to derive learning formulas for the parameters.
56

56: We borrow extensively from Deng

and Han’s Probabilistic Models for Clustering
chapter in [2].

Mixture Models The main underlying assumption of mixture models
is that each observation is drawn (or generated) from one of several

mechanisms (or components). In model-based clustering, we learn the

parameters that provide the optimal fit to the data; in other words, we

make a series of predictions about which component(s) generated each

of the observations.

This naturally leads to clusters, all observations generated by a given

component belonging to the same cluster. Formally, we let

X =


x1

...

x𝑛

 ∈ 𝑀𝑛,𝑝(ℝ).

Assume that there are 𝑘 mechanisms that generate data, and that each of

them is determined by a vector of parameters 𝜽ℓ , 1 ≤ ℓ ≤ 𝑘.

For 1 ≤ 𝑗 ≤ 𝑛, denote the probability of x𝑗 being generated by the ℓ−th
mechanism, 1 ≤ ℓ ≤ 𝑘, by

𝑃(x𝑗 | 𝜽ℓ ).

The mixture vector 𝝅 = (𝜋1 , . . . ,𝜋𝑘) is a vector such that 𝜋ℓ ∈ [0, 1] for

all 1 ≤ ℓ ≤ 𝑘 and 𝜋1 + · · · + 𝜋𝑘 = 1.

If 𝑃(𝑧 𝑗 = ℓ ) = 𝜋ℓ , for 1 ≤ ℓ ≤ 𝑘, and if

𝑃(x𝑗 | 𝑧 𝑗 = ℓ ) = 𝑃(x𝑗 | 𝜽ℓ ) ∀𝑗 , ℓ ,

then the probability of observing x𝑗 is

𝑃(x𝑗) =
𝑘∑
ℓ=1

𝜋ℓ𝑃(x𝑗 | 𝜽ℓ ) =
𝑘∑
ℓ=1

𝑃(𝑧 𝑗 = ℓ )𝑃(x𝑗 | 𝑧 𝑗 = ℓ ),

according to the Law of Total Probability.

In this set-up, we interpret 𝑧 𝑗 as the cluster label for x𝑗 . Alternatively, we

could use

z𝑗 ∈ {0, 1}𝑘 , ∥z𝑗 ∥2 = 1

to denote the cluster signature of x𝑗 . The norm condition implies that

exactly one of the components of z𝑗 is 1; all others are 0. For instance,
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if there are 𝑘 = 5 mechanisms (clusters) in the data and x𝑗 ∈ 𝐶4, then

z𝑗 = (0, 0, 0, 1, 0).57
57: This notation can be generalized to

fuzzy clusters: the cluster signature of x𝑗
is

z𝑗 ∈ [0, 1]𝑘 , ∥z𝑗 ∥2 = 1;

if z𝑗 = (0, 0, 1√
2

, 1√
2

, 0), say, then we would

interpret x𝑗 as belonging equally to clus-

ters 𝐶3 and 𝐶4 or as having probability

1/2 of belonging to either 𝐶3 or 𝐶4.

If we write

𝑃(z𝑗) = 𝜋
𝑧 𝑗 ,1

1
× · · · × 𝜋𝑧 𝑗 ,𝑘

𝑘
=

𝑘∏
ℓ=1

𝜋
𝑧 𝑗 ,ℓ

ℓ

and

𝑃(x𝑗 | z𝑗) = 𝑃(x𝑗 | 𝜽1) 𝑧 𝑗 ,1 × · · · × 𝑃(x𝑗 | 𝜽𝑘) 𝑧 𝑗 ,𝑘 =
𝑘∏
ℓ=1

𝑃(x𝑗 | 𝜽ℓ ) 𝑧 𝑗 ,ℓ ,

we recover the mixture model:

𝑃(x𝑗) =
𝑘∑
ℓ=1

𝜋ℓ𝑃(x𝑗 | 𝜽ℓ ) =
𝑘∑
ℓ=1

𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ ).

Generative Process In practice, then, we can imagine that the dataset X
is generated as follows. For 1 ≤ 𝑗 ≤ 𝑛:

1. draw a cluster signature z𝑗 ∼ G𝑘(𝝅) = Mult𝑘(𝝅), and

2. draw an observation x𝑗 from the corresponding mechanism accord-

ing to 𝑃(x𝑗 | z𝑗).

But we usually do not have access to this generative process; instead, we

are given X and the clustering task is to determine how likely it is that

component 𝐶ℓ , 1 ≤ ℓ ≤ 𝑘, is responsible for observation x𝑗 , 1 ≤ 𝑗 ≤ 𝑛.

To do so, we need to compute the probabilities

𝛾(𝑧 𝑗 ,ℓ ) = 𝑃(z𝑗 ∈ 𝐶ℓ | x𝑗), ∀𝑗 , ℓ .

This is difficult to do directly; we use Bayes’ Theorem to provide an

easier handle on the computations:

𝛾(𝑧 𝑗 ,ℓ ) = 𝑃(z𝑗 ∈ 𝐶ℓ | x𝑗) =
𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ )

𝑃(x𝑗)

=
𝑃(z𝑗 ∈ 𝐶ℓ )𝑃(x𝑗 | z𝑗 ∈ 𝐶ℓ )∑𝑘

𝜈=1
𝑃(z𝑗 ∈ 𝐶𝜈)𝑃(x𝑗 | z𝑗 ∈ 𝐶𝜈)

=
𝜋ℓ𝑃(x𝑗 | 𝜽ℓ )∑𝑘
𝜈=1

𝜋𝜈𝑃(x𝑗 | 𝜽𝜈)
.

The clustering objective is to infer {𝜋ℓ }𝑘ℓ=1
, {𝜽ℓ }𝑘ℓ=1

from X for a fixed 𝑘,

to obtain the desired probabilities 𝛾(𝑧 𝑗 ,ℓ ).

Denote

𝚯 = {𝜋1 , . . . ,𝜋𝑘 , 𝜽1 , . . . , 𝜽ℓ }.

If we further assume that the x𝑗 are independently drawn by the genera-

tive process, then, by construction:

𝑃(X | 𝚯) =
𝑛∏
𝑗=1

𝑘∑
ℓ=1

𝜋𝑘𝑃(x𝑗 | 𝜽ℓ ),

or

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋𝑘𝑃(x𝑗 | 𝜽ℓ )
)
.



22.4 Advanced Methods 1483

The maximum likelihood estimator (MLE) of 𝚯 is

𝚯MLE = arg max

𝚯

{
ln𝑃(X | 𝚯)

}
;

if we have information about the prior 𝑃(𝚯), then we may use the

maximum a posteriori estimator (MAP) instead:

𝚯MAP = arg max

𝚯

{
ln𝑃(X | 𝚯) + ln𝑃(𝚯)

}
.

Whether we use MLE or MAP depend, in large part, on the form taken

by the component distributions.

Gaussian Mixture Models A standard assumption is that all clusters are

generated by Gaussian mechanisms, which is to say that 𝑃(x𝑗 | 𝜽ℓ ) arises

from a multivariate Gaussian distribution (GMM):

N(x𝑗 | 𝝁ℓ ,𝚺ℓ ) =
1√

(2𝜋)𝑝 |𝚺ℓ |
exp

(
− 1

2
(x𝑗 − 𝝁ℓ )⊤𝚺−1

ℓ (x𝑗 − 𝝁ℓ )
)
,

where 𝝁ℓ ∈ ℝ𝑝
and 𝚺ℓ is a symmetric positive semi-definite matrix. Thus,

if there are 𝑘 components, then

𝑃(x𝑗 | 𝚯) =
𝑘∑
ℓ=1

𝜋ℓN(x𝑗 | 𝝁ℓ ,𝚺ℓ )

and

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋ℓN(x𝑗 | 𝝁ℓ ,𝚺ℓ )
)
.

It is straightforward to show that

∇LL𝝁ℓ (𝚯) = 𝚺−1

ℓ

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )(x𝑗 − 𝝁ℓ ),

so that the MLE estimators for the mean vectors are

𝝁̂ℓ =

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ ) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )
.

Thus 𝝁̂ℓ is a weighted mean of the observations of X, with weights corre-

sponding to the posterior probability 𝛾(𝑧 𝑗 ,ℓ ) that the ℓ−th component

was responsible for generating x𝑗 .

Simultaneously, we can show that

∇LL𝚺ℓ (𝚯) =
𝑛∑
𝑗=1

𝜋ℓ
𝑃(x𝑗 | 𝚯)

·
𝜕N(x𝑗 | 𝝁ℓ ,𝚺ℓ )

𝜕𝚺ℓ
;

slightly more complicated manipulations show that the MLE estimators



1484 22 Focus on Clustering

for the covariance matrices are also weighted averages:

𝚺̂ℓ =

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )(x𝑗 − 𝝁̂ℓ )(x𝑗 − 𝝁̂ℓ )⊤

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ )
.

Finally, to obtain the mixture probabilities 𝜋ℓ , we must maximize LL(𝚯)
with respect to 𝝅, subject to 𝜋ℓ ∈ [0, 1] and 𝜋1 + · · · + 𝜋𝑘 = 1; we can use

Lagrange multipliers to show that the MLE estimates of the mixture

probabilities are also an average:

𝜋̂ℓ =
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧 𝑗 ,ℓ ).

So we have nice expressions for the MLE estimates 𝚯̂.
58

58: There is a problem, however: we need

the clustering probabilities 𝛾(𝑧 𝑗 ,ℓ ) in order

to provide the MLE estimates ... but the

former depend on the MLE estimates! Expectation-Maximization Algorithm While there is no closed-form
solution allowing us to express the cluster signatures directly in terms

of the observed data X, there is a simple iterative solution based on the

Expectation-Maximization algorithm for GMM.

Input: X
Output: 𝚯∗ which maximizes LL(𝚯)

0. Initialize 𝚯[0] =
{
𝝁[0]
ℓ
,𝚺[0]

ℓ
,𝜋[0]

ℓ

}𝑘
ℓ=1

and set

LL
[0] = LL(𝚯[0]);

For 𝑖 = 0 to max_step, do:

1. E(xpectation)-step: compute the responsibilities

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) =

𝜋[𝑖]
ℓ
N(x𝑗 | 𝝁[𝑖]ℓ ,𝚺

[𝑖]
ℓ
)∑𝑘

𝜈=1
𝜋[𝑖]𝜈 N(x𝑗 | 𝝁[𝑖]𝜈 ,𝚺[𝑖]𝜈 )

, ∀𝑗 , ℓ ;

2. M(aximization)-step: update the parameters

𝝁[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)
, ∀ℓ ;

𝚺[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)(x𝑗 − 𝝁[𝑖]ℓ )(x𝑗 − 𝝁

[𝑖]
ℓ
)⊤

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

, ∀ℓ ,

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
), ∀ℓ ;
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3. Set LL
[𝑖+1] = LL(𝚯[𝑖]) and check for convergence according to some

convergence criterion

(∥𝚯[𝑖] −𝚯[𝑖+1]∥ < 𝜀, say) :

if satisfied, set 𝚯∗ = 𝚯[𝑖+1]
; otherwise, set 𝑖 := 𝑖+1 and repeat steps

1 to 3.

There are two main limitations to using EM for GMM:

EM is costlier (has a longer run-time) than 𝑘−means, and depend-

ing on the initialization, the algorithm may converge to a local
critical point which is not necessarily the global maximizer;

as the algorithm iterates, two (or more) GMM clusters can collapse
into a single GMM cluster.

Note that the EM algorithm can be sped-up by first running 𝑘−means and

using the mean vector, covariance matrix, and proportion of observations

in the 𝑘−means cluster 𝐶ℓ for the initialization of 𝝁[0]
ℓ

, 𝚺[0]
ℓ

, and 𝜋ℓ for

1 ≤ ℓ ≤ 𝑘.

The collapsing of clusters can be mitigated by monitoring ∥𝚺𝑖ℓ ∥2 and

randomly resetting 𝝁[𝑖]
ℓ

, 𝚺[𝑖]
ℓ

when some threshold is reached.

Special Cases and Variants In a GMM with 𝑘 components, if 𝚺ℓ = 𝚺 =

𝜎2I𝑛 for all ℓ , then

𝑃(x𝑗 | 𝝁ℓ ,𝚺) =
1√
(2𝜋)𝑝𝜎

· exp

(
− 1

2𝜎2

∥(x − 𝝁ℓ )∥2
2

)
;

the EM algorithm applied to this special case leads to

E-step: 𝛾(𝑧[𝑖]
𝑗 ,ℓ
) =

𝜋[𝑖]
ℓ

exp

(
−∥x𝑗 − 𝝁[𝑖]ℓ ∥

2

2
/2𝜎2

)
∑𝑘

𝜈=1
𝜋[𝑖]𝜈 exp

(
−∥x𝑗 − 𝝁[𝑖]𝜈 ∥22/2𝜎2

)
M-step: 𝝁[𝑖+1]

ℓ
=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
).

When 𝜎→ 0, we can show that

𝛾(𝑧 𝑗 ,ℓ ) →
{

1 if ℓ = arg min𝜈
{
∥x𝑗 − 𝝁𝜈∥2

2

}
0 otherwise

which is simply the formulation for 𝑘−means. Note that the components

do not need to be multivariate Gaussians; there is a general EM algorithm
that takes advantage of the concavity of the ln function [2].

If the dataset of observations is binary, as may occur in image datasets

(each pixel taking on the values 0 or 1, depending as to whether the pixel
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is white or black, say), we can modify GMM so that 𝑃(x𝑗 | 𝝁ℓ ) arises from

a multivariate Bernoulli distribution:

B(x𝑗 | 𝝁ℓ ) =
𝑝∏

𝜈=1

𝜇
𝑥 𝑗 ,𝜈

ℓ ,𝜈 (1 − 𝜇ℓ ,𝜈)
1−𝑥 𝑗 ,𝜈 ,

where 𝝁ℓ ∈ [0, 1]𝑝 . Thus, if there are 𝑘 components, then

𝑃(x𝑗 | 𝚯) =
𝑘∑
ℓ=1

𝜋ℓB(x𝑗 | 𝝁ℓ )

and

LL(𝚯) = ln𝑃(X | 𝚯) =
𝑛∑
𝑗=1

ln

(
𝑘∑
ℓ=1

𝜋ℓ

𝑝∏
𝜈=1

𝜇
𝑥 𝑗 ,𝜈

ℓ ,𝜈 (1 − 𝜇ℓ ,𝜈)
1−𝑥 𝑗 ,𝑖

)
.

We can find 𝚯∗ that maximizes LL(𝚯) by using the EM algorithm for

the Bernoulli Mixture Model (BMM): the EM algorithm applied to this

special case leads to

E-step: 𝛾(𝑧[𝑖]
𝑗 ,ℓ
) = 𝜋[𝑖]

ℓ

𝑝∏
𝜈=1

(
𝜇[𝑖]
ℓ ,𝜈

) 𝑥 𝑗 ,𝜈
(1 − 𝜇[𝑖]

ℓ ,𝜈)
1−𝑥 𝑗 ,𝑖

M-step: 𝝁[𝑖+1]
ℓ

=

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
) x𝑗

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
)

𝜋[𝑖+1]
ℓ

=
1

𝑛

𝑛∑
𝑗=1

𝛾(𝑧[𝑖]
𝑗 ,ℓ
),

with initialization 𝜋[0]
ℓ

= 1

𝑘
and

𝝁[0]
ℓ
∼

𝑝∏
𝜈=1

U(0.25, 0.75)

for 1 ≤ ℓ ≤ 𝑘.

Other variants include Generalized EM, Variational EM, and Stochastic
EM [2]. Note that the essence of EM methods remains the same for

all algorithms: we attempt to “guess” the value of the "hidden" cluster

variable 𝑧 𝑗 ,ℓ in the E-step, and we update the model parameters in

the M-step, based on the approximated responsibilities found in the

𝐸−step.

Interestingly, EM can detect overlapping clusters (unlike 𝑘−means).

But most variants share the same limitations: convergence to a global

maximizer is not guaranteed; it may be quite slow even when it does

converge, and the correct number of components is assumed to be known

prior to analysis.

Example: Gapminder Dataset We cluster the 2011 Gapminder dataset

using the mclust implementation of EM in R; no parameters need be

specified (unless we want to use a different dissimilarity measure).
59

59: The mclust vignette contains more

information.

https://cran.r-project.org/web/packages/mclust/vignettes/mclust.html
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This implementation determines the optimal number of clusters using

BIC (see Section 20.4.3).

We cluster both the raw data and the scaled data, to showcase the impact

scaling can have.

We start by determining the number of sources in the raw data:

library(mclust)

set.seed(0)

BIC <- mclustBIC(gapminder.SoCL.2011[,c(3:7)])

plot(BIC)

summary(BIC)

Best BIC values:

VVE,5 VVV,2 VVE,4

BIC -3545.915 -3573.00451 -3577.50705

BIC diff 0.000 -27.08943 -31.59198

This suggests that there are 5 clusters, which we display on the next

page.

mod1 <- Mclust(gapminder.SoCL.2011[,c(3:7)], x = BIC)

plot(mod1, what = "classification")
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The MLE estimators for the mean vectors and the covariance matrices for

each cluster are computed as below.

summary(mod1, parameters = TRUE)

Clustering table:

1 2 3 4 5

51 27 52 41 13

Mixing probabilities:

1 2 3 4 5

0.28320179 0.14590868 0.27317375 0.22804391 0.06967186

Means:

[,1] [,2] [,3] [,4] [,5]

Life Exp 59.834937 81.134281 75.998817 71.888971 67.179530

Inf Mort 58.426776 3.254371 9.913182 24.238438 35.027409

Fert 4.798189 1.691375 1.800049 2.566219 4.014588

log10 Pop 7.061637 7.016423 6.695346 7.133957 5.492939

log10 GDPpc 3.419639 4.606936 4.257569 3.889928 3.491324

Variances:

[,,1]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 28.3344610 -55.700455 -0.7444078 0.38472919 1.15550574

Inf Mort -55.7004554 423.909389 11.8241909 1.11117987 -4.78143371

Fert -0.7444078 11.824191 1.1663137 0.13060543 -0.21270286

log10 Pop 0.3847292 1.111180 0.1306054 0.26127270 -0.01805256

log10 GDPpc 1.1555057 -4.781434 -0.2127029 -0.01805256 0.19296195
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[,,2]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 0.77045283 0.012104972 0.02774975 0.011407709 0.019766044

Inf Mort 0.01210497 0.679738470 0.01905169 0.003200837 -0.004476642

Fert 0.02774975 0.019051687 0.12771916 -0.042927224 -0.012328032

log10 Pop 0.01140771 0.003200837 -0.04292722 0.416389572 -0.018157675

log10 GDPpc 0.01976604 -0.004476642 -0.01232803 -0.018157675 0.015998859

[,,3]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 4.9940940 -1.72216863 0.142340294 0.10257591 0.137637940

Inf Mort -1.7221686 17.19416942 0.499861409 0.05750027 -0.180062410

Fert 0.1423403 0.49986141 0.115694181 -0.09747328 0.001937248

log10 Pop 0.1025759 0.05750027 -0.097473276 0.79668779 -0.027754402

log10 GDPpc 0.1376379 -0.18006241 0.001937248 -0.02775440 0.071168246

[,,4]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 9.91288695 -14.4994297 -0.09127317 0.15574758 0.36288775

Inf Mort -14.49942972 112.8663448 3.16128196 0.30356930 -1.26453815

Fert -0.09127317 3.1612820 0.33684903 -0.03319199 -0.04501104

log10 Pop 0.15574758 0.3035693 -0.03319199 0.57090101 -0.02068610

log10 GDPpc 0.36288775 -1.2645382 -0.04501104 -0.02068610 0.10900700

[,,5]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 18.0275970 -35.9634327 -0.5031561 0.24042845 0.74329472

Inf Mort -35.9634327 273.4386404 7.6150659 0.71441466 -3.08374929

Fert -0.5031561 7.6150659 1.0499241 0.12825306 -0.19073273

log10 Pop 0.2404284 0.7144147 0.1282531 0.15122047 -0.02103882

log10 GDPpc 0.7432947 -3.0837493 -0.1907327 -0.02103882 0.06307893

Let us repeat the procedure on the scaled dataset.

BIC.s <- mclustBIC(scale(gapminder.SoCL.2011[,c(3:7)]))

plot(BIC.s)
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summary(BIC.s)

Best BIC values:

VVV,2 VVE,4 VVI,5

BIC -1760.55 -1779.31339 -1785.64061

BIC diff 0.00 -18.76374 -25.09096

This suggests that there are 2 clusters, as seen below.

mod2 <- Mclust(gapminder.SoCL.2011[,c(3:7)], x = BIC.s)

plot(mod2, what = "classification")

The MLE estimators for the mean vectors and covariance matrices for

each cluster are computed as below.

summary(mod2, parameters = TRUE)

Clustering table:

1 2

91 93

Mixing probabilities:

1 2

0.5059039 0.4940961
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Means:

[,1] [,2]

Life Exp 64.226346 77.164028

Inf Mort 45.696249 9.268183

Fert 4.038171 1.860683

log10 Pop 6.906989 6.816294

log10 GDPpc 3.566453 4.310365

Variances:

[,,1]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 46.94600319 -112.051411 -5.17027793 -0.06217152 1.55664144

Inf Mort -112.05141081 531.145010 22.59825954 2.37700481 -5.67438362

Fert -5.17027793 22.598260 1.84974433 0.03491542 -0.37634844

log10 Pop -0.06217152 2.377005 0.03491542 0.62342443 -0.01356435

log10 GDPpc 1.55664144 -5.674384 -0.37634844 -0.01356435 0.17508305

[,,2]

Life Exp Inf Mort Fert log10 Pop log10 GDPpc

Life Exp 10.7636945 -13.79843667 -0.40969404 0.508375039 0.789463554

Inf Mort -13.7984367 34.33063934 1.47575086 -0.094412049 -1.497455669

Fert -0.4096940 1.47575086 0.17525844 -0.037372594 -0.032046730

log10 Pop 0.5083750 -0.09441205 -0.03737259 0.719418611 0.002308201

log10 GDPpc 0.7894636 -1.49745567 -0.03204673 0.002308201 0.115062583

22.4.4 Affinity Propagation

Affinity propagation (AP) is a fairly recent arrival on the clustering stage

[11, 12]; it takes a somewhat novel perspective on clustering although, as

might be expected, there are still similarities to other clustering methods,

in particular, DBSCAN and 𝑘−means.

AP takes the 𝑘−medoids algorithm as a jumping off point. Unlike

𝑘−means or EM, this algorithm does not operate on statistical principles;

rather, it selects existing observations to act as the exemplar for a particular

cluster (rather than a mean vector, as in 𝑘−means; see Figure 22.23 for

an illustration).

The 𝑘−mediods algorithm refines the selection of these exemplars so

that in the final (stable) configuration, the observations assigned to an

exemplar are quite similar to it, relative to other exemplars. As the name

suggests, the number of clusters 𝑘 must be selected prior to running the

algorithm; as is the case with 𝑘−means, 𝑘−medoids is non-deterministic
and is sensitive to the initial choice of exemplars and similarity metric.

The AP algorithm attempts to overcome the issues arising with 𝑘−medoids,

using Bayesian network theory (in particular, belief propagation networks

and factor graphs), and treats observations as a connected graph. In this

approach, each graph vertex can:

communicate with any other vertex, and

act as a possible exemplar for other observations.

The selection of exemplars is determined by exchanging real-valued

messages between points. Eventually, sets of exemplars and data points

associated with each exemplar are generated from this iterative process,

forming clusters. Messages are updated on the basis of fairly simple

formulae. As in all clustering contexts, a similarity measure 𝑠 must first
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Figure 22.23: Illustration of 3−mediods on an artificial dataset (modified from [11]).

be selected prior to clustering: for distinct pairs (𝑖 , 𝑘), 𝑠(𝑖 , 𝑘) represents

initially the suitability of 𝑘 as an exemplar of 𝑖 (this suitability will be

updated as “messages” are passed between observations).

Each observation 𝑘 is further assigned a preference 𝑠(𝑘, 𝑘) that it be

chosen as an exemplar. The preference can be constant, to indicate no

particular initial preference.

Two types of messages get sent:

the availability 𝑎(𝑖 , 𝑘) sent from 𝑘 to 𝑖, which reports on the

suitability of 𝑘 to be an exemplar of 𝑖;

the responsibility 𝑟(𝑖 , 𝑘) sent from 𝑖 to 𝑘, which reports on the

suitability of 𝑖 to be represented by 𝑘.

The availabilities are initialized to 𝑎(𝑖 , 𝑘) ← 0, the responsibilities to

𝑟(𝑖 , 𝑘) ← 𝑠(𝑖 , 𝑘) −max

𝑘′≠𝑘
{𝑎(𝑖 , 𝑘′) + 𝑠(𝑖 , 𝑘′)}.

This calculation allows eligible exemplars of an observation to “compete”

for each observations, in a sense, so they can become that observation’s

exemplar.
60

After the initial assignment, an availability 𝑎(𝑖 , 𝑘) = 0 means60: As candidate exemplars are them-

selves observations, we can also compute

self-responsibility: 𝑟(𝑘, 𝑘) ← 𝑠(𝑘, 𝑘) −
max𝑘≠𝑘′{𝑠(𝑘, 𝑘′)}.

that observation 𝑖 has no affinity for 𝑘 as its exemplar).

Subsequently, the focus switches back and forth between the exemplar

and the observation perspective, with observations looking for available

exemplars:

𝑎(𝑖 , 𝑘) ←


min

{
0, 𝑟(𝑘, 𝑘) +

∑
𝑖′∉{𝑖 ,𝑘}

max{0, 𝑟(𝑖 , 𝑘)}
}

𝑖 ≠ 𝑘∑
𝑖′≠𝑘

max{0, 𝑟(𝑖′, 𝑘)} 𝑖 = 𝑘

The case 𝑖 = 𝑘 is intended to reflect current evidence that observation

𝑘 is an exemplar. The responsibilities and availabilities are updated,
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reflecting the current affinity that one observation has for choosing

another observation as its exemplar (hence the name), until the quantities

converge to 𝑟(𝑖 , 𝑘) and 𝑎(𝑖 , 𝑘), respectively, for all pairs of observations

(𝑖 , 𝑘).

This leads to the cluster assignment {𝑐1 , . . . , 𝑐𝑛}, where

𝑐𝑖 = arg max

𝑘
{𝑎(𝑖 , 𝑘) + 𝑟(𝑖 , 𝑘)}, 1 ≤ 𝑖 ≤ 𝑛;

if 𝑖 is an observation with associated exemplar 𝑘, then 𝑐𝑖 = 𝑐𝑘 = 𝑘.

The fact that any observation can become an exemplar when the quantities

are updated, and thus that the number of clusters is not an algorithm

parameter, is an important distinction between AP and 𝑘−medoids (and

other segmentation clustering approaches). The process is illustrated

below.

Figure 22.24: Illustration of affinity propagation on an artificial dataset (top); illustration of availability and responsibility (bottom); modified

from [11].

Setting Algorithm Parameters Two parameters impact AP’s clustering

behaviour: the input preference (which influences the eventual number

of clusters) and the dampening parameter.

The input preference determines the suitability of each observation to act

as an exemplar; this is often set as the median similarity in the data, but

it can be tweaked. In principle, certain observations could be assigned

preference values in a different manner, perhaps relating to domain

knowledge (or previous results).

The dampening parameter is slightly more technical. Because affinity

propagation creates a directed graph to generate clusters, it can become

vulnerable to graph loops, which could result in algorithmic oscillations

(the algorithm may not converge to a particular solution). The dampening

factor acts to control this oscillation problem.
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Comparison with Other Algorithms Performance of clustering algo-

rithms can be considered both in general (e.g., based on best/worst

cases of an implemented algorithm) or in the context of applications in

particular domains – one major drawback of AP is the calculation cost of

the similarity matrix, which is 𝑂(𝑛2).

Once the similarity matrix has been calculated, the number of scalar

computations scales linearly in the number of similarities or quadratically

in the number of observations if all possible pairwise similarities are

used [11]. In other words, AP is slow on larger datasets.

Arguably, one of the key advantages of AP (other than not having to

specify the number of clusters up front) is its ability to use any similarity

measure. As a result, we do not need to alter the dataset to ‘fit’ with a

distance/similarity framework.
61

61: Such as by changing categorical vari-

ables into numeric variables in some

way, or ignoring categorical variables alto-

gether. Example We once again re-visit the 2011 (scaled) Gapminder dataset.

We use the AP implementation found in the R package apcluster, with

similarity 𝑠(𝑖 , 𝑘) = −∥x𝑖 − x𝑘 ∥2. We start by setting the input preference

as the median similarity and obtain 14 clusters.

library(apcluster)

ap.gap.1 <- apcluster(negDistMat(r=2),

scale(gapminder.SoCL.2011[,c(3:7)]))

ap.gap.1

Number of clusters = 14

Exemplars:

bfa brb col com dnk gha hrv idn ita nam npl pry tcd vut

Clusters:

Cluster 1, exemplar bfa:

afg bdi ben bfa civ cmr gin lbr moz mwi ner nga ssd tgo uga zmb cod

Cluster 2, exemplar brb:

bhs blz brb cpv isl mdv mlt sur brn lca mne vct atg grd syc

Cluster 3, exemplar col:

arg bra chl col dza irn lka mar mex mys per rou tha tur ukr ven vnm

Cluster 4, exemplar com:

com dji gmb gnb mrt tls

Cluster 5, exemplar dnk:

aut bel che dnk fin grc irl isr lux nld nor nzl omn prt qat sgp swe are

bhr cyp kwt sau

Cluster 6, exemplar gha:

eri eth gha hti ken lao mdg pak png rwa sdn sen tza yem zaf zwe irq

Cluster 7, exemplar hrv:

bgr blr cri cub cze est hrv hun lbn ltu lva mus srb svk svn tto ury alb

mkd bih

Cluster 8, exemplar idn:

chn egy idn ind phl rus

Cluster 9, exemplar ita:

aus can deu esp fra gbr ita jpn kor pol usa

Cluster 10, exemplar nam:

bwa cog gab gnq lso nam swz lby tkm

Cluster 11, exemplar npl:

bgd khm mmr npl tjk uzb prk
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Cluster 12, exemplar pry:

arm aze bol btn dom ecu geo gtm hnd jam kaz kgz mda mng nic pan pry slv

tun jor pse syr

Cluster 13, exemplar tcd:

ago caf mli sle som tcd

Cluster 14, exemplar vut:

fji guy stp slb ton vut wsm kir fsm

plot(ap.gap.1, gapminder.SoCL.2011[,c(3:7)])

If instead we use the minimum similarity, we obtain 4 clusters (exemplars:
Guinea, Guyana, Croatia, Morocco).

ap.gap.2 <- apcluster(negDistMat(r=2),

scale(gapminder.SoCL.2011[,c(3:7)]), q=0)

ap.gap.2

Number of clusters = 4

Exemplars:

gin guy hrv mar

Clusters:

Cluster 1, exemplar gin:

afg ago bdi ben bfa caf civ cmr cog com eri eth gha gin gmb gnb hti ken

lbr lso mdg mli moz mrt mwi ner nga pak png rwa sdn sen sle som ssd tcd

tgo tza uga zmb zwe cod tls
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Cluster 2, exemplar guy:

blz btn bwa cpv dji fji gab gnq guy lao mng nam stp sur swz lby slb tkm

ton vct vut wsm grd kir syc fsm

Cluster 3, exemplar hrv:

arm aus aut bel bgr bhs blr brb can che chl cri cub cze deu dnk esp est

fin fra gbr geo grc hrv hun irl isl isr ita jam jpn kor lbn ltu lux lva

mda mdv mlt mus mys nld nor nzl omn pan pol prt qat rou sgp srb svk svn

swe tto tun ury alb are bhr brn cyp kwt lca mkd mne sau bih atg

Cluster 4, exemplar mar:

arg aze bgd bol bra chn col dom dza ecu egy gtm hnd idn ind irn kaz kgz

khm lka mar mex mmr nic npl per phl pry rus slv tha tjk tur ukr usa uzb

ven vnm yem zaf irq jor pse syr prk

plot(ap.gap.2, gapminder.SoCL.2011[,c(3:7)])

Which of these two schemes seems to provide a better segmentation?

22.4.5 Fuzzy Clustering

Fuzzy clustering (FC) is also called “soft” clustering (in opposition to

“hard” clustering). Rather than assigning each observation to a cluster,

they are assigned a cluster signature, a set of values that indicate their

relative membership in each of the clusters.

The signature vector is often interpreted as a probability vector: obser-

vation x𝑖 belongs to cluster ℓ with probability 𝑝𝑖 ,ℓ ≥ 0, with

𝑝𝑖 ,1 + · · · + 𝑝𝑖 ,𝑐 = 1, for all 1 ≤ 𝑖 ≤ 𝑛.
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Fuzzy 𝑐−Means: the Typical Approach The most prevalent algorithm

for carrying out FC is called fuzzy 𝑐−means (FCM). It is a variant of

𝑘−means with two modifications:

the presence of a new parameter 𝑚 > 1, called the fuzzyfier, which

determines the degree of "fuzziness" of the clusters, and

cluster membership is output as a weight vector, with weights in

[0, 1] adding to 1.

As in 𝑘−means, 𝑐 observations are selected randomly as the initial

cluster centroids, as are the membership weights of each observation.

The membership weights of each observations, relative to the current

centroid, are re-calculated based on how “close” the point is to the given

centroid in comparison to the distance to all of the other centroids.
62

62: The centroid of the ℓ th cluster is the

weighted average of ALL observations by

the degree to which they belong to clus-

ter ℓ .

Effectively, we look for clusters that minimize the objective function

𝑐∑
ℓ=1

∑
x𝑖∈𝐶ℓ

𝑢𝑚𝑖,ℓvariation(x𝑖 , 𝝁ℓ ),

where the degree 𝑢𝑚
𝑖,ℓ

to which observation x𝑖 belongs to cluster 𝐶ℓ is

𝑢𝑚𝑖,ℓ =
1

𝑐∑
𝑗=1

(
variation(x𝑖 , 𝝁ℓ )
variation(x𝑖 , 𝝁𝑗)

)
2/(𝑚−1) .

The value of 𝑚 effectively determines the width of fuzziness bands
around clusters, where clusters may overlap with other clusters. Within

these bands, if there are overlaps, points will have weights between 0

and 1.

Outside of these bands, points will have a membership of 1 for a particular

cluster (that it is close to) and a membership of 0 for other bands.

As with 𝑘−means, the algorithm is generally run until the change in

membership values, or in this case the weights, falls below a particular

threshold. In practice, we typically use 𝑚 = 2 and

variation(x𝑖 , 𝝁ℓ ) = ∥x𝑖 − 𝝁ℓ ∥2.

As 𝑚 → 1, FCM converges to 𝑘−means.

Comparison Between Fuzzy 𝑐−Means and 𝑘−Means To gain an appreci-

ation for how FCM works, it can be useful to compare its results to those

provided by 𝑘−means. Figure 22.25 shows the same dataset clustered by

𝑘−means (left) and fuzzy 𝑐−means (right) [6].

On the right, we can see observations that “belong” to the 2 clusters.

FCM is useful in this context because it would seem almost arbitrary for

some of the points to be assigned to one or the other cluster (which is

what 𝑘−means does).
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Figure 22.25: Fuzzy 𝑐−means vs.

𝑘−means clustering (author unknown).

Other Fuzzy Clustering Options Although FCM is the most popular

fuzzy clustering algorithm, it is not a particularly nuanced algorithm. Like

𝑘−means, the resulting clusters are essentially blob-shaped. Sophisticated

results can be gained by using more complex algorithms.

The Gustafson–Kessel (GK) clustering algorithm [14] is an early extension

of FCM which replaces the simple distance measure used in FCM with a

(covariance) matrix. This brings FCM more in-line with EM clustering,

which also provides fuzzy results, and can be carried out with a variety

of statistical models, resulting in a more mature clustering results, albeit

at the cost of heavier processing. FANNY [22] is another fuzzy approach;

it is less sensitive to outliers than FCM is.

Fuzzy Clustering Validation As with hard clustering, it is important

to validate fuzzy clusters. A number of validation strategies have been

developed; the Xie-Beni index is a popular choice. It can be calculated

for non-fuzzy clusters as well as for fuzzy clusters. However, it takes into

accounts the weights of the points for each clustering by weighting the

clustering separation and compactness measures using the membership

matrix (i.e., the matrix that contains the weights for each observation

with respect to each cluster). Other metrics include the Tang index and

the Kwon index [24, 41, 50].

Example We show some results of FANNY (with 𝑐 = 2, 3, 4, and 6

clusters, implemented in cluster’s fanny()) and FCM (with 𝑐 = 4 clus-

ters, implemented in e1071’s cmeans()) on the (scaled) 2011 Gapminder

dataset (again, using Euclidean dissimilarity).

We start with FANNY(2).

set.seed(987) # for replicability

fuzzy.gap <- cluster::fanny(scale(gapminder.SoCL.2011[,c(3:7)]),

k=2, metric="euclidean", maxit=20000)

attributes(fuzzy.gap)

factoextra::fviz_cluster(fuzzy.gap, ellipse.type = "norm", repel = TRUE,

palette = "jco", ggtheme = theme_minimal(),

legend = "right")

factoextra::fviz_silhouette(fuzzy.gap, palette = "jco",

ggtheme = theme_minimal())
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$names

[1] "membership" "coeff" "memb.exp" "clustering" "k.crisp"

[6] "objective" "convergence" "diss" "call" "silinfo"

[11] "data"

$class

[1] "fanny" "partition"

cluster size ave.sil.width

1 1 75 0.32

2 2 109 0.52

The plots for FANNY(3), FANNY(4), and FANNY(5), are displayed in

Figure 22.26.
63

63: We simply replace k=2 by k=3, k=4,

and k=6 in the call to fanny().

FANNY(3)

cluster size ave.sil.width

1 1 64 0.26

2 2 74 0.34

3 3 46 0.15

FANNY(4)

cluster size ave.sil.width

1 1 53 0.33

2 2 80 -0.01

3 3 50 -0.17

4 4 1 0.00

FANNY(5)

cluster size ave.sil.width

1 1 30 0.35

2 2 83 0.06

3 3 34 -0.21

4 4 34 0.03

5 5 3 0.60
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Figure 22.26: Clusters and silhouette profiles for the 2011 Gampinder dataset; FANNY(3) (top row), FANNY(4) (middle row), FANNY(5)

(bottom row). The scatterplots are displayed on the data’s first two principal components.
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The corresponding results for F4M are computed below.

cm.gap <- e1071::cmeans(scale(gapminder.SoCL.2011[,c(3:7)]), 4)

attributes(cm.gap)

$names

[1] "centers" "size" "cluster" "membership" "iter"

[6] "withinerror" "call"

$class

[1] "fclust"

factoextra::fviz_cluster(list(data = scale(gapminder.SoCL.2011[,c(3:7)]),

cluster=cm.gap$cluster),

ellipse.type = "norm",

ellipse.level = 0.68,

palette = "jco",

ggtheme = theme_minimal())

GGally::ggpairs(gapminder.SoCL.2011[,c(3:7)],

ggplot2::aes(color=as.factor(cm.gap$cluster)),

diag=list(continuous=my_dens))

How does that compare to all the other approaches we have used so far?

Based on those, how many clusters do you think there are in the 2011

Gapminder dataset?

22.4.6 Cluster Ensembles

We have seen that the choice of clustering method and algorithm param-

eters may have an impact on the nature and number of clusters in the

data; quite often, the resulting clusters are volatile. This is aligned with

the idea that the ability to accurately assess the quality of a clustering

outcome remains elusive, for the most part.
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The goal of ensemble clustering is to combine the results of multiple

clustering runs to create a more robust outcome.

Most ensemble models use the following two steps to generate an

outcome:

1. generate different clustering schemes, using different models, pa-

rameters, or data selection mechanisms (the ensemble compo-
nents), and

2. combine the different results into a single outcome.

Selecting Different Ensemble Components The ensemble components

are either model-based or data selection-based.

In model-based ensembles, the different components of the ensemble

reflect different models, such as the use of

different clustering approaches;

different parameter settings for a given approach;

different randomizations (for stochastic algorithms),

or some combination of these.

For instance, an ensemble’s components could be built from:

1. 5 runs of 𝑘−means for each of 𝑘 = 2, . . . , 10, for each of the

Euclidean and Manhattan similarities (90 components);

2. the hierarchical clustering outcome for each of the complete, single,

average, centroid, and Ward linkage, for each of the Euclidean

and Manhattan distances, for each of 𝑘 = 2, . . . , 10 clusters (90

components);

3. the DBSCAN outcome for each of 5 values of 𝜀∗, for each of

minPts = 2, . . . , 10, for each of the Euclidean and Manhattan

distances (90 components), and

4. the spectral clustering outcome for each of 3 threshold values 𝜏,

for each of the 3 types of Laplacians, for 𝑘 = 2, 4, 6, 8, 10, for each

of the Euclidean and Manhattan distances (90 components),

This provides a total of 4 × 90 = 360 components. Note that we could

also pick algorithms, settings, and similarity measures randomly, from a

list of reasonable options.

In data selection-based ensembles, we might select a specific clustering

approach, combined with a set of parameters, and a given randomization

(if the approach is stochastic) and instead build the different components

of the model by running the algorithm on different subsets of the data,

either via:

selecting subsets of observations using random or other proba-

bilistic sampling scheme;

selecting subsets of variables, again using probabilistic sampling,

or

some combination of both.

For instance, an ensemble’s components could be built using affinity

propagation with Euclidean distance and a specific combination of

input preference and dampening parameter, and 360 subsets of the data,

obtained as follows:
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1. for each component, draw a % of observations to sample and a # of

variables to select from the data;

2. randomly select a subset with these properties;

3. run affinity propagation on the subset to obtain a clustering out-

come.

We could also combine model-based and data selection-based approaches

to create the components.

Combining Different Ensemble Components However the components

are obtained, we need to find a way to combine them to obtain a robust
clustering consensus. There are three basic methods to do this:

general affiliation;

hypergraph partitioning, and

meta-clustering.

In the general affiliation approach, we consider each pair of observations

and determine how frequently they are found in the same clusters in

each of the ensemble components. The corresponding proportions create

a similarity matrix, which can then be used to cluster the data using

some graph-based method, such as DBSCAN.

In the hypergraph partitioning approach, each observation in the data

is represented by a hypergraph vertex. A cluster in any of the ensemble

components is represented as a hypergraph hyperedge, a generalization

of the notion of edge which connects (potentially) more than two vertices

in the form of a complete clique. This hypergraph is then partitioned

using graph clustering methods.
64

64: One major challenge with hypergraph

partitioning is that a hyperedge can be

“broken” by a partitioning in many dif-

ferent ways, not all of which are qualita-

tively equivalent. Most hypergraph parti-

tioning algorithms use a constant penalty

for breaking a hyperedge.

The meta-clustering approach is also a graph-based approach, except

that vertices are associated with each cluster in the ensemble components;

each vertex therefore represents a set of data objects. A graph partitioning

algorithm is then applied to this graph.
65 Balancing constraints may be

65: The distribution of the membership of

different instances to the meta-partitions

can be used to determine its meta-cluster

membership, or soft assignment probabil-

ity.

added to the meta-clustering phase to ensure that the resulting clusters

are balanced.

Cluster ensembles are implemented in R via the packages diceR and clue.

More information is available in [2, 1, 45].
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22.5 Exercises

1. Complete the Ward D linkage, maximum dissimilarity hierarchical clustering results for the 2011 data

from gapminder_all.csv .

2. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using 𝑘−means, for

various distance metrics and algorithm parameters. What is your best estimation for the number of

clusters in each case? Validate your results.

3. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using hierarchical

clustering, for various algorithm parameters. Validate your results.

4. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using DBSCAN, for

various algorithm parameters. Validate your results.

5. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using spectral clustering,

for various algorithm parameters. Validate your results.

6. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using expectation-

maximization clustering, for various algorithm parameters. Validate your results.

7. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using affinity propagation

clustering, for various algorithm parameters. Validate your results.

8. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using fuzzy clustering,

for various algorithm parameters. Validate your results.

9. Cluster the Iowa Housing, Vowel, Wisconsin Breast Cancer, and Wine datasets using the combined

results of problems 2 to 8. Validate your results.

10. Cluster the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest, using the approaches discussed in this module (or other other

appropriate approaches). Validate your results. Where are there difficulties? What decisions must you

make along the way? How could you use the results?
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Data mining is the collection of processes by which we can extract useful
insights from data. Hidden in this definition is the idea of data reduction:

useful insights (whether in the form of summaries, sentiment analyses,

and so on) should be “smaller” and “more organized” than the original

raw data.

But the challenges presented by high data dimensionality (the so-called

curse of dimensionality) must be addressed in order to achieve insightful

and interpretable analytical results.

In this chapter, we introduce the basic principles of dimensionality
reduction and a number of feature selection methods (filter, wrapper,

regularization); we also discuss related advanced topics (SVD, spectral

feature selection, UMAP).

23.1 Data Reduction for Insight

For small datasets, the benefits of data mining may not always be

evident. Consider, for instance, the following excerpt from a lawn mowing

instruction manual (which we consider to be data for the time being):

Before starting your mower inspect it carefully to ensure that

there are no loose parts and that it is in good working order.

It is a short and organized way to convey a message. It could be further

shortened and organized, perhaps, but what one would gain from such

a process is not entirely clear.

23.1.1 Reduction of an NHL Game

For a meatier example, consider the NHL game that took place between

the Ottawa Senators and the Toronto Maple Leafs on February 18, 2017

[21].

As a first approximation, we shall think of a hockey game as a series of

sequential and non-overlapping “events” involving two teams of skaters.

What does it mean to have extracted useful insights from such a series of

events?

At some level, the most complete raw understanding of that night’s game

belongs to the game’s active and passive participants (players, referees,

coaches, general managers, official scorer and time-keeper, etc.).
1

1: This simple assumption is rather old-

fashioned and would be disputed by many

in the age of hockey analytics, but we let

it stand for now.
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Figure 23.1: A schematic diagram of data reduction as it could apply to a professional hockey game.

The larger group of individuals who attended the game in person,

watched it on TV/Internet, or listened to it on the radio presumably also

have a lot of the facts at their disposal, with some contamination, as it

were, by commentators (in the two latter cases).

Presumably, the participants and the witnesses also possess insights

into the specific game: how could that information best be relayed to

members of the public who did not catch the game? There are many

ways to do so, depending on the intended level of abstraction and on the

target audience (see Figure 23.1).

Play-by-Play Text File If a hockey game is a series of events, why not

simply list the events, in the order in which they occurred? Of course,

not everything that happens in the “raw” game requires reporting – it

might be impressive to see Auston Matthews skate by Dion Phaneuf

on his way to the Senators’ net at the 8:45 mark of the 2nd period, say,

but reporting this “event” would only serve to highlight the fact that

Matthews is a better skater than Phaneuf. It is true, to be sure, but some

level of filtering must be applied in order to retain only relevant (or

“high-level”) information, such as:

blocked shots, face-off wins, giveaways, goals, hits, missed

shots, penalties, power play events, saves, shorthanded events,

shots on goal, stoppage (goalie stopped, icing, offside, puck

in benches), takeaways, etc.

In a typical game, between 300 and 400 events are recorded (see Figure

23.2 for an extract of the play-by-play file for the game under considera-

tion; the full list is found at [21]).
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Figure 23.2: Play-by-play extract, Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].

Some knowledge about the sport is required to make sense of some of

the entries (colouring, use of bold text, etc.), but with patience we can

rather easily
2

re-constitute the flow of the game. 2: That is to say, mechanically.

This approach, as we can see, is fully descriptive.

Boxscore The play-by-play does convey the game’s events, but the

relevance of its entries is sometimes questionable. In the general context

of the game, how useful is to know that Nikita Zaitsev blocked a shot by

Erik Karlsson at the 2:38 mark of the 1st period? Had this blocked shot

saved a guaranteed Senators goal or directly lead to a Maple Leafs goal,

one could have argued for its inclusion in the list of crucial events to

report, but only the most fastidious observer
3

would bemoan its removal 3: Or a statistical analyst

from the game’s report.

The game’s boxscore provides relevant information, at the cost of com-
pleteness: it distills the play-by-play file into a series of meaningful

statistics and summaries, providing insights into the game that even a

fan in attendance might have missed while the game was going on (see

Figures 23.3-23.5).

Once again, a certain amount of knowledge about the sport is required

to make sense of the statistics – to place them in the right context: is it

meaningful that the Senators won 36 faceoffs to the Maple Leafs’ 31?

That Mark Stone was a +4 on the night? That both teams went “1-for-4’ ’

on the powerplay?

We cannot re-constitute the full flow of the game from the boxscore alone,

but the approach is not solely descriptive – questions can be asked, and

answers provided... the analytical game is afoot!
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Figure 23.3: Advanced Boxscore (I), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].
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Figure 23.4: Advanced Boxscore (II), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].
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Figure 23.5: Advanced Boxscore (III), Ottawa Senators Toronto Maple Leafs, February 18, 2017 [21].

Recap/Highlights One of the boxscore’s shortcomings is that it does

not provide much in the way of narrative, which has become a staple of

sports reporting – what really happened during that game? How does it

impact the current season for either team?

Associated Press, 19 February 2017 TORONTO
The Ottawa Senators have the Atlantic Division lead in their sights.

Mark Stone had a goal and four assists, Derick Brassard scored

twice in the third period and the Senators recovered after blowing

a two-goal lead to beat the Toronto Maple Leafs 6-3 on Saturday

night.

The Senators pulled within two points of Montreal for first place

in the Atlantic Division with three games in hand. “We like where

we’re at. We’re in a good spot,” Stone said. “But there’s a little bit

more that we want. Obviously, there’s teams coming and we want to

try and create separation, so the only way to do that is keep winning

hockey games.”

Ottawa led 2-0 after one period but trailed 3-2 in the third before

getting a tying goal from Mike Hoffman and a power-play goal

from Brassard. Stone and Brassard added empty-netters, and Chris

Wideman and Ryan Dzingel also scored for the Senators. Ottawa

has won four of five overall and three of four against the Leafs this

season. Craig Anderson stopped 34 shots.

Morgan Rielly, Nazem Kadri and William Nylander scored and

Auston Matthews had two assists for the Maple Leafs. Frederik

Andersen allowed four goals on 40 shots. Toronto has lost eight of

11 and entered the night with a tenuous grip on the final wild-card

spot in the Eastern Conference.

“The reality is we’re all big boys, we can read the standings. You’ve

got to win hockey games,” Babcock said. After Nylander made it

3-2 with a power-play goal 2:04 into the third, Hoffman tied it by

rifling a shot from the right faceoff circle off the post and in. On

a power play 54 seconds later, Andersen stopped Erik Karlsson’s

point shot, but Brassard jumped on the rebound and put it in for a

4-3 lead.

Wideman started the scoring in the first, firing a point shot through

traffic moments after Stone beat Nikita Zaitsev for a puck behind
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the Leafs goal. Dzingel added to the lead when he deflected Marc

Methot’s point shot 20 seconds later.

Andersen stopped three shots during a lengthy 5-on-3 during the

second period, and the Leafs got on the board about three minutes

later. Rielly scored with 5:22 left in the second by chasing down

a wide shot from Matthews, carrying it to the point and shooting

through a crowd in front.

About three minutes later, Zaitsev fired a shot from the right point

that sneaked through Anderson’s pads and slid behind the net.

Kadri chased it down and banked it off Dzingel’s helmet and in for

his 24th goal of the season. Dzingel had fallen in the crease trying

to prevent Kadri from stuffing the rebound in.

“Our game plan didn’t change for the third period, and that’s just

the maturity we’re gaining over time,” Senators coach Guy Boucher

said. “Our leaders have been doing a great job, but collectively, the

team has grown dramatically in terms of having poise, executing

under pressure.”

Game notes: Mitch Marner sat out for Toronto with an upper-body

injury. Marner leads Toronto with 48 points and is also expected to

sit Sunday night against Carolina.

UP NEXT Senators: Host Winnipeg on Sunday night. Maple Leafs:

Travel to Carolina for a game Sunday night.

Simple Boxscore A gambler or a member of a hockey pool might be

interested in the fact that Auston Matthews spent nearly 4 minutes on

the powerplay (see Figure 23.4), but a casual observer is likely to find

the full boxscore a monstrous overkill. How much crucial information is

lost/provided by the simple boxscore of Figure 23.6, instead?

Figure 23.6: Simple boxscore, Ottawa Sen-

ators Toronto Maple Leafs, February 18,

2017 [21].

Headline If we take the view that humans impose a narrative on

sporting events (rather than unearth it), we could argue that the only

“true” informational content is found in the following headline:

Sens rally after blowing lead, beat Leafs, gain on Habs. [21]

Visualization It is easy to get lost in row after row of statistics and

events description, or in large bodies of text.
4

Visualizations can help 4: Doubly so for a machine in the latter

case.
complement our understanding of any data analytic situation.

While they can be appealing on their own, a certain amount of external

context is required to make sense of most of them (see Figure 23.7).
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Figure 23.7: Visualizations, Ottawa Senators Toronto Maple Leafs, February 18, 2017: offensive zone unblocked shots heat map (top left),

gameflow chart, Corsi +/- , all situations (top right), player shift chart (bottom left), shots and goals (bottom right) [17].

General Context A document which is prepared for analysis is often

part of a more general context (or a collection).

Can the analysis of all the games between the Senators and the Maple

Leafs shed some light on their rivalry on the ice? Obviously, the more

arcane the representation method, the more in-depth knowledge of the

game and its statistics is required, but to those in the know, summaries
and visualizations can provide valuable insight (see Figure 23.8).

There are thus various ways to understand a single hockey game – and

a series of games – depending on the desired (or required) levels of

abstraction and complexity.

But as is the case for all quantitative methods, data reduction for insight is

subject to analytic choices – you may have noticed that we conspicuously

averted reporting on playoff results, and on post-2017 results. Would

the overall “understanding” of the game in question (and the rivalry, in

general) change if they were included?
5

5: Unfortunately for this lifelong Sens fan,

it most definitely would...

The specific details of data reduction as it applies to a professional

hockey game are not usually portable to general situations, but the main
concepts are, as we illustrate presently.
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Figure 23.8: A schematic diagram of data reduction as it applies to a corpus of professional hockey games, with visualization and

summarizing of regular season games between the Ottawa Senators and Toronto Maple Leafs (1993-2017).

23.1.2 Meaning in Macbeth

It is a tale told by an idiot, full of sound and fury, signifying

nothing. [Macbeth, V.5, line 30]

In a sense, in order to extract the full meaning out of a document, said

document needs to be read and understood in its entirety.
6

But even if 6: This section also serves as an introduc-

tion to Chapter 27 (Text Analysis and Text
Mining).

we have the luxury of doing so, some issues appear:

do all readers extract the same meaning?

does meaning stay constant over time?

is meaning retained by the language of the document?

do the author’s intentions constitute the true (baseline) meaning?

does re-reading the document change its meaning?

Given the uncertain nature of what a document’s meaning actually is, it

is counter-productive to talk about insight or meaning (in the singular);
rather we look for insights and meanings (in the plural).

Consider the following passage from Macbeth (Act I, Scene 5, Lines

45-52):

[Enter MACBETH]

LADY MACBETH: Great Glamis, worthy Cawdor,

Greater than both, by the all-hail hereafter,

Thy letters have transported me beyond

This ignorant present, and I feel now

The future in the instant

MACBETH: My dearest love, Duncan comes here tonight.

LADY MACBETH: And when goes hence?

MACBETH: Tomorrow, as he purposes.

What is the “meaning” of this scene? What is the “meaning” of Macbeth
as a whole? As a starting point, it’s crucial to note that the “meaning” of

the scene is likely not independent of the play’s context up to this scene.
7

7: A description of the plot in modern

prose is provided in [27].

Does the plot description carry the same “meaning” as the play itself?

What about TVTropes ’s laconic description of Macbeth [25]:

Hen-pecked Scottish nobleman murders his king and spends

the rest of the play regretting it.

https://tvtropes.org
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Or Mister Apple’s haiku description (same site)?

Macbeth and his wife

Want to become the royals

So they kill ’em all.

Or this literary description, from an unknown author?

Macbeth dramatizes the battle between good and evil, ex-

ploring the psychological effects of King Duncan’s murder

on Macbeth and Lady Macbeth. His conflicting feelings of

guilt and ambition embody this timeless battle of good vs

evil.

Or yet again the (fantastic) 2001 movie Scotland, PA , featuring James

LeGros, Maura Tierney, and Christopher Walken [16]?

For non-native English speakers (and for a number of native speakers as

well, it should be said...), the play (to say nothing of the quoted passage

above) might prove difficult to parse and understand.

A modern translation (which is a form of data reduction) is available

at No Fear Shakespeare, shedding some light on the semantic role of the

scene:

MACBETH enters.
LADY MACBETH: Great thane of Glamis! Worthy thane of

Cawdor! You’ll soon be greater than both those titles, once

you become king! Your letter has transported me from the

present moment, when who knows what will happen, and

has made me feel like the future is already here.

MACBETH: My dearest love, Duncan is coming here tonight.

LADY MACBETH: And when is he leaving?

MACBETH: He plans to leave tomorrow.

Consider, also, the French translation by F. Victor Hugo:

Entre MACBETH.
LADY MACBETH, continuant: Grand Glamis! Digne Cawdor!

plus grand que tout cela par le salut futur! Ta lettre m’a

transportée au delà de ce présent ignorant, et je ne ne sens

plus dans l’instant que l’avenir.

MACBETH: Mon cher amour, Duncan arrive ici ce soir.

LADY MACBETH: Et quand repart-il?

MACBETH: Demain... C’est son intention.

Do these all carry the same Macbeth essence? Do they all even carry

a Macbeth essence? Are they all Macbeth? How much, if anything, of

Macbeth do they preserve? The French translation, for instance, adds a

very ominous tone to Macbeth’s last retort to his wife.

Those of us who have read the rest of the play know that the tone is

in keeping with the events that will eventually transpire, but does the

translation add some foreshadowing that is simply not present up to that

point in the original? If so, does it matter?

https://www.youtube.com/watch?v=Tci06ND7qzQ
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23.2 Dimension Reduction

There are advantages to working with reduced, low-dimensional data:

visualisation methods of all kinds are available and (more) readily

applicable to such data in order to extract and present insights;

high-dimensional data is subject to the curse of dimensionality
(CoD), which asserts (among other things) that multi-dimensional

spaces are ... well, vast, and when the number of features in a

model increases, the number of observations required to maintain

predictive power also increases, but at a substantially larger rate;

a consequence of CoD is that in high-dimension sets, all observa-

tions are roughly dissimilar to one another – observations tend to

be nearer the dataset’s boundaries than to one another.

Dimension reduction techniques such as the ubiquitous principal com-
ponent analysis, independent component analysis, factor analysis,

8
or 8: For numerical data.

multiple correspondence analysis9
project multi-dimensional datasets 9: For categorical data.

onto low-dimensional but high-information spaces.
10

10: The so-called Manifold Hypothesis,

see Section 23.2.4.

Some information is necessarily lost in the process, but in many instances

the drain can be kept under control and the gains made by working with

smaller datasets can offset the loss of completeness.

23.2.1 Sampling Observations

Datasets can be “big” in a variety of ways:

they can be too large for the hardware to handle,
11

or 11: That is to say, they cannot be stored or

accessed properly due to the number of

observations, the number of features, or

the overall size of the dataset.

the dimensions can go against specific modeling assumptions.12

12: Such as the number of features being

much larger than the number of observa-

tions, say.

For instance, multiple sensors which record 100+ observations per second

in a large geographical area over a long time period can lead to excessively

big datasets, say.

A natural question, regarding such a dataset, is whether every one of its

row needs to be used: if rows are selected randomly (with or without

replacement), the resulting sample might be representative13
of the 13: An entire field of statistical endeavour

– statistical survey sampling – has been

developed to quantify the extent to which

the sample is representative of the pop-

ulation, see Chapter 10 (Survey Sampling
Methods).

entire dataset, and the smaller set might be easier to handle.

There are some drawbacks to the sampling approach, however:

if the signal of interest is rare, sampling might lose its presence

altogether;

if aggregation happens at some point in the reporting process,

sampling will necessarily affect the totals,
14

and 14: For instance, if we are interested in

predicting the number of passengers per

flight leaving YOW (Macdonald-Cartier

International Airport) and the total popu-

lation of passengers is sampled, then the

sampled number of passengers per flight

is necessarily below the actual number of

passengers per flight. Estimation methods

exist to overcome these issues (see Chapter

10).

even simple operations on large files (finding the # of rows, say) can

be taxing on the memory or computation time – some knowledge

or prior information about the dataset structure can help.

Sampled datasets can also be used to work the kinks out of the data

analysis workflows, but the key take-away is that if data is too big to

store, access, and manipulate in a reasonable amount of time, the issue

is mostly a Big Data problem – this is the time to start considering the

use of distributed computing (see Chapter 30, What’s the Big Deal with Big
Data?).
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Figure 23.9: Illustration of the curse of dimensionality; 𝑁 = 100 observations are uniformly distributed on the unit hypercube [0, 1]𝑑 ,
𝑑 = 1, 2, 3. The red regions represent the smaller hypercubes [0, 0.5]𝑑 , 𝑑 = 1, 2, 3. The percentage of captured data points is seen to decrease

with an increase in 𝑑 [11].

23.2.2 The Curse of Dimensionality

A model is said to be local if it depends solely on the observations

near the input vector (𝑘 nearest neigbours classification is local, whereas

linear regression is global). With a large training set, increasing 𝑘 in

a 𝑘NN model, say, will yield enough data points to provide a solid

approximation to the theoretical classification boundary.

The curse of dimensionality (CoD) is the breakdown of this approach

in high-dimensional spaces: when the number of features increases,

the number of observations required to maintain predictive power also

increases, but at a substantially higher rate (see Figure 23.9 for an

illustration of the CoD in action).

Manifestations of CoD Let 𝑥𝑖 ∼ 𝑈1(0, 1) be i.i.d. for 𝑖 = 1, . . . , 𝑛. For

any 𝑧 ∈ [0, 1] and 𝜀 ∈ (0, 1] such that

𝐼1(𝑧; 𝜀) = {𝑦 ∈ ℝ : |𝑧 − 𝑦 |∞ < 𝜀/2} ⊆ [0, 1],

the expected number of observations 𝑥𝑖 in 𝐼1(𝑧; 𝜀) is��𝐼1(𝑧; 𝜀) ∩ {𝑥𝑖}𝑛𝑖=1

�� ≈ 𝜀 · 𝑁,

so an 𝜀∞−ball subset of [0, 1]1 contains approximately 𝜀 of the observa-

tions in {𝑥𝑖}𝑛𝑖=1
⊆ ℝ, on average.

Let x𝑖 ∼ 𝑈2(0, 1) be i.i.d. for all 𝑖 = 1, . . . , 𝑛. For any z ∈ [0, 1]2 and

𝜀 ∈ (0, 1] such that

𝐼2(z; 𝜀) = {Y ∈ ℝ2

: ∥z − Y∥∞ < 𝜀/2} ⊆ [0, 1]2 ,

the expected number of observations x𝑖 in 𝐼2(z; 𝜀) is��𝐼1(z; 𝜀) ∩ {x𝑖}𝑛𝑖=1

�� ≈ 𝜀2 · 𝑁,

so an 𝜀∞−ball subset of [0, 1]2 contains approximately 𝜀2
of the observa-

tions in {x𝑖}𝑛𝑖=1
⊆ ℝ2

, on average.

In general, this reasoning shows that an 𝜀∞−ball subset of [0, 1]𝑝 ⊆ ℝ𝑝

contains approximately 𝜀𝑝 of the observations in {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

, on
average.
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To capture 𝑟% of uniformly distributed observations in a unit 𝑝−hypercube,

we need a 𝑝−hypercube with edge 𝜀𝑝(𝑟) = 𝑟1/𝑝 , on average. For instance,

to capture 𝑟 = 1/3 of the observations in a unit 𝑝−hypercube in ℝ, ℝ2
,

and ℝ10
, a hyper-subset with edge 𝜀1(1/3) ≈ 0.33, 𝜀2(1/3) ≈ 0.58, and

𝜀10(1/3) ≈ 0.90, respectively.

The inference is simple, but far-reaching: in general, as 𝑝 increases, the

nearest observations to a given point x𝑗 ∈ ℝ𝑝
are in fact quite distant

from x𝑗 , in the Euclidean sense, on average – locality is lost!15 15: The situation may not be as stark if the

observations are not i.i.d., but the principle

remains the same – in high-dimensional

spaces, it is harder for observations to

be near one another than it is so in low-

dimensional spaces.

This can wreak havoc on models and algorithms that rely on the (Eu-

clidean) nearness of observations (𝑘 nearest neighbours, 𝑘−means clus-

tering, etc.). The CoD manifests itself in various ways.

In datasets with a large number of features:

most observations are nearer the edge of the sample than they are
to other observations, and

realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the effects of the CoD,

but if they are not warranted the end result may be catastrophic.

23.2.3 Principal Component Analysis

Principal component analysis (PCA) can be used to find the combinations

of variables along which the data points are most spread out; it attempts

to fit a 𝑝−ellipsoid to a centered representation of the data. The ellipsoid

axes are the principal components of the data.

Small axes are components along which the variance is “small”; remov-

ing these components leads, in an ideal setting, to a “small” loss of

information
16

(see Figure 23.10). The procedure is simple: 16: Although there are scenarios where it

could be those “small” axes that are more

interesting – such as is the case with the

“pancake stack” problem.

1. centre and “scale” the data to obtain a matrix X;
17

17: This is NOT the design matrix as de-

fined in regression analysis.

2. compute the data’s covariance matrix K = X⊤X;

3. find K’s eigenvalues Λ and its orthonormal eigenvectors matrix W;

4. each eigenvector w (also known as loading) represents an axis,

whose variance is given by the associated eigenvalue 𝜆.

The loading that explains the most variance along a single axis (the 1st
PC) is the eigenvector of the empirical covariance matrix corresponding to

the largest eigenvalue, and that variance is proportional to the eigenvalue;

the 2nd largest eigenvalue and its corresponding eigenvector yields the

2nd PC and variance pair, and so on, yielding orthonormal principal

components PC1 , . . . , PC𝑟 , where 𝑟 = rank(X).18 18: If some of the eigenvalues are 0, then

𝑟 < 𝑝, and vice-versa, implying that the

data was embedded in a 𝑟−dimensional

manifold to begin with.

PCA can provide an avenue for dimension reduction, by “removing”

components with small eigenvalues (as in Figure 23.10). The proportion
of the spread in the data which can be explained by each principal

component can be placed in a scree plot (a plot of eigenvalues against

ordered component indices), and we retain the ordered PCs:

for which the eigenvalue is above some threshold (say, 25%);

for which the cumulative proportion of the spread falls below some

threshold (say 95%), or

prior to a kink in the scree plot.
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Figure 23.10: Illustration of PCA on an artificial 2D dataset (top left). The red axes (top right) represent the axes of the best elliptic fit.

Removing the minor axis by projecting the points on the major axis (bottom left) leads to a dimension reduction and a (small) loss of

information (bottom right).

Figure 23.11: Selecting the number of principal component – the proportion of the variance explained by each (ordered) component is

shown in the first 3 charts; the cumulative proportion is shown in the last chart. The kink method is shown in the top right image, the

individual threshold component in the bottom left image, and the cumulative proportion in the bottom right image.

For instance, consider an 8−dimensional dataset for which the ordered

PCA eigenvalues are provided below:

PC 1 2 3 4 5 6 7 8

Var 17 8 3 2 1 0.5 0.25 0

Prop 54 25 9 6 3 2 1 0

Cumul 54 79 88 94 98 99 100 100

If the only PCs that are retained are those that explain up to 95%

of the cumulative variation, say, then the original data reduces to a

4-dimensional subset; if only the PCs that individually explain more

than 25% of the variation are retained, say, then the data reduces to a

2-dimensional subset; if only the PCs that lead into the first kink in the

scree plot are retained, to a 3-dimensional subset (see Figure 23.11).
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PCA is commonly-used, but often without regard to its inherent limita-
tions, unfortunately:

it is dependent on scaling, and so is not uniquely determined;

with little domain expertise, it may be difficult to interpret the PCs;

it is quite sensitive to outliers;

the analysis goals are not always aligned with the principal com-

ponents, and

the data assumptions are not always met – in particular, does it

always make sense that important data structures and data spread

be correlated (the so-called counting pancakes problem), or that

the components be orthogonal?

There are other methods to find the principal manifolds of a dataset,

including UMAP, self-organizing maps, auto-encoders, curvilinear com-

ponent analysis, manifold sculpting, kernel PCA, etc.

Formalism Because K is positive semi-definite (K ≥ 0), the eigenvalues

𝜆𝑖 = 𝑠2

𝑖
are non-negative and they can be ordered in a decreasing

sequence

𝚲 = diag(𝜆1 , . . . ,𝜆𝑝), where 𝜆1 ≥ · · ·𝜆𝑝 ≥ 0

and W = [w1 | · · · |w𝑝].

If 𝑘 = rank(X), then there are 𝑝 − 𝑘 “empty” principal component

(corresponding to null eigenvalues) and 𝑘 “regular” principal components

(corresponding to zero eigenvalues). We write W∗ = [w1 | · · · |w𝑘] and

𝚲∗ = diag(𝜆1 , . . . ,𝜆𝑘). If 𝑝 − 𝑘 ≠ 0, then the eigenvalue decomposition

of K is

K =
[
W∗ 0

] [
𝚲∗ 0
0 0

] [
(W∗)⊤

0

]
= W𝚲W⊤;

if X is of full rank, then W∗ = W and 𝚲∗ = 𝚲.

The eigenvectors of 𝐾 (the w𝑗) are the singular vectors of X: there exist

U𝑛×𝑛 and 𝚺𝑛×𝑝 such that

X = U𝚺W⊤ ,

where

U =
(
U∗ 0

)
and 𝚺 =

(
diag(𝑠𝑖)

0

)
.

If X is of full rank, then W is orthonormal and so represents a rotation
matrix. As W−1 = W⊤, we must then have XW = U𝚺, the principal
component decomposition of X:

T𝑛×𝑝 = XW,
[
t1 · · · t𝑝

]
=

[
x1 · · · x𝑛

]⊤ [
w1 · · · w𝑝

]
.

The link between the principal components and the eigenvectors can be

made explicit: the first principal component PC1 is the loading w1 (with

∥w1∥2 = 1) which maximizes the variance of the first column of T:

w1 = arg max

∥w∥2=1

{Var(t1)} = arg max

∥w∥2=1

{
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑡1,𝑖 − 𝑡1)2
}
.
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Since

𝑡1 =
1

𝑛

𝑛∑
𝑗=1

E[x⊤𝑗 w1] =
1

𝑛

𝑛∑
𝑗=1

E

[
𝑝∑
𝑖=1

𝑥 𝑗 ,𝑖𝑤𝑖 ,1

]
=

1

𝑛

𝑛∑
𝑗=1

𝑝∑
𝑖=1

𝑤𝑖 ,1 E[𝑥 𝑗 ,𝑖]︸︷︷︸
= 0

= 0,

then Var(t1) = 1

𝑛−1
(𝑡2

1,1
+ · · · + 𝑡2

𝑛,1
) and the problem is equivalent to

w1 = arg max

∥w∥2=1

{𝑡2
1,1 + · · · + 𝑡2𝑛,1},

By construction, 𝑡2
𝑖 ,1

= (x⊤
𝑖
w1)2 for all 𝑖, so

𝑡2
1,1 + · · · + 𝑡2𝑛,1 = (x⊤

1
w1)2 + · · · + (x⊤𝑛w1)2 = ∥Xw1∥2 = w1X⊤Xw1.

Hence,

w1 = arg max

∥w∥2=1

{wX⊤Xw} = arg max

∥w∥2=1

{w⊤Kw};

this is equivalent to finding the maximizer of 𝐹(w) = w⊤Kw subject to

the constraint

𝐺(w) = 1 −w⊤w = 0.

We solve this problem by using the method of Lagarange multipliers;

any optimizer w∗ must be either:

1. a critical point of 𝐹, or

2. a solution of ∇𝐹(w) + 𝜆∇𝐺(w) = 0, 𝜆 ≠ 0.

But ∇𝐹(w) = 2Kw and ∇𝐺(w) = −2w; either w∗ ∈ ker(K) (case 1) or

2Kw∗ − 2𝜆∗w∗ = 0 (case 2); either

Kw∗ = 0 or (K − 𝜆∗𝐼)w∗ = 0, 𝜆∗ ≠ 0.

In either case, 𝜆∗ ≥ 0 is an eigenvalue of 𝐾, with associated eigenvector

w∗. There are at most 𝑝 distinct possibilities {(𝜆 𝑗 ,w𝑗)}𝑝𝑗=1
, and for each

of them

w⊤𝑗 Kw𝑗 = w⊤𝑗 𝜆 𝑗w𝑗 = 𝜆 𝑗w⊤𝑗 w𝑗 = 𝜆 𝑗 ,

since w⊤
𝑗
w𝑗 = 1.

Thus,

arg max

∥w∥2=1

{Var(t1)} = arg max

∥w∥2=1

{𝜆 𝑗} = w1 = PC1 ,

since 𝜆1 ≥ 𝜆 ≥ 0 for all eigenvalues 𝜆 of K.

A similar argument shows that w𝑗 , 𝑗 = 2, . . . , 𝑝, is the direction along

which the variance is the 𝑗th highest, assuming that w𝑗 is orthonormal to

all the preceding wℓ , ℓ = 1, . . . , 𝑗−1, and that the variance is proportional

to 𝜆 𝑗 .

The process is repeated at most 𝑝 times, yielding 𝑟 non-trivial principal

components PC1 , . . . , PC𝑟 , where 𝑟 ≤ 𝑝 is the rank(X). Thus, we see that

the rotation matrix W that maximizes the variance sequentially in the

columns of T = XW is the matrix of eigenvectors of K = X⊤X.

We show how to implement principal component analysis in Sections

19.7.3 and 21.4.3 (in the Wine example).
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23.2.4 The Manifold Hypothesis

Manifold learning involves mapping high-dimensional data to a lower

dimensional manifold, such as mapping a set of points in ℝ3
to a torus

shape, which can then be unfolded (or embedded) into a 2D object.

Techniques for manifold learning are commonly-used because data is

often (usually?) sampled from unknown and underlying sources which

cannot be measured directly.

Learning a suitable “low-dimension” manifold from a higher-dimensional

space is approximately as complicated as learning the sources (in a ML

sense). This problem can also be re-cast as finding a set of degrees of
freedom which can reproduce most of the variability in a dataset.

For instance, a set of multiple photographs of a 3D object taken from

different positions but at the same distance from the object can be

represented by two degrees of freedom: the horizontal and vertical
angles from which the picture was taken.

As another example, consider a set of hand-written drawings of the digit

“2” [24]. Each of these drawings can also be represented using a small

number of degrees of freedom:

the ratio of the length of the lowest horizontal line to the height

of the hand-written digit;
the ratio of the length of the arch in the curve at the top to the

smallest horizontal distance from the end point of the arch to the

main vertical curve;

the angle of rotation of the digit as a whole with respect to some

baseline orientation, etc.

These two scenarios are illustrated in Figure 23.12.

Dimensionality reduction and manifold learning are often used for one

of three purposes:

to reduce the overall dimensionality of the data while trying to

preserve the variance in the data;

to display high-dimensional datasets, or

to reduce the processing time of supervised learning algorithms

by lowering the dimensionality of the data.

PCA, for instance, provides a sequence of best linear approximations to

high-dimensional observations (see previous section); the process has

fantastic theoretical properties for computation and applications, but

data is not always well-approximated by a fully linear process.

In this section, the focus is on non-linear dimensionality reduction

methods, most of which are a variant of kernel PCA:

LLE;

Laplacian eigenmap;

isomap;

semidefinite embedding, and

𝑡−SNE.

By way of illustration, the different methods are applied to an “S”-shaped

coloured 2D object living in 3D space (see Figure 23.15).
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Figure 23.12: Plots showing degrees of freedom manifolds for images of faces (3D object) and handwritten digits [24].
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Kernel Principal Component Analysis High-dimensional datasets often

have a non-linear nature, in the sense that a linear PCA may only weakly

capture/explain the variance across the entire dataset.

This is, in part, due to PCA relying on Euclidean distance as opposed to

geodesic distance – the distance between two points along the manifold,

that is to say, the distance that would be recorded if the high-dimensional

object was first unrolled (see Figure 23.13).

Figure 23.13: High-dimensional manifold

unfolding; theoretical 2D manifold em-

bedded in ℝ3
(left), sample (middle), un-

folding into ℝ2
(right) [24].

Residents of Earth
19

are familiar with this concept: the Euclidean distance 19: Which we assume encompasses all of

this work’s readership. . .
(“as the mole burrows”) between Sao Paulo and Reykjavik is the length of

the shortest tunnel joining the two cities, whereas the geodesic distance

(“as the crow flies”) is the arclength of the great circle through the two

locations (see Figure 23.14).

Figure 23.14: Geodesic (red, solid) and

Euclidean (orange, dash) paths between

Sao Paulo and Reykjavik, Great Circle Map

.

High-dimensional manifolds can be unfolded with the use of transfor-
mations Φ which map the input set of points

{x1 , . . . , x𝑛} ⊆ ℝ𝑝

onto a new set of points

{Φ(x1), . . . ,Φ(x𝑛)} ⊆ ℝ𝑚 ,

with 𝑚 ≥ 𝑛.

https://www.greatcirclemap.com/globe?routes=RKV-GRU
https://www.greatcirclemap.com/globe?routes=RKV-GRU
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If Φ is chosen so that

∑𝑛
𝑖=1

Φ(x𝑖) = 0 (i.e., the transformed data is also

centered in ℝ𝑚
), we can formulate the kernel PCA objective in ℝ𝑝

as a

linear PCA objective in ℝ𝑚
:

min

{
𝑛∑
𝑖=1

∥Φ(x𝑖) −𝑉𝑞𝑉⊤𝑞 Φ(x𝑖)∥2
}
,

over the set of 𝑚 × 𝑞 matrices 𝑉𝑞 with orthonormal columns, where 𝑞 is

the desired dimension of the manifold.
20

20: This error reconstruction approach

to PCA yields the same results as the co-
variance approach of the previous section

[8].

In practice, it can be difficult to determine Φ explicitly; in many instances,

it is inner-product-like quantities that are of interest to the analyst.

The problem can be bypassed by working with positive-definite kernel
functions 𝐾 : ℝ𝑝 × ℝ𝑝 → ℝ+ which satisfy 𝐾(x, y) = 𝐾(y, x) for all

x, y ∈ ℝ𝑝
and

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑐𝑖𝑐 𝑗𝐾(x𝑖 , x𝑗) ≥ 0

for any integer 𝑘, coefficients 𝑐1 , . . . , 𝑐𝑘 ∈ ℝ and vectors x1 , . . . , x𝑘 ∈ ℝ𝑝
,

with equality if and only if 𝑐1 , · · · , 𝑐𝑘 = 0.
21

21: These kernels also appear in support
vector machines (see Section 21.4.2).

Popular data analysis kernels include:

linear kernel 𝐾(x, y) = x⊤y;

ploynomial kernel 𝐾(x, y) = (x⊤y + 𝑟)𝑘 , 𝑛 ∈ ℕ, 𝑟 ≥ 0, and

Gaussian kernel 𝐾(x, y) = exp

{
−∥x−y∥

2𝜎2

}
, 𝜎 > 0.

Most dimension reduction algorithms can be re-expressed as some form

of kernel PCA, as we will see shortly.

Locally Linear Embedding LLE is a manifold learning approach which

addresses the problem of nonlinear dimension reduction by computing

a low-dimensional, neighbourhood-preserving embedding of high-

dimensional data.

The main assumption is that for any subset {x𝑖} ⊆ ℝ𝑝
lying on some suf-

ficiently well-behaved underlying 𝑑−dimensional manifold M, each data

point and its neighbours lie on a locally linear patch of M. Using transla-

tions, rotations, and rescaling, the (high-dimensional) coordinates of each

locally linear neighbourhood can be mapped to a set of 𝑑−dimensional

global coordinates of M.

This needs to be done in such a way that the relationships between

neighbouring points are preserved. This can be achieved in 3 steps:

1. identify the punctured neighbourhood 𝑁𝑖 = {𝑖1 , . . . , 𝑖𝑘} of each

data point x𝑖 via 𝑘 nearest neighbours;
22

22: This could also be done by selecting

all points within some fixed radius 𝜀, but

𝑘 is not a constant anymore, and that com-

plicates matters.

2. find the weights 𝑧𝑖 , 𝑗 that provide the best linear reconstruction of

each x𝑖 ∈ ℝ𝑝
from their respective punctured neighbourhoods

23
,

23: Excluding x𝑖 itself.

i.e., solve

min

W


𝑛∑
𝑖=1






x𝑖 −
∑
𝑗∈𝑁𝑖

𝑧𝑖 , 𝑗x𝑁𝑖 (𝑗)






2 ,
where Z =

(
𝑧𝑖 , 𝑗

)
is an 𝑛 × 𝑛 matrix (𝑧𝑖 , 𝑗 = 0 if 𝑗 ∉ 𝑁𝑖), and
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3. find the low-dimensional embedding vectors y𝑖 ∈ M(⊆ ℝ𝑑) and

neighbours y𝑁𝑖 (𝑗) ∈M for each 𝑖 which are best reconstructed by

the weights determined in the previous step, i.e., solve

min

Y


𝑛∑
𝑖=1






y𝑖 −
∑
𝑗∈𝑁𝑖

𝑤𝑖 , 𝑗y𝑁𝑖 (𝑗)






2 = min

Y

{
Tr

(
Y⊤Y𝐿

)}
,

where 𝐿 = (𝐼 − Z)⊤(𝐼 − Z) and Y is an 𝑛 × 𝑑 matrix.

If the global coordinates of the sampled points are centered at the origin
and have unit variance,

24
it can be shown that 𝐿 has a null eigenvalue 24: Which can always be achieved with

an appropriate set of restrictions.
with associated eigenvector.

The 𝑗th column of Y is the eigenvector associated with the 𝑗th smallest

non-zero eigenvalue of 𝐿 [18].

Laplacian Eigenmap LE is similar to LLE, except that the first step

consists in constructing a weighted graph Gwith 𝑛 nodes (number of

𝑝−dimensional observations) and a set of edges connecting the neigh-

bouring points.
25

25: As with LLE, the edges of Gcan be ob-

tained by finding the 𝑘 nearest neighbours

of each node, or by selecting all points

within some fixed radius 𝜀.

In practice, the edges’ weights are determined either:

by using the inverse exponential with respect to the Euclidean

distance

𝑤𝑖 , 𝑗 = exp

(
−
∥x𝑖 − x𝑗 ∥2

𝑠

)
,

for all 𝑖 , 𝑗, for some parameter 𝑠 > 0, or

by setting 𝑤𝑖 , 𝑗 = 1, for all 𝑖 , 𝑗.

The embedding map is then provided by the following objective

min

Y

{
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑤𝑖 , 𝑗(y𝑖 − y𝑗)2
}
= min

Y

{
Tr(Y𝐿Y⊤)

}
,

subject to appropriate constraints, with the Laplacian 𝐿 = 𝐷 −𝑊 , where

𝐷 is the (diagonal) degree matrix of G,
26

and𝑊 its weight matrix. 26: The sum of weights emanating from

each node.

The Laplacian eigenmap construction is identical to the LLE construction,

save for their definition of 𝐿.

Isomap This approach follows the same steps as LLE except that it uses

geodesic distance instead of Euclidean distance when looking for each

point’s neighbours.
27

27: As always, neighbourhoods can be

selected with 𝑘NN or with a fixed 𝜀.

These neighbourhood relations are represented by a graph G in which

each observation is connected to its neighbours via edges with weight

𝑑𝑥(𝑖 , 𝑗) between neighbours.

The geodesic distances 𝑑M(𝑖 , 𝑗) between all pairs of points on the manifold

M are then estimated in the second step.
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Semidefinite Embedding SDE requires learning 𝐾(x, z) = Φ(x)⊤Φ(z)
from the data before applying the kernel PCA transformation Φ, which

is achieved by formulating the problem of learning 𝐾 as an instance of

semidefinite programming.

The distances and angles between observations and their neighbours are

preserved under transformations by Φ: ∥Φ(xi) −Φ(x𝑗)∥2 = ∥x𝑖 − x𝑗 ∥2 , for

all x𝑖 , x𝑗 ∈ ℝ𝑝
.

In terms of the kernel matrix, this constraint can be written as

𝐾(x𝑖 , x𝑖) − 2𝐾(x𝑖 , x𝑗) + 𝐾(x𝑗 , x𝑗) = ∥x𝑖 − x𝑗 ∥2 ,

for all x𝑖 , x𝑗 ∈ ℝ𝑝
.

By adding an objective function to maximize Tr(𝐾), that is, the vari-

ance of the observations in the learned feature space, SDE constructs a

semidefinite program for learning the kernel matrix

𝐾 =
(
𝐾𝑖 , 𝑗

)𝑛
𝑖,𝑗=1

=
(
𝐾(x𝑖 , x𝑗)

)𝑛
𝑖,𝑗=1

,

from which we can proceed with kernel PCA.

Unified Framework All of the above algorithms (LLE, Laplacian Eigen-

maps, Isomap, SDE) can be rewritten in the kernel PCA framework:

in the case of LLE, if 𝜆max is the largest eigenvalue of

𝐿 = (𝐼 −W)⊤(𝐼 −W),

then 𝐾LLE = 𝜆max𝐼 − 𝐿;

with 𝐿 = 𝐷−𝑊 ,𝐷 a (diagonal) degree matrix with𝐷𝑖 ,𝑖 =
∑𝑛
𝑗=1
𝑊𝑖 , 𝑗 ,

then the corresponding 𝐾LE is related to commute times of diffu-
sion on the underlying graph, and

with the Isomap element-wise squared geodesic distance matrix D2
,

𝐾Isomap = −1

2

(
𝐼 − 1

𝑝
ee⊤

)
D2

(
𝐼 − 1

𝑝
ee⊤

)
,

where e is a 𝑝−dimensional vector consisting solely of 1’s (note that

this kernel is not always positive semi-definite).

𝑡−SNE There are a few relatively new manifold learning techniques

that do not fit neatly in the kernel PCA framework: Uniform Manifold

Approximation and Projection (UMAP, Section 23.4.4) and 𝑡−Distributed
Stochastic Neighbour Embedding (𝑡−SNE).

For a dataset {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

, the latter involves calculating probabilities

𝑝𝑖 , 𝑗 =
1

2𝑛

{
exp(−∥x𝑖 − x𝑗 ∥2/2𝜎2

𝑖
)∑

𝑘≠𝑖 exp(−∥x𝑖 − x𝑘 ∥2/2𝜎2

𝑖
)
+

exp(−∥x𝑖 − x𝑗 ∥2/2𝜎2

𝑗
)∑

𝑘≠𝑗 exp(−∥x𝑗 − x𝑘 ∥2/2𝜎2

𝑗
)

}
,

which are proportional to the similarity of points in high-dimensional

space ℝ𝑝
for all 𝑖 , 𝑗, and 𝑝𝑖 ,𝑖 is set to 0 for all 𝑖.28

The bandwidths 𝜎𝑖 are28: The first component in the similarity

metric measures how likely it is that x𝑖
would choose x𝑗 as its neighbour if neigh-

bours were sampled from a Gaussian cen-

tered at x𝑖 , for all 𝑖 , 𝑗.

selected in such a way that they are smaller in denser data areas.
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Figure 23.15: Comparison of manifold learning methods on an artificial dataset [20].

The lower-dimensional manifold {y𝑖}𝑛𝑖=1
⊆ M ⊆ ℝ𝑑

is selected in such a

way as to preserve the similarities 𝑝𝑖 , 𝑗 as much as possible; this can be

achieved by building the (reduced) probabilities

𝑞𝑖 , 𝑗 =
(1 + ∥y𝑖 − y𝑗 ∥2)−1∑
𝑘≠𝑖(1 + ∥y𝑖 − y𝑘 ∥2)−1

for all 𝑖 , 𝑗 (note the asymmetry) and minimizing the Kullback-Leibler
divergence of 𝑄 from 𝑃:

KL(𝑃 | |𝑄) =
∑
𝑖≠𝑗

𝑝𝑖 , 𝑗 log

𝑝𝑖 , 𝑗

𝑞𝑖 , 𝑗

over possible coordinates {y𝑖}𝑛𝑖=1
[31].

MNIST Example In [20], the methods above are used to learn 2𝐷 mani-

folds for the MNIST dataset [13], a database of handwritten digits. The

results for 4 of those are shown in Figure 23.17. The analysis of optimal

manifold learning methods remains fairly subjective, as it depends not

only on the outcome, but also on how much computing power is used

and how long it takes to obtain the mapping.

Naïvely, one would expect to see the coordinates in the reduced manifold

congregate in 10 (or more) distinct groups; in that regard, 𝑡−SNE seems

to perform admirably on MNIST.
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Figure 23.16: Sample of the MNIST dataset [20, 13].

Figure 23.17: Manifold learning on the 0 − 5 subset of MNIST: LLE, Hessian LLE, Isomap, 𝑡−SNE [20, 19].
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23.3 Feature Selection

As seen in the previous section, dimension reduction methods can be

used to learn low-dimensional manifolds for high-dimensional data, with

the hope that the resulting loss in information content can be kept small.

Unfortunately, this is not always feasible.

There is a non-technical, yet more problematic, issue with manifold learn-

ing techniques: the reduction often fails to provide an easily interpretable
set of coordinates in the context of the original dataset.

For instance, in a dataset with the 4 features

𝑋1 = Age, 𝑋2 = Height, 𝑋3 = Weight, and 𝑋4 = Rural ∈ {0, 1},

say, it is straightforward to justify a data-driven decision based on the

rule 𝑋1 = Age > 25, for example, but perhaps substantially harder to do

so for a reduced rule such as

𝑌2 = 3(Age−Age)−(Height−Height)+4(Weight−Weight)+Rural > 7,

even if there is nothing wrong with the rule from a technical perspective.

Furthermore, datasets often contain irrelevant and/or redundant fea-

tures; identifying and removing these variables is a common data pro-

cessing task. The motivations for doing so are varied, but usually fall

into one of two categories:

the modeling tools do not handle redundant variables well, due to

variance inflation or similar issues, and

as an attempt by analysts to overcome the curse of dimensionality
or to avoid situations where the number of variables is larger than

the number of observations.

In light of the comment above, the goal of feature selection is to remove

(and not to transform or project) any attribute that adds noise and reduces

the performance of a model, that is to say, to retain a subset of the most

relevant features29
, which can help create simpler models, decrease a 29: This usually requires there to be a

value to predict, against which the fea-

tures can be evaluated for relevance; this

is discussed further in Chapters 20 and 21.

statistical learner’s training time, and reduce overfitting.

There are various feature selection methods, typically falling in one

of three families – filter methods, wrapper methods, and embedded
methods (the next two sections are inspired by [2]):

filter methods focus on the relevance of the features, applying a

specific ranking metric to each feature, individually. The variables

that do not meet a preset benchmark
30

are then removed from 30: Either a threshold on the ranking or

on the ranking metric value itself.
consideration, yielding a subset of the most relevant features

according to the selected ranking metric; different metrics, and

different thresholds, might retain different relevant features;

wrapper methods focus on the usefulness of each feature to the

task of interest (usually classification or regression), but do not

consider features individually; rather, they evaluate and compare

the performance of different combinations of features in order to

select the best-performing subset of features, and

embedded methods are a combination of both, using implicit

metrics to evaluate the performance of various subsets.
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Feature selection methods can also be categorized as unsupervised or

supervised:

unsupervised methods determine the importance of features using

only their values (with potential feature interactions), while

supervised methods evaluate each feature’s importance in rela-

tionship with the target feature.

Wrapper methods are typically supervised. Unsupervised filter methods

search for noisy features and include the removal of constant variables,

of ID-like variables (i.e. different on all observations), and of features

with low variability.

23.3.1 Filter Methods

Filter methods evaluate features without resorting to the use of a classifi-

cation/regression algorithm. These methods can either be

univariate, where each feature is ranked independently, or

multivariate, where features are considered jointly.

A filter criterion is chosen based on which metric suits the data or problem

best.
31

The selected criterion is used to assign a score to, and rank, the31: This can be quite difficult to determine.

features which are then retained or removed in order to yield a relevant
subset of features.

Features whose score lies above (or below, as the case may be) some

pre-selected threshold 𝜏 are retained (or removed); alternatively, features

whose rank lies below (or above as the case may be) some pre-selected

threshold 𝜈 are retained (or removed).

Such methods are advantageous in that they are computationally efficient.

They also tend to be robust against overfitting as they do not incorporate

the effects of the feature subset selection on classification/regression

performance.

There are a number of commonly-used filter criteria, including the Pear-
son correlation coefficient, information gain (or mutual information),

and relief [2].

Throughout, let 𝑌 be the target variable (assuming that there is one), and

𝑋1 , . . . , 𝑋𝑝 be the predictors.

Pearson Correlation Coefficient This value quantifies the linear rela-

tionship between two continuous variables [29].

For a predictor 𝑋𝑖 , the Pearson correlation coefficient between 𝑋𝑖 and 𝑌

is

𝜌𝑖 =
Cov(𝑋𝑖 , 𝑌)

𝜎𝑋𝑖𝜎𝑌
.

Features for which |𝜌𝑖 | is large (near 1) are linearly (or anti-) correlated

with 𝑌, those for which |𝜌𝑖 | ≈ 0 are not linearly (nor anti-linearly)

correlated with 𝑌.
32

32: Which could mean that they are un-

correlated with 𝑌, or that the correlation

is not linear or anti-linear. Only those features with (relatively) strong linear (or anti-linear) correla-

tion are retained.
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This correlation 𝜌𝑖 is only defined if both the predictor 𝑋𝑖 and the

outcome 𝑌 are numerical; there are alternatives for categorical 𝑋𝑖 and 𝑌,

or mixed categorical-numerical 𝑋𝑖 and 𝑌 [30, 9, 12].

In order to get a better handle on what filter feature selection looks like

in practice, consider the Global Cities Index dataset [26], which ranks

prominent cities around the globe on a general scale of “Alpha”, “Beta”,

“Gamma”, and “Sufficiency” (1, 2, 3, 4, respectively).

This dataset contains geographical, population, and economics data for

68 ranked cities.

globalcities <- data.frame(read.csv("globalcities.csv",

stringsAsFactors = TRUE))

colnames(globalcities)[2:7] <- c("City.Area","Metro.Area",

"City.Pop","Metro.Pop", "Ann.Pop.Growth", "GDPpc")

colnames(globalcities)[12:17] <- c("Higher.Ed.Insts",

"Life.Exp.M","Life.Exp.F","Hospitals", "Museums",

"Air.Quality")

str(globalcities)

’data.frame’: 68 obs. of 18 variables:

$ Rating : int 1 3 2 1 1 1 2 1 2 1 ...

$ City.Area : num 165 30.7 38.9 1569 102.6 ...

$ Metro.Area : num 807 25437 381 7762 3236 ...

$ City.Pop : num 0.76 3.54 0.66 5.72 1.62 ...

$ Metro.Pop : num 1.4 4.77 4.01 6.5 3.23 ...

$ Ann.Pop.Growth : num 0.01 0.26 0 0.03 0.01 0.04 0 0.01 0.01 0.01 ...

$ GDPpc : num 46 21.2 30.5 23.4 36.3 20.3 33.3 15.9 69.3 45.6 ...

$ Unemployment.Rate: num 0.05 0.12 0.16 0.02 0.15 0.01 0.16 0.1 0.07 0.16 ...

$ Poverty.Rate : num 0.18 0.2 0.2 0 0.2 0.01 0.22 0.22 0.17 0.26 ...

$ Major.Airports : int 1 1 1 2 1 1 2 1 1 2 ...

$ Major.Ports : int 1 0 1 1 1 0 2 0 1 1 ...

$ Higher.Ed.Insts : int 23 10 21 37 8 89 30 19 35 25 ...

$ Life.Exp.M : num 76.3 75.3 78 69 79 79 82 74.6 74.8 77 ...

$ Life.Exp.F : num 80.8 80.8 83.7 74 85.2 83 88 79.7 81.1 82.6 ...

$ Hospitals : int 7 7 23 173 45 551 79 22 12 43 ...

$ Museums : int 68 36 47 27 69 156 170 76 30 25 ...

$ Air.Quality : int 24 46 41 54 35 121 26 77 17 28 ...

$ Life.Expectancy : num 78.5 78 80.8 71.5 82.1 ...

The R package FSelector contains feature selection tools, including

various filter methods (such as chi-squared score, consistency, various

entropy-based filters, etc.). Using its filtering functions, we extract the

most relevant features to the ranking of a global city (we treat the Rating

variable as a numerical response: is this justifiable?).

For instance, if we retain the 5 top predictors for linear correlation
(Pearson’s correlation coefficient) with the response Rating, we obtain:

(lincor <- FSelector::linear.correlation(

formula = ‘Rating‘ ~ ., data = globalcities))
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attr_importance

City.Area 0.0007479646

Metro.Area 0.0055023564

City.Pop 0.1196632421

Metro.Pop 0.2030923952

Ann.Pop.Growth 0.1935336738

GDPpc 0.2090866065

Unemployment.Rate 0.2173999333

Poverty.Rate 0.0536585758

Major.Airports 0.2263265771

Major.Ports 0.0563507487

Higher.Ed.Insts 0.0547453393

Life.Exp.M 0.1302972404

Life.Exp.F 0.1412093767

Hospitals 0.1195832079

Museums 0.1553072283

Air.Quality 0.1382099362

Life.Expectancy 0.1380603739

(subset_lincor <- FSelector::cutoff.k(lincor, k = 5))

[1] "Major.Airports" "Unemployment.Rate" "GDPpc"

[4] "Metro.Pop" "Ann.Pop.Growth"

According to the linear correlation feature selection method, the 5 “best’ ’

features that relate to a city’s global ranking are the number of major

airports it has, its unemployment rate, its GDP per capita, its metropolitan

population, and its annual population growth.
33

33: As filtering is a pre-processing step,

proper analysis would also require build-

ing a model using this subset of features.

Mutual Information Information gain is a popular entropy-based
method of feature selection that measures the amount of dependence

between features by quantifying the amount of mutual information

between them. In general, this quantifies the amount of information
obtained about a predictor 𝑋𝑖 by observing the target feature 𝑌.

Mutual information can be expressed as

IG(𝑋𝑖 ;𝑌) = 𝐻(𝑋𝑖) − 𝐻(𝑋𝑖 | 𝑌),

where 𝐻(𝑋𝑖) is the marginal entropy of 𝑋𝑖 and 𝐻(𝑋𝑖 | 𝑌) is the condi-
tional entropy of 𝑋𝑖 given 𝑌 [28], an

𝐻(𝑋𝑖) = E𝑋𝑖 [− log 𝑝(𝑋𝑖)], 𝐻(𝑋𝑖 | 𝑌) = E(𝑋𝑖 ,𝑌)[− log 𝑝(𝑋𝑖 | 𝑌)],

where 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖 | 𝑌) are the probability density functions of the

random variables 𝑋𝑖 and 𝑋𝑖 | 𝑌, respectively.

How is IG interpreted? Consider the following example: let 𝑌 represent

the salary of an individual (continuous),𝑋1 their hair colour (categorical),

𝑋2 their age (continuous), 𝑋3 their height (continuous), and 𝑋4 their

self-reported gender (categorical). A sample of 𝑛 = 2144 individuals is

found in demo1.csv.
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salary <- data.frame(read.csv("demo1.csv",

stringsAsFactors = TRUE))

colnames(salary)[1] <- c("Hair")

Some summary statistics are shown below:

In a general population, one would expect that the distribution of salaries,

among others, is likely to be fairly haphazard, and it might be hard to

explain why it has the shape that it does, specifically.

Distributions of the predictors and the response

library(ggplot2)

par(mfrow=c(3,2))

plot1 <- ggplot(salary, aes(x=Hair)) +

geom_bar(color=’red’, fill=’white’) +

theme_bw()

plot2 <- ggplot(salary, aes(x=Gender)) +

geom_bar(color=’red’, fill=’white’) +

theme_bw()

plot3 <- ggplot(salary, aes(x=Age)) +

geom_histogram(aes(y=..density..),

color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

plot4 <- ggplot(salary, aes(x=Height)) +

geom_histogram(aes(y=..density..),
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color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

plot5 <- ggplot(salary, aes(x=Salary)) +

geom_histogram(aes(y=..density..),

color=’red’, fill=’white’, bins=10) +

geom_density(lwd = 1, colour = 4, fill = 4, alpha = 0.25) +

theme_bw()

gridExtra::grid.arrange(plot1, plot2, plot3, plot4, plot5, ncol=2)

Perhaps it could be explained by knowing the relationship between the

salary and the other variables? It is this idea that forms the basis of

mutual information feature selection.

Applying the definition, one sees that

𝐻(𝑋1) = −
∑

colour

𝑝(colour) log 𝑝(colour)

𝐻(𝑋2) = −
∫

𝑝(age) log 𝑝(age) 𝑑age

𝐻(𝑋3) = −
∫

𝑝(height) log 𝑝(height) 𝑑height

𝐻(𝑋4) = −
∑

gender

𝑝(gender) log 𝑝(gender)
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𝐻(𝑋1 | 𝑌) = −
∫

𝑝(𝑌)
{ ∑

colour

𝑝(colour | 𝑌) log 𝑝(colour | 𝑌)
}
𝑑𝑌

𝐻(𝑋2 | 𝑌) = −
∬

𝑝(𝑌)𝑝(age | 𝑌) log 𝑝(age | 𝑌) 𝑑age 𝑑𝑌

𝐻(𝑋3 | 𝑌) = −
∬

𝑝(𝑌)𝑝(ht | 𝑌) log 𝑝(ht | 𝑌) 𝑑ht 𝑑𝑌

𝐻(𝑋4 | 𝑌) = −
∫

𝑝(𝑌)
{ ∑

gender

𝑝(gender | 𝑌) log 𝑝(gender | 𝑌)
}
𝑑𝑌

If the theoretical distributions are known, the entropy integrals can be

computed directly (or approximated using standard numerical integra-

tion methods).

Gender and hair colour can be fairly easily be modeled using multino-

mial distributions, but there is more uncertainty related to the numerical

variables. A potential approach is to recode the continuous variables

age, height, and salary as decile variables 𝑎𝑑, ℎ𝑑, and 𝑌𝑑 taking val-

ues {1, . . . , 10} according to which decile of the original variable the

observation falls (see decile breakdown above).

The integrals can then be replaced by sums:

𝐻(𝑋1) = −
∑

colour

𝑝(colour) log 𝑝(colour)

𝐻(𝑋2) ≈ −
10∑
𝑘=1

𝑝(a𝑑 = 𝑘) log 𝑝(a𝑑 = 𝑘)

𝐻(𝑋3) ≈ −
10∑
𝑘=1

𝑝(ht𝑑 = 𝑘) log 𝑝(ht𝑑 = 𝑘)

𝐻(𝑋4) = −
∑

gender

𝑝(gender) log 𝑝(gender)

𝐻(𝑋1 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
∑

𝑐∈colour

𝑝(𝑐 | 𝑌𝑑 = 𝑗) log 𝑝(𝑐 | 𝑌𝑑 = 𝑗)

𝐻(𝑋2 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
10∑
𝑘=1

𝑝(𝑎𝑑 = 𝑘 | 𝑌𝑑 = 𝑗) log 𝑝(𝑎𝑑 = 𝑘 | 𝑌𝑑 = 𝑗)

𝐻(𝑋3 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑗)
10∑
𝑘=1

𝑝(ℎ𝑑 = 𝑘 | 𝑌𝑑 = 𝑗) log 𝑝(ℎ𝑑 = 𝑘 | 𝑌𝑑 = 𝑗)

𝐻(𝑋4 | 𝑌) ≈ −
10∑
𝑗=1

𝑝(𝑌𝑑 = 𝑘)
∑

𝑔∈gender

𝑝(𝑔 | 𝑌𝑑 = 𝑗) log 𝑝(𝑔 | 𝑌𝑑 = 𝑗)

The results are shown below (using base 10 logarithms, and rounded out

to the nearest hundredth):

X H(X) H(X|Y) IG(X;Y) Ratio

Hair 0.24 0.24 0.00 0.00

Age 1.00 0.74 0.26 0.26

Height 1.00 0.96 0.03 0.03

Gender 0.30 0.22 0.08 0.26
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The percentage decrease in entropy after having observed 𝑌 is shown

in the column “Ratio.” Raw IG numbers would seem to suggest that

Gender has a small link to Salary; the Ratio numbers suggest that this

could be due to the way the Age and Height levels have been categorized

(as deciles).

Relief This approach scores (numerical) features based on the identifi-

cation of feature value differences between nearest-neighbour instance

pairs.

If there is a feature value difference in a neighbouring instance pair of
the same class, the score of the feature decreases; on the other hand, if

there exists a feature value difference in a neighbouring instance pair

with different class values, the feature score increases.

More specifically, let

𝐷 = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1
⊂ ℝ𝑝 × {±1}

be a dataset where x𝑖 is the 𝑖-th data sample and 𝑦𝑛 is its corresponding

class label.

For each feature 𝑗 and observation 𝑖, two values are selected: the near hit
𝐻(𝑥𝑖 , 𝑗) is the value of 𝑋𝑗 which is nearest to 𝑥𝑖 , 𝑗 among all instances in

the same class as x𝑖 , while the near miss 𝑀(𝑥𝑖 , 𝑗) is the value of 𝑋𝑗 which

is nearest to 𝑥𝑖 , 𝑗 among all instances in the opposite class of x𝑖 .

The Relief score of the 𝑗th feature is

𝑆𝑑𝑗 =
1

𝑛

𝑛∑
𝑖=1

{
𝑑(𝑥𝑖 , 𝑗 , 𝑀(𝑥𝑖 , 𝑗)) − 𝑑(𝑥𝑖 , 𝑗 , 𝐻(𝑥𝑖 , 𝑗))

}
,

for some pre-selected distance 𝑑 : ℝ ×ℝ→ ℝ+
0
.

A feature for which near-hits tend to be nearer to their instances than

near-misses are (i.e., for which

𝑑(𝑥𝑖 , 𝑗 , 𝑀(𝑥𝑖 , 𝑗)) > 𝑑(𝑥𝑖 , 𝑗 , 𝐻(𝑥𝑖 , 𝑗)),

on average) will yield larger Relief scores than those for which the

opposite is true. Features are deemed relevant when their relief score is

greater than some threshold 𝜏.

There are a variety of Relief-type measurements to accommodate po-

tential feature interactions or multi-class problems
34

(ReliefF), but in34: For instance, for a 𝑝−distance 𝛿, set

𝐻𝛿(𝑥𝑖 , 𝑗) = arg min

𝜋𝑗 (z)
{𝛿(x𝑖 , z) | C(x𝑖) = C(z)}

and

𝑀𝛿(𝑥𝑖 , 𝑗) = arg min

𝜋𝑗 (z)
{𝛿(x𝑖 , z) | C(x𝑖) ≠ C(z)} .

general Relief is noise-tolerant and robust to interactions of attributes; its

effectiveness decreases for small training sets, however [23].

The Relief algorithm is also implemented in the R package CORElearn, as

are numerous other methods:

CORElearn::infoCore(what="attrEval") # Classification

[1] "ReliefFequalK" "ReliefFexpRank" "ReliefFbestK"

[4] "Relief" "InfGain" "GainRatio"

[7] "MDL" "Gini" "MyopicReliefF"
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[10] "Accuracy" "ReliefFmerit" "ReliefFdistance"

[13] "ReliefFsqrDistance" "DKM" "ReliefFexpC"

[16] "ReliefFavgC" "ReliefFpe" "ReliefFpa"

[19] "ReliefFsmp" "GainRatioCost" "DKMcost"

[22] "ReliefKukar" "MDLsmp" "ImpurityEuclid"

[25] "ImpurityHellinger" "UniformDKM" "UniformGini"

[28] "UniformInf" "UniformAccuracy" "EqualDKM"

[31] "EqualGini" "EqualInf" "EqualHellinger"

[34] "DistHellinger" "DistAUC" "DistAngle"

[37] "DistEuclid"

CORElearn::infoCore(what="attrEvalReg") # Regression

[1] "RReliefFequalK" "RReliefFexpRank" "RReliefFbestK"

[4] "RReliefFwithMSE" "MSEofMean" "MSEofModel"

[7] "MAEofModel" "RReliefFdistance" "RReliefFsqrDistance"

Again working on the Global Cities Dataset, we start by declaring the target

variable Rating as a categorical variable.

globalcities.cat <- globalcities

globalcities.cat$Rating <- as.factor(globalcities.cat$Rating)

Now, let’s evaluate the predictors relevance, usingInfGain andReliefFpe,

say:

InfGain.wts <- CORElearn::attrEval(

Rating ~ ., globalcities.cat, estimator="InfGain")

ReliefF.wts <- CORElearn::attrEval(

Rating ~ ., globalcities.cat, estimator="ReliefFpe")

data.frame(InfGain.wts,ReliefF.wts)

InfGain.wts ReliefF.wts

City.Area 0.05898196 0.035227591

Metro.Area 0.10501737 0.020691027

City.Pop 0.10422894 0.050779784

Metro.Pop 0.13022307 0.006038070

Ann.Pop.Growth 0.04624721 0.005785050

GDPpc 0.12909419 0.038870952

Unemployment.Rate 0.08824268 0.069113116

Poverty.Rate 0.06966089 0.004854548

Major.Airports 0.03565266 0.015932195

Major.Ports 0.04175416 0.014967595

Higher.Ed.Insts 0.02868171 0.008031587

Life.Exp.M 0.09504723 0.119356004

Life.Exp.F 0.04937724 0.073946982

Hospitals 0.18080212 0.011268651

Museums 0.10732739 0.017808737

Air.Quality 0.05838298 0.057001715

Life.Expectancy 0.07730300 0.101021497
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Figure 23.18: Feature selection process for

wrapper methods in classification prob-

lems [2].

For classification tasks (categorical targets), the more relevant features

are those for which the scores are higher.35
How do the top-5 for each35: This is not necessarily the case for

regression tasks, however – be sure to

read the documentation for each method.

method compare in the previous example? Should this be surprising?

There is a multitude of other filter methods, including [2, 3]:

correlation metrics (Kendall, Spearman, point-biserial, etc.);

entropy-based metrics (gain ratio, symmetric uncertainty, etc.);

relief-type algorithms (ReliefF, Relieved-F, etc.);

𝜒2−test;

ANOVA;

Fisher Score;

Gini Index;

etc.

The list is by no means exhaustive, but it provides a fair idea of the

various types of filter-based feature selection metrics.

23.3.2 Wrapper Methods

Wrapper methods offer a powerful way to address problem of variable

selection. Wrapper methods evaluate the quality of subsets of features for

predicting the target output under the selected predictive algorithm

and select the optimal combination (for the given training set and

algorithm).

In contrast to filter methods, wrapping methods are integrated directly

into the classification or clustering process (see Figure 23.18 for an

illustration of this process).

Wrapper methods treats feature selection as a search problem in which

different subsets of features are explored. This process can be computa-

tionally expensive as the size of the search space increases exponentially

with the number of predictors; even for modest problems an exhaustive

search can quickly become impractical.
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In general, wrapper methods iterate over the following steps, until an

“optimal” set of features is identified:

select a feature subset, and

evaluate the performance of the selected feature subset.

The search ends once some desired quality is reached (such as adjusted

𝑅2
, accuracy, etc.). Various search methods are used to traverse the

feature phase space and provide an approximate solution to the optimal
feature subset problem, including: hill-climbing, best-first, and genetic

algorithms.

Wrapper methods are not as efficient as filter methods and are not as

robust against over-fitting. However, they are very effective at improving

the model’s performance due to their attempt to minimize the error

rate.
36

36: Which unfortunately can also lead to

the introduction of implicit bias in the

problem [2].

23.3.3 Subset Selection Methods

Stepwise selection is a form of Occam’s Razor: at each step, a new feature

is considered for inclusion or removal from the current features set based

on some criterion (𝐹−test, 𝑡−test, etc.). Greedy search methods such

as backward elimination and forward selection have proven to be both

quite robust against over-fitting and among the least computationally

expensive wrapper methods.

Backward elimination begins with the full set of features and sequentially

eliminates the least relevant ones until further removals increase the

error rate of the predictive model above some utility threshold.

Forward selection works in reverse, beginning the search with an empty

set of features and progressively adding relevant features to the ever

growing set of predictors. In an ideal setting, model performance should

be tested using cross-validation.

Stepwise selection methods are extremely common, but they have severe

limitations (which are not usually addressed) [7, 10]:

the tests are biased, since they are all based on the same data;

the adjusted 𝑅2
only takes into account the number of features in

the final fit, and not the degrees of freedom that have been used in

the entire model;

if cross-validation is used, stepwise selection has to be repeated for

each sub-model but that is not usually done, and

it represents a classic example of 𝑝-hacking.

Consequently, the use of stepwise methods is contra-indicated in the

machine learning context.

23.3.4 Regularization (Embedded) Methods

An interesting hybrid is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants, which are discussed in

Section 20.2.4.
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23.3.5 Supervised and Unsupervised Feature Selection

While feature selection methods are usually categorised as filter, wrapper,

or embedded, they can also be categorised as supervised or unsupervised
methods. Whether a feature selection method is supervised or not boils

down to whether the labels of objects/instances are incorporated into

the feature reduction process (or not).

The methods that have been described in this section were all super-

vised.

In unsupervised methods, feature selection is carried out based on the

characteristics of the attributes, without any reference to labels or a target

variable. In particular, for clustering problems (see Section 22), only

unsupervised feature selection methods can be used [1].

Unsupervised feature selection methods include:

identifying ID-like predictors;

identifying constant (or nearly constant) predictors;

identifying predictors that are in a multicolinear relationship with

other variables;

identifying clusters of predictors, etc.

23.4 Advanced Topics

When used appropriately, the approaches to feature selection and dimen-

sion reduction methods presented in the last two sections provide a solid

toolkit to help mitigate the effects of the curse of dimensionality.

However, they remain (for the most part) rather straightforward. The

methods discussed in this section are decidedly more sophisticated, from

a mathematical perspective; an increase in conceptual complexity can

lead to insights that are out of reach of more direct approaches.

23.4.1 Singular Value Decomposition

From a database management perspective, it pays not to view datasets

simply as flat file arrays; from an analytical perspective, however, viewing

datasets as matrices allows analysts to use the full machinery of linear

algebra and matrix factorization techniques, of which singular value
decomposition (SVD) is a well-known component.

37
37: Matrix factorization techniques have

applications to other data analytic tasks;

notably, they can be used to impute miss-

ing values and to build recommender sys-

tems.

As before, let {x𝑖}𝑛𝑖=1
⊆ ℝ𝑝

and denote the matrix of observations by

X =


x1

x2

...

x𝑛


∈ 𝕄𝑛,𝑝(ℝ) = ℝ𝑛×𝑝 .

Let 𝑑 ≥ min 𝑝, 𝑛. From a dimension reduction perspective, the goal of

matrix factorization is to find two narrow matrices W𝑑 ∈ ℝ𝑛×𝑑
(the cases)
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and C𝑑 ∈ ℝ𝑝×𝑑
(the concepts) such that the product W𝑑C⊤

𝑑
= X̃𝑑 is the

best rank 𝑑 approximation of X, i.e.

X̃𝑑 = arg min

X′
{∥X − X′∥𝐹}, with rank(X′) = 𝑑,

where the Frobenius norm 𝐹 of a matrix is

∥A∥2𝐹 =
∑
𝑖 , 𝑗

|𝑎𝑖 , 𝑗 |2.

In a sense, X̃𝑑 is a “smooth” representation of X; the dimension reduction

takes place when W𝑑 is used as a dense 𝑑−representation of X.The link

with the singular value decomposition of X can be made explicit: there

exist orthonormal matrices U ∈ ℝ𝑛×𝑛
, V ∈ ℝ𝑝×𝑝

, and a diagonal matrix

Σ ∈ ℝ𝑛×𝑝
with 𝜎𝑖 , 𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝜎𝑖 ,𝑖 ≥ 𝜎𝑖+1,𝑖+1 ≥ 0 for all 𝑖,38

such 38: Each singular value is the principal

square root of the corresponding eigen-

value of the covariance matrix X⊤X (see

Section 23.2.3).

that

X = UΣV⊤;

the decomposition is unique if and only if 𝑛 = 𝑝.

Let Σ𝑑 ∈ ℝ𝑑×𝑑
be the matrix obtained by retaining the first 𝑑 rows and the

the first 𝑑 columns of Σ; U𝑑 ∈ ℝ𝑛×𝑑
be the matrix obtained by retaining

the first 𝑑 columns of U, and V⊤
𝑑
∈ ℝ𝑑×𝑝

be the matrix obtained by

retaining the first 𝑑 rows of V⊤.

Then

X̃𝑑 = U𝑑Σ𝑑︸︷︷︸
W𝑑

V⊤𝑑 ,

and the 𝑑-dimensional rows of W𝑑 are approximations of the 𝑝−dimensional

rows of X in the sense that

⟨W𝑑[𝑖],W𝑑[𝑗]⟩ =
〈
X̃𝑑[𝑖], X̃𝑑[𝑗]

〉
≈ ⟨X𝑑[𝑖],X𝑑[𝑗]⟩ for all 𝑖 , 𝑗.

Applications

1. One of the advantages of SVD is that it allows for substantial

savings in data storage (modified from [14]):

Storing X requires 𝑛𝑝 saved entries, but an approximate version of

the original requires only 𝑑(𝑛 + 𝑝 + 𝑑) saved entries; if X represents

a 2000 × 2000 image (with 4 million entries) to be transmitted, say,

a decent approximation can be sent via 𝑑 = 10 using only 40100
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Figure 23.19: SVD image reconstruction: 𝑑 = 1400 (left), 𝑑 = 10 (middle), 𝑑 = 50 (right); Llewellyn and Gwynneth Rayfield.

entries, roughly 1% of the original number of entries (see Figure

23.19 for an illustration).

2. SVD can also be used to learn word embedding vectors. In the

traditional approach to text mining and natural language processing

(NLP) (see Sections 27 and 32), words and associated concepts are

represented using one-hot encoding.
39

39: Sparse vectors whose entries are 0 or

1, based on the identity of the words and

POS tags under consideration. For instance, if the task is to predict the part-of-speech (POS) tag of a

word given its context in a sentence (current and previous word identities

𝑤 and 𝑝𝑤, as well as the latter’s part-of-speech (POS) tag 𝑝𝑡), the input

vector could be obtained by concatenation of the one-hot encoding of 𝑤,

the one-hot encoding of 𝑝𝑤, and the one-hot encoding of 𝑝𝑡.

The input vector that would be fed into a classifier to predict the POS of

the word “house” in the sentence fragment “my house”, say, given that

“my” has been tagged as a ‘determiner’ could be:

The sparsity of this vector is a major CoD liability: a reasonably restrictive

vocabulary subset of English might contain |𝑉𝑊 | ≈ 20, 000 words, while

the Penn Treebank project recognizes ≈ 40 POS tags, which means that

x ∈ ℝ40,040
(at least).

Another issue is that the one-hot encoding of words does not allow for

meaningful similarity comparisons between words: in NLP, words are

considered to be similar if they appear in similar sentence contexts.
40

40: “Ye shall know a word by the company

it keeps”, as the distributional semantics
saying goes. The term “kumipwam” is not

found in any English dictionary, but its

probable meaning as “a small beach/sand

lizard” could be inferred from its presence

in sentences such as “Elowyn saw a tiny

scaly kumipwam digging a hole on the

beach”. It is easy to come up with exam-

ples where the context is ambiguous, but

on the whole the contextual approach has

proven itself to be mostly reliable.

The terms “black” and “white” are similar in this framework as they

both often occur immediately preceding the same noun (such as “car”,

“dress”, etc.); human beings recognize that the similarity goes further

than both of the terms being adjectives – they are both colours, and are

often used as opposite poles on a variety of spectra. This similarity is

impossible to detect from the one-hot encoding vectors, however, as all

its word representations are exactly as far from one another.
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SVD proposes a single resolution to both of these issues. Let M 𝑓 ∈
ℝ|𝑉𝑊 |×|𝑉𝐶 | be the word-context matrix of the association measure 𝑓 ,

derived from some appropriate corpus, that is, if 𝑉𝑊 = {𝑤1 , . . . , 𝑤 |𝑉𝑊 |}
and 𝑉𝐶 = {𝑐1 , . . . , 𝑐 |𝑉𝐶 |} are the vocabulary and contexts of the corpus,

respectively, then 𝑀
𝑓

𝑖 , 𝑗
= 𝑓 (𝑤𝑖 , 𝑐 𝑗) for all 𝑖 , 𝑗.

For instance, one could have

𝑉𝑊 = {aardvark, . . . , zygote} ,
𝑉𝐶 = {. . . ,word appearing before "cat", . . .},

and 𝑓 given by positive pointwise mutual information for words and

contexts in the corpus (the specifics of which are not germane to the

discussion at hand; see [5] for details).

The SVD

M 𝑓 ≈M 𝑓

𝑑
= U𝑑Σ𝑑V⊤𝑑

yields 𝑑−dimensional word embedding vectors U𝑑Σ𝑑 which preserve the

context-similarity property discussed above. The decomposition of the

POS-context matrix, where words are replaced by POS tags, produces

POS embedding vectors.

Perhaps a pre-calculated 4-dimensional word embedding of 𝑉𝑊 is:

while a 3-dimensional POS embeddings could be:

leading to a 11-dimensional representation x′ of x

which provides a substantial reduction in the dimension of the input

space.
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23.4.2 PCA Regression and Partial Least Squares

For 𝑚 = 1, . . . , 𝑀 ≤ 𝑝, we let 𝑧𝑚 = ®𝑋⊤𝝓𝑚 be linear combinations of the

original predictors {𝑋1 , . . . , 𝑋𝑝}.

If we are fitting 𝑦 = 𝑓 (x) = E[𝑌 | ®𝑋 = x] using OLS, we can also fit

𝑦𝑖 = 𝜃0 + z⊤
𝑖
𝜽 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛 using OLS. If the constants 𝜙𝑚,𝑗 are

selected wisely, then transforming the variables can yield a model that

outperforms OLS regression – the predictions might be better than those

obtained by fitting 𝑦𝑖 = 𝛽0 + x⊤
𝑖
𝜷 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁 .

By definition, 𝜃0 = 𝛽0 and

z⊤𝑖 𝜽 =

𝑀∑
𝑚=1

𝜃𝑚𝑧𝑖 ,𝑚 =

𝑀∑
𝑚=1

𝜃𝑚x⊤𝑖 𝝓 =

𝑀∑
𝑚=1

𝜃𝑚

𝑝∑
𝑗=1

𝜙𝑚,𝑗𝑥𝑖 , 𝑗

=

𝑝∑
𝑗=1

𝑀∑
𝑚=1

𝜃𝑚𝜙𝑚,𝑗𝑥𝑖 , 𝑗 =
𝑝∑
𝑗=1

𝛽 𝑗𝑥𝑖 , 𝑗 = x⊤𝑖 𝜷,

where 𝛽 𝑗 =
∑𝑀
𝑚=1

𝜃𝑚𝜙𝑚,𝑗 , which is to say that the dimension reduction

regression is a special case of the original linear regression model, with

constrained coefficients 𝛽 𝑗 .

Such constraints can help with the bias-variance trade-off (when 𝑝 ≫ 𝑛,

picking 𝑀 ≪ 𝑝 can reduce the variance of the fitted coefficients).

The challenge then is to find an appropriate way to pick the 𝜙𝑚,𝑗 . We

will consider two approaches: principal components and partial least
squares.

Principal Components Regression Let us assume that𝑀 principal com-
ponents {𝑍1 , . . . , 𝑍𝑀} have been retained (see Section 23.2.3), where

𝑍𝑖 = w⊤𝑖 (𝑋1 , . . . , 𝑋𝑝),

assuming that the eigenvectors w𝑖 are ordered according to the corre-

sponding eigenvalues (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 ≥ 0):

the first principal component is the normalized (centered and

scaled) linear combination of variables with the largest variance;

the second principal component is the normalized linear combi-

nation of variables with the largest variance, subject to having no

correlation with all previous components (the first);

. . .

the 𝑀th principal component is the normalized linear combina-

tion of variables with the largest variance, subject to having no

correlation with all previous components.

The regression function 𝑓 (x) = E[𝑌 | ®𝑋 = x] is hopefully well approxi-

mated by the function 𝑔(z) = E[𝑌 | ®𝑍 = z], i.e.,

𝑦̂𝑧 = 𝑔(z) = 𝛾0 + 𝛾1𝑧1 + · · · + 𝛾𝑀𝑧𝑀

should compare “reasonably well” to

𝑦̂𝑧 = 𝑓 (z) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 .
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The main challenge is to determine the optimal 𝑀. If 𝑀 is too small, we

run the risk of having a model with high squared bias and low variance

(underfitting); if 𝑀 is too large, not only we we not achieve much in the

way of dimension reduction, but we might produce a model with low

squared bias and high variance (overfitting).

Any method that allows for the estimation of MSETe (such as cross-

validation) could be used to select 𝑀, but there are other approaches as

well (again, see Section 23.2.3).

Partial Least Squares In principal component regression (PCR), the

identified directions (linear combinations) that best represent the pre-

dictors {𝑋1 , . . . , 𝑋𝑝} are determined in an unsupervised manner: the

response 𝑌 plays no role in determining the principal components.

As such, there is no guarantee that the directions that best explain the

predictors are also the best directions to use to predict the response. The

framework for partial least squares is the same as that for PCR, except

that the directions 𝑍𝑖 are selected both to explain the predictors and to

be related to the response 𝑌.

As in PCR, we start by normalizing (centering and scaling) the predictor

part of the training set Tr. The first direction 𝑍1 is computed using the

OLS coefficient estimates of

𝑌𝑖 = 𝜙1

0, 𝑗 + 𝜙1, 𝑗𝑋𝑖 , 𝑗 + 𝛾𝑖 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑁.

Note that each 𝜙1, 𝑗 is proportional to 𝜌𝑋𝑗 ,𝑌 and that the direction

𝑍1 =

𝑝∑
𝑗=1

𝜙1, 𝑗𝑋𝑗 = 𝝓⊤
1

®𝑋

places the highest weights on the predictors that are most strongly linked

to the response. Now, we run an OLS regression of 𝑌 using 𝑍1 as a

predictor:

𝑌𝑖 = 𝜓0 + 𝜓1𝑧1,𝑖 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑁

and let 𝜀𝑖 = 𝑌𝑖 −𝜓0−𝜓1𝑧1,𝑖 be the component of the data not “explained”

by 𝑍1.

The second direction 𝑍2 is computed using the OLS coefficient estimates

of

𝜀𝑖 = 𝜙2

0, 𝑗 + 𝜙2, 𝑗𝑋𝑖 , 𝑗 + 𝛾𝑖 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑁.

Note that each 𝜙2, 𝑗 is proportional to 𝜌𝑋𝑗 ,𝜀 and that the direction

𝑍2 =

𝑝∑
𝑗=1

𝜙2, 𝑗𝑋𝑗 = 𝝓⊤
2

®𝑋

places higher weights on the predictors that are most strongly linked to

the first residual (which is to say, the component that does not explain 𝑍1).

The process continues in the same way, building directions 𝑍3 , . . . , 𝑍𝑝
that are strongly linked, in sequence, to the preceding residuals; as the

chain starts with the response 𝑌, the directions do take into account both

the related response and the predictor structure.
41

41: The problem of selecting 𝑀 is tackled

as it is in PCA regression.
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Summary Due to the bias-variance trade-off (see Chapters 19 and 21),

we must often strike the right balance in terms of model complexity,

which is usually measured in terms of the number of parameters that

must be estimated from Tr.

While this allows us to compare completely different models with one

another, it also suggests that models that use fewer predictors as inputs

are not as complex as those that use the full set of predictors. The full

models are not necessarily the ones that perform best (in term of Te
error), thanks to the curse of dimensionality.

Thankfully, predictor subset selection methods can be used to select the

best model: while the cross-validation approach is strongly encouraged,

other approaches (including shrinkage, feature selection, dimension

reduction) could also prove competitive.

23.4.3 Spectral Feature Selection

Text mining tasks often give rise to datasets which are likely to be

affected by the CoD; the problem also occurs when dealing with-high

resolution images, with each of the millions of pixels it contains viewed

as a feature.
42

42: Such images contain millions of pixels,

if not more.

Spectral feature selection attempts to identify “good” or “useful” training

features in such datasets by measuring their relevance to a given task via
spectral analysis of the data.

General Formulation for Feature Selection Let X ∈ ℝ𝑛×𝑝
be a data set

with 𝑝 features and 𝑛 observations. The problem of ℓ−feature selection,

with 1 ≤ ℓ ≤ 𝑝, can be formulated as an optimization problem [33]:

max

W
𝑟(X̂)

s.t. X̂ = XW, W ∈ {0, 1}𝑝×ℓ

W⊤1𝑝×1 = 1ℓ×1 , ∥W1ℓ×1∥0 = ℓ

The score function 𝑟(·) is the objective which evaluates the relevance

of the features in X̂, the data set containing only the features selected

by the selection matrix W with entries either 0 or 1. To ensure that

only the original feature are selected (and not a linear combination of

features), the problem stipulates that each column of W contains only

one 1 (W⊤1𝑝×1 = 1ℓ×1); to ensure that exactly ℓ rows contain one 1, the

constraint ∥W1ℓ×1∥0 = 𝑙 is added.

The selected features are often represented by

X̂ = XW = ( 𝑓𝑖1 , . . . , 𝑓𝑖ℓ ) with {𝑖1 , . . . , 𝑖ℓ } ⊂ {1, . . . , 𝑝}.

If 𝑟(·)does not evaluate features independently, this optimization problem

is NP-hard. To make to problem easier to solve, the features are assumed

to be independent of one another.
43

In that case, the objective function43: Or that their interactions are negligi-

ble.
reduces to

max

W
𝑟(X̂) = max

W

(
𝑟( 𝑓𝑖1) + · · · + 𝑟( 𝑓𝑖𝑙 )

)
;
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the optimization problem can then be solved by selecting the ℓ features

with the largest individual scores. The link with spectral analysis will

now be explored.
44

44: We have encountered some of these

concepts in Section 22.4.2.

Similarity Matrix Let 𝑠𝑖 , 𝑗 denote the pairwise similarity between ob-

servations x𝑖 and x𝑗 . If class labels 𝑦(x) ∈ {1, . . . , 𝐾} are known for all

instances x, the following function can be used

𝑠𝑖 , 𝑗 =

{
1

𝑛𝑘
, 𝑦(x𝑖) = 𝑦(x𝑗) = 𝑘

0, otherwise

where 𝑛𝑘 is the number of observations with class label 𝑘.

If class labels are not available, a popular similarity function is the

Gaussian radial basis function (RBF) kernel, given by

𝑠𝑖 , 𝑗 = exp

(
−
∥𝑥𝑖 − 𝑥 𝑗 ∥2

2𝜎2

)
,

where 𝜎 is a parameter that is used to control the Gaussian’s width.
45

45: One can think of this as the “reach” of

each point.
For a given 𝑠𝑖 , 𝑗 and 𝑛 observations, the similarity matrix 𝑆 is an 𝑛 × 𝑛
matrix containing the observations’ pairwise similarities, 𝑆(𝑖 , 𝑗) = 𝑠𝑖 , 𝑗 ,

𝑖 , 𝑗 = 1, . . . , 𝑛.

By convention, diag(𝑆) = 0. Other similarity functions include the

following kernels [4]:

1. linear – 𝑠𝑖 , 𝑗 = x⊤
𝑖
x𝑗 + 𝑐, 𝑐 ∈ ℝ;

2. polynomial – 𝑠𝑖 , 𝑗 = (𝛼x⊤
𝑖
x𝑗 + 𝑐)𝑑, 𝛼, 𝑐 ∈ ℝ,

46 𝑑 ∈ ℕ, and 46: For image processing, this kernel is

often used with 𝛼 = 𝑐 = 1.

3. cosine – 𝑠𝑖 , 𝑗 =
x⊤
𝑗
x𝑖

∥x𝑖 ∥∥x𝑗 ∥ , which measures the similarity of 2 vectors

by determining the angle between them.
47

47: It is often used in high-dimensional

applications such as text mining.

Similarity Graph For each similarity matrix 𝑆, one can construct a

weighted graph 𝐺(𝑉, 𝐸) in which each observation corresponds to a

node and the associated pairwise similarities correspond to the respective

edge weights;𝑉 is the set of all vertices (nodes) and 𝐸 the set of all graph

edges. As an example, consider the simple dataset:

X =

[
1 0 3 6 7 6

1 2 2 4 4 8

]⊤
;

for validation purposes, we will assume that the first three belong to one

group, the last three, to another. The scatter plot is obtained below:

from matplotlib import ticker, cm

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial.distance import pdist, squareform, cdist

import networkx as nx

from numpy.linalg import eigh,norm

import random # for replicability
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# Data

X = np.array([[1,1,1],[0,2,1],[3,2,1],[6,4,1],[7,5,1],[6,8,1]])

Y = np.array([0,0,0,1,1,1])

# Plot

plt.scatter(X[:,0],X[:,1], c=Y)

Next, we compute the similarity (adjacency matrix). We use the Gaussian

RBF kernel with 𝜎 = 0.5, and pdist() from scipy.spatial.distance

which computes the pairwise distance of each row from an input data

matrix. pdist() return a vector, which allows a speed boost for the

following computation, but it needs to be converted back to a matrix for

the next steps.
48

48: This is done via squareform(), also

from scipy.spatial.distance.

S = squareform(np.exp(-pdist(X))/((0.5)**2))

plt.matshow(S)

plt.show()
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or

𝑆 =



0 0.972 0.428 0.012 0.003 0.001

0.972 0 0.199 0.007 0.002 0.001

0.428 0.199 0 0.109 0.027 0.005

0.012 0.007 0.109 0 0.972 0.073

0.003 0.002 0.027 0.972 0 0.169

0.001 0.001 0.005 0.073 0.169 0


,

and the resulting graph 𝐺 is shown below:

G = nx.from_numpy_matrix(S)

# Add the weight (similarity) attribute to the graph

pos = {i : [X[i,0],5*X[i,1]] for i in range(6)}

labels = nx.get_edge_attributes(G,’weight’)

# round the similarity (for display)

labels = {k: round(v,2) for k, v in labels.items()}

# Create the edge list and labels. Remove null edges

edge_list = [k for k, v in labels.items() if v != 0]

labels = {k: v for k, v in labels.items() if v != 0}

# Draw it using the edge and labels list, at the right position

nx.draw_networkx_nodes(G,pos)

nx.draw_networkx_edges(G,pos, edgelist=edge_list)

nx.draw_networkx_edge_labels(G,pos, edge_labels=labels)

plt.axis(’off’)

plt.show()

Laplacian Matrix of a Graph The similarity matrix 𝑆 is also known as

the adjacency matrix 𝐴 of the graph 𝐺,
49

from which the degree matrix 49: In certain formulations, the entries

of the adjacency matrix 𝐴 are instead

defined to take on the value 1 or 0,

depending as to whether the similiarity

between the corresponding observations

is greater than (or smaller than) some

pre-determined threshold 𝜏.

𝐷 can be constructed:

𝐷(𝑖 , 𝑗) =


𝑑𝑖 ,𝑖 =

𝑛∑
𝑘=1

𝑎𝑖 ,𝑘 , 𝑖 = 𝑗

0, otherwise
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By definition,𝐷 is diagonal; the element 𝑑𝑖 ,𝑖 can be viewed as an estimate

of the density around x𝑖 ; as 𝑎𝑖 ,𝑘(= 𝑠𝑖 ,𝑘) is a measure of similarity between

x𝑖 and x𝑘 , the larger 𝑎𝑖 ,𝑘 is, the more similar the two observations are.

A large value of 𝑑𝑖 ,𝑖 indicates the presence of one or more observations

“near” x𝑖 ; conversely, a small value of 𝑑𝑖 ,𝑖 suggests that x𝑖 is isolated.

The Laplacian and normalized Laplacian matrices are defined as

𝐿 = 𝐷 − 𝐴 and L= 𝐷−1/2𝐿𝐷−1/2 ,

respectively. Since 𝐷 is diagonal, 𝐷−1/2 = diag

(
𝑑
−1/2
𝑖 ,𝑖

)
.

It can be shown that 𝐿 and Lare both positive semi-definite matrices. By

construction, the smallest eigenvalue of 𝐿 is 0, with associated eigenvector

1, since

𝐿1 = (𝐷 − 𝐴)1 = 𝐷1 − 𝐴1 (23.1)

=
©­­«
𝑑1,1

...

𝑑𝑛,𝑛

ª®®¬ −
©­­­­­­­«

𝑛∑
𝑘=1

𝑎1,𝑘

...
𝑛∑
𝑘=1

𝑎𝑛,𝑘

ª®®®®®®®¬
=

©­­­­­­­«

𝑑1,1 −
𝑛∑
𝑘=1

𝑎1,𝑘

...

𝑑𝑛,𝑛 −
𝑛∑
𝑘=1

𝑎𝑛,𝑘

ª®®®®®®®¬
=

©­­«
0

...

0

ª®®¬ = 0 · 1. (23.2)

For L, the corresponding eigenpair is 0 and diag(𝐷1/2) (the proof is

similar).

We can compute the degree matrix 𝐷 and the Laplacian 𝐿 for the toy

example above. For the degree matrix, we use the method sum() from

numpy with the argument axis=1 to sum over the columns and diag()

to convert the result into a diagonal matrix.

The Laplacian is simply 𝐿 = 𝐷 − 𝑆.

rowsum = S.sum(axis=1)

D = np.diag(rowsum)

L = D - S

plt.matshow(L)

plt.show()
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Eigenvectors as Cluster Separators The eigenvectors of the Laplacian

matrices have some very useful properties relating to features selection.

If 𝝃 ∈ ℝ𝑛
is an eigenvector of 𝐿 or L, then 𝝃 can be viewed as a function

that assigns a value to each observation in X.

This point-of-view can prove quite useful, as the following simple example

from [33] shows. Let X be constructed of three two-dimensional Gaussians,

each with unit variance (and no covariance) but with different means.

We start by generating 30 observations for each of the 3 mechanisms, and

re-shuffle them into a “random” dataset.

random.seed(1234) # for replicability

mean1 = [0,5]

cov1 = [[1,0],[0,1]]

X1 = np.random.multivariate_normal(mean1,cov1,30)

mean2 = [5,0]

cov2 = [[1,0],[0,1]]

X2 = np.random.multivariate_normal(mean2,cov2,30)

mean3 = [-5,-5]

cov3 = [[1,0],[0,1]]

X3 = np.random.multivariate_normal(mean3,cov3,30)

plt.scatter(X1[:,0],X1[:,1])

plt.scatter(X2[:,0],X2[:,1])

plt.scatter(X3[:,0],X3[:,1])

X = np.concatenate((X1,X2,X3), axis=0)

Y = np.array([0] * 30 + [1] * 30 + [2] * 30).reshape((90,1))

df = np.concatenate((X,Y), axis = 1)

np.random.shuffle(df)

X,Y = df[:,:2],df[:,2]

We can then compute the similarity (using Guassian RBF with 𝜎 = 1),

adjacency, degree and Laplacian matrix. Using eigh() from numpy we

can find the eigenvalue and eigenvectors of 𝐿. This function returns a

vector of all the eigenvalues of 𝐿 and a matrix of all its eigenvectors as

columns. According to the convention, the eigenspace is sorted so that

the eigenvalues satisfy 0 = 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ . . .

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

# Find eigenspace of L (vs: eigenvalue vector, es: eigenvector matrix)

vs,es = eigh(L)

# Sort the eigenvalue

arg_sort = vs.argsort()

vs = vs[arg_sort]

es = es[:,arg_sort]
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We show properties of 𝐿’s spectrum by providing the contour plot of the

second eigenvector/eigenvalue pair.
50

50: Remember, the eigenvectors act as

functions in this viewpoint. For a given

eigenvector 𝜆𝑗 , the contour value at each

point x𝑖 is the value of the associated eigen-

vector 𝝃𝑗 in the 𝑖th position, namely 𝜉𝑗 ,𝑖 .
For any point x not in the dataset, the con-

tour value is given by averaging the 𝜉𝑗 ,𝑘
of the observations x𝑘 near x, inversely

weighted by the distances ∥x𝑘 − x∥.

def gen_z(lam = 1):

""" Compute the meshgrid for z

"""

for i in range(len(x)):

for j in range(len(y)):

dist = cdist([[x_[i,j],y_[i,j]]],X)[0]

z[i,j] = np.average(es[:,lam], weights= 1/dist)

# Setup the meshgrid

x = np.arange(-8.5,8.5,0.05)

y = np.arange(-8.5,8.5,0.05)

x_, y_ = np.meshgrid(x,y, indexing=’ij’)

z = 0*x_

# Index of the eigenvalue to be plotted (0 is the first, etc)

l = 1

# Compute the meshgrid with the gen_z function

gen_z(l)

# Setup and plot

fig,ax = plt.subplots()

cs = ax.contourf(x_, y_, z)

ax.contour(cs,colors=’k’)

ax.grid(c=’k’, ls=’-’, alpha=0.3)

fig.colorbar(cs)

ax.scatter(X[:,0],X[:,1], c=Y)

ax.set_title(’lambda{0}’.format(l+1))

plt.show()
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The next block accomplishes the same tasks, but it does so for potentially

more than one eigenvector/eigenvalue pair, and , and aranges the plots in

a grid. The contour plot of the ranked eigenvectors 𝝃1 , 𝝃2 , 𝝃3 , 𝝃4 , 𝝃5 and

𝝃20, corresponding to the eigenvalues 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ 𝜆4 ≤ 𝜆5 ≤ 𝜆20 are

computed and displayed below.

x = np.arange(-8.5,8.5,0.5)

y = np.arange(-8.5,8.5,0.5)

x_, y_ = np.meshgrid(x,y, indexing=’ij’)

z = 0*x_

# List of index of the eig to be plotted

ls = [0,1,2,3,4,19]

grid_length = 3

grid_width = 2

plt.figure(figsize=(12,12))

for i in range(len(ls)):

ax = plt.subplot(grid_length,grid_width,i+1)

z = 0*x_

gen_z(ls[i])

cs = ax.contourf(x_, y_, z)

ax.contour(cs,colors=’k’)

ax.grid(c=’k’, ls=’-’, alpha=0.3)

ax.scatter(X[:,0],X[:,1], c=Y)

ax.set_title(’lambda{0}’.format(ls[i]+1))
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From those plots, it seems as though the first eigenvector does a better job

at capturing the cluster structure in the data, while larger values tends

to capture more of the sub-cluster structure. One thing to note is that it

might appear that 𝜆1 is as good (or better) as 𝜆2 and 𝜆3 to separate the

groups, but a closer look at the scale of the contour plot of 𝜆1 shows that

its values have a miniscule range.

The fact that there is any variation at all is due to floating point errors in

the practical computation of the eigenvalue 𝜆1 and the eigenvector 𝝃1; as

seen previously, these should be exactly 0 and 1, respectively.

At any rate, this process shows how the eigenpairs of the Laplacian matrix

contains information about the structure of X.

In spectral graph theory, the eigenvalues of the Laplacian measure the

smoothness of the eigenvectors. An eigenvector is said to be smooth if it

assigns similar values to points that are near one another.

In the previous example, assume that the data is unshuffled, that is, the

first 𝑘1 points are in the same cluster, the next 𝑘2 are also in the same,

albeit different, cluster, and so on. The next plot shows the smoothness

of the eigenvector over each cluster; colour is added to emphasize the

cluster limits.

# Recompute everything without the shuffling and sorting part

X = np.concatenate((X1,X2,X3), axis=0)

Y = np.array([0] * 30 + [1] * 30 + [2] * 30).reshape((90,1))

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

vs,es = eigh(L)

# List of index of selected eigenvalue.

ls = [0,1,2,19]

# Plot a line for each index in ls

for l in ls:

plt.plot(es[:,l], label = ’lambda{0}’.format(l+1))

# Color the cluster limits

plt.axvspan(0,30, alpha = 0.5)

plt.text(15,-0.4, ’Cluster 1’, fontsize=12)

plt.axvspan(30,60, alpha = 0.5, facecolor=’g’)

plt.text(45,-0.4, ’Cluster 2’, fontsize=12)

plt.axvspan(60,90, alpha = 0.5, facecolor=’orange’)

plt.text(75,-0.4, ’Cluster 3’, fontsize=12)

plt.legend()

plt.ylabel(’Value’)

plt.xlabel(’Component k of the eigenvector’)

plt.show()
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Both 𝜆2 and 𝜆3 are fairly smooth, as they seem to be piece-wise constant

on each cluster, whereas 𝜆20 is all over the place on cluster 1 and constant

on the rest of the data. As discussed previously 𝜆1 is constant over the

entirety of the dataset, marking it as maximally smooth but not very

useful from the perspective of differentiating data structure.
51

51: As a reminder, the eigenvalues them-

selves are ordered in increasing sequence:

for the current example,

𝜆1 = 0 ≤ 𝜆2 = 1.30 × 10
−2 ≤ 𝜆3 = 3.94 × 10

−2

≤ · · ·𝜆20 = 2.95 ≤ · · ·

Indeed, let x ∈ ℝ𝑛
. then

x⊤𝐿x = x⊤𝐷x − x⊤𝐴x =

𝑛∑
𝑖=1

𝑑𝑖𝑥
2

𝑖 −
𝑛∑

𝑖 , 𝑗=1

𝑎𝑖 , 𝑗𝑥𝑖𝑥 𝑗

=
1

2

(
𝑛∑
𝑖=1

𝑑𝑖𝑥
2

𝑖 − 2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +
𝑛∑
𝑗=1

𝑑 𝑗𝑥
2

𝑗

)
=

1

2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗(𝑥𝑖 − 𝑥 𝑗)2

If x = 𝝃 is a normalized eigenvector of 𝐿, then 𝝃⊤𝐿𝝃 = 𝜆𝝃⊤𝝃 = 𝜆, thus

𝜆 = 𝝃⊤𝐿𝝃 =
1

2

𝑛∑
𝑖 , 𝑗=1

𝑎𝑖 𝑗(𝜉𝑖 − 𝜉𝑗)2.

Instinctively, if the eigenvector component does not vary a lot for obser-

vations that are near one another, one would expect the corresponding

eigenvalue to be small; this result illustrates why the small magnitude

of the eigenvalue is a good measure of the smoothness of its associated

eigenvector.
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Feature Ranking We can use the above discussion as a basis for feature

selection. If x is not en eigenvector of 𝐿, the value x⊤𝐿x can also be seen

as a measure of how much x varies locally. This can be used to measure

how meaningful a feature f ∈ ℝ𝑛
is.

In the current example, the only two features are the Euclidean coordi-

nates of the observations: f1 and f2. We also add a useless feature f3 to

the dataset (distributed uniformly across the clusters).

# Add a random feature

U1 = np.random.uniform(size=(90,1))

X = np.concatenate((X,U1), axis=1)

f = [0,1,2]

for i in f:

plt.plot(X[:,i], label = ’F{0}’.format(i+1))

plt.axvspan(0,30, alpha = 0.5)

plt.text(15,2, ’Cluster 1’, fontsize=12)

plt.axvspan(30,60, alpha = 0.5, facecolor=’g’)

plt.text(45,2, ’Cluster 2’, fontsize=12)

plt.axvspan(60,90, alpha = 0.5, facecolor=’orange’)

plt.text(75,2, ’Cluster 3’, fontsize=12)

plt.legend()

plt.ylabel(’Value’)

plt.xlabel(’Component k of feature’)

plt.show()
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The plot shows that the third feature is not able to distinguish between

the clusters. However, we also have:

for i in [0,1,2]:

f = X[:,i]

print("F{0}".format(i+1), "->",f.T.dot(f.dot(L)))

F1 -> 105.35092482283625

F2 -> 110.6011478717457

F3 -> 46.90787692252817

Thus

f⊤
1
𝐿f1 = 94.3, f⊤

2
𝐿f2 = 102.5, f⊤

3
𝐿f3 = 41.7;

by the previous assumption relating the magnitude of 𝝃⊤𝐿𝝃 to the

smoothness of 𝝃, this would seem to indicate that f3 is a “better” feature

than the other two.

The problem is that the value of f⊤
𝑖
𝐿f𝑖 is affected by the respective norms

of f𝑖 and 𝐿. This need to be addressed.

The relation between 𝐿 and Lyields

f⊤𝑖 𝐿f𝑖 = f⊤𝑖 𝐷
1/2L𝐷1/2f𝑖 = (𝐷1/2f𝑖)𝑇L(𝐷1/2f𝑖).

Set f̃𝑖 = (𝐷1/2f𝑖) and f̂𝑖 = f̃𝑖/∥f̃𝑖 ∥. The feature score metric 𝜑1 is a

normalized version of the smoothness measure:

𝜑1(f𝑖) = f̂𝑖
⊤
Lf̂𝑖 , 𝑖 = 1, . . . , 𝑝.

For 𝜑1, smaller values are better. The scoring function can also be defined

using the spectral decomposition of L.

Suppose that (𝜆𝑘 , 𝝃𝑘), 1 ≤ 𝑘 ≤ 𝑛 are eigenpairs of L and let 𝛼𝑘 = f̂𝑖
⊤
𝝃𝑘 ,

for a given 𝑖. Then

𝜑1(f𝑖) =
𝑛∑
𝑘=1

𝛼2

𝑘
𝜆𝑘 , with

𝑛∑
𝑘=1

𝛼2

𝑘
= 1.

Indeed, let L= UΣU⊤ be the eigen-decomposition of L. By construction,

U = [𝝃1 |𝝃2 | · · · |𝝃𝑛] and Σ = diag(𝜆𝑘), so that

𝜑1(f𝑖) = f̂𝑖
⊤
Lf̂𝑖 = f̂𝑖

⊤
UΣU⊤f̂𝑖

= (𝛼1 , . . . , 𝛼𝑛)𝚺(𝛼1 , . . . , 𝛼𝑛)⊤ =

𝑛∑
𝑘=1

𝛼2

𝑘
𝜆𝑘 .

This representation allows for a better comprehension of the 𝜑1 score;

𝛼𝑘 is the cosine of the angle between the normalized feature f̂𝑖 and

eigenvector 𝝃𝑘 . If a feature aligns with “good” eigenvectors (i.e., those

with small eigenvalues), its 𝜑1 score will also be small.

The larger 𝛼2

1
is, the smaller

∑𝑛
𝑘=2

𝛼2

𝑘
is; this is problematic because, in

such cases, a small value of 𝜑1 indicates smoothness but not separability.
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To overcome this issue, 𝜑1 can be normalized by

∑𝑛
𝑘=2

𝛼2

𝑘
, which yields a

new scoring function:

𝜑2(f𝑖) =
∑𝑛
𝑘=1

𝛼2

𝑘
𝜆𝑘∑𝑛

𝑘=2
𝛼2

𝑘

=
f̂𝑖
⊤
Lf̂𝑖

1 −
(
f̂𝑖
⊤
𝝃1

)
A small value for 𝜑2 once again indicates that a feature closely aligns

with “good” eigenvectors.

Another ranking feature is closely related to the other two. According to

spectral clustering, the first 𝑘 non-trivial eigenvectors form an optimal

set of soft cluster indicators that separate the graph 𝐺 into 𝑘 connected

parts. Therefore, we define 𝜑3 as

𝜑3(f𝑖 , 𝑘) =
𝑘∑
𝑗=2

(2 − 𝜆 𝑗)𝛼2

𝑗 .

Contrary to the other scoring functions, 𝜑3 assigns larger value to feature

that are more relevant. It also prioritizes the leading eigenvectors, which

helps to reduce noise. Using this ranking function requires a number

of categories or clusters 𝑘 to be selected (depending on the nature

of the ultimate task at hand); if this value is unknown, 𝑘 becomes a

hyper-parameter to be tuned.

The feature score metrics are implemented as below:

D_sq = np.sqrt(D)

L_norm = D_sq.dot(L).dot(D_sq)

def score_1(i):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

return f_hat.dot(L_norm).dot(f_hat)

def score_2(i):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

phi_1 = f_hat.dot(L_norm).dot(f_hat)

return phi_1 / (1 - (f_hat.dot(es[:,0])**2))

def score_3(i,k):

f_tilde = D_sq.dot(X[:,i])

f_hat = f_tilde / norm(f_tilde)

alpha = f_hat.dot(es)

temp = (2 - vs[1:k]) * (alpha[1:k])**2

return np.sum(temp)

from tabulate import tabulate

n_feature = X.shape[1]

results = {’phi_1’:[], ’phi_2’:[], ’phi_3’: []}

k = 3



23.4 Advanced Topics 1561

for i in range(n_feature):

results[’phi_1’].append(score_1(i))

results[’phi_2’].append(score_2(i))

results[’phi_3’].append(score_3(i,k))

print(tabulate(results,

headers="keys",

showindex=True,

tablefmt="simple",

numalign="left"))

phi_1 phi_2 phi_3

-- ------- ------- --------

0 2.5516 3.28365 1.37706

1 2.71268 3.47861 1.40086

2 17.0148 31.8369 0.433994

This make more sense, as the pattern is similar to the pattern obtained

for the eigenvalues: f1 , f2, being able to differentiate the clusters, have

smaller 𝜑1 scores than f3. Returning to the current example, while the

score of the useless feature 3, 𝜑1(f3) is larger than the other scores, it is

still small when compared to the eigenvalues of 𝐿. This is due to the fact

the f3 and 𝝃1 are nearly co-linear.

Computing 𝜑2 for our three features yields a larger distinction between

the real features and the random, useless one than with 𝜑1.

Regularization There is one glaring problem with the ranking functions

that have been defined previously: they all assume the existence of a gap

between subsets of “large” and “small” eigenvalues. For clearly separated

data, that is to be expected; but in noisy data, this gap may be negligible,

which leads to an increase in the score value of poor features [32].

This issue can be tackled by applying a spectral matrix function 𝛾(·)
to the Laplacian L, replacing the original eigenvalues by regularized
eigenvalues as follows:

𝛾(L) =
𝑛∑
𝑗=1

𝛾(𝜆 𝑗)𝜉𝑗𝜉⊤𝑗 .

In order for this to work properly, 𝛾 needs to be (strictly) increasing.

Examples of such regularization functions include:

𝛾(𝜆) (name)

1 + 𝜎2𝜆 (regularized Laplacian)

exp(𝜎2/2𝜆) (diffusion Process)

𝜆𝜈 , 𝜈 ≥ 2 (high-order polynomial)

(𝑎 − 𝜆)−𝑝 , 𝑎 ≥ 2 (𝑝-step random walk)

(cos𝜆𝜋/4)−1
(inverse cosine)
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The ranking function 𝜑1 , 𝜑2 , 𝜑3 can be regularized via

𝜑̂1(f𝑖) =
𝑛∑
𝑘=1

𝛼2

𝑘
𝛾(𝜆𝑘)

𝜑̂2(f𝑖) =
f̂𝑖
⊤
𝛾(L)f̂𝑖

1 −
(
f̂𝑖
⊤
𝝃1

)
𝜑̂3(f𝑖) =

𝑘∑
𝑗=2

(𝛾(2) − 𝛾(𝜆 𝑗))𝛼2

𝑗

To illustrate how this regularization process can help reduce noise (still

using the framework from the previous example), X was contaminated

with random values from a normal distribution with a variance of 1.5.

random.seed(5678) # for replicability

noise = np.random.normal(0, 1.3, 90*3).reshape(90,3)

X_noise = X + noise

plt.scatter(X_noise[:,0], X_noise[:,1])

plt.show()

We plot the components of the eigenvalues of three normalized Laplacians:

one from the original data, one from the noisy data, and one from the

noisy data with a 3rd order polynomial regularization.
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def isqrt(x):

if x == 0:

return 0

else:

return x**(-0.5)

v_isqrt = np.vectorize(isqrt)

def find_eig(X, k = lambda x:x):

A = squareform(np.exp(-1 * pdist(X, ’sqeuclidean’)))

rowsum = A.sum(axis=1)

D = np.diag(rowsum)

L = D - A

D_is = v_isqrt(D)

L_norm = k(D_is.dot(L).dot(D_is))

vs,es = eigh(L_norm)

arg_sort = vs.argsort()

vs = vs[arg_sort]

es = es[:,arg_sort]

return vs,es, L_norm

vs,es,L = find_eig(X)

vs_n,es_n,L_noise = find_eig(X_noise)

vs_k,es_k, L_k = find_eig(X_noise, k = lambda x:x**3)

plt.plot(vs, ’.’, label = ’Real’)

plt.plot(vs_n, ’x’, label = ’Noise’)

plt.plot(vs_k, "+", label = ’3 order poly’)

plt.title(’eigenvalue lambda’)

plt.legend()
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The preceding plot shows the effect of noise onL’s: it tends to linearize the

eigenvalues, and this provides much support to the poorer eigenvectors.

The eigenvalues of the noisy Laplacian have been regularized using the

standard cubic 𝛾(𝜆) = 𝜆3
; the distinction between the first eigenvalues

and the rest is clear.

We can compare different kernels:

regularized Laplacian – 𝛾(𝜆) = 1 + (0.9)2𝜆
high-order polynomial – 𝛾(𝜆) = 𝜆3

diffusion process – 𝛾(𝜆) = exp((0.3)2/2𝜆)
𝑝−step random walk – 𝛾(𝜆) = (2 − 𝜆)−1

inverse cosine – 𝛾(𝜆) = cos(𝜆𝜋/4)−1

vs_n,es_n,_ = find_eig(X_noise)

vs_reg, es_reg,_ = find_eig(X_noise, k = lambda x:1 + (0.9)**2 * x)

vs_k3,es_k3,_ = find_eig(X_noise, k = lambda x:x**3)

vs_diff, es_diff,_ = find_eig(X_noise, k = lambda x: np.exp((0.3)**2/(2*x)))

vs_1step, es_1step,_ = find_eig(X_noise, k = lambda x: (2-x)**(-1))

vs_cos, es_cos, _ = find_eig(X_noise, k = lambda x: np.cos(x * (3.1416/4))**(-1))

plt.plot(vs_n, ’.’, label = ’Noise’)

plt.plot(vs_k, ’.’, label = ’3 order poly’)

plt.plot(vs_reg, ’.’, label = ’Regularized (0.9)’)

plt.plot(vs_diff, ’.’, label = ’Diffusion (0.5)’)

plt.plot(vs_1step, ’.’, label = ’1-Step (2)’)

plt.plot(vs_cos, ’.’, label = ’Inverse Cos’)

plt.ylim(0,3)

plt.title(’eigenvalues lambda’)

plt.legend()

plt.show()
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The choice of a specific regularization function depends on the context

and the goals of the data analysis task; for large datasets, considerations

of ease of computation may also form part of the selection strategy.

Spectral Feature Selection with SPEC The remarks from the previous

subsections can be combined to create a feature selection framework

called SPEC [22]:

1. using a specified similarity function 𝑠, construct a similarity matrix

𝑆 of the data X (optionally with labels Y);

2. construct the graph 𝐺 of the data;

3. extract the normalized Laplacian L from this graph;

4. compute the eigenpairs (eigenvalues and eigenvectors) of L;

5. select a regularization function 𝛾(·);
6. for each feature f𝑖 , 𝑖 = 1, . . . , 𝑝, compute the relevance 𝜑̂(f𝑖), where

𝜑̂ ∈ {𝜑̂1 , 𝜑̂2 , 𝜑̂3}, and

7. return the features in descending order of relevance.

In order for SPEC to provide “good” results, proper choices for the

similarity, ranking, and regularization functions are needed. Among other

considerations, the similarity matrix should reflect the true relationships

between the observations.

Furthermore, if the data is noisy, it might be helpful to opt for 𝜑̂ = 𝜑̂3

and/or 𝛾(𝜆) = 𝜆𝜈
, 𝜈 ≥ 2. When the gap between the small and the large

eigenvalues is wide, 𝜑̂ = 𝜑̂2 or 𝜑̂ = 𝜑̂3 usually provide good choices,

although 𝜑̂2 has been shown to be more robust [33].

23.4.4 Uniform Manifold Approximation and Projection

The feature selection and dimension reduction landscape is in flux,

and there are more recent (and sophisticated) developments that are

generating a lot of interest. Case in point, consider Uniform Manifold
Approximation and Projection (UMAP) methods.

Dimensionality Reduction and UMAP A mountain is a 3-dimensional

object.
52

And the surface of a mountain range is 2-dimensional – it can 52: When we consider the world at a low

resolution, at least.
be represented with a flat map – even though the surface, and the map

for that matter, still exist in 3-dimensional space.
53

53: In the parlance of the field, we say that

the surface is embedded in ℝ3
.

What does it mean to say that a shape is 𝑞-dimensional for some 𝑞? What

is a shape, even?

Shapes could be lines, cubes, spheres, polyhedrons, or more complicated

things. In geometry, the customary way to represent a shape is via a set

of points 𝑆 ⊆ ℝ𝑝
.

A circle is the set of points whose distance to a fixed point (the centre)

is exactly equal to the radius 𝑟, say, whereas a disk is the set of points

whose distance to the centre is at most the radius.

In the mountain example, 𝑝 = 3 for both the mountains 𝑆𝑚 and the

mountain surface 𝑆𝑠 . So the question is, when is the (effective) dimension
of a set 𝑆 less than 𝑝, and how is that dimension calculated?
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It turns out that there are multiple definitions of the dimension 𝑞 of a

set 𝑆 ⊆ ℝ𝑝
[6]:

the smallest 𝑞 for which 𝑆 is 𝑞-dimensional manifold;

how many nontrivial 𝑛th
homology groups of 𝑆 there are;

how the “size” of the set scales as the coordinates scale.

A 𝑞-dimensional manifold is a set where each small region is approxi-

mately the same as a small region of ℝ𝑞
. For instance, if a small piece of a

(stretchable) sphere is cut out with a cookie cutter, it could theoretically

be bent so that it looks like it came from a flat plane, without changing

its “essential” shape.

Dimensionality reduction is more than just a matter of selecting a defini-

tion and computing 𝑞, however. Indeed, any dataset X is necessarily finite

and is thus, by definition, actually 0−dimensional; the object of interest

is the shape that the data would form if there were infinitely many

available data points, or, in other words, the support of the distribution
generating the data.

Furthermore, any dataset is probably noisy and may only approximately
lie in a lower-dimensional shape.

Lastly, it is not clear how to build an algorithm that would, for example,

determine what all the homology groups of some set 𝑆 are. The problem

is quite thorny. Let 𝑋 ⊆ ℝ𝑝
be a finite set of points. A dimensionality

reducer for X is a function 𝑓X : X → ℝ𝑞
, where 𝑞 < 𝑝, which satisfies

certain properties that imply that 𝑓X(X) has similar structure to X.
54

54: In the remainder of this section, the

subscript is dropped. Note that 𝑞 is as-

sumed, not found by the process. Various dimensionality reducers were discussed in Section 23.2; they

each differ based on the relationship between X and 𝑓X(X).

For instance, in PCA, the dataset X is first translated so that its points (or

at least its “principal components”) lie in a linear subspace. Then 𝑞 unit-

length linear basis elements are chosen to span a subspace, projection

onto which yields an affine map 𝑓 from X to ℝ𝑞
that preserves Euclidean

distances between points (a rigid transformation), assuming that the

non-principal dimensions are ignored.

PCA seems reasonable but what if a rigid transformation down to ℝ𝑞

is not possible? As an example, consider the swiss roll of Figure 23.13,

which is a loosely rolled up rectangle in 3-dimensional space. What can

be preserved when we “reduce” this space? Only the local structure? The

global structure?

UMAP is a dimension reduction method that attempts to approximately

preserve both the local and global structure. It can be especially useful

for visualization purposes, i.e., reducing to 𝑞 = 3 or fewer dimensions.

While the semantics of UMAP can be stated in terms of graph layouts,

the method was derived from abstract topological assumptions. For a

full treatment and mathematical properties, see [15].

Note that UMAP works best when the data X is evenly distributed on

its support S. In this way, the points of X “cover” S and UMAP can

determine where the true gaps or holes in 𝑆 are.
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UMAP Semantics Let the (scaled) data be denoted by X = {x1 , . . . , x𝑛},
where x𝑖 ∈ ℝ𝑝

for all 𝑖; let 𝑑 : X × X→ ℝ≥0 be a distance function, and

let 𝑘 ≥ 1 be an integer.

Consider a directed graph graph 𝐷 = (𝑉, 𝐸, 𝐴), with

vertices 𝑉(𝐷) = X;

edges 𝐸(𝐷) consisting of the ordered pairs (x𝑖 , x𝑗) such that x𝑗 is

one of the 𝑘 nearest neighbours of x𝑖 according to 𝑑;

weight function𝑊 : 𝐸(𝐷) → ℝ such that

𝑤(x𝑖 , x𝑖 , 𝑗) = exp

(−max(0, 𝑑(x𝑖 , x𝑖 , 𝑗) − 𝜌𝑖)
𝜎𝑖

)
,

where x𝑖 ,1 , . . . , x𝑖 ,𝑘 are the 𝑘 nearest neighbours of x𝑖 according

to 𝑑, 𝜌𝑖 is the minimum nonzero distance from x𝑖 to any of its

neighbours, and 𝜎𝑖 is the unique real solution of

𝑘∑
𝑗=1

exp

(−max(0, 𝑑(𝑥𝑖 , 𝑥𝑖 , 𝑗) − 𝜌𝑖)
𝜎𝑖

)
= log

2
(𝑘),

and

𝐴 is the weighted adjacency matrix of 𝐷 with vertex ordering

x1 , . . . , x𝑛 .

Define a symmetric matrix

𝐵 = 𝐴 + 𝐴⊤ − 𝐴 ◦ 𝐴⊤ ,

where ◦ is Hadamard’s component-wise product.

The graph 𝐺 = (𝑉,𝑊, 𝐵) has the same vertex set, the same vertex

ordering, and the same edge set as 𝐷, but its edge weights are given by

𝐵. Since 𝐵 is symmetric, 𝐺 can be considered to be undirected.

UMAP returns the (reduced) points 𝑓 (x1), . . . , 𝑓 (x𝑛) ∈ ℝ𝑞
by finding the

position of each vertex in a force directed graph layout, which is defined

via a graph, an attractive force function defined on edges, and a repulsive

force function defined on all pairs of vertices.

Both force functions produce force values with a direction and magnitude

based on the pair of vertices and their respective positions in ℝ𝑞
.

To compute the layout, initial positions in ℝ𝑞
are chosen for each vertex,

and an iterative process of translating points based on their attractive

and repulsive forces is carried out until a convergence criterion is met. In

UMAP, the attractive force between vertices x𝑖 , x𝑗 at positions 𝑦𝑖 , 𝑦𝑗 ∈ ℝ𝑞
,

respectively, is

−2𝑎𝑏∥𝑦𝑖 − 𝑦 𝑗 ∥2(𝑏−1)
2

1 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2
2

𝑤(𝑥𝑖 , 𝑥 𝑗)(𝑦𝑖 − 𝑦 𝑗),

where 𝑎 and 𝑏 are parameters, and the repulsive force is

𝑏(1 − 𝑤(𝑥𝑖 , 𝑥 𝑗))(𝑦𝑖 − 𝑦 𝑗)
(0.001 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2

2
)(1 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2

2
)
.
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There are a number of important free parameters to select, namely

𝑘: nearest neighbor neighborhood count;

𝑞: target dimension;

𝑑: distance function, e.g. Euclidean metric.

The UMAP documentation states,

low values of 𝑘 will force UMAP to concentrate on very local

structure (potentially to the detriment of the big picture),

while large values will push UMAP to look at larger neigh-

borhoods of each point . . . losing fine detail structure for the

sake of getting the broader structure of the data [15].

The user may set these parameters to appropriate values for the dataset.

The choice of a distance metric plays the same role as in clustering, where

closer pairs of points are considered to be more similar than farther pairs.

There is also a minimum distance value used within the force directed

layout algorithm which says how close together the positions may be.

Example We compare various dimensionality reducers for a number

of datasets (adapted from the UMAP documentation).
55

Let us start by55: Careful: the correct Python package

to install is umap-learn, not umap.
installing the required Python modules.

import warningswarnings.filterwarnings(’ignore’)

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets, decomposition, manifold, preprocessing

from colorsys import hsv_to_rgb

import umap.umap_ as umap

We will plot the two-dimensional reduction of five different datasets; the

points will be coloured to get a sense of which points got sent where

(otherwise we would only know the shape of the reduced dataset, but

have no way to tell how the local structure is affected by the reducers).

We use 𝑡−SNE, Isomap, MDS (multidimensional scaling), PCA, and

UMAP. The 5 datasets are:

a set consisting of 4 distinct 10-dimensional Gaussian distributions;

the digit classification dataset;

the wine characteristics dataset (essentially 1D);

a 2D rectangle rolled up in 3D space (colours indicate the position

along the unrolled rectangle), and

points on the 2D surface of a 3D sphere (which is not homeomorphic

to ℝ2
)); even with the north pole removed, the stereographic

projection would map points close to the north pole arbitrarily far

from the origin (colour hue indicates the angle around the equator

and darkness indicates distance from south pole).

blobs, blob_labels = datasets.make_blobs(

n_samples=500, n_features=10, centers=4

)

https://umap-learn.readthedocs.io/en/latest/auto_examples/plot_algorithm_comparison.html
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digits = datasets.load_digits(n_class=10)

wine = datasets.load_wine()

swissroll, swissroll_labels = datasets.make_swiss_roll(

n_samples=1000, noise=0.1

)

sphere = np.random.normal(size=(600, 3))

# scale points to have same distance from origin

sphere = preprocessing.normalize(sphere)

# compute colours in HSV format

sphere_hsv = np.array([

(

(np.arctan2(c[1], c[0]) + np.pi) / (2 * np.pi),

np.abs(c[2]), min((c[2] + 1.1), 1.0),

)

for c in sphere

])

# convert colours to RGB format

sphere_colors = np.array([hsv_to_rgb(*c) for c in sphere_hsv])

Next we set parameters for the reducer algorithms. For UMAP, we set

min_dist to 0.3 which will spread out the points to a noticable degree.

We also set the number 𝑘 of nearest neighbours to 30.

The choices for the other reduces are shown in the code block.

In practice, we would typically set these parameters on a dataset-by-

dataset basis, but for illustration purposes, we do not need to fine tune

the choices.

reducers = [

(manifold.TSNE, {"perplexity": 50}),

(manifold.Isomap, {"n_neighbors": 30}),

(manifold.MDS, {}),

(decomposition.PCA, {}),

(umap.UMAP, {"n_neighbors": 30, "min_dist": 0.3}),

]

test_data = [

(blobs, blob_labels),

(digits.data, digits.target),

(wine.data, wine.target),

(swissroll, swissroll_labels),

(sphere, sphere_colors),

]

dataset_names = ["Blobs", "Digits", "Wine", "Swiss Roll",

"Sphere"]
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Now, we compute the 2D reductions for every reducer-dataset pair (this

step is time-consuming):

reductions_and_labels = [(reducer(n_components=2,

**args).fit_transform(data),

labels)

for data, labels in test_data

for reducer, args in reducers

]

And we display the results:

n_rows = len(test_data)

n_cols = len(reducers)

fig = plt.figure(figsize=(16, 16))

fig.subplots_adjust(left=.02, right=.98, bottom=.001,

top=.96, wspace=.05, hspace=.02)

ax_index = 1

ax_list = []

for reduction, labels in reductions_and_labels:

ax = fig.add_subplot(n_rows, n_cols, ax_index)

if isinstance(labels[0], tuple):

# if labels are colours, use them

ax.scatter(*reduction.T, s=10, c=labels, alpha=0.5)

else:

# otherwise, use "spectral" map from labels to colours

ax.scatter(*reduction.T, s=10, c=labels,

cmap="Spectral", alpha=0.5)

ax_list.append(ax)

ax_index += 1

plt.setp(ax_list, xticks=[], yticks=[])

for i in np.arange(n_rows) * n_cols:

ax_list[i].set_ylabel(dataset_names[i // n_cols], size=16)

for i in range(n_cols):

ax_list[i].set_xlabel(repr(reducers[i][0]()).split("(")[0],

size=16)

ax_list[i].xaxis.set_label_position("top")

fig.show()

Notice that Isomap removes exactly the wrong dimension in the swiss

roll; 𝑡−SNE (and MDS to some extent) reduces the wine data down to

one dimension (its true dimensionality) even though it was only asked

for a reduction to two dimensions. UMAP manages to give the most

sensible output for the swiss roll.
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23.5 Exercises

Consider the datasets

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv .

and/or any other datasets of interest (as long as they have a sufficiently large number of predictors).

1. Establish 2-3 questions that you could try to answer with each dataset.

2. Based on the questions obtained in 1, provide 3-5 subsets of features that would do a good job of

representing each dataset (use some of the methods described in this module, or other methods as

needed).

3. Learn 3-5 reduced manifolds for each dataset (use some of the methods described in this module, or

other methods as needed).

4. How would you validate your results?
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